

UNIV.OF TORONTO LIBRARY

HANDBUCH

DER

BIOCHEMISCHEN ARBEITSMETHODEN.

BEARBEITET VON

Prof. Dr. E. Abderhalden, Berlin — Priv.-Doz. Dr. D. Ackermann, Würzburg — Prof. Dr. Hans Aron, Manila — Prof. Dr. Baglioni, Rom — Prof. Dr., phil. Bartelt, Peking — Prof. Dr. Battelli, Genf — Prof. Dr. J. Biehringer, Braunschweig — Dr. phil. Carl Brahm, Berlin — Priv.-Doz. Dr. Theodor Brugsch, Berlin — Prof. Dr. Chodat, Genf — Prof. Dr. Cramer, Edinburgh — Prof. Dr. M. Dennstedt, Hamburg — Prof. Dr. Chodat, Genf — Prof. Dr. Cramer, Edinburgh — Prof. Dr. M. Dennstedt, Hamburg — Prof. Dr. Felix Ehrlich, Breslau — Prof. Dr. med. Embden, Frankfurt a. M. — Prof. Dr. St. Faust, Würzburg — Priv.-Doz. Dr. Friedenthal, Nicolassee-Berlin — Prof. Dr. E. Friedmann, Berlin — Priv.-Doz. Dr. Fuhrmann, Graz — Prof. Dr. Wm. J. Gies, New-York — Priv.-Doz. Dr. Grube, Neuenahr—Bonn — Prof. Dr. Olof Hammarsten, Upsala — Priv.-Doz. Dr. Hi, Budapest — Dr. M. Henze, Neapel — Priv.-Doz. Dr. Hildebrandt, Halle a. S. — Priv.-Doz. Dr. Rudolf Hoeber, Kiel — Prof. Dr. Jacoby, Berlin — Prof. Dr. Johannsson, Stockholm — Dr. phil. R. Kempf, Berlin — Prof. Dr. Kobert, Rostock — Priv.-Doz. Dr. Kostytschew, St. Petersburg — Prof. Dr. Loeb, Berlin — Prof. Dr. Jacques Loeb, Berkeley (Kalifornien) — Prof. Dr. London, St. Petersburg — Prof. Dr. Leonor Michaelis, Berlin — Prof. Dr. Franz Müller, Berlin — Priv.-Doz. Dr. M. Nierenstein, Bristol — Prof. Dr. Osborne, New-Haven, Conn. — Prof. Dr. W. Palladin, St. Petersburg — Geh. Rat Prof. Dr. E. Pflüger, Bonn — Dr. phil. Pringsheim, Berlin — Prof. Dr. Röhmann, Breslau — Dr. phil. und med. Peter Rona, Berlin — Prof. Dr. Rosenfeld, Breslau — Priv.-Doz. Dr. Franz Samuely, Freiburg i. B. — Prof. Dr. Schmitz, Frankfurt a. M. — Prof. Dr. Schulze, Zürich — Prof. Dr. Schmitz, Frankfurt a. M. — Prof. Dr. Tappeiner, München — Geh. Rat Prof. Dr. Tollens, Göttingen — Priv.-Doz. Dr. Frankfurt a. M. — Prof. Dr. To. Dr. Brüncher — Geh. Rat Prof. Dr. Tollens, Göttingen — Priv.-Doz. Dr. Wilstätter, Zürich — Prof. Dr. E. Winterstein, Zürich — Priv.-Doz. Dr. Edgar Zunz, Brüssel.

HERAUSGEGEBEN VON

PROF. DR. EMIL ABDERHALDEN.

DIREKTOR DES PHYSIOL. INSTITUTES DER TIERÄRZTL. HOCHSCHULE, BERLIN.

DRITTER BAND.

SPEZIELLER TEIL.

MIT 413 TEXTABBILDUNGEN.

102702

URBAN & SCHWARZENBERG

BERLIN

WIEN

N., FRIEDRICHSTRASSE 105b

I., MAXIMILIANSTRASSE 4

1910.

QH 324 A3 Bd.3 Spcz.T.1.

ALLE RECHTE VORBEHALTEN.

Inhaltsverzeichnis.

		Seite
	rmente	. 1
A.	Methoden zur Darstellung von Fermenten. Von Prof. Dr. Leonor Michaelis	3,
	Berlin	. 1
	Darstellung von Hefepreßsaft	. 3
	Darstellung des Invertins	. 7
	Darstellung des Pepsins	. 8
	Extraktion der pankreatischen Fermente	. 9
	Darstellung des Labfermentes	. 10
	Die Dialyse	
	Allgemeines über die Aufbewahrung der Fermentpräparate	
	Die Klärung von Fermentlösungen	. 14
В.	Methoden zur qualitativen und quantitativen Verfolgung der Fermentwirkung	
	Von Prof. Dr. Leonor Michaelis, Berlin	. 16
	1. Der qualitative Nachweis der gebräuchlicheren Fermente	. 16
	1. Kohlehydratspaltende Fermente	. 16
	Diastase	. 16
	Invertase	. 16
	Zymase	. 17
	Emulsin	. 17
	2. Proteolytische Fermente	. 17
	Pepsin	. 17
	Labferment	. 19
	Trypsin	. 19
	Papayotin	. 22
	3. Lipase	. 22
	2. Allgemeine Grundsätze bei der quantitativen Bestimmung der Fermente.	
	Beispiel für die quantitative Bestimmung eines Ferments	
	Einiges über die Methoden zum ständigen Verfolgen der Fermentwirkung . Elektrische Wanderung der gelösten Fermente	
C.	Darstellung von Oxydasen und Katalasen tierischer und pflanzlicher Herkunf	t.
٠.	Methoden ihrer Anwendung. Von Prof. Dr. R. Chodat, Genf	
	Oxvgenasen	
		. 15

				S	Seite
Nachweis von peroxydartigen Verbindungen in den Oxydationsferme	nte	en.			43
1. Jodstärkekleister					43
2. Barytwasserprobe					44
Nachweis von peroxydartigen Verbindungen in der lebenden Pflanze					44
Peroxydase					45
Messung der Aktivität der Peroxydase					49
Oxydasen.					52
Lakkase					53
Bestimmung des Oxydationswertes der Lakkase					54
Tyrosinase					57
Messung der oxydativen Kraft der Tyrosinase					62
Katalase					65
Gewinnung der Katalase.					66
Messung der katalytischen Kraft					69
Anhang: Aldehydase					72
Verdauung		٠			75
A. Operative Technik zum Studium der Verdauung und der Resor	pti	on.	Vo	n	
Prof. Dr. E. S. London, St. Petersburg					75
Allgemeine Bemerkungen					75
1. Operationsraum					76
2. Aseptische und antiseptische Maßregeln					76
					77
4. Fistelvorrichtungen					77
5. Verschiedenartige für die Versuche nötige Vorrichtungen					79
6. Grundlagen der Operationsmethodik zur Untersuchung des					
prozesses			-		82
7. Operations- und Versuchsmethodik					84
1. Eröffnung und Schließung der Bauchhöhle					84
2. Pflege der Tiere nach der Operation					85
A. Polyfistelmethode					85
B. Dauerisolierungsmethode					96
I. Speichelfistel					96
II. Ösophagusfistel					99
III. Magenfistel					
IV. Drüsenblindsäcke					
α) Fundusblindsack (kleiner Magen)					
β) Pylorusblindsackmagen					
γ) Pylorussackmagen					
6) Totaler Magensack					
ε) Brunnerdrüsensack					
V. Pankreasfistel					
VI. Gallenfisteln					110
1. Gallenblasenfistel					
2. Endständige Choledochusfistel					
3. Kontinuitätsfistel des Ductus choledochus.					119

	Seit
	VII. Thiry-Vellasche Fistel
	VIII. Äußere Gastrojejuno- (resp. ileo)anastomose
	IX. Ecksche Operation
	1. Kanüleneinlegung in die Speichelgänge
	2. Exstirpation der Schilddrüse
	3. Exstirpation der Bauchspeicheldrüse
	4. Exstirpation der Nebennieren
	5. Verschiedene Manipulationen an Blutgefäßen 11
	6. Anlegung einer Fistel des Ductus thoracicus 120
В.	Methoden zur Untersuchung der Verdauungsprodukte. Von Privatdozent Dr. Edgard Zunz, Brüssel
	A. Allgemeine Technik
	I. Verdauungsversuche an Hand des Tierexperimentes
	a) Allgemeine Betrachtungen
	b) Verdauungsversuche beim intakten Tiere
	1. Schlundsondenverfahren
	2. Isolierung des Magens und des Dünndarmes post mortem 127
	c) Vorherige operative Eingriffe erheischende Versuche
	1. Verfahren, welche das Entweichen von Verdauungsprodukten vom Magen nach dem Darm verhindern
	α) Unterbindung des Pförtners
	β) Verschließung des Pförtners vom Magen her
	 Verfahren zur Gewinnung der Endprodukte der Magenverdauung Verfahren zur direkten Einführung von Nährstoffen in das Duodenum 137 Verfahren zum Studium der Darmverdauung an isolierten Darm
	schlingen
	a) Ohne vorherige Anlegung einer Darmfistel
	3) Mit vorheriger Anlegung einer Darmfistel
	5. Verfahren zur Vermeidung des Zuflusses von Pankreassaft und Galle in den Darm
	II. Verdauungsversuche im Reagenzglase
	a) Allgemeine Technik
	I. Brutschränke
	Brutschränke für Gasheizung
	 a) mittelst Wasser geheizte Brutschränke
	β) Mittelst Metallröhren geheizte Brutschränke
	γ) Brutschränke für elektrische Heizung
	II. Thermostaten
	b) Verfahren zur Vermeidung der Anhäufung der Verdauungsprodukte . 165
	1. Allgemeine Dialysierverfahren
	•
	Dialysator nach Graham

	Seite
Dialysator nach W. Kühne	
Dialysator nach Wrobleski	
Dialysierapparat von Waymouth Reid	
Dialyse nach Gürber	
Dialysator nach Siegfried	
Dialyse nach Jordis	
Diffusionshülsen von Schleicher & Schüll	
Dialyse in Kollodiumsäckehen	
Dialyse in Schilf- und Zelluloseschläuchen	
Dialyse nach Pascucci	
Dialyse nach Wiechowski	
Dialyse nach van Calcar	
2. Spezielle Dialysierverfahren zu künstlichen Verdau	ungsversuchen . 183
Dialysator nach Kronecker	188
Dialysator nach Sheridan Lea	
Dialysator nach Pupo	186
B. Spezielle Technik	180
I. Gewinnung der Verdauungssäfte, Darstellung der Fermen	
wendung	189
a) Allgemeine Betrachtungen	189
b) Speichel	190
Gewinnung	190
Im Speichel enthaltene Fermente	190
Diastase (Ptyalin, Amylase)	191
c) Magensaft	192
Gewinnung	199
Im Magensaft enthaltene Fermente	
Magenlipase oder Magensteapsin	
Pepsin	
Reindarstellung des Pepsins aus Schweinsmagens	
Pekelharing	194
Darstellung des Pepsins aus Hundemagensaft n	
Pepsinlösung nach Schrumpf	190
Pseudopepsin	190
Labferment oder Chymosin	197
Parachymosin	199
Propepsin und Prochymosin	199
d) Darmsaft	200
Gewinnung	200
Im Darmsafte enthaltene Fermente	
Diastase, Invertase, Maltase	
Laktase	
Lipase	
Pseudopepsin oder Pepsin der Brunnerschen D	
Erepsin	
Data lines	20.

innaitsverzeichnis.	V 11
	Seite
Sekretin	. 205
Arginase	. 206
Nuklease	. 206
e) Pankreassaft	. 206
Gewinnung von proteolytisch unwirksamem Pankreassaft .	. 206
Gewinnung eines spontan aktiven Pankreassaftes	. 210
Im Pankreassafte enthaltene Fermente	. 210
Pankreasdiastase	
Pankreassteapsin oder Lipase	
Trypsin	
Nuklease	
<i>f)</i> Galle	. 213
1. Einwirkung bei der Verdauung der Fette	. 213
2. Einwirkung bei der Verdauung der Proteine	. 214
3. Gewinnung der Galle	. 214
g) Kombinierte Verdauungswirkungen	. 214
h) Verdauungsfermente pflanzlicher Herkunft: Papain	. 215
II. Isolierung der Abbauprodukte der Verdauung	. 216
a) Allgemeine Betrachtungen	. 216
b) Isolierung der Abbauprodukte der Verdauung der Kohlehydrate	
1. Nachweis der verschiedenen Abbauprodukte der Kohlehydra	
in einem Verdauungsgemisch	. 216
2. Quantitative Bestimmung der unzersetzten Stärke. der gebildete	
Dextrine und Zucker in einem Verdauungsgemische	
3. Isolierung der Dextrine	
c) Isolierung der Abbauprodukte der Verdauung der Fette	. 220
Feststellung der aus Fettemulsionen abgespaltenen Fettsäure	
Gleichzeitige quantitative Bestimmung der Seifen und Fettsäure	
in einem Verdauungsgemische	
 Untersuchung der Abbauprodukte der Verdauung der Fette nach 	
Levites	
Feststellung des Gesamtfettes	
Verfahren von Volhard-Stade zur Feststellung des Grades de	
Fettspaltung durch Lipase	
Bestimmung von Seifen neben Fettsäuren in Verdauungsgemische nach Pflüger	
Glyzerin	
d) Isolierung der Abbauprodukte der Verdauung der Proteine	
Verfahren zur Untersuchung der Abnahme der Genuinität de Proteine	
Quantitative Messung proteolytischer Spaltungen mittelst der Fo	
moltitrierung nach Sörensen	
Bestimmung der in einem Verdauungsgemenge vorhandene	
Proteosenmenge	
Untersuchung der Stickstoffverteilung zwischen den verschiedene	
Gruppen von Proteosen und anderen Spaltprodukten der Protein	ie 230

	Seite
Haslams Verfahren zur Bestimmung des Proteosengehaltes eine	
Verdauungslösung	
Fällung der Proteosen mittelst Gerbsäure	
Isolierung der Proteosen	
Darstellung der Proteosen nach E. P. Pick	. 239
Hetero- und Protoalbumose	. 239
Heteroalbumose	. 240
Protoalbumose	. 240
Proteosenfraktion A	. 240
Thioalbumose	. 241
Albumose A ^{II}	. 241
Proteosenfraktion B	. 242
Albumose B ^I	
Synalbumose	242
Albumose B ^{III}	. 242
Proteosenfraktion C	. 243
Darstellung der Proteosen nach Haslam	
Darstellung der Protoalbumose und der Heteroalbumose nach Adle	
Eigenschaften der Proteosen	
Tryptophan	
1. Isolierung nach Hopkins und Cole	
2. Quantitative Bestimmung nach Levene und Rouillier	
Nachweis des Vorhandenseins basischer Spaltungsprodukte in eine	
Verdauungslösung	
Bestimmung des Ammoniaks	
Plasteine und Koagulosen	
Physikalisch-chemische Verfahren zur Untersuchung des Abbaue	
der Proteine	
e) Isolierung der Abbauprodukte der Verdauung der Nukleoproteid	
f) Isolierung der Abbauprodukte der Verdauung der Phosphatide	. 25 5
C. Methoden zur Untersuchung des Speichels und des Inhaltes des Verdauungs	_
schlauches und der Fäzes der Pflanzenfresser. Von Prof. Dr. A. Scheunert	
Dresden	
	. 201
1. Untersuchung des Speichels	. 257
A. Gewinnung	. 257
B. Allgemeine Eigenschaften	
C. Organische Verbindungen	
1. Proteinsubstanzen	
a) Mucin	
b) Eiweiß	. 258
2. Enzyme	258
3. Andere organische Verbindungen	259
D. Anorganische Verbindungen	250
I. Salze der Rhodanwasserstoffsäure	
a) Qualitativer Nachweis	. 259
b) Quantitative Bestimmung	. 260

Sei	ite
II. Chloride	
III. Nitrite	
IV. Ammoniak	52
Speichelsteine, Zahnstein	39
2. Untersuchung des Darminhaltes und der Fäzes der Pflanzenfresser 20	
2. Untersuchung des Darminnaites und der Fazes der Phanzentresser 20	הנ
I. Analytische Bestimmungen in frischen Magen-Darminhalten und Fäzes	
der Pflanzenfresser	53
1. Trockensubstanz	
2. Bestimmung stickstoffhaltiger Bestandteile	
3. Untersuchung auf anorganische Bestandteile (Analyse der Asche) . 26	56
4. Trennung der löslichen von den unlöslichen Bestandteilen und Analyse der löslichen Bestandteile	ee.
a) Untersuchung der gelösten Bestandteile	
b) Untersuchung der ungelösten Bestandteile	
II. Anderweitige Verarbeitung des frischen Materials	
III. Konservierung des frischen Materials	58
IV. Vorbereitung von Magen-Darminhalten und Fäzes zur Analyse (Trocknen, Zerkleinern)	68
V. Analytische Bestimmungen im getrockneten Material	
1. Stickstoff	
2. Bestimmung der Stärke	
3. Bestimmung der Pentosane	
4. Bestimmung der Rohfaser	
a) Weender-Verfahren	
b) Verfahren nach Holde-Fleiss	
c) Glyzerin-Schwefelsäureverfahren von König	
5. Zellulosebestimmungen	
Die Methode von Lange und ihre Modifikationen	
VI. Darmgase	
Anhang: Untersuchung von Darmkonkrementen	
Intermediärer Stoffwechsel	82
A. Fraktionierung von Organen und Darstellung von wirksamen Organextrakten.	_
Von Prof. Dr. W. Wiechowski, Prag	89
A. Vorbereitung der Organe (Entfernung des Blutes)	
C. Das Zerkleinern der Organe	
D. Allgemeine Methode zur chemischen und biologischen Untersuchung überlebender	00
Organe	89
I. Das Trockneu	
II. Die Extraktion	-
III. Das Zerkleinern der Zellen	
E. Die Herstellung von Alkohol-(Aceton-)Material	
F. Weitere Verarbeitung der zerkleinerten Organe	
	nn

Seite

II. Extrakte
1. Indifferente Extraktion
α) Kochsalzlösung bzw. Wasser
β) Glyzerin
γ) Äthylalkohol
2. Extraktion durch Aufschließung (Entmischung) der Organzellen 305
2) Mechanisch-physikalische Aufschließungsmethoden
a) Gefrieren und wieder Auftauen
b) Die Zertrümmerung der Zellen
c) Die Dialyse gegen destilliertes Wasser
d) Entmischung durch Zusatz geringer, nicht eiweißfällender Mengen
Äthylalkohol
e) Aufschließen durch Auskochen der Organe
3) Chemische Aufschließungsmethoden
a) Mazeration und länger dauernde Autolyse
b) Papain
c) Trypsin
d) Pepsin
f) Alkalien
g) Säuren
G. Fraktionierung der Extrakte, Preßsäfte oder Kollaturen
Salzfällung
α) Ammonsulfat
β) Calciumchlorid
γ) Kaliumacetat
δ) Uranylacetat
ε) Säuren
ζ) Äthylalkohol
η) Adsorbentien
\$) Dialyse gegen destilliertes Wasser
H. Konservierung des Materiales während der Arbeit
1. Antiseptika
2. Die Reaktion
4. Schädigende Stoffe
B. Die künstliche Durchblutung resp. Durchspülung von Organen. Von Prof. Dr. Franz Müller, Berlin
Vorbereitung des Tieres
Operationstechnik
Leber
Niere
Lunge
Darm

	Sei	ite
Bein		24
Herz		25
	ıs	
Zusamm	ensetzung der Durchspülungsflüssigkeit	25
	der Durchspülungsapparate	27
	elnen Apparate	29
	roschherzapparate	
	a) Nach Williams-Dreser	
	b) Der Jacobjsche Apparat	
2. A	parate für das Säugetierherz	33
	a) Der Langendorfische Apparat	
	b) Der Brodiesche Herzapparat	
2 1		
	pparate zur künstlichen Durchblutung anderer Organe als des Herzens. 3:	
	Apparat von Jacobj	
	Durchblutungsapparat von Brodie	
c	Durchblutungsverfahren von Heymann und Kochmann	JU
. Stoffwechs	eluntersuchungen an überlebenden Organen. Von Professor Dr.	
S. Baglion	i, Rom	58
A. Allge	meines	58
1. T	neoretische Begründung	58
	llgemeiner Versuchsplan	
	inige allgemeine praktische Winke	
B. Spez	elles	63
	inge	
	gber	
	Methode von Salaskin	
	, , Kraus	
	. G. Embden und K. Glässner	
	, K. Grube	67
3. D	armschlinge	68
	Methode von G. Salvioli	
	" " Embden und Glässner	
4. N	ere	
	Methode von Bunge und Schmiedeberg	
	" Jacobi und v. Solieranski	
	Verfahren von Skutul	
	Methode von Sollmann	
5. M	uskelsystem: Herz	
0. 10	Langendorff's Verfahren	
ن	selettmuskeln	
5		
	Methode von M. v. Frey und M. Gruber	
e 17	" "Emoden und Glassner	
0. Z	surramervensystem	37

			Seite
D.	Die Fermente des Kohlehydratstoffwechsels in Tier- und Pflanzenwelt. Prof. Dr. Martin Jacoby, Berlin		
	Glykogenspaltende Fermente		. 385
	Die Bestimmung des diastatischen Fermentes nach Wohlgemuth		
	Dextrinasen		
	Die Malz-Diastase		
	Das Invertin		
	Das Emulsin		
	Die Zymase		
	Trennung von Ferment und Coferment der Zymase		
	Die Laktaridase.		
	Die tierische Glykolyse		
	Die Glykolyse bei den höheren Pflanzen		. 400
E.	Die Fermente des Fettstoffwechsels in Tier- und Pflanzenwelt. Von Prof.	Dr	•
	Martin Jacoby, Berlin		. 402
	Die Abnahme der Ätherlöslichkeit des Fettes im Blut		. 402
	Die Monobutyrinase des Blutserums		. 402
	Die Esterspaltung in den tierischen Organen		. 403
	Die Neutralfettspaltung in den tierischen Organen		. 403
	Die Rizinulipase		. 405
F.	Die Fermente des Eiweißstoffwechsels in Tier- und Pflanzenwelt. Von F	Prof	
	Dr. Martin Jacoby, Berlin		
	Die proteolytischen Fermente der tierischen Organe		407
	Die Fermische Gelatinemethode		
	Die Polypeptidspaltung durch tierische Organe nach Abderhalden		
	Die Isolierung von Fermenten nach Rosell		
	Die Isolierung des proteolytischen Leberfermentes nach Hata		410
	Die Isolierung des proteolytischen Leukozytenfermentes nach Jochmann	une	ì
	Lockemann		
	Die optische Untersuchung der Polypeptidspaltung in Geweben		
	Die proteolytischen Fermente der pflanzlichen Futtermittel		
	Das proteolytische Ferment des Hafers		
	Die Eiweißspaltung in Keimptlanzen		
	Das peptische Enzym der Gerste		
	Die Abspaltung von Tryptophan durch proteolytische Pflanzenfermente		
	Die peptolytischen Fermente der Pflanzen		
	Das Papayotin		
	Die Wirkungen des Papains bei hoher Temperatur		
	Die Polypeptidspaltung durch Papayotin		418
	Anhang: Das Sekretin		. 418
	Darstellung und Prüfung des Sekretins		. 418
	Das Prosekretin		
	Die sekretinähnlichen Wirkungen des Cholins		419

Seite
G. Die Fermente des Nukleinstoffwechsels und deren Wirkung. Von Prof. Dr.
Alfred Schittenhelm, Erlangen
Allgemeine Bemerkungen
1. Nuklease
Allgemeiner Nukleasenachweis durch α-thymonukleinsaures Natrium 421 Spezieller Nachweis der aufspaltenden Nuklease und Isolierung der Ab-
bauprodukte
Darstellung und Eigenschaften der Nukleasen
2. Purindesamidasen
Nachweis der Fermentwirkung
Darstellung und Eigenschaften der Purindesamidasen 426
3. Xanthinoxydase
Nachweis des Ferments
4. Urikolytisches Ferment (Harnsäureoxydase)
Nachweis der Urikolyse
Eigenschaften des Ferments
H. Weitere Fermente des intermediären Stoffwechsels mit Einschluß der Methoden
zur Untersuchung der Autolyse von Organen. Von Prof. Dr. Martin Jacoby,
Berlin
Das Salkowskische Verfahren zur Untersuchung der Autolyse
Die Autolyse von Preßsäften
Die direkte Beobachtung der Autolyse
Die Enteiweißung und die Untersuchung der Spaltungsprodukte bei der Autolyse 434
Die physikalisch-chemische Untersuchung der Autolyse
Die aseptische Autolyse
Die Säurebildung bei der aseptischen Autolyse
Die Milchsäurebildung bei der Autolyse
Die Gasbildung bei der Autolyse
Die Arginase
den tierischen Organen
. Methoden zur Bestimmung der Atmung tierischer Gewebe. Von Prof. Dr. F. Battelli
und Privatdozent Dr. Lina Stern, Genf
I. Der Gaswechsel in Gegenwart von Sauerstoff
A. Untersuchungsmethoden des respiratorischen Gaswechsels ganzer Organe 444
1. Die Organe oder Gewebe sind in situ am lebenden Tier, die Nerven-
verbindung und die natürliche Zirkulation sind intakt
a) Die Vorbereitung des Versuchstieres
b) Die Blutentnahme und die Gasanalyse
 c) Bestimmung der im Organ zirkulierenden Blutmenge
heeinflussen

	Seite
Respiratorischer Gaswechsel in den Muskeln	. 448
Parotis	
Submaxillaris	
Pankreas	. 449
Niere	
Darm	. 449
Gehirn	. 449
2. Die künstliche Durchblutung ganzer, vom Körper losgetrennter Orga	ne 450
B. Untersuchung des Gaswechsels fragmentierter Gewebe	. 450
1. Zubereitung der Gewebsfragmente	. 452
2. Apparate zur Untersuchung des respiratorischen Stoffwechsels fra mentierter Gewebe	
Der Apparat von Tissot für länger dauernde Untersuchungen d	
respiratorischen Gaswechsels überlebender Gewebe	
•	
Mikrorespirometer von Thunberg	
C. Atmung der in Flüssigkeiten suspendierten Gewebe	. 460
1. Schüttelapparat	. 460
2. Einleiten der Gase in die Flaschen. Messung der Gase	. 461
3. Zubereitung der Gewebe	. 464
4. Die Zusammensetzung der Suspensionsflüssigkeit	
5. Die Hauptatmung. Der fundamentale Atmungsprozeß; das Pnein; d	
hemmenden Substanzen in den Geweben	
6. Die akzessorische Atmung	
7. Der Einfluß der verschiedenen Substanzen	. 473
II. Entwicklung von Kohlensäure in Abwesenheit von Sauerstoff	. 474
1. Die künstliche Durchblutung ganzer überlebender Organe	. 474
2. Die künstliche Durchblutung des ganzen Tierkörpers unter Ausschluß v	
Sauerstoff	. 475
3. Untersuchung fragmentierter Gewebe	
4. Bestimmung der in den Geweben präformierten Kohlensäure	. 477
K. Methoden zur Bestimmung der Atmung der Pflanzen. Von Prof. Dr. W. Pallad	i n
und PrivDoz. Dr. S. Kostytschew, St. Petersburg	
I. Bestimmung der von den Pflanzen gebildeten Kohlensäure	
Pettenkofersche Röhren	
Apparat von Blackmann	
Anordnung von Puriewitsch	
Apparat von Chudiakow	
" Polowzow	. 485
II. Bestimmung des von den Pflanzen absorbierten Sauerstoffes	
III. Gasometrische Methoden zur gleichzeitigen Bestimmung der abgeschieden	
Kohlensäure und des absorbierten Sauerstoffes	
Apparat von Godlewski	
. Polowzow-Richter	. 495

	Seite
Apparat von Bonnier und Mangin	7, 499
Baranetzky	. 497
IV. Die anaërobe Atmung und deren Produkte	. 504
Apparat von Bardeleben	. 504
Kostytschew	
" " Nobokich	
V. Die Atmung der abgetöteten Pflanzen	
VI. Atmungschromogene und Atmungspigmente	
. Methoden zur Bestimmung der Exkrete bei der Atmung der Bakterienzell	e.
Von Hofrat Prof. Dr. Stoklasa, Prag	
I. Anaërobiotische Atmung	517
Apparat von W. Hesse	
" " E. Godlewski	
Modifikation von Krzemieniewski	
Apparat für anaërobe Atmung von J. Stoklasa	
Bestimmung des Alkohols nach Stoklasa und Ernest	
Die quantitative Bestimmung des Alkohols	. 528
Apparat für aërobe Atmung von J. Stoklasa	. 532
" von R. Kolkwitz	. 534
" Pfeisfer und Lemmermann	. 536
" " Minkman	. 536
I. Physikalisch-chemische Untersuchung von lebenden Zellen und Geweben. Vo	
PrivDoz. Dr. Rudolf Höber. Kiel	
1117Doz. Di. Radon frober. Kiel	. 556
1. a) Die Innenspannung von Zellen	. 538
1. Der Hämatokrit von Koeppe	. 539
2. Das Trichterröhrchen von Hamburger	. 540
Plasmolyse	. 541
b) Die Innenspannung von Geweben	
Wägung des Gewebes	
Plethysmographisches Verfahren	
Kryoskopie	
2. Die Durchlässigkeit von Zellen	
Plasmolytisches Verfahren	
Cytolytisches Verfahren	
Kryoskopisches Verfahren	
	. 547
Durchlässigkeit für Farbstoffe	
Mikrochemisches Verfahren	
Anhang: Über die Bestimmung von Lipoidlöslichkeiten und Teilungskoeft	
zienten	
a) Bestimmung von Lipoidlöslichkeiten	
h) Rastingung von Tailungskoaffizienten	549

3 Finiza alaktuisaka Fisansakaftan dan Zallan	Seite
3. Einige elektrische Eigenschaften der Zellen	
Der Ruhestrom; Einfluß von Elektrolyten	
Kataphorese	. 553
Biologische Gasanalyse. Von Prof. Dr. Franz Müller, Berlin	. 555
Einleitung	. 555
Vorbereitungen	. 555
Einrichtung des Analysenzimmers	. 555
Reinigung des Glases und der Glashähne.	
Form der Glashähne	
Kautschukverbindungen	. 559
Reinigung der Gummischläuche	. 560
Reinigung des Quecksilbers	. 560
Quecksilberwanne	
Aichung der Glasröhren	
Aichung von Gasmessern	. 568
Allgemeine gasanalytische Methodik	. 569
Probenentnahme und Transport der Gasproben	. 56 9
Aufbewahren von Gasproben	. 571
Abmessen der Gasproben	. 573
Allgemeines	. 573
Abmessen über Wasser	. 574
, , Quecksilber	
A. Nach Bunsen	. 577
1. Alte Methode	
2. Nach Geppert verbessert	
B. Thermobarometerprinzip	
C. Prinzip von Petterson	
1. Nach Hempel	
2. "Bohr-Tobiesen	
3. Nach Haldane	
Reduktion der Gasyolumina auf den Normalzustand bei 0° und 760 mm Druck	
Reduktion der Gasvolumma auf den Normalzustand bei O' und 700 mm Druck	900
Spezielle Methoden	. 599
Einleitung	599
Kohlensäurebestimmung	
I. Kohlensäurebestimmung in großen Gasmengen bei relativ hohem Kohlen	
säuregehalt	
<i>a)</i> Nach Bunsen	
b) "Hempel	
c) " Petterson	. 602
II. Kohlensäurebestimmung in großen Gasmengen bei relativ geringem CO_2	
Gehalt	602
1. Nach Petterson'schem Prinzip (ohne Korrektion für Druck- und Tem-	
nonetuning cupped	ദവാ

Inhaltsverzeichnis.	XVII
	Seite
a) Methode von Petterson und Palmqvist	. 602
b) Methode von Tigerstedt und Sondén	
Die Genauigkeit der Pettersonschen Methode	
a) Nach Tigerstedt und Sondén	609
b) Nach Petterson-Palmqvist	610
2. Nach dem Thermobarometerprinzip im Apparat von Zuntz-Geppert	. 610
3. Barytmethode	
a) Nach Saussure-Hesse	
4. Gewichtsanalyse durch Bestimmung des Gewichtsverlustes nach vor	he-
riger vollkommener Trocknung des Gases oder der Gewichtszunah	me
einer zuvor gewogenen Absorptionslösung	
I. Kohlensäurebestimmung in kleinen Gasmengen	. 614
1. Nach Bunsen-Geppert	614
2. , Petterson-Tobiesen	
3. , Petterson-Haldane	
a) Gewinnung der Wasserproben	
b) Bestimmung der Wasserproben	621
1. Gebundene Kohlensäure	
Volumetrische Bestimmung (besonders auch für CO ₂	in
festen Körpern)	621
2. Freie Kohlensäure	621
Quantitative Bestimmung nach Trillich	622
3. Freie und halbgebundene Kohlensäure	622
Sauerstoffbestimmung	622
A. Verbrennungsanalyse	622
1. Mit Kupferspirale (nach Kreussler)	622
2. Durch Explosion	623
B. Absorptionsanalyse	
1. Absorption mit pyrogallussaurem Kali	
2. mit Phosphor	626
3. durch Kupferlösung	627
4. " durch Natriumthiosulfat	628
5. " mit Chromehlorür	
C. Sauerstoffbestimmung im Wasser	629
1. Reichardtsche Einrichtung	629
2. Sauerstoff-Analyse mit Auskochen, Tenax-Apparat von F. C. G. Mü	ller 630
3. Winklersche Methode	634
Destining in volunteinisten	635
Stickstoffbestimmung	637
Konlenozydbestimmung	637
I. Kleine Mengen Kohlenoxyd in großen Mengen Luft	637
A. Absorptionsanalyse	637
Abderhalden, Handbuch der biochemischen Arbeitsmethoden. III.	

XVII

	Seite
a) mit Blut	
b) mit Jodsäure	
B. Verbrennungsanalyse	641
II. Größere Mengen Kohlenoxyd in großen Mengen Luft	. 640
A. Absorptionsmethoden	. 640
a) Salzsaure Kupferchlorürlösung	. 640
b) Ammoniakalische Kupferchlorürlösung	. 647
B. Verbrennungsanalyse	. 647
1. Nach Bunsen-Geppert	. 647
2. Grisoumeter nach Coquillon	. 647
3. Verbrennung in der Platinkapillare	. 645
Grubengasbestimmung (Methan)	649
Wasserstoffbestimmung	
1. Explosionsmethode (Bunsen)	654
2. Verbrennungsmethode in Grisoumeter	
3. Fraktionierte Verbrennung nach Hempel	
4. Absorption mit Palladium (Hembel)	
Stickoxydulbestimmung (Lachgas)	65.
Stickoxydbestimmung	
Bestimmung schwerer Kohlenwasserstoffe und von Acetylen	
Schwefelwasserstoffbestimmung	
Bestimmung der Blausäure	
Die Gewinnung und Analyse kleiner Gasmengen (Mikroanalyse)	. 658
Apparat von Brodie und Cullis	
" Krogh	
Das Mikrorespirometer (Thunberg)	
Die Gewinnung und Analyse der Blutgase	. 664
Vorbereitungen zur Blutgasgewinnung. Blutgewinnung und Abmessung	. 665
Verschiedenheiten der Blutgaszusammensetzung bei Vergleichung verschiedener Blut	-
proben desselben Tieres zu verschiedenen Zeiten	. 667
Das Prinzip der Blutgaspumpenmethode	. 668
Fehlerquellen bei der Pumpenmethode	. 669
Die Genauigkeit der Gaspumpenmethodik	
Analyse der Blutgase	
Vergleich der Genauigkeit der analytischen Methoden	
Die verschiedenen Blutgaspumpen	
Die verbesserte Pflügersche Pumpe nach Zuntz	
Die Pumpe von Bohr	
Die Pumpe von Barcroft	
Pumpe zur Entgasung kleiner Blutmengen	
Chemische Methoden der Blutgasgewinnung	
Die verschiedenen Ferricyanidapparate und ihre Handhabung	
A. Der Apparat von Haldane in der neuesten Form nach Barcroft	
B. Der Ferrieyanidapparat nach Franz Müller	
C. Barcrofts Differenzmethode	. 691

Seite
D. Modifikation von Barcrofts Apparat nach Plesch zur Bestimmung der
Kohlenoxydkapazität
E. Reihenanalyse
Absolute Genauigkeit der Ferricyanidmethode
Die Bestimmung der Absorption und der Spannung von Gasen im Blut 699
A. Methoden mit konstanter Durchleitung von Gas 699
B. Methoden, bei denen das Blut von einer gemessenen Gasmenge bei
einem bestimmten Druck das Maximum des Möglichen aufnimmt 700
C. Methoden, bei denen ein Gasgemisch mit dem Blut bis zum Span- nungsausgleich geschüttelt wird, bei denen die Gasspannung durch
Analyse des Schüttelgases, die entsprechende Gasmenge durch Ana-
lyse des Blutes bestimmt wird
1. Nach Loewy-Zuntz
2. Nach Bohr
Methode zur Messung der Blutgasspannung im zirkulierenden Blut 703
Die Blutkörperchenzählung und Hämoglobinbestimmung. Von Prof. Dr. Franz
Müller, Berlin
I. Die Fehlerquellen
1. Sedimentieren
2. Vasomotorische Störungen
II. Die Blutkörperchenzählung
III. Die Bestimmung des Blutfarbstoffes
Allgemeine Bemerkungen
A. Einfachere Apparate für die Bedürfnisse der Praxis 720
1. Farbenvergleichung nach Ehrlich-Tallqvist
2. Gärtnerscher Hämophotograph
3. Apparat von P. Grützner
4. Keilhämometer von Plesch
5. Gowerssches Hämoglobinometer (Haldane)
B. Die komplizierten Blutfarbstoffbestimmungsmethoden 726
1. Der Mieschersche Hämometer
2. Die kolorimetrische Doppelpipette von Hoppe-Seyler
4. Das Spektrophotometer von Hüfner
Die sogenannte objektive Hämoglobinometrie
D'- Destinance des aresissades Conjektos des Treakonquistans und des Via
Die Bestimmung des spezifischen Gewichtes, der Trockensubstanz und der Vis- kosität des Blutes. Von Prof. Dr. Franz Müller, Berlin
1. Bestimmung des spezifischen Gewichtes
1. Pyknometrische Methode
2. Aräometrische Methode
2. Bestimmung der Trockensubstanz des Blutes
3. Bestimmung der Viskosität des Blutes

		Sei	
1. Prinzip der Methoden			
2. Apparat von Hirsch und Beck			
3 Determann			
4. " Heß			
5. " " Münzer-Bloch			
6. Die Genauigkeit der Resultate		74	7
Die Bestimmung der Blutmenge. Von Prof. Dr. Franz Müller, Berlin		74	8
1. Direkte Bestimmungsmethode der im Körper vorhandenen Blutmeng	ŗе	74	8
2. Indirekte Bestimmungsmethoden der im Körper vorhandenen Blutm	enge .	75	1
a) Infusionsmethode		75	1
b) Aderlaßmethode			
c) Kohlenoxydmethode		75	9
3. Bestimmung der pro Zeiteinheit umlaufenden Blutmenge		76	1
a) Messung des Auswurfsvolumens des Herzens			
b) Bestimmung der pro Zeiteinheit zirkulierenden Blutmenge aus de			
verbrauch			3
A. Nachweis und Bestimmung der Eiweißabbauprodukte im Harn und in			
Von Dr. phil. u. med. Peter Rona, Berlin			55
Ammoniak			
Nachweis			
Quantitative Bestimmung des Ammoniaks im Harn			
nach Folin			
nach Krüger-Reich, modifiziert von Schittenhelm			
nach Schaffer			
		76	
nach A. Steyrer			
nach Schlösing			
nach Ronchèse-Malfatti		77	73
Harnstoff		7	74
Eigenschaften		77	74
Nachweis		7	74
Darstellung des Harnstoffs aus dem Harn nach Salkowski			
Isolierung von sehr geringen Mengen von Harnstoff aus Blut,	Galle,	Milch	
oder aus Organen nach Hoppe-Seyler			75
- nach Gottlieb			
Methode von Mörner-Sjöquist		7	76
Methode von Folin			
Verfahren von Pflüger-Bleibtreu		78	31
Kreatin		78	3
Eigenschaften		78	33
Nachweis			
Darstellung nach Neubauer-Salkowski			
Darstellung nach Folin			
Quantitative Bestimmung nach Folin			
Rostimmung des Kreatins nehen dem Kreatinin			91

Inhaltsverzeichnis.	2	IXX
		Seite
Darstellung des Gesamtkreatinins aus den Muskeln nach Weber		791
Washington was Mallanhy		102
Restimming des Kreatins und Kreatinins in Autolysenversuchen		(1)3
Bestimming des Kreatinins im Blute		793
Schwefel	.	794
Gesamtschwefel		794
Gesamtschweiel		794
Bestimmung des Gesamtschwefels nach Salkowski		794
Bestimmung des Gesamtschwefels nach Modrakowski		795
Anwendung der Peroxydmethode nach Modrakowski		795
Anwendung der Peroxydmethode nach Folin		. 796
Anwendung der Peroxydmethode nach Abderhalden und Funk		796
Anwendung der Peroxydmethode hach Abderhauden und Fahler- Bestimmung des Gesamtschwefels auf nassem Wege nach Schulz-Kons	chegg	797
Bestimmung des Gesamtschweiers auf hassem wege hach bestand be	170	797
Gesamtschwefelsäure		707
Bestimmung nach Salkowski		708
Bestimmung nach Folin		. 130
Ätherschwefelsäuren		. 798
Direkte Restimmung nach Salkowski		. 798
Indicate Restimmung by direkte Bestimmung der anorganischen i	CHILLE	~
much Rolin		. 100
Direkte Bestimmung der Ätherschwefelsäuren nach Folin		. (33
Nentraler Schwefel		. 799
B. diamage peck Salkowski		. 800
Postimmung nach Hess		. 000
Bostimmung der Thioschwefelsäure nach Salkowski		. 001
Bestimmung der Thioschwefelsäure nach Presch		. 601
Rhodanwasserstoff		. 802
Washington and Postimming nuch I Munk		. 802
M. danie mach Dunylante		. 000
Postingung nach Lang		. 002
Restimmung nach Edinger und Clemens		. 00-
Schwefelwasserstoff		. 803
Eiweiß und nächste Umwandlungsprodukte		. 803
Nachweis von Eiweiß im Harn		. 803
Nachweis von Eiweiß im Harn Der Bence-Jonessche Eiweißkörper		. 804
Trennung des Albumins und des Globulins		. 805
Bestimmung des Globulins		. 806
Bestimmung des Globulins		. 805
I. Bestimmung des Eiweißes		805
1. Gewichtsanalytisch nach Scherer		. 806
2. Methode nach Esbach		. 806
3. Verfahren von Devoto		. 806
4. Methode von 1000000		
II. Nichtkoagulierbare, biuretgebende Abbauprodukte des Eiweißes		. 001
Nachweis nach Hofmeister		. 807
nach Salkowski		. 807

Nachweis des "Peptons" im Harn nach Morawitz und Dietschy 808	
Nachweis nach Devoto und Bang	
Nachweis nach Devoto und Bang	5
nach Spaeth	
·	
Aminosäuren	
Isolierung der Aminosäuren aus dem Urin	0
Isolierung des Cystins im Urin nach Gaskell	
Isolierung des Cystins im Urin nach Goldmann und Baumann 81	
Die Naphtalinsulfochloridmethode zur Isolierung der Aminosäuren 81	2
Die Formolmethode zur Bestimmung der Aminosäuren im Harn nach Henriques	
und Sörensen	6
Kynurensäure ,	7
Eigenschaften	7
Nachweis	7
Darstellung nach Hofmeister	8
Darstellung nach Jaffé	8
Darstellung nach Capaldi	8
Säuren unbekannter Konstitution	9
Oxyproteinsäure	9
Antoxyproteinsäure	
Alloxyproteinsäure	
Quantitative Bestimmung der Oxyproteinsäurefraktion nach Ginsberg 82	
Quantitative Bestimmung der Proteinsäuren im Blut nach Browinski 82	
Uroferrinsäure	
Säure von Hári	
Phenole	3
Phenol	
Nachweis und Isolierung	
Kresol	
Trennung des Phenols von p-Kresol	
Nachweis	
Quantitative Bestimmung des Phenols im Harn nach Kossler und Penny . 82	
Brenzkatechin	
Nachweis	
Darstellung nach Baumann	
Inosit	
Nachweis	
Isolierung nach Boedeker und Cooper Lane	
Isolierung nach Rosenberger	
Hippursäure	
Eigenschaften	
Nachweis	
Isolierung nach Bunge und Schmiedeberg	
Bestimmung nach Jaresveld und Stokvis	
Bestimmung nach Henriques und Sörensen	
Restimmung nach W Wiechowski 85	۲1

Inhal	tsverzeic	hnis.

 $\Pi I Z Z$

	Seite
Bestimmung nach R. Cohn	833
Bestimmung nach A. Magnus-Levy	833
Homogentisinsäure	834
Eigenschaften	834
Darstellung nach E. Meyer	835
Darstellung nach E. Meyer Darstellung nach Schumn	835
Darstellung nach Wolkow und Baumann	835
Darstellung nach Wolkow und Daumann Darstellung nach Garrod	835
Darstellung nach Garrod Bestimmung nach E. Baumann	836
Bestimmung nach Lenigès.	836
Bestimmung nach Deniges. p-Oxyphenylessigsäure	837
p-Oxyphenylessigsaure	837
p-Oxyphenylpropionsäure	837
Indol und Indolderivate	
Indul Stratal	807
Digangahaftan Nachweis	000
Industri	041
Indovedschwefoleinre	041
Devetellung nach Raumann	
Vachurais	
Postimmung nach Obermeyer Wang, Ellinger	()-1=
Partimound nach Boung	
D. dimmana nach Imahuchi	(91)
Ladal Dr 2 Recircante	040
Indigrat (Indiguipur, Indiguipur)	
Anhang: Übersicht über die Stickstoffverteilung im Harn	840
Verfahren nach Pfaundler	846
Verfahren nach Krüger und Schmid	847
Nicht dialysable stickstoffhaltige Bestandteile des Harns	848
Nicht dialysable stickstonnaltige Bestandtene des nams	818
Bestimmung der Chondroitinschwefelsäure nach Pons	819
Untersuchung der adialysablen Stoffe nach Hofmeister	850
nach Abderhalden und Pregl	850
nach Salkowski	
Farbstoffe im Harn	850
1. Gallenfarbstoffe	850
2. Urobilin	853
Darstellung nach Jaffé	853
Darstellung nach Jane Darstellung nach Méhu und Fr. Müller	854
Darstellung nach Menu und Fr. Muher Darstellung nach Garrod und Hopkins	854
Darstellung nach Garrod und Hopkins	855
Nachweis	856
Bestimmung nach Hoppe-Seyler	856
Bestimming facti Charles	857
5. Crocurom	
Darstellung nach Garrod	857
Darstellung nach Hohlweg	858
Isolierung nach Domkrowski	808
Schätzung der Urochrommenge nach Klemperer	859

Soite
4. Urorosein
Isolierung nach Staal
Nachweis
Darstellung nach Rosin
5. Uroerythrin (Purpurin)
6. Hämatoporphyrin
Vgl. auch Nachtrag S. 1347.
B. Die Darstellung organischer Basen aus Harn. Von Prof. Dr. Fr. Kutscher, Marburg 863 Historische Übersicht
Modifikation von Albu
Ausbeute an toxischen Harnbasen bei Infektionskrankheiten
Formeln der von Griffiths entdeckten Basen
Verfahren nach Brieger zur Darstellung organischer Harnbasen
Base C_s H, NO_s
Verfahren von Baumann und Udránsky zur Darstellung von Tetra- und Penta-
methylendiamin
Verfahren von Loewy und Neuberg
Verfahren von Kutscher und Lohmann
Verfahren von R. Engeland
Histidin-Nachweis im Harn
Isolierung des Methylguanidin
" " Dimethylguanidin
., γ-Methylpyridin
" Gynesin
, Reduktonovain
;·
Vitiatin
" Kynosin
Base $C_{15} H_{36} N_8 O_{13}$
Imidazolaminoessigsäure
Methode zur Bestimmung des Trimethylamins im Harn nach de Filippi 877, 878, 879
Eigenschaften und charakteristische Verbindungen einiger Harnbasen 879
C. Nachweis, Bestimmung und Isolierung der Abbauprodukte des Nukleinstoffwechsels im Harn und in den Fäzes (Purinbasen, Methylpurine, Harnsäure, Allantoin). Anhang: Untersuchung der Harnsteine. Von Prof. Dr. Alfred Schittenhelm, Erlangen
A. Purinbasen, Methylpurine, Harnsäure
A. Bestimmung der Harnsäure und Purinbasen im Urin
Kupfersulfat-Bisulfatmethode nach Krüger und Schmid 885
Silberfällung der Harnsäure nach Ludwig-Salkowski 888
Bestimmung der Purinbasen nach Camerer und Arnstein 888
Ammonfällung der Harnsäure nach Hopkins

Inhaltsverzeichnis.

XXV

Seite
a) Isolierung des Acetons als p-Nitrophenylhydrazon
3) Isolierung des Acetons als Dibenzalaceton
II. Nachweis und Bestimmung der Acetessigsäure
1. Nachweis der Acetessigsäure
a) Reaktion von Gerhardt
c) Reaktion von Arnold
2. Quantitative Bestimmung der Acetessigsäure. (Getrennte Bestimmung von
Acetessigsäure und Aceton)
Methode von Embden und Schliep
a) Im Harn
b) Im Blut
Methode von Folin
III. Nachweis, Bestimmung und Isolierung der β -Oxybuttersäure 924 -939
1. Nachweis der β-Oxybuttersäure
a) Durch Überführung in & Crotonsäure
b) Durch Überführung in Acetessigsäure
2. Bestimmung der β-Oxybuttersäure
a) Durch Überführung in \(\alpha\)-Crotons\(\text{aure} \)
b) Auf polarimetrischem Wege
2) nach Bergell
3) nach Black
Eigenes Verfahren
c) Durch Oxydation zu Aceton nach Th. Shaffer
3. Isolierung der \(\beta \)-Oxybutters\(\text{aure} \) \(
E. Methoden zum Nachweis weiterer im Urin vorkommender Verbindungen mit Einschluß der wichtigsten körperfremden Stoffe. Von PrivDoz. Dr. Hermann Hildebrandt. Halle a. S
A. Allgemeiner Teil 940-953 B. Spezieller Teil 953-993
Ätherschwefelsäuren
Glykokollpaarlinge
Gepaarte Glykuronsäuren
Gesamtstoffwechsel
A, Methoden des Stoffwechselversuches im allgemeinen
a) Stoffwechselversuche beim Menschen
a) Stoffwechseluntersuchungen an erwachsenen Individuen (Eiweiß-Kohle-
hydrat - Fettstoffwechsel; Nukleinstoffwechsel, Salzstoffwechsel, Wasserstoffwechsel). Von PrivDoz. Dr. Theodor Brugsch, Berlin 994

	Seite
I. Vorbemerkungen	994
a) Das Kalorienbedürfnis	995
b) Berechnung der Kost auf Grund des minimalen Eiweißbedarfes und	
nach dem Gesetze der Isodynamie der Nahrungsstoffe	995
c) Auswahl der Nahrung	996
d) Analyse der Nahrungsmittel	997
e) Sammeln der Ausscheidungen	998
f) Analyse der Ausscheidungen	
Kot	
Harn	
g) Einteilung des Stoffwechselversuches in Perioden	
·	
II. Ausnutzungsversuche (Resorptionsversuche)	
IV. Kohlehydrat- und Fettstoffwechselversuche	
V. Nukleinstoffwechselversuche	
VI. Salzstoffwechsel	
VII. Wasserstoffwechsel	
β) Stoffwechseluntersuchungen am Säugling. Von Prof. Dr. Leo Langstein. Berlin	ne e
Berlin	
Versuchsanordnung	
Gesamtstoffwechsel	
γ) Stoffwechselversuche an Hunden, an Wiederkäuern und an Vögeln.	
Gewinnung der sensiblen Ausscheidungen. Von PrivDoz. Dr. Völtz.	
Berlin	
1. Other conservers dente the later the	. 1040
2. Stoffwechselversuche an Wiederkäuern	
3. Stoffwechselversuche an Vögeln	1058
Untersuchungen an Seetieren. Von Dr. M. Henze, Zoologische Station. Neapel	. 1064
I. Methodik der Stoffwechseluntersuchungen an Wassertieren	. 1065
A. Respiratorischer Gaswechsel	
a) Bestimmung des Sauerstoffs	
1. Titrimetrische Methode nach L. W. Winkler	
2. Titrimetrische Methode nach Schützenberger und Risler	
Apparat zur Titration des Sauerstoffs	
Titerstellung der Natriumhydrosulfitlösung	
b) Bestimmung der Kohlensäure	
1. Titration der Kohlensäure	. 1073
2. Bestimmung der Gesamtkohlensäure durch Auskochen	. 1074
3. Gasvolumetrische Kohlensäurebestimmung	
c) Methoden der gleichzeitigen Bestimmung von Sauerstoff, Kohlensäur-	
und Stiekstoff	
d) Bestimmung der Kohlensäuretension des Wassers	
e) Mikrochemische Gasanalyse	. 1082

Sei	te
B. Methodik der Versuchsanordnung, Respirationsapparate	32
a) Vernons Versuchsanordnung	32
b) Versuchsanordnung nach Pütter	34
c) Respirationsapparat von Joylet und Regnard	
d) Respirationsapparat von Bounhiol	
e) Respirationsapparat nach Zuntz	
f) Versuchsanordnung mit Durchlüftung nach Pütter	
g) Mikrorespirometer nach Thunberg	
C. Bestimmung der Ausscheidungsprodukte	
a) Feste Bestandteile	
b) Bestimmung des Kohlenstoffs, welcher gelösten organischen Substanzen	_
entspricht	13
c) Bestimmung der stickstoffhaltigen Verbindungen	
d) Bestimmung des Ammoniaks	
e) Bestimmung der Nitrite	
f) Bestimmung gasförmiger Ausscheidungsprodukte	
D. Äußere Einflüsse, welche bei Stoffwechseluntersuchungen in Frage kommen 10:	
a) Temperatur	
b) Licht	
c) Sauerstoffzehrung des Wassers	
d) Symbiose und Parasitismus	
II. Allgemeine Erfahrungen über das Arbeiten mit Seetieren)1
a) Fesselung der Tiere)1
b) Blutentnahme)4
c) Aufsammlung von Exkreten und Sekreten).5
d) Exstirpationen	7(
e) Physiologische Lösungen	7
Anhang: Chemische und physikalische Notizen über Seewasser 110),5
a) Zusammensetzung des Seewassers	
b) Gasgehalt und Absorptionskoeffizienten des Seewassers für die atmo-	ж
sphärischen Gase	ìa
c) Die sogenannte "Alkalinität" des Seewassers	
d) Die Reaktion des Seewassers	
e) Spezifisches Gewicht	
f) Gefrierpunkt des Scewassers	
g) Elektrische Leitfähigkeit	
h) Temperatur des Seewassers	
i) Künstliches Seewasser	
// Kunsthenes seewasser	ے.
B. Methodik des Energiestoffwechsels. Von Prof. Dr. J. E. Johansson, Stockholm 1114	ff.
I. Stoff- und Energieumsatz	4
1. Die Komponenten des Stoffwechsels	
3. Schema des Stoffwechsels	
4. Die einzelnen Posten im Stoffwechsel	
5. Verbrennungsprodukte	
6. Bilanzen des Körpermaterials	

Sei	ite
H. Koeffizienten der Eiweiß-, Fett- und Kohlehydratverbrennung	
1. Die Koeffizienten der Eiweißverbrennung	
2. Koeffizienten der Fett- und Kohlehydratverbrennung	
3. Die Zuverlässigkeit der kalorischen Koeffizienten	
4. Die Sauerstoffaufnahme und die Kohlensäureabgabe als Indikatoren der)]
Verbrennung im Körper	
III. Versuchsanordnungen	
1. Untersuchung der Nahrung bei frei gewählter Kost	35
2. Man bestimmt die Menge und die Zusammensetzung der Nahrung, den	
Harn- und Kotstickstoff und die Kohlensäureabgabe	36
3. Man bestimmt den Sauerstoffverbrauch, die Kohlensäureabgabe und die	
Stickstoffausscheidung mit dem Harne. (Versuchsanordnung nach Zuntz.) . 113	38
4. Man bestimmt den Stickstoff, den Kohlenstoff und die Verbrennungswärme	
der Kost, des Kotes und des Harnes, die Kohlensäureausscheidung und	
die Wärmenbgabe des Körpers (einschließlich der geleisteten Arbeit) 114	10
5. Vollständiger Bilanzversuch	
IV. Respirationsapparate	±5
Typus 1: Regnault und Reiset	
2: Pettenkofer und Voit	
3: Verfahren von Zuntz	
V. Kalorimeter	
1. Absorptionskalorimeter oder Kalorimeter für konstante Temperatur 115	59
Eiskalorimeter	5 9
Verdampfungskalorimeter	59
D'Arsonvals selbstregulierende Kalorimeter für konstante Temperatur . 116	60
Selbstregulierender Wasserkalorimeter von Lefèvre	
Respirationskalorimeter von Atwater, Rosa und Benedict	
Kalorimeter von Marcet	
2. Strahlungskalorimeter	
Luftkalorimeter von d'Arsonval	
Differentialkalorimeter nach d'Arsonval	
Luftkalorimeter mit Korrektionsapparat von Rubner	
Kompensationskalorimeter von Haldane	
Thermo-elektrische Strahlungskalorimeter	
3. Anemokalorimeter	70
Methoden beim Arbeiten mit sensibilisierenden fluoreszierenden Stoffen. Von	
Prof. Dr. H. v. Tappeiner, München	ff.
Lichtquelle	79
Belichtungsgefäße	
Auswahl der Stoffe und Konzentration derselben	10
Die wichtigsten Methoden der künstlichen Parthenogenese. Von Prof. Dr.	
Jacques Loeb, New-York	ff.
1. Die Methoden der künstlichen Parthenogenese beim Seeigelei 117	79
2. Variationen dieser Methode	
3. Entwicklungserregung ohne Membranbildung	
4. Versuche am Seesternei	
5. Künstliche Parthenogenesen am Molluskenei	
6. Annelidenei	
D Additional and A	UÉ

Die wichtig sten Methoden der Immunitätsforschung. Von Prof. Dr. Leonor Michaelis.	
Herstellung und Nachweis von Antikörpern	
I. Die Eiweißpräzipitine	
1. Die Wahl des Versuchstieres	
2. Die Methodik der Injektionen	
3. Die Injektionsintervalle	
4. Gewinnung des Präzipitinserums und Aufbewahrung	
5. Prüfung des Präzipitins	
Quantitative Eiweißbestimmung mit der Präzipitinmethode	
II. Die Hämolysine	1191
Der Nachweis des Hämolysins	. 1193
Der Nachweis der Hämagglutinine	1194
III. Die Methode der Komplementablenkung	
IV. Die Wassermannsche Serumreaktion	. 1197
Anhang: Antikörper, welche als Fermente wirken	. 1203
Die wichtigsten Methoden beim Arbeiten mit Pilzen und Bakterien. Von Dozen-	t
Franz Fuhrmann in Graz	. 1204
Einleitung	1204
I. Sterilisationsverfahren	. 1204
a) Sterilisation durch trockene Wärme	. 1205
b) Sterilisation durch feuchte Wärme	1206
Sterilisation in strömenden Dampf	. 1206
Sterilisation im erhitzten Dampf	1207
c) Sterilisation durch Filtration	. 1209
II. Nährsubstrate	. 1212
a) Feste Nährsubstrate variabler Zusammensetzung	. 1212
Kartoffelnährböden	. 1213
Brotnährböden	1214
b) Flüssige Nährsubstrate schwankender Zusammensetzung	1215
1. Blutserum	. 1215
2. Milch	. 1216
3. Fleischbrühe	. 1216
4. Mistdekokt	. 1217
5. Würze	
6. Hefewasser	
7. Abkochungen von Früchten	
8. Heuinfus	
c) Flüssige Nährsubstrate von konstanter chemischer Zusammensetzung	
1. Nährgelatine	
2. Nähragar	
e) Nährsubstrate für die Gewinnung und Zucht bestimmter Mikroorganismen	1223
Anhang: Abfüllvorrichtungen	
Behälter für steriles Wasser	. 1228

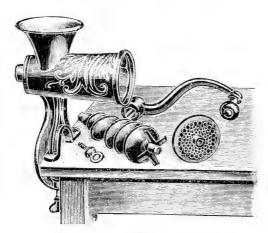
			Sinter
III.	Reinzuchtmethoden	. 1	228
	1. Das Gelatine-Plattenverfahren	1	930
	2. Der Agarplattenguß		
	3. Reinzucht von einer Zelle unter Kontrolle		
IV.	Anaërobe Zucht und Kultur in bestimmten Gasen oder Gasgemischen		
	Kultur in hoher Schicht	. 1	238
	Kultur in der Buchnerröhre	. 1	238
	Zuchtapparat für Eprouvettenkulturen	. 1	239
	Anaërobe Plattenkultur	. 1	239
	Eprouvettenkultur im Wasserstoff		
	Plattenkultur im Wasserstoff		
	Plattenkultur im Gasstrom	. 1	246
V.	Bestandteile von Pilzen und Bakterien	_	247
	A. Mikrochemische Methoden zum Nachweis der Bestandteile von Bakterien u		
	Pilzen		
	a) Zellwandbestandteile (Zellulose, Pektin, Chitin, Kallose)		
	b) Zellinhaltsstoffe (Eiweißstoffe, Nukleine, Volutin, Glykogene, Fette)		
	B. Herstellung der Preßsäfte		
	C. Nachweis und Gewinnung einiger Enzyme von Pilzen und Bakterien.		
	1. Proteolytische Enzyme		
	2. Kohlenhydratspaltende Enzyme		
	D. Anhang: Gewinnung von Bakteriopurpurin und Bakteriochlorin		262
VI.	${\tt Methoden\ zum\ Nachweis\ und\ zur\ Bestimmung\ einzelner\ Umsetzungsprodukte}$		
	Pilz- und Bakterienkulturen	. 1	262
	a) Nachweis gasförmiger Umsetzungsprodukte	. 1	262
	hr Nachweis gelöster Umsetzungsprodukte		
	Indolnachweis		
	Nitritnachweis		_
	Nachweis von Säurebildung	_	
	Säurebestimmung in Kulturen		
	Alkalibestimmung in Kulturen	. 1	268
VII.	Das Tierexperiment	. 1	268
	Die wichtigsten Tiere und ihre Zucht	 . 1	268
	Tierhalter	. 1	271
	Wägung und Temperaturmessung	. 1	274
	Infektionskäfige	. 1	275
	Injektionsspritzen	. 1	278
	Narkose	. 1	281
	Infektionsmethoden		
	Dosierung des Impfmateriales		
	Beobachtung und Sektion	. 1	293
VIII.	Gewinnung und Züchtung pathogener Mikroben	. 1	296
	Micrococcus meningitidis cerebrospinalis	. 1	297
	Micrococcus aureus (Rosenbach) Mig	. 1	297
	Micrococcus gonorrhoeae (Neisser) Flügge		
	Pseudomonas aeruginosa (Schröter) Mig	. 1	299

Inhaltsverzeichnis.

		Seite
	Bacillus coli Escherich	. 1299
	Bacillus suipestifer	. 1300
	Bacillus typhosus Gaffky	. 1300
	Bacillus oedematis Liborius	. 1302
	Bacillus tetani Nicolaier	. 1303
	Bacterium anthraeis (Koch) Mig	. 1304
	Bacterium aviseptieum	. 1305
	Bacterium diphtheriae (Loeffler) Mig	. 1305
	Bacterium influenzae (R. Pfeiffer), Lehmann und Neumann	. 1306
	Bacterium mallei (Loeffler) Mig.	. 1308
	Pestbacterium	. 1309
	Bacterium pneumoniae Mig	. 1310
	Bacterium suicidum	. 1310
	Bacterium tuberculosis (Koch) Mig.	. 1311
	Microspira comma (Koch) Schrötter	. 1312
	Actinomyces hominis	
17	Gewinnung und Züchtung verschiedener, nicht pathogener Mikroorganismen	. 1314
4.2.	Eiweißspaltende Bakterien	
	Harnstoffbakterien	
	Nitrifikationsbakterien	
	Denitrifizierende Bakterien	
	Schwefelbakterien	. 1916
	Purpurbakterien	. 1910
	Photogene Bakterieu	
	Erreger der Methan- und Wasserstoffgärung der Zellulose	
	Essigbakterien	
	Milchsäurebakterien	
	Buttersäurebakterien	
	Gewinnung von Spirillen	
	Strahlenpilze	
	Schimmelpilze	
X.	Methoden der bakteriologischen Wasser-, Boden- und Luftuntersuchung	. 1325
	Wasseruntersuchung	. 1325
	Bodenuntersuchung	
	Luftuntersuchung	. 1332
Motho	den zur Herstellung bestimmter Wasserstoffionenkonzentrationen. Von	2
	of. Dr. Leonor Michaelis, Berlin	
1.1.		
	Acetatgemisch	. 1342
	Ammoniumgemische	. 1344
	Phosphatgemische	. 1345
	_	40.15
Nachtr	äge und Berichtigungen	. 1347

Fermente.

A. Methoden zur Darstellung von Fermenten.


Von Leonor Michaelis, Berlin.

Bisher ist noch kein Ferment auch nur in annähernd reinem Zustande dargestellt worden. Bei der Herstellung von Fermenten handelt es sich bis heute immer noch darum. Lösungen oder feste Präparate zu beschaffen, die die Wirkung des Fermentes besitzen. Wieviel selbst in den stärkst wirksamen Fermentpräparaten der Masse nach auf das wirkliche Ferment kommt, darüber fehlt uns bis jetzt jede Schätzung, aber alles spricht dafür, daß selbst die besten trockenen Fermentpräparate zum großen Teil aus den unvermeidlichen Verunreinigungen bestehen, häufig eiweißartiger Natur. In trockenen Fermentpräparaten ist dieses Eiweiß oft zum größten Teil in denaturiertem, unlöslichem Zustand enthalten. Löst man ein solches Präparat in Wasser, so geht manchmal nur ein verschwindender Anteil des Pulvers in Lösung, obwohl die Lösung kräftige Fermentwirkung zeigt. Stellt man aus der klaren Lösung etwa durch Fällung mit Alkohol wieder ein festes Präparat her, so ist das meiste davon wiederum unlöslich, gleichzeitig erleidet man große Verluste an Ferment, so daß auf diesem Wege die Trennung der Verunreinigungen von dem eigentlichen Ferment sehr bald ihre Grenze hat. Es gibt übrigens auch eiweißhaltige Fermentpräparate, welche vollkommen löslich sind.

Die Fermente können aus den sie produzierenden Organen auf zweierlei Weise gewonnen werden. Entweder benutzt man das Sekret des lebenden Organes, welches wie Speichel direkt oder wie Magensaft durch Fisteln gewonnen wird. Insofern ist die Methode der Fermentgewinnung identisch mit der Methode der operativen Physiologie. Oder aber man gewinnt die Fermente durch Auslaugung der isolierten Organe. Man muß dazu aber die Organe des in gesundem Zustande geschlachteten Tieres nehmen; die Organe menschlicher Leichen zeigen meist keine Fermentwirkung mehr.

Die Methode, die man einschlagen muß, um aus einem Organ Fermente zu gewinnen, hängt von der Extrahierbarkeit des Fermentes ab. Es gibt Fermente, die ohne Schwierigkeit durch Wasser, dem nötigenfalls

geeignete Antiseptica, wie Chloroform oder Toluol, zugesetzt sind, extrahiert werden können. Das sind dieselben Fermente, die von den Zellen auch im natürlichen Zustande nach außen sezerniert werden: Ptyalin des Speichels, Pepsin und Lab des Magensaftes, Trypsin des Pankreas. Invertin der Hefe. Jedoch sind die Bedingungen der Extraktion ungünstiger als die der natürlichen Fermentproduktion, weil im natürlichen Zustande Ferment durch Neubildung stets nachgeliefert werden kann, während aus den toten Organen nur das noch vorhandene Ferment extrahierbar ist. Deshalb muß man bei den Extraktionsmethoden die Ausbeute möglichst zu erhöhen suchen. Das erreicht man erstens durch möglichste Zerkleinerung der Organe, zweitens auch durch eine möglichst protrahierte Auslaugung. Der letzteren ist allerdings bei vielen Fermenten durch die geringe Haltbarkeit in Lösung

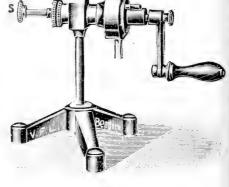


Fig. 1.

Fig. 2.

ein Ziel gesetzt. Anwendung des Schüttelapparates ist bei manchen Fermenten dabei zu vermeiden aus dem später auf S. 13 angeführten Grunde.

Eine zweite Klasse von Fermenten ist diejenige, welche unter natürlichen Bedingungen von den Zellen überhaupt nicht nach außen hin sezerniert werden. Diese Fermente wirken daher während des Lebens der Zelle nur auf diejenigen Stoffe, welche in die Zellen eindringen. Der Prototyp dieser "Endofermente" ist die Zymase. Ihre Isolierung von der lebenden Zelle erforderte eine so verfeinerte Technik, daß man vor der Buchnerschen Methode der Ansicht war, die Hefegärung sei an das "lebende Protoplasma" gebunden.

Im Grunde ist also zunächst immer das Wesentliche, wenn man Fermente aus Organen oder Zellen isolieren will, diese nach Möglichkeit zu zerkleinern.

Für die erste, gröbere Zerkleinerung benutze man z.B. ein Wiegemesser oder die gewöhnlichen (Fig. 1) Fleischhackmaschinen, oder feiner, eine Zerkleinerungsmaschine wie Fig. 2. In anderen Fällen wird, je nach der Konsistenz, Zerkleinerung durch Stoßen und Reiben im Mörser leichter sein. In diesem Falle bringe man die mit der Schere grob zerschnittenen Organstücke ohne jeden Flüssigkeitszusatz in den Mörser und zerstampfe sie zu einer Pulpa. In manchen Fällen genügt dieser Grad der Zerkleinerung. Pankreas z. B., in diesem Zustande mit Toluolwasser der Autolyse überlassen, liefert einen trypsinhaltigen Extrakt.

In anderen Fällen bedarf es weiterer Zerkleinerung, etwa wenn man die abgeschabte Darmschleimhaut verarbeiten will. Das erreicht man durch Reiben im Mörser mit einem Zusatz von Seesand. Genaue Angaben über die Mengenverhältnisse im allgemeinen lassen sich nicht machen; man setze in jedem Falle soviel zu, daß die Masse gut verreibbar wird. Durch genügend langes Reiben kann man so einen hohen Grad von Zerkleinerung erreichen. Das zerkleinerte Gewebe wird dann wieder mit Chloroformwasser oder Toluolwasser extrahiert (Chloroform 1 auf 200 Wasser, Toluol ebenso). Ein derartiges Verfahren ist z.B. zur Gewinnung der invertinartigen Fermente der Hefe geeignet.

In anderen Fällen wird man nach vorangegangener grober Zerkleinerung die Pulpa auf Glasplatten oder Tontellern ausbreiten und durch einen warmen Luftstrom oder in einem evakuierten Exsikkator über Schwefelsäure bei Zimmertemperatur oder bei 37° rasch trocknen. Nach eingetretener Trocknung kann man ohne Schädigung höher, auf 60—70°, erhitzen. Das getrocknete Gewebe läßt sich im Mörser leicht zerkleinern und weiterhin, wie gewöhnlich, extrahieren.

Noch größeren Effekt hat eine Reihe von Methoden, von denen die älteste und verbreitetste die von *Buchner*¹) ist; diese möge in ihrer ursprünglichen Anwendungsweise für die Gewinnung der Zymase aus der Hefe näher beschrieben werden.

Darstellung von Hefepreßsaft.

Am besten wird obergärige Hefe als Ausgangsmaterial verwendet, die man als einen dickflüssigen Brei von Bierbrauereien beziehen kann. Die Gewinnung des Preßsaftes zerfällt in folgende Prozeduren, welche zum Teil mit den eigenen Worten von Buchner beschrieben werden sollen: 1. Waschen der Hefe, 2. Entwässern der Hefe, 3. Mischen mit Sand und Kieselgur, 4. Zerreiben unter Zerreißung der Zellmembranen, 5. Auspressen der teigförmigen Masse.

1. Man bringe die aus der Brauerei bezogene Hefe auf ein Haarsieb und schwemme sie mittelst aufgegossenen Wassers durch das Sieb hindurch in hohe Gefäße (25 l Inhalt) mit Wasser. Gröbere Bestandteile (Hopfen) bleiben schon so auf dem Siebe zurück. Nachdem die Hefe sich zu Boden gesetzt hat, hebert man das Wasser ab. Dieser ganze Waschprozeß wird 3—4mal wiederholt, bis das Waschwasser klar und farblos bleibt.

 $^{^{\}rm 1})$ Ed. Buchner, Hans Buchner und Martin Hahn, Die Zymasegärung. München und Berlin, R. Oldenbourg, 1903.

Schließlich koliert man die Hefe durch ein Nesseltuch auf einem Filtrierrahmen. Der Waschprozeß dauert für 2 kg Hefe 1 Stunde.

2. Zur Entwässerung bringt man die gewaschene Hefe in ein beutelförmig gefaltetes Koliertuch und hierauf noch in ein Preßtuch, die weiter unten näher beschrieben werden. Dann bringt man das Ganze in die ebenfalls weiter unten zu beschreibende hydraulische Presse und unterwerfe es 5 Minuten einem Drucke von 50 Atmosphären. Es resultiert da-

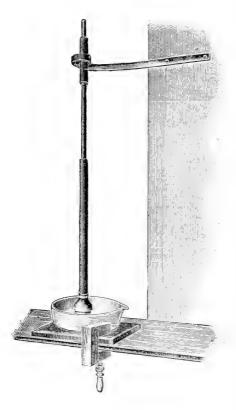


Fig. 3.

- bei ein Hefekuchen von etwa 70% Wassergehalt, der im Bruch noch gelbbraun und nur an den Rändern schon etwas weiß getrocknet erscheint.
- 3. Diese getrocknete Hefe wird in einer sehr großen Porzellanschale mit Quarzsand vermischt, der durch ein Sieb von 200 Maschen pro Quadratzentimeter hindurchgegangen ist, und ferner mit Kieselgur, und zwar auf 1000g entwässerte Hefe 1000g Sand und 200—300g Kieselgur. Dieses wird zunächst mit den Händen gemengt und durch ein großes Sieb (9 Maschen auf 1 em^2) geschlagen.
- 4. Zur Zerreibung kommt das staubtrockene, fast weiße Pulver in Portionen von $300-400\,g$ in eine große Porzellanschale von $40\,cm$ Durchmesser; dieselbe ist durch eine Holzfassung mit dem Tische fest verbunden; das Porzellanpistill geht in eine $1^3/_4\,m$ lange Eisenstange über (Gesamtgewicht $8\,kg$), die durch die Öse eines an der Wand des Arbeitsraumes federnd

befestigten Eisenbandes geführt wird (Fig. 3). Das Zerreiben geschieht am besten mit der Hand. Es muß solange fortgesetzt werden, bis die teigförmige Masse sich von selbst von der Wandung der Reibschale ablöst, was für eine Portion von 300 g $2^{1}/_{2}$ —3 Minuten dauert.

5. Zum Zwecke des Auspressens wird die teigförmige Masse, entsprechend 1 kg Hefe, nunmehr in ein starkes, baumwollenes, nicht appretiertes Preßtuch eingeschlagen, wie es als wasserdichtes Segeltuch Verwendung findet (zu beziehen z.B. von Oskar Eckert, Berlin C. Stralauer Brücke Nr. 3). Dieses Tuch wird vor dem Gebrauche mit kaltem Wasser gründlich durchtränkt und dann in der hydraulischen Presse bei 50 Atmosphären

Druck von dem überschüssigen Wasser befreit. Als Presse (Fig. 4) bedient man sich der hydraulischen Presse, die zu diesem Zwecke jetzt im Handel unter dem Namen der Buchnerpresse zu haben ist. Die auszupressende Masse wird in das Tuch eingeschlagen, auf die Preßplatte gelegt und mit einem vielfach durchlöcherten Hohlzylinder aus Stahlblech umgeben, und darauf die vertikale Spindel mit der Hand angezogen. Den Hauptdruck er-

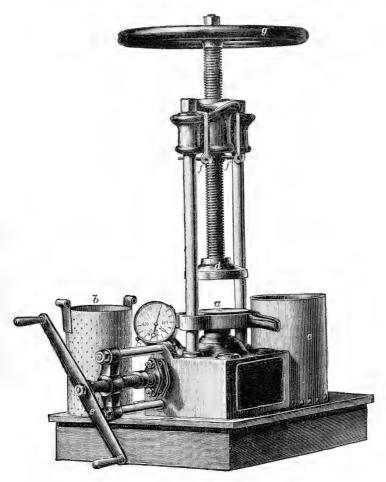


Fig. 4.

reicht man dann durch Anziehen der horizontalen Spindel. Der erreichte Atmosphärendruck ist an dem Manometer abzulesen; man steigert diesen langsam von 50 zu 50 Atmosphären und hält ihn durch öfteres Nachziehen auf der gewünschten Höhe konstant. Die Pressen sind für einen Druck von 300 Atmosphären gebaut. Der abfließende Preßsaft tropft direkt aus der Presse auf ein Faltenfilter und von da an in ein durch Eiswasser gekühltes

Gefäß. Nach beendeter Pressung kann der Heferückstand ohne Zusatz nochmals zerrieben und ausgepreßt werden. Die Ausbeute beträgt gewöhnlich für 1 kg Hefe 450 bis sogar 500 cm³.

Eine weitere Methode, den intrazellulären Inhalt zu gewinnen, stellt die von S. Rowland 1) dar. Die Organe werden zunächst zerkleinert und in

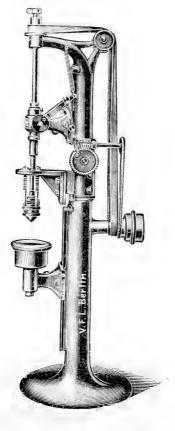


Fig. 5.

einem zylindrischen Gefäß durch eine mit sinnreich konstruierten seitlichen Flügeln besetzte, rasch rotierende Spindel mehrere Stunden zerrieben, dann mit Kieselgur bis zur Konsistenz eines trockenen Pulvers zerrieben und in einer dazu konstruierten Filterpresse ausgedrückt. Skizzen des Apparates finden sich in der Originalarbeit.

Im besonderen für Auslaugung des Inhaltes von Bakterien geeignet ist der Apparat von *Allan Maefadyan* und *S. Rowland*²) (Fig. 5). Die ganze Methode sei für das Objekt beschrieben, für das die Autoren sie anwandten, für die Zerkleinerung von Typhusbazillen.

10 Bouillonkölbehen werden mit Typhusbazillen geimpft und nach 24stündigem Aufenthalt im Brutschrank gut zentrifugiert. Die Bakterienmasse wird mit Kochsalzwasser wiederholt gewaschen, zentrifugiert und rasch getrocknet, indem sie auf die Oberfläche eines Chamberlandfilters ausgebreitet und Luft durchgesaugt wird. Die Ausbeute betrug ca. 0·15 g Trockenmasse. Die teigige Masse wird von dem Filter abgelöst und in das konische Gefäß des nebenstehenden Apparates gebracht.

Dieses wird in ein Dewargefäß versenkt, welches mit flüssiger Luft gefüllt ist. Ein Vollkonus aus Stahl mit elektrischem Antrieb rotiert innerhalb des mit der gefrorenen Bakterienmasse gefüllten Hohlkonus, bis kein intakter Mikroorganismus mehr vorhanden ist, was $1^{1/2}$ —2 Stun-

¹) Sidney Rowland, A Method of obtaining intracellular Juices. Journ. of Physiology, Vol. 27, p. 53 (1901).

²) Allan Macfadyan and Sydney Rowland, Upon the intracellular constituents of the typhoid bacillus, IV. Apparatus and Methods, Zentralbl.f. Bakteriol. Abt. I. Bd. 34, 8, 765 (1903).

den erfordert. Die aufgetaute Masse wird im Achatmörser mit physiologischer Cl Na-Lösung verrührt und gröbere korpuskuläre Elemente abzentrifugiert, so daß eine opaleszierende Lösung übrig bleibt.

Mehr auf die Verarbeitung von tierischen Organen zugeschnitten ist die Zerkleinerungsmethode von $Wiechowski^+$), die an anderer Stelle beschrieben ist.

Es ist nicht möglich und wäre auch eine unnötige Wiederholung, die Darstellung aller gebräuchlichen Fermentpräparate zu beschreiben. Als typische Beispiele mögen die folgenden genügen:

Darstellung des Invertins.

Verfahren von W. A. Osborne. 2)

 $^{1/2}\,kg$ Preßhefe wird zunächst mit $^{1/2}\,l$ 96%, igem Alkohol angerieben, nach 16–24 Stunden abfiltriert. Es geschieht dies hauptsächlich, um die Eiweißkörper zu koagulieren. (Heute dürfte das nicht mehr nötig sein, da man nötigenfalls nach L. Michaelis³) nachträglich das Eiweiß leicht durch Kaolin entfernen kann.) Der gut abgesaugte Rückstand wird mit 500 cm³ Chloroformwasser (5 cm³ Chloroform auf 1 l Wasser) 6 Tage lang unter häufigem Umschütteln bei 30–35% erhalten, dann durch große Faltenfilter gebracht und das Filtrat gleich in 1 l-Gefäßen aufgefangen, die zu drei Vierteln mit 96% igem Alkohol gefüllt sind. Der in dem Filtrat sich sofort bildende Niederschlag wird zuletzt auf ein Filter gebracht, mit Alkohol gewaschen, im Vakuum unter Schwefelsäure getrocknet. Zur Reinigung von den Aschenbestandteilen erwies sich die Dialyse am wirksamsten.

Verfahren nach L. Michaelis.

Die Alkoholbehandlung des vorher beschriebenen Verfahrens, welche die Entfernung der Eiweißkörper zum Hauptzweck hatte, kann auf folgendem Wege umgangen werden, welcher darauf beruht, daß Kaolin alle Eiweißkörper, nicht aber das Invertin adsorbiert: $100\,g$ Preßhefe werden mit der nötigen Menge Sand zerrieben. Es ist nicht nötig, die vollkommene Zerreibung, wie zur Darstellung der Zymase, anzustreben. Dann wird die Masse 3—6 Stunden mit $200\,cm^3$ Chloroformwasser ($1\,cm^3$ auf $100\,cm^3$ Wasser) geschüttelt und dann durch Filtrieren oder scharfes Zentrifugieren der flüssige Extrakt vom Bodensatz getrennt. Es ist nicht nötig, völlige Klarheit des Extraktes schon jetzt anzustreben. Dann werden je $100\,cm^3$ Extrakt mit $15-20\,g$ Kaolin portionenweise unter Schütteln versetzt. Man achte darauf, daß die Reaktion andeutungsweise sauer ist;

¹) Wilh. Wiechowski, Eine Methode zur chemischen und biologischen Untersuchung überlebender Organe. Hofmeisters Beiträge. Bd. 9. S. 232 (1907).

²) W. A. Osborne, Beiträge zur Kenntnis des Invertins. Zeitschr. f. physiol. Chem. Bd. 28. S. 399 (1899).

³⁾ L. Michaelis, Die Adsorptionsaffinit\u00e4ten des Hefe-Invertins. Biochem. Zeitschr. 7. 488 (1908).

nötigenfalls säure man mit einigen Tropfen $10^{\circ}/_{\circ}$ iger Essigsäure an. Dann filtriere man, indem man die ersten Anteile des Filtrates immer wieder aufgießt, bis das Filtrat vollkommen wasserklar ist. Eine leichte gelbliche Färbung bleibt bei manchen Hefearten bestehen.

Die weitere Reinigung durch Dialyse, wenn erforderlich, s. weiter unten.

Darstellung des Pepsins

nach Pekelharing. 1)

a) Aus Hundemagensaft.

Der filtrierte Magensaft des Hundes, der ganz frei von Galle sein muß, wird 20 Stunden lang bei möglichst niederer Temperatur gegen destilliertes Wasser dialysiert. Dann wird die trübe Flüssigkeit zentrifugiert, der aus fast reinem Pepsin bestehende Bodensatz mit ein wenig Flüssigkeit auf ein Filter gebracht, mit etwas destilliertem Wasser gewaschen, abgepreßt und im Exsikkator getrocknet.

b) Aus Schweinemagensaft.2)

Die Fundusteile von 10 Schweinemägen werden zerhackt und mit 6 I 0·5°/ $_{0}$ iger HCl 5 Tage lang bei 37° digeriert. Der Brei wird dann filtriert und gegen destilliertes Wasser bis zum Entstehen einer Trübung dialysiert. (In Pergamentschläuchen dauert das 24 Stunden.) Der entstandene Niederschlag wird jetzt durch Zentrifugieren abgeschieden und 1 Stunde mit 30 bis 40 cm^{3} 0·2°/ $_{0}$ iger HCl bei 37° digeriert, wobei er sich klar löst. Die Lösung, die beim Erkalten trüb wird, wird gegen destilliertes Wasser dialysiert. Es bildet sich wieder eine Trübung, die bei weiterem Dialysieren teilweise in Lösung geht. Durch Zufügen von HCl bis zu einem Gehalt von $0\cdot02^{\circ}/_{0}$ fällt der Niederschlag wieder aus. Er wird auf ein Filter gebracht, mit wenig Wasser gewaschen und über Schwefelsäure getrocknet.

Extraktion des Pepsins durch Glyzerin nach v. Wittich. 3)

Die von den tieferen Schichten freipräparierte Magenschleimhaut (Schwein, Kaninchen) wird möglichst zerkleinert, mit Wasser ein wenig gewaschen und dieses abgegossen. Der wenig feuchte Rückstand wird mit Glyzerin übergossen. Nach wenigen Stunden hat das Glyzerin stark peptische Eigenschaften. Die Extraktion kann oft wiederholt werden. Fäulnis tritt nicht ein. Um ein festes Fermentpräparat daraus abzuscheiden. fälle man den Glyzerinauszug mit Alkohol.

C. A. Pekelharing, Mitteilungen über Pepsin, Zeitschr. f. physiol, Chem. Bd. 35.
 S. 8 (1902).

²) C. A. Pekelharing, Über eine neue Bereitungsweise des Pepsins. Zeitschr. für physiol. Chem. Bd. 22. S. 233 (1896/97).

³) r. Wittich, Über eine neue Methode zur Darstellung künstlicher Verdauungsflüssigkeiten. Pflügers Archiv. Bd. 2. S. 193 (1869).

Zu dieser letzteren Darstellungsart von Pepsin ist zu bemerken. daß leicht eine Beimengung von peptolytischen Zellfermenten erfolgt. Die mit derartig bereitetem "Pepsin" angestellten Versuche sind nach den Erfahrungen von E. Abderhalden aus dem genannten Grunde nicht eindeutig.

Extraktion der pankreatischen Fermente.

- a) Mit Glyzerin nach v. Wittich. 1) Zerkleinertes Pankreas (z. B. vom Rind) wird mit Glyzerin übergossen. Schon nach wenigen Stunden zeigt der Extrakt amylolytische und tryptische Wirkung. Nach mehrwöchentlicher Extraktion tritt starke Autodigestion ein.
- b) Ebenso extrahiert Hammarsten das Pankreas mit $0.03^{\circ}/_{\circ}$ igem Ammoniak, fällt das Filtrat mit verdünnter Essigsäure und löst den Niederschlag in Sodalösung.
- c) Extraktion der pankreatischen Fermente nach Pottevin²) und Dietz,³)

Pankreasdrüsen vom Schwein werden in einer Fleischhackmaschine fein zerhackt, dann das Produkt mit absolutem Alkohol so lange behandelt, bis den Gewebeteilen das Wasser entzogen ist. Dann wird nochmals mit der Maschine zerhackt. Nachdem dann der Alkohol durch Filtration möglichst entfernt ist, bringt man den Rückstand in einen Soxhletschen Extraktionsapparat und entfettet mit Äther vollständig. Dann bringt man den Inhalt der Extraktionshülsen auf ein großes Nutschenfilter, saugt den Äther ab und trocknet im Luftstrom. Das erhaltene Pulver zeigt die fermentativen Wirkungen des Pankreas.

Man kann nach Dietz die Lipase von dem Trypsin folgendermaßen trennen: Man breitet das Fermentpulver auf ein großes Nutschenfilter in dünner Schicht aus, übergießt mit kaltem Wasser und saugt stark ab. Das Auswaschen geschieht so lange, bis das Filtrat mit verdünnter Essigsäure keinen Niederschlag mehr gibt. Das Wasser darf mit dem Ferment nicht lange in Berührung sein, weil es sonst aufquillt und das Filter verstopft; deshalb gibt man immer nur kleine Portionen Wasser zu und läßt diese vollständig absaugen, bis man neues zufügt. Dann trocknet man das Ferment mit Alkohol und Äther. Zum Schlusse wird das Ferment noch durchgesiebt. Das Ferment ist seines proteolytischen Anteiles auf diese Weise fast völlig beraubt und ist, als Lipase betrachtet, haltbarer und wirksamer als vor dem Auswaschen mit Wasser. Diese Lipase ist absolut unlöslich, es ist also nur möglich, mit Aufschwemmungen des Pulvers zu arbeiten, während das Trypsin glatt in Lösung geht und als völlig klare Lösung verwendet werden kann.

¹) r. Wittich, Über eine neue Methode zur Darstellung künstlicher Verdauungsflüssigkeiten. Pflügers Archiv. Bd. 2. S. 193 (1869).

²⁾ Pottevin, Comptes rendus. T. 137. p. 378 (1904).

³) Dietz, Über eine umkehrbare Fermentreaktion im heterogenen System. Zeitschr. f. physiol. Chem. Bd. 52. S. 286 (1907).

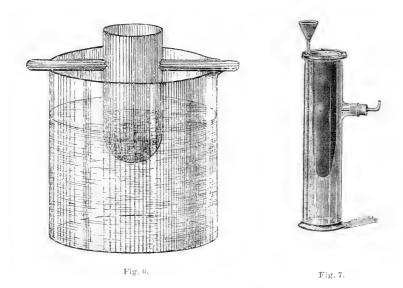
Darstellung des Labfermentes

nach Hammarsten.

Frische Magenschleimhaut, z. B. vom Kalb, wird 24 Stunden bei Zimmertemperatur mit einer H Cl-Lösung von $0^{\circ}1-0^{\circ}2^{\circ}/_{\circ}$ ausgelaugt, um das Zymogen des Fermentes gleichzeitig in Ferment umzuwandeln, dann genau neutralisiert und filtriert. Um ein festes Labpräparat zu bekommen, kann man diese Lösung mit Alkohol fällen. Der Niederschlag ist zu einem kleinen Teil wieder in Wasser löslich und zeigt wieder Labwirkung. Jedes Labpräparat zeigt auch Pepsinwirkung und umgekehrt, wenn auch die Intensität dieser beiden Wirkungen nicht immer parallel zu gehen braucht. Die angeblichen getrennten Isolierungen von Lab und Pepsin werden bestritten.

Die gebräuchlichsten Fermente sind meist in guter Form im Handel erhältlich. Nach meinen Erfahrungen kann ich folgende Präparate empfehlen:

Pepsin. Das Pepsin der Pharmakopöe ist gut wirksam; man beachte, daß es zur Herstellung des gesetzlich vorgeschriebenen Titers mit entsprechenden Mengen Zucker, meist Milchzucker, verdünnt ist, was die Hauptmasse dieses Präparates ausmacht. Ein Pepsin, welches frei von Kohlehydratbeimengungen ist, ist als Pepsin. purissim. von *Grübler* zu beziehen. Das Pepsin kann auch als Lab benutzt werden. Ein sehr gutes Labpräparat, wohl aus Kälbermagen, ist von *Grübler* erhältlich. Daselbst ist auch Diastase, ferner Steapsinsolution, eine Lipase, zu bekommen. Von käuflichem Invertin möchte ich abraten. Als Lipase sind besonders zu empfehlen entölte Ricinussamen, zu beziehen in Form einer plastischen Emulsion von der Chemischen Fabrik auf Aktien, Charlottenburg.


Trypsin. Das beste Präparat ist Pancreatinum absolutum der Aktiengesellschaft Rhenania, Aachen. (Das Präparat Pankreon derselben Firma ist tanninhaltig!) ¹)

Die Dialyse.

Man erhält auf die oben geschilderte Weise Extrakte, welche außer dem Ferment noch zahlreiche andere Substanzen enthalten. Mitunter genügt ein Extrakt in diesem Zustande den gestellten Anforderungen. Will man weiter reinigen, so kann man zunächst von der Eigenschaft der Fermente Gebrauch machen, bei der Dialyse durch tierische Membranen nicht zu diffundieren. Als Dialysiermembrane möchte ich die sogenannten "Fischblasenkondome" des Handels vor allen anderen empfehlen. Es sind getrocknete Blinddärme von

¹) Neuerdings fabriziert die Berliner Fabrik organotherapeutischer Präparate Dr. Freund und Dr. Redlich, Berlin NW., ein gutes Trypsinpräparat, welches in Wasser restlos löslich ist. In Wasser gibt es eine leicht opaleszente Lösung, die durch etwas Soda ganz klar wird.

Schafen. (Eine empfehlenswerte Marke ist als "Nr. 4" von Hermann Reinhold, Berlin, Bernburgerstr. 14 zu beziehen.) Sie werden einfach auf einem Glasstab aufgespießt (Fig. 6) und wie nebenstehend in ein Glasgefäß eingehängt. Die Füllung geschieht am schonendsten folgendermaßen. Man gieße zunächst 20—30 cm³ der Lösung in den Schlauch und fülle dann außen destilliertes Wasser so hoch auf, daß es das innere Niveau überragt. Dann fülle man innen wieder eine Schicht von 5 cm Höhe auf, gieße außen Wasser entsprechend nach und so fort. Man fülle die Schläuche nicht mehr als halb voll und überzeuge sich nach der Füllung, daß sie dicht schließen. Das Außenwasser wird täglich 2—3mal erneuert, indem der Schlauch für kurze Zeit herausgehoben wird. Die Möglichkeit des Verschlusses und mehr Bequemlichkeit bietet nebenstehender kleiner Apparat (Fig. 7). bei

dem man das Außenwasser, wenn man will, durch ständiges Tropfen zirkulieren lassen kann. Im allgemeinen dürften die rohen Fermentpräparate so salzarm sein, daß die Dialyse gegen im ganzen 4—5 mal gewechseltes destilliertes Wasser im Laufe von 2—3 Tagen allen Ansprüchen Genüge leistet. Man gebe in die Fermentlösung und in das Wasser etwas Toluol. Von komplizierteren Dialysiervorrichtungen kann man für diese Zwecke absehen.

Ein weiterer Anspruch auf Reinigung der Fermentlösung wird dahin gehen, auch die nicht dialysierenden Stoffe vom eigentlichen Ferment zu trennen, also vor allem Eiweißstoffe. Eine allgemeine Methode gibt es hierfür nicht und nur in einigen Fällen gelingt eine teilweise Entfernung des Eiweißes, so beim Trypsin in gewissem Maße dadurch, daß das Pankreas der Selbstverdauung für längere Zeit unterzogen wird. In einigen wenigen Fällen ist es möglich, durch geeignete Adsorbenzien die Lösung von stö-

renden Kolloiden zu befreien, wenn es nämlich ein Adsorbens gibt, das Eiweiß wohl, aber nicht das Ferment adsorbiert. So kann man Hefeinvertin durch Schütteln mit Kaolin ohne Verlust reinigen, doch ist das ein Ausnahmefall. Alle Methoden, die sonst auf dem "Mitreißen" der Fermente durch grobe Niederschläge beruhen, wie Fällen von Phosphaten. Bleisalzen, haben eigentlich noch nicht Bürgerrecht in einer exakten Methodologie der Fermentreinigung, so interessante Resultate in rein sachlicher Beziehung sie geliefert haben.

Allgemeines über die Aufbewahrung der Fermentpräparate.

Im trockenen Zustande sind die Fermentpräparate durchaus haltbar. Um für extrem lange Zeiten die denkbar größte Garantie für Unveränderlichkeit zu haben, dürfte sich das von Ehrlich für Toxine eingeführte Verfahren empfehlen, die trockenen Präparate im evakuierten Gefäß eingeschmolzen und dauernd vor Licht geschützt an einem kühlen Orte aufzubewahren. Für gewöhnliche Zwecke verbürgt jedoch die einfache trockene Aufbewahrung Unveränderlichkeit für lange Zeit.

In Lösungen ist die Haltbarkeit viel beschränkter. Immerhin lassen sich, wenn die nur selten erforderliche wirklich absolute Unveränderlichkeit im höchsten Sinne nicht angestrebt wird, die meisten Fermentlösungen mindestens für viele Tage, manche sogar für einige Wochen unter Zusatz der gleich zu besprechenden Desinfektionsmittel im Eisschrank aufbewahren. Man muß dann nur darauf achten, daß die Fermente eine bestimmte Reaktion des Mediums verlangen, um gut haltbar zu sein. Im allgemeinen ist genau neutrale Reaktion das beste. Bei den meisten pflanzlichen Fermenten ist eine Spur saurer Reaktion eher als alkalische Reaktion erwünscht: etwa derart, daß sehr empfindliches Lackmuspapier eben leicht gerötet wird. wie es das destillierte Wasser des Laboratoriums gewöhnlich von selbst tut. Von tierischen Fermenten scheint das Lab besonders empfindlich zu sein gegen alkalische Reaktion. Die Zymase bietet eine Besonderheit, indem sie in Form des Hefepreßsaftes überhaupt nicht zu konservieren ist und sofort zum Versuch benutzt werden muß. Das beruht nach A. Harden und W. Young 1) darauf, daß das Coenzym so besonders empfindlich ist, während die eigentliche Zymase sich relativ gut hält. Kommt es darauf an, die denkbar höchste Haltbarkeit der Fermentlösungen zu erreichen, so ist die von Morgenroth²) für das Lab angegebene Methode zu empfehlen. Sie ist für viele Fermente und Toxine brauchbar.

Eine abgewogene Menge des festen Präparates wird mit einer Mischung von Glyzerin und 10° iger Kochsalzlösung (für gewöhnlich kann man statt

¹) A. Harden und W. Young, The alcoholic ferment of yeast juice. Journ. of Physiol. Vol. 32. Nr. 1 (1906); Proc. Roy. Soc. Vol. 77B, p. 405 u. Vol. 78, p. 368 (1906).

²⁾ Morgenroth, Über den Antikörper des Labenzyms, Zentralbl. f. Bakteriol, Bd. 26.
S. 349 (1899) und: Zur Kenntnis der Labenzyme und ihrer Antikörper, Zentralbl. f. Bakteriol, Bd. 27, S. 721 (1900).

der Kochsalzlösung auch Wasser nehmen) zu gleichen Teilen versetzt, einen Tag geschüttelt, weitere 2—3 Tage im Eisschrank aufbewahrt, dann filtriert, in kleine, braune Fläschchen eingefüllt und der Korken mit Paraffin gedichtet. Diese Stammlösungen sind auf Eis aufbewahrt außerordentlich haltbar; je konzentrierter, um so besser.

Wenn man sich aus einem trockenen Fermentpräparat an verschiedenen Tagen exakt vergleichbare Lösungen für quantitative Zwecke herstellen will, so beachte man, daß viele festen Ferment präparate zum überwiegenden Teile aus wasserunlöslichen Verunreinigungen bestehen. welche das gesamte, in ihnen enthaltene Ferment nur sehr allmählich an das Wasser abgeben. Man bekommt daher bei nicht restlos löslichen Präparaten niemals Lösungen von völlig gleichartiger Zusammensetzung, wenn man das Pulver nicht mindestens 24 Stunden mit dem Wasser in Berührung läßt. Auch müssen die äußeren Bedingungen, namentlich die Temperatur während des Auslaugens des Präparates einigermaßen konstant gehalten werden. Es ist nämlich ein festes Fermentpulver durch einmalige Auslaugung niemals zu erschöpfen, sondern es scheint sich ein Gleichgewicht herzustellen, welches von der Temperatur abhängig ist. Will man also z. B. eine jederzeit reproduzierbare Trypsinlösung bereiten, so rate ich zu folgendem Verfahren. Man hält sich eine möglichst große Menge eines käuflichen Trypsinpräparates vorrätig, entnimmt einen Tag vor Anstellung der eigentlichen Versuche 0.2 g desselben und löst es in $20 cm^3$ Wasser. indem man es während der ersten 2 Stunden öfter umschüttelt und dann bis zum nächsten Tag im Eisschrank stehen läßt. Am nächsten Tage wird die Lösung filtriert, die ersten Tropfen des Filtrates werden verworfen, um eine etwaige Adsorptionsaffinität des Filtrierpapieres zum Ferment erst abzusättigen. Diese Lösung brauche man nur für einen, höchstens für zwei Versuchstage. Im allgemeinen dürfte eine solche Methode der Aufbewahrung in Lösung für längere Zeit vorzuziehen sein. Energisches Schütteln von Fermenten im Schüttelapparat ist dagegen zu vermeiden, weil viele Fermente dadurch erheblich an Wirksamkeit einbüßen. So berichten Abderhalden und Guggenheim¹), daß Tyrosinase sowie die peptolytischen Fermente des Hefepreßsaftes durch 48stündiges und auch kürzer dauerndes Schütteln ihre Wirksamkeit einbüßen. Es tritt bei letzterem dabei eine Trübung ein. Auch sonst wird ein solches Vorkommen berichtet. Wahrscheinlich beruht diese Erscheinung auf derselben Ursache, aus der eine Eiweißlösung beim starken Schütteln koaguliert: es bilden sich fortwährend neue Oberflächen. an denen eine irreversible "Häutchenbildung" stattfindet. Es wäre das also eine auf Adsorption an der Oberfläche beruhende Veränderung. Nach Signe und Sigval Schmidt-Nielsen 2) ist Lablösung gegen Schütteln ganz

E. Abderhalden und M. Guggenheim, Versuche über die Wirkung der Tyrosinase etc. Zeitschr. f. physiol. Chemie. Bd. 54. S. 352 (1908).

²) Signe und Sigval Schmidt-Nielsen, Zur Kenntnis der "Schüttelinaktivierung" des Labs, Zeitschr, f. physiol. Chemie. Bd. 60. S. 426 (1909).

besonders empfindlich, so daß es schon in wenigen Minuten weitgehend zerstört werden kann.

Bei restlos löslichen Fermentpräparaten lassen sich vergleichbare Lösungen natürlich ohne diese Umstände im Augenblick herstellen.

Von Desinfektionsmitteln, welche die Fermente im allgemeinen nicht schädigen und ihre Wirkung nicht merklich hemmen, wird man mit folgender Auswahl stets auskommen:

1. Toluol oder auch Xylol. Es werden zu je 100 cm^3 Lösung etwa 1 cm^3 Toluol zugegeben, einige Male umgeschüttelt und die Lösung bei Be-

darf mit Pipetten entnommen.

- 2. Chloroform, welches oft ebenso wirksam und für die spätere Entnahme bequemer ist. Man nehme auf 100 cm³ Flüssigkeit nicht mehr als etwa 1 cm³ Chloroform, schüttle die Flüssigkeit damit gut durch und verschließe die Flasche sehr gut, weil sonst die oberen Schichten an Chloroform verarmen und bald zu faulen beginnen. Bei längerer Aufbewahrung bildet sich bei eiweißreichen Lösungen um die auf dem Boden liegenden Chloroformtropfen eine Trübung, welche für den Verlust der Flüssigkeit an wirksamen Stoffen nicht in Betracht kommt. Wenn man Flüssigkeit entnimmt, so tue man dies erst, nachher erst schüttle man die Flüssigkeit etwas durch, um wiederum Chloroformsättigung zu erreichen.
- 3. Thymol, welches man in fester Form, etwas zerrieben, in die Flüssigkeit einträgt.

Über die Methode des Einfrierens liegen bei Fermentlösungen allseitige Erfahrungen noch nicht vor. Zur Aufbewahrung von Blutserum, Exsudaten u. dgl. ist dies die ideale Methode. Als Apparate sind im Gebrauch der Eiskasten "Frigo" von Lautenschläger und eine von mir angegebene Konstruktion.") Beide werden durch ein Eissalzgemisch gekühlt, welches täglich einmal erneuert wird. Während aber die Eiweißkörper des Serums, auch wenn sie etwa 1 Jahr lang eingefroren waren, nach dem Auftauen wieder glatt in Lösung gehen, geben Extrakte aus Organen und Fermentlösungen beim Auftauen manchmal unlösliche Niederschläge, welche wohl einen Teil der wirksamen Fermente enthalten dürften.

Mit einer dieser Methoden wird man in allen Fällen auskommen.

Die Klärung von Fermentlösungen.

Mitunter ist es notwendig, annähernd klare Fermentlösungen zu haben. Oft macht das keine Schwierigkeit und kann durch einfaches Filtrieren durch ein gewöhnliches Filter oder durch eine Chamberlandkerze erreicht werden. Nutzt das nichts, so hilft in einzelnen Fällen ein geeignetes Adsorptionsmittel, nämlich dann, wenn es gelingt, ein Adsorptionsmittel ausfindig zu machen, welches das Ferment nicht mitreißt. In manchen

¹) Zu beziehen von den Vereinigten Fabriken für Laboratoriumsbedarf, Berlin N. Näheres darüber siehe in dem Kapitel "Methoden der Immunitätsforschung".

Fällen gelingt das vollkommen. Invertinlösungen kann man durch beliebig weit getriebenen Zusatz von Kaolin, wenn erforderlich, vollkommen klären, ohne Fermentverlust. Auch stärkere Pepsinlösungen werden durch kleine Mengen Kaolin (z. B. 1 g auf 50 cm³ Flüssigkeit) nicht stark abgeschwächt. Die Menge des notwendigen Minimums an Kaolin läßt sich allgemein nicht angeben; je konzentrierter die Lösung an Ferment ist, um so geringer ist der relative Verlust durch die Adsorption. Die meisten anderen Fermente werden bei einer derartigen Klärung erheblich beeinträchtigt. Durch sehr kleine Mengen Kaolin oder Tierkohle läßt sich aber oft ein Vorteil für den qualitativen Fermentnachweis doch gewinnen, indem bei klaren Lösungen der Nachweis einer kleineren Fermentmenge oft sicherer ist als der Nachweis größerer Mengen in trüber Lösung.

Die Fälle, wo es auf besondere Klarheit der Fermentlösung ankommt, sind: der polarimetrische Nachweis der Fermentwirkung (Invertin. peptolytische Fermente) und die Aufhellungsreaktionen (Ricin-. Edestin- und Kaseinmethode bei proteolytischen Fermenten).

B. Methoden zur qualitativen und quantitativen Verfolgung der Fermentwirkung.

Von Leonor Michaelis, Berlin.

1. Der qualitative Nachweis der gebräuchlicheren Fermente.

Die Fermente lassen sich allein mit Hilfe der von ihnen bewirkten spezifischen Einwirkung auf das angepaßte Substrat nachweisen. Es handelt sich also nur darum, für jedes Ferment ein praktischen Zwecken genügendes Substrat zu finden und die Bedingungen der Fermentwirkung, wie Temperaturoptimum, Reaktionsoptimum, zu kennen.

1. Kohlehydratspaltende Fermente.

Das amylolytische Ferment im Speichel oder in anderen Körperflüssigkeiten sowie die pflanzliche Diastase werden in folgender Weise nachgewiesen. Eine etwa 1% ige Lösung von Stärke, welche durch Kochen hergestellt ist, wird bei (angenähert) neutraler Reaktion mit etwas von der Fermentlösung versetzt. Zimmertemperatur reicht zur Einleitung der Reaktion aus, allenfalls kann man die Reaktion bei 37% vornehmen, um sie zu beschleunigen. Entnimmt man in Abständen von einigen Minuten Proben, so färben sie sich, mit einigen Tropfen 50fach verdünnter Lugolscher Lösung versetzt, nicht mehr rein blau, sondern der Reihe nach die zunächst entnommenen Proben violett, die späteren rot, gelbbraun, schließlich gar nicht mehr (d. h. die hellgelbe Eigenfarbe des Jods bleibt bestehen). Gleichzeitig erhält man bei Anstellung der Trommerschen Probe Reduktion nach kurzem, einmaligem Aufkochen.

Invertase wird in folgender Weise nachgewiesen. Die Fermentlösung wird bei neutraler, lieber aber etwas saurer als alkalischer Reaktion mit einer beliebigen Lösung von Rohrzucker (z. B. einer $5^{\circ}/_{\circ}$ igen Lösung) versetzt. Es genügt dazu der käufliche Würfelzucker. Beobachtet man die Drehung dieser Lösung im Polarisationsapparat gleich nach der Ansetzung, so kann man nach Verlauf von einigen Minuten oder bei sehr geringen Fermentmengen nach einigen Stunden eine Abnahme der Drehung konstatieren infolge der Bildung von Invertzucker. Die Drehung wird bei genügend

langer Einwirkung sogar eine Linksdrehung, im Maximum etwa den dritten Teil der ursprünglichen Rechtsdrehung nach links. Gleichzeitig mit dem Beginn der Drehungsänderung läßt sich mit Hilfe der Trommerschen Probe Reduktion nachweisen. Bei langem Kochen und langem Stehen in der alkalischen Lösung liefert der Rohrzucker spontan geringe Mengen reduzierenden Zuckers; man koche daher nur kurz und beachte nur kräftige Reduktionswirkungen.

Zymase läßt sich rein qualitativ sehr einfach in folgender Weise erkennen. Ein "Gärungsröhrchen" wird mit einer Mischung von 1 Teil

50% iger Rohr- oder Traubenzuckerlösung und 2 Teilen der Fermentlösung gefüllt (Fig. 8), derart, daß der lange Schenkel ohne Luftblase ist. Nach Aufenthalt von Minuten oder wenigen Stunden bei 20-30°C füllt sich der längere Schenkel des Gärungsröhrchens mit Kohlensäuregas. Man beachte, daß nur ganz frische Preßsäfte gärungskräftig sind, ältere, inaktive Säfte aber durch Zusatz von frischem, gekochtem Preßsaft reaktiviert werden können.

Emulsin erkennt man leicht daran, daß es in einer wässerigen Aufschwemmung von Amvgdalin Blausäuregeruch auftreten läßt.

2. Proteolytische Fermente.

Pepsin läßt sich in verschiedener Weise erkennen. Ich nenne folgende Methoden, wobei die früher vielfach verwendete Methode der "Mettschen Röhrchen", mit coaguliertem Eiweiß gefüllte Glaskapillaren, als überholt nicht näher beschrieben werden soll:

- a) Man hält sich Fibrinflocken aus Rinderblut vorrätig. Sie werden hergestellt, indem Blutgerinnsel solange in fließendem Wasser gewaschen werden, bis die Blutfarbe verschwunden ist. Wenn nötig, zerkleinere man die Gerinnsel in Stücke von etwa Bohnengröße. Dann werden sie in Glyzerin aufbewahrt. Sie halten sich sehr lange. Unmittelbar vor dem Gebrauche wasche man einige Flocken in fließendem Wasser, bis das Glyzerin einigermaßen entfernt ist. Man versetze nun eine solche Fibrinflocke mit der zu prüfenden Fermentlösung und gebe soviel stark verdünnter Salzsäure hinzu, daß die Lösung Kongopapier eben deutlich bläut. Im allgemeinen wird dazu soviel HCl nötig sein, daß die Lösung eine 1 30 normale HCl-Lösung darstellen würde. Eine Kontrolle enthält dieselbe Flüssigkeitsmenge und dieselbe HCl-Menge, aber kein Ferment. In der Kontrolle tritt nur eine Verquellung ein, in der Fermentprobe im Laufe einiger Stunden eine vollkommene Lösung. Beste Temperatur etwa 37°. Desinfektionsmittel ist überflüssig.
- b) Nachweis mittelst Gelatine. Eine durch Erwärmen hergestellte Lösung von 10% gewöhnlicher Gelatine in Wasser wird in noch flüssigem Zustande in kleine Reagenzgläschen gefüllt, so daß sie nur etwa ein Drittel

des Glases einnimmt. Diese Gläser lasse man erstarren. Die in ähnlicher Weise wie oben angesäuerte Fermentlösung wird auf die Gelatine geschichtet und nach einigen Stunden oder am nächsten Tage konstatiert, daß die Gelatine ganz oder zum Teil verflüssigt ist. Man lasse diese Proben bei Zimmertemperatur oder höchstens bei 22°, weil darüber hinaus die Gelatine schmilzt.

c) Den beschriebenen Methoden bei weitem vorzuziehen ist die Ricinprobe von M. Jacoby. 1) Sie ist viel empfindlicher, sicherer und arbeitet erheblich schneller. Sie beruht darauf, daß ein in den Ricinussamen enthaltener Eiweißkörper bei der für die Pepsinverdauung erforderlichen sauren Reaktion unlöslich ist, und zwar außerordentlich feine Flocken bildet, die durch die Wirkung des Pepsins rasch gelöst werden. Dieser Eiweißkörper hat übrigens nichts anderes mit dem sonst als "Rizin" benannten Toxin zu tun, als daß er auch in den Ricinussamen vorkommt. Deshalb ist z.B. das vorzügliche Mercksche Ricin, welches fast eiweißfrei ist, für diese Probe nicht zu gebrauchen. Man beziehe "Ricin nach Jacoby" von den Chemischen Werken auf Aktien, Charlottenburg. Man gebe 2 g dieses Pulvers in 50 cm³ 3% jige Na Cl-Lösung, schüttle einige Minuten stark durch. stelle das Gemisch auf eine Stunde in ein lauwarmes Wasserbad von ca. 400 und filtriere dann ab. Von dem völlig klaren Filtrat wird je 1 Volumteil mit ¹/₃ bis ¹/₂ Volumteil ¹/₁₀ normaler HCl-Lösung versetzt. Es entsteht eine Trübung, die nach einiger Zeit zur Bildung sehr feiner Flocken führt. Man gebe die Salzsäure in Portionen hinzu, solange, bis eine kräftige Trübung entsteht. Im Überschuß der Säure löst sich die Trübung wieder. Das muß vermieden werden. Dieses Reagens hält sich mehrere Tage. Man versetze z.B. 5 cm³ der gut durchgeschüttelten Ricinaufschwemmung mit 1 cm³ der Pepsinlösung. Schon bei Zimmertemperatur, noch schneller im Wasserbade von 37° tritt eine Aufhellung und bald vollständige Klärung der Flüssigkeit ein. Spontan findet dies niemals statt, wofern man nicht einen vorschriftswidrigen großen Überschuß an Säure zugibt. Die Probe ist äußerst empfindlich; es lassen sich mit ihr die geringsten Spuren von Pensin nachweisen. Sie ist eine wirkliche Bereicherung der Methodik.

Der Vorzug dieser Methode besteht noch dazu darin, daß das Fortschreiten der Reaktion ohne Zufügung eines Indikators erkannt werden kann.

d) Die Edestinmethode nach Fuld und Levison. 2) Edestin ist umgekehrt wie Ricin in saurer Lösung löslich, in schwach alkalischer unlöslich. Man kann es daher aus der angesäuerten Lösung durch passende Alkalimengen ausfällen. Sicherer gelingt die Ausfällung aus der sauren Lösung durch Chlor-

¹) M. Jacoby, Beziehungen zwischen Verdauungs- und Labwirkung. Biochem. Zeitschr. Bd. 1. S. 53 (1906). Ferner: E. Solms, Über eine neue Methode der quantitativen Pepsinbestimmung und ihre klinische Verwendung. Zeitschr. f. klin. Med. Bd. 64. S. 159 (1907).

²) E. Fuld und Louis A. Lerison, Die Pepsinbestimmung mittelst Edestinprobe. Biochem. Zeitschr. Bd. 6. S. 473 (1907).

natrium in Substanz. Die Methode gestaltet sich demnach folgendermaßen: Man stelle sich eine Lösung von 1 pro mille Edestin in ½0 Normal-Salzsäure her, im übrigen verfährt man wie bei der Ricinmethode. Nachdem das Gläschen z. B. ½ Stunde mit Pepsin versetzt im Wasserbad gestanden hat, versetzt man eine entnommene Probe mit etwas Chlornatrium in Substanz. Noch vorhandenes Edestin wird ausgefällt, die Pepsinwirkung äußert sich also in dem Ausbleiben der Cl Na-Fällung.

Labferment wird in folgender Weise nachgewiesen: Man verdünne gewöhnliche rohe oder gekochte Milch mit 9 Teilen Wasser und versetze diese mit etwas Kalksalz, z. B. mit 1 cm³ 10°/₀iger Ca Cl₂-Lösung auf 100 cm³ verdünnter Milch oder 2 cm³ 5°/₀iger Lösung von Calciumacetat auf 100 cm³ Milchverdünnung. Es darf durch den Kalkzusatz keine Ausfällung entstehen. Die Fermentlösung wird durch Soda bzw. verdünnte Essigsäure, wenn nötig, aufs genaueste gegen Lakmuspapier neutralisiert. Bringt man die Milchverdünnung mit der Fermentlösung zusammen, so tritt nach Minuten, bei sehr geringem Fermentgehalt vielleicht erst nach einer Stunde oder später plötzlich eine Ausfällung des Kaseins ein, welche das Milchfett mitreißt und die Flüssigkeit klärt. Ist man im Zweifel, ob eine Ausfällung dennoch durch eine geringe Säurewirkung zustande gekommen ist, so wiederholt man den Versuch mit vorher gekochter Fermentlösung. Die Fällung muß alsdann ausbleiben.

Trypsin läßt sich in folgender Weise nachweisen:

a) Erstens kann man die Verdauung einer Fibrinflocke zum Nachweis benutzen. Die Reaktion muß leicht alkalisch sein, und das hat den Ubelstand, daß dabei, namentlich bei älteren Fibrinflocken, leicht spontan starke Verquellungen eintreten können. Ich rate daher, die Fibrinflockenmethode als solche nicht anzuwenden, außer in der von Jacoby empfohlenen Form (s. das Kapitel "Fermente des intermediären Stoffwechsels" von M. Jacoby) in Kombination mit Gelatine.

b) Eine vorzügliche und schnelle Methode ist die Kaseinmethode, welche fast gleichzeitig von $Gross^{\,1}$), $Fuld^{\,2}$) und mir 3) beschrieben wurde. Ich führe sie folgendermaßen aus: Es werden $0.1\,g$ Kasein (nach Hammarsten, bezogen von Kahlbaum) in wenig Wasser mit 10 Tropfen $10^{\circ}/_{\circ}$ iger Sodalösung unter Erwärmen gelöst und mit destilliertem Wasser auf $200\,cm^3$ aufgefüllt. Hiervon werden etwa $5\,cm^3$ mit $1\,cm^3$ der Fermentlösung, welche möglichst klar sein muß, versetzt, ins Wasserbad von 37° gestellt und von 5 zu 5 Minuten Pröbchen mit einer Pipette entnommen. Diese werden mit Essigsäure versetzt. Fällt kein Kasein mehr aus, so hat das Trypsin gewirkt. Es kommt nun darauf an. daß man die richtige Menge Essigsäure

Gross, Die Wirksamkeit des Trypsins und eine einfache Methode zu ihrer Bestimmung. Arch. f. exper. Pathol. Bd. 58. S. 157 (1908).

²) E. Fuld, Die Wirksamkeit des Trypsins und eine einfache Methode zu ihrer Bestimmung. Arch. f. exper. Pathol. Bd. 58. S. 468 (1908).

³⁾ L. Michaelis und M. Ehrenreich, Die Adsorptionsanalyse der Fermente. Biochem. Zeitschr. Bd. 10. S. 283 (1998).

zusetzt, weil Kasein in einem Überschuß der Säure wieder löslich ist. Man mache sich eine ½,00 ige Essigsäure zurecht und probiere aus, wieviel Tropfen man zu dem frisch bereiteten Kasein-Fermentgemisch, in dem das Trypsin noch nicht gewirkt hat, zugeben muß, um eine gute Fällung zu erreichen. In dem Verdauungsversuch gebe man dann die Säure nach Maßgabe dieses Vorversuches zu. Die Methode ist äußerst empfindlich und geht so rasch, daß Zusatz eines Desinfektionsmittels nicht in Frage kommt. Nur kann man nicht zwischen echtem proteolytischen Ferment und "Erepsin" unterscheiden, weil dieses nach Cohnheim gerade das Kasein als einzigen genuinen Eiweißkörper auch verdaut, wenn auch langsam.

c) Von diesem Fehler frei ist die Serumplattenmethode von Müller und Jochmann. $^1)$ Petrischalen werden mit Rinder-, Pferde- oder Hammelserum etwa $^1/_2\,cm$ hoch gefüllt und in einem Thermostaten bei 70° gehalten, bis sie vollkommen erstarrt sind. Statt des Thermostaten kann man einen einfachen Trockenschrank auf ca. 70° einstellen. Die Fermentlösung wird bei neutraler bis höchstens spurweiser alkalischer Reaktion in einzelnen Tropfen auf die Platte gebracht und in einem Thermostaten bei 50° 24 Stunden belassen. Durch die hohe Temperatur wird das Wachstum von Bakterien ausgeschaltet, ohne daß das Trypsin zerstört wird. Nach 24 Stunden äußert sich die Verdauung dadurch, daß eine Delle in der betupften Stelle der Platte entstanden ist.

d) Trypsin kann auch daran erkannt werden, daß es bei längerer Verdauung, am besten unter Zusatz von Toluol bei schwach alkalischer Reaktion jeden beliebigen Eiweißkörper, der Tyrosin enthält, unter Bildung von leicht erkennbaren Tyrosinkristallen spaltet. Man kann z. B. eine $5^{\circ}/_{\circ}$ ige Lösung von Witte-Pepton benutzen.

Am besten geeignet sind nach E. Abderhalden und A. Schittenhelm²) Seidenpeptone. Zu ihrer Herstellung genügt es, Seidenabfälle mit 70% iger Schwefelsäure in der Kälte zu hydrolysieren. Die Seidenpeptone sind nicht alle gleichwertig. Das von den Autoren verwendete Präparat hatte ein Molekulargewicht von 450, löste sich sehr leicht in Magensaft und enthielt 40% Tyrosin. Oft fiel Tyrosin bei der Verdauung schon nach einer Stunde aus. Dieses Pepton erwies sich als besonders vorteilhaft, um die peptolytischen Fermente des nach Boldyreff gewonnenen Magensaftes für klinische Zwecke nachzuweisen. Die Reaktion muß leicht alkalisch sein. Der große Vorteil dieser Methode beruht darauf, daß einmal sehr konzentrierte Lösungen von Pepton³) angewendet werden können, und daß man stets dieselben Produkte zur Verfügung hat. Ferner kann der Verlauf der Verdauung direkt

¹⁾ Müller und Jochmann, Münch, med. Woch, 1906. Nr. 26.

²) E. Abderhalden und A. Schittenhelm, Über das Vorkommen von peptolytischen Fermenten im Mageninhalte und ihren Nachweis. Zeitschr. f. physiol. Chemie. Bd. 59. S. 230 (1909) und Über den Nachweis peptolytischer Fermente. Ebenda. Bd. 61. S. 421 (1909).

⁵) Pepton "Roche", zu beziehen bei Hoffmann-La Roche & Cie., Chem. Fabrik, Grenzach (Baden).

durch Verfolgung der Tyrosinabscheidung kontrolliert werden. Durch Filtrieren und Wägen des abgeschiedenen Tyrosins oder Abzentrifugieren dieser Aminosäure in kalibrierten Röhrchen läßt sich bei gleichen Bedingungen die Methode auch zu einer quantitativen gestalten.

e) Ferner kann man zum Nachweis tryptischer Fermente auch die Spaltung geeigneter Polypeptide nach E. Abderhalden benutzen. Den Eintritt der Spaltung erkennt man entweder durch das Auskristallisieren schwer löslicher Aminosäuren 1) oder durch die Drehungsänderung im Polarisationsapparat.2)

Für den ersten Zweck ist sehr geeignet das Glycyl-l-tyrosin. Man versetze z. B. 5 cm3 der auf Ferment zu prüfenden Lösung mit 0·2 g Glycyl-l-tyrosin und 2 Tropfen Toluol. Nach mehrstündigem Aufenthalt im Brutschrank beginnt eine Trübung aufzutreten, die nach einiger Zeit zur Abscheidung der unter dem Mikroskop leicht erkennbaren Kristalle von Tyrosin führt.

Für den zweiten Zweck kann man ebenfalls Glycyl-l-tyrosin verwenden oder besser d-Alanyl-glycin, welches keine unlöslichen Produkte liefert und klar gelöst bleibt. Man versetze z.B. 6 cm3 der zu prüfenden klaren Flüssigkeit bei spurweise alkalischer Reaktion mit 1 q des Dipeptids, fülle die Mischung in ein Polarisationsrohr von geeigneten Dimensionen ein, lese die Drehung ab und halte es im Brutschrank bei 37°. In geeigneten Intervallen, je nach dem Fermentgehalt in Minuten oder Stunden, lese man wieder ab und konstatiere die Drehungsänderung.

Bekanntlich geht die heutige Auffassung dahin, in dem Trypsin ein Gemisch von Fermenten anzunehmen, und es gibt außerdem Fermente im Darmsaft, in Hefepreßsäften und an anderen Orten, welche im Gegensatz zum Pepsin die gemeinsame Eigenschaft haben, daß sie bei saurer Reaktion nicht oder schlechter wirken als bei alkalischer Reaktion. Man kann die einzelnen Fermente, wo sie gemischt vorkommen, nicht trennen. Man kann somit auch nur von einem Nachweis der verschiedenen Wirkungen sprechen. Die proteolytische Wirkung läßt sich am schnellsten durch die Methode der Serumplatten nachweisen, wobei jedoch zu bedenken ist, daß die Empfindlichkeit dieser Methode nur mäßig groß ist, die Spaltung von Kasein ist nicht ganz auf eine Stufe damit zu setzen, weil sie, wenn auch schwach, auch von den ereptischen Fermenten gegeben werden soll 3), welche sonst nur die nicht mehr koagulablen Eiweißkörper abbauen. Der direkte Nachweis der Erepsinwirkung geschieht durch die Spaltung von Peptonen bis

¹⁾ Literatur darüber in den einzelnen weiterhin zitierten Arbeiten von Abderhalden und Mitarbeitern.

²⁾ E. Abderhalden und A. H. Kölker. Die Verwendung optisch-aktiver Polypeptide zur Prüfung der Wirksamkeit proteolytischer Fermente. Zeitschr, f. physiol. Chem. Bd. 51. S. 294 (1907).

³⁾ Cohnheim, Umwandlungen des Eiweißes durch die Darmwand. Zeitschr. f. physiol. Chem. Bd. 33. S. 451 (1901); Weitere Mitt. über Erepsin. Ibidem. Bd. 35. 134 (1903).

zum Verschwinden der Biuretreaktion, der Nachweis der peptolytischen Wirkung mit Hilfe von Glycyl-I-tyrosin usw. Kommt eine Unterscheidung der verschiedenen Fermente nicht in Frage und genügt der Nachweis einer eiweißspaltenden Wirkung im allgemeinen, so ist die Kaseinmethode oder die Anwendung von Seidenpepton zu empfehlen.

Soll andrerseits festgestellt werden, ob ein proteolytisches Ferment mit einem zweiten identisch ist, so kann man sich unter Umständen nach Abderhalden und Brahm¹) einer Methode bedienen, die am besten an dem von den Autoren gewählten Beispiel erläutert wird. Darmsaft und ebenso Hefepreßsaft spalteten d-Alanyl-glycin, und zwar wirkte Hefepreßsaft schneller. Es wurde nun der Hefepreßsaft durch Verdünnen so eingestellt, daß er annähernd mit gleicher Geschwindigkeit auf eine Lösung dieses Dipeptids wirkte wie der Darmsaft. Dann wurden die so vergleichbar gemachten Fermentlösungen in ihrer Wirkung auf ein anderes Substrat geprüft, und zwar auf Glycyl-l-leucin. Es zeigte sich hier annähernde Gleichheit beider Fermentlösungen in der Wirkung auch auf dieses Substrat. In anderen Fällen wird es gewiß möglich sein nachzuweisen, daß zwei Fermentlösungen, die auf ein Substrat gleich wirken, auf ein zweites Substrat verschiedene Wirksamkeit haben. In einem solchen Fall wird man die Identität der beiden Fermente sicher verneinen können.

Zur Identifizierung des **Papayotins** kann seine Eigenschaft benutzt werden, genuines Serum bei starker Temperaturerhöhung sehr rasch abzubauen.²) Man gebe zu der Fermentlösung etwas ungefähr 3fach verdümtes Blutserum oder Eieralbumin bei schwach essigsaurer Reaktion in ein Reagenzglas, koche das ganze sofort langsam auf, filtriere von dem Eiweißkoagulum ab und stelle mit dem Filtrat die Biuretreaktion an. Bei Gegenwart von Papayotin gibt das Filtrat noch in starken Verdünnungen eine sehr intensive, rote Biuretreaktion.

Lipase wird in der Weise nachgewiesen, daß man sie auf die Emulsion eines Neutralfettes wirken läßt und die Entstehung freier Fettsäure nachweist. Unter Berücksichtigung des Umstandes, daß auch Lezithin 3) von den Lipasen gespalten wird, scheint mir dieses ganz besonders geeignet, weil sich sehr gleichförmige Emulsionen von großer Haltbarkeit davon herstellen lassen. Diese Emulsion wird bei den Neutralfetten dadurch hergestellt, daß das Fett mit den anderen Flüssigkeiten verrieben wird. Beim Lezithin genügt es, eine abgewogene Menge desselben (Lezithin Agfa, Lezithin "Ovo" von Merck oder Lezithol Riedel) mit der 50fachen

¹) E. Abderhalden und C. Brahm, Zur Kenntnis der fermentativen Polypeptidspaltung, VI. Mitteilung. Zeitschr. f. physiol. Chem. Bd. 57, S. 342 (1908).

²) C. Delezenne, H. Mouton und E. Pozerski, Sur la digestion brusque de l'ovalbumine et du sérum sanguin par la papaïne. Soc. de biologie. T. 60. p. 309 (1906). Ferner: D. Jonescu, Über eine eigenartige Verdauung des Hühner- und Serumeiweiß durch Papaïn. Biochem. Zeitschr. Bd. 2. S. 177 (1907).

³) Paul Mayer, Über die Spaltung der lipoiden Substanzen durch Lipase. Biochem. Zeitschr. Bd. 1. S. 39 (1906).

Menge destilliertem Wasser einige Stunden im Schüttelapparat zu schütteln. Über die Reaktion des Mediums läßt sich allgemeines nicht angeben: es gibt Lipasen (pflanzliche), welche nur bei sehr deutlich saurer Reaktion (2%) Essigsäure) wirken, und andere, die neutrale oder alkalische Reaktion erfordern. Im Zweifelfalle setze man daher das Reaktionsgemisch in 3 verschiedenen Proben, sauer, neutral und alkalisch, an.

Der Säuretiter einer jeden Mischung wird dann zunächst festgestellt, indem eine abgemessene Probe mit gleichem Volumen absolutem Alkohol versetzt wird, um die in Wasser unlöslichen Fettsäuren in Lösung zu bringen, und mit Phenolphtalein gegen $^{1}/_{10}$ n Na OH titriert wird. Nach Ablauf von Stunden oder Tagen wird an einer zweiten Probe diese Titration nach Alkoholzusatz wiederholt und so die Entstehung freier Fettsäuren nachgewiesen. Man beachte, daß eine ausbleibende Fermentwirkung unter Umständen durch Zusatz von Mangansulfat in Gang gesetzt werden kann, welches nach Connstein und Hoyer 1) bei pflanzlichen Lipasen, als Aktivator wirkt. Man nehme auf etwa $10cm^{3}$ Ölemulsion $5cm^{3}$ einer Lösung von Mn SO_{4} (4:1000). Als Desinfiziens verwenden Connstein und Hoyer Chloralhydrat.

Ein Beispiel über die Mengenverhältnisse eines Lipasenachweises (nach $Paul\ Mayer$): Je 5 cm^3 einer $2^{\circ}/_{\circ}$ igen wässerigen Emulsion von Lezithin "Agfa" werden mit 1 cm^3 "Steapsin" ($Gr\ddot{u}bler$) im Reagensglas versetzt, und je eine solche Probe 5, 20 und 40 Stunden im Brutschrank bei 37° belassen, sowie eine Kontrolle ohne Steapsin.

Danach werden die Proben unter Zusatz von reichlich $99^{\circ}6^{\circ}/_{0}$ igem Alkohol quantitativ in ein Becherglas übergeführt und mit $^{1}/_{10}$ Normalnatronlauge titriert, unter Anwendung einer methylakoholischen Lösung von Phenolphtalein als Indikator. Es wird zunächst der Säuretiter der Lösung ohne Ferment bestimmt, welcher übrigens im frischen Zustand und nach dem Aufenthalt im Brutschrank der gleiche ist und auf dem Fettsäuregehalt des Lezithins und des Ferments beruht. Er beträgt für $5~cm^{3}$ der Lezithinaufschwemmung z. B. $0.3~cm^{3}$ $^{1}/_{10}$ n-NaOH, für $1~cm^{3}$ Steapsin $0.4~cm^{3}$ 1 n-NaOH, zusammen also $0.7~cm^{3}$ $^{1}/_{10}$ n-NaOH. Dieser Wert wird bei den übrigen Proben abgezogen. So fand sich z. B.:

Nach 5 Stunden: $1.0 cm^{3-1}/_{10}$ n-NaOH nach 20 Stunden: $1.5 cm^{3-1}/_{10}$ n-NaOH

Titer nach Abzug der ursprünglichen Azidität.

Ein anderes Beispiel nach Connstein und Hoyer mit Verwendung von Ricinuslipase: $5\,g$ Lipase (Ricinussamen) werden mit $10\,g$ Wasser, worin $0.2\,g$ Essigsäure und $0.1\,g$ Chloralhydrat gelöst sind, verrieben. Nach 24 Stunden ist zirka $80^{\circ}/_{\circ}$ der theoretisch möglichen Fettsäure in freier Form vorhanden und durch Titration nachweisbar.

¹⁾ Connstein, Hoyer und Wartenberg, Über fermentative Fettspaltung. Ber. d. Deutsch. chem. Ges. Jg. 35, S. 3988 (1902).

Bei der Pankreaslipase läßt sich nach *Dietz* ¹) auch die synthetisierende Wirkung leicht nachweisen. Als besonders geeignetes Substrat dafür empfiehlt *Dietz* ein Gemisch von wenig n-Buttersäure und viel Iso-Amylalkohol. Man versetze das Gemisch mit Ferment und verfolge an Pröbchen den Säuretiter des Gemisches. Die geeignetste Temperatur ist nach *Pottevin* ²) 35°. Es muß gut gerührt werden mit einer geeigneten Rührvorrichtung. Von Zeit zu Zeit werden Proben von 5 cm³ entnommen, mit Äthylalkohol versetzt und gegen Barytlauge mit Phenolphtalein als Indikator titriert.

2. Allgemeine Grundsätze bei der quantitativen Bestimmung der Fermente.

Es kann sich immer nur um relative quantitative Bestimmungen mit Bezug auf eine willkürliche Testlösung des Fermentes handeln. Diese Bestimmung der Fermentmenge kommt stets darauf hinaus, die Geschwindigkeit der Fermentreaktion zu messen. Es fragt sich nun, wie wir diese Geschwindigkeit definieren sollen, und wie wir sie zur Berechnung der Fermentmenge verwerten können. Wäre die Geschwindigkeit eine gleichförmige, d. h. würde in jedem Zeitteilchen von dem Substrat eine Menge umgesetzt, welche nur von der Konzentration des Fermentes abhängig ist. nicht aber mit der Konzentration des Substrates variiert, so wäre die Geschwindigkeit der Reaktion leicht zu definieren; es ist die pro Minute umgesetzte Substratmenge. In der Tat gibt es Fälle, wo mit gewissen Einschränkungen dieses Gesetz so gut erfüllt ist, daß man es für den vorliegenden Zweck gebrauchen kann. Besonders trifft dieses für das Invertin zu. Ist die Konzentration der Rohrzuckerlösung nicht allzu hoch (über 1/2 normal) und nicht allzu gering (unter 1/6 normal), so wird im Anfang der Reaktion, nämlich bis etwa zur Erreichung des fünften Teiles des gesamten Umsatzes, pro Minute eine Zuckermenge umgesetzt, welche fast unabhängig von der Zuckerkonzentration ist und der Fermentmenge sehr angenähert einfach proportional ist. Zur Definition einer Invertinlösung genügt es daher, eine Angabe etwa nach folgendem Schema zu machen: Die Fermentlösung invertiert in einer ca. halbnormalen Rohrzuckerlösung zu Anfang des Versuches bei 18° pro Minute x Millimole Rohrzucker; alsdamn ist eine zweite Fermentlösung, welche unter gleichen Bedingungen 2x Millimole Zucker invertiert, doppelt so stark usw. Dasselbe gilt auch für die Maltase nach V. Henri 3) und für die polypeptidspaltenden Fermente der Hefe nach Abderhalden und Michaelis⁴), sofern man wirklich nur den Anfang der Reaktion berücksichtigt.

¹) Dietz, Über eine umkehrbare Fermentreaktion im heterogenen System. Zeitschrift f. physiol. Chem. Bd. **52**. S. 279 (1907).

²) Pottevin, Comptes rend. T. 137. p. 378 (1904).

³⁾ V. Henri, Lois générales de l'action des diastases. Paris 1903.

⁴) E. Abderhalden und L. Michaelis, Der Verlauf der fermentativen Polypeptidspaltung. Zeitschr. f. physiol. Chem. Bd. 52. S. 326 (1907).

