Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

-

a BIOCHEMIC BASIS FOR THE STUDY OF PROBLEMS OF TAXONOMY, HEREDITY, EVOLUTION, ETC., WITH ESPECIAL REFERENCE TO THE STARCHES AND TISSUES OF PARENT-STOCKS AND HYBRID-STOCKS AND THE STARCHES AND HEMOGLOBINS OF VARIETIES, SPECIES, AND GENERA.

BY
EDWARD TYSON REICIER'T, M.D., Sc.D.
Professor of Physiology in the University of Pennsylvania Research Associate of the Carnegie Institution of Washington

IN TWO PARTS

PART I

WASHINGTON, D. C.
Published by the Carnegie Institution of Washington

CARNEGIE INSTITUTION OF WASHINGTON
Publication No. 970, Part I

PKEAS OF J. B. LIPPINCOTT COMPANY
PHILADELPHIA

TABLE OF CONTENTS

PART I.

soos
Y
Prepacz
Supplernentary and Complementary Resesches. The Trend of Modern Biological Bcienoer. General Thoughte underlyisg these Researches. Inter-relationships between Molecular Configuration of Various Bubstanoes und Protoplam: Biologic Propositions. Relations of Various Substances to Biologic Classifieation. Differenocs in the Methods Employed in these Researches. Forecsst of Further Research. Unit-Charseters and Unit-Charmeter-phases of Starches and Plant Tissues. Physics and Physical Chemistry in their Bearinge on the Development of Biologic Bejensee
Chapter I. Introduction 3

1. Objects of the Research 8
2. Criteria of Mutants and Hybrids. A Foreword 8
3. Intermediateness and Lessened Vitality of Hybrids ete. (Maefarlane) 4
Intermediateness of Histologic Properties of Hybrids 4
4. Average Organismsl Development and Deviations 4
5. Limit of Variability 5
6. Comparison of Similar Parts 5
7. Available Limit for Comparison of Parents with their Hybrid Progeny 5
8. Relative Stability of Parent Forms 7
Intermediateness of the Starches of Hyyrids 10
First Proposition of Focke. 10
Second Proposition of Focke 11
Third Proposition of Focke 12
9. Partial or Complete Sterility of Hybrids 18
Fourth Proposition of Focke 13
Fifth Proposition of Focke. 15
10. Instability and Mendelian Inheritance of Hybrids and Mutants 20
11. Theoretic Requirements in the Properties of Starches to Conditions in the Hytrid corresponding to those of Anstomic Characters 20
12. Unit-Characters and Unit-Character-Phases 21
13. Assistants. 22
Ceapter II. Methods Ueed in tee Study of Starceees
14. Preparation of the Starches. 28
15. Simultaneous Studies of Starches of the Parents and Hybrid and of the Members of a Geuus 28
16. Histologic Method 28
17. Photomicrographic Records 23
18. Resctions in Polarized Light, Witbout and With Selenite 29
. lodine Resctans 24
19. Aniline Reactions 25
25
20. Action of Swelling Reagents 26
21. Canstancy of Results Recorded by the Foregoing Methad 28
22. Reagents Used in Qualitstive Investigations 28
23. Charts of Reaction-Intensities of Different Starches 29
24. Comparative Valuations of the Reaction-Intensities 31
Ceapter III. Histologic Peoperties and Resctions 31
31
25. Comparisons of the Starches of Amaryllis belladouna, Brunevigis jusephina, Brunsdonns sunderce alta, aud Brunsdonns sanderce 32
Notes on Amsryllis, Brunsvigis, and Brunsdonna. 37
26. Comparisons of the Starches of Hippeastrum titan, H. cleonis, and H titav-cleonis 40
27. Comparisons of the Starches of Hippesstrum darones, H. zephyr, and H. darones-zeptyr 44
Notes on the Hipperstrums. 46
28. Compsrisons of the Starches of Hamuntbus katherinas, H. magnificus, and H. andromede 47
29. Comparisons of the Starches of Hemsathus kathering, H. pumiceus, and H. komig ulbert 50
30. Comparisons of the Starches of Crinum moorei, C. zeylanicum, and C. Lybridum j. e. harvey 51
31. Comparisons of the Starches of Crinum zeylanicum, C. longiolium, and C. Eircape
32. Comprarisons of the Starches of Crinum longifohum, C. moorel, and C. powelli 53
Notes on the Crinums 58
33. Comparisons of the Starches of Nerine arispl, N. elegans, N. deinty maid, and N. queev of roses 58
page
34. Comparisons of the Starches of Nerine bowdeni, N. sarniensis var. corusca major, N. giantess, and N. abundance 62
35. Comparisons of the Starches of Nerine sarniensis var. corusca major, N. curvifolia var. fothergilli major, and N. glory of sarnia 66
Notes on the Quantitative Reactions of the Nerines with the Various Chemical Reagents 68
36. Comparisons of the Starches of Narcissus poeticus ornatus, N. poeticus poetarum, N. poeticus herrick, and N. pocticus dante. 69
37. Comparisons of the Starches of Narcissus tazetta grand monarque, N. poeticus ornatus, and N. poetaz triumph. 72
38. Comparisons of the Starches of Narcissus gloria mundi, N. poeticus ornatus, and N. fiery cross. 74
39. Comparisons of the Starches of Narcissus telamonius plenus, N. poeticus ornatus, and N. doubloon 76
40. Comparisons of the Starches of Narcissus princess mary, N. poeticus poetrum, and N. cresset 77
41. Comparisons of the Starches of Narcissus abscissus, N. poeticus poetarum, and N. will scarlet 79
42. Comparisons of the Starches of Narcissus albicans, N. abscissus, and N. bicolor apricot. 81
43. Comparisons of the Starches of Narcissus empress, N. albicans, and N. madame de graaff 82
44. Comparisons of the Starches of Narcissus weardale perfection, N. madame de graaff, and N. pyramus 84
45. Comparisons of the Starches of Narcissus monarch, N. madame de graaff, and N. lord roberts. 86
46. Comparisons of the Starches of Narcissus leedsii minnie hume, N. triandrus albus, and N. agnes harvey 87
47. Comparisons of the Starches of Narcissus emperor, N. triandrus albus, and N. j. t. bennett poe 89
Notes on the Narcissi 91
48. Comparisons of the Starches of Lilium martagon album, L. maculatum, and L. marhan. 91
49. Comparisons of the Starches of Lilium martagon, L. maculatum, and L. dalhansoni 94
50. Comparisons of the Starches of Lilium tenuifolium, L. martagon album, and L. golden gleam 96
51. Comparisons of the Starehes of Lilium chalcedonicum, L. candidum, and L. testaceum. 98
52. Comparisons of the Starches of Lilium pardalinum, L. parryi, and L. burbanki. 100
Notes on the Lilies. 102
53. Comparisons of the Starches of Iris iberica, I. trojana, and I. ismali 103
54. Comparisons of the Starches of Iris iberica, I. cengialti, and I. dorak 106
55. Comparisons of the Starches of Iris cengialti, I. pallida queen of may, and I. mrs. alan grey 108
56. Comparisons of the Starches of Iris persica var. purpurea, I. sindjarensis, and I. pursind. 110
Notes on the lrises 113
57. Comparisons of the Starches of Gladiolus cardinalis, G. tristis, and G. colvillei 114
58. Comparisons of the Starches of Tritonia pottsii, T. crocosmia aurea, and T. crocosmæflora. 116
59. Comparisons of the Starches of Begonia single crimson scarlet, B. socotrana, and B. mrs. heal. 118
60. Comparisons of the Starches of Begonia double light rose, B. socotrana, and B. ensign 120
61. Comparisons of the Starches of Begonia double white, B. socotrana, and B. julius 122
62. Comparisons of the Starches of Begonia double deep rose, B. socotrana, and B. success. 123
Notes on the Begonias. 124
63. Comparisons of the Starches of Richardia albo-maculata, R. elliottiana, and R. mrs. roosevelt 125
64. Comparisons of the Starches of Musa arnoldiana, M. gilletii, and M. hybrida. 126
65. Comparisons of the Starches of Phaius grandifolius, P. wallichii, and P. hybridus. 129
66. Comparisons of the Starches of Miltonia vexillaria, M, rezlii, and M. bleunna 131
67. Comparisons of the Starches of Cymbidium lowianum, C. eburneum, and C. eburneo-lowianum 133
68. Comparisons of the Starches of Calanthe rosea, C. vestita var. rubro-oculata, and C. veitchii 135
69. Comparisons of the Starches of Calanthe vestita var. rubro-oculata, C. regnieri, and C. bryan 137
Notes on the Calanthes 138
Notes on the Orchids 138
Chapter IV. General and Special Considerations of the Reaction-Intensities of the Starches of Parent-Stocks and Hybrid-Stocks 139
70. Reaction-Intensities of Starches with Each Agent and Reagent 139
Wide Range of Reaction-Intensities 140
Manifest Tendency to Groupings of Reaction-Intensitics. 140
Individuality or Specificity of Each Chart 142
The Specificities of the Components of the Reagents 144
Variable Relationships of the Reaction-Intensities as regards Sameness, Intermediateness, etc. 161
Variations in the Reaction-Intensities as regards Height, Sum, and Average 162
Average Temperatures of Gelatinization compared with the Average Reaction-Intensities 164
71. Velocity-Reactions with Different Reagents 166
Percentage of Total Starch Gelatinized at Definite Time-Intervals. 167
Percentages of Total Starch and Entire Number of Grains Gelatinized at Definite Time-Intervals. 170
72. Composite Reaction-Intensity Curves with Different Agents and Reagents 172
73. Series of Charts 174
Charts Al to A 26 175
Charts B1 to B 42 188
Chart C 1 209
Charts D 1 to D 691. 210
Charts E 1 to E 46 263
Charts F 1 to F 14 282
Caafter V. Summaries of the Histologic Characters, etc. 284
74. The Starches 284
Histologic Characters and certain Qualitative and Quantitative Reactions. 284
Brunsdonne 285
Hippeastrum 287
75. The Starches-Continued.
Hemanthus 287
Crinum 288
Nerine 289
Narcissus. 294
Lilium 297
Iris 298
Gladiolus 299
Tritonia. 299
Begonia 299
Richardia 301
Musa 301
Miltonia 302
Cymbidium 302
Calanthe 302
Histologic Properties of Starches of Hybrids in relation to those of the Parents. 302
Qualitative and Quantitative Reactions of Starches of Hybrids with especial reference to Reversal of these Reactions in their Parental Relationships. 304
Reaction-Intensities of Each Hybrid Starch 309
Reaction-Intensities of Each Hybrid Starch with Different Agents and Reagents 309
Reaction-Intensities of Each Hybrid Starch ic Relation to Sameness and Inclination to Each Parent and Both Parents 322
Reaction-Intensities of All of the Hybrid Starches with Each Agent and Reagent and as Regards Sameness and Incli- nation of their Properties in Relation to One or the Other Parent or Both Parents 323
76. The Plant Tissues 337
Macroscopic and Microscopic Characters of Hybrid-Stocks in comparison with the Reaction-Intensities of Starches of Hybrid-Stocks as Regards Sameness, Intermediateness, Excess, and Deficit of Development in Relation to the Parent-Stocks 337
77. Tissues and Starches of the Same Parent- and Hybrid-Stocks. 340
Chapter Vi. Applications of Results of Researches. 360
Specificity of Stereoisomerides in relation to Genera, Species, etc 360
Protoplasm a Complex Stereochemic System 363
The Germplasm is a Stereochemic System—that is, a Physico-Chemical System Particularized by the Characters of its Stereoisomers and the Arrangements of its Components in the Three Dimensions of Space 364
Protoplasmic Stereochemic System applied to the Explanation of the Mechanism of Variations, Sports, Fluctuations, ete 367
Protoplasmic Stereochemic System applied to the Genesis of Species 368
Chapter VII. Notes and Conclusions 370
Hypothesis underlying these Researches. 370
Exploratory Character-Evidence in Support of the Hypothesis, etc. 370
Methods Employed and Recommended 370
Starch Substances as Non-Unit Substances. 372
Each Starch Property an Independent Physico-Chemical Unit-Character 372
Individuality or Specificity of Each Agent and Reagent 372
Reliability of Methods as shown by Charts and Conformity of Results Collectively 373
General Conclusions drawn from Results of the Hemoglobin Researches 373
General Conclusions drawn from the Starch Researches 374
General Conclusions drawn from Investigations of the Macroscopic and Microscopic Characters of Plants. 374
The Relative Potentialities of the Seed Parent and the Pollen Parent in influencing the Characters of the Hybrid 374
Species Parents versus Sex Parents 375
Intermediateness as a Criterion of Hybrids 376
Germplasm as a Stereochemic System 376
Applications to the Explanation of the occurrence of Variations, Sports, Fluctuations, and the Genesis of Species. 376
Scientific Basis for Classification of Plants and Animals and for the Study of Protoplasm 376
PART II. PAGE
Prefatory Notes vii
Chapter VIII. Special, General, and Comparative Laboratory Data of the Propertieg op Starcaes of Parent- and Hybrid-Stocks 377
78. Amaryllis-Brunsvigia 379
79. Starches of Amaryllis belladonna, Brunsvigia josephinæ, Brunsdonna sanderce alba, and B. sanderœ 379
80. Hippeastrum 396
81. Starches of Hippeastrum titan, H. cleonia, and H. titan-cleonia 396
82. Starches of Hippeastrum ossultan, H. pyrrha, and H. ossultan-pyrrha 407
83. Starches of Hippeastrum dæones, H. zephyr, and H. dæones-zephyr 418
84. Hæmanthus 429
85. Starches of Hæmanthus katherinæ, H. magnificus, and H. andromeda 429
86. Starches of Hæmanthus katherinæ, H. puniceus, and H. könig albert 442
87. Crinum 449
88. Starches of Crinum moorei, C. zeylanicum, and C. hybridum j. c. harvey 450
89. Starches of Crinum zeylanicum, C. longifolium, and C. kircape 464
90. Starches of Crinum longifolium, C. moorei, and C. powellii 476
PAGE
91. Nerine 481
92. Starches of Nerine crispa, N. elegans, N. dainty maid, and N. queen of roses 481
93. Starches of Nerine bowdeni, N. sarniensis var. corusca major, N. giantess, and N. abundance 494
94. Starches of Nerine sarniensis var. corusca major. N. curvifolia var. fothergilli major, N. glory of sarnia 508
95. Narcissus 515
96. Starches of Narcissus poeticus ornatus, N. poeticus poetarum, N. poeticus herrick, and N. poeticus dante 515
97. Starches of Narcissus tazetta grand monarque, N. poeticus ornatus, and N. poetaz triumph 527
98. Starches of Narcissus gloria mundi, N. poeticus ornatus, and N. fiery cross 536
99. Starches of Narcissus telamonius plenus, N. poeticus ornatus, and N. doubloon 542
100. Starches of Narcissus princess mary, N. poeticus poetarum, and N. cresset 548
101. Starches of Narcissus abscissus, N. poeticus poetarum, and N. will scarlet 554
102. Starches of Narcissus albicans, N. abscissus, and N. bicolor apricot. 560
103. Starches of Narcissus empress, N. albicans, and N. madame de graafi 566
104. Starches of Narcissus weardale perfection, N. madame de graaff, and N. pyramus 572
105. Starches of Narcissus monarch, N. madame de graaff, and N. lord roberts 578
106. Starches of Narcissus leedsii minnie hume, N. triandrus albus, and N. agnes harvey 584
107. Starches of Narcissus emperor, N. triandrus albus, and N. j. t. bennett poe 591
108. Lilium 598
109. Starches of Lilium martagon album, L. maculatum, and L. marhan 598
110. Starches of Lilium martagon, L. maculatum, and L. dalhansoni 606
111. Starches of Lilium tenuifolium, L. martagon album, and L. golden gleam 612
112. Starches of Lilium chalcedonicum, L. candidum, and L. testaceum 619
113. Starches of Lilium pardalinum, L. parryi, and L. burbanki 627
114. Iris 636
115. Starches of Iris iberica, I. trojana, and I. ismali 636
116. Starches of Iris iberica, I. cengialti, and I. dorak 647
117. Starches of Iris cengialti, I. pallida queen of may, and I. mrs. alan grey 656
118. Starches of Iris persica var. purpurea, I. sindjarensis, and I. pursind 664
119. Gladiolus 675
120. Starches of Gladiolus cardinalis, G. tristis, and G. colvillei 675
121. Tritonis 685
122. Starches of Tritonia pottsii, T. crocosmia aurea, and T. crocosmæflora 685
123. Begonia 695
124. Starches of Begonia single crimson scarlet, B. socotrana, and B. mra. heal 695
125. Starches of Begonia double light rose, B. socotrana, and B. ensign 702
126. Starches of Begonia double white, B. socotrana, and B. julius 708
127. Starches of Begonia double deep rose, B. socotrana, and B. success 713
128. Richardia 718
129. Starches of Richardia albo-maculata, R. elliottiana, and R. mrs. roosevelt 718
130. Musa 725
131. Starches of Musa arnoldiana, M. gilletti, and M. hybrida 725
132. Phaius 736
133. Starches of Phaius grandifolius, P, wallichii, and P. hybridus 736
134. Miltonia 749
135. Starches of Miltonia vexillaria, M. rezlii, and M. bleuana. 749
136. Cymbidium 760
137. Starches of Cymbidium lowianum, C. eburneum, and C. eburneo-lowianum 760
138. Calanthe 769
139. Starches of Calanthe rosea, C. vestita var. rubro-oculata, and C. veitchii 769
140. Starches of Calanthe vestita var. rubro-oculata, C. regnieri, and C. bryan 778
Chapter IX. Macroscopic and Microscopic Characters of Parent-Stocks and Hybrid-Stocks. 785
141. Ipomœa coccinea, I. quamoclit, and I. sloteri 785
142. Lalia purpurata, Cattleya mossiæ, and Lælio-Cattleya canhamiana 791
143. Cymbidium lowianum, C. eburneum, and C. eburneo-lowianum 798
144. Dendrobium findlayanum, D. nobile, and D. cybele 804
145. Miltonia vexillaria, M. rczlii, and M. bleuana 810
146. Cypripedium spicerianum, C. villosum, C. lathamianum, and C. lathamianum inversum 816
147. Cypripedium villosum, C. insigne maulei, and C. nitans 828

PREFACE.

This memoir is complementary and supplemeutary to publication No. 116 of the Carnegie Institution of Washington, entitled "The Differentiation and Specificity of Corresponding Proteins and other Vital Substances in relation to Biological Classification and Organic Evolution: The Crystallography of Hemoglobins," and publication No. 173 of the same series, entitled "The Differentiation and Specificity of Starches in relation of Genera, Species, etc.: Stereochemistry applied to Protoplasmic Processes and Products, and as a strictly scientific basis for the Classification of Plants and Animals." Like its predecessors, this is a report of an exploratory investigation. In the preface of No. 173 there appeared the following statement of the thoughts that underlie these studies, and of their support up to that time by the results of experimental inquiry:
" The present memoir, which is purely in the nature of a report of a preliminary investigation, is complementary and supplementary to Publication No. 116 of this Institution, entitled 'The Differentiation and Specificity of Corresponding Proteins and other Vital Substances in Relation to Biological Classification and Organic Evolution: The Crystallography of Hemoglobins,' in the preface of which the following statement was made of the hypothesis upon which the research was founded, and of the support of the hypothesis by the results of the inquiry :
"' The trend of modern biological science seems to be irresistibly toward the explanation of all vital phenomena on a physico-chemical basis, and this movement has already brought about the development of a physicochemical physiology, a physico-chemical pathology, and a physico-chemical therapeutics. The striking parallelisms that have been shown to exist in the properties and reactions of colloidal and crystalloidal matter in vitro and in the living organism lead to the assumption that protoplasm may be looked upon as consisting essentially of an extremely complex solution of interacting and interdependent colloids and crystalloids, and therefore that the phenomena of life are manifestations of colloidal and crystalloidal interactions in a peculiarly organized solution. We imagine this solution to consist mainly of proteins with various organic and inorganic substances. The constant presence of protein, fat, carbohydrate, and inorganic salts, together with the existence of protein-fat, protein-carbohydrate, and protein-inorganic salt combinations, justifies the belief that not only such substances, but also such combinations, are absolutely essential to the existence of life.
" 'The very important fact that the physical, nutritive, or toxic properties of given substances may be greatly altered by a very slight change in the arrange-
ment of the atoms or groups of molecules may be assumed to be conclusive evidence that a trifling modification in the chemical constitution of a vital substance may give rise to even a profound alteration in its physiological properties. This, coupled with the fact that differences in centesimal composition have proved very inadequate to explain the differences in the phenomena of living matter, implics that a much greater degree of importance is to be attached to peculiarities of chemical constitution than is universally recognized.
"' The possibilities of an inconceivable number of constitutional differences in any given protein are instanced in the fact that the serum albumin molecule may, as has been estimated, have as many as 1,000 million stereoisomers. If we assume that serum globulin, myoalbumin, and other of the highest protems may wath have a similar number, and that the simpler proteins and the fats and carbohydrates, and perhaps other complex organic substances, may each have only a fraction of this number, it can readily be conceived how, primarily by differences in chemical constitution of vital substances, and secondarily by differences in chemical composition, there might be brought about all of those differences which serve to characterize genera, species, and individuals. Furthermore, since the factors which give rise to constitutional changes in one vital substance would probably operate at the same time to cause related changes in certain others, the alterations in one may logically be assumed to serve as a common index of all.
"' In accordance with the foregoing statement, it can readily be understood how environment, for instance, might so affect the individual's metabolic processes as to give rise to modifications of the constitutions of certain corresponding proteins and other vital molecules which, even though they be of too subtle a character for the chemist to detect by his present methods, may nevertheless be sufficient to cause not only physiological and morphological differentiations in the individual, but also become manifested physiologically and morphologically in the offspring.
"'Furthermore, if the corresponding proteins and other complex organic structural units of the different forms of protoplasm are not identical in chemical constitution, it would seem to follow, as a corollary, that the homologous organic metabolites should have specific dependent differences. If this be so, it is obvious that such differences should constitute a preeminently important means of determining the structural and physiological peculiarities of protoplasm.
"' It was such germinal thoughts that led to the present research, which I began upon the hypothesis that if it should be found that corresponding vital substances are not identical, the alterations in one would doubtless be associated with related changes in others, and that if definite relationships could be shown to exist between these differences and peculiarities of the living organism, a fundamental principle of the utmost importance would be established in the explanation of
heredity, mutations, the influences of food and environment, the differentiation of sex, and other great problems of biology, normal and pathological.
." To what extent this hypothesis is well founded may be judged from this partial report of the results of our investigations: It has been.conclusively shown not only that corresponding hemoglobins are not identical, but also that their peculiarities are of positive generic specificity, and even much more sensitive in their differentiations than the "zoöprecipitin test.". Moreover, it has been found that one can with some certainty predict by these peculiarities, without previous knowledge of the species from which the hemoglobins were derived, whether or not interbreeding is probable or possible, and also certain characteristics of habit, etc., as will be seen by the context. The question of interbreeding has, for instance, seemed perfectly clear in the case of Canidæ and Muridæ, and no difficulty was experienced in forecasting similarities and dissimilarities of habit in Sciuridæ, Muridæ, Felidæ, etc., not because hemoglobin is per se the determining factor, but because, according to this hypothesis, it serves as an index (gross though it be, with our present very limited knowledge) of those physicochemical properties which serve directly or indirectly to differentiate genera, species, and individuals. In other words, vital peculiarities may be resolved to a physicochemical basis.'
"Before and since the inception of the foregoing research, data have been slowly accumulating which point more and more strongly to the extremely important interrelationships that exist between the intramolecular configurations of various substances that play active rôles in life's processes and the configurations of protoplasm. Hence, any progress in the application of stereochemistry to metabolic processes brings us closer to an understanding of those peculiar mechanisms of protoplasm which give rise to the phenomena which in the aggregate constitute life in its normal and abnormal manifestations.
"Hemoglobin, next to protoplasm, is unquestionably the most important organic substance of vertebrate life, and in conjunction with the stroma with which it is associated is an active functionating protein, the main function of which is the conveyance of oxygen from the external organs of respiration to the internal organs of respiration or the tissues generally. Starch is similarly an extremely important constituent of a vast number of forms of plant life, but its rôle in vital processes, while, on the whole, as essential to the continuance of life, is of an entirely different character. Moreover, the general and sperial characters of these substances in relation to those of the hodies which originate them, and the mechanisms of their formation, are likewise strikingly different. Hemoglobin constitutes nearly the whole of the erythrocyte or red-blood corpuscle, and that portion of the erythrocyte which is not this substance may properly be regarded as being in the nature of an adjunct, but nevertheless essential. In early embryonic life the erythrocytes are nucleated and probably derived directly from the mesoblastic elements, and they increase in num-
ber by mitosis. Later, proliferation occurs in all parts of the circulation, in certain capillary areas more than others, especially in those of the liver, spleen, and bonemarrow. During the progress of fetal development the erythrocytes, primarily spherical and nucleated, in time lose their nuclei, and become smaller, and take on the peculiar disk or cup-shaped form of postnatal life. After birth the red bone-marrow is the chief or sole seat of formation of erythrocytes. It is the common conception that in this structure these corpuscles arise from nucleated red cells which exist at first as colorless, nucleated erythroblasts, and subsequently as smaller, denser, colored, nucleated normoblasts. The former, which are looked upon as the hereditary representatives of the embryonal erythrocytes, are generally conceived to be converted into normoblasts by mitosis, and the latter in turn to become ordinary erythrocytes upon the disappearance of the nuclei by solution or extrusion. It is, however, more likely, as suggested in 1882 by Malassez, and very recently (1912) by the investigations of Emmel by means of plasma cultures, that the erythrocyte of late fetal and post fetal life is formed from the cytoplasm of the erythroblast by a simple process of budding and detachment.* According to either conception the erythrocyte is a separated portion of the mother substance that has been set free in a highly specialized life-sustaining medium, but in a distinctly modified form, inasmuch as it has a much higher hemoglobin content and is lacking in the amœeboid activities and power of reproduction of the parent substance, the latter differences being readily accounted for in the absence of nuclear matter. Starch, on the other hand, is a synthetic product of metabolic activity which bears no resemblance to the protoplasm that gave rise to it, and which is destined to serve an entirely different purpose from that of hemoglobin in the life-history of the organism. With hemoglobin as it exists associated with the stroma in the erythrocytes we are dealing with an active, living, functionating, highly specialized form of protoplasm; with starch, we deal with an absolutely inert, non-living, non-functionating, extremely complex carbohydrate in the nature of a storedup pabulum, and a synthetic product of plastids which are specialized forms of protoplasm. In the hemoglobin research it was shown that the hemoglobin molecule is modified in specific relationship to genus, species, etc., which may be taken to mean that the form of protoplasm that is expressed by the term erythroeyte is correspondingly stereochemically modified; with starch it has been found, as will be seen by the contest, that the molecule is likewise changed in specific relationship to genera, species, etc., which accordingly may also be taken to mean that during synthesis the products of activity are altered in their molecular peculiarities in specific rela-

[^0]tionship to the stereochemic modifications of the forms of protoplasm which produce them. In other words, one may lay down the dictum that each and every form of protoplasm existent in any organism is stereochemically peculiarly modified in specific relationship to that organism, and that, as a corollary, the products of synthesis will be modified in conformity with the molecular peculiurities of the protoplasm giving rise to them. It follows, therefore, that if the plastids of any given plant be of different stereochemic structure from those of others, the starch produced will show corresponding stereochemic variations, and hence be absolutely diagnostic in relation to the plant. Abundant evidence will be found in the parges which follow in justification of this statement. Moreover, if such differences are diagnostic, it is evident that they constitute a strictly scientific basis for the classification of plants.
"The research on starches was undertaken with three primary objects in view : First, to determine if the hypothesis underlying the hemoglobin investigation would be supported by the stereochemic peculiarities of other complex synthetic metabolites; second, to add materially to our knowledge of one of the most important substances in the life-history of both plant and animal kingdoms; and third, to throw open fields of investigation which offer extraordinary promise, particularly in adding to our knowledge of the all-important properties of protoplasm."

Since the beginning of these researches, facts have been accumulating steadily along various channels of investigation which are in support of the propusitions: That all vital phenomena are or will be found to be explicable upon a physico-chemical basis; that the line of demareation between chemical and biochemical laws and phenomena is fast disappearing; that it is becoming recognized that the genesis of living matter, individuals, sex, varieties, species, and genera is being resolved to studies of the genesis of chemical compounds and interactions, and of the laws and applications of physical chemistry; and that the speciticities of stereoisomerides in relation to various tissues, organs, and organisms is one of the most extraordinary and fundamental phenomena of living matter, and inseparable from specificities of molecular constitutions and vital characteristics of various forms of protoplasm.

In the introduction of the Hemoglobin memoir references were made to certain differences that have been noted in corresponding substances, plant and animal, in relation to biological classification; and in the corresponding chapter of the Starch memoir many instances were cited of various substances, inorganic and organic, that appear in stereoisomeric forms and exhibit marked physical, nutritive, and toxic differences in accordance with peculiarities of molecular configuration. Among such substances, those of bio-
logic origin are of preeminent interest lwanse of their direct or indirect dependence upon protoplasm for their existence and peculiarities, and many investigations bearing upon them have been carried out (during especially the last decade) that are of such particular importance in their bearings upon the objects of these investigations as to demand here at least casual notices. It has already been noted that some years ago Hoppe-Seyler and others found that the pepsins of warm-blooded and cold-blooded animals are not identical, and that Wróblewsky and others recorded diflerences in the pepsins of dilferent animals. Now, it is of interest to note that these differentiations have been added to by Hedin (Zeit. f. physiolog. Chemie, 1911, Lxxxir, 187 ; 1911, Lxxiv, 242 ; 1912, LXXXII, 175), who found in comparative studies of renminagens. from species of different genera that either remase or antiremase can be prepared at will from the same remninogen, and that the antirennase is imhibitory to the remase of the same species but not to the remase of other species, therefore showing distinct generic speciticity. Moreover, it is probable, as Medin pointed out, that the invertases from different yeasts, bacteria, molds, etc., are not identical. Scherman and Schlesinger (Proc. Soc. Exp. Biol. and Med., 1915, xı1, 118) have reported that the amylases from pancreas and malt are not identical. Malt amylase they found to be most active in a somewhat acid solution, while the optimum solution for pancreatic amylase is slightly alkaline, and the amylase of pancreas was less than half as active as that of malt. The investigations of Dudley and Woodman (Biochem. Jour., 1915, 1x, 97) indicate that the casein of sheep differs from that of the cow ; and the studies by Dakin and Dudley (Biochem. Jour., 1913, xv, 271) in digestion, Schmidt (Proc. Soc. Exp. Biol. and Med., 1917, xiv, 104) in immunization, Ten Broeck (Biolog. Chem., 1914, xvir, 369) in antigenic tests, and Underwood and Hendrix (Biolog. Chem., 1915, xxir, 453) in toxicity experiments have shown that "racemic" casein is not identical with casein.

The specificities of the hemoglobins and starches in relation to the animal or plant source, as set forth in the preceding memoirs, has had abrandant support by various biologic reactions (complement-fixation, agglutinin, precipitin, anaphylactic). It seems evident that all of these reactions or tests have a biochemic basis; that they are dependent upon peculiarities of chemical constitution or structure of protein molecules; and that they are "group" reactions in the sense that they are restricted to the same or to similar proteins of the same individual or closely
related or allied species or genera. Since Magendi in 1839 found that when egg albumin is injected into rabbits the animals become so sensitized that death is caused by a second injection, an enormous amount of work has been done in similar and allied experiments. The literature that has accumulated is so exceedingly voluminous and of such a character that even a review of the most important of the investigations is quite impossible within the allotted limits of space of this report. But there are several researches that have appeared since the publication of the preceding memoirs which, like the foregoing, are of such especial importance in connection with the present investigations that they, as in the case of several others above referred to, should receive at least a passing notice. For instance, Bradley and Sansun (Jour. Biolog. Chem., 1914, xviir, 497) found that guinea pigs that are sensitized to beef or dog hemoglobin, fail to react, or react only slightly, to hemoglobins of other origins. They tried the hemoglobins of the dog, beef, cat, rabbit, rat, turtle, pig, horse, calf, goat, sheep, pigeon, and chicken, and of man, and they found reasons for the conclusion that the hemoglobins from different sources are chemically diflerent.

The studies of Wells and of Wells and Osborne of the biological reactions of vegetable proteins (Jour. Infect. Dis., 1911, viII, 66; 1913, xir, 341; 1914, xiv, 377 ; 1915, xvir, 259 ; and 1916, xix, 183) show among various findings of variable degrees of importance that chemically similar proteins from the seeds of different genera react anaphylactically with one another, while chemically dissimilar proteins from the same seeds in many cases fail to do so. Blakeslee and Gortner (Carnegie Institution of Washington Year-Book, No. 12, 1913, 99) record evidence in their investigations of the precipitin reactions of the proteins of mold that is consistent with the conclnsion that there are not only "species proteins" but also "ow proteins" (see "hapter vi, pages 366 and :3fí): and (whlke and llo\%, and Lange (U'mschau, 1914 ; Scientific Amer. Sup. 1914, No. 2016, 122) have rexorded most significant data in the determination of plant relationships by means of sero-diagnosis. Taxonomic relationships of a number of families were studied and references are also made by Gohlke to the differentiations of plant albumins by Kowarski and to the experiments of Magnus and Friedenthal which showed a relationship between truffles and yeast. Legrand (Revue Generale des Sciences, 1918 ; Scientific American Suppoment, 1918, No. 22:38, 322) has brought together a large number of diversified facts in support of zoologic hioeliemie sperificities.

Comparing the results of the various "biologic tests" with those recorded by means of the methods used in the starch and hemoglobin researches, it seems to be conclusively demonstrated, as far as these investigations have gone, that the latter are capable of practically unlimited development by addition and improvement. The studies of the starches and hemoglobins are not more than merely started, and there remain virtually untouched (for exceptionally inviting and extensive investigation) albumins, globulins, proteoses, glycogens, fats, cholesterols, alkaloids, enzymes, hormones, and a host of other substances that undoubtedly appear in animal and plant life in stereoisomeric forms that are specifically modified in relation to the protoplasmic source. When one pictures what these three exploratory researches have brought forth and what they suggest as being in part the outcome of further inquiry the imagination becomes bewildered by the marvellous richness of what is thus forecasted.

The methods used in the preceding research have in the present investigation been extended and so improved as to yield records that are satisfactory in quantity, kind, and accuracy; and in reference thereto, it seems needless at this juncture to do more than present certain excerpts from reports by the writer that have appeared in the Year Books of the Carnegie Institution of Washington or elsewhere, as follows:
"The investigations with the starches were necessarily carried on by methods that are quite different from those employed in the study of the hemoglobins. Although the starch granule is a spherocrystal that lends itself to crystallographic study, very little can be learned of its molecular characters that is of usefulness in the differentiation of various starches. Other methods, however, offer very satisfactory means of study, especially those which elicit molecular differences by means of peculiarities of gelatinization. These methods, all microscopic, have included inquiries into histological characters; polariscopic, iodine, and aniline reactions; temperatures of gelatinization ; and quantitative and qualitative gelatinization reactions with a variety of chemical reagents which represent a wide range of difference in molecular composition.
" Each starch property, whether it be manifested in peculiarities in size, form, hilum, lamellation or fissuration, or in reactions with light, or in color reactions with iodine or anilines, or in gelatinization reactions with heat or chemical reagents, is an expression of an independent physics-chemical unit-character that is an index of specific peculiarities of intramolecular configuration, the sum of which is in turn an index which expresses specific peculiarities of the constitution of the protoplasm that synthetized the starch molecule. The unitcharacter represented by the form of the starch grain is independent of that of size ; that of lamellation independent of that of fissuration, etc. This is evident in the fact that in different starches variations in one may not
be associated with variations in another, and that when variations in different properties are coincidenty observed they may be of like or unlike character. Gelatinizability is one of the most conspicuous properties of starch and it represents a primary physion- (homical unitcharacter, which character may he studied in as many quantitutive and qualitative phases as there are kinds of starches and kinds of gelatinizing rearonts, the phenomena of gelatinization by heat being distinguishable from those by a given chemical rearent, and those by one reagent from those by another, and those of one starch by a given reasent from those of another starch. The gelatinization of the starch grain is certainly not, as is commonly supposed, a manifestation of a simple process of imbibition of water, such as occurs in the swelling of particles of dry gelatin or albumin, hut in fact a very definite chemical process corresponding to that which occurs in the swelling of hiquid erystals, and which must vary in character in accordance with the reagent entering into the reaction. It therefore follows, as a corollary, that the property of gelatinizability of any specimen of starch may be expressed in as many independent physico-chemical unit-character-phases as there are reagents to elicit them. By these methods both physico-chemical unit-characters and unit-character phases can be reduced to figures, from which charts can be constructed which show in the case of earls starch that the sum total of these values is as distinctive of the kind of starch and plant source as are botanical characters of the plant.
"Individualities of one or the other of the parental starches may or may not be observed in the starch of the offspring, and if present they may or may not appear in modified form. Moreover, the starch of the offspring may exhibit peculiarities that are not seen in either of the parental starches, and when two or more sets of hybrids have resulted from separate crosses of the same parental stock, each lot of hybrids may not only exhibit in common distinctive variations from parental characters but also independent individualities, and, as a corollary, differ from each other in well-defined respects. Hence, not only may a given hybrid be definitely attached to definite parentage, but also the hybrids of separate crosses may be recognized as such.
"The studies of the starches of parent- and hyridstocks have been supplemented hy corresponding and somewhat laborious histological examinations of plant tissues associated with some macroscopical inguiry. The results of this supplementary research are in striking accord with those of the starch investigations, and both are in entire harmony with universally recognized principles of the plant and animal breeder and with the dictum underlying these researches, 'vital peculiarities may be resolved to a physico-chemical basis'-with which may be coupled a second dictum, 'correspondinit complex organic substances exist in stereoisomeric forms that are modified specifically in relation to and diarsnostic of the protoplasmic source." "

While the present researeh treats almost andrly of
 correspondingly of la. redity, it will low fonnd that the renults can las atilized in very broad applications t"

 single feature of the repert that will apreal mone
 have heren collated that indicate a far greater darmer of importanee of hathialization in the gromi of sperios and evolution than hats thas far heron reater nizad. Moneover, tn evory atmdent who has kyt
 it must be evident that the erveat adranaers mow foreshadowed seem to ho inoeparably asone iated with physies and physieal chmiotry: and from the result 3 of these researehes on the phesisal elmenistry uf starches and hemoglobins it seems that it may with safcty be predigted that the principhes and motherds herein presented will sore as one of the resential starting-points that will certainly lead to results of great if not eporhal importanere. What physies promises in explanation wi the phemmathat of "reanio growth and form, physical chomistry pomises in the explanation of organic function.

Finally, an apologetic word may not he amiss. This investigation like its two proderessors has hern pursued amidst the endless interruptions and disonncertions that are inseparable from the exactions of professorial duties and other mawnidahle conditions, and not infrequently it has of necessity been set aside for weeks or months. This obvionsly has not only somewhat but serionsly interfered with that continuity of work and thomght that is somportant in the successful pursuit of elabmate insestigations in unexplored fields of inquiry. () On this acooment there will appear not a little evidenoe of a lack of uniformity of treatment of eorresponding parts of the work: an absence here and there of sutheient and earefnl detail, eorrelation, and analrsis: and a failure mot infrequently to disenss with sutformot fullness many facta in their homorie relationships and appleations. Moreover, inasmuch as the writer is mot a butanist. some facts that may be of especial betanic interest mar not have been wiven adeyuate treatment, while some of minor interent may have been unduly amentrated.

Fhwant Tyson Remehfert.

Iniversity of Pennsyluania.

PART I.

sumbaries and comparisons of the properties of the starihes and of the Tissees of parext-stochs and hybridstocks. applications of TIIE RESLLTS OF TIIE RESEGRCHES TO THE GERM-PLASM,

VARLATIONS, FLCCTLATIONS, SPORTS, MUTANTS, SPECLES, taxoxomy, hereblty, etc. notes and conclusions.

By EDWARD TYSON REICHERT, M.D., Sc.D.

CHAPTER 1.

INTRODUCTION.

1. Objects of this Research.

In both of the preceding researches satisfactory evidence was recorded to justify the conclusion that complex organic substances exist in different stereoisomeric forms in different organisms, and that the differences are specific in relation to genera, species, and varieties, and in general in striking accord with the accepted data of the systematist. Naturally it seemed to be a matter of the greatest fundamental importance to determine to what recognizable degree these physico-chemical properties are transmitted from seed and pollen parents in altered or unaltered form in the hybrid; if it is possible to predict the heritability of this or that property; whether or not new physico-chemical properties appear in the hybrid; and if the phenomena of physico-chemical inheritance are not only consistent with but also in explanation of the data of the systematist and with the experience of the plant breeder.

2. Criteria of Hybrids and Mutants.

A FOREWORD.
Beginning with the elementary investigations of Linnæus, data pertaining to the comparative peculiarities of parents and of hybrids have been accumulating, and at present, notwithstanding that thousands of such sets are known in literature, only very few of them have been recorded in a way that renders them of more than general value in formulating laws of inheritance. Standards for the recognition of hybrids and mutants, respectively, have found widespread acceptance, yet one may well hesitate to inquire if in the restrictedness of our analyses and comparisons, the narrowness of our conceptions, and the manifest prejudices and errors of judgment we have not been fostering many views that have led to general misunderstanding and illusory conclusions.

The universally recognized primary or essential distinguishing characters of hybrids are: Intermediateness of the first generation; lessened vitality that may be expressed in many ways; partial or complete sterility, especially as regards the pollen; instability and Mendelian inheritance in the second and succeeding generations. But if we were to carefully examine a large number of diversified characters of say a dozen hybrids selected at random, what percentage of these characters would be found to be intermediate, and what percentages of these intermediate characters would be of mid-intermediate value or nearly the same as in one or the other parent? Are there not many hybrids that are nearly or quite as
fertile as their parents, or if their fertility is subnormal in the first generation may it not become normal during subsequent generations? Are there not many hybrids that show little or no tendency toward Mendelian inheritance, or which, in other words, hreed true? Is it not common to find in hybrids unimpaired vitality and a luxuriance of growth even exceeding that of the parents?

The primary or essential distinguishing characteristics of mutants are set forth in the laws formulated by DeVries:
(1) New elementary species arise suddenly, without transitional forms.
(2) New elementary species are, as a rule, absolutely constant from the moment they arise.
(3) Most of the new forms that have appeared are elementary species, and not varieties in the strict sense of the term.
(4) New elementary species appear in large numbers at the same time or at any rate during the same period.
(5) The new characters have nothing to do with individual varialility.
(6) The mutations, to which the origin of new elementary species is due, appear to he indefinite, that is to say, the chances may affect all organs and seem to take place in almost every conceivable direction.

Do not all of these laws conform in all essential respects with the data in many hybrids? Is not partial or complete sterility common among mutants? Do not mutants when crossed give rise as commonly as hybrids to offspring which exhibit Mendelian phenomena? In a word, has a definite line of demarcation been established hetween hybrids and mutants? In the present research mutants, as such, are of only indirect interest, but if they are hybrids, as is held by many, they are obviously of direct and fundamental importance.

One need not turn many pages of the vast literature of heredity before becoming bewildered by the conflicting statements of recognized authorities and noting that many of even the more important deductions rest upon false premises. In the following elementary sketch the hotanist, zoologist, evolutionist, and others who are very familiar with the subject of heredity will not find anything new, either in facts or deductions, the sole purpose of the presentation being to lay before the general reader data-to show the antipodal views of different authorities; to indicate with what reserse we should accept certain well-known laws, rules, criteria, and conceptions; and to point to what should, in a general sense, be expected in heredity upon the bases of recognized facts of hybridization and mutation.

3. Intermematexess and Lessened Vitality of Hyblids, etc.

The gross structural characters of plants have attracted the attention of mankind from time immemorial, and for generations they have constituted the essential means by which plants have been differentiated and classified; yet beneath them there lay an infinitude of microscopical, chemical, physical, and physico-chemical properties of tissues and various protoplasmic substances which will undoubtedly be found to be of far greater significance in differentiation, not only in taxonomy and phylogeny, but also in the elucidation of various problems that constantly confront the botanist. The scientifice value of the histological method of plant study to the systematist was satisfactorily demonstrated in 1883 by Ratlikofer in "Uber die Methoden in der botanischen Systematik insbesondere dieanatomische Methode." This method he holds is applicable to the study of species, and since his time it has been successfully extended to varieties and hylrids. A century ago De Candolle found the microscope useful in plant classification, and Radlkofer predicted in his memoir that the energies of the systematist would for the next century be devoted to the histological method. Previous to the investigations of the latter, muld work on the micro-anatomical and the microchemical peculiarities of plants was recorded, and since then literature of this character has accumulated to an enormous volume, as is evident at a glance through the encyclopedic pages of Solereder's "Systematische Anatomice der Dicotyledonen " that appeared in 1898. While such resenrches have proved to be of value in taxonomy, in the explanation of many problems that baffled the old-schowl-rtematist, and in throwing open new avenues of thought and investigation, but little has been systematized that scems to be of immediate practical usefulness to the plant-breeder and to the student of evolution. Time will undoubtedly show, with the sifting out of these records in conjunction with recent work, a wealth of material that far exceeds in value even the greatest expectations.

All of our kuowledge of hybrids dates from a period suarcoly more than two centuries ago. It was near the end of the seventeenth century when the existence of srxual organs of plants was recognized, and it was sometime shortly antedating 1819 that Thomas Fairchild, a Tombing gardener, promeed a hybrid (Fairehild Sweet William) by the fertilization of Dianthus caryophyllus (the mlone pink) with D. barbatus (the common Sweet William). This was followed hy investigations of parents and hybrids by Linnæus. To Kölreuter, howower, whoe laturious experiments in hybridization began in 1660 he rowsing Niontiana rustica with N. paniculetu, must be given the credit for laying a working foundation that has prosed of the greatest value in arousing interest and active insestigation in this exceptionally important find of research. What had been recorded of buth maturally and artificially produced hybrids up
to 35 years ago was summarized and commented upon by Focke (Die Pflanzen-Mischlinge: ein Beitrag zur Biologie der Gewächse, 1881). Probably as many as 2,000 hybrids are here referred to. Since then the number has been considerably added to in botanical literature. Such investigations, up to the time of the appearance of the memoir by Macfarlane on " A Comparison of the Minute Structure of Plant Hybrids with that of their Parents, and its Bearing on Biological Problems" that appeared in 1892, were confined practically wholly to the grosser phenomena of plant life, such as the parentage, size, vigor, rapidity of growth, length of life, appearance of malformations, fertility, etc.-in a word, gross characters such as have been and continue to be the tools of the old-school systematist.

Intermediateness of Histologic Properties of Hybrids.

Macfarlane in referring to the earlier microscopical investigations states that Henslow (Cambridge Phil. Trans., 1831) made a microscopic comparison of a hybrid Digitalis with its parents and showed that in the size and shape of the hairs and other structures the hybrid is intermediate between the parents; that Wichura (Bastardefruchtung, 1865) with Salix, and Kerner (Monographia Pulmonar., 1878) with Pulmonaria, likewise found the hybrid to be intermediate; and that Wettstein (Sitz. der. Kaiser. Akad. der Wissen., 1888), in comparing the leaves of four coniferous hybrids observed in transverse sections of the leaves that each hybrid in the number of stomata, depth of the epidermal cells, and number and arrangement of the sclerenchyma elements of the bundles is exactly intermediate between their parents.

In investigations of the minute characters of over 60 hybrids in comparison with their parents, Macfarlane found it necessary to adopt certain precautionary measures in order to secure safe comparative results. Inasmuch as they have served as our guide in the anatomical part of the present research they are here quoted in fy:11:

1. Average Organismal Development and Deviationg.

"It is now recngnized by botanists that every species exhibits a sum-total of naked-eye characters which distinguish it with greater or less precision from allied species. These are duly given in every local Flora. But further, specific features-alike macroscopic and microsenpic-which are of great importance, are passed orer. Radlkofer (Akad. der Wissenschaften, Munich, 1883) has already insisted that the anatomical method must he applied to the study of species, and I have printed out that this is equally true of subspecies and varieties (Trans. Bot. Soc. Edin., vol. xix, 1891). But it is the sum-total or accumalation of minute peculiarities which gives specific identity to any organism, and it is to be expected that evident or naked-eye variations will often have their commencement in trivial structural deviations, which, being perpetuated and exaggerated it may be in size, will ultimately appeal to the naked
eve. It was this, well illustrated in the group C'irripedia, which forced Darwin slowly but surely to frame and enunciate his evolution hypothesis.
" As plant alter phant has paseed under my olservation, 1 have been greatly impressed, not only with the average similarity in development that each slows, but even more with the constant tendency there is for individuals to vary from that average either in under or over development, it may be only of some part or area or of some large organ. As illustrations on a somewhat large scale, 1 may refer to the number, position on the stem, and size of leaves, a line of inquiry which has been entirely overlooked by systematists, but which can afford characters of considerable value. Thus IIedychium gardnerianum, when well grown and not overcrowded in a hot-house, sends up flowering shoots which bear on the average 13 lamina-producing leaves, beside one or two basal scales. H. coronarium bears 21, while the hybrid II. sadlerianum bears 1\%. But not unfrequently from overcrowding, lack of light and nourishment, or other unfavorable surroundings, the number in each may be considerably reduced. Conversely, when very favorable vegetative conditions occur, these are accompanied with greater luxuriance.
"A shoot of Saxifraga aizoon, with freedom for growth, produces annually 23 to 26 leaves; S. geum, 40 to 45 ; and their hybrid, S. andrewsii, 30 to 32.
"During the autumn of 1890 I happened to go over a large bed of sunflowers, and, in by far the greater number, 27 to 28 leaves were formed between the cotyledons and terminal capitulum. A few instructive cases of variability from the average were noted. The bed was one which sloped to the sun and some plants at the back that were slightly overshadowed by trees had been starved in their light and moisture supply. Their leaves were reduced to 20 or 21. On the other hand, one in a favorable situation produced 31 leaves.
"But minute changes are correlated with these grosser variations, such as an increase or decrease in the stomata over a given area or in the length and number of hairs, etc. In the choice of material, therefore, for hybrid investigation one should either be acquainted with the parent individuals and the conditions under which they were grown or try to choose an average specimen of each for study.

2. Limit of Variability.

"A wide field of patient and laborious work is open in the direction of ascertaining how far the individuals of a species may differ microscopically without losing specific identity. As yet this field may be said to be untrodden. The contributions that have recently been made (Bot. Central., Bd. xiv, xlvi) by Schumann are exactly on the lines desiderated and form a valuable study in tissue variability, but if we are to get an exact estimate alike of species and hybrid production the knowledge must be fortheoming. Thus Lapageria rosea is a parent form which I have chosen for pretty exhaustive description, and though I have tried to select material from what I regard as an average strain, this may still differ from the parent plant used, as several varietics are known to be in cultivation. This may partially explain why it is that hybrids at times exhibit a slight
divergence tuward one parent. Again, I thall bave to refer at some length to, the remarkable whange of colure exhibitad by the thowers of IVienthus grierei, irom white on first opening to tich crimson or crimson-purple on fating. 'The one parent, I). Alpinus, shons starmly any trace of such iloral change, bot among the numerous varieties of 1). barbatus in cultisation one exhitits the. above peculiarity in an equally or even more striking manner.
"Now, every varietal form inherits certain common specific peculiarities, and also the points that otamp it as a variety, so that one would err in comparing the ordinary species with the hybrid. But the very fact that varieties are often inconstant in their varictal details, and do not hand these down in all casers so steadily at a marked species, are reasons for our giving a certain latitude in comparison with the hybrid, hat equally are reasons for our desiring an exact knowledge of how far a specific form may vary.
3. Comparison of Similar Parts.
"In my earlier investigations it was sometime, found that a certain part or organ of a hybrid did not exhibit intermediate blending of the structure of both parents, but a decided leaning to one. This was at tirst regarded as an instance of variation from average hybridity, but more careful and exhaustive comparison showed that the apparently exceptional conditions arose from choice of material that did not agree in age, position, or opportunities for growth. Thus I stated in the 'fardeners' Chronicle' (April 1890) that while Saxifraga aizoon had many stomatio on its upper leat surfare amb S. geum had none, S. andrewsii resembled the latter in this respect. Now, I had expected to find whe on the leaf chosen from the hybrid, which was one of the luwhet of an annual shoot, those of the parents. buing from the upper parts of shoots. On returning to the matter more recently, it was found that the closely intermediate character of the hybrid was established when leaves of the same relative position and age were chosen. Thus, since S. aizoon produces on the average 25 leaves annually, the hybrid 32 , and $S_{\text {. geum }} 40$, if the tenth leaf from the base be chosen in the first, we should select the fourteenth in the hybrid and the eighteenth in the other parent. The same principle of judiciona selection of material must be applien not only in dealing with large organs but also in minuter details, sucfa as bunde eloments, matrix cells, and sclerenchyma, as well as starch grains, chloroplasts, and other cell products.
 hybra Progeny.
" During the last decade problems haring on the relative potency of the male and fomale elements in the development of an organism have heen greatly diacussed The present investigation not only throws great light on these, but will enable us to compare more accurately than hitherto the capabilities of each sex elment. It is manifest, howerer, that when a hybrid is tho monluit if parents that are widely divergent in histological details the comparison will be easy, but when we attempt to compare a hybrid with two parents which are regarded as species, but whose chief specific differences are those of coloring and size, it is almost or quite impessille to
detect microscopically any blending of patent characters, even though these may occur. Some may demur to accepting conclusions drawn from comparison of the hybrids of two parents that are even moderately removed from each other in aftinity, particularly since we know that such are frequently less fertile than the pure product of either parents, or are entirely sterile. The objection will afterwards be considered, but here I may premise that, as a rule, whether the parents are remotely or closely related their evenly blended peculiarities appear, if comparison is at all possible.
"To the above general conclusion, however, we must make an important exception. In not a few cases, which will afterwards be cited, a separation or prepotency of the sexual molecules of each parent seems clearly to be indicated.

5. Relative Stability of Pabent Fobms.

"Some species, both in the wild state and under cultivation, show a greater degree of stability, or want of variation tendencies, than do others. This is probably to be explained by an average structure having been slowly but steadily evolved through crossing and recrossing of an aggregate of like individuals with survival of those best fitted for a set of environmental conditions that remained constant through long periods of time. These, therefore, even when removed to rather disadvantageous surroundings, do not readily exhibit change. As examples, 1 may name Erica tetralix, E. cinerea, and Philesia buxifolia. One finds that the opposite is equally true of not a few species. Thus, if a series of individuals of Geum rivale or Dianthus barbatus (cultivated) be compared microscopically, considerable variation is traceable.
"But even species which are considered to vary little, if compared from wide areas, may present unexpected changes. An interesting illustration is furnished by a plant just cited as one of the most invariable, viz, Erica tetralix. I have shown elsewhere * that this species resolves itself into four subspecies, three of which are found in Connemara, and these, so far as they have been experimented on, remain true under cultivation. It is necessary, therefore, in the selection of a hybrid to know the exact type of each parent, if not the actual parent, and to examine such alongside the hybrid offspring."

Macfarlane made detailed studies of the microscopic peculiarities of nine sets of parent-stocks and hybridstocks, including the following:

1. Lalageria rosea, Philesia buxifolia, P, veitchii.
2. Dianthus alpinus, D. barbatus, 1). grievei.
3. Geum rivale, G, urbanum, G. intermedium.
4. Ribes grossularia, R. nigrum, R culverwellii.
5. Saxifraga geum, S. aizoon, S. andrewsii.
6. Erica tetralix, E. ciliaris, E. watsoni.
7. Mensiesia empetriformis, Rhododendron chamæcistus, Bry anthus erectus.
8. Mastevallia amabilis, M. veitchiana, M. chelsoni.
9. Cypripedium spicerianum, C. insigne, C. leeanum.

He also recorded many data respecting other hybrids and parents, including in the text only some special features which seemed to deserve consideration, to-

[^1]gether with a rather full account of the characters of a graft hybrid, C'ytisus adami. The following is Macfarlane's "General Summary of Results on Seed IIybrids":
"It has been demonstrated that in hair production, if the parents possess one or more kinds that are fundamentally similar, but which differ in size, number, and position, the hybrid reproduces these in an intermediate way. Illustrations of this were presented by Geum intermedium, Erica watsoni, Cypripedium leeanum, and Masdevallia chelsoni. But if only one parent possesses hairs over a given region the hybrid usually inherits these to half the extent, as in the petals of Dianthus barbatus and some floral parts of Bryanthus erectus. If the hairs of two parents are pretty dissimilar, instead of blending of these in one, the hybrid reproduces each, though reduced in size and number by half. The gland hairs of Saxifraga andrewsii, the simple and gland hairs of Ribes culverwellii, and those on the vegetative organs of Bryanthus erectus are examples. The peculiar case of air distribution in relation to color formation noticed in the sepal of Cypripedium leeanum may also be noted here.
"In the formation of nectaries as traced in Philageria, Dianthus, Saxifraga, Ribes, etc., the above principles also hold.
"The distribution of stomata over any epidermal area has been proved to be a mean between the extremes of the parents, if the stomata of the parents occur over one surface or both, and if the leaves are similar in consistence, but, as in Hedychium sadlerianum, and to a less degree in Saxifraga andrewsii, if the stomatic distribution and leaf consistence differ in the parents, this may give rise to correspondingly different results in the hybrid.
"In amount of cuticular deposit, and arrangement of it into ridges or other localized growths, hybrids have been proved intermediate between the parents. We may merely recall here the case of Philageria stem, which inherited cuticular ridges from Lapageria, though reduced to half the size, since the Philesia parent was devoid of them.
"As Wichura has already proved for the vegetative leaves of hybrid willows, the venation of hybrid leaves is very uniformly intermediate between those of the parents. Figures are given with this paper of the vegetative leaves of Philageria and Saxifraga, and of the petals of Dianthus and Gcum. The relation of the bundles to special terminations, as in the water stomata of Saxifraga, is in conformity with the venation.
"But the growth of tissue in a hybrid which is to determine the outline or angular position which any organ or part of one will assume is intermediate between those of the parents when the latter show traceable differences. Thus the sepals and petals, as also the styles and style-arms, of Geum intermedium, the floral parts as a whole of Saxifraga andrewsii and Ribes culverwellii, the frilling of some of the floral parts of Bryanthus and Cypripedium leeanum are pronounced cases, while minor ones have been referred to.
"Turning to minuter anatomical details, every hybrid has yielded a large series of examples which prove that the size, outline, amount of thickening, and localization of growth of cell walls, is, as a rule, intermediate
between those of the parents. We have repeatedly stated that as the outcome of growth localization, intercellular spaces of a hybrid are modified in size and shape as are the cells which surround them. Now this clearly demonstrates that the living protoplasm which has formed the cells is so organized in its molecular or micellar constitution that in every cell and over every infinitesimally minute area on its surface where cellulose is to be laid down the balanced effect of both parents is felt.
" Equally in the laying down of secondary wall thickenings, whether of a cuticularized, lignified, or colloid nature, numerous citations have been made where the amount and mode of deposition is evenly between the extremes of the parents. Perhaps the most striking case is that of the bundle-sheath cells of Philageria and its parents, where usually five lignified lamellæ are traceable in each cell of Lapageria, eleven or twelve in Philesia, and eight or nine in Philageria.
"In summarizing as to protoplasm and its modifications as plastids, where considerable differences can be traced in the plastids of two parents the hybrid gives excellent results. Only in a few parent plants have these differences been sufficiently marked to allow of comparison with the hybrid. The leucoplasts in the epidermal cells of the parents of Dianthus lindsayi are very different in size, while most of the leucoplasts in the hybrid are exactly intermediate, but from careful measurement of lantern projection images of these it has been found that some very nearly resemble those of the female parent. The chromoplasts of the petal cells in Geum intermedium and of the sepal cells in Masdevallia chelsoni are additional illustrations. Those of the former are very variable in size and number, but this is probably to be explained from its inheriting half of its hereditary features from Geum rivale, which is equally variable as a species. Leaves of corresponding age and position from Saxifraga andrewsii and its parents have furnished chloroplasts of small size and dark green color in one parent, of large size and soft emerald green color in the other, and an intermediate type in the hybrid, though some diverge towards the "Geum" parent in having large chloroplasts.
" But the a verage size, shape, and lamellar deposition in starches of Hedychium hybrids are perhaps the most interesting cases adduced. When we remember that these are bodies formed temporarily as reserve food, and that they are built up by addition of successive micelle through the agency of minute protoplasmic masses or leucoplasts, we have a direct proof that these leucoplasts are themselves fundamentally modified. Their activity in the cells of the hybrid is evinced by the building up of starch grains which, though only of temporary duration in the history of the plant, are so accurately constructed as to be an exact combination in appearance of a half corpuscle of each parent.
"Finally, we may recall the facts advanced as tu color, flowering period, chemical combinations, and growth vigor, which, though scanty and fragmentary in their nature, all point to the conclusion that hybrids are intermediate between their parents in general life phenomena."

In reviewing this summary one is struck by the records of universality of intermediateness by blended or exclusive inheritance of every property. In not a single
instance is any character developed in enther drection beyoud the extremes of development of the corresponding character of the parents. However, these conclushus are doubtless to be taken as being general or broad rather than as dognatic, inasmuch as here and there in the t:xt of the memoir there are records of departures beyoud parental extremes, as in Philageria veilchii, in connection with which it is stated it is generally to be noticed that both upper and lower epidermal cells of the hybrid are equal to, if not larger than, the largest of either parent. "Those of the one parent (Lapageria rosea) are on an average larger than those of the other parent (Philesia folia), while in the hybrid they may be larger than in either"; also, in the hybrid Bryanthus erectus, in which "the power of conglomerate crystal formation is not only inherited from the male parent (Menziesia empetriformis var.) but also appears on a more exaggerated scale, there being at least 50 per cent more cryotals in a given area of the hybrid pit than in the parent"; and also, as is quite common, in the greater luxuriance of growth of the hybrid than of the parents, as instanced in Philageria veitchii, Geum intermedium, Bryanthus erectus, etc., which peculiarity is attributed by Macfarlane to an increase in the size rather than increased multiplication of the cells of the hybrid over the parents; but in either case it is obvious that there is higher development of the hybrid in relation to the parents; moreover, even where intermediateness has been recorded, it has been recognized in some instances that the characters of the hybrid " very nearly resemble those of female parent," etc. In support of Macfarlane, Davis (American Naturalist, 1911, XLV, 193; 1912, xlvi, 377), in studies of the offspring of different species of Oenothera, found that in gross morphological characters the hybrids are intermediate between the parents, and he has since recorded that in histological characters they exhibit the same peculiarity. Holden (Science, 1913, xxxyili, 932) states that spoutaneous hybrids that are recognized as varietal modifications of species can often be diagnosed by their internal anatomy, both vegetative and reproductive, referring particularly to the intermediate histological characters of the tissues and to abortive pollen. A number of references are given by Holden to the results of the investigations of Betula and Equisetum, instancing in the hybrid transitional features between the parents in internal and external anatomy associated with abortive spores of hybrids. Reference might be made, did space permit or were it necessary, to various other articles which also are in support of the conception that hybrids are in morphological and anatomical characters, distinguished by "intermediateness."

Intermediateness of the Stapcies of Hybrids.

Macfarlane (loc. cit.) made notes of the starches of Ribes culvervellii and its parents, of Bryanthus erectus and its parents, and of Hedychium hybrids and their parents. He records that in Ribes grossularia (parent) the largest grains are γ_{μ} and the average 4μ; in R. nig-
rum (parent) 3μ and the average 1.5μ; and in R. culverwellii (hybrid) 5μ and the average 3μ. In Menziesia empetriform is var. the largest starch grains are 6μ, and in all cases they are larger than in the other parent Rhododendron chamacistus; while in the hybrid Bryanthus erectus the grains are 4μ across at their largest, though most are from 2 to 3μ, the size being intermediate but falling rather toward the latter parent. Macfarlane states:
"Hedychium gardnerianum, the one parent of H. sulleriunum, forms strong rhizomes, whose storing cells are large, but scantily filled with starch in all that I have examined. Each starch grain is a small, flat, triangular plate, measuring 10 to 12μ from hilum to base, and the lamination is not very distinct. H. coronarium, the other parent, forms smaller and fewer rhizomes, and the starch-storing cells are from half to three-fourths the size of the last, but these are densely filled, particularly in the central parenchyma, with large starch granules. Each is ovate, or in some cases is tapered rather fincly to a point at the hilum. They are from 32 to 60μ long, measuring as before, and the lamination is very marked. The cells of the hybrid are on the average botween those ol the parents; but if one may judge by opacity of cells the amount of stored starch approaches nore closely to that of the latter parent. The grains may best be described if we suppose a rather reduced one of the first parent to be set on the reduced basal half of one of the latter. The lamination also is more pronounced than in the first, less so than in the second.
"A second cross was effected by Mr. Lindsay with II. coronarium, and examination of the rhizome starches proves that the second hybrid approaches very closely to the species parent. But the grains of H. lindsayi illustrate microscopically a phenomenon which has been repeatedly referred to, viz, the greater variability and instahility of a second over a first hybrid; for many of the grains (in some specimens the majority) have fantastic shapes, appearing as if undergoing rapid disintegration by leucoplasts, or perhaps more truly as if the latter were incapable of building up the shells of starch in a rogular and uniform manner.
"A set of crosses has been effected between H. elatum and $I I$. coronarium. The grains of the first are like those of H. gardnerianum, except that they are larger (18 to $2 \mid \mu)$, and that the lamination is coarse. The grains of the hybrid are larger than those of H. sadlerianum, and exhilit even more evident lamelle. They measure on the arerage, 40μ, hut vary from 30 to 50μ. Not infrequently all the above hybrids have (mixed up with grains more typically intermediate) some grains which can scarcely, if at ali, be distinguished from the small ones peculiar to one parent, while very rarely I have observed grains so large and rounded as to pass for those of I. coronarium. Now, when describing the epidermal leucoplasts of Diunthus grievei it was stated that, though the average was nearly 3μ, some measured 2.5μ or slightly less, others as much as 3.5μ. The occurrence of these, and similar miuute diflerences in protoplasmic masses, or in formed materials like starch grains which are due to manulacture hy these masies, imlured me to prepare a set of micro-phntographes, aml to project lantern trans-
parencies of these on a 7 -foot screen. Thus it was possible to study their dimensions more exactly than under the microscope. It was then found that while the shape, appearance, and size of most starch grains of Hedychium, of Dianthus leucoplasts, and of Geum and Masdavallia chromoplasts were intermediate, examples might be got which reverted powerfully to one parent, and, so far as they have yet been studied, the reversion was most frequently towards the parent with the more minute cellcontents."

The results of the studies of starches are therefore in entire accord with Macfarlane's conclusions pertaining to the tissues in showing intermediateness of the hybrid, with a tendency at times to a leaning to one parent.

Investigations of the starches of varieties and of parents and hybrids of varieties of round and wrinkled peas have been made by Gregory (The New Phytologist, 1903, ir, 226), Weldon (Biometrica, 1902, I, 246), and Darbishire (Proc. Roy. Soc., B., 1908, lxxx, 122 ; Breeding and the Mendelian Discovery, 1912, 124):

Gregory (The New Phytologist, 1903, 11, 226) found that the starches of round and wrinkled peas occur in two very different types. In the round seeds the peripheral cell-layers of the cotyledons contained a few oval starch-grains which did not exceed 0.06 mm . in the greatest diameter. In the third layer the grains reached 0.2 mm . in length, while the more deeply situated cells were crowded with oval grains measuring as much as 0.34 mm . in the greatest dimension. The grains were regular in shape, with a definite center surrounded by well-marked lines of stratification. In the wrinkled peas the grains of the peripheral layers were of about the same size as those of the round peas, but were of a different type, occurring in irregular spheres with several centers, thus forming a compound grain which has a strong tendency to break up into smaller parts. In the cells which lie deeply these compound grains never attain a greater length than 0.1 mm . in the greatest dimension. Table 1 gives a list of the seeds examined.

Table 1.

Race.	Seed character.	Form of starchgrain.
Express	Round.	Large.
Fillbasket	Do.	Do.
Tres nain de Bretagne.	Do.	Do.
Maple (purple-flowered)	Do.	D)
Carter's Telegraph..	Do.	Do.
Victoria Marrow.	Do.	Do.
Field pea (purple flower)	Iudent.	Do.
Purple Sugar	Do.	Do.
William the First	Sce below.	Small.
Telephone	Wrinkled.	Do.
Laxton's Alpha	Do.	Do.
Serpette nain blane	Do.	Do.
Dark Jubilee. . .	Do.	Do.
Early Giant.	Do.	Do.
British Queen.	Di.	Do.
Windsor Castle	D).	Do.

[^2]depressions in these seeds were sometimes mere pitting, as in Victoria Marrow; or they may be so marked that the seed would be described as wrinkled. 'The lather were especially common in William the First, but micruseopie examination showed at once that these seeds are really of the round type. There are, therefore, states Gregory, two entirely dilferent types of wrinkling, and while it is clear that the process by which wrinkling is produced is comected with shrinkage on drying, the regularity of the shrinking of the round type and its irregularity in the two other types can not at present be explained. There occasionally occur among the offspring of hybrids between round and wrinkled types seeds of dubious shape which it is difficult, on superficial examination, to classify as round or wrinkled. The existence of such seeds and types of doubtful shape was taken by Weldon to indicate irregularities of Mendelian segregation and dominance, but Gregory states that no seed has been found which upon histological examination allowed of any doubt as to its true character, and consequently that occasionally pitting and spurious wrinkling must be distinguished from the true wrinkling of the wrinkled types.

The nature of the starch-grain in the hybrid, and how the characters of the starch-grains segregate, if they do so at all, in subsequent generations, are points which suggested themselves to Darbishire, who states that they are matters on which we are ignorant. He found that the starch-grains of the round pea, such as of the "Eclipse," appear as single potato-shaped grains, with an average length of 0.0322 mm . and an average breadth of 0.0213 mm . The length-breadth-index (i.e., $100 \times$ breadth \div length) is 66.14 . Besides these potato-shaped grains, there are extremely few very much smaller grains which are round. The grains of wrinkled peas like the "British Queen" are compound, each consisting of a number of pieces which vary between 2 and 8 . These pieces are held together by a refrangent yellow substance which does not color blue with iodine, and they are likely to break apart. The commonest types are those with 4,5 , or 6 components; grains with 7 or 8 are rarer; grains with 2 or 3 are intermediate in frequency between those with 4,5 , or 6 on the one hand and 7 or 8 on the other. White the grains with 7 to 8 pieces are not much larger than those with 4,5 , or 6 ; grains with 2 or 3 are always conspicuously smaller than those with 4,5, or 6. The average length is 0.0269 mm ., the average breadth 0.0248 mm ., and the length-breadth-index is 92.19 . In these peas are a number of very small single grains which can be distinguished from the pieces of the compound grains by the fact of their being circular and always smaller than the grains consisting of two pieces. Very rarely will be found isolated potato-shaped grains.

The grains of the F_{1} cotyledons produced by crossing the round with the wrinkled pea are nearly round; the majority of the grains are single and the remainder compound; the compoundness exhibited by the compound grains in \mathbf{F}_{1} seeds is intermediate between singleness and the degree of compoundness in the grains of wrinkled
pras, for while in the latter the number of pien - barim

 differences in the mea-uremonto ol the three -tardure are
 the \mathbf{F}_{1} grain is intermediate between the potato-shaped grain and the compound grain, but nearer the latter.

Tabse: き.

Darbishire also examined the inrains of F_{s}. These he did not measure, but he states that no differences could be seen between the potato-shaped, compound, and round grains from the three types already described. He notes that the evidence points to the fact that the heterozygote round peas in generations subsequent to F_{1} are chararterized by the posisession of irregular roumb of rouml irame. and homozygote round peas by potato-shaped grains. Darbishire records that if the association of round grains with heterozygote round and of potato-shaped grains with homozygote round holds good for the F_{2} generation, we have a means of distinguishing between $D D$ round and $D R$ round in F_{3}, instead of, as at present, having to wait until their progeny are mature in the following year. Another point demonstrated by the nature of grains in F_{1}, and borne out by those of F_{8}, is that the shape of the grain is inherited separately from its compositionif we may use this term to cover the singleness or compoundness of the grain. In the round pea the grains are single and long ; in the wrinklel peas they are compound and round; in the hybrid they may be either single or compound, but are more rome than lome. In F_{5} there are round grains exhibiting much compoundness and others exhibiting little. Possibly there are potato-shaped arains either with no compounds or with few, and intermediate grains either with few compounds or with many. The wrinkled peas of this gemeration contament, as was to be expeeted, compound grains, but some of them had in addition, very sparingly potato-shaped grains. Darbishire also studied the absorptive capacities of the three starches in relation to water. The followine facts are summed up from the results of his invertipations:

1. Although roundness is dominant over wrinkledness in peas, the round starch-grain of the F, generation is a blend betwen the type of prain of the round pea (the potato-shaped) and the tyje of erain of the wrinkled pea (the compound) in respect of theed haranters: (a) it is intermediate in shape as measured by its length-hreadth-index. that of the protato-shaped rain twing 66.14, that of the compoum round grain $8.5 ;(b)$ it is intermediate in the distribu-
tion of compoundness, inasmuch as some of the round grains are compound and some single; (c) it is intermediate in the degree of compoundness, inasmuch as amongst those round grains which are compound the most common number of constituent pieces is 3 , whereas in compound grains it is 6 .
2. In a subsequent generation $\left(\mathrm{F}_{5}\right)$ the homozygote round peas contain potato-shaped grains and the heterozygote round peas contain round or intermediate grains. But both round and intermediate grains may be associated either with a high or a low degree of compoundness.
3. Potato-shaped grains occasionally occur in wrinkled peas in F_{5}, and the evidence suggests that the existence of these grains in wrinkled peas tends to make them less wrinkled.
4. A wrinkled pea takes up more water when it germinates than a round one. The hybrid between a round and a wrinkled pea is intermediate in respect to this character between its two parents.
5. But the intermediateness of the hybrid in absorption capacity is not occasioned by the intermediateness of the starch-grain of the hybrid, because both F_{2} peas containing round grains and peas containing potatoshaped grains have the same absorption capacity as the F_{1} pea.
6. When, therefore, a round pea is crossed with a wrinkled pea, four separately heritable characters are dealt with: (a) the shape of the pea, whether round or wrinkled; (b) the absorption capacity of the pea as regards water, whether low or high; (c) the shape of the starch-grain, whether long or round; (d) the constitution of the starch-grain, whether single or compound.

The results of these researches are not only confirmatory of the records of Macfarlane in showing intermediateness in the microscopical properties of the starch of the hybrid, but also go further by demonstrating other forms of intermediateness.

Intermediateness of the Macroscopic Properties of Hybrids.

No criterion of hybrids is more widely recognized than intermediateness of naked-eye characters. References have been made incidentally in preceding sections to these peculiarities, but inasmuch as macroscopic characters have been the essential tools of the systematist it is here that we must look for the data that constitute the great foundation stones upon which rests the doctrine of intermediateness. Macfarlane in summarizing the gross characters of parent-stocks and hybrids states that "color, flowering period, chemical combinations, and growth-vigor, which, though scanty and fragmentary in their nature, they all point to the conclusion that hybrids are intermediate between their parents in general life phenomena." Masters (quoted by Macfarlane, ibid., page 209) in comparing the bigeneric hybrid Philageria veitchii with its parents Lapageria rosea and Philesia buxifolia states:
"In habit our plant [the hybrid] is, of the two, more akin to the female parent (Lapageria) than to the male. Its foliage is singularly intermediate, but at the same time nearest like that of the pollen parent (Phi-
lesia). In the characters of the flower-stalk, calyx, and corolla, it is more like Philesia than Lapageria, but in the stamens it approximates to the mother-plant, and diverges from the characters of the male. In color it is also more like the mother-plant than it is like Philesia. The fruit we have not seen. The characteristics of both parents are so curiously blended that we fear this plant will lend much aid to those investigators who are striving to determine what is the effect on the offspring of pollen or seed parent, respectively. On the whole, it would seem as though the organs of vegetation, including the calyx and corolla, were more like those of the male (Philesia), while in the stamens and pistil the progeny favor the mother."

From the foregoing data in this and preceding sections one is led to the belief that intermediate inheritance in the first generation is almost so universal as to be all but a law, but such a conception is inconsistent with a considerable mass of literature pertaining to both plants and animals. Focke (loc. cit.), in his Fourth Lecture, summarizes under five propositions a most important collection of data pertaining to the characters of hundreds of hybrids and their offspring. Inasmuch as these facts are of great interest, fundamental importance, and broad applicability, and as scant recognition seems to be given to this work, and as the book is rarely found in our libraries, a trarslation of his lecture is here given practically in full:

Propositions of Focke.

First Proposition. Simple Primary Hybrids (A x B).
If individuals which have sprung collectively from the crossing of two pure species of races are produced and grown under similar conditions they resemble one another exactly; or are, as a rule, hardly to be differentiated from one another just as in specimens belonging to one and the same species.
The principle thus formulated seems in many experiments to be sufficiently well-grounded, but it has many exceptions. Several instances in hybrids indicate such similarity only of individuals produced from the same impregnated part (seed pod, etc.). In any event, the rule proves trustworthy only in cases in which similarity of conditions of production and growth are present.

It is difficult to answer satisfactorily a most strenuously debated question if one or the other sex has the stronger influence on the form of the offspring. The hybrids of the two species or races, A and B, are like one another no matter whether A in the crossing was the male or the female progenitor. Kölreuter, Gärtner, Naudin, and Wichura in common could find no differences between the products of the two crossings $A \circ \times$ $\mathrm{B} 0^{7}$ and $\mathrm{B} \quad 8 \times \mathrm{A} 9^{\text {a }}$ More than 100 years after Kölreuter noticed the similarity between the crosses Nicotiana rustica o \times N. paniculata of and N. paniculata $q \times N$. rustica \&, and one of the most observant botanists of our time, Timbal-Lagrave, was astonished by a similar experience. All the rules and assumed principles by which botanists try to determine by the morphological characteristics of the hybrid which is the pollen and which is the seed parent prove to be entirely theoretical and of no value. It has been established hy many experiments that in the case of pure species in the
vegetable kingdom in general the male and female procreative elements are of equal potency. The rule of the similarity of reciprocal hybrids, as in all other rules in the study of hybrids, is not without exceptions. It is self-evident that a certain dissimilarity of reciprocal hybrids can be correctly attributed only to the stronger influence of the male or of the female elements if the experiments are carefully carried out in the same way, and if they have, atter many repetitions, always given rise to the same results. Nearly all of the reports up to this time leave much to be desired in these respects and room for justifiable doult. The following statements on the dissimilarity of reciprocal hybrids are worth consideration:
a. The female element influences most strongly all parts of the morphology of Pelargonium fulgidum \times P. grandiflorum, P. peltatum $\times P$. zonale, Epilobium hirsulum \times E. lournefortii. In many Digitalis hybrids it influences most strongly the coloring of the flowers, and in several the forms of the corolla also. In N'ymphca rubra $\times N$. dentata the cotyledons are always much more like those of the female parent species.
b. The female element exercises apparently a predominating influence on the capacity of resistance to cold of Rhododendron (hybrid of R. arboreum), of Lycium, and possibly also of Crinum (hybrid of C. capense).
c. The influence of the male element is predominant in all parts of the morphology of Papaver caucasicum \times P. somniferum and C'ypripedium barbatum $\times C$. villosum (ob constant?). It exercises a powertul influence on the flower coloration of Petunia.
d. Gärtner has several times noticed variations in the fertility of the seed of the offspring in reciprocal hybrids, as in Dianthus barbatus $\times D$. superbus. Gärtner's experiments are, however, hardly sufficient to prove the uniformity of these findings in the hybrids concerned. (In literature there may be found many speculations advanced on the influences of the male and female element on the properties of a hybrid, but supported by the description of only one hybrid.) It is evident there can be no basis for comparison unless the forms resulting from $\mathrm{A} \circ \times \mathrm{B}$ o and $\mathrm{B} \& \times \mathrm{A}$ o are both known.

Departures of an isolated specimen of a hybrid from the typical form are much more frequently noticed and are entirely independent of the rôles played by the parent forms in their production. Not infrequently, important differences appear in seedlings from a single crossing that are grown under absolutely similar conditions. These variations show themselves in various ways.
a. Individuals resulting from a given hylridization show among themselves unimportant differences, especially in the coloring of the flowers and other similarly easily altered characteristics, as in the hybrids of Verbascum pheniceum, Salix cuprea \times S. daphnoides.
b. The hybrid appears in two different types, each showing a different combination of the characters of the parent species. As a rule, the one type is closer to one, and the other to the other, parent species; the frequency of the appearance of both types is often very variable. Gärtner designated the type which appears less frequently as the exceptional type ("Ausnahmetypus"). Instances may be seen among Cistus, Dianthus, Geum,

Oenothera, Lobelia, I'erbascum thapsus; l'. nigrum, Nicotiana quadrivalvis $\times N$. tabacuin macrophylla.
c. The hybrid appears in aneral different typ... Gairtner gines several examples of thes, but theme are only three known forms by a polymorphic union.
d. The hybrid shows one typical form of a midintermediateness, together with a number of varying forms that are usually closer to one or the wher parent, among which no well-marked types can be distingui-hed. Such is the behavior of Medicago falrata / M. . sation, and similarly of Melandryum allum \times M. mubrum.
e. The hybrid is polymorphous from the beginaing. The observations up to the present leave it duobtful whether one should in theer circumstances dstinguish between varying forms or between several fixed typas with similar combinations of properties. Examples: Abutilon, hybrids of Pelargonium glaucum L'Hér., P. radula $\times P$. myrrhifolium, Passifora, Hieracium, Nepenthes, Narcissus. Gärtner has offered the hypothesis that hybrids between different species are always of the same form and that the hybrids between varieties are polymorphic. If by "varieties" garden forms or garden hybrids are understood, this rule is correct; but if, on the other hand, one understands constant races of pure descent it is decidedly incorrect.

Comparisons of hybrids which arise from the same species, but which are produced and grown in different places, exhibit many other results. Spontaneous or natural hybrids are, as a rule, more variable than those produced artificially, as for example, Verbascum lychnitis \times V. thapsus and V. lychnitis $\times V$. nigrum. My own hybrids between Digitalis purpurea and D. lutea were very much like one another when I sowed the seed, but a great variety of forms appeared if the seeds had by chance sown themselves. It may be that in these caces there is no real causal connection between the varieties of the forms and the methods of sowing ; but, on the other hand, it is a fact that different cultivators in crossing the same species have very often obtained different products. Hence, while similarity of the forms of all the plants of one crossing appears to be without doubt the rule in experiments in cultivation, similarity appears to be the exception in nature. It remains to be determined how great an influence dissimilar nutrition of the parentspecies or of the hybrid embryos may have on the variability of form of the hybrids.

Second Proposition.

The propertics of the hybrids are derived from the properties of the parents. lion the mast part the hylurits differ from their parents only in size and lucwiance of groteth and in their generative poreers.
The methods and modes in which the properties of the parent species are combined in the hybrids are very variable. In general, a blending or mutual penetration of the different properties is found, often in such a way that in one respect the one and in another the other parent form appears to predominate. That is to say, in many instances the hybrid resembles one parent more in the leaves, and the other farent more in the Powne Fow and then an exceptional variety of the hybril (the "Ausnahmetypus" of Gärtner) appears in whic" the properties are inverscly apportioned. Many hyhri ?- it first more nearly resemble one, and later more nearly
the other pareut form ; or in the Spring their leaves resmable the one, and in the Autumn the other type (Cisius; Populus) : or the flower-coloring is altered during the fall of the bloom (as in Melandryum album \times M. rubrum, L'pilobium roseum \times E' montanum, lantana) or in the Autumn (as in N'icotiona rustica \times N. tubacum, Tropaolum. Imbilia, etc.), sometimes also in different years (as in Bletia crispa \times B. cinnabarina, Galium cinȩ̧eum $\times \boldsymbol{G}$. rerum). In the crossing of races, rarely of hybrids in a strict sense, one finds now and then the properties of the parents unblended and side by side (as in C'ucumis melo, the thorniness of the Datura fruits, the flower-coloring of Rhododendron rhodora $\times R$. calendulaceum, R. ponticum \times R. flarum, Anagallis, Linaria vulgaris \times L. purpurea, C'alceolaria, Mimulus, Mirabilis). The flowercoloration often behaves in unexpected ways. The hybrids of Verbascum pheeniceum, while having similarity of form, are very variable in the flower colorings. In IIelianthemum hybrids variously colored flowers have been found on the same stem.

Frequently, from the crossing of nearly related races, especially color varieties, plants are produced which are exactly like or closely resemble one of the parent races, as in Brassica rapa var., Linum, Pisum, Phaseolus, Antgallis, Atropa, Datura strammonium, Salvia hormium, etc. In the second generation the influence of the other parent race is usually first disclosed by a part of the seedlings reverting to it completely, or only in certain definite properties. Only in Atropa a reversion to the unstable yellow form has not been noted.

In many cases the hybrid is so like one of the parent forms that it could be considered as a very slight variation of the same. In the crossing of widely separated species the overwhelming influence of one parent species shows itself in the hybrids in a striking manner. Thus, the cross of Dianlhus armeria $\times D$. delloides is much nearer to D. deltoides, of D. curyophyllus $\times D$. chinensis to D. caryophyllus, of Melandryum rubrum \times M. noctiflorum, to N. rubrum, of Verbassum blattaria $\times \mathrm{V}$. nigrum to V. nigrum, and of Digitalis lutea \times D. purfurere to I). lutea, than to the second species.

Oceasionally the hybrids of the first generation show properties which are entirely different from those of both parent species. This is particularly noticeable in the colors of the flowers. The most noteworthy example of this is the blue-blossomed hybrids of the white Datura ferox with the equally white species D. lexvis and D. strammonium bertolonii. Instances of unexpected blos-som-coloration are numerous in hybrids of species with colored flowers, in which the hybrids in no way show the coloring which one would expect from a mixture of the pigments of the parents, as in Cllemalis recta \times C. integrifolia, Aquilegia atropurpurea \times A. canadensis (and others), Anemone patens \times A. vernalis, Begonia dregei $\times B$. sutherlandi (and others), Nicotiana suaceolens $\times N$. glutinosa, Verbascum pulervatentum $\times N$. thapsiforme, and in hybrids of Cheniceum which are especially good examples. In the crossing of races properties appear many times which do not resemble the parent forms but other races of the same species, as in Papaver somniferum and Datura strammonium. The hybrid Vicutima rustica $\times N$. paniculata shows at times the flower coloration of I'. teranu, a forcign subspecies of
N. rustica. Other properties which in the hybrids are developed to a greater degree than in the parent forms are, for example, the greater stickines: of several hybrids of Nicotiana (N. rustica $\times N$. pmiruluta) ; the apparently greater abundance of honey in the hybrid of V. rustica $\times N$. paniculata; the stronger of the nauseating odor of the hybrids of Melandryum viscosum; and, according to Kuntze, the alleged much larger quantity of quinine (?) in the hybrids of Cinchona.

In later generations the offspring of the hybrids show still further variations from the properties of the parent species.

Third Proposition.

Mybrids between different races and species are, as a rule, differentiated from specimens of a pure race by their vegetative power. Hybrids between widely separated species are frequently very wak, especially when young, so that the raising of the scedlings is rarely successful. Hybrids between more closely related species and races arc, on the other hand, uncommonly luxuriant and strong, these qualities mostly showing themselves in size, quickness of growth, early blooming, luxuriance of bloom, longer duration of life, great power of reproduction, exceptional size of some particular organs, and in analogous peculiarities.
In support of this proposition it will be necessary to refer to several examples: Delicate seedlings, it is stated, follow from the crossing of Nymphoca alba with foreign species, Hibiscus, Rhododendron rhodora with other species, Rh. sinenses with Eurhodendren, Convolvulus, hybrids resulting from species of Salix where a species and a hybrid or two hybrids are crossed, Crinum and Narcissus. The fact that embryo plants from the fertilized seeds of hybrids are delicate and difficult to raise is, moreover, frequently noted. Dwarfed growth is seldom noted in hybrids, except in some of the hybrids of Nicotiana, especially N. quadrivalio $\times N$. tabacum macrophylla. Giant growth is, on the other hand, more frequent, as in $L y$ cium, Datura, Isoloma, Mirabilis. In size, the hybrids usually exceed both parent species, or are of a height that is the average of the heights of the parents, as in many hybrids of Nicotiana, Verbascum, Digitalis. Development often proceeds with striking rapidity. Klotzsch emphasizes the rapidity of growth of his hybrids of Ulmus, Alnus, Quercus, and Pinus. They often flower earlier than the parent species, as in Papaver dubium \times P. somniferum; in many Dianthus hybrids (Focke's (ross, D. arenarius $\% \times D$. plumarius δ, showed no inclination to flower earlier than the parents) ; Rhododendron arboreum \times Rh. catawbiense, Lycium, Nicotiana rustica $\times N$. paniculata, Digitalis, Wichura's sixFold Salix-hybrid, Gladiolus, Hippeastrum vittatum \times $I I$. regincr, and so forth, and particularly many hybrids of I'erbascum. On the other hand, there are also several hybrids which do not flower at all or only after a long time, as in the genera Cereus and Rhododendron. Of the earlier ripening of seeds unconnected with earlier flowering, I know, at present of but one example, in Nuphar. Very frequently, an extraordinary wealth of bloom has been noticed, as in Capsella, Hetianthemum, Tropcolum passiflora, Begonia, Rhododendron, Nicotiana (N. rustica $\times N$. paniculata, N. glutinosa $\times N$. tabacum, and others) ; Verbascum, Digitalis, many Gesneracece, Mirabilis, and Cyripedium. The flowers are rery frequently larger in hybrids. In the crossing of
two species whose flowers are of different size, those of the hylrid are frequently of the same sizo or approximate the size of the blom of the sperews having the larger flowers. Examples of uncommonly large flowers are seen in Dianthus aremurius \times D. superbus, liuhus. cefsius \times R. bellardii, hybrids of Rosa gallica, Begonia bolviensis and Isoloma tydcum.

A high regetative power is very common in hyhrids. as in Nymphea, Rubus casius, Nicotiana sumventens \times N. letissima, Linaria striata \times L. vulgaris and Potamogeton.. A greater duration of life has been noted in connection with several hybrids of Niontience and Diyitalis. An increased resistance to cold has been noted especially
 the other hand, Salix viminalis \times S. purpurea is more sensitive to cold than either parent species.

These facts point in part to an apparent lessened vitality of hybrids in consequence of their ahnormal mode of production : and in part in some instances to an extraordinary vegetative power. The cause of this last phenomenon, which is observed less frequently than lessened vitality, has been in some degree only recently understood. Noteworthy experiments of Knight, Lecoq, and others have been published, but it has been through the minstaking researches of Charles Darwin that the case with which a cross between different individuals and races of one and the same species is effected was first clearly explained. The increase of the regetative power in hybrids is clearly a phenomenon that closely corresponds with the peculiar conditions of hybrid produrtion, and needs not a special explanation. It was at first thought that lessened fertility was compensated for hy greater vegetative Iuxuriance, an hypothesis that Gärtner has shown to be untenalle, as is evident by the fact that many of the most fertile hylrids (Durata, Mirabilis) are also notable for the largest growth.

4. Partial or Conilete Sterility of Hybeins.

Subnormal fertility of hybrids, especially as regards the pollen, has long been recognized as one of the most important criteria of hybrids. It secms, however, that this character like intermediateness has been an almost unbridled conception and hence greatly overvalued as a distinguishing feature. Focke in his summary gives us a wealth of facte in this emnection :

Fonertil Proposition.

Hybrids between different species shou in their anthers a smaller numbir of normal pollen-grains and a smaller number of nermal setd than in plents of pure deseent. Froquently they produce neither pollen mon seed. In hybridizalion befwern noarly related races thas wakening of the power of sexual reproduction is not prescnt. The fioni, ry ot stwh ar ncarly sterile hybrids usually remain fresh for a long time.
Sor property of hymits has attracted so murh attention as the lessening of the ability of sexual reproduction. Kölreuter believes that this peculiarity permits a sharp border-line to be drawn between species and varieties. Since then many botanists have acrepted the same view, and lately B. Naudin, Decaisne, and Caspary have adopted it in a more or less modified furm. Knight and Klotzsch, and before them Godron, hold that the pollen of hybrids is entirely impotent, which contention
had already leen disproved by Kölreuter*: a wrat. r... suarches. Kobleuter is armenthed with the promuleation of the doctrine of complete sterility of hybrids, but

In different plant enema the fortility of hatride i very varied. Fertility is ohserved in a very low deare.
 it is more common in Imomone, Vioblimena, Merlina.

 Salix, Giladiolus, Cypripedium, and Hippeastrum. In the genera Vitis, I'runus, Frayaria, and Pirus, hybrids of
 and in Cereus the hybrids of widely separated species show undiminished fertility.

The sterility of hybrids is expressed at times by their showing no inclination to flower, which peculiarity has heen noticed especially in several hybrids of Rhododendron. Epilnhium. ''ercus. and Hymenmalliz: hut thes are exceptions, ina-much as hybrid= u-ually flower more abumbanty and earlier than true aperio.

In hylrids with unisexual flowers the male flowera
 gonia (hybrids of B. frobbeli A. DC.). In hisexual flowerthe stamens are stunted, as noted in several hybrits of I'elargonium and Digitalis (D. lutea $\times D$. purpurea f.

 in hylrid plante. (commonly the anthers if hybridt are sterile and do mot centain any perllen: or they are smalk and lo mot open. Nuch doficime of puliwn is noted in Rubus idrus. \times R odoratus. Ribes aurcum \times R. sanguineum, and Alopecurus geniculatus \times A. prat, nsis. In other cases the stamens produce small powdery grains which do not swell with moisture, which are of varying size and shape, and with which are ueually mixed a few single, well-formed, embryo-forming pollen rrains. The number of normal grains is, howerer, frequently larger, and comprises 10,20 , or more per cent of the total number. Large, rough grains which swell with moisture, together with small well-formed grains, are present ofter in greater or less number among the stunted grains. In hybrils of closely related species, as in Melandryum album \times M. rubrum, but little irregularity is usually found in the form of the pollen-grains. In one hybral. Simingin. the pollen was latter in the serome yatr of flawering than in the first.

In the hybrids of unquestionably different specic: a nurmal formation of the stamens is shlom mot with. Lowetinns in supqurt of this atill need combimation. in
 Br, y, nia rubrovenia \times B. anthina, Iswloma ty.i.....
 trains which are all of nearly the same furm are found in Salix aurita, and S. caprea and S. viminalis $\times S$. repens.

On the other hand, a deficient development nf stamens appears less frequently in race crossings. Possibly, fur-
ther research will show that it actually appears more often. The only two examples that I know are in my Anagallis cross-breeds. It is doubtful whether Raphanus sativus and R. raphanistrum should be considered as representing species or races. It seems, however, that some individual hybrids of closely related species are entirely sterile, as in Capsella rubella \times C. bursa pastoris, Viola alba $\times V$. scotophylla, Papaver dubium \times P. rhoeas.

Fertility of the female organs is not, as a rule, so much weakened in hybrids as is that of the male organs. It is, however, usually impaired to a great degree. Many hybrids never develop fruit. Assertions as to the absolute sterility of hybrids can not, however, be advanced without manifold researches. From the crossing Rubus cosius $\times R$. idaus one sees many thousand flowers remain sterile and only here and there individuals produce fruit. See also Digitalis lutea $\times D$. purpurea, Lobelia fulgens \times L. syphilitica, Crinum capense $\times C$. scabrum. A morphologically recognizable imperfection of the ovule has heretofore rarely been seen, unless by Bornet in Cistus. To obtain conclusive information as to the female fertility of a hybrid, the stigma should be fertilized with pollen from the parent species, which fertilization universally brings forth better fruit than the pollen of the hybrid which is weakened in its fertilizing power. In some cases hybrids having the pollen which has a subnormal potency produce normal fruit with parental pollen, as in Luffa.

Several hybrids drop their unwithered flowers with fully formed calyx and stamens, as in Ribes, Nicotiana rustica $\times N$. paniculata and other hybrid Nicotianas.

As a rule, the corolla withers in a normal manner after a longer existence than in the parent species, or it will be thrown off as in the parent species; but following this there is no setting of fruit or a setting of only poor fruit. In many cases the fruit while externally well formed is seedless. In many other cases the fruit is set, hut in smaller number and with fewer seeds than in the parent species. In hybrids of very closely related species the number of seeds appears to be somewhat less than in the parents. Examples of this, according to Gärtner, are Melandryum album \times M. rubrum, and Lobelia cardinalis $\times L$. fulgens. It is also true in race-crossings of Verbascum.

Hybrids of essentially different species seldom show an undiminished fertility. However, no striking lessening of fertility has been observed in Brassica napus \times B. oleracea, Dianthus chinensis \times D. plumarius sibiricus, Pelargonium pinnatum \times P. hirsutum, Abutilon, Medicago, several Cereus and Begonias. Mieracium auranti$\operatorname{cum} \times H$. echioides, Nicotiana alata $\times N$. langsdorffi, several hybrids of Erica, Calceolaria, Isoloma, Veronica, and several Orchidacere. Also, among many wild-growing hybrids one finds fruits and seeds in great quantities, as in many Rosa, Epilobias, Fuchsias, Cirsici, Hieraciei, Salices, Lobelia, and so forth. In such cases, therefore, it is not sufficient to ascertain whether the plants in question are primary hybrids or whether, as is usually the case, they belong to later generations or have arisen from back-crossings.

In order to produce seeds or to obtain a luxuriant progeny some hybrid plants require fertilization with the
pollen of others, as in hybrids of Cistus, Begonia, Gladiolus, and Hippeastrum.

In many hybrid plants only the first flowers produce seeds, as in Aquilegia, Dianthus, Silene, Lavateria Thuringiaca $\times T$. pseudolbia, and Rubus foliosus $\times R$. sprengelii. In other cases the first flowerings are usually sterile while the later flowerings are frequently fertile, as in Datura, Nicotiana rustica $\times N$. paniculata, N. rustica $\times N$. quadrivalvis, and Mirabilis. In long-lived plants, the flowers in general are sterile during the first year, while later, when the plant has reached a definite age, they produce fruit. This is noted in Rubus idmus $\times R$. cresius, R. bellardii $\times R$. cersius, Calceolaria integrifolia \times C. plantaginea, and Crinum capense \times C. scabrum.

The fertility of the ovule is, as a rule, diminished to a somewhat less extent than the fertility of the pollen, but there are some known examples of an opposite character, as in Nymphea lotus $\times N$. rubra, Ciconium \times Dibrachya in the genus Pelargonium, Lobelia fulgens \times L. syphilitica, Verbascum thapsiforme $\times V$. nigrum, Narcissus montanus, and so forth. These are certainly only of an occasional occurrence.

The long persistence of the blossoms (especially those with stamens) in many sterile hybrids corresponds with the longer duration of unfertilized or incompletely fertilized flowers. Frequently the fruit of sterile hybrids, especially after fertilization with the pollen of the parents, develops more or less strongly without producing any seed, or producing only imperfect seeds. Especially well-developed but seedless fruits are found in the Cactaceæ, Passifolaceæ, Cucurbitaceæ, and Orchidaceæ. Gärtner has studied carefully these phenomena, but in the study of hybrids they hardly possess a great value. Apart from this they furnish an important demonstration of the correctness of the principle that the normal development of the pericarp follows upon the stimulation when the germinating pollen is discharged on the stigma, but which is, nevertheless, entirely independent of the ripening of the egg cells and the development of the embryo and the seeds.

The rule in general is that hybrids of closely related races are on an average more fertile than those of definitely separated species. The rule can also be stated, as shown above, that closely related species can more easily produce hybrids than widely separated species. Both rules, however, have only conditional values, for if it should be concluded from this that the more easily hybrids are produced the more fertile they are, one would fall into error. There is no known or traceable connection between the case of production and fertility of the hybrids.

From the teleological standpoint the sterility of hybrids was formerly considered the means whereby species were kept separate. Just what advantage such separation is (unless it be for the conveniences of the systematists) was never demonstrated. On the other hand, it may now be asked whether or not the genesis and differentiation of species are not brought about by the lessened fertility of mongrels between well-marked races of the parent type. The notable similarity between illegitimates and hybrid offspring do not offer a basis for further investigations of the causes of sterility. A better explanation is probably afforded by the hybrids of Equi-
setum and Musci, in which the production of sexual spores is as defective as is the production of pollen grains in the hybrids of Aerogams. The obstacle to the regular propagation of hybrids appears consequently to lie in the development of those individual cells which have the power to propagate the type of the parent form, and these particular cells may or may not have the power of sexual reproduction. At all events, more evidence must be gathered before such a conception of a proposition of such great biological importance is justifiable. As an hypothesis this gives no explanation, but it may prepare the way for the understandug of the conditions already noted, since it unites under one heading a number of different yet manifestly analogous phenomena in the animal and vegetable kingdoms.

Fifti Proposition.

Halformation and odd forms, especially of the floxers, are in hybrid plants much more common than in spccimens of plants of pure descent. As in Papaver, Dianthus, Pelargonium, Nicotiana. Digitalis, double flowers also appear to be produced with especial ease in hybrids.
The Descendants of Hybrids.-Hybrid plants are more easily and more successfully fertilized by the pollen of the parent species than by their own pollen. Exceptions to this rule are rarely seen (as for instance in Hieracium echioides $\times H$. aurantiacum), but sufficient experiments in this direction have not yet been made. By their own pollen is understood the pollen of hybrids resulting from the crossing of the same species, and not only that of the identical specimens themselves. If hybrid plants grow in the neighborhood of their parent species they must frequently be fertilized by these species; and in this case many intermediate forms between the hybrid and the parents will appear in their progeny. It has never been determined whether or not fertilization of the parents could take place by the pollen of the hybrid. The common statement, that the progeny of a hybrid are very variable, is therefore of but little value. Occasionally also a hybrid is more easily fertilized by the pollen of a third species than by its own as in Nicotiana rustica $\times N$. paniculata and Linaria purpurea $\times L$. genistafolia.

Progeny of Hybrids Fertilized by their Oun Pollen. $(\mathrm{A} \times \mathrm{B}) \stackrel{ }{ } \times(\mathrm{A} \times \mathrm{B}) \delta$.-(1) If fertile hybrids are protected from pollenization by the parent plants or hy plants of a different species, ne will ohitain hybrid plants of a second generation. It is my opinion that the progeny of hybrids exhibit marked differences in the duration of life. In long-lived plants the blending and stronger union of the two types united in the hybrid is frequently more complete, so that the progeny inherit the characteristics of this new intermediate type. The progeny of annual or biennial hybrid plants are, as a rule, particularly variable and rich in different forms, as in Pisum, Phaseolus, Lactura, Tragopogon, Daturn, Xicotiana alata $\times N$. langsdorffi, and so forth. Exceptions are found in Brassica, Oenothera, Nicotiana rustica \times N. paniculata, and Verbascum austriacum $\times V$. nigrum. The progeny of perennial plants behave in general in a similar way, but the instances in which the intermediate type remains constant appear to be the more frequent. Many of the hybrids often breed, moderately. true, as in Aquilcgia, Dianthus, Lavatera, Geum. Cereus, Begonia, Cirsium, Hieracium, Primula, Linara, Veronica,

Lamium, and Mippeastrum. The progeny of hybrid shrulis and trees are in the majority of cases moderately stable, as in S'sculus, Amygdalus, Prunus, E'rica, Querrus, and Sulix; the proseny of many Fuschive and 'atceolurike are constant. Simme Rhodudendron hybruls breed true and a portion wariably. The progeny of the hybrids of Vitis, Pirus, and Cratogus appear to be very variable.
2. The different forms in which many primary hylorids appear are usually not stable in their offspring. In Dianthus the less-frequent forms ("Ausnahmetypen," according to Gärtner) usually revert to the normal hybrid form. Mendel found that the different primary forms of the Hieracium hybrids breed true.
3. C. F. v. Gärtner and other b,otanists have advanced the proposition that the progeny of hybrids berome weaker and less fertile from generation to generation. It is true that their vegetative power, which at first is increased, is progressively decreased by self-fertilization. Gärtner's researches were, moreover, instituted on a very small scale, so that not only very close inbreeding but also the many circumstances which cause deterioration in garden-plants of which only a few specimens are cultivated influenced his hybrids. Gärtner himself noticed exceptions in Aquilegia, Dianthus barbatus $\times D$. chinenss, and D. armeria. \times D. deltoides. Hybrids of nearly related species are often grown perenially with ease, as in Brassica, Melandryum, Medicago, Petunia. Many gardeners assert with great positiveness that many hybrids can be propagated by means of seeds throush many generations, as in Lychnis., Erica, Primula auricula $\times P$. hirsuta, and Datura.* Many observations on wild plants seem to confirm these views. The thew has als, been advanced that the fertility of hybrids is increa-ed? in later generations. It does not appear that such a rule can have a universal validity. It is much nearer the truth that many times fertile hybrids appear and that they can easily increase under favorable environment because of increased fertility. Fertile offspring of hybrids are, in fact, often products of back-crossings.
4. Complete reversions to the parent forms without influence of the parental pollen arise, except in rare instances, only in hybrids of nearly related races. In such hybrids true reversion appears only in a small number of plants, as in Phaseolus.
5. From the variable progeny of fertile hybrids sercral dominant types are often produced in three to four generations. If these new types are protected from crossing they tend to become constant. Scientific researches which confirm these statements have been carried out in but small numbers, especially hy T.ereq in Mirnbilis, by Godron in Linaria and particularly in Datura. Gardeners have produced many new races with wellmarked characteristics by crossing different species, and many permanent wild intermediate forms have prohably originated in this way, as for example, Brassica, Lychnis, Zinnia, Primula, Petunia, Nicotiana commutata, Pentstemon, Mentha, and Lamium. The nem types of hybrid progeny depart frequently in individual properties from

[^3]both parent forms. My Nicotiana $\times N$. paniculata had in the secoud and third generations mostly much narrower leaves than in the parent species.
6. The sterility and inconstancy of the offspring of hyhrids has often misted botanists into conctusions which are not supported by experience. As may be seen by the facts already set forth, it is absolutely incorrect if it is concluded that all hybrids must necessarily die out quickly because of the many and various properties which are combined in them. The variable forms resulting from a crossing are the material from which not only gardeners produce their new varieties, but which are also biologically valuable in that they furnish new species in the conomy of nature.
(c) Back-crossings of Mybrids with Parent Species
 $X(A \times B) \delta$. As long as great stress was laid on the rôle which the pollen of the seed-parent species played in the production of a hybrid a careful distinction was made that advancing hybrid forms approached the male parent species and reverting hybrid forms approached the female species. These distinctions are, however, according to the mass of recent experiments, of very secondary or of no significance.

On fertilization of a hybrid with parental pollen there appear, as a rule, a moderately variable progeny. Intermediate forms between the hybrid and the parent are the most numerous and most fertile. With these are a smaller number of individuals which are similar to the primary hybrid or to the parent species, and both kinds are usually of lessened fertility.

The three-fourths hyrid $(\mathrm{A} \times \mathrm{B})$ 오 $\times \mathrm{A}$ of are often moderately fertile with their own pollen and seem to produce stable races more readily than the primary hybrid, as in Agilops spelterformis. Gärtner noted many times that in later generations of three-fourths hybrids the pollen was nearer normal and the fertility greater, as in Dianthus (chinensis \times barbatus) $\times D$. barbatus, and also in other three-fourths hybrids of Dianthus, Lavatera, and Nicotiana.

If the three-fourths hyrid $(A \times B) \& \times A$ of be fertilized with the pollen of A, there will be produced a seven-eighths hybrid or the third hybrid generation which, as a rule, is very similar to the parent species represented as seven-eighths of the product, but which, in individual specimens, still shows material differences in form and fertility. The last trace of the one original parent species is obliterated in the fourth, fifth, or even in the sixth hybrid gencration.

Kollreuter and Gärtner have effected the transformation from one parent species to the other in many instanese. 'They found that for the transformation to be complete three to six generations are required, usually four to five. Manifestly, the greater or lesser duration of the period of transformation depends in part on collateral conditions. Godron found that Melandryum album $\times M$. rubrum fertilized with its own pollen reverts in the sucond generation to the parent species, while Gärtner considered three to four generations necessary to carry one species over to the other through fertilization with parental pollen.

In general, the products of the fertilization of one parent species with hybrid pollen, as Λ i $\times(\mathrm{A} \times \mathrm{B})$ of,
are similar to those of the reverse fertilization, but observers agree that the variety of forms is greater if the hybrid is used as the male factor, as in Dianthus and Salix.

As in the direct progeny, so also in back-crossings of hybrids, new properties frequently appear which are absent in the present forms, but which are often found in related species or races.

Hybrids of Several Species. Triple Hybrids.-Kölreuter, during the first year of his research, succeeded in combining three entirely different Nicotiana species in one hybrid form. The only formulas according to which such a combination can be made are: $(\mathbf{A} \times \mathbf{B})$ 오 \times
 In the genera Dianthus, Pelargonium, Begonia, Rhododendron, Nicotiana, Achimenes, Calceolaria, Salix, Hippeastrum, Gladiolus, and several others, many such combinations have been produced without especial difficulty. Differentiation must be made between combinations of three entirely different species, and combinations in which two or all three of the factors are closely related. There are several manifestly different species which in hybridization with one another act almost like races of the same species, as Melandryum album and M. rubrum; Vitis vinifera, V. cordifolia, V. astivalis and V. labrusca; Lobelia fulgens, L. splendens and L. cardinalis; Rhododendron ponticum, R. arboreum and R. catawbiense; Rhododendron flavum, R. viscosum, R. nudiflorum and R. calendulaceum; Berberis aquifolium and nearly related species.

Hybrids produced by crossing the hybrids of two species of these groups with a third species of the same genus can as little be considered true triple hybrids as hybrids of three of the narrow groups belonging to the Vitis, Lobelia, and Rhododendron species. True triple hybrids formed from three essentially separate species usually produce a moderate variety of forms, especially if the male parent is a hybrid. On the other hand, in the combination which is easiest to produce, and which is formed on the formula $(A \times B) ; \times C \delta$, the type of C usually predominates, as in Nicotiana (N. rustica $\times N$. paniculata) $\% \times N$. langsdorffi o, Achimenes. (A. grandiflora \times A. candida) $\& \times$ A. longiflora $\hat{*}$, and several of the Gesneraces.

The hybrids of Erica when crossed produce as uniform a progeny as do the pure species. Several Salix hybrids behave in a similar manner.

Triple hybrids in many genera (Pelargonium, Begonia, Rhododendron, Achimenes, Isoloma, Cypripedium, Gladiolus) are for these reasons very valuable to gardeners. If they produce seed their progeny are very unstable.

Hybrids of Four to Sir Specics.-If the hybrids between very nearly related species (Vitis, Rhododendron, and so forth) are not considered, hybrids from four or more parent forms are moderately rare. They are found especially in the genera Dianthus, Pelargonium, Begonia, Rhododendron, Nicotiana, Salix, Hippeastrum, and Gladiolus. The artificial combination of different species in a single hybrid form was practised to the widest extent by Wichura, who has combined in Salir six species.

Hybrids of Combined Hybrid Offspring.-In several genera (Pelargonium, Fuchsia, Begonia, Rosa,

Erica, Whodudendron, Achimentes, ('alceolaria, Gladiolus, and Hippeastrum) gardeners have crossed the species intentionally and unintentionally in the greatest variety of ways, and from the forms obtained they have used those most desirable for further cultivation. The oftispring of these complicated hybridization products are naturally almost always very variod. On the other hand, there are exceptions io this rule. sweet particularly emphasizes the fact that the same hybrid form is obtained from the crossiugs of several complex l'ehatonimm hybrids. Such constant complex Pelargonium hybrids are, according to him, P. involucratum $\times P$. ignescens, and P. mostyne $\times P$. ignescens. It has already been mentioned that Erict and several cielix hybrids on crossing furnish offspring of constant form.

Cross-breeds and IIybrids.-According to a dictum hybrids of two different varieties of one serecies are designated as cross-breeds, and hybrids of two different species as hybrids. As the term varieties is vague it is necessary at this point to remember that only varieties which breed true, as well as races, or subspecies, can with certainty transmit in some degree their properties. Unstable breeds which are designated varieties are useless in the study of hybridization.

Many writers have taken great pains to discover a sharp distinction between cross-breeds and hybrids. They hold to the expectation that by rescarches in hybridization a border line between species and subspecies will be fixed. Gïrtuer, who in many places in his works has declared that the conditions of the hybrids demonstrate clearly the specific differences or similarities of the parent-forms, would soon retract if he attempted to develop any connection or continuity by the literature of varicty hybrids. Herhert and Naudin have through many researches arrived at the conviction that it is impossible to draw a sharp borderline between crosses and hybrids; nevertheless, later botanists have always sought swh a fixed difference.

The following propositions have been formulated:

1. The pollen of a cros-breed is normal ; there are more or less numerous deformed pollen grains in a hybrid.
2. The fertility of a cons-hreed is normal ; that of a hybrid is distinctly subnormal.
3. Hybrids of two species having differently colored flowers bear flowers of modificd coloring. Plants with irregularly dappled flowers are produced from the crossing of varieties. They behare similarly in regard to coloring, marking, and formation of fruit, and other propertics.
4. Cross-breeds have a decided indination in later generations to revert entirely to the parent forms.

These four propositions are in general eorrect, hut give very little help to a final decision in doubtful cases. The hybrids of the red and blue Anagallis arvensis must according to the pollen be considered a hybrid, but according to the production of bicolored flowers, a crossbreed. Datura hybrids, which are manifestly characteristic hybrids in other ways, readily resert completely to the parent species. Hybrids whose fertility is apparently in no way weakened have alrealy heen specified. The rule can, therefore, lee set forth that hybrids of very nearly related races usually show the properties attrib-

 remers-hybrids.

Several other propurties of aro-hements have hemen anded by which they may be distingur-med from sperie... hybrids. Giartner has maintainelt that cros-urouls of a similar origin will the very unlik. mon another e.b.! in the first generation, while hybrids of the fir-t w.on-ratwon will be of the same form. This assertion, which has benth repeated by others, is entirely unjustified. The multiplicity of forms of the species-hybrids of A lutiton, I'mwiflora, Hicracium, and so forth has= alramly hom pmintal out and, on the other hand, rane-ceroc.- memeds of the fir-t generation are usually as similarly formed at true hyhrids. Irain, it is often maintataed that the variotio.
 produce the same hybrid forms. (Uirtner especially has emphasized this alleged behavior of "varicties," although he must have known that Kailreuter had already notial the transmission of flower-coloring in races of Miral,ilis, Dionthus, and Verbascum, the flower-filling (Blüthenfullung) of Aquilegia and Dianthus, and the form and leaf-shape of races of Nicoliuna laharum and Mibiscus. The white-hlooming Datura ferox and D. strammonium typ. (a white-flowered form) with the smooth-fruited race (var. berlolonii) of the same speries forms a blueflowered hybrid. Nymphoa lotus \times V. rubra is different from N. Intus \times. Nentutu. It is umqu-tonable that properties of races and so-called varieties which are hereditary in pure-breeding are also transmitted to their hybrid offepring. It is self-evidunt that forms whoser normal offspring behave in an unstable fashion will also produce polymorphous hybrids and that the unstable whacteristics of rarieties will entirely disappear in the promucts of the hyridization of pure sumbes.

The facts in short are as follows: The nearer the morphological and systematic relationships of the parent forms the lass does the procreative power of the hybrid depart from the normal. The farther the parent forms are from one another the more commonly is the fertality of the hybrid weakened. Exceptions, however, aro mit infrequent.

The nearer the farent forms are related to ono another, the more frequently does the offspring of hybrids show reversion to the parent forms.

Hybrids of narly related parent-forms show in their fruits the characteristic properties of the parents unblended and side by side, but in hybrids of very different parent forms this is seldom seen.

The most asymmetrically varioqatel flowers (. Mirt-
 morenver, originated from the offspring of hybrids.

The propositions of Focke, althomeh pmblished in 1ssi, are not subjeet to moditionations in prineiples even at the present time. Much literature on the sulbjeet of the sterility of hybrids might be quoted and some referentes might be made to extensinns and additions of a more or less important charabter to the data and propositions set forth, but this seme bedede-a for the purposes of this chapter and thi rewameh.

5. Instability and Mendelian Inheritance of Mybrins and Metants.

Focke's data show that instability is usually quite marked in hybrids, especially in hybrids that are the offspring of a number of species and of crossed hybrids. As has long been known, there is no characteristic of hybrids that has been found so undesirable to the plantbreeder as the tendency to vary in succeeding generations, especially in the direction of reversion to one or the other parent. The partial or complete absence of fixity following the first generation was merely a matter of speculation until the contributions of Mendel (1865 to 1870), which, however, remained practically unnoticed until 1900. Mendel's discoveries and his conceptions of unit characters and their mode of inheritance have offered in an important but restricted measure explanations for the common failure of many plant and animal breeders to anticipate with any degree of certainty several results that may under certain conditions be expected by crossing and in successive generations of the offspring, especially in the case of certain kinds of parents. Mendel recognized that hybrids, as a rule, are not exactly intermediate between the parent species, and that while with some of the more striking characters intermediateness is seen, with others one of the parental characters is so preponderant that it is difficult or impossible to detect the other in the hybrid. He was the first to show that in order to be able to predict with sureness certain characters of the hybrid it is essential to start with pure stock; study each character separately as an individual unit; group the characters in contrasting pairs, one of which pair tends to be transmitted entirely or almost unchanged (dominant character), while the other tends to lessened development (recessive character) or to entirely disappear, but to reappear unchanged in their progeny; look upon each pair as being independent of the others in heritability; and regard each generation of offspring as a distinct entity, but in association with the characters of preceding and succeeding generations. Mendel found that the hybrids in their various macroscopical characters, singly and collectively, either closely resemble or are almost identical with one or the other parent species, or are intermediate between the parents; that the hybrid may exhibit greater luxuriance of growth; that the hybrid seeds are often more spotted (the spots even coalescing in patches) than in the parents; that the dominant character may be parental or hybrid in character and, if the latter, maintain the same behavior in the second generation; that the hybrids resulting from reciprocal crosses are formed alike and exhibit no appreciable difference in subsequent development; and that in the first and succeeding generations bred from seeds of hybrids there appear in the offspring both dominant and recessive characters of contrasting pairs in definite average or mathematical proportions. The hybrids of varieties were found to exhibit peculiarities like those of species, but with greater variability of form and greater tendency to reversion
to the original types. Mendel's statement that the results of reciprocal crossing are identical must be taken as having a very limited application, and then only in a very gross sense.

The Mendelian doctrine bas found a wide though limited application in the explanation of the various phenomena of heredity, and it seems probable that when all or a large number of parental and hybrid characters of given parents and offspring are studied it will be found to be applicable to a fewer number of characters than is generally believed and of little importance in explaining the phenomena of heredity under natural conditions. In fact, the Mendelian doctrine deals with inheritance and not with origin of characters and it absolutely fails in so far as the possibility of the origination of new characters is concerned, and hence is useless in accounting for the occurrence of characters in the hybrid excepting by dominance, recession, and redistribution of preëxistent ancestral characters. Mendel, while recognizing the commonness of intermediateness of parental characters in the hybrid, made no attempt to apply or extend the doctrine to the explanation of blended inheritance. In fact, he recognized that his doctrine was not applicable to characters that blend. In recent years several investigators have suggested a Mendelian interpretation of blended inheritance. Nilsson-Ehle (Lund's Universitets Arsskrift, 1909, w, 2) holds the view that such form of inheritance is really a segregated inheritance due to the association of several independent hut similar units or factors which yield a pseudo or actual hlending.

The general assumption by pro-Mendelianists that unit characters are constant and changeless has been shown by Castle (American Breeder's Magazine, 1912, iif, 270; American Naturalist, 1912, xlvi, 352) to be without warrant, and that, to the contrary, unit characters are variable and modifiable. It is well known that a hybrid has characters that may or may not be intermediate, and that may even be peculiar to itself, and that it is the sum of such characters that gives hybrids the characters of elementary new species, of which an illustration will be found in our histologic and microscopic study of Ipomea sloteri in Part II, Chapter II. Plasticity of characters as regards degree of development, fixity, and genesis has long been recognized as one of the most essential fundamental properties of living matter. Development of various characters exceeding that of the parents has been frequently observed among both hybrids and mutants. Increased virulence of succeeding generations of bacteria was pointed out hy Pasteur, Chamberland, Roux, and many others. Loss of characters is of too common an occurrence to demand special notice. Modifiability, genesis of new characters, and heritability of both modified and new characters have been recorded by a number of investigators.

Massini (Archiv f. Hygiene, 1907, lxr, 250) cultirated a strain of Bacteria coli mutabile that gave rise through successive partial mutations to colonies that fermented lactose and (in the course of successive genera-
tions) this property beeame fixed and the race bred true. Similar phenomena have been recorded by other experimenters. Permanent color changes were induced by Wolf (\%eit. f. ind. Abst. u. Vererto, 1stor, if, 90) in Bacillus prodigiosus by propagation in culture media containing small amounts of potassium and other salts. Rosenow's (Jour. Infect. Dis., 1914, xiv, 1) investigations show mutations and transformations of the strep-tococcus-pneumococcus group by means of environmental conditions. Thiele and Embleton (Zeit. f. Immunitiitsforsch u. exper. Ther., 1913, xix, 643) brought ahout such morphological and physiological changes as to transform one species of bacillus into another. Revis (Proc. Roy. Soc., B, 1913, ixxxyi, 3i3) from an original typical culture of Bacillus coli from a single cell produced two strains one of which appeared slightly modified but which could not be further altered, and another which underwent profound and increasing change, resulting in an organism entirely different from the original, the strain remaining of a permanent character. Jordon (Proc. Nat. Acad. Sci., 1915, I, 160) in cultures of Bacillus coli obtained mutation that " seem:to fulfil the requirements (a) of appearing suddenly without intermediate stages, (b) of being irreversible, at least for three years and for some hundreds of testtube generations, (c) of comprising change in two characters (saccharose- and raffinose-fermenting power), and (d) of not involving all the cells of the parent strain." Henri (Compt. rend. Acad. Sci., 1914, clviii, 1032) found that metabolism was so affected in Bacillus anthracis by ultra-violet rays as to cause marked mutations. Schmankewitsch (Zeit. f. wiss. Zool., 1875, xxv, 103; 18:~, xXIX, 499), in experiments with various erustacex to show effects of environment, found in Daphni" and Branchipus that changes in salinity broucht about marked functional and morphological alteration of characters commonly regarded as being specific. Woltereck (Verh. deutsch. zool. Gesellsch., 1909, 110) recorded variations in Daphnia that are heritable, and states that by selection a modified race can he bred. Titerature such as the foregoing is plentiful, both as to plant and animal life.

The Mendelian doctrine is one of fixity and constancy of characters which segregate in inheritance-the very antithesis of what must be recognized as one of the most fundamental principles of evolution, i.e., plasticity and adaptability to ensironmental conditions that permit or lead to the formation of new characters. It is important to note that while the Mendelian doctrine is a scientifie fact and of unquestionable ralue in explaining certain phenomena of inheritance, it is also obvious that it can not he accepted as, and never can be made, a universal principle of heredity, and that the main question pertaining to this doctrine is in regard to the emnditions under which it holds good. In a word, it ileals with but one of several types of mechanisms of heredity. Considerable misconception has already arisen because of absolutely false ideas that have been promulgated by hybridizers who have selected in their investi-
frations only arh plants as yiold offoringe which in thrir phenomena of inheritance conform to the Menclelian Latw, or whe have -rhected only surh characters for "xamination ats ayrer with thiz latw amd antirny ifture others which represent non-Mendelian inheritance. It
 and against any doctrine it is essential that all of the charactore as far as perable, fombld be re-
 hypotheres. Scarcely anything in scientifir insm-tiration (an be more pernicious than an uttompt to make farts fit theory, hypothesis, or dosetrine, and to ignore them if they do not. One of the manifest wraknowes of studies of Mendelian phonomena is to lo. fonnd in an absonce of a rerognized and wholly sti-factory methowl of standardization. It is obsious that until such iadopted the extent of applicability of the Memlelian dowtrine to the explanation of phenomena of heredity must remain in considerable doult.

Among the fundamentally important contributions to the study of heredity are those pertaining to mutations by DeVries (Mutation Theory, 1909) and by various subsequent investigators. A large literature has accumulated bearing especially upon Oenothara and certain other genera in which not only mutations but alen spontanerous hybridizations have been recorded as being of frequent occurrence. Whether or not the mutants of DeVries and his school are in fact mutants or unguestionable hybrids that have arisen from spontaneons rossing is a warmly dehated question. Bartlet (American Naturalist, 1915, xLIX, 129; Botanical Gazette, 1915, LIX, 810) contimls that there are Oenothere mutants; that the mutant-ratio can not lee explained on Mendelian spounds; that mutation is a distinct process from Mendelian segregation; and that the phenoniena exhibited by the mutants O.muthera lamarchiana, O. biennis, and O. practincola can not be attributed to heterozygosis. Gates (The Mutation Factor in Erolution, 1915) holds the riew that mutations are not merely manifestatinns of some type of hereditary behavior, but a process sui generis; that mutation phenomena represent a well-defined type of variability; that mutations are completely inherited in some or all of the offspring: and that cytological evidence is in accord with theoretieal requirements and experimental facts in serving to controvert the Mendelian conception that mutation is only Mendeliam umber another guise.

On the other hand, the hebrid and Momblelian characters of mutants have led mans to heliese that many mutants are hybrids. Herihert-Xilsson (Zait. f. Dhst. u. Vererb., 191?, vili, 89) holls that mutants ate combinations, i.e., they represent new combinations of Mondelian characters. Renner (Flora, 1914, erit. 11.) al=n holds that DeVries's mutations are explicable on a Mendelian hasis. Davis (Amer. Nat.. 1911, Xr.i. 193 : ihit., 1912, xLII, $3: \%$) found, in studies of the offeprine of different species of Oenothera, that in gross morpholneical characters the hybrids are intermediate between the parents and that some of the hybrids resemble 0 . lamarckiana, the hest-known of all mutants. Toffrey
(Science, 1914. xxxix, 488; Bot. (iaz., 1914, lvili, 322 ; Amer. Nat., 1915, xlix, 5) asserts that there scems to be absolutely no doubt upon morphological grounds and sterility that the (onothera mutants are really hybrids. He records that an examination of a large amount of material of recognized wild species of Oenothera led him to the conclusion that spontaneous hybridism is extremely common in the genus; that in general it represents a condition of high genetical impurity; and that in orders such as Rosaceæ and Ornagraceæ there is grading of recognized species and hybrids into each other, having in common the character of partial or complete sterility. Such literature would make volumes.

6. Genetic Purity in Relation to Interamedateness of the IIybrid.

It may be held that intermediateness of the hybrids depends upon the existence of purity of the parents and that, as a corollary, absence of intermediateness is diagnostic of parental impurity. It will be noted, however, that while Davis (loc. cit.) with carefully selected, presumably pure stock recorded intermediateness in the hybrid, Jeffrey refers to Oenothera lamarchiana as a hybrid having a similar intermediateness, yet being the offspring of spontaneous hybridism that represents a high degree of genetical impurity. In fact, there is no conclusive evidence in any of the investigations referred to that the parents were pure. The term pure is an arbitrary conception. The only test of purity we have at present is in the constancy of characters of the offspring through successive generations. Nor are purity and typicalness by any means synonymous terms. A typical specimen of a species or hybrid is one having characters which in their sum total are nearest the mean of the species or hybrids, but a typical specimen may be far from being pure inasmuch as there may be latent or undeveloped characters that may not appear except under some peculiar condition. In the investigations of Macfarlane and others quoted by him, the parent species examined may have been typical, yet there is no evidence of purity. Darbishire used for the preparation of the starch only two seeds from crosses of garden varieties of peas-the round pea "Eclipse" and the wrinkled pea "British Queen" (hardy variety) being crossed. The parents referred to in Focke's work may or may not have heen pure, but there is no satisfactory evidence in either direction. Mendel was extremely careful to select specimens belonging to groups that possess constant differentiating characters, and in loth of his papers he makes notes of only certain selected differentiating characters. IHe found, as already stated, that the hybrids, as a rule. are not exactly intermediate between their parents, and that while in the case of some of the more striking characters intermediateness is always present, in other cases one of the two parental characters is so preponderant that the corresponding character of the other parent is almost or wholly absent. He also notes in IFieracium hyrids there may be three types, one being almost exactly intermediate, a second nearer to the seed parent,
and a third nearer the pollen parent. In all of these instances the parents may have been typical, yet not pure, and in Mendel's experiments they might be regarded as being both typical and pure-pure, because of the constancy of Mendelian inheritance in succeeding generations. But even here purity is questionable. Thus, in the second generation the dominants which breed true to the dominant character are looked upon as being pure, yet they may have latent or undeveloped characters that can be demonstrated only under peculiar conditions. This has been shown by Darbishire (Breeding and the Mendelian Discovery, 912,218) in crosses of the common albino and the Japanese waltzing mice. In the second generation he found two types of albinos, one to all appearances identical with the pure albinos and the other with waltzers. When these apparently pure albinos are mated with each other they breed true, but when mated with waltzers they were found to be very different from pure albinos, "for among the offspring of extracted albinos mated with waltzers there appeared pink-eyed and even albino mice, forms which are never produced when pure albinos are mated with waltzers."

7. Theoretical Requirements in the Properties

 of Starches to Conditions in the Hybrid corresponding to those of Anatomic CharACTERS.It is evident from the literature quoted that the doctrine of intermediateness of the hybrid and the doctrine of Mendel are expressions of rules that have many exceptions and hence are only of limited applicability. The success of the plant and animal breeder depends upon the elimination of undesirable characters; the redistribution of characters; the variation, modification, and recombination of characters; the development of some particular characters to a degree beyond parental extremes, together with their perpetuation and even further exaggeration in subsequent generations; and the development of new and perpetuation of desirable characters. Neither the doctrine of intermediateness nor the doctrine of Mendel admits of the possibility of generating ideal organisms by crossing and selection; nor are they consistent with the development of parental characters in the hybrid beyond parental extremes; nor are they compatible with the appearance of new characters except upon the untenable assumption of such characters being latent in the parents. Both are doctrines of non-plasticity, yet the most significant phenomenon of successful breeding and the genesis of elementary species is plasticity which is manifested to a pre-eminent degree of importance in development in the offspring of characters beyond the extremes of the parents, new combinations of characters, and the appearance of new characters. No investigations on record have shown more forcefully the utter inadequateness of these doctrines and their limitations than their application to the explanation of the building up of ideal forms and the appearance of elementary species by hybridization and, on the other hand, none has better set forth the great pos-
sibilities of the breeder than those of Burbank. In referring to the results obtained by crossing and selection in general, he states (New Creations of Plant Life, Harwood, 1912, 216) that " there is no barrier to oltaining fruits of any size, form, or flavor desired, and none to producing plants and flowers of any form, color, or fragrance. All that is needed is a knowledge to guide our efforts in the right direction, undeviating patience, and cultivated eyes to detect rariations in values."

If starch characters are heritable they should, in order to meet theoretic requirements, exhibit peculiarities of inheritance corresponding to those observed in gross and microscopic anatomic plant characters. This deduction will be found to have ample justification in the results of this research. Herein it will be found that the starches of the hybrids frequently exhibit in histologic, polariscopic, and physico-chemic properties some degree of intermediateness between the parents, usually nearer one or the other. In any given hybrid certain of the properties may be exactly or practically exactly intermediate, and other properties may be identical with the corresponding properties of one or the other parent. In many instances one or more of the characters of the hybrid, such as the relative number and the types of compound grains, the degree of fissuration, the regularity or iregularity of the forms of the grains, the characters of the hilum, the distinctness and size of the lamellæ, the polariscopic properties, the temperature of gelatinization, the aniline reactions, and the qualitative and quantitative reactions with the various chemical reagents, were developed or manifested in degrees beyond the parental extremes. Moreover, peculiarities of various kinds were observed at times in the hybrid that were not apparent in either parent. In so far as these results go they are, in general, in entire accord with the experience of the plant and animal breeder and with unquestionable statements of literature.

The doctrine of intermediateness of the microscopic characters as set forth in a preceding section is not warranted by the literature of naked-eye characters and is opposed to the results of the work with starches. This led to supplementary studies of the macroscopic and microscopic characters of parent- and hybrid-stocks which compose Chapter IX of Part II. It seems clear upon general grounds that if characters of the starch of the hybrid may be intermediate, dominant, recessive, blended, modified, developed beyond the parental extremes, new characters developed, etc., corresponding phenomena should be exhibited by the tissues. It was expected when this part of the research was planned that in the case of each plant both starch and tissues could be studied coincidently and compared, but this was found to be impracticable; therefore the studies of the plant tissues were carried on as an independent but correlated research. Here, as with the starches, excepting Ipomea, the specimens of both parent- and hybrid-stocks are of the first generation that has been perpetuated from year to year by the propagation of tubers, pseudo-tubers, rhizomes, bulbs, bulbils, etc. Both of the parent- and the
hybrid-stucks of I pomade were grown from seedes which breed true. 'The hybrid is of the oflopring of suce eatse annual seed plantings since lyus, and probably repren-at, the sixth or sesenth in the line of deocent. The mods were obtained from the originator of the hybrid, and the other stock from reliable plant-growers.

The diflerent specamens of -tarches were prepared from a number (varying usually from 5 or 10 ta 100 or more) of bulbs, rhizomes, che., so that the preparations may be taken as representing a fair mean; but whth the plants used for the supply of tissue we were dependent in each case usually upon one or two =pectimens which may be taken to be of about the average or fairly representative.

In selecting the material from the different plants for the microscopic preparations the precautionary measures promulgated by Macfarlane (page 4) to secure safe comparative results were as far as possible carefully followed out. Inasmuch as there is a tembency for individuals of a species, even when grown under the same conditions, to vary in one or more of their characters from the average degree and manner of development, macroscopically and microscopically, it is manifest that in a comparative examination of parents and offspring there should be studied either the actual parents and a selected typical specimen of the hybrid that exhibits the average mean properties of the hybrids, or typical specimens of both parent- and hybrid-stocks. When neither is practicable, as was the case in the present inquiry, there are probabilities that the relative values of the various characters may not be wholly correct, as for instance, a given character of the hybrid may be intermediate but nearer one or the other parent instead of being exactly mid-intermediate, or vice versa, as might be the case had the plants heen very carefully setentad upon the basis of the specificity of intermediatemes. On the other hand, it goes without saying that in the selection of the hybrid the assumption that the one having most nearly properties that are exactly intermediate between those of the parents is a typical hybrid is certain to lead to the worst of pitfalls, because it of necessity implies that blended inheritance is a sine qua non; therefore, as a corollary, that having a given hybrid its parentage might positively he detected by the selection of species that have characteristics such as would meet the theoretical requirements of intermediateness in the hybrid. It is obvious that such a plant might be far more undesirable and even absolutely unreliable for comparative purposes than one that has the least decree of intermediateness, because the latter but not the former may typify the mean of the hybrid characteristics. The results of various investigations fully justify the statement that intermediateness may be absolutely misleading as a criterion in the recognition of hybrids.
Phasen.

The term character is used throughout this research in a conventional sense to signify any property that
serves to characterize any part or property of starch or plant. Inasmuch as each such property is a unit of comparison, tach may appropriately and advantageously be referred to as a unit-character. A unit-character such as the property of gelatinizability may be manifested in varied phases or modified forms which conformably are distinguished as unit-character phases. Many of the unit-characters and unit-character-phases that have been studied in this memoir may seem to be unimportant or even trivial, but experience in various lines of inquiry has shown that the correlation of such properties may prove of the greatest importance.

Each property of starch, whether it be manifested by peculiarities of form, hilum, lamella, or size of the grains, or in the reactions in polarized light, or in the reactions with iodine or the anilines, or in the gelatinization reactions with heat and the various chemical reagents, is an expression of a physico-chemical unit-character that is one of many indexes of the peculiarities of intramolecular structure of starch, and is an independent unit although correlatively related to the others. These unit-characters fall into arbitrary but natural groups in accordance with the methods of investigation employed, and as a matter of convenience and facility of study they have been treated under the designations above noted. Under the designation form are included a number of unit-characters which are expressed specifically in the occurrence of varieties or types of the grains (whether as isolated, aggregates, or compound grains), their numerical proportions and the peculiarities of the components in number and arrangement of the aggregates and compound grains; the regularity of outline of the grains, and the kinds and causes of irregularities; the conspicuous forms, ete. Under the designation hilum are inclucled characters that are specifically expressed in distinctness, form, number, fissuration, and eccentricity. Under lamellar are designated properties specifically expressed in distinctness, form, fineness or coarseness, variety and distribution, and number. Under size are included the ratios of length to breadth, general dimensions of grains of different types, especially of those of common size. Under polariscopic properties are characters that are expressed by peculiaritics of the figure or " cross " in regard to eccentricity, distinctness, definition, courses, and other characters of the lines; the occurrence of single or multiple figures, the degree of polarization : the appearances with selenite of the quadrants as regards especially definition, equality of size, form, and colors. Under iodine reactions are included character reactions of the raw starch grains; and after boiling the grains, the reactions of the grains, solution, grain-residues, and rapsules. Under aniline reactions are included characters elicited by the degree of staining by gentian violet and safranin immediately and after a half hour. Under temperature reactions are included the temperatures of gelatinization of a majority of the grains and of all or practically all of the grains. Under various reagents are included character manifestations that are expressed hv ounntitative and qualitative reactions with various
gelatinizing reagents. With each reagent it is found that there are peculiarities in respect to the percentages of the entire number of grains and total starch gelatinized at definite time-intervals; and to the number and kinds of gelatinization processes, these processes varying in both particulars not only in different starches with the same reagent, but also in the same starch with different reagents. Hence, while the property of gelatinizability is a fundamental or primary unit-character, it may be manifested in as many phases or modifications (unit-character-phases) as there are starches and gelatinizing agents. Among all of the varied properties of starches there seems to be none so certain to show slight intramolecular differences as these unit-character-phases.

The independence of each of these unit-characters and unit-character-phases of each other will be found to be well exhibited in every one of the groups of properties comprised in the several foregoing designations. This is most strikingly shown in hybrids-for instance, in the general characters of the hilum the properties of the hybrid may be identical with those of one parent, while in eccentricity identical with those of the other parent, or intermediate, etc.; in the qualitative reactions with chloral hydrate some of the processes of gelatinization may be more like or identical with those of one parent; others, more like or identical with those of the other parent; others, which are individual are therefore not observed in either parent, etc. Hence, it is found, in summing up the unit-characters and unit-characterphases, that certain of the characters embraced in any designation may tend in one parental direction while others tend in another, but usually it is found that in the aggregate there is a variable degree of leaning to one or the other parent. Moreover, while such group properties may in the case of one designation lean in the aggregate to one parent, those of another group may incline to the other parent, and so on. This extraordinary variability in parental relationship is particularly well shown in the qualitative reactions with the various chemical reagents. These phenomena of variability are also strikingly illustrated in both macroscopic and microscopic properties of plant structure. (See Part II, Chapter IX.)

9. Assistants in the Research.

In the studies of the starches, the histologic data and the polariscopic, iodine, gentian violet, safranin, and temperature of gelatinization experiments were recorded by Dr. Elizabeth E. Clark, B.A. (Bryn Mawr), M.D. (Women's Medical College of Philadelphia) ; and the quantitative and qualitative reactions with the various chemical reagents were studied by Miss Martha Bunting, B.L. (Swarthmore), Ph.D. (Bryn Mawr). Both of these assistants had had two years previous experience in the study of starches. The macroscopic and microscopic data of plants are due to Miss Margaret Henderson, B.S., M.A. (University of Pennsylvania), who prepared all the microscopue slides and made all of the measurements.

CHAPTER II. METHODS USED IN THE STUDY OF STARCHES.

The methoils used in the preceding research (l'ublication No. 173) were at its inception sulliciently satisfactory to meet the theoretial requiremonts of a purely preliminary and exploratory investigation, but as the work progressed it was found, as was to be expected, that radical improventents would be made in varions directions. Advantage las been taken of this experience, and while the methods continue to be inexact, in the conventional sense, they are practically exact so far as satisfactory differentiation and recognition of different starches are concerned. For obvious reasons the descriptions of the methods given in the previous research are herein in a large measure repeated, with some omissions, modifications, and additions.

1. Preparation of the Starches.

The starches were prepared from bulbs, tubers, rhizomes, bulbils, and pseudobulbs, all in the resting state. The specimens were comminuted by the aid of an ordinary culinary grater. Four or five volumes of water are added to the pulp, the mass strained through four thicknesses of chece-cloth, and the pulp then washed with sufticient water and strained as before. The starch-water preparation is decanted in cylinders and the starch is cleansed by repeated washing and decantation. Finally the starch is collected in shallow dishes, the water as far as possible drained off, and the preparation dried at a temperature of $50^{\circ} \mathrm{C}$. By this simple means starches can be prepared which are with rare ceneptinns practically free from gross impurities. To have carried out purification to the extent of practical demineralization would have proven of far greater disadvantage than gain.
2. Simplaneors Stcdies of Stafiches of the Parents and Hybrid and of the Mmbbre of a Genus.
For obvious reasons, in a comparative investigation such as the present it is desiralhe to make simultanemus examinations of all three or four starches of a set by one of the various methods of study and to take up the methods seriatim in preference to taking one starn and subjecting it to the entire series of methods burbere studying another specimen; the same plan eommonditself when there is a mumber of sots lechaging th the same genus.

3. Histologic Method.

This method has been found to he of signal usefulness, and up to recent years it has been the sole reliance in attempts to determine the kind of starch. It was, however, perfectly obvious at the wery inception of these researches, and rendered clear as far hack as the investi-

 that it wa hable to br absobut ly matedimg. Moremerer,

 (hapturs of the precedmg memoir. Ma̧mbitathon ransing from si, to fow, stmetimes hicher, was uwd, aneording to the size of the grains and incmental condituris. A sufficient anmont of dried starch wat dre-eminated on a slide and mounted an a very dilute Latol's alution, care being taken mot thald a larer quantiy of ionhe than is sulficient to accentuate the lalmella. Since stardene of different sourcess show wide differmoce in the matenaty with which they become colored with inhome, it was found convenient to have on hand a number of solutions ranging from 1 to : per cent down. By the aid of su it ordinary microscopic technique there were recorded the form and size of the grain ; the ${ }^{m}$ sition am form of the hilum; the form, number, and other characteristics of the lamellar ; the characteristics pertaining to the form if the grains, whether single or in doublets, triphtes, aggregates, etc. In deseriling the grains the terms "proximal end" and "distal end" have been adoptel, the former being the end nearer which the hilum is located. The "longitudinal axis" currespunds with an imaginary line, extending from the proximal end through the hilum to the distal end. In difforent starches and in different grains of the same kimb of stareh this may bee the long or the short axis. The measurement: if wentricity of the hilum have reference to the distan,f the hilum from the proximal end of the longitudinal axis.

4. Imotomickenraphic Rechris.

Verbal deseriptions of the histolorival characteristies of stardharains fail to combey adegnate con whans. The motes included in the text have therefore been accompanicel by photomicrographs of the grains lightly colored with iodine, as seen in the micruscopre. In making these photugraphs we used an ordinary baush and Lomb
 piece, which gave us a maghitiation wh the ficlld of projection of 300 diameters. For obrious reasuns, many of the more minute features of the grains what mon lie are in the phomierorraphs. Moreover, inasmuch as no two fields are alike in case of any starch or slide, the pictures are to be taken as being grossly of an average
 scriptions, especially as regards variations in form, many tichlds were evamined.

The photomirugraphs of the phat: :...ste- bored
 eye-piece (draw-tube in), or a 2 -inch nhjective and a

2-inch eye-piece, or a $1 / 4$-iuch objective and a 2 -inch eyepiece, giving magnifications on the ficlel of projection of 72, 180, and 300 diameters, respectively.

5. Reactions in Pulaized Light Witholt and With Seleaite.

Starches have been found to exhibit not only marked differences in the degrees with which they rotate the plane of polarized light, but also differences in the characteristics of the "interference figure" or "cross," as it is generally termed. The general characteristics, distinctness, shape, regularity, and position of the interference figure, and also the approximate degree of anisotropy or intensity of polarization were readily studied. By the aid of selenite it was determined whether the optic properties were negative or positive, and also the size, shape, and regularity of the quadrants, as well as the intensity and pureness of the blue and yellow colors. In spherical grains with centrally located hila, the two parts of the "cross" intersect at the hilum, or mathematic center, of the grain, so that the term quadrant has a proper application; but in the case of grains having eccentric hila the position of the point of intersection of the two parts of the cross, together with their curvatures, may destroy every semblance of quadrants according to the conventional definition of this word. This term has therefore been used in a very broad sense throughout our investigation to indicate the four parts of the grain that are defined by the two parts of the cross, in preference to the great multiplicity of terms that would be required to define these parts if great accuracy were attempted. Likewise, for convenience we have referred to the "lines" of the interference figure in preference to the "arms" of the cross.

All starches are " optically negative," hence no special references have been made in the text in this particular.

The slides for polariscopic examination are prepared as follows: The end of a small spatula is thrust into the specimen of starch and moved about, withdrawn and sharply tapped several times in the center of the slide, and the slide jarred in a manner to cause a practically uniform distribution of the starch grains in a single well-disseminated layer. The margins of this layer are carefully removed so as to leave an area 12 mm . square. An expeditious way of removing the margin so as to insure a uniform area of starch is to use as a wiper a piece of sheet celluloid having a $12-\mathrm{mm}$. slot, wiping transversely and then longitudinally. A couple of drops of balsam are carefully added at the center of the area, a cover-slip put on, and the slide placed on the stage of the polarizing microscope. After determining the degree of polarization, the selenite plate is introduced and the sperimen again examined.

In order to reduce the degree of polarization into values in comparative terms and figures it was found desirable to adopt an arbitrary scalc (Chart B 2, Chapter IV'), and to select three starches as stamtaris that give wide and properly separated gradations of value. Thus,
adopting a scale of 100 divided primarily into units of 5 , the starch of Solanum luberosum was taken as having a value of 90 and "very high"; that of Narcissus poeticus ornatus as having a value of 50 , or " moderate"; and that of Richardia allo-maculata as having a value of 30 , or " low." Intermediate gradations are readily expressed by both words and figures. If the starch examined has, for instance, the same degree of polarization as that of Narcissus poeticus ornatus it is given a value of moderate or 50 , but if its value be between moderate (50) and high (70) it is recorded as being moderately high (60), or moderate to moderately high (55), or moderately high to high (65). In some instances intermediate values are given where it is necessary to express smaller differences, as between members of a set consisting of parents and hybrid. The different grains of any given specimen of starch vary in the degree of polarization, so that in rating the average must be estimated; as a consequence all of the records are averages. The method is of a very gross character and the personal equation in determining values may be very important and lead to more or less divergent records by different observers, but in practice it has been found that after a degree of skill has been acquired, as is common in all such gross methods of experiment, essentially or absolutely the same values are recorded when experiments are repeated several times at well-separated intervals, or made by two individuals who have had practically the same training. Owing to variations in illumination from time to time, it is quite important to use persistently, in conjunction with the starch to be examined, some starch that has been adopted as the standard of comparison, preferably one that has a close value. Thus, when studying the starches of a group, one of the starches is standardized with the starch-standard and scale adopted, as before stated, the standard recorded for this starch serving as the fundamental standard for comparison for the others of the group. This method gives very good comparative results, especially when the group consists of a few members; but it is, on the whole, the least valuable of all the methods employed in this rescarch, and its usefulness is chiefly because of its remoteness from the characters of the other methods.

6. Iodine Reactions.

The use of ioline not only served to bring out certain histological peculiarities, but also valuable data in the differentiation of different kinds of starch. The typical or ordinarily observed reaction of starch with iodine is an indigo-blue, but if an excess of iodine be avoided the reaction of the grains will be found to vary usually from a blue to reddish-violet, including within these extremes all shades of violet from a purple to a reddishviolet according to the kind of starch. In fact, in the presence of minute quantities of iodine, starches are colored some shade of violet, varying with the kind of starch. With any quantity of iodine certain starchgrains yield a red reaction. In studying the iodine reac-
tions we used $0.125,0.25$, and 2 per cent Larol's solution. Four serial reactions were studed; two with raw starch and two with gelatinized starch. In the first two, the slides are prepared as in the polarization exammatoms, substituting solutions of iodine for the balsam and examining the slides in ordinary light with a fully open diaphragm and low power. In the first reaction 2 drops of 0.25 per cent Lagol's solution are phaced on the starch, the stide quickly adjusted on the stage of the microscope, and the color reaction in quality and quantity at once determined, the quantitative value recorded being taken as the standard of comparison in relation to other starches. Here, as in the polarization determinations, it was found necessary to adopt an arbitrary scale and starch standards. The same scale is used as for the polarization values, but the terms light, deep, etc., were substituted for low, high, etc. Moreover, it was found necessary to modify the selection of starches to be used as standards. The starch of Solanum tuberosum was taken as having a value of 60 or " moderately deep," that of C'rinum moorei as having a value of 5 " or "moderate," and that of Hatsoniu humilis as having a value of 30 or "light," with corresponding intermediate figures and terms as in the polariscopic determinations.

The second experiment is made, using 0.125 per cent solution, often bringing out color peculiarities which may be obscured or not be observed when the reagent is stronger.

The third and fourth experiments are made with boiled starch with the object of eliciting peculiarities of reaction of the grains, solution, grain-residues, and capsules. After heating the grains until complete gelatinization occurs a variable amount of the starch passes into solution, so that both grains and solution give starch reactions. Upon boiling the preparation for 2 minutes a comparatvely large amount of the starch passes into solution, and the remains of the grains appear in the form of grain-residues which are made up of partially disintegrated grains (capsules with variable amounts of contents), together with some capsules that are almost or wholly free of starch contents.

In the third experiment 0.05 gram of starch is placed in 20 c.c. of water and carefully heated over a bunsen burner only to the point of complete gelatinization. To 2 c.e. of this preparation is added 2 c. x. of a " per cent Lugol's solution, and then the colorations of graine and solution are determined by microscopic examination.

In the fourth experiment the remainder of the bniled preparation is boiled for 2 minutes to further break down the starch grains: then 4 e.e. of the ? per cent Lugol's solution added; and then microscopic determination made of the colorations of grain revidues, capsules, and solution.

\%. Aniline Remetmos.

A number of anilines have been found by variou: investigators to be of value in the ditforentiation of starches from different sourees, of different grains of
the eane kind of starch, and of hafrerent parte of indi-
 double or triple stains. There is also no doultt that the: use of double or triple stains would brine . .nt, at hames
 but this would have involved the carrying out of the histotogical examinations an such detall a- to line prow hibitive in a resarch of this character. Surmin atme gentian-violet were selected, not because they are probably the best of these stains for differential purposes, but because they have been found very useful in starch evaninations and at they yiof simyle color reantion

Aniline colore in solution, c-lworially whon in wak solution and exposed to light, are notalily unstatlie, ant in order to secure strictly comparable results a quantity of a relatively strong standard solution was prepran! and kept in the dark, tightly corked. The stock soluthonwere composed of 0.25 gram of aniline with 150 c... "f distilled water. From day to day dilute solutions w.r. prepared by adding 33 c.e. of water to : c. . . if the -tuck solution; 15 c.c. of the latter solution are placed in a test-tube containing 0.07 gram of starch, the preparation agitated, 1 or 2 drops withdrawn in a minute and examined under the microxcope, and a final examination made at the end of half an hour. In theee condor bermmations the micromenne is usal, as in the ionline rathonwith a fully open diaphragm and low power. Ownes t" the relatively slow reaction, the values for comparative purposes were taken at the whel of a half home in-twat of immediately, as in the first iodine reaction. The method of valuation is the came as in the ionline reas. tions, but the starch stambards for thene re a dims are:
 belladonna, value 50, " moderate"; Frecesia refru, th itl" value 30 , " light."

8. Temperatires of Gelatinizatmen.

While the records of rarious investigators indicate that there are more or less marked differences in the thmperatures of gelatinzation of different kinds of starches, and even in case of different grains of the same starches, the figures applying to the same kind of starch are generally so at variance that not much value is to lee attached to them. The sonurese of fallary in such observations, unless the determinations are made with the greated preantions, are well kman bw wery biochemist. We therefore carried out this work with mperial care. A long qualrangular water-bath was used, holding about 4 liters of water ; one end was phatel
 thermometer which was calibratel in tenths centigrade, but which could readily be read in hundredths. A small quantity of starch with 1", we of water wheram tha test-tube, into which was inserted, through a perforatol
 bath. and the test-tuhe immersed in a suspemted wire hasket in the part of the water-bath farthest from the

slowly, and the water occasionally stirred, so that at no time did the two thermometers differ more than about 2°. As the temperature increased, specimens of the starch were examined at intervals, the tube being shaken, and a specimen obtained by inserting the end of the pipette to the bottom of the tube, a clean pipette being used to remove each specimen. Lach specimen was placed on a slide, upon which was recorded both temperatures, and the slide was examined in the polarizing microscope. 'The temperatures at which there is an entire luss of anisotropy of a majority and of all of the grains were recorded as the temperatures of the tube. The lower temperature recorded on the slide was the record of the thermometer in the test-tube, and the higher temperature was that of the water-bath. The actual temperature of gelatinization lies somewhere between the two, and for convenience, especially for purposes of comparison, the mean of the two was for obvious reasons taken as the "temperature of gelatinization." In the records all three temperatures are given in accordance with the foregoing.

9. Action of Sifelling Reagents.

Quite a number of swelling or gelatinizing reagents, of very diverse chemical composition and exhibiting more or less individuality of action, have been used by various experimenters in studies of the structural peculiarities of starch-grains or in the differentiation of different kinds of starch or for other incidental purposes. This method of differentiating starches seemed so promising that in the preceding research five such reagents were selected. For obrious reasons choice was made of those which differ widely in chemical composition and which yield sufficiently prompt and characteristic results. 'I'hose selected included chloral hydrate-iodine, chromic acid, pyrogallic acid, ferric chloride, and Purdy's solution. For evident reasons it is desirable to repeat some of the statements made in the preceding memoir.

The chloral hydrate-iodine solution was prepared by saturating a saturated solution of chloral hydrate with iodine. This solution, sooner or later, not only causes swelling and ultimate partial dissolution of the grains, but, owing to the presence of iodine, also yields important accompanying color reactions; and it is, on the whole, to he resarded as a very important reagent.

Chromic acid was used in the form of a 25 per cent solution, and it is the only one of the five reagents that causes, within the periods of observation, a complete disintegration of the grains. It gives rise to gas bubbles during the decomposition processes.

The pyrogallic-acid solution was prepared by making a saturated solution and diluting this with three parts of water, adding oxalic acid in the proportion of 4 per cent to hirder oxidation.

The ferric-chloride solution consisted of equal parts of a saturated solution and water. Purdy's solution was made by diluting the standard solution with an equal volume of water.

The last reagent was usually found to be the least active of the dive, and it is, so far as the effects on the grains are concerned, probably essentially an aqueous solution of potassium hydroxide, and therefore likely possesses no advantages, except perhaps in keeping qualities, over the simple aqueous solution. Oxygen or exposure to the air favors the actions of pyrogallic acid, but hinders those of chloral hydrate and ferric chloride. In the former case, the grains near the edge, or on the outside, of the cover-slip are decidedly more affected than those within, while with the latter the opposite is true.

There are some forms of commercial chloral hydrate that have very little action, which may be due to underhydration or over-hydration. The crystals put up by Schering were used throughout this investigation.

It is important that fresh solutions of the reagents be prepared at short intervals, as all tend to deteriorate, and it is well to let them stand over night before using.

In using these reagents a small amount of starch was placed in a slide as in the polarization experiments, several drops of the reagent were added, a cover-glass put on, and the progress of events examined under the microscope. In using a given reagent with a given kind of starch, it was found that there was a certain amount of variation in the effects from time to time, probably attributable to variations in temperature, so that these studies were made as far as possible under constant temperature conditions. The variations, as a rule, were unimportant. These agents give rise to gelatinization and swelling of the grain and cause the existence of the outer and inner parts of the grains to appear very con-spicuous-the outer part becoming sac-like and inclesing a less dense or semi-fluid substance.