In den meisten Fällen ist aber die Beziehung zwischen Fermentmenge und Reaktionsgeschwindigkeit komplizierter und ist ferner die Reaktionsgeschwindigkeit nicht so einfach zu definieren, weil die Umsatzgeschwindigkeit selbst zu Anfang des Versuches eine ungleichförmige ist oder schwierig zu verfolgen ist. In allen diesen Fällen ist es prinzipiell verkehrt, wenn man die in gleichen Zeiten erreichten Umsätze verschiedenen Betrages zur Berechnung der Fermentmenge verwerten wollte. Es gibt zwei einwandfreie Methoden.

Die erste beruht darauf, daß man die Zeiten miteinander vergleicht, welche zur Erreichung eines bestimmten Umsatzes erforderlich sind. Findet man z. B., daß eine bestimmte Fermentlösung in einer ganz bestimmten Substratlösung, sagen wir 1 g des Substrates, in 10 Minuten spaltet und finden wir, daß in einer zweiten Fermentlösung die Spaltung von 1 g Substrat 20 Minuten erfordert, so können wir schließen. daß die Konzentration des Katalysators in der zweiten Lösung halb so groß ist als in der ersten. Wenn wir aber finden, daß in der ersten Fermentlösung in 10 Minuten 1 g Substrat umgesetzt wird, in der zweiten in 10 Minuten 2 g Substrat, so können wir daraus im allgemeinen nicht schließen, daß die zweite doppelt soviel Katalysator enthält als die erste.

Die zweite Methode besteht darin, daß man durch Probieren in Serien diejenige Verdünnung der zu prüfenden Fermentlösung bestimmt, welche in einer passend gewählten, beliebigen Zeit denselben Umsatz hervorbringt wie die Testlösung des Fermentes. Findet man z. B., daß die 10fache Verdünnung der zu prüfenden Fermentlösung zu jeder beliebigen Zeit in dem Umsatz Schritt hält mit der Testlösung, so können wir mit Sicherheit schließen, daß die zu prüfende Fermentlösung 10mal soviel Ferment enthält als die Testlösung. Voraussetzung ist dabei, daß die Reaktion des Mediums die gleiche ist, und daß auch sonst das Milieu in beiden Fällen durchaus vergleichbar ist. Das läßt sich angenähert immer erreichen.

Dagegen ist es allgemein ein prinzipieller Fehler, aus den verschiedenen Umsätzen, die zwei Fermentlösungen nach Ablauf einer gegebenen Zeit hervorrufen, quantitative Schlüsse auf die relativen Fermentmengen zu ziehen. Nur das eine läßt sich schließen, daß die langsamer wirkende Lösung weniger Ferment enthält als die andere.

Erste Methode. Vergleichung der Zeiten, welche zur Erreichung des gleichen Umsatzes notwendig sind.

Diese Methode bedarf einer ganz besonderen Besprechung, aus welcher sich ihre Anwendbarkeit von selbst ergibt.

Der Anschaulichkeit halber führen wir die Erörterung an einem Beispiel einer einfachen, nicht fermentativen, aber doch katalytischen Reaktion durch, an der Inversion des Rohrzuckers durch Säuren. Für diese gilt das Gesetz, daß die zur Zeit t gespaltene Zuckermenge in folgender Weise von der Konzentration der H-Ionen und von der Anfangsmenge des Rohrzuckers, a. abhängig ist:

(1)
$$k.H.t = \ln \frac{a}{a-x}.$$

wo k eine Konstante. H die Konzentration der H⁺-Ionen und t die Zeit bedeutet. Wenn wir nun, gemäß unserer Methode, die Anfangsmenge a des Rohrzuckers immer gleich machen und immer bis zur Erreichung desselben

Umsatzes x abwarten, so ist der Ausdruck l
n $\frac{a}{a-x}$ eine Konstante (C), und wir können schreiben:

k.H.t = C

oder

$$H = \frac{C}{k \cdot t}$$
.

Da die einzelnen Werte der rechten Seite der Gleichung bekannt sind bzw. durch den Versuch bestimmt werden können, so können wir daraus die Konzentration der H⁺-Ionen, H, berechnen. Insofern gestattet diese Methode eine quantitative Bestimmung der H⁺-Ionen; und wenn man den Prozeß statt durch H⁺-Ionen durch ein Ferment vor sich gehen läßt, so ist es ähnlich. Wie kompliziert auch der der rechten Seite der Gleichung (1) entsprechende Ausdruck bei den verschiedenen Fermenten sein mag, immer läßt er sich auf die Anfangsmenge und die umgesetzte Menge des Substrates beziehen (immer ist er eine "Funktion von a und x"), und wenn wir a und x konstant wählen, so wird die rechte Seite der Gleichung immer zu einer Konstanten.

Aber: wie man sieht, können wir nur die Konzentration der H-Ionen, welche ja allein wirksam sind, daraus berechnen und nicht eigentlich die Konzentration der Säure. Nehmen wir sehr starke Säuren, z. B. HCl, so wird allerdings die Konzentration der H-Ionen angenähert proportional der zugesetzten Säuremenge sein. Nehmen wir aber sehr schwache Säuren, so ist die Konzentration der H-Ionen angenähert der Quadratwurzel aus der Säuremenge proportional und es ist dann die zur Erreichung eines gleichen Umsatzes notwendige Zeit nicht der Säuremenge. sondern ihrer Quadratwurzel proportional.

So kann es aber auch bei Fermenten sein. Das wirksame Prinzip des Fermentes könnte z. B. ebenso wie bei der Essigsäure ein elektrolytisches Dissoziationsprodukt des Fermentes sein; und dann erfahren wir durch diese Methode nicht die Konzentration des ganzen Fermentes, sondern die Konzentration jenes wirksamen Dissoziationsproduktes desselben. Wir verlangen aber die Menge des Fermentes selbst zu erfahren. Daher ist diese Methode nur mit entsprechender Vorkenntnis der Eigenart des Fermentes zu benutzen. Ist die Fermentwirkung der Fermentmenge einfach proportional, wie es beim Invertin der Fall ist, so verhalten sich die Zeiten gleichen Umsatzes einfach wie die Fermentmengen. Ist das aber nicht der Fall, so empfiehlt es sich nicht, diese Methode anzuwenden. In einigen Fällen, wo die Verhältnisse häher bekannt sind, läßt sich die Methode

allenfalls verwerten, jedoch ist jedenfalls die zweite Methode dann einfacher. So ist es z. B. beim Pepsin, wo die Wirkung der Quadratwurzel aus der Fermentmenge nach dem Schütz-Borissowschen Gesetz proportional ist, wie es oben für die Essigsäure bei der Zuckerinversion auseinandergesetzt wurde. Aber auch in denjenigen Fällen, wo diese Methode sich anwenden läßt, ist die zweite ebensogut, und diese zweite ist daher die allgemeinere.

Zweite Methode. Man wähle als Einheit eine willkürliche, stark verdünnte, immer leicht reproduzierbare Lösung des betreffenden Fermentes und verdünne die zu untersuchende Fermentlösung durch Probieren so weit. daß sie die gleiche Wirksamkeit hat wie die Testlösung. Dann muß der Fermentgehalt der Testlösung und der ausprobierten Verdünnung unter allen Umständen gleich sein, wenn die äußeren Bedingungen, wie Reaktion des Mediums. Temperatur usw., gleich sind. Daraus läßt sich dann der Fermentgehalt der zu prüfenden Lösung leicht berechnen.

Es handelt sich also nur darum, für jedes Ferment ein geeignetes Substrat zu finden, bei dem ein beliebiger Punkt des Umsatzes genau fest-

> gestellt werden kann. Für die einzelnen Fermente lassen sich folgende Punkte des Umsatzes dazu benutzen:

> Bei amylolytischen Fermenten kann man den Punkt wählen, wo die anfänglich blaue Jodreaktion der Stärke gerade rein rot geworden oder besser gerade eben farblos geworden ist. 1)

> Bei Invertin kann man z. B. den Punkt wählen, wo in einer 50/eigen Rohrzuckerlösung gerade eine Drehungsverminderung um 1º eingetreten ist.

> Bei der Zymase kann man den Punkt wählen, wo z. B. gerade 0.2 q CO_2 entwickelt sind. Man kann dann

nicht einfache Gärungsröhrchen benutzen, sondern Kölbehen von folgender Form (Fig. 9), welche man etwa von Stunde zu Stunde wägt.

Die hierzu nötige gewichtsanalytische Bestimmung der Gärkraft wird nach Buchner in folgender Weise ausgeführt: In ein Erlenmeyersches Kölbchen von 100 cm³ Inhalt werden je 20 cm³ Preßsaft, 0.2 cm³ Toluol und 8 q fein gepulverter Rohrzucker portionsweise eingetragen und durch Umschütteln rasch gelöst, dann wird der Verschluß aufgesetzt und der ganze Apparat gewogen. Der Verschluß besteht zweckmäßig aus einem sog. Gärventil nach Meissl. Dieses ist ein kleines Waschfläschehen, mit 1—2 cm³ konzentrierter Schwefelsäure beschickt zum Trocknen der ausströmenden Kohlensäure und auf der anderen Seite mit einem Bunsenschen Schlauchventil versehen. welches den Austritt, nicht aber den Eintritt von Gasen gestattet. Dieses Bunsenventil wird hergestellt, indem man einen 5 cm langen schwarzen Gummischlauch von 0.5 mm Wandstärke, der einseitig durch ein Glasstäbchen verschlossen ist, in der Mitte durch einen 1 cm langen Längsschnitt

Fig. 9.

¹⁾ Wohlgemuth, Über eine neue Methode zur quantitativen Bestimmung des diastatischen Ferments. Biochem. Zeitschr. Bd. 10. S. 1 (1908).

mit sehr scharfem Messer aufschlitzt. Die Berücksichtigung der gelöst bleibenden CO_2 ist nicht nötig, da die Genauigkeit der Methode nicht groß genug ist, um dadurch beeinflußt zu werden. Überhaupt ist die Gärkraft von so vielen Nebenumständen abhängig, daß diese Methode besser zur Verfolgung einer einzelnen Gärung und zur Beurteilung der "Gärkraft" eines Preßsaftes, als zu einer wirklich quantitativen Bestimmung der Zymase benutzt werden kann.

Beim Pepsin wähle man den Punkt, wo gerade eine vollständige Aufhellung des Ricins oder gerade das Verschwinden des Edestins eingetreten ist, bei Trypsin und verwandten Fermenten den Punkt, wo gerade das Kasein vollkommen verschwunden ist. Bei Lab ist der geeignete Punkt die Zeit, in der die Ausflockung eben eintritt; dieser Zeitpunkt läßt sich sehr genau angeben. Man wähle als Testlösung eine recht hohe Verdünnung, welche etwa ½ Stunde oder noch länger bis zur Labung braucht. Nach dem Vorschlag von Morgenroth¹) kann man auch den Labgehalt sehr scharf dadurch definieren, daß man diejenige Verdünnung angibt, wo das Ferment, 24 Stunden bei sehr kalter Eisschranktemperatur mit der Milchverdünnung zusammengebracht. nach der Herausnahme in eine wärmere Umgebung von 37° überhaupt in absehbarer Zeit (etwa 2 Stunden) noch Gerinnung hervorruft. Bei Lipasen wähle man als Endpunkt die Erreichung einer beliebigen, bequem gelegenen Azidität.

Die Ausführung derartiger Versuche ist fast überall nach dem gleichen Schema zu machen und es genügt die genaue Beschreibung eines Beispieles.

Beispiel für die quantitative Bestimmung eines Ferments.

Es sei z. B. die Aufgabe gestellt, eine bestimmte Lösung auf ihren Gehalt an Pepsin zu prüfen.

- 1. Man stelle sich in oben angegebener Weise die saure Ricinaufschwemmung her.
- 2. Man löse $0.2\,g$ Pepsin (z. B. das Präparat der Pharmakopöe) in $100\,cm^3$ Wasser und probiere in einem Vorversuche, wieviel Kubikzentimeter nötig sind, um $5\,cm^3$ der Ricinaufschwemmung im Wasserbad von 38° in einer angenehmen Zeit aufzuhellen. Man habe z. B. gefunden. daß $1.0\,cm^3$ der Pepsinlösung diese Aufhellung in 25 Minuten gerade zustande bringen, während $0.9\,cm^3$ dies nicht vollkommen tun.
- Morgenroth, Zentralbl. f. Bakteriol. Bd. 26. S. 349 (1899) und Bd. 27. S. 721 (1900).

Die Angabe, man solle destilliertes Wasser nehmen, ist für den Fall gedacht, daß die zu prüfende, unbekannte Fermentflüssigkeit in fast salzfreier Lösung gegeben ist oder so stark verdünnt werden kann, daß der Salzgehalt minimal ist. Ist der Salzgehalt höher (z. B. wenig verdünnter, weil schwach fermenthaltiger Magensaft), so nehme man überall statt destillierten Wassers eine Lösung, welche in ihrem Salzgehalt wenigstens ungefähr dieser Flüssigkeit entspricht. Auf dem Umstand, daß dieser Bedingung nur beschränkt Genüge getan werden kann, beruht eine kleine Unsicherheit, welche jedoch gegenüber anderen unvermeidlichen Unsicherheiten, z. B. bei der Erkennung des Endpunkts, meist wenig ins Gewicht fallen dürfte.

3. Man stelle sich von der unbekannten, zu untersuchenden Fermentlösung Verdünnungen her in folgender Weise:

Man fülle 8 Reagenzgläser mit je 1 cm^3 destilliertem Wasser. Man nehme dann eine trockene Pipette von 1 cm^3 Inhalt, entnehme 1 cm^3 der unbekannten Fermentflüssigkeit und gebe sie in das erste Röhrchen. Die Pipette sei auf vollkommenes Ausblasen geeicht. Man blase sie in das Reagenzglas aus, vermische gut, indem man mehrere Male mit derselben Pipette aufzieht und ausbläst. Dann entnehme man 1 cm^3 der Mischung mit derselben Pipette und übertrage sie in das zweite Reagenzgläschen. Man mische ebenso und übertrage wieder 1 cm^3 in das dritte Reagenzgläschen und so fort. Solange wird stets die gleiche Pipette benutzt. Nun setze man zu jedem dieser Röhrchen 5 cm^3 der Ricinaufschwemmung. Das kann mit einer Pipette von 25 cm^3 geschehen, aus der man je 5 cm^3 abläßt. Das Einfüllen der Ricinlösung in die sämtlichen Gläser werde rasch vorgenommen, so daß es im ganzen eine halbe Minute nicht über-

schreitet, am besten in einem mit Eiswasser gekühlten Wasserbad. Man notiere die Zeit und setze alle Röhrchen auf einem Gestell (Fig. 10) in ein Wasserbad, dessen Temperatur man entweder durch geeignetes einfaches Regulieren der Erhitzung oder durch einen automatischen Regulator möglichst konstant hält, auf 38°. Man notiere die Zeiten, zu denen die Ricinlösung in den verschiedenen Proben gerade aufgehellt ist. Dasjenige Röhrchen, welches 25 Minuten verbraucht, ist von derselben Fermentkonzentration wie die Testlösung, die als willkürliche Einheit

Fig. 10.

angenommen war. Es sei in unserem Versuche das dritte Röhrchen der Reihe, mit der Verdünnung 1:8. Dann ist die ursprünglich zu prüfende Fermentlösung 8mal so stark wie eine Lösung von 0:2g des angewandten Testpräparates in $100\ cm^3$ Wasser, entspricht also einer Lösung von $1:6\ g$ des Test-Pepsin in $100\ cm^3$ Wasser.

Die Reaktion muß in allen Röhrchen genau gleich sein. Wenn nun die zu prüfende Fermentlösung eine wesentlich andere Reaktion hat als die Testlösung, wenn also z. B. natürlicher Magensaft mit einer neutralen Lösung eines festen Pepsinpräparates verglichen werden soll, so neutralisiere man den Magensaft vorher genau und berücksichtige die dadurch geschaffene Änderung des Volumens.

In diesem Falle, wo es sich um eine direkte Aufhellungsreaktion handelt, erkennt man den gewünschten Endpunkt der Fermentwirkung direkt. Bei anderen Methoden, z. B. Trypsinbestimmung mit der Kaseinmethode, entnimmt man mit einer Pipette von Zeit zu Zeit Pröbehen und setzt das geeignete Reagens, in diesem Falle also z. B. stark verdünnte Essigsäure, zu.

Auf die hier beschriebene Weise wird unter anderem auf die einfachste Weise das höchstwichtige Postulat erfüllt, daß das Gesamtvolumen in allen Röhrchen das gleiche ist.

Hält man sich genau an obige Angaben, so unterscheiden sich die einzelnen Röhrchen der Versuchsreihe derart, daß jedes folgende die Hälfte des Ferments im Vergleich zum vorhergehenden enthält. Die Genauigkeit der Methode ist daher nur derart, daß ein Irrtum um ein Röhrchen einen Fehler im Betrage der Hälfte des Gesamtwertes ergibt; denn nimmt man z. B. das B. Röhrchen als identisch mit der Testlösung an, so ergibt sich der Fermentgehalt = ½ der Testlösung; nimmt man das 4. Röhrchen als identisch an, so ergibt sich der Fermentgehalt = ½ der Testlösung. Man kann aber auch feinere Abstufungen der einzelnen Röhrchen machen, nur muß eine solche Reihe immer eine geometrische sein, wenn der Abstand zwischen zwei benachbarten Röhrchen in einer Reihe die gleiche Bedeutung haben soll. In obiger Reihe ist die Verdünnung nach Potenzen von ½ geordnet:

$$1: \frac{1}{2}: \frac{1}{4}: \frac{1}{8}: \frac{1}{16}...$$

Man kann auch nach Potenzen von 2/3 ordnen:

1: $\frac{2}{3}$: $\frac{4}{9}$: $\frac{8}{27}$; $\frac{16}{81}$... usw. oder 1: 0.67: 0.44: 0.30: 0.20... usw.

oder auch noch feiner nach Potenzen von 3/4:

1: $\sqrt[3]_4$: $\sqrt[9]_{16}$: $\sqrt[27]_{64}$: $\sqrt[81]_{256}$... usw. oder 1: 0.75; 0.56; 0.42; 0.32 ... usw.

Um z.B. die letztere Reihe auszuführen, gebe man in

Röhrchen 1: Röhrchen 2: Röhrchen 3:
Fermentlösung 1:0 Fermentlösung 0:75 Fermentlösung 0:56 usw.
+ Wasser 0 + Wasser 0:25 + Wasser 0:44

Im allgemeinen wird man zunächst eine gröbere Reihe und dann, wenn es die Umstände erfordern, innerhalb der vorläufig festgelegten Grenzen immer feinere Reihen ansetzen, und man wird darin soweit gehen, wie es die Empfindlichkeit der Methode, besonders die Möglichkeit einer exakten Erkennung des Endpunktes der Reaktion gestattet. Um das Anstellen solcher Reihen verschiedener Empfindlichkeitsgrenze zu erleichtern, sei folgende Tabelle gegeben, welche die ersten Glieder verschiedener geometrischer Reihen enthält. Jede Horizontalreihe ist eine solche geometrische Reihe, welche die verschiedenen Potenzen der dazu gehörigen Zahl der linken Kolumne enthält.

Tabelle.

	()te	1 ^{te}	2t.	3te	4^{te}	$\mathbf{\tilde{a}}^{\mathrm{te}}$	\mathbf{G}_{te}	Tte	8te
					Pot	e n z			
	4.00	0.500	0.0*0	0.40*	0.000	0.0913	0.0170	0.00500	0.00202
0.5								0.00786	-0.00395
0.6	1.00	0.600	0.360	0.516	0.130	0.0778	0.0467	0.0280	0.0170
0.7	1.00	0.700	0.490	0.343	0.240	0.168	0.118	0.0854	0.0576
0.8	1.00	0.800	0.640	0.512	0.410	0.328	0.565	0.210	0.168
0.9	1:00	0.900	0.810	0.729	0.656	0.250	0.531	0.478	0.430

Man kann nun natürlich innerhalb einer jeden solchen geometrischen Reihe alle Glieder mit einem bestimmten Faktor multiplizieren; so entspricht z.B. die Reihe

1.00 0.500 0.250

indem man jedes Glied mit 5 multipliziert, folgender Reihe:

5.000 2.500 1.250.

Der "geometrische Abstand" der einzelnen Glieder der multiplizierten Reihe ist dann der gleiche wie der der ursprünglichen.

Die Zahlen in der Tabelle sind dreistellig angegeben; man wird in praxi gewöhnlich nur zweistellige Zahlen brauchen.

Man kann nun nach dem Vorschlag von Fuld¹) diese Reihen auch anders konstruieren. Fuld geht von dem Prinzip aus, wenn man die stärkste Verdünnung als 1 bezeichnet, in der Reihe so aufzusteigen, daß man auf jeden Fall zu dem 10fachen Multiplum gelangt, und zwar nicht einfach den ganzen Zahlen von 1—10 entsprechend, welche ungleichwertige "geometrische Zwischenräume" zwischen sich fassen, sondern mit Hilfe von geometrischen Reihen. Will man die Reihe von der Verdünnung 10 bis 1 in 10 Glieder teilen, so benutzt man eine geometrische Reihe

mit dem Exponenten $\sqrt[7]{10}$; will man sie z. B. in 4 Glieder teilen, so benutzt man eine solche mit dem Exponenten $\sqrt[3]{10}$ usw.

Folgende Tabelle nach Fuld gibt solche Reihen, auf eine Dezimale berechnet, wieder.

Glieder	9 Glieder	8 Glieder	7 Glieder	6 Glieder	5 Glieder	4 Glieder	3 Glieder	2 Glied
1.0	1.0	1.0	1:0	1.0	1.0	1.0	1.0	1.0
1.3	1.3	1.4	1.5	1.6	1.8	2.1	3.2	10.0
1.7	1.8	1.9	2.1	2.5	3.2	4.6	10.0	
$2^{.}1$	2.4	2.7	3.2	4.0	5.6	10.0		
2.8	3.2	3.7	4.6	6.3	10.0			
3.6	4.2	5.2	6.8	10.0		l F		
4.6	5.6	7.2	10.0				1	
6.0	7.5	10.0						
7.7	10.0		İ			1		
10.0						1	1	

Einiges über die Methoden zum ständigen Verfolgen der Fermentwirkung.

Für gewisse Zwecke ist es notwendig, den Ablauf einer Fermentwirkung Schritt für Schritt zu verfolgen. Benutzt man dazu chemische Methoden, so muß man dem Fermentgemisch von Zeit zu Zeit Proben ent-

¹) E. Fuld, Zur Theorie und Technik des sog. Morgenroths-Versuchs. Biochem. Zeitschr. Bd. 4. S. 54 (1907).

nehmen und diese analysieren. Oder man stellt eine ganze Reihe gleichartiger Gemische von Ferment und Substrat her, unterbricht die Fermentwirkung der einzelnen Versuche zu verschiedenen Zeiten und analysiert die einzelnen Versuche. Als Beispiel für eine solche Methode sei die Volhardsche Methode 1) zum Verfolgen der Pepsinwirkung angeführt.

Die Volhardsche Methode gestaltet sich folgendermaßen:

- 1. Herstellung der Kaseinlösung. 100 g Kasein werden in 1 l Wasser unter Schütteln eingeweicht, dann gibt man 80 cm^3 n-Na OH zu und füllt auf 2 l auf. Man erwärmt bis etwa 90%, um das Kasein in Lösung zu bringen, nach dem Abkühlen versetzt man mit etwas Toluol. Die Lösung ist gut haltbar.
- 2. Vorbereitung zum Versuch. In einer langhalsigen Flasche, die mit 2 Marken bei 300 und 400 cm^3 versehen ist, läßt man zuerst zur Ansäuerung genau 11 cm^3 n-HCl-Lösung einfließen, füllt auf 150 cm^3 auf und gibt 100 cm^3 der Kaseinlösung zu. Dann wird auf 40° erwärmt, eine gemessene Menge der Pepsinlösung zugelassen und auf 300 cm^3 aufgefüllt. Derartiger Kolben stellt man eine ganze Reihe auf und unterbricht die Verdauung zu verschiedenen Zeitpunkten.
- 3. Durchführung der Analyse. Die Verdauung wird unterbrochen. indem $100\ cm^3\ 20^{\circ}/_{\scriptscriptstyle 0}$ iger Natriumsulfatlösung zugesetzt werden. Das unverdaute Kasein fällt dabei aus. Es wird abfiltriert und je 100 oder 200 cm^3 des Filtrats mit $\frac{1}{10}$ n-Na OH gegen Phenolphtalein titriert. Von der Azidität ist die vorher bestimmte Azidität der Kaseinlösung abzuziehen, sowie die Azidität der Pepsinlösung. So erhält man den Zuwachs (des Säuretiters, der auf der Bildung der salzsauren Peptone beruht. Das ausfallende Kasein hat nämlich die Eigenschaft, HCl zu binden; finden sich aber Peptone in der Lösung, so tritt eine Konkurrenz zwischen dem Kasein und den Peptonen um die Salzsäure ein, und es findet sich um so mehr HCl (als Peptonhydrochlorid) in Lösung, je mehr Pepton im Vergleich zum Kasein vorhanden ist. Man kann so die Aziditätszunahmen als Maßstab für den Kaseinabbau betrachten.

Bei manchen physikalischen Methoden kann man jedoch den Fortgang der Reaktion an einer einzigen Probe verfolgen. Von den letzteren seien einige erläuternde Beispiele genannt.

1. Optische Methoden. Besteht die Wirkung des Ferments in einer Änderung der Drehung der Ebene des polarisierten Lichtes, so läßt sich der Verlauf im Polarisationsapparat selbst verfolgen. So ist es bei der Spaltung der Saccharose durch Invertase, bei der Spaltung der optisch aktiven und der razemischen, asymmetrisch spaltbaren Polypeptide durch Fermente. Die Beschreibung der dazu notwendigen Methoden der Polarisation vgl. Bd. I.

¹) Volhard, Über eine neue Methode der quantitativen Pepsinbestimmung etc. Münchenermed. Wochenschr. 1903. S. 2129. 1907. Heft 9. — Löhlein, Über die Volhardsche Methode etc. Hofmeisters Beitr. Bd. 7. S. 120 (1905).

Weitere Einzelheiten bei der Verfolgung der Fermentwirkungen auf polarimetrischem Wege sollen an einigen Beispielen beschrieben werden, die dem Hauptanwendungsgebiete der Methode entstammen, der fermentativen Hydrolyse des Rohrzuckers und der fermentativen Polypeptidspaltung.

Bei dem Beispiel des Rohrzuckers besteht zu Anfang eine starke Rechtsdrehung, welche sich zunächst schnell, dann immer langsamer verringert. den Nullpunkt überschreitet und in eine Linksdrehung übergeht. Die Linksdrehung rührt daher, daß der Invertzucker, das heißt das Gemisch von 1 Mol. Glukose und 1 Mol. Fruktose, einen rechtsdrehenden (Glukose) und einen linksdrehenden Körper (Fruktose) enthält, von denen der linksdrehende stärker dreht. Wenn eine Lösung ursprünglich so viel Rohrzucker enthält. daß sie a Grad nach rechts dreht, so dreht sie nach vollkommener Spaltung a. (0.4266-0.005 t) Grad nach links, wo t die Temperatur der Flüssigkeit bedeutet. Hiernach kann man sich im voraus berechnen, welche Enddrehung man zu erwarten hat. Hat z. B. die Lösung zu Anfang eine Rechtsdrehung von 10° bei einer Temperatur von 20° C, so ist die zu erwartende Drehung nach idealem Abschluß der Hydrolyse 4·17° nach links. Im ganzen durchläuft also der Apparat einen Winkel von 14·17°. Es entspricht dann jeder Grad der Drehungsabnahme während des Versuchs der Spaltung des 14:17ten Teils der ursprünglichen Rohrzuckermenge. Auf diese Weise kann man berechnen, welche Bedeutung jede beliebige Änderung der Drehung hat.

Diese Betrachtungen lassen sich leicht auch auf andere Methoden der Verfolgung der Fermentwirkung übertragen, z. B. auf die Verfolgung der Leitfähigkeit, des Gefrierpunkts usw.

Ganz entsprechende Überlegungen erfordert die Spaltung optisch aktiver Polypeptide. Arbeitet man z. B. mit d-Alanyl-glycin, so hat dieses Ausgangsprodukt die spezifische Drehung $[z]_D = +50^\circ$: von den beiden Spaltprodukten dreht das d-Alanin $+2^\circ4^\circ$. das Glycin 0° . Die Drehung muß also ursprünglich im Verlauf der Spaltung abnehmen, und zwar muß zum Schluß die Drehung fast gleich 0 werden. Die Drehungsverhältnisse werden am einfachsten nach E. Abderhalden und A. H. Koelker 1) durch folgendes Schema ausgedrückt:

$$\underbrace{\frac{+2\cdot4^{\circ}}{\underbrace{\text{d-Alanyl- -glycin}}}_{+50^{\circ}}}_{}$$

Und ähnlich z. B. bei Tripeptiden:

$$\underbrace{\frac{+50^{\circ}}{\text{d-Alanyl}} - \underbrace{\frac{0^{\circ}}{\text{glycyl}} - \underbrace{\text{glycin}}_{+30^{\circ}}}_{+30^{\circ}}$$

¹) E. Abderhalden und A. H. Koelker, Weiterer Beitrag zur Kenntnis des Verlaufs der fermentativen Polypeptidspaltung. V. Mitteilung. Zeitschr. f. physiol. Chemie. Bd. 55. S. 416 (1908).

Im letzteren Fall könnte das Ferment auf verschiedene Weisen wirken. Entweder es entsteht zunächst d-Alanyl-glycin + Glycin; dann müßte eine Zunahme der Rechtsdrehung eintreten; oder es wird zunächst d-Alanin abgespalten; dann müßte eine starke Abnahme der Drehung eintreten. Es zeigte sich bei Versuchen mit Hefepreßsaft, daß sofort eine Abnahme der Drehung eintrat, es muß also zuerst das d-Alanin abgespalten worden sein.

Ein ähnliches Schema für ein Tetrapeptid ist:

$$\underbrace{\begin{array}{c} +30^{\circ} \\ \hline 0^{\circ} \\ \hline d-Alanyl - \underbrace{glyeyl - glyeyl - glyein}_{+2\cdot4^{\circ}} \\ \hline +22\cdot4^{\circ} \end{array}}_{}$$

Schließlich muß man noch bei der Berechnung der Versuche berücksichtigen, daß oft die Fermentlösungen eine geringe Eigendrehung besitzen. Diese muß in Abzug gebracht werden.

Es wird z. B.¹) 0:45 g d-Alanyl-d-alanin in $2\,em^3$ Hefepreßsaft $+\,4\,em^3$ physiologischer Cl-Na-Lösung gelöst.

Drehung	zu Beginn			$-1:35^{\circ}$		
	nach	õ	Minuten	1.23°		
••		15	**	():9990		
**	**	31	44	(),Q Θ_0		
**		65	**	$+0.05_{0}$		
	**	80	**	$\pm 0.09_{0}$		

Die zu erwartende Schlußdrehung nach vollkommener Spaltung ist nun, wie aus anderen Versuchen mit größeren Fermentmengen hervorgeht und in fast völliger Übereinstimmung mit diesem Versuch selbst, +0·10°. Dieser Endwert kann also durch direkte Beobachtung ermittelt werden, oder er kann auch unter Berücksichtigung des theoretischen Endwerts und der Eigendrehung der Fermentlösung berechnet werden. Es wird also im ganzen eine Drehung von -1·35 bis +0·10° durchlaufen, zusammen also 1·45°. Bezeichnen wir die Enddrehung als 0, so würde also der Verlauf dieses Versuchs in folgender Weise umgerechnet werden müssen ²):

Zeit in Minuten:	umgerechnete Drehung:
0	1:45
	1:33
15	1.09
31	0.20
65	0.08
80	0:01

¹) E. Abderhalden und A. H. Koelker, Die Verwendung optisch-aktiver Polypeptide zur Prüfung der Wirksamkeit proteolytischer Fermente. Zeitschr. f. phys. Chem. Bd. 51. S. 294 (1907).

²) E. Abderhalden und L. Michaelis, Der Verlauf der fermeutativen Polypeptidspaltung, Zeitschr. f. physiol, Chem. Bd. 52, S. 326 (1907).

Die größte Schwierigkeit und doch mit das Wichtigste für eine rechnerische Verwertung ist die Bestimmung der Anfangsdrehung in solchen Fällen, wo die Fermentwirkung stark ist und die wahre Anfangsdrehung bis zur Beendigung der ersten Ablesung schon verändert ist. Man vergleiche in solchen Fällen die theoretisch zu berechnende Anfangsdrehung mit der wirklich abgelesenen. Auch kann man die wahre Anfangsdrehung durch eine Extrapolation korrigieren, indem man die Annahme zugrunde legt, daß für sehr kleine Zeitintervalle die umgesetzte Menge der Zeit proportional ist. Ein schematisches Beispiel:

Zeit:	beobachtete Drehung:
()	?
1/2 Minute	1.08_{0}
1 Minute	1:060
$1^{1/2}$ Minuten	1:()-£0
2 Minuten	1.020
21/2 Minuten	1.00_{0}

Hier wird also innerhalb der ersten $2^{1/2}$ Minuten mit gleichförmiger Geschwindigkeit pro halbe Minute eine Drehungsabnahme von 0.02° bewirkt. Man kann daraus durch Extrapolation schließen, daß die wahre Drehung zu Anfang = 1.10° war.

Statt die reinen optisch-aktiven Polypeptide der Fermentwirkung auszusetzen, kann man auch razemische Polypeptide benutzen, da von Abderhalden nachgewiesen wurde, daß von diesen durch Fermente nur die eine Form gespalten wird. Dadurch überwiegt die Drehung der ungespaltenen Antipodenform im Laufe der Fermentwirkung immer mehr. Während also bei den optisch-aktiven Polypeptiden die vorher bestehende Drehung in vielen Fällen so gut wie vollkommen verschwindet, beginnt hier der Versuch mit einer Drehung von 0° und endet mit starker Drehung. Ein Beispiel dafür sei der Arbeit von E. Abderhalden und A. H. Koelker 1) entnommen:

0.1890 g dl-Leucyl-glycin ($^{1}/_{1000}$ Mol.). 0.9 cm^{3} Pankreassaft, 0.1 cm^{3} Darmsaft, 5.5 cm^{3} Wasser. Die Lösung wird filtriert.

Zeit:	Drehungswinkel:
10 Minuten	-0.080
1 Stunde	0.080
2 Stunden	O.OO
5 "	0·12°
20	-0.220
26 "	-0.270

¹⁾ E. Abderhalden und A. H. Koelker, Zur Kenntnis des Verlaufs der fermentativen Polypeptidspaltung. Zeitschr. f. phys. Chem. Bd. 54. S. 363 (1908).

Zeit:	Drehungswinkel:
72 Stunden	0.420
90	0.560
21()	0.940
282	1.000

2. Messungen der elektrischen Leitfähigkeit¹) wurden von V. Henri und Larquier des Bancels²) und von W. M. Bayliss³) zur Ver-



Fig. 11.

- folgung der proteolytischen Wirkung benutzt. Das Verdauungsgemisch wird direkt in das Leitfähigkeitsgefäß eingefüllt. Es werden dann nach der in Bd. I beschriebenen Methode in Intervallen Bestimmungen vorgenommen.
- 3. Gewichtsanalytische Methoden sind dann möglich, wenn die Fermentwirkung mit Gasentwicklung verbunden ist, und man das Gas frei entweichen läßt. Dahin gehört die bei der "Zymase" beschriebene Methode des Wägens des Gärungskölbehens. Wird ferner ein Spaltprodukt, z. B. Tyrosin, während der Fermentwirkung abgeschieden, so kann es, wie oben schon erwähnt (S. 21), auch unter bestimmten Bedingungen zur quantitativen Verfolgung der Fermentwirkung dienen (Abderhalden). Auch könnte man etwa frei werdendes Tryptophan kalorimetrisch verfolgen (Abderhalden).
- 4. Manometrische Methoden sind anwendbar, wenn die Fermentwirkung mit Gasentwicklung verbunden ist, und man das Gasnicht entweichen, sondern auf ein Manometer wirken läßt.

Für diesen Zweck ist z. B. der von W. Loeb⁴) beschriebene Apparat zur Bestimmung der H₂ O₂-Zersetzung durch die Katalase geeignet (Fig. 11).

Das Zersetzungsgefäß besteht aus einem starkwandigen Glasgefäß, das sich zu einem schmalen Rohr verjüngt und in ein Quecksilbermano-

¹) E. Volhard, Über eine neue Methode der quantitativen Pepsinbestimmung etc. Münchener med. Wochenschr., 1903. S. 2119 u. 1907. H. 9. — Löhlein, Über die Volhardsche Methode etc. Hofmeisters Beitr. Bd. 7. S. 120 (1905). — S. Küttner, Münchener med. Wochenschr. 1903. S. 2185.

²⁾ V. Henri und Larguier des Bancels, Loi d'action de la trypsine sur la gélatine. Compt. rend. soc. de Biol. Bd. 55. S. 563 (1903).

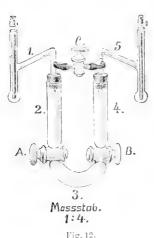
³) W. M. Bayliss, The Kinetics of Tryptic Action. Arch. des Sciences biolog. Vol. 11. p. 175 (1906) und: Researches on the Nature of Enzyme-Action. I. On the Causes of the Rise in Electrical Conductivity under the Action of Trypsine. Journ. of Physiol. Vol. 36. p. 221 (1907).

⁴⁾ W. Loeb, Zur Wertbestimmung der Katalasen und Oxydasen im Blut. Biochem. Zeitschr. Bd. 13. S. 339 (1908).

meter fortsetzt. Her- und Abstellung der Luftkommunikation geschieht vermittelst des mit einer Öffnung versehenen Helmes. Die Füllung geschieht in folgender Weise: Nach Entfernung des Stöpsels werden 25 cm³ $\rm H_2$ $\rm O_2$ -Lösung in das Zersetzungsgefäß und das entsprechend verdünnte Blut in abgemessener Menge mittelst Pipette in das Schälchen gebracht, dieses auf den Teller des gut eingefetteten Stöpsels gesetzt und letzterer bei horizontaler Stellung des Tellers in den Schliffansatz geschoben. Man stellt den Apparat in das Wasserbad, so daß das Zersetzungsgefäß vom Wasserbedeckt ist und wartet den Temperaturausgleich ab. Dann wird die Bürette mit dem Apparat verbunden, auf 0 gestellt und nach Abschluß der Luft die Konstanz der Einstellung kontrolliert. Dann läßt man durch eine Drehung das Schälchen in die $\rm H_2 \, O_2$ -Lösung fallen, schüttelt einmal durch und liest in Zeitintervallen den Druck ab.

Der Einfluß der Temperatur.

Alle Fermentreaktionen haben einen sehr großen Temperaturkoeffizienten, so daß es durchaus notwendig ist, bei einer quantitativen Verfolgung der Fermentreaktionen die Temperatur sehr konstant zu halten. Für sehr genaue Versuche wird man sich zu diesem Zwecke des Ostwaldschen Wasserbades bedienen. In manchen Fällen ist es, wenn man gleichzeitig größere Reihen ansetzt, und die Verfolgung des Fortganges der Reaktion polarimetrisch stattfinden soll, durchaus angängig, wofern man bei Zimmertemperatur arbeitet, von dem Wasserbade abzusehen. Man führt diese Bestimmungen folgendermaßen aus: Die Polarisationsröhren werden, bis zu 6 Stück gleichzeitig, in einem gut temperierten Raum, etwa dem Wägezimmer, senkrecht der Reihe nach aufgestellt und außerdem daneben ein mit Wasser gefüllter Zylinder, welcher etwa die gleiche Form hat wie die Polarisationsröhren. In diesen wird durch eine Korkbohrung ein Thermometer geführt, an welchem man die Konstanz der Temperatur verfolgen kann. So kann man praktisch Konstanz der Temperatur ohne Wasserbad erreichen, wenn es die Bequemlichkeit erfordert. Häufig muß man aber den Ablauf der Fermentwirkung im Polarisationsrohr bei erhöhter Temperatur verfolgen. Zu diesem Zweck sind bei guten Polarisationsapparaten erwärmbare Wassermäntel angebracht, deren Temperatur sich beliebig regulieren läßt.


Im übrigen richte man die Genauigkeit der Temperaturregulierung konform der sonstigen erreichbaren Genauigkeit ein. Um den Endpunkt einer Aufhellungsreaktion zu bestimmen, wäre es überflüssig, die höchsten Ansprüche an Konstanz der Temperatur zu stellen; es liegt in der Natur dieser Reaktionen, daß ihre Genauigkeit oft nicht besser als auf etwa höchstens $10^{\circ}/_{\circ}$ des Gesamtwertes zu erreichen ist. Bei einer derartigen Reaktion, besonders wenn sich die Dauer nur auf etwa $^{1}/_{\circ}$ —1 Stunde erstreckt, kommt man mit primitiver Temperaturregulation in einem Wasserbad von mittleren Dimensionen aus. Man stelle in dasselbe einen Einsatz

für 12 Reagenzgläser mit einem Griff (Fig. 10, S. 29). Durch gelegentliches Schwenken von oben nach unten an diesem Griff kann man für ständigen Wärmeaustausch im Wasserbad sorgen. Die Einstellung geschieht durch einen einfachen Bunsenbrenner; nach Erreichung der gewünschten Temperatur fächle man mit der Flamme gelegentlich alle paar Minuten unter ständiger Kontrolle des Thermometers. Bei einiger Übung kann man damit sehr gute Konstanz der Temperatur erreichen. Benutzt man eine solche Vorrichtung häufiger, so lohnt es sich, das Wasserbad mit einem Temperaturregulator zu versehen.

Die Regulierung der Temperatur bei einem sich über kurze Zeit erstreckenden Versuche durch einen gewöhnlichen Brutschrank ohne Wasserbad ist ganz illusorisch, weil die Gefäße in Luft erst nach sehr langer Zeit die Temperatur der Umgebung annehmen.

Elektrische Wanderung der gelösten Fermente.

Wenn es sich darum handelt, nur die Wanderungsrichtung gelöster Fermente und ähnlicher Stoffe zu ermitteln, so bedient man sich dazu

eines U-Rohres, welches durch irgend eine geeignete Einrichtung gestattet, nach genügendem Durchgang des Stromes die Flüssigkeit um die Anode, um die Kathode und nach Möglichkeit auch die der Gefäßmitte getrennt zu erhalten. Von den empfohlenen Apparaten¹) möchte ich folgende Konstruktion näher beschreiben, welche sich mir gerade bei Fermenten gut bewährt hat²) (Fig. 12).

Ein U-Rohr ist durch zwei Glashähne \mathcal{A} und \mathcal{B} mit weiter Bohrung in drei Räume geteilt (2,3,4). Durch Gummistopfen sind Aufsätze von der in der Zeichnung sichtbaren Form damit verbunden, die unter sich durch einen mit Glashahn c unterbrochenen Weg kommunizieren. Als Elektroden werden von oben in die seitlichen

Aufsätze dünne Metallstreifen bis auf den Boden der kugelförmigen Erweiterung hineingesteckt. Welches Metall man dazu wählt, wird sogleich ersichtlich sein.

¹) Bechhold, Die elektrische Ladung von Toxin und Antitoxin. Münchener med. Wochenschr. 1907. Nr. 39. — Field and Teague, The electrical charge of toxin and antitoxin. Journ. of experim. Med. Vol. 9. p. 86 (1907). — V. Henri, Compt. rend. soc. de biol. 1907. 20. April. — Landsteiner und Pauli, 25. Kongreß für innere Medizin. Wien. 1908. S. 57.

²) L. Michaelis, Elektrische Überführung von Fermenten. Biochem. Zeitschr. Bd. 16. S. 81 (1909).

Man habe nun z.B. die Aufgabe, die durch Dialyse elektrolytfrei gemachte Lösung irgend eines Fermentes zu untersuchen. Dann verfährt man folgendermaßen:

Entweder man arbeitet mit ganz reinem destillierten Wasser und wählt dann Platinelektroden. Man bringt dann zunächst die Fermentlösung in den mittelsten Abschnitt des U-Rohres (3), schließt die Hähne A und B, spült die seitlichen Gefäße 2 und 4 gut aus, füllt sie mit destilliertem Wasser, setzt die Aufsätze auf, füllt dieselben luftblasenfrei mit destilliertem Wasser, indem zunächst der Hahn c geöffnet ist. Nachdem man den Apparat durch eine Stativklammer befestigt, in seine definitive Stellung gebracht hat, und das Niveau der Flüssigkeit sich gut reguliert hat, schließt man den Hahn c und steckt die Platinelektroden in die seitlichen Öffnungen, zum Schluß öffnet man vorsichtig die seitlichen Hähne. Ist das spezifische Gewicht der Fermentlösung nicht merklich höher als das des Wassers, so daß man Konvektionsströme durch Erschütterungen zu befürchten hat, so kann man das spezifische Gewicht der Fermentlösung durch Zusatz von ganz wenig Glyzerin oder Zucker erhöhen.

Diese Methode leidet an dem Übelstande, daß die sehr geringen, unvermeidlichen, im Laufe der Zeit zunehmenden Verunreinigungen des Wassers durch CO₂ und Alkali aus dem Glase zur Folge haben, daß die Reaktion an den Polen unter der Wirkung des Stromes im Laufe eines Tages merklich alkalisch an der Kathode und sauer an der Anode wird und die Reaktionsveränderung sich von hier merklich auch in die von den Elektroden entfernten Gebiete ausbreitet. Mitunter haben aber die geringsten Änderungen der Reaktion große Wirkungen auf die Wanderungsrichtung. Um die Änderung der Reaktion zu vermeiden, habe ich vorgeschlagen, folgende Anordnung zu treffen:

Man fülle die Fermentlösung in das Mittelgefäß, schließe die Hähne, fülle die anderen Räume mit destilliertem Wasser, setze die Aufsätze auffülle sie mit destilliertem Wasser und achte darauf, daß keine Luftblase in den Aufsätzen bleibt. Jetzt fülle man in diejenige Öffnung, die zur Anode werden soll, durch ein Trichterchen eine Messerspitze festes ClNa ein, derart, daß der größte Teil desselben in die kugelförmige Erweiterung hineinfällt; und in den zur Kathode bestimmten Aufsatz fülle man ebenso etwas CuCl_2 in Substanz ein. Als Anode benutze man ein Streifchen Silberblech, als Kathode einen Kupferdraht. Jetzt schließe man Hahn c und öffne die Hähne A und B und schalte den Straßenstrom von 110 Volt für 8 bis 24 Stunden ein. Die Anordnung ist dann folgendermaßen:

Die Wirkung der Anordnung ist folgende. An der Anode geht Silber als Ion in Lösung, wird aber sofort von den daselbst befindlichen C-Ionen

zu unlöslichem ClAg gebunden, welches als Trübung erscheint. An der Kathode wird metallisches Kupfer abgeschieden. Eine Veränderung der neutralen Reaktion tritt also nicht ein.

Häufig kommt es darauf an, die Wanderungsrichtung bei Gegenwart von Neutralsalzen und besonders bei Gegenwart von Säuren oder Alkalien zu ermitteln.

Will man z. B. das Ferment in Gegenwart von $^1/_{_{100}}$ n Cl K untersuchen, so würde sich eine Anordnung empfehlen, die man entsprechend dem vorstehenden Schema in nunmehr leicht verständlicher Weise so ausdrücken, kann :

$$+ \mathop{\rm Ag} \left| \begin{array}{c} {\rm starke~Cl~K-} \\ {\rm L\ddot{o}sung} \\ {\rm 1} \end{array} \right| \, {\rm ^{1/_{100}}} \, \mathop{\rm n~Cl~K-} \\ {\rm L\ddot{o}sung} \\ {\rm 2} \end{array} \right| \, {\rm ^{1/_{100}}} \, \mathop{\rm n~Cl~K-} \\ {\rm L\ddot{o}sung} \\ {\rm 3} \end{array} \right| \, {\rm ^{1/_{100}}} \, \mathop{\rm n~Cl~K-} \\ {\rm L\ddot{o}sung} \\ {\rm 4} \end{array} \right| \, \mathop{\rm Cu~Cl_2} \\ {\rm 5} \\ \left| {\rm Kupfer} - {\rm cmch} \right| \, {\rm cmch} \\ {\rm Cu~Cl_2} \\ {\rm 5} \\ \left| {\rm cmch} \right| \, {\rm cmch} \\ {\rm cmc$$

Die Zusammensetzung dieser Anordnung geschieht folgendermaßen: Die Lösung des Ferments in $^1/_{100}$ n ClK wird in das Mittelgefäß gebracht, die seitlichen Hähne dann geschlossen, die seitlichen Räume ausgewaschen, mit $^1/_{100}$ n ClK gefüllt, die Aufsätze aufgesetzt, ebenfalls mit $^1/_{100}$ n ClK gefüllt, dann in die Anodenseite ClK in Substanz, in die Kathodenseite Cu Cl $_2$ in Substanz eingebracht. Die Menge dieser Salze muß jetzt etwas reichlicher bemessen werden, weil bei dem stärkeren Strom, der durch die besser leitenden Flüssigkeiten geht, diese Salze sonst vor Abbruch des Versuches erschöpft sein könnten und damit eine Änderung der Reaktion eintreten würde. Dann werden die metallischen Elektroden wie oben eingeführt. Die Silberelektrode darf nicht zu dünn sein, weil sie bei dem stärkeren Strom sonst in wenigen Stunden aufgezehrt sein könnte.

Will man die Wanderung des Ferments in saurer Lösung, z. B. in $^{1}/_{100}$ n H Cl, untersuchen, so verfahre man folgendermaßen:

$$+ \left. \mathrm{Ag} \left| \begin{array}{c|c} \mathrm{starke} \, \mathrm{H} \, \mathrm{Cl} & {}^{1/_{100}} \, \mathrm{n} \, \, \mathrm{H} \, \mathrm{Cl} \\ 1 & 2 & 3 \end{array} \right| \left. \begin{array}{c|c} \mathrm{Ferment} \, & \mathrm{in} \\ {}^{1/_{100}} \, \, \mathrm{n} \, \, \mathrm{H} \, \mathrm{Cl} \\ 3 & 4 & 5 \end{array} \right| \left. \begin{array}{c|c} \mathrm{Cu} \, \mathrm{Cl_2} \\ 5 & \end{array} \right| \, \mathrm{Kupfer} \, - \right.$$

Man fülle das Mittelgefäß mit der Lösung des Ferments in $^1/_{100}$ n H Cl, fülle die seitlichen Gefäße und die Aufsätze ebenfalls mit $^1/_{100}$ n H Cl, unterschichte an der Anode mit einer Pipette, die man bis auf den Boden des Kugelansatzes einführt, die Flüssigkeit mit 1 cm^3 10 $^0/_0$ igem H Cl, gebe in das Kathodengefäß Cu Cl $_2$ in Substanz und verfahre weiter wie oben. So wird der Säuregehalt in allen Räumen des eigentlichen U-Rohres einigermaßen konstant gehalten.

Daß der in dem Kugelgefäß so reichlich enthaltene Elektrolyt durch Diffusion sich in störenden Mengen bis in die Räume des U-Rohres verbreitet, ist bei einer Versuchsdauer von 24 Stunden nicht zu befürchten.

Die Entnahme der Flüssigkeiten nach Beendigung des Stromdurchganges geschieht in der Weise, daß man zunächst den Strom unterbricht und sofort die seitlichen Hähne A und B schließt. Dann ziehe man die Elektroden heraus und lüfte nacheinander die Gummistopfen, indem man die obere Öffnung des Aufsatzes mit dem Finger verschließt, den Gummistopfen herauszieht und die in dem Aufsatz enthaltene Flüssigkeit abseits ausfließen läßt. Man gebe acht, daß bei dieser Manipulation keine Flüssigkeit aus den Aufsätzen in die Seitengefäße des U-Rohres gelangt (es darf kein Cu Cl₂ und kein Ag Cl hinübergeraten) und entleere einzeln den Inhalt der drei Räume des U-Rohres. Man überzeuge sich durch geeignete Indikatoren, daß keine Änderung der Reaktion eingetreten ist. Dann prüfe man die Flüssigkeiten auf ihren Fermentgehalt, wenn nötig, nachdem man erst die Reaktion auf die für die Fermentwirkung erforderliche Stufe bringt,

C. Darstellung von Oxydasen und Katalasen tierischer und pflanzlicher Herkunft. Methoden ihrer Anwendung.

Von R. Chodat, Genf.

Die Fermente, welche an den in der lebenden Zelle sich abspielenden Oxydationsprozessen, positiv oder negativ, beteiligt sind, können ihrer spezifischen Funktion nach in folgende Hauptgruppen eingeteilt werden 1):

I. Oxygenasen, stickstoffhaltige Körper, welche den molekularen

Sauerstoff unter Peroxydbildung aufnehmen.

II. **Peroxydasen**, welche das Oxydationsvermögen der bei der hier in Betracht kommenden Verdümnung an und für sich trägen Peroxyde außerordentlich erhöhen. Die bisher als Oxydasen bezeichneten Fermente sind nichts anderes, als (mehr oder weniger trennbare) Gemenge²) von Oxygenasen und Peroxydasen.

III. Katalasen 3), welche das Hydroperoxyd katalytisch unter Sauer-

stoffentwicklung zersetzen.

Oxygenasen.

Als Oxygenasen bezeichnen *Chodat* und *Bach* den supponierten eiweißhaltigen oder organischen Anteil der bisherigen Oxydasen, der als Peroxyd bildender Körper sich mit dem Luftsauerstoff addierend, sich mit ihm zu

einem Körper der allgemeinen Formel F

es sind fermentartige Körper, die sich mit dem Sauerstoff der Luft zu einem Peroxyd verbinden können. Sie werden, wie andere fermentartige Körper, durch Hitze zerstört, durch starken Alkohol gefällt, können vergiftet

 A. Bach und R. Chodat, Über den gegenwärtigen Stand der Lehre von den pflanzlichen Oxydationsfermenten. Biochem. Centralbl. Bd. 1. S. 417 (1903).

²) R. Chodat und A. Bach, Untersuchungen über die Rolle der Peroxyde in der Chemie der lebenden Zelle. V. Zerlegung der sog. Oxydasen in Oxygenasen und Peroxydasen. Ber. d. Deutsch. chem. Ges. Jg. 36. S. 606 (1903).

³⁾ O. Loew, Catalase a new enzym of generaloccurrence. U. S. Department of Agriculture. Rep. No. 68 (1901). Katalase ist kein eigentliches Oxydationsferment, spieltaber bei den sich in der lebenden Zelle abspielenden Oxydationsprozessen eine wichtige Rolle. Deshalb muß dieses Ferment hier anhangsweise berücksichtigt werden.

und geschädigt werden. Sie unterscheiden sich von gewöhnlichen Peroxyden nur dadurch, daß sie wahrscheinlich hochmolekulare Körper sind, Albuminstoffe oder Vorstufen der Albuminstoffe oder sonstige komplizierte organische Verbindungen, die dem chemischen Zellmetabolismus ihren Ursprung verdanken. Es sind ziemlich unbeständige Körper. Aber auch jedes Peroxyd kann als Oxygenase fungieren.¹)

Die eigentlichen Oxygenasen sind in den sog. Oxydasen in loser oder fester Verbindung mit unbekannten Substanzen, die den Charakter einer Peroxydase haben, enthalten. Folglich kann man jede Oxygenase durch ein anorganisches oder organisches Peroxyd ersetzen und aus ihr in Verbindung mit einer Peroxydase ein System Peroxyd-peroxydase konstruieren, welches einem Oxydationsferment gleichwertig ist (z. B. Lakkase, siehe unten).

Nachweis von peroxydartigen Verbindungen in den Oxydationsfermenten.

Man bediene sich folgender Reagenzien:

1. Jodstärkekleister.

Zum Nachweis eignet sich gewöhnlich das Jodstärkepapier; da die Pflanzenschnitte meistens sauer reagieren und die Jodausscheidung, wie bekannt, nicht direkt aus Jodkalium, sondern aus Jodwasserstoffsäure stattfindet, so geben die Abdrücke von Pflanzenschnitten direkt die Jodreaktion. Der Versuch mißlingt sehr oft mit Pflanzensäften, weil dieselben ungesättigte oder reduzierende Verbindungen enthalten, die das Jod absorbieren. ²)

Da diese Reaktion auch mit Nitriten zu erzielen ist, so empfiehlt es sich jedesmal, die Bismarckbraumreaktion (*Gries*sche Reaktion) der Nitrite auf Metaphenylendiamine zu versuchen oder eine andere für diese Körper charakteristische Reaktion zu probieren.³)

Der Saft und die Pflanzenstücke von Clavaria flava, die rasch und stark auf eine saure Jodkaliumstärke reagieren, enthalten (frischer Saft!!) keine Spur von Nitriten. Die durch Alkohol aus Russula foetens gefällte Oxygenase⁴), welche die Jodprobe intensiv gibt, enthält ebenfalls keine Spur von Nitriten. Die gegenteiligen Angaben von Aso beruhen auf einem Irrtum.⁵)

 $^{^1}$) A. Bach und R. Chodat, II. Über Peroxydbildung in der lebenden Zelle. Ber. d. Deutsch. chem. Gesellsch. Jg. 25. S. 2466 (1902). — R. Chodat und A. Bach, Untersuchungen über die Rolle der Peroxyde in der Chemie der lebenden Zellen. I. Berichte d. Deutsch. chem. Ges. Jg. 35. S. 1275 (1902).

²) R. Chodat und A. Bach, Untersuchungen etc. III. Oxydationsfermente als peroxyderzeugende Körper. Berichte d. Deutsch. chem. Gesellsch. Jg. 35. S. 3945 (1902).

³⁾ R. Chodat und A. Bach, Untersuchungen, l. c. VII. Einiges über die chemische Natur der Oxydase. Berichte d. Deutsch. chem. Gesellsch. Jg. 37, S. 37, 38 (1904).

⁴) R. Chodat, Les ferments oxydants. Schweizerische Wochenschr. f. Chemie und - Pharm. Nr. 46-48 (1905).

⁵) Aso, Which compound in certain plant juice can liberate iodine from potassium iodid? Beihefte z. Bot. Centralbl. Bd. **15**. S. 208 (1903).

2. Barytwasserprobe (Ba (OH)₂. 1)

Beim Behandeln des frisch ausgepreßten, stark oxydasehaltigen Saftes von Lathraea squamaria 2) mit einem Luftstrom unter tropfenweisem Zusatz von $1^{\circ}/_{\circ}$ igem Barytwasser erhält man einen Barytniederschlag (Ba O_2), welcher nach Auswaschen und Zersetzen mit verdünnter Säure (Essigsäure) die bekannte Hydroperoxydreaktion mit Titanschwefelsäure 3) nicht zeigt, dagegen Jodkaliumstärkepapier sofort und sehr intensiv bläut. Die erhaltene Lösung gibt mit dem *Gries*schen Reagens keine Reaktion auf salpetrige Säure. Die sofortige Jodausscheidung aus Jodkalium kann daher nur von einem acylierten Hydroperoxyd herrühren.

Nachweis von peroxydartigen Verbindungen in der lebenden Pflanze.

Zu ihrem Nachweis eignen sich besonders gut die jungen Kartoffeln, an deren Peripherie Oxydationsfermente vorkommen (siehe unten).

Dünnschnitte, welche den peripherischen Zellschichten von frischen Kartoffeln entnommen sind (die Schnitte müssen in der Zone, die unterhalb des dünnen braumen Periderms liegt, gemacht werden), werden behufs Entfernung des von den zerstörten Zellen herstammenden Saftes in Detmers physiologischer⁴) Salzlösung ausgewaschen, auf einen Objektträger gebracht und unter dem Mikroskop mit Jodkaliumlösung $(5-10^{\circ})$ behandelt. Nach einiger Zeit nehmen die im Innern der Zellen befindlichen Stärkekörner die für die Jodstärke charakteristische Färbung an. Die Zellen behalten dabei ihr normales Aussehen und auf Zusatz von hypertonischen Salzlösungen plasmolysieren sowohl die gefärbten wie die ungefärbten Zellen in ganz normaler Weise. Da die Plasmolyse als eines der sichersten Kennzeichen des Lebens anzusehen ist, so ist damit die Peroxydbildung auch in der Zelle nachgewiesen.

Je nach dem Zustande der Versuchsobjekte (Alter, Oxydase- und Wassergehalt, Frische) sind zur Hervorrufung der Blaufärbung der Stärke-körner mehr oder weniger konzentrierte Jodkaliumlösungen erforderlich und die Färbung tritt mehr oder weniger rasch ein. Wendet man schwach hypertonische Jodkaliumlösungen an, so beobachtet man gleichzeitige Blaufärbung und Plasmolyse. Bei Versuchsobjekten, welche Guajactinktur nur langsam bläuen (siehe unter Lakkase), bleibt, die Jodstärkereaktion häufig aus.

¹) R. Chodat und A. Bach, Untersuchungen über die Rolle der Peroxyde in der Chemie der lebenden Zelle. V. Zerlegung der sog. Oxydasen in Oxygenasen und Peroxydasen. Ber. d. Deutsch. chem. Ges. Jg. 36. S. 606 (1903).

²⁾ Wurzelparasit, im Frühling zu sammeln.

³) Baeger und Villiger, Berichte d. Deutsch. chem. Gesellsch. Jg. 33. S. 858 und 1569 (1900).

⁴⁾ Detmer, Pflanzenphysiologisches Praktikum, II. Aufl. S. 2 (1895).

Peroxydase. 1)

Vorkommen: Peroxydase ist im Pflanzenreich sehr verbreitet. Es gibt kaum eine höhere Pflanze, in welcher dieselbe absolut fehlen dürfte. Den meisten Pilzen fehlt sie jedoch vollkommen. Ob sie im tierischen Organismus eine ähnliche Verbreitung hat, bleibt zurzeit noch unsicher, da das Hämoglobin als Peroxydase fungieren kann, und es ist deshalb strittig, ob die Peroxydase als solche im Organismus der höheren Tiere sich findet. Genaue quantitative Bestimmungen stehen noch aus; aber es ist leicht zu demonstrieren, daß dieses Ferment in den nicht grünen Teilen reichlicher vorhanden ist als in den gefärbten Organen der Pflanze.

Darstellung²): 5~kg Meerrettigwurzelm werden mittelst der Hackmaschine fein zerkleinert, einige Stunden sich selbst überlassen, um die enzymatische Glykosidspaltung zu vervollständigen, und dann einige Tage mit starkem Alkohol (96°/₀) extrahiert, welcher die ätherischen Öle auflöst. Die rote alkoholische Flüssigkeit wird abgegossen, der Rückstand wiederholt mit 80° igem Alkohol gewaschen, abgepreßt und schließlich das Residuum mit 40° /o igem Alkohol (10 l) versetzt und 5 Tage stehen gelassen; die abgepreßte Flüssigkeit wird hierauf filtriert und mit weniger als dem doppelten Volumen starken Alkohols versetzt, d. h. solange eine starke Trübung entsteht.

Der weiße oder grauweiße Niederschlag wird in ein wenig destilliertem Wasser gelöst, mit starkem Alkohol wiederum ausgefällt und über Schwefelsäure im Vakuum von Alkohol und Wasser befreit.

Sind genügende Vorrichtungen vorhanden, so ist es ratsam, vor der Fällung die 40% ige alkoholische Flüssigkeit vorerst im Vakuum bei 30% C einzuengen und erst, wenn dieses Filtrat bis auf ein Drittel konzentriert ist, mit starkem Alkohol zu versetzen.

Will man Alkohol sparen, so kann ebenfalls eine sehr aktive Peroxydase durch folgendes Verfahren bereitet werden:

Es werden fein zerkleinerte Meerrettigwurzeln 1 Stunde in einem geschlossenen Gefäße sich selbst überlassen und dann abgepreßt (A): der Kuchen wird nun mit Wasser versetzt, so daß das Flüssigkeitsniveau wenig über die Wurzelmasse sich erhebt und so während 10—20 Stunden stehen gelassen; dann wird ein zweites Mal abgepreßt (B); der Rückstand wird noch einmal mit Wasser digeriert und nach der gleichen Zeit abgepreßt (C).

Die 3 Flüssigkeiten (A, B, C) werden miteinander gemischt und graduell und langsam mit starkem Alkohol versetzt, bis sich ein erster Niederschlag zeigt. Dieser Niederschlag setzt sich leicht ab. Dann wird mittelst

¹) Peroxydase wird auch Leptomin (Raciborski) oder Peroxyddiastase (Bertrand) oder indirektes Oxydationsferment (Bourquelot) genannt. — Der Name wurde von Linossier gewählt. Compt. rend. de la Soc. de biol., Paris. T. 5. p. 373 (1898). — F. Batelli und L. Stern, Über die Peroxydase der Tiergewebe. Biochem. Zeitschr. Bd. 13. S. 44 (1908).

²) Bach und Chodat, Ber. d. Deutsch. chem. Ges. Jg. 36. S. 600. IV. Über Peroxydase (1903).

eines Hebers die darüber stehende Flüssigkeit abgehoben und diese noch einmal mit starkem Alkohol (96%) versetzt. Der erste Niederschlag ist sehr wenig wirksam (kann aber zu qualitativen Versuchen Verwendung finden); der zweite setzt sich langsam ab und haftet als weißer, gummiartiger Belag an den Wänden des Glasgefäßes. Nun wird die klare Flüssigkeit durch Dekantieren entfernt. Der gummöse, weiße Niederschlag wird mit 40% gigem Alkohol digeriert und nochmals abgeschieden.

Die Ausbeute beträgt 10-20% (00.

Durch beide Methoden aber, durch die erstere am schnellsten und sichersten, gelangt man zu einer kristallinisch weißen Masse, die sich ganz vorzüglich sowohl zu qualitativen wie zu quantitativen Untersuchungen eignet. In diesem Zustande kann die Peroxydase längere Zeit (mehr wie 2 Jahre) unverändert an einem trockenen Orte und im Dunkeln aufbewahrt werden (wenn möglich im Exsikkator über Schwefelsäure). Es gilt dies besonders für das nach der ersten Vorschrift bereitete Ferment.

Verfügt man über größere Massen von roher Peroxydase, so kann die Reinigung nach der erwähnten Methode mehrmals wiederholt werden. Dadurch befreit man die Peroxydase von den Zuckerarten und auch von Mineralsubstanzen. Die gereinigte Peroxydase ist nun ein amorpher brauner Körper. Durch diese Reinigung wird zwar die Aktivität vermehrt, aber nicht in dem gleichen Maße wie die Konzentration.²)

Diese amorphe Peroxydase ist viermal aktiver als die kristallinische Peroxydase.²) Durch Dialyse läßt sich die Peroxydase noch weiter reinigen. Dabei verliert man so sehr an Substanz, daß die Methode nur einen beschränkten Wert hat.³)

Weiße, gereinigte Peroxydase enthält Phosphate des Ca, Mg, Na und K, aber weder Eisen noch Mangan, reduzierende Zuckersubstanzen, aber keine Eiweißstoffe. Wie oben gezeigt, kann man diese weiße Peroxydase durch mehrmaliges Auslaugen mit $40^{\circ}/_{\circ}$ igem Alkohol und Fällen mit starkem $90^{\circ}/_{\circ}$ igem Alkohol reinigen.

Eigenschaften: Die so dargestellte Peroxydase ist eine wenig hygroskopische, wasserlösliche Masse, welche Eiweißreaktionen nicht zeigt. Beim Erhitzen der Lösung mit Natronlauge entweicht zuerst Ammoniak und dann eine nach Pyridin riechende Base. Mit gepulvertem Kali vermischt und im Probierrohr erhitzt gibt die Peroxydase Ammoniakdämpfe und Pyrrol. **) Sie enthält Stickstoff (Lassaignesche Methode) (3, 4—6.79%).

¹⁾ E. r. Stocklin, Contribution à l'étude de la peroxydase in R. Chodat. Travaux de l'Institut de Botanique. Genève 1907. VIIe série. VIIe fasc. p. 17.

²) E. v. Stocklin, l. c. S. 21-23.

³) A. Bach und J. Tscherniak, Zur Reinigung der Peroxydase. Berichte d. Deutsch. chem. Gesellsch. Jg. 41, S.2345 (1908).

⁴⁾ A. Bach, Über den Stickstoffgehalt der Oxydationsfermente. Berichte d. Deutsch. chem. Gesellsch. Jg. 31. S. 226 (1908). — A. Bach und R. Chodat, Untersuchungen, IV. Über Peroxydase. Berichte d. Deutsch. chem. Gesellsch. Jg. 36. S. 600 (1903). — E. de Stocklin, Contribution à l'étude de peroxydase in Chodat, Travaux. Genève 1907. p. 27.

Durch Siedehitze läßt sie sich lähmen, wird aber, falls sie nur kurze Zeit gekocht worden ist, nach einigen Stunden zum Teil regeneriert. 1)

In Gegenwart von Hydroperoxyd oder eines anderen Peroxydes vermag Peroxydase die gleichen Stoffe zu oxydieren, welche auch durch Lakkase oxydiert werden.²)

Die Oxydation des Jodwasserstoffes durch Hydroperoxyd wird außerordentlich beschleunigt: es werden Phenole und Polyphenole oxydiert und öfters kondensiert:

Hydrochinon zu Chinon,
$$2 C_6 H_4 < OH + O_2 = 2 H_2 O + 2 C_6 H_4 < O$$
.

Pyrogallol zu Purpurogallin (ein kristallisiertes rotes Kondensationsprodukt),

Guajakol zu Tetraguajakol

$$4 C_6 H_4 OH . O CH_3 + O_2 = (C_6 H_3 . O . O CH_3)_4 + 2 H_2 O$$

Orthophenylendiamine zu Diaminophenazin:

$$NH_{2}$$
 + NH_{2} +

Eines der besten Reagenzien auf Peroxydase sind die Kresole. Mit einer verdünnten Lösung von o-Kresol gibt Peroxydase in Gegenwart von Hydroperoxyd eine grüne (bei konzentrierten Lösungen schmutzigbraune), mit m-Kresol eine fleischfarbene und mit p-Kresol eine milchig-trübe, opaleszierende Reaktion. Die Wirkung auf o-Kresol und p-Kresol ist ganz besonders stark und spezifisch. Dabei ist aber immer ratsam, nicht zu konzentrierte Hydroperoxydlösungen resp. Kresollösungen für diese Versuche zu verwenden, da beide in allzu starker Konzentration auf Peroxydase mehr oder weniger lähmend oder schädigend wirken. Es eignen sich 0.1--.1° "ige Lösungen von Hydroperoxyd und 1° "ige Kresollösungen für qualitative Untersuchungen am besten.3)

¹) R. Chodat und A. Bach, Untersuchungen. V. Zerlegung der sog. Oxydasen etc. Berichte d. Deutsch. chem. Gesellsch. Jg. 36. S. 606 (1903). — Dieselben, Untersuchungen. III. Oxydationsfermente als peroxyderzeugende Körper. l. c. Ibid. Jg. 35. S. 3943 (1902).

²⁾ Woods, United States Depart. of Agriculture. Nr. 18. p. 17 (1902). — Aso, On Oxidizing Enzyms in the vegetable Body. Bulletin of the College Agriculture, Tokyo. V. 2. p. 231 (1902). — Bach und Chodat, l. c. IV. Über Peroxydase. Berichte d. Deutsch. chem. Gesellsch. Jg. 36. S. 600 (1903).

 ³⁾ R. Chodat, Nouvelles recherches sur les ferments oxydants. Archives des Sciences naturelles. IVe Période. T. 24. p. 2 (1907). Sur le mode d'action de la Tyrosinase.
 Derselbe, La spécificité de la Tyrosinase et son actions sur les produits de la dégradation des corps proteiques. Ibid. T. 24. p. 172-194 (1907).

Bei einer Verdünnung auf $1^{\circ}/_{00}$ ist die gelbgrüne Farbe für o-Kresol noch sehr stark, resp. die milchigweiße Trübung für p-Kresol, bei $^{1}/_{10000}$ sind beide Reaktionen noch sehr deutlich. Die Grenze der Sichtbarkeit liegt zwischen 10.000 und 100.000. Die Sensibilität der Guajakprobe ist eine noch feinere; aber sie hängt von so vielen Nebenumständen ab, daß dieselbe allein keinen sicheren Schluß gewährt. Außerdem sind o-Kresol und p-Kresol chemische Körper, die in größter Reinheit zu erlangen sind; ihre Lösungen $(1^{\circ}/_{0})$ sind auch ziemlich haltbar.

Bei Untersuchungen über Oxydationsfermente¹) achte man genau darauf, daß die Reagenzien nicht selten peroxydiert sind. Es gelingt manchmal, direkt mit Peroxydase eine Bläuung der Guajakemulsion hervorzurufen oder ebenfalls direkt Pyrogallussäure zu oxydieren, oder es färben sich andere, noch sensiblere Reagenzien fast sofort durch die zugesetzte Peroxydase. Es läßt sich sehr leicht feststellen, daß entweder der Alkohol peroxydhaltig ist, oder das Guajakharz sich an der Oberfläche oxydiert hat, oder es hat sich die Pyrogallussäure an der Luft ein wenig verändert.

Will man die Guajakprobe anwenden, so ist darauf zu achten, daß für jeden Versuch eine neue alkoholische Lösung bereitet werden muß; das Guajakharz muß von der äußeren oxydierten Schicht durch Schaben befreit werden. Zum Nachweis von Peroxyd in Alkohol kann folgenderweise verfahren werden. Aus dem Alkohol wird eine Guajaktinktur bereitet und mit Wasser zu einer sog. Guajakemulsion gemischt. Setzt man Peroxydase hinzu, so wird sich die Guajakemulsion sofort blau färben, falls der Alkohol peroxydhaltig ist, bleibt die blaue Farbreaktion aus, so können die Reagenzien als peroxydfrei betrachtet werden. Da außerdem die Guajakemulsion an der Luft sich rasch oxydiert, so daß sie sich nach kurzer Zeit bei Zusatz von Peroxydase allein schon bläut, so empfiehlt es sich, zu qualitativen Versuchen Pyrogallol oder Kresol zu verwenden, die viel mehr zuverlässig sind.

Da Wasserstoffsuperoxyd von Katalase (siehe unten) rasch zersetzt wird und in den meisten Pflanzensäften stark zur Wirkung kommt, so ist es absolut notwendig, in solchen Fällen, wo es gilt, die Höhe des Peroxydaseumsatzes zu messen, in lebenden oder erfrorenen oder auf eine andere Weise ohne Hitze getöteten Pflanzen oder Tierorganen sich eines Peroxyds zu bedienen, welches wasserlöslich ist. Es eignet sich dazu besonders gut das dem Hydroperoxyd am nächsten stehende Äthylhydroperoxyd $\mathrm{C}_2\,\mathrm{H}_5\,\mathrm{O}$. $\mathrm{OH}.^2)$

 $100\,g$ Diäthylsulfat werden mit $115\,g$ $30^{\circ}/_{\circ}$ iger Hydroperoxydlösung, $175\,g$ Kaliumhydroxyd und $600\,cm^{\circ}$ Wasser bis zum Verschwinden des Diäthylsulfats geschüttelt und das angesäuerte Reaktionsprodukt aus dem Luftbad überdestilliert. Nach zweimaligem Überdestillieren unter vermin-

R. Chodat und A. Bach, Untersuchungen. VII. Über die chemische Natur der Oxydasen. Berichte d. Deutsch. chem. Gesellsch. Jg. 37. S. 36 (1904).

²⁾ Baeyer und Villiger, Ber. d. Deutsch. chem. Gesellsch. Jg. **34**. S. 738 (1901). — Bach und Chodat, Untersuchungen etc. VI. Über Katalase. Ibid. Jg. **36**. S. 1758 (1903).

dertem Druck ergibt das erhaltene Produkt (265 g) bei der jodometrischen Bestimmung 2:47% Äthylhydroperoxyd. Mit dem Titanschwefelsäurereagens gibt es nicht die mindeste Gelbfärbung: es ist also völlig hydroperoxydfrei. Es enthält neben viel Alkohol eine Spur Essigsäure.

Messung der Aktivität der Peroxydase.

A. Durch die Oxydation von Pyrogallussäure. 1)

Es wird in $35\ cm^3$ Wasser $1\ g$ reine Pyrogallussäure gelöst und zu je 10 solchen Lösungen wachsende Mengen von Peroxydase oder ein konstantes Volumen Wasserstoffsuperoxyd zugesetzt. Etwa in folgender Weise:

Pyrogallol		$H_2 O_2, 10/_0$	Peroxydase	Purpurogallin
I.	1 g	$10~cm^3$	0.01	0.021
II.	1	10 .,	0.03	0.042
III.	1 "	10 "	0.03	0.066
IV.	1	10	0.04	0.086
V.	1 "	10	60.0	0.102
VI.	1 .,	10 "	0.06	0.123
VII.	1 "	10 .,	0.07	0.145
VIII.	1 "	10 "	0.08	0.166
IX.	1	10	0.09	0.162
X.	1	10	0.010	0.162

Die Mischung soll 50 cm^3 betragen. Gleich nach dem Zusatz von Peroxydase bräunt sich die Flüssigkeit, bald nachher trübt sie sich und Purpurogallin fängt an. sich abzuscheiden. Man lasse die Versuchsflaschen 12 Stunden stehen; der Bodensatz wird auf gewogene Filter abfiltriert mit 50 cm^3 destilliertem Wasser gewaschen. Die Filter werden im Trockenschrank bei 100° getrocknet und gewogen.

In einer zweiten Reihe von Versuchen läßt man die Quantität des Wasserstoffsuperoxyds variieren mit einer gleichbleibenden Menge Peroxydase:

Pyrogallol		${ m H_2~O_2, 1^{0}}_{10}$	Peroxydase	Purpurogallin
I.	1 g	$1 cm^3$	0.10	0.0205
II.	1 .,	2 ,	0.10	0.042
III.	1 .,	3 "	0.10	0.060
IV.	1 ,,	4 "	0.10	0.078
V.	1 .,	5 "	0.10	0.099
VI.	1 ,,	6 ,	0.10	0.121
VII.	1 "	7 "	0.10	0.141
VIII.	1 "	8 "	0.10	0.168
IX.	1 "	9 ,	0.10	0.168
X.	1 ,,	10 "	0.10	0.163

¹) R. Chodat und A. Bach, Untersuchungen über die Rolle der Peroxyde in der Chemie der lebenden Zelle. l. c. Berichte d. Deutsch. chem. Gesellsch. Jg. 36. S. 607 (1903). — Dieselben, Biochem. Zentralbl. Bd. 1. S. 417 (1903).

Durch diese Versuche läßt sich leicht beobachten, daß die Wirkung der Peroxydase sich in einem bestimmten Verhältnis zum Wasserstoffsuperoxyd verhält. In diesem Versuche war zufällig das Verhältnis in ganzen Zahlen ausgedrückt. 1 cg Peroxydase aktivierte genau 1 cm3 Wasserstoffsuperoxyd zu $1^{\circ}/_{0}$. $0^{\circ}0^{\circ}2$... 2 cm^{3} usf. Es besteht also unter den angegebenen Bedingungen zwischen Peroxydase und Wasserstoffsuperoxyd ein konstantes Verhältnis. Eine Quantität n Peroxydase aktiviert eine Quantität m Wasserstoffsuperoxyd, 2 n . . . 2 m usw., wie es der Fall ist zwischen chemischen Verbindungen. Es zeigt dies also, daß beide sich zu einem chemischen System vereinigen: Peroxydase—Hydroperoxyd. Das Oxydationsprodukt steht nun zu diesem System in direktem Verhältnis bis zu einer Grenze, über welche die Masse des Oxydationsproduktes konstant bleibt. Es läßt sich nun aber zeigen, daß diese obere Grenze auch von der Masse des vorhandenen, zu oxydierenden Körpers abhängt. Setzt man zu diesen Versuchen 2 q Pyrogallussäure statt 1 q, so bleibt das Verhältnis zwischen Peroxydase und Wasserstoffsuperoxyd bestehen, aber die Quantität des Oxydationsproduktes steigt:

	Pyrogallol	$\mathrm{H_2~O_2}$ zu $\mathrm{1^{\circ}}'_{-0}$	Peroxydase	Purpurogallin
Λ	1	$10 \ cm^{3}$	0.10	0.166
В	2	10	0.10	0.203
C	8	10	0.10	0.205
[)	4	20	0.20	0.401

Mit gereinigter Peroxydase (Stocklin und Chodat) kann unter ähmlichen Bedingungen die Ausbeute an Purpurogallin erhöht werden. Es haben 0·05 Peroxydase (amorphe) 35 cm^3 H₂ O₂ zu 1°₋₀ auf 1 g Pyrogallussäure 0·455 Purpurogallin geliefert, was zu 0·1 Peroxydase 0·910 Purpurogallin entspricht.

In all diesen Versuchen ist darauf zu achten, daß die Konzentration des Wasserstoffsuperoxyds nicht zu hoch steigt. Es hat sich nämlich gezeigt, daß, je mehr die Peroxydase gereinigt ist, sie um so mehr durch zu hohe Konzentrationen von Hydroperoxyd geschädigt wird. Man kann also annehmen, daß die für eine gereinigte Peroxydase günstigsten Konzentrationen für eine weniger reine nicht zu hoch fallen werden, so daß die Konzentration $^{\rm 1}$) von $0.1-0.20/_{\rm 0}$ als für die meisten Versuche günstig angenommen werden kann.

Die schädliche Wirkung einer zu hohen H_2 O_2 -Konzentration kommt in folgender Tabelle klar zum Ausdruck 2):

Peroxy dase	$ m H_2~O_2~zu~1^o_{-0}$	Purpurogallin gef.	berechnet
0.02	$1 cm^3$	0.0178	0.016
60.0	2	0.0321	0.032
60.0	3 .,	0.0466	0.048
60.0	4 ,,	0.0601	0.064

¹⁾ Berechnet auf das totale Volumen des Gemisches.

²⁾ Chodat in Stocklin, l. c. S. 35.

Peroxydase	H ₂ O ₂ zu 10	Purpurogallin gef.	berechnet
60.0	$5~cm^3$	0.0802	0.080
0.02	6	0.0932	0.096
0.02	7	0.1181	0.112
0.02	8 .,	0.0956	0.112
0.02	9	0.0877	0.112
0.02	10	0.072	0.112
0.02	11 .,	0.0467	0.112
0.02	12	0.0423	0.115
0.02	13	0.0445	0.115
0.02	14	0.0396	0.112
0.02	15	0.0358	0.115
0.02	16	0.0339	0.115
0.02	17	0.0341	0.115
0.02	18		

Pyrogallussäure in starker Konzentration übt ebenfalls einen nachteiligen Einfluß auf die Aktivierung der Peroxydase aus, wenn sie zu lange mit dem Ferment in Berührung kommt. Hat man solche Bestimmungen auszuführen, so tut man gut, das Ferment zuletzt als Wasserlösung zuzusetzen.

Den oben angegebenen Erörterungen zufolge könnte man nach Bach vorläufig das Aktivierungsvermögen eines Peroxydasepräparates folgendermaßen definieren: Von dem im Exsikkator aufbewahrten Präparate werden ca. 0·30 g genau abgewogen und in 30 cm^3 Wasser gelöst. 5 cm^3 dieser Lösung werden mit überschüssigem Hydroperoxyd, 20 cm^3 1°/ $_{\rm o}$ iger Hydroperoxydlösung und 1·5 g Pyrogallol zusammengebracht: das entstandene Purpurogallin wird nach 12 Stunden auf ein tariertes Filter gebracht, mit 200 cm^3 Wasser gewaschen, bei 105° bis zur Gewichtskonstanz getrocknet und gewogen.

Andrerseits läßt man $10 \text{ }cm^3 \text{ } 1^{\circ}/_{\circ}$ iger Hydroperoxydlösung mit überschüssiger Peroxydase (25 $\text{ }cm^3 \text{ }$ der obigen Lösung) auf 1.5 g Pyrogallol einwirken — das Volumen der Reaktionsflüssigkeit beträgt in beiden Fällen $100 \text{ }cm^3$ (modifiziert nach Chodat) — und verfährt weiter wie oben.

Ist a die mit Hydroperoxydüberschuß angewandte Peroxydmenge und m die entstandene Purpurogallinmenge, b die mit Peroxydaseüberschuß angewandte Hydroperoxydmenge und n die dabei entstandene Purpurogallinmenge, so ist $\frac{bm}{n}$ die Hydroperoxydmenge, welche mit a-Peroxydase in Reaktion trat, und $\frac{bm}{an}$ das Aktivierungsvermögen des untersuchten Peroxydasepräparates. $\frac{bm}{an}$

¹) A. Bach, Über die Wirkungsweise der Peroxydase bei der Reaktion zwischen Hydroperoxyd und Jodwasserstoffsäure. Ber. d. Deutsch. chem. Gesellsch. Jg. 37. S. 3787 (1904).

Oxydasen.1)

Es sind bis jetzt viele Oxydationsfermente in Pflanzen- und Tiersäften und Organen aufgefunden worden. Ihre Wirkung auf verschiedene chemische Verbindungen ist beschrieben worden, ohne daß die Autoren die spezifische Tätigkeit der von ihnen untersuchten Oxydationsfermente im Vergleich zu anderen besser bekannten Fermenten klar vor Augen gehabt haben. So wird öfters von Oxydase aus Pilzen, Ferment aus Leber oder von oxydierender Kraft überlebender Organe oder Säfte gesprochen. Es sind das physiologische Begriffe; die Biochemie kann diese Angaben verwerten, dadurch, daß diese Beobachtungen der Ausgangspunkt von logisch und kritisch durchgeführten Untersuchungen werden können. Da jedoch die meisten dieser Angaben jeder Methodik entbehren oder sich auf zu vage Fermentbegriffe beziehen, so müssen sie hier unberücksichtigt bleiben.

Es sei hier nur kurz angegeben, welche Reagenzien gebraucht werden, um die oxydative Fermentwirkung der Pflanzensäfte oder Tierorgane zu charakterisieren.

Viele Pflanzensäfte oder Organe färben sich an der Luft; ebenfalls Tiersäfte. Werden diese Säfte oder Organe vorerst durch Kochen von ihren Fermenten befreit, so bleibt die Färbung aus. Es werden unter anderem durch den Luftsauerstoff unter Farbstoffbildung oxydiert (sog. Atmungspigmente von $Palladine^2$):

Gelb, gelbgrün, dann blau: Viele Boletusarten.3)

Blau: Blut von Cephalopoden. 4)

Rot, später violett bis schwarz: Pilze, z. B. Russula nigricans (Perlschwamm), Armillaria mellea (Hallimasch), Psalliota campestris (Champignon), Amanita rubescens (Perlschwamm) etc. Phanérogamen: Weizenkeimlinge. Weizenkleie (Schwarzbrot)⁵). Kartoffelknollen, Äpfel. Fruchtfleisch der Nuß etc., viele Stengel und Blätter, z. B. von Vicia Faba (Saubohne), Lathyrus niger, Silphium sp. etc. Tegumente vieler Insekten, Sekret des Tintenfisches, die Haut mehrerer Kaltblüter.

¹⁾ Schoenbein, Basler Verhandl. I. S. 229; II. S. 9; III. S. 697; V. S. 34 etc. (1855 bis 1867). — Bertrand., Sur le latex de l'arbre à laque. Comptes Rendus de l'Académie des sciences de Paris. T. 118. p. 1215 (1895). — Derselbe, Sur la laccase et le pouvoir oxydant de cette diastase. T. 120. p. 266 (1895). — Derselbe, Sur la présence simultanée de la laccase et de la tyrosinase dans les champignons, T. 122. p. 1132 (1896). — Derselbe, Laque et laccase. Archives de Physiologie. T. 28, p. 23 (1896).

²) W. Palladine, Die Atmungspigmente der Pflanzen in Hoppe-Seylers Zeitschr. f. physiol, Chem. Bd. **55**. S. 208 (1908).

³⁾ Bertrand, Sur le bleuissement de certains champignons. Comptes rendus de l'Acad. des Sciences. T. 133. p. 1233 (1901). — Derselbe, Ann. Instit. Pasteur. T. 12. p. 179 (1902) und schon früher genau beschrieben und erkannt durch Schoenbeins Untersuchungen. Vide Basler Verhandl.

⁴) *Pieri* et *Poitier*, Présence d'une Oxydase..... dans le sang des acéphales. Comptes rendus Acad. Sc. T. **122**. S. 1314.

⁵⁾ Boutroux, Sur les causes qui produisent la couleur du pain bis. Comptes rendus de l'Académie des sciences de Paris. T. 120. p.934 (1895). — Bertrand et W. Muttermilch, La mode de coloration du pain bis. Annal. Institut Pasteur. T. 21. p. 833 (1907). — P. Séc., Contribution à l'étude des applications thérapeutiques des Oxydases. Paris 1905.

Braun, dann schwarz: Milchsaft von Rhus vernicifera und Rhus succedanea L. f. (Anwendung: Bereitung des japanesischen Lacks.)¹)

Fuchsinrot: Saft mehrerer Jacobiniaarten (wunderschöne Reaktion auf Luftsauerstoff).2)

Gelb, dann schwarz: Pilze (Hygrophorusarten); Phanerogamen (Monotropa), Früchte der Viburnum Lantana.

Es ist ein leichtes, in den meisten Fällen aus der intakten Pflanze durch kochendes Wasser resp. durch Alkohol das Chromogen (Leukobase) auszuziehen und aus anderen Pflanzen oder Tieren ein Ferment ohne Chromogen in der Kälte zu bereiten (siehe unten), welches in Gegenwart von Luftsauerstoff das Chromogen zu einem gefärbten Körper zu oxydieren vermag, z. B. aus Russula delica gewinnt man einen Saft, der sich nicht spontan färbt, der aber, dem gekochten Saft von Russula nigricans zugesetzt, die Tyrosinreaktion gibt. Der Saft von Amanita vaginata, der sich ebenfalls nicht spontan rötet, gibt die charakteristische Färbung mit dem gekochten Auszug aus Amanita rubescens.

Es ist nun späteren Untersuchungen vorbehalten, zu zeigen, inwieweit allen diesen Farbreaktionen spezifische Oxydationsfermente entsprechen. In mehreren Fällen ist beobachtet worden, daß bestimmte chemische Substanzen durch Pflanzenauszüge oder Organbreie oder -extrakte zu ebenfalls bestimmten Körpern oxydiert werden ohne Farbenumschlag. z. B. Alkohol zu Essigsäure, an der Luft durch Azeton-Daueressigbakterien.³) So Salizylaldehyd zu Salizylsäure, Benzaldehyd zu Benzoesäure durch Leber-, Lungen- und Milzextrakte (s. unter Aldehydase). Hier spielt jedoch der Luftsauerstoff keine Rolle-

Zwei dieser Oxydationsfermente sind zurzeit etwas besser bekannt, Lakkase und Tyrosinase. Inwieweit die Aldehydase als spezifisches Oxydationsferment gelten kann, ist vorläufig nicht zu entscheiden.

Lakkase. 4)

Darstellungsweise: Dem Milchsaft⁵) von Rhus vernicifera oder Rhus succedanea wird das 4–5fache Volumen starken Alkohols zugesetzt: der entstandene Niederschlag wird auf einem feinen Tuche mit starkem Alkohol gewaschen, bis die abfließende Flüssigkeit sich nicht mehr durch Zusatz von Wasser trübt (Fehlen von Harz: Lakkol); das Präzipitat wird dann mit kaltem Wasser ausgelaugt; es löst sich zum größten Teil bis auf ein schwärzliches Residuum, das durch Filtrieren entfernt wird. Das klare, wässerige Filtrat wird hierauf mit dem zehnfachen Volumen Alkohol

¹) Bertrand, La laccase et le pouvoir oxydant de cette diastase. Comptes rendus de l'Académie des sciences de Paris. T. 118. p. 1215 (1894).

²) J. Parkin, On a brilliant pigment appearing after injury in species of Jacobinia. Report of the Brit. Assoc. for the advancement of Science, p. 818 (1904).

Buchner und Gaunt, Über die Essiggärung. Liebigs Annalen. 349. S. 140. (1906).
 Yoschida, Chemistry of lacquer. Tokyo Journ. Chem. Soc. Vol. 43, p. 472 (1883).

⁵⁾ Bertrand, Sur la laccase. Comptes Rendus de l'Académie des sciences de Paris. T. 118. p. 1215 (1904). J. Parkin, On a brilliant pigment appearing after riguny in species of Jacobinia in Report of the Brit. Assoc. for the advancement of science. p. 818 (1904).

versetzt. Der neu entstandene Niederschlag wird nun von der Flüssigkeit getrennt, gesammelt und im Vakuum über Schwefelsäure getrocknet.

Wiewohl bei den höheren Pflanzen sehr verbreitet, läßt sich Lakkase aus denselben nur schwer isolieren. Pilze eignen sich viel besser dazu.

Russula foetens und Lactarius vellereus sind besonders gute Materialien.

A. Aus Russula foetens:

Es werden $2\,ky$ Russula foetens fein zerkleinert. Die schleimige Pilzmasse wird ausgepreßt und der visköse Saft direkt in Alkohol fließen gelassen. Der reichliche Niederschlag wird gesammelt, auf Tonplatten rasch getrocknet. Dieses Rohferment ist zum größten Teil in Wasser unlöslich. In Lösung geht nun sowohl Lakkase wie Tyrosinase. Letztere kann von ersterer durch Hitze getrennt werden: Man lasse die Fermentlösung im Wasserbad bei 65° eine Stunde lang stehen. Die Tyrosinase wird dabei zerstört und die Lakkase nur wenig abgeschwächt.

B. Aus Lactarius vellereus1):

Der Saft kann als Rohferment verwertet werden. Die Pilze werden gepreßt und der Saft in Flaschen unter Zusatz eines Antiseptikums (Chloroform, Toluol) im Dunkeln aufbewahrt.

Durch Fällen mit Alkohol gelangt man zu einer Rohoxydase wie oben,

C. Aus Clavaria flava:

 ${\rm Auf}$ dieselbe Weise, wie oben, läßt sich eine Lakkase, die aber frei ist von Tyrosinase, gewinnen.

Bestimmung des Oxydationswertes der Lakkase.

A. Volumetrische Methode durch Messung des Volumens Sauerstoff, das in der Zeiteinheit und in Gegenwart einer bestimmten Menge des zu oxydierenden Körpers aufgenommen wird.²)

Es werden $10-20-30\ldots cm^3$ der Fermentlösung mit Wasser zu $50\ cm^3$ verdünnt und mit je $1\ g$ Pyrogallussäure beschickt. Die Mischung wird nun in der Waschflasche mit einem Eudiometer in Verbindung gesetzt. Wie aus Bertrands Untersuchungen bekannt ist, wird bei der Oxydation der Pyrogallussäure nicht nur Sauerstoff aufgenommen, sondern zugleich Kohlensäure abgegeben. Es müssen also beide Gase volumetrisch oder gravimetrisch bestimmt werden. Als Behälter benutzt man eine mit Glashähnen versehene zugeschmolzene Glasflasche von bekanntem Inhalt. Nach Füllen mit kohlensäurefreier Luft wird der Behälter durch das bis an den Boden reichende Zuleitungsrohr mit den Reagenzien beschickt und mit einem Meßapparat verbunden, welcher ebenfalls kohlensäurefreie Luft enthält. Der Apparat besteht aus einem graduierten Meßrohr und einem

R. Chodat und A. Bach, Untersuchungen. III. Oxydationsfermente als peroxyderzeugende Körper. Berichte d. Deutsch. chem. Gesellsch. Jg. 35. S. 3944 (1902).
 R. Chodat und A. Bach, Untersuchungen. l. c. 36. S. 605 (1903).

Niveaurohr und ist mit Quecksilber beschickt. Nach x Stunden wird das absorbierte Sauerstoffvolumen unter Berücksichtigung der bei Beginn und am Schlusse des Versuches abgelesenen Temperaturen und Barometerstände bestimmt, und das sämtliche Gas durch Heben des Niveaurohres in den Behälter übergeführt und die vorhandene Kohlensäure gravimetrisch bestimmt.

B. Gravimetrisch durch die Menge des ausgeschiedenen Purpurogallins¹):

Vier Erlenmeyerkolben werden mit je 1gPyrogallussäure und wachsenden Mengen einer Lakkaselösung beschickt: das Volumen wird bei allen Versuchen auf 40 $\it cm^3$ gleichgestellt.

	A	B	C^{ϵ}	D
Pyrogallol	1 g	1 y	1 g	1 <i>y</i>
Lakkaselösung	$10~cm^3$	$20 \ cm^{3}$	$30 \ cm^{3}$	$40 \ cm^{3}$
Wasser	30	20	10	0

Nach 24 Stunden (resp. 30 Stunden, 48 Stunden) wird die Quantität des abgeschiedenen Purpurogallins nach der oben unter Peroxydase (8, 49) angegebenen Methode bestimmt. Die Wirkungsweise der Lakkase bei den benutzten Konzentrationen läßt sich annähernd genau durch den Ausdruck a $\mathbf{x}+\mathbf{b}$ formulieren, wobei a die Quantität des abgeschiedenen Purpurogallins bei der Konzentration 1, \mathbf{x} die Konzentrationen 1, 2, 3 etc. und \mathbf{b} eine Konstante bedeuten.

Nach 24 Stunden	А	B	C	D
Gefunden	0.085	0.130	0.159	0.211
berechnet	0.085	0.123	0.167	0.210
(b = 0.41)				
Nach 72 Stunden	E	F	G	H
gefunden	0.1530	0.52230	0.3135	0.3660
berechnet	0.1530	0.2268	0.3025	0.3780
andere Versuche)			

Zu dieser Bestimmung kann statt Pyrogallussäure p-Kresol gebraucht werden:

Lakkasehaltiger Laktariussaft wurde während einer Stunde bei 60° erhitzt, bis sich keine Reaktion auf Tyrosin mehr zeigte. Die Lösung war schwach sauer. Zu 4 Proben (je $10~cm^3$) einer gesättigten Lösung von p - Kresol wurden steigende Mengen der Lakkaselösung hinzugefügt, wie folgt:

				Niede	rschlag
	Lakkase	Wasser	p-Kresollösung	I.	II.
A	$10 \ cm^{3}$	30	10	0.0210	0.019
B	20 "	20	10	0.0285	0.029
C	30 "	10	10	0.0425	0.0375
D	40 "	()	10	0.0431	0.0485

¹) R. Chodat, Loi d'action de l'Oxydase. Archives des sciences physiques et naturelles. T. 19. Mai (1905).

Mi	ttel
gefunden	berechnet
0.05	0.03
0.059	0.29
0.040	0.038
0.046	0.047
(0.011 +	- 0.009 · x)

Man verfährt, wie oben, und wäscht den Niederschlag mit 50 cm² Wasser. (Nach B. Zahorski, Botanisches Institut, Genf.)

Eigenschaften. Lakkase hat die gleiche qualitative Wirkung wie das Fermentsystem: Peroxydase—Hydroperoxyd (Peroxydase—Oxygenase).

Es oxydiert direkt an der Luft: Guajakemulsion. Purpurogallin, Guajakol, Hydrochinon, angesäuertes Jodkalium unter Abscheidung von Jod verwandelt den Milchsaft von Rhus vernicifera oder Rhus succedanea (Lackbaum) zu schwarzem japanesischem oder tonkinesischem Lack, wobei ein aromatischer Körper, Laccol¹), kondensiert wird, o- und p-Kresol etc. etc.

Durch Erwärmen zwischen 60—65° C läßt sich die Lakkase von der gewöhnlich beigemischten Tyrosinase trennen; sind beide Fermente zugegen, so gewinnt die Wirkung der Lakkase bei schwach saurer Reaktion die Oberhand; wird die Lösung alkalisch gemacht, so kommt die Tyrosinasereaktion zum Vorschein.²)

Dabei ist aber zu beachten, daß die saure Reaktion nur mit Vorsicht vorgenommen werden darf, da eine ausgeprägt saure Reaktion die Wirkung der Lakkase stark hemmt.³)

Um die Reinheit einer Lakkaselösung zu bestimmen, verfahre man, wie folgt:

Zu einer $1^{\circ}/_{\circ}$ igen oder $0.5^{\circ}/_{\circ}$ igen p-Kresollösung setze man einige Kubikzentimeter der Lakkaselösung; man verteile die Mischung in vier Reagenzgläser: A enthält obengenannte Mischung, B mit Zusatz von Spuren von Essigsäure bis zur schwach sauren Reaktion, C wird schwach alkalisch gemacht (mit kohlensaurem Natron), D ebenfalls alkalisch, aber mit Zusatz von Glykokoll (Spuren!). Ist nur Lakkase vorhanden unter Ausschluß von Tyrosinase, so wird A milchig-weiß, B ebenfalls mit stärkerer Trübung, C und D reagieren viel schwächer. Bei Verunreinigung mit Tyrosinase färben sich C und D gelb resp. rot.

Inwieweit die sog. Indophenolreaktion in den Pflanzen und Tieren auf das Vorhandensein von Lakkase zurückzuführen ist, ist noch unentschieden.⁴)

¹) Bertrand, l. c. Comptes rendus. T. 118. p. 1215 (1896).

²) Chodat et Zahorski, Sur les rélations qui unissent la laccase et la tyrosinase. Archives des Sciences physiques et naturelles. Januar und März 1909. p. 90 et 305.

s) G. Bertrand, Recherches sur l'influence paralysante exercée par certains acides sur la laccase. Bull. de la Soc. chimique Paris. IVe série. T. 1. p. 1120.

⁴⁾ Röhmann und Spitzer, Über Oxydationswirkungen tierischer Gewebe. Ber. d. Deutsch. chem. Gesellsch. Jg. 28. S. 567 (1895). — Spitzer, Beobachtungen über die oxydative Leistungen tierischer Gewebe. Pylügers Archiv. Bd. 71. S. 596.

Zu diesem Behufe wird folgende Lösung öfters von den Tierphysiologen in Anwendung gebracht:

Paraphenylendiamin
$$\alpha$$
-Naphtol Soda aa. 1·4—1·5 g Wasser 100 g .

An der Luft wird diese Lösung nach und nach violett, dann blau; aber diese Färbung kommt nur langsam zustande: Indophenolreaktion. Sie wird durch Pflanzensäfte oder Organextrakte, wie Speicheldrüsen. Milz, Knochenmark, Thymus etc. beschleunigt. Gewisse wirksame Pflanzenextrakte widerstehen der Siedehitze, so daß es fraglich scheint, ob die Beschleunigung dieser Reaktion wirklich auf Oxydation zurückzuführen ist.

Tyrosinase.

Vorkommen: Dieses Oxydationsferment scheint sehr verbreitet zu sein. Von ihm rührt die Schwarzfärbung vieler Pflanzensäfte (Vicia Faba etc.). die Rotfärbung vieler Pilze her (Psalliota campestris, Boletus sp., Armillaria Mellea, Russula nigricans), die später in Schwarz übergeht (Weizenkleie, Kartoffelschalen). Tyrosinase ist auch bei Avertebraten. speziell in Insektenlarven (Tenebrio molitor, Lucilia Caesar), in dem Sepiablut, in der Tintendrüse vieler Cephalopoden, in den melanotischen Tumoren von Pferden, in der Haut von pigmentierten Fischen und Kröten (Melaninbildung) festgestellt worden.

Nachweis: Da mit dem Ferment in den meisten Pflanzen auch zugleich Tyrosin zugegen ist, so läßt es sich nur indirekt nachweisen. Am einfachsten ist es, von dem Safte zu einer $1^{0}/_{00}$ — $1^{0}/_{0}$ igen p-Kresollösung zuzusetzen; ist Tyrosinase vorhanden und ist der Saft durch doppeltkohlensaures Natron in Uberschuß neutral oder besser alkalisch gemacht, so geht die farblose Lösung in Gelb und dann in Orangegelb oder Rot über: fügt man einer anderen Probe am Anfang des Versuches eine Spur von Glykokoll zu, so wird die Reaktion beschleunigt und die rote Farbe kommt gleich zum Vorschein.1)

Darstellung: A. Kartoffeltyrosinase.2) Kartoffelschalen (7 bis 8 kg) werden nach Befeuchten mit Alkohol mittelst einer Hackmaschine zu einem dicken Brei zerrieben und so rasch wie möglich ausgepreßt. Man lasse den bräunlich gefärbten Saft direkt in ein Glasgefäß fließen, das zur Hälfte mit starkem Alkohol (94% eigen) gefüllt ist. Den voluminösen Niederschlag läßt man absetzen; die klar gefärbte alkoholische Flüssigkeit wird mittelst eines Hebers soweit wie möglich entfernt, der Bodensatz auf ein Filter gebracht und noch feucht mit der nötigen Menge destillierten Wassers unter Zusatz von Toluol 1 Tag stehen gelassen; hierauf wird filtriert und

¹⁾ R. Chodat et W. Staub, Nouvelles recherches sur les ferments oxydants. Ar-

chives des Sciences physiques et naturelles. IVº période. T. 24. p. 188 (1907).

2) W. Staub, Nouvelles recherches sur la Tyrosinase in Chodat, Travaux de l'Institut de Botanique de l'Université de Genève, 8º série, I. fasc. (1908).

die klare Flüssigkeit mit starkem Alkohol versetzt. Der Niederschlag setzt sich leicht ab; durch Dekantieren läßt er sich von der darüber stehenden Flüssigkeit leicht trennen.

Der Rückstand wird nun auf ein kleines Faltenfilter gebracht, mit Alkohol gewaschen und noch feucht auf porösen Porzellanschalen über Schwefelsäure im Vakuum bei niederer Temperatur (nicht über 25°) rasch getrocknet.

Dieser trockene Rückstand löst sich vollkommen in Wasser, oxydiert sich nicht an der Luft, enthält somit keinen oxydablen Körper (Tyrosin etc.). Die Lösung enthält keine Lakkase, bläut also frische Guajakemulsion nicht, wohl aber ist darin Peroxydase vorhanden, was durch Zusatz von Hydroperoxyd zur Guajakemulsion sich gleich zeigt.

Lösungen von Tyrosinase in Wasser halten sich bei Zusatz von Toluel ziemlich lang (mehrere Tage), aber die Wirkung nimmt langsam ab, Es ist jedenfalls besser, die Lösung immer frisch zu bereiten.

B. Pilztyrosinase. Bekanntlich enthalten viele Pilze Lakkase und Tyrosinase. Am bequemsten ist, Lactarius vellereus in Laubwäldern zu sammeln; dieser Pilz, der sehr leicht zu erkennen und in Mitteleuropa der größte und zugleich einer der verbreitetsten ist, ist kreideweiß, ziemlich zerbrechlich, mit dicken Lamellen an der Unterseite des trichterförmigen Hutes und gibt beim Anschneiden einen reichlichen weißen oder schwach gelblichen Milchsaft, welcher scharf schmeckt. Von diesem Pilz können leicht 50 kg in einem Nachmittag gesammelt werden. Die Pilze werden so rasch wie möglich zerstückelt, am besten mittelst einer Hackmaschine, wie sie gewöhnlich in Küchen gebraucht wird. Die schleimige Masse wird stark gepreßt, der dunkle Saft mit starkem Alkohol versetzt. Der reichliche Niederschlag wird auf einem Tuch gesammelt und die Lösung abfiltriert. Der noch feuchte Niederschlag wird hierauf mit Wasser versetzt und zwei Tage unter Zusatz von Toluol digeriert. Die filtrierte Flüssigkeit wird nun wieder durch Alkohol gefällt, der Niederschlag gewonnen und eventuell noch einmal gereinigt. Die Lakkase ist durch diese Behandlung viel mehr abgeschwächt als die Tyrosinase.

Man kann auch die rohe Fermentmasse auf Tonplatten rasch trocknen und zur späteren Extraktion der Tyrosinase verwenden. Mit der Zeit verschwindet die Lakkase zum größten Teil und die Wasserextraktion der rohen Oxydase liefert durch Zusatz von Alkohol ein sowohl von Lakkase wie von Peroxydase freies Ferment, das die Reaktionen einer gereinigten Tyrosinase liefert (siehe unten).

Es werden von der Rohtyrosinase 50 g fein zerrieben und mit 500 g Wasser 48 Stunden mazerieren gelassen, hierauf filtriert. Das Filtrat wird mit 2 l 90% igem Alkohol versetzt, sehr kurze Zeit stehen gelassen, abdekantiert und der Niederschlag in wenig Wasser gelöst und mit dem dreifachen Volumen starken Alkohols versetzt. Der Niederschlag wird, wie oben, behandelt und getrocknet. Er ist frei sowohl von Peroxydase wie von Lakkase (A).

¹⁾ Cotte, Présence de la tyrosinase chez le "Suberites Domuncula" in Comptes rendus Soc. Biolog. T. 55, p. 137 (1903).

Die Flüssigkeit, die von dem sofortigen Niederschlag abdekantiert wurde, wird nun 24 Stunden stehen gelassen. Es setzt sich ein zweiter Niederschlag ab. Er wird abgetrennt, sofort in Wasser gelöst und mittelst starken Alkohols präzipitiert (B). Dieses Präparat hat die gleichen Eigenschaften wie A, aber nicht stärker.

- C. Tierische Tyrosinase. 1. Aus Suberites domuncula¹) (Schwämmen). Frischer Suberitessaft wird mit dem dreifachen Volum starken Alkohols (90°/₀) versetzt. Der gefällte Niederschlag löst sich zum Teil in kaltem Wasser und enthält die Tyrosinase.
- 2. Aus Tintenfischen.¹) Beim Öffnen der Tintentasche vermeide man, die Tintendrüse zu verletzen; man schabe die anhaftenden Tintenpartikelchen ab. Von außen läßt sich die Lage der Drüse durch eine dunkelblaue Farbe, die sich scharf von dem umgebenden Gewebe abhebt, leicht bestimmen. Das kleine Organ wird abgeschnitten und mit Sand verrieben; der entstandene Organbrei wird mit Chloroformwasser versetzt und durch ein Tonfilter von den schwarzen Teilchen befreit. Die klare Lösung enthält die gesuchte Tyrosinase.
- D. Rohtyrosinase (Pilzsubstanz). Zu Versuchen auf Tyrosin kann man sich auch einer Rohtyrosinase, wie sie in den Pilzen selbst enthalten ist, bedienen. Es werden zur richtigen Zeit Pilze aus der Familie der Asterosporen gesammelt (August bis Oktober). Die besten sind:

Russula delica. Russula Queletii. Russula aurantiaca, Russula lepida. Russula integra.

Alle enthalten außer Tyrosinase auch Lakkase; es wird die gefärbte Epidermis sowohl vom Hut wie von dem Stiel abgenommen; der Pilz wird hierauf in dünne Scheiben zerlegt und bei Zimmertemperatur so rasch wie möglich getrocknet. Die Aufbewahrung geschieht an trockenem Orte in weiten Gefäßen mit überfallendem Deckel.

In wohlverschlossenen Gefäßen verfaulen die Pilze ziemlich leicht, da dieselben nicht sterilisiert werden können.

Von den grob gepulverten Pilzen nimmt man gewöhnlich 1 g auf 50 g Wasser, läßt 2 Stunden mazerieren und filtriert. Die Lösung kann unter Zusatz von Toluol einige Wochen aufbewahrt werden.

E. Rohtyrosinase als Glyzerinauszug. Der von der gefärbten Epidermis befreite Pilz wird in kleine Stücke zerlegt und mit dem doppelten Gewicht chemisch reinen Glyzerins (30° Beaumé) versetzt. Die Mischung wird anfangs täglich mehrfach geschüttelt, nach einiger Zeit (6 Tagen) filtriert und im Dunkeln aufbewahrt.

¹⁾ Gessard, Tyrosinase animale. Compt. rend. Soc. Biolog. T. **54**. p. 1305 (1902). — Siehe auch O. r. Fürth und Schneider, Über tierische Tyrosinasen und ihre Beziehungen zur Pigmentbildung. Beitr. z. chem. Physiol. u. Pathol. (F. Hofmeister). Bd. 1. S. 229 (1901).

Für saubere und unzweideutige Untersuchungen kann ausschließlich die mittelst der unter Ziffer A und B bezeichneten Methoden dargestellte Tyrosinase benutzt werden. Bis jetzt ist nur mit Methode B eine Tyrosinase zu präparieren, die zugleich frei sowohl von Lakkase wie von Peroxydase ist. Die erwähnte Kartoffeltyrosinase hat, wiewohl schwach, vor der unreinen Pilztyrosinase, wie sie von den meisten Forschern bis jetzt benutzt wurde, den Vorteil, von Aminosäuren frei zu sein, obschon sie auch wegen der Gegenwart von Peroxydase nicht als physiologisch rein bezeichnet werden darf. Dagegen ist die nach Methode B erlangte Tyrosinase sowohl von Peroxydase wie von Aminosäuren frei. Aus diesem Grunde sind alle mit unreiner Tyrosinase angestellten Versuche zu revidieren und die Angaben der meisten Autoren als sehr zweifelhaft anzusehen.

Eigenschaften: Tyrosinase ist ein Oxydationsferment, das spezifisch auf Tyrosin eine oxydierende Wirkung hat; es vermag weder eine reine Lakkase noch das System Hydroperoxyd—Peroxydase Tyrosin zu oxydieren. Da jedoch beide besser bekannten Oxydasen auf die verschiedenen Phenole wirken können, speziell auf Pyrogallol, Phenol, Kresol etc., so ist das Resultat, wenn beide zugegen sind, je nach der relativen Menge der zwei Fermente und der Masse des zu oxydierenden Körpers ein verschiedenes. Will man nun weiter gehen in dem Studium der spezifischen Wirkung der Oxydationsfermente, so ist es unumgänglich notwendig, die Fermente in der Reinheit zu erhalten, in der sie unzweideutige Resultate liefern können. Da außerdem, wie unten gezeigt werden soll, die Aminosäuren, der Tyrosinase zugesetzt, die Wirkung derselben nicht nur beschleunigen, sondern auch in anderer Weise beeinflussen können, d. h. andere Farbenreaktionen hervorbringen können, so lassen sich Pflanzensäfte oder Pilzsäfte nicht kurzweg mit Tyrosinaselösungen identifizieren. Es läßt sich ja leicht dartun, daß, da in jeder wachsenden Pflanze durch den chemischen Metabolismus Aminosäuren sich bilden, dieselben je nach der relativen Menge und Artmischung die supponierte Tyrosinasewirkung verschieben können.

Auch in dem Falle, wo es heißt, die Tyrosinasewirkung auf Tyrosin zu studieren, eignen sich unreine Fermente in keiner Weise. Denn auch hier können Beimengungen von Aminosäuren schädlich wirken, indem sie die Reaktion verlangsamen oder eventuell nicht bis zum Endpunkt gehen lassen können.¹)

Säuren, sogar Säuren wie Asparaginsäure und Glutaminsäure, wirken hemmend. Genaue Untersuchungen über die durch Zusatz von Säuren bewirkte Hemmung stehen noch aus.

Jedenfalls ist sicher, daß reine Tyrosinase am besten auf Tyrosin wirkt, wenn die Lösung neutral ist (Chodat und Zahorski).

Läßt man das Ferment auf eine p-Kresol-(1/1000-1/100) lösung wirken, so wird in neutraler oder sehr schwach alkalischer Lösung (Zusatz von

¹) R. Chodat, Nouvelles recherches, l. c. T. 24 et ibid. Oktober 1908. — Vgl. auch E. Abderhalden und M. Guggenheim, Über die Wirkung der Tyrosinase aus Russula delica etc. Zeitschr. f. physiol. Chem. Bd. 54. S. 352 (1908).

0·05—0·1³/_oigem Na HCO₃) die Flüssigkeit rasch goldgelb und mit der Zeit orangegelb, aber nie rot. Solange die Reinigung der Tyrosinase nicht soweit fortgeschritten ist, daß eine rote Reaktion mit p-Kresol ausbleibt, so muß dieselbe als mit Aminosäuren verunreinigt betrachtet werden.

Spuren von Glykokoll, Alanin, Leucin etc. genügen (½100000), um diese gelbe Farbe rasch in Rot überzuführen. War die Lösung am Anfang schwach alkalisch, so geht die schön kirschrote Farbe (man lasse die Reagenzgläser ruhig stehen) von unten nach oben in Violett und zuletzt in Blau über. Je nach der Stärke der Tyrosinase nimmt der Umschlag von Rot in Blau 2 Stunden bis 1 Tag in Anspruch. Lösungen von p-Kresol zu ⅓100000 zeigen noch diese schöne Reaktion. Lösungen von 1⅙100000 kresol verlangsamen die Reaktion: sie kommt am besten zustande bei einer Konzentration von ⅓10000. Die rein blaue Endfarbe zeigt einen metallischen, schillernden, roten (fuchsinartigen) Dichroismus.

Pyrogallussäure wird ebenfalls oxydiert. Die rotgelbe Farbe ist der durch Lakkase hervorgerufenen ganz ähnlich: Purpurogallinbildung wurde aber bis jetzt nicht sicher beobachtet. Tyrosinase vermag weder Guajak noch Guajakol zu oxydieren.

Es werden auch durch reine Tyrosinase oxydiert (in Gegenwart von Glykokoll oder anderen Aminosäuren mit Farbenumschlag wie beim p-Kresol):

Tyrosinhaltige Polypeptide, wie l-Tyrosinanhydrid, Glycyl-l-tyrosinanhydrid, Glycyl-l-tyrosin, d-Alanyl-glycyl-l-tyrosin, l-Leucyl-glycyl-l-tyrosin, Tetrapeptid aus Seide (1 l-Tyrosin, 1 d-Alanin und 2 Glykokoll) (nach Chodat und Abderhalden). Die Farbenreaktionen sind jedoch nicht dieselben wie mit Tyrosin. Da aber diese Untersuchungen nicht mit reiner Tyrosinase (außer den von Chodat ausgeführten) ausgeführt worden sind, sind die betreffenden Angaben nicht ganz eindeutig, da die Verunreinigung mit unbekannten Gemengen Aminosäuren die spezifische Reaktion verschieben kann.

Phenylalanin gibt keine Farbenreaktion und wird wohl sonst nicht angegriffen.

Es ist bei solchen Untersuchungen auf Polypeptide auch darauf zu achten, daß der Tyrosinase kein peptolytisches Ferment anhaftet. Die Gegenwart eines solchen ist, wie folgt, nachzuweisen: 1. durch Bestimmung des Drehungsvermögens im Polarimeter (falls asymmetrische Körper zugegen sind; 2. durch Zusatz von peptolytischen Fermenten (Trypsin) und Vergleichung der Reaktionen mit und ohne dieses Ferment.

Es läßt sich auf diese Weise leicht dartun, daß die erwähnten tyrosinhaltigen Polyeptide als solche oxydiert werden, und daß der Oxydationswirkung keine hydrolytische Spaltung vorangeht.

Wie gesagt, wird l-Tyrosin von reiner Tyrosinase zuerst in einen schön rosaroten Körper umgewandelt: später geht die Farbe in Schmutzigviolett über und zuletzt entsteht ein schwarzer Niederschlag, der sich mit der Zeit ausscheidet und absetzt. Dieses schwarze Endprodukt ist Melanin genannt worden (vide: Zur Kenntnis der melanotischen Pigmente und der

fermentativen Melaninbildung von O. v. Fürth und E. Jerusalem, Biochem. Zeitschr., 1907, Bd. 10, S. 131).

Durch dieses Verhalten gegen die Abbauprodukte der Albuminstoffe läßt sich Tyrosinase zur Unterscheidung der peptischen von der tryptischen Wirkung verwenden. 1) Die Peptolyse führt den Abbau nur bis zur Bildung von Peptonen, bei der tryptischen Verdauung entstehen dagegen Aminosäuren, und besonders frühzeitig wird nach Abderhalden Tyrosin frei.

Versetzt man eine peptonisierte Lösung von tyrosinhaltigem Eiweiß mit Tyrosinase oder nur mit Pilzextrakten, die Tyrosinase neben Aminosäuren enthalten, so nimmt das Gemisch eine grüne bis blaugrüne Farbe an, die nicht in Braun und Schwarz übergeht. Ist aber die Verdauung weiter fortgeschritten und ist Tyrosin abgespalten worden, so nimmt das Digestionsgemisch rasch die charakteristische rotbraune und braunschwarze Farbe an, die Tyrosin in Gegenwart von Tyrosinase gibt.

Messung der oxydativen Kraft der Tyrosinase.

Genaue Methoden zur Bestimmung der Wirkungsweise der Tyrosinase fehlen noch.

O. v. Fürth und E. Jerusalem benutzten zwei Methoden:

a) Methode der Sedimentierung. Dabei erfolgt die Schätzung der gebildeten Melaninmenge nach dem Volumen der entstandenen Pigmentfällung.

b) Methode der spektrophotometrischen Messung. Da bekanntlich zwischen Konzentration einer Farbstofflösung und ihrem Extinktionskoeffizienten für einen bestimmten Spektralbezirk Proportionalität besteht, gestattet die Bestimmung von E $(E=-2\ (\log \cot z + \log tg\ \beta)$ einen Rückschluß auf die relative Menge gebildeten Melanins.

Die mitgeteilten Resultate lassen aber diese zwei Methoden nicht als erwünscht betrachten. Noch mehr: Die Bildung des Melanins ist kein primäres Produkt; durch verschiedene Bedingungen, z. B. durch Zusatz von Aminosäuren, kann dessen Bildung verlangsamt oder sogar aufgehoben werden. Die Bedingungen der Überführung des roten Oxydationsproduktes des Tyrosins in Melanin sind zurzeit vollständig unbekannt.

Die Zeitdauer der Melaninbildung ist außerdem ziemlich lang, so daß dabei eine Schädigung des Fermentes anzunehmen ist.

Weniger ungenau ist die Melaninbestimmungsmethode, die A. Bach ausgearbeitet hat. Sie kann aber ebenfalls keinen Aufschluß über die normale Fermentwirkung geben, da sie auch nur ein sekundäres Oxydationsprodukt zu bestimmen vermag.

c) Methode von Bach. 2) In eine Reihe von 8 Bechergläsern gibt man je 10 cm² Tyrosinlösung (0·05% Tyrosin und 0·04% Natriumkarbonat ent-

2) A. Bach, Über die Wirkungsweise der Tyrosinase. Berichte d. Deutsch. chem.

Gesellsch, Jg. 41, S. 221-222 (1908).

¹⁾ A. W. Harlay, De l'application de la tyrosinase ferment oxydant du Russula delica à l'étude des ferments protéolytiques. Paris 1900. (Thèse de l'École de pharmacie faite sous la direction du Prof. Bourquelot.) — Chodat und Staub, l. c. 3 et seq.

haltend), steigende Mengen Fermentlösung und Wasser bis auf 50 cm³. Die Gläser enthalten der Reihe nach 0·5, 1, 1·5, 2, 5, 10, 15, 20 cm³ Fermentlösung. Die Reaktionsgemische werden 24 Stunden bei Zimmertemperatur stehen gelassen, dann mit je 1 cm³ 10° $_0$ iger Schwefelsäure angesäuert und mit 0·002 n-Permanganatlösung bis zur Entfärbung titriert. Gleichzeitig mit der ersten Reihe wird eine zweite Reihe von Gläsern unter genau gleichen Bedingungen mit den Reagenzien beschickt. Die Titration erfolgte hier nach 48 Stunden.

Fermentkonzentration 0.5 1.0 1.5 2.05:0 10:0 15:0 20.0 A. 24 Stunden 10.8 14.217:3 19.825.7 30.4 33.6 -35.8 B. 48 13.2 16.0 17.8 20.4 25.6 31.2 34.4 35.4

Es ist dies eine logarithmische Kurve; die Menge des Reaktionsproduktes steigt mit der Fermentmenge, wenn auch langsamer als letztere: die Reaktion kommt um so schneller zu einem Stillstand, je größer die Fermentkonzentration ist.

d) Methode von Chodat und Staub.¹) Bei einer anderen Methode bestimmt man die Wirkungsweise kolorimetrisch. Es werden 0:5 g Bismarckbraun, 0:5 g Korallin in 250 cm^3 absolutem Alkohol gelöst (P).

Da bei dieser Methode die Rötung der Tyrosinlösung bestimmt werden muß und es sich gezeigt hat, daß andere Farbennuaneen am Anfang und später zu beobachten sind, so haben genannte Autoren zwei Skalen hergestellt.

I. Skala für Spätreaktionen.

Von der alkoholischen Farb-

stofflösung P em^3 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Absoluter Alkohol 19 | 18.5 | 17 | 17.5 | 17 | 16.5 | 16 | 15.5 | 15

II. Skala für Anfangsreaktionen.

Zur Synthese der Tyrosinase.

Es ist oben gezeigt worden, wie man die Lakkasewirkung durch die eines Systems Peroxydase--Hydroperoxyd ersetzen kann. Es läßt sich aber Tyrosinase durch dieses System nicht ersetzen. Tyrosin wird dabei nicht oxydiert, d. h. durch Hydroperoxyd unter Zusatz von Peroxydase.

Nun läßt sich aus der Wurzel von Vicia Faba und aus dem Stengel von Philodendron monsteroides eine Peroxydase ausziehen, die in Verbindung mit Wasserstoffsuperoxyd die charakteristische Rötung des Tyrosins sowie die Tyrosinasereaktion auf p-Kresol liefert.

Durch anhaltendes Erhitzen auf 100° wird diese Peroxydase zerstört (es ist die gewöhnliche Peroxydase), aber es bleibt in der Lösung ein in der Siedehitze beständiger Körper, welcher, einer Peroxydase aus Meerrettig zugesetzt, die charakteristische Tyrosinasereaktion liefert.

¹⁾ W. Staub, Nouvelles recherches sur la Tyrosinase, l. c.

Da Tyrosin schen im Extrakt vorhanden ist, so verdünne man den gekochten Saft von Keimlingswurzeln von Vicia Faba, damit die Konzentration des Tyrosins vermindert wird. Einem Teil der Lösung setzt man eine gesättigte Tyrosinlösung, dem anderen das entsprechende Quantum Wasser und zuletzt beiden Probiergläsern einige Tropfen einer $1^{\circ}/_{\circ}$ igen Hydroperoxydlösung zu. Es entsteht keine Farbenreaktion; fügt man aber noch beiden Versuchen $1 \ cm^{\circ}$ einer Meerrettigperoxydaselösung (1:30) zu, so wird die tyrosinhaltige Lösung rasch und intensiv rot, die andere viel später und schwächer.

D. Zu einer p-Kresollösung $(0.5\%)_0$ ig) fügt man einige Kubikzentimeter des gekochten Saftes von Vicia Faba-Keimlingswurzeln. Diese Mischung wird in 4 Reagenzgläser gleichmäßig verteilt (A, B, C, D). B wird durch Zusatz von verdünnter Essigsäure schwach sauer, C und D werden alkalisch gemacht. Allen 4 Versuchen wird $1~cm^3$ einer Peroxydaselösung zugesetzt und hierauf mit einigen Tropfen einer 1%0 igen Lösung Hydroperoxyds beschickt und zuletzt noch zu D eine Spur Glykokoll addiert. In A und B entsteht die milchig-trübe Lakkasereaktion, in C die gelbe Tyrosinasereaktion, in D die schönste Farbe, wie sie durch genuine Tyrosinase hervorgerufen wird.

Diese Versuche lassen sich nur so deuten, daß im gekochten Saft der Keimlingswurzeln von Vicia Faba ein Ko-Ferment enthalten ist, welches dem System Peroxydase—Hydroperoxyd zugesetzt, ihm die Tyrosinaseeigenschaften verleiht. Somit ist dadurch eine Synthese der Tyrosinase gemacht worden, durch welche die Einsicht in das Wesen der Tyrosinase erleichtert wird.

Wenn behauptet wurde, daß Lakkase gleichwertig ist dem System: Peroxydase—Hydroperoxyd, so ist Tyrosinase äquivalent einem System: Peroxydase—Hydroperoxyd + Ko-Ferment.

Bestätigt sich diese Anschauungsweise, so ist nunmehr das weitere Problem für das System Peroxydase—Hydroperoxyd, weitere Ko-Fermente zu finden, durch welche die spezifische Wirkung ev. verschoben werden kann.

Anmerkung. Als Urikase bezeichnen Batelli und Stern²) ein bekanntes Oxydationsferment, welches in Gegenwart von Sauerstoff Harnsäure unter Entwicklung von Kohlensäure zu Allantoin oxydiert. Bei der Darstellung des Fermentes verfahre man auf folgende Weise: Das Gewebe (Niere des Rindes oder Leber des Pferdes) wird fein zerrieben, mit 2.5 Volumen leicht alkalisch gemachten Wassers versetzt und während 15 Minuten umgerührt. Das Ganze wird durch ein Tuch gepreßt und zentrifugiert. Man erhält auf diese Weise eine trübe Flüssigkeit, zu der man nun 2.5 Volumen Alkohol hinzusetzt. Im übrigen verfährt man in folgender Weise: Schnell zentrifugieren, den Bodensatz mit Äther waschen und denselben an der

2) F. Batelli und L. Stern, Untersuchungen über die Urikase in den Tiergeweben.

Biochem, Zeitschr. Bd. 19. S. 219 (1909). (Hier die Literatur.)

¹) R. Chodat, Sur les rapports qui unissent les deux principaux ferments oxydants, les laccases et les tyrosinases. Archives des Sciences physiques et naturelles. IV^e période. T. XXVII. p. 90 (1909).

Luft trocknen. Je länger die Dauer der Einwirkung des Alkohols auf die Flüssigkeit ist, um so mehr wird die Urikase abgeschwächt.

2—3g eines solchen Präparates können in 1 Stunde 0·20g Harnsäure zersetzen, im reinen Sauerstoff ist die Menge der zersetzten Harnsäure 2—3mal so groß. — Der durch Harnsäureoxydation bedingte respiratorische Quotient $\frac{\mathrm{CO_2}}{\mathrm{O_2}}$ ist gewöhnlich 2

$$C_6 H_4 N_4 O_3 + H_2 O + O = C_6 H_4 N_4 O_3 + CO_2$$
.

wenn frisches Gewebe benutzt wird. Das Optimum der Temperatur der Urikasewirkung liegt zwischen $50-55^{\circ}$. Wie bei anderen genuinen Oxydasen (Oxygenasen) hat der Zusatz von H_2O_2 oder des Äthylhydroperoxyds keinen Einfluß auf die Oxydation der Harnsäure.

Katalase. 1)

Vorkommen: Katalase scheint keiner höheren Pflanze zu fehlen, bei Pilzen ist sie stets vorhanden; ob dieselbe bei gewissen Bakterien fehlt, scheint zweifelhaft, da gewisse Spezies, wie Diphtheriebazillen. Staphylokokken u.a., eine starke H_2 O_2 -zerstörende Eigenschaft besitzen. Bei Tieren ist sie fast überall nachgewiesen worden. Nach ihrer katalytischen Kraft können die Gewebe in absteigender Reihe geordnet werden: Leber, Niere, Magenschleimhaut, Speicheldrüsen. Lunge, Pankreas, Hoden. Herz, Muskel, Hirn. Auch in solchen Geweben, die kein Blut enthalten oder nur in minimalen, kaum nachweisbaren Quantitäten, wie Knorpel, Glaskörper, Linse des Auges und Fettgewebe, ist Katalase nachweisbar.

Zum Nachweis der Katalase in der lebenden Pflanze verfahre man, wie folgt:

Ein Elodaeablatt wird in $5^{\circ}/_{\circ}$ ige KNO₃-Lösung, der man H_{2} O₂ zu $1^{\circ}/_{\circ}$ zugesetzt hat, gebracht. Unter dem Mikroskop beobachte man, wie aus den schwach oder stärker plasmolysierten Zellen, deren Hautschicht unversehrt, folglich um den abgerundeten Protoplasmaballen scharf abgerundet ist, Gasblasen entströmen.

Öfters kann man auch beobachten, wie aus einer plasmolysierten Zelle, deren Protoplasma noch strömt, durch Katalyse des Hydroperoxyds Gasblasen ausgeschieden werden.

Ebenso lehrreich ist folgender Versuch: Es werden mit je 25 cm³ Raulinscher Nährflüssigkeit beschickte Erlenmeyerkolben, die in üblicher Weise sterilisiert worden sind. nach Zusatz von steigenden Mengen Hydroperoxyd mit Sporen aus Reinkulturen von Penicillum glaucum, Sterigmatocystis nigra und Rhizopus nigricans geimpft und im Thermostaten bei 22° sich selbst überlassen.

Der Hydroperoxydzusatz (von einer $10^{\circ}/_{\circ}$ igen Lösung) beträgt 1 bis 24 mg aktiven Sauerstoff in der ersten Versuchsreihe, 5—50 mg in der

¹) A. Bach und R. Chodat, Untersuchungen über die Rolle etc. VI. Katalase. Ber. d. Deutsch. chem. Gesellsch. Jg. 36. S. 1757 (1903). — O. Loew, Katalase a new Enzyme of general occurence. l. c. Dep. Agric. Report. p. 68 (1901).

zweiten. Zur Kontrolle werden einerseits Kolben ohne Hydroperoxydzusatz inokuliert, andrerseits nichtinokulierte Mischungen von Hydroperoxyd und Raulinscher Flüssigkeit im Thermostaten stehen gelassen.

Dabei ergibt sich, daß Hydroperoxyd auf die Entwicklung der Pilze zwar hemmend wirkt, daß aber nach einer gewissen Inkubationsperiode, welche mit der Pilzart und dem Hydroperoxydzusatz variiert, die Sporen Myceliumfäden aussenden, welche sich zuerst mit Gasbläschen bedecken und dann eine dauernde Gasentwicklung veranlassen. Diese wächst mit dem Wachstum des Myceliumballens und hört auf, wenn in der Nährflüssigkeit mittelst Titanschwefelsäure kein Hydroperoxyd mehr nachweisbar ist. Die Pilze, aus Sporen gezogen (Sterigmatocystis und Rhizopus), kommen indessen unter Sporenbildung zu voller Entwicklung, während die Nährflüssigkeiten noch reichlich Hydroperoxyd enthalten. Sterigmatocystis nigra vermag sich sehr gut in einer Nährflüssigkeit mit konstantem Peroxydgehalt von 0.68% Hydroperoxyd (Ersatz des Peroxydverlustes durch Zusatz von neuem Hydroperoxyd) zu entwickeln. Da während der ganzen Zeit, von dem Zeitpunkte der Keimung der Sporen bis zur Sporenbildung aus dem Pilz, d. h. aus seiner Oberfläche Sauerstoffblasen entbunden werden, so läßt sich diese Gasentwicklung nur auf die in der lebenden Pflanze enthaltene Katalase zurückführen. Katalase ist somit nicht ein postmortales Ferment, sondern eine mit der Lebenstätigkeit verbundene Fermentausscheidung.

Gewinnung der Katalase.

A. Zur Gewinnung von Pilzkatalase (Chodat-Bach) bediene man sich der Reinkulturen von Sterigmatocystis nigra in Raulinscher Flüssigkeit. Sterigmatocystis kann man sich zu jeder Zeit verschaffen, indem man unter einer Glasglocke zerstoßene Galläpfel feucht liegen läßt. Nach kurzer Zeit bemerkt man das sporentragende Mycelium, das nun mittelst eines sterilisierten Platindrahtes in eine sterilisierte Raulinsche Lösung übertragen werden kann. Die Pilzhäute werden mit Glas zu einem Brei zerstoßen und mit einer Spur von Natriumkarbonat enthaltendem Wasser verrieben.

Die klar filtrierte Flüssigkeit (man warte nicht, bis die Pilzhäute mit Sporen bedeckt sind) wird mit Alkohol gefällt und in üblicher Weise rasch gewonnen.

Durch Extraktion von zerriebenen Tabaksblättern mittelst chloroformhaltigen Wassers und Fällen durch Zusatz von Ammoniumsulfat im Überschuß gewinnt man einen Niederschlag, welcher von der darüber stehenden Flüssigkeit abfiltriert und durch Dialyse von dem Ammoniumsulfat befreit, sich als stark katalasehaltig erweist (Loew).

B. Blutkatalase (Hämase, Ostwald-Senter 1). Defibriniertes Blut wird mit dem zehnfachen Volum kohlensauren Wassers gemischt, über Nacht

¹) G. Senter, Das wasserstoffsuperoxydzersetzende Enzym des Blutes. Zeitschr. f. physik, Chem. Bd. 44, S. 257 et seq. (1903).

stehen gelassen, am anderen Morgen zentrifugiert und filtriert, um die Flüssigkeit von den festen Bestandteilen zu trennen. Die katalytische Substanz ist fast ausschließlich in die Lösung übergegangen (sie scheint aber im lebenden Körper an das Stroma gebunden zu sein).

Gleiche Volumina des Hämoglobin und Katalase enthaltenden Filtrates und 99% jeger Alkohol werden gemischt, die Mischung wird schnell zentrifugiert und die Alkohol-Hämoglobinlösung vom entstandenen Niederschlag abgegossen. Der rotbraune Niederschlag wird dann zwei- oder dreimal mit einem Alkohol-Wassergemisch gewaschen, um das Hämoglobin vollkommen zu entfernen, dann wird er zunächst mit Filtrierpapier und darauf im Vakuum über Schwefelsäure getrocknet, um den Alkohol vollkommen zu entfernen.

Der getrocknete Niederschlag wird dann zu einem feinen Pulver zerrieben.

C. Leberkatalase. 2 kg Schafsleber werden gleich nach dem Tode mittelst einer Hackmaschine zerrieben. Der dicke Brei wird mit etwa 2 l Chloroformwasser¹) beschickt. Nach 24stündiger Mazerierung wird die rotbraune Flüssigkeit abgepreßt, durch ein Tuch filtriert und mit dem vierfachen Volumen 94% gigen Alkohols gemischt. Der entstandene kopröse Niederschlag wird abfiltriert und bevor er trocken geworden ist, auf eine poröse Platte ausgebreitet und rasch über Schwefelsäure im Vakuum getrocknet (4).

Ein reines Produkt wird dann durch nochmalige Fällung des Alkoholfiltrates durch überschüssigen Alkohol (B) gewonnen. Das weiße Pulver ist aber wenig wirksam.

Es werden auf diese Weise etwa $200\,g$ Rohkatalase erhalten.

Durch Mazerieren mit Chloroformwasser und Fällen mittelst $99\%_0$ igem Alkohol gewinnt man ein helleres Produkt, das aber eine geringere Wirksamkeit zeigt. Werden 0.5~g dieser Rohkatalase mit $30~cm^3$ destilliertem Wasser 1 Stunde digeriert und dann filtriert, das Wasser mit wenig Chloroform geschüttelt, so liefert das Filtrat eine sehr wirksame und wasserhelle Lösung von Katalase. 5 Tropfen dieses Extraktes vermögen in wenigen (2) Minuten aus $1\%_0$ igen $1\%_0$ 0-Lösungen $1\%_0$ 0-Lösungen $1\%_0$ 0- $1\%_0$

D. Gekrösekatalase. 2)

Gekröse vom Schwein, vom Rind und Speck eignen sich weniger zur Gewinnung trockener Katalase: hingegen erhält man durch Verreiben von etwa $50\,y$ Schweinefett mit $150\,y$ destilliertem Wasser in einer Reibschale, worauf auf Talcum venetum filtriert wird, eine neutrale, klare Lösung, die sehr aktiv wirkt.

Eigenschaften, Katalasen haben nur die Eigenschaft, Hydroperoxyd katalytisch unter Sauerstoffentwicklung zu zersetzen. Andere Peroxyde.

¹) F. Neuhaus, Contribution à l'étude des ferments oxydants de l'action combinée de la peroxydase et de la catalase. Genève 1905. — Batelli et Stern, Préparation de la catalase animale. Soc. Biologie. LVII. p. 264 (1904).

²) Leo Liebermann, Beiträge zur Kenntnis der Fermentwirkung. Archiv f. d. ges. Physiol. Bd. **104**. S. 203 (1904).

auch das Äthylhydroperoxyd 1), werden von Katalase nicht angegriffen. Sie übt keinen oxydierenden Einfluß aus, kann also nicht als eigentliches Oxydationsferment gelten. Von ihr wird aus Wasserstoffsuperoxyd nur molekularer Sauerstoff frei gemacht. Die ihr von *Loew* u. a. zugeschriebenen oxydierenden Eigenschaften beruhen auf Verunreinigung mit Peroxydase. Auch die Umwandlung von Schwefel zu Schwefelwasserstoff 2) findet nicht statt.

Durch die Katalase wird auch die Oxydationsgröße der Oxygenase nicht im mindesten herabgesetzt.

Aus den sehr genauen Untersuchungen Senters geht hervor, daß die Katalasereaktion in erster Annäherung proportional der Konzentration des H_2 O_2 verläuft, insofern als die Konzentration zwischen $^{\mathrm{m}}/_{300}$ und $^{\mathrm{m}}/_{1000}$ variiert. Bei stärkeren H_2 O_2 -Lösungen besteht im Gegenteil diese strenge Proportionalität nicht mehr; die Reaktion verläuft relativ schneller in verdünnteren Lösungen, obwohl der Unterschied ein kleiner ist.

Konzentration des H ₂ O ₂	Konstante
$^{1}/_{290}$ -molar	0.0120
1/1100 "	0.0122
1/ 1/ 126 "	0.175
1/460	0.188
1/106	0.192
1/440	0.525

Stärkere Konzentrationen wirken schädigend auf das Ferment.

Dabei ist auch Rücksicht zu nehmen auf die Temperatur. Zwischen O und 10° ist die zerstörende Wirkung einer mäßig konzentrierten Peroxydlösung auf das Ferment sehr schwach.

Der Geschwindigkeitsquotient für 10° Temperaturerhöhung ist etwa 1.5 Minuten.

Bei 65° verliert eine verdünnte Blut- oder Leberkatalase ihre Wirksamkeit in 15 Minuten vollständig; bei 55° ist die Zersetzungsgeschwindigkeit bedeutend kleiner; nach 2stündigem Erhitzen bei dieser Temperatur hat eine Lösung noch etwa 5°/0 ihrer ursprünglichen Wirksamkeit und nach 3stündigem Erhitzen bei 45° noch etwa 60°/0 der ursprünglichen Eigenschaft.

Es ist also ratsam, die Messungen bei niederen Temperaturen vorzunehmen. Bei 0° bleibt eine Fermentlösung wochenlang fast unverändert. Katalase aus Gekrösefett ist gegen Hitze widerstandsfähiger, wie solche aus Pflanzensäften. Erstere wird zwischen 60—70° zerstört, letztere zwischen 40 bis 50°.

¹) Bacyer und Villiger, Äthylhydroperoxyd. Berichte d. Deutsch. chem. Gesellsch., Jg. 34. S. 738 (1901). — Bach und Chodat, Untersuchungen etc. VI. Über Katalase. Ebenda. Jg. 35. S. 1758 (1903). — F. Batelli et Mila L. Stern, Recherches sur la catalase dans l'organisme animal. Estratto dall'Archivio di Fisiologia. Vol. 2. Fas. IV (1905) (avec Bibliographie) (1905).

²⁾ Pozzi-Escot, Propriétés catalytiques des hydrogénases. Bull. de la soc. chim. Paris. [3.] T. 27. p. 280 (1902).

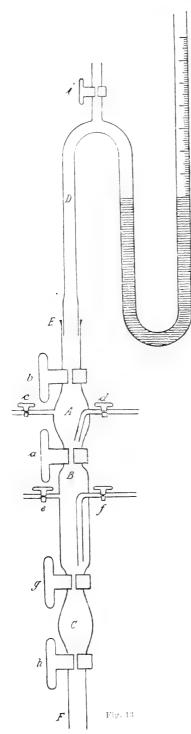
Die Säuren bewirken eine sehr starke Verzögerung der Katalyse, ohne daß dadurch das Ferment dauernd geschädigt wird. Nach 2—3stündiger Inkubationszeit mit der Säure und darauffolgender Neutralisation der Säure mit Alkali wird die katalytische Kraft wieder hergestellt.

Salze haben auch eine verzögernde Wirkung; Na Cl wirkt viel weniger verzögernd als Kaliumnitrat oder Kaliumchlorat.

Giftwirkung übt Blausäure aus. Sie ist gleichfalls keine dauernde. Wird durch einen Luftstrom die Blausäure entfernt, so erholt sich das Ferment, wenn auch nicht vollständig.

Messung der katalytischen Kraft.

Zu Vorversuchen oder zu Vergleichsuntersuchungen läßt sich die fermentative Wirkung einer Katalaselösung in der Weise berechnen, daß man in passender Weise den entwickelten Sauerstoff mißt.


1. In ein mit Mohrscher Bürette versehenes Gefäß mit doppelten Hähnen und Röhren gießt man 5—10 cm³ der Katalaselösung; hierauf läßt man durch das Öffnen eines Hahnes 30 cm³ einer 10 eigen Hydroperoxydlösung zufließen. Die sich entwickelnde Sauerstoffmenge wird mittelst eines in Verbindung stehenden Eudiometers gemessen nach 1, 2, 5, 10 Minuten. Ist die bestimmte Zeit verflossen (mit dem Chronometer zu messen), so wird der zum Eudiometer führende Hahn geschlossen und durch Senken der Quecksilberkugel das Niveau äquilibriert. Da der Versuch in sehr kurzer Zeit zu Ende ist und in einem Raum mit konstanter Temperatur vorgenommen werden kann, so ist eine Barometer- und Temperaturkorrektur zu solchen Untersuchungen kaum nötig. 1)

Der *Liebermann*sche Apparat²), der etwas kompliziert ist, kann jedoch gute Dienste leisten und hat sich gut bewährt (siehe Fig. 13). (Fabriziert bei Bender & Holbein, Zürich und München.)

In die Abteilung A (Fassungsraum ca. $25\ cm^3$) kommen mit Hilfe einer Pipette nach Entfernung des bei E eingeschliffenen Manometerrohres D und bei geschlossenen Hähnen a, e und d $5\ cm^3$ einer verdünnten Fermentlösung; hierauf wird der Hahn auch bei b geschlossen und der Apparat umgekehrt Dann werden bei geschlossenen Hähnen e und f bei F 5 cm^3 einer 3° /oigen (resp. 1° /oigen) Lösung von Wasserstoffsuperoxyd in die Abteilung B gebracht (Fassungsraum ca. $30\ cm^3$), worauf Hahn g geschlossen wird. In die Abteilung C (Fassungsraum ca. $25\ cm^3$) kommen nun $5\ cm^3$ einer gesättigten Kochsalzlösung, worauf auch Hahn h geschlossen, der Apparat wieder umgekehrt und auf passende Art in ein Stativ geklemmt wird. Nun wird das sowohl nach aufwärts wie nach abwärts von 0 in Millimeter geteilte, bis 0 mit Quecksilber gefüllte Manometerrohr D aufgesetzt. Die Hähne i und b werden

¹) E. Haliff, La Catalase dans les tissus des différentes espèces animales. Genève. Thèse de médecine. 1904. p. 31.

²) Leo Liebermann, Beiträge zur Kenntnis der Fermentwirkungen. Pflügers Archiv f. Physiologie. Bd. **104**. S. 179 (1904). Fig. 2.

behufs Druckausgleichung geöffnet, dann wird i wieder geschlossen. Der Schliff bei E sowie sämtliche Hähne sind sorgfältig einzufetten. Bezüglich letzterer sei noch erwähnt, daß die Hähne b, a, g und h etwa mit 1 cm weiten Bohrungen versehen sind, um den Flüssigkeiten einen bequemen und raschen Durchfluß zu ermöglichen.

Das Manometerrohr ist, soweit die Millimeterteilung (100 mm nach auf- und abwärts) reicht, genau kalibriert, so daß das Volum in Kubikzentimetern für jeden Millimeter aus der Kalibrierungstabelle abgelesen werden kann.

Mischen sich nun die beiden Flüssigkeiten bei geöffnetem Hahn a in der Abteilung B und findet Gasentwicklung statt, so steigt das Quecksilber im Manometer, und es kann nun für jede beliebige Zeitdauer des Versuches das Volumen des entwickelten Gases bestimmt werden. Hierzu ist es nur nötig, dasselbe jedesmal auf gleiche Temperatur (0°) und gleichen Druck (760 mm) zu reduzieren.

Die Abteilung C dient dazu, einer Übersättigung mit Gas vorzubeugen. Sie wird darum mit einer gesättigten Kochsalzlösung beschickt. Sie bezweckt zweitens ein vollkommeneres Durchmischen der in B befindlichen Flüssigkeit, indem sie nach einer bestimmten Versuchsdauer nach C fällt, wenn Hahn g geöffnet wird. Endlich wird durch das rasche Durchfließen der Flüssigkeit einer Übersättigung vorgebeugt, und gleichzeitig werden die an den Wänden haftenden Gasblasen zum Verschwinden gebracht.

Diese Methoden sind jedoch zu unvollkommen, um dadurch zu absoluten Werten zu gelangen. Sie können nur zu Vergleichsversuchen dienen, d. h. um die aktive Masse in einem bestimmten Quantum Ferment oder Organ und in einer bestimmten Versuchszeit zu schätzen.

Bei solchen Experimenten ist es natürlich unumgänglich notwendig, für jede Kategorie von Versuchen bestimmte Normen zu wählen. In den Batelli- und Sternschen Versuchen wird die aktive Masse auf 1 g Substanz und 1 Minute Zeit reduziert; z. B.: $5\ cm^3$ einer Leberemulsion zu $^{1/2000}$ haben in der ersten Minute $25\ cm^3$ Sauerstoff entbunden. Nun enthalten diese $5\ cm^3$ 0·0025 Organsubstanz; folglich würde $1\ g$ desselben Organbreies in der ersten Minute $10000\ cm^3$ Sauerstoff in Freiheit gesetzt haben.

Diese volumetrischen Methoden haben den Übelstand, daß einerseits Übersättigung mit Sauerstoff eintritt, wenn das die Flüssigkeit enthaltende Gefäß nicht geschüttelt wird, während andrerseits beim Schütteln der Einfluß der Gefäßwände einen unberechenbaren Faktor darstellt.

Da die nach den angegebenen Methoden bereiteten Katalasen so wirksam sind, daß ihre verdümnten Lösungen in Wasser nur Spuren organischer Substanz enthalten, so läßt sich die katalytische Kraft durch Titrierung mittelst verdünnter K Mn Ω_4 -Lösung messen, indem dadurch die jeweilige Konzentration der verdünnten Lösung des Wasserstoffsuperoxyds bestimmt wird.

Sorgfältige Messungen (Senter) haben nun dargetan, daß die Reaktionsgeschwindigkeit in sehr verdünnten (1 ₄₈₀-molaren) H₂ O₂-Lösungen proportional der Fermentkonzentration ist.

Die Reaktion wird nach $Senter^{\,1}$) in mit Glasstöpseln versehenen Erlenmeyerflaschen von 300 resp. 1000 cm^3 Inhalt ausgeführt; 100 resp. 400 cm^3 Fermentlösung von passender Konzentration werden in einer dieser Flaschen einige Stunden im schmelzenden Eise vorgekühlt und darauf 100 resp. 400 cm^3 vorgekühlte H_2 O_2 -Lösung hinzugefügt. Die Temperatur wird sofort nach der Mischung gemessen, um sicher zu sein, daß sie wirklich O^0 beträgt; die einzelnen Proben — 25 resp. $100~cm^3$ — werden von Zeit zu Zeit entnommen, in verdünnte Schwefelsäure gegossen, wodurch die Reaktion vollständig unterbrochen wird, und darauf mit 1 500-molarer K Mn O_4 -Lösung titriert.

Tabelle nach Senter.

t (Minuten) $H_2 O_2$

0.4343 Ki

Wasserstoffsuperoxydkonzentration immer $^{1/}_{474}$ -molar (in der Mischung), $400~cm^3$ Katalaselösung mit $400~cm^3$ H $_2$ O $_2$ -Lösung gemischt und $100~cm^3$ titriert.

I. 1 Vol. Fermentlösung in 320 Vol. Mischung:

O	42	
10	40.9	0.0017
20	384	0.0023
$40^{1/_{3}}$	34.4	0.0053
$85^{1/2}$	26.0	0.0027
116	21.2	0.0028
160	16.0	0.0028
1941_{2}^{\prime}	12.5	0.0029

¹⁾ G. Senter, l. c. (vgl. Fußnote 1, S. 66), S. 25.

V. 1	Vol.	Ferme	ntlösung	in	120	Vol.	Mischung:
------	------	-------	----------	----	-----	------	-----------

0	43.7	
$6^{1}/_{6}$	40.8	0.0049
$15^{1}/_{6}$	36.3	0.0020
25	31.0	0.0068
401/6	24.4	0.0068
65	16.1	0.0072
107	7.8	0.0075

VII. 1 Vol. Fermentlösung in 40 Vol. Mischung:

0	43.7	
$5^{1}/_{3}$	33.7	0.0214
$10^{1}/_{2}$	25.7	0.0226
15	20.3	0.0218
$26^{1}/_{3}$	12.3	0.0218
371/3	6.3	0.0236

Die Konstanten k_1 sind unter der Annahme berechnet, daß die Reaktion proportional der jeweiligen H_2 O_2 -Konzentration verläuft, d. h. daß die Zersetzungsgeschwindigkeit $\frac{dC}{dt} = k_1 C_t$ ist. wo C_t die Konzentration des H_2 O_2 zurzeit t ist. Durch Integration erhalten wir $k_1 = \frac{1}{t_2 - t_1} \ln \frac{C_1}{C_2}$ oder $4343 \ k_1 = \frac{1}{t_2 - t_1} \log \frac{C_1}{C_2}(1)$, wo C_1 und C_2 zwei aufeinanderfolgende Beobachtungen bedeuten und $t_2 - t_1$ die inzwischen verflossene Zeit (vgl. Ostwald-Luther, Physiko-chemische Messungen, S. 455).

ANHANG.

Aldehydase. 1)

Vorkommen: Sie ist bis jetzt nur im Tierreich gefunden worden. Das Blut führt sehr wenig Aldehydase, ebenfalls Muskeln, Nerven und Pankreas; Leber, Lunge und Milz wirken sehr energisch. Dieses Ferment kann mit dem vorangehenden nicht verglichen werden, da für seine Wirkung die Gegenwart des Luftsauerstoffes nicht nötig, ja sogar nachteilig ist.

Darstellung: Vom Schlachthaus bezogene frische Rindsleber wird zerhackt, mit Quarzsand zerrieben, der Brei mit destilliertem Wasser, dem Toluol im Überschuß zugefügt ist, mindestens einige Stunden stehen gelassen und häufig durchgeschüttelt. Dann wird das Extrakt vom Rückstand durch Kolieren und Filtrieren getrennt.

¹⁾ Jaquet, Recherches sur les oxydations organiques dans les tissus. Mémoires Soc. biolog. S. 55 (1892). — Abelous et Biarnès, Pouvoir oxydant du sang. Soc. biolog. T. 46, S. 536. — Martin Jacoby, Über das Aldehyd oxydierende Ferment der Leber und Nebenniere. Zeitschr. f. physiol. Chem. Bd. 30. S. 135 (1900). — Derselbe, Über die Oxydationsfermente der Leber. Virchows Archiv f. pathol. Anat. u. Physiol. Bd. 157. S. 235 (1899).

Das so gewonnene dunkle, aber völlig klare Filtrat wird mit soviel gesättigter Ammonsulfatlösung versetzt, daß 25° eige Sättigung mit diesem Salz erreicht wird. Dabei werden hier, wie auch fernerhin, immer, wenn Ammonsulfat in Anwendung gezogen wird, soviel Tropfen verdünnter Sodalösung hinzugetan, daß die Flüssigkeit schwach alkalisch reagiert und deutlich nach Ammoniak riecht. In etwa 24 Stunden setzt sich dann allmählich ein geringer Niederschlag ab, der abfiltriert wird.

Das Filtrat wird in gleicher Weise auf 33½,0% ige Sättigung mit Salz gebracht, der Niederschlag wiederum nach 25 Stunden durch Filtrieren entfernt. Das so erhaltene wasserklare, ziemlich dunkle Filtrat wird auf 60% ige Sättigung mit Ammonsulfat gebracht. Dabei entsteht ein massiger Niederschlag, der sich meistens in 24 Stunden vollständig absetzt.

Dieser Niederschlag, welcher die Aldehydase enthält, wird nach 24 Stunden abfiltriert, mit entsprechender Salzlösung ausgewaschen und dann in destilliertem Wasser aufgenommen, wobei er sich nur unvollkommen löst. Frühestens nach einigen Stunden wird wiederum filtriert. Das klare Filtrat wird mit 95% igem Alkohol soweit versetzt, daß gerade ein gut abfiltrierbarer Niederschlag entsteht. Dieser Niederschlag hat sich nach einigen Minuten bereits abgesetzt und wird nun sofort von der Flüssigkeit durch Filtrieren getrennt.

Es genügt, Alkohol in einer Quantität zuzusetzen, daß die Konzentration desselben höchstens 30°_{\circ} beträgt. Der abfiltrierte Niederschlag wird sofort mindestens 5-6mal mit kleineren Mengen destillierten Wassers, dem man einige Tropfen verdünnter Sodalösung zufügt, extrahiert. Die Auszüge werden vereinigt.

Am besten läßt man den Niederschlag, um das Ferment vollständig in Lösung zu bringen, fein verteilt über Nacht mit Wasser stehen.

Man hat nunmehr bereits eine helle Flüssigkeit, die aber regelmäßig Eiweiß enthält.

Sie wird bei schwach alkalischer, durch Soda hergestellter Reaktion mit einer verdünnten Lösung von Uranylacetat bis zum Entstehen einer abfiltrierbaren Trübung gefällt. der Niederschlag ebenso wie der mit Alkoholfällung gewonnene behandelt.

Es resultiert eine wasserklare Flüssigkeit, die kräftig Salizylaldehyd zu Salizylsäure oxydiert.

Eigenschaften: Aldehydase soll keine Eiweißreaktion geben. Sie dialysiert schwer oder gar nicht, geht aber durch Chamberlandfilter. Sie löst sich in Wasser, wirkt am besten in neutraler Lösung, alkalische oder saure Reaktion wirkt hemmend. Sie ist mit Alkohol, mit Uranylacetat fällbar, sie läßt sich durch Ton filtrieren und verbleibt bei der Dialyse im Pergamentschlauch. Die Aldehydase ist in 20% igem Alkohol deutlich löslich. Sie wird durch geringe Mengen freier Säure, aber auch durch freies Alkali, anscheinend am wenigsten durch Ammoniak ihrer oxydierenden Wirkung beraubt. Die Aldehydase wird bei ihrer oxydativen Wirkung nicht verbraucht.

Kleine Sodamengen beeinträchtigen bereits die Oxydation des Salizylaldehyds, bei $0.5^{\circ}/_{\circ}$ leidet sie schon erheblich, bei $0.7^{\circ}/_{\circ}$ werden nur noch Spuren oxydiert, bei $1^{\circ}/_{\circ}$ findet keine Oxydation mehr statt; Zusatz von $0.1^{\circ}/_{\circ}$ Na OH steigert die Oxydation, bei $0.3^{\circ}/_{\circ}$ kommt sie schon nicht mehr zustande; ganz geringer Salzsäurezusatz vermindert nicht den Grad der Oxydation, bei einer Konzentration von $1^{\circ}/_{\circ}$ werden nur noch Spuren von Salizylaldehyd oxydiert. Bei 60° wird am meisten Salizylsäure gebildet, bei 75° wird das Ferment nicht vollständig zerstört. Durch Kochhitze wird es vollständig zerstört.

Aldehydase oder Diastase oxydo-reductrice von *Abelous* ist keine Oxydase im Sinne von *Bertrand*, *Chodat* und *Bach*. Ihren Sauerstoffbedarf nimmt sie aus den vorhandenen anorganischen oder organischen reduzierbaren Verbindungen, z. B. chlorsaurem Kali. Salpeter etc. Der Luftsauerstoff hemmt die oxydierende Kraft der Aldehydase; reiner Sauerstoff ist noch schädlicher. 1)

Zur Messung der oxydierenden Kraft bedient man sich einer kolorimetrischen Methode. Die aus Salizylaldehyd gebildete Salizylsäure wird mittelst Eisenchlorid oder Eisenammoniakalaun kolorimetrisch bestimmt.

Es sind nicht nur die Bedingungen der Oxydation durch dieses Ferment, sondern auch das von *Medwedew*²) aufgestellte Wirkungsgesetz so sonderbar, daß alle derartigen Angaben dringend einer eingehenden Revision bedürfen.

²) Medwedew, Über Oxydationskraft der Gewebe. Pflügers Archiv. Bd. 65. S. 249 (1897).

¹) Abelous et Aloy, Influence des diverses conditions sur l'oxydation de l'aldéhyd salicylique par les organes et les extraits d'organes. Comptes rendus de l'Acad. Sc. T. 136. S. 1573. Soc. Biol. T. 53, p. 891 (1903). — Ibid., Sur l'existence dans l'organisme animal d'une diastase à la fois oxydante et réductrice. Ibid. T. 55, p. 1355 et 1356.

Verdauung.

A. Operative Technik zum Studium der Verdauung und der Resorption.

Von E. S. London.

Allgemeine Bemerkungen.

Zweck biologisch-chemischer Untersuchungen über Verdauung und Resorption ist die Aufklärung der chemischen Reaktionen bei lebenden Organismen. Diese oder jene Ergebnisse chemischer Reaktionen resultieren aus den letztere begleitenden Umständen. Will man daher biologisch-chemische Studien richtig angelegt betreiben, so müssen für dieselben ganz gleiche Verhältnisse wie bei lebenden Organismen geschaffen werden. Solche Verhältnisse in vitro zu erzeugen, ist jedoch ausgeschlossen, und es bleibt deshalb dem Forscher nichts anderes übrig, als zu Untersuchungen an lebenden Tieren Zuflucht zu nehmen. Untersuchungen in vitro können bloß Orientierungszwecken dienen.

Untersuchungen an Tieren über Verdauung und Resorption unterscheiden sich in solche an vivisezierten und an operierten Tieren. Durch jede Vivisektion wird die normale Tätigkeit des Organismus von Grund aus erschüttert. Die durch Operationen herbeigeführten Veränderungen schwächen sich dagegen gewöhnlich mit der Zeit ab und der Organismus kehrt dank der ihm innewohnenden Anpassungsfähigkeit zu der normalen Tätigkeit zurück. Deshalb soll man, wo es nur angeht. Untersuchungen an operierten Tieren stets solchen an vivisezierten vorziehen.

Gegen das vorhin Angeführte wird schwerlich jemand etwas einwenden wollen und doch gibt es wenig Institute, an denen die Verdauungs- und Resorptionsfragen in vivo oder wenigstens mittelst in vivo gewonnener Säfte studiert werden. Grund dieser Erscheinung ist meiner Ansicht nach in erster Reihe die Vermutung, daß die Einrichtung für solche Versuche mit sehr bedeutenden Auslagen verbunden ist, und in zweiter Reihe das Fehlen einschlägiger literarischer Anleitungen über die bei solchen Arbeiten notwendige Technik.

1. Operationsraum.

Die für Untersuchungen an Tieren (als passendstes Material kommen vorläufig Hunde in Betracht) unumgänglich notwendige Einrichtung kann man keinesfalls als kostspielig bezeichnen. Sind ausreichende Mittel vorhanden, so kann es selbstredend nichts schaden, den Operationsraum ebenso schön einzurichten, wie in den musterhaften chirurgischen Kliniken, aber unbedingt notwendig ist das nicht. Auf Grund meiner reichen persönlichen Erfahrung darf ich nämlich behaupten, daß im gewöhnlichen Lokal mit gleichem Erfolge operiert werden kann, wie im best eingerichteten Operationssaal. Infolge von Zwangsumständen habe ich mehrmals sehr ernste Operationen in dem bei meinem Laboratorium befindlichen Hundezimmer, in dem ständig mehrere operierte Hunde untergebracht sind, und wo deshalb von einer aseptischen Umgebung keine Rede sein kann, vornehmen müssen, und doch hatte dies für meine Operationen keine nachteiligen Folgen. Steril, und zwar genauest, muß nur das sein, was mit dem eigentlichen Operationsfelde in unmittelbare Berührung kommt. Reinhaltung der weiteren Umgebung ist gewiß wünschenswert, aber nicht unbedingt notwendig

2. Aseptische und antiseptische Maßregeln.

Bei der Sterilisierung von Gegenständen, welche mit dem Operationsfeld in Berührung kommen, hat man sich nach den allgemein üblichen Regeln der chirurgischen Aseptik und Antiseptik zu richten. Instrumente und Seide siede man in 1% iger Sodalösung und halte sie dann während der Operationszeit in 2% iger Karbolsäurelösung. Watte und Verbandstoffe sterilisiere man im Autoklaven. Die Hände reinige man mit Seife, warmem Wasser und Bürste und tauche sie dann auf einige Minuten in 1% ige Sublimatlösung und wasche endlich mit Alkohol. Während der Operation selbst, wenn die Hände zufällig mit nicht sterilen Gegenständen in Berührung kommen, dürfen diese mit Sublimat gereinigt werden.

Die Vorbereitung der Hunde zur Operation geschieht auf folgende Weise. 24 Stunden vor der Operation muß die Verabreichung von Futter eingestellt werden. Anwendung von Abführmitteln (Kalomel) ist ganz überflüssig. Empfehlenswert ist einige Stunden vor der Operation die Anwendung eines Wannenbades, was aber auch unterlassen werden kann, wenn große Umstände damit verbunden sind. Ich persönlich habe in den letzten 4 Jahre bei Hunden davon Abstand genommen und zwar selbst bei Ausführung äußerst gefährlicher Operationen, wie z. B. die Ecksche Operation, während der die Bauchhöhle $1^4/_2$ —2 Stunden offen bleibt, und deshalb Infektion leicht möglich ist.

Am besten schützt man die Bauchhöhle vor von außen eindringenden Infektionen durch sorgfältige Hautdesinfektion um das Operationsfeld. Die Haare um die angemerkte Schnittstelle müssen möglichst weit herum sorgfältigst abrasiert werden. Die entblößte Haut wird peinlichst mittelst Bürste, Seife und warmem Wasser gewaschen und sodann reichlich

mit 1% iger Sublimatlösung, Alkohol und Äther begossen, wonach der Hund der ganzen Länge nach mit Handtüchern zugedeckt werden muß (ich verwende 4 Stück) und nur ein Spalt für den Schnitt zwischen 2 Handtüchern offen gelassen wird.

3. Instrumente. 1 1 1 T

Es soll die Minimalzahl der nötigen Instrumente angegeben werden.
1. Skalpell, spitze 2 Stück
geballte
2. Scheren mit Knopf, mittelgroß 1
. ohne
., nach Cooper, kleine
.,
Inzisionsschere
3. Pinzetten nach Waldeyer, breite 2
Hakenpinzette mit Schraube 2
4. Kornzangen nach Charrière
und zugleich Nadelhalter 2
5. Arterienklemmen nach <i>Péan</i> mit Lappenverschluß 24
" Richelot, aufwärts gebogen 6 "
6. Knopfsonden aus Neusilber verschiedener Breite. 6
7. Hohlsonden
8. Akupressurpinzetten nach Allis
9. Unterbindungsnadel nach Leopold 2
10. Nähnadel, ganz gebogene, verschiedener Größe . 12
runde für die Darmwand 12
gerade für Blutgefäße 12
Untersuchungsnadeln
11. Nadelhalter nach Martin oder anderen 1
12. Haken nach Prince, messerförmig 2
13. Löffel nach Volkmann
15. <i>Eck</i> sche Scheren
16. Langes Seziermesser
17. Injektionsspritzen
18. Leithaken
19. Thermokauter 1

4. Fistelvorrichtungen.

Fistelröhren. Die Röhren sollen entweder aus reinem Silber oder aus Neusilber gemacht werden. Man muß eine Sammlung von dreierlei Arten von Röhren haben:

1. Einfache Fistelröhre (Fig. 14). Sie besteht aus einer zvlindrischen Röhre mit einem an einem Ende fixierten breiten, ovalen Rande und einem beweglichen Ring, dessen Öffnung dem Umfang der Röhre genau entspricht. Dieses Modell hat London an Stelle des üblichen (Fig. 15), welches sich als unpraktisch erwiesen hat, eingeführt.

2. Ovale Fistelröhre mit Scheidewand. Man könnte sie als "zweikammerig" bezeichnen. Dieses Modell (Fig. 16) hat *London* für den Bedarf der Polyfistelmethode erfunden. Wie aus der Fig. 16 ersichtlich, besteht dieselbe aus einer ovalen Röhre mit einem an einer Extremität der-

Fig. 14.

Fig. 15.

selben fixierten, ebenfalls ovalen, breiten Rand: die genau in der Mitte der Röhre befestigte Scheidewand tritt an beiden Enden derselben über deren Rand hervor, wobei der 0.5 em hohe Vorsprung an Stelle des breiten Randes von einer bis zur anderen Seite desselben sich erstreckt; der äußere Ring ist beweglich.

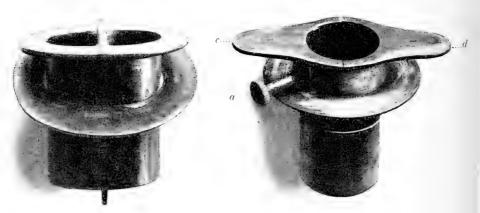


Fig. 16

Fig. 17.

3. Zerlegbare Fistelröhre (Fig. 17). Sie besteht aus zwei Hälften, die zusammengesetzt ein ganzes Rohr bilden; der bewegliche Ring ist mit einer Schraube (a) versehen, welche das Zusammenhalten beider Hälften bedingt. Dieses Modell findet nur in sehr seltenen Fällen Anwendung.

Es ist notwendig, einen Vorrat von Röhren verschiedener Größe zu besitzen. Es kann nämlich eine Fistelröhre nur in dem Falle als "gut" bezeichnet werden, wenn sie eine vollkommene Ausscheidung des an den Ort der Fistel gelangenden Chymus gestattet. Nun besitzt jeder einzelne Hund bestimmte Dimensionen seines Darmlumens, deren Abschätzung im voraus unmöglich ist. Dementsprechend ist es ratsam, vor der Operation mehrere Fistelröhren verschiedenen Kalibers vorzubereiten, d. h. dieselben mit den übrigen Instrumenten zusammen zu sterilisieren und davon bei Besichtigung des Darmes das für den betreffenden Fall am besten passende Exemplar zu wählen. Wonach man sich bei der Wahl der Röhrengröße richten muß, wird weiter unten bei der Beschreibung der Operationstechnik erläutert.

Die Erfahrung hat gezeigt, daß folgende Dimensionen am zweckmäßigsten erscheinen. Alle Maße sind in Millimetern angegeben.

1. Fistelröhre für den Magen.

Lumen	weit	e						22
Röhrer	ıläng	re						40
Breite	des	in	ner	en	Ra	ınd	es	10
Breite	des	än	ßer	en	Ri	nø:	es	19

2. Einfache Fistelröhre für den Darm.

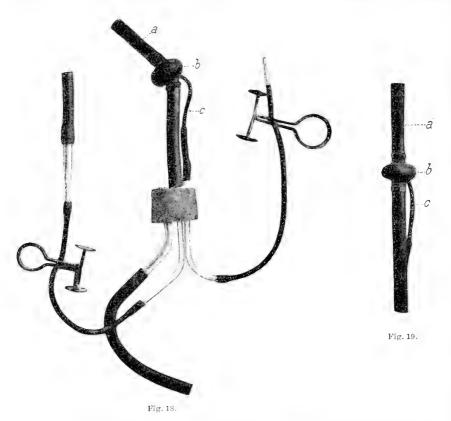
	Nr. 1	Nr. 2	Nr. 3
Lumenweite	15	18	22
Röhrenlänge		40	40
Breite des inneren Randes .		5/10	5/10

3. Zweikammerige Fistelröhre.

	Nr. 1	Nr. 2	Xr. 3
Lumenweite	15 (25 1)	18	22 35
Röhrenlänge	40	40	40
Höhe des inneren Scheidewand-			
vorsprunges	. 3	4	ō
Höhe des äußeren Scheidewand-			
vorsprunges	4	6	8
Breite des inneren Randes	5	6	7

Zerlegbare Fistelröhren müssen im allgemeinen gleiche Dimensionen haben wie die einfachen; es muß nur hervorgehoben werden, daß die Länge der Flügel (Fig. 17 c und d) $2-2\frac{1}{2}$ cm betragen muß.

5. Verschiedenartige für die Versuche nötige Vorrichtungen.

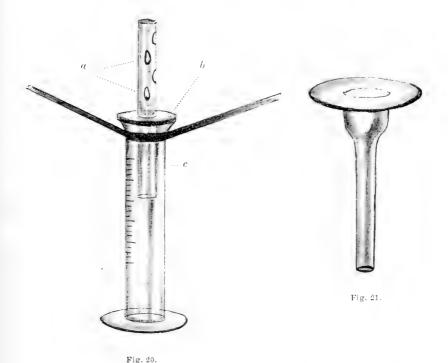

1. Ballonapparate. London hat zwei Arten von Ballonapparaten ausgearbeitet, welche allen Forderungen der Polyfistelmethode entsprechen:

¹⁾ Über dem Strich ist die Breite des schmäleren, unter dem Strich diejenige des weiten Randes angegeben.

a) knieförmig gebogener (Fig. 18),

b) gerader (Fig. 19).

Diese Ballons werden von der Genossenschaft russisch-amerikanischer Gummiwarenmanufaktur (St. Petersburg, K. Malm, Morskaja 34) angefertigt. Im allgemeinen sind sie ziemlich gut und bequem; es erweisen sich aber nicht sämtliche Exemplare in gleichem Maße dauerhaft; sehr häufig bilden sich Löcher in den Ballons, so daß letztere die Luft nicht mehr halten können. Die Erfahrung hat gezeigt, daß es sehr nützlich erscheint, die Ballons vermittelst Gummileims mit einer Kondomgummikappe zu umhüllen.



Diese vermehrt die Festigkeit des Ballons, ohne seine Dehnbarkeit zu vermindern.

Der Ballonapparat (Fig. 18—19) ist aus folgenden Teilen zusammengesetzt: einer dickwandigen Gummiröhre (a), durch welche die Injektionen in den Darm ausgeführt werden; einem Ballon (b), welcher im Darmlumen durch die Röhre (c) aufgebläht wird. Um einen klaren Einblick in die Art der Anwendung des Ballonapparates zu gestatten, wird hier die Fig. 18 beigefügt. Sie zeigt, wie die Röhren a und c des Ballonapparates durch Vermittlung von Glasröhren, welche einen in die Fistelröhre einge-

steckten Pfropfen durchbohren, mit der äußeren Umgebung in Verbindung stehen.

Über die Ausrüstung des Ballonapparates sollen folgende praktische Bemerkungen hinzugefügt werden. Der Pfropfen, welcher von den Glasröhren durchbohrt wird, muß aus Kork, nicht aus Gummi gemacht werden, denn ein Gummipfropfen läßt sich sehr schwer in die Fistelröhre derart einpassen, daß er dieselbe dicht schließt und keine Flüssigkeit durchläßt. Der Korkpfropfen wird noch vor der Operation eingepaßt, samt der Fistelröhre in Wasser ausgekocht und ca. 5 Tage lang in der Röhre gelassen; im Verlaufe dieser Zeit verdichtet sich derselbe und nimmt eine konstante.

dem Lumen der Fistelröhre genau entsprechende Form an. Dann bohrt man Öffnungen, durch welche die Glasröhren dicht durchgestochen werden. Für das zum Ballon führende Gummiröhrchen wählt man ein enges Glasrohr (2 mm), für das zu Injektionen dienende Gummirohr nimmt man dagegen ein etwas weiteres Glasrohr (3 mm) und für das Ableitungsrohr, welches zur Ableitung der auf der Strecke zwischen dem aufgeblähten Ballon und der Fistelröhrenscheidewand ins Darmlumen sezernierten Säfte dient, wird

ein möglichst weites Glasrohr ausgewählt (4 mm).

2. Ableitungsgummirohr für den Magen- resp. Darmsaft (Fig. 20). Diese Vorrichtung wird folgendermaßen zubereitet: Man nimmt ein dickwandiges Gummirohr mit der Lumenweite von 3—5 mm und brennt

in dessen obere Hälfte mit einem glühenden Draht viele Seitenöffnungen in einem solchen Abstand voneinander durch (a), daß die Elastizität des Rohres nicht vermindert wird, wonach man die betreffende Röhre für einige Minuten in Petrol eintaucht. Dann nimmt man eine dicke, elastische Gummischeibe von 5—6 cm im Diameter (b) und führt durch die in deren Zentrum gemachte Öffnung das erwähnte Gummirohr unterhalb der durchgebrannten Löcher ein. Endlich steckt man ins untere Ende des

Gummirohres eine Glasröhre von entsprechender Weite ein (c) und die Vorrichtung ist fertig.

- 3. Speichelröhren. Man soll zweierlei Trichterröhren aus Glas besitzen: gerade (Fig. 21) und gebogene (Fig. 22).
 - 4. Glas- und Gummiröhren verschiedener Breite.
 - 5. Pfropfen aus gutem Kork.
 - 6. Mendelejeffscher Kitt (vgl. S. 97).

6. Grundlagen der Operationsmethodik zur Untersuchung des Verdauungsprozesses.

Zur Verarbeitung der Nahrungsstoffe bedient sich die Natur spezifischer Fermente, welche von speziellen Drüsen zubereitet werden. Am Ent-

stehungsort sowie im entsprechenden Ausführungsgange befindet sich das Ferment in relativ reinem Zustande; sobald es aber das Lumen des Ausführungsganges verläßt, kommt unter natürlichen Verhältnissen eine Vereinigung mit anderen Fermenten resp. verschiedenartigen fremden Stoffen zustande. Folglich erscheint es notwendig, um die Arbeit einer bestimmten Drüse zu verfolgen, deren Ausführungsgang von den umgebenden Teilen künstlich zu isolieren. Solange es sich um einen Drüsenapparat handelt, dessen Sekret, bevor es nach außen sezerniert wird, sich in einem gemeinschaftlichen Ausführungsgang sammelt, bietet die Isolierung des letzteren von der Umgebung keine Schwierigkeiten. Es existieren aber Verdauungsdrüsenapparate, welche ihr Sekret durch zahlreiche, mikroskopisch feine, auf einer großen Oberfläche der Verdauungstraktuswand zerstreute Ausführungsgänge absondern. Für solche Fälle haben die Experimentatoren Thiry 1) und Heidenhain 2) das Prinzip der operativen Isolierung der sezernierenden Oberfläche angewandt. Der isolierte Wandabschnitt wird zu einem Blindsack vernäht und durch eine Fistelöffnung mit der Außenwelt in Verbindung gesetzt.

Da die auf operativem Wege isolierte sezernierende Oberfläche von dem Zusammenhang mit dem übrigen Verdauungstraktus ausgeschlossen wird, ist es klar, daß für experimentelle Zwecke nur ein Teil der physiologisch tätigen Oberfläche isoliert zu werden braucht, da ja dessen Tätigkeit über die Gesamtoberfläche Aufschluß gibt. Erscheint der isolierte Bezirk von den umgebenden Teilen gänzlich losgetrennt, so emanzipiert er sich von der Unterordnung der funktionellen Harmonie des Verdauungstraktus, fängt an, selbständig, unabhängig von seinem Ganzen zu funktionieren und kann infolgedessen nicht mehr als Zeiger dieses Ganzen dienen.

Auf Grund dieser Tatsache benutzte *J. P. Pawlow*³) als Grundlage der Operationsmethodik ein neues Prinzip, nämlich die operative Isolierung eines Teiles des Ganzen unter Erhaltung der sekretorisch-nervösen Verbindung zwischen den einzelnen Teilen. insofern dies in jedem einzelnen Falle möglich erscheint. Auf diesem Grundprinzip hat *Pawlow* eine Reihe Operationen ausgearbeitet, durch welche die Möglichkeit gegeben wurde, in viele bis dahin dunkle Fragen der Verdauungsdrüsenphysiologie Licht zu bringen.

Aber auch diese Grundlage kann keine erschöpfende Bedeutung beanspruchen, indem das Prinzip der operativen Isolierung der Verdauungsdrüsenausführungsgänge an und für sich eine Quelle der Unvollkommenheit dieser Methodik für die Untersuchung der Physiologie der Verdauung in sich birgt.

¹⁾ Thiry, Sitzungsber. d. Wiener Akad. 1864.

²) Heidenhain, Über die Absonderung der Fundusdrüsen des Magens. Pflügers Archiv. Bd. 19. S. 148 (1879).

³) J. P. Pawlow, Zur chirurgischen Methodik der Untersuchung der Magensekretion. Verhandl. d. Ges. russischer Ärzte zu St. Petersburg. S. 151 (1894).

Erstens schafft die stetige Abfuhr der Säfte nach außen im Verdauungstraktus und zugleich auch im Gesamtorganismus abnorme Bedingungen. Zweitens ist es plausibel, daß die normale Arbeit eines Organes — nehmen wir als Beispiel das Pankreas oder die Leber — unter gleichzeitigem Ausschluß von Produkten der Tätigkeit der betreffenden Drüse vom Verdauungsprozeß zu verfolgen, gleichwertig einer Untersuchung von Verhältnissen erscheint, die unter exklusiven pathologischen Bedingungen stattfinden können. Drittens schränkt uns die genannte Methode die Erforschung der Verdauung nur auf diejenige der Sekretionstätigkeit der Verdauungsdrüsen ein, ohne für die Untersuchung des Verdauungsprozesses selbst, insofern in demselben physikalische resp. chemische Faktoren tätig sind, einen weiteren Rahmen zu schaffen.

All das Gesagte bewegte London, einen neuen Weg der Erforschung des Verdauungsprozesses anzutreten, indem er seine Methodik auf einem neuen Prinzip gründete, das von den erwähnten Fehlern frei sein soll. Es ist das Prinzip der operativ-mechanischen Isolierung von Abschnitten des Verdauungstraktus. Dieses Prinzip besteht darin, daß das Tier im Bereiche des Verdauungstraktus einer Operation unterworfen wird, welche nachher im Laufe des Versuches die Isolierung eines beliebigen Abschnittes des Verdauungstraktus gestatten soll, wobei die durch die Versuchsverhältnisse bedingten Verluste an Körpersäften dem Organismus während des Versuches ersetzt werden können und sämtliche Magendarmfunktionen außerhalb der Versuchszeit vollkommen normal ablaufen. Da die Untersuchung des Verdauungsprozesses nach diesem Prinzip die Anlegung einer mehr oder weniger großen Zahl von Fisteln voraussetzt, gab London seiner Methode den Namen "Polyfistelmethode" oder "Temporärisolierungsmethode" zur Unterscheidung von der früheren Methodik, welche auf dem Prinzip der permanenten Isolierung basiert (Dauerisolierungsmethode).

Zur allseitigen Untersuchung des Verdauungsprozesses ist selbstverständlich die Anwendung beider Methoden erforderlich.

7. Operations- und Versuchsmethodik.

Um Wiederholungen zu vermeiden, sollen hier vor allem einige Operations- resp. versuchsmethodische Angaben angeführt werden, welche zu den meisten weiter unten zu behandelnden Fällen Bezug haben.

1. Eröffnung und Schließung der Bauchhöhle.

Abgesehen von einigen speziellen Fällen muß die Eröffnung der Bauchhöhle in allen übrigen Fällen ausnahmslos längs der Linea alba geschehen. Bei der Schnittführung durch die Haut muß man darauf bedacht sein, daß die weiße Linie der Haut bei den Hunden fast niemals mit derjenigen der Muskelwand zusammenfällt; letztere zieht mehr nach links, gerade in der Mittellinie des Körpers, und läßt sich gewöhnlich leicht abtasten. Nachdem

die Haut und die Aponeurose der Linea alba durchschnitten sind, kommt man auf eine Schicht des subperitonealen Fettgewebes, das in Form von Falten nach innen herabhängt. Der Operateur und der Assistent fassen dasselbe an symmetrischen Stellen mit Pinzetten, ziehen es außerhalb der Wunde hervor, und der Operierende macht nun einen Schnitt zwischen den Pinzetten, welcher nach der einen oder anderen Seite verlängert wird. Zuletzt werden die Falten nach außen gezogen und an der Basis abgeschnitten.

In der Regel kommt dabei keine Blutung zustande, so daß eine Unterbindung der Gefäße entbehrlich erscheint. Einmal aber, augenscheinlich infolge einer Gefäßanomalie, trat an Stelle der abgeschnittenen subserösen Falte eine Blutung nach der Operation auf, welche den Tod des Hundes zur Folge hatte. Um solchen Vorkommnissen vorzubeugen, ist es zweckmäßig, jedesmal zu kontrollieren, ob nicht irgend ein bedeutendes Gefäß in die Schnittwunde zu liegen gekommen ist. Man vernäht die Schnittränder schichtweise. Die Hautnaht wird mit Kollodium bestrichen.

2. Pflege der Tiere nach der Operation.

- 1. Nach sämtlichen Bauch-resp. Fisteloperationen bleiben die Hunde 2 Tage lang ohne jede Nahrung. Am 3. Tag bekommt ein mittelgroßer Hund viermal täglich je $100\,cm^3$ Milch; am 4. Tag viermal je $100\,cm^3$ Milch und $50\,g$ feingehacktes Fleisch; dann vergrößert man, entsprechend dem Zustand des Tieres nach und nach die Nahrungsmenge, bis die normale Ration erreicht wird. Es muß überhaupt hervorgehoben werden, daß, insofern es sich um die Erforschung der Verdauung handelt, die Hunde mit leichter und gut verdaulicher Nahrung gefüttert werden müssen: Milch, Schabefleisch und Weißbrot. Sonst ist es sehr schwer, die Diät derart zu regulieren, daß der Verdauungstraktus im nötigen Momente leer erscheint.
- 2. Zum Ausstreichen der Wunde sind am besten die desinfizierenden und adstringierenden Salben zu empfehlen. Am besten gebraucht man folgende Salbe: Menthol 0·1, Acidi salicylici 0·3, Zinci oxydati, Amyli tritici aa. 6·0. Vaselini, Lanolini aa. 15·0.

A. Polyfistelmethode.

- a) Historisches. Die Polyfistelmethode ist von E. S. London 1) 1905 in Angriff genommen und von ihm technisch ausgearbeitet worden.
- b) Das Wesen der Methode. Die Polyfistelmethode besteht darin, daß der Verdauungstraktus durch Anlegen von Fisteln in eine Reihe von-

¹) E. S. London, a) Zum Verdauungschemismus im tierischen Organismus unter physiologischen und pathologischen Verhältnissen. Zeitschr. f. phys. Chemie. Bd. 45. S. 381 (1905). — b) Ein reiner Pylorusfistelhund und die Frage über Gastrolipase. Ibid. Bd. 50. S. 125 (1906). — c) Methodische Angaben. Ibid. Bd. 51. S. 241 (1907). — d) Zur Technik der Eckschen Operation. Ibid. Bd. 51. S. 467 (1907). — c) Weitere methodische Angaben. Ibid. Bd. 53. S. 246 (1907).

einander abgegrenzter Abschnitte zerlegt wird. Diese Methode dient erstens dazu, das Schicksal verschiedenartiger Substanzen bei ihrem Fortschreiten durch einzelne Abschnitte des Verdauungstraktus zu verfolgen und zweitens zur Gewinnung der im Laufe der Verdauung abgesonderten Säfte (Galle, Pankreassaft, Darmsaft).

Die Ausführung der Polyfistelmethode ist nur dadurch möglich geworden, daß es gelang, die Fistel derart anzulegen, daß sie während des Versuches auch tatsächlich einen Teil des Verdauungstraktus vom anderen abtrennt. Diese Möglichkeit wurde durch Ausarbeitung einer Methode der Anlegung von Fistelröhren mit weitem Lumen gegeben.

Es sei zunächst diese Methode im allgemeinen geschildert. Auf die zu verschiedenen Darmabschnitten gehörenden Details wird an entsprechender

Stelle eingegangun.

- c) Methode der Anlegung von Fistelröhren mit weitem Lumen am Darm.
- 1. Man merkt sich die Schnittlinie und legt eine Beutelnaht nach Lembert, d. h. ohne die Schleimhaut mit der Nadel zu durchstechen, um sie herum an. Die Schnittlänge muß derart berechnet werden, daß der innere Rand der Fistelröhre mit seinem queren, d. h. kürzesten Durchmesser in die Schnittwunde eingeführt werden kann. Die Nahtstiche müssen möglichst klein und häufig sein. Die Distanz zwischen beiden parallelen Nahtreihen darf 2 mm nicht übersteigen. Der letzte Ausstich kommt gegenüber dem ersten Einstich zu liegen.
- 2. In der Mitte der Beutelnaht wird mit dem Skalpell ein Schnitt bis zur Submukosa gemacht, darauf die Mukosa ebenfalls mit dem Skalpell durchstochen und auf der übrigen Strecke mit der Schere aufgeschnitten, indem man durch sie gleichzeitig zur Schonung des Nahtfadens die Mukosa-Submukosa herauswölbt.
- 3. Der Operateur und der Assistent fassen (ersterer mit der linken Hand) mit den Pinzetten die Schnittränder in der Mitte und der Operierende schiebt mit der rechten Hand die Fistelröhre mit dem kürzesten Durchmesser ihres inneren Randes in den Darm hinein, indem er, die Wunde an ihrem distalen Ende mechanisch erweiternd, den ganzen inneren Rand ins Darmlumen einzuführen sucht. Dank solcher Manipulationen wird die minimale Dimension der Darmwunde erreicht.
- 4. Der Ein- resp. Ausstich des Fadens, welche vor dem Einführen der Fistelröhre nebeneinander lagen, erscheinen jetzt voneinander entfernt; infolgedessen wird die Beutelnaht mit derselben Nadel, welche aus diesem Grunde vor dem Zuknoten des Fadens von diesem nicht abgenommen werden darf, bis zur Stelle des ersten Einstiches fortgeführt. Der Faden wird zuerst in einen chirurgischen, darauf in einen einfachen Knoten gebunden. Dabei erscheinen die Schleimhautränder nach außen vorgestülpt. Sie müssen mittelst einer kleinen Schere oder eines Volkmannschen Löffels vollkommen entfernt werden. Darauf wird der Faden in entgegengesetzter Richtung um die Fistelröhre gebunden, zugeknotet und abgeschnitten.

- 5. Man zieht das Omentum majus hervor, legt einen Rand desselben auf den Fistelröhrenrand auf, durchschneidet es mit dem Skalpell in der Richtung des Diameters und schiebt die Schnittränder längs der äußeren Röhrenwand bis zur Berührung mit dem Darm herab. Hier wird das Netz in Falten gelegt und von beiden Seiten an die Darmwand angenäht. Zu diesem Zwecke bedient man sich langer Fäden und runder, nicht schneidender Nadeln. Man macht 2 Nahtstiche, indem man nur die Muskularis faßt.
- 6. Die Darmschlinge samt der Fistelröhre wird in ein Mulltuch eingewickelt und auf die Seite geschoben. Der äußere Fistelring wird auf diejenige Stelle der Bauchwand aufgelegt, an der man die Fistelröhre nach außen durchführen will, und entsprechend dessen Diameter wird ein Hautschnitt gemacht. Der Schnitt muß möglichst nahe an die Linea alba geführt werden, um die Fistelröhre in mehr vertikale Lage zu bringen. Dies ist besonders wichtig bei zweikammerigen Röhren, bei denen bei mehr horizontaler Lage das Hinüberfließen von einer Kammer in die andere längs der Schleimhaut ermöglicht wird. Ohne den Ring abzunehmen, wird dann unter Kontrolle der Finger der linken Hand die ganze Dicke der Bauchwand durchschnitten. Der Diameter des äußeren Ringes erscheint als der richtigste Zeiger für die Schnittlänge: Macht man einen längeren Schnitt, so bleibt nach Durchführen der Fistelröhre freier Raum übrig. wohin der Darminhalt gelangen und verschiedene Komplikationen (Abszesse. Geschwüre etc.) hervorrufen kann; andrerseits ist es sehr schwer, die Fistelröhre durch einen engeren Spalt durchzuführen. Die günstige Schnittlänge ist dadurch ausgezeichnet, daß die Fistelröhre nach dem Durchschneiden von der Haut dicht umfaßt wird.
- 7. Die Enden des Fadens, mit dem das Netz an den Darm angeheftet war, werden mittelst einer großen, mäßig gekrümmten Nadel unter Kontrolle des linken Zeigefingers in der Entfernung von 1-2 cm vom entsprechenden Schnittende, in $1-1\frac{1}{2}$ cm Distanz voneinander durch die Bauchwand geführt. Der Operierende schiebt dann durch den Schnitt der Bauchwand einen Péanschen Schieber durch und führt dessen Spitze unter Kontrolle des linken Zeigefingers aus der Schnittwunde der Linea alba heraus. Darauf senkt der Assistent die Darmschlinge samt Fistelröhre resp. Netz vorsichtig in die Bauchhöhle ein. Der Operierende faßt den Fistelrand mit dem bereit liegenden Péanschen Schieber. Mit einem zweiten Schieber wird der entgegengesetzte Fistelrand gefaßt, wenn aber die Fistelröhre von großem Kaliber ist, nimmt man einen dritten und einen vierten Schieber zu Hilfe. Man hilft sich nach Bedarf mit einer anatomischen Pinzette und zieht die Fistelröhre nach außen hervor. Die Fadenenden werden ad maximum angezogen und über einem Mullpolsterchen geknotet. Es ist ratsam, zu kontrollieren, ob nicht etwas in der Bauchhöhle in die Fadenschlinge geraten ist. In der Regel ist es nicht der Fall; doch ist mir ein Hund 20 Stunden nach der Operation dadurch zugrunde gegangen, daß eine Darmschlinge vom Faden mitgefaßt wurde. Diese ging in Gangran über und hatte eine Peritonitis zur Folge.

8. Die Bauchwunde wird zugenäht; auf die Fistelröhre wird der äußere Ring angelegt und darüber kommen noch 2 Gummiringe (abgeschnittene Stücke eines Gummischlauches von einem 3mal engeren Lumen als die Fistelröhre). Es ist sehr wichtig, darauf zu achten, daß die Ringe in richtige Lage kommen. Wenn die Gummiringe den äußeren Fistelröhrenring zu fest an die Haut andrücken, so daß letzterer alle Beweglichkeit einbüßt, so führt es gewöhnlich zu dem Resultat, daß der vom inneren Fistelröhrenrand zusammengequetschte Darmabschnitt gangränesziert, die Gangrän auf den die Fistelröhre umgebenden Bauchwandbezirk sich ausbreitet, was das Herausfallen der Fistelröhre zur Folge hat. Dies geschieht gewöhnlich am 3. bis 4. Tag nach der Operation. Wenn keine anderen schweren Komplikationen vorliegen, erscheint es möglich, den Hund zu retten, indem man eine zerlegbare Fistelröhre von größeren Dimensionen (Fig. 17) als die herausgefallene einführt. Dieses Vorgehen führt aber nicht immer zum Ziel. da die Gangrän häufig progressiven Verlauf zeigt und außerdem durch Zufließen von Chymus unterhalten wird. Falls aber der äußere Fistelring zu hoch über der Haut gelegen ist, kann dies das Abreißen der an die Bauchwand angehefteten Darmschlinge zur Folge haben (bei den Bewegungen des Tieres), was zu einer tödlichen Peritonitis, hervorgerufen durch Einfließen von Darminhalt in die Bauchhöhle, führen kann.

Die richtige Lage erlangt der äußere Ring in dem Falle, wenn er, an der Haut gut anliegend, dennoch freie Beweglichkeit in der ganzen Zwischenstrecke von $^{1}/_{2}$ — $^{2}/_{3}$ em besitzt.

Am folgenden Tag nach der Operation wird der untere Gummiring und nach 2—3 Tagen auch der obere Gummiring abgenommen und der äußere Fistelring an die Fistelröhre in der Entfernung von ca. ½—1 cm (je nach der Dicke der Bauchwand) von deren Rand angelötet. Gleichzeitig werden die zur Befestigung der Darmschlinge an die Bauchwand angelegten Nähte entfernt.

Die Hautnaht wird erst am 7. bis 10. Tag nach der Operation entfernt.

- d) Besonderheiten der Methodik der Fistelanlegung in verschiedenen Darmabschnitten.
- α) Am kompliziertesten erscheint die Anlegung der Pylorusfistel. An diese Stelle wie überhaupt ans Duodenum paßt nur eine große, zweikammerige Fistelröhre.

Bevor man zur Prozedur der Fistelanlegung selbst schreitet, ist es notwendig, zwei konstant bestehende Bauchfellfalten zu durchschneiden, welche von beiden Seiten des Pylorusringes nach der Leber ziehen. Es ist darauf zu achten, daß das seitens des Duodenums ziehende Band gewöhnlich mehr oder weniger bedeutende Gefäße enthält, die bei der Durchtrennung geschont werden müssen. In manchen Fällen trifft man außerdem noch einige fadenförmige Bänder, die am besten ebenfalls durchschnitten werden. Der zweite Vorbereitungsakt besteht darin, daß man denjenigen Teil des Gallenganges abpräpariert resp. heraustrennt, welcher in der Dicke

der Duodenalwand bis zu seiner Einmündungsstelle in das Darmlumen gelegen ist, ohne selbstverständlich den Darm zu eröffnen.

Beide beschriebenen Vorbereitungsakte sind in folgender Beziehung wichtig. Die Durchtrennung der Bänder verleiht dem Pylorusteil des Magens resp. Duodenums größere Beweglichkeit, wodurch die Befestigung der letzteren an die Bauchwand erleichtert wird. Dies ist besonders wichtig bei Hunden mit vorstehendem Thorax. Der zweite Akt erscheint deshalb von Wichtigkeit, weil er die Möglichkeit gibt, die erste Papille vom Rande der Fistelröhre weiter nach rückwärts zu schieben, was bei kurzem Duodenum von besonderer Bedeutung ist.

Es gilt überhaupt als Regel, daß der Darm mit der Zeit sich etwas proximalwärts zu verschieben pflegt. Wenn also die Papille zu nahe an die Fistelscheidewand zu liegen kommt, kann sie mit der Zeit jenseits derselben sich verschieben, so daß das Sekret dieser Papille (Galle und Pankreassaft), anstatt durch die anale Kammer nach außen abzufließen, sich den durch die orale Kammer heraustretenden Magenausscheidungen beimengt.

Zum Zwecke der möglichst bedeutenden Entfernung der ersten Papille vom Fistelröhrenrand ist es vorteilhaft, mit der analen Befestigungsnaht denjenigen Bezirk des Duodenums mitzufassen, aus welchem der Gallengang herauspräpariert war. Die orale Befestigungsnaht zieht durch die Serosa resp. Muscularis des Pylorusteiles des Magens in dem Abstand von 1—2 cm vom Pylorusring.

Bekanntlich mündet der erste Pankreasgang in der Regel in die gleiche Papille mit dem Gallengang ein, indem er in den letzteren unweit der Papille durchbricht. Es kommen aber verschiedene Anomalien vor; es kann z. B. der Pankreasgang oberhalb der Gallenpapille einmünden, auch kommt ab und zu außer den beiden Hauptgängen noch ein akzessorischer Ausführungsgang vor, welcher gerade an der für die Fistel bestimmten Stelle einmünden kann. Alle diese Anomalien, wenn sie auch selten sind, müssen in Betracht gezogen werden. Am einfachsten ist es dann, den abnormen Gang zwischen zwei Ligaturen zu durchschneiden.

Um Beimengungen der Ausscheidungen der ersten Papille zu vermeiden, ist es vorteilhaft, einige Wochen vor der Pylorusfistelanlegung eine Transplantation der genannten Papille vorzunehmen.

Die Operation¹) setzt sich aus folgenden einzelnen Momenten zusammen:

1. Am Duodenum werden zwei Klemmpinzetten angelegt; die eine am Pylorusende, in einiger Entfernung von der Einmündungsstelle des Gallenganges, und die andere im Zwischenraum zwischen der Papillaröffnung und dem zweiten Pankreasausführungsgang.

¹) E. S. London, Weitere methodische Angaben. Zeitschr. f. physiol. Chemie. Bd. 62 (1909).

- 2. 1 cm von der Einmündungsstelle des Gallenganges in das Duodenum entfernt wird der erste Knoten derjenigen Naht angelegt, mit welcher späterhin der Duodenallappen angenäht werden soll.
- 3. Der mit provisorischer Ligatur versehene Lappen wird aus dem Duodenum in der Weise herausgeschnitten, daß die Papille in einiger Entfernung vom Lappenrande zu liegen kommt.
- 4. Die Ränder des Duodenaldefektes werden zu der herangezogenen ersten Jejunumschlinge zugenäht, auf welche Weise der entstandene Defekt am besten ergänzt wird.
- 5. An den Lappen wird die eine oder die andere Schlinge des Duodenums oder des übrigen Darmteiles am besten die zur Defektergänzung dienende erste Jejunumschlinge herangezogen und mit dem rechten Rand des Lappens durch eine fortlaufende Naht vereinigt; darauf wird neben der Naht eine Öffnung in die Darmwand eingeschnitten, in welche der linke Lappenrand hineingestülpt und vernäht wird.

Zwecks Beseitigung der Beimengung der Säfte aus der ersten Papille zum Magenbrei wurde noch in anderer Weise verfahren. Lang 1) hat z.B. vorgeschlagen, den Gallengang samt dem ersten Pankreasgang zu unterbinden und die Gallenblase in eine Darmschlinge einmünden zu lassen E. Zunz 2) hat eine besondere Kanüle beschrieben. Cohnheim und Dreyfus 3) legten am Duodenum nahe beieinander zwei Fisteln an und ließen den Hund während des Versuches auf einer schiefen Ebene stehen.

Anwendung der Pylorusfistel. Die Pylorusfistel verfolgt dreierlei Zwecke:

1. Die Bestimmung der Verdauung resp. Resorption im Magen, zu welchem Zwecke das Exkret aus der oralen Fistelhälfte aufgefangen wird; 2. die Erforschung des Absonderungsganges aus der ersten Papille (Galle und Pankreassaft), wozu die anale Fistelhälfte (der Ballon befindet sich in der Mitte zwischen der ersten und zweiten Papille) dient; 3. die Untersuchung der Gallensekretion, zu welchem Zweck der erste pankreatische Gang während der Operation unterbunden wird.

Versuchsanstellung am Pylorusfistelhund (Fig. 23). Behufs Regulierung der Pylorusfätigkeit spritzt man durch die Röhre C des Ballonapparates von Zeit zu Zeit entweder den vom selben Hund in einem Vorversuch gewonnenen Magenbrei oder Produkte der Pepsinverdauung in vitro oder — was auch am einfachsten ist — eine $5^{\circ}/_{\circ}$ ige Pepton(Witte)lösung in $^{1}/_{10}$ normalen Salzsäurelösung. Zur Herstellung der Pepsinverdauungsprodukte verfährt man in der Weise, daß man $100-200\,g$ fein gemahlenes Fleisch

¹) Lang, Über Eiweißverdauung und Eiweißresorption im Magen des Hundes. Biochemische Zeitschrift. Bd. 11. S. 225 (1906).

²) E. Zunz, Eine Kanüle zur Choledochoenterotomie. Zeitschr. f. biolog. Technik und Methodik. Bd. 1, S, 134 (1908).

³) O. Cohnheim und Dreyfus, Zur Physiologie und Pathologie der Magenverdauung. Zeitschr. f. physiol. Chemie. Bd. 58. S. 50 (1908).

mit 500 cm³ natürlichem oder künstlichem Magensaft bei 38°C binnen 12 bis 24 Stunden verdauen läßt. Man läßt den Verdauungsbrei durch ein feines Sieb und spritzt denselben portionenweise je nach Bedarf ins Duodenum. Der in das Gefäß d fließende Saft (Galle + Pankreassaft) wird, wenn es darauf ankommt, zum Injektionsbrei zugefügt. Zur Sicherheit färbt man den Injektionsbrei mit Methylenblau. Läßt der Ballon zufällig nach, so bemerkt man dies gleich am Blauwerden der abfließenden Säfte.

5) Die mittlere Duodenalfistel wird in der Mitte der ersten und zweiten Papille angelegt. Der Darmschnitt muß derart geführt werden, daß die Scheidewand näher an die erste als an die zweite Papille zu liegen kommt, indem die Darmwand, wie oben angedeutet, mit der Zeit sich

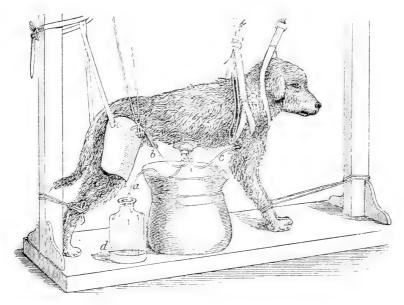


Fig. 23.

proximalwärts vorzuschieben pflegt, so daß die zweite Papille entweder auf das Niveau der Scheidewand gelangt und infolge der Peristaltik der einen oder anderen Seite derselben balanciert, oder aber sie stellt sich proximal von der Scheidewand fest.

Anwendung der mittleren Duodenalfistel. Die mit dieser Fistel verfolgten Zwecke sind zweierlei Art: 1. Die Bestimmung der aus der ersten Papille stammenden Säfte für den Verdauungsprozeß und 2. die Verfolgung der Pankreassekretion aus der zweiten Papille.

Versuchsanstellung. Dem ersten Zweck entsprechend sammelt man den aus der oralen Fistelhälfte heraustretenden Chymus, während für den zweiten die aus der analen Hälfte kommenden Säfte aufgenommen werden. Zum Regulieren der Pylorustätigkeit leitet man in das untere Duodenum im ersteren Falle den in einem Vorversuch am selben Hund gewonnenen Brei oder einen künstlichen Fleischverdauungsbrei unter Zufügung von aus früheren Versuchen gewonnenen Säften aus beiden Papillen. Die Säfte lassen sich ganz gut konservieren, wenn man sie auf flachen, breiten Tellern bei einer Temperatur von $20-25^{\circ}$ C eintrocknen läßt. Die Trockensubstanz wird dann noch im Exsikkator über Schwefelsäure wasserfrei gemacht. Solche Trockensäfte behalten ihre Verdauungskraft unendlich lang. Will man aus der Trockensubstanz den natürlichen Saft herstellen, so achte man darauf, daß der Saft der ersten Papille im Mittel nach den mehrfachen Untersuchungen von London und Polowzowa¹) $0.2^{\circ}/_{\circ}$ N und der Pankreassaft der zweiten Papille $0.19^{\circ}/_{\circ}$ N enthält.

Handelt es sich um das Studium der Pankreassaftsekretion, so verfährt man anders. Der aus der oralen Fistelhälfte herausfallende Brei wird mittelst einer Pravazspritze durch das Einleitungsrohr in den Darm weiter befördert. Vor dem Einspritzen wird der Brei durch ein feines Sieb durchgelassen und mit Methylenblaulösung gefärbt. Der zwischen je zwei Einspritzungen ausgeschiedene Pankreassaft wird abgemessen und, wenn es nur auf Quantumbestimmungen der Pankreassekretion ankommt, zum Einspritzungsbrei hinzugefügt. Soll aber der Saft noch zu irgend welchen anderen Untersuchungen dienen, so muß er durch entsprechende Mengen von Vorratssaft ersetzt werden. Nur bei einem solchen Verfahren bekommt man genaue. als Norm geltende Daten. Bei der üblichen Methode (Pankreasfistel) verläuft der Verdauungsprozeß anormal, weil der während des Versuches sich absondernde Saft dem Verdauungstraktus entzogen wird.

γ) Die untere Duodenalfistel wird gewöhnlich 5—6 cm unterhalb des zweiten Pankreasganges angelegt, in welchem Falle die Operation gar keine Schwierigkeiten darbietet. Wenn es aber wünschenswert erscheint, die Fistel weiter unten anzulegen, ist es nötig, diejenige Mesenterialfalte anzuschneiden, welche den unteren Teil des Duodenums resp. den Anfangsteil des Jejunums an die Wirbelsäule (Plica duodeno-jejunalis) befestigt.

Auch hier muß eine zweikammerige Fistelröhre angelegt werden.

Anwendung. Die mit dieser Fistel verfolgten Zwecke sind zweierlei Art: 1. Die Bestimmung der Bedeutung der Duodenalverdauung, wozu die aus der oralen Fistelkammer aufgenommenen Produkte der Analyse unterworfen werden; 2. zur Gewinnung des Saftes, welcher von den duodenalen Drüsen abgesondert wird, zu welchem Zwecke der aus der analen Fistelöffnung abfließende Saft gesammelt wird; letzterer stammt aus dem zwischen Ballon und Scheidewand eingerahmten Darmabschnitt.

Versuchsanstellung. Dieselbe wie bei der mittleren Duodenalfistel.

δ) Die übrigen Fisteln werden nach den oben erwähnten allgemeinen Regeln angelegt. Es sei nur noch bemerkt, daß die Ileozökalfistel am Ende des Ileums 4—5 cm entfernt vom Coekum anzulegen ist.

¹) E. S. London und W. W. Polowzowa, Über das Verhalten verschiedener Eiweißarten im Magen und oberen Duodenum des Hundes. Zeitschr. f. physiol. Chem. Bd. **57**. S. 113 (1908).

z) Unter dem Namen "Resorptionshund" soll ein Hund verstanden werden, bei dem ein beliebiger Darmabschnitt, vielleicht auch der ganze Darm. von dem Orte der zweiten oder sogar der ersten Papille bis zum Coekum zwischen zwei Fisteln herausgesondert wird, nachdem vorher der zweite Pankreasgang unterbunden worden war, so daß außerhalb der Versuchszeit der Darm unter den für denselben normalen Ernährungsverhältnissen sich befindet und nur während des Versuches dem Einfluß der von oben zufließenden Verdauungssäfte entzogen wird (Speichel, Magen- resp. Pankreassaft, Galle). Die Vorzüge, welche diese Methode der Heraussonderung von Darmabschnitten vor der Thiry-Vellaschen, welche weiter unten ihre Beschreibung findet, hat, sind ohne weiteres klar: erstens wird der zur Untersuchung von normalen Verhältnissen bestimmte Darmabschnitt den normalen anatomisch-physiologischen Bedingungen nicht entzogen, zweitens ist dadurch die Möglichkeit gegeben, einen Darmteil beliebiger Länge zu isolieren.

Abgesehen davon, welchen Darmabschnitt wir zwischen zwei Fisteln zu isolieren wünschen, muß in die proximale Fistel eine zweikammerige Fistelröhre eingeführt werden, welche allein das isolierte Darmstück vor dem Hineinfließen von aus den oberhalb desselben liegenden Bezirken stammenden Säften zu verhüten vermag. Die zweite anale Fistelröhre kann auch einfach sein. Der Resorptionshund kann auch selbstverständlich mehrere Fisteln haben.

Anwendung. Der Resorptionshund wird gebraucht, wenn es wünschenswert erscheint, 1. die Resorptionserscheinungen im Darm zu untersuchen und 2. die Wirkung des Darmsaftes zu verfolgen. Wenn man dessen Einfluß möglichst zu beschränken wünscht, benutzt man die Atropininjektion.

Als Nebenprodukt wird während des Versuches Darmsaft aus dem Darmabschnitt, welcher sich zwischen der Fistelröhrenscheidewand und dem Ballon befindet, durch das Ableitungsrohr (c) ausgeschieden.

Versuchsanstellung. Die Ausrüstung des Hundes ist aus der vorliegenden Abbildung (Fig. 24) klar. Man leitet die Versuchsflüssigkeit durch das Rohr in den Darm und nimmt sie dann in ein Kölbehen auf, welches, falls es sich auch um Darmsaftwirkung handelt, mit Eis beschickt sein muß.

Will man vergleichen, wie sich die Resorption verschiedener Darmteile verhält, so muß man die zu vergleichenden Abschnitte durch zweikammerige Fistelröhren trennen. Als Beispiel soll der Fall (Fig. 25 und 26) angegeben werden, in dem London¹) und Sivré vergleichende Untersuchungen über die Resorption in der oberen und der unteren Darmhälfte ausgeführt haben. Es waren dem Hunde 3 Fisteln angelegt. Eine von den Fistelröhren (eine doppelte, mit einer Scheidewand, ³8/22 mm im Querschnitt) wurde in den unteren Teil des Duodenums eingeführt: die zweite derselben Art, nur in etwas kleineren Dimensionen — ³0'20 mm, wurde in die markierte Mitte und die dritte endlich mit rundem Lumen (22 mm

¹) E. S. London, Weitere methodische Angaben, Zeitschr. f. physiol. Chem. Bd. **60**. S. **191** (1909).

im Querschnitt), ohne Scheidewand, in den Endteil des Duodenums, einige Zentimeter vom Coekum entfernt, angelegt. Die Ausrüstung des Hundes zum Versuch ist leicht aus den zwei beiliegenden Zeichnungen zu ersehen, die das Aussehen des Hundes während des Versuches von zwei Seiten aus darstellen. Die Zeichnung 25 stellt den Hund von der rechten Seite dar. Hier ist die Fistelröhre, welche in das Duodenum angelegt war, zu sehen; a bedeutet die Röhre, durch welche man den Ballon aufbläht; b die Röhre, durch welche die Versuchsflüssigkeit in das Jejunum eingeleitet wird; c die Röhre, durch welche in die Schale e der Darmsaft abfließt, welcher während des Versuches von der Schleimhaut des Darmteiles, der sich zwischen der Scheidewand der Fistel und dem Ballon befindet, abgesondert wird. Die Flüssigkeiten, die sich oberhalb der Fistel sammeln, fließen in das

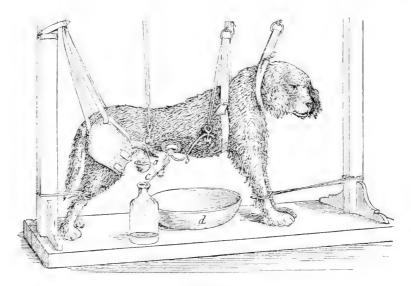


Fig. 24.

Gefäß d ab, der Wand der proximalen Fistelhälfte entlang. Die unresorbiert gebliebene Versuchsflüssigkeit läuft durch die Röhre f (Fig. 26) in das Gefäß l ab; die Röhre f befindet sich in einem Korken, der im Proximalteile der mittleren Fistel eingesetzt ist. In die distale Hälfte der letztgenannten Fistelröhre ist ein Pfropfen mit drei Röhren eingebracht worden: g für das Aufblähen des Ballons: h zum Einleiten der Versuchsflüssigkeit in die untere Hälfte des Darmkanals und i zum Abfließen der Absonderungen der Schleimhaut des Darmteiles, welcher sich zwischen der Scheidewand der Fistelröhre und dem Ballon befindet, in das Gefäß m. Der unresorbiert gebliebene Teil des in die untere Darmhälfte eingespritzten Versuchsmaterials scheidet sich in das an der dritten Fistel angehängte Kölbehen k aus (Fig. 25 u. 26).

Wir wollen noch einige Fragen beantworten:

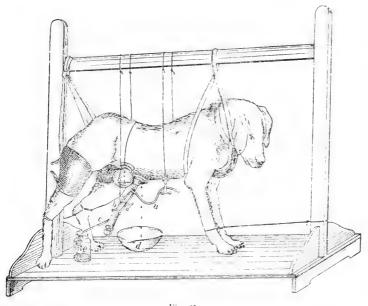


Fig. 25.

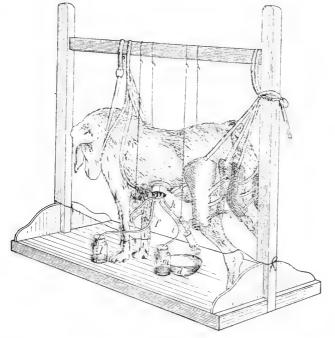


Fig. 26.

1. Wieviel Fisteln können im Maximum einem Hunde angelegt werden?

Die größte Zahl, mit der ich es zu tun hatte, war bis jetzt vier. Es ist aber nicht ausgeschlossen, daß noch mehr Fisteln angelegt werden können. Jedenfalls ist es vorteilhafter, bei einer und derselben Operation alle Fisteln anzulegen, als je eine Fistel bei jeder Operation. Im letzteren Falle hat man bei den weiteren Operationen mit dem Netz, welches an den früheren Fistelstellen verwächst, Schwierigkeiten.

2. Wie lange leben die Fisteltiere, wenn kein Zufall ihrem Leben ein

Ende setzt?

Ich besitze Fistelhunde, die schon vor 4 Jahren operiert worden sind und sich vorläufig im besten Zustande befinden.

Das Schlimmste ist, daß sich die Fistel nach mehreren Monaten, sogar nach Jahren bei einigen Tieren trichterförmig vom Darm abtrennt, so daß die Kontinuität des Darmlumens sich vollkommen herstellt, und das Tier für Experimente an der ausfallenden Fistel untauglich wird. Der Hundeorganismus kämpft in dieser Weise siegreich gegen unsere Eingriffe.

B. Dauerisolierungsmethode.

I. Speichelfistel.

- a) Historisches. Zuerst wurde die Methode der Dauerfistelanlegung durch Einheilung einer metallischen Kanüle von Cl. Bernard 1) 1856 ausgeführt. Schiff²) modifizierte 1867 die Methode in der Weise, daß er den abpräparierten Speichelgang durchschnitt und das zentrale Ende in eine Mundhöhlenwandöffnung einnähte. Glinski 3) hat 1895 diese Schiffsche Methode bedeutend verbessert.
 - b) Operative Technik.
- 1. Man sucht die Öffnung des betreffenden Ganges an der Mundschleimhaut auf. Die Gl. submaxillaris mündet ins Frenulum linguae ungefähr 0.5 cm über dem Mundhöhlenboden. Man erkennt die Stelle an deren Farbe, die röter ist als die der umgebenden Schleimhaut. Die Parotis mündet in der Oberlippe in einer Entfernung von 1 cm vom Zwischenpunkte am Zahnrand zwischen dem ersten und zweiten Backzahn. Daneben befindet sich die Mündung der Orbitaldrüse, ein wenig tiefer im Munde, entsprechend dem dritten Backzahn. In den betreffenden Speichelgang wird, um ihn während der Operation leichter vor Augen zu behalten, eine entsprechend feine Knopfsonde eingeführt, die Schleimhaut um den Speichelgang im Umkreisdiameter von 3/4-1 cm umschnitten und der letztere bis zu einer Tiefe von ca. 05 cm abpräpariert. An die frei hängende Schleimhaut wird eine Ligatur angelegt.

2. In der Nähe des entblößten Speichelganges wird die Mundhöhlenwand mittelst eines scharfen Skalpells durchstochen. Durch die gebildete Öffnung,

2) Schiff, Leçons sur la physiologie de la digestion. 1867.

¹⁾ Cl. Bernard, Leçons sur la physiologie expérimentale. 1856.

³) Glinski, Zur Methodik des Studiums der Speichelsekretion. Verhandl. d. Ges. russischer Ärzte zu St. Petersburg. S. 340 (1894).

welche durch Abschneiden des Randes noch etwas vergrößert wird, wird die frei hängende Schleimhaut mittelst der erwähnten Ligatur durchgezogen und durch Nähte an die äußere Mundhöhlenwand befestigt. Beim Durchziehen des Schleimhautstückenens achte man darauf, daß der Speichelgang nicht torquiert wird. Es folgt das Vernähen der Schleimhautwunde.

Handelt es sich um den D. Stenonianus, so wird der präparierte Schleimhautlappen einfach auf die Haut der betreffenden Wange genäht. Soll aber der D. Bartholinianus oder Whartonianus transplantiert werden, so ist es ratsam, zuerst die beiden zusammen auf die äußere Fläche des Mundhöhlenbodens abzuleiten, da dieselben ganz nahe nebeneinander am Frenulum linguae liegen und nicht ohne Schwierigkeit getrennt werden können. Die Orientierungssonde wird in den D. Whartonianus eingeführt. Man wartet ab, bis die Wunde verheilt ist und unterbindet den nicht in Betracht kommenden Speichelgang.

c) Postoperative Behandlung. Die Transplantation der Speichelgänge fällt am günstigsten aus bei Verwendung mittelstarker Seide und dichten, knotenartigen Nähten. Sollte die Heilung der Wunde nicht per primam, sondern per secundam intentionem erfolgen, so entsteht eine Narbe, welche zu einer Verengung der Öffnung des Ganges führt. Um diesem Mißerfolg vorzubeugen, ist es notwendig, den Speichelgang möglichst oft mit einer entsprechenden Knopfsonde zu bougieren.

Es kommt auch vor, daß das transplantierte Schleimhautstück abreißt oder in die Mundhöhle hineingezogen wird. Ist das einmal geschehen, so ist die Operation als für immer mißlungen zu betrachten.

Ist die Operation gelungen, so muß man von Zeit zu Zeit die der Fistelöffnung anliegenden Borken aufweichen und die Durchgängigkeit des Kanales prüfen, indem man bei dem Hunde Speichelabsonderung durch Darreichen von Zwieback oder Eingießen von Säurelösung in den Mund hervorruft.

- d) Anwendung.
- 1. Aufsammlung von Speichel aus einer bestimmten Drüse unter normalen Umständen.
 - 2. Verfolgung der Speichelsekretion unter verschiedenen Bedingungen.
- 3. Studien der Gehirnfunktionen nach der Methode von "bedingten Reflexen" (Pawlow).
- e) Versuchsanstellung. An der Hautstelle, an welcher der Speichelgang einmündet, wird ein mit einem Schirm aus durchsichtigem wasserdichtem Stoff versehener Trichter (Fig. 22) vermittelst Mendeljeeffschen Kittes (100 g Kolophonium, 25 g gelbes Wachs, 40 g Eisenmennige, Fe $_2$ O $_3$) befestigt; auf den Hals des Trichters wird ein Häkchen aufgekittet und auf das letztere ein graduierter Zylinder. Die Hautstelle, an der der Trichter angeklebt werden soll, wird vermittelst einer Schere von den Haaren befreit (nicht rasiert!) und mit dem geschmolzenen, aber bis zur teigigen Konsistenz abgekühlten (um Ekzem zu vermeiden) Kitt beschickt und nun wird

der Trichter angeklebt. Vor dem Abnehmen des Trichters wird der Kitt mit einem erhitzten Metallstab vorsichtig angewärmt.

Anhangsweise soll hier auch die Technik der temporären Fistelanlegung angeführt werden.

Dem narkotisierten resp. kurarisierten Tiere macht man zwecks Isolierung des Ductus Whartonianus und Ductus Bartholinianus an der unteren Seite der Schnauze, parallel dem Unterkieferrande in einem Abstand von ungefähr 1 cm von demselben einen 3—4 cm langen Schnitt, beginnend 2 cm vom Kinnwinkel. Man separiert die Faszie und schneidet den M. mylohyoideus durch. Man präpariert dann vorsichtig den durchschnittenen Muskel und findet darunter auf dem M. genioglossus die Ausführungsgänge der submaxillaren und sublingualen Drüse. Der D. Whartonianus unterscheidet sich von dem D. Bartholinianus dadurch, daß er dicker ist und näher der Mittellinie liegt. Will man die Ausführungsgänge deutlicher hervortreten lassen, so bringt man in den Mund des Tieres irgend ein Reizmittel, z. B. schwache Salzsäure. Man legt an den bloßgelegten Gang peripherisch eine Ligatur an, schneidet den Gang soviel an, daß die bereitliegende Kanüle leicht eingeführt werden kann. Die eingeführte Kanüle wird mit einer Ligatur befestigt.

Behufs Isolierung des D. Stenonianus macht man einen 3 cm langen Hautschnitt in dem mittleren Teil der Linie, welche den unteren Ohrmuschelrand mit der Basis des ersten Backzahnes vereinigt, und findet leicht den Ausführungsgang auf den M. masseter.

Anwendung:

Studium der Speichelabsonderung unter nervösen und vaskulären Einflüssen.

Versuchsanordnung. Die Kanüle, welche in den Ausführungsgang eingeführt worden ist, wird mittelst Kautschukröhre mit einem langen, auf einer Skala horizontal liegenden Glasrohre verbunden. Während des Versuches notiert man von Zeit zu Zeit das Niveau des Speichels im Rohr, das, sobald es gefüllt ist, durch ein anderes Rohr ersetzt wird. Anstatt die Röhre immer zu wechseln, kann man auch anders verfahren: man schaltet vor dem Glasrohr ein seitliches Abflußrohr ein, durch welches man jedesmal die angesammelte Flüssigkeit ablaufen läßt.

Die Speichelabsonderung läßt sich auch registrieren, und zwar in verschiedener Weise. Entweder läßt man nach $C.\ Ludwig^{\,1})$ den Speichel aus der Kanüle in ein Wassermanometer mit leichtem Hebel fließen, oder man läßt nach Bayliss und $Starling^{\,2})$ Speicheltropfen auf eine kleine Glimmerscheibe fallen, welche mit dem Hebel einer Mareyschen Trommel verbunden ist; die Kapsel wird durch ein Kautschukrohr mit einer zweiten

¹⁾ C. Ludwig, Lehrbuch der Physiologie. 1861.

²) Zitiert nach J. P. Pawlow, Tiegerstedts Handbuch der physiologischen Methodik. II. Teil. 2. Abt. S. 180 (1908).

Trommel verbunden, deren Hebel an einer langsam rotierenden Trommel die fallenden Tropfen verzeichnet. *Popielski* 1) photographierte das sich in dem Rohr fortbewegende Niveau der Flüssigkeit.

II. Ösophagusfistel.

- a) Historisches. Cl. Bernard²) war der erste, der die Ösophagusfistel eingeführt hat. Am Hunde technisch ausgearbeitet hat sie Pawlow.
 - b) Operative Technik.
- 1. Es wird ein Hautschnitt längs des inneren Randes des linken M. sternocleidomastoideus, von der unteren Kehlkopfgrenze angefangen. 10 cm weit abwärts geführt.
- 2. Man isoliert die Speiseröhre in der Mitte des Hautschnittes in einer Strecke von 5 cm. legt an beiden Enden des isolierten Abschnittes je eine Gummischlauchligatur an und durchschneidet in der Mitte.
- 3. Die Ösophagusabschnitte werden in die Winkel der Hautwunde gebracht und dort mit den naheliegenden Halsmuskeln und mit der Haut vernäht, wobei man darauf achtet. daß die Ösophagusöffnungen nicht verengt werden. Die zwischen den Ösophagusenden liegenden Gewebe werden schichtweise vernäht. Die Hautbrücke, welche die eingenähten Enden trennt, soll nicht weniger als 4—5 cm betragen. Diese Brücke kann auch von vornherein unverletzt gelassen werden, in diesem Falle aber ist die Operationsausführung schwerer.
- c) Postoperative Behandlung. Es ist für den Erfolg der Operation sehr wichtig, daß in der Postoperationsperiode keine Eiterung eintritt; denn ist dies geschehen, so verbreitet sie sich sehr rasch. Deshalb muß die Operation möglichst rein gemacht werden und nach der Operation muß die Wunde bis zur vollen Verheilung mit O·1° oiger Sublimatlösung mehrere Male im Tage gewaschen werden.

Die Fütterung des Tieres geschieht in der ersten Zeit nach der Operation durch die Magenfistel. Nachdem aber die Wunde völlig geheilt ist, beginnt man mit der Fütterung durch den unteren Ösophagusabschnitt mittelst einer Magensonde. Wird der ösophagotomierte Hund zur Gewinnung von größeren Magensaftmengen gebraucht, so müssen ihm reichlichere Quantitäten von Wasser resp. Kochsalz zugeführt werden.

Es kommt nicht selten vor, daß trotzdem während der Operation ein genügend großer Zwischenraum zwischen beiden Ösophagusenden gelassen worden ist, letztere sich mit der Narbung einander nähern, so daß sich eine Kontinuität des Ösophagus einstellen kann. In einem solchen Falle bleibt nichts anderes übrig, als eine quere Exzision in die Hautbrücke zu machen und die Wundränder der Länge nach zu vernähen.

Ist die Wunde völlig geschlossen, so lockert man die Verbindung der Ösophagusenden mit den umgebenden Geweben durch einfache Traktion mittelst den in die Öffnungen eingeführten Fingern.

¹⁾ Popielski, Dissertation, St. Petersburg, 1896.

²⁾ Cl. Bernard, Leçons de physiologie opératoire. 1878.

Gewöhnlich wird die Ösophagotomie mit einer Magenfistel kombiniert (Pawlow und Schumowa-Simanowskaja). Man legt zunächst die Magenfistel an und schreitet zur Ösophagotomie nur dann, wenn die Magenfistel gut verwachsen ist. 1)

- d) Anwendung:
- 1. Studium der Mundverdauung.
- 2. Aufsammlung von Magensaft, welcher durch Scheinfütterung hervorgerufen wird.

e) Versuchsanstellung. Handelt es sich um Abschätzung der Mundverdauung, so gibt man dem Tier eine bestimmte Speise per os und nimmt die aus der oberen Ösophagusöffnung herausfallenden Entleerungen auf.

Zur Gewinnung von größeren Mengen Magensaft verfährt man folgenderweise: Der Hund wird in das Gestell getan, die Magenfistel geöffnet, der Magen mehrmals gründlich mit Wasser ausgespült und unter der Magenfistel ein Trichter mittelst Gummischläuchen befestigt. Der Trichter enthält Glaswolle, welche dazu dient, den Schleim zurückzuhalten. Das Trichterrohr wird durch einen Gummischlauch mit dem für die Aufnahme des Magensaftes bestimmten Gefäß verbunden. Man stellt vor das Tier eine Schale mit 1/2 kg in kleine Stücke geschnittenem Fleisch. Der Hund schluckt gierig die Fleischstücke, welche aber bald durch die obere Ösophagusöffnung in dieselbe Schale herausfallen, vom Hund wieder verschluckt werden, wieder herausfallen usw. Die Scheinfütterung kann mehrere Stunden dauern. Während der ganzen Zeit scheidet sich Magensaft ab.

Nicht immer gewinnt man bei der Scheinfütterung reinen Magensaft, da sich oftmals in den Magen Darmsäfte (Galle, Pankreas- und Darmsaft) ergießen. Die Beimengung von Duodenuminhalt läßt sich ohne Schwierigkeit erkennen, indem die Galle einen gelben Niederschlag bildet. Es gibt Hunde, bei denen die Beimengung von Darmsäften als Regel gilt; andrerseits aber gibt es solche, bei denen die Darmsäftebeimengung ganz ausfällt. Der Magensaft, der sonst wasserklar ist, nimmt bei der Gallenbeimengung eine gelbe Farbe an. Zur Entfärbung benutzt man mit gutem Erfolg Tierkohle.

III. Magenfistel.

- a) Historisches. Bassow²) und Blondlot³) waren die ersten, die eine Magenfistel zum Studium der Magenphysiologie angewendet haben.
 - b) Operative Technik:
- 1. Durch den 5—6 cm langen Bauchschnitt, sei es in der Linea alba (zu Scheinfütterungsversuchen), sei es an einer anderen Stelle, z. B. längs der Rippenlinie, wird die vordere Magenwand mit zwei Fingern nach außen hervorgezogen. Man umsticht mit einer Beutelnaht die Linie des beabsichtigten Schnittes.

¹) J. P. Pawlow und Schumowa-Simanowskaja, Die Innervation der Magendrüsen beim Hunde. Arch. f. Anat. u. Phys. 1895.

²⁾ Bassow, Bulletin de la Société des Naturalistes de Moscou. T. 16 (1842).

³⁾ Blondlot, Traité analytique de la digestion. p. 202 (1842).

- 2. Durch den gemachten Schnitt wird die untere Scheibe der Fistelröhre in die Magenhöhle eingeführt; die Beutelnaht wird zugezogen und über Mullpolsterchen geknöpft.
- 3. Man zieht durch die Seromuscularis der der Scheibe anliegenden Magenwand einander gegenüber 4 Fäden, deren Enden mittelst einer Nadel an entsprechenden Stellen durch die Bauchwand gezogen werden. Nach Zuziehen der 4 Nähte wird die Röhre in der Wunde fixiert. Wenn nötig, legt man noch Hilfsnähte an.
- c) Postoperative Behandlung. Dank der desinfizierenden Wirkung der Magensalzsäure verläuft gewöhnlich die postoperative Periode ohne irgend welche Komplikationen, so daß keine besondere Pflege der Wunde erforderlich ist. Nach ungefähr 3 Wochen ist die Fistelkanüle schon mit einer derben Narbe umgeben.
 - d) Anwendung:
- 1. Die Magenfistel wird häufig als Hilfsfistel benutzt, weil sie zur Orientierung dienen kann, ob der Magen leer ist.
- 2. Will man reinen Magensaft aus der Magenfistel beim nicht ösophagotomierten Hunde bekommen, so verfährt man folgendermaßen: Man öffnet die Fistelkanüle, spült den Magen gründlich mit warmem Leitungswasser aus und gibt dem Hunde 20—30 Stücke Sehnen mit Fett allmählich zu verschlucken. Die zugeführten unverdaulichen Stücke kommen bald wieder durch die Fistelöffnung ganz nach außen. Sobald alle Stücke herausgefallen sind, verschließt man die Fistelröhre mit einem Kork, welcher mit ziner bogenförmigen Glaskanüle versehen ist. Nach Verlauf von 5—6 Minuten beginnt die Ausscheidung des Magensaftes. Sie dauert ca. 1½—2 Stunden. Der so gewonnene Magensaft ist mit Speichel vermengt. Ebenfalls nicht selten wird der Magensaft durch die aus dem Duodenum kommenden transpylorischen Säfte verunreinigt. Zur Gewinnung ganz reinen Magensaftes eignet sich die Methode also nicht.
- 3. Zum Studium des Magenchemismus verfährt man je nach den Versuchsbedingungen.
- e) Versuchsanstellung. Handelt es sich um das Studium des Entleerungs- resp. Verdauungsvorganges, so verfährt man in folgender Weise: Der Hund wird ins Gestell getan und seine Fistelkanüle geöffnet. Ist der Magen leer, so bekommt man aus der Fistelöffnung entweder keine Ausscheidung oder nur geringe Mengen von alkalischem Schleim. Es kommt auch nicht selten vor, daß im nüchternen Magen 20—30 cm³ schleimhaltiger saurer Magensaft aufgefunden werden. Ein solcher Safterguß aus der Fistelöffnung ist fast die Regel, wenigstens bei gierigen Hunden, wenn man das Öffnen der Fistel vornimmt, nachdem der Hund mehr als 5—10 Minuten aufgestellt war und folglich auf das Futter gewartet hat. Es soll deshalb die Fistelkanüle möglichst rasch geöffnet werden, sobald der Hund ins Gestell getan worden ist. Gleich nach dem Schließen der Kanüle soll die Fütterung erfolgen,

Nach einer bestimmten Zeit, wenn die Magenverdauung unterbrochen werden soll, öffnet man die Fistelkanüle und läßt den Mageninhalt in das

untergestellte Gefäß fließen. Ist der Mageninhalt breiig oder flüssig, was gewöhnlich in der späteren Verdauungsperiode der Fall ist, so geht die Ausscheidung von selbst vor sich. Ist aber die Speise noch wenig angegriffen, so muß man sich gleich von Anfang an damit helfen, die rechte Bauchwandseite (die Fistel wird gewöhnlich an der linken Seite angelegt) stark mit der Hand zu drücken, und zwar in der Richtung zur Fistel. Die Massage der Bauchwand begünstigt aber die Fistelexkretion nur so lange, als der Magen noch mäßig gefüllt ist. Bleibt die günstige Wirkung der Massage aus. so nimmt man die Entleerung mit dem kleinen Finger der rechten Hand vor. Die letzten Reste des Mageninhaltes werden mit reichlichen Wasserausspülungen entfernt. Die Ausspülung geschieht am besten in der Weise, daß man einen Trichter mittelst eines langen Gummirohres mit der Glaskanüle des Fistelrohrkorks vereinigt und 1/2-1 l Wasser in den Magen eingießt. Beim Öffnen der Fistelröhre ergießt sich daraus das Wasser, welches die Speisereste mit sich reißt. Man wiederholt die Ausspülung, bis das Wasser ganz klar ist.

Kommt es nicht auf die quantitative Gewinnung des Mageninhaltes an, sondern wünscht man nur eine Probe desselben für qualitative Bestimmungen zu erhalten, so verfährt man folgendermaßen: Man schließt die Fistelröhre mit einem Kork, in dessen Mitte eine bogenförmige, weite Glaskanüle mit einem durch einen Schieber geschlossenen Gummischlauch angebracht ist. Aus dieser Röhre werden zu verschiedenen Zeiten während der Verdauung bei Abklemmung des Schiebers für die Analyse Portionen genommen. Bei dieser Versuchsanordnung kommt in der Hauptsache nur derjenige Teil des Mageninhaltes zur Untersuchung, welcher sich während des Probenehmens zufällig in der Nähe der Fistel befindet. Zur Kontrolle verfährt man deshalb noch anders. Man läßt zu einer bestimmten Zeit den ganzen Mageninhalt durch die Glasröhre herausfließen, vermischt ihn gut, entnimmt eine Probe und bringt den Rest dem Hunde per os oder per fistulam zurück.

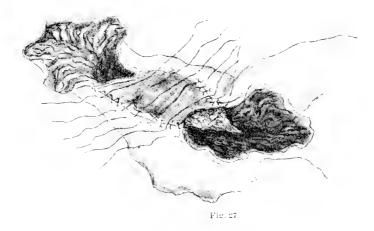
IV. Drüsenblindsäcke.

2) Fundusblindsack (kleiner Magen).

a) Historisches. Die Operation ist von $Heidenhain^1$) in Angriff genommen und von $Pawlow^2$) wesentlich verbessert worden.

b) Operative Technik:

1. Der pylorische Teil des Magens und die Kardia werden durch Gummischläuche vom Duodenum resp. Ösophagus abgeschnürt. Man achte dabei darauf, daß die Magengefäße nicht verletzt werden. Der Gummischlauch wird vorsichtig zwischen der Magenwand und den Gefäßen des Omentum durchgeführt.


¹) Heidenhain, Über die Absonderung der Fundusdrüsen des Magens. Pflügers Archiv. Bd. 19. S. 148 (1879).

²) J. P. Pawlow, Zur chirurgischen Methodik der Untersuchung der Magensekretion. Verhandl. d. Ges. russischer Ärzte zu St. Petersburg. S. 151 (1894).

- 2. Man führt einen 8-10 cm oder mehr (je nach der Größe des Magens) langen Schnitt an der vorderen Magenwand durch Serosa und Muscularis, parallel der Längsachse des Magens, angefangen 1 2 Finger weit von der Grenze zwischen dem pylorischen und dem Fundusteil des Magens; dann führt man an der hinteren Magenwand einen symmetrischen Schnitt, ebenfalls nur durch Serosa und Muscularis. Die letztere kontrahiert sich und läßt ganz deutlich in der Schnittlinie die in der Subserosa quer verlaufenden Gefäße erkennen.
- 3. Die Gefäße, welche sich durch den Schnitt hervorwölben, werden an den Rändern der Serosa-Musculariswunde mit je 2 Ligaturen, die nur 5-6 mm von einander entfernt sind, umstochen und unterbunden.
- 4. Der Assistent ergreift die Subserosa samt Serosa an der Curvatura major mit 2 Klemmpinzetten und der Operateur öffnet die Magenhöhle mittelst einer Schere zwischen den Schiebern, saugt den Mageninhalt (Magensaft, Schleim, Speichel usw.) mittelst Mulltampons aus und spült den Magen noch zweimal mit 0:50 eiger Salzsäurelösung aus. Dann führt man den Schnitt durch die übrige Mukosa und Submukosa bis zum Ende des Schnittes, indem die Gefäße selbstverständlich zwischen den Knoten geschnitten werden. Man erhält also einen Magenwandschnitt von einer Dreieckform mit möglichst geschonten Vagusfasern.
- 5. Es folgt die Durchschneidung und Lospräparierung der Schleimhaut an der Lappenbasis. Der Operateur umhüllt den Zeigefinger der linken Hand mit Mulle, legt darauf die Lappenbasis der Serosa und führt einen oberflächlichen Schnitt längs der ganzen Lappenbasis. Dann faßt der Assistent mit 2 Pinzetten die Ränder des Schnittes an einer Ecke, hebt dieselbe ab, damit der Operateur die Submukosa anschneiden kann; gleichzeitig zieht der Assistent die angeschnittene Submukosa auseinander. So entfaltet der Assistent dem Operateur allmählich den Weg für den Schnitt bis zur zweiten Ecke. Es entsteht dabei Blutung, zu deren Stillung auf die Schnittlinie ein länglicher Gazetampon für 3-5 Minuten gelegt wird. Erweist sich die Submukosa beim Abheben des Tampons noch nicht völlig aufgeschnitten, so führt man das Skalpell noch einmal rasch der Schnittlinie entlang und legt nochmals einen Gazetampon in den Schnitt ein. Dann werden unter allmählicher Abhebung des Tampons die blutenden Gefäße einzeln gefaßt und unterbunden. Die Submukosa erweist sich auf 3'4-1 cm nach jeder Seite hin abpräpariert.
- 6. Die Submukosa eines jeden Schnittrandes wird mit der Serosa der Ränder des ersten Schnittes folgendermaßen zusammengenäht. Die Endund Mittelpunkte der Schleimhautlappen werden durch 4 Schieber markiert. Der Schnitt wird also in 4 Teile geteilt, entsprechend den anzulegenden 4 Nahtreihen. An jeder Seite wird nämlich der freie Magenrand, und zwar dessen Muscularis samt Serosa mit der Submukosa der entsprechenden Schleimhautlappenhälfte vernäht. Die erste Naht kommt auf die Submukosa, ganz am Ende des betreffenden Randes, und auf die Serosa-Muscularis an der Seite des entsprechenden Péans, wo sich auch der anzunähende Schleim-

hautrand befindet. Die nächste Naht auf der Submukosa wird näher zur Mitte der Schleimhautkante auf die Serosa, weiter von den Péans längs dem Rande nach der betreffenden Höhle zu gelegt. So werden 7 bis 8 Nähte bis zum Péan, welcher sich in der Mitte des Lappenschleimhautrandes befindet, dicht neben einander angelegt. In derselben Weise werden Nähte an jeder Hälfte beider Ränder des Scheidenschnittes gemacht. Dadurch entsteht eine kuppelförmige Einwölbung beider Magenteile. Zwischen den letzteren bleibt eine 3—4 cm breite Brücke aus Muscularis, Subserosa und Serosa bestehen (Fig. 27). Die Brücke wird mit 4—5 quer durchgeführten Fäden zusammengezogen und, wenn nötig, noch durch Hilfsnähte befestigt. Dadurch werden beide Magenteile von einander völlig getrennt.

7. Der Hauptmagen wird durch Nähte ganz geschlossen; der neuformierte "kleine" Magen wird zu einem Blindsack vernäht, wobei eine ganz enge (von 2—3 mm Durchmesser) Öffnung übrig gelassen wird,

welche in die Mitte der Bauchwand beim Schließen derselben eingenäht wird.

c) Postoperative Behandlung. Schon am nächsten Tage nach der Operation fängt man an, das Sekret des kleinen Magens abzuleiten, wozu man sich einer gebogenen Kanüle aus Glas bedient. Man leitet das Sekret, solange der Hund in Freiheit bleibt, zweimal täglich nach außen. Sobald der Hund sich soweit erholt hat, daß es ihm nicht schwer wird, im Gestell lange zu stehen, leitet man den Kleinmageninhalt durch die in Fig. 20 abgebildete Röhre ab.

Bei den Kleinmagenhunden kommen mehrere Komplikationen vor:

- 1. Heftige Korrosion der Wunde. In diesem Falle erhält man die besten Resultate, wenn man die oben angegebene Salbe (siehe S. 86) anwendet.
- 2. Prolaps des kleinen Magens. Diese Komplikation ist gewöhnlich eine Folge der ersten und wird dadurch hervorgerufen. daß die Narbe,

welche den kleinen Magen umgibt, wegen der Andauung gelockert wird. Es genügt eine zufällige Steigerung des intraabdominalen Druckes, damit ein völliger Prolaps zustande kommt. Der Prolaps erfolgt meistenteils in der Nacht, wenn der Hund sich im Käfig befindet.

Gewöhnlich gelingt es ohne Schwierigkeiten, durch Massage den prolabierten Blindsack zu reponieren. Der Prolaps aber kann sich nach kurzer Zeit wiederholen, weshalb eine radikale Operation erforderlich erscheint. Man reseziert aus dem kleinen Magen ein keilförmiges Stück und verengert die Öffnung. Aber auch diese Operation führt nicht immer zum Ziele. Ist dies aber der Fall, so eröffnet man die Bauchhöhle und näht den kleinen Magen an die Bauchwand oder an den großen Magen.

- d) Anwendung:
- 1. Gewinnung von reinem Magensaft.
- 2. Vergleichende Versuche über den Sekretionsvorgang bei Verdauung verschiedener Substanzen. Die absoluten Zahlen, die bei den Versuchen erhalten werden, haben kaum eine physiologische Verwertung, wohl aber gewissermaßen die Verhältnisse zwischen den einzelnen Zahlen.
 - e) Versuchsanstellung.

Bevor der Kleinmagenhund zum Versuche kommt, muß er nach Pawlow einigen Vorversuchen unterworfen werden.

- 1. Bei leerem Magen, wenn die saure Sekretion ganz ausbleibt, neckt man den Hund mit Speise und bestimmt die Magensaftmengen, welche einerseits durch die Magenfistel aus dem Hauptmagen und andrerseits durch die Öffnung des Kleinmagens nach außen fließen.
- 2. Man führt dem Hunde per os eine magensafterregende (Fleisch oder Liebigs Fleischextrakt) oder eine magensafthemmende (Butter, Eidotter usw.) Speise zu. Nach 1-2 Stunden entleert man den großen Magen. spült denselben mit Wasser nach und sammelt den Saft aus beiden Fisteln. Liefern dabei beide Fisteln Saftmengen in gewissermassen konstanten Verhältnissen, so wird der Hund zu weiteren Untersuchungen als tauglich anerkannt. Der positive Ausfall der Probe beweist, daß die Vagusäste durch eine beide Magenteile vereinigende Brücke geschont sind.

Die Hauptversuche werden so angestellt, daß man dem nüchternen Hunde eine Speise verabreicht und die kleine in Fig. 20 abgebildete Vorrichtung einführt und je nach 1/4 Stunde das Meßgefäß wechselt. Außer der Quantität des Saftes hat auch dessen Verdauungskraft Bedeutung. Die aufgesammelten Saftproben werden, falls sie nicht direkt zur Verdauungsprüfung kommen können, bis dahin auf Eis aufbewahrt, weil in der Wärme die Verdauungskraft leidet.

Hierzu sei Folgendes bemerkt:

Man kann nicht mit Sicherheit ausschließen, daß ein Teil des während dieser Prüfungen sich absondernden Magensaftes ins Duodenum übergeht. Es ist ebenfalls noch nicht bewiesen, daß die konstanten Verhältnisse, welche sich bei den erwähnten Prüfungen ergeben, auch dann vorhanden sind, wenn der Hauptmagen sich in Verdauung befindet.

Diese Fragen könnten selbstverständlich nur durch spezielle Untersuchungen an einem ösophagotomierten Kleinmagenpylorushund entschieden werden, d. h. an einem Hund, bei welchem eine Ösophagus-, Magen- und Pylorusfistel und ein Kleinmagen vorhanden sind.

3) Pylorusblindsackmagen (Schemjakin 1).

Im allgemeinen wird der kleine Magen am pylorischen Teil des Magens in derselben Weise angelegt wie am Fundusteil, nur müssen folgende Punkte berücksichtigt werden:

- 1. Man führe den Längsschnitt, welcher den Pyloruslappen abtrennen soll, an der Mittellinie zwischen der Curvatura major und minor. Ist der Lappen nicht genügend breit, so hat man beim Vernähen desselben zu einem Blindsack Schwierigkeiten, weil die Nähte wegen der Muskelkontraktionen zu angespannt sind und häufig durchschneiden.
- 2. Damit die Peritonealanheftungen der Magendarmgrenze nicht zu stark gezerrt werden, ist es vorteilhafter, die Operation gleichzeitig vorzunehmen. Zuerst bildet man den Kleinmagen und näht dessen freie Öffnung in den Fundusmagen. Nach 3—4 Wochen, wenn der Hund sich ganz erholt hat, öffnet man die Bauchhöhle seitlich, trennt den Kleinmagen vom Fundus ab, vereinigt ihn aber mit letzterem durch 3 Nähte, schließt die Funduswunde und läßt den Pylorusmagen in die Bauchhöhle münden.

γ) Pylorussackmagen (Kresteff 2).

- 1. Beiläufig 4—5 cm fundalwärts vom Pylorus führt man 2 cm lange Schnitte durch die Serosa und Muscularis der vorderen und hinteren Magenwand, zwei parallel der kleinen Kurvatur verlaufende, in einer Entfernung von 1—2 cm von derselben. Löst man nun die Schleimhaut von der umschnittenen Serosa-Muscularis ab, so bleibt die letztere als Brücke, welche den künftigen Pylorusmagen mit dem Fundusmagen vereinigt.
- 2. An die Schnittstellen legt man 2 Klemmpinzetten an, wobei letztere an der kleinen Kurvatur unter der Serosa-Muscularisbrücke geleitet werden und schneidet mit einer Schere die ganze Magenwand durch. Die entstandenen Wunden des Fundus- resp. Pylorusteiles werden durch Nähte geschlossen. Die isolierte Serosa-Muscularisbrücke bleibt intakt.
 - 3. Der Pylorusring wird zwischen 2 Klemmpinzetten ganz durchgetrennt.
- 4. Das Duodenum wird entweder direkt mit der Pylorusöffnung in den Magenfundus eingenäht, oder aber es wird diese Öffnung vernäht und eine seitliche Gastroenterostomie gemacht.

Anwendung und Versuchsanstellung.

Die beiden Pylorussackmägen unterscheiden sich in bezug auf die Anwendung und Versuchsanstellung in nichts vom Fundussackmagen.

¹) Schemjakin, L'excitabilité spécifique de la muqueuse du canal digestif. Arch. des sciences biologiques. T. 10. p. 87 (1903).

²⁾ Kresteff, Contribution à l'étude de la sécrétion du suc pylorique. Revue médicale de la Suisse romande. Bd. 19. S. 452 (1899).

δ) Totaler Magensack (Frémont 1).

Die Operation ist von Frémont vorgeschlagen worden und besteht darin, daß der ganze Magen vom übrigen Verdauungstraktus isoliert wird. Es werden zwei totale Querschnitte gemacht, einer an der Grenze zwischen Speiseröhre und Magen und der andere zwischen Magen und Duodenum. Das Ösophagusende wird mit dem Duodenum zusammengenäht und auf diese Weise die Kontinuität des Verdauungsrohres wieder hergestellt. Die Magenwunden werden vernäht und eine Magenfistel, wie oben beschrieben, angelegt.

Anwendung, Der totale Magensack kann zur Gewinnung von größeren Quantitäten ganz reinen Magensaftes gute Dienste leisten. Zum Studium des normalen Ganges der Magensekretion eignet er sich selbstverständlich nicht. Dasselbe läßt sich auch von Hepps Modifikation sagen. Hepp²) empfiehlt, unter vollkommener Schonung der Nn. vagi den Ösophagus von der Kardia abzuschneiden und mit dem Duodenum zu verbinden. Ferner wird der Magen am anderen Ende vom Pförtnerteil abgeschnitten. Die Magenwunden und die Pyloruswunde werden vernäht und am Magen wird eine Fistel angelegt. Da bei dieser Operationsart die Nn. vagi geschont werden. nähert sich die Sekretionstätigkeit des Magensackes mehr der Norm als beim Verfahren von Frémont; doch ist der normale Verdauungsgang zu sehr gestört, als daß das Verfahren für die Norm gültig sein könnte.

ε) Brunnerdrüsensack (Pawlow 3).

- 1. Man macht an der Grenze zwischen Magen und Darm einen 3 bis 4 cm langen Längsschnitt durch Serosa und Muscularis, präpariert letztere vorsichtig von der Schleimhaut rundum ab, unterbindet den Schleimhautzvlinder an zwei Stellen in einer Distanz von 1/2-3/4 cm und schneidet zwischen den Ligaturen durch.
- 2. Die Schleimhautstümpfe werden magen- resp. darmwärts eingestülpt und über den Stümpfen die Submukosa vernäht.
 - 3. Es folgt Zunähen der Serosa und Muscularis am Längsschnitt.
- 4. Man durchschneidet das Duodenum etwa 1 cm oberhalb der Einmündungsstelle des Ductus choledochus. Der untere Duodenumabschnitt wird blind vernäht und durch eine Gastroenterostomie mit dem Magen vereinigt, der obere stark verengt und mit seiner Öffnung in der Bauchwunde befestigt.

V. Pankreasfistel.

a) Historisches. Pawlow 4) und nachher Heidenhain 5) haben zuerst die operative Technik der Anlegung einer dauernden Pankreasfistel aus-

2) Hepp, Comptes rendus de la Société de Biologie. Vol. 58 (1905).

4) J. P. Pawlow, Neue Methoden der Anlegung pankreatischer Fisteln. Verhandl. d. St. Petersburger Naturforscher. Bd. 11. S. 51 (1879).

5) Heidenhain, Hermanns Handb, d. Phys. Bd. 5.

¹⁾ Frémont, L'estomac expérimentalement isolé. Bull. de l'Acad. de méd. T. 34. p. 509 (1895).

³⁾ J. P. Pawlow, Die physiologische Chirurgie des Verdauungskanals. Ergebnisse der Physiologie von Asher und Spiro. Bd. 1. S. 246 (1902).

gearbeitet. London 1) modifizierte diese Methode. Diese Modifikation- sei hier angegeben. Nachdem Schepowalnikow entdeckt hatte, daß der Pankreassaft im zymogenen Zustande aus der Drüse ausgeschieden und nur durch die Kinase der Papillenschleimhaut aktiviert wird, fing man an. die in die Bauchwand transplantierte Papille einige Zeit nach der Operation zu entfernen. Die beste Methode bei Ausführung dieser Manipulation ist von Babkin 2) vorgeschlagen worden. Die operative Technik wird also in der Weise hier geschildert, wie sie in Londons Laboratorium ausgeführt wird, und die postoperative Entfernung der transplantierten Papille in der Weise, wie es Babkin tut.

b) Operative Technik.

- 1. Man zieht das Duodenum hervor, legt es nach rechts hin und sucht mit einer Hohlsonde den zweiten Pankreasgang auf. Letzterer befindet sich gewöhnlich einige Zentimeter oberhalb der Stelle, an der die Pankreasdrüse sich vom Duodenum entfernt.
- 2. Man unterbindet temporär das Duodenum um 2 cm dies- und jenseits der Einmündungsstelle des Pankreasganges mit dünnen Gummischläuchen. Die Einmündungsstelle des Ganges wird zirkulär umschnitten und der ausgeschnittene Lappen (Durchmesser $1-1^{1}/_{2}$ cm), in dessen Zentrum die Pankreaspapille sich befindet, mit Mull umbunden, um die umgebenden Gewebe vor Infektion zu schützen, und beiseite gelegt; die Duodenalwunde wird vernäht.
- 3. An der rechten Bauchwand, in einer Entfernung von 3—4 cm vom Bauchschnittrande, wird mit einem Messer eine $^1/_2$ cm breite Öffnung gemacht.
- $4.\ {\rm Man}$ legt ober- und unterhalb der Naht 2 Ligaturen an, die zum Fixieren des Duodenums an der Bauchwand dienen.
- 5. Man legt am ausgeschnittenen Darmstück durch die Serosa muscularis 2 Fäden an, mittelst welcher das Darmstück durch die kleine seitliche Öffnung gezogen wird. Dieselben Fäden dienen nun zum Annähen (ununterbrochene Naht) des Darmstückes an die anliegende Haut.
- 6. Es folgt Knoten der Befestigungsfäden und Schließen der Bauchhöhle.
- c) Postoperative Behandlung. Schon am zweiten Tage nach der Operation fängt gewöhnlich der Pankreassaft an, sich abzusondern. Die Saftausscheidung steigert sich hauptsächlich während der Verdauung. Da der Saft eine reizende Wirkung auf die Bauchhaut ausübt und letztere zerfrißt, so ist es erstens notwendig, während der Verdauungszeit den Hund im Gestell zu halten und zweitens außerhalb der Verdauungszeit, während der Hund im Käfig auf poröser Unterlage, wie Sand oder Sägespänen, bleiben muß, von Zeit zu Zeit die Bauchhaut mit Wasser zu reinigen. Man füttere den Hund während dieser Zeit mit Milch und Brot unter Zufügung von

1) E. S. London. Die Arbeit ist nicht publiziert.

²) Babkin, Zur Frage der Sekretion der Pankreasdrüse. Nachrichten der militärmedizinischen Akademie zu St. Petersburg. S. 23 (1904).

Soda. Nach 7-8 Tagen unternimmt man die Entfernung der Papille. Die Schleimhaut wird ganz genau abpräpariert und unter derselben der Pankreasgang durchschnitten; die Ränder des Ganges werden an die Ränder der Hautwunde angenäht. Solange die Papille da ist, hat man nicht zu befürchten, daß der Gang obliteriert; sobald aber die Papille abgeschnitten ist, muß man jeden Tag 1—2mal den Gang mittelst einer passenden Knopfsonde bougieren, da sonst eine Obliteration des Kanals eintritt.

- d) Anwendung.
- 1. Gewinnung von reinem zymogenen Pankreassaft.
- 2. Studium der Pankreassaftsekretion unter verschiedenen Bedingungen. Über den normalen Gang der Pankreassaftsekretion vermögen, wie oben (S. 92) ausgeführt, die Versuche am Pankreasfistelhund keinen zuverlässigen Aufschluß zu geben. Am besten studiert man die normale Pankreassaftsekretion an Hand der Polyfistelmethode (S. 92).
- e) Versuchsanstellung. Man führt in den Pankreasgang eine passende feine Metall- oder Glaskanüle ein und sammelt den ausfließenden Saft in einem Gefäß. Die Glaskanüle wird durch ein um den Rumpf gebundenes Kautschukrohr befestigt. Außer der Versuchszeit braucht man keine besonderen Maßnahmen anzuwenden, da der narbige Gang dank seiner Elastizität und der Anspannung der umgebenden Gewebe geschlossen wird.

Unter den verschiedenen Modifikationen der Isolierung des Pankreasganges (Sanotzky¹), Sokoloff¹), Foderà²) u. a.) sei nur noch die von Pawlow 3) ausgeführte erwähnt. Es handelt sich um die Fistel des ersten Pankreasganges. Die Operation unterscheidet sich nicht von der eben beschriebenen, nur muß selbstverständlich eine Trennung des Pankreasganges vom Ductus choledochus stattfinden. Das geschieht in folgender Weise. Nachdem die Mündungspapille samt umgebendem Darmstück herausgeschnitten ist, wobei notwendigerweise der Gallengang durchschnitten wird, wird der in der Darmwand gebliebene Gallengangsabschnitt von Seite der Schleimhaut aus aufgeschnitten, wodurch eine neue Mündung für den Gallengang geschaffen wird. Die Darmwand wird nun wie gewöhnlich geschlossen und die Papille, wie oben beschrieben, in die Bauchwand transplantiert.

Die Operation kann kaum Anwendung finden, weil man aus dem so isolierten Pankreasgang entweder gar keinen Saft bekommt oder höchstens wenige Tropfen. Um einen größeren Saftabfluß zu erzielen, kann nach Pawlow folgendermaßen verfahren werden. Man unterbindet während der Operation den zweiten Pankreasgang; man erhält dann 3-4 Wochen eine ausgiebige Sekretion, da der gesamte Pankreassaft infolge der reichlichen

¹⁾ Vgl. J. P. Pawlow, Die operative Methodik des Studiums der Verdauungsdrüsen in Tigerstedts Handbuch der physiologischen Methodik. II. Teil. 2. Abt. S. 150 (1908).

²) Foderà, Untersuchungen zur Naturlehre des Menschen und der Tiere. 1896. 3) J. P. Pawlow, Ergebnisse der Physiologie von Asher und Spiro. 1902.

Anastomosen zwischen beiden Gängen jetzt durch den transplantierten Gang sezerniert wird. Sobald aber der unterbundene Ausführungsgang sich reponiert hat, vermindert sich wieder die Sekretion durch die transplantierte Papille, bleibt aber größer als vorher, so daß man z. B. bei Brotfütterung ein paar Kubikzentimeter Saft bekommt.

VI. Gallenfisteln.

1. Gallenblasenfistel.

- a) Historisches. $Dastre^{-1}$) war der erste, der diese Operation ausgeführt hat. Dann wurde sie von verschiedenen Autoren verbessert.
 - b) Operationstechnik:
- 1. Der Bauchschnitt in der Linea alba beginnt 4-5 cm unterhalb des Schwertfortsatzes.
- 2. Man ergreift vorsichtig mittelst 2 Schiebern die Gallenblase und zieht dieselbe durch den Bauchwandschnitt heraus.
- 3. Man preßt den Blaseninhalt möglichst quantitativ durch den Ductus choledochus ins Duodenum und legt eine Fistel in derselben Weise an, wie sie oben (S. 86) bei Beschreibung der Darmfistelanlegung geschildert wurde.
- 4. Man leitet die Fistelröhre durch eine, wie bei der Darmfistel, speziell angelegte passende Öffnung zwischen dem Schwertfortsatz und dem Anfang des erwähnten Bauchschnittes. Auch hier bedient man sich mit Vorteil des Omentums und der Hilfsfäden. Es folgt Anlegen der äußeren Scheibe und Befestigung derselben mit Gummiringen.

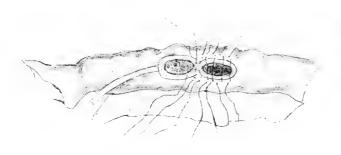
Dastre zieht vor. diese Operation zweizeitig auszuführen. Es sollen 4 Fäden durch die Gallenblase durchgeführt werden, mit deren Hilfe die Blasenkuppel in den Extrabauchschnitt gebracht wird. Durch einen Schnitt wird die Blase eröffnet, der Schnittrand ringsum angenäht und in die Fistel eine temporäre Glasröhre eingeführt, um den Verschluß der Fistel zu verhindern. Das Glasrohr wird mit den Hautnähten verknüpft. Nach 5—11 Tagen wird die untere Bauchwunde wieder geöffnet, die Gallenblase an einer Stelle durchschnitten und nachdem die Fistelröhre die Glasröhre ersetzt hat, wird der frische Blasenschnitt vernäht. Es liegt aber kaum ein Grund vor, die Operation, welche ganz leicht auf einmal ausgeführt werden kann, zweizeitig zu machen.

- c) Postoperative Behandlung. Die postoperative Periode verläuft ohne irgendwelche Komplikationen.
- d) Anwendung. Die Gallenblasenfistel bei ununterbundenem Ductus choledochus kann nur zur Gewinnung von Galle dienen. Will man die Gallenblasenfistel zum Studium der Gallenabsonderung benutzen, so muß man die Operation mit der Unterbindung des Ductus choledochus beginnen, um den Zutritt der Galle ins Duodenum zu verhindern; man unterbindet nämlich den

¹) Dastre, Opération de la fistule biliaire. Recherches sur la bile. Archives de Physiologie. Vol. 2 (1890).

Ausführungsgang an 2 Stellen, die 2 3 cm voneinander entfernt sind, und schneidet zwischen ihnen ein Stück heraus. Es versteht sich ohne weiteres. daß ein Gallenblasenfistelhund mit einem unterbundenen D. choledochus nns über die normale Gallensekretion keinen Aufschluß liefern kann, weil der Verdauungsprozeß und der Stoffwechsel überhaupt bei einem solchen Hunde wegen des völligen Ausschlusses der Galle als anormal betrachtet werden muß. Es ist zwar von Tschermak 1) ein Verfahren vorgeschlagen worden, die Unterbindung des D. choledochus nicht an der Einmündungsstelle desselben in die Darmwand vorzunehmen, sondern näher der Leber zu. und zwar zwischen den Ästen des Ganges. In diesem Falle soll ein Teil der Galle aus der Leber durch die Äste, welche zwischen der Ligatur und der Darmwand sich befinden, sich ins Darmlumen ergießen, durch die höher liegenden Äste in die Blase resp. in das Fistelrohr. Dieses Verfahren ist aber noch zu wenig aufgeklärt, als daß man es für Studien über den normalen Gallenabsonderungsvorgang benutzen könnte.

2. Endständige Choledochusfistel.


- a) Historisches. Die Operation ist von Pawlow²) ausgearbeitet worden.
 - b) Operative Technik.
- 1. Man zieht das Duodenum möglichst weit in den Bauchschnitt hervor und sucht an demselben den weißlichen Streifen auf, welcher dem in der Darmwand verlaufenden Teile des D. choledochus entspricht. Die ovale Auftreibung dieses Streifens entspricht der Papille, worin der Gallengang und gewöhnlich auch der erste Pankreasgang münden.
- 2. Man präpariert vorsichtig das Pankreas von der angedeuteten Stelle ab, wobei man besonders darauf achtet, daß die hier reichlich verlaufenden Gefäße nicht verletzt werden; die letzteren werden, insofern ihnen eine Verletzung bei weiterem Gange der Operation droht, unterbunden. Der Pankreasgang wird zwischen 2 Ligaturen durchschnitten.
- 3. Die ovale Auftreibung wird von 3 Seiten umschnitten, so daß sich ein zungenförmiger Lappen (Fig. 28) bildet, welcher seitens des Pylorus mit der Duodenalwand verbunden bleibt und in der Mitte die Gallengangpapille trägt. Der Lappen wird nach oben umgeklappt und mit seiner Serosa mit der Darmserosa vernäht, so daß die Gallengangpapille auf der äußeren Darmfläche befindlich sich erweist.
- 4. Man entfernt sorgfältig die Schleimhaut an der Basis des umgestülpten Lappens und vernäht die aufgefrischte Stelle, Submukosa resp. Muscularis zu Submukosa resp. Muscularis (Fig. 29). Die übrige Wunde wird wie gewöhnlich, Serosa zu Serosa, geschlossen.

¹⁾ Tschermak, Eine Methode partieller Ableitung der Galle nach außen. Pflügers Archiv. Bd. 82 (1900).

²⁾ Vgl. J. P. Pawlow, Die operative Methodik des Studiums der Verdauungsdrüsen in Tigerstedts Handbuch der physiologischen Methodik. II. Teil. 2. Abt. S. 150 (1908).

- 5. Man näht den Darm in die mediane Bauchwunde in der Weise ein, daß die Nähte die Papille mit der Mündung des D. choledochus in einem Oyal umgeben.
- c) Postoperative Behandlung. Gewöhnlich verheilt die Bauchwunde in 10—12 Tagen. Heilt aber die Darmwunde nicht gut und bleibt eine Darmfistel zurück, so bleibt nichts anderes übrig, als die letztere zu schließen, wobei man darauf achten muß, daß die Darmschleimhaut nicht in die Naht kommt. Nachdem die Wunde verheilt ist, kann es passieren, daß die sich allmählich retrahierende Narbe das Darmstück mit der Gallengangsöffnung zu stark zurückzuziehen anfängt.

In diesem Falle ist es nötig, von Zeit zu Zeit aus der Narbe ein Ovalstück auszuschneiden und den Schnitt zu vernähen.

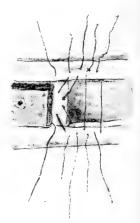


Fig. 29.

- d) Anwendung. Die endständige Choledochusfistel hat vor der Gallenblasenfistel den Vorteil, daß die Gallenabsonderung durch die in der Papille befindliche Vorrichtung reguliert wird. Doch vermag ein in dieser Weise operierter Hund keine für die normale Gallensekretion gültigen Daten zu liefern, weil die Verhältnisse hier keine normalen sind. (Die Methode, die sich dazu am besten eignet, ist oben [8, 89—90] angegeben.)
- e) Versuchsanstellung. Die Galle wird durch einen an der betreffenden Bauchwandstelle mit Gummischläuchen fixierten Trichter in einem Kölbchen gesammelt.

3. Kontinuitätsfistel des Ductus choledochus.

- a) Historisches. Die Fistel ist von Lewaschew vorgeschlagen worden.
- b) Die operative Technik unterscheidet sich durch nichts von der bei der Gallenblasenfistel gebräuchlichen. Nur wird anstatt der Gallenblase der D. choledochus selbst für die Fistelanlegung benutzt. In der Fistel läßt man ein T-förmiges, aus zwei zusammenfügbaren Schenkeln bestehendes Röhrchen einheilen.

Die Anwendung und Versuchsanstellung ist dieselbe, wie bei der Gallenblasenfistel.

VII. Thiry-Vellasche Fistel. 1)

- a) Historisches. Die Methode ist zuerst von Thiry ausgeführt und von Vella modifiziert worden.
 - b) Operative Technik:
- 1. Man zieht aus der Bauchhöhle das Duodenum und die erste Jejunumschlinge hervor und legt an beide Darmschlingen Klemmen an, wobei das Duodenum unterhalb der Einmündungsstelle des zweiten Pankreasganges abgeklemmt wird.
- 2. Der Darm wird in einer Entfernung von 2—3 cm unterhalb der oberen und oberhalb der unteren Klemme durchschnitten und die herausgesonderte Schlinge in ein Mulltuch eingehüllt.
- 3. Das Duodenum wird dem Jejunum genähert und mit demselben entweder durch Gerade- oder durch Seitenanastomose mit oder ohne Anwendung des Murphyschen Knopfes (ersteres erscheint einfacher) zusammengenäht.
- 4. Die Enden der isolierten Schlinge werden in beide Enden der Bauchwunde eingenäht.
- c) Postoperative Behandlung. Die Hautnaht geht fast immer auseinander infolge der unvermeidlichen Verschmierung derselben durch bakterienhaltige Absonderungen aus den Darmöffnungen. Die Wunde wird von Zeit zu Zeit durch schwache Sublimatlösung desinfiziert und heilt ganz gut.

d) Anwendung:

- 1. Zur Gewinnung von Darmsaft. Zu diesem Zwecke wird in die Darmschlinge eine Ableitungsröhre eingeführt (siehe Fig. 20). Die Röhre übt eine Reizung aus und bewirkt Sekretion. Der so gewonnene Darmsaft ist kein normaler Saft; nur in seltenen Fällen ist er blutfrei. Bei Anwendung der Polyfistelmethode gelingt es, wie oben erwähnt (siehe S. 93), größere Quantitäten von reinem Darmsaft während der Verdauung als Nebenprodukt zu gewinnen.
- 2. Zur Erforschung der Resorptionserscheinungen. Es läßt sich übrigens vermuten, daß diese Operation auch für den genannten Zweck keine Verwendung mehr finden wird, indem durch die Polyfistelmethode die Möglichkeit gegeben ist, jeden beliebigen Darmabschnitt zu isolieren, und zwar mit Erhaltung seiner normalen physiologisch-anatomischen Beziehungen zu dem gesamten übrigen Darm.
- e) Versuchsanstellung. In die obere oder untere Öffnung, eventuell in beide zugleich, wird ein Rohr von dem in Fig. 20 abgebildeten Typus eingeführt und die Ausscheidung in einem am Bauch fixierten Gefäße aufgefangen.

VIII. Äußere Gastrojejuno- (resp. ileo)anastomose.

Die klinische Methode der Gastroenteroanastomosenbildung kann im Laboratorium kaum Verwendung finden, es sei denn, daß die Untersuchung

¹⁾ Vella, Untersuchungen zur Naturlehre des Menschen und der Tiere. Bd. 12. Abderhalden, Handbuch der biochemischen Arbeitsmethoden, III. 8

der mit dieser Operationsmethode zusammenhängenden Erscheinungen bezweckt wird. Für Laboratoriumszwecke muß die Anastomose derart ausgeführt werden, daß der Verbindungsschlauch nach außen zu liegen kommt. Es drängt sich dabei gewöhnlich die Notwendigkeit der gleichzeitigen Unterbrechung der Kommunikation zwischen dem Magen und dem Duodenum auf.

Die gesamte Operation setzt sich aus 3 Momenten zusammen:

- 1. Die Zerquetschung des Pylorusringes mittelst des *Doyenschen Enterotryptors* und die Anlegung der Ligatur auf die gequetschte Stelle mit nachfolgender seröser Naht des Pylorusteiles des Magens mit dem Anfang des Duodenums (W. Rokitzki).
- 2. Anlegung der Fistelröhre an den pylorischen Magenteil, wobei dieselbe durch einen speziellen Schnitt der rechten Bauchwand nach außen geführt wird.
- 3. Anlegung der Fistelröhre an die betreffende Darmschlinge; die Röhre wird ebenfalls durch eine spezielle Öffnung der linken Bauchwand nach außen geführt.
- 4. Die Bauchwunde wird geschlossen. In die Fistelröhren werden Pfropfen mit gebogenen Glasröhren eingeführt, welche mittelst eines Gummischlauches vereinigt werden.

Am besten macht man die Operation in zwei Sitzungen. Zuerst legt man die Fisteln an, und wenn diese verheilt sind, trennt man den Magen vom Duodenum, indem man in folgender Weise verfährt: Man führt über den Pylorusring, vom Anfangsteil des Duodenums beginnend, bis 2—3 cm jenseits (magenwärts) des Ringes einen Schnitt durch die Serosa und Muscularis, löst die Schleimhaut, welche intakt geblieben ist, mit einem stumpfen Instrumente ab, unterbindet sie an zwei Stellen und schneidet zwischen den Ligaturen durch. Man stülpt die Säcke ein und vernäht die Serosa-Muscularisbrücke.

Die Anwendung dieser Operation und die Versuchsausführung können außerordentlich verschiedenartig sein, doch lassen sich die Einzelheiten zurzeit noch nicht auseinandersetzen, weil die Methode sich noch in Entwicklung befindet.

IX. Ecksche Operation.

- a) Historisches. Die Operation wurde 1877 von Dr. Eck¹) vorgeschlagen. Stolnikow²), Massen und Pawlow³), Queirolo⁴), Rothberger und Winterberg⁵) und Guleke⁶) modifizierten sie. Bei allen diesen Autoren
 - ¹) Eck, Militär-mediz, Journ. Bd. **130** (1877).

²) Stolnikow, Archiv f. d. ges. Phys. Bd. 28. S. 255 (1882).

- ") Massen et Pawlow, Sur une modification dans l'opération de la fistule d'*Eck* entre la veine porte et la veine cave inférieure. Archives des sciences biol. T. 2. p. 581 (1893).
 - 4) Queirolo, Moleschotts Untersuchungen, Bd. 15. S. 228 (1895).

⁵) Rothberger und Winterberg, Über Vergiftungserscheinungen bei Hunden mit Eckscher Fistel. Zeitschr. f. experim, Path. u. Ther. Bd. 1, S. 312 (1905).

6) N. Guleke, Zur Technik der Eckschen Fistel. Zeitschr. f. experim. Path. u. Ther. Bd. 3. S. 706 (1906).

aber gab die Operation eine zu große Sterblichkeit (60%). Endlich hat London ein Verfahren angegeben, welches die Sterblichkeit bis auf () herabsetzt. Diese Methode sei hier ausführlich beschrieben.