Experience taught us that not only the method but also the reagents, as regards both kind and concentration of solution, can be markedly improved. As previously stated, the method though gross seemed to meet the theoretical requirements of the research-that is, the determination whether or not starches are modified in relation to species and genera-without attempting to establish constants or strictly exact data. During the progress of the present research we used, in a limited number of experiments, certain reagents which in the text that follows are designated:

> Solution No. 2.
> Chlural hydrate-iodine-Schering's crystals of chloral hydrate 30 grams, water 17 c.c., Lugol's solution 3 c.c.
> Chromic acid 10 grams , water 40 ce .
> Pyrogallic acid 9 grams, oxalic arid 0.5 gram, water 40 c.c.
> Ferric chloride 50 grams, water 5 c.e.
> Ammonium nitrate 15 grams, water 10 c.c.

After a time the ferric chloride was abandoned because of difficulties in standardization and in obtaining satisfactory uniformity in the results of repeated experiments, and it was also found that other of the reagents could be used to better advantage in a modified form. A few experiments were also made with ammonium nitrate and certain other reagents, but for various reasons were set aside. It is yet wholly problematical as to
what reagents and what concentrations are best adapted for such studies, but the following were finally adopted in this research, although experience has shown that all or nearly all can be modified to advantage in concentration and they can be added to with great profit. Chemically pure chemicals and distilled water were used. The solutions should be made only in small quantities, and when fresh solutions are prepared they must be tested with the several selected starches, the reaction-intensities of which are known, to determine whether or not they are of exactly proper strength.

Chloral hydrate-Schering's chloral hydrate crystals 15 grams, water 5 c.c.
Chromic acid 2.5 grams, water 20 c.c.
Pyrogallic acid 4 grams, oxalic acid 0.3 gram, water 35 c.c.
Nitric acid 10 c.c. water 35 c.c.
Sulphuric acid 10 c.c., water 27 c.c.
Hydrochloric acid 9 e.c., water 10 c.c.
Potassium hydroxide 0.75 gram , water 65 c.c.
Potassium iodide 10 grams, water 30 c.c.
Potassium sulphocyanate 5 grame, water 30 c.c.
Potassium sulphide 1 gram , water 40 c.c.
Sodium hydroxide 0.5 gram , water 100 c.c.
Sodium sulphide 1 gram, water 45 c.c.
Sodium salicylate 10 grams, water 10 o.c.
Cakcium nitrate 8 grams, water 16 c.c.
Uranium nitrate 8 grams, water 10 e.c.
Strontium nitrate 5 grame, water 7 c.c.
Cobalt nitrate 9 grams, water 15 c.c.
Copper nitrate 15 grame, water 30 c.c.
Cupric chloride 9 grams, water 15 c.c.
Barium chloride 5 grams, water 12 c.c.
Mercuric chloride 18 grams, ammonium chloride 10 grams, water 40 c.c.
Occasionally modified solutions were used in qualitative experiments to meet special conditions, note being made in the text at the proper place whenever this has been done.

In the reactions with the chemical reagents it is essential, in order to obtain uniform and wholly reliable results, that the slides should be prepared with much care as regards the quantity and distribution of the starch and the quantity of the reagent, and that immediately upon the addition of the reagent the preparation be protected so that changes due to alterations in concentration and to oxidation will not occur. The method pursued is as follows:

A square area of starch is first prepared on a slide as in the polarization reactions. This square is surrounded by a layer of purified vaseline 5 mm . wide, applied by an artist's flat camel's hair brush. A cover-slip is now prepared by coating the margin of one surface with a corresponding band of vaseline, so that when the coverslip is placed on the slide the surfaces of two vaseline squares form an air-tight junction, preventing change in concentration of the reagent by evaporation or absorption of water and eliminating influences of the oxygen of the atmosphere. Two drops of the reagent are carefully and quickly placed on the center of the starch layer, the cover-slip instantly applied, the slide placed on the stage of the polarizing microscope, a suitable field speedily found and examined in polarized light. Usually a practically exact count is made of the number of grains in view, but if the reaction is very rapid this part of the method is modified as hereinafter stated. All these
procedures are done as expedhunsly as pos-ible. In the starches of some aperics there are to the foum variable proportions of bery minute trame which for obvious. reasons must be ignored in makng the count. The number of grains in the field ranges usually from 150 th $\because(0)$, rarely as few as it to 100 or as many as 100 to (60), the number depending largely upou and in approximate ratio to the mean size of the grains; but such diferences in number do not imply corresponding differences in the total amount of starch present. In speciments in which the grains are small, the number of grains in the filld will be larger than when the grains are large, and the number will vary also because of some irregularitie- in the distribution of the grains, a field always being selectud that is well adapted for the count and for watching the processes of gelatinization. Unless gelatinization occurs very rapidly the percentages of grains and total starch gelatinized are not determined until at the end of 5 minutes from the time of the addition of the reayent, and subsequently at $15,30,45$, and 60 minute intervals, or as may be desirable. At these periols the number of grains not completely gelatinized is counted, and then the percentage of grains completely gelatinized is computed by finding the difference between the original number in the field and the number thus found. In addition to the grains completely gelatinized there will be seen grains in partial stages of gelatinization and perhaps some wholly unatfected. The amount of starch remaining ungelatinized is computed in terms of grains and is estimated by finding the number of grains that are unaffected and the proportions of starch ungelatinized in the partially gelatinized grains. Thus, in the latter case, if there remains an average of onc-quarter of the starch unaffected (in some grains it may be onetenth, in others one-fifth, etc.), it will take 4 grains to represent the amount of starch in an average grain of the specimen, the number thus determined being added to the number of grains that are unaffected, the sum deducted from the original number under observation, computing by the difference the percentage of the total starch gelatinized.

When gelatinization occurs very rapidly or very slowly the foregoing method must be modified to suit conditions. Frequently complete or almost complete gelatinization occurs within 15 seconds after the application of the reagent. Obviously time is not permitted for a count of the number of grains in the field before determining the number of grains wholly and partially ungelatinized. By extreme alertness it is possible within 15 seconds after the addition of the reagent to have the slide on the stage of the micrumpe, select a fied, make a count of the ungelatinized grains, and estimate the parts of grains that remain ungelatinized. The number of grains in the field can not be satisfactorily counted after gelatinization because of the swollen and distorted condition and overlapping of the grains. Hence, in these very rapid reactions the average number of grains in a field is determined beforehand and a corresponding field is selected. It follows from this that the percentage of starch gelatinized under such conditions is very grosly estimated, that no importance is to bee attachel to the
figures beyond the time-limit of complete gelatinization, and that the figures have no value for comparison in cases of starches which likewise are very quickly gelatinized, unless by averages obtained from frequently repeated experiments.

When gelatinization occurs very slowly it often is easier, after having made the count in the field, to determine the number of grains gelatinized and partially gelatinized, as for instance when only 1 per cent of the total starch is gelatinized at the end of 5 minutes or 5 or 10 per cent at the end of an hour.
10. Constaxicy of liesults Recorded by the Fonegoing Method.
It goes without saying that such experiments should be carried out as far as possible under fixed conditions, especially as regards the quantity of starch in relation to the quantity of reagent. The variations in the quantity of starch, in so far as constant results are concerned, are absolutely negligible, as has been found not only in the records of repeated experiments, but also in the records of varieties of a species when the records should be expected to be very close because of the starches being nearly identical. The quantity of reagent used is invariably 2 drops, each reagent being kept in a 50 c.c. bottle having a glass-stoppered finger pipette dropper with a rubber tip. Under practically identical laboratory conditions as regards quantity of starch, quantity of reagent, temperature, and humidity the results recorded by repeated experiments are either identical or vary within limits that are so narrow as to be absolutely without importance. Even marked variations in temperature and humidity have not been found to be important, except in rare instances. (See note under Amaryllis-Bruns-rigia-Brunsdonna, page 34.)

Obviously, some variations, even though trifling, are to be expecter, so that in order to obtain constants a given experiment should be repeated a sufficient number of times and an average taken of the records, as in the determination of melting-points. Experience has shown, however, that in so far as the requirements of the present exploratory research are concerned the results of a single experiment carefully carried out are dependable within narrow and wholly unimportant limits of error. The chief sources of error to be guarded against are leakage through the vaseline seal; the presence of contaminating substances in the starch; certain peculiarities oceasionally observed in the behavior of starches towards certain reagents; and errors in estimation when the reactions are very rapid. Leakage through the vaseline seal is sedulously to be avoided, and if a leak occurs the slide and records must be discarded.

The presence of oxalate crystals in the starch is by no means uncommon, but no clear evidence has been found to lead to the belief that, unless in exceptionally large quantity, they in any way influence the course or time of gelatinization by the reagents used. In the
present research in Calanthe only were there even many of these crystals; in the Phaius a few; and noue or practically none in the other starches. Occasionally foreign matter in the form of undetermined debris is present which can not be gotten rid of by repeated washing, as in Tritonia pottsii. Such matter may affect the polarization, iodine, and aniline reactions to a detectable degree, but no effect has been noted in the other reactions. With the exception of this starch all have been free from such contamination. Erratic behavior of an inexplicable character has upon rare occasions been observed in the use of the sulphide and salicylate solutions. Finally, when the reactions are very rapid, while satisfactory records may not be obtained for comparison with those of other starches which gelatinize with similar rapidity, changes in the concentrations of the reagents can be made so as to lengthen the time of the reactions and thus permit of satisfactory differentiation.

Comparatively little importance is to be attached to the polarization, iodine, gentian violet, and safranin reactions when the reactions are close. Personal equation and incidental conditions are here not unimportant factors that may greatly vary the limits of error of experiment. In future investigations these agents might with profit be discarded for better means of study unless further experience brings out greater values than they have thus far shown.

11. Reagents used in Qualitative Investigations.

The methods used in this research are both quantitative and qualitative, chiefly the former because of the ease with which the data recorded can be reduced to figures and charts. The qualitative reactions have been studied especially by means of certain of the chemical reagents that were selected from time to time because of their especial adaptation to certain kinds of starches to elicit qualitative phenomena, some reagents acting better with some kinds of starches than with others. Incidentally here and there special qualitative records were made by the use of selenite, iodine, gentian violet, safranin, and heat. In the qualitative reactions many points of varying degrees of interest and importance were brought out that can not be studied by the quantitative methods described, some of equal or greater importance than those obtained generally by the latter methods.

In studying the starches of the Amaryllidaceæ we used chloral hydrate, nitric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, and sodium salicylate, excepting in the Narcissi when the sodium salicylate was omitted. Additional studies were occasionally made with sodium hydroxide, sodium sulphide, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, or mercuric chloride. In studying the Lilliaceæ we used chloral hydrate, chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride; in the Iridaceæ, chloral hydrrate, hydrochloric acid, potassium iodide, sudium hydroxide, and sodium salicylate; in Begonia, chloral hydrate, chromic acid, pyrogallic acid, nitric acid,
and strontium nitrate; in Richurdia, chloral hydrate, chromic acid, hydrochloric acid, sodium hydroxide, and sodium salicylate; in Musa, chloral hydrate, chromic acid, pyrogallic acid, sodium salicylate, and cobalt nitrate; in Phaius, chloral hydrate, chromic acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, and sodium salicylate; in Miltonia, chloral hydrate, chromic acid, hydrochloric acid, potassium iodide, and sodium salicylate; in ('ymbidium, chloral hydrate, chromic acid, sodium salicylate, barium chloride, and mercuric chloride; and in Calanthe, chloral hydrate, chromic acid, nitric acid, hydrochloric acid, potassium hydroxide, and sodium salicylate. Instances here and there will be found where additional reagents, or reagents of concentrations varyiner from the standards given, were used. The special reasons for the selections in the various cases will be found in Chapter V.

12. Charts of Reaction-Intexsities of Different Starches.

It is difficult or impossible to associate the different reaction-intensities of a given starch with different reagents or those of different starches with a single reagent when expressed in figures in such a way as to form an accurate or even a reasonably approximate mental picture of their individual and related values; and, moreover, an association of this kind becomes increasingly difficult or absolutely impossible when one attempts to multiply such pietures in a comparison of the reactions of two or more starches with different reagents or of two or more reagents with a given starch. Hence, it has been found necessary to translate these figures into the forms of curves whith, as will be seen, give not ouly strikingly clear presentations of these extremely varied reactionintensities, but also, as a corollary, permit of the readiest and most satisfactory comparisons. It was found during the development of the research that it is desirable to exhibit these peculiarities in sis kinds of charts as follows:
A 1 to A 26 , showing the reaction-intensities of all or many of the starches with each agent and reagent.
B 1 to B 42 , showing the reaction-intensities of certain starches with certain agents and reagents.
C 1, showing the reaction-intensities of genera and subgenera or other generic subdivisions as regards height, sum, and average.
D 1 to D 691, showing the velocity-reactions of different starches with different reagents.
E 1 to E 46, showing composite reaction-intensity curves of the starches of parent- and hybrid-sturks with different agents and reagents.
F 1 to F 14, showing the percentages of macrosonpic and microseopic characters of plants, and of the peremtages of the reaction-intensities of starches, as regards samentes to one or the other or both parents, intermediateness, and excess and deficit of development.

Inasmuch as thin roserarch 15 primarty a cumparative investigation of the starehes of parent- and hybridstucke, the curves that rupresfont parents and offaprimg have, whenever feasible or desirable, been plotted out together in ordur to rember comparianns easy. For various rfanons, hereafter stated, all of these charts have been brought torether and now eompore the last part of Chapter IV, page 1in, at srq.

In the groups of dasts deagnated A, B, and E, , m^{2} the polarization, iodine, gentian-violet, and safranin reactions the abseisse are in terme of quantatatue light and color values haved on an arhitrary seale of 105 in divo sions of twentieths; in the temperatures of gelatinization
 $\because .5$: and in the gedatinzation experimente with deferent reagents in a duplex scale, the upper protiong givint the time of complete or practically complete gelatinization (95 per cent or more of the total starch), and the lower portion the percentage of the total starch gelatinized when complete or practically complete gelatinization has not occured within fir minutes. In (harts A 1 tr 129 the rertical lines that are projected from the plant names are extended to the abscisse that represent the reactionintensity values. Thus, if gelatimzation is sompleme or practically complete at the end of 5 minntes the lime is carried to the 5 -minute abscissa; if sel per rent is getatinized at the and of the eb-minute periml the line is carried to the lower part of the scale-that is, to the abseissa designated so fer cent of the total starch gelatinized in 60 minutes, and so on. The second form of chart, including B 1 to B fo. while havine the same ahscisse as the first and fifth forms have different ordinates, and 'harts $B 11$ and 3 f? while haviner the sam ordinates as the others of this eroup haw whilly or gartly different absusiser to meet sumial conditions. In thmo charts the reaction-intensity values have been recorded at the proper aherissa on each ordinate and then a line projected from ordinate to ordinate to form a curre. In Charts E 1 to E tif the orlinates represent the various agente and reagents, the values are recorded as in group B 1 to B 40, and in carh whart the curves of the reactionintensities of parent-stocks and offspring are presented. In Chart (1 the ahswisa are in terms of height, sum, and average reaction-intensities, and the ordinates repreapnt grenera, subgenera, or genoric suldivisions. In charts D 1 to I) bion there are wiven reeneds of the proweres of gelatinization in per sent-time, the surves of each set of parmot-stock and offeprine hoine recorded on wheh mart. excepting in cast of a few wedial charts. 'The almedise are in terms of peremtages of total starely and the oritnates are in time-intervals of 5 minutes. While determining the percentage of total starch gelatinized at definite timb-intervals simultamenos rearols were mate at the same perinds of the fotal mumher of erains romphotely gelatinizel. When thene iwn cute of hata are reduced to curses it is fund that varyine dofer.fte. are exhibited by the diferent starelers, in the san of each starch with the various reagente, ant hy the detere-
ent starches with each reagent, the variations in the courses and degrees of separation of the two curves being, on the whole, quite as significant in the differentiation of the starches at diffrences in the percentage of total starch grelatinized (see Chapter IV, page 170). In case of some starches with a given reagent the percentage of total starch and the percentage of grains completely gelatinized run closely together, or even almost parallel, while with other starches a large percentage of the total starch may be gelatinized, yet only a small percentage of grains be completely gelatinized ; the same peculiarity holds good in regard to any given starch with different reagents. Obviously all such data must be of importance in the formulation of the physico-chemical characteristics of any kind of starch. In Charts F 1 to F 14 there are plotted out in some percentages of macroscopic and microscopic characters of plants, and in others those of plant and starch characters, the abscisse and ordinates boing varied to meet particular and obvious conditions.

No one kind of chart of itself presents in full starch peculiarities. In fact, a satisfactory picture of the peculiaritics of any starch can be had only by combining the curves of the several kinds of charts with histological peculiarities, and the polariscopical, iodine, aniline, heat, and chemical qualitative reactions. In other words, characters not brought out by one means of investigation may be by another, etc.; hence, it is the sum-total of data that must be taken in the final analysis.

13. Comparative Valuations of the ReactionIntensities.

Throughout all of the reactions definite standards of comparison were adopted, varying somewhat with the different agents, yet all forming a definite coördinate system based upon common abscissæ (Chart A 1, Chapter IV). Thus, the reaction-values in the polarization, iodine, gentian violet, and safranin reactions are based upon a " light and color reaction" scale up to 105 , from 0 to less than 20 heing grouped as very low or very light, 20 to less than 40 as low to light, 40 to less than 60 as moderate, 60 to less than 80 as high or deep, and 80 to 105 as rery high or very deep; the terms very low, low,
moderate, high, and very high are applied to the polarization reactions; and very light, light, moderate, deep, and very deep to the iodine and aniline reactions, the sets of terms being synonymous in so far as comparative values are concerned. The reactive-values of the temperature of gelatinization experiments range from 42° to $95^{\circ} \mathrm{C}$. ("temperature of gelatinization" scale), 82.5° corresponding to $20,72.5^{\circ}$ to $40,62.5^{\circ}$ to $60,52.5^{\circ}$ to 80 , and 42.5° to 100 , of the foregoing scale. The reaction-values of the reactions with the various chemical reagents are, as previously stated, in terms of complete and partial gelatinization-of complete gelatinization within a period of 60 minutes, and of percentage of total starch gelatinized in 60 minutes, the scale consisting of two parts in accordance with this division. These reac-tive-values based upon the light and color scale of 105 , are as follows: 50 per cent of the total starch gelatinized in 60 minutes corresponding to 20 , and 90 per cent to 40 ; complete gelatinization in 45 minutes to 60 , in 25 minutes to 80 , and in 5 minutes to 100 .

Comparative reactive-intensities are grossly presented in the text by referring the reactions to five groups upon the basis of the values as they fall within the five divisions enumerated; very low, low, moderate, high, and very high. This plan has been followed in the Summaries at the end of each set of parent- and hybrid-stocks, and each group of sets that belong to a given genus. It was found, however, in the final summing up of such data to show generic differences, that the reactive-intensities could better be presented when the exact value in units in each reaction was taken instead of the group value. For instance, two starches whose values fall within the "very high" division may have very different numerical values, one a value of 80 and the other of 100 or more, according to the first scale given, etc. In making out these values each abscissa was taken as having a value of 5 , making the range of the scale from 0 to 115 , the abscissa having a value of 25 corresponding to 20.45 to 40,65 to 60,85 to 80 , and 105 to 100 of the "light and color reaction" scale. This difference is owing to the raising of the light scale 5 points higher than it snould have been under usual circumstances.

CHAPTER III.

HISTOLOGIC PROPERTIES AND REACTIONS.

Comparisons of the More Maportant Data of the Histologic Properties and the Polakscopic, Iomine, Aniline, Temperature, anid Variols Reagent Reactions of the Stabches of Parent- and Hybrid-Stocks.*
The great volume of matter that has been recorded in the laboratory investigations of the starches of parents and hybrids, and which constitutes Chapter I of Part II of this memoir, renders it desirable, for various reasons that will be obvious, to bring together in a very succinct form such of the data as seem to be the more important in showing parental and hybrid relationships and peculiarities. This has been attempted in the present chapter, but the records of the histologis properties in the laboratory notes are so condensed that in a large number of instances the summaries in this chapter will be found to be more suggestive than adequate, or even have been omitted in order to avoid an almost full restatement.

In the comparisons of the properties of parents and hybrids a definite system has been adopted throughout all of the parent-hybrid sets. In Section 1 the histologic properties and the qualitative polariscopic and iodine reactions, respectively, of the parents are with rare exceptions each first compared, and then those of the hybrid with those of the parents, and then when there are two hybrids of the same parentage their properties are compared. Much attention was given in the laboratory work to the study of qualitative reactions with several of the reagents, which reactions have been found to be of importance not only in the study of the starches of different varieties, species, and genera, but also of the starches of parents and hybrids. References are made to these reactions in this section, especially in regard to the peculiarities of the hybrid in relation to the parents. In subsequent sections the data are quantitative, lending themselves admirably to both tabulation and charting.

Section 2 records comparisons of the reaction-intensities in the polarization, iodine, gentian-violet, and temperature experiments. The data are tabulated under these headings in forms well adapted for ready comparisons, the tables being followed by brief omparative summaries of the peculiarities of the reactions of the parents and of the reactions of hybrid and parents, and of the two hybrids when such exist.

In Section 3 the reaction-intensities of the starches expressed in terms of percentage of total starch gelatinized at definite time-intervals are tabulated under head-

[^4]ings that designate the reagents used, and in a form that is well adapted to show parental and parental and hybrid relationships and variations in the reactions of the starches with each reagent. In most of the sets of farents and hybrids 21 reagents were used; in some only 5 , usually the same. It would have been desirable to have employed the 21 reagents throughout, and also not only additional reagents, but certain of the reagents in two or more concentrations, but limitations of time, together with other conditions, rendered this practically prohibitory.

By reference to the text of Part II, Chapter I, it will be seen that while making these records both the percentage of the total starch and the percentage of the entire number of grains completely gelatinized were recorded at the ends of the several time-intervals. As will be pointed out later on (Chapter IV, pare 1i0), these two percentages vary greatly in their relationships, and the differences are often of more or less diagnostic importance. It was not, however, found to be desirable to include these figures in the tables here given because any advantage gained would be more than counterbalanced by their interference with the clear-cut presentation of the figures given, nor have they heen found to he of sumbient value at present to justify a separate tabulation. The figures reserded in most of the tables do not convey to the mind the same impressions that are evhibited hy charts, because they are too numernu* and varied: therefore, since these data are of exomptiomal value in the determination of similarities and dissimilarities of the starches from different plant sources they have been rendered in the form of curves (Charts D 1 to D 691, Chapter IV, page 210), which admirably picture the progress of the several reactions. These charts have heen studied somewhat in detail. indiridually and comparatively, in Section 4 and also in Chapter IV, page 16%. In these experiments records were usually made at time-intervals of $5,15,30,45$, and 60 minutes. Occasionally. when the processes of gelatinization were very rapid. reenods wore made at 1, , 2, 3, 4. or 5 minute intervals, and sometimes, when the processes were exreedingly slow, only at the end of 60 minutes. Rarely recorde were also marde at 10 or 20 minutes, or other periods. Little or no importance is to he attached to differences in the intensities of reactions that are recorded in less than 5 minutes unless the figures are quite different, small differences falling within the limits of error of experiment. In the studies of the pelncityreartion curves that constitute Section $\&$ the data nortaining to the parents were first considered and then thase of parents and hyrids and of the hyrids, as in Sp tins 1 and 2.

The marked variabilities that are exhibited by the reaction-intensities of the starches of the hybrids in relation to those of the parents, coupled with the importance that is almost invariably attached to intermediateness as a criterion of hybridism, led to the introduction of Section 5 , which summarizes the reactionintensities of the starches of the hybrid as regards sameness, intermediateness, excess, and deficit of reac-tion-values in relation to one or the other parent or both parents. The statements herein are based upon the tables A 1 to A efi, amd the ('harts I) 1 to D $6 \% 0$ in Chapter IV, page 210. The quantitative relations of the reactions of the hybrid to those of the parents could not in some instances be satisfactorily determined, because usually of too rapid or too slow reactions, variant courses of reacfiom, or differences that are so small as to fall within the limits of error of experiment; and differences may be seen in the tables that can not be or are not satisfactorily presented in the charts, especially such as may be recorded during the first 5 minutes of the experiments. When the reactions are very rapid, any differentiation must be determined very early, and unless the records differ markedly the hybrid is credited with sameness in relation to one or the other or both parents, as the case may be. Sometimes there may be no differences early in the experiments, but marked differences occur later, in which case the values are determined late, and so on. Occasionally one or more of the curves will take on a variant course, so that the hybrid relationships to one or the other parent or both parents may be different at different periods of the experiment, in which case the relation of the hybrid must be determined by the general impression conveyed by the chart (see Chapter IV, page 168). Howeser, in the vast majority of cases the hybrid aml parental relationships are presented quite definitely. It will he seen that particular attention has leen wiven in the statements of intermediateness to note whether or not there is mid-intermediateness, and if not, the indination to ome or the other parent or loth parents, and it will lue fomed that intermediateness is an exception rather than a rule. In each of these sections the reactionintensities have been summarized in tabular form that will be foum of much value for comparative purposes.

In the preceding sections the starches of the parentstocks and hybrid-stocks have been studied in their histolugical properties and reactions with each of the various agents and reagents, separately and comparatively, and in a mosure collectively; but as yet these reactions have not been so presented as to give a clear picture, as it were, of the reation-intensites of each starch when (o) betively romsidered and of each stareh with the others of the set. This has been attompted with a very large measure of success in Section 6. Herein representative reaction-values of each starth elioited by all of the agents and reagents used are so linked as to form a composite curve, and all three or foum the composite curves of the starehes of the set are ploted out in the form of a single chart. By this means there is afforiferl not only a method
for the study of parental and hybrid relationships, but also species, generic, and other taxonomic peculiarities. The plan of plotting out these curves is described in Chapter II, Section 12, and these curves are given further consideration, especially from the aspect of plant classification, in Chapter IV, page $1 \approx 2$.

It is of importance to note that in the gelatinization reactions the values recorded are in terms of terminal and not progress values-that is, of the time of complete or practically complete gelatinization within 60 minutes or of the percentage of the total starch gelatinized when the process is not or practically not completed within this period. 'Therefore, when these values are compared with those stated in Sections 4 and 5, where they are based on reaction-intensities observed during the progress of gelatinization, there may appear to be many discrepancies of statement-discrepancies that depend solely upon different adopted standards of valuation. For instance, turning to Chart E 1, the reaction-ralues of all four starches in the chromic-acid and sodium-salicylate reactions, respectively, are charted as being in each case the same-that is, in the former, complete or practically complete gelatinization in 30 minutes and in the latter in 5 minutes; while in Sections 4 and 5 these starches are differentiated in each of these reactions. The construction of these composite charts is therefore manifestly seriously faulty, because important differences recorded during the progress of the reactions are in part or wholly ignored, for which reason such charts must have only tentative and otherwise restricted values. Notwithstanding such grave defects, they have a rery great measure of usefulness, and it is obvious from the context that in their application to the recomnition of parents, hybrids, varieties, species, and genera they should be studied conjointly with the data of the preceding sections of this chapter.

1. Comparisons of Starches of Amaryllis bellamonva, Brunsvigia josephinef, Brivesponia sanderie alba, and Brixsmonna sanderfe.
In form the grains of Brunsrigia josephine in comparison with those of A maryllis. belladonna are less regular in outline and more varied in character, and unlike those of the latter are somewhat flattened. There are aggregates not found in the latter. Compound grains are more numerous and are much more varied in form. A type of compound grain is present that consists of two small components joined by incomplete secondary lamella, sometimes by tertiary lamella, that is not seen in A maryllis belladonna. Indentations of the margins of the grains may be noted which are absent in the latter. The hilum is more distinet and usually less eccentric. The lamella are not so fine, more distinct, much less numerous, and the outermost tend, unlike in A maryllis belladonna, to be irregular and often not to follow the outline of the grain. In size the arerage is less, and the grains are hroader in proportion to length than in the latter. The polarisonpic figure is, on the whole, considerahly less eccentric and less distinct; the lines are
coarser and, as a rule, less oblique, and distortion and bisection are much more frequent ; compound grains are much more numerous. With selenite the quadrants are less sharply defined, and impurity of both the blue and orange, due to a gremish tint, is less frequent. In the quantitative and qualitative iodine reactions the coloration is of a deeper bue and more reddish than in Amaryllis belladonna.

In histological characters the grains of Brunsdonne sandera alba are in form closer, on the whole, to those of Amaryllis belladonna, but in some resperts closer to Bransrigio josephimer. I type of srain peediar to this hybrid is noted which consists of an amorphous-looking mass composed of a mumher of fucel grains adherent to the side or distal end of a large grain-mass, all inclosed in 6 to 12 lamelle. The hilum more closely resembles that of A maryllis belldoma: the lamellie in form and arrangement are closer to those of 1 maryllis belladonna, but in number they are closer to Brunsvigia josephine; in size and in proportions of length to breadth ther are closer to Amaryllis belladonna; in polariscopic figures and lines and selenite reactions and in the qualitative iodine reactions they exhibit a closer relationship to Amaryllis belladonna. The qualitative reactions with the chemical reagents are, on the whole, numble chser to Amaryllis belladomna than to Brunsvigia josephine.

In histological characters the grains of Brunsdomn sandere are in form much nearer to those of Amaryllis belladonna than to those of the other parent, hut they are not so near those of A maryllis belladoma as those of the other hybrid, and not so near Brunsrigia josephince in the number and type of compound grains as those of the other hybrid. The hilum is the same as in the ether hylrid, ant hence nearer that of 1 maryllis belladonna. It differs from the hilum of the other hybrid in being less often fissured; but it is more often fissuren than in either parent. In character and cecentricity of the hilum these grains are nearer those of the parente than those of the other hybrid. The lamelle in character and arrangement closely resenhle thase of the other hyhrid and are closer to those of 1 marylli: belladomn than to those of the other parent, but in numbers they are closer to Brunsrigied josephime. In the ratio of length to lireadth of the grains, and in larger grains in length, it is nearer to A maryllis belladonna; but in the length of the common-sized grains it is nearer to Brunsrigia josephince. In polariscopic properties in the character of the figure and appearance with selenite this hylrid is closer to Amaryllis belladonna than to the other parent, but not so close as the other hybrid. In qualitative iodine reactions it is closer to Amaryllis belladonna, but not so close as the other hybrid. In the qualitative reactions with the chemical reagents close relationship is shown to Amaryllis belladonma and to the other hylidd, but closer on the whele to this parent than to the latter. In some respects the reactions are closer to Brunsrigia josephine than to Amaryllis belladonna, showing the influences of both parents. In the chloral-hydrate, nitric-acid, potassiumsulphocyanate, and sodium-salicylate reactions it is closer to Amaryllis belladonna than to the other hybrid, but in the cobalt-nitrate, copper-nitrate, and cupric-chloride reactions it is closer to the other hybrid.

Reaction-Intensitics Lifuressed by Light, Color, and Trmpercture Reactions
Polarization:
A. belladonna, very high, valuts 97 .
13. josurphima, moderatoly high to vers high, values 85 .
B. sanderow stha, very high, value 07 .
13. samberes, very high, valuo 05 .

Iocline:
A. belladonna, moderate to moderately der-p, value 55.

Contian violet:
A. belladenana, moderate to moderately deeve, value 55.
13. jospphinw, moderate to derp, value 57 .

B. sandera, moderately deep, value 193.

Safranin:

B. josephinae, mederate, value 53.
B. Banderoe allas, moderately decp, valus: 60 .
B. sanderex, moderately deep, value 60 .

Temperature:
A. belladonna, majority at 70 to $71^{\text {² }}$, all lut distal part of rare grains 72.5 to 73°, mean 72.7°.
B. jusphime, majority at tis en bits, all hat rare grains at 711 lo 72°, mean 71°
B. Bandera alba, majority at 70 to 71°, all hut dintal gart of rar" gratins 71.5 to 73 , ate:n 72.25.
B. sandere, majority at 70 to 71.5°, all but distal part of rare gratus -2 (1) 72.5 , ти:
The starch of A maryllis bellodonna in compar:-rn with that of Bransrigu josplhine shows higher polarization and safranin reactions, and lower iodine, fentianviolet, and temperature reations. In the pularzatom, iodinn, safranin, and temperature reactions both hylhrils are distimetly deser to 1 maryllis bellmdmum than the $t^{\prime \prime}$ other parent-Rrunsdonna sanderee allo showing as a

 ness to Branseigia jusephince, the closer being Brunsdonna sandere albe. In the gentian-violet and safranin reactions both hylbids show higher reantivitios than cither parent, and the same or almost illentical reactivities as those of I maryllis belladonna in the polarization, iedine, and temprature reactions.

Table A 1 shows the raction intomities in perant. ages of total starch golatinized at definite intervals (minutes).

「elonty-hemtion ('trues.

This cection considers velocity-reaction curves of the starches of A maryllis belladonna, Brunsvigia joseptinu, Brunsdonna sandere alba, and Brunsdomna sandera, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts 1) 1 to 1) :2.)

The Amaryllis and Brunsrigia curves tend, in reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium indide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, uranium nitrate, cobalt nitrate, and harium chloride, to kinp very wne turthre: white in reactions with chloral hydrate, chromic acid, pyrogallic acid, sodium salicylate, calcium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride there is a well-marked separation during some important part, or the whole, of the 60-minute perind. In the chloral-hydrate reactions the curves are very close un to the 15 -minute record, at which time they becin
to diverge, showing at the end of 60 minutes a difference of 11 per cent in the total starch gelatinized. In the reactions with chromic acid, pyrogallic acid, copper nitrate, and cupric chloride the greatest differences are noted at the end of the 5 -minute period, and in the mercuric-chloride reactions at the end of 60 minutes.*

The curves of the hybrids Brunsdonna sandera alba and B. sandere likewise tend to keep close together in more than half of the reactions, and in even a larger number than in the parents. Tendency to a well-marked separation of the two hybrid curves is seen in the reactions with sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, and copper nitrate. There is not a constant relationship of the parental and hybrid curves; for instance, the parental curves may be very close to one another, while the hybrid curves are well separated from them and even from each other, as in the latter case, in the sodium-sulphide reactions; or all four curves may be well separated, as in the calciumnitrate reactions; or the parental curves may be fairly

* Notes on the Reactive-Intensities of the Brunsdonnee Starches.The reactions of these starches have been found at times to be quite erratic, especially with sodium hydroxide and potassium sulphide, and they appear to be affected by variations in temperature, pressure, and humidity and certain other attendant conditions to a marked degref, whereas most if not all other starches studied are either but very little or not at all influenced by corresponding conditions. There may be considerable variation in the percentage-gelatinization at different parts of the slide, so that it is always quite important that the observations with these starches be made in center of the field even though the cover-slip be sealed in the manner atated in Chapter II. Sometimes the reaction appeared to be more rapid at the margin of the cover and at other times at the central part of the preparation. Then again, where the grains are crowded the reaction appeared to be considerably retarded. The crowding may be apparent, particularly in clumps of grains that have been massed after the addition of the reagent.

Table A 1.

	$\dot{\text { g }}$	$\underset{\sim}{E}$	$\underset{\sim}{\text { E }}$	白	$\left\lvert\, \begin{gathered} \text { 日 } \\ \text { in } \end{gathered}\right.$	$\left\|\begin{array}{c} \dot{E} \\ \underline{-1} \end{array}\right\|$	$\begin{aligned} & \text { E } \\ & 12 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { sig } \\ & \text { 응 } \end{aligned}\right.$	$\left\lvert\, \begin{gathered} E \\ \text { M } \end{gathered}\right.$	$\begin{aligned} & \text { E } \\ & 8 \end{aligned}$
Chloral hydrate:										
A. belladonna	\cdots	.	\ldots	\therefore	12		50	85	92	96
B. jospphinge		\cdots	.	\cdots	9	\cdots	46	74	78	82
B. sand. alha			\cdots		10	.	75	95	97	98
B. arnderch			\cdots	\cdots	15	.	85	98	99	89
Chromic acid:										
A. belladonna				.	10	.	70	99		
B. josephinm			.	.	30	.	85	99		
13. mand. alba			.	.	3	.	80	100		
13. sanderar...			.	.	1	.	80	99		
Pyrogallic acid:										
A. helladonna					5		40	75	85	90
13. jospohinge					32	-	64	98		99
B. sand. nitha			.	.	1		2	10	12	12
B. anatater			\cdots	.	1		0.5		7	7
Nitric acid:....										
A. bellarlonma		99								
13. josephinte	\%	9:3	95		98					
13. asmi. ulha	73		98	.	99					
B. Benderon.	35		92	.	98		99			
Sulphurie acid:										
A. bellalonna		100			\cdots					
13. josephinam		99		.	.			-		
13. sand. alba		100		. .	.					
B. sanderm.....	05	100								
Hydrochloric acid: A. bellidenna										
B. josephinæ.	90	95	99					\cdots		
B. sand. alta	50	0.5	99		.					
B. annderor	30	90	97	99						

Table A 1.-Continued.

	$\dot{\Xi}$	$\underset{c}{\stackrel{~}{E}}$	$\underset{\tilde{E}}{\underline{E}}$	$\underset{\sim}{E}$	$\begin{aligned} & \text { E } \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { घ } \\ & \underline{9} \end{aligned}$	$\begin{gathered} \dot{E} \\ \hline 2 \end{gathered}$	$\begin{aligned} & \text { E } \\ & \text { \& } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \dot{E} \\ & 8 \\ & \hline \end{aligned}$
ssium hydroxid										
A. belladonna	10									
B. josephine	98				99					
B. sand. ulba	100									
B. sanderco	100									
Potassium iodide:										
A. belladonns.					89		96	98	99	90
B. josephinw	.				85		95	98	99	99
B. sand. alba					6		34	48	56	64
B. sanderœ					16		48	57	65	72
Potassium sulphocyanate:										
A. belladonna .					80		90	95	99	99
B. josephina					63		90	95	99	99
B. sand. alba					1		1	2	4	5
B. sanderce.					1		5	8	12	15
Potassium sulphide:										
A. belladonna.	90		97		98		99			
B. josephinæ.	05		76		83		87	89	90	91
B. sand. alba	77		88		91		96	99		.
B. sanderce.	90		95		99		99			
Sodium hydroxide:										
A. belladonna			97		99			99		
B. josephinæ.			75		85		95		97	98
B. sand. alba			2		8		16	49	60	65
B. sanderce			10		30		65	75	83	88
Sodium sulphide:										
A. belladonna					66		80	84	87	89
B. josephinæ					71		85	90	93	96
B. sand. albs					2		3	5	8	10
B. sanderos					5		25	30	40	40
Sodium salicylate:										
A. belladonna.					81	99	100			
B. josephinæ.					40	78	95	99		
B. sand. alba					71	99	99			
B. sanderæ. .					84	99	100			
Calcium nitrate: ${ }^{\text {C }}$										
A. belladonna					98		98	99		
B. josephinæ					60		76	84	87	90
B. sand. alba					4		22	30	36	41
B. sanderce					5		39	50	63	68
Uranium nitrate:										
A. belladonna					65		91	95	96	96
B. josephinx					55		77	84	90	93
B. sand. alba					2					50
B. sanderce.					5		20		60	70
Strontium nitrate:										
A. belladonna					98		99			
B. josephing.					73		90		98	99
B. sand. alba					72					
B. sanderce					85		99			
Cobalt nitrate:										
A. belladonna					12				78	82
B. josephinæ.					16		54		71	75
B. sand. alba					2			3		3
B. sanderos					2			5	9	12
Copper nitrate:										
A. belladonna					78		90	93	95	97
B. josephinæ.					52				84	88
B. sand. alba					0.5			26	10	18
B. sanderce.					1		18	8 21	25	25
Cupric chloride:										
A. belladonna.					73		90		95	97
B. josephinx					35				86	86
B. and. alba					0.5			26	7.5	10
B. sanderoe...								47	9	12
Barium chloride:										
A. belladonns.					0.5			2 -		2
B. josephine.					2.5			67	8	14
B. sand niba					0.5					0.5
B. sanderos.					0.5					0.5
Mercuric chloride:										
A. belladonna					0.5			316	26	40
B. josephinæ.					5			' 33	48	60
B. sand. alba.					0.5					0.5
B. sanderce										0.5

well separated but the hybrid curves very close tugether, as in the cupric-chloride reactions. (sum following section.)

A maryllis in some reactions shows a higher reactivity than Brunsvigute in others the reveres and in others now essential difference. There is higher reactivity of Amaryllis with chloral hydrate, potassium sulphide, sodium hydroxide. sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, and cuprice chloricle: but a lewn ravelloty wala chromic acid, pyrogallic acid, sodium sulphide, barium chloride, and mercuric chloride. No essential differences are noted in the reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, and potassium iodide, because of the great rapidity of the reactions, while in the potassium-sulphocyanate reactions an important difference is noted only at the end of the 5 -minute period.

Comparing the parental and hybrid curves (eliminating reactions with nitric acid, sulphuric acid, hydrochloric acid, and potassium hydroxide because of their high rapidity obscuring differences), it will he observed that the curves tend to he grouped in couplea corresponding to parents and hybrids, each couple taking its oun course, which may be similar or dissimilar to the course of the other couple: that the parental curves are lower than those of the hybrids in the reaction with chloral hydrate; that the parental curves are higher than those of the hybrids in the reactions with pyrogallic acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercurie chloride ; and that the parental curves tend to be intermediate, or approximately so, in those with potassium sulphide, sodium salicylate, and strontium nitrate. In the chromic-acid reactions all four curves run very close together, the only notable difference being seen at the end of 5 minates, at which time the parental curves are higher than the hybid curves, very soon after which the hybrid curves tend to intermediateness. The most remarkable feature of these curves, as a whole, is seen in most of the reactions in the more or leses markedly lower degree of reactivity of the hylrids than of the parents.

The curses of the hybrids tend, as a rule, to keep close together, there being a well-marked inclination to separation in only the reations with strdim hylroxide. sodium sulphide, calcium nitrate, uranium nitrate, and copper nitrate. In reactions of the hybrits with nitric acid, sulphuric acid, hydrochloric acid, and potassium hydroxide, gelatinization occurs so rapidly that no satisfactory differentiation can be made; but in the reactions with chloral hydrate, potassium iodide, potassium sulphocyanate, potassium sulphide, somium hylroxide. sorlium salicylate, calcium nitrate, uranium nitrate, cobalt nitrate, and copper nitrate the curves of Brunsdonma samdera alba are lower than those of the other hyrid: and they are practically the same in the reactions with chromic acid, pyrogallic acid, strontium nitrate, cupric chloride, barium chloride, and mercuric chloride.

A marked early period of resistance that is followed by a moderate to rapid reaction is observed in these four
 observed in all four starches, as in the chloral-hydrate

 number of the raction- ather as wry rapll rearan occurs at rime, partaularly wath the matrai ated-
 slow reaction, as with harium chloride and merenric chloride. Both tyjes of reation may he frement, a - with potasium sulphocyanator in wher in-tather there maty be rarions forms of comblatan atmentatan of there types of curves.

The courses of the curves are not idnontical with any two reagents (excepting in the case of nitric and, -utphuric acid, hydrochlorice aciol, and pota-siam hydroxde, in which it is shown that the ractan- warir tom quiekly for any or at least an entirely satisfactory differentiation) so that wath rearat rarriow with it reantions the stamp of individuality. While in cave of
 convey the impression of close similarity, as in the reactions with solium sulphide, uranium nitrate, copper nitrate, and cupric chloride, even a supurfinal exammation will show well-defined differences. The parent:1] curve are very nearly alike in their course, but with the insportant exception that in the sodium-sulphide reactions the A maryllis curve is the lower, while in the other three reactions it is the higher-a striking difference. The hybrid curves in the fone reation- do mot comeremond in their courses with the peruliarities of the parental rurves, and in no two are they identical. The varve of Brunsdomme sumbrow ullon is alwas the loweet, amd the curres of buth hyhrids shoms a direst quantitatare redatimship to the parental (arnes in su far as when the parental curse are lowor the hybrid combare lasers. While the parental curses tomb tor rum fosty turnther the two hyhrid enrese exhibit some desree of indenembmace, bot only of the parents hut also of each other.
 the curves are hest separated for differential purposes is variable with the different reagents, and in some instances no definite time can be stated, owing to extreme rapidity of the reactions, while in other instances statements must be made with reserve. Ipproximately, this perion is noted at the emb of 3 minutes in the phtasium--ulphide reactions; at the end of 5 minutes in the reactions with chromic acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium salicylate, strontium nitrate, and cupric chloride; at the end of 15 minutes in the reactions with chloral hydrate, sonlium sulphide, calcium nitrate, uranium nitrate, and copper nitrate: at the end of 30 minntos in the reations 3 ith procallio acill : and at the emb of bolminuter int ter reawions with calcium nitrate, harium chlorile, ant monaric chlaride.

This section trate of the reat tion-intensitime of the hyhrids as regards sameness, intermediateness. . .ress. and deficit in relation to those of the parents. (Table (1 1 and Charts I) 1 to IO 2.)

The reativities of Brans,onna sander athar are tip

ization and iodine, sulphuric acid, and barium chloride; the same as those of the pollen parent in none; the same as those of both parents in the potassium-hydroxide reaction in which the reactions occur with great rapidity; intermediate in the temperature reactions and those of chromic acid, potassium sulphide, sodium salicylate, and strontium nitrate (in two being closer to the seed parent and in three being mid-intermediate) ; highest in the reactions with gentian violet, safranin, and chloral hydrate (in two being closer to the pollen parent, and in one closer to the seed parent) ; and lowest in the reactions with pyrogallic acid, nitric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride (in four being closer to the seed parent, in eight being closer to the pollen parent, and in one being as close to one as to the other parent).

The reactivities of Brunsdonna sanderce are the same as those of the seed parent in the reactions with iodine, temperature, sulphuric acid, potassium sulphide, sodium salicylate, strontium nitrate, and barium chloride; the same as those of the pollen parent in none; the same as those of both parents in the potassium-hydroxide reaction, in which the reactions occur with great rapidity; intermediate in the polarization and strontium nitrate (in one being closer to the seed parent and in one being mid-intermediate) ; highest in the reactions with gentian violet, safranin, and chloral hydrate (in two being closer to the seed parent, and in one closer to the pollen parent); and lowest in the reactions with chromic acid, pyrogallic acid, nitric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydrozide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride (in 3 being closer to the seed parent, in 8 closer to the pollen parent, and in 3 being as close to one as to the other parent).

The hybrids differ in their parental relationships in the polarization, the safranin and temperature reactions, and in those of chromic acid, potassium iodide, potassium sulphide, sodium salicylate, strontium nitrate, and cobalt nitrate. In the polarization reactions one is the same as the seed parent, the other intermediate, but nearer the seed parent. In the safranin reactions both are highest, but one closer to the pollen parent and the other to the seed parent. In the temperature reactions one is intermediate and closer to the seed parent, and the other the same as the seed parent. In the chromic-acid reactions one is mid-intermediate, and the other the lowest, but closer to the pollen parent. In the potassium-iodide reactions both are the lowest; one is closer to the seed parent, and the other as close to one as to the other parent. In the potassium-sulphide reactions one is midintermediate and the other the same as the seed parent. In the sodium-salicylate reactions one is intermediate and closer to the seed parent and the other the same as the seed parent. In the strontium-nitrate reactions both are intermediate, one being mid-intermediate and the other closer to the seed parent. In the cobalt-nitrate reactions both are highest, but one is closer to the pollen parent and the other as close to one as to the other parent.

The following table is a summary of the reactionintensities:

	B. sanderee alba.	B. sandere.
Same as seed parent.	4	6
Same as pollen parent.	0	0
Same as both parents	1	1
Intermediate....	5	2
Highest.	3	3
Lowest.	13	14

In none of the reactions of either hybrid is the reaction the same as that of the pollen parent, while there are 10 reactions of the 52 which are the same as those of the seed parent. The dominating influence of the seed parent, Amaryllis belladonna, on the properties of the starch of the hybrid are well marked.

Composite Curves of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities showing the differentiation of the starches of Amaryllis belladonna, Brunsvigia josephince, Brunsdonna sanderce alba, and Brunsdonna sanderce. (Chart E 1.)

The most conspicuous features of this chart may be summed up as follows:
(1) Taking the curves of Amaryllis belladonna as a standard of comparison, it will be noted that the curve of Brunsvigia josephince follows it very closely in the up-and-down courses except in the reactions with pyrogallic acid, potassium sulphide, and calcium nitrate, here and there crossing in accordance with higher or lower reactivity. Except the three reactions noted and those with uranium nitrate, copper nitrate, and cupric chloride, the curves keep close together. These departures indicate species widely separated and belonging either to a given genus or to two closely related genera, in this case the latter.
(2) It will be noted that the reactions of Amaryllis belladonna are higher than those of Brunsvigia josephince in polarization and in the reactions with saframin, chloral hydrate, potassium sulphide, sodium hydrozide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, and cupric chloride; lower in those with iodine, gentian violet, temperature of gelatinization, pyrogallic acid, barium chloride, and mercuric chloride; and the same or practically the same in those with chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium sulphide, sodium salicylate, and cobalt nitrate.
(3) In Amaryllis belladonna the very high polarization and reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphide, sodium hydroxide, sodium salicylate, calcium nitrate, strontium nitrate; the high reactions with chromic acid, potassium sulphocyanate, uranium nitrate, copper nitrate, and cupric chloride ; the moderate reactions with iodine, gentian violet, safranin, temperature, chloral hydrate, pyrogallic acid, and sodium sulphide; the low reactions with cobalt nitrate, and very low reactions with barium chloride and mercuric chloride.
(4) In Brunsvigia josephina the very high polarization and reactions with nitric acid, sulphuric acid, hydro-
chloric acid, potassium hydroxide, potassium iodide, sodium hydroxide, sodium salicylate; the high reactions with iodine, chromic acid, pyrogallic acid, potassium sulphocyanate, and strontium nitrate; moderate reactions with gentian violet, safranin, temperature of gelatimization, potassium sulphide, sodium sulphide, calcium nitrate, and uranium nitrate; the low reactions with chloral hydrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; and the very low reactions with barium chloride.
(5) In the hybrids Brunsdonna sandere alba and Brunsdonna sandere the very high polarization and reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium sulphide, sodium salicylate, and strontium nitrate; the high reactions with gentian violet, safranin, chloral hydrate, and chromic acid; the moderate reactions with iodine and temperature of gelatinization; the low with potassium iodide, sodium hydroxide, calcium nitrate, and uranium nitrate; and the very low with pyrogallic acid, potassium sulphocyanate, sodium sulphide, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercurie chloride. The following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Vory low.
A. belladonna.	11	5	7	1	$\stackrel{3}{2}$
B. josephine. .	8	5	7	5	1
B. sand. alba.	8	4	2	4	λ
B. sanderce...	8	4	2	4	8

(6) In the curves of the hybrids which show in the first place a very close correspondence with each other, and in the second place a closer correspondence, on the whole, with the curves of A maryllis belludonna than with those of Brunsvigia josephince, the hybrid curves are for the most part either lower than or practically the same as the Amaryllis curves, in only four instances are the curves higher, and then in an unimportant degree.

Notes on Amaryldis, Brensvigia, and Brunsdonne.

The botanist has assigned A maryllis belladonna and Brunsvigia josephince to separate genera. Upon the basis of the peculiarities of their starches in their histologic properties and reactions with the various agents and reagents, it seems that these species may be regarded as being members of either closely related genera or wellseparated species of the same genus, such as representatives of subgenera; but the data are too limited to justify more than speculation. The most remarkable features of these records are: (1) in the hybrids the many extraordinary low or high reactivities, especially the former, that exceed the parental extremes, this being noted in 15 out of the 26 reactions; (2) the absence of sameness of any reaction as that of the pollen parent; (3) the sameness of the reaction as that of the seed parent in 4 reactions of one and 6 reactions of the other hybrid. The marked departures of the hybrid curres shown in excessive or deficient reactivities in comparison with the reactivities of the parents seem to be more suggestive of bigeneric parents than of parents belonging to the same genus.

BHENSMONAA TUBERGENI, IT1.

This additional matter treats of deseriptions of Brumetonna tubergeni, Amaryllis parkeri, and A. parkeri alta (A. bellademna hewensis alba), and (omparsons of the starches of BS. tubergeni, A. parheri alla, Dirunstontal samdera allot, and 13 . sondere.

Brunsdonna tubergeni, A. parkeri, and A. parkeri alba are of especial interest in conjunction with the foregoing studies of the Amaryllis-Brunsvigia-Brunsdonna group because: the first is known to be a hybrid of Brunseigia and Amaryllis; the second is looked upon as being probably a Brunsvigia-Amaryllis hybrid; the third is a variety of the second and is regarded as bring the same as A. belludonne kewensis alba, the parentage of which is unknown; and the last two are known hybrids of Amaryllis-brunsvigiu, but without pozinie knowledge of the direction of the eross. Apmertainnge to the foregoing, the following data appeared in Tho Gardeners' Chronicle, 1909, xlv, 57; 1911, L, 210 :

Brunsdonna tubergeni: Mr. C. (E. Tuberden. Jr.. thus do. scribes the circumstances of a cross between Bruncigia jusephine and Amaryllis belladonna:

Principally with a view of asertaining the parentage of the Kew variety of Amaryllis butlodoma (sete illu-tration in The" (iarden, November 19, 1898; aloo metes in The (iarlemerChronicle, February 9, 1901, etc.), in the autumn of 1×92 I artificially impregnated Brunsvigia josephince with the pollen of Amaryllis belladonna. Seeds formed freely, as the two genera, Brunsrigia and Amaryllis, are very nearly related. As could be foreseen, with slow-growing Brutsrigia jows fhine as the female parent, a long time had to elapse before the seedling plants would be strong enough to reach flowering size. After 16 years of patient waiting, two of the strongest bubs fro. duced hower-spikes in suptemier of last rear. When the hybrid plants had been growing for a few seasons it became evident that they differed in Labit from the Kew variety of A maryllis belladonna, which produces a leaf-stem of about 4 inches high, whereas my hybrids all bear the character of Brunstigia josephine in the foliage, leaves being formed directly above the neck of the bulbs. The infu-ion of helladonna bood is clearly shown in the bulbs, as these resemble those of the belladonna and produce oflsets freely, whilst Brunsugia never produces offsets. A comparison of the supplementary illustration, which was drawn by Mr. Worthington sulth from the infloresconsce sent from $m y$ garden, with the engraving in the Garden above cited, leads to the conclusion that the Kew plant can no longer be regarded as a hybrid between these specios, unless it was a crons eflected in the reverse way, taking Amaryllis belladona as the female plant. In that case the variety blanda must have been used, it being the only variety of A. belladonna known which produees a leaf-stem. The color of the flowers of my hybrid was a clear, deep rose, sutfused with carmine. A single spike produced 22 flowers.

Imarullis parkeri (hyb.1. This is assumed ta be a hylrith betwou Brunsvigia jose phino and Amaryllis bellodtrnma. It differs in the form of the umbel from A. belladonna, being quite circular and carrying some 30 flowers and buds. The flowers are of a deep rose shade, with white and orange at the base and orange-colored on the exterior of the tube. It is distinct from the ordinary A. belladonna, possesses greater vigor, and has a stem some 3 feet in length. This plant is almost identical with the plant known as the Kew variety of A. belladonna, which is also A. parkeri, being the same cross and varving only in being a better rose color with less orange shade. Mr. Hudson informed us that his Amaryllis was shown as A. bella. donna "Kew variety," because it was received under this name from an amateur cultivator in New Zealand some six years ago. This is the tirst stazon of thowering at fimmersiners House. It may prowe to be Mr Van Tubergen's plant. which he obtained from crossing Brunstigia with Amaryllis belladomma. Mr. Tubereren's hybrid formed the subiew of as -1!p plementary illustration in The Gardeners" Chronicle, January $\because 3,1909$.

Amaryllis parkeri alba. This plant is evidently a variety of A. parkeri. It possessed a fine umbel, a large number of Howers almost pure white but with the same orange shading at the base as in the flower described above. It is a most striking and distinct novelty. The origin was not stated, but everything points to the same cross. This was shown as A. belladonna kewenis alla by Mr. Worsley, Mandeville House, Isleworth.

Brunselonna suntera alba. In this rase the umbel resembled typical A. belladonna in formation, being one-sided rather than globular. This plant is also the result of a cross between Brunsvigia and Amaryllis belladonna, but there is not suffecient information to determine whether the parentage is the same as in the case of A. parkeri.

Comparative examinations of a preliminary character were made of the starches of A. parkeri alba, Brunsdonna tubergeni, Brunsdonna sanderce alba, and B. sandere, as follows:

Histologic Properties.-All of these starches are alike in that all have very few compound grains which consist of two components, and all have very few aggregates which usually are in the form of doublets of equal size, but occasionally as triplets that are linearly arranged. The grains of A. parkeri alba and of Brunsdonna sanderee alba, and B. sandere have about the same degree of irregularity of surface, while those of B. tubergeni are much more irregular than the preceding, the irregularities in all being due to the same causes. The conspicuous forms of the grains of A. parkeri alba and of B. sanderce alba and B. sanderee are very much alike, but those of the first are more slender and elongated than those of the two latter. The grains of B. tubergeni are, as a rule, intermediate in slenderness between those of A. parkeri and B. sanderce alba, and B. sanderc, but closer to those of the latter; and there is a conspicuousness of elliptical, irregularly triangular, and nearly round grains. The hila of the grains of A. parkeri alba and those of B. sandere alba and B. sandere show the same degree of distinctness, and in all three more distinctness than in B. tubergeni. The eccentricity is about the same in all four starches. The lamellæ of A. parkeri alba and B. tubergeni are more distinct and more often coarse than those of B. sandera alba and B. sandere, otherwise they are practically the same in all four starches except that in B. tubergeni, in which they are somewhat more often irregular than in the others. In size the grains of B. sandere alba and B. sandere are smallest, those of A. parkeri alba intermediate, and those of B. tubergeni largest; but there are no marked differences.

Polariscopic Properties.-The polariscopic figure is very nearly the same in all four starehes, but it is more often irregular in B. tubergen than in the others. The degree of polarization is practically the same in all of the starches.

Iodine Reactions. With 0.25 per cent Lugol's solution A. parkeri alba, B. sandera alba, and B. sandere color about equally and from 3 to 5 units more than B. tubergeni.

Anitine Reactions.-With gentian violet A. parkeri alba, B. sundere alba, and B. sanderap color about the same and about 5 units less than B. tubergeni. With safranin the results are practically the same as the foregoing, but there is somewhat less variation of coloring of the grains of B. tuheryeni than of the starches.

The temperatures of gelatinization are as follows (degrees) :

	Majority at-		Complete at-	Mean.
A. parkeri alba	71.5		74.2 to 76	75.1
B. sand, alba		to 71.5	71.5 to 73	72.25
B. sanderce		to 71.5	72 to 72.5	72.75
B. tubergen		to 63.5	64 to 65.5	64.75
A. belladonaa		to 71	72.5 to 73	72.7
B. josephinge.		to 66	70 to 72	71

The reaction of A. parkeri alba with sulphuric acid begins immediately. Complete gelatinization occurs in about 3 per cent of the entire number of grains and 10 per cent of the total starch in 15 seconds; in about 70 per cent of the grains and 80 per cent of the total starch in 30 seconds; in about 96 per cent of the grains and 98 per cent of the total starch in 45 seconds; and in about 99 per cent of the grains and over 99 per cent of the total starch in 1 minute. The reactions of Brunsdonna sanderæ alba and B. sandere with sulphuric acid are given on pages 389 and 394 , Part II, and Chart D 5.

The reactions of Brunsdonna tubergeni with sulphuric acid begin immediately. Complete gelatinization occurs in about 80 per cent of the entire number of grains and 90 per cent of the total starch in 30 seconds; in about 99 per cent of the grains and in more than 99 per cent of the total starch in 45 seconds; and in 100 per cent of the starch in 1 minute.

The reaction of A. parkeri alba with potassium iodide begins in a few grains in 30 seconds. Complete gelatinization occurs in about 1 per cent of the entire number of grains and 65 per cent of the total starch in 5 minutes; in about 20 per cent of the grains and 75 per cent of the total starch in 15 minutes; in about 32 per cent of the grains and 88 per cent of the total starch in 30 minutes; in about 52 per cent of the grains and 90 per cent of the total starch in 45 minutes; and with little if any further advance in 60 minutes.

The reactions of B. sanderæ alba and B. sanderce with potassium iodide are given on pages 389 and 394 , Part II, and Chart D 8 .

The reaction of B. tubergen i with potassium iodide begins immediately. Complete gelatinization occurs in 59 per cent of the entire number of grains and 95 per cent of the total starch in 5 minutes; in about 95 per cent of the grains and in more than 99 per cent of the total starch in 15 minutes.

The reaction of A. parkeri alba with sodium hydroxide begins immediately. Complete gelatinization occurs in about 50 per cent of the entire number of grains and 92 per cent of the total starch in 2 minutes; in about 81 per cent of the grains and 97 per cent of the total starch in 5 minutes; and in about 97 per cent of the grains and over 99 per cent of the total starch in 10 minutes.

The reactions of Brunsdonna sander alba and B. sandera with sodium hydroxide are given on pages 390 and 395, Part II, and (hart D 11.

The reaction of Brunsdonna tubergeni with sodium hydroxide begins immediately: Complete gelatinization occurs in about 81 per cent of the entire number of grains and 95 per cent of the total starch in 5 minutes.

The most important questions here involved are: (1)

Do the properties of Brunsdomna tubergeni, Brunsdonna sanderce alba, and Brunsdonna sandere indicate that these hybrids are the ollspring of the same cross or of reciprocal crosses; and (2) what are the indications of the probable parentage of Amaryllis parkeri alba?

The starch of Brunsdonna tubergeni has in comparison with the starch of B. sandera albe and B. sandere certain properties that are closely similar or identical and others that are more or less markedly dissimilar, the latter much predominating. The grains of the former are more irregular, and more slender and elongated; the hila are less distinct; the lamelle are more distinct, more often coarse, and more often irregular; the grains are larger. In the polariscopic propertics there are not any conspicuous differences except that the figures tend to be more irregular. In the iodine reactions the coloration is distinctly less. In the aniline reactions with both gentian violet and safranin the coloration is more marked. In most of the foregoing instances the starch of B. tubergeni does not differ more from the starches of B. sandere alba and B. sandera than do the latter from each other. In the temperatures of gelatinization the figure for B. tubergeni is 64.86°, or a difference approximately of 7.5° less than the temperatures of the parental starches, these being 72.7° and 81°, respectively. The temperatures for B. sandere alba and B. sandere are $7.2 .25^{\circ}$ and 72.25°, respectively. It will be noted that while the temperature for the parental starches differ only $1 . \gamma^{\circ}$, that of B. tubergeni differs from that of the pollen parent (A. belladonna) 7.94°, and from that of the sced parent (B. josephince) 6.24°; and that the temperatures for B. sanderce alba and B. sandere and their parents differ very little, mostly within the narow limits of error of experiment. The very low temperature for B. tubergeni on the one hand and the marked closeness of all of the temperatures for B. sanderce alba and B. sandera and their parents on the other indicate quite conclusively that B. tubergeni and B. sanderce alba must have arisen from reciprocal crosses. This conclusion is substantiated by the records (notwithstanding their limitation) of the reactions with chemical reagents. The reactions of all of the starches with sulphuric acid occur with such rapidity that no satisfactory differentiation is possible, but with both potassium iodide and sodium hydroxide there are marked and distinctly diagnostic differences. In reactions with potassium iodide the starch of B. tubergeni exhibits a somewhat higher reactivity than the starch of either parent, while on the other hand the starches of B. sandere alba and B. sanderce show very much lower reactivities, not nearly so much of the latter heing gelatimized at the end of an hour as there is in case if the B. tuberymi and parental starches in 5 minutes. It is also to be noted that during the progress of gelatinization the curves of B. sandere allo and B. sanderee tend to pursue the same course, they being separated at and after the 5 -minute interval by about 10 points. In the sutium hydroxide reactions similar recults are recorded, the reactivity of the starch of B. tubergeni being very high and closely corresponding to the reactivities of the parental starches, but slightly ligher than either, while the reactivities of the starches of B. sundere allo and B. sandere are both moderate, the reactivity of the former being distinctly lower than that of the latter.

There were studed in this revearch three group of parcotal and hybend tarches th valh of which were .m.
 est to mote to what degrees a general the momberso of eath pair compare "ith each other and whth tha ir fanmo and how these peculiarities compare with those of the Brunsdomax hybrids and their parents. Examining bir-t the bemperatures of gelatimizatum and tahime up the Nerine crispa-elegans-dainty maid-queen of roses group
 brids differ only 1.3° and that they aro intermetbate between the parental temperatures, whin lath-r molif. 5.: ; in the Jerine boudeni-sarmiensis var. corume major-giantess-abundance group the temperatures of the hybrids differ 3.35° and both are lower than either of the parental temperatures, there differing 3.9 ; whe in the Narcissus poeticus-poeticus poetarum-poeticus h., rrivkpoeticus dante group the temperatures of the hylorils difter z^{\prime}, that if one beine internediate betwem the parental temperatures aud the other practically the same as that of the seed parent, while the parental temperatures differ 5.5°, that of the seed parent being the higher. The temperatures of each of these pairo of hybrid beep close together and close to the temperatures of the parents, as in the case of Brunsdonna *andero alhu and B. sandera, with wider variations in the furmer than in the latter, hat the is is suggestion of a wide 小年arture, such as is found in B. tublegeni, this latter imblating either difference in parentage or in the direction of the cruss from that of the other lirunsidonne.

In the reactions of the members of these groups with potassium iodide and sodium hydroxide corre-pondin, characteristics have been recorded, that is, that the two starches of each group show cluee reacthon-inthention In the potassium iodide reactions of the Nerine crispa-elegans-dainly maid-queen of roses group, those of the hybrids are very much alike and, on the whole, metremediate between those of the parents; and in the Nerine boudeni-sarniensis var corusca major-giantess-abundance group, while those of the hybrids are low and differ distinctly, at least one and probably hoth tend to intermediateness, and one takes more after the setel parent and the other more after the pollen parent. In the soliumhydroxide reactions, in the first group those of the hybrids are not only very close but also close to times of the parents; and in the secomb group those of the hybrits are very close and lower than those of the parents. It will be seen that in the reactions of each of the sew wald pairs of hybrids there are no such departures of the reactions of each of the comphes as are chaereed in the. "alie of Brunslomna tubergeni compared with 73. sund oree alla and B. sandera. From the dearipaion of B. twher r geni this hybrid is more elosely rolated in its propertieto Brunstigia josephine than to A maryllis bellentumn. while the data of B. sandere alba and B. sandere indicate that, on the whole, buth of theee hyrides thow a closer relationship to A. belluluma than tw l . Fioselh-iner-in other words, in each cate the hylrid? in morn clusely related to the seed parent.

These data aloo give a clue as to the probable urimen of Amaryllis parkeri albu. The starth of th s Mant throurhont the histolugh and Gmbrisonf propertio
 whinite a much chaser relationship t.. liruns? wom san-
derce alba and B. sanderce than to B. tubergeni; in the temperature reactions it differs little from those of B. sanderea alba and B. sanderee, but much from those of B. tubergeni; while in the potassium-iodide and sodiumhydroxide reactions it is closer to B. tubergeni than to the other hybrids. From the foregoing it seems obvious that this plant is not to be identified with either B. tubergeni or the sandere hybrids, although closely related. It seems probable, as suggested by Tubergen, that the parentage of A. parkeri on the Amaryllis side was A. belladonna var. blanda (A. blanda Gawl) - the histologic and polariscopic properties and the iodine, aniline, and temperature reactions pointing to the same direction of the cross as of B. sanderce alba and B. sandere, while the potassium iodide and sodium hydroxide reactions indicate a cross in the opposite direction; but the temperature reaction alone is almost if not conclusive. Additional studies of the reactions would undoubtedly make absolutely positive the direction of the cross if A. parkeri is a hybrid.

2. Comparisons of the Starches of Hippeastrum

 titan, H. cleonia, and H. titan-cleonia.In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents these three starches are very much alike. The starch of IIippeastrum cleonia is distinguished from that of the other parent chiefly in the larger number of compound grains and aggregates; the presence of isolated grains each having a large pressure facet; more roundness but greater irregularity of the grains; somewhat less fissuration and less eccentricity of the hilum ; more distinct and more regular lamellæ; somewhat larger average size of the grains; larger number of double and multiple polariscopic figures; greater frequency of equality of size, less frequency of irregularity of shape, and less often purity of color of the quadrants in the selenite reaction; and some slight differences in qualitative reactions with iodine. The stareh of the hybrid is in form, hilum, and polariscopic figure more closely related to the seed parent; and in distinctness and regularity of the lamellæ, size, and iodine reactions more closely related to the other parent. In the selenite reactions certain properties lean to one or the other parent. A given character may appear more conspicuously in the hybrid than in either parent. The qualitative reactions with chloral hydrate, nitric acid, potassium iodide, potassium sulphocyanate, and sodium salicylate are closer to those of seed parent.
Reaction-intensities Expressed by Light, Color, and TemperaPolarization:
H. titan, high to very hich, value 83.
II. clemia, ligh to very lieht, lower than in H. titan, value to. 1I. titan-cleonia, high to very high, higher than in either parent, value 85 .
Iodine:
H. titan, modorate, value 52 .
H. cleonia, moderately deep, deeper than in H. titan, value 55 . H. titan-deonin, moderate to deep, deeper than in the parents, value 58.
Gentinn violet:
H. titan, moderately light to light, value 45.
H. cleonia, moderate, deceper than in \mathbf{H}. titan, value 50 .
II. titam-cleonia, moderate, the same as in H. cleomia, value 50 . Safranin:
H. titan, moderate, value 50 .
H. cleonia, moderate, a little deeper than in \mathbf{H}.titan, value 55.
H. tilan-clonia, moderate, the sume as in \mathbf{H}. clembia, value 55 .

Temperature of gelatinization:
H. titan, in majurity at 74 to 75°, in all hut rarre grains at 77 to 77.5°, mean 77.25°.
H. cleonia, in majority at 71 to 73°, in all but rare grains at 73 to 74°, mean 73.5°.
H. titan-cleonia, in majority at 72 to 74°, in all but rare graine at 73 to 74°, mean 73.5°.

The reactivity of Hippeastrum titan is higher than that of Hippeastrum cleonia in the polarization reaction, and lower in the reactions with iodine, gentian violet, safranin, and temperature. The hybrid shows in the polarization and iodine reactions the highest reactivities of all three starches; in the reactions with gentian violet, safranin, and temperature the same reactivities as those of Hippeastrum cleonia, all three reactions being higher than the corresponding reactions of the other parent.

Table $\Delta 2$ shows the reaction intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Hippeastrum titan, H. cleonia, and H. titan-cleonia, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 22 to D 42.)

Among the conspicuous features of these charts are:
(1) The closeness of the curves of the three starches in all of the reactions. The reactions are so slow with potassium iodide, potassium sulphide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride that there is almost if not absolutely no differentiation. Omitting the foregoing reactions, the curve of Hippeastrum titan is higher than that of the other parent in the reactions with chromic acid and sulphuric acid, and lower in those with chloral hydrate, pyrogallic acid, nitric acid, potassium hydroxide, potassium sulphocyanate, sodium hydroxide, and sodium salicylate, indicating, on the whole, a lower reactivity of this starch.
(2) The curves of the hybrid show marked variations in their parental relationships, with as much of a tendency to be higher or lower than the parental curves as to intermediateness. In a few reactions the curves are the same as those of the seed parent or of the pollen parent, and in about one-third they are the same as the parental curves. (See following section.)
(3) In most of the charts in which there was a moderate to rapid reactivity there are indications of an early period of comparatively marked resistance.
(4) The best period during the 60 minutes for the differentiation of the three starches is variable, and in case of all the very slow reactions and including those with chloral hydrate, nitric acid, potassium sulphocyanate, and sodium hydroxide, the curves are best separated, if at all, at the end of 60 minutes. This period is noted at the end of 15 minutes in the reactions with chromic acid, pyrogallic acid, sulphuric acid, potassium hydroxide, and sodium salicylate; at the end of 30 minutes with hydrochloric acid; and at the end of 60 minutey with the other reagents.

Reaction-intensities of tie Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 2 and Charts D 22 to D 42.)

The reactivities of the hybrid are the same as those of the seed parent in the reactions with sodium sulphide and strontium nitrate; the same as those of the pollen parent with gentian violet, safranin, and temperature; the same as those of both parents with potassium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride, in all of which the reactions are exceedingly slow; intermediate with nitric acid, hydrochloric acid, potassium iodide and potassium sulpho-

Tablef A 2.

 1., 1!

and in me (lloser to the pellen patent)

 luwet, 4.

 hybrid.

 fitan-clponie. (Chart F e.)

Among the conspisuons feature of this chart
(1) The closemess of all three curves, imdacatiog a very close relationship of all three stardhes and phantsources.
(2) The gramally lower pusition of the curve of

 hydroxile, putassium ionlide, putascjum sulph sodium hyolroxide, sodium sulphide, and strantimm niTrate; higher with polarization and chomio arid ; arm the same or practically the same with sulphu: - - 1 "
 chloride, barium chloride, and merouric chloridu.
(3) Thn arte of $11 / 1 /$,

 low with temperature, nitric acio, hy!? ! !.! r . . !
 potassium iodide, potassium sulphocyanate, puta-sium sulphide, sodium hydroxide, sodium sulphide, cakium
 copper nitrate. cuprie chloride, bariun chlonil, as: mereurie chloride.
 .n the polarization and chromic-acid reactions ; hirh with pyrosallic and, sulphuric acik, and sombinm s : \quad.

 'yanate; and very low with putasiom iod
culphide, sodium hydrovide, sodium sulp nata
 and mercuric chluride.


```
polarization amd sulphuria
```



```
mbline, grentian somet, safram!n, at !
with trmperature, nitric aum, h!
```



```
low with chloral hydrat", put:2-%m!
:ulphide, sulium holroxide. sulum sul}
nitrate, uranium nitrate, strontium nitrat_, 沮
marevirie chlorme.
```

The following is a summary of the reaction－intensi－ ties：

	Vety high．	High．	Moxler－ ate．	I．ow．	Very low．
11 Litas	2	2	4	4	14
	2	3	3	6	12
II．Ut．us Ienuia	2	2	4	5	13

：Compamans of the Stamenes of Hhpeasthem

In the histubugic characteristics and polariscopic fig－ ur＂－，reations with selenite，qualitative reactions with iodine，and qualitative reactions with the various chemical ranints the three starches are closely alike．The starch of II．pyrrha in comparison with that of the seed parent has ferser compound grains and aggregates，more single grains with one or more pressure lacets，and more Irresularition of the grains；the hitum is more fre－ quently and more extensively fissured and is more eccen－ tron：the lamelle are distinct in a larger number of grains，but as a rule less in number；the size as a rule in lece，hut the proportions of length to breadth are the same；and the polariscopic figures，reactions with sele－ Int．and the qualitative reactions with iodine show minor dilferences which in the aggregate are of account in differentiation of the starches．The starch of the hybrid cluenty resembles those of the parents．It is closer to that of the seed parent in size of the grains and number of the lamellac，but closer to the pollen parent in the furm of the grains，fissuration and eccentricity of the hilum，and character of the lamellæ．In the qualitative pularization and iodine reations it is closer to the seed parent．In the qualitative reactions with chloral hydrate， potasium iodide，and potassium sulphocyanate it is more like that of the seed parent，while in the nitric－acid and sodium－salicylate reactions more like that of the other parent．

Lraction－intensities Eupressed by Lioht，Color，and Tempera－ ture Keactions．

Polarization：

H．inalian，high to，very high，value si．
II．Wrrla．high to very hish，higher than in H．ossultan，value so
11．wanult．－jerh，high to very high，higher than in either jarent．
I ，dime：
II．ossultan，moderately light to moderate，value 45 ．
11．Wy rha，monerato to moderately deep，deener than in H．ossul－ tan，value 55.
II．cosult．－p，yth．，moderately light to moderately deep，and inter－ medinte betwera the purente，value 50.
（imbtian tiolst：
II．cmultan，moderate，value 50 ．
H．Wyrrha，moderately light to moderately deep，lightor than in II．watultar，value tr．
II．ossult－－syrh．，moderate to moderately deep，deeper than in ＂ither parent，value 53.
Salrasim．

11．wyrrha，moderate，lighter than in II．ossultan，value 50
11．ussult．－pyrh．，moderate to moderately deep，deeper than in either garent，value 58 ．

II．pyrrha，in majority at 71 to 73° ．in all except rate grains at

H．essult．－pyrh．，in majority at 70 to 72° ，in all but rare grains at

Than rametisition of H ．wesultar ariv lower than those wf that wher parvat in the pmbazization，iomline，and

 highor than those：of either prament in the poblarization， nentian－violet，safranin amb temprrature reactions，and

	$\underline{』}$	틀	$\underset{\sim}{E}$	昏	E	$\begin{aligned} & \text { gi } \\ & \hdashline \end{aligned}$	$\begin{aligned} & \text { 方 } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { p} \end{aligned}$	$\begin{aligned} & \text { g } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { E } \\ & 8 \end{aligned}$
Chloral hydrate：										
H．ossultan		\cdots			7	27		37	42	45
H．pyrrhis	－	\cdots	．		3	19		28	39	42
H．ussult．－pyrh		\cdots			4	26		36	40	43
Chromic acid：										
II．ussultan	．				1	25	96	99		
H．pyrrhe		．	－		1	20	90	99		
H．ossult．－pyrh	\cdots	\cdots	．		1	45	96	99		
Pyrogallic acid：\quad l										
H．ossultan．		．			10	67		80	90	95
H．pyrrha		\cdots			5	80		89	92	96
H．ossult．－pyrh					20	85	．	93	96	88
Nitric acid：										
H．ossultan	．	．			4	17		30	43	56
H．pyrrhs		－	．		2	6		16	33	50
H．ossult．－pyrh					2	19		40	65	67
Sulphuric acid：\quad S \quad l										
H．ossultan	．				45	95		99		
H．pyrrha					70	96		99		
H．ossult．－pyr					40	95		99		
Hydrochloric acid：${ }_{\text {l }}$										
H．ossultan．					5	40		62	75	86
H．pyrrhe					5	41		70	80	88
H．ossult．－pyr					6	50		82	89	91
Potassium hydroxide：										
H．ossultan					14	50		62	69	73
H．pyrrha					8	51	．	72	74	75
H．ossult．－pyrh		．			20	54		74	76	78
Potassium iodide：										
H．ossultan．					，	11		19	21	23
H．pyrrha				\cdots	0.5	5		7	11	17
H．ossult．－pyrh				．	3	10		20	25	33
Potassium sulphocyanate：										
H．ossultan				\cdots	4	10		34	48	64
H．pyrrha		\cdots		\cdots	2	5	\cdots	25	46	61
H．ossult．－pyrh				\cdots	3	10	．	48	61	70
Potassium sulphide：										
H．ossultan．		\cdots	\cdots		0.5	1		3	4	4
H．pyrrha	－	\cdots	．	\cdots	1	2		3		3
H．ossult．－pyrh．				．	0.5	0.5		3		3
Sodium hydroxide：										
H．ossultan					10	31		39	44	48
H．pyrrha				\cdots	2	8		29	36	43
H．ossult．－pyrh．		\cdots			3	27	．	35	43	45
Sodium sulphide：										
H．ossultan．					，	，		5	8	0
H．pyrrha．		\cdots			，	3		5		5
H．ossult．－pyrh．					2	4		6	8	8
sodium salicylate：										
H．ossultan		\ldots			45	95		99		
H．pyrrba					32	90		99		
H．ossult．－pyrh．		．	．		22	85		98	99	
Calcium nitrate：										
H．ossultan					1	3		5		5
H．pyrata					1	2		3		3
H．ossult．－pyrh．					0.5	，		2		2
Lranium nitrate：										
H．ossultan					2	5		6	9	10
H．pyrrha．					0.5	1		4		4
H．ossult．－pyrh．					0.5	，		，		0
Stroutium nitrate：										
II．ussultan	\cdots				2	，		10		12
II．pyrrha	．	．			1	2		5	8	12
H．ossult．－pyrh					2			4	6	11
Cobalt nitrate：										
H．ossultan					0.5	1		2	3	3
H．pyrrha					0.5	1			2	2
H．ossult．－pyrh				. .	0.5	1				2
Copper nitrate：										
H．ossultan					0.5	2		3	4	5
H．pyrrha					0.5					0.5
H．ossult．－pyrh	\cdots				0.5	2				2
Cupric chloride：										
H．ossultan					0.5	2		3	4	4
H．pyrrha					0.5					2
H．ossult．－pyrh					0.5	．		1		1
B．rium charoride：										
II w－ultan					0.5			1	2	3
H．wrrha					0.5					0.5
Mreuric chloride：${ }_{\text {M }}$										
H．ussultan	\cdots	\therefore			0.5			1	2	2
H．prrtha										
H．ossult．－pyr					0.5					

mid-intermediate in the reaction with iodine. In the polarization and temperature reactions it is closer to the pollen parent, and in the gentian-violet and saframin reactions closer to the seed parent.

Table A 3 shows the reaction-intensities in percentages of total starch gelatinized at detinite intervals (minutes).

Vehocity-reaction Curves.
This section treats of the velocity-reaction curves of the starches of Hippeastrum ossultan, II. pyrria, and H. ossultan-pyrrha, showing the quantitative differences in the behavior toward different reagents at definite timeintervals. (Charts 1) 43 to D 63.)

The conspicuous features of these charts do not differ in many respects from those of the preceding set.
(1) The curves of all three starches are in all of the reactions close and, on the whole, ahout the same as regards the extent of separation as in the first set, in some reactions there being a little more separation and in others less. In most of the reactions there is a tendency for a slightly higher reactivity than in the $I I$. titan-cleonia set. Many of the reactions are so slow that there is no important if any differentiation, as in those with potassium sulphide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(2) Omitting these very slow reactions, the curve of $I I$. ossultan is in the remaining 11 reactions higher than the corresponding curve of the other parent in the reactions with chloral hydrate, chromic acid, nitric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, and sodium salicylate; and lower in those with pyrogallic acid, sulphuric acid, hydrochloric acid, and potassium hydroxide.
(3) The curves of the hybrid bear varying relations to the parental curves, with very little tendency to sameness in relation to the seed parent and none to the pollen parent; with little tendency to intermediateness or to being the lowest of the three curves; with a marked tendency to be the highest of the three; and with a tendency to sameness as both parents in the reactions that take place with marked slowness. (See the following section.)
(4) An early period of comparatively high resistance is noticed especially in the reactions with chloral hydrate, chromic acid, nitric acid, hydrochloric acid, and potassium sulphocyanate; the opposite with potassium hydroxide and sodium salicylate.
(5) The best period for the differentiation of the three starches is in case of the very slow reactions above referred to at the end of the 60 minutes, but in some of them even at this time there is very little or no difference. The curves appear to be best separated at 5 minutes in the reactions with sulphuric acid, potassium hydroxide, and sodium salicylate; at 15 minutes with chloral hydrate, chromic acid, pyrogallic acid, and sodium hydroxide; at 30 minutes with nitric acid, hydrochloric acid, and potassium sulphocyanate.

Reaction-intensities of the Mybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 3 and Charts D 43 to D 63.)

The reactivities of the hybrid are the same as those of the seed parent with sulphuric acid, sodium sulphide, and uranium nitrate; the same as those of the pollen parent in none; the same as those of both parents with potassium sulphide, calcium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium
(hbloride, and mereuric charinde; intermentiate with iodine, chloral hydrate, and smlnum hodmomhe (in the
 the seed parent) ; highest with polarization, gentian : 10 let, safranin, temperature, chromic acid, uitm arnd, pyrogallic acid, hydrochtoric acid, potas-ium hyilrosale,
 being closer to the sced parent and in five lnomi fon. . to the pollen parent) ; and the lowest with sodium salnolate, it being in these nearer the pollen parent.

The following is a summary of the fompon-intan-1ties: Same as red parent, 3 ; samu at pellan par-ut, 19 ; same as both parents, 9 ; intermediate, 3 ; highest, 11 ; lowest, 1.

 seed parent on tho propurtion uf the heynend fo quit: marked. Intermediateness is rather andiontal, a inndency to the lowest reactivity very excontional, and a tendency to the highest reactivity very mammal.

This section treats of composite curves of the reac-tion-intensities showing the differentiation of the starches of $/ 1$ ippectsitrum ossulten, $1 /$. pyrrhu, ami $/ I$. ossultan-pyrrtu. (('hart lis3.)

Among the conspicuous features of this chart are:
(1) The remarkable closeness of all three curves, the differences for the nost part beiner insignificant or actually falling within the limits of errus of aymplatht, showing an extreme botanical rhsoncos of the fabeti and extremely little variance of the hymol irnm the parents. The only reactions in which the parmats are readily differentiated are thrse with indine. grontian violet, safranin, temperature, chromic acid, and sodium salicylate, and even in these the datimates are watmut exception of a minor degree.
(2) In this curve of H. sssultun monpared with that of M. pyrrha the reactivities are shown to be distiuctly higher in the reactions with gentian violet, satranin, chromic acid, and sodium salicylate, and lower with polarization, iodine, and thmperature. In the other instances the differences are unimportant or even negligible excepting in so far as they tend tomdicate a mednerally slightly higher reactivity of H. ossullan.
(3) In M. ossultan the rery hish reavitons with polarization, chromic acid, sulphuric acid, and sodium salicylate, the moderate reactions with iodine, , wtramm, gentian violet, and pyrogallic acid; the low rantionwith temperature, nitric acid, hydrochloric acid, pritasium hydroxide, and potassium sulphocyanate; anif fon very low reactions with chloral hydrate, potassium iodide, potassium sulphite, sodium hydroxide, sodium sulphale. calcium nitrate, uranium nitrate, strontium nitrate, (… balt nitrate, copper nitrate, cupric chlorides barimu chloride, and mercuric chloride.
(4) In H. pyrrha the rery high reactions with pulari\%ation, sulphuric acid, and sotium salieqlate; the hagh reactions with chromic acold, the mombrate reatioms with iodine, gentian violet, safranin and perograllic actil: tw, " low reactions with temperature, nitric acil, hydrochloric
 the very low reactions with chloral hyilrate, putassium iodide, potassium sulphide, sodium hidroxide, sodium sulphide, calcium nitrate, uranimm nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric : Aloril. barium chloride, and mercuric chloride.
(5) In the hybrid the very high reactions with polarization, chromic acid, sulphuric acil, pyrograllic acid, at. l sodium salicylate; the moderate reactions with iodine, gentian violet, safranin, temperature athl hedpeblaric
acid; the low reactions with nitric acid, potassium bydroxide, and potassium sulphocyanate; and the very low reactions with chloral hydrate, potassium iodide, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
'The following is a summary of the reaction-intensities:

	Very high.	High.	Muderate.	Low.	Very low.
H. ossultan.	4	0	4	5	13
H. pyrrha	3	1	4	5	13
H. ussult.-pyrh	5	0	5	3	13

1. Comparisons of the frarehes of Mippeastriat deones, H. zephyir, and H. demes-zephyr.
In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents exhibit properties m common and certain individualities, but generally a very close correspondence throughout. The grains of H. zephyr in comparison with those of the seed parent are found to include less numbers of aggregates and compounds; they are free from the long, narrow finger-like grains found in the latter; they are more regular, the protuberances being less numerous and not so large. The hilum is less distinct and less frequently fissured. The lamelle are less distinct, less fine, and less in number. The common size is about the same, but the large grains show some differences in ratio of length to breadth. The polariscopic, selenite, and qualitative iodine reactions exhibit some minor differences. The starch of the hybrid in comparison with the starches of the parents contains a relatively larger number of aggregates and compounds but none of the long, narrow finger-like grains found in H. doones but not in H. zephyr. The hilum is more frequently fissured than in either parent, and in character and eccentricity it is closer to H. dwones. The lamellæ in character and number are nearer to H. deones. The common size of the grains is somewhat less than in either parent, and the size of the larger grains approaches nearer that of H. zephyr. In the qualitative polariscopic properties the leaning is in certain respects toward one parent and in other respects toward the other, and in the selenite reactions there is development of properties in excess of the development in the parents, with a leaning closer to the pollen parent. The qualitative iodine reactions are closer to $I I$. zephyr. In the qualitative chemical reactions with chloral hydrate, nitric acid, potassium iodirle, and potassium sulphocyanate the hybrid is closer to $/ I$. dipones, while in the sodium-salicylate reactions the relationship to the two parents is of equal degree.
Reaction-intensitics Expressed by Light, Color, and Temperature Reactions.
Polarization:
H. damones, high to very high, value so.
H. zephyr, high to very ligh, littie higher than in H. droones, value $\$ 3$.
II. deon. zeph., high to very high, bigher than in the parents, value 85
Iodine:
II. dennes, moderate to moderately deep, value 55 .
H. zephase, moblerate, less than in H. dapones, value 50.
H. dæon-zeph., moderate, same as in H. zephyr, value 50 .

(ientian violet:

H. dseones, moderate to moderately deep, value 58.
H. zephyr, moderate to moderately deep, lighter than in H. dæones, value 55.
H. dæon-zeph., moderate, lighter than in either parent, value 50 .

Safranin:

H. dæones, moderate to moderately deep, value 55.
H. zephyr, moderate to moderately deep, the same as in H. drones, value 55.
H. dæon.-zeph., moderate to moderately deep, the same as in both parents, value 55.
Temperature:
H. dæones, in majority at 72.5 to 74°, in all but rare grains at 74 to 75°, mean 74.5°.
H. zephyr, in the majority at 72 to 73°, in all but rare grains at 73 to 75°, mean 74°.
H. dæon.-zeph., in the majority at 72 to 73 , in all but rare grains at 72 to 73°, mean 72.5°.
The reactivities of H. daones are lower than those of the other parent in the polarization and temperature reactions, higher in the iodine and gentian-violet reactions, and the same in the safranin reaction. The reactivities of the hybrid are higher than those of either parent in the polarization and temperature reactions, lower than that of either parent in the gentian-violet reaction, the same as that of the pollen parent in the iodine reaction, and the same as those of both parents in the safranin reactions. On the whole the inclination is toward the pollen parent.

Table A 4 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes) :

Velocity-reaction Curves.

The following section treats of the velocity-reaction curves of the starches of Hippeastrum drones, H. zephyr, and H. daones-zephyr, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 64 to D 84. .)

As noted in the preceding sections the three starches are very closely alike, exhibiting only minor differences, but not infrequently character developments of the hybrid that exceed the parental extremes. The most conspicuous features of these charts are:
(1) The nearness of the three curves throughout.
(2) The curve of H. doones is higher than the curve of H. zephyr in the reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, and sodium sulphide through the 60 minutes. It also tends to be above in the reaction with strontium nitrate. In the sodium-salicylate reaction, in which gelatinization goes on with moderate rapidity, the curves are ebout the same; and in the reactions with potassium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride gelatinization proceeds so slowly that there is little or no differentiation. From these data $I I$. deones has, on the whole, the higher reactivity.
(3) The curves of the hybrid show varying relationships to the parental curves, in some instances being the same as that of one or the other parent or both parents, in others intermediate, and in others higher or lower than both parental curves. (See following section.)
(4) Evidence of a preliminary period of comparative resistance is apparent in several of the charts.
(5) The earliest period at which the three curves are best separated for differential purposes is variable. In the very slow reactions no differentiation seems possible even at the end of 60 minutes, the differences noted being wholly within the limits of error of observation and of no significance whatsoever. The best period for sulphuric acid is at 5 minutes; for chromic acid, pyrogallic acid, hydrochloric acid, potassium sulphocyanate, sodium hydroxide and sodium salicylate at 15 minutes; for sodium sulphide at 30 minutes; for strontium nitrate at 45 minutes; and for chloral hydrate, nitric acid, and potassium iodide at 60 minutes.

Table A 4.

Rexatox-matesatme of the. Hybum.
This sertion treats of the reaction-inten-ities of tha

 ('harte I tit tw |l n.)

 those of the pollen parent with iodine and sulphuric: a i. i;
 sium sulphide, cal(ium nitrate, uranium nitrat . . .n'a't nitrate, mper nitrate, cupres whorike, harium chlont. and merourie chloride; intermediate with hydromhoric
 sulphecyanate, somium hydrovide, and strontium nitrate

 tion, tomperature, womone acid, perewalle achl, ath I nitric acid (in one being clozer to the pollen parent, in
 as to the other parent): and 1tw (wwor with ant tath violet, chloral hydrate, somlium sulph 小. atel =-liam salicylate (in two being closer to the pillen parent, in one
 to the other parent).

The following is a summary of reation-itath-itice: Same as seed parent, 0: same as pollen parent, *: same

 rental influenees on the stareh of the hybrid swot f. 'e somewhat in favan of the - - + f parent.

This section treats of the componite curses of the reaction-intensities showing the differentiation of the starches of Hippenstrum dioones, H. z"phyr, and H. ditumes-zeply!r. (('hart E4.)

The most conspricuons features of this chart are:

 rization reaction, is hichur than the correspunding In a tions of H. zephyr in the reactions with iordine, gentian violet, chloral hydrate, chromic acid, pyrogallic acid, nitrie acil, sulphurice acid, hydrochloric acid, potassium

 trate; lower with polarization; and the same or practisally the same with salranin, temperature, potassium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, coblalt nitrate, copper nitrate, cupric chloride, barium chleride, and mereurie chloride.
(3) In $/ 7$. dumos, the in lat lach roment with polarization, chromic acid, and sulphuric acent: :a- ! -
 reactions with iodine, gentian violet, saframin, and hy-

 sium sulphocranate, and sodium hylroside; and the very low reactions with potassium indile. potasium sulp?

(i) In I. zeph!r. the vory !if! reatinne with n': ization and sulphurie acid; the high with chromic a ? . purotallie acid, and solium suli.e.tatn: then me"the with iodine, gentian violet. and sumann: the low wi: temperature, nitric acid, hydrochloric naid, potassiums hydroxide, and potasium sulphocyanate; the very low with chloral hydrate, potassium iodide, potassium - il
phide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(5) In the hybrid, H. drones-zephyr, the very high reactions with polarization and sulphuric acid; the high with chromic acid, pyrogallic acid, and sodium salicylate; the moderate with iodine, gentian violet, and safrauin; the low with temperature, nitric acid, hydrochloric acid, potassium hydroxide, and potassium sulphocyanate; and the very low with chloral hydrate, potassium iodide, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, mbalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

The following is a summary of the reaction intensities:

	Very high.	High.	Moderate.	Low.	Very low.
H. deones.	3	2	4	6	11
H. zephys.	2	3	3	5	13
H. . deones-zephyr..	2	3	3	5	13

Notes on the Hippeastrums.

The hippeastrums exhibit properties in general so closely alike as to suggest very closely related plants, such as in fact they are. In histological properties while all possess in common certain fundamental generic characters, each has certain individualities that are manifested in variable ways. Each hybrid is more closely related in certain histological features to one parent and in certain others to the other parent, but the directions of these rariations may be the same or different in the different hybrids. Thus, in form $I I$. titan-cleonia is closer to the sed parent than to the pollen parent, while in II. ossultan-pyrrha the relationship is closer to the pollen parent; in hilum two of the hybrids are closer to the seed parent and one closer to the pollen parent; in lamelle in one hybrid in charaeters they are nearer the pollen parent, but in number the same as both parents, in another hybrid the number is the same as in the seed parent hut in the characters closer to those of the pollen parent, and in the third hybrid characters and number are closer to seed parent; and in size one hybrid is more dosely related to the seed parent, another to the pollen parent, and another in the larger grains to the pollen parent. The hybrid modifications are associated with inherent peculiarities of the parents, and inasmuch as the parents of the three sets differ the hybrids differ, and in fact they differ as much from each other as do the parents.

The uniformity or close correspondence in the courses of the velocity-reaction curves in the case of each reagent assoriated with a corresponding uniformity of the composite reaction curves affords striking evidence of the accuracy of the method employed in the recognition of plant relationships. In a word, there is a hippeastrum curve, which curve is modified in relation to each plant represented.

The parental relationships of the hybrids in the various reactions are as variable as those indicated in the histological peculiarities. Each of the hybrids may he in some of the reactions the same as the seed parent. in others the same as the pollen parent or as both parents, in others intermediate, and in others higher or lower than cither parent. Intermediateness is far from being the rule, since in only 13 out of 78 reactions was intermediateness recorded, and in only 6 was there mid-intermediateness. In fact, reactivity of the hybrid in excess

Table A 5.

	$\dot{\boldsymbol{\varepsilon}}$	$\underset{\sim}{E}$	$\underset{\sim}{\text { E }}$	\mathfrak{a}	g	$\begin{aligned} & \dot{8} \\ & \simeq \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \stackrel{5}{0} \end{aligned}$	$\begin{aligned} & \dot{\underline{\varepsilon}} \\ & \dot{8} \end{aligned}$
Chloral hydrate:									
H. katherinw		.	.		7	20	60	67	74
H. magnificus					4	14	15	17	17
H. andromeda					5	20	29	35	47
Chromic acid: ${ }^{\text {c }}$									
H. katherinæ					1	0.5	23	92	97
H. magnificus			\cdots		3	19	27	¢ 6	97
H. andromeda					0.5	8	25	90	95
H. kathering			\cdots		3	7	10	12	30
H. magnificus		\cdots	\cdots		7	20	60	76	86
H. andromeda					1	3	8	12	26
Nitric acid:									
H. katherina		.	.		1.5	2	3	4	6
H. magnificus		.	.		4	40	45	48	50
H. andromeda		.	.		3	12	13	15	20
Sulphuric acid:									
H. kathering		. .	\cdots		10	35	79	90	94
H. magnificus	.	.	\cdots		10	75	87	97	99
H. andromeda.		.		.	9	50	81	93	98
Hydrochloric acid:									
H. katherinæ.		.			,	3	10	12	15
H. magnificus.	\cdots	.	.		7	35	66	75	83
H. andromeda.					3		11	30	42
Potassium hydroxide: ${ }_{\text {l }}$									
H. katherinæ.	.	.			1		2		
H. magnificus.	.	.	\cdots			9	11		20
H. audromeda.		\cdots			3	6	7	9	11
Potassium iodide:									
H. katherinæ.					1.5		,		3
H. magnificus	\cdots	\cdots			1	3	4.5	7	12
H. andromeda	.				1		2.5		3
Potassium sulphocyanate:									
H. katherinæ.					2.5				
H . magnificus.					7	11	22	34	40
H. andromeda.			\ldots		1	3	3.5	4	4
Potassium sulphide:									
H. katherinæ					1		2		2
H. maguificus						1	2.5		2.5
H. andromeda					1				1
Sodium hydroxide:									
H. katherinæ.					1				3
H. magnificus					2	15	24	27	35
H. audromeda					0.5		2.5		3
Sodium sulphide:									
H. katherina					0.5			2	2
H. magnificus					2	5	7.5	9.5	9.5
H. andromeda					0.5		1	2	2.5
sodium salicylate: ${ }_{\text {S }}$									
H. katherinæ					80	99			
H. magnificus.					9.5	36	70	95	98.5
H. andromeda					56	98	99		
Calcium nitrate:									
H. kathering					1				
H. magnificus.					2.5	3.5	5	5.5	6
H. andromeda					0.5		1		
Uranium nitrate:									
H. katherina									1.25
H. magnificus.					2		3.5	5	5
H. andromeda			.		0.5			.	0.5
Strontium nitrate:									
H. katherinæ		\cdots	.		2	3			
H. magnificus.		.			1.5	3	6.5	8	9
H. andromeda.		.			0.5	0.75	1.75	2.5	2.5
Cobalt nitrate:									
H. katherine					0.5				
H. magnificus.		.			0.5				0.5
H. katherine	.	\cdots							1.5
H. magnificus.	.	.			0.5		1		1
H. audromeda		.			0.5				0.5
Cupric chloride:									
H. katherina					0.5				0.5
H. magnificus.		\because			0.5				3
H. andromeda					0.5				0.5
Barium chloride:									
H. katherine						1.5			1.5
II. magnificus.		.							1
H. andromeda					0.5				0.5
Mercuric chloride:									
H. katherinæ					1.25	1.5			0.5
H. magnificus		\cdots	.	\cdots					1.5
H. andromeda					0.5				0.5

or deficit of parental extremes is more common than intermediateness, for in 21 reactions the hybrids were higher than those of either parent and in 9 lower than those of cither parent. In case of all three hytrids the seed parent semms to be the more protent in influencing the characters of the starch, this poteney being the most marked in H. ossultan-pyrrha and least marked in H. daones-zephyr.
5. Comparisons of the frabohes of Hamanther

In histologic characteristics, in polariscopic figures, in the reactions with selenite, in the reactions with iodine, and in the qualitative reactions with the various chemical reagents it will he noted that the parent starehes not only exhibit properties in common in variable degrees of development, but also individualities which eollectively serve to distinguish them.

The starch grains of Hementhus magnificus fontain proportionately a larger number of aggregates; there are compound grains that are not found in $I I$. katherince; and the grains tend to more irregularity, to more breadth in relation to length, and to rounded ends. The hilum is more distinct and more frequently fissured, but the eccentricity is about the same; the lamelle are less distinct; and the size is larger, with a tendency to broadness. In polariscopic figure and reactions with selenite there are various differences. The grains of the hybrid H. andromeda are in form in general closer to those of H. katherina, and in certain respects closer to those of the other parent. They are more irrecrular than those of either parent, and there are compound grains like those found in H. magnificus, but they are less numerous. In the character of the hilum and in size they are closer to those of H. Katherince, but in lamellee there does not appear to be a definite leaning toward one or the other parent. In the polariscopic figure and appearances with selenite the grams are clower to H. katherinue, and the same is true in regard to their qualitative behavior with iodine. In the qualitative reactions with chloral hydrate, nitric acid, potassium iodide. potassium sulphocyanate, and sodium salicylate the grains show a close relationship to those of H. katherina, except in the case of a few grains in each reaction which show a corresponding relationship to H. magnificus. On the whole, the relationship is very close to H. katherince.
Reaction-intensitics Expressed by light, Color, and Temprrature Reactions.
Polarization:
H. katherine, high to very high, value 75.
H. magnificus, very high, much higher than H. katherime, value 90 .
H. andromeda, high to very high, higher than H. katherine. value 82 .

Iodine:

H. katheringe, moderate to light, value 45 .
H. magnificus, moderate, deeper than II kutherines, vahu, 50.
H. andromeda, moderate to deep, a little demuer than HI hatherime. value 47.
Gentian violet:
H. katherine, moderate to deep, value 60 .
H. magnifieus, moderate to deep; not so deep as II. kutherinas, value 55.
H. andromeda, moderate to deep, slightly lighter than H. kstherins, Value 58 .

Safranin:

H. katherinæ, moderate to deep, value 60 .
H. magnificus, moderate to deep, the same as H. katherine, valuego
H. andromeda, moderate to deep, lighter than in the parent-stock, value 58.

Temperature:

H. katherine, majority at 79 to 81°, all at 82 to 84°, mean 83°.
H. magnificus, majority at 77 to 77.5°, all at 78 to 79°, mean 7.5°.
H. andromeda, majority at 75.5 to 80°, all at 81 to 82°, mean 81.5°.

The reactivities of H. katherince are lower than those of H. magnificus in the reactions with polarization,
iodine, and temperature; higher with gentian violet; and the same with safranin. The reactivities of the hybrid are intermediate in the ractions with polariatinn, fodine, gentian violet, and tompraturn : and lower thast tho-e of the parmit- with saframin. With thre fexpp. tion of the last and the temperature reaction the relttionship of the hybrid is practically exartly mid-intermediate, and in the temperature reaction it is eleser to 1I. katheriure.

 (minutes) :

 and I. andromedn, showing the quantitation difere-n.... in the behavior toward different reagents at definite timeintervals. (Chart D 85 to D 105.)

The most conspicuous features of these charts are:
(1) The individualities of each chart in relation to the reagent, except in the eat: wher. the reat tot:- are
 of error. In the chart- in which the reactions are oftherwise than very slow the three rarsec vary in their chereness to one another within wide limits. Thus, in the reactions with chromic ard and sulphuric arid all thr... curves keep close together thromethent the for minutes. but the charts are readily distinguishable from each other, especially at the 15 - and 30 -minute periods, at which times the curves are mum hichor in the culphariacid chart. The curves for chloral hydrate, nitric acid, and hydrochloric acid show a tendency during the progress of the reactions to divergence, in all three charts the curves of the hybid buine intermentate, hat in two doser to the rurse of $I I$. Ratherime. The chart for ondium salicylate stands isolated. owine w-werally to the relatively high reactivities of the hybrid and I. leatheriner duriner the first 5 mimutes. In all of the Wharts in whill the three curves are sumpinently -omaratel to make satisfactory determinations, the curve of the hyhrid, with the exopption of a from intancos, thme he tinitely to intermeliateness.
(2) The curves of $I I$. magnificus in the reactions with chloral bydrate pyrngallic anth. chromio acil. por tassium hydroxide, potassium sulphocyanate, sodium salicylate, and sodium hydroxide, in all of which the reactivities are sufficiently marked to hring nut positive differences in reactive-intensitices are the histhe-t exempting in two cases (chloral hedrate and sondimm calinglatel. in looth of which the curves of I. hotherine ate the hish-wot-a curious reversal of pesition. In all of the dart = in whin positive differenem have ben hrencht out, the arre of the hathid temits to be clater to that of $I I$. Pont memer irrespection of the position of the lateer in rolation to the curve of H, magnitions.
(3) The curves of the hyrid, exemp in the reactions in which all three curves are ecomitially the same. tend to he the same as those of the sed parent or uf sume therren of intermediateness. In the latter eromp there is an
 parent.

Reaction-intensitifs of the. Hyrbil.

The following seotion treats of the rea tion-intone:ties of the hybid as regards sameness, intermentiate....; excese and deficit in relation to the parents. (Tabe. 1 I and Charts $\cap 8.5$ to 1 105.)

The reactiritios of the hrberd are the smme a: has. of the send parent in the nyrngalli arit, morazaium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, and
strontium nitrate; the same as those of the pollen parent in none; the same as those of both parents in the reactions with potassium sulphide, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric choride; internediate with polarization, iodine, gentian violet, temperature chloral hydrate, chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, and sodium salicylate (in four being closer to the seed parent, and in seren mid-intermediate); highest in nome; and the lowest with safranin, in which it is as close to ome as to the other prarent.

The following is a simmary of the reaction-intensitien: Same as sed parent, s: same as pollen parent, 0 ; same as both parents, 6 ; intermediate, 11 ; highest, 0 ; lowest, 1.

The stronger influences of the seed parent on the propertios of the stareh of the hyhrid are very marked. Intermediateness is quite common. In no reaction is there sameness in relation to the pollen parent or the highest reactivity of the three starches, and in only one reaction is the hybrid the lowest.

Composite-cerves of the Reaction-intensities.

This section deals with the composite-curves of the reaction-intensities, showing the differentiation of the starehes of Homanthus katherince, H. mugnificus, and II. andromeda. (Chart E5.)

The most conspicuous features of the chart may be summed up as follows:
(1) The moderate to very low, generally very low, positions of the curves with few exceptions, the only important members of the latter group being the polarization and sodium-salierlate reactions, thus showing that these starches exhibit generally a high to very high resistance.
($\%$) The eontiguity of all three curves throughout the chart and the unity of type of curve, indicating a close botanical relationship of the parents and no tendency for departure of hybrid characteristies from those of the parents.
(3) The highest position of the curve of $I I$. magnificus throughout the chart, excepting in the reactions with gentian violet, safranin, chloral hydrate, chromic arih, and sodium salieylate-in the safranin and chromic acid the curves are the same or practically the same as those of H. katherince, and with chloral hydrate and sorlium salicylate distinetly lower, they being the lowest of all threw curves. The inversion of the positions of the II. magnificus and H. kathorince curves in the gentian violet, chloral hydrate, and sodium salicylate reactions is most interesting and significant.
(4) In the curve of $I I$. katherina the very high reaction with sodium salicylate; the high with polarization, gentian violet, and safranin; the moderate with ionline, hommie acid, and sulphuric acid; the low with chloral hydrate; the very low with temperature, pyrogallie acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphile. sulium hylroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(5) In the curse of $I I$. magnificus the very high polarization reaction; the bigh reactions with safranin, sulphuric acid, and sodium salicylate; the moderate with iodine, gentian violet, and chromic acid; the low with temperature, pyrogallic acid, nitric acid, and hydrochlorie acill; the very low with chloral hydrate, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide,
calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(6) In the curve of the hybrid H. andromeda, the very high reactions with polarization and sodium salicylate; the absence of high reactions; the moderate with iodine, gentian violet, safranin, chromic acid, and sulphuric acid, the low with temperature; and the very low with chloral hydrate, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride. The following is a summary of the reaction-intensities:

	Very high.	High.	Mod- erate.	Low.	Very low.
H. katheringe	$\mathbf{1}$	3	3	1	18
H. magnificus......	1	3	3	4	15
H. andromeda....	2	0	5	1	18

6. Comparisons of the Starches of Hemanthes

 katherinee, H. puniceus, and H. köxig albert.In histologic characteristics, polariscopic figures, in the reactions with selenite and with iodine, and in the qualitative reactions with the various chemical reagents it will be noted that the parents exhibit properties in common in varying degrees of development and individualities by which collectively they can be differentiated. The most conspicuous differences in the starch of H. puniceus in comparison with that of Hamanthus katherince are to be seen in the well-marked depressions (sometimes slightly concave) which are not present in the latter starch, less frequent rounded protuberances, less frequent secondary lamellæ, peculiar arrangements of the components of aggregates, and much more flattening of the grains. The hilum is more often demonstrable and is, on the whole, less eccentric; the primary lamellæ vary somewhat in general characters from those of H. hatherime, and they are somewhat more numerous, but secondary lamellæ are less numerous; and while the sizes are much alike there is a manifest tendency for a relatively greater breadth in proportion to length. In polariscopic figure, selenite reactions, and qualitative reactions with iodine there are some minor dilferencos. In the qualitative reactions with the chemical reagents there are similarities and individualities. The starch of the hybrid H. könig albert, is in form, character, and escentricity of the hilum, lamelle, and size more closely related to Π. puniceus than to the other parent. In the polariscopic figures and reactions with selenite it is closer to H. puniceus, but in both qualitative and quantitative reactions with iodine it is closer to H. hatherince. In the qualitative chemical reactions with chloral hydrate, nitric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, and sodium salicylate it is closer, senerally much closer, to I. katherince.

Renction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

H. kntherince, high to very high, value 75 .
H. puniceus, high to very high, slightly higher than H. katherinæ, value 78 .
H. könig albert, high to very high, slightly higher than H. puniceus, value 80 .
Iodine:
H. katherinæ, moderate to light, value 45 .
H. puniceus, moderate to light, lighter than in H. katherine, value 40.
H. könig alhert, moderate to light, not so deep as in H. katherine, but deeper than in H. puniceus, value 43.

Gentian violet:

H. katherinw, moderate to deep; value 60.

H. puniceus, moderately decp to deep, slighty deeper than H, katherima; value 62.
H. könig albert, moderate to deep, not so deep as in the parents. value 58.
Safranin:
H. katherinas, moderate to derp; valua 60.
II. punicons, monderately deep to dewp, shathy defore that in H kutheriner, value tiz.
H. könig albert, moderate to deep, not so deep as in the parme. value 58 .
Temperature:

The reactivity of $I I$. katherince is higher than that

 and temperature. 'Tha' hyrid is midimermediate in the iontine reaction, the hidhet in the pararation rame tion, lowest in the gentian violet and safranin reactions. and the same as that of the seed parent in the temperature reaction. In three it is closer to or the same as the seed parent, in one closer to the pollen parent, and in one mid-intermediate.

Table A 6 shows the reaction-intensities in peremtages of total stareh gelatinized at definite intervalo (minutes).

Vemomin-hiaction Ctrus.

The following section deals with velocity-reaction curves of the starches of Itrmanthus kulheriner, II. Im. nicrus, and II. Kiming alhert, showing the quantitation
 at definite time-intervals. (Charts I) 106 to D 126.)

The most conspichous features of these charts are:
(1) The marked tendency for the curves of II. hallhcrinn falld the hythill tor rum then ther, unally wery closely, and well separated from the curve of $I I$. pinimis. Both features are well exhibited in all of the reactions, with the exception of thene with choral hividrate, pyrogallic acid, solium satioylate, and harium chlorite. Exen in there inetance the doen mationshif of $/ I$. katherine and the hybrid is evident.
 intermeliate position between thase of the parem--t.nkalthough distinctly closer to that of I. katherince, as shown in the reations with themic and, prowailli. acid, nitric acid, sulphuric acid, hydrowhthet anil, and sodium salievlate. In the whoral-hydrater reation the curve of the hybrid is curimaty distinetly luwer that that of either parent. In the remaining reactions, it in number, the starches of both H. Katherince and the hybrid are so resistant that such differencess as are rocordentare shant and fall whhin the limit- in arme. From "ypromes with other ratian sare ha mentitieations in the strengths of the reagents: would dmultess elicit peculiarities in arcord with the foreroing.
(3) The individuality of "ach whe thath with fum
 relation th the reatut, smme bar omendat fo.... resemblanco, at for intance, tho... parsicular? if pyrogallic and nitric acid, and thun of ammer way including the potassium iodide, potassium hydroxide,
 droxide, sodium sulphide, calcium nitrate, strontium
 enne between the pasitions of the curves lies in the height
 salicylate reactione are of a markedis different character from those of other chemical reagents becallse of the high reactivities of all three starches. High reactivities of H. puniccus are also cxhbited in the charts for pyro-

TAshes A 4

gallic acid, nitric acid, sulphuric acid, and hydrochloric acid. It is of interest to note that while the II. puniceus curves are high, those of H. katherince and the hybrid are very low in the reactions with pyrogallic acid and nitric acid and variable from high to low in those with sulphuric acid and hydrochloric acid.
(4) The earliest period during the 60 minutes at which the three curves are best separated, and hence the best time to differentiate the starches, varies with the different reagents: with sodium salicylate at 5 minutes, with chromice acid and sulphurie acid at 15 minutes, with chloral hydrate and hydrochloric acid at 30 minutes, with pyrogallic acid at 45 minutes, and with nitric acid and the remaining reagents (15 in all), all of which react very slowly with $I I$. katherina and the hybrid, in 60 minutes.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 6, and Charts D 106 to D 126.)

The reactivities of the hybrid are the same as those of the seed parent with temperature, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; the same as the pollen parent in none; the same as those of both parents in none; intermediate with iodine, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, and sodium salicylate (in one being mid-intermediate, in one closer to the pollen parent, and in five closer to the seed parent); highest in the polarization reaction, and closer to the pollen parent; and the lowest in the reactions with gentian violet, safranin, and chloral hydrate, in all three being closer to the seed parent.

The following is a summary of the reaction-intensities: Same as seed parent, 15 ; same as pollen parent, 0 ; same as both parents, 0 ; intermediate, 7 ; hishest, 1 ; lowest, 3.

While intermediateness is common, the inclination here and elsewhere, with three exceptions, is to the seed parent, and in orer half of the cases the reactions are the same as those of the seed parent. The closeness of the hybrid to the seed parent almost throughout is very striking.

Composite Citrves of Reaction-intrnsities.

The following section deals with the composite curves of the realdin-intensities, showing the differentiation of the starches of IItmanthus hotherine, II. puniceus, and II. König albert. (Chart E 6.)

The most conspicuous features of the chart may be summed up as follows:
(1) The close correspondence of type of all three curves, excepting in the pyrogallic-acid reaction, in which those of $I /$. puniceus exhihit an aberrant character, the curve rising instead of falling in order to be coincident with the curves of $I I$. katherince and the hybrid. In the reactions in which both $I I$. katheriner and the hybrid
are very resistant, which are numerous, no satisfactory relationship can be determined.
(2) The tendency of the curve of H. puniceus to be distinctly higher in most of the chemical reactions and therefore to be well separated from the curves of H. katherince and the hybrid. In the sodium-salicylate reaction all three curves impinge at practically the same point, and in the reactions with uranium nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride they approximate very closely or are practically identical. The stereochemic peculiarities of these three starches are strikingly suggested in the sameness of reaction with sodium salicylate, associated with the marked divergencies in the reactions, especially in the pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, and other reactions.
(3) In H. katherince, the very high reaction with sodium salicylate; the high with polarization, gentian violet, and safranin; the moderate with iodine, chromic acid, and sulphuric acid; the low with chloral hydrate; and the very low with temperature, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulpbide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(4) In H. puniceus, the very high reactions with pyroga.lic acid, sulphuric acid, hydrochloric acid, and sodium salicylate; the high with polarization, gentian violet, safranin, chromic acid, nitric acid, and potassium hydroxide; the moderate with iodine, potassium iodide, and potassium sulphocyanate; the low temperature, chloral hydrate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, strontium nitrate, and cupric chloride; and the rery low with uranium nitrate, cobalt nitrate, copper nitrate, barium chloride, and mercuric chloride.
(5) In the hybrid, the very high reactions with polarization and sodium salicylate; the high with sulphuric acid; the moderate with iodine, gentian violet, safranin, and chromic acid; the low with chloral hydrate and hydrochloric acid; and the very low with temperature, pyrogallic acid, nitric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

The following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Vory low.
H. katherinæ.	1	3	3	1	18
H. puniceus	4	6	3	8	5
H. könig albert	2	1	4	2	17

Notes on the Hemanthuses.

The hæmanthuses belong to a group of plants that yields starches that have distinctly low mean reactivities, all three species and their two hybrids showing this peculiarity, only one-sixth of the total number of reac-
tions being high to very high. It is of interest to note that in the sodium-salicylate reactions, with the exeeption of the reaction of $H \dot{I}$. maynificus, the curves are not only very high hat also the same. while in this speres the curve is distinctly lower than in the former. In the other reactions the curves of all of the starchos show an unmistakable tendency toward coincidence in direc tion, the rises and falls being quite in harmony, excepting in I. puniceus with pyrogallice acid, in which there is a marked aberration, this curve rising while the curves of the other four fall. This peculiarity has been found in other genera, and is doubtless of both botanical and general biological significance. ('omparing the curves of the three species, the curve of $I I$. puniccus tends to be the highest, that of $I I$. katherime the lowest. and that of $I I$. magnificus intermediate, but near that of $I I$. kalherina.

According to Baker, M. katherine belongs to the sub)genus Nerissa, and H. puniceus and I. magnificus to the subgenus Gyraris, but the results of this investiga
tion indicate that I. katherince and I. magnificus are much more closely related than are I. punireus and $I I$. magnificus. The curves of the former are such as to indicate different species of a subgenus, while the curve of I. punireus is, as a whole, so well separated from those of the other two species as to point to this species being a member of another subgeneric group.

In comparing the influences of the parents on the properties of the offspring, it will be seen that in hoth sets there is a manifest greater potency of $I I$. katherinfr than of the other parent, this being decidedly more marked in the II. katherime-puniccus-könig albert set than in the $I I$. katherima-magniticus-andromedu set.
 moorei, C. zeytanicum, anb C. hybridnay J. C. HARVEY.

In histologic characteristics, in polariscopic figures. in the reactions with selenite, in the color reactions with iodine, and in the qualitative reactions with the variouchemical rearents it will be noted that the -tarehere ot the parents and hybrid exhibit properties in common in rarying degrees of development, and also individualituwhich collectively are characteristic in each ease. The stareh grains of Crimum zeylanicum in comparison with those of C. moorei exhibit differences in the proportionof certain of the conspicuous forms ; not so much irrewn larity of the grains; certain protuberances and curvatures that are not observed in C. moorei; differences in size and definition of components of certain emperumb grains; and more broadening and flattening of the grains. The hilum is less refractive and has less frequently a roumled ravity; the fiscures are more numeron- ant dewer, and a dragen-fly form may low present: a lomer tudinal fissure, rarely olserved in C. mourei, is uswalh present, and it is longer, deeper, and branched : and the ecentricity is more variable. The lamella are finer distalward from the hilum than in C. moorei; there are some differences in the eonspicunusness, distribution, and number of the coarse. fairly coares, and secomdary lamellar ; and the number of lamellix is lesa. In size there is less variation, and the grains are, on the whole, dis

 minor differences. There are also differences in the qualitative reactions with the ehemenal rederent-. The grans of the hythridare, in furta, characters of the hatum and lancllat, and in sikn in ratu of lobgiln wilth

 nite, and qualitative reactions with iodine thay are distinctly closer to thowe of (\quad. zeylanirum. In the qualitative reactions with chloral hydrate, nitric acid, ["ti... shem hydroxide, potasium iondide, protar-jum su!pho. ryanate, potassium sulphide, sudium sulphide, sodium salicylate, copper nitrate, cupric chloride, and mescuric chloride allianers to both parental -tar hows ar" nutull. but the relationship to C. zeylanicum is markedly weser than to the other parent. 'Ther rewmblanome to C° "momere are most prominent in the sodium-sislicylats ratinn*.

Reaction-intensties E.rpressul by Lipht. (i,her, and T...f.am. twe Renctums.

Polarization:

C. monorei, high to wery high, valum his
(. zeglanimm, very high, murh hiphor than (. rumerti, whin 4.3
 cum, value 05.
Iodine:
(\therefore moorei, monderate, value 50 .
(`. zeylanicum, light to mederate, value 35.
 value 35 .
Gentian violet
(. moorei, moderate to de+e) value 65.
 value 63 .
 either parent, value 70 .
safranin:
(${ }^{\prime}$. monerti, moderately deep to derf value sion.
 value $6 \frac{17}{}$.
C. hybridum j. c. harvers, moderate to decp, the masan lighter than in wither partat, wahte 1,4 .

 mean 70.5°.
 (0) $)^{2}$, แ":

The reactivities of C. moorei are lower than those of \therefore zrylancum in the reactions with polarization, gentian virlet, and safranin, and higher in those with iodine and temperature. In all of these reactions, exemptine t' e aframin, the hylirid is closer to ('. Atulanioum than to the other parent. In the iodine reaction it is the -ann.

 higher than in wither parent, and in the bappratu"e
 - nees in the tomperature reationi= of of rarmat starches and the much chaser relationship of the hybrid

Tahle A a chows the reation-intomstifs in er- at
 (minutes):

Table A 7.

Velocity-reaction Cerves.

This section treats of the velocity-reaction curves of the starches of C'rinum moorei, C. zeylanicum, and U. hybridum, j. c. harcey, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 127 to D 147.)

Among the most conspicuous features of this group of curves are:
(1) The marked differences between the curves of the starch of C. moorei on the one hand and those of C. zeylanicum and the hybrid on the other. The former is in nearly all reactions quick-reacting, while the latter is the reverse. In only 6 of the 21 reactions the former (including the reactions with chloral hydrate, chromic acid, pyrogallic acid, sulphuric acid, sodium salicylate, and barium chloride) is there an evident approximation of the curve of C. moorei to that of the other parent or the hybrid. In the reactions with chloral hydrate and barium chloride the approach of the curves is owing essentially (chloral hydrate) or solely (barium chloride) to the relatively low degree of reactivity of C. moorei with these reagents as compared with others; in those with pyrogallic acid and sulphuric acid to the relatively very high reactivity of C. zeylanicum and C. hybridum j. c. harvey; and in those with chromic acid and sodium salicylate to the combined relatively low reactivity of C. moorei and relatively high reactivity of C. zeylanicum and C. hybridum j. c. harvey.
(2) The marked early period of resistance followed by a moderately rapid to a rapid reaction exhibited by C. zeyianicum and the hybrid in the reactions with chromic acid, pyrogallic acid, sulphuric acid, hydrochloric acid, and sodium salicylate are in striking contrast with the very marked continued resistance that is exhibited by the records of the remaining 16 reagents during the entire 60 -minute interval.
(3) A comparison of the differences in the course of the reaction-curves will elicit many points of interest. Thus, taking the acid group, and comparing the charts for chromic acid, pyrogallic acid, nitric acid, sulphuric acid, and hydrochloric acid, it will be seen, at a glance, that they so differ that the influence of any one reagent can readily be distinguished from those of others; likewise, those of potassium sulphide and sodium sulphide. On the other hand, three groups of charts, including those of (a) potassium hydroxide and sodium hydroxide, (b) calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride, and (c) nitric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, and potassium sulphide are in each case rloscly alike, notwithstanding wide differences in the characiers of the reagents.
(t) The carliest period during the 60 minutes at which the reaction-curves are farthest apart, and henee the best period for the differentiation of the three starches, varies markedly with the different reagents. Approximately, this optimal period occurs at the end of 15 minutes in the reactions with nitric acid, sulphuric acid, potassium iodide, and sodium hydroxide; 30 minutes with chromic acid, pyrogallic acid, hydrochloric acid, potassium hydroxide, sodium sulphide, and sodium salicylate; and 60 minutes with chloral hydrate, potassium sulphocyanate, potassium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, colalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

Reaction-intexsities of the Hybrid.
This section deals with the reaction-intensities of the hybrid as regards sameness, intermediateness, excess and
deficit in relation to the parents. (Table A $\%$ and Charts 1) 128 to 1) 14i.)
 the seed parent in some of the rantions: the -ather an than of the pollen parent in the reactions with indine, chromic acid, nitric acid, potassium hydroxide, sodium hymonathe, calcium nitrate, uranium nitrate, colbalt nitrate, copper nitrate, cupric chloride, barium chluride, and mercuric chloride; the same as those of both parente in none of the reactions; intermediate in those with chloral hydrath, hydrochlorie acid, sodium sulphide, sodimm saliovlate, and strontium nitrate, in all of whith beins "An- . th the pollen parent; highest with polarization and gentian violet, in lowth being closer to the pollen parent; and the lowest with safranin, temperature, pyrogallic acid, sulphuric acid, potassium iodide, potassium sulphocgamate, and potassium sulphide, in 6 being closer to the pollen parent and in 1 closer to the seed parent.

The following is a summary of the reation-intensities: Same as seed parent, 0 ; same as pollen parent, 12 ; 6ame as both parents, 0 ; intermediate, 5 ; highest, 2 ; lowest, i.

Intermediateness is recorded in less than one-fith of the reactions; excess and deficit of reactivity is almost twice as frequent as intermediateness and sameness an the pollen parent is noted as often as intermediateness and excess and deficit comblined. From then data the seed parent has exercised very little influence on the properties of the starch of the hybrict.

This section deals with the composite curves of the reaction-intensities, showing the differentiation of the
 dum j. c. hurcey. (Chart E. i.)

The must conspricusus teatures of the chart may le summed up as follows:
(1) The wide separation of the curve of ' $'$ ' meser, i in four-fifths of the reactions from the curves of C '.zeylanieum and the hyhrid, which latter tend to run the gether with remarkable wheness.
(: In (${ }^{\prime}$. momere the lower polarization and tian-violet reactions coupled with higher reactions with iodine, heat, and with all of the chemical rearents as compared with C. zeylanicum.
(3) The difterences in the relative pmations of the three curves of reaction with polarization, ionline, gentian violet, and saframin: at for instance, the curves of 6 ? moorei being lowest in polarization, highest in iodinc. lowest in gentiau-violet, and intermediate in saframin reactions, and thereafter in the chart always highest.
 gation, prowallic acid, nitric acid, sulphurio acid, hydrochloric acid, potassium hydroxide, potassium iodile. potassium sulphergata, sodium hydrovide. -rdium sulphide, sonlium salieglate, and strontium nitate: the high reactions with gentian violet, safranin, and chromic acill: the moderate reactions with ionline, temperature. calcium nitrate, and uranium nitrate: the low ram tion with chloral hydrate, potassium sulphide, cohalt nitratte. "opper nitrate, cupric chloride, and mereuric chloride; and the very low reaction with barium chloride.
(i) In ('. Esphmimum the wery hast pmariation ractimes the high reactions with fontan when, afranin.

 tions with ionlize and trmpranure :m! the wer haw reactions with chloral hydrate, nitric acid, hydrochloric acid, potassium hydroside, potassium indide, potassium sulphocyanate, potassium sulphide, sodium hydrovide. sodium sulphide, calcium nitrate, uranium nitrate, stron-
 ride, larimm chande and man urn , hlow!
 tion with polarization; the high with gentian shat a a d

 arol, and -ulphom and athl the wry law wht at ral hydrate, nitric and, hydromhoric acid, protacium hyWroxide, potas-inm indide, petas-imm sulph, that, I"tia-ium sulphide, andium hydroxite, ordium =ulp mb.
 halt mitrate, copper nitrate, cupric: chloride, hurium

 t川:

	$\begin{aligned} & \text { Wrive } \\ & \text { hisht } \end{aligned}$	High	Mremt-	1., ${ }^{\text {, }}$.	
C. morrei	12	3	4	"	
\cdots zslanirum	1	3	3	2	17
(C. hylridum j, c. harves	1	2	\because	4	17

 in the reactions with selenite, in the reactions with iodine, and in the qualitative reactions with the various chemical reagents it will be noted that the starnh - of
 combon in varying derrees of development, lut also individuatities which collectively are in each case characteristic of the starch. The starh if 1 . Imengifuium Show: in comparion with that of (rimum =eqbinionen a
 arame: that imerularitio are more proment ant ma re irequently present: and that the majority if the era.no
 The hilum is men quit. on frequmty fi-wured and in slightly less refractive : multiple hila are absent, although
 Heep: and eccentricity is somewhat greater. The lamellir are mone distinet distalward and often more discernible in this region than in a lustrous hamd at the di-tal margin, which is the reverse of what is nuted in C. ar !
 Inmella and bamets of lamella, and also in the lengths of the bands: and the number of the lamella is leos. The common sizes are nearly the same, the larger grains are larger, and, in case of beth, the width is greater than the length- the oppmsite to what is seen in C. zeylanicum. In polaristopic figures, reactions with sefenite. qualitative reactions with iondine, reactions with gentian
 Whemial rearente there are differences, some of them
 differentiation.

The starch of the hylorid in form, hilum, lamellae,
 that oi (': aeplanicu", than to that of then of er maneme. but in some instances the reverse. The same is true of the polariscopic fisures and reactions with selenite. In the iodine reactions it is distinctly chaser to (' seglani-

 tassium sulphoceanate, sontium sulphite. sontiom sali-- Whate, copper nitrate, cupric chloride and mercuric

Table A 8.

	$\underset{\sim}{\text { g }}$	白	$\dot{\text { ġ }}$	白	$\begin{aligned} & \dot{E} \\ & \dot{B} \end{aligned}$	$\begin{aligned} & \text { á } \\ & \text { è } \end{aligned}$	$\begin{aligned} & \text { 音 } \\ & \stackrel{4}{\nabla} \end{aligned}$	最
Chloral hydrate：								
C．zeylanicum．	\cdots			0.5	2	3	5	5
C．Iungifulium．				46	57	65	68	68
C．kircape．．	\cdots			0.5		3	4	
Chromic acid：								
C．zuylanicum	．			1	2	70	94	99
C．Longifoliam	\ldots			45	70	99		．．
C．Kircapre				1	5	so	99	100
（．zeslanicum				3	15	80	88	92
C．．lungifolium	65	85	．	98		80		
C．kircape．．．				33	87	96	98	98
Nitric acid：								
C．zeylanicum	\cdots			1	1.5		2	4
C．Jongifolium	．	89		92	1.5	99		
C．kircape．．．	\cdots			7	30	50	61	73
sulphuric acid：${ }^{\text {a }}$ ，								
C．zeylanicum．	．	．	．	4	62	89	95	99
C．lougifolium				96	100			9
C．kircape．．				40	87	96	99	
Hydrochluric acid：								
（＇．zeylanieum	．			1	6	14	33	35
（ \cdot ．Lungifoliun	ss			199				
C．kircape．				37	65	75	84	85
lotassium bydroxide：								
C．zeylanicum．	\cdots	．		1	5	7	10	13
C．longifolium	．	．		90	97	99		
C．kircape．．．．．	\cdots	\cdots		11	52	65	67	70
Potassium iodide：								
C．zeylanicum．		\cdots		1		3	5	7
C．longifolium				90	97	98	99	
C．kircape．．				3	18	28	39	45
Potassium sulphocyanate：								
C．zeylanicum．				1		5.5	9	11
C．longifolium ．		70		93	95	99		
C．kircape．．	\cdots	．		7	50.	70	76	82
Potassium sulphide：								
C．zeylanicum．				1				1
C．longifotium				50	55	60		66
C．kircape．．				1	2	3	3	3
Sodium hydroxide： 1 ｜								
C．zeylanicum．．．				1	3	4	5	7
（ ．longifolium		90		91	95	98		99
C．kircape		．		3	20	29	33	33
Sodium sulphide：								
（ \therefore zeyldnicum				1		2.5	3	4
（．Iongifoliuns．				52	66	s2	s4	91
（＇．kircape．．		．		2	12	27	35	42
Sodium salicylate：								
（ ${ }^{\text {．zeybanicum }}$				5	16	45	82	98
C．Hongifolium				37	66	95	99	
（. kircape．．				3	9	40	69	78
Calcium nitrate：								
C zeylanicum				0.5				1
C．longifolium				65	75	78	81	81
（＇．kircape．．．				2	11	15	19	20
Uranium nitrate：								
（. zeslanicum．				0.5				1
（ \because Iongifolimm				65	7.	82	si	8
（. hircaur ${ }^{\text {a }}$ ．				0.5	3.5	6		10
Strontium nitrate：								
C．zeylanicum				0.5		1	2.5	3.5
C．Inngifoliun				69	B 3	97	9x	\％
（. hircale				0.5	3	6	15	32
C．zeylanicum				0.5				1
C．longifolium				34	54	60	65	70
C．kircate．．				0.5				2
Copper nitrate：								
C．zeylanicum				0.5				0.5
C．Iongifotium．				54	70	78	so	81
C．kircape．．．				0.5	4	5	7	s
Cupric chloride：								
（ ${ }^{\text {a }}$ zeylanicum				0.5				0.5
（．Longifolium				4s			（i2	61
（ ．Nircape ．				0.5		3	6	S
Parium chloride：								
C．zeylanicum．				0.5				1
C．longifolium				3		16	19	20
C．kircape．．				0.5			．	0.5
Mercuric chloride：								
C．zeylanicura．				0.5				0.5
C．longifolium．				57	63	70	77	77
C．kircape．．					1		3	4

hybrid are noted especially in the reactions with potas－ sium iodide，potassium sulphide，and sodium sulphide．
Reaction－intensitics Espressed by Light，Color，and Tempera－

Polarization：

C．zeylanicum，very bigh，value 93 ．
C．longifolium，high to very high，much lower than C．zeslanicum， value 83 ．
C．kircape，high，slightly higher than C．zeylanicum，value 95 ．
Iodine：
C．zeylanicum，light to moderate，value 35.
C．longifolium，light to moderate，decper than C．zeylanicum， value 40.
C．kircape，light to moderate，slightly lighter than C．longifolium． value 38 ．
Gentian violet：
C．zeylanicum，moderately deep to deep，value 67.
C．longifolium，moderate，lighter than C．zeylanicum，value 60.
C．kircape，moderate，the same as C．longifolium，value 60.
Safranin：
C．zeylanicum，moderately deep to deep，value 67.
C．longifolium，moderate，lighter than C．zeylanicum，value 60.
C．kircape，moderately deep to deep，deeper than either parent， value 70 ．
Temperature：
C．zeylanicum，majority at 77 to 78° ，all but rare grains at 79 to 80° ， mean 79.5° ．
C．longifolium，majority at 70 to 71° ，sll at 74 to 75° ，mean 74.5° ．
C．kircape，majority at 75 to 76° ，all but rare grains at 77 to 79° ， mean 78° ．

The reactivitics of C．zeylanicum are higher than those of C ．longifolium in the polarization，gentian－violet， and safranin reactions，and lower in the iodine and tem－ perature reactions．

Interesting differences are noted in these reactions in the relations between those of the hybrid to one or the other parent．In the polarization and safranin reactions the hybrid reactions are higher than those of either parent，in both instances being nearer those of C．zey－ lanicum，the seed parent；in the iodine reaction it stands intermediate，but somewhat closer to C ．longifolium； while in the gentian－violet reaction it is lower than in C．zeylanicum and the same as in C．longifolium．The temperature reaction is intermediate，yet distinctly closer to that of C ．zeylanicum，the mean being 1.5° lower than in C．zeylanicum and 3.5° higher than in C．longifolium． The reactions，on the whole，are closer to C．zeylanicum．

Table A 8 shows the reaction intensities in percent－ ages of total starch gelatinized at definite intervals（min－ utes）．

Velocity－reaction Curves．

This section treats of the velocity－reaction curses of the starches of Crinum zeylanicum，C．longifolium，and C．kircape，showing the qualitative differences in the behavior toward different reagents at definite time－inter－ vals．（Charts I） 148 to D 168．）

The most striking features of this group of curves are：
（1）The immediate and relatively very marked reactivity of Crinum longifolium with all of the reag－ ents excepting barium chloride．With 7 of the 21 reag－ ents， 90 per cent or over of the total starch was gelatinized in 5 minutes；with 3 reagents， 60 per cent or over；the lowest percentage being 34 ；the average gelatinization for all of the reagents，excepting barium chloride，being nearly io per cent in 5 minutes，as compared with usually an average of 0.5 to 3 per cent in case of C ．zey－ lanicum and the hybrid．With the latter，in only the reactions with pyrogallic acid，sulphuric acid，and hy－ drochloric acid was there any marked effect during this time－interval，these reactions in case of the hybrid rang－ ing from 33 to 40 per cent，while with C．zeylanicum with the same reagents there was a gelatinization of 4 per cent or less，thus showing a remarkable approach in the properties of the starch in relation to these three reagents to the properties of C ．longifolium．In the
reactions with nitric acid, potasium hydroxide, and potassium sulphocyanate reactivity during the tirst 5 minutes is distinetly higher in the hybrid than in C. zeylanicum.
(2) As the reactions proceed the tendency, with two exceptions, is for the hybrid curves to berome well repat rated from those of C '. zeylanicom, becoming matma. diate, yet keeping eloser to this parent than to 0 longifolium. The starch therefore manifests the reactive properties of both parents, but is influenced distinctly more by the high resistant properties of $\left({ }^{\prime}\right.$. zeylanicum than by the relatively low resistant properties of U '. longifolizem. 'The degrees of separation of the three curves vary remarkably in the different reactions. In some reactions they are to a notable extent separated, showing correspondingly wide differences in reactionintensities of all three starches, as is esperially marked in the reactions with nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, and sodium sulphade; 111 others, the three curves tend to be comparatively close, as in especially the sulphuric-acid reaction. In others there is marked tendency for the curve of C. longifolium to be separated from those of C. zeylanicum and the hybrid, the two latter inclining markedly toward one another, as in especially the reactions with chromic acid, potassium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride. In other reactions various gradations of relationship exist between the foregoing aroups. The comparative slowness of the C. Kircape reactious appears to be due in some cases to the high resistance of the starches during particularly the earlier period of the reactions, as for instance, in those with chromic acid, potassium sulphocyanate, and sodium salicylate. In certain other reactions the resistance during the same period is low.

The best period for the differentiation of the starches is in most of the reactions at the end of 30 mimutes, including here those with chromic acid, nitric acid, potassium hydroxide, potassium iodide, and sodium salicylate: in a few at the end of 15 minutes, as in those with pyrogallic acid, sulphuric acid, hydrochloric acid, and potas sium sulphocyanate; in others at the end of 60 minutes, as in those with chloral hydrate, calcium nitrate, uranium nitrate, strontium nitrate, colalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride. In some of these reactions the differences between the figures for C. zeylanicum and C. hircape are trilling anm within the limits of error, as in the reactions with chloral hydrate, potassium sulphide, barium chloride, and mercuric chloride; and in certain others the sariatime are unimportant, as in those with chromic arid, potassium sulphide, uranium nitrate, copper mitrate, and cupric chloride.

Reatrion-hntensitide of the Hybmas

This section deals with the reaction-intensities of the hybrid as regards sameness, intermediateness, excess and defecit in relation to the parents. (Table As and ('harts D) 148 to D 168.)

The reactivities of the hylrit are the -atme aze thow of the seed parent in the reactions what chlomal hydrate. potassium sulphide, cobalt nitrate, atal harium charide: the same as thes of the pollen parme whth in mitall tiolet: the same as those of both parent- in nome; intermediate in those with iodine, temperature, chromic acid, pyrncallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium
nitrate, uranium nitrate, strontium nitrate, copper ni-

 ties: Same as seed parent, 4 ; bimue as pullen parent, 1 ;
 lowert, 1.

The tendency to inturmediaturn .. and to: the: +...

 Inttle influence on the proproties of the starsh of the hybrid, the reverse of what wa- renorded ith the prow ing set, in which C. zeylanicum is the pollen parent, while in this sut this -pecturs is the stoul parent, froms

 of the hybrid.

 reaction-intensities, showing the differentiation of the starches of C'rinum zeylanicum, C'. Tongifolium, and \therefore. kircape. (Chart Es.)

The most conspicuous features of the chart naty 1... summed up as follows:
(1) The very distinct separation of the curses of ${ }^{\prime}$. zeylanicum and C. Fircupe from the curve of C^{\prime}. In yifolium, excepting in the reactions with prlarization, iodine, gentian violet, safranin, and temperature.
(2) The intermediate position of the curve of the hybrid (except in the reactions with polarization, in ..ln". safranin, and sodium salicylate and its relative (1..n.t.s. with few exceptions, to the curve of C. zeylunicum. In the reactions with safranin, chromic acid, and pyrogallic acid the curve is closer to that of C. longifolium; and
 longifolizm.
(3) In C. zeylanicum the very high reaction with

 chromic acid, pyrorallic acid, and stedium salicylate; the low reactions with fodine and temperature rean i. . .a : atal the very low reactions with chlora! ©ulratn, 1atra . . 1 . hydrochloric acid, potassium hydroxid. fonta-2:um in? ! . potassium sulphocyanate, potasium sulphite, sodrum hydroxide, sodium sulphide, calcium nitrate, uranium ni-

(t) In ('. longifolium the very ligh reactions with polarization, pyrogallic acil, nitric acid, sulphuric acid,
 iodide, potassium sulphocvanate, and sodium liydroxide; the high reactions with gentian violet, saframin, char ma wid, sodium salicylate, and strontium nitrate: the '.. !-

 sulphide, calcium nitrate, uranimm nitrate.

(5) In C. kircape the very high reaction with pular-

कhromic acid, promallic nodel, and sulphurie and: the

 with chloral hydrate, potassium iodide, putassium sul-
phide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

The following is a summary of the reaction-intensities:

	Vers high.	High.	Moderate.	Low.	Very low.
(${ }^{\text {a }}$ zeylanieum,	1	3	3	2	17
C. Ioncifolium.	9	5	2	9	I
(. kircape.	1	5	0	7	13

9. Comparisons of the Starches of Crincal loxgifolifa, ('. moorer, anid C. powellif.

In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with various chemical reagents it will be found that the starches of the parents and hybrid exhibit not only properties in common in varying degrees of development but also individualities, the sum of which in case of each starch is distinctive of the starch. The starch of the hybrid is in form, characters of the hilum, lamellæ, and size in certain respects closer to ore than the other parent, and in other respects as close to one as to the other. There are larger numbers of both aggregates and compound grains than are found in Crinum longifolium, but not quite so many as in C. moorei. The irregularities of the grains are more prominent and more numerous than in C. longifolium, but less than in C. moorei. An abrupt deflection of elongated, slender grains at or just distal to the slightly eccentric hilum is seen, this peculiarity being absent from C. longifolium, but present in C. moorei. The majority of the grains are not so broadened and flattened as in C. longifolium, yet more flattened than in C. moorei. In size, the grains are more evenly divided into elongated and broadened forms than in case of either parent. In polariscopic figures and appearances with selenite, and in the iodine reactions, the hylbid shows on the whole a distinctly closer relationship to C. moorei. In the qualitative reactions with chloral hydrate, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium sulphide, sodium salicylate, copper nitrate, cupric chloride, and mercuric chloride it is, on the whole, very much closer to C. moorei than to C. longifolium. In some reactions there are certain features that are much more like those of C. longifolium, particularly in some of the processes with potassium iodide and sodium sulphide. In the reactions with copprer nitrate, cupric chloride, and mercuric chloride the starch of the hybrid exhihits certain very interesting poculiarities, especially with reference to excess or deficit of parental extremes.

- Reaction-intensitios Lxpressed by Liyht, C'olor, and Temperature Reactions.
Potarization:
C. longifolium, high to very high, value 83 .
C. moorei, high to very high, slightly higher than C. longifolium. value 85.
(3 . powellii, high to very high, the same as (. moorei, value 85 . Iodine:
C. longifolium, light to moderate, value 40.
C. moorei, moderate, higher than C. longrifolium, value 50 .
C. powellii, slightly to moderate, value 45 .

Gentian violet:
('. Iongifolium, moderately demp to deep, value 60.
C. moorei, moderately deep to deep, deeper than C. longifolium, value 65.
C. powellii, moderately deep to deep, the same as C. moorei, value 65.

Safranin:
C. Iongifolium, moderately deep to deep, value 60.
C. moorei, moderately deep to deep, deeper than C longifolium, value 65 .
C. powellii, moderately deep to deep, the same as C. moorei, value 65.
Temperature:
C. longifolium, majority at 70 to 71°, all at 74 to 75°; mean 74.5°.
C. moorei, majority at 68 to 70°, all but rare grains at 70 to 71°; mean 70.5°
C. powellii, majority at 65 to 67°, all at 68 to 69°; mean 68.5 .

In all five reactions the reactivities of C. longifolium are lower than those of $(1$. moore in varying degree. The reactivities of the hybrid are the same as those of C. moorei in the polarization, gentian-violet, and safranin reactions; intermediate in the iodine reaction; and higher than those of either parent, but closer to C. moorei, in the temperature reaction. In four of the five reactions it is closer to the pollen parent, and in one intermediate.

Table A 9 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-Reaction Curves.

This section deals with the velocity-reaction curves of the starches of Crinum longifolium, C. moorei, and C. powellii, showing the quantitative differences in the behavior toward different reagents at definite timeintervals. (Charts D 169 to D 189.)

The most conspicuous features of this group of curves are:
(1) The closeness of all three curves, indicating not only a closeness of the parent stocks, but also very little modification of parental peculiarities in the hybrid.
(2) The higher reactivity of the hybrid than of either parent, excepting in the sodium salicylate reaction in which it is at first intermediate and then the same or practically the same as that of the pollen parent.
(3) The tendency for all three curves to run close together throughout the periods of the reactions.
(4) The intermediate position of the C. moorei curve throughout the series of reactions, excepting in the reactions with sodium salicylate and barium chloride. In the former it is practically the same as that of the hybrid, and in the latter practically the same as that of C. longifolium. It is of interest to note that while the curves of the parents in the reation with barium chloride are practically the same, the curve of the hybrid is well separated (higher) from them. In many of the reactions gelatinization goes on so rapidly during the first 5 minutes that there is but little differentiation of any two or of all three, as the case may be. With proper strengths of solution marked differences could undoubtedly be elicited.
(5) The earliest period during the 60 minutes at which the three curves are so separated as to show the most marked diflerences between them varies with the different reagents. Approximately, this period occurs within 5 minutes in the reactions with pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iolide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, sodium salicylate, (alcium nitrate, strontium nitrate, and colalt nitrate; within 15 minutes in those with chromic acid, uranium nitrate, mercuric chloride, copper nitrate, and cupric chloride; at 30 minutes with chloral hydrate and potassium sulphide; and at 60 minutes with barium chloride.

Remefion-fxthanithe of the Ityprid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 9 and (harts D 169 to D 189.)
'lable A 9.

 to one as the other farent) ; and the fowest in mo: :ant. .

 same as both parathe, "; intermonlate, 2; highert, \%1; 1.wた-t, 0 .

 tivity and sameness or inclination to the pullen parent
 tend- th hither reactivities than the other parent, but

 wed parmt has ohviously had very little influenew in

 romparathely moment in dutermising the pareant

 reation-intensities showing the differentiation of the starths of ('rinum longifölum. '. morei. ant 1'. frompllii. (Chart E : 3. 1

 cont of the ed reacetions the hathed curve is clower to the

 tivity of the hythed in an.
of the parent stacks in the reations wath calcium nit :" uranium nitrate, copper nitathe, 'uprit dhleride abl mere urie chlorile is quite remarkahle hy showine a wide heparame from intermediat.
(:3) In 1'. 'wn "olium the wery hish reations with polarization, p!emqallic ache, sitric achl, sulphuric hydroblorie acid, potasium hydroxide: potasium
 the high re.t:1.13 - w1t.1 -

HA: H: with whloral hevlrat: ।
-nhphide, calcium nitrate, uranium nitrat", colale ni-

ride: and tho very low reateon with harimm whore
(1) !!1'
zation, pyrogallic acid, nitric acid, sulphuric acml. hydro-

potassium sulphocyanate, sodium hydroxide, sodium sulphide, sodium salicylate, and strontium nitrate; the high reactions with gentian violet, safranin, and chromic acid; the moderate reactions with iodine, temperature, calcium nitrate, and uranium nitrate; the low reactions with chloral hydrate, potassium sulphide, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; and the very low reaction with barium chloride.
(5) In C'. powellii the very high reactions with polarization, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, and strontium nitrate; the high reactions with gentian violet, safranin, copper nitrate, cupric chloride, and mercuric chloride; the moderate reactions with iodine, temperature, and cobalt nitrate; the low reactions with chloral hydrate, potassium sulphide, and barium chloride; and the absence of any very low reaction.

The following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
C. longifolium	9	5	2	9	1
C. moorei	12	3	4	6	1
C. powellii.	15	5	3	3	0

Notes on the Crinoms.

Among the starches studied are three from recognized species, two of which, C. moorei and C. longifolium, are more closely related botanically and horticulturally than is either to C. zeylanicum. The first two are stated to be the only hardy species of the genus, C. moorei being less hardy than C. longifolium. C. powellii, the hybrid of C. moorei and C. longifolium, is recorded as being more hardy than C. moorei.

In comparing the reactions of the starches of these three species as presented in Charts E \% E 8 , and E 9, several features of interest in addition to those already referred to will be noted:
(1) The wide separation of the curves of C. longifolium and C. moorei from the curve of C. zeylanicum, a departure so marked as to suggest a greater difference botanically than is recognized or that it is an expression of marked horticultural difference. The explanation seems to rest in the latter: C. longifolium and C. moorei are, as stated, hardy crinums, and they exhibit a far higher reactivity than C. zeylanicum, a tender crinum, which has a low degree of reactivity. A number of the tender crimums were studied in respect to the reactiveintensities, including the well-known species, C. americanum, C. erubescens, C.fimbrialulum, C. scabrum, and C. virginicum, all of which have low reactivity curves corresponding with the curve of C. zeylanicum. Therefore, it seems probable that among species of this genus hardiness or tenderness hears an inverse relationship to reactive-intensity. Such a relationship has been noted in other gencra, as, for instance, between A maryllis and Hippeastrum, the former being relatively hardy and the latter tender; the former being of distinctly higher mean reactivity than the latter. In accordance with the foregning there are two generie types of curves which
correspond with the two groups of hardy and tender groups of plants, respectively, and it appears from the charts that the hybrid C. kircoue is in a narked measure in the nature of a connecting link between the two groups.
(2) The type of curve of C. longifolium and C. moorei, notwithstanding that these curves are far separated in all of the important reactions from the curve of C. zeylanicum, corresponds with that of C. zeylanicum. The rises and falls are strikingly coincident-coincidences that could be greatly accentuated by modifications in the strengths of the reagents.
(3) The curves of the hybrids, in the three charts exhibit certain well-defined peculiarities: In each the hybrid curve tends to follow closely one parent, that of C. hybridum j. c. harvey following the curve of C. zeylanicum; that of C. powellii the curve of C. moorei; and that of C. kircape the curve of C. zeylanicum. The relatively very potent influences of C. zeylanicum on the properties of the hybrid are strikingly evident, especially on C. hybridum j.c. harvey.

As regards sameness, intermediateness, and deficit of development in relation to the parents, the data of the three sets of starches show marked differences, as is illustrated in the following summaries:

	C. hybridum j. c. harvey.	C. kircape.	C. powellii.
Same as, or practically the same as:			
Seed parent.	0	4	0
Pollen parent	12	1	3
Both parents.	0	0	0
Intermediate.	5	18	2
Highest.	2	2	21
Lowest.	7	1	0

10. Comparisons of the Starches of Nerive crispa, N. elegans, N. danty maid, and N. queen of roses.
In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents, all four starches exhibit properties in common in varying degrees of development, and each starch has certain individualities. The starch of Nerine elegans in comparison with that of the other parent N. crispa is found to contain compound grains which have a larger number of components, and also aggregates which are not found in the latter. The grains are more regular in form, of less brealth usually in proportion to length, and in the majority of the grains the proximal end is smaller than the distal end, whereas in N. crispa only the minority of the grains have this feature. The hilum is not so distinct, less fissured, and slightly more eccentric. The lamelle are, as a rule, finer but not so distinct; there are more grains that have lamelle that are not so fine at the distal end as near the hilum; and the number of lamellæ is less. The sizes are generally less and there are differences in the ratios of length to breadth. In the polariscopic figures, reactions with selenite, and qualitative reactions with iodine there are many differences, mostly apparently of a minor charac-
ter. In the qualitative reactions with chlural hydrate, nitric acid, potassium iodide, potassium sulphide, and sodium salicylate many datferences are noted, some rather striking but mostly seemingly of minor importance. The starch of the hybrid N. dainty maid in comparison with the starches of the parents contains more agrgregates than that of N. elegans and as many as in N. crispa; the irregularities are more numerous than in N. eleguns and about the same as in the other parent; and while most of the grains in relative sizes of the proximal and distal ends resemble those of N. crispa, there are more that have the proximal end smaller than the distal end. The hilum in distinctness is closer to N. crispa, while in the absence of fissuration it is closer to N. elegans; in eceentricity it also is closer to the latter. The lamellax are finer than those of either parent, but nearer N. elegons, while in general characters and arrangements they are nearer N. crispa; the number is less than in either parent, but nearer that of N. crispa. The size is somewhat closer to N. elegans. In the polarization, selenite, and qualitative reactions the resemblances lean to one or the other parent, but on the whole distinctly more to N. elegans. In the qualitative reactions with chloral hydrate, nitric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, and sodium salicylate certain of the phenomena lean to one parent and certain others to the other parent, but the relationship is, on the whole, distinctly closer to N. elegans. In comparison with the starches of the parents the starch of the hybrid N. queen of roses contains a larger number of aggregates which have a larger number of component grains, and more compound grains than in either parent; and the latter are like those of N. elegans; the grains are less regular than those of N. elegans but more regular than those of N. crispa. The hilum is as distinct as in N. crispa and more distinct than in the other parent; it is rarely fissured, thus being closer to N. elegans; and the eccentricity is greater than in either parent, being nearer N. elegans. The lamellæ in characters and arrangements closely resemble those of N. crispa, but the number is less than in either parent and closer to that of N. elegans. In size the grains are smaller than those of either parent, and closer to those of N. elegans. In the polarization, selenite, and qualitative reactions with iodine the resemblances are closer to N. elegans. In the qualitative reactions with chloral hydrate, nitric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, and sodium salicylate certain of the phenomena lean to one parent and certain others to the other. In the reactions with chloral hydrate and sodium salicylate they, on the whole, more closely resemble those of N. crispa, but those with nitric acid, potassium iodide, potassium sulphocyanate, and potassium sulphide more closely resemble those of N. elegans.

The two hybrids differ in certain very interesting respects, especially as regards their greater resemblances in their various properties to one or the other parent. N. dainty maid is in form more like N. crispa than N. elegans, but in other histological respects more like the other parent. N. queen of roses is in form and hilum more like N. elegans than N. crispa, hut in the lamellæ it is nearer to N. crispa. In the polarization properties both hybrids are eloser to N. elegans than to N. crispa, N. queen of roses being closer than N. dainty
maid. In the iodine reactions, both quantitative and qualitative, N. dainty maid more closely re-embles \mathcal{N}. elegans; but in the other hybrid, N. queen of roses, the unheated grains show a closer relationship to N. elegans and the heated or gelatinized grains to the other parnist. In the aniline reactions N. deinty mozel in chan t.) N. elegans than to N. crispa; while N. queen of roses is closer to N. crispa than to N. elegans. In the qualitative roac-
 individualities are recorded, as regards interparental and inter-hybrid and parental-hybrid reactions. The hybrids are sometimes practically alike and at others quite as different from each other as they are from the parent., or as the parents are from ead other. The qualitative reactions may be closer to one or the other parent, armeding to the reagent. In the chloral-hydrate reactions both hybrids are closer to N. crispa, N. dainty maid being the closer. In the reactions with nitric acid, potassium iodide, potassium sulphocyanate, and potassium sulphide the hybrids are closer to N. elegans, N. dainty maid being the closer. In the sodium-salicylate reactions N. dainty maid is nearer to N. elegans, and N. queen of rowe $14 \cdots \mathrm{~m}$ to N. crispa, there being nearly as much difference between the hybrids themselves as between the hybrid V. queen of roses and the parent N. elegans.
Reaction-intensities Expressed by Light, Color, and Temperature Rections.