- b) Operative Technik:
- 1. Man macht der Linea alba entlang einen Bauchschnitt, welcher, vom Schwertfortsatz anfangend, bis zur hintersten Grenze der Bauchwand zieht. Die subperitoneale Falte wird abgeschnitten. Der rechte Schnittrand wird mit einem Mulltuch überdeckt.
- 2. Indem der Operateur mit seiner linken Hand den mit der Serviette bedeckten Rand der Schnittwunde zurückhält, führt er die rechte Hand in die Bauchhöhle ein, schiebt sämtliche Darmschlingen behufs Freilegung der Vena cava resp. Vena portae nach der linken Hälfte derselben hin. übergibt sie dem Assistenten, welcher zu gleicher Zeit beide Hände in die Bauchhöhle einführt und die ihm vom Operierenden gereichte Darmmasse in eine Mullserviette einhüllt. Zur Erzielung des regelrechten Operationsganges ist es notwendig, daß der Assistent bis zum Schluß der Operation seine Hände aus der Bauchhöhle nicht herausnimmt. indem er mit einzelnen Fingern diese oder jene Teile des Operationsfeldes entsprechend den Anzeigen des Operateurs vorrückt oder zurückschiebt.
- 3. Mit einer flachen Hohlsonde wird derjenige Teil der V. portae abpräpariert, welcher in der Mitte zwischen der V. pancreatico-duodenalis und den nach der Leber ziehenden Ästen liegt. Mit Hilfe einer Aneurysmanadel wird dann ein langer Faden unter den isolierten Venenabschnitt gelegt. Die Fadenenden werden mit einem Schieber gefaßt und auf die äußeren Decktücher zur Seite gelegt. Dabei müssen folgende zwei Umstände beachtet werden: erstens, daß in die Ligatur tatsächlich die Vena portae und nicht etwa einer der zur Leber sich begebenden Äste zu liegen kommt; zweitens, daß beim Durchführen der Aneurysmanadel die Vene selbst nicht verletzt wird. Bei ungenügender Aufmerksamkeit werden diese Fehler leicht gemacht. Hat man im Sinne, den Blutstrom von der Vena cava nach der Vena portae abzuleiten, so wird der Faden unter die erstere geführt.
- 4. Nun folgt das Entfernen des lockeren Bindegewebes von der Vena portae und deren Zusammennähen mit der V. cava. Zu diesem Zwecke ist es notwendig, möglichst feine, runde, nicht schneidende Nadeln und entsprechend feine Seide zu verwenden. Der erste Einstich wird in die Vena portae, 0.5 cm unterhalb der Einmündungsstelle der V. pancreatico-duodenalis gemacht, wobei die ganze Dicke der Venenwand durchstochen wird: in dieser Weise verfährt man auch im weiteren. Es entsteht dabei immer eine geringe Blutung, welche aber außer acht gelassen werden kann; vielmehr muß möglichst sehnell der Ausstich durch die Wand der V. cava gemacht werden. Es ist gleichgültig, ob man die Nadel durch die ganze Wanddicke der V. cava durchführt oder nur die Adventitia derselben in die Naht faßt; einfacher und schneller erscheint es, die ganze Dicke durchzustechen. Die Naht wird mit beiden in die Tiefe der Bauchhöhle einge-

senkten Zeigefingern zusammengezogen und in einem einfachen, nicht chirurgischen Knoten zweimal nacheinander gebunden. Die Blutung steht dadurch still; ist dies nicht der Fall, so drückt man ganz leise mit einem kleinen Mulltampon an. Das freie Fadenende, welches eine genügende Länge besitzen muß, wird mit einem Schieber gefaßt. Dieser wird außerhalb der Wunde nach der linken Seite gelegt (eventuell nach der rechten; es ist konditionell und muß zur späteren Orientierung gemerkt werden). Mit dem zweiten Fadenende fährt man fort, die Venenwände durch eine fortlaufende Naht auf einer Strecke von 5—6 cm zu vereinigen. Das Fadenende wird ebenfalls mit einem Schieber gefaßt und nach der gleichen (linken) Seite gelegt. Falls die Nahtstiche eine Blutung hervorrufen, sucht der zweite Assistent diese ebenfalls mittelst Tupfern zu stillen.

- 5. Die Scherendrähte werden gerade gezogen und die Schere auf das Decktuch gelegt, indem man letztere in den freien Raum zwischen beiden Schieberbranchen fixiert. Die rechte, für die V. portae bestimmte Nadel wird mit einem Schieber festgehalten, der zweite Assistent faßt den Silberfaden in einer Entfernung von 20-25 cm von der Nadel und hält ihn gestreckt, den Bewegungen des Operierenden folgend und hauptsächlich dafür sorgend, daß an demselben keine Biegung zustande kommt, denn letztere kann beim Durchgehen durch die dünne Venenwand dieselbe zerreißen und tödliche Blutung bewirken. Die Nadel wird in der Entfernung von $\frac{1}{2}$ cm von der Nahtlinie und von $\frac{1}{2}$ -3/4 cm vom Nahtende ein- und höher oben an der symmetrischen Stelle ausgeführt. Man macht den Schieber auf und faßt zunächst die Nadel, darauf auch den Faden selbst unterhalb derselben, indem man ihn vorsichtig nach vorn durchstößt. Der Assistent schiebt dabei mit den Fingern der rechten Hand die Leber von der vorrückenden Nadel zurück. Sowohl die Nadel wie der Faden müssen den Fingern des Assistenten entlang gleiten, welcher mit leichten Bewegungen derselben den Faden heranzieht, um dessen Heraustreten zu erleichtern. Das gleiche Verfahren wird mit der zweiten Scherenbranche ausgeführt. Wenn man dabei vorsichtig vorgeht, so entsteht keine Blutung; falls sie aber doch zustande kommt, gelingt es leicht, dieselbe mittelst Tupfern zu stillen.
- 6. In der Entfernung von 0.5 cm von den durch die Venen durchgeführten Scherenfäden wird die zweite fortlaufende Naht angelegt. Die freien Fadenenden werden mit dem Schieber gefaßt und nach der rechten Seite der Bauchwand gelegt.
- 7. Der Operateur führt den linken Zeigefinger unter das proximale Fadenende der oberen Naht proximalwärts von den Scherenbranchen, indem er mit demselben auch das freie Ende des proximalen Fadens der unteren Naht zurückdrängt, während er mit der rechten Hand die Scherenbranchen herauszieht und dieselben zur gleichen Zeit gerade streckt. Der Assistent hat dafür zu sorgen, daß die Schere derart in der Mitte zwischen der oberen und unteren Naht durchgeht, daß nirgends fremdes Gewebe mitgerissen wird. Allmählich zieht der Operateur die Schere nach außen,

indem er dieselbe zunächst nach vorn in den freien Raum der Bauchhöhle vorrückt. In der Regel erfolgt dieser Akt ohne irgend eine Blutung; falls jedoch eine solche zustande kommt, wird sie mittelst Tamponade gestillt.

8. Die freien Enden der oberen resp. unteren Naht werden zugeknotet

und die an die V. portae angelegte Ligatur fest gebunden.

Die Operation kann dadurch vereinfacht werden, daß man anstatt spezieller Scheren nach der Amerikaner Methode den Thermokauter anwendet. 1)

- c) Postoperative Pflege. 24 Stunden nach der Operation kann mit der Fütterung des Hundes begonnen werden. Anfänglich gibt man nur Milch, dann aber Milch und Brot; es dürfen geringe Fleischmengen zugesetzt werden. Will man einen Eckschen Hund längere Zeit am Leben erhalten, so muß eiweißreiche Diät vermieden werden; es gibt nämlich Hunde, die diese nicht ertragen und entweder periodischen Anfällen komatösen Charakters anheimfallen oder einfach kachektisch werden und nach 6-8 Wochen ohne sichtbare äußere Ursache zugrunde gehen.
- d) Anwendung. Isolierung der Leber vom portalen Kreislauf. Es muß aber in Betracht gezogen werden, daß vollkommene Isolierung dabei kaum erlangt werden kann, aus dem einfachen Grunde, weil das Netz fast regelmäßig mit der Leber verwächst und ein Kollateralkreislauf sich herstellt.
- e) Die Versuchsanordnung ist von dem zu verfolgenden Zwecke abhängig.

Die beschriebenen Operationen besitzen eine direkte, unmittelbare Bedeutung für die Erforschung der Verdauungs- resp. Resorptionserscheinungen. Zur allseitigen Beleuchtung der zwischen den Verdauungsorganen und den übrigen Drüsenorganen bestehenden Verhältnisse sind Operationen an diesen letzteren selbst notwendig. Diese Operationen bilden den Gegenstand der nachfolgenden Auseinandersetzungen.

1. Kanüleneinlegung in die Speichelgänge.

Der Ductus Whartonianus und Ductus Bartholinianus werden folgendermaßen aufgefunden. Man führt einen Hautschnitt an der unteren Seite der Schnauze, parallel dem Rande des Unterkiefers, 1 cm von ihm entfernt. angefangen $1^{1/2}$ —2 cm vom Kinnwinkel in einer Länge von 3—4 cm. Die Faszie wird absepariert und der Mylohyoideus quer durchschnitten. Wenn man nun die Ränder des durchschnittenen Muskels von dem unterliegenden Gewebe genau abpräpariert, so treten auf dem M. genioglossus die Ausführungsgänge der submaxillaren und sublingualen Drüsen hervor.

¹⁾ Kommt es auf völlige Isolierung der Leber an, so unterbindet man noch zuletzt die Art. hepatica (siehe unten S. 119). Im letzten Falle sterben die Hunde 1 bis 2 Tage nach der Operation im komatösen Zustande.

Der Ductus Whartonianus liegt näher der Mittellinie. Sollten die Ausführungsgänge nicht genügend deutlich hervortreten, so bringt man irgend eine reizende Substanz in den Mund des Hundes, wodurch die Speichelabsonderung gefördert wird und die Gänge anquellen. Man präpariert den Gang eine Strecke weit ab. schneidet ihn auf die Hälfte seines Umfanges an und führt mit Hilfe eines Leithakens die passende Kanüle ein, worauf die Befestigung derselben mittelst einer Ligatur folgt.

Der Ductus stenonianus wird in folgender Weise aufgesucht. Man führt den Hautschnitt, der ungefähr 3 -4 cm lang sein muß, in dem mittleren Teil derjenigen Linie, welche den unteren Rand der Ohrmuschel mit der Basis des ersten Backenzahnes verbindet. Es tritt direkt der Ausführungsgang hervor, indem derselbe auf dem M. masseter liegt. Durch Einführung irgend eines Reizmittels in die Mundhöhle wird der Gang mit Speichel gefüllt und dadurch erkennbarer gemacht.

2. Exstirpation der Schilddrüse.

Am Halse des Hundes wird ein Medianschnitt von 4-5 cm Länge gemacht, der unmittelbar unterhalb des Ringknorpels seinen Anfang nimmt. Beim Auseinanderziehen der Hautränder wird die oberflächliche Halsmuskulatur bloßgelegt. Mittelst des Skalpellstieles resp. der Sonde werden die aneinanderliegenden Ränder der Mm. sterno-hyoidei zwecks Freilegung der Trachea getrennt und mit stumpfen Haken auseinandergezogen; die beiderseits der Luftröhre liegenden Schilddrüsen treten dabei deutlich hervor. Sie werden an der grauroten Farbe ihrer Oberfläche und an den gegen ihren oberen resp. unteren Pol ziehenden Gefäßen leicht erkannt. Es wird jede Drüse für sich mittelst eines Schiebers aus der Tiefe der Wunde hervorgezogen, wobei sorgfältig von den umgebenden Geweben resp. vom N. recurrens abpräpariert wird. Die an den Polen der Schilddrüse liegenden Gefäßbündel werden möglichst weit von derselben als Ganzes unterbunden und die Drüse selbst mit einer Schere unmittelbar an ihrer Oberfläche losgetrennt.

Diese Operation geschieht meistens ohne Blutverlust. In manchen Fällen aber, wo die Kapselvenen besonders stark entwickelt erscheinen, ist nachfolgende Blutung möglich, zu deren Stillung man zur Anlegung von starken Ligaturen an klaffenden Gefäßen greifen muß.

3. Exstirpation der Bauchspeicheldrüse.

Durch einen in der Mittellinie der Bauchwand geführten Schnitt wird der obere Teil des Duodenums hervorgezogen, dem die Bauchspeicheldrüse unmittelbar nachfolgt. Nun werden die Ausführungsgänge, deren Zahl zwischen eins und drei (auch mehr) variiert, abpräpariert.

Der eine Hauptausführungsgang ist konstant und befindet sich linkerseits in der Entfernung von ca. 1 cm von der Abgangsstelle des Schwanzendes der Drüse vom Duodenum, Manchmal ist er so oberflächlich gelegen, daß er sofort in die Augen fällt, in anderen Fällen aber versteckt er sich unter den Gefäßbündeln, so daß zu seiner Bloßlegung die Gefäße mittelst einer Sonde vorsichtig unter Verhütung von Blutung nach der einen oder anderen Seite verschoben werden müssen. Der zweite Ausführungsgang ist in der Mehrzahl der Fälle zu treffen und findet sich unterhalb der Papille. in welche der Gallengang einmündet. Zu seiner Freilegung werden die den Gallengang umgebenden Gewebe abpräpariert, derselbe in der Duodenalwand bis zur knopfförmigen, der Papille entsprechenden Auftreibung verfolgt, und nun kommt der feine, weißliche Pankreasgang zum Vorschein. Der dritte Ausführungsgang ist sehr unbeständig und ist in der Mitte zwischen den beiden beschriebenen gelegen. An die isolierten Ausführungsgänge werden starke Ligaturen angelegt. Darauf folgt die Unterbindung sämtlicher zwischen dem Duodenum und der Pankreasdrüse ziehenden Gefäßbündel, wonach alle Ausführungsgänge resp.-Gefäße oberhalb der Ligaturen durchschnitten werden und die Drüse auf stumpfem Wege, am besten mit den Fingern aus dem Peritonealüberzug herausgeschält wird.

4. Exstirpation der Nebennieren.

Die Nebennieren stellen längliche, etwas plattgedrückte, gelblich schimmernde Organe dar. Sie liegen am medialen Rande der Nieren, und zwar gegen das thorakale Ende derselben, indem sie das letztere in den meisten Fällen brustwärts überragen. Man öffnet die Bauchhöhle an der Medianlinie, schafft die Darmschlingen von der betreffenden Seite ab, sucht das die Nieren umgebende fetthaltige Bindegewebe an den Lendenmuskeln. wo die Nebennieren eingeschlossen sind, auf, präpariert das Bindegewebe ab, unterbindet und schneidet die Nebennieren ab. Die Operation ist ganz blutlos.

5. Verschiedene Manipulationen an Blutgefäßen.

Von den Manipulationen, zu denen man bei der Untersuchung der Verdauung resp. Resorption greifen muß, verdienen am meisten Interesse folgende: Ligatur des einen oder anderen Gefäßes, Injektionen in das Blut und Blutentnahme.

Am häufigsten bietet sich die Gelegenheit der Unterbindung der Leberarterie, wenn es wünschenswert erscheint, wie oben erwähnt, die Ecksche Operation durch Ausschluß der Leber aus dem arteriellen Blutkreislauf zu komplizieren.

Die A. hepatica stellt einen Ast der A. coeliaca dar, welcher leicht zu finden ist, wenn man von der A. coronaria ventriculi sinistra ausgeht. Man schiebt die kleine Magenkurvatur nach links (vom Hunde aus gerechnet). wobei die A. coron. ventr. sin. gespannt wird, verfolgt dieselbe bis zu deren Vereinigungsstelle mit der A. lienalis und steigt weiter in der Richtung der

Aorta herauf; hier findet sich die A. hepatica, welche unmittelbar an ihrer Abgangsstelle von der A. coeliaca an zwei Stellen unterbunden wird.

* *

Intravenöse Injektionen sind am bequemsten entweder in die Ohrvenen, wenn es sich um geringe Flüssigkeitsquantitäten handelt, auszuführen oder in die äußere Jugularvene, wenn es wünschenswert erscheint, binnen kurzer Zeit große Mengen von Flüssigkeit in den Blutkreislauf einzuführen. Es gelingt sehr leicht, die Nadel der Pravazschen Spritze in die Ohrvene einzuführen. Man braucht dazu nur, nachdem die Haut rasiert und mit desinfizierenden Lösungen (Seifenwasser, Sublimat, Alkohol, Äther) gewaschen ist, die Vene unterhalb der zum Einführen bestimmten Stelle mit dem Finger anzudrücken. Etwas schwieriger steht es mit der Benutzung der V. jugularis externa, obgleich bei einiger Ubung auch diese Operation einfach erscheint. Der Hund muß entweder durch Festbinden an den Tisch oder durch Fixieren in dem Gestell in seinen Bewegungen beschränkt werden. Man drückt mit flach angelegten Fingern auf den unteren Halsteil, um in der betreffenden Vene Blutstauung hervorzurufen, wobei die Vene anschwillt und ziemlich deutlich hervortritt. Wenn der Gang der Vene festgestellt ist, drückt der Assistent deren unteres Ende mit einem Finger an. Der Experimentator sticht die Spritzennadel (sie kann von bedeutenden Dimensionen sein) in die Haut senkrecht ein, senkt sie dann aufwärts und durchsticht die Vene selbst. Der Gehilfe läßt die Vene frei und nun wird die Injektion ausgeführt.

* *

Für die Blutentziehung kann jede beliebige Arterie oder wiederum die äußere Jugularvene gebraucht werden. Bei Benutzung der letzteren kann man auf zweierlei Art vorgehen: entweder sticht man in die Vene in der Kopfrichtung eine feine Nadel ein und saugt das Blut mittelst der Spritze an, oder aber man wendet eine weitlumige Nadel an, so daß, falls der Hund im Gestell steht, das Blut aus derselben spontan ausfließt. Selbstverständlich muß der unterhalb der Einstichstelle liegende Venenabschnitt während der ganzen Zeit an die umgebenden festen Teile angedrückt werden.

6. Anlegung einer Fistel des Ductus thoracicus.

Der Ductus thoracicus variiert in seinem Verlaufe beim Hunde sehr. Aus der zwischen den Pfeilern des Zwerchfells gelegenen Milchzisterne stammend, bildet er einen ungefähr gänsefederstarken Kanal, der, an der Aortenwand oralwärts verlaufend, sich von der 4. Rippe abwendet, die großen Brusthöhlenarterien kreuzt und im 2. Interkostalraum in die linke V. subclavia einmündet. Um den Ductus aufzusuchen, verfährt man folgendermaßen: An der linken Halsseite führt man am äußeren Rande des M. sternocleidomastoideus einen 5—7 cm langen Schnitt, angefangen von der Clavicula-

grenze. Man präpariert das Unterhautgewebe ab, bis die V. jugularis externa hervortritt. Die Vene wird abwärts präpariert — wobei man darauf achte, daß die Seitenäste nicht verletzt werden -, bis man zur V. subclavia kommt. Hier in der Tiefe der A. carotis sucht man die Einmündungsstelle des D. thoracicus auf, indem man das umgebende Bindegewebe sorgfältig präpariert.

Handelt es sich um eine temporäre Fistel, so verklemmt man die Eintrittsstelle des Ductus in die Vene mittelst eines Schiebers. Weiter unten wird in einer Entfernung von ca. 1—11/2 cm an den inzwischen aufgeschwollenen Ductus eine kleine feine Klemmpinzette angelegt. Der zwischen den Klemmpinzetten befindliche Ductusteil wird bis auf die Hälfte angeschnitten, durch den Schnitt eine feine Glaskanüle eingeführt und dann mit einer Ligatur befestigt. Beseitigt man die untere Klemme, so fängt sofort die Lymphe an, abzufließen. Um die Lymphexkretion zu beschleunigen und abundanter zu machen, macht man dem Hunde von Zeit zu Zeit Massage und künstliche Extremitätsbewegungen. Es ist vorteilhafter, große Hunde zu wählen, obschon zwischen Körpergewicht und Lumenbreite des Ductus sich kein direkter Zusammenhang konstatieren läßt.

Will man eine Dauerfistel anlegen, so verfährt man anders. Man sucht zuerst die Einmündungsstelle des Ductus thoracicus auf, unterbindet alle Seitenäste der V. jugularis ext., welche sich über 2-3 cm vom Ende derselben befinden, unterbindet weiter die V. subclavia und überhaupt alle Venen, die unterhalb der Einmündungsstelle des Ductus sich vorfinden, läßt die V. jugularis ext. anschwellen, unterbindet sie in einer Entfernung vom Ende von 2—3 cm und führt in deren aufgeschnittenes Lumen eine entsprechende dickwandige Gummikanüle ein und unterbindet. Die Kanüle wird beim Schließen der Hautwunde in derselben an den Hauträndern durch Nähte befestigt. Glaskanülen oder dünnwandige Gummikanülen sind zu diesem Zweck untauglich, erstere weil sie die Venenwand zu verletzen vermögen und letztere, weil sie bei der Vernarbung der Hautwunde zusammengedrückt werden.

Die Kanüle muß mehrmals täglich bougiert werden. Die Hautwunde heilt nur langsam. Bei antiseptischer Behandlung kann Eiterung leicht vermieden werden.

B. Methoden zur Untersuchung der Verdauungsprodukte.

Von Edgard Zunz, Brüssel.

A. Allgemeine Technik.

Man kann die Verdauung an Hand des Tierexperimentes oder durch Versuche im Reagenzglase studieren.

I. Verdauungsversuche an Hand des Tierexperimentes.

a) Allgemeine Betrachtungen.

Zum Studium der Verdauung verwendet man meistens den Hund. Andere Tiere (Katze, Schwein, Pferd usw.) werden aber auch dazu benutzt.

Das Versuchstier soll sich im nüchternen Zustande befinden. Man gibt Hunden oder Katzen 24—48 Stunden vor dem Versuche keine Nahrung mehr, läßt sie jedoch nach Belieben trinken. Bei Kaninchen oder Meerschweinchen muß das Fasten noch länger dauern. Während dieser Fastensperiode muß man darauf achten, daß die Tiere weder ihren Kot, noch Stroh oder sonstige Stoffe verzehren. Schweine muß man während 5—6 Tagen mittelst geschälter und gedämpfter Kartoffeln und dünner Kleietränken füttern und dann 36 Stunden lang hungern lassen. 1)

Da sich oft, besonders beim Hunde, im Dünndarme parasitische Würmer (Taenia, Ascaris lumbricoïdes usw.) befinden, so muß man einige Tage vor dem Versuche mittelst Darreichung von Anthelmintika das Tier davon zu befreien suchen, was leider nicht immer gelingt. Die besten Ergebnisse erzielt man beim Hunde für diesen Zweck durch gleichzeitige Darreichung morgens nüchtern von 5—10 cg Santonin und 2—10 g Kamala und Verabreichung, 3 Stunden später, von Rizinusöl. Der manchmal dafür benutzte Granatwurzeldekokt wirkt oft reizend auf den Darm des Hundes und ruft viel leichter Erbrechen hervor als Kamala.

Um die Verdauung im ganzen Dünndarme zu studieren, ist es außerdem ratsam, während des Fastens 24—48 Stunden vor dem Versuche mittelst

¹) E. Lötsch, Zur Kenntnis der Verdauung von Fleisch im Magen und Dünndarm des Schweines. Inaug.-Diss. Leipzig 1908. 54 S.

Karlsbader Salz den Darm von den Nahrungsüberbleibseln zu reinigen. Hunden von 5-10~kg gibt man zu diesem Behufe mittelst der Schlundsonde eine Lösung von 5~g Karlsbader Salz in 200~g Wasser. Tieren von größerem Gewichte entsprechend mehr.¹)

In nachfolgender Besprechung sind die Verdauungsversuche beim Tiere, je nachdem sie einen vorherigen operativen Eingriff erfordern oder nicht, eingeteilt.

Um jede weitere Fermentwirkung nach dem Auffangen des Magenoder des Darminhaltes zu verhindern, muß man diese Inhalte, falls sie nicht sofort untersucht werden, auf Eis oder besser im gefrorenen Zustande aufbewahren.

b) Verdauungsversuche beim intakten Tiere.

Beim intakten Tiere kann man eine gewisse Zeit nach einer gegebenen Mahlzeit oder nach Verabreichung eines festen oder in Lösung befindlichen Stoffes den Mageninhalt mit Hilfe der Schlundsonde gewinnen. Bei diesem Verfahren erhält man natürlich nur Auskunft über die eigentliche Magenverdauung. Ein und dasselbe Tier kann

aber zu mehreren Vergleichsversuchen dienen.

Um gleichzeitig Magen- und Darmverdauung beim nichtoperierten Tiere zu studieren, muß man letzteres einige

Fig. 30.

Zeit nach der Mahlzeit töten und sofort zwischen Unterbindungen Mageninhalt und Darminhalt trennen.

1. Schlundsondenverfahren. Falls das Versuchstier die untersuchten Stoffe nicht verschlingen will, so muß man sie mittelst der Schlundsonde in den Magen einführen, was sich aber nur bei Lösungen oder bei Aufschwemmungen fein zerhackter Feststoffe in destilliertem Wasser oder einer anderen Flüssigkeit ausführen läßt.²)

Zu diesem Zwecke ist es empfehlenswert, sich eines die Gestalt nebenbeistehender Fig. 30 zeigenden Beißstückes zu bedienen. Es besteht aus einem mit einem Handgriff $\mathcal A$ versehenen abgerundeten ovalen Holz- oder Hartgummistück $\mathcal B$, in dessen Mitte sich ein rundes Loch $\mathcal C$ befindet, durch welches man die mit einem Trichter am äußeren Ende versehene weiche Kautschuksonde einführen kann, dessen Länge und Breite je nach dem Tiere wechseln.

Zur Einführung der Sonde in den Magen muß das Versuchstier sich in aufrechter Stellung befinden. Ein am besten auf einem Stuhl sitzender Gehilfe nimmt den Rumpf oder die hinteren Glieder des Versuchstieres

P. Nolf et Ch. Honoré, Influence des conditions de l'absorption intestinale de l'azote alimentaire sur l'élimination urinaire. Arch. int. de Physiol. T. 2. p. 85-115 (1904).
 A. Cahn, Die Verdauung des Fleisches im normalen Magen. Zeitschr. f. klin. Med. Bd. 12. S. 34-44 (1887).

zwischen die Kniee, hält die oberen Glieder mit einer Hand und das Maul mit der anderen. Das Beißstück wird so zwischen den Zähnen oder den Kiefern angebracht, daß die Öffnung C der Mitte der Mundhöhle entspricht, und daß man durch diese Bohrung das runde Ende der Sonde über den Zungenrücken hinweg leicht bis zur hinteren Rachenwand schieben kann. Dann wird die Sonde langsam bis in den Magen geschoben.

Dabei muß man mit großer Sorgfalt vorgehen, damit der Magenschlauch nicht in die Luftröhre gelangt, was besonders beim Kaninchen ziemlich leicht erfolgen kann. Man erkennt dies daran, daß bei jeder Ausatmung Luft durch die Sonde hinausgetrieben wird. Bei einiger Übung läßt sich übrigens die Sonde in der Luftröhre fühlen. Oft werden dann die Lippen blau und zeigen sich Atemstörungen. Falls dies der Fall ist, so muß man die Sonde sofort herausziehen und vorsichtig versuchen, sie in die Speiseröhre zu bringen. Manchmal muß man dazu die Lage des Beißstückes etwas verändern.

Befindet sich die Sonde in der Speiseröhre, so ersieht man meistens aus deren verschluckter Länge, ob sie bis in den Magen gelangt oder nicht. Sobald man im Magen zu sein glaubt, gießt man allmählich die Flüssigkeit in den Trichter; sie fließt meistens ziemlich rasch in den Magen. Erfolgt kein Abfluß oder hört der Abfluß plötzlich auf, so ist entweder der Schlauch noch nicht in den Magen gelangt, oder die Öffnung seines inneren Endes ist durch irgend eine Ursache (Krümmung des Schlauches selbst im Magen, Falten der Magenschleimhaut usw.) verstopft. Durch vorsichtiges Hin- und Herschieben der Sonde gelingt es dann gewöhnlich leicht, sie in den Magen zu bringen oder die Öffnung ihres inneren Endes zu befreien, und sofort läuft die Flüssigkeit rasch in den Magen. Einige Sekunden, nachdem die Flüssigkeit den Trichter völlig verlassen hat, werden die Sonde und das Beißstück fortgenommen. Nun läßt man das Versuchstier bis zum Ende des Versuches sich frei bewegen.

Falls das Versuchstier feste Nahrung nicht fressen will, so wird es in aufrechter Stellung durch einen Gehilfen in der oben beschriebenen Weise gehalten. Statt des Beißstückes bringt man einen geeigneten Mundsperrer zwischen beide Kiefer. Die Nährstoffe werden allmählich in kleinen Mengen und vorzugsweise im feuchten Zustande bis an den hinteren Gaumen eingeführt, um den Schluckreflex hervorzurufen, wodurch das Versuchstier die Nahrung verschlingen muß. 1)

Um den Inhalt des Magens zu gewinnen, führt man nach der für den Versuch festgestellten Zeitdauer die Sonde in der soeben beschriebenen Weise in den Magen und gießt in den Trichter ein genau abgemessenes Volumen destillierten Wassers. Ehe der Trichter ganz leer geworden ist, senkt man ihn rasch, um Mageninhalt sowie zugesetztes Wasser aushebern zu können. Darauf wäscht man den Magen mehrmals mit bekannten Wasser-

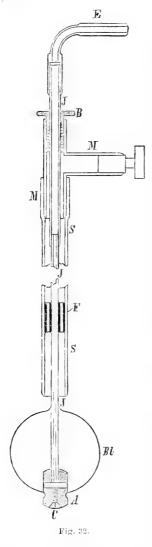
¹) E. Zunz, Contribution à l'étude de l'action de la morphine sur la digestion de la viande chez le chien. Mém. cour. et autr. mém. publ. par l'Acad. roy. de méd. de Belgique. T. 20. Fasc. 3. p. 1—30 (1909).

mengen aus, welche man sofort aushebert. Wenn das eingeführte Wasser ohne Beimischung von Mageninhalt ausfließt, nimmt man die Sonde heraus.

Cahn zieht dem Aushebern die Benutzung der nebenbei abgebildeten Magenpumpe (Fig. 31) vor. Die Schlundsonde soll unten offen und mit mehreren seitlichen Löchern versehen sein. Der Mageninhalt wird nach beliebiger Frist mit der Magenpumpe ausgesaugt. Durch wiederholtes Ein- und Auspumpen von Wasser soll schließlich der gesamte Mageninhalt vollständig erhalten werden.

Das Schlundsondenverfahren besitzt sehr viele Nachteile. Man ist nie sicher, besonders nach Verabreichung von Feststoffen (Fleisch, Brot usw.),

den Mageninhalt völlig zu entleeren und erhält meistens nur einen mehr oder minder großen Teil davon, welcher je nach der Lage der Sondenöffnung im Magen von den verschiedensten Magengegenden stammen kann. Da aber die Zusammensetzung des Mageninhaltes nicht überall dieselbe ist1), so bekommt man mittelst der Schlundsonde nur sehr unsichere Ergebnisse.²) Bei den Auswaschungen des Magens kann ein Teil des eingegossenen Waschwassers in das Duodenum dringen und dabei eine gewisse Menge vom Mageninhalt mitreißen. Die Auswaschungen vermehren die Irrtümer bei der Schätzung der Menge des Mageninhaltes bedeutend. Dazu kommt noch, daß die Einführung der Schlundsonde manchmal von unangenehmen oder selbst schmerzhaften Empfindungen begleitet wird, was den sekretorischen Prozeß vielleicht stört. 3) Bei der Einführung der Sonde können Brechbewegungen oder Zusammenziehungen der Bauchwand ausgelöst werden, wodurch möglicherweise die Darmsekrete in den Magen treten, oder die Arbeit der Magendrüsen beeinträchtigt wird.


Das Schlundsondenverfahren kann eigentlich nur zu Vergleichsuntersuchungen über die Aufenthaltsdauer verschiedener Nährstoffe im Magen bei ein- und demselben Tiere dienen.

¹⁾ Ellenberger, Zum Mechanismus der Magenverdauung. Pflügers Arch. f. d. ges. Physiol. Bd. 114. S. 93—107 (1906). — A. Scheunert, Zum Mechanismus der Magenverdauung. Ebenda. Bd. 114. S. 64—92 (1906). — P. Grützner, Ein Beitrag zum Mechanismus der Magenverdauung. Ebenda. Bd. 106. S. 463—522 (1905).

²) F. Penzoldt, Beiträge zur Lehre von der menschlichen Verdauung unter normalen und abnormen Verhältnissen. Deutsch. Arch. f. klin. Med. Bd. 51. S. 535—582 (1895). Die Magenverdauung des Menschen unter verchiedenen physiologischen und physikalischen Einflüssen. Erlangen und Leipzig 1901.

³⁾ J. P. Pawlow, Die Arbeit der Verdauungsdrüsen. Wiesbaden 1908.

Um beim Menschen aus dem Pylorus- und Fundusteil des Magens gesondert Speisebrei zu gewinnen, hat $Konrad\ Sick^{\,1}$) folgendes Verfahren ersonnen, dessen Beschreibung hier wörtlich nach dem Orginal wiedergegeben wird.

Man bedient sich der nebenbei (Fig. 32) abgebildeten Aspirationsmanometersonde. Diese besteht aus 2 Röhren, von denen die engere in der weiteren liegt. Die weitere Röhre S bildet ein ca. 100 cm langer weicher und möglichst biegsamer Magenschlauch von ca. 13 mm lichter Weite mit einer runden endständigen Öffnung. Nach oben ist an diesen Schlauch ein Metallrohr M angesetzt, das ein rechtwinklig abgehendes, durch einen Stöpsel luftdicht verschließbares Ausflußrohr trägt. In axialer Richtung schließt eine Stopfbüchse B das Metallrohr ab, durch die ein oben rechtwinklig abgebogenes dünnwandiges Messingrohr E von 4—5 mm lichter Weite geführt ist. Dieses in der Stopfbüchse verschiebbare Metallrohr setzt sich innerhalb des Magenschlauches fort durch eine dünne aber hinlänglich feste Röhre J von 3 mmLichtung, die nach Art der Seidenkatheter angefertigt ist. Am unteren Ende des Magenschlauches besitzt die innere Röhre eine Führung F in Gestalt zweier ineinander liegender Zvlinder, von denen der äußere fest in die Innenwand des Magenschlauchs eingelassen ist und den inneren durch 3 Leisten trägt. Der innere Zvlinder ist die eigentliche Führung für die Innenröhre. Diese überragt den Magenschlauch um ca. 3 cm und trägt an ihrem Ende zur Beschwerung einen in der Größe dem äußeren Schlauch entsprechenden Zylinder A aus Silber, durch den mehrere Bohrlöcher zu ihrem Lumen führen. Nahe am unteren, abgerundeten Ende des Silberzylinders ist eine seichte ringförmige Rinne. In dieser ist eine dünne Membran befestigt, die, ein Säckchen BL von 3-4 cm

Länge und 2—3 cm Durchmesser bildend, oberhalb des Zylinders luftdicht festgebunden ist. Dieses Säckchen kommuniziert also mit der Lichtung der Innenröhre und bildet den druckempfangenden Ballon. Der Silber-

¹) K. Sick., Untersuchungen über die Saftabscheidung und die Bewegungsvorgänge im Fundus- und Pylorusteil des Magens. Deutsch. Arch. f. klin. Med. Bd. 88. S. 169 bis 223 (1906).

zylinder ist bis außen durchbohrt und kann durch eine Schraube C luftdicht verschlossen werden, so daß die Wasserfüllung des Innenrohres auf keine Schwierigkeiten stößt.

Bei Gebrauch wird die Innenröhre soweit zurückgezogen, daß der Silberzylinder auf der unteren Öffnung des Schlauches aufsteht und die (kollabierte) Membran zum größten Teil im Schlauch verschwindet. Die obere Öffnung des Schlauches ist durch einen Stöpsel fest verschlossen. Der Patient liegt in rechter Seitenlage mit ganz wenig erhöhtem Oberkörper (er stützt sich leicht auf den rechten Ellenbogen). Die Einführung der Aspirationsmanometersonde geschieht in derselben Weise wie die eines gewöhnlichen Magenschlauches. Manchmal scheint es vorteilhaft zu sein. wenn man beim Eintritt des Schlauches in den Magen leichte rotierende Bewegungen — Drehung im ganzen um ca. 360° — vornimmt. Der Schlauch scheint sich dadurch eher in der gewünschten Weise abzubiegen. Sobald nämlich ein größeres Stück desselben die Cardia passiert hat, biegt sich der beschwerte Sondenkopf stark nach abwärts, gleitet der kleinen Kurvatur entlang und gibt dadurch dem Schlauche eine auf den Pylorus hinstrebende Richtung. Ist das Sondenende genügend weit in diesem Sinne vorgedrungen, so wird das Innenrohr vorsichtig durch die Stopfbüchse (1—2 cm) vorwärts geschoben, wodurch der Ballon völlig aus der Mündung des äußeren Schlauches hervortritt. Daraufhin wird der Ballon in der oben angegebenen Weise mit Luft bzw. Wasser gefüllt und die Innenröhre mit dem Manometer in Verbindung gesetzt, das den positiven Mageninnendruck und die Druckschwankungen angibt. Hat die Druckmessung ein entsprechendes Resultat ergeben, so wird die Verbindung mit dem Manometer gelöst, der Stopfen aus dem Ausflußrohr entfernt. und man kann nun Mageninhalt fast genau von derselben Stelle, an der man zuvor den Druck gemessen hat, aspirieren. Am besten geschieht dies dadurch, daß eine schwach wirkende Saugpumpe unter Zwischenschaltung einer Flasche mit doppelt durchbohrtem Stopfen angeschlossen wird. Der Mageninhalt fließt in die Flasche. Ist es gelungen, aus dem Pylorusteil des Magens Speisebrei zu erhalten, so wird man sofort nach Abschluß dieser Ausheberung demselben Individuum in sitzender Stellung einen gewöhnlichen Magenschlauch einführen und auf dieselbe Weise Mageninhalt aspirieren. Bei einiger Ubung gelingt es, so rasch hintereinander die erste und zweite Portion des Magensaftes zu gewinnen, daß die Zeitdifferenz auf ein Minimum (1-2 Minuten) zurückgeht. Eine sehr wichtige Vorbedingung zum Gelingen des Versuchs ist das Fernbleiben von Würgen oder von Brechbewegungen, wegen der damit verbundenen starken Aktion der Bauchpresse und der extremen Inspiration mit Verschluß der Glottis. Alle diese foreierten Bewegungen müssen natürlich den Mageninhalt durcheinander rütteln und auf diese Weise eine Untersuchung getrennter Magenabschnitte auf ihren Chemismus vereiteln.

2. Isolierung des Magens und des Dünndarmes post mortem. Das Versuchstier verschlingt die Nahrung oder bekommt sie mittelst der

Schlundsonde oder bei Anwendung des Mundsperrers. Während der für die Verdauung festgestellten Zeitdauer bewegt sich das Versuchstier frei. Dann wird es auf das Brett gebracht und durch Chloroform oder besser durch Nackenstich und gleichzeitiges Öffnen der Karotiden rasch getötet. Sofort wird die Bauchhöhle geöffnet, ohne dabei die Lage der Eingeweide zu verändern. Um den ganzen Mageninhalt zu erhalten, unterbindet man die Speiseröhre vorsichtig über der Cardia und das Duodenum unmittelbar unter dem Pförtner. Man trennt sodann den Magen von der Speiseröhre und dem Duodenum. Die Außenfläche des Magens wird durch Abspülen mittelst destilliertem Wasser oder physiologischer Kochsalzlösung vom anhaftenden Blut befreit und nachher mittelst Filtrierpapier abgetrocknet. Dann öffnet man den Magen, fängt seinen Inhalt in einer Porzellanschale auf, spült die Magenschleimhaut mehrmals mit destilliertem Wasser oder physiologischer Kochsalzlösung ab und fügt die Waschwässer dem Mageninhalte bei. 1)

Um beim Hunde den Inhalt des Magenfundus und des Pförtnerteiles des Magens jeden für sich aufzufangen, wird gleich nach der Eröffnung der Bauchhöhle eine große Klemmzange auf die beide Magenteile deutlich trennende Furche gelegt, während gleichzeitig ein Gehilfe eine andere Klemmzange auf den Pförtner anbringt; dann unterbindet man die Speiseröhre über der Cardia. Nach Trennung des Gesamtmagens von der Speiseröhre und vom Duodenum und nach gründlichem Abspülen der äußeren Magen-oberfläche öffnet man zuerst den Pförtnerteil des Magens, fängt seinen Inhalt in einer Porzellanschale auf und wäscht diesen Magenteil gründlich aus. Danach wird der Magenfundus geöffnet, sein Inhalt in einer anderen Porzellanschale aufgefangen und das durch Auswaschen der Schleimhaut des Magenfundus erhaltene Waschwasser dazu gegossen. ²)

Beim Schweine kann man den Magen ungefähr in der Mitte abschnüren und ihn so in eine Cardia- oder Schlundhälfte oder eine Pylorusoder Funduspylorushälfte teilen. ³) Beim Schweine und beim Pferde kann
man auch durch gleichzeitiges Anlegen zweier Unterbindungen den Magen
in 3 Abschnitte trennen: Cardia, Fundus, Pylorus beim Schweine; Pars oesophagea, Fundusdrüsenregion, Pylorusdrüsenregion beim Pferde. ⁴)

Der Inhalt des ganzen Dünndarmes, des obersten Dünndarmes (ungefähr 50 cm Länge vom Pförtner aus bei Hunden von 5—10 kg) oder mehrerer Dünndarmteile wird auf dieselbe Weise wie der Mageninhalt zwischen Unterbindungen gefaßt. Das Blut wird von der äußeren Darm-

A. Schmidt-Mülheim, Untersuchungen über die Verdauung der Eiweißkörper. Arch. f. Anat. u. Physiol., physiol. Abt. S. 39—58 (1879).

²) E. Zunz, Nouvelles recherches sur la digestion de la viande crue et de la viande mite chez le chien, Mém, cour, et autr. mém, publ. par l'Acad, roy, de méd, de Belgique, T. 19, fasc, pag. 7 (1907).

³) Ellenberger und V. Hofmeister, Die Magenverdauung der Schweine. Arch. f. wiss, u. prakt. Tierheilk. Bd. 12. S. 126-146 (1886).

 $^{^4)}$ E. Lötsch, loc. cit. — E. Rosenfeld, Über die Eiweißverdauung im Magen des Pferdes. Inaug.-Diss. Leipzig 1908. 55 S.

oberfläche abgespült und der Inhalt des gesamten Dünndarmes oder der verschiedenen Darmteile nebst den dazu gehörigen Waschwässern gesondert zur Untersuchung gebracht. Da wiederholte Ausspülungen des gesamten Dünndarmes oder der isolierten Darmschlinge nicht immer genügen, um den Inhalt völlig zu erhalten, so muß man nach den Auswaschungen den Darm der Länge nach aufschneiden und die Schleimhaut durch leichtes Abstreichen und Abspülen vom sie bedeckenden Belag befreien. 1)

Die Isolierung des Magen- und des Dünndarminhaltes post mortem gibt Aufschlüsse über den Inhalt dieser Organe oder ihrer Teile zu verschiedenen Zeitpunkten der Verdauung sowie über die Dauer des Verbleibens der Nährstoffe im Magen, nicht aber über das Endprodukt der Magenverdauung.

c) Vorherige operative Eingriffe erheischende Versuche.

Nachfolgend sind die einen vorherigen operativen Eingriff erheischenden Verdauungsversuche je nach dem Zwecke der Operation angeordnet.

Falls der eigentliche Verdauungsversuch gleich nach der Operation oder kurz darauf erfolgt, wie bei der Unterbindung des Pförtners oder bei Einführung von Flüssigkeiten in isolierte Darmschlingen, so soll man dem Tiere kein Morphin-Atropin subkutan einspritzen wegen dessen Einfluß auf die Nervenzentren und auf die Verdauungsprozesse. Die Operation wird bei nicht zu starker Narkose mittelst des Äther-Alkohol-Chloroformgemisches ausgeführt.

Um bei der Laparotomie die schädliche Wirkung der Abkühlung des Magendarmkanales möglichst zu vermeiden, soll man sich eines heizbaren Operationstisches bedienen. Als solchen kann man den durch Elektrizität erwärmten Carvalloschen Operationstisch anwenden oder bloß einen großen, über einer Heizschlange befindlichen Kasten aus Weißblech, der das auf dem Brette fixierte narkotisierte Versuchstier aufnimmt und dessen aus verschiebbaren Blechplatten bestehender Deckel eine bequeme Regulierung der Innentemperatur auf 37—40° C ermöglicht.²) Dieses Verfahren ist dem manchmal empfohlenen Operieren in einem mit auf 37—40° C erwärmter physiologischer Kochsalzlösung gefüllten Thermostaten vorzuziehen, denn bei letzterer Versuchsanordnung ist es keineswegs ausgeschlossen, daß die in die Bauchhöhle eindringende Kochsalzlösung auf die Verdauungsprozesse einen Einfluß ausübt.

¹) Ellenberger und V. Hofmeister, Die Darmverdauung und die Resorption im Darmkanal der Schweine. Arch. f. wiss. u. prakt. Tierheilk. Bd. 14. S. 137—171 (1888). — Dieselben, Über die Verdauung des Schweines. Arch. f. Physiol. u. Anat., physiol. Abt. S. 137—153 (1889). — Dieselben, Die Verdauung von Fleisch bei Schweinen. Ebenda. S. 280—298 (1890). — E. Zunz, Über die Verdauung und Resorption der Eiweißkörper im Magen und im Anfangsteil des Dünndarmes. Beitr. z. chem. Physiol. u. Pathol. Bd. 3. S. 339—364 (1902).

²) O. r. Fürth und J. Schütz, Ein Beitrag zur Methodik der Versuche über Fettresorption aus isolierten Darmschlingen. Beitr. z. chem. Physiol. u. Path. Bd. 10. S. 461 bis S. 472 (1907).

Muß man während der Operation einen Teil des Magens oder des Darmes außer der Bauchhöhle freilegen, so breitet man ihn auf mit warmer physiologischer Kochsalzlösung getränkten Kompressen aus, welche nötigenfalls mit dieser Lösung berieselt werden. Dabei soll möglichst vermieden werden, daß Kochsalzlösung in die Bauchhöhle dringt, weil dadurch vielleicht ein Einfluß auf die Verdauungsprozesse bedingt sein könnte.

Bleibt das Tier nach der Laparotomie auf dem Brett, so muß dies stets in einem sehr stark geheizten Raume, dessen Temperatur mindestens 25—30°C beträgt, geschehen. Außerdem soll man die Bauchwunde mittelst Watte bedeckt halten und den Bauch mittelst öfters erneuerter warmer Decken gegen Erkältung schützen, da diese sonst die Verdauungsprozesse stören kann.

- 1. Verfahren, welche das Entweichen von Verdauungsprodukten vom Magen nach dem Darm verhindern. Man kann das Entweichen von Verdauungsprodukten vom Magen nach dem Darm durch Unterbindung des Pförtners, durch Verschließung des Pförtners vom Magen her oder durch Verschließung des Pförtners vom Duodenum her verhindern.
- α) Unterbindung des Pförtners. Beim nüchternen, leicht narkotisierten Tiere wird die Bauchwand in der Linea alba oder etwas rechts davon geöffnet, ein Faden um den Pförtner gelegt und unterbunden. Man verschließt die Bauchwand sorgfältig durch Nähte. Nach einiger Zeit läßt man das Tier die Nährstoffe verschlingen oder verabreicht sie ihm mit der Schlundsonde. Nach der für den Versuch festgestellten Zeit wird das Tier getötet, die Bauchwand geöffnet, die Speiseröhre über der Cardia unterbunden und der Mageninhalt mit den schon beschriebenen Kautelen aufgefangen. 1)

Dieses Verfahren ist keineswegs einwandfrei. Narkose und Laparotomie bewirken wahrscheinlich eine Verminderung der Magentätigkeit. Selbst wenn die zwischen der Laparotomie und der Verabreichung der Nahrung verflossene Zeit genügend ist, damit diese schädlichen Einflüsse nicht mehr bestehen, so kann noch die Unterbindung des Pförtners die normale Innervation und Blutversorgung des Magens stören. Es besteht außerdem die Gefahr des Erbrechens und der Beimengung von verschlucktem Speichel, wodurch Versuche über die Magenresorption störend beeinflußt werden können. Die Einführung von Speichel in den Magen bewirkt natürlich beim Hunde eine Zunahme der Magensaftmenge, der Azidität und des Verdauungsvermögens des Saftes.²)

²) Albert Frouin, Action de la salive sur la sécrétion et la digestion gastrique. Compt. rend. hebd. des séanc. de la Soc. de Biol. T. 62. p. 80—81 (1907).

H. Tappeiner, Über Resorption im Magen. Zeitschr. f. Biol. Bd. 16. S. 497—507 (1880).
 H. Meade-Smith, Die Resorption des Zuckers und des Eiweißes im Magen. Arch. f. Anat. u. Physiol., physiol. Abt. S. 481—496 (1884).

3) Verschließung des Pförtners vom Magen her. Man legt beim Versuchstier (meistens Hund) in unmittelbarer Nähe des Pförtners eine Magenfistel an. in die eine durch einen Kork verschließbare Kanüle eingeführt wird. Beim von dieser Operation völlig geheilten Hunde, d. h. einige Wochen nach der Operation, wird im nüchternen Zustande durch die Magenfistel ein Gummiballon in das Duodenum gebracht und gleich unterhalb des Pylorus aufgeblasen, wodurch man den Magen vom Duodenum leicht und vollständig abschließen kann.¹)

Die richtige Ausführung des Magendarmabschlusses mittelst der Kautschukblase wird auf folgende Weise erzielt.²) Nach Entfernung der Kanüle aus der Magenfistel geht man mit dem Zeigefinger durch die Fistel in den Pylorus hinein, die Muskulatur des Pylorus zieht sich um den vordringenden Finger zusammen, und man fühlt eine deutliche ringförmige Umschnürung. Hat man sich so über die Lage des Pförtners orientiert, so bringt man den 3—4mal gefalteten Kautschukbeutel auf die Kuppe des Zeigefingers und drückt ihn an den Eingang des Pylorus. Infolge der eintretenden Kontraktion wird die Blase erfaßt und durch leichtes Nachschieben, um ein Zurückweichen zu vermeiden, gelangt der Ballon in das Duodenum.

Der Kautschukballon ist mit einem kurzen Stiele versehen, in dem ein über ein eingekerbtes kurzes Glasröhrchen gestülpter Gummischlauch eingeschoben und über dem Stiele festgebunden wird; über diese Stelle wird ein ca. 30 cm langer, weiterer Bindfaden befestigt. Nach der Einführung wird die vorher nebst dem Schlauchstücke luftleer gemachte Blase gefüllt. indem in die Öffnung des Gummischlauches ca. 25-30 cm³ Wasser gespritzt werden. Man schließt dann den Schlauch durch eine Klemme und sucht den Ballon an dem Schlauche durch den Pförtner hervorzuziehen. Zeigt sich der Widerstand, den der gefüllte Ballon dem Herausziehen entgegensetzt, genügend groß, so bringt man am Kautschukschlauch nahe am Stiele des Ballons eine Ligatur an und schneidet das jetzt bedeutungslose Schlauchstück ab. den Ballon an dem zur Befestigung angebrachten Bindfaden festhaltend. Nachdem man sich vom richtigen Sitze des Ballons überzeugt hat, wird die Kanüle wieder in die Fistel eingeführt und ein durchbohrter Kautschukpfropfen in die Kanüle fest eingesetzt. In die Bohrung ist eine mit Kautschukschlauch und Klemme versehene Glasröhre eingepaßt. Dieser Stopfen befestigt zwar sofort die Fäden, die bis zu diesem Augenblicke stets gespannt gehalten werden müssen, um aber ein späteres Hinabgleiten des Ballons in das Duodenum zu verhüten, befestigt man die heraushängenden Fäden noch besonders an der Kanüle. Nun ist der Magen nach dem Darme hin durch die gefüllte Kautschukblase vollständig abge-

¹) H. Tappeiner, loc. cit. — B. r. Anrep, Die Aufsaugung im Magen des Hundes. Arch. f. Anat. u. Physiol., physiol. Abt. S. 504—514 (1881).

²⁾ Max Segall, Versuche über die Resorption des Zuckers. Inaug.-Dissert. München 1888. — J. Brandl, Über Resorption und Sekretion im Magen und deren Beeinflussung durch Arzneimittel. Zeitschr. f. Biol. N. F. Bd. 11. S. 277—307 (1892).

schlossen. Der Kautschukstopfen sitzt dicht in der Kanüle, so daß zwischen Fistelrand und Kanüle kein Tropfen des Mageninhaltes ausgepreßt werden kann. Bei der Befestigung des Ballons muß man ein zu starkes Anziehen des Beutelstieles vermeiden, denn sonst wird ein Teil der Darminnenfläche über den Ballon gestülpt, was die Untersuchungen über Magenverdauung stören kann. Der Kautschukballon soll nach *Ogata* nicht allzu stark mit Wasser ausgedehnt werden, denn sonst wird der bisweilen beobachtete Eintritt der Brechbewegungen begünstigt.¹)

Nach v. Anrep soll der in den Magen eingeführte Gummischlauch während 10—15 Minuten eine starke Magensaftsekretion hervorrufen, was jedoch bestritten wird.²) Da diese Frage noch nicht als endgültig festgestellt anzusehen ist ³), so soll man ¹/₄—¹/₂ Stunde nach erfolgtem Magendarmabschluß warten, ehe durch die den Kautschukpfropfen durchbohrende Glasröhre die zu untersuchende Lösung oder Aufschwemmung in den Magen eingespritzt wird. Dann verschließt man mittelst einer Klemme den an der Glasröhre befindlichen Kautschukschlauch.

Während der ganzen Dauer des Versuches bleibt das Tier auf einem Brette befestigt. Damit es sich dabei ohne Narkose vollkommen ruhig verhält, sowie um das durch die Anwesenheit eines Fremdkörpers (Kautschukblase) hervorgerufene, manchmal eintretende Erbrechen zu vermeiden, stellt Braudl das Brett schräg, so daß das Tier gleichsam in hängender Stellung sich befindet. Alle Stützpunkte, die es in dieser Lage nötig hat, müssen sorgfältig gepolstert sein, damit Schmerzempfindungen durch Druck oder Zug ausgeschlossen sind.

Nach Verlauf der Versuchsdauer wird der Mageninhalt entleert. Dies gelingt aber nie völlig, da die Lage der Fistel in der Nähe des Pförtners den Abfluß erschwert und da die zahlreichen Falten der Magenschleimhaut stets Flüssigkeit zurückhalten, welche man indes teilweise noch durch Ausspülungen des Magens mit destilliertem Wasser erhalten kann.

Nachdem man den Mageninhalt so vollständig wie möglich entnommen hat, wird der Stiel der Kautschukblase durchschnitten, wodurch ihr Inhalt sich entleert. Dann wird der leer gewordene Ballon durch den Pförtner und die Fistel herausgezogen, um ihn aus dem Magen zu entfernen.

Um, ohne die Menge des Gesamtmageninhaltes genau zu kennen, die Größe der Resorption in dem Magen zu schätzen, bedient sich v. Tappeiner des folgenden Verfahrens: Am Ende des Versuches wird eine bestimmte Menge einer ihrem Schwefelsäuregehalte nach bekannten Natriumsulfatlösung in den Magen gespritzt, der Hund mit dem Brette hochgehoben und dreimal kurze Zeit tüchtig geschüttelt, um eine gleichmäßige Mischung

¹) M. Oyata, Über die Verdauung nach der Ausschaltung des Magens. Arch. f. Anat. u. Physiol. Physiol. Abt. S. 89—116 (1883).

 $^{^2)\} J.\ P.\ Pauclow,$ Die Arbeit der Verdauungsdrüsen. S. 110. — P. Leconte, Fonctions gastrointestinales. La Cellule. T. 18. p. 283—322 (1900).

³) A. Schiff, Zur Frage der mechanischen Erregbarkeit der Magensaftsekretion Zeitschr, f. klin, Med. Bd. 61, S. 220—230 (1907).

der Natriumsulfatlösung mit dem Mageninhalte zu erzielen. Nach jedem Schütteln wird eine Probe des Mageninhaltes aus der Fistel abgelassen, und diese Probeflüssigkeit dann auf ihren Gehalt an Schwefelsäure und an der Versuchssubstanz untersucht. Der annähernd gleiche Schwefelsäuregehalt der drei Proben gibt eine Kontrolle für die durch das Schütteln erzielte gleichmäßige Mischung des Natriumsulfates mit dem Mageninhalte. Aus dem Gehalt der Proben an Schwefelsäure (S) und Versuchssubstanz (V) und aus der am Ende des Versuches als Natriumsulfat in den Magen eingeführten Schwefelsäuremenge (S') läßt sich die Gesamtmenge der im Magen vorhandenen Substanzen berechnen. Nimmt man nämlich an, daß während der kurzen Zeit des Schüttelns keine in Betracht kommenden Mengen von Natriumsulfat resorbiert werden, so entsprechen in den Proben und also auch im Gesamtmageninhalte am Ende des Versuches die gefundenen H_2 SO₄-Mengen H_2 0 den Versuchssubstanzmengen H_2 0 und die nicht resorbierte Menge der Versuchssubstanz ergibt sich aus der Gleichung: H_2 0 und H_3 0 und die nicht resorbierte Menge der Versuchssubstanz ergibt sich aus der Gleichung: H_3 0 und H_3 0 und H_3 1 und H_3 2 und H_3 3 und H_3 3 und H_3 4 und H_3 5 und H_3 6 und H_3 7 und H_3 8 und H_3 8 und H_3 9 u

Die Verschließung des Pförtners bei einem Magenfistelhunde durch Einführung einer mit Wasser gefüllten Kautschukblase in das Duodenum besitzt mehrere Nachteile. Vielleicht kann sie eine Reizung der Magenschleimhaut bewirken. Die Verletzung der Magenwand durch die Magenfistel übt eine mehr oder minder beträchtliche Einwirkung auf die Magenbewegungen und dadurch vielleicht auf die im Magen vor sich gehenden Verdauungsprozesse aus. Andererseits können mehrere Versuche an dem gleichen Tiere in mehrtägigen Zwischenräumen angestellt werden.

- γ) Verschließung des Pförtners vom Duodenum her. Unter vorsichtiger schwacher Narkose wird beim Versuchstiere die Bauchwand durch einen 1 oder 2 cm rechts von der Linea alba geführten, 15-20 cm langen, 1—2 cm unter dem Rippenbogen beginnenden Einschnitt geöffnet. Man unterbindet die Speiseröhre unmittelbar über der Cardia, ohne die großen Gefäße der Magenoberfläche zu verletzen, bringt 2 Fäden unter das Duodenum und öffnet es mittelst des Thermokauters. Dieser Einschnitt muß lang genug sein, um die Einführung eines in der Mitte durchbohrten Gummistopfens zuzulassen. In der Bohrung steckt eine 25 - 30 cm lange Gummisonde, welche den Stopfen ungefähr 5 cm lang überragt, so daß ihr inneres Ende sich im Magen befindet, wenn der Stopfen am Pförtner sitzt. Der andere Teil der Sonde mißt wenigstens 15 cm und ist 5 cm vor seinem äußeren Ende mit einer Schraubenklemme versehen. Durch den Einschnitt der Duodenalwand und den Pförtner führt man die Sonde in den Magen und bringt dann den Stopfen bis an den Pförtner, wo er mit Hilfe der unter das Duodenum gelegten Bindfäden befestigt wird. Nach der nur kurze Zeit in Anspruch nehmenden Operation', bei welcher weder in Magen noch Darm Blut gelangt, verschließt man die Bauchhöhe, indem man die Sonde durch eine kleine Öffnung nach außen leitet.
- 1—2 Stunden nach der Operation, wenn das Tier nicht mehr unter dem Einflusse der Narkose steht, versieht man die Sonde mit einem Trichter und gießt in dieselbe die in den Magen einzuführende Lösung oder Auf-

schwemmung, welche sehr leicht in den Magen läuft. Die Klemme wird rasch derart geschlossen, daß die Sonde gefüllt bleibt. Dies erlaubt, nach bestimmten Zeitabschnitten einen Teil des Mageninhaltes aufzufangen. Es genügt, die Klemme loszuschrauben; nur ist es nötig, zuerst ungefähr $20~cm^3$ Flüssigkeit abfließen zu lassen, was die in der Sonde verbliebene Menge übertrifft. Auf diese Weise ist man sicher, daß die aufgefangene Flüssigkeit wirklich aus dem Magen herrührt. Am Ende des Versuches wird das Tier getötet. Der noch im Magen vorhandene Inhalt wird mit der nötigen Vorsicht aufgefangen, wobei man sich zugleich überzeugt, daß bei der Operation der Magen unverletzt geblieben ist. 1)

Die eben beschriebene Versuchsanordnung erlaubt, wiederholt Anteile vom Mageninhalte zu gewinnen. Ob diese wirklich der mittleren Zusammensetzung des Mageninhaltes in den verschiedenen untersuchten Zeitpunkten entsprechen, ist aber, nach den Beobachtungen von Ellenberger und seinen Mitarbeitern sowie von Grützner, keineswegs völlig sicher. Andere mehr oder minder berechtigte Einwände können noch erhoben werden. Die Unterbindung der Speiseröhre und des Pförtners stört vielleicht etwas die normale Innervation und Blutversorgung des Magens. Die Einführung einer Sonde in den Magen führt möglicherweise zu einer stärkeren Magensaftabsonderung, was indes bestritten wird. Die Narkose und die Laparotomie können, trotz allen Vorsichtsmaßregeln, die Magentätigkeit vielleicht sekundär beeinflussen.

2. Verfahren zur Gewinnung der Endprodukte der Magenverdauung. Um beim Hunde die Endprodukte der Magenverdauung zu gewinnen, werden in möglichster Nähe des Pförtners zwei seitenständige, einige Zentimeter voneinander entfernte Duodenalfisteln nach Pawlow-Dastre²) angelegt und mit Duodenalkanülen versehen. Die dem Magen am nächsten liegende Fistel dient zum Auffangen von Magen- oder Duodenalinhalt, die andere zum Einspritzen von Salzsäure oder anderen Stoffen ins untere Duodenum. Zur genauen Erforschung der Magentätigkeit müssen die Fisteln so gelegen sein, daß der Choledochusgang und der obere Ausführungsgang der Bauchspeicheldrüse unter der vom Magen am nächsten gelegenen Fistel münden, was indes ziemlich schwer zu erzielen ist.

Mehrere Wochen nach der Operation wird in einem Vorversuche das völlig geheilte Tier im *Pawlow*schen Gestelle³) in ledernen Stützschlaufen aufgestellt. Man füttert es mit derselben Nahrung wie beim eigentlichen Versuche. Die vom Magen entleerten Massen werden in einem in eine Kältemischung gebetteten Gefäß aufgefangen und mit dem Glasstab um-

¹) E. Zunz, Über die Verdauung und Resorption der Eiweißkörper im Magen und im Anfangsteil des Dünndarms. Beitr. z. chem. Physiol. u. Path. Bd. 3. S. 339—364 (1902).

²⁾ J. P. Pawlow, Die physiologische Chirurgie des Verdauungskanals. Ergebn. d. Physiol. Jg. 1. Abt. 1. S. 277 (1902). — O. Cohnheim, Zur Technik der Duodenalfisteln. Zeitschr. f. biolog. Technik und Methodik. Bd. 1. S. 268—276 (1909).

³) W. N. Boldireff, Le travail périodique de l'appareil digestif en dehors de la digestion. Arch. des sc. biolog. de St. Pétersbourg. T. 11. p. 27 (1905).

gerührt. Sie gefrieren vom Rande her rasch zu einem Eisklumpen, der in gefrorenem Zustande bis zum weiteren Gebrauche aufgehoben wird. Sobald die Entleerung aufhört, werden 50 em³ Wasser nachgegeben und damit der Magen tüchtig durchgeschüttelt. Zum Schlusse wird noch eine Magenspülung mit Hilfe der Schlundsonde ausgeführt. Das so gewonnene, in Kältemischung gefroren aufbewahrte Verdauungsprodukt wird zu dem eigentlichen, 2 Tage später erfolgenden Versuche benutzt. Dafür wird es aufgetaut, zur Befreiung von gröberen Stücken durch weitmaschige Gaze filtriert und auf Körpertemperatur erwärmt. Man kann auch die im Vorversuche vom Magen entleerten Massen von 5 zu 5 Minuten sammeln und unmittelbar für kurze Zeit in kochendes Wasser bringen, um das Ferment abzutöten. Man hebt dieses Verdauungsprodukt auf Eis auf.

Beim eigentlichen Versuche verschlingt der am Gestelle sich befindende Hund dieselbe Nahrung wie beim Vorversuche. Sobald saurer Mageninhalt in die Duodenalfistel eintritt, wird ein nach dem Prinzip der Tamponkanüle mit einem Ballon aus Kondomgummi armierter Nelatonkatheter in den abführenden Duodenalschenkel eingeführt und daselbst nicht zu weit von der Kanüle entfernt aufgebläht.

Die Aufblähung des Ballons muß mit großer Sorgfalt und Vorsicht geschehen. Schon die bloße Berührung der Duodenalschleimhaut durch den eingeführten Ballon unterbricht während einigen Minuten die Magenentleerung. Bläht man den Ballon zu stark auf, so kann sogar die Magenentleerung eine ganze halbe Stunde aufhören und überhaupt nicht mehr regelmäßig in Gang kommen. Es genügt zum vollständigen Darmabschlusse eine verhältnismäßig geringe Ballonfüllung. Zur Füllung des Ballons darf nicht Wasser verwendet werden, sonst wird der auf diese Art ein ganz erhebliches Gewicht erreichende Ballon als lästiger Fremdkörper empfunden; der Hund wird oft unruhig, die Magenentleerung wird ganz unregelmäßig oder hört auf. Mit dem Spiegel sieht man im Grunde der Kanüle peristaltische Darmbewegungen — offenbar zur Weiterschaffung des Ballons.

Hat man den Ballon unter diesen Kautelen eingeführt und sich nach wenigen Minuten vom geregelten Fortgang der Magenentleerung überzeugt, so schreitet man nun dazu, das aufgetaute, auf Körpertemperatur erwärmte Verdauungsprodukt des Vorversuches portionsweise nach Maßgabe des austretenden Mageninhaltes durch den Katheter hinter dem Ballon in den Darm zu spritzen. Es empfiehlt sich, die Masse durch Methylenblau zu färben und sich häufig zu vergewissern, daß kein Rückfluß in die Kanüle stattfindet.

Um den physiologischen Vorgang in vollständig exakter Weise nachzuahmen, müßte man nach jedem einzelnen entleerten Schuß eine gleichgroße Verdauungsproduktmenge in das Duodenum eintreten lassen. Da dies aber nur schwierig erreicht wird, so begnügt man sich damit, nach bestimmten Zeiten (5 bis 15 Minuten) oder nach einer abgezählten Anzahl einzelner Schüsse (15 bis 20) eine annähernd entsprechende Menge des

Verdauungsproduktes einzuspritzen. Auf eine solche Einspritzung tritt regelmäßig rasch der reflektorische Pförtnerschluß ein, welcher je nach der Verdauungsperiode 3 bis 10 Minuten anhält.

Das vom Magen schußweise Entleerte wird, wie im Vorversuche, in einem in Kältemischung sich befindenden Gefäß aufgefangen.

Die von Tobler vorgeschlagene portionenweise Einspritzung des beim 2 Tage vorher angestellten Vorversuche erhaltenen Verdauungsproduktes in den abführenden Duodenalschenkel nach Maßgabe der vom Magen entleerten Mengen soll das Zustandekommen des vom Duodenum aus durch sauren oder fetthaltigen Chymus ausgelösten Chemoreflexes, der das periodische Öffnen und Schließen des Pförtners beim normalen Tiere regelt, ermöglichen und auf diese Weise die sonst beim Bestehen der Duodenalfistel rascher wie normalerweise vor sich gehende Magenentleerung verhüten. ¹) Trotz diesen scharfsinnigen, von Tobler vorgeschlagenen Vorsichtsmaßregeln erfolgt indes stets bei den Duodenalfistelhunden die Magenentleerung rascher als bei den Normaltieren.

Die Toblersche Versuchsanordnung berücksichtigt indes einen anderen, wahrscheinlich keineswegs unwesentlichen Umstand. Die während der Magenverdauung oft erstaunlich großen abgesonderten Magensaftmengen bewirken nämlich eine beträchtliche Verausgabung des Organismus an Flüssigkeit und Mineralstoffen, insbesondere an Salzsäure²), so daß es als sehr wahrscheinlich erscheint, daß während einer Verdauungsperiode die in den Darm ergossene Salzsäure rasch zurückresorbiert wird und so dem Blute die Beständigkeit seiner Zusammensetzung gesichert bleibt. Die etwaige Beeinträchtigung der Magensaftabsonderung im Magen bei den Fisteltieren durch größere Magensaftverluste nach außen wird durch die Einspritzung von der Menge nach den nach außen fließenden Breimengen ungefähr entsprechenden Chymusmengen in den Darm möglichst vermieden.

Bis jetzt ist die *Tobler*sche Versuchsanordnung das beste Verfahren, um das Endprodukt der Magenverdauung zu gewinnen. Andrerseits gibt sie aber keineswegs völlig richtige Aufschlüsse über die Zeitdauer des

¹⁾ Z. Oppenheimer, Über die motorischen Verrichtungen des Magens. Deutsch. med. Wochenschr. Bd. 15. S. 125—128 (1889). — A. Hirsch, Beiträge zur motorischen Funktion des Magens beim Hunde. Zentralbl. f. klin. Med. Bd. 13. S. 993—995 (1892). — Derselbe, Weitere Beiträge zur motorischen Funktion des Magens, nach Versuchen an Hunden mit Darmfisteln. Ibid. Bd. 14. S. 73—77 (1893). — J. ron Mering, Über die Funktion des Magens. Therapeut. Monatsh. Bd. 7. S. 201—204 (1893). — Moritz, Studien über die motorische Tätigkeit des Magens. Zeitschr. f. Biol. Bd. 32. S. 313—369 (1895): Bd. 42. S. 565—611 (1901). — O. Marbaix, Le passage pylorique. La Cellule. T. 14. p. 25—53 (1898). — A. Serdjukow, Inaug.-Dissert. St. Petersburg 1899. — S. J. Lintwarew, Inaug.-Dissert. St. Petersburg 1901. — A. J. Schemiakine, Physiologie de la région pylorique de l'estomac du chien. Arch. des sc. biolog. de St. Pétersbourg. T. 16. p. 87—170 (1904).

²) M. Pfaundler, Über eine neue Methode zur klinischen Funktionsprüfung des Magens und deren physiologische Ergebnisse. Deutsch. Arch. f. klin. Mediz. Bd. 65. S. 254—284 (1900).

Verweilens der verschiedenen Nährstoffe im Magen, weil die Magenentleerung sich nicht wie beim normalen Tiere vollzieht.¹)

3. Verfahren zur direkten Einführung von Nährstoffen in das Duodenum. Um Nährstoffe unmittelbar in das Duodenum mit Umgehung des Magens einzuführen, wird dem Versuchstiere (meistens Hund oder Katze) in nächster Nähe des Pförtners eine mit einer Kanüle versehene Magenfistel angelegt. Erst wenn das Tier von dieser Operation völlig geheilt ist, kann man die eigentlichen Versuche anstellen.

Um jeden Verlust der in den Darm eingeführten Stoffe zu vermeiden, wird der Pförtner mittelst des durch die Fig. 33 schematisch veranschaulichten durchbohrten Gummiballons $\mathcal A$ verschlossen. In die eine der beiden Öffnungen $\mathcal B$ wird ein kurzer Ring eingebunden, dessen Lichtung mit einem doppelt durchbohrten Stopfen verschlossen wird. Durch den Pfropf

laufen zwei Gummikatheter, der engere C derselben endet im Hohlraume der Kautschukblase, der andere D dagegen, welcher weiter und länger ist, durchsetzt auch die Öffnung am anderen Ende des Beutels E und ragt mit seinem freien Ende $5-6\ cm$ über denselben hinaus. An dem Orte, wo er den Ballon verläßt, wird der Katheter D in die Wand des Beutels dicht eingebunden.

Die Kautschukblase wird leer durch den Pförtner geschoben, dann durch die in ihre Höhlung mündende Röhre C so weit mit Wasser gefüllt bis sie sich an die Wand des Duodenums fest anlegt, wonach der Katheter C mittelst der Klemme F verschlossen wird. Dann wird die, nötigenfalls in einem flüssigen Breie mit Wasser verriebene in einem vorgelegten Kolben befindliche Speisenmasse unter Quecksilberdruck durch den Katheter D in den Darm eingebracht, der in dieser Röhre verbleibende Speiserest durch etwas Wasser nachgespült und hierauf endlich die freie Mündung des Katheters D mittelst der Klemme G geschlossen. 2)

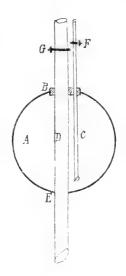


Fig. 33.

Man kann den während der Verdauung sich bildenden Magensaft in einem vor der Fistelöffnung hängenden Beutel aufnehmen und diesen so oft entleeren, als er sich mit Magensaft füllt.

¹⁾ L. Tobler, Über die Eiweißverdauung im Magen. Zeitschr. f. physiol. Chem. Bd. 45. S. 185—215 (1905). — G. Lang, Über Eiweißverdauung und Eiweißresorption im Magen des Hundes. Biochem. Zeitschr. Bd. 2. S. 225—242 (1907). — Otto Cohnheim, Zur Spaltung des Nahrungseiweißes im Darm. 2. Mitteil. Zeitschr. f. physiol. Chem. Bd. 51. S. 415—424 (1907). — Derselbe, Beobachtungen über Magenverdauung. Münchener med. Wochenschr. Bd. 54. S. 2581—2583 (1907).

²) M. Ogata, Über die Verdauung nach der Ausschaltung des Magens. Arch. f. Anat. u. Physiol., physiol. Abt. S. 89—116 (1883).

Nach der festgestellten Versuchszeit wird das Tier getötet und die Bauchhöhle geöffnet. Der an beiden Enden oder in mehreren Abschnitten unterbundene Dünndarm wird herausgenommen. Seine äußere Oberfläche wird sorgfältig abgespült, und darauf der Inhalt des gesamten Dünndarmes oder jeder der gebildeten Darmschlingen gesondert aufgefangen.

Dieses Verfahren erlaubt, die Darmverdauung ohne jeden operativen Eingriff in den Darm selbst und ohne jede Narkose zu studieren. Die Einführung des Gummiballons bleibt aber vielleicht nicht ohne Einfluß auf die Darmverdauung.

Um sich möglichst den Bedingungen, unter welchen normalerweise der Eintritt der Flüssigkeiten vom Magen in den Darm vor sich geht, zu nähern und um nicht in einer vorherigen Operation eine Magenfistel anlegen zu müssen, bedient sich P. Nolf folgenden Verfahrens: Mittelst des Bistouris wird ein Schnitt in die Haut in der Linea alba in der Höhe des Magens gemacht. Mittelst des Thermokauters wird dann die Bauchwand geöffnet. Das Netz wird mittelst des Zeigefingers durchbohrt, und nun zieht man den präpylorischen Magenteil in die Wunde. Um diesen herum wird ein starker Faden gelegt, welcher ihn später umschnüren muß; die Koronar- und die gastroepiploïschen Arterien müssen sich außerhalb dieser Ligatur befinden. Durch einige Nähte befestigt man die vordere Magenwand an die Wunde, so daß der auf diese Weise freigelegte Magenteil nur ungefähr 2-3 cm vom Pförtner absteht. Die so freigelegte Magenwand wird mittelst des Thermokauters der Länge nach durchbohrt. Durch diese Bohrung führt man bis in die Nähe des Pförtners das dicke Ende einer umgebogenen Glaskanüle ein, so daß diese im Magen bleibt. Mit dem hinter dem an die Bauchwand befestigten Magenteile liegenden Faden wird nun die Einschnürung der Kanüle umbunden, ohne dabei die Magenwand zu stark zusammenzudrücken, so daß das dicke Ende der Kanüle fast vor dem Eingange des Pförtners befestigt ist. Das freie äußere Ende der Kanüle wird mittelst einer Kautschukröhre mit dem die in den Darm einzuspritzende Lösung enthaltenden Trichter verbunden.

Die so eingeführte Flüssigkeit muß also durch den Pförtner fließen, um in den Darm zu gelangen. Die Raschheit des Eintrittes in das Duodenum wird durch die Höhe, auf welche man den Trichter über den Pförtner anbringt, beeinflußt. Saure Flüssigkeiten treten stets schwieriger in das Duodenum als alkalische. Zur Erreichung gleicher Einflußgeschwindigkeit bedarf es eines zwei- bis dreimal größeren hydrostatischen Druckes bei sauren als bei alkalischen Flüssigkeiten.

Man kann mittelst dieses Verfahrens während längerer Zeit einen mit ziemlich gleichbleibender Raschheit vor sich gehenden Flüssigkeitscintritt in das Duodenum bewirken oder auch nur zu Beginn des Versuches ein bestimmtes Quantum Flüssigkeit in den Darm eintreten lassen.

Nach der im voraus für den Versuch festgestellten Zeitdauer wird das Tier rasch getötet, die Bauchhöhle geöffnet und der Inhalt des

Gesamtdünndarmes oder mehrerer durch Unterbindungen isolierter Darmteile mit den nötigen Kautelen jeder für sich aufgefangen. 1)

Bei dieser Methode bleibt der Darm unverletzt und die Darmverdauung erleidet nicht, wie beim *Ogata*schen Verfahren, von der Einführung des Gummiballons herrührende etwaige Störungen. Die in der Nähe des Pförtners auf der Magenwand liegende Unterbindung und die zum Einführen der Kanüle in den Magen nötige Narkose und Laparotomie bleiben indes möglicherweise nicht ohne Einfluß auf die Darmverdauung.

- 4. Verfahren zum Studium der Darmverdauung an isolierten Darmschlingen.
- a) Ohne vorherige Anlegung einer Darmfistel. Um die Verdauung im ganzen Dünndarme ohne Intervention der Galle und des Pankreassaftes zu studieren, wird unter leichter Narkose die Bauchwand in der Linea alba oder 1-2 cm rechts davon geöffnet. Der Dünndarm wird gleich über der Ileocöcalklappe unterbunden. Ein Faden wird am Duodenum unter der Einmündung des Choledochusganges und des 2—3 cm davon entfernten Hauptausführungsganges des Pankreas gelegt. Mittelst des Thermokauters macht man eine kleine Öffnung inmitten des zwischen diesem Faden und dem Pförtner befindlichen Duodenalteiles. In diese Öffnung bringt man eine an ihrem äußeren Ende mit einer Klemme versehene dünne Kautschukröhre, deren inneres Ende man in den Dünndarm abwärts führt, oder das mit einem Hahn versperrbare Ansatzstück einer Spritze. Man schnürt den Faden auf das Duodenum, so daß die Kautschukröhre oder das Ansatzstück der Spritze fest in der Darmschlinge sitzt, damit bei Einspritzungen kein Verlust erfolgt. Nun spritzt man die auf Körpertemperatur erwärmte, untersuchte Lösung (oder Aufschwemmung) in den Darm und schließt dabei nötigenfalls so oft die Klemme oder den Hahn, als man die Spritze wieder einfüllen muß. Um die gesamte Lösung dem Darm abzugeben, wird zuletzt eine geringe Luftmenge eingespritzt, welche die in der Röhre gebliebene Flüssigkeit in den Darm treibt. Die Klemme oder der Hahn wird dann geschlossen und die Röhre oder das Ansatzstück vorsichtig aus dem Darme herausgezogen, während gleichzeitig ein Gehilfe den am Duodenum liegenden Ligaturfaden fest anzieht, so daß das duodenale Ende des Dünndarmes endgültig abgeschlossen ist. Die Bauchwand wird durch Nähte vereinigt. Nach Ablauf einer bestimmten Zeit wird das Tier durch Nackenstich getötet und der Inhalt des Dünndarmes mit den nötigen Vorsichtsmaßregeln aufgefangen.

Dieses Verfahren erlaubt Magen- und Darmverdauung zu vergleichen, indem man einen zweiten Faden am Duodenum in unmittelbarer Nähe des Pförtners anlegt, die Speiseröhre unmittelbar über der Cardia unterbindet, die mit der Klemme oder dem Ansatzstücke versehene Kautschukröhre nach Füllen des Dünndarmes in den Magen bringt, die Versuchsflüssigkeit in dieses Organ spritzt und den duodenalen Faden unterbindet.

¹) P. Nolf, De l'absorption intestinale de la propeptone chez le chien. Bull. de la Classe des Sciences de l'Acad. roy. de Belgique. p. 1149—1202 (1903).

Falls man nur die Darmverdauung untersuchen will, so kann man, nach P. Nol/ und Ch. Honoré¹), durch eine im Duodenum angelegte Öffnung eine dicke Glaskanüle ins Jejunum einführen, darauf den Darm unterbinden und den so vorbereiteten Darm mittelst Naht an der sofort wieder abgeschlossenen Bauchwand befestigen. Das äußere Ende der Kanüle steht mit einer mit einer Klemme versehenen Kautschukröhre in Verbindung. Nachdem sich das Tier von der Operation und der dafür nötigen Narkose erholt hat, führt man die auf 40° erwärmte, untersuchte Nährstofflösung in den Darm, schließt die Klemme, tötet nach der Versuchsfrist das Tier und fängt den Dünndarminhalt auf. Dieses Verfahren erlaubt, während des Versuches neue Einspritzungen in den Darm zu machen sowie die Einführung mit jeder beliebigen Raschheit zu bewerkstelligen. Es ruft aber leichter Störungen der Innervation und der Blutversorgung des oberen Dünndarmteiles hervor als die zuerst beschriebene Methode.

Um die Darmverdauung und Resorption verschiedener Lösungen bei ein und demselben Tiere zu untersuchen, wird eine gemessene Schlinge an beiden Enden abgebunden und beiderseits dicht an den Ligaturen eröffnet. Werden mehrere solche Vergleichsversuche an einer Reihe von Tieren angestellt, so soll man stets Darmschlingen derselben Lage benutzen, denn verschiedene Stellen des Darmrohres besitzen für die gleiche Flüssigkeit keineswegs dasselbe Resorptionsvermögen und dieselbe Einwirkung.2) In jeder der beiden Öffnungen der Darmschlinge wird eine mit Gummischlauch und Klemme versehene Glaskanüle eingebunden. Die Schlinge wird zuerst durch einen Strom körperwarmer physiologischer Na Cl-Lösung, Ringerlösung oder der zum Versuche dienenden Flüssigkeit so lange gründlich ausgespült, bis die Flüssigkeit ganz klar abfließt. Zur Entfernung der dann noch in der Schlinge vorhandenen Spülflüssigkeit wird die äußere Oberfläche der Darmschlinge mehrmals sanft gestrichen. Die Ausspülung erlaubt zwar die Darmschleimhaut völlig zu reinigen, bleibt aber vielleicht nicht ohne Einwirkung auf diese, so daß man sich dazu nur derselben Flüssigkeit, wie der zum ersten Versuche benutzten, bedienen soll. Außerdem kann beim zur gänzlichen Entfernung der Spülflüssigkeit nötigen, selbst vorsichtigen Anstreichen die Darmwand leicht mechanische Verletzungen erleiden. Nach der Auswaschung der Darmschlinge wird die an einer der beiden Kanülen befindliche Klemme geschlossen, die Schlinge wieder in die Bauchhöhle gebracht, durch die andere Kanüle die untersuchte Flüssigkeit in die Darmschlinge eingespritzt, die an dieser Kanüle sich befindende Klemme zugemacht und dann die Bauchwand geschlossen. Nach Ablauf der beab-

¹) Influence des conditions de l'absorption intestinale de l'azote alimentaire sur l'élimination azotée urinaire. Arch. int. de Physiol. T. 2. p. 85—115 (1905).

²) Lannois et R. Lépine, Sur la manière différente dont se comportent les parties supérieures et inférieures de l'intestin grêle au point de vue de l'absorption et de la transsudation. Arch. de physiol. norm. et pathol. 3. Reihe. T. 1. p. 92—111 (1883). — Carl Voit und J. Bauer, Über die Aufsaugung im Dick- und Dünndarme. Zeitschr. f. Biol. Bd. 5. S. 536—570 (1869).

sichtigten Versuchsdauer wird die Schlinge wieder hervorgezogen und durch sanftes Streichen ihrer äußeren Oberfläche die noch vorhandene Flüssigkeit durch eine der Kanülen entleert. Nun wäscht man die Schlinge wieder mit Kochsalzlösung, Ringerlösung oder der zum neuen Versuche dienenden Flüssigkeit und füllt darauf die Schlinge mit letzterer. Auf diese Weise kann man nacheinander 6 bis 8 Lösungen untersuchen. Höber empfiehlt die sonst etwas mühsame Reposition der Darmschlinge durch Resezieren des Netzes am Anfange des Versuches zu erleichtern. Diese oft wiederholte Reposition der dem Bauch bei jeder Entleerung entzogenen Schlinge verursacht leicht mechanische Verletzungen und führt manchmal sogar zu einer Zerrung oder abnormen Lagerung des Mesenteriums, so daß die Blutzufuhr gestört oder verändert wird. Um dies zu vermeiden, kann man die einmal gefüllte Schlinge während der ganzen Versuchszeit in stetig mittelst physiologischer oder Ringerlösung benetzte Tücher außerhalb der Bauchhöhle liegen lassen; dabei befindet sie sich aber sicher unter abnormen Bedingungen.1)

Das Vorhandensein der inneren Enden der beiden Glaskanülen in der Schlinge stört vielleicht die Verdauungsprozesse. Um diese etwaige Fehlerquelle zu beseitigen und trotzdem die Darmschlinge vor dem Versuche ausspülen zu können, wird die in einer bestimmten Länge abgebundene Dünndarmschlinge quer durchschnitten. Der Ort der Durchschneidung muß derart gewählt werden, daß die am Mesenterialrande verlaufenden großen Gefäße geschont bleiben. Außerdem kann man noch vor dem Durchschneiden beiderseits das äußerste zur Schnittfläche führende Blutgefäß umstechen. Nach der Durchspülung mittelst körperwarmer physiologischer Kochsalzlösung. Ringerlösung oder am besten derjenigen Flüssigkeit, die zum eigentlichen Versuche dient, wird die Schlinge an beiden Enden zugebunden. Zur Einführung der Versuchsflüssigkeit in die Schlinge wird die mit der Spritze selbst oder durch einen kurzen Kautschukschlauch mit einer Bürette verbundene Kanüle einer Pravazschen Spritze möglichst schief durch die Darmwandung eingestochen. Legt man durch dreimaliges Umstechen einen Faden um die Kanüle, und zieht man diesen beim Herausnehmen der Kanüle zu, so geht bei der Einspritzung der Flüssigkeit kein Tropfen verloren, denn der schiefe Stichkanal wird bei größerem Innendruck zusammengepreßt und schließt ventilartig. Während der Einspritzung muß die Kanüle festgehalten werden, damit sie nicht die Darmschleimhaut verletzt und eine Blutung hervorruft.2) Um keine Verletzung der Darmwand der Schlinge

²) Georg Friedländer, Über die Resorption gelöster Eiweißstoffe im Dünndarme. Zeitschr. f. Biolog. Bd. 33, S. 263-287 (1896).

¹⁾ R. Heidenhain, Neue Versuche über die Aufsaugung im Dünndarme. Pflügers Arch. f. d. ges. Physiol. Bd. 56. S. 576—631 (1894). — M. Katzenellenbogen, Der Einfluß der Diffusibilität und der Lipoidlöslichkeit auf die Geschwindigkeit der Darmresorption. Ebenda. Bd. 114. S. 522—534 (1906). — R. Höber, Über Resorption im Dünndarm. I. Mitt. Ebenda. Bd. 70. S. 624—642 (1898). H. Mitt. Ebenda. Bd. 74. S. 246—271 (1899). — Derselbe, Die physikalische Chemie in der Physiologie der Resorption, der Lymphbildung und der Sekretion. Physikalische Chemie und Medizin. Bd. 1. S. 294—419 (1907).

zu bewirken, kann man auch nur eines der beiden Enden der Schlinge nach der Ausspülung zuschließen; in das andere wird eine Kautschukröhre oder das Ansatzstück einer Spritze angebracht und durch einen die Schlinge umschnürenden Faden darin festgehalten. Nach der Einspritzung der untersuchten Flüssigkeit wird die Röhre oder das Ansatzstück rasch aus der Schlinge gezogen, während man gleichzeitig den Faden fest zuschnürt, so daß dann die gefüllte Schlinge beiderseits geschlossen ist. Außer den vorhin schon erwähnten Einwänden gegen die Ausspülung bietet die soeben beschriebene Versuchstechnik noch als Fehlerquelle eine von der Durchschneidung des Darmes oberhalb und unterhalb der eigentlichen Schlinge herrührende, etwaige Beeinträchtigung der Verdauungs- und Resorptionsprozesse in der Schlinge.

Zum Vergleiche der Verdauung und Resorption verschiedener Lösungen im Dünndarme eines und desselben Tieres kann man sich auch zwei oder mehrerer zwischen Unterbindungen isolierter Schlingen gleicher Länge bedienen. Bei solchen Versuchen muß besonders darauf geachtet werden, daß das Mesenterium keine Drehung erleidet, damit die Blutversorgung in den verschiedenen Schlingen normal bleibt. 1) Es ist vorzuziehen, beim 1 oder 2 Tage vorher mit Abführmitteln behandelten Tiere keine Auswaschung der abgebundenen Darmschlingen vorzunehmen. Mittelst des Thermokauters wird die Darmwand zwischen den die zwei benachbarten Schlingen begrenzenden Fäden eröffnet, so daß man durch diese Öffnung eine Kautschukröhre oder das Ansatzstück einer Spritze zuerst in die eine und darauf in die andere Schlinge einführen und auf diese Weise die Versuchsflüssigkeit in die eine Schlinge und gleich nachher in die andere einspritzen kann.

Bei allen Verfahren zur Untersuchung der Verdauung in isolierten Dünndarmschlingen können beim Abbinden der Schlinge sowohl der Kreislauf des Blutes und der Lymphe als die Innervation Veränderungen erleiden und dadurch die Verdauungsprozesse mehr oder minder gestört werden. Die zu diesen Versuchen nötige Narkose wirkt wahrscheinlich etwa in demselben Sinne. Das Hervorholen der Darmschlinge aus der Bauchhöhle und die anderen Manipulationen am Darm und am Mesenterium bewirken Veränderungen der Beweglichkeit des Darmes.

Will man die im Dickdarme vor sich gehenden Verdauungs- und Resorptionsprozesse untersuchen, so führt man durch das Rektum eine Schlundsonde in den Dickdarm ein. Knapp hinter dem Cöcum und distal an einer noch gut erreichbaren Stelle wird je eine Ligatur angelegt, das innerhalb dieser Ligaturen liegende Stück des Dickdarmes losgetrennt und durch Warmwasserausspülungen und leichtes Ausstreichen gründlich gereinigt. Dann wird an einem Ende dieser Dickdarmschlinge eine Ligatur durch

¹) G. Leubuscher, Studien über die Resorption seitens des Darmkanales. Jenaische Zeitschr. Bd. 18. S. 808. — E. Waymouth Reid, On intestinal absorption, especially on the absorption of serum, peptone and glucose. Philosoph. Transact. of the Roy. Soc. of London. Series B. Vol. 192. p. 211—297 (1900).

den Mesenterialansatz hindurchgeführt und fest geschnürt, so daß die Dickdarmschlinge verschlossen ist. Im anderen Ende dieser Schlinge wird eine Kautschukröhre oder das Ansatzstück einer Spritze angebracht und mittelst eines die Schlinge umschnürenden Fadens darin fest gehalten. Sobald die Versuchsflüssigkeit in die Dickdarmschlinge eingespritzt ist, wird die Röhre oder das Ansatzstück bei gleichzeitigem festen Zuschnüren des Fadens rasch aus der Schlinge gezogen, so daß dann die Dickdarmschlinge beiderseits verschlossen ist. Das Ausspülen des Dickdarmes scheint selbst bei 1 oder 2 Tage vorher mit Abführmitteln behandelten Hunden oder Katzen unentbehrlich. 1)

β) Mit vorheriger Anlegung einer Darmfistel.

Bei der Thiryschen Darmfistel wird das eine Ende eines abgetrennten Darmstückes durch eine Naht verschlossen und das andere mit der Bauchwand vernäht, so daß eine Dauerfistel gebildet wird. Um mehrere Versuche über die Verdauung im Dünndarme bei ein und demselben Tiere anzustellen, bedient man sich heutzutage nur noch der Vellaschen Veränderung der Thiryschen Darmfistel. In der Thiry-Vellaschen Fistel werden beide Enden des isolierten Darmstückes in die Bauchwand eingenäht, so daß beide nach außen münden. Bei dem Einnähen der beiden Fistelenden in die Bauchwunde soll man dabei durch eine schnürstiefelartig angebrachte Naht das Lumen der Darmenden stark verengen, um den sonst immer drohenden Darmwandprolaps zu verhüten.²)

Bei den Versuchen an Tieren mit *Thiry-Vella*scher Darmfistel muß man zunächst feststellen, welche Inhaltsmenge der Darmabschnitt faßt, und welche Menge Spülflüssigkeit notwendig ist, um den Darm von einem bestimmten Volumen der eingeflossenen Versuchsflüssigkeit völlig zu befreien. Die Kapazität des isolierten Darmabschnittes bleibt indes nicht stets dieselbe; sie nimmt erheblich ab, wenn der Hund längere Zeit zu Versuchen nicht benutzt wird und nimmt hingegen zu, wenn die Versuche rasch aufeinander folgen. Werden aber nach dem Beispiele von *v. Scanzoni* die Versuche in gleichmäßigen Zwischenräumen angestellt, z. B. alle 3 Tage, so bleibt die Kapazität ziemlich beständig.³)

¹) H. J. Hamburger, Versuche über die Resorption von Fett und Seife im Dickdarm. Arch. f. Physiol. u. Anat. Physiol. Abt. S. 433—464 (1900). — Felix Reach, Untersuchungen über die Größe der Resorption im Dick- und Dünndarme. Ebenda. Bd. 86. S. 247—258 (1901).

²⁾ L. Thiry, Über eine neue Methode, den Dünndarm zu isolieren. Sitz.-Ber. d. Wien, Akad, d. Wiss. Math.-naturw. Kl. 1. Abt. Bd. 50. S. 77—96 (1864). — L. Vella, Neues Verfahren zur Gewinnung reinen Darmsaftes. S. Moleschotts Untersuchungen zur Naturlehre. Bd. 13. S. 40 (1882). — O. Cohnheim, Über Dünndarmresorption. Zeitschr. f. Biol. Bd. 36. S. 129—153 (1898).

³) Gumilewski, Über Resorption im Dünndarm. Pflügers Arch. f. d. ges. Physiol. Bd. 39. S. 556—592 (1886). — F. Röhmann, Über Sekretion und Resorption im Dünndarm. Ebenda. Bd. 41. S. 411—462 (1887). — Friedrich v. Scanzoni, Über die Resorption des Traubenzuckers im Dünndarm und deren Beeinflussung durch Arzneimittel. Zeitschr. f. Biol. Bd. 33. S. 461—474 (1896).

Unmittelbar vor jedem Versuche soll man die Darmschlinge mit der untersuchten Lösung mehrere Male durchspülen. Sonst bleibt bei Beendigung des Versuches eine nicht unbeträchtliche Flüssigkeitsmenge an den Wänden haften, während, wenn die Darmwand schon vorher mit derselben Flüssigkeit bespült war, dieser Fehler sich mehr oder minder aufheben läßt.¹)

Zur Untersuchung der Verdauung bei Anwendung Vellascher Fisteln bestehen zwei Verfahren, je nachdem man den isolierten Darmabschnitt während der ganzen Zeit des Versuches mit der untersuchten Lösung speist oder ihn nur zu Beginn des Versuches damit füllt.

Im ersten Falle werden in beiden Fisteln kleine, in der Mitte von einer Röhre durchsetzte und seitlich einen Ansatz tragende, dünne Gummiballons leer eingeführt und dann vom seitlichen Ansatz einer Spritze aus mit ca. 20 cm³ Wasser gefüllt, so daß sie einen vollkommenen Abschluß bilden und die Fistel nur mehr von den die Kautschukbeutel durchsetzenden beiden Röhren zugänglich bleibt. Diese beiden Röhren werden sodann mit kleinen, mit Thermometern versehenen Liebigschen Kühlern verbunden, durch deren Mantel auf 40° erwärmtes Wasser fließt. Der eine Liebigsche Kühler endigt in einem Wassermanometer, so daß die aus dem Darmabschnitte austretende und durch die Atmungsbewegungen und Peristaltik auf- und absteigende Flüssigkeit auf Körpertemperatur bleibt. Der andere Kühler führt zu dem die auf Körpertemperatur erwärmte untersuchte Lösung enthaltenden Gefäße, aus dem diese Lösung unter einem durch Mariottesche Flaschen beständig gehaltenen Drucke von 40 mm Hg in die Fistel stetig zufließen kann, so daß beide Kühler eigentlich als Erwärmer dienen. Durch die soeben beschriebene Versuchsanordnung wird der Druck im Einflußgefäße geregelt und bleibt beständig. Andrerseits wird beim langsamen Zufließen der auf Körpertemperatur erwärmten Flüssigkeit ein Abkühlen in dem zuführenden Gummischlauch vermieden. Damit die Versuchsflüssigkeit während des ganzen Versuches unter einem beständigen Druck von 40 mm Hg bleibt, muß natürlich auch schon vor dem Versuche das Manometer des zweiten Erwärmers demselben Drucke ausgesetzt werden, um ein Übertreten der Füllungsflüssigkeit in das Manometer zu verhüten.²)

Um nach Beendigung des Versuches die untersuchte Lösung aus dem Darmstücke zu entfernen, werden beide Ballonröhrchen abgeklemmt und von den gleichfalls abgeschlossenen Erwärmern abgenommen. Nun läuft zu-

¹) J. H. Hamburger, Über den Einfluß des intraintestinalen Druckes auf die Resorption im Dünndarm. Arch. f. Anat. u. Physiol. Physiol. Abt. S. 428—464 (1896).

²⁾ Gumilewski, loc. cit. — v. Scanzoni, loc. cit. — Ernst Farnsteiner, Über Resorption von Pepton im Dünndarm und deren Beeinflussung durch Medikamente. Zeitschr. f. Biol. Bd. 33. S. 475—488 (1896). — H. v. Tappeiner, Über die Beeinflussung der Resorption der Fette im Dünndarm durch Arzneimittel. Nach Arbeiten von M. Eschenbach, L. Lichtwitz und Gmeiner mitgeteilt. Zeitschr. f. Biol. Bd. 45. S. 223—249 (1903). — Max Eschenbach, Über Beeinflussung der Resorption der Fette im Dünndarme durch Arzneimittel. Inaug.-Diss. München 1897. — L. Lichtwitz, Über Beeinflussung der Resorption der Fette im Dünndarme durch Senföl. Inaug.-Diss. Leipzig 1901. — Gmeiner, Die Resorption von Fett und Seife im Dünndarm, Zeitschr. f. Tiermediz. Bd. 6. S. 134 (1903).

nächst aus beiden wieder geöffneten Röhrchen so viel Flüssigkeit aus, als Peristaltik und Bauchpresse herausbefördern können. Die oft keineswegs geringe, dann noch in der Darmschlinge vorhandene Lösungsmenge wird durch Lufteinblasung mittelst Spritze von der einen Fistel aus entfernt. Dann erst kommt die Ausspülung mittelst eines genau bekannten Quantums Kochsalzlösung, welche entweder auch unter Quecksilberdruck mit dem Apparate oder einer Spritze erfolgt. Die nicht mehr von selbst ausfließende Flüssigkeit wird alsdann mittelst Lufteinblasungen entfernt. so daß nach Herausnahme der Kautschukbeutel nur wenige Tropfen Flüssigkeit noch aus den Fisteln hervorkommen. Nach v. Scanzoni soll die Entleerung der Schlinge und ihre Ausspülung kaum mehr als 2 Minuten beanspruchen, so daß die während dieser Zeit noch stattfindende Resorption das Ergebnis des Versuches nur unwesentlich beeinflußt.

Wird die Thiry-Vellasche Fistel nur einmal zu Beginn des Versuches gefüllt, so werden zuerst die Kautschukballons, wie oben beschrieben, in beide Enden der Fisteln eingeführt. Durch die zentrale Röhre einer dieser Gummibeutel wird die auf Körpertemperatur gebrachte Lösung mittelst einer Spritze in die Schlinge befördert, worauf diese Kautschukröhre mittelst einer Klemme verschlossen wird. Die zentrale Röhre des anderen Ballons ist mit einem Liebiyschen Kühler verbunden, durch welchen auf 40° erwärmtes Wasser fließt und dessen inneres Rohr offen bleibt. Dadurch kann die zeitweise durch die Bauchpresse oder durch Zusammenziehung der Darmmuskulatur herausgedrückte Flüssigkeit nach Belieben ausweichen und beim Nachlassen des abnormen Druckes wieder in die Fistel zurückfließen, ohne unter Körpertemperatur zu sinken.

Zum dichten Verschlusse der *Thiry-Vella*schen Fistel kann man auch eine, nach Art des *Pflüger*schen Lungenkatheters mit einer aus Fischblase des Karpfens hergestellten, zum Aufblasen eingerichteten, elastischen Membrane versehene Röhre benutzen.¹)

Bei den an Tieren mit Thiry-Vellascher Fistel angestellten Versuchen geschieht die Aufsaugung weit rascher und vollkommener als bei den Versuchen mit durch Unterbindung in situ isolierten Darmschlingen. Die physiologischen Verhältnisse sind weit besser im ersteren Falle als im zweiten gewahrt; die Versuche werden ohne Narkose angestellt. Nach Höber soll sich indes fast immer einige Zeit nach der Verheilung ein teilweise wenigstens auf die abnorme Berührung der Oberfläche der Darmschleimhaut mit der Luft zurückzuführender katarrhalischer Zustand der Darmschleimhaut vorfinden. Selbst bei peinlichster Ausführung aller Vorsichtsmaßregeln gelingt am Schlusse des Versuches die vollständige Entleerung der Schlinge keineswegs mit absoluter Sicherheit. Wie Bleibtreu es hervorhebt, bleibt beim Ausspülen einer Thiry-Vellaschen Fistel leicht ein Teil der Fettsubstanz als zäher Schleim an der Darmwand haften, wodurch

¹⁾ Tetsu Hattori, Über Resorption von Seifen aus isolierten Darmschlingen. Inaug.-Dissert. Greifswald 1905.

bisweilen eine viel größere Resorption als die tatsächlich bestehende vorgetäuscht wird. Die Einführung der Kautschukblase in die beiden Enden der Fistel erzeugt manchmal die Absonderung einer geringen Menge einer dicken schleimigen Masse; in anderen Fällen ruft sie jedoch gar keine Sekretion hervor: jedenfalls kann sie auf die Verdauungs- und Resorptionsprozesse einwirken.¹)

5. Verfahren zur Vermeidung des Zuflusses von Pankreassaft und Galle in den Darm.

Zur Vermeidung des Zuflusses des Pankreassaftes in den Darm werden beim Hunde die Ausführungsgänge des Pankreas zwischen 2 Unterbindungen durchschnitten. Man muß die Operation unter peinlichster Asepsis ausführen. Zur Eröffnung der Bauchwand wird ungefähr 2 cm unter der letzten Rippe ein 2 cm rechts von der Linea alba anfangender, 3 bis 5 cm langer Einschnitt gemacht. Auf diese Weise sieht man gleich das Duodenum. Der meistens 1¹/₂ bis 2 cm oberhalb des Beginnes der freien Portion des rechten Pankreaslappens mehr oder minder tief befindliche Hauptausführungsgang wird zwischen zwei so nahe wie möglich an der Darmwand sich befindende Unterbindungen durchschnitten. Diese Unterbindungen müssen oberhalb der Vereinigung der zwei Aste, aus denen der Hauptgang hervorgeht, angebracht werden. Dann wendet man den pylorischen Teil des Duodenums und des Pankreas und schneidet den in den Vaterschen Divertikel gemeinsam mit dem Ductus choledochus einmündenden Nebenausführungsgang der Bauchspeicheldrüse zwischen 2 Unterbindungen durch. Manchmal besteht außerdem ein zwischen dem Haupt- und dem Nebengang mündender, bisweilen ziemlich breiter, mittlerer, dritter Ausführungsgang und mitunter sogar nach Hess und Sinn noch ein aus der Pars descendens des Pankreas entspringender vierter Gang. Derartige Gänge müssen selbstverständlich auch zwischen 2 Unterbindungen durchschnitten werden, denn es bestehen anastomotische Verbindungen zwischen dem Hauptgang und den verschiedenen Nebengängen. Die Bauchwand wird sorgfältig durch Nähte vereinigt. Bei der Operation muß die Pankreasdrüse stets in mit körperwarmer physiologischer Lösung benetzten sterilisierten Tüchern eingehüllt bleiben. Sie darf keine Verletzung erleiden, sonst entsteht leicht die den Tod hervorrufende Fettgewebsnekrose. Gleich nach der Operation erfolgt stets eine mehr oder minder beträchtliche Gewichtsabnahme; nach einigen Tagen jedoch nimmt in den meisten Fällen das Gewicht allmählich zu, um schließlich zur Norm zurückzukehren, obgleich die Pankreasdrüse bei gelungener Unterbindung aller Ausführungsgänge stets eine erhebliche Sklerose aufweist. In einigen Fällen indes sinkt das Gewicht langsam bis zum nach 8 Tagen bis 1 oder 2 Monaten oder sogar einer längeren Zeitdauer eintreten-

¹⁾ M. Bleibtreu, Zur Mechanik der Untersuchung der Fettresorption im Darme. Deutsche med. Wochenschr. Bd. 32. S. 1233—1235 (1906). — Otto Cohnheim, Über die Resorption im Dünndarm und der Bauchhöhle. Zeitschr. f. Biol. Bd. 37. S. 443—482 (1899). — R. Höber, Die physikalische Chemie in der Physiologie der Resorption, der Lymphbildung und der Sekretion. S. 305.

den Tod; die Sklerose der Drüse ist in diesen Fällen viel ausgeprägter als sonst. 1)

Um den Zufluß der Galle in den Darm zu vermeiden, kann man eine Gallenblasenfistel nach dem *Dastre*schen²) Verfahren anlegen.

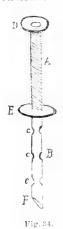
Will man aber die durch das Abfließen der Gesamtgalle nach außen verursachten etwaigen Störungen verhüten und nur die Verdauung im oberen Dünndarme bei Abwesenheit der Galle studieren oder bei einem Duodenalfistelhunde das Produkt der Magenverdauung ohne Beimischung der Galle erhalten, so kann man den Gallengang und den oberen Pankreasgang zwischen zwei Unterbindungen durchschneiden und eine Cholezystenteroanastomose machen; die Darmverdauung ist dann nicht beeinträchtigt. 3)

Eine andere Operation, welche denselben Zweck erzielt, ist die durch London*) angegebene Transplantation der ersten Duodenalpapille.

Statt der Cholezystenteroanastomose und der Transplantation der ersten Duodenalpapille kann man auch beim Hunde, nach Durchschneidung des Nebenausführungsganges des Pankreas zwischen zwei Ligaturen, den Ductus choledochus in unmittelbarer Nähe seiner Einmündung in das Duodenum unterbinden, ihn durchschneiden und ihn in eine kleine an einer Schlinge des Jejunums angebrachten Öffnung durch Nähte vereinigen. 5)

¹⁾ Edgard Zunz et Léopold Mayer, Recherches sur la digestion de la viande après ligature des canaux pancréatiques. Mém. couronn. et autr. mém. publ. par l'Acad. roy, de méd. de Belgique. Coll. in 8°. T. 18. fasc. 7, 71 pages (1904). - Dieselben, Sur les effets de la ligature des canaux pancréatiques chez le chien. Bull. de l'Acad. roy, de méd, de Belgique, 4me série, T. 19. p. 509-551 (1905). — Ugo Lombroso, Contribution à la connaissance de la fonction du pancréas. Arch. ital. biologie. T. 42. p. 336-340 (1904); De l'absorption des graisses chez les chiens avec conduits pancréatiques liés, Compt. rend. hebd. d. séanc. de la Soc. de Biol. T. 56. p. 396-397 (1904); De la lipolyse dans le tube digestif des chiens avec conduits pancréatiques liés. Ibid. T. 56. p. 398 (1904); Sur l'absorption des graisses après l'ablation du pancréas dont les conduits ont été précédemment liés. Ibid. T. 56. p. 399 (1904); Observations histologiques sur la structure du pancréas du chien après ligature et résection des conduits pancréatiques. Ibid. T. 57. p. 610-611 (1904); Sur la structure histologique du pancréas après ligature et section des conduits pancréatiques. Journ. de physiol. et de pathol. génér. T. 7. p. 3—12 (1905). — O. Hess, Die Ausführungsgänge des Pankreas. Pflügers Arch. f. d. ges. Physiol. Bd. 118. S. 536-538 (1907). - O. Happel, Über die Folgen der Unterbindung der Ausführungsgänge des Pankreas beim Hund. Inaug-Dissert. Marburg 1906. 17 S. - K. Sinn, Der Einfluß experimenteller Pankreasgangunterbindungen auf die Nahrungsresorption. Inaug.-Dissert. Marburg 1907. 29 S. - A. Niemann, Die Beeinflussung der Darmresorption durch den Abschluß des Pankreassaftes, nebst anatomischen Untersuchungen über die Histologie des Pankreas nach Unterbindung seiner Gänge beim Hunde, Zeitschr. f. exper. Pathol. u. Therapie. Bd. 5. S. 466-477 (1909).

²⁾ A. Dastre, Opération de la fistule biliaire. Arch. de physiol. norm. et pathol. 5mc série. T. 2. p. 714—723 (1890).


³⁾ G. Lang, Über Eiweißverdauung und Eiweißresorption im Magen des Hundes, Biochem. Zeitschr. Bd. 2. S. 225—242 (1907).

⁴⁾ E. S. London, Zum Chemismus der Verdauung im tierischen Körper. XIII. Mitteilung. Weitere methodische Angaben: Zeitschr.f. physiol. Chem. Bd. 53. S. 246—250 (1907).

⁵) E. Zunz, Nouvelles recherches sur la digestion de la viande crue et de la viande cuite chez le chien. Mém. couronn. et autr. mém. publ. par l'Acad. roy. de médec.

Zu dieser Choledochoenterostomie bedient man sich der in der Fig. 34 schematisch abgebildeten Kanüle. Sie besteht aus einer 2—3 cm langen Röhre von einigen Millimetern Durchmesser, deren eine Hälfte A mit einem Gewinde an ihrer äußeren Oberfläche versehen ist, während die andere Hälfte B glatt ist und ringsum 3 Einschnürungen C von 1 mm Tiefe aufweist. Am Ende D der Kanüle, da wo der Schraubengang anfängt, besteht eine kleine, runde, feste Platte D, welche das äußere Ende der Kanüle um $1\frac{1}{2}$ Millimeter überschreitet. Am Gewinde ist die den Durchmesser der Röhre A um 4—6 mm überragende bewegliche Platte E angeschraubt. Das andere Ende F der Kanüle ist abgeschrägt.

Der Ductus choledochus wird in der Nähe seiner Einmündung in das Duodenum frei präpariert. Man legt 2 Fäden um das duodenale Ende des Choledochusganges. Der eine dient zur Unterbindung des Ductus choledochus in unmittelbarer Nähe des Duodenums. Einige Millimeter

oberhalb dieser Unterbindung wird eine kleine seitliche Öffnung im Choledochusgange angebracht. Durch diese Öffnung steckt man den glatten Teil B der Kanüle in den Ductus choledochus und befestigt ihn darin, indem man den zweiten Faden auf eine der Einschnürungen des Teiles B der Kanüle fest zuschnürt. Dann wird der Choledochusgang zwischen der in der Nähe des Duodenums liegenden Unterbindung und dem Eintritte der Kanüle in den Gang durchschnitten. Nun wird mittelst des Thermokauters in der zur Choledochoenterostomie gewählten Darmschlinge eine den Eintritt der Platte D in den Darm erlaubende kleine Öffnung gemacht. Sofort schraubt man die Platte E auf solche Weise an, daß die Darmwand zwischen den beiden Platten D und E befestigt bleibt. Die Kanüle und der Choledochusgang werden mit dem Netze umhüllt, wodurch die Heilung sehr begünstigt wird.

Werden alle Ausführungsgänge des Pankreas zwischen 2 Ligaturen durchschnitten, und stellt man nachher eine Gallenblasenfistel her oder erfolgt dann eine Cholezystenteroanastomie, so treten weder Galle noch Pankreassaft in den Darm ein.

Sobald die durch die verschiedenen zur Vermeidung des Zuflusses des Pankreassaftes, der Galle oder beider in den Darm dienenden Verfahren operierten Tiere sich von den Folgen des operativen Eingriffes erholt haben, kann man sie zu den Versuchen benutzen.

II. Verdauungsversuche im Reagenzglase.

a) Allgemeine Technik.

Die Verdauungsversuche in vitro erfolgen stets bei konstanter Temperatur, meistens bei Körpertemperatur, in einem Brutapparate.

de Belgique, T. 19. fasc. 7. p. 30 (1907). — Derselbe, Eine Kanüle zur Choledochoeuterostomie, Zeitschr. f. biolog, Technik u. Methodik, Bd. 1. S. 134—135 (1908).

Die zu verdauenden Stoffe, in festem, gelöstem oder flüssigem Zustande, werden mit der Verdauungsflüssigkeit und meistens einem Antiseptikum in gut verschlossenen Kolben oder Eprouvetten in den Brutraum gebracht. Nach der im voraus festgestellten Versuchszeit wird das Verdauungsprodukt quantitativ oder qualitativ mittelst der später zu beschreibenden Methoden untersucht. Man kann auch zu bestimmten Zeitpunkten dem Verdauungsprodukte Proben entnehmen und auf die Anwesenheit oder die Menge gewisser Stoffe prüfen.

Als Brutapparat bedient man sich entweder eines Brutschrankes oder besser eines Thermostaten.

I. Brutschränke. Ein guter Brutschrank muß folgenden Anforderungen entsprechen: 1. Er muß den Schwankungen der äußeren Temperatur möglichst

wenig unterworfen sein; 2. der Wärmeverlust durch Strahlung und durch Konvexion muß auf ein Minimum beschränkt sein; 3. der Brutschrank muß mit einem möglichst empfindlichen automatischen Thermoregulator versehen sein.

Der Luftraum der Brutschränke wird entweder durch ihn umgebendes Warmwasser oder durch eine darin befindliche erwärmte Metallröhre geheizt. Zur Heizung des Wassers oder der Metallröhre benutzt man am besten Gas oder Elektrizität.

Brutschränke für Gasheizung. Da der Gasdruck oft ziemlich beträchtliche Schwankungen aufweist, so schaltet man bei der Anwendung von Gas zur Heizung von Brutappa-

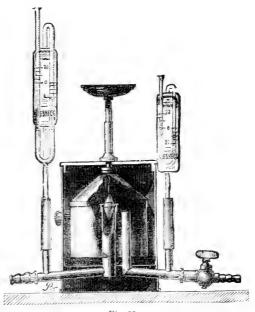


Fig. 35.

raten manchmal einen Gasdruckregulater in den Gasstrom ein. Dazu kann man den in Fig. 35 abgebildeten *Moitessiers*chen Apparat oder einen anderen ähnlichen benutzen.

Bei allen Gasdruckregulatoren wird der Gasverbrauch dadurch geregelt, daß das Gas durch eine Öffnung strömt, deren Durchschnittsebene beim Sinken des Gasdruckes zunimmt. Das im Apparat strömende Gas hebt mehr oder minder eine Glocke, welche einen sich durch einen festen Ring bewegenden metallischen Kegel mitreißt.

Indes empfiehlt es sich nicht, sich der auf den Gasstrom selbst eingestellten Gasdruckregulatoren zu bedienen, sondern nur solche Brutschränke anzuwenden, in denen ein Gasdruckregulator direkt angebracht ist, da dieser viel

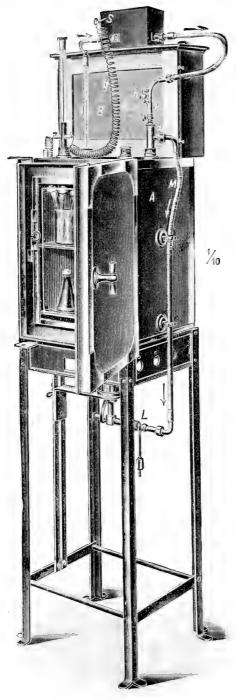
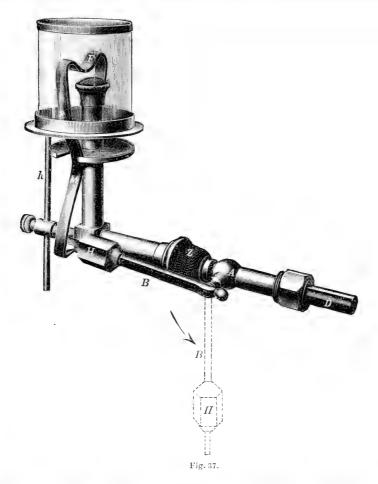
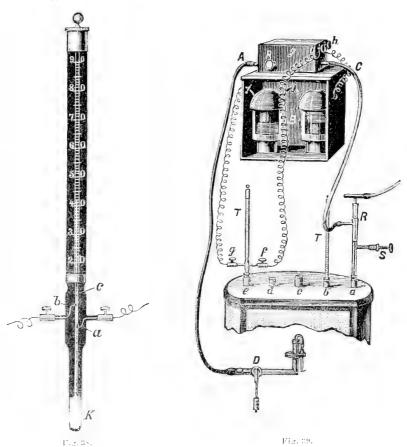


Fig. 31.


empfindlicher ist und auf Gasdruckschwankungen wesentlich schneller reagiert wie der *Moitessier* und ähnliche Gasdruckregulatoren.

z) Mittelst Wasser geheizte Brutschränke. Die Apparate, in denen Wasser zur Wärmeverteilung dient, bestehen aus einem aus Kupfer oder Stahlblech angefertigten doppelwandigen, überall dicht verschlossenen Wasserbehälter, dessen äußere Oberfläche mit Filz, Asbest oder besser mit Filz und darüber mit Linoleum bekleidet Stahlblechapparate keineswegs zu empfehlen, weil sie infolge des Durchrostens des Bleches durch Oxydationen ziemlich rasch unbrauchbar werden. In der oberen Wand des Wärmebehälters befinden sich die für Thermoregulator und Thermometer nötigen Öffnungen. Ein außen angebrachtes Wasserstandrohr mit Ventilauslauf gibt die Höhe des Wassers im Behälter an.

Wie es die Fig. 36 veranschaulicht, führen Doppeltüren zum Brutraume, eine innere einfache Glastüre und eine äußere doppelwandige Metalltüre. Der durch diese Doppelwände begrenzte Raum ist mit Luft gefüllt. Die äußere Oberfläche der Metalltüre ist mit Filz und darüber mit Linoleum belegt. Die äußere Türe schließt in Falzen; diese sind mit Sattelfilz gefüttert.


Der Lautenschlägersche Brutapparat neuester Konstruktion besitzt eine Wärmeverteilungsvorrichtung, wodurch nicht nur der direkte Einfluß der Flamme auf den Innenraum aufgehoben wird, sondern außerdem auch die geringste Wärmesteigerung am Boden sofort durch das in Bewegung befindliche Wasser direkt zu dem empfindlichen Teil des in einer Metallhülse mit Zirkulationsvorrichtung enthaltenen Thermoregulators gelangt.

Als Brenner soll man den in der Fig. 37 abgebildeten Kochschen Sicherheitsbrenner anwenden. Er besteht aus einem rechtwinklig gebogenen

Brenner mit Drahtnetzverschluß, welcher eine ebenfalls mit Drahtnetz umgebene Mischungsdüse Z besitzt. Über der Brennerkappe befindet sich eine Feder F, die aus einem Doppelstreifen — Stahl und Messing — hergestellt ist. Die Ausdehnung der Feder F wird auf einen Hebelarm M übertragen, der, sobald die Flamme brennt, den Hebel B mit Gewicht H in wagrechter Stellung auf die Unterlage U hält, wodurch der Hahn A auf bleibt. Erlischt die Flamme, so kühlt sich die Feder F ab und ver-

schiebt den Hebelarm M; dadurch wird dem Hebel B die Unterlage U entzogen; er fällt infolge der Gewichtsbeschwerung herab und nimmt die vertikale Stellung an, in welcher der Hahn A die Gaszufuhr verschließt. Beim Anheizen wird der Hebelarm B so lange in wagrechter Stellung gehalten, bis die Feder F durch die angezündete Flamme genügend erhitzt ist und die Unterlage U das Gewicht H festhält.

Zum Konstanthalten der Temperatur in den Wasserbrutschränken bedient man sich entweder eines elektrischen Thermoregulators oder eines Quecksilberthermoregulators.

Der Lautenschlägersche elektrische Thermoregulator besteht aus einem Konstantthermometer, einem Gasschließer mit Elektromagnet und Vorlage sowie einem Brenner.

Der Fig. 38 abgebildete Kontaktthermometer ist derartig eingerichtet, daß in die luftleere Kapillare zunächst zwei Platindrähte eingeschmolzen sind; über denselben ist ein Glaswiderstand c so eingeführt, daß er die Kapillare nicht vollständig verschließt, sondern für das aufsteigende Queck-

silber noch Raum läßt. Durch diese künstliche Verengerung reißt der Quecksilberfaden beim Zurücksteigen bei c ab und bleibt oberhalb des Widerstandes stehen, während die unterhalb c befindliche Säule in die Kugel K zurücktritt.

Bei der Tätigkeit des Thermometers vereinigen sich beide Quecksilbersäulen nicht, sondern die unter c befindliche gelangt nur bis zum Poldraht b, wodurch Stromschluß eintritt und die Gasflamme bis auf eine regulierbare Reserveflamme abgeschlossen wird. Sinkt nun die Temperatur, so verläßt die Säule den Poldraht b, wodurch Strom-

öffnung eintritt und die Hauptgaszufuhr wieder frei wird.

Wie die Fig. 39 es zeigt, ist das Thermometer T mit einer elektrischen Batterie B und einem Gasschließer G H

verbunden. Dieser sperrt bei Stromabschluß die Hauptgaszufuhr bis auf eine regulierbare Reserveflamme ab und stellt bei Stromöffnung den freien Gasdurchgang wieder her.

Der Gasschließer G besteht aus einem Hebelarm mit Eisenkern, welcher bei Stromabschluß an die im Innenraum angebrachten Elektromagnete gezogen wird. Die Lage des Hebelarmes wird dadurch verändert, und folglich die Hauptgaszufuhr bis auf eine Reserveflamme abgeschlossen. Diese ist durch die Schraube R für verschiedene Temperaturen einstellbar.

Die Quecksilberthermoregulatoren können in zwei Gruppen eingeteilt werden, je nachdem die Gaszufuhr lediglich durch die Ausdehnung einer relativ dünnen Quecksilbersäule geregelt wird, oder durch die von Dämpfen leicht siedender Flüssigkeiten verursachten Auf- und Abwärtsbewegungen einer relativ dicken Quecksilbersäule.

Fig. 40.

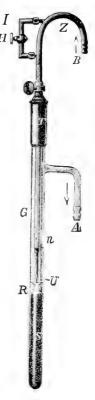


Fig. 41.

Die ersteren ermöglichen keine sehr genaue Einstellung des Brutschrankes und müssen für Verdauungsversuche völlig verworfen werden. Hierher gehören der in Fig. 40 abgebildete *Reichertsche* Quecksilberregulator, der Thermoregulator nach *Schenck*, der Thermoregulator nach *Chancel* usw.

Die anderen Thermoregulatoren (nach Lothar Meyer, Soxhlet usw.) halten hingegen die Wärme auf Bruchteile eines Grades genau gleichmäßig. Einer der zweckmäßigsten ist der Spiralthermoregulator nach Lautenschläger (Fig. 41), welcher vom Luftdruck unabhängig ist, und bei dem die

Reserveflamme durch einfaches Drehen des auf einer Nebenröhre befindlichen Hahnes H für verschiedene Temperaturen einstellbar ist. Er besteht aus einem oben durch einen Metallkopf T mit Stopfbüchse verschlossenen Glasgefäße und einem darin verschiebbaren Gaszuführungsrohr Z. Das Glasgefäß teilt sich in einen unteren Regulierraum R mit eingeschmolzener Glasspirale S und einen Gasraum G, von dem das Gasabführungsrohr A zum Brenner geht. Das Zuführungsrohr besitzt einen Notauslauf N und endigt unten mit einem schlitzförmigen Ausschnitt U. Der Regulierraum R enthält im größten Teile seines Inhaltes Quecksilber und im oberen übrigbleibenden Teile eine je nach der zu erzielenden Temperatur gewählte Flüssigkeit (Äthylchlorid, Äther, Äther-Alkoholgemisch, Alkohol-Wassergemisch, Wasser, Anilinöl-Wassergemisch, Anilinöl) und deren Dämpfe.

Diese Flüssigkeiten drücken bei den bestimmten Wärmegraden die Quecksilbersäule nach oben, so daß sie den Ausgang des Gaszuführungsrohres verschließt und das Gas nur durch das Notloch N entweichen und

die Reserveflamme speisen kann.

Die Inbetriebsetzung des Lautenschlägerschen Spiralthermoregulators ist folgende: Der Glaskörper wird in den Wasserraum des Brutapparates eingeführt und in eine Metallhülse mit Zirkulationsvorrichtung so gestellt, daß er sich nicht bewegen kann. A wird mit dem Brenner. B mit der Gasieitung verbunden. Sobald das Thermometer im Wasserraum des Apparates eine Temperatur anzeigt, die ungefähr 15 bis 2°C unter dem einzustellenden Wärmegrad liegt, beobachtet man den Brenner und schiebt langsam und vorsichtig das Rohr Z so tief in das Quecksilber hinein, bis der Schlitz U vollständig verschwindet und nur durch die Notöffnung nGas zum Brenner gelangen kann. Der Schlitz U des Metallrohres ist nicht sichtbar. Man kann bei ganz allmählichem Einschieben des Rohres an dem Kleinerwerden der Flamme erkennen, ob die Hauptgaszufuhr abgesperrt ist. Dann stellt man die höchstens 20 mm hoch brennende Notflamme durch Drehen des Hahnes H auf diese Höhe ein. Der Brenner selbst muß mindestens 150 mm vom Boden des Brutapparates entfernt sein. Steigt die Temperatur noch, dann ist entweder die Notflamme kleiner zu stellen oder das mit Teilung versehene Gaszuführungsrohr Z um 1 mm und nach Bedarf noch weiter einzustellen. Fällt dagegen die Temperatur unter den gewünschten Wärmegrad, dann ist das Rohr Z je nach Bedarf um 1 mmoder mehr nach oben zu verschieben.

d'Arsonvalsche Brutschränke. Eine besondere Art von Wasserbrutschränken bilden die d'Arsonvalschen Apparate. Die beiden Figg. 42 und 43 veranschaulichen dieses System. Der Brutschrank besteht aus einem inneren Luftraume, welcher überall durch 2 Metallwände begrenzt ist. Zwischen diesen befindet sich eine Wasserschicht. Diese Metalldoppelwand besitzt nur eine Öffnung 5 (Fig. 43), welche zum Eingießen des Wassers dient. Man darf nur kurz vorher zum Sieden erwärmtes Wasser benutzen, denn die im gewöhnlichen Wasser enthaltenen Luftblasen werden beim Erwärmen frei, verändern die Höhe der Flüssigkeit und verhindern die Regulierung

des Apparates. Die äußere Metallwand 2 ist unten durch eine biegsame Stahlplatte 3 abgeschlossen. Sie dient als Decke für eine Kammer 10, in die eine Ansatzröhre 12 eindringt. Durch diese strömt das Gas zu, das dann durch die Röhren 13 und 13' den Brennern zugeführt wird. Mittelst eines Gewindes kann man das Ende der Ansatzröhre 10 der Platte entfernen oder nähern. Um den Apparat für 37° z. B. zu regeln, entfernt man die Ansatzröhre 10 von der Platte 3, so daß das Gas bei

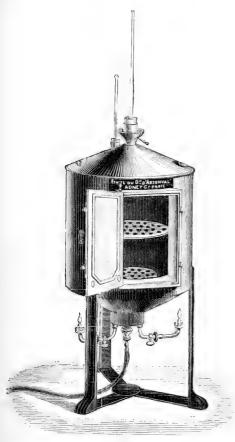


Fig. 42.

voller Flamme brennt. Wenn im Luftraume des Brutschrankes die Temperatur 36° erreicht, so nähert man die Röhre 10 der Platte 3, um die Höhe der Gasflamme etwas zu vermindern. Sofort wird die Öffnung 5

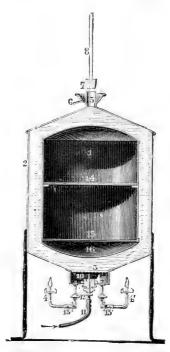


Fig. 43.

mittelst eines mit einer Glasröhre 8 versehenen Stopfens verschlossen. Unter dem Einflusse jeder Temperaturerhöhung dehnt sich das in der Doppelwand enthaltene Wasser, steigt in die Röhre 8 und drückt die Platte 3 nieder, wodurch die Gasflamme kleiner wird. Es muß darauf geachtet werden, daß die Höhe des Wassers in der Röhre 8 nicht durch Abdampfen sinkt, sonst nimmt die Temperatur im Brutraume zu. Ein Nachteil dieses Apparates ist, daß die Elastizität der biegsamen Platte mit der Zeit abnimmt, wodurch die Einstellung des Brutschrankes leidet.

3) Mittelst Metallröhren geheizte Brutschränke. Als solche benutzt man meistens den Rouxschen Brutschrank. Wie Fig. 44 zeigt, besteht dieser Brutschrank aus einem mit einer Glastür vorn verschließbaren Holzschranke, dessen untere und obere Wand mit einer Kupferplatte versehen ist. Dieser Schrank steht auf Füße über einer Glasrampe. Im Brutschranke befinden sich eine Reihe senkrechter, gegen die innere

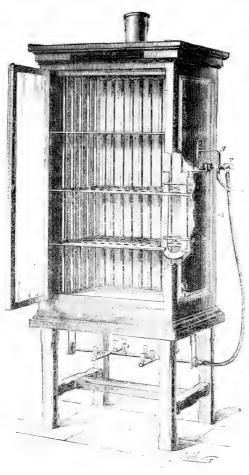
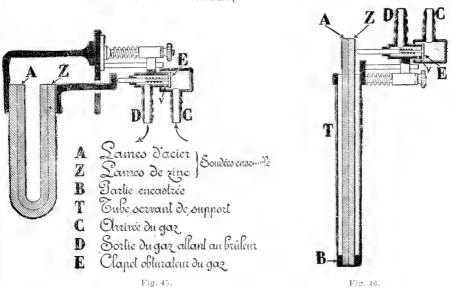


Fig. 44

Seite der Holzwände gelegener Kupferröhren, durch welche die vom Verbrennungsgase herrührenden Gase strömen und auf diese Weise durch Strahlung eine gleichmäßige Erwärmung der im Brutschranke enthaltenen Luft erzielen. Zur Ventilation dienen kleine Öffnungen im unteren Teile der Seitenwände sowie eine mit einer kurzen Röhre versehene Öffnung in der Decke des Brutschrankes.

Der durch die Figg. 45 und 46 veranschaulichte Rouxsche Metallthermoregulator besteht aus einem durch Löten einer äußeren Zinkolatte Z mit einer inneren Stahlplatte 1 hergestellten U-förmigen oder geraden Stabe. Das durch die Röhre C zuströmende Gas tritt in den Ventilkasten E und wird durch die Röhre C fortgetrieben. Mittelst der den Ventilkasten E mit dem Metallstabe vereinigenden Schraube V wird der Ventilkasten mehr oder minder dem Stabe nahe gebracht.


Sinkt die Temperatur des Mediums, so zieht sich die Zink-

platte mehr als die Stahlplatte zurück, so daß das U-förmige Doppelmetallsystem sich zu öffnen strebt, während im geraden Stabe beide Metallplatten sich in der Nähe der Ventilklappe von einander zu entfernen streben. In beiden Fällen drückt der Metallstab auf den Stiel des Ventiles und das durch die Röhre C im Ventilkasten E eintretende Gas wird in mehr oder minder großer Menge durch die Röhre D strömen, um dem Gasbrenner zuzufließen. Man erhöht die Größe der Gasflamme, indem man mittelst der

Schraube den Ventilkasten dem Metallstabe nähert, und vermindert sie hingegen, indem man den Ventilkasten von der Metallschraube entfernt. Wenn der Thermoregulator das Ventil völlig schließt, so tritt das Gas durch die kleine Öffnung v direkt von der Röhre C zur Röhre D, wodurch das Erlöschen des Gasbrenners vermieden wird.

γ) Brutschränke für elektrische Heizung. In diesen Brutschränken wird die zum Erwärmen nötige Heizung mittelst eines auf der Bodenwand befindlichen widerstandsfähigen Leiters, den der elektrische Strom durchläuft, erzielt. Diese Widerstände können entweder aus einem zwischen zwei Emailschichten sich befindenden Drahte oder aus mit Amiant gewebtem Metallgewebe oder aus die Wände des Brutschrankes überlaufenden sole-

RÉGULATEURS BI-MÉTALLIQUES DE M. LE DR. ROUX.

noïdartigen Drähten bestehen. Am Boden des Schrankes befindet sich ein Radiator.

Zur Regelung der Temperatur können mehrere Systeme angewandt werden.

Bei Benutzung des Roueschen Doppelmetallthermoregulators verwendet man die in Fig. 47 abgebildete Anordnung. Der Unterbrecher I schickt den elektrischen Strom ohne Vermittlung des Regulators direkt in den Radiator H, so daß der elektrische Strom auf den Radiator H auf solche Weise einwirkt, daß er ihm nur die zur Erhaltung einer konstanten Temperatur nötige Kalorienzulage bringt. Der äußere elektrische Strom läuft durch den bipolaren Unterbrecher B. Einer der Pole dieses Unterbrechers B steht in direkter Verbindung mit einem der beiden Enden der Radiatoren. Der andere Pol ist mit den unipolaren Unterbrechern C verbunden. Der Unterbrecher I erlaubt, einen beständigen Strom in den Radiator H zu

schicken. Der Unterbrecher C gestattet, den Strom entweder durch die Becher M des Regulators oder direkt durch den Regulierungsrheostat R zum Radiator H zu senden. Die Station r, dessen elektrischer Widerstand sehr groß ist, wird mittelst des nur eine sehr kleine Strommenge durchlassenden Rouxschen Doppelmetallthermoregulators A in Tätigkeit gesetzt.

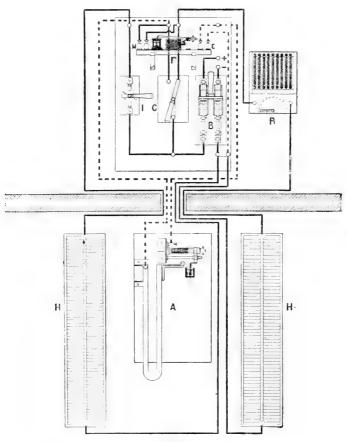


Fig. 47.

Sehr empfehlenswert sind die *Maury*schen Brutschränke für elektrische Heizung. Einen solchen zeigt Fig. 48. Die Anordnung des Heizsystems wird durch die Fig. 49 veranschaulicht.

Der Heizungsstromkreis wird durch Metallwiderstände TT' gebildet. Er liegt wagrecht im unteren Teile des Apparates. Der elektrische Strom, in dem die Joulekraft entsteht, wird durch zwei parallele Widerstände geleitet, von denen der eine mit dem speziellen Relais R verbunden ist,

das den zum Thermoregulator H gehenden Abzweigungsstrom unterbricht oder wiederherstellt.

Die Regelung der Temperatur hängt vom Relais und vom Regulator ab. Als eigentlicher Thermoregulator dient eine elektrolytische Röhre, deren Form je nach dem Brutschranke verschieden ist. Diese Röhre besteht aus einem wagrechten, am Ende verschlossenen Teile und aus einem senkrechten Teile. Sie wird mit Quecksilber gefüllt. Wenn unter dem Einfluß der Temperaturerhöhung das Quecksilber sich ausdehnt, so nimmt die Höhe der im senkrechten Teile vorhandenen Quecksilbersäule zu und das Quecksilber steigt in eine enge Glasröhre, welche mittelst eines gekitteten Pfropfens auf das offene Ende der elektrolytischen Röhre befestigt ist.

Über dieser engen Röhre befindet sich eine nach unten durch eine Platinspitze endigende Mikrometerschraube V. Durch Drehen der Mikrometerschraube kann man diese Platinspitze mehr oder minder in die enge Glasröhre senken. Der Temperaturgrad des Brutschrankes wird durch den Kontakt zwischen Platindraht und Quecksilber geregelt. Der Regulator wird von einem sich vom Erhitzungsstrom abzweigenden Strom durchströmt. Diesen Abzweigungsstrom erhält das Relais R. Letzteres besteht aus zwei Rollen dünnen Drahtes, in deren Achsen sich zwei an den Enden eines nicht mehr im Gleichgewichtszustande befindlichen Wagebalkens hängende

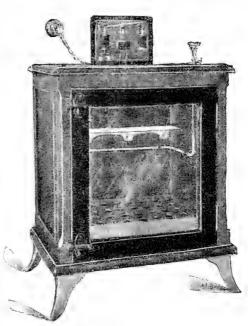
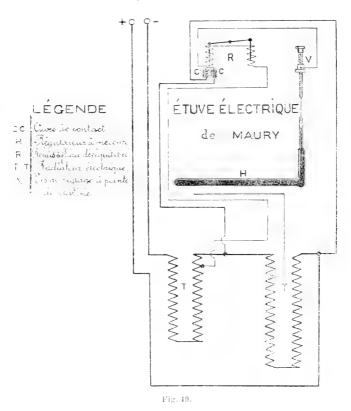



Fig. 48.

Kerne aus weichem Eisen senkrecht verschieben können. Im Ruhezustand neigt sich der Wagebalken der Seite des Kernes zu, auf den ein Kupferdraht gelötet ist, der als Brücke zwischen zwei kleinen Eisenbechern CC'. deren Boden mit Quecksilber versehen ist, dient.

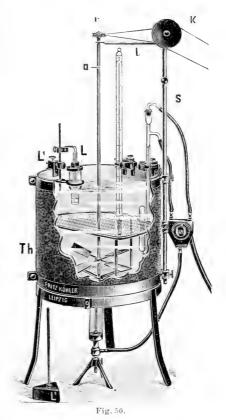
Eine Abzweigung des Heizungsstromes auf einem sehr wenig Widerstand leistenden Stromkreis wird durch diese zwei Becher geleitet. Sobald die Temperatur sich zu erhöhen strebt, dehnt sich das Quecksilber aus, wodurch die Höhe der Quecksilbersäule im Regulator steigt. In einem gegebenen Augenblicke kommen Quecksilber und Platinspitze in Berührung. Sofort wird der der Metallröhre des Regulators zugeführte Abzweigungsstrom nach den Rollen abgelenkt, welche dann die Kerne aus weichem Eisen anziehen. Von diesen Kernen steigt derjenige, welcher die Brücke trägt.

während der andere hingegen sinkt, so daß der Wagebalken wagrecht zu liegen kommt. Dadurch läuft aber dann der Heizungsstrom nicht mehr durch den wenig Widerstand leistenden Stromkreis der Quecksilberbecher, sondern durch einen zugesetzten Widerstand, welcher die Joulekraft verringert. Die Temperatur nimmt dann ab. Das Quecksilber zieht sich zusammen: die Berührung zwischen Quecksilber und Platinspitze hört auf; der Wagebalken neigt sich und die Brücke zwischen den zwei quecksilberhaltigen Bechern ist wieder hergestellt. Dann strebt aufs neue die Temperatur

sich zu erhöhen, bis der eben beschriebene Mechanismus wieder tätig wird und so weiter.

Demnach tritt nur dann, wenn die Temperatur sich über den festgestellten Grad zu erhöhen strebt, durch Vermittelung des Regulators der Abzweigungsstrom in Tätigkeit und nur in diesem Falle werden die Kerne aus weichem Eisen inmitten der Rollen angezogen. Die Stärke des Abzweigungsstromes umfaßt nur wenige Milliampère, was für die Aufrechthaltung der Quecksilberoberfläche des Regulators sehr nützlich ist. Außerdem werden durch eine geeignete Anordnung die an dieser Oberfläche entstehenden Unterbrechungsfunken auf ein Minimum gebracht.

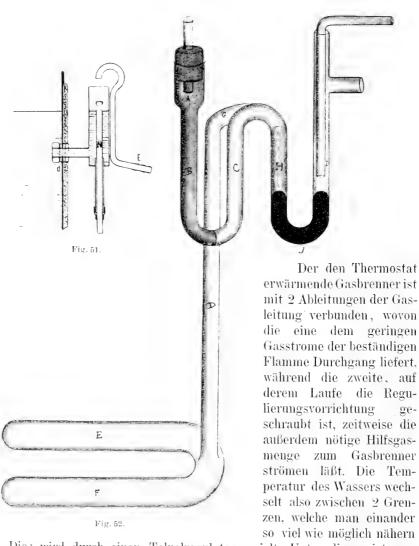
Die Empfindlichkeit des Regulators ist sehr groß, denn die Temperatur schwankt nur um $^{-1}/_4$ Grad in der inneren Luft des Brutschrankes. Das Maurysche Erhitzungs- und Regelungssystem eignet sich ebenso gut für Gleichstrom als für Wechselstrom.


Man kann auch die elektrische Heizung mittelst eines Regulators regeln, welcher mit einer eine Quecksilbersäule höher oder niedriger stellenden leicht siedenden Flüssigkeit arbeitet.

II. Thermostaten. Um längere Zeit eine auf weniger als $^{1}/_{10}$ Grad beständige Temperatur zu halten, wie dies oft bei Verdauungsversuchen

nötig ist, kann man Brutschränke nicht benutzen. Es ist nämlich völlig unmöglich, ein festes und flüssiges System mit erheblicher Wärmekapazität mit einem Gasmedium sehr geringer Wärmekapazität in stets rasch eintretendem Gleichgewichte zu halten.

Deshalb soll man die Thermostate den Brutschränken bei Verdauungsversuchen vorziehen. Fig. 50 abgebildete Ostwaldsche Thermostat besteht aus einem emaillierten Gefäße, welches von einem Wärmeschutzmantel aus Filz umgeben ist und auf einem Dreifuß ruht. Dieser Metallbehälter ist mit Wasser gefüllt, in welchem man bei langem Gebrauch etwas Jodquecksilber in Leinwandbeutelchen hängt, um die Wasserverunreinigung durch Bakterienbildung zu verhindern. Ein durch einen geeigneten Motor in Tätigkeit gesetzter Flügelrührer oder anderer Rührer bewirkt eine stetige Mischung des Wassers, wodurch Temperaturdifferenzen örtlichen Thermostaten ausgeglichen werden.


Die Versuchskolben oder -Röhren tauchen völlig oder teilweise in die

erwärmte Wassermasse. Durch besondere Schüttelvorrichtungen können die in den Kolben oder Eprouvetten enthaltenen Versuchsflüssigkeiten einer hin- und hergehenden Bewegung oder auch einem vollständigen Rotieren unterworfen werden.

Um das sich verdunstende Wasser zu ersetzen, bedient man sich eines Konstantniveaus, wie das in Fig. 51 gezeichnete. Dazu wird der Thermostat mit einer 10 mm großen, unter dem Niveau liegenden Bohrung versehen, in welche die Verbindungsröhre des Konstantniveaus geschraubt

wird. Das verstellbare Niveaurohr N gestattet ein Einstellen des Wasserspiegels in gleicher Höhe seiner seitlichen Bohrungen. Durch das mit der Wasserleitung verbundene Einlaufstück E fließt Wasser, so daß es den verlorenen Inhalt ersetzt. Der Überschuß des zufließenden Wassers wird durch die Öffnung des Niveaurohres abgeleitet.

muß. Dies wird durch einen Toluolregulator erzielt. Unter diesen ist zurzeit der empfehlenswerteste der durch O. Dony-Hénault beschriebene, welchen die Fig. 52 veranschaulicht.

Dieser Regulator besteht aus einer in Wasser eintauchenden senkrechten Röhre D. von ungefähr 3 cm Durchmesser, aus dünnem Glase.

Sie endigt unten durch eine U-förmige wagrechte oder irgend eine andere der Gestalt des Behälters passende Röhre EF. Die größte Masse des als Regulierflüssigkeit dienenden Toluols muß sich am Boden des Behälters in der Nähe der der Wirkung des Erwärmens unterworfenen Wand befinden. Die Röhre D verengt sich oben etwas und endigt durch die fast wagrechte Röhre G in einem aus 4 senkrechten Röhren AB, C. H und I zusammengestellten System.

Der vorher mittelst der Wasserpumpe von Luft befreite Regulator wird mit Toluol gefüllt, so daß die Flüssigkeit keine Gasbläschen enthält. Dann wird der Regulator in den Thermostaten gelegt und dieser ungefähr auf die gewünschte Temperatur gebracht. Sobald dies erreicht ist, gießt man in die Röhre I zuerst genügend konzentrierte Na Cl-Lösung, um die Röhre H völlig zu füllen und nachher die Quecksilbersäule J, welche die Na Cl-Lösung in die Röhre H treibt, darauf wird mittelst Filtrierpapierstreifchen die Röhre H sorgfältig getrocknet. Das die Röhre AB füllende Toluol wird abpipettiert und durch konzentrierte Na Cl-Lösung ersetzt. Dann wird die Erweiterung A der Röhre B durch einen Kautschukpfropfen vorsichtig geschlossen, in dessen Mitte eine mit einem Kautschukansatz und einer Klemme versehene Kapillarglasröhre sich befindet, durch welche der Flüssigkeitsüberschuß leicht ausfließen kann. Im geeigneten Augenblicke wird die auf dem Kautschukansatz befindliche Klemme geschlossen. Man trocknet Pfropfen und Kautschukansatz. Um einen völlig dichten Verschluß des Regulators zu erzielen, werden Pfropfen und Kautschukansatz mit einer Gummilackfirnisschicht überzogen. Das zwischen den beiden Na Cl-Schichten B und H eingesperrte Toluol kann nicht entweichen, so daß. wenn der Thermostat in einem Zimmer sich befindet, deren Temperatur keinen großen Schwankungen unterworfen ist, und die Temperatur des Thermostates sehr lange Zeit unverändert bleibt. Ein Temperaturunterschied von 1º im Zimmer bewirkt eine mittlere Veränderung der Temperatur des Thermostaten von 0·01°. Um diese Temperaturschwankungen noch zu verringern, muß man entweder den im Wasser nicht eintauchenden Teil des Regulators mit einer den Wasserverlust vermindernden Hülle versehen oder den größten Teil des Systems BC HI in ein Wasserbad eintauchen lassen.

Ein Vorteil des Dony-Hénaultschen Regulators über die Ostwaldschen Toluolregulatoren ist, daß man ihn nach dem Einfüllen ohne Neueinfüllung nacheinander auf sehr verschiedene Temperaturen bringen kann. Um die Temperatur des Thermostaten zu erniedrigen, entnimmt man den größten Teil der in der Röhre AB enthaltenen Na Cl-Lösung und ersetzt sie durch Toluol. Beim Erhöhen der Temperatur dringt wegen seiner geringen Densität das sich ausdehnende Toluol durch die in AB enthaltene Flüssigkeit. 1)

¹) O. Dony-Hénault, Sur le réglage rigoureux de la température. Bull. de la Soc. roy. des Sc. méd. et nat. de Bruxelles T. 62. p. 188—196 (1904).

Der durch $Fo\dot{a}^{\,1}$) veränderte Kenzo Sutosche Regulator ist äußerst empfindlich. Er erlaubt die Temperatur des Thermostaten mehrere Wochen lang ohne andere Veränderungen, als höchstens tägliche Schwankungen von 0°02 0°03° zu erhalten. Der $Fo\dot{a}$ sche Apparat ist ein Flüssigkeitsregulator, bei welchem Petroleum als Flüssigkeit verwendet wird.

Wie Fig. 53 zeigt, besteht der $Fo\alpha$ sche Thermoregulator aus einer wagrechten, hufeisenförmigen Röhre, deren drei Seiten eine Länge von 20 cm und einen inneren Durchmesser von 4 cm haben. Aus dem mittleren Schenkel steigt senkrecht eine Röhre A, welche mit der Röhre B

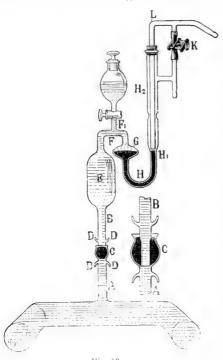


Fig. 53.

luftdicht verbunden ist. Die Verbindungsstelle ist mit einer Quecksilberschicht C umgeben; außerdem kann man noch ein Gummiband an dem Haken D befestigen. Die Röhre B trägt eine 5 cmbreite und 10 cm hohe Erweiterung. über welche sich Röhre B wagrecht biegt. An der Biegung zweigt sich senkrecht eine durch einen Hahn F' geschlossene Röhre; oberhalb des Hahnes erweitert sich diese Röhre trichterförmig und wird durch einen Glasstopfen verschlossen. Die Röhre Fbiegt dann wieder senkrecht und endigt in einer Erweiterung G von 4 cm Querdurchmesser und 11/2 cm Längendurchmesser. Diese Erweiterung G dient zur Aufnahme des in der Röhre H enthaltenen Quecksilbers, wenn bei Erlöschen der Flamme des Thermostaten Quecksilber nach dem Innern des

Regulators zu fließen strebt. Die quecksilberhaltige Röhre H wird bald kapillar und biegt nach oben, um bei H^1 sich wieder zu erweitern. Die das Gas einführende Röhre L dringt in die Röhre H^2 bis zur Öffnung der Kapillare H; sie hat unten eine wagrechte Öffnung von 2 mm Durchmesser. An einer Stelle der Röhre H^2 besteht eine Verengerung, um Verschiebungen der Röhre L zu vermeiden. Die Verbindung A-B bezweckt, den Umtausch des das Petroleum enthaltenden Gefäßes A zu ermöglichen, so daß letzteres entsprechend der Form des Thermostaten durch ein anderes ersetzt werden kann. Die Erweiterung E ist angebracht, damit der Apparat die Temperatur

¹⁾ C. Foù, Eine Methode graphischer Registrierung einiger G\u00e4rungsvorg\u00e4nge. Biochem. Zeitschr. Bd. 11. p. 382—399 (1908).

der hoch gelegenen Stellen des Thermostaten annimmt. Um den Foischen Thermoregulator mit Petroleum zu füllen, gießt man es zuerst in die Röhre A; dann nimmt man den oberen Teil des Regulators, hält ihn etwas geneigt und füllt die Erweiterung E. indem man eine geeignete, mit Petroleum gefüllte Pipette bis zum Hahn F' einführt. Auf diese Weise führt man das Petroleum in die Erweiterung G ein, in welche man schon vorher reines Quecksilber gegossen hat. Wenn der ganze Apparat gut gefüllt ist und in den Thermostaten gebracht wird, dehnt sich das Petroleum aus und sammelt sich im Trichter. Sobald die gewünschte Temperatur erreicht ist, schließt man den Hahn F' und stellt die kleinste erforderliche Flamme durch Drehen der Schraubenklemme K her.

b) Verfahren zur Vermeidung der Anhäufung der Verdauungsprodukte.

Die Anhäufung der Verdauungsprodukte verlangsamt allmählich bei den Verdauungsversuchen in vitro die vor sich gehenden Prozesse und hebt diese schließlich auf. Um die entstehenden Abhauprodukte aus der Verdauungsflüssigkeit zu entfernen, bedient man sich der Dialyse. Man kann die Dialvsiervorrichtungen in für alle biochemischen Untersuchungen anwendbare und in speziell für Verdauungsversuche ersonnene einteilen.

1. Allgemeine Dialysierverfahren.

Zur Dialyse benutzt man verschiedene Membranen: Pergament (Graham, v. Wittich, Kühne, Proskauer usw.); Kollodium, Schilf, Zellulose (Metschnikoff, De Waele): in Lezithin oder Cholesterin getränkte Seide (Pascucci); tierische Membranen, wie Schweineblase (Hoppe-Seyler); mit verdünnter Salzsäure von den unorganischen Salzen befreite Membran des Hühnereies (Botkin): an einem Ende geschlossene Teile der Darmröhre oder von der Gefäßwand (Charrin und Moussu); Blinddarm von Schafen (Wiechowski): Speiseröhre, Amnios (van Calcar) usw.

Die dialysierenden Eigenschaften dieser verschiedenen Membranen für ein und denselben Stoff sind keineswegs stets dieselben. Das Dialvsiervermögen der tierischen Membranen wechselt ziemlich stark mit dem Alter des Tieres sowie auch mit der Tierart, von welcher sie herstammen. Dieses Vermögen nimmt mit dem Alter des Tieres meistens ab und ist gewöhnlich größer bei Pflanzenfressern als bei Fleischfressern.¹)

Dialysator nach Graham. Der Fig. 54 abgebildete einfache Grahamsche Dialysator besteht aus einem runden, mehr oder minder tiefen, mit destilliertem Wasser gefüllten Glasgefäße, in das ein Glas-

¹⁾ Botkin, Zur Frage von dem endosmotischen Verhalten des Eiweißes. Virchous Arch. f. pathol. Anat. Bd. 20. S. 39-42 (1860). - Charrin et Moussu, Influence des dialyses ou filtrations intra-organiques sur les principes toxiques. Compt. rend. hebd. des séanc. de la Soc. de Biologie. T. 52. p. 694-696 (1900).

zylinder taucht, dessen untere Öffnung mit feucht überzogenem und festgebundenem Pergamentpapier verschlossen ist. Das Pergamentpapier läßt die Kristalloide durchtreten, nicht aber die Kolloide. Vor dem Gebrauche muß man sich der Dichtigkeit des Pergamentpapiers durch Aufgießen von Wasser versichern.

Um zu vermeiden, daß zwischen der Pergamentmembran und der äußeren Oberfläche des Glaszylinders vom Inhalte des Dialysierapparates wegen deren Falten oder durch Kapillarität über die Ligatur heraustritt oder umgekehrt, daß Wasser in den Dialysierzylinder dringt, bedient man sich mit Vorteil des folgenden von Lévigne¹) vorgeschlagenen Verfahrens: Durch Benzolzusatz etwas flüssiger gewordener Kanadabalsam wird bei trockener Pergamentmembran in die Furche gegossen. Der Balsam dringt überall

zwischen Glas und Membran und verklebt Glaswand und Membran auf der ganzen Berührungsfläche zusammen. Nach 48stündigem Stehen ist der Balsam fest gewor-

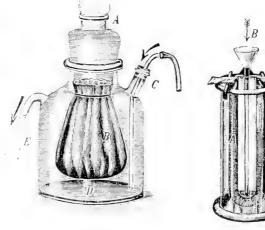


Fig. 54.

Fig. 55.

Fig. 56.

den, das Anhaften ist allgemein und die Dialysierapparate können angewendet werden. Wegen der Verdunstung der in diesen Apparat gebrachten Lösung kann man den *Grahams*chen Dialysator nicht zu Verdauungsversuchen anwenden.

Dialysator nach B. Proskauer. Der erwähnte Nachteil besteht nicht beim Proskauerschen Dialysator (Fig. 55), welcher eine Dialyse gegen strömendes Wasser sowie die Sterilisierung des Dialysators erlaubt. Die Verdauungsflüssigkeit wird durch die mit Watte verschlossene Öffnung A in den Pergamentpapierbeutel B gebracht. Durch die Röhre C fließt das Wasser in das Glasgefäß D. Es verläßt dieses durch die Röhre E. Dieser Apparat kann in den Brutschrank gestellt werden, so daß dann die Verdauung unter Dialyse mit stetiger Erneuerung des außen befindlichen Wassers erfolgt.

¹⁾ Henri Lévigne, Recherches sur le passage de l'acide urique et des sels à travers des membranes inertes. Thèse de Lyon 1905, p. 28.

Dialysator nach W. Kühne. Um die Oberfläche der dialysierenden Membran zu vergrößern, hat Kühne die Anwendung von Dialysierschläuchen aus Pergamentpapier empfohlen. Wie die Fig. 56 es veranschaulicht, hat Kühne einen Apparat ersonnen, welcher erlaubt, unter stetigem Erneuern des Wassers die Dialyse zu bewerkstelligen. Die der Verdauung unterworfene Flüssigkeit wird in den Dialysierschlauch A gebracht und der ganze Apparat in einen Brutschrank gebracht, so daß das Wasser durch den Trichter B

allmählich in das Gefäß C fließt und der Wasserüberschuß durch die Nebenröhre D abfließt.

Der Dialysierschlauch muß stets zuerst auf seine Dichtigkeit geprüft werden, wozu man ihn mit Wasser füllt. Rinnt er an einer oder mehreren Stellen, so muß man die am wassergefüllten Schlauch angemerkten Stellen nach dem Trocknen auftupfen, wozu man am besten die von Jordis empfohlene, mit Alko-

hol und Äther passend verdünnte Mischung gleicher Teile Kollodium und konzentrierter Schellacklösung (1:1) benutzt.

Um den Dialysierschlauch dicht zu verschließen, werden die offenen Schlauchenden entweder mit starken Fäden zugebunden oder besser zwischen zwei mit Gummiringen verbundenen Glasstäben zusammengepreßt.

Dialysator nach Wrobleski. Zur Dialyse im beständigen Strome von sterilisiertem Wasser unter Vermeidung jeder Infektion der

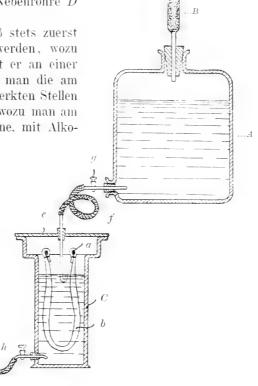


Fig. 57.

dialysieren den Flüssigkeit empfiehlt Wrobleski den in der Fig. 57 abgebildeten Apparat. Dieser besteht aus einer hochstehenden, mit Wasserverschluß B versehenen, Mariotteschen Flasche A. deren Auslaufrohr (Harnrohr) g durch den Schlauch f mit einem dünnen Röhrchen verbunden ist, welches in die Bohrung des den Zylinder C dicht verschließenden Deckels c luftdicht eingesetzt ist. In dem Zylinder C befindet sich ein an den zwei Glasstäben a aufgehängter Pergamentschlauch b, in den man die zu dialysierende Flüssigkeit bringt. Der Zylinder C hat unten ein mit einem Hahne versehenes Abflußrohr h, durch welches die äußere Flüssigkeit abfließt. In demselben Maße wie dieser Abfluß erfolgt, strömt Wasser aus der Mariotteschen Flasche in den

Zylinder C. Vor dem Gebrauche sterilisiert man den Gesamtapparat und das Wasser. 1)

Dialysierapparat von Waymouth Reid. Um die relative Diffusibilität verschiedener Stoffe durch Pergamentpapier unter den gleichen Temperatur-. Druck- und Flüssigkeitszufuhrbedingungen zu vergleichen, empfiehlt sich die von Waymouth Reid angewandte Dialysiervorrichtung, welche durch die Fig. 58 veranschaulicht wird:

Ein mehrere Liter Wasser enthaltender, durch die punktierten Linien in der Fig. 58 angezeigter Kupferbehälter wird durch einen großen Bunsenbrenner erwärmt und durch einen kleinen, von einem Motor getriebenen Schraubenrührer (Pl) gerührt. Um leicht eine beständige Temperatur zu erhalten, befindet sich der Bunsenbrenner dicht unter der Schraube. Im

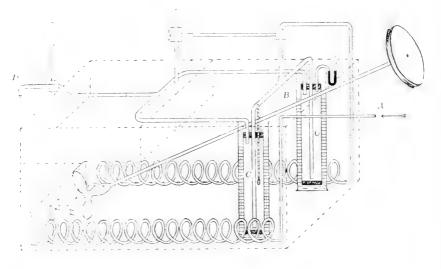


Fig. 58.

Wasserbade befindet sich ein Schlangenrohr aus dünnem Kupfer, welches an einem Ende (4) Wasser von der Wasserleitung erhält, während das andere Ende die zwei Dialysierzylinder (C) speist. Der Wasserstrom erwärmt sich im Schlangenrohr, wird durch ein T-Rohr B von oben bis auf den Boden der beiden Dialysierzylinder (C) geleitet, fließt oben aus dem Dialysierzylinder ab und wird schließlich durch das verstellbare Rohr D nach außen gebracht. Die Dialysierschläuche hängen in den Dialysierzylindern; sie werden wasserdicht mit Kautschukstopfen verschlossen. Die Zylinder selbst sind durch dreifach durchbohrte Stopfen verschlossen. Durch je zwei dieser Öffnungen gehen die Einfluß- und Abflußröhren des Wasserstromes; in der dritten dringt auf der einen Seite ein Thermometer, auf der an-

¹) A. Wrobleski, Zur Dialyse. Zeitschr. f. angew. Chemie. S. 692 (1894).

deren ein Manometer ein. Durch Veränderung der Höhe des äußeren Ausflußrohres D wird der in den Dialysierschläuchen bestehende Druck geregelt.

Beim Vergleichen der Diffusionsgeschwindigkeit zweier Substanzen muß man vorher die Dicke des Pergamentpapieres mit Hilfe eines Zeißschen Meßapparates für Deckgläschendicke bestimmen. Außerdem empfiehlt Waymouth Reid, sich durch Vorversuche mit Glukose von der gleichen Permeabilität der beiden Dialysierschläuche zu überzeugen. 1)

Dialyse nach Gürber. Ein absolut sicherer Verschluß der Pergamentdialysierschläuche läßt sich nach Gürber nur auf folgende Weise erzielen: Ein etwa 50 cm langes, gut eingeweichtes und auf seine Dichtigkeit geprüftes Schlauchstück wird gleichschenkelig zusammengelegt, dann der eine Schenkel aufgeblasen und die zu dialvsierende Flüssigkeit darin eingefülltwobei man sorgfältig zu vermeiden sucht, daß von ihr im oberen Drittel desselben etwas hängen bleibt. Hierauf drückt man diesen Teil des geöffneten Schlauches wieder zu, faltet ihn der Länge nach fächerförmig mit dem entsprechenden Teil des anderen Schlauchschenkels und gewinnt so einen festen Papierstiel. Dieser wird ungefähr in der Mitte kräftig gedreht, dann die obere Hälfte um die untere geschlungen und der so gebildete Knäuel in ein kleines Stück feuchtes Pergamentpapier gewickelt, um bei den jetzt anzulegenden Drahtschlingen ein Durchschneiden des Schlauches zu verhüten. Man legt eine Drahtschlinge von 1 mm starkem Messingdraht möglichst nahe der Umbiegungsstelle des Papierstieles und die andere 1-2 cm dayon entfernt.

Der so erhaltene, überall gut verschlossene, gefüllte Dialysierschlauch wird mit der gewünschten Wassermasse in einen durch einen Gummistopfen verschlossenen Glaszylinder gebracht, welcher auf einer Schüttelmaschine befestigt wird, so daß die Flüssigkeit in stetiger Bewegung bleibt, wodurch die Wand des ganzen Schlauches fortwährend bespült und ausgenutzt wird. Dieses Schütteln bezweckt außerdem noch folgendes: Beim ruhigen Stehen müssen die diffundierenden Stoffe nicht nur durch die Schlauchwand hindurch, sondern aus der dieser nächsten Flüssigkeitsschicht in immer entferntere Schichten weiter oder aus entfernteren in diese herandiffundieren. Dabei kann es vorkommen, daß auf beiden Seiten unmittelbar an der Diffusionsmembran der osmotische Ausgleich nahezu eingetreten ist, während er sonst für die ganze Flüssigkeit noch lange aussteht, da die diffusible Substanz nicht in dem Maße hinzu- oder hinwegdiffundiert, wie sie durch die Membran hindurchgeht. Werden aber die Flüssigkeiten durch Schütteln fortwährend mechanisch gemischt, so haben die Vorgänge der Diffusion nur durch die Dialysiermembran hindurch stattzufinden und verlaufen nun um so rascher, weil dann stets der größtmöglichste osmotische Unterschied hergestellt wird.2)

¹) E. Waymouth Reid, A diffusion apparatus. Journ. of Physiol. Vol. 21. p. 85 bis 100 (1897).

²) A. Gürber, Die Salze des Blutes. I. Salze des Serums. Verh. d. physik.-med. Ges. zu Würzburg. Bd. 28. 21 S. (1894).

Dialysator nach Siegfried. Um die beim Knicken von Pergamentschläuchen leicht vorkommenden Undichtigkeiten zu vermeiden sowie um die fortwährende Beobachtung der zu dialysierenden Flüssigkeit während der Dialyse und ihre unaufhörlich vor sich gehende Mischung zu erlauben, so dan dann keine Diffusion innerhalb der Flüssigkeit selbst entsteht, hat Siegfried den Fig. 59 abgebildeten Dialysierapparat vorgeschlagen.

Er besteht aus drei Glasgefäßen A, B und C, wovon die beiden äußeren A und C die Gestalt eines größeren Handexsikkators und das mittlere B die eines Ringes haben. Zwischen diesen, mit abgeschmolzenen

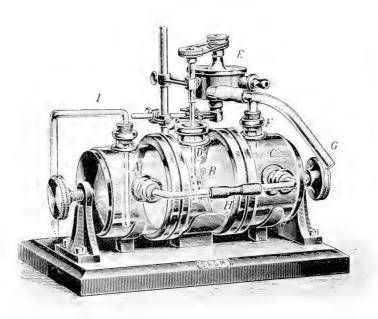


Fig. 59.

und abgeschliffenen Krempen versehenen Gefäßen werden zwei Pergamentpapierscheiben, durch Gummiringe gedichtet und mittelst federnder, an den Krempen anliegender, durch vier Schrauben zusammengepreßter Messingringe wasserdicht befestigt. Durch diese Pergamentpapierscheiben wird der Inhalt des zur Aufnahme der zu dialysierenden Flüssigkeit dienenden Glasringes B abgegrenzt. Die beiden äußeren Gefäße A und C tragen je eine seitliche und eine obere Röhre. Die seitlichen, rechtwinkelig gebogenen Glasröhren werden mittelst eines kurzen Gummischlauches verbunden. Das mittlere Gefäß B besitzt oben eine geräumige Öffnung, durch welche ein Rührer D im Glasringe eingeführt ist. Dieser Rührer wird durch eine an demselben Gestelle wie der Apparat befestigte Wasserturbine E bewegt. Mit Hilfe der auf die obere Öffnung F des Gefäßes C aufgesetzten T-Röhre wird das

aus der Turbine fließende Wasser in den Dialysierapparat geleitet, während der Überfluß durch das nach unten gebogene Ende G der **T**-Röhre nach außen tritt. Das in das Gefäß C einfließende Wasser drängt das Wasser aus diesem Gefäße durch die Verbindungsröhre H in das Gefäß A, aus welchem es durch die Röhre I nach außen gebracht wird.

Dialyse nach Jordis. Jordis zufolge soll man die Pergamentschläuche nicht aufhängen, sondern lose zugebunden in ein großes flaches paraffiniertes Gefäß auf einen Rost aus Glasstäben 3 cm über dem Boden legen. Werden dann die Enden der Schläuche an zwei oberhalb des Flüssigkeitsniveaus befindliche Stäbe gebunden, so kann man jederzeit leicht Proben entnehmen. Besteht ein Zuflußrohr im Niveau und ein vom Boden ausgehender Überlauf, so kann die Dialyse gegen fließendes destilliertes Wasser erfolgen.

Jordis hat den durch beifolgende Zeichnung (Fig. 60) illustrierten, filterpreßähnlichen Dialysator ersonnen: Holzringe r von 3 cm Breite. 15 cm innerem Durchmesser und 2—3 cm Dicke werden nach einander mit ver-

dünnter Salzsäure, verdünnter Lauge, wieder verdünnter Säure und endlich Wasser ausgekocht und dann getrocknet. Lufttrocken kommen sie in ein ringförmiges Blechgefäß, worin sie auf dem Sandbade in Hartparaffin gesotten werden, bis keine Blasen mehr entweichen. Beim Erkalten zieht sich fast alles Paraffin ins Holz. Daher legt man die Ringe noch einmal kurze Zeit in eben geschmolzenes Paraffin, wodurch nach dem Abkühlen auf dem Holze eine glänzende Schicht bleibt, welche mit einem Glasstabe völlig geglättet wird. Die Ringe haben zwei Bohrungen a und b von je 1 cm Durchmesser. Nun bespannt man eine Anzahl n-Ringe beiderseits mit nassem Pergamentpapier, zu welchem Zwecke eine kleine Rinne auf dem Rande für den Bindfaden eingeschnitten ist. Diese n-Ringe legt man zwischen (n+1) unbespannte, indem je ein 3 mm dicker Ring aus Gummi dazwischen gesetzt wird, spannt mittelst Flügelschrauben zwischen zwei Eisenringen p ein und läßt trocknen. Danach füllt man den am Ende befindlichen, mit

M. Siegfried, Ein Dialysierapparat. Ber. d. Deutsch. chem. Ges. Bd. 2. S. 1825 bis 1826 (1898).

Pergament bespannten Ring mit Wasser und prüft seine äußere Seite auf Undichtigkeiten. Die betreffenden Stellen werden markiert. Indem man nun jeden Ring einmal ans Ende der Reihe setzt, kann man nach und nach sämtliche Dialysatorflächen prüfen, wenn man es nicht vorzieht, eine kleinere Fassung für einen einzelnen Ring zu verwenden, welche schneller fördert. Auf die markierten Stellen gibt man nach dem Trocknen ein wenig gewöhnliches Hühnereiweiß und koaguliert es vorsichtig über einer kleinen Flamme. Schließlich setzt man vor die Eisenringe eine runde Holzscheibe. darauf eine Gummischeibe, dann einen leeren Ring, abwechselnd mit einem bespannten unter Zwischenlage von Gummiringen und zieht die Spannschrauben fest an. Das System ist dann vollkommen dicht. Aus einer vorgelegten hochgestellten Zehnliterflasche läßt man durch eine, den Zufluß regelnde Kapillare destilliertes Wasser in der genannten Weise durch die Wasserkammern W strömen, welche die Dialvsierräume D einschließen, und erzielt so eine sehr schnelle Dialyse, wenn man die 101 auf 12 Stunden Ausflußzeit einstellt. Die in der Zeichnung fortgelassenen Öffnungen a und ban den Kammern D werden mit Korkstopfen verschlossen. Bei Inbetriebsetzung muß man in D und W die abgemessene, berechnete Flüssigkeitsmenge einfüllen, weil sonst wegen der Dehnbarkeit der Membranen keine gleichmäßige Füllung erzielt wird und beim Füllen einer weiteren Kammer die Lösung aus schon gefüllten zum Teil herausgedrückt werden würde. Bei 3 cm Dicke fassen die Ringe je ca. ½ l Flüssigkeit.

Der Apparat wird auf ein 20 cm breites Brett von passender Länge gestellt, auf welches zwei Leisten aufgenagelt sind, deren Innenkante entsprechend weggehobelt wurde. Er hat den Vorzug, vollkommen abgeschlossen zu sein und doch jederzeit Probeentnahmen zu gestatten. Die Zahl der Kammern und die Größe der Ringe kann natürlich beliebig sein. Auch ist es möglich, in einem größeren System durch Einlage von Gummischeiben, wie sie an den Enden benutzt werden, kleinere Gruppen abzusondern und so verschiedene Kolloide (oder Proben verschiedener Reinheit in der Richtung des Wasserstromes) hintereinander in demselben Apparate zu haben.¹)

Diffusionshülsen von Schleicher & Schüll. Um die Dialyse geringer Substanzmengen im kleinen Wasservolumen zu ermöglichen, hat die Firma Schleicher & Schüll zu Düren Dialysierhülsen aus Pergamentpapier in den Handel gebracht. Solche können bei Verdauungsversuchen, wo man nur mit geringen Flüssigkeitsmengen arbeiten muß, angewandt werden. Indes soll man in den meisten Fällen den Dialysierhülsen die weiter unten besprochenen Schilf- oder Kollodiumsäcke vorziehen.

Dialyse in Kollodiumsäckehen. Zur aseptischen Dialyse tierischer Flüssigkeiten kann man sich bei 115°C sterilisierter Kollodiumsäckehen bedienen.²)

¹) E. Jordis, Ein neuer Dialysator. Zeitschr. f. Elektrochemie. Bd. 8, S. 677 bis 678 (1902).

²) C. Delezenne, Action des sels de calcium sur le suc pancréatique préalablement dialysé. Compt. rend. hebd. des séanc. de la Soc. de biologie. T. 57. p. 523-525 (1905).

Zur Anfertigung der Kollodiumsäcke werden 250 g Schießbaumwolle in einem Gemische von 300 g Äther und 700 g absolutem Alkohol aufgelöst. Man nimmt eine äußerlich gut gereinigte Glasröhre (Fig. 61) entsprechenden Durchmessers, welche an einem Ende A geschlossen ist und in der Nähe des anderen freien Endes B eine runde Erweiterung C aufweist. Man taucht während 2-3 Sekunden die Röhre in die Kollodiumlösung, so daß die Röhre sich darin nur bis zur Mitte der Erweiterung C, wie es die Linie D zeigt, befindet. Dann nimmt man die Röhre von dieser Lösung heraus und läßt sie unter stetigem Umdrehen an der Luft trocknen, bis man nur noch den Alkohol, den Äther jedoch nicht mehr riecht, was in einigen Sekunden der Fall ist. Nun wird die Röhre wieder in die Kollodiumlösung bis zur Linie D während 2-3 Sekunden eingetaucht, worauf man sie unter stetigem Umrühren an der Luft bis zum völligen Verdunsten des Äthers trocknen läßt. Man kann diese Prozedur ein drittes Mal wiederholen. Die mit dem Kollodiumsacke umhüllte Röhre wird einige Zeit in kaltes Wasser eingetaucht. Dann wird der Kollodiumsack mittelst eines Messers vorsichtig bis zum Ende E

der Erweiterung C von der Glasröhre getrennt, worauf man den Sack durch den so dargestellten Ring greift und wie einen Handschuhfinger umdreht und von der als Mandrin dienenden Röhre wegnimmt.1)

Nocard taucht einen am Ende abgerundeten Glasstab in der Größe des gewünschten Kollodiumsackes in geschmolzenes Paraffin. Nach dem Erstarren des Paraffins bringt man den Sack in Kollodium. Man läßt an der Luft unter stetigem Drehen trocknen. Schließlich taucht man den Glasstab in das paraffinlösende heiße Wasser, wodurch der Kollodiumsack isoliert wird.

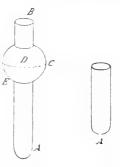
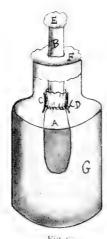


Fig. 61. Fig. 62.

Ein anderes Verfahren, um Kollodiumsäcke anzufertigen, besteht darin, daß man einen Glasstab entsprechender Größe ungefähr 1/2 Minute in das Kollodium und darauf einige Sekunden in Chloroform eintaucht. Das Chloroform löst die durch die Ätherdämpfe bewirkten kleinen Bläschen, welche sich manchmal in der Wand des Sackes befinden, und welche bei der Sterilisierung die Zerreißung des Kollodiumsackes hervorrufen könnten. Außerdem wird auf diese Weise die Kollodiumschicht härter. Gleichzeitig verhindert man, daß das Kollodium dem Glase zu fest anhaftet. Diese Prozedur wird einoder zweimal erneuert, worauf man den Kollodiumsack in der oben beschriebenen Weise vom Glasstabe abnimmt.2)


Man kann sich auch einer am Ende A mit einem kleinen Loche versehenen Glasröhre (Fig. 62) bedienen, welche man in eine ziemlich

¹⁾ Gütige Mitteilung des Herrn Prof. Dr. C. Delezenne (Paris).

²⁾ Alfred Blumenthal, Contribution à l'étude expérimentale des modifications morphologiques et fonctionnelles des globules blancs. Mém. cour. et autr. mém. publ. par l'Acad. roy. de méd. de Belgique. T. 58. fasc. 8. p. 1-57 (1905).

dicke Leimlösung bei 37—40° C eintaucht und nachher trocknen läßt, so daß die Öffnung A mit einer dünnen Leimschicht geschlossen ist. Die so vorbereitete Röhre wird, wie oben beschrieben, in Kollodium eingetaucht an der Luft gelassen bis zum Verdunsten des Äthers unter stetigem Umdrehen und dann noch in Chloroform eingetaucht; diese Prozedur wird zweibis dreimal wiederholt. Dann wird die mit dem Kollodiumsacke versehene Röhre in heißes Wasser gebracht, worin der Leim sich verflüssigt. Dadurch macht sich der Kollodiumsack allmählich von selbst von der Röhre los, indem sein Ende sich vom Ende A der Glasröhre entfernt und der Sack auf die äußere Glaswand rutscht.¹)

Von diesen 4 Verfahren ist ersteres für biochemische Zwecke entschieden vorzuziehen. Bei Anwendung einer guten Kollodiumlösung kann man leicht Säcke jeder beliebigen Größe bereiten.

ig. 63.

Zur Sterilisierung der Kollodiumsäcke wird, wie nebenstehende Fig. 63 es veranschaulicht, der Kollodiumsack A an eine Glasröhre B gebunden, indem man den den Kollodiumsack beendigenden Ring mit einem Pergamentpapierring C umhüllt und diesen mittelst des Fadens D auf der Röhre B befestigt. Der Pergamentring hat den Zweck, jede Zerreißung des Kollodiumsackes beim Festschnüren zu verhindern. In das Innere des Sackes wird destilliertes Wasser oder physiologische Lösung gegossen. Das obere Ende E der Glasröhre B wird mit einem Wattepfropfen verschlossen. Der an der Glasröhre befestigte Kollodiumsack wird dann in eine destilliertes Wasser oder physiologische Lösung enthaltende Ein- bis Zweiliterflasche G gebracht, deren oberes Ende F mit Watte verschlossen wird. Die Höhe der Flüssigkeit im Kollodiumsacke und in der Flasche muß die gleiche sein.

Die so bereitete Flasche wird im Autoklaven bei 115°C während 1 ,4 Stunde erwärmt. Dann entfernt man aseptisch die im Sacke enthaltene Flüssigkeit, gießt die zu dialysierende Lösung hinein und verstopft rasch wieder das Ende E der Glasröhre B mit Watte.

Zur Dialyse werden eine ganze Reihe von destilliertes Wasser oder physiologische Lösung enthaltenden, sterilisierten, mit Watte verschlossenen Ein- bis Zweiliterflaschen benützt. Der sterilisierte Kollodiumsack wird in eine dieser Flaschen gebracht, diese sofort mit Watte verschlossen und bei einer Temperatur unter 10° gelassen. Nach einigen Stunden wird der Kollodiumsack in eine andere mit physiologischer Lösung gefüllte Flasche gebracht. Diese Prozedur wird bis zur Vollendung der Dialyse mehrfach wiederholt.²)

¹⁾ Gütige Mitteilung des Herrn Prof. Dr. J. Bordet (Brüssel).

²⁾ Gütige Mitteilung des Herrn Prof. Dr. C. Delezenne (Paris).

Zur Sterilisierung des Kollodiumsackes empfiehlt es sich, destilliertes Wasser in den Sack und in die ihn enthaltende Flasche zu gießen, während zur Dialyse von tierischen Säften oder Verdauungsflüssigkeiten man eher physiologische Kochsalzlösung anwenden soll.

Falls man die Kollodiumsäcke zu Versuchen in vivo verwendet, wird der gefüllte Sack dicht unterhalb der Glasröhre mit Seide zugebunden, von der Glasröhre getrennt und am oberen Ende außen mit Kollodium gedichtet. Die äußere Oberfläche des völlig verschlossenen Sackes wird mit sterilisiertem destilliertem Wasser oder mit physiologischer Lösung ausgewaschen und unter strengster Asepsis in die Bauchhöhle oder einen anderen Teil des Organismus gebracht.

Die Permeabilität der Kollodiumsäcke wechselt sehr je nach ihrer Bereitung; Proteine dialysieren nur sehr langsam durch diese Säcke. 1)

Ein Nachteil der Kollodiumsäcke ist ihr Adsorptionsvermögen für gewisse Fermente (Amylase, Pepsin usw.) und vielleicht auch für andere Stoffe. 2)

Um die Widerstandsfähigkeit der Kollodiumsäcke zu erhöhen und um die Dialyse der Fermente durch die Kollodiummembran zu verzögern. empfiehlt es sich, das Kollodium mit Lecithin und Cholesterin zu vermischen. Die Kollodiummembran schwängert sich zuerst mit den Fermenten, was eine ziemlich lange Zeit beansprucht, und läßt erst dann die Fermente durchtreten.³)

Dialyse in Schilf- und Zelluloseschläuchen. Außer dem Pergamentpapier und den Kollodiumsäcken werden noch Schilfschläuche zur Dialyse verwendet. Zur Herstellung der Schläuche werden möglichst dicke Schilfrohre von Phragmites communis in ihre Segmente geteilt und diese ½—1 Stunde in kochendes Wasser gelegt. An einem Segmentende wird hierauf durch sorgfältiges Abschneiden eine Strecke der die Höhlungen der Internodien auskleidenden innersten Membran freigelegt und der kleine Membranzylinder mit einem Seidenfaden zugebunden. An diesem zugebundenen Ende legt man nun einen dünnen Glasstab mit abgerundeten Enden an und

¹) El. Metschnikoff, E. Roux et Tanarclli-Salimbeni, Toxine et antitoxine cholériques. Ann. de l'Inst. Pasteur. T. 10. p. 257—282 (1896). — A. Rodet et Guéchoff, Essai d'application de la méthode des sacs de collodion à la connaissance des produits toxiques des bacilles d'Eberth et coli. Compt. rend. hebd. des séanc. de la Soc. de Biolog. T. 52. p. 962—965 (1900). — Sur les propriétés des sacs de collodion et leur rôle en bactériologie. Ibid. T. 52. p. 965—967 (1900). — Milton Crendiroupoulo et Armand Ruffer, Note sur la dialyse des produits solubles élaborés par le bacille pyocyanique dans les sacs de collodion. Ibid. T. 52. p. 1109—1110 (1900). — A. Rodet et J. Moitessier, Sur la perméabilité des membranes de collodion. Ibid. T. 54. pag. 1047—1049 (1902).

²) F. Strada, Sur la filtration de quelques diastases protéolytiques au travers des membranes en collodion. Ann. de l'Inst. Pasteur. T. 22. p. 982—1009 (1908). — A. Slosse et H. Limbosch, Note sur l'adsorption des ferments digestifs par le collodion. Bull. d. l. Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 67. p. 132—136 (1909).

³⁾ H. Bierry et G. Schaeffer, Dialyse et fixation sur sac de collodion de la lactase et de l'émulsine animales. Compt. rend. hebd. des séanc. de la Soc. de Biolog. T. 62. p. 723—725 (1907).

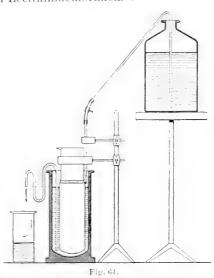
bewegt ihn mit leisem Drucke in der Richtung des Rohres. Dabei löst sich die innere Membran von der Schilfwand ab und befindet sich schließlich in ganzer Ausdehnung auf dem sie vor sich herstülpenden Glasstabe. Sofort wird der Stab herausgezogen. Auf diese Weise kann man Schläuche von 15 cm Länge und 8—10 cm³ Inhalt erhalten, deren Dicke annähernd 0:08 mm entspricht und welche fast nur aus reiner Zellulose bestehen.

Um die Schilfschläuche zu sterilisieren, führt man in das offene Ende des Schlauches eine kleine Glasröhre ein und befestigt diese vorsichtig mit Seide an der Wand des Säckchens. Letzteres wird dann mit destilliertem Wasser gefüllt. Hierauf wird die Glasröhre mit Watte verschlossen, mit dem daran hängenden Schilfsacke in eine destilliertes Wasser enthaltende Flasche gebracht und der Schilfsack nach demselben Verfahren, wie es für die Kollodiumsäcke angegeben wurde, sterilisiert. Nach dem Sterilisieren entnimmt man aseptisch das in dem Schilfsack enthaltene Wasser und ersetzt es durch die zu dialysierende Flüssigkeit. Die Dialyse erfolgt in derselben Weise, wie bei Verwendung von Kollodiumsäcken. Falls man das Schilfsäckchen zu Versuchen in vivo völlig verschließen will, wird es dicht unterhalb der Glasröhre mit Seide zugebunden, am oberen Ende außen mit Kollodium gedichtet und ganz auf dieselbe Weise wie die Kollodiumsäcke zu dem ähnlichen Zwecke behandelt.

Die Schilfschläuche können nur zur Dialyse von kleinen Flüssigkeitsmengen gebraucht werden. Nach *Philippson* sind sie für Glykogen, für gerinnbare Proteine. für Heteroalbumosen, Trypsin und den gerinnungshemmenden Bestandteil des Blutegelextraktes nicht durchlässig, während Pepsin in Spuren durchzutreten scheint.

Die Zellulosesäcke des Handels (Leune in Paris) besitzen dieselben Eigenschaften betreffs der Dialyse wie die Schilfsäcke.

Um die Dichtigkeit der Schilf- und Zellulosesäcke vor ihrem Gebrauche zu prüfen, empfiehlt de Waele¹), in den vorher angefeuchteten Säcken eine wässrige 1 / $_{200}$ — 1 / $_{300}$ 0 / $_{0}$ ige Methylviolett-oder Gentianaviolettlösung einzugießen und dann den Sack 1 / $_{4}$ — 1 / $_{2}$ Stunde in einer Wasser enthaltenden breiten Eprouvette zu lassen; das Wasser der Eprouvette muß farblos bleiben. Dann wäscht man den Schilf- oder Zellulosesack gut aus. Falls er gefärbt bleibt, so bewirkt dies keinen Nachteil für seine dialysierenden Eigenschaften. 2)


¹⁾ Gütige briefliche Mitteilung des Herrn Dr. de Waele (Gent).

²) El. Metschnikoff, Sur la lutte des cellules de l'organisme contre l'invasion des microbes. Ann. de l'Inst. Pasteur. T. 1. p. 321—336 (1887). — Podbelsky, Contribution à l'étude de l'immunité vis-à-vis du bacillus subtilis. Ibid. T. 12. p. 427—446 (1898). — II. Conradi, Zur Frage der Toxinbildung bei den Milzbrandbakterien. Zeitschr. f. Hyg. u. Infektionskrankh. Bd. 31. S. 287—316 (1899). — P. Philippson, Über die Verwendbarkeit der Schilfschläuche zur Dialyse. Beitr. z. chem. Physiol. u. Pathol. Bd. 1. S. 80—82 (1902). — II. De Waele. Note sur l'immunité conférée par la méthode des sacs de cellulose et sur les produits microbiens dialysants. Zentralbl. f. Bakt., Parasitenkunde u. Infektionskrankh. 1. Abt. Orig. Bd. 42. S. 636—642 u. 760—770 (1906).

Dialyse nach Pascucci. Um die lipoide Schicht der Zellmembran nachzuahmen, löst Pascucci Lecithin in heißem Alkohol, läßt bis zum Sirup verdunsten und taucht dann darin ein 4 cm hohes, 5- 6 mm breites Glasröhrchen, dessen eine Öffnung mit feinem, weißem Seidenstoff überzogen ist. Der Seidenstoff wird auf diese Weise durch Lecithin getränkt. Nach der Imprägnation umgibt man das Röhrchen, da, wo die Seide befestigt ist, mit geschmolzenem Wachs, trocknet das Röhrchen bei 37° und bewahrt es im Vakuum über Schwefelsäure auf.

Durch Eintauchen des mit Seidenstoff überzogenen Glasröhrchens in vorsichtig geschmolzenes Cholesterin oder in durch Lösen von Lecithin und Cholesterin in dem gewünschten Gewichtsverhältnis und nachherigem völligem Eindunsten dargestellte Lecithin-Cholesteringemische erzielt man künstliche Cholesterin- oder Cholesterin-Lecithinmembranen. 1)

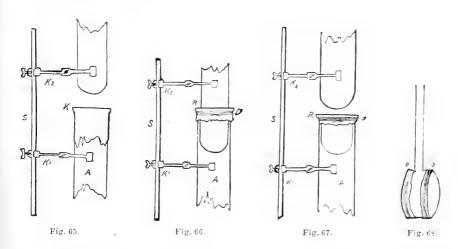
Dialyse nach Wiechowski. Dialyse von Organemulsionen bedient sich Wiechowski angeblich dem Blinddarm von Schafen hergestellter sogenannter Fischblasenkondome. Wegen der Dürre dieses Materials beginnt oft beim Anfüllen mit Wasser infolge des Druckes nach einiger Zeit auch aus dichten Schläuchen an einzelnen dünneren Stellen Wasser herauszusickern. Da aber die Schläuche während der Dialyse keinen solchen Druck auszuhalten haben, muß man die Prüfung auf Dichtigkeit auf andere Weise vornehmen. Man füllt die in Wasser eintauchenden Schläuche mit Lackmuslösung und läßt sie darin längere Zeit; färbt sich die äußere Flüssigkeit, so ist das Stück unbrauchbar.

Um mit möglichst wenig Flüssigkeit auszukommen, den Fortgang der Dialyse bequem beurteilen zu können und die Verarbeitung der Dialysationsflüssigkeit zu erleichtern, empfiehlt Wiechowski die Schläuche bis an den Boden von so eng gewählten Glaszylindern zu bringen, daß die Schläuche darin eben Platz haben, ohne die Wände zu berühren. Der Abfluß wird durch eine dreimal U-förmig gebogene Röhre, die auf den Boden des Zylinders reicht, so geregelt, daß immer genau so viel Flüssigkeit

¹⁾ O. Pascucci, Die Zusammensetzung des Blutscheibenstromas und die Hämolyse. H. Mitteilung. Die Wirkung von Blutgiften auf Membranen aus Lecithin und Cholesterin. Beitr. z. chem. Physiol. u. Pathol. Bd. 6. S. 552-566 (1905). - S. G. Swart, Über die Permeabilität künstlicher Lipoidmembrane für Profermente. Biochem. Zeitschr. Bd. 6. S. 358-365 (1907).

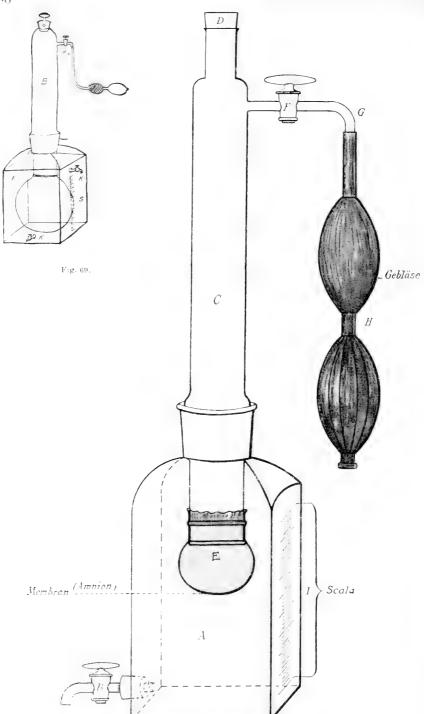
vom Boden des Zylinders abläuft, als oben zufließt (Fig. 64). Das Flüssigkeitsniveau im Zylinder wird in beliebiger Weise durch das Niveau des freien Endes der Abflußröhre geregelt. Der Zufluß wird durch eine Klemme geregelt. 1)

Dialyse nach van Calcar. Die Möglichkeit, daß eine in Lösung befindliche Substanz durch eine Membran dialysiert, hängt vom Verhältnisse des Molekularvolumens zur Porenweite der Membran ab. Demnach erklärt sich, daß Kolloide nicht dialysieren, dadurch, daß ihr Molekularvolumen im Verhältnisse zur Porenweite der Membran ein zu großes ist. Nun vergrößert man die Porenweite einer tierischen Membran willkürlich in einem ganz bestimmten Maße durch Erhöhung ihrer Spannung. Wählt man eine Membran, welche mäßig angespannt nur Salze, aber keine Kolloide diffundieren läßt, so erzielt man dadurch, daß man der Membran allmählich eine immer größere Spannung gibt, daß dieselbe alsdann auch gewisse Kolloide von verhältnismäßig kleinem Molekularvolumen diffundieren läßt, während sie Kolloide von größerem Molekularvolumen noch zurückhält und erst bei einer weiteren Erhöhung der Spannung für letztere durchlässig wird.


Zur Dialyse von Stoffen mit größerem Molekularvolumen wird das frische menschliche Amnion nach van Calcar folgendermaßen bereitet: Die Häute werden eine Minute lang mit einer Sublimatlösung von 1:5000 tüchtig abgespült und sodann in physiologischer Kochsalzlösung während 12 Stunden bei Körpertemperatur im Brutofen aufbewahrt. Dadurch schwillt die bedeckende Epithelschicht und beginnt an einigen Stellen schon einigermaßen sich von der Unterschicht abzulösen. Dann wird die Haut mit einer verdünnten Pankreatinlösung übergossen und einige Stunden in den Brutofen gelegt, um darauf wieder während einiger Stunden in eine erwärmte Salzlösung zu kommen. Übergießt man nun die Häute noch einige Augenblicke mit stark abgekühlter Salzlösung, so läßt sich die oberflächliche, stark geschwollene Epithelschicht leicht entfernen. Auf diese Weise erhält man schließlich eine an den meisten Stellen so glashelle Haut, daß man, wenn man schwarze Buchstaben darunter legt, fast nicht sehen kann, welche von der Haut bedeckt sind und welche nicht. Die so bereiteten Häute werden in einer Glyzerinlösung oder auch in sterilem, destilliertem Wasser oder in Salzlösung über etwas Chloroform aufbewahrt. Vor dem Gebrauche wäscht man sie mit sterilisiertem, destilliertem Wasser aus.

van Calcar verwendet die Amnionhäute auf eine ganze Anzahl Arten zur Dialyse. Die Einzelheiten der dabei zu befolgenden Technik sind hier unten wiedergegeben.

Zur Anfertigung eines sackförmigen Dialysators aus Amnionhaut nimmt man eine zylinderförmige Glasröhre A (Fig. 65), die an einem Ende E sauber abgerundet und etwas nach außen umgebogen ist, und


¹⁾ W. Wiechowski, Eine Methode zur chemischen und biologischen Untersuchung überlebender Organe. Beitr. z. chem. Physiol. u. Pathol. Bd. 9. S. 232—246 (1907).

befestigt dieselbe mit dem Ende E nach oben in der Klemmschraube K des Stativs S. Hierauf legt man das zu benutzende Amnionhäutchen H auf die Öffnung der Röhre, und zwar so, daß es überall ungefähr gleich weit herunterhängt. Mittelst des in der Klemme K^2 befestigten Reagenzglases R drückt man das Häutchen mehr oder minder tief in die Röhre A hinein. Auf dem Rande E des Zylinders A bildet dann das Häutchen H Falten, welche mit der Hand so gleichmäßig wie möglich über den Rand E verteilt werden. Wie die Figg. 66 und 67 es veranschaulichen, befestigt man dann das Häutchen so fest wie möglich mittelst des Fadens D um die zylinderförmige Röhre A. Der überflüssige Teil der Membran wird abgeschnitten und das Reagenzglas R aus der Röhre A herausgezogen. Durch Füllen des sackförmigen Dialysators H mit Wasser wird er auf seine Dichtigkeit geprüft.

Zur raschen Dialyse benutzt van Calcar den in Fig. 68 abgebildeten Dialysator, welcher aus einem an beiden Enden ausgebogenen Zylinder C besteht, aus dessen Wandmitte eine senkrechte Röhre R läuft. Über die Öffnungen des Zylinders werden die Amnionhäute befestigt. Ist die Entfernung ab sehr groß, so hat man einen Dialysator von großem Rauminhalte bei verhältnismäßig geringer dialysierender Oberfläche. Bei sehr kurzer Entfernung ab erhält man hingegen einen Dialysator von geringem Inhalte und sehr großer Dialysationskapazität. Man bringt ihn in ein offenes Gefäß, so daß das Niveau im Zylinder CR und im Gefäße gleich ist. Die Dehnung der Membran ist dann verhältnismäßig gering, wenn das spezifische Gewicht der zu dialysierenden Flüssigkeit von dem des Wassers nicht sehr verschieden ist.

Um ohne Druck, jedoch bei gespannter Membran zu dialysieren. bedient man sich folgenden Apparates (Fig. 69). Auf dem mit den zwei Hähnen K' und K versehenen Kolben A ist eine von innen geschliffene Röhre B angebracht, welche an ihrer Unterseite einen eingeschliffenen

 $F(\sigma, 70)$

Rand hat, woran man die Amnionmembran befestigt. Die Röhre B wird oben mit einem Stöpsel geschlossen, während oben an der Seite noch eine durch den Hahn K^2 zu schließende dünne Glasröhre angebracht ist, mit welcher ein Gebläse in Verbindung steht. An der einen Seite des Kolbens A befindet sich außerdem die Skala S.

Man bringt in die Röhre B eine eventuell durch Dialysieren auf Pergamentpapier schon von Salzen befreite Kolloidlösung und setzt diese Röhre auf den mit destilliertem Wasser oder physiologischer Lösung fast völlig gefüllten Kolben A. Dann wird mittelst des Gebläses die Membran bis zu einem bestimmten Grade gespannt, wobei der Flüssigkeitsüberschuß aus dem Kolben A durch den Hahn K abfließen kann. Je nach dem Spannungsgrade der Membran sind ihre Poren mehr oder minder weit und können Kolloide von nicht zu großem Molekularvolumen dialysieren. Zu bestimmten Zeitpunkten kann man K und K' öffnen, um durch den Hahn K einen Teil der Flüssigkeit aus dem Kolben abzulassen und zu

untersuchen. Alsdann füllt man A aufs neue aus einem Behälter durch K, worauf man mit Hilfe des Gebläses den Dialysator unter Ablesen der Skala auf sein ursprüngliches Niveau zurückführt.

Gelingt es nicht, ein in *B* befindliches Produkt bei einer gewissen Spannung der Membran zu dialysieren, so erhöht man sie unter Kontrolle der Skala. Die Grenze. innerhalb welcher ein Stoff durch die Amniosmembran dringt, muß natürlich für jedes Häutchen aufs neue bestimmt werden.

Aus Fig. 70 läßt sich etwas genauer ersehen, wie die Amnionmembran E an der im Kolben A eindringenden Röhre C befestigt ist.

Fig. 71 zeigt die zum Dialysieren unter erhöhtem Drucke und gespannter Membran benutzte Vorrichtung.

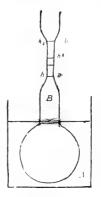
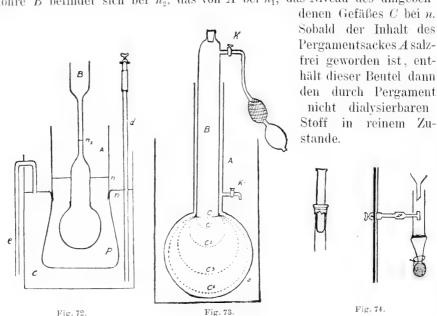



Fig. 71.

brucke und gespannter Membran benutzte Vorrichtung, in welcher man sowohl die erhöhte Spannung als den erhöhten Druck dadurch erzielt, daß man das Niveau im Dialysator höher setzt als in dem umgebenden Gefäße. In der Mitte der Röhre B, an welcher das dialysierende Amnioshäutchen befestigt ist, befindet sich ein ausgezogener Teil a b geringeren Durchmessers als die übrige Röhre. Dies erlaubt, bei gleichbleibendem Volumen zu dialysieren. Dialysiert man nämlich eine Mischung dialysierbarer und nicht dialysierbarer Stoffe, wie Serum z. B., so kommt es manchmal nach einiger Zeit vor, daß die Salze in solcher Menge durch die Membran gedrungen sind, daß so ungefähr Gleichgewicht entstanden ist, oder daß sie bei fortgesetzter Erneuerung der Flüssigkeit in A größtenteils aus B verschwunden sind, so daß Wasser so lange von A nach B dringt, bis der hydrostatische Druck in B gleich der osmotischen Spannung geworden ist. Auf dem Teile a b der Röhre B kann man sehr leicht das Steigen der Flüssigkeit ablesen. Beim ersten Steigen in der Röhre a b erhöht man das Niveau, z. B. von b bis auf b2, und kontrolliert jetzt fortwährend den

Apparat. Steigt trotzdem das Niveau noch in der Röhre a b, so erhöht man es auf h_3 . bis zuletzt das Steigen völlig aufhört, wodurch erwiesen wird, daß die osmotische Spannung der nicht dialysierbaren Produkte in B dem hydrostatischen Drucke gleich geworden ist.

Dialysiert man eine Flüssigkeit, die neben Salzen, die durch die Amnionhaut und das Pergament leicht dringen, einen Stoff enthält, der wohl durch die Amnionhaut, nicht aber durch das Pergament geht, und will man letzteren Stoff in möglichst reinem Zustande salzfrei erhalten, so verwendet man vorteilhaft den in der Fig. 72 wiedergegebenen van Calcarschen Apparat. Die Röhre B, an welcher die Amnioshaut befestigt ist, befindet sich in einer etwas weiteren Röhre A, an deren unterem Ende ein Pergamentsack P festgebunden ist. Man bringt das Ganze in das Gefäß C, welchem durch die Röhre d frisches, destilliertes Wasser zugeführt wird, während der Wasserüberschuß durch die Röhre e abfließt. Das Niveau der Röhre e befindet sich bei e0, das von e1 bei e1, das Niveau des umgeben-

Zur raschen Dialyse von Flüssigkeiten, die sich sehr schnell zersetzen, hat van Calcar den Apparat der Fig. 73 ersonnen. An der mit einem Hahne K' versehenen Röhre A ist der mit der zu dialysierenden Flüssigkeit gefüllte Amnionsack a befestigt. Darauf setzt man die Röhre B, an welcher sich eine zur Dialyse gänzlich ungeeignete Kautschukmembran c befindet. Das obere Ende ist mit einem Stopfen geschlossen und hat oben einen mit einem Gebläse verbundenen Hahn K. Man füllt die Röhre B mit Wasser und bläst mittelst des Gebläses die Membran c bis c^1 oder c^2 , c^3 , c^4 . Die Flüssigkeit steigt in A zwischen der Amniosmembran und der

Kautschukmembran. Man läßt den Überfluß durch den Hahn K^1 ablaufen und erhält auf diese Weise zwischen a und c^4 eine sehr dünne Flüssigkeitsschicht bei sehr großer Dialysieroberfläche a.

Um überall geschlossene Säckchen aus Amnionhäutchen zu bereiten, legt man eine Amnionhaut über die Öffnung eines Röhrchens und schiebt die Amnioshaut mit einem gläsernen Stabe in das Röhrchen: dann wird es mit einem um das Röhrchen gelegten Faden befestigt. Darauf bringt man das Röhrchen in eine Klemme und gießt das zu benutzende Material durch einen Trichter hinein (Fig. 74). Schließlich wird das gefüllte Säckchen mit einem Faden gebunden und der überflüssige Teil der Amnionhaut abgeschnitten. Diese Säckchen können, wie die Kollodium-, Schilf- oder Zellulosesäckchen, mit infektiösem Materiale als Inhalt in eine Körperhöhle gebracht werden.¹)

2. Spezielle Dialysierverfahren zu künstlichen Verdauungsversuchen.

Um die bei der natürlichen Verdauung vor sich gehenden Vorgänge möglichst nachzuahmen, hat man besondere Dialysierapparate angewandt.

Dialysator nach Kronecker. Die Abbildungen 75 und 76 zeigen die von Kronecker vorgeschlagene Einrichtung, um die Verdauung einer verhältnismäßig großen Menge von Nahrungsstoffen möglichst schnell zu vollenden, die Produkte derselben mittelst Dialyse zu trennen und das wirksame Ferment möglichst ungemindert zu erhalten.

Dieser Apparat besteht aus dem eigentlichen Diffusionsapparat und aus dem Verdauungsofen. Letzterer besteht aus einem zylindrischen Blechbehälter i von 18 em Höhe und 20 em Durchmesser, welcher mit Wasser gefüllt ist, dessen Temperatur der Wärmeregulator h konstant erhält Ein Messinghahn g erleichtert die Entleerung des Topfes. Der Deckel hat 2 Öffnungen. In der zentralen, etwa $9.5\,em$ breiten Öffnung wird ein tubuliertes Glas e von $10\,em$ Höhe und $9\,em$ Durchmesser mittelst des auf $10\,em$ Weite ausgebogenen Randes festgehalten. Durch das andere enge Loch reicht das Quecksilbergefäß des Regulators in das Wasserbad.

Das Ausflußrohr mit dem Glashahne f ist im Tubulus des Glases befestigt und durchsetzt mit Hilfe eines Korkes wasserdicht die Hülle des Verdauungsofens. In dem Glase e hängt ein spitzwinkliger Trichter, dessen Ausflußröhre abgeschnitten und dessen Wand $2\,em$ unter dem oberen Rande von einer Anzahl pfenniggroßer Löcher (d) durchbohrt ist. In dem Trichter liegt lose ein Faltenfilter aus Pergamentpapier, welches bis zum Rande reicht.

¹⁾ R. P. van Calcar, Über die Konstitution des Diphtheriegiftes, eine neue Methode zum Nachweis der Toxone. Berl. klin. Wochenschr. Bd. 42. S. 1028—1031 (1904). — Derselbe, Über Dialyse und einzelne ihrer Anwendungen. Ebenda. Bd. 42. S. 1368 bis 1372 (1905). — Derselbe. Dialyse. Eiweißchemie und Immunität. S. 11ff. Leiden und Leipzig 1908.

Fig. 75.

Wie Wolffhügel es empfiehlt, soll man nicht die Falten des Pergamentfilters bis zur Spitze des Trichters laufen lassen, und muß man, um Einrisse ganz zu vermeiden, das Pergamentpapier zuvor anfeuchten. Ebenso ist es ratsam, den Pergamentfilter nur bis zu Zweidrittel seiner Höhe zu füllen, damit am Rande eine breite Zone trocken bleibt, und so die innere Flüssigkeit nicht nach außen überwandern kann.

Um die gebildeten Verdauungsprodukte mittelst der Dialyse möglichst schnell aus der Lösung fortzuschaffen, ist auf dem Glase e eine Mariottesche Flasche e angebracht, deren Boden 3 Löcher aufweist: eins im Mittelpunkt

und 2 nahe der Peripherie. Durch das eine der Randlöcher ist ein 05 cm weites Glasröhrchen a wasserdicht gesteckt, so daß es 2 cm lang in den Trichter zwischen Glaswand und Pergamentfilter hineinragt. Im Röhrchen ist ein ausgezogenes Glasstäbchen als konisches Ventil beweglich. Das spitze Ende desselben ragt unten etwas über das Röhrchen hinaus, so daß es von der Wand des Trichters gehoben wird, sobald man die Flasche auf das Diffusionsglas stellt. Ein Steigrohr b stopft das zweite Randloch und endigt mit schräg abgeschnittener Mündung etwa 2 cm unter der oberen Flaschenwand.

Fig. 76.

Ist also die Flasche mit Flüssigkeit gefüllt und auf den Diffusionstrichter in der Art gesetzt, daß Steigrohr wie Ventilröhrchen außerhalb

des Filters bleiben, so rinnt der Inhalt solange in Trichter und Glas, bis die Steigrohrmündungen durch das Flüssigkeitsniveau gesperrt werden. Dann wird durch den Druck der äußeren Luft, welche sich mit der im Flaschenraume enthaltenen nicht ausgleichen kann, die Flüssigkeit verhindert, durch das Ventilröhrchen auszutreten, bis das Niveau, durch irgend einen Umstand zum Sinken gebracht, Luftblasen durch das Steigrohr dringen läßt. So wird der Flüssigkeitsspiegel unter dem Trichterrande, an der Löcherreihe konstant erhalten. Durch diese Löcher wird der Austausch der Flüssigkeit innerhalb und anßerhalb des Trichters im Glase begünstigt. Während der Diffusion findet ein lebhafter Kreislauf statt, indem die Flüssigkeit innerhalb des Trichters wegen den aufgenommenen Verdauungsprodukten schwerer als die außerhalb befindliche durch die untere Trichtermündung herabfällt und dünnere Lösung durch die Löcherreihe eintreten läßt. Will man die Flüssigkeitsmenge außerhalb des Filters gänzlich erneuern, so braucht man nur durch den Ausflußhahn f das Diffusat zu entleeren; es füllt sich dann aus der Mariotteschen Flasche das System mit verdünnter Salzsäure. Ein durch die Mariottesche Flasche in den Trichter hineinragender Thermometer gestattet die Beaufsichtigung des Verdauungsraumes.

Will man das Wasser außerhalb des Dialysators oft wechseln, so muß man dafür sorgen, daß der verbrauchte Wasservorrat in der Mariotteschen Flasche jederzeit ersetzt werden kann. Dazu stöpselt man in den Hals der Flasche statt des Thermometers einen Trichter, dessen Trichterrohr von oben her durch einen in Kautschukrohr gehüllten Glasstab luftdicht schließt. Ist die Flasche leer und im Diffusionsglase der Wasserspiegel etwas gesunken, so lüftet man den Glasstabstöpsel und füllt die Flasche durch den Trichter in wenigen Sekunden. Man braucht nur darauf zu achten, daß der Einfülltrichter gestöpselt wird, bevor die Flüssigkeit sich dem Filterrande so nahe gehoben hat, daß sie über denselben hinweg zu dem Diffundate zu steigen droht.1)

Dialysator nach Sheridan Lea. Im Kroneckerschen Apparate können zwar die durch Pergamentpapier dialysierbaren Verdauungsprodukte entweichen, aber die unaufhörlich beim lebenden Tiere vor sich gehenden Bewegungen des Magens und der Gedärme werden keineswegs nachgeahmt. Um dies zu erreichen, bedient sich A. Sheridan Lea des in Fig. 77 abgebildeten Apparates. Dieser besteht aus einem zylindrischen Gefäße A von 65 cm Höhe und ca. 15 cm Durchmesser, welches mit 3 Öffnungen B, C, D versehen ist und aus einem mit Wasser gefüllten Kupferbehälter E, in welchem sich eine Schlangenröhre G befindet, die durch die Öffnung G mit dem Gefäße G in Verbindung steht. Durch diese Schlangenröhre kann man einen Wasserstrom von G über G0 und G1 nach dem Gefäße G2 fließen lassen. Das Wasser füllt das Gefäß G3 bis zur Höhe

¹) Hugo Kronecker, Ein Verdauungsofen mit Diffusionsapparat. Beitr. z. Anat. u. Physiol. Festgabe für Karl Ludwig. S. 130—133. Leipzig 1874. — G. Wolffhügel, Über Pepsin und Fibrinverdauung ohne Pepsin. Pflügers Arch. f. d. ges. Physiol. Bd. 7. S. 188 bis 200 (1873).

der Öffnung B, von wo es durch die Röhre I abfließt. Durch Regulierung der Flamme des Brenners J und der Wasserzufuhr in der Schlangenröhre kann man die Wassertemperatur im Gefäße A auf 40° C halten. Im Zentrum des Gefäßes A befindet sich ein zweites zylindrisches Gefäß K, dessen unteres Ende L mittelst eines von einer Glasröhre durchbohrten Kautschukpfropfens geschlossen ist. Diese Glasröhre ist mit der Glasröhre M verbunden. Im Gefäße K befindet sich der Dialysierschlauch N aus Pergamentpapier, welcher mittelst der auf der Winde O liegenden Schnur P einer fortwährend alternierenden Bewegung von unten nach oben und von oben nach unten unterworfen ist. In den Dialysator N bringt man die zu verdauenden Stoffe und die Verdauungsflüssigkeit. Im Gefäße K befindet sich

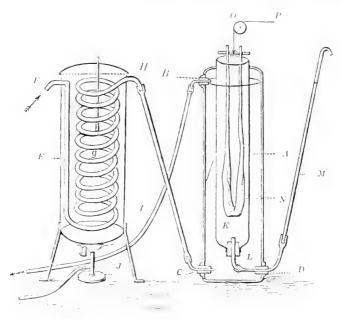


Fig. 77.

dieselbe Lösung, aber ohne Fermente. Nach Sheridan Lea soll die Mischung des Inhaltes des Dialysierschlauches eine sehr vollkommene sein. Pupo zufolge sind jedoch die Bewegungen keineswegs energisch genug und ahmen die Magenperistaltik nur unvollständig nach. Außerdem werden die Verdauungssäfte keineswegs wie im lebenden Organismus stetig zugeführt und erneuert. 1)

Dialysator nach Pupo. Um sich bei den Versuchen in vitro den bei der natürlichen Verdauung bestehenden Bedingungen möglichst zu nähern, empfiehlt Pupo folgende, durch die Fig. 78 veranschaulichte Anordnung.

¹⁾ A. Sheridan Lea, A comparative study of artificial and natural digestion, Journ. of Physiol. Vol. 11, p. 226—263 (1890).

In einem mit 3 Öffnungen versehenen Kolben A von 30 cm Länge und 16 cm Durchmesser hängt wagrecht ein Pergamentpapierbeutel B von ungefähr 200 cm^3 Inhalt. Eine der beiden Öffnungen dieses Sackes ist mit der 10 cm langen und 4 cm breiten Glasröhre h verbunden. Diese Glasröhre h ist an ihrem inneren Ende mit einem Musselintuch geschlossen und an ihrem äußeren Ende mit einem Pfropfen, durch welchen die Glasröhre f in die Röhre h dringt. Die andere Öffnung des Pergamentbeutels ist mit der Röhre p verbunden. Diese Röhre endigt außerhalb des Gefäßes A durch den 2 3 cm höher als die Öffnung der Röhre f liegenden Trichter k. Neben der Röhre p treten durch denselben Pfropfen aus dem Gefäße A der Thermometer t und die durch eine Kautschukröhre mit

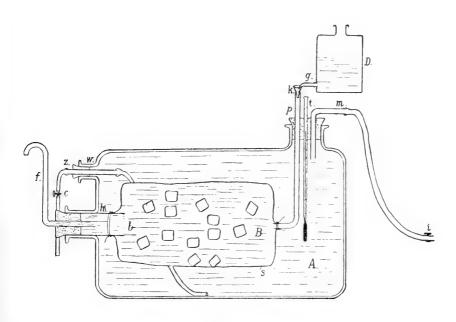


Fig. 78.

einem von einem Motor in Tätigkeit gesetzten Blasebalge verbundene Röhre m. Die zu verdauenden Stoffe werden in den Pergamentpapierbeutel gelegt. Der Verdauungssaft wird durch den Trichter k in den Pergamentsack gebracht, während die den eigentlichen Dialysator B umgebende Flüssigkeit durch die Öffnung w in das Gefäß A eingegossen wird. Sobald dieses Gefäß gefüllt ist, wird die Öffnung w mit einem durch die Röhre Z durchbohrten Pfropfen geschlossen. Diese Röhre Z wirkt als Saugröhre, sobald die Klemme c geöffnet wird, wodurch man das Gefäß A ausleeren kann. Das Gefäß A liegt auf einem mittelst Bunsenbrennern auf 40° C erwärmten Sandbade. Um den Verdauungssaft allmählich zu erneuern,

wird über dem Gefäße A die Flasche D auf ein Stativ gelegt, so daß durch die im unteren Teile der Flasche vorhandene dünne ausgefaserte Röhre G die Verdauungsflüssigkeit k abtropft. Man kann die in der Flasche D befindliche Flüssigkeit mittelst einer Gasflamme erwärmen, was übrigens nicht absolut notwendig ist, denn der langsam abfließende Verdauungssaft erwärmt sich beim Mischen mit der im Dialysator enthaltenen Flüssigkeit.

Bei jeder Bewegung des Blasbalges erhöht sich der Druck im Gefäße A, wodurch der Pergamentbeutel in allen Richtungen zusammengedrückt wird und die zu verdauenden Stoffe sich mit der Verdauungsflüssigkeit gut vermischen. Wegen der vorübergehenden Volumenabnahme des Sackes B strebt die Verdauungsflüssigkeit in die Röhre f zu steigen. Man kann die Höhe der Öffnung der Röhre f durch Biegen auf die eine oder auf die

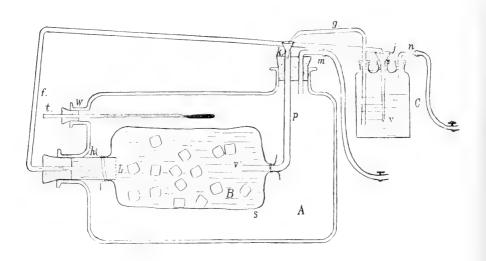


Fig. 79.

andere Seite etwas verändern, so daß bei den maximalen Schwankungen die Flüssigkeit gerade bis zur Öffnung der Röhre f gelangt. Da aber die unaufhörlich langsam vor sich gehende Zufuhr von Verdauungssaft das Volumen der im Pergamentbeutel B enthaltenen Flüssigkeit stets vergrößert, so wird ein Teil dieser Flüssigkeit durch die Röhre f weggetrieben und in einem Gefäße gesammelt. Das Musselintuch verhindert die Wegtreibung von noch nicht gelösten Teilen der der Verdauung unterworfenen Stoffe, so daß auf diese Weise nur die vom Verdauungssaft gelösten Produkte ausgeschieden werden. Im Puposchen Apparate werden die Umwandlungskörper nicht nur durch Dialyse, sondern auch mechanisch weggetrieben. Außerdem strömen stets neue Verdauungssaftmengen zu,

welche, wegen der unaufhörlichen Bewegungen des Pergamentbeutels, in innigste Berührung mit den zu verdauenden Stoffen gebracht werden.

Falls man die zeitweise entfernten Verdauungsprodukte dem Pergamentbeutel wieder zuführen will, so muß man den soeben beschriebenen Apparat etwas verändern und ihm die aus Fig. 79 zu ersehende Gestalt geben. Die Röhre f wird mit dem Trichter j des den während den Versuchen dem Pergamentbeutel B zuströmenden Verdauungssaft enthaltenden Kolbens C verbunden. Dieser Kolben besitzt außerdem zwei andere durch Kautschukpfropfen geschlossene Öffnungen. Durch eine dieser Öffnungen geht die Röhre g. welche in den Trichter k allmählich die im Kolben C enthaltene Flüssigkeit gießt. Durch die andere Öffnung geht die Röhre n. welche mittelst einer Kautschukröhre mit dem Blasbalge in Verbindung steht. Die kleinen Klappen v und v' verhindern den Rückfluß der Flüssigkeit zu den Trichtern. Da bei jeder Drehung des Rades des Blasbalges ein oder zwei Tropfen Flüssigkeit durch die Röhre g in den Trichter k und in die Röhre p gejagt werden, so besteht ein unaufhörlicher Kreislauf zwischen der Flüssigkeit des Pergamentbeutels B und der Flasche C. Der Thermometer t befindet sich in der Öffnung w statt neben den Röhren p und m. 1)

B. Spezielle Technik.

I. Gewinnung der Verdauungssäfte, Darstellung der Fermente und ihre Anwendung.

a) Allgemeine Betrachtungen.

Zu den Verdauungsversuchen soll man die Verdauungssäfte selbst den aus den entsprechenden Drüsen dargestellten Extrakten vorziehen, denn Verdauungssäfte und Drüsenextrakte besitzen keineswegs dieselben enzymatischen Eigenschaften. Die Extrakte enthalten nämlich oft intrazelluläre Fermente, welche keineswegs an der physiologischen Wirkung der Sekrete der Verdauungsdrüsen Teil nehmen und infolgedessen leicht zu ganz unrichtigen Schlüssen führen können.

Da es nicht immer möglich ist, die Verdauungssäfte mit genügender Asepsis aufzusammeln, so soll man sie durch sterilisierte Chamberland- oder Berkeleykerzen filtrieren, beim Filtrieren in sterilisierte, mit Watte verschlossene Kölbehen auffangen und auf Eis aufbewahren. S. Dsierzgoreski sowie Kastle und Loewenhart zufolge soll aber bei einer derartigen Filtration eine beträchtliche Schwächung des Fermentgehaltes des Filtrates erfolgen. Dies ist besonders der Fall, wenn man nur geringe Flüssigkeitsmengen dieser Filtration unterwirft, denn nach Dsierzgowski enthalten die ersten

¹⁾ Carlos Pupo, Recherches expérimentales sur la digestion artificielle de l'albumine. Thèse de Genève. 39 pages (1899).

Portionen des Filtrates fast gar kein Ferment, die folgenden erst mehr. 1)

Falls man die Verdauungssäfte der Kerzenfiltration nicht unterwerfen kann, so muß man sie mit einer geringen Menge eines Antiseptikums versetzen, wozu man Thymol, Kampferpulver, Calomel, Chloroform, Senföl usw. je nach den Umständen gebraucht. Am empfehlenswertesten scheint in den meisten Fällen die Anwendung von Toluol zu sein, nur muß man den Verdauungssaft tüchtig mit dem Toluol schütteln, so daß er damit gesättigt wird; außerdem soll eine Toluolschicht über dem Safte stehen.

Bei den Verdauungsversuchen in vitro ist es meistens ratsam, selbst wenn man sich völlig aseptischer Verdauungssäfte bedient, das Verdauungsgemisch, ehe man es im Brutapparate dem Verdauungsprozesse unterwirft, mit Toluol zu versetzen. Nur bei der Anwendung von Pepsin in Gegenwart von Salzsäure kann man, falls die Versuche keine zu lange Zeit beanspruchen, den Toluolzusatz weglassen. Diese Antiseptika bleiben indes nicht immer ohne schädlichen Einfluß auf die Wirkung der verschiedenen Enzyme, so daß man keinen Überschuß davon anwenden darf. Man soll sie auch je nach den Umständen verschieden wählen.²)

Man soll sich immer durch besondere bakteriologische Kontrollversuche von der Abwesenheit lebender Bakterien in den Verdauungsgemischen am Ende oder während des Versuches überzeugen.

Bei Beendigung der Versuche muß sofort jede enzymatische Wirkung aufgehoben werden, was man gewöhnlich durch Aufkochen erzielt.

b) Speichel.

Gewinnung. Zum Gewinnen des Speichels bedarf es beim Menschen keiner besonderen Vorrichtungen.

Beim Tiere kann man ihn durch in die ausgeschnittenen Ausführungsgänge der Speicheldrüsen eingebundene Kanülen oder nach dem Verfahren von Glinski erhalten.

Im Speichel enthaltene Fermente. Beim Menschen enthält der Speichel Diastase und vielleicht außerdem eine sehr geringe Maltasemenge. Im Speichel des Hundes fehlt die Diastase wahrscheinlich völlig. Bei der Katze hingegen soll diese im Speichel, und zwar hauptsächlich im Submaxillarisspeichel vorhanden sein. Beim Pferde soll nach

¹⁾ S. Dsierzgowski, Sur la filtration des substances albuminoïdes à propriétés actives. Arch. des sc. biolog. de St. Pétersbourg. T. 4. p. 225—240 (1896). — J. H. Kastle and A. S. Loewenhart, Concerning lipase, the fatt splitting enzyme, and the reversibility of its action. Amer. Chem. Journ. Vol. 24. p. 491—525 (1901).

²) R. Kaufmann, Über den Einfluß von Protoplasmagiften auf die Trypsinverdauung. Zeitschr. f. physiol. Chem. Bd. 39. S. 434—457 (1903).

[&]quot;) Versuche über die Arbeit der Speicheldrüsen, mitgeteilt durch J. P. Pawlow. Verh. d. Gesellsch. russischer Ärzte zu St. Petersburg. 1895. — Zit. nach J. P. Pawlow, Die physiologische Chirurgie des Verdauungskanals. Ergebn. d. Physiol. Jg. 1. Abt. 1. S. 252 (1902).

H. Goldschmidt im Speichel, wenigstens im Parotisspeichel, die Diastase nur als Zymogen sich vorfinden. ¹)

Diastase (Ptyalin, Amylase). Bis jetzt besteht noch kein völlig sicheres Verfahren, um das Ptyalin in reinem Zustande zu isolieren.

Man benutzt noch oft die alte durch *J. Cohnheim* angegebene Methode. Der menschliche Speichel wird mit verdünnter Phosphorsaure und dann mit Calciumhydroxyd versetzt. Der sich bildende Tricalciumphosphatniederschlag reißt das Ptyalin mechanisch mit. Der abfiltrierte Niederschlag wird mit Wasser ausgewaschen, wobei das Ptyalin vom Wasser gelöst wird. Aus dieser Lösung fällt man schließlich das Ptyalin mit Alkohol. Durch wiederholtes Auflösen in Wasser und Fällen durch Alkohol kann man das Ptyalin reinigen.²)

Gautier setzt zum Speichel so lange 98% jegen Alkohol, bis sich ein flockiger Niederschlag bildet. Dieser wird abfiltriert, in wenig destilliertem Wasser aufgelöst, mit einigen Tropfen einer Mercurichloridlösung versetzt, um das vorhandene Eiweiß zu beseitigen. Im Filtrate wird der Überschuß von Mercurichlorid durch Schwefelwasserstoff verjagt. Die nach dem Abfiltrieren vom Mercurisulfid übrig bleibende Flüssigkeit wird bei einer 40° C nicht übersteigenden Temperatur zur Trockene verdampft und dann mit Alkohol behandelt. Der in Alkohol unlösliche Teil des Trockenrückstandes wird in wenig destilliertem Wasser aufgelöst. filtriert, dialysiert, um die anorganischen Salze wegzutreiben, schließlich mit absolutem Alkohol gefällt, wobei sich das Ptvalin in Flocken ausscheidet.3)

Um das Ptyalin zu erhalten, wird nach S. W. Cole⁴) menschlicher Speichel mit starkem Alkohol versetzt. Nach zweitägigem Stehen filtriert man den Niederschlag und wäscht denselben mit absolutem Alkohol aus. Der spontan abgetrocknete Niederschlag wird dann bei 40°C mit destilliertem Wasser ausgezogen. Dieser Auszug wird abfiltriert. Das so erhaltene Filtrat bildet eine sehr wirksame neutrale Ptyalinlösung und enthält nur Spuren von Proteinen. Man kann diese Ptyalinlösung durch Dialyse gegen destilliertes Wasser weiter reinigen.

¹) P. Grützner, Notizen über einige ungeformte Fermente des Säugetierorganismus. Pflügers Arch. Bd. 12. S. 285-307 (1876). — Lafayette B. Mendel and F. P. Underhill, Is the saliva of the dog amylolytically active? The Journ. of biol. chem. Vol. 3. p. 135 bis 143 (1907). — Harald Goldschmidt, Zur Frage: Ist im Parotidenspeichel ein Ferment vorgebildet vorhanden oder nicht? Zeitschr. f. physiol. Chem. Bd. 10. S. 273—293 (1886). — W. Mestrezat, Origine physiologique du pouvir saccharifiant de la salive. Compt. rend. hebd. des Séanc. de la Soc. de Biol. T. 63. p. 736—738 (1907). — Derselbe, Origine du pouvir saccharifiant de la salive chez l'homme. Bull. d. l. Soc. chir. de France. Série 4. T. 3. p. 711—713 (1908). — A. J. Carlson and J. G. Ryan, The diastase in cat's saliva. Amer. Journ. of Physiol. Vol. 22. p. 1—15 (1908).

²) J. Cohnheim, Zur Kenntnis der zuckerbildenden Fermente. Virchows Arch. f. pathol. Anat. Bd. 28. S. 241—253 (1863).

³) Charles E. Simon, A text-book of physiological chemistry for students of medicine and physicians. 2^d edition. London 1905. p. 123.

⁴⁾ Contributions to our Knowledge of the action of enzymes. Part I. The influence of electrolytes on the action of autolytic ferments. Journ. of Physiol. Vol. 30. p. 202—220 (1903).

Als einfachere Methode, um eine wirksame neutrale Ptyalinlösung zu erhalten, kann man auch Cole zufolge nach vorheriger Ausspülung des Mundes mit heißem destilliertem Wasser während 1 Minute ungefähr heißes destilliertes Wasser im Munde halten und gleich darauf diese Flüssigkeit gegen oft erneuertes destilliertes Wasser dialysieren. Diese Ptyalinlösung enthält indes eine geringe Mucinmenge.

Das Ptyalin scheint am kräftigsten bei neutraler oder äußerst schwach saurer Reaktion zu wirken. Die Wirkung der Speichelamylase wird vom umgebenden Medium stark beeinflußt. Die Speichelamylase soll nur bei Gegenwart eines Phosphates ihre Wirksamkeit ausüben und jedenfalls nicht in Elektrolytenabwesenheit.¹) Das Optimum der Temperatur liegt meistens bei zirka 50° für die menschliche Amylodextrinase.²)

Das Ptyalin, wie die Diastasen des Pankreassaftes und des Darmsaftes, führt Stärke in Dextrine und Zucker über; der dabei stattfindende Vorgang ist noch keineswegs in seinen Einzelheiten sicher festgestellt. Es entstehen schließlich zum allergrößten Teile Maltose und daneben vielleicht auch eine, je nach der Fermentmenge und der Versuchsdauer wechselnde Menge von Isomaltose.³)

c) Magensaft.

Gewinnung. Man erhält leicht reinen Magensaft durch Verabreichung von Nährstoffen, z. B. Fleisch, bei einem Hunde, bei welchem man einen kleinen Magen nach dem *Pauclow*schen Verfahren isoliert hat. Diese Operation ist an anderer Stelle schon beschrieben.⁴)

Edkinsbereitet mittelst heißen destillierten Wassers oder O $\pm^{0}/_{o}$ iger Salzsäure aus der Schleimhaut des Pylorusteiles des Magens von der Katze

¹) *H. Roger*, Sur le rôle des phosphates dans la saccharification salivaire. Compt. rend. hebd. d. Séanc. de la Soc. de Biol. T. **65**. p. 374—375 (1908).

²) A. Slosse und H. Limbosch, De l'action du ferment salivaire dans ses rapports avec la température du milieu. Arch. int. de Physiol. T. 6. p. 365—380 (1908).

³⁾ A. Schlesinger, Zur Kenntnis der diastatischen Wirkung des menschlichen Speichels nebst einem kurzen Abriß der Geschichte dieses Gegenstandes. Virchous Arch. f. pathol. Anat. Bd. 125. S. 146-181 u. 340-363 (1891). - W. Ebstein und C. Schulze, Über die Einwirkung der Kohlensäure auf die diastatischen Fermente des Tierkörpers. Ebenda. Bd. 134. S. 475-500 (1893). - E. Külz und J. Vogel, Welche Zuckerarten entstehen bei dem durch tierische Fermente bewirkten Abbau der Stärke und des Glykogens. Zeitschr, f. Biolog. Bd. 31. S. 108-124 (1894). -- M. C. Tebb, On the transformation of maltose to dextrose. Journ. of Physiol. Vol. 15. p. 421-432 (1894). - H. M. Vernon, The conditions of action of pancreatic rennin and diastase. Ebenda. Vol. 27, p. 171-199 (1901). — F. Röhmann, Zur Kenntnis der Glukose. Ber. d. Deutsch. chem. Ges. Bd. 27. S. 3251-3252 (1894). - C. Hamburger, Vergleichende Untersuchungen über die Einwirkung des Speichels, des Paukreas- und Darmsaftes sowie des Blutes auf Stärkekleister, Pflügers Arch, f. d. ges, Physiol, Bd. 60, S. 543-597 (1895). — F. Kübel, Über die Einwirkung verschiedener chemischer Stoffe auf die Tätigkeit des Mundspeichels. Ebenda, Bd. 76, S. 276-305 (1899). - F. Godart-Danhieux, Le rôle du ferment salivaire dans la digestion. Ann. de la Soc. rov. des Sc. méd. et nat. de Bruxelles. T. 7. fasc. 1. p. 1-132 (1898).

⁴) J. P. Pawlow, Die physiologische Chirurgie des Verdauungskanals, Ergebn. d. Physiol. Jg. 1, Abt. 1, S. 258 (1902).

oder vom Schweine (bei diesem Tiere auch aus dem Cardiateile) ein Extrakt. welches ein Magensekretin enthält. Wird beim Hunde oder bei der Katze die Cardia unterbunden, und führt man vom Duodenum aus eine Kanüle in den Magen, welche man nahe am Pförtner unterbindet, und füllt man ferner den Magen mittelst einer in einem mit der Kanüle verbundenen Behälter befindlichen Salzlösung, so bewirkt dann die intravenöse Einspritzung der das Magensekretin enthaltenden neutralisierten Extrakte nach 10 Minuten eine ungefähr 10 Minuten dauernde Magensaftabsonderung.

Im Magensafte enthaltene Fermente. Der Magensaft enthält eine nur auf emulgierte Fette wirkende Magenlipase und ein proteolytisches Ferment, das Pepsin. Ob außerdem noch ein besonderes Labferment besteht, oder ob die dem Labfermente und dem Pepsin zugeschriebenen Wirkungen einem und demselben Enzyme zukommen, ist eine viel umstrittene Frage. Deshalb wird man hier die Darstellung des Labfermentes nach Hammarsten vorfinden, ohne daß dadurch irgendwie dieser Punkt beurteilt werden soll. Dies ist auch der Fall für das Glaeßnersche Pseudopepsin des Pylorusteiles des Magens.

Magenlipase oder Magensteapsin. Bis jetzt besteht kein Verfahren zur Isolierung der Magenlipase.

Zu Versuchen mit der Magenlipase benutzt man den aus dem kleinen Magen eines nach *Pauclou* operierten Hundes stammenden Magensaft. Man kann auch das, nach gründlichem Auswaschen der Magenschleimhaut, durch Zusatz des gleichen Gewichtes wasserfreien Glyzerins zur Magenschleimhaut und fünftägigem Stehen im Thermostaten bei oft wiederholtem Umschütteln erhaltene Glyzerinextrakt der Magenschleimhaut anwenden, was indes keineswegs zu empfehlen ist.

Die Magenlipase ist nicht sehr widerstandsfähig. Sie scheint am besten bei leicht saurer Reaktion zu wirken, wenigstens bei Menschen und Hunden.²)

Pepsin. Pekelharing hat Verfahren zur Reindarstellung des Pepsins aus der Schweinsmagenschleimhaut angegeben und aus dem reinen, nach

¹⁾ J. S. Edkins, The chemical mechanism of gastric secretion. Journ. of Physiol. Vol. 34. p. 133-144 (1906).

²⁾ Cash, Über den Anteil des Magens und des Pankreas an der Verdauung der Fette. Arch. f. Physiol. u. Anat., physiol. Abt. S. 323-333 (1880). — Ogata, Die Zerlegung neutraler Fette im lebendigen Magen. Ebenda. S. 515-518 (1881). — Franz Volhard, Über das fettspaltende Ferment des Magens. Zeitschr. f. klin. Med. Bd. 42. S. 414-429 (1901); Bd. 43. S. 323-333 (1901). — Albert Fromme, Über das fettspaltende Ferment der Magenschleimhaut. Beitr. z. chem. Physiol. u. Pathol. Bd. 7. S. 51-76 (1906). — E. Laqueur, Über das fettspaltende Ferment im Sekret des kleinen Magens. Ebenda. Bd. 8. S. 281-284 (1906). — E. S. London, Zum Chemismus der Verdauung im tierischen Körper. 7. Mitt. Ein reiner Pylorusfistelhund und die Frage über Gastrolipase. Zeitschr. f. physiol. Chem. Bd. 50. S. 125-128 (1906). — E. S. London und M. A. Wersilowa, Zur Frage über die Spaltung emulgierter Fette im Magendarmkanal des Hundes. 13. Mitt. Ebenda. Bd. 56. S. 545-550 (1908). — Friedrich Heinsheimer, Experimentelle Untersuchungen über fermentative Fettspaltung im Magen. Deutsch. med. Wochenschr. Bd. 32. S. 1194-1197 (1906). — S. J. Lerites, Über die Verdauung der Fette im tierischen Organismus. Biochem. Zeitschr. Bd. 20. S. 220-223 (1909).

194

Parlow erhaltenen Hundemagensafte. Außerdem besteht eine Vorschrift von

Schrumpf, um eiweißfreie Pepsinlösungen zu erzielen.

Reindarstellung des Pepsins aus Schweinsmagenschleimhaut nach Peketharing. Die Schleimhäute des Fundusteiles von zehn Schweinemagen werden zerhackt und mit 6 l 05% iger Salzsäure fünf Tage lang bei 37° C verdaut. Der so bereitete Infus wird dann filtriert. Dazu verwendet man folgende Einrichtung: In einen auf eine mit der Luftpumpe verbundene Flasche gestellten Trichter wird eine etwa zentimeterdicke, konisch abgeschliffene, von zahlreichen Öffnungen perforierte Ebonitplatte gelegt. Diese wird mit feuchtem Filtrierpapier bedeckt und dann wird, während die Luft aus der Flasche herausgesaugt wird, ein dünner Brei von in Wasser fein zerriebenem Filtrierpapier darauf gegossen. Durch die so erhaltene. 7—13 cm dicke, feste Schicht wird dann die zu filtrierende Flüssigkeit hindurchgesaugt. Die in dieser Weise völlig geklärte Verdauungsflüssigkeit wird dann in Pergamentpapierschläuchen in ein großes Gefäß mit strömendem Leitungswasser gestellt und etwa 24 Stunden dialvsiert. Der dann trübe gewordene Dialysatorinhalt wird zentrifugiert, um den aus Pepsin bestehenden Niederschlag (a) und die oben schwimmende Flüssigkeit zu trennen. Letztere wird mit basischem Bleiacetat und Ammoniak behandelt. wodurch sich ein voluminöser, leicht filtrierbarer Niederschlag bildet. Dieser Niederschlag wird vom Filter genommen und mit einer gesättigten Oxalsäurelösung versetzt. Der dicke Brei liefert dann bald eine gelbbraune Flüssigkeit, welche durch Filtrieren leicht vom Bleiacetat zu befreien ist. Diese stark saure, völlig klare Flüssigkeit wird 24-36 Stunden gegen strömendes Leitungswasser dialysiert. Das hierbei im Dialysator ausgefällte Pepsin (b) wird mittelst der Zentrifuge von der Flüssigkeit (c) getrennt. Die Pepsinportion b wird mit der zuerst ausgeschiedenen Pepsinportion a vereinigt, in möglichst wenig 0.2% jiger Salzsäure bei 37° C gelöst und bei derselben Temperatur filtriert. Die völlig klare, gelblich gefärbte Lösung wird in die 8-10fache Menge destillierten Wassers gegossen und vorsichtig mit äußerst verdünnter Natron- und Kalilauge versetzt, bis empfindliches Kongopapier nicht mehr gebläut wird. Zur möglichst vollständigen Ausscheidung des Pepsins bleibt die Flüssigkeit eine Nacht über im Eisschranke, dann wird sie zentrifugiert. Der Niederschlag wird bei 37°C in möglichst wenig 0:2% jer Salzsäure gelöst. Die nahezu farblose Lösung wird bei 37° C filtriert und dann in einem kleinen Dialysatorschlauch in destilliertes Wasser gestellt. Im Dialysator setzt sich dann das Pepsin in kleinen, gruppenweise zusammenhaftenden, durchsichtigen, ziemlich stark lichtbrechenden Kügelchen ab. Nach etwa 20stündigem Dialysieren wird dieser Niederschlag abfiltriert, einmal mit destilliertem Wasser übergossen und nach vorsichtigem Auspressen des Filters zwischen Filtrierpapier vom Filter abgehoben und über Schwefelsäure oder Chlorcalcium bei Zimmertemperatur getrocknet und fein zerrieben. Das so bereitete Pepsin stellt ein aschefarbiges, nicht oder kaum hygroskopisches Pulver dar.

Die vom Bleioxalat abfiltrierte, dialysierte und dann vom ausgeschiedenen Pepsin befreite Lösung enthält noch eine erhebliche Pepsinmenge, welche bei Sättigung dieser Lösung mittelst Ammonsulfats sich in klebrigen, leicht zu filtrierenden Flocken absetzt. Dieser Niederschlag wird durch ein gehärtetes Filter filtriert, wovon es sich als eine zähe zusammenhängende Masse leicht abnehmen läßt und im feuchten Zustande ohne Wasserzusatz in einen Dialvsatorschlauch gebracht, welcher in strömendem Wasser aufgehängt wird. Das Wasser dringt in den Schlauch hinein und löst den größten Teil des Niederschlages innerhalb 24 Stunden, wodurch das Pensin von einem Teil der Verdauungsprodukte der Magenschleimhaut und vom zugesetzten Ammonsulfat befreit wird. Diese Flüssigkeit wird mit Salzsäure versetzt bis zu einem Gehalt von 0·02% Salzsäure und nun einen Tag lang gegen Salzsäure derselben Konzentration bei einer nicht weit über 0° C betragenden Temperatur dialysiert. Der dabei entstandene Pepsinniederschlag (c) wird abgesaugt und wie oben beschrieben behandelt: Auflösen in 0.2% jeger Salzsäure bei 37° C. Filtrieren, Gießen in das 8- bis 10fache Volumen Wasser. Zusatz von Alkali, bis Kongopapier nicht mehr gebläut wird, Zentrifugieren, Lösen in 0·2° eiger Säure usw. Schließlich wird die gereinigte Substanz im Exsikkator bei Zimmertemperatur getrocknet und zerrieben. Dieses Pepsin entspricht völlig dem durch Dialyse sowie mittelst ammoniakalischer Bleiessiglösung und Oxalsäure erhaltenen.

Darstellung des Pepsins aus Hundemagensaft nach Pekelharing: Dialysierschläuche aus Pergamentpapier werden mit 0.5% iger Salzsäure gefüllt und mehrere Tage gegen fließendes Wasser dialysiert, um die sonst von der Schlauchwand an Wasser abgegebenen, nicht unerheblichen Calciumsulfatmengen vorerst zu entfernen. In den so bereiteten Pergamentschläuchen dialvsiert man gegen die wenigstens 20fache Menge destillierten Wassers etwa 20-24 Stunden lang bei einer nicht weit über 0º C gelegenen Temperatur den durch die Scheinfütterung nach dem Pawlowschen Verfahren beim gleichzeitig eine Ösophagus- und eine Magenfistel tragenden Hunde erhaltenen frischen Magensaft. Die trübe Flüssigkeit wird dann zentrifugiert, der größte Teil der oben schwimmenden Flüssigkeit abgegossen, der Bodensatz und die noch vorhandene Flüssigkeit auf ein kleines Filter gebracht, mit wenig destilliertem Wasser gewaschen, abgepreßt, vom Filter abgehoben und im Exsikkator getrocknet. Auf diese Weise erhält man vollkommen farbloses Pepsin, falls der Magensaft ohne jede Gallenmischung bleibt. Man kann letztere vermeiden, indem man sich eines ösophagotomierten und gastrotomierten Hundes mit kleinem Magen nach Pawlow bedient, erhält aber dann zu wenig Magensaft, um eine wesentliche Pepsinmenge daraus zu bereiten.

Wird die vom mittelst Dialyse gefällten Pepsin getrennte Flüssigkeit mit Ammonsulfat halbgesättigt, so entsteht ein nicht unbeträchtlicher Pepsin-

¹⁾ C. A. Pekelharing. Über eine neue Bereitungsweise des Pepsins. Zeitschr. f. physiol. Chem. Bd. 23. S. 233-244 (1896). — J. W. A. Gewin, Pepsin und Chymosin. Ebenda. Bd. 54. S. 31-79 (1907).

niederschlag. Um dieses Pepsin zu reinigen, wird es, wie oben beschrieben, mittelst Dialyse vom Salze befreit, in $0.2^{\circ}/_{\circ}$ iger Salzsäure gelöst, durch Dialyse wieder gefällt, abfiltriert und getrocknet.¹)

Pepsinlösung nach Schrumpf. Um eine eiweißfreie, die Proteine äußerst energisch verdauende, aber leider sehr rasch unwirksam werdende Pepsinlösung zu bereiten, verfährt man nach Schrumpf auf folgende Weise: Man präpariert Schleimhäute von möglichst frischem Schweinemagen ab. Diese Schleimhäute sollen von Tieren stammen, welche, kurz ehe sie geschlachtet wurden, noch etwas gefressen haben. Ohne vorheriges Abspülen des ihnen anhaftenden Schleimbelags werden diese Schleimhäute ganz fein zerhackt und mit Kieselgur innig zerrieben, bis das Ganze eine feste, fast trockene Masse darstellt. Diese wird mittelst der Buchnerschen Presse bei ganz allmählich bis zu etwa 600 Atmosphären gesteigertem Druck ausgepreßt. Der so erhaltene, leicht getrübte Preßsaft wird sofort durch eine Chamberlandkerze filtriert und dann während 24 Stunden gegen fließendes Wasser dialysiert. Eine geringe Cholesterinmenge wird in etwa 10 cm³ einer Mischung von Äther und absolutem Alkohol gelöst und diese Lösung zum erhaltenen klaren Dialysat gefügt. Es entsteht ein dicker, meist flockiger Niederschlag, der sehr rasch abzentrifugiert, abfiltriert, in der ursprünglichen Wassermenge aufgeschwemmt und dann öfters mit kleinen Äthermengen geschüttelt wird. Dann wird die Flüssigkeit mehrmals durch ein Saugfilter oder besser durch eine Kitasatokerze filtriert, wodurch man schließlich eine ganz klare Pepsinlösung erhält.2)

Das Pepsin wirkt am besten mit 0.3-0.4%iger Salzsäure. Die optimale Temperatur scheint 39° zu sein. Bei nicht zu lange dauernden Versuchen ist ein Antiseptikumzusatz nicht absolut notwendig. Bei langdauernden Versuchen hingegen empfiehlt es sich. Toluol oder ein anderes Antiseptikum anzuwenden.

Pseudopepsin. Nach Glaessner bildet nur der Fundus des Schweinemagens echtes Pepsin, während hingegen sowohl Fundus als Pylorus das auch in schwach alkalischer Lösung wirkende, Tryptophan erzeugende und gegenteilig zum Propepsin mit Uranylacetat nicht mit ausfallende Pseudopepsin absondern. Demnach enthalten die aus dem Pylorusteile des Schweinemagens bereiteten Extrakte nur Pseudopepsin.

Das Bestehen des Pseudopepsins wird von Reach angenommen, von Klug, Pawlow und Pekelharing aber bestritten, welche es für ein autolytisches Ferment der Schleimhaut halten. Abderhalden und Rona haben festgestellt, daß der Pylorussaft ein zu der Gruppe des Pepsins gehörendes

¹) C. A. Pekelharing, Mitteilungen über Pepsin, Zeitschr. f. physiol. Chem. Bd. **35**, S. S. S. O. (1902). — M. Nencki und N. Sieber, Beiträge zur Kenntnis des Magensaftes und der chemischen Zusammensetzung der Enzyme. Ebenda. Bd. **32**, S. 291—319 (1901). — Freundliche briefliche Mitteilung des Herrn Prof. Dr. C. A. Pekelharing zu Utrecht.

²) P. Schrumpf, Darstellung des Pepsinfermentes aus Magenpreßsaft. Beitr. z. chem. Physiol. u. Path. Bd. 6. S. 396—397 (1905).

proteolytisches Ferment enthält, jedoch nicht entschieden, ob dieses Enzym mit dem Pepsin identisch ist oder nicht.¹)

Labferment oder Chymosin. Zur Reindarstellung dieses Enzyms benutzt man das Hammarstensche Verfahren. Um eine wirksame chymosinreiche Magenschleimhautinfusion zu erhalten, nimmt man Labmagen von Saugkälbern. Der vom Darme und von den 3 anderen Magen abgetrennte Labmagen wird längs der kleinen Kurvatur geöffnet und genau vom Inhalte befreit. Dann schneidet man den Pylorusteil weg. und zwar so gründlich, daß 3—5 cm des mit großen Falten versehenen Fundusteiles ebenfalls mit weggeschnitten werden. Der Grund hierzu liegt darin, daß der Pylorusteil leicht eine zu schleimreiche Infusion liefert, während er übrigens ärmer an Chymosin als der Fundusteil ist. Die übrige Magenschleimhaut wird gründlich mit kaltem Wasser abgespült, so daß alle Schleimflöckehen und sichtbaren Partikelchen, auch die, welche sich zwischen den Falten vorfinden, gänzlich entfernt werden.

Nun schabt man die Drüsenschicht ab, wägt die Masse und zerteilt sie in 10—20mal ihres Gewichtes einer $0^{\circ}1-0^{\circ}2^{\circ}/_{\circ}$ igen Salzsäure. Nach 24—48stündigem Stehen bei etwas über 0° C betragender Temperatur filtriert man die Flüssigkeit. Eine solche Infusion muß nach der Neutralisation mit Na₂ CO₃ und darauffolgender Verdünnung mit dem 20fachen Wasservolumen die Gerinnung ganz frischer Milch in dem Verhältnisse 1:10 bei 37—38° C in 1 Minute hervorrufen. Wirkt sie weniger kräftig, so mißglückt meistens die Darstellung des Chymosins.

Nachdem man sich von der kräftigen Wirkung der neutralisierten Infusionen überzeugt hat, geht man zu der fraktionierten Fällung mit Magnesiumkarbonat über. Diese geschieht derart, daß je $100\ cm^3$ Infusion mit $1-1^1/_2\ g$ Magnesiumkarbonat versetzt und während 5 Minuten mehrmals damit geschüttelt werden. Dann wird rasch filtriert und das Filtrat auf Pepsin und Chymosin geprüft.

Da das im Filtrat enthaltene Magnesiumsalz die Wirkung des Chymosins begünstigen kann, so soll man bei der Prüfung auf Chymosin nie mehr als 1 cm³ vom Filtrate zu je 10 cm³ Milch setzen oder einen Teil des Filtrates mit dem gleichen Wasservolumen verdünnen und erst diese Lösung benutzen. Bringt unter diesen Umständen das Filtrat bei 38° C die Milch im Verhältnis 1:10 in 1 oder höchstens 2 Minuten zur Gerinnung, so

¹⁾ K. Glaessner, Über die örtliche Verbreitung der Profermente in der Magenschleimhaut. Beitr. z. chem. Physiol. u. Pathol. Bd. 1. S. 24—33 (1902). — Felix Reach, Zur Kenntnis der Verdauungs- und Resorptionsvorgänge im Magen. Ebenda. Bd. 4. S. 139—144 (1904). — F. Klug, Über das Ferment der Pylorusschleimhaut. Pflügers Arch. f. d. ges. Physiol. Bd. 93. S. 281—292 (1902). — C. A. Pekelharing, A propos de l'action de la pepsine. Arch. des Sc. biolog. de St. Pétersbourg. T. 11 (supplément). p. 36 à 44 (1904). — J. P. Pawlow, zit. in S. Salaskin und Katharina Kowalewsky, Über die Wirkung des reinen Hundemagensaftes auf das Hämoglobin resp. Globin. Zeitschr. f. physiol. Chem. Bd. 38. S. 567—584 (1903). — Emil Abderhalden und Peter Rona, Zur Kenntnis des proteolytischen Fermentes des Pylorus- und des Duodenalsaftes. Ebenda. Bd. 47. S. 359—361 (1906).

kann man ein günstiges Endergebnis erwarten. Gerinnt das Gemenge dagegen erst nach 3—5 Minuten, so ist der Gehalt an Chymosin zu klein. Bezüglich der Untersuchung des Filtrates auf Pepsin muß man sich erinnern, daß das im Filtrat enthaltene Magnesiumchlorid die Pepsinverdauung erschweren kann. Um diesen etwaigen schädlichen Einfluß möglichst zu vermeiden, wird vor der Pepsinprobe das Filtrat mit 4, 6 oder 8 Volumina 0·1°/₀ iger Salzsäure verdünnt. Man prüft dann bei etwa 38°, ob ungekochter frischer Faserstoff, welchen man in Glyzerin unter Toluol vorrätig aufbewahren kann, in kurzer Zeit verdaut wird oder nicht durch das Filtrat unter der Kontrolle, daß Salzsäure allein nicht das Fibrin löst, und daß Salzsäure mit demselben Magnesiumchloridgehalte die Wirkung des zugesetzten Pepsins nicht hindert, noch wesentlich verzögert. Wird die Pepsinprobe so ausgeführt, so lassen sich noch Spuren von Pepsin nachweisen.

Die Fällung mit Magnesiumkarbonat wird so lange wiederholt, bis man ein Filtrat erhält, welches bei kräftiger Labung eine Fibrinflocke bei Körpertemperatur im Laufe einer Stunde nicht merkbar verdaut. Gewöhnlich erreicht man dies mit 3 Fällungen in $1^4/_2$ Stunden.

Die Wirkung des Magnesiumkarbonats beruht teilweise auf Niederreißen des Pepsins und teilweise auf der alkalischen Reaktion, welche nach längerer Zeit sowohl die Pepsin- wie die Labwirkung vernichtet. Wenn man, da die Pepsinproben immer einige Zeit dauern, die Gefahr einer zu langdauernden Einwirkung der alkalischen Reaktion auch auf das Chymosin vermeiden will, so kann man eine Vorprobe mit etwa 100 cm³ Infusion anstellen, um die nötige Anzahl von Fällungen und die etwa erforderliche Zeit zu ermitteln und erst dann die Hauptportion bearbeiten.

Das zuletzt erzielte Filtrat wird sogleich mit Salzsäure neutralisiert. Es kann dann ohne Schaden 24 Stunden oder länger in der Kälte stehen, ehe man die Bearbeitung fortsetzt. Dazu wird das Filtrat angesäuert und von neuem auf Pepsin geprüft, dies mit Rücksicht auf die Angaben Pawlows für den Hundemagensaft, daß das gelähmte Pepsin durch die Neutralisation reaktiviert werden soll, obgleich diese Pawlowschen Angaben, Hammarsten zufolge, allerdings nicht für die Kalbsmageninfusionen zu gelten scheinen.

Das angesäuerte, keine Pepsinwirkung mehr besitzende Filtrat wird mit einer Lösung von Cholesterin in Alkohol und etwas Äther versetzt, unmittelbar und wiederholt umgeschüttelt. Das ausgefällte Cholesterin, welches einen Teil des Chymosins niederreißt, während die Chymosinreste nebst den etwaigen Pepsinspuren in Lösung bleiben oder zerstört werden, wird auf ein Filter gesammelt, mit Wasser ausgewaschen, in Wasser aufgeschlämmt, mit Äther versetzt und leicht geschüttelt, bis das Cholesterin sich gelöst hat. Die wässerige Chymosinlösung wird im Scheidetrichter von der Ätherschicht getrennt und nachher filtriert. Diese letzte Phase der Chymosingewinnung mißglückt leider sehr oft, was gewiß teilweise von der großen Leichtigkeit, mit welcher die Enzyme vom Äther und vom Alkohol in diesen fermentarmen Lösungen zerstört werden, herrührt.

Statt Cholesterin zu benutzen, kann man auch das keine Pepsinwirkung mehr zeigende, kräftig aber auf Milch wirkende Filtrat mit Bleiessig fällen, den Niederschlag mit sehr verdünnter Schwefelsäure zerlegen, die saure Flüssigkeit abfiltrieren und sie mit einer Lösung von Stearinseife in Wasser versetzen. Das Chymosin wird von den Fettsäuren mit niedergerissen und, wenn letztere in Wasser verteilt und durch Schütteln mit Äther entfernt werden, bleibt das Enzym in der wässerigen Lösung zurück. 19

Bei den Versuchen mit Labferment soll man nach Fuld Senföl als

Antiseptikum anwenden.2)

Parachymosin. Die mittelst Schweinemagen bereiteten Pepsinpräparate des Handels enthalten ein sich durch seine Eigenschaften vom gewöhnlichen Labfermente etwas unterscheidendes Ferment, das Parachymosin, welches das Labenzym des Magens des Schweines und des Menschen darstellt, während das Chymosin sich im Fundusteile des Labmagens vom Kalbe und vom Schafe regelmäßig findet.³)

Propepsin und Prochymosin. Zur Trennung dieser beiden Profermente von den bereits gebildeten Fermenten sowie von einander werden nach Glaessner Schweinemagen abgespült und sorgfältig von Schleim und Nahrungsresten befreit. Dann wird die Schleimhaut des Fundusteiles von der Muskulatur abpräpariert, nochmals mit fließendem Wasser mehrere Stunden lang gewaschen und darauf zu feinem Breie zerhackt. Der Schleimhautbrei wird mit der doppelten Gewichtsmenge destillierten Wassers und mit Natriumkarbonatlösung bis zur deutlich alkalischen Reaktion versetzt. Nun fügt man Toluol zur Flüssigkeit und schüttelt sie vorsichtig, so daß das Toluol sich, wenn auch nur in geringem Grade, darin löst, während der größte Teil des Toluols dafür aber die Oberfläche bedeckt und gegen das Eindringen von Keimen schützt. Die Gesamtflüssigkeit bleibt alsdann während 3-4 Wochen bei 40° C. Nach dieser Zeit wird der alkalische Auszug filtriert, mit Kochsalz bis zu einem Gehalt von 10,0, dann mit so viel verdünnter Essigsäure versetzt, daß ein größtenteils aus Mucin bestehender flockiger Niederschlag ausfällt: dabei muß man jeden Essigsäureüberschuß vermeiden, wozu man die benötigte Essigsäuremenge in Vorversuchen genau ermittelt. Der Niederschlag wird abfiltriert. Zum Filtrate setzt man allmählich Natriumkarbonat bis zur schwach alkalischen Reaktion und nachher tropfenweise verdünnte Uranylacetatlösung. Der die beiden Profermente enthaltende dickflockige Niederschlag wird durch Zentrifugieren

²) E. Fuld, Über Milchgerinnung durch Lab. Ergebn. d. Physiol. Bd. 1. Abt. 1. S. 468—504 (1902).

¹⁾ Olof Hammarsten, Lehrbuch der physiologischen Chemie. 6. Aufl. Wiesbaden 1907.
S. 363. — Derselbe, Zur Frage nach der Identität der Pepsin- und Chymosinwirkung, Zeitschr. f. physiol. Chem. Bd. 56. S. 18—80 (1906). Freundliche briefliche Mitteilung des Herrn Prof. Dr. Olof Hammarsten zu Upsala.

³⁾ Ivar Bang, Über Parachymosin, ein neues Labferment. Pflügers Arch. f. d. ges. Physiol. Bd. 79. S. 425—441 (1900). — Georg Becker, Untersuchungen über das Zeitgesetz des menschlichen Labfermentes und dessen quantitative Bestimmung. Beitr. z. chem. Physiol. u. Pathol. Bd. 7. S. 89—119 (1906).

von der Flüssigkeit getrennt und dann mit kleinen Mengen von mittelst Natriumkarbonat schwach alkalisch gemachtem Wasser ausgezogen. Die vereinigten Auszüge werden durch mehrmaliges Ausfällen mit Uranylacetat und Ausziehen des gewonnenen Niederschlages mit sehr verdünnter Sodalösung von den etwa noch vorhandenen geringen Proteinresten befreit.

Die nötigenfalls bei 40°C eingeengte, farblose, wasserhelle, beide Profermente enthaltende, eiweißfreie Lösung wird nacheinander mit aufeinander eingestellten Lösungen von Uranylacetat und Natriumphosphat versetzt, so daß ein feinflockiger Niederschlag entsteht. Im Filtrat befindet sich das Prochymosin neben Spuren von Propepsin. Aus dem Niederschlage kann man durch Ausziehen mit schwach alkalischem Wasser reines Propepsin erhalten. 1)

d) Darmsaft.

Gewinnung. Die Gewinnung einer ziemlich erheblichen Menge reinen Darmsaftes erfolgt nicht immer leicht. Jede mechanische Reizung der Darmwand muß vermieden werden, dem der Darm reagiert auf die allerschwächste Reizung mit einer ununterbrochenen Absonderung einer zwar beträchtlichen, aber fermentarmen Saftmenge.²)

Beim seit 24 Stunden nüchternen Hunde bewirkt die intravenöse Einspritzung von saurem Dünndarmschleimhautextrakt des Hundes oder des Schweines oder vom nach der Fällung des Nukleoproteids mittelst etwas Essigsäure erhaltenen Filtrate des wässerigen Auszuges der Dünndarmschleimhautzellen eine mehr oder minder große Flüssigkeitsabsonderung in einer in situ zwischen 2 Unterbindungen isolierten Dünndarmschlinge. Wird eine nach außen führende Glaskanüle mittelst einer Öffnung in das untere Ende der Schlinge befestigt, so kann man den abgesonderten Saft aufsammeln. Die Absonderung erfolgt erst nach einer langdauernden Latenzperiode, welche nie unter 20–30 Minuten beträgt. Dieses Verfahren ergibt aber nicht immer eine nennenswerte Saftabsonderung und erheischt mehrere Tiere, falls man viel Darmsaft erhalten will.3)

Um diese Nachteile zu vermeiden, bedient man sich Hunden mit Thiryschen oder besser Vellaschen Fisteln, welche man einige Wochen nach der Operation zu diesem Zwecke verwenden kann. Nach Delezenne und Frouin ergeben Thirysche Fisteln des Duodenojejunums eine Darmsaftsekretion bei Einführung in den Magen oder bei intravenöser Einspritzung von 200-300 cm³ verdünnter Salzsäure. Diesen Forschern sowie Bierry und Frouin zufolge entleeren Thirysche Fisteln des Duodenojejunums nach einer aus Fleisch und Brot bestehenden Mahlzeit spontan Darmsaft, welcher

K. Glaessner, Über die Vorstufen der Magenfermente. Beitr. z. chem. Physiol. u. Pathol. Bd. 1, S. 1—23 (1902).

 ²) W. W. Sawitsch, Absonderung des Darmsaftes. Inaug.-Dissert. St. Petersburg 1904.
 ³) F. Bottazzi, Proprietà chimiche e fisiologiche delle cellule epiteliali del tubo gastroenterico. Arch. di fisiologia. T. 1. p. 413—472 (1904). — F. Bottazzi et L. Gabrieli, Recherches sur la sécrétion du suc entérique. Arch. int. de Physiol. T. 3. p. 156—167 (1905).

nach Bierry und Frouin nur so lange er klar ausfließt, der physiologischen Sekretion entsprechen würde.¹)

Boldweff verwendet zur Gewinnung reinen Darmsaftes Hunde mit an der Übergangsstelle des Duodenums in den Dünndarm ungefähr 25 cm langen, nach dem Thiry-Vellaschen Verfahren angelegten Darmfisteln. Der im nüchternen Zustande periodisch alle zwei Stunden während zirka 5 Minuten abfließende Darmsaft wird mittelst eines an die Bauchwand so angelegten Trichters, daß seine Ränder weit von den Rändern der Fistel liegen, in einem kleinen, in 0·1 cm³ graduierten, an der Bauchwand gebundenen Glaszylinder gesammelt. Die so jedesmal erhaltene Flüssigkeit besteht zur Hälfte aus Schleim, zur Hälfte aus eigentlichem Darmsafte und beträgt im ganzen nur ca. 1-15 cm3 Sekret. Während der Magenverdauung bei beliebiger Nahrung wird der Darmsaft meistens auch periodisch in der gleichen Menge abgesondert, aber die Absonderungsperioden treten viel seltener und weniger regelmäßig (gewöhnlich alle 3, 4—5 Stunden) auf als im nüchternen Zustande; bisweilen, wenn freilich selten, wird im Verlaufe der ganzen Magenverdauung gar kein oder fast kein Darmsaft abgesondert. In dem erhaltenen Darmsekrete soll man stets den dünnflüssigen Saft durch Abgießen vom Schleim trennen. Der dann zurückbleibende Darmsaft ist sehr wirksam.2)

Foà spritzt $40-50\ cm^3$ einer 2° eigen Salzsäurelösung in das eine Ende einer Vellaschen Darmschlinge; diese Flüssigkeit fließt sofort durch das andere Ende der Schlinge ab. Einige Minuten nach dem Abfließen der Salzsäurelösung beginnt eine Darmsaftabsonderung. Sobald die Sekretion aufhört, wiederholt man die Salzsäureeinspritzung. Auf diese Weise kann man nach Foà bei einem Hunde von $10\ kg\ 10-15\ cm^3$ Darmsaft pro Stunde gewinnen.3)

Der nach einem der soeben beschriebenen Verfahren erhaltene Darmsaft wird abfiltriert, zentrifugiert, um ihn von Zelltrümmern des Darmepithels zu befreien, und dann auf eine sterilisierte Chamberland- oder

¹) C. Delezenne et A. Frouin, La sécrétion physiologique du suc intestinal. Action de l'acide chlorhydrique sur la sécrétion duodénale. Compt. rend. hebd. d. séanc. de la Soc. de Biol. T. 56. p. 319—322 (1904). — A. Frouin, Action du suc intestinal sur la sécrétion entérique. Ibid. T. 58. p. 702—704 (1905). Compt. rend. de l'Acad. des Sciences. T. 140. p. 1120—1121 (1905). — H. Bierry et A. Frouin, Rôle des éléments cellulaires dans la transformation de certains hydrates de carbone par le suc intestinal. Ibid. T. 142. p. 1565—1568 (1906).

²⁾ W. N. Boldyreff, Das fettspaltende Ferment des Darmsaftes. Zentralbl. f. Physiol. Bd. 18. S. 460—461 (1904). — Derselbe, Die Lipase des Darmsaftes und ihre Charakteristik. Zeitschr. f. physiol. Chem. Bd. 50. S. 394—413 (1907). — Derselbe, Über den Übertritt der natürlichen Mischung des Pankreas-, des Darmsaftes und der Galle in den Magen. Zentralbl. f. Physiol. Bd. 18. S. 457—460 (1904). — Le travail périodique de l'appareil digestif en dehors de la digestion. Arch. des Sc. biolog. de St. Pétersbourg. T. 11. p. 1—157 (1905).

³) Carlo Foà, Sull'erepsina del succo enterico e sulla scomparsa di alcuni fermenti intestinali in un "ansa del Vella" da lungo tempo isolata. Arch. di fisiologia. Vol. 5. p. 26—33 (1907).

Berkeleykerze in einen sterilisierten, etwas Kampferpulver enthaltenden Kolben filtriert. Er wird im Eisschrank aufbewahrt.

Zum Gewinnen wirksamen Darmsaftes soll man nur Tiere benutzen, die einige Wochen vorher nach dem Thiry-Vellaschen Verfahren operiert wurden, denn Foà beobachtete sechs Monate nach der Operation bei einem seit mehreren Monaten zu Versuchen nicht mehr benutzten Tiere, daß der abgesonderte Saft keine Enterokinase mehr und nur wenig Erepsin enthielt, sowie daß die nach dem weiter unten beschriebenen Verfahren von Bayliss und Starling behandelte Darmwand kein Sekretin zu ergeben schien. Bei Hunden mit doppelter Thiryscher Fistel des Duodenums beobachtete auch Frouin, daß die Sekretion des Darmsaftes mit der seit der Operation verflossenen Zeitdauer abnimmt; er betrachtet die anfängliche, erhebliche Absonderung als physiologisch; die allmähliche Abnahme der Absonderung rührt nach ihm vom unaufhörlichen Verluste des Sekretes her. 1)

Das Optimum der Wirkung des Darmsaftes scheint dann erzielt zu werden, wenn man die Versuche bei Anwendung einer mit Kohlensäure übergesättigten Alkalilösung anstellt, wozu man die Verdauungsflüssigkeit mit Natriumbikarbonat etwas überneutralisiert und dann Kohlensäure einleitet.²)

Im Darmsafte enthaltene Fermente. Der Darmsaft enthält folgende Fermente: eine Diastase, eine Invertase, eine Maltase, manchmal eine Laktase, eine auf emulgiertes Fett einwirkende Lipase, das Pepsin oder Pseudopepsin der *Brunner*schen Drüsen, das Erepsin, die Enterokinase, das Sekretin (oder Prosekretin), eine Arginase, eine Nuklease.

Diastase, Invertase, Maltase. Diese Fermente scheinen in größerer Menge im oberen Teile des Dünndarmes als im unteren vorhanden zu sein.

Durch Behandlung der Darmschleimhaut nach dem schon für das Ptyalin erwähnten $J.\ Cohnheimschen\ Verfahren kann man sie einigermaßen isolieren.$

Diese Enzyme gehen in den wässerigen Auszug der Darmschleimhaut über und werden daraus mit Alkohol gefällt; dabei wird die Maltase leicht zerstört.3)

¹) C. Foà, loc. cit. — Albert Frouin, Sur les variations de la sécrétion du suc intestinal. Compt. rend. hebd. des séanc. de la Soc. de Biolog. T. 58. p. 653—655 (1905).

²⁾ N. P. Schierbeck, Über den Einfluß der Kohlensäure auf die diastatischen und peptonbildenden Fermente im tierischen Organismus. Skand, Arch. f. Physiol. Bd. 3. S. 344—380 (1892).

Einfluß von diastatischen Fermenten auf Stärke, Dextrin und Maltose. Zeitschr. f. physiol. Chemie. Bd. 5. S. 185—192 (1881). — F. Röhmann, Über Sekretion und Resorption im Dünndarm. Pflügers Arch. f. d. ges. Physiol. Bd. 41. S. 411—462 (1887). — A. Grünert, Die fermentative Wirkung des Dünndarmsaftes. Inaug.-Dissert. Dorpat 1890. — K. Miura, Ist der Dünndarm imstande. Rohrzucker zu invertieren? Zeitschr. f. Biol. Bd. 32. S. 266 bis 278 (1895). — W. Sautz und J. Vogel, Über die Einwirkung der Magen- und Darm-

Laktase. Läßt man die Darmschleimhaut von Carnivoren und Omnivoren während 2—4 Tagen mazerieren, so enthält der Auszug stets Laktase. Die Darmschleimhaut der Herbivoren, mit Ausnahme des Kaninchens, ergibt hingegen bei dieser Prozedur nur im jugendlichen Alter laktasehaltige Extrakte. 1)

Lipase. Es besteht noch kein Verfahren, um dieses Ferment zu isolieren. Nach *Boldyreff* spaltet die Lipase nur emulgiertes Fett und emulgiert nur schwach das Fett. Die Darmlipase scheint haltbarer zu sein als das Pankreassteapsin. Ihre Wirkung wird nicht durch Gallezusatz verstärkt.²)

Pseudopepsin oder Pepsin der Brunnerschen Drüsen. Um einen wirksamen Auszug der Brunnerschen Drüsen zu bereiten, entfernt man nach Glaessner die Lieberkühnschen Drüsen tunlichst durch Abschaben mit dem Skalpell. Dann sterilisiert man die Oberfläche der noch bestehenden Schleimhaut durch kochendes Wasser und unterwirft die erhaltenen Schleimhautreste einer anhaltenden Verdauung mit schwach alkalischer Lösung bei Brutwärme, wodurch das noch anhaftende Pepsin sicher zerstört wird.

Dieses Verfahren ist indes nicht zu empfehlen, denn es wird dabei keineswegs die Mitwirkung der Zellfermente der Darmwand mit Sicherheit vermieden. Deshalb muß man sich darauf beschränken, nur den aus einem Hunde mit Fistel des oberen Teiles des Dünndarmes stammenden Pylorussaft anzuwenden.³)

Erepsin. Die durch einen Wasserstrom gut gereinigte Darmschleimhaut eines seit 24 Stunden nüchternen, durch Öffnen beider Karotiden und Verbluten getöteten Hundes wird abgeschabt und während mehrerer Stunden in eine durch Natriumkarbonatzusatz leicht alkalisch gemachte 9º/ooige Na Cl-Lösung gebracht oder wiederholt mit Wasser ausgezogen. Die so erzielte Flüssigkeit wird filtriert. Zu 2 Teilen des Filtrates setzt man 3 Teile einer wässerigen gesättigten Ammonsulfatlösung, wodurch das Erepsin gefällt wird. Dieser Niederschlag wird abfiltriert, das Filtrat in destilliertem Wasser aufgeschwemmt und unter Zusatz von Toluol oder

schleimhaut auf einige Biosen und auf Raffinose. Ebenda. Bd. 32. S. 203—307 (1895). — Friedr. Krüger, Untersuchungen über die fermentative Wirkung des Dünndarmsaftes. Ebenda. Bd. 37. S. 229—260 (1899). — E. Weinland, Über das Auftreten von Invertin im Blut. Ebenda. Bd. 47. S. 279—288 (1905). — Em. Bourquelot, Sur les propriétés physiologiques du maltose. Compt. rend. de l'Acad. des Sciences. T. 97. p. 1000—1003 (1883). — L. E. Shore and M. C. Tebb, On the transformation of maltose to dextrose. Proceed. of the Physiol. Soc. 25. June 1892, in Journ. of Physiol. Vol. 13. p. 19—20. — A. Falloise, Distribution et origine des ferments digestifs de l'intestin grêle. Arch. int. de Physiol. T. 2. p. 299—321 (1905).

¹⁾ R. H. Achers Plimmer, On the presente of lactase in the intestine of animals and the adaptation of the intestine to lactose. Journ. of Physiol. Vol. 35. p. 20—31 (1901).

²⁾ W. N. Boldyreff, loc. cit.

³) K. Glaessner, Über die Funktion der Brunnerschen Drüsen. Beitr. z. chem. Physiol. und Pathol. Bd. 1. S. 105—113 (1902). — Emil Abderhalden und Peter Rona, Zur Kenntnis des proteolytischen Fermentes des Pylorus und des Duodenalsaftes. Zeitschrift f. physiol. Chem. Bd. 47. S. 359—361 (1906).

Chloroform durch Dialyse von Ammonsulfat befreit. Während der Dialyse löst sich der Niederschlag fast völlig wieder auf. Diese Lösung wird filtriert. Sie enthält viel Erepsin, nur wenig gerinnbare Proteine und keine dialysierbare Körper: dabei entstehen aber starke Fermentverluste. Um das Erepsin zu reinigen, setzt man 3 Teile gesättigter Ammonsulfatlösung zu 2 Teilen der wässerigen Erepsinlösung und unterwirft den Niederschlag der Dialyse: diese Prozedur wird mehrmals wiederholt.

Das Erepsin wirkt eigentlich nur auf die Produkte der Magenverdauung der Proteine: Proteosen, Peptone, Polypeptide und führt sie in keine Biuretreaktion mehr darbietende Stoffe. Die Erepsinspaltung erfolgt viel rascher auf Peptone und Polypeptide als auf Proteosen.

Die Wirkung des Erepsins geht am besten in ganz schwach alkalischer Reaktion vor sich.¹)

Enterokinase. Um Enterokinase zu erhalten, läßt man die abgeschabte Darmschleimhaut eines ungefähr 6 Stunden nach einer aus rohem Pferdefleische bestehenden Mahlzeit durch Anschneiden beider Karotiden und Verbluten getöteten Hundes in eine $1.5^{\circ}/_{\circ\circ}$ ige Natriumkarbonatlösung einige Zeit mazerieren. Diese Mazeration wird dann abfiltriert und das Filtrat vorsichtig durch tropfenweisen Zusatz verdünnter Essigsäure gefällt. Der Niederschlag enthält die Nukleoalbumine, einen großen Teil der Kinase sowie das Erepsin. Zum Gebrauche wird $1\,g$ des trockenen Niederschlages in $100\,g$ einer $5^{\circ}/_{\circ\circ}$ igen Natriumkarbonatlösung aufgelöst, wodurch man eine stark wirksame Kinaselösung erzielt.

Um die Enterokinase ohne Erepsinbeimischung zu gewinnen, fällt Foù die Darmmazeration vorsichtig mit verdünnter Essigsäure unter Vermeiden eines Überschusses und Neutralisieren des etwaigen Überschusses mit Natriumkarbonat. Der auf ein Filter gebrachte Niederschlag wird mit angesäuertem Wasser gut ausgewaschen. Das erhaltene saure Filtrat nebst den sauren Waschwässern enthält Enterokinase und kein Erepsin. Vor dem Gebrauche muß man dieses Filtrat mit Natriumkarbonat leicht alkalisch machen. Man kann dieses Verfahren auch anwenden, um die Enterokinase vom Erepsin im aus einer Thiry-Vellaschen Fistel erhaltenen Darmsafte zu trennen.²)

¹⁾ Otto Cohnheim, Die Umwandlung des Eiweißes durch die Darmwand. Zeitschr. f. physiol. Chem. Bd. 33. S. 451—465 (1901). — Derselbe, Weitere Mitteilungen über Erepsin. Ebenda. Bd. 35. S. 134—140 (1902). — Derselbe, Trypsin und Erepsin. Ebenda. Bd. 36. S. 13—19 (1902). — Derselbe, Notizen über das Erepsin. Ebenda. Bd. 47. S. 286 (1906). — Derselbe, Zur Spaltung des Nahrungseiweißes im Darm. Ebenda. Bd. 69. S. 64—71 (1906) und Bd. 51. S. 415—424 (1907). — M. Lambert, Sur la fermentation érepsique. Compt. rend. hebd. des. séanc. de la Soc. de Biol. T. 55. p. 416 bis 418 (1903). — Else Raubitschek, Erfahrungen über Erepsin. Zeitschr. f. exper. Pathol. u. Pharmakol. Bd. 4. S. 675—680 (1907).