Polarization:

Nerine crispa, moderate to very high, value $\$ 5$.
Nerine elcgaus, moderate to very high, lower than N . crizpa, value 80 .
Nerine dainty maid, moderate to very high, fance as N . thatams, value 80 .
Nerine queen of roses, moderate to very high, luwer than pithis parent, value 77 .
Iodine:
Nerine crispa, moderate, value 45.
Nerine elegans, moderate, deen er than in N. criopa, value 85 .
Nerine dainty maid, moderate to dewp, deeper than in either parent. value to.
Nerine queen of roses, moderste, the same as in N. elegans, value 55. Gentian violet:

Nerine crispa, light to moderate, value 40.
Nerine elegans, light to moderate, lighter than \mathbb{N}. crispa, value 35.
Nerine dainty maid, light to moderate, the same his in … Clezesus value 35.
Nerine queen of roses, light to moderate, the same as in X . crivi a, value 40
Safranin:
Nerine crispa, moderate, value 50 .
Norine eltegans, moderate, lightor than in N. crisuat, value 4.5 .
Norine danty maid, moderate, the same as in N. eleganz, value 50.
Nurne queen of roses, moderate, the same as in N. crispa, value 50 .
Temperature
Nerime Crisu, in the majority ut et to 6.5^{2}; in wll b.t it to il. . mean 70.7°.
 mean 75.3°.
Norine danty maid, in the majority ut tiy to 70.5°; in all at $\operatorname{iz} 5$ to 73.8°; mean, 73.2°.
Nerine queen of roses, it the masority at tis 069.1°. in whll ist 11 to 72.8°; mean 71.9°.
N. crispa shows a higher reactivity than the other parent N. elegans in the reactions with polarization, gentian violet, safranin, and temperature, and a lower reactivity with iodine. Both hybrids in the polarization and indine reactions are mearer to S. . le fanes than to the othor parent, N. dainly maid hasiner the sam. po....i.a...nn reaction as this parent, but a higher insine reaction.

With gentian riolet and safranin N. duinty maid is the same as \bar{N}. elegans, while N. queen of roses is the same an l. criven. In the hemprature ratione the hylorids are intermediate, N. dainty maid inines chaer tis I. elegans, and N. queen of roses closer to N. crispa. N. dainty muid is, on the whole, more closely related in thene rount the the pollen parent, and N. queen of row. © th the s.e. 1 paremi.

Table A 10 shums the reaction-intensities in percentasce of total starch gelatinized at definite intervals (minutes):

Table a 10 .

Table A 10-Cuntimutd.

Velocity-hthtion Cutites.

This section deals with the velocity-reaction curres of the starches of Nerine crispa, N. elegans, N. dainty maid, and N. queen of roses, showing the quantitatire differences in the behavior toward eifferent reagents at definite time-intervals. (Charts D 190 to D 210.)

Among the conspicuous features of these charts are:
(1) The marked closeness of all four curres, exceptinf in the reactions with cilh alat hate and porasium -uphumatate, in whin there is a marben tembeney to separation, especially in the former, although in the teneral course of curves the characters of the reactions astee. In the reactions with pyrogallic acid, sulphuric acid, hydrochloric acid, potassium hydroxide, sodium sulphide, calcium nitrate, copper nitrate, cupric chloride, harium chloride, and mercuric chloride gelatinization occurs either with such rapidity or slomness that there is no satisfactory differentiation, such differences as are noted falling within the limite of error of experiment or heing unimportant. Even in some of the other reac$\because \therefore$ thin differences are small.
(\because) The vurne of I. crispu is higher than the curve

 nitric acid, potassium sulphide. sudium hydroxide dium salicylate, and strontium nitrate.
(a) The curres of the hytrids show varying parental relationships, there being a well-marked tebdency in the rearnons of 1 . dainty moit to intermediateness and a higher positent than the parental curves, with a sum... what more marked closemess to the mullen parent, whih. in \boldsymbol{N}. queen of roses there is less temkener to intermediate-
 equal inclination to one or the other parent.
(i) An early period of comparaticely marked re-

 for chromic acid and potascium sulpho yana..
(t) lon ande that the best for the differentiation of the four starches is for the reactions with nitric acid, potassium sulphide. sodium
 chloral hydrate at 15 minutes: with chromic acid and
 sium iodide sodium hydroxide, uranium nitrate ant

 thon tan he mare.

(harts D 190 to D 210.$)$

The reactivitics of the hybrit I. duinty maid are the

 nitrate, cupric chloride barium chloride and merouric chloride: intermediate with temperature. whoral hydrate, nitric acid, potassium iodide, solium hydroxide,
 parent, in one nearer the seed parent, and in one midintermediate) : hirlest with iodine sulphuricacid, $\%$:chloric acid, potassium sulphocranate. calcium nitrate, uranium nitrate, strontium mitrate, copper nitrat. I in

 of the pollen parent with iodic... t!. parents with prrogallic acid, potassium hydroxide. sodium sulphich.
chloride, and mercuric chloride: intermetliate with tem-

 highest with chloral hydrate, sulphurie acil, hylrochloric acid, potassium sulphocyanate. potassium sulphit.
dium hydroxide, sodium salicylate, calcium nitrate, ura-

 whe leing nearer the frillen parent and in the other \& arer the parent).

The following is a summary of the reaction-inte:..:ties of the hyrid as regards sammes, intormediatenes,

The hrbrids differ from each other in the reactions with polarization, iodine, gentian violet, safranin, temperature. chloral hydrate, sodium hydroxide, strontium nitrate. calcium nitrate and copper nitrate, in several to a minor degree. The hybrid 1 . dninty maid has a \therefore-tur reactirity than the other hybrid in the reactions with pularization, indine. calcium nitrate and copper

 The hy - !an ! . : :101 \therefore from the parents as do the parents from each other. T?, parental relationshipe of the two hybrids vary in the

 I. quen n of roses has the lowes reactivity and is nearer intermenlate, hut the former is nearer the pollen par.nt. and the latter nearer the socul parment in the $\because . . .$. with chloral hydrate the former is intermetiate and nearer the pulien parent. and the latter highest and

This section deals with the composite curres of the

 amd K. ywern of roses. (("hart E: 10.)

(1) TM be. in the rimes and
 ?.. \cdot.e. i : A ral hydrate. in which the varve of

 uf the nerines are comparatirely fast-reacting wit? this

(X. crispa is a garden variety and I. eroons is a

uosa has a high reactivity with chloral hydrate and N. sarniensis var. rosea a low reactivity, so that N. elegans takes after N. flexuosa in this reaction.)
(:) 1. crispm, in comparison with the other parent N. elegans, shows higher reactions with polarization, gentian violet, safranin, temperature, potassium iodide, potassium sulphocyanate, calcium nitrate, uranium nitrate, and cupric chloride; lower reactions with iodine, chloral hydrate, nitric acid, potassium sulphide, sodium salicylate, and strontium nitrate; and the same or practically the same reactions with chromic acid, pyrogallic acid, sulphuric acid, hydrochloric acid, potassium hydroxide, sodium hydroxide, sodium sulphide, calcium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride.
(3) The closeness of the curves of the two hybrids is striking, the only important differences in their courses heing noted in the chromic-acid reactions, the reaction of N. dainty maid being distinctly higher than in either of the parents, and very much higher than in the other hybrid N. queen of roses. The reaction of N. dainty maid is closer to N. elegans, while that of N. queen of roses is intermediate between the parents, but very much closer to N. crispa. N. dainty maid shows higher reactivities with polarization, iodine, calcium nitrate, and copper nitrate; and lower reactivities with gentian violet, saifanin, temperature, chloral hydrate, and strontium nitrate; and the same or practically the same reactivities with chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, uranium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride.
(4) In N. crisput the very high reactions with polarization, sulphuric acid, hydrochloric acid, potassium hydroxide, and serlium salicylate; the high reactions with nitric acid, potassium sulphide, and strontium nitrate; the moderate reactions with iodine, gentian violet, safranin, temperature, and chromic acid; the low reactions with chloral hydrate, and potassium sulphocyanate; and the very low reactions with pyrogallic acid, potassium iodide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, harium chloride, and mercuric chloride.
(5) In N. elegans the very high reactions with polarization, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, sodium salicylate, and strontium nitrate; the high reactions with chloral hydrate, and potassium sulphide; the moderate reactions with iodine, safranin, and chromic acid; the low reactions with gentian violet, temperature, and potassium sulphocyanate; and the very low reactions with pyrogallic acid, potassium iodide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(6) In the hybrid N. dainty maid the very high reactions with polarization, sulphuric acid, hydrochloric acid, potassium hydroxide, and sodium salicylate; the high reactions with iodine, nitric acid, potassium sulphide, and strontium nitrate; the moderate reactions with safranin, chromic acid, and potassium sulphocyanate ; the low reactims with gentian violet and temperature; and the very
low reactions with pyrogallic acid, potassium iodide, sodium hydroxide, sodiun sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(7) In the reactivities of the hybrid N. queen of roses the very high reactions with chloral hydrate, sulphuric acid, hydrochloric acid, potassium hydroxide, sodium salicylate, and strontium nitrate; the high reactions with polarization, nitric acid, and potassium sulphide; the moderate reactions with iodine, gentian violet, safranin, temperature, and chromic acid; the low reactions with potassium sulphocyanate; and the very low reactions with pyrogallic acid, potassium iodide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

The following is a summary of the reaction-intensities:

	Very high.	High.	Mod- erate.	Low.	Very low.
Nerine crispa.......	5	3	5	2	11
Nerine elegans....	7	2	3	3	11
Nerine dainty maid.	5	4	2	3	11
Nerine queen of roses	6	3	5	1	11

11. Comparisons of tile Starcies of Nerive bowdeni, N. sarniensis var. corusca major, N. giantess, and N. ablxdance.

In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents exhibit properties in common, and also individualities by which they can be differentiated. The starch of Nerine sarniensis var. corusca major in comparison with that of N. bowdeni contains a smaller number of compound grains and aggregates; the grains are more regular and less varied in form, and the irregularities are due much more frequently to notches and depressions at the margins; and the flattened broad forms are less flattened. The hilum is not so distinct, is less frequently fissured, and is more eccentric. The lamello are not quite as distinct, they are more regular, coarse lamellæ are less numerous, the arrangements of coarse and fine lamellæ differ from that which is observed in N. bowdeni, and the number is somewhat less. In size the grains are smaller, and there are not forms that are as broad as are found in the other parent. In the polariscopic, sclenite, and iotine ratctions there are many differences. In the qualitative reactions with chloral hydrate, nitric acid, potassium iodide, potassium sulphide, potassium sulphocyanate, and sodium salicylate there are also many differences, some of which are quite interesting, and all are collectively of marked value in the differentiation of the two starches. The starch of the hybrid N. giantess, in comparison with the starches of the parents, contains a much less number of compound grains and aggregates than that of N. bowdeni, but slightly more than in the starch of the other parent, and the compound grains are partly of a type that is found exclusively in N. bowdeni, and also partly of other types
that are found in the starches of both parents; and in irregularity of outline they are nearer to N. boudeni. The hilum in character and eccentricity is the same as that of N. sarniensis var. corusea major. The lamella in character and arrangement, and the size are also norare those of this species. The number of lamelle is less than in either parent. In the polariscopic figures and reactions with selenite the relationship is closer to N . sarniensis var. corusca major. In the qualitative iodine reactions the raw grains behave more like those of N. sarniensis var. corusca major, but the heated srams more like those of the other species. In the qualitative reactions with the chemical reagents the resemblances are closer to the reactions of N. bowdeni in the reactions with chloral hydrate and sodium salicylate, but choser to the other parent in those with nitrie acid, potassium indile, potassium sulphocyanate, and potassium sulphide. The starch of the hybrid N. abundance, in comparison with the starches of the parents, contains a smaller numbur of compound grains and aggregates than either, and only an occasional compound grain is seen of a type that was noted exclusively in N. boudeni; irregularity is more than in N. sarniensis var. corusca major, but considerably less than in the other parent. The form is in general nearly mid-intermediate between the forms of the parental starches, but somewhat nearer that of N. salrniensis var. corusca major. The hilum is in character nearer N. bowdeni, but in eccentricity it exceeds that of either parent and is nearer N. sarniensis var. corusca major. The lamellæ are in both character and arrangement nearer λ^{\top}. sarniensis var. corusca major, lut the number is notably less than in cither parent. The size is, on the whole, intermediate, but somewhat nearer that of N. bowdeni. In the polariscopic, selenite, and qualitiltive iodine reactions it is nearer N. boudeni. In the qualitative chemical reactions with the six reagents resemblances lean to one or the other pareni, but (1) the whole the relationship is closer to N. bowdeni. For thw most part the hybrids bear closer relationships to each other than does either to either parent. They vary mud in their parent leanings, each independently of the other, so that while one hybrid may show a leaning to the reed parent in a given character, the other hybrid may in this same character lean as markedly toward the other parent. Thus, in form N. giantess is more closely related to N. bowdeni, but N. abundtuce is nearly mid-intermediate between the parents with an inclination to N. sarniensis var. corusca major. In hilum N. giantess is eloser to N. samiensis var. corusca major, while N. abundance is closer to N. bowdeni in characters and to the other parent in ecentricity. In lamellæ both are closer to N. sarniensis var. corusca major. In size N. giantess is closer to N. sar niensis var. coruse major, and N. abundance to N. bowdeni. In the qualitative iodine reactions N. giantess is in the reactions of the ungelatinized grains closer to N. sarniensis var. corusca major, and in the gelatinized grains closer to N. bowdeni; but N. abundance is in both respects closer to N. bowdeni. In the qualitative reastions with the chemical reagents N. giantess is with certain reagents closer to one parent and with other: closer to the other parent, while N. abundance is clower with all reagents to N. bowdeni.

```
Reaction-intensitics Eispressed by Light, Color, and Tinpra
            fure licuctorns.
Poburizatica:
```



```
        parent, value A 0 .
```



```
        ens. value sol.
Iodine:
    N. bowderi, moderate, valur 50 .
```



```
        deni, valum for
```



```
        งมไue 60 .
```



```
(irntinu vielet:
    N. howdeni, moterate, value 45
```



```
        value 40 .
    N. giantess, moderate, same as in N. Dowdrni, valus 45
    N . abundance, light to moderate, sume ab N . narn. var. cor. maj.,
                value 40 .
Safranin:
    N. bowdeni, moderate, value 50.
    N. sarn. var. cor. maj., moderate, much leas than in N. toudeni,
        value 40.
```



```
                than N. sarn, var. cur. mad. value 45.
    Temperature:
        N. bowdeni, in majority at 67.6 to \(17.4^{\circ}\), in all at it to 7 . 5 , mata
                \(74.5^{\circ}\).
    N. sarn. var. cor. maj., in majority at 70 of \(71^{\circ}\), in all tht rutekraita
        at 76 to \(78.6^{\circ}\), mern \(78.4^{\circ}\).
```



```
                \(70.95^{\circ}\).
    N. abundance, in majority at 69 to \(69.9^{\circ}\), in all at 73.9 to \(74.8^{\circ}\),
                mean 74.3 .
            N. Unodeni shows in the plarization and indine
reactions lower reactivities than N. sarniensis var. corusca
```

 Tamee A 11.
 (hloral hydrate
N. huwdeni
N. yarn. var. cor. mat
N. Kantiss
N. ahumdance

Chromie acid:
N. bowdeni
N. sarn. var. cor. maj
N. gianters.
N. abundance
Pyrogatlic avid:
N. bowdeni
N. sarn. var. cor. maj
N. giantess
N. ahmodatme
Nitric acid:
N. Trowdeni
N. sath bar. cor muj
N. Hontioss
N. atmodance
Sulphuric acid:
N. bowdeni
N. sarn, var. cor. maj
天. gianteos
N. abomblame
IIvelrochloric neme
ㅅ. bowdeni
N. sarn. var. cor. atad
N. gianters
N. abmatane
—

Pyrogatlic avid:
N. bowdeni
N. sarn. var. cor. maj

| 115 | | 1 | 1 |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | | 3 |
| 115 | 1 | | 1 |
| 2 | 3 | | 3 |

Nitric acid:
N. Inowdeni
N. sath ar. cor maj
N. Hamtess

Sulphuric acid:
N. bowdem
N. sarn. var. cor. maj
N. abumbanet

IIydrochloric acid:
․ bowdeni
N. gianters
N. almataner

Table A 11--Continued.

	$\underset{\sim}{\Xi}$	$\underset{C}{E}$	$\underset{\sim}{g}$	$\underset{\sim}{\text { a }}$	$\underset{12}{\dot{g}}$	E	$\begin{aligned} & \text { Eี } \\ & \stackrel{2}{-} \end{aligned}$	$\begin{aligned} & \mathbf{5} \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \text { E } \\ \sim \end{gathered}$	$\stackrel{\dot{E}}{\tilde{E}}$
I'otassium hychoxdete:										
		.	95		96		93			
N. sarn. var. cor. maj			95		97		98			
N . giantess.			43		95		97			
N. abundance			93		95		97			
Potassium iodide:										
N. bowdeni					0.5		9	25	47	47
N. barn. var. cor. maj					1			3	4	7
N. giautess.					1		9	16	27	33
N. sbundunce					0.5		1	3	5	8
Potassium sulphocyanate:										
N. bowdeni.					10		46	75	83	90
N. barn. var. cor. maj					2		7	19	29	50
N. giantesa..					1		9	23	36	63
N. abundance.					3		5	7	8	IS
Potassium sulphide:										
N. sara. var. cor. maj					52		67	72	77	79
N. giantess. .					43		61	70	73	77
N. abundance					39		60	66	70	74
Sodium hydroxide:										
N. bowdeni.					3		12	21	24	30
N. barn. var. cor. maj					3		5	11	18	20
N. giantess					2		3	10	14	14
N. abundance.					1		2	5	10	10
Sodium sulphide:										
N. bowdeni . . .					0.5		1	4	5	7
N. barn. var. cor. maj					2		4	5	6	8
N. giantess.					2		3	4	6	6
N. abundance.					1		2		3	3
Sodium salicylate:										
N. bowdeni . . .					63		89	99		
N. sarn. var. cor. maj					88	99				
N. giantess.					89	99				
N . abundance.					86	99				
Calcium nitrate:										
N. bowdeni					1		5	17	25	28
N. barn. var. cor. maj					1	\cdots	2	8	12	16
N. giantess .					0.5		2	6	10	15
N. ubundance.					0.5		2	3		5
Uranium nitrate:										
N. bowdeni					3		13	27	37	14
N. sarn. var. cor. maj					3		4	6	12	18
N. gimatess					0.5		3	9	14	20
N. abundance.					0.5		1	2	4	8
Strontium nitrate:										
N. bowdeni					16		69	85	89	91
N. parn var. cor. maj					56	.	s0	no	95	97
N. Kiantess					65		88	91	95	96
N. abundance					19		78	66	89	93
Cobalt nitrate:										
N. bowdeni.						\cdots			1	1
N. marn. var. cot. maj					0.5				1	1
N. giantess.					0.5			1	.	5
N. abundance.					0.5					0.5
Copper nitrato:										
N. bowdeni					2		7	10	16	20
N. sarn. var. cor. maj..					1		2	3	5	${ }_{6}$
N. kiantuest.					0.5		\cdots	3	10	15
N. atmuadsrece					0.5		0.5	2	3	. 3
(${ }^{\text {aperie chloride: }}$										
…ияshai ...					0.5			1	2	$\stackrel{2}{ }$
N. rama, vat. corr. maj					0.5		1			1
N. giantuan					0.5		1			$?$
N. abundance.					0.5		1			1
Barium rhloride:										
N. Inwdeni					0.5					0.5
N. Farn, var. cor. maj				-	10.5					0.5
N. giantess					10.5					0.5)
N. alundanme. .					0.5					0.5
Mercuric chloride:										
N. bowdeni					10.5 :				1	
N. sarm. var. cor. maj					\because					2
N. ciantes4 . .					0.5					0.5
N. abmadatme					(0.5)	\ldots				11.5

major, and in the gentian-violet, safranin, and temperature reactions higher reactivities. Both hybrids in the polarization and temperature reactions show higher reactivities than either parent, both being in both reactions closer to N. bowdeni than to the other parent, but in the temperature reaction N. abundance is practically the same as N. bowdeni. The hybrid N. giantess in the iodine reactions is the same as N. sarniensis var. corusca major, but N. abundance is the same as the other parents. N. giantess is the same as N. bowdeni in the gentianviolet reactions, while N. abundance is the same as the other parent. N. giantess is the same as N. bowdeni in the safranin reactions, while N. abundance is intermediate between the parents, but closer to N. bowdeni.

Table A 11 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Cerves.

This section treats of the velocity-reaction curves of the starches of Nerine boudeni, N. sarniensis var. corusca major, N. giantess, and N. abundance, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 211 to D 231.)

Among the most conspicuous features of these charts are:
(1) The marked closeness and correspondence in the courses of all four curves, excepting in the reactions with chloral hydrate and potassium sulphocyanate, as was noted in the preceding set. Owing to too rapid, too slow, or too close reactions no satisfactory if any differentiation can be made in the reactions with pyrogallic acid, sulphuric acid, hydrochloric acid, potassium hydroxide, sodium sulphide, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride.
(2) The curve of N. boudeni is higher than the curse of the other parent in the reactions with chromic acid, nitric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, calcium nitrate, uranium nitrate, and cupric chloride: and lower in those with chloral hydrate, potassium sulphide, sodium salicylate, and strontium nitrate.
(3) The curses of the hybrids bear varying relationships to the parental curves, and the hybrid curves themselves differ in many respects from each other. There is in N. giantess a distinct tendency to intermediateness and to the lowest position in relation to the parental curves, and with a decided inclination to the curves of the pollen parent; while in N. abundance there is a particularly marked inclination to be the highest of the three curves and to the curves of the pollen parent.
(4) In early periok of high resistance followed by a rapid to moderate relatmization is noted in rery few of the experiments, hut especially in the chromic-acid reaction.
(5) The earliest period during the 60 minutes that is best for the differentiation of all four starches is for chloral hydrate, nitric acid, potassium sulphide, sodium salicylate, and strontium nitrate at 5 minutes; for potassium iodide at 30 minutes; for potassium sulphocyanate, sodium hydroxide, calcium nitrate, uranium nitrate, and cupric chloride at 60 minutes. Other reactions are too slow or too fast for satisifactory differentiation.

Reaction-intensities of the Ifybids.

This section treats of the reaction-intonsitins of the hybrids as regards sameness, intermenliaturs. wex. and deficit in relation to the parents. ('Table A 11 and Charts D 211 to D 231.)

The reactivities of the hybrid N. giantess are the same as those of the seed parent in the reactions with gentian violet and saframin; the same as thrse of the pollen parent with iodine, chloral hydrate, sulphuric acid, sodium salicylate, calcium nitrate, and uranium nitrate; and the same as those of both parents with pyrogallic acid, potassium hydroxide, sodium sulphide, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride, in all of which the reactions are too fast or too slow for differentiation ; intermediate with chromic acid, potassium iodide, potassium sulphocyarate, potassium sulphide, strontium nitrate, and copper nitrate (in three being mid-intermediate, in one nearer the seed parent, and in two nearer the pollen parent) ; highest in the temperature reaction, and nearer the seed parent; and lowest in the reactions with polarization, nitric acid, hydrochloric acid, and sodium hydroxide (in one being as near as the other parent, in one nearer the secd parent, and in one nearer the pollen parcht).

The reactivities of the hybrid N. abundance are the same as those of the seed parent in the reactions with iodine, temperature, and sulphuric acid; the same as those of the pollen parent with gentian violet, potassium iodide, and sodium salicylate; the same as those of both parents with pyrogallic acid, potassium hydroxide, sodium sulphide, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride, in all of which the reactions are too fast or too slow for differentiation; intermediate with safranin, potassium sulphide, and strontium nitrate (in two being closer to the seed paront, and in one closer to the pollen parent) ; highest with temperature and chloral hydrate, in the former being doser to the seed parent and in the latter to the pollen parent : and lowest with polarization, chromic acid, nitric acid. hydrochloric acid, potassium sulphocyanate, sodium hydroxide, calcium nitrate, uranium nitrate, and copper nitrate (in one being as close to one parent as to the other, in one closer to the seed parent, and in seven closer to the pollen parent).

Composite Curves of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Nerine bowdeni, N. sarniensis var. corusca major, N. giantess, and N. abundance. (Chart E 11.)

The most compicuous fiatures of this chart are:
(1) The very close correspondence in the rises and falls of the curves of the parents, excepting in the reactions with chloral hydrate and potassium sulphide, the same peculiarity haring been noted in the preceding set, excepting that in this set the potassium-sulphide curves retain the same relative positions, the disagrecment in the latter being attributable to the relatively low reactivity of N. bowdeni.
(2) N. bowdeni has higher reactivities than the other parent (N. sarniensis var. corusca major) with gentian violet, safranin, temperature, chromic acid, nitric acid, potassium iodide, potassium sulphocyanate, sodium hy-
droxide, calcium nitrate, uranium nitrate, and copper

 or prantimati haw same wh pro.esthe and, -ulphuric
 sulphide, sodium sulphimb", colvalt nitrate, cupric chloride, barium chlorite, and merourie chlormb.
(3) In N. homeleni the wery high reartions with polarization, sulphuric acid, and potassium hydroxide; the high reactions with chromic acid, hydrochloric acid, and sodium salicylate; the morderat. rantone with winn,
 cyanate, and strontium nitrate; the low ractions with temperature, chloral hydrate, and pritassium sulphide; the very low reantime with prosalli" and, fonsum iodide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium intrate, culaht mitrate, when mitrate, cupric chloride, barium chloride, and m....ur... .h.hri ha.
(4) In N. sarniensis var. corusca major the very high reactions with polarization, sulphuric acid, potassium hydroxide, and sodiun salier late; the high reatume with iodine, chloral hydrate, hydrochloric acid, and strontium nitrate ; the moderate reactions with gentian violet, safranin, chromic acid, and nitric acitl: the how ractions with temperature, potassium sulphocyanate, anll fusas-ium sulphide; and the very low reactions with pyrogallic acid, potassium iodide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cohalt nitrat.". copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(5) In the hybrid N. giantess the very high reartions with polarization, sulphuric acid, potassium hydroxide, and sonlium salicylate: the hish reantime with ionlin, chloral hydrate, hydrochloric acid, and strontium nitrate; the moderate reactions with gentian violet, safranin, temperature, chromic mind, and nitric and? the how reactions with potassium sulphocyanate and potassium sulphide: and tha wery luw reations with perotallie acia. potassium iodide, sodium hydroxide, sodium sulphide. calcium nitrate, uranium nitrate, cohalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(6) In the hybrid N. abundance the very hich reactions with polarization, sulphuric acid, potassium hydroxide, and sodium salievlate: the hieh reactions with ehboral hydrate and hydrochloric acid; the moderate reactions with iodine, gentian violet, safranin, chromic acin, nitric acid, and strontium nitrate; the lnw reactions with temperature and potassium sulphide; and the very low reactions with pyrogallic acid. potassium iodide potnssium sulphocyanate, sodium hydroxide, sorlium sulphide, calcium nitrate, uranium nitrate, cobbalt. nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

The following is a summary of the reartion intemsities:

The two hybrids show in general a closer relationship in their reactivities to each other than does either (1) either parent. In some reactions the reactivities are the same, and in others one hybrid has a higher reactivity than the other, but in other reactions the reverse. Then again their reactivities in their parental relationships are of a mont variable character in that in a given reaction hoth may be lower or higher than the reactions of the prarents, in another reaction that of one may be higher and that of the other lower, or intermediate, or the same, etc. Thus, eliminating the seven reactions in which, owing to a too rapid or too slow reaction, the results were the same in case of all four starches, it will be noted that out of the remaining 19 reactions in only 6 were the reactions of the same relationship to the parentsin the polarization reactions the reactivities of both hybrids are the lowest and both nearer the seed parent; in the temperature reactions one is higher than either parent, but closer to the seed parent, and the other is practically the same as the seed parent; in the nitric acid reactions both are the highest, in the former nearer the seed parent and in the latter nearer the pollen parent; in the hydrochlaric acid reactions the reactivities are lowest, and both as close to one as $t o$ the other parent; in the sodium-hydroxide reactions both are highest and nearer the seed parent ; and in the sodium-salicylate reactions both are the same as the pollen parent. In each of the other reartions one hybrid shows a parental relationship that is different from that of the other. Thus, in the iodine reactions N. giantess is closer to the seed parent, while N. abundance is closer to the pollen parent; in the sulphuric-acid reactions N. giantess is closer to the pollen parent, while N. abundance is closer to the seed parent; in the potassium-sulphide reactions both hybrids are intermediate, but one is closer to the pollen parent and the other to the seed parent, ete. The reactivities of N. giantess are, on the whole, slightly higher than those of the other hybrid, and both are in this respect nearer the pollen than the seed parent, N. giantess being the closer.

The rollowing is a summary of the reaction-intensities of the hybrids as regards sameness, intermediateness, excess, and deficit in relation to the parents:

	N. giantess.	(N. abundance.
Same or prartically same as-		
Seod parent.	2	3
Pollen parent	6	3
Internctiate.	6	7
Highrst.	1	
L.bwne	4	9

In hoth hybrids the properties seem to be influenced much more by the pollen parent. In the first hylrid there is greater tendency to intermediateness and less tendency to lowness of reactivity than in the other hybrid. The hybrids differ sufficiently in their parental relationships to be readily distinguished notwithstanding thoir close similarities. (Wee (hapter V.)
12. Comphaisoxs of the Starches of Nerinf: sarmiensis var. cortsca mator, N. curvifolia var. fothergillit major, ani N. glory of samita.
In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents all three starches exhibit properties in common, and each has certain individualities, but all are closely
related. The starch of N. curvifolia var. fothergilli major contains in comparison with the starch of the other parent a larger number of compound grains and aggregates, and the former are of more varied types. The grains are less regular and somewhat more slender and pointed. The hilum is more distinct and eccentric. The lamelle are more distinct and less numerous, and there is difference in the grouping of the coarse lamelle. The size is less and the grains tend to be less broad in proportion to length. In the polariscopic, selenite, and iodine reactions differences are noted. In the qualitative reactions with the chemical reagents many similarities and differences are recorded, some of the latter being quite striking, and taken collectively readily differentiate the starches. The starch of the hybrid contains fewer compound grains and aggregates than are found in the parents, and the types of compound grains are for the most part those observed in the starch of N. sarniensis var. corusca major. The grains are more regular in form than in either parent, and on the whole nearer those of N. sarniensis var. corusca major. The characters of the hilum are closer to those of the same parent, and the eccentricity is less than in either parent. The lamelle are less distinct but more numerous than in either parent, and they are more closely related to those of N. sarniensis var. corusca major. In sizes the grains are also more closely related to the same parent. In the qualitative polarization, selenite, and iodine reactions the hybrid shows a more marked closeness to N. sarniensis var. corusca major. In the qualitative reactions with the chemical reagents, including choral hydrate, nitric acid. potassium iodide, potassium sulphocyanate, potassium sulphide, and sodium salicylate, reactions in each resembling more closely those of one or the other parent are noted, but in case of each reagent the phenomena are colfectively closer to those of N. sarniensis var. corusca major than to those of the other parent.

Reaction-intensities Expressed by Light, Color, and Temperature Reactions.
Polarization:
N. sarn. var. cor. maj., moderate to'very high, value 90 .
N. curvi. var. foth. maj., moderate to very high, lower than N. sarn. var. cor. maj., value 87.
N. glory of sarnia, moderate to very high, the same as N. sarn. var. cor. maj., value 90 .

Iodine:

N. sarn. var. cor. maj., moderately deep, value 60.
N. curvi. var. foth. maj., moderately deep, deeper than N. зarn. var. cor. maj., value 65 .
N. glory of sarnia, moderate, less than either parent, value 55.

Gentian violet:
N. sarn. var. cor. maj., light to moderate, value 40 .
N. curvi. var. foth. maj., moderate, deeper than N. sarn. v. cor. maj., value 45.
N. glory of sarnia, light to moderate, lighter than in either parent, value 35 .
Safranin:
N. sarn. var. cor. maj., moderate, value 40.
N. curvi, var. foth. maj., moderate, deeper than N. samn var. cor. maj., value 35.
N. glory of sarnia, light to moderate, less than either parent, value 35 .
Temperature:
N. sarn. var. cor. maj., in the majority at 70 to 71°, in all but rare grains 76 to 78.8°, mean 78.4°.
N. curvi. var. foth maj., in the majority at 68.1 to 69°, in all at 73.2 to 74.3°, mean 73.8°.
N. glory of sarnis, in the majority at 70 to 72° in all at 75.8 to 77°, mean 76.4°.
N. sarniensis var. corusca major shows in the polarization and temperature reactions higher reactivities than the other parent, but lower reactivities in those with iodine, gentian violet, and safranin. The hybrid shows the same reactivity as N. sarniensis var. corusca major in the polarization reaction, but less than that of the other parent; lower reactivities than the parents with iodine,

Table A 12.

 majur.

 curvifolia var. folhergilli majour, am! I. !lary uf surniu, showing the quatitatose haferences in the berlatior tor wame dillumbl rasat
(Chart - 1) $\because:+\because$ t. 11) $\because \because \%$)

 importance to note that the reartions of the firmor and the hyhrid are pramically ahsolutely indmemal. With a slightly stronqere solution of :'... fouse: or : ! r

 ratronns of all thro. -ar, fo..

 factory differential studs.
(气) The enran if l's higher that the rimen of the
 nitrie acid, potascium sulphnevanate, pata<simm sulpht:
 -1matmon t11 :at

 wf the throe turn - : ant :t W" :

 cially in the first, and in the latter maly in N. . . rat it var. fothergilli mujor.

 chloral hydrate, potassium smphimbe. . . 11°-a! : " $\because \cdots$. and strontion mitman at th...
aed and hydrochloric acid at 1.5 mis

the raction the bettur.

I) 23: to [1):32.)

The reactivities of the hybrid are the same as those of the seed parent in the polarization reaction; the same as the pollen parent in the reactions with safranin, po-ta-sium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, and uranium nitrate; the same as both parents with pyrogallic acid, potassium hydroxide, potassium iodide, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride, in ail of which the reactions are too slow for differentiation; intermediate in the temperature reaction, being dower to the seed parent; highest in none; and lowest with iodine, gentian violet, chloral hydrate, chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium sulphide, sodium salicylate, and strontium nitrate (in five being closer to the seed parent, in four closer to the pollen parent, and in one as close to one as to the other pareut).

The following is a summary of the reaction-intensitie: of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents: Same or practically the same as the seed parent, 1 ; the pollen parent, 6 ; both parents, 8 ; intermediate, 1 ; highest, 0 ; lowest, 10.

The tendency to lower curves than in either of the parents, the more marked influence of the pollen parent, the almost entire absence of intermediateness, and the entire absence of curves higher than those of the parents are quite conspicuous.

Composite: Curves of the Reaction-intensities.
This section treats of the composite curves of the reac-tions-intensities, showing the differentiation of the starches of Nerine sarniensis var. corusca major, N. curvifolia var. fothergilli major, and N. glory of sarnia. (Chart E 12.)

Among the most conspicuous features of this chart are:
(1) The very close correspondence in the rises and falls of all three curves, indicating a very close botanical relationship between the parents and but little botanical character variations in the hybrid from parental characters.
(2) In the curve of N. sarniensis var. corusca major in comparison with N. curvifolia var. fothergilli major the higher reactions with polarization, potassium sulphocyanate, sodium hydroxide, sodium salicylate, uranium nitrate, and strontium nitrate, and the same or practically the same with chloral hydrate, chromic acid, pyroHallic acid, nitric acid, sulphuric acid, potassium hydroxide, potassium iodide, potassium sulphide, sodium sulphide, sodium salicylate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride. In only the reactions with temperature, lyydrochloric aciu, potassium sulphocyanate, and strontium nitrate are there important differentiations.
(3) In N. sarniensis var. corusca major the very high reactions with polarization, sulphuric acid, potassium hydroxide, and sodium salicylate; the high reactions with iodine, chloral hydrate, hydrochloric acid, and strontium nitrate; the moderate reactions with gentian violet, saframin, chromic acid, and nitric acid; the low reactions with temperature, potassium sulphocyanate, and potassium sulphide; and the very low reactions with pyrogallic acid, potassium iodide, sodium hydroxide, sodium sul-
phide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(4) In N. curvifolia var. fothergilli major the very high reactions with polarization, nitric acid, hydrochloric acid, potassium hydroxide, and sodium salicylate; the high reactions with iodine and chloral hydrate; the moderate reactions with gentian violet, safranin, chromic acid, nitric acid, and strontium nitrate; the low reactions with temperature and potassium sulphide; and the very low reactions with pyrogallic acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(5) In the hybrid N. glory of sarnia the very high reactions with polarization, sulphuric acid, potassium hydroxide, and sodium salicylate; the high reactions with hydrochloric acid; the moderate reactions with iodine, chloral hydrate, chromic acid, and strontium nitrate; the low reactions with gentian violet, safranin, temperature, nitric acid, and potassium sulphide; the very low reactions with pyrogallic acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

The following is a summary of reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
N. sarn. var. cor. maj	3	3	6	3	11
N . curv, var. foth. maj	5	2	5	2	12
N. glory of sarnia..	4	1	4	4	12

Notes on the Quantitative Reactions of the Nerines witi the Various Chemical Reagents.

(Charts D 253 to D 258.)

The most conspicuous features are:
(1) The three composite-curve charts are strikingly alike, showing very clearly the generic type of curve; and the curves run together quite closely, indicating nearly related members of the genus. The most marked differences exhibited by the five parents are seen in the reactions with chloral hydrate, nitric acid, hydrochloric acid, potassium sulphocyanate, potassium sulphide, and strontium nitrate. In the other reactions such differences as may exist are either of minor importance or possibly or probably fall within the limits of error of experiment, at least not within the limits of convincing differentiation.
(2) Comparisons of the curves of the five starches presented by each reagent show in the case of each reagent a correspondence in the type of curve, allowances being made for slight modifications due to variations in the rate of gelatinization and for small errors of estimation of percentages. Thus, comparing, for instance, the charts of the five reagents above noted, or better the special charts (D253 to D 258) which give the curves of all five starches with each of the reagents, it will be observed that each chart has certain individualities by which it can be distinguished from the others. The charts for
nitric acid and strontium nitrate are very much alike, the most distinct difierence being noted in the curves during the first five minutes, yet, while there is a very close correspondence in the courses of the curves, thre are curious alterations in the relative positions, as for instance, while the curve of N. curvifolia var. fotheryilli major is the lowest and the curve of N. Goudeni intermediate in the nitric-acid redetmos, the arme wi lar former is next to the lowest and that of the latter the lowest in the strontium-nirate reactions, showing that there are inberent important differences in the relations of these reagents to the starch molecules. Similar differences are very strikingly presented by cortain starches of other genera which show more or less marked differences in the actions of these two reagents.
(3) Notable variations are shown in the degree of separation of the curves of the five starches in each of the charts. In the chart for hydrochloric acid all of the curves run closely together, those of N. crispa and N. elegans being identical, and those of the other three being almost identical. In the reactions with chloral hydrate the curves of N. curvifolia var. fothergilli major, N. elegans, and N. sarniensis var. corusca major are very nearly the same, but those of 1. . crispa and 1. . bou'deni are well separated from the former and from each other. In the reactions with nitric acid, potassium sulphocyanate, and potassium sulphide all the curves are fairly to well separated.
(4) In each chart the several curres bear the same position-relationship, there being no crossing of curves, 80 that if a given curve is the highest at the 5 -minute interval it will not fall below another, although there may be dispersion or approximation of the curves during the progress of gelatinization-in the latter case they may become identical.
(5) The order of position of the five curves varies in the different reactions, as follows, in each case beginning with the highest and proceeding in order to the lowest:
Chloral hydrate: N. curv. var. futh. maj., N. clegans, N. sura. var. cor. maj., N. crispa, N. bowdeni.
Nitric acid: N. elegans, N. crispa, N. bowdeni, N. sarn, var. cor. maj., N. curv, var. foth. maj.
Hydrochloric acid: N. crispa, N. elegans, N. curv. var. foth. maj., N. bowdeni, N. sarn var. cor. maj.

Potassium sulphocyanate: N. bowdeni, N. crisps, N. elegans, N. sarn. var, cor. maj., N. curv, var. foth. maj.
Potassium sulphide: N. crispa, N. barn. var, cor. maj., N. curv. var foth. maj., N. bowdeni, N. elegans.
Strontium nitrate: N. elegans, N. crispa, N. barn. var. cor. maj. N. curv. var. foth. maj., N. bowdeni.

The rariations in relative positions are quite remarkable and are expressions of definite physico-chemical peculiarities of the starch molecules in relation to the reagents. It will be observed that N. curvifolia var. fothergilli major is the highes in the reations with chloral hydrate, but the lowest with nitric acid and potassium sulphocyanate; N. eleguns is highest with nitric acid and strontium nitrate, but the lowest with potassium sulphide; N. bowdeni is the highest with potassium sulphocyanate, but the lowest with chloral hydrate and strontium nitrate, etc. It is of interest to note that while the charts for nitric acid and strontium nitrate bear a very close resemblance, as previously stated. the order of curves is not the same in both.

 H!! ! m

 major dispropertionately low. Lath curses should per-

 reativity or e...ntially modify the senerio type of curve.

 be intermediate, higher, lower, or the same as one or the

 versal sexual preputency. In the lir-i ...t th. : bear. on the whole, a closer relationship to the seed parent, but in the second and third sets to the prillen
 there are two hybrids, the hybrids exhibit diffurences

 cially when the parents are close, but there is no rule. As regards the latier, fir inc:at.... in :.........ir it :........... reactions of the first set (Chart D 19(1), the parents are well separated and likewise the two hymi:- : .at ond set (Chart D 211), the parents are well separated, but both hybrids are the same and also the same as one parent : and in the third set (thart 1 +.3.:) t... perents are the same, but the hybrid is well separated from the parents, and so on with other raw inc...
(8) No more striking feature sems to he presunter? than that of the shinimes par and ri: : : : c
 reations, as referred to in Section 6 and fully tal ulated ${ }^{11}$ Chapter V.
13. Comparisons of the Stamones of \mathcal{N} (hin :- -

In histologic characteristics, pulariscopic fisures, reactions with selenite, qualitative reactions with indine, and qualitative reactions wit.
 arees of development together with certain individuahties

 more irregularity of the grains, less distinctnes of the

 more apt to be hisentent and bent and less ofren form
a cross；with selenite the quadrants are not so well defined and are more irregular in shape and size，the colors are not so pure，and there are fewer grains having a greenish tinge；with iodine the raw grains become more bluish and of a somewhat deeper tint，while the gela－ tinized grains amd gram residues color less but the solu－ tion more．In the qualitative reactions with the various chemical reagents there are various difierences．The starch of the hybrid N ．poeticus herrick is in form，char－ acters of the hilum，aud characters of the lamellæ closer to N ．poeticus ornatus than to the other parent，but in size the reverse．In polariscopic figure and appearances with selenite it is closer to N．poeticus ornatus；but in degree of polarization，the reverse．In the qualitative iodine reactions it is closer to N ．poeticus poetarum． In the qualitative reactions with chloral hydrate，chromic acid，pyrogallic acid，nitric acid，and sulphuric acid it is rloser to N．poeticus poetarum．The starch of the hybrid N．poeticus dante is in form closer to N ．poeticus than to the other parent，but in the characters of the hilum， in lamelle，and in size it is closer to the other parent N．poeticus poetarum．In the polariscopic figure and reactions with selenite it is closer to N ．poeticus poe－ tarum．In the qualitative iodine reactions it is closer to N ．poeticus poetarum．In the qualitative reactions with chloral hydrate，chromic acid，pyrogallic acid，nitric acid，and sulphuric acid it shows a closer relationship to ${ }^{2}$ V．poeticus poetarum．The starch of the hybrid N ． porticus dembe is more rounded than that of the other hybrid，and it does not show as close a relationship to N．poeticus ornalus．In character and eccentricity of the hilum it shows as close a relationship to N ．poeticus poelarum as does that of the other hybrid to the other parent，and in the characters of the lamellæ the same hohds true．In size it is larger than in the other hybrid， and therefore not so close to N ．poeticus poetarum，yet it is choser to it than to the other parent．In polariscopic figure and appearances with selenite both hybrids bear the same relationship to the parents，and in the iodine－ qualitative reactions there are no differences between the hybrids．In the qualitative chemical reactions the starch of the hybrid N ．poeticus dante bears a closer relation－ ship than the starch of the other hybrid N ．poeticus herrick to N ．poeticus poetarum in the chloral－hydrate reaction，but not so close a relationship to this parent in the reactions with chromic acid，pyrogallic acid，nitric acid，and sulphuric acid．

[^5]（ientian violet：
N．poet．ornatus，light to moderate，value 30.
N．poet．poetarum，light to moderate，somewhat deeper than in N ．poet．ornatus，value $3 \overline{5}$ ．
N．poet．herrick，light to moderate，lighter than in either parent， value 25 ．
N．poet．dante，light to moderate，the same as in N．puet．poetarum， value 35.
Stifanin：
N．poet．ornatus，moderate，value 45 ．
N．poet．poetarum，moderate，somewhat deeper than in N．poet． ornatus，value 50 ．
N．poet．herrick，light to moderate，lighter than in either parent， value 40 ．
N．poet．dante，moderate，the same as in N．poet．poetarum， value 50 ．
Temperature：
N．poet．ornatus，in majority at 73 to 74° ，in all at 77 to 78° ， mean 77.5° ．
N．poet．poetarum，in majority at 67 to 69° ，in all at 71 to 73° ， mean 72° ．
N．poet．herrick，in majority at 69 to 71° ，in all at 76 to 78° ， mean 77° ：
N．poet．dante，in majority at 71.2 to 73.1° ，in all at 74 to 76° ， mean 75° ．
N．poeticus ornatus exhibits a higher reactivity than the other parent in the polarization reactions，and lower reactivities in those with iodine，gentian violet，safranin， and temperature．The hybrid N ．poeticus herrick is higher than N ．poeticus and lower than N ．poeticus poe－ larum in the temperature reactions；the same as the latter parent in the iodine reaction；intermediate in polariza－ tion reaction；and the lowest in the reactions with sentian violet and safranin．The hybrid N．poeticus clante has the same or practically the same reactivity as N ．poeticus ornatus in no reaction；the same or prac－ tically the same reactivity as N ．poeticus poctarum in the reactions with iodine，gentian violet，and safranin；and intermediate in the polarization and temperature reac－ tions．The two hybrids are alike in the polarization and iodine reactions，but N ．poeticus herrich has lower reac－ tivities than the other hybrid in the reactions with gen－ tian violet，safranin，and temperature．

Table A 13.

	玉	E	$\stackrel{\square}{\square}$	－	安	E $=$ -2	会		¢
Chloral hydrate：									
N．puet．ornatus	．				0.5	6	： 4		34
N．poet．poetarum．					0.5	6	9	11	17
N．poet．herrick					4	6	10	12	14
N．poet．dante					7	10	12	16	16
（ hromic acid：									
N．poet．ornatus					7	65	80	95	98
N．poet．poetarum					3	22	65	75	85
N．poet．herrick					5	4：	70	¢2	90
N．puet．dante．					5	34	67	s0	S8
I＇yrogallic acid：									
N．poet，ornatus		\cdots			2	20	68	s1	A8
N．poet．poetarum					1	16	70	84	93
N．poet．herrick．					2	19	69		
N．poet．dante．					，	37	75	88	94
Nitric acid：									
N．poet．ornatus．					6	20			70
N．poet，poctarut		－			10	40	53	60	63
N ．poet．herrick					30	56			
					19	65	\because	7s	s0
Sulphuric acid：									
N．poet．ornatus．					99				
N．poct．poetarum		79			99				
N．poet．herrick．		93			99				
N．poet．dante．		05			99				\ldots

Table A 13 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-beacton C'thilas.

This section treats of the solonty-ratetion sartar of the starches of Narcissus pueticus ormelus, 大. proftirus pocturum, N. poeticus herrich, and N. pmetions dunte, showing the quantitative diflerences in the behavior toward different reagents at different time-intervals. (Charts D 259 to D 264.)

Conspicuous among the features of these charts are the following:
(1) In the five charts there is generally a manifiot tendency in each chart for all four curse to keep together, the only places where there is leaning toward a well-marked separation are in the charts for chromic acid and nitric acid at the 15 -minute interval. In the sulphuric-acid reaction gelatinization proceeds with such rapidity that there is not, except in one instance, what can be accepted as an entirely satisfactory dilferentiation of any one starch from any other, this instance being the
 tinctly less rapidity than the other three (which react with identical intensity) during the first three minutes.
(2) The four curves bear varying relations to each other in the diflerent reactions.
(3) The curve of N. poeticus ornalus is the highest of the four and well separated from the other three in the reactions with chloral hydrate and chromic acid; the lowest at first and intermediate finally with nitric acid; and practically the same, but with a lower tendency than in the other three, with pyrogallic acid, although in this reaction the curves of N. poeticus ornatus, N. poeticus poetarum, and N. poeticus herrich are practically the same. There is an obvious tendency for the curves of N. poeticus poetarum, N. poeticus herrich, and N. poeticus dante to keep close in the reactions with chloral hydrate and chromic acid.
(4) The curves of the two hybrids tend to run closely. In the reactions with chloral hydrate and sulphuric acid they are the same; with chromic acid very nearly the same; and with pyrogallic acid and nitric asid they are separated sufficiently for differential purposes. The curse of the hybrid N. poeticus herrich is higher than the curve of the other hybrid in the chromic-acid reaction, lower in the pyrogallic-acid reaction, and lor the mo-t part lower in the nitric-acid reation.
(5) An early period of resistance is moted particularly in the reactions with chromic acid and pyrogallie acid, and is suggested in the curves of the nitrie acid.
(6) The earliest period at which the curves are host separated and hence the best for differential purposes is at 3 minutes in the reaction with sulphurie acd ; at a minutes in those with chromic acid, pyrogallic acid, and nitric acid; and at 60 minutes in that with chloral hydrate.

Reaction-intensitife of the Hyblids.

This section treats of the reaction-intensities of the hybrids as regards sameness, intermediateness, excers and deficit in relation to the parents. (Table A 13 , Charts D 259 to D 264 .)

 one as to the other farent and $1: 1$, he :............... . . . parent) ; and lowest wan - thent ...t. : - woing in buth harer the an a parat.

 wid reation; the same as thane of the p What : an la' at the reactions with iodine, gentian violet, safranin, an :

 tion, temperature, chronic: acid, and nitric acid (in t..6)

 pyrurallic adid, heing ats hear whe a- the whar farent: and lowest in none.

Following is a summary of tho reaction-inton-n:...:
same as sfed pariot
Stune tas pullern bartot
Sume as loth wareut.
Intermerdiate
Highesst.
lowest

The rarying relationships of the two h ir... : : frarents in the imdividual reationi= is quate mar....al. Thus, in the pudaration reactions buth an mavenm at
 are the same as the pollen parent ; in the wentian volut reaction one is lower than either parent anif heas if the
 marent, ete.

This section deals with the composite curses of the
 -tarches of Narcissus pocticus ornatus, N. pucticus ℓ 'etarum, N. porlicus herrick, and N. poiticus dusto. ((hart E 13.)

The most conspicuous features of this chart are:

 chloral hydrate, chromic acid, nitric acid, and sulphurie wid: the stane or pat hath:
 cafranin。 gentian violde, and comperatum.

 fure, pyrogallic acid, and nitric al rataion wit! chaval hydrate.
(4) In N. poeticus poelurum the very high reaction with sulphuric acid; the absence of any high reaction; the moderate reactions with polarization, iodine, sairanin, temperature, and pyrogallic acid; the low reactions with gentian violet, chromic acid, and nitric acid; and the very low reaction with chloral hydrate.
(5) In the hybrid N. poeticus herrick the very high reactions with sulphuric acid; the absence of any high reaction; the moderate reactions with polarization, iodine, safranin, chromic acid, pyrogallic acid; the low reactions with gentian violet, temperature, and nitric acid; and the very low reaction with chloral hydrate.
(6) In the hybrid N. poeticus dante the very high sulphuric-acid reaction ; the absence of any high reaction; the moderate reactions with polarization, iodine, safranin, chromic acid, and pyrogallic acid; the low reactions with gentian violet, temperature, and nitric acid; and the very low reaction with chloral hydrate.

The following is a summary of the reaction-intensities (10 reactions) :

	Very bigh.	High.	Moderate.	Low.	Very low.
N. poet. ornatus.	,	1	3	4	1
N. poet. poetarum	1	0	5	3	1
N . poet. herrick. .	1	0	5	3	1
N. poet. dante. .	1	0	5	3	1

14. Comparisons of the Starches of Narcissus tazetta grand monarque, N. poeticus ornatus, and N. poetaz triumph.
In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with the various chemical reagents it will be noted that the starches of the parents and hybrid exhibit not only properties in common in varying degrees of development but also occasional individualities which collectively are in each case distinctive. In histologic properties the starches of the parents differ in welldefined respects. In the polariscopic figures and reactions with selenite there are no important differences. In the qualitative reactions with iodine, the raw grains of Narcissus tazetta grand monarque are celored less in comparison with those of the other parent, while after heating in water fewer grains are moderately colored and the solution is more deeply colored. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid, there are in each case similarities and certain definite differences. The starch of the hybrid in comparison with the starches of the parents shows more irregularities in form than in either parent, and it is, on the whole, more closely related to N. tazetla grand monarque than to the other parent. In the character of the lamellæ, and in the size and proportions of different kinds of grains, the relationship is closer to N. tazetta grand monarque; in character of the hilum it is closer to the other parent, and in the eccentricity of the hilum it is the same as the parents. In the polariscopic figures, appearances with selenite, and iodine reactions it is closer to N. poeticus ornatus. In the qualitative reactions with the chemical reagent it is in all closer, on the whole, to N. tazetta grand monarque.
Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

N. taz. grand mon., low to very high, value 50.
N. poet. ornatus, low to very high, same as N. tazetta grand monsrque, value 50 .
N. poetaz triumph, low to very high, same as both parents, value 50 .

Iodine:
N. taz. grand mon., light to moderate, value 45.
N. poet. ornatus, light to moderate, less than N. tazetta grand monarque, value 40 .
N. poetaz triumph, light to moderate, the same as N. poeticus ornatus, value 40.
Gentian violet:
N. taz. grand mon., light to moderate, value 40.
N. poet. ornatus, light to moderate, less than N. tazetta grand monarque, value 35 .
N. poetaz triumph, light to moderate, the same as N. tazetta grand monarque, value 40 .
Safranin:
N. taz. grand mon., moderate, value 45.
N. poet.ornatus, moderate, the same as N.tazetta grand monarque, value 45.
N. poetaz triumph, light to moderate, less than in either parent, value 40.
Temperature:
Temperature:
N. taz. grand mon., in majority at 73 to 75°, in all at 76 to 77°, mean 76.5°.
N. poet. ornatus, in majority at 73 to 74°, in all at 77 to 78°, mean 77.5°
N. poetaz triumph, in majority at 73 to 75°, in all at 76 to 77°, mean 76.5°.
The reactivity of N. tazetta grand monarque is the same or practically the same as that of the other parent in the polarization and safranin reactions; higher in the temperature reaction, and lower in the iodine and gen-tian-violet reactions. The reactivity of the hybrid is the same or practically the same as those of both parents in the polarization reaction; the same or practically the same as the reactivity of N. tazelta grand monarque in the gentian-violet and temperature reactions; the same or practically the same as that of the other parent in the iodine reaction; and the lowest of the three in the safranin reaction. In none of the five reactions is there intermediateness. In some respects the hybrid is closer to one parent and in other respects to the other.

Table A 14 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Narcissus tazetta grand monarque, N. poeticus ornatus, and N. poetaz triumph, showing quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 265 to D 286.)

The most conspicuous features of this group of curves are:
(1) The closeness generally of all three carves in all of the reactions, with a tendency throughout, with the exception of that with sulphuric acid, to a moderate to low or very low reaction value. The curves of two or all three starches, excepting the reactions with the sulphuric acid, cobalt nitrate, barium chloride, and mercuric chloride, are satisfactorily separated, commonly well separated, for differentiation in reactivities. In the reactions with pyrogallic acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, copper nitrate, and cupric chloride two of the curves tend to closeness and separation from the third, which two may be the curve of the hybrid and that of one or the other parent, or the curves of the parents. In some of the reactions the three curves do not closely correspond in course, as in the reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, potassium iodide, uranium nitrate, cobalt nitrate, and strontium nitrate; the departure of one from the course of the others may be in the curve of the hybrid or either parent, more often in the curve of N. tazetta grand monarque.
(2) The lower reactivity of N. tazetta grand monarque than of the other parent in the reactions with

Tamif A 14

chromic acid, pyrogallic acid, numberobl, belmathorm

ehloride, and mementio chloride.

reparated from the parental curves than the:
 nearer parmatal curve is hat
 ateness or to the lowest reactivity.
(t) An early perion of momaratio.
 noticed, sometimes in the case of on $\cdot \cdots \cdot \cdots$, $\because: \therefore \cdot$ of the starches. This is swn in a.l 1l.rom - .ars :... in the reactions with chloral hadrat. riment ... !! pyrogallic acid, nitric acid, potassium iodide, and
 dium sulphide and strontiom hatrat": and in N . tas:":

(5) The earliest period during the 60 In : . 13.4 at which the three curves are best separated for differntia-
 within the 5 -minute interval in the reactinns with sul-
 reactions; at the 15 -minute interva! with hann a a \quad,
 phocyanate, sodium sulphide, calcium nitr $\because \cdot$. an! strontium nitrate: at the 3n-minute intural with... r...

 per nitrate, barium chloride, and mercuric chloride.

This section deals with the reaction-intensities of the hybrid as regards samemes, intemm in: and deficit in relation to the parents. (Table A 14 and

 in the reactinns with sentian win't and -a.nan.t. the
 the same a - hath patent - with lornta

acil, potassium hydroxide, !' ... un: : : : . : a:
 sodium sulphide, sorlum saliçlate, calimm nitrate, uranium nitrate, strontium nitrate, cobalt nitrat.. nitrate, cupric chloride, and mera a:

lawe: in tib -afranin reaction, as:"
parme.

ties: Same as seed prarent, ?; same as pullun]
same as both parents, 1 ; intermedate, $0 ; \ldots . .$. lowest, 1.

The most remarkable featurt
almost universal higher reactivity of the hyorid in all of the chemical reactions, the only exception leing with
barium chloride in which the reactions are almost absoLutcly mil, yet even here there is at least the suggestion of highest reactivity. The inclination to the properties of the pollen parent are also strikingly manifested.

Cumposite Curves of the Reaction-intensities.
This section treats of the composite curves of the reaction-intensities, showing the diferentiation of the starches of N'arcissus tazetta grand monarque, N. poeticus ormatus, and A. poctaz triumph. (Chart E 14.)

The most conspicuous features of this chart are:
(1) The close correspondeuce in the courses of all three curves, and more particularly of the parental curves which not only tend almost invariably to marked closeness but also with few exceptions to keep below the hybrid curve.
(2) The curve of \boldsymbol{V}. tazetla grand monarque tends usually to be lower than the curve of the other parent. It is distinctly lower in the reactions with chromic acid, pyrogallic acid, nitric acid, and hydrochloric acid; slightly lower or nearly the same with potassium hydroxide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; higher with iodine, gentian violet, temperature, and chloral hydrate; and the same or practically the same with polarization, safranin, and sulphuric acid.
(3) In N. tazelta grand monarque the very high reaction with sulphuric acid; the high reactions with hydrochloric acid and sodium salicylate; the moderate reactions with polarization, iodine, gentian violet, safranin, chromie acid, and potassium sulphocyanate; the low reactions with temperature, pyrogallic acid, potassium iodide, sodium hydroxide, sodium sulphide, and strontium nitrate; and the very low reactions with chloral hydrate, nitric acid, potassium hydroxide, potassimn sulphide, calcium nitrate, uranimm nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(4) In N. poeticus ornatus the very high reactions with sulphuric acid and hydrochloric acid; the high reactions with chromic acid and sorlium salicylate; the moderate reactions with polarization, safranin, and potassium sulphocyanate; the low reactions with gentian violet, temperature, pyrogallic acid, nitric acid, potassium hydroxide, potassium iodide, sodium hydroxide, sodinm sulphide, calcimm nitrate, strontium nitrate, and the vory low reactions with chloral hydrate, potassium sulphide, uranium nitrate, cobalt nitrate, copper nitrate, cupric chborid, harium chloride, and mercuric chloride.
(5) In the hybrid the very high reactions with sulphuric acid, hydrochloric acid, and sodium salicylate; the high reactions with chromie acid and potassium sulphocyanate; the moderate reactions with polarization, iodine, gentian violet, safranin, pyrogallic acid, potassium hydroxide, potassium iodide, and sodium hydroxide; the low reactions with temperature, chloral hydrate, nitric acid, sodium sulphide, calcium nitrate, and strontium nitrate; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride. The following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
N. tazetta grand monarque	1	2	6	6	11
N. poeticus ornatus.	2	2	4	10	8
N. poetaz triumph	3	2	8	6	7

15. Comparisons of the Starches of Nahcissus gloria méni, N. poetices ornatis, aid N. FIERY CROSS.
In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents and hybrid possess properties in common in varying degrees of development together with occasional individualities which collectively in each starch are distinctive. In histologic properties the parental starches differ in both minor and major respects. The starch of N. poeticus ornatus in comparison with that of the other parents shows in the polarization figure more distinctness and better definition, and other differences; and with selenite the quadrants are more often well defined, less irregular in shape, the colors not so often pure, and fewer grains have a greenish tinge. In the qualitative iodine reactions no qualitative differences were recorded. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid there are in each case characteristics in common and also individualities. The starch of the hybrid in comparison with the starches of the parents shows a closer relationship to that of N. gloria mundi in the form of the grains, character of the hilum, character and arrangement of the lamellæ, and in size; but it is closer to the other parent in the eccentricity of the hilum. In the polarization figures and in the reactions with selenite the relationship is closer to N. poeticus ornatus. In the iodine qualitative reactions differences between hybrid and parents, and between the latter were noted. In the qualitative reactions with the chemical reagents the hybrid shows certain resemblances to one parent and others to the other, but it is, on the whole, much more closely related to N. gloria mundi than to N. poeticus ornatus.
Reartion-intensiti's Expressed by Liyht, (olur, and Temperature Reactions.
Polarization:
N. gloria mundi, low to very high, usually moderate to moderately high, value 60.
N. poeticus ornat., low to very high, lower than in N. gloria mundi, value 50 .
N. fiery cross, low to very high, the same as in N. poeticus ornatus, value 50.
Ioxime:
N. gloria mundi, moderate, value 60.
N. pocticus ornat, moderate, much less than in N. kloria unundi, value 40 .
N. fiery cross, moderate, the same as N. gloria mundi, value 60. Gentian violet:
N. gloria mundi, light to moderate, value 40.
N. poeticus ornat., light to moderate, much less than in N. poeticus mundi, value 30 .
N. fiery cross, light to moderate, internediate between the parents, value 35 .
sufranin:
N. gloria mundi, moderate, value 40 .
N. poeticus ornat., moderate, higher than in N. gloria mundi, value 45.
N. fiery cross, moderate, the same as in N. gloria mundi, value 40.

Temperature:
N. glotias numdi, in majority at it $1072 h^{\circ}$, in ull at it to 7 , tиe:at $7.4 .5^{\circ}$.
 mean 77.5°.
 mean 74°.
The reactivity of N. gloria mundi is higher than that of the other parent in the reactions with polarization, iodine, gentian violet, and temperature; and lower in the safranin reaction. The reactivity of the hybrid is the same or practically the same as that of \hat{N}. gloria mundi in the iodine and safranin reactions, and slightly higher in the temperature reaction; the same or practieally the same as that of the wher parent in the polarization reaction; and mid-intermediate in the gentian violet reaction.

Table A 15 shows the reaction-intensities in percentages of total starch gelatimized at definite intervals (minutes) :

Table A 15.

Velocity-beaction Curves.

This section treats of the velocity-reaction curves of the starches of Narcissus gloria mundi, N. poeticus ornatus, and N. fiery cross, showing quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts 1) esi to D :9.3.)

The most conspicuous features of these five charts are:
(1) The closeness of all three curves in all of the reactions, with the exception of that with chromic acid at the 15 -minute interval, at which time the three curves are well separated; and also the tendency, with the exception that with sulphuric acid, for the reactions to be of moderate to low or very low intensity. In the sulphuric-acid reaction gelatinization proceeds so quickly that the curves are the same or practically the same, and in that with pyrogallic acid the curves are quite elose, yet sufficiently separated and uniform in their courses to indicate clearly the reaction-intensity relatiouships.
(2) The relations of the parental curves to each other and to the hybrid vary in the roactions, and moreover vary during the progress of the reactions.
(3) The curve of N '. glorin mundi is the higheot ,if the thro in the reaction wath chomal hyalrate; the
 intermedate: mormantate darmar mose of thove with -hnomar and, wherwian the lowe-t ; and hower in thes. with pyromallic acid.
 in relation to the parental rumbe, it forner lan hashot of the three in the pyrograllic-acid reation; the lnwst in those with chloral liydrate and nitric acid; and loweri throughout noarly the whene dit-manute jerion in then: with chromic arid, and finally intermediate but clo e t" N. gloria mundi.
(i.) In early period of comparation ro-i-tatere in
 thans, with the exemption of the quik rampton with sulphorice add, but in that with nitric adid it in - - $1+$ wh! in the relation of the hybrid.
(6) The carliest petion at whinh the cur:o- are What separated for differential purpmes is fla-tionais. The sulphuric-acid reaction is so rapid that any differentiation must be made at the very beginning of the reartion. In the chromic-acid reaction it is probalily at 1.5 minute: in those with chloral hydrate and nitric acid probably at (3) minutes ; and in that with pyrogallic achl probably at 45 or 60 minutes.

Rhaction-hntensities of the Hyerid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediatemes, ebom- and deffect in relation to the parents. (Table 1 is and

The reactivities of the hybrid are the same as those uf the sed parent in the iodine reation ; the same as those of the pollen parent in the polarization and safranin reactions; the same as thoe of hoth partents in an veaction; intermediate in those with gentian violet and sulphuric acid, in buth being mid-intermediate: :imins:
 doser to the seed parent and in the other closer to the pollen parent) ; and lowest in those with chloral hydrate, Wromis acid, and nitrie acid (in one lowing (lowe to the wed parent, in one choser to the pullen parent, amb in one being as close to one as to the other parent).
'The following is a summary of the reaction-intensities: same as seed parent, 1 ; same as pollen harent, \because : same as both parents, 0 ; intermenlall. \because; hathest, \because : lowest, 3.

The parents seem to have abont equal influence on the properties of the starch of the hybrid.

This section treats of the eompeste curse o: the reation-intensities, showing the differentiatan of the starches of Narcissus gloria mundi, N. poeticus orn titio, and 1. fiery crows. (Chart E 1\%.)

The most conspicuous features of this chart are:
(1) The close correspondence of all three curves in their courses.

 emtian violet, and temperature the lower with chromed atid and nitric atid: ant the sam, or pratiolly the | ame with pyrogallic acid and nitric acid.
wartim chloride in which ${ }_{i l}$ the very high sulphuric-acid lutely $n i l$, yet even herfarization and iodine reactions; of highest reactivity $\mathrm{m}_{\text {ntian }}$ violet, safranin, chromic acid, of the pulleu paren'; the low with temperature and nitric

Confposite ry low with chloral hydrate.
dhes poeticus ornatus the very high sulphuric-
'This sen; the high with chromic acid; the moderate reaction-dirization, iodine, and safranin; the low with starcher violet, temperature, pyrogallic acid, and nitric cus ; and the very low with chloral hydrate.
(5) In the hybrid the very high sulphuric-acid reaction; the high iodine reaction; the moderate reactions with polarization, safranin, chromic acid, and pyrogallic acid; the low with gentian violet, temperature, and nitric acid; and the very low with chloral hydrate.

The following is a summary of the reaction-intensities (10 reactions) :

	Very high.	High.	Moderate.	Low.	Very low.
N. gloria mundi.	1	2	4	2	1
N. poeticus ornatus	1	1	3	4	1
N . fiery cross . . .	1	1	4	3	1

16. Comparisons of the Starches of Narcissus telamonius plenus, N. poeticus ornatus, N. boubloon.

In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents and hybrid exhibit not only properties in common in varying degrees of development but also certain individualities which collectively in each case are distinctive of the starch. In histologic properties the parental starches differ in certain well-defined respects. In N. poeticus ornatus the polariscopic figure is not so distinct or so well defined as in the other parent; and with selenite the quadrants are not so well defined and are more irregular in form, the colors are more of ten pure, and there are more grains with a greenish tinge. Witu iodine the raw grains of N. poeticus ornatus color less, and after boiling the grain-residues are more deeply colored and the solution less decply colored than in N. telamonius plemus. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric arid there are in each case rather striking differences. The starch of the hybrid in comparison with the starehes of the parents shows in form a closer relationship to the starch of N. telamonius plenus than to that of the other parent, and the same relationship is true of the character of the hilum and the character of the lamella ; in size of the grains the relationship is reversed; while in eccentricity of the hilum there is, on the whole, no appreciable difference between the three starches. In the polarization figure and reactions with selenite the relationship is closer to N. poeticus ornatus. In the qualitative iodine reactions the reemblances are closer to N. telamonius plenus. In the qualitative reactions with chloral hydrate, pyrogallic acid, and nitric acid the relationship is closer to N. telamonius plenus, while in those with the chromic acid and sul-
phuric acid the relationship is reversed. In these reactions the three starches can be differentiated quite readily. The influences of each parent on the properties of the starch of the hybrid are manifest.

Reaction-intensities Expressed by Light, Color, and Tempera-

Polarization:

N. telamonius plen., low to very high, value 45.
N. poeticus ornat., low to very high, higher than in N. telamoniug plenus, value 50.
N. doubloon, low to very high, the same as in N. telamonius plenus, value 45.

Iodine:

N. telamonius plen., moderate, value 45 .
N. poeticus ornat., moderate, less than in N. telamonius plenus, value 40.
N . doubloon, moderate, the same as in N . telamonius plenus, value 45.
Gentian violet:
N. telamonicus plen., light to moderate, value 40.
N. poeticus ornat., light to moderate, less than in N. telamonius plenus, value 30.
N. doubloon, light to moderate, less than in N. telamonius plenus. value 33.

Safranin:

N. telamonius plen., moderate, value 50.
N. poeticus ornat., moderate, less than in N. telamonius plenus, value 45 .
N. doubloon, moderate, the sameas in N. poeticus ornatus, value 451. Temperature:
N. telamonius plen., in majority at 70 to 72°, in all at 73 to 75°, mean 74°.
N. poeticus ornat., in majority at 73 to 74°, in all at 77 to 78°. mean 77.5°.
N. doubloon, in majority at 71.2 to 73°, in all at 75 to 77°, mean 76°.

The reactivity of N. telamonius plenus is lower than that of the other parent in the polarization reaction; and higher with iodine, gentian voilet, safranin, and temperature. The reactivity of the hybrid is the same or practically the same as that of N. telamonius plenus in the polarization and iodine reactions; the same or practically the same as that of the other parent in the safranin reaction; and intermediate in the gentian violet and temperature, both being closer to N. poeticus ornatus.

Table A 16 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes) :

Table A 16.

	घ่	E	品	E	$\underset{\sim}{E}$	$\begin{aligned} & \dot{\Xi} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { g্घ } \\ & \text { 兄 } \end{aligned}$	$\begin{aligned} & \dot{E} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \dot{8} \\ & 8 \end{aligned}$
Chloral hydrate:									
N. telamonius plen	.	.	.	\cdots	2	11	20	22	24
N. poeticus ornat	.	.	.	\cdots	0.5	6	24	28	34
N. doubloon.	.			\cdot	6	13	38	50	54
Chromic acid:									
N. telamonius plen	.	.	\cdots	.	0.5	26	77	95	99
N. poeticus ornat.	.	\cdots	-	-	7	65	80	95	98
N. doubloon.		\cdots			2	10	76	90	98
Pyrogallic acid:									
N. telamonius plen	.	\cdots	\cdots	\cdots	2	33	73	84	90
N. poeticus ornat					2	20	68	81	88
N. doubloon....			.	\cdots	5	35	67	80	87
Nitric acid:									
N. telamonius plen	\cdots		\cdots	.	14	65	75	80	85
N. poeticus ornat.	.		.		6	20	39	65	70
N . doubloon.			\cdots	\cdots	27	60	72	75	81
Sulphuric acid:									
N. telamonius plen..		99	\cdots	.	. .		\cdots		\cdots
N. poeticus ornat.		93	.	\cdots		\cdots	\cdots		\cdots
N. doubloon..		97							.

Velochty-reaction Curyes.

This section treats with velocity-reaction curves of the starches of Narcissus telamonius plenus, N. pocticus ornatus, and N. doubloon, showing quantitation dilferences in the behavior toward different reagents at definite time-intervals. (('harts 1) 293 to 1) 295.)

The most conspicuous features of these charts are:
(1) The tendency in three of the charts to wellmarked separation of one of the three curves from the other two, to closeness of the curves in the reaction with pyrogallic acid, and to identity in the sulphuris-antid wantion. In the chloral-hydrate reaction the parental curves are in close correspondence in their courses, the hybrid curve departing; but in the charts for chromic acid ant] nitric acid the curves of N. telomomius plenus and the hybrid tend to closeness and the curve of J. poeticus ornatus to departure. With the exception of the very high reactivity witli sulphuric acid, and the very low reactivity with chloral hydrate the reactions tend to be moderate to low.
(2) The relations of the parental curres to each other and to the hybrid vary in the four reactions.
(3) The curve of N. telamonius plenus is higher than the curve of the other parent throughout the whole, or the larger part, of the 60 minutes in the reactions with chloral hydrate, pyrocrallic acid, and nitric acid, but is distinctly the lower in the reaction with chromic acid.
(4) The hybrid curves are very variable in their parental relationships. In the chloral-hydrate reaction the hybrid curre is distinctly the highest of the three curves; in that with chromic acid the lowest; in that with pyrogallic acid at first somewhat the highest and then passing on to be the lowest, although in this reaction all three curves tend to marked closeness ; and in that with nitric acid it is at first the highest and then intermediate, but much closer to N. telamonius plenus than to the other parent. The relationship is, on the whole, rather closer to N. telamonius plenus.
(5) An early period of comparative resistance followed by a comparatively rapil reaction is noted with chromic acid and pyrogallic acid, not at all with nitric acid, and to a slight degree with chloral hydrate.
(6) The earliest period at which the curves are best separated for differential purposes is within or at 5 minutes in the reactions with sulphuric acid and nitric acid; at 15 minutes in those with chromic acid and pyrogallic acid: and either at 30 or 60 minutes in that with chloral hydrate-at the first N. telamonius plenus would be intermediate in position, while at the latter it would be lowest.

Reaction-intexsities of the Hybmin.

This section treats of the reaction-intmsities of the hybrid as regards sameness, intermediateness, exeess, and deficit in relation to the parents. (Tahle $A 16$ ant Charts D 293 to D 298.)

The reactivities of the hybrid are the same as thrisi of the seed parent in the polarization and iodine reactions; the same as those of the pollen parent in the safranin reaction; the same as those of both parents in that with pyrogallic acid; intermediate in those with gentian violet, temperature, nitric acid, and sulphuric acid (in two being closer to the seed parent and in two closer
to the pollen parent) ; highest in none; and lowr-t in

 - loser to the semet farmat).

Thu followiner is a -umatary of the reamion-intunsities (10 reactions) : same as seed parent, 2; samu as pollon parme, 1 ; same as both parents, 1 ; intermediate, 4 ; hichest, 0 ; lowest, 2.

The seed parent, V. pocticus ornatus, seems to be the mure potent in influencing the characters of the starch of the hybrid.

This sertion treats of the ermpesite curve of the reaction-intensities, showing the differentiation of the starches of Narcissus telamonius plenus, N. poeticus urntus, and N. doubloon. (Chart E 16.)

The most conspicuous features of the chart are:
(1) The close correspondence of all three curves in their courses, especially of the parental curves.
(2) In N. telumonius plenus in comparison with the other parent the higher reactions with ioxine, gentian violet, safranin, temperature, and nitric acid; the lower reactions with polarization and chloral hydrate; and the same or practically the same reactions with chromic acid, progallice atil, and sulphuriw arid.
(3) In S. tolamonius plouus the very hirh reaction with sulphuric acid; the high reaction with chromic acid; the moderate reactions with polarization, iodine, gentian violet, safranin, and prrogallic acid; the low reactions with temperature and nitric acid; and the very low reaction with chloral hydrate.
(1) In N. pustions ormatus the very high reaction with sulphuric acid; the high reaction with chromic acid; the moderate reactions with polarization, iodine, and safranin ; the low reactions with gentian violet, temperature, prowallie acid, and nitrio achl: and the bery low reaction with chloral hydrate.
(5) In the hybrid the very high reaction with sulphuric acid; the absence of any high reaction; the moderate reactions with polarization, iodine, safranin, and chromic acid; the low reactions with gentian violet, temperature, chloral hydrate, pyrogallic acid, and nitric acid; and the absence of any very low reation.

The following is a summary of the reaction-intensities (10 reactions) :

	Very high.	High.	Mod- trat	Lfw,	Vury low.
	1	1	.	2	1
N. furtious ornatus	1	1	3	4	1
「. Andilaron	,	0	4	\therefore	0

1\%. Combations of the Ntabohes of Nabotssts princess Mary, N. poeticés poetarym, and N. CRESERT.
In histologic characteristics, polariscopic figures. reactions with selenite, reactions with iodine, and qualitative reactions with various chemical rearents the star hes of the parents and hybrids possess properties in common in rarying degrees of development and individualities which collectively are in each case distinctive. In histo
logic properties the starches of the parents differ in certain well-defined respects. The starch of Narcissus poeticus poclarum in comparison with that of the other parent show- in the polarization figure less definition and some differences in the characters of the lines; and in the whente reaction less clean-cut quadrants, more irregularity of thape, more often purity of colors, and more frains with a greenish tinge. With iodine no qualitative dindernes were recorded. In the qualitative reactiens with the chemical reagents there are well-defined differences which for the most part are related to variatinns in the histologic peculiarities of the grains of the two plants. The starch of the hybrid in comparison with the starches of the parents contains a larger percentase of a womentus and eompound grains than in either parent; it is more like the starch of N. princess mary as regards the absence of clearness of distinction between the primary and secondary starch deposits; but it is, on the whole, in closer relationship to the starch of N. poeticus purturum. In the character and eccentricity of the hilum and size of the grains the relationship is closer to N. princess mary, but in the character of the lamelle it is nearer the other parent. In character of the polariswnic fyure, and in the reactions with selenite, the relationsleip is doser to N. princess mary. In the qualitative ionleme reaction it is closer to N. poelicus freformm. In all of the qualitative reactions with the chemical reagents (including chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid) charatoristios of eath wi the parents are evident and also certain imlividualities not nhserved in the parents, but the resmblances of the hybrid, as a whole, are closer to N. princess mary than to N. poeticus poetarum.

Rewtion-intensiliss Rapressed by Light, ('otor, and Tempera there Redefions.
Potarization:
N. princtas mary, low to hizh, value 35.
N. Juctions protar., low th hich, highar than in N. prineses maty, value 40.
N. ernset, how to high, sume as in N. perticus poctalum, value 40 Iotine:
N. prinetms mary, lizht to moderate, valuf 42.
N. protionz portar., light to mombrate. Hightly higher than in N. princesm mary, value 45.
N. crew-t. ligit to mocherate, tha same as in N. pocticus poetarum, value 45.
Gentian vinlet:
N. princese mary, light to moderate, value 37 .
N. pentious buetar., light to mombrate, slightly lighter than in N. princess mary, value 35.
N. cresset, lieht to monderates the same as in N. princess mary. value 37.
Safranin:
N. princess mary, moderate, value 50 .
N. boeticus poyar, moderate, the same as in N. princess mary, value 50.
N. erisset, molerate, the same as in hoth qarents, walue 50 .

Temperature:
 me-1n 7.5
N. poeticus poetar., in majority at 67 to 69°, in all at 71 to 73°. mean 72°
N. cresset, in majority at 71 to 73°, in all at 74.5 to 76°, mean 75.7°.

The reactivity of N. prinoss mary is the same or practially the same as that of the other parent in the saframin reaction; hioher in the gentian-violet reaction: and lower in the polarization, iodine, and temperature reactions. The reactivity of the hybrid is the same or practically the same as that of S . princess mary with
gentian riolet; the same or practically the same as that of the other parent in the polarization and iodine reactions; the same as that of both parents with safranin; and the lowest of the three with temperature, but nearer N. princess mary.

Table A 17 shows the reaction-intensities in percentages of total starch gelatiuized at definite intervals (minutes) :

Table A 17.

	\pm	云	$\underset{\sim}{5}$	E	E	E -	E		\dot{E} 8 8
Chloral hydrate:									
N. prinecss mary			.		2	5	6	8	15
N. poeticus poetar		.	.	.	0.5	6	9	11	17
N. cresset		\cdots	.	.	2	3	7	18	22
Chromic acid: ${ }_{\text {Cl\| }}$									
N. princess mary		\cdots	.	.	2	25	70	90	98
N. poeticus poetar		\ldots	\ldots		3	22	65	75	85
N. cressct...		\cdots	\cdots	\cdots	2	15	70	93	96
Pyrogallic acid:									
N. princess mary		\cdots			3	40	77	87	95
N. pocticus poetar					1	16	70	84	33
N. cresset....		. .	\cdots		3.	16	69	74	81
N. priucess mary.		--			13.	55	68	75	79
N. poeticus poetar					10	40	53	60	6:3
N. cresset						67	75	77	>0
Sulphuric acid:									
N. princess mary.		95						\cdots	
N. pocticus poetar.		79							
N . cresset.		98							

Telocity-heaction C'urrias.
This section deals with the velocity-reaction curves of the starches of Narcissus princess mary, N. pocticus poctarum, and N. cresset, showing quantitative differences in the behavior toward different rearents at definite time-intervals. (Charts I) 399 to I) 30 k.)

The most conspicuous features of these charts are:
(1) The closeness of all three eurves in all of the charts (with the exception of the very quick sulphuricacid reaction in which there is no differentiation) and the moderate to low or very low reactivities. In the sul-phuric-acid reaction gelatimization proceeds so rapidly that there is differentiation only before the end of about 3 minutes, at the end of 2 minutes the reactions of N. princess mary and the hybrid are practically absolutely the same, but the reaction of the other parent is distinctly less. In the reaction with chloral hydrate there is unimportant separation of the curres, but in the other three reactions there are varying degrees of separation.
(?) The relationships of the parental curves to each other and to the curve of the hybrid vary in the different reactions and during the progress of the reactions.
(3) The curve of N. princess mary is the highest in the reaction with pyrogallic acid; lowest with chlorai hydrate; intermediate with nitric acid; and practically the same as that of the hybrid and higher than the curve of the other parent with chromic acid.
(4) The hybrid curve is the highest of the three in the reactions with chloral hydrate and nitric acid; it tends to be the lowest with prrogallic acid; and it inclines to be the lowest at first and the highest later with chromic acid. It is more closely related to the curve of N. princess mary in the reaction with chloral hydrate; to the curve of the other parent with nitric acid; and first
to one parent and then to the other with chromic acid and pyrogallie acid, the parental relation-hips being reversed in these two reactions.
(5) An early period of resistance followed by a som paratively rapid reatem is sam in the reations wath chromic acid and pyrogallic adid-in all three starches in the first and in the two starches in the second.
(6) The earliest period at which the three curves aru best separated for differential purposes is in the sul-phuric-acid reaction within the 5 -minute period; in that with pyrogallic acid at 15 minutes: and in that with chloral hydrate at 60 minutes.

Reachon-intexsithes of the II ybrid.

This section deals with the reaction-intensitics of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 17 and Charts D 299 to D 304.)

The reactivities of the hybrid are the same as thos of the seed parent in the reactions with gentian violet and chromic acid; the same as those of the pollen parent in those with polarization, iodine, and safranin; the same as those of both parents in none ; intermediate in none: highest in those with chloral hydrate, nitric acid, and sulphuric acid, in all three being closer to the seed parent: and lowest in those with temperature and pyrogallic acid, in both being closer to the seed parent.

The following is a summary of the reaction-intensities (10 reactions): Same as seed parent, 2; same a: pollen parent, 3 ; same as both parents, 0 ; intermediate. 0 ; highest, 3 ; lowest, 2.

The seed parent, N. princess mary, has from thes data exercised a far more potent influence than N. pocti cus poetarum on the properties of the starch of the hybrid.

Composite Cufees of the Reac'tion-tnthestities.

This section treats of the composite curves of the reac-tion-intensities, showing the differontiation of the starches of Narcissus princess mary, N. poeticus poetarum, and N. cresset. (Chart E 1i.)

The most conspicuous features of this chart are:
(1) The very close correspondence in the curves. both as to nearness and course.
(2) In N. princess mary in comparison with the other parent the higher reactions with gentian violet. chromic acid, and nitric acid; the lower reactions with polarization and iodine; and the same or practioally the same reactions with chloral hydrate, pyrogallic acid, and sulphuric acid.
(3) In N. princess mary the very high sulphuric. acid reaction; the absence of any hish reaction; the moderate reactions with indine, safranin, wromic aciod. and pyrogallic acid; the low reactions with polarization. gentian violet, temperature, and nitric acid; and the ver! low reaction with chloral hydrate.
(4) In N. poeticus poptarum the very high reaction with sulphuric acid ; the absence of any high reaction : the moderate reactions with polarization, iodine, safranin. temperature, and pyrogallic acid: the low reactions with gentian violet, chromic acid, and nitric acid: and the very low reaction with chloral hvdrate.
(5) In the hybrid the very high reaction with sulphuric acid; the absence of any high reaction; the mod-
rrate reactions with polarization, iodime, safranin, and

 Iow reaction with chloral hydrate.

The followiner is a -ummary oi hare ration-jntencitic: (10 raction-):

 scalilet.
In histolowie characteristies, polarispopie: figures, Fenctions with ablente, reartions with ionlon., and ymalitative reactions with the various chemical reagents the starches of the parents and hybrid exhibit properties in rommon in varying degrees of development, which collectively in each case are distinctive, althongh all three starches are very much alike. In histolowic pronerties the starches of the parents differ very little, and the same is also true of the polarisonpie firures and reartions with selenite. In the iodine reactions no qualitative difforencos were recorded. In the gualitative reactions with chloral hylrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid there are properties in common and aloo individualites. The starel of the hyhrid in comparison with the satrehes of the parents shmes a closir relationship to Nimeisus aherissus in the form of the arains, the character of the hilam, the chamater of the famolla, and the size of the larger grains; hut closer to the other parent in the size of the smaller grains. The eventriedty "f the hilum is abent the same in all there starehes, and in the hyriol the lamellar are more distinet than in the parents, and the hilom is not so denply and exten-ively tis-urch. In the pelarization fisures and reactions with selenite the relationship is eloser to N. abserissus. In the qualitative ionline reactions it is doser to N. popticus poetarum. In all of the qualitative reactions with the chemical reagents peculiarities of both parents are whorsent, hut the resomblanees are on the whole, closer to N. abscissus. Such differences as have becon recorded are mily of a miner waracter.

Recertion-int mattios Erpmessed by Liqht, Color, and Temperature Reartions.
Polarization:
N. abecisuas, low to high, value 43.
N. pocticus boetar, low to high, somewhat hess than in N. abosci-mbs. value 40.
N. will scarlet, low to high, the same as in N. abscissus, valuc 43. Indine:
N. abscissus, light to moderate, value 40 .
\therefore. poeticus poetar. light to moderate, somewhat less than in N . abscissus, value 45.
N. will scarlet, licht to moderate, the same as in N. functieun furetarum, value 45.

Gentian violet:

N. abscissus, light to moderate, value 33 .
N. pocticus poetar., light to moderate, somewhat more than in N. abscissus, value 35 .
N. will scarlet, light to moderate, higher than in cither parent, value 37 .

Safranin:
N. abscissus, moderate, value 47.

N . poeticus poetar, moderate, somewhat more than in N . abscissus, value 50 .
N, will scarlet, moderate, higher than in either parent, value 53 . Temperature
N. abscisons, in majority at 69.5 to 71°, in all at 73 to 74°, mean 73.5°.
N. poeticus poctar., in majority at 69 to 71°, in all at 71 to 73°, nutan 72°
N . will scarlet, in majority at 69.8 to 71.9°, in all at 72 to 74°, mean 73°.
The reactivity of N. abscissus is the same or practically the same as that of the other parent in not a single reaction; higher in the polarization reaction; and lower in those with iodine, gentian violet, safranin, and temperature. The reactivity of the hybrid is the same or practically the same as that of N.abscissus in the polarization reaction; the same or practically the same as that of the other parent in the iodine reaction; and the highest of the three in the reactions with gentian violet and safranin; and intermediate but close to the seed parent in the temperature reaction.

Table A 18 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes) :

$$
\text { Table A } 18 .
$$

	E	¢		$\underset{\text { E }}{\square}$	as	$\stackrel{\text { E }}{\sim}$	ह ¢	E 4 \square	E
Chloral hydrate:									
N. abscissus.					2	4	11	17	18
N. poeticus poetar					0.5	6	9	11	17
N. will scarlet					2	3	8	16	18
Chromic acid:									
N. abscissus					4	26	81	95	98
N. porticus poetar					3	22	65	75	85
N. will scarlet					4	49	83	97	99
Pyrogatlic acid:									
N. abseissus.					23	66	79	88	92
N. poeticus poettar					1	16	70	84	93
N . will scarlet.					3	26	73	\$1	S6
Nitric acid:									
N. abscissus.					33	66	73	S0	86
N. preticus poetar.					18	40	53	60	63
N. will scarlet.					til	78	82	87	91
Sulphuric acid:									
N. abscissus..		$9!$							
N. porticus poetar.		79			99				
N. will scarlet.		98							

Velocity-reaction Curves,

This section treats of the velocity-reaction curves of the starches of Narcissus abseissus, N. poeticus poetarum, and N. will scarlet, showing qualitative differences in the behavior toward different reagents at definite timeintervals. (Charts D) 305 to D 310.)

The most conspicuous features of these charts are:
(1) 'The chase correspondence of all three curves (exepting in the pyrngallic-acid reaction, in which there is a disproportionate separation of the curve of $N, a b$ scisstes from the other curres) ; and also the tendency for the reactions, excepting that with sulphuric acid, to be of moderate to low or very low intensity. The sul-phuric-acid reaction is so very rapid that there is no differentiation to be scen in the charts, although, as will be seen from the preceding table, the reactivity of N. porticus poetarum is less at first than that of either of the other starches. In the chloral-hydrate reaction the
differences are of a very minor character, not sufficient for satisfactory differentiation.
(2) The relations of the parental curves to each other and to the hybrid vary in the reactions, and in the pyrogallic-acid reaction they vary during their course.
(3) The curve of N, abscissus is higher than that of the other parent in the reactions with chromic acid, pyrogallic acid, and nitric acid, in the two latter being quite well separated. A higher reactivity of N. abscissus is also indicated in the records of the reactions with chloral hydrate and sulphuric acid.
(4) The curve of the hybrid is the highest of the three in the reactions with chromic acid and nitric acid, and intermediate during the first part and lowest during the latter part of that with pyrogallic acid, although in this reaction there are but small differences between the hybrid and N. poeticus poetarum.
(5) An early period of resistance followed by comparatively rapid gelatinization is noted in all three starches in the reaction with chromic acid, in two with pyrogallic acid, and in one with nitric acid. The reaction with sulphuric acid is too rapid and with chloral hydrate too slow for a manifestation of this peculiarity.
(6) The earliest period at which the curves are best separated for differential purposes varies in the different reactions. This period is approximately in the reactions with sulphuric acid and pyrogallic acid within the 5 -minute interval ; in those with chromic acid and pyrogallic acid at the 15 -minute interval; and in the chloral-hydrate reaction at probably 30 to 45 minutes, although at any time the differences in this reaction may fall wholly within the limits of error of experiment.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 18 and Charts D 305 to D 310.)

The reactivities of the hybrid are the same as those of the seed parent in the polarization and sulphuric acid; the same as those of the pollen parent in the iodine reaction; the same as both parents in that with chloral hydrate ; intermediate in those with temperature and pyrogallic acid (in one being closer to one parent and in the other closer to the other parent) ; highest in those with gentian violet, safranin, chromic acid, and nitric acid (in three being closer to the pollen parent, and in one closer to the seed parent); and lowest in none.

The following is a summary of the reaction-intensities (10 reactions): Same as seed parent, 2; same as pollen parent, 1 ; same as both parents, 1 ; intermediate, थ; highest, 4; lowest, 0 .

The seed parent has probably slightly more influence than the pollen parent in determining the properties of the hybrid. The tendeney of the hybrid to highness is evident, this being more marked than to intermediateness.

Composite Curves of the Reaction-Intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Narcissus abscissus, N. poeticus poetarum, and N. will scarlet. (Chart E 18.)

The most conspicuous features of this chart are:
(1) The close correspondence of the three curves both as to closeness and course, the only tendency even
to a moderate separation being in the reactions with chromic acid and nitric acid.
(2) In N. abscissus in comparison with the other parent the higher reactions with polarization, chromi acid, and nitric arid; the bower reations wath ioxlane. gentian violet, safranin, and temperature : and the sann. or practically the same reactions with chloral hylrate, pyrogallic acid, and sulphuric acid.
(3) In N. abscissus the very high reation with sulphuric acid; the high reaction with chromic acid; the moderate reactions with polarization, iodine, safranin. and pyrogallic acid; the low reactions with gentian violet. temperature, and nitric acid; and the very low reaction with chloral hydrate.
(4) In N. poeticus poetarum the very high sulphuricacid reaction ; the absence of a high reaction ; the moderate reactions with polarization, iodine, safranin, temperature, and progallic acid; the low rometions with gentian violet, chromic acid, and nitric acid; and the very low reaction with chloral hydrate.
(5) In the hybrid the very high reaction with sulphuric acid; the absence of a high reaction ; the moderate reactions with polarization, iodine, safranin, chromic acid, and nitric acid; the low reactions with gentian violet, temperature, and pyrogallic acid; and the very low reaction with chloral hydrate.

The following is a summary of the reaction-intensities (10 reactions) :

	Very high.	High.	Moderate.	Low.	Very low.
N. abscissus..	1	1	4	3	1
N. poeticus poetarum	1	0	5	3	1
N . will scarlet.	1	0	5	3	1

19. Comparisons of the Starches of Narciseís albicans, N. absciseres, and N. bicolor apricot.

In histologie characteristics, polariscopic figures. reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents and hybrid exhibit properties in common in varying degrees of development together with certain individualities which collectively in each case are distinctive of the starch. In histologic properties there are certain well-defined differences between the starches of the parents. In Narcissus abscissus compared with the other parent the polariscopic figure is not so well defined, and there are minor differences in the lines; and with selenite the quadrants are not so clean-cut and are more irregular, the eolors are more often pure, and more grains have a eremish tinge. In the iodine reactions no qualitative differemee was recorded. In the qualitative reactions with chlural hydrate, chromic acid, pyrogallic acid, nitric acid, ant sulphuric acid there are both properties in common and differences which are quite definite. The stareh of the hybrid has fewer compound grains than in either parent. and in form generally shows a closer relationship to N. albicans than to N. abscissus. While the eceentricity of the hilum is about the same in all three starches, the character of the hilum is somewhat closer to that of
N. uhworsus. In the rharatere of the lamefla and in the size "I the crrains the relationship is eloser to N. albirans.

 N. allicens. In the qualitative fodine reartions there raw grains show a cosser relationship to N. albirnes, but atter heatime the retation-hap i- werer to the wher parent. In the qualitative chemieal reactions peculiari-

 - Fonely those of the wher parent. There are alon erertath imbindualitio in the way widmentuation wh the harid.
Reartion-intonsities Vispresset by Light. Coblor, and Ti.whera tw. Reactions.
Prdariz.tinn:
N. albicans, low to hiph, value 37.

 I- Whene:
N. albicans, menderate, value 5.5.
 value 40.
N. bicolor apricot, moderate, intermediate lietwen the barmita, but mumh romer to N. albicans, valum 53.
Gimbian violet:
N. albicans, bipht to moderate, value 40 .
N. abscissus, light to moderate, lighter than in N. albicans, value 33.
N. bieslor apricot, light to moderate, the same as N . allicnos, value 40.
Sufranin:
N. allimans, momerate, valu* 50.
N. abserisus, merderate, lews than in N. alhimans value 47 .
N. bionor apricot, moderate, the same as N. albicans, value 50 . 'Ter"perature:
… alhicans, in majority at 70.2 to 72°, in al! at 73 to 75°, unean 74°.
 73.5°.
N. bieolor aprient, in majority at 71 to 72.55°, in all at 74 to 76°. me an 75°.
The reactivity of N . albicans is higher than that of the other parent in the reactions with iodine, gentian violet, and safranin: and lower in those with polarization and temperature. The reatisity of the hytrid is the same or practivally the came as that of X. whimone with polarization, gentian violet, and safranin: intermediate

$$
\text { Tun.e A } 19 .
$$

but nearer \mathcal{N}. albicans with iodine; and the lowest of the three, but nearer N. albicans, with temperature.

Table A 19 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Telociti-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Narcissus albicans, N. abscissus, and N. bicolor apricot, showing the quantitative differences in the behavior toward different reagents at definite timeintervals. (Charts D 311 to D 316.)

The most conspicuous features of these charte are:
(1) The close correspondence of the curves in their courses in all of the reactions (with the exception of the very rapid sulphuric-acid reaction, in which there is no differentiation) and the tendency mostly to a moderate or low reactivity.
(2) The relationships of the parental curves to each other and to the curve of the hybrid (excepting the quick sulphuric-acid reaction) vary in the different reactions and during their progress.
(3) The curve of N. albicans is distinctly higher than that of the other parent in reactions with the chloral hydrate, pyrogallic acid, chromic acid, and nitric acid, the degree of separation varying as stated.
(4) The hybrid curve is the same or practically the same as that of N. abscissus in the reactions with chloral hydrate and chromic aeid, being fairly well separated from the curve of the other parent; and it is lowest in the reactions with pyrogallic acid and nitric acid, it being in both closer to N. abscissus.
(5) A tendency to an early period of resistance followed by comparatively high reactivity is indicated only in a minor degree, and almost solely that with chromic acid.
(6) The earliest period at which the three curves are best separated for differential purposes is in the reaction with sulphuric acid at the very beginning; with pyrogallic acid, chromic acid, and nitric acid at 15 minutes; and with chloral hydrate at 30 minutes or later.

Reaction-intensities of the Hybrids.

This section deals with the reaction-intensities of the hybrids as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 19 and Charts D 311 to D 316.)

The reactivities of the hybrid are the same as those of the sced parent in the reactions with gentian violet and safranin; the same as those of the pollen parent with polarization and chloral hydrate; the same as those of both parents with sulphuric acid, in which the reactions occur too rapidly for differentiation; intermediate in those with iodine and chromic acid, in both being closer to those of the seed parent; highest in none; and the lowest in those with temperature, pyrogallic acid, and nitric acid, in one being closer to the seed parent and in two closer to the pollen parent.

The following is a summary of the reaction-intensities (10 reactions) : Same as seed parent, 3 ; same as pollent parent, 4 ; same as both parents, 1 ; intermediate, 2 ; highest, 0 ; lowest, 3 .

The seed parent seems to be much more potent in influencing the characters of the starch of the hybrid.

Composite Curves of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Narcissus albicans, N. abscissus, and N. bicolor apricot. (Chart E 19.)

The most conspicuous features of this chart are:
(1) The close correspondence of the curves both as to nearness and course.
(2) In N. albicans in comparison with the other parent the higher reactions with iodine, gentian violet, safranin, chloral hydrate, chromic acid, and pyrogallic acid; the lower reactions with polarization and temperature; and the same reactions with nitric acid and sulphuric acid.
(3) In N. albicans the very high sulphuric-acid reaction ; the high reactions with chromic acid and pyrogallic acid, the moderate reactions with iodine, gentian violet, and safranin; the low reactions with polarization, temperature, and nitric acid; and the very low reaction with chloral hydrate.
(4) In N. abscissus the very high sulphuric-acid reaction ; the high chromic-acid reaction; the moderate reactions with polarization, iodine, safranin, and pyrogallic acid; the low reactions with gentian violet, temperature, and nitric acid; and the very low reaction with chloral hydrate.
(5) In the hybrid the very high reaction with sulphuric acid; the high reaction with chromic acid; the moderate reactions with iodine, gentian violet, safranin, and pyrogallic acid; the low reactions with polarization, temperature, and nitric acid; and the very low reaction with chloral hydrate. The following is a summary of the reaction-intensities (10 reactions):

	Very high.	High.	Moderate.	Low.	Very low.
N. albicans	1	2	3	3	1
N. abscissus	1	1	4	3	1
N. bicolor apricot	1	1	4	3	1

20. Comparisons of the Starches of Narcissus empress, N. albicans, and N. madame de grasff.
In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with various chemical reagents the starches of the parents and hybrid have properties in common in varying degrees of development together with certain individualities which collectively are in each case distinctive of the starch. The differences are, as a whole, of rather a minor character. In histologic properties the parental starches differ particularly in the number of aggregates, compound and composite grains, irregularity, and conspicuous forms, especially as regards the last. The nearly round and short elliptical grains seen in Narcissus albicans are not present in N. empress. There are minor differences in the hilum and lamelle, and the grains are smaller in N. abscissus. In the polarization figures and reactions with selenite there are minor differences. In the reactions with iodine no qualitative differences were recorded. In the reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and
sulphuric acid, there are differences of minor characters. The starch of the hybrid has more isolated and mor. simple grains than either parent, and in form it is more closely related, on the whole, to N. empress than to N. albicans; moreover, some characteristios of the former are accentuated. The hilum is less fissured than in either parent, and in both character and eccentricity of the hilum it is in closer relationship to N. albicans. In the character and number of the lamellse the relationship is clocer to N. albicans, hut in size the relationship is closer to N. empress. In the character of the polariscopic figure and appearance with selenite the relationship is closer to N. empress. In the qualitative iodine reactions the raw grains behave more like those of N. empress, while after the grains are boiled there are no differences noted in the three starches. In the qualitative reactions with the chemical reagents peculiarities of both parents are evident. In the reactions with chloral hydrate, chromic acid, nitric acid, and sulphuric acid the relationship is, on the whole, closer to N. empress; but in the pyrogallic-acid reaction the relationship is closer to the other parent.
Reaction-intensitics Expressed by Light, Color, and Temperature Reactions.
Polarization:
N. cmprese, low to high, valuo 42.
N. albicans, low to high, lower than in N. empress, value 37.
N. madane de graaff, low to high, the same as in N . alficaus, value 37.
Iodine:
N. empress, moderate, value 50.

N . albicans, moderate, higher than in N. empress, value 55.
N. madane de graaf, moderate, the same as in N. empres, value 50 . Gentimn violet:
N. empress, light to moderate, value 43.
N. alticans, light to moderate, somewhat less than in N. empres, value 40.
N. madame de graaff, light to moderate, the same as in N. empres. value 43.
Safranin:
N. empress, moderate, value 53 .

N albicans, molerate, somewhat less than in N. empress, value of
N. malame de graaff, moderate, the same as in N. empress, value 53. Temperature:
N. empress, in majority at 70 to 71°, in all at 73 to 74°, mean 73.5°
N. alhicans, in majority at 70.2 to 72°, in all at 73 to 75°, mean it

N . madame de graaff, in majority at 70 to 72°, in all at 73.5 to 75°, mean 71.25°.
The reactivity of N. empress is higher than that of the other parent in the reactions with polarization, gentian violet, safranin, and temperature; and lower in the iodine reaction. The reactivity of the hybrid is the same or practically the same as that of N. empress in the reactions with iodine, gentian violet, and safranin, and the same or practically the same as that of the other parent in the polarization, iodine, and temperature reactions. In no reaction is there intermediateness of the hybrid.

Table A 20 shows the raction-intensities in percentage of total starch gelatinized at definite time-intervals.

Velocity-reaction Curves.

This section treats of the velocity-reaction curres of the starches of Narcissus empress, N. albicans, and N. madame de graaff, showing the quantitative differmers in the behavior toward different reagents at definite time-intervals. (Charts D 31% to D $32 .$. .)

Tamef A 20.

The most conspicuous features of these charts are:
(1) The close correspondence in the courses of the three curves in all of the reactions (with the exception of the sulphuric-acid reaction, in which reaction is so rapid that there is no differentiation), and the tendency mostly to moderate to low reactivity.
(2) The varying relations of the parental curves to cach other and the hybrid in the different reactions. excepting the sulphuric-acid reaction during the progress of the reactions.
(3) The curve of N. empress is distinctly lower than that of the other parent in the reactions with chloral hydrate, chromic acid, pyrogallic acid, and nitric acid, especially in that with pyrogallic acid.
(4) The hybrid curve is the highest of the three in the chloral-hydrate reaction; lowest with chromic acid and nitric acid; and intermediate with pyrogallic acid. In the reactions with chromic acid and nitric acid it is more closely related to N. empress, while in those with chloral hydrate and pyrogallic acid more closely related to N. albicans.
(5) A tendency to an early period of resistance followed by a comparatively rapid reactivity is noticed in the reactions with chromic acid and pyrogallic acid-in all three starches in the former and in two in the latter. There are also suggestions of early resistance in the other two reactions.
(6) The earliest period at which the three curves are best separated for differential purposes is in the sul-phuric-acid reaction at the very beginning of the reactions; in those with chromic acid, pyrogallic acid, nitric acid, and chloral hydrate at 15 minutes.

Reachion-intensitifs of the Ifybid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 20 and

The reactivities of the hybrid are the same as those of the seed parent in the reactions with iorline. gentian violet, and safranin; the same as those of the pollen parent in the polarization reaction: the same as thuse of both parents in none; intermediate with prrogallic
acid, and closer to that of the seed parent; highest with chloral hydrate, and nearer that of the pollen parent; and lowest with temperature, chromic acid, and nitric acid, in being closer to that of the seed parent and. in three being closer to those of the pollen parent.

The following is a summary of the reaction-intensities (10 reactions) : Same as seed parent, 4; same as pollen parent, 2 ; same as both parents, 0 ; intermediate, 1 ; highest, 1 ; lowest, 2.

The seed parent seems to be far more potent in determining the characters of the starch of the hybrid. The tendency to sameness or inclination of the hybrid to the seed parent is quite marked.

Composite Cuhves of tife Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Narcissus empress, N. albicans, and N. madame de graaff. (Chart E 20.)

The most conspicuous features of this chart are:
(1) The close correspondence in the curves both as to course and nearness, the only well-marked tendency to departure being in the well-marked separation of the three curves in the chromic-acid reaction and of the parental curve in the pyrogallic-acid reaction.
(2) In N. empress in comparison with the other parent the higher reactions with polarization, gentian violet, and safranin; the lower reactions with iodine, chloral hydrate, chromic acid, pyrogallic acid, and nitric acid; and the same or practically the same reactions with temperature and sulphuric acid.
(3) In N. empress the very high reaction with sulphuric acid; the high reaction with chromic acid; the moderate reactions with polarization, iodine, gentian violet, and safranin; the low reactions with temperature, pyrogallic acid, and nitric acid; and the very low reaction with chloral hydrate.
(4) In N. albicans the very high reactions with sulphuric acid; the high reactions with chromic acid and pyrogallic acid; the moderate reactions with iodine, gentian riolet, and safranin ; the low reactions with polarization, temperature, and nitric acid; and the very low reaction with chloral hydrate.
(5) In the hybrid the very high sulphuric-acid reaction; the absence of a high reaction; the moderate reactions with iodine, gentian violet, safranin, and chromic acid; the low reactions with polarization, temperature, pyrogallic acid, and nitric acid; and the very low reaction with chloral hydrate. The following is a summary of the reaction-intensites (10 reactions) :

	$\begin{aligned} & \text { Very } \\ & \text { high. } \end{aligned}$	High.	$\begin{aligned} & \text { Mod- } \\ & \text { erate. } \end{aligned}$	Low,	Very low.
X. empreas	1	1	4	3	1
N. altheatis	1	2	3	3	1
N. madame de graaff	1	0	4	4	1

21. Comparisoxs of the Starches of Narcissus Wedrbate perfecotion, N. Mabame df: gradaf, ANy N. PYRAMES.
In histologic characteristies polariscopic figures, reactions with selenite, reactions with iorline, and qualitative reactions with the various chemical reagents the
starches of the parents and hybrid have properties in common in varying degrees of development together with certain individualities which collectively in each case is distinctive of the starch. The differences are, however, for the most part of a very minor character. In histologic properties the parental starches differ in that in Narcissus madame de graaff in comparison with the other parent the relative number of compound grains and number of grains having both primary and secondary starch deposits are more numerous, there are more irregularities, and there is a larger number of forms. The hilum is not so often fissured or so deeply, and somewhat less eccentric; the lamellæ are somewhat less distinct and not so coarse; and the grains are, on the whole, larger. In the polariscopic figure there is less distinctness and definition and other differences, and in the selenite reaction the quadrants are less clean-cut and more often irregular, and the colors somewhat more pure, and there are more grains with a greenish tinge. In the qualitative iodine reactions the capsules color a red or reddish violet instead of nearly a reddish violet as in N. weardale perfection. In the reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid there are many differences, chiefly of minor importance, but which collectively distinguish one starch from the other. The starch of the hybrid shows in form, character, and eccentricity of the hilum, and character of the lamellæ a closer relationship to N. madame de graaff than to the other parent, but in size the opposite. In the polarization figure and appearances with selenite the relationship is closer to N. madame de graaff, but in the qualitative iodine reactions the relationship is reversed. In the reactions with the chemical reagents variable relationships, and hence the influences of one or the other or both parents, are recorded, and in some instances parental characteristics are exaggerated in the hybrid; but in all of the five reactions the relationships are, on the whole, closer to N. weardale perfection than to N. madame de graaff.
Reaction-intensitics Expressed by Light, Color, and Temperature Reactions.
Polarization:
N. weardale perfect., low to high, value 37 .
N. madame de graaff, low to high, the same as in N. weardale perfection, value 37 .
N. pyramus, low to high, higher than in either parent, value 42. Iodine:
N. weardale perfect., moderate, value 55 .
N. madame de graaff, moderate, less than in N. weardale perfection, value 50.
N. pyramus, moderate, the same as in N. weardale perfection, value 55 .
Gentian violet:
N . weardale perfect., light to moderate, value 30.
N . madame de graaff, light to moderate, much more than in N . weardale perfection, value 43 .
N. pyramus, light to moderate, little less than in N. weardale perfection, value 40.
Safranin:
N. weardale perfect., light to moderate, value 40.
N. madame de graaff, moderate, much more than in N. weardale perfection, value 53.
N. pyramus, moderate, little less than in N. weardale perfection, value 50 .
Temperature:
N. weardale perfect., in majority at 68 to 69°, in all at 72 to 74°, F1 mean 73°.
N. madame de graaff, in majority at 70 to 72°, in all at 73.5 to 75°, \%) mean 74.25°.
\& N. pyramus, in majority at 73 to 74°, in all at 76 to 77°, mean 76°.

The reactivity of N. weardale perfection is the same or practically the same as that of the other parent in the polarization reaction; higher in the iodine and temperature reactions; and lower in the gentian-whotet and safranin reactions. The reactivity of the hylerd is the same or practically the same as that of N. werardale $p^{\prime \prime} r$ fection in the iodine reaction; inturmediate between those of the parents with gentian violet and safranin; bowest of the three in the fomprature reaction ; and the highest of the three in the polarization reaction.

Table A 21 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes):

$$
\text { Table a } 21 .
$$

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Narcissus weardale perfection, N. madume de graaff, and N. pyramus, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 323 to D 328.)
'Ihe most conspicuous features of these charts are:
(1) The close correspondence of the curves in each of the reactions during their progress (the curves of the sulphuric-acid reaction are identical, owing to the extremely rapid reaction), and the tendency of the reactions to be moderate to low.
(2) The varying relations of the parental curves to each other and the hybrid in the different reactions and (excepting with sulphuric acid) during the progress of the reactions.
(3) The curve of N. weardule perfection is lower than the curse of the other parent in the chloral-hydrate reaction; higher in those of chromic arid, pyrogallic acid, and nitric acid; and the same in that of sulphuric acid. In all except the latter they are sutficiently well separated for positive differentiation.
(4) The curve of the hyrid is the lowest of the three in the reaction with chloral hydrate; and the highest with chromic acid, pyrogallic acid, and nitric acid. The relationship is closer to N. weardale perfection in the chloral-hydrate reaction; and to this parent at first and to the other parent later in the reactions with chromic acid, pyrogallic acid, and nitric acid. On
the whole, however, the relationship is distinctly closer to N. ueardale perfertion.
(5) A tembency (n an early periond of rest-tance fop

(6) The earliest period at whith the three curves are best separated for differential purpuses is in the sul-pharic-abid reaction at the very beginning of the rem-
 and nitric acid at 15 minutes; and in the chloral-hydrate reaction at 60 minutes, or prolmaly quite as zinul at 15 minutes.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, exu-s, and deticit in relation to the parents. ('Fable $A \geqslant 1$ and (harts 1) $3: 3$ to 1) $3: 8$.)

The reactivities of the hybrid are the same as those of the seed parent in the iodine reaction; the same as those of the pollen parent in nome; the samm as thane of both parents in the sulphuric-acid reation, in which the reactions occur too rapidly for differentiation; intermediate in the reactions with gentian violet and saf ranin, in both being closer to those of the pollen parent; highest in the reactions with polarization, chromic acid, pyrogallic acid, and nitric acid, in one being as close to one as tor the other parent, and in three chower to the seed parent; and lowest with temperature and chloral hydrate, in both being closer to the pollen parent.

The following is a summary of the reaction-intensities (10 reactions) : Same as seed parent, 1; same as pollen parent, 0 ; same as both parents, 1 ; intermediate, * ; highest, 4 ; lowest, ?.

The seed parent exercises a distinctly more marked influence than the other parent in determining the characters of the starch of the hybrid. The almost entire absence of sumeness to one or the other parem and the tendency, on the wther hand, to haghest and lowest reattivities are conspicuous features of the reactions of the hybrid.

Composite ('lhes of Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Narcissus weardale perfection, N. madame de graafif, and N. myramus. (Chart E :1.)

The most conspicuous features of this chart are:
(1) The close correspondence of all threc curves both as to course and nearness, the only well-marked tendency to departure being in the chromic-acid reaction in which all three curves tend to be well separated.
(き) In N. weardale verfection in comparison with the other parent the higher reactions with iodine, temperature, chromic acid, mrogallw and, and nitrie acid; the lower reactions with gentian violet, saframin, and chloral hydrate; and the same or practically the same reactions with polarization and sulphurie acil.
(3) In N. weardale perfection the rery high sul-phuric-acid reaction; the high chromic-acid reaction: the molerate reactions with fodine, safranin, and pyrosallic acid: the low reactions with polarizatw, w, witan
violet, temperature, and nitric acid; and the very low reaction with chloral hydrate.
(t) In N. madame de graaff the very high reaction with sulphuric acid; the absence of a high reaction; the moderate reactions with iodine, gentian violet, salranin, and chromic acid; the low reactions with polarization, temperature, pyrogallic acid, and nitric acid; and the very low reaction with chloral hydrate.
(5) In the hybrid the very high reaction with sulphuric acid; the high reaction with chromic acid; the moderate reactions with polarization, iodine, gentian, violet, safranin, and pyrogallic acid; the low reactions with temperature and nitric acid; and the very low reaction with chloral hydrate.

The following is a summary of the reaction-intensities (10 reactions) :

	Very high.	High.	Moderate.	Low.	Very low.
N. weardale perfection	1	1	3	4	1
N. madame de graaff	1	0	4	4	1
N. pyramus .	1	1	5	2	1

22. Comparisons of the Starches of Narcissus monarcit, N. madame de graaff, and N. lord ROBERTS.
In histologic characteristics, polariscopic figures, reactions with selenite, reaction with iodine, and reactions with the various chemical reagents the starches of the parents and hybrid have properties in common in varying degrees of development, the sum of which in case of each starch is distinctive of the starch. Such differences, as recorded, are of a minor character. The starch of N. madame de graaff, in comparison with that of the other parent, shows more aggregates and fewer compound grains, and the latter grains contain a larger number of components; there are more simple grains having both primary and secondary starch formation; and there is more irregularity and a greater variety of form. There is less fissuration of the hilum and more eccentricity. The lamellæ are more often visible, somewhat more distinct, and not so coarse. The grains are, on the whole, smaller. The polariscopic figure is more distinct and there are other minor differences; and with selenite the quadrants are more often clear-cut and less irregular in form. No qualitative differences were recorded in the iodine reactions. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid there are various minor ditferences which collectively serve to differentiate the starches. The starch of the hybrid has more aggregates and compound grains than either parent and the grains are in form closer related to those of N. monareh than to those of the other parent. In the character and eccentricity of the hilum the relationship is closer to N. monurech; but in the character of the lamelle and in the size of the grains to N. madame de graaff. In the polariscopic figure and reactions with selenite the relationship is closer to \bar{X}. madame de graaff. In the qualitative reactions with iodine no dillerenees were recorded in the three starches. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and
sulphuric acid characteristics of both parents are manifest, certain reactions resembling in certain respects those of one parent and other reactions those of the other. The relationship is closer to N. monarch in the reactions with chloral hydrate and sulphuric acid; but closer to N. madame de graaff in those with chromic acid, pyrogallic acid, and nitric acid. The characters throughout indicate a close relationship of all three starches.
Reaction-intensities Expressed by Light, Color, and TemperaPolarization:
N. monarch, low to high, value 40 .
N. madame de graaff, low to high, somewhat lower than in N. monarch, value 37.
N. lord roberts, low to high, the same as in N. madame de graaff, value 37.
Iodine:
N. monarch, moderate, value 50.
N. madame de graaff, moderate, the same as in N. monarch, value 50.
N. lord roberts, moderate, the same as in the parent, value 50. Gentian violet:
N. monarch, moderate, value 45.
N. madame de graaff, moderate, slightly less than in N. monarch, value 43 .
N. lord roberts, moderate, the same as in N. monarch, value 45. Safranin:
N. monarch, moderate, value 50 .
N. madame de graaff, moderate, slightly more than in N. monarch, value 53 .
N. lord roberts, moderate, the same as in N. monarch, value 50 .

Temperature:
N. monarch, in majority at 67 to 68.5°, in all at 72 to 73°, mean 72.5°.
N. madame de graaff, in majority at 70 to 72°, in all at 73.5 to 75°, mean 74.25°.
N. lord roberts, in majority at 68 to 69.4°, in all at 73 to 74.5°, mean 73.75°.
The reactivity of N. monarch is higher than that of the other parent in the reactions with polarization, gentian violet, and temperature; the same or practically the same with iodine; and lower with safranin. The reactivity of the hybrid is the same or practically the same as those of the parents in the reaction with iodine; the same or practically the same as that of N. monarch with gentian violet and safranin; the same or practically the same as that of the other parent with polarization;

Table A 22.

	E	E	$\underset{\sim}{\text { E }}$	E	E	E \sim \sim	E	E H H	E 8 8
Chloral hydrate:									
N. monarch.					2	10	18	20	23
N. madame de grauff					4	20	35	43	45
N. lord roberts.					4	11	20	27	29
Chromic acid:									
N. monarch					33	71	95	99	99
N. madame de graaff					1	33	77	91	98
N. lord roberts					1	15	50	72	১৪
Pyrogallic acid:									
N. monarch					7	56	72	82	S6
N. madame de gramf					1	32	56	65	79
N . lord roberts					2	36	63	73	83
Nitric acid:									
N. monarch.					20	64	T2	is	84
N. madame de graaff					10	29	49	5s	65
N. lord roberts.					10	62	70	73	76
Sulphuric acid:									
N. monarch !6									
N. madame de gra ff		$4{ }^{4}$							
N. lord roherts		95							.

and intermediate with temperature, but closer to N. madame de graaff.

Table A 22 shows the reaction-intensities of the starches expressed by the percentave of total starch gelatinized at definite time-intervals.

Velocity-heaction C'lRyes.

This section treats of the velocity-reaction curves of the starches of Narcissus monurch, N. madame de graaff, and N. lord roberts, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D. 329 to D 334.)

The most conspicuous features of these charts are:
(1) The correspondence in the courses of the three curves in all of the reactions (excepting the sulphuricacid reaction in which gelatinization is too rapid for differentiation), and the tendency to moderate to low reactivity. Inclination to separation of the curves is comparatively well marked in the pyrogallic acid.
(2) The varying relations of the parental curves to each other and to the curve of the hybrid in all of the reactions (excepting in that with sulphuric acid) during their progress.
(3) The curve of N. monarch is distinctly lower than that of the other parent in the reactions with chloral hydrate and pyrogallic acid; distinctly higher with chromic acid and nitric acid; and the same with iodine and sulphuric acid.
(4) The curve of the hybrid is intermediate in the reactions with chloral hydrate, pyrogallic acid, and nitric acid, but close to N. monarch with chloral hydrate and nitric acid, and to the other parent with pyrogallic acid; and the lowest of the three and well separated from the parental curves in the chromic-acid reaction.
(5) A tendency to an early period of resistance followed by comparatively high reactivity is evident, especially in the three starches in the pyrogallic-acid reaction and in two starches in the chromic-acid reaction, with a suggestion of resistance in the reactions with chloral hydrate and nitric acid.
(6) The earliest period at which the three curves are best separated for differential purposes is in the reaction with sulphuric acid at the very beginning; in those with chromic acid, pyrogallic acid, and nitric acid probably at 15 minutes; and with chloral hydrate at 60 minutes.

Reaction-intensities of tue Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 22 and Charts D $3 \because 9$ to D 334.)

The reactivities of the hybrid are the same as those of the seed parent in the reactions with gentian violet, safranin, and sulphuric acid; the same as those of the pollen parent in the polarization reaction; the same as those of both parents in the iodine reaction; intermediate in the reactions with temperature, chloral hydrate, pyrogallic acid, and nitric acid, being closer to the seed parent in two and to the pollen parent in two; highest in none; and lowest in the chromic-acid reaction.

The following is a summary of the reaction-intensities (10 reactions): Same as seed parent, 3 ; same as pollen parent, 1 ; same as both parents, 1 ; intermediate, 4 ; highest, 0 ; lowest, 1 .

The parents appear to share about equally the determination of the properties of the starch of the hybrid. 'There is obvionsly a temdency to intermediatenes, this beiug recorded in nearly half of the reactions.

Composite Cumbes of Reachon-intensites.

This section treats of the componite curves of the reaction-iutensities, showing the differentiation of the starches of Narcissus monarch, N. madame de graaff, and N. lord roberts. (Chart E22.)

The most conspicuous features of this chart are:
(1) The very close correspondence in all three curves in nearness and during their course, excepting in the chromic-acid reaction, in which the curve of N. monarch is well separated from the curves of the other parent and the hybrid.
(2) In N. monarch in comparison with the other parent the higher reaction with polarization, gentian violet, temperature, chromic acid, pyrogallic acid, and nitric acid; the lower with chloral hydrate; and the same with iodine and sulphuric acid.
(3) In N. monarch the very high sulphuric-acid reaction; the high chromic-acid reaction ; the moderate reactions with polarization, iodine, gentian violet, safranin, and temperature; the low reactions with pyrogallic and nitric acids; and the very low reaction with chloral hydrate.
(4) In N. madame de graaff the very high sulphuricacid reaction; the absence of a high reaction; the moderate reactions with iodine, gentian violet, safranin, and chromic acid; the low reactions with polarization, temperature, pyrogallic acid, and nitric acid; and the very low reaction with chloral hydrate.

The following is a summary of the reaction-intensities (10 reactions) :

	$\begin{aligned} & \text { Very } \\ & \text { high. } \end{aligned}$	High.	Moderate.	Low.	Very low.
N. monarch.	1	1	5	2	1
N. madame de graaff	1	0	4	4	1
N. lord roberts....	1	0	4	4	1

23. Comparisons of the Starches of Narcissecs leedsif minnie heme, N. triandris albtes, axt N. agnes harvey.

In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reaction with the various chemical reagents the starches of the parents and hybrid exhibit properties in common in varying degrees of development, which collectively are in each case distinctive. The differences are, on the whole, of a minor character, indicating close relationships of the three starches. In histologic properties in Narcissus triandrus albus in comparison with the other parent there are found a larger proportion of compound grains but fewer aggregates, somewhat fewer grains with primary and secondary deposits, and the grains are less irregular; the hilum is more of ten more deeply and more extensively fissured; the lamellæ are less often distinct and not so fine; and the grains are, as a whole, smaller than in N. leedsii minnie hume.

The polariscopic figure is better defined and there are some differences in the lines. With selenite the quadrants are more often clean-cut and more regular in shape, the colors more often pure, and there are more grains having a greenish tinge. In the qualitative iodine reactions the capsules are more reddish than those of N. leedsii minnie hume. In the reactions with the chemical reagents there are various differences of a minor character which collectively differentiate each starch. The starch of the hybrid contains fewer compound grains and aggregates than either parent, and the relationship is, on the whole, closer to N. leedsii minnic hume than to the other parent. In the character of the hilum and character of the lamelle the relationship is closer to N. leedsii minnie hume, while in size to N. triandrus albus. In the polariscopic figure and appearances with selenite the resemblances are closer to N. leedsii minnie hume, and the same is true of the qualitative iodine reactions. In the qualitative reactions with the chemical reagents the influences of both parents are manifest, and there are also individualities of a minor character of the hybrid. In all of these reactions the characters are, as a whole, more closely associated with thuse of N. leedsii minnie hume.

Reaction-intensities L'xpressed by Light, Color, and Temperature Reactions.
Polarization:
N. hedsii min. hume, low to very high, value 45.
N. triandrus albus, low to high, higher than in N. leedsii minaie hurue, value 50.
N. agnes harvey, low to high, the same as in N. leedsii minnie hume, value 45 .
Iodine:
N. leedsii min. hume, moderate deep, value 60.
N. triandrus albus, deep, deeper than in N. leedsii minnie hume, value 65 .
N. agnes harvey, deep, the same as in N. leedsii minnie hume, value 60.
Gentian violet:
N. leedsii min. hume, light to moderate, value 38.
N. triandrus albus, light to moderate, lighter than in N. leedsii minnie hume, value 35 .
N. agnes harvey, light to moderate, the same as in N. leedsii minnie hume, value 38.
Safranin:
N . leedsii min. hume, light to moderate, value 40.
N. triandrus albus, light to moderate, the same as in N. leedsii minuie hume; value 40 .
N. agnes harvey, light to moderate, the same as in the parents, value 40.
Temperature:
N. leedsii min. hume, in majority at 70 to 71.2°, in all at 74.5 to 76°, mean 75.25°.
N. triandrus albus, in majority at 70 to 71°, in all at 73 to 75°, mean 74°.
N. agnes harvey, in majority at 70 to 71.8°, in all at 73.8 to 75°, mean 74.4°.
The reactivity of N. leedsii minnie hume is lower than that of the other parent in the polarization, iodine, and temperature reactions; the same or practically the same in the safranin reaction; and higher in the gentianviolet reaction. The reactivity of the hybrid is the same or practically the same as that of N. leedsii minnie hume in the polarization, iodine, and gentian-violet reactions; the same or practically the same as those of both parents in the safranin reaction; and intermediate in the temperature reaction, but closer to N. triandrus albus. All three starches are in these reactions either the same or practically the same or very nearly alike.

Table A 23 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes) :

Table a 23.

	E	E c	$\underset{\infty}{\dot{E}}$	E	$\underset{\text { in }}{\text { i }}$	$\begin{aligned} & \text { E } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { a } \\ & 6 \end{aligned}$	$\begin{aligned} & \dot{E} \\ & \text { O } \end{aligned}$
Chloral hydrate:									
N . leedsii min. hum			.		2		7 11	18	20
N. triundrus abluy					0.5		$2 \quad 7$	11	11
N. agnes harvey					4		7 8	12	14
Chromic acid:									
N. leedsii min. hume					1		1565	80	85
N. triandrus alhus					5		$20 \quad 70$	90	94
N. agnes harvey					4	\cdots	2752	72	82
Pyrogallic acid:									
N. leedsii min. hume					1	.	11.45	66	77
N. triandrus albus					4	.	21:78	85	91
N. agnes harvey					3		20:63	75	81
Nitric acid:									
N. leedsii min. hum					10		29 \| 39	49	56
N. triandrus albus					10		32 46	59	62
N. agnes harvey					10		5565	70	73
Sulphuric acid:									
N. leedsii min. hume.		93			99				-
N. triandrus albus		83			97	99		
N. agnes harvey.		95			99

Velocity-reaction Curves.

This section deals with the velocity-reaction curves of the starches of Narcissus leedsii minnie hume, N. triandrus albus, and N. agnes harvey, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 335 to D 340.)

The most conspicuous features of these charts are:
(1) The close correspondence of all three starches in all of the reactions (with the exception of the sul-phuric-acid reaction, which is too rapid for differentiation), and the tendency (with this exception) to a moderate, low, or very low reactivity.
(2) The varying relations of the parental curves to each other and to the curve of the hybrid in the different reactions (excepting the very rapid sulphuric-acid reaction) and during their progress.
(3) The curve of N. leedsii minnie hume is lower than that of the other parent in the reactions with chromic acid, pyrogallic acid, and nitric acid; and higher with chloral hydrate.
(4) The hybrid curve is the lowest of the three in the chromic-acid reaction; intermediate in the reactions with chloral hydrate and pyrogallic acid, but in the latter practically identical with that of N. triandrus albus; and highest with nitric acid.
(5) A tendency to a period of early resistance followed by a comparatively rapid reartivity is seen in all three starches in the chromic-acid and pyrogallicacid reactions.
(6) The earliest period at which the three curves are best separated for differential purposes is in the sul-phuric-acid reaction at the rery begimning of the reaction; in the reactions with chromic acid, pyrogallic acid, and nitric acid at 30 to 45 minutes, and with chromic acid at 60 minutes.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and
deficit in relation to the parents. (Tables A 23 and Charts D 335 to D 340 .)

The reactivities of the hybrid are the same as those of the seed parent in the reactions with polarization, iudine, gentian violet, and sulphuric acid; the same as those of the pollen parent in none; the same as those of both parents in the salramin reaction; intermediate in those with temperature, chloral hydrate, and pyrogallic acid, in two being closer to those of the pollen parent and in one as clase to one as the other parent: highest in the nitric-acid reaction, and cheser to the pollen parent; and lowest in the chromic-acid reaction, being closer to the seed parent.

The following is a summary of the reaction-intensities (10 reactions) : same as seed parent, 4 ; same as pollen parent, 0 ; same as both parents, 1 ; intermediate, 3 ; highest, 1 ; lowest, 1.

From the foregoing data it seems that the seed parent exercises a distinctly greater influence than the pollen parent on the characters of the starch of the hybrid. The most marked tendencies in the reactions are to samenes: as the seed parent and to intermediateness.

Composite Cubves of Reaction-intexsities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Narcissus leedsii minnie hume, N. triandrus albus, and N. agnes harvey. (Chart E: 3 .)

The most conspicuous features of this chart are:
(1) The very close correspondence of all three curves in course and closeness throughout the chart.
(2) In N. leedsii minnie hume in comparison with the other parent the higher gentian-violet and chloralhydrate reactions; the lower reactions with polarization, iodine, temperature, chromic acid, pyrogallic, and nitric acid; and the same or practically the same in the reactions with safranin and sulphuric acid.
(3) In N. leedsii minnie hume the very high sul-phuric-acid reaction ; the high iodine reaction; the moderate polarization and safranin reactions; the low reactions with gentian violet, temperature, chromic acid, pyrogallic acid, and nitric acid; the very low reaction with chloral hydrate.
(4) In N. triandrus albus the very high sulphuricacid reaction; the high iodine reaction; the moderate reactions with polarization, safranin, chromic acid, and pyrogallic acid; the low reactions with gentian violet, temperature, and nitric acid; and the very low reaction with chloral hydrate.
(5) In the hybrid the very high sulphuric-acid reaction; the high iodine reaction; the moderate polarization and safranin reactions; the low gentian-violet, temperature, chromic-acid, pyrogallic-acid, and nitric-acid reactions; and the very low chloral hyilrate mation.

The following is a summary of the reaction-intensities (10 reactions) :

	Very high.	High.	Moderate.	Low.	$\begin{aligned} & \text { Bury } \\ & \text { low. } \end{aligned}$
N. leedsii minnie hume	1	1	2	5	1
N. triandrus albus	1	1	4	3	1
N. agnes harvey.	1	1	2	5	1

24. Comparisons of the stabehes of Nabersets
 bexabet roe.
 reactions with selenite, reartions with iodine and quali-
 -tarchers of the parents and hybr.d whithe prephotso in
 bertively in catio of eath starch ar, diminemis. The
 erties in Varcissus triandrus alluss in comparison with the other farent there are tume compumity ran-and aryrerates, together with various other peculiarties, and there are various other differences in hilum, lamellin, and size. The polarisoppis lizure is mot on dastiuct hut more often well definel, and there are , ther minor differences. With selenite the quadrants are more often clean-cut, the colors less often pure, and tewer grams with a greenish tinge. In the qualitative reactions with iodine no distimetime differences wore reoorded. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphuric acid both methods of gelatinization common to buth starches wour, and also methods observed in N. triandrus albus that are not seen or seen only in mondified form in N. empror. The starch of the hybrid contains fewer compound grains and argregates than euther parent, and shows, on the whole, a closer relationship to \therefore. emperor than to the other parent. In claracter and erentricity of the hilum and in size the relationship, is closer to 1. emperor; but in the character of the lamellæ closer to N. triandrus albus. In the character of the polarization figure and in the reactions with selenite the relationship is closer to N. triandrus allus. In the qualitative racactions with iodine the raw grains are more cluscly related to those of.. . emperor, but the gelatinized grains show no differences from those of buth parents. In the qualitative reactions with the chemical reafonte the influences of both parents are manifest; in the chloral hydrate and sulphuric acid the resemblances are cluser to N. emperor, while iu the chromic acid, pyrogallic acid, and nitric acid the hybrid is closer to N. triandrus albus.

Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

N. emperor, low to high, value 60 .
N. triandrus albus, low to high, lower than in N. empurbr. watue 50.
N. j. t. bennett poe, low to high, the same as in N. triambue ath.us. value 60.
Iodine:
N. emperor, moderate to deep, value 60.
N. trinndrus albus, moderately dew, deeper than in N. emperar. value 65.
N. j. t. bemett poe, moderste to decp, the same as in N. (mperne. value 60.
Gentian violet:
N. emperor, moderate, value 45.
N. triandrus albus, light to moderate, lighter than in N. emperor, value 35 .
N. j. t. bennett poe, moderate, deeper than in either parent, value 50, Safranin:
N. emperor, moderate, value 50 .
N. triandrus albus, light to moderate, lighter than in तr emperor. value 40 .
N. J. t. bonnett poe, moderato, deeper than in either parent, value 55.

Temperature：
N．（＇uperor，in majority at 69 to 71° ，in allat 74 to 75.5° ，mean 74.53° ．
N．trastudran altua，in majority at 70 to 71° ，in all at 73 to 75° ． muean 75° ．
N．j．t．bennett poe，in majority at 64 to 64.8° ，in all at 69 to 71° ， mean 70° ．
The reactivity of N ．emperor is higher than that of the other parent in the polarization，gentian violet，and saldranin reaction ；and lower in the iodine and tempera－ ture reactions．The reactivity of the hybrid is the same or practically the same as that of N ．emperor in the polarization and iodine reactions；and the highest of the three in the gentian violet，safranin，and temperature reactions．There is no instance of intermediateness，and in certain respects the starch of the hybrid is nearer to one parent and in others to the other parent．

Table A 2．4 shows the reaction－intensities in percent－ ages of total starch gelatinized at definite intervals （minutes）：

$$
\text { Table A } 24 .
$$

	$\stackrel{\square}{-}$	$\stackrel{\square}{4}$	旦	号	E	¢	a	号	号	立
Chlural hydrate：										
N．emperor		．	\cdots	．	2		6	18	23	28
N．triandrus albus					0.5		2	7	11	11
N．j．t．bonactt pue			\cdots		4		8	20	24	28
（＇hromic acid：										
N．emperor．	\cdots		．	．	3	．	39	75	94	97
N．triandrus altus		．	\cdots		5		20	70	90	94
N．j．t．benmett pree	\cdots	．			3		51	87	95	99
Pyrogallic acid：										
N．emperor		\cdots			5		20	74	82	93
N．triandrus albus		．	．		4		21	78	85	91
N．j．t．bemmett poe		－	\cdots		20		60	85	95	98
Nitric acid：										
N．emperor		．	\because		10		51	62	65	67
N．triandrus allous			．		10		32	46	59	62
N．j．t．bennett poe					15		57	63	69	72
Sulphuric acid：										
N．emperor ．．．．		9.1								
N．triandrus allas		$\therefore 3$				99				
N．j．t．bennett poe．		90	．			．				\cdots

Telocity－reaction Curves．

This section treats of the velocity－reaction curves of the starches of Narcissus emperor，N．triandrus albus， and N ．j ．t．bennett poe，showing the quantitative differ－ ences in the behavior toward different reagents at definite time－intervals．（Charts D 341 to D 346 ．）

The most conspicuous features of these charts are：
（1）The correspondence in the three curves in all of the reactions，and the general tendency to a high to moderate reactivity．
（2）The varying relationships of the parental curves to eacll other and to the curve of the hybrid in the dif－ ferent reactions．
（3）The curve of N ．emperor is practically the same as that of the other parent in the pyrogallic－acid reac－ tion and higher in the reactions with chloral hydrate， chromic acid，pyrogallic acid，and sulphuric acid，the most marked difference being noted in the pyrogallic－ acid reaction and the least in the quick sulphuric－acid reaction．
（t）The curve of the hybrid is the same as that of N ．emperor in the very rapid sulphuric－acid reaction； practically the same in that with chloral hydrate；nearly the same in that with pyrogallic acid；intermetiate in
none；and the highest of the three in those with chromic acid and pyrogallic acid．In all of the reactions the hybrid shows a higher reactivity than either parent．
（5）A tendency to an early period of resistance fol－ lowed by a comparatively rapid reactivity is seen in all three starches in the reaction with chromic acid，and in the two parental starches in that with pyrogallic acid． The earliest period at which the three curves are best separated for differential purpose is in the sulphuric－acid reaction at the beginning；in those with chloral hydrate， chromic acid，pyrogallic acid，and nitric acid at 15 minutes．

Reaction－intensities of the Hybrid．

This section treats of the reaction－intensities of the hybrid as regards sameness，intermediateness，excess，and deficit in relation to the parents．（Table A 24 and Charts D 341 to D 346 ．）

The reactivities of the hybrid are the same as those of the seed parent in the polarization and iodine reac－ tions；the same as those of the pollen parent in none； the same as those of both parents in none；intermediate in none；highest in those with gentian violet，safranin， temperature，chloral hydrate，chromic acid，pyrogallic acid，nitric acid，and sulphuric acid（in six being closer to those of the seed parent，and in two closer to those of the pollen parent）．

The following is a summary of the reaction－intensi－ ties（ 10 reactions）：Same as seed parent，2；same as poller parent， 0 ；same as both parents， 0 ；intermediate， 0 ；highest， 8 ；lowest， 0 ．

The seed parent seems to have almost entirely con－ trolled the development of the properties of the hybrid， inasmuch as in 10 out of the 12 reactions there is same－ ness or nearness in relation to this parent．Another equally striking feature is the almost universal tendency for the reactivity of the hybrid to exceed parental extremes．

Composite Curves of Reaction－intensities．

This section treats of the composite curves of the reac－ tion－intensities，showing the differentiation of the starches of Narcissus emperor，N．triandrus albus，and N．j．t．bennett poe．（Chart E 24．）

The most conspicuous features of this chart are：
（1）The close correspondence in the courses and closeness of the curves throughout the chart．
（2）In N．emperor in comparison with N．triandrus albus the higher reactions with polarization，gentian vio－ let，safranin，chloral hydrate，and chromic acid；the lower reactions with iodine and nitric acid；and the same or practically the same reactions with temperature，pyro－ gallic acid，and sulphuric acid．
（3）In N．emperor the very high reaction with sul－ phuric acid；the high reactions with polarization and iodine ；the moderate reactions with gentian violet，safra－ nin，chromic acid，and pyrogallic acid ；the low reactions with temperature and nitric acid；and the very low reac－ tion with chloral hydrate．
（4）In N．triandrus albus the very high reaction with sulphuric acid；the high reaction with iodine；the moderate reactions with polarization，safranin，chromic acid，and pyrogallic acid；the low reactions with gentian
violet, temperature, and nitrie aeid; and the very low reaction with chloral hydrate.
(5) In the hybrid the very high sulphurie-acid reaction; the high reactions with polarization, ionlin. chromic acid, and pyrogallic acid; the moderate reac tions with gentian violet, safranin, and temperature; the low reaction with nitric acid; and the very low reastion with chloral hydrate.

The following is a summary of the reaction-inteusities (10 reactions) :

	Very high.	High.	Muderate.	Low	Vers low.
N. emperor	1	2	4	2	1
N. triandrus albus.	1	1	4	3	1
N. j. t. bennett poe.	1	4	3	1	1

Notes of the Narcissi.

The starches of the narcissi belong according to the foregoing data to the moderate to very low reaction group-average value low. The reaction-intensities, including the ten reactions (polarization, iodine, gentian violet, safranin, temperature, chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and sulphurie acid), which were studied in all the sets, show that nearly \% $\%$ per cent are moderate or low (nearly equally divided), and about 10 per cent very low. lirom the records of Set 2 and Chart E 1t, where 26 reactions are recorded, there are about 50 per cent of the reactions that are moderate or low and about 30 per cent very low. The comparatively lower reactivities shown by the latter are owing to the fact that the additional reagents represented include a relatively large number that are among the least reactive with starches in general.

The curves of the composite charts (Charts E 13 to E 24 inclusive) show a close general correspondence in the courses, indicating clearly in comparison with charts of other genera a definite type of Narcissus curve. The closeness of the parental and hybrid curves varies in the different charts. The sulphuric-acid reactions reach completion so rapidly that differentiation of the starches can be made only, if at all, at the very onset of the reaction. With the other agents there is closeness, or even marked closeness, inclination to separation of the curves being most marked in the reactions with chromic acid and pyrogallic acid, especially in the former. The two parental curves bear varying relatious to each other, not only in the different sets but also in each set, sometimes the seed parent and sometimes the pollen parent showing the higher reactivity, and sometimes both are the same or practically the same.

The hybrids bear varying relationships to the parents, not only in the different sets but also in each set, each being in one reaction the same or practically the same as one parent or the other or both, and in another intermediate or developed in excess or deficit. Even the offspring of the same cross may show differences in the same reaction, as, for instance, the hybrids N. poeticus herrick and N. poeticus dante. The varying relationships of the hybrids are indicated grosely in the following recapitulation :
 Reactions Euch, Except in ()ne; 1 度 th All):

A corresponding shifting of relationship of the parents to each other and of the hybrid to the parents was recorded in the histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemi cal reagents. Among these will he found not only properties which are nearer to or identical with one or the other parent or the same as in both parmits, ar destoned in excess or deficit, but also properties that are peculiar to the hybrid.
25. Comparisons of the stamehes (he Lithil a mataion albom, L. mactialtan, ani, L. Malilin.
In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the varmu: fitmical reagents all three starches exhibit properties in commou in varions degrees of development, the sum of which in each case is distinctive. The starch of Litium maculatum in comparison with that of l. martagon album contains a less number of ageregates and compmand grains, the grains are somewhat more irregular, and there is a form of irregularity that is peculiar. 'The hilum is more distinct, much more often fissured, and somewhat more eccentric. The lamellæ are less fine, more distinct, and less numerous. In size the grains are on the whole broader, absolutely and proportionately, in breadth to length. In the polarisapule, selenite and qualitative iodine reactions there are various differeme... In the qualitative reactions with chloral hydrate, chrome acid, potassium hydroxide, cohalt nitrate, and cupric chloride there are numerous dillerences, some of whith are quite striking. The starch of the hebrid shw in form a closer relationship tu that oi L. whe a'prom: The hilum is more offen fiswated and oreupic! ly a (avity than in either parent, athd in waramer andntricity is in closer relationship to L. martagon album. The lamellæ are as distinct and fine as in L. martagon album, but in general characteristics and arrancement are the same as in both parents. In size the relationship
is closer to L. martagon album. In the polariscopic, selenite, and qualitative iodine reactions the relationships are closer to L. maculatum. Here and there are data of development of the hybrid beyond parental extremes, as in the degree of irregularity of the grains, the appearance of secondary lamellæ, fissuration of and the cavities in the hilum, and in the bending and bisection of the lines of the polariscopic figure. In the qualitative reactions with the chemical reagents the resemblances are in the chloral-hydrate reactions closer to L. martagon album; but in those with chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride they are closer, on the whole, to those of L. maculatum. In some of these reactions the greater influence of one or the other parent is quite conspicuous.
Reaction-intensities Expressed by Light, Color, and Temperature Reactions.
Polarization:
L. martagon album, low to high, value 65.
L. maculatum, low to high, much lower than in L. martagon album, value 50 .
L. marhan, low to high, the same as in L. maculatum, value 50 .

Iodine:
L. martagon album, moderate, value 65 .
L. maculatum, moderate, less than in L. martagon album, value 55.
L. marhan, moderate, intermediate between the parents, value 58 . Gentian violet:
L. martagon album, moderate, value 55.
L. maculatum, moderate, less than in L. martagon album, value 45 .
L. marhan, moderate, less than in either parent, value 43.

Safranin:

L. martagon album, moderate, value 50 .
L. maculatum, moderate, less than in L. martagon album, value 45.
L. marhan, moderate, less than in either parent, value 43.

Temperature:
L. martagon album, in majority at 59 to 61°, in all at 62 to 64°, mean 63°.
L. maculatum, in majority at 57 to 58°, in all at 60 to 62°, mean 61°.
L. marhan, in majority at 56 to 58°, in all at 59 to 60°, mean 59.5°.

The reactivity of L. martagon album is higher than that of the other parent in the reactions with polarization, iodine, gentian violet, and safranin; and lower in that with temperature. The reactivity of the hybrid is the same or practically the same as that of L. maculutum in the polarization reaction; intermediate between those of the parents in the iodine reaction; lowest of the three in those with gentian violet and safranin; and. the highest of the three in that with temperature. The reactions of the hybrid are closer throughout all five reactions to those of L. maculatum than to those of the other parent.

Table A 25 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (seconds and minutes).

Velocity-heaction Curves.

This section treats of the velocity-reaction curves of the starches oi Lilium martagon album, L., maculatum, and I. marhan, showing the quantitative differences in the behavior toward different reagents at definite timeintervals. (Charts D 34 tr to D) 3×3. .)

These starches are generally so sensitive to the reagents used that only five of the reactions give satisfactory data for the construction of charts. In many of the reactions, notwithstanding the speed of gelatinization, more or less marked differences are recorded, yet little reliance should be placed on the figures unless they are confirmed by repeated experiment. In some instances the reactions of all three starches during the first minute are practically or absolutely alike, as in those with nitric acid, sulphuric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, and sodium sulphide. In others there are such differences as to suggest that

with reagents of suitable concentration there would be shown marked differentiation. Attention has been directed to greater resemblance generally of the hybrid to L. maculatum than to the other parent in histologic and certain qualitative peculiaritios, and also in the reaction-intensities expressed by light, color, and temperature reactions, and it is of interest in the connection to note that in the reactions with calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and barium chloride the figures show very definitely the same parental relationship, while in that with strontium nitrate the hybrid figure approxi mates mid-intermediateness, and in that with mercuric chloride a reactivity higher than in either parent. In the remaining reactions, all of which being less rapid, with chloral hydrate the reaction of the hybrid is practically mid-intermediate; with chromic acid and pyrogallic acid the reactions are closer to L. muculatum; and with sodium salicylate the reaction is at the end of 3 minutes distinctly lower than those of the parents and at 5 minutes mid-intermediate. Referring to the charts, it will be seen that in all five reactions the curve of L. martagon album is the lowest of the three; that the hybrid curve is practically the same as the curve of L. maculatum in the reactions with chromic acid, pyrogallic acid, and barium chloride; that the hybrid curve is intermediate in the chloral-hydrate reaction, but on the whole closer to L. maculatum; and that the hybrid curve is lower at first than that of either parent, and then intermediate, in the sodium salicylate reaction.

Reaction-intensities of the Hibrid.

This section treats of the reactim-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 25 and Charts D 347 to D 353.)

The reactivity of the hybrid is the same as that of the seed parent in none of the reactions; the same as those of the pollen parent in the reactions with polarization, chromic acid, pyrogallic acid, copper nitrate, and cupric chloride; the same as those of both parents with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, and sodium sulphide, in all of which the reactions occur too rapidly for differentiation; intermediate with iodine, chloral hydrate, uranium nitrate, strontium nitrate, cobalt nitrate, and barium chloride (in four being closer to the seed parent, and in four closer to the pollen parent); highest with mercuric chloride, and as near me as the other parent; and lowest with gentian riolet, safranin. temperature, sodium salicylate, and calcium nitrate (in three being closer to the pollen parent and in two) closer to the seed parent).

The following is a summary of the reaction-intensities: Same as seed parent, 0 : same as pullon parent, os: same as both parents, 9 ; intermediate, 6 ; highest, 1: lowest, 5.

The pollen parent has obviously exercised a much more potent influence than the other parent on the properties of the starch of the hybrid. The most conspicuons features of these reactions, apart from the many instance: of sameness to hoth parents, are sameness to the pollem parent, intermediateness, and lowest reactivitics.

Composite Curves of Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Lilium martagon album, L. maculatum, and L. marhan. (Chart E 25.)

The most conspicuous features of this chart are:
(1) The close correspondence of all three curves
 in the harium-chluride raation. In mone of the charts Hure is rither little or an differnatiation of the threwe
 amb, hydrowhtoric acid, potassium hadtocild, peta-ium
 dium hylrovide and ondium culphide. In all wher reactions the curves of the hybrid and L. maculatum run very douly tore ther. wowtine in the reactions with sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, in which the curves of the hybrid and I. martagun album are the sambend blow that of the other parent ; in the mbalt-nitrate raction, where the rurer is intermandiate, and in that of morempin whoride, in which the 'urver of the parments are the same and the curve of the hylorid distinctly higher.
(?) In I. martugon allum in comparisen with the other parent the higher reactions with polarization, ionline, gentian violct, safranin; the lown reactions with temperature, chloral hydrate, chromic acitl, pyrogallic acid, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cohalt nitrate, copper nitrate, cupric chloride, and harium chloride; and the same or practically the same reactions with nit ric acil, sulphuric acil. hydrochloric acid. potassjum hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide and morcuric chloride.
(3) In I. martugon alhum, the very high reactions with chromic acid, pyrorallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphidn, sndium hadroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; the high reactions with polarization, iodine, (hloral hydrate, and barium chloride; the moderate reactions with gentian violet, safranin, and temperature.
(4) In L, marulatum, the very high reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid. hydrochloric acid, potassium hydroxide, potassium indide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide. sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cohalt nitrate. enpper nitrate. cupric chloride, barium chloride, and mercuric chloride; the high reactions with temperature: and the moderate reactions with pmarization, ionline, gentian vioket, and safranin.
(5) In the hatrit, the sery himh reatetions with chloral hydrate, chromic acid, pyrogallic acid. nitric acid, sulphuric arih, hydrochloric acid, potassium hydroxi.le, potassium indide, potassium sulphocranate, potassium sulphide, antimn hylponile. sodimm su!phid., swlium calicylatw. calcium nitratr, uranium nitrate, strontium nitrate, cohal! nitrate, copper nitrate, cupric chloride, harium chloride, and mercuric chloride; the high reaction with temprature: the mentrater reations with polarization, iodine, gentian violet, and safranin.

The following is a summary of the reaction-intensitips:

2l. Comparisons of the Starches of Lilium
matidgon, L. mactlatem, and L. dalhansony.
In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine and with the various chemical reagents all three starches exhibit properties in common in various degrees of development, the sum of which in each case is characteristic. The starch of L. maculatum in comparison with that of L. martagon contains no aggregates and few compound grains: the grains are more regular; broad forms are more numerous; and a larger number of grains are flattened. The hilum is more distinct, more often fissured, and less cccentric. The lamelle are less fine. more distinct, and less numerous. In size there is more broadness. In the polariscopic, selenite, iodine, and aniline reactions there are various differences. In the qualitative reactions with chloral hydrate, chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride there are many differences which collectively are distinctive. The starch of the hybrid shows an absence of compound grains that were found in the starches of both parents; there is greater regularity of the grains than in either parent; and the stareh shows, on the whole, a closer relationship to that of L. martagon. The hilum in character and eccentricity is more closely related to L. maculatum. The lamellæ in character and arrangement are more like those of L. martagon, but in number closer to the other parent. In size the larger grains are not so large as the corresponding grains in both parents, but their dimensions and also the common sizes are closer to those of L. marlagon. In the polariscopic, selenite, iodine, and aniline reactions the relationships are closer to L. martagon. In the qualitative reactions with the chemical reagents closer resemblances to one or the other parent or in common to both parents are recorded. In the chloral-hydrate reactions the relationship is closer to L. macilatum, while in those with chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride the relationships are closer to L. martagon.
Reration-intensities Expressed by Light, Color, and Tomperature Reactions.
Polarization:
L. martagon, low to high, value 60.
L. marulatum, low to high, lower than in L. martagon, value 50 .
L. dathansoni, low to high, the eame as in L. martagon, value 60 . Iodiue:
L. martagon, moderate, value 60 .
L. marulatum, moderate, less than in L. martagon, value 55.
L. dalhansoni, moderate to deop, higher than in either parent, value 65.
(iention violet:
L. martagon, moderate to moderately deop, value 55 .
L. mavulatum, moderate, less than in I. martagen, value 45.
I. dalhansoni, moderate, the same as in L. martagon, vaiue 55 .

Safrania:
L. martagon, moderate, value 55.
L. maculatum, moderate, less than in L. martagon, value 45.
L. dathansoni, moderate, the same as in L. martagon, value 65.

Temperature:
L. martagon, in majority at 62 to 64°, in all at 66.5 to 68.3°, нени 67.4°
L. mactulatum, in majority at 57 to 58°, in all at 60 to 62°, mean 61°.
I. Gathansoni, in majority at 59 to 60.2°, in all at 83 to 64°, mean 63.9°.
The reactivity of I. marlagon is higher than that of the other parent in the reactious with polarization, iodine, rentian violet, and safranin; and lower in those with temperature. The reactivity of the hybrid is the same or practically the same as that of L. martagon in the reactions with polarization, gentian violet, and safranin; the highest of the three in that with iodine; and intermediate in that with temperature. With the exception
of the temperature reaction, the relationship of the hybrid is much closer to L. martagon than to the other parent.

Table A 26 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (seconds and minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Lilium martagon, L. maculatum, and L. dalhansoni, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 354 to D 360.)

Most of the reactions occur with such rapidity that the data do not lend themselves to the making of charts. Gelatinization is complete within 15 to 30 seconds in the reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, and sodium sulphide. In certain other reactions, even though they proceed with speed, there are more or less distinctive diflerences, as, for instance, in the reactions with calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride, in all of which gelatinization is almost if not complete within 3 minutes. In all of these reactions, excepting those with uranium nitrate, strontium nitrate, and cupric chloride the hybrid reactions are very distinctly closer to those of L. maculatum than to those of the other parent; in those with uranium nitrate and cupric chloride the hybrid is approximately mid-intermediate; and in those with strontium nitrate the same as L. martagon. In histologic and qualitative peculiarities, and in the polarization, iodine, and aniline reactions the hybrid shows in general a closer relationship to L. martagon; but occasionally closer to the other parent, or intermediate as in the temperature reaction. Referring to the charts, it will be seen that in all of them the curves of L. maculatum and the hybrid are almost exactly the same, and higher than the curve of the other parent; and that the hybrid curves tend to be slightly lower than those of L. maculatum. The relatively greater resistance of the starch of L. martagon is exhibited particularly in the curves for chromic acid, pyrogallic acid, and barium chloride.