²) A. Dastre et H. Stassano, Les facteurs de la digestion pancréatique. Suc pancréatique, kinase et trypsine. Arch. int. de Physiol. T. 1. p. 86—117 (1904). — Carlo Foà, Sulla digestione pancreatica ed intestinale delle sostanze proteïche. Arch. di fisiol. Vol. 4. p. 81—97 (1906).

Sekretin. Um eine Sekretinlösung nach dem Verfahren von Bayliss und Starling zu bereiten, wird ein seit 24 Stunden fastender Hund durch Öffnen der beiden Karotiden und Verbluten getötet. Man entnimmt das Duodenum und das Jejunum, wäscht mittelst eines Wasserstromes die innere Oberfläche des Dünndarmes, schneidet den entnommenen Dünndarmteil in 8-10 cm lange Stücke, welche man nacheinander öffnet. Dann schabt man die Schleimhaut und zermalmt allmählich den so erhaltenen Brei mit reinem Sande und etwas 0:4% jeger Salzsäure in einem Mörser. Nachdem die ganze Schleimhaut so behandelt wurde, setzt man zum die Schleimhautzellen enthaltenden Sandbrei 2. 3mal sein Volumen 0:4% iger Salzsäure. Nach einem einige Minuten bis ½ Stunde dauernden Stehen erhitzt man Sand und Flüssigkeit in einer Porzellanschale zum Sieden. Während des Siedens fügt man tropfenweise starke Natronlauge zur Flüssigkeit, so lange bis sie alkalisch zu werden anfängt, worauf man sie mit verdünnter Essigsäure leicht ansäuert, um die Nukleoalbumine zu fällen. Nachdem die neutrale oder leicht saure Flüssigkeit während 10 15 Minuten zum Sieden erhitzt wurde, filtriert man Flüssigkeit und Sand durch ein Tuch. Das Filtrat wird nochmals auf einem Papierfilter filtriert, worauf es völlig klar sein muß. Ist dies nicht der Fall, so filtriert man nach dem Erkalten die Flüssigkeit nochmals: dann erzielt man stets ein klares Filtrat. Diese Flüssigkeit kann zum Gewinnen proteolytisch inaktiven Pankreassaftes beim Hunde intravenös eingespritzt werden. Um Sekretin von allen Spuren von Gelatine und Eiweiß zu befreien, versetzt man diese Flüssigkeit mit einem Gemische absoluten Alkohols und Äthers; das Sekretin bleibt in Lösung und wird durch Verdampfen gewonnen. Um eine von den den Blutdruck erniedrigenden Stoffen befreite Sekretinlösung zu erzielen, wird der Duodenojejunalschleimhautbrei mit absolutem Alkohol statt mit Salzsäure zermalmt. Dieser Brei wird im Soxhletapparat mehrmals mit siedendem absolutem Alkohol behandelt. Durch Filtration wird die alkoholische Lösung vom ungelösten Rückstande getrennt. Dieser Rückstand wird in 0·4% iger Salzsäure aufgeschwemmt, zum Sieden erhitzt unter Zufügung zuerst von Natronlauge bis zur leicht alkalischen Reaktion und dann von Essigsäure bis zur neutralen oder kaum sauren Reaktion; schließlich wird in der oben beschriebenen Weise filtriert.

Delezenne läßt die Duodenaljejunalschleimhaut während 12—20 Stunden bei einer 10° nicht übersteigenden Temperatur in 0·4—0·5° "iger Salzsäure mazerieren, neutralisiert alsdann die Mazeration, bringt sie kurze Zeit zum Sieden und filtriert sie. Durch Kochen der Dünndarmschleimhaut während einiger Minuten mit 3—4 Teilen physiologischer Kochsalzlösung sowie durch halbstündiges Erhitzen auf 80° erhält man Sekretin enthaltende Extrakte.¹)

¹) W. M. Bayliss and E. H. Starling, The mechanism of pancreatic secretion. Journ. of Physiol. Vol. 28. p. 325—353 (1902). — Dieselbe, Die chemische Koordination der Funktionen des Körpers. Ergebn. d. Physiol. Bd. 5. S. 664—697 (1906). — C. Delezenne et E. Pozerski, Action de l'extrait aqueux d'intestin sur la sécrétine: études préliminaires sur quelques procédés d'extraction de la sécrétine. Compt. rend. hebd. d. séanc. de la Soc. de Biol. Vol. 56. p. 987—989 (1904). — C. Delezenne, L'activation du suc pancréatique par les sels et la spécificité du calcium. Ibid. T. 58. p. 1070—1073 (1906).

206 R. Zunz.

Arginase. Dieses Ferment hat ähnliche Lösungsverhältnisse wie das Erepsin, Indes enthalten gereinigte Erepsinlösungen nicht immer Arginase.

Nuklease. Nach Foà enthält der Darmsaft eine die Nukleinsäuren in Nukleinbasen und Phosphorsäure spaltendes Ferment, wenn auch nur in geringer Menge. 1)

e) Pankreassaft.

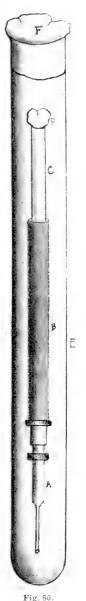
Der aus dem Hauptausführungsgang des Pankreas beim Hunde mit der nötigen Vorsicht entnommene Saft verdaut die Proteine meistens nicht: dazu muß er erst durch die Enterokinase des Darmsaftes aktiviert werden. Ausnahmsweise erhält man indes, selbst unter diesen Bedingungen, proteolytisch wirksamen Saft. Der proteolytisch unwirksame Saft scheint das Trypsin nur als Proferment oder Zymogen zu enthalten; ob dies auch der Fall für die anderen Fermente (Diastase, Lipase) ist, kann als wahrscheinlich betrachtet werden, ist aber noch nicht endgültig festgestellt.²)

Gewinnung von proteolytisch unwirksamem Pankreassaft. Zum Gewinnen inaktiven Pankreassaftes wird der seit 24 Stunden nüchterne Hund einer leichten Narkose mittelst des Alkohol-Äther-Chloroformgemisches unterworfen. Die Bauchwand wird mittelst eines $1-2\ cm$ links von der Mittellinie anfangenden, $2\ cm$ unterhalb der letzten Rippe parallel zu dieser verlaufenden Einschnittes eröffnet. Unter genauer Asepsis wird der bei der Einmündung des Choledochusganges in das Duodenum sich beendigende Nebenausführungsgang der Bauchspeicheldrüse in unmittelbarer Nähe des Darmes unterbunden. Gleich danach wird der Hauptausführungsgang des Pankreas von den umgebenden Geweben in der Nähe seiner Einmündung in das Duodenum freigelegt, wozu man meistens die darüber liegenden Gefäße zwischen 2 Unterbindungen durchschneiden muß. Nun bringt man 2 Fäden unter den Hauptausführungsgang des Pankreas und unter-

¹) C. Foà, Sulla nucleasi del succo intestinale. Arch. di fisiol. T. 4. p. 98-100 (1906). 2) J. P. Pawlow et Schepowalnikoff, Gazette clinique de Botkin (1900). - C. Delezenne et A. Frouin, La sécrétion physiologique du pancréas ne posséde pas d'action digestive propre vis-à-vis de l'albumine. Compt. rend. hebd. des séanc. de la Soc. de Biolog. T. 54. p. 691-693 (1902). - L. Camus et E. Gley, Sécrétion paneréatique active et inactive. Ibid. T. 54. p. 241-243 (1902). - Sur la sécrétion pancréatique active. Ibid. T. 54. p. 895-896 (1902). - De la sécrétion d'un suc pancréatique protéolytique sous l'influence des injections de sécrétine. Ibid. T. 54. p. 649-650 (1902). - W. M. Bayliss and E. H. Starling, The proteolytic activities of the pancreatic juice. Journ. of Physiol. Vol. 30. p. 61-83 (1903). - L. Popielski, Über die Grundeigenschaften des Pankreassaftes. Zentralbl. f. Physiol. Bd. 17. S. 65-70 (1903). — O. Prym, Milz und Pankreas. Pflügers Arch. f. d. ges. Physiol. Bd. 104. S. 433-452 (1904) und Bd. 107. S. 599-620 (1905). — K. Mays, Weitere Beiträge zur Kenntnis der Trypsinwirkung. III. Mitteilung. Die Wirkung des frischen Hundepankreassaftes. Zeitschr. f. physiol. Chemie. Bd. 49. S. 188-201 (1906). - B. P. Babkin, Einige Grundeigenschaften der Fermente des Pankreassaftes. Zentralbl, f, d, ges. Physiol. u. Pathol. d, Stoffwechsels. Bd. 1. S. 97-108 (1906). - H. Donath, Über Aktivierung und Reaktivierung des Pankreassteapsins. Ein Beitrag zur Frage der komplexen Natur der Fermente. Beitr. z. Chem. Physiol. u. Pathol. Bd. 10. S. 390-410 (1907). - J. Wohlgemuth, Untersuchungen über den Pankreassaft des Menschen, III. Mitteilung, Über das Labferment, Biochem, Zeitschr. Bd. 2. S, 350-356 (1907).

bindet diesen mittelst eines dieser Fäden in unmittelbarer Nähe des Darmes. Dann macht man eine kleine Öffnung in den Hauptausführungsgang, in die man eine sterilisierte Kanüle einführt und mittelst des zweiten Fadens darin befestigt.

Dazu empfiehlt es sich, sich einer Metallkanüle A zu bedienen, welche, wie Fig. 80 es zeigt, mit einer Glasröhre C durch eine Kautschukröhre B verbunden ist. Das freie Ende der Glasröhre wird mit einem nicht zu festen Wattepfropfen D versehen. Die Glasröhre ℓ mit der daran befestigten Kanüle wird in die durch den Wattepfropfen F verschlossene Eprouvette E gebracht. Die Eprouvette und die darin liegende Kanüle werden im Autoklaven bei 115 -120° sterilisiert.


Bei der Operation hält ein Gehilfe die Eprouvette Ewagrecht und nimmt den sie verschließenden Wattepfropfen ab. Mittelst einer sterilisierten Pinzette greift man die Glasröhre C vorsichtig an ihrem äußeren Ende an und zieht sie mit der damit verbundenen Kanüle vorsichtig aus der Eprouvette heraus. Sobald die Kanüle A im Hauptausführungsgang des Pankreas befestigt ist, wird die Bauchwand sorgfältig durch Nähte vereinigt, indem man durch sie die Kautschukröhre B auf solche Weise führt, daß sie nirgends Druck erleidet, und daß ihr Lumen überall frei bleibt.

Vor der Eröffnung der Bauchwand wird eine Vena jugularis freigelegt und darin eine durch eine Kautschukröhre mit graduierter Bürette verbundene Glaskanüle befestigt. Kanüle und Bürette enthalten eine Sekretinlösung. Die Halswunde wird durch Nähte vereinigt. Man kann auch das Sekretin, wie Delezenne es vorschlägt, in die Fußschlagvene einspritzen.

Wenn die Bauchwand wieder verschlossen ist, fängt man an, die Sekretinlösung intravenös einzuspritzen. Man kann alle 10-15 Minuten einige Kubikzentimeter dieser Flüssigkeit einspritzen, wie Bayliss und Starling es vorschlagen. Dieses Verfahren hat aber den Nachteil, daß, falls die neue Sekretineinspritzung nach dem völligen Stillstand der durch die erste Sekretineinspritzung hervorgerufenen

proteolytische Wirksamkeit aufweisen.1)

Pankreassaftsekretion gemacht wird, die ersten Teile (1 em: ungefähr) des nun abgesonderten Saftes manchmal eine geringe 1) W. M. Bayliss and E. H. Starling, The mechanism of pancreatic secretion. Journ. of Physiol. Vol. 28. p. 325-353 (1902). - L. Camus et E. Gley, De la sécrétion d'un

Selbst wenn man die Sekretineinspritzungen so aufeinander folgen läßt, daß die Saftabsonderung nie aufhört, in welchem Falle der Saft nach einiger Zeit während des ganzen Versuches inaktiv bleibt, beobachtet man oft, daß der nach einer neuen Sekretineinspritzung abgesonderte Saft nicht dieselbe Densität und wahrscheinlich auch nicht dieselbe Zusammensetzung besitzt als der vor dieser Einspritzung erhaltene.

Um dies zu vermeiden, verfährt man am besten auf folgende Art: Man bereitet im voraus eine ganze Reihe von mit Watte lose verschlossenen sterilisierten Zentrifugierröhren von je mindestens 40-50 cm³ Inhalt. Man entnimmt den die Glasröhre ℓ ' schließenden Wattepfropfen D, bringt diese Glasröhre in eine dieser sterilisierten Zentrifugierröhren und schließt die Zentrifugierröhre lose mit Watte, so daß die Luft entweichen kann. Nun läßt man die Sekretinlösung in die Vena jugularis oder femoralis allmählich eintreten. Sobald der Saft in die Glasröhre C zu fließen anfängt, wird der Eintrittshahn der die Sekretinlösung enthaltenden Bürette so geregelt, daß ein sehr langsamer Zufluß der Sekretinlösung in die Vene erfolgt. An ihrem oberen Ende ist die Bürette mittelst eines Kautschukpfropfens geschlossen, durch welchen eine Glasröhre bis in den unteren Teil der Bürette dringt, so daß die in der Bürette enthaltene Flüssigkeit, wie aus einer Mariotteschen Flasche, stets unter demselben Druck in die Vene einfließt. Der Zufluß soll so geregelt sein, daß der Eintritt von 50 cm³ der Sekretinlösung in den Kreislauf 1/2-1 Stunde oder sogar mehr erfordert. Auf diese Weise bekommt man stets einen völlig klaren Saft, dessen Absonderung stundenlang dauern kann ohne wesentliche Veränderungen der Densität, des Refraktionsvermögens, der Oberflächenspannung, des osmotischen Druckes und der enzymatischen Wirksamkeit. Die so erhaltene Saftmenge scheint außerdem für eine und dieselbe Zeitdauer erheblicher zu sein als bei der Einspritzung relativ großer Sekretinmengen in Zwischenräumen, obgleich der Sekretinverbrauch im letzteren Falle eher erheblicher als im ersteren ist. Dieses Verfahren verhindert fast völlig irgend welchen Einfluß der intravenösen Einspritzung der Sekretinlösung auf Atmung und Kreislauf. Von Zeit zu Zeit muß man nachsehen, ob die Flüssigkeit noch in die Vene fließt, und nötigenfalls den langsamen Eintritt der Sekretinlösung durch eine geringe Veränderung des benutzbaren Lumens des Eintrittshahnes wieder herstellen. 1)

Da die ersten Portionen des durch Sekretineinspritzung erhaltenen Saftes fast immer eine mehr oder minder erhebliche proteolytische Wirksamkeit besitzen, so soll man die 10—15 ersten abgesonderten Kubikzentimeter des Saftes nicht benutzen. Nachdem diese erste Saftmenge ausge-

sue paneréatique proteólytique sous l'influence des injections de sécrétine. Compt. rend. hebd. des séanc. de la Soc. de Biol. T. 54. p. 649-650 (1902). — Variations de l'activité protéolytique du sue pancréatique. Journ. de physiol. et de pathol. génér. T. 9. p. 987 bis 998 (1907).

¹) E. Zunz, A propos du mode d'action de la sécrétine sur la sécrétion pancréatique, Arch. int. de Physiol. T. 8. p. 181—203 (1909).

schieden wurde, entnimmt man die Zentrifugierröhre, in welche die Glasröhre C eindringt und ersetzt sie durch eine andere sterilisierte Zentrifugierröhre, in welche man entweder etwas Toluol oder besser etwas Kampfer gebracht hat, und welche durch Watte lose verschlossen ist. Jedesmal, wenn eine Zentrifugierröhre zu 2 3 3 4 ihrer Höhe von Pankreassaft gefüllt ist, wird sie durch eine neue ersetzt. Die Zentrifugierröhren werden mit Watte verschlossen. Der so erhaltene Saft wird während 10—15 Minuten zentrifugiert, wonach man gleich die zwei oberen Drittel seines Inhaltes in einen Toluol oder Kampfer enthaltenden, mit Watte verschlossenen, sterilisierten Kolben gießt, welcher im Eisschrank aufbewahrt wird. Dieser proteolytisch unwirksame Saft soll möglichst rasch benutzt werden, um seine Eigenschaften völlig zu erhalten und um jede etwaige spontane Aktivierung zu vermeiden.

Um den inaktiven Pankreassaft zu aktivieren, setzt man Darmsaft oder eine ungefähr 0.5% Natriumkarbonat enthaltende Enterokinaselösung hinzu. Es besteht sowohl für die Enterokinase als für den inaktiven Pankreassaft eine Aktivitätsschwelle: eine gegebene Pankreassaftmenge benutzt zu ihrer Aktivierung nur eine gegebene Kinasemenge. Die Aktivierung erfolgt rascher bei 37% als bei 20%. Die optimale Enterokinasemenge ist keineswegs stets dieselbe. Ein Enterokinase- oder Darmsaftüberschuß kann die proteolytische Wirksamkeit des Pankreassaftes vermindern. Nach Pawlow setzt man zum inaktiven Pankreassaftes vermindern. Nach Pawlow setzt man zum inaktiven Pankreassaftes zeigt keine von der Nahrungsart herrührenden konstanten Veränderungen. Indessen soll Frouin zufolge je nach der Diät die zur Aktivierung des Pankressaftes nötige Darmsaftmenge mehr oder minder beträchtlich sein. Nach Fleischdiät muß man beim Hunde dem inaktiven Pankreassaft 1/500 bis 1/1000 seines Volumens an Darmsaft zusetzen, nach Brotdiät aber 1/00 oder sogar 1/10.

Man kann den inaktiven Pankreassaft auch durch Calciumsalze aktivieren; das Optimum wird dann gewöhnlich beim Zusatze von 0·2—0·3 cm³ einer 2-Normalmolekularlösung eines löslichen Kalksalzes für 2 cm³ inaktiven Pankreassaftes erreicht. Außerdem bewirken manchmal andere Metalle sowie einige Aminosäuren auf direkte oder indirekte Weise die Aktivierung des Pankreassaftes; das Calcium allein scheint aber eine spezifische Wirkung zu besitzen.¹)

¹) O. Cohnheim, Trypsinogen und Enterokinase. Arch. des sc. biol. de St. Pétersbourg. T. 11. Suppl. p. 112—116 (1904). — A. Dastre et H. Stassano, Sur la question de savoir s'il y a pour le mélange pancréatique actif un optimum ou un seuil. Compt. rend. hebd. des séanc. de la Soc. de Biol. T. 55. p. 317—319 (1903). — C. Delezenne, Activation du suc pancréatique par les sels. Ibid. T. 59. p. 476—478 (1905). — Sur le rôle des sels dans l'activation du suc pancréatique, spécificité du calcium. Ibid. T. 59. p. 478—480 (1905). — Action des sels de calcium sur le suc préalablement dialysé. Ibid. T. 59. p. 523—525 (1905). — L'activation du suc pancréatique par les sels et la spécificité du calcium. Ibid. T. 60. p. 1070—1073 (1906). — Albert Frouin, Sur l'activabilité des sucs pancréatiques de fistules permanentes chez des animaux soumis à des régimes différents. Ibid. T. 63. p. 473—474 (1907). — Carlo Foà, Sulla digestione pan-

Gewinnung eines spontan aktiven Pankreassaftes. Der nach der intravenösen Einspritzung von Pilokarpin, Wittepepton, Physostigmin oder Muskarin abgesonderte Pankreassaft wirkt schon von selbst auf geronnene Proteine. Für Hunde von 5—10 kg spritzt man pro Tierkilogramm $^{+1}z^{-}$ 1 mg Pilokarpinchlorhydrat, Physostigmin oder Muskarin, 4 mg Wittepepton ein. Alle diese Stoffe werden in physiologischer Kochsalzlösung gelöst. $^{+}$)

Im Pankreassafte enthaltene Fermente: Der Pankreassaft enthält eine Diastase, wahrscheinlich eine Invertase, ein fettspaltendes Enzym, das Trypsin oder Trypsinogen, ein Labferment, ein erepsinähnliches Enzym, vielleicht außerdem noch eine Maltase und eine Glutinase sowie in manchen Fällen eine Laktase. Da die meisten dieser Fermente bis jetzt nur durch ihre Wirkung bekannt und keineswegs isoliert sind, so ist das Bestehen einiger nicht mit voller Sicherheit festgestellt.²)

Pankreasdiastase. Man kann die Pankreasdiastase aus dem wässerigen Pankreasauszuge nach dem schon für das Speichelptyalin beschriebenen J. Colubeimschen Verfahren einigermaßen isolieren. Zum wässerigen Pankreasauszug wird etwas verdünnte Phosphorsäure und darauf Kalkwasser bis zur neutralen oder schwach alkalischen Reaktion gefügt. Die Diastase wird von dem entstehenden Calciumphosphatniederschlag teilweise mitgerissen. Der Niederschlag wird abfiltriert und mit Wasser ausgewaschen, wobei sich die Diastase im Wasser löst. Mittelst

creatica ed intestinale delle sostanze proteiche. Arch. di fisiol. Vol. 4. p. 81—97 (1906). — II. J. Hamburger et E. Hekma, Sur le suc intestinal de l'homme. Journ. de physiol. et de pathol. génér. T. 4. p. 805—819 (1902). — J. Wohlgemuth, Zur Frage der Aktivierung des tryptischen Ferments im menschlichen Körper, vorläufige Mitteilung. Biochem. Zeitschr. Bd. 2. p. 264—270 (1906). — E. Zunz, Contribution à l'étude des propriétés antiprotéolytiques du sérum sanguin. Bull. de l'Acad. roy de médec. de Belgique. 4mº série, T. 19. p. 729—761 (1905). — Recherches sur l'activation du sue pancréatique par les sels. Bull. de la Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 64. p. 28—55 und 98—118 (1906): Ann. de la Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 16. fasc. 1. p. 63—273 (1907).

¹) E. Wertheimer, Sur les propriétés digestives du sue pancréatique des animaux à jeun. Compt. rend. hebd. des séanc. de la Soc. de Biol. T. 53. p. 139—141 (1901). — L. Camus et E. Gley, Sur la sécrétion intrapancréatique des animaux à jeun. Ibid. T. 53. p. 194—196 (1901). — E. Gley, Sur le mode d'action des substances anticoagulantes du groupe de la peptone; Action de ces substances sur les sécrétions. Cinquant. de la Soc. de Biol. Paris 1899. p. 701—713. — L. Camus et E. Gley, Recherches sur l'action antagoniste de l'atropine et de divers excitants de la sécrétion pancréatique. Arch. des Sc. biolog. T. 11. Suppl. p. 201—210 (1904). — Léon-Jules Lepage, De l'action de quelques alcaloides sur la sécrétion pancréatique. Thèse de Lille 1904.

²⁾ W. M. Bayliss and E. H. Starling, The proteolytic activities of the pancreatic juice. Journ. of Physiol. Vol. 30. p. 61—83 (1903). — H. M. Vernon, The peptone-splitting ferments of the pancreas and intestine. Ibid. Vol. 30. p. 330—369 (1903). — Derselbe, Das Vorkommen von Erepsin im Pankreas. Zeitschr. f. physiol. Chem. Bd. 50. S. 440—441 (1906). H. Bierry et E. F. Terroine, Le suc pancréatique de sécrétine contient il de la maltase? Compt. rend. hebd. des séanc. de la Soc. d. Biol. T. 58. p. 869—870 (1905). — Leo Pollak, Zur Frage der einheitlichen und spezifischen Natur des Pankreastrypsins. Beitr. z. chem.

Physiol. u. Pathol. Bd. 6. S. 95 -112 (1905).

Alkohol wird sie aus ihrer wässerigen Lösung gefällt. Durch mehrmaliges Auflösen in Wasser und Fällen mit Alkohol wird die Pankreasdiastase gereinigt. Schließlich wird sie über Schwefelsäure getrocknet.

Man kann auch aus dem Pankreas ein Glyzerinextrakt bereiten, diesen mit Alkohol fällen und den abfiltrierten Niederschlag mit Wasser auswaschen, wobei sich das Ferment löst. Aus ihrer wässerigen Lösung wird dann die Diastase mittelst Alkohol gefällt. Der so erhaltene Niederschlag wird mit Alkohol ausgewaschen und über Schwefelsäure getrocknet.

Pankreassteapsin oder Lipase. Der Pankreassaft spaltet Neutralfette in Fettsäuren und Glyzerin. Andrerseits kann er das Fett emulgieren.

Bis jetzt besteht noch kein Verfahren, um das Pankreassteapsin rein darzustellen. Nach *Connstein* soll man bei Verdauungsversuchen mit Pankreassteapsin sich ausschließlich des Saftes selbst oder der frischen zerkleinerten Drüse bedienen.

Loevenhart zermalmt 10 Gewichtsteile der frischen Bauchspeicheldrüse vom Hunde, Ochsen oder Schweine mit 1 Teil Sand und fügt zum so erhaltenen Breie 100 Teile destillierten Wassers. Dieser Auszug wird durch Leinwand abfiltriert. Pro 100 cm³ des Filtrates setzt man 20 cm³ einer gesättigten Uranacetatlösung. Die so erhaltene Flüssigkeit reagiert gewöhnlich sauer. Man neutralisiert sie gegen Lackmus durch Zusatz einiger Tropfen einer gesättigten Lösung von Natriumkarbonat und Natriumphosphat. Dann fügt man 5 cm3 einer gesättigten Natriumphosphatlösung zu je 100 cm³ der Flüssigkeit. Der dabei erzielte Niederschlag wird zentrifugiert, filtriert und an der Luft auf dem Filter getrocknet, wozu einige Tage erforderlich sind. Solange als der Niederschlag feucht bleibt, muß man ihn von Zeit zu Zeit mit Toluol bespritzen, um jede Fäulnis zu vermeiden. Die erhaltene Trockensubstanz wird in einem Mörser zu einem Pulver verrieben. Dann wird dieses Pulver mehrere Stunden mit Äther in einem Soxhletschen Extraktionsapparate ausgezogen, wieder zermalmt. durch ein feines Sieb geschüttet und an der Luft getrocknet. Auf diese Weise erhält man ein die Lipase enthaltendes Pulver. Zum Gebrauche bereitet man eine möglichst homogene Aufschwemmung von 1 q dieses Pulvers in 50 cm³ destillierten Wassers.

Das Pankreassteapsin ist nicht sehr widerstandsfähig; es wird leicht durch Säuren zerstört. $^1)$

Trypsin. Es besteht noch kein völlig sicheres Verfahren zur Reindarstellung des Trypsins oder seines Zymogens, da man bei allen Methoden von der Drüse ausgeht und nicht vom Pankreassafte selbst.

Nach Kühne wird frisches Pankreas mit Glaspulver und absolutem Alkohol zermalmt. Der bleibende Niederschlag wird mit eiskaltem Wasser

¹) Wilhelm Connstein, Über fermentative Fettspaltung. Ergebn. d. Physiol. Bd. 3. Abt. I. S. 194—232 (1904). — A. S. Loevenhart, Are the animal enzymes concerned in the hydrolysis of various esters identical? Journ. of biolog. Chemist. Vol. 2. p. 427—460 (1907).

behandelt und die so erhaltene wässerige Lösung mit Alkohol gefällt. Man wiederholt mehrmals das Auflösen in Wasser und die Alkoholfällung. Der Niederschlag wird schließlich mit wasserfreiem Alkohol ausgewaschen und darauf in Wasser aufgelöst. Zu dieser Lösung fügt man $1^{\rm o}/_{\rm o}$ ige Essigsäure, filtriert, erwärmt das Filtrat einige Zeit auf $4^{\rm o}$, filtriert und alkaliniert die wieder erwärmte Flüssigkeit merklich. Nach Entfernung durch Filtration des dabei etwa entstehenden Niederschlages wird die Flüssigkeit bei $40^{\rm o}$ eingedunstet, um das Tyrosin zur Abscheidung zu bringen, und nachher der Dialyse unterworfen. Das in Lösung befindliche Trypsin wird durch wiederholte Fällung mittelst Alkohol gereinigt.

Martin Jacoby zerhackt Bauchspeicheldrüsen vom Rinde und überläßt sie der Autolyse im Brutschranke während einiger Wochen, wonach vom ungelösten Rückstande abfiltriert wird. Das Filtrat bleibt noch während einiger Minuten im Brutschranke. Dann wird es mit Ammonsulfat versetzt, um eine Salzkonzentration von 65% zu erreichen. Nach mehrstündigem Stehen filtriert man und sättigt das Filtrat mit Ammonsulfat. Der dabei entstehende Niederschlag wird mit gesättigter Ammonsulfatlösung gewaschen.

dialysiert und schließlich in 1% iger Na Cl-Lösung gelöst.

Mays war auf mehrfache Weise durch verschiedene Aussalzungsmethoden bestrebt, aus Pankreasextrakten ein eiweißfreies wirksames Trypsinpräparat herzustellen. Diese Verfahren ergeben aber leider nicht stets dieselben Ergebnisse. Am meisten empfiehlt Mays die fraktionierte Magnesiumsulfatfällung, d. h. die vollständige Sättigung des vom bei Halbsättigung mit Magnesiumsulfat entstandenen Niederschlage abfiltrierten Filtrates, oder die Sättigung mit Ammonsulfat von vorher bis zur Sättigung mit Kochsalz versetzten Pankreasextrakten. Man erhält dabei oft nur einen mehr oder minder großen Teil des Enzyms. Man soll die Aussalzung bei 40° C anstellen. Bei der weiteren Reinigung der so dargestellten Präparate ist es schwierig, eine Abnahme der Wirksamkeit des Trypsins zu vermeiden.

Schwarzschild hat nach folgender Vorschrift eine wirksame, keine Biuretreaktion darbietende Trypsinlösung bereitet: Rinderpankreas werden zu feinem Brei zerhackt, mit wenig Natriumbikarbonat versetzt und mit Toluol überschichtet. Dieses Gemenge wird auf der Schüttelmaschine tüchtig durchgeschüttelt und darauf während 5–6 Tagen der Selbstverdauung überlassen. Dann wird koliert und bis zum Erzielen einer klaren Flüssigkeit filtriert. Letztere wird, um die Proteine zu entfernen, mit gesättigter Uranylacetatlösung und dann sofort, um die Reaktion alkalisch zu erhalten, mit Natriumphosphat versetzt. Der das Trypsin enthaltende voluminöse Niederschlag wird abfiltriert und dann in der Reibschale mit 0.20 giger Natriumkarbonatlösung ausgezogen, wobei sämtliches Ferment in die Lösung übergeht, falls man den Niederschlag mindestens 12 Stunden mit der Karbonatlösung stehen läßt. Schließlich wird filtriert; das Filtrat enthält das Trypsin. 1)

^{&#}x27;) W. Kühne, Über das Trypsin-Enzym des Pankreas. Verh. d. Naturhist.-Med. Ver. zu Heidelberg, N. F. Bd. 1. S. 194—198 (1876). — Martin Jacoby, Über die

Nuklease. Rindspankreas oder Hundepankreas wird mit Sand und Kieselgur zerrieben und in der *Buchners*chen Presse gepreßt. Der gewonnene Saft wird mit Ammonsulfat gesättigt, der dadurch entstandene, die Nuklease enthaltende Niederschlag abfiltriert und mit Alkohol und Äther ausgewaschen. Dieser Nukleaseniederschlag löst sich leicht in destilliertem Wasser.

Sowohl der inaktive Pankreassaft als der durch Enterokinasezusatz aktivierte verflüssigen zwar (Abderhalden und Schittenhelm, Foà) die gallertige Nukleinsäure, spalten sie aber nicht in Nukleinbasen und Phosphorsäure, obgleich die Nukleinsäure unzweifelhaft eine Veränderung erleidet. 1)

f) Galle.

1. Einwirkung bei der Verdauung der Fette.

Der Zusatz einer geringen Gallenmenge kann die fettspaltende Wirkung des Pankreassteapsins erheblich verstärken, was größtenteils von den gallensauren Salzen herrührt.²) Hingegen wird die Wirkung der Magen- und Darmlipase durch Gallenzusatz kaum gesteigert.³) Außerdem besitzt die Galle ein keineswegs unbeträchtliches Lösungsvermögen für die Fettsäuren und die Seifen.⁴)

chemische Natur des Ricins. Arch. f. exper. Pathol. u. Pharmakol. Bd. 46. S. 28—40 (1901).

— Karl Mays, Beiträge zur Kenntnis der Trypsinwirkung. Bd. 38. S. 428—512 (1903).

— Moritz Schwarzschild, Über die Wirkungsweise des Trypsins. Beitr. z. chem. Physiol. u. Pathol. Bd. 4. S. 155—170 (1904).

¹) Fritz Sachs, Über die Nuklease Zeitschr. f. physiol. Chem. Bd. 46. S. 337—353 (1905). — Emil Abderhalden und Alfred Schittenhelm, Der Ab- und Aufbau der Nukleinsäuren im tierischen Organismus. Ebenda. Bd. 47. S. 452—457 (1906). — C. Foà,

Sulla nucleasi del succo intestinale. Arch. di fisiol. Vol. 4. p. 98-100 (1906).

³) E. Laqueur, Über das fettspaltende Ferment im Sekret des kleinen Magens. Beitr. z. chem. Physiol. u. Pathol. Bd. 8. S. 281—284 (1906). — W. Boldyreff, Die Lipase des Darmsaftes und ihre Charakteristik. Zeitschr. f. physiol. Chem. Bd. 50. S. 394—413 (1907). — Melle L. Kalaboukoff et E. F. Terroine, Sur l'activation des ferments par la lécithine. II. Action de la lécithine sur les lipases gastrique et intestinale. Compt. rend. hebd. des séanc. de la Soc. de Biolog. T. 63. p. 617—619 (1907).

4) E. Pflüger, Fortgesetzte Untersuchungen über die in wasserlöslicher Form sich vollziehende Resorption der Fette. Arch. f. d. ges. Physiol. Bd. 88. S. 299—338 (1902). —

²) M. Nencki, Über die Spaltung der Säureester der Fettreihe und der aromatischen Verbindungen im Organismus und durch das Pankreas. Arch. f. experim. Pathol. u. Pharm. Bd. 20. S. 367—384 (1886). — B. K. Rachford, The influence of bile on the fat-splitting influence of pancreatic juice. Journ. of Physiol. Vol. 12. p. 72—94 (1891). — R. Magnus, Die Wirkung synthetischer Gallensäuren auf die pankreatische Fettspaltung. Zeitschr. f. physiol. Chem. Bd. 48. S. 376—379 (1906). — O. v. Fürth und J. Schütz, Über den Einfluß der Galle auf die fett- und eiweißspaltenden Fermente des Pankreas. Beitr. z. chem. Physiol. u. Pathol. Bd. 9. S. 28—49 (1907). — A. S. Loevenhart and C. G. Souder, On the effect of bile upon the hydrolysis of esters by pancreatic juice. The Journ. of biol. Chem. Vol. 2. p. 415—425 (1907). — H. Donath, Über Aktivierung und Reaktivierung des Pankreassteapsins, ein Beitrag zur Frage der komplexen Natur der Fermente. Beitr. z. chem. Physiol. u. Pathol. Bd. 10. S. 390—410 (1907). — Melle L. Kalaboukoff et E. F. Terroine, Sur Pactivation des ferments par la lécithine. I. Action de la lécithine sur la lipase pancréatique. Compt. rend. hebd. des séanc. de la Soc. de Biolog. T. 63. p. 372—374 (1907).

2. Einwirkung bei Verdauung der Proteine.

Sowohl die Hundegalle als die menschliche Galle enthalten eine geringe Menge eines Fibrinflocken auflösenden proteolytischen Fermentes, welches aber geronnenes Eiweiß nicht anzugreifen scheint.¹)

Bisweilen verstärkt die Galle etwas die Trypsinwirkung; diese Wirkung scheint indes sich nur auf schon proteolytisch wirksamen Pankreassaft zu beziehen, so daß sie wahrscheinlich nicht auf der Anwesenheit einer der Enterokinase ähnlichen Substanz in der Galle beruht.²)

3. Gewinnung der Galle.

Um Galle zu gewinnen, kann man eine Fistel der Gallenblase nach dem *Dastre*schen Verfahren³) anlegen oder besser die Einmündung des Choledochusganges nach außen führen.⁴)

g) Kombinierte Verdauungswirkungen.

Es ist oft von Vorteil, bei Verdauungsversuchen über Proteine diese zuerst während einer nicht zu langen Zeitdauer der peptischen Verdauung mittelst Magensaftes zu unterwerfen, das Verdauungsgemisch dann mit Natriumbikarbonat zu neutralisieren und es durch mit Darmsaft aktivierten Pankreassaft bei leicht alkalischer Reaktion weiter verdauen zu lassen. Da die Pepsinsalzsäure das Eiweißmolekül sicher an ganz anderer Stelle angreift als das Trypsin, so werden wahrscheinlich durch die Magensaftverdauung dem Trypsin manche Atomgruppierungen des Proteinmoleküles zugänglich gemacht, welche sonst der Einwirkung des Trypsins widerstehen.

Um den tiefsten Abbau der Proteine zu erzielen, scheint es am besten zu sein, das Verdauungsgemisch nach der Vorverdauung mit Magensaft zuerst und dann mit aktiviertem Pankreassaft mit Darmextrakt oder Erepsin-lösung zu versetzen.

Zur kombinierten Pepsin-Erepsinverdauung empfiehlt O. Cohnheim die peptische Verdauung in einem Dialysierschlauche anzustellen, welcher sich in einem $O4^{\circ}$ eige Salzsäure enthaltenden Gefäße befindet. Nach 24–48 Stunden wird das aus dem Dialysierschlauche entnommene Verdauungsgemisch mittelst Natriumbikarbonat bis zur leicht alkalischen Reaktion

Derselbe, Über die Bedeutung der Seifen für die Resorption der Fette. Ebenda. Bd. 88. 8. 431-452 (1902). — Derselbe, Über die Verseifung, welche durch Galle vermittelt wird und die Bestimmung von Seifen neben Fettsäuren in Gallenmischungen. Ebenda. Bd. 90. 8. 1-32 (1902).

¹) J. P. Pawlow, Die Arbeit der Verdauungsdrüsen, Wiesbaden 1898. — A. Tschermak, Notiz über das Verdauungsvermögen der menschlichen Galle. Zentralbl, d. Physiol. Bd. 16, S. 329—330 (1902).

²) J. P. Pawlow, loc. cit. — S. J. Lintwarew, Über die Rolle der Fette beim Übergang des Mageninhaltes in den Darm. Inaug.-Dissert. St. Petersburg 1901. Zit. nach Jahresber. f. Tierchem. Bd. 32. S. 401. — O. r. Fürth und J. Schütz, loc. cit.

³) A. Dastre, Opération de la fistule biliaire. Arch. de physiol. norm. et pathol. 5mg série. T. 2, p. 714—723 (1890).

⁴) G. G. Bruno, La bile comme agent digestif. Arch. des Soc. biolog, de St. Pétersbourg, T. 7, p. 114—142 (1899).

versetzt, Kohlensäure durchgeleitet, und dann die Erepsinlösung hinzugefügt. Man kann auch das beim Hunde aus einer Duodenalfistel nach dem *Tobler-Cohnheims*chen Verfahren erhaltene Verdauungsgemisch mit Natriumbikarbonat bis zur schwach alkalischen Reaktion versetzen. Kohlensäure durchströmen lassen und dann dem Verdauungsgemenge Erepsinlösung zusetzen.¹)

h) Verdauungsfermente pflanzlicher Herkunft: Papain.

Unter den Pflanzenfermenten benutzt man oft das im Safte der Carica papaya enthaltene proteolytische Ferment, welches man Papain oder Papavotin nennt.

Um das Papain zu isolieren, fällt man die durch wiederholte Extraktion des Saftes mit Wasser erhaltene Flüssigkeit mit Alkohol. Der so erzielte Niederschlag wird in Wasser aufgelöst und entweder durch Dialyse gereinigt oder besser mit Bleiessig unter Vermeidung eines Überschusses versetzt, abfiltriert und das Filtrat mit Schwefelwasserstoff behandelt, im Vakuum etwas eingedampft und tropfenweise Alkohol bis zum Anfang der Fällung des Papains dazu gefügt. Dann wird vom mit den ersten niedergeschlagenen Papainteilen mitgerissenen Bleisulfid abfiltriert. Das klare Filtrat ergibt nun mit Alkohol einen weißen Papainniederschlag.²)

Meistens bedient man sich Handelspräparaten (Papain und Papayotin), welche man als 2—5% ige filtrierte Lösung in physiologischer Flüssigkeit oder Wasser benutzt.

Bei 40° geht die Verdauung mittelst Papains sehr schwer vor sich und ist sehr unvollständig, falls man nicht wiederholt frisches Ferment zusetzt. Die saure Reaktion scheint am vorteilhaftesten für die verdauende Wirkung des Papains bei Zimmertemperatur zu sein.

Um eine rasche Verdauung der Proteine durch Papain zu erzielen, werden die kurze Zeit bei Zimmertemperatur oder im Brutraume gelassenen Gemische rasch auf 80-90°C erhitzt: die eigentliche Verdauung tritt erst während des Erwärmens auf. Je länger man das Eiweißpapain-

²) Ad. Wurtz et É. Bouchut, Sur le ferment digestif du Carica papaya. Compt. rend. de l'Acad. des Sciences. T. 89. p. 425-429 (1879). — Ad. Wurtz, Sur la papaine, contribution à l'histoire des ferments solubles. Ibid. T. 90. p. 1379-1381 (1880). — Sur la papaine, nouvelle contribution à l'histoire des ferments solubles. Ibid. T. 91. p. 787-791 (1880).

¹) Otto Cohnheim, Zur Spaltung des Nahrungseiweißes im Darme. Zeitschr. f. physiol. Chem. Bd. 49. S. 64-71 (1906) und Bd. 51. S. 414-424 (1907). — Emil Abderhalden und Berthold Oppler, Weiterer Beitrag zur Frage nach der Verwertung von tief abgebautem Eiweiß im Organismus. Ebenda. Bd. 51. S. 226-240 (1907). — Emil Abderhalden und Peter Rona, Weiterer Beitrag zur Frage nach der Verwertung von tief abgebautem Eiweiß im Organismus. Ebenda. Bd. 52. S. 507-514 (1907). — Emil Abderhalden und Alfred Gigon, Vergleichende Untersuchung über den Abbau des Edestins durch Pankreassaft allein und durch Magensaft und Pankreassaft. Ebenda. Bd. 53. S. 119-125 (1907). — E. Zunz, Contribution à l'étade de la digestion et de la résorption des protéines dans l'estomac et dans l'intestin grêle chez le chien. Mém. cour. et autr. mém. publ. par l'Acad. roy. de méd. de Belgique. T. 20. fasc. 1. 65 pages (1908).

gemisch bei Zimmertemperatur oder im Brutraume bei 4° läßt, ehe man es plötzlich auf 80—90° C bringt, desto geringer ist die dann entstehende Verdauung. Wird Salzsäure dem Papainproteingemische beim Vermischen zugefügt, so behält das Papain sein ursprüngliches Verdauungsvermögen. Wird die Salzsäure erst später dem Papainproteingemische zugesetzt, so hindert sie jede weitere Abnahme des enzymatischen Vermögens, bringt es aber nicht zur ursprünglichen Höhe zurück. 1)

II. Isolierung der Abbauprodukte der Verdauung.

a) Allgemeine Betrachtungen.

Ehe man die Isolierung der Verdauungsprodukte vornimmt, muß man jede weitere enzymatische Wirkung durch Aufkochen des Verdauungsgemenges aufheben.

Oft empfiehlt es sich, die Verdauung im Thermostaten ohne Dialyse vor sich gehen zu lassen und erst nach der für den Verdauungsprozeß bestimmten Zeitdauer die Dialyse nach einem der schon beschriebenen Verfahren zur Trennung der dialysierbaren und der nicht dialysierbaren Spaltprodukte zu gebrauchen. Das zum Sieden erhitzte Verdauungsprodukt wird vom unverdauten Reste und den gerinnbaren Substanzen abfiltriert. Darauf wird das reichlich mit Toluol versetzte Filtrat bei einer beliebigen Temperatur (zwischen 0° und 40°C) der Dialyse unter täglichem oder beständigem Wechseln des im Dialysator enthaltenen Wassers so lange unterworfen, bis eine dem Dialysat entnommene und eingedampfte Probe keinen Rückstand oder höchstens Spuren davon hinterläßt.2)

b) Isolierung der Abbauprodukte der Verdauung der Kohlehydrate.

Zu den Versuchen über Verdauung der Kohlehydrate bedient man sich Stärkekleisters, Brotes usw.

1. Nachweis der verschiedenen Abbauprodukte der Kohlehydrate in einem Verdauungsgemische.

Es besteht bis jetzt noch kein völlig einwandfreies Verfahren zur Trennung der verschiedenen, bei der Verdauung der Kohlehydrate ent-

¹) O. Emmerling, Über die Eiweißspaltung durch Papayotin. Ber. d. Deutsch. ehem. Ges. Bd. 24. S. 695—699 und 1012 (1902). — Emil Abderhalden und Yutaka Teruuchi, Vergleichende Untersuchungen über einige proteolytische Fermente pflanzlicher Herkunft. Zeitschr. f. physiol. Chem. Bd. 49. S. 21—25 (1906). — C. Delezenne, H. Mouton et E. Pozerski, Sur Fallure anomale de quelques protéolyses produites par la papaine. Compt. rend. hebd. des séanc. de la Soc. de Biol. T. 60. p. 68—70 (1906). — Sur la digestion brusque de l'ovalbumine et du sérum sanguin par la papaine. Ibid. T. 60. p. 309—312 (1906). — D. Jonescu, Über eine eigenartige Verdauung des Hühner- und des Serumeiweiß durch Papain. Biochem. Zeitschr. Bd. 2. S. 176—187 (1906). — Fritz Sachs, Über die Verdauung von rohem Hühnereiweiß durch Papain. Zeitschr. f. physiol. Chem. Bd. 51. S. 488—505 (1907).

²) *Emil Abderhalden* und *Béla Reinbold*, Der Abbau des Edestins aus Baumwollsamen durch Pankreassaft. Zeitschr. f. physiol. Chem. Bd. **46**. S. 159—175 (1905).

stehenden Spaltungsprodukte. Unter diesen unterscheidet man das mit Jod sich blau färbende Amylodextrin, das sich mit Jod rotbraun färbende Ervthrodextrin, das sich mit Jod nicht färbende Achroodextrin. Maltose und Glukose.

Die Jodreaktion ergibt, selbst bei Anwendung einer sehr verdünnten Jodjodkalilösung, nicht immer völlig sichere Ergebnisse über die Zusammensetzung eines verschiedene Dextrine enthaltenden Gemisches, denn die überwiegende Dextrinart kann die Reaktion der anderen verhindern. Falls viel Amylodextrin und nur wenig Erythrodextrin im Verdauungsgemische vorhanden ist, so erhält man eine blaue Reaktion. Mit der Zunahme der relativen Erythrodextrinmenge wird die Farbe stets mehr violett. Übersteigt die Erythrodextrinmenge erheblich die Amylodextrinmenge, so sieht man nur die rotbraune Farbe des Erythrodextrins.

Man kann die verschiedenen Dextrine durch fraktionierte Fällung mittelst Ätzbaryt und die Zucker durch Darstellung ihrer Osazone charakterisieren. Das Verdauungsgemisch wird zum Sieden gebracht, um die Diastase zu zerstören und nachher filtriert, um es von den noch vorhandenen ungelösten Stärketeilen zu befreien. Dann fügt man allmählich so lange eine kaltgesättigte wässerige Atzbarvtlösung hinzu, welche unter flüssigem Paraffin bei Vermeiden jeder direkten Berührung mit der Luft aufbewahrt wird, bis eine mit verdünnter Essigsäure angesäuerte abfiltrierte Probe der Verdauungsflüssigkeit bei Zusatz der Jodjodkalilösung keine violette Färbung mehr, sondern eine rotbraune gibt. Nach Abfiltrieren des dann völlig gefällten Amylodextrins führt man den allmählichen Ätzbarytzusatz so lange fort, bis eine angesäuerte abfiltrierte Probe der Verdauungsflüssigkeit keine rote Färbung mehr mit Jod gibt. Nach Abfiltrieren des so erzielten Erythrodextrinniederschlages wird Alkohol zum Filtrate gegeben: entsteht alsdann eine Trübung, so ist Achroodextrin vorhanden. Die Anwesenheit reduzierender Zucker wird durch die Trommersche und die Fehlingsche Probe erwiesen. Zur Feststellung der anwesenden Zuckerarten muß man einen Teil der Verdauungsflüssigkeit zur Darstellung ihrer Osazone verwenden.¹⁾

2. Quantitative Bestimmung der unzersetzten Stärke, der gebildeten Dextrine und Zucker in einem Verdauungsgemische.

Zur quantitativen Bestimmung der in einem gegebenen Augenblicke der Verdauung der Kohlehydrate bestehenden Menge von Stärke, Dextrinen und Zucker bedient man sich am besten folgenden Verfahrens, welches sich auf die Erfahrungen von London und Polowzowa sowie von Slosse und Limbosch stützt: Das gesamte Verdauungsgemisch wird mit 1/10-Normalnatronlauge oder 1/10-Normalschwefelsäure je nach den Umständen genau neutralisiert, unter Zusatz von etwas Essigsäure zum Sieden erhitzt und filtriert. Um die Filtration zu beschleunigen, kann man sie im Brutschrank bei 40° C vornehmen. Man erhält so ein Filtrat a und einen Rückstand b.

¹⁾ J. Moreau, Étude expérimentale de la marche de la saccharification de l'amidon. Ann, de la Soc. roy des Sc. méd. et nat. de Bruxelles. T. 12. Fasc. 3. p. 1-117 (1903).

I'm im die Spaltungsprodukte der Kohlehydrate enthaltenden Filtrate a die Dextrinmenge und die Zuckermenge, jede für sich zu ermitteln, muß man vorerst die Dextrine von den Zuckern trennen. Werden nämlich die Dextrine während 10 bis 12 Minuten mit der Fehlingschen Lösung zum Sieden erhitzt, so können reduzierende Zucker aus den Dextrinen entstehen. Diese Trennung erfolgt leicht, wenn man die Dextrine im diese sowie die Zucker enthaltenden Filtrate a durch Zufügung von 20 Volumina Alkohol fällt. Das Absetzen der Dextrine wird durch Zusatz von 2 q Natriumchlorid wesentlich begünstigt. Nach 24stündigem Stehen wird in einen mit einem durch eine Glasplatte gegen jede Alkoholverdunstung geschützten Trichter versehenen Kolben filtriert. Das so erhaltene Filtrat c enthält die Zucker, der Niederschlag d die Dextrine. Man dampft das Filtrat c auf dem Wasserbade zur Trockene ein, löst den Rückstand in destilliertem Wasser auf und bestimmt dann den als Glukose berechneten Zuckergehalt nach einem der beschriebenen Verfahren von Allihn-Pflüger¹) (Bd. II, S. 174), Gabriel Bertrand²) (Bd. II, S. 181) oder nach der Methode von Stanley R. Bene dict.3) Der die Dextrine enthaltende Niederschlag d wird mit verdünnter Salzsäure auf dem Wasserbade am Rückflußkühler erwärmt, wodurch die Dextrine vollständig in Zucker übergeführt werden; dieser wird nach denselben Verfahren wie im Filtrate c ermittelt. Durch Multiplikation des so erhaltenen Wertes mit 0:9 erhält man die Dextrinmenge. Der getrocknete Filterrückstand b wird im Soxhletschen Dampftopf bei 3-4 Atmosphären 3 4 Stunden lang erhitzt, wobei sich die Stärke in Dextrine und diese nachher in Zucker verwandeln; die Menge der letzteren wird nach demselben Verfahren wie im Filtrate c und im Niederschlag d festgestellt. Falls Proteine im Trockenrückstand vorhanden sind, so muß man diese zuerst entfernen; sonst haftet ein Teil der Glukose am Eiweiße. Bei der soeben beschriebenen Methode wird der die Fehlingsche Lösung reduzierende Zucker als Glukose berechnet. Da aber eine mehr oder minder bedeutende Maltosemenge daneben bestehen kann, und da beide Zuckerarten nicht dasselbe reduzierende Vermögen besitzen, so wird dadurch ein Irrtum erzeugt, dessen Größe jedoch meistens nicht sehr wesentlich ist.4)

E. Zunz.

Isolierung der Dextrine. Zur Isolierung der verschiedenen Dextrine verfährt man am besten nach der Methode von $J.\ Moreau$ (loc. cit.): Zu der

¹) E. Pflüger, Eine neue Methode zur quantitativen Bestimmung des Zuckers, als Fortsetzung meiner Untersuchungen über die Quelle der Muskelkraft. Pflügers Arch. f. d. ges. Physiol. Bd. 46. S. 635- 640 (1897). — Derselbe, Vorschriften zur Ausführung einer quantitativen Glykogenanalyse. Ebenda. Bd. 93. S. 163-185 (1903).

²) Gabriel Bertrand, Le dosage des sucres réducteurs, Bull, de la Soc. chim, de Paris, 3me série, T. 35, p. 1285-1299 (1906).

³) Stanley R. Benedict, The detection and estimation of reducing sugars. Journ. biol. Chem. Vol. 3, p. 101-117 (19)7).

⁴) E. S. London und W. W. Polowzowa, Zum Chemismus der Verdauung im tierischen Körper. VI. Mitteilung. Eiweiß- und Kohlehydratverdauung im Magendarmkanal. Zeitschrift f. physiol. Chemie. Bd. 49. S. 328—396 (1906). — A. Slosse et H. Limbosch, De l'action du ferment salivaire dans ses rapports avec la température du milieu. Arch. int. de physiol. T. 6. p. 365—380 (1908).

neutralisierten, bei Zusatz von Essigsäure abgekochten, abfiltrierten und wieder neutralisierten Verdauungslösung setzt man allmählich eine gesättigte wässerige Ätzbarytlösung hinzu. Nach jedem Zusatz werden einige Kubikzentimeter der Flüssigkeit abfiltriert und mit Jodjodkalium versetzt. Sobald man eine rotbraune Färbung erhält, filtriert man die Hauptmasse der Flüssigkeit. Der Niederschlag a besteht aus Amylodextrin und etwas Erythrodextrin; er dient zur Darstellung des Amylodextrins. Zum Filtrate b wird allmählich von der Ätzbarytlösung weiter zugesetzt, bis eine abfiltrierte Probe sich bei Zufügung der Jodjodkalilösung nicht mehr rot färbt; dann trennt man durch Filtration den aus dem größten Teile des Erythrodextrins bestehenden Niederschlag c vom das Achroodextrin und die reduzierenden Zucker enthaltenden Filtrate d. Im letzteren fällt man durch Alkoholzusatz das Achroodextrin und trennt diesen Niederschlag c durch Abfiltrieren oder Abgießen vom die reduzierenden Zucker enthaltenden Filtrate f.

Die drei Niederschläge $a,\ c$ und e werden jeder für sich in mittelst Essigsäure angesäuertem Wasser aufgelöst.

Die Amylodextrinlösung (a) wird mit Ätzbarytlösung so lange versetzt, bis eine Probe der abfiltrierten Flüssigkeit bei Zusatz der Jodjodkalilösung rotbraun wird, dann filtriert man den Amylodextrinniederschlag und löst ihn nachher wieder in angesäuertem Wasser auf. Die Fällungen mit Ätzbarytlösung und die Auflösungen in Wasser werden mehrmals wiederholt. Wenn keine Spur mehr von Erythrodextrin sich bei der Jodprobe nachweisen läßt, fällt man durch Alkohol das Amylodextrin, um es vom in Lösung bleibenden Baryumacetate zu trennen.

Zur Erythrodextrinlösung (c) setzt man Ätzbarytlösung bis zum Erscheinen einer rotbraunen Farbe beim Versetzen einer abfiltrierten Probe der Flüssigkeit mit Jodjodkalilösung. Dann filtriert man vom amylodextrinhaltigen Niederschlage ab. Zum erhaltenen Filtrate fügt man Ätzbarytlösung bis zur Abwesenheit jeder roten Färbung bei Jodjodkalizusatz zu einer abfiltrierten Probe der Flüssigkeit. Der entstandene Niederschlag wird abfiltriert, in angesäuertem Wasser aufgelöst und die Fällungen mit Ätzbarytlösung sowie das nachherige Auflösen in Wasser werden mehrmals wiederholt bis zum durch die Jodprobe angezeigten Verschwinden jeder Amylodextrinspur sowie zum völligen Fehlen reduzierender Zucker in der nach der Fällung des Erythrodextrins bleibenden Flüssigkeit. Dann fällt man mit Alkohol das Erythrodextrin, um es vom Baryumacetat zu trennen.

Die Achroodextrinlösung (e) wird durch Fällung des Erythrodextrins mittelst Ätzbarytlösung. Abfiltrieren. Fällung des Achroodextrins mittelst Alkohol, Auflösen der Niederschläge in angesäuertem W. sser und mehrfaches Wiederholen dieser Gesamtprozedur vom anhaftenden Erythrodextrin sowie von jeder Spur eines reduzierenden Zuckers befreit. Schließlich wird das Achroodextrin aus seiner wässerigen Lösung durch Alkohol gefällt und auf diese Weise vom Barvumacetat getrennt.

c) Isolierung der Abbauprodukte der Verdauung der Fette.

Zur Untersuchung der Fettverdauung benutzt man meistens das von M. Hanriot und L. $Camus^1$) vorgeschlagene Monobutyrin, wovon man eine $1^{\circ}/_{\circ}$ ige wässerige Lösung frisch bereitet, stearinsaures oder ölsaures Natron usw. Als natürliche Fette nimmt man Olivenöl, Kuhbutter, Rinderfett. Schweinefett usw. Die Neutralfette müssen absolut frei von Fettsäuren sein. Als Emulsion bedient man sich der Milch oder künstlicher, mit Hilfe von Gummi arabicum bereiteter Olivenemulsion oder einer Eigelbwasseremulsion (3 Eigelb auf 100 cm^3 Wasser). Um eine sehr fein verteilte Emulsion zu bewerkstelligen, neutralisiert man das stets freie Fettsäure enthaltende käufliche Olivenöl oder Rizinusöl mit der eben dazu erforderlichen Menge 1/10 normaler Natronlauge und vermischt gut Lauge und Öldurch Schütteln. 1/10

Feststellung der aus Fettemulsionen abgespaltenen Fettsäuren.

Falls man bei Versuchen in vitro mit Fettemulsionen nur die Menge der abgespaltenen Fettsäuren ermitteln will, so genügt es nach Beendigung des Verdauungsprozesses, die Flüssigkeit mit 1/10 oder 1/20 normaler alkoholischer Natron- oder Kalilauge unter Anwendung von Phenolphtalein bis zur Neutralisation zu versetzen. Zur Vermeidung jeder Hydrolyse während der Titrierung wird vorher 95% iger Alkohol zur Fettemulsion gefügt, und zwar 50 cm³ Alkohol auf 20 cm³ Emulsion. Außerdem soll man stets Kontrollversuche anstellen mit der wirksamen Lipase ohne Zusatz der der Verdauung unterworfenen Fettemulsion einerseits und mit der ausgekochten Fermentlösung bei Hinzufügung der der Verdauung unterworfenen Fettemulsion andrerseits in demselben Verhältnisse als beim eigentlichen Versuche. Beide Kontrollflüssigkeiten werden in den Thermostat gleichzeitig mit dem Versuchsgemische gebracht und zu derselben Zeit wie letzteres titriert. Die dabei etwa verbrauchten Laugenmengen werden von der zur Neutralisation des eigentlichen Verdauungsgemenges angewandten abgezogen.3)

¹) M. Hanriot et L. Camus, Sur le dosage de la lipase. Compt. rend. de l'Acad. des Sciences. T. 124. p. 235-237 (1897). — Compt. rend. hebd. des séanc. de la Soc. de Biol. T. 49. p. 124-126 (1897).

²) Aristides Kanitz, Über Pankreassteapsin und über die Reaktionsgeschwindigkeit der mittelst Enzyme bewirkten Fettspaltung. Zeitschr. f. physiol. Chem. Bd. 46. S. 482—491 (1905).

³⁾ Aristides Kanitz, Beiträge zur Titration von hochmolekularen Fettsäuren. Berd. Deutsch. chem. Ges. Bd. 36. S. 400—404 (1903). — A. S. Loevenhart and George Peirce, The inhibiting effect of sodium fluoride on the action of lipase (second paper). Journ. of biolog. Chem. Vol. 2. p. 397—413 (1907). — A. S. Loevenhart and C. G. Souder, On the effect of bile upon the hydrolysis of esters by pancreatic juice. Ibid. Vol. 2. p. 415—425 (1907). — Otto v. Fürth und Julius Schütz, Über den Einfluß der Galle auf die fettund eiweißspaltenden Fermente des Pankreas. Beitr. z. chem. Physiol. u. Pathol. Bd. 9. S. 28—49 (1907).

Gleichzeitige quantitative Bestimmung der Seifen und Fettsäuren in einem Verdauungsgemische.

Zur gleichzeitigen quantitativen Bestimmung der Seifen und Fettsäuren in einer Verdauungsflüssigkeit kocht man diese nach Zusatz der mehrfachen Alkoholmenge, filtriert, wäscht den Niederschlag mit Alkohol, verjagt den Alkohol aus dem Filtrate, macht die als Seifen vorhandenen Fettsäuren durch Salzsäure frei, erhitzt wieder, läßt erkalten, filtriert die erstarrten Fettsäuren, wäscht sie so lange mit destilliertem Wasser aus, bis in der Waschflüssigkeit kein Chlor mehr nachweisbar ist, löst sie auf dem lufttrockenen Filter in Äther und bestimmt nach Alkoholzusatz die gesamte Fettsäurenmenge mit $^{1}/_{10}$ oder $^{1}/_{20}$ normaler alkoholischer Natronoder Kalilauge bei Anwendung des Phenolphtaleins als Indikator. 1

Untersuchung der Abbauprodukte der Verdauung der Fette nach Levites.

Zur Untersuchung der bei der Verdauung der natürlichen Fette entstandenen Produkte erwärmt man die Verdauungsflüssigkeit auf dem Wasserbade bis zum Schmelzen des Fettes, bringt sie dann auf Eis bis zum Erstarren des Fettes, entnimmt die erstarrte feste Fettkruste, wäscht sie mehrmals mit Wasser aus und löst sie in Äther oder Petroleumäther auf (Lösung I). Falls man durch bloßes Erwärmen und nachfolgendes Erstarren die Fette nicht aus der Verdauungsflüssigkeit entnehmen kann, wie dies beim Vorhandensein einer erheblichen Gallen- oder Schleimmenge der Fall ist, so wird der Verdauungsbrei im Schüttelapparat mit Äther ausgeschüttelt und somit vom größten Teile des Fettes befreit; die Ätherschicht (Lösung I) wird von der Wasserschicht getrennt. Letztere oder die nach Wegschaffen des erstarrten Fettes übrig bleibende Flüssigkeit wird langsam auf dem Wasserbade bis zur Trockene eingedampft und im Soxhletschen Extraktionsapparate mit Äther oder Petroleumäther ausgezogen, wodurch man die ätherische Lösung II erhält. Beide Ätherlösungen I und II werden vereinigt. Nach Verdunsten des Äthers und Befreien der Reste des Lösungsmittels durch Einleiten von Kohlensäure wird der aus dem Neutralfette und den freien Fettsäuren bestehende Rückstand gewogen und danach in Alkohol aufgelöst. Mit 1/10 normaler alkoholischer Natron- oder Kalilauge wird nun bei Phenolphtaleinanwesenheit die Säurezahl bestimmt und daraus werden auf Grund des mittleren Molekulargewichts die freien Fettsäuren in Prozenten ausgedrückt. Der nach der Ätherextraktion im Soxhletschen Apparate hinterbliebene feste Rückstand wird mit wässerigem Alkohol verrieben, mit einer genau bekannten Salzsäuremenge angesäuert, eingedampft und im Soxhletschen Extraktionsapparate mit Äther ausgezogen. Die so erhaltene ätherische Lösung III enthält die im Verdauungsgemische als

¹⁾ O. r. Fürth und J. Schütz, Ein Beitrag zur Methodik der Versuche über Fettresorption aus isolierten Darmschlingen, Beitr. z. chem. Physiol. u. Path. Bd. 10 S. 462 bis 479 (1907).

Seifen vorhandenen Fettsäuren. Man läßt den Äther verdunsten, wägt den Rückstand und löst ihn nachher in Alkohol auf. In der alkoholischen Lösung titriert man die Menge der als Seifen im Verdauungsgemenge befindlichen Fettsäuren mittelst 1 , 10 normaler alkoholischer Natron- oder Kalilauge bei Phenolphtaleingegenwart. Dieses Verfahren kann nur dann angewandt werden, wenn keine anderen Stoffe (Proteine, Kohlehydrate) als Fette dem Verdauungsprozesse unterworfen werden. 1

Feststellung des Gesamtfettes.

Um einem Verdauungsgemenge das Gesamtfett zu entziehen, wird das Verdauungsgemisch mit vorher ausgeglühtem Sande, Bimssteinpulver oder Kaolinkörnern nach Salzsäurezusatz in einer Schale auf dem Wasserbade getrocknet. Der Trockenrückstand wird in eine Extraktionshülse aus fettfreiem Papier (von Schleicher & Schüll, zu Düren) übertragen. Die Schale wird mit Äther wiederholt nachgespült und dieser Äther sogleich durch einen trockenen Papierfilter oder besser durch einen Asbestfilter in den die Extraktionshülse enthaltenden Extraktionsapparat gegossen. Nach der Extraktion des Trockenrückstandes durch Äther im Extraktionsapparate wird die Ätherlösung abgegossen, verdunstet und getrocknet. Schließlich bestimmt man die Menge des Fettrückstandes durch Wägen. Die Ätherextraktion des Trockenrückstandes des Verdauungsgemisches erfolgt nur schwer; sie muß wenigstens 50-52 Stunden dauern. Falls Proteine oder Zellelemente im Verdauungsgemenge vorhanden sind, so muß man sie zuerst der Einwirkung der Pepsinsalzsäure unterwerfen.²) Zur Ätherextraktion bedient man sich mit Vorteil statt des Soxhletschen Extraktionsapparates des durch A. Slosse und E. Vandeweger veränderten Neufeldschen Apparates oder des durch M. Kumagawa und Suto beschriebenen. In beiden Apparaten bleibt die Extraktionsflüssigkeit stets siedend, so daß die Extraktion ohne beständige Aufsicht leicht vor sich geht.3) Bei der soeben beschriebenen Methode werden die Seifen zerlegt, so daß man nur die freien und als Seifen verbundenen Fettsäuren zusammen bestimmen kann. Stade zufolge

¹) S. Levites, Über die Verdauung der Fette im tierischen Organismus, Zeitschr. f. physiol. Chem. Bd. 49, S. 273—285 (1906).

²) C. Dormeyer, Die quantitative Bestimmung von Fett in tierischen Organen. Vorläufige Mitteilung. Pylügers Archiv f. d. ges. Physiol. Bd. 61. S. 341—342 (1895). — Derselbe. Die quantitative Bestimmung von Fetten. Seifen und Fettsäuren. Ebenda. Bd. 65. S. 90—108 (1896). — Jos. Nerking, Neue Beiträge zur Fettbestimmung in tierischen Geweben und Flüssigkeiten. Ebenda. Bd. 73. S. 172—183 (1898).

³⁾ A. Slosse, L'albumine peut elle se transformer en graisse par simple macération. Arch. int. de Physiol. T. 1. p. 348—358 (1994). — Recherches expérimentales sur la formation de la graisse aux dépens de l'albumine. Ann. de la Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 13. fasc. 2. p. 1—39. — A. Slosse et E. Vandeweyer, Étude analytique de l'alimentation d'un groupe de 33 ouvriers bruxellois. Mém. cour. et autr. mém. publ. par l'Acad. roy. de méd. de Belgique. T. 19. fasc. 8. p. 1—63. — Muneo Kumagawa und Kenzo Suto, Über die Bestimmung des Fettgehaltes tierischer Flüssigkeiten nach Pylüger-Dormeyer. Beitr. z. chem. Physiol. u. Path. Bd. 4. S. 185—191 (1904).

werden bei der Ätherextraktion des auf Kaolin getrockneten Verdauumgsgemisches erhebliche Mengen von Neutralfetten nicht extrahiert: außerdem werden die Fettsäuren leichter vollständig extrahiert als die Neutralfette, so daß man bei diesem Verfahren leicht eine zu erhebliche Prozentzahl als Spaltungsgrad der Fette erhält.¹)

Kumagawa und Suto haben neuerdings nachgewiesen, daß bei der Ätherextraktion von Gemischen, welche außer Fette noch andere Stoffe enthalten, das Neutralfett keineswegs allein quantitativ isoliert wird. Die neue, von diesen Forschern empfohlene Verseifungsmethode, bei welcher die Menge der hohen Fettsäuren quantitativ bestimmt wird, davon das Gewicht der etwaigen unverseifbaren Substanzen (Cholesterin usw.) abgezogen und die schließlich erhaltene Zahl mit 1045 vervielfältigt wird, um aus den gefundenen hohen Fettsäuren die Menge des Neutralfettes zu berechnen, könnte vielleicht gute Dienste bei Resorptionsversuchen über Fettstoffe leisten, gibt aber keine Aufschlüsse über die bei der Verdauung vor sich gehende Spaltung der Fette.²)

Wie aus dem Vorhergehenden erhellt, ist es also keineswegs leicht, die absoluten Mengen der als Neutralfett, als freie Fettsäuren und als Seifen in einem Verdauungsgemische vorhandenen Fettstoffe genau zu ermitteln. Deshalb haben Volhard und Stade das unten beschriebene Verfahren ersonnen.

Verfahren von Volhard-Stade zur Feststellung des Grades der Fettspaltung durch Lipase. Um den Grad der Spaltung einer Fettemulsion durch die Lipasen der Verdauungssekrete zu ermitteln, müssen nach Volhard keineswegs alle im Verdauungsgemische vorhandenen Neutralfette und Fettsäuren quantitativ der Titration zugänglich gemacht werden, denn die Fettspaltung erfolgt annähernd prozentual. Demnach genügt es einen beliebigen Teil des Fettäthers zu titrieren und zu verseifen, um daraus den Prozentgehalt des Äthers an Fettsäuren festzustellen. Bei der Ausschüttelung aliquoter Mengen des Verdauungsgemisches betragen nach Stade die bei Ermittlung des prozentischen Verhältnisses abgespaltener Fettsäuren beobachteten Unterschiede bei stets derselben Schüttelzeit höchstens 1/20, bei verschiedenen Schüttelzeiten indes bis 20/00.

Bei dem Volhard-Stadeschen Verfahren wird eine gewisse Menge (20—50 cm³) des Verdauungsgemisches in eine Flasche von ungefähr 150 cm³ Inhalt gebracht, welche nötigenfalls dam durch Eintauchen in kaltes Wasser rasch abgekühlt wird. Zur so entnommenen Probe des Verdauungsgemisches fügt man 75 cm³ Äther sowie 2 cm³ (bei Versuchen mit der Magenlipase) oder mehr (bei Versuchen mit Pankreassteapsin) Alkohol, verschließt gut

⁴) W. Stade, Untersuchungen über das fettspaltende Ferment des Magens. Beitr. z. chem. Physiol. u. Path. Bd. 3. 8, 291-321 (1903).

²) M. Kumagawa und K. Suto, Ein neues Verfahren zur quantitativen Bestimmung des Fettes und der unverseifbaren Substanz im tierischen Material nebst der Kritik einiger gebräuchlichen Methoden. Abhandlung I. Biochem. Zeitschr. Bd. 8. S. 211 bis 347 (1908).

und schüttelt während mehrerer Minuten, bis der oben aufsitzende Äther einen intensiv gelben Farbenton zeigt, wodurch bewiesen wird, daß Neutralfett wie Fettsäuren in genügender Menge extrahiert sind. Die Fettspaltung hört fast sofort im Augenblicke der Äthereinwirkung auf, so daß beim Schüttelverfahren die Zerstörung des Fermentes durch Kochen überflüssig ist. Der Zusatz von Alkohol zum Äther beschleunigt die Schichtung und vermeidet die Bildung von Emulsionen. Sobald sich nach Beendigung des Schüttelns der Äther vom Verdauungsgemische getrennt und geklärt hat, werden 50 cm³ desselben in ein Kölbchen abgegossen, mit 75 cm³ säurefreien Alkohols versetzt und mit wässeriger 1/10 normaler Natronlauge auf Phenolphtalein titriert, wodurch man den Gehalt an freien Fettsäuren (Wert I) bestimmt. Um säurefreien Alkohol zu erzielen, wird der Alkohol in 5-Literflaschen im durch Dampfzuleitung erhitzten Wasserbade gekocht und mit 1/10 normaler Natronlauge gegen Phenolphtalein neutralisiert. Danach werden 10 cm3 normaler Natronlauge dem Gemische zugesetzt und die Kölbehen 2 Stunden auf kochendem Wasserbade unter dem Rückflußkühler oder 24 Stunden gut verschlossen bei Zimmertemperatur gelassen, wodurch die noch in dem Gemische enthaltenen Neutralfette völlig verseift werden. Da durch die Verseifung das Glas angegriffen wird, besonders beim Kochen, so empfiehlt es sich, die zur Verseifung dienenden Kölbehen aus Jenenser Normalglas vor dem wiederholten Gebrauche der Einwirkung strömenden Dämpfen auszusetzen, bis daß das an ihren Wänden kondensierende Wasser ohne Alkaligehalt abfließt. Nach der Verseifung enthält das Gemisch das gesamte extrahierte Fett in Form von Natronseifen und außerdem einen Überschuß an freier Natronlauge. Man fügt dann 10 cm³ normaler Schwefelsäure zur verseiften Flüssigkeit. Ein Teil dieser Säure wird zur Neutralisierung der überschüssigen Lauge verwandt, der andere Teil treibt aus den durch die Verseifung gewonnenen Natronseifen die Fettsäuren aus, deren Menge (Wert II) man mittelst 1/10 normaler Natronlauge auf Phenolphtalein titrimetrisch ermittelt. Aus den beiden Titerwerten I und II läßt sich dann nach der Gleichung $x = \frac{I \times 100}{I + II}$ die

Größe der Fettspaltung in Prozenten berechnen.

Da emulgierte Fette (z. B. Eigelb) auch ohne Fermenteinwirkung in geringem Grade gespalten werden, so soll man stets bei den Versuchen über Fettverdauung eine Kontrollprobe anstellen, indem man die gekochte Fermentlösung (Magensaft, Pankreassaft) anwendet. Das Volhard-Stadesche Verfahren eignet sich gut für Eigelb, weniger aber für Milch- oder Sesamölemulsionen. 1)

¹⁾ W. Stade, l. c. — Adolf Zinsser, Über den Umfang der Fettverdauung im Magen, Beitr, z. chem, Physiol, u. Pathol, Bd. 7, S. 31-50 (1906). - Albert Fromme, Uber das fettspaltende Ferment der Magenschleimhaut. Ebenda. Bd. 7. S. 51-76 (1906). — Hans Engel, Über das Zeit- und Fermentgesetz des Pankreassteapsins. Ebenda. Bd. 7. S. 77-83 (1906). - Friedrich Heinsheimer, Experimentelle und klinische Studien über fermentative Fettspaltung im Magen. Arbeiten aus dem pathologischen Institut zu Berlin, zur Feier der Vollendung des Institutsneubaues herausgegeben von Johannes Orth, Berlin 1906, S. 506-522.

Bestimmung von Seifen neben Fettsäuren in Verdauungsgemischen nach Pflüger. Pflüger hat nachgewiesen, daß aus der Lösung einer neutralen Seife durch wiederholte Atherausschüttelungen ein großer Teil der vorhandenen Fettsäuren infolge der dabei vor sich gehenden Hydrolyse entzogen werden kann. Demnach kann man aus einem Gemenge von Seifen und Fettsäuren die letzteren durch Ätherausschüttelung keineswegs quantitativ genau bestimmen. Um den dabei sich ergebenden Fehler zu vermeiden, empfiehlt Pflüger folgende Methode, welche auf der völligen Fällung der Seifen mittelst Kochsalz bei 0° beruht: Das Verdauungsgemisch wird in 2 Hälften verteilt, wovon die eine filtriert wird, die andere hingegen nicht. In der ersten Hälfte wird die Menge der in Lösung befindlichen Fettsäuren bestimmt. Die filtrierte Flüssigkeit wird in 2 gleiche Portionen verteilt. Der erste Teil wird mit Salzsäure angesäuert und mit Äther ausgeschüttelt. Der Ätherauszug liefert die Gesamtmenge a der im Verdauungsprodukte in Lösung befindlichen freien und in Seifen gebundenen Fettsäuren. Der andere Teil wird mit Na Cl gesättigt, wozu man zu 50 cm3 Flüssigkeit 500 cm3 gesättigter Na Cl-Lösung und 15 q NaCl fügt. Nach 15stündigem Stehen auf Eis wird bei 0° filtriert. Der Niederschlag wird mit siedendem Alkohol aufgenommen: in der so erhaltenen alkoholischen Lösung stellt man die Menge b der ausgesalzenen freien Fettsäuren fest. Nach Abschluß der Titration wird der Alkohol aus der neutralen Seifenlösung verjagt, letztere mit Salzsäure angesäuert und mit Ather ausgeschüttelt. Dieser Atherauszug gibt bei der Titrierung die Gesamtmenge e der durch die Aussalzung ausgeschiedenen freien und gebundenen Fettsäuren. e-b entspricht der Menge d der in den gelösten Seifen enthaltenen Fettsäuren, a-(c-b) der Gesamtmenge e der freien gelösten Fettsäuren. Um den ganzen Betrag der Seifenbildung zu erfahren, wurden in der zweiten Hälfte des Verdauungsgemisches ohne jede Filtration die Seifen in der oben beschriebenen Weise ausgesalzen. Der so erzielte Niederschlag wird mit siedendem Alkohol aufgenommen: durch Titration ermittelt man die Menge f der ausgesalzenen freien Fettsäuren des Gesamtverdauungsgemisches. Nach der Titration wird der Alkohol weggejagt, der Rückstand mit Salzsäure angesäuert und mit Äther ausgeschüttelt. Der Ätherauszug gibt bei der Titration die Menge q der ausgesalzenen freien und gebundenen Fettsäuren der Gesamtverdauungsflüssigkeit, g-f entspricht der Gesamtmenge h der in den gelösten oder ungelösten Seifen enthaltenen Fettsäuren. Zieht man von der Gesamtmenge der Fettsäuren der Seifen h die Menge d der in den gelösten Seifen befindlichen Fettsäuren ab, so erfährt man die Menge i der sich aus der übersättigten Lösung niederschlagenden Seifen.1)

¹) E. Pflüger, Über die Bedeutung der Seifen für die Resorption der Fette nebst einem Beitrag zur Chemie der Seifen. Arch. f. d. ges. Physiol. Bd. 88. S. 431—452 (1902). — Derselbe, Über Kalkseifen als Beweise gegen die in wässeriger Lösung sich vollziehende Resorption der Fette. Ebenda. Bd. 89. S. 211—226 (1902). — Derselbe. Über die Verseifung, welche durch die Galle vermittelt wird, und die Bestimmung von Seifen neben Fettsäuren in Gallenmischungen. Ebenda. Bd. 90. S. 1—32 (1902).

Glyzerin. Das untersuchte Verdauungsgemisch wird mit Äther so lange extrahiert, bis der Äther Fett übernommen hat. Der flüssige oder breiige Rückstand wird nach etwaiger vorsichtiger Einengung auf dem Wasserbade bei nicht zu hoher Temperatur mehrmals mit Alkohol extrahiert. Die Alkohollösung wird filtriert und das Filtrat in einem Becherglas auf das Wasserbad gebracht, um den Alkohol zu verjagen. Um Glyzerinverlust beim Eintrocknen zu vermeiden, wird dabei die Wand des Becherglases wiederholt mit kleinen Mengen Wassers abgespritzt. Nachdem die ganze Flüssigkeit auf einige Kubikzentimeter eingeengt ist, wird sie mit Wasser aufgenommen.

Um die Anwesenheit von Glyzerin nachzuweisen, genügt es, die wässerige Lösung mit Borsäure zu erhitzen, wobei sich aus dem Glyzerin Akrolein bildet, welches durch den stechenden Geruch und durch die Fähigkeit seiner Gase mit Silbernitrat getränktes Filtrierpapier zu schwärzen leicht erkennbar ist. 1)

Zur quantitativen Bestimmung des Glyzerins werden 25 cm³ des nach der Ätherextraktion zurückbleibenden Verdauungsgemisches mit Alkohol auf 100 cm³ Gesamtvolumen gebracht, mehrmals umgeschüttelt, nach Stehenlassen filtriert. Vom Filtrate gießt man 80 cm³ in ein Becherglas und verjagt den Alkohol auf dem Wasserbade unter wiederholtem Abspritzen der Wand des Becherglases mit wenig Wasser. Wenn nun noch einige Kubikzentimeter Flüssigkeit im Becherglase vorhanden sind, wird sie mit Wasser in ein Maßkölbchen von 25 cm³ Inhalt gegossen und destilliertes Wasser bis zur Marke hinzugefügt. Die Flüssigkeit wird alsdann wiederholt mit Petroläther ausgeschüttelt. Von der wässerigen Flüssigkeit entnimmt man 10 cm3, welche nochmals unter Beobachtung der oben angegebenen Kautelen auf dem Wasserbad eingeengt und nachher auf 10 cm³ mittelst Hinzufügung destillierten Wassers gebracht werden. Von dieser wässerigen Lösung dienen je 5 cm³ zur quantitativen Bestimmung des Glyzerins nach dem durch Stritar, Herrmann sowie Tangl und Weiser etwas veränderten (Bd. II, S. 216) schon beschriebenen Jodidverfahren von Zeisel und Fanto. 2)

¹) A. Wohl und C. Neuberg, Über die Darstellung des Akroleins. Ber. d. Deutsch. chem. Ges. Bd. 32. S. 1352—1354 (1899). — J. Wohlgemuth, Über den Sitz der Fermente im Hühnerei. Zeitschr. f. physiol. Chem. Bd. 44. S. 540—545 (1905). — Derselbe, Über das Vorkommen von Fermenten im Hühnerei. Festschrift zur Ehre des 60. Geburtstages von Ernst Salkowski. Berlin 1904. S. 433—441.

²⁾ S. Zeisel und R. Fanto, Über ein neues Verfahren zur Bestimmung des Glyzerins. Zeitschr. f. d. landw. Versuchswesen in Österreich. Bd. 5. S. 729 (1902). — Dieselben, Bestimmung des Rohglyzerins im Weine mittelst der "Jodidmethode". Zeitschr. f. analyt. Chem. Bd. 42. S. 549—578 (1903). — M. J. Stritar, Zur Methoxyl- und Glyzerinbestimmung. Ebenda. Bd. 42. S. 579—590 (1903). — August Herrmann, Über die Bestimmung des Glyzerins im Harn. Beitr. z. chem. Physiol. u. Pathol. Bd. 5. S. 422—431 (1904). — Franz Tangl und Stephan Weiser, Über den Glyzeringehalt des Blutes nach Untersuchungen mit dem Zeiselschen Jodidverfahren. Pflügers Archiv. f. d. ges. Physiol. Bd. 115. S. 152—174 (1906). — Felix Reach, Versuche über die physiologische Veresterung der Fettsäuren. Zentralbl. f. d. ges. Physiol. u. Pathol. d. Stoffwechsels. N. F. Jg. 1907. Nr. 20.

d) Isolierung der Abbauprodukte der Verdauung der Proteine.

Zur Untersuchung der Verdauung der Proteine bestehen mehrere Verfahren, welche den Grad der Spaltung und die Mengen der verschiedenen Gruppen von Spaltprodukten zu bestimmen streben.

Verfahren zur Untersuchung der Abnahme der Genuinität der Proteine.

Bei der Vernichtung der Genuinität der Proteine verschwindet die Gerinnbarkeit. Um den in einem Verdauungsgemisch noch genuinen Anteil der Proteine zu bestimmen, wird dieses der Hitzekoagulation in schwach essigsaurer Lösung unter Na Cl-Zusatz unterworfen. Durch Filtration trennt man die geronnenen Proteine und bestimmt nach Kjeldahl den Stickstoffgehalt des die geronnenen noch genuinen Proteine enthaltenden Niederschlages sowie des die nicht mehr gerinnbaren Proteine und ihre Spaltungsprodukte enthaltenden Filtrates. 1)

Man kann sich auch dazu der im I. Bande (S. 686) schon beschriebenen Enteiweißungsmethode von Michaelis und Rona bedienen, bei welcher allerdings ein Teil der Proteosen mit den Proteinen bei der Mastixfällung niedergeschlagen werden. ²) Die Bestimmung des Stickstoffgehaltes des Filtrates nach Kjeldahl erlaubt also nur eine Schätzung des beim Verdauungsprozesse gelösten Stickstoffes. ³)

Quantitative Messung proteolytischer Spaltungen mittelst der Formoltitrierung nach Sörensen. Nach Sörensen muß man eine proteolytische Spaltung als eine Hydrolyse mit Bildung von Karboxyl- und Aminogruppen betrachten, so daß eine rationelle Messung der Spaltungsgröße auf eine quantitative der durch die studierte Proteolyse gebildeten Karboxyl- oder Aminogruppen zielen soll. Nach einem die Aminogruppen in Methylengruppen verwandelnden Formolzusatze kann man titrimetrisch den Gehalt an Karboxylgruppen vor, nach oder während der Proteolyse bestimmen. Die so nachgewiesene Zunahme der Karboxylgruppen stellt dann den Grad der Proteolyse dar und kann durch die entsprechende Menge ½ normaler Barytlösung ausgedrückt werden. Nimmt man nun an, daß für jede freigewordene Karboxylgruppe eine Aminogruppe entwickelt wird, so kann man den Grad der Proteolyse in Milligramm Stickstoff ausdrücken, indem man die verbrauchte Anzahl Kubikzentimeter der ½ normalen Atzbarytlösung mit 2.8 vervielfacht.

Zu 20 cm^3 der untersuchten Verdauungsflüssigkeit werden 10 cm^3 einer frisch bereiteten Phenolphtalein-Formolmischung (50 cm^3 Handelsformol

¹⁾ C. Oppenheimer und H. Aron, Über das Verhalten des genuinen Serums gegen die tryptische Verdauung. Beitr. z. chem. Physiol. u. Pathol. Bd. 4. S. 279—299 (1904).

²) P. Rona und L. Michaelis, Beitrag zur Frage nach der kolloidalen Natur von Albumosenlösungen. Biochem. Zeitschr. Bd. 3. S. 109—115 (1907). — Dieselben, Über die Löslichkeitsverhältnisse von Albumosen und Fermenten mit Hinblick auf ihre Beziehungen zu Lecithin und Mastix. Ebenda. Bd. 4. S. 11—20 (1907). — E. Zunz, Contribution à l'étude des protéoses. Arch. int. de Physiol. T. 5. p. 245—256 (1907).

³⁾ H. Aron und P. Klempin, Studien über die proteolytischen Enzyme in einigen pflanzlichen Nahrungsmitteln. Biochem, Zeitschr. Bd. 9. S. 163-184 (1908).

+ 1 cm³ einer ½00/gigen Lösung von Phenolphtalein in 500/gigem Alkohol: die Mischung wird mittelst Baryt- oder Natronlauge genau neutralisiert) oder 15 cm³ einer Thymolphtalein-Formolmischung (25 cm³ Alkohol + 50 cm³ Handelsformol $+5 cm^3$ einer $\frac{1}{2}^0$ og igen alkoholischen Thymolphtaleinlösung: die Mischung wird genau neutralisiert) gefügt. Dann versetzt man die Flüssigkeit mit 1/2 normaler Ätzbarytlösung unter Umschütteln bis zur Rotfärbung bei Phenolphtaleinanwendung, bis zur deutlichen blauen Farbe bei Gebrauch von Thymolphtalein, fügt nachträglich noch einen bekannten Überschuß der ½ normalen Ätzbarytlösung hinzu und titriert schließlich mit 1/5 normaler Salzsäure zurück. Die Titrierungen erfolgen bis zum Erhalten derselben Farbe wie in einer Kontrollflüssigkeit, welche 20 cm3 destillierten Wassers statt der untersuchten Verdauungsflüssigkeit enthält. Die bei der Titrierung der Kontrolllösung etwa verbrauchte Menge der 1/5 normalen Atzbarytlösung wird von der zum Neutralisieren der Verdauungsflüssigkeit nötigen abgezogen. Die den Verdauungsflüssigkeiten im voraus zugesetzten Salzsäure- oder Alkalimengen müssen selbstverständlich bei der Berechnung der Analyse in Betracht gezogen werden.

Falls keine Karbonate oder Phosphate in dem Verdauungsgemische vorhanden sind, so kann man es ebensogut mittelst $^{1}/_{10}$ normaler Natronlauge als mittelst Ätzbaryt titrieren. Die Natronlauge ist der Barytlösung bei der Titrierung von phenylalaninreichen Mischungen vorzuziehen. Bei der Titrierung gewisser Proteine und ihrer ersten Spaltungsprodukte soll man die $^{1}/_{10}$ normale Natronlauge statt der $^{1}/_{5}$ normalen Ätzbarytlösung verwenden, um die Ausfällung schwer löslicher Barytverbindungen, besonders beim Gebrauche von Thymolphtalein, zu umgehen.

Das Prolin = z-Pyrrolidinkarbonsäure braucht bei der Phenolphtaleintitrierung nur $80^{\circ}/_{\circ}$ und bei der Thymolphtaleintitrierung nur $92^{\circ}/_{\circ}$ der berechneten Barytmenge. Der dadurch bewirkte Fehler ist ohne Bedeutung, wenn das Prolin, wie in den meisten Fällen, nur einen kleinen Bruchteil der gesamten Aminosäuremenge ausmacht; ist es hingegen in reichlicherer Menge vorhanden, so kann man die Formoltitrierung nicht anwenden.

Bei der Titrierung mit Natronlauge und Phenolphtalein verbraucht Tyrosin $105^{\circ}5^{\circ}/_{\circ}$ der berechneten Natronlauge, bei der Thymolphtaleintitrierung $137^{\circ}5^{\circ}/_{\circ}$. Bei Anwesenheit größerer Tyrosinmengen ist demnach die Methode unbrauchbar. Beim Vorhandensein kleiner Mengen darf man die Titrierung nur mit Natronlauge und Phenolphtalein vornehmen. Auch bei der Formoltitrierung der bei einer gewöhnlichen Proteinspaltung entstandenen Mischung von Aminosäuren kann das anwesende Tyrosin einen Fehler verursachen. Derselbe ist aber gewöhnlich nur klein und geht überdies nach Sörensen in entgegengesetzter Richtung von der der übrigen Fehlerquellen der Methode. Da Sörensen zufolge freie Phenolgruppen während der Proteolyse wahrscheinlich nicht gebildet werden, ist dieser Fehler voraussichtlich von ungefähr derselben Bedeutung vor und nach der Proteolyse. Wie dem auch sei, der Umschlag ist bei Tyrosinanwesenheit weniger scharf als sonst.

Die Guanidinsalze verhalten sich auch nach Formolzusatz als vollständig neutrale Verbindungen. Wenn in dem Proteinmolekül das Arginin mit den übrigen Molekülteilchen nur durch seine Amino- oder Karboxylgruppe verknüpft ist, während die Guanidingruppe auch im Proteinmolekül frei ist, wird die Passivität der Guanidingruppe dem Formol gegenüber keinen Fehler verursachen. Findet sich aber im Proteinmolekül eine Guanidingruppe mit einer Karboxylgruppe anhydridartig verbunden, so wird die Spaltung einer solchen Bindung sich der Messung bei der Formoltitrierung entziehen.

Die natürlichen Proteinlösungen haben oft eine mehr oder minder stark gelbe oder bräunlichgelbe Farbe. Daher ist es zweckmäßig, wenn auch meistens nicht notwendig, die Kontrollösung durch Zusatz einiger Tropfen von schwachen Lösungen passender Farbstoffe ähnlich zu färben. Zu diesem Zwecke eignen sich je nach der Farbe des Verdauungsgemisches Lösungen von 0.2~g Tropäolin 0. Tropäolin 0.0 oder Bismarckbraun in 1~l Wasser, sowie Lösungen von 0.02~g Methylviolett in 1~l Wasser. In einigermaßen stark gefärbten Flüssigkeiten ist die Phenolphtaleintitrierung der Thymolphtaleintitrierung vorzuziehen.

Das Sörensensche Verfahren ist besonders dann anwendbar, wenn die ersten Spaltungsprodukte der Proteine in weitere durch die Wirksamkeit der proteolytischen Fermente übergeführt werden.

Bei tief dunkelbraun gefärbtem Verdauungsgemische kommt es. wenn auch nur selten, vor, daß selbst nach der Verdünnung mittelst destillierten Wassers die Formoltitrierung nicht genügend scharf und genau ausgeführt werden kann. In diesen Fällen muß man durch Fällung in salzsaurer Lösung mit einigermaßen reichlichen Mengen Silbernitrat die untersuchte Flüssigkeit entfärben, ehe man die Formoltitrierung ausführt. 20 cm³ der Verdauungslösung werden in einen Kolben von 50 cm³ Inhalt gegossen und durch Zusatz von Salzsäure oder Natronlauge und destilliertem Wasser auf 25 cm³ Gesamtvolumen und auf die Acidität einer $^{1}/_{10}$ normalen Säurelösung ungefähr gebracht. Danach werden zirka 4 cm³ einer ungefähr 2-normalen Baryumchloridlösung (244 q reines BaCl² + H²O pro Liter Lösung) zugesetzt und darauf unter oft wiederholtem Schütteln tropfenweise zirka 20 cm3 einer ungefähr 1,3 normalen Silbernitratlösung (56.7 g reines Ag NO3 pro Liter Lösung). Nachdem der gebildete Schaum sich bei kurzem Stehen gesetzt hat, wird kohlensäurefreies Wasser bis zur Marke zugesetzt und überdies 4 Tropfen Wasser, deren Volumen ungefähr dem Volumen des von 20 cm³ der ¹/₃ normalen Silbernitratlösung herrührenden Silberchlorids entspricht. Nach gutem Schütteln wird durch ein gewöhnliches Filter (von 11 cm Durchmesser) filtriert, indem man darauf achtet, möglichst viel von dem Niederschlag auf das Filter zu bringen. Das im Anfang trübe Filtrat wird vorsichtig auf das Filter zurückgegossen. Mit einer passenden Menge (15-30 cm³) des schließlich erhaltenen, völlig klaren Filtrates wird dann eine Formoltitrierung mit Phenolphtalein als Indikator in der oben beschriebenen Weise ausgeführt, indem die eventuell im voraus zugesetzten

Säure-, bzw. Basenmengen mit in Rechnung gezogen werden. Bei dieser Versuchsanordnung entsteht dadurch ein Fehler, daß bis 2% des Gesamtstickstoffes mit dem Silberchlorid gefällt werden. Will man diese Stickstoffmenge bestimmen, so werden Filter und Niederschlag dreimal mit zirka 5 normaler Baryumchloridlösung gewaschen, indem man das Filter jedesmal völlig leer laufen läßt und darauf vollständig mit der Waschflüssigkeit füllt. Dabei muß man besonders darauf achten, den obersten Rand des Filters sorgfältig zu waschen, selbst wenn die Waschwässer ein wenig getrübt werden, denn der dadurch entstandene Fehler ist weit kleiner als der durch ein unvollständiges Waschen verursachte. Schließlich wird die Stickstoffmenge im Filter und Niederschlag zusammen nach Kjeldahl bestimmt.

Bestimmung der in einem Verdauungsgemische vorhandenen Proteosenmenge. Um die in einem Gemische von Verdauungsprodukten der Proteine vorhandene Proteosenmenge zu bestimmen, fügen K. Baumann und A. Bömer zu je 100 cm³ der vorher neutralisierten und vom Neutralisationsniederschlag durch Filtrieren befreiten Flüssigkeit 2 cm³ einer durch Vermischen von 1 Volumen konzentrierter Schwefelsäure mit 4 Volumina destillierten Wassers erhaltenen verdünnten Schwefelsäure. Die so angesäuerte Lösung wird dann in der Kälte mit feingepulvertem Zinksulfat gesättigt, so daß sich nach 24stündigem Stehen Zinksulfatkristalle wieder ausscheiden. Der Niederschlag wird dann auf ein Filter gebracht und mit einer schwach angesäuerten kaltgesättigten Zinksulfatlösung gewaschen. Bei diesem Verfahren kann man den Albumosenstickstoff unmittelbar nach Kjeldahl bestimmen.²)

Untersuchung der Stickstoffverteilung zwischen den verschiedenen Gruppen von Proteosen und anderen Spaltprodukten der Proteine. Um den quantitativen Verlauf der peptischen Eiweißspaltung bei Verdauungsversuchen in vitro und in vivo zu verfolgen, kann man sich der Untersuchung der Stickstoffverteilung zwischen den verschiedenen so entstandenen Produktenfraktionen nach folgendem Verfahren bedienen.³)

Die Gesamtverdauungsflüssigkeit bzw. davon in bestimmten Zeitpunkten entnommene Proben oder der Magen- oder Darminhalt werden zuerst durch Filtrieren von den etwaigen noch vorhandenen ungelösten

¹⁾ S. P. L. Sörensen, Études enzymatiques. I. Compt. rend. des trav. du lab. de Carlsberg. T. 7. fasc. 1. — Derselbe, Enzymstudien, Biochem. Zeitschr. Bd. 7. S. 45—101 (1907). — S. P. L. Sörensen und H. Jessen-Hansen, Über die Ausführung der Formoltitrierung in stark farbigen Flüssigkeiten. Biochem. Zeitschr. Bd. 7. S. 407—420 (1908).

²) K. Baumann und A. Bömer, Über die Fällung der Albumosen durch Zinksulfat. Zeitschr. f. Untersuch. d. Nahrungs- u. Genußmittel. Bd. 1. S. 106—126 (1898).

³⁾ E. Zunz, Über den quantitativen Verlauf der peptischen Eiweißspaltung, Zeitschr. f. physiol. Chem. Bd. 28. S. 132-173 (1899). — Derselbe, Contribution à l'étude de la digestion peptique et gastrique des substances albuminoides. Ann. de la Soc. roy. de Scienc. méd. et nat. de Bruxelles. T. 11. fasc. 1. p. 1-188 (1902). — Derselbe, Über die Verdauung und Resorption der Eiweißkörper im Magen und im Anfangsteil des Dünndarmes. Beitr. z. chem. Physiol. u. Pathol. Bd. 3. S. 339-364 (1902).

und geronnenen Proteinen befreit. Falls solche anwesend sind, so werden sie mit einer ziemlich erheblichen Menge konzentrierter Schwefelsäure versetzt und bis zur völligen Lösung stehen gelassen. Durch vorsichtiges Erwärmen auf dem Wasserbade kann man das Auflösen etwas befördern. Der Stickstoffgehalt dieser schwefelsauren Lösung der Proteine wird nach Kjeldahl festgestellt. Man bestimmt ebenfalls nach Kjeldahl den Stickstoffgehalt eines genau bekannten Teiles des Filtrates (10 cm³ z. B.), dessen Menge man genau abmißt.¹)

Dann erhitzt man das eventuell mittelst verdünnter Essigsäure leicht angesäuerte Filtrat a zum Sieden, um die noch gelösten Proteine zur Gerinnung zu bringen, filtriert, wäscht mit etwas heißem Wasser das auf dem Filter gebliebene geronnene Eiweiß, setzt die Waschwässer zum vom gerinnbaren Stickstoff befreiten Filtrate b und mißt das Volumen dieser Gesamtflüssigkeit b. Num bestimmt man den Stickstoffgehalt einer $10~cm^3$ des Filtrates a entsprechenden Menge des Filtrates b nach Kjeldahl; der zwischen den so erhaltenen Stickstoffmengen bestehende Unterschied ergibt den als gelöstes aber noch gerinnbares Eiweiß vorhandenen Stickstoff.

Danach neutralisiert man das Filtrat b sorgfältig durch tropfenweise Zufügung einer verdünnten Natronlauge oder Natriumkarbonatlösung und filtriert vom aus Acidalbumin bestehenden entstandenen Neutralisationsniederschlag ab, wodurch man das Filtrat c erhält, dessen Stickstoffgehalt nach Kjeldahl bestimmt wird. Der Unterschied zwischen dem Stickstoffgehalte der Filtrate b und c ergibt den im Neutralisationsniederschlag enthaltenen Stickstoff. Manchmal verbleiben indes noch geringe Acidalbuminmengen im Filtrate c, welche schon durch eine geringe Menge gesättigter Zinksulfatlösung gefällt werden und also die in der ersten Proteosenfraktion gefundene Stickstoffmenge etwas zu hoch ausfallen lassen.

Da die Fällungsgrenzen der einzelnen Proteosenfraktionen an Verdauungslösungen bestimmt wurden, welche etwa $2^{\circ}/_{\circ}$ gelöste und verdaute Proteine enthielten, so muß das Filtrat c, ehe es der Fraktionierung unterworfen wird, je nach Bedarf durch Einengen oder Verdünnen auf diese Konzentration gebracht werden. Hierauf säuert man das Filtrat c durch Zusatz von $2 cm^3$ verdünnter Schwefelsäure (1 Volumen konzentrierter Säure auf 4 Volumina Wasser) auf je $100 cm^3$ Flüssigkeit an und stellt das Gesamtvolumen der Flüssigkeit fest, um zu ersehen, in welchem Verhältnisse dasselbe zu $10 cm^3$ des ursprünglichen Filtrates a steht. Nun fügt man zum Filtrate c das gleiche Volumen einer kaltgesättigten, durch Zusatz von $2 cm^3$ verdünnter Schwefelsäure auf je $100 cm^3$ angesäuerter Zinksulfatlösung, wodurch die Protoalbumose (oder die Protoalbumosen) und

¹) L. Tobler, Über die Eiweißverdauung im Magen. Zeitschr. f. physiol. Chem. Bd. 45. S. 185—215 (1905). — E. Zunz, Contribution à l'étude de la digestion gastrique de la viande crue et de la viande cuite chez le chien. Mém. cour. et autres mém. publ. par l'Acad. roy. de méd. de Belgique. T. 19. fasc. 3. p. 1—36 (1906). — Nouvelles recherches sur la digestion de la viande crue et de la viande cuite chez le chien. Ibid. T. 29. fasc. 7. p. 1—30 (1907).

die Heteroalbumose in Gestalt feiner Flocken gefällt werden, welche sich ziemlich schnell auf dem Boden des die Flüssigkeit enthaltenden Gefäßes absetzen. Um absolut klare Filtrate zu erzielen, ist es gut, die Flüssigkeit einige Tage an einem kühlen Orte stehen zu lassen. Für die folgenden Proteosenfraktionen ist diese Vorsichtsmaßregel noch mehr erforderlich, da bei ihnen die Abscheidung eines abfiltrierbaren Niederschlages häufig erst nach längerem Stehen erfolgt. Das Filtrieren darf erst dann beginnen, wenn der Niederschlag sich vollständig oder wenigstens zum größten Teil am Boden des Gefäßes abgesetzt hat. Um dem Verlust von Flüssigkeit durch Verdunstung vorzubeugen, empfiehlt es sich, die Filtration an einem kühlen Orte vorzunehmen. Der Trichter mit dem doppelten oder dreifachen Filter steht unmittelbar in dem die filtrierende Flüssigkeit aufnehmenden Kolben und wird sorgfältig mit einer Glasplatte bedeckt gehalten. Wird Talk auf das Filter gebracht, so erhält man schon nach 1oder 2tägigem Stehen ein klares Filtrat, selbst wenn der Niederschlag sich noch keineswegs völlig am Boden des Gefäßes abgesetzt hat. Vom klaren Filtrate d wird nun so viel Flüssigkeit abgemessen, als $10 cm^3$ der Ursprungslösung entspricht, und dann der Stickstoff nach Kjeldahl bestimmt. Der Unterschied zwischen dem Gesamtstickstoff des Filtrates c und dem Stickstoffgehalt des Filtrates d ergibt den in der Protoalbumose (oder Protoalbumosen) und der Heteroalbumose enthaltenen Stickstoff. Bei Untersuchung des Mageninhaltes können Spuren von Schleim vorhanden sein, deren man sich nicht durch Gerinnung entledigen kann. Dieser Schleim wird mit der ersten Proteosenfraktion niedergerissen. Der dadurch bewirkte Fehler ist indes, da es sich stets nur um verschwindend geringe Mengen handelt, nur unbedeutend. Bei den Versuchen mit Hafereiweiß fügt man zum angesäuerten Filtrate c nur die $\frac{2}{3}$ seines Volumens entsprechende Menge an gesättigter saurer Zinksulfatlösung, wodurch in 100 cm³ des Gemisches 40 cm³ der Zinksulfatlösung enthalten sind.¹)

Zum Filtrat d setzt man die zur Fällung der zweiten Proteosenfraktion (Deuteroalbumose Λ) nötige Zinksulfatmenge. Dafür muß man zum Filtrat d bei der Verdauung von kristallisiertem Serumalbumin, von Kasein oder von Fleisch die Hälfte seines Volumens an gesättigter saurer Zinksulfatlösung fügen, wodurch in $100~cm^3$ des entstandenen Gemisches $66~cm^3$ 7 der Zinksulfatlösung enthalten sind. Für das Hafereiweiß werden zum Filtrate d die $^4/_5$ seines Volumens entsprechende Menge an gesättigter saurer Zinksulfatlösung gefügt, wodurch in $100~cm^3$ des Gemisches $66~cm^3$ 7 der Zinksulfatlösung enthalten sind. Wie Banzhaf und Gibson es deutlich nachgewiesen haben, darf man in diesen Fällen nicht von 2 3-Zinksulfatsättigung sprechen. Für das kristallisierte Eieralbumin werden zum Filtrate d die 2 3 seines Volumens entsprechende Menge an gesättigter saurer Zinksulfat-

¹) Ernst Rosenfeld, Über die Eiweißverdauung im Magen des Pferdes. Inaug.-Dissert, Leipzig 1908, 54 S.

²) Edwin J. Banzhaf and Robert Banks Gibson, The fractional precipitation of autitoxic serum. The Journ, of biolog, Chem. Vol. 3. p. 253—263 (1907).

lösung gefügt, wodurch in $100\ cm^3$ des Gemisches $70\ cm^3$ der Zinksulfatlösung enthalten sind. Für das Pseudoglobulin, das Euglobulin und das Serunglobulin werden zum Filtrat d die 23 $_{27}$ ihres Volumens entsprechenden Mengen an gesättigter saurer Zinksulfatlösung gefügt, wodurch in $100\ cm^3$ des Gemisches $73\ cm^3$ der Zinksulfatlösung enthalten sind. Nach genügendem Stehen und nach vorsichtigem wie oben vorgenommenem Filtrieren bestimmt man nach Kjeldahl den Stickstoffgehalt eines $10\ cm^3$ der Ursprungslösung entsprechenden Teiles des neuen Filtrates c. Der Unterschied zwischen dem Stickstoffgehalte des Filtrates d und dem des Filtrates e ergibt den Stickstoffgehalt der Deuteroalbumose A.

Dem Filtrate e wird num die zur Ausscheidung der dritten Proteosenfraktion (Deuteroalbumose B) genügende Menge gesättigter angesäuerter Zinksulfatlösung zugesetzt. Diese Menge entspricht für das kristallisierte Serumalbumin, das Kasein, das Fleisch und das Hafereiweiß den 4 " für das kristallisierte Eieralbumin den 13 " für das Seroglobulin, das Euglobulin und das Pseudoglobulin den 4 " des Volumens des Filtrates e, wodurch von $100~cm^3$ des entstandenen Gemisches resp. $86^\circ 7$, 83 und $85~cm^3$ aus Zinksulfatlösung bestehen. Subtrahiert man den Stickstoffgehalt eines Volumens des nach den oben angeführten Regeln erhaltenen neuen Filtrates f, welches $10~cm^3$ der ursprünglichen Lösung gleichkommt, von dem entsprechenden Volumen des Filtrates e, so erhält man den Stickstoffgehalt der Deuteroalbumose B.

Zur Fällung der vierten Proteosenfraktion (Deuteroalbumose C) wird das Filtrat f mit reinstem, kristallisiertem, feingepulvertem Zinksulfat gesättigt. Damit sich das Salz vollständig auflöst, wird die gesättigte Flüssigkeit während 2–3 Stunden einer Temperatur von ca. 40° ausgesetzt und dann an einem kalten Orte stehen gelassen. Nach vollständiger Sättigung der Flüssigkeit scheidet sich der Überschuß an Zinksulfat sehr schnell in Gestalt schöner Kristalle ab. Das Volumen der Lösung muß vor dem Eintragen des Zinksulfates wie auch nach erreichter Sättigung genau festgestellt werden. Beide Bestimmungen sind nötig, um bei den Analysenberechnungen die geringe, durch Zusatz des Zinksulfates bewirkte Volumensteigerung des Filtrates f berücksichtigen zu können. Der Unterschied zwischen dem Stickstoffgehalt des neuen, mit Zinksulfat gesättigten Filtrates g und demjenigen des Filtrates f ergibt den Stickstoffgehalt der vierten Proteosenfraktion (Deuteroalbumose C).

Die zunehmende Verdünnung der auf einander folgenden Filtrate sowie die fortschreitende. durch Ausfällen der Proteosen bedingte Abnahme an Stickstoffgehalt macht bei den Stickstoffbestimmungen für die späteren Filtrate die Verwendung einer entsprechend zunehmenden (bis zu 100 cm³ ansteigenden) Flüssigkeitsmenge erforderlich. Es ist daher nötig, die Proben der Filtrate e, f. g und h zunächst im Wasserbad auf ein geringes Volumen einzudampfen und dann erst nach dem Erkalten mit der Kjeldahl-Schwefelsäure zu versetzen. Die Gegenwart größerer Zinksulfatmengen hat den Nachteil, die Oxydation etwas zu verlangsamen.

Ein kleiner Fehler wird anscheinend dadurch eingeführt, daß das allerdings sehr geringe Volumen der verschiedenen Niederschläge gleich Null angesetzt wird. Nun ist aber das Volumen der Niederschläge, wenn man das imbibierte Wasser in Abzug bringt, dem Gesamtvolumen der Flüssigkeit gegenüber stets ein so geringes, daß der aus seiner Vernachlässigung hervorgehende Fehler in der Regel nur einige Tausendstel oder höchstens einige Hundertstel Prozente erreicht und jedenfalls kleiner ist als der Fehler, der sich aus den Schwierigkeiten, die Niederschläge völlig auszuwaschen, ergibt.

Als eine ernstlicher ins Auge zu fassende Fehlerquelle muß hingegen das oftmalige Abmessen kleiner Flüssigkeitsmengen angesehen werden, da die Abmessungsfehler bei der Berechnung der Stickstoffwerte eine erhebliche Vervielfältigung erfahren. Selbstverständlich ist der so entstandene Fehler bedeutender für die letzten Filtrate als für die ersten. Wenn man von einer genügenden Flüssigkeitsmenge ausgeht, kann man den dadurch bewirkten Irrtum größtenteils vermeiden, indem man das Filtratc in 4 Portionen teilt, wovon jede der drei ersten $^{1}/_{5}$, die letzte $^{2}/_{5}$ des Filtrates c entsprechen. In der ersten Portion fällt man nur die erste Proteosenfraktion, in der zweiten die erste und die zweite Fraktion, in der dritten die drei ersten Proteosenfraktionen, in der vierten die Gesamtproteosen. Letztere dient außerdem zur nachherigen Fällung der Peptone und der anderen durch Phosphorwolframsäure oder Pikrinsäure fällbaren Verdauungsprodukte.

Falls man den Stickstoffgehalt der verschiedenen Proteosenniederschläge selbst statt den Stickstoffgehalt der auf einander folgenden Filtrate nach Kjeldahl feststellt, so muß man, um die sonst durch das Auswaschen der Niederschläge verursachte erhebliche Steigerung des Volumens der Filtrate und die durch die so eingetretenen Volumenänderungen nötig gemachten Volumenbestimmungen und Umrechnungen zu vermeiden, die von dem geronnenen Protein und vom Neutralisationsniederschlage abfiltrierte Flüssigkeit in gleiche Portionen einteilen und den Stickstoffgehalt, der aus der ersten Proteosenfraktion allein, aus den ersten und zweiten Proteosenfraktionen zusammen, aus den 3 ersten Proteosenfraktionen und aus den Gesamtproteosen bestehenden, durch Absaugen von ieder Flüssigkeitsspur befreiten Niederschläge nacheinander nach Kjeldahl bestimmen. Auf diese Weise ermittelt man die Quantität jeder einzelnen Proteosenfraktion durch Abziehen des Stickstoffgehaltes des vorhergehenden Niederschlages vom Stickstoffgehalte des betreffenden Niederschlages. Außerdem muß man noch den Aschegehalt jeder der verschiedenen, völlig trockenen Niederschläge bestimmen und ihn vom Gewichte der betreffenden Trockensubstanz abziehen. 1)

¹) E. S. London und A. Th. Sulima, Zum Chemismus der Verdauung im tierischen Körper. H. Mitteilung. Eiweißverdauung im Magendarmkanal. Zeitschr. f. physiol. Chem. Bd. 46. S. 209—235 (1905).

Das proteosenfreie Filtrat g kann zur Bestimmung der anderen Verdauungsprodukte direkt gebraucht werden. Leider läßt sich bis jetzt das nur die Peptone niederschlagende ausgezeichnete Verfahren von Siegfried dazu nicht verwenden und muß man die Peptone entweder durch Phosphorwolframsäure oder durch Pikrinsäure fällen.

Durch Phosphorwolframsäure werden außer den Peptonen noch die Hofmeisterschen Peptoide sowie gewisse Endprodukte, wie Histidin, Arginin und Lysin abgeschieden. Zur Bestimmung des durch Phosphorwolframsäure fällbaren Stickstoffes setzt man zum proteosenfreien Filtrat q die Hälfte seines Volumens an verdünnter Schwefelsäure (1 Volumen konzentrierte Schwefelsäure, 4 Volumina Wasser) und dann tropfenweise unter stetigem Schütteln so lange eine 10% ige wässerige Lösung kristallisierter Merckscher Phosphorwolframsäure, bis die entstandene Trübung nicht mehr zunimmt. Man muß jeden Überschuß an Phosphorwolframsäurelösung tunlichst vermeiden, denn manche durch diese Säure gefällte stickstoffhaltige Stoffe, wie z.B. die Diaminosäuren, lösen sich teilweise wieder in einem Reagenzüberschusse auf. Wie Pfaundler es gezeigt hat, geben mit Phosphorwolframsäure verschiedenen Handelsursprunges bereitete Lösungen nicht dieselben Ergebnisse. Man läßt die erhaltene trübe Flüssigkeit erst 4 bis 6 Stunden bei einer Temperatur von 40°C und hierauf 1—2 Tage bei niederer Temperatur stehen, worauf mit üblicher Vorsicht filtriert werden kann. Das klare Filtrat h ist blaßviolett gefärbt und darf sich auf Zusatz eines Tropfens der Phosphorwolframsäurelösung nicht mehr trüben. Das Volumen des Filtrates q vor der Zugabe der verdünnten Schwefelsäure und der Phosphorwolframsäure sowie das Volumen des Filtrates h müssen selbstverständlich festgestellt werden. Der nach Kjeldahl bestimmte Stickstoffgehalt des Filtrates h ergibt den in den durch Phosphorwolframsäure nicht fällbaren Verdauungsprodukten enthaltenen Stickstoff. Durch Abziehen dieser Stickstoffzahl vom Stickstoffgehalte des Filtrates y ermittelt man den in den Peptonen und den anderen durch Phosphorwolframsäure fällbaren Verdauungsprodukten enthaltenen Stickstoff. Die Oxydation der zu analysierenden Flüssigkeiten wird durch die Anwesenheit von Phosphorwolframsäure ziemlich erschwert. Um den Stickstoff nach dem Kjeldahlschen Verfahren bei Phosphorwolframsäureanwesenheit zu bestimmen, empfiehlt es sich, von der Kosselschen Methode Gebrauch zu machen. 250 cm³ des Filtrates h werden in einen Erlenmeverkolben von 1 l Inhalt aus Geräteglas (Schott und Gen., Jena) gebracht, welcher gleichzeitig zur Oxydation und zum darauf folgenden Destillieren des gebildeten Ammoniaks dient. Zu dieser Flüssigkeit setzt man 50 cm3 konzentrierter Schwefelsäure. Man verdampft vorsichtig auf freier Flamme bis zum anfänglichen Sieden. Nun läßt man die Flüssigkeit fast völlig erkalten und setzt ein aus 10 g Kaliumsulfat und 1 g Kupfersulfat bestehendes feines Pulver sowie 50 cm³ Kjeldahl-Schwefelsäure hinzu. Hierauf erwärmt man die Flüssigkeit sehr vorsichtig so lange, bis sie klar geworden ist und bis der auf dem Boden des Kolbens bestehende Niederschlag deutlich gelb geworden ist, was anzeigt, daß die Oxydation völlig beendet ist. Nach Erkalten des Kolbeninhaltes verdünnt man ihn mit destilliertem Wasser und reduziert vorsichtig die Wolframsäure durch feingepulvertes Zink. Die Destillation und die Titrierung erfolgen wie gewöhnlich. Bei aller Vorsicht darf man indes den Resultaten der Stickstoffbestimmung nach Kjeldahl bei Gegenwart großer Phosphorwolframsäuremengen keine zu große Bedeutung beimessen.¹)

Statt die Peptone im albumosenfreien Filtrat g mit Phosphorwolframsäure zu fällen, kann man sie mittelst Pikrinsäure niederschlagen. Dazu wird auf 10 Teile Filtrat 1 Teil verdünnter Schwefelsäure (1 Volumen konzentrierter Schwefelsäure, 4 Volumina destillierten Wassers) hinzugefügt und Pikrinsäure im Überschusse. Dieses Gemenge wird zur Lösung der Pikrinsäure eine kurze Zeit bei 40° C gehalten und nach dem Abkühlen filtriert. Man erzielt sofort ein klares Filtrat h, wenn man die mit Pikrinsäure versetzte Flüssigkeit auf einen doppelten oder dreifachen, Talk enthaltenden Filter gießt. Das Filtrat h wird mit Äther wiederholt kräftig ausgeschüttelt, um die Pikrinsäure zu entfernen. Dann bestimmt man nach Kjeldahl den Stickstoffgehalt des Filtrates h. wodurch man den durch Pikrinsäure nicht fällbaren Stickstoffteil ermittelt. Durch Abziehen dieser Stickstoffzahl vom Stickstoffgehalte des Filtrates q stellt man den als Peptone und andere durch Pikrinsäure in den proteosenfreien Flüssigkeiten vorhandenen Stickstoff fest. Die Pikrinsäure fällt die Peptone meistens völlig, manchmal jedoch nur teilweise, sowie außerdem keine Biuretreaktion gebende Stoffe (wahrscheinlich das Lysin und vielleicht noch andere Substanzen), aber weder das Arginin noch das Histidin. Es wird immer im proteosenfreien Filtrat q viel weniger Stickstoff durch Pikrinsäure niedergeschlagen als durch Phosphorwolframsäure.²)

Man kann auch zur Fällung der Peptone das proteosenfreie Filtrat g zuerst mittelst Pikrinsäure und nachher mittelst Phosphorwolframsäure in der oben beschriebenen Weise versetzen. 3)

¹) Fr. Hofmeister, Über Bau und Gruppierung der Eiweißkörper. Ergebn. d. Physiol. Bd. 1. Abt. I. S. 759—802 (1902). — G. Gumlich, Über die Ausscheidung des Stickstoffes im Harn. Zeitschr. f. physiol. Chem. Bd. 17. S. 10—34 (1892). — W. Hausmann, Über die Verteilung des Stickstoffes im Eiweißmolekül. Ebenda. Bd. 27. S. 95—108 (1899). — W. Gulewitsch, Über das Arginin. Ebenda. Bd. 27. S. 178—215 (1899). — G. Wetzel, Die organischen Substanzen der Schalen von Mytilus und Pinna. Ebenda. Bd. 29. S. 386 bis 410 (1900). — M. Pfaundler, Über ein Verfahren zur Bestimmung des Amidosäurenstickstoffs im Harne. Ebenda. Bd. 30. S. 74—89 (1900). — Fr. Kutscher, Über die Verwendung der Phosphorwolframsäure bei quantitativen Bestimmungen er Spaltungsprodukte des Eiweißes. Ebenda. Bd. 31. S. 215—226 (1900). — A. Kossel, Über die Bestimmung des Harnstoffes im Harn (nach Versuchen des Herrn H. Schmied). Verhandl. d. Berl. physiol. Ges. 27. Juli 1894 in Arch. f. Anat. u. Physiol. Physiol. Abt. S. 552—553 (1894). — K. Baumann und A. Bömer, Über die Fällung der Albumosen durch Zinksulfat. Zeitschr. f. Unters. d. Nahrungs- u. Genußmittel. Bd. 1. S. 106—126 (1898).

²) Felix Reach, Zur Kenntnis der Verdauungs- und Resorptionsvorgänge im Magen. Beitr. z. chem, Physiol. u. Path. Bd. 4. S. 139—144 (1903). — E. Zunz, Nouvelles recherches sur la digestion de la viande dans l'estomac et dans la première portion de l'intestin grêle chez le chien. Ann. de la Soc. roy des Sc. méd. et nat. de Bruxelles. T. 12. fasc. 3. p. 8 (1903).

³) Ernst Rosenfeld, loc. cit. — Ernst L\u00fctsch, Zur Kenntnis der Verdauung von Fleisch im Magen und D\u00fcnndarme des Schweines. Inaug.-Diss. Leipzig 1908. 54 S.

Da der prozentige Stickstoffgehalt der verschiedenen Proteosen und der anderen Abbauprodukte der Proteine keineswegs der gleiche für alle diese Stoffe ist, so ergibt sich aus der Feststellung der Stickstoffverteilung zwischen den verschiedenen Verdauungsprodukten nur eine annähernde Schätzung der relativen Mengen dieser Stoffe. 1)

Haslams Verfahren zur Bestimmung des Proteosengehaltes einer Verdauungslösung. Nach Haslam soll bei dem einfachen Aussalzen der Proteosen eine ziemlich beträchtliche Proteosenmenge durch die Peptone oder andere Körper in Lösung gehalten werden, während andrerseits im Proteosenniederschlage andere Stoffe mitgerissen werden. Um dadurch bewirkte, ihm zufolge sehr erhebliche Irrtümer zu verhüten. empfiehlt Haslam zur Bestimmung des Proteosengehaltes einer Verdauungslösung folgendes Verfahren. Die von den geronnenen und einfach gelösten Proteinen sowie vom Acidalbumin befreite, genau neutralisierte Verdauungslösung wird durch gepulvertes Natriumsulfat auf dem Wasserbade allmählich gesättigt. Nach fünfstündigem Stehen im Brutofen bei 37°C wird filtriert. Der vom Filter abgenommene Niederschlag wird in einer Schale mehrmals mit gesättigter Natriumsulfatlösung bis 45-55° C umgerührt. Die erhaltenen Waschwässer werden filtriert. Man muß diese Umrührungsprozedur so lange fortsetzen, bis der Zusatz des gleichen Volumens konzentrierter Schwefelsäure zu einer Waschwasserprobe nur eine äußerst schwache Bräunung hervorruft, wodurch gezeigt wird, daß fast keine organischen Stoffe mehr in Lösung gehen. Die auf den Filtern, in der Umrührungsschale und auf der zum Umrühren benutzten Spatel zurückgebliebenen Proteosen werden in Wasser gelöst, durch Natriumsulfatlösung gefällt und durch mehrmaliges Umrühren mit gesättigter Natriumsulfatlösung auf dieselbe Weise behandelt. Die Gesamtproteosen werden dann in Wasser gelöst, mit gepulvertem Natriumsulfat ausgesalzen und nach vierstündigem Verbleiben im Brutofen filtriert. Der Proteosenniederschlag wird wieder gelöst, ausgesalzen und filtriert. Diese Aussalzungen und Auflösungen werden so lange fortgeführt, bis der nach jeder Aussalzung nach Kieldahl bestimmte Stickstoffgehalt des Filtrates keine Änderungen mehr erfährt, wodurch bewiesen wird, daß die Trennung der Proteosen von den Peptonen und übrigen Verdauungsprodukten vollendet ist. Nun stellt man nach Kieldahl den Stickstoffgehalt der in Wasser gelösten Proteosen fest und fügt zum erhaltenen Resultate die bei dem Reinigungsverfahren in Lösung gegangene Proteosenstickstoffmenge, was den Gesamtgehalt der Verdauungslösung an Proteosen ergibt. Um die in Lösung gegangene Proteosenstickstoffmenge zu berechnen, wird der mittlere Stickstoffgehalt der letzten nach der Aussalzung erhaltenen Filtrate mit dem Gesamtvolumen der Waschflüssigkeiten und Filtrate vervielfacht. Dieses

¹⁾ E. Zunz, De la quantité d'albumoses contenue dans l'estomac du chien après ingestion de viande. Ann. de la Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 13. Fasc. 1. p. 1—10 (1904).

leider sehr viel Zeit raubende und etwas verwickelte Verfahren gibt nach Haslam desto genauere Resultate, je größer der Proteosengehalt der Verdauungslösung ist. Enthält diese mehr als $60^{\circ}/_{\circ}$ Proteosen, so soll der Irrtum $2^{\circ}5^{\circ}/_{\circ}$ nicht übersteigen. Sind hingegen weniger als $20^{\circ}/_{\circ}$ Proteosen im Verdauungsgemische vorhanden, so erhält man wahrscheinlich keine sehr genauen Ergebnisse. 1

Fällung der Proteosen mittelst Gerbsäure. Man verwendet vielfach die Gerbsäure als Fällungsmittel der Proteosen. Nach Effront werden 50 q Gerbsäure in 500 cm³ destilliertem Wasser aufgelöst; zu dieser Lösung fügt man zuerst 50 cm³ einer normalen Natronlauge, dann eine genügende Menge destillierten Wassers, um das Gesamtvolumen der Flüssigkeit auf 1 l zu bringen, schließlich noch 15 cm³ einer 10^o/_oigen Weinsteinsäurelösung. Zu der von den geronnenen und einfach gelösten Proteinen sowie vom Neutralisationsniederschlag befreiten Flüssigkeit fügt man einen großen Überschuß dieser Gerbsäure-Weinsteinsäurelösung, Nach 12stündigem Stehen filtriert man durch einen stickstofffreien Filter, wäscht 5 - 6malmit der Gerbsäure-Weinsteinsäurelösung aus und bestimmt nach Kieldahl den Stickstoffgehalt des Niederschlages. Die von Effront vorgeschlagene Gerbsäure-Weinsteinsäurelösung fällt nun tatsächlich sämtliche Proteosen. während die echten Peptone zum größten Teile der Fällung entgehen und nur durch Phosphorwolframsäure niedergeschlagen werden. Sie fällt aber, außer den Proteosen, auch noch Körper, die keine Biuretreaktion mehr geben und von denen nur ein Teil durch Phosphorwolframsäure gefällt wird. Dieses Verfahren ist also nicht zu empfehlen.

Steudel und Kutscher haben die Gerbsäure zur Beseitigung der kolloidalen Bestandteile vorgeschlagen. Man fällt die neutralisierte oder gegen Lackmuspapier ganz schwach alkalisch reagierende Flüssigkeit mit $20^{\circ}/_{\circ}$ iger wässeriger Gerbsäurelösung. Paul Mey konnte mittelst dieses Verfahrens die Proteosen bis auf Spuren fällen, nicht aber die Peptone.

Nach Hedin soll die Anwendung eines Überschusses einer aus 70 g Gerbsäure, 50 cm³ Eisessig, 100 g NaCl und die zum Erhalten eines Gesamtvolumens von 1 l nötige Menge destillierten Wassers bestehende Flüssigkeit keineswegs die Peptone und die übrigen Verdauungsprodukte der Proteine fällen, also nur die Proteosen. Durch Abziehen des nach Kjeldahl bestimmten Stickstoffgehaltes des nach der Gerbsäurefällung erhaltenen Filtrates vom Stickstoffgehalte der von den geronnenen und einfach gelösten Proteine sowie vom Acidalbumin befreiten Flüssigkeit ermittelt man den als Proteosen vorhandenen Stickstoff.

Sörensen fügt zu $20~cm^3$ der neutralisierten Verdauungslösung zuerst $2~cm^3$ normaler, durch Essigsäurezusatz Lackmus gegenüber neutralisierter Natriumacetatlösung, dam $10~cm^3$ $10^{\circ}/_{\circ}$ iger wässeriger Gerbsäurelösung

¹) S. N. Pincus, On the precipitation of proteids with anhydrous sulfate of sodium. The Journ. of Physiol. Vol. 37. p. 57—65 (1901). — H. C. Haslam, The separation of proteids. I. The Journ. of Physiol. Vol. 32. p. 267—298 (1905).

und bringt schließlich durch Wasserzusatz die Flüssigkeit auf 50 cm² Gesamtvolumen. Nach tüchtigem Schütteln und nachherigem Stehen bis zum nächsten Tage wird filtriert und im Filtrate der Stickstoffgehalt nach Kjeldahl festgestellt. ¹)

Isolierung der Proteosen. Zur Isolierung der verschiedenen Proteosen aus den Produkten der Verdauung der Proteine kann man sich des Pickschen oder des Haslamschen Verfahrens bedienen, welche beide auf die fraktionierte Fällung mittelst Ammonsulfat und Alkohol berühen, oder der auf der Anwendung des Eisenammonalauns füßenden Adlerschen Methode. Nach Pick kann man die Proteosen in 4 Gruppen einteilen, wovon die erstere aus der Protoalbumose und der Heteroalbumose, die zweite (Proteosenfraktion A) aus der alkoholfällbaren Thioalbumose und aus der alkohollöslichen Albumose A^{II}, die dritte (Proteosenfraktion B) aus der Albumose B^I, der Synalbumose und der Albumose B^{III} und die vierte aus der Albumose C bestehen. Vielleicht ist sogar die Zahl der Proteosen noch größer.²) Nach Haslam hingegen soll man nur 5 Proteosen unterscheiden, die Heteroalbumose, die in gleichen Teilen Alkohol und Wasser unlöslichen z-Protoalbumose und z-Deuteroalbumose, die darin löslichen β-Protoalbumose und β-Deuteroalbumose.

Darstellung der Proteosen nach E. P. Pick. Die entsprechend den durch E. P. Pick aufgefundenen Fällungsgrenzen getrennten 4 verschiedenen Proteosenfraktionen werden jede für sich durch Alkoholzusatz in weitere Fraktionen zerlegt, diese durch wiederholte Fällung mit Alkohol von bestimmtem Prozentgehalte von den benachbarten Fraktionen möglichst vollkommen getrennt und durch Fällung mit essigsaurem Baryt vom anhaftenden Ammonsulfat befreit.

Hetero- und Protoalbumose. Die Verdauungsflüssigkeit wird zuerst von den geronnenen oder gelösten Proteinen und vom Neutralisationsniederschlag befreit. Die so erhaltene neutrale Flüssigkeit wird mit dem gleichen Volumen gesättigter Ammonsulfatlösung gefällt. Der entstandene Niederschlag wird abfiltriert und mit einer aus gleichen Teilen Wasser und gesättigter Ammonsulfatlösung bestehenden Flüssigkeit gründlich gewaschen und nachher in heißem Wasser gelöst, um eine möglichst konzentrierte, wässerige, neutrale Lösung zu erhalten. Diese Flüssigkeit wird mit dem doppelten Volumen 95% gigen Alkohols versetzt, worauf man sie

¹) J. Effront, Über die Bestimmung der Verdauungsprodukte des Pepsins. Chemiker-Zeitung. Bd. 23. Nr. 75 (1899). — H. Steudel und Fr. Kutscher, Zur Kenntnis von Liebigs Fleischextrakt. Zentralbl. f. Physiol. Bd. 19. S. 504--508 (1902). — Paul Mey, Zur Kenntnis der Pepsinverdauung. Zeitschr. f. physiol. Chem. Bd. 48. S. 81-84 (1906). — S. G. Hedin, Investigations on the proteolytic enzymes of the spleen of the ox. Journ. of Physiol. Vol. 30. p. 155-175 (1904). — S. P. L. Sörensen, Enzymstudien. Biochem. Zeitschr. Bd. 7. S. 45-101 (1907).

²⁾ E. Zunz, Die fraktionierte Abscheidung der peptischen Verdauungsprodukte mittelst Zinksulfat. Zeitschr. f. physiol. Chem. Bd. 27. S. 219—249 (1899); Action des albumoses secondaires et des peptones sur l'or colloïdal. Bull. de la Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 64. p. 174—186 (1906).

in der Kälte bis zum völligen Absetzen der Niederschläge stehen läßt. Der durch Abgießen von der darüber befindlichen alkoholischen Lösung befreite Niederschlag dient zur Darstellung der Heteroalbumose, die abgegossene Flüssigkeit zur Darstellung der Protoalbumose.

Heteroalbumose. Der gut abgepreßte Niederschlag wird in 10% iger wässeriger Lösung mit verdünnter Schwefelsäure neutralisiert und mit dem gleichen Volumen gesättigter Ammonsulfatlösung gefällt. Die sich in Gestalt eines festen Kuchens an der Flüssigkeitsoberfläche abscheidende Heteroalbumose wird abgehoben, sorgfältig auf dem Tonteller von der Flüssigkeit befreit, gelöst und aus ca. 10% iger neutraler Lösung wie vorher ausgesalzen, abgepreßt, das Ganze nochmals wiederholt. Man versetzt die so gewonnene Proteose in 10% iger wässeriger Lösung mit dem halben Volumen 95% igen Alkohols. Der gut abgepreßte Niederschlag wird in heißem Wasser gelöst, filtriert und wieder mit dem halben Volumen 95% igen Alkohols gefällt. Diese Prozedur wird ein drittes Mal wiederholt, worauf der Niederschlag zuerst mit 32% igem, dann mit 95% igem Alkohol und endlich mit Äther gewaschen wird und nachher getrocknet. Das Trocknen soll bis zur Gewichtskonstanz im trockenen Luftstrome bei einer 95% nicht übersteigenden Temperatur erfolgen; diese Vorsichtsmaßregel muß man für alle Proteosen beachten.

Protoalbumose. Aus der abgegossenen alkoholischen Lösung wird der Alkohol im Vakuum abdestilliert, der Rückstand getrocknet, in Wasser gelöst und die etwa 10% ige, mit Schwefelsäure neutralisierte Lösung wiederholt durch das gleiche Volumen gesättigter Ammonsulfatlösung gefällt, abfiltriert und in Wasser aufgelöst. Manchmal entsteht bei vorsichtigem Zusatze verdünnter Essigsäure eine Trübung oder die Abscheidung eines Niederschlages. Dann muß man solange Essigsäure zusetzen, bis eine Probe der vom entstandenen Niederschlage abfiltrierten Lösung auf vorsichtigen Säurezusatz keine Trübung mehr gibt. Um die Ammonsulfatreste zu entfernen, wird die Flüssigkeit mit einer gesättigten Lösung essigsauren Barvums unter Vermeiden eines Überschusses versetzt. Man filtriert und setzt zum Filtrate wässerige Ammoniumkarbonatlösung, welche den in Lösung gebliebenen Baryt fällt. Falls die Filtration der mit essigsaurem Baryt versetzten Flüssigkeit selbst nach längerem Stehen kein völlig klares Filtrat ergibt, so kann man jedoch die Ammoniumkarbonatlösung dem Filtrate zusetzen, wodurch dieses stets leicht klar abfiltrierbar wird. Das Filtrat wird vorsichtig aufgekocht, vom sich eventuell nachträglich noch ausscheidenden Baryumkarbonat abfiltriert und darauf auf dem Wasserbade bis zur Sirupdicke eingedampft. Der erhaltene Rückstand wird in 60% igem Alkohol aufgelöst, filtriert, durch Hinzufügen eines großen Überschusses von 95% igem Alkohol ausgefällt, abfiltriert, abgepreßt, nochmals aus der konzentrierten Lösung in 60% igem Alkohol mit 95% igem Alkohol gefällt. Schließlich wird der auf dem Filter mit Alkohol und Äther gewaschene Niederschlag über Schwefelsäure getrocknet.

Proteosenfraktion A. Das nach Zusatz vom gleichen Volumen gesättigter Ammonsulfatlösung zu der von den geronnenen oder gelösten

Proteinen und vom Acidalbumin befreiten Flüssigkeit erhaltene Filtrat wird mit dem halben Volumen gesättigter Ammonsulfatlösung gefällt. Der so entstandene Niederschlag wird abfiltriert und mit einer aus zwei Volumina gesättigter Ammonsulfatlösung und einem Volumen destillierten Wassers bestehenden Flüssigkeit gewaschen, und daraus eine möglichst konzentrierte wässerige neutrale Lösung bereitet, zu welcher man dann das doppelte Volumen 95% jegen Alkohols fügt. Der Niederschlag dient zur Darstellung der Thioalbumose, das Filtrat zur Darstellung der alkohollöslichen Albumose A^{II}.

Thioalbumose. Mit dem abfiltrierten Niederschlage wird eine 5- bis 10% ige wässerige Lösung dargestellt, welche behufs Abscheidung von der ersten Fällung etwa entgangenen Resten der Heteroalbumose mit dem gleichen Volumen gesättigter Ammonsulfatlösung gefällt und vom entstandenen Niederschlage abfiltriert wird. Zum Filtrate setzt man nun die Hälfte seines Volumens gesättigter Ammonsulfatlösung, filtriert, löst den Niederschlag in ungefähr derselben Wassermenge wie bei der Ausgangslösung und wiederholt mehrmals die aufeinander folgenden Operationen, nämlich Zusatz eines Volumens gesättigter Ammonsulfatlösung, Abfiltrieren. Zusatz eines zweiten Volumens gesättigter Ammonsulfatlösung, Filtrieren, Auflösen in Wasser so lange, bis die Thioalbumose von den anhaftenden Teilen der Nachbarfraktionen möglichst vollkommen gereinigt ist. Die wässerige Lösung des auf die beschriebene Weise erhaltenen, die Molischsche Reaktion nicht mehr gebenden Präparates wird mit essigsaurem Barvt versetzt. Im Filtrate fällt man das überschüssige Barvum mit kohlensaurem Ammon, kocht das barytfreie Filtrat auf, filtriert es eventuell vom sich noch ausscheidenden Baryumkarbonat, konzentriert es auf dem Wasserbade und fällt die Lösung mit 95% igem Alkohole im Überschusse. Der flockige Niederschlag wird gut abgepreßt, nochmals aus konzentrierter wässeriger Lösung mit Alkohol gefällt, abfiltriert, mit Alkohol und Äther gewaschen, getrocknet.

Albumose A^{II}. Die nach Fällung der Lösung der Proteosenfraktion A mit dem doppelten Alkoholvolumen erhaltene alkoholische Lösung wird im Vakuum zur Trockene eingedampft, der Rückstand in Wasser gelöst und die etwaigen Reste der Protoalbumose aus der etwa 10% jeen Lösung durch Fällung mit dem gleichen Volumen gesättigter Ammonsulfatlösung bei neutraler Reaktion entfernt. Aus dem ammonsulfathaltigen Filtrat wird die Albumose A^{II} durch weiteres Zufügen eines halben Volumens gesättigter Ammonsulfatlösung ausgefällt. Nach seinem völligen Absetzen wird der Niederschlag nochmals gelöst und mit dem 3-4fachen Volumen 95° eigen Alkohols gefällt. Der Trockenrückstand des Alkoholfiltrates wird wiederum von Protoalbumoseresten und von Beimengungen, die dem alkohollöslichen Anteile der Fraktion B angehören, durch Aussalzen in dem früheren Verhältnis befreit. Diese Prozedur wird mehrmals wiederholt. Wenn sich aus dem nunmehr erhaltenen Produkte durch Zufügen des 2-3fachen Alkoholvolumens keine alkoholfällbare Substanz mehr entfernen läßt, so wird nach Verdunsten des Alkohols der Trockenrückstand mit essigsaurem Baryt und Ammoniumkarbonat wie bei der Thioalbumose aschefrei gemacht. Die salz-

freie Albumose A^{II} wird endlich aus sehr konzentrierter wässeriger Lösung durch einen großen Alkoholüberschuß gefällt. der Niederschlag abfiltriert, mit 95% eigem Alkohol, absolutem Alkohol und Äther gewaschen, schließlich im trockenen Luftstrom einige Tage bei einer 95% C nicht übersteigenden Temperatur getrocknet.

Proteosenfraktion B. Das nach der Fällung der Proteosenfraktion A erzielte Filtrat wird durch Eintragung von fein gepulvertem Ammonsulfat gesättigt. Der abgeschiedene Niederschlag wird abfiltriert, mit gesättigter Ammonsulfatlösung gewaschen, in Wasser aufgelöst, um eine 5—10% ige neutrale Lösung zu erzielen, welche mit zwei Volumina gesättigter Ammonsulfatlösung gefällt, vom erhaltenen etwaigen Niederschlage abfiltriert und mit gepulvertem Ammonsulfate gesättigt wird. Diese Prozedur wird so lange wiederholt, bis alle mitgerissenen Reste der anderen Proteosenfraktionen entfernt sind. Die so gereinigte Fraktion B wird in etwa 6-10% iger wässeriger Lösung mit dem doppelten Volumen 95% igen Alkohols gefällt; es entsteht zunächst eine Trübung der alkoholischen Lösung, die sich nach mehrstündigem Stehen als leichter Niederschlag absetzt (Albumose B^I). Das alkoholische Filtrat wird nunmehr mit einer dem vierfachen Volumen der ursprünglichen Flüssigkeitsmenge entsprechenden Alkoholmenge versetzt, so daß eine etwa 75-81% ige Alkohollösung entsteht, wodurch die Albumose B^{II} oder Synalbumose fällt. Im alkoholischen Filtrate ist noch die alkohollösliche Albumose B^{III} vorhanden.

Albumose B¹. Diese Proteose wird durch wiederholtes Auflösen in Wasser, Fällung mit dem doppelten Volumen $95^{\circ}/_{\circ}$ igen Alkohols und Abfiltrieren von der Synalbumose getrennt, wobei sie salzfrei erhalten wird und nach dem Auswaschen mittelst konzentrierten Alkohols und Äther gleich getrocknet werden kann.

Synalbumose. Diese Proteose wird in Wasser aufgelöst und durch wiederholte Alkoholfällung, Auflösen und Abfiltrieren von den mitgerissenen Resten der Nachbarfraktionen gereinigt. Zur Trennung von Resten der Proteose B^{HI} empfiehlt es sich, 65—70% igen Alkohol anzuwenden. Die durch Alkoholfällung gereinigte Synalbumose wird in wässeriger Lösung durch Fällung mit essigsaurem Baryt in der oben beschriebenen Weise von anhaftendem Ammonsulfat befreit, aus konzentrierter Lösung mit großem Alkoholüberschusse ausgefällt, mit konzentriertem Alkohol und Äther ausgewaschen, dann getrocknet.

Albumose B^{III}. Das nach Ausfällung der Fraktion B^{II} erhaltene alkoholische Filtrat wird auf dem Wasserbade zur Trockene eingedampft, in Wasser gelöst, mit dem sechsfachen Volumen 95% jegen Alkohols gefällt und filtriert. Das neue alkoholische Filtrat wird eingedampft, wiederholt auf diese Weise gereinigt, dann die wässerige Lösung durch Fällung mit essigsaurem Baryt in der oben beschriebenen Weise vom anhaftenden Ammonsulfat befreit, aus konzentrierter Lösung mit großem Alkoholüberschusse ausgefällt, mit konzentriertem Alkohol und Äther ausgewaschen, schließlich getrocknet.

Proteosenfraktion C. Die nach Ausscheidung aller Proteosen durch Ammonsulfatsättigung in neutraler Lösung erhaltene Flüssigkeit wird mit ½,10 ihres Volumens an ammonsulfatgesättigter, ½,10-Normalschwefelsäure gefällt. Nach mehrtägigem Stehen hat sich die Proteosenfraktion C so fest am Boden des Gefäßes abgesetzt, daß man die überstehende Lösung bequem abgießen kann. Die Albumose C wird wieder in Wasser gelöst, die Lösung mit Ammoniak neutralisiert, behufs Reinigung von der Nachbarfraktion B mit Ammonsulfat in der Hitze gesättigt, vom entstandenen Niederschlage abfiltriert, wie oben mit Säure gefällt. Das erhaltene Produkt wird mehrmals einer derartigen Reinigung unterzogen, bis durch Salzsättigung bei neutraler Reaktion keine Proteosenausscheidung mehr zu erzielen ist. Die gereinigte Proteose C wird dann vom anhaftenden Salze in üblicher Weise befreit und nachher bis zur Gewichtskonstanz im trockenen Luftstrome bei einer 95° C nicht übersteigenden Temperatur getročknet.¹)

Darstellung der Proteosen nach *Haslam*. Zu der von den geronnenen und gelösten Proteinen sowie vom Acidalbumin befreiten Lösung der Verdauungsprodukte setzt man das gleiche Alkoholvolumen. Der Niederschlag enthält die Heteroalbumose, die z-Protoalbumose und die z-Deuteroalbumose; im Filtrate befinden sich die 3-Protoalbumose und die 3-Deuteroalbumose.

Der mit 50% igem Alkohol ausgewaschene abfiltrierte Niederschlag wird in einer der Ursprungslösung entsprechenden Wassermenge aufgeschwemmt, worin die z-Protoalbumose und die z-Deuteroalbumose sich auflösen, die Heteroalbumose aber nicht. Zum von der Heteroalbumose abfiltrierten Filtrate setzt man wieder ein Volumen Alkohol, filtriert, wäscht den Niederschlag mit 50% igem Alkohol und schwemmt ihn in Wasser auf, wobei eine neue Heteroalbumosemenge unlöslich bleibt. Die Heteroalbumose wird mit heißem Wasser gewaschen und die Waschwässer mit der die z-Protoalbumose und die z-Deuteroalbumose enthaltenden Flüssigkeit vereinigt. Diese Alkoholfällung und nachherige Auflösung wird so lange wiederholt, bis der Zusatz des gleichen Volumens konzentrierter Schwefelsäure zum Filtrate stets dieselbe Färbung gibt. Dann löst man die gefällten z-Protoalbumose und z-Deuteroalbumose in Wasser auf, fällt die z-Protoalbumose durch Zusatz von 1 Volumen gesättigter Ammonsulfatlösung zum Filtrate und die z-Deuteroalbumose durch Sättigung des nach Abfiltrieren der z-Protoalbumose erhaltenen Filtrates mit gepulvertem Ammonsulfate. Sowohl die z-Protoalbumose als die z-Deuteroalbumose werden durch nacheinander folgende Aussalzungen und Auflösungen so lange gereinigt, bis der nach jeder Aussalzung nach Kjeldahl bestimmte Stickstoffgehalt des Filtrates unverändert bleibt.

¹⁾ E. P. Pick, Ein neues Verfahren zur Trennung von Albumosen und Peptonen. Zeitschr. f. physiol. Chem. Bd. 24. S. 246—275 (1897). — Derselbe, Zur Kenntnis der peptischen Spaltungsprodukte des Fibrins. I. Teil. Ebenda. Bd. 29 S. 219—287 (1899). — Derselbe, II. Teil. Die sogenannten Deuteroalbumosen. Beitr. z. chem. Physiol. u. Pathol. Bd. 2. S. 481—513 (1902).

Die nach Fällung der Heteroalbumose, der α -Protoalbumose und der α -Deuteroalbumose bleibende alkoholische Lösung wird bei 40—50° auf dem Wasserbade verdampft, um den Alkohol wegzutreiben und zum Volumen der Ursprungslösung zu bringen. Dann setzt man zur wässerigen Flüssigkeit das gleiche Volumen gesättigter Ammonsulfatlösung, wodurch die β -Protoalbumose niedergeschlagen wird. Nach dem Abfiltrieren der β -Protoalbumose sättigt man das erhaltene Filtrat mit gepulvertem Ammonsulfate, wodurch man die β -Deuteroalbumose fällt. Die Reinigung der β -Protoalbumose und der β -Deuteroalbumose erfolgt auf dieselbe Weise, wie die der α -Protoalbumose und der α -Deuteroalbumose.

Darstellung der Protoalbumose und der Heteroalbumose nach Adler. Das neutralisierte Verdauungsgemisch wird mit der gleichen Menge gesättigter Ammonsulfatlösung versetzt, der abfiltrierte Niederschlag zuerst mit einer Mischung gleicher Teile destillierten Wassers und wässeriger gesättigter Ammonsulfatlösung, später mit gesättigter Ammonsulfatlösung bis zum Verschwinden der Biuretreaktion gewaschen. Die gefällten Protoalbumose und Heteroalbumose werden in Wasser gelöst und mit Ammonsulfat versetzt, bis die Lösung genau $5^{\rm o}/_{\rm o}$ dieses Salzes enthält.

Der erhaltenen Lösung wird nun vorsichtig eine mäßig konzentrierte Auflösung von Eisenammonalaun zugesetzt unter Vermeidung eines Überschusses. Nachdem sich der hellgelbe Niederschlag a gut abgesetzt hat, was bisweilen einige Tage erfordert, wird er abfiltriert, mit 5% iger wässeriger Ammonsulfatlösung bei 40°C gewaschen, in Wasser aufgeschwemmt und mit konzentriertem Ammoniak versetzt. Das Filtrat von dem in der Wärme gut ausgewaschenen Eisenoxydhydrate wird mit Schwefelsäure neutralisiert, wieder genau auf einen Gehalt von 5% Ammonsulfat gebracht und abermals mit der Eisenammonalaunlösung gefällt. Dieser Niederschlag wird in starkem Ammoniak gelöst, vom Eisenoxydhydrat abfiltriert, mit vollständig alkalifreier Barvthydratlösung vom Ammonsulfat befreit und nachher durch Ammonkarbonat der Barytüberschuß entfernt. Die schließlich so erhaltene Flüssigkeit wird im Vakuum eingedampft. Der in wenig Wasser und einigen Tropfen Eisessig aufgenommene Rückstand wird in mehrere Liter absoluten Alkohols eingerührt, am nächsten Tage abgesaugt, mit Alkohol und Äther gewaschen und über Schwefelsäure im Vakuum getrocknet. Das so erzielte Produkt entspricht der Protoalbumose. Zum völligen Trocknen wird die Protoalbumose bis zur Gewichtskonstanz im trockenen Luftstrome bei 95°C getrocknet.

Um den durch den geringen Überschuß des Eisenammonalauns in Lösung gegangenen Protoalbumoseniederschlag auszufällen und dadurch eine eventuelle Verunreinigung des Heteroalbumoseniederschlages zu verhüten, fügt man mit 5%0 Ammonsulfat versetztes wässeriges Ammoniak zur nach

i) H. C. Haslam, The separation of proteids. Part 1: Journ. of Physiol. Vol. 32.
 p. 267—298 (1905). — Part II: Ibid. Vol. 36. p. 164—176 (1907).

Fällung und Abfiltrieren des Protoalbumoseniederschlages ableibenden Flüssigkeit b. Die so entstandene Zwischenfällung wird abfiltriert. Das neue Filtrat wird mit feingepulvertem Eisenammonalaun unter tüchtigem Rühren versetzt und nachher dazu konzentriertes Ammoniak gefügt, bis die Reaktion der Mischung nur noch schwach sauer ist. Der entstandene Niederschlag wird abfiltriert, mit 5% jeger wässeriger Ammonsulfatlösung bei 40% C gewaschen. in Wasser aufgeschwemmt und mit konzentriertem Ammoniak versetzt. Das Filtrat von dem in der Wärme gut ausgewaschenen Eisenoxydhydrat wird mit Schwefelsäure neutralisiert, auf einen Gehalt von 5% Ammonsulfat gebracht und wieder mittelst feingepulvertem Eisenammonalaun und Zusatz von Ammoniak bis zur schwach sauren Reaktion gefällt. Der Niederschlag wird im starken Ammoniak gelöst, vom Eisenoxydhydrat abfiltriert, mit Barythydrat vom Ammonsulfat und mit Ammonkarbonat vom Barytüberschusse befreit. Die dann erzielte Heteroalbumoselösung wird im Vakuum unter 40°C eingedampft. Der Rückstand wird in Wasser und Eisessig gelöst, in einer großen Menge absoluten Alkohols eingerührt, am nächsten Tage abgesaugt, mit Alkohol und Äther ausgewaschen und über Schwefelsäure im Vakuum getrocknet. Die so erhaltene Heteroalbumose wird schließlich im trockenen Luftstrome bei 95°C bis zur Gewichtskonstanz getrocknet. Um völlig reine Präparate zu erzielen ist es zweckmäßig. die Heteroalbumose einer drei- bis viermaligen Fällung mittelst Eisenammonalaun zu unterwerfen, namentlich wenn größere Quantitäten zur Verarbeitung gelangen. Dadurch wird aber das Verfahren etwas umständlich.

Deshalb ist es nach Adler für die Darstellung der Heteroalbumose vorteihafter, das Eisenammonalaunverfahren mit der E. P. Pickschen Methode zu kombinieren. Das von den geronnenen oder gelösten Proteinen und vom Neutralisationsniederschlag befreite peptische Verdauungsgemisch wird mit dem gleichen Volumen gesättigter Ammonsulfatlösung gefällt. Der entstandene Niederschlag wird abfiltriert, mit einer aus gleichen Teilen Wasser und gesättigter Ammonsulfatlösung bestehenden Flüssigkeit gründlich ausgewaschen und nachher in heißem Wasser gelöst, um eine möglichst konzentrierte wässerige neutrale Lösung zu erzielen. Diese Flüssigkeit wird mit dem doppelten Volumen 95% igen Alkohols versetzt, worauf man sie in der Kälte bis zum völligen Absetzen des Niederschlages stehen läßt. Der durch Abgießen von der darüber befindlichen alkoholischen Lösung befreite Niederschlag wird in Wasser gelöst und mit Ammonsulfat versetzt. bis die Lösung genau 5% dieses Salzes enthält. Da die Heteroalbumoselösung alsdann noch Protoalbumose enthält, so wird sie nach der oben beschriebenen Eisenammonalaunmethode wie eine Lösung beider sogenannten "primären" Proteosen behandelt. Es ist nun sehr wichtig, die Fällung des ersten Eisenniederschlages (Protoalbumose) rechtzeitig zu unterbrechen, da sonst, namentlich bei mehr als 5% Proteosen enthaltenden Flüssigkeiten. ein Teil des zweiten Niederschlages mit in den ersten geht. Dieses kombinierte Verfahren ergibt Adler zufolge eine viel erheblichere Ausbeute als

die Eisenammonalaunmethode allein und erlaubt außerdem eine wesentliche Zeitersparnis. $^{\scriptscriptstyle 1}$)

Eigenschaften der Proteosen. Die verschiedenen Proteosen sind noch keineswegs genügend scharf voneinander getrennt, um durch ihre physikalischen und chemischen Eigenschaften sicher charakterisiert zu werden.

Erwähnt sei jedoch, daß die Protoalbumose und die Heteroalbumose den Farbenumschlag von einer nach Zsigmondy dargestellten hochroten kolloidalen Lösung in Violett bei Zusatz von einer 10⁰/₀igen Kochsalz-lösung verhindern, während alle anderen Proteosen hingegen die kolloidale hochrote Goldlösung ohne jeden Elektrolytzusatz an sich blau färben. Die Heteroalbumose besitzt diese schützende Eigenschaft in viel höherem Grade als die Protoalbumose.

Alle Proteosen ergeben die *Tyndall*sche Erscheinung und scheinen demnach kolloidaler Natur zu sein.

Die Heteroalbumose und die Synalbumose bewirken die Flockung des Mastix ohne Elektrolytzusatz, die anderen Proteosen nicht.

Durch Zusatz von Chondroitinschwefelsäure und Essigsäure nach dem *Pons*schen Verfahren werden alle Proteosen niedergeschlagen. Diese Reaktion ist viel empfindlicher für die Protoalbumose, die Heteroalbumose und die Synalbumose (1 für 9000 oder 10,000) als für die anderen Proteosen (1 für 4000 bis 1 für 6000).

Alle Proteosen vermehren die Refraktionszahl des Wassers.

Durch Zusatz einer 1°_{70} igen ammoniakalischen Clupeinsulfatlösung werden die Heteroalbumose und die Protoalbumose gefällt, die anderen Proteosen aber nicht.

Tryptophan. 1. Isolierung nach Hopkins und Cole.

Zum Isolieren des Tryptophans unter den Verdauungsprodukten der Proteine bedient man sich des Verfahrens von *Hopkins* und *Cole*. Dazu wird folgendes Reagens bereitet: 250 cm³ konzentrierter Schwefelsäure werden mit 4750 cm³ destillierten Wassers vermischt. In einem

 ¹⁾ Rudolf Adler, Die Heteroalbumose und Protoalbumose des Fibrins. Ein Beitrag zur Kenntnis der primären Produkte des Eiweißabbaues. Inaug.-Diss. Leipzig 1907.
 — Gütige Mitteilung des Herrn Dr. Rudolf Adler zu Karlsbad.

²) A. Hunter, The reaction with protamine as a means of distinguishing primary from secondary proteoses. Proc. of the Physiolog. Soc. 22. Febr. 1908 in Journ. of Physiol. Vol. 37. p. V—VI (1908). — Ch. Pons, Quantitative Untersuchungen über die Ausscheidung der Chondroitinschwefelsäure. Beitr. z. chem. Physiol. u. Pharmakol. Bd. 9. S. 393—400 (1907). — Sur Pacide sulfochondroitique et sa présence dans Furine normale. Ann. de la Soc. de méd. de Gand. T. 86. p. 288—292 (1906). — R. Zsigmondy, Die hochrote Goldlösung als Reagens auf Kolloide. Zeitschr. f. analyt. Chem. Bd. 40. S. 697—719 (1901). — E. Zunz, De Femploi de l'or colloidal pour caractériser les albumoses primaires. Arch. int. de Physiol. T. 1. p. 427—439 (1904). — Action des albumoses secondaires et des peptones sur l'or colloidal. Bull. de la Soc. roy. des Sc. méd. et nat. de Bruxelles. T. 64. p. 174—186 (1906). — Contribution à l'étude des protéoses. Arch. int. de Physiol. T. 5. p. 245—256 (1907).

Mörser verrührt man $50\,g$ Quecksilbersulfat mit einem Teile der verdünnten Schwefelsäure, fügt die so erhaltene Aufschwemmung zum Hauptteil der verdünnten Säure und schüttelt die Gesamtflüssigkeit tüchtig. Nun wird eine neue Portion von $50\,g$ des Quecksilbersalzes mit einem Teile der Säure verrührt, zum Hauptteil gefügt und dieser geschüttelt. Diese Prozedur wird bis zum vollständigen Zusatze in Portionen von je $50\,g$ der $500\,g$ Mercurisulfat zu der verdünnten Schwefelsäure fortgeführt. Nach einigem Stehen filtriert man dann das Reagens.

Die Lösung der Verdauungsprodukte der Proteine wird mit diesem Reagens bei Anwesenheit von ungefähr 5% iger Schwefelsäure versetzt. wobei nur Cystin und Tryptophan fallen. Bei langem Stehen wird indes das Tyrosin auch teilweise niedergeschlagen. Nach 12stündigem oder längerem Stehen wird der erhaltene Niederschlag so lange mit 5% iger Schwefelsäure ausgewaschen, bis die Waschflüssigkeit mit dem Millonschen Reagens keine rote Färbung mehr in der Kälte gibt, wodurch nachgewiesen wird, daß alles etwa mitgerissene Tyrosin wieder gelöst wurde. Danach wird der Niederschlag in Wasser aufgeschwemmt und bei Zusatz von 2° eiger Schwefelsäure mittelst Schwefelwasserstoffes behandelt. Nach dem völligen Sättigen der Flüssigkeit mit letzterem erwärmt man sie einige Zeit auf dem Wasserbade und sättigt sie wieder mit Schwefelwasserstoff. Nun filtriert man den Niederschlag, schwemmt ihn in Wasser auf und behandelt ihn wieder mit Schwefelwasserstoff. Diese Prozedur wird 4-5mal wiederholt. Die vereinigten Filtrate werden auf dem Wasserbade vorsichtig erwärmt, um den Schwefelwasserstoffüberschuß wegzutreiben. Nach dem Erkalten der Flüssigkeit setzt man 5% ihres Volumens an Schwefelsäure hinzu und versetzt sie allmählich unter Schütteln mit der Quecksilbersulfatlösung bis zum Erscheinen eines geringen beständigen Niederschlages. Nach ¹/₂stündigem Stehen wird rasch abfiltriert. Das Filtrat enthält kein Cystin mehr oder höchstens Spuren davon. Zu diesem Filtrate setzt man nun einen Überschuß des Quecksilbersulfatreagenzes, um das Tryptophan zu fällen, wozu jetzt viel weniger Reagens nötig ist als bei der Behandlung der Gesamtlösung der Verdauungsprodukte der Proteine. Nach einigem Stehen filtriert man und wäscht den Niederschlag zuerst mit verdünnter Schwefelsäure und nachher mit Wasser aus. Das Quecksilber wird durch Schwefelwasserstoff niedergeschlagen. Das Filtrat wird durch vorsichtige Hinzufügung heißer Ätzbarytlösung bei Vermeidung jedes Überschusses von der Schwefelsäure befreit. Man erwärmt alsdann die Flüssigkeit einige Zeit auf dem Wasserbade und filtriert sie nachher vom Baryumsulfat ab. Zum Filtrate setzt man ungefähr 1 2 Volumen 90% jeen Alkohols und dampft es auf dem Wasserbade ein. Während des Eindampfens muß man von Zeit zu Zeit geringe Alkoholmengen zum Filtrate fügen. Das Eindampfen wird so lange fortgesetzt, bis nach dem letzten Alkoholzusatze beim Abnehmen vom Wasserbade sich in der Lösung Kristalle zeigen. Diese werden auf der Saugpumpe abfiltriert, mit 900 ₀igem Alkohol ausgewaschen und dann in wenig heißem Wasser aufgelöst. Zu dieser Lösung setzt man das gleiche

Volumen 90% øigen Alkohols und etwas Tierkohle, erwärmt sie zum Sieden und filtriert sie noch heiß ab. Das Filtrat wird auf dem Wasserbade unter Zusatz von Alkohol von Zeit zu Zeit eingedampft bis zum Erscheinen eines Kristallbreies beim Erkalten. Die so erhaltenen Tryptophankristalle werden aus 75% øigem Alkohol mehrmals umkristallisiert. Das nach der Fällung des Cystins und des Tryptophans in der Verdauungsflüssigkeit durch Mercurisulfat erzielte Filtrat wird mittelst Schwefelwasserstoffes vom Quecksilber befreit und kann nach Abfiltrieren vom Quecksilbersulfid mit Phosphorwolframsäure versetzt werden, um auf Amino- und Diaminosäuren geprüft zu werden. 1)

2. Quantitative Bestimmung des Tryptophans nach Levene und Rouillier.

Das Verfahren von Hopkins und Cole erlaubt keine genaue quantitative Bestimmung des Tryptophans. Beim Zusatz von Bromwasser zu einer Tryptophanlösung färbt sich diese purpur. Diese Färbung wächst zuerst in Intensität mit dem Bromzusatze; sobald sie aber ihr Maximum erreicht hat, verschwindet sie plötzlich bei Zufügung eines weiteren Tropfens des Bromwassers. Diese Eigenschaft benutzen Levene und Rouiller folgendermaßen zur quantitativen Bestimmung des Tryptophans: Die Lösung der Verdauungsprodukte der Proteine wird mit 5% jeger Schwefelsäure versetzt. Dann fügt man so lange von der Hopkins-Coleschen Mercurisulfatlösung hinzu, bis der Zusatz von 1 Tropfen Bromwasser zur oben schwimmenden Flüssigkeit keine Purpurreaktion mehr gibt. Nach 24stündigem Stehen wird filtriert. Der Niederschlag wird in höchstens bis 2% Schwefelsäure enthaltendem Wasser aufgeschwemmt, durch Schwefelwasserstoff zersetzt, abfiltriert. Das Filtrat wird auf dem Wasserbade erwärmt, um den Schwefelwasserstoff zu vertreiben und auf ein genau bekanntes Gesamtvolumen gebracht. 15 cm³ dieser Flüssigkeit werden in einer Eprouvette mit 2 cm³ Amylalkohol versetzt. Unter tüchtigem Schütteln fügt man tropfenweise Bromwasser hinzu bis zum Verschwinden der Purpurfärbung des Amylalkoholes. Für verschiedene Proben einer und derselben Tryptophanlösung beträgt der Unterschied in der dazu nötigen Bromwassermenge höchstens 0.05 0.1 cm³. In einem aliquoten Teile des nach dem Vertreiben des Schwefelwasserstoffes erhaltenen Filtrates wird durch die Schwefelbestimmung die in der Tryptophanlösung vorhandene Cystinmenge ermittelt. Man berechnet, wieviel Bromwasser zum Sättigen des Cystins nötig ist und zieht den so erhaltenen Wert von der bei der Titrierung der cystinhaltigen Tryptophanlösung verbrauchten Bromwassermenge ab. Auf diese Weise erfährt man die Anzahl der Kubikzentimeter Bromwasser, welche nötig ist, um das Tryptophan zu sättigen. Vor jeder Analyse ist es ratsam, das Brom-

¹) F. Gowland Hopkins and Sydney W. Cole, A Contribution to the Chemistry of proteids. Part I. A preliminary study of a hitherto undescribed product of tryptic digestion, Journ. of Physiol. Vol. 27, p. 418-428 (1901).

wasser mittelst Cystin- und Tryptophanlösungen bekannten Gehaltes auf Cystin und auf Tryptophan zu titrieren. 1)

Nachweis des Vorhandenseins basischer Spaltungsprodukte in einer Verdauungslösung. Das Verdauungsgemisch wird mit Phosphorwolframsäure gefällt, der abgesaugte Niederschlag wird mit Baryt zerlegt, der Hydrolyse durch 33% ige Schwefelsäure unterworfen und von neuem mit Phosphorwolframsäure gefällt. Bleibt bei der Spaltung der Proteine oder ihrer Spaltungsprodukte mittelst des angewandten Fermentes ein Monaminosäuren enthaltendes Polypeptid übrig, so müssen die Monaminosäuren im letzten Filtrate vorhanden sein, was man durch die Bestimmung des Stickstoffes dieser Flüssigkeit nach Kjeldahl ermitteln kann. Wegen der teilweisen Löslichkeit des Phosphorwolframsäureniederschlages der Hexonbasen kann indes eine geringe Stickstoffmenge in das letztere Filtrat übertreten, was man berücksichtigen muß.²)

Bestimmung des Ammoniaks. Das bei der Verdauung der Proteine frei gewordene Ammoniak wird nach dem Verfahren von *M. Nencki* und *J. Zaleski*³) durch Destillation im Vakuum mit Magnesia bei einer 40° nicht übersteigenden Temperatur ermittelt. Von der erhaltenen Zahl muß man sowohl das in dem untersuchten Protein vorgebildete Ammoniak als auch die sich während derselben Zeitdauer in einer nur aus dem Verdauungssafte bestehenden Kontrollflüssigkeit gebildete Ammoniakmenge abziehen. ⁴) Man kann sich auch des *Schittenhelms*chen ⁵) oder des *Folinschen* ⁶) Verfahrens bedienen.

Plasteine und Koagulosen. Proteine werden mit künstlichem oder natürlichem, nach dem Pawlowschen Verfahren erhaltenen Magensafte 1—3 Tage der Verdauung unterworfen. Dann wird das vom gerinnbaren Eiweiße und vom Neutralisationsniederschlage in üblicher Weise befreite, einen starken Proteosengehalt aufweisende Verdauungsgemisch konzentriert, mit Salzsäure bis zu 0.5%0 ungefähr angesäuert und mit natürlichem, nach Pawlows Methode gewonnenem Magensafte oder mit einer Lablösung ver-

¹) P. A. Levene and C. A. Rouillier, On the quantitative estimation of tryptophan in protein cleavage products. Journ. of biolog. Chem. Vol. 2. p. 481—484 (1907).

²) O. Cohnheim, Zur Spaltung des Nahrungseiweißes im Darme. Zeitschr. f. physiol. Chemie. Bd. 49. S. 64—71 (1906) und Bd. 51. S. 414—424 (1907). — C. Foà, Sull'erepsina del succo enterico e sulla scomparsa di alcuni fermenti intestinali in un "ansa del Vella" da lungo tempo isolata. Arch. di fisiol. Vol. 5. p. 26—33 (1907).

³⁾ M. Nencki und J. Zaleski, Über die Bestimmung des Ammoniaks in tierischen Flüssigkeiten und Geweben. Zeitschr. f. physiol. Chemie. Bd. 33. S. 193-209 (1901).

⁴⁾ S. Dzierzgowski und S. Salaskin, Über die Ammoniakabspaltung bei der Einwirkung von Trypsin und Pepsin auf Eiweißkörper. Zeitschr. f. Physiol. Bd. 15. S. 249 bis 254 (1901). — E. Zunz, Sur la digestion peptique des substances albuminoides. Ann. de la Soc. roy. d. Sc. méd. et nat. de Bruxelles. T. 11. Fasc. 3. p. 1—26 (1902).

A. Schittenhelm, Zur Methode der Ammoniakbestimmung. Zeitschr. f. physiol. Chem. Bd. 39. S. 73—80 (1903).

⁶⁾ O. Folin, Eine neue Methode zur Bestimmung des Ammoniaks im Harne und anderen tierischen Flüssigkeiten. Zeitschr. f. physiol. Chemie. Bd. 37. S. 161—176 (1902).

setzt. Dieses Gemisch wird im Brutschranke bei 40° C 24 Stunden oder länger gelassen. Nach dieser Zeit hat sich ein gallertiger Plasteinniederschlag gebildet. Dieser wird abfiltriert, bis zum Verschwinden der Biuretreaktion mit kaltem und heißem Wasser gewaschen, durch dreimaliges Auflösen in Alkali und Ausfällung mit Essigsäure oder Salzsäure gereinigt, endlich mit kaltem und heißem Wasser, Alkohol und Äther gewaschen.

Die Plasteinbildung erfolgt nur in den alle *Picks*chen Proteosenfraktionen enthaltenden Lösungen der Verdauungsprodukte der Proteine.

Wird die Mischung von Proteosen und Magensaft statt bei 40° C nur bei gewöhnlicher Temperatur sich selbst überlassen, so erscheint meistens nach 15–24 Stunden noch keine sichtbare Veränderung in der Flüssigkeit oder höchstens eine leichte Opaleszenz. Es hat sich jedoch schon Plastein gebildet, aber es besteht in einer löslichen Form; erst nach einer ziemlich langen Zeitdauer erscheint bei gewöhnlicher Temperatur der Plasteinniederschlag. 1)

Läßt man eine 3—5° øige Papayotinlösung unter Chloroformzusatz auf eine von dem beim Sieden gerinnbaren Eiweiße und vom Neutralisationsniederschlage befreite Lösung der Verdauungsprodukte der Proteine bei 40° C einwirken, so bilden sich nach einiger Zeit gallertige oder sehr voluminöse flockige Niederschläge, welche den Plasteinen sehr ähneln oder damit identisch zu sein scheinen und welche Kurajeff als Koagulosen bezeichnet. 2)

Lawrow hingegen nennt Koagulosen die bei der Pepsinverdauung entstehenden Plasteine. Diesem Forscher zufolge entstehen bei mehr oder minder lange dauernder peptischer Verdauung der Proteine koagulosogene Produkte vom Proteosen- und vom Polypeptidtypus, aus welchen sich Koaprodukte bilden, welche man in mindestens 2 verschiedenen Typen verteilen kann: die Gruppe der Koaproteosen und die der Koapeptide. Manche

⁴⁾ W. N. Okunew, Über die Rolle des Labfermentes bei den Assimilationsprozessen des Organismus. Inaug.-Dissert. St. Petersburg 1895. — D. Lawrow, Über den Chemismus der peptischen und tryptischen Verdauung des Eiweißes, Inaug.-Dissert. St. Petersburg 1897.

Derselbe, Über die Wirkung des Pepsins respektive Labferments auf konzentrierte Lösungen der Produkte der peptischen Verdauung der Eiweißkörper (Reaktion von A. Danilewski). Zeitschr. f. physiol. Chem. Bd. 51. S. 1—32 (1907). — W. W. Sawjalow, Zur Theorie der Eiweißverdauung. Pflügers Archiv. f. d. ges. Physiol. Bd. 85. S. 171—225 (1901). — Derselbe, Über die lösliche Modifikation des Plasteins. Zentralbl. d. Physiol. Bd. 16. S. 623—627 (1903). — Derselbe, Über das Plastein. Zeitschr. f. physiol. Chem. Bd. 54. S. 119—150 (1907). — Maria Lawrow und S. Salaskin, Über die Niederschlagsbildung in Albumosenlösungen durch Labwirkung des Magenfermentes. Zeitschr. f. physiol. Chemie. Bd. 36. S. 276—291 (1902). — L. Rosenfeld., Über die hydrolytischen Spaltungsprodukte des Kaseoplasteins. Beitr. z. chem. Physiol. u. Pathol. Bd. 9. S. 215 bis 231 (1907).

²⁾ D. Kurajeff, Über die koagulierende Wirkung des Papayotins auf Peptonlosungen. Beitr, z. chem. Physiol, u. Pathol. Bd. 1, 8, 121—135 (1902). — Derselbe, Zur Kenntnis der durch Papayotin und Lab erzeugten Niederschläge (Koagulosen und Plasteine). Ebenda. Bd. 2, 8, 411—424 (1902). — Derselbe, Über das Plastein aus kristallisiertem Ovalbumin und über das Verhalten der Plasteinalbumosen zur Magen- und Dünndarmschleinhaut des Hundes. Ebenda Bd. 4, 8, 476—485 (1904).

dieser koagulosogenen Produkte werden leicht aus ihren Lösungen mit den Proteosen bei der fraktionierten Ausfällung von Lösungen der Ver-

dauungsprodukte mitgerissen. 1)

Physikalisch-chemische Verfahren zur Untersuchung des Abbaues der Proteine. Man hat auf verschiedene Weisen versucht, die quantitativen Vorgänge bei der Verdauung der Proteine auf physikalisch-chemischem Wege zu verfolgen. Solche Verfahren können aber nur bei Spaltungen von äußerst einfachen Verbindungen zuverlässige Resultate ergeben.

Die Messung der Änderung des optischen Drehungsvermögens der Lösung eines bestimmten optisch-aktiven Polypeptides bei Fermentzusatz erlaubt den Abbau von Stufe zu Stufe zu verfolgen.²) Dies ist auch der Fall für die Messung der elektrischen Leitfähigkeit nach Zusatz passender Mengen Natriumhydroxyd bei der Erepsinspaltung des Glycyl-glycins oder bei irgend einer enzymatischen Wirkung auf ein ähnliches einfaches Abbauprodukt der Proteine.³) Diese Verfahren eignen sich besonders zum Studium der Wirkung der Abderhaldenschen peptolytischen Fermente.⁴)

Bei der eigentlichen Verdauung der Proteine (und dies gilt auch für die Kohlehydrate) messen aber alle physikalisch-chemischen Methoden das Resultat der verschiedenartigsten nebeneinander einhergehenden, sich in ihrem Ergebnis manchmal kreuzenden chemischen Vorgänge. Mit Oppenheimer und Aron, Euler sowie Sörensen muß man anerkennen, daß es gewöhnlich ganz willkürlich ist, die gemessene Änderung irgend einer physikalischen Eigenschaft als den Umfang der Spaltung proportional

¹) D. Lawrow, Zur Kenntnis der Koagulosen. Zeitschr. f. physiol. Chemie. Bd. **53**. S. **1-7** (1907); Bd. **56**. S. **342**—**362** (1908); Bd. **69**. S. **520**—**532** (1909).

²) E. Abderhalden und A. H. Koelker, Die Verwendung optisch-aktiver Polypeptide zur Prüfung der Wirksamkeit proteolytischer Fermente. Zeitschr. f. physiol. Chem. Bd. 53. S. 294—310 (1907). — Derselbe, Weiterer Beitrag zur Kenntnis des Verlaufes der fermentativen Polypeptidspaltung unter verschiedenen Bedingungen. Ebenda. Bd. 55. S. 363—389 (1908). — Derselbe, Weiterer Beitrag zur Kenntnis des Verlaufes der fermentativen Polypeptidspaltung. (V. Mitteilung.) Ebenda. Bd. 50. S. 416—426 (1908). — E. Abderhalden und L. Michaelis, Der Verlauf der fermentativen Polypeptidspaltung. Ebenda. Bd. 52. S. 326—337 (1907). — E. Abderhalden und A. Gigon, Weiterer Beitrag zur Kenntnis des Verlaufes der fermentativen Polypeptidspaltung. Ebenda. Bd. 53. S. 294—310 (1907).

³) Hans Euler, Fermentative Spaltung von Dipeptiden. Zeitschr. f. physiol. Chem. Bd. 51, S. 213—225 (1907).

⁴⁾ Emil Abderhalden und Florentin Medigreceanu, Über das Vorkommen von peptolytischen Fermenten im Mageninhalte und ihr Nachweis. Zeitschr. f. physiol. Chem. Bd. 57. S. 316—324 (1908). — E. Abderhalden und Dammhahn, Über den Gehalt ungekeimter und gekeimter Samen verschiedener Pflanzenarten an peptolytischen Fermenten. Ebenda. Bd. 57. S. 332—338 (1908). — E. Abderhalden und C. Brahm, Zur Kenntnis des Verlaufes der fermentativen Polypeptidspaltung. VI. Mitteilung. Ebenda. Bd. 57. S. 342—347 (1908). — E. Abderhalden und H. Pringsheim, Studien über die Spezifität der proteolytischen Fermente bei verschiedenen Pilzen. Ebenda. Bd. 59. S. 249—255 (1909). — E. Abderhalden, G. Caemmerer und L. Pincussohn, Zur Kenntnis des Verlaufes der fermentativen Polypeptidspaltung. VII. Mitteilung. Ebenda. Bd. 59. S. 292 bis 319 (1909).

252 E. Zunz.

anzusehen, und daß dies sogar höchst unwahrscheinlich ist, denn sowohl das verschwindende Ausgangsmaterial als fast alle auftretenden Spaltprodukte beeinflussen diese Eigenschaften.¹)

Diese Kritik scheint mir ebenso das Klugsche Verfahren der spektrophotometrischen Messung der Zunahme der Biuretreaktion, selbst bei der fraktionierten Fällung der verschiedenen Gruppen der Verdauungsprodukte der Proteine, zu treffen, als die Messung der optischen Drehung, die Prüfung der elektrischen Leitfähigkeit oder die Veränderung des Brechungsvermögens.²)

Spriggs hat nachgewiesen, daß die Viskosität einer Lösung von gerinnbarem Eiweiß während der Pepsinverdauung abnimmt, bis der größte Teil der gerinnbaren Proteine in ungerinnbare umgewandelt ist. Da Proben derselben Eiweißlösung, mit verschiedenen Pepsinmengen behandelt, zur Zeit der gleichen Viskosität dieselben Prozente gerinnbares und ungerinnbares Protein enthalten, kann man mittelst für jedes Protein eigens dazu experimentell festgestellten Kurven während der Verdauung des betreffenden Proteins den Gehalt an gerinnbarem und ungerinnbarem Eiweiß viskosimetrisch feststellen. Bei der tryptischen Verdauung nimmt auch die Viskosität ab: diese Abnahme läuft nach Bayliss mit der Zunahme der elektrischen Leitfähigkeit keineswegs parallel. In konzentrierten Lösungen der Spaltungsprodukte der Proteine bewirken alle proteolytischen Enzyme Herzog zufolge eine Zunahme der Viskosität. Demnach scheint die viskosimetrische Methode bei der Untersuchung der Spaltung der Proteine nur unter den von Spriggs festgestellten Bedingungen Dienste leisten zu können. 3)

¹) C. Oppenheimer und H. Aron, Über das Verhalten des genuinen Serums gegen die tryptische Verdauung. Beitr. z. chem. Physiol. u. Pathol. Bd. 4. S. 279—299 (1904). — S. P. L. Sörensen, Enzymstudien. Biochem. Zeitschr. Bd. 2. S. 45—101 (1907).

²) F. Klug, Untersuchungen über Pepsinverdauung. Pflügers Arch. f. d. ges. Physiol. Bd. 60. S. 43-70 (1895). — Derselbe, Beiträge zur Pepsinverdauung. Ebenda. Bd. 65. S. 330-342 (1897). - E. Schütz, Eine Methode zur Bestimmung der relativen Pepsinmengen. Zeitschr. f. physiol. Chem. Bd. 9. S. 577-590 (1887). — A. Gürber, Wie beeinflußt die Verdauung das Drehungsvermögen einer Eiweißlösung? Festschr. d. physik.-med. Ges. z. Würzburg 1899. — M. Oker-Blom, Die elektrische Leitfähigkeit und die Gefrierpunktserniedrigung als Indikatoren der Eiweißspaltung. Skand, Arch. f. Physiol. Bd. 13. S. 359-374 (1902). - Victor Henri et Larguier des Barcels, Loi de l'action de la trypsine sur la gélatine. Compt. rend. hebd. des séanc. de la Soc. de Biol. T.55. p. 563-565, 787-789 et 866-868 (1903). - W. M. Bayliss, The kinetics of tryptic action. Arch. des Sci. biolog. de St. Pétersbeurg. T. 11. Suppl. p. 261-291 (1904). - Researches on the nature of enzyme action. I. On the causes of the rise in electrical conductivity under the action of trypsin. Journ. of Physiol. Vol. 36. p. 221-252 (1908). - F. Obermayer und E. P. Pick, Über Veränderungen des Brechungsvermögens von Glykosiden und Eiweißkörpern durch Fermente, Säuren und Bakterien. Beitr. z. chem. Physiol. u. Pathol. Bd. 7. S. 331-380 (1906).

³) E. I. Spriggs, Eine neue Methode zur Bestimmung der Pepsinwirkung. Zeitschr. f. physiol. Chem. Bd. 35. S. 465—494 (1902). — R. O. Herzog, Über proteolytische Enzyme. Ebenda. Bd. 39. S. 304—312 (1903). — W. M. Bayliss, loc. cit.

e) Isolierung der Abbauprodukte der Verdauung der Nukleoproteide.

Die aus einem Eiweißanteil und einer Nukleinsäure bestehenden Nukleoproteide werden sowohl durch Pepsin als durch Trypsin in die der proteolytischen Einwirkung dieser Enzyme unterworfenen Eiweiße und in Nuklein gespalten. Letzteres wird dann wieder in Eiweiß und Nukleinsäure gespalten. Schließlich wird die Nukleinsäure durch die Nuklease in ihre einzelnen Bestandteile zerlegt: Phosphorsäure. Nuklein- oder Purinbasen. Pyrimidinbasen usw.

Die Untersuchung der die Spaltungsprodukte der Nukleoproteide enthaltenden Verdauungsgemische erfolgt nach den in den Abschnitten über den Abbau der Nukleinsäuren und die Isolierung der Abbauprodukte der Proteine schon beschriebenen Verfahren.

Falls Proteine im Verdauungsgemische vorhanden sind, so werden sie zuerst durch vorsichtiges Erwärmen bei Essigsäurezusatz oder durch Ausfällung mit Alkohol in der Kälte niedergeschlagen.

Im proteinfreien Filtrate wird dann die unzersetzte Nukleinsäure gefällt. Ein Teil der Nukleinsäure scheidet sich schon bei der Neutralisation der Verdauungsflüssigkeit und nachherigem vorsichtigen Eindampfen ab. Im neutralisierten klaren Filtrate wird die noch vorhandene Nukleinsäure durch verdünnte Schwefelsäure, durch Alkohol unter Zugabe von Natriumacetat, durch Zusatz von gelöstem Kupfersulfat oder durch eine 5% jege wässerige Lösung von Mercuriacetat bei genau neutraler Reaktion gefällt.

Um die durch Mercuriacetat gefällte, mit Spuren von Proteosen oder vielleicht auch von Hexonbasen verunreinigte Nukleinsäure in reinerem Zustande zu erhalten, wird dieser Niederschlag abfiltriert und auf dem Filter mit etwas Wasser, dem etwas Mercuriacetat zugesetzt ist, gründlich ausgewaschen. Dann wird der Niederschlag in Wasser aufgeschwemmt, das Quecksilber durch-Schwefelwasserstoff abgeschieden, vom Schwefelquecksilber abfiltriert, auf dem Wasserbade eingeengt, schließlich in absolutes Alkoholäthergemisch gegossen, wobei eine feinflockige Fällung entsteht. Solange der Alkoholäther noch wasserhaltig ist, geht immer ein Teil der Fällung wieder in Lösung, den man indes durch Einengen der Alkoholätherflüssigkeit und erneutes Eingießen derselben in absoluten Alkoholäther zurückgewinnen kann.

Wird die derartig mit Quecksilberacetat vorbehandelte, nukleinsäurefreie Verdauungslösung neutralisiert, so kann man darin die Proteosen und die anderen Spaltungsprodukte des Proteinenanteiles des Nukleoproteides nach den früher beschriebenen Verfahren nachweisen und isolieren.¹)

In der von der unzersetzten Nukleinsäure befreiten Flüssigkeit kann man die abgespaltene Phosphorsäure durch Eindampfen und Veraschen mit Soda und Salpeter oder durch Versetzen mit Magnesiamischung und Behandlung des entstandenen Niederschlages von phosphorsaurer Ammoniak-

¹) F. Umber, Über die fermentative Spaltung der Nukleoproteide im Stoffwechsel. Zeitschr. f. klin, Med. Bd. 43. S. 282—303 (1901).

magnesia in üblicher Weise und Wägen der Phosphorsäure als pyrophosphorsaure Magnesia nachweisen.¹)

Nach Beseitigen der etwa noch vorhandenen Nukleinsäure mittelst Schwefelsäure kann man das Filtrat mit Bleiacetat fällen, wieder filtrieren, das neue Filtrat mit Schwefelsäure vom Blei befreien, filtrieren, das nun erhaltene Filtrat durch Abdampfen vom Schwefelwasserstoffüberschuß befreien. Dann fällt man die Nukleinbasen mittelst Silbernitrat und einem Ammoniaküberschusse.²)

Im durch Schwefelsäure von der nicht gespaltenen Nukleinsäure befreiten Filtrate kann man auch die Purinbasen direkt mit der Quecksilbersulfatlösung von Kossel und Patten fällen, welche man durch Erhitzen von 500 cm³ 15 volumprozentiger Schwefelsäure und Auflösen von 75 q Quecksilberoxyd in der heißen Flüssigkeit bereitet. Der entstandene Niederschlag wird abgesaugt, in Wasser aufgeschwemmt und unter Zusatz von etwas Salzsäure mit Schwefelwasserstoff zerlegt. Dann wird filtriert und das Filtrat durch Durchleiten von Luft vom Schwefelwasserstoff befreit. Danach wird es mit ammoniakalischer Silberlösung gefällt. Der Silberniederschlag wird abfiltriert, gut ausgewaschen, in Wasser aufgeschwemmt und unter Zusatz von Salzsäure in der Wärme zersetzt. Das Chlorsilber wird abfiltriert, durch das Filtrat noch einige Schwefelwasserstoffblasen geleitet und dann wieder filtriert. Das letzte Filtrat wird eingedampft, wodurch sich die salzsauren Purinbasen kristallinisch ausscheiden. Die ausgeschiedenen Kristalle werden mit Alkohol und Äther getrocknet und durch die von Burian angegebene und von Pauly veränderte Diazoreaktion als Purinbasen charakterisiert. Zum Anstellen dieser Reaktion wird folgendes Reagens frisch dargestellt: 2 q feingepulverter Sulfanilsäure werden mit 3 cm³ Wasser und 2 cm³ konzentrierter Salzsäure zu einem Brei geschüttelt und in kleinen Portionen innerhalb einer Minute mit einer Lösung von 1 q frischem Kaliumnitrat in 1-2 cm³ Wasser versetzt, wobei nach jedem Zusatz mit kaltem Wasser gekühlt wird. Die Sulfanilsäure geht größtenteils rasch in Lösung und an ihre Stelle tritt bald ein dichter, weißer, kristallinischer Niederschlag von Diazobenzolsulfosäure, welcher nach einigen Minuten abgesaugt und mit wenig Wasser ausgewaschen wird. Die zu prüfende Lösung der Kristalle der Nukleinbasen wird bis zum Überschusse mit Sodalösung versetzt und dann mit 3-5 cm³ der Burian-Pauluschen Diazobenzosulfosäurelösung. Nach Verlauf von längstens einigen Minuten, meistens aber sofort, entsteht eine gelbe bis rote Farbe.3)

¹) T. Araki, Über enzymatische Zersetzung der Nukleinsäure. Zeitschr. f. physiol. Chem. Bd. **38**. S. 84—97 (1903). — M. Nakayama, Über das Erepsin. Ebenda. Bd. **41**. S. 347—362 (1904).

 ²) C. Foù, Sulla nucleasi del succo intestinale. Arch. di fisiol. Vol. 4. p. 98—100 (1906).
 ³) A. Kossel und A. J. Patten, Zur Analyse der Hexonbasen. Zeitschr. f. physiol. Chem. Bd. 38. S. 39—45 (1903). — H. Pauly, Über die Konstitution des Histidins. Ebenda. Bd. 42. S. 508—518 (1904). — F. Sachs, Über die Nuklease. Ebenda. Bd. 46. S. 337—353 (1905). — R. Burian, Diazoaminoverbindungen der Imidazole und der Purinsubstanzen. Ber. d. Deutsch. chem. Gesellsch. Bd. 37. S. 696—707 (1904).

Wird die übrig gebliebene Nukleinsäure durch Alkohol unter Zusatz von Natriumacetat gefällt, so versetzt man das durch Abdampfen auf dem Wasserbade vom Alkohol befreite Filtrat mittelst ammoniakalischer Silberlösung und Kupfersulfat-Bisulfit, um die Purinbasen zu isolieren. Wird die unzersetzte Nukleinsäure als Kupfersalz gefällt, so wird im Filtrate mittelst der Kupfersulfat-Bisulfitmethode auf freie Purinbasen gefahndet. 1)

f) Isolierung der Abbauprodukte der Verdauung der Phosphatide.

Unter dem Einflusse des Pankreassteapsins, der Darm- und der Magenlipase werden die als wässerige Emulsionen benutzten Phosphatide gespalten. Am besten bekannt ist der Abbau des Lezithins. Es wird in Glyzerinphosphorsäure, freie Fettsäuren und Cholin zerlegt. Nach Slowtzoff scheinen die Abspaltungen des Cholins und der Fettsäuren unabhängig voneinander zu erfolgen. Stassano und Billon zufolge wird durch mittelst Enterokinase aktivierten Pankreassaftes kein Cholin aus frisch bereiteten Lezithinen abgespalten. Nach Bergell wird durch Darmsaft Lezithin leicht und schnell unter Cholinbildung gespalten.

Zur Bestimmung der abgespaltenen Fettsäuren werden diese am Ende des Versuches mit $^1/_{10}$ oder $^1/_{20}$ normaler Kalilauge und Phenolphtalein als Indikator titriert. Durch 2 besondere Kontrollkölbehen muß man die Reaktion des Gemisches von Lezithinemulsion und Fermentlösung vor der enzymatischen Einwirkung feststellen, im ersten ohne Vorbehandlung, im zweiten nach Erwärmen und Zusatz von $95^{\circ}/_{0}$ igem säurefreien Alkohol. In 4 anderen Kontrollkölbehen wird die Lezithinemulsion zur vorher aufgekochten Fermentlösung zugesetzt. Von diesen 4 Kontrollkölbehen werden 2 sofort titriert, und zwar wieder das eine ohne jegliche Vorbehandlung, das andere nach Zusatz von 20° oigem Alkohol und Erwärmen. Die 2 letzten Kontrollkölbehen mit erwärmter Fermentlösung bleiben ebensolange im Thermostaten, wie die Hauptversuchskölbehen und werden gleichzeitig mit diesen titriert, und zwar wiederum das eine ohne Vorbehandlung, das andere nach Zusatz von $95^{\circ}/_{0}$ igem Alkohol und Erwärmen. Auf diese Weise ermittelt man die tatsächliche Abspaltung von Fettsäuren aus dem zum Versuche angewandten Lezithin.

Man kann auch nach dem Volhard-Stadeschen Verfahren die Menge der durch Fermentwirkung frei gewordenen Säuren sowie die Menge der noch im unzersetzten Lezithin vorhandenen Säuren feststellen und aus den beiden so ermittelten Zahlen die prozentige Abspaltung der Fettsäuren bei der Lezithinverdauung in Prozenten der Fettsäuren des Lezithins berechnen.

Zur Untersuchung auf unverändertes Lezithin wird das Verdauungsprodukt mit starkem Alkohol versetzt und der Niederschlag abfiltriert. Filtrat und Niederschlag werden bei 50—60° eingetrocknet. Die Rück-

¹⁾ E. Abderhalden und A. Schittenhelm, Der Ab- und Aufbau der Nukleinsäuren im tierischen Organismus. Zeitschr. f. physiol. Chem. Bd. 47. S. 452—457 (1906).

stände werden vereinigt, im Soxhletschen Apparate mit wasserfreiem Äther ausgezogen und dann mit 95% igem Alkohol ausgekocht. Äther- und Alkoholextrakt werden bei 50° zur Trockene gebracht und mit Aceton behandelt, wodurch in den Aceton die Fettsäuren sowie die etwa vorhandenen Fette und Alkaliphosphate treten, während die Hauptmasse des Lezithins als Rückstand bleibt. Dieser wird abfiltriert und in Äther gebracht. In der so erzielten Lösung kann man mittelst Phosphorsäureund Stickstoffbestimmung die Anwesenheit des Lezithins nachweisen. Dieses Verfahren erlaubt aber keineswegs, das unzersetzte Lezithin quantitativ zu erhalten, denn nach Kumagawa und Suto wird das Lezithin aus dem Ätherextrakte durch Aceton nicht quantitativ gefällt.

Um Cholin und Glyzerinphosphorsäure nachzuweisen, wird die fermenthaltige Lezithinemulsion bei 40-50° auf dem Wasserbade eingetrocknet und der Rückstand mit salzsäurehaltigem Aceton ausgezogen. Die Acetonlösung wird abfiltriert, neutralisiert, bei 40° zur Trockene gebracht, der Rückstand in Wasser gelöst, abfiltriert und mit Krauts Jodwismutkaliumreagens gefällt. Nach 10-12stündigem Stehen wird der Niederschlag auf dem Filter gesammelt, mit Silberoxyd zersetzt, mit Alkohol ausgezogen, das Cholin daraus mit alkoholischem Platinchlorid gefällt. Das Filtrat der Fällung mit Krauts Reagens wird eingedampft, angesäuert, mit Alkohol ausgezogen und im Alkoholextrakt der von der Glyzerinphosphorsäure stammende Phosphor bestimmt. 1)

¹⁾ Peter Bergell, Über die Spaltung des Lezithins durch den bei vollständigem Darmverschluß abgesonderten Darmsaft. Zentralbl, f. allg. Pathol, u. pathol. Anat. Bd. 12. S. 633-634 (1901). - H. Stassano et Billon, La lécithine n'est pas dédoublée par le sue pancréatique même kinasé. Compt. rend. hebd. des séanc. de la Soc. de Biologie. T. 15, p. 482-483 (1903). - La lécithine pure ingérée se retrouve inaltérée dans la lymphe provenant des chylifères. Ibid. T. 15. p. 924-926 (1903). - C. Schumoff-Simanowski und N. Sieber, Das Verhalten des Lezithins zu fettspaltenden Fermenten. Zeitschr. f. physiol. Chem. Bd. 49. S. 50-63 (1906). - B. Slowtzoff, Über die Resorption des Lezithins aus dem Darmkanal. Beitr. z. chem. Physiol. und Pathol. Bd. 7. S. 508-513 (1906). Paul Mayer, Über die Spaltung der lipoiden Substanzen durch Lipase und über die optischen Antipoden des natürlichen Lezithins. Biochem. Zeitschr. Bd. 1. S. 39-52 (1906). — Über Lezithinzucker sowie über das physikalisch-chemische Verhalten des Zuckers im Blut, Ebenda. Bd. 1. S. 81-107 (1906). - M. Kumagawa und K. Suto, Ein neues Verfahren zur quantitativen Bestimmung des Fettes und der unverseifbaren Substanz im tierischen Material nebst der Kritik einiger gebräuchlichen Methoden. I. Abhandlung, Ebenda, Bd. 8, S, 211-347 (1908).

C. Methoden zur Untersuchung des Speichels und des Inhaltes des Verdauungsschlauches und der Fäzes der Pflanzenfresser.

Von A. Scheunert, Dresden.

1. Untersuchung des Speichels.

A. Gewinnung.

Wie besonders die Untersuchungen *Pawlows* gezeigt haben, ist die Zusammensetzung des Speichels von den verschiedensten Einflüssen psychischer und mechanischer Art abhängig; man wird daher bei der Gewinnung von Speichel zu Untersuchungszwecken je nach den Umständen, unter denen sie erfolgt, verschieden zusammengesetzte Sekrete erhalten. Über die Gewinnung lassen sich daher nur ganz allgemeine Angaben machen.

Das Sekret bestimmter Speicheldrüsen wird bei Tieren durch Anlegen von Fisteln an die Ausführungsgänge (vgl. Bd. III, S. 96) gewonnen. Gemischten Mundspeichel gewinnt man nach Anlage einer Ösophagusfistel derart, daß man das Tier auf irgend eine durch die Versuchszwecke bedingte Weise zur Speichelsekretion veranlaßt und den aus der Fistelöffnung austretenden abgeschluckten Speichel auffängt. Durch Vorzeigen von Nahrung kann so psychischer Speichel, durch Einbringen harter Gegenstände in das Maul Gleitspeichel usw. gewonnen werden. Auch durch Injektion speicheltreibender Mittel (Pilokarpin) oder elektrische Reizung kann Speichelsekretion hervorgerufen werden. Gemischten menschlichen Speichel gewinnt man durch Kauen auf Wattebauschen oder Schwämmchen und Entleeren des im Munde sich ansammelnden Speichels oder Ausdrücken der Schwämmchen¹), ferner durch Ausführen von Kau- und Saugbewegungen bei geschlossenem Munde²), schließlich auch durch elektrische Reizung mit einem galvanischen Strom von 0·5—1 Milliampère. wobei die Elektrode des Kohlenpols in die linke Hand genommen und mit dem Drahtende des Zinkpols die Zunge bestrichen wird.³

Menschliches Parotissekret erhält man leicht durch Einführung einer Kanüle von entsprechendem Lumen in die (bei Selbstversuchen mit Hilfe eines Spiegels) leicht auffindbare Mündung eines Parotidenganges.

G. Sticker, Ein einfaches Verfahren, größere Mengen von Mundspeichel zu gewinnen, Münchner Med. Wochenschr. Jg. 1897. S. 227—228.

²) Jawein, Zur klinischen Pathologie des Speichels. Wiener Med. Presse. Jg. 1892.
S. 568.

³) H. Dieminger, Beitr. zur Kenntuis des menschlichen Mundspeichels etc. Diss. Würzburg. Jg. 1898. S. 42.

B. Allgemeine Eigenschaften.

Die Reaktion des frisch sezernierten physiologischen Speichels ist stets alkalisch.

Über das Verhalten verschiedener Indikatoren gegen Speichel sowie seine Reaktion bei Krankheiten vgl. bei Dieminger und Fleckseder. 1)

Der Speichel ist stets durch feste Partikelchen getrübt, die sich bei der mikroskopischen Untersuchung als Speisereste, abgestoßene Mund- und Zungenepithelien. Detritus etc. erweisen. Ferner enthält er sogenannte Speichelkörperchen (Leukozyten?), kernhaltige, ein gekörntes Protoplasma besitzende Zellen mit amöboider Bewegung. Eine Trennung des Speichels von diesen Bestandteilen kann durch Sedimentierung oder durch Filtration (Wattebausch) erzielt werden. Der sich beim längeren Stehen des Speichels an der Luft abscheidende, eine Trübung hervorrufende Niederschlag besteht aus Ca CO_3 , welches aus dem $\mathrm{Ca}(\mathrm{HCO}_3)_2$ des Speichels durch Kohlensäureabgabe entsteht.

Über die Bestimmung des spezifischen Gewichtes 1), der elektrischen Leitfähigkeit, der Gefrierpunktserniedrigung, der Viskosität des Speichels vgl. die betreffen-

den Kapitel dieses Werkes und die zitierten Originalarbeiten. 2-3)

C. Organische Verbindungen.

- 1. Proteinsubstanzen.
- a) Muzin. Das Speichelmuzin wird durch Ansäuern des Speichels mit Essigsäure, in der es unlöslich ist, ausgefällt. Beim starken Schütteln oder Umrühren der Flüssigkeit ballt es sich als faseriges Gerinnsel zusammen. Man kann es leicht von der Flüssigkeit durch Herausheben oder Abfiltrieren (quantitative Methode bei Anwendung gewogener Filter) trennen und mit ihm zur weiteren Reinigung und Untersuchung nach Bd. II, S. 409 verfahren. Zur Identifizierung genügt es, durch dreistündiges Kochen in 10% iger HCl am Rückflußkühler den Aminozucker aus ihm abzuspalten und diesen nach Fällung der Eiweißstoffe durch Phosphorwolframsäure durch eine Reduktionsprobe nachzuweisen.

Zur Darstellung des Muzins verwendet man zweckmäßig Extrakte der Gl. mandibularis (submaxillaris), (Vgl. Bd. H. S. 410.)

- b) Eiweiß. Das neben Muzin im Speichel enthaltene native Eiweiß ist seiner Natur nach wenig bekannt und läßt sich nach Entfernung des Muzins darin mit den bekannten Reaktionen nachweisen und durch Koagulation entfernen.
- 2. Enzyme. Die im Speichel anwesenden Enzyme, Diastase (Ptyalin) und Maltase, werden nach Bd. III, S. 16 nachgewiesen und untersucht. Die Speicheldiastase verwandelt Stärke in Dextrine und Maltose, wobei als Zwischenprodukte die durch ihr Verhalten gegen J charakterisierten Dextringemische, Erythrodextrin, Achroodextrin, auftreten. Die Maltase spaltet

¹⁾ R. Fleckseder, Der gemischte Speichel des Menschen, sein normales Verhalten und seine Veränderungen in Krankheiten. Zeitschr. f. Heilkunde. Bd. 27. Abt. f. innere Med. S. 231—296 (1906).

²) F. N. Schulz, Speicheldrüsen und Speichel. Oppenheimers Handb. d. Biochem. Bd. 3, 4, 8, 27.

 $^{^3)\} G.$ Japelli, Über die physiko-chemischen Bedingungen der Speichelabsonderung. Zeitschr. f. Biol. Bd. 48. S. 398—431 (1906); Bd. 51. S. 42—78. 127—176 (1908).

das Disaccharid Maltose in 2 Moleküle Glukose. Die Untersuchung des Speichels auf Oxydasen erfolgt nach Bd. III. S. 43 ff. Lit. findet sich bei Schulz. 1. c.

3. Nachweis anderer organischer Verbindungen. Besonders im Speichel Kranker ist noch eine Anzahl anderer organischer Verbindungen aufgefunden worden, z. B. Harnstoff, Harnsäure, Aceton, Traubenzucker, Leucin. Über den Nachweis dieser Körper vgl. die betreffenden Kapitel dieses Werkes, über ihr Vorkommen berichten Dieminger und Fleckseder u. a.

Die von Rosenbach⁴) beschriebenen Farbenreaktionen dürften auf seinem Eiweißgehalt beruhen und nach den Untersuchungen von Rosenthal²) zu urteilen, keine Bedeutung für die Speicheluntersuchung besitzen.

D. Anorganische Verbindungen.

Zur Untersuchung auf gelöste anorganische Verbindungen wird es in den meisten Fällen nötig sein, die Eiweißkörper des Speichels vorher zu entfernen. Zum Nachweis und zur Bestimmung der CO_2 und des Ammoniaks bedarf es dessen nicht. Zur Enteiweißung säuert man, sofern nicht besondere Methoden (vgl. unten) erforderlich sind, mit Essigsäure an, filtriert das ausgeschiedene Muzin ab und entfernt das Eiweiß im Filtrat durch Koagulation. Es kommen in Frage:

Kationen: K, Na, Ca, Mg, NH4.

Anionen: Cl', PO4", CO3". In Spuren CNS', SO4", NO2'.

Einer genaueren Besprechung bedürfen nur einige wenige Bestimmungsmethoden, deren Ausführung zum Teil von dem bei der quantitativen und qualitativen chemischen Analyse üblichen Verfahren abweicht.

- I. Salze der Rhodanwasserstoffsäure.
- a) Qualitativer Nachweis. Vorsichtiges Einengen des Speichels auf die Hälfte oder ein Drittel seines Volumens leistet häufig gute Dienste.
- 1. Nachweis als Ferrirhodanid. Die blutrote Farbe des Ferrirhodanids dient auch zum Nachweis des Rhodanalkali im Speichel. Man fügt zu dem mit HCl angesäuerten Speichel einige Tropfen einer 10% jegen Ferrichloridlösung. Bei Gegenwart von Rhodanalkali tritt die durch Ferrirhodanid hervorgerufene blutrote Farbe auf (in Äther löslich).

Eine praktische Modifikation dieser Reaktion stammt von Gscheidlen³), der Filtrierpapier mit salzsäurehaltiger Ferrichloridlösung tränkte, trocknete und als Reagenzpapier verwendete. Ein Tropfen rhodanalkalihaltigen Speichels auf solches Papier gebracht ruft darauf einen roten Fleck hervor.

2. Eine noch größere Empfindlichkeit ist der Reaktion von Solera⁴) eigen. Jodsäure wird durch rhodanhaltigen Speichel reduziert und dabei

¹) O. Rosenbach, Über einige Farbenreaktionen des Mundspeichels. Zentralbl. f. klin. Med. Bd. 12, S. 145-148 (1891).

²) J. Rosenthal, Über Farbenreaktionen des Mundspeichels. Berl. klin. Wochenschr. Jg. 1892. S. 353.

³⁾ R. Gscheidlen, Rhodannachweis. Malys Jahresber. Bd. 4. S. 91 (1874).

⁴) L. Solera, Über eine eigentümliche Reaktion des Speichels. Malys Jahresber. Bd. 7. S. 256 (1877).

Jod frei, welches durch Stärkekleister (Blaufärbung) nachgewiesen werden kann. Die Anwendung eines mit Jodsäure- und Stärkekleisterlösung getränkten Reagenzpapieres ist auch hier zu empfehlen.

- 3. Geringere praktische Bedeutung als die sub 1 und 2 genannten haben die Reaktionen von Pollacci¹) und Colasanti²) gewonnen. Pollacci hat die Eigenschaft der Rhodanide, mit geringen Mengen Mercurosalzen Mercurialkalirhodanid und metallisches Quecksilber zu geben, zum Rhodannachweis im Speichel verwendet. In ein Schälchen bringt man etwas Calomel und gibt 10—12 Tropfen Speichel hinzu. Bei Anwesenheit von Rhodanalkali tritt Dunkelfärbung unter Abscheidung von metallischem Hg ein. Colasanti hat mehrere Reaktionen angegeben, von denen die eine auf dem Auftreten einer smaragdgrünen Färbung beim Versetzen rhodanhaltigen Speichels mit verdünnter Kupfersulfatlösung, die andere auf der Reduktion von Goldchloridlösungen 1:1000 durch verdünnte Sulfocyanatlösungen beim Erwärmen in alkalischer Lösung (Zusatz von gesättigter Na₂CO₃-Lösung) beruht. In letzteren Falle tritt violette Färbung der Lösung durch kolloidales Gold ein.
 - b) Quantitative Bestimmung.
- 1. Nach I. Munk. 3) Der zur Untersuchung bestimmte Speichel wird filtriert, zur Trockne gedampft und der Trockenrückstand mehrmals mit Alkohol ausgezogen. Auf diese Weise erreicht man eine vollständige Trennung der Eiweißsubstanzen von Rhodansalzen, da außer diesen nur noch Chloride in das alkoholische Extrakt übergehen. Der Trockenrückstand des Alkoholextraktes wird mit Wasser aufgenommen, mit HNO, angesäuert und durch Silbernitrat, Chloride und Rhodanide vollständig ausgefällt. Der Niederschlag wird auf einem Filter gesammelt und im Wassertrockenschrank getrocknet. Der Niederschlag wird dann im Silbertiegel mit Soda und Salpeter geschmolzen, wobei der Schwefel des Rhodanids zu Schwefelsäure oxydiert wird. Die Schmelze wird in Wasser und verdünnter Salzsäure aufgelöst, klar filtriert und in dieser Lösung die Fällung der Schwefelsäure mit BaCl, vorgenommen, Munk empfiehlt zur Entfernung überschüssiger Salpetersäure die Schmelze mehrmals mit HCl auf dem Wasserbade einzudampfen und dann erst mit H,O aufzunehmen und mit BaCl, zu fällen. Der BaSO₄-Niederschlag wird zur quantitativen Wägung gebracht. Da 1 Teil Ba SO₄ 0·253 Teilen HCNS, 0·416 Teilen Rhodankalium, 0·348 Teilen Rhodannatrium entspricht, läßt sich der Rhodanalkaligehalt des Speichels leicht berechnen. Die Methode gibt recht genaue Werte, wie mehrfache Nachprüfungen z. B. von Krüger ergeben haben.4)
- 2. S. Lang⁵) hat eine Methode vorgeschlagen, die sich zu gleichzeitiger Bestimmung der Chloride und Rhodanide eignet. Der enteiweißte und filtrierte Speichel wird in zwei gleiche Portionen geteilt und in einer Portion mit n Ag NO₃-Lösung nach Volhard titrimetrisch die Gesamtmenge der Chloride und Rhodanide ermittelt. Die andere Portion wird unter Zusatz von chlorfreiem Salpeter in einer Platinschale verascht und in

¹) E. Pollacci, Nachweis der Rhodanwasserstoffsäure im Speichel. Ann. chim. anal. appl. Bd. 9, S. 162. Zit. nach Malys Jahresber. Bd. 34, S. 425 (1904).

²) G. Colasanti, Zit. nach Malys Jahresber. Bd. 19. S. 72-74 (1889).

³⁾ J. Mink, Phys.-chem. Mitteilungen. Virchows Arch. Bd. 69, S. 350—369 (1877).

⁴⁾ F. Krüger, Über den Schwefeleyansäuregehalt beim Menschen, Zeitschr. f. Biol. Bd. 37, S. 6 -24 (1898).

⁵⁾ S. Lang. Über die Umwandlung des Acetonitrils und seiner Homologen im Tierkörper, Arch. f. exper. Path. u. Pharm. Bd. 34. S. 253 (1894).

der mit Wasser aufgenommenen Schmelze der Chlorgehalt ermittelt. Durch Berechnung läßt sich der Gehalt an Thiocyansäure leicht ermitteln.

3. Spektrophotometrische Bestimmung. Sehr schnell und mit großer Genauigkeit läßt sich der Rhodangehalt des Speichels mit Hilfe des Spektrophotometers bestimmen. Tezner 1), der mit dem Hüfnerschen Instrument arbeitete, hat folgendes Verfahren erprobt:

Nach entsprechender Verdünnung des Speichels mit Wasser (das Spektrophotometer hat für Rhodanidlösungen von 0·0015—0·0025% Salzgehalt die größte Empfindlichkeit) fügt man zu 1 cm³ des verdünnten Speichels 3 Tropfen verdünnter Eisenchloridlösung, schüttelt um und filtriert durch ein kleines Filter. Das Filtrat wird in den Absorptionstrog gefüllt und der Extinktionskoeffizient bestimmt (Doppelbestimmung mit je 10 Ablesungen). Näheres vgl. Spektrophotometrie Bd. I. S. 631. Da der Extinktionskoeffizient $\varepsilon = -\log \cos^2 \varphi$ und das Absorptionsverhältnis A für Ferrirhodanid nach Tezners Bestimmungen 0·003 beträgt, läßt sich die Konzentration e der Lösung gemäß der Formel c = A. ε oder $c = -\log \cos^2 \varphi$ 0·003 berechnen, wobei φ der abgelesene Winkel ist. Die Methode läßt sich außerordentlich rasch und mit sehr geringer Speichelmenge (1 cm³) ausführen (Fehlergrenze \pm 0·0015 mg). Über Anwendung des Glanschen Spektrophotometers zur Rhodanbestimmung vgl. Wroblewski. 2)

4. Die kolorimetrische Bestimmung ist mehrfach angewandt worden, gibt aber Resultate, die an Genauigkeit bedeutend hinter denen der geschilderten Methoden zurückstehen. Das alte Verfahren von Ochl ist neuerdings von $Fleckseder^3$) in folgender Weise ausgeführt worden. Benötigt dazu werden zwei gleiche, genau in Kubikzentimeter geteilte Eprouvetten. In die eine werden Ocholorimeter klaren Speichels (Sedimentieren oder Filtrieren), in die andere die gleiche Menge einer Ocholorimeter Rhodankaliumlösung gebracht und zu beiden ein gleiches Volumen einer Ocholorimeter Bisenchloridlösung, die etwas HCl enthält, gegeben. Durch Umschütteln wird Vermischung und gleichmäßige Färbung der Flüssigkeiten erzielt. Die Lösung, welche eine tiefere rote Farbe zeigt, wird dann mit soviel Wasser verdünnt, bis ihre Farbe mit der der anderen unverdünnten übereinstimmt. Der Rhodangehalt des Speichels läßt sich durch einfache Berechnung ermitteln. Eine kolorimetrische Bestimmung kann natürlich auch unter Anwendung eines der üblichen Kolorimeter ausgeführt werden.

Ausführlicheres über Rhodanbestimmung findet sich bei Villain. 4)

H. Chloride.

Zur quantitativen Bestimmung der Chloride empfiehlt sich das oben angegebene Verfahren von Lang oder die Methode von Munk. (Lit. sub I b) 1 und 2.)

¹⁾ E. Tezner, Variations phys. de la composition de la salive. Arch. internat. de Phys. T. 2. p. 153—191 (1905).

²⁾ A. Wroblewski, Anwendung des Glanschen Spektrophotometers auf die Tierchemie. Quantitative Bestimmung der Rhodansalze im Speichel. Krakau. Akad. d. Wiss. Bd. 96. S. 389 (1896).

³) R. Fleckseder, Der gemischte Speichel des Menschen, sein normales Verhalten und seine Veränderungen in Krankheiten. Zeitschr. f. Heilk. Bd. 27. Abt. f. innere Med. S. 231—296 (1906).

⁴⁾ E. Villain, Über das Vorkommen und den Nachweis des Rhodans im Menschenund Tierkörper und seine toxikologische und pharmakologische Bedeutung. Diss. Freiburg 1903.

 $5-10\ cm^3$ Speichel werden mit etwas chlorfreiem Salpeter zur Trockne gedampft und dann vorsichtig unter langsamer Steigerung der Hitze verkohlt und schließlich über freier Flamme rasch geglüht. Die weiße Schmelze wird unter Zusatz von etwas Salpetersäure in Wasser gelöst. In dieser Lösung werden mit Ag NO $_3$ die Chloride gefällt und in der üblichen Weise zur Wägung gebracht.

III. Nitrite. Zum Nachweis der Nitrite im Speichel können verschiedene Reaktionen verwendet werden, die in der qualitativen chemischen Analyse zu gleichem

Zwecke dienen. In ganz frischem Speichel fallen sie häufig negativ aus.

a) Mit ${\rm H_2\,SO_4}$ angesäuerter Speichel gibt mit Jodzinkstärkekleisterlösung Blaufärbung infolge Auftretens blauer Jodstärke durch in Freiheit gesetztes Jod. Die Jodzinkstärkekleisterlösung wird so hergestellt, daß zunächst $1\,g$ Stärke mit etwas destilliertem Wasser verrieben wird. Diese Aufschwemmung gibt man in ein Becherglas, fügt eine Lösung von $5\,g$ Zinkchlorid in $25\,em^3$ ${\rm H_2\,O}$ hinzu und kocht bis zur Lösung der Stärke; das Produkt wird dann mit $250\,em^3$ ${\rm H_2\,O}$ und $0.5\,g$ Zinkjodid versetzt, gemischt und kann dann zur Reaktion verwendet werden.

b) Mit Schwefelsäure angesäuerter Speichel gibt mit schwefelsaurer m-Phenylendiaminlösung bei Anwesenheit von Nitriten Gelb- bis Braunfärbung (Bismarckbraun). Zur Herstellung der Lösung werden 5 g m-Phenylendiamin mit Schwefelsäure bis zur schwach sauren Reaktion versetzt und auf 1 l aufgefüllt. Die Lösung soll farblos sein.

c) α -Naphtylamin-Sulfanilsäurelösung gibt mit nitrithaltigem Speichel, auf 80° erwärmt, deutliche Rosafärbung. Zur Bereitung des Reagens wird 1.0·5 g Sulfanilsäure in 150 cm^3 einer $30^9/_0$ igen Essigsäure gelöst; 2.0·1 g α -Naphtylamin puriss. mit $20~cm^3$ Wasser gekocht. Es bleibt hierbei ein blauvioletter Rückstand ungelöst, von dem die überstehende klare Flüssigkeit abgegossen und mit Lösung 1 vermischt wird. Die Aufbewahrung soll in Fläschchen mit paraffinierten Stopfen erfolgen. Die Reaktion ist äußerst empfindlich.

IV. Ammoniak. Der Nachweis freien Ammoniaks gelingt mit Nesslerschem Reagens. Quantitativ kann der Gehalt an Ammonium durch Destillation mit MgO und Auffangen des übergehenden $\mathrm{NH_3}$ in einer Säure von bekanntem Titer bestimmt werden. Auch das Schlösingsche Verfahren eignet sich zur Ammoniakbestimmung im Speichel.

V. Gase des Speichels. Über Methoden der Gewinnung der Speichelgase (O_2, N_2, CO_2) vgl. $K\ddot{u}lz$ [Parotidensekret] 1). $Pfl\ddot{u}ger$ [Submaxillarsekret] 2).

Speichelsteine und Zahnstein.

Die in den Ausführungsgängen der Speicheldrüsen (Gl. parotis, mandibularis [submaxillaris], sublingualis) oder seltener in den Drüsen selbst krankhafterweise eingelagerten Konkremente haben im allgemeinen eine ähnliche qualitative Zusammensetzung und bestehen aus organischen und anorganischen Bestandteilen. Über die organischen Bestandteile ist wenig bekannt, sie sind unter dem Mikroskop zum Teil als Leiber verschiedener Bakterienarten oder als Epithelien, Speichelkörperchen u. dgl. zu erkennen. Die anorganischen Bestandteile sind außer Wasser hauptsächlich Phosphate und Karbonate des Ca und Mg, von denen stets die Ca-Salze, und zwar meist die Phosphate, seltener die Karbonate in überwiegender Menge vorhanden sind. Neben diesen finden sich noch geringe Mengen löslicher Salze; Rhodanide finden sich nicht.

R. Külz, Über den Gasgehalt menschlicher Sekrete. Zeitschr. f. Biol. Bd. 23.
 320—328 (1887).

²⁾ E. Pflüger, Die Gase des Speichels. Pflügers Archiv. Bd. 1. S. 686-690 (1868).

Der sogenannte Zahnstein¹) besitzt eine ganz analoge Zusammensetzung und besteht in der Hauptsache aus Calciumphosphat oder Calciumkarbonat.

Zur Untersuchung wird durch Ausziehen der zerkleinerten Konkremente mit Wasser eine Trennung der wasserlöslichen von den wasserunlöslichen Bestandteilen bewirkt. Die Lösung kann der qualitativen chemischen Analyse unterworfen werden.

Die unlöslichen Bestandteile lassen sich durch Behandlung mit verdünnter Salzsäure, wobei CO, unter Aufbrausen entweicht, in Lösung bringen. Nach dem Abfiltrieren von ungelösten (organischen) Bestandteilen sind dann in der Lösung die Proben auf

Ca, Mg, PO, " vorzunehmen.

Bei der quantitativen Analyse ist mit abgewogenen Mengen, die vom Ergebnis der qualitativen Vorproben und der Menge des vorhandenen Materials abhängen, analog zu verfahren und bei der Abscheidung der einzelnen Verbindungen zur Wägung und bei der Bestimmung der CO, die Methodik der quantitativen Mineralanalyse anzuwenden. Vergleiche Aschenanalyse Bd. I. Quantitativ können ferner ermittelt werden: Wassergehalt, Asche, Menge der in II. O löslichen und unlöslichen Bestandteile, N-Gehalt der organischen Substanzen (Kjeldahl).

2. Untersuchung des Darminhaltes und der Fäzes der Pflanzenfresser.

Der Inhalt des Verdauungstraktus der Pflanzenfresser²) oder mit gemischter Nahrung gefütterter Omni- und Karnivoren stellt eine mehr oder weniger dünnbreiige Masse dar, deren Konsistenz wesentlich von der Menge der in ihr enthaltenen Holzfaserteile abhängig ist, und deren Wassergehalt je nach dem Abschnitte des Verdauungsschlauches, dem sie entstammt, variiert.

Im Magen vom Pferd und Schwein finden sich 60-70%, im Dünndarm und Caekum 90-98% Wasser, im Kolon nimmt der Wassergehalt allmählich ab, im Rektum beträgt er 75-85%. Der Inhalt der Vormägen (mit Ausnahme des Psalters) und des Drüsenmagens der Wiederkäuer ist stets sehr wasserreich und enthält 80-90% H₂O. Der Wassergehalt des Kotes entspricht im allgemeinen dem des Rektums, Pferd (70 bis 80%, und ist nur beim Rinde oft von dünnbreiger Beschaffenheit.

I. Analytische Bestimmungen in frischen Magen-Darminhalten und Fäzes der Pflanzenfresser.

In frischen Inhalten und Fäzes können von analytischen Bestimmungen nur die der Trockensubstanz, der stickstoffhaltigen Körper und gewisser anorganischer Bestandteile ausgeführt werden, da zum Gelingen anderer Bestimmungen, z. B. der der Stärke, der Rohfaser etc. die Zerkleinerung der zu analysierenden Substanzen unbedingt erforderlich ist, diese aber mit feuchtem Material nicht vorgenommen werden kann. In allen solchen Fällen hat der analytischen Bestimmung eine Eintrocknung des Untersuchungsmaterials vorherzugehen. Ferner kann in frischem Material eine quantitative Trennung der gelösten von den ungelösten Bestandteilen vorgenommen werden. Hieran

¹⁾ C. Wittmann, Untersuchungen über Zahnstein und dessen chemische Zusammensetzung bei unseren Haussäugetieren. Diss. Leipzig 1908.

²⁾ Über die Methodik, die sich in vielen Fällen dem Gange der Futtermittelanalyse anschließt, vgl. auch J. König, Die Untersuchung landwirtschaftlich und gewerblich wichtiger Stoffe. Berlin. Paul Parev.

kann sich die Analyse der gelösten Bestandteile (Trockensubstanz, Asche. Stickstoff, lösliche Kohlehydrate etc.) anschließen.

Bei allen Analysen frischen Materials ist die Probeentnahme von größter Bedeutung, ein sicheres Ergebnis kann nur durch mehrere Kontrollanalysen erhalten werden.

1. Trockensubstanz.

Von Magen-Darminhalten empfiehlt es sich. 10-20~g abzuwägen. Diese werden zunächst auf dem Wasserbade von der Hauptmenge des Wassers befreit und dann im Trockenschrank bei $100-105^{\circ}$ bis zur Gewichtskonstanz getrocknet.

Zur Bestimmung des Trockensubstanzgehaltes im Kot schließt man sich dem bei der Futtermittelanalyse geübten Brauche an: etwa 5 g Kot werden bei 100° bis zur Gewichtskonstanz getrocknet, was meist nach 5 Stunden erreicht ist.

Fehler entstehen bei den Gärungs- und Fäulnisprodukte enthaltenden Darminhalten und den Fäzes dadurch, daß sich außer dem Wasser auch noch andere Substanzen verflüchtigen (Fettsäuren, aromatische Körper, Ammoniak etc.). Soll dies vermieden werden, so muß bei möglichst niedriger Temperatur über wasserentziehenden Mitteln getrocknet werden. Der Ersatz der Luft durch ein indifferentes Gas, H_2 . CH_4 , N_2 etc., ist in solchen Fällen zu empfehlen.

2. Bestimmung stickstoffhaltiger Bestandteile.

- a) Gesamtstickstoff, Zur N-Bestimmung bedient man sich der Methode nach Kjeldahl (vgl. Bd. I, S. 340). Es müssen hierbei stets mehr als 2 Kontrollanalysen ausgeführt werden, zu denen je nach dem Wassergehalt 2—10 g der feuchten Substanz verwendet werden sollen.
- b) Bestimmung des Eiweißes und Nichteiweißes im Kot der Pflanzenfresser. Bei der Bestimmung der Ausnutzung von Futtermitteln ist es üblich, den Stickstoff der Futtermittel auf "Rohprotein" umzurechnen und das im Kote auf gleiche Weise berechnete Eiweiß als unverdaut davon abzuziehen. Die Differenz ergibt die Menge des verdauten aufgesaugten Eiweißes. Daß diese Bestimmungsart keine exakte ist, liegt auf der Hand; denn weder der N-Gehalt des Futters noch der des Kotes vermag die darin enthaltenen Eiweißmengen genau wiederzugeben, da darin außerdem auch nichteiweißartige N-haltige Verbindungen in sehr variablen Mengen enthalten sind.

Stutzer hat eine Methode ausgearbeitet, die gestattet, in Futtermitteln wenigstens annähernd genau die Menge des wirklichen Eiweißes, "des Reinproteins", zu bestimmen, und die darauf beruht, daß Eiweißkörper durch Kupferhydroxyd niedergeschlagen werden. Die von Barnstein etwas modifi-

zierte Stutzersche Methode läßt sich nach Zaitschek 1) auch sehr gut für Kot verwenden und wird dann folgendermaßen ausgeführt:

1 -2 q des Kotes werden in 50 cm³ Wasser suspendiert, aufgekocht und mit $25 \text{ } cm^3$ einer 6% igen Kupfersulfatlösung versetzt. Unter Umrühren gibt man hierzu 25 cm³ einer 1·25% igen Natronlauge. Der die Eiweißkörper enthaltende Niederschlag wird unter Dekantieren und Auswaschen mit reinem Wasser auf ein Filter gebracht und kupfersulfatfrei gewaschen. Sein X-Gehalt gibt mit 6:25 multipliziert, den Eiweißgehalt (Reinprotein) der Substanz an. Die Differenz zwischen Rohprotein und Reinprotein ergibt "Nichteiweiß".

Über die Bestimmung und Isolierung von Aminosäuren, Ammoniak etc. vgl. Bd. III. Abschnitt: Stoffwechselendprodukte.

c) Bestimmung der im Kote enthaltenen, aus den Stoffwechselprodukten stammenden Stickstoffmengen. Zahlreiche eingehende Untersuchungen Stutzers und anderer Autoren berechtigen zu der Annahme, daß die im Kote der Pflanzenfresser vorhandenen, durch künstlichen Magensaft löslichen Stickstoffmengen als Maß des mit dem Kote ausgeschiedenen Körper-N anzusehen sind. Begründung dieser Anschauung siehe in den Originalartikeln. 1, 2, 3, 4, 5)

Von Bedeutung für die Ausführung der von Stutzer ausgearbeiteten Methode ist die Verwendung ganz frischen Kotes, da dieser beim Trocknen unter gewöhnlichen Bedingungen eine etwa 6% betragende Erniedrigung seines Verdaulichkeitskoeffizienten erleidet. 6) Eintrocknen bei 15-20° ruft nur einen geringen Fehler hervor, doch ist ein fehlerfreies Konservierungsverfahren vorzuziehen, das darin besteht, daß man pro $100\,g$ Kot $1\,cm^3$ Schwefelkohlenstoff zufügt und das Gemisch in luftdicht schließenden Glasstöpselflaschen aufbewahrt.5)

Zur Ausführung der Bestimmung⁴) verfährt man wie folgt:

a) Bereitung des künstlichen Magensaftes. Es empfiehlt sich hierzu ein Extrakt von Schweine magenschleimhaut derart zu bereiten, daß von einer größeren Anzahl (am besten 6) Mägen die Schleimhäute abpräpariert und gut zerkleinert werden. Zum Schleimhautbrei werden 15 l Wasser und dazu 300 cm³ 10⁹/_oiger H Cl gegeben. Unter öfterem Umschütteln bleibt das Gemisch 24-30 Stunden lang der Extraktion überlassen. Dann wird das Extrakt erst durch Flanell koliert, dann durch Papier klar filtriert und sein Gehalt an Salzsäure durch Zugabe der titrimetrisch (Phenolphtalein) leicht zu ermittelnden Menge auf 0.20% gebracht. Zur besseren Konservierung empfiehlt Stutzer den Zusatz einer möglichst kleinen Chloroformmenge.

¹⁾ A. Zaitschek, Zur Methodik der Bestimmung des Stickstoff- und Eiweißgehaltes der Fäzes. Pflügers Arch. Bd. 98. S. 595-622 (1903).

²⁾ A. Stutzer, Einige Beobachtungen über Proteinverdauung. Zeitschr. f. physiol. Chemie. Bd. 10. S. 153-169 (1886).

³⁾ Th. Pfeister, Die Bestimmung des Stickstoffs der Stoffwechselprodukte. Zeitschr. f. physiol. Chemie. Bd. 10. S. 560-576 (1886).

⁴⁾ A. Stutzer und E. Merres, Untersuchungen über die Wirkung der Enzyme der Magenschleimhaut und des Bauchspeichels auf vegetabilische Eiweißstoffe. Biochem. Zeitschr. Bd. 9. S. 127—162 (1908).

⁵⁾ A. Stutzer, E. Merres und L. Seidler, Die Untersuchung des Kotes auf Gehalt an Stickstoff, der in Form von Stoffwechselprodukten darin enthalten ist. Biochem. Zeitschr. Bd. 9. S. 310-317 (1908).

⁶⁾ C. Beger, Über den Stickstoffgehalt und die Löslichkeit stickstoffhaltiger Bestandteile in Pepsinsalzsäure sowohl in frischem wie in präpariertem Hammelkot. Zeitschr. f. physiol. Chemie. Bd. 40. S. 176-181 (1903/04).

3) Anstellung der künstlichen Verdauung. Eine etwa 2 g Trockensubstanz entsprechende Menge Kot wird mit 250 cm³ des künstlichen Magensaftes übergossen und nach dem Erwärmen auf 37° hierzu allmählich soviel HCl gefügt, bis eine Konzentration von 1°.0 HCl erreicht ist und dann 12 Stunden stehen gelassen. Danach wird das Gelöste vom Ungelösten abfiltriert und in letzterem der Stickstoff bestimmt. Die Differenz zwischen dem N des frischen Kotes und dem ungelöst gebliebenen N gibt den N-Gehalt der im Kote enthaltenen Stoffwechselprodukte.

3. Untersuchung auf anorganische Bestandteile (Analyse der Asche).

Der qualitativen und quantitativen Bestimmung anorganischer Verbindungen (Salze etc.) muß erst eine Zerstörung der organischen Substanzen vorhergehen, die teils auf nassem Wege, teils durch Veraschung erfolgen kann. Die hierbei üblichen Methoden sind in Bd. I. S. 372 geschildert.

4. Trennung der löslichen von den unlöslichen Bestandteilen und Analyse der löslichen Bestandteile.

Kommt es darauf an, in quantitativ abgewogenen Mengen die gelösten von den ungelösten Bestandteilen zu trennen, so kann nur die Filtration durch gewogene, quantitative Filter gewählt werden. Von den wasserärmeren Inhalten sind hierzu Quantitäten bis zu 40 g, von den wasserreichen (Dünndarm, Caekum) bis zu 90 g zu empfehlen. Bei der Entnahme dieser Portionen ist die größte Sorgfalt darauf zu legen, daß man wirkliche Mittelproben erhält. Die Filtration findet im Eisschrank, das Auswaschen mit eiskaltem Wasser statt. Im allgemeinen genügen bei den erwähnten Mengen 400—500 cm³ Waschwasser zum gründlichen Auswaschen. Das auf 500 cm³ aufgefüllte Filtrat enthält die gelösten Anteile (Kohlehydrate, Eiweißderivate) in solcher Konzentration, daß in 100 resp. 50 cm³ genaue analytische Bestimmungen ausgeführt werden können. Die Filtration dauert bei den sauren Mageninhalten von Pferd, Schwein und Hund ca. 12 Stunden, bei schleimiger Beschaffenheit und alkalischer Reaktion der Inhalte und bei den Inhalten der vier Wiederkäuermägen oft bedeutend länger.

Handelt es sich lediglich darum, einen Teil der Inhaltsflüssigkeit zu gewinnen, so können die Inhalte mit hohem Wassergehalt koliert und dann filtriert werden. Bei wasserarmem Material (z. B. Mageninhalt von Pferd und Schwein) bedient man sich mit Vorteil der Presse (Handpresse oder hydraulische Presse). Die ausgepreßte Flüssigkeit läßt man entweder absetzen oder man zentrifugiert sie. In beiden Fällen muß das stets trübe Produkt durch Schleicher & Schüllsche Filter Nr. 605 hart oder extrahart im Eisschrank klar filtriert werden. Mehrmaliges Gießen des anfänglich fast immer trüben Filtrates auf dasselbe Filter ist erforderlich.

Soll im Inhalt eines Darmabschnittes die Menge der gelösten Stoffe bestimmt werden, ohne daß in abgewogenen Mengen, wie soeben geschildert, die Trennung vorgenommen werden kann, so verfährt man wie folgt: das im gesamten Inhalt enthaltene,

aus der Trockensubstanzbestimmung berechnete Wasser sei a. Man gewinnt dann durch Auspressen und Filtrieren klare Inhaltsflüssigkeit. Von dieser werden $10~cm^3$ gewogen b und hierin der Wassergehalt ermittelt c. Es muß sich dann verhalten: Wassergehalt der 10 cm³; Trockensubstanz der 10 cm³ = Gesamtwassergehalt; x; also c:(b-c)=a:xoder $x = \frac{a(b-c)}{c}$

- a) Untersuchung der gelösten Bestandteile.
- a) Trockensubstanz. Je nach der Konzentration der Flüssigkeit werden 20 - 50 cm³ in ein gewogenes, gläsernes Abdampfschälchen gebracht. zunächst auf dem Wasserbad, dann im Trockenofen bei 100-105° getrocknet und dann gewogen.
- 3) Gelöste Kohlehydrate (Dextrin + Zucker). 200 cm3 der Flüssigkeit werden im offenen Stehkolben unter Zusatz von 20 cm³ 25% iger H Cl 3 Stunden auf dem siedenden Wasserbade erhitzt. Hierdurch werden die höheren Kohlehydrate hydrolysiert und der dabei entstandene Zucker kann nach einer der üblichen Methoden bestimmt werden (vgl. Bd. H. S. 119 ff. und S. 167 ff.). Es empfiehlt sich stets, im Reaktionsprodukt die mit Phosphorwolframsäure fällbaren Substanzen zu fällen und im neutralisierten Filtrat die Zuckerbestimmung vorzunehmen (vgl. unten unter Stärkebestimmung, S. 271).
- 7) Reduzierende Kohlehydrate. Zur Zuckerbestimmung werden 100 cm³ des wässerigen Filtrates, bei konzentrierten Lösungen entsprechend weniger, mit Salzsäure und Phosphorwolframsäure von den damit fällbaren Substanzen befreit, das Filtrat genau neutralisiert und auf ein bestimmtes Volumen gebracht. Es kann dies sowohl durch Auffüllen als auch durch Eindampfen auf dem Wasserbade geschehen. Die Zuckerbestimmung erfolgt nach einer der üblichen Methoden.
- δ) Stickstoff. Zur Analyse nach Kjeldahl (vgl. Bd. I, S. 340) verwendet man 50 cm³ des wässerigen Filtrates (bei konzentrierter Lösung entsprechend weniger). Man kann diese zunächst nach Zusatz von etwas Schwefelsäure im Verbrennungskolben auf ein kleineres Volumen eindampfen oder auch direkt mit 25 cm3 konzentrierter H2 SO4 und Quecksilber verbrennen.
- ε) Über die Ausführung der Untersuchung auf Eiweißabbauprodukte, Fermente, Salze etc. vgl. die die Untersuchung dieser Substanzen behandelnden Kapitel dieses Werkes.
 - b) Untersuchung der ungelösten Bestandteile.

Die auf dem Filter zurückgebliebenen ungelösten Bestandteile können in ihrer Gesamtheit getrocknet und gewogen werden. Zur Analyse werden sie, wie weiter unten geschildert wird, vorbereitet und verarbeitet.

II. Anderweitige Verarbeitung des frischen Materials.

Sollen Magen-Darminhalte der Pflanzenfresser von koagulablen Eiweißkörpern befreit werden, so kann, falls die Anwendung der von Rona und Michaelis ausgearbeiteten Methoden der Enteiweißung (Mastix, Kaolin) angängig ist, vgl. Bd. I, S. 686, der gesamte Inhalt nach dieser Methode verarbeitet werden. Verbietet sich aus irgend einem Grunde die Anwendung dieser Methoden, so muß vor der Hitzekoagulation bei stärkereichem Material gewarnt werden. Beim Aufkochen tritt eine Verkleisterung der Stärkekörnchen ein und hierdurch wird selbst bei großer Verdünnung eine Filtration, wenn nicht unmöglich gemacht, so doch sehr erschwert. Außerdem kann hierdurch die Menge der löslichen Kohlehydrate eine Steigerung erfahren und die Bestimmung derselben illusorisch werden. Es empfiehlt sich daher zunächst, wie oben beschrieben, durch Auspressen und Zentrifugieren die gelösten Bestandteile zu gewinnen und in diesen dann die Hitzekoagulation, die übrigens in diesen Fällen besonders schwierig ist, auszuführen.

Über die Isolierung flüchtiger Substanzen (Fäulnis- und Gärungsprodukte) aus Darminhalten durch Destillation und Wasserdampfdestillation vgl. Bd. III. Abschnitt: Stoffwechselendprodukte.

Die Untersuchung auf Fermente ist im Abschnitt: Intermediärer Stoffwechsel, die auf Verdauungsprodukte S. 122 ff. geschildert.

III. Konservierung des frischen Materials.

Frisches Material mit geringem Wassergehalt kann unter absolutem Alkohol aufbewahrt werden. Zur Analyse ist dann der Alkohol abzudestillieren und das Destillat auf stickstoffhaltige Basen (NH₃) zu prüfen. Stark wasserhaltige Substanzen (Kot von Rindern, Darminhalte der Pflanzenfresser) werden in Glasstöpselflaschen unter Zusatz einiger Kubikzentimeter Chloroform aufbewahrt.

Bei der Konservierung ist stets zu berücksichtigen, daß in Darminhalten Verdauungsfermente enthalten sind, durch deren Wirkung weitgehende Veränderungen in der Zusammensetzung der Inhalte hervorgerufen werden können. Eine längere Aufbewahrung solcher Inhalte, in denen Verdauungsprodukte von Eiweiß oder Kohlehydraten bestimmt werden sollen, ist, auch wenn sie im Eisschrank erfolgt, deshalb besser zu unterlassen. Eine Zerstörung dieser Fermente durch Erhitzen ist nicht angängig, da bei höherer Temperatur eine Verkleisterung der Stärke und Koagulation von Eiweiß erfolgt und dadurch die weitere Verarbeitung erschwert oder verhindert wird. Bei niedrigeren Temperaturen, bei denen Fermente in reinen Lösungen zerstört werden und eine Quellung der Stärke etc. noch nicht stattfinden würde, werden in solchen, die verschiedensten gelösten Substanzen. Verdauungsprodukte etc. enthaltenden Lösungen die Fermente vor der Zerstörung geschützt.

Über Konservierung des Kotes der Pflauzenfresser zur Bestimmung der in ihm enthaltenen stickstoffhaltigen Stoffwechselprodukte vgl. S. 265 ϵ .

IV. Vorbereitung von Magen-Darminhalten und Fäzes zur Analyse (Trocknen, Zerkleinern).

Das zu analysierende Material wird in guter Mittelprobe zunächst bei niedriger Temperatur (etwa 50—60°) eingetrocknet und dann auf einer Handmühle grob geschroten. Das geschrotene Produkt wird hierauf vermittelst einer der gebräuchlichen Futtermittelmühlen¹). z. B. nach Märcker (Fig. 81) so fein gemahlen, daß es ein Drahtsieb von 0°5—1 mm Maschenweite (letzteres Maß wird vom Verband der landwirtschaftlichen Versuchsstationen²) vorgeschrieben) passiert. Der vom Sieb zurückgehaltene Anteil wird stets nochmals gemahlen, bis auch er die nötige Feinheit erreicht hat. Für das gute Gelingen der analytischen Bestimmungen, besonders des Stärkegehaltes und der Rohfaser in zellulosereichem Material, ist eine möglichst feine Zerkleinerung unerläßlich. Das so vorbereitete Analysenmaterial wird in flachen Gefäßen oder auf Papier in dünner Schicht ausgebreitet und unter öfterem Umrühren 1—2 Tage offen stehen gelassen, um es lufttrocken

zu machen. Zur Aufbewahrung füllt man es dann zweckmäßig in Pulverflaschen mit eingeriebenen Stopfen, als

Aufbewahrungsraum diene das Temperaturund Feuchtigkeitsschwankungen nicht unterworfene Wägezimmer. Bei Vernachlässigung dieser Vorsichtsmaßregeln können besonders bei den manchmal Feuchtigkeit leicht annehmenden Darminhalten Schwankungen im Wassergehalt und damit Beeinträchtigung Analysenresultate der eintreten.

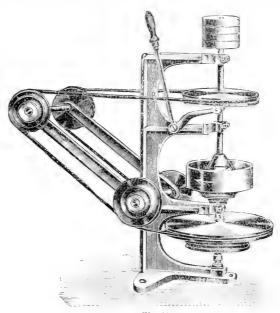


Fig. 81.

Besondere Maßregeln zur Vermeidung von Stickstoffverlusten bei der Trocknung von Fäzes und Dickdarminhalten. Kot und die flüchtige Stickstoffverbindungen enthaltenden Inhalte des Darms verlieren, wie zahlreiche Untersuchungen gezeigt haben, einen recht er-

¹) Die abgebildete Mühle (mit Motorantrieb) leistet uns seit Jahren bei der Verarbeitung der Magen- und Darminhalte sowie auch der Futtermittel der Pflanzenfresser ausgezeichnete Dienste. Bei schwierig zu zerkleinerndem Material (Heu. Häcksel), welches lange dauerndes Mahlen erfordert, ist allerdings eine Verunreinigung des Mahlgutes durch abgeriebene Teilchen der stählernen Mahlscheiben nicht zu vermeiden. Ihre Entfernung gelingt mit Hilfe eines starken Elektromagneten, ist aber sehr langwierig. Andere geeignete Mühlen sind Bd. I, S. 15 u. 16 abgebildet und beschrieben. Für die vorliegenden Zwecke eignen sich besonders auch Kugelmühlen.

²⁾ Beschlüsse des Verbandes landwirtschaftlicher Versuchsstationen, Landw. Versuchsstat. Bd. 60, S. 383 (1904).

heblichen Teil ihres Stickstoffes bei der Eintrocknung, wobei es gleichgültig ist, ob diese im Vakuum oder bei gewöhnlichem Druck geschieht. 1)

Wenn angängig, sind daher die Stickstoffbestimmungen mit frischem Material auszuführen. Ist dies nicht möglich, so müssen besondere Vorsichtsmaßregeln beim Trocknen angewendet werden. Als solche sind das Eintrocknen nach Zusatz von Schwefelsäure oder Weinsäure zu nennen. Aber auch hierdurch wird, wie Zaitschek²) gezeigt hat, ein gewisser N-Verlust, der allerdings sehr gering ist, nicht verhindert. Ferner werden Verluste fast vermieden, wenn bei Anwendung eines Vakuumapparates das entweichende Ammoniak oder andere flüchtige Basen durch Säure absorbiert werden und das entweichende Wasser kondensiert und aufgesammelt wird. Über Vorbereitung größerer Kotmengen zur Analyse vgl. bei Strigel.³)

V. Analytische Bestimmungen im getrockneten Material.

- 1. Stickstoff. Bei der Bestimmung nach Kjeldahi (Bd. I, S. 340) werden zweckmäßig $1-2\,g$ der getrockneten Substanzen verwandt. Über die Stickstoffbestimmung im Kot vergleiche das Vorhergesagte.
- 2. Bestimmung der Stärke. Die in Wasser unlösliche Stärke wird bekanntlich durch geeignete Agenzien (überhitzter Wasserdampf, verdünnte Säuren, diastatische Enzyme etc.) hydrolytisch gespalten und dabei in lösliche Produkte (Dextrine, Zucker) übergeführt. Die analytische Bestimmung der Stärke beruht hierauf, nur wird bei ihr der Prozeß so geleitet, daß als alleiniges Endprodukt Glukose entsteht, deren Menge quantitativ bestimmt und dann daraus die Stärkemenge berechnet wird. Am meisten ist die Anwendung der von Märcker und Morgen⁴) vorgeschlagenen Modifikation des Aufschließverfahrens zu empfehlen. Nach eigenen vielfachen Erfahrungen ist das zweckmäßigste Verfahren folgendes:
- 2-3~g der feingemahlenen Substanz werden mit 30—40 cm³ Wasser in einem Metallbecher gut verrührt und dieser mit dem Deckel bedeckt zur Verkleisterung seines Inhaltes in ein kochendes Wasserbad (großer Blechtopf mit Deckel) eine Stunde lang eingestellt. Alsdann läßt man auf zirka 50° abkühlen, fügt dem Inhalt jedes Bechers 5 cm³ einer $2^{9}/_{o}$ igen
- $^{\rm 1})$ Anmerkung. Nach Zaitschek war der N-Verlust, den der Kot beim Trocknen erlitt, im Durchschnitt:

Säugling 7:19° 0	Hammel $0.42^{\circ}/_{\circ}$
Mensch, Fleischkost 7.19°/ ₀	Pferd $5.93^{\circ}/_{0}$
Mensch, gemischte Kost 4:29°/ ₀	Schwein $2.88^{\circ}/_{\circ}$
Hund 12.64° 0	Huhn $3.85^{\circ}/_{\circ}$
Ochse $2.52^{\circ}/_{\circ}$	Gans $4.69^{\circ}/_{\circ}$

Hauptsächlich ist dieser N-Verlust auf das Konto flüchtiger N-Verbindungen besonders von Ammoniaksalzen zu setzen, doch können nach O. Kellner (Landwirtsch. Versuchsstation, Bd. 47. S. 288; Bd. 50. S. 256) wahrscheinlich auch noch durch Zersetzung anderer Verbindungen, z. B. Harnstoff, solche Verluste entstehen.

²) A. Zaitschek, Zur Methodik der Bestimmung des Stickstoff- und Eiweißgehaltes der Faeces. Pfügers Archiv. Bd. 98, S. 595—622 (1903).

³⁾ A. Strigel, Allgemeine Methodik der Analyse organischer Stoffe. Oppenheimers Handbuch der Biochemie, Bd. 1, S. 1 (1908).

¹⁾ M. Märcker, Handbuch der Spiritusfabrikation, 4. Aufl. 1886. S. 94.

Diastasenaufschwemmung (Diastase Merck puriss., andere Präparate enthalten häufig Zucker!) zu und verrührt den Inhalt unter Abstreichen der an den Gefäßwänden haftenden Teile der angewandten Substanz gut. Man stellt dann den Metallbecher in das Wasserbad zurück und hält nunmehr die Temperatur eine halbe Stunde lang auf 60-70°, um bei dieser der Diastasewirkung günstigen Temperatur eine Verzuckerung der verkleisterten Stärke zu erzielen. Nach dieser Zeit verrührt man den Inhalt abermals. setzt je 5 cm³ einer 1% igen Weinsäurelösung hinzu und erhitzt nunmehr

3 Stunden im Autoklaven (Fig. 82) bei einem Druck von 3 Atmosphären. Der Zusatz der Weinsäure erfolgt, um schwach saure Reaktion zu erzielen, ist diese nicht vorhanden, so wird die gebildete Dextrose leicht zerstört. Das gleiche ist der Fall, wenn der Druck im Autoklaven über 3 Atmosphären steigt, die Dauer des Erhitzens hat unter richtigen Verhältnissen keinen Einfluß Nach dem Erkalten wird der Autoklav geöffnet und der Inhalt der Metallbecher durch Faltenfilter (stärkefrei!) in Stehkolben filtriert. Der Filtrierrückstand wird mit kochendem Wasser nachgewaschen und unter dem Mikroskop mit Jodlösung auf Stärke geprüft. Sind noch Stärkekörnchen oder größere. sich blaufärbende Teilchen zugegen. so ist der Aufschluß unvollständig und der ganze Prozeß so oft zu wiederholen, bis die Reaktion negativ ausfällt. Bläuung vereinzelter kleiner Teilchen wird übrigens in

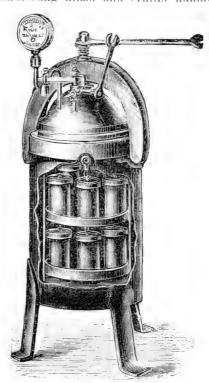


Fig. 82.

gewissen Fällen stets beobachtet, dem Analysenresultat tut dies nach unseren Erfahrungen keinen Abbruch. In den meisten Fällen wird somit der dreistündige Aufenthalt im Autoklaven genügen. In einzelnen Fällen, z. B. bei den sehr eiweißreichen Darminhalten des Hundes, habe ich den Prozeß 3-5mal wiederholen müssen, ehe alle Stärke aufgeschlossen war. Die vereinigten Filtrate, die zirka 200 cm³ betragen sollen, werden dann mit soviel HCl versetzt, daß eine 2:5% ige Lösung entsteht und werden 3 Stunden auf dem siedenden Wasserbade erwärmt, um die Inversion zu vollenden. Zur Zuckerbestimmung entfernt man nach Ellenberger¹) die noch in

¹⁾ Ellenberger und Hofmeister, Über die Verdauungssäfte und die Verdauung des Pferdes. III. Magenverdauung. Arch. f. wissensch. u. prakt. Tierheilk. Bd. 8. S. 395-414 (1882).

Lösung befindlichen und häufig die Zuckerbestimmung stark störenden Eiweißkörper, Albumosen. Peptone etc. durch Fällen mit Phosphorwolframsäure. Die Fällung mit Phosphorwolframsäure ist besonders bei Analysen eiweißreicher und solcher Substanzen zu empfehlen, die wie der mit Harn vermischte Kot der Vögel reduzierende Körper wie Kreatinin. Harnsäure und dergleichen enthalten. In allen Fällen ist die Fällung nicht nötig, doch leistet sie besonders bei späterer Anwendung der titrimetrischen Zuckerbestimmungsmethoden stets gute Dienste, da durch sie auch Substanzen, die die Erkennung des Farbenumschlages erschweren, entfernt werden.

Nach dem Abfiltrieren und Auswaschen mit kaltem Wasser wird genau neutralisiert und dann die Lösung durch weiteres Einengen oder Auffüllung auf ein bestimmtes Volumen gebracht, dann erfolgt die Zuckerbestimmung.

Die Fällung mit Phosphorwolframsäure stört die Zuckerbestimmung nach Allhin (Bd. H. S. 167) nicht, wie zuerst Ellenberger, dann Udranszky und Koch, Weiser und Zaitschek¹) nachgewiesen haben. Nach unseren Erfahrungen wird dadurch auch die titrimetrische Methode nach Bäng (Bd. H. S. 170) nicht gestört.

Die gefundene Zuckermenge wird durch Multiplikation mit 0^o9 auf Stärke umgerechnet.

Falls die analysierte Substanz Pentosane enthält, kann mit der geschilderten Methode der wahre Stärkegehalt nicht ermittelt werden, da die Pentosane teilweise in Pentosen gespalten werden. Ist es erforderlich, den hierdurch entstehenden Fehler zu eliminieren, so wendet man das Verfahren an, welches Weiser und Zaitschek 1) ausgearbeitet und als brauchbar erwiesen haben.

Die nach dem Aufschluß erhaltene Zuckerlösung wird in zwei gleiche Teile 1 und 2 geteilt, in Teil 1 die Dextrose mittelst einer Kupfermethode bestimmt und in Teil 2 die Pentosen nach Tollens ermittelt (Bd. II, S. 128). Da nach Tollens auch aus Dextrose bei Destillation mit 12% II Cl eine geringe Menge Furfurol entsteht, wird die im vorliegenden Falle ermittelte Pentosenmenge zu groß sein. Es muß, um den wahren Wert zu erhalten, von ihr die Menge Pentose abgezogen werden, die der aus der vorhandenen Dextrose gebildeten Furfurolmenge entspricht. Reine Dextrose ergibt 0°36% Furfurol oder 0°65% Pentosen (Tollens, Weiser und Zaitschek). Man bringt dies in Anrechnung, indem man 0°65% der in Teil 1 bestimmten Dextrosenmenge von der in Teil 2 ermittelten Pentosenmenge abzieht. Die Differenz ergibt die wirkliche Pentosenmenge, die von der in 1 bestimmten Dextrosenmenge abgezogen, den wahren Dextrosengehalt der Portion 1 ergibt.

Diese Berechnungsart ist nur zulässig, wenn Pentose und Dextrose das gleiche Reduktionsvermögen gegenüber Kupfer besitzen. Bei der Hydrolyse der Pentosane entsteht stets ein Gemisch von Arabinose und Xylose und es ist, um das Reduktionsvermögen dieses Pentosengemisches kennen zu lernen, zulässig, den Mittelwert des Reduktionsvermögens beider Zuckerarten zu verwenden. Dieser zeigt aber nach Weiser und Zaitschek nur ganz geringe Abweichungen von dem für Dextrose ermittelten Werte. Es ist also praktisch unbedenklich, die Pentosenmenge direkt als Dextrose zu betrachten und in der Berechnung als solche zu verwenden. Auch der Fehler, der dadurch entsteht, daß man bei der Berechnung des aus der Dextrose entstehenden Furfurols die gesamte Menge reduzierender Substanzen als Dextrose ansieht, während doch ein Teil davon aus Pentosen besteht, ist so geringfügig, daß er praktisch nicht ins Gewicht fällt.

¹) H. Weiser und A. Zaitschek, Beitr, zur Methodik der Stärkebestimmung und zur Kenntnis der Verdaulichkeit der Kohlehydrate. Pflügers Archiv. Bd. 93, S. 98 bis 127 (1902). (Hier auch Lit.)

Der Pentosangehalt ist vor allem bei Analysen von Pflanzenfresserkot zu berücksichtigen, da hierin nur sehr wenig Stärke, aber sehr viel Pentosane enthalten sind. Nach Weiser und Zuitschek enthält Schafkot ohne Berücksichtigung der Pentosane 6.81%, mit Berücksichtigung 3.18% Stärke. Bei Schweinekot war das Verhältnis 6.9% : 3.21%; bei Ochsenkot 13.08% : 10.53%.

3. Bestimmung der Pentosane. Zur Bestimmung der Pentosane bedient man sich der von Tollens und seinen Schülern 1-2) ausgearbeiteten Methode. Diese beruht darauf, daß man das bei der Destillation mit H Cl aus der Substanz entstehende Furfurol quantitativ bestimmt und hieraus die Pentosenmenge mit Hilfe eines empirischen Verfahrens berechnet. Da in den pflanzlichen Stoffen unbekannte Gemische von Pentosanen vorliegen und die Furfurolbildung aus den daraus bei der Hydrolyse entstehenden Pentosen keineswegs quantitativ erfolgt, so ist die Bestimmung nur als eine annähernd genaue zu betrachten.

Die Ausführung der Bestimmung, zu der 2-5 g lufttrockener Substanz verwendet werden sollen, schließt sich völlig der für die Bestimmung der Pentosen gültigen Methode (Destillation mit H Cl vom spez. Gew. 106 und Bestimmung des entstandenen Furfurols als Furfurolphlorogluzid) an, die in Bd. II, S. 128 geschildert ist. Die Umrechnung des gewogenen Phlorogluzidniederschlages auf Pentosane erfolgt nach der ebenda angegebenen Tabelle.

Bei Gegenwart von Methylpentosanen wird bei gleicher Behandlung nebenbei Methylfurfurol gebildet und dieses dann als Methylfurfurolphlorogluzid gefällt. Infolge der Beimengung dieses Körpers zum Phlorogluzidniederschlag wird die Bestimmung der Pentosane unmöglich gemacht. Über die Trennung des Methylfurfurolphlorogluzids vgl. Bd. II, S, 135, ebenso vgl. daselbst Reaktionen auf Pentosen und Methylpentosen.

4. Bestimmung der Rohfaser.

Als Rohfaser bezeichnet man den in verdünntem Alkali und Säure unlöslichen Anteil pflanzlicher Stoffe. Die Rohfaser hat daher eine sehr variable Zusammensetzung und enthält neben der Zellulose auch noch Ligninsubstanzen, Hemizellulosen, Pentosane etc.

Sämtliche bisher ausgearbeitete Bestimmungsmethoden der Rohfaser erfüllen die Ansprüche, die der Chemiker an eine exakte analytische Methode stellen soll, nicht und sind auch noch sehr weit von einer solchen entfernt. Es kommt das daher, daß diese Methoden versuchen, aus einem sehr komplizierten Substanzgemisch ein einfacheres Substanzgemisch darzustellen. Dies erfordert aber eine Zerstörung gewisser anderer Bestandteile des ursprünglichen Gemisches, und um das zu erreichen, müssen stets so eingreifende Mittel verwendet werden, daß auch die Bestandteile des Endproduktes stets mehr oder minder angegriffen und zerstört werden.

a) Weender-Verfahren. Zur Bestimmung der Rohfaser bedient man sich noch sehr häufig des alten Weender-Verfahrens von Henneberg

¹⁾ E. Kröber, Untersuchungen über die Pentosanbestimmungen mittelst der Salzsäure-Phlorogluzinmethode nebst einigen Anwendungen, J. f. Landwirtsch. Bd. 48. S. 357 bis 384 (1900).

²⁾ B. Tollens, Über die Bestimmung der Pentosen und Pentosane. Zeitschr. f. physiol. Chem. Bd. 36. S. 239-243 (1902).

und Stohmann.¹) Wegen der vielen Unbequemlichkeiten, die diesem Verfahren in seiner ursprünglichen Form anhaften, wird es wohl allgemein in der von Wattenberg ²) vorgeschlagenen Modifikation verwendet.

2-5 q der möglichst fein gemahlenen Substanz werden mit 200 cm³ 125% iger H. SO. 30 Minuten in einer Porzellanschale gekocht, in der innen durch einen eingebrannten Streifen die Grenze eines 200 cm3 betragenden Volumens angezeigt ist. Durch Zusatz von kochendem Wasser wird das Flüssigkeitsvolumen konstant erhalten. Man saugt dann die noch heiße Flüssigkeit in der Weise ab, daß man einen mit Filtrierpapier und feinmaschiger Koliergaze überspannten Glastrichter, der mit einer Saugpumpe in Verbindung steht, in die Schale einstellt und die Pumpe wirken läßt, Durch Nachwaschen mit Wasser wird die H. SO4 tunlichst vollständig entfernt, durch Abspritzen des Saugers der Rückstand in die Schale zurückgespült und nunmehr mit Wasser auf 200 cm³ aufgefüllt, wieder 30 Minuten gekocht und abgesaugt. Hiernach wiederholt man das Kochen mit 200 cm³ 1.25% iger KOH und nach abermaligem Absaugen mit 200 cm3 H₂O. Man filtriert dann durch ein gewogenes Filter, wäscht erst mit erwärmtem Alkohol, dann einem erwärmten Gemisch von Alkohol und Äther und schließlich mit Äther aus. Dann wird bei 105° getrocknet, gewogen ("aschehaltige Rohfaser"), das Filter verascht und die Asche vom Gewicht der aschehaltigen Rohfaser abgezogen ("aschefreie Rohfaser").

Man kann in verhältnismäßig kurzer Zeit bei gleichzeitiger Verarbeitung mehrerer Portionen eine ziemlich große Anzahl von Rohfaserbestimmungen nach dieser Methode ausführen. Zeitraubend wird sie nur dadurch, daß häufig, besonders bei Analysen der Inhalte des Pflanzenfresserdarmkanals, zahlreiche Kontrollen nötig sind, um übereinstimmende Resultate zu erhalten. Die Methode besitzt zahlreiche Fehlerquellen, die man durch peinliches Arbeiten zu umgehen bestrebt sein muß. Beim Kochen in den offenen Schalen können Teile der Substanz am Rande ankleben und dem weiteren Aufschluß entzogen werden. Der Wasserzusatz, das Absaugen durch die Filtriergaze kann zu Fehlern führen. Ferner können sich unter den gerade herrschenden Bedingungen gewisse Substanzen der Auflösung durch H₂ SO₄, KOH entziehen etc., wie dies z. B. für das Elastin der elastischen Fasern des Fleisches gilt (Mann³) und bei der Analyse eiweißreicher Substanzen (Dünndarminhalt von Schwein und Hund) häufig vorkommt. 4)

Es ist deshalb manchmal sehr schwer, konstante Resultate zu erzielen. Bei großen Versuchsreihen, in denen die gefundenen Rohfaserwerte zu Vergleichen dienen sollen, müssen die Bestimmungen schablonenmäßig und unter ganz gleichartigen Bedingungen von einem Analytiker ausgeführt werden.

Beim Weender-Verfahren ist ferner zu beachten, daß die dabei gewonnene Rohfaser außer Zellulose auch noch andere Stoffe, z.B. Hemizellulosen und besonders Pentosane, enthält, und daß ein Teil der schwer löslichen Zellwandbestandteile durch die Behandlung mit KOH in Lösung gebracht werden können. Bei Versuchen, z.B. Aus-

¹⁾ W. Henneberg und F. Stohmann, Beiträge zur Gründung einer rationellen Fütterung der Wiederkäuer. Braunschweig 1864.

²) Wattenberg, Eine vereinfachte Methode der Weender-Rohfaserbestimmung. J. f. Landwirtsch. Bd. 28 (1881).

²⁾ Mann, Zur Zellulosebestimmung im Kote. Arch. f. Hyg. Bd. 34 (1899).

⁴) Über Fehlerquellen der Methode vgl. auch bei *H. Lohrisch*, Über die Bedeutung der Zellulose im Haushalte des Menschen. Zeitschr. f. physiol. Chem. Bd. **47**. S. 200 bis 252 (1906).

nutzungsversuchen, bei denen die Pentosane gesondert bestimmt werden, ist also das Weender-Verfahren nicht anwendbar.

b) Verfahren nach Holdefleiss.1) Diese Methode ist ebenfalls eine Modifikation des Weender-Verfahrens. Man bedient sich dabei des nebenstehend abgebildeten Apparates (Fig. 83). Die Bestimmung wird in einem birnenförmigen, oben offenen, unten sich konisch verengernden Gefäß vorgenommen, dessen untere Öffnung durch einen Asbestpfropfen verschlossen ist, der durch kräftiges Ansaugen einiger Fasern von ausgeglühtem und zweckentsprechend vorbereitetem Filtrierasbest hergestellt wird (sie he Bd. I S. 408).

Zur Analyse bringt man durch die obere Öffnung der auf einer Saugflasche aufgesetzten Glasbirne die gewogene Substanz (3 g), gibt hierzu

200 cm³ einer kochenden verdünnten Schwefelsäure, die man sich aus 150 cm3 H₃O und 50 cm3 50/0 iger H₂ SO₄ hergestellt hat und schickt dann ebenfalls durch diese Öffnung vermittelst eines bis auf den Boden reichenden Glasrohres Wasserdampf aus dem Dampfentwickler durch die Flüssigkeit. Um Abkühlung und dadurch Vermehrung des Flüssigkeitsvolumens in der Birne zu vermeiden, umwickelt man dieselbe mit einem Tuch. Nach halbstündigem Durchleiten unterbricht man Dampfzuleitung durch ziehen des verbindenden Schlauches. schließt die Saugflasche an eine Luftpumpe an und saugt die Flüssigkeit durch die Asbestlage ab. Man wieder-

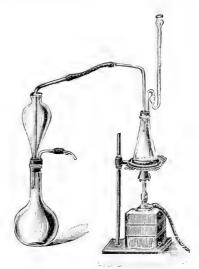


Fig. 83.

holt dann den ganzen Prozeß zweimal mit 200 cm3 Wasser, dann mit 200 ccm einer 1.25% KOH und wiederum zweimal mit Wasser. Hierauf wäscht man mit Alkohol und Äther, wie eben unter a) geschildert, aus, trocknet bei 105° und bringt den trockenen Rückstand samt Asbestpfronfen in eine Platinschale, trocknet nochmals bis zur Gewichtskonstanz und wägt. Hierauf wird verascht, die Platinschale samt Inhalt geglüht und von neuem gewogen. Durch Subtraktion des letzten Gewichtes vom zuerst ermittelten erhält man das Gewicht der "aschefreien Rohfaser".

c) Glyzerin-Schwefelsäureverfahren von König. Eine weit sicherere Methode ist das von J. König²) ausgearbeitete Verfahren. Dieses

¹⁾ Holdefleiss, Eine abgekürzte Methode der Rohfaserbestimmung. Landwirtsch. Jahrb. Jg. 1877. Suppl.

²⁾ J. König, Die Zellmembran und ihre Bestandteile in chem. und physiol. Hinsicht. Landwirtsch. Versuchsstation. Bd. 65. S. 55-110 (1906).

liefert im Gegensatz zum Weender-Verfahren pentosanfreie oder wenigstens sehr pentosanarme Rohfaser, die reicher an kohlenstoffreichem Lignin wie die Weender-Rohfaser ist. Die zur Ausführung des Verfahrens benötigte Glyzerinschwefelsäure stellt man sich her, indem man zu 1 l Glyzerin von 1·23 spez. Gew. 20 g konzentrierte H_2 SO₄, 1·84 spez. Gew., gibt. Es empfiehlt sich, das käufliche Glyzerin stets mit dem Aräometer zu prüfen, da bei zu hohem spezifischen Gewicht die Temperatur beim späteren Erhitzen zu hoch steigt und dann durch die H_2 SO₄ Akroleinbildung und Verkohlung bewirkt wird.

Zu 200 em³ dieser Glyzerinschwefelsäure, die sich in einem Rundkolben (zweckmäßig weithalsig) oder in einer Porzellanschale befinden, gibt man 2- 3 g der fein gemahlenen Substanz. Durch Umschütteln oder Umrühren verteilt man dieselbe gut und kocht dann nicht zu lebhaft unter Rückfluß oder erhitzt im Autoklaven bei 3 Atmosphären 1 Stunde lang (Temperatur ist in beiden Fällen 135—137%. Nach dem Erkalten verdünnt man mit 300 bis 400 cm² Wasser, kocht nochmals auf und filtriert heiß durch einen Gooch-Tiegel an der Luftpumpe ab. Außer dem von König empfohlenen Platintiegel kann man auch einen gewöhnlichen Gooch-Tiegel aus Porzellan mit Asbestfüllung verwenden. Tritt nach einiger Zeit Verstopfung ein, so kann man den Niederschlag mit einem Spatel vorsichtig von der Mitte der Asbestfläche nach den Seiten schieben. Das Auswaschen erfolgt zunächst mit etwa 400 cm³ kochendem Wasser, dann mit erwärmtem Alkohol, Alkoholäther und schließlich Äther, bis das Filtrat farblos abläuft. Der Gooch-Tiegel wird dann getrocknet (105°) und gewogen, sein Inhalt im Tiegel selbst verascht und der Tiegel mit der Asche gewogen. Die Differenz zwischen beiden Wägungen gibt das Gewicht der aschefreien Rohfaser.

Besonders bei rasch filtrierenden Reaktionsgemischen ist die Königsche Methode sehr rasch und bequem auszuführen. Vor allem liefert sie aber genaue und übereinstimmende Resultate. Vorbedingungen hierfür sind gute Zerkleinerung, sorgfältige Bereitung der Glyzerinschwefelsäure und genaues Einhalten der Kochzeit. Die Wirkung des Glyzerinschwefelsäuregemisches ist so eingreifend, daß nach meinen Erfahrungen bei erneuter Behandlung von mit dem Verfahren hergestellter Rohfaser eine abermalige, nicht unbedeutende Substanzverringerung eintritt.

Andere Rohfaserbestimmungsmethoden, über die bei Lohrisch 1) und König 2) nachzulesen ist, haben keine allgemeinere Verbreitung gefunden und reichen, was Leichtigkeit der Ausführung oder Genauigkeit der Resultate anlangt, nicht an die geschilderten heran. Eine nähere Schilderung solcher Verfahren erübrigt sich also.

5. Zellulosebestimmungen.

Bei den Ausnutzungsversuchen pflanzlicher Nahrungsmittel im tierischen Organismus hat von jeher das Verhalten des wichtigsten Rohfaserbestandteiles "der Zellulose" ein großes Interesse beausprucht. Zellulose wird im Magen und Dünndarm der Tiere mit einhöhligem Magen nicht

¹) *H. Lohrisch*, Über die Bedeutung der Zellulose im Haushalte des Menschen. Zeitschr. f. physiol. Chem. Bd. 47, S. 200—252 (1906).

 $^{^{\}circ})~J.~K\ddot{o}nig,~{\rm Die}~{\rm Untersuchung}~{\rm landwirtschaftlicher}~{\rm und}~{\rm gewerblich}~{\rm wichtiger}$ Stoffe. Berlin. Paul Parey.

verdaut, sondern erst im Enddarm gelöst. Beim Wiederkäuer findet ihre Verdauung außerdem in den Vormägen statt. Obgleich nun schon Henneberg und Stohmann zeigten, daß von den Rohfaserbestandteilen in der Hauptsache die Zellulose der Verdauung unterliegt, so wird doch dadurch. daß man die Rohfaserverdauung als Maß der Zelluloseverdauung betrachtet. eine gewisse Unsicherheit in die Beurteilung der Zelluloseverdauung gebracht.

Man ist deshalb öfters bestrebt gewesen. Methoden der Zellulosebestimmung auszuarbeiten. Dem größten Teil dieser Methoden kann eine praktische Bedeutung nicht zuerkannt werden, da sie entweder zu umständlich oder für quantitative Zwecke überhaupt ungeeignet sind.

Es beruht dies auf demselben Grunde, der oben bei der Besprechung der Rohfaserbestimmungsmethode angeführt worden ist. Wir kennen kein Mittel, Zellulose in irgend einer Form quantitativ abzuscheiden. Stets wird man die anderen Substanzen, mit denen die Zellulose meist innig vermischt ist, auf irgend eine Weise zerstören müssen, um die Zellulose von ihnen zu befreien. Da diese Substanzen (Eiweiß, Stärke, Pentosane, Hemizellulosen, Lignin etc.) aber meist ebenfalls gegen die verschiedensten Agenzien sehr resistent sind, ist man genötigt, zu sehr energisch wirkenden Mitteln zu greifen. Sei es nun, daß man sich Bromwassers, des Chlorgemisches, konzentrierter Kalilauge oder ähnlicher Mittel bedient, man wird in keinem Falle sicher sein, ob einerseits tatsächlich alle anderen Substanzen zerstört sind und wird andrerseits auch nie wissen, ob nicht doch Teile der Zellulose ebenfalls zerstört worden sind.

Es seien im Hinblick auf diese Unsicherheit hier nur die Methoden angeführt, die sich von den anderen wenigstens durch raschere und bequemere Handhabung auszeichnen. Es sind dies besonders die, die sich der Anwendung hochkonzentrierter Kalilauge als Lösungsmittel der anderen Substanzen bedienen. Von der Wiedergabe der Methoden von F. Schultze. W. Hoffmeister, H. Müller etc. soll deshalb hier abgesehen werden. 1)

Die Methode von Lange?) und ihre Modifikationen.

Diese Methode beruht auf einer Angabe Hoppe-Seylers 3), nach der Zellulose selbst durch schmelzendes Alkali keine erkennbare Veränderung erleidet, sofern die Temperatur 2000 nicht übersteigt. Die Ausführung der Methode ist folgende: Von der fein zerkleinerten Substanz werden 10 q in eine tubulierte, mit Glasstopfen versehene Retorte gefüllt, 30-40 q Ätzkali in Stangen und 30-40 cm³ Wasser hinzugefügt. Die Retorte wird mit einem Glasstopfen verschlossen und in einem Ölbade erhitzt, dessen Temperatur

¹⁾ Vgl. hierüber H. Lohrisch, Über die Bedeutung der Zellulose im Haushalte des Menschen. Zeitschr. f. phys. Chemie. Bd. 47. S. 200-252 (1906).

²⁾ G. Lange, Zur quantitativen Bestimmung der Zellulose. Zeitschr. f. physiol. Chemie. Bd. 14. S. 283-288 (1890).

^{*)} F. Hoppe-Seyler, Über Huminsubstanz, ihre Entstehung und ihre Eigenschaften. Zeitschr. f. physiol. Chem. Bd. 13. S. 66-121 (1889).

durch ein Thermometer gemessen wird, welches so tief in das Ölbad eintaucht, daß sich seine Quecksilberkugel mit dem Boden der Retorte in gleicher Tiefe befindet. Die Temperatur wird langsam und vorsichtig, es tritt starkes Schäumen ein, bis auf 180° gesteigert und eine Stunde lang auf dieser Höhe gehalten. Nach dieser Zeit ist der Inhalt der Retorte zu einer festen blasigen Masse eingetrocknet. Nach Abkühlen auf ungefähr 80° wird mit heißem Wasser der Retorteninhalt aufgenommen und unter sorgfältigem Auswaschen in ein Becherglas gebracht, wo man ihn vollständig erkalten läßt. Dann wird mit verdünnter Schwefelsäure schwach angesäuert, wobei ein oft reichlicher Niederschlag entsteht, der auch ausgefällte Zellulosepartikelchen enthalten soll. Durch schwaches Alkalisieren mit Natronlauge, welches nunmehr vorgenommen wird, sollen alle anderen ausgefallenen Substanzen außer Zellulose wieder in Lösung gebracht werden. Die alkalische Flüssigkeit wird hierauf unter Verwendung von Saugpumpe und Platinkonus oder durch ein gehärtetes Filter (Schleicher & Schüll) quantitativ abfiltriert und mit heißem und kaltem Wasser sorgfältig nachgewaschen. Hierauf wird der Rückstand vom Filter entfernt, mit Alkohol digeriert, auf ein gewogenes quantitatives Filter gebracht, mit Alkohol und Ather nachgewaschen, getrocknet und gewogen (aschehaltige Zellulose). Durch Abzug der Asche ergibt sich hieraus die aschefreie Zellulose.