Reaction-intensities of the Hybrids.

This section treats of the reaction-intensities of the hybrids as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 36 and Charts D $35 \pm$ to D 360.)

The reactivities of the hybrid are the same as those of the seed parent in the reactions with polarization, gentian voilet, and strontium nitrate; the same as those of the pollen parent with chloral hydrate; the same as those of both parents with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphoryanate, potassium sulphide, sodium hydroxide; and sodium sulphide, in all of which the reactions occur too quickly for differentiation; intermediate with temperature, chromic acid, pyrogallic acid, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric choride, and barium chloride (in seven closer to those of the pollen parent, in one closer to that of the seed parent, and in one mid-intermediate) ; highest with iodine and sodium salicylate (in one being closer to the seed parent, and in one closer to the pollen parent) ; and lowest with mercuric chloride, and closer to the pollen parent.

The following is a summary of the reaction-intensities: Same as seed parent, 4 ; same as pollen parent, 1; same as both parents, 9 ; intermediate, 9 ; highest, 2; lowest, 1.

Table 26 A.

From the formgong data the poillen parmit has been hy far the more potent in its influences on dnepmining the properties of the starch of the hybrid. The tendency to intermediateness is quite manifest.

Composite Cunves of Rishtion-htensities.

This section treats of the comprsits curves of the reaction-intensities, showing the differentiation of the starches of Lilum martayon, L. marulatum, and L. dalhansoni. (Chart E 26.)

The most conspicuous features of this chart are:
(1) The elose morrepondence in the three marvas excepting in the reactions with chromic acid, pyrogallic acid, and barium chloride, in which there occurs in earth instance a marked drop in the rurwe of L. marta!!".. while the curves of 1 . maculatum and the hybrid t.mal to keep the same or quite close tosether. In a larco number of reactions there is no differentiation between the three starches, as in those with chloral hydrate, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, and uranium nitrate: and in other instances there is a tendency for the hybrid curve to be the same as that of one or the other parent, or occasionally above both or intermediate. In part the hybrid curve is more distinctly related to the curve of \dot{L}. maculatum than to that of the other parent, and in part the reverse.
(2) In L. martagon in comparison with the other parent, the high reactions with polarization, iodine, gentian violet and safranin; the same or practically the same with chloral hydrate, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potascium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, and mercuric chloride: and the lower with temperature, chromic acid, pyrogallic acid, sodium salicylate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and harium chloride.
(3) In L. martagon the rery high reactions with chloral hydrate, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cohalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; the high reactions with polarization, iodine, chromic acid, pyrogallic acid, and barium chloride; and the moderate reactions with gentian violet, safranin, and temperature.
(4) In L. maculatum the very high reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocvanate, potassium sulphide, sodium hydroxide, sorlium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt ritrate, copper nitrate, barium chlorite, and mereurie chloride: the high temperature reaction; the moderate reactions with polarization, iodine, gentian violet, and safranin.
(5) In the hybrid, the very high reactinns with chloral hydrate, chromic acid, pyrogallic acid, nitric arid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocranate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate. calcium nitrate uranium nitrate. strontium nitrate, cobalt, nitrate, comber nitrate, cupric chloride, barium chloride, and mercuric chloride; the high reactions with polarization and iodiue : and the monderate reactions with gentian violet, safranin, and temperature.

Following is a summary of the reaction-intensities:

| Very |
| :--- | :---: | :---: | :---: | :---: | :---: |
| high. | High. | Mod- |
| :---: |
| erate. | Low. | Very |
| :---: |
| low. |

27. ('omparisons of the Starches of Lilium tendifolitim, L. martagon alblim, and L. (;OLIEN GLEAM.
In the histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the chemical reagents all three starches exhibit properties in common in various degrees of development, the sum of which in each case is characteristic. The starch of Lilium martagon album in comparison with that of I. tenuifolium contains very few compound grains and aggregates; there is less irregularity and variety in the forms, and the protuberances are less rounded; and a less number of grains are flattened. The hilum is not so distinct; less often occupied by a cavity; somewhat more fissured; and less eccentric. The lamellæ have the same characteristics and arrangement as in the other parent, but they are less numerous. The size is somewhat larger. In the polariscopic, selenite, and qualitative iodine reactions various differences are noted. In the qualitative reactions with chloral hydrate, chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride the differences are sufficient for easy differentiation. 'The starch of the hybrid shows in comparison with the starches of the parents fewer compound grains than in either parent, and there is an absence of aggregates; and the grains are more irregular than in either parent. The hilum is as distinct as in L. tonuifolium and more distinct than in the other parent; and it is fissured more often and the eccentricity is less than in either parent. The lamellæ are less distinct and less fine than in either parent. The size is about the same as in L. tenuifolium and slightly less than in the other parent. In the polariscopic, selenite, and qualitative iodine reactions there are leanings to one or the other parent, but the relationship is on the whole closer to L. temuifolium. In the qualitative chemical reactions certain reactions lean to one parent and certain others to the other parent, but with chloral hydrate the relationship is closer to L. martagon album, and in those with chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride closer to L. tenuifolium.

Reaction-intensities Expressed by Light, Color, and TcmperaPolarization:
L. tenuifolium, low to high, value 50 .
L. martagon album, low to high, much higher than in L. temifolium, value (85 .
I. golden gleam, low to high. Iower than in rither parent, value 45 . Iodine:
L. tenuifolium. moderate, value 55.
L. martagon album, moderate, much higher than in L. tenuifolium, value 65.
L. golden gleam, moderate, less than in either parent, value 50. Gentian violet:
L. tenuifolium. moderate, value 60.
L. martagon album, moderate, less than in I. tenuifolium, value 55.

1. golden gleam, moderate, less than in cither parent, value 50. Safranin:
L. tenuifolium, moderate, value 55.
L. martagon album, moderate, less than in L. tenuifolium, value 50 .
I. golden gleam, moderate, le'ss than in either parent, value $4 \leqslant$.

Temperature:
L. tenuifolium, in majority at 52 to 53°, in all at 55.6 to 56°, menn 55.8°.
L. martagon album, in majority at 59 to 61°, in all at 62 to 64°, mean 63°.
L. golden gleam, in majority at 53 to 54.4°, in all at 57 to 58.7°, mean 57.8°.

Table A 27.

The reactivity of L. lenuifolium is lower than that of the other parent in the polarization and iontine remtions; and higher in the gentian vishet, safranin, and temperature reactions. The reactisity of the hybrin is the lowest of the there in the suations with pularization, iodine, gentian violet, and safranin; and inter mediate with temperature. In the polarization, iotine. and temperature reactions the leyrid is clowe t., l. tenuifulium, and in those with kentian volel, safranin. and temperature (loser to L. martagon album.

Table 1 ?: show the reaction-intonsties in percentages of total starch gelatinized at definite intervals (eec(mids and minutes).

This section treats of the velocity-reaction curves of the stardtes of Lilium temuifolium. L. murtugon album, and L. golden gleam, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 361 to D 366.)

These starches generally react so rapidly with the various reagents that there are few instances where the data are of value in presentation in the form of charts. In the reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphoryanate, potassium sulphide, sodium hydroxide, and sodium sulphide eomplete or nearly complete gelatinization occurs of all three starches within 1.5 to 30 seconds. In other reactions, notwithstanding the rapidity, more or less dilferentiation is evident, as with calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride, in which gelatinization is almost if not wholly completed in 3 minutes. Differences in these rases are quite noticrahle at the end of 1 minute, L. temuifolium has a lower reactivity than the other parent in the calcium-nitrate and cupric-chloride reactions, and a higher reactivity in the others, and the hybrid shows reacticitios as high or higher than either parent. Not much importance is to he attached to these figures, althuugh they are very surgestive, owing to the difficulties of obtaining accurate records. Referring to the charts, it will be moted that all there curses in mach chart tend to dreseneses that the hybrid curse is almost exaetly the same as the curve of l. martugun allum in the chiorathydrate reaction, but like that of the other parent in the chromic-acid and pyrogallic-acid reactions; that the parental enree are practically exactly the same in the Eodium-salicylate reaction, but the hybrid curve definitely hishor: that the hybrid curven are the hichest in three out of the four reactions, namely, in thowe of chromic acid, sodium salicylate, and harium chloride: and that the parental curves differ sumewhen in then relative pmsitions, the rupse of L, finuif, linm buine hicher than that of the cother parent in the rearetions with chloral hydrate, chromic acirl, and barium chloride, but the same in the reations with sedinm salievlate.

Reartion-ivteveitifs of the Mybrin.

This section treats of the reaction-intensitios of the
 deficit in relation to the parents. (Taile 1 I? and Charts D 361 to D 366.)

The reactivities of the hybrid are the same as those of the sed parent in the ranctims with hremin and prongallic arid. putassium sulphocranate. and mercuric chloride: the same as those of the pollen parent with chloral hydrate. putassium sulphidr. smlium hydrovide. and sodium sulphide: the same as those of hoth parents with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroside, and potassium iodide, in all of which
the reathen werer tho rapilly for diferantation ; mone. mediate with tromprature and etrmitum nitrate, in torth

 uranium nitrate, cobalt nitrate, copper nitrate, cupric mboride, and barium charide (in four bxate chane tor

 parent) ; and lowest with polarization, iodine, gentian

The following is a =umbary of ther reat tom-mithas tios : Same as swed parent, 4: same an penlon parent. 1; same as both parents, of intormediat, 名: higheet, lowest, 4 .
 marked influence than the pollen parent in detorminin? the properties of the hylrid. The tombme: th hishort or lowest reactivity of the hybrid in quitw marment. the heing cvilent in nearly half of the reactions.

This section treats of the romponite curses of the reaction-intensities, showing the differentiation of the starches of Lilium tenuifolium, L. marlagon athum, and

The most conspicursus fratures of this dart are
(1) The closeness of all three curves, the only pmint of important departure being in the barium-chloride reaction, in which there is a marked drap of the curve of L. martagon album from the curves of the other parent and the hybrid. Throughout a large part of the chart there is little or abonlutely moliffirentiation of the curves, as in the reactions with nitric acid, sulphuric acin, hydrochloric acid, potassium hydrnxile, potacsium indide, potassium sulphocyanate, potassium sulphide. sndium hydrovide. sodium sulphizle, sonlium salievlate, calcium nitrate, uranium nitrate, sfrontium nitrate. robalt nitrate, eopper nitrate. cupric chloride, and mercuric chloride. In the remaining 9 reactions the parmal curves are well separated. and the hybrid curse tomls usually to be close to or identical with that of L. tenuifolium rather than with that of the other parent.
(?) In I. trunifulium, in comparisun with the other parent, the lower reactims with pharization and ind the higher reactions with gentian violet, safranin, temperature, chloral hydrate, chromic acid, pyrocallic acid, rnlalt nitrate, and harium choride: and the samm or practically the same reactions with nitric acid, sulphuric acid. hydrochloric acid, potassium hydroxide, potassium indide, potassium sulphoryanate, potassium sulphide, sit dimm haidrovide, sulinm sulphide, sominm silieglate. calrium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloridn, and moreuric whlorid.
(3) In L. temuifolium the very hich rea tions with choral hydrate, chromic acid, pirogallic acid, nitric acid. sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocranate, pintassium sulphide, sodium hydroxide, sodium sulphide, sorlium salicylate, calcium nitratt, uranimm nitratn. strontium nitrate, cubalt nitrate, coppor nitrate, cupric chlorile, and mereuric whoride: the high reartione with gentian violet, temperature and harium wheride: an? the molerate reations with pmarization, iwlin, and anfranin.
(4) In L, martagon alhum the very hisis ravimas
 acid, hydrochlorio acid, matassium hydrovile potassium indide, potassium sulpheranatn. Futa-sin: sulwidn. sodium hydroxide, sonlium salicvlate. calcium nitrate. uranium nitrate, strontium nitrate, cohalt nitrate, cop-
per nitrate, cupric chloride, and mercuric chloride; the high reactions with polarization, iodine, chloral hydrate, and barium chloride; and the moderate reactions with gentian violet, safrauin, and temperature.
(5) In the hybrid the very high reactions with chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; the high reactions with temperature and chloral hydrate; and the moderate reartions with polarization, iodine, gentian violet, and safranin.

Following is a summary of the reaction-intensities:

	Very high.	High.	Modcrate.	Low.	Very low.
I. tenuifolium	21	2	3	0	0
L. martagon album.	19	4	3	0	0
L. golden gleam...	20	2	4	0	0

28. Comparisons of the Starches of Lililim cifalcedonicum, L. Candidem, and L. testacevm.

In the histologic characteristics, polariscopic figures, reactions with selenite and qualitative reactions with iodine and with various chemical reagents all three starches possess properties in common in various degrees of development, the sum of which in each case is characteristic of the starch. The starch of Lilium candidum in comparison with that of L. chalcedonicum contains a larger proportion of grains that are regular in form, and there is a more marked tendency for the proximal end to be narrower than the distal end of the grain. The hilum is more often fissured and the eccentricity is less. The lamellæ are more distinct; broad, refractive lamellæ are more numerous; and there is often present a band of three or four broad lamellæ in the distal third of the grain; and the number is somewhat less. The sizes of corresponding types of grains are less. In the polariscopic, selenite, and qualitative iodine reactions there are numerous differences. In the qualitative reactions with chloral hydrate, chromic acid, potassium hydroxde, cobalt nitrate, and cupric chloride various differences are recorded, several of which are quite distinctive of one or the other parent. The starch of the hybrid in comparison with the starches of the parents is less regular in form than in either parent, and there is a kind of irregularity that is peculiar to the hybrid: and the grains tend to be less pointed at the proximal end than in L. chalcedonicum, but somewhat more pointed than in L. candidum. The hilum is in character closer to that of $1 /$. chalcedonicum, but in degree of eccentricity closer to that of L. candidum. The lamellæ are less distinct, less numerous, and finer than in either parent. The sizes of corresponding types of grains are closer to those of L. candidum and on the whole smaller than in the other parent. In the qualitative chemical reactions the hybrid leans to L. chalcedonicum, which reactions may be modified through the influence of the other parent.

Reaction-intensitics Erpressed. by Light, Color, and Tempera-
ture Reawtions.

Polarization:

L. chalcedonicum, low to high, value 60.
L. candidum, low to high, higher than in L. chalcedonicum, value 65. L. testaceum, low to high, the same as in L. chalcedonicum, value 60.

Iodine:
L. chalcedonicum, moderate, value 55.
L. candidum, moderate, deeper than in L. chalcedonicum, value 65.
L. testaceum, moderate, less than in either parent, value 50.

Gentian violet:
L. chalcedonicum, moderate, value 60.
L. candidum, moderate to very deep, much deeper than in L. chalcedonicum, value 80 .
L. testaceum, moderate to very deep, the same as in L. candidum, value 80.
Safranin:
L. chalcedonicum, moderate, value 65.
L. candidum, moderate to very deep, much deeper than in L. chalcedonicum, value 80 .
L. testaceum, moderate to very deep, the same as in L. candidum, value 80.
Temperature:
L. chalcedonicum, in majority at 59.2 to 61°, in all at 63 to 64°, mean 63.5°.
L. candidum, in majority at 57 to 58.7°, in all at 60 to 62°, mean 61°.
L. testaceum, in majority at 61.2 to 63°, in all st 63.5 to 67°, mean 65.25°.
The reactivity of L. chalcedonicum is lower than that of the other parent in all five reactions. The reactivity of the hybrid is the same or practically the same as that of L. chalcedonicum in the polarization reaction; the same or practically the same as that of the other parent in the gentian-violet and safranin reactions; and the lowest of the three in the iodine and temperature reactions. The hybrid in the polarization, iodine, and temperature reactions is closer to L. chalcedonicum than to the other parent, but in the gentian-violet and safranin reactions the reverse.

Table A 28 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (seconds and minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Lilium chalcedonicum, L. candidum, and L. testaceum, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 367 to D 372.)

These starches react for the most part with such rapidity that but few data are of a character satisfactory for chart formation. However, even among the most rapid reacting reagents more or less marked differences are sometimes noted, as, for instance, in the reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, and sodium sulphide. Excepting those with hydrochloric acid and potassium hydroxide, there are varying degrees of lower reactivity of L. candidum than of the other parent and the hybrid. In other reactions that are less rapid, in which approximately corresponding percentages of gelatinization occur in about 3 minutes (as in the reactions with calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride), with uranium nitrate and strontium nitrate the reactivity of L. candidum is at the end of the first minute distinctly the lowest of the three; with calcium nitrate, cupric chloride, and mercuric chloride about the same as L. candidum and distinctly lower than in L. chalcedonicum; and with copper nitrate all three are alike. In all six charts the curves are from close to very close together. In all of the reactions the curves of L. chalcedonicum are higher than those of the other parent, the separation being well marked in all, especially with chloral hydrate and pyrogallic acid, which are distinctly the less rapid of the six. The hybrid is nearly the same as that of L. chalcedonicum in the reactions with chromic acid, sodium salicylate, and barium chloride; nearly the same as that of L. candidum with cobalt nitrate; distinctly intermediate with pyrogallic acid; and the highest of the

Table A 28.

three with chloral hydrate. These peculiarities are in accord with the shiftumg relationship to one or the other parent recorded in the histologic and qualitative characters. In the reactions in which gelatinization is very rapid, marked differences would in all likelihood have appeared had the concentration of the reagents been less, so as to lengthen the periods of gelatinization.

Reaction-intensities of the Hybrid.

This section treats of the reaction-inteusities of the hybrid as regards sameness, intermediatemess, exems, and deficit in relation to the parents. (Table A 28 and Charts D 367 to 1) 378.)

The reactivitics of the hybrid are the same as those of the seed parent in the reactions with polarization, potassium iodide, potassium sulphide, and sodium hydroxide; the same as those of the pollen parent with gentian violet, safranin, and cupric chloride; the same as those of both parents with potassium hydroxide and copper nitrate; intermediate with chromic acid, pyrogallic acid, sulphuric acid, hydrochloric acid, calcium nitrate, cobalt nitrate, and barium chloride (in five being nearer the seed parent, in one nearer the pollen parent, and in one as near to one as to the other parent); highest with temperature, potassium sulphocyanate, $80-$ dium sulphide, sodium salicylate, uranium nitrate, and strontium nitrate (in all six being closer to the seed parent) ; and lowest with iodine, chloral hydrate, nitric acid, and mercuric chloride (in two being nearer the seed parent, in one nearer the pollen parent, and in one as close to one as to the other parent).

The following is a summary of the reaction-intensities: Same as seed parent, 4 ; same as pollen parent, 3 ; same as both parents, 2; intermediate, 7; highest, 6; lowest, 4 .

The seed parent in comparison with the pollen parent has had a very potent influence in determining the properties of the starch of the hybrid. While there is a distinct tendency to intermediateness, there is an equal tendency to sameness as regards one or the other parent, and a decidedly greater tendency to highest and lowest reactivities of the hybrid.

Composite Curyes of Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Lilium chalccdonicum, L. candidum, and L. testaceum. (Chart E 28.)

The most conspicuous features of this chart are:
(1) The close correspondence of all three curves, with the exception of those in the reactions with chloral hydrate and pyrogallic acid. It seems, judging from this and other records, that the reactions with chloral hydrate, chromic acid, and pyrogallic acid have a distinet tendency to be aberrant. This is seen in the reactions with chromic acid and pyrogallic acid of L. martagon in Chart E 26; with chloral hydrate and pyrogallic acid of L. condidum, and in the pyrogallic-acid reaction of the hybrid in this chart; and in the chromic-acid and pyrogallic-acid reactions of the hybrid, L. burbanki, in ('hart E :29. In most of the charts there is little or no differentiation of the three starches, as in the reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride. and mercuric chloride. The curves of the hybrid and I. candidum. tend to be more clenely relatel than the curves of the hybrid and the other parent, or the curves of the parents.
(2) In L. chalcedonicum in comprison with that of the other parent, the lower reactions with polarization, iodine, gentian violet, safranin, and temperature; the higher reactions with chloral hydrate, chromic acid, pyrogallic acid, cobalt nitrate, cupric chloride, and barium chloride; and the same or practically the same with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and mercuric chloride.
(3) In L. chalcedonicum the very high reactions with chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; the high reactions with polarization, gentian violet, safranin, and chloral hydrate; and the moderate reactions with iodine and temperature.
(4) In L. candidum the very high reactions with gentian violet, safranin, chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; the high reactions with polarization, iodine, temperature, and barium chloride; and the moderate reactions with chloral hydrate and pyrogallic acid.
(5) In the hybrid, the very high reactions with chloral hydrate, chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; the high reactions with polarization and barium chloride; and the moderate reactions with iodine, temperature, and pyrogallic acid.

Following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
L. chalewdonicum	20	4	2	0	0
I. cutudidum.	20	4	2	0	0
L. temtareum	21	2	3	0	0

29. Comparisons of the Starcifes of Lilium pardalintar, L. parrit, and I. burbanki.
In the histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents all three starches exhibit properties in common in varying degrees of development, the sum of which in each case being characteristic of the starch. The starch of L. parryi in comparison with that of L. pardalinum contains less numbers of compound grains and aggregates, and the grains are less irregular. The hilum is slightly less eccentric. The lamellie are less distinct, and less numerous, and there is an absence of a broad refractive lamella that is found in L. pardalinum. The sizes of the corresponding forms of the grains are distinctly less. In the polariscopic, selenite, and qualitative iodine reactions there are some apparently minor differences. In the qualitative reactions with chloral hydrate, chromic
acid, potassium hydroxide, cobalt nitrate, and cupric chloride various differences are recorded which seem to be of minor importance. The starch of the hybrid in comparison with the starches of the parents shows an absence of compound grains that are found in both parents; and the grains are more regular in form than in either parent. The hilum is less distinct, less often fissured, and less eccentric than in either parent. The lamellæ are in general characters like those of the parents, but they are less numerous. The sizes of the corresponding forms of grains are about mid-intermediate between those of the parents. In the polariscopic and selenite reactions the relationship of the hybrid is closer to L. parryi, but in the qualitative reactions closer to L. pardalinum. In the qualitative reactions with the chemical reagents in the reactions with chloral hydrate, chromic acid, potassium hydroxide, cobalt nitrate, and cupric chloride the relationship of the hybrid is closer to L. pardalium, but there are many instances of closeness to the peculiarities of L. parryi, especially in the chloral-hydrate and chromic-acid reactions. The influences of L. parryi are quite obvious, although, as a whole, superseded by those of the other parent.
Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

L. pardalinum, low to high, value 55.
L. parryi, low to high, lower than in L. pardalinum, value 50 .
L. burbanki, low to high, the same as in L. parryi, value 50 .

Iodine:
L. pardalinum, light to moderate, value 40.
L. parryi, moderate, much higher than in L. pardalinum, value 55.
L. burbanki, light to moderate, the same as in L. pardalinum, value 40.
Gentian violet:
L. pardalinum, moderate to deep, value 65 .
L. parryi, light to moderate, very much less than in L. pardalinum, value 40.
L. burbanki, moderate, more than in L. parryi, value 45 .

Safranin:

L. pardalinum, moderate to deep, value 65 .
L. parryi, light to moderate, very much less than in L. pardalinum, value 35 .
L. burbanki, light to moderate, more than in L. parryi, value 40 .

Temperature:
L. pardalinum, in majority at 58 to 60.5°, in all at 61 to 63°, mean 62°.
L. parryi, in majority at 47 to 48.5°, in all at 51 to 52°, mean 51.5°.
L. burbanki, in majority at 64 to 66°, in all at 67 to 68.5°, mean 67.75°.

The reactivity of L. pardalinum is higher than that of the other parent in the polarization, gentian-violet, and safranin reactions; and lower in the iodine and tem perature reactions. The reactivity of the hybrid is the same or practically the same as that of L. pardalinum in the iodine reaction; the same or practically the same as that of L. parry i in the polarization reaction; lowest of the three in the temperature reaction; and intermediate in the gentian-violet and safranin reactions. The hybrid in the iodine and temperature reactions is closer to L. pardalinum than to L. parryi, but in the polarization, gentian violet, and safranin reactions closer to the latter parent.

Table A 29 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (seconds and minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Lilium pardalinum, L. parryi, and L. burbanki, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 373 to D 378.)

These starches in common with the other lily starches are generally very sensitive to gelatinizing agents, but

Table A 29.

there is, on the whole, distinctly less sensitivity than of any of the four preceding groups, particularly as regards the hybrid. As a rule, however, the data are not of much uarfulaton wixpthig bury few instances for chart making. Gelatinization is nearly or practically complete in 15 to 30 seconds in the reartions with nitric acid, sulphuric acid, hylrochloric acid, potassium hydroxide, potassium iodide, potastium sulphocyanats, potassium sulphide, sodium hylroxide, and sodium sulphide. In the reactions with nitric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, and sodium sulphide there are distinct indications of lower reactivity of the hybrid than of the parents. Gelatinization goes on very rapidly in all three starches during the first 1 to 3 minutes in the other reactions, so that in nearly all (exrepting those with chloral hydrate, chromic acid, sodium salicylate, and cupric chloride) at least 90 per cent of the total starch is broken down within this period. In occasional instances the hybrid is comparatively resistant, as in the reactions with chromic acid, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride, in some of which the resistance is quite marked or only noticeable luring the first minute. There are also surqestions of differences in the parents, L. pardalinum showing generally a marked tendency to greater resistance than L. parryi. In these reactions the hybrid is generally distinctly closer to L. pardalinum than to the other parent, this being in accord with the findings in the histologic and quantitative peculiarities, and in the light, color, and temperature reactions. Referring to the charts, it will be seen that all three curves in each reaction tend to be from close to very close, the parental curves running together in five out of the six reactions, and the hybrid with the curves of L. parryi in the sodiam-salicylate reactions. In all six charts the curves of L. parryi are higher than the curves of I. parryi in the reactions with chromic acid, cohalt nitrate, barium chloride, and mercuric chloride, keeping very close together, yet showing quite definite differences in the reactions. The hybrid curve is intermediate in the chloral-hydrate reaction; distinctly the lowest in those with chromic acid, pyrogallic acid, cobalt nitrate, barium chloride, and mercuric chloride; and nearly the same as L. parryi (at first intermediate) with sodium salicylate. There is in general a tendency to less reactivity of the hybrid than of the parents.

Reaction-intensities of the IIybrid.

This section treats of the reaction-inteusities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 29 and Charts D 373 to D 378.)

The reactivities of the hybrid are the same as those of the seed parent in the iodine and calcium-nitrate reactions; the same as those of the pollen parent in the polarization reaction; the same as those of both parents in the potassium hydroxide raction, in which the reactions occur too rapidly for differentiation; intermediate in the reactions with gentian violet, safranin, chforal hydrate, sulphuric acid, sodium salicylate, and barium chloride (in four being closer to those of the pollen parent, and in two closer to those of the seed parent) ; highest in none; and lowest in those with temperature, chromic acid, pyrogallic acid, nitric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride (in nine being
(luar to thene of the seed parent, aml in seren being as close to one as to the uther pareut). The following is a summary of the reaction-intensities: Same as seed parent, : ; same as pollen parent, 1 ; same as buth pareuts, 1 ; intermediate, 6 ; highest, 0 ; lowest, 16.

The seed parent has according to these data to a far greater degree than the other parent influenced the frinurtus of the stareh of the hybrid. The temdency to lowest reactivity of the hybrid is even more conspicuous than the leanings to the seed parent. Intermediateness is fairly well marked.

Cumposite, Cirves of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Lilium pardalinum, L. parryi, and L. burbanki. (Chart E? ? .)

The most conspicuous features of this chart are:
(1) The generally rery close correspondence of all three curves, the most noticeable variatons in the case of the parents being in the reactions with gentian violet and safranin; and of the hybrid with chromic acid, pyrogallic acid, cobalt nitrate, barium chloride, and mercuric chloride. There is no satisfactory differentiation of the three starches in the reactions rith nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sothum hydroside, and sodium sulphide; there is m differentiation of the parents in the copper-nitrate reation, and not a very marked differentiation in those with calcium nitrate, uranium nitrate, strontium nitrate. cobalt nitrate, cupric chloride barium chloride and mercuric chloride. The hybrid curre tends to be somewhat erratic, and inclining to keep low and even below the parental curves, this being especially noticeable in the reactions with temperature, chromic acid, prrogallic acid, uranium nitrate, cobalt nitrate, copper nitrate, cupric thloride, barium chloride, and mercuric chloride. With Weaker reabents where the reactions oceur with great rapility, as in the nine reactions from nitric acid on to sodium sulphide, inclusive, this tendeney would doubtless be made even more conspicuous. On the whole, the hybrid eurve is much more closely related to the curve of L. pardalinum than to that of L, parryi.
(2) In L. pardalinum, in comparison with the other parent, the higher reactions with polarization, gentian violet, and safranin; the lower with iodine, temperature. chloral hydrate, chromic acid, pyrogallic acid, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride; and the same or practically the same reations as these of the other parent with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium sulphocyanate potassium sulphide. sohbum hidrovide, solium sulphide, and copper nitrate
(3) In L. pardalinum the rery high reactions with chromic acid, pyrogallic acid. nitric acid, sulphuric acid. hydrochloric acid, potassium hylroxide, potassium iodide, pitassium sulphoyanate, phtassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper mitrate, cupric chloride, barium chloride. and mereure haride: the hirh reamons with gentian
violet, safranin, temperature, and chloral hydrate; the moderate reactions with polarization and iodine.
(4) In L. parryi the very high reactions with temperature, chloral hydrate, chromic acid, pyrogallic acid, bitric acid, sulphuric acid, hydrochloric acid, potassium hydroside, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium suiphide, sendium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride, reactions: the absence of a high reaction; the moderate reactions with polarization, iodine, and gentian violet; and the low reaction with safranin.
(5) In the hybrid the very high reactions with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphade, sodium salicylate, calcium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride; the high reactions with chloral hydrate, chromic acid, cobalt nitrate, and barium chloride; the moderate reactions with polarization, gentian violet, safranin, and temperature ; and the low reactions with iodine and pyrogallic acid.

The following is a summary of the reaction-intensities:

	Vers high.	High.	Moderate.	Low.	Vers how.
L. pardslinum	20	4	2	0	0
L. parryi . . .	22	0	3	1	0
L. burbanki.	10	4	4	2	0

Notes on the Lilies.

The starches of the rarious species of lilies belong to the quick-reacting group and they are universally so rapidly gelatinized by nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphoctanate, potassium sulphide, sodium hydroside, and sodium sulphide that satisfactory differentiation is not possible, excepting with reagents of different concentration from those used in this research. Eren with most of the other chemical reagents, they often react so rapidly that convincing differential data are not obtainable with the concentrations employed. The only reagents in the concentrations used that are really useful are chloral hydrate, chromic acid, purogallic aciu, sodium salicylate, cobalt nitrate, and barium chloride. But in the reactions with polarization, iodine, gentian violet, safranin, and temperature conclusise data were usually recorded.

The hyrides temb in each wase to ler more chosely related in the sum total of their characters to one or the other parent, and with far less inclination to intermediateness than to identical development or to excessire or deficient development beyond parental extremes. The tendency to exceed parental extremes is particularly well marked in the curse of L. burbanki, where there is shown a rery distinct inclination to be below the lower of the parental curves. In the first and fourth groups, the hybrids are more closely related on the whole to the pilhen parents: and in the second, third, and tifth groups io the seed parents. The general relationship of the
hybrids to their respective parents in their quantitative reactions are exhibited in the following smmany, the figures being, however, of an absolutely tentative character, because many of the reactions recorded as samentss are so only because the concentrations of the reagents were not adapted to elicit differences of a positive character.

Following is a summary of the reaction-intensities:

					芯	-
L. marhan	0	5	9	6	1	5
L. dulhansoni	4	1	9	9	2	I
L. golden gleam	4	4	5	2	7	1
L. testaceum.	4	3	2	7	6	4
L. burbanki..	2	I	1	6	0	16

The general picture presented by the five charts is that of a definite generic type, the curves bearing clome relationships in their courses; but with a tendency to variability in the reactions with chloral hydrate, chromic acid, and pyrogallic acid, this latter indicating a marked molecular instability in relation to these special reasents. There is not the least evidence of subgeneric grouping such as was found in certain other genera studied, this being in accord with the findings in the preceding research in which it was stated upon the basis of that preliminary work that the division of Lilium into the six subgenera noted is probably botanically artificial.

The curves of Lilium martagon and its horticultural variety L. martagon album very closely coincide, the curve of the former inclining, where satisfactory differences can be made out, to be somewhat lower than that of the former, as in the reactions with polarization, iodine, chromic acid, pyrogallic acid, cobalt nitrate, and barium chloride; and rarely higher, as with safranin and chloral hydrate, the latter being the only one that is important.

It is of interest to note that in the fourth group L. chalcedonicum (subgemus Martagon) is crossed with L. candidum (subgenus Eulirion), yidding L. testaceum, which latter is classed in the sulogenus Martagon and in the same subdivision of the subgenus as L. chalcedonicum. In this research the hybrid shows in the sum total of its characters a closer relationship, as a whole, to L. chalcedonicum than to the other parent. Thus, in the form of the grain, general haracters of the. hilum, characters and arrangements of the lamella, polariscopic figure, appearances with selenite, qualitative reactions with iodine, qualitative reactions with the various chemical reagents, and quantitative reactions in the polarization, iodine, chloral-hydrate, and chromicacid reactions it is closer to L. chulcpedonicum: but in eccentricity of the hilum, size of the grains, and quantitative reactions with gentian violet, safranin, pyrocallicacid, cobalt nitrate, cupric chloride, and barium chloride it is distinctly much closer to the other parent. Curiously, while the foregoing data, as a whole, indicate a much closer relationship of the hybrid to L. chalcedonicum, the composite curves indicate the contrary, but this contradiction may be explained upon the hasis of inadequate analysis with the chemical reagents, because of the
ereat rapidity of many of the ratarens. From the fore*ronng, qualitative data may be more important in the recognition and differentiation of starches than quantitather data, althomeh theoretically once should expect them to go hand in hand.
 I. ThomANA, AN1, I. Ismal.1.

In the histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with various chemical reagents, the starches of the parents and hybrid exhibit properties in common in varying degrees of development, the sum of which in each case is characteristic of the starch. The starch of Iris iberica in comparison with that of I. trojana contains few agrorgates, and more compound grains of more types; the grains are more irregular; and flattening of the distal che of ehmgated elliptical grains is more common. 'Ihe hilum is more distinct and more frequently fissured. The lamelle are coarser and more distinct; more apt to be irregular, especially between the hilum and the distal margin, following in their cours: the curvature of the notch in the distal margin; and the number is larger. The common sizes are largerlonger and broader or longer and of the same width than in the other parent. In the polariscopic, selenite, and qualitative iodine reactions there are a number of differences of an apparently minor character. In the qualitative reactions with chloral hydrate, hydrochloric acid, potassium iodide, sodium hydroxide, and sodium salicylate there are various differences, probably for the most part unimportant. The starch of the hybrid in comparison with the starches of the parents contains a less number of aggregates than in either parent; more compound grains than in I. Berica but less than in 1 . trojena; and the grains are much more irregular than in I. iberica and more irregular than in I. trojana. The hilum in character is more closely related to I. iberica, but in eccentricity to the other parent. The lamellæ are in character, arrangement, and number more closely related to I. iberica. The size is less than in either parent, but doser to l. iberied. In the degree of polarization and qualitative iodme reartions the relationship is closer to I. iberica, but in the qualitative polarization and selenite reactions closed to the other parent. In the qualitative chemical reactions there are leanings here and there to one or the other parent, but on the whole the relationships are much closer to 1 . iberica. It is of interest to note that a feature of I. iberica may be accentuated in the reactions of the hybrid.

Reartion-intensities Eirpressrd by Light, Culor, anel Tempers. tive Retetwons.
Polarization:
I. incrich, low to high, value 50.
I. trojana, low to moderately high, lower than in I. iberica, value 45. I. ismali. low to moderately high, lower than in either farent. value 40
Iodine:
I. itworica, light to moderate, value 40.
I. trojana, moderate, deeper than in I. iberica, value 50 .

1. ismali, light to maberat., the same as in 1. ilerica, value 40

Guntinn violet:
I. iberica, light to moderate, value 40.

I. istali. light to medurate, the same ge in I. Aheries. value st

Safranin:
I. iberica, moderate, value 45 .
I. trojana, moderate, deeper than in I. iberica, value 50.

1. ismali, moderate, the bame as in I. iberica, value 45.

Temperature:
I. iberica, in the majority at 69 to 70°, in all at 71 to 72.5°, mean 71.75°.

1. trojuna, in the majority at 70 to 71.5°, in all at 73.2 to 75°, mean 72.1°.
I. ismali, in the majurity at 69 to 71°, in all at 72 to 74°, mean 73°.
'The reactivity of 1 . iberica is higher than that of the other parent in the polarization and temperature experiments, and lower in iodine, gentian-violet, and sarranin reactions. The reactivity of the hybrid is the same or practically the same as that of I. iberica in the iodine, gentian-violet, and salranin reactions; the lowest of the three in the polarization reaction; and intermediate between those of the parents in the temperature reaction. The hybrid is nearer to I. iberica in the iodine, gentianviolet, and safranin reactions, nearer to the other parent in the polarization reactions, and intermediate in the temperature reaction.

Table A 30 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curtes.

This section treats of the velocity-reaction curves of the starches of Iris iberica, I. trojana, and I. ismali, showing the quantitative differences in the behavior toward difierent reagents at definite time-intervals. (Charts D) 339 to D 399.)

The most couspicuous features of this group of curves are:
(1) The closeness of all three curves, indicating not only a corresponding relationship of the parents, but also very little modification of parental peculiarities in the hybrid. As regards the latter, the tendency of the curve is to follow closely that of one or the other parent or be of some degree of intermediateness. The only instances where there seems to be a notable inclination for separation of the curves are in the reactions with chloral hydrate, hydrochloric acid, sodium sulphide, calcium nitrate, and mercuric chloride; and with the exception of the last the hybrid curve is between the parental curves and distinctly closer to the curve of one or the other parent.
(2) The lower reactivity of I. iberica in comparison with the other parent with all of the chemical reagents (excepting in the very rapid sulphuric-acid and the very slow cobalt-nitrate and barium-chloride reactions, where the parental curves are practically absolutely the same), the absence of differentiation doubtless being due to the extreme slowness of gelatinization.
(3) The variable position of the hybrid curve in relation to the parental curves in the various reactions, with a very definite tendency to intermediateness or lowuess. In some of the reactions one of the three starches may at first be comparatively slow in reacting, followed by a comparatively rapid reaction, so that the relations of the curves are changed. This is seen in the pyrogallicacid, strontium-nitrate, and copper-nitrate reactions, in Which the hybrid curve is the lowest at the end of 5 min utes and subsequently intermediate; in the calciumnitrate reactions, where the curve of I. trojana is the lowest at minutes and then the highest and well separated from the other curves; and in uranium-nitrate reaction where the parental curves change their relative positions after 5 minutes. The sulphuric-acid chart shows no differentiation, but the figures at the end of $\stackrel{2}{ }$ minutes indicate the order of reactivity as follows: I. trojana, I, ismali, and I. iberica, making the hybrid intermediate. The

Table a 30.

hybrid and I. trojana curves are practically absolutely the same and above the I. iberica curve in the reations with sodium salicylate; almost identical with the parental curves in the reaction with potassium sulphocyanate; at first intermediate and then the highest of the three in the reactions with sodium hydroxide, although there are but little differences; and the highest and then intermediate in the reactions with potassium iodide, tending to be cluse th, the curve of I. trojona. The hybrid curve is lower than the parental curves in the reactions with potassium hydroxide, cupric chloride, cobalt nitrate, harium chloride, and mercuric chloride, although the colalt-nitrate and barium-chloride curves are very little different from the parental curves; and the highest throughout the 60 minutes in the uranium-nitrate reaction.
(4) In very few reactions is there a marked period of early resistance followed by a comparatively rapid gelatinization. A brief period of early resistance of all three starches is suggested by the curves of the strontiumnitrate reaction, and of one or the other parent or the hybrid in the reactions with chloral hydrate, chromic acid, calcium nitrate, uranium nitrate, and copper nitrate, especially in the last.
(5) The earliest period during the 60 minutes at which the three curves are best separated to differentiate the starches varies with the different reagents. Approximately, this period occurs within 5 minutes in the reactions with pyrogallic acid, sulphuric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium salicylate, uranium nitrate, and copper nitrate; at 15 minutes with chromic acid, potassium hydroxide, calcium nitrate, strontium nitrate, and cupric chloride; at the end of 30 minutes with chloral hydrate, nitric acid, potassium sulphide, and sodium sulphide; and at the end of 60 minutes with cobalt nitrate, barium chloride, and mercuric chloride (with the last perhaps at the end of 30 to 45 minutes).

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 30 and Charts D 379 to D 399.)

The reactivities of the hybrid are the same as those of the seed parent in the iodine, gentian violet, and safranin reactions; the same as those of the pollen parent with potassium iodide and sorlium hydronde; the same as those of both parents with potassium sulphocyanate and sodium hydroxide; intermediate with temperature, chloral hydrate, chromic acid, pyrogallic acid, nitric acil, sulphuric acid, hydrochloric acid, potassium sulphide, sodium sulphide, calcium nitrate, strontium nitrate, and copper nitrate (in four being closer to the seed parent, in two being closer to the pollen parent, and in six beiny mid-intermediate) ; the highest with uranium nitrate. and nearer that of the pollen parent; and the lowest with polarization, potassium hydroxide, cobalt nitrate, cupric chloride, barium chloride, and mervuric chloride (in three being closer to the seed parent, in one closer to the pollen parent, and in two being as close to one as to the other parent).

The following is a summary of reaction-intensities: Same as seed parent, 3 ; same as pollen parent, 2 ; same as both parents, 2 ; intermediate, 12 ; highest, $1 ;$ lowest, 6 .

It seems from the foregoing data that the seed parent has exercised much more influence than the pollen parent on the characters of the starch of the hybrid. Apart from this the most conspicuous features are the marked tendency to intermediateness and a tendency to lowness of the hybrid.

This seetion trats of the comprates curses of the reaction-intensitios, showing the differentiation of the starches of Iris iberica, I. trojana, and 1. ismali. ('hart E 30.)

The most conspicuous features of this chart are:
(1) The closeness of all three curses, the parental

 to Oncocylus and I. trojana, to Apagon, well =ararat.al suburencrat of the rhizomatous serics). (The groupinys of the Irids by different botanists are by no mame the same, and it is recornized as being questionalble if
 reconstructed.)
(2) The curve of l. ibrrian tends, with the exception
 that of I. trojona; but the differences are usually slight, and most marked in those with iodine, gentian violet, temperature, chloral hydrate, chromic achd, potassium sulphocyanate, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, copper nitrate, cupric chloride, and mercuric chloride.
(3) The curve of the hybrid wavers in its parental relationships, sometimes being closer to one parent and at others to the other, with for the most part a tendency to sameness or intermetliateness, occasiomally above or below parental extremes.
(4) In 1 . iberica, the very high reactions with sulphuric acid, potassium sulphocyanate, and sodium sali"ylate; the high reactions with chromic acid and solium hydroxide; the moderate reactions with polarization, iodine, gentian violet, safranin, temperature, pyrogallic acid, and potassium hydroxide; the low reactions with chloral hydrate, nitric acid, hydrochloric acid, sodium sulphide, calcium nitrate, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.
(5) In I. trojana, the very high reactions with sulphuric acid, potassium sulphocyanate, and sodium salicylate : the high reactions with chromic acil and sodium hydroxide ; the moderate reactions with polarization, iodine, gentian violet, safranin, chloral hydrate, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, and potassium iodide; the low reactions with temperature, sodium sulphide, calcium nitrate, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.
(6) In the hybricl, the very high reactions with sulphuric acid, potassium sulphocyanate, and sodium salicylate; the high reactions with chromic acid and sodium hydroxide; the molerate reactions with polarization, iodine, gentian violet, chloral hydrate, pyrogallic acid, nitric acid. potassium hydroxide, and potassium iudide'; the low reactions with temperature, hydrochloric athl, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potasium sulphide, cobalt nitrate, barium chloride, and mercuric chloride.

Following is a summary of the reaction-intw-itios:

	Very high.	High.	$\begin{gathered} \text { Ment } \\ \text { ifut } \end{gathered}$	L.い*.	$\begin{aligned} & \text { Very } \\ & \text { low. } \end{aligned}$
1. Iberica.	3	2	7	!	6
I. trojana.		2	111	(;	5
I. ismali		2	9	\cdots	4

$\because 1$ ．（＇ompaifons of the Staleches of Ifis ibemica，

In histologic characteristics，polariscopic figures，reac－ tions with selenite，reactions with iodine，and qualitative reactions with various chemical reagents，the starches of the parents and hybrid exhibit properties in common in varying degrees of development，the sum of which in each case is characteristic of the starch．The three starches are very much alike，and notwithstanding the very close resemblances of the parental starches the hybrid starch shows clearly evidence of biparental in－ heritance．The starch of Iris iberica in comparison with that of I ．cengialli contains more compound grains and aggregates，and there are two types of compound grains in the former that are not present in the latter；the grains are not quite so regular in form；and elongated elliptical grains are more common，but ovoid forms less common．The hilum is more distinct，less often fis－ curen，and more econtric．The lamello are less dis－ tinct，not quite so coarse，and more numerous．The size is somewhat less，with variations in ratio of length to width that are interesting．In the polariscopic，selenite， and qualitative reactions there are various differences． In the qualitative reactions with chloral hydrate，hydro－ chloric acid，potassium iodide，sodium hydroxide，and sodium salicylate，there are many differences and indi－ vidualities，several of the latter being quite striking． The starch of the hybrid in comparison with the parental starches contains more compound grains and aggregates than in either parent，and the compounds are of the two types found in I．iberica，but not in the other parent； the grains are less regular than in either parent．The relationship is on the whole distinctly closer to I．iberica． The hilum in character is closer to I ．iberica，but in eccentricity to the other parent．The lamellæ in charac－ ter are closer to I ．cengialti，but in number to I ．iberica． The size is somewhat less than in either parent，and，on the whole，closer to I ．cengialti．In the polariscopic， selenite，and qualitative iodine reactions there are lean－ ings here and there toward one or the other parent，but， on the whole，the relationship is much closer to I．iberica． In the qualitative chemical reactions the latter statement holds with equal force．

Reaction－intersities Expressed by Light，Color，and Tempera－ ture Reactions．
Polarization：
I．iberica，low to high，value 50 ．
I．cengialti，moderately high to high，higher than in I．ibericn， value 60.
I．dorak，low to high，the same at in I．iberica，value 50. Todine：

I．iberica，light to moderate，value 40.
I．combati，moderate，decper than in I．iberiea，vatue 45.
I．durak，light to moderate，the same as in I．berion，value 40 ． （inutitu voluct：

1．iberion，light to moderate，value 40.
I．cergialti，moderate，deeper than in I，iberica，value 45.
I．dorak，moderate，deeper than in either parent，valuo 60 ．
safranin：
I．iberien，moderate，value 45.
I．congialti，moxterate，dueper than in I．iberica，value 50 ．
I．Sorak，moderate，the same as in 1．cengialti，value 50.
Temperature
I．iberica，in the majority at 69 to 70° ，in all at 71 to 72.5° ，mean 71.5°.
1．©ongiatti，in the majority at 70 to 72° manan，in all at 74 to 76° ， 1แ土⿱土龰卜 75°
I．dorak，in the majority at 68 to 70° ，in all at 70 to 72° ，mean 71.5° ．
＇lhe reactivity of I ．iberica is lower than that of the other parent in the polarization，iodine，gentian violet， and safranin reactions，and higher in the temperature reaction．The reactivity of the hybrid is the same or practically the same as that of l．iberica in the reactions with polarization and iodine；the same or practically the

Table A 31.

same as that of the other parent in the safranin reaction; and the highest of the three in the temperature reaction. The hybrid is nearer I. iberica than to I. cengialti in the polarization, iodine, and temperature reactions, but nearer the other parent in the gentian violet and safrania reactions.

Table A 31 shows the reaction-intensities in percentages of total starch gelatimized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Iris iberica, 1 . cengialti, and 1 . dorak, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts 1) 100 to [) 1:0.)

The most conspicuous features of this group of curves are:
(1) The closeness of all three curves, occasionally almost identical, indicating corresponding relationships of the parents and little modification of parental peculiarities in the hybrid. The hybrid curve relative to the parental curves shows marked variability in so far as it sometimes follows one or the other parent closely, or is the highest or the lowest or tends to intermediateness, as the case may be. The hybrid curve inclines to differ as much from the parental curves as the latter do from each other. The tendency to separation of the parental curves is more marked in this group than in the previous group, and with the exception of the reactions with sulphuric acid, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium salicylate, strontium nitrate, cobalt nitrate, copper nitrate, and barium chloride there is more or less marked separation, with a tendency generally for two of the three curves to keep close, sometimes the two parental curves and at others one parental curve with the hybrid curve. In some of the reactions noted there is definite although unimportant separation, as in those with sodium salicylate, strontium nitrate, copper nitrate, and barium chloride.
(2) The sameness or marked closeness of the parental curves in the reactions with chloral hydrate and chromic acid; the sameness or marked closeness of all three curves with sulphuric acid, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium salicylate, strontium nitrate, cobalt nitrate, and copper nitrate; the sameness or marked closeness of the hybrid curve with one or the other parental curve with pyrogallic acid, nitric acid, hydrochloric acid, calcium nitrate, and mercuric chloride.
(3) The varying positions of the hybrid curves in relation to the parental curves in the different reactions, and the marked tendency for the hybrid curves to be higher or lower than the parental curves with almost not the least tendency to intermediateness.
(4) In a few instances there is evidence of a comparatively marked early resistance of one or two or all three starches, as the case may be, as in I. iberica in the chloral-hydrate and I. iberica and I. cengialli in the chromic-acid reactions ; in I. cengiall i in those with pyrogallic acid, nitric acid, sodium sulphide, copper nitrate, and cupric chloride. This peculiarity, in so far as the parents are concerned, is therefore almost confined to I. cengialti, and it is not observed in the hybrid unless perhaps in the uranium nitrate reaction.
(5) The earliest period during the 60 minutes at which the three curves are best separated to differentiate the starches varies with the different reagents. Approximately, this period occurs within 5 minutes in most of the reactions, including the reactions with pyrogallic acid, nitric acid, sulphuric acid, potassium hylroxide,
potassium sulphocyanate, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium ni
 chloral hydrate, chromic acid, hydrochloric acid, potasshm indnle, strontinm motrate, and cupria: chamole; and at the end of ti0 minutes wiht potanobum sulphume. cobalt nitrate, barium chloride, and mercuric chloride. In some of these cases there is little or no practical differentiation at these repectise periond

This section treats of the reaction-intensities of the
 deficit in relation to the parenfs. ('Table A 31 and (harts I) (100 to 1) 1: 0 .)

The reactivities of the hoprid are the same an thise of the seed parent in the reactions with polarization, iodine, sodium hydroxide, barium chloride, and mercuric chloride; the same as those of the pollen parent in those with safranin, hydrochloric acid, and potassium sulphide; the same as those of both parents in the cobalt-nitrate raction; intermediate in that with calcium nitrate, and closer to the seed parent; highest in those with gentian violet, temperature, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, potassium iodide, sodium sulphide, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride (in six being cluser to the seed parent, in five closer to the pollen parent, and in one as close to one as to the other parent) ; and lowest with (dflorat hydrate, potassium hydroxide, potassium sulphocyanate, and sodium salicylate (in one being chosur to the -a+d parent, in two closer to the pollen parent, and in one as close to one as to the other parent).

The following is a summary of the reaction-intensities: Same as seed parent, 5 ; same as pollen parent, 3 ; same as both parents, 2; intermediate, 1; highest, 11; lowest, 4.

The seed parent has apparently influenced to a more marked extent than the pollen parent the properties of the starch of the hybrid. The sameness to the -ed parent coupled with the tendency to closeness to the seed parent in the reactions in which the hybrid is in exeress of the parents is quite marked. The tendency to the highest or lowest reactivity of the hylrid is quite conspicuous, this being noted in more than half of the reactions.

Composite Curves of Reaction-intensitifs.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Iris iberica, I. cengialti, and I. dorak: (Chart E 31.)

The most conspicuous features of this chart are:
(1) The marked closeness of all three curves throughout, there being no tendency in any reaction for a marked departure of any one curve from the other two. The curves are so close as to suggest either very closely re lated species or mere varietie's, the latter rather that the former. The species are, however, classed in differest subgenera: I. iberica in Oncocyclus, and I. cengialti in Pugoniris and Regelia. I. cengialti is regarded at hemer probably a dwarf variety of I. pallida, which it closely resembles. For the most part the differences in the curves fall within or close to the limits of error of experiment, so that little or nothing of importance can be gained from a critical comparison. At some points ume parental curve is higher than the other: and the hyliril corve courses with one or the other or both parental curves. here and there running above or below both.
(2) In I. iberica, the very high reactions with sulphuric acid, potassium sulphocyanate, and sotiom salicylate; the high reactions with chromic acid and sodium
hydroxide; the moderate reactions with polarization, iodine, gentian violet, salranin, temperature, pyrogallic acid, and potassium hydroxide; the low reactions with chloral hydrate, nitric acid, hydrochloric acid, sodium sulphide, calcium nitrate, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.
(3) In 1 . cengialti, the very high reactions with sulphuric acid, potassium sulphocyanate, and sodium salic!late; the high reactions with polarization, chromic acid, and sodium hydroxide; the moderate reactions with iodine, gentian violet, safranin, hydrochloric acid, potassium hydroxide, and potassium iodide; the low reactions with temperature, chloral hydrate, pyrogallic acid, nitric acid, sodium sulphide, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.
(4) In the hybrid, the very high reactions with sulphuric acid, potassium sulphocyanate, and sodium salicylate; the high reactions with chromic acid and sodium hydroxide; the moderate reactions with polarization, iodine, gentian violet, safranin, temperature, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, and potassium iodide; the low reactions with chloral hydrate, sodium sulphide, calcium nitrate, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.

Following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
I. iberica.	3	2	7	9	5
I. cengialti	3	3	6	9	5
I. durak	3	2	10	6	5

32. Comparisoxs of the Starches of Iris cengialti, I. pallida queen of may, and I. mrs. alan grey.
In histologic characteristics, polariscopic figures, reactions with selenite and iodine, and with various chemical reagents the starches of the parents and hybrid exhibit properties in common in varying degrees of development, the sum of which in each case is characteristic of the starch. Inasmuch as one of the parents is probably merely a dwarf form of the other, but little difference is to be expected between either parents or parents and hybrid. The starch of I. cengialti in comparison with that of I. pallida qucen of may contains fewer compound grains and aggregates; the grains are less irregular, more rounded, but not so slender. The hilum when not fissured is more distinct; more often, more decply and more extensively fissured; and the eccentricity is greater. The lamellix are usually not so distinct, coarser, and exhibit a notch corresponding to a notch in the distal margin that was not noted in I. pallida queen of may. The size of the grains is somewhat larger. In the polariscopic, selenite, and qualitative iodine reactions many differences are recorded. In the qualitative reactions with chloral hydrate, hydrochloric acid, potassium iodide, sodium hydroxide, and sodium salicylate various differences are noted, some of them quite individual and distinctive. The starch of the hybrid in comparison with the starches of the parents contains compound grains and aggregates in about the same numbers and of the same types as in I. pallida queen of may; the grains are more regular than in either parent. In certain respects the
form is closer to that of I. cengialti, but in most features closer to that of the other parent. The hilum is in character closer to I. pallida queen of may, but the eccentricity is greater than in either parent, yet closer to this parent. The lamellæ are less distinct than in either parent, but they are in their general characters closer on the whole to I. cengialti. The size is less than in either parent, but closer to I. pallida queen of may. The polariscopic and selenite reactions are closer to those of 1. pallida queen of may, but the qualitative iodine reactions are closer to those of the other parent. In the qualitative reactions with the chemical reagents the hybrid is very much more closely related to I. pallida queen of may.
Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

I. cengialti, moderately high to high, value 60 .
I. pallida queen of may, low to high, lower than in I. cengialti, value 50 .
I. mrs. alan grey, low to high, lower than in either parent, value 45. Iodine:
I. cengialti, moderate, value 45 .
I. pallida queen of may, moderate, less than in I. cengialti, value 35 .
I. mra. alan grey, moderate, deeper than in either parent, value 50 . Gentian violet:
I. cengialti, moderate, value 45 .
I. pallida queen of may, moderate, slightly deeper than in I. cengialti, value 48.
I. mrs. alan grey, light to moderate, less than in either parent, value 40.

Safranin:

I. cengialti, moderate, value 50.
I. pallida queen of may, moderate, slightly deeper than in I. cengialti, value 52.
I. mrs. alan grey, moderate, leas than in either parent, value 45 . Temperature:
I. cengialti, in the majority at 70 to 72°, in all at 74 to 76°, mean 75°.
I. pallida queen of may, in the majority at 71 to 73°, in all at 75 to 75.8°, mean 75.4°.
I. mrs. alsn grey, in the majority at 69 to 70°, in all at 73 to 74.5°, mean 73.75°.
The reactivity of I. cengialti is higher than that of the other parent in the reactions with polarization, iodine, and temperature; and lower with gentian violet and safranin. With the exception of the first two the differences are small, and in the case of temperature probably within the limits of error. The reactivity of the hybrid is the lowest of the three in the polarization, gentian-violet, safranin, and temperature reactions, and the highest of the three in the iodine reactions. The hybrid is closer to 1 . cengialti than to that of the other parent in the iodine, gentian-violet, safranin, and temperature reactions, but the reverse in polarization reactions.

Table A 32 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Iris cengialti, I. pallida queen of may, and I. mrs. alan grey, showing the quantitative differences in the behavior toward different reagents at definite timeintervals. (Charts D 421 to D 441.)

The most conspicuous features of this group of charts are:
(1) The closeness of all three curves, with the exception of the chloral-hydrate reaction, in which the curves markedly diverge after the first 5 minutes. Excepting the reactions with nitric acid, sulphuric acid, potassium sulphide, cobalt nitrate, and barium chloride, there is sufficient separation of the curves, one or more, to permit of more or less satisfactory differentiation. It is of particular interest to note that the parental curves tend to a more marked closeness than does the

Table A 32.

curve of the Mytirid to rither parmit or to intermoniate neos. In fact, there i= an malimation for the parmat "urves to be paired in thoir moture and for tow hybrid
 In the ehromis-acid reatems there is well-marked intromelatures of the hymot, and on thow with pmtat

 hut in this group, with the exmeption of the pota-atum
 starches are slight and fall within the limits of error of -xperiment.
(2) The lower reartivity of l. congintli in monarison with the other parent in the rean tion- with ehloral

 dide, uraniun nitrate, otmntum nitate, amb "pper nitrate: the same or noarly thre same reactivities with hydrochloric acid, potassium hydroxide, potassium sul-
 nitrate, copric moride and mercuric mhoridn: and the same reartivities also with nitric acid. sulphuric acirl, potassium sulphide, cobalt nitrate, and barium chloride, in which the reactivities of all three starches are the same or practically the same.
(3) 'The curves of the hybrid lwar warying relations to the parental curves. The ab-onee of camences in any instanee to the seed parent, the almont ent re alserne if intermediatenes of the cures, and the way marke I tendency to the curve being the highest or lowest of the thoee are sery striking. This low tendeney is a most interesting peculiarity considering the very close relationship of the parents, and it realls the same hut wem more marked peruliarity of the hytirids of the wellseparated parents-A maryllis belledonna and Brunsrigia josephinte.
(-1) In a few reactions there is evidence of an early period of resistance, and this may be noticeable in reqard to one or more of three starches in any reaction. This resistane is seem in all three starches in the reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric arid, strontium nitrate, and cupric chloride; with I. cengialti in the sodium-sulphide reaction; with both parents in that with calcium nitrate; and with the hybrid in that with cupric chloride particularly.
(5) The earliest period during the 60 minutes at which the three curse arm lest separated to differentiate the starches varies with the different reagents. Approximately, this period oceurs within 5 minutes in the reacfions with nitric acid, sulphurie acid, potassium bydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, and sodium salieylate reactuns: at $1.5 \mathrm{~min}-$ utes with chloral hydrate, chromic acid, pyrugallie acid, hydrochloric acid, sodium sulphide, calcium nitrate, and strontium uitrate; at 30 minutos with conper hitrate and cupric chloride; and at 60 minutes with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and moreuric dheride. In a mumber of west the assirnment is very questionable, so that the classification must be looked upon a haviner morely a tentation value.

Rriotion-intensitils of the Iybrid.

This section treats of the reaction-intensities of the hybrid as regards samencss, intermediateness, excess, and leficit in relation to the parents. (Table $A 3$? and (${ }^{(h a r t s ~ D ~} 421$ to D 441.)

The reativities of the hobrid are the same st thome of the ered parent in mo reaction: the *alne at thase of the pollen parent in that with cohalt nitra•e: the some as those of both parents in those with nitric acid, sulphuric acid, and barium chloride, in all of which the
progress of gelatinization is too fast or too slow for differentiation; intermediate with chromic acid, and closer to that of the seed parent; highest with iodine, temperature, chloral hydrate, and sodium salicylate (in one being wearer the seed parent, and in three nearer the pollen parent) ; and lowest with polarization, gentian violet, safranin, pyrogallic acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride (in five being closer to the seed parent, in nine - loser to the pollen parent, and in three being as cluse to one as to the other parent).

The following is a summary of the reaction-intensitios: same as seed parent, 0 ; same as pollen parent, 1 ; same as both parents, 3; intermediate, 1; highest, 3; lowest, 1%.

Three features stand out most conspicuously: the more marked influence of the pollen parent on the properties of the starch of the hybrid, the remarkably strong tendency for the curve of the hybrid to be above or below the curves of the parents, especially to be below, and the almost entire absence of intermediateness.

Composite Curve of the Reaction-intensities.

This section treats of the composite curve of the reaction-intensities, showing the differentiation of the starches of Iris cengialti, I. pallida queen of may, and I. mrs. alan grey. (Chart E 32.)

The most conspicuous features of this chart are:
(1) The closeness of all three curves, excepting in the reactions with chloral hydrate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride, in all of which, excepting the first, the separation is within comparatively narrow limits, and in all the separation is due in a large measure or solely to the hybrid curve going above or falling below the parental values, a tendency that was also recorded in the histologic and qualitative peculiarities and the reac-tion-intensities expressed by light, color, and temperature reactions of this summary.
(2) The curve of Iris cengialti tends to be higher than that of I. pallide queen of may in the reactions with polarization, iodine, temperature, nitric acid, sulphuric acid, potassium iodide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride; lower with gentian violet, safranin, chloral hydrate, and pyrogallic acid; and the same or practically the same with chromic acid, sulphuric acid, potassium hydroxide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, cobalt nitrate, barium chloride, and mercuric chloride. In several of the reactions where the surves differ they are so close as to be probably within the limits of error of experiment, as in the reactions with temperature, pyrogallic acid, nitric acid, hydrochloric acid, potassium iodide, calcium nitrate, uranium nitrate, (opper nitrate, and cupric: chloride. Charts D $4 * 1$ to I) 111 are to lue taken $^{\text {with these data in determininer }}$ differences in reactivity, but the differences will doubtless be found to hold excepting for slight variations.
(3) The curve of the hybrid is variable in its relations to the parental curves, commonly exhibiting either an inclination to be the same as the curve of one or both parents or to be above or below, but not to intermediateness. In ('hart D) 4 de in the chromic-acid reactions there was definite intermediateness up to the 45 -minute record, and there were also transient intermediate tendencies in other reactions (see preceding section) ; but these are not apparent in this chart, owing to inherent defects of construction.
(4) In I. cengialti, the very high reactions with sulphuric acid, potassium sulphocyanate, and sodium salicylate; the high reactions with polarization, chromic acid, and sodium hydroxide; the moderate reactions with iodine, gentian violet, safranin, hydrochloric acid, potassium hydroxide, and potassium iodide; the low reactions with temperature, chloral hydrate, pyrogallic acid, nitric acid, sodium sulphide, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.
(5) In I. pallida queen of may the very high reactions with sulphuric acid and sodium salicylate; the high reactions with polarization, chromic acid, potassium sulphocyanate, and sodium hydroxide; the moderate reactions with iodine, gentian violet, safranin, nitric acid, hydrochloric acid, potassium hydroxide, and potassium iodide; the low reactions with temperature, chloral hydrate, pyrogallic acid, sodium sulphide, calcium nitrate, strontium nitrate, copper nitrate, and cupric chloride; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, barium chloride, and mercuric chloride.
(6) In the hybrid, the very high reactions with sulphuric acid and sodium salicylate; the high reactions with chloral hydrate, chromic acid, potassium sulphocyanate, and sodium hydroxide reactions; the moderate reactions with polarization, iodine, gentian violet, safranin, and potassium hydroxide ; the low reactions with temperature, pyrogallic acid, nitric acid, hydrochloric acid, potassium iodide, sodium sulphide, calcium nitrate, and strontium nitrate; and the very low reactions with potassium sulphide, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

Following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
I. cengialti	3	2	7	9	5
I. pallida queen of may	2	4	7	8	5
I. mrs. alan grey.	2	4	5	8	7

33. Comparisons of the Starches of Iris persica var. purpurea, I. sindjarensis, and I. pursinid.

In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with the various chemical reagents all three starches exhibit properties in common in varying degrees of development, the sum of which in case of each starch is distinctive of the starch. The starch of Iris sindjarensis in comparison with that of I. persica var. purpurea contains many more compound grains, all of the same types but in different proportions; and the grains are much more regular in form. The hilum is not so often or so deeply and extensively fissured; there is an absence of a single fissure in compound grains which passes through all of the hila, as was noted in the other parent: and eccentricity is usually greater. The lamellæ are not so coarse and are more regular, and the number is larger. The size is smaller. In the polariscopic, selenite, and qualitative iodine reactions there are various differences. In the qualitative reactions with chloral hydrate, hydrochloric acid, potassium iodide, sodium hydroxide, sodium salicylate, and mercuric chloride there are also many differences which on the whole definitely individualize each parent. The starch of the hybrid in comparison with the starches of the parents contains a less number
of compound grains than in either parent; irrerularity is intermediate; and, on the whole, the resemblances are distinctly closer to 1 . persica var. purpurea. The hilum in character is closer to I. persica var. purpurea, but in eccentricity closer to I. sindjarensis. The lamella in character and number are closer to I. persica var. purpurea. The size is closer to I. sindjarensis. In the polariscopic and selenite reactions the relationship is closer to I. persica var. purpurea, but in the qualitative iodine reactions closer to I. sindjarensis. In the qualitative reactions with the chemical reagents the leanims to one or the other parent are numerous and marked, but on the whole much more to I. persica var. purpuerea than to the other parent; moreover, a feature that is characteristic of one parent may be accentuated in the hybrid, this being noted especially in the reactions with sodium hydroxide and sodium salicylate.
Reaction-intensities Lxpressed by Light, color, and Trmpera. twe Reactions.

Polarization:

I. per. v. pur., moderately high to very high, value 70.
I. sindjarensis, moderately high to very high, higher than in I. persica var. purpurea, value 75.
I. pursind, moderately high to high, lower than in either parent, value 65.

Iodine:

I. per. v. pur., moderate, value 55.
I. sindjarensis, moderate, less than in I. persica var. purpurea, value 50 .
I. pursind, moderate, the same as in I. sindjarensis, value 50 . Gentian violet:
I. per, v. pur., moderate, value 45.
I. sindjarensis, moderate, less than in I. persica var. purpurea, value 43 .
I. pursind, light to moderate, less than in either parent, value 40. Safranin:
I. per. v. pur., moderate, value 50 .
I. sindjarensis, moderate, less than in I. persica var. purpurea, value 47.
I. pursind, moderate, less than in either parent, value 45.

Temperature:

I. per. v. pur., in the majority at 64 to 66°, in all at 68 to 70°, mean 69°.
I. sindjarensis, in the majority at 63.5 to 65°, in all at 66 to 67°, mean 66.5°.
I. pursind, in the majority at 64.5 to 66°, in all at 68 to 70°, mean 69°.
The reactivity of I. persica var. purpurea is higher than that of the other parent in the iodine, gentian violet, and safranin reactions, and lower in the polarization and temperature reactions. The reactivity of the hybrid is the same or practically the same as that of I. persica var. purpurea in the temperature reaction; the same or practically the same as that of I. sindjarensis in the iodine reaction; and the lowest of the three in the polarization, gentian violet, and safranin reactions. The hybrid is closer to I. persica var. purpurea than to the other parent in the polarization and temperature reactions; and the reverse in the iodine, gentian violet, and safranin reactions.

Table A 33 shows the reaction-intensities in pereentages of total starch gelatinized at definite interval: (minutes).

Velocity-reaction Curves.

This section treats of the velonity-seaction curves of the starches of Iris persica var. purpurca, I. sindjarensis, and I. pursind, showing the quantitative differences in the behavior toward different reagents at different timeintervals. (Charts D 442 to $D 462$.)

The most conspicuous features of this group of curves are:
(1) The marked closeness of all threw curms throughout the various reactions, the only reaction in which there is a marked tendency to continually increasing differentiation during the 60 minutes being

in that with barium chloride. In all other instances the most marked differentiation is noted early in the reations, with an inclination for the differences to become less during the progress of the reactions. In many instances the curves are so close as not to permit of satisfactory differentiation, unless it be within the first 5 minutes, as in the reactions with chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, sodium sulphide, calcium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride; in others there may be as good or better differentiation at a later period, as in the reactions with chloral hydrate, potassium sulphide, sodium salicylate, uranium nitrate, cobalt nitrate, and barium chloride. Cielatinization occurs with such speed in the reactions with potassium sulphocyanate and sodium hydroxide as to render satisfactory differentiation impossible.
(2) The higher reactivity of I. persica var. purpurea than of the other parent in the reactions with chloral hydrate, sodium salicylate, and calcium nitrate; the lower reactivity with chromic acid, nitric acid, sulphuric acid, potassium sulphide, sodium sulphide, uranium nitrate, calcium nitrate, strontium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride; and the same or practically the same reactivity with pyrogallic acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, and cupric chloride. In some of the reactions where the curve is higher or lower the differences are unimportant and probably fall within the limits of error of experiment.
(3) The variable position of the hybrid curve in relation to one or both parental curves. There is a distinet tendency to intermediateness, and one also equally strong for the curve of the hybrid to be above or below the parental curves.
(4) There is an entire absence of any marked tendency to a period of early resistance followed by rapid reaction. There are mere suggestions of such resistance as, for instance, in I. persica var. purpurea and the hybrid in the chromic-acid and uranium-nitrate reactions; and of I. sindjarensis in the sodium-salicylate reaction.
(5) The earliest period during the 60 minutes at which the three curves are best separated to differentiate the starches varies with the different reagents. Approximately, this period occurs within 5 minutes in the reactions with chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium suphocyanate, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride; at 15 minutes with chloral hydrate, potassium sulphide, uranium nitrate, and cobalt nitrate: and at 60 minutes with barium chloride.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 33 and Charts D 442 to D 462.)

The reactivities of the hybrid are the same as those of the seed parent with temperature, potassium sulphide. and cobalt nitrate; the same as those of the pollen
parent with iodine and sulphuric acid; the same as those of both parents in the reactions with chromic acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, and sodium hydroxide; intermediate with chloral hydrate, nitric acid, sodium sulphide, uranium nitrate, and strontium nitrate (in one being closer to the seed parent, in two closer to the pollen parent, and in two mid-intermediate) ; highest with pyrogallic acid, potassium hydroxide, sodium salicylate, cupric chloride, and mercuric chloride (in two being closer to the seed parent, in two closer to the pollen parent, and in one as close to one as to the other parent); and lowest with the polarization, gentian violet, safranin, calcium nitrate, copper nitrate, and barium chloride (in four being closer to the sced parent, and in two closer to the pollen parent).

The following is a summary of the reaction-intensities: Same as seed parent, 3; same as pollen parent, 2; same as both parents, 5 ; intermediate, 5 ; highest, 5 ; lowest, 6.

The influences of the seed and pollen parents seem to be about equal, slightly in favor of the former. Intermediateness is recorded in about one-fifth of the reactions, and highness and lowness in about two-fifths.

Composite Curves of Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Iris persica var. purpura, I. sindjarensis, and I. pursind. (Chart E 33.)

The most conspicuous features of this chart are:
(1) The marked closeness of all three curves throughout, the most noticeable differences being in the reactions with polarization, iodine, gentian violet, safranin, temperature, potassium hydroxide, uranium nitrate, cupric chloride, and harium chloride. In all other reactions (1\% out of 26) the curves are nearly or practically identical, their closeness indicating very closely related parental species, or more likely varieties.
(2) The curve of I. persica var. purpurea tends to be lower than that of the other parent in the reactions with polarization, temperature, sulphuric acid, potassium sulphide, uranium nitrate, cupric chloride, and barium chloride; higher with iodine, gentian violet. and safranin; and the same or practically the same with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, strontium nitrate, cohalt nitrate, conper nitrate, and mercuric chloride.
(3) The curve of the hybrid follows very closely the curses of the parents, it being eloser to or identical with the curve of one or the other. or identical with hoth.
(4) In I. persica var purpurea the very high reactions with pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide reactions: the high reactions with polarization, chromic acid, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and meruric chloride ; the moderate reactions with iodine, gentian violet, safranin, temperature; and the very low reactions with chloral hydrate, potassium sulphide, cobalt nitrate, and barium chloride.
(5) In I. sindjarensis the very high reactions with pyrogallic acid, nitric acid, sulphuric acid, hylrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, solium sulphide, and cupric chloride; the high reactions with polarization. chromic acid, sodium salicylate, calcium nitrate, uraniums nitrate, strontium nitrate, copper nitrate, and morruric chloride; the moderate reactions with iotine, gentian violet, safranin, and temperature ; the low reartions with cobalt nitrate and barium chloride reactions: and the wry low reactions with chloral hylrate and potasium sulphide.
(6) In the hybrid the very high reactions with pyrogallie acid, nitric acid, sulphuric acid, hydrochlorio iseil. potassium hydroxide, potassium indide, potassium sulphocyanate, sodium hydroxide, and sodium sulphide; the high reactions with polarization, chromic acid, sollimm salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mereuric chloride; the moderate reactions with iodine, gentian violet, safranin, and temperature; and the very low reactions with chloral hydrate, potassium sulphide, cobalt nitrate, and barium chloride.

Following is a summary of the reaction-intensities:

Notes on the Irisen.
Among the very striking features of the four charts are:

The closeness of all three curves in cach chart and the wasering relationship of the hytrid eures to one or the other or both parental curves, ora-ionally woing above or below parental extremes in (harts E 30 , E 3 i, and E 33, and frequently (15 out of "6trations) in Chart E 32; the close correspondence of the curves of the three sets of rhizomatous irids (Chart. E 30, E 31, and E 32); and the very definite differentiation of the curves of the rhizomatous and tuberous series.

In the first set the cross is between members of the subgenera Ococyclus and Apagon: in the secomd sot, between members of the subgenera Ococyclus and Pogoniris and Regelia; in the third set, between mombers of the subgenus Pogoniris and Regelin: and in the fineth set, between members of the subgemus Juno. In the three sets of rhizomatous irids the curses are so near! y alike as to suggest that the subgeneric division of Ilazselbring refored to in Part II is botanially laredy artificial, and that the primary division intor rhizomatome and tuberous groups is well founded in expressing lunda mental botanical differentiation. Ihthough only one sel of tuberous irises was studied in detail in this research. cursory investigations were made with other members of this series (including I. histrio Reichb.. I. timgitionn Boiss and Reut., I. reticulata M. Bieb.. I. alate Poir., and I. caucasica Hoffm. ; the firet three belonging to the su', genus Xiphion and the last two to the subgenus Juno), in all of which the reactions were in close correspondence with those of this set. In the previnus roseureh with irid starches it was found that the members of the rhizo-
matous seriss have in combarison with those of the tuber-
 degree of polarization, lower reactivities with iodine,
 diatinety hisher tomperatures of gratatization. Owing

 of the two series, the members of the rhizamathy- - .f.n

 dhloride and Purdy's solution. These rosults are in arcosed with these of the present researeh, there bering in the rhizomatous sories mean lower readivitios with jula-
 violet and saframin, higher temperature of edatinization, higher reactivity with chloral hydrate, the amb or a tendeney to a higher reactivity with chromic acid, and a lower reastivity with potassium hydroxide.

The types of curves of the rhizomatur amb tutwrous irisk, respectively, differ chicfly in the relative lown... of the rhizomatous curve in the reactions with pyrngallic acid, nitric acid, hydrochloric acid, potassium hydrovite. potassium iodide, sodium hylroxide, sodium sulphide, calcium nitrate, uranium nitrate, copper nitrate, cupric chloride, and mercuric chloride, and the highness in those with chloral hylrate and sodium salicylate. Probahly
 will, as in case of the erinums, bridue the two sories.

Owing to the almost invariable closeness of the three curves in each set, opportunity is rarely afforded for a satisfactory study of the relatimshipe of the hererid to whe or the other or buth parents. It will he suen low the following summary, the figures of with are to hee taken as hatine only tentation walues that the ditferent he-herd- vary in their parental relatimnhins, "amedally in their intermediate, highest, and lowest records.

The following is a summary of the reartion-intensifies of tho hathril- as re rards samenes, intermediatenes. "reses, and deficit in relation to the parents:

The dilleremes in the reative-intemsters of the rhiकhmatome and tuberone sorics are indiated in the following table:

	$\begin{aligned} & \text { liery } \\ & \text { hish. } \end{aligned}$	His	$\begin{aligned} & \text { Mud- } \\ & \text { irate } \end{aligned}$	[..11	Viry low:
Rhizomatous series:					
1. Harica-trojana-ismali	3	\because	$\cdots 7$	7.7	4.7
1. iherica-cengialti-dorak	3	3.1	\checkmark	\checkmark	5
I. cengialti-pallida-mrs. grey	2.3	3.3	9.7	- ${ }^{\text {a }}$	5.7
Tuberous series: 0.3					
1. fersies-sindjarmais-bur-itat	9.3	8.7	4	0.7	3.1

34. Comparisons of the Starches of Gladioles cabdinalis, G. tristis, axd G. colvillei.

In histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with chemical reagents the parents and the hybrid exhibit properties in common in varying degrees of development and also individualities which collectively are in each case distinctive, although the starches show characters in general that are closely akin. The starch of Gladiolus tristis in comparison with that of G. cardinalis exhibits as prominent differences certain peculiarities of the aggregates and an absence of a type of compound grain that is found, and the presence of another type of compound grain that is not found in G. cardinalis; and sharply defined pressure facets are more common. The hilum is less distinct; an irregular cavity at the hilum is often larger and more irregular; fisuration is more common; and eccentricity is greater. The lamellie are less distinct and numerous. The size of the grains is less. In the polariscopic, selenite, and qualitative iodine reactions there are many differences which seemingly are of a minor character, yet which collectively are quite diagnostic. In the qualitative reactions with chloral hydrate, hydrochloric acid, potassium iodide, sodium hydroxide, and sodium salicylate there are many differences, mostly minor, some individualizing one or the other parent. The starch of the hybrid in comparison with the starches of the parents contains certain compound grains similar to a type found only in G. cardinalis and also a linear type of aggregate that is found only in G. tristis. There are many minor differences, but the grains are on the whole more closely related to those of G. cardinalis. The hilum exhibits more numerous clefts and the fissuration is more varied than in cither parent; eccentricity is about the same as in G. tristis and greater than in G. cardinalis; but in general characters the hilum is more like that of G. cardinalis. The lamellae in character are mid-intermediate, but the number is in excess of the numbers in the parents. The size is closer to that of G. tristis. In the polariscopic, selenite, and qualitative iodine reactions there are leanings to one or the other parent, but the relationship is on the whole much closer to G. cardinalis. In the qualitative chemical reactions there are corresponding leanings and relationships.
Reaction-intensitics Expresscd by Light, Color, and Tcmperature Reactions.

Polarization:

G. cardinalis, high to very high, much higher than in G. tristis, value 85 .
G. tristis, moderate to hich, value 65 .
G. colvillei, high to very high, not quite so high as in G. cardinalis, value 80.
Iodine:
(i. carlinalis, moderate to decp, the same as in C. tristis, value 60.
G. tristis, moderate to deep, value 60.
(i. colvillei, moderate to deep, lighter than in either parent, value 55.
Gentian violet:
G. cardinalis, moderate, higher than in G. tristis, value 50.
G. tristis, light to moderate, value 40.
G. colvillei, moderate, intermediate between the parents, value 47.

Safranin:
G. cardinalis, moderate, deeper than in G. tristis, value 53.
G. tristis, light to moderate, value 45 .
G. colvillei, moderate, the same as in G. cardinalis, value 53 .

Temperature:
G. cardinalis, majority nt s. 3 to 44.5°, all at 84 to 86°, mean 85°.

Ci, tristis, majority at 76 to 75°, all at 78 to 79°, mean 78.5°.
G. colvillei, majority at 78 to 80°, all at 82 to 83°, mean 82.5°.

The reactivities of G. cardinalis are higher than those of G. tristis in the polarization, gentian violet, and safranin; lower in the temperature reaction; and the same in that with iodine. The reactivities of the hybrid are in-

Table A 34.

termediate in the polarization, gentian-violet, and temperature reactions; lowest in the iodine reaction; and the same as that of (i. cardinalis but higher than that of (r. Iristis in the safranin reaction. The hybrid is on the whole distinctly closer to G. cardinalis than to G. tristis.

Table A $3 t$ shows the reaction-intensities in percent ages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Gladiolus cardinalis, G. tristis, and G. colvillei, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 463 to D 483 .)

Among the conspicuous features of these charts are:
(1) The higher reactivity of 6 . trislis in relation to the other parent and the hybrid throushout.
(2) The differences recorded between the reactions of the starches of the two parents with the various reagents, the curves varying very markedly in the extent ol separation. Thus, the curves are very close throughout the whole or nearly the whole 60 -minute period in the reactions with chloral hydrate, nitric acid, sulphuric acid, potassium hydroxide, potassium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, cohalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; they are well separated to widely separated in those with chromic acid, pyrogallie acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, and strontium nitrate.
(3) The almost universal tendency for the curve of G. cardinalis to be closer to the curve of the hybrid than to G. tristis. In only the reactions with chloral hydrate, sulphuric acid, potassium hydroxide, and sodium salicylate is the curve of G. cardinalis definitely closer to that of G. tristis. In the potassium-sulphide reartions gelatinization proceeded so slowly that such differences as were recorded fall within the limits of error of experiment. In the experiments with calcium nitrate. strontium nitrate, copper nitrate, and cupric chlorite the G. cardinalis curve is practically intermediate.
(4) The curves of the hybrid hear varying relations to the parental curves, with a manifest tendency to sameness to the curves of G. cardinalis, and to intermediateness and to the lowest position, and almost invariably definitely toward the seed parent.
(5) An early period of resistance followed by a moderate to rapid gelatinization is noted in the chromic acid chart. In other charts the corresponding period is one of comparatively rapid gelatinization, as in the reartions with chloral hydrate, sulphuric acid, sodium salicylate, while in others gelatinization proceeds with marked slowness, yet steadily from the outstart, as instanced particularly in the reactions with potassium sulphide, uranium nitrate, cohalt nitrate, and in other very slow reactions. There are some gradations betreen these sets.
(6) The earliest period of the 60 minutes at which the three curves are best separated for differential purposes raries with the different reagents, and in some instances owing to the extremely slow reactions satis factory differentiation is impossible. Approximately this period occurs at the end of 5 minutes in the reactions with chloral hydrate, sulphuric acid, and sodium salicylate: at 15 minutes with chromie acid, pyrosallic acid, hydrochloric acid, and potassium sulphocyanate; at 30 minutes with strontium nitrate: and at 60 minutes with nitric acid, potassium hydroxide, potassium ionlide. potassium sulphide, sodium hydroxide, sodium sulphide,
calcium nitrate, uranium nitrate, cobalt nitrate, coprer nitrate, cuprice chloride, barium chloride, and moreurie chlorids: In a mumber of the reatema of the latter grompe the difternees are trivial and whthen the limats wh error of exprimant.

Reartion-tntenstites of the Iybhto.

This section treats of the reaction-intensities of the hybrid as reqards sameness, intermediateness, excess, and deffeit in relation to the prarents. (Tathle A $3 t$ and (Charts 1) 463 to I) 183.)

The reactivities of the hybrid are the eame as those of the pollen parent in none of the reactions: the same as those of the seed parent in the reandons with saf fanm, chromic acid, nitrie acid, uranium nitrate, cupric chloride, barium chloride, and moreniric chloride: the same as those of both parents in that with colvalt nitrate, Wherein the qelatinzation is extremely slow; intermediate in those with polarization, gentian violet, temperature, and pyrogallic acid (in all four being closer to the seed parent) ; highest in none; and lowest with iodine, chloral hydrate, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iorlide, potassium sulphoryanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, strontium nitrate, and copper nitrate (in 12 being closer to the seed parent, and in 2 as close to one as to the other parent).

The following is a summary of the reaction-intensities: Same as seed parent, 7 : same as pollen parent, 0 ; same as both parents, 1: intermediate, 4; highest, "; lowest, 14.

The most striking foatures of the foregoing data are the absence of a single reaction in which there was sameness or even inclination more to the pollen than to the seed parent; the slisht tholeney to intermenliatones: and the very strongly marked temideney for the curses of the hybrid to be below those of the parents.

Composite Cintes of the Retetion-Intexsitics.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Gladiolus cardinalis, G. tristis, and G. colvillei. (Chart E 34.)

The most conspicuous features of this chart are:
(1) The varying relationship the curve of G. tristis bears to the curve of the other parent, sometimes above, below, or the same or practically the same. It is abore in the reactions with temperature, chloral hydrate, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, solium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, and enpler nitrate: helow with polarization. gentian tiolet. and safranin: and the same or practically the same with iodine, chromic acid, sulphuric acid, potassium sulphide, cobalt nitrate, cupric chloride, barium chloride, and mercuric ehloride. The other parent, G. cardinalis, is hicher in only the polarization, centian-violet, and safranin reactions.
(2) The varying degrees of separation of the parental curves, the most marked separation beiner noted in the reactions with polarization, temperature, pyrngallic acid, potassium iodide, potassium sulphocranate, sorlium hudroxide, sodium sulphide, and strontium nitrate.
(3) The marked tendency for the eurve of the ly hrid to be closer to the curve of G. cardinalis than to the other parent. and to be hewest of the three.
(4) In G. fristis the very high reantins with sw? phuric acid; the high reactions with polarization, iodine, and sodium salicylate; the moderate with gentian violet,
safranin, chromic acid, pyrogallic acid, and potassium sulphocyanate; the low with temperature, chloral hydrate, and hydrochloric acid, potassium iodide, sodium hydrovilk, and sodium sulphite; and the very low reactions with nitric acid, potassium hydroxide, potassium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, larium chloride, and mercuric chloride.
(5) In G. cardinalis the very high reactions with polarization and sulphuric acid; the high reactions with ioline and sodium salicylate; the moderate reactions with gentian violet, safranin, and chromic acid; the low reactions with chloral hydrate and hydrochloric acid; and the very low reactions with temperature, pyrogallic acid, nitric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric (hloride, barium chloride, and mercuric chloride.
(6) In the hybrid the very high reactions with polarization and sulphuric acid; the alsence of any high reaction; the moderate reactions with iodine, gentian violet, safranin, chromic acid, and sodium salicylate; the low reaction with temperature; the very low reactions with chloral hydrate, pyrogallic acid, nitric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

Following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
G. tristis.	1	3	5	6	11
G. cardinalis.	2	2	3	2	17
G. colvillei	2	0	5	1	18

35. Comparisons of the Starches of Tritonia pottsif, T. crocosmia aurea, and T. crocosmefloles.
In histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents and hybrid exhibit properties in common in varying degrees of development and also certain individualities, which latter, although as a rule of a minor character, are in conjunction with the properties in commonsullicient for differential purposes. The starch of Tritonin crocosmia aurea in comparison with that of T. pottsii shows among the most conspicuous differences in form a larger proportion of permanently isolated grains; more numerous compound grains of two components; less numerous srains with well-defined pressure facets; triangular grabs more elomeated; and varied proportions of other types of grains. The hilum is more refractive; a rommbed or irreqular casity is more frequently found: more often fissured, and the clefts are as a rule deeper: there are some differences in the forms of fissuration ; and eccentricity is slightly greater. The lamellae are less distinet; a marginal band of refractive lamelle is more frequently present; the numbers are about the same. The sizes differ but little. In the polariscopic, selenite, and qualitative iodine reactions there are numerous differences which are seemingly of a minor charactor. In the qualitative reactions with chloral hylrate, hydrochloric acid, potassium iodide, soslium hydroxide, and sodium salicylate many differences are recorded, some of which are individually quite distinctive. The starch
of the hybrid in comparison with the parental starches is found to show markedly the influences of both parents; leaning to one or the other parent or sameness with both are very conspicuous. In form the differences are essentially in the varying proportions of different types of grains, the starch of the hybrid being closer to that of T. crocosmia aurea. The hilum in eccentricity is closer to that of T. crocosmia aurea, but in every other character closer to the other parent. The lamellæ and size differ but little from those of the parents, and in both respects the relationship is closer to T. pottsii. In the polariscopic, selenite, and qualitative iodine reactions, and in the reactions with the various chemical reagents there are leanings to one or the other parent, or sameness to both, but on the whole distinctly toward T. crocosmia aurea. Notwithstanding the closeness of all three starches it is quite remarkable how readily the variable parental leanings of the hybrid are detected.

Reaction-intensities Expressed by Light, Color, and Temperature Reactions.
Polarization:
T. pottsii, moderate to very high, value 70 .
T. crocosmia aurea, high to very high, higher than in T. pottsii, value 75.
T. crocosmæflora, moderate to very high, lower than in T. pottaii, value 67.
Iodine:
T. pottsii, very light, value 10 .
T. crocosmia aurea, moderate, value 50 .
T. crocosmaflora, light, value 25 .

Gentian violet:
T. pottsii, light to moderate, value 40 .
T. crocosmia aurea, light to moderate, lighter than T. pottsii, value 35.
T. crocosmæflora, light to moderate, the same as T. pottsii, value 40.
Safranin:
T. pottsii, light to moderate, value 40 .
T. crocosmia aurea, light to moderate, lower than T. pottsii, value 35 .
T. crocosmæflora, light to moderate, deeper than in the parents, value 45 .
Temperature:
T. pottsii, majority at 73 to 75°, all at 76 to 77.5°, mean 76.75°.
T. crocosmia aurea, majority at 7 s to 80°, all at $\delta 0$ to $\mathrm{S} 2^{\circ}$, mean 81°.
T. crocosmæflora, majority at 74 to 76°, all at 76 to 78°, mean 77°.

The reactivity of T. pottsii is higher than that of T. crocosmia aurea in the polarization and iodine reactions, and higher in the gentian-violet, safranin, and temperature reactions. The reactivity of the hybrid is intermediate in the iodine reaction: the same as that of T. pottsii in the gentian-violet and temperarure reactions; lowest of the three in the polarization reaction; and the highest of the three in the safranin reaction. The relationship throughout is closer to T. pottsii.

Table A 35 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Tritonia pottsii, T. crocosmia aurea, and T. crocosmeflora, showing the quantitative differences in the behavior toward different reagents at definite timeintervals. (Charts D 484 to D 504.)

Among the most conspicuous features of these charts are the following:
(1) Excepting the sulphuric-acid and barium-chloride reactions in which the differences in reactivity are insignificant, the starches of the parents exhibit welldefined differences which are very variable in extent with the different reagents. With all of the reagents, excepting those noted and chloral hydrate, T. pottsii has the higher reactivity, but in the reactions with the latter it

Table A 35.

has a somewhat lower reactivity. The differences are,

(\because) 'The cumen of the hybred latar baryaner relatene

 parent.

 thanded durneg the dirst 5 monutes as propertmathels larmer, commonly rery much larger, than at athe sutan quent 5 -minute intersal. An carly period of resistance is noticeable particularly in the reactions with chromic ited
 noted particularly in those with hydrochlorie acid, potassium sulphocyanate, sodium hyilroxide, orlium sulphate, and sodium salicylate (T. pottsii and the hyl, rid).
(4) The earliest periond during the (6) minutes at which the three curves are best separated, and hence the best time for the differentiation of the starchers. in variable in relation to the different reagentz. Approximately this perion oreurs at the end of if minutes in the reactions with potassium sulphocyanate, sodium sulphide, and sodium salicylate; at 15 minutes with chloral hydrate, chromic acid, pyrogallic acid, hydrochloric acid, potassium indide, sodium hydroxide, calcium nitrat, uranium nitrate, copper nitrate, cupric chloride, and mercuric chloride; at 30 minutes with nitric acid, potassium hydroxide, strontium nitrate, and cobalt nitrate; and at 60 minutes with potassium sulphide.

RLantom-htexathan of the: Ifrbid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and dericit in relatim to the parent. (Table is 3; and (harts D to t to D 504 .)

The reactivities of the hybrid are the same as those of the seed parent in the gentian-violet and temperature reactions; the same as those of the pollen parent in the cobalt-nitrate reaction; the same as those of hoth parents in the sulphuric-acid and barium-chloride reactions; intermediate in those with iodine, chromic acid, pyrogallic acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodiun salicylate, calcium nitrate, wanimm nitrate, copper nitrate, cupric chloride, and mercuric chloride (in 1.4 bring closer to the seed parent and in 2 (loser to the pollen parent) ; highest with sairanin, nitric acid, and strontium nitrate (in 2 being closer to the seed parent and in the other ${ }^{1}$. the pollen parent) : and lowest with polarization and chloral hydrate, in both being closer to the seed parent.

The following is a summary of the reaction-intensities: Same as seed parent, '? ; same as pollen parent, 1 ; -ame as hoth parente, ?: intermediate, 1i; hirhest, is: lowest, ?.

The pollen parent seems to have had very little influence in determining the characters of the starch of the habrid. The temdence to intermediatemess of the hobrit is exeptionally well marked, and there is very little tendency for the hyrid curve to be higher or lower than the parental curves.

This section treats of the composite rurves of the reaction-intensities, showing the differentiation of the
 T. crocosmeflora. (Chart E 35.)

Among the conspicuous features of the hart are :
(1) The usually well-marked -paration of the curves of the parents, together with an almost invariably
higher position of the curve of Tritonia pottsii and the dhese correspondence of the two curves in the up-anddown variatmons. The only places at which the curve of T. $p^{\prime \prime}$ thwii is distinctly lower than that of T. crocosmia "uren are in the polarization, iodine, and chloral-hydrate reactions. The curve is the same or practically the same in the reactions with sulphuric acid, potassium sulphide, sodium salicylate, and barium chloride.
(2) In T. pottsii the very high reactions with sulphuric acid; the high reactions with polarization, chromic acid, hydrochloric acid, potassium sulphocyanate, and sodium salicylate; the moderate reactions with gentian violet, safranin, and pyrogallic acid; the low reactions with temperature, chloral hydrate, nitric acid, potassium iodide, sodium hydroxide, sodium sulphide, and strontium nitrate; and the very low reactions with iodine, potassium hydroxide, potassium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(3) In T'. crocosmia aurea the very high reaction with sulphuric acid; the high reactions with polarization and sodium salicylate; the moderate reactions with iodine, chromic acid, and hydrochloric acid; the low reactions with gentian violet, safranin, temperature, chloral hydrate, pyrogailic acid, potassium sulphocyanate, and sodium hydroxide; and the very low reactions with nitric acid, potassium hydroxide, potassium iodide, potassium sulphide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(4) In the hybrid the very high reactions with sulphuric acid and sodium salicylate; the high reactions with polarization, chromic acid, hydrochloric acid, and potassium sulphocyanate; the moderate reactions with gentian violet, safranin, pyrogallic acid, and sodium hydroxide; the low reactions with iodine, temperature, nitric acid, potassium iodide, sodium sulphide, and strontium nitrate; and the very low reactions with chloral hydrate, potassium hydroxide, potassium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.

Following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
T. pottsii.	1	5	3	7	10
T. crocosmia aurea.	1	2	3	7	13
T. crocosmaxfora.	2	4	4	6	10

Bib. (ompabisons of the Atarches of Begonia single chasson scarlet, B. socotrana, and 1). MRs. hemi.

In the histologic characteristics, polariscopic figures, reactions with selenite and iodine, and qualitative reactions with the various chemical reagents the three starches have properties in common in various degrees of development and in each case certain individualities. The starch of Begonia socotrana in comparison with that of B. single crimson scarlet contains no compound grains or aggregates; the grains are not so often irregular, but where irregularity exists it is more marked; the grains are more elongated and the round type few. The hilum is somewhat less distinct and more often fissured, and a peculiar form of fissure is found ; eeentricity is greater. The lamellie are somewhat more distinct and sumewhat less regular, and there is an absence of a very coarse lamella near the hilum and also of one outlining the primary starch deposit in compound grains if the deposit consists of both primary and secondary lamelle. Other-
wise the character and arrangements are the same. The size is farger. In the polariscopic, selenite, and qualitative iodine reactions there are many differences. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate there are also many differences, many quite striking and distinctive of one or the other parent. The starch of the hybrid in comparison with the starches of the parents exhibits but few individualities in form, and in this histological character it is in closer relationship to B. socotrana. The starch of the hybrid is closer to that of 13. single crimson scurlet in the general characters of the hilum, but nearer the other parent in form, eccentricity of the hilum, size, and arrangement of the lamellæ (excepting when the grain consists of a primary and a secondary part, when the relationship is closer to the first parent). Certain irregularities of form are seen that are not present in either parent, and the lamellæ are more distinct and not so fine as they are in the parents. In the characters of the polariscopic figure and in the selenite reaction it is closer to B. single crimson scarlet. In the iodine reactions it is closer to B. single crimson scarlet. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate the relationship is closer to B. single crimson scarlet. Some of the grains during gelatinization behave like those of one parent and others like those of the other, and some show associated peculiarities of hoth parents. The resemblances are, on the whole, more closely related to B. single crimson scarlet, as is also the case in the quantitative reactions.
Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

B. sing. crim. scar., moderately high to high, value 60 .
B. socotrana, moderately high to high, the same as in B. single crimson scarlet, value 60.
B. mrs. heal, moderately high to high, less than in either parent, value 55.
Iodine:
B. sing. crim. scar., moderate, value 45.
B. socotrana, light to moderate, much less than in B. single crimson scarlet, value 30 .
B. mrs. heal, moderate, the same as in B. single crimson scariet, value 45.
Gentian violet:
B. sing. crim. scar., moderate, value 45.
B. socotrana, light to moderate, much less than in B. single crimson scarlet, value 35 .
B. mrs. heal, moderate, same as in B. single crimson scarlet, value 45.

Safranin:

B. singl crim. scar., moderate to deep, value 60 .
B. socotrana, moderate to deep, less than in B. single crimson scarlet, value 55.
B. mrs. heal, moderate to deep, same as in B. single crimson scarlet, value 60.
Temperature:
B. sing. crim. scar., in the majority at 67 to 68.5°, in all at 70 to 72°, mean 71°.
B. socotrana, in the majority at 79 to 80°, in all at 81 to $\$ 1.8^{\circ}$, mean 81.4°.
B. mirs. heal, in the majority at 67 to 69°, in all at 71 to 72°, mean 71.5
The reactivity of B. single crimson scarlet is higher than that of the other parent in the iodine, gentian violet, safranin, and temperature reactions; and the same or practically the same in the polarization reaction. The reactivity of the hybrid is the same or practically the the same as that of B. single crimson scarlet in the reactions with iodine, gentian violet, safranin, and temperature: and is the lowest of the three in the polarization reaction. The hybrid is closer to B. single crimson scarInt than to the other parent in the reactions with iodine, gentian violet, safranin, and temperature, and is the same in relation to both parents in the polarization reaction.

Table A 36.

Table A 36 shows the reaction-inten-itiow in prerent ares of total starch erelatinized at detinite intervals (seconds and minutes).

Geqomty-heaction chaves.

This section treats of the velocity-reartion curve= of the starches of Begoniu single crimson scarlet, B. socotrana, and Is. mrs. heal, showing quantitative difference, in the behavior toward different reagents at definite timeintervals. (Charts I) 505 to D) $5 \% 6$.)

The most conspiruous features of this group of curves are:
(1) The extraordinary variation of the relations of the curves in the different charts: in some, all three curmo heing practically identical or close together; in others, two curves keeping close and the third well separated or even separated to the extreme; and in others, all thre being well separated from one another. Thmo peede liarities are due largely primarily to the remarkable variations in the reactivities of B. socolrana in relation to the different reagents (with one reagent being very reactive and with another the reverse) ; and secondarily to the almost uniformly very high reactivities of B. single crimson scarlet (18 very high, 2 high, and 1 low), together with the marked variations in the relationship's of the hybrid to B. single crimson scarlet, the hybrid heing in many reactions identical or practically identical with this parent and in others having varying depress of intermediateness, but being much closer, as a rule, to this parent than to the other. Excepting the sulphuric-acid and potassium-hydrate charts, in which the reactions of all three starches are shown to occur with great rapidity, there is a tendency to a well-marked or even extreme separation of the parental curves, the starch of B. single crimson scarlet showing, with one exception (barium (hhloride), a very high to high reactivity, and that of B. socotrana, with seven exceptions (chloral hydrate, chromic acid, nitric acid, sulphuric acid, potassium hydroxide, potasium sulphide, and sodium salicylate) at low or asually very low reactivity.
(2) The higher reactivity of B. single crimson scarlet than of B. socotrana with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride and mercuric chloride, and the same reactivities with sulphuric acid and potassium hydroxide. There are small differences in the reactivities of the parents with chloral hydrate, potassium sulphide, and sulium salicylate, and from large to very large differences in the other reactions noted, excepting the sul-phuric-acid and potassium-hydroxide reactions, in which the two are the same.
(3) The tendency of the hylorid curves to be the same or nearly the same as the curves of B. single crimson scarlet, or the of some degree of intermediatencs, usually closer to this parent, throughout the whole wrime: of reactions. (See following subsection.)
(4) A period of early resistance followed by a comparative rapid reaction is conspicuous for its almost entire absence. Such a ferioul is sumented in the reantions of the liybrid in the calcium-nitrate reaction, in B. single crimson scarlet in the barium-chloride reaction, and in B. socotrana in the chromic-acid reaction.
(i) The carliest perioh during the 60 minutes at which the three curves are hest separated to differentiate the starches varies with the different reagrents. With five exeptions this occurs in a minutes. The exomptions
are chromic acid, barium chloride, and mercuric chloride in 1.5 momutes, pyrorallic adid in 30 minutes, and cobalt nitrate in 4. minutes.

dianchon-htensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 36 and (Charts D slis to D 5e6.)

The reativitis of the hybrid are the same as those of the seed parent in the reactions with iodine, gentian violet, salranin, temperature, nitric acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, and potassium sulphide; the same as those of the pollen parent in none; the same as those of both parents in the reactions with sulphuric acid and potassium hydroxide; intermediate with chloral hydrate, chromic acid, pyrogallic acid, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride (in all $1 \pm$ being nearer the seed parent) ; highest in none; and lowest in the polarization reaction, in which it is as close to one as to the other parent.

The following is a summary of the reaction-intensities: same as seed parent, 9 ; same as pollen parent, 0 ; same as both parents, \ddot{z}; intermediate, 11 ; highent, 0 ; lowest, 1.

Sameness as the seed parent and intermediatemes with a universal inclination to the seed parent are very conspicuous features of these data. In the two reactions whercin all three starches are the same the reactions orcurred with such rapidity as not to permit of differentiation, and in the polarization reaction in which the hybrid shows the lowest reactivity of the three and is as closely related to one as to the other parent the crudity of the method of valuation of the reaction has not brought out differences that probably exist. The properties of the starch seem to have been determined primarily by the sord parent, the effect of the other parent being expressed in the lowering of reactive-intensities, varying in degree in the different reactions, but never so far as to the $\mathrm{p}^{\text {roint }}$ of mid-intermediateness.

('omposite ('treves of the Reaction-intensities.

This section treats of the composite curves of the raction-intensities, showing the differentiation of the starches of Begonia single crimson scarlet, B. socotrana, and li. mres. heal. (thart E 3ic.)

The mon ennspicuous features of this chart are:
(1) The gencratly dose acord of the curves of B. single crimson scatret and the hybrid and the extraordinarily erratic course of the surve of B. socotrana throughnut most of the chart. The hybrid, which is a tuberous form, fullows sery closely, as a ruke, the reactivities of the first parent, which is also tuberous, while the other parent, which is semituberous (bulbils), has a very different type of curve-far more different from that of the other parent than was recordeal in the corves of the tember an! hardy crinums and the rhizomatoms and tuberons irises.
(?) Tha curw of $l i$. simoth crimsem suatet is hisher than the curve of B. socotrana throughout the chart (exceptag in the reactions with polarization, sulphuric acid,
and potassium hydroxide, in which they are alike), and in most instances it tends to be very much higher, the only reactions in which there is marked approximation being those with chloral hydrate, potassium sulphide, and sodium salicylate.
(3) In B. single crimson scarlet the very high reactions with chloral hydrate, chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; the high reactions with polarization, safranin, pyrogallic acid, and cobalt nitrate; the moderate reactions with iodine, gentian violet, and temperature; and the low reaction with barium chloride.
(t) In B. socotrana the very high reactions with chloral hydrate, sulphuric acid, potassium hydroxide, potassium sulphide, and sodium salicylate; the high reactions with polarization and nitric acid; the moderate reactions with safranin and chromic acid; the low reactions with iodine, gentian violet, temperature, sodium hydroxide, and strontium nitrate; and the very low reactions with pyrogallic acid, hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium sulphide, calcium nitrate, uranium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride.
(5) In the hybrid the rery high reactions with chloral hydrate, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride; the high reactions with safranin and chromic acid; the moderate reactions with polarization, iodine, and gentian violet; the low reactions with temperature, pyrogallic acid, and mercuric chloride; and the very low reactions with cobalt nitrate and barium chloride.

Following is a summary of the reaction-intensities:

| Very |
| :--- | :---: | :---: | :---: | :---: | :---: |
| high. | High. | Mod- |
| :---: |
| erate. | Low. | Very |
| :---: |
| low. |

34. Comparisons of the Starches of Begonia docble hight rose, B. socotrana, and B. masign.
In histologic characteristics, polariscopic figures. reactions with selenite, reactions with iodine, and qualitative reactions with various chemical reagents all three starches have properties in common in varying degrees of development, the sum of which in each case is distinctive of the starch. The starch of Begomia socotrana in comparison with that of B. double light rose shows an absence of aggregates and has more numerous irregularities. The hilum is less distinet, somewhat more often fissured, and more precentric. The lamellex are not so distinct; more distinct at the distal than at the proximal end. instead of sometimes the reverse as in B. double light
rose; and they are more numerous. The size is larger than in B. double light rose. In the polariscopic, selenite, and iodine reactions there are varions dillerencos which seem to be of a minor character, and the same is true of the reactions with chloral hylrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate. The starch of the hybrid is closer to that of B. double light rose in the form of the grains, character of the hilum, character of the lamella, and size of the smatler grains, but nearer to B. socolrana in the eccentricity of the hilum and size of the larger grains. It is closer to B. double light rose in the appearance with selenite, but nearer the other parent in the polariscopic figures. It is closer to the first parent in the iodine reations. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate, while closer to B. double light rose, the infuences of B. socotrana are quite manifest in each.

Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

B. doub. light rose, moderately high to high, value 70 .
B. socotrana, moderate to moderately high, less than in B. double light rose, value 60.
B. ensign, moderate to high, intermediate betwern parents, value 67 . Iodine:
B. doub. light rose, moderate, value 45 .
B. socotrana, light to moderate, less than in B. double light rose, value 30 .
B. ensign, light to moderate, intermediate between the parents, value 40 .
Gentian violet:
B. doub. light rose, light to moderate, value 40.
B. socotrana, light to moderate, less than in B. double light rose, value $3 \overline{5}$.
B. ensign, light to moderate, less than in either parent, value 30. Safranin:
B. doub. light rose, moderate to deep, value 60.
B. socotrana, moderate, less than in B. double light rose, value 55.
B. ensign, moderate to deep, less than in cither parent, value 50.

Temperature:
B. doub. light rose, in the majority at 60 to 61°, in all at 62 to 64°, mean 63°.
B. socotrana, in the majority at 79 to 80°, in all at 81 to $81 . \mathrm{x}^{\circ}$, mean 81.4°.
B. ensign, in the majority at 64 to 65.5°, in all at 66 to 68°, mean 67°.

The reactivity of B. double light rose is higher than that of the other parent in all five reactions. The reactivity of the hybrid is intermediate between those of the parents in the polarization, iodine, and temperature reactions, and is the lowest of the three with gentian violet and satranin. The hybrid is closer to B. double light rose than to B. socotrana in the polarization, iodine, and temperature reactions, and the reverse in those with gentian violet and safranin.

Table A 3 : shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (seconds and minutes).

Velocity-hesction Ctrves.

This section treats of the velocity-reaction curves of the starches of Begonia double light rose, B3, socotrama, and B. ensign, showing quantitative dilferences in the behavior toward different reagents at definite time-intervals. (Charts D 527 to D 532.)

The most conspicuous features of these five charts are :
The marked diversity of the relations of the three curves, all three running close in the choral-hydrate

reactions, two being close and the other well separated in those with nitric acid and strontium nitrate, two being somewhat close and the other well separated in that with chromic acid, and all three being well separated in that with pyrogallic arid. The tendency in all for the hybrid and B. double light rose curves to be closely related, and to be higher-usually much higher-than the corves of B. socotrana. The tendency in all of the reactions to intermediateness, highest or lowest reactivity, with an inclinatim in 8 out of 10 reactinns toward the reantivity of the seed parent. The short period of very high resistance of B. socotrana in the chromic-acid reaction.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A $3 \hat{r}$ and (harts D 52\% to D 532.)

The reactivities of the hybrid are not the same as those of either or both parents in a single reaction; intermediate in the reactions with polarization, iodine, temperature, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate, in all being closer to those of the seed parent; highest in that with chloral hydrate, being closer to that of the seed parent; and the lowest in those with gentian violet and safranin, in both being closer to the pollen parent.

The following is a summary of the reaction-intensities: same as seed parent, 0 ; same as pollen parent, 0 ; same as both parents, 0 ; intermediate, 7; highest, 1; lowest, 2.

The following features of the hybrid are particularly conspicuous: The absence of any reaction that is the same as either or both parents; the marked tendency to intermediateness: the occasional tendency to the highest or lowest reactivity ; and the markedly stronger influence of the seed parent on the properties of the starch.

C'omposite ('luves of Reaction-intexisitien.

This section treats of the composite curres of the reaction-intensities, showing the differentiation of the
starches of Begonia double light rose, B. socotrana, and 1). chsign. (Chart E 3\%.)

The most conspicuous features of this chart are: The generally close correspondence in the courses of the three curves, although in some instances the curves are well separated. The higher position of the curve of B. double light rose in relation to that of B. socolrana throughout excepting in the nitric-acid reaction, in which the curves are the same. The varying relatonship of the hybrid curve to the parental curves. It is intermediate in the reactions with polarization, iodine, temperature, chromic acid, and provgallic acid ; lower than the parental curves in those with gentian violet and safranin; the same or nearly the same as that of B. double light rose in those with chloral hydrate and strontium nitrate; and the same as buth parents in that with nitric acid.
;s. Compabisons of the Starches of Begona hofble white, b. socotrina, and B. jelies.
In the histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with various chemical reagents all three starches have properties in common in varying degrees of development, together with individualities, which collectively in each case serve to be distinctive. The starch of Begonia socotrana in comparison with that of B. double white shows an absence of compounds and aggregates; more irregularity of the grains and some marked differences in the causes of the irregularities; grains often elongated; and comparatively few round and triangular forms. The hilum is less distinct, much less often fissured, shows an absence of certain forms of fissuration, and eccentricity is more. The lamellie are finer but not so distinct, there is an absence of two lamellæ which are quite conspicuous in the other parent; they are more often not regular and show waviness; and they are slightly less numerous. In size the grains are somewhat larger and more slender. In the polariscopic, selenite and qualitative iodime reactions there are many difterences. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate the differences are numerous and some of them quite individualize the parent. The starch of the hybrid is more closely related to B. double white in form, character and arrangement of the lamelle, and size of the grains; nearer to B. socotrana in the characters of the irregularities of the grains and in the character and mentricity of the hilum; and it has fewer irregularities than either parent. In the polarization figures it resembles both parents equally. In the iodine reactions the heated grains more closely resumble those of B. double white, while the unheated grains more cloely resimble these of B. sorolrama. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate peculiarities of both parents are manifest, but the reactions, as a whole, more closely resemble those of B. double white than of B. socotrana.
Reaction-intensities Expressed by Light, Color, and Temperature lictorions.
I'olarization:
P. doulde white, low to moderatoly high, value 55.
 white, value 60.
R. julius, moderate to monderaty, the satme as in D. double white. value 60.

Iodine:
B. double white, light, value 25 .
B. socotrana, light to moderate, deeper than in B. double white, value 30 .
B. julius, light to moderate, deeper than in either parent, value 40. Gentian violet:
B. double white, light to moderate, value 30 .
B. socotrana, light to moderate, deeper than in B. double white, value 35 .
B. julius, moderate to moderately deep, deeper than in either parent, value 45.
Safranin:
B. double white, light to moderate, value 40 .
B. socotrana, moderate, much deeper than in B. double white, value 55 .
B. julius, moderately deep, deeper than in either parent, value 60. Temperature:
B. double white, in the majority at 60 to 61.5°, in all at 65 to 66.5°, mean 62.75°.
B. socotrana, in the majority at 79 to 80°, in all at 81 to 81.8°, mean 81.4°.
B. julius, in the majority at 65 to 66°, in all at 67 to 69°, mean 68°

The reactivity of B. double white is lower than that of the other parent in the polarization, gentian-violet, and safranin reactions, and higher in the temperature reaction. The reactivity of the hybrid is the same or practically the same as that of B. socotrana in the polarization reactions; highest of the three in those with iodine, gentian violet, and safranin; and intermediate in that with temperature. The hybrid is closer to B. double white than to B. socotrana in the temperature reaction; and the reverse in those with polarization, iodine, gentian violet, and safranin.

Table A 39 shows the reaction-intensities in percentages of total starch gelatinized at definite interrals (seconds and minutes) :

Table A 38.

	$\begin{array}{c\|c} \infty \\ & \underset{\sim}{n} \\ \hline \end{array}$	$\stackrel{\text { E }}{\text { E }}$	$\underset{\sim}{\dot{E}}$	$\underset{i}{E}$	$\begin{aligned} & \Xi \\ & \pi \end{aligned}$	E	E	Ė \sim \sim	E	E 4	$\begin{aligned} & \text { a } \\ & 8 \end{aligned}$
Chloral hydrate:											
B. double white		\cdots				83	99			.	\cdots
13. socotrana.		.		\cdots		35	79	95		\cdots	\cdots
B. julius.				.		90	99		\cdots	\cdots	\cdots
Chromic acid:											
B. double white		\ldots		\cdots		97		99			位
B. socotrana.				.		0.5		2	60	87	92
13. julius.		\cdots		.		75	.	95	99	.	
Pyrogallic acid:											
B. double white.		\cdots		,	\cdots	84	\cdots	95	99	\cdots	
B. socotrana.		.		\cdots		0.5					0.5
B. julius.		.		.	\cdots	20	. .	75	90	92	95
Nitric acid:											
B. double white	100	.		.							\cdots
B. sucotrana.				\cdots	\ldots	27		s0	88	45	\cdots
13. julius.......	99100				- .						\cdots
Strontium nitrate:											
13. double white		97	100				.				
B. socotrana.						10		44	75	81	84
13. julius.		84	99		

Velochty-reaction Curves.
This section treats of the velocity-reaction curves of the starches of Begonia double white, B. socotrana, and B. julius, showing quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 533 to D 538 .)

These charts bear close resemblances to the corresponding charts in the preceding set, but the differences are sufticient to show that there are differences in parentage and offspring. There is a tendency in this set to a
higher reactivity of the seed parent, which in turn temb: to affect in the same direction the reactivities of the hybrid.

Reaction-intexsities of the Hybrid.
This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, exemand deficit in relation to the parents. (Table λ is an Charts D 533 to D 538.)

The reactivities of the hybrid are the same as those of the seed parent in the nitric-acid reaction; the same as those of the pollen parent in the polarization reaction; the same as those of both parents in none; intermediate in the reactions with temperature, chromic acid, pyrogallic acid, and strontium nitrate, in all of which beiag closer to those of the seed parent; highest with iodine, gentian violet, satranin, and chloral hydrate (in three being closer to those of the pollen parent and in one closer to that of the seed parent) ; and lowest in none.

The following is a summary of the reaction-intensities: Same as the sed parent, 1 ; same as the pollen parent, 1 ; same as both parents, 0 ; intermediate, 4 ; highest, 4 ; lowest, 0 .

In these reations the reactivities of the hybrid bear only a somewhat closer relationship to the seed parent, and there is a marked inclination to intermediateness and highest reactivity.

Combonite ('fryen of the Rehetion-intensities.

This section treats of the composite curves of the reaction-intensities showing the differentiation of the starches of Begonia double white, B. socotrana, and B. julius. (Chart E 38.)

The most conspicuous features of this chart are: The generally close correspondence in the courses of all three curves, although in three instances the curves are well separated. The lower position of the curve of B. double white in relation to that of the other parent in the reactions with polarization, iodine, gentian violet, and safranin; the higher position with temperature, chloral hydrate, chromic acid, pyrogallic acid, and strontium nitrate; and the same position with nitric acid. The varying relationship of the hybrid curve to the parental curves. It is the same as the curve of B. socotrana in the reaction with polarization; the same as that of B. double white with chloral hydrate and strontium nitrate; the same as both parents with nitric acid; the highest in the three with iodine, gentian violet, and safranin; and intermediate with temperature, chromic acid, and pyrogallic acid.
89. Comparasoxs of the Starches of Begonia
 success.
In the histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with various reagents all three starches have properties in common in varying degrees of development, the sum of which in each rase is distinctive. The starch of Begonia socotrana in comparison with that of B. double deep rose shows an absence of compound grains and aggregates; the grains are more regular, but such irregularities as occur are more obvious and striking ; the grams are more olongated : and round
and nearly round forms are very rare The hilum is somewhat less rarely fissured; there is an individual form of fissuring ; and there is more eccentricity. The lam. Hax are finer and less distinct; several are present that are not wen in l. double deep rose ; and they ato much nore numerous. 'The size is larger. The reactions with polarization, selenite, and iodine exhibit many differences. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate the differences are numerous and some of them are quite striking and distinctly individualize the starch. The starch of the hylrial in comparison with the starches of the parents shows a (huser rolatma-hop to the starh of B. double deep rose in the characters of the irregularities of the grains and in the characters of the hilum; more like the other parent in the form of the rrains, eccentricity of the hilum, character and arrangement and number of the lamellx, and size of the grains. It has, however, less irregularities in the grains than in either parent. It is nearer B. socotrana in the polarization figures and appearances with selenite, and nearer also in the iodine reactions. It shows peculiaritios of toth parents in the quantitative reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and strontium nitrate, but is closer to B. double deep rose.

Reaction-intensities Axpressed by Light, Color, and \% whe" ture Kectetions.
Polarization:
B. double deep rose, muderately liw to high, wabe sul.
B. secotrana, moderate to high, higher than in bs, homblu daw p, f.a. . value 60.
B. success, moderate to high, the sanme as in N. socotrana, value C0. Iodine:
B. double deep rose, moderate, value 45.
B. socotrana, light to moderate, much liphter than in be duwhde deep rose, value 30 .
B. success, light to moderate, the same :at in B. socotrana, value at). Gentian violet:
B. double deep rose, light to moderate, value 10 .
B. socotrana, light to moderate, less than in 13. doulife deep rose, value 35.
B. success, light to moderate, the same as in B. sucotrana, value 35. Sufranin:
B. double deep rose, moderate to deep, value 60 .

B. success, moderate to deep, the same as in B. double deep rose, value 60.
Temperature:
B. double deep rose, in majority at 64 to 65.5^{2}, in all at tia to finc. ${ }^{\circ}$, mean 67.5°.
 81.4°.

The reactivity of B. double deep rose is lower than that of the other parent in the polarization reacton; and higher in those with iodine, gentian violet, safranin, and temperature. The reactivity of the hybrid is the same or practically the same as that of B. double deep rose in the reaction with safranin; the same or practically the same as those of 13 . socotram with polarization, iodine, and gentian violet; and intermediate between those of the parents in that with temprerature. The hyheri\} is loser to B. dubble deep rose than to B. socutrana in the safranin and temperature reactions, and the reverse in those with polarization, iodine, and safranin.

Table A 39 shows the reaction-intencitice in per. niages of total starch gelatinizel at definite interval= (an onds and minutes):

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Begonia double deep rose, B. socotrana, and B. success, showing quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts 1) 539 to D 54 t.)

These charts differ from those of the last set chiefly in the reversal of the relative positions of the curves of the seed parent and hybrid and the more marked closeness of these curves in the pyrogallic-acid reaction. The nitric-acid and strontium-nitrate curves are in the two sets in each case practically the same.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 39 and ('harts 1) 539 to I) 54.)

The reactivities of the hybrid are the same as those of the seed parent in the readions with safranin and nitric acid; the same as those of the pollen parent with polarization, iodine, and gentian violet; the same as those of both parents in none; intermediate with temperature and chloral hydrate, in both being closer to those of the seed parent ; highest with chromic acid, pyrogallic acid, and strontium nitrate, in all three being closer to those of the seed parent; and the lowest in none.

The following is a summary of the reaction-intensities: Same as seed parent, 2 ; same as pollen parent, 3 ; same as both parents, 0 ; intermediate, 2 ; highest, 3 ; lowest, 0 .

In these few reactions the tendencins seem to be about equal to sameness as one or the other parent, intermediateness and highest reactivity; but the influences of the seed parent in determining the properties of the starch of the hybrid distinctly dominate those of the other parent.

Composite (hbees of the Remoton-intensities.
This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Begonia double deep rose, B. socotrana, and b. success. (Chart E 39.)

The most conspicuous features of this chart are:
(1) The generally close correspondence of all three curves, although in some instances the curves are well separated, as in the preceding sets.
(2) The higher position of the curve of B. double deep rose in the relation to the curve of the other parent in the reactions with iodine, gentian violet, salranin, temperature, chloral hydrate, chromic acid, pyrogallic acid, and strontium nitrate; the lower position with polarization ; and the identical position with nitric acid.
(3) The varying position of the hybrid curve in relation to the parental curves. It is the same or practically the same as the curve of B. double deep rose in the reactions with safranin, temperature, chromic acid, pyrogallic acid, and strontium nitrate; the same as that of B. socotrana in those with polarization, iodine, and gentian violet; the same as the curves of both parents in that with nitric acid; and intermediate in that with chloral hydrate.

Notes on the Begonias.

The most conspicuous features of these records are observed in the very definite and commonly wide differences between the properties of the seed parents on the one hand and of Begonia socotrana, the pollen parent, on the other, representing two quite different groups of begonias. Histologically, the starches of the seed parents have characters in common which definitely group them from the starch of B. socotrana. Even far greater distinctions are seen in the records of the temperatures of gelatinization and of the quantitative reactions with hydrochloric acid, potassium iodide, potassium sulphocyanate, sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride. The very large differences in the temperature reactions of the two groups exceed any records thus far made of members of any genus. The least difference between members of the tuberous group and B. socotrana is 11.4°, the greatest 18.65°, and the average 14.85°. Such differences indicate corresponding marked physico-chemical peculiarities of the starch molecules and prepare one for finding similar diversities in the reactions with varions chemical reagents. Comparisons of the data of the four seed parents indicate well-separated horticultural or subgeneric specimens. Inasmuch as B. socotrana is the pollen parent in each set, it is of exceptional interest to learn to what extent and in what directions the characters of the hybrids are influenced by this parent. Inasmuch as the seed parents exhibit among themselves distinctive peculiarities it is to be expected that the hybrid in any set will be definitely different from the hybrids of the other sets, and such has been found to be a fact. The hybrids show marked variability in their relations to their parents, each exhibiting characters that are either common to both parents or individually parental, and in varying degrees of development, sometimes being like one parent or the other, or identical with both or having development beyond parental extremes in one direction or the other. While the inclination of the hybrid is, on the whole, very definitely toward, even at times exceeding, the development of the seed parent the influences of B. socotrana are themselves sometimes so potent that theseed parent seems to be without effect.

The following is a summary of the reaction-intensities of the hybrid as recrards sameness, intermediateness, excess, and deficit in relation to the parents:

				第	董
B. nors heal	90	2	14	0	1
B. ensign	$0 \quad 0$	0	7	1	2
B. julius	11	0	4	4	0
B. sucress	23	0	2	3	0

40. Comparimose of the Starches of Richamma ahbo-mictlata, R. elliotthea, and R. mis. ROOSEVELT.
In the histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine and qualitative reactions with the various chemical reagents the starches of the parents while exhibiting certain properties in common also show certain minor peculiarities by which collectively they may be distinguished. The stareh of Richardia elliottiana in comparison with that of R. albo-maculatu is found to differ very little, chiefly in the proportions of different kinds of grains. The hilum is more often fissured, more frequently visible, and shows more often a tendency to eccentricity. The lamellæ are more numerous. The size on the whole tends to be slightly less. The polariscopic, selenite, and qualitative iodine reactions exhibit many slight differences. In the qualitative reactions with chloral hydrate, chromic acid, hydrochloric acid, potassium hydrozide, and sodium salicylate there are a number of points of differentiation, mostly apparently of a very minor character. The starch of the hybrid is in form, character of the hilium, lamelle, size, polariscopic and selenite reactions, indine reactions and qualitative chemical reactions slightly closer to R. albo-maculuta than to the other parent, but such differences as are observed are it seems of a decidedly minor character. These starches are not well adapted for differential study not only because of their very close similarities in their properties, but also because of their small size and the differences in gelatinizability of the imner and outer parts, the former gelatinizing with comparative rapidity and the latter with comparative diffculty, excepting in the rapid reactions. On this account only few reactions were studied.

Reaction-intensities Expressed by Light, Color, and Temperature Reactions.
Polarization:
R. alho-maculata, moderate to high, value 70.
R. elliottiana, moderate to high, lower than R. albo-maculata, value 65.
R. mrs. roosevelt, moderate to high, between the parents, value 67 . Iodine:
R. albo-maculata, moderate, value 45 .
R. ellottiana, moderate, less than R. albo-marulata, value 40.
R. mrs. roosevelt, moderate, the same as R. albo-maculata, value 4.5 . Gentian violet:
R. albo-maculata, light, value 30 .
R. elliottiana, light, slightly deeper than in R. albo-maculata, value 33 .
R. mrs. roosevelt, light, deeper than in either parent, value 35.

Safranin:
IR. albo-maculata, light, value 33.
R. elliottisna, light, slightly deerger than in R. altoo-maculata, value 35.
R. mers. ronsu-velt, light, dight to menderate, dereger than in the parenta, value 3 .
Tomperature:
 77.7°.
 77.7°.
R. elliottiana, majority at 74 to 75°, all at 76 to 77°, mean 76.5°,
R. mrs. roosevelt, majority at 74 to 76°, all at 76 to 78°, mean 77°

The reactivities of R. albo-marulata are higher than those of the other parent in the polarization and iowne reactions, and lower in the gentian violet, safranin, a:nd temperature reactions. The hybrid in the polarizat wh and temperature reactions is intomediate in valu"; in the iodine reaction it is the same as in R. albo-maculate and higher than in R. elliottiana; and in the gentianviolet and safranin reactions the figures are closer to, but in excess of, those of R. elliottiana, and beyond the parental extremes.

Table 40 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes) :

Table a 40 .

Velocity-beammos ('thens.
This section treats of the velocity-reaction curves of the starches of Richardia albo-maculata, R. ellinttiana,

There are very few points of interest in the aceompanying eight charts. The starhes are so mbarly alike that but liftle differemes are shown in any of the charts. In the reactions with choral hydrate, sulphuric acid, and sodium salicylate gelatinization occurs so rapidly that
such differences as are recorded probably fall within the limits of error of experiment ; in those with chromic acid and pyrogallic acid the differences are insignificant; and in those with nitric acid, hydrochloric acid, and potassium hydroxide the differences are not marked, yet sufficient for definite differential purposes. In the latter reactions it will be observed that the relations of the curves of the three starches differ in each-in the nitricacid reaction the starch of R. albo-maculata is the most reactive, R. ellioltiana the least, and the hybrid intermediate ; in the hydrochloric-acid reaction the order of rearlivity is R. albo-maculata, R. elliottiana, and hybrid; and in the potassium-hydroxide reaction the order is hybrid, R. ellioltiuna, and R. albo-muculata. The greatest interest centers perhaps in the differences in reactivity toward the different reagents, there being represented in the cight charts almost the extremes of ractivities. In the chloral-hydrate, sulphuric-acid, and sodium-salicylate reactions within 5 minutes all three starches are gelatinized; with pyrogallic acid there is very little effect even at the end of 60 minutes; while with chromic acid, nitric acid, hydrochloric acid, and potassium hydroxide there are in-between gradations. It is also of interest to note the different courses of the curves with these four reagents.

Reiction-intensities of the Hybrib.

This section treats of the reaction-intensities of the hylrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table $\Lambda 40$ and (lharts D 5 5.5 to I) 552.)

The reactivities of the hybrid are the same as those of the seed parent in the iodine reaction; the same as thusic of the pollen parent in none; the same as those of both parents in the reactions with chromic acid, pyrogallic acid, sulphuric acid, and sodium salicylate; intermeliate in the polarization, temperature, and nitric acid reactions, in all being mid-intermediate; highest with gentian violet, safranin, chloral hydrate, and potassium hydroxide; and the lowest with hydrochloric acid, it being closer to that of the pollen parent.

The following is a summary of the reaction-intensities: Same as seed parent, 1 ; same as pollen parent, 0 ; same as both parents, 4 ; intermediate, 3 ; highest, 4 ; lowest, 1.

It is interesting to note that while in one reaction there is sameness in relation to the seed parent, there is : not in any reaction sameness to the pollen parent, although in 5 reactions out of the 13 the inclination is (1) the poblen parent and in only the one referred to is it to the seed parent. Tendencies to mid-intermediate-mon-, to highest reartivity, and to sameness as both parents are quite apparent.

Componite (hbyes of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Richardin albo-maculata, R. elliottiana, and R. mrs. roosevelt. (Chart E 40 .)

The most conspicuous features of this chart are:
Marked closeness, almost identity, of all three curves. In fact, such differences as are shown are usually so small as to fall within the limits of error of record. It would perhaps be hazardous to reach a definite diagnosis
of one from the other by these curves, yet if taken in connection with the curves showing the reaction-intensities at definite time-intervals differentiation appears to be satisfactory. From these curves one might naturally be led to the belief that we are dealing with varieties of a species and not with two recognized species (even though they might belong to a species subgroup) and a hybrid. From these investigations (which are inconclusive) the parents should be regarded as varieties of a given species. It is of interest to compare these curves with those of the hippeastrums, the parents of which are garden varieties that have come from closely related parentage. The marked excursions of the curves, showing wide variations in the reactive intensities with the different reagents, are very striking.
41. Comparisurs of the Starches of Musa arxoldiaka, M. gilletif, and M. hybrida.
In the histologic characteristics, polariscopic figures, reactions with selenite, reactions with iodine, and qualitative reactions with the various chemical reagents the starches of the parents have properties in common in varying degrees of development and also certain individualities, and the starch of the hybrid has properties like those of one or the other or both parents, and also certain individualities; but it is, on the whole, distinctly closer to Musa gilletii than to the other parent. The starch of M. gilletii in comparison with that of M. arnoldiana has only one of the two types seen in M. arnoldiana, but there are aggregates that are not found in the latter; and there are more numerous elongated forms. The hilum is somewhat more often fissured, and eccentricity is somewhat less in some of the forms. The lamellæ are more often distinct, not so fine, and less numerous. The size is slightly larger. In the polariscopic, selenite, and qualitative iodine reactions there are many differences which seem to be of a minor character. In the qualitative reactions with chloral hydrate, chromic acid, pyrogallic acid, sodium salicylate, and cobalt nitrate there are very many differences, many of which quite definitely individualize one or the other parent. The starch of the hybrid in comparison with the starches of the parents shows in almost every feature a closer relationship to the starch of the pollen parent. It contains the two types of compound grains found in M. arnoldiana and the aggregates of the other parent, and there is a type of compound grain that is peculiar to the hybrid. The hilum is more frequently fissured than in either parent. The lamellw are in character and arrangement more like those of M. gilletii, but in number closer to M. arnoldiana. In size some of the grains exceed those of the parents. In the polariscopic, selenite, and qualitative iodine reactions there are many differences, but the inclinations of the hybrid are distinctly to 11. gilletii. In the qualitative chemical reactions the leanings are very definitely to one or the other or both parents, with, on the whole, a distinctly closer relationship to M. gilletii, the pollen parent.

Reaction-intensitics Expressed by Light, Color, and Temperature Reactions.
Polarization:
M. arnoldiana. low to high, value 40.
M. Pkilletii, low to high, higher than in M. arnoldiana, value 45. M. hybrida, low to high, higher than in cither parent, value 50.

Iorlinu：
M．arnoldiana，moderate，value 5 ． 5 ．
M．gilletii，moderate，somewhat less than in M．arnoldiama，value 50. M．hybrida，moderate，the same as in M．gilletii，value 50 ．
Gentian violet：
M．arnoldiana，light to deep，value 50.
M．gilletii，light to deeng，somewhat less，value 45 ．
M．hybrida，light to deep，the same as in M．gilletii，value 45. Safranin：

M．arnoldiana，moderate to deep，value 60.
M．gilletii，moderate to deep，less than in M．arnoldiana，value 50.
M．hybrida，moderate to deep，the same as in M．gilletii，value 50. Temperature：

M．arnoldiana，majority at 60 to 61° ，all at 64.5 to 65.8° ，mean 65° ．
M．gilletii，majority at 64 to 66.5° ，all at 67.5 to 69° ，mean 68.4° ．
M．hybrida，majority at 65.2 to 67° ，all at 69 to 70° ，mean 69.75° ．
In not one of the five reactions are the figures for the two parents the same．The polarization reaction of M ． gilletii is higher，and those with iodine，safranin，gentian violet，and temperature are lower than those of the other parent．The hybrid has the same degree of reactivity as M．gilletii in the reactions with iodine，gentian violet， and safranin ；higher reactivity than either parent in that with polarization；and a lower reactivity in that with temperature．In all of these reactions the hybrid is closer to M．gilletii than to the other parent．In no instance is there intermediateness，and in two records the reactions are in excess or deficit of the parental extremes．

Table A 41 shows the reaction－intensities in percent－ ages of total starch gelatinized at definite intervals（sec－ onds and minutes）：

Table A 41.

			$\stackrel{\square}{\square}$	a	日	号	品	$\begin{aligned} & \text { a } \\ & 0 \end{aligned}$	a \sim -8	E	6 4 4 4	$\begin{aligned} & \text { B } \\ & 8 \end{aligned}$
Chloral hydrate：												
M．arnoldiana．	．	．			\cdots	．	55		90	99		
M．gilletii．	．	．	．	．	．	．	30	．		78	8\％	95
M．hybrida．	\cdots	\cdots	．	．	\cdots	\cdots	28	\cdots		70	74	77
Chromic acid：												
M．arnoldians．．	．	．	．	．	\cdots	．	95		100			
M．gilletii	．	－		\cdots	\ldots	．	70		90	99		．．
M．hybrida．	．	＊	．	．		\cdots	22			97		
Pyrogallic acid：												
M．arnoldiana．．	．	．	．．	．	．		86			99		
M．gilletii．	\cdots	\cdots	．	\cdots	\cdots	－	11		54	73	\＄1	81
M．hybrida．		\cdots	\cdots	\cdots	\cdots	\cdots	14		55	73		79
Nitric acid：												
M．arnoldiana．	98	．	．	．								
M．gilletii．	67	．	\cdots	\cdots			90		93	96		
M．hybrida．	47			\cdots	\because	－	90		93	95		
Sulphuric acid：												
M．arnoldiana．．．		95		．		．	．					
M．gilletii．		75	96				．	．				
M．hybrida．．．．		48	95			．	．					
Hydrochloric acid：												
M．arnoldiana．．．	．	99		\cdots	．	\cdots	\cdots					
M ，gilletii ．		75	96	．		．						
M．hybrida．		84	89	\because	98		99					
Potassium hydrox－ ide：												
M．arnoldiana．．．		99		．								
M．gilletii．		85	93									
M．hybrida．．．．．		91	95	．	－	\cdots	．			\cdots		
Potassium iodide：												
M．arnoldiana．．．		．	98			\cdots		\cdots				
M．gilletii．			75		85	\cdots	87					
M．hybrida．．．．．		．	62		78	．	84		95			
Potassium sulpho－ cyanate：												
M．arnoldiana．．		96	99			\cdots	\cdots					
M．gilletii		14	87		97	\cdots						
M．hybrida．		12	81		．	．	95		99			

Tamee a 41．－Continued．

		Ξ	$\begin{gathered} \equiv \\ \therefore \\ \therefore \end{gathered}$	$\begin{aligned} & \ddagger \\ & \vdots \end{aligned}$	\equiv	$\begin{aligned} & E \\ & \Xi \end{aligned}$		\pm	三
1＇otatimutauldiede．									
M．strmadianas．	99	1							
M．killetii	711				99		97		
M．hybrida	64				92		95		
Sodium hyateoxide．									
M．arnoldiana．	198								
M．gilletii	（6， 6	4． 4	．		95		9		
M．hybrida	36	fis 1			93		97^{\prime}		
Sodium sulphite：	，								
M．armodiana．	96	949							
M．killetii	1.5	12			－1		－4， 9.5		
M．hyrbrila	8	3s ${ }^{\prime}$			70		Ar		
Sortimm salicylate．									
M．arnodrlithat．	．	．	7.7		4.5	44）			
M．gilletii		\cdots	71		0.5	95	（t）		
M．hybrida		．	62		7：	40	in		
（＇alcium nitrate：									
M．arnoldiana．．		95	．		99				
M．killetii		10			－11		nf 90		3
M．hydrida．．		－			in		74 nc	4n	（1）
Uranimm nitrate：									
M．arnoldiatna．		4	93						
M．gilletii		10	77		40		（10） 93	（1）	4
M．hybrida		δ	51		73		$\times 3.38$	3	4
Strontium nitrate：									
M．armoldianta．		95	99						
M．killetii		14	8.3		87		（5） 97	．	
M．hybrida．		15	72		76		9205		
（ohnalt nitrate：									
M．armoldiant．					95	．	94		
M．gilletii	－．	．	．．		11		2n in	小	52
M．hybrida ．．．		．		．．	10		2130	40）	44
Copper nitrate：									
M．armoldiant．．	．．	99							
M．gilletii．		16	．		72	．	（15）414		
M．hybrida．		b			－9	．	（i） 90	．	90
Cupric chloride：									
M．arnoldiana．		87	19%	．					
M．gilletii		10	5，		60		39 M	Ni）	S3
M．hybrida．		5	50 i		5.5		70×0	82	85
Barium chloride：									
M．armoldiana．		．			14		89	．	
M．silletii		．			5		5） 5.50		\％
M．hytrida．．．．			1		5		26 （ 40		42
Mercuric chloride：			－						
M．arnoldiana．．		65	． 96		193				
M．gilletii		10	391		54		6171	75	79
M．hybrida．．		3	31		4．		5562	6 N	72

Velocity－Relction Ctrves．

This section treats of the velocity－reaction curves of the starches of Musa arnoldiana，M．gilletii，and M．hy－ brida，showing the quantitative differences in the be－ havior towards different reagents at definite time－inter－ vals．（Charts D 553 to D 5in3．）

Among the conspicuous features of these charts are：
（1）The high to very high reativity of the starch of Musa arnoldiana throughout all of the reactions，in only one of which is the reaction high．In not less than 11 reac－ tions out of the en at least 95 per cent of the total starch was gelatimized within 2 minutes，and in the others with the exception of chloral hydratt，perogallie acid，and harium chloride a similar intensity of reaction occurred in 5 minutes or less．The maximum time（ 99 per cent in 30 minutes）was in the chloral－hydrate reactions．In many of the reactions not only was the reactivity of this stardh greater than in case of the other parent and the hybrid，but sometimes also markedly higher．
（e）The marked tendence for the curves of M．aill，fit and M ．hybrida to run dose together，and in many in－
stances to be well separated from the curve of M. arnoldiana. The tendency for the hylrid reactions throughout (exeepting those with nitric acid, sulphuric acid, and potassium hydroxide which are so rapid that no satisfactory differentiation can be made, and in that with pyrogallie acid, in which the curve is practically identical with that of the pollen parent), to be lower than that in either parent; and also to show a distinctly closer relationship to M. gilletii than to M. arnoldiana.
(3) The considerable differences in the interrelations of the three curves: Thus, in the reactions with chloral hydrate, chromic acid, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, and barium chloride the curves are quite evenly separated, the curve of M. gillelii in each chart being between the curves of M. arnoldiuna and the hybrid. In the reactions with pyrogallic acid, nitric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride there is an obvious pairing of the curves of M. gilletii and the hybrid, the curves being to more or less marked degrees separated from the curve of M. arnoldiana, and from each other, excepting in the latter in the pyrogallicacid reactions, where the curves of M. gilletii and the hybrid are practically identical. In the reactions with nitric acid, potassium iodide, and sodium hydroxide the only important differences are noted at the very beginning of gelatinization. In the other reactions, with the exceptions noted, while the curves tend in general to run closely, there are sulficient differences to permit of diagnosis.
(t) An carly period of resistance is noted in very few of the reactions. In fact, there is generally a marked tendency for an immediate high to very high degree of reactivity which may be followed by a protressively lessening. An early period of resistance is seen in the reactions of chromic acid with M. hybrida, of pyrogallic acid, and, particularly, of barium chloride, with both M. gilletii and M. hybrida.
(5) The earliest period during the 60 minutes of whervation at which the curves are best separated for the differentiation of the three starches is variable with the different reagents. In case of the very rapid reactions, including those with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium jodide, potassimm sulphocyanate, potassium sulphide, and sodium hydroxide, the period is noted within the first minute of the reactions; in those with chromic acid, pyrogallic acid, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, calcium nitrate, copper nitrate, cupric chloride, and mercuric chloride within os minutes; and in those with chloral hyalrate and barium chloride within 15 minutes. From this data the best period for the differentiation of members of this senus would be, perhaps, on the whole, 5 minutes after the begiming of the reaction ; or better. to use in most cases weaker reagents.

Reaction-intensities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 41 and Charts D) 553 to D 5\%3.)

The reactivities of the hybrid are the same as those of the seed parent in no reaction; the same as those of the pollen parent in the reactions with iodine, gentian violet, safranin, and pyrogallic acid; the same as those of both parents in none; intermediate with hydrochloric acid, and potassium hydroxide, being closer to the pollen parent in one and mid-intermediate in the other; highest in none; and the lowest with polarization, temperature, chloral hydrate, chromic acid, nitric acid, sulphuric acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride, in all of which being closer to the pollen parent.

The following is a summary of the reaction-intensities: Same as seed parent, 0 ; same as pollen parent, 4; same as both parents, 0 ; intermediate, 2; highest, 0 ; lowest, 20.

Lowest reactivity of the three starches and sameness and inclination to the pollen parent are two features that stand out with marked conspicuousness. The pollen parent seems to have been pre-eminent in determining the characters of the starch of the hybrid, inasmuch as in 25 of the 26 reactions this parent bears the closer relationship to the hybrid, while in the remaining reaction there is mid-intermediateness, but of doubtful valuation.

Composite Curies of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Musa arnoldiana, M. gilletii, and M. hybrida. (Chart E 41.)

The most conspicuous features of the chart are: The general correspondence in the ups and downs of the curves, excepting in the case of M. arnoldiana in many reactions which occur so rapidly that differences are not satisfactorily demonstrated. The three curves from the polarization to the sulphuric acid reactions are in close accord, but from the latter on to the sodium-sulphide reaction the curve of M. arnoldiana shows practically no change, and from then on such alterations as are exhibited occur within the 5 -minute limit, excepting in the barium-chloride reaction, in which the limit is extended to 15 minutes. With M. gillefii and M. hybrida, however, the variations from reagent to reagent are commonly well marked. With somewhat weaker reacents the curve of M. arnoldiana would in all probability correspond in its rariations with the curves of M. gille/ii and the hybrid. The eurve of M. arnoldiana is the highest throughout, excepting in the polarization reaction, and in many instances it is much higher than the curve of 11. gilletii and the hybrid. The curve of M. gilletii is higher than the curve of M. hybride in the reaction with temperature, chloral hydrate, hydrochloric acid, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium salicylate, uranium nitrate, and strontium nitrate: and the same or nearly the same in all other reactions, excepting with polarization, in which it is lower, the same, or nearly the same. The best reagents in the differentiation of these two starches are chloral hydrate, potassium sulphide, sodium hydroxide, sodium salicylate, uranium nitrate, and strontium nitrate. The very high reactions of M. arnoldiana with chromic acid, pyrogallic
acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cohalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; the high reactions with safranin and chloral hydratt: the moderate reactions with polarization, iodine, gentian violet, and temperature ; and the alsence of any low or very low reactivities. The very high reartivities of M. gilletii with sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sollium salicylate, and strontium nitrate; the high reactions with chromic acid, nitric acid, sodium sulphide, and uranium nitrate; the moderate reactivitics in the polarization, iodine, gentian violet, and safranin, temperature, chloral hydrate, calcium nitrate, and copper nitrate reactions; the low reactions with pyrogallic acid, cohalt nitrate, cupric chloride, barium chloride, and mercuric chloride; and the very low reaction with cobalt nitrate. The very high reactivities of M. hybrida with sulphuric acid and the other reagents noted under M. gilletii, excepting strontium nitrate; the high reactions with chromic acid, nitric acid, sodium sulphide, and strontium nitrate; the moderate reactions with polarization, iodine, gentian violet, safranin, temperature, calcium nitrate, urauium nitrate, and copper nitrate; the low reactions with chloral hydrate, pyrogallic acid, cupric chloride, and mercuric chloride; and the very low reactions with cobalt nitrate and barium chloride.

Following is a summary of the reaction-intensities:

	Very high.	High.	Moderate.	Low.	Very low.
M. arnoldiana	20	2	4	0	0
M. gilletii	9	4	8	4	1
M. hybrida .	8	4	8	4	2

42. Comparisons of the Starches of Phaies eranmfolits, P . wallichif, axi P. hybrides.

In the histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents, the parents and hybrid exhibit properties in common in varying degrees of development, and also certain individualities by which collectively they can be identified. The starch of Phaius wallichii in comparison with that of P. grandifolius shows larger proportions of aggregates and compound grains; more frequent irregularities, but given forms of irregularity vary in frequency; and the forms are of more raried types. The hilum is more often distinct, slightly more refractive, and rarely fissured; a longitudinal slit-like cavity at the hilum and a deflected oblique fissure are more frequently noted; eccentricity is more variable and less. The lamellæ exhibit some differences in distribution and form; secondary sets are more numerous; the number is about the same. The size of the larger grains is longer and less wide ; that of the common-sizel grains about the same. In the polariscopic, sclenite, and qualitative iodine reactions there are various differences. In qualitative
reactions with chloral hydrate, chromic acid, pyrogallic acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassiun sulphide, sodium hydroxide, sodium sulphide, and sodium salicylate there are very many points of difference which seem tio he wholly of a minor character. The starch of the hybrid in comparison with the starches of the parents contains larger proportions of aggregates and compound grains than in either parent; irregularities are less frequent ; and there are mere graine of a lender type than in P^{\prime}. grandifolius, but less than in P. wallichiu. The hilum is more refractive and more frequently demonstrable than in cither parent ; a slit-like casity at the hilum is as frequently apparent as in P. grandifolius, but less frequently than in P. wellichii; fissuration is slightly more varied and more frequent than in either parent; clefts in the form of a soaring-bird figure are seen, this form mot being olserved in the parent; ; eccentricity is the same as in P. wallichii. The lamellæ of the primary sets are coarser than in the parents; a refractive border at the proximal and lateral margins is less frequent, and it is of the same width as in P. grandifolius, but less broad as a rule than in P. wallichii. Secondary sets of lamellæ are somewhat more frequent, often larger and commonly located as in P. grandifolius; but less numerous and less varied in location than in P. wallichii; and the number is about the same as in the parents. The size is closer to that of P. gramifolius. In the polarization and selenite reactions there are many inclinations to one or the other parent, but on the whole to P. grandifolius; while in the qualitative iodine reactions the leanings are on the whole to P. wallichii. In the qualitative chemical reactions the peculiarities of one or the other or both parents are very well manifested, but in each the reactions are on the whole closer to those of P. grandifolius.
Reaction-intensitics Expressed by Light, 'olor, and Temperature Reactions.
Polarization:
P. grandifolius, high to very high, value 85.
P. wallichii, high, Inwer than in P. grandifolius, value 80 .
P. hybridus, high to very high, slightly higher than in P. grandifolius, value br.
Iodine:
P. grandifolius, moderate, value 50 .
P. wallichii, moderate, lighter than in P. grandifolius, value 40 .

P . hybridus, moderate, intermediate between the parents, but nearer to P. wallichii, value 43.
Cientian violet:
P^{\prime}. grandifolius, moderato to deep, value 57 .
P. wallichii, light to moderate, lighter than in \mathbf{P}. grandifolius, value 50 .
P. hybridus, moderate to deep, deeper than either parent, value 60 . Safrauin:
P. grandifolius, moderate to deep, value 60.
P. wallinhi, light to moderate, liphter than in P. grandifolius, value 55.
P. hybridus, moderately deep to deep, deeper than in either parent, value 65.
Temperature:
P. grandifolius, in the majority at 65 to fib?, in all hut rare grains at 6 s to 69°, mean 68.5.
P. wallichii, in the majority at 64 to 65°, in all but rare grains at 67 to 68°, mean 67.5°.
P. hytridus, in the majority at 64 to 66°, in all but rare crains at 66 to 68°, mean 66°.
In the reactions with polarization, iodine, gentian violet, and satranin P. grandifolius exhihits higher reactivities than the other parent, hut in the temperature

Table A 42.

reactions lower activity. The hybrid shows in the reactions with polarization, gentian violet, and safranin higher reactivities than either of the parents; with iodine intermediateness, but nearer to P. wallichii; and with temperature practically the same reactivity as that of P. wallichii.

Table A 42 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Phaius grandifolius, P. wallichii, and P. hybridus, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 574 to D 594.)

Among the conspicuous features of these charts are: The correspondence in the courses and the closeness of all three curves in the several reactions. Owing to the very rapid reactions of the starches with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, strontium nitrate, and copper nitrate (10 out of the 21 chemical reagents), satisfactory studies of the curves can not be made. Omitting these, the curves tend to run very closely excepting in the reactions with pyrogallic acid and copper nitrate, in each of which there is well-marked separation. The curve of P. grandifolius is higher than that of the other parent in only the chloral-hydrate reaction, and definitely lower in those of the reactions with chromic acid, pyrogallic acid, potassium iodide, sodium salicylate, calcium nitrate, uranium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride. The curves of the hybrid vary in the different reactions in their parental relationships. There is a marked tendency to intermediateness, and there is about an equal tendency to excess or deficit of reaction as there is to sameness to one or the other and both parents, and there is about equal inclination to one as to the other parent. In only two of the charts (pyrogallic acid and cobalt nitrate) is there evidence of an early period of resistance followed by a moderate to rapid gelatinization. In both only two of the starches (P. grandifolius and P. hybridus) exhibit this feature, but neither to a marked degree. The earliest period of the experiments at which the curves are best separated for differential purposes is with chromic acid, potassium iodide, sodium salicylate, calcium nitrate, uranium nitrate, cupric chloride, and mercuric chloride at 5 minutes; pyrogallic acid and cobalt nitrate at 15 minutes; chloral hydrate at 45 minutes; and barium chloride at 60 minutes.

Reaction-intevsities of the Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 42 and Charts D $57+$ to D 594.)

The reactivities of the hybrid are the same as those of the seed parent in the strontium-nitrate reaction; the same as those of the pollen parent in the reactions with temperature, sodium sulphide, and sodium salicylate; the same as those of both parents with sulphuric acid, hydrochloric acid, potassium hydroxide, potassium sulphocyanate. and copper nitrate, in most all being too fast for satisfactory differentiation; intermediate with iodine, chromic acid, pyrogallic acid, nitric acid, potassium iodide, calcium nitrate, uranium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride (in 4 being closer to the seed parent, in 2 closer to the pollen parent, and in 4 being intermediate);
highest with polarization, gentian violet, and safranin, in all closer to the seed parent; and lowest with chloral hydrate, potassium sulphide, and sodium hydroxide (in 2 being closer to the pollen parent, and in 1 as close to one as to the other parent).

The following is a summary of the readion-intentities: Same as seed parent, 1 ; same as pellen parent, 3: same as both parents, 5 ; intermediate, 11 ; highest, 3 ; lowest, 3 .

In these reactions the parents seem to share about equally their influences in determining the characters of the starch of the hybrid. The tendency to intermediateness is quite marked, and in about one-half of these reactions there is mid-intermediateness. There is a stronger tendency to highest or lowest reactivity than to sameness to one or the other parent.

Composite Curyes of the Reaction-nteverties.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Phaius grandifolius, P. wallichii, and P. hybridus. (Chart E 4..)

Among the most conspicuous features of this chart are:

The very close correspondence in the rises and falls of the curves and in most of the reactions the closeness of the curves to one another, suggesting closely related members of the same genus. The curve of Phaius grandifolius is higher than the curve of the other parent P. wallich i in the reactions with polarization, iodine, gentian violet, safranin, chloral hydrate, and sodium hydroxide; lower with temperature, chromic acid, pyrogallic acid, potassium iodide, sodium salicylate, calcium nitrate, uranium nitrate, cobalt nitrate, cupric chloride, barium chloride, and mercuric chloride; and the same or practically the same with nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium sulphocyanate, potassium sulphide, sodium sulphide, strontium nitrate, and copper nitrate. In P. grandifolius the very high reactions with polarization, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium sulphocyanate, potassium sulphide. sodium hydroxide, sodium sulphide, calcium nitrate, strontium nitrate, and copper nitrate; the high with safranin, chromic acid, potassium iodide, sodium salicylate, uranium nitrate; the moderate with iodine. gentian violet, temperature, cupric chloride, and mercuric chloride; the low with chloral hydrate, purugallic acid, and cobalt nitrate; and the rery low with barium chloride. In P. wallichii the very high reactions with polarization, chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydrozide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride; the high with safranin and mercuric chloride; the moderate with iodine, gentian violet, temperature, nurngall:c acid. and cobalt nitrate; the low with chloral hydrate: and the very low with barium chloride. In P. Inghinitus the very high reactions with polarization, nitric acid, hydrochloric acid, potassium hydroxide. potassium sulphoryanate, potassium sulphide, solium hylroxile, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, and copper nitrate; the high with gentian violet, safranin, chromic acid, potassium iodide, cupric chloride, and mercuric chloride ; the moderate with iodine and temperature ; the low with chloral hydrate, pyrogallic acid, and cobalt nitrate ; and the very low with barium chloride.

Following is a summary of the reaction-inten-ities:

 reactions with selenite, qualitative reartions with iodine, and qualitative reactions with the varions chemical reagents, all three starches exhilsit properties in commun
 ualities, the sum of whinh in anh can io dharameristi. of the stardh. The starch of Mithomin rustio in momparisom with that of 1f. rasillarin how: leac numerans crime proud grains: more ariel auspost * and a larer, r number of the mosaic type; irregularities more fremplant and more pronounced (there are differences in the fr.,quency of the appearance of given forms of irregularity) ; a somewhat abrupt flattening at the distal margin may be observed, which peculiarity is not seen in the other starch; flattening is more frequent in grains with secondary lamelle. The hilum is somewhat more frequ n ly fissured, and when not fissured is lus dist in t: qut., refractive hila rare; cavity directed lungitulinally an! clefts more frequent; fissure projected from the hilum generally deeper, more frequently branched and more common; erentricity less. The lamellap are le-s citma demonstrahle, and there are a number of variations in their distrilution and arouping. The size is larecr, with a marked tendency to hroalnes. In the pelariwopis, selenite, and qualitative indine reatime there are many differences. In the qualitative reactions with chle ral hydrate, chromic acid, hydrochloric acid, potassium iodide, and sodium salicylate there are many similarities and dissimilarities, some of the latter heing quite marked. The starch of the hyridid in enmparisom with the starches of the parents contains larger numbers of compound grains and aggregates; irregularities are slightly less than in M. rexillaria and considerahly less than in M. rozzii; a lateral extension of secondary lamelle is less frequently sem than in M. meltii. The halum when fi-sured is more distinct and is more frequently refractive than in either parent and there are various modifications in the waracters of the fiswures and elefts: cecentricity is about the same as in M. rwotio ambless than in M. vexitlaria. The size is larger than in either parent. The hyhrid itarch is in form, charactur of the hilume and haracters of the lamellem more chasle related to M. reri'laria: but in escentricity of the hilum and size it is mower to M. raclii. In the piolariseppie, stlenite, an I , ualitative indine reactions there are nbymbleminze to ofe or the other parent, hut the relationsthip is "n the whal distimetly cleser tin M. crevildito. In the qualitatue chemical reactions, white the relatimshine are on the whole distinctly closer to .I. vexillariu, the inhlum ons of 1f. roslif on the hybrid stareh are markedy mathit-t.
 ture Reactions.

Polarization:

M. vesillaria. hich to very hieh, rahte 5 .
M. rozlii, maderate to wery hiph, loster than in M. vexillarion value 75.
M. Heluna, high to very hikh, higher tham in at or in ret. vatue Kr .

Iodine:

M. vexillaria, moderate, value 55 .
M. rezlii, moderate, lighter than in M. vexillaria, value 50 .
M. bleusna, moderate, the same as in M. vexillaria, value 55.

Gentian violet:
M. vexilluria, moderate, value 50.
M. rozlii, momerate to deep, deeper than in M. vexillaria, value 55.
M. bleuana, moderate to deep, lighter than in M. vexillaria, valuc 47.
Sufranin:
M. vexillaria, moderate to moderately deep, value 55.
M. reazlii, moxderate to devp, considerably deeper that in M. vexillaria, value 65.
M. blemana, moderate to moderately deep, the same as in M. vexillaria, value 55.
Temperature:
M. vexillarias, in the majority at 70 to 71°, in all but rare grains at 73 to 74°, mean 73.5°.
M. revzlii, in the majurity at 74 to 76°, in all but rare grains at 76 to 77^{3}, mean 76.5
M. Heuana, in the majority at 69 to 71°, in all but rare grains at 72 to 74°, mean 73°.

1. rexillaria shows a higher reactivity than the other parent in the polarization, iodine, and temperature reations, and a lower reactivity in the gentian-vinlet and salraniu reactions. The hybrid has the highest rearativities of the three in the polarization and temperyture reactions, the luwest reactivity in the gentian -violet reactions, and the same or practically the orme reactivities as M. rerillaria in the iodine an' afranin reactious. In all five reactions the hel h is either the same as or closer to M. rexillar;

Tahrent whe shows the reaction-intensities in percentantts of total starch gelatinized at definite intervals (minutes).

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Miltonia vexillaria, M. razlii, and M. bleunna, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts 1595 to 1) 609.$)$

Among the conspicuous features of these charts are: The eloseness and correspondence of the curves in each of the reactions. The reactions with nitric acid, sulphuric acid, hydrochloric acid, and potassium hydroxide occur with such rapidity that there is practically no differentiation. The curve of M. vexilluria is higher than the curve of the other parent in the reactions with chloral hydrate, chromic acid, pyrogallic acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride ; and lower with whalt nitrate and barium chloride. The hybrid, while hearing varying relations to one or the other or buth parents as regards sameness, intermediateness, excess, and deficit in reactivities, shows a remarkable inclination to an almost universally higher reactivity than either of the parents, and, moreover, a similar inclination to the red parme : in only of the es reactions is there a manifort laminer tharid the pollon parent. An early periond of high resistance followed by rapil to moderate gelatinizafion is entirely alsent from this set of reactions. The earlicet period during the 60 minutes that is best for the differentiation of the three starches is for chromic acid, phtassium iowlide, potansium sulphide, potassium sulphocranate, sodium hydroxide, sodium sulphide, sodium salicylate, uranjum nitrate, strontium nitrate, cobalt nitrate, copper nitrate, and cupric chloride at 5 minute; ; calcium nitrate at 15 minutes; chloral hydrate, pyrowallic acid, harium chloride, and mercuric chloride at 30 minutes. The reactions with nitric acid sulphuric acid, hydrochloric acid, and potassium hydroxide are too fast for differentiation of the starches.

Remetion-intensities of the Hybrid.
This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and

Chloral hydrate:
M. vexillaria. M. reezlii. M. Bleuana. Chromic acid: M. vexillaria. M. roezlii. M. bleusna.

Pyrogallic acid: M. vexillaria. M. rcezlii. M. bleuana. Nitric acid: M. vexillarisa M. reflis M Avleuana oulphuric acid: M. vexillaria. M. reszlii. M. bleuana H_{3} drochloric acid: M. vexillaria. M. razlii. M. bleuana.

Potassium hydroxide:

M. vexillaria

 M. rcezlii. . M. blouana. M. vexillaria. M. rœzlii. M. bleuana.Potassium sulphocyanate M. vexillaria. M. rœzlii. M. bleuana.

Potassium sulphide:
M. vexiliaria.
M. rœezlii
M. bleuann .

Sodium hydroxide:
M. vexillaria.
M. rœzlii. .
M. bleuana.

Sodium sulphide: M. vexillaria. M. rœzlii . M. bleuana

Sodium ealicylate:
M. vexillaria. M. rœzlii. M. bleuana Calcium nitrate: M. vexillaria. M. rorzlii M. bleusna.

Traniuns nitrate:
M. vexillaria.
M. rezzlii.
M. bleuana

Strontium nitrate: M. vexillaria... M. rezzlii. M. beunna ('ohalt nitrate: M. vexillaria. M. rerzlii M. bleuana Copper nitrate: M. vexillaria. M. reztlii M. Heuans

Cupric chloride: M. vexillaria
M. rezzlii. M. bleunna

Barium chloride:
M. vexillaria.
M. rerzlii.
M. bleunna

Mercuric chloride:
M. vexillaria.
M. razlii
M. bleuana

Table A 43.

deficit in relation to the parents. (Table A 43 and Charts D 595 to D 609 .)

The reactivities of the hybrid are the same as those of the seed parent in the reactions with iodine, salranin, and potassium sulphocyanate; the same as those of the pollen parent in nome; the same as those of both parents in those with sulphuric acid, hydrochloric acid, and potassium hydroxide, in all of which gelatinization occurs very quickly; intermediate, hut nearer the sent parent, in that with chloral hydrate; highest with polarization, chromic acid, pyrogallic acid, nitric acid, potassium iodide, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, copper chloride, barium chloride, and mercuric chloride (in 14 being closer to the seed parent, in 2 closer to the pollen parent, and in 1 as close to one as to the other parent) ; and lowest with gentian violet and temperature, in both being closer to the seed parent-in the latter practically the same.

The following is a summary of the reaction-intensities: Same as sced parent, 3 ; same as pollen parent, 0 ; same as both parents, 3 ; intermediate, 1 ; highest, 17 ; lowest, 2.
'T'wo very conspicuous features of these data are the very markedly dominating influence of the seed parent on the properties of the starch of the hybrid, and the equally marked tendency to reactivities of the hybrid, higher than those of the parents. In 20 out of the 26 reactions the seed parent is the same or closer to the hybrid, while in only 2 is there closeness to the pollen parent; and in is reactions the hybrid exceds the reactivities of the parents.

Composite Curves of Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Miltonia vexillaria, M. razlii, and M. bleuana. (Chart E 43.)

The most conspicuous features of this chart are: The close correspondence in the rises and falls of all three curves excepting in the reactions with gentian violet, chloral hydrate, and calcium nitrate. In the gentianviolet reactions the curves of M. vexillaria and the hybrid fall, while the curve of M. razlii rises; in the chloralhydrate reactions the curves of the former rise while the curve of the latter falls; and in the calcium-nitrate reactions the curve of M. rezlii appears aberrant by falling. M. vexillaria has higher reactirities than the other parent in the reactions with polarization, iodine, choral hydrate, pyrogallic acid, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide. calcium nitrate, strontium nitrate, copper nitrate, cupric chloride, and mercuric chloride; lower reactivities with gentian violet, safranin, temperature, cobalt nitrate, and barium chloride; and the same or practically the same reaction-intensities with chromic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, sodium sulphide, sodium salicylate, and uranium nitrate. In M. vexillaria the very high reactions with polarization, nitric acid, sulphuric acid, hydrochloric acid, potassimm hydroxide, potassium iodide, potassium sulphocyanter, sodium hydroxide, sodium salicylate, calcium nitrate, strontium nitrate, and copper nitrate: the high reactions with chloral hydrate, chromic acid, sodium sulphide, and uranium nitrate; the moderate reactions with iodine, gentian violet, safranin, pyrogallie acid, and potassium sulphide; the low reactions with temperature. cobalt nitrate, cupric chloride, and mercuric chloride: and the very low reactions with barium chloride. In M. rœzlii the very high reactions with nitric acid, sulphuric acid,
hydrochloric acid, potassium hydroxide, potassium sulphocyanate, sodium salicylate, and strontium nitrate; the high reations with jularization, safranin, ohromas acid, sodium hydroxide, sodium sulphide, uranium nitrate, and "apmer nitrate; the monderate reaterons with iodine, gentian violet, temperature, potassium iodide, and calcium nitrate; the low reactions with chloral hydrate, pyrogallic acid, potassium sulphide, colalt nitrate, cupric chloride, and merouric chloride; and the very low reactions with barium chloride. In M. blouana the very high reactions with polarization, chromic acid, nitric acid, sulphurie acid, hydrochloric acid, potassium hydroxide, potassium iodile, potassium sulphowanate, potassium sulphide, sodium hydroxide, sodium sulphile, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, and copper nitrate; the high reactions with chloral hydrate, pyrogallic acid, cupric chloride, and mercuric chloride; the moderate reactions with iodine, gentian violet, safranin, and cobalt nitrate; the low reaction with temperature; and the very low reaction with barium chloride.

Following is a summary of the reaction-intensities:

	$\begin{aligned} & \text { Viry } \\ & \text { high. } \end{aligned}$	High.	$\begin{aligned} & \text { Mod- } \\ & \text { erate. } \end{aligned}$	Low.	Very low.
M. vexillaria	12	4	5	4	1
M. roezlii.	7	7	5	6	1
M. bleusna .	16	4	4	1	1

44. Comparison of the Starches of Cimbidila lowianlar, C. ebl'rielam, and C. ebleneulowiantig.
In the histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents all three starches exhibit properties in common in varying degrees of development together with certain individualities which collectively are in each case characteristic. The starch of Cymbidium lowinaum in comparison with that of C, eburneum has sometwat less numerous grains of the disaggregate type; pressure facets on separated grains are more numerous; the surfaces of disaggregates are more regular; large grains of the iso lated disaggregate type are more numerous and more raried in form; compactly arranged triplets and quadruplets are more common; components of doublets are more often of equal size ; and mosaics of five to ten components are more rounded. The hilum has a carity or cleft more often ; it is more often fissured; there are various modifications of fissuring; eccentricity is less. The lamella are much less often demonstrable: there is an absence of a secondary set of lamellæ at risht angle to the primary set; the number is probably less. The size is on the whole smaller, and ditlerences are noted in the proportion of length to width. In the polariscopic, selenite, and qualitative iodine reactions various dilferences are recorded in the three starches, mostly apparently of a very minor character. In the qualitative reactions with chloral hydrate, chromic acid, nitric awil. potassium hydroxide, potassium iodide, potassium sulphocyanate, and sodium salicylate various points of difference have been demonstrated, hut theser serm to lee if minor character. Throughout, with few exceptions, the hybrid is much closer to C. lowianum.
Reaction-intensities Exprosscd by linht. Folur. and Timpera twre Reactions.

Polarization:

C. lowianum, high, value 80 .
C. eburneum, high, lower than in C. Jowianum, value 75.
C. eburn-low., bigh, the satue as in C. . lowianum, value wl.

Iudine:
C. lowianum, moderate, value 50 .
C. cburneum, moderate, lighter than in C. lowianum, value 45.
C. eburn-low., moderate, the same as in C. lowianum, value 50 .
(i.ertimat vial.t:
C. lowianum, moderate to moderately deep, value 55 .
C. eburneum, light to moderately deep, slightly deeper than in \therefore lowianum, value 57 .
C. eburn-low., light to moderately deep, the aame as in C. lowi-

-frothits:
C. lowianum, moderate to moderately deep, value 52.
C. eburneum, moderate to moderately deep, slightly deeper than in C. Jowianum, value 55.
C. cburn.-low, moderate to moderately deep, the same as in C. lowianum, value 52.
Temperature:
C. lowianum, in the majority at 58 to 60°, in all at 62 to 63°, mean 62.5°.
('. Amom um, in the matjority at 55 to 59.5°, in all at 65 to 66.5°, me:n 65.76.
C. cburn-low., in the majority at 61 to 63°, in all but rare grains at 67 to 65°, mean 67.5°.
C. lowianum exhibits a higher reactivity than the whor farent in the marization, iodine, and temperature reactions, and a lower reactivity in the gentian-violet and safranin reactions. The hybrid has the same reactivities as C. lowianum in the reactions with polarization, iodine, gentian violet, and safranin, but has a lower reactivity than either parent with temperature, in which it is nearer to U. cburneum.

Table A 44 shows the reaction-intensities in percentages of total starch gelatinized at definite intervals (sec(muls and minutes).

Yelocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of ('ymbidium lowianum, C'. eburneum, and C. eburnco-lowiamu, showing the quantitative difference in the beharior toward different reagents at definite timeintwails. (Charts I) 616 to D 618.)

The reactions with the various reagents, with rare exceptions, occur with such rapidity that such differences as hay have bexem noted are mot conclusive, all three starches being gelatinized completely or practically comphtrly within a minute or two, and oflen within 15 to 30 seconds. Where no differences are recorded between the reactions of the parents those of the hylorid may be distinctly diferent, as in the chloral-hydrate, pyrogallicand, and barium-chloride reactions, especially in the hast. For the reason stated, only the curves of these three reactions have been charted.

This section treats of the reaction-intensities of the hylrid as regards sameness, intermediateness, excess, and
 (harts 1) (61f to 1) (18.)

The reactivities of the hymbid are the same as those of the seel parent in the reactions with polarization, ionline, gentian violel, and safranin; the same as thense of the prillen parent in nome: the same as those of both parents with sulphuric acid, hydrochloric acid, potassium hyilroxide, potassium iodide, potassium sulphocyan:t", potassium sulphide, sodium hydroxide, sodium sulphide, and strontium nitrate, in all of which the reactions are too rapid for differentiation; intermediate or highost in none; and the lowest with temperature, chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sodium salicylate, calcium nitrate, cobalt nitrate, copprr nitrate, cupric chloride, barium chloride, and mercuric chloride (in 1 being closer to the pollen parent, and in 12 as close to one as to the other parent).

The following is a summary of the reaction-intensitire: Name as seed parent, 4 ; same as pollen parent, 0 ;
Table A 44.

same as both parents, 9 ; intermediate, 0 ; highest, 0 ; lowest, 13.

The most striking features of the foregoing data are in the hybrid the entire absence of sameness to the pollen parent, of intermediateness, and of highest reactivity; the frequent sameness of reactivity in relation to both parents; and the large number of lowest reactivities, with almost universal closeness to one as to the other parent. The very high reactivities of all three starches makes differentiation in most instances impossible or unsatisfactory. The seed parent seems to have had on the whole a somewhat higher reactivity than the pollen parent in the reactions with polarization, iodine, gentian violet, and safranin, but in the chemical reactions the reactivitics of the parents seem to be almost if not absolutely identical. It is all the more remarkable that with this parental identity the hybrid should show in any reaction a departure from the parental standard. With modified strengths of reagents undoubtedly parental differences would be brought out, and hybrid-parental differences markedly exaggerated.

Composite Curves of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Cymbidium lowianum, C. eburneum, and C. eburneo-lowianum.

The most conspicuous features of this chart are: The marked closeness of all three curves throughout, excepting in the pyrogallic-acid and barium-chloride reactions, in the latter the hybrid curves exhibiting an exceptionally marked departure from the parental standard. The parental curves are the same or practically the same excepting in the reactions with polarization, iodine, gentian violet, safranin, and temperature, and among these the only important difference is noted in the temperature reactions, there being a difference of 3.25° in the mean temperature of gelatinization. With weaker reagents more or less marked differences in the parents would be elicited in at least most of the reactions where they appear to be identical in the chart. The curve of C. lowianum is higher than the curve of the other parent in the polarization, iodine, and temperature reactions; lower with gentian violet and safranin; and the same or practically the same in all with the chemical reactions. In C. lowianum the very high reactivities in the reactions with polarization, chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cohalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; the high reaction with temperature; and the moderate reactions with iodine, gentian violet, and safranin. In C. lowianum the very high reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, and hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, barium chloride, and mercuric chloride; the high reaction with polarization; and the moderate reactions with iodine, gentian violet, safranin, and temperature. In the hybrid the very high reactions with polarization, chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, potassium hydroxide, potassium iodide, potassium sulphocyanate, potassium sulphide, sodium hydroxide, sodium sulphide, sodium
salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate, copper nitrate, cupric chloride, and mercuric chloride; the moderate reactions with iodine, gentian violet, safranin, and temperature; and the low reation with harium chloride.

Following is a summary of the reaction-intensities:

	Very hiph.	High.	Mod- erate.	Low.	$\begin{aligned} & \text { Very } \\ & \text { fow. } \end{aligned}$
(${ }^{\text {c, lowianum. }}$	22	1	3	0	0
C. eburneum.	21	1	4	0	0
C. eluurn--low.	21	0	4	1	()

45. Comparisons of the ©tabehes of Calaythe hosea, C. vestita var. hebleoocllata, ani C. veitcuil.

In the histologic characteristics, polariscopic figures, reactions with selenite, qualitative reactions with iodine, and qualitative reactions with the various chemical reagents all three starches exhibit properties in common in varying degrees of development and certain more or less well-defined individualities which collectively in each are distinctive. The hybrid Calanthe veitchii is in form, on the whole, much closer to C. rosea, but there are some forms that are the same as those found in and peculiar to C. vestita var. rubro-oculata. In hilum and lamellæ the starch is closer to C. rosea, but in size and proportions of length to width of the grains it is closer to C. vestita var. rubro-oculata. In polariscopic figures and reactions with selenite it is closer to C. vestita var. rubro-oculata. In the qualitative iodine reactions it is slightly closer to C. rosea. In the qualitative reactions with chloral hydrate, potassium hydroxide, and sodium salicylate it is closer to C. vestita var. rubro-oculata, while in the chromic-acid and hydrochloric-acid reactions it is closer to C. rosea.
Reaction-intensities Expressed by Light, Color, and Temperature Reactions.

Polarization:

C. rosea, low to very high, value 55 .
C. vest. v. rubro-oc., moderate to very high, much higher than C. rosea, value 70 .
C. veitchii, low to very high, intermediate between the parents, valuc 60 .
Iodine:
C. rosea, light to moderate, value 40 .
C. vest. v. rubro-oc., moderate, deeper than C. rosea, value 50.
C. veitchii, moderate, intermediate between the parents, value 43. Gentian violet:
C. rosea, moderate to moderately decp, value 55 .
C. vest. v. rubro-oc., moderate to deep, deeper than C. risica, value 60 .
C. veitchii, moderate to moderately deep, intermediate between the parents, value 57 .
Satranin:
(.) rosea, moderate to moclerately deep, value cin_{1}.
C. vest. 'v. rubeo-oce, moderate to moderately deep, derper than C. rosea, value 65 .
C. veitchii, moderate to moderately decp, the same as (.) vestita var. rubro-oculata, value 65 .
Temperature:
C. rosea, in the majority at 74 to 76°, in all at 75 to 77°, mean 76°. C. west. w. rubro-oc., in the majority at i2 to $7^{\circ} t^{\circ}$, in all at 74 to ${ }^{\circ}{ }^{\circ}{ }^{\circ}$ mean 74.5 ${ }^{\circ}$.
C. veitchiii, in the majority at 71 to 72°, in all at 73 to 74°, mean 72.5°.
C. rosed has lower reactivities than the other parent in the reactions with polarization, ionline, gentian viulet, safranin, and temperature. The hybrid has an intermediate reactivity between the parents in the polarization, iodine, and gentian-violet reactions; the same reaktivity as C. vestita var. rubro-oculata in the safranin reaction; and a higher reactivity than either parent in the temperature reaction.

Table $A 45$ shows the reaction-intensities in percentates of total starch gelatinized at definite intervals (minutes) :

Table A 45.

Velocity-reaction Curves.

This section treats of the velocity-reaction curves of the starches of Calanthe rosea, C. vestita var. rubrooculata, and C. veitchii, showing the quantitative differences in the behavior toward different reagents at definite time-intervals. (Charts D 619 to D 626. .)

Among the conspicuous features of these charts are: The marked separation of all three curves in the reactions with chloral hydrate and potassium hydroxile; the practical identity of all three with sulphuric acid; the closeness of the curves of C. rosere and the hybrid curves with pyrogallic acid, chromic acid, hydrochloric acid, and suntium salicylate; and the lower curves of C. restila var. rulro-oculata in all but the sulphuric-acid reactions (even in the latter there is a slightly lower reactivity, althongh mot show in the thart; see reactions in Table A 1.). The curve of ('. rosen is higher than the curve of the other parent, usually very much hisher, in every chart, excepting that of sulphurie acid, in which the differences between the reactions of the parents are not presented, owing to the great rapidity of gelatinization. Even with this reagent differences are shown by the figures of the preceding tables, there heing 9° per cont of the total starch of C. rosea and only 81 per cent of the total -tarch of C. vestile var. rubro-nculata gelatinized in 3 minutes. The curves of the hybrid C. veitchii tend in all of the experiments to be closer, and usually much closer, to the curves of C. roseca tham to those of the other parent. An early period of comparatively high resist-
ance followed by a rapid to moderate rapidity of gelatinization is noted in only the starch of C. vestita var. rubro-oculata, and in the reactions as above stated. The earliest period during the 60 minutes that is best for the differentiation of all three starches is for chromic acid, hydrochloric acid, potassium hydroxide, and sodium salicylate at 5 minutes, and for chloral hydrate, pyrogallic acid, and nitric acid at 15 minutes.

Reaction-intensities of tie Hybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, anddeficit in relation to the parents. (Table A to and Charts D 619 to D 626.)

The reactivities of the hybrid are the same as those of the seed parent in the reactions with chromic acid and sulphuric acid; the same as those of the pollen parent with safranin; the same as those of both parents with polarization, iodine, gentian violet, pyrogallic acid, and potassium hydroxide (in 4 being closer to the seed parent and in 1 as close to one as to the other parent); highest with temperature, chloral hydrate, nitric acid, and sodium salicylate, in all being closer to those of the seed parent; and the lowest with hydrochloric acid.

The following is a summary of the reaction-intensities: Same as seed parent, 2; same as pollen parent, 1; same as both parents, 0 ; intermediate, 5 ; highest, 4 ; lowest, 1.

The most conspicuous features of these data are the pre-eminence of the seed parent in determining the properties of the starch of the hybrid, and the distinct tendency to intermediateness and to highest and lowest reactivities of the hybrid.

Composite Curves of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Calanthe rosea, C. vestita var. rubro-oculata, and C. veitchii. (Chart E 4J.)

The most conspicuous features of this chart are: The close correspondence in the rises and falls of all three curves excepting in the chloral-hydrate reactions, where one of the curves diverges, the curve of C. vestita var. rubro-oculata falling instead of rising in harmony with the curves of the other parent and the hybrid. The curve of C. rosea is higher than the curve of the other parent in the reactions with chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, hydrochloric acid, and potassium hydroxide, and lower with polarization, iodine, gentian violet, safranin, and temperature. In C. rosea the very high reactions with thromic acid and sulphuric acid; the high reactions with safranin, pyrogallic acid, and hydrochloric acid; the moderate reactions with polarization, iodine, gentian violet, chloral hydrate, nitric acid, and potassium hydroxide; tho low reaction with temperature. In C. restita var. rubro-oculata the very high reaction with sulphuric acid ; the high reactions with polarization, gentian violet, and safranin; the moderate reactions with iodine and chromic acid; the low reactions with temperature, chloral hydrate, pyrogallic acid, nitric acid, hydrochloric acid, and potassium hydroxide. In the hybrid C. veitchii the very high reactions with chloral hydrate, chromic acid, sulphuric acid, and hydrochloric acid; the
high reactions with polarization and safranin；and the moderate reactions with iodine，gentian violet，tem－ perature，pyrogallic acid，nitric acid，and potassium hydroxide．

Following is a summary of the reaction－intensities：

	Very hioh．	1ligh．	$\begin{aligned} & \text { Mad- } \\ & \text { arate. } \end{aligned}$	L．ぃw．	$\begin{aligned} & \text { lirs } \\ & \text { low. } \end{aligned}$
C．rosea	\because	3	$1{ }^{\text {i }}$	1	0
C．vest．v．rubro－oc．	1	3	2	6	11
C．veitchii	4	2	6	0	0

46．Comparisoxs of the NTABCHES OF（＇ALAYTHE vestita vale mebro－octiath，（＇．hegnimit，anh C．bryan．
In the histologic characteristics，polariscopic figures， reactions with selenite，qualitative reactions with iodine， and qualitative reactions with the various chemical rea－ gents the starches of parents and hybrid exhibit proper－ ties in common in varying degrees of development and in each case more or less marked individualities．The hybrid C．bryan is in form in the majority of the grains closer to C ．regnieri，and in a minority of the grains closer to C．vestita var．rubro－oculata．In hilum and lamellæ it is closer to C ．regnieri．In mean size the grains are larger than those of either parent but closer to C ．regnieri，while in proportion of length to width they are closer to the other parent．In polariscopic figure and reactions with selenite it is closer to C．regnieri． In the qualitative reactions with iodine it is closer to C．regnieri．In the qualitative changes during heat gelatinization it is，during the first stages，closer to C^{\prime} ． regnieri，but during the later stages closer to the other parent．In the qualitative reactions with chloral hydrate， chromic acid，nitric acid，and sodium salicylate it is closer to C．vestita rar．rubro－oculata，but in those with hydro－ chloric acid and sodium salicylate it is closer to C ． rignieri．
Reaction－intensities Expressed by Li！ht，＇olor，and Timpert－

Polarization：

C．vest．v．rubro－oc．，moderate to very high，value 80 ．
C．regnieri，very low to very high，much lower than in C．vestita var．rubro－oculata，value 35 ．
C．bryan，very low to very high，intermediate betweeu the parents， value 45.

Iodine：

C．vest．v．rubro－oc．，moderate，value 50 ．
C．regnieri，moderately light，lighter than in C．vestita var．rubro－ oculata，value 35 ．
C．bryan，moderate，intermediate between ther baratis，value 3 ふ． Gentian violet：

C．vest．v．rubro－oc．，moderate to deep，value 60.
C．regnieri，light to moderately deep，lighter than in C．vestita var． rubro－oculata，value 50 ．
C．bryan，moderate to moderately deep，intermediate betworn parents，value 53.
Sufranin：
C．vest，v．rubro－oc．，moderate to moderately deep，value 65.
C．regnieri，moderate to moderately deep，lighter than in C．vestita var．rubro－oculata，value 60.
C．bryan，moderate to moderately deep，intermediste between the parents，value 63.

Temperature：

C．vest．v．rubro－oc．，in the majority at 72 to 74° ，in all at 7 it to 75 mean 74.5° ．
C．regnieri，in the majnrity at 70 to $\overline{2} 2^{\circ}$ ，in all but rare krains a 76 to 75° ，mean 7°
C．bryan，in the majority at 72 to 74° ，in all but rare grainy at 76 t 77° ，mean 76.5°.
（＇．vestita var．rubrooculaturx！ihite a biinher reatio－ ity than the other parent in all five reactions，the differ－
 light in those with temperature；and litte in the oflur－ The hybrid C．bryan has intermediate reactivities in． tween the parents in all of the roactions，being generally somewhat closer to C ．vestite var．rubro－oculate than to the other parent．
 ago oi total starch statinized at definite intervil－（＊ec－ onds and minutes）：
＇TAMLE：A 46 ．

	$\stackrel{1}{2}$	三	$\begin{aligned} & \equiv \\ & \because 1 \end{aligned}$	E	E	E	$=$ $=$	\％	三	\pm E
Chloral hydrate：										
C．vest．v．ruliru－er						46	93	5x	60	6，2
（. ．remuiari						67	95	94		
C．bryan						61	75	89.	91	94
Chromic acid：										
C．vest．v．rubrooc．						111	65	60	9：	96
（ ）reyuieri						75	90	99，		
C．bryan						40	\checkmark	93	99	
Pyrogallic acid：										
C．Vest．v．rularo－oce						10	20	60	St	＋9
（ \because requeri						25	6f	$93{ }^{\circ}$	96	95
C．bryan						15	33	80	ni	92
Nitric acis：										
C．vest．v．rulso－oc						61	64	71	73	F
C．regnieri ．．．．．．						At）	93	96		
（ ${ }^{\text {a }}$ hryan						62	75	81	x	4
Sulphuric acid：										
C．vest．v．rubro－oc				$\lambda 1$		99				
（ \because regnieri	94									
C．bryan．				97		93				
Hydrochloric acid：										
C．vest．v．rulsro－oc						1.	33	64	71	7
C．regnieri．．．．．．．						42	71	89	（2）	05
C．bryan．						$5)$	74	y^{2}	94	96
Putassium hydruxide：										
C．Vest．V．rubru－m						5.4	65	7：	75	7
C．regnieri						7	s0	8	90	93
（．hryan						53	62	71	75	\cdots
sodium salicylate：										
（ \because vest．V．ral ra＋bl						15	＋3	4，		
（. ．regnieri						931				
C．bryan						5.	19			

Velocity－heaction Curyes．

This section treats of the velocity－reaction curves of the starches of Calanthe vestita var．rubro－oculata，C ． regnieri，and C ．bryan，showing the quantitative differ－ chees in the behavior toward different reagents at definite

Among the most conspicuous features of these charts
 all thre corves．The well－mathed somation of the parental curves，even in the sulphuric－acid reactions． which occur rery quickls，there heine as high a gelati－ nization of one parent in one halt a minthe as in the． other in 5 minutes．The curve of C．vestita var．rubro－ ordala is lower than the curse of the other parent in all of the is reations．The curbos of the hemend－hen a very marked tendency to intermediatumes，and when met mid－intermediate the indination seems to be mere marked toward the pollen parent．In other reactions，in whe there is samenese，in relation to the seed farent and in another the hyhrid reastion is the highest of the there and nearer the pollon parent．A trank mo in ata early
period of high resistance followed by a rapid to moderate gelatinization is not noticeable excepting the reactions with chromic acid, pyrogallic acid, and sodium salicylate with C'. vestita var. mubro-oculata, and in the pyrogallicacid reaction with the hybrid C. bryan. The earliest period during the 60 minutes at which it is best for the dillerentiation of the three starches seems, for chromic acid, sulphuric acid, hydrochloric acid, potassium hydroxide, and sodium salicylate, at 5 minutes; for pyrogallic acid at 10 minutes; and for chloral hydrate and nitric acid at 15 minutes.

Reaction-intensities of the IIybrid.

This section treats of the reaction-intensities of the hybrid as regards sameness, intermediateness, excess, and deficit in relation to the parents. (Table A 46 and Charts D 6:2 to D) (63.t.)

The reactivities of the hybrid are the same as those of the seed parent in the potassium-hydroxide reaction; the same as those of the pollen parent or both parents in none; intermediate in the polarization, iodine, gentian violet, safranin, temperature, chloral hydrate, chromic acid, pyrogallic acid, nitric acid, sulphuric acid, and sodium salicylate reactions (in $\mathbf{1}$ being closer to the seed parent, in 4 closer to the pollen parent, and in 5 being mid-intermediate) ; highest in the hydrochloricacid reaction, and closer to the polleu parent; and the lowest in none.

The following is a summary of the reaction-intensities: Same as seed parent, 1; same as pollen parent, 0 ; same as both parents, 0 ; intermediate, 11; lighest, 1 ; lowest, 0 .

The pollen parent seems to have been more effective than the seed parent in determining the characters of the starch of the hybrid. Intermediateness is quite marked, and in about one-half of these reactions there is midintermediateness.

Comiroste (frbes of the Reaction-intensities.

This section treats of the composite curves of the reaction-intensities, showing the differentiation of the starches of Calanthe vestita var. rubro-oculata, C. regnieri, and C. bryan. ((hart E 46.)

The most conspicuous features of this chart are: The very close correspondence in the rises and falls of all thrce curves excepting in the chloral-hydrate reactions, in which the curve of C. vestita var. rubro-oculata falls insteal of rises in harmony with the curves of the other parent and the hybrid, as in the preceding set of Calanthe. The marked separation of the curves of the two parents in the reactions with polarization, chloral hydrate, chromic acid, pyrogallic acid, and nitric acid, and their closeness in the others. The tendeney in general for the curve of the hyrbid to have a position of some degree of intermediateness and with an apparent closer relationship to C. regnicri than to the other parent. The higher position of the curve of C. vestita var. rubrooculata than that of the other parent in the reactions with polarization, iodine, gentian violet, salranin, and temperature: and the lower positions with chloral hydrate, chromic acid, pyrogallic acid, nitrie acid, sulphuric acid, hydrochloric acid, and potassium hydroxide. In
C. vestita var. rubro-oculata the very high reaction with sulphuric acid; the high reactions with polarization and safranin; the moderate reactions with iodine, gentian violet, and chromic acid; and the low reactions with temperature, chloral hydrate, pyrogallic acid, nitric acid, hydrochloric acid, and potassium hydroxide. In C. regnieri the very high reactions with chloral hydrate and sulphuric acid; the high reactions with safrauin, chromic acid, pyrogallic acid, and nitric acid; the moderate reactions with gentian violet, hydrochloric acid, and potassium hydroxide; and the low reactions with polarization, iodine, and temperature. In the hybrid C. bryan the high reaction with sulphuric acid; the high reactions with safranin and chromic acid; the moderate reactions with polarization, gentian violet, chloral hydrate, chromic acid, pyrogallic acid, and hydrochloric acid; and the low reactions with iodine, temperature, nitric acid, and potassium hydroxide.

Following is a summary of the reaction-intensities (12 reactions) :

	Very high.	High.	Moderate.	Low.	Very low.
C. vestita var. rubro-oculata.	1	2	3	6	0
C. regnieri. .	2	4	3	3	0
C. bryan. .	1	2	6	3	0

Notes on the Calanthes.

In comparing the two composite-curve charts it will be observed that the curves correspond with sufficient closeness to indicate a common generic type. The three parents show marked closeness (or even a practical identity) in the reactions with iodine, gentian violet, safranin, temperature, sulphuric acid, and potassium hydroxide; but more or less marked differences in those with polarization, chloral hydrate, chromic acid, pyrogallic acid, nitric acid, and hydrochloric acid. The greatest interest in these charts doubtless centers in the differences in the relations of the hybrid curves to the parental curves, in the first set the hybrid curve tending in general to follow more closely the parent (seed parent) having the higher mean reactivity, and in the second set to follow more closely the parent (pollen parent) having the lower mean reactivity. In both sets C. vestita var. rubro-oculata is a parent, in one the pollen pareat and in the other the seed parent, but in neither does the hybrid show as much closeness to it as to the other parent. The relations of the hybrid curres as regards sameness, intermediateness, and excess are quite different, as indicated in the summaries. Owing to peculiarities of the grains of Calanthe referred to in Part II, page 769 , the studies of the reactions with different reagents were limited to comparatively few of the reagents, and it is obrious for reasons stated that the data recorded must be accepted with reserve.

Notes on the Oreilids.

The composite curve charts of Phaius and Miltonia are very much alike, indicating closely related genera, and quite different from those of c'ymbidium and Catanthe, which differ very markedly from each other and also from Phaius and Miltonia.

CHAPTER IV.

GENERAL AND SPECIAL CONSIDERATIONS OF THE REACTION-INTENSITIES OF THE STARCHES OF PARENT-STOCKS AND HYBRID-STOCKS.

The reaction-intensities of starches lend themselves admirably to presentation in the form of charts, which charts in turn are peculiarly well adapted for comparative purposes. It has been found advantageous, as stated in Chapter II, to render these data in three main and various special forms of charts, each serving to accentuate some special feature or features of the reactions. Of the three main forms, one presents the reactionintensities of different starches with each agent and reagent with reference especially to the specific properties of each agent and reagent, and to these peculiarities with reference to varietal, species, subgeneric, and generic groupings; another form exhibits in particular the progress of gelatinization of the starches of the parents and hybrid with different reagents in terms of percentage of starch gelatinized; and a third form gives a composite picture of the reaction-intensities of the starches of the parents and hybrid with all or some of the agents and reagents which serves in a special way to differentiate varieties, species, subgenera, and genera, and to exhibit the relations of parents and hybrids. These three forms of charts are included in the present chapter under the corresponding headings above given, and several special charts have been added which later receive adequate attention. The second and third forms have had more or less detailed comment in the preceding chapter, but additional remarks that are desirable or necessary will follow in the second and third sections of this chapter. The first form of chart will be taken up for consideration in the immediately following section. It has been found advantageous to present these charts in two series, A 1 to A 26 and B 1 to B 42, which series are complementary, but demand separate consideration. The first series gives the reaction-intensities of all or most of the starches, and the second series only those of selected starches, the reasons for the latter being stated in subsequent pages.

1. Reactiox-intensities of Starcies with Eacif Agext and Reagent.

(Charts A 1 to A 26.)

The reaction-intensities of different starches with different agents and reagents differ within wide extremes, owing in part to inherent peculiarities of the starch molecules and in part to peculiarities of the reagents as regards both chemical composition and concentration of solution. In some instances the starch molecules alone or largely determine the reaction, while in others both starch and reagent play important parts, as in chemical reactions generally. Thus, as will be stated fully later on, in the polarization reaction the
starch molecule undergoes no change, the reaction being physical; hence it expresses peculiarities that are inherent to the molerak. In the grontian-vioket and safranin reactions the organization of the molecule is cither unaffected or affected to an undetectable degres, the reactions being presumably adsorption phenomena. In the iodine reaction there is probably a combination of the iodine and starch, but without apparent intermolecular disorganization. In the temperature and chemical-reagent reactions there is an intermolecular breaking down by a process of hydration, with which process there may be associated reactions that vary in character in accordance with peculiarities of the composition of the reagents. If the molecules of the starches from different sources are in the form of stereoisomers it follows, as a corollary, that they must act differently with different agents and reagents and that, inasmuch as the agents and reagents differ, each starch should show differences that are related to variation in the kind of agent and in the composition and concentration of the reagents. In other words, the reaction in each case is conditioned by the kind of starch and the kind of agent or reagent. Such is in fact what has been found experimentally, as the subsequent data show.

The most conspicuous features of these charts may be summed up as follows, consideration in detail being given under the corresponding headings:
The wide range of reaction-intensities, the extent of which varying with the different agents and reagents, and being most marked with the reagents.
The manifest tendency to grouping of the reaction-intensities of different starches in harmony in general with botanical groupings.
The individuality or specificity of each chart that is definitely related to the character of the agent or reagent, this characteristic being most obvious in the reactions in which the starch molecule is disorganized.
The specificities of the components of the reagents that are accountable for variations in the reaction-intensities and in the qualitative changes apart from those dependent upon differences in stereoisomeric forms of starch.
The variable relationships of the reaction-intensities in the different charts as regards sameness, intermediateness, excess and deficit of reactions of the hybrid starch in comparison with the parental starches.
Variations in the reaction-intensities of the starches as regards height, sum, and arerage.
The average temperatures of gelatinization compared with the average reaction-intensities.

Wide Range of Reaction-Intensities.
 (Charts A 1 to A 26.)

In comparing the range of reaction-intensities it must be borne in mind that the values expressed in the polarization, iodine, gentian-violet, safranin, temperature, and chemical-reagent charts are not formulated upon the same basis of calibration. In the first four instances the values are grossly quantitative, and the abscissæ are founded upon crude and entirely arbitrary standards and do not likely represent values that are equivalent to those of the temperature or chemical-reagent records. The temperature values are based upon a scale that is different from those of the first group and from those of the chemical reagents. The calibrations in the first group, apart from the crudeness, are probably defective because the reaction-intensities of the starches studied do not extend, as in the case of those of the chemical reagents, between the extreme limits of the chart: The range in the temperature of gelatinization charts closely resembles in its limitations the ranges in the iodine, gentian-violet, and safranin charts.

In these charts the abscisse-values, in comparison with the corresponding values in the chemical-reagent charts, are much too limited, but at present we have no data which enable us to state (in terms of light, color, and temperature reactions) the equivalent of a given reaction-intensity that is expressed in time-per cent of starch gelatinized. For instance, a difference of 2.5° in the temperature of gelatinization which is represented by the space between two abscissæ appears small on the chart, yet this difference may have a differential value that is equal to several times this abscissæ-value in the chemical-reagent charts. These temperature differences would have been nearly equitably expressed in comparison with the chemical-reagent values had the temperature scale been between the extremes of say 50° and 85° instead of 40° and 95°. A similar change could have been made to advantage in the scales of the other charts mentioned. Comparing cursorily these five charts (A 1 to A5), it will be noted that notwithstanding the comparatively limited ranges of reaction-activities each may readily be distinguished from the others, with the exception of the gentian-violet and safranin charts, which are very much alike and which, while easily differentiated from the other charts, are distinguished from each other only and doubtfully by careful comparison (see also Chart B 2). In fact, the differences in the latter are unimportant because the crudeness of the method of valuation probably makes them fall within the limits of error or observation. Among the chemical-reagent charts the variations in reaction-intensities range in nearly all, from reactions which are complete within a few seconds to those in which so little as 2 per cent or less of the starch is gelatinized in 60 minutes. In exceptional charts (Charts A 10 and A 18, sulphuric acid and sodimm salicylate) the extent of the variations is distinetly limited gemerally because of rapidity of gelatinization of the starches, in the former most of the reactions being shown to be complete within 5 minutes, and in the latter within 15 minutes.

Manifest Tendency to Groupings of Reaction-

 INTENSITIES.In both the preceding and present researches, particularly in the former because of the relatively large numbers of species and varieties included among many of the several genera, it has been found that the reactionintensities of the representatives of a genus tend to be confined usually within well-restricted limits, the maxima and minima reations of members of the genus being in general wider apart as they are botanically farther separated, the greatest differences being noted when specimens are included which belong to well-defined generic subdivisions. Where the representatives of a genus are not so far separated as to fall into such subdivisions, the variations tend to be confined to a space on the charts that rarely exceeds 3 to 5 abscissæ (22 being the chart limit), frequently less; but where there are representatives that belong to different well-defined subgeneric divisions (for instance, subgenera, tender and hardy species, tuberous and rhizomatous forms, etc.) the variations are, on the whole, much more extensive, equivalent usually to the space of 10 to 20 abscissæ or they may extend to practically the extremes of the chart. As extraordinary as it may seem, while such extreme variations may be found with one reagent, little or no difference may be found with another reagent; and with other reagents all intermediate values may be noted between these extremes. These facts are well illustrated in Begonia: No differences are noted in the reaction-intensities of these starches in Charts A 10 and A 12 (sulphuric-acid and potassium-hydroxide reactions), gelatinization in all being complete within less than a minute; while in a number of other charts (as in Chart A 9, the nitric-acid reactions) the same remarkably rapid reaction owurs in the starch of only one of the parents and in the hybrid, while the reaction of the other parental starch is remarkably slow.

The extent of generic differentiation varies in the different charts. Some differentiation is evident, for instance", in ''harts A 6, A 15, A 18 (chloral-hydrate, potassium-sulphide, and sodium-salicylate reactions); there is better differentiation in Chart A 7 (chromicacid reactions) ; and still better differentiation in Chart A 8 (pyrogallic-acid reactions). The grouping of members of a genus and the differentiation of the genus upon the basis of reaction-intensities can be rendered satisfactory only when large numbers of members of each genus are studied; when the maximum, minimum, and average values are determined with a number of reagents; and when it is recognized that members of subgenera and of other generic divisions may exhibit in the sum of their reactions differences that may be as divergent as those of different genera. For instance, in Nerine, it will be seen that in 1 ? of the 26 charts the values of the 3 groups are within very restricted limits and constitute a group of close values; and, morcover, that while the maximum, minimum, and average values of the group may be about the same as the eorresponding values of other generic groups, in certain reactions they will be found to be different, so that in the final summing up the genus stands very distinctly apart trom the other genera. In the remaining 9 charts there are varying degrees of departure from this well-defined grouping,
chicfly because of the comparative less reactivity of the first set of parents and hybrid than of the other sets. In ('hart A^{\prime} (chatoral-hytrate reactions) there is marked extension of the maximal and minimal limits of the reactions owing to the prolongation of 4 of the 11 lines, so that the group is nothing like so distinetly individualized as in the 18 charts referred to wherein the maxima and minima are close. In Charts A9, A11, A12, A 14, A 15, and A 21 (nitric acid, hydrochloric acid, potassium hydroxide, potassium sulphocyanate, potassium sulphide, and strontium nitrate) there is a wellmarked separation of the first from the second and third sets, the latter showing about the same, and the former distinctly higher reaction-intensities. Such peculiarities are found to be common among the other genera where a number of sets of parents and hybrids are included, from which it is obvious that where a gemus is represented by a single such set the maximum, minimum, and mean reactive-intensities are to be taken merely tentatively as representing the generic standards.

This statement finds immediate application to a number of generic groups represented in these charts, including A maryllis-brunsrigia (bigeneric), Gladiolus, Tritonia, Richardia, Musa, P'haius, Miltonia, and Cymbidium. The maximum, minimum, and average values differ not only in the case of different sets of parents and hybrids of the same genus, but also of the members of the same set with different reagents. Thus, in Nerine, in Charts A 8 and A 17 (pyrogallic-acid and sodium-sulphide reactions) and in certain other charts, the maxima, minima, and averages for all of the species and hylrids are practically absolutely the same, but in ('harts A 11 and A $1 t$ (hydrochloric-acid and potassium-sulphocyanate reactions) and in others, all three are different in all three sets of starches. Finally, generic grouping may seemingly be set aside in some instances by wide differences in the reaction-intensities of one or more sets included in the genus group. This is well illustrated in Crinum, Iris, and Begonia in Chart A 9 (nitric-acid reactions). The species of Crinum studied in this research are divisible into two horticultural groups, which are distinguished as tender and hardy, the starch of the former being characterized by generally low reactivities and those of the latter by generally high reactivities, the differences being so marked that it is necessary to recognize in these starches two distinct subgeneric groups. Such differences are well shown in other charts, such as Charts is A $10, \mathrm{~A} 11$, and $\mathrm{A} 1 \%$, but there is an entire absence of such distinction in Charts A 6, I $\%$, A 15 , A 19 , I 22. A 23, A 25, and others. In fact, in several of the latter the differences are so slight as to suggest very closely related members of the genus. In Iris there is a very conspicuous example of suhgeneric grouping: In (harts A $5, \ 6, \ i, A 10$, and $\backslash 15$ the reaction-intensities of the members of all four sets are nearly the same or do not differ to a marked degree; but in $\AA 8, \mathrm{~A} 9, \mathrm{~A} 11$, A $1 \geqslant$, A 13, A 14. A $16, A 12, A 18, A 19, A 20, A 21, A \because 2$. A 23 , A 24, A 25, and A 26 there is a well-marked grouping, the first three sets constituting one group and the last set another group.

With the exception of Charts 16 and $A 18$ the first group is characterized by lower reaction-intensities, which with rare exceptions tend to be very close in all
three rets, thus forming a very distinet group. Whald. in Charts A fond A th the same grouping remaine, there is a reversal of the reaction-intensities, the lirst eroup showing less reactivity than the seromi groap. Ewn mone interesting is Begoniut: In (hart A y there is no obvious diflerentiation of any of the sets of member: of a set, but in Chart A 6 there appears a very conspicuous differentiation in the comparatise shownes of the R. socotrana reaction; and in all other charts, with four exceptions, the length of the line is accentuated in varying degree, thus markedly characterizing the suts of th's group. This seemingly aberrant reaction-inten-ity of this exceptional species gives a peculiar generic picture, and means, as in the instances of Crimum and Iris, two generic types.

The correspondence of the grouping of the reactionintensities of starches in accordance in general with genera is usually quite evident, this bring not only more marked with some than with other agents and reagents, as stated, but also more marked with some than with other groups. A given group may stand out very conspicuously in one chart, but not in another, or wen not be differentiated from adjoining groups, yet be more or less distinctly differentiated from the same groups in other charts. For instance, in Chart A 10 (sulphuricacid reactions), taking the genera represented by Nerine, Narcissus, Lilium, Iris, Gladiolus, and Tritonia, it will be seen that with the exception of Gladiolus there is no differentiation of the reaction-ralues that even surgests that the records are those pertaining to different genera; in fact, they are so nearly alike as to indicate that the several groups belong to a single genus. The Gladiolus reactions take place with comparative slowness, which distinctly differentiates this genus from the five other genera. In Chart A 11 (hrylrochloric-acid reactions) Lilium stands very distinctly apart from the other five genera; Verine and Narcissus are not differentiated from each other, hut they differ from Lilium, Iris, Gladiolus, and Tritonia.

It will be seen that three of the four sets of Irids are practically alike and markedly different from the fourth set, showing what marked differences may be exhibited by members of subgenera or of similar divisions of genera. In Chart A 12 (potassium-hydrovide reactions) the picture is radically changed in a number of particulars: Lilium remains conspicunus as before; $N e$ rine and Narcissus are very definitcly grouped, the lines of the former being very short and those of the latter quite long; Iris differs but little, as a whole, from the preceding chart; and in both Gladiolus and Tritonia the lines are prolonged and about the same, giving no differentiation between these two genera. In Chart A 13 (potassium-iodide reactions) the picture again differs: Lilium is about the same; the Terine lines are very considerally prolonged and markedly exceed the length of the Narcissus lines which are slightly shortened in comparison with the length in the precerling chart, thus showing a marked reversal of the quantitative relationships. The Narcissus lines and those of the first throw set of Irids are about the same, whereas in the preceding chart the latter are, on the whole. distinetly shorter: and Glatiolus and Tritonia are about the same, hat longer than the Narcissus and Iris lines, and shorter than the

Nreine lines. In Chart 115 (potassium-sulphide reactions) Lilium remains the same; Nerine and Narcissus are distinctly different, the lines of the former being much shorter than those of the latter: and the lines of Narcissus, Iris (all four groups), Gladiolus, and Tritonia are all prolonged to about the same level, so that there are no generic differentiations of these four genera. In Chart A 18 (sodium-salicylate reactions) there is a noticeable absence of resemblance of the lines collectively to those of any of the preceding charts. Here, Nerine, Narcissus, Lilium, and Iris (the first three sets of the last) are, on the whole, very much alike. The third set of Iris, which in the other charts shows greater reactivity than the other three sets, now shows the opposite relationship; and, moreover, while this set in the previous charts is markedly different from Gladiolus and Tritonia, here it is the same. Similar differences will be found in other generic groups, in other sets, and also with other reagents. These characteristies demonstrate conclusively that the starches of different generic groups and suhgroups differ within wide limits in their molecular structures; that there are very definite generic and subgeneric peculiaritics; and that these differences can satisfactorily be reduced to figures and charts.

Indifide ality on Specificity of Eacif Chart.

The individuality or specificity of each chart is very pronounced and is most striking in the reactions in which there occurs intermolecular disorganization of the starch. Inasmuch as the starches are the same in each of the charts (except in some instances as to number), and the agents and reagents are variable, this individuality is definitely associated with peculiarities of the latter. Taking the charts, as a whole, it will be seen that no two are alike, although in exceptional instances, and for very obvious reasons, they differ in only minor degrees and even within the limits of error of experiment; well-marked examples of the latter are found in the wentian-violet and safranin, and in the copper-nitrate and cupric-chloride charts. On the other hand, where in accordance with general laboratory experience no material differences should be expected, excepting such as would be dependent upon differences in the concentration of the reagents, as in the potassium and sodiumhydroxide charts, respectively, the individualization is not moly very marked, but alsn in a measure entirely independent of differences in concentration.

Is previonly stated, these 26 charts fall naturally into two primary divisions in accordance with whether or not in the reactions there occurs intermolecular disorganization. In conformity with recognized principles of physieal chemistry, comparatively limited variations should, as a rule, be expected when in the reations the stareh moleroulse remain wholly or apparently intact, as in the polarization, iodine, gentian-violet, and safranin reactions; but wide to extremely wide variations when the molecules are broken down, especially in cases of reagents which may have multiple active components taking part in the disintegrative processes. As previously stated, the polarization reaction is a light reaction in which the molewles are undisturbed : the erentian-violet and safranin reactions are, in all likelihood, adsorptive phenomena which, as far as known, do not involve dis-
arrangement of the starch molecules; and the iodine reaction seems to be of a kind in which an unstable iodide of starch is formed, but without obvious intermolecular disorganization; the temperature reaction is one of hydration which, while causing intermolecular breaking down, does not give rise to a loss of typical starch properties; and the reactions with the various chemical reagents are primarily phenomena of hydration, such as are brought about by heat, but modified quantitatively and qualitatively by differences in the components of the reagents which take part in the reaction.

It is obvious that the polarization reactions stand entirely apart from all others; that the gentian-violet and safranin reactions constitute an isolated pair; that the iodine reactions stand by themselves; and that the temperature and chemical-reagent reactions form a welldefined group, the former representing one and the latter another subgroup. In the temperature reaction we have a typical manifestation of the simplest form of the process of gelatinization, while in the chemical-reagent subgroup there is this same type but which is more or less materially modified by various substances that have chemical relations to the starch molecule. A comparison of the temperature and chemical-reagent charts will show that the latter not only differ markedly from the former, but also as much or more from each other. It would seem to follow, as a corollary, that the more varied and widespread the chemical disturbances in the starch molecules the more varied the reactions and the better the differentiation of genera, species, parents, and hybrids.

The individuality of each of the chemical-reagent charts that is definitely associated with peculiarities of the reagent is due in part to concentration and in part to composition of the reagent. This salient point is elicited clearly when the data recorded in any two arbitrarily selected charts are compared. Thus, taking Charts A 6 and A 7 (chloral-hydrate and chromic-acid reactions) a first glance will indicate that the average length of the ordinate in the former is greater than in the latter and, hence, that the concentration (reactive-intensity of the reagent) is less than in the latter; but it will also be very apparent, upon comparing the lengths of the ordinates of any given set of parents and hybrid, or of any generic group in the two charts, that the differences are not such as are to be expected were the reactionintensitics exhihited by those reagents dependent solely upon differences in concentration.

Should the differences in the reaction-intensities depend merely upon differences in concentration (as of the same reagent) it seems obvious that if with a given starch the reaction with one reagent is equal to the length of say 2 abscissx, and with another reagent to the length of 3 abscisse, a corresponding though not necessarily proportional relationship should be found in the reactions of the different starches. In fact, not only may there be an entire absence of such quantitative relationship, but also a reversal of reaction-intensities, the reagent of higher concentration being the stronger in some reactions but the weaker in others. Thus, in Chart A 6 (chloralhydrate reactions), in the Amaryllis-Brunsvigia-Brunsdonna set, it will be seen that the ordinates for Amaryllis and Brunsvigia extend to the abscisse values 96 and 82 , respectively, and that those for the hybrids extend to

30 and 28 , respectively; meaning that 96 and $8: 2$ per cent, respectively, of the total starel was gelatinized in 60 minutes and that 95 per cent of the starch of each hybrid was gelatinized in 30 and 28 minutes, respectively. Turning now to Chart A 7 (chromic-acid reactions), it will be noted that while there is considerable shortening of the Amaryllis and Brunsrigut lines the hybrid ordinates are virtually abolutely the same. Takiur the Hippeastrum, IIfemanthus, and ('rinum groups, it will be noticed that in Chart A6 the average reactivity of the Hippeastrum group is slightly less than the reactivities of the Itemanthus, and Crinum groups, which are nearly alike; while in Chart $\mathrm{A} \gamma$ the average reactivity of the first group is greater than in either of the other groups, and the reactivity of the Crinum group is somewhat less than that of Hippeastrum group. In Chart A6 the average reactivity of Nerine is greater than in Chart A 7, the reverse of what was noted in A maryllis-Brunsvigia, Hippeastrum, IItrmanthus, and Crinum. In Narcissus the same reversal is noted except in one parent and the two hybrids of the first set. In Chart A r there are, in comparison with the preceding, generally higher reactivities of Lilium, Iris, Gladiolus, Tritonia, Musa, Phaius, Mittonia, Cymbidium, and Calanthe; but the opposite with Begonia. Among the first generic groups there will be found many exceptions-that is, lower reactivities. For instance, the reaction of Lilium martagon instead of being shorter is longer ; the reaction of L. chalcedonicum and L. candidum are shorter, hut not the reaction of L. testaceum; and those of L. pardalinum and L. parryi are shortened, while the reactivity of L. burbanki is lengthened. Similar inequalities appear in other groups. Finally, in Begonia the reactions with a single exception instead of being shorter are longer, especially the reaction of B. socotrana.

The remarkable differences in the behavior of different reagents, irrespective of concentration of solution, are perhaps better presented in charts of reactions of very closely allied reagents, for instance, in Charts A 12 and A 16 (potassium-hydroxide and sodium-hydroxide reactions). The average reaction-intensity exhibited by the potassium-hydroxide chart is in some instances greater and in others less than by the sodium-hydroxide chart. The records are so pregnant with interest that each set or group may with ample justification be taken up separately. Beginning with the Amaryllis-brunsvigia set it will be seen that with potassium hydroxide the reactions with the four starches occur with such rapidity that gelatinization is practically or absolutely complete within 1 minute; with sodium hydroxide all four reactions differ to so marked a degree that each is at a glance differentiated from the others-in Amaryllis 93 per cent of the starch is gelatinized in 3 minutes, in Brunsvigia 95 per cent in 15 minutes, in Brunsdonna sanderac alba 65 per cent in 60 minutes, and in Brunsdonna sanderrp 88 per cent in 60 minutes. The averare reactivity of IIpurnstrum with potassium hydroxide is it per cent, with sodium hydroxide 44 per cent, in 60 minutes; that of Hormanthus is about the same with both reagents, the chief difference being scen in the marked elongation of the I. puniceus ordinate in the sodium-hydroxide reaction. The Crinum ordinates differ in the two charts very little, the only noticeable differences being seen in the C. moore i,
C. kircape, and C. powerlii ordinates, mostly not at all marked. In Nerine there are wide differences, the potassium hydroxide ordinates heine very markedly sherter than these of sontiom hedrovide, the former indiatines almost if not eomplete gelatinization of all of the starche 6 in 3 minutes or lose, and the latter an inserate ormatinization of about 15 per cent in for minulus. Thin wile difference in emparison with what win nom in Hippeastrum, IIamumthns, and C'rinum is remarkathe. Narcissus, like the last three ernera, does not fhow very much difference with these reagents, the averages being 63 and $8: 3$ fer cent, respectively, in 6,0 minutes, the shortening being due almost wholly to the greater reactivition of the parents. The starches of Lilium csitatinize with great rapidity with both reagents. The Iris ordinates are longer thromonot in the potassiumhydroxide chart except in case of I I Trojena, the ordinate remaining the same in the sulium-hydroside chart motwithstanding that the ordinates of the other parent (I. iberica) and the hybrid (I. ismali) are materially shortened. In Gladiolus and Tritonia the ordinates are very nearly the same in the potassium hydroxide chart, but both are shortened in the sombin-hydrovide chart, Cladiolus somewhat less than Tritonia. In Regonia a striking difference is seen in the B. socotrana ordinates but very little differences in the othres: thus, in the potassium-hydroxide reaction this starch is completely gelatinized in one-sixth of a second, while in the sortiumhydroxide reaction only 84 per cent is gelatinized in 60 minutes-a remarkable difference. Richardia was not studied with sodium hydroxide. Musa, Phaius, Miltonia, and Cymbidium all show shorter ordinates wenerally with potassium hydroxide than with sodium hylrexide, the most conspicuous variation being noticed in the solium-hydroxide thart in the markelly dispropertionate elongation of the M. rozlii ordinate.

Similar characteristics are found in Charts A 15 and A 17 (potassium-sulphide and sodium-sulphide reactions), given groups acting with greater reactivity with potassium sulphide than with sodium sulphide, with others the reverse, and memhers of the same sroup hearing varying quantitative relationship in the twn reactions, etc. The Amaryllis-Brunsrigia group has in the potassium-sulphide reactions much shorter ordinatus than in the sodium-sulphide reactions, A maryllis belladonnt and Brunsdonna sandera being alike, and B. sandere alba between them and the ordinate of Brunsvigia insephiner; while in the sodium-sulphide chart the Amaryllis belladonna and Brunstigiu josephince ordinates are almost cxactly the same, and these of the hybrids longer than those of the parents, and nearly alike. The Hippeastrum and IIrmanthus ordinates are, on the whole, closely alike in both charts, hut the Crinum ordinates show some noticcable differences. The Verine group is particularly conspicnous hecause of the less length of all of the ordinates in the potassium-sulphide chart than in the sonlimm-sulphide chart : beratuse of the marked difference between the lengths of those of the first group and those of the second and third groups in the
 have almost exactly the same length of ordinates in the sodium-sulphide chart. Varcissus has, to the contrary, distinctly longer ordinates in the frotasimm sulphith
chart than in the sodium-sulphide chart. Iris is, like Nerine, conspicuous by the differences of the cordinates, but particularly in reversed way.. The I ris ordinates in the potassium-sulphide chart are distinctly longer than in the other chart and they are of about the same length (the opposite to what is scen in Serine) ; and in the sodium-sulphide chart the ordinates of three of the groups are the same, while those of the fourth group are much shortened. Nore or less marked differences in the two charts are seen in the remaining generic groups, especially in members of Begonia, Musa, and Miltonia.

Another pair of reagents that yield reactions worthy of especial examination are represented in Charts A 23 and A 24 (copper-nitrate and cupric-chloride reactions). These two charts are in the corresponding groups almost the same throughout, the chief differences being noted in Crinum powellii, Lilium burbanki, Iris sindjarensis, I. pursind, Begonia mrs. heal, Musa gilletii, Miltonia (both parents and hybrid), and Cymbidium eburneo-lowianum. These differences are in every case such as not to fall within the limits of error of experiment.

Any two or more of these charts can thus be compared with the certainty of finding results that conform to those referred to in the preceding pairs.

The one feature above all others that serves to individualize each chart is the variable relationships of the reaction-intensities of the members of each of the different sets of parents and hybrid and of groups of sets in the different charts. For instance, taking the AmaryllisBrunsvigia set it will be seen upon comparing the different charts that differences in the average reactionintensities of this set in comparison with the differences in other sets and groups of sets are nothing like so striking and characteristic as are the differences in the group itself in the various charts. In other words, while there is a general tendency for the average reactionintensity of this group to rise or fall with the averages of other groups in the different charts, the individual members of the group exhibit marked independence in the direction and extent of the changes. Thus, in this group in the charts of chloral hydrate, pyrogallic acid, potassium iodide, potassium sulphocyanate, sodium hydroxile, soclium salicylate, cobalt nitrate, eopper nitrate, cupric chloride, and mercuric chloride the four ordinates are in couples, the parental couple being in the chloralhydrate reaction shorter than the hybrid couple, hut in the wher reactions the reverse. In the reactions of chromic acid, nitric acid, hydrochloric acid, potassium hydroxide, sodium salicylate, and barium chloride all four ordinates are the same or closely the same, there heing meither the compling so obvions in the previous sett wer any markel departure of any from an average standard. In the reactions of potassium sulphide, calcium nitrate, strontium nitrate, and uranium nitrate (with the exception of potassium sulphide and strontium nitrate) no two of the four ordinates are alike with any rearent, and the relative lengthe of the four orlinates vary in the different reactions, the order of length being:

[^6]Struntium nitrate: Brunsvigia, Brunsdonna sandcree alba, B. sandere (these two being the same), Amaryllis.
Cranium nitrate: Brunsdoma sanderoe alba, Brunsdonna sandera, Brunsvigia, and Amaryllis.

Such variations will be treated quite fully in the following subsection:

The Specificities of the Components of the Reagents.

(Charts B1 to B42.)
Inasmuch as different starches behave differently, qualitatively and quantitatively, with a given reagent, and a given starch differently with different reagents, it follows, as a corollary, that certain peculiarities of the reactions are to be attached to the starches and certain others to the reagents-in other words, the characters of the reactions are conditioned, as before stated, by both starch and reagent. In this research the phenomena of gelatinization have been taken as the chief indices in the differentiation of starches and it has been shown that a considerable variety of reagents may be used.

The terms gelatinized starch and soluble starch are used synonymously, yet starch may be in a soluble form without being gelatinized or gelatinizable, for it has been shown that raw starch through the agency of acid can be converted into soluble starch without apparent antecedent change in the structure of the starch grain that can be detected in the reaction of the grains in polarized light; that such grains can be dissolved in hot water without the appearance of gelatinization; and that such grains in solid form or in solution yield the blue starch-reaction with iodine. (See preceding memoir,* page 105.) It is therefore obvious that the changes expressed by gelatinization and solubility are independent, although usually associated; and, as a consequence, that a gelatinizing reagent may give rise coincidently to such molecular alterations as will convert an insoluble into a soluble and gelatinized starch or into a soluble but ungelatinizable starch. In all of the experiments with these reagents the former change has hecn brought about; but accompanying alterations may occur, hence, the question naturally arises in conjunction with the use of different reagents as to the meanings of the differences in the two cases.

It is of importance to note that in all of these investigations the soluble non-gelatinizable form was prepared by the use of acids, inorganic or organic, non-volatile or rolatile. On the other hand, as far as the voluminous records go, alkalies always give rise to soluble starch of the gelatinized form. This indicates clearly that the actions of the acids and alkalies may be inherently quite different. When the grains are heated in water, gelatinization occurs at a given temperature, varying within narrow limits, the mean temperature differing in starches from different sources. In accordance with the foregoing, heat and alkaties may be placed in one and acids in another eategory, but without the assumption that the actions of the several members of each class are precisely the same. Gelatinization is undoubtedly due to a hydration of the starch molecules, but the alteration from

[^7]the insoluble to the soluble non-gelatinizable form is apparently not in any way related to water, inasmuch as it may be brought about in anhydrous starch ly anhy-
 undess water is derived in some olserne way by intramolecular disorganization. 'There is at all whats n" intermolecular disorganization such as occurs antecedent to and associated with obvious gelation.

The foregoing changes in the stareh molecules in association with the more or less marken dilferenens exhibited by a given starch in the reactions with different reagents indicate clearly that beneath and overshadowed by the conspicuous phenomena of gelation there lay processes or reactions that vary, within even wide limits, in relation to the components of the reagents. Moreover, raw starch presents certain tery striking daracteristics in its relations to water, entirely apart from the phenomena of lydration that is expressed ly gelation. It has been fomen that raw starch is mot omly highly hygroscopic and clings tenaceously to water, but alsis that its behavior toward water is in certain respects. different from that of hydrated starch, the percentage of water in the raw grains being influenced to a very limited degree and that of hydrated starch to a maximum degree, in the presence of water by changes in temperature. Sirdried starches from different sources have heen found to contain from 9.9 to 35 per cent of water, the figure varying with the kind of starch, impurities, and percentage of moisture in the air. Freshly prepares stareh may contain as much as 45 per cent of water. Anlydrous starch is obtained by subjecting the starch to a temperature of 120° or in vacuo at 100°. Starch that has been partially or completely dehydrated and then placed in water at room temperature takes up water very rapidly with the evolution of heat, the amount being in direct relationship to the degree of delydration anl the kind and amount of starch. A preparation convisting of 20 grams of air-dried potato starch in 20 grams of water showed an increase of temperature equal to 3°; and a similar preparation of anyhydrous starch, an increase of 13.8°. The formation of heat has been ascrileed to an actual chemical combination of the starch and water (siete preceding memoir, page $16 r^{\text {r }}$), but it call satisfactorily and better be accounted for upon the hasis of adsorption (which, however, is in fact a form of hemical union).

The level of aqueous saturation is maintained within very narrow limits, and it is very much more influenced by rariations in external moisture than liy changes in temperature that occur below the temperature of selation; and it is reached before there is the least detectable change in the starch grain or starch molecule. This level is, however, not only materially higher in hyirated starch, but also rariable within wide idewrees and in direct relation to mosisture and temperature, anl it prohaty reaches its highest level at the haking temperature of bread (Katz, Zeitsch. physiol. Chem., 1915, xev, 10.t). As the temperature falls, even thomgh in the presence. of an atmosphere saturatel with moisture. there is sum. reversion of hydrated starch to raw or insoluhli starth.

Starch grains do not either gelatinize or pass into solution in their normal state hecaus. apparently of the existence of some peculiar surface condition which, lik"
an wsmotic membrane sorso to prevent a turt lan inflow of water after a certain lewe! of partial saturation has bern reathod, and which lihewin preabl- an outhow
 in wher worde, mathtans at stat of physi co-chemionl erquilibrium as rerards water within and without the starch grain. That such a surface condition mists semon"ridunt in the sudden dissipation of this level at the temperature of gelation and in the alsence of this level in comminuted and otherwise injured grains in whith the starch moleceules of the interior of the erain are fremly exposed to the water. The intra apsular starch thus expered exhibit-a similar hat not inentical surface condition, whieh is owing to difterences in the intra(apsular and eapsular starches, as will be noted more particmarly later. Therefore in statying the phonomena of gelatinization and absorption of water both of these surface conditions must be considered, as must also he both forms of starch.

When raw starch in water is subjoeted to slowly rising temperature, at a certain temperature that rarios for different stardhes and within narrow limits for each starch there oecurs a loss of anisntropy (which indicates an intermolecular disorganization) that is immediately followed by a rapid taking up of water attended by swelling and golatinization. This disappearance of anisotropy is taken to mean that immerliately antecerlenit a monfifation or removal of the surface comdition has occurred. This surface condition may likewise be affected by various gelatinizing reagents such as have been used in this researeh, and thus hydration of the starch grain permitten as in the case of gulation by heat: or there may be the opposite effect, as when there is present a sufficient quantity of alcohol, acetone, alcohol-ether, brine or other so-called dehydrating reagent. Analogous phenomena have been noted in the sturly of certain other collnids, from which it seems that heat and other gelatinizing agents are effective by affecting primarily the surface condition, thus giving rise to an alteration in tho tevel of aqueous saturation. Th. underlying cause of this peculiar surface condition is at present problematical, but it seems that it is to be Incated directly or indirectly either in a hypothetical dopusit on the surface of the grain by the cell-sap or in the moklified form of the stareh that constitutes the capsular part of the grain (the so-called starch cellulose). This part of the grain is the lat to be deposited, and it differs from the inner part (or en-ealled stareh gramulose) especially in density, solubility in cold and hot water, digestibility, dextrin products of digestinn,
 tive and qualitative color reactions with iodine. The decree of resistamee varice ia starehes from different soures, and it is so marked in whe instanes in the initial stage of the reaction as to render gelatinization very slow for a perim varyine from 1 to 10 minutes. to he followed by gelatimization that rarise in rabidity fom slow to wery raphla a will be seen ly an examination of
 timazation. Fpon this asommption, aty asent which
 part of the grain will modify the sumian enntatinn on
surface tension so that hydration may be augmented or inhibited.

As stated elsewhere (see preceding memoir, pages 95 and 96), while there can be no doubt of the essential part played by water in the swelling, gelatinization, pseudosolution, and true solution of starch, it seems that none of these phenomena is due to either hydrolysis (decomposition in which molecules of water are taken up and become an integral part of the molecules) or hydration in the strictly chemical sense (the formation of derivatives in which basic matter is substituted by hydrogen atoms of water, or the actual combination of water so that the molecules of water constitute intramolecular components of the derivatives). The terms hydrolysis and hydration are often used synonymously, but at times incorrectly, because while hydration may mean hydrolysis, it may on the other hand signify a union or impregnation with water which is an extramolecular and not an intramolecular phenomenon. According to the recent developments of physical chemistry, none of the processes concerned in the conversion of raw starch into the so-called soluble starch, of which starch-paste and pseudo-solution and true solution are simple modifications, is one of hydrolysis or hydration in the strictly chemical sense, but one of adsorption, that is, an extramolecular union with water that is of a physico-chemical character, such, for instance, as is observed in the deposition of moisture on glass and the taking up of water by hygroscopic substances in which there may be no true chemical union in the conventional meaning, but a mere surface combination or surface condensation. The combination is, of course, actually chemical, but it is not chemical in the customary sense any more than is the solution of sugar in water chemical, and thus in the form technically of a hydrate. Starch in common with other organic colloids is hygroscopic, and the so-called process of hydration or hydrolysis that is associated with swelling and gelatinization is explicable upon the basis of adsorp-tion-that is, a physico-chemical affinity that is specific and selective, and supplemental to satisfied affinities according to the laws of stoichiometry. This, however, does not praclude the possibility or probability of the oceasional occurrence, of reagent reactions that are strictly speaking those of hydration.

It seems clear from the foregoing that in the gelatinization of normal starch grains the first and essential step is the modification or dissipation of the surface condition that prevents an inflow of water after the normal point of partial saturation, or state of physicochemical equilibrium as regards water, has been reached. This barrier it seems is not mechanical but physienchemical, as is suggested by the fact that corresponding or analognus phenomena have heem ohserved in the hehavior of other colloids in ritro and in the living celis, where it seems to have been clearly demonstrated that they are manifestations of surface tension. Heat, when a certain temperature is reacherd. is as umed to give rise to a surface alteration or change in surface tension that causes a mass action of the molecules of water with a consequent inflow of water and attendant gelatinization, and it has been found that the aldition of various substanees to the water may lower or raise the temperature of gelatinization-in other words, aid or oppose the
action of heat in altering the surface tension. The various gelatinizing reagents which are active at room temperature are undoubtedly effective by causing similar or identical alterations in surface tension, for evidence has been found that the ions do not form an adsorption union with the starch molecules but give rise to the surface alteration that leads to an adsorption union of molecules of water and starch; and it would seem to follow, in accordance with our knowledge of the behavior of other colloids with ions and molecules of different kinds, that this surface change, as well as subsequent phenomena, are modifiable in relation to the kinds and concentrations of ions and molecules taking part in the reactions. Hence, the phenomena of gelatinization brought about in distilled water by heat would likely be different in certain respects from those due to some chemical reagent, such as chromic acid ; and those of any given reagent will differ from those of every other reagent. Such is in fact what has been found in this research.

Samac (Studien über Pflanzenkolloide I. Die Lösungsquellung der Stärke bei Gegenwart von Kristalloiden. Dresden, 1912, S. 42) made studies with potato starch in which he used equimolecular solutions of various electrolytes and non-electrolytes in concentrations varying from 0.25 to 10 gram-molecules to the liter. Both cations and anions were found to be effective. Lithium, sodium, potassium, ammonium, magnesium, calcium, strontium, and barium chloride in weak solution raised the temperature of gelatinization; and with increasing increments of concentration there occurred with some a further eleration followed by a fall, but with others a fall, the effects being different according to the kind of cation present. Sulphate, oxalate, tartrate, acetate, chloride, bromide, nitrate, iodide, sulphocyanate, and carbonate of potassium, and also calcium nitrate, sodium sulphate, and ammonium sulphate, behaved differently in accordance with the kind of anion. With some, in any concentration, the temperature of gelatinization was raised; with others, with increasing increments of concentration a rise was followed by a fall; and with others there was a fall with any concentration. Sulphuric acid, hydrochloric acid, and acetic acid likewise caused varying effects. With sulphuric acid and hydrochloric acid increasing increments of concentration caused a rise followed by a fall, while under the same conditions acetic acid caused a fall. Both potassium hydroxide and ammonia in all concentrations caused a fall. Dextrose and glycerin, which are in any concentration without detectable gelatinizing action at room temperatures, caused with increasing increments of concentration a steady elevation of the temperature of gelatinization; and urea and chloral hydrate, under the same conditions, caused a steady lowering. Both acetic acid and potassium hydroxide in any concentration caused a fall; but acetate of potassium in increasing increments of concentration caused a rise followed by a fall. These results are in harmony with those obtained by various investigators in swelling and precipitation experiments with proteins.

The starch molecule like the protein molecule has the property of acting as an acid or base to form salts, this being explicable upon the assumption that both starch and protein molecules are produced by a condensation
of two different kinds of groups. The starch molecule behaves as an amphoteric electrolyte, a ting as an acid or base in relation to the components of the reagents to form different salts, the reactions being attended by the splitting off of hydrogen or hydroxyl ions. All of the reagents used in this research to gelatinize starch are aqueous solutions of electrolytes or imperfect electrolytes, and hence each is partially ionized, the decree of ionization varying with the different reagents; moreover, there is a variety of elements and molecules, acid and base, that may enter into chemical combination with the starch molecules. Hence it follows that each solution is a complex that consists of molepules of water and solute, and of ions of water and of solute. Having now a starch molecule that may assume either acid or hasic properties, and reagents that contain both water and various kinds of elements and molecules that may enter into chemical combination with the stareh to form salts. it is obvious that the phenomena of gelatinization or swelling. quantitatively and qualitatively, may vary more or less markedly in accordance with the chemical reactions that occur eoincidently with the adsorption of water. An examination of the list of reagents used in this research will show that there are well-defined classifications or groupings in accordance with peculiarities of the substances entering into the rearents as the solutes, as, for instance, organic acid, inorganic acids. potassium salts, sodium salts, hydroxides, sulphides, nitrates, chlorides, etc. Not only are variations to he expected in the reactions because of difference: in the composition of these reagents, hut alsn hecause of differences in the molecular arrangements of the starch molocules. If the starches from different plant sourees exist in different sterenisomeric forms. it seems upne the basis of our knowledge of the peculiarities of stereoisomers in general that variations in the reactions that are due to this peculiarity may be as great or even grenter than those due to differences in the reagents-that is, that rariations in the reactions of different starches with a given reagent may be as marked or more marked than those in the case of a single starch with different reagents. This has been found to be a fact hy the results of this research.

In the study of the phenomena of gelatinization that are definitely associated with peculiarities of the reagents the object has been to demonstrate differences in the behavior of different reagents without reference to the cause of these differences, except as ther go to prove the existence of starch in stereoisomeric form: that are modified in specific relationship to the plant source. Obviously, there would be many advantages in a combined study of both gross phenomena of gelatinization and reactions that occur during and suhsequent to gelatinization, and much is to be gained by the use of reagents in equimolecular solutions; but certain unavoidahle conditions attending this research made it necessary to pursue the studies of the actions of reagents with reforence to effect and without more than incillental reference to cause.

It will be recognized, from what has heen statel, that the reactions are conditioned by both starch and reagent. Having a number of starches of presumably different stereoisomeric forms, there remained the selection
of the kind and concentration of reagents that would Wicit sum differemes in the reartions at would dame strate clearly not only isomerism but an isomerism that is specific in relation to genera, species, varieties and hybrids. It was foum adsantisenus, in formulating these solutions, to disregard entirely concentrations upon the gram-molerular basis and to determine experimentally the strength: of eolution that -eemed brest alapted to give wide rancres of reaction with diff. pent starelus under the same cernditions of experiment. The marked variations in the behavior of different starches with a given reagent, and of different reagents with a given starch, are presented in striking form in Chart: A 1 to $A 26$: but these features are lirought out cyen lueter in certain respects in Chart= E 1 to E 46, and very much better in most responte in Clarte R1 1 th lifle. The first group of charts has been considered in a previrus sul)section of this chapter: the seeoml gromen will be taken up in a subsequent subsertion ; and the third grap will here be studied in only sufficient detail to meet requirements.

In the construction of the group of charts desirnated B 1 to B the the main purpose was to bring out certain extrandinary peculiaritics in the reactions of selectend pairs (occasionally more) of reagents with a number of starches which are taken tentatively to be renresentative of genera and of suhgeneric divisions. Tn the selection of the reagents for eomparison it secmel that characteristics peculiar to each of the several rearents could he presented particularly well if in one groun of this series of charts the reactions of a given reagent are taken as the standard of emmparison with the reactions of each of the other 25 aqents and reagents: and if in a second group we compare the reactions of eertain 1 wn or more agents or reagents, selectent hecallse of ueptain peculiarities, such as similarity or dissimilarity of agent and reagent, this plan was earried out. In the first sories the reactions of nitric acid are taken $a=$ the standard : and in the secmad series the reactions of aniline:, innrganic acids, hydroxides, sulphides, etc., various comhinations of two or more agents and reagents were mado.

To reiterate, there is in the polarization reations no molecular alteration of the starch molecule: colnr reactions are present with gentian violet and safranin which are attributable to adsorption without detectable attendant molecular disorganization: in the iodine reactions there is in all probability a union of indine and starch to form an unstable iodide of star h, but nn intermolecular hreaking down : in the temperature reations intermolecular disorganization is assenciated with the adsorptinn of water, but without the loss uf properties that characterize the starch molecule; and in the chemi-cal-reagent reactions not only intermolecular disorcanization nccurs, hut rarious assnciated reactions that depend upon the acid or hase claractor and partioulur elements and molecules of the reagents. From this it would follow that these reactions fall into well-definel groups: the polarization, aniline, iodine, temperature, and chemical-reagent reactions, respectively.

When the reaction-intensities with polarization, gentian rinlet, safranin. indine. and temnerature are plottu? out in curves, as in Chart B 1, and the chemical-rmarent reaction-intensities are plotted out, as in Charts B? tn
B. 42, it will be apparent that there is a well-marked line of demareation between these two groups; and also that when the five curves of (hart B1 are compared differences are exhibited that are in harmony with the similarities and dissimilarities of the characters of the reaction-processes. The polarization curve stands in its peculiarities quite apart from the others, and it appears, on the whole, to be in its course without more than incidental relationship to the courses of the other curves; but the gentian-violet and safranin curves show almost throughout their courses, close correspondence in their variations with each other (sce also Chart B 2), yet an absence of correspondence with the other three curves. Such differences as are recorded in these two curves are doubtless attributable to errors of experiment. When the crudity of the method of valuation of these reactions is considered, it is remarkable that the curves are so close, rather than that there are some discrepancies. The ioding and temperature curves bear certain well-defined similarities, but they lack the close agreement seen in the two aniline curves; and they differ enongh to indicate that the processes involved in the two reactions are not the same. The absence of conformity of the aniline and iodine curves, together with the agreement of the former, is convincing evidence that here also the processes of the two sets of reactions can not be the same. While the iodine and temperature curves show similarities (Chart B 3) they differ as much in general from each other as do the iodine and aniline curves.

It will be seen that the ionline curve remains at variable distances above the temperature curve, excepting in Lilium tenuifolium, I. chalcedonicum, I. pardalinum, Iris iberica, Tritonia pottsii, and Phaius grandifolius, where in 5 of the 6 it is below and in one the same. The iodine valuations are only approximate, yet the errors of observation are probably not sufficient to alter the curve in any essential respect, at least in so far as concerns general comparisons. On the other hand, the temperature valuations are approximately scientifically correct inasmuch as the errors of experiment fall within such very narrow limits as not to affect appreciably the position of the curve at any point. While certain variations in the quantitative differences hetween these curves, and at points the inversion and reversion of the curves, might suggest errors of valuation, they are in conformity with the findings shown in the other charts, as will be seen. Some of the variations of the iodine reenerls are probably due to differences in the behavior of this reagent with the capsular and intracapsular parts of the grains. Nigreli found that ionline in weak solutions may bemetrate the capsular part to the intracapsular part ai the grains, coloring the latter but not the former. It would suem, therefore, that the ioline reactions of the raw stareh grains, as here studied, are reactions essentially, and with weak solutions solely, of the intracapsular part of the grain, and that the differenees in color ralues of the reactions are dependent in part upon the pentiarities of the intracapsular starch, and in part upon variations in the transmissive and reactive properties of the capsule. With a given strength of iodine solution, when the grains are gelatinized by heating, both intracapsular and capsular parts color, the
former very much more than in the normal grain, and the latter a diflerent color from the intracapsular partthe former blue, and the latter violet, old-rose, etc.

Heating the starch grains in water, and various reagents gelatinize starch, but the molecular processes involved can not, for reasons stated, be precisely the same. The qualitative gelatinization changes in different starches differ from each other; those caused by heat differ from those caused by chemical reagents; and those caused by one reagent differ from those caused by another. The quantitative differences are in all corresponding cases far more marked than the qualitative changes. In the gelatinization caused by heat the change in surface tension that gives rise to the inflow of water is clue, in accordance with our knowledge in general of colloidal swelling, to ionic action. Both hydrogen and hydroxyl ions are present, but it seems that the hydrogen ion is the effective agent, and effective only at certain temperatures that vary with the kind of starch. With the chemical reagents there are not only hydrogen and hydroxyl ions present. but also they are in comparatively very high concentration; and, moreover, there are in the different solutions other kinds of ions and also molecules that vary in kind and concentration. In these reagents the ion concentration is without the aid of heat sufficient to bring about the alteration in surface tension that permits of hydration of the starch, and also there are components of the solutions that with the amphoteric starch molecule may form various chemical combinations and influence the processes of gelatinization, as preriously stated. If these statements are justified, such should be indicated when, for instance, the tem-perature-reaction experiments are compared with those of chloral hydrate, pyrogallic acid, nitric acid, and other reagents.

In comparing the curves of Charts $\mathrm{B}+\mathrm{B} 5$, and B 6 , it will be seen in each that the temperature-curve differs markedly from the reagent curve, although there are many suggestions of correspondence in the variations; but they differ quite as distinctly from each other as do the reasent-curres from each other. Moreover, not only are there marked quantitative differences, but these differences not infrequently take the form of inversion of the curves, so that while with one starch temperature reactivity may be higher than reagent activity, in another starch there may be the reverse. For instance, in the temperature chloral-hydrate chart (Chart B4) it will be seen that, here and there, varying direct and inverse relationships in the up and down courses of the curves necur, the one curve keeps continually above the other with variable degrees of separation, and then the curves will cross or become inverted, and at varying distances recross, such crossing and recrossing occurring a number of times. Thus, the temperature curve is higher than the chloral-hydrate curve in Amaryllis belladonna, Ircmanthus katherince, Π. puniceus, Nerine bowdeni, N. sarniensis var. corusca major, Litium martagon, L. tenuifolium, I. chalcedonicum, L. pardalinum, Iris trojana. Begonia single crimson scarlet, B. socotrana, and Miltonia bleuma. In Amaryllis belladonna the temperature curve is lower than the chloral-hydrate curve. hot in Brunsvigia josephince the reverse. In the three Hippeastrums the temperature curve is the higher; the
difference between the two curves in each is nearly the same; both are higher in the second and third than in the first; and the curve in all three is lower than in Amaryllis and Brunseigia. In Hamanthus the curves are inverted, the temperature curve being the lower, and the distance between the curves is practically the same. In the Crinums the curves recross, the temperature curves being the higher, and the distances between the curves in the three species are quite difterent-in the two hardy species the distances are small but "illerent, and in the tender species well marked, showing definite sulgeneric division. In the three Nerines, in the first the temperature curve is the higher, and in the second and third the lower. In other words, Verine crispa ha; a higher reactivity in the temperature than in the chloralhydrate reaction, while N. bowdeni and N. sarniensis var. corusca major exhibit the opposite peculiarity.

These remarkable inversions and reversions, both intergeneric and intrageneric, have been found to be common in the researches with the various reagents, as will be seen. In Narcissus the temperature curve is arain the higher, and in Lilium inversion again occurs, the temperature curve in all four heing the lower, the distance between the two curves being very marked in the first species, marked in the other three, and nearly the same in each. In Iris the tempcrature curve is the higher in the first, third, and furth, and lower in the second; and the distance betreen the curves is different in each, it being greatest by far in the fourth. In hoth Gladiolus and Tritonia the temperature curve is the higher, and the difference between the two curves is small and practically the same in both genera. In Begonia inversion again occurs, in both the temperature curve being lower and very markedly lower than the chloralhydrate curve, the separation being greater in Begonia socotrana. In Phaius crossing again occurs, and again in Miltonia, the separation in the former being distunct and in the latter marked. While the churses of these curves vary greatly, the variations are mot more than in the temperature-pyrogallic acid and temperature-nitric-acid chart.s ((charts B 5 s and B 6), or when the temperature curve is compared with that of any other of the reagents, or when the curves of almost any two reagents arbitrarily selected are compared.

Comparisons of the temperature-pyrogallic acid and temperature-chloral hydrate charts (B5 and 13 t) bring out many striking differences: The rame of reaction intensities of pyrogallic acid is distinctly greater than with chloral hydrate; the temperature and pyrogallicacid curves show far less tendency than the temperature and chloral-hydrate curves to any relationship in their courses; the variations in the degrees on separation in the temperature and pyrogallic-acid curves hear no en ident relationship to what was seen in the temperaturechloral hydrate chart; and the points of inversion and recrossing of the curves have no correspondence unless of apparently a purely accidental character. The tem-perature-chloral hydrate reactions with A maryllia, and Brunstigia show only small differences hetween the two curves, the temperature curve being the lower in A maryllis and the higher in Brunsrigia; and in the temperaturepyrogallic acid reactions the temperature curve is the lower in both, and there is extremely little or practically
no scparation in Amaryllis but marked erparation in Branscigin. In the former, in Hin'perstrum, the temperature curve is the figher, what on the later it is the hener, and the manner of separation of the curves is very ditterent. In the formere in Itamunthow, the twmerature curver in the haver ; in the kather, in the first aneme it is the higher and in the sernm! : the differemes in the deree of sabation are wry Will rent. In the former, in C'rimum, the temperature curve is the higher in all three species; in the latter, it is the lower in all thres, and the separatoms of the carses wholly unlike. In the former, in Nerine, the temperature curve is the higher in one and the lower in two; in the latter, it is higher in all three; and while the chloral-hydrate curve is high in the former the pyro-gallic-acid curve is very low, almost zero, in the latter. In both the former and the latter wharts, in Lilium the temperature curve is the lower, and there are some difticrences in the separation of the curves. In Iris and throughout the remainder of the charts similar differences will be found. Comparing now the temperaturenitric acid chart (Chart B6) with the foregoing, it will be sen that it presents a very different picture, and here also there are the vagrant variations in the dene s of separation of the curves and the vagrant inversions and reversions, but which do not bear more than accidental relationships to the variations noserved heret ,forte. In other words, each chart preeme evidence in support of certain well-defined principles regardingr reactive intensities of different starches with different rearents, and is a specifie and characteristic picture that is indicative of the particular reagent.

From the point of riew of strictly fair comparisons of the temperature and chemical-reasent reactivities some fallacy is introduced, berause these two groups of reactivities have not an identical basis of valuation, and therefore because the value expressed by the space between any two aherisaz in the temperature reactions may not have the equivalunt values of reagent reactions. In constructing the temperature scale in this research adrantage was taken of data olstaind in the prerions inrestigation, and the scale was made to include what was believed to be the lowest and highest temperatures of gelatinzation of the kinds of starches that were likely to be studied, this seale being taken to be the equivalent in values of the scale of reaction-intensities with reagents that was made to extend between the extremes of highest and lowest possible reactivities. But it will he sem, upen examination of tharts B \& , B 5 5, and B 6 , that the temperature reactions are limited in the star hes examined between 55.8. (Lilium tenuifolium) and sis. (Ilcmanthus kutherime): whereas, in the chloral-hydrate reactions the values extend betweens per cent of the total starch gelatinized in (6) minutes (rrinum Enylenicnm) th s! per cent in 10 minut,s (bigonia simgle crimson scarlet), and in buth the pro-sallic-acid and nitric-acid reactions the values vary prawtically from extreme to extrome of the seale.

The temperature scale as thus constructed represents a sale that has just about one-half the aheris-1 valume represented lye theminal-reasent sale. If now the former scale is modified so that the extremes repriwnt the extreme temperatures recorilal ammen the starni-
studied, the maximum and minimum temperatures will be as shown in Chart B6, in which the temperatures as plotted out by the standard scale are represented by the heavy continuous line, and those by the modified scale by the broken line. It will be seen that the effect of the new scale is not only to accentuate differences, but also to bring about some differences in the relative positions of the curves as regards invësion and reversion. The first noticeable difference of importance is seen in Hippeastrum, in which in all three starches with the old calibration the temperature curve is the higher, while with the new it is lower in two and higher in one, and with marked differences in the degree of separation of the two curves. In IIcmanthus with the former the temperature curve is the higher in both species, while with the latter the two curves are practically alike in the first species and the temperature curre is very much lower in the second species, and so on throughout the chart. It will be seen, however, that the important characteristics pointed out in the preceding charts are present with both forms of calibration-that is, independence in the variations of the two curves during their progress, with some tendency to concordance, inversions and reversions of the curves at points, and independence of the fluctuations of the curves of each reagent and of the points of inversion, recrossing and separation of the curves in each chart of that which is recorded in any other chart. The standard calibration adopted for the temperature experiments is preferable to the other because better adapted for future investigations and, therefore, also for comparisons of the results of the present research with those of subsequent studies.

The peculiarities elicited by these charts are extraordinary; they are harmonious in the demonstration of certain fundamental principles; and they positively indicate that they are conditioned by both kind of reagent and kind of starch. It is, consequently, well worth while to extend these studies by means of a group of charts in which a given reagent will be taken as a standard of comparison with each of the other reagents, and in addition to supplement this with another group in which each chart shall present the reactive-intensities of two selected reagents. To this end one group of charts, Charts B 6 to B 30 , inclusive, and another, B 31 to B $4 \because$, have been prepared. In the former the nitric-acid reactions are taken as the standard of comparison, these reactions being particularly well adapted for the purpose because of their wide range and their exceptional value in the differentiation of genera, subgeneric divisions, species, and hybrids. Much space would be required to go over all the first group of charts individually and in detail, and indeed this is not necessary if the plan adopted in comparing Charts B1 and I 6 is pursued. There are, however, several points to which, because of their broad application, especial reference should be made: First, the marked differences exhibited by the various agents and reagents in the range of activities, even when the latter are plotted out upon the same basis of valuation, as in the case of all of the chemical reagents; second, the independence of the curve of each aqent and reagent of the curve of every other (in several instances, however, as in the anilines and copper salts, there are no important differences) ; third, the wide
differences in values exhibited by different agents and reagents in the differentiation of genera, subgeneric divisions, species, etc.; fourth, the differentiation of certain genera, subgeneric divisions, and species by one reagent without differentiation by others; fifth, the differences in the manner of differentiation by different agents and reagents of genera, subgeneric divisions, and species; sixth, the repeated inversions and reversions of the two curves in almost every chart, and the entire independence of the points of crossing in one chart of those in another; seventh, the marked variations that occur in the degree of separation of the two curves in each chart, and in each chart compared with each other chart; and eighth, the suggestion at least of a tendency to some correspondence, varying in extent, throughout the series of curves in the up and down movements of the curves. Of not less or even of greater interest and value are the second group of charts (Charts B 31 to B 42 , inclusive) which present the reaction-intensities of selected pairs of reagents, such as chromic acid and pyrogallic acid, sulphuric acid and hydrochloric acid, nitric acid and sulphuric acid, nitric acid and hydrochloric acid, potassium hydroxide and sodium hydroxide, potassium sulphide and sodium sulphide, etc. Probably in no other way can the data of the specificity of each agent and reagent and of each form of starch be more convincingly exhibited. These charts are worthy of careful study.

The differences shown in the reactions of chromic acid and pyrogallic acid (Chart B 31) are very striking and full of interest, and the chart is worthy of a carefully detailed study. Considered from a rather general aspect, it will be seen that the chromic-acid curve undergoes much less variation than that of pyrogallic acid; that in some parts of the chart the chromic-acid curve is higher, in other parts lower, and in other parts the same or practically the same as the pyrogallic-acid curve; that the two curves rise and fall for the most part at the same ordinates and at points to indicate generic and subgeneric dividing lines; that the quantitative differences between the curves vary within wide limits, not only in different genera but also among members of the same genus, especially among subgeneric representatives; and that inversions and reversions of the curves occur at a number of ordinates at which such deviations are consistent with plant differentiation.

Among the many peculiarities worthy of more than passing notice are the following: In Amaryllis and Brunsvigia chromic acid failed to bring out any differentiation at the end of the 30 -minute period, at which time there was 99 per cent of the total starch of each gelatinized, although, as shown by our records during the earlier part of the experiments, the former showed distinctly less reactivity than the latter. Pyrogallic acid clicited, from the beginning and throughout the reaction, very definite differentiation; and it showed very much less reactivity than chromic acid with Amaryllis, but the same reactivity with Brunsigia, 90 per cent of the former being gelatinized in 60 minutes and 98 per cent of the latter, in 30 minutes. The Hippeastrums show distinctly higher reactivities with chromic acid than with pyrogallic acid, and the quantitative differences exhibited by H. titan and H. ossultan are very markedly larger than those shown by H. doones. In Hamanthus the
reactivities with chromic acid are moderate and those with pyrogallic acid very low; while the corresponding reactivities with H. puniceus are high and very high, respectively. The chromic-acid reaction is a. much higher than the pyrogallic-acid reaction in H. kalherince as it is lower in 11 . puniceus. This interestiny inversion of reactive intensities of the two starches with these reagents is consistent with well-separated charaters of these species, as already pointed out. In C'rinum the two hardy species are much more reactive to chromice acid than to p rogallic acid, whereas the reverse relationship is seen in the ractions of the tender species; moreover, curves of the latter are inverted in comparison with the former. In Verine the chromic-acid reactions are moderate, while those of pyrogallic acid are so very low as to be almost absolutely negligible, making a very marked difference between the reaction-intensities. In Narcisus. the chromic-acid reaction is moderate and the pyrogallicacid reaction low, but without much difference between them. In Lilium all of the reactions are high to very high, the chromic-acid reactions being the higher except in one species, in which both reactions are the same, although during the earlier part of the experiments chromic acid showed a somewhat higher reactive intensity than pyrogallic acid.

The degree of separation of the two curves in the other three specimens is not alike in any two. In Iris the chromic-acid reactions are high in all four starches, and the pyrogallic-acid reactions moderate in two, low in one, and very high in one. The distance between the curves is marked in all four, and in I. persica var. purpurea the curves are inverted-in other words, the first three starches are more sensitive to chromic acid than to pyrogallic acid, while in the last there is the reverse. Throughout this group of charts it will be seen that this form of Iris exhibits a number of peculiarities of reactivity which definitely differentiate it from the preceding three, which in turn seem to be closely related in their reactivities. Inversion and reversion of the curves of the irids corresponding to the foregoing will be found in Charts B 7, B 8, B 9, B 10, B 12, B 29, and B 36. Iu Gladiolus and Tritonia the chromic-acid reactions are high and the pyrogallic-acid reactions moderate, the reactions of the two starches with each reagent being the same or practically the same, but the reaction-intensities with the two reagents being markedly different. In Begonia the chromic-acid and pyrogallic-acid reactions are distinctly higher in Begonia single crimson scarlet than in B. socotrana, and the difference between the two reactions is very much greater in the latter than in the former. In Phaius and Miltonia the chromic-acid reactions are much higher than the pyrogallic-acid reactions, but the amount of separation between the two curves is nearly the same.

Examining this chart (B31) from the aspect of generic and subgeneric differentiation, it is essential to bear in mind that certain genera are represented by individuals that show such marked differences as to indicate that they belong to subgenera or some other form of subgeneric division, as in Itemanthus, Crinum, Iris, and Begonia, and that on this accomnt variations of their curves may be such as to appear to be opposed to recognized generic grouping. With this peculiarity in
view, begimning with Amaryllis and Brunsrigia (1 lardy related genera), it will be seen the pr-it.an- of the tint curves in each are very different-in Amaryllis the two curses are well scparated, but in Brunsrigize they are the same. There is here a definte anderatan ithe: twn
 trum, and the latter from the Il"munthus, by the marked
 peastrum the chromic-acid curse is higher or even much higher than in the preveding and = wombine ennern, and it is in two well above and in one delfinitely aloove the pyrogallic-acid curne. Than forture prownem hy the curves in these three armeric group) are so different that one could not possibly be confounded with another. In IIcmanthus there is a drop of the chromic-acid curve in II. katherince and II. puniceus; and a very marnd drop of the perwallic-acid wase in the former, hut a marked rise in the latter, giving rise to a well-definced separation of this genus from IITppeastrum and to inversion of the curves in II. puniceus with consequent separation of the two species. In ('rinum the picture is again different, there being a rise of the chromic-acid curve accompanied by a rise of the pyrogallic-acid curve in two and a fall in one.

Inversion of the curves occurs in relation to C. zeylanicum, this feature of itself differentiating this tender species from the two hardy species. In Nerine the picture is again and markedly altered. Both curves fall, the chromic-acid curve to a moderate level and the pyro-gallic-acid curve almost to zero, and with very little or practically no difference in the reactivitics of the four starches with each of the reagents. In Narcissus, while the chromic-acid curve remains at practically the same level as in Nerine the pyrogallic-acid curve has ris.n almost to the level of moderate reactivity, thus causing some separation of the two curves and giving a generic combination of the two curves which differs from that found in any other part of the chart. In Lilium the picture is again changed and is again distinctive of the genus. And so on, as we pass to Iris, Gladiolus and Tritonia, Begonia, Phaius, and Miltonia, the curves vary in their positions and degree of separation in such manners an to differentiat, or suggest, as the cat may the not only generic but subgeneric groups. The Gladiolus and Tritonia curves are practically identical, the explanation for which has been referred to repeatedly. The first three and the last of the Iris are well separated; but legenen shows curves of the tw. starcine whin, while well separated, rather indicate well-separated species than representatives of subgenera, as in the case of many of the other charts.

White it is true that in a mumpor of instanes a emais represented be only a single species and that, inasmuch as the reactivities of different species of a genus exhilit rarying reactivities with the same reagents and thus surgest that the dilferences (in so far as they are applied to the differentiation of genera) may be merely casual. it will nevertheless be found perfectly clear by examination of the accompanying charts that the eridence in :u'Mport of the generic and subgeneric differentiation a a ml other relations here noted is cumulative and convincin r. The very marked differences in the reactivities of sul/suneric groups which are guite as areat. on the wh
as those of different genera, represent probably the most remarkable feature of the chart, and they might naturally be regarded as being accidental were it not that corresponding peculiarities have been recorded in nearly all instances where the reactivities of two agents or reagents have been compared. A further consideration of this striking phenomenon will be taken up later.

The inorganic acids, here typified by nitric acid, sulphuric acid, and hydrochloric acid (Chart B 3*) are of pecular interest because of their pre-eminently hydrionic character, and because in each, in accordance with ionic action in relation to the swelling of proteins, the active arent in bringing about the alteration in surface tension that initiates gelatinization is the anion. But that these ions alone are insufficient to account for differences in the phenomena of gelatinization due to these agents, that the cations in each acid play a part, and that the reactions are modified by both concentration and kind of ions, is rendered apparent by a study of the curves. The most conspicuous features of this chart are: The wide differences exhibited by the different kinds of starch, and the obvious generic and subgeneric groupings; the identity or practical identity of the reactions of two or all three of the acids with certain starches in contrast with the marked to very marked variations with others; and the tendency generally for the nitric-acid and the hydro-chloric-acid curves to run closely together and, as a rule, well apart from the sulphuric-acid curve, with, however, occasional greater closeness of the hydrochloric and sul-phuric-acid curves than of the nitric-acid and hydro-chloric-acid curres. This separation of the curves, while in part unquestionably due to differences in concentration of the reagents, is also partly due to differences in the characters of the reactions dependent upon the cations. In Amaryllis and Brunsrigia all three reagents yield exceedingly rapid reactions, but in Brunsvigia the nitric-acid reaction is distinctly less rapid than the sulphuric-acid and hydrochloric-acid reactions, the last two being the same. In ('rimum moorei, Lilium martagon, L. tenuifolium, L. chalcedonicum, L. pardalinum, and Begonia single crimson scarlet the reactions with all three reagents are very rapid, and are the same or practically the same. The sulphuric-acid and hydrochloricacid reactions are nearly the same or practically the same in Brunsrigia josephince, Crinum longifotium, Iris persica var. purpurea, Phaius grandifolius, and Miltonia bleuana. The nitric-acid and hydrochloric-acid reactions tend to be close to very close, and at the same time well separated from the sulphuric-acid reactions, in II ippeastrum litan, II. ossullan, H. deones, IIremanthus katherince, Crinum zeylanicum, Iris iberica, I. trojana, and I. cengialti; to be approximately mid-intermediate in IItmanthus puniceus, Nerine crispa, N. bowdeni, N. sarniensis var. corusca majur, Narcissus tazetta grand monarque, Gladiolus Trislis, and Tritonia potlsii.

Curiously, in only 1 of the 'es starches (Begonia socotrana) is the hydrochloric reaction lower than the reactions of the other two arids; and not only is the difference in the reaction-intensities very marked between this and the next closer or nitric-acid reaction, hat the difference between the latter and the sulphuric-acid reaction is also very marked; and the three reactions form a group that is widely and remarkably different from the reactions
observed in the other Begonias. It is of especial interest to note that in M(emanthus, Crinum, and Iris, among which there are subgeneric representatives, the subgeneric differentiation is in each genus well marked. These extraordinary variations in the relations of the reactions of the three reagents are inexplicable upon the basis merely of differences in ionic and molecular concentration of the reagents; or upon differences in the starches that may be assumed to be due to varying proportions of components of a mechanical mixture; or upon differences in reaction owing to the amount or kind of impurities; but they are entirely explicable upon the basis of different stereoisomeric forms of starch that have specific and varying relationships to the kinds and concentrations of solutes in aqueous solution.

The potassium-hydroxide and sodium-hydroxide chart (Chart B 33) presents features which, while less extraordinary, are quite interesting and significant. These reagents, like the acids, bear very close relationships, but there are aqueous solutions that are pre-eminently cationic, and here, as in the acid chart, it will be seen that reaction-intensities vary within the extremes of the abscisse and elicit very definitely but in modified forms the generic and subgeneric divisions that are brought out so strikingly by the acids. Moreover, it is perfectly obvious that here, as in preceding charts, while certain differences may justifiably be attributed to differences in the concentration of the reagents, other differences seem to be inseparable from the presence of stereoisomers and of components of the solute that form specific and variable kinds of products through chemical union with the raw-starch molecules and their derivatives. The concentration of the potassium-hydroxide solution is 1.5 grams to 110 c.c. of water, and of the sodiumhydroxide solution 0.5 gram to 100 c.c. of water.- It will be seen that the curves tend for the most part to keep close together in their variations; that while generally the potassium-hydroxide curve is the higher it is in a number of instances somewhat or even markedly lower, and in other instances the same or practically the same as the sodium-hydroxide curve; and that the generic and subgeneric divisions that were demonstrated in the preceding charts are here also elicited but in modified forms. The two reactions are the same or practically the same in Iformanthus katherince, Crinum zeylanicum, Liliuin marlagon, L. tenuifolium, L. chalcedonicum, L. pardalinum, Iris trojana, and Begonia single crimson scarlet. The potassium-hydroxide reactions are higher in all of the remaining starches excepting Crinum longifolium, Narcissuls tazetta grand monarque, Iris iberica, I. cengialti, I. persica var. purpurea, Gladiolus tristis, and Tritonia pottsii, in which group it is markedly to very marketly lower, chiefly the latter. The very marked differences in the reaction-intensities of the two reagents in Nerine and Begonia in comparison with the differences generally stand out very conspicuously.

One feature of especial interest is to be noted in the species of Crinum: C. moorei is more sensitive to potassium hydroxide than to sodium hydroxide; C. longifolium shows the reverse; and C. zeylanicum about equal reactivity with the two reagents. Another feature is to be found in species of Iris, the first three showing with sodium hydroxide the same sensitivity and the last a
very much higher semsitivity than the former; while with potassium hydroxide there are three gradation- .if sensitivity. The reactions of Iris persica var. purpuren differentiate it from the first three members of this genus. Another feature is seem in the bery ariking differences in Begonia; in the first begonin buth reantions are very high and the same, whil, in the second the. potassium-hydroxide reaction is similarly high and the sodium-hydroxide reaction is low and far seprarated from the former.

Potassium sulphide and sombium subphicle (Chary B 34) clicit reactions which as a whole are quite different from those recorded in the preceding fhats, hat are nevertheless in entire support of the fundamental pectuliarities that have been found to be set forth by the reactions of each pair of reagents thus far studied-that is, an independence of each reagent in its reactions that is due to both concentration and kind of sulute; an independence of the reactions of each starch that is dependent upon differences in stareoisomeric forms; and an inde pendence of the course of earh curve to such a derres that there may not only be most variable quantitative differences but also inversion, yet with a manifest tendency to conforming with the peculiarities of a prototype (say the nitric-acid curve). Probably the first feature that will attract attention is the very marked differences in the behaviors of 4 maryllis and Brunsrigia with these closely related reagents, the former exhibiting a very high reactivity with potassium sulphide and a moderate reactivity with sodium sulphide, thus showing a very wide difference in reactivity, there being 97 per cent of the total starch of Amaryilis gelatinized in 3 minutes and only 91 per cent of the total starch of Brunsrigia in 60 minutes; whereas with sodium sulphide the reactivities of both starches are very nearly the same, 90 and 96 per cent, respectively, in 60 minutes being recorded, A maryllis throughout the course of the reaction showing only slightly less reactivity than Brunsrigia.

It will be noted that the two curves here are entirely different from those of the three preceding charts (C'larts B 31, B 32, and B33), which also so differ from each other that each chart is very definitely individualized. The reactions of the sulphides are the same or practically the same in Brunsvigia josephince, Hippeastrum titan, H. ossultan, Hemanthus josephince, Crinum zeylanicum, Lilium martagon, L. tenuifolium, L. chalcedonicum, L. pardalinum, and Begonia single crimson scarlet. The potassium-sulphide reactions are higher in A maryllis belladonna, Homanthus puniceus, Xerine crispa, N. boudeni, N. sarniensis var. corusca major, Begonia socolrana, and Phaius grandifolius; and lower in IIippeastrum deones, Crinum moorei, C. longifolium, Naveissus tazetta grand monarque, Iris iberica, I. trojana, I. cengülli, I. persica var. purpurea, Gladiolus tristis, Tritonia pottsii, and Miltonia vexilleria. For the most part the curves are well separated, this feature being particularly accentuated in Amaryllis belladonna, Crinum moorei, Nerine crispa, Iris persica var. purpurea, and Begonia socolrema. IIcrmanthus katherinur and $I I$. puniceus are not nearly so well differentiated as in the preceding charts; the hardy and tender Crinums are well differentiated, as in the previous pairs of reactions. The Irids show noarly the same reactivities with potassium sulphide, while three

Show nomly the same rantivitu: with - -nlinu -ulphime.
 muld highere ramtivity than the firt then with ondium

 "ach heing about the ame. In liegonin the dinis. rentia tion of the two atarche is very arikine. In l'heine and
 whly in resard to the durew of separation of the curow. hat also in respery th the inversime of the rurne. Tha high reactivities shown in Amaryllis b, Indonne Sirine crispa, and Begonin socotrana with potassium sulphide in comparison with the moderate to sery low ractivitiowith the other reagent, together with the very oppw... in C'rinum moorci, Mris persica var. purpurea, and Mittonia blpuana, are striking manifestations of differmowin the molecular constitution of stardhes from different plant sources.

The reaction-intensities of potassium iodide and potassium sulpheryanato (Chart 1335) present wery mula closer relationslips than do those of any of the pairs of reagents thus far considered, yet here also are fomud the fundamental pereularities that have characterized all of the comparisons hrought out in the preceding charts. The reactivities of these reagents are the same in IItom?nthus katherince, Crinum moorei, C. zeylanicum, C. limgifolium, Lilium martagon, L. tenuifolium, L. chalcedonicum, L. pardalinum, and Begonia single crimson scarlet. The reactions of potassium iodide are higher than those of potassium sulphocyanate in A maryllis belladonna and Brunsrigia josephince, and lower with all of the remaining starches, except the wroup noted. The curver show for the most part a marked concordance in their up-and-down movements, but the degree of separation of the curves is quite variable and there are inversions only of Amaryllis and Brunsrigia.

A comparative cxamination of the cursw of the reacetions of somlium hydreside and sondium salicelate (Chart (53(i) hrings out one very exceptional feature that is associated with the latter reagent, and various featur, that are in harmony with charateristics that are common to the other charts. The marked limitatime of the reactions of sodium salicylate are most striking and peeculiar to this reagent. In only two reactime (thes, with Crinum zeylanicum and Begonia single crimsinh scorlet) is there a departure from the narrow limite of the upper six abscisse (a tritle more than one-fourth of the highest and lowest limits of reartion-int-nsitim). This limitation greatly restricts the value of the reatent in the differentiation of starches from different plant murece, yet there are in some instames markid th vers marked differentiation, expecially of sul,generic groups. The ditiferences in the reactions of the "two chen ins of Itcemanthus are not of themselves sulticient to definitely indicate suhgeneric division, but rather well-wam? species: in Crium the two hardy form- are well hifierantiated from the tember form; in Iris time tirat there stand definitely apart from the fourth: and in B B.....ic there are striking difference hetwen in the - tor has

The independence of the variations in the courses of these two curves, together with the individuality of the salicylate curve when compared with curves of the reactions of the other reagents, suggests peculiar relationships of the salicylate with the starch molecule that are worthy of special study. While this reagent is, at least in the concentration used, of comparatively little value in the differentiation of genera, it is not only of marked usefulness in recognition of subgeneric groups, as stated, but also in the differentiation of species and hybrids (see Chart A 18, page 183) ; and it has proven of much value in the study of the qualitative reactions of different starches, as will be found by reference to data in Part II and to Tables $\mathbb{C} 1$ to C 18 in subsequent pages. Lens (Seventh Inter. Congress Applied Chem., London, 1909; Jour. Soc. Chem. Ind., 1909, xxvir, 731) had already found that this reagent could be used in the microchemical differentiation of starches from different sources. He states that if a trace of rye starch, in a hanging drop of a solution of 1 part of sodium salicylate in 11 parts of water, is examined under a magnification of 200, at the ordinary temperature, it will be found that alter the lapse of an hour (more distinctly after 24 hours) most of the large granules have swollen and that only a small part resists the action of the salicylate and still shows the polarization cross between crossed nicols. In the case of wheat starch, only a few of the large granules become swollen; after 1 to 24 hours the outline of the unswollen wheat starch-granules is sharply defined, and the granules, unlike those of rye starch, do not become flattened (starch of any kind which has been altered by storage in a moist condition swells on treatment with the salicylate solution). Barley and millet starches swell to a small extent only. Only few of the grains of oat, maize, rice, potato, bean, pea, lentil, and arrowroot starches become swollen.

The calcium-nitrate and strontium-nitrate curves (Chart B 3\%) exhilit wide excursions, those of the latter being the more marked; and the fluctuations tend with few exceptions to correspond in their directions, although with more or less marked quantitative variations. Both generic and sabgeneric differentiations are as conspicuous as in the preceding charts; but inversion of the curves does not occur at any point. The reactions of these reagents are the same or practically the same in Amaryllis belladorna, Itemanthus katherine, Crinum zeylanicum, Lilium chalcedonicum, L. pardalinum, and Begonia single crimson scarlet; and very nearly the same in Hippeastrum titan, L. martagon, and L. tenuifolium. Elsewhere the differences range within variable limits, the widest being in Brunsvigia josephince, Crinum moorei, C. longifolium, Nerine crispa, N. bow deni, N. sarniensis var: corusca major, and Begonia socotrana.

The curves of the uranium-nitrate and cobalt-nitrate reactions (Chart B 38) bear in general close relationships to the curves of the preceding chart, the most noticeable differences being apparent in the generally higher reactivities of calcium nitrate and strontium nitrate, particularly the latter. The curves tend to be distinctly closer than with the latter reagents; no inversion of the curves occurs at any place; and generic and subgeneric differentiations, especially the latter, are with rare exceptions well marked.

The copper-nitrate and cupric-chloride curves (Chart B 39) are very similar to those of the two preceding charts, the reactions tending to be the same or somewhat greater than with uranium and cobalt nitrate, but as a whole distinctly lower than with calcium nitrate and strontium nitrate. Both generic and subgeneric distinctions are well marked.

Barium chloride and mercuric chloride in the concentrations used are the weakest of all of the reagents in the gelation of starch. Both curves (Chart B 40) are therefore lower, as a whole, than is found in the other charts, the barium-chloride curve being distinctly the lowest curve recorded. The fluctuations in this chart are in close correspondence with those of the immediately preceding charts. No inversion of the curves occurs except possibly in Hæmanthus puniceus, where the difference in the reactions falls within the limits of error of experiment.

Reviewing these charts, as a whole, from both general and special aspects, it will be found that they may be divided primarily into two well-defined groups in accordance with the peculiarities of the curves: first, those showing the reactions with polarization, gentian violet, safranin, and iodine; second, those showing reactions with temperature and chemical reagents. This distinction is due in part to differences in the method of calibrating reaction-values and (in part and chiefly) to differences in the inherent characters of the reactions. As before noted, and of fundamental importance at this juncture, the scale-values in the experiments with polarization, gentian violet, safranin, iodine, and temperature are different from those in the chemical reagent experiments; the polarization reaction is an optic phenomenon that is without associated molecular disturbance; the gentian-violet and safranin reactions are probably simple phenomena of adsorption, but without apparent molecular disturbance; the iodine reaction is probably a manifestation of chemical combination of the iodine with the starch to form a feeble union, but without a detectable appearance of intermolecular disorganization; the temperature reaction elicits an intermolecular disaggregation that is associated with hydration; and the chemical-reagent reactions are expressions of not only intermolecular breaking down and hydration, but also various quantitative and qualitative modifications in the starch molecules and their derivatives that depend upon differences in concentration and components of the reagents, the starch molecule because of its amphoteric properties combining with both acids and bases, and the gelatinization processes being more or less modified by some reagents by associated chemical changes. The polarization curve (Chart B 1) bears no well-defined relationship, except of an apparently accidental character, to any of the other curves. The gentian-violet and safranin curves (Chart B 2) are very much alike, and where differences are noted they are doubtless to be attributed to errors of experiment; and these curves stand apart from all other curves. The iodine and temperature curves (Chart 3) show in general a closeness which suggests that since in the temperature reaction there is intermolecular disorganization there is a more marked molecular change in the iodine reaction than is Shown by the microscope in ordinary or polarized light.

Inasmuch as the temperature valuations are quite exact (as exact as the determinations of the meltingpoints of crystalline substances), and as the iodine valuations are of a gross character, it seems probable that seeming deviations from what is julged to lue the normal in the two charts may be due to errors of experiment; but some of these differences are explicable only upm the assumption of peculiarities of the molecules of the different starches, causing them to behave differently with different reagents, as was found in the study of the reactions with the chemical reagents. The temperature curve, while very much more limited in its excursions than the curves of most of the chemical reagents, bears in general a well-defined relationship in its fluctuations to the variations collectively of the latter. This relationship becomes more obvious when the temperature values are in a modified form to render them more consistent with the chemical reagent values, as shown in Chart B6, in which the temperature and nitric-acis curves are figured, the former being exhibited in one curve in accord with the standard calibration and in another with a modified raluation so formulated that these values, like the chemical reagent values, extend over the entire limits of chart between the highest and lowest abscissæ. When, however, the iodine values are similarly modified (Chart B 8) there is no more similarity, on the whole, between this modified form of curve and the nitric-acid curve than there is when the standard calibration is used-in fact, if anything, there is a greater lack of correspondence. Comparisons of this modified curve with curves of the reactions of other reagents are fully confirmative of these findings in support of inherent differences in the behavior of the starch molecules in these reactions. In a word, these facts indicate quite convincingly that the iodine, temperature, and nitric-acid reactions are in some way or ways fundamentally different and that there is an obscure relationship between the temperature and nitric-acid curves that does not exist between the iodine and nitric-acid curves. In these comparisons the nitric-acid curve has been taken as a prototype of the chemical-reagent curves. When the latter are individually compared with this prototype and with each other it will be found that, while no two are alike, all conform to this type in a manner that is comparable to the conformity of the members of a genus to a generic prototype. In other words, the variations shown by the different reagents are comparable to the variations exhibited by the members of a genus.

Sufficient reference has doubtless been matle to the peculiarities of the reactions of the various reagents, individually and in couples, that are specific to each reagent in association with peculiarities of the various stereoisomeric forms of starch, yet it seems that additional statements may be made with profit in respect especially to certain reactions of well-defined natural groups of reagents, such as the inorganic acids, hydroxides, sulphides, nitrates, chlorides, potassium salts, sodium salts, copper salts, etc. The only organic acid used in this research is pyrogallic acid, to the solution of which was added a small amount of oxalic acid for the purpose of preservation. Chromic acid, while belonging to the inorganic group that comprises nitric, sulphuric, and hydrochloric acids, may for certain reasons be con-
sidered wath pyrogallic: ariol, and thern with the other threw acids. Chromic acid acts on the starch grain- in a manner that is mot only cmtiry madidual amb di-tinctive in comparison with the actions of the other acils, but also quite different from that of any other reagent. This ardel causes the grain at first to be altered into a gelatinized capsule and a semi-liquid contents; the capsule then ruptures at sonse print and the contents blow out; and then both calpular part and racapel (onstents Iats rapidly into solution. P'yrograllic acid brings about changes that belong to a fundamental type that is common to the other chemical reagents, hut variou-ly moditiable with each reacent. By comparing the chromic-acid and pyrogallic-and urves (Chart 1 ; 31), and then the-e with the nitric-arin, sulphuric-ated, and hydrondotoricacid curves (Chart B30), it will be seen that the first two difler markedly from each other, that the chromicacid curve is not in closer relationship than the pyro-gallic-ache cure to the curve wh the eroup of inorganic acids, and that the pyrogallic-acid curve is more closely related than the sulphurie-acid curw to the nitric-a id and hydrochloric-acid curves. The sulphuric-acid curve in comparison with the nitric- and hydrochloric-acid curses appears to be vagrant, hut this steming discopeancy may be due, in a large measure at least, to the higher reactive-intensity of this reagent.

These five reagents undoubtedly have, because of their inherent chemical differences, different chemical relationships to the starch molecule and accordingly yield reactions that can not be identical qualitatively. Chomi. acid and nitric acid apparently stand apart from the other acids because of their oxidizing properties, but it may be, as suggested by the investigations of Sacharow and of Cirüss (see previous memoir, pages 95,146 , and 186), that oxygen is essential in both the initial and final stares of the saccharitication of stareh. If this is so, the part played by oxygen in the actions of the other reageuts is masked. However, chromic acid has been used commercially to liquefy starch ami form dextrin and sugar because of its ascertud oxidizing power. Nitric acid has been fomm simbarly valuable to form ovalie acid from starch and other carbohydrates. Pyrogallic acid, on the other hand, is an active deoxidizer, taking up oxygen freely; amd, moresver, this adid dees mot, at iwell known, form true salts. Both sulphuric and hydrochloric acids have been employed by a large numiner of investigators to reduce starch to dextrin and sugar (see Publication No. 173, page 101). While our knowledge of the exact characters of the intermediate prolucts of saccharification is rery limited, it is justifiable, from what is known, to assume that the interactions of these various rogents with the starch molecule may he quite as varied as those which occur in the evolution of oxygen from peroxides, chlorates, and permanganates, respectively, and that they may differ even more than the processes of enzymes and acids, respectively, in the liquefortion, dextrinization, and saccharitication of starih (rete previous memoir, page 149).

Prubably no two pairs of curves elicit more intere-t than those of potassium and sodium hydroxides and nitric and hydrochloric acids when the members of ewh pair and of the two pairs are compared. The first two rea-

nently anionic. It might naturally be expected that if one of the two reagents of either pair exhibits a higher reactivity than the other member of the pair with a given starch the same relationship in reaction-intensity should be found in the reactions with other starches, but it will be sum in cach of the pairs of curves that there is not only an absence of consistent relationship in so far as one curve is always higher than the other, but also in other respects, so that there is more or less marked indepembence in the courses of the curves-independence quite as conspicuous as has been found in the comparisons of any pair of microscopic and macroscopic characters of the plants themselves. Thus, in Amaryllis belladonna with potassium hydroxide (Chart B33) there is complete gelatinization in 1 minute, and with sodium hydroxide a not quite complete gelatinization in $3 \mathrm{~min}-$ utes; while in the Brunsvigia josephince reactions the records with the same reagents are 98 per cent in 1 minute and 95 per cent in 15 minutes, respectively. With the first starch the reagents exhibit but little difference, but with the second a marked difference, while in both the potassium hydroxide is the stronger in its actions. In other instances the values may be the same, or the curves may be more or less separated, or inverted so that the potassium hydroxide is the less effective.

Passing from starch to starch it will be seen that the separation of the curves olserved in Brunswigia is as well marked in Hippeaslrum. In Homanthus kathcrince the reactions of botl reagents are very slow, almost nil; but in $I /$. puniceus there is a wide separation of the curves, the potassium curve being high and the sodirmhydroxide curve low. In Crinum moorei the two reactions are very high and in C. zeylanicum rery low. In C. longifolium both are very high, but not so high as in C. moorei. In C. mowrei and C. zeylanicum there is in each little difference in the potassium and sodium curves, in the latter practically none; but in C. longifolium the curves are well separated. Subgeneric differentiation here, as in the ease of the species of Iltmanthus, is quite marked. In Nerine the two curves are antipodal, the potassium-hydroxide curve being very high and the sodium-hydroxide curve very low, making the separation exceptionally wide. In Narcissus the curves of both reagents are low to very low, and the reactivities of the ragents are in inverse relationship to what has been heretofore noted, this starch being more responsive to the sodium than to the potassium salt. In Lilium the reactions with both reagents take place with such rapidity that there is not satisfactory differentiation. In Iris interesting differences in the curves are seen, and :-1) on with the other starches. Similar peculiarities will be foumd in the comparisons of the curves of the pair of acids.
('omparing now the pairs of acid and base curves (Charts B 15 and B 33) it will be noticed that notwithstamling the 中hosite characters of the ions the curves of the two charts bear ingeneral resemblances that conform closely to a common type of curve ; that in each pair one of the two reagents tends to be the more active, or to have the same reactivity as the companion reagent throughout most of the chart: that in each pair of curves the quantitative relationships may be so altered that there may be not only very variable degrees of dif-
ferences in the extent of separation of the curves, but also inversions and recrossings of the curves; and that in the two charts the ordinates at which sameness of reactivity-intensity of the reagents, higher reactivity of one reagent ofer the other, inversion, recrossing, etc., may have no correspondence. These facts demonstrate an individuality of each reagent and each form of starch.

It will also be scen that while the two pairs of curves are in general in their fluctuations in accord they may not correspond in the extent of the variations. This feature is conspicuous in Nerine, Narcissus, Iris, Gladiolus, Tritonia, and Begonia. Thus, in Nerine both of the acid curves fall, the hydrochloric-acid curve for the first two species (the values for the second and third being the same), and the nitric-acid curve for all three species, making about the same difference between the two curves for the first two species and a more marked difference for the third species. The picture here is entirely different from that of the potassium and sodiumhydroxide chart. In Narcissus the hydrochloric-acid curve is high and the nitric-acid curve very low; the potassium and sodium-hydroxide curses are both very low; the nitric-acid reaction is practically the same as that of potassium hydroxide, somewhat lower than that of sodium hydroxide, and markedly lower than that of hydrochloric acid. In Iris both acid curves fall to the level of moderate to low reactivity in the first three starches, and in all practically the same; but in the fourth starch both reactions are very high, the hydro-chloric-acid reaction being distinctly higher than the nitric-acid reaction. With the base reagents both curves fall to the level of high to moderate reactivity in the first three starches, and rise to high reactivity in the fourth starch. The positions of the curves of the first three starches differ entirely from those of the acids, while those of the fourth starch are practically precisely the same as those of the acids. In Gladiolus and Tritonia both pairs of curves fall to the levels of low to very low reactivity, the nitric-acid curve falling to a lower level than the hydrochloric-acid curve; the hydroxide curves fall to an intermediate position, the sodium curve being lower than that of potassium. Begonia shows striking similarities and dissimilarities: In B. single crimson scarlet all four reagents act with great energy, gelatinization heing complete in one minute or less. In B. socolrana both acid curves fall, one to the level of the line of demarcation of high to moderate activity, and the other to rery low reactivity; whereas with the hydroxides the reaction with the potassium salt is very rapid and is over in less than a minute, while with the sodium salt it is very slow. Moroever, in the acid reactions, while most of the starches show a lower reactivity with nitric acid, B. socotrana shows a markedly lower reactivity; and in the potassium-sodium chart most of the starches show a higher reactivity to potassium than to sodium, the starch of B. socotrana also showing this character. In other words, this species is aberrant, as it were, in its reactions with the acids in comparison with the reactions of the other Begonias and most other starches, but in harmony in the potassium and sotium reactions. In both Phaius and Miltonia there is a reversal of the reaction-intensities of the two acids, but not of the hydroxides, as compared with B.
socotrence. Additional comparisome of the data of these charts will bring out many interesting facts.

The potasium-sulphike and sohlium-suphide chart (Chart B 3:4) hears iu ereptain reperts choere resemblances to the hydroxide chart (Chart B 333) than to the acid chart (Chart B15), and in other respect the reverse, thus indicating that the alteration of the hydroxides into the sulphides has yielded reagents which give rise to reactions that suggest the presence of both active cations and anions, in contradistinction to the reactions of the hydroxides and acids which are pre-eminently cationic and anionic, respectively. These sulphide reactions vary in intensity in both directions to almost the extreme limits of the abscisse, from the extremely high reactivities of potassium sulphide that are recordel in Lilium, Regonia, and Phains in which complete selatini/ation occurs in 2 minutes or less, to the extremely low reactivities in IIippeastrum, IIcmanthus, ('rinum, etc.. where 5 per cent or less is gelatinized in 60 minutes. The deviations of these curves from the acid and base curves are much more marked than the variations of the curves themselves, and the quantitative differences between the curves tend to be more marked and erratie. and inversions to be more frequent, than in the acid and base curves. In Nerine there occurs in the sulphide curves, as in those of the hydroxide, an inversion, in both charts the potassium salt is the stronger. In Iris there is a marked separation of the curves, as was found to be the case with one exception in the hydrovide reactions; but in three of the starches there was no separation of the acid curves. In Begonia socotrana the curves are less like those of the bases than of the acills, while in Miltonit ther stand apart from both base and acil curves. The wide separation of the sulphide curves in Amaryllis is very conspicuous in comparison with the small separation of the base curves and the absence of separation of the acid curves. Similar peculiarities will be found in the reactions of these three pairs of reagents with other starches.

The potassium-iodide and potassium-sulphoryanate reactions (Chart B 35) bear, on the whole, far closer resemblances to the hydroxide reactions than to the acid or sulphide reactions. In contradistinction to the sulphides these reagents contain acid radicals that are probably almost inert. Comparing this chart with the base chart (Chart B 33), the most noticeable difference: will be found in the reactivities with Amaryllis, Brunsvigia, IIcemanthus puniceus, Nerine, Iris, Begonia. Phaius, and Miltonia. Amaryllis and Brunsrigin each exhibits practically no difference in the potassium-iodide or potassium-sulphocyanate reactions, but A maryllis and Brunscigia are differentiated from cach other by both reagents, both starches reacting more readily with potassium iodide than with the other reagent. In II Irmanthus puniceus, while these reagents do not differ in their reactivities, potassium hydroxide yields a markedly different result from that of solium hydroxide. In Nerine reactivity with the iodide is very low and with the sulphocyanate low; while in the hydroxide reactions thos with potassium hydroxide are very high and those with sodium hydroxide very low. In Iris the potassium iodide reactions are very much lower in the first three Irids and somenhat lower in the fourth; while
in the hydroxide reactions in two there are very marked ditferences, in one no difference, and in another a marked difleronce, the potassium reactions bring the lower when difforence exists. In Bagonin the iodide and sulphocyanate reactions show very little difference, in B. single crimson scarlet both reagents acting with great
 iodide being practically inert; while in the hydrovile reatemo hoth reazents act with ermat intennt: with B. single crimson scarlet, potassium hydroxide act: with equal vigor, but sodium hydroxide with low intensity with B. socotranc. In Phaius ant Millonia both the iodide and the sulphocyanate show differenes botwon
 iodide being less active than the sulphocyanate. While in both. Phaius and Viltoniu marked difforences exist between the reaction-intensities of the iodide and the sulphoeganate, there are comparatively -mall differenees between the intensities of the hylroxiles.

The curve of sodium salicylate (Chart B 36) staml: alome, as before stated, and therefore is mot comparahle. as in the forecoing instances, with that of any other reagent.
(alcium nitrate and strontium nitrate (Chart B 3i) exhibit differences that are most pronounced in Brunsrigia, Crinum, Verine, and Miltonia. The calcium curve appears to correpond more particularly with the curves of potassium iodide, potassium sulphocyanate, and sodium hydroxide; while the strontium curve appears to les more closedy related to the curves of uranium nitrate. copper nitrate, cupric chloride, and mercuric chloride. All of the latter curves appear to he very closely rilated to a common type, which suggests that the reactions, in so far as the latter depend upon the rearents, are dus essentially to differences in the basic ions or cations.

Differentiation of Subgeneric Groups.-There is probably no feature of these charts more prominent of of ereator value in proof of the worth of the selatinization method in the differentiation of starches from different sourees than the constaney and definitemes in similar and dissimilar directions of the differentiation of sut,generic representatives. Hipmanthus hatherince and H. punicous are, from the standpoint of the srstematist, at most well-separated species, hut from the rewult of this research they are probably to be regarded as represpotatives of well-defined subgeneric groups. Had this marked sulgeneric differentiation been indicated by the reactions of a single or an occasional reagent it might naturally be regrarded as heing aevidental. hut it is evident throughout the charts of the reactions of the ?l rearent: exept the chloral-hydrate and solium-salicylate reantions. The one spectes is as definitely and witely differentiated from the other as are senera in endoral. with the exception only of the chacely relaterd Githtiolus and Tritoniu. While at the emb of 60 minut- there is mats slight and questionable differentiation in the chloralhydrate reactions, and in the smlium-salierbate reations no differentiation, there are differences of importance shown during the progrese of the reactions (Chart-T) 1ne, and D 11s). The hardy and twmer (rimums are with every reagent markedly differentiated, but hy some to a
 hardy ('rimums are in all of the ratetions athowe the.
of the tender Crinum, so that in every chart the curves of these three species are V-shaped, and the first segment of the V is longer than the second, the difference in length varying with the different reagents. In Iris the first three specimens are definitely differentiated from the fourth in most of the charts by the distinctly lower reactivities of the former, the exceptions being in the reactions of chloral hydrate, chromic acid, sulphuric acid, potassium sulphocyanate, potassium sulphide, and sodium salicylate (in the chloral-hydrate and potassiumsulphide reactions those of the former are the higher). In nther words, in only 4 of the 21 reactions is there not a definite separation of the first three from the fourth. In Begonia the differentiation is not only very marked, hut also in certain respeets extraordinary: B. socotrona is a very exceptional form of the genus, is semituberous, and is botanically quite different from the tuberous $B e$ gonia single crimson scarlet. The starches of the two plants in histologic and polariscopic characters, qualitative reactions with various reagents, are alike in many respects and very dissimilar in others, so that each exhibits certain striking and distinctive characteristics (see ('hapters III and V, and Part II, Chapter VIII). These peculiarities together with the remarkable differences in their reaction-intensities constitute one of the exceptionally interesting findings of this research.

The curves of the reactions of the four tuberous Be gonias ((harts F 36, E 37, E 38, and E 39) tend to be as much in accord as should be expected in plants that have such a botanical relationship, but the curre of B. socotrana (Chart E 36) appears definitely to be vagrant in nearly all of the reactions. The four hybrids incline, on the whole, to an obviously closer relationship to the tuberous parents than to B. socotrana. Examinations of the curves of the preceding charts (Charts B 11 et seq.) will show that: With chloral hydrate there is definite but not marked differentiation, 99 per cent of the total starch of B. single crimson scarlet being gelatinized in 10 minutes and 95 per cent of the starch of B. socotrana in 15 minutes. With chromic acid there is 98 per cent in 15 minutes and 92 per cent in 60 minutes, respectively, a wide difference. With pyrogallic acid, 95 per cent in 45 minutes and only 0.5 per cent, or almest nothing, in 60 minutes, giving a much wider difference than with the preceding reagent. With sulphuric acid a practically complete gelatinization occurs in both starches in a minute, while with hydrochloric and nitric acids with the starch of the first plant there is immediate gelatinization with both reagents; and with B. socotrana with the hydrochloric acid there is 45 per cent in 45 minutes, and with nitric acid only 12 per cent in 60 minutes. With potassium hydroxide there is an almost instantaneous gelatinization of both starches. With potassium iodide there is practically complete gelatinization of one in 30 seconds, while with the other there is almost no detectable effect, only about 1 per cent being gelatinized in 60 minutes-almost the absolute extremes of reaction-intensity. With potassium sulphocyanate peculiarities are elicited that are almost identical with those of the last reagents, the only difference being a somewhat larger percentage of starch of B. socotrana gelatinized in 60 mimutes-here 18 per cent. With potassium sulphide the differences between the reactions of two
starches is positive, complete gelatinization occurring in the starch of B. single crimson scarlet in 15 seconds and 99 per cent in the case of B. socotrana in 5 minutes. With nearly all of the remaining reagents (including sodium hydroxide, sodium sulphide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate and cupric chloride) gelatinization of the starch of B. single crimson scarlet is with each reagent complete within 2 minutes, while with the starch of B. socotrana it varies from 0.5 per cent to 84 per cent in 60 minutes (with two reagents there was 84 per cent, with one 25 per cent, with one 9 per cent, with one 1 per cent, and with two 0.5 per cent). With sodium salicylate the figures for the first starch are 97 per cent in 3 minutes, and for the second 99 per cent in 10 minutes. With cobalt nitrate the figures for first are 66 per cent in 60 minutes (the lowest record for this starch with any of the reagents), and for the second 0.5 per cent in 60 minutes. With mercuric chloride the first starch shows a gelatinization of 96 per cent in 15 minutes, and the second 0.5 per cent in 60 minutes. The extraordinary differences exhibited by these starches are at present inexplicable, and they open a field of most interesting and promising research of the most fundamental character.

Inversion and Reversion of Reaction-intensities.The inversion and reversion of the reaction-intensities of different starches with different pairs of reagents is also a feature of exceptional interest and of pre-eminent importance in proof of the existence of starches from different plant sources being in stereoisomeric forms. It is obvious, as before stated, that if we were dealing with starches that differ from each other because merely of differences in density, reaction, impurities, percentage of water, or varying proportions of several modifications of starch in the form of mechanical mixtures, the two curves would be alike or one would always be above the other, the distance, however, varying in relationship to the rapidity of reaction, the slower the reaction the greater probably the tendency in general to separate. It has been repeatedly noted that inversion and reversion of the curves is not limited to the distinction of genera, although it is more apt to be associated with genera, and next in order with subgeneric groups, and next with species. In other words, if with any two reagents a member of a given genus will exhibit a greater reacrivity with one than the other reagent the same peculiarity will probably be found with all other members of the genus unless there are definite subgeneric divisions of the genus, under which conditions the subgeneric divisions may be as distinctly differentiated as may be genera by inversion or reversion of the reaction-intensities.

Sometimes species of a genus which are not recognized as belonging to subgeneric groups may exhibit inversion or reversion in their reactivities in relation to the reactivities of the other species, as has been found, for instance, in Nerine. These inversions and reversions are, as a rule, not so apt to occur with reagents of a similar as of a dissimilar character. Moreover, the points at which inversions and reversions of the curves of any pair of reagents occur may be the same or different from those at which inversions and reversions of another pair occur-that is, two genera or representatives of two subgeneric divisions, or two species of a genus, may be
distinctly differentiated by the inversion or reversion of the reactive-intensitics of a given pair of reagents, but not by another pair. Thus, in the chloral-hydrate and nitric-acid reactions (Chart B 11) the first inversion seen occurs in the curves between IIippeastrum and IIamanthus, the three species Hremanthus showing a higher reactivity with nitric acid than with chloral hydrate, while Ilamanthus katherinte shows the reverse. But the differentiation here is not generic because the second species, Hamanthus puniceus, exhibits a reversion in relation to the first species. In the chromic-acid and pyrogallic-acid reactions the reverse is noted in the behavior of these two species, H. katherine showing in common with IIippeastrum a higher reactivity with chromic acid, while H. puniceus shows the inversion. In other charts (as, for instance, in Chart B 32 and B 36) all species of Hippeastrum and Hemanthus show in common a higher reactivity with one of the two reagents; while in other charts there are varions modifications. For instance, in Chart B 35 each Hippeastrum shows different reactivities with the two reagents, but the Hæmanthuses no difference.

Crossing of the curves occurs again between Nerine bowdeni and N. sarniensis corusca major, thus markedly differentiating the first from the last two species of this generic group. The same separation will be seen in Chart B2 (gentian violet and safranin), while in Chart 134 (chloral hydrate and temperature) and Chart 8 (nitric acid and iodine) the crossing occurs between N. crispa and N. bowdeni. The next crossing occurs between Iris and Gladiolus; the next between Tritonia and Begonia and the next between Begonia and Phaius-all representing generic lines of division. Comparing the locations of these points of inversion or reversion with those in the nitric-acid and chromic-acid chart (Chart B 12) it will be found that with two exceptions (between Iris and Gladiolus, and between Tritonia and Begonia) the points are entirely different. The first crossing here occurs between Brunsvigia and IIippeastrum; the second between Hœmanthus and Crinum; the third between Crinum moorei and C. zeylanicum; the fourth between C. zeylanicum and C. longifolium; the fifth between Nerine sarniensis var. corusca major and Narcissus; the sixth between Narcissus and Lilium : the seventh hetween Lilium and Iris; the eighth between Iris cengialti and I. persica var. purpurea; the ninth between Iris and Giadiolus; and the tenth between Tritonia and Begonia. Some of these ten inversions and reversions occur between generic representatives, while others represent subgencric dividing lines.

The different points of inversion and reversion of the curves shown in these charts (Charts B 1 to B 40) are exhibited collectively in Chart B 41 , this presentation rendering further detailed statement in regard to each chart unnecessary. Even a superficial study of the varying points of crossing of the curves and of the totals of this chart brings out very interesting and significant $\mathrm{c} \mathrm{mb}-$ parisons. In confirmation of statements made in precerling pages, it will be found that in some of the charts (1: out of the 40) no crossing of the curves occurs at any part; that in most of the charts there are inversions and reversions, the number ranging from 3 to 10 ; that inversions and reversions are, on the whole, more common
when the agents and reagents are of dissimilar character and when they exhihit wide and frequently varying ranges of reaction-intensities; and that the crossings of the curves are most apt to occur at points of soparation of genera and subgeneric representatives, and in variable numbers with different reagents and different starches at such places. The closely related genera Amaryllis and Rrunsvigia are distinguished by the inversion of the reactions in only a single instane (Chart B 4 , temperature and chloral-hydrate reactions). Brunsvigia and Hippeastrum have a separation by 9 crossings, but the latter is separated from Hemanthus by only 3. Curiously, the two species of IIcmanthus are separated by 6 crossings, these variations of the curves suggesting subgeneric division of the species. Ifrmanthus is separated from Crinum by 8 crossings, and Crinum from Nerine by 7 ; lout there are 9 between Crinum morei and C.zeylanicum, and 11 between the latter and C. longifolium, markedly differentiating the two hardy forms from the tender form. The separation of Nerine from Crinum and from Narcissus is well marked, there being \% crossings at the former point and 14 at the latter. Narcissus is separated from Litium by 9, and the latter from Iris by 15. The separation of the first three Irids from the fourth is evident by 8. Gladiolus and Tritonia are separated by only 3 , but these two are separated from Iris by 12 and from Begonia by 11. The remarkalile differences exhibited by the tuberous and semituberous Begonias are here illustrated by the separation of the two by 15 crossings. Reqonia is separated from Phaius by 7 , and Phaius from Mitonia by 8 .

Wide Differences in the Reactions with Different Pairs of Reagents.-Another feature of exceptional interest is the wide differences in the reactions of different pairs of starches with different reagents, as has bern referred to repeatedly, and which is worthy of some special notice. This peculiarity is well exemplifien, for instance, in Amaryllis and Brunsvigia. Little or, in some instances, no difference is oliserved in the reactions of these starches with chromic acid, sulphuric acid, hydrochloric acid, nitric acid, potassium hydroxide, potassium iodide, potassium sulphocyanatr, sodium sulphide, cobalt nitrate and barium chimride; distinct but not marked differences are noted with chloral hydrate and sodium salicylate; and marked differences are recorded with pyrogallic acid, potassium sulphide, sodium hydroxide, calcium nitrate, uranium nitrate, strontium nitrate, copper nitrate, and cupric chloride. The reactions of Amaryllis are higher than those of Brunsvigia with chloral hydrate, nitric acid, hydrochloric acid, sulphuric acid, potassium sulphide, sodium hydroxide, sodium salicylate, calcium nitrate, uranium nitrate, strontium nitrate, cobalt nitrate. and cupric chloride; lower with pyrogallic acil, potassium hydroxide, potassium iodide, potassium sulphocyanate, barium chloride, and mercuric chloride; and the same with chromic acid and sodium sulphide. Even better illustrations are to be found with other pairs of starches, as, for instance, the two Begonias.

Limitation of Number of Gelatinizing Reagents, Etc. -The variety of the reagents used in this research to gelatinize starch, together with the amphoteric properties of the starch molecules, may give the impression
that almost any kind of reagent in aqueous solution may react with starch in this way. In fact, however, it is rather surprising to find how few reagents outside of certain well-defined groups are effective. It is also to be noted that there are various substances which while in any concentration in aqueous solution may be practically or absolutely inactive as a gelatinizing agent at room temperature may aid or hinder the gelatinizing chlect of heat, as is evident by their property of lowering or raising the temperature of gelatimization (page 11ij). As a corollary, there may be found two reagents, cach of which when alone is active, that may be inactive when associated in solution, as, for instance, solutions of jotassium hydroxide and nitric acid, both of which are active when in separate solution, but inactive in the form of potassium nitrate; and that a gelatinizing reagent may be rendered less active or even inert by the presence of another reagent, as, for instance, the presence of ahcohol, glycerine, or sodium chloride in concentration.

In the selection of the reagents used in this research a very large number of most varied kinds, electrolytes and non-electrolytes, and in various concentrations, were tried, the number aggregating probably 200 ; but unfortunately only a partial list was preserved. One of the difficulties met with in making this selection and in determining the concentration was in the wide differences in the hehavior of different starches that could not be foretold excepting to a very limited degree. That is, if a given reagent in any concentration was found to be useless when tested with a given starch it could not be set aside because it might be found to be not only active but even extremely active with another starch. It was also found that there are certain starches that have a high to very high reactivity; others low to very low reactivity, and others high to moderate reactivity with a given reagent in given concentration. Thus, with a given reagent while the starches of Lilium tend to high to very high reactivity, those of IITppenstrum and Itrmanthus tend mostly to low or very low reactivity, and those of the Irids mostly to intermediate gradation or moderate reactivities. It was also found that certain reagents are with all starches very strong gelatinizers, while others, in any concentration, tend to be relatively feeble; and still others that represent intermediate gradations. The reactions with sulphuric acid and sodium salicylate are mostly high to very high; those of chromic acid mostly moderate to high; those of barium chloride mositly low to very low; those of pyrogallic and nitric acids widely variable with different starches, etc.

It is obvious, in so far as values of individual reagents are concerned, that it must be recognized that the most useful in the differentiation starches are those whose adivitios show the most marked differences with different starches-or, in other words, which show the widest and most numerous fluctuations of the reactionintensity curres, as is instanced in the records of pyrogallic acid and nitric acil: that the fast-reacting reagents are of especial ralue in the differentiation of the slow to very slow reactine starches; and that the slow-reacting reagents are similarly valuable in relation to the rapidly reacting starches. $\overline{\mathrm{A}}$ selection of the reagents on this basis is manifestly necessary where starches of diverse character are to be studied. In the testing of
the various reagents to determine their values it was found in practice desirable to make at the outstart very concentrated solutions, using in the case of acids and bases generally approximately 50 per cent solutions, and of salts approximately saturated solutions, and then modify the concentrations in the direction the intensity of the reaction indicates. It was also found of advantage to use for the first test a form of starch that is classed among the readily gelatinized and readily obtainable, such as that of Litium candidum, and then make the final tests with this starch and with others which are classed among those having mostly a high, moderate, low, and very low reactivity, respectively. In this way reagents, were selected which in kind and concentration have served admirably, although by no means perfectly, in eliciting peculiarities of the various starches here studied.

The following very incomplete list of the reagents and their cffects shown by the starch of Lilium candidum, may be of advantage to subsequent investigators:

Reagent.	Concentration of aqueous solution.	Percentage of starch gelatinized.
Pyrogallic acid	4 gms. to 35 c.c., with 0.3 gm . of oxalic acid	92 p. ct. in 60 min .
Tartaric	Concentrated	No effect in 60 min .
Lactic acid	Do.	Do.
Tannic acid		Do.
Citric acid	Do	Do.
Acetic acid	Do	Do.
Chromic aci	2.5 gms . in 20	95 p. ct. in 60 min .
Nitric acid	10 gmss in 35	99 p. ct. in 15 sec .
Sulphuric ac	10 gras . in 27 c.c.	$97 \mathrm{p} . \mathrm{ct}$. in 2 sec .
Hydrochloric	9 gms in 10 c.c..	100 p. et. in 15 sec .
Tungstic acid	Concentrated	No effect in 60 min .
Phosphomolyb	Do	Do.
Phosphoric acid	Do.	Do.
C'arbolic acid.	Do.	Do.
Chloral hydrate	15 gms in 5	$100 \mathrm{p} . \mathrm{ct}$. in 15 sec.
Potassium hydroxid	0.75 gm , in 55 c.c.	100 p . ct. in 15 sec .
Potassium chloride	Concentrated	?
Potassium bromide		Complete in majority in 10 min .; no further effect in 60 min.
Potassium iodide	10 gms . in 30 c.c.	$95 \mathrm{p} . \mathrm{ct}$. in 15 sec .
Potassium nitrate	Concentrated.	No effect in 60 min .
Potassium nitrite	Do...	100 p. ct. in 1 min .
Potassium ferricyan	Do	No effect in 60 min .
Potassium ferrocyanide	Do	Do.
P'otassium cyanide	Do	Almost complete in 60 min .
Potassium sulphide	1 gm . in $40 \mathrm{c.c}$.	$93 \mathrm{p} . \mathrm{ct}$. in 15 sec .
Potassium sulphoryanate.	5 gms. in 30 c.c..	98 p. ct. in 60 sec .
Potassium metabisulphate	Concentrated....	No effect in 60 min .
Potassium permanganate.	Do.	Do.
Sodium hydroxide.	0.5 gm . in $100 \mathrm{c.c}$	88 p. ct. in 15 sec.
Sodium sulphide.	1 gm . in $45 \mathrm{c.c}$	$97 \mathrm{p} . \mathrm{ct}$. in 30 sec .
Sodium salicylate	10 gms in 10 c.c.	$95 \mathrm{p} . \mathrm{ct}$. in 10 sec .
sodium nitrate	Concentrated	Complete in 10 sec .
Sodium nitropru		
Sodium chloride	Do	Do.
Calcium nitrate	8 gms. in 16 c.c.	$95 \mathrm{p} . \mathrm{ct}$. in 10 min .
Cralcium sulphide	Concentrated.	Incomplete in 60 min .
Ammonia..	Do	No effect in 60 min .
Ammonium bichromate...		$100 \mathrm{p} . \mathrm{ct}$. in less than 30 min .
Strontium nitrate	5 gms in 7 c.c.	98 p. ct. in 3 min .
Strontium bromide	Concentrated.	$100 \mathrm{p} . \mathrm{ct}$. in 30 min .
Barium chloride.	5 gms in 12 c .	$96 \mathrm{p} . \mathrm{ct}$. in 30 min .
Barium nitrate.	Concentrated.	No effect in 80 min .
Lithium bromide	Concentrated.	100 p. ct. in 2 min .
Cohalt nitrate.	9 gms in 15 c.c.	$97 \mathrm{p} . \mathrm{ct}$. in 15 min .

Reagent.	Concentration of aqueous solution.	Percentage of starch gelatinized.
Copper nitrate	15 gms. in 30 c.c.	$49 \mathrm{p} . \mathrm{ct}$. in 30 min.
Cupric chloride.	$9 \mathrm{gms}$,in 15 c.c.	$95 \mathrm{p} . \mathrm{ct}$ in 5 min.
Zinc chloride	(oncentrated....	$100 \mathrm{p}, \mathrm{ct}$. in less than 2 min .
Zinc suphate.	Concentrated	No effert in 60 min.
Mercuric chloride.	15 gms in $40 \mathrm{c.c}$. with 10 gme. of ammonium chloride.	$96 \mathrm{p} . \mathrm{ct}$. in 3 min .
[Tranium nitrate	8 gms in $10 \mathrm{c.c}$.	$93 \mathrm{p} . \mathrm{ct}$ in 5 min .
Manganese chloride.	Concentrated...	No effect in 60 min .
Manganese hy pophosphite	Do.........	Do.
Lead acetate.	Du.	$1) \mathrm{O}$.
Magnesium oxide.	Do.	Do.
Iron and ammonium citrate	Do.........	Do.
Glycerine............	Varied concentrations.	Do.
Chrome alum	Concentrated....	Do.
Metol.	I)o.........	Do.
Dextrose.	1)o..........	Do.
Urea.....	Do.......... .	Do.

Many interesting and unexpected peculiarities will be found upon examination of the foregoing table. For instance, potassium nitrate is inert with the starch of Lilium candidum, while potassium nitrite causes complete gelatinization in 1 minute; and while the former has been found to be inactive with this starth, it is recorded by other investigators as being active in relation to the starches of Triticum and $Z e a$. This latter peculiarity is noted in the case of tamio acid. Thes sulphides of potassium and sodium are very a tive but the sulphide of calcium is inactive. Strontium nitrate gelatinized 98 per cent of the starch in 3 minutes, while strontium bromide required 30 minutes for the same effect; but the corresponding potassium salts showed a reversal of reaction-intensities. Barium chloride is very active, but barium nitrate is inactive; and zinc chloride and zinc sulphate show the same characteristics. Sodium hydroxide and hydrochloric acid when in separate solutions are very active, but sodium chloride is inactive, etc.

A detailed study of the specific properties of the ions and molecules of these reagents in their relations to the starch molecules in the phenomena of gelatinization, and also in the subsequent disintegration processes, is of prime importance, and not only in the elucidation of the chemistry of the starch molecule, but also in colloidal chemistry in general. Inasmuch, however, as the fundamental object of these gelatinization experiments has been the differentiation of starehes from different soures by peculiarities of the quantitative and qualitative reactions, as this object has been attained withont reference to the precise natures of the chemical reactions involved, and as detailed study of parts plaved by the different ions and molecules is therefore needless for the fulfitment of the purposes of the investigation and would lead us far beyoud the limitations of suace in this memoir. further study of this nature has been omitted.
Variable Relationsifips of tife Reactioñ-intinsities as megards Shmentes, Intermamitioniss, Elt.

That we are dealing in the stardes from different plant sources with stereoisomers, and not merely with mechanical mixtures of varying proportions of several
kinds of starch or with starches that differ becaure of varying impurities, etc., is evidenced by variations obserem in the reaction-intensity relatim-hip of the parental and hybrid starches with diferent rearats (sew charte of both 1 and B series). Were ther". for instance, merely mechanical mixtures of varying proportions representing the parental and hybril starches, repertisely, and a iven rearent, it misht be foumb that the reactivities are in the order of seed parent, pollen parent, and hybrid, and that if there were usel other concentrations of the vame reatent, while the rest.onintensities would be increased or decreased, the order of reactivity would not be changed. Moreover, it would be expected that with all reagents the same order of reactivity would be found. It also seems clear, if impurities played any important part, that when closely related reagents, such as potassium and sodium hydroxide, are used, while some differences in mean reaction-intensity might be expected, there should not lie a chanere in the order of reactivity. The opposite is shown by these charts. Thus, (harts A $6, ~$ A $7, ~ 18$ (chloral-hidrate, (hromic-acid, and promatlic-aced reactions) of the Ams-ryllis-Brunstigite-Branssfomua reactions show in the chloral-hydrate reactions that the order of reactivity is Brunsdonna sandere, B. sandere alba, Amaryllis belladonna, and Brumsrigin josepheme, the first two showing a markedly wreater reactivity than the second two, and the reactions of the members of each pair being closely alike. In the chromic-acid reactions all four are alitic, so that while there is marked differentiation with chloral hydrate there is none with chromic acid. In the pyro-gallic-acid reactions there is somewhat better differentiation than in the chloral-hodrate reactons, and also an entire change in the order of reactivities, here the order locing Brimerigia jospminar. Amaryllis hellarlannm, Brunsdonna sandere alba, and B. sandera, the hybrids, as in the chloral-hydrate reactions, being nearly the same, but the parental starches well differentiated from each other; moreover, here the parental starches are more reactive, while in the chloral-hydrate reactions they are less reactive. Corresponding phenomena are observed in instances where the rearents are chemically very closely related, as in the cases of potassium and sodium hydroxide, potassium and sorlium sulphide, and mineral arids, which would seem to climinate the possibility of these changes heing due to merhanical mixtures of different starches or to impurities. The Amaryllis set exhibits with potassium hydroxide no noticeable differenes in the reactivities of the fome starches, hecause probably of the great rapidity of gelatinization, and little or very little difference is found in the reactions with the nitric, sulphuric, and hydrochloric acids, but with sndium hydroxide and all of the other reagents, excepting chromio acid. one or more of the reactivitits will be found at variame with the others: amb, morcover, the relationships of order of reaction-intensity are of the most varied character. Thus, in the sndium hydroxide chart the order of reactivity is Amaryllis belladomna, Brunsrigia josephine, Brunsdonna santera alba, and B. sandera, which order is entirely ditforent from uhat is found in the chloral-hydrate and progallic-acid charts. Comprang the potassium-sulphite and sodium-sulphit. "harts it is seem that in the former the order is A mom"
belladonna and Brunsdonna sandera (both the same), Brunsvigia josephince, and Brunsdonna sanderce alba; and in the solium-sulphide chart, Brunscigia jose phinc, A maryllis belladonna, Brunsdonna sanderee, and B. sanderce alba. Viewing the various charts of this set, all sorts of rariations in the relative reaction-intensities of these four starches will be found: In some, such as in the charts for chromic acid, potassium hydroxide, and barium chloride, there are practically or absolutely no differences; the charts for nitric acid, sulphuric acid, and hydrochloric acid show some but not marked differences; the charts for chloral hydrate, potassium iodide, potassium sulphocyanate, and cobalt nitrate show welldefined pairing-in all three reactions the parents and the hybrids, respectively, are paired, in the chloralhydrate reaction the parental pair having the less reactivity, while in the potassium-sulphocyanate and cobaltnitrate reactions the greater reactivity. In other instances there may be a single pair, the other two starches differing from this pair and from each other, as in the reactions of pyrogallic acid, potassium sulphide, strontium nitrate, cupric chloride, and mercurie chloride; in other instaness all four are unlike, as in the charts of sodium hydroxide, sodium sulphide, calcium nitrate, and so on.

Pairing when present may be confined to either the parents or the hybrids, or there may be pairing of both parents and both hybrids, and in one instance (potas-sium-sulphide chart) Amaryllis and Brunsdonna sanderce are paired, and show distinctly different reactionintensities from those of the other parent and the other hybrid, which two latter in turn differ markedly. In other words, if any given set of parents and offspring be taken and their reaction-intensities with the different reagents be compared, it will be found that there are not only very marked differences in the average reactionintensities of the several members with the different reagents, but also most remarkable variations in the relative reaction-intensities with these reagents, so that while a given starch may show the highest reactivity of the set with one reagent it may show the least with another, and so on, each starch being capable of reacting in a way independently of the others, so that all possible combinations of varying relationships may occur. This means, of course, that in one reaction the hybrid may be the same as that of the seed parent, in another the same as that of the pollen parent, in another the same as the reactions of both parents, in another intermediato, in another in excess of those of either parents, etc. Each rearent, therefore, has the property of eliciting some definite parental phase. A somewhat detailed consideration of this important phenomenon will be taken up in Chapter V.
Vahations in the Reaction-intevsities as hegarids Helght, Sum, and Average.
(Table B 1, Chart C 1.)

The valuations of the reaction-intensities have been hased, as has been repeatedly stated, on definite but arhitrary scales: Those of the reaction-intensities of the polarization, iodine, gentian-violet, and safranin reactims on a seale of 0 to 105 : theser of the temperatures of gelatinization on a scale of 40° to 95°, and those of the
reactions with the chemical reagents on a scale that shows in one segment the percentage of total starch gelatinized within 60 minutes, and in another the time of complete or practically complete gelatinization within the same period. Inasmuch as in all three sets the same abscissæ are used, and as the scale-values bear in all of the charts the same relationships, the figures of one scale always have a fixed value in relation to giren figures of the other scales; hence, if the scale for the polarization reactions were adopted for valuation of all kinds of reactions the values in all cases would be comparable upon a common basis. For purposes of gross comparisons this scale has been divided arbitrarily into 5 parts which are intended to designate very high, high, moderate, low, and very low reactivity, respectively. Thus, any reaction that falls between 80 and 105 (or in the temperature scale 52.5° and 42.5°; or in the chemical reagent scale 25 and 0 minutes), both inclusive, is recorded as being very high; between 60 and less than 80 , etc., as being high, etc. Table B 1 gives, in connection with each starch, the numbers of the 26 reactions that fall under one or another of these divisions; the sum of the individual reactionintensity values of each starch; and the average of this sum, which latter is obtained by dividing by 26 . Such data constitute a very satisfactory basis for comparisons of the reaction-intensities of the different starches individually, generically, and so on, and they are rendered of additional value if they are also reduced to chart form. (Chart C 1.)

The most conspicuous features of the table and chart are: The close correspondence in the numerical distribution of the reaction-intensities (very high, high, moderate, low, very low) of the several starches of each set of parents and hybrids and of each generic group, together with the close correspondence of the sum and the average values, except when the set or genus representer contains members of subgenera or subgeneric groups; and the varying values of the different generic groups.

It will be seen, for example, in Hippeastrum, in which generic group the parents are closely related, and where consequently there is but little deviation in the reactions of the hylrids from those of the parents, that the figures in each of the columns of the chart for all of the parents and hybrids are in close correspondence, and that the sums and averages of the reaction-intensities are also quite close. The range of these figures in the table for all the starches studied is limited by 2614 (sum) and 100 (average) in Cymbidium lowianum and 525 (sum) and 20 (average) in Hemanthus katherince. In the first column (very high reactivities) the figures range from 2 to 4 ; in the second column, from 0 to 3 ; in the third column, from 3 to 5 ; in the fourth column, from 3 to 6 ; in the fifth column, from 11 to 14 ; in the sixth column, from 748 to 925 ; and in the last column, from $\because 9$ to 36 . These ranges will be found to be within very narrow limits when compared with the figures of the table, as a whole. Such correspondences are also well marked in Nerine, Narcissus, Lilium, Gladiolus, Tritonia, Phaius, Miltonia, and Cymbidium. On the other hand, when the genus is represented by bigeneric parents or by members of subgenera or subgeneric groups, there may he more or less marked deviations from those found when the parents are monogeneric and not so far separated

Table B 1.-Summary of the Reaction-intensities and the Sum and the Average Reaction-values of the starches of Parentand Mybrid-stocks:
\ldots...

With thewe exceptions, the firures for the several members of each group and each genus tend to be distributwh amoner the serral divisions in case of each genus with remarkable uniformity, in some genera a ennspicu-wu-1y lirce number falling among the very high, or the wry high and high reactions, or the very low, or the very low :and low reactisities, and so on. Such differentes, of themselves, are usually quite definite in making distinct groups which upon comparison will be found to agree remarkably with botanical classification. Thus IIipprastrum, Nerine, Gladiolus, and Tritonia are characterized particularly by the relatively large number of reactions that are very low (the number varying in the different genera) and the fairly uniform distribution of the remaining reactions amons the other divisions, chiefly among the moderate and low. In Lilium, Phaius, and ('ymbidium the characterization is by the very lares number of very high reactions and the fairly uniform distribution of the other reactions amoner the other divisions, especially generally amoner the high and moterate. In Amaryllis-Brunsigia, Crimum, Itrmanthus. Iris, Begonia, and Musa variations from these systems may be observed because of certain subgeneric peculiarities that have already been referred to.

These data indicate quite clearly that peculiarities in the distribution of these reaction-intensities are intimately related to generic and subgeneric divisions, and that when the distributions in the case of members of a set or of a senus may be alike or nearly alike there may be differences in the sums and averages that are more or less definitely distinctive. For instance, the distribution in Brunsdoma sandere alba and B. sanderee is identical, but the sums and averages differ sufficiently to differentiate these hybrids. In Verine, the distributions differ very little; in some cases the sums and averages are absolutely or practically identical, and in others they differ within small to very narrow limits. Tinder such conditions positive identification of different members of the group can not satisfactorily he made. Correspondinf conditions are found in relation to intergeneric difforntiation. Thus, the distributions in Hippeastrum and Terine are closely the same, and were dependence plamed upon this feature to distinguish genera it would naturally be concluded that the genera are alike; but upm a dareful examination of the two sets of figures it will be found that in Mippeastrum there is a manifest fundency for a shifting of the reaction-intensities toward the sery low reactivity end, and in Verine in the same dirmetion, but to a slimhtly less derree, so that in the final summing up the sums and averages in the former fall lower than in the latter-in Hipmastrum, ransing from

 indus and Tritomin, vory du-dy related emenera. the thisfribution closely corresponds to the preceding ermus in the semeral reapects reforemb to. (on the other land. Lilimm and 'ymbidimm, while in semeral very chacly alike in distribution, sum, and averaqe are very markelly. different from all nother groups. Phaius values hear a slose resmbliance th the digures of Lilium aml ('ymbitimm. bris in it = first threse -ote -tanls alart from all athor semera in the mamer of distribution of the reactionintensition. ! 4 the sum- amb aserates are done to lont
somewhat less than in Nerine. In other words, different genera may or may not exhibit distinctive peculiarities in the distribution, sum, and average of the reaction-intensities. The value of such data seems to lay particularly in showing that members of a genus that are not so differentiated as to fall into sulgeneric divisions tend to exhibit a method of distribution of the reaction-intensities according to a definite system, which system is composed of the averages of the number of very high, high, moderate, low, and very low reaction-intensities, of the average of the sum of the reaction-intensities, and of the average of the latter. For comparative purposes the system represented by II ippeastrum, Iris (first three sets), and Lilium may be taken because they show different types:

If the figures for any given member of any one of the genera represented be compared with the figures for the genus, it will be found that those for the corresponding columas differ, if at all, only within narrow limits. Thus, in case of Hippeastrum the figure in the first column of this table and chart is 2.8 , while the figures for the nine starches represented in this genus vary between 2 and 5 ; in the last column the figure is 12.8 , while the range for all of these starches is from 11 to 14 . The sum is 836 , and the range from $\gamma 48$ to 925 . The average is 31 , and the range from 29 to 36 . And so on with Iris and Lilium. When, however, there are subgeneric groups there may be as many types as there are groups, as is well illustrated by instances referred to.

Obviously, the method of differentiating genera, subgeneric groups, species, hybrids, and varicties by such a system has its limitations, not because of the failure of the data per se, but because of the faultiness of the method of formulating the data. This is manifest, for instance, in Hippeastrum and Nerine, in which the data as tabulated indicate very closely related genera or even subgenera, yet these genera, although belonging to the same family, are well separated and are not confounded by the botanist. When, however, the data are presented in other forms, as in other tables and charts, the genera are as markedly differentiated from each other, and the mombers of each genus from each other, as they are by the data of the systematist. Fimally, it is of interest to note that in summing up these averages intermediateness of the hybrid is not the rule, the tendener being more frequently for the hybrid values to exceed or fall helow those of the parents than to be intermediate.
Areivie Tiamperatures of Gelatinization Compared with the Arerdge Reaction-intensities.

(Table B 2, Chart B 12)

During the progress of the researeh it was found that the temperatures of gelatinization bore varying relation--hips to the arerage reaction-intensities, as a whole, of ditferent members of certain sets, different sets, and dif-

Table B 2．－＇Pemeratuhe；of（iidatinization．

	$\left\{\begin{array}{l} \text { Ia manjurity } \\ \text { of the } \\ \text { ktame. } \end{array}\right.$		In all us practicatly ull of the pr：．ans．			Aver－ ＊ for 4.
Amaryllis belladonna	70	（1） $71{ }^{-}$			72．7	
Brunsvigia josephinte	165	b；	$7{ }^{\text {a }}$		71	
Brunsdonna sand．alba	70	71	71.5	3	12．05	71.15
Brunsdorma manderes	70	71.5	72	こ5	\therefore 二．う	
Hippeastrum titam	T－1	75	75	$\because:$	77.25	
Hip\％exstrum cleronia	71	73	73	71	T． 5	7.4
Hippeastrum titan－cle	72	74	Bis	－1	二小is	
Hippeastrum ossultan	3	7.	75	Oi	75.5	
Hippeastrum pyrrha	71	73	73	71	73.5	73.8
Hippeastrum ossult．－p	70	$7 \cdot$	i2	73	72.5	
Hidperstrum davones．	72.5	74	74	［．	71.5	
Ifippetstrum zephyr	72	73	3.3	75	7.4	73.7
Hippeastrum dxone－zeph	72	73	72	73	72.5	
Hemanthus katherinat	79	n0	$\therefore 3$	－ 4	3	
Hemanthus magnilicu	${ }^{4}$	7.5	is	79	7s．j	－1
Hemanthus andromeda	75.5	no	n1	¢2	－1．5	
Hemanthus katherine	79	80	52	－ 4	4	
Hamanthus puniveus	7	79	41	82.5	＋1．75	22.7
Hæmanthus konig albert	so	82	82.5	81	－3．25	
Crinum mourei	6s	70	70	71	7！．	
Crinum zeytanicum	8	\％	79	41	79.5	
Crinum hythrdum j c．	－5	so	80	\therefore	－1	
Crinum zeylanicum	76	Is	79	80	79.5	
Crinum longzfolium	70	71	74	75	74.5	73
Crinum kircape	75	76	7	79	is	
Crinum longifolium	70	71	74	75	74．5	
Crinum moorei	tis	\％ 0	70	71	70.5	71.2
Crinum powellii	（65	67	6i	69	6s．	
Nerine crispa	6.4	65	70	71.5	70.7	
Nerine elegans	68.5	70	75	78.9	75.9	
Nerine dainty maid	69	705	72.5	73.8	73.2	12.9
Nerine queen of roses	68	69.1	71	72.8	21.9	
Nerine bowdeni	67.6	67.9	74	75	74.5	
Nerine sarn．var．cor maj	70	71	76	78.	Ts． 4	
Nerine giantess．	68.2	69.1	70.9	71	70.45	
Nerine abundance	69	69.9	73.9	74.8	74．．）	
Nerine sarn．var，cor．maj．	70	71	76	7 S ，	衸 4	
Nerine curv．var．foth．maj．	68.1	69	73.2	74.3	3 Br	76.2
Nerine glory of sarnia	70	7：	75.5	7	70	
Narcissus poeticus ornat．	73	71	7	IS	7.5	
Narcissus poeticus poetar．．．	67	69	71	73	－	．．3
Narcissus poeticus herrick．．．	69	71	76	75	I	（．）．
Narcissus poeticus dante	71.2	－ 73.1	－4．	76	7	
Narcisul taz．grand mon．	73	75	76	7	76.5	
Narcissus poeticus ornatus．	73	－ 4	78	7	7%	73
Narcissus poetaz truimph．．	73	75	76	77	－tio	
Narcissus gloria mundi．．	71	72.8	74	75	74.5	
Narcisus pocticus ornatus．	73	7.4	7	－	－5 5	75
Narcissus fiery cross．．．．．．	71	72	33.5	74.5	It	
Narcissus telamonius plen．．	70	72	73	？ 5	7	
Narcissus poeticus ornatus．	73	74	\because	In	7.5	75.8
Narcissus doublown ．．．．．	71.2	73	75	7	76	
Narcissus princess mary	70	72	－4	76	75	
Narcissus poeticus poetar	67	69	71	73	\because	71.2
Narcissus cresset．．	71	73	－7．5	76	75.7	
Narcissus abscissus	10.5	71	73	74	73．9	
Narcissus porticus pootar．	199	71	71	73	？	．s
Narcissus will searlet．．．	69．8	－ 71.9	7－	74	$\because 3$	
Narcinsus albicans．	70.2	72	Z：3	75	71	
Narcissus abscissus．	69.5	31	73	7.	785	7.2
Narciesus bicolor apricot	71	－2．5	7.	76	8	
Narcissus empress	70	71	73	74	735	
Narcissus albicans	70.2	？	73	75	\bigcirc	－：！
Narcissus madame de graafi	70	7－	73.5	75	71%	
Nareissus weardale perfeet	in	69	72	7.1	\cdots	
Narcissus madame de grasf	70	7－	735	75	71.25	7.4 .4
Narcisius pyramus	73	74	76	\because	7）	
Narcisulas monareh	67	¢心．5	：2	73	－．${ }^{\text {a }}$	
Narcissus madame de graaff	70	72	73.5	\square	\＃1：	\cdots
Varcissus lord roberts	64	69.1	73	－1．	73．75	
Narcissus leedsii min．hume．	70	71.2	7.5	76	7－3：	
Narcissus triandrus albus．．．	70	71	$3: 3$	78	7	7.7
Narcisus agnes harvey	70	71.4	－3．8	75	7．4．4	
Narcisuts emperor．	69	71	7.4	75.5	74.53	
Narcisus triandms albus	70	71	73	－\％	74	－\％
Narcissus j．t．bennett poe．		$6.4 \times$	19	.11	7．1	

	of th． 1 स1．114		Jat all 105 practically all ai ther F1 Hos $=-$		$\begin{aligned} & \text { Mrsh } \\ & \text { of } \\ & \text { latter. } \end{aligned}$	$\begin{aligned} & A_{1}, r \\ & a_{1}, \\ & f_{1}, r \\ & b+1 \end{aligned}$
－－－－－		－			－	
Lilium natrgor alb，	S 5	01	1，	6.1	1，3	
Lilium thaculatum	\therefore	in	（1）	$1: 2$	1,1	61.2
J．hnat manhas	St，	的	S：	1，11	$5: 5$	
	1．2	t， 1	1，4， 5	が：	1.64	
	\therefore	6	1，1）	$1 ; 2$	1.1	1．4．1
L．thun dalltatanu		60）：2	1.3	1.4	6.39	
	： 2	53	S．：	5 t；	50，	
	$\therefore 1$	61	1，2	f；	183	$\therefore 9$
	S3	54.4	57	6． 7	57	
Lilinne chaterednam Mn	－9） 2	61	t．3	C4	4， 35	
Silinm ramkduna．	27	らい， 7	1,0	62	（i）	63，2
Lilium tostawrom	61．2	63	th3	67	（6） 20	
Lilium mavialinum	S	60.5	（il	63	H2	
Lilium parryi	47	45.5	51	52	51.5	1，0．4
Lilium burbunki．	1．4	fit	17	（5．）	67.5	
Iris iberima	1，9	70	71	ここ．5	71.75	
Iris trojana	70	71.5	73.2	75	741	72.9
Iris ismala	1,9	71	－：	7.4	73	
Iris iberica	19	70	$\div 1$	72.5	71.75	
Iris cengialti	70	72	74	76	75	． 22.6
Iris dorak	1，	70	70	\because	71	
Iris cengialu	70	72	7.	76	75	
Iris pallida queen of mas	71	73	75	75．	－5．4	74．5
Iris mars．alangrey ．．．	199	70	73	7．4．5	73.75	
Iris persica var，purpurea．	（i）	66	is	70	1,9	
Iris sindjarenimis	63．3	65	tit	67	（iti， 5	－i． 2
Inisursind ．．．	1i1． 5	fii	lis	70	（1）	
Gladiohes cardinalis	4．3	\＄4．5	4	sis	0.5	
Gladiolus tristis	76	is	7	79	－3． 5	$\cdots 2$
Giladiolus calvillei	－	no	\cdots	83	2.5	
Tritonia pottsii	73	75	71	75	76．75	
Trituniat crocosmiat atara at	－8	50	no	82	－1	75.2
Tritunia cruerosmeflotat	74	76	76	is	7	
Begonia sing．crim，ecar	67	65.5	70	72	71	
1－egohia socotrana	79	so	$\because 1$	\％1．	51.4	74.9
13．renita mrs．hetal		60^{3}	$\because 1$	\because	75	
Isegronia doub．light row－	col	61	12	61	13	
130gonia sonotraha ．．	－19	80）	$\checkmark 1$	－1．	$\therefore 14$	705
Bexaniat ensign	1.1	65 5	1.6	tin	$1 i^{4}$	
Begonia double white	Bio	61.5	1．5．	（1） $\mathrm{S}^{\text {a }}$	10.25	
Begonia socotrana	79	80）	$\checkmark 1$	－1．${ }^{\text {a }}$	81.4	7
Bugonia julius	1.5	$6 t$	1.7	64	in	
Tegonia doub．deep rose	1.4	${ }_{65}^{65} 5$	67	（i）．	（i）．	
Beghonia sumotrana	79	so	$\checkmark 1$	－1．	41.4	72.6
13，4ninit success．		$6{ }_{6}$	in	69	65.5	
Richardia albo－maculata．	7．	76	7 i	－-5	72.7	
Richardia elliottiana	74	75	76	\square	76.5	7．1
Richardia mrs．roosevelt	71	$7{ }_{\text {i }}$	74	5	\cdots	
Musa arnoldiama	10	（1）	（i4．5	0.5 .4	fis）	
Musa gilletii	（i）	fitis	13． 5.5	69	ᄂ， 4	． 67.7
Musa hybrida．	1.52	4：3．	（i）	71	104．75	
Phaius grandifolius	15	66	tiv	69	的：	
Ihatus wallichii ．．	（i）	6.5	bii	（is	（i）．	67.7
Phaius hybridus	1.4	（iti	fiti	in	67	
Miltonia vexillaria	\％ 0	71	73	－1	73.5	
Miltoniar rezzlii．	－4	－	71	\because	76.5	74.7
Miltonis blenata	$1 i!$	71	7	7.4		
（ y mbidium lowiamum	S	til）	B_{2}	0.3	62.5	
（ymbidinm e．（armenm	is	59.5	1in	（ivis）	12．\％	． 65.2
（ ymbidfun d， num	（il	6.3	1.7	84	67.5	
Calanthe rosea	74	7 i	\square	－7	76	
（ a alanthe vest．var．Fubsooc．	\because	－7	7.4	75	74.5	．74．3
（ alunthe veithii ．．．	71	\because	$\because 3$	7	$7 \because$	
ralanthe rest．var．rub－oc．	72	7.	74	7.5	7.5	
（alanthe reguieri	70	72	76	78	\because	$7 i$
（alanthe liryan ．．．	$\therefore 2$			7	76	
Average mean temperature： stocks	kel:tit	i:t	$\ldots i$	$\text { - } 1 \text { : }$	$\text { Ir }+3, t-$	$\therefore 20^{-\circ}$
Average mean temperature parent stocks	of ge	tiniz:	atirn	the	．，11t 21 －	7：100
Average mean temperature stocks	of R	tiniza	$\text { tion } 0$	$\text { the } h$	brid－	$\because 263^{\circ}$

ferent genera, the reaction being in some instances higher, or lower, or the same, or about the same, as the aworare reartion-intensity. In comparing the data of duffernt gemera, species, or hybrids, it was usually found that the two tend to fall and rise together-in other Words, that if in one set the average mean temperature of gelatinization and the average reaction-intensity is at a given standard and if in the next set the temperature is higher, the average reaction-intensity will be higher, although the quantitative relationship between the two may bary; lut me may rise and the other fall, and so on. The varying relationships of these two sets of reactions will be seen by compraring the records in Table B 2 and (hart $B 42$. strictly equivalent values in the two cans are not given because the scales are different and arbitrary. The range of temperature reactions are included between 51.5° (Lilium parryi) and 83.25° (Homanthus könig albert), representing a range of only about three-fifths of the scale, while in the reaction-intensities, as a whole, the entire scale is included; hence, it follows that strictly comparative values of the excursions of the temperature curve should be amplified two-fifths. This fault, however, does not interfere with the gross comparisons sought. Taking the two averages for the Amaryllis-brunsiigia-brunsdonna group as a startingpoint, it will be observed that there is a well-marked separation of the two curves and that the temperature curve is the lower. Both curves fall in IIppeastrum, the temprature curve less than the other, and there is an inversion of the positions of the two curves, the temperature curve now being the higher. In IIomanthus both curves are still lower, both being close in the first set but well separated and again reversed in the second set, the temperature curve now being the lower as in Amaryllis-brunsvigia-brunsdonna. This last crossing is due to peculiarities, several times referred to, of Hamanthus punicus. In Crimum both curves rise and undergo a marked separation in the last set, the temperature curve remaining in all three sets lower and changed to a less degree than the other curve. In Nerine both curves fall and approximate. In Narcissus the reaction-intensity curve remains at the same level as in the last set of Sirine, bat the temperature curve rises to a point slightly abowe the reactiom-intensity curve. In all of the following feneric: sroups the temperature curve falls below the other curve, the degree being very variable, and the ranco of variability far in eveess of what can be accounted for berer of eatibration above referred to.

These arrage differences do not begin to bring out or evern imbleate the extent and kind of these variations that are found when the data fur members of different sut are compared. For instance, in Amaryllis-bruns-rigin-tramsolonm the temperatures of gelatinization are nearly the same, the masimm differnese being only 1. \therefore. , hat the raction-intem-ities vary between $\boldsymbol{\%} 6$ and 52, the temperatures for Amaryllis and Brunsdonne sandetw beine pratimally absoluthly the some, while the
 a whe diftereme. In wher words, there mar be no difference in the temperature of gelatinization, but a wide difference in reaction-intemsities. In the Crimum longi-folum-moorei-pouellii set, C. pouellii has the lowest temperature of gelatinization, but the highest average reation-intensity: In Iris, in the first three sets the
temperatures are uniformly higher than in the fourth set, but the relative reaction-intensities are the opposite, they being very much lower in the first three sets than in the last set, and the difference is proportionately far more marked than in the temperatures of gelatinization. In Begonia, in B. socotrana the temperature of gelatinization is very much higher than in the other members of the genus represented, but the reaction-intensity is very decidedly lower. On the other hand, in IIippeastrum the temperatures of gelatinization and average reaction-intensities are in both cases very closely alike. In IIcemanthus katherince the temperature of gelatinization is distinctly higher than in H. magnificus, but with the average reaction-intensity, although there is a tendency, on the whole, for a starch that has a high temperature of gelatinization to have a corresponding reaction-intensity.

In comparing the data of this table it is worthy of note that while there may be evidence in some reaction of a grouping of genera and of subgeneric divisions there may not be in others. For instance, the temperature of gelatinization of the members of two genera may be close, as in the case of Hippeastrum and Nerine, but the sum and average reaction-intensities may be distinctly different; or the temperatures may more or less distinctly individualize the genus, as in the case of Lilium; or they may individualize subgeneric groups, as in Iris, in which the first three sets and the last set stand distinctly apart from each other. While it may not be possible positively to recognize a genus upon the basis of temperature of gelatinization and arerage reac-tion-intensitiy, it is at least possible to state that it may be this or that genus or positively that it can not be a certain genus. For instance, having the data for Hippeastrum and Nerine, it could perhaps not be stated conclusively which is which, although there is exident differentiation; but neither could possibly be confounded with Amaryllis-brunsvigia, Lilium, Iris, Musa, Phaius, Miltonia, or Cymbidium; nor could Lilium be mistaken for Iris or for any other genus with the exception, possibly, of Cymbidium. Lilium and Cymbidium are very widely separated genera, one belonging to Liliaceæ and the other to Orchidacea, and there should be a wide difference in the sum-total of their reactivities, but the reason why they are not here so differentiated is owing to their great sensitivity to the chemical reagents. So far as the temperature of gelatinization is concerned, it is well established that starches obtained from very remote plant sources may have the same temperature of gelatinization, which peculiarity applies also to every reagent, both of which being in accord with what is to be expected of stereoisomers. On the other hand, they may exhibit differences, which vary in degree with different reagents. Hence, it follows that the starches are to be distinguished from each other by the collective peculiarities of each starch compared with those of other starches.

2. Velocity-heactions with Different Reagents.
 (Charts D 1 to D 691.)

In the preceding section it was shown, among various conspicuous phenomena, that different starches exhibit a wide range of reaction-intensities with a given agent or
reagent; that the reactions of a given starch may vary with different agents and reagents within wide limits; that there is a manifest tendency to grompings of reac-tion-intensities of different starches that are, on the whole, very closely in harmony with the plant groupings of the systematist; that the most variable relationships exist between the starches in their reaction-intensities, as regards sameness, intermediateness, excess and delicit of reaction-intensity developunent of the hybrid in relation to the ractions of the parents; and that the differences in the reactions are conditioned by differences of the starch molecule, by the characters of the agents, and by molecular constitution and concentration of the reagents. The comparative studies of the reactions with the chemical reagents have as their sole basis values that are expressed in terms of percentage of starch gelatinized in 60 minutes or less. There was no note regarding differences that were recorded in the comparative percentages of the entire number of grains and total starch gelatinized at definite time-intervals, and only the most casual references were made to peculiarities observed in the progress of curves of the reactions lrom period to period; yet both of these features are found to be of great importance, alone and in conjunction with the findings presented in the foregoing sections, in the determination of generic, species, rarietal, parental, and hybrid peculiarities of starches. The reaction-intensities of different starches with different reagents recorded in Part II, Chapter I, include the percentages of both the entire grains and total starch gelatinized at definite time-intervals. The data of the tolal starch gelatinized have been tabulated in Section 3 of each of the Comparisons of the Starches of the Parent- and Hybrid-stocks in Chapter III, and they are here presented with few unimportant exceptions in the form of Charts D 1 to D63 \pm which admirably exhibit both intensity and progress of the reactions, and render comparisons of the behavior of both starches and reagents very satisfactory. Additional charts (Charts D 635 to D 691) have bee:1 introduced to show the relationships between the percentages of entire grains and total starch gelatinized at given time-intervals. There will also be found among Narcissus, Lilium, and Begonia a few charts that show differences between these percentages, and a few additional charts to bring out certain generic peculiarities.

These charts are so very numerous and the curves so exceedingly varied that detailed descriptions and comparisons are rendered impracticable because of necessary limitations of space, although it will be perfectly manifest, after even a superficial survey, that the results of such a study would prove of great value in many directions; yet very much that is of more than mere passing interest, value and suggestiveness can be brought out by even casual examination.

Percentage of Total Starch Gelatinized at Definite Time-intervals.

(Charts D 1 to D 634.)
The curves of total starch gelatinized vary widely and the number and forms of types recognized are purely arbitrary. In some instances the curve is nearly or absolutely rectilinear, but in most cases it is circumlinear and varied, but suggestive usually of an ellipse, hyperbola
"r parahnla or sombe modntathon of one of the thren. The rectilinear curves are presented in the form of three types or what may tentatively be resarded as three modifications or forms of a single type:
(a) A form that is characterized by an immediate, very rapid and continually rapnd rise of the curve at an angle apprommating about 1 th : whth tho vertical, thas repreanting a complet. or practionlly complete golatinization in 1 or 2 minutes. This curve should prebably the circumbinear ina-much as it is likily that during equal increments of time larerer increments of the stard are gelatinized during the earlier than later periods of the reactions, but the time-intervals here are too short for such determinations. This belief is supported by thr finct that when the rearetions of the same starch but with a weakened reagent are somewhat less rapid, as when complete gelatinization occurs at the end of 5 minutes, this sariation is noted and the ciremmlinear character of the curve is quite marked, the increments of gelatinized starch falling very rapidly and disproportionately after the first minute. This form of curve is illustrated in the Amaryllis-Lirunsrigin-Prunsidonna group in the reactions with nitric acid, sulphuric acid, hydrochloric acid, and potassium hydroxide (Charts l) t, D 5, D 6 , and 1) 7). It will be seen that in some of the reactions the line is straight and in others curved.
(b) Another form of the revtilinear type presmati a curve that is almost if not entirely rectilinear, but having an inclination that rarely is less than an angle of so with the vertical, which is equivalent to a maximum of approximately 15 per cent of the total starch gelatmizal in 60 minutes. This form of curse is associated usually with weak gelatinzing reagent a and exceptionally resistant starches. It will very frequently be found in the study of these charts that while a given starch may show such a curve with one reagent, a curve of the first form wr of an entirely difleront type may be exhbited wath mother reagent. Such a curve is well trpified in the reactions of Bramsionna sanderoe alla with sodium sulphide, cobalt nitrate, ("uprice chloride barium chloride, and mer(uric chloride (Charts D 12, I) 1ヶ, I) 19, I) 20, D) 21).
(c) A third form of the rectilinear curse links in its varied positions the first and third forms, and were it not that the first two forms are vory common and the third form relatively rare, there would be no good reasnn for the recognition of three forms. This form is illustrated in the reactions of Brunsrigia josephince with mercuric chloride ('hart D 21), of (rinum Kirrape' with sndium sulphide (Chart D 159), and of Nerine boudeni with uranium nitrate (C'hart [) 295).

The cire umbinear type of curves is divisible into there forms:
(a) One form shows that gelatiniation beam: and proceeds rapidly, there being progressicely or practically progressisely decreasing increments of tarch celatinized with additional increments of time. This form is illustrated in the reactions of Amaryllis belladonna with sodium sulphide (Chart I) 12). This form of curve is very common, perhaps the most common of all. An examination of this series of , harts ('harte i) 1 th D 634) will elicit most raried and modified gradations in both directions from what may probnely lee rewartod as a true hyperbolis form.
(b) Another form is an inversion of the latter, gelatinization proceeding very slowly at first and then increasing with additional increments of time. Such curves are illustrated in the reactions of Brunsdonna sanderce alba with uranium nitrate (Chart D 15), of Hippeastrum pyrrha with nitric acid (Chart D 46), of C'rimum kircupe with strontium nitrate (Chart D 163), and of Nerine sarniensis var. corusca major and N. giantess with potassium sulphocyanate (Chart D 219). In this form there is a tendency to a continuously increasing increment of starch gelatinized with increasing increments of time.
(c) A third form, and one that is frequently observed, shows reactions that begin relatively or absolutely slowly, followed by progressively increasing reaction, and this in turn by progressively decreasing reaction, with additional increments of time, thus giving a curve that approximates the form of the letter f. Such a curve is typified in the reactions of all four starches of the A maryl-lis-Brunsvigia-Brunsdonna group with chloral hydrate (Chart D 1), and in one or more of these starches with chromic acid, pyrogallic acid, potassium iodide, calcium nitrate, and copper nitrate (Charts D 2, D 8, D 14, and D 18). This curve is a modification of the first form of the circumlinear type, the modification being brought about chiefly by a relatively marked early resistance of the grains to the reagent. The duration of the period and the degree of resistance are very variable. In some instances there is merely a suggestion of resistance; and in others resistance is very marked in both degree and duration; and in others various intermediate gradations and variations. Thus, in the reactions of Amaryllis belladonna and Brunsvigia josephine with cobalt nitrate (Chart D 17) there is only slight evidence of this early resistance, while in the Brunsdonna sandere alba and B. sandere reactions the resistance is very marked (Chart D 2), in the latter instance there being only 3 and 1 per cent respectively of the total starch gelatinized in 5 minutes; while is and $i 9$ per cent, respectively, was gelatinized during the succeeding 10 minutes. In the chromic-acid reactions of the Nerine crispa-elegansdainty maid-queen of roses group this period lasts in all four starches for 15 minutes, followed by a rapid gelatinization, giving a well-marked form of curve. While all four starches may show this resistance with one reagent, one or all may not with others, and the degree and duration of the resistance may either or both be quite variable. Thus, in the chloral-hydrate reactions, two of the starches show slight early resistance, and two not any (Chart D 190) ; in the potassium-sulphocyanate reactions all four show a resistant period, two for is minutes, and so on. The inclination of this form of curve is very variaWe, in some intances, heing less than 30^{\prime} (Chart D : ${ }^{\prime}$); in others, about $\boldsymbol{o l}^{\circ}$ (Chart D 1), in others about 80° (Chart D18) ; and in others, between or beyond these extremes, the less the angle the less rapid, as a whole, is the process of gelatinization.

Curves are not infrequently found which do not pursue a uniform rectilinear or curvilincar course, so that they are not classifiable among the forms stated. In other words, they appear to be at times erratic in their courses. For instance, in the reactions of Brunsdonna sandere with sodium sulphide (Chart D 12) the curve
during the first 15 minutes appears like a segment of the f form, but between the 15 -minute and 45 -minute intervals the curve drops instead of rises. In the sodiumhydroxide reactions with Brunsdonna sanderce alba (Chart D 11), it seems from the courses of the curves of the other starches shown in the chart that the curve should have risen decidedly more by the end of the 15 minute interval, impinging at perhaps the 30 per cent abscissa instead of at the 16 . In some instances these seeming or actual aberrations in the progress of gelatinization may be due to errors of experiment that are attributable to errors of estimation or to variations in attendant conditions; but in most and probably in nearly all instances they are owing to peculiarities, molecular or physical, of the starch grains, as is indicated by the oceurrence of identical or practically identical records when experiments have been repeated, even under varying incidental conditions.

The curves of gelatinization of the starches constituting a parental-hybrid group tend usually to divergence in their courses during the early part of the reactions, and when a definite position-relationship (highest, intermediate, same or lowest) is once established it is commonly retained throughout the courses of the curves, but the degree of separation may be very variable, usually increasing for a variable period and then decreasing or increasing, more frequently decreasing. In some instances there is little or no difference between two or more of the curves of the group during an early period of the experiment, the length of which period being variable, this period being followed by variable degree of divergence; and in other instances, while divergence may be marked during the early and mid-periods of experiment, there may be sameness during the final period, and so on. Crossing of curves is occasionally observed, but recrossing is very rare. Such peculiarities as are here indicated are illustrated in large part by the Amaryllis-Brunsvigia-Brunsdonna reactions (Charts D 1 to D 21). In most of these charts (excepting those in which gelatinization is very rapid or very slow) there occurs primarily divergence and secondarily convergence. In Chart D 21 there is practically divergence from beginning to end of reaction. Charts belonging to the divergent type are common, for instance, among the Crinum zeylanicum-longifolium-kircape group (Charts D 148 to I) 168).

Different starches may exhibit with a given reagent the same or different curves. Thus the chloral-hydrate reactions with different starches show varying differences in regard to both type and form of type and in the degree of inclination of the curves. This feature is shown by both the individuals of the groups of parental and hybrid starches and by the different generic groups, as scen, for instance, by an examination of the reactions of the four starches as presented in Chart D 1, and by the reactions of tarious generic representatives shown in ('harts I) 22, D) 85. I) 127, D) 190, D 265, D 361, D 3\%9, 1) 463, L) 484 , D 505, D 545, D 574, D 595, D 616, and 1) 619. Similar variations will be found in the reactions uf other reagents, these differences being usually more conspicuous in the case of reagents that act usually with moderate activity than with those which act commonly with either much or little intensity.

A given starch may exhibit like or unlike reactions with different reagents, and the curves vary as much as do those of different starches with the same reagent, so that there may be most varied forms of the dilf.rent typers. This feature will be found to be well exhibited when the eurves of the reactions of any given stareh of any one of the generic groups are compared, for instance, the curves of A maryllis belladonna (Chart 1) 1 in $10 \gtrsim 1$). The curve in the chloral-hydrate reaction is of the f form, having an inclination of about 50 , so that the upper end is at the termination of the 60 -minute interval. The curve of the chromic-acid reaction is of the f form, but it terminates at the end of the 30 -minute interval, giving it an inclination of about 30°, which indicates a very much more rapid gelatinization. It will be seen, however, that during the first 5 minutes the percentage gelatinized in both reactions is practically the same (12 and 10 per cent, respectively), that the gain in the chromic-acid reaction occurs during the next 10 minutes; and that the quantities gelatinized during the interval between 15 and 30 minutes are the same in both reactions. The pyrogallic-acid and chloral-hydrate curves bear a close resemblance; but the former is lower throughout, especially at the end of the 5 -minute interval, indicating a more marked early resistance to this reagent than to chloral hydrate. From this point onward to the end of 60 minutes the curves run very closely parallel.

In 11 of the 21 experiments with different reagent the curves belong to the form of circumlinear type that is characterized by progressively decreasing increments of starch gelatinized during additional increments of time. These curves vary markedly in character. In some the increment of starch gelatinized during the first 5 minutes is very disproportionate to the quantities subsequently broken down, as is noted particularly in the reactions of potassium sulphide, sodium hydroxide, calcium nitrate, and strontium nitrate (Charts D 10, I) 11, D) 14 , and 1)16), in each of which about 98 per cent of the total starch was gelatinized in 5 minutes. In the sodiumsulphite reartions the increments of gelatinizinl starch are $66,14,4,3$, and 2 per cent. In the other reations of this group, including those of potassium iodide, sodium salicylate, uranium nitrate, copper nitrate, and cupric chloride (Charts D 8, D 13, D 15, D 1s, and 1) 19), the curves exhihit various modifications in comparison with the foregoing. In the mercuric-chloride reactions the curve is of a modified f form, tending, in fact, like the accompanying Brunsrigia josephina curse. to be rectilinear, but at an angle of about ixn as compared with about 26° for the latter. In the reactions of nitric acid, sulphuric acid, hydrochloric acid, and potassium hydroxide (Charts D 4, D 5, D 6, and D $\tilde{\text { a }}$), the curse is rectilinear and almost rertioal, while in tha. barium-chloride reactions (Chart D) 20) it is rectiline:Ir and almost horizontal.

Starches of members of a genus tend, as a rule, in their reactions with each reagent to yield curves that are of or incline to the same type and type form, exrept when there are subgeneric representatives or widely separated species, in which case it may be foumd that there is or is not relationship in the characters of the curves and this peculiarity may also apply to the curves of hyhrids in relation to those of its parents. For instance, taking
the chloral-hydrate rea toms: of the rar.he- of Lilinn
 atho of buth tyly and tye-form is cistom-: of the - arrhes wi lerime ('hart- 1) $1!\infty, 11 \because 11$, and $1103:$), the curves of the five parental starehes are of the f form.

 and ('. powellii compared with those of' ('. zeylanisum, where we have subgencric or the "quivalent of subgeneric
 curves of the first three conform to a given type-form, while the curve of the latter is of an entirely dillur.nt type; of the starches of Begonit, where similarly w.l!separated starches are Tepresented by thow of the seed? parent on the one hand and by the stareh of $/ 2$. sonelrame
 1) 533 , and D5 539), the curves are clocely simbar: nf the starches of 1 maryllis and Fromeingin, where two recognized genera are represented, the curve aro mula alike (Chart 1) 1). Varietise that are onsprins of dosely related parental stock, as in Hippueastrum (Charts I) $2 \cdot$, D $4: 3$, and I) 6t), tend to shw market (losem... in the curves and this may also be seen not only in closily related species, as in I'hrius (Chart 1) 5rit) and Iris (Chart I 421), but also in closely related genera, as in
 curves of hybrids show, as will be pointed out particularly hereaiter, the most varied relationships to the parental curves, varying between identity and great dissimilarity.

Taking the reactions of all of the parental starehes with any given reagent and comparing them with these of other reagents, it becomes apparent that those of each reagent represent a group in which there are both simi larities and dissimilarities and that the different groups as such exhibit similarities and discimilarities, the reacthons collectively of wath sromp being quitw a- or erom more distinct from those of anothor eremp as are thase of members of the same group; that the more closely related the starches the more marked the tendency generally to closencss of the curbes, yet sometimes distantly or wholly unrelated starches may exhibit almost if not idnontical carres with a given reagent. In a worl, the peculiarities of these reactions are of such rhara turs is should logically be expected if we are dealnor with terenisomeric forms of starch.

The starches of the hybrid and parents usnally take on within a brief period after the beginning of gelatinization In finite relationships, which may he the same or different in the reactions with different reagents. That is, if shortly after the hewiming of the reaction the pestions of the three curves should he in the adder of interasty of reactivity, seod parent, pollen parent, and hythrid, hirliest, intermediate, and lowest), this relationship usually tends to be contimed during the entire perion of whatinization, but with zarying dogrees of separation of the curves. The hyorid durse may hear any relationship to one or the other or looth parental wrue that is, he higher or lower than either, or intermediate. wr the sam, as one or the other or both. Rarely the parenal wrus
 or the other parental curve (thart 11.: Th. Th. hyerin curves tend usually to follow closely the paremal, imera. but they may differ as much or mire from the formatal
curves as do the latter from each other (Charts D 241, (1):3i, and (1) $31: 1$). When there are two hybrids of the sume parentage, the curves may differ quite as much or more from cath other, as the parental curves differ from (ath uther. (Chart-1) 1 to D:I.)

Pembintagis of Total Starch and Entime Number of (irains Ciflatinized at Definite The-intervals.

 I) 305, 1) 314,1$) 320,1) 326$, 1) 332, D 3335, D 344, D 350,1$) 351$,

The curves of the percentages of total starch and the entire mumber of grams completely gelatinized tend in general to correspond in their courses; but both may differ in varying ways, relatively and absolutely, in accordance with the kind of starch and the reagent, excepting, of course, when the reactions are too fast or too slow for definite differentiation.

II hen starch is gelatinized it passes into an imperfect or pseudo-solution, and the grains, like solid particles or masses of other substances passing into solution, show differences in solubility of both grains in their entirety and parts of individual graius. Nome grains may undergo complete gelatinization, while others do not exhibit any obvious change; and other grains show very variable proportions that have undergone a breaking down. These peculiarities have been observed in all kinds of starch with the same reagent. They are constant for the same starch with the same reagent; variable with the same starch with different reagents; and variable with different starches with the same reagent. The behavior of each starch with the different reagents is, as a whole, so characteristic and specific as to be diagnostic. These several points will be found to be well illustrated if there be taken a number of starches that are representative of diflerent generic and sulggeneric divisions, plotting in curves the data of the reactions of one of the starches with ond reagent, and supplementing this group with curves of the reations of a fow arbitrarily selected starches with several reagents. Thus, taking the pyro-wallic-asid reactions (Charts I) (635 lo I) (649), it will be found that the curves of the percentages of total starch and the entire number of grains completely gelatinized differ widely; that the two curves of each starch tend in enemeral to correspondence in their courses; that the derree of correspondence varies from marked closeness to an almost lack of any likeness; and that the degree of soparation of the curves varies in the different starches and also during the progress of the reactions. It is olvons that the farther the separation of the curve the smaller redaticely the pereentage of the entire numher of grains completely gelatinized, and the higher relatively the proportion of the total starch gelatinized in the partially gelatinized grains.

In some of the starches it will be seen that during the prouress of the reactions the increasing height of the curve of the prementage of total starch gelatinized is almost if not directly proportional to the increase in pereentaue of the entire nomlor of grains completely gelatinized-in other words, the total per cent gelatinized is not appreciably or hat little contributed to by the amount of gelatinization in grains that have undergone only varying degrees of partial disorganization; in
others, there will be found the reverse, the major portion of the percentage of total starch gelatinized being yielded by grains that have been only in part, but to varying degrees, broken down; in others, there are various gradations between the former. These peculiarities are constant with each starch with each reagent, except in very rare instances, indicating thereby that they are in part expressions of inherent constitutional properties of starch molecules that differ in accordance with the plant source. In reactions that are completed within 2 to 5 minutes or so, or which are so slow that a very small percentage of the starch is gelatinized by the end of 60 minutes, the differences between the two percentages may be so small as to be undetectable, or if detectable of little or no value in demonstrating this peculiarity. This is found, for instance, in Lilium tenuifolium (Chart D 644), 99 per cent of the total starch is gelatinized in 5 minutes, 93 of this. 99 per cent being contributed by grains completely gelatinized and the remaining 6 per cent of grains being only partially gelatinized, and 1 per cent unaffected. Additional instances are found, but in the opposite direction, in the reactions of Homanthus katherince (Chart D 639), Iris iberica (Chart D 684), and Richardia albo-maculata (Chart D 652).

Taking, in turn for comparative purposes, several selected charts of this series, and begimning with those of Litium tenuifolium (Chart D 644) and Hamanthus katherince (Chart D 639), which represent opposite extremes of reaction-intensities, and wherein the two percentage curves in each are almost identical, variations in the courses of these curves will be found that are coupled with variations in the degree of separation of the curves during the progress of reactions, each chart being in one or both respects different from the other charts, and therefore characteristic of starch plus reagent. In Cymbidium lowianum (Chart D 657) the reactions occur rapidly, gelatinization being practically complete in 15 minutes, 98 per cent of the total starch being gelatinized in 5 minutes, of which quantity 87 was made up of the starch of completely gelatinized grains; while in Richardia albo-maculata only 11 per cent of the total starch was gelatinized in 60 minutes, of which quantity 6 per cent was made up of the starch of grains completely gelatinized. In some of the other charts gelatinization is shown to proceed with fair to moderate activity, but during the earlier part of the 60-minute period the proportion of gelatinized starch contributed by grains that are entirely broken down is decidedly less than that by the partially gelatinized grains. This peculiarity is well illustrated, for instance, in Iris iberica (Chart D 646), Iris trojana (Chart D 647), and Phaius grandifolius (Chart D 655). In Iris iberica, at the end of 5 -minute period, 20 per cent of the total starch was gelatinized, of which quantity only 2 per cent was contributed by grains that were entirely gelatinized; at 15 minutes the figures are 62 and 30 , respectively; at 30 minutes, 81 and 42 , respectively ; at 45 minutes, 86 and 53 , respectively; and at 60 minutes, 54 and 90 , respectively. Similar data are recorded in the other two charts, the proportions in each varying at the different periodsat the end of 60 minutes, in Iris iberica, $54:$: 0 , in I. trojana, 63:96, and in Phaius grandifolius, 28:67, of the gelatinized starch was contributed by the grains that
were entirely gelatinized. In Narcissus tazelta grand monarque, during the first 15 minutes less than 0.i) juer cent of the grains, but 20 per cent of the total starch, were gelatinized, and during the progress of the reaction both curves rise, but the curve of the percentage ol total starch rises somewhat more rapilly than the other. In certain of the charts this progressive separation is seen, as in Amaryllis belladonna ('hart 1) 635) and Triloniue poltsii (Chart D 651); in others, there is for a time separation, this being followed by approximation, as in Hippeastrum titan (Chart D 636) and Hemanthus meniceus (Chart D 640) ; and in others, there is an tarly marked separation followed in time by approximate parallelism, as in Gladiolus tristis (Chart D 650) and Calanthe rosea (Chart D) 658), and so on with rarions differences.

While no two charts are identical some are quite similar, yet readily differentiated. Such similarity is apt to be found in very closely related varieties and speciesfor instance, in Hippeastrum tifun. H. ossultun, and H. daones (Charts D 636, D 637, and D) 638), and in Iris (Charts D 64ti, D 64%, and D 648). Those of the several species of Lilium differ markedly (Charts D 643, D 644, and D 645). Those of widely separated species, such as Hamanthus katherince and I. puniceus, are decidedly different from each other, which species for reasons as stated, probably represent subgeneric groups. The same peculiarities are true in Iris, those of I. iberica (Chart D646), I. trojana (Chart D 64\%) and I. cengialti (Chart D 648) having a close general resemblance, and markedly contrasted with the curves of the apparently distantly related I. persica var. purpurea (C'hart D 649), which curves are quite different from the former. Gladiolus and Tritonia (Charts D 650 and D 651), while representing closely related genera and exhibiting at the end of the 60 -minute period the same percentages of both total starch and entire number of grains completely gelatinized, nevertheless present differences in the courses of the curves that are quite definitely distinctive.

In some of the charts it will be seen that there is an early period of resistance of the starch to gelatinization. This is manifest in some instances in the percentage of completely gelatinized grains, but not in the percentage of total starch gelatinized, as in Iris iberica and I. trojana (Charts D 646 and D 64\%), and in Lilium chalcedonicum (Chart D 645) ; in others, it may be the reverse, as in Narcissus tazetta grand monarque (Chart D 642) ; and in others, in both percentages, as in Amaryllis belladonna (Chart D 635) and Hippeastrum titan (Chart D 636). In other charts both curves may begin at once to rise rapidly, but the percentage curve of total starch rises more rapidly than the other, as in Hamanthus puniceus (Chart D 640), L. martagon (Chart D 643), Musa arnoldiana (Chart D 654), and Miltonia vexillarit (Chart D 656). In the different starches these changes go on with varying rapidity and relationships, so that by the end of the 5 -minute period not only may the two curves of any given starch be well separated but their courses may be quite different. Thus, the figures for the percentages of total starch and number of grains completely gelatinized in 5 minutes in the above four species are 33 and 65,30 and $\% 7,30$ and 86 , and 22 and 50 . respectively. It is to be noted that while in the four carns the percentages of the entire number of grains com-

Motely whatmiand are the same or marly the same the permentages oi total -tareh are in all di-imetly different.
 inherent individual pecularities of the several stareho. The preceding groups of charts indicate to what degree
 may difler in the peremtarie of hoth twal starth aml contire numbre of grains complotely ardatisized, and alsu the tendemede in grameral th = minatme of the wair of
 of distantly or uncelated tareher.

When similaritiow are whererel, as in ther very dene.ely
 in the reactans of the same starehtes is th ofther reazents. For instance, in the reartion- with ehlomal hyifrate (Charts D (6.5!, D litio, and il bitil) the thro.. patrs of curves are closely alike, the type of curve i- the same a is seen in the pyrorallic-aud reationt (('hart: 1) mat, D 637, and D 638), but the positions of the curves in the two reactions are dillerent, owing to the distinctly luwer reactivities of these starches with chloral hydrate. When, however, the reactions of the tardhes of well-argarated or umrelated species are studied it is foum that there may be the widest variations in the relationships of the two curves, not only with different agrents but also with the same reagent, even to the extent that the p+rcentage of total starch gelatinized will give a type of curve entirely different from that of the jerematar of grains completely gelatinized. Thus, examining the pyrogallicacid reactions of the various starches (Charts 1) 635 to I) 658), it will be found that there is with few exeeptions a well-marked tembency to separation of the lwo curves, and that in some instances the two curves are not of the same type, as in Lilium chulrodonirum (1 hart D 645) and Iris trojana (Chart D 64\%). In contrast with this, in the chloral-hydrate reactions (Charts D 659 to $\mathrm{D} 66 \%$) both curves tend to marked closeness in course and hence to the same type. Comparison= of the pyro-gallic-acid and chloral-hydrate reactions of the same starch bring out many intoresting point: For instanne, in A maryllis belladonna ('harts D 635 and D 662) in the pyrogallic-acid reaction the two curres become widely separated during their progress, the percentage of completely gelatinized grains ceases to increase after 30 minutes, but the quantity of crelatinized starch is materially heins aded to by the wran* that are undereong partial gelatinization ; while in the chloral-hydrate reaction the curves keep very close throughout. The most marked difference between the reactions of the two reagents is seen in the curves of the percentage of the entire number of grains completely gelatinized, which differ greatly, while the total percentage curves differ comparatively very little. In Hemanthus municeus (Charts D 640 and D 664) the pyrogallic-acid and chloral-hydrate curves are of duferent types and the curve of both pairs of percentages tend to closeness, more particularly the chloral-hydrate curves. In Narcissus tazelta grand monarque (Charts 1) (ite am? I) 6(i5) both pairs are again diflerent, not only from those of the preceding charts, but also from each other, and as markedly in the latter as in the former case. Here the types of the pairs of curves are distinctly different, and while the troo curves in the pyrogallic-acid reartion tend to progressive separation, those of the chloral-hydrate reaction temi t.
(whtinume duseness. In Iris iberica (Charts D) 646 and 1 ifib) there is a dilference in the type of the two curves in the pyrogallic-acid reaction, but not in the chloralhydrate reaction, and in the former the curves tend to marked separations, lut in the latter to marked closeness. In Phaius grandifolius (Charts D 655 and D 66\%) the same feculiaritios are observed. Similar pairs of charts of the curves of other starches with these and other rearents exhibit corresponding characteristics. It is of importance to recognize that the dillerences between the two curves may be as marked in the reations of the same starch with different reagents as it is in the case of different starches with the same rearent. Indications of these differences have had incidental reference in the immediately preceding statements, and they may be sufficiently accentuated by reference to a single generic group of reactions, as, for instance, the reactions of Iris iberica with different reagrent: (Charts D) (i68 to D 688), that which is found here being taken as a rough index or suggestion of the records of the other starches.

B. Composite Reaction-intensity C'erves with
 Different Aefts and Reagents.
 (Charts E 1 to E46, and D 1 to D 691.)

In the construction of the composite reaction-intensity curves the abscissix are, in the polarization, iodine, gentian-violet, and safranin reactions in terms of gross fuantitative lifht and color values hased on an arbitrary scale of 100° in divisions of twentieths; in the temperatures of gelatinization, in the centigrade scale in divisions of 2.5°; and in the reactions with the chemical reagents on a duplex scale, the upper portion giving the time of complete or practically complete gelatinization (95 per cent or more of the total starch), and the lower portion of the scale the percentage of total starch gelatinized when complete or practically complete gelatinization has oceurred within not less than an hour. The ordinates represent the agents and reagents used in the reactions. The reaction-intensity of each arent and reagent is marked upon its ordinate and upon the proper abscissa, and then a line is contimed from ordinate to ordinate, making an irregular curve. This form of chart is especially usedul in the differentiation and recognition of varieties, spectes, subgenera and genera, and in comparisous of the peculiarities of parents and hybrids. The mothod of comstruction is, however, faulty, and the curves are at times misleading hecause differences that have been reeorded antemedent to the record used in the whart may be of very different signifieance, on which account there will be found hore and there what appear to be discrepancies from what should be expered upon the basis of the datat of the sratematist : but at previously stated, each of these different kinds of charts brings out in a partioular way certain features, and it is of primary importance to note that there are presented in (Charts I) 1 (a I) (is) data of the progrese of the reactions that are of esential importance in fonnection with understanding and proper interpretation of these comprsite charts. In a word, the composite charts exhibit in a gross an! by wo mons accurate way comparation reaction-intensities. For instance, the reaction-intensities of two or more starches may be shown to be 95 per cent of the total starch gelatinized in 30 minutes, or pre-
cisely the same, whereas the records for the preceding periods may or may not have shown any differences. This is illustrated in the uranium-nitrate reactions of Amaryllis belladonna, Phaius grandifolius, and Miltonia vexillaria (Chart D 689), wherein at the end of the 5 -minute period the figure for both A maryllis and Phaius is the same or 65 per cent; and that of Miltonia 83 ; and at 15 minutes, and thence onward, they are practically exactly the same for all three. Then again, the curves of gelatinization of any given starch may undergo a complete change in its relationships to other curves during its progress. This is well shown in the cobaltnitrate reactions with the same starches (Chart D 690). At the end of the 5 -minute period the order of reactivity is Millonia, Amaryllis, and Phaius: at 15 minutes. Amaryllis, Miltonia, and Phaius; and at the end of the 30, 45, and 60 minute intervals, 1 maryllis, Phaius, and Miltonia.

In making the composite charts the records of these species at the end of 60 minutes are taken, and quite a different impression is given of relative reaction-intensities than if the records had been used at the 5 - or 15 minute periods. Another source of fallacy is to be found in the tendency in most of the reactions for convergence or divergence of the curves, this being apparent not only in the charts of the reactions of the starches of parents and hybrid, but also when the curves of arlitrarily selected starches are compared. This latter is set forth in the pyrogallic-acid reactions of the Amaryllis, Phaius, and Miltonia starches (Chart D 691). Here it will be noted that while the Miltonia curve is highest, that of A maryllis lowest, and that of Phaius intermediate, at the end of the 5 -minute period the figures are 50,6 , and 5 per cent, respectively; at the end of the 15 -minute period 34,40 , and 72 per cent, respectively; at the end of the 30 -minute period 50,75 , and 84 per cent, respectively; and at the end of 60 minutes 94,90 , and 66^{2} per cent, respectively. In a word, at the end of the 5 -minute period there was no practical difference between A maryllis and Phaius, but a wide difference between them and Miltonia; and during the progress of the reactions, while gelatinization in Phaius tends to keep about parallel in intensity with that in Miltomia, that in Amaryllis tends to approach more and more closely the intensity of reaction in Miltonia, so that by the end of the hour the figures for Miltonia and Amaryllis are very nearly the same (94 and 90 per cent, respectively) while the figure for Phaius is only io per cent. Notwithstanding the groseness of this method of charting and the manifest tendency to introduce fallacies, it will be apparent by even a cursory survey of these charts from the aspect of taxonomy that they are not without very considerable value, and that by necessary modifications in the plan of charting we shall arrive at a positive means by which plants can be identified and classified by the physicochemical peculiarities of their starches and other complex metabolites, in other words, by a strictly scientific method.

In Publication $1 \% 3$ similar charts were presented. In their formulation the number of reactions wa: less the reagents somewhat different from these wed in the present research, and the values expresced were in terms of complete or practically complete gelatinization time. Attempts were made in the present investigation to lessen
the sources of fallacy liy increasing the number and changing the concentration of the reagents and modifying the standard of values in atowerdance with the abselisse here uscd. Notwithetanding the crudities of the methors adopted and the fallacies introtuced in the formulation of the componite charts in the firmer memoir the following was rendered apparent: That the reactions of members of a genus constitute a well-delined group, the mean of the character-values constituting a distinct generic typa, this upe temding to le simitar to the types of very closely related genera and dissimilar to the types of distantly related or unrelated genera: that the reactions of different species of a genus yield curves that tend to be chnsely in conformity with the generic type of curve, but when there are representatives of sulgenera or similar generic suldivisions there may be departures or alerrations from this generic type si that there may be as many subgeneric or gromp type as there are subqenera or subgeneric groups ; that the reartions of varietios of a specios yield curves that very chasly correspond with thnse of the species; and that the generic, subgeneric, and species differentiations are in general in close accord with estallished botanical data. The results of the present research are in harmony with those of the preceding investigation, but some unexpected variations have beeu found, especially in the extent of certain generic and subgeneric differentiations which will be referred to here with sufficient detail.

Taking up first those genera which are best represented by species and varieties, but in which there are not included sulgeneric or similar generic yroup repreFentatives, wuch as II ippeastrum (Charts E』, E 3, and E 4), Nerine (Charts E 10, E 11, and E 12), Narcissus (Charts E 1:3 to E2t, inclusive), and Lilium (Charts E25 to E29, inclusive), it will be apparent upon even superficial examination that the starches of the varieties or species, or of both varieties and species, of each genus have curves that are in general very similar in form and that the type form of the curve in each genus is different from that of any other, and so markedly: so that the chirves of the members of one genus could not be confounded with those of another any more than could the plants themselves. It will also he noted that when the starches are from very clowely related plants, as in the Hipherstrums, the curves are rery chosely alike. while in Verine and Viarcissus, respectively, where there are instances of both botanical closeness and separation. the variations from the mean or the teneri- typ of curve tend to be more and more marked as the reprosentatives of the enens are lomanically farther soparated. The furves of Lilium. whilo viedding a generic type sery different from the Hippenstimm, Nerine, and Narcissus: types, are of little usefulness in the differentiation of the various members of the genus represented because of the rery rapid gelatinization of the starches with nearly all of the reaments. In order the satisfacturity differentiate these starches reagents of such modified strengths must be used as will render gelatinization very much less rapid, and probably additional rearents may he neensary. In other semera studiod, where there aris only the two parental and the hybrid representatives of the mans: as in Ciladiolus (i'hart E:3b), Tritmmin

 will be foumd, althongh in theriohs and Tritmin, flanly

 particularly later on. In the Amertylis-lirunswigin reactions (Chat 1: 1), whew there :- hitaran reperata tion, the curses are quite different.

 markedly but to even a much more marked dearee than the furves of differmit wemera emomally of the same family-a most curims and as yet inexplicalle pho. nomenon. In I/amanthus the curve of II pmiceus is - 1 variant in comparison with, thene of $I I$. Katherinu, II. magnificus, and both hybrids that it seems that this -pecies must he separated hotaniall! sultiontly far imom the other two to be regarded a belonging to a diff.rent sulgenus, although this differentiation may not have lemon recognized by the systematist. In ('rimum the "urves of the representatives of the hardy and (whler furms (r) moorei and C. longifolium, hardỳ ; ('. zonhunicum, tender) differ so markedly as to sugqeist member: of different senera. In Iris, in the firet throw sut- (rlant. E: 3 .
 represented, and it will be seen that all of the curves conform chasely to a common tym: hat in the furth :at (Chart E:3:3) the reation arn oif tuluron- form- all three curves conlorm with ereat fordine tha atmonn trpe, and they all differ materially from the rhyzomatous type, and in fact so different are they that they would certainly mot in the present atasio of the invetization be reengnized as helonging to the same genus. In Rogonie there is found an even more remarkalle instance if sulgeneric differentiation in the nurw of the theromand semituherous forms, the former lieing represented by four garden varieties and the latter by 13 . socotrann, a very exceptional and isolated species of the genms. Comparing the curves of these charts (Chart: E 36 to E : 39) it will be seen that the curvon of the tutwrons forms are in close conformity to a common tylu, while the curve of B. surolvanu is st whery unlike the curses of the former in a larre number of the reactions with the chemical reagents as to suggest anything hut generis relationship to the tuberous forms. Unfortunately, the number of reations of the latter wern with at -ingen ex. veption very limited, hut the curve of the reactions of B. vimgle crimson sturfet ((hart bisa) can with purfe it safety be taken as very closely typifying the curves of the ithers.

The Amaryllis and Phains curves (Chant: E 1 and E fe), while representing wholly unrelated and widely separated genera, give the impression of curves of dosely

Phaius and Miltonia, there is exceedingly little between I'haius and ''ymbidium. Obviously, from what is manifest by the curves generally of these charts, this resemblance must be seeming rather than actual, and due to faultiness in the methods of experiment and charting. That the Amaryllis and Phaius starches differ far more than is indicated by the composite curves is shown by the records of the velocity reactions (Charts D 1 to D 21, and D) 5.4 to 1) 594), and it is obvious that in the construction of composite charts the recognition of such differences is essential to even an approximately accurate presentation of the reaction peculiarities of any starch. It will probably be found that taxonomic differences of much value will be brought out by differences in the ratios of the reaction-intensities of different pairs or combinations of certain pairs of reagents, and there undoubtedly yet remain many reagents that can be employed to advantage in these studies, it being not improbable that the differences in reactions of a very few reagents may be specific in the differentiation of certain genera, as has been found, for instance, in the tests for proteins, all proteins responding to certain of the protein tests, but some only to certain tests to which others do not respond. Similar restricted methods of differentiation are by no means rare even to the systematist. Then again, in comparing these curves it will be seen that no less than 7 of the 21 reagents have, appareutly at least, proved useless because of the energy with which they cause gelatinization. Modifications of the strengths of these alone, or in conjunction with the other reagents, may elicit generic differences of such a character as to indicate the wide separation of these genera.

These composite charts were studied individually in Chapter III, Section 6, of the comparisons of the reactions of the members of each set of parent- and hybrid-stocks, and two or more of them were considered comparatively whenever there were two or more sets belonging to the same genus. The main object in these studies was to bring out the relations of the hybrids in their reactions, individually and collectively, to one or the other or both parents. If now these charts are studied collectively, with especial reference to the relationships of the hybrid curves to the parental curves, much data of comparative interest will be elicited that is likely to be missed otherwise. When the parental curves run very closely together, the hybrid curve tends to similar closeness; but when the parental curves tend to separation, and especially with variance in their courses, the hybrid curve may tend to follow the curve of one or the other parent, to be intermediate, or to be more or less distinctly independent of both parental curves. Intermerliateres is much more of an exception than a rule, and therefore excent in few instances is far from being a criterion of a hybrid. (See also Tables \mathbf{F} and II.) In II ippeastrum (Charts E2 to E4), Narcissus (Charts
 (Chart E 10) the parental curres tend in each group and genus to marked closeness in their positions and courses, and the hybrid curves similarly tend to closeness to the parental curves, but varying from reaction to reaction in their parental relationships. When the parents are well separated spectess, as in IItmanthus (Chart ES), Crinum (Chart E 9), Terine (Charts E 10 to E 12), Tercissus (Chart E II), cte., and the parental curves
are generally well separated and somewhat variant in their courses, though on the whole conforming to generic types, the hybrid curves tend to equal or greater degrees of variance. And when the parents are representatives of different genera, as in the Amaryllis-Brunsvigia group (Chart E 1), or of subgenera or subgeneric groups, as in Hamanthus (Chart E 6), Crinum (Charts E 7 and E 8), and Begonia (Chart E 36) -where the parental curves are not only well separated but tend to more or less markedly different courses-the hybrid curves show their greatest variabilities in their relations to the parental curves, in some instances tending to have in general marked closeness to the curves of one parent, in others to have a position of intermediateness which is usually closer to one of the parents than to the other, and in others to have a more or less wide departure from both parental curves. When there are two hybrids of the same parentage, as in A maryllis-Brunsrigia (Chart E 1), Terine (Charts E 10 and E 11) and Narcissus (Chart E13), the hybrids of each pair of parents tend to differ less from each other, as a rule, than the parents differ from each other; unless, as in case of Amaryllis-Brunsvigia, the parents are so far separated as to give well separated curves, in which case the curves of the hybrids may not only be quite at variance with the parental curves, but also be distinctly better separated from each other, and show even more marked differences from the parental curves than the latter show in relation to each other.

In a lumber of sets of parent- and hybrid-stocks studied a given parent is found to be the seed parent in one set and the pollen parent in another, or the seed parent or the pollen parent in both sets, but with an associated parent that is different in each of the two setsas in Howmanthus (H. Katherince, which is the seed parent in two sets, the pollen parents being differeat) ; Crinum (C. moorei, C. zeylanicum, and C. longifolium, which are differently paired in the three sets) ; Nerine (N. sarniensis corusca major) ; Narcissus (N. poeticus ornatus, N. poeticus poetarum, N. abscissus, N. albicans, 1. madame de graaff, and N. triandrus albus) ; Lilium (L. martagon album and L. maculatum) ; Iris (I. iberica and I. cengialti) ; and Calanthe (C. vestita var. rubrooculata). In connection therewith many interesting features have been recorded in the histologic and polariscopic properties and in the reactions with heat and various chemical reagents which show most varying transmissibilities in both kind and degree of parental characters to the hybrid, but a detailed review is not necessary and is prohibited by want of space in an already too voluminous report. The most important of such data will be found presented for the most part and in succinct form in Chapter III, and in detail in Part II, Chapter I, under the appropriate headings.

4. Series of Chafts.

The various charts of the reaction-intensities are referred to particularly or incidentally with frequency throughout Part I, and it was found in the final arrangement of the report that it was desirable chiefly for convenience of reference to bring all of them together in one section. In addition to these a series, F 1 to F 14, is included, but which belongs in the next chapter, in several of which certain reaction-intensities are also recorded.

Chart A 1.-Polarization Reactions.

Chart A 2.-Iodine Reactions.

Chart a 3.-Gentian-violet Reactions.

Chart A 4.-Safranin Reactions.
briemer or ucer avo colos nuctions

Chart A 5.-Temperature of Gelatinization Reactions.
 (1)

(1)

Chart A 7.-Chromic-acid Reactions.

(1)

Chart A 8.-Pyrogallic-acid Reactions.

항 상

Chart A 9.-Nitric-acid Reactions.
 -

Chart A 10--Sulphuric-acid Reactions.

Chart A 11.-Hydrochloric-acid Reactions.

Chart A 12.-Potassium-hydroxide Reactions.

('uabr A I: I'ot insium-iondide heactons.

Chart A 14.-Potassium-sulphocyanate Reactions.

Chart A 16.-Sodium-hydroxide Reactions.

Chart A 17.-Sodium-sulphide Reactions.

Chart A 18.-Sodium-salicylate Reactions.

Chart A 20.-Uranium-nitrate Reactions.

Chart A 21.-Strontium-nitrate Reuctions.

Chart A 22.-Cobalt-nitrate Reactions.

Chart A 24.-Cupric-chloride Reactions.

Chart A 25 --Barium-chloride Reactions.

Chart A 26.-Mercuric-chloride Reactions.

Chart B 1.-Polarization (—), Iodine (—), Gentian-violet (.....), Safranin (....), and Temperature (......-) Reactions.

Chart B 2.-Gentian-violet $(-)$ and Safranin (\longrightarrow) Reactions.

Chart B 3.-Temperature (-) and Iodine (-) Reuction.

Chart B 4.-Temperature $(-$) and Chloral-hydrate (\square) Reactions.

Chart B 5.-Temperature (-) and Pyrogallic-acid (\longrightarrow) Reactions.

Chart B 6.-Temperature (standard ——and new .-.-. calibrations) and Nitric-acid (\longrightarrow) Reactions.

Chart B 7.-Nitric-acid $(-)$ and Polarization $(-)$ Reactions.

Chart B 8.-Nitric-acid (-) and Iodine (standard - and new calibrations) Reactions.

Chart B 9.-Nilric-acid (—) and Gentian-violet (\longrightarrow) Reactions.

Chart B 10.-Nitric-acid (-) and Safranin (—) Reactions.

Chamt B 11.-Nitric-acid (- and Chloral-hydrate () Ractions.

Chart B 12.-Nitric-acid (——and Chromic-acid)) Reactions.

Chart B 13.-Nitric-acid (—) and Pyrogallic-acid (—) Reactions.

Chart B 14.-Nitric-acid (-) and Sulphuric-acid $(-)$ Reactions.

Chart B 15.-Nitric-acid (-) and Hydrochloric-acid (-) Reactions.

Chart B 16.-Nitric-acid (-) and Potassium-hylroxide (-) Reactions.

$$
\text { Chart B 17.-Nitric-acid (}- \text {) and Potassium-iodide (}- \text {) Reactions. }
$$

Chart B 18.-Nitric-acid (-) and Potassium-sulphocyanate (-) Reactions.

Chart B 19.-Nitric-acid (—) and Potassium-sulphide (-$)^{-}$Reactions.

Chart B 20.—Nitric-acid (-) and Sodium-hydroxide (-) Reactions.

Chart B 21.—Nitrc-acid (-) and Sodium-sulphide (-) Reactions.

Chart B 22.-Nitric-acid (—) and Sodium-salicylate (—) Reactions.

Chart B 23.-Nitric-acid (—) and Calcium-nilrate (I Renctions.

Chart B 24.-Nitric-acid (-) and Uranium-nitrate (-) Reactions.

Chart B 25.-Vitric-acid $(-)$ and Strontium-nitrate (\longrightarrow) Reactions.

Chart B 27.-Nitric-acid (——) and Copper-nitrate! ;Renctum:.

Chart B 28.--Nitric-acid (—) and Cupric-chloride (\quad) Reactions.

Chart B 29.-Nitric-acid (-) and Barium-chloride (-) Reactions.

Chart B 30.-Nitric-acid (—) and Mercuric-chloride (—) Reactions.

Chart B 31.-Chromic-acid (—_) and Pyrogallic-acid (——) litutimhe.

Chart B 32.-Nitric-acid (-_), Sulphuric-acid (—), and Hydrochloric-acid (.....) Reactions.

Chart B 33.-Potassium-hydroxide (\longrightarrow) and Sodium-hydroxide (\longrightarrow) Reactions.

Chart B 34.-Potassium-sulphide (-) and Sodium-sulphide (\square) Reactions.

Chart B 35.-Potassium-iodide (—) and Potassium-sulphocyanate (—) Reactions.

Chart B 36.-Sodium-hydroxide (—) and Sodium-salicylate (\rightarrow) Reactions.

Chart B 38.-Uranium-nitrate $(-)$ and Coball-nitrate (\square) Reactions.

Chart B 39.-Copper-nitrate (-) and Cupric-chloride (-) Recactions.

Chart B 40.-Barium-chloride (-) and Mercuric-chloride (-) Reactions.

Cuart B 41.-Points of Inversion and Recrossing of the Curves.

Chart B 42.-Average Reaction-Intensitics (\longrightarrow) and Temperatures of Gelatinization (\longrightarrow).

Chart C 1.-Height, Sum, and Average of Reaction-Intensities of Starches of Hybrid-Stocks and Parent-Stuch:s.

nomd ur axactu a in wactas.

Daind on keaction on mumuka

penod on mactow in mentria

Fireo or reatmon an muthus

- EALCD of exaction on mavtes.

Fatiod of rection of menutsa

Chakis D 1 to D 15.-V'clocity-Reactions of Starches of Amaryllis belladonna (-...-), Brunsvigia josephince 1, Brumadma sandera alba (-), and Brunsdonna sandere
1
2
1
1
3

6. Whth Hvalrurhloric Acid
\&. With Potaswanm Iodule
9. With l'otassium siuljhocyanate
11. With Sodium Hydroside
13. With Sodium Salicylate
14. With Calcium Sitrate

1U. With Fotassium Sulphide. 15. With Uranium Nitrate.

Charts D 16 тo D 21.-Velocity-Reactions of Starches of Amaryllis belladonna ($-\ldots$.), Brunsvigia josephince ($-\cdots-\ldots$), Brunsdonna sanderce alba (-), and Brunsdonna sanderce (- _-).
16. With Strontium Nitrate.
17. With Cobalt Nitrate.
18. With Copper Nitrate.
19. With Cupric Chloride.
20. With Barium Cliloride.
21. With Mercuric Chloride.

Charts D 22 тo D 27.-Velocity-Reactions of Starches of Hippeastrum titan (.....), H. cleonia (.....) and H. titan-cleonia (-).
22. With Chloral Hydrate
23. With Chromic Acid,
24. With Pyrogatlic Acid. 25. With Nistric Acrd.
26. With Sulphuric Acid.
27. With IIydrochl rie Icil

paraco of exection or sastros

rabion uq reation ten merutres

pryion or byactiom is mexure

Charts D 28 to D 42.-V'elocity-Reactions of Starches of Hippeastrum titan ($\ldots-$), H. cleonia (..- ...), and H. tilan-clconia (-).

st1. Wrati Potmanum sulpher nate
32. With sotumat Hydrosud..

33 Wsh Surlum Sulphide.

枋 With Calesuma Nitrato.
37. Whth Strontam Nitrate

hryod oy machion ra mivotes

geriod of raction ta hinutes.

pratod or swetion in untutas.

M.

Heriod of neaction in minutes

pehfud us kaction in minctes

pepho op reactuon dr sandta-

Fintug of peactive in wectas

43. With Chloral Hydrate.
44. With Chronic Acid
45. With Pyrogallic Acid
46. With NitricAcid.
47 With Sulpuuric Acid.

48 With Kydrochioric Acid
49. With Uotasalum Hydroxide.
51. With Potaysuman sulptw vanate
32 With l'otassuman sulphate

54 With Sirlum! : 51, ?., 1 ,
55 With Sodinm saticylate
563. Whth (chlomm Nitrate
5.7 Withl ratham Nitrate.

Charts D 58 to D 63.-Velocity-Reactions of Starches of Hippeastrum ossultan (.....), H. pyrrha (-.....), and H, ossultan-pyrrha (-).

68. With Strontium Nitrate. 59. With Cobalt Nitrate.

60. With Copper Nitrate.
61. With Cuprio Cbloride.
62. With Barium Chloride.

Charts D 64 to D 69.-Velocity-Reactions of Starches of Hippeastrum doones (.....), H. zephyr (......-), and H. dxones-zephyr (—).
66. With Pyrorallic Acid.
67. With Nitric Acid.

Charts D 70 to D 84.-Velocity-Reactions of Starches of Hippeastrum dgxones (......), H. zephyr (......-), and H. deones-zephyr (-).
70. With Potassium Hydroside 71 With Putassium Iodide 73. With Potassium Sulphocyanate 74. With Sodium Hydroxide

[^8]
ngriod or raction la menutis.

pariod of haction in mautise

period of penction in maties

period of meaction in nixutes

petedod or reacion th mikutes.

preiod of behction if mervirs.

Denod of kuction ar macotes

palkod of arection in menvets

Charts 1) 85 to D 99.-Velocity-Reactions of Starches of Hoemanthus katherince (---.-), H. magnificus (- . - ...), and H. andromeda (-).
90. With Ifydrochloric Arid.
95. With Sodium Hydrozide
90 With Sodium Sulphide.
97 With Sodum Sslicylate.
98 . With Calcium Nitrate.
99 With Urapium Nitrate.

Charts D 100 то D 105.-Velocity-Reactions of Starches of Homanthus katherince (....), II. magnificus (.......), and H. andromeda (-).
100. With Strontium Nitrate
101. With Cobalt Nitrate.
102. With Copper Nitrate
103. With Cupric Chluride.
104. With Rarium (' h_{1}) rute
105. With Mercurie (Jutide

Charts D 106 to D 111.-Velocity-Reactions of Starches of Homanthus katherince (.....), Hermantlus puniccus (-.....-), and Hamanthus könig albert (-).
106. With Chidoral Hydrate
107. With Cンuromac Achi

10is Wirh Purosthler Acid
10, Wuth Sitrue Achd

$\begin{array}{llll}10 & 15 \quad 20 & 25 & 20\end{array}$

FRNOD OF ametion an mintis.

GKIOD oy mactios af maverial

propod of enction in mitutia.

man or itacmon mixils

\$8uod at asction is mprome

naziod or beaction if xarome

protas of anction mi movite

Charts D 112 to D 126.-Velocity-Reactions of Starches of Hamanthus katherince (....-), Hamanthus puniceus ($-\ldots . .$.), and Homanthus könig albert (-).
117. With Sodium Sulphide.

1is With Sodium Salicylate
119. With Calcium Nitrate.
120 With Uranium Nitrate.

120 With Uranium Nitrete.
122. With Cobalt Nitrate
123. With Copper Nitrate
124. With Cupric Chloride
125. With Barium Chloride.
126. With Mercuric Chloride

ERNOD of reaction in matisa

PREDOD of aection at mantics

PESIOD or haction In kanutes

PERTGD OF DLaction in minctes.

akiod of maction ax minu

Charts D 127 то D 141.-Velocily-Reactions of Starches of Crinum moorei (...-.), Crimum zeylanicum ($-\ldots$...-), and Crinum hybridum j.c.h.
132. With Hydrochloric Acid
133. With Potassium Hydroside
1.34 With Putasstum Indide
135 With Potavanm Sulwheryanate
136. With Potassiuta Sulyhide.

[^9]

Charts D 142 тo D 147.-Velocity-Reactions of Starches of Crinum moorei (---.-), Crinum zeylanicum (-.....-) and Crinum hybridum j.c.h. (-).
142. With Strontium Nitrate.
143. With Cobalt Nitrate
144. With Copper Nitrate
145. With Cupric Chloride
146. With Barium Chloride.
147. With Mercuric Chloride.

Charts D 148 to D 153.-Velocity-Reactions of Starches of Crinum zeylanicum (-...-), Crinum longifolium ($\ldots \ldots$), and Crinum kircape (-).

149 With Chloral lyydrute
149 With ©hromic Achd

150 Wath Pyrogallic Acid
151. With Nirric Acid.
152. With Sulphuric Acid.
153. Wath Hydrochloric Acid.

(f payod or raction in menotes

5RyOD or peacton or monutes.

prutod of raction $\mathbf{E R}$ muntris.

PKNOD of waction in wisutes.

P8siod or exactros mi nurutis

FRETOD OF REACTION in MINUTES

prenod or paction en mintits

pERYOD of 2Eaction ma minutes

Charts D 154 то D 168.-Velocity-Reactions of Starches of Crinum zeylanicum (--...), C'rinum longifolium

($\ldots-\cdots$), and Crinum kircape (—).

154. With Potassium Hydrozide
155. With Potassiun Iodide.
156. With Potacsium sulphocyanate
157. With Potassium sulphide
158 . With sodium Hydroxide.
158. With Sodium Sulphide.
160 . With Sodium Nitheylate
159. With Calcium Nitrate.
160. With Vranium Nitrate
161. With Stronum Nitrate

[^10]

praiod or ariction in merotes.

meadod of azaction is manutas

REROD OF REACTIOR IN MDIUTES

PETIOD OP ESACTION IT MDAOTES

period of aenctaon on marutes

PR2LOD op zenction or minuts

DEZNOD OF RACtJon in matiks.

pzenod or reaction in montise

Charts D 169 to D 183.-Velocity-Reactions of Starches of Crinum longifolium (-----), Crinum moorei ($-\cdots$-...), and Crinum powellii (-).
17. With Potassium Hydrozid
176. With Potassium Jodide.
177. With Potassium Sulphocyanate.
178. With Potassium Hydrozide.

Charts D 184 to D 189.-Velocity-Reactions of Starches of Crinum longifolium (- -...), Crinum moorei (.......), and Crinum powellii (-).

184. With Strontium Nitrate.
185. With Cobalt Nitrate.

186. With Copper Nitrate,
187. With Cupric Cbloride.
188. With Rarium Chlaride
189. With Mercuric Cbhoride

Charts D 190 to D 195.-Velocity-Reactions of Starches of Nerine crispa (.....), Nerine clegans (.......), Verine dainty maid (-), Nerine queen of roses ($-\longrightarrow$).

nayio op araction th movitas

prenob or aeactos at musutis.

Peptid fip reaction in atovies.

Charts D 196 to D 210.-Velocity-Reactions of Starches of Nerine crispa (dainty maid
$\longrightarrow)$, and Nerine queen of roses

[^11]
hadnd or reaction in movertis

peaiod or maction in wasutes.

pertiod of reaction m minutis.

PESHOD OF REACtION DN mantes.

PERLOD OR REACTIOS IT MIKUTES

| 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

.....), Nerine elegans (..-- ...), Nerine - ——).
206. With Cobalt Nitrate.
208. With Cupric Chloride

207 With Barium Chloride
210. With Mercuric Chloride.

Charts D 211 to D 225．－Vclocity－Reuctions of Starches of Nerine bowdeni（－－－－），Nerine samiensis var．corusca major（.....-$)$ ，Nerine giantess $(-)$ ，and Nerine abundance $(-\longrightarrow)$

211．With Chloral Kiydiate．
212．With Chromic Acid
213．With Pyrogallic Acid．
215．With Sulphuric Acid．

21f．With Ifydrochlorir A ind
217．With Potasium Hydromid
21：1．With Potasvium sulptoryanate 220．With Potassium Sulphide．

Wi2，With $=$ dum＝1，thi，
ミ－1 W
2ご．Wath Cranaum Sitrate

Charts D 226 to D 231.-Velocity-Reactions of Starches of Nerine boudeni ($-\ldots$ -), Nerine sarniensis var. corusca major (-.....)), Nerine giantess (-), and Nerine abundance (- -

22ß. With Strontium Nitrato,
227. With Cobalt Nitrate.
228. With Copper Nitrate.
229. With Cupric Cbloride.
230. With Berium Choride.

('harts D 232 тo D 237.-V'elocity-Reactions of Starches of Nerine sarniensis var. corusca major (-...-) , Nerine curvifora var. fothergilit major ($-\ldots-\ldots$), and Nerine glory of sarnia (-).
232. With Choral Hydrate.
233. Wish Chromic Achd.
234. With Pyrorallic Acid.
235. With Nitric Acid.
236. With Sulphuric Acid.
237. With Hydroohloric Aerd.

Charts D 238 to D 252.-Velocity-Reactions of Starches of Nerine sarniensis var. corusca major (-.---), Nerine curviflora var. fothergilii major ($\ldots \ldots$), and Nerine glory of sarnia (-).
243 With sodum sulphute
24. With Caloum Nitrate
246. With Uranmm Nitrate
247. With Strontum Nitrate.
24s. With Coboter Nitate
250) With Cupric ('l.forvie
251. With Barium Chloride.
252. With Mercitir ('i.. ride.

Charts D 253 тo D 258.-Velocity-Reactions of Starches of Nerine curvifolia var. fothergilli major (-........), N. elegans (----), N. sarniensis var. corusca major (-), N. crispa (------), and N. bowdeni (--一).
253. With Hydrochloric Acid
254. With Cbloral Hydrate
254. With Cbloral Hydrate.
255. With Nitrio Acid.
256. With Potagsium Sulphocyanate.
257. With Potarsium Sulphide
258. With Strontium Nitrate.

Charts D 259, D 260, D 262 to D 264. -Velocity-Reactions of Starches of Narcissus poeticus ornatus (-...-), N. poeticus poetarum ($-\ldots \ldots$), N. poeticus herrick (-), and N. poeticus dante (———).
259. With Chlorsl Hydrate
260. With Cbromic Acid.
262. With Pyrogallio Acid.
263. With Nitric Acid,

Chart D 261.-Velocity-Rcactions of Pyrogallic Acid with the Starch of Narcissus poeticus ornatus. Percentage of entire number of grains (-----) and of total starch (-) gelatinized.

panod of azection or athurtis

peenud of elaction an androtea

Peatob wr Deaction oh hatig

preid op react.on in mendei

DEKIOD Of zaction i4 mitull

Charts D 265 то D 267, D 269 to D 279.-Telocity-Reactions of Sturches of Nurcissus tazethe grand monarque (-...-), Narcissus poeticus ornatus (......-), and Narcissus poctuz triumph (-).
265. With Chural Hydrate.
267. With Chromuc Acad
269 With Nitric Acid
271 With MFilrachiogic Acid
272 Wht Potasebuth Hy|romid

$\begin{array}{ll}2 马 t & \text { With d Aman H } \\ 277 & \text { Wita , imum }\end{array}$
270. With Sulphuric Acid. 27.5 With Putamaman sulphade

Chart D 268.-Velocity-Reactions of Pyrogallic Acid with the Starch of Nurcissus tazella grand monarque. Percentage of entire number of grains (.....) and of total sturch (-._) grlutinized.

Charts D 280 to D 286.-Velocity-Reactions of Starches of Narcissus tazetta grand monarque (- ----), Narcissus poeticus ornatus (...-), and Narcissus poetaz triumph (-).

280. With Uranium Nitrate. 2s1. With Strontium Nitrate.

282. With Cobalt Nitrate.
283. With Copper Nitrate.
2S4. With Cuprio Chloride.
284. With Barium Chloride.
285. With Mercuric Chloride.

Charts D 287 to D 289 and D 291, D 292.-Velocity-Renctions of Starches of Narcissus gloria mundi (- ----), Narcissus poeticus ornatus ($-\ldots-\ldots$), and Narcissus fiery cross (-).
287. With Chumal Hydrate
288. With Chromic Acud.
289. With Pyrogallic Acid.
291. With Nitric Acid.
292. With Sulphuric Acid

Chart D 290.-V'elocity-Reactions of Pyrogallic Acid with the Starch of Narcissus gloria mundi. Percentage of entire number of grains ($-\ldots$) and of total starch ($-\quad$) gelatinized.

Charts D 293 to D 295, D 297, D 298.-Velocity-Reactions of Starches of Narcissus telumonius plenus (.....), Narcissus poeticus ornatus ($-\cdots-\cdots$), and Narcissus doubloon (-).

293. With Chloral Hydrate

295. With Pyrogallse Acid.
296. With Nitric Achl
297. With Chromic Acid.
298. With Sulphuric Acid

Chart D 296.-Velocity-Reactions of Pyrogallic Acid with the Starch of Sarcissus telumonius plenus. Percentuge of entire number of grains (---) and of total starch (-) gelatinized.

Charts D 299 to D 301, D 303, D 304.-Velocity-Reactions of Starches of Narcissus princess mary (.....), Narcissus pocticus poetarum (-.....), and Narcissus cresset (-).
299. With Chloral Hydrate.
301 With Pyrogalli" Adid
303 With Nitrn Arid
300. With Chromic Acid. 304 With sulphurne dend

Chart D 302.-Velocity-Reactions of Pyrogallic Acid with the Starch of Narcissus princess mary. Percentage of entire number of grains ($-\ldots$) and of total starch (-) gelatinized.

Charts D 305 to D 307, D 309, D 310.-Velocity-Reactions of Starches of Narcissus abscissus (-...), Narcissus poeticus poctarum ($-\ldots-. .-$), and Narcissus will scarlet (-).
305. With Chloral IIydrate
307. With Pyrogallic Acid.
309. With Sulphuric Acid.

Chart D 308.-Velocity-Reactions of Pyrogallic Acid with the Starch of Narcissus abscissus. Percentage of entire number of grains (----) and of total starch (—) gelatinized.

Chants D 311 to D 313, D 315, D 316.-V'elocity-Reactions of Starches of Narcissus albicans (.-...), Narcissus abscissus (-.. -..-), and Narcissus bicolor apricot (__一).
311. With Chloral Hydrate. 313. With Pyrogallic Acid. 315. With Nitric Acid.
312. With Chrome Acid. 316. With Sulphuric Acid.

Cinart D 314.-Velocity-Renction of Pyrogallic Acid with the starch of Narcissus albicans. Percentage of entire number of grains (....) and of total starch (\longrightarrow) gelatinized.

Charts D 317 to D 319, D 321. D 322.-Velocily-Reactions of Starches of Narcissus empress (-....), Narcissus albicans (-.....) , and Narcissus madame de graaff (-).
317. With Chloral Hydrate
318. With Chromic Acid.
319. With Pyrogallic Acid. 321. With Nitric Acid.
318. With Chromic Adr. 322. With Sulphutic Acid.

Chart D 320.-Velocity-Reactions of Pyrogallic Acid with the Starch of Narcissus empress. Percentage of entire number of grains (...-) and of total starch $(-)$ gelatinized.

Charts D 323 to D 325, D 327, D 328.-Velocity-Reactions of Starches of Narcissus ueurdule perfection (--...), Narcissus madame de graaff (-.....), and Narcissus pyramus (-).

323. With Chloral Hydrate.
 325. With J'yrogallie Acid.
 327. With Nitric Acid.

Chart D 326.-Velocity-Reactions of Pyrogallic Acid with the Starch of Narcissus veardale perfection. Percintape of entire number of grains ($-\cdots$) and of total starch (-) gelatinized.

(нarts D 329 то D 331, D 333, D 334.-V'Velocity-Reactions of Starches of Narcissus monarch (.....), Narcissus madame de graaff (-....-), and Narcissus lord roberts ($-\longrightarrow$).
330. With Chromic Acid.
331. With Pyrogallic Acid.
333. With Nitric Acid.
334. With Sulphuric Acid.

Chart D 332.-Velocity-Reactions of Pyrogallic Acid with the Starch of Narcissus monarch. Percentage of entirs number of grains ($\ldots-\cdots$) and of total starch (-) gelatinized.

Charts D 335 to D 337, D 339, D 340 .-V'elocity-Reactions of Starches of Narcissus leedsii minnie hume (---..), Narcissus triandrus albus (---..) and Narcissus agnes harvey (-).
33.5. With sulphuric Acid.
337. With Chromic Acid.
339. With Nitric Acid.
340. With Sulphuric Acid
('uakt 1) 338,-Velucity-Reastions of Pyrogallic Acid with the Starch of Narcissus leedsii minnie hume. Percentage of entire number of grains (---) and of total starch (-) gelatinized.

Charts D 341 тo D 343, D 345, D 346.-Velocily-Reactions of Sturches of Narcissus emperor (- - --), Narcissus triandrus albus ($\ldots \ldots$), and Narcissus j. t. bennett poe (-).
341. With Chloral Hydrate
343. With Pyrogallic Acd.
345. With Nitric Acid.
346 . With Nulphurac

Chart D 344.-Velocity-Reactions of Pyrogallic Acid with the Starch of Narcissus emperor. Percentage of entire number of grains ($\ldots \ldots$) and of total starch (\longrightarrow) gelatinized.

Charts D 347 то D 349, D 352, D 353.-Velocity-Reactions of Starches of Lilium martagon album (.....), Litium maculatum (...-...), and Lilium marhan
347. With Chloral Hydrate.

34!. With Pyrogallie Acid.
\qquad 343. With Chromic Acid.

```
372. Wrth, Smm Erlorylate
```


Charts D 350 and D 351 .-Velocity-Reactions of Pyrogallic Acid with the Starches of Iitium marlagon allhum and L. maculatum. Percentage of entire number of grains $(\ldots \ldots)$ and of total starch $(-)$ gelatinized.

Charts D 354 тo D 356, D 358 то D 360.-Velocity-Reactions of Starches of Lilium martagon (- .-. -), Lilium maculatum ($-\ldots-\cdots$), and Lilium dalhansoni (-).
354. With Chloral Hydrate.
356. With Pyrogalio Acid, With Sodium Salicylate.
359. With Cobslt Nitrate.
355. With Chromic Acid.
358. With Sodium Salicylate.
360. With Barium Cbloride

Chart D 357.-Velocity-Reactions of Pyrogallic Acid with the Starch of Lilium martagon. Percentage of entire number of grains (-..-) and of total starch $(-)$ gelatinized.

Сharts D 361 to D 364.-Velocity-Reactions of the Starches of Lilium tenuifolium (-----), Lilium martagon album (-.....-), and Litium golden gleam (-).
361. With Chloral Hydrate. 363. With Sodium Salicylato
362. With Chromic Acid.
363. With Sodium Salicylate.
364. With Barium Chloride.

Charts D 365 and D 366.-Velocity-Reactions of Pyrogallic Acid with the Starches of Litium tenuifolium and
L. golden gleam. Percentage of entire number of grains (-....) and of total starch $(-)$ gelatinized.

Charts D 367 то D 372.-Velocity-Reactions of Starches of Lilium chalcedonicum (.....), Lilium candidum (-----), and Lilium testaceum (-).
367. With Chloral Mydrate
368. With Chromio Aold.
369. With Pyrngallic Acid.
370. With Sodium Salicylate.
371. With Cobslt Nitzate.
372 With Barduta Chloride.

Charts D 373 to D 378.-Velocity-Reactions of Starches of Lilium pardalinum (.....), Lilium purryi (......-), and Lilium burbanki (-).
373. With Chloral Hydrate.
374. With Chromic Acid.
37. With Pvregallir 1-id 37t. With Sudrum salicylate
377. With C thalt Nitrate
378. What Mervurte Cれ゙: rato

$\begin{array}{llll}0 & 15 & 20 & 25 \\ 0\end{array}$

peyod of rraction an mantise

peatod ot raction in matiter

piovod or reaction in mentias

penod or recition de mintes.

deriod on reaction in mumtise

Ferriod op azaction in mintura

Mariod or cenction in maviles

Charts D 379 to D 393.-Velocity-Reactions of Starches of Iris iberica (.....), Inis trojana (-.....), and Iris ismali (-).

379. With Chinral IIydrnte
380. With Chromme Am
381. With Pyrogallic Acis.
383 . With Sulphuric Acid.

384. With Hydrochloric Acid

3\&5. With l'ctassium Hydrozide
386. With Potassium Iodide.
3. 7 . With Potassium Sulphoryanate. 388. With Potasaium Sulphide.

[^12]

Charts D 394 to D 399.-Velocity-Reactions of Starches of Iris iberica ($-\ldots$), Iris trojana ($-\ldots-$ -) , and Iris ismali (—).

396. With Copper Nitrate. 397. With Cuprac Cblaride.
398. With Bamam (Chlatide. 394. With Mercutic Chbotde

 Iris dorak (-).
400. With Chloral Hydrate. 401. With Chromic Acid.
402. With Progalli. And.

pindod of rehction dn menotes.

praiod of reaction tit minittes.

DERICD of resction in manders

perhod or reaction en mintide

period of reaction in mintes.

praiod of reaction of miktita

pEsiod or xenction dr mentis.

period of reaction in mumtes

PERIOD of reaction it mdites.

Chamts D 406 to D 420.-Velocity-Reactions of Starches of Iris iberica ($-\ldots$), Iris cengialti ($-\ldots \ldots$), and Iris dorak (-).

411. With Sodium sulphide.
412. With Sodium Salicylate
413. With Calcium Nitrate.
411. With Cranum Nitrate.
415. With Strontium Nibrate.
416. With Cobalt Nitrate.
417. With Copper Nitrate.
418. With Cupric Chloride.
419. With Barium Choride.

Charts D 421 тo D 43 ar.-V'locity-Rendions of Starches of Iris cengialt

Charts D 436 to D 441.-Velocity-Reactions of Starches of Iris cengialti (-), Iris pallida queen of may (- .-.-), and Iris mrs. alan grey (-).

436. With Strontium Nitrate.

437. With Cobalt Nitrate.
438. With Copper Nitrate.
439. With Cupric Chloride.

> 440. With Barium Chloride.
> 441. With Mercuric Chloride.

Charts D 442 to D 447.-Velocity-Reactions of Starches of Iris persica var. purpurea (-..--), Iris sindjarensis ($-\ldots \ldots$), and Iris pursind (-).

Charts D 448 to D 462.-V'elocity-Reactions of Starches of Iris persica var. purpurca (.....) , Iris sindjarensi
($\ldots \ldots$), and Iris pursind (—).
4.3. Whth si, dmm sulphude.
4j4. Wath Sodum salicylate
4.55. With Calcoum Nitrate.
456 With Vranum Nitrate
457. With Strodtum Nitrate.
18 Wuhb cinhalt Nireate
*). With Crpbet \itat
4tiu). With Cupric ('hi :a:n
462. With Merzuric (Eioride.

PDNOD or zenction bs mavetian

sERED of REACtion en matetes

pratod of reaction mathtras

period op reaction in manties.

praiod or reacmon in mantis.

PENOD OF RRACTION IN MTEUTES

FERIOD or azact.on in mertirs

parion of neaction of smotics

matod of Ruchon mindits

PRETOD or menction ar minctis

Charts D 463 to D 477.-Velocity-Reactions of Starches of Gladiolus cardinalis (\ldots...), Gladiolus tristis ($-\ldots$...-), and Gladiolus colvillei (-).
this With Hydrochloric Acid
469. With Porasaium Ifybroxide.
17). With Potassum Iodide
471. With Potassium sulphneyanate,
47.3. With Sodium Hydroxide.
472. With Potassium Sulphide.
474. With Sodium Sulphide
47. With Sodium Sislicylate.
476. With Calcium Nitrate.
477. With Uramium Nitrate.

Charts D 484 to D 489.-Velocity-Reactions of Starches of Tritoniu pollsii (.....), Tritoniz , \quad. 4 a 1 (-..... -), and Tritonia crocosmaflora (-)

4hri W2tl| Pronzalic finf.
45\%. With Nuthe bead

Fanod or Reaction an motis

peryod of reaction of amutes

RKND or chemon an minote

pexiod or peaction m medotea

preion or axaction as aderues.

pRNOD OF RELCTIOE in Munvtren

pratod of kenction an munutz

matob on araction cr minctis

maion of mection π M

perrod of maction de mantite

period or reaction ar minutes

plaiod or reaction ma mototas

PLRIOD of REACTION ET MENTRS

Charts D 490 to D 504.-Velocity-Reactions of Starches of Tritonia pottsii (----), Tritonia crocosmia aurea (-....-), and Tritonia crocosmoefora (-).
405. With Sodium Sulphide
496. With Sodium salicylate.
497. With Calcium Nitrate
498. With Uranium Nitrate
499 . With Strontium Nitrate.
500. With Cobalt Nitrate
501. With Copper Nitrate
502. With Cupric Chluride
504. With Mercuric Chloride

phaiod of reaction is motutia

petiod op reaction in minutes

psbiod of reaction or maxctes

plajob of haction in miverts

DERNOD OR Renctiva on aroutes

veajod co kentiul un woutea

Charts D 505 to D 507, D 509 to D 519.-V Vlocity-Reuctions of Starches of Begonia single crimson scurlet (.), Begonia socotrana (…...), and Begoniu mrs. heal

 of entire number of grains (.\ldots) and total starch (-) gelatinizul.

Charts D 520 то D 526.-Velocity-Reactions of Starches of Begonia single crimson scarlet (-....), Begonia socotrana ($-\cdots-\cdots$), and Begonia mrs. heal (-).
820. With U'ranium Nitrate 521. With Strontium Nitrate.
522. With Cobalt Nitrate.
523. With Copper Nitrste.
524. With Cupric Chloride.
525. With Barium Chloride.

('harts D 527 то D 529, D 531, D 532.-Velocity-Reactions of the Starches of Begonia double light rose (--), Begonia socotrana (-..-..-), and Begonia ensign (-)
527. With Chloral Hydrate
529. With Pyrogallic Acid.
531. With Nitric Acid
532. With Strontium Nitrate.

Chart D 530.-Velocity-Reuctions of Pyrogallic Acid uith the Starch of Begomia double light rose. Percentage of entire number of grains (....-) and of total starch (-) gelatinized.

Charts D 533 to D 535, D 537, D 538.-Velocity-Reactions of Starches of Begonia double white (. . - .), Begonia socotrana (......). , and Begonia julius (-).
533. With Chloral Hydrate.
534. With Chromic Acid.
535. With Pyrogallic Acid.
537. Wield Nitrin Acid
J3s With Etrontum Nitrate

Chart D 536.-Velocity-Reactions of Pyrogallic Acid with the Starch of Begonia double uthite. Percentage of entire number of grains ($-\ldots$) and total starch $(-)$ gelatinized.

Charts D 539 to D 541, D 543, D 544.-Velucity-Reactions of Sturches of Begonia double decp ruse (.....), Begonia socotrana ($-\ldots-\ldots$), and Begonia success (-).
539. With Chlora! Hydrate.
541 . With Chromm Acud.
541. With Pyrugalle Acid.

[^13]Chart D 542.-Velocity-Reactions of Pyrogallic Acid with the Starch of Begonia dumble deep row. I', wenenge ut entire number of grains (....) and total starch (——) gelatinized.

prajod of elaction on mevotres

parodod aniction as monvtas.

prejod or muction in mastras.

pzand of reaction of murvthe

patiod on maction of wavorsa

period on reaction dr mintice

FRNOD OF MUCTIOM if wDTUTES

('imarts D $\overline{5} 45$ to D 559.-Velocity-Reactions of Starches of Richardia albo-maculata ($-\ldots .$.), Richardia ellioltiana ($-\cdots \cdots$), and Richardia mrs: roosevelt (—).
545. With Choral Hydrate

54ti. With C'brumse Amd
547. With Pyrogallic Acid.

548 With Sitrie Acid.
550. With Hydrochioric Acid.
551. With Hutassium Hydroside
552. With Sodium Salicylate.
553. With Chboral ilydrate
555. With Pyrogallic Acid
556. With Nitric Acid.
557. With Sulphuric Acid.
559. With Yotsssium My Mdrozide

Charts D 560 то D 565.-Velocity-Reactions of Starches of Richardia albo-maculata (....), Kicharda elliottiarni ($-\ldots$....), and Richardia mrs. roosevelt (-).

Charts D 566 to D 573.-V'elocity-Reactions of Starches of Musa arnoldiana (.), Musa gilletti Ifu*a hybrida (—).

prifod os araction me minutis

PENOD OT aEACTION EA MOROTEA

period of reaction me mintise

pReIOD Or azaction is minutes

peraos on meactor if marotes

period on peaction in matutles.

Hiod of nuctuol matra

menod of reaction di nervira

manob 02 geactios an mentices

paseod or azaction an wortise

 and Phaius hybridus (-).

[^14]574. With Hydrochloric Acid.

5si) With Potasssium Hydroxide
681. With Potasaium Iodide.

582 With Potessmm Sulphocyanate.
5s3. With Putasaium Sulphide.
581. With Sodium Iydrozide.
556 With Sodum Salicylate.
587. With Calcium Nitrate.

Cuarts D 589 to D 594.-Velocity-Rcactions of Starches of Phaius grandifoluts (.....), Phaius wallichiil (.......), and Phaius hybridus (—).
589. With Strontium Nitrate.
550. With Cobalt Nitrate.
591. With Cupper Nitrate.
592. With Cupac Chlinade.

5\%3. Whi Fatmon Chionde
i) 14. With Mercuate (hlowhto

PEDHOD OP Reaction an mentise

matod or renctics in minotes

mhaod of reaction an mevotes.

2 C_{2}

TENOD ON REACtION IN atNOTE

anod of Revetor or morm

pertod op reaction de minteres

period or reaction in minvtes.

penod or meaction in mprotes.

period or reaction an mbrutes

- pertod op reaction ir multis.
actions of Starches of Miltonia verid and Miltonia bleuana (-).

600. With Hydrochloric Acid.
601. With Potassium Hydroxide.
602. With Potassium Iodide.
603. With Potassium Sulphocyanate.
604. With Potassium Sulphide.
605. With Sodium Hydroxide
606. With Sodium Sulphide.
607. With Sodium Sulphide.
608. With Calcium Nitrate.
609. With Uranium Nikrate.

Charts D 610 to D 615.-Velocity-Reactions of Starches of Miltonia vexillaria (.....), Millomia razlii (......-), and Miltomia bleuana (-).

612. With Copper Nitrate.
014. With Ramum Chlorite.
tij. With Nercuric (hl orde

Charts D 616 to D 618.-Velocity-Reactions of the Starches of Cymbidium louianum (.....), Cymbidium

616. With Chloral Hydrate.

617. With Pyrogallic Acsd.

61b. With Bartum ('hicric

$$
\cot \operatorname{coc} \cdot \cos \cos x \text { ent }
$$

Charts D 627 то D 634.-Velocity-Reactions of Starches of Calanthe restita rar. rubro-oculata (.....), Culanthe regnieri ($-\ldots \ldots$), and Calanthe bryan (-).

630. With Nitric Acid.
632. With Hydrochloric Acid.

pasiod on neaction in motutis

period or kenction an mantites

period of reaction in marutes

| 80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

pgefod or reaction in muxutes

period or reaction an mindiss.

PERIOD of REACTION in MmUTES

peniod of beaction in mirvtes.

Charts D 635 to D 649.-Velocity-reactions of pyrogallic acid with various starches, showing the percentage of the entire number of grains ($-\cdots$) and of the total starch (-) gelatinized.

636. With Hipmoastruan than. ©37. With Ihmpenstrum casultan. fi3h. With Hippesintrum dganes.
639. With Harmanthus kathermas.
645. With Lilium chalcedonicum.
646. With Iris iberica.
647. With Iris trojana.
648. With Iris cengialti.
649. With Iris persica var. purpurea.

Charts D 650 то D 658.-Velocity-reactions of pyrogallic acid with rarious starches, shoring the percentage of the entire number of grains (....-), and of the total starch (-). gelatinized.
650. With Gladiolus tristis
651. With Tritonia pottsii.
651. With Tritonia pottsin.
652. With Richardia albo-maculata.
653. With Begonia sine crim. scar.
654. With Muas arnoldiana.
655. With P'auas grandifolius.
finfs. With Milonnia vemllaria.
thir. With (ym, Whamm lowathum.
tis. With (alanthe rosea.

See also Charts:
261. Narcissus poeticus ornatus.
290. Narcissus gloria mundi
296. Narcissus telamonius plenus.
308. Narcissus abscissus.
314. Narcissus albicans.
320. Narcissus empress
326. Narcissus weardal perfection
314. Narclas us efuncror
aso. Liluna startagron album.
2jI. Lihum maculatum.
3.7. Litinm martagen

542. Begenia dout te detu suke.

Charts D 659 to D 667.-Velocity-Reactions of chloral hydrate with various starches, showing the percentage of entire number of grains (...-) and total starch (-) gelatinized.

[^15]662. With Amaryllis belladonna.
663. With Hemanthus katherina.
664 . With Hamanthus puniceus.
665. With Narcissus taz. grand mon.
666. With Iris iberica.
667. With Phaius grandifolius.

Charts 668 to D 682.-Velocity-Reactions of Starch of Iris iberica with various reagents, showing the percentuye of the entire number of grains (....) and of the total starch (-) gelatinized.
673. With Hydrochloric Acid.
675. With Putaratum Toiltle.

67t. Whth Puta*sium Sulphicyanat
677. With Potassium sulphide.
fizs. With Sodium Hydroxide
砋 With Nodium Sulphade

6s?. With Ctranum Nitate

PERNOD OR REACTION EX hototise

period or meaction ta minotes.

hertod on reaction dr mivtis

Charts D 683 to D 688.-Velocity-Reactions of Starch of Iris iberica with various reagents, showing the percentage of entire number of grains ($-\cdots$), and total starch (-) gelatinized.
683. With Strontium Nitrate
684. With Cobalt Nitrate.
685. With Copper Nitrate.
686. With Cupric Cbloride.
687. With Barium Chloride,
688. With Mercuric Chloride.

PERIOD OP REACTION IN MCHTHES

Charts D 689 то D 691.-Velocity-Reactions of Starches of Amaryllis belladonna (---.-), Phaius grandifolius (-....-), and Miltonia vexillaria (-).

Chart E 1.-Composite Curves of the Starches of Amaryllis belladonna (.....), Brunstigia josephince (.......), Brunsdonna sanderce alba (-), and Brunsdonna sanderce (———).

Chart E 2.-Composite Curves of the Starches of Hippeastrum titan (-....), Ilippeastrum clem.int and Hippeastrum titan-cleonia (-).

Chart E 3.-Composite Curves of the Starches of Hippeastrum ossultan (----.), Hippeastrum pyrrha (-.....-), and Hippeastrum ossultan-pyrrha (—).

Chart E 4.-Composite Curves of the Starches of Hippeastrum døones (-----), Hippeastrum zephyr (..-- -. -), and Hippeastrum dæones-zephyr (—).

Chart E 5.-Composite Curves of the Starches of Homanthus kutherince (.....), Itamanthus magnificus (.......), and Hemanthus andromeda (-).

Chart E 6.-Composite Curves of the Starches of Homanthus katherince (.....), Hemanthus pumicens ($-\ldots-\ldots$), and Hemanthus könig albert (-).

Chart E 7.-Composite Curves of the Starches of Crinum moorei (-----), Crinum zeylanicum (..$--\ldots$), and Crinum hybridum j.c.h. (-).

Chart E 8.-Composite Curves of the Starches of Crinum zeylanicum (-....), Crinum longifolium (.......), and Crinum kircape (-).

Chart E 9.-Composite Curves of the Starches of Crinum longifolium (-....), Crinum moorei ($\ldots \ldots$), and Crinum powellii (-).

Chart E 10.-Composite Curves of the Starches of Nerine crispa (\ldots...), Nerine elegans ($\ldots \ldots$.inue dirinty maid (-), and Nerine queen of roses (-).

Chart E 11.-Composite Curves of the Starches of Nerine bowdeni (-...-), Nerine sarniensis var. corusca major ($\ldots-\ldots$), Nerine giantess (\longrightarrow), and Nerine abundance ($-\longrightarrow$).

Chart E 12.-Composite Curres of the Starches of Nerine sarniensis var. corusca major (….), Nerine curvifora var. fothergilii major ($\ldots \ldots$), and Nerine glory of sarnia (-).

Chart E 14.-Composite Curves of the Starches of Narcissus tazelta grand monarque (-...-.), Narcissus poeticus ornatus ($-\ldots \ldots$), and Narcissus poetaz triumph (-).

Chart E 13.-Composite Curves of the Starches of Narcissus poeticus ornatus (--...), Narcissus poeticus poetarum (..-- ...), Narcissus poeticus herrick (-), and Narcissus poeticus dante

Chart E 15.-Composite Curves of the starches of Narcissus gloria mundi (....), Narcissus pocticus ronatus. ($-\cdots-\cdots$), and Narcissus fiery cross (-).

Chart E 16.-Composite Curves of the Starches of Narcissus telamonius plenus (-----), Narcissus poeticus ornatus ($-\ldots-\cdots$), and Narcissus doubloon (-).

Chart E 18.-Composite Curves of the Starches of Narcissus abscissus (-...-), Narcissus poeticus poctarum ($-\ldots-\ldots$), and Narcissus will scarlet (-).

Chart E 17.-Composite Curves of the Starches of Narcissus princess mary (-----), Narcissus poeticus poctarum (…-.), and Narcissus cresset (-).

Chart E 19.-Composite Curves of the Starches of Narcissus albicans ($-\ldots .$.), Narcissus abscissus (.......), and Narcissus bicolor apricot (-).

Chart E 20-Composite Curves of the Starches of Narcissus empress (-----), Narcissus albicans ($-\ldots . .$.), and Narcissus madame de graaff (-).

Chart E 22.-Composite Curves of the Starches of Narcissus monarch (-.-.-), Narcissus madame de graaff ($-\ldots \ldots$), and Narcissus lord roberts (-).

Chart E 21.-Composite Curves of the Starches of Narcissus weardale perfection (....), Narcissus madame de graaff (-......), and Narcissus pyramus (—).

Chart E 23.-Composite Curres of the Starches of Narcissus leedsii minnie hume (....), Narcissus triandrus albus ($-\ldots-\ldots$), and Narcissus agnes harvey (—)

Chart E 24.-Composite Curves of the Starches of Narcissus emperor (----), Narcissus triandrus albus (-.....), and Narcissus j, t. bennet poe (-).

Cinart E 25.-Composite C'urces of the Starches of Lilium martagon album ($-\ldots-$), Lilium maculatum ($-\ldots-$-. -) , and Lilium marhan (-).

Chart E 26.-Composite Curves of the Starches of Lilium martagon (.....), Litium maculatum (.......), and Lilium dalhansoni (-).

Chart E 27.-Composite Curres of the starches of Litium temifolium () Lilium mothon atom:) and Lilium golden gleam $(-)$.

Chart E 28.-Composite Curves of the Starches of Lilium chalcedonicum (-....), Litium candidum ($-\ldots-$-..-), and Lilium testaceum (-).

Cuart E 29.-Composite Curres of the Starches of Litium pardalinum (\ldots....), Lilium parryi ($-\ldots \ldots$), and Lilium burbanki (-).

Chart E 30-Composite Curves of the Starches of Iris iberica (.....) , Iris trojana (.......), and Iris ismali (-).

Chart E31.-Composite Curves of the Starches of Iris iberica ($-\ldots$) , Iris cengialti ($-\ldots .$.), and Iris dorak: (

(:3nT E 32.-Composite Curtes of the Starches of Itis cengialti (\ldots...), Iris pallida queen of may ($\ldots \ldots$), and Iris mrs. alan grey (-).

(11.s.1 1.33.-Composite Curves of the Starches of Iris persica var. purpurea (......), Iris sindjarensis ($\ldots .$. ...), and Iris pursind (-).

Chart E 36.-Composite Curves of the Starches of Begonia single crimson scarlet (.-...-), Begonia socotrana (......-), and Begonia mrs. heal (—).

Chart E 37.-Composite Curves of the Starches of Beyonia double light rose (.....), Begonia socotrana ($\ldots \ldots$), and Begonia ensign (-).

Сhart E 38.-Composite Curves of the Starches of Begonia double white (-----), Begonia socotrana ($-\cdots \cdots$), and Begonia julius (-).

Chart E 39.-Composite Curves of the Starches of Begonia double deep rose (-----), Begonia socotrana (-....-), and Begonia success (-).

Chart E 40.-Composite Curves of the Starches of Richardia albo-maculata (.....), Richardia elliottiana (......), and Richardia mrs. roosevelt (—).

Chart E 41.-Composite Curves of the Starches of Musa arnoldiana (.....), Musa gilletii (.......), and Musa hybrida (—).

Chart E 42.-Composite Curves of the Starches of Phaius grandifolius (-....), Phaius wallichii (-.....-), and Phaius hybridus (-).

Ciart E 43.-Composite Curves of the Starches of Miltonia vexillaria (.....), Millonia razlii (......), and Miltonia bleuana (-).

Chart E 44.-Composite Curves of the Starches of Cymbidium lowianum (-....), Cymbidium eburneum (.. ..), and Cymbidium eburneo-lowianum (——).

Chart E 45.-Composite Curves of the Starches of Calanthe rosea ($-\ldots-$), Calanthe vestita var. rubro-oculuta ($-\ldots \ldots$), and Calanthe veitchii (-).

Chart E 46.-Composite Curves of the Sturches of Calanthe vestita var. rubro-oculata (…).), Calanthe regnieri (…...), and Calanthe bryan (-).

F 1.-I pomaca sloteri.

F 2.-Lalia-Cattlya canhamiana.

Charts F 1 to F 3.--Percentages of Macroscopic (-....) and Microscopic (......-) Characters.

F 8.-Cypripedium nitens.

F9.-Tissues and Starches.

F 10.-Tissues and Starches.

Chart F 8.-Percentages of Macroscopic (.....) and Microscopic (......) Characters.
Chart F 9.-Percentages of Macroscopic and Microscopic Characters (.....) and Sturch Reaction-Intensities (—) of Hybrid-Stocks in regard to Sameness, Intermediateness, and Excess and Deficit of Development in relation to Parent-Stocks.

Chart F 10.-Percentage of Macroscopic (-....) and Microscopic (.......) Characters and Starch ReactionIntensities (-) of Hybrid-Stocks in regard to Sameness, Intermediateness, and Excess and Deficit of Development in relation to Parent-Stocks.

F 11.-Cymbidium eburneo-lowianum.

F 12.-Millunia bleuana.

F13.-Cymbidium etwrrieu-luasuatiom

Charts F 11 and F 12.-Percentages of Macroscopic (.....) and Microscopic (......) Characters and Starch Reaction-Intensities (-_) in regard to Sameness, Intermediateness, and Excess and Deficit of Development in relation to Parent-Stocks.

Charts F 13 and F 14.-Percentages of Sameness and Inclination of Macroscopic (.....) and Microscopic (-......) Tissue Characters and Starch Reaction-Intensities (-_) in relation to those of Parent-Stocks.

CHAPTER V.
 SUMMARIES OF THE HISTOLOGIC CHARACTERS, ETC.

 l,_s. , harathers and qualitative and quantitative reac-tha- if the -tarches of hybrid-stocks in relation to the
 mownompe characters of the hybrid-stocks in relation to the parent-stock plants.

1. THE STARCHES.
 Histologic Characters and Certain Qualitative and QUantitative Reactions.
 (Tablea C, 1 to 17; D; E, 1 to 22; F, 1 to 50; G; IF, 1 to 26; and I, 1 to 8 .)

The methuls used in this research in the differentiatinn of starches are both quantitative and qualitative. From a plane at the lare number of charts and tables that set forth quantitatioe ?esults the impression may be gained that much more importance is to be attached to the former than to the latter method of investigation; but this will be found to be unwarranted by the considerable space that has been given to and the remarkably valuable results that have been recorded under qualitative reactions. In fart, the qualitative mothod has been found to have far the bareer and more varied, and an at least equally important, field of usefulness. Unfortunately very little data included under histologic and qualitative remords lend themselves to chart-making, or to such forms of tabulation, as have proven so valuable in the preceding chapter and elsewhere in this memoir. Honee, the records horin summarized are presented in a modified arrangement that is particularly well adapted to set forth only a certain but an important aspect of the comparative peculiarities of hybrid and parenta! propertites.

From the reends foum in various parts of this work it will he noted that the starch of the hythid exhibits, histologically, physically, and physico-chemically, not only builu uniparental and biparental inheritance, but also individualities that are not observed in either parent; anl that any given parental character that appears in the holnol may le foum in quality and quantity to be the -rmmor pratically the same as that of ome parent or hoth petruts, or of some degree of intermediateness, or de whind in worse or deflit of parmal edremes. Moreorer. wach unit character and unit character-phase (see
 malegroblent of the whers that one unit-character or charanter unit-phase may be identical with or very close for that of one parent, while another bears the same relation to the other parent, etc. Thus, in regard to the unitcharacters (especially the lamellee), the hybrid may show
 Fon one parent, hat in the forms of the lamalla to the other parent: in timenmore comenese it may be exatly intermodiate: white in varieys, or diatribution, or number it may be fomaj at the same time to hats the most varyines rilationships. Tat at worl, in the summine up of the

scopic reactions, iodine reactions, and gelatinization reactions with each of the different reagents) that a number of correlated unit-characters or unit-character-phases are separable, and that there is a most remarkable and inexplicable swinging to one or the other parent of unit character-development and unit character-phasedevelopment.

These records show collectively an extraordinary rariability in the character relationships of the hybrid to the parents; an independence of each unit-character and unit-character-phase of every other in the direction and degree of its development; an absolute unpredictability at the present embryonic stage of our knowledge of the form, in which, if at all, any given unit-character or unit-character-phase of either or both parents may appear in the hybrid; and the closer relationship usually of the hybrid in the sum-total of the group-characters or character-phases included in every designation, and of these designations collectively, to one or the other parent. For instance, among the data pertaining to the histologic properties of Brunsdonna sandere alba, under the designation form it will be noted that the starch grains are more like those of Amaryllis belladonna than those of Brunsvigia josephince in that they are usually simple and isolated, in their regularity of outline, and in their conspicuous forms; yet in other respects they are more like those of Brunsvigia josephince because of the presence of a relatively large number of compound grains, of a few small aggregates that consist of 2 or 3 components, and of a peculiar form of compound grain, both of which latter are found in this parent but not in Amaryllis belladonna. In the data relating to the lamellæ, the hybrid is closer in form and arrangement to the corresponding parts of the grains of Amaryllis belladonna; but in average number it is closer to the other parent. In the chloral-hydrate reactions the hybrid in its quantitative reactions shows a decidedly greater sensitivity than either parent, but it is distinctly closer to A maryllis belladonna than to Brunsvigia josephine. In other reactions the starch is the same or practically the same as one parent or the other or both parents, or of some degree of intermediateness, or of less or even very decidedly less censitivity than in either parent, very commonly of the latter category. In the qualitative reactions it is in certain well-defined respects closer to Amaryllis belladonna than to the other parent, and in others the reserse; hut on the whole the inclination is distinctly toward Amaryllis belladonna.

Moreover, forms of gelatinization are seen in the hybrids that are individual. In this hybrid it will be found that in the aggregate the gelatinization phenomena recorded under each reagent incline more or less markedly toward Amaryllis belladonna. With other hybrids the ©reatest variability of parental relationships may be noted, as, for instance, in Mippeastrum, where it will he found that with one reagent the relationship may be closer to one parent and with another to the other, and more or less marked differences may he noted in the
hybrids from the same cross (sce Brunsdonna); hut here again in the final summing up there is usually found to be a distinet majority of the reations leaming to one or the other parent. It is unfortumate that very frequently the data have not been recorded in accordance with the plan adopted at the outstart of the rescarth so as to leave no doubt in each character or characterphase of the parental relationships of the hybrid, such as was pursued in making the quantitative determinations. Owing to this defect it is necessary to present these summaries in a modified tabular form, and with the view particularly of showing the fluctuating relationships of the hybrids to the parents. In the preparation of the tables that follow (Tables C I to (16), the propertios of the hybrids in their parental relationships have been considered collectively in designations or groups that are indicated by the divisions of the tables, those of form being taken as one drsignation, those with a given reagent as one designation, and so on. The plus sign is to be interpreted as meaning that in the final summing up of the data of earh desienation the hyherid in it= unitcharacter and unit-character-phase bears, on the whole, a doser relationship to the parent imdiated at the head of the colunm. The minus sign is, of course, the nesative correlative of the former; while the plus-minus. sign indicates that the hybrid resembles in derree one as murh as the other parent. In the last column the terms exepss and deficit mean that a unit-character or unit-characterphase is developed in excess or deficit of parental extremes; individual means that a unit-character or unit-character-phase has been discovered in the hybrid that was not observed in either parent.

Certain apparently minor peculiarities have been disregarded in this tahulation. In some instanese it is entirely arbitrary whether we regard a given property as being developed in eveess or deficit of parental axtremes. Thus, if the grains of the hybrid be more irregular, or the resistance to reagents greater, than those of thee parents, are we to look upon the difference as heing an expression of increased or decreased development? Tentatively, such differences have heen taken as representing increased development ; and, if there be less irrenularity or less resistance, the opposite. It is obvious that these tables indicate merely very grossly certain prominent phases of hybrid and parental relation-hips, and that the context must be studied therewith in order that the

 or sufficiently defmito inclination to rither parent. The data of the quantitation reartion- are taknoll from the. sarious tables of the reaction-intensition exproseal ly
 antervals that censtitute the dhirl …the.th if 1.1 . 1 . .m mary in Chapter III, and also tabulated in motifiod aro

It is important tomete that in the -tur3s - of the whalitatice reactions the reatomests seleced variod semmewhat in number and kind in the flifiremt - t- of phrat - and holorid, and that in the formalat an of flaw 1ables the quantitatice reactions gisen are limited to these of the

 the reations- of the hyhrilstat that of the pament-there

 and of are lower than thane of wither phatot. W!nem, however, all of the 21 reactions are summed up it is

 higher than those of the parents, and 13 lower than fino. of the parents.

The limited quati:ation data rivan in Ta'de. ('1 to (' 18 are mainly for commarionta wh th. gualif lif... reartion= with the same reasents, the that " this kiml being tabulated in full in tables E, F, and IL . Limited comment only is necessary in explaining this series of tables.
(a) Brunsdonna sanderx alba (same parcntage as follouing hath iA.

Table C 1.-Brunsdonna sandere albra.

Tanle C 2.-IIippeastrum.

Deaignation, agent or reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	pollen parent.		
1. Hippeastrum titan-cleonia: Histologic peculiarities				
Form..........	+	-	-	-
Hilum	+	-	Excess	-
Latuelis	-	$+$	-	-
Size	-	+	Excess	-
Qualitative reactions Polarization (figure)		-	Excess	
Relenite............	$+$	-	Excess	(Iatensity) higher than either parent \%
Iodine.	-	+	Excess	Higher than either parent σ^{7}
Chloral hydrate	$+$	-	Excess	Lower than either parent 9
Nitric acild...... Potassium iodide.	$+$	-	Excess	Intermediate $0=0$
P'otassium kulphocyanate	$+$	-	-	Intermediate $\uparrow=\sigma^{7}$
Sodium salicylate..	$+$	--	Excess	Lower than either parent \%
2. Hippeastrum oesultan-pyrrha: Histologic peculiarities				
Form................	-	$+$	Excess	-
Hitum.	-	+	Excess	-
Lamelleo	Number	Character	-	-
Size.....	+	-	-	-
Qualitative reactions Polarization (figure)	+	-	-	(Intensity) higher than either parent σ^{7}
Selenite...........	$+$	-	-	(Intengity higher than either parent
Iodine..	$+$	-	-	Intermediate $9=0^{\circ}$
Chloral hydrate.	+	-	Excess, deficit	Intermediate
Nitric acid. ${ }^{\text {a }}$.	-	+	Excess	Higher than either parent ${ }^{\circ}$
Potassium iodide.	$+$	-	Excess, individual	Higher than either parent \%
Potassium sulphocyanate	\pm	-		Slightly higher than either parent ${ }^{\circ}$
Sodium salicylate......	-	+	Excess, individual	Slightly lower than either parent $0^{\prime \prime}$
3. Hippeastrum dxones-zephyr:				
Form..............	-	+	Excess	-
Hilum.	$+$	-	Excess	-
Lamellx	$+$	-	-	-
Size..........	-	Larger grains	Deficit	-
Qualitative reactions Polarization (figure)	-	+	Deficit	(Intensity) higher than either parent $\delta^{\prime \prime}$
Selmite..........	-	$+$	Excess	
Indine.	-	+	Excess	Same as ${ }^{8}$
Chloral hydrate	$+$	-	Excess	Lower than either parent ${ }^{\text {a }}$
Nitric acid.	$+$	-	Excess	Higher than either parent 0°
Potassium indide	$+$	-	Excess	Intermediate \%
Potassium sulphocyanate	+	-	-	Intermediate $\phi=\sigma^{\circ}$
Sodium salicylate........	\pm	\pm	Excess, deficit	Slightly lower than either parent of

(b) Brunsdonna sanderee (same parentage as preceding hybrid).

The foregoing table is with five differences duplicatell hy the records of this hybrid. These hybrids differ more in certain particulars (both qualitatively and quantitatively) from each other than do cither from their parents or the parent: from each other. This hybriol, like its mate, lears, on the whole, a decidedly closer rela-timn-hip to . 1 marylli.s herludemm than to Bransrigin juserphimer, and is cluser than the first hybrid to 1 maryilis. belladonna.

The dismention of lamellar characteristics (the form ani arrangement heing floser to ome parent, and the number to the other) is very interesting, hut by no means an uncommon phenomenon in the starches of hybrids. Moreover, as will be found by reference to the context, similar splitting occurs of the characters of the hilum and in the wize of the grains.

That the quantitative and qualitative reactions are also as independent of each other in the direction of
their pareutal relationships is strikingly shown in the table. Throughout the qualitative reactions the hybrids incline to the seed parent, but in the quantitative reactions wide rariations are shown in the parental relationships. Thus, in the polarization reactions the first hybrid is the same as the seed parent, while the second is intermediate but closer to the seed parent; in the potassium-iodide reactions both have reactivities lower than those of the parents, the first being closer to the seed parent and the second as close to one as to the other parent; in the sodium-salicylate reactions the first is intermediate but closer to the seed parent, and the second is the same as the seed parent; and in the cobalt reactions buth have reactivities lower than those of the parents, but one is closer to the pollen parent while the other is as close to one as to the other parent. Otherwise they are essentially the same in their parental relationships. Curiously, while in the qualitative reactions with chloral hydrate, nitric acid, potassium iodide, potassium sulphocyanate, and sodium salicylate it is closer than the other
hybrid to Amaryllis belladonna, in the copper-nitrate and cupric-chloride reactions it is not so close as the other hybrid.

Hippeastrum. (Table C 2.)

In comparing these records and keeping in view the botanical closeness of the parents in each case, and also a corresponding closeness of the offspring to the parents, together with the great importance that is commonly attached to intermediateness as a criterion of hybrids, one is struck by (1) the frequency of the development of properties of the hybrid in excess or deficit of parental extremes ; (2) the appearance of reactions in the hybrid which were not seen in the parents; and (3) the swingingr of hybrid development to one or the other parent in an utterly inexplicable manner. Among the 36 devignations of the three sets, in no less than 23 some property or properties were developed in excess of parental extremes, and in 4 there was deficient development. In two instances properties were noted in the hybrid that were not apparent in either parent. The hybrid of the first set is in form closer to the seed parent, but in the seend and third sets it is closer to the pollen parent; in hilum, in the first and third sets, closer to the seed parent, but in the second set closer to the pollen parent; in lamelle, in the first set closer to the pollen parent, in the third set closer to the seed parent, and in the second set closer to the seed parent in number and to the pollen parent in general characters; in size, in the first set closer to the pollen parent, in the second set closer to the seed parent, and in the third set equally like both parents in common size, but like the pollen parent in the larger grains. In polariscopic figures and reactions with selenite, in the
first and seerond set = the hybride are more like the orent parent, but in the third arit the likenres is tor the frollorn parent. The qualitatise reartions with the ehremieal reagents are full of intorent. In the firet set, with all tive reagents the reaction- are, on the whele. dreser to those of the sed prarent : in the sounnemet thene of three of the reatent: (chloral hydrate pota-ium indide, and potamium suiphoverate) are clacer to those of the seed parent, and two (nitric acid and rodium salicllats.) doser io those of the pollen parent ; and in the therd ere those of four of the reagents are (l), ser the the seed farment and that of one (sodium salicylate) as close to that of one as to that of the other parent. The relationships, on the whole, are somewhat daver to the sied farent. The quantitative and qualitative reactions show comparatively the most variahle relationships.

Hemanthis. Table: (? ?

The hyhrid in the first set, in form and hilum, is closer to the seed parent; in lamelle it resembles both parents in equal degree; and in size it is nearer the pollen parent. In the secomel set, in all four histulogio designations, it is nearer the pollen parent. In the polariscopic firures and sidenite readions and in the gualitative reactions with the chemical rearent- the resemblane (except the indine reaction in tla sectond sot.) is closer to the seed parent. In three instaners development in excess of parental extremes, and in onw instance individuality, were recorded. The quantitative reactions are most vasarious in their relations to the qualitative reactions. It is of interest to note that the seed parent is the same in both sets and that in both

Table C 3.-Hamanthus.

Designation, agent and reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	Pollen parent.		
1. Hsmanthus andromeda: Histologic peculiarities				
Form.........	$+$	-	Excess, individual	-
Hilum.	+	_	Exat	\cdots
Lamellæ	\pm	土	-	
Size....	-	$+$	-	-
Qualitative reactions				
Polarization (figure)	$+$	-	-	(Intensity) intermediate $\%=\sigma^{7}$
Selenite..	$+$	-	-	
Iodine	$+$	-	-	Intermediate $\ell=\sigma^{*}$
Chloral hydrate.	$+$	-	-	Intermediate $\rho=0$,
Nitric acid.........	$+$	-	-	Intermediate $¢=$
Potassium iodide...	$+$	-	-	Same as \%
Potassium sulphocyanate	$+$	-	-	
Sodium salicylate.	$+$	-	-	Same as $0^{\text {a }}$
2. $\mathrm{H}_{\text {mmanthus könig albert: }}$ Histologic peculiarities				
Form.................	$+$	-	Excess	-
Hilum.	+	-	-	-
Lamella	+	-	-	-
Size..........	+	-	-	-
Qualitative reactions				
Polarization (figure).... .	-	$+$	-	
Selenite	-	$+$	-	-
Iodine	$+$		-	Intermediate $\%=0^{3}$
Chloral hydrate..	$+$	-	Excess	Lower than either parent of
Nitric acid.........	$+$	-	-	Intermediate $\%$
Potassium iodide........	$+$	-	-	Same as \%
Potassium sulphocyanate,	$+$	-	-	Same as \%
Potassium sulphide......	$+$	-	-	same as ?
Sodium salicylate.........	+	-	-	Intermediate or

homik－there i－duar evileme of hiparental inheritance． ＇Ther ratimu－hips，on the whole，are distinctly cluser to the seal parent．

> Chinim. (Table C 4).

The parents in each of these three sets of Crinums are recognized species that belong to the hardy and tember promp－（＇．moorri and C ．longifolium to the former and ＇＇arylanicum to the latter．In each set the $^{\text {a }}$
hybrid shows very markedly in each of the designations biparental inheritance，varying in degree in relation to the various unit－characters and unit－character－phases． Occasional individualities of the hybrids are recorded， and excessive and deficient developments are noted rarely in the first and second sets，but not infrequently in the third set．In the first and third sets C ．moorei was a parent－in the first the seed parent，and in the third

Table C 4．－Crinum．

Inesignation，agent and reagent．	Closer，as a whole to the－		Excess，deficit，or individual．	Quantitative reactions．
	Seed parent．	Pollen parent．		
1．Crinum hybridum j．c．barvey： Histajoger peculiarities				
lintm ．．．．．．．．．．．．．．．．	－	$+$	－	－
Hilum	－	$+$	－	－
Sanella	－	＋	－	－
Size．	Length	Length，breadth	－	－
Qualitative reactions				
P＇ularization（figure）	－	$+$	－	（Intensity）higher than either parent \％
Selenite．．．	－	$+$	－	－
Iodine．．．．．．．．	－	$+$	－	
Chloral hydrate	－	$+$	－	Same as σ^{7}
Nitric and．．．．．．．．．	－	$+$	\cdots	Intermediate σ^{7}
Potasium hyiroxide．．．．	－	$+$	－	Same as σ^{7}
Portasium iostide ．．．．．．	－	$+$	－	Same as σ^{7}
Potansium sutphocranate．	－	$+$	－	Lower than either parent ${ }^{7}$
Potasium sulphide ．．．．．	－	$+$	－	Lower than either parent σ^{7}
Sonlium sulphite ．．．．．．	－	$+$	Excess，individual	Same as σ^{7}
Sudiunu salicylate．	－	$+$	－	Intermediate ${ }^{7}$
Copper nitrate．．．	－	＋	－	Intermediate ${ }^{7}$
（u）ric chlorite	－	$+$	－	Intermediate O^{7}
Mercuric chloride ．	－	$+$	－	Same as $0^{\text {J }}$
2．（rinum kireape：				
lırn	＋	－	－	－
Hilum．．．．．．．．．．．．．	Character	Eccentricity	－	－
I．amellid ．．．．．．．．．．．	$+$	保	Excess	－
ミıizu ．．．．．．．．．．．．．．	＋	－	－	－
Qualitative reactions				
Polarization（figure）．．．．	$+$	－	－	（Intensity）higher than either parent \％
Sulenite	＋	－	－	（laty）higher than either
Irdine．．．	$+$	－	－	Intermediate or
（hiloral hydrate	$+$	－	－	Same as $\%$
Nitric acid．	$+$	－	．－	Intermediate $\%$
I＇otas ium hydroxide．	$+$	－	－	Intermediate \％
Potassium indide．．．．．．．．	$+$	－	Individual	Intermediate \％
Perassium sulphoryanate	$+$	－	－	Intermediate 0^{7}
Potas－ium sulphade．．．．．	$+$	－	Individual	Same as \％
Sodium sulphide．．．	$+$	－	Excess，individual	Intermediate \＆
Sudium salicylate	$+$	－	－	Lower than either parent \％
Copger nitrate．	$+$	－	－	Intermediate \＆
C＇upric chloride．．	$+$	－	－	Intermediate of
，Mercuric chloride．	$+$	－	－	Nearly same as \％
Form ．．．．．．．．．	－	$+$	Histohnie prenliaritie＇s	
Hhиm．	Eccentricity	（ haracter	－	－
Latmillar ．．．．．．	－	＋	－	－
\therefore SLA	－	$+$	－	－
Qualitative reactions				
Polarization（figure）．．．．	－	$+$	－	（Intensity）samo as σ^{7}
selenits． fodur．	－	$+$	－	
foditu Chloral hydrate	－	$+$	－	Intermediate $8=\sigma^{x}$
Chboral hydrate．．．．．．． Potasumm iodide．	－	$+$	Excess，deficit	Higher than either parent 0°
Potassium sulphocyanate．	－－	$+$	Excesb，deficit	Higher than either parent $\sigma^{\prime \prime}$
Potasimen sulphide．．	－	$+$	Excess	Higher than either parent of
Sodium sulphide．．．．	－	$+$	Excess	Higher than either parent 0^{7}
Sorlium malicylate．	－	$+$	Excess	Intermediate O^{7}
（＇onser nitrato ．．．．	－	$+$	Deficit	Higher than either parent σ^{7}
Eupric chloride．．．．． Mercuric chloride．	－	$+$	Deficit	Higher than either parent or
Mercuric chloride ．	$-$	＋	Deficit	Higher than either parent σ°

the pollen parent. In the histologic properties and qualitative reactions, in the first set the hyhrid show: throughout the designations a markedly closer relationship, on the whole, to C. afylanicum (the pollen parent) than to C. moorei (the seed parent); while in the third set the hybrid slows a closer relationship, on the whole, to C. moorei (the pollen parent) than to C. longifolium (the seed parent). In the first set C. moorei (hardy) is crossed with C. zpylanicum (tender), the two species being well separated, the hybrid leaning strongly to the pollen parent C. zeylanicum. In the second set C. zeylanicum (tender) is crossed with C. longifolium (hardy), the species are well separated, the hybrid leaning strongly, but less strongly than in the preceding set, to C. zeylanicum. In the third set C. longifolium (hardy) is crossed with C. moorei (hardy), the species being comparatively close, the hybrid tending to be, on the whole, distinetly closer to C. moorei (the pollen parent) than to C. longifolium. The shifting of parental potency in relation to hybrid development is of interest, C. zeylanicum being the more potent as both pollen and seed parent in relation to C. moorei and C. longifolium, respectively, and C. moorei being more potent than C. longifolium. The quantitative in comparison with the qualitative reactions are of great interest. In the first set there is strong leaning to the polleu parent; in the second set to intermediateness and to the seed
rather than to the pellen parrat; and in the third sit almost wholly to the pollen parent, in cach the inclinations being in harmony with the leanings, on the whol", of the qualitative reantwis.

> Nerme. ilabla. Cis,

The first two hybrids vary in a most interesting manner in their resemblaners and differnows in rusard to each other and to their parents ; and they differ from each other almost as murh as they do from the parminti, or as the parents differ from each other. Biparental inheritance showing varying dureres of influme of a ah paremt is manifest throughout the designations. The hybrid N. queen of roses dilfers in the iomm of the araifis fenm the other hybrid hy a ereator remembline to N. srispa because of its erains has ing a more rezular from, more agrregates, and more compound grains. The hybrids more closely resmble cakth wher than withor farme in the character of the hilum, and both are clower in this Peature of N. elegans than to N. crispe. The lamellie of N. quese of roses are eldwe that thriee wif then other hatirit to those of N. crispa, while those of N . Auinty maid are closer to those of the other parent. The size of the grains of N. queen of roses is less than that of the rether hybrid, but it is clozer for that of the lattur than tho latter is to either parent, y.t not so close as is that of N. dainty maid to that of N. ctegans. In the polari-

Table C 5.-Nerine.

sonpic firure atme rlenite reactions λ^{*}. queen of roses is (Ilnar than N. dainly maid to N. elegans. In the iodine rations- with the raw grams A. quenen of roxes is clower thin I. Aninty maid to N. elegans; but with the gelafiniond grains they dosily resemble those of N. crispa, while thon of the wher hytrid resemble thoie of the uher farent. In the qualitative reactions with chloral helrate hoth are woser to I. elequans than to N. crispa, hiut \cdots. quen of roses is not so close to N. crispa as is \therefore. Itint!y muid to N. elegans, and there is nearly as much difference between the hybrids as there is between N. quefn of roses and N. elegans. In the reactions of nitric and, potasium iorlide, potassium sulphocyanate, and folassium sulphide the hybride are close to one another, and. N. yuen of roses is not so close as is N. dainty maid
to N. elegans. In the sodium-salicylate reactions N. queen of roses is not so close to N. crispa as is N. dainty maid to N. elegans, and there is nearly as much difference between the hybrids as there is between N. queen of roses and N. elegans. The reactions of chloral hydrate and sodium salicylate are of especial interest because of the reversal of the hybrid and parental relationships, N. queen of roses being closer to N. elegans, and N. dainty maid closer to N. crispa, in both reactions; while both hybrids incline, as a whole, to N. elegans, N. dainty maid is closer than the other hybrid. The quantitative reactions bear the most variable relationships to the qualitative reactions, showing, as in preceding sets, the independence of qualitative and quantitative reactions with the same agent and reagent.

Table C 5.-Verine.-Continued.

The second two hybrids differ almost as much from each other as they dofrom their parents，or ats the parents： differ from each other．Biparental inheritance is mani－ fest in all of the designations，varying dillerences in the degrees of influence of one or the other parent being quite apparent throughout．In form，the grains of It． giantess incline to N ．bowdoni，and those of N ．abund－ ance to the other parent；but the grains of the hobrids

 is nearer than N ．giantess to N ．Iorodeni．In the

Designation，agent and reagent．	Closer，as a whole，to the－		Excess，deficit，or individuat．	Quantitative reartions．		
	Sced parent．	Polien parent．				
1．（a）Narcissus pocticus herrick（same parentage as the following hybrid）： Histologic properties						
Form．．．．．．．．．．．．．．．．．．．	$+$	－	－	－		
Hilum．	$+$	－	－	－		
Lamellæ	＋	－	－			
Size．．．．．．．．．．．．．．．．．．．．	－	$+$	\rightarrow			
Qualitative reactions						
Polarization（figure）	－	$+$	－			
Selenite	－	$+$	－	－		
Iodine．．．．．．．．．．．．．．．．．．	－	$+$	－	Stmer a ；		
Chloral hydrate．．．．．．．．．．．．．	－	$+$	Ieficit	Abrut－－ima，a＊${ }^{\text {a }}$		
Chromic acid．．．	－	$+$	－	Ithermuchtat，：		
l＇yrogallic acid．	－	$+$	－			
Nitric acid．．．．．	－	$+$	－			
－Sulphuric acid．．．	－	$+$	－	IIbhber than withr foust he		
1．（b）Narcissus poeticus dante（same parentage as the foregoing hybrid）： Histologic properties						
Form	$+$	$\bar{\square}$	D．ficit	－		
Hilum．	－	$+$	－	－		
Lamellw	－	$+$	－	－		
Size．．．．．．．．．．．．．	－	$+$	－	－		
Qualitative reactions						
Polarization（figure）．	－	$+$	－	（Inten－ity inturna Itate ？		
Selenite．．．．．．．．．．．．．．．．．	－	＋	－			
Iodine．．．．．．	－	$+$	－	11wnt the situr a－${ }^{\text {a }}$		
Chloral hydrate．．．．．．．．．．．．．	－	$+$	－	Int，rmerhate ．－－		
Chromic acid．．．	－	$+$	Deficit	$\operatorname{lnt} 5$－5whate ：		
Pyrogallic acid	－	$+$	－			
Nitric acid．．．．	－	$+$	－	Intermedtate．－？		
Sulphuric acid．．．．．	－	＋	－	Arout the satme as ？		
2．Narcissus poetaz triumph： Histologic properties						
Form．	＋	－	Excess	－		
Hilum．．．．．．．．．．．．．．．．．	－	Chararter	Exicos			
Lamellæ ．．．．．．．．．．．．．．．．．	$+$	－	－			
Size．．．．．．．．．．．．．．．．．．．．	＋	－	Excess	－		
Polarization（figure）	－	$+$	－			
Selenite	－	$+$	－			
Iodine．	－	$+$	－	＊：ロne：：ご		
Chloral hydrate．．	$+$	－－	－	Higher than either parent ？		
Chromic acid．．．．．．．．．．．．．．．．．	$+$	－	－	Higher than either parent ？		
Pyrogallic acid．	＋	－	－	Hugher than mhar parn nt c＊		
Nitric acid	$+$	－	－			
Sulphuric acid．．	$+$	－	－			
3．Narcissus fiery cross：						
Histologic properties Form．	$+$	－	－	－		
Hilum	Character	Eurentricity	－	－		
Lamellw	＋	－	－	－		
Size．．．．．．．．	＋	－	－	－		
Qualitative reactions						
Polarization（figure）．．．．．．．．．	－	\pm	－			
Selenite．．．．．．．．．．．．．．．．．．．．．	－	$+$	－			
Iodine．	\pm	\pm	－	ミ：		
Chloral hydrate．	$+$	－	$+$			
Chromis acid．．．．	$+$	－	－			
Pyrogallic acid．．．．．．．．．．．．．	$+$	－	－	Myther than whtar		
Nitric acid．．．．．．．．．．．．．．．．．．	$+$	－	－			
Sulphuric acid．．．．．．．．．．．．．．．．	＋	－	－	Intornu． 1 ata．		

Table C 6.-Narcissus.-Continued.

Iteignation, agent amd ragent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	Pollen parent.		
4. Nurcisens doublemis				
Mastoloki" promertics Firm	+	-	Deficit	-
Hiluth	Character	-	-	-
Latuellic.	$+$	-	-	-
Size .	-	+	Deficit	-
Qualitative reactions				
Polarization (figure)	-	+	-	(Intensity) same as ${ }^{\text {P }}$
Solunite	-	\pm	-	Same as $\%$ -
(hloral hydrate ..	$+$	-	-	Lower than either parent $\%=\sigma$ '
Chromic acid.......	-	+	-	Lower than either parent $\%$
P'rrogallic acid.......	$+$	-	-	About the same as both parents
Nitric arid.........	$+$	-	-	Intermediate o
Sulphuric acid......	-	+	-	Intermediate \%
5. Narcissuy cresset:				
Form	-	+	-	-
Hitum.	:	$-$	-	-
Lametlw		+	-	-
Size..................	\therefore	-	-	-
Qualitative reactions				
Polarization (figure)...		$+$	-	(Intensity) same as σ^{7}
Selenite............	\cdots	$+$	-	
Iodine.............. .	-	+	-	Same as σ^{7}
Chloral hydrate.... Chromic acid.........	.	-	Individual	Higher than either parent 9
Chromic acid..........		-	Individual	About the same as $\%$ Lower than either parent $\%$
Nitric acid...........	1	-	-	Higher than either parent ${ }^{\circ}$
Sulphuric acid.	4	-	-	Higher than either parent $\%$
6. Narcissus will scarlet:				
Form. ${ }^{\text {a }}$. .	+	-	-	-
Hilum. .	Character	-	-	-
Lammella	Character	-	-	-
Size...............	Large	Common	-	-
Qualitative ractions Polarization (figure).		-	-	(Intensity) same as \%
stenite.............	+	-	-	
Iodine.............	-	$+$	-	Same as 0^{7}
Chloral hydrate......	...	-	-	About same as both parents $\%=\mathrm{o}^{7}$
Pyrogatlic acid.......	--	-	-	Higher than either parent σ Intermediate 9
Nitric acid...........	$+$	$-$	-	Higher than either parent $\%$
Sulphuric acid........	--	-	-	Same as $\%$
7. Narrissus bicolor apricot:				
Histologic properties Form.........	$+$		-	
Hilum.	-	Character	-	-
Lamellw	Character	-	-	-
Siz..................	+	-	-	-
Qualitative reactions				-
lolarization (figure) sodenite.	\pm	-	-	(Intensity) same as 9
Iodine.........	$+$	-	-	Intermediate $\%$
Chloral hydrate......	$+$	-	-	Same as of
('hromir acid........	$+$	-	-	Intermediato of
I'yrogallic acid.......	--	\ldots	-	Lower than either parent ${ }^{7}$
Nitric acid.	-	+	-	Lower than either parent σ^{*}
Sulphuric acid.....	-	4	-	Same as both parents.
万. Narcisult madame de graaff:				
Form.............	$+$	-	Excess	-
Hilum.		$+$	Deficit	-
Lamelto	$-$	+	-	
Size Qualitative reactions	+	-	-	-
Polarizstion (figure)	+	-	-	(Intensity) same as 0^{*}
solmite.	$+$	-	-	

Designation, agent and reagent.	Closer, as a whale, to the -		Txum ars. deficit, or individual.	Quatitativeres thent
	Seed parent.	Pullaz garme I		
8. Narcissus madame de graaff.-Cor,t Qualitative reactions Iodine Chloral hydrate Chromic acid. Pyrogalic acid Nitric acid Sulphuric acid				
	Raw	-	-	Annera
	$+$	-	-	Hipher Han mither barme
	+	1		Luwer than miner marnt
	-	+	-	Intermatht, ?
	+	-	-	Sume ay?
9. Narcissus pyramus: Histologic properties				
Form....................	-	+	-	-
Hilum.	-	+	-	-
Lamells	-	+	-	
Size........	+	-	-	
Qualitative reactions ${ }_{\text {Polarization (tigure) }}$				
Polarization (figure) Selenite..........	-	\pm	-	
Iodine...	+	-	-	Satur at $\%$
Chloral hydrate	$+$	-	-	Lown than +ither gareme ?
Chromic acid...	$+$	-	-	Higher than thergarnet 8
Pyrogallic acid	+	-	-	Higher than either parmat ?
Nitric acid.	+	-	-	Higher than either parent ?
Sulphuric acid.	+	-	-	same as hoth parents
10. Narcissus lord roberts: Histologic properties				
Form. . . .	$+$	-	-	-
Hilum.	+	-	Excerts	-
Lamellx	+	-	-	-
Size	-	+	-	-
Qualitative reactions Polarization (figure)		+	-	(Intunity) <ame as ${ }^{\text {c }}$
Selenite..........	-	+	-	(10rmic)
Iodine.	\pm	\pm	-	Same as both parents
Chloral hydrate	$+$	$-$	-	Intermediate 8 ,
Chromic acid.	-	$+$	-	Lower than either parent ${ }^{3}$
Pyrogallic acid	-	+	-	Intermediate ${ }^{\text {a }}$
Nitric acid.	-	+	-	Inturnediate 8
Sulphuric acid. .	+	-	-	Same as \%
11. Narcissus agnes harvey:				
Histologic properties				
Form Hilum.	$\stackrel{+}{\text { Character }}$	-	Deficit	-
Lamello		-	-	-
Size...		+		-
Qualitative reactions				
Polarization (figure)	$+$	-	-	(Internity) same as ?
Selenite. Iodine.	\pm	-	-	Same as \%
Chloral hydrate.	$+$	-	-	Interne diate ${ }^{\text {a }}$
Chromic acid...	$+$	-	-	Lenwer than either matent ?
Pyrogallic acid.	$+$	-	-	Inturnediate $8={ }^{\circ}$
Nitric acid.	$+$	-	-	Higher tham either parent ?
Sulphuric acid.	+	-		About the same as of
12. Narcissus j. t. hennett poe: Histologic properties				
Form..............	+	-	1).ficit	-
Hilum.	+	-	1) efic it	-
Lamellis.	-	+	-	-
Size.	+	-		-
Qualitative reactions				
Polarization (figure)	-	$+$	-	(Int-nxity) =ume as ?
Selenite.......	Raw	\pm	-	Sance as $^{\text {¢ }}$
Chloral hydrate	$+$	-	--	
Chromic acid..	-	+	-	Huther than "ithergarent?
Pyrogallic acid	-	$+$	-	Hikher than wither gatent
Nitric acid.	-	+	-	Huhn r than mither parme \%
Sulphuric acid	+	-	-	Hehwr than wither ;an : t

pmaricuph reactions both incline to N. bowdeni, but X. aluntunce is nut su close as N. guantess. In the fuline reamens with the raw grains the hathids are as well sumarated from each other at they are from the parente. In N. yiantess the gelathised erains thenare more like those of N. bowdeni, While the raw grains lean to the other parent; hut in the other hybrid there was not found any difference in the parental inclinations of both gelatinized and raw grams. The qualitatine reactions with the chemical reawnt- -how curious differences, N. giantess in only two of the six reactions inclining to N. bowdeni and in the other four to the other parent; while the other hybrid indines all six reactions to A. bondeni. In the reattions of chloral hydrate, potassium sulphocyanate, and sodium salicylate N. abundance is closer than N. giantess to N. bowdeni; and in the potassium-sulphocyanate reaction the hybrids are closer to each other than to either parent. In the nitric-acid reaction N. giantess is closer to A. sarnionsis var. corusca majar than is N. abundance to N. boudeni, but the hybrids themselves are very close. In the potasium-iondide reaction N. giantess leans to N. sarniensis var. corusca major, while the other hybrid inclines to the other parent; but the hybrids are closer to) (anch oher than is either to the parent to which it is the more clusily rulated. The quantitative and qualitative reactions show most interesting differences and imlependence.

It will be seen by an examination of the preceding table how variable and absolutely unpredictable is the shifting of hybrid properties toward one or the other parent. Biparental inhmeritance in each of the designations is manifest; but in some instances hybrid and parents are very closely alike, and in others the hybrids are more alike or more differ at than are the parents, or they difler more from the parent: or resemble more clocly one or the other parent than do the parents themselves appear to be the same or different. With the first pair of hybrids, d. dainty maid inclines in the histologic propertics and qualitative reactions, with the exception of the charater and arrangement of the lamelle, in every designation to N. elegans: while its mate, N. queen of rows, hans in only atout two-thirds of the designations to the same parent. With the second pair, N. giantess indines in about one-half of the dexignations to N. bowdeni, while N. abundance inclines almost wholly to the same parent. With the last hybrid, N. glory of sarnin, the inglinatim with the exceptinn of a single designation is to X. surniensis var. conusca mujor. Excess and deficit of development are rarely noted, and no individuality of the hybrid in any case was recorded. In the quantitative reactions there is obvious independence of the qualitative reactions, inasmuch as they may or may now correspumb. In I. duinty muid, while in both histolowic prometies and qualitative reactions the inclination is pritively to the pollen parent, in the quantitative reactions there is a temdency to intermediateness, and to the prillen parent. In l. aneren of roses there is an indination of ahout two-thirds of the histologic propertice and qualtativer ravelions to the pollen parent, while in the guantative rastions the re is more of a leaning to the pollen than to the seel parent. In N. giantess ahurt one-half of the histologic properties and qualitative reations han to the seed marent, in the quantitative
reactions six of the eight reactions lean to the pollen parent. In N. abundance the histologic properties and qualitative reactions incline almost wholly to the seed parent, in the quantitative reactions six of the eight incline to the pollen parent. In N. glory of sarnia the histologic properties and qualitative reactions incline almost wholly to the seed parent and the quantitative reactions incline equally to each of the two parents.

Narcissus. (Table C 6.)

The first two hybrids, while showing throughout the various designations biparental inheritance, usually bear a closer relationship to N. poeticus poetarum than to N. poeticus ornatus; and on the whole are closer to one another than to either parent. It is strange that while N. poeticus herrick is in form, hilum, and lamellæ closer to N. poeticus ornatus than to the other parent, the relationship in size and all other designations is closer to N. poeticus poetarum. N. poeticus dante is in form closer to N. poeticus ornatus, but in all other designations closer to the other parent. In form both hybrids are closer to N. poeticus ornatus, but N. poeticus herrick is the closer of the two. In hilum and lamellw, N. poeticus herrick shows as close relationship to N. poeticus ornatus as does $N_{\text {. }}$ poeticus dante to N. poeticus poetarum. In size, N. poeticus herrick is closer than N. poeticus dante to N. poeticus poetarum. In both polariscopic figure and selenite reactions both hybrids are closer, and in equal degree, to N. poeticus poetarum. In the iodine reactions the hybrids do not differ and are therefore equally close to N. poeticus poetarum. Throughout the qualitative chemical reagent designations the hybrids are closer to N. poeticus poetarum. In the chloral-hydrate and nitric-acid reactions N. poeticus dante is closer than N. poeticus herrick to N. poeticus poetarum; but in the chromic-acid and pyrogallicacid reactions the reverse. Only rare records of deficient development were recorded; in no instance was there excess of development or individuality. In the quantitative reactions N. poeticus herrick is mid-intermediate or shows a closer relationship to the pollen parent; while N. poeticus dante is mid-intermediate in three of the seven reactions and shows a closer relationship in two to the seed parent, and in two to the pollen parent. It is of interest to note that while in the qualitative reactions both hybrids are throughout very much closer to the pollen parent than to the seed parent, in the quantitative reactions the first leans markedly to the pollen parent and the second to one as much as to the other parent.

There is seen throughout the designations of the various sets of Narcissi the same swinging of hybrid development to one or the other parent, the independence of each unit-character and unit-character-phase of every other in its direction and degree of derelopment, the absolute impossibility of forecasting the parental relationship of any designation, and the usually close relationship of the hybrid in its properties, as a whole, to one or the other parent, as is evident in preceding sets. Special features of the Narcissi group are attached to the relative potencies of certain of the parents that occur in a number of sets, and to the hybrid N. madame de graaff, which in two sets is the pollen parent. N. poeticus ornatus is the seed parent in Set 1 and the pollen parent in Sets 2,3 , and 4 . As the seed parent, it exhilits

Designation, agent and reagent.	('losser, at a Seed parent.	(r), te, then Pallen mationt	Excess, deficit, or indivilual	
1. Lilium marhan: Histologic properties				
Form........	-	$+$	Exrions	..
Hilurn.	$+$	-	Exro.	-
Lamells.	$+$	-	-	-
Size.	-	$+$	-	--
Qualitative reactions				
Polarization (figure).	-	$+$	-	Inturita *tar.av**
Selenite.	-	$+$	-	
Iodine.	-	$+$	-	Intwrin diat..
Chloral hydrate	+	-	-	
Chromic acid.	-	$+$	-	S:am, at :
Potassium hydroxide.	-	$+$	-	
Cobalt nitrate..	-	$+$	-	Inturtheh'th =
Cupric chloride.	-	$+$	-	
2. Lilium dathansoni:				
Histologic properties Form \qquad	+	-	Deficit, excess	-
Hilum.	-	+	-	-
Lamellæ.	Character, arrangement	Number	-	-
Size.	$+$	-	Defjeit	-
Qualitative reactions				
Polarization (figure)	$+$	-	-	(Intunsityl amme as ?
Selenite...........	$+$	-	-	-
Iodine.	+	-	-	Hiature than +ither frarent ?
Chloral hydrate	-	$+$	-	Interme diate,
Chromic acid..	$+$	-	-	Internmuliat..
Potassium hydroxide	$+$	-	-	
Cobalt nitrate.....	$+$	-	-	Inturnu-diat.. *
. Cupric chloride.	$+$	-	-	Intormedaty .
3. Lilium golden gleam: Histologic properties				
Form........	$+$	-	Excess, deficit	-
Hilum.	$+$	-	Excess	-
Lamella	$+$	-	Deficit	-
Size..........	$+$	-	-	-
Qualitative reactions				
Polarization (figure)	$+$	-	-	(Intensity) lower than either parent o
Selenite Iodine	$+$	-	-	
Iodine.	\pm	+	-	Lower than wither garent \therefore tme am
Chromic acid..	+	-	-	
Potassium hydroxide	+	-	-	Samw a lath rarnut=
Cobalt nitrate.......	$+$	-	-	Higher than either parent ?
Cupric chloride	+	-	-	Highar thath cithratarat f
4. Lilium testaceum:				
Histologic properties				
Form........			Deficit, individual	-
Hilum.	Character +	Eccentricity	Deficit	-
Size.	-	+	-	-
Qualitative reactions				
Polarization (figure)..	$+$	-	-	
Selenite.	+	-	-	
Iodine.	$+$	-	-	
Chloral hydrate	$+$	-	-	H_{1}, h, r than eithers parent of
Chromic acid...	+	-	-	Intermediate of
Potassium hydroxide	$+$	-	-	
Cobalt nitrate......	$+$	-	-	Intorme !iatw
Cupric chloride	+	-	-	
5. Lilium burbanki:				
Form	$+$	-	Deficit, excen	-
Hilum	-	+	D.fir	-
Lamells.	$+$	-	-	-
Size....	$+$	-	-	-
Qualitative reactions				
Polarization (figure)	-	$+$	-	
Selenite..........	-	$+$	-	
Iodine.	$+$	-	-	Same as 8
Chloral hydrate	$+$	-	-	Intermediate ?
Chromic acid..	$+$	-	-	
Potassium hydroxide	$+$	-	-	
Cobalt nitrate......	$+$	-	-	L.ns-r than either parent ?
Cupric chloride........	$+$	-	-	Lower than cither prarent ?

very much less influence on the properties of the hybrids than the pullen purent ; in sets 2 and 3 , a the pollen parent, it is less effective than the seed parent; and in S.ot t it is about equally effective as the seed parent. λ^{\top}. poeticus poetarum appears in Sets 1, 5, and 6 as the pullen parent. In set 1 it greatly dominates the seed prarent in it influemer ; in set is it is of somewhat less poteney than the other parent ; and in siet 6 it is almost completely dominated by the seed parent. N. abscissus
is the seed and the pollen parent, respectively, in Sets 7 and 8. In the former, it somewhat dominates the pollen parent, and in the latter it is distinctly subordinate to the seed parent. N. triandrus albus is the pollen parent in Sets 11 and 12, in the former it being almost wholly subordinate, and in the latter of about equal value to the other parent, in influencing the properties of the offspring. N. madame de graaff is of especial interest because of its being a hybrid in Set 8, and the seed

Table C 8.-Iris.

Designation, agent and reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	Pollen parent.		
1. Iris ismali:				
Histologic properties	$+$			
Form........	Character	Eccentricity.	Excess, deficit	-
Lamellue	+	-	Deficit	-
Size	$+$	-	Deficit	-
Qualitative reactions				
Polarization (figure)..	-	$+$	-	(Intensity) lower than either parent δ^{*}
Stenite.	-	$+$	-	-
Iuline.	$+$	-	-	Same as 8
Chhoral hydrate	$+$	-	-	Intermediate 0^{7}
$\mathrm{Hy}_{\mathbf{y} \text { drochloric acid. }}$	$+$	-	-	Intermediate 0^{7}
Potassium iodide. .	+	-	Excess	About the same as 0^{7}
Sodium hydroxide.	$+$	-	-	About the same as both parents
Sodium salicylate..	$+$	-	-	Same as σ^{7}
2.1 Inc dorak: \|				
Histologic properties				
Fぃrm	$+$	-	Excess	-
Hhlum.	Character	Eccentricity	-	-
Lameliar	Number	Character	-	-
Size....	+	-	Deficit	-
Qualitative reactions				
Polarization (figure)	$+$	-	-	(Intensity) same as \%
Sthenite	$+$	-	-	-
Indine	+	-	-	Same as \%
Chloral hydrate	$+$	-	-	Lower than either parent $9=\sigma^{7}$
Itydrochloric acid...	$+$	-	-	Same as 0^{7}
Potassium iodide...	+	-	-	Higher than either parent δ^{7}
Sodium hydroxide.	$+$	-	-	About the same as $\%$
3. Sri fium salirylate	$+$	-	-	Slightly lower than either parent of
3. Iriv, mis alan gray:				
Histologic droperties.				
H/1m	$+$	-	Excess	-
1 ame llix	Indistinctness	Character	-	-
Size . .	-	+	Deficit	-
Qualitative reactions				
Polarization (figure) ...	-	$+$	-	(Intensity) lower than either parent of
Stlenite	-	+	-	
ludine.	+	-	-	Higher than cither parent \%
Chloral hydrate ...	-	+	-	Higher than either parent of
Hydrochloric acid..	-	$+$	-	Lower than either parent 0^{7}
Pontanainu imlicla....	-	$+$	-	Lower than either parent of
Sodium hydroxile	-	-	\rightarrow	Lower than either parent $\circ=\sigma^{\circ}$
, Sodiam salicylate ...	-	+	-	Higher than either parent or
4. lsin phismu:				
Itistulegic properties				
1.rrm - . .	+	-	-	-
114um	Character	Eccentricity	-	-
lammar	$+$	-	-	-
- izat	+	-	-	-
Qualitative reactions			*	
Pharization (fienhe)	$+$	-	-	(Intensity) lower than either parent of
Sthonit. ${ }^{\text {a }}$	$+$	-	-	-
Ithlune... -	-	+	-	Same as 0^{7}
Chloral hydrate	+	-	-	About the same as both parents
$\mathrm{Hy}^{\text {d druchloric acid }}$	$+$	-	$+$	About the same as both parents
l'otussium iodide..	$+$	-	-	About the same as both parents
Sodium hydroxide.	$+$	-	Excess	About the same as both parents
Sintium sulicylate.	+	$-$	Fxcess	Higher than either parent of

parent in Sets 9 and 10. As a hybrid it exhilits markedly biparental inheritance in all of the designations in varying degrees in relation to one or the wher parent. but leaning, on the whole, strongly to the seed parent; not exhibiting any notable peculiarity that is not observed in one or the other parent, nor showing any derelopment in excess or delicit of parental development. except in certain histologic features of minor character. As a seed parent it shows in Set 9 less potency, and in Set 10 about equal potency, compared with the other parent in determining the properties of the hybrid. N. madame de graaff shows in its qualitative reactions with the various chemical reagents the peculiar proceses; of gelatinization that were recorded in the reactions of one parent or both parents; and the processes of this hybrid are manifested in its offspring in a manner not distinguishable from that which on general principles should be expected were it a species or a variety and not a hybrid.

The quantitative reactions bear to the histologic properties and qualitative reactions the moit variable relationships in their parental leanings.

Lhitm. (Table C: 7.

In histologic properties and qualitative reactions L. marhan bears in three-fourths of its designations a
closer relationship to the pollen parent. In furm and size of the grains the relationship is forer the forlen parent; but in hilum and lamdlæ the reverse. Apart from the chloral hydrate reaction, which is closer to the seed parent, all of the qualitative reactions are closer to
 ter, and arrangoment of the lambler is (hewr the the seed parent, but in hilum and number of the lamella is closer to the perlen parent. In whe the tharalhydrate reaction is the hybrid closer in the qualitative reactions to the pollen parent, and in the whers clower to the seed parent, the "pposite to what was notel int the first hylrin. Earh of these hybrids haw :W... same pollen parent, hat there is an almost entre reveral of the parental relationships in the various designations. In C. goldon glam the relation-hip in, w th the eincle exception of the chloral-hydrate reaction, closer to the sted parent. The pollen parent of I.. murhon is the. same as the sed parent of I. golden gleam, the hybrid rulationslips of each being closur to the seel par.ant, L. maculatum and L. tenuifolium, respectively. L. testuctum in form and in character of the hilum and lam.llee is weser to the sual barmt, hut in arentricity if the hilum and in im it is dower the promparmat. In all of the qualitatise reactions it is shown to 'e mis. r

Designation, agent and reagent.	Closer, as a whule, to, the -		Liseess. defirit, or indivilual.	Quantitativerabetiont.
	Seed parest.	Publen parrit.		
Tritonia crocosmaflota:				
Histologic properties				
Form.......	-	+	-	--
IIilum	Ecoentricity	Character	-	-
Lameliz.	$+$	-	.	-
Sizo..........	$+$	-	-	-
Qualitative reactions				
Polarization (figure).	$+$	-	-	
Selenite.	T	-		$-$
Iodine	$+$	-		Interme liatn ?
Chloral hydrate.	-	$\stackrel{+}{+}$	-	Lower than either parent \%
Hydrochloric acid.	-	$+$	\cdots	Intermenhiste?
Potassium iodide.	-	$+$		Intermediate \%
Sodium hydroxide.	-	$+$	-	
Sodium sulicylate... ...	-	+	-	Intornmedi.s, ?

to the seed parent. L. burbanki in form, lamellæ, and size is closer to the seed parent, but in hilum closer to the pollen parent. Except the polariscopic figure and sulonite reaction it is closer in all of the qualitative designations to the seed parent. Excess and deficit of develepment are rearded moly among the histologic propurties, and no individuality is notid in any of the five hylorids in any of the designations.

The quantitative reactions bear most variable and independent relationships to the qualitative reactions in each of the sets of parents and hybrid.

Iris. (Table C 8.)
I. ismali inclines to the seed parent in all of the designations of histologic properties and qualitative reactions, except in eccentricity of the hilum, polariscopic

Table C 11--Begonia.

Designation, agent and reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	socd parent.	Pollen parent.		
1. Begonia mrs. heal: Histologic properties				
Form.......	-	+	-	-
Hilum. .	Character	Eccentricity	-	-
Lamella.	-	$+$	-	
Size.......	-	$+$	-	
Qualitative reactions				
Polarization (figure)...... .	$+$	-	-	(Intensity) lower than either parent $9=\delta^{\circ}$
Selenite...	+	-	-	-
Iodine.	+	-	-	Same as 9
Chloral hydrate..	$+$	-	-	Intermediate ${ }^{\text {\% }}$
Chromic acid....	$+$	-	-	Intermediate $\%$
Pyrogallic acid.	$+$	-	-	Intermediate \%
Nitric acid....	$+$	-	-	Same as 9
Strontium nitrate	$+$	-	-	Intermediate \%
2. Begonia ensign:				
Form................	$+$	-	-	-
Hilum.	Character	Eccentricity	-	-
Lamella	Character	Number	-	-
Size.....	Smatler grains	Larger grains	-	-
Qualitative reactions				
Polarization (figure)	-	$+$	-	(Intensity) intermediate \%
Selenite...........	$+$	-	-	-
Iodine	+	-	-	Intermediate 9
Chloral hydrate	$+$	-	-	Higher than either parent \%
Chrotnic acid.	$+$	-	-	Intermediate of
Pyrogallic acid.	$+$	-	-	Intermediate 9
Nitric abd.	$+$	-	-	Intermediate
Strontium nitrate.	$+$	-	-	Intermediate \%
3. Begonia julius				
Form.	-	$+$	Deficit	-
Hilum.	-	$+$	-	-
Lameller	$+$	-	-	-
Size....	Sizes	Length breadth	-	-
Qualitative reactions				(atenits) same as
Polarization (figure)	\pm	\pm	-	(Intensity ${ }^{\text {a }}$) same as 0^{7}
Sclenite...	\pm	\pm	-	-
Iodine	Gelat. grains	Raw grains	-	
Chloral hydrate	+	-	-	Higher than either parent $\%$
Chromic acid...	$+$	-	-	Intermediate ?
I'ypogallio acid	$+$	-	-	Intermediate $\%$
Nitric acid	$+$	-	-	Same as $\%$
Strontium nitrate.	$+$	-	-	Intermediate \%
Histologic properties				
Hiluma...	Character	Eerentricity	Fxcess	-
Lamelle.	-	$+$	-	-
Size....	-	+	-	-
Qualitative reactions				
Polarizution (figure).	-	$+$	-	(Intensity) same as or
Selenite...........	-	$+$	-	-
Iodine.	-	$+$	-	Same as σ^{7}
Chloral hydrate	$+$	-	-	Intermediate \%
Chromic acid	$+$	-	-	Higher than either parent \%
Pyrogallic acid.	$+$	-	-	Higher than either parent \%
Nitric acid...............	$+$	\square	-	Same as $\%$
Strontium nitrate...	$+$	-	-	Higher than either parent \%

figure, and selenite reactions. I. dorak shows even a stronger leaning to the seed parent, closer resemblances to the pollen parent being recorded in only the eecentricity of the hilum and lamellie. The seed parent of these hybrids is the same and it shows in both hybrids much greater potency than the other parent. In I. mrs. alan grey the form, hilum, and indistinctness of the lamelle lean to the seed parent, but the general characters of the lamelle and the size of the grains incline to the pollen parent. Among the qualitative reactions, in those with iodine alone is there greater closeness to the seed parent. I. dorak and I. mrs. alan grey have I. cengialti as their pollen and seed parent, respectively; in each hybrid this parent exhibits the lesser influence on the histologic characters and qualitative reactions of the hybrids. I. pursind shows, with the exception of eccentricity of the hilum and qualitative reactions with iodine, a closer relationship to the seed parent. Deficit and excess of development, mostly in histologic properties, are occasionally noted; but individualities of the hybrids are abseut.

The independence and vagariousness of the quantitative reactions in relation to the qualitative reactions are very striking in all of the sets.

Gladiolus. (Table C 9.)

The seed parent of G. colvillei shows throughout the histologic properties and qualitative reactions, the more potent influence on the hybrid, excepting in the eccentricity of the hilum and the lamellæ, in the former respect being subordinate, and in the latter of equal value, to the seed parent. Excess of development of parental extremes was noted in the lamellæ, and individuality was recorded in the hydrochloric-acid reaction.

In the quantitative reactions there is mostly a tendency to sameness as both parents, together with some inclination to excess and deficit of development; but, on the whole, the leaning is rather toward the seed parent.

Tritonia. (Table C 10.)

This hybrid in its designations shares about equally in closeness to one or the other parent. In eccentricity of the hilum, lamellæ, and size it is closer to the seed parent, but in form and character of the hilum closer to the pollen parent. In the polariscopic figure, and in the
selenite and iorline rademas it is rloser to tha cmal parent, but in all the other qualitatise reaction= it is

 ously, while in the qualitative reactions with the various (hemical reagents the leaning of the hybrid is to the pollen parent, in the quantitative reactions the fadimation is in all seven reactions to the sed farent. This almost complete reseral of qualntation and quatitatase parental relatimship is ly momean= uncomanon, as will the vern in other tables:

Begonia. (Table C 11.)

B. socotrana is the pollen parent in all four hybrids, it belonging to the semi-tuberous group ; the sced parentare horticultural barieties that betones to the tulerous group. In all four hybrids there is amone the hiotological properties a manifest tendency to a splitting of the characters in their parental relatwohins (excopt solely in the form of the grains) and to fluctuation in given characters in different hybrids to one parent or the other. The form of the grains in B. mrs. heal, B. julius, and B. success is closer to the pollen parent, but in B. ensign closer to the other parent. The hilum in character is in B. mrs. heal, B. ensign, and B. success closer to the seed parent, but in B. julius closer to the pollen parent; while in eccentricity it is closer in all to the pollen parent. The lamella in character are in B. ensign and B. julius closer to the pollen parent, while in number this property is in all four cheser to the phllent parent. In size, in common sizes it is in B. mrs. heal and B. success closer to the seed parent, in the larger grains in B. ensign woser to the pollen parent, and in propertion of length to breadth in B. julius closer to the pollen parent. The polarisengic figure is in B. mrs. heal luser to the seed parent, but in the other three the same as both pareuts or clozer to the pollen parent. The selenite reactions are closer to these of the sem parent in B. mrs. heal and B. ensign; closer to those of the pollen parent in B. success; and the same as both parents in B. julius. 'The independence of polariscopic figure and selenite reaction is illustrated in B. ensign. In the iodine rea.tions the inclinations may he to whe wr the on ber parent. but in 13 . julius there is in splittines so that the reactions of the gelatinized grains are closer to the seed parent,

Table C 13.-Musa.

Iemignation, agent und reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	Pollen parent.		
Musa hybridu:				
Histulugic properties				
Form.	-	$+$	-	-
Hilum. .	-	$+$	Excess	-
Lamellæ.	Number	Character	Excess	-
Size.........		+	Excess	-
Qualitative reactions				
Polarization (figure)	-	$+$	-	(Intensity) higher than either parent of
Selenite.	-	$+$	-	
Iodine.	-	$+$	-	Same as σ^{7}
Chloral hydrate.	-	$+$	-	Lower than either parent or
Chromic acid...	-	$+$	-	Lower than either parent σ^{7}
Pyrogallic acid.	-	$+$	-	Same as σ^{7}
Sodium salicylate..	-	$+$	-	Lower than either parent or
Cobalt nitrate........	-	$+$	-	Lower than either parent or

Table C 14.-Phaius.

Designation, agent and reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.		
	Seed parent.	Pollen parent.				
Phaius hybridus: Histologic properties						
Hilum.	-	Character	-	-		
Lamella	Character, arrange	-	-			
Size.	+	-	-	-		
Qualitative reactions						
Polarization (figure)	$+$	-	-	(Intensity) higher than either parent \%		
Selenite.	+	-	-	-		
Iodine.	-	$+$	-	Intermediate σ^{7}		
Chloral hydrate.	$+$	-	-	Lower than either parent σ^{7}		
Chromic acid....	$+$	-	-	Intermediate $\%=0^{7}$		
Nitric acid.	$+$	-	-	Intermediate $\%$		
Hydrochloric acid.	+	--	-	Same as σ^{7}		
Potassium hydroxide	$+$	-	-	Same as both parents.		
Potassium iodide....	$+$	-	-	Intermediate $\%=\sigma^{*}$		
Potassium sulphocyanate.	$+$	-	-	Same as both parents.		
Potassium sulphide....	$+$	-	-	Lower than either parent $\%=\sigma^{\circ}$		
Sorlium hydroxide...	$+$	-	-	Lower than either parent or		
Sodium sulphide..	-	\cdots	-	Same as 0^{7}		
Sodium salicylate	$+$	-	-	Same as of ${ }^{\text {¢ }}$		

Table C 15.-Millonia.

1) ${ }^{\text {ajgmation, agent and reagent. }}$	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	Pollen parent.		
Miltomia blouana:				
Histologic properties				
Form.......	+	-	Excess	-
Hilum.	Character	Eccontricity	-	-
Lamelhe . .	Charucter	-	-	-
Size \ldots.... ...	-	+	Excess	-
Qualitative reartions				
Pularization (figure)	$+$	-	-	(Intensity) higher than either parent \%
Suldite...	$+$	-	-	(Intas) higher than either parento
Iodine.	+	-	-	Same as \%
Chloral hydrate.	$+$	-	-	Intermediate ?
Chromic acid...	$+$	-	-	Higher than either parent \%
Hydrochloric acid	$+$	-	-	Same as both parents
Potnssimm iodide	$+$	-	-	Higher than either parent $\%$.
Sodium salirylate	$+$	-	-	Higher than either parent $\%^{*}$

Tabis: (' 10.-r', mbidum.

Designation, agent and reagent.	Clower, as a whole, to the -			Quantitative reactions.	
	Seed parent	Pollen parent.			
Cymbidium eburneo-lowianum: Histologic properties					
Form	+	-			
Hilum.	Character	Eccentricity	-		
Lamella	$+$	-	-	-	
Sizo...	Size	Length, width	-	-	
Quantitative reactions					
Polarization (figure)	+	-			
Selenite...	-		-	-	
Iodine...	$+$.		Same as \%	
Chloral hydrate.	$+$	-		Lawner than mhther partut \% , ,	
Chromic acid...	$+$			Lower that mitar fantat : - -	
Sodium salicylate.	$+$			Lower thath enther farat - -	
Barium chleride...	$+$		-	Lower than cithrer parn be - - "	
Mercuric chloride.......	\pm			fowre than either farnit $9-0{ }^{\text {a }}$	

while those of the raw grains are closer to th " pollen parent. With one exception, in all of the qualhtative reactions of all four hybrids the relationship is closer to the seed parent. Excess of qualitative development was noted once, deficit once, and individuality not at all. The quantitative reactions are frequently intermediate, sometimes the same as or higher or lower than both parents; usually very much closer to the seed parent and far separated from the pollen parent, and rarely the same as or closer to the pollen parent.

Richardia. (Table C 12.)

In form, polariscopic figure, selenite reaction, and iodine reaction the hybrid inclines to the pollen parent;
in lamella it is equally related to ho:h parnt: ; and in all other designations closer to the seed parent. Deficit of development was noted twice, excess of development once, and individuality not at all.

The quantitative reactions are quite variable in their parental relationships, and without other than casual correspondence in their bearings with the qualitative reactions.

With the exception of the rumber of the damelle. the designations of this hybrid are twwarl the pollen parent. The quantitative reactions are in all seven desienations fowarl the pollen parent.

Table C 17.-Calanthe.

Designation, agent and reagent.	Closer, as a whole, to the-		Excess, deficit, or individual.	Quantitative reactions.
	Seed parent.	Pollen parent.		
1. Calanthe veitchii: Histologic properties				
	Most	Some	-	-
Hilum.	$+$	-	-	-
Lamella	$+$	-	-	-
Size.	-	+	-	-
Qualitative reactions				
Polarization (figure)	$+$	-	-	- Intensity intermediate 8
Selenite...	+	-	-	-
Iodine.	$+$	-	-	Interme liate ?
Chloral hydrate	-	+	-	Higher than either parent \%
Chromic acid..	$+$	-	-	Same as \%
Hydrochloric acid.	+	-	\sim	Lower than cither pareat \%
Potassium hydroxide.	-	$+$	-	Intermediate 8
Sodium salicylate...	-	+	-	Higher than cither parent \%
2. Calanthe bryan: \square				
Histologic properties				
Form.	Some	\cdots	-	-
Lamellm.	-	$+$	-	-
Size...	Length, width	Size	Excess	-
Qualitative reactions				
Polarization (fgure)..	-	$+$	-	(Intensity) intermedate -*
Selenite..	-	$+$	-	-
Iodine.	$+$	-	-	Intermeliate 8 - -
Chloral hydrate.	$+$	-	-	Intermediate 8 $=0$ 大
Chromic acid....	+	-		Intermadaste -
Hydrochloric acid...	.	$+$	-	Higher than exther farein os
Potassium hydroxide		$+$	--	
Sodium salicylate.....	$+$	-		Intermediate $8=0{ }^{\text {a }}$

Phaide. (Table C 14.)

With the exception of the character of the hilum aml the reaction with iodine the hybrid in its histologic properties and qualitative reactions is closer to the seed parent. Excess of development is noted once; deficit and individuality not at all.

The quantitative reactions are very variable in their parental relationships, exhibiting sameness in relation to one parent or the other or both parents, intermediateness, and excess or deficit in relation to parental extremes, as the case may be.

Miltonia. (Table C 15.)

Except in the eccentricity of the hilum and size of the grains all of the designations of this hybrid incline toward the seed parent.

The qualitative reactions while variable in their parental relationships tend with one exception to the seed parent, but in none to the pollen parent.

Cymbidium. (Table C 16.)

The hybrid bears a closer relationship to the seed parent in all of the histologic and qualitative designations with the exception of eccentricity of the hilum and of ratio of length to breadth of the grains.

In the quantitative reactions the inclination is, with one exception, to lower reactivity than in either parent, the hybrid being in the latter reactions lower than in either parent but as close to one as to the other parent. The leaning is generally very doubtful because of the great rapidity of the reactions.

Calanthe. (Table C 17.)

In C. veitchii two-thirds of the designations incline to the seed parent. In form most of the grains are more like those of C. rosea, and only some like those of the other parent. In hilum and lamellæ the hybrid is close to the seed parent, but in size closer to the other parent. In the polarization figure, selenite reaction, and iodine reaction it is closer to the seed parent. In the qualitative reactions with chloral hydrate, potassium hydroxide and sodium salicylate it is closer to the pollen parent: but in those with chromic acid and hydrochloric acid it is closer to the sced parent. In the quantitative reactions throughout the hybrid is the same as or closer to the seed parent.

In C. bryan the designations are about equally divided in their parental closeness. In form some of the grains are more like those of the seed parent, but most are like those of the pollen parent-the reverse of what was recorded in the other hybrid (in this set the seed parent is the same as the pollen parent in the preceding set). There is in this hybrid in comparison with the other hybrids reversal of the relations of the hilum and lamella to the parents, and there is a splitting of the characters pertaining to size-the grains in ratio of lengtl to breadth being closer to the seed parent, but in size generally closer to the pollen parent. While the polariscopic figure and selenite reaction are in comparison with the foregoing hybrid reversed, the iodine reaction remains closer to the seed parent. The qualitative reactions likewise show curious differences. Here the chloral hydrate, chromic acid, and sodium salicylate reactions are closer to the seed parent, while the hydrochloric acid and potassium hydroxide reactions are closer to the pollen parent
(the reactions of chloral hydrate, hydrochloric acid, and sodium salicylate being reversed, but those of chromic acid and potassium hydroxide remaining the same in comparison with those of C. veitchii).

The quantitative reactions exhibit a tendency to midintermediateness, and otherwise mostly to closeness to the pollen parent. In only one of the seven quantitative designations is there manifest greater closeness to the seed parent than to the pollen parent.

Histologic Properties of Starches of Hybrids in Relation to tilose of the Parents.

In the preceding section, in the consideration of the peculiarities of each starch, reference was made to the remarkable shifting of the various histologic characters in their parental relationships. These peculiarities are of exceptional interest and significance, and they have been presented for the most part in a succinct form in Table D. One would not unnaturally be led to the conclusion that if the grains of the hybrid are closely like those of the seed parent or the pollen parent in form, lamellæ, and size, the same would hold good for the hilum, but such may in fact be far from the case. Moreover, not only may there be different parental relationships of the hybrid starch in form, hilum, lamellæ, and size, but there may also be a splitting of characters in each of these designations, so that in a certain respect the hilum, for instance, may be close in its relationship to one parent, but in another respect equally as close to the other parent. In other words, not only are form, hilum, lamellæ, and size independent characters that may be modified in the starch of any hybrid in their parental relations in like or unlike directions, but each may be split into a variable number of components which in like manner may swing to one or the other parent in an absolutely unpredictable and inexplicable way. It is unfortunate that in making the laboratory records the data pertaining to variations in form were not so systematically made as to make it possible to present in a consistent way the splitting of properties such as was recorded in the properties of the hilum, lamellæ, and size, especially of the two former. Sufficient data were accumulated to show that such splitting is a common phenomenon, as, for instance, where it has been found that the hybrid is close to one parent in the characters and numbers of compound grains, but close to the other parent in the characters and numbers of the aggregates; where a certain type of compound grain or aggregate is closer to that of one parent, but another type closer to that of the other; where the kinds of irregularity of the grains incline to one parent, but the frequency of irregularity to the other, etc. Similarly, only little analytic attention was given to the peculiarities of sizes, but enough to show that a splitting of characters must be quite common. On the other hand, the reonrds of the peculiarities of the hilum and lamellæ, while capable of much and important extension, are rich in instances of splitting. Taking several concrete examples for illustration, we find that both Brunsdonna hybrids are closer to the seed parent in form, hilum, and size, but closer to the pollen parent in the form, arrangement, and number of the lamellæ. Mippeastrum titan-cleonia is closer to the seed parent in form and hilum; but closer to
the pollen parent in lamellie and size. Hipporas/rum ossullan-pyrrha is chreser to the seded parent in the mumber of the lamellae and in size: but chaser th the pollen parent in form, hilum, anch characters of the lamella. Iris dorak is closer to the seed parent in form, size, characters of the hilum, and number of the lam lise: hut closer to the pollen parent in eccentricity of the hilum, and in the character of the lamelle, ete.

In only two of the hylrids (Ifamanthus limig albert and Litium golden gleam) is the parental relationship in all four designations the same, i.c., the hylrill is in form, hilum, lamellæ, and size closer to one parent; the
former is chacer to the pelles parmen, and the lattor to the -rod parcont. In wher hyhral-: a- in lirunslonna,
 Sarrisus. oreswh at many as thre derimation may he
 as is and in II ingmastrum titun-r|ronin and It"manthus:

 in whinh hymin the form of the ur in in retarer to the wel prarmt, and the character of the hilum closer to the
 parent; the character of the lamellix is closer to the seed

1. Mine ().

Hybrids.	Form.		Hilum,		Lam+lis.		Siz\%.	
	Closer, on the whole, to-		Closur, on the whole, 1", -		Closer, on the whole, to-			
	Seed parent. 'P	Pollen parent.	Seed parent.	Pullen parent	Surd parent. I	Puildararent		Pollatajarent.
B. sanderœ alba	$+$	-	$+$	-	Form, arrang.	No.	$+$	-
B. sanderce	$+$	-	+	-	Form, arraug.	No.	$+$	-
H. titan-cleonia.	$+$	-	+	-	-	$+$	-	$+$
H. ossult. -pyrh	-	+	-	+	No.	Char.	$+$	-
H. dæon-zeph.	-	$+$	$+$	-	+	-	-	Larger grains
Hæmanthus andromeda.	$+$	\cdots	$+$	-	\pm	\pm	-	+
Hrmanthus könig albert.	-	$+$	-	$+$	-	$+$	-	+
C. hybridum j. c. h......	-	+	-	$+$	-	+	Iengeh	I. ongth to breadth
C. kircape	+	-	Char.	Ecrent.	+	-	$+$	breadth
C. powellii	-	$+$	Lecen.	Char.	-	+	-	$+$
N. dainty maid.	-	$+$,	-	Char., arrang.	Fintures	-	$+$
N. queen of roses........	-	$+$	Distinctuess	Fiss., char., \& ecerts.	+	-	-	+
N. giantess.	$+$	-	-	+	+	-	-	$+$
N. abundance.	-	+	Char.	Eccen.	-	$+$	$+$	-
N. glory of sarnia.	$+$	-	$+$	-	-	+	-	$+$
N. poeticus herrick.......	+	-	$+$	-	$+$	-	+	$+$
N. pocticus dante..	$+$	-	-	$+$	-	+	-	$+$
N. poetaz triumph	+	-	-	Char.	$+$	-	\pm	-
N. fiery cross..	$+$	-	C'har.	Eccen.	$+$	-	$+$	-
N. doubloon...	+	-	Char.	-	$+$	-	-	+
N. cresset............	-	$+$	+	-	$+$	-	$+$	-
N , will scarlet...........	+	-	Char.	-	(hirs.	-	L.arge	(common
N. bicolor apricot.	+	-	-	Char.	Char.	-	$+$	-
N. madame de graaff. ...	$+$	-	-	$+$	-	$+$	$+$	-
N. pyramus	-	$+$	-	+	-	$+$	$+$	-
N. lord roberts.	$+$	-	$+$	-	$+$	-	-	$+$
N. agnes harvey	+	-	Char.	-	+	-	-	+
N. j. t. bennett poe.. . . .	+	-	$+$	-	-	$+$	$+$	-
L. marhan..............	-	$+$	$+$,	$1+$	-	-	$+$
L. dalhansoni	$+$	-	-	+	(har., arrang	No.	$+$	-
L. golden gleam........	$+$	-	$+$	-	$+$	-	+	-
L. testaceum...........	$+$	-	Char	Ecren.	1	-	-	+
L. burbanki	+	-	-	+	\cdots	-	$+$	-
I. ismali..................	$+$	-	Char.	Eccen.	$+$	ha	+	-
I. dorak	$+$	-	Char.	Ecren.	No.	Char.	+	-
I. mrs. alan gray	$+$	-	+	-	Indiot.	Char.	-	+
I. pursind..............	$1+$	-	Char.	F\%\%.	+	-	T	-
G. colvillei...............	+	-	Char.	Fecen	\therefore	\pm	$+$	-
T. crocosmæfiora.	-	$+$	l.eren.	Char	--	-	+	1
B. mrs heal.....	-	$+$	Chat.	limen	-	\pm	-	$+$
B. ensign.	$+$	-	Char.	$1+++x+1$	Char.	So.	smal!! r	Taterer
B. julius.................	-	+	-	+	+	--	$\therefore 1 z i=$	$\begin{aligned} & \text { Infoth tor } \\ & \text { lseadib } \end{aligned}$
B. success..... .	-	$+$	Char.	Eecent.	-	+	-	+
R. mrs. roosevelt.	-	$+$	+	-	\pm	$=$	+	-
M. hybrida.	-	$+$	-	$+$	Nい.	Char., arrang	-	+
P. hybridus	$+$	-	-	Char.	Char., arrang.	-	-	+
M. bleuana........	$+$	-	Char.	E.-ern	(inar.	-	-	t
C. eburneo-lowianum .	$+$	-	Char.	Encon.	+	-	Sizes	Iength to breadth
C. veitchii.	Most	Some	+	-	+	-	-	+
C. bryan...	Some	Must	+	+		+	I. natin th lireadth	- $2 \cdot \mathrm{~s}$

farent, but in mumber is closer to the pollen parent; and tho suallur sises are closer to the seed parent, but the darmer sizes doser to the prollen parent. A similar splitting and shiftings is sem in Millonia bleuana, in which the form is closer to the seed parent; the character of the hilum durer to the seed parent, but eccentricity is closer to the pollen parent; the character of the lamellæ is closer to the seed parent, but certain other features closer to the pollen parent, or as close to one as to the other parent; and the common sizes are closer to the pollen parent. These last two instances are exceptional, probably, merely because of inadequate data. In over half the hybrid is the same as or closer to one parent in only two designations, and in less than half in three designations. In only two are all four designations alike, and in only two are all four designations different, in their parental relationships.

It is of especial interest to note that in 15 of the 50 hybrids (nearly one-third) character and eccentricity of the hilum are separated in their parental relationships, character in 12 being closer to the seed parent and in 3 being closer to the pollen parent; while eccentricity in 12 is closer to the pollen parent and in 3 closer to the seed parent (an exact reversal), a most remarkable peculiarity and one that is very suggestive in connection with the proveses concerned in the formation of the starch grain. Another of the several forms of splitting is instanced in Nerine queen of roses, where the hilum in distinctness is closer to the seed parent, but in fissuration, character, and eccentricity closer to the pollen parent; and it is very much less often fissured but more ecentric than in either parent. The lamella appear to show less tendeney to a splitting of their characters in their parental relationships, hut this may be merely apparent and not actual, as will probably be brought out by a sufficiently detailed study. In 9 of the hybrids there occurred an obvious splitting of lamellar properties, this being noted in a separation of character and numher; but here, unlike in the case of the hilum, there is not a definite inclination generally of one or the other of these features to one or the other parent. In the splitting of the hilum into character and eccentricity, characfer tends. to the seed parent and eccentricity to the pollen parent: but in the lamella split, character, and number Ewing apparently indifferently to one or the other parent. In size. splitting of chatacters seems to be comparatively uncommon, though here as elsewhere in these studies it is probably not sn much an absence of commonness as of careful investigation and analysis. Such splitting as has been recorded under this designation has been manifested chiefly in the ratins of length to breadth of the grains and of the eommon sizes to other types and different types of grains.
Qualitative ayd Quaxtitative Reachooss of Starches of Hybride with Especial Reference to Reversal of these Reactions in their Parental Relationships.
(Table E, Parts 1 to 21 and Summary.)
In the first sertion, in the tabulations of the starches in recard to histologic and polarisopic properties and to the reactions with iodine and various chemical reagents, data were collected to indicate that the characters em-
braced under the designations form, hilum, lamellæ, and size, respectively, may in each designation collectively be independently heritable; or that each designation may be split into several independently heritable characters, so that a given hybrid may have a starch that is like that of the seed parent in form, but like that of the other parent in the lamellæ; or that it may be like one parent in the general characters of the hilum, but like the other parent in the eccentricity of the hilum, and so on. In the second section, further consideration was given to these peculiarities with reference to histological inheritance. It was shown, moreover, that each reaction is, in its qualitative and quantitative manifestations, heritable independently of each other, so that while with a given reagent there may be sameness or near sameness in the qualitative reaction to the seed parent, with another reagent the relationship may correspond to the pollen parent; that while a given qualitative reaction may correspond to that of the seed parent, the correlative quantitative reaction may correspond to that of the pollen parent, etc.; and that while with one reagent the relationship may be to the seed parent, with another reagent it may be to the pollen parent, and so on. These parental similarities and dissimilarities are of such interest and suggestiveness in connection with both the constitutional peculiarities of different starches and the mechanism of heredity that it seems desirable to tabulate such data more fully and with especial reference to the reversals of the qualitative and quantitative reactions of each agent and reagent in their parental relationships. Of Table E it will be noticed that with only three of the agents and reagents were the reactions of all of the 50 hybrids recorded; and that in the others the number of hybrids varied from 1 to 32 (in seven less than 10 , and in eleven 10 or more-the restricted numbers being due to the limitations of studies of the qualitative reactions).

The most conspicuous features of these tables, apart from those already referred to, are:
(1) The absence in members of a genus of constancy of both qualitative and quantitative reactions as regards sameness of the reactions in their parental bearings; (2) the tendency to the appearance of a definite ratio in the qualitative reactions in their inclinations to the seed and pollen parent; (3) the tendency to an absence of such a ratio in the quantitative reactions in their inclinations to the seed and pollen parent; (1) the large percentage of instances of reversal of the parental relationships of qualitative and quantitatire reactions with given agents and reagents.

It will be noted that in the reactions with each reagent there does not exist generic constancy or uniformity of either qualitative or quantitative reactions in their parental closeness. For instance, while in the chloral hydrate qualitative reactions of Brunsdonna, Hippeastrum, IIrmanthus, and Begonia all of the hybrids belonging to each genus incline to the secd parent, in all other genera represented in which there are two or more members some of the hybrids of each genus incline to one parent and others to the other parent. Thus, in Crinum one hybrid inclines to the seed parent and two to the pollen parent: in Nerime four incline to the seed parent and one to the pollen parent; in Narcissus eleven incline to the seed parent and two to the pollen parent; in Lilium three incline to the seed parent and two to the
pollen parent; in Iris three incline to the seed parent and one to the pollen parent; and in C'alanthe one inclines to the seed parent and one to the pollen parent. In the quantitative reactions this absence of constancy to one or the other parent is much more marked; thus, in only Brunsdonna and Begonia do all of these chloralhydrate reactions tend to the seed parent: but in no genus do all of them incline to the pollen parent. Examining the different generic groups we note that in Hip peastrum in two hybrids the reactions incline to the seed parent and in one to the pollen parent; in Itcmanthus in one hybrid the reaction inclines to one as much as to the other parent, and in the other to the seed parent; in Crinum one inclines to the seed parent and two to the pollen parent; in Nerine one inclines to the seed parent and four to the pollen parent; in Narcissus five incline to the seed parent, six to the pollen parent, and two incline to one as much as to the other parent ; in Lilium two incline to the seed parent and three to the pollen parent; in Iris two incline to one as much as to the other parent, and two incline to the pollen parent; and in Calanthe one inclines to the seed parent and the other inclines to one as much as to the other parent. Of exceptional interest is the fact, several times noted, that in case of any hybrid the qualitative and quantitative reactions may or may not correspond in their parental inclinations. It is certainly remarkable that with a given reagent the qualitative reaction may correspond with that of the seed parent and the quantitative reaction with that of the pollen parent, or vice versa, and so on in other varied relationships.

The tendency in general to a ratio of approximately 2:1 in the qualitative reactions in their relations to the seed and pollen parents is well marked. This ratio varies from 4:0 to $1: 1$, but in about half of the cases it will be found to be as first stated. Totaling these records, it will be seen that 62.8 per cent of these reactions incline to the seed parent and 35.8 per cent to the pollen parent, a ratio of $1.8: 1$. In other words, there is approximately twice the tendency for the qualitative reaction to be closer to the seed parent than to the pollen parent.

There is not a corresponding tendency to such a common ratio in the quantitative reactions, but to a marked inconstancy. In the qualitative reactions the ratio is always in favor of the seed parent; but in the quantitative reactions it may be in favor of either or of neither parent. Thus, it is found that there may be a ratio of $4: 1$ in favor of the seed parent, or one of $1: 3$ or $1: 4$ in favor of the pollen parent, and intermediate gradations. Summing up these reactions, 44 per cent incline to the seed parent and 40 per cent to the pollen parenta ratio of approximately $1: 1$. In studying the quantitative records the large number of reactions that are recorded as being the same as those of both parents should be taken into consideration, because hat these been shown to have had in each case. or even in most cases, definite uniparental inclinations these ratios would of course be subject to more or less modification. Nearly all these reactions showed no difference from the parental reactions because of gelatinization occurring with too great a rapidity or slowness for differentiation. Modified strengths of reagents would doubtless have elicited differences that are wholly obscured by very quick or

Alow reactims. It is, howemer, mot probah that there would be bromght about any monertant whand ats a "hole, in ther ratmes. Why the quabtather rathes shoult be so dillerent imen the quantitative ration 1- ontraly

 the reveral of the qual:thtice and quan tation readions
 inclinations. It is of impertane to no the that the pha-

 reagents. With not a sinclo -tarch was it fomme that there was mot surh rever-all : amd with omls four of the reagents (strontium nitrate, harium chloride, and mer("uric chloride) was reversal not recorded, the reason for which is doubtless in be found in the small numblare of Inalitatice reactions remerded with then rencent= (four
 with the third). Not lace remarkable that the reverend of the reactions is the freguency with which this pho.. nomenon orcurs, the perwntats ratuing from is in the iodine reactions to as high as in in the coltalt-nitrate and cupric-chloride reactions with the different starches. The mean is 粉.5, or close to one-fourth.

Table E.

Hybrid.	Qualitative rearthons,* chowr as a whole t"-		Quantitative reactions* chaser as: a whole t.,	
	$\left.\right\|_{\text {parent }} ^{\mid} \text {Seed }$	$\begin{aligned} & \text { Pollen } \\ & \text { parent. } \end{aligned}$	$\begin{aligned} & \text { seed } \\ & \text { parent } \end{aligned}$	$\begin{aligned} & \text { Pollent } \\ & \text { bart it. } \end{aligned}$
1. Polarization reactions:				
Brunsdonna sanderce alla	\because	--	\dagger	--
Brunsdonna sanderce. .	-	-	...	-
Hippeastrum titan-cleonia	+	-	+	-
Hippeastrum ossult.-pyrh.	$+$	-	-	-
Hippeastrum dxon.-zeph	-	+	-	\dagger
Hæmanthus andrometia	+	-	-	$\stackrel{-}{-}$
Hæmanthus honig alleert	-	+	-	+
Crinum hybridum j. c. h	-	+	-	*
Crinum kireaje.	+	-	\square	-
Crinum powellii	-	\dagger	-	-
Nerine dainty maid	-	\dagger	-	+
Nerine gueen of roseo	-	+	-	+
Nerine giantess........	\pm	-	+	-
Nerine ahundance	+	-	+	-
Nerine glory of sarnia	-	-	+	-
Narcissus poeticus herrick	-	$+$	+	-
Narcissus preticus dante.	-	$+$	+	-
Narcissus poctaz triumph.	-	+	-	$+$
Narcissus fiery cross.....	-	$+$	-	+
Narcissus doubloon.....	-	+	+	
Narcissus cresset.	-	$+$	-	-
Narcisuls will mearlet.	-	-		-
Narciseus ticolur apricot.	+	-	-	-
Narcissus madame de gratiff	;	-		
Narcisus dy ramus.	-	$+$:	
Narcisuls lord rotierts		-	-	-
Narcisus agnes harvey	.	-		
Narcissuy j. t. bennett mee		;	.	
l.ilium marhan..........		+		+
Lilium dalhansoni....			$+$	
Lilium golden gleam.	-			
Lilium testaceum....	,		\div	-
Lilium burbanki....	-	-		-
Iris ismali..	--	\square		

Table E.-Continued.

Hybrida.	Qualitative reactions, closer as a whole to-		Quantitative reactions, closer as a whole to-	
	Seed narent.	Pollen parent.	Seed parent.	Pollen parent.
Polarization reations.-('ont.:				
Iris durak	$+$	-	+	-
Iriy murs. adan grey	-	$+$	-	+
Iris pursiad	+	-	+	-
Giadulus colvillei	+	-	+	-
'iritonia crocoshmiflora	+	-	+	-
Begonia mars. heal.	+	-	*	\pm
Bugonia ensiga.	-	+	$+$	-
Begonia julius.	\pm	\pm	-	+
Begonia success	-	+	-	+
Richardia mrs. roosevelt	-	+	\pm	\pm
Musa hybrida	-	+	-	+
Phaius hybridus	$+$	-	+	+
Miltonis bleuana.	+	-	+	-
Csmbadium ebarneo-lowianum.	+	-	+	-
Calanthe veitchii	+	-	+	-
Calanthe bryan.	-	+		+
2. Iodine reactions:				
- Brunsdonua sanderce alba.	$+$	-	$+$	-
Brunsdonna sanderue.	+	-	+	-
Hippeastrum titan-cleonia.	-	+	-	$+$
Hippeastrum ossult.-pyrh.	+	-	\pm	\pm
Hippeastrum dwon-zeph	-	+	-	+
Hitmanthus andromeda.	$+$	-	\pm	\pm
Hæmanthus konig albert	+	-	\pm	\pm
Crinum hybridum j. c. h	-	+	-	$+$
Crinum kircape........	$+$	-	-	+
Crinun powellii.	-	+	\pm	\pm
Nerine dainty maid	-	$+$	-	$+$
Nerine queen of roses	-	+	-	+
Nerine giantess.....	-	+	-	+
Nerine abundance	+	-	$+$	-
Nerine glory of sarnia...	$+$	-	+	-
Narcissus poeticus herrick	-	$+$	-	$+$
Narcissus poeticus dante.	-	$+$	-	$+$
Narcissus poetaz triumph.	-	+	-	+
Narcissus fiery cross.	\pm	\pm	$+$	-
Narcissue doubloon.	+	-	+	-
Narcissus cresset.	-	$+$	-	+
Narcissus will scarlet	-	+	-	$+$
Narcissus bicolor apricot.	$+$	-	$+$	-
Narcissus madame de graaff	$+$	-	$+$	-
Narrissus pyramus	+	-	$+$	-
Narcissus lord roberts.	\pm	\pm	\pm	\pm
Narcissus agnes harvey.	$+$	-	$+$	-
Narcissus j. t. bennett poe	$+$	-	+	-
Lilium marhan	-	$+$	-	+
Lilium dalhansoni.	$+$	-	$+$	-
Lilium golden gleam	$+$	-	$+$	-
Lilimm tostaceum	$+$	-	$+$	-
Lilium burbanki	$+$	-	$+$	-
Iris ismali.	$+$	-	$+$	-
Iris dorak	+	-	+	-
Iris mrs. alan grey	$+$	-	$+$	-
Iris pursind	-	$+$	-	$+$
Gladiolus colvillei.....	$+$	-	-	$+$
Tritonia coocosmaflora	$+$	-	$+$	-
Begonia mrs, heal...	$+$	-	+	-
Begonia ensign...	$+$	-	$+$	-
Begonia julius.	-	$+$	-	$+$
Begonia succers	-	$+$	-	$+$
Richardia mrs, ronserelt	-	$+$	+	-
Musa hybrida	-	$+$		$+$
Phaius hybridus	-	$+$	-	$+$
Miltonia bleuana .	$+$	-	$+$	$+$
Cymbidium eburneo-lowinnum	$+$	-	$+$	-
Calanthe veitchii	$+$	-	$+$	-
(alanthe brvan.	+	-	\pm	\pm
3. Chloral-hydrate reactions:				
Brunslonna aanderor alba.	$+$	-	$+$	-
Brunsdonna sanderie. .	$+$	-	+	-

Table E.-Coninued.

Hiybrids.	Qualitative reactions, closer as a whole to-		Quantitative reactions, closer as a whole to-	
	$\begin{gathered} \text { Seed } \\ \text { parent. } \end{gathered}$	Pollen parent	Seed parent	Pollen parent
3. Chloral-hydrate reactions.-Cont.:				
Hippeastrum titan-cleonia	+	-	+	
Hippeastrum ossult.-pyrh.	+	-	+	
Hippeastrum dxon. zeph.	$+$	-	-	+
Hemanthus andromeda.	$+$	-	\pm	\pm
Hæmanthus könig albert.	$+$	-	$+$	-
Crinum hybridum j. c. h.	-	$+$	-	+
Crinum kircape. .	$+$	-	+	
Crinum powellii.		$+$	-	+
Nerine dainty maid.	-	\pm	-	$+$
Nerine queen of roses	$+$	-	-	$+$
Nerine giantess. .	$+$	-	-	+
Nerine abundance.	$+$	-	-	$+$
Nerine glory of sarnia	+	-	+	
Narcissus poeticus herrick	-	+	-	+
Narcissus poeticus dante.	-	+	\pm	\pm
Narcissus poetaz triumph	$+$	-	+	-
Narcissus fiery cross.	$+$	-	-	$+$
Narcissus doubloon.	$+$	-	-	+
Narcissus cresset.	$+$	-	$+$	
Narcissus will scarlet.	+	-	\pm	\pm
Narcissus bicolor apricot.	$+$	-	-	$+$
Narcissus madame de graaff	$+$	-	-	$+$
Narcissus pyramus.	$+$	-	$+$	
Narcissus lord roberts	$+$	-	\pm	I
Narcissus agnes harvey.	$+$	-	-	+
Narcissus j. t. bennett poe	$+$	-	+	
Lilium marhan.	$+$	-	-	$+$
Lilium dalhansoni	-	$+$	-	+
Lilium golden gleam	-	+	-	+
Lilium testaceum	+	-	+	
Lilium burbanki	+	-	+	
Iris ismali.	+	-	-	+
Iris dorak.	+	-	\pm	\pm
Iris mrs. alan grey	-	$+$	-	+
Iris pursind.	+	-	\pm	\pm
Gladiolus colvillei.	+	-	-	+
Tritonia crocosmæflora	-	$+$	$+$	
Begonia mrs. heal	+	-	$+$	
Begonia ensign	+	-	$+$	-
Begonia julius.	+	-	$+$	-
Begonia success......	$+$	-	$+$	-
Richardia mrs. roosevelt	+	-	+	
Muss hybrids	-	+	-	$+$
Phaius hybridus.	+	-	-	+
Miltonia bleuana	$+$	-	$+$	
Cymbidium eburneo-lowianum	+	-	\pm	
Calanthe veitchii.	-	+	$+$	-
Calanthe bryan.	$+$	-	\pm	\pm
4. Chromic-acid reactions:				
Narcissus poeticus herrick	-	$+$	-	+
Narcissus poeticus dante.	-	+	-	+
Narcissus poetaz triumph.	$+$	-	+	-
Narcissus fiery cross....	$+$	-	$+$	-
Narcissus doubloon	-	+	$+$	
Narcissus cresset.	+	-	$+$	-
Narcissus will scarlet.	+	-	-	+
Narcissus bicolor apricot.	-	+	$+$	-
Narcissus madame de graaff	+	-	$+$	-
Narcissus pyramus.	+	-	+	-
Narcissus lord roberts	-	+	-	+
Narcissus agnes harvey.	+	-	$+$	-
Narcissus j. t. bennett poe	-	$+$	\pm	-
Lilium marhan	-	+	-	+
Lilium dalhansoni	+	-	-	+
Lilium golden gleam	+	-	$+$	\sim
Lilium testaceum	+	-	$+$	-
Lilium burbanki	$+$	-	$+$	-
Begonia mrs. heal	$+$	-	$+$	
Begonia ensign	$+$	-	$+$	-
Begonis julius.	+	-	$+$	

Table E.-('ortinued.

Hybrids.	Qualitative reactions. closer as a whole to-		Quantitative reactions, cluser as a whole to-	
4. Chromic-acid reactions.-Cont. :				
Begonia success...............	$+$		\pm	-
Richardia mrs. roosevelt.	$+$		-	+
Musa hybrida...	-	+	-	$+$
Phaius hybridus	$+$	-	\pm	\pm
Mittonia bleuana.	$+$	-	\pm	\pm
Cymbidium eburneo-lowianum .	$+$	-	\pm	-
Calanthe veitchii.	$+$	-	\pm	-
Calanthe bryan.	+			+
5. Pyrogallic-acid reactions:				
Narcissus poeticus herrick	-	+	-	$+$
Narcissus poeticus dante.	-	+	\pm	
Narcissus puetaz triumph	$+$	-	-	$+$
Narcissus fiery cross.	$+$	-	-	\pm
Narcissus doutloon	$+$	-	+	\pm
Narcissue cresset....	$+$	-	$+$	-
Narciesuy will scarlet	\pm	-	\pm	
Narcissus biculor apricot	-	+	-	
Narcissus madarue de graaff	$\bar{\square}$	+	$+$	
Narcissus pyramus.	\pm	+	\pm	
Narcissus lord roberts	-	\pm	-	\pm
Narcissus agnes harvey.	\pm			
Narcissus j. t. benuett poe	-	\pm	-	$+$
Begomia mirs. heal.	$+$		$+$	
Begouia ensign	$+$	-	+	
Begonia julius.	$+$	-	$+$	
Begonia success	+	-	\pm	$\overline{+}$
Musa hybrida		+	-	+
6. Nitric-acid reactions:				
Brunsdonna sanderce alba	+	-		+
Brunsdonna sanderce.	+	-	-	+
Hippeastrum titan-cleonia	+	-	\pm	
Hippeastrum ossult.-pyrh.	-	+	+	-
Hippeastrum dæon.-zeph	$+$		-	+
Hærnanthus andromeds.	+	-	+	
Hæmanthus könig albert.	+	-	+	
Crinum hy bridum j. c. b	-	+	-	\pm
Crinum kircape.	$+$	-	\pm	
Crinum powellii.	0		-	+
Nerine dainty maid	-	$+$	+	
Nerine queen of roses	-	+	\pm	\pm
Nerine giantess......	-	+	-	$+$
Nerine abundance.	+		-	+
Nerine glory of sarnis	+	$\bar{\square}$	-	+
Narcissus poeticus berrick	-	$+$	\pm	\pm
Narcissus poeticus dante.	-	+	\pm	
Narcissus poetaz triumph.	+	-	-	$+$
Narcissus fiery crose.	$+$	-		\pm
Narcissus doubloon.	$+$	-	$+$	-
Narcissus cresset.	$+$	-	$+$	-
Narcissus will scarlet.	$+$	-	$+$	-
Narcissus bicolor apricot.	-	+		+
Narcissus madame de graaff	$+$	-	$+$	
Narcissus pyramus.	+	-	+	-
Narcissus lord roberts	-	+	+	
Narcissus agnes harvey.	+	-	$+$	-
Narcissus j, t. bennett poe	-	+	$+$	
Begonia mrs. heal.	+		$+$	
Begonia ensign	+	-	+	-
Begonis julius.	+	-	$+$	-
Begonia surcess	+	-		
Phaius hybridus	+	-	+	-
7. Sulphuric-scid reactions:				
Narcissus poeticus dante..	-	+	+	-
Narcissus poetaz triumph.	$+$	-	-	\pm
Narcissus fiery cross	+	-	\pm	
Narcissus doubloon.	-	+	+	-
Narcissus cresset	+	-	+	-
Narcissue will searlet.	+	-	+	-
Narcissus bicolor apricot.		+		

Hylride.	(2ualitatに, retarliwim. clowis A"M wherle.1.	Qualitative 5.4.than. Whatrithem a w!elle 1 ,
		$\begin{aligned} & \text { Funt Pallent } \end{aligned}$

Tsble E.-Continued.

Hybrids.	Qualitative reactions, closer as a whole to-		Qualitative reactions closer as a whole to-	
	$\begin{aligned} & \text { seed } \\ & \text { parent } \end{aligned}$	Pollen parent	Seed	Pollen parent.
12. Potassium-sulphide reactions:				
Hernanthus andromedn	0	0	\pm	\pm
Hemanthus konig slleert	+	-	$+$	-
Crinum hytridum j. c. h.	-	+	-	+
Crinum kirware	+	-	+	-
Crinum peweltii	-	$+$	-	$+$
Nirine danty maid.	-	$+$	\pm	\pm
Norine queen of ruses	-	$+$	-	$+$
Nirine giantese.	-	+	-	$+$
Nerine abundance	$+$	-	-	$+$
Nerine glory of sarnin	$+$	-	-	+
Phatus hybridus	$+$	-	\pm	\pm
13. Sodium-hydroxide reactions:				
Iris ismali.	$+$	-	\pm	\pm
Iris dorak	+	-	$+$	-
Iris mra, alan grey	-	$+$	\pm	\pm
Iris pursind.	$+$	-	\pm	\pm
Gladiolus colvillei	$+$	-	$+$	-
Tritonia crocosmeflora	-	$+$	$+$	-
Phaius hybridus.	+	-	-	+
14. Sodium-sulphide reactions:				
Ciinum hybridum j. c. h..	-	+	-	$+$
Crinum kircape......	$+$	-	$+$	-
Crinum powellii	-	+	-	$+$
Phaius hybridus	$+$	-	-	$+$
15. Sodium-salicylate reactions:				
Brunsdonna sanderce alba...	$+$	-	$+$	-
Brunsdonna sanderce.	$+$	-	$+$	-
Hippeastrum titan-cleonia	$+$	-	$+$	-
Hipperstrum ossult.-pyrh.	-	$+$	-	$+$
Hippeastrum daon.-zceh	\pm	\pm	\pm	\pm
Hexmanthus andronseda.	$+$	-	-	$+$
Iftmanthus könig allbert.	$+$	-	-	$+$
Crinum hybridum j. c. h.	-	+	-	+
Crinum kircape........	$+$	-	$+$	-
Crinum powellii ...	-	$+$	-	$+$
Nerine dainty maid	+	+	-	$+$
Nerine queen of roses	$+$	-	-	$+$
Nerine giantess.....	+	-	-	$+$
Nerine abundance	$+$	-	-	$+$
Nerine glory of sarnia.	$+$	-	$+$	-
Iris inmali...........	$+$	-	-	+
Iris dorak.	+	-	+	-
Iris mrs alan grey	-	$+$	-	$+$
Iris pursind. ...	$+$	-	$+$	-
Giadiolus colvillei.	+	-	$+$	-
Tritonia crocosmæflora	-	+	+	-
Richardia mrs, roosevelt	+	-	\pm	\pm
Musa hybrida...	-	$+$	-	$+$
Phaius hybridus.	$+$	-	-	+
Miltonia bleuana...	$+$	-	$+$	-
Cymbidium eburnco-lowianum	+	-	\pm	.
Calanthe voitchii.	+	$+$	$+$	
(${ }^{\text {chanthe bryan. }}$	$+$	-	\pm	\pm
16. Strontium-nitrate reactions:				
Begonia mrs, heal.	$+$	-	$+$	-
Brgonia ensign...	$+$	-	+	-
Begonia julius...	$+$	-	$+$	-
Begonia success.	$+$	-	$+$	-
17. Cobalt-nitrate reartions:				
Brunsdonna eandere alba	$+$	-	-	$+$
Brunsdouna sanderce...	$+$	-	-	$+$
Lilium nurhan.	-	$+$	-	$+$
Jiliun dalhansoni.	$+$	-	-	+
L.ilium golden gleam	$+$	-	+	+
Lilium testaceum.	$+$	-	-	$+$
Lilium burbanki.	$+$	-	+	\cdots
Musa hybrida	-	$+$	-	$+$

Table E.-Continued.

Hybrids.	Qualitative reactions, closer as a whole to-		Qualitative reactions, closer as a whole to-	
	Seed parent.	Pollen parent.	Seed	Pollen parent
18. Copper-nitrate reactions:				
Brunsdonna sanderce alba	$+$	-	-	$+$
Brunsdonna sanderce	$+$	-	-	$+$
Crinum hybridum j. c. h.	-	$+$	-	$+$
Crinum kircape.	$+$	-	$+$	-
Crinum powellii	-	$+$	-	$+$
19. Cupric-chloride reactions:				
Brunsdonna sanderce alla	$+$	-	-	$+$
Brunsdonna sanderce.	$+$	-	-	+
Crinum hybridum j. c. h.	-	+	-	+
Criaum kircape........	$+$	-	$+$	
Crinum powellii	-	+	-	$+$
Lilium marhan.	-	+	-	$+$
Lilium daihansoni.	$+$	-	-	$+$
Lilium golden gleam	$+$	-	-	$+$
Lilium testaceum. .	$+$	-		$+$
Lilium burbanki..	$+$	-	$+$	\cdots
20. Barium-chloride reaction:				
Cymbidium eburneo-lowianum	$+$	-	\pm	\pm
21. Mercuric chloride reactions:				
Crinum hybridum j. c. h.....	-	$+$	-	$+$
Crinum kircape...... . . .	$+$	-	$+$	-
Crinum powellii.	-	$+$	-	$+$
Cymbidium eburneo-lowianum .	+	-	\pm	\pm

Summary of Table E.-Qualitative and Quantitative Reactions of the Starches of Hybrid-stocks in regard to Sameness and Inclination to one or the other or both Parent-stocks.

Agents and Reagents.		Qualitative reactions.			Quantitative reactions.			
		Closer, on the whole, to the			Closer, on the whole, to the -		䔍	
Polarization	50	24	25	1	27	19	4	6
Iodine	50	28	20	2	26	18	6	3
Chloral hydrate	50	38	12	0	23	20	7	15
Chromic acid	29	21	8	0	18	9	2	5
Pyrogallic acid	18	11	7	0	8	7	3	2
Nitric acid...	32	22	10	1	19	9	4	8
Sulphuric acid..	13	9	4	0	8	2	3	3
Hydrochloric acid.	11	7	4	0	2	7	2	5
Potassium hydroxide	11.	7	4	0	2	3	6	2
Potassium iodide.	23	15	κ	0	10	7	6	6
Potassium sulphocya	16	11	5	0	5	6	5	5
Potassium sulfhide.	10	5	5	0	2	6	2	2
Sodium hydroxide.	7	4	3	0	2	2	3	2
Sodium sulphide..	4	2	2	0	1	3	0	1
Sodium salicylate.	28	18	9	1	10	14	4	8
Strontium nitrate.	4	4	0	0	4	0	0	0
Cobalt nitrate.	8	6	2	0	2	6	0	4
('opper nitrate	5	3	2	0	1	4	0	2
Cupric chloride.	10	7	3	0	3	7	0	5
Barium chloride	1	1	0	0	1	0	1	0
Mercuric chloride.	4	2	2	0	2	1	1	0
Total number.	374	235	134	5	166	150	59	84
Per cent		62.8	35.8	1.34	44	40	15.8	22.5

Reaction-intensities of Each Hybrid Stabch. (Tables F, Parts 1 to 50 and Summary; G and II, Parts 1 to 26 and Summaries 1 and 2.)
In Chapter I particular refirence was male to the recognition of intermediateness as one the primary criteria of hybrids, this applying not only to macroscopic and microscopic eharacters of plant, but alsin to the microscopic characters of starches. Intermediateness of ${ }^{\circ}$ starches was therein shown to have been recorded by MacFarlane (page i) in Ribes, Bryanthus, and Hedychium, and by Darbyshire (page 8) in Pisum. MacFarlane states that in Ribes grossularia, R. culverwellii (hybrid) and R. nigrum the starch grains of the three are very variable in size, but in the first the largest are 7μ and the average 4μ; in the third the largest are 3μ and the arerage $11 / 2 \mu$; and in the second the largest are 5μ and the average 3μ. In Menziesis empertriformis var., Bryanthus erectus (hybrid) and Rhododendron chamecistus he found that in the third the starch grains are 4μ across the largest, though most are from $z \mu$ to 3μ; in the first the largest granules are 6μ across, and in all cases they are larger than in the third; and in the second the size of the granules falls rather toward the third. In Hedychium gardnerianum, H. sadlerianum (hybrid), and II. coronarium he notes that in the first each starch grain is a small triangular plate, measuring 10μ to 12μ, from hilum to base, and that the lamination is not very distinct; in the third each grain is orate. or in some cases tapered rather finely to a point at the hilum, 32μ to 60μ long from hilum to base, and the lamination is very marked; in the second "the grains may best be described if we suppose a rather reduced one of the first parent to be set on the reduced basal half of one of the latter. The lamination also is more pronounced than in the first, less so than in the second." Darbyshire records that the round starch grain of the F_{1} generation is a blend between the type of grain of the round peat (the potato-shaped) and the type of grain of the wrinkled pea (the compound) in respect to the three characters: lenoth-breadth-index, distribution of compoundness, and degree of compoundness. While these data are very meager they are concordant and in harmony with the dictum of intermediateness of histologic and naked-eye characters of hybrids.

In the present research it was found in the studies of the histologic peculiarities that in case of every hybrid there are certain characters that are intermediate, the degree of intermediateness rarying from mid-intermediateness to almost identity with one or the other parent. Mid-intermediateness was found to he, on thi whole, far less common than a degree of intermediateness that closely approached one or the other parent; identity of a given character with that of one or the other parent was quite common: development of a siven character or character-phase in excess or deficit of those of both parents quite frequent; and the appearance of individualities in the hybrid that are not seen in either parent was by no means rare. In fact, it seems clear that the more in detail these stulies are carried out the farther we are taken from the conception of generality of intermediateness of the properties of the hybrid. The records of the histologic peculiarities of the starches are fully supported by those of the histologic and macroscopic characters of plants as set forth in this chapter and in

Part II, Chapter II, amd also by the qualitation and

 II, (hapme I. In promana part- of the jownt hay
 a*netz parental relationship of the hobrid. It mome
 ties of the hylrids with reference to samences to one or

 relative importance of the sen ral phan... if pront-hara...
 (${ }^{(1)}$ Each hybrid starch with dulferent aternts and re"a gents, which will exhibit particularly the differemme in the behavior of each starch in comparion with the rean tion of other starches in the prewne of the -ame atranta and reagents; (b) each hybrid starch as racarl) -amm..... and inclination in its properties in relation to one or the other or both parents, which will exhibit particularly the comparative potencies of the parents in determining the properties of the starch of the hybrid; and (c) all of the hymid starches with each arnt and reagent. Which will exhibit particularly the independence of the hehavior of each agent and reasent, and also all of the hybrid starches with each arent and reagent, as rorarls sameness and inclination in the propertios to orn or the other parme or looth parent-. which will exhi it particularly the independent tendencie of tah itrom or reagent to elicit definite and specific parent-phane. While all of these tabulations are most intimately correlated, each brings out certain features with marked accentuation in a form not miciteil by the others.
 Differext Agents and Reagents.

(Tathe F Parta 1 to in and Eummary

It is to lue motel in an camination of the resalt: formulated in the acompanymg table that in only :3? of
 ondonly 10 ractimes, and en only $1: 3$ rantions. Takine up this table, even a most cursory examination will indicate the very wide variations of the numerical values of the 6 phases of parent-develoment of the different starches in their parental relationhips, and math part uf the table is different from every other part and is specifically distinctive of the hybrid, even in the cases of hybrids that have resulted from the same eross, as in Brunsilunna
 Narcinsus preticus herrich and N. poeficus dante (Table F, 16 and 13). Mareover, in one hybrid intermediat w, ... may he relatively so we mentume that t'.. other phases sink int, insirnitionne. whil in another th:s
 cutire aldence and =on in wher talho. wh the wher phases. It is alow bery minno that the Sherat is l...es apt to he charact rized lay a prominence of intermediatoness than by a conspicuousness of hidhest or lowest de-

 study, he grouped into four लlasse: (1) thes in whin one of the phases of development very markedly domi-

included in this phase; (2) those in which two phases are definitely dominant, but which may be quite different in value; (3) those in which three phases are dominant, but which may have different values; and (4) those in which the parental relationships of the hybrid seem to be directed largely indifferently to the several phases. Among the starches that were studied in all of the 26 reactions it is rare, as, for instance in Irks dorah, to find that the assignment is not unmistakable. Where the number of reactions is restricted to 10 to 13 the classification is often indefinite. The grouping in accordance with the foregoing is as follows:

Hybrids.						
First class:						
Brunsdonna sanderce alba	4	0	1	5	3	13
Brunsdonna sanderce	6	0	1	2	3	14
Crinum kircape	4	1	0	18	2	1
Crinum powellii	0	3	0	2	21	0
Narcissus poetaz triumph.	2	2	1	0	20	1
Narcissus j. t. bennett poe.	2	0	0	0	8	0 (10)
Lilium burbanki	2	1	1	6	0	16
Iris mrs, alan grey	0	1	3	1	4	17
Tritonia crocosmaflora	2	1	2	16	3	2
Begonia ensign	0	0	0	7	1	2 (10)*
Musa hybrida.	1	3	0	2	0	20
Miltonia bleuana	3	0	3	1	17	2
Calanthe bryan.	1	0	0	11	1	0 (13)*
Second class:						
Hippeastrum ossult.-pyrha. .	3	0	8	3	11	1
Hæmanthus könig albert...	5	0	0	7	1	3
Nerine queen of roses.	2	1	7	3	11	2
Nerine abundance	3	3	7	3	1	9
Narcissus pocticus dante	1	4	0	4	1	0 (10)*
Narcissus lord roberts.	3	1	1	4	0	1 (10)*
Narcissus agnes harvey	4	0	1	3	1	1 (10)*
Iris ismali.	3	2	2	12	1	6
Gladiolus colvillei	7	0	1	4	0	14
Begonia mrs, heal	9	0	2	14	0	1
Begonia julius.	1	1	0	4	4	0 (10)*
Phaius hybridus	1	3	5	11	3	3
Cymbidiun eburneo-lowianum	4	0	9	0	0	13
Calanthe veitchii	2	1	0	5	1	1 (13) ${ }^{\text {¢ }}$
Third class:						
Hæmanthus andromeda	8	0	6	11	0	1
Crinum hybridum j. c. h	0	12	0	5	2	7
Nerine dainty maid.	1	2	7	6	8	2
Nerine glory of sarnia	1	6	8	1	0	10
Narcissus doubloon..	2	1	1	4	0	2 (10) ${ }^{\text {* }}$
Narcissus will scarlet	2	1	1	2	4	0 (10)*
Lilium dalhansoni.	4	1	9	9	2	1
Richardia mrs, roosevelt	1	0	4	3	4	1 (10)*
Fourth class: ${ }_{\text {l }}$						
Hippeastrum titan-cleonia.	2	3	8	4	5	4
Hippeastrum dæones-zephyr	0	2	9	6	5	4
Nerine giantess.	2	6	7	6	1	4
Narcissus poeticus herrick	0	3	0	3	3	2 (10)*
Narcissus fiery cross.	1	2	0	2	2	3 (10)*
Narcissus cresset.	2	3	0	0	3	2 (10)*
Narcissus bicolor apricot..	3	1	1	2	0	3 (10)*
Narcissus madame de graaff	4	1	0	1	1	2 (10)*
Narcissus pyramus.	1	0	1	2	4	2 (10)*
Lilium marhan.	0	5	9	8	1	5 (10)*
Lilium golden gleam	4	4	5	2	7	4
Lilium testaceum. .	4	3	2	7	6	4
Iris dorak.	5	3	2	1	11	4
Iris pursind	3	2	5	5	5	6
Begonia success......	2	3	0	2	3	0 (10)*

The distribution of the hybrids among the four classes is fairly uniform except in the third class, there being 13 (26 per cent) in the first class, 14 (28 per cent) in the second class, 8 (6 per cent) in the third class, and 15 (30 per cent) in the fourth class. In the first class, 4 of the hybrids are characterized by the conspicuousness of intermediateness, this phase of parental relationship being noted in one hybrid in 15 of the 26 reactions, in another in 16 of 26 reactions, in another in 7 of 10 reactions, and in another in 11 of 13 reactions. In 4 hybrids the characterization is especially in development in excess of parental extremes, this phase being recorded in one in 21 of the 26 reactions, in another in 20 of the 26 reactions, in another in 8 of 10 reactions, and in another in 17 of 26 reactions. In 5 hybrids the characterization is especially by development in deficit of parental extremes, this being found in one in 13 of 26 reactions, in another in 14 of 26 reactions, in another in 16 of 26 reactions, in another in 17 of 26 reactions, and in another in 20 of 26 reactions. In the second class, the dominant figure of the couple is found in 1 hybrid under the phase the same as the seed parent, in 5 under intermediate, in 2 under highest, and in 3 under lowest; in $\mathbf{1}$ there is duplication of the figures under the phases the same as the pollen parent and intermediate, and in another under intermediate and highest. This coupling is more marked in the instances where 26 reactions were studied than when the number is 10 or 13. In the third class there is not only less tendency to a very marked degree of characterization as regards any one or more of these phases, but also to the characterization being present in three phases usually with slight gradation, as, for instance, in Nerine dainty maid where the values are 7,6 , and 8 under same as both parents, intermediate, and highest, respectively; and in Nerine glory of sarnia, where the values are 6, 8 , aud 10 under same as pollen parent, same as both parents, and lowest, respectively. Or there may be some duplication, as, for instance, in Lilium dalhansoni, where the values are 4,9 , and 9 under same as seed parent, same as both parents and intermediate, respectively, etc.

From this limited data one may expect that further studies will elicit various combinations of both phases and values. In one hybrid the highest number of the triple is found under same as seed parent, in two under intermediate, in two under highest, and in one, under lowest. In one there is duplication of the highest values under same as both parents and intermediate; and in another under same as both parents and highest. In the three hybrids with which in each only 10 reactions were recorded the grouping of the phases in triplets does not yield the striking comparisons that are observed when the reactions number 26 , or $21 / 2$ times larger. In the fourth class, with 7 of the 15 hybrids only 10 reactions were recorded in each, and in these instances the values are (with possibly two exceptions, Narcissus pyramus and N. madame de graaff) so distributed among the different phases that there is not the convincing evidence of a well-defined inclination of the hybrids in their parental relationships that was found in corresponding cases in the preceding classes. Among the remaining 8 there is marked dominance of 1 phase of the 6 in a single hybrid (Iris dorak) in which 11 of the 26 reactions fall under highest, the other values being 5, 3, 2, 1,
and 4. This hybrid should perhaps be assinned to the first or second class. In several other instances there is evident tendency to dominance in one phase especially, as in Hippeastrum titan-cleonia, M. durones-zepheyr, ault Lilium marhan.

Apropos of intermediateness as a criterion of hybrids, it is of interest to note that 4 of the hybrids (Nurcissus poetaz triumph, N. j. t. bennett poe, N. cresset, and Cymbidium eburneo-lowianum) do not in a single reaction exhibit intermediateness. 'Two of these belong (") the first class, both being conspicuous because fourfifths of the reactions of each hybrid are higher than those of the parents. One belongs to the fourth class, and there are no very definite parental leanings. One is found in the third class, with very definite inclinations to activities that are the lowest or the same as those of both parents, especially the first and in the order given (13,9 , and 4 , respectively).

In recapitulating the totals exhibited by these tables several very interesting points of comparison are elicited (summary of Table F). All together 1,018 reactions were recorded, which are distributed as follows: Same as seed parent 137 (13.4 per cent) ; same as pollen parent 94 (9.2 per cent) ; same as both parents 138 (13.6 per cent) ; intermediate 236 (23.2 per cent) ; highest 18% (18.4 per cent) ; and lowest 226 (23.2 per cent). It is very obvious that there are much more marked tendencies to intermediateness, highness, and lowness than to sameness of developrnent in relation to one or the other parent or both parents, there being somewhat less than two-thirds of the reactions (63.8 per. cent) that fall within the first, and 36.2 per cent within the seromd category. There is about an equal tendency to intermediateness (23.2 per cent) as to lowest development (22.2 per cent) and distinctly less tendency to highest development (18.2 per cent) than to either of the former; and there is on an average approximately only about one-half the tendency to sameness to the seed parent (13.4 per cent) and to both parents (13.6 per cent) as there is to intermediateness, the least tendency being shown in sameness to the pollen parent (9.2 per cent). Comparing the tendency to intermediateness with the tendencies to highest plus the lowest reactivities, it is found that the latter predominate in the proportion of 23.2 to 40.6 per cent, or approximating 1:2; in other words, there is only a little more than one-half the tendency to an intermediate reaction as there is to one that is above or below parental extremes; and there is an equal tendency to sameness as one or the other parent as there is to intermediateness. If a comparison is made the number of intermediate reactions with the total of other reactions the proportion is found to be 23.2 to 76.8 per cent or approximately $1: 3$, that is, there is in general a likelihood of only 1 reaction in 4 being intermediate. When these internediate reactions are analyzed only 54 of 236 , or somewhat more than one-fifth and less than one-fourth (23 per cent), are mid-intermediate, the larger propmrtion being closer to one or the other parent than to mid-intermediateness.

Table F.-Continued.

Table F.-Continued.

Agent or reagent.					$\frac{\stackrel{\rightharpoonup}{\mathrm{E}}}{\stackrel{\text { O}}{\mathrm{E}}}$	茄
5. Hippeastrum dæoneszephyr:						
Polarization....	-	-	-	-	$+0^{7}$	-
Iodine	-	+	-	-	-	-
Gentian violet	-	-	-	-	-	$+0^{\prime}$
Safranin.	-	-	¢	-	-	+
Temperature	-	-	-	-	$+8=8$	-
Chloral hydrate	-	-	-	-	-	$+\sigma^{7}$
Chromic acid.	-	-	-	\cdots	+ $\%$	
Pyrogallic acid	-	-	-	-	+\%	-
Nitric acid...	-	-	-	-	+ $\%$	-
Sulphuric acid	-	+	-	-	+	_
Hydrochloric acid...	-	-	-	$+7=\delta^{2}$	-	-
Potassium hydroxide.	-	-	-	+8	-	_
Potassium iodide . . .	-	-	-	$+8$	-	-
Potassium sulphocyanate	-	-	-	+8 $=8$	-	-
Potassium sulphide. .	-	-	\oplus		-	-
Sodium hydroxide. .	-	-	-	+\%	-	-
Sodium sulphide...	-	-	-	-	-	+ + ¢ $=0^{\prime}$
Sodium salicylate.	-	-	-	-	-	+\%
Calcium nitrate.	-	-	\oplus	-	-	-
Uranium nitrate.	-	-	\oplus	-	-	-
Strontium nitrate	-	-	-	$+9=8^{7}$	-	-
Cobalt nitrate..	-	-	(1)	+	-	-
Copper nitrate	-	-	\oplus	-	-	-
Cupric chloride.	-	-	\oplus	-	-	-
Barium chloride	-	-	\oplus	-	-	-
Mercuric chloride	-	-	\oplus	-	-	-
	0	2	9	6	5	4
6. Hæmanthus andromeda						
Polarization	-	-	-	$+q=0^{2}$	-	-
Iodine...	-	-	--	$+9=\sigma^{2}$	-	-
Gentian violet	-	-	-	$+9=0^{7}$	-	-
Safranin...	-	-	-	-	-	$+8=0{ }^{\prime}$
Temperature	-	-	-	+ $\%$	-	+
Chloral hydrate.....	-	-	-	$+8=\sigma^{7}$	-	-
Chromic acid.	-	-	-	+\% $=\sigma^{2}$	-	-
Pyrogallic acid	+	-	\cdots	-	-	-
Nitric acid...	-	-	-	+\%	-	-
Sulphuric acid.	-	-	-	+ $\%=\sigma^{2}$	-	-
Hydrochloric acid....	-	-	-	+ 9	-	-
Potassium hydroxide	-	-	-	$+9=0$	-	-
Potassium iodide....	+	-	-	-	-	-
Potassium sulphocyanate	$+$	-	-	-	-	-
Potassium sulphide..	+	-	${ }^{(1)}$	-	-	-
Sodium hydroxide.	$+$	-	-	-	-	-
Sodium sulphide...	$+$	-	-	-	-	-
Sodium salicylate...	\square	-	-	$+8$	-	-
('alcium nitrate.	+	-	-	-	-	-
Uranium nitrate.	$+$	-	-	-	-	-
Strontium nitrate.	+	\rightarrow	-	-	-	-
Cobalt nitrute.	-	-	\oplus	-	-	-
Copper nitrate.	-	-	\oplus	\sim	-	-
Cupric chloride.	-	-	\oplus	-	-	-
Barium chloride...	-	-	\oplus	-	-	-
Mercuric chloride...	-	-	\oplus	-	-	-
	s	0	6	11	0	1

Table F.-Continued.

Agent or reagent.						苞
11. Nerine dainty maid:						
Polarization Iodine	-	\pm	-	-	+	-
Gentian violet.	-	+	-	-	$+$	-
Safranin.	+	-	-	-	-	-
Temperature	-	-	-	$+0^{7}$	-	-
Chloral hydrate	-	-	-	+ ${ }^{\prime \prime}$	-	-
Chromic acid.	-	-	-	-	-	+\%
Pyrogallic acid	-	-	\oplus	-	-	-
Nitric acid.	-	-	-	+ $\%$	-	-
Sulphuric acid.	-	-	-	-	+ ${ }^{1}$	-
Hydrochloric acid.	-	-	-	-	+\% $=0^{7}$	-
Potassium hydroxide.	-	-	-	$+0=0$	-	$+8=0^{7}$
Potassium iodide. . .	-	-	-	$+\%=0^{7}$	-	-
Potassium auiphocyanate.	-	-	-	-	+\%	-
Potassium sulphide	-	-	\oplus	-	+	-
Sodium hydroxide..	-	-	-	+ ${ }^{6}$	-	-
Sodium sulphide..	-	-	${ }^{\oplus}$	-	-	-
Sodium salicylate.	-	-	-	$+{ }^{2}$	-	-
Calcium nitrate.	-	-	-	-	+ $\%$	-
Uranium nitrate.	-	-	-	-	+	-
Strontium nitrate	-	-	-	-	+ ${ }^{5}$	-
Cobalt nitrate.	-	-	\oplus	-	-	-
Copper nitrate	-	-	-	-	+	-
Cupric chloride.	-	-	\oplus	-	-	-
Barium chloride.	-	-	\oplus	-	-	-
Mercuric chloride	-	-	\oplus	-	-	-
	1	2	7	6	8	2
12. Nerine queen of rовев:						
Polarization.........	-	-	-	-	-	$+8^{7}$
Iodine..	-	+	-	-	-	-
Gentian violet	$+$	-	-	-	-	-
Safranin..	$+$	-	-	-	-	-
Temperature.	-	-	-	+ $\%$	-	\sim
Chloral hydrate.	-	-	-	-	$+{ }^{\circ}$	-
Chromic acid.	-	-	-	-	-	+ 7
Pyrogallic acid	-	-	\oplus	-	-	-
Nitric acid..	-	-	-	$+9=\sigma^{7}$	-	-
Sulyhuric acid....	-	-	-	-	$+{ }^{7}$	-
Mydrochloric acid...	-	-	-	-	$+8=\delta^{\circ}$	-
Potassium hydroxide	-	-	\oplus	-	-	-
Potassiurn iodide. . .	-	-	-	+\%	-	-
Potassium sulphocyanate.	-	-	-	-	+\%	-
Potassium sulphide...	-	-	-	-	+ ${ }^{\circ}$	-
Sodium hydroxide. .	-	-	-	-	$+{ }^{\prime}$	-
Sodiuce sulphide. .	-	-	\oplus	-	-	-
Sodium salicylate.	-	-	-	-	$+{ }^{6}$	-
Calcium nitrate.	-	-	-	-	+8	-
Uranium nitrate.	-	-	-	-	+8	-
Strontium nitrate	-	-	-	-	+ ${ }^{2}$	-
Cobalt nitrate.	-	-	\oplus	-	-	-
Copper nitrate	-	-	$-$	-	+ $\%$	-
Cuprio chloride	-	-	\oplus	-	-	-
Barium chloride.	-	-	\oplus	-	-	-
Mercurio chloride....	-	-	\oplus	-	-	-
	2	1	7	3	11	2

Table F.-Coninued.

Agent or reagent.						宮
13. Nerine giantess:						
Polarization...... Iodine	-	-	-	-	-	+ 0
Gentian violet	+	\pm	-	-	-	
Safranin.	+	-	-	-	-	
Temperature	-	-	-	-	+ $\%$	-
Chloral hydrate	-	+	-	-	-	-
Chromic acid.	-	-	-	$+8=0^{x}$	-	-
Pyrogallic acid	-	-	\oplus	-	-	-
Nitric acid...	-	-	-	-	-	+ ${ }^{\prime \prime}$
Sulphuric acid.	-	$+$	-	-	-	
Hydrochloric acid.	-	-	-	-	-	$+\%=\sigma^{\prime}$
Potassium hydroxide	-	-	\oplus	-	-	-
Potassium sulphocy-						
Potassium sulphide..	-	-	-	+ ${ }^{\text {a }}$	-	-
Sodium hydroxide.	-	-	-	-	-	$+{ }^{-7}$
Sodium sulphide..	-	-	\oplus	-	-	-
Sodium salicylate.	-	+	-	-	-	-
Calcium nitrate.	-		-	-	-	-
Uranium nitrate..	-	+	-	-	-	-
Strontium nitrate	-	-	-	$+\%=0^{\circ}$	-	-
Cobalt nitrate.	-	-	\oplus	-	-	-
Copper nitrate	-	-	-	$+\%=0^{7}$	-	-
Cupric chloride.	-	-	$\stackrel{\oplus}{+}$	-	-	-
Barium chloride	-	-	\oplus	-	-	-
Mercuric chloride....	-	-	\oplus	-	-	-
	2	6	7	6	1	4
14. Nerine abundance:						
Polarization..	-	-	-	-	-	+ $\%$
Iodine..	+	-	-	-	-	-
Gentian violet.	-	+	-	-	-	-
Gafranin.	-	-	-	+\%	-	-
Temperature.	+	-	-	-	-	-
Chloral hydrate	-	-	-	-	$+\infty^{7}$	-
Chromic acid...	-	-	-	-	+	$+{ }^{+}$
Pyrogallic acid	-	-	\oplus	-	-	
Nitric acid.	-	-	-	-	-	$+{ }^{\circ}$
Sulphuric acid.	+	-	-	-	-	-
Hydrochloric acid.	-	-	-	-	-	$+\%=0^{\circ}$
Potassium hydroxide	-	-	\oplus	-	-	-
Potassium iodide....	-	$+$	-	-	-	-
Potaskium sulphocyanate.	-	-	-	-	-	$+0^{*}$
Potassium sulphide...	-	-	-	$+{ }^{*}$	-	
Sodium bydroxide.	-	-	-	-	-	$+8$
Sodium sulphide...	-	-	\oplus	-	-	-
Sodium salicylate..	-	+	-	-	-	-
Calcium nitrate..	-	-	-	-	-	$+{ }^{*}$
Uranium nitrate.	-	-	-	-	-	$+0^{2}$
Strontium nitrate.	-	-	-	$+{ }^{*}$	-	-
Cobalt nitrate.	-	-	\oplus	-	-	-
Copper nitrate.	-	-	-	-	-	$+{ }^{+}$
Cupric chloride.	-	-	\oplus	-	-	-
Bariuna ohloride..... Mercuric chloride.	-	-	\oplus	-	-	-
	-	-	\oplus	-	-	-
	3	3	7	3	1	9

Table F．－Continued．

Agent or reagent					灾	H00
21．Narcissus croset Polarization	－	＋	－	－	－	－
Iorline．	－	$+$	－	－	－	－
（ientian violet．	$+$	－	－	－	－	－
Stfranin．	－	$+$	－	－	－	－
Temperature	－	－	－	－	－	$+8$
（＇hloral hydrate	－	－	－	\cdots	＋\％	－
Chromic atid．	$+$	－	－	－	－	－
Pyrugatlic acid	－	－	－	－	－	＋$\%$
Nitric acid．	－	－	－	－	＋$\%$	－
Sulphuric acid．	－	－	－	－	$+8$	－
	2	3	0	0	3	2
22．Narcissus will scar－ let：						
Iodine．．．	$\underline{+}$	＋	－	－	－	－
Gentian violet	－	－	－	－	$+0^{7}$	－
Safranin．	－	－	－	－	$+{ }^{\circ}$	－
＇Temperature	－	－	－	＋$\%$	－	－
Chloral hydrate	－	－	1）	－	\square	－
Chromic achl．	－	－	－	$-$	$+0^{r}$	－
Pyrogallic acid	－	－	－	＋ 9		－
Nitric aeid	－	－	－	－	＋	－
Sulphuric acid．	＋	－	－	－	－	－
	2	1	1	2	4	0
23．Narcissus bicolor apricot：						
Iodine．．．	$+$	－	－	＋8	－	－
（ientian violet	$+$	－	－	＋－	－	－
Safranin	＋	－	－	－	－	－
Timperature	－	－	－	－	－	$+\%$
Chloral hysirate	－	$+$	－	－	－	－
（＇hromaic arid	－	－	－	＋$\%$	－	－
Pyrogallic acid	－	－	\cdots	－	－	$+0^{7}$
Nitric acid．	－	－	－	－	－	＋${ }^{8}$
Sulphuric arid	－	－	（ \ddagger	－	－	＋
	3	1	1	2	0	3
24．Narcissus madame de graaff：						
Polarization．．．．．．．	－	$+$	－	－	－－	\cdots
Iodine．	＋	－	－	－	－	－
Gentian violet	$+$	－	－	－	－	－
Saframin	＋	－	－	－	－	－
Temperature．．．	－	＋	－	－	－	－
	－	－	－	－	$+3$	－
Chronic scid．．．．	－	－	－	－	－	＋\％
Psrogallic acid	－	－	－	$+8$	－	－
Nitric acid．．．．	－	－	－	－	－	＋\％
Sulphuric acid	$+$			－	－	－
	4			1	1	2

Table F．－Continued．

Agent or reagent．					咸	䔍
25．Narcissus pyramus：						
Polarization．．．．．．．．	－	－	－	－	$+9=0^{7}$	－
Iodine．．．	＋	－	－	－	－	－
Gentian violet	－	－	－	$+0^{7}$	－	－
Safranin．	－	－	－	$+{ }^{7}$	－	－
Temperature	－	－	－	－	－	$+0^{3}$
Chloral hydrate	－	－	－	－	－	＋
Chromic acid．	－	－	－	－	＋\％	－
Pyrogallic acid．．．．．．	－	－	－	－	＋$\%$	－
Nitric acid．．．．．．．．．．	－	－	\cdots	－	＋	－
Sulphuric acid	－	－	\oplus	－	－	－
	1	0	1	\because	4	2
26．Narcissus lord rob－ erts：						
Polarization	－	$+$	－	－	－	－
Iodine．	－	－	\oplus	－	－	－
Gentian violet	$+$	－		－	－	－
Safranin	＋	－	－	－	－	－
Temperature．	－	－	－	$+8$	－	－
Chloral hydrate	－	－	－	＋$\%$	－	－
Chromic acid．	－	－	－	－	－	$+\sigma^{7}$
Pyrogallic acid	－	－	－	$+0^{7}$	－	－
Nitric acid．	－	－	－	＋$\%$	－	－
Sulphuric acid．	$+$	－	－	－	－	－
	3	1	1	4	0	1
27．Narcissus agnes har－ vey：						
Polarization．．．．．．．．	$+$	－	－	－	－	－
Iodine．	＋	－	－	－	－	－
Gentian violet	＋	－	－	－	－	－
Safranin．	－	－	\oplus	－	－	－
Temperature	－－	－	－	$+8^{3}$	\cdots	－
Chloral hydrate	－	－	－	$+{ }^{2}$	－	－
Chromic acid．．	－	－	－	－	－	$+\%$
Pyrogallic acid	－	－	－	$+7=0^{7}$	－	＋
Nitric acid．	－	－	－	－	＋	－
Sulphuric acid．	＋	－	－	－		－
	4	0	1	3	1	1
28．Narcissus J．t．ben－ nett poe：						
Polarization．	$+$	－	－	－	－	－
Iodine．．	＋	－	－	－	－	－
Gentian violet．	－	－	－	－	＋$\%$	－
Safrania．．	－	－	－	－	＋\％	－
Temperature．．．	－	－	－	－	$+{ }^{7}$	－
Chloral hydrate．	－	－	－	－	＋\％	－
Chromic acid．．．	$-$	－	－	－	＋\％	－
Pyrogallic acid．	－	－	－	－	＋${ }^{3}$	－
Nitric acid．．．．	－	－	－	－	$+8$	－
Sulphuric acid．	－	－	－	－	＋ 8	－
	2	0	0	0	8	0

Table F.-Continurd.

Agent or reagent.						
29. Lilium marhan:						
	-	+	-	-	-	-
Iodide.	-	-	-	+0	-	-
Gentian violet.	-	-	-	-	-	$+8$
Safranin.	-	-	-	-	-	$+3$
Temperature	\cdots	-	-	-	-	+ ${ }^{\text {ch }}$
Chloral hydrate	-	-	-	+e	-	+
Chromic acid.	-	$+$	-	-	-	-
Pyrogallic acid	-	$+$	-	-	-	-
Nitric acid...	-	-	\oplus	-	-	-
Sulphuric acid.	-	-	\oplus	-	-	-
Hydrochloric acid..	-	-	(1)	-	-	-
Potassium hydroxide.	-	-	\oplus	-	-	-
Potassium iodide....	-	-	\oplus	-	-	-
Potassium sulphocyanate.	-	-	(\dagger	-	-	-
Potassium sulphide..	-	-	\oplus	-	-	-
Sodium hydroxide. .	-	-	\oplus	-	-	-
Sodium sulphide....	-	-	\cdots	-	-	-
Sodium salicylate...	-	-	-	-	-	+ 9
Calcium nitrate.	:	-	-	-	-	+ 9
Uranium nitrate.	-	-	-	$+0^{*}$	-	-
Strontium nitrate	-	-	-	+9	-	-
Cobalt nitrate.	-	-	-	$+{ }^{-}$	-	-
Copper nitrate.	-	$+$	-	-	-	-
Cupric chloride.	-	$+$	-	-	-	-
Barium chloride.	-	+	-	+ $\%$	-	-
Mercuric chloride.	-	-	-	+	+\% $=$ c	-
	0	5	9	6	1	5
30. Lilium dalhansoni:						
Iodine....	+	-	-	-	$+¢$	-
Gentian violet	$+$	-	-	-	+	-
Safranin.	+	-	-	-	-	-
Temperature	-	-	-	$+0^{7}$	-	-
Chloral hydrate....	-	$+$	-	-	-	-
Chromic acid.......	-	-	-	$+0^{\prime}$	-	-
Pyrogallic acid	-	-	-	$+8^{2}$	-	-
Nitric acid....	-	-	\oplus	-	-	-
Sulphuric acid.	-	-	$\stackrel{\square}{9}$	-	-	-
Hydrochloric acid...	. -	-	(9)	-	-	-
Potassium hydroxide	-	-	\oplus	-	-	-
Potassium iodide...	. -	-	\oplus	-	-	-
Potassium sulphocyanate	,	-	${ }^{(+)}$	-	-	-
Potassium sulphide.	-	-	(19)	-	-	-
Sodium hydroxide. .	-	-	¢	-	-	-
Sodium sulphide....		-	\oplus	-	-	-
Sodium salicylate...	. -	-	-	-	,	-
Calcium ditrate....		-	-	$+8$.	-
Uranium nitrate..	-	-	-	$+?$	-	-
Strontium nitrate.	-	-	-	-	-	-
Cobalt nitrate..		-	-	$+\cdots$	1 -	-
Copper nitrate.	-	-	-	$+\cdots$	1 -	-
Cupric chloride...		-	-	$+Q=$	-	-
Barium chloride..		--	-	$+\cdots$	-	$-$
Mercuric chloride.		-	-	-	-	$+\cdots$
	4	1	9	9	2	1

Agntortagert
Intermelat..
31. Lilium golden gleam:

Folarization

Iorline
Gentian violet
Safranin
Temenerature
Choral hydrato
Chromic acid
Pyrogallic acid
Nitrir acid
Sulphuric arid
Hydrowhoric arid.
Potassium hydroxide
Potassinm iodide.
Potassium sulphocy anate
Potassium sulphide. Sodium hydroxide.
Sodium sulphide
Sodium salicylate.
Calcium nitrate.
Tranium nitrate
Strontium nitrate.
Cobalt nitrate.
Copper nitrate
Cupric chloride.
Mercuric chloride
32. Lilium testaceum:

Polarization
Iodine
Gentian violet
Safranin.
Temperature
Chloral hydrate
Chromic acid
Pyrogalific acid.
Nitric acid.
Sulphuric arid.
Hydrochloric acid.
Potassium hydroxide
Potassium iodide.
Potassium sulphocysnate.
Potassium sulphide
Sodium hydroxide
Sodium sulphide
fordium salirylate.
('alcium nitrate.
Traminn nitrate
Strontium nitrate...
(cobalt nitratte.
Conper nitrate
(upric chatorido.
Barium chlorite
Mercuric chloride.

$$
\begin{array}{cc}
- & - \\
- & + \\
- & - \\
+\% & - \\
- & +? \\
- & - \\
- & - \\
- & -- \\
- & - \\
- & - \\
- & - \\
- & - \\
+\% & - \\
- & - \\
- & - \\
\cdot & - \\
- & - \\
- & - \\
\cdot & - \\
- & - \\
- & - \\
- & - \\
\hline- & - \\
- & - \\
\hline 6 & - \\
\hline-
\end{array}
$$

Table F-Continued.

Agent or reagent.				Intermediate.		W W ¢
33. Lilium burbanki:						
	-	$+$	-	-	-	-
Iodine	+	-	-	-	-	-
Gentian violet	-	-	-	$+{ }^{\circ}$	-	-
Safranin	-	-	-	$+0^{7}$	-	-
Temperature.......	-	-	-	-	-	+ 9
Chloral hydrate....	-	-	-	+8	-	+
Chromic acid.	-	-	-	-	-	$+8$
Pyrogallic acid	-	-	-	-	-	+\%
Nitric acid.	-	-	-	-	-	$+8=0{ }^{\circ}$
Sulphuric acid.	-	-	-	$+8^{7}$	-	
Hydrochloric acid.	-	-	-	-	-	+ $\%$
Potassium hydroxide.	-	-	\oplus	-	-	-
Potassium iodide....	-	-	\cdots	-	-	$+9{ }^{\circ}$
Potassium sulphocyanate	-	-	-	-	-	$+\%=8$
Potassium sulphide.	-	-	-	-	-	+ $9=8^{\prime}$
Sodium hydroxide. .	-	-	-	-	-	+ + = 0°
Sodium sulphide...	-	-	-	-	-	$+9=0^{7}$
Sodium salicylate..	-	-	-	$+8^{8}$	-	+ -
Calcium nitrate.....	$+$	-	-	-	-	-
Uranium nitrate..	-	-	-	-	-	$+2$
Strontium nitrate.	-	-	-	-	-	$+8$
Cobalt nitrate.	-	-	-	-	-	+ $\%$
Copper nitrate.	-	-	-	-	-	$+\%=\sigma^{7}$
Cupric chloride	-	-	-	-	-	+\%
Barium chloride.....	-	-	-	+	-	-
Mercuric chloride...	-	-	-	-	-	+\%
	2	1	1	6	0	16
34. Iris ismali:						
Polarization.	-	-	-	-	-	$+0^{7}$
Iodine.	+	-	-	-	-	-
Gentian violet	$+$	-	-	-	-	-
Safranin.	$+$	-	-	-	-	-
Temperature...	-	-	-1	$+9=8^{7}$	-	-
Chloral hydrate	-	-	-	+8	-	-
Chromic acid..	-	-	-	+ 8	-	-
Pyrogallic acid	-	-	-	+ $+8=0^{7}$	-	-
Nitric acid.	-	-	-	+ $\%=0^{3}$	-	-
Sulphuric acid.	-	-	-	$+8=0^{3}$	-	-
Hydrochloric acid...	-	-	-	$+0^{\circ}$	-	-
Potassium hydroxide	-	-	\rightarrow	-	-	+8
Potassium iodide...	-	$+$	-	-	-	-
Potassium sulphocyanate	-	-	(1)	-	-	-
Potassium sulphide..	--	- 1	-	$+8=8$	-	-
Sodium hydroxide..	-	-	(1)	-	-	-
Sodium sulphide....	-	-	-	$+8=8$,	-	-
Sodiurn salicylate....	-	$+$	- 1	-	-	-
Calcium nitrate	-	-	-	+ $\%$	-	-
Uranium nitrate....	-	--	-		$+\infty$	-
Strontium nitrate...	-	+	-	$+8$	-	- -
Cobalt nitrate..	-	-	-	-	-	$+8=8$
Copper nitrate	-	-	-	+ $\%$	-	$+\quad$ -
Cupric chloride.	-	-	-	-	-	+\%
Harium chloride..	-	-		- 1	-	$+8=0$
Mercuric chloride	-	-	망	-	-	$+8$
	3		2	12	1	6

Table F.-Continued.

Agent or reagent.						\%
35. Iris dorak:						
Polarization.	$+$	-	-	-	-	-
Iodine.	+	-	-	-	-	-
Gentian violet	-	-	-	-	$+8$	-
Safranin	-	$+$	-	-	-	-
Temperature	-	-	-	-	+	-
Chloral hydrate	-	-	-	-	-	$+8=0^{7}$
Chromic acid.	-	-	-	-	$+8$	+
Pyrogallic acid	-	-	-	-	+8	-
Nitric acid...	-	-	-	-	+\%	-
Sulphuric acid	-	-	-	-	+	-
Hydrochloric acid....	-	$+$	-	-	+	-
Potassium hydroxide.	-		-	-	-	$+8^{4}$
Potassium iodide. . .	-	-	-	-	$+\infty$	-
Potassium sulphocyanate.	-	-	-	-	+	$+{ }^{2}$
Potassium sulphide..	-	+	-	-	-	-
Sodium hydroxide..	$+$	-	-	-	-	-
Sodium sulphide...	-	-	-	-	$+\sigma^{2}$	-
Sodium salicylate....	-	-	-	-	+	+\%
Calcium nitrate.	-	\sim	-	+\%	-	+
Uranium nitrate.	-	-	\oplus	-	-	-
Strontium nitrate	-	-	\cdots	-	$+\%=\sigma^{7}$	-
Cobalt nitrate.	-	-	\oplus	-	-	-
Copper nitrate	-	-	-	-	+ 7	-
Cupric chloride.	-	-	-	\sim	+ 8	-
Barium chloride.....	$+$	-	-	-	-	-
Mercuric chloride...	$+$	-	-	-	-	-
	5	3	2	1	11	4
36. Iris nurs. alan grey:						
Polarization.........	-	-	-	-	-	$+\sigma^{7}$
Iodine...	-	-	-	-	+8	-
Gentian violet.	-	-	-	-	-	+8
Safranin.	-	-	-	-	-	+8
Temperature.	-	-		-	$+\sigma^{7}$	-
Chloral hydrate	-	-	-	+	+ ${ }^{\text {a }}$	-
Chromic acid.	-	-	-	+ 7	-	-
Pyrogallic acid	-	-	\cdots	+	-	$+\sigma^{7}$
Nitric acid...	-	-	(\dagger	-	-	-
Sulphuric acid.	-	-	\oplus	-	-	-
IIydrochloric acid...	-	-	-	-	-	$+\infty$
Potassium hydroxide	-	-	-	-	-	+ $\%=0^{\circ}$
Potassium iodide....	-	-	-	-	-	+ ${ }^{\circ}$
Potassium sulphocyanate	-	-	-	-	-	$+8^{*}$
Potrssium sulphide..	-	-	-	-	-	$+8=0$
Sodium hydroxide.	-	-	-	-	-	$+8=0{ }^{\circ}$
Sodium sulphide....	-	-	-	-	-	$+{ }^{7}$
Sodium ralicylate....	-	-	-	-	$+\infty^{x}$	-
Calcium nitrate....	-	-	-	-	-	+ ${ }^{8}$
Uranium nitrate..	-	-	-	-	-	+8
Strontium nitrate.	-	-	-	-	-	$+8$
Cobalt nitrate.	-	$+$	-	-	-	-
Copper nitrate.	-	-	-	-	-	$+{ }^{2}$
Cupric chloride.	-	-	-	-	-	$+0^{7}$
Barium chloride	-	\sim	(1)	-	-	-
Mercuric chlorid	-	-	-	-	-	$+8$
	0	1	3	1	4	17

Table F.-Continued.

Table \mathbf{F}－Continucd．

Agent or reagent．						萵
41．Hegnnia ensign：						
Polarization	－	－	－	$+8$	－	－
Iorline．．．	－	－	－	＋\％	－	－
Gentian violet．	－	－	－	－	－	$+0^{8}$
Safranin．．．．．	－	－	－	－	－	＋${ }^{7}$
Temperature	－	－	－	＋\％	－	－
Chloral hydrate	－	－	－	－	＋ 8	－
Chromic acid．	－	－	－	+ ＋	－	－
Pyrogallic acid	－	－	－	＋+	－	－
Nitric acid．．．	－	－	－	＋ 9	－	－
Strontium nitrate．	－	\rightarrow	－	＋ 9	－	－
	0	0	0	7	1	2
42．Begonia julius：						
Polarization．．．．	－	＋	－	－	－	－
Iodine．	－	－	－	－	$+8^{x}$	－
Gentian violet．	－	－	\rightarrow	－	$+{ }^{\circ}$	－
Safranin．	－	－	－	－	$+{ }^{7}$	－
Temperature．	－	－	－	＋ 7	－	－
Chloral hydrate	－	－	－	－	＋ 7	－
Chromic acid	－	－	－	$+9$	－	－
Pyrogallic acid	－	－	－	＋\％	－	－
Nitric acid．	＋	－	－		－	－
Strontium nitrate．	－	－	－	$+9$	－	－
	1	1	0	4	4	0
43．Begonia success：						
Polarization．	－	$+$	－	－	－	－
Iodine．	－	＋	－	－	－	－
Gentian violet．	－	＋	－－	－	－	－
Safranin．	$+$	－	－	－	－	－
Temperature．	－	－	－	＋\％	－	－
Chloral hydrate	－	－	－	＋\％	－	－
（＇hromic acid．	－	－	－	－	$+8$	－
Pyrogaltic acid	－	－	－	－	＋$\%$	－
Nitric acid．	＋	－	－	－	－	－
Strontium nitrate	－	－	－	－	$+\%$	－
	2	3	0	2	3	0
44．Richardiamrs． roosevelt						
Polarization．．．．．．	－	－	－	＋ $8=c^{*}$	－	－
Iodine．．．．．	\pm	－	－	－	－	\rightarrow
Gentan violet	－	－	－	－	+8 +8	－
Temperature	－	－	－	5\％－3	－	－
Chloral hydrate	－	－	－	－	$+3$	－
Chromic achl．	－	－	（1）	－	－	－
Pyrogallic acid	－	－	（ \dagger	－	－	－
Nitric acid．	－	－	－	＋ $3=0$	－	－
Sulphuric acid．	－	－	\oplus	－	－	－
Hydrochloric acid．	－－	－	－	－	－	$+0^{7}$
Potassium hydroxid	－	－	$-$	－	$+8$	＋
Sodium salicylate．．．	－	－	©	－	－	－
	1	0	4	3	4	1

Table F．－Continued．

Agent or reagent．					$\begin{aligned} & \text { 淢 } \\ & \text { 淢 } \end{aligned}$	\％
45．Musa hybrida：						
Polarization．	－	$-$	－	－	－	$+0^{7}$
Iodine．	－	＋	－	－	－	
Gentian violet	－	＋	－	－	－	－
Safranin．．．．．	－	＋	－	－	－	－
Temperature	－	－	－	－	－	$+0^{x}$
Chloral hydrate	－	－	－	－	－	$+0^{7}$
Chromic acid．	－	－	－	－	－	＋${ }^{7}$
Pyrogallic acid	＋	－	－	－	－	
Nitric acid．．．		－	－	－	－	$+0^{7}$
Sulphuric acid．．．．．．	－	－	－	－	－	＋${ }^{*}$
Hydrochloric acid．．．．	－	－	－	$+{ }^{*}$	－	－
Potassium hydroxide	－	－	－	$+8=8^{7}$	－	－
Potassium iodide．．．	－	－	－	－	－	$+0^{\prime}$
Potassium sulphocy－ anate	－	－	－	－	－	$+0^{7}$
Potassium sulphide．	－	－	－	－	－	$+{ }^{7}$
Sodium hydroxide．．．	－	－	－	－	－	＋${ }^{7}$
Sodium sulphide．．．	－	－	－	－	－	$+0^{7}$
Sodium salicylate．．．	－	－	－	－	－	＋${ }^{\text {a }}$
Calcium nitrate．．．．．	－	\cdots	－	－	－	$+0^{7}$
Cranium nitrate．	－	－	－	－	－	$+0^{7}$
Strontium nitrate	\cdots	－	－	－	－	$+0^{7}$
Cobalt nitrate．	－	－	－	－	－	$+{ }^{+}$
Copper nitrate．	－	－	－	－	－	$+0^{7}$
Cupric chloride	－	－	－	－	－	＋${ }^{7}$
Barium chloride	－	－	－	－	－	$+0^{7}$
Mercuric chloride	－	－	－	－	－	$+{ }^{6}$
	1	3	0	2	0	20
46．Phaius hybridus：						
Polarization．．．．	－	－	－	－	＋$\%$	－
Iodine．	－	－	－	$+8^{7}$	－	－
Gentian violet	－	－	－	－	＋ 8	－
Safranin．	－	－	－	－	＋\％	－
Temperature．．．	－	$+$	－	－	－	－
Chloral hydrate	－	－	－	－	－	$+0^{x}$
Chromic acid．	－	－	－	$+\%=\sigma^{\prime}$	－	－
Pyrogallic acid	－	－	－	$+9=8^{7}$	－	－
Nitric acid．．．．	－	－	－	$+6$	－	－
Sulphuric acid．	－	－	¢ +	－	－	－
Hydrochloric acid．	－	－	\oplus	－	－	－
	－	－	\oplus	－	－	－
Potassium iodide．．．．	－	－	－	$+8=0^{\circ}$	－	－
Potassium sulphocy－ anato．	－	－	\oplus	－	－	－
Potassium sulphide．．	－	－		－	－	$+8=\sigma^{7}$
Sodium hydroxide．．．	－	－	－	－	－	＋${ }^{7}$
Sodium sulphide．	－	$+$	－	－	－	
Sodium salieylate．．	－	$+$	－	－	－	－
Calcium nitrate．	－	－	－	＋ 9	－	－
Uranium nitrate	－	－	－	＋ 8	－	－
Strontium nitrate．	＋	－	－	－	－	－
Cobalt nitrate	－	－	－	$+0^{2}$	－	－
Copper nitrate	－	－	\oplus	－	－	－
Cupric chloride．	－	－	－	$+8=0$	－	－
Barium chloride．	－	－	－	＋+	－	－
Mercuric chloride	－	－	－	$+9=0$	－	－
	1	3	5	11	3	3

Tanle F.-Continued.

434 (42.7 per cent) fall under same as or inclined to seed parent, 330 (32.1 per cent) under same as or inclined to pollen parent, 140 (13.8 per cent) under same as both parents, and 114 (11.1 per cent) under as close to one as to the other parent. Nearly all of the reactions recorded as being the same as those of both parents liave been found so because of too rapid or too slow gelatinization, and therefore douhtless misleading and defective in classification. It is of especial interest to note that

Table G 1.-Summary of Sameness and Inclination of the Reactionintensities of the Sturches of the Mybrids in relation to the Starches of the Parent-Stocks.

Hybrids.	Same as or inclined to - \ddagger			
		$\stackrel{+}{E}$		
Brunsdonna sanderce alba.	11	10	1	4
Brunsdonna sanderce	13	9	1	3
Hippeastrum titan-cleonia	\&	7	,	3
Hippeastrum ossultan-pyrrha.	11	6	\checkmark	1
Hippeastrum dæones-zephyr..	7	5	9	5
Hæmanthus andromeda.	12	0	6	-
Hwmanthus könig albert	23	2	0	1
Crinum hybridum j. c. h.	1	25	0	0
Crinum kircape.	22	4	0	0
Crinum powellii.	0	21	0	2
Nerine dainty maid	7	9	7	3
Nerine queen of roses	9	\checkmark	7	2
Nerine giantess...	5	10	7	4
Nerine abundance.	6	12	7	1
Nerine glory of surnia	7	10	\checkmark	1
Narcissus poeticus herrick.	4	5	$1)$	1
Narcissus poeticus dante.	3	5	0	\because
Narcissus poetaz triumph	4	17	1	4
Narcissus fiery cross. ...	3	4	$1)$	3
Narcissus doubloon.	5	3	1	1
Narcissus cresset.	7	3	1)	$1)$
Narcissus will scarlet	5	4	1	11
Narcissus bicolor apricot	6	3	1	()
Narcissus madame de graaff	7	3	$1)$	$1)$
Narcissus pyramus.	5	3	1	1
Narcissus lord roberts.	5	4	1	$1)$
Narcissus agnes harvey.	5	3	1	1
Narcissus j. t. bennett poe.	10	\because	0	
Lilium marhan...........	4	12	3	1
Lilium dalhansoni.	6	111	9	1
Lilium golden gleam	12	\cdots	;	1
Lilium testaceum...	17	,	\because	\because
Lilium burbanki.	13	i	1	7
Iris ismali.	10	${ }^{6}$	2	
Iris dorak	13	4	2	2
Iris mres.alan grey	7	13	3	3
Iris pursind......	10	\cdots	5	3
Gladiolus colvillei	23	0)	1	?
Tritonis crocosmzefora.	20	1	\because	"
Begonia mre heal.	23	$1)$	2	$!$
Begonia ensign.	S	\because	11	$1)$
Begonis julius	6	4	11	11
Begonia success.	7	3	11	11
Richardia mrs. rousevelt	1	\checkmark	1	3
Musa hybrida....	$1)$	\therefore	11	,
Phaius hyliridus.	\cdots	7	\therefore	,
Miltonia bleuana.	20	\because	\%	1
Cymbidium eburneo-lowianum	4	1	"	12
Calant ${ }^{\text {e }}$ veitchii.	11	1		
Calanthe bryan.	3	i	11	-
Total number of reactions.	434		140	111
Per cent of 1018 reactions.	$+2.7$	32.4	13.-	11.1

 two columns, $4 \% .6$ per cent of the 7.5 .1 per rent, or dis-

 of the seed paront. The lant column mulwho many of
 hrids, stme of whiel wall likely lo. tramed toy further inventigation to downme tor one or the wher farent.

 likely that the peculiarity of the hybrid is due to one of the parents as to both. It pre-ent we have not the data to permit of this differentiation.

 P'ARESTS.
(Tathe H. Dart: 1 to 2b and summarios 1 and 2.)
In Table $\mathrm{F}, 1$ to 50 , in a prompher -uharetion it is Shown that combinations of the reactions of starches with different agents and reasents give ith the tane of carh starch a mosaic picture that is specifie to the starch, no two tahles hoing the sam", or exen rery mush alike, wen When the hehride are of the same erows: ame that, as a corollary, each hylorid starch can positively he diagnosed from evary other hy the peculiarities of the parental relationships. It was alos rindered evident that the denansstration of indiviluality is dependent umen both -pwoll"ity of the starih and sumificity of the asent or reagent, as is manifest by the fact that if one starch he substitutul for another or one rearent sulistituted for another the reactions may be like or mulike. Thms, taking the three Crimums, it will be seen that the ioctine reactions of the socel parents are in all thron the same or practially the same as those of the corresponding pollen parents. In the temperature reactions one (C . hyhridum $j . c . h$.) has a hirher reactivity than that of either parent and
 intermoliate reativity and is cluser to the senil parent; and another (C. powellii) has a higher reactivity than that of wither parent and chser to the pollen parent.
 mediate and closer to the pollen parent; another the same as the wed parent : and annther the hithot. and as chowe to one as to the other paremt. In the protasalle and
 parent: another intermediate and closer to the follon
 eft. In other worla. the hather of the rean ion is dotw. mintal by the character of the starch phas the chara t. :
 tialitice of both parents that are expresed by reation-

 may behave the same or ditherently in s.atton ! tian....
 hewhoped at will by proper selection of the agent or reagent.

desirable to inquire somewhat critically into the evidence at hand so as to learn to what extent, if any, each of the various agents and reagents exhibits a definite propensity to elicit one or the other parent-phases. Consequently, the data recorded in the preceding tables have been given a resetting in Table II, Parts 1 to 26, in each of which division will be found the reactions of all of the hybrid starches with each agent and reagent, thus presenting in a most succiuct and striking form the peculiarities manifested by each agent and reagent in the elicitation of such reactions. Each division of the table is, as in the preceding set, so characteristic of the agent or reagent that each is specific and diagnostic-in the former set, specific and diagnostic in relation especially to the starch; in this set, specific and diagnostic in relation especially to the agent or reagent. Even the tables representing the offspring of the same cross (Brunsdonna sandere alba and B. sandere; and Narcissus poeticus herrick and N. poeticus dante) can be distinguished from each other at a glance. In the present table of agents and reagents we find parallels in pairs that are similar to the pairs of hybrids in the preceding tables, as, for instance, in potassium hydroxide and sodium hydroxide and potassium sulphide and sodium sulphide which are comparable to two hybrids of the same cross, in each of which pairs the two tables will be found to be so definitely unlike in so many respects as to be as sperifie and diamnostic as are the tables of the pairs of Brunsdonnce and Narcissus hybrids, respectively.

It has been pointed out particularly that different starches in their reactions with different agents and reagents exhibit marked variations in both kind and distribution of the reactions among the six parental phases, there being all gradations between one extreme that is characterized by almost universal sameness of the hybrid starch to the starch of the seed parent and the other extreme where a correspondiner relationship was found toward the pollen parent; or a striking proneness to intermediateness; or for the reactions to be in excess of deficit of parental extremes. In other words, certain starches show in their reactions marked likeness to the seed or pollen parent, or intermediateness, etc., while others exhibit a two-phase peculiarity which may be manifested in sameness to both parents associated with derelopment in excess of the parental extremes, or in other forms of combination as pointed out in Table C 18 under ('alanthe. Inasmuch as the reactions of the different starches were obtained by means of the same agents and reagents, one would naturally be led to the conclusion that with the starch as the varying factor and the agents and reagents as the constant factor the propensities of different starches to exhibit especially seed or pollen parent propensities, intermediateness, etc., are inherent to the starch molecules, and that the agents and reagents may be inert or indiferent, or in other words, that they do not have any especial propensity of themselves to elicit any given parent-phase in preference to any other. Therefore, in differentiating the part played by starch molecule and reagent, respectively, when a given parent-phase is developed, it seems that we should take into aceount in the reaction whether or not the stareh molecule has heen altered, for if not altered the peculiarity of the reaction would naturally be attributed to the starch alone
and would represent an existent phase in contradistinction to a developed phase that is owing to the reagent bringing to light a potential or latent phase.

In some instances as pointed out the starch molecule is either not in the least modified or but extremely slightly modified in the reaction, whereas in others it is partially or completely broken down by presumably simple processes of hydration, or by a process of hydration plus some additional reaction or reactions that depended upon some peculiar component or components of the reagent. Inasmuch as in the polarization reaction the molecules are unchanged the reaction must depend solely upon inherent properties of the molecules and indicate an existent parent-phase, comparable to the obvious parent-phases that are exhibited in the histologic properties of the starch grains; and it might be taken for granted, as a corollary, that any agent or reagent that yields a reaction with the stareh molecules without breaking down the molecules, would elicit the same parentphase reaction. That is, if in the polarization reaction sameness to the seed parent is noted the same would be seen in the iodine and aniline reactions; but as this is, in fact, not the case, any parent-phase of this complex may be demonstrated without or with molecular disorganization. Thus, in Crinum kircape, we find that the polarization reaction is higher than in either parent, but closer to the reaction of the seed parent; the iodine reaction is intermediate, but closer to that of the pollen parent; the gentian-violet reaction is the same as that of the pollen parent; and the safranin reaction higher than in either parent, but nearer the reaction of the seed parent, and so on in different starches in varying forms of combination of these reactions. In other words, in the starch molecule as in the albumin molecule the components or potentials are in the form of a complex labile aggregate, so that it is easy to elicit any parent-phase component or potential of the starch molecule. Not only are these parent-phases readily separable and demonstrable by proper agents and reagents, but there is also evidence that different agents and reagents exhibit marked differences in their propensities to elicit a given phase or given phases. This is rendered very obvious by the data as reset in the summaries of Table H (page 336) in which, however, those recorded under "same as both parents" should be omitted because in nearly all instances there was no satisfactory differentiation owing to extremely rapid or extremely slow gelatinization.

It will be seen by the first summary of this Table that while in case of many of the agents and reagents there is no manifest propensity to elicit sameness as the seed parent, or sameness as the pollen parent, or intermediateness, etc., the opposite holds good in varying degree for others. Thus, in the polarization reactions the reactions of the 50 starches are distributed quite equally among the 5 phases. In the iodine reactions there is an obvious increase in the number of reactions that fall in the first column, this being associated particularly with a falling of in the "highest" and "lowest" columns. In the temperatures of gelatinization there is a marked lessening in sameness as the seed parent and sameness as the pollen parent, this being associated with a corresponding increase in the intermediate column, showing that in 21 of the 50 starches heat, in
causing gelatinization, gives rise to conspicnousness of an intermediate parent-phase. In lo of the ti starednes sulphuric acid developed sameness as the seed parent, and in only 3 sameness as the pollen parent; potassium sulphocyanate developed sameness as seed parent in 6 of the 32 reactions and sameness as the pollen parent in one only; potassium sulphide, in 5 and 2 , respectively; strontium nitrate, in 5 and 0 , respectively, and so on. Certain other reagents exhbit a reversal of these propensities, as is noted particularly in the reactions of chloral hydrate, sodium salicylate, and cupric chloride, in which are found ratios $1: 6,1: \pm$, and $2: 3$, respectively. But in the intermediate, highest, and lowest columns, many reactions are recorded that are closer to one than to the other parent, and when these are added to the first two columns, as in the summary of Table E, the propensities are in some instances practically unaltered, in others accentuated, and in others lessened or reversel. It will be seen by comparing the two summaries that in the first in the polarization reactions 11 are the same as those of the seed parent and 11 the same as those of the pollen parent; and in the second an almost equal divasion, 26 and 20 , respectively. In the iodine reactions the figures in the two tables are $16: 12$ and $25: 18$, respec-tively-a ratio of $1: 0 . \% 5$ and $1: 0 . \%$, respectively; in both of these reactions there being no essential difference in the two tables. In the temperature of gelatinization reactions the first table gives $7: 3$, and the second $29: 18$, or ratios of $1: 0.43$ and $1: 0.6 \%$, which show a slight falling off in the latter. In the chloral-hydrate reactions the first table shows a marked propensity to the pollen parent, and the second a propensity to one about as much as to the other; on the other hand, in the chromicacid reactions in the first table there is shown a ratio of $4: 3$ and in the second table $31: 12$, or in the latter two and a half times the propensity to develop sameness or closeness to the seed parent as to the pollen parent. In other words, it seems that certain reagents, while having definite propensities to develop a seed or pollen phase, show varying degrees in their propensities to elicit sameness or closeness, some tending comparatively largely to sameness and little to closeness, and others the reverse, and so forth. Moreover, while a given reagent may have a propensity to elicit sameness as one parent, it may have at the same time a marked propensity to develop closeness to the other parent in other starches, so that in the summing up of the reactions with dilferent starches one may counterbalance the other. This is illustrated in the chloral-hydrate reactions, in which it is shown in the two summaries that the propensity to elicit sameness to the pollen parents is 6 times greater than to sameness to the other parent, while it is also shown that because of a propensity to develop chomess to the seed parent the former difference is dissipated and an equal tendency is manifested to develop either the seed or pollen parent phase, the ratio being $23: 20$. It seems, therefore, that a better picture is to be ohtained of these propensities if those to sameness are included with those to closeness. A cursory examination of tho figures of the first two columns of the latter table (the other columns may be omitted to advantage and without leading to misunderstanding), will render it evalent that the agents and reagents fall into 3 classes in accord-

 pollen parent, or atl absunce of propersity t. . li it eit! parental relation-hap in preforence to the ether. and that the dasies merne inte each other, as follows:

	Fathe: ay ot Momert ti, the -	
	$\begin{gathered} \text { surd } \\ \text { far+ht. } \end{gathered}$	$\begin{aligned} & \text { 1allen } \\ & \text { sare in'. } \end{aligned}$
Polarization	26	26
Indine.	25	In
Suframin...	24	21
Temperature of gelatinizatiot	29	14
Chloral hydrate	23	24)
Chromice acid	31	12
Pyrogallic acid	23	15
Nitric acid.	24	11
Sulphuric acid.	15	11
Potassium iodide	13	8
Potassium sulphocyanate	13	3
Sodium sulphide.	12	y
(abriun nitrate	16	12
Uramium nitrate	15	10
Sitrontium nitrate	15	10
Barium chloride	13	4
Mercurie chloride	14	6
Copper nitrate.	12	10
Sodium salicylate.	115	15
Potassium hydroxide.	\cdots	s
Cupric chloride.	9	9
Hydrochloric acid	11	12
Gentian violet	21	25
I'otassium eulyhide.	-	10
Sodium hydroxide.	11	14
Cobalt nitrate...	B	11

With very few exceptions the ratios appear to be such as to make the assignment quite derinite. From
 reagent (1 亿 of the ? 6) tend, m of of them mariedly, to chict the sed parent phase ; smmewhat has than one stath
 parent phase; and the remaining lezs than one-filth (5 of the 3 to) temd with about or cqual propencity to dicit one or the other parent-phase. Perhape, suteral that have been assigned to the first group, especially chloral hydrate, should be transferred to the last group, and other redistribution made.

It seems from the foregoing data that the development of the various parent-phases is dependent upon two fundamental factor: : One, inherent properties of the starch by virtue of whish different stardhe exhibit whin the same agent or reagent specific parent-phase reactwй, one starch reacting the same as the seed parent, annther the same as the pollen parent, another intermediate ber tween the two parents, etc, as shown in prombun tal. le ; and the other, inherent properties of tho asoni= amb reagents hy virtur of which, in assumation wath tha phastic tard mulecule, any parent-phase desired may lh. developed at will in any given stard. [na-mmeh at there are thus two factors which may tend in like or unlike directions in the evolution of a parent-phat. at i- chear

 reating with various starehes.

Table H．

Hybrids．						令
1．Polarization reactions Brunsdonna sanderce alba	\pm	－	－	$+8$	－	－
Brunsdonna sanderce					－	－
Hippeastrum titan－ cleonia．	－	－	－	－	＋ 9	－
Hippeastrum ossul－ tan－pyrrha ．．．．．．	－	－	－	－	$+8^{7}$	－
Hippeastrum dxones－ zephyr	－	－	－	－	$+{ }^{7}$	－
Hemanthus andro－ meda	－	－	－	$t ?=0^{7}$	－	－
Hemanthus könig al－ bert	－	－	－	－	$+0^{7}$	－
Crinum hybridum j ． c．h．	－	－	－	－	$+8^{7}$	－
Crinum kircape	－	－	－	－	＋$\%$	－
Crimum powelii	－	$+$	－	－	－	－
Nerine dainty maid．	－	＋	－	－	－	－
Nerine queen of roses	－	－	－	－	－	$+0^{*}$
Nerine giantess．．．．．	－	－	－	－	－	＋
Nerine abundance．	＋	－	－	－	－	＋\％
Nerine glory of sarnia				－	－	－
Narcissus porticus herrick．．	－	－	－	$+8$	－	－
Narcissus poeticus dante．．．．．．．．．．．	－	－	－	＋\％	－	－
Narcissus poetaz tri－ umph	－	$+$	－	－	－	－
Narcissus fiery cross	，	＋	－	－	－	－
Narcissus doubloon	$+$	－	－	\rightarrow	－	－
Narcissue cresset	－	＋	－	－	－	－
Narcissus will scarlet	$+$	－	－	－	－	－
Narcissus bicolor apri－ cot．	＋	－	－	－	－	－
Narcissus madame de graaff	－	＋	－	－	－	－
Narcissus pyramus．．．	－	＋	－	－	$+6=0^{7}$	－
Narcissus lord roberts	－－		－		－	
Narcissus agnes har－ vey	＋	－	－	－	－	－
Narcissus j．t．bennett poe	t +	－	－	－	－	－
Lilium marhan．．．．．		$+$	－	－	－	－
Lilium dulhansoni	＋	－	－	－	－	＋+
Lilium golden gleam．	－	－	－		－	
Lilium testaceum．		－	－	－	－	－
Lilium burbanki	－	$+$	－	－	－	－
Iris ismali．		－	－	－		$+0^{7}$
Iris dorak	＋		－	－	－	－
Iris mirs，alan grey．	－	－		－	－	$\begin{aligned} & +0^{x} \\ & +8 \end{aligned}$
Iris pursind．	－	－	－		－	
Gladiolus colvillei．．．	－			＋	－	－
Tritonia crocosme－ flura．	－	－－	－	－	－	＋+
Begonia mrs．heal．．．	－－	－	－	－	－	＋7－6
Jregronin ensign	－	\cdots	－	$+7$	－	－
Brgonia julius．	－	$+$	－	－	－	－
Begonia suceess．．．	－	$+$	－	－	－	－
Richardia mra．roonc－ velt	－	－	－	$+8=0$	－	－
Musa hybrida．．．．	－	－	－	－	－	$+8$
Phaina hybridus	－	－	－－	－	＋8	－
Miltonia bleuana．．．	－－	－	－	－	$+8$	－
Cymbidiam eburneo－ lowianum	＋	－	－	－	－	－
Calanthe veitchii ．．．		－		$+8$	－	－
Calanthe bryan	－		－	＋0＇	－－	－
	－				－ 0	\cdots
	11	11	0	9	9	10

Table H．－Conlinued．

Hybrids．					芯	苞
2．Iodine reactions：						
Brunsdonna sanderoo alba．	$+$	－	－	－	－	－
Brunsdonna sanderce	$+$	－	－	－	－	
Hippeastrum titan－ cleonia．．．．．．．．．． - - - - $+\sigma^{7}$						
Hippeastrum ossul－ tan－pyrrha H．c．．．．．．．$\quad-\quad-\quad+\%=\sigma^{7}$						
Hippeastrum－dæones－ zephyr．	－	＋	－	－	－	－
Hæmanthus andro－						
Hæmanthus könig al－						
Crinum hybridum j ． c． h						
Crinum kircape．．．．．	－	－	－	＋ 0^{7}	－	－
Nerine dainty maid．	－	－	－	－	$+0^{2}$	－
Nerine queen of rosesN						
Nerine giantess．．．．．	－	$+$	－	－	－	
Nerine abundance．．．+ ＋$-\quad-\quad-$						
Nerine glory of sarnia	－	－	－	－	－	＋$\%$
Narcissus poeticus						
Narcissus poetaz tri－ umph．						
Narcissus fiery cross．	＋	－	－	－	－	－
Narcissus doubloon．	＋	－	－	－	－	－
Narcissus cresset．	－	＋	－	－	－	－
Narcissus will scarlet． Narcissus bicolor apri－$-\quad+$						
Narcissua bicolor apri－ cot．	－	－	－	$+9$	－	－
Narciesus madame de graaff						
Narcissus pyramus．．．	$+$	－	－	－	－	－
Narcissus lord roberts	－	－	\oplus	－	－	－
Nareiseus agnes har－						
Narcissus j．t．bennett poe						
Liliunı marhan．．．．．．	－	－	－	$+0^{*}$	－	－
Lilium dalhansoni．．．．$--_{-}$						
Lilium golden gleam－－－－\quad－+8						
Iris ismali．						
Iris dorak．．．．．．．．．Iris mrs．alan grey．．．						
Iris pursind．．．．．．．．．．． - + - - - Gindiolus colvillei - - - - $+8=0$						
Begonia mre．heal．．．	＋	－	－	－	－	－
Regouia ensign．	－	－	－	＋	－	－
Begonia julius．．．．．．	－	－	－	－	$+{ }^{*}$	－
$\begin{array}{l\|l\|l} \text { Rcgonia sucress....... } & - & + \\ \text { Richardia mrs. roose- } & + & - \end{array}$						
Muea hybrida．．．．．．－＋－－						
Phaius hybridus．．．．－－$\quad+\sigma^{7}$						
Miltonia bleuana．．．．． Cymbidium eburnco－ + - - - - -						
Calanthe veitchii ．．．．－－+ －						
Calanthe bryan．	－	－	－	$+9=0^{7}$	－	－
	16	12	1	12	5	4

Tambe II- Condinural.

111

Table H.-Conlinued.

Table H.-Continued.

Hybrids.	$\left\|\begin{array}{ll} \vec{Z} \\ 0 & \\ 0 & \\ \text { o } & 0 \\ w & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$				䍖	+
6. Chloral-hydrate reactions:						
Brunsdonna sanderce alba.................... - - - +8						
Brunsdonna sanderce.	-	-	-	-	+8	-
Hippeastrum titancleonia.						
Hippeastrum ossul-tan-pyrrha.	-	-	-	$+8$	-	
Hippeastrum dæones- zephyr						
Hæmanthus andro- meda.						
Hæmanthus könig albert.						
Crinum hybridum j. c. h.						
Crinum kircape	+	-	-	+	-	-
Crinum powellii	-	-	-	-	$+9=0^{7}$	-
Nerine dainty maid	-	-	-	$+8^{7}$	-	-
Nerine queen of roses	-	-	-	-	$+8^{7}$	-
Nerine giantess.	-	+	-	-	-	
Nerine abundance	-	-	-	-	$+\sigma^{7}$	-
Nerine glory of sarnia	-	-	-	-	1	+ $\%$
Narcissus poeticus herrick						
Narcissus poeticus dante.						
Narcissus poetaz tri- umph......... - - - - $+\odot$						
Narcissus fiery cross	-	-	-	-	-	$+0^{\pi}$
Narcissus doubloon.	-	-	-	-	-	+ $7=0^{*}$
Narcissus cresset	-	-	-	-	+ \%	-
Narcissus will scarlet.	-	-	\oplus	-	+	-
Narcissus bicolor apricot	-	+	-	-	-	-
Narcissus madame de granff.......... - - - - $+\sigma^{2}$						
Narcissus pyramus...	-	-	-	-	-	$+8$
$\begin{array}{l}\text { Narcissus lord roberts } \\ \text { Narcissus agnes har- }\end{array}$ - - - $+\%$						
Narcissus j.t. bennett						
Lilium marhan	-	-	-	$+0^{x}$	-	-
Lilium dalhensoni.	-	+	-	-	-	-
Lilium golden gleam.	-	+	-	-	-	-
Lilium testaceum.	-	-	-	-	-	+8
Lilium burbanki	-	-	-	$+8$	-	-
Iris ismali	-	-	-	$+0^{\prime}$	-	
Iris dorak	-	-	-	-	-	$+9=0^{7}$
Iris mrs. slan grey	-	-	-	-	$+\sigma^{7}$	-
Iris pursind.	-	-	-	$+8$	-	-
Gladiolus colvillei....	-	-	-	-	-	+ 8
Tritonia crocome- flora						
Begonia mrs. heal ..	-	-	-	$+9$	-	-
Begonia ensign	-	-	-	-	+ 8	-
Begonia julius..	-	-	-	-	+ 8	-
Begonia success	-	-	-	+ $\%$	-	-
Richardia mirs. roose-						
Musa hybrida......	-	-	-	-	+	$+\sigma^{7}$
Phaius hybridus.	-	-	-	-	-	$+{ }^{7}$
Miltonin bleuana	-	-	-	+\%	-	-
Cymbidium eburneolowianum	-	-	-	-	-	$+9=8{ }^{7}$
Calanthe veitchii	-	-	-	-	+8	-
Calanthe bryan	-	-	-	$+9=8^{\prime}$	-	-
	1	6	1	14	14	14

Table H．－（＇ontinued．

Hybrids．				艺	
7．Chromic－acid reac－ tions：					
Brunsdonns sandere alla					
Brunsdonna sandere	－－－	－	－	－	13
Hippeastrum titan－ cleonis	－	－	－		＋${ }^{\text {a }}$
Hippeastrum ossul－ tan－pyrrha．	－	－	－	$+9$	－
Hippeastrum dæones－ sephyr	－	－	－	＋ 7	－
Hæmanthus andro－ meda		－	\％	－	－
Hæmanthus künig al－ bert	$1-1-$	－	$+8$	－	－
Crinum hybridum j ． c．h．	＋	1－	－	－	－
Crinum kircape．．．．．	－－	－	－ 7	－	－
Crinum powellii	－－	－	－	-3	－
Nerine dainty maid．	－－	－	－	－	$+?$
Nerine queen of roses	－－	－	－	－	＋\％
Nerine giantess．．．．	－－	－	$+q=c^{\prime \prime}$	－	－
Nerine abundance	－－－	－	－	－	$+\cdots$
Nerine glory of sarnia	－－	－	－	－	＋＝
Narcissus poeticus herrick．．．．．．．．．	－－	－	$+3$	－	－
Narcissus poeticus dante	－		$+5$	－	－
Narcissus poetaz tri－ umph	－－	－	－	＋\％	－
Narcissus fiery cross．	－－	－	－	－	+ ？
Narcissus doubloon．	－－	－	－	－	＋${ }^{\text {¢ }}$
Narcissus cresset．	＋	－	－	－	－
Narcissus will scarlet．	－－	－	－	$+0^{*}$	－
Narcissus bicolor apri－ cot	－	－	＋\％	－	－
Narcissus madame de graaff	－	－	－	－	＋\％
Narcissus pyramus	$1-1-$	－	－	＋ 8	
Narcissus lord roberts	－ $1-$	－	－	－	$\therefore 3$
Narcissus agnes har－ vey	－－	－	－	－	$+7$
Narcissusj．t．bennett poe	－-	－	－－	+ ＋	
Lilium marhan．．．．．	．-+	－	－	－	－
Lilium dalhansoni．．．	－－	－	$+0^{\circ}$	－	－
Lilium golden gleam	＋－	－	－	－	－
Lilium testaccum．．．	-1	－	＋ 9	－	－
Lilium burbanki．．．．	－－	－	－	－	－？
Iris ismali．．．	－	－	＋\％	－－	－
Iris dorak	．－－	－	－	＋	－
Iris mrs．alan grey	－－		＋\％	－	－
Iris pursind．．．．．	$-1-$			－	－
Gladiolus colvillei	＋	－	－	－	
Tritonia crocosmæ－ flora			+ ？	－	－
Begonia mrs．heal．．．	－		+ ＋	－	－
Begonia pensign	－－	－	$+8$	－	－
Begonia julius．．．	－	－	＋	－	－
Begonia success．	．－－	－	－	，	
Richardia mrs．roose－ velt	1－		－	－	
Musa hybrida．．．．				－	1 ，
Phaius hybridus．．．	－－		t	－	－－
Miltonia bleuana．．．	－			＋？	－
Cymbidium eburneo－ lowianum		－		－	＋
Calanthe veitchii	「		－－	－	－
Calanthe bryan	－－		$+\square$	－	－
	-- 4 2		バ	10	14

＇I＇anf．E II－．f＇orthoued

Table H.-Continued.

Table H.-Continued.

Hybrids.					荌	+
10. Sulphuric-acid reactions:						
Brunsilonna sanderce alba.	+	-	-	-	-	-
Brunsdonna sanderce	+	-	-	-	-	-
Hippeastrum titancleonia	-	-	-	-	+\%	-
Hippeastrum ossul-tan-pyrrha.......	$+$	-	-	-	-	-
Hippeastrum dæoneszephyr	-	+	-	-	-	-
Hæmanthus andromeda.	-	-	-	$+\%=0^{2}$	-	-
Hzemanthus könig albert	-	-	-	+	-	-
Crinum hybridum j. c. h.	-	-	-	-	-	$+8^{7}$
Crinum kircape.....	-	-	-	+ 7	-	+
Crinum powellii	-	-	-	-	$+\sigma^{7}$	-
Nerine dainty maid. .	-	-	-	-	$+0^{7}$	-
Nerine queen of roses	-	\rightarrow	-	-	+ ${ }^{7}$	-
Nerine giantess..	-	$+$	-	-		-
Nerine abundance.	+	-	-	-	-	-
Nerine glory of sarnia	-	-	-	-	-	$+9=0^{\circ}$
Narcissus poeticus herrick...........	-	-	-	-	$+{ }^{7}$	-
Narcissus poeticus dante.	+	-	-	-	+	-
Narcissus poetaz triumph	-	-	-	-	$+8^{7}$	-
Narcissus fiery cross	-	-	-	+ $9=0^{\circ}$	+	-
Narcissus doubloon. .	-	-	-	+\%	-	-
Narcissus cresset	-	-	-	-	+ $\%$	-
Narcissus will scarlet.	+	-	-	-	-	-
Narcissus bicolor apricot	-	-	\oplus	-	-	-
Narcissus madame de graaff	+	-	-	-	-	-
Narcissus pyramus...	-	-	\oplus	-	-	-
Narcissus liord roberts	+	-	-	-	-	-
Narcissus agnes harvey	+	-	-	-	-	-
Narcissus j. t. bennett pce.	-	-	-	-	+ $\%$	-
Lilium marhan	-	-	\oplus	-	-	-
Lilium dalhansoni....	-	-	\oplus	-	-	-
Lilium golden gleam.	-	-	\oplus	-	-	-
Lilium testaceum. ...	-	-	-	$+\%=\sigma^{\circ}$	-	-
Lilium burbanki.	-	-	-	$+0^{7}$	-	-
Iris ismali	-	-	-	+ ¢ $\%=0^{x}$	-	-
Iris dorak	-	-	-	-	+\%	-
Iris mrs. alan grey, ..	-	-	${ }^{(1)}$	-	-	-
Iris pursind.	-	+	-	-	-	-
Gladiolus colvillei....	-	-	-	-	-	+\%
Tritonia crocosmæflora	-	-	(1)	-	--	-
Pegonia mrs. heal....	-	-	\oplus	-	-	-
Itichardia mrs. roosevelt	-	-	\oplus	-	-	-
Musa hybrida.	-	-	$-$	-	-	$+0^{*}$
Phaius hybridus.	-	-	\oplus	-	-	-
Miltonia bleuana....	-	-	\oplus	-	-	-
Cymbidium eburneolowianum	-	-	\oplus	-	-	-
Calanthe veitchii	+	-	-	-	-	-
Calanthe bryan......		-	-	$+8^{7}$	-	-
	10	3	12	9	9	4

Table H.-Cominued.

Table H．－Cortinued．

Hyluids．				華	菏	
14．Potassium－sulpho－ cyanate reactions：						
Brunsdonna sandera． alla．a．．．．．．．．．．．．．．．． - - - - $+q=0^{7}$						
Irunsdonma sandera－	－	－	－	－	－	$+\%=0^{3}$
Hippeastrum titan－ cleonia．						
Hipheastrum ossul－ tan－pyrrha ．．．．．． - - - - o						
Hinemstrum dwones－ zephyr	－	－	－	$+8=0^{7}$	\cdots	－
Hemanthus andro－ meda						
Hemanthus könig al－ bert	＋	－	－	－	－	－
Crinum hybridum j． c．h．．．．．．．．．．．．．．． - - - - $+\sigma^{7}$						
Crinum kircape	－	－	－	$+\sigma^{7}$	－	－
Crinum powellii	－	－	－	－	$+0^{7}$	－
Nerine dainty maid．	－	－	－	－	＋8	－
Nerine queen of roses	－	－	－	－	＋$\%$	－
Nerine giantess．．	－	－	－	$+8^{7}$		－
Nerine abundance	－	－	－	－	－	$+8^{7}$
Nerine glory of surnia	－	$+$	－	－	－	＋
Narcissus poetaz tri－ umph - - -						
Lilium marhan ．．．．．．	－	－	（1）	－		－
Lilium dathansoni．	－	－	（1）	－	－	－
Lilium golden gleam	$+$	－	－	－	－	－
Lilium testaceumr．．	＋	－	－	－	＋ 9	－
Lilium burbanki．．	－	－	－	－	－	$+8=0^{*}$
Iris ismali．	－	－	（1）	－	－	－
Iris dorak	－	－	－	－	－	$+8^{3}$
Iris mrs．alan grey	－	－	－	－	－	＋${ }^{7}$
Iris pursind．	－	－	\oplus	－	－	－
Gladiolus colvillei．．．	－	－	－	－	－	$+\%$
Tritonia crocosmæ－ flora．	－	－	－	＋$\%$	－	－
Begonia mrs．heal．	$+$	－	－	－	－	－
Musa hylrrida．．．．．	－	－	－	－	－	$+8$
Phaius hyhridus．．．	－	－	17	－	－	．
Miltonia bleuama．	$+$	－	－	－	－	－
Cymbidium eburneo－ lowianum ．．．．．．．．	－	－	（1）	－	－	－
	5	1	6	5	6	9
15．Potassium－sulphide reactions．						
Brunsdonna sanderu： alla		－	－	$+? \cdots$	－	－
l3runstonns stinderue	t	－	－	－	－	－
Hipmeastrum titan－ －lequita		－	\therefore	－－	－	－
Hipmeastrum onsul－ tan－pyorha		－	\because	－	－	－
Hippenstrum deones－ zephyr	－	－	\because	－	－	－
Hemanthus andro－ meda	－	－	\％	－${ }^{\prime}$	－	－
Harmanthua könig al－ bert	1	－	－	－	－	－
Crinum hyloridum j ． c．h．	－	－	＿	－	－	$+0^{*}$
（＇rinum kircape ．．．．	，	－	－	－	－	－
（rinum powellii	－	－	．	－	$+0^{\prime}$	－－
Nerine dainty maid	－	－	j）	－	－	－
Nerinequeen of roses	－	－	－	－	$+5$	－
Nurine giantoss ．．	－	－	－－	$+3$	－	－
Nerine alrundance	－	－	－	$+0^{7}$	－	－
Nerine glory of sarnia	－	－	－	－	－	$+\infty^{7}$

Table H．－Continued．

Hybrids．	$\begin{gathered} \text { 'zuJud } \\ \text { poos } 88 \text { outug } \\ \hline \end{gathered}$				感	＋
15．Potassium－sulphide reartions．－Cont＇d：						
Narcissus poetaz tri－ umph．	－	－	－	－	$+\%=8^{7}$	－
Lilium marhan．．．．	－	－	\oplus	－	$1+$	－
Lilium dalhansoni．	－	－	\oplus	－	－	
Lilium golden gleam	－	＋	－	－	－	－
Lilium testaceum．．．	＋	－	－	－	－	－
Lilium burbanki．	－	－	－	－	－	$+\%=\sigma^{x}$
Iris ismali	－	－	－	＋$\%=0^{7}$ ．	－	＋
Iris dorak	－	$+$	－	－	－	－
Iris mrs．alan grey	－	－	－	－	－	$+9=8^{x}$
Iris pursind．	$+$	－	－	－	－	
Gladiolus colvillei．	－	－	－	－	－	$+9=0^{\prime}$
Tritonia crocosme－ flora．						
Begonis mrs heal．	＋	－	－	＋	－	－
Musa hybrida．．	－	－	－	－	－	＋ 0^{7}
Phaius hybridus．	－	－	－	－	－	$+\%=0^{7}$
Miltonia bleuana	－	－	－	－	$+9$	－
Cymbidium eburneo－ lowianum	－	－	\oplus	－	－	－
	6	2	8	5	4	7
16．Sodium－hydroxido reactions：						
Brunsdonns sanderce						
Hippeastrum titan－ cleonia	\rightarrow	－	－	－	－	$+{ }^{\circ}$
	－	－	－	－	$+3$	－
Hippeastrum ossul－ tan－pyrrha．	－	－	－	＋$\%$	－	－
Hippeastrum dxones－ zephyr．	－	－	－	$+8$	－	－
Hæmanthus andro－ neda．	＋	－	－	－	－	－
Hemmanthus könig al－ bert．	＋	－	－	－	－	－
Crinum hybridum j ． c．h．	－	＋	－	－	－	－
Crinum kircape．．．．．	－	－	－	＋ 9	－	－
Crisum powellii．．．．	－	－	－	－	$+0^{7}$	－
Nerine dainty maid． Nerine queen of roses	－	－	－	$+0^{7}$	－	－
	－	－	－	－	$+\sigma^{7}$	－
Nerine giantess．．．．．	－	－	－	－	－	$+\sigma^{7}$
Nerine abundance．．	－	－	－	－	－	$+{ }^{2}$
Nerine glory of sartia	－	＋	－	－	－	－
Narcissus poetaz tri－ umph．	－	－	－	－	$+8^{7}$	－
Lilium marhan ．．．．．．	－	－	¢	－	－	－
Lilium dalhansoni	－	－	（i）	－	－	－
Lilium golden gtexm．	－	＋	－	－	－	－
Lilium testaceum ．．．．	$+$	－	－	－	－	－
Lilium burbanki．．．．．	－	－	－	－	－	$+\%=0^{\prime}$
	－	－	\oplus	－	－	－
Iris ismali．．．．．．．．．．	$+$	－	－	－	－	－
Iris mrs．alan grey．．．	－	－	－	－	－	＋$\%=0^{\prime \prime}$
Iris pursind．	－	－	\oplus	－	－	－
Gladiolus colvillei．．．．	－	－	－	－	－	＋$\%$
Tritonia crocosmæ－ flora	－	－	－	＋ 8	－	－
Begonia mrs．heal	－	－	－	$+8$	－	－
Begoma mrs，heat ．．	－	－	－	－	－	$+0^{7}$
Phaius hybridus Miltouia bleuana C＇ymbidium eburneo－ lowianum．	－	－	－	－	－	$+{ }^{+}$
	－	－	－	－	＋$\%$	－
	－	－	\oplus	－	－	－
	4	3	5	6	5	9

Table H-Continuod.

Table H.-C'mintinuel.

Hybrids.					$\stackrel{\dot{w}}{\stackrel{\rightharpoonup}{x}}$	\%
20. Uranium-nitrate reactions:						
Brunsdonna sandere alla.	-	-	-	-	-	+ ${ }^{3}$
Brunsdonna sanderce.	-	-	-	-	-	$+{ }^{+}$
Hijpeastrum titancleonia	-	-	(1)	-	-	-
II. ossultan-pyrrha . .	+	-	-	-	-	-
H, dxones-zephyr	-	-	\oplus	-	-	-
Hemanthus andromeda.	+	-	-	-	-	-
II. könig albert	+	-	-	-	-	-
Crinum hyb.j. c. h	-	+	-	-	-	-
Critum kircape...	-	-	-	+	-	-
Crinum powellii	-	-	-	-	$+{ }^{\circ}$	-
Nerine dainty maid. .	-	-	-	-	+ $\%$	-
Nerine queen of roses	-	-	-	-	+ \%	-
Nerine giantess......	-	\pm	-	-	-	-
Nerine abundance...	-	-	-	-	-	$+{ }^{2}$
Nerine glory of sarnia	-	\pm	-	-	$+{ }^{4}$	-
Narcissus p. triumph	-	-	-	+	$\underline{+8}$	-
Lilium dalhansoni.	-	-	-	+	-	-
Lilium golden gleam	-	-	-	-	+ 9	-
Lilium testaceum....	-	-	-	-	+	-
Lilium burbanki.	-	-	-	-	-	+ $\%$
Iris ismali,	-	-	-	-	+ ${ }^{7}$	-
Iris dorak	-	-	\oplus	-	-	-
Iris mrs. alan g	-	-	-	-	-	+ +
Iris pursind. .	-	-	-	+ $9=0^{7}$	-	-
Gladiolus colvillei.	+	-	-	-	-	-
Trit. crocosmæffora.	-	-	-	$+0^{1}$	-	-
Begonia mrs. heal.	-	-	-	+	-	
Musa hybrida.	-	-	-	-	-	$+8$
Phaius hybridus.	-	-	-	+ $\%$	-	-
Miltonia bleuana....	-	-	-	-	$+8$	-
Cymbidium eburneolowianum	-	-	-	-	-	$t+{ }^{\circ}$
	4	3	3	7	,	7
21. Strontium-nitrate reactions:						
Brunsdonna sandero albst	-	-	-	$+9=\sigma^{2}$	-	-
Brunsdonna sanderce.	-	-	-	+o	-	-
Hippeastrum titan- cleonia$+=-$						
II. ossultan-pyrrha	-	-	(1)	-	-	-
H. deroncs-zephyr ..	-	-	-	+9-8	-	-
Hemanthus andro-						
H. könjg alhert. .	+	-	-	-	-	-
Crinum hyb. j. c. h.	-	-	-	$+{ }^{3}$	-	-
(rinum kircapp.	-	-	-	+-	-	-
Crinum nowellii.	-	-	-	-	+	-
Nerine dainty maid.	-	-	-	-	$+3^{3}$	-
Nerine queen of roses	-	-	-	-	+ ${ }^{\prime}$	-
Nerine giantess ...	-	-	-	+ +3	-	-
Nerine abundance	-	-	-	$+{ }^{4}$	-	+
Nerine glory of sarnia	-	-	-	-	-	$+3$
Narcissus p. triumph	-	-	-	-	+ 0^{7}	-
Lilium marhan.....	-	-	-	+ $\%$	-	-
Lilium dalhansoni	+	-	-	-	-	-
Lilium golden glow..	-	-	-	+?	-	-
Lilium testaccum.	-	-	-	-	+\%	-
Lilium hurbanki.	-	-	-	-	-	+ $\%$
Iris ismali	-	-	-	+\%	-	
Iris dorak	-	-		-	$t ?$	-
Iris mrs. alan grey...	-	-	-	+	-	$+8$
Iris pursind.	-	-	-	+or	-	-
Gladiolus colville i.	-			-	$+\pi$	+
Trit. crocosmxflora. Begonia mrs heal. .	-	-	-	+o	$+8$	-

Table II.-C'ontinucd.

Hybrids.						茄
21. Strontium - nitrate reactions.-Cont'd: Musa hybrida. Phaius hybridus. Miltonia bleuana Cymbidium eburneolowianum.						
	-	-	-	-	-	
	$+$	-	-	-		
	+	-	-	-	+ $\%$	
	-	-	\oplus	-	-	-
	5	0	2	12	8	5
22. Cobalt-nitrate reactions:						
Brunsdonna sanderc alba.	-	-	-	-	-	${ }^{7}$
Brunsdonna sanderœ.	-	-	-	-	-	$+9=\sigma^{7}$
Hippeastrum titancleonia	-	-	\oplus	-	-	-
H. ossultan-pyrrha	-	-	\oplus	-	-	-
H. dæones-zephyr	-	-	\oplus	-	-	-
Hremanthus andromeda	-	-	\oplus	-	-	-
H. könog albert	+	-	-	-	-	-
Crinum hyb. j. c. h. .	-	$+$	-	-	-	-
Crinum kircape.	$+$	-	-	-	-	-
Crinum powellii.	-	-	-	-	$+\sigma^{7}$	-
Nerine dainty maid. .	-	-	\oplus	-	$-$	-
Nerine cueen of roses	-	-	(1)	-	-	-
Nerine giantess.....	-	-	(1)	-	-	-
Nerine abundance	-	-	(1)	-	-	-
Nerine glory of sarnia	-	-	(1)	-	-	-
Narcissus p. triumph	-	-	-	-	$+\%=0$	-
Lilium marham...	-	-	-	$+{ }^{7}$	-	-
Lilium dalhansoni. . .	-	-	-	$+{ }^{7}$	-	-
Lilium golden gleam.	-	-	-	-	+ $\%$	-
Lilium testaceum	-	--	-	$+0^{3}$	-	-
Lilium burbanki.	-	-	-	-	-	+\%
Iris ismali	-	-	-	-	-	$+8=0^{3}$
Iris dorak.	-	\cdots	(1)	-	-	+
Iris mrs, alan grey...	-	+	-	-	-	-
Iris pursind..	+	-	-	-	-	-
Gladiolus colvillei	-	-	\oplus	-	-	-
Trit. crocosmæflora.. .	-	+	-	-	-	-
Begonia mrs, heal.	-	-	-	$+8$	-	-
Musa hybrida.......	-	-	-	-	-	$+0^{7}$
Phaius hybridus	-	-	-	$+8^{\pi}$	-	-
Miltonia blcuana	-	-	-	-	$+{ }^{3}$	-
Cymbidium eburneolowianum	-	-	-	-	-	$+8=0^{7}$
	3	3	11	5	4	6
23. Copper-nitrate reactions:						
Brunsdonna sanderce alba	-	-	-	-	-	$+{ }^{\circ}$
Brunsdonna sandere	-	-	-	-	-	+ ${ }^{7}$
Hippeastrum titancleonia	-	-	(4)	-	-	-
H. ossultan-pyrrha	-	-	(1)	-	-	-
II. dieones-zephyr	-	-	(1)	-	-	-
Hemanthus andromeda	-	-	($)$	-	-	-
H. könig albert.....	$+$	-	-	-	-	-
Crinum hyb. j. c. h. .	-	+	-	-	-	-
Crinura kircape.	-	-	-	+\%	-	-
	-	-	-	-	$+{ }^{7}$	-
Nerine dainty maid. .	-	-	-	-	+ +	\rightarrow
Nerine queen of roses	-	-	-	-	+ $\%$	-
Nerine giantess.....	-	-	-	-	$+9=0^{7}$	-
Nerine abundance. .	-	-	-	-	-	$+8^{7}$
Nerine glory of sarnia	-	-	(1)	-	-	-
Narcissus p. triumph	-	\cdots	-	-	+ ${ }^{*}$	-
Lilium marhan......	-	+	-	-	-	-
	-	-	-	-	$+8^{7}$	-

1. Simmary of Table H.-Totals of Reaction-intensitics of Starchcs of Hybrids with each Agent and Reagent as regards Sameness, Intermedialeness, Excess, and Deficit of Development in relation to the Parents.

Agents and reagents.	Same as seed parent.	Same as pollen parent.	Same as both parents.	Intermediate.	Highest.	Lowest.	No. of starches.
Polarization	11	11	0	9	9	10	50
Iodine...	16	12	1	12	5	4	50
Gentian violet.	13	9	0	8	10	10	50
Safranin....	13	11	2	4	10	10	50
'Temperature	7	3	0	21	10	9	50
Chloral hydrate.	1	6	1	14	14	14	50
Chromic acid	4	3	2	18	10	14	50
Pyrogallic acid.	3	2	7	17	12	9	50
Nitric arid.	4	1	4	15	14	12	50
Sulphuric acid.	10	3	12	9	9	4	47
Hydrochloric arid.	1	1	7	10	6	10	35
Potassium hydroxide.	2	1	15	6	6	5	35
Potassium iodide...	4	2	6	8	5	7	32
Potassium sulpheryanate.	6	1	6	5	6	9	32
Potassium sulphide. . .	5	2	8	5	4	7	32
Sodium hydroxide. .	4	3	5	6	5	9	32
Sodium sulphide...	4	3	7	6	5	7	32
Sodium salicylate...	1	4	1	10	9	10	35
Calcium nitrate....	3	4	3	8	6	9	32
Uranium nitrate.	4	3	3	7	8	7	32
Strontium nitrate.	5	0	2	12	8	5	32
Cobalt nitrate...	3	3	11	5	4	6	32
Copper nitrate..	1	2	7	4	9	9	32
Cupric chloride. .	2	3	9	5	6	7	32
Barium chloride	6	1	12	6	3	4	32
Mercuric chloride	4	1	9	4	5	9	32

2. Summary of Table H.-SamenessandInclination of the Reaction-intensities of all of Hybrid Starches with each Agent and Reagent.

2．THE PLANT TINSしたん。

Macroscopic and Microscopic Cuaracteris of Hyblin－stocks an Comparison with the lifac－ thon－htensithes of Stabches of Hybhif－ stocks as regalids shamenes，Intehmedinte－ ness，Excess，and Deficit of Developaext in relation to the l’arent－stocks．
（Table I，Parts 1 to 8 ，and Summaries 1 to 7 ．Charts $F, 1$ to 14．）
Inasmuch as the macroscopic and microscopic char－ acters of plants are，like the microscopic characters and reactions of starches，expressions of physico－chemical processes，it follows，as a corollary，if starches exhihit well－defined peculiarities in their parental relationships， such as have been shown very clearly in preceding pages that corresponding characteristics should be manifested by the plant tissues．This is not only what has been found，but also a remarkable congruity of the data con－ sidering the exceptional diversity of the methods of investigation in the two entirely distinct although co－ operative lines of investigation．In the studies of the starches the records show that each form of starch ex－ hibits in its histologic，polariscopic，and chemical proper－ ties varying relationships to the parents，some of these properties（varying in kind and number in different hybrids）being the same or practically the same as the property of the seed parent，or of the pollen parent，or of both parents；others being intermediate letween the corresponding properties of the parents；and other： showing development in excess or deficit of parental extremes．As exceptionally striking facts it was also observed that the distribution of the data of parental relationship under the six parent－phase divisions varied with the different hybrid starches so markedly and characteristically that each table of the characters of each starch is diagnostic of the starch；that the propor－ tions of intermediate and non－intermediate characters vary within wide limits in different starches；that the development of characters in excess or deficit of parental extremes is more conspicuous than intermediateness or sameness to either parent or both parents；and that the comparative degree of influence of the seed and pollen parents varied within extremes characterized hy an almosi universal dominance of one or the other parent．Tables F，G，and H give recapitulations and summaries of the reaction－intensities of the starches of hybrids which are not only exceptionally well adapted for comparison． of certain fundamental data of the peculiarities of starches，but also for bases of comparison of starch and tissue characteristics．

In Table I the macroscopic and microscopic thata of hybrid－stocks are formulated in correspondence with the reaction－intensity data of the stardes in Talles Fand II． Comparing in a general way the two sets of tables ons gets at first glance the impression of concordance，and of so definite a character that it seems obvious that if the two sets of tables were intermingled，the botanical names having heen removed，it would he imposille to distribute them to their proper plant and starch groups．The tissue tahles differ from each other as do the starch tables，and each is as individualized and diar－ nostic of the plant as is each starch table．In emmparing the data of Table 1 and its summaries the most con－

 cmall number of whatare and reatom－that and the
 with the number that are intermeliatr，hizhow，and low－ est ；the datimetly－maller number that ane int rmenthate in comparisen with the combund mumber．that are highest and lowrot ：the comparaturly ：mall number that
 （riterion of hybrids）；and the many or la．．．merkis dissimilarities in the distribution of the macroserpme and microseopio lata among the ais parent－phaves．In thak－
 masmuch as the numbere of charamer－and reathen： are not the same．

Referring to the first summary，it will be found that of the 9.59 tisum charactor： 1 is．per wht are the same as one or the nther parent or hith parents，and that se．2 per crnt are intermediate，highst，and lewe－t ； while with the reactions of the starches（Tahle F）the figures are 36,2 and 63.8 per cont，re－pentively，the ratio of the former being $1: 4.7$ and of the latter $1: 1.8$ ． Comparing the figures of the corresponding columns of the two tables，the following percentages will be notem． the first figure being for the tissuce and the sermind for the starches：Same as serd parent 5．a and 13．1； same as pollen parent 6.8 and 9.2 ；same as buth parent： 5.2 and 13.16 intermediate 43.2 and 23.2 ；his het 21.9 and 18.4 ；and lowest 14.1 and 22.2 ．Intermediate char－ acters in the tissue represent 43．2，and highest and lowest characters 39，compared with 23.8 and 40.6 in the．reac－ tions，showing in both cases that the preventares of characters and reactions developed in exess ar definit of parental extremes are very larse，and in the reactions very much larger than the intermediate percentages．It therefore would seem to follow，as a corollary，that if intermediateness is of given value as a criterion of hy－ brids，development in excess and deficit of parental extremes is a criterion of greater value．

One of the most unexperted features exhibited by these data is the presence or absence of close correspinnd－ ence in the form oi distribution of the macroscopic and microserpice characters among the six parent－phases．（1me would naturally be led to the assumption that if，for in－ stance，a given percentage of macroscopic chara ter： were the same a＊those of the seed parent a similar ur very closely similar percentave of microscopic characters would fall under the same heading；but，stranze enough， there may be a range of relationship between almost or practical identity and very marked divergence，and even inversion，of the percentages of the two groups of charavters．Thus，in I pommin shori（Chart F 1．Tahn．
 the two curves，the only marked variation being in the in－ termediate charavers．The peremta－s of harmere that are the same as thate of the peilion parent and lowth parents，and that are develomed in den of pormal extromes，are in pach ase tery low．Themerentazes of macroserpie tharatore untw ah of thes parmo phases is lower than the merwambin：formaze of microsompic characters exeept in intermediap ．．aranture．

 there is also an inversion of the fremar＇s．an I th．
fore of the relative positions of the curves. The percentage of microscopic characters developed in excess of parental extremes is precisely the same as the percentage of macroscopic intermediate characters; and the combined percentages of macroscopic and microscopic characthes divelopect in excess and deficit of parental extremes is much larger than the combined percentages of macroscopic and microscopic intermediate characters, the proportions being 51.9 to 36.9 . It is remarkable and inexplicable that the percentage of macroscopie characters should exceed the percentage of microscopic characters among intermediate groups and be the reverse in all of the other five parent-phase groups.

In Lalia-C'ullleyu canhumiana (Chart F 2, Summary 1 of Table I, Part 2 and Summary 1) there is similar gross correspondence and lack of correspondence in percentages and in curves, but the curves so differ from those of Ipomex sloteri as to be readily distinguishable. In this hybrid the differences between the macroscopic and microscopic data are, as a whole, distinctly more marked; the percentages of macroscopic characters are less than those of the microscopic characters in 5 of the 6 parent-phases, the most marked difference being noted among the characters that are developed in deficit of parental extremes, while the percentages of both macroscopic and microscopic characters that are intermediate are notably in excess of the percentages of characters falling under the other 5 parent-phases. Among the intermediate characters, 52.9 per cent are macroscopic and 35.3 per cent microscopic. Taking the characters as a whole, 40.3 per cent are intermediate and 34.4 per cent are developed in excess or deficit of parental extremes.

In Cymbidium eburneo-louianum (Chart F 3, Table I, Part 3 and Summary 1) the percentages of charanters differ, on the whole, only slightly more than in either Ipomaca sloteri or Leclia-Cattleya canhamiana. The percentages of macroscopic characters are higher than those of the microscopic characters in 3 and lower in 3 of the six parent-phases, and the most marked differences are found among the characters that are intermediate and that are developed in excess and deficit of parental extrenes. The percentage of macroscopic intermediate characters is very much bigher than the percentage of microscopic characters (62.9 and 36 , respectively); the combined percentages of both macroscopic and microscopic intermediate characters is close to one-half (44.6 per cent) of the total of all of the characters, and nearly double the combined percentages (25.4 per cent) of characturs that are developeal in exeess and defecit of parental extremes. It is extraordinary that while the ratio of macroscopic characters that are intermediate to those which are developed in exeess and deficit of parental extremes is $62.9: 5.7$, the ratio of microscopic characters is $36: 34.7$.

In Ilendrobium rybele (Chart F 4, Table I, Part 4 and Summary 1) the perecontages of characters differ in degree, with one exception, from distinct to well marked, the greatest divergence being noted among the characters that fall under thuse which are the same as those of the pollen parent, the same as those of both parents, and which are developed in deficit of parental extremes, especially the latter. In 3 of the 6 parentphases the macroscopic characters show higher percent-
ages than the microscopic characters, in 2 lower percentages, and in 1 practically the same percentages. The percentages of microscopic characters that are intermediate represent much more than one-third (43.3 per cent) of the total characters and distinctly more than the combined percentages (29.9 per cent) of characters that are developed in excess and deficit of parental extremes. The intermediate microscopic characters represent a percentage (38 per cent) somewhat lower than the macroscopic characters and distinctly lower than the combined percentages of characters developed in excess and deficit of parental extremes (52.5 per cent). This inversed relationship of the percentages that are intermediate and developed in excess and deficit in comparison with the macroscopic characters is extremely interesting. The total percentage of intermediate characters is 37 in comparison with 46.6 per cent of characters developed in excess or deficit of parental extremes.

In Miltonia bleuana (Chart F 5, Table I, Part 5 and Summary 1) there is a marked tendency to variation in the distribution of percentages of macroscopic and microscopic characters among the 6 parent-phases, the percentages being close in 3 and well apart in 3 . The most marked differences noted are in the percentages that fall under characters that are the same as the seed parent, the same as the pollen parent, and which developed in deficit of parental extremes. The differences are not only well marked, but much accentuated because of the relatively small differences found under the other parent-phases. The macroscopic character percentages are higher than the microscopic percentages in 2 of the 4 parent-phases. The macroscopic characters that are intermediate represent 31 per cent of the total characters, distinctly higher than the combined percentages of characters developed in excess and deficit of parental extremes (17.2 per cent). The microscopic characters that are intermediate show a somewhat higher percentage than the macroscopic characters, but distinctly lower than the combined percentages of characters developed in excess and deficit of parental extremes, the ratio being 36.4:45.9, a reversal of values in comparison with the macroscopic characters. The total percentage of intermediate characters is 35.1 compared with the combined percentages (38.7 per cent) of characters developed in excess and deficit of parental extremes.

The two Cypripedium hybrids C. lathianum and C. lathianum inversum are offspring of reversed crosses. In Cypripedium lathamianum (Chart F 6, Table I, Part 6 and Summary 1) the records are remarkable on account chiefly of the comparatively high percentages of characters that are intermediate and that are developed in excess of parental extremes, and the correspondingly low percentages that fall under all of the other parentphases; the very marked differences between the percentages of macroscopic and microscopic characters that are intermediate, and that are developed in excess of parental extremes ; and the inversion of the macroscopic and microscopic values in these two phases. The macroscopic percentages are lower than the microscopic percentages among the characters that are the same as those of the pollen parent, developed in excess of parental extremes, and developed in deficit of parental extremes; and lower in the other three phases. Among characters
that are the same as one or the other parent or both parents the differences are small. Amomy the mavirscopic characters, 85.3 per cent are intermediate, and there is a very small combined percentage of characters developed in excess and deficit of parental extremes (5.9 per cent). Among the microscopic characters 49.4 per cent are intermediate and $4 . .5$ per cent are developed beyond parental extremes. Summing up the percentages of characters that are intermediate and that are developed beyond parental extremes, respectively, it is seen that of the total characters 60 per cent are intermediate and 32.4 per cent developed beyond parental extremes.

In the companion hybrid, Cypripedium lathamianum inversum (Chart F 7, Table I, 1), the macroscopic and microscopic characters are found to be closely in accord in their percentages with those of the C. lathamianum, the most noticeable differences being in the percentages that fall under the characters that are the same as the pollen parent and those that are intermediatc. In this hybrid the percentage of macroscopic characters that are the same as those of the pollen parent is larger than the percentage of microscopic characters; but in the other hybrid the reverse. The percentages of both macroscopic and microscopic intermediate characters are less, especially as regards the former. In this hybrid 73.5 per cent and in the other 85.3 per cent of the macroscopic characters are intermediate, while the figures for the microscopic characters are 46.6 and 49.4 , respectively. Summing up the characters that are intermediate and those that are developed beyond parental extremes, respectively, it is seen that of the total characters 54.1 per cent are intermediate and 36.5 per cent developed beyond parental extremes. This gives in this hybrid in comparison with the other a lower percentage of characters that are intermediate and a larger percentage that are developed in excess and deficit of parental extremes. The corresponding percentages and hence the corresponding curres of these hybrids are so closely alike that one should at a glance suspect that the plants are very closely related. In fact, the similarities and dissimilarities noted are generally in accord with what should naturally be expected from the data of hybrills.

The remarkable degree of concordance of the data of these two hybrids is a matter of pre-eminent importance because of the data of one being in the nature of a check-off or test experiment in relation to the other. It is obvious if the data do not agree within limits that have been found by the systematist in his descriptions of the naked-eye characters of plants, that they would be regarded as being undependable, and that if, on the other hand, they do agree that the differences in the corresponding percentages in the macroscopic and micro scopic characters are not fallacions. It scarcely seems within the realm of possibility, if the data were not reliable within reasonable or small limits of error of observation, that the two sets of curves would be so nearly alike and differ only to about the degree that should be expected in the case of offspring of reciprocal crosses. There is also, as will be seen, a di-tinct likeness of the courses of the curves of the chart of Cypripedium nitens to those of the preceding Cypripedium charts, and the differences between the former and the latter are defi-

 of ('. nitrn* (1'. rillovim) is alow a parat of lath of the other hylerits- the prilden parmat in the. firet and the seed parme in the wermem. The , hat- if $1:$ nitons and C. Tuthemianum inerssum are more alike ! !an 1!nen of C. nilens and C. lathamianum; in both of the former
 out later in sufficient detail, $C_{\text {. }}$ villosum is more J., tont in influencing the characters of the hyldids than is either of the other parents, which in a measure will acercunt for similaritios of all three charts
 percentares of both macroscopic and microscopic characters that are the same as those of the seed parent and
 tinctly larger, and there are notalle lowerings of perrentages of hoth macrosenpic and mieroscopic intermediate characters. There is a more marked difference between the percentages of macroscopic characters that are the same as those of hoth parents, with, moreover, an insersion of the marerseoptic and mieresenpio valure in this phase: and the marerosenpic and micro-conic percentares of characture that are deyblomed in werese uf parental extremes are practically the same, whereas in the other two hybrids they are very different. The macroseopic percentages are higher than the microsenpic pereentares amone the charactore that are the same as those of the seed parent and that are intermediate, hut lower in the other four sex-phases. Of the total numher of macrosenpie characters 50 per cent are intermediate and 31.4 pur cent arw developed in exerse and deficit of parental extremes; and of the microscopic (haracturs 3.3. per cent are intermetiate and 4a per cent are developed in excess or deficit of parental extremes. Summing both macroscopic and microscopic characters, 39 per cent are intormediate and 4.2 per cent are domveloped beyond parental extremes. The corresponiling figures for C. Inthamianum are form 3 an.t, and for C. lathamianum inversum 54.1 and 36.5 , showing in C. nitens an inversion of these sex-phase values compared with the values of the other two hybrids.

By comparine Charts F 1 to F 8 it will he sem that
 blances. no two are so similar. even in the case of the two C'ypripedium hybrids that have come from reciprocal crosses, as to lead to one being mistaken for anuther. I common phan of di-trilumion of perwemane. of characters among the six parent-phases is evident in all of the charts and is only exeeptionally departed
 of characters that are the same as one or the other parent of both parente. emerally hisher fermatas of characters that are developed in expess or deficit of parental extremes, and still higher pereentages of , haracters that are intermediate. Departures of morlifi-
 sloteri, in the higher percentage of characters inveloped in excess of parental extremes than of intermeniate char-
 If macrosenpic , harar twe that are the - was as the... of the seed and pollen parmut. Pern ato there is n thins
s) remarkable among these records as the marked tendencies in the several sets of parents and hybrids to inverted relations of macroscopic and microscopic values; and the tendency for macroscopic values to be higher than the microscopic values in the intermediate characters, and for the reverse in the characters that are dewhoped in excess and deficit of parental extremes.

Recapitulating the sums of both macroscopic and microscopic characters that fall under the six sex-phases (Table I, summary 1) it is found that of the 959 characters 5.8 per cent are the same as those of the seed parent, 6.8 the same as those of the pollen parent, 5.2 the same as those of both parents, 43.2 intermediate, 24.9 developed in excess of prarental extremes, and 14.1 in deficit of parental extremes. It will also be seen that 17.8 per cent are the same as those of one or the other parent or both parents; that 82.2 per cent are intermediate and developed beyond parental extremes; and that 43.2 per cent are intermediate against 39 per cent that are developed beyond parental extremes.

Further studies of the separate percentages of macroscopic and microscopic characters show, as presented in the second summary of Table I, in the former as compared with the latter, lower percentages in the characters that are the same as one or the other parent or both parents and that are intermediate, but higher percentages in the characters that are developed beyond parental extremes, especially in those which are developed in deficit of parental extremes. The figures in relation to sameness to one or the other parent or both parents run closely, but in the other three parent-phases they show marked divergence.

The frequent absence of agreement between the distribution of the macroscopic and microscopic data of the hybrids among the six parent-phases is at present inexplicable. As before stated, it seems, if in any hybrid given proportions of macroscopic characters would be found to be the same as those of the seed parent and as those of the pollen parent, that the corresponding proportions of the microscopic characters would be found; but the proportions may not only be quite different but even reversed. The proportions of macroscopic and microscopic characters that are the same as or inclined to the seed and pollen parents, respectively, are approximately in I pomera sloteri (Table I, Summary 4) about ${ }_{2}$ to 1 and 3 to 1 , respectively; in Lelia-Cattleya canhamiana, 1 to 2 and 1 to 2 ; in Cymbidium eburneoInuianum, 3 to :2 and nearly 1 to 1 respectively: in Denbrobium cybole, 1 to 3 and about 1 to 1 respectively; in Miltomia bleuanu. 1 to 3 and 1 to noarly $11 / 2$ respectively; in C!pripertium lathomiunum, about 1 to 1 and nearly 1 to $11 / 2$, respectively; in C. lathamianum inversum, $\because 101$ and $1 / \frac{1}{2}$ to 1 respectively, and in C. nitens $11 / 3$ to 1 and 1 to $1 \frac{1}{3}$, respectively. With such marked and unaccountable variations of macroscopic and microscopic values, it is to be expected that owing to the great dissimilarity in the methods and characters of the data of the tiswe and starch investigations the two sets of data may differ even more widely than the macroscopie and microseopic data just examined: and such is foumd to be the case, as will be shown in the following section wherein additional consideration of the tissue characters is given.

3. TISSUES AND STARCHES OF SAME PARENT- AND HYBRID-STOCKS.

Comparisons of Characters of the Tissues and of the Histologic and other Properties and Reaction-Intensities of the Starches of Hybrid-Stocks as regards Sameness, Intermediateness, Excess and Deficit of Development in relation to the Parent-Stoces.
(Table I, Parts 1 to 8, and Summaries 1 to 9. Charts F 1 to F 14.)
When the present research was planned it was the intention, as stated in the introduction, to make coincident studies of the tissues and starches of each parent and hybrid specimen, with the especial object of showing what relationships, if any, exist between the macroscopic and microscopic characters of the plants and the histological and other properties and reaction-intensities of the starches, but various conditions combined to render this project impracticable. One might be led to the assumption, upon superficial thought, that if, for instance, the macroscopic plant-characters of any hybrid are distributed in certain percentages among the six sex-phase divisions a closely corresponding division of the microscopic characters would be found, and that starch characters, physical and physico-chemical, would be in similar agreement. In other words, a universality of type or plan of distribution of characters, so that if, for example, in Ipomaa sloteri the distribution of macroscopic characters among the six parent-phases be (Table I, Summary 1) 2.6, 2.6, $0,47.4,42.1$, and 5.3 per cent, respectively, the distribution of the microscopic characters would be essentially or closely the same; but, in fact, there are more or less marked differences, as is evident by the following figures for the latter: 8.4, 3.2, 2.1, 32.6, 47.4 , and 6.3 per cent, respectively. By such comparisons it will be noted that, among the macroscopic characters as compared with the number of microscopic characters, less than one-third will be the same as those of the seed parent (2.6:8.4) ; a slightly smaller percentage the same as pollen parent ($2.6: 3.2$) ; a smaller percentage the same as both parents $(0: 2.1)$; a very much higher percentage intermediate ($47.4: 32.6$) ; a smaller percentage developed to excess of parental extremes (42.1:47.4) ; and a slightly smaller percentage dereloped in deficit of parental extremes (5.3:6.5). Such differences vary in the different hybrids in both quantity and direction, and when the percentages for all of the hybrids are summed up, as in Table I, Summary 2, the macroscopic characters show distinctly higher percentages than the microscopic characters in regard to sameness as the seed parent, pollen parent, and both parents, and also to intermediateness, especially the latter; and markedly lower percentages in the characters developed beyond parental extremes.

In view of such extraordinary differences in percentages of microscopic and macroscopic characters, interest is at once aroused in regard to the relative peculiarities of the tissues and starches in their parental relationships. On general principles it seems probable that if two groups of characters which are so closely related as the naked eye and microscopic characters differ so notably that the group of characters consisting of reaction-intensities of the starches should differ as much or more from
the tissue groups as do the latter from each vether. ('omparing the tissue characters and starch reactivities (Table I, Summary 3), it is found that the former show distinctly lower percentages in regard to sameness as the seed parent, pollen parent, and both parents; markedly higher percentages in regard to intermediateness and characters that are developed in excess of parental extremes; and a distinctly lower percentage developed in deficit of parental extremes. It seems obvious from this that the figures recorded in any one of these modes of investigation can mot be taken as an index of what is to be found by another. If the percentages of the tissue characters and starch characters are charted (Chart F 9) it will be seen that there is only a very gross, if any, correspondence between the two curves. If three curves are constructed to show the macroscopic, microscopic, and reaction data respectively (Chart F 10), a modified picture is presented. It will be noted that the macroscopic and microscopic curves show similarities and that neither appears to be related to the starch curve.

The comparative degrees of influence of ea h of the parents in determining the characters of the hybrid varies not only with the different sets, but also in the percentages of macroscopic and microscopic characters in each set. Table H, Summary 2, gives a summary of the sameness and inclination of the reaction-intensities of the starches of hybrids to one or the other parent or both parents. Table 1, Summary 4, presents similar data of the macroscopic and microscopic plant characters. Taking the macroscopic and microscopic characters together, it will be found that there is marked dominance of the seed parent in Ipomea sloteri (58:23) and Cypripedium lathamianum inversum ($60: 43$), and of the pollen parent in Lolia-Cattleya canhamiana (31:61), and that there is little dominance of either parent in Cymbidium eburneo-lowianum (41:35), Miltonia bleuana (39:47), Cypripedium lathamianum (39:48), and Cypripedium nitens ($41: 47$). In none of these hybrids is there noted in the tissue characters the extreme dominance recorded in the reaction-intensities and histological properties of some of the hybrids in the starch investigation, but such dominance will undoubtedly be brought out in researches with other parents and hybrids.

In summing up the numbers and percentages of the tissue characters and starch reaction-intensities that are the same as or inclined to the seed parent, the pollen parent, and to both parents, and which are as close to one as to the other parent, respectively, it is found that the different hybrids show the widest variations in direction and degree (Table I, Summary 6, and Table G). Thus, in Ipomea sloteri the ratio of macroscopic characters that are the same as or inclined to the seed parent to those that are the same as or inclined to the pollen parent is about 2:1, while of the microscopic characters it is almost 3:1. In Laplia-C'attleya canhamiana the ratios are about 1:2 and $1: 2$ respectively. In Cymbidium eburneo-lorianum the ratios are $1 \frac{1}{2}: 1$, and $1: 1$, respectively. In Dendrobium cybele the ratios are 1:3 and $1: 1$, respectively, and so on. In the case of the starches the ratios are far more varied, ranging from 23:0 at one extreme to $0: 25$ at the other extreme, with great variations in between. In summing up the fisures and percentages for the tissues and comparing them with the corresponding figures for the starches, it is found that
the figures for the (ambund macronenpin: and miaroscopic characters that arw the same as or indinelt th the

 Of characters that are the same a* thene of both
 13.8, respectively. In group of thatracturs firet tated the figures are almot the sime in the firet cemple, while in the serond waphe the first higure is aikent one-thard highars than the second. In the second group, the firet figure is shall in comparison with the serond, this protably being due to the fact that in the study of the tisulue charactures many characters that were found in the hybrid to le the same or pratically the same as the chararters in the parents were mot recorden. Of characters that are as close to one as to) the other parent the tiscu "haracter percentage is 21.1, while that of the starches is 11.1 . Finally, among the tissue characters, 73.7 per cent are the same an or inclined to the seed or the pollen parent ; and among the starch characters : 7.1 per ent, or practivally the same.

In case of two sets of parents and hythids: (C'ymbidium and Miltonia), studies were made coincidently of both tissue and starch characters, but unfortunately in one (C'ymbidium) the reactions of the starches were with few exceptions so very rapid that satisfactory data for differential purposes were not obtained. These data are summarized in Tables I, 3, and 5 , and F , 4 h and 48, and also in Chart: F3, F5, F11, and F12. Referring to the characters and character-phases of C'ymbidium eburneo-lowianum it will be apparent upon comparison of the data pertaining to the several parentalphases (Chart F 3) that the percentages of macroscopic characters are smalker than those of the micruscopic characters that are the same as those of the seed parent, and which are dereloped in excess and in deficit of parental extremes; but larer among those whith are the same as those of the pollen parent and of both parents, and which are intermediate. Hence, there are inversions of the curves in the chart. The quantitative differences between the plant and the reaction characters vary in the several parental-phases (Chart F 11), the differences being distinct among the characters that are the same as those of one or the other parent or both parents, marked among those which are developed in excess or deficit of parental extremes, and very marked among those which are intermediate. While there are some correspondences in the percentages and curres of the macroscopic and microscopic data, there is no correspondence betwern these and the starch reaction-intensity curve. In fact, there seems to be a tendency th invers, rather than direct relationship. In Miltonia bleuana. the macroscopic and microscopic figures and curves differ in some respects less and in others more than in ('ymbidium eburneo-lowinnum ('hart F 1:). The percentages of the macroscopic characters are higher than those of the macroscopic characters among the characters that are the same as those of the seed parent and the same as thoser of the pollen parent, hat luwer among the characters that fall under the other four parental-phases, so that here also there is inversion of the two curves. The percentages and curves of the starch reaction-intensitics bear, as in the foregoing hybrid, apparently no relationship to either macrosonic or
microscopic character curve, and here also it appears as though there is a tendency to inverse rather than direct relationship. While the starch reaction-intensity data in Cymbidium are of little value, for reasons stated, the data of Miltonia are to be regarded as being quite as dependable as those of either nacroscopic or microscopic characters.

In further comparisons to bring out specifically the comparative influences of the seed and the pollen parent on the properties of the hybrids (Table I, summary 5, Charts F 11 and F 1:2) it will be found in Cymbidium eburneo-lowianum that the macroscopic and microscopic percentages and curves tend to correspondence in their courses with varying degrees of separation, and also to inversions in their positions. The percentages of macroscopic characters compared with those of microscopic characters are lower among the characters that are the same as those of the seed parent, that are highest and that are lowest; and higher among those that are the same as those of the pollen parent, that are the same as those of both parents and that are intermediate.

Comparing now the starch-reaction data with the foregoing, it will be seen that while the percentages and curves of the tissue data have some correspondence, the starch data and curve appear to be quite independent, the starch curve being higher than the tissue curve in respect to characters that are the same as those of the seed parent, the same as those of both parents and those which are lowest; and zero in characters that are the same as those of the pollen parent, intermediate and highest. In Miltonia bleuana the macroscopic and microscopic values and curves are quite different from the preceding. The curve of the macroscopic characters is higher than that of the microscopic characters among the characters that are the same as those of the seed parent and the same as those of the pollen parent, and lower in the other four parental designations. The starch curve here is also very variant, bearing no relationship to the tissue curves. It is intermediate between the macroscopic and microscopic curves in regard to characters that are the same as those of the seed parent and that are lowest, lower in characters that are the same as those of the pollen parent and that are intermediate, and higher in characters that are the same as those of both parents and that are highest. In Cymbidium eburneolouianum (Table I, Summary 5) 30 per cent of the tissue characters are the same as those of one or the other parent or both parents ; 4.5 per cent intermediate; and 25.4 per rent developed in excess or defieit of parental extremes. The starch reactions show $50.1,0$, and 50 per cent, respectively, the figures in the several columns differing markedly from those of the tissues. In Miltonia bleurna the figures for the tissues are $26.2,35.1$ and 38.6 , respectively; and for the starch 23, 3.8, and 73.1, respectively.

The comparative degrees of influence exerted by each parent on the properties of the hybrid are shown in Table 1, Summary 6, and presented in chart form in

Charts F 14 and F 15. In Cymbidium eburneo-lowianum, in the macroscopic characters the seed parent has exerted a much greater influence than the pollen parent, but in the microscopic characters very little more than the pollen parent. In Miltonia bleuana, in the macroscopic characters the seed parent is distinctly more potent, but in the microscopic characters the pollen parent is the more potent, the values being practically reversed. Summing up the macroscopic and microscopic characters it is found that in Cymbidium eburneo-lowianum the seed parent is but little more potent than the pollen parent (37.3:31.8 per cent), and that in Miltonia blueana the seed parent is decidedly less potent than the pollen parent (34.2:41.2 per cent). As to the starches in Cymbidium eburneo-lowianum the influences of the seed parent are far greater than those of the pollen parent as shown by the ratio of $15.4: 3.8$; and in Miltonia blueana the difference is very much greater, the ratio here being 7\%: 7.7-in the former 4 times greater and in the latter almost 10 times greater. Little or no importance, however, is to be attached to the data of the starch of Cymbidium for reasons already given.

In the histological examinations of the starches it was found that the starch of Cymbidium eburneo-lowianum in the form of the grains, character of the hilum, lamellæ, and size is closer, as a whole, to the seed parent; and in eccentricity of the hilum and ratio of length to width of the grains closer, as a whole, to the pollen parent. In the qualitative reactions it is in all respects closer to the seed parent. In Miltonia bleuana the starch is in the form of the grains, character of the hilum, and character of the lamellæ closer, as a whole, to the seed parent; but in eccentricity of the hilum and size of the grains it is closer, as a whole, to the pollen parent. In all of the qualitative reactions it is closer to the seed parent.

Apropos of intermediateness as a criterion of hybrids, it is worth while to compare the percentages of microscopic and macroscopic characters and starch reac-tion-intensities that are intermediate and non-intermediate. These data are given in Table I, Summary 7, by which it will be seen that of 264 macroscopic characters recorded 56.4 per cent are intermediate and 43.6 ber cent non-intermediate; of the 695 microscopic characters, 38.2 per cent are intermediate and 61.8 per cent non-intermediate; and of the 1,018 starch reaction-intensities, 23.2 per cent are intermediate and 76.8 per cent non-intermediate.

The data recorded, are so numerous and of such a character that considerable space could be devoted to their study, but this seems unnecessary because they have been so thoroughly systematized and clearly presented in tables and charts as to be instantly understood and readily available for any who may be particularly interested in any or all of the various phases represented; nor is it necessary, because such detailed consideration as has been given meets the requirements of the objects of the research.

Table I.

'TAlll J.- fortinued.

Table I.-Continued.

					+	+
Ipomœes sloteri, microseopic charactern -Continued:						
Stem-Continued: Number of chambered crystal cells		-	-	-	+\%	-
Development of wood.	-	-	-	-	+ $\%$	-
Diameter of largest vasa.	-	-	-	-	+\%	-
Number of protoxylem patches.	-	-	-	-	-	+ 9
Number of crystal cells in intraxylaryphlœm.	-	-	-	$+\%=0^{7}$	-	+
Leaf-Lamina: Cpper epidermis at base:						
Waviness of cell walls.	-	-	-	$+\%=\sigma^{7}$	-	-
Length of cells. ...	-	-	-	-	+\%	-
Width of cells	1-	-	+	-	+	-
Number of sto-						
Number of glands Diameter of						
$\begin{array}{ll} \text { Position of sto- } \\ m a t a & \text { and } \end{array}$						
Number of hairs.	-	-	-	$+9=0^{7}$	-	-
Length of hairs	-	-	-	--	$+{ }^{7}$	-
Stiffness of hairs	-	-	-	$+9=0^{71}$	-	-
Length of papille along veins.	-	-	-	+ $\%$	-	-
Length of marginad papillæ	-	-	-	$+\%$	-	-
trper eppidermis at apex:						
	,	+	-	-	-	-
Width of cells... $-\quad-1-\quad-7=0$						
Number of sto- mata...........	+	-	-	-	-	-
Number of glands Diameter of vlands. - - $+8=\sigma^{7}$ - -						
Length of hairs... $-1-1-\theta^{r}$						
Length of papillse long veins.....$\quad-\quad-\quad-\quad+\%=\mathrm{c}^{3}$						
Lower epidernis at base:						
Length of eells. .	-	-	-	-	+\%	-
Width of cells.... + - - - -						
Number of sto- mata............	-	-	-	-	-	+\%
Number of						
Diametcr of						-
Lower equidermis at apex:						
Length of cells. . .	- -	-	-	-	+\%	-
Wilth of extls.... - - - $\quad-\quad+{ }^{1}$						
Number of glands - - - \quad -						
Diameter of glands.		-	-	,	-	-

Table I.-Continued.

					芯	+
Ipomas sloteri, microвсоріс characters -Continued:						
Petiole, transverse section: Angle between						
Angle between ridges. \qquad	-	-	-	+8	-	-
Outline...	-	-	-	$+\%=0^{\circ}$	-	-
Nuraber of cortex layers........... - - - $+\circ=\sigma^{7}$						
Diameter of cor-						
Diameter of largest - - + +0						-
Epidermis at base:						
Length of cells. .	-	-	-	$+\%$	-	-
Width of cells..	-	-	-	-	$+0^{7}$	-
Number of glands..	-	-	-	-	+ + \% $=\sigma^{7}$	-
Diameter of glands	-	-	-	-	$+\%=0^{7}$	-
Length of multicel- lular protuber-						
Corolla, limb:						
Upper epidermis:						-
Width......	-	-	-	-	$+\%=\sigma^{\prime}$	-
Mesophyll cellsshape	-	-	-	$+9=0^{7}$	-	-
Lower epidermis:						
Waviness of cells.	-	-	-	$+\%=0^{\circ}$	-	-
Thickening at an-						
Size of cells.... .	-	-	-	1	$+8$	-
Corolla tube:						
Outer epidermis:						
Length of cells. ...	-	-	-	-	+ $\%$	-
Width of cells. . . .	-	-	-	-	$+\%=0^{7}$	-
Waviness of walls.	-	-	-	$+9+0^{4}$	-	-
Thickness of walls.	-	-	-	$+9=0^{7}$	-	-
Size of chromoplast	-	+	-	-	-	-
Stamens:						
Length of multicellular glands at base............. . .	-	-	-	$+\%=\sigma^{\prime}$	-	-
Total. 95	8	3	2	31	45	6
2. Lxelia-cattleya can-						
hamiana, macroscopic characters:						
Root:						
Size and character of root						
Pseudobulb:						
Length.	-	-	-	-	-	$+{ }^{7}$
Width...........	-	-	-	-	-	$+0^{7}$
Ridging of old pseudobulbs.	-	-		$1+8$	-	-
Leaf:						
Thickness.	-	-	$+$	-	-	-
Color	-	-	+	-	-	-
Length.	-	-	-	$+9=8^{7}$	-	-
Width.	+	-	-	-	-	-

Table I -r'ontinued

Tambel.-Continued.

Table I.-Continued.

Table I.-Continued.

Table I.-Continuet.

T'able I. - ('ontinutl.

		$\begin{aligned} & \frac{1}{3}= \\ & 3 \\ & 3 \\ & 3 \end{aligned}$			$\frac{\dot{y}}{\frac{y}{3}}$	
Cymbidium eburneolowianum, microecopic characters -Continued:						
L"af - Continued: Width of celly at middle	$+$	-	-	-	-	-
Length of cells at thase.	-	-	-	-	$+8^{3}$	-
Width of cells at base.	-	-	-	-	-	+8
Lower epidermis:						
Shape of cetls.	-	-	$+$	\sim	-	-
Thicknees of walls..	-	-	$+$	-	-	-
Learth of celly at spex	-	-	-	$+8$	-	-
Width of cells at spex	-	-	-	$+\%=01$	-	-
Number of stomata at apex	-	+	-	-	-	-
Length of cella at middle	-	-	-	-	$+0^{7}$	-
Width of cells at middle	+	-	-	-	-	-
Number of stomsta at middle.	-	-	-	-	-	$+8^{7}$
Length of cells at base	-	-	-	$+7$	-	-
Width of cells at hase.	-	-	-	$+8$	-	-
Number of stomata at base	-	-	-	$+8=0$	-	-
Leaf, (transverse bection) : At midrib:						
Depth of upper epidermis.	-	-	-	-	$+\infty$	\rightarrow
Depth of aqueous tissue cells	-	-	-	-	$+8^{*}$	-
Width of aqueous tissue cells.	$+$	-	-	-	-	-
Depth of midrib) bundle.	-	-	-	-	-	$+8$
Width of midrib bundle	-	$+$	-	-	-	,
Dismeter of largest vesa	-	+	-	-	-	-
Depth of lower epidermis	-	-	-	+8	-	-
Between midrib and margin:						
Depth of upper epidermis..	-	-	-	+8 $=8^{\circ}$	-	-
Depth of upper sclerenchyma strands.	-	-	-	-	-	$+0$
Width of upper sclorenchyma atrauds.	-	$+$	-	-	-	-
Number of upper aclerenchyma strands.	+	-	-	-	-	-
Number of mesophyll layers	-	$+$	-	-	-	-
Deyth of lower sclerenchyma strands.........	-	-	-	-	-	$+8$

Table I.-Continued.

Table I.-Conlinued.

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table I-Continued.

					莒	\%
Dendrobium cybele, microscopic charac-ters-Continued: Root-Continued:						
Root-Continued:						
Width of endodermal cells.	-	-	-	+\%	-	-
Diameter of vascular cylinder.	-	-	-	+	-	-
Number of protoxylem patches.	-	-	-	$+\%=8$	-	-
Diameter of largest vasa.	-	+	-	+	-	-
Stem, transverse section at 3 d nodal swelling:						
Character of tissue.	-	-	-	$+9=8^{7}$	-	-
Size of intercellular spaces.						
Distribution of ${ }_{\text {a }}$ (
bundles.		-	-	-	-	$+c^{7}$
Amount of starch. - - - - $+8=0$ Size of grains at						
Depth of cuticle. .	-	-	-	$+\%=0$	-	-
Width of epidermal cells.						
Depth of epidermal cells.						
Shape of hypodermal cells.						
Width of hypodermal cells.						
Depth of hypoder-						
Size of intercellu- lar space						
Number of bundles	-	$+$	-	-	-	-
Depth of bundles.	+	-	-	-	-	-
widths of selerenchyma and hy-						
Diameter of Jargest						
Leaf, lamina:						
Upper epidermis:						
Thickness of cell walls..						
Length of cells at apex.						
Width of cells at						
Number of sunken epidermal cells al ajuex.						
Length of cells at middle.						
Width of cells at middle.						
Number of sunken epidermal cells at						
Iength of cells at base.		-	-	$+8$	-	-
Width of cells at base	-	+	-	-	-	-

Table I.-Continued.

Dendrobium cybele, microseopic charar-ters-Continued:
Leaf lamina - Continued:
Number of sunkers epidermal cells at base
Upper cpidermis:
Leneth of cells at
Width of cells at
Number of sunken cells at apex.... Number of stomata
Leagth of cells at middle........
Width of cells a middle.
Number of sunken
cells at middle... at middle....
Length of cells at base.......... Number of sunken cells at base..... at base.
Leaf, transverse section at midrib:
Depth of upper epiderimal cells above midrib...
Depth of ridges. .
Drpth of cells form-
ing ridges
Depth of lower epidernal cells.....
Depth of midrib
bundle........
Width of midrib
butulle.........
Midrib, between midrit, buudle and margin:
Dejth of cuticle. .
Depth of upper eqidermal cells....
Width of upper chidermal cells.
Length of lower epidermal cells.....
Width of lower epi-

Length of sunken epidermal cells...
Leaf, petiole:
Lower epidermis near lamina:
Length of cells. . .
Width of cetls ...
Number of suuhern
cells.

$$
+8
$$

\qquad
-

$$
\begin{array}{cccc|c|c|c|c}
- & - & - & - & - & +\infty \\
- & - & - & - & +8 \\
- & - & - & - & -
\end{array}
$$

\qquad

$$
+\infty^{x}
$$

$$
-
$$

$$
1-i
$$

$$
+8
$$

$$
-
$$

$$
-\quad-
$$

$$
-\quad-
$$

$$
\begin{array}{ll}
- & - \\
- & - \\
- & - \\
- & - \\
- & \\
- & \\
-1 &
\end{array}
$$

$$
+\sigma^{\prime}
$$

$$
+\infty
$$

$$
+\infty
$$

$$
+8
$$

$$
-\quad-
$$

$$
+\infty
$$

\qquad

$$
+\sigma
$$

$$
+8
$$ dermal cells.... $-\quad-\quad-\quad-\quad-\quad+o^{7}$

\qquad

$$
-
$$

$$
+5=0
$$

\qquad -
\qquad

$+\%$
\square

Table I.-Continued.

Table I.-Continued.

Table I.-Continued.

Table I.-Continued.
…………

Miltonia hlemana, ma-
croseopie charac-
ters-C'ontinued:
Leaf--Continued:
At first main vein:
At irst mape of upper epi-
dermal rolls.... dermal cedls.
Width of upper epidermal cells
Depth of rells of first layer of upper
Width of cells of first layer of upper arueous tissue.
Irepth of bundle...
Width of bundle...
lower açucou: tissue.
Width of cells of lower aqueous

Depth of lower epidermat erils
Width of lower epidermal mills. Uiper ejudermis:

Length of cells.
Papillæ
Langth of hairs
C'rlor
J.ongth of cells.

Width of rells
Lateral petal:
Cuper epidermis:
lengeth of colls
Wisth of colls
(inher

Width of cells
\qquad
-
-
+
+

$$
+8
$$

$$
+0^{x}
$$

Flower, dorsal sepal

Width of cells

Number of hairs.
Lower epidermis:
Shate of cella

Number of ctomata
shape of cills.
l.ength of hairs.

Number of hairs
Lower epidermis:
Jerngth of ertls
Numt er of :tomata

-	-	+	-		
-	+	-	-	-	-
-	-	-	$+\infty$	-	-

Labrlhum:
Cphr efidermis at
hase:

Shape of rells
Lerngth of calls
Width of cells
Number of hairs. .
Length of hairs
Length of papillx.
Shade of red-violet (a)

Fixtent of red-violet $\operatorname{sap} \ldots \ldots \ldots+$ - - -

Table I.-Continued.

Table I.-Continued.

		$\left\{\begin{array}{l} \frac{1}{\circ} \\ \dot{2} \\ \hline \end{array}\right.$			灾	+
Cypripedium lathamianum, microscopic characters:						
Upper epidermis: Thickness of walls						
Thickness of walls at apex........ .	-	-	-	$+8$	-	-
Length of cells at apex........	apex.........			+8	-	-
Width of cells at apex.	-	-	-	$+\sigma^{7}$	-	-
Thickness of walls middle						
Length of cells at middle.						
Width of cells at middle.						
Length of cells at base.						-
Width of cells at base..........	-	-	-	-	$+\sigma^{\prime \prime}$	-
Lower epidermis:						
Width of cells at apex..........$-\quad-\quad-\quad+$ \&						
Number of stomata at apex$-\quad-\quad+\theta=o^{7}$						
Length of cells at middle.........						-
Number of stomata						
Length of cells at						
Width of cells at						-
Number of stomata						-
Leaf, transverse section: Depth of cuticle						
Depth of cuticlewax.......................						
Depth of upper epi-						
Depth of cuticle on						
lower epidermis. Depth of lower epi-						
dermal cells...... - - - - $+o^{7}$ Width of lower epi-						-
Depth of midrib						
Width of midrib bundie	bundle..........ib - - - $+\infty$ Width of midrib					-
Thickness of transverse section at						
Flower stalk:						
Epidermis at top:						
Width of cells.... - - - - $+\infty$ Kind of hairs pre-						-
						-
Number of hairs. .	+	-	-	$+0^{7}$	-	-
Length of pointed hairs.	-	-	-	+ 9	-	-
Color	-	-		$+8=0$	-	-

Table I.-C'ontmucd.
Table: L.-(ontınued.

sime as secd
parent.

same as pol-
len parent.
parents.

Intermediate.
Highest.
Lowest.
(ypripedam lathamiatnum, wicroscopic ' characters - Con tinued:
Lateral petals - Continued:
Lower epidermis :tl midrlle:
Leugth of cells . . . Width of erells
Shape of cells
Waviness of walls.
Epper epidermis nt base:
Length of hair:
Color.
Labellum:
Tuper epidermis at base:

Lower efidermis at bave:
Leength of cells.
Width of cells
Color.
Cotal
7. Cypripedium latha minnum inversum, macroscopic characters:
Leaf:
Shape....
1 encth
Width
Colored area at
Length of spotted ar: a
Length of youngest
leaf...........
Relative shmrtness of youngest leaf.
Flower:
Flowering period...
Length of flower stalk
Color of flower stialk Length of tract
Leneth of ovary. ..

-		-	-
-		-	-
$+8$	1	-	-
$+8$		-	-
$+8$		-	-
+8		-	-
$+{ }^{3}$		-	-
-		-	-
$+8$,	-	ー
- + -	1	-	-
+ ?		-	-
+		\rightarrow	-
-		-	-
+9		--	-

Table I-Continued.

Table I.-Coninued.

| |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table I.-Continued.

Table 1.-Continued.

						茄
Cypripedium nitens, microscopic characters Continued:						
Leaf, transverse section:						
Depth of cuticle and wax		-	-	-	-	$+0^{7}$
Depth of upper epidermal cells.	-	-	-	-	-	+ +
Depth of cuticle on lower epidermis....	-	-	-	-	-	$+0^{7}$
Depth of lower epidermal cells	-	-	-	-	+ +	-
Width of lower epidermal cells	-	-	-	-	-	+ 7
Depth of midrib bundle	-	-	-	-	+ ${ }^{\text {P }}$	-
Width of midrib bundle	-	-	-	-	+ $\%$	-
Thickness of transverse section at midrib...	-	-	-	+ $\%$	-	-
Flower stalk: Epidermis at top:						
Shape of cells.	-	-	+	-	-	
Length of cells	-	-	-	+	-	$+0^{7}$
Width of cells.	-	-	-	$+{ }^{+}$	-	-
Thickness of walls.....	-	-	+		-	-
Ratio of pointed to clubshaped hairs.	-	-	-	+8+8	-	-
Number of hairs......	-	-	-	+ $9+0^{7}$	-	
Length of pointed hairs	-	-	-	$+0^{\circ}$	-	-
Length of elub-shaped hairs	$+$	-	-	-	-	-
Color................	+	-	-	-	-	-
Epidermis at middle:						
Length of cells	-	-	-	-	-8	$+0^{7}$
Width of cells.	-	-	-	-	+7	
Ratio of pointed to clubshaped hairs.	-	-	-	-	$+9=0^{\prime \prime}$	-
Number of hairs.......	-	-	-	$+{ }^{\prime \prime}$	-	-
Length of pointed hairs	-	-	-	+ ${ }^{\prime}$	-	-
Length of club-shaped hairs.	-	-	-	-	-	$+0^{7}$
Hower stalk, transverse section:						
Thickness of outer epidermal wall.		+	-	-	-	
Shape of epidermal cells	-	-	+	-	-	-
Depth of epidermal cells	-	-		$+8$	-	-
Width of epidermal cells	-	-	-	+ + + ${ }^{\text {a }}$	-	-
Width of cortex.......	-	-	-	$+0^{7}$	-	-
Number of layers in cortex	-	+	-	-	-	-
Dorsul sepat:						
Upper epidermis at middle:						
Lencth of ertls. . . .	-	-	-	-		-
Width of cells	-	-	-	+	+ ${ }^{\prime}$	-
color	-	-	-	$+{ }^{3}$		-
Cuper epidermis at hase:						
Lungth of cells. Width of rells . . .	-	-	-	-	+ ${ }_{-}$	-

Table I.-Continucd.

					菏	-
Cypripedium nitens, microscopic charactersContinued:						
Dorsal sepal-Continued: Color	-	$+$	-	$+9=\sigma^{7}$	-	-
Lower epidermis at middle:						
Length of pointed hairs	-	-	-	-	-	$+\infty^{2}$
Length of club-shaped hairs.	-	-	-	+\%	-	-
Ratio of pointed to clubshaped hairs	-	-	-	+\%	-	-
Color...............	-	+	-	-	-	-
Lower epidermis at base:						
Length of cells.......	-	-	-	-	$+0^{7}$	-
Width of cells.	-	-	-	+ $\%$		-
Ratio of pointed to clubshaped hairs.	-	-	-	$+9=0^{7}$	-	-
Color................	-	-	-	$+\%=0^{7}$	-	-
Lateral petals: \square						
Upper epidermis at middle:						
Length of cells........	-	-	-	-	$+0^{7}$	-
Width of cells.	-	-	-	-	$+{ }^{7}$	-
Color..............	-	-	-	$+0^{7}$		
Lower epidermis at middle:						
Length of cells.	-	-	-	-	$\stackrel{\square}{\square}$	$+{ }^{2}$
Width of cells...	-	-	-	-	+\%	
Upper epidermis at base:						
Length of hairs.	-	-	-	-	+. $\%$	-
Color..	-	-	-	+ +		
Labellum:						
Upper cpidermis at base along mid-liue:						
Length of cells........	-	-	-	-	+ 8	-
Width of cells.	-	-	-	-	+	$+{ }^{2}$
Length of hairs...	-	-	-	$+{ }^{4}$	+ ${ }^{\text {¢ }}$	-
Upper epidermis at most anterior part along mid-line:						
Length of cells.......	-	-	-	-	$+{ }^{6}$	-
Width of cells.	-	-	-	-	$+3^{7}$	+ 0
Length of hairs	-	-	-	-	-	+ $\%$
Color.	+	-	-	-	-	-
Lower epidermis between the apex and most anterior part:						
Length of cells	-	-	-	-	+ ${ }^{7}$	-
Width of cells.	-	-	-	-	$+0^{7}$	-
Color of sap. -	-	-	-	-	$+0^{7}$	-
Lower epidermis at base along mid-line:						
Length of cells.......	-	-	-	-	$+{ }^{*}$	-
Width of cells.	-	-	-	-	+8	
Total 83	5	4	7	29	24	14

 to the P'arents.

> List of plants-hyl, rid-stocks.
Ipomena sloteri:
Macroseopic
Mieroscopie

Lalia-cattleya canhamiana:
Marcoscopic
Microscopic.

Dendrobium cybele:
Macroseopic
Microscopic.

Miltonia bleuana:
Macroscopic
Mieroscopic.

Cypripedium lathamianum:
Macroscopic
Mieroscopic.

Cypripedium latham. invers:
Macroscopic
Microscopic.

Cypripedium nitens:
Macroscopic.
Microscopic. .

Total number of characters.
Per cent of 959 characters.

same ия seed paremt.		s:th1, a4 pollen parent.		$\begin{aligned} & \text { Surn :as } \\ & \text { both } \\ & \text { ware-ntc. } \end{aligned}$		Intermediate.		Higharat.		Lomest.		Tiotal.
No.	1.c.t.	No.	P. At	No.	1'.t.	No.	P. 1.	N	1. 1	\cdots	P.11	No.
1	2.16	1	2.6	0	0	14	17.4	14.	121	2	$\therefore ;$	3
,	8.4	3	3.2	2	2.1	31	32.6;	4.;	17.4	1.	8.3	(5)
9		4		\because		14	36.9	1.1	85	\cdots	f	13.3
2	$\therefore!$	1	11.	1	11.4	I	82.9	4	11.4	2	5.9	31
6	7	11	16.5)	11	0	311	35..3	14	115.5	21	24.7	nis
\checkmark		15		4		4.	41):3	15	15.1	23	1!13	119
\because	5.7	4	11.4	i	14.3	2-	629 9	\because	5.7	${ }^{1}$	0	3.7
7	9.3	7	93	\cdots	10.7	27	36	12	16	$14\}$	$1 \times .7$	75
4		11		13		14	i4.1;	14^{\prime}	12.7	14	12.7	110
1	3.3	4		4	13.3	13	4.3 .3	5	16.6	3	13.3	36
3	3.1	6	13.3	3	3.1	34	35	19	19.5	32	33	97
4		10		7		47	37	24	19	35	27.6	127
s	27.6	6	20.7	1	3.4	9	31	4	13.8	1	3.4	24
2	2.3	5	5.9	8	9.4	31	36.4	15	17.7	24	24:	-
10		11		9		40	35.1	19	16.7	25	$2 \cdot$	114
1	3	11	0	2	5.9	24	4.5.3	2	5.9	0	1)	34
1	1.1	4	4.6	2	2.2	43	49.4	36	34.5	7	λ	67
2		4		4		72	(9)	32	26.4	7	6	121
2	5.9	-	5.9	2	5.9	2.5	73.5	3	S. 6	$1)$	$1)$	34
3	3.4	1	1.1	2	2.2	41	46, ${ }^{\text {i }}$	33	37.5	,	9.1	in
$\overline{5}$		3		4		66	54.1	39	30	\checkmark	6.5	123
4	13.3	1	3.3	0	0	1.)	. 50	\cdots	27.7	2	6.7	30
5	4	4	5	7	8.2	29	35	24	30	14	17	N.3
9		5		7		44	39	32	243	16	141	113
5;		60		, 10		415		2361		136		4.5.4
	5.		6.8		5.2		43.2		21.9		14.1	

2. Summary of Table I.-Numbers and Percentages of the Macroscopic and Microscopic Characters of Hybril-stocks as regards Sameness, Intermediateness, Excess, and Deficit of Development in Relation to the Parent-stocks.

List of plants-hybrid-stocks.	$\begin{aligned} & \text { same as } \\ & \text { secd } \\ & \text { parent. } \end{aligned}$	same as pullen parent.	$\begin{aligned} & \text { Same as } \\ & \text { both } \\ & \text { parents. } \end{aligned}$	Intermediate.	Mighest.	Lowest.	Total.
Macroscopic characters:							
Ipomosa sloteri....	1	1	0	1	16	2	34
Lxelia-cattleya canhamiana	2	4	4	い	4	2	31
Cymbidium eburneo-lowitnum.	2	1	5	$\because:$	\because	1	35
Dendrobium cybele.	1	4	4	13	5	3	30
Miltonia bleuana...	λ	(1	!	4	1	39
Cypripedium Lathamianum.	1	0	2	29	2	1	34
Cypripedium lathamianum inversum	2	2	2	\cdots	3	0	$\therefore 1$
Cypripedium nitens...........	+	1	0	15	\checkmark	\because	211
Total number of characters.	21	$\because 2$	1.5	$14!$	44	111	211
Percentage of charactors.	7.9	8.7	6.s	56.4	16.6	3	
Microscopic characters:							
Ipomara sloteri . . .	$*$	3	\because	31	45	4	05
Laelia-cattleya canhamiana.	6	14	0	30	14	21	4
Cymbidium eburneo-lowianum.	7	7	s	\because	12	11	\cdots
Dendrobium cybele.	3	6	3	31	19	$\therefore 2$	47
Miltonia bleuana. .	\cdots	5	-	31	15	$\because 1$	-
Cypripedium lathamianum.	1	1	2	43	: 11	7	4
Cypripedium lathamianum inversum	3	1	\because	41	33	-	-
Cypripedium nitens......	5	4	7	29	2.4	11	4.3
Total number of characters.	35	44	32	26 (i)	192	126	(1)
Percentage of characters.	5.	1.5	4.7	34.2	27.6	1. 1	

3. Summary of Table I - Numbers and Percentages of Tissue Characters and Starch Reaction-intensilies of the Hybrid-stocks in regard to sameness, Intermedialeness, and Excess, and Deficil of Development in Relation to the Parent-stocks. Charts P 9 and P 10.

Parent-relationships.	Tissue characters, macroscopic.		Tissue characters, microscopic.		8 hybrid plants (959 characters).		50 hybrid starches (1,018 reactions)	
	No.	P. ct.						
Same as oted parent.	21	7.9	35	5	56	5.9	130	12.7
Same as pollen parent	22	8.7	44	6.5	66	6.9	101	9.9
Same as toth parents.	18	6.8	32	4.7	50	5.2	138	13.6
Intermediate	149	56.4	286	35.2	415	43.2	236	23.2
Highest.....	44	16.6	192	27.6	236	24.9	187	18.4
Luwest....	10	3.8	126	18.1	126	14.1	226	22.2

4. Sumpary of Table I.-Summary of Sameness and Inclination of the Macroscopic and Microscopic Characters of the Hybridstocks in Relation to the Parent-stocks.

List of plants-hybrid-stocks.	Same as or inclined to seed parent.		Same as or inclined to pollen parent.		Same as both parents.		As close to one as to other parent.		Number.	
	Macroscopic.	Microscopic.								
Ipomea sloteri.	13	45	7	16	0	2	18	32	38	95
Lelia-Cattleya canhamiana.	6	25	11	50	4	0	13	10	34	85
Cymbidium eburneo-lowianum.	12	29	8	27	5	8	10	11	35	75
Dendrobium cybele...........	4	40	12	38	4	3	10	16	30	97
Miltonia bleuana...	12	27	9	38	1	8	7	12	29	85
Cypripedium lathamianum	12	27	10	38	2	2	10	20	34	87
Cypripedium lathamianum inversum	18	42	9	34	2	2	5	10	34	88
Cypripedium nitens.	12	29	9	38	0	7	9	0	30	83
Tutal number of characters.	35336.8		354		50		202		959	
Per cent of 959 characters.						2		1.1		
Per cent of 1018 Starch Reactions.	42.7		.7							
			32.4		13.8		11.1			
	75.1				24.9					

5. Sumary op Table 1.-Summary of the Macroscopic and Microscopic Characters and of the Starch Reaction-Intensities of Cymbidium tburnco-lowianum and Miltonia bleuana in regard to Samenpss, Intermediateness, and Excess and Dificit of Development in relation to the Parent-Sto ks. Charts F 11 and F12.

Plants.	Same as seed parent.		Same as pollen parent.		Same as both parents.		Intermediate.		Highest.		Lowest.		Total.
	No.	P. ct.	No. P. ct.										
Cymbidium eburneo-lowianum:													
Microscopic...	7	9.3	7	9.3	8	10.7	27	36.0	12	16	14	18.7	75
	9	8.2	11	10	13	11.8	49	44.5	14	12.7	14	12.7	110
Starch.	4	15.5	0	0	9	34.6	0	0	0	0	13	50	26
MacroscopicMieroscopic.	8	27.6	6	20.7	1	3.4	9	31	4	13.8	1	3.4	29
	2	2.3	5	5.9	8	9.4	31	36.4	15	17.7	24	28.2	85
	10	8.7	11	9.6	9	7.9	40	35.1	19	16.7	25	21.9	114
Starch	3	11.5	0	0	3	11.5	1	3.8	17	65.4	2	7.7	26

6. Summary or Table I.-Summary of Sameness and Inclination of the Macroscopic and Muroscopic ('haracters and of the Sturch Reaction-Intensities of Cymbidium eburneo-lnwianum and Milt nia bluana in rolathon to the Pitront-Stomes. ('hurts F' 13 ant F 14.

Plants.	Same as or inclined to seed parent.		Same as or inclined to pollen parrat.		Sarme as or inclitud to both pareats.		$\begin{aligned} & \text { As clase tis one } \\ & \text { as to the wher } \\ & \text { parent. } \end{aligned}$		Total.
	No.	${ }^{P}$. ct.	No.	P.ct.	No.	P. rt.	No.	P.ct.	$\begin{aligned} & \text { No. } \\ & \text { P. ct. } \end{aligned}$
Cymbidium eburneo-lowianum:									
Macroscopic	12	34.3	8	29.9	5	14.3	10	25.6	35
Microscopic.	29	38.6	27	36	8	10.7	11	14.7	75
	41	37.3	35	31.8	13	11.8	21	19.1	110
Starch.	4	15.4	1	3.8	9	34.6	12		
Macroscopic.	12	41.4	9	31	1	3.5	7	24.1	29
Micruscopic.	27	31.8	38	44.7	8	9.4	12	14.1	b5
	39	34.2	47	41.2	9	7.9	19	16.7	114
Starch.	20	77	2	7.7	3	11.5	1	3.8	26

7. Summary of Table I - Tissue Chatacters and Starch Reactions as Regards Intermediateness and Non-Intermediateness of the Hybrids.

Characters.	Intermediateness.		Non-intermediateness.	
	No.	P. ct.	No.	P. ct.
Tissue characters:				
Macroscopic.	149	56.4	115	43.6
Microscopic..	266	38.2	429	61.8
	415	43.2	544	56.8
Starch reactions	236	23.2	752	76.8

CHAPTER VI.

APPLICATIONS OF RESULTS OF RESEARCHES.

In considering the applications of the results of these resarches to the explanation of the developmental changes in the germplasm, and of variations, fluctuations, sports, mutations, Mendelism, the genesis of species, etc., it must be borne in mind that the investigations (Publications Nos. 116, 1\%3, and the present) have been of a purely exploratory character and no serious attempt has beeu made to do more than lay a substantial foundation for future investigation, theoretical and practical. Hence, in the present chapter nothing more than mere suggestions will be offered in the applications of the results of fundamental problems of biology; nor would more here be possible, if for no other reason than the enormity of the field to be covered.*

Specificity of Stereoisomerides in Relation to Genera, Species, Etc.

These researches have as their essential basis the conception that in different organisms corresponding complex organic substances that constilute the supreme structural components of protoplasm and the major synthetic product's of protoplasmic activity are not in any case absolutely identical in chemical constitution, and that each such substance may exist in countless modifications, each modification being characteristic of the form of protoplasm, the organ, the individual, the sex, the species, and the genus. This conception was supported not only by the extraordinary differences noted between the albuminous substances of venom and those of other parts of the serpent, \uparrow but also by the results of the investigations of IIanriot, who described marked differences in the properties of the lipases of the pancreatic juice and the bloot; of Hoppe-seyler and others who stated that the pepsins of cold- and warm-blooded animals are not identical; of Wróblewsky and others who rerorded differences in the pepsins of mammals; of Kossell and his students who found that the protamins obtained from the spermatozoa of different species of fish are not identical ; and of various observers who have noted that the erythrocytes of one species when injected into the blood of another are in the nature of foreign bodies and rapidly destroyed. During subsequent years, and especially very recently, data have been rapidly acomulating along many and diverse lines of investigration which collectively indicate that every individual is a chemical entity that differs in characteristic parficulars from esery other. 'To any me familiar with the adyaness of hiochemistry and with the trend of scientific progress toward the explanation of vital phenomena on a physion-8hemical basis, it will be obvious that if the ronception of the non-uniform ronstitution of

[^16]corresponding proteins and other corresponding complex organic substances in different organisms and parts of organisms were found to be justified by the results of laboratory investigation a bewildering field of speculation, reasoning, and investigation would be laid opena field so extensive as to include every domain of biological science, and seemingly to render possible, and even probable, a logical explanation of the mechanisms underlying the differentiations of individuals, sex, varieties, species, and genera; of the causes of fluctuations and mutations; of the phenomena of Mendelism and heredity in general; of the processes of fecundation and sex-determination; of the tolerance of certain organisms to organic poisons that may be extremely virulent to other forms of life; of tumor formation, reversions, malformations, and monsters; of anaphylaxis, certain toxemias, immunities, ete.; and of a vast number of other phenomena of normal and abnormal life which as yet are partially or wholly clothed in mystery.

Some years previous to the discovery of the nature of the lethal constituents of venoms, Pasteur found that there exist three kinds of tartaric acid which, because of different effects on the ray of polarized light, are distinguished as the dextro-, læo- and racemic-tartaric acids, the dextro form rotating the ray to the right, the lævo form to the left, and the racemic form not at all. When these acids were subjected in separate solutions to the actions of Penicillium glaucum fermentation proceeded in the dextro form, but not in the lævo form, while in the solution of the racemic acid, which is a mixture of the dextro and lævo acids, the dextro form disappeared, leaving the lævo moiety unaffected. All three acids have the same chemical composition and chemical properties, hut differ strikingly in their effects on polarized light and in nutritive properties. Identical or corresponding peculiarities have since been recorded in relation to a large number of substances. Thus, of the twelve known forms of hexoses, or glucoses, only the dextro forms are fermentable, that is, capable of being used by certain low organisms as food, but not all are thus available, and, moreover, those which are show marked differences in the degrees of fermentability. In the case of other substances Penicillium may consume the lawo form, but not the dextro form. Other organisms show similar selectivities, using either dextro or lavo form, or both, hut in the latter case in unequal degree. Even more striking instances have been recorded in the actions of poisons, as, for instance, dextro-nicotine is only half as toxic as the lavo form; dextro-adrenalin has only one-twelfth the power of the lewo form ; racemic-cocaine has a quicker and more intense but less lasting action than the lævo form; the asparagines, hyoscines, hyoscyamines and other substances have been found to exhibit marked differences in accordance with variations in their optical properties. With other bodies belonging to this category it may be
found that one form is sweet while another is tasteless; another may be odorous, but its enantiomorphous form without odor.

To the foregoing there may be added examples of other substances that exist in several forms, but which physico-chemically belong to a different class. Thus, nitroglycerine may exist in forms that are so different that under given conditions of temperature and percussion one is explosive and the other non-explosive. Differences in substances which are found in allotropic forms may be as marked as in any of the preceding illustrations, as, for instance, in the case of phophorus, which is familiar as the yellow, white, black, and red varieties, all of which with the exception of red phosphorus are exceedingly poisonous, while the latter is inert. The ortho, meta, and para forms of a given substance may exhibit more or less marked physiological and toxicological variations, and so on.

The explanation of the remarkable differences shown by these substances, which differences are paralleled by those manifested by the lethal and inocuous proteins of the serpent, the pepsins, the protamins and the red-blood corpuscles, is to be found in the results of two independent but intimately related lines of physico-chemical research: (1) The investigations of Van't Hoff and LeBel and subsequent observers which have laid the foundation of a new, and to the biologist and physician an extraordinarily important, development of chemistry known as stereochemistry-a department that treats of the arrangements of the atoms, groups and masses of molecules, or in other words of intramolecular arrangement or configuration of molecular components in the three dimensions of space. (2) The investigations of Willard Gibbs and others which have given us the "phase rule," which defines the phases or forms in which a given substance or combination of substances may exist owing to differences in intramolecular and extramolecular arrangements and concentration of their components in relation to temperature and pressure.

According to stereochemistry a given substance may exist in multiple forms dependent upon differences in the configuration of the molecule, all of which forms have in common the fundamental chemical characteristics of a given prototype, yet each may have certain properties which positively distinguish it from the others. Theoretically, such substances as serum albumin, serum globulin, hemoglobin, starch, glycogen, and chlorophyl may be produced by mature in countless modified forms, owing to differences in intramolecular arrangements. Miescher has estimated that the serum globulin molecule may exist in a thousand million forms. Substances that exist in such multiple forms of a prototype are distinguished as stereoisomers. The remarkable fact has been noted by Fischer and others that stereoisomers may exhibit as great or even greater differences in their properties than those manifested by even closely rolated isumers. which latter in comparison with stereoisomers are distantly if at all chemically related. As already instanced, so slight a change in molecular configuration as gives rise to dextro and lævo forms may be sufficient to cause definite and characteristic and even profound differences in physical, nutritive, and physiological properties.

In accordance with the "phase rule" a substance or a combination of substances may exist in the form of
heterogeneous or homogronous s-tem: a butwormeous
 rach of which latter is a manifertation of an imfinidual phase and distinguishable from the others by phymat, mechanical, chemical, or physiological properties. The number of phases of a heterownoms stem increases with the number of component syans and the number of the latter is in direct relatimi-hip to the number of independent variable constitucnts. Therefore, by means of variations of either or beth immambecular or eatramolecular arrangement the number of forms of a substance or combination of sulstances may ranye from few to infinite.

Our means: of differentiating streremiomers are, on the whole, limited, and for the most part crude, and while it has been found that differences so marked as those referred to may be detected by the ordinary procedures, it scems obvious that the inherent limitations of such methods render them inadequate where a large number of stereoisomerides or related bodies which may exhibit only obscure modifications are to be definitely differentiated, so that other and more sensitive methods must be sought, or at least special methods that are adapted to exceptional conditions. The results of much preliminary investigation in this direction led in one research to the adoption of the crystallographic method, especially the use of the polarizing microscope, which in its very modern developments of analysis has demonstrated that substances which have different molecular structures exhibit corresponding differences in cry-t.talline form and polariscopic properties; and, moreover, that the "optical reactions" may be found to be ai distinctive and as exact analytically as the reactions obtained by the conventional methorls of the chemist. Furthermore, the necessities of the hypothesis demanded the selection of a sulstance for study of a character which upost theoretical grounds might be expected to exist in nature widely distributed and readily procurable, and, as a consequence, hemoglobin was selected.

In the study of the hemorghins the author ham as a en-worker Professor Amos P'easlee Brown.* Hemoglobins were examined from over 100 animals, representing a large variety of species, genera, and families. From the data recorded certain facts are especially cunspicuous, among which may be mentioned the following:

1. The constant recurrence of certain angles, plane and dihedral, in the hemoglobins of various species, even when the species are widely separated and the crystals belong to various crystal systems. This feature indicates a common structure of the homoglobin molecules, whatever their source.
?. The ennstant recurrence of curtain tupes of twinning in the hemoglobins, and the prevalence of mimosie. This has the same significance as the foregoing.
2. The constancy of generic characters in the crystals. The erystals of the various spectios of any genus belong to a crystallographic group. When their characters are tabulated they at once recall crystallographic groups of inorganic compounds. The crystals of the genus F elis constitute an isomorphous group which is as strictly isomorphous as the groups of rhombohedral and orthorhombic carbonates among minerals, or the more

[^17]complex molecules of the mombers of the group of monosymmetric double sulphates.
4. The crystallographic specificity in relation to specics. The crystals of each species of a genus, when they are favorably developed for examination in the polarizing microscope, can usually be distinguished from each other by definite angles and other properties, while preserving the isomorphous character belonging to the grenus. Where, on account of difficulty of measurement, the differences can not be given a quantitative value, variations in habit and mode of growth of the crystals often show specific differences.
5. The occurrence of several types' of oxy-hemoglobin in members of certain genera. In some species the oxyhemoglobin is dimorphous and in others trimorphous. Where several types of crystals occur in this way in the species of a genus the crystals of each type may be arranged in an isomorphous series. In other words, certain genera as regards the hemoglobins are isodimorphous and others isotrimorphous.
6. When orders, families, genera, or species are well separated the hemoglobins are correspondingly markedly differentiated. For instance, so different are the hemoglobins of Aves, Marsupialia, Ungulata, and Rodentia that there would be no more likelihood of confounding the hemoglobins than there would be of mistaking the animals themselves. Eren where there is much less zoological separation, as in the case of the genera of a given family, but where there is well-marked zoological distinction, the hemoglobins are so different as to permit readily of positive diagnosis. When, however, the relationships are close the hemoglobins are correspondingly close, so that in instances of an alliance such as in Canis, Tulpes, and Urocyon, which genera years ago were included in one genus (and doubtless correctly) the hemoglobins are very much alike, and in these cases they may exhibit closer resemblances than may be found in general in specimens obtained from well-separated species of a genus.

So distinctive zoologically are these modified forms of hemoglobins that we had no difficulty in recognizing that the common white rat is the albino of Mus norvegicus (Mus norvegicus albus Hatai) and not of Mus rullus, as almost universally stated, and that Ursidæ are related to Phocidæ (as suggested by Mivart 30 years ago), but not to Canide, as stated in modern works on zoology. Moreover, we were quick to detect errors in labeling, as, for instance, when a specimen marked as coming from a species of Papio was found to belong to one of the Felid\&. Generic forms of hemoglobin when chatamed from well-sprarated gencra ares in lact, so diffurent in their molecular structures that when any tro are tone ther in solution they do not fuse to form a single kind of hemoglobin or a homogencous solution, but continue as discrete disunited particles, so that when erystallization occurs each crystallizes independently of the other and without morlifieation other than that which is deperdent upon such incidental conditions as are to be taken into account ordinarily during erystallization. Thus, the hemoglohin of the doer erystallizes in rhombie prisms which have a diamond-shaped eross-section; that of the guinea-pig in tetrahedra; that of the squirrel in hexagonal plates; and that of the rat in elongated sixsited plates. When any two of these hemorlobins are
together in solution and crystallization occurs, each appears in its own form. Such phenomena indicate that the structures of the hemoglobin molecules are quite different; in fact, more differentiated than the molecules of members of an isomorphous group of simple carbonates, such as the carbonates of calcium and magnesium, which in separate solutions crystallize in rhombohedrons whose corresponding angles differ $2^{\circ} 15^{\prime}$, but in molecular union, as in the mineral dolomite, crystallize as a single substance which has an intermediate angle.

Upon the basis of our data it is not going too far to assume that it has been satisfactorily demonstrated theoretically, inferentially, and experimentally that at least this one substance (hemoglobin) may exist in an inconceivable number of stereoisomeric forms,* each form being peculiar to at least genus and species and so decidedly differentiated as to render the "hemoglobin crystal test" more sensitive in the recognition of animals and animal relationships than the "zooprecipitin test."

Subsequent to the research referred to, investigations have been pursued in the study of hemoglobins from various additional sources, especially from representatives of Primates, with the result in the latter case of finding indubitable evidence of an ancestral alliance of man and the man-like apes.

More or less elaborate studies by crystallographic and other methods have also been made with other albuminous substances and with starches, glycogens, phytocholesterins, chlorophyls, and other complex synthetic products of animal and plant life, especially with starches, of which over 300 specimens were examined, obtained from representatives of a considerable number of families, genera, species, varieties, and hybrids. In all of these investigations the results are not only in full accord with those of the hemoglobin researches but, in some instances of broader significance, because by better methods of differentiation it was found possible to recognize not only peculiarities as regards genus or species, but also varieties and hybrids, and even to trace in hybrids with marked definiteness the transmission of parental characteristics.

Summing up the results of these independent but interwoven researches, we find that the modified forms of each of these substances lend themselses to a very definite system of classification, and to one that is in general accord with that of the botanist and zoologist, that is, each genus is characterized by a distinctive type of hemoglobin, albumin, starch, etc., as the case may be, which may be designated the generic-type; every species of the genus will have a modification of this type, which is a species-type, or generic primary sub-type; and every variety of a species will hare a modification of the speciestype, that is a variety-type, or generic secondary subtype, or species sub-type. In fact, it seems clear that with revisions of present classifications that are certain to come there will be found definite family types; and, moreover, that with improved methods of differentiation there will be discorered positively distinctive sex- and

[^18]individual-types. This last statement already has support in the results of collateral lines of research which bear upon the specificities of enzymes, anaphylaxis, precipitin reactions, immune sera, etc.

From the foregoing data it seems obvious that the complex organic substances which may be assumed to constitute the essential fundamental constituents of protoplasm and the immediale complex synthetic products of protoplasmic activity may exist in exceedingly numerous or even countless stereoisomeric forms, each form being peculiarly and specifically modified in relation to genus, species, variety, race, sex, individual, or even part of an individual.

Protorlasma ('ompiex Stereobomeric System.
The next logical step in our investigation is manifestly the study of the bearings of these stereoisomers, as such and in their variable combinations and associations, upon the structure, processes, and products of protoplasm. Protoplasm, according to the modern developments of biochemistry, is to be regarded as being in the nature of an extremely complex, labile aggregate of proteins, fats, carbohydrates, and other substances that are peculiarly associated to constitute a physico-chemical mechanism. The possible number of " phases " in which such a system can exist varies with the forms of the stereoisomerides and in general with the number and independent variability of the components. In such a mechanism we conceive that the number of variables is inconceivably great. From analogy we believe that such mechanisms are so extremely sensitive that the properties and processes may be modified by even so slight a change as the substitution of one form of stereoisomeride for another of the same prototype. Were it practicable to examine all of the most complex of the organic structural components of protoplasm, it doubtless would be found that every one exists in a form peculiar to the individual and his position in classification. Moreover, we must conceive that the components of protoplasm are as specific in relation to the form of protoplasm as are the peculiar forms of stereoisomers, so that different forms of protoplasm are characterized physico-chemically (1) by the peculiarities of the stereoisomerides, and (2) by the peculiarities of the kinds, combinations, associations, and arrangements of the components in the three dimensions of space.

In accordance with the foregoing the human organism may be regarded as being a highly organized composite of heterogeneous physico-chemical systems that are composed of a vast number of parts, each such part representing a particular "phase" of the system and being physically, mechanically, chemically, and functionally an individual interacting unit of the aggregate. Hence, it follows that the sum or totality of these peculiarly modified stereoisomers per se, and of their arrangements with the associated components, constitutes a "stereochemic system" peculiar to the cell; that the sum of the cell-systems is peculiar to the tissue; that the sum of the tissue-systems is peculiar to the organ; and that the sum of the organ-systems is peculiar to the individual.

While the living organism had been for years reengnized as being in the nature of an exceedingly complex physico-chemical aggregate of interacting independent
and interdependent parts that emotitute a sugle working unit in only recent years hate the methamome that brong about co-rperatase artivities of the variou- farts been made clear. The groverning influences of the nerrous syistem were found inmbequate men in the highest organisms, not to speak of forms of life in which such actions occur, but in which there is apparently a total absence of nervous matter. As an a-roctate of the nerrous system, and doubtless far anterlating it in oreanie evolution, is a correlative ntechaniom of a chemioal character of the greatest importance, and doubtle-s "qually so throughout the whole range of living organism: from the lowest to the highest. Every living cell, whether it be in the form of a unicellular orataism or a component of a multicellular orsaniom, is undoubtedly in the nature of a heterogencous stereochemic system, each of the component parts of the system forming sulsstances which may affect directly or imlirectly the activities of the processes of the other parts; likewise, every cell of a multicellular organism is not only in itself a heterogeneous system, but a part of a number of associated heterogeneous systems and which by virtue of certain of its products, with or without the agency of the bloodvascular or lymph-vascular systems, may exercise influences upon other structures, which structures may have or seemingly not have either structural or physiological relationship. Thus we find that a secretin formed in the pyloric glands of the gastrie muensa may exeite the glands of the cardia; that erowth is determined by some product or products of the pituitary body that are carried to the various structures; that the liver, pancreas and intestinal glands are excited to secretory activity by a peculiar substance formed in the dundenal and jejunal mucosæ; that carbohydrate metabolism in the liver and muscles is influenued to a profound degree by hormones that are formed in the pancreas; that lactation is determined essentially by substances derived from the corpus luteum, placenta, and involuting womb: that the perions of orulation and menstruation are inhibited by secretions of the corpus lutcum; that vitally important states of artivity of the generative organs are directly assochated with functions of the adrenal and other glands; and that normal development, especially of secondary sexual characters, is intimately related to the ovaries and testicles. To these extraordinary corrclations might be added many others. Some of the bodily structures are in this way so definitely associated in their activities as to constitute co-operating or interacting systems, so that the tissue products are complementary, sumplementars, synergistic, or antagnnistic in their influences upon given structures. Such correlations must be, for perfectly obvious reasons, one of the most primitive forms of interprotoplasmic correlation, and we are ju:tifiel, upon the basis of our present knowledere in the conclusion that each active part of a cell, each cell, earll tissue and each organ contributes products which may affect the activitios of functionally related or unrelated parts. Hence would follow the dictum that not only is every part of a cell, every cell, cuery tissue, and every organ an individualized slereachemic unit, but also that its sperations. and hence the moture of ite nomute. must be subject directly or indirectly to the influence of every other active part of the organism, however lifferent the structures and functions moy be.

The Germplasma Stereochemic System.

The Germplasm is a Stereochemic System-that is, a Physico-chemical System Particularized by the Characters of its Stereoisomers and the Arrangements of its Components in the Three Dimensions of Space.
If during the progress of development there arise the multiple forms of differentiated protoplasm that are represented in the nerve cells, muscles, glands, etc., which exhibit such diversity of form, functions, composition, and products, each part being correlated to other parts by the agency of tissue products, it is logical to assume that in the development of the ovaries and testicles these organs have been so specialized as to endow them with the attribute of producing a form of protoplasm that embodies in a germinal state the fundamental peculiar stereoisomerides and the peculiar arrangements or phases of the associated proteins, fats, carbohydrates, and other substances which inherently characterize the organism; and, moreover, that owing to the influences of the products of activity of the various tissues upon these organs, such changes in the organism as give rise to acquired characters may through the actions of modified or new tissue products or foreign substances affect the operations of these organs and thus alter the germplasm and consequently become manifested in some form in the offspring. The ovule in its incipiency is conceived to be comparable to a complex unequilibrated solution in which changes go on until the attainment of full development, at which time it is equilibrated and remains inactive because of the absence of some disturbing influence, but in which energy-reactions may be initiated physically, mechanically, or chemically, and proceed according to definite physico-chemical laws in definite directions to a definite end. For instance, when a solution of boiled starch and diastase is at a temperature below the minimal of activity and the temperature is raised, causing immediate developmental activation ; or when the equilibrated molecules of nitroglyeerine ars exploded by percussion; or when an equilibrated maltose-dextrose-glucase solution is rendered active by dilution with water.

The nalure of the germplasm or transmissive material that serves as the bridge of continuity between parents and offspring has been the subject of speculation from time immemorial. Such hypotheses and theories as have been adranced have had reference almost wholly to its physical constitution or ultimate morphological structure. Whist of them are micromeric, that is, they hold that the germplasm is made up of an infinite number of discrete ultramicroscopic particles which are endowed with both determinate structural and vifal attributes. A ennsiderable degree of ingenuity las been displayed in their formulation. Thus, we have the " organic molecules" of Buffon, the " microzymes" of Bichamp, the "life mits" of spencer, the "plastidules" of Maggi, the "hioplasts" of Altmam, the "stirps" of Galton, the "gemmules" of Darwin, the "biophors" of Weismann, the "pangens" of DeVries, etc., each author attributing to the units certain inherent peculiarities. To the foregoing might be added particularly the conreptions that belong to the chemical category, such as the "chemism" of Le Wanter and the "physico-chemical" theory of Delage. Some of these conceptions are so fan-
ciful in the light of modern science as to be unworthy of more than passing consideration, while none of them has led anywhere beyond the field of speculation and reasoning. Even the very recent and extremely interesting and important additions to our knowledge of the histological phenomena of the developing ovum, especially of the chromosomes, have not taken us appreciably nearer the ultimate constitution or mechanism of the germplasm, or even to the nature of the reactions which occur immediately antecedent to and cause the formation of the chromosomes.

A theory to be ideal must not only have as its basis well-defined principles that are consistent with facts, but also be capable of substantiation by laboratory investigation. Given as the basis of scientific study a germplasm that has inherently the power of development, that is in the form of a stereochemic system that is peculiar to the organism, that is highly impressionable to stimuli, and that has the marked plasticity inherent to organic colloidal matter, we have all the postulates that are needed as a foundation upon which, according to the laws of physical chemistry, can be built a logical explanation of the essential fundamental elements of the mechanism of heredity.

The inherent potentiality that determines the development of the egg along a line of definite sequential processes must be recognized as being common to both animate and inanimate matter and subject to the same laws, so that the phenomena of living and dead matter are inseparably linked and reciprocally explanatory. The typical condition of matter of definite composition is crystalline, and the crystalline form is the result of development that becomes manifested in a separation and orderly and progressive arrangements of components in the three dimensions of space. Having a homogeneous solution of various selected crystalline substances of appropriate chemical composition and constitution, and given conditions attendant to crystallization, the successive stages of crystalline development will proceed along fixed and definitely recognized lines, and the interactions and interaction-relationships between the various substances constituting the physico-chemical mechanism become obvious to a greater or less extent in the peculiarities of form, composition, and other properties of the crystals. Inaving in the germplasm an analogous physicochemical system, but one which is markelly different especially because of its organic and colloidal character and infinitely greater molecular complexity and sensitivity, the phenomena of development likewise proceed in conformity with the same laws along definite lines, but they are for perfectly manifest reasons more complex and raried, more difficult of analysis, and necessarily in many very important respects quite different. Each step in this orderly development leads not merely to changes of the physico-chemical mechanism by the modification, rearrangement, or splitting off of component parts, but also to alterations which automatically determine the characters of the next succeeding step, and so on to the establishment of physico-chemical equilibrium and the consequent termination of the reactions.

In living matter the chemical processes are dependent to a preëminent degree upon enzymes that are formed by the different kinds of protoplasm to serve as
implements to carry out operations that are essential to their existence, and such enzymes are modifiable in quantity and quality in accordance with changes in internal and external conditions. The nature of hoth reactions and products of enzymic action depends upon the constitution and composition of the physico-rhemical mechanism of which the enzyme is an integral part. Whether or not at each step of serial reactions a portion of pre-existing enzyme is merely modified or a new enzyme is formed which constitutes an essential part of the particular phase of the reactions is not known, but that one or the other occurs is apparently without question. It has long been established that some of the lower organisms, such as the yeast plant, have the property of modifying the characters of the enzymes produced in relation to varying conditions; recent studies of the animal organism show that the same phenomenon occurs in both tissues and blood; and our knowledge of the processes concerned in the cataholism and anabolism of complex substances, such as starch, is fully in support of such a conception. In other words, as each step of development is reached the alterations which occur in the physico-chemical mechanism absolutely automatically predetermine the characters of the changes of the next succeeding step, and so on to the end. Hence it follows that the peculiarities of any given physicochemical mechanism predetermine the characters of the phenomena which ensue under given conditions.

An illustration of the probable modus operandi of such a mechanism is found in the phenomena of the synthesis and analysis of starch: During the production of starch through the agency of the chloroplast or leucoplast we conceive that there are instituted a predetermined, orderly, independent and interdependent series of reactions, the first of which is manifested in an interaction between water and carbon dioxide through the agency of an enzyme in the form of an oxidase to form formaldehyde. During this process there is formed another enzyme, which tentatively may be designated an aldehydase, that reacts with formaldehyde and by polymerization and condensation of six molecules gives rise to a simple sugar, such as dextrose. At the same time another enzyme appears in the form of maltase, which, reacting with the dextrose causes the formation of maltose, during which reaction another enzrme, a dextrinase is produced which reacts with the maltose to yield dextrin. Going on with this reaction, another enzyme which may be designated an amylase appears, which, reacting with the dextrin, forms soluble starch. During this stage there arises another enzyme, a coasulase, which converts the starch from the soluble to the insoluble form or ordinary starch. At this stage the series of reactions have reached their end because a state of physico-chemical equilibrium has become established, the ultimate purpose of the processes being attained, that is, a form of pabulum of extremely high nutritive value and of extremely low molecular presure, even in soluble form, so that it may entirely and rapidly disappear without disturbance of physico-chemical equilibrium in the starch-bearing cells. The mechanism concerned in starch-formation is without doult paralleled in the synthesis of proteins. fats, and other complex organic substances, and it is but a step from the individual serial processes concerned in the formation of
 there are formed and combined the various substans is that comstitute the organic structural compenemts of protoplasm. Mherower, such serial proesens are reversible at any stage, and so simple :a mondication as a whane in the percentage of water may, as in the malthem-dextrose-glucase reaction, wase a onthotio chande.

In vitro in both synthetic and analytic prenters like those which constitute serial steps in the building up and breaking down of starch, protein, fat, and other complex ordanic substances, there does not occur in any reation, as far as known, cither a transformation or a production of enzyme such as occurs in vivo, hence. when a single enzyme is present it carries out but one step of the reactions, but when, as in the case of diastase; as ordinarily prepared, the enzyme is not a single substance or unit body but a composite of a number of enzymes or modifications of a given basic enzyme, serial steps may occur as in vivo. Thus, if only a single enzyme be present formaldehyde may be converted into a monosaccharose, or a monosaccharose into a disaccharose, or a disaccharose into a polysaccharose such a; dextrin, or a dextrin into a hicher form of polysaccharose such as soluble starch, according to the enzyme or modified enzyme and initial sulstance present; or the reverse of any one of these processes may occur if proper conditions are present, hut never do any two successive progressive or regressige steps occur unless through the agency of two different enzymes or modified forms of one enzyme which are present.

It will thus be apparent that the first step of synthesis is determinod by the character of the initial physico-chemical mechanism and that all subsequent reactions under wiven conditions are definitely prodetermined: in other words, the entire train of reactions depends inherently upon the nature of the initial physienchemical mechanism of which the enzyme that starts the serial changes is an integral part.

Haring a specific stereochemic system, such a system in accordance with the laws of physical-chemistry can exist in either a latent or active state, and that when in an active state the reaction or reactions are always in the direction of the establishment of equilibrium of solution, every reaction or series of reactions being as definitely predetermined as is every reaction familiar to the inorganic chemist. The germplaim in the form in which it is secreted may he regarded as beiny in the nature of an excecdingly complex stereochemic system which is from its incipiency, or wery sem is in a state of physico-chemical unequilibrium, and in which, as a consequence, reactions are set up which are manifested especially in histological developments that ultimately dearacterize the fully developed ovule, at which time a state of physico-chemical equilibrium is established, as is evident by the arrested developmental activities. This state of physico-chemical equilibrium of the matured orule may he instantly changed to che leadine to serial definitely predetermined reactions by means of an actirating sulstance or condition, such as certain ions or inorganic salts, a spermatozoon, or a ne the prick, hy initiating the first step of the ractions, the nature of the succeeding reactions being predetermined primarily ly the inherent nature of the physion hemical syem
and secondarily by the factor that activates it. In other words, from this initial sterenchemic system there arises a complex heterogeneous system that ultimately is morphologically expressed in the histology of the matured ovule and from which are formed a composite of correlated, independent, interdeperdent, and differentiated masses which represent different phases of the components of the initial system which have been modified not only physico-chemically as expressed by changes in physical, mechanical, and chemical properties, but also in developmental energies; and from this composite are developed successively other systems.

Owing to the great impressionability and plasticity of such an exceedingly complex stereochemic system as the germplasm, it follows that the germplasm must be extremely sensitive to changes in internal and external conditions, and that its operations and products may be so materially modified by changes in its molecular arrangements or components as to give rise to variahles that are manifested in the transmutability of sex, variations, fluctuations, mutations, deformities, retrogressions, tumor formation, immunities, etc.

Assuming in accordance with our conception that the germplasm is in its incipiency an unequilibrated stereochemic system that is characteristic of the inherent, fundamental stereochemic system of the parent, it follows, as a corollary, that having a highly specialized form of parental structural material with peculiar energy-properties, the offspring must of necessity possess essentially the same fundamental characteristics as the parents when normal fecundation has occurred, and that it would be quite as impossible to have any other result than in ordinary chemical reactions under given conditions of experiment. The essential characters of the building material as regards substances, arrangements, and energy-properties are definitely fixed within narrow limits of variation.

That the peculiar forms of stereoisomerides or intimately related bodies that are inherent in the parent are conveyed in the germplasm to the offepring, and hence of necessity serve to distinguish a given form of germplasm from that of any other species or genus, and that the stereochemic conception of the nature of the germplasm is capable of laboratory demonstration, are instanced in the results of the investigations of Kossell and his students who found that simple forms of protein, known as protamins, obtained from the spermatozoa of different species of fish are different, each being apparently of a form peculiar to the source. Here is one suhstance at least that seems to be in specific stereoisomeric forms in the sperm of different species, which obviously must affect the properties of the germplacm, and which when brought in contact with the germplasm of the eger plays its part in determining the phemomema of development. Moreover, by the "precipitin reaction" method Blakeslee and Gortner have found evidence that is consistent with the conclusion that there are not only "species proteins" but also "sex proteins," and this receives support in a number of very recent investisations, espercially those of Steinach, who found that the corresponding hormones secreted by the ovaries and testicles are different, and that by virtue of these differences the secondary sexual characters, female and male,
are determined. Thus he found in castrated young males, in which transplantation of ovaries had been practised, that the development of masculine peculiarities is inhibited and female traits substituted, so that the individuals tend to assume the female type and become to a striking degree feminized-males, as shown in bodily form, in a development of the mammary g'ands, in lactation, and in an alteration of psycho-sexual characters. Lillie, in studies of the explanation of the sterility of females of opposite-sexed twins, has presented evidence of the existence of sex hormones, and both Lipschuitz and Morgan have recorded facts to justify the belief that the testicular hormone furthers the development of male characters and inhibits the development of female characters, while the ovarian hormone favors the development of female characters and inhibits the development of male claracters. This dual property is obviously of great fundamental importance in the explanation of various sex phenomena which have been quite inexplicable. Furthermore, Riddle has found that the ova of the pigeon are dimorphic, one-half having an inherent tendency to produce males and the other half females; that eggs with the male tendency have a higher percentage of water, a smaller size, and a lower percentage of potential energy ; and that the "sex-foundation" of the germplasm is transmutable, so that an egg that has inherently the male tendency may become female, and that such females exhibit secondary male sexual characters. The transmutability of the germplasm is comparable in its physico-chemical mechanism to the reversion of the maltose-dextrose-glucase reaction caused by a change in concentration of the solution, the dextrose being reverted into isomaltose and not to the antecedent maltose-the male egg is not changed into a female egg, but into a modified or feminized-male egg.

In considering the transmissibility of parental substances it is essential to distinguish positively between the stereoisomerides and intimately related bodies that are inherent in the parent and those which are acquired through infection or otherwise. Thus antibodies acquired by the mother may be without influence upon the ovary during the formation of the germplasm and not exen become a constituent of the latter. On the other hand, an immunity may be established in the mother that may be conveyed to the offsprins, yet, curiously enough, such an immunity may not be transmitted by the immunized male. In processes of the production of the germplasm the ovary may be as insensitive to the presence of many acquired substance: of the blood as are some or all other organs, and there is no more reason in general for expecting the orary and its product to be affected by such bodies or conditions than there is for the pancreas and the pancreatic juice or any other secretory structure and its product to be affected. Every acquired substance must in its relations to the ovaries be governed by the same physico-chemical laws as determine specific selectivities or reactivities in connection with the tissues generally. Hence, any such substance may be reactive in relation to one structure, but not to another.

Plasticity as regards sev-d termination has been demonstrated in the studies of the development of a male (drone) bee from the unfertilized egg, and of a female
from the fertilized egg. Moreover, the developing female bee when fed on ordinary food becomes a common female "worker," but when fed on royal food develops into a queen. (Nee also pages 3is and :36.)

The continuity of the building material between parent and offspring is seen in its simplest manifestations in reproduction among protuzo by binary fission and budding, by which the part separated from the parent mass is in all essential respects like the parent, having the same fundamental physico-chemical composition aud constitution. That in such instances the offspring should be a segmental counterpart of the parent mass seems as obvious as that halves of a cube of usar should be alike. Similarly, if we have in the ovule and sperm forms of protoplasm which as stereo hemic systems are in all fundamental respects counterparts of those from which the parents were developed, it follows that the offspring must under normal conditions in accordance with the laws of physical chemistry have the same fundamental parental characteristics, as much so as separated portions of any complex stercochemic system must possess the properties of the initial mass. Moreover, if the stereochemic systems of germplasms of the female and male differ, as must be admitted, it is manifest that the stereochemic system of the erg that has been activated artificially or naturally, as the case may be must be different and hence underqu developnent differences that will be obvious in the offspring. In the first instance, the serial reactions which lead to the formation of the clifferent tissues, etc., are activated by a mere disturbance of physien-chemical equilitrium, which may be due to the conversion of a proenzyme into enzyme or a prosecretin to a secretin, or in other words of an inactive body into an active one. In the second instance, there is not only activation, but the extremely important addition of the male steroochemic system which by admixture with the female system constitutes a female-male system. Therefore, in the first place the offspring is developed solely from the female stereochemic system, and in the second place from the combined female and male systems, one or the other of which may be wholly or in part accountable in determining certain peculiarities in the derelmmontal changes. Moreover, owing to the transmutability of stereoisomerides and the multiphase transmutability of stereochemic systems, coupled with the reversibility of metabolic processes which may be due to even the simplest of changes in physico-chemical mechanisms, we have a logical basis for the explanation of the phenomena of sexual dimorphism that is expressed in the so-called male and female ova, and male and female spermatozoa; of primary and secondary hermaphroditism; of paradoxical sex developments where the unfertilized egg develops into either male or female offspring; and of sexual transmutability of the inherently male or female ovule.

It follows upon the basis of our theory that because of the inherent peculiarities of the stereochemic systems of the germplasms and the definitely predetermined nature of the entire series of reactions in accordance with the laws of physical chemistry that " like begets like" because like every other physico-chemical phenomenon, individual or serial, simgle or complex, under given cometitions, it is a physico-chemical fatality.

Among the most constant phenomena of living mat ter is inconstancy "r variation. The fundamental
 treme complevity, impressionability, and plasticity of the molecules of protoplasm in association with unc as ing and varying kinds and degrees of environmental whanges. Ilasticity is a property that is douhtlese com. mon to every form of mattor, the degree varying within wide limits in different sulstances and uniler vary ng conditions. Oxygen, nitrogen, carbon, sulphur, selenium, phosphorus, arsenic, tin, iridium, pallarlium, and other clemente have lone hem known th lee allotrenic; calcium nitrate and metaphosphate, ammonium n 'trate and fluosilicate, silser mitrate and iodik., ca'cium sarbonate, silica, copper sulphate, iron sulphate, magnesium sulphate, mercuric choride and iotide, zinc whonride, arsenious and antimonious oxides, potassium bichromate and ammonium paratungstate, are only a few of the simple inorranic compernms that have heen found to be dimorphous or pelymorphous: and the kunwn organic or carbon compounds that exist in multiple forms are so numernus as to make an everedingly larg. list. In some instances the differences in form are said to indicate merely differences in physical nature, ther: heing rariations in color, hardness, density, meltingpoint, crystalline form, etc., without change in chemical properties: but in others the differences are both phy-ical and chemical and the latter may completely overshadow the former. Perhap, there is no more remarkable or sugcestive instance of difference in propertios that is associated with differences in molecular form than that of stryehnime in crdinary and collowidal states. the latter having only one-fourth the taxicity of the former: and one wondors, apart from anything else, what changes have occurred in the properties of the various non-collodal suhstances such as inoreanic salts when they have become an integral part of the molecule of the mast ermples of all colluid- -pratoplatm. Mareover. change from one stato or phase into another is usually brought about by very simple means, such as mere solution, heat, sunlight, repeatell rervistallization, gelation, chemical reagents, etc. (See Publication No. 173, Introluction, pare 9.)

Water, while among the simplest substances of nature, is endowed with most extraordinary properties. especially in connection with living matter. It exhibits a remarkable degree of plasticity in its molecular structure. The universal conception up th very wat wars that water is correctly represented by the symbol $\mathrm{H}_{2} \mathrm{O}$) has heen shown th he untenable exception under rery
 must be lonked upon as heine in the form of a molecular system that comsists of $\mathrm{H}_{\mathrm{O}} \mathrm{O}$ (monohidrol), (H, O).
 portions in rolation to temprature and presur., : m ? which are readily convertible from nome form into a:l other hy changes in attendant conditions. It is asemp.n ! that when polymerization occurs there takes place a (hemical combination of the simple molecules and t) at with this combination changes occur in properties, such,
for instance, as has been referred to in the synthesis of starch (see P'ublication 1 1 3 3, page 156), when six molecules of formaldehyde are polymerized and condensed to form lextruse. Moreover, it is to be assumed that the molecular system consists of these three forms of molecules in chemical combination, and therefore if the proportions vary the system will vary in its properties. The chief component of this system when water is in the form of ice is $\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ and of steam $\left(\mathrm{H}_{2} \mathrm{O}\right)$, while in the form of liquid water it is $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$.

Fach of these forms of water is, therefore, a ternary mixture of molecules in chemical combination, the proportions of the three kinds of molecules differing, and alterable in relation to changes in temperature and pressure, and in the direction of the maintenance of physico-chemical equilibrium. It is also probable that there may be higher polymers, and that each polymer may exist in more than one form, thus indicating a further and by no means unimportant degree of plasticity in stereochemic phenomena, especially in relation to vital processes. Even the proportions of these molecules in ice prepared under varied conditions are almost certainly different, inasmuch as some forms of ice are heavier and other forms lighter than water, and as one form crystallizes in the hexagonal system, another in the tetragonal system, and another in the regular system.

Further evidence of the plasticity of water is scen in the variety of forms of snow crystals, all of which are said to belong to the hexagonal system. It is easy to account for these different forms if, as is indicated, the proportions of these three kinds of molecules vary with temperature; if water in vapor form in the clouds has like steam a maximum proportion of the $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecules, and if cooling to the freezing-point brings about (as the temperature falls) progressive changes in the proportions of the molecules, and hence of the molecular system, so that at any given temperature the composition of the system is different from that at any other temperature; if these changes in proportions may be further influenced by the rapidity of the fall of temperature, the velocity of the change not keeping pace with the temperature change; and if crystallization may be influenced hy incidental conditions, as is manifested in the variety of crystalline figures when ice forms on a window pane. It has recently heen found that when condensation takes place in highly supersaturated ascendiny air, and the air temperature is much below freezingpoint, both snow crystals and rain-drops are formed. If such plasticity is to be fround in sulstances so simple as water it seems that almost any conceivable degree is to be expected in complex substances, such as the proteins, fats, carlohydrater, and other organic metabolites, and to the very ultimate degree in protoplasm. The plasticity of proteins has been demonstrated in the modifications of the hemoglobins in specific relationship to the source; and of carbohydrates in the starches in the same respect, and especially in the diversified reactions in which properties are elicited that are the same as thowe of one or the other parent, or both parents, or which are not exhibited by either parent, and which are therefore peculiar to the hybrid, and in all the phases of the reations serem to he limited only by the number of reagents.

Having now in protoplasm a molecular system of extreme complexity, affectibility, and plasticity, unceasing changes in internal and external conditions and a knowledge of the fundamentals of biochemistry such as is indicated in preceding sections, it requires no more effort of the imagination, than in the reactions of organic substances generally, to picture the underlying factors and processes that become expressed in the differences in form, structure, and vital characteristics that are manifested in variations, sports, fluctuations, and kindred phenomena, and in individuals, varieties, species, and genera. It seems that the mechanisms of Mendelian inheritance and sex have striking analogies in the evolution of a and β forms of stereoisomers, as, for instance, in the case of α - and β-glucose, as was pointed out in the preceding memoir, page 10.

Protoplasmic Stereochemic System Applied to the Genesis of Species.

The importance of hybridization in the genesis of species has undoubtedly been greatly underestimated, chiefly because of a false valuation that has been placed upon intermediateness as a criterion of hybrids and the belief that the hybrids between species are very commonly infertile. But it seems obvious from the records of this research that such characters of a hybrid as may be intermediate may be overshadowed by others, some of which are the same as those of one or the other parent or both parents, or developed beyond parental extremes, or which may be peculiar to the hybrid. De Vries, in his exposition of the laws of mutation of Oenothera, states as follows:
"The mutations to which the origin of new elementary species is due appear to be indefinite, that is to say, the changes may affect all organs and seem to take place in almost every conceivable direction. The plants become stronger (gigas) or weaker (albida), with broader or with smaller leaves. The flowers become larger (gigas) and darker yellow (rugrinervis), or smaller (oblonga and scintillans) and paler (albida). The fruits become longer (rubrinervis) or shorter (gigas, albida, lata). The epidermis becomes more uneven (albida) or smoother (lavifolia); the crumples on the leaves cither increase (lata) or diminish (scintillans). The production of pollen is either increased (rubrinervis) or diminished (scintillans); the seeds become larger (gigas) or smaller (scintil lans), more plentiful (rubrinervis) or more scanty (lata). The plant becomes female (lata) or almost entirely male (brevistylis); many forms which are not described here were almost entirely sterile, some almost destitute of flowers. 0 . gigas, O. scintillans, O. oblongata tends to become biennial more than 0 . lamarchiana; and 0 . lata tends to become less so; whilst O. nanclla cultivated in the usual way scarcely ever runs into the second year. This list could easily be extended, but for the present it may suffice. To regard the new forms from another point of view, some of them are fitter, some unfitter, than the parent form and others neither the one nor the other."

In reference to O. lamarckiana, he states that nearly all organs and all characters mutate, and in almost every conceivable direction and combination. The foregoing quotation is of especial interest at the present juncture because the data are applicable to hybrids, and as it seems to have been satisfactorily established that these mutants are actually hybrids. Moreover, when they are taken in comection with the data quoted from Focke in the Introduction, we have facts that are in entire accord with the results of the studies of the physico-chemical properties of the starches. Again, Ipomaa sloteri, one
of the hybrids studied in this research in respect to its macroscopic and microscopic characters, has been found to so differ from its parents that were it not known to be a hybrid there would be ample justification to regard it as a species (see Ipomea, Part II). It is well known to the botanist that many of the hybrids included among the hundreds referred to by Forke are so individualized as to warrant their assignment as species or sulispecies. Finally, it seems from the present state of our knowledge that the difficulty of hybridization, the tendency to infertility of the offspring, the tendency to the development of characters in the hybrid in excess of parental extremes, and the tendeney to develop new characters in the hybrid, bear usually an inverse relationship to the nearness of the parents, while the tendency to intermediateness bears usually a direct relationship. Owing, however, to the extreme plasticity of protoplasm the most variable results in hybridization are to be expeoted, as is indicated by the results of the studies of the starches, as presented particularly in Table H, Parts 1 to 26, and summaries.

The study of the genesis of species is without doubt a study of the evolution of chemical compounds, and essentially of interactions, rearrangements, and combinations of stereochemic systems and their components. In the origin of species by hybridization there is, according to the conception stated in the penultimate section, a union of two stereoisomeric systems of varying plasticities, female and male, in each of which there
are assumed to be potentially every or practially every character and character-phaso of the parent. Moreover, this variability of plasticity applies not only to the system, as a whole, lat alaotorath of the interral sternochemic units. Having extremely complex, plastic, interacting systems, and applying thereto a fundamental knowledge of physical chemistry, especially of organic colloids, as is indicated, it seems that there should be no more dilliculty than in the readions of wranic substances generally in reaching satisfactory theoretic understandings of the diverse developmental changes that oceur in the hytrid that is, why some rlatactors are like those of one or the other parent ur both jarents, or developed beyond parental extremes, or new characters appear; or why one parent may be of equal or greater potency in influencing the development of the characters of the hybrid; or why speries of remote genera can not be crossed, or, on the other hand, why varieties of the same species may readily be crossed; or why characters that may have existed in ancestral generations, but which are not apparent in the parents, may appear in the offspring; or why there may or may not be Mendelian inheritance; or why mutations can be induced artificially by the injection of certain substances into the ovaries, etc., etc. Unfortunately this subject is s^{\prime}, vast that a detailed consideration of such pronts would take us far beyond the possible limits of space of this report, and therefore, as previously stated, nothing more can be offered at present than mere suggestions.

CHAPTER VII.

NOTES AND CONCLUSIONS.

IIypothesis Underlying These Researches.
These investigations (Publications Nos. 116, 1i33, and the present) have as their essential basis the conception that in different organisms corresponding complex organic substances that constitute the supreme structural elements of protoplasm and the major synthetic products of protoplasmic activity are not in any case absolutely identical in chemical constitution, and that each substance may exist in countless modifications, each modification being characteristic of the form of protoplasm, the organ, the individual, the sex, the species, the genus, etc., and that the possible number of modified forms of each substance is in direct relationship to the complexity of the molecules.

Exiloratory Character-Evidence in Support of the Hypothesis, Etc.

These inquiries have for certain reasons been practically of a purely exploratory character and therefore no serious attempt has been made to do more than gather sufficiently convincing evidence to amply sustain the hypothesis and thus lay a satisfactory foundation for subsequent inquiries. It is obvious, from the results of each of these studies, that considering the difficulties met in pioneer investigations the measure of success has been beyond that which should reasonably have been expected.

Hemoglobins from 107 species were examined, mostly from mammals, including representatives of Pisces, Batrachia, Aves, Marsupialia, Edenta, Sirenia, Ungulata, Rodentia, Otariidia, Phocidæ, Mustelidæ, Procyonidx, Ursidx, Canidx, Fclidx. Viveridx, Insectivora, Chiroptera, and Primates. The number seems large in comparison with the numbers studied by various previous investigators, yet it is an insignificant fraction of the number existent in vertebrates and invertebrates. Moreover, in antecedent investigations the crystallographic examinations were, with scarcely an exception of a single hemoglobin, limited to geometric form, while in the studies embraced in this series of researches both geometric form and optic reactions were recorded, the latter being here very important and often as distinctive and as exact in differentiation as chemical reactions.

The starches studied have been so numerous as to cover a far broader field, including in the preceding research 300 that represent 105 genera and 35 families, and in the present research 48 sets of parent- and hybridstocks, and representing 17 genera and 7 families. The total number examined compared with those available for similar investigation is, as in the hemoglobins, an exceedingly small or almost nestigible fraction.

Not only have the homoglobins and starches been scareely more than touched, but there remains an enormous list of complex metabolites included among the proteins, fats, carbohydrates, enzymes, coloring matters, cholesterols, organic acids, alkaloids, etc., and also a very large number of compounds, which as yet have been
subjected to extremely little or absolutely no investigation in regard to their constitutional properties in relation to biological source. Some or even many of these metabolites are not unit substances-that is, they are combinations, physical or chemical, of like or unlike substances. Moreover, there are derivatives of many of these primary or initial substances-for instance, the erystalline chlorophyls (ethylchlorophylides) - that are most promising for such investigations. An unlimited field of investigation in both material and promise is opened by the facts that probably every substance, elementary and compound, may exist in more than one form; that when molecules are associated during polymerization there is chemical combination, and that in these combinations the arrangements of the components in the three dimensions of space may yield different forms of the same substance (as in water), or entirely different substances (as in the polymerization of formaldchyde to form dextrose) ; that the possible number of stereoisomeric forms increases directly with the complexity of the molecular organization; and that in all probability these various stereoisomeric forms of substances produced by protoplasmic activity are specifically modified in relation to biologic origin.

Metiods Employed and Recommended.

The crystallographic method used in the investigations of the hemoglobins is, in so far as the requirements of these investigations are concerned, not only exact but also a very sensitive means of differentiation of different forms of these substances. Differences in chemical constitution can readily be demonstrated which as yet are too obscure for detection by any known chemical procedures; differences have been shown that can not be brought out by any of the biologic tests; repeated experiments with the hemoglohins from different individuals of the same species have yielded practically or absolutely the same results; biologic differences elicited by this means are in accord with the data of the systematist wherever the latter is not open to question; and these records have had confirmation in the results of anaphylactic reactions. The methods for differentiating stercoisomers are with rare exceptions quite crude, but even those which are inexact may be not only checks upon each other but also collectively and even individwally be of much usefulness in such inrestigations. It was pointed out that differences had been recorded in the hemoglobins from different species in their solubilities, crystallizahilities, water of crystallization, extinction coefficients and quotients, and decomposability; and it is evident, inasmuch as differences that may be exhibited by one method may not be brought out by another, or in varying degree, that much is to be gained by the use of many or all methods. Very much is possible by means of further development of biologic tests.

In the differentiation of starches, both in the preceding and present researches, the methods employed
are the same but moslifed in the ir applications in certain important respects. In both investigations the histologic properties, the iodine and aniline reactions, and the gelatinization reactions with heat and various chemical reagents were studied, the chief differences being in the method of recording the reactions with the chemical reagents, and in the kinds and concentrations of the reagents. In the former research the quantitative differentiations by means of the chemical reasents wre made by determining the time of the occurrence of complete or practically complete gelatinization, and the preparations of starch with the reagent were not adequately protected from the air and evaporation. It was found during the progress of this work that fictitious values may be recorded owing to the existence in nearly every form of starch of different kinds of grains which vary in proportions and gelatinizabilities, together with varying degrees of influence of the air (probably chietly or solely differences in oxidation), and effects that are due to varying rapidity and degrees of evaporation. Such sources of fallacy have been practically eliminated in the present research by making records of the progress of gelatinization in regard to both the entire number of grains completely gelatinized and the percentage of the total starch gelatinized at definite time-intervals; and by the prevention of oxidation and evaporation by sealing the preparations. In nearly every form of starch there are grains, usually very small, and also parts of grains, that are quite resistant to reagents. The former commonly represent much less than 5 per cent of the total quantity of stareh, and it has been assumed that gelatinization is practically complete when 95 per cent of the total starch has been gelatinized. The methods used and their values in the differentiation of starches have been set forth in full in the preceding memoir on pages 305 to 313 , and supplementary statements are to be found in the present memoir in Chapters II, IV, and V.

The histologic method employed in this research is the same in all respects as in the preceding investigation. in the report of which it has been discussed with sufficient fulness (page $30 \sigma^{\text {r }}$). Its value has not only been sul)stantiated but accentuated by the results of the present study of the starches of parent- and hylhid-stocks.

The polariscopic, iodine, and aniline methods are sn crude that the personal equation enters largely into the determination of the values recorded, and while they have proved of unquestionable usefulness they are so inferior to the gelatinization method that they should be given a very subordinate place. The polarization and aniline methom are by far the kenst useful of all of thone used, yet the anilines will be found of much value in the differentiation of different lamellæ of individual grains, as has been shown by the work of Denniston (see previous Memoir, page 56). Iodine, like the anilines, can be used to great adrantage in the study of the structure of the starch grain. It is also of uscfulness by showing by variations in the color reactions differences in the constitution of starches from different sources; of different kinds of grains of the same stard ; of the capsular and intracapsular parts of the grains; and of the capsules themselves. The method used in determining the temperature of gelatinization is practically exact, as has been shown by the fact that when the experiments are made with proper care the figures recorded are quite as
uniform as those ohtained in the dutermination of the melting-points of various substances.

The widatinization methend by meane of varions (hemioal reakents as here pursud lat pronen to be so

 tivally wactly the same, wom thench made at widely different perjouls and will varying temperature anit humidity. Very rarely, for some inexplicable reason, a more or less markedly aberrant reened has been made. In esery instane this erpor wa detmed heran-w of the ahsence of agreement with what was positively indirat... by conditions. In fact, as was foum! in pration and as will be obvious by the context, the records of the reactions oltained by means of the variou- m. thons emploved are in the case of cach awith and reasont, and of ali colleretively, in a very large measure checks upon each other. In other words, the values for the stardh of a given spe-
 the records of all other species and varieties of the genus must conform, unless there are represented memter; of sulgenera or other sulzeneric divisinns. The elneser botanically the specries or the varictio the closer will the records collectively agree with the given stanlard. Varieties of a species exhibit remarkable clos n. $\cdot \mathrm{se}$, and their values represent a species type. When members of sulgenera or other form of sulveneric division are represented they may exhihit differences that are as marked, and even more marked, than those of members of closely related genera.

It is to be borne in mind that the method of classification of the systematist is of an arbitrary character, as is evident, for instance, in the shifting of species from one to another genus, the remodeling of gencra, families, etc. This classifying and reclassifying that has been in progress for generations continues at the present time, and eren now the most generaliy arrepted classification can not be accepted as being more than tentative. If, therefore, the results of these investivations seem to be or are not in aceord in isolated instaners with the classification of the systematist it does not follow that the former are wrong. As evidence of the mutual checking of the recorts one need examine only the wry similar curves of the starches of the chnsly rillated memhers of Iris (Charts E 30 to E .33) ant lisiburrlin (hart E. II): the dissimilar curves of the stareles of members of sulgeneric divisions, such as the hardy and tender species of Crimum (Charts E 7 to E.9) ; the dissimilar curves of the starelies of members of suluentra of Be-
 the starches of the closely related genera A maryllis and
 (Charts E 34 and E35); and the dissimilar curves, usually hichly characteristic, of the starches of rarious genera of the same and different families that are shown in this series of charts (E 1 to E 46), as a whlle. These similarities and dissimilarities are in decree variahle in accordance with what in general should be expected, or what is at last in ateorid with undur-timenti.. Intamial classification.

The differentiation of starehs hen heat. as in the temperature of gelatinization methoi, is to be recommended as boing of much value. hoth quantitative'y and qualitatively. It was shown in the preceding inse-t:-
gation that the temperatures of gelatinization of starches from different sources vary within a range of over 40° C.; and that the figures for the starches of different members of a genus usually tend to keep within limits of about 5°, the closer the plant sources the closer the temperatures. Moreorer, qualitative differences similar to those elicited by the various chemical reagents have been observed, and they are worthy of detailed study. These it seems will be found to differ not only in different starches, but also to differ from the reactions elicited by the chemical reagents and to differ as much from them as they do from each other. These qualitative reactions have been found, as a whole, to have such values as to recommend them for extensive use. In the present research these reactions with heat and chemical reagents have yielded records that are of especial interest in the differentiation of the starches of the hybrid- and parent-stocks, and they have not only shown peculiarities of the hybrid that are the same as those of one or the other parent or both parents, but also individualities not observed in either parent and corresponding to what was found in the records of the histologic and other characters and character-phases. The extraordinary plasticity and complexity of the starch molecules and its character and character-phase potentialities offer endless opportunities in this form of investigation.

The quantitative data appeal more to both experimenter and reader because they lend themselves so admirably to reduction to tables and charts. The possibilities for additions to our knowledge of this kind are unlimited. As previously indicated, the number of starches available for such investigations is enormous and the number of the reagents can be considerably amplified. Moreover, there can often be used, to much advantage, several concentrations of the same reagent and also combinations of certain reagents.

These various reagents differ markedly in their values in the quantitative and qualitative reactions, respectively, and some are better for the former than the latter and vice versa; moreover, a reagent that may be particularly good for qualitative reactions with one form of starch may be inferior for another form, and so on. Recognition of these points will be of great advantage in subsequent investigations.

Starcif Substances as Non-Unit Substances.

Starch from any given plant is a heterogeneous collection of grains which vary in microscopical and molecular properties; even the individual grains, except perhaps the very small embryonic, spherical, and seeminsly amorphons forms, are likewise of non-uniform composition. The differences in the behavior of the inner and outcr parts or (according to general ideas) of the so-called amylose and cellulose can be demonstrated with the greatest ease and in ways to show that these parts represent different forms of starch-suhstance. As already repeatedly pointed out, the individualities of these two parts are markedly shown in their different hehavior towards various reagents. As a rule, the outer part is the more resistive, but toward some rearents it is the less resistive. In relation to moist heat, when the grains aro boiled in water the outer part is always the last to disappear, sometimes resisting boiling for many minutes, appearing in suspension in the form of empty
capsules from which the less resistive inner starch has escaped in semi-liquid form and passed into a pseudo solution.

The different lamellæ of the mature starch-grain are of less and less density from without inward. These peculiar variations are, it seems clear, not owing to an increase in the density of each additional lamella as it is deposited, but to a gradual transition of the molecular states of the inner or older lamellæ to a less dense condition. Such a change is explicable in the light of the ready transmutability of one stereoisomeric form into another owing to slight differences in attendant conditions. (S'ee preceding memoir-Publication No. 173, page 9.) The mere separation of the starch from direct contact with the plastid or the cell-sap by the later-deposited starch, age, and other incidental conditions, are of themselves doubtless sufficient to satisfactorily account for this transmutation. Likewise, differences in other parts, such as in primary and secondary lamellæ, protuberances, etc., in relation to other parts of the grains, may be explained in the same way.

Eacil Starci Property an Independent PhysicoCiememcal Unit-character.

Each starch property, whether it be manifested in peculiarities in size, form, hilum, lamellation, or fissuration, or in reactions to light, or in color reactions with iodine or anilines, or in gelatinization reactions with heat or chemical reagents, is an expression of an independent physico-chemical unit-character that is an index of specific peculiarities of intramolecular configuration, the sum of which is in turn an index which expresses specific peculiarities of the constitution of the protoplasm that synthetized the starch molecule. The unitcharacter represented by the form of the starch grain is independent of that size; that of lamellation independent of that of fissuration, ete. This is evident in the fact that in different starches variations in one may not be assnciated with variation in another, and that when variations in different properties are coincidently observed they may be of like or unlike character. Gelatinizability is one of the most conspicuous properties of starch and it represents a primary physico-chemical unit-character, which character may be studied in as many quantitative and qualitative plases as there are kinds of starches and kinds of gelatinizing reagents, the phenomena of gelatinization by heat being distinguishable from those by a given chemical reagent, and those by one reagent from those by another, and those of one starch by a given reagent from those of another starch. The gelatinization of the starch grain is not only a very definite chemical process but one that must vary in character in accordance with the reagent entering into the reaction. It follows, as a corollary, that the property of gelatinizability of any specimen of starch may be expressed in as many independent physico-chemical unit-character-phases as there are reagents to elicit them.

Individulality or Specificity of Each Agent and Reagent.

The methods employed in the research, all microscopic, have, as stated, included inquiries into histologic characters; polariscopic, iodine and aniline reactions; temperatures of gelatinization; and quantitative
and qualitative gelatinization reactions with a variety of chemical reagents which represent a wide range of differences in molecular composition. In some instances the starch molecules alone or largely determine the reaction, while in others both starch and reagent play important parts, as in chemical reactions generally. Thus, in the erystallographic studies of the hemoglobin crystals and in the polarization reactions with starch the molecules undergo no change; hence the reactions express peculiarities that are inherent to the molecules. In other starch reactions, in the gentianviolet and safranin reactions, the organization of the molecules is either unaffected or affected to an undetertable degree, the reactions being presumably adsorption phenomena; in the iodine reactions there is probably a feeble chemical combination of the iotine and starch, but without apparent intermolecular disorganization; in the temperature and chemical-reagent reactions there is an intermolecular breaking down by a process of hydration, with which process there may be associated reactions that vary in character and number in accordance with peculiarities in the composition of the reagents. If the molecules of the starches from different sources are in the form of stereoisomers, it follows, as a corollary, that they must exhibit differences in their behavior with different agents and reagents, and show differences that are related to variation in the kind of agent and in the composition and concentration of the reagents. In other words, the reaction in each case is conditioned by the kind of starch and the kind of agent or reagent.

Refiableity of Methous as Showy by Cifarts And Conforaity of Reslits Collectively.

It is obvious that tests of the reliability of the methods employed in the differentiation of starches from various sources are to be found in the agreement of the results of repeated experiments and in the eonformity of the results with established data of the systematist. As stated in preceding paragraphs, the polarization, iodine, and aniline methods are, notwithstanding their crudity and limitations, reliable if the experiments are carried out with sufficient care; the temperature of gelatinization method is accurate within very narrow limits of error; and the gelatinization method used in the present research by means of chemical reagents is practically exact. The first three methods are, owing to their usually very restricted range of values, of very much more usefulness in the differentiation of members of a genus than of different genera, and this applies, although to a less degree, to the temperature of gelatinization method; while the chemical reagent method has unlimited application to both intrageneric and intergeneric differentiation, though the different reagents have widely varying values. In comparing these records with those of the systematist it is important to recognize that a slight change in molecular constitution may give rise to very marked chances in properties and that distinction must be made between that which is definitely established and that which is tentative in even the most advanced taxonomic system. All things considered, it is remarkable how close in general is the agreement of the data of these exceedingly dissimilar methods of investigation. In fact, they are evidently
 or actual disagreements exist it doulat!ess will be found that further applications of the physico-chemical method will demonstrate the reamors.

Certain of the sescral form- of wart - ate of "-perial value in showing the reliability of the methods used, particularly those which are included in the groups D 1
 vomewhat detailed dicellasion in sertems: 2 and 3 of ('hapter IV. Even a must cursory examination separatoly and together will demonstrate their tanonomic
 the progress of gelatinization at definite time-intervals,
 courses in the individual wharts and in the parent-hybrid and the generic groups, that they are quite as dependable as the data of the systematist. Were these records not reliable, it seems clear that the curves would not take regular but irregular or zigzag circumlinear cour-es, or instead of being straight or practically straight lines be irregular, ete.; moreover, there would not be the conformity of the curves of the reactions with each reazent that is lound in each set of parent- and hybrid-st cks, or in the sets belonging to each genus, excepting in the latter when sulgeneric divisions are represented. The more or less marked subgenerie dilferences attest the value of the method, and if in some instances they may secm to be disproportionate to the differences of the sy:tematist, this may be and doubtless is owing to a greater sensitivity of the phwsion-6hemisal mothent.

The plan adopted in the preparation of Charts F 1 to E46, in which composite curves of the reaction-intensities are exhibited, has proved in a very large measure successful in eliciting varietal, species, subgeneric, and generic peculiarities, hut its essential defect is to be found in the neglect of differences that were found during the carlier periods of experiment. In the formulation of these charts terminal data were used-that is, the time of complete or practically complete gelatinization in an hour or ol the pereentage of total stareh crelatinized within the same period. In many instances such figures may be the same, yet there may have heen more or less marked differences in the progress of gelatinization during the early periods of the experiments. Notwithstanding such defects, there is in general a remarkable degree of conformity of these curves with taxnomic data. There should be considered with the foregning the figures presented in Table B 1 which give the numbers of very high, high, moderate, low, and rery low reations: the sums of reaction-intensities: and average reaction-intensities of each starch and each parent-hybrind set of starches.

Gexfril Conctretoxs hedwis from Restlets of

The results of the erystallographic studies of the hemoglobins indicate: that there is a common structure of the lemoglobin molesule, whatsoever the source of the hemoglobin: that the crystals of the spentos of a denus belong to a crystallographic group which represents a senerie type: that the rerstake of each speries of a senus when favorably developed can be distincuished from those of another species of the conas: that in some species there may he foumd one, tw°, or thre forms of hemoglohin, and that this seems to be a generic peculiarity,
inasmuch as if in one species there be found, say, three forms the same number will exist in other members of the genus; that the revstals of different genera differ as definitely and specifically as those of crystalline groups of mineral substances differ chemically and as generic groups differ zoologically or botanically; and that by merans of peculiarities of the hemoghons phylogenetic relationships can be traced, as has been found in the case of the bear and seal and other animals.

Gexeral Conclestons hrawn from the Starch Researches.

The results of the hemoglobin and starch researches are mutually confirmatory in support of the existence of stereoisomeric forms of emplex organic substances that are specifically modified in relation to varieties, species, subgencra, and genera, and that these specificities indicate corresponding peculiarities of the protoplasms in which the substances are formed. The records of the starch researches indicate: that each starch property is an independent physico-chemical unit-character, and that the unit-character represented by the property of gelatinizability may be manifested in an indefinite number of quantitative and qualitative unit-character-phases, the number varying with the form of starch and the number of gelatinizing reagents employed; that qualitative reactions are as distinctive and important as the quantitative reactions; that the reactions of different starches with a given reagent vary within wide limits, and that those of each starch vary with each reagent independently of the variations of other starches; that the reactions of varieties of a species very closely correspond to those of the species and are in accord with botanical characters; that the reactions of members of a genus are in general in close accord with taxonomic data and constitute a generic type, the varieties and species tending to exhilit closeness or separation in their relationships in close accord with bontanical peculiarities; that when a genus is represented by subgenera or other form of subgeneric division (such as rhizomatous and tuberous plants, or hardy and tender species, etc.), the reactions may exhibit as many different groupings as there are sulgeneric divisions, and that these divisions may show very marked differences, even more marked than what may be noted in the case of closely related genera; that the reactions of closely related genera tend to be similarly close; that in hytrids any one of the six parent-phases (the same as the secel parent, the same as the pollen parent, the same as both parents, intermediate, higher than either parmo and lower than cither parent) can be developed at will hy the selection of the proper reagent; that the temelencies of different reagents to clicit in the hylrid any given parent-phase varies with reagent and starch, wrain reagents tending to develop sameness to the seed parent or the the pollen parent, oti... and a given reagent may elicit one phase with one starth and another phase with annther starch, etc., so that by the selection of the reagent any parent-phase can be developed in any given starch : that the starches of hybrids tend to show marked closencss to the properties of the parental starches when the parents are chosely related, and to exhibit a tendency to more and more divercinece as the parents are more and more distantly related, in some instances tending by comparatively numerous intermediate characters to
bridging the parental characters and in others to be particularly characterized by being very closely related to one parent, or in others (by excess or deficit of development) to be quite variant from the parental types, etc.; that the starches of different hybrids show a very wide range in their parental relationships, some being almost throughout very close to the seed parent, others very close to the pollen parent, others for the most part intermediate, etc.; that the starches of hybrids of reciprocal crosses and of the same cross, respectively, are different, the former differing from each other far more than the latter from earh other: that the relationships of the properties of starches of hybrids to the properties of the parents are in harmony with the data of the macroscopic characters collected by Focke, with the data of DeV ries mutants (hybrids), and with the macroscopic and microscopic tissue characters recorded in this research, in showing that in any given hybrid the development of different characters may take on different directions so that some properties are like those of one or the other parent or both parents, or developed in excess or deficit of parental extremes, and also that new characters and character-phases may appear.
General Conclusions drawn from Investigations of the Macroscopic and Microscopio Characters of the Plant.
The results of the studies of macroscopic and microscopic tissue characters are in harmony with those recorded by Focke and of the researches with the starches in showing that in any given hybrid certain characters may be the same as those in one or the other parent or both parents, intermediate, or dereloped in excess or deficit of parental extremes, and that the distribution of these directions of character development is most variable. A surprising result is found in a common lack of correspondence between the percentages of macroscopic and microscopic characters of any given hybrid that are the same as those of the seed parent or pollen parent, or intermediate, etc. Why, for instance, in any hybrid the percentage of macroscopic characters that are the same as those of the seed parent are relatively large in comparison with the percentage of microscopic characters or vice versa is as yet inexplicable. What pertains to one of the six parent-phases applies equally to all. Moreover, there is not a constant quantitative agreement between the macroscopic and microscopic characters, separately or combined, and between either of these and the starch characters of the same plant in the percentage distributions among the parent-phases.
The Relative Potextialities of the Seed Parent and the Pollen Parent in Inflefencing the Cuaracters of the Hibrid.
The relative potentialities of the parents in determining the characters of the lybloteds and in the distribution of characters among the six parent-phases varies within wide limits. In the starch ractions it is shown that in some hybrids the influences of one parent are almost or practically nergigible, in others they appear to be about equally divided, and in others there are various gradations in degree and kind between these extremes. In the tissue characters concordant results were recorded, but here the variations were found to be very much restricted,
doubtless because chicfly of the small number and the kinds of hybrids studied. In summing up the characters that are the same as or indined to the seed parent and the pollen parent, respectively, it was found in the 1,018 starch reactions that the seed parent is, on the whole, distinctly more potent than the pollen parent, while in 959 tissue characters the parental influences are equal.

Speches Pahents versess Siex Parents.

The parental propertics referred to in the preceding section are, in an important sense, illusory, because they indicate sexual instead of species characters. The terms seed parent and pollen parent have been used in this research in the conventional sense of the botanist and horticulturist, that is, without necessarily implying or even inferring unisexuality of the plants. This usage, together with the employment of the signs of and of, may carry the impression that the parents of the hybrids are correspondingly female and male, but all of the parents are flowering plants in which in each individual there are produced both female and male gametes. Each plant is, therefore, female or male in reprorluction in accordance with whether it furnishes the seed or the pollen, irrespective of the actual sex of the organism. A concrete illustration of this paradoxical statement is found, for instance, in Cypripedium spencerianum and C. villosum, which have been reciprocally crossed, yielding the hybrids C. lalhamianum and ('. Lathiamianum inversum, these hybrids not being identical but very closely resembling each other (page 338 et seq.). In the first cross the seed of C. spencerianum was fertilized by the pollen of C. villosum, and in the second cross the pollen of C. spencerianum fertilized the seed of C. villosum, thus reversing the parentage. Inasmuch as each plant is precisely the same in both crosses, it is evident that the properties ascribed to C. spencerianum as the seed parent and the pollen parent, respectively, are identical and therefore that they are, as far as we can discern, peculiarities of speries and not of ser. However, the differences in the offspring of reciprocal crosses show that while the seed and the pollen carry species-characters they also transmit certain obscure properties that are peculiar to each of the sex elements.

All living tissues have without question species-types of metaholism, and, as a corollary, species-types of complex organic metabolites (see preceding memoir, Carnegie Institution of Washington, Pub. No. 1133, page 12) ; and if the tissues are further characterized by femaleness or maleness, they must have the correspoming sex-types. In bisexual or moncerious organisms, such as the plants used in this researela for the sources of the starches and tissues, the structures, procesises, and products, with the exception of those belonging to the primary sex organs, are without determinable sex characters, yet for wellknown reasons it is certain that they possese inherently potentialities of both sexes. In misexual organisms, as in certain plants and in all normal mammalia, there must he both species-types and sex-types. Therefore, in the first group of the properties are hroadly speaking or preeminently those of species, and in the second those of species and sex.

That there are species-types is ennvincingly shown by the distinguishing featuris of species: and that there are very definite sex-types has been rendered positive,
especially by recent investigations. For instance, in Gyandromorphs (as moted in a builfinih hy Poll, in a challinch by Weber, in a pheasant by Bond, and in men, doge, guinca-pigs, wals, hers, anto, butherlites, and moth; by barmus writers) the atructuro of the two. adm or of the anterior and posterior parts of the brody, or of difere(ent organs or of parts of an orean are (ppmitely sexed. Geoffrey simith fomm that the bhont- of fromale and male spider crabs differ, and stecke in investigations with moths noted that not only do the thenlo of the - .x.ens differ but also are as murh umbike as are those of individuals of the same sex of different efremins. The bleomes of womat and man, and of the seses of ereptain other mammals, are not identical. The wariss and twictes are sperifically femate and male oreans, and the "qu, spermatozoon, and sex hormones are similarly sexed. Moreover, during the existence of the sermplaim, and even in some organisms long after developmont has proceeded, there is a period of sexual plasticity during which various factors may be directly operative on the eggo or indirectly through the parent, or direwty wn the metabolic processes of the individual, to leal to the development of either sex or of either female or male secondary characters, as the case may be, and hence to corresponding female or male types of metabolism and metabolites. In studies of the pupa of butterflies, Standfuss found that by the influence of temperature the female can be made to assume the male type. Geoffrey Smith noted that the sacculinated male spider crab (that is partially or completely parasitically castrated) becomes markedly feminized, even to the extent of rudimentary egrgs being formed in the testes. Riddle remords in studies of pigeon eggs a transmutability so marked that eggs having one sex tendeney may be caused to become oppositely sexed. Steinach and others in orarian and testicular transplantation experiments have shown that the female can be masculinized and the male feminized. Morenver, the potent influcuces of foom, of an excess or deficit of water in the erge, of the enerey of oxidative metaholism, and of light on sex control are well known. And in the human being indications of female and male types of metabolism and metabolites are to he found among differenes in the sexes in bodily structures, in the composition of the Wond and certain other parts, in the actions of a number of medicinal substances and certain internal seretions, in the propertios of the sex hormones and of some other sulstances that are produced by sex organs other than the ovaries and testes, in basal metabolism, in psychic phenomena, etc.

The factor or factors that defermine species-types are not known, nor have we much definite knowlelge of those which control sex-types, mut it may justly be assumed that what is learned of one is appliablic in primephe to the other. Since the discovery of the sex hermones there has lieen a tendency generally to aturibute to thom the determination of semndary sex characters, hut there are reasons for believing that other substances, as yet unknown, may be similarly potent. Thus, Meisenheimer showed by the results of experiments with the larva of the gepey moth that seenndary sex charaders are developed without material modification after the removal of the oraries and testes: and it is crialme that in gymandromorphs both sex hormones circulate throurfinut the organism, and thus reach every tissue, yet some parts
become specifically female and others male. Moreover, in addition to these sex hormones and hypothetical substances there are the influences of environmental conditions which are effective in unknown ways.

If, as seems manifest, there are species-types of metabolism, if these types are undoubtedly modifiable by environmental conditions, if these types give rise to corresponding species-types of metabolites, and if these metabolites have inherently the potentialities of both parents that can, as has been shown, be elicited in any me or more of the six parent-phases by the selection of the proper agent or reagent, it seems to follow, as a corollary, that corresponding properties should be manifested by sex-types. These statements sugrest that in artificial parthenogenesis and artificial fertilization the selection of a proper agent or reagent may render it possible to give rise to either sex, or before or after development has hegun, to gynandromorphism. In a word, from present knowledge and indications (and anl that they imply), species, parthenogenesis, fertilization, sex, secondary sex characters, and sex control are problems of physical chemistry.

Intermemitheness as a C'riterion of ILybrids.
Whether or not intermediateness is a criterion of hybrids depends upon the sense in which these two terms are used-that is, whether or not intermediateness is to be taken as meaning mid-intermediateness, and where the line is to be drawn where intermediateness in either a broad or a narrow sense is or is not a criterion. Some authorities, as is evident by references in the introduction, look upon intermediateness in the sense of midintermediateness or "exact intermediateness," and upon this developmental peculiarity as being a criterion when all or nearly all of the characters of the hybrid are midintermediate ; hut it is manifest that such a conception is not justified by literature and is untenable. Viewing intermediateness from a broad point of view-that is, to include all characters which show stages of character developmeat between those of the parents, it is an open question as to whether a character that is intermediate hut exhibits almost identity with that of cne parent should be classified as intermediate or as being the same as the character of the parent. Many of both the starchreaction and the tissue characters that herein have been classified as intermediate have been so close in their development to the parent characters that it is questionable if they should not have been assigned to the characters that are the same or practically the same as those of the parent. Then again, what percentage of intermediate characters must be intermediate to justify the application of the term eriterion? Among the 1.918 starch reactions, 236 were reporded as heing intermediate, while 53 were mid-intermediate. Among the 959 macroscopic and microscopic tissue characters 415 were intermediate, and 160 were mid-intermediate. The differences in the figures of the starch and tissue records are probably due chiefly to differences in both number and kind of material. Moreover, the percentages of characters developed beyond parental extremes are very high, those in the starch reactions exceeding (nearly doubling) the percentage in intermediate characters ($40.6: 23.2$), and in the tissue characters heing almost as high as the latter ($39: 43.2$). It seems from these data that if intermedi-
ateness is a criterion, development in excess and deficit of parental extremes may or should have an equal or greater degree of importance, and even a far greater value if only mid-intermediate characters are taken as the criterion.

Germplasm a Stereochemic System.

The recognition that the germplasm is a stereochemic system that is characterized by the kinds and arrangements of its stereoisomers in the three dimensions of space; that it is of great complexity, impressionability, and plasticity; that it presumably possesses potentially the characters and character-phases of the parent; that the germplasms of the sexes are different, varying in plasticity, etc.; and that in normal fecundation there occurs a union of the two sex systems with interactions, rearrangements, and combinations, and therefore a new physico-chemical state is developed that possesses the potentialities of both sexes; that stereoisomerides are readily transmuted with attendant change of properties, and that the directions and propensities of the reactions are determined by peculiarities of the compounds and attendant conditions; and, finally, that we have, in a word, in the germplasm a form of protoplasm that must like all colloidal substances be studied upon the basis of physical chemistry, opens up a unique and promising field for investigation of the laws that determine organic growth, form, and function.
Applications to the Explanations of the Occurrence of Variations, Sports, Fluctuations and the Genesis of Species.
The characters of the germplasm and of protoplasm, and incidentally the extraordinary plasticity of the starch molecule, as set forth by the results of this research, seem readily to induce clear conceptions of the mechanisms that underlie variations, sports, fluctuations, Mendelism, reversions, monstrosities, etc., and also the genesis of strains, subspecies, and species by gradual and progressive changes and ultimate fixation. And it also seems, from the data presented in conjunction with biological literature, that we have all of the postulates that are necessary to warrant the assumption that probably the chief method in the genesis of species is by hybridization.

Scientific Basis for Classification of Plants and Animals and for the Study of Proto-

 plasm.The discovery of the existence of highly specialized stereoisomers that are specifically modified in relation to genera, species, varieties, etc., has brought to light one of the most extraordinary phenomena of living matter, and it not only gives us a strictly scientific basis for the classification of all forms of life, but also leads us to the varying constitutions of protoplasm of the same and of different organisms, and to the differences in vital phenomena that are dependent upon these variations. The dictum set forth in the bemoglolin investigation that "vital peculiarities may be resolved to a physicochemical basis" has been most substantially supported, and it may be safely predictend that important and even epochal advances in the elucidation of many of the great problems of biology will be made in the near future along such or closely related lines of investigation as have been pursued in these researches.

7. Hipprastrum htarn.
9. Hipperstrum tan , i.....

$\begin{array}{lllll}11 & 11 & \ldots & . . . & . \\ 11 & 11 & \ldots . . & . & . .\end{array}$

fin and in

.

! ! 1, い........

111
! / , ".

[^19][^20]

$121 \quad 1:$
12: lise

$1,11 \quad$ li,.,., $: \quad, \quad, \quad . \quad$.

1391. W, W, 1/men willte, m

$11 . i$

$181 i$
11π

为为

$111!$

147

二ーニ二ニン

1.11

12

＇，1＂14l．1．1

1i) Ipurnart

- bent dagはer-hhe batr-

163. If
164. Ipomea quamoctit. The same, showing much longer glandular shaggy hairs.

1ti5. Ipurneat sotert The *:

(9)

178

179

1.11 111
and large vasa

patiohes, ami -rmall va-

1s- (4 minhlumt eells, short cells of laver beneath upper epidermis
188. Cymbidium eburncum. The same, showing deeper upper epidermal cells, long cedls uf latul.... . . . : . .
epidermis.

191. Dendrobium modite. The same, showing wide velan en :and wide vasoular eybinter.

194. Dendrobium nothe The same, showing slightly larger idges, large lower epidermat cells, atod thathly smatler
195. Dendrobium cybele. The same, showing faint ridges, smaller eppidermal cells, atud smaller hundle than in cither parent.

115

14, the upper epidermis, and :1 sma! almost cirenlar lmudhe
 mated cells of laver bemeath Hipper epidernic as lung is in or M. vallaria
 selerenchymat shaths:

201. Phaus hybridus. The same, showing madrib) bundle with upper and lower scleremelyma sheathe hut usere nearly

20. 8 E. Fllser fiatent
and wider leaf than on either parent

QK Reichert, Edward Tyson 898 A biochemic basis for the C3R35 study of problems of taxonomy จ. 1

BioMed

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET UNIVERSITY OF TORONTO LIBRARY
crucr

[^0]: *Swe science 1912, xxxy, 873; 1914, xxxux, 334. Kite (Proc. Soc. Exp. Biol. Med., 1914, X1, 112) and Oliver (Science, 1914, xL, 6.ts) have found that erythrocytes can be so modified structurally and vitally as to have ciliate or flagellate processes, and Oliver has shown that some of the latter exhibit a high degree of irritability in relation to mechanical stimulus.

[^1]: *Trans. Bot. Soc. Edin., xıx, 1891

[^2]: Gregory notes that seeds of intermediate and dubious shapes were not uncommon in certain of the races. The

[^3]: * "Botanists say that species sn produced" (i. e. Lythridsy "rwert to either of their parents in the third or fourth generation, or hecome sterile altogether. This is plausible enomph in thomis, in the closet, but will not do in the potting leench." Beaton, quened by Loudon, Arbeit II. 1. 944.

[^4]: * For convenience the parent - and hybrid-stocks are usually referred to briefly as parents and hybrids.

[^5]: Redrtion－intonsitios Eispressad by Light，Color，and Tempera－ ture Reactions．
 Polarization：
 N．pent．ornatus，low to very high，value 5o．
 N．pect．petarna，luw to vas high，lower than in N．poct．ornatus， value 40 ．
 N．poct．hertick，low to very high，somewhat lower than in N．poet． ornatus，value 47.
 N．rout dante，low to very high，somewhat lower than in N．poet．
 Iotine：
 N．penct ornatus，light to moderate，value 40 ．
 N．pent．poetarum．moulerate，someshlat higher than in N．poet．

 $$
 \text { - ornatus, value } 40
 $$

 N．poet herrick，moderate，the same as in N．poet．poctarum， value 4%
 N．pot．dante，moderate，the same as in N．poct．protarum， value 45 ．

[^6]: Potassium sulphide: Brunsrigia, Brunsdonna sanderer alba, I moryllis, and Brumadonna sandere.
 Calcium nitrate: Brunstonna sandere alba, B. saudera. Brunsrigia (these two being the same), and Amaryllis.

[^7]: * Carnegie Inst. Wash. Pub. No. 173 (1913).

[^8]: 80 Wieh Cobalt Nitrate
 S1 Whis (whper Altrate
 82 With Cupric Chlorte
 bit With Mopeuric ('th) rule

[^9]: 137 With Sudium Iryir x.de

 439 Witb enduma sal. Vothen
 141. Wath Uramata Sitrate

[^10]: 164. With Cohal Airate.
 lif. With Cripper Nitrat.
 aif. With Cupric Chlor:dm
 165. With Barium
 180 Wath Merourac (ateral-
[^11]: 106 With Potumamin Hydraxide
 107 With Potassinm Iordicde*

 1as. With Potasanam Fulphite. 200. With Sodum Hydrovide.

[^12]: 389. With Soctium Hydroxide
 390. With Sodium Sulphide.
 391. With Sodium Salicylste 392. With Calcium Nitrate. 393. With Uranium Nitrate
[^13]: $543{ }^{2} 14$

[^14]: 574 With Chloral Hy.Irate
 解: With Chomati And
 sin With P'vagalh, lend.
 $\begin{array}{ll}577 & \text { With Nitrur Aud } \\ 378 & \text { With Sulphurbe Acad. }\end{array}$

[^15]: 659. With Hippeastrum titan. 660. With Hippesstrum ossultan.
 660. With Hippeastrum dmones.
[^16]: *The first three sections of this chatpter are reproduced, with some alteration and addition, from an article that was published in Science, 1914, n.s., XI., 649-661.
 \dagger Researches upon the Venoms of Poisonous Serpents. By S. Weir Mitchell and Edward T. Rerihert. Smithsonian Contributions to Knowledge, Publication No. 647, 18×6.

[^17]: * Carnegie Inst. Wash. Pub. No. 111 i

[^18]: *Even if we assumse that the different forms are not, strictly speaking, stereoisomers it must be admitted that hemoglobin exists in forms that aro specifically modified in relation to genera and species.

[^19]: 1101
 1111
 111

[^20]: 112
 $111 . I$