Die Methode von Lange kann streng genommen als quantitative Methode nicht bezeichnet werden. Die Voraussetzung, daß hochkonzentrierte KOH die Zellulose nicht beeinflusse, ist eine irrige, wie schon aus den Befunden von Bumcke und Wolffenstein¹), die Zellulose mit 30% Na OH hydrolysierten²), hervorgeht. Ferner ist die Annahme, daß der beim Ansäuern mit H₂SO₄ und dem nachfolgenden Alkalisieren verbleibende Rückstand aus Zellulose bestünde, nicht haltbar (Councler³), vgl. auch Anmerkung 2). Man erhält daher mit dem Langeschen Verfahren stets etwas zu wenig Zellulose, da ein Teil verloren geht. Auch wir beobachteten bei einer Nachprüfung des Verfahrens, bei dem reine Papierzellulose zur Verwendung gelangte, eine Verminderung der angewandten Menge. Immerhin gibt das Verfahren bei gleichmäßiger Ausführung gut übereinstimmende Werte und ist zu Bestimmungen, bei denen es sich um die Erlangung einiger Vergleichswerte handelt, wohl anwendbar.

Zur Anfertigung größerer Analysenserien, die sich bei Ausnützungs-, Stoffwechsel- und Verdauungsversuchen häufig nötig machen, ist das Verfahren wegen seiner immerhin noch recht umständlichen Handhabung nicht geeignet. Infolgedessen haben Simon und Lohrisch⁴) eine Modifikation

G. Buncke und R. Wolffenstein, Über Zellulose. Ber. d. Deutsch. chem. Ges. Bd. 32, S. 2493—2507 (1899).

²) Die Autoren hydrolysierten durch ca. achtmaliges, je einstündiges Kochen mit 30°, olger Na Cl 65 g Papierzellulose vollständig und erhielten als Ausbeute 39 g Azidzellulose (löslich in kalter Na OH, ausfällbar durch verdünnte Schwefelsäure).

³⁾ C. Councler, Über Zellulosebestimmungen. Chem. Ztg. Bd. 24. S. 368—369 (1900).

⁴⁾ H. Lohrisch, Über die Bedeutung der Zellulose im Haushalte des Menschen. Zeitschr. f. physiol. Chemie. Bd. 47. S. 200—252 (1906).

vorgeschlagen, die, beguem und rasch ausführbar, sich besonders für klinische Zwecke (menschliche Fäzes) eignen soll.

2—3 q Substanz werden in ein Jenenser Becherglas (500 cm³) gebracht und hierzu 100 q KOH in Stangen gegeben. Hierauf gießt man (eventuell portionsweise) soviel kochendes Wasser, daß eine 50% ige Lauge entsteht. Es tritt eine sehr stürmische Reaktion unter starker Erhitzung und Aufkochen ein, bei der eine energische Einwirkung der Lauge auf die Substanz zustande kommt. Die meist tiefbraune Lösung erhitzt man noch eine Stunde auf dem Wasserbad, läßt erkalten und fügt zur Aufhellung portionsweise 5 cm³ 30% iges H₂O₂ Perhydrol (Merck) hinzu, wobei abermals Erhitzen und Aufschäumen eintritt. Sollte die Lösung nunmehr noch nicht hellgelb geworden sein, so führt ein nochmaliges halbstündiges Erwärmen auf dem Wasserbade zum Ziele. Nach dem Erkalten fügt man das halbe Volumen (zirka 70 cm³) Alkohol (96%) zur Ausfällung gelöster Zellulose hinzu. Mischt sich Alkohol und Lauge nicht, so genügt der Zusatz von 90 cm³ Eisessig, um die Mischung zu veranlassen. Andere Stoffe als Zellulose fallen hierbei nicht aus, da die Flüssigkeit zu stark alkalisch ist. Auch Stärke fällt, wie ich mich überzeugt habe, nicht aus. Man filtriert dann durch ein gehärtetes Filter (Schleicher & Schüll, Nr. 575) ohne Saugnumpe ab, wäscht mit heißem Wasser aus und bringt den Niederschlag vom Filter in das Becherglas zurück und dann auf ein gewogenes quantitatives Filter. Auswaschen erfolgt erst mit reinem heißen, dann mit Essigsäure angesäuertem Wasser. Nach nochmaligem Auswaschen mit heißem Wasser, Alkohol und Äther erfolgt Trocknung, Wägung und Aschebestimmung.

Dieses Verfahren hat gegenüber dem ursprünglichen Langeschen den großen Vorteil der beguemen Ausführbarkeit, verbindet aber damit den größeren Nachteil, daß ihm eine neue, und zwar sehr erhebliche Fehlerquelle in Gestalt des H2 O2-Gebrauchs anhaftet. Wie ebenfalls Bumcke und Wolffenstein zeigten, gelingt es mit H₂O₂ leicht, Zellulose in Hydralzellulose überzuführen, die ihrerseits wieder durch Alkali in Zellulose und die erwähnte Azidzellulose gespalten wird. Auch Matthes und Streitberger 1) fanden bei einer Nachprüfung des Königschen Verfahrens der Zellulosebestimmung, daß H, O, in alkalischer (ammoniakalischer) Lösung Zellulose angreift. Bei Nachprüfung 2) des Simon-Lohrischschen Verfahrens konnten wir keine brauchbaren Resultate erlangen, fanden vielmehr, daß die Resultate je nach den gerade herrschenden zufälligen Bedingungen, der jeweiligen Wirkung des H2 O2, der Dauer des Erwärmens, der Abkühlung und der Filtration bedeutenden Schwankungen unterworfen sind.

Unterwirft man schon einmal nach Simon-Lohrisch behandelte Zellulose nochmals dem Verfahren, so tritt eine ganz erhebliche, ca. 30% und mehr betragende Verminderung ein.3) Zur Zellulosebestimmung in Magen-,

¹⁾ H. Matthes und F. Streitberger, Über die Zusammensetzung der Kakao-Rohfaser, Ber. d. Deutsch, chem. Ges. Bd. 40. S. 4195-4199 (1907).

²⁾ A. Scheunert und E. Lötsch, Vermag der Hund Rohfaser oder Zellulose zu verdauen? Bioch. Zeitschr. Bd. 20. S. 10-21 (1909).

³⁾ Scheunert, Grimmer und Lötsch, noch nicht publizierte Mitteilungen.

Darminhalten und Fäzes der Pflanzenfresser ist das Verfahren nicht verwendbar, wenngleich es zur Darstellung reiner Zellulose wohl geeignet sein mag.

Zu einer für viele Fälle brauchbaren Modifikation des Langeschen Verfahrens gelangt man, wenn man die Anwendung von H_2 O_2 vermeidet und im übrigen ähnlich wie Simon und Lohrisch verfährt. Diese Modifikation, die uns bei einigen Untersuchungen gute Dienste geleistet hat, führen wir wie folgt aus:

1—2 g Substanz (fein gemahlen) werden in einem Jenenser Becherglas mit 100 cm³ Wasser (Laboratoriumstemperatur) verrührt, nach und nach 100 g Stangenkali eingetragen und dieses durch vorsichtiges Schütteln in Lösung gebracht. Ist diese erfolgt, so stellt man das Gemisch 1 Stunde auf das siedende Wasserbad. Dann filtriert man heiß durch ein gehärtetes Filter (Schleicher & Schüll) ab. Der Rückstand wird mit heißem Wasser so lange gewaschen, bis das Filtrat gegen Lackmus nahezu neutral reagiert. Dann wird er von dem gehärteten Filter auf ein gewogenes quantitatives gebracht, hier solange mit heißem Wasser gewaschen, bis das Filtrat neutral reagiert und dann mit warmem Alkohol, Alkoholäther und schließlich Äther sorgfältig ausgewaschen. Es erfolgt dann Trocknung bis zur Gewichtskonstanz bei 105° und Wägung. Man erhält nach Abzug des Filtriergewichtes aschehaltige Zellulose. Durch Veraschen des Filters und Wägung der Asche berechnet man sich durch Subtraktion die aschefreie Zellulose.

Das Verfahren gibt gut übereinstimmende Werte. Absolute Werte vermag es ebensowenig wie die anderen Methoden zu geben, auch dürfte bei ihm infolge der milden Behandlung eine relativ unreine Zellulose erhalten werden. Es ist aber zu Vergleichszwecken bei stärkearmen Material (Heu. Weißkraut. Fäzes) wohl zu verwenden. Bei stärkereichem Material dürfte eine Vorbehandlung mit Diastase nötig sein. Bei mehrmaliger Behandlung derselben Zellulose nach dem Verfahren tritt nur eine Verminderung von 5—7000 ein.

Es sei betont, daß es sich empfiehlt, sich, ehe man eines der Verfahren anwendet, stets erst durch kontrollierende Vorversuche zu überzeugen, ob es auch für den beabsichtigten Zweck brauchbar ist. Vor allem ist auch auf die etwaige Anwesenheit von Glykogen im Analysenmaterial zu achten.

Eine Verwendung zur Analyse von Pflanzenfaserfäzes hat auch das von $K\ddot{o}nig^{4}$) im Anschluß an seine Rohfaserbestimmungsmethode ausgearbeitete Verfahren zur Trennung der Rohfaser in Zellulose. Lignin und sog. Cutin erfahren. Das Verfahren ist zeitraubend und kostspielig und schon deshalb wenig empfehlenswert. Da dabei ebenfalls $H_{2}O_{2}$ in alkalischer (ammoniakalischer) Lösung zur Anwendung kommt, sind gegen dasselbe Bedenken zu äußern (Matthes und Streitberger l. c.), auf eine nähere Angabe der Ausführung sei deshalb verzichtet.

J. König, Die Zellmembran und ihre Bestandteile in chemischer und physiologischer Hinsicht. Landwirtsch. Versuchsstat. Bd. 65. S. 55-110 (S. 1906).

6. Fett. Über Nachweis, Bestimmung und Untersuchung des Fettes vgl. Bd. II. S. 200. Dem bei der Futtermittelanalyse geübtem Brauche entsprechend wird die Gesamtheit der mit Äther extrahierbaren Substanzen als "Rohfett" bezeichnet und bestimmt,

VI. Darmgase.

Die Analyse der Darmgase 1), CO₂, N₂, H₂, CH₄, erfolgt nach Bd. III. Abschnitt Gasanalyse. Besondere Apparate zum Auffangen und zur Analyse solcher Gase finden sich bei Ad. Schmidt²) und N. Zuntz³) beschrieben.

ANHANG.

Untersuchung von Darmkonkrementen.

Die Darmkonkremente 1) haben eine überaus verschiedene Zusammensetzung, so daß sich bestimmte und in allen Fällen anwendbare Regeln für ihre Untersuchung nicht geben lassen. Stets enthalten sie sowohl organische als auch anorganische Bestandteile, deren Mengenverhältnis sehr wechseln kann. Da in sehr vielen Fällen die Hauptmenge der organischen Bestandteile aus Resten pflanzlicher Nahrung (Hafersteine der schottischen Landbevölkerung, Phytokonkremente der Pflanzenfresser) oder aus Haaren, Wolle u. dgl. (Pilikonkremente, Haar-, Borsten- und Wollbälle des Hundes, des Schweines und der Wiederkäuer etc.) besteht, gibt die mikroskopische Untersuchung oft wichtige Aufschlüsse über Herkunft und Zusammensetzung, z. B. auch bei Koprolithen. Abgesehen von diesen mehr als Fremdkörper anzusehenden Bestandteilen kommen in Darmkonkrementen auch organische Verbindungen, z.B. Fette und Seifen, vor (Hafersteine, Darmgrieß, Darmsand), auch Protein, Farbstoffe finden sich darin. Zur Erkennung dieser Beimengungen sind besondere chemische Methoden (Reaktionen auf Fett. Protein; ferner Untersuchung des Ätherextraktes und Verseifung) anzuwenden.

Unter den anorganischen Bestandteilen nehmen Phosphate, und zwar besonders häufig Magnesiumammoniumphosphat, die erste Stelle ein. Die Enterolithen des Pferdes bestehen bis zu 90% aus dieser Verbindung. Außerdem kommen noch Phosphate und Karbonate von Ca und Mg und in sehr geringer Menge lösliche Chloride, Sulfate sowie mit der Nahrung aufgenommene unlösliche mineralische Bestandteile, SiO2, Al2O2 u. dgl., vor. Zur Untersuchung kocht man die zerkleinerte Substanz mit Essigsäure aus und bringt dadurch die Phosphate und Karbonate etc. in Lösung, in der sie dann qualitativ nachgewiesen und quantitativ bestimmt werden können. Der unlösliche Rückstand besteht aus organischen Bestandteilen (Mikroskop!) und dem erwähnten Si O., Al. O. etc.

Über Untersuchung der aus den Anfangsdrüsen des Darmes stammenden Konkremente (Gallensteine, Pankreassteine u. dgl.), die gelegentlich im Darmlumen angetroffen werden, vgl. an anderer Stelle.

¹⁾ Vgl. A. Scheunert, Verdauung, IV, Oppenheimers Handb. d. Bioch. Bd. 3, II. S. 140 (1909).

²) Ad. Schmidt, Über die Beziehung der Fäzesgärung zur Darmgärung und zu dem Flatus, Arch, f. klin, Med. Bd. 67, S. 545 (1898).

³⁾ N. Zuntz, Über eine Methode zur Aufsammlung und Analyse von Darm- und Gärungsgasen. Arch. f. (Auat. u.) Physiol. Jg. 1899. S. 579.

Intermediärer Stoffwechsel.

A. Fraktionierung von Organen und Darstellung von wirksamen Organextrakten.

Von W. Wiechowski, Prag.

Die im folgenden zu beschreibenden Methoden beziehen sich nur auf die Gewinnung fermentativ wirkender (bzw. nicht kochbeständiger) Organextrakte und auf die Darstellung der Organeiweißkörper. Die als "Hormone" (Starling) bezeichneten, für innere Sekrete gehaltenen, wirksamen Organstoffe sind nicht berücksichtigt; deren Gewinnung (bzw. Trennung von den Organproteinen) ist infolge ihrer größeren Stabilität, insbesondere auch Kochbeständigkeit weit leichter als die der Organfermente. Dagegen können die beschriebenen Methoden gegebenenfalls zum Aufsuchen von Antikörpern in den Organen oder zur Abtrennung "bindender Gruppen" Anwendung finden.

Für die Methodik dieses Teiles biologischer Forschung ist noch wenig geschehen. Mit Ausnahme der Methoden, die durch den unter D beschriebenen allgemein verwendbaren Gang ermöglicht sind, bleiben die zahlreichen angegebenen Verfahren weit hinter dem zurück, was insbesondere in quantitativer Beziehung von der Gewinnung der Organfermente und -proteine verlangt werden muß. Es gelingt zwar mit den meisten der zu besprechenden Methoden zu wirksamen Organextrakten oder zu mehr minder einheitlichen Eiweißstoffen zu gelangen; die Ausbeuten stehen aber nicht nur meist in keinem Verhältnis zu den in Arbeit genommenen Materialmengen, sondern man bleibt auch über die Größe der Verluste im Unklaren, da die Untersuchung der verworfenen Anteile nicht vorgenommen wurde oder wegen der Natur des Verfahrens nicht möglich war. Wie gezeigt werden wird, wurden vielfach Wege beschritten, die zu einer weitgehenden Schädigung der Fermente führen, so daß, was schließlich erhalten wurde, ein geringer, der Zerstörung entgangener Rest war. Dasselbe gilt von der Darstellung der Organproteine. Auch hierbei wurden oft Extraktionsmittel verwendet, die denaturierend wirken.

Der Grund für diese Mangelhaftigkeit der Methodik, die sich in der Geringfügigkeit unserer Kenntnis von der Organzusammensetzung reflek-

tiert, liegt nicht nur in der überaus großen Labilität des Materiales, sondern auch in der Art seiner Kompliziertheit, in der emulsionsartigen Beschaffenheit der Organsubstanz, welche den einfachsten nicht eingreifenden Fraktionierungsversuchen schwere Hindernisse in den Weg legt. Die freien und fest gebundenen Lipoide, die an Masse die Lipoide meist noch übertreffenden Extraktivstoffe im älteren Sinne, zu denen auch die nicht mehr ausgeschwemmten Produkte der postmortal weitergehenden Zelltätigkeit zugezählt werden müssen, erschweren nicht nur die Gewinnung, sondern es schädigen gerade die letzteren nachweislich die Wirksamkeit bzw. Ausbeute der Fermente. Ehe man daran gehen kann, die Organfermente "rein" darzustellen, ist es notwendig, deren Eigenschaften, Empfindlichkeiten, Konservierungsfähigkeit. Verhalten gegen alle anzuwendenden Eingriffe und Reagenzien festzustellen, wie ich es in Gemeinschaft mit H. Wiener¹) für das urikolytische Ferment getan habe, sie auf Grund der gewonnenen Erfahrungen sukzessive von allem wirkungslosen Ballast zu befreien und quantitativ und ungeschwächt in einer Eiweiß-lipoid-extrakt- und salzarmen Lösung zunächst zu konzentrieren. Daß hierfür Methoden unerläßlich sind, welche jederzeit den Wirkungswert der gewonnenen Fraktion an dem des Ausgangsmateriales messen lassen, welche stets die Feststellung gestatten, ob die Trennung vollständig ist. d. h. kein Ferment in dem zu verwerfenden Anteil mehr enthalten ist, bedarf keiner Begründung. Auch für die Darstellung der Organproteine muß die Forderung aufrecht erhalten werden, daß die Eiweiße vollständig und in unverändertem Zustand abgeschieden werden. Systematische Studien hierüber sind nach Methode D leicht durchzuführen.

Die angeführten Gesichtspunkte mögen als Grundlage für die allgemeine Beurteilung der zu beschreibenden Methoden dienen. Kritische Bemerkungen im einzelnen sind jeder Methode beigefügt.

A. Vorbereitung der Organe (Entfernung des Blutes).

Jede Aufteilung der Organe hat mit der Gewinnung eines unveränderten und reinen. d. h. einheitlichen Untersuchungsmateriales, der Organzellen, mit der Trennung derselben von den allen Organen gemeinsamen Bestandteilen: Blut. Bindesubstanzen. Gefäße, Ausführungsgänge zu beginnen. Insbesondere sollen die Organe nur unmittelbar nach dem Tode des Tieres und in völlig blutfreiem Zustande in Arbeit genommen werden.

Die Entfernung des Blutes gelingt befriedigend nur durch Ausspülen der Organe auf dem Wege der Gefäße. Das hie und da geübte Auswaschen der zerschnittenen Organe ist unzulässig. Es führt nicht nur nicht zum Ziele, sondern arbeitet naturgemäß auch mit Verlusten an löslichen Organbestandteilen. Zudem lassen sich (bis auf das Knochenmark)

¹⁾ W. Wiechowski und H. Wiener, Über Eigenschaften und Darstellung des harnsäurezerstörenden Fermentes etc. Beitr. z. chem. Phys. u. Path. Bd. 9. S. 247 (1907).

alle Organe durch Ausspülen der Gefäße blutfrei erhalten. Die Ausspülung gelingt auch bei (lebenswarm) aus dem Schlachthause bezogenen Organen ohne Schwierigkeit. Laboratoriumstiere wird man am besten durch Verbluten töten. Zweckmäßig geschieht dieses portionsweise aus einer Carotis mit abwechselnder Infusion warmer Kochsalz-(eventuell Ringer-)Lösung in eine Jugularvene, wobei die natürliche Zirkulation oft solange unterhalten werden kann, bis die der Carotis entnommene Flüssigkeit nur wenig gefärbt ist. Künstliche Ventilation und passive Bewegungen der Extremitäten sind hierbei von Nutzen. Das endgültige Ausspülen geschieht meist besser an den in situ belassenen Organen und geht in der Regel leichter in retrograder Richtung, d. h. per venam vor sich.

Die Leber wird am schnellsten blutfrei bei Spülung von der V. cava desc. aus, welche distal von der Leber abgeklemmt ist, und Eröffnung der Vena portae. Läßt man diese intakt, klemmt die Cava distal von den Nierenvenen ab und eröffnet die Bauchaorta, so gelingt es unter einem, die gesamten Baucheingeweide: Leber, Darm, Pankreas, Magen, Milz, Nieren und Nebennieren auszuspülen. Für Magen, Darm, Pankreas ist die Spülung durch die Pfortader ohnehin der einzig gangbare Weg. Das Gehirn ist nach Abklemmung der Arteriae vertebrales (beim Hunde am thorakalen Ende des Halses leicht aufzufinden, beim Kaninchen indirekt durch doppelte Unterbindung der leichter zugänglichen Arteriae subclaviae), der Carotis interna der einen Seite, der Carotis externa und Arter, occipitalis der anderen Seite, von der Carotis communis dieser Seite kopfwärts von den Arter, thyreoideae auszuspülen. Auch die Schilddrüse bleibt am besten in ihrem Zusammenhange. Man klemmt die Carotis kopfwärts von der Art, thyreoidea sup. ab und bindet die Kanüle herzwärts von der Art, thyreoidea inf. in den Stamm der Carotis communis ein. Am schwersten werden Milz und Muskeln blutfrei. Letztere sind wohl nur an Laboratoriumstieren vollständig blutfrei zu erhalten: nach Ausspülen des ganzen Tieres Einbinden von Kanülen in die Aorta oder V. cava und separate Durchspülung der hinteren Extremitäten unter Ausführung passiver Bewegungen (wobei auch Rektum, Blase und Genitale gespült werden). Knochenmark und meist auch Plazenta (die Spülung durch die Nabelstranggefäße entfernt kaum jemals alles Blut der Insertionsfläche) sind wohl gar nicht völlig zu entbluten; an allen anderen Organen gelingt dies jedoch, was unter anderem Versuche an Tieren bewiesen, deren Blut hohe Titer hämolytischer Antikörper aufwies.

Als Spülflüssigkeit wird gewöhnlich physiologische (0·85°/₀) Kochsalzlösung verwendet, der unter Umständen 0·5°/₀ Natriumoxalat. -citrat oder -fluorid zugesetzt werden kann. Doch bieten im allgemeinen gerinnungshemmende Zusätze keinen Vorteil, da Gewebseiweiße von den Eigenschaften des Fibrins in den Organen wahrscheinlich nicht vorhanden sind. Ganz indifferent ist übrigens keine der verwendeten Spülflüssigkeiten, auch Ringeroder Lockesche Lösung nicht, denn stets bildet sich im Verlaufe der Spüllung Ödem aus, welches mitunter sehr hochgradig wird (namentlich bei Spüllung durch die Arterie und hohem Druck). Die anfangs rasch verlaufende Durchströmung wird immer langsamer. Steigerung des Druckes befördert nur die Ausbildung des Ödems und ist auch deshalb nicht zu empfehlen, weil hierbei die parenchymatösen Organe oft Risse bekommen, durch die Gewebsflüssigkeit austritt; auch die durch die Gefäße ausströmende Flüssigkeit enthält dann oft schon Organeiweiß. Derartige Verluste vermeidet man am besten durch retrograde Spülung (die, wie gesagt, leichter vonstatten geht) bei konstantem niedrigen Druck. Ob man durch irgendwelche Maßnahmen das Ödem völlig vermeiden kann, ist mir nicht bekannt, versuchen könnte man einen geringen Harnstoffzusatz zur Spülflüssigkeit. Für manche Fälle ist es sehr zweckmäßig, die Salze der Spülflüssigkeit wieder zu entfernen, indem man kurze Zeit mit destilliertem Wasser nachspült. Das Ödem wird hierdurch meist noch deutlicher; die Spülung läßt sich jedoch gut zu Ende führen. Schnelles Arbeiten bei niedriger Temperatur ist allemal angezeigt.

Der nächste Akt der Verarbeitung ist bei allen Methoden eine mehr minder weitgehende Zerkleinerung der Organe. Nur eine Methode macht hiervon eine Ausnahme, da sie Saft aus unzerkleinerten Organen gewinnt; sie soll daher zunächst besprochen werden.

B. Die "zelluläre Dialyse" durch Dampf organischer Flüssigkeiten.

 $(R.\ Dubois^1),\ Dastre^2).$

Die Organe werden in dünne Scheiben zerlegt und diese unter einer evakuierten Glasglocke über einer Schale dem Dampf von Chloroform, Äther, Toluol etc. in der Kälte ausgesetzt. Die Dämpfe dieser Flüssigkeiten lösen sich in den Zellipoiden und verdrängen Wasser aus den Zellen, welches, mit Eiweißstoffen, Fermenten, Salzen usw. beladen, exsudiert und in die Schale tropft. Doch ist das Wesentliche des Vorganges keine bloße "Deshydratation", vielmehr werden durch die Einwirkung der lipoidlöslichen Stoffe sonst semipermeable Membranen für Inhaltsstoffe passierbar, so daß eine Art Entmischung stattfindet und alles Wasserlösliche erhalten werden könnte. Dasselbe wird erzielt durch Eintauchen von Organen in die betreffenden Flüssigkeiten. Am Boden des Gefäßes sammelt sich in Tagen Organsaft an. Eine Hundeleber lieferte in 4 Tagen 70 cm³ Saft. Dieser wurde gegen Fluornatrium dialysiert, er verwandelte Stärke in Maltose und diese in Glukose und zeigte keine glykolytische sowie keine proteolytische Wirkung gegen Fibrin und gekochtes Eierklar.³)

¹) R. Dubois, La dialyse cellulaire par les vapeurs etc. Compt. rend. soc. Biol. **T.53**. p. 93 und 126 (1901). — Die erste Mitteilung hierüber ebenda 1884.

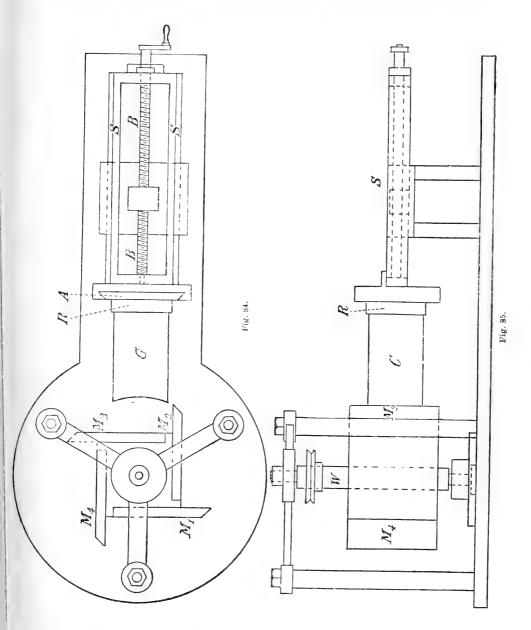
²) A. Dastre, De la dialyse coloroformique etc. Compt. rend. soc. Biolog. T. 53. p. 34 (1901).

³) J. Permilleux, Untersuchungen über einige Fermente der Leber. Thèse de Paris. 1904; zit. nach Malys Jahrb.

Es ist nicht untersucht, ob alle Fermente der Organe auf diese Weise erhalten werden können und welche Eiweißkörper der erhaltene Organsaft enthält. Ein Nachteil der Prozedur ist ihre lange Dauer, welche die Interferenz autolytischer Prozesse¹) sowie die Spontankoagulation ursprünglich gelöster Eiweißkörper ermöglicht. (Durch Zusatz geringster Alkalimengen, 0·05°/₀ Soda, zur Spülflüssigkeit wäre beides vielleicht zu vermeiden.) Ein Vorteil der Methode ist, daß der Organsaft konzentriert erhalten wird.

C. Das Zerkleinern der Organe.

Es sind zwei Typen von Verfahren zu unterscheiden. Solche, welche nur eine Trennung der einzelnen Zellen voneinander, eine gleichmäßige Verteilung des Materials und solche, welche eine Zertrümmerung der Zellen selbst anstreben.


I. Da es für alle Fälle zweckmäßig ist, an einem einheitlichen Ausgangsmaterial zu arbeiten, so sollte im allgemeinen einer allfälligen Zertrümmerung der Zellen eine vollständige Isolierung derselben von bindegewebigen Anteilen, Blutgefäßen, Drüsengängen vorangehen. Bei weichen Parenchymen (Gehirn, Pankreas, Kaninchenleber) gelingt das leicht durch Auskneten der intakten Organe auf einem dünnmaschigen Drahtsieb mit einem sogenannten Passierschwamm aus Holz. Kleine Organe oder Organstücke kann man einfach in der Reibschale zerdrücken. Für zähe Organe, die das unmittelbar nicht zulassen (insbesondere Muskel, Lunge, Thyreoidea, Niere, Prostata), kann mit Vorteil ein vorläufiges Zerquetschen zwischen Walzen angewendet werden. Prinzipiell ist das Zerdrücken den schneidenden Methoden vorzuziehen, da diese die einzige Möglichkeit jener Trennung die Anwendung des Siebes — illusorisch machen, wenn sie exakt die Gewebe zerschneiden. Grob mit dem Wiegemesser oder der Fleischhackmaschine (beliebiger Konstruktion) zerkleinertes Material läßt sich ebenso durch Siebe pressen oder nach entsprechender Verdünnung durch etwa 1stündiges Schütteln auf der Maschine so weit verteilen, daß beim Auspressen der Masse durch ein grobes Koliertuch (mit der Hand oder einer gewöhnlichen Tinkturenoder Fruchtpresse) ein zwar verdünnter, aber im wesentlichen einheitlicher Zellbrei erhalten wird. Von den schneidenden Apparaten arbeitet die Kosselsche Maschine²) am raschesten und exaktesten. Das durch feste Kohlensäure völlig durchgefrorene Organ wird durch 4 rasch rotierende (1500 Umdrehungen in der Minute) Fräsemesser in einen feinen Schnee und beim Auftauen in einen gleichmäßigen Brei verwandelt (Fig. 84 u. 85). Iscovesco³)

¹) Nach R. Chiari (Arch. exper. Path. u. Pharm. Bd. **60**. S. 256 [1909]) beschleunigt die Gegenwart flüchtiger lipoidlöslicher Stoffe die Autolyse und bebt deren Latenzzeit auf.

²) A. Kossel, Beschreibung einiger Apparate. Zeitschr. f. physiol. Chemie. Bd. 33. S. 5 (1901).

³⁾ H. Iscovesco, De la présence de la catalase etc. Compt. rend. soc. Biol. T. 60. p. 224 (1906).

bedient sichreines nicht näher beschriebenen Apparates, welcher imstande ist, eine ganze Hundeleber in wenigen Minuten in ein "purée presque injec-

table" zu verwandeln. Auch einige andere derartige Apparate, welche außerdem steriles Arbeiten gestatten, sind angegeben.

II. Die Zertrümmerung der Zellen, die dem Gesagten zufolge zweckmäßig erst an "gesiebtem" Material vorgenommen wird, geschieht meist nach dem Vorgange von Buchner-Hahn 1) durch Verreiben mit Sand, Kieselgur, Glas oder Quarzpulver in der Reibschale, was am besten maschinell geschieht. Rowland²) hat hierzu einen eigenen Apparat angegeben. Die Menge der Zusätze ist so zu bemessen, daß eine nur zäh bewegliche Masse entsteht, da bei geringeren Zusätzen in dem dünnflüssigen Magma viele Zellen der Zertrümmerung entgehen. Das Reiben ist solange fortzusetzen, bis die mikroskopische Untersuchung gefärbter Ausstriche die völlige Erzielung des gewünschten Effektes erweist. Den Nachteil dieses Verfahrens (es ist für die Gewinnung von Preßsäften ausgearbeitet), daß die gemachten Zusätze von unlöslichen Organfraktionen nicht getrennt werden können und daß die Kieselgur durch Adsorption Fermente und Eiweißkörper zurückhält ^{3,4}), vermeidet die ursprünglich für bakteriologische Zwecke angegebene Methode von Macfadyen⁵), welche das durch flüssige Luft dauernd tief gefroren gehaltene Material maschinell in der Reibschafe olme Zusatz pulvert. Diese Methode wurde mit sehr gutem Erfolge soweit mir bekannt — nur einmal für Plazenta angewendet.⁶) Die Möglichkeit der Zertrümmerung gefrorener Zellen in der Reibschale ist nur durch das bei sehr tiefen Temperaturen eintretende auffällige Sprödewerden jeder Substanz gegeben. Im kleinen (bei geringen Substanzmengen) wird man dasselbe erreichen können, wenn man die Reibschale gut mit einem Gemisch von fester Kohlensäure und Aceton kühlt und sich eines Pistills mit hölzernem Handgriff bedient, wenigstens sollen auch auf diese Weise Bakterien die zur Zertrümmerung nötige Sprödigkeit erlangen.

Ehe die Extraktion und Fraktionierung des zerkleinerten Materiales beschrieben wird, soll eine allgemein für alle Organe anwendbare Methode beschrieben werden, welche den eingangs gestellten Forderungen in jeder Einzelheit zu entsprechen gestattet, bzw. aus der Notwendigkeit, jene zu erfüllen, hervorgegangen ist.

¹) E. Buchner, Alkoholische Gärung ohne Hefezellen, B. B. Bd. **30**, S. **117** (1897). — E. Buchner und Rapp, ebenda, Bd. **30**, S. **1110**, 2668; Bd. **31**, S. 209, **1084**, 1090, 1531.

²) S. Rowland, A method of obtaining intracellular juices. Journ. of physiol. Vol. 27, p. 53 (1901).

³) S. G. Hedin, A case of specific adsorption of enzymes. Biochem. Journ. Vol. 2, p. 81 (1907).

⁴) L. Lecrentier, Emploi de la presse de Buchner pour la préparation des tissus. Arch. intern. de phys. T. 5. p. 328 (1907).

⁵⁾ A. Macfadyen, Upon the immunising effect of the intracellular contents of the typhoid bacillus as obtained by the disintegration of the organism at the temperatur of liquid air. Proceed, roy. soc. Vol. 71. p. 351 (1903). — A. Macfadyen und S. Rowland, Über die intrazellularen Toxine etc. Zentralbl. f. Bakt. Bd. 38 (1904).

⁶) P. Bergell und W. Liepmann, Über die in der Plazenta enthaltenen Fermente. Münchener med. Wochenschr. Bd. **52**. S. 2211 (1905).

D. Allgemeine Methode zur chemischen und biologischen Untersuchung überlebender Organe (W. Wiechowski¹).

Die Methode ist l.c. in etwas anderer Weise beschrieben. Hier sind zum erstenmal weitere Erfahrungen und Verbesserungen verwertet, wie sie sich beim Arbeiten nach derselben im pharmakologischen Institute der deutschen Universität in Prag ergeben haben, wie überhaupt auch andere (bisher unveröffentlichte) Einzelheiten der in diesem Kapitel besprochenen Gegenstände Ergebnisse des genannten Laboratoriums sind.

Die Methode beruht auf der Beobachtung, daß vorsichtiges und rasches Trocknen der Organe durch Luft weder Eiweißkörper noch Fermente (auch nicht die Lipoide) in irgend einer Weise verändert, vielmehr sie für längere Zeit in dem Zustande konserviert, in dem sie sich zur Zeit des Todes des Tieres befunden haben. Ferner hat sich gezeigt, daß sich die getrockneten Organe gleichfalls ohne die geringste Schädigung mit flüchtigen Lösungsmitteln extrahieren lassen, was nicht nur eine sonst unmögliche Fraktionierung ermöglicht, sondern auch die weitere Verarbeitung des Materials auf Eiweiß und Fermente sehr wesentlich erleichtert. Gestalt und Färbbarkeit der Organzellen ändern sich durch diese Prozeduren nicht, wohl ist aber mit der Möglichkeit zu rechnen, daß die Beständigkeit der einzelnen Zelle auch durch das Trocknen allein vermindert wird. Nachweisbar ist das für Erythrozyten, welche nach dem Trocknen ihren Farbstoff vollständig an isotonische Lösungen abgeben; hier wirkt also das Trocknen in ähnlicher Weise aufschließend wie das Gefrieren (siehe weiter unten) oder der Zusatz geringer Mengen Alkohol. Die getrockneten und extrahierten Zellen lassen sich mit Leichtigkeit in einer Kugelmühle oder unter Zuhilfenahme von organischen Flüssigkeiten in der unten beschriebenen Farbeureibmühle oder sonst wie vollständig zertrümmern. So erhält man ein haltbares, genau meßbares und, was das Wichtigste ist, unverändertes Ausgangsmaterial: Eiweiß und Fermente frei von Lipoiden und Extrakt in Form weißer bis hellgraubrauner Pulver. Außerdem läßt sich auch der Lipoidextrakt unverändert (unerhitzt) gewinnen und zu entsprechenden Studien über die Bedeutung der Zellipoide als "bindende Gruppen" oder Antikörper benutzen.

1. Das Trocknen bewerkstellige ich jetzt nicht mehr wie l. c. angegeben in einem großen Thermostaten bei ca. 37° (was bis 4 Stunden in Anspruch genommen hat), sondern bei Zimmertemperatur durch einen kräftigen Luftstrom. Nachdem Versuche mit einem Flügelexhaustor gezeigt haben, daß hierdurch die Trocknung auf 20—30 Minuten bei Zimmertemperatur herabgedrückt werden kann, wurde uns der in Fig. 86, 87 skizzierte Trockenapparat von der Firma Janka in Prag gebaut und hat sich bei zahlreichen Versuchen in jeder Richtung bewährt. Diese Art des Trocknens hat gegenüber der früher geübten nicht nur den Vorteil der Schnelligkeit.

¹⁾ W. Wiechowski, Eine Methode zur chemischen und biologischen Untersuchung überlebender Organe. Beitr. z. chem. Phys. u. Path. Bd. 9. S. 232 (1907).

Die beliebig niedrig zu wählende Temperatur verhindert absolut jede Veränderung, was nicht für alle Zwecke bei der früheren Methode, die höhere Temperaturen verwendete, völlig gewährleistet war. Insbesondere werden die den Eiweißkörpern und Fermenten gegenüber scheinbar labileren Lipoide völlig konserviert, wofür der Geruch des Produktes zu sprechen scheint. Die bei niedriger Temperatur getrockneten Organe haben durchaus den spezifischen Geruch der frischen bewahrt, während bei höherer Temperatur getrocknete keinen frischen, sondern mehr an Backwaren erinnernden, gelegentlich sogar ranzigen Geruch aufweisen und behalten. Allerdings verändert sich der frische Geruch der kalt getrockneten Organe, wenn sie an der Luft liegen, nach einiger Zeit auch; schließt man an das Trocknen jedoch sofort die Toluolextraktion (siehe weiter unten) an, so läßt sich dies fast völlig vermeiden, die getrockneten und extrahierten Organe behalten längere Zeit den spezifischen Geruch der frischen, der jeden Geübten sofort die Tierart erkennen läßt. Das Wesentliche des Trocknungsprozesses, die Ursache, warum er so schnell vor sich geht und die Grundbedingung für befriedigende Resultate ist: dünnste Schicht, d. h. dem Luftstrome größte Fläche darbieten. Je dünner die Schicht, desto rascher kommt man zum Ziele, desto besser wird konserviert. Dickere Schichten überziehen sich rasch mit trockenen Krusten, welche die Trocknung darunter liegender Teile verzögern. Die Forderung geringer Schichtdicke ist natürlich nur an möglichst fein verteiltem Material zu erfüllen.

Da es aus mehreren Gründen unzweckmäßig ist, die Salze der Spülflüssigkeit beim Trocknen bis zur Sättigung zu konzentrieren, spüle ich prinzipiell nach dem Blutfreispülen mit 0.85% iger Kochsalzlösung diese wieder mit destilliertem Wasser aus. Die hierauf grob zerkleinerten Organe werden durch feine Messingdrahtsiebe passiert (siehe B). Der erhaltene, ganz gleichmäßig feine Zellbrei wird unter Verwendung eines elastischen. bajonettförmigen Malerspatels dünnst auf Glasplatten ausgestrichen. Für größere Organe braucht man daher viel Flächenraum, z.B. für die Leber eines zirka 25 kg schweren Hundes 1.5 -2.0 m². Am gleichmäßigsten wird die Verteilung, wenn man die dünnflüssige Masse über die schräg gestellten Platten fließen läßt, den Strom mit dem Spatel so regulierend, daß er die ganze Breite der Platte einnimmt, und schließlich die senkrecht gehaltenen kurze Zeit abtropfen läßt. Die hierzu nötige Konsistenz des Zellbreies kann man unbeschadet der Trocknungsdauer eventuell durch Hinzufügen von destilliertem Wasser herstellen. Die so beschickten Platten kommen in die einzelnen Fächer des folgenden Apparates (Fig. 86 und 87). Ein in seinen Dimensionen beliebig zu wählender parallelepipedischer Metallkasten, dessen Grundfläche mit der Plattengröße übereinstimmt, ist derart in ganz niedrige Fächer geteilt, daß die diese trennenden horizontalen Blechwände abwechselnd an der hinteren und vorderen Vertikalwand luftdicht abschließen, während sie an den entsprechend entgegengesetzten Stellen dieser Wände bis auf mehrere Zentimeter frei endigen. Der hinten in das oberste Fach durch einen elektrisch angetriebenen Zentrifugalventilator geleitete Luftstrom von $30-40~m^3$ pro Minute ist daher gezwungen, im Zickzackwege alle Fächer zu passieren und die daselbst gelegenen Platten zu bestreichen; er tritt schließlich aus dem untersten Fache durch eine die ganze Breite

und Höhe desselben einnehmende Öffnung der vorderen Kastenwand aus. Um die einstreichende Luft von Staub zu befreien. wurden in das oberste Fach, unmittelbar unter den Lufteinfall, entsprechend große Schalen, die teilweise mit konzentrierter Schwefelsäure gefüllt sind, in eine Reihe gestellt und vor diese außerdem eine mit Vaseline bestrichene Glasplatte gelegt. Dieses Verfahren ist, wie die Erfahrung lehrte, besser als die Anbringung eines Wattefilters, das, wenn genügend dicht, die Intensität des Luftstromes stark herabsetzt. Alle Verbinduninsbesondere gen. Kastentüre, müssen gut gedichtet sein, da sonst viel nutzbarer Luftstrom verloren geht. Zweckmäßig könnte man das unterste Kastenfach als heizbares Wasserbad einrichten, um größere Flüssigkeitsmengen bei niedriger Temperatur abzudampfen, in ähnlicher Weise wie es Faust getan hat. Faust 1) gibt an, daß die Temperatur einer Flüssigkeit, die sich auf dem siedenden

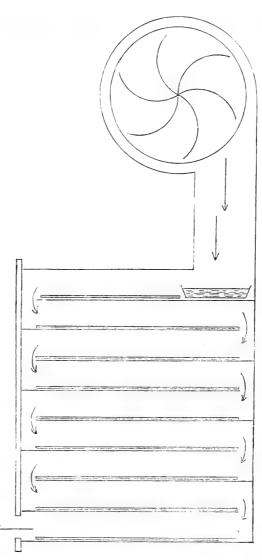


Fig. 86.

Wasserbade befindet, infolge Überleitens eines so kräftigen Luftstromes nicht

¹) E. S. Faust, Über das Fäulnisgift Sepsin. Arch. f. exp. Path. u. Pharm. Bd. 51. S. 248 (1904).

über 27° ansteigt. 1) Die Verdunstungskälte macht sich auch beim Trocknen der Organe angenehm bemerkbar. Hatte z.B. die einströmende Laboratoriumsluft eine Temperatur von 20°, so wurde die der feuchten Platten mit 12 bis 15° gemessen. Die Temperatur des Luftstromes scheint keinen wesent-

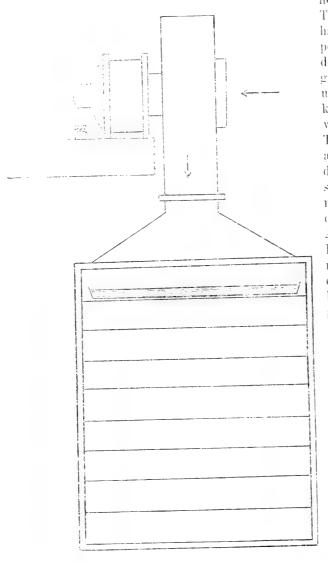


Fig. 87.

lichen Einfluß auf die Trocknungsdauer haben. Bei einer Temperatur von 45° (aus dem Blechmantel des geheizten Laboratorientnommen) umsofens. konnte keine nennenswerte Verkürzung der Trocknungsdauer beobachtet werden. Ich glaube daher, daß man auch stark gekühlte Luft benutzen kann und würde Aufstellung des die in einem Apparates Kellerlokale mit dauernd niedriger Temperatur Sind empfehlen. Platten dünn gestrichen gewesen, so ist der Kasteninhalt in 15 bis 35 Minuten völlig trocken und dadurch konserviert. Blutserum trocknet nur dann länger als etwa 45 Minuten, wenn es nicht in dünner, sondern in dicker Schichte (in Schalen) eingebracht wurde. Die trockenen Platten werden mittelst eines breiten und festen Anstreicherspatels ohne Schwierigkeit abgekratzt und das Material inForm kleiner trockener Schuppen vom Geruche

der frischen Organe erhalten. Nach einem 24stündigen Aufenthalte im Ex-

 $^{^{-1})}$ Laboratorien, welche einen Faustschen Apparat besitzen, können naturgemäß denselben auch zum Organtrocknen in der Kälte benutzen.

sikkator kann es in gut schließenden, am besten völlig gefüllten Glasbüchsen auch im Laboratorium ohne Schaden längere Zeit aufbewahrt werden. Besser ist es jedoch, das so konservierte Material sofort der Extraktion der Lipoide zu unterwerfen.

II. Die Extraktion habe ich früher (l. c.) unter einem mit der Zerkleinerung der Zellen durch Vermahlen der getrockneten Organe mit Toluol in einer Farbenreibmühle (siehe unten). Abnutschen des Toluols und öfteres Wiederholen dieses Vorganges an den auf der Nutsche zurückbleibenden Massen vorgenommen. Eine automatische Extraktion des gemahlenen Gutes war wegen der Dichtigkeit desselben, die nur die Vakuumfiltration zuließ, nicht möglich, Der Wunsch, beide Akte zu trennen, d. h. wohl extrahierte, aber unzertrümmerte Zellen zur Untersuchung zu bekommen und die Bequemlichkeit und Vollständigkeit einer automatischen Extraktion nicht zu entbehren, führten dazu, neuerdings das getrocknete Material vor der Zertrümmerung der Zellen mit Toluol zu extrahieren, da sich gezeigt hatte, daß das Toluol auch auf nicht ganz fein zermahlenen Organen wirkt, Die gebräuchlichen Extraktionsapparate für Extraktion fester Massen, als deren Vorbild der Soxhletsche gelten kann, waren deshalb nicht zu verwenden, weil bei ihnen das Extraktionsgefäß über dem erhitzten Kolben angebracht, mitsamt seinem Inhalt bis nahe an den Siedepunkt der Extraktionsflüssigkeit dauernd erhitzt wird (bei Toluol gegen 100°), die Extraktion aber kalt vorgenommen werden muß, will man Eiweißkörper und Fermente nicht schwer schädigen. Ich habe daher den in Fig. 88 wiedergegebenen Extraktionsapparat konstruiert 1), dessen Wesen darin besteht, daß das Extraktionsgefäß weit aus dem Bereiche der siedenden Extraktionsflüssigkeit gerückt und durch ein aus zwei Kühlern bestehendes Kühlsystem von ihr getrennt ist. Der Apparat ist infolge des Ersatzes jedes Korkverschlusses durch Quecksilbersicherheitsverschlüsse absolut dicht zu erhalten und sehr leicht zu handhaben. Das zweischenkelige Extraktionsgefäß ist durch zwei Glocken (Zu- und Ablaufglocke) mit zwei entsprechenden, aber verkehrten Glocken des Kühlsystems beweglich in Verbindung gesetzt. Am unteren Ende, wo das schmale Ablaufrohr aufsteigt, befindet sich ein Hahnauslaß. Diese beiden Öffnungen werden durch einen Wattebausch verschlossen, das Gefäß etwa bis zur Hälfte mit der Extraktionsflüssigkeit gefüllt und hierauf das zu extrahierende Material eingefüllt. Das gefüllte Gefäß wird nun derart an die Kühlanlage angesetzt, daß zunächst beide Zulaufglocken von unten nach oben völlig ineinander geschoben werden; dann wird das Gefäß um seine Längsachse soweit gedreht und nach rechts geneigt, daß die beiden Ablaufglocken übereinander zu stehen kommen (Zuund Ablaufglocke der Kühlanlage sind in der Vertikalen 1 mm voneinander entfernt), worauf das Extraktionsgefäß soweit gesenkt wird, daß nun auch die Ablaufglocken ineinander geschoben erscheinen und hier durch das in der Ablaufglocke der Kühlung befindliche Quecksilber der Verschluß hergestellt ist.

¹⁾ Hergestellt von den vereinigten Fabriken für Laboratoriumsbedarf in Berlin.

In dieser Stellung wird das Gefäß durch eine Klemme fixiert. Hierauf wird in die Zulaufglocke des Extraktionsgefäßes Quecksilber gegossen bis Verschluß hergestellt ist. Der Kochkolben wird nach Beschickung mit Flüssig-

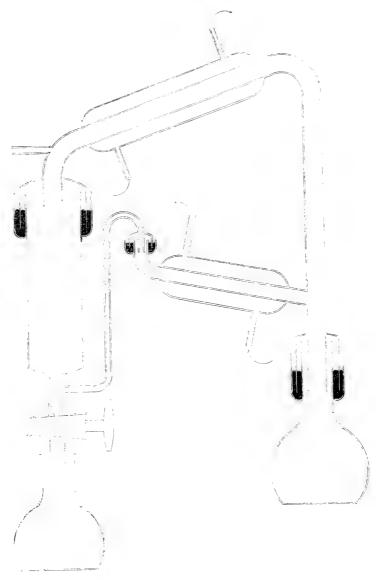
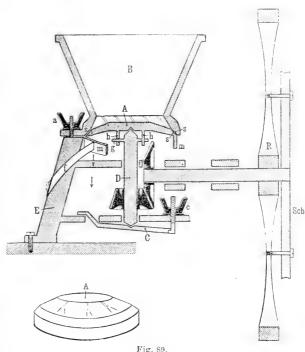


Fig. 88.

keit und etwas Bimsstein zur Vermeidung des Siedeverzuges durch Einschieben seiner Verschlußglocke in die der Kühlanlage von unten an diese angesetzt und ohne Klemmenfixierung auf ein mit Asbestpapier belegtes

Drahtnetz gestellt. Das hierauf zum Verschluß in die Kolbenglocke eingefüllte Quecksilber wird, um seine Verdampfung zu verhindern, mit einer geringen Menge Glyzerin bedeckt. 1) Das Kühlsystem hat die Form eines Dreiecks: es besteht aus einem oberen zum Extraktionsgefäß absteigenden. dem Zulaufkühler, und aus einem unteren zum Kolben absteigenden, dem Ablaufkühler, deren Seelenrohre sich am Extraktionsgefäß im spitzen Winkel treffen, wo sie die beiden Verschlußglocken tragen, an den entgegengesetzten Enden aber durch das senkrechte Dampfleitungsrohr miteinander verbunden sind. Das Kühlwasser läuft aus dem oberen in den unteren Kühler. Die Seelenrohre sind so weit gewählt, daß Kondensflüssigkeit sie nicht verschließen kann. Außerdem ist aber das Dampfleitungsrohr in seiner ganzen Ausdehnung weiter im Lumen als die Seele des Ablaufkühlers, hierdurch wird erreicht, daß der Hauptstrom des Dampfes durch das senkrecht aufsteigende Leitungsrohr seinen Weg in den Zulaufkühler nimmt und nur ein geringerer Nebenstrom in das Ablaufrohr eintritt, wo er nach wenigen Zentimetern Wegstrecke durch die Kühlung kondensiert wird. Außerdem verhindert das den Ablaufkühler verschließende angefüllte Extraktionsgefäß die Ausbreitung des Dampfes durch den Ablaufkühler. Versuche haben aber gezeigt, daß ohne Ablaufkühlung der heiße Dampf, das ganze Ablaufrohr anfüllend, das Extraktionsgefäß trotz dessen Entfernung vom Feuer stark erwärmt, außerdem aber nur eine kurze Strecke im senkrechten Dampfleitungsrohr aufsteigt, so daß, bei dem hohen Siedepunkt des Toluols wenigstens, die Anlage einfach wie eine Rückflußkühlung wirkte und kein Destillat in das Extraktionsgefäß gelangte. Der Ablaufkühler verhindert das im Zusammenhange mit der geringeren Weite des Ablaufrohres und dessen Abschluß durch das Extraktionsgefäß: der Dampf entweicht durch das senkrechte Leitungsrohr, wird im Zulaufkühler kondensiert, die Flüssigkeit tronft auf das Extraktionsmaterial, passiert dieses und gelangt durch die Seele des Ablaufkühlers in den Kochkolben zurück. Da das umgebogene Ende des Ablaufrohres des Extraktionsgefäßes nur wenig niedriger liegt als dessen obere Öffnung, so bleibt das Gefäß dauernd gefüllt; die Extraktion erfolgt kontinuierlich und nicht intermittierend. (In verschiedenen Versuchen hat sich die intermittierende Extraktion, die unschwer eingerichtet werden konnte, nicht bewährt.) Das Extraktionsgefäß darf naturgemäß nur soweit mit Extraktionsmaterial gefüllt werden, daß die Flüssigkeit dieses dauernd vollständig bedecken kann. Das ganze System steht nur an der Glocke des Zulaufkühlers mit der Außenluft durch ein kurzes wagrechtes Rohr in Verbindung, wo ein Natronkalk- bzw. Chlorcalciumröhrchen vorgeschaltet werden kann. Nur völlig wasserfreie Flüssigkeiten dürfen als Extraktionsflüssigkeiten verwendet werden. (Toluol2) ist mit CaCl2 zu trocknen, Aceton

¹) Dabei bleibt der innere Quecksilberspiegel unbedeckt, hier sammelt sich aber bald Kondensflüssigkeit an, so daß auch hier kein Hg verdampfen kann. Hier darf kein Glyzerin vorhanden sein, weil es die Extraktionsflüssigkeit verunreinigen würde.


²) Klares, jedoch wasserhaltiges Toluol destilliert trübe, da sich hierbei das Wasser abscheidet. Das zu extrahierende Organ nimmt das Wasser begierig auf, wodurch die Massen schmierig werden.

gleichzeitig mit Calciumchlorid und Kaliumkarbonat.) Nachdem die Extraktion etwa 24 Stunden im Gange war, ist sie für gewöhnlich beendet. Über den Fortgang belehrt nur anfangs das Aussehen der ablaufenden Flüssigkeit, die bald farblos wird, später die Prüfung kleiner Flüssigkeitsproben auf Rückstandsfreiheit, die man, ohne die Extraktion zu unterbrechen. beim Hahnauslaß des Extraktors jederzeit entnehmen kann. Will man nach beendeter Toluolextraktion noch eine solche mit absolutem Alkohol oder Aceton anschließen, so braucht man nur die Flüssigkeit im Kochkolben zu wechseln, dessen Glocke niedriger als der Hals ist, so daß man gleichzeitig das Verschlußquecksilber und den Kolbeninhalt in zwei getrennte Gefäße (etwa ein in einer Schale stehendes Becherglas) entleeren kann. Soll nicht weiter extrahiert werden, so wird das Extraktionsgefäß durch den Hahnauslaß grob entleert; in der dem Einsetzen entsprechenden Weise abgenommen, das Verschluß-Hg der Zulaufglocke ausgeschüttet und schließlich das Gefäß beim Hahnauslaß mittelst Stopfens mit einem Absaugkolben verbunden. Das umgebogene Ende des Ablaufrohres wird mit einem kleinen Korkstöpsel geschlossen und nun scharf abgesaugt, bis das Material völlig trocken ist. Dann stülpt man über das abgenommene Extraktionsgefäß eine passende Glasbüchse und entleert durch Stürzen die gesamte extrahierte Masse. Hat man dafür gesorgt, die Masse vor der Extraktion mit einem Wattebausch zu bedecken, so dient dieser beim Absaugen und Trocknen als Filter: das durch das Toluol sterilisierte Organ läßt sich dann nach Entfernung des Wattebausches auch steril aufbewahren, was unter Umständen bei der weiteren Verarbeitung antiseptische Zusätze vermeiden ließe. In entsprechend langen Extraktionsgefäßen lassen sich, wofern man auf das Extrakt keinen Wert legt, bequem mehrere Organe gleichzeitig extrahieren, indem man diese in eventuell gekürzte Schleicher-Schüllsche Extraktionshülsen füllt, die letzteren ineinander steckt und das ganze System in den halb gefüllten Extraktor versenkt. Als Extraktionsflüssigkeiten verwendet man am besten aromatische Kohlenwasserstoffe (Benzol, Toluol, Xylol). Die aliphatischen Kohlenwasserstoffe sowie Äther, Tetrachlorkohlenstoff, Chloroform, Schwefelkohlenstoff sind nicht so zweckmäßig. Es macht den Eindruck, als ob die aromatischen Extraktionsmittel viel mehr einzudringen vermöchten. Mit Toluol nehmen die getrockneten Organe eine tief dunkle, transparente Färbung an, mit Petroläther, Äther etc. eine hellgraue opake, was vielleicht nicht lediglich auf dem verschiedenen Lichtbrechungsvermögen beruhen mag. Gelegentlich könnte man als Extraktionsmittel auch andere aromatische Körper wie Anilin oder ätherische Öle (Terpentinöl) benutzen, die ebenfalls, wie uns Versuche gelehrt haben, die trockenen Organe nicht schädigen. Nach der Extraktion mit solchen mit Wasser nicht mischbaren Flüssigkeiten geben die Organe an mit Wasser mischbare, organische Lösungsmitteln noch gefärbte Extrakte ab. Am besten eignet sich für diese Extraktion das Aceton oder auch Alkohol, die bei Vermeidung von Wasserspuren (Vorschalten eines Ca Cl.-Rohres), wie die Versuche gezeigt haben, weder die Eiweißkörper koagulieren, noch die Fermente irgendwie

beeinträchtigen. Schließlich verbleiben aber doch noch gefärbte Begleitstoffe der Organeiweiße zurück, welche zum Teil wenigstens wasserlöslich und dialysabel sind, so daß nach der Dialyse (siehe weiter unten) fast ungefärbte Extrakte erhalten werden. Kommt es darauf an, die Extrakte durch Hitze unverändert, nativ zu gewinnen, so geht man in der eingangs erwähnten Weise vor (Mahlen mit der betreffenden Flüssigkeit in der Farbenmühle und Abnutschen) und gewinnt die gelösten Stoffe nicht durch Abdampfen, sondern Wegblasen des Lösungsmittels in dem beschriebenen Trocken-

apparat. So kann man auch die nativen Organlipoide zur Untersuchung bekommen.

III. Das Zerkleinern der Zellen läßt sich, falls diese trocken und entfettet, infolgedessen spröde sind, auch ohne besondere Apparate in der Reibschale leicht ausführen. Mit Vorteil lassen sich natürlich hierzu die verschiedenen Typen von Kugelmühlen mit Porzellantrommel (Büchse) verwenden. Recht gut lassen sich die trockenen Zellen. insbesondere wenn sie entfettet sind, unter Zuhilfenahme von Toluol einer Farbenreibmühle zerreiben. Die

Konstruktion des auch für andere Zwecke, zum Vermahlen fester Substanzen in Flüssigkeiten gut verwendbaren Apparates ist folgende¹) (Fig. 89): Die abnehmbare Scheibe A wird durch den Hebel C und die Achse D mittelst der Flügelschraube e nach oben gegen den gleichfalls abnehmbaren, durch drei Flügelschrauben (a) auf einem Gestell (E) fixierten Konus oder Zylinder (B) gedrückt. Die Berührungsflächen sind etwa 2 mm breite schräge Schliffe (ss), gegen die sowohl am Konus als an der Scheibe kleine Rinnen führen. Die Richtung der Zylinderrinnen und Scheibenrinnen kreuzen sich, indem die ersteren in der Drehrichtung

¹⁾ Diese Mühlen sind in jedem Farbwarengeschäft erhältlich. Dieselbe Konstruktion haben die Salbenmühlen der Apotheker. Auch werden derartige Mühlen mit Hartporzellanreibflächen von den meisten Werkstätten für Laboratoriumsbedarf geliefert.

der Scheibe schräg absteigen, während die letzteren in entgegengesetzter Richtung verlaufen. Die Scheibe A balanciert auf der durch Zahnradübertragung drehbaren Achse (D), welche, durch den horizontalen Mitnehmer g an den an der unteren Fläche der Scheibe angebrachten Stiften (h) angreifend, die Scheibe im Sinne des Uhrzeigers in Rotation versetzt. Die an dem aus weichem Eisenguß hergestellten, recht roh gearbeiteten Fabrikate befindliche Kurbel für Handbetrieb wurde durch eine mit Schwungrad (R) verbundene Schnurscheibe (Sch) ersetzt, welche die Verwendung eines Motors gestattet. Um außerdem (siehe weiter unten) auch in wässerigen Flüssigkeiten mahlen zu können, ohne von Rostbildung gestört zu werden, wurde Scheibe und Zylinder vernickelt. Durch die Flügelschraube des Hebels (e) lassen sich die schleifenden Flächen von Scheibe und Zylinder so weit nähern, daß zwischen beiden eine in den Zylinder gegossene, selbst sehr leicht bewegliche Flüssigkeit (Äther, Toluol) nicht heraussickert; erst beim Drehen der Scheibe wird durch die Rotation Flüssigkeit in den kapillaren Raum, den die schleifenden Flächen bilden, gesogen und erscheint als feuchter Streifen auf dem äußeren zylindrischen Mantel der Scheibe (m). Von hier wird die Flüssigkeit durch eine auf dem Scheibenmantel schleifende Feder (1) aufgenommen, rinnt an dieser herunter und tropft in ein untergestelltes Gefäß. Trotz mannigfaltiger, verbesserungsfähiger Fehler arbeitet der Apparat zufriedenstellend. Er wird derart in Gang gesetzt, daß man in den Zylinder Toluol gießt und die Scheibe so weit hebt, daß dieses eben nicht mehr heraussickert, hierauf setzt man den Motor in Gang und beobachtet die Abflußgeschwindigkeit des Toluols. Dieses soll nicht im Strahl, sondern in mäßig rascher Tropfenfolge von der schleifenden Feder fließen, was durch Verstellen der Flügelschraube e auch bei laufender Maschine leicht zu erzielen ist. Hierauf erst bringt man das getrocknete Organ portionsweise in den Zylinder, indem man darauf achtet, daß die Mischung im Zylinder nicht zu dickflüssig werde; tritt dieses ein, so hat man sukzessive kleine Mengen Toluol nachzugießen, bis alles vermahlen ist und reines Toluol abläuft. Die so erhaltenen Suspensionen oder Emulsionen sind bei genauem Arbeiten so fein, daß sie selbst nach 24stündigem Stehen nur wenig Bodensatz absetzen und, wie bereits erwähnt, nur langsam (wenn auch mit gleichmäßiger Geschwindigkeit) unter Anwendung einer Saugpumpe filtrieren. Verreibt man angetrocknete Tropfen solcher Emulsionen mit Wasser auf dem Objektivträger und färbt nach dem Trocknen und Fixieren mit Methylenblau, so findet man in gelungenen Fällen überhaupt keine intakten Zellkerne, sondern nur eine gleichmäßig gefärbte, von feinsten Chromatinsplittern durchsetzte Fläche. Es ist zu bemerken, daß dieses Resultat nur mit getrocknetem Material zu erzielen ist. Frische Zellen schlüpfen durch jenen kapillaren Raum, ohne zerdrückt zu werden, insbesondere auch Erythrocyten. Frische Hefe und Stärkekörner werden nur zum geringen Teile zermahlen. Sind aber die Zellen spröde (durch das Trocknen) und bedingt die Mahlflüssigkeit keine Erweichung, so geht die Zerkleinerung gut vonstatten; daher werden auch entfettete Zellen sicherer

zermahlen als nicht extrahierte, wenn auch hierbei das Mahlen mangels eines Schmiermittels meist größere Kraft in Anspruch nimmt.

So werden schließlich die überlebenden Organe unverändert je nach Wunsch: lipoidhaltig oder frei, mit intakten oder zertrümmerten Zellen als wägbares, längere Zeit haltbares Ausgangsmaterial erhalten, welches sich zu allen folgenden Fraktionierungen eignet. Der quantitative Vergleich heterologer wie homologer Organe des gleichen oder verschiedener Individuen derselben und verschiedenen Art in Bezug auf Eiweiß. Ferment und Lipoidbestand, ist ermöglicht. Desgleichen die Gewinnung unlöslicher Organfraktionen. Die Aufteilung durch Filtration ist infolge der Entfettung quantitativ und rasch durchführbar. Vorbereitet zur weiteren Verarbeitung wird dieses Material am besten durch Vermahlen abgewogener Mengen mit Wasser in der Farbenmühle, wodurch feine und genügend stabile Suspensionen erzielt werden, um bequem mit Pipetten verteilt werden zu können oder die Benutzung aliquoter Filtratsteile zu gestatten. Die Verarbeitung solcher Aufschwemmungen und Filtrate auf Fermente und Eiweißkörper siehe unter F. und G.

E. Die Herstellung von Alkohol-(Aceton-)Material.

Das Bestreben, für Fermentversuche ein konserviertes und wägbares Ausgangsmaterial zu haben, verbunden mit dem Wunsche, die koagulablen Eiweißkörper für die folgenden Extraktionen unlöslich zu machen, ohne die Fermente zu schädigen, hat zu dieser Methode geführt, die wohl nur in ganz bestimmten Fällen ohne Nachteil angewendet werden kann. Maßgebend für sie war die durchaus nicht für alle Fälle zutreffende Annahme, daß die Organfermente durch Alkoholeinwirkung auf frische, d. h. stark wasserhaltige Organe keine Schädigung erfahren. Im Gegenteile, die meisten Fermente werden partiell oder völlig durch längere Einwirkung starken Alkohols (in eiweißfällenden Konzentrationen) zerstört (siehe weiter unter G. und H.), außerdem kommt eine Art Fixierung der Fermente an die koagulablen Eiweißkörper zustande, so daß die Löslichkeit der Fermente oft ganz verloren geht. Dagegen wirkt der Alkohol bei Wasserabwesenheit nicht koagulierend auf Eiweiß und nicht fermentschädigend.

Battelli¹) hält Iscoresco²) entgegen, daß beim Behandeln mit Alkohol oder Aceton und nachfolgendem Trocknen die frischen Organe den größten Teil ihrer katalytischen Fähigkeit oder der Löslichkeit der Katalase einbüßen. (Im Gegensatze zur Alkoholfällung von gelösten Fraktionen siehe unter G.)

Die zerkleinerten Organe (meist Sand-Kieselgur, aber auch einfach gehacktes Material) werden bis zur deutlichen Koagulation der Eiweiß-

¹) *M. F. Battelli*, La présence de la catalase dans les tissus animaux. Compt. rend. soc. biolog. T. **59**. p. 300 (1905).

²⁾ M. H. Iscovesco, De la présence de la catalase dans les différents organes. Compt. rend. soc. biolog. T. 58. p. 1054 (1905).

körper mit dem mehrfachen Volumen Alkohol oder Aceton vermischt. Nach meist 2 Stunden, jedenfalls aber nicht länger als 24 Stunden wird abfiltriert oder abgesaugt, mit Ather nachgewaschen, auf Filtrierpapier getrocknet und gepulvert. Zu lange Einwirkung des Alkohols ist in allen Fällen schädlich. Salkowski¹) fand die Aldehydase nach 3 Tagen Alkoholeinwirkung zerstört, nicht aber nach 24 Stunden Einwirkung. Das glykogenspaltende Ferment blieb erhalten²), ebenso das oxydative³), sowie peptische, tryptische und diastatische Fähigkeiten von Organen.⁴) Croftan⁵) will so auch das "urikolytische" Ferment konserviert haben, wiewohl durch Wiechowski und Wiener⁶) gezeigt war, daß es bei Wassergegenwart gegen Alkohol in fällbaren Konzentrationen sehr empfindlich ist.

Ob die an Alkoholmaterial beobachteten Fermentleistungen quantitativ denen der verwendeten Mengen frischer Organe entsprechen oder nur einen Rest des ursprünglichen Funktionsausmaßes darstellen, ist systematisch nicht untersucht. Nach zahlreichen Literaturangaben ist, wie gesagt, das letztere anzunehmen. A. Jaquet $\tilde{\tau}$) fand den Na (4-extrakt von Alkoholmaterial bedeutend geringer oxydativ wirkend als den Kochsalzauszug der frischen Gewebe. Diese für alle methodischen Versuche grundlegende Frage ist nur durch vergleichende Ermittlung jener kleinsten Materialmengen zu entscheiden, welche gerade noch ein bestimmtes Ausmaß an Leistung aufweisen, wie dies von Wiechowski und Wiener*) für die Harnsäureoxydase geschehen ist. (Restlose Oxydation von $0.14~\overline{\rm U}$ als Na-Salz in 4 Stunden bei 40° unter Schütteln mit Luft.)

F. Weitere Verarbeitung der zerkleinerten Organe.

Preßsäfte und Extrakte.

I. Preßsäfte. Im engeren Sinne sind als solche nur Säfte zu bezeichnen, die nicht unter Anwendung von Verdümnungs- oder Lösungsmitteln hergestellt werden; sie stellen den flüssigen Anteil der Organe dar und sollen klar, insbesondere zellfrei sein. Das nach derselben Methode vorzunehmende Auspressen von irgendwie mit Lösungsmitteln behandelten Organen liefert

E. Salkowski, Zur Kenntnis des Oxydationsfermentes der Gewebe. Virchows Arch. Bd. 147, S. 1 (1897).

²⁾ B. Schöndorff und C. Victorow, Über den Einfluß des Alkohols auf hydrolysierende Enzyme. Pflügers Arch. Bd. 116, S. 495 (1907).

³) J. Pohl, Zur Kenntnis des oxydativen Fermentes. Arch. f. experim. Pathol. u. Pharm. Bd. 38. S. 65 (1897).

¹) J. Souttar M'Kendrick, Proc. roy. Soc. Edinb. Vol. 23, p. 68 (1900); zitiert nach Matys Jahrb. T. Bd. 31, S. 873 (1901).

⁵⁾ Crojtan, Pflügers Arch. Bd. 121. S. 377 (1908).

⁶⁾ W. Wiechowski und H. Wiener, l. c.

⁷) A. Jaquet, Über die Bedingungen der Oxydationsvorgänge in den Geweben. Arch. f. experim. Pathol. u. Pharm. Bd. 29. S. 386 (1892).

⁸⁾ W. Wiechowski und H. Wiener, l. c.

Extrakte. Auch die oben erwähnten Collaturen haben mit den eigentlichen Preßsäften nichts zu tun. Gewöhnlich werden Preßsäfte so hergestellt, daß nach völligem Zerreiben der frischen Organe (Zellen) mit Sand, Glas, Bimsstein oder Quarzpulver unter Zusatz von Kieselgur, nach dem Vorbilde der Zymasegewinnung durch Buchner-Hahn¹) eine steife, teigartige Masse gemischt wird, die in einem doppelten Preßtuche mit einer hydraulischen Presse bei hohem Druck (bis 500 Atm.) frei ausgepreßt wird. Die Pressung muß oft mehrere Stunden andauern, um genügend Saft zu liefern. Der abfließende Saft ist nur wenig trüb. Die Zusätze wirken als Filter. Außer der klassischen Buchnerpresse sind zahlreiche andere Pressen und Filterpressen mit geschlossenem Preßraum (Zylinder) angegeben, die ebenfalls mittelst hydraulischen Druckes oder aber mit Differenzialhebeln betrieben werden. Eine solche Presse mit verbesserter Ablaufvorrichtung hat Wolff-Eisner²) angegeben. Ein neuartiges Prinzip benutzt die Organsaftpresse von H. H. Meyer. 3) Der Preßraum wird von mehreren übereinander gelegten Ringen gebildet, deren jeder an der unteren Fläche feine Rinnen führt. Durch diese tritt der Saft sofort aus, ohne das gesamte Preßgut durchdringen zu müssen und sammelt sich in, von den Ringen gedeckten, Zirkularkanälen an der Peripherie, ehe er endgültig die Presse verläßt. Durch entsprechende Wahl der Ringzahl läßt sich das Volumen des Zylinders bequem der Masse des Prefigutes anpassen. Man kann auch zwischen die Ringe Filtrierpapier legen, wodurch der Apparat als Filterpresse wirkt. — Die völlig klare Säfte liefernden Filterpressen sind überhaupt vorzuziehen. Für manche Zwecke (Fürths Muskelplasma+) z. B.) reichte schon das Auspressen mit einer gewöhnlichen Tinkturenpresse mit Schraubenantrieb, der nur geringe Drucke zuläßt, aus.

Die Methode der Preßsäfte hat den Vorteil, ganz konzentrierten Organsaft zu liefern, gibt aber weder für Eiweißkörper noch für Fermente quantitative Resultate. Der Zusatz von Kieselgur sollte womöglich vermieden werden, da diese, wie bereits erwähnt, Eiweiß und Fermente, ja sogar Salze adsorbiert zurückhält. Diese Erfahrung wurde schon von Buchner-Hahn bei der Zymasedarstellung gemacht. — Der Eiweißbestand der Preßsäfte ist bis auf den des Muskelsaftes nicht eingehend studiert, er dürfte sich bis auf den Konzentrationsunterschied mit demjenigen des Organfiltrates (Pohls "Organplasma", siehe unten) decken. Wurden die Zellen vorher zerrieben, so gehen wohl auch solche Fermente in den Saft ein, die dem einfachen Filtrat oder Saft fehlen. Doch scheint eine derartige Fermentgewinnung nur wenig Ausbeute zu liefern, da die meisten Erfahrungen dafür sprechen, daß nicht unmittel-

¹⁾ E. Buchner, l. c.

²) A. Wolff-Eisner, Die Endotoxinlehre. Verh. d. physiol. Ges. zu Berlin. Arch. f. Physiol. Suppl. S. 430 (1906).

³⁾ H. Meyer, Zwei neue Laboratoriumsapparate. Arch. f. exp. Pathol. u. Pharm. Bd. 47, S. 430 (1902).

⁴⁾ O. r. Fürth, Über die Eiweißkörper des Muskelplasmas, Arch. f. exp. Pathol. u. Pharm. Bd. 36, S. 231 (1895).

bar lösliche Organfermente auch aus den zertrümmerten Zellen erst durch ein entsprechendes Lösungs- oder Aufschließungsverfahren in guter Ausbeute zu gewinnen sind (offenbar erst nach Lösung ihrer wahrscheinlich adsorptiven Bindung an unlösliche Organfraktionen).

Vielfach sind in der Literatur unter Preßsäften auch im obigen

Sinne durch Pressen hergestellte Extrakte gemeint.

Preßäfte von Lymphdrüsen, Milz, Leber enthielten ein mit Alkohol fällbares. H_2 O_2 spaltendes Cytoglobulin.¹) Stoklasas²) glykolytisches Ferment wurde mit Alkohol und Äther aus Preßsäften gewonnen. Feinschmidt, der Stoklasa bestätigt, arbeitete mit der Buchnerpresse.³) Hedin und Rowland⁴) fanden in dem mit einer Filterpresse aus zerkleinerter Milz (siehe oben ihren Zerkleinerungsapparat) gewonnenen Saft proteolytische Enzyme, die später α - und β -Lienase genannt wurden. F. Sachs⁵) fand nach dem Buchnerschen Verfahren im Organsaft Nuklease; L. Brunton und J. K. Rhodes⁶) im Muskelsaft glykolytische Fähigkeiten. $F\ddot{u}rths$ Muskelplasma ist bereits erwähnt.

II. Extrakte. Zur Darstellung derselben kann jedes nach einer der in den vorigen Abschnitten beschriebenen Methoden gewonnenes Material verwendet werden: Organbrei. Kollaturen. mit Flüssigkeit angeriebene Pulver, Alkohol-Acetonmaterial. Die Extraktion erfolgt durch Digestion mit indifferenten Lösungsmitteln oder durch Aufschließung, sie ergibt außer den flüssigen Zellbestandteilen die in den betreffenden Flüssigkeiten löslichen. Die Abtrennung des Gelösten vom Ungelösten erfolgt durch Filtration oder Zentrifugieren. Beide Trennungsverfahren können mit Pressen (siehe oben) kombiniert werden. Im allgemeinen ist die Extraktion mit dem ungelösten Rückstand bis zur Erschöpfung an der löslichen Fraktion zu wiederholen. Für die Filtration sind die verschiedenen Papiersorten sehr ungleich geeignet; oft wird auch durch aufgeschlemmten Papierbrei filtriert. Im allgemeinen geht die Filtration nur sehr langsam vonstatten und stockt oft ganz, so daß Waschen auf dem Filter ummöglich ist. Nach D. her-

W. Denme, Ein neuer eiweißliefernder Bestandteil des Protoplasmas. Ing.-Diss. Dorpat 1890. Zentralbl. f. med. Wiss. S. 483 (1891); zit. nach Malys Jahrb. T. Bd. 21. S. 3 (1891).

²) J. Stoklasa und F. Czerny, Beiträge zur Kenntnis der aus der Zelle höher organisierter Tiere isolierten Gärung erzeugenden Enzyme, B. B. Bd. 36, S. 4058 (1903) und Zentralbl. f. Physiol. Bd. 17, S. 465 (1903).

³⁾ J. Feinschmidt, Über das zuckerzerstörende Ferment in den Organen. Beitr. z. chem. Physiol. u. Pathol. Bd. 4. S. 511 (1903) und Fortschr. d. Med. Bd. 21. S. 729 (1903).

⁴⁾ S. G. Hedin und S. Rowland, On the presence of proteolytic enzymes in the organs and tissues of the body. Proc. phys. soc. Journ. of phys. Vol. 26. p. 48 (1901). Weiters: Über ein proteolytisches Ferment in der Milz. Zeitschr. f. physiol. Chemie, Bd. 32. S. 341 (1901) und Untersuchungen über das Vorkommen von proteolytischen Enzymen im Tierkörper. Ebenda. S. 531 und S. G. Hedin, Investigations on the proteolytic enzymes of the spleen of the ox. Journ. of phys. Vol. 30. p. 155 (1905).

⁵) F. Sachs, Über die Nuklease. Zeitschr. f. physiol. Chem. Bd. 46. S. 337 (1905).

⁶) T. Lauder Brunton und J. H. Rhodes, Über ein glykolytisches Enzym in den Muskeln. Zentralbl. f. Physiol. Bd. 12. S. 353 (1899).

gestelltes lipoidfreies Material läßt sich dagegen gut filtrieren und waschen. Kieselgur bzw. Porzellanfiltration ist nicht anwendbar, dagegen kann man Watte oder Filzfilter versuchen. Indem die Extraktion die Organe in lösliche und unlösliche Anteile zerlegt, stellt sie gleichzeitig einen weiteren Schritt in der Organfraktionierung dar, die durch die Entfernung der Lipoide und Extraktivstoffe nach Methode D. begonnen werden konnte. Wünschenswert wäre es aber auch für manche Zwecke, diese Fraktionierung so durchzuführen, daß zunächst die Zellkerne vom Protoplasmateil getrennt werden. Dies scheint, wie mich Versuche gelehrt haben, durch physiologische Salzlösung einigermaßen möglich zu sein. Auf dem Filter oder der Zentrifuge kann man z. B. Leberzellen eiweißfrei waschen, ohne die Form und Färbbarkeit der Kerne zu schädigen. Das Zentrifugat ist opaleszent, das Filtrat klar. Außer diesen nicht filtrablen, im Zentrifugat enthaltenen Anteilen müssen noch unlösliche Bestandteile im Protoplasma vorhanden sein, denn die so erhaltenen gut färbbaren Kerne sind noch in eine diffus gefärbte, fetzige Masse eingelagert.

1. Indifferente Extraktion.

Für dieselbe kommt nur Material mit intakten Zellen in Betracht. Um die aufschließende Wirkung der Autolyse zu verhindern, ist die Extraktion in der Kälte eventuell durch Schütteln und nur durch kurze Zeit (bis 24 Stunden) fortzuführen. Als indifferente Lösungsmittel wurden meist Wasser und Kochsalzlösungen niedriger, bis 1% jeger Konzentration, sowie Glyzerin verwendet. Für Fermente käme auch Alkohol in Betracht. Doch können auch andere Lösungen versucht werden (etwa Zucker oder Na-Acetat); es sind in dieser Richtung noch zahlreiche Varianten möglich. Gewöhnlich wird die doppelte Gewichtsmenge des frischen oder die 10—50fache des nach D. getrockneten Materials an Lösungsmittel verwendet.

a) Kochsalzlösung bzw. Wasser. Das klare Filtrat (*Pohls* Organplasma) enthält als charakteristischen Bestandteil den von *Pohl* entdeckten, bei 37° koagulierenden Eiweißkörper neben anderen Proteinen. ¹) Als solche wurden in den betreffenden Extrakten Albumin aus Muskeln ²) und anderen Organen, Nukleoproteid und Nukleohiston aus Thymus ³, ⁴, ⁵, ⁶) gefunden, auch

¹) J. Pohl, Über Organeiweiß. Beitr. z. chem. Physiol. u. Pathol. Bd. 7. S. 381 (1905); hier auch ältere Literatur über Organeiweiß.

²) W. Krawtschenko, Die Menge des Nukleinkomplexes in Globulinen und Strominen verschiedener Organe. Inaug.-Diss. Petersburg 1904. Zit. nach Malys Jahrb. T. S. 39 (1904).

³) J. Bang, Chemische Untersuchungen der lymphatischen Organe. Beitr. z. chem. Physiol. u. Pathol. Bd. 4. S. 105, 331, 362 (1904).

⁴⁾ H. Cociti, Über das Nukleoproteid der Placenta. Lo Sperimentale. Vol. 55. p. 503 (1901).

⁾ W. Huiskamp, Über die Eiweißkörper der Thymusdrüse. Zeitschr. f. physiol. Chemie. Bd. 32. S. 145 (1901). — A. Ostwald, Die Eiweißkörper der Schilddrüse. Zeitschr. f. physiol. Chemie. Bd. 27. S. 14 (1899).

⁶) W. Jones, Über die Selbstverdauung von Nukleoproteiden. Zeitschr. f. physiol. Chemie. Bd. 42. S. 35 (1904).

das als Nukleoproteid erkannte "Gewebsfibrinogen" Wooldriges") geht in das Wasserextrakt über.

Von Fermenten wurden in dieser Fraktion gefunden: das Erensin der Darmschleimhaut. 2) Die z- und 3-Protease der Milz), Katalase 4) aus verschiedenen Organen; Trypsin und amylolytisches Ferment des Pankreas*), die Salizvlaldehydase verschiedenster Organe 6,7,8); das glvkolytische Enzym, die "oxydierenden Nukleoproteide", sowie die Purinoxydase verschiedener ()rgane (Spitzer 9), das "Philothion" (?) 10), das autolytische Enzym 11), dieses jedoch, wie uns Versuche lehrten, nur zum geringen Teil, ebenso nur teilweise die Arginase. 12)

Dageger wurden in frischen Extrakten nicht gefunden: die Harnsäureoxydase 13) und die Laktase der Darmschleimhaut 14), letztere dagegen in Mazerationsfiltraten (siehe weiter unten).

Die Extrakte sind insofern nicht haltbar, als sie auch bei Zimmertemperatur, antiseptisch bewahrt, nach einiger Zeit jenen leicht koagulablen Eiweißkörper ausflocken lassen. Durch diese besonders in der Wärme rasch eintretende Koagulation können auch Fermente niedergeschlagen werden.

5) Glyzerin. Diese Extraktionsmethode stammt von Wittich, der zur Fermentgewinnung die Glyzerinextrakte mit Alkohol fällte. Gewöhn-

1) A. E. Wright, On Wooldriges Method of producing immunity against anthrax by the injection of solutions of tissue fibrinogen. Brit. Med. Journ. p. 12 (1891).

2) O. Cohnheim, Die Umwandlung des Eiweißes durch die Darmwand. Zeitschr. f. physiol, Chemie. Bd. 33. S. 451 (1901).

3) S. G. Hedin und S. Rowland.

4) J. E. Abelous, Sur la présence dans l'organisme animal d'un ferment soluble décomposant Feau oxygénée. Compt. rend. soc. biolog. T. 51. p. 328 (1899).

5) N. Krackow. Eine allgemeine Methode zur Darstellung unorganisierter Fermente in reinen Wasseraufgüssen. Journ. d. russ. physiol.-chem. Ges. I. S. 387-392 (1887). -Refer. in B. B. Bd. 20. S. 735 (1887).

6) E. Salkowski, Über die Oxydationsfermente der Gewebe. Zentralbl. d. med.

Wissensch, Nr. 52 (1894).

7) M. Jacoby, Über die Oxydationsfermente der Leber. Virchows Archiv. Bd. 157. S. 235 (1899).

8) A. Jaquet, 1. c.

⁹) W. Spitzer, Die zuckerzerstorende Kraft des Blutes und der Gewebe. Berliner klin, Wochenschr, S. 949 (1894); dasselbe, Pytügers Archiv, Bd. 60, S. 303 (1895); Die Bedeutung gewisser Nukleoproteide für die oxydative Leistung der Zelle. Ebenda. Bd. 67. S. 615 (1897); Die Überführung von Nukleinbasen in Harnsäure durch die Sauerstoff übertragende Wirkung von Gewebsauszügen. Ebenda. Bd. 76. S. 192 (1899).

10) E. Pozzi-Escot, Über das Philothion etc. Bulletin de la soc. chim. de Paris.

T. 29. p. 1232 (1903); zit. nach Malys Jahrb. T. Bd. 33 (1904).

11) W. Jones, Uber die Selbstverdauung von Nukleoproteiden. Zeitschr. f. physiol. Chemie, Bd. 42, S. 35 (1904).

12) A. Kossel und H. D. Dakin, Über die Arginase. Zeitschr. f. physiol. Chemie. Bd. 41. S. 321 (1904).

¹³) W. Wiechowski und H. Wiener, l. c.

14) H. Bierry und Gmo-Salazar, Untersuchungen über die Tierlaktase. Comptes rend. T. 139, p. 381 (1904); zit, nach Malys Jahrb. T. Bd. 34, S. 941 (1905).

lich wird konzentriertes 30° Glyzerin mit dem Organmaterial gemischt, nach verschieden langer Einwirkung gewinnt man das Extrakt durch Wasserverdünnung und Filtration oder besser ohne Verdünnung durch Auspressen. Verwendet wurde diese Methode zur Bereitung von Testikelextrakt, zur Extraktion von glykolytischem Muskelenzym¹), doch war hier der Erfolg geringer als bei der Wasserextraktion. Erepsin wurde extrahiert²); desgleichen Katalase.³) Aus Alkoholmaterial wurden Extrakte mit peptischen, tryptischen und diastatischen Eigenschaften gewonnen.⁴) Nicht in das Glyzerinextrakt gingen über die Harnsäureoxydase⁵) und das oxydative Ferment Jaquets.⁶)

- γ) Äthylalkohol. Die Löslichkeit mancher Fermente in verdünntem Alkohol ^{7,8}) kann gelegentlich zu deren Extraktion versucht werden. So wurde nach Fällung von Leber und Nierenmazerationen mit Alkohol die esterspaltende und Glykogen sowie Laktose hydrolysierende Potenz vollständig im Filtrat erhalten.
- 2. Extraktion durch Aufschließung (Entmischung) der Organzellen.

Die Extraktion geschieht hier nach oder gleichzeitig mit einer Zerstörung des Bestandes der einzelnen Zelle, wodurch bezweckt wird, sonst unlösliche Fermente oder Organproteine zu erhalten. Man erhält nach Vollendung der indifferenten Extraktion neue Anteile in Lösung. Für derartige Versuche, die Zellen zu lösen, könnte die reiche Erfahrung, die man beim Studium der Hämolyse gemacht hat, Anwendung finden. Doch ist im Gegensatz zur Hämolyse über die Auflösung von Organzellen kaum systematisch gearbeitet worden. Man kann die benutzten Aufschließungsmethoden in solche mechanisch-physikalischer Natur und solche chemischer Natur einteilen.

- α) Mechanisch-physikalische Aufschließungsmethoden (Gefrieren, Zertrümmern, Dialyse, Entmischung durch Alkohol, Auskochen).
- a) Gefrieren und wieder Auftauen. Das Verfahren ist zur Aufschließung von Erythrozyten seit langem benutzt. Buchner wandte es zur

¹⁾ T. Lauder Brunton, On a probable glycolytic ferment in Muscle on raw meat and the treatment of diabetes. Zeitschr. f. Biologie. Bd. 34. S. 487 (1896).

²) Elsa Raubitschek, Erfahrungen über Erepsin. Zeitschr. f. exper. Pathol. u. Ther. Bd. 4. S. 657 (1907).

³) E. Lepinois, Sur les ferments solubles décomposant l'eau oxygénée. Comptes rend. soc. biolog. T. 51. p. 401 (1899).

⁴⁾ J. Souttar M'Kendrick, l. c.

⁵⁾ W. Wiechowski und H. Wiener, l. c.

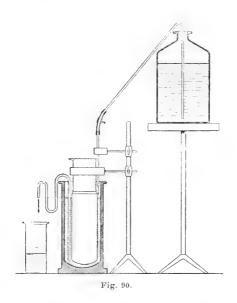
⁶⁾ Abelous et Biernè, Mecanisme des oxydations organiques. Archiv de physiol. Nr. 2 (1895).

⁷⁾ A. J. A. Lambert, Contribution à l'étude de l'action biologique du rein et du foie vis-à-vis de certains composés chimiques et médicaments. Thèse de Lille 1903. E. Gérard, 53 pages.

⁸⁾ M. A. Dastre, Solubilité relative des ferments solubles dans l'alcool. Comptes rend. soc. biolog. T. 47. p. 414 (1895); dort auch ältere Literatur.

Darstellung von Leukozytenstoffen an. In der Organanalyse ist es nur selten benutzt worden, weshalb kaum Erfahrungen darüber zu referieren sind. Laboratoriumsbeobachtungen haben uns gezeigt, daß die Harnsäure-oxydase hierdurch nicht in Lösung gebracht wird. Das, am besten, zerkleinerte Organ wird in einem metallenen (emaillierten) Gefäß einer Kältemischung ausgesetzt und 1—2 Stunden gefroren erhalten. Sehr gut wirkt feste Kohlensäure, die in Holzkistchen oder einen Filzbecher gebracht wird. Man läßt langsam bei Zimmertemperatur auftauen und stellt hierauf Preßsäfte oder indifferente Extrakte her. Auf Erythrozyten wirkt das Trocknen in analoger Weise ein.

- b) Die Zertrümmerung der Zellen mit nachträglicher indifferenter Extraktion ist auch hierher zu rechnen. Sie erfolgt durch Zerreiben der spröde gemachten (tiefgefrorenen oder getrockneten und entfetteten) Zellen ohne Zusatz, oder der nativen Zellen mittelst verschiedener Zusätze (Glas, Bimsstein etc.). Über diese Aufschließungsart ist bereits in Abschnitt C und D berichtet. Aus mit Glas zerriebener Plazenta ging in 0·9% Na Cl-Lösung ein essigsäurefällbares Nukleoproteid über. Die Harnsäureoxydase war nur aus zertrümmerten Zellen extrahierbar.
- c) Die Dialyse gegen destilliertes Wasser. Sie bewirkt insoferne eine Entmischung der Zellen, als die Kerne ihre Struktur und Färbbarkeit verlieren. Trennt man nach mehrtägiger Dialyse durch Zentrifugieren das Gelöste vom Ungelösten, so erhält man eine weiße opaleszente, nicht hitzekoagulable Flüssigkeit, die nur durch Mineralsäuren (nicht durch Essigsäure) ausgeflockt wird. Nach wochenlangem Stehen scheidet sich ein großer Teil des Eiweißes spontan flockig aus. Der Zentrifugierrückstand gibt an konzentrierter Kochsalzlösung noch reichlich Eiweiß ab und löst sich glatt in starker Essigsäure, welche Lösung bei der Dialyse völlig wieder ausflockt. Manche Fermente sind nach der Dialyse infolge des Mangels an Elektrolyt oder anderer aktivierender Stoffe (Gallensalze 3) unwirksam, lassen sich aber durch die entsprechenden Zusätze wieder aktivieren. Manche Fermente passieren übrigens manche Dialvsiermembranen. Zur Dialyse sind sehr verschiedene Materialien angegeben worden. meist gebrauchten Pergamentpapierschläuche haben viele Nachteile. kleine Flüssigkeitsmengen (8—10 cm³) sind die sogenannten Schilfschläuche (v. Phragmites communis) mit großem Vorteil angewendet worden. 4) Ich benutze als Dialysatoren sogenannte Fischblasenkondome, die angeblich aus dem Blinddarm von Schafen hergestellt werden. Sie sind ein ausgezeichnetes Material, welches wegen seiner Dünnheit und unten ge-


¹⁾ H. Cociti, 1. c.

²⁾ W. Wiechowski und H. Wiener, 1. c.

³) A. S. Loevenhart, On the so called Coferment of Lipase. Journ. of biolog. Chemist. Vol. 2. p. 391 (1907).

⁴) P. Philipson, Über die Verwendbarkeit der Schilfschläuche zur Dialyse. Beitr. z. chem. Physiol. u. Pathol. Bd. 1. S. 80 (1902).

schlossenen Form sehr rasch dialysieren läßt. Die Prüfung auf Dichtigkeit erfordert einen kleinen Kunstgriff, weil das Material so dünn ist, daß beim Anfüllen mit Wasser infolge des starken Druckes nach einiger Zeit auch aus dichten Schläuchen an einzelnen dünneren Stellen Wasser heraus zu sickern beginnt. Bei dieser gewöhnlichen Art der Prüfung findet man nur selten ein brauchbares Stück. Da die Schläuche aber während der Dialyse keinen Druck auszuhalten haben, nehme ich die Prüfung so vor, daß die in Wasser eintauchenden Schläuche mit Lackmuslösung gefüllt werden und längere Zeit sich selbst überlassen bleiben. An wirklich undichten Stellen tritt der kolloide Farbstoff heraus und die Färbung der Außenflüssigkeit zeigt die Unbrauchbarkeit des Stückes an. Auf diese Weise geprüft, zeigen sich unter den besseren Sorten die meisten Stücke brauchbar. Der Raum-

inhalt der Schläuche beträgt bis $400\,cm^3$. Um mit möglichst wenig Flüssigkeit auszukommen, den Fortgang der Dialyse bequem beurteilen zu können und auch die Verarbeitung der Dialysationsflüssigkeit zu erleichtern, werden die Glaszylinder, in welchen die Schläuche bis auf den Boden tauchen, so eng gewählt, daß diese eben Platz haben, ohne die Wände zu berühren; hierdurch wird die Außenflüssigkeit auf etwa $^1/_5$ des Volumens des Schlauchinhaltes reduziert und ihr Wechsel erfolgt auch bei langsamem Zuflusse relativ rasch. Der Abfluß wird durch eine dreimal **U**-förmig gebogene Röhre, die bis an den Boden des Zylinders reicht, so geregelt, daß immer genau soviel Flüssigkeit vom Boden des Zylinders abläuft, als oben zufließt (vgl. Fig. 90). Das freie Ende des Abflußrohres läßt sich durch Ansetzen von Schlauchstücken beliebig verlängern, so daß das Flüssigkeitsniveau im Zylinder reguliert werden kann. Die Geschwindigkeit des Zuflusses

richtet sich nach der Schnelligkeit der Diffusion, im Anfange läßt man schneller fließen, bis eine Reaktion im Dialysat (z. B. die Chlorreaktion) nicht mehr positiv ausfällt. Im allgemeinen braucht der Zufluß, der durch eine kleine Schraubenklemme geregelt wird, nicht rascher zu erfolgen als etwa $2\,l$ in 24 Stunden. Bei diesem Vorgehen wird halbgesättigte Ammonsulfatlösung in 24 Stunden sulfatfrei, Menschenharn chlorfrei.

- d) Entmischung durch Zusatz geringer, nicht eiweißfällender Mengen Äthylalkohol zu indifferenten Extraktionsmitteln. In geringen Konzentrationsgraden koaguliert Äthylalkohol die Eiweißkörper nicht und schädigt auch die meisten Fermente nicht (z. B. blieb die Harnsäureoxydase bei 0.5% wirksam¹), gleichwohl ist er befähigt, durch Lösung wasserunlöslicher Stoffe eine Entmischung von Organsuspensionen zu bewirken, analog seiner hämolysierenden Wirkung. Analog kann Äiher u. a. wirken.
- e) Aufschließen durch Auskochen der Organe. Zum Teil zur Entfernung koagulabler Eiweißkörper, aber auch zwecks Abtrennung solcher aus größeren, unlöslichen Proteinekomplexen werden die zerkleinerten Organe bei nativer oder alkalischer Reaktion mit Wasser ausgekocht. In den filtrierten Dekokten hat man namentlich die Nukleoproteide durch Säurefällung abgeschieden. Die Ausbeuten scheinen aber sehr gering zu sein, $0.3-0.4^{\circ}$ 0/0 des Ausgangsmateriales. Das Dekokt des Milzsaftes lieferte mit Essigsäure ein Nukleoproteid²). desgleichen das Pankreas³) und die Leber⁴) u. a.
- 3) Chemische Aufschließungsmethoden (proteolytische Enzyme, Salzlösungen, Alkalien, Säuren). Eine Bemerkung über die Fäulnis siehe Abschnitt H, S. 317, Fußnote 9.
- a) Mazerationen und länger dauernde Autolyse. Das Material wird durch kürzere oder längere Zeit unter antiseptischem Zusatz bei Bruttemperatur gehalten. Die hierbei nach wenigen Stunden einsetzende, durch H'-Ionen geförderte, durch OH'-Ionen gehemmte und die Salzkonzentration beeinflußte 5) Autolyse zerstört zunächst die Zellen (die Kerne zerfallen) und hydrolysiert schließlich auch die Eiweißkörper. Das Verfahren kann daher nur zur Gewinnung von Fermenten oder bindenden Gruppen dienen. Zu erwähnen ist aber, daß manche Fermente durch das autolytische wie andere proteolytische Fermente zerstört werden.

¹⁾ W. Wiechowski und H. Wiener, l. c.

²) F. Bottazzi, Glialbuminoidi della milza. Ann. di chim. e d. farm. Vol. 22. p. 488 (1896).

³) O. Hammarsten, Till Kännedomen om Nukleoproteiderum. Upsala Läkareförenings förhandl. Bd. 22 (1893).

J. Wohlgemuth, Über das Nukleoproteid der Leber. Zeitschr. f. physiol. Chemie. Bd. 37. S. 475 (1903).

⁵⁾ H. M. Vernon, The rate of tissue disintegration and its relation to the chemical constitution of Protoplasma. Zeitschr. f. allg. Phys. Bd. 6. S. 393 (1908).

Das Filtrat nach 24stündiger Autolyse von Leber und Niere des Pferdes und Hundes verseifte Ester, hydrolysierte Laktose und Glykogen, die gesamte Potenz ging in das Filtrat der Alkoholfällung¹), die Aldehydase wird durch Autolyse nicht zerstört²), frische Extrakte von Darmschleimhaut enthielten keine Laktase, dagegen war das Filtrat von 24stündigen Mazerationen bei 37° wirksam.^{3, 4}) Oxydatives und nitratreduzierendes Ferment der Haut widerstand einer 8tägigen Autolyse.⁵) Während die Befunde für das oxydative Ferment allgemein bestätigt werden, wird nach anderen Autoren das nitratreduzierende⁶) durch proteolytische Fermente zerstört. Das glykolytische Enzym Stoklasas⁷ wurde durch proteolytische Organfermente vernichtet, ebenso die Harnsäureoxydase.⁸)

- b) Papain. Die Anwendung dieses Fermentes zum Aufschließen von Organzellen stammt von Dastre und Floresco.⁹) Die Auflösung des Organes erfolgt nur langsam. Die Wirkung geht bei neutraler, besser schwach alkalischer Reaktion, vor sich. Ob die Autolyse konkurriert, ist nicht untersucht. Papainverdaute Milz lieferte mit Alkohol wirksame Niederschläge (Lipase, Laktase, Diastase¹), die Rückstände einer solchen Verdauung von Milz und Fibrin lösten sich teilweise in 8% jegem Kalisalpeter. Die Lösung bläute Guajaktinktur.¹⁰) Die Harnsäureoxydase wurde zerstört.⁸)
- $\it e)$ Trypsin. Es erwies sich zur Isolierung der Harnsäureoxydase nicht geeignet, da es dieselbe zerstörte.
- d) Pepsin. Die Pepsinverdauung wurde nur zur Gewinnung bzw. Abspaltung der Organnukleine aus den Nukleoproteiden verwendet. Die Verdauung muß lange Zeit fortgesetzt werden, am besten unter zeitweisem Ersatz des Gelösten durch neues Verdauungsgemisch (0·2°/0 HCl, 0·5°/0 Pepsin) oder Hundemagensaft (durch Scheinfütterung erhalten). Die unverdauten Rückstände sind die Nukleine.

¹⁾ A. J. A. Lambert, l. c.

²) M. Jacoby, Über die fermentative Eiweißspaltung und Ammoniakbildung in der Leber. Zeitschr. f. physiol. Chemie. Bd. 30. S. 149 (1900).

³⁾ H. Bierry und Gmo Salazer, 1. c.

¹⁾ H. Bierry et G. Schäffer, Dialyse et filtration sur sac de Collodion de la lactase et de l'émulsine animales. Compt. rend. soc. biolog. T. 62. p. 723 (1907).

⁵⁾ M. Ch. Schmitt, Existence de ferments oxydants et réducteurs dans la peau. Leurs rapports avec la formation des pigments. Compt. rend. soc. biolog. T. 56, p. 678 (1904).

⁶) E. Abelous et E. Gérard, Sur la présence, dans l'organisme animal, d'un ferment soluble réduisant les nitrates. Compt. rend. T. 129. p. 56, 164, 1023 und T. 130. p. 420 (1900).

⁷⁾ J. Stoklasa und F. Cerný, l. c.

⁸⁾ W. Wiechowski und H. Wiener, 1. c.

⁹⁾ Dastre et Floresco, Méthode de la digestion papaïnique etc. Compt. rend. soc. biolog. T. 50. p. 20 (1898).

¹⁰⁾ J. E. Abelous et G. Biarnés, Sur l'existence chez les mammifères de globulines possédant les propriétés des ferments solubles oxydants. Compt. rend. soc. biolog. T. 49. p. 576 (1897).

e) Salzlösungen. Starke Salzlösungen bringen, wie man sich unter dem Mikroskop überzeugen kann, die Zellkerne zum Zerfall. Die Wirkung nähert sich der durch Laugen gesetzten, wie die konzentrierter Salzlösungen auf lebendes Gewebe. Die neutralen Salze der Alkali- und Erdalkalimetalle verhalten sich den Organen gegenüber in starker Lösung entweder lösend oder fällend, manche vielleicht auch indifferent, manche (z. B. Kochsalz) gleichzeitig lösend und fällend. Systematisch sind diese Verhältnisse nicht studiert. Einiges nur ist bekannt: 10% ige und stärkere Kochsalzlösung wirkt lösend, während Fraktionen vom Globulincharakter durch Sättigen mit NaCl ausgeflockt werden können. Ammonchlorid wirkt sehr stark lösend, Ammonsulfat schon bei relativ niedrigen Konzentrationen fällend. Na-Acetat löst oder ist indifferent, Kaliumacetat fällt. Natriumsulfat scheint indifferent zu sein. Kaliumnitrat wirkt lösend. ebenso Magnesiumsulfat, welch letzteres aber auch Globuline fällt. Die fällenden Salze sind im nächsten Abschnitt behandelt. Von den lösenden wurden meist starke Kochsalzlösungen $(5-10-30^{\circ})$, starke Ka-Nitrat- oder Magnesiumsulfatlösung (5 -10%), sehr oft auch 10-20% ige Ammonchloridlösung benutzt. Die Wirkung des Ammonchlorids entspricht wie auch die des zu derartigen Zwecken noch nicht verwendeten Harnstoffes einer Albuminatbildung (Spiro, Ramsden¹). Die Aufschließung durch die Salze bedingt es, daß mit indifferenten Lösungen erschöpfte Organe, insbesondere an konzentriertere Kochsalz- und Ammonchloridlösungen noch Eiweiß abgeben. Es bleibt zu untersuchen, ob die so erhaltenen Proteine unveränderte Zellbestandteile darstellen.

Aus Kalbshirn wurde mit $4^{\circ}/_{0}$ Ammonchlorid säurefällbares Nukleoproteid extrahiert.²) Slowzow extrahierte aus Leber mit Wasser Albumine, dann mit $10^{\circ}/_{0}$ Kochsalz und $8^{\circ}/_{0}$ Ammonchlorid Globuline.³) Der mit $15^{\circ}/_{0}$ Ammonchlorid aus Muskel hergestellte Extrakt gab bei der Dialyse eine gelatinöse Masse.⁴) $5^{\circ}/_{0}$ ige Kochsalzlösung extrahierte aus Organen das säurefällbare "Gewebsfibrinogen".⁵) Das mit $10-20^{\circ}/_{0}$ Ammonchlorid hergestellte Muskelextrakt läßt beim Eingießen in Wasser Myosin ausfallen.⁶) Haliburton⁷) extrahierte mit $5^{\circ}/_{0}$ Magnesium sulfuricum, Globulin und "Nukleoalbumin" aus Niere und Leber. Er verrieb auch die frischen Organe mit

¹) K. Spiro, Über die Beeinflussung der Eiweißkoagulation durch N-haltige Substanzen. Zeitschr. f. physiol. Chem. Bd. **30**. S. 182 (1900). — Ramsden, Some new properties of urin. Journ. of physiol. Vol. **28**. p. 23—26 (1902).

²) P. A. Levene, On the nucleoproteid of the brain (Cerebronucleoproteid). Arch. of Neurolog. and Psychopath. Vol. 2. p. 3 (1899).

 ³⁾ B. Slowzow, Über die Bindung des Arseniks durch das Lebergewebe bei chronischer Arsenvergiftung. Wratsch. 1900, Nr. 44; zit. n. Malys Jhrb. Bd. 30. S. 433 (1901).
 4) W. Kühne und R. H. Chittenden, Myosin und Myosinosen. Zeitschr. f. Biologie. Bd. 25. S. 358 (1889).

⁵⁾ A. E. Wright, 1, c.

⁶⁾ Danilewsky, Über das Myosin. Zeitschr. f. physiol. Chem. Bd. 5. S. 158.

⁷⁾ W. D. Halliburton, The proteids of kidney and liver cells. Arch. de physiol. T. 13. p. 806 (1893) und Über den chemischen Charakter des Nukleoalbumins. Ebenda. p. 11—13.

dem gleichen Gewicht Kochsalz (Mg- oder Na-Sulfat), das hierdurch erzielte schleimige Gemisch wurde in Wasser gegossen, es erfolgt Fällung, die sich zum Teil niederschlägt, zum Teil an der Oberfläche schwimmt. Zur Gewinnung des Muskelstromas wurden Muskeln mit $10-20^{\circ}/_{0}$ Ammonchlorid erschöpft. Nachdem Wasser aus Fleisch $12^{\circ}/_{0}$ gelöst hatte, brachte $10^{\circ}/_{0}$ Na Cl noch weitere $6^{\circ}/_{0}$ Eiweiß in Lösung. Faxl fand im Kochsalz- $(1^{\circ}/_{0})$ extrakt nur einen kleinen Teil der löslichen Muskeleiweiße. $10^{\circ}/_{0}$ Ammonsulfat löste mehr, $10^{\circ}/_{0}$ Salmiak am meisten. — Die Harnsäureoxydase und das autolytische Ferment werden durch starke Salzlösungen gehemmt.

f) Alkalien. Sie extrahieren noch mehr als konzentrierte Salzlösungen und werden meist nach Erschöpfung des Materials mit diesem angewendet. Stärkere Laugen lösen insbesondere bei Salzabwesenheit die Organe überhaupt völlig auf. Die Lösung erfolgt natürlich unter Denaturierung. Selbst die schwächsten Konzentrationen bewirken Alkalialbuminatbildung (so Dialyse gegen 0.05% Soda, wie uns Versuche gezeigt haben). Durch solche schwache Konzentrationen lassen sich insbesondere durch Dialyse sonst unlösliche Fermente ohne Schädigung in Lösung bringen (z. B. die Harnsäureoxydase⁴). Stärkere Alkalikonzentrationen, insbesondere von Laugen, zerstören hingegen die meisten Fermente: die Katalase⁵) wird durch Alkali gehemmt, ebenso das autolytische Enzym und die Salizylaldehydase⁶), die Harnsäureoxydase.⁴)

Zur Darstellung der Nukleinsäuren wurden die frischen Gewebe mit 5% Na OH oder 8% NH3 1—2 Stunden ausgezogen. Aus Muskeln wurde mit schwach alkalischem Wasser essigsäurefällbares Nukleoproteid extrahiert. Nach Wasserextraktion ging aus Nierengewebe in 0.5—1% Na OH ein "Nukleoalbumin" in Lösung. Nachdem mit Kochsalzlösung und Essigsäure extrahiert worden war, wurden aus Muskel und anderen Organen mit 0.5% Na OH "Stromine" ausgezogen"), desgleichen aus mit 20% Na Cl erschöpften Muskeln mit 0.1—0.2% Na OH. 10) Von Muskeleiweiß ging nach vorläufiger Behandlung mit Wasser. Kochsalzlösung und Salzsäure noch

¹) J. F. v. Holmgreen, Studier öfver muskelstromats natur och quantitativa bestämmande jemte närlinggande frågor. Upsala, Läkareförnings förhandlingar. Bd. 28 (1893).

²) H. S. Grindley, Die N-haltigen Bestandteile des Fleisches. Journ. Amer. chem. Soc. Vol. 26. p. 1086 (1904); Chem. Zentralbl. Bd. 2. S. 1335 (1904).

³⁾ P. Saxl, Über die Mengenverhältnisse der Muskeleiweißkörper unter physiologischen und pathologischen Bedingungen. Beiträge z. Physiol. und Pathol. Bd. 9. S. 1 (1907).

⁴⁾ W. Wiechowski und H. Wiener, l. c.

⁵⁾ E. Lepinois, 1. c.

⁶⁾ M. Jacoby, l. c.

¹) P. A. Levene, Über die Darstellung von Nukleinsäuren. Journ. Amer. chem. Soc. Vol. 22. p. 329 (1902); Chem. Zentralbl. Bd. 2. S. 386 (1902).

⁸⁾ C. Peckelharing, Über das Vorhandensein eines Nukleoproteids in den Muskeln. Zeitschr. f. physiol. Chem. Bd. 22. S. 245.

⁹⁾ W. Krawtschenko, l. c.

¹⁰⁾ J. F. v. Holmgreen, l. c.

2·88% Eiweißkörper in alkalische Lösung.¹) 0·2% Na OH löste aus mit NH, Cl extrahierter Gehirnrinde "Neurostromin".²)

g) Säuren. Verwendet wurden zur Extraktion von Eiweißkörpern und Fermenten meist schwache Essig- oder Salzsäure. Starke Mineralsäuren fällen (auch bei Salzabwesenheit), Essigsäure dagegen, auch starke, fällt nur bei Salzanwesenheit, in salzfreien Lösungen schlägt sie nichts nieder, im Gegenteil, sie löst unter diesen Bedingungen. Der Rückstand nach der Wasserdialyse ist glatt löslich in Essigsäure, ebenso das gesamte Organ nach Dialyse gegen 0·05°/₀ Karbonat.⁷) Über die Fällungen der Organextrakte mit Essigsäure siehe das nächste Kapitel.

Die meisten Fermente werden durch Säuren, auch schwache, gehemmt oder zerstört: die Katalase³), die Harnsäureoxydase⁴) und Salizylaldehydase⁵). Die Arginase⁶) war nur unvollständig durch verdünnte Essigsäure extrahierbar. Nach Extraktion von Muskeln mit Salzlösung wurden mit O·5 - O·75⁰/₀ Essigsäure "Globuline"⁵, ⁰) und mit O·15°/₀ H Cl noch 2·3°/₀ Eiweiß extrahiert.¹⁰)

So gelingt es schließlich, die Organe sukzessive auch unter Vermeidung ganz starker Laugen bis auf geringe, als Stromine (bzw. Neurokeratin) bezeichnete Reste, unter denen sich wohl auch Teile der Bindesubstanzen, Gefäße und Ausführungsgänge befinden mögen, in Lösung zu bringen. Wie aus den mitgeteilten Erfahrungen aber hervorgeht, fehlt es noch an systematischen Untersuchungen, welche Bedeutung die verschiedenen Extraktionsmethoden haben. d. h. welche Anteile der Organe in die einzelnen Lösungsmittel übergehen. Ferner ergibt sich die große Labilität der Organeiweiße sowie der Fermente, welche es eigentlich erfordert, nur die im vorstehenden als völlig unschuldig befundenen Mittel zu verwenden. Daß hierbei ein Mittel oft nicht für Fermente und Eiweiß gleichzeitig geeignet ist, zeigt das Verhalten der Organe gegen 0.05% Sodalösung; die Eiweißkörper werden denaturiert, die Harnsäureoxydase dagegen voll erhalten und gelöst.

G. Fraktionierung der Extrakte, Preßsäfte oder Kollaturen.

Die Fraktionierung bezweckt die möglichste Isolierung der Fermente von den Eiweißkörpern und die Trennung dieser voneinander, sie wurde

¹⁾ H. S. Grindley, l. c.

²) A. N. Schkarin, Über den Gehalt der Gehirnrinde an verschiedenen Eiweiß-körpern etc. Ing.-Diss. St. Petersburg 1902 (russisch). Zitiert nach Malys Jahrb. Bd. 32. S. 529 (1903).

³⁾ W. Wiechowski, l. c.

⁴⁾ E. Lepinois, 1. c.

⁵⁾ W. Wiechowski und H. Wiener, 1. c.

⁶⁾ M. Jacoby, 1. c.

⁷⁾ A. Kossel und H. D. Dakin, 1. c.

⁸⁾ W. Krawtschenko, 1. c.

⁹⁾ M. I/jin, Die organisierten Eiweißkörper der Muskelfaser. Ing.-Diss. Petersburg 1900. (Bei Danilewsky) (russisch). Zitiert nach Malys Jahrb. Bd. 30. S. 471 (1901).

¹⁰⁾ H. S. Grindley, l. c.

überwiegend durch Erzeugung von Niederschlägen versucht (Salzfällung, Dialyse), dann durch Koagulation der Eiweißkörper mit Alkohol, durch Abverdauen derselben und durch Adsorption, wozu neuerdings auch die Kolloidfällung gezählt werden muß.

1. Salzfällung. z) Ammonsulfat. Orgelmeister¹) teilte indifferente Organfiltrate durch Ammonsulfat in 3 Fraktionen, deren Mengenverhältnis er in der Norm und bei Entzündung bestimmte. Aus Thyreoideaextrakt wurde durch Halbsättigung Thyreoglobulin, durch darauffolgende Ganzsättigung ein Nukleoproteid erhalten.²) Alle Fermente werden gefällt. Das autolytische Ferment fällt bei Sättigung³), die Aldehydase bei ⁰/10-Sättigung³), die Fermente des Nukleinstoffwechsels bei ²/3-Sättigung⁴). die Nuklease bei Sättigung⁵), auch die Arginase⁰), die "Antikatalase"γ) und die Harnsäureoxydase werden durch Ammonsulfat gefällt, letztere aber meist gleichzeitig zerstört.8) — Durch Wasserdialyse lassen sich die Fällungen nicht immer völlig in Lösung bringen. Krankour⁰) hat die Ammonsulfatfällung in Wasseraufgüssen zu einer allgemeinen Methode der Organfermentdarstellung verwendet (siehe unter ζ) Alkohol).

 β) Calciumchlorid (gewöhnlich in $10^{\circ}/_{\circ}$ iger Lösung) fällt aus Wasserextrakten der Thymus Nukleohiston $^{1\circ}$), aus Zentrifugaten nach Sodadialyse die Harnsäureoxydase. $^{1\circ}$) Letzterer Niederschlag löst sich in Soda.

 γ) Kaliumacetat (in Wasser zu gleichen Teilen) fällt einfache Wasserextrakte (Plasmen) in gleichem Volumen noch nicht, 0.05% jege Soda dialysierte und zentrifugierte oder filtrierte Organextrakte oft schon bei Zusatz von $^{1}/_{20}$ — $^{1}/_{25}$ Volumen; Fällungen bis $^{1}/_{2}$ — $^{1}/_{10}$ Volumen enthalten die Harnsäureoxydase. 11) Die Fällungen sind durch 0.05% jege Sodadialyse völlig in Lösung zu bringen.

δ) Uranylacetat (allgemeine Methode zum Nachweise intrazellulärer Fermente von Jacoby ¹²)-Rosell. ¹³) "Die Organe werden mit der Fleischhack-

¹⁾ G. Orgelmeister, Änderung des Eiweißbestandes der Niere durch Entzündung. Zeitschr. f. experim. Pathol. u. Therap. Bd. 3. S. 219 (1906).

²⁾ W. Huiskamp, 1. c. — A. Ostwald, 1. c.

³⁾ M. Jacoby, 1. c.

⁴⁾ A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels. Zeitschr. f. physiol. Chem. Bd. 43. S. 228 (1904/5).

⁵⁾ F. Sachs, 1. c.

⁶⁾ A. Kossel und H. D. Dakin, 1, c.

⁷⁾ F. Battelli et L. Stern, L'anticatalase dans les différents tissus animaux et la philocatalase et l'anticatalase dans les tissus animaux. Compt. rend. soc. Biolog. T. 58. p. 235 et 758 (1905).

⁸⁾ W. Wiechowski und H. Wiener, l. c.

⁹⁾ N. Krawkow, l. c.

¹⁰⁾ J. Bang, 1. c.

¹¹⁾ W. Wiechowski und H. Wiener, l. c.

¹²) M. Jacoby, Über das Aldehyde oxydierende Ferment der Leber und Nebenniere. Zeitschr. f. physiol. Chemie. Bd. 30. S. 135 (1900).

¹³) M. Rosell, Über Nachweis und Verbreitung intrazellularer Fermente. In.-Diss. Straßburg 1901, Jos. Singer. 25 S.

maschine zerkleinert, mit Quarzsand verrieben, mit ca. 1/4 ihres Volumens Wasser angesetzt und reichlich zwei Stunden auf der Schüttelmaschine geschüttelt, dann die Masse koliert. Man erhält eine trübe Flüssigkeit, welche, ohne filtriert zu werden, mit einer gesättigten Lösung von Uranylacetat versetzt wird. Während des Zusatzes wird sie durch Zufügen einer Mischung von Natriumkarbonat und Natriumphosphat alkalisch gehalten. Das Natriumphosphat dient dazu, die schließlich resultierende Fermentlösung frei von Uranylacetat zu gewinnen; das Karbonat verstärkt dessen geringen Alkaleszenzgrad und läßt dadurch den Zusatz zu großer Flüssigkeitsmengen vermeiden. Man fügt so lange Uranylacetat hinzu, bis sich grobe Flocken bilden, welche in kürzester Zeit sich abzusetzen beginnen, dekantiert und filtriert. Der Rückstand bleibt, nachdem er mit 0.2% iger Sodalösung fein verrieben ist, mindestens 12 Stunden stehen, worauf er filtriert wird. So gewinnt man eine klare, eiweißarme Flüssigkeit, in welcher die Fermente in wirksamer Form enthalten sind. Wünscht man reinere Präparate, so kann man Fällen und Ausziehen wiederholen. Zweckmäßigerweise setzt man behufs Konservierung erst jetzt Toluol hinzu, da dessen Anwesenheit sonst den Verlauf der einzelnen Operationen zu sehr verlangsamt. Schnelligkeit des Arbeitens ist nämlich wegen der auch bei Zusatz antiseptischer Mittel drohenden Fäulnis zu empfehlen. Ferner wird die Fermentausbeute desto geringer, je später die Enzyme aus dem Uranylniederschlage ausgezogen werden, wie schon Jacoby in seiner Arbeit betont." Aufschließung des Materials durch mehrtägige Digestion mit Toluolwasser bei 40° ergab keine besseren Resultate. Mit dieser Methode wurden folgende Resultate erhalten. Jacoby¹) gewann Aldehydase aus Leber und Nebenniere. Glässner²) stellte die Profermente der Magenschleimhaut dar, Schittenhelm³) gewann (allerdings nicht in allen Versuchen) urikolytisch wirksame Fermentlösungen, Rosell stellt seine Ergebnisse in der folgenden Tabelle zusammen. Diastase, Invertase. Guajakoxydase, Lab und Steapsin konnte er nie mit Sicherheit nachweisen. Am geeignetsten erwies sich die Methode zum Nachweise der Aldehydase, der proteolytischen Fermente und der Katalase. Nach den Erfahrungen Jacobys und Glässners gelingt es mit der Uranvlacetatmethode, die Fermente eiweißfrei darzustellen.

"Mit Ausnahme der vom Pferde hergenommenen Muskeln stammten alle Organe vom Rind." (Ob die Organe blutfrei gespült waren, ist nicht angegeben.)

ε) Säuren, siehe oben Säuren als Extraktionsmittel. Dem dort Gesagten ist nur hinzuzufügen, daß 0·2°/₀ige Essigsäure in 0·8°/₀iger Kochsalzlösung die homologen Kochsalzextrakte sämtlicher Organe fällt (Pohl). Diese Fällung

¹) M. Jacoby, Über das Aldehyde oxydierende Ferment der Leber und Nebennieren. Zeitschr. f. physiol, Chemie. Bd. **30**. S. 135 (1900).

²) K. Glässner, Über die Vorstufen der Magenfermente. Beitr. z. chem. Physiol. u. Pathol. Bd. 1. S. 1 (1902).

 $^{^{3})}$ A. Schittenhelm, Über das urikolytische Ferment. Zeitschr. f. physiol. Chemie. Bd. 45. S. 161.

w.v					Aldehydase	Indophenol- oxydase	Wasserstoff- superoxyd- forment	Tryptisches Ferment	Peptisches Ferment
Pankreas .					_	+	+	+	
Speicheldrüse					+	+	+	+	
Lymphdrüse					+		+	+	
Milz					+	+	+	+	+
Knochen						+	+	+	+
Thymus					+	+	+	+	
Milchdrüse .					_		+	+	
Muskel					_		+		_
Lunge					+		- i-		+
Gehirn					+		÷		
Nebenniere					+		+	+	
Hoden					+		+	+	
Niere		٠			+	_	+	-	

ist jedoch zur Fermentgewinnung nur ausnahmsweise zu gebrauchen, weil die meisten Fermente selbst durch diese schwache Säurekonzentration geschädigt und zerstört werden (siehe oben S. 312). Die Arginase¹) und die sogenannte "Antikatalase"²) wurden übrigens durch Essigsäure nicht gefällt. Dagegen ist die Essigsäure zum Ausfällen der Nukleoproteide aus Extrakten vielfach benutzt worden: Aus dem Sodadekokt des Pankreas³), aus dem Kochsalzextrakt der Plazenta⁴), aus dem Salmiakextrakt des Gehirns⁵), dem Alkaliextrakt der Muskeln⁶), dem Dekokt des Milzsaftes⁷), dem Dekokt des Pankreas³), dem Wasser- oder Kochsalzextrakt der Organe überhaupt ("Gewebsfibrinogen"^{9,10}).

ζ) Äthylalkohol. Preßsäfte oder Extrakte wurden sehr häufig zwecks Entfernung koagulabler Eiweißkörper aus Fermentlösungen mit Alkohol und meist auch unter einem mit Äther gefällt, die Fällung abgenutscht, mit Äther gewaschen und bei niedriger Temperatur getrocknet. Extrakte solcher Pulver enthalten je nach der Einwirkungszeit des Alkohols noch mehr weniger Eiweiß, aber viel weniger als die Ausgangsextrakte. Von den Fermenten wurde allgemein angenommen, daß sie hierbei ungeschmälert in die Extrakte übergehen, was sozusagen mit als Charakteristikum der Fermente angesehen wurde. Die Prozedur läßt sich, allerdings unter starken Verlusten an Ferment, wiederholen und so immer Eiweiß entfernen. Wittich

¹⁾ A. Kossel und H. D. Dakin, l. c.

²) F. Battelli et L. Stern, l. e.

s) T. A. Levene und J. B. Stookey, Notiz über das Pankreasnukleoproteid. Zeitschr. f. physiol. Chem. Bd. 41. S. 404 (1904).

⁴⁾ H. Cociti, 1. c.

⁵⁾ P. A. Levene, 1. c.

⁶⁾ C. Peckelharing, 1. c.

⁷⁾ F. Bottazzi, 1. c.

⁸⁾ O. Hammarsten, 1. c.

⁹⁾ A. E. Wright, 1. c.

¹⁰⁾ W. D. Halliburton, l. c.

stellte Fermentlösungen allgemein dar durch Alkoholfällung des Glyzerinextraktes und Ausziehen der getrockneten Fällung mit Wasser. 1) Krawkow 2) fällt Wasseraufgüsse mit Ammoniumsulfat, bringt die Fällung für 1 bis 11/2 Tage unter absolutem Alkohol, trocknet bei 30° und extrahiert mit Wasser, Die Extrakte enthielten kein Eiweiß, verzuckerten Stärke; in derselben Weise wurde Nuklease gewonnen.3) Aus Hundepankreas ließ sich so Trypsin gewinnen. Aus Papain verdauter Milz wurden mit Alkohol fermentativ wirksame Niederschläge erzielt.4) Aus Preßsäften von Lymphdrüsen, Leber, Milz wurde durch Alkohol Katalase gefällt. 5) Stoklasas glykolytisches Ferment wird aus den Preßsäften mit Alkohol und Äther gefällt. 6, 7) Die Arginase wird ebenfalls durch Alkohol gefällt. 8) Battelli und Stern^{9,10}) fällten Leberkollaturen mit 2 Volumen Alkohol, der Niederschlag wurde mit 3 Volumen Wasser geschüttelt und filtriert, das Filtrat wieder gefällt. Die Fällung, abgepreßt und getrocknet, zeigt mächtige Katalasewirkung. Zur Kritik der Alkoholanwendung vgl. auch das bei der Herstellung von Alkoholmaterial Gesagte (S. 299).

η) Adsorbentien. Fermente, aber auch Eiweißkörper werden durch mannigfache Stoffe adsorbiert und können dadurch aus Lösungen abgeschieden werden. Diese Stoffe haben meist Kolloidcharakter und es ist wahrscheinlich, gemacht 11), daß das Wesentliche hierbei ein zwischen entgegengesetzt geladenen Kolloiden stattfindender Vorgang ist, soweit es sich nicht um mechanische Adsorption handelt. Zur Isolierung elektropositiver Fermente wären daher die Eiweißkörper gleichfalls durch ein elektropositives Kolloid, welches jene nicht fällen dürfte, auszuflocken. Die Kolloidfällung als Enteiweißungsmittel wurde von Michaelis und Rona 12) studiert und eingeführt; für die Darstellung wirksamer Organextrakte wurde sie noch nicht ver-

¹) r. Wittich, Über eine neue Methode zur Darstellung künstlicher Verdauungsflüssigkeiten. Pflügers Archiv. Bd. 2. S. 193 (1869).

²⁾ N. Krawkow, l. c.

³⁾ F. Sachs, 1. c.

⁴⁾ A. J. A. Lambert, 1. c.

⁵⁾ W. Demme, 1. c.

⁶⁾ J. Stoklasa und F. Czerny, l. c.

⁷⁾ J. Feinschmidt, 1. c.

⁸⁾ A. Kossel und H. D. Dakin, 1. c.

⁹) F. Battelli et L. Stern, Préparation de la catalase animale. Compt. rend. soc. biol. T. 57. p. 374 (1904).

¹⁰⁾ J. E. Abelous, l. c.

¹¹) L. Michaelis, Elektrische Überführung von Fermenten. Biochem. Zeitschr. Bd. 16. S. 81 (1909); vgl. auch L. Michaelis und P. Rona, Untersuchungen über Adsorption. Biochemische Zeitschr. Bd. 15. S. 196 (1908). — L. Michaelis, Die Adsorptionsaffinitäten des Hefe-invertins. Ebenda. Bd. 7. S. 488 (1908).

¹²) L. Michaelis und P. Rona, Eine Methode zur Entfernung von Kolloiden aus ihren Lösungen, insbesondere zur Enteiweißung von Blutserum. Biochem. Zeitschr. Bd. 2. S. 219 (1907). — Dieselben, Beitrag zur Frage nach der kolloidalen Natur von Albumoselösungen. Ebenda. Bd. 3. S. 108 (1908) und Untersuchungen über den Blutzucker. Ebenda. Bd. 7. S. 329 (1908).

wendet. Dagegen wurde von Brücke¹) bereits die Beobachtung zur Gewinnung wirksamer Lösungen benutzt, daß Fermente häufig durch Erzeugung indifferenter Niederschlige (Kalk, Magnesia, Cholesterin) mit "niedergerissen" werden. Von anderen ist zu nennen: Tierkohle adsorbierte aus den verschiedensten wässerigen Organextrakten die Eiweißstoffe, ohne die Katalase zu adsorbieren.²) Kieselgur adsorbiert Eiweiß, aber hielt auch die Harnsäureoxydase zurück.³) Auch die Fixierung gelöster Fermente an Fibrinflocken ist hier anzuführen.⁴) Fibrin fixierte aus Lösungen Pepsin. Trypsin, Diastase, glykolytisches Enzym u. a., die Fermente wurden dann wieder an Wasser, weniger gut an Glyzerin abgegeben.

θ) Dialyse gegen destilliertes Wasser. Ähnlich wie durch Wasserdialyse das Euglobulin des Serums in eine feste Phase übergeht, lassen sich aus Organextrakten auf diese Weise Eiweißkörper abscheiden. Wie sich im einzelnen die verschiedenen Extrakte verhalten, ist nur zum Teil bekannt und auch über Fermentgewinnung auf diesem Wege ist wenig berichtet. Daß der Salmiakextrakt der Muskeln beim Dialysieren gelatinös wird, ist bereits erwähnt⁵), ebenso daß die mit Salmiak in Lösung⁶), oder Kochsalz in Substanz⁷) verriebenen Muskeln bzw. andere Organe beim Eingießen in Wasser flockige Abscheidungen geben. Unveröffentlichte Versuche haben mir auch gezeigt, daß die nach Wasserextraktion durch konzentrierte Kochsalzlösung gelösten Organeiweißkörper bei der Dialyse so gut wie vollständig ausflocken. Fitrate von Darmschleimhautmazeration ließen bei der Dialyse unter Druck einen voluminösen Niederschlag fallen, die klare Flüssigkeit enthielt die Laktase.⁸)

H. Konservierung des Materiales während der Arbeit.

(Antiseptika, Reaktion, Temperatur, schädigende Stoffe.)

Die übergroße Labilität der Organe und deren Extrakte erfordert während der Arbeit und zur Erhaltung etwa gewonnener Produkte die dauernde Einhaltung von Maßnahmen, welche die bakterielle ⁹) und "spontane" Zersetzung des Materiales verhindern und die Fernhaltung oder Entfernung

 $^{^4)}$ $Br\"{u}cke,$ Vorlesung über Physiol. Bd. 1. S. 44 (1874). Vgl. auch $\mathit{Maly},$ $\mathit{Pfl\"{u}gers}$ Arch. Bd. 9. S. 592 (1874).

²⁾ J. E. Abelous, l. c.

³⁾ W. Wiechowski und H. Wiener, 1. c.

⁴⁾ Stanislav de Szumowski, Über die Fixierung von Enzymen durch das Fibrin. Arch. de Physiol. T. 30. p. 160 (1898); zit. nach Malys Jahrb. Bd. 29. S. 724 (1899).

⁵⁾ W. Kühne und R. H. Chittenden, 1, c.

⁶⁾ Danilewsky, 1. c.

⁷⁾ W. D. Halliburton, 1. c.

⁸⁾ H. Bierry et G. Schäffer, 1. c.

⁹⁾ Neuestens teilt Salkowski (Zeitschr. f. physiol. Chem. Bd. 61. S. 124 [1909]) mit, daß das Hefe-Invertin der Fäulnis völlig widersteht. Das Verhalten der Organfermente bei der Fäulnis ist nicht untersucht; sollten sie sich dem Invertin analog verhalten, so wäre hierdurch ein Weg zu ihrer Trennung von den Organproteinen gewiesen.

aller als schädlich erkannter Stoffe. Außerdem gilt es aber immer zu verhindern, daß eine Fermentleistung durch Bakterientätigkeit vergetäuscht werde.

1. Antiseptika. Steriles Arbeiten mit den einen vorzüglichen Nährboden, namentlich für Saprophyten, darstellenden Organen, dürfte nur in Ausnahmefällen, namentlich aber nur mit geringen Substanzmengen möglich sein (siehe hierzu die S. 296 gemachte Bemerkung). Man kann daher sagen, daß Untersuchungen, denen die vorstehend behandelten Methoden dienen, erst durch die Entdeckung des Chloroformwassers als unschädlichen Verhinderungsmittels der Fäulnis der Organe durch Salkowski¹) ermöglicht wurden, wie denn tatsächlich Fermentstudien an Organen in ausgedehnterem Maße erst seit daher datieren. Außer dem Chloroform, welches bis zur Sättigung den Extraktions- oder Verdünnungsmitteln zuzusetzen ist, werden namentlich noch Toluol zu mehreren Prozenten, Natriumfluorid zu 0·2—4% und Thymol zu etwa O 1% verwendet. Wässerige Thymollösungen bis etwa O 1% lassen sich am bequemsten so herstellen, daß nach Zusatz der berechneten Menge einer 50% igen chloroformigen Lösung in halbvollen Flaschen eine Zeitlang heftig geschüttelt und dann eventuell aufgefüllt wird. Im Lichte werden die Lösungen allmählich gelblich und trübe, doch findet bei derartiger Herstellung keine Abscheidung von Thymol statt. Neuestens wird eine 3º/eige Lösung von Jodoform in Aceton empfohlen, die unschädlich und sehr antiseptisch sein soll.2) In Bezug auf sichere Sterilisation ist das Toluol oder Thymol wohl am wirksamsten, Chloroform und Natriumfluorid hindern bei niedrigen Konzentrationen und längeren Versuchen die Fäulnis nicht immer. Es ist daher zweckmäßig, vom Chloroform einen Überschuß (d. h. mehr als gelöst wurde) zuzufügen. Das Fluorid wird jetzt nicht mehr so ausgedehnt verwendet, es wirkt nur in 2-40/giger Konzentration sicher. In Bezug auf die Unschädlichkeit Fermenten und Eiweißkörpern gegenüber verhalten sich diese antiseptischen Zusätze und die verschiedenen Fermente nicht gleichartig. 1% Fluornatriumlösung beeinflußte etwas die Autolyse³), Chloroform hemmte in großem Überschuß die Salizylaldehydase^{4, 5}), Fluornatrium zerstörte die Katalase⁶) und hemmt die Lipase⁷), das Thymol und Fluornatrium erwies sich als nicht ganz gleichgültig für die Harnsäureoxydase.8) Das glykolytische Enzym ist für alle Antiseptika

E. Salkowski, Über Fermentprozesse in den Geweben. Arch. f. Physiol. (Du Bois-Reymond). S. 554 (1890). (Verh. d. physiol. Ges. z. Berlin.)

²) A. J. J. Vanderelde, Über die Anwendung antiseptischer Mittel bei Untersuchung über Enzyme, Biochem, Zeitschr. Bd. 3. S. 315 (1907).

³⁾ C. Biondi, Beiträge zur Lehre der fermentativen Prozesse in den Organen. Virchous Arch. Bd. 144. S. 373 (1896).

⁴⁾ M. Jacoby, 1. c.

⁵⁾ H. Schwiening, Uber fermentative Prozesse in den Organen. Virchows Arch. Bd. 136, S. 444 (1894).

⁶⁾ F. Battelli et L. Stern, l. c.

⁷) A. S. Loevenhart und G. Peirce, Der Hemmungswert des Fluornatriums auf die Wirkung der Lipase. Journ. of biolog. chem. Bd. 2. S. 397 (1907); Chem. Zentralbl. Bd. 1. S. 1209 (1907).

⁸⁾ W. Wiechowski und H. Wiener, l. c.

empfindlich.¹) Toluol hemmt die Zymase nicht.) Außerdem ist zu bemerken, daß Chloroform eiweißfällend (und damit fermentfällend) wirken kann und daß die wasserunlöslichen Antiseptika, insbesondere das Toluol, durch ihre Emulgierung in dem lipoidhaltigen Material Filtrationen ungemein erschweren, ja ganz verhindern können, ein Nachteil, der beim Arbeiten mit entfettetem Material wegfällt (siehe oben S. 289).

Toluol und Chloroform sind immer durch Schütteln gründlich mit dem Material zu mischen. Bei der Dialyse verhindert reichlich innen und außerhalb des Schlauches aufgeschüttetes Toluol jegliche Zersetzung.

- 2. Die Reaktion. Für die meisten Organfermente ist neutrale oder schwach alkalische (0·05—0·10/0 Soda) Reaktion notwendig. Durch Säuren selbst in schwächster Konzentration werden alle Fermente bis auf das autolytische, für welches eine geringe H-Ionenkonzentration optimal ist, zerstört. Höhere Alkali-, insbesondere Laugenkonzentrationen zerstören ebenfalls alle Organfermente in kurzer Zeit. Säuren fällen übrigens die indifferenten Organextrakte. Die Spontankoagulation derselben kann durch wenig Alkali gehindert werden, doch wirkt dieses wieder leicht albuminatbildend (siehe oben S. 311).
- 3. Temperatur. Höhere Temperaturen über 50° zerstören die Organfermente; alle Schädlichkeiten, insbesondere auch die bakterielle Zersetzung und die Antiseptika wirken bei Bruttemperatur schneller; indifferente Organextrakte koagulieren, die Koagula reißen Fermente nieder. Viele Fermente sind gegen das bei Bruttemperatur wirkende autolytische Ferment nicht widerstandsfähig. Die Aufbewahrung des Materiales hat also stets in der Kälte im Eiskasten, eventuell in gefrorenem Zustande im Apparat "Frigo" zu erfolgen.
 - 4. Schädigende Stoffe.
- a) In den Organen gelegene. Insbesondere das allenthalben vorhandene autolytische Ferment ist befähigt, nicht nur die Organeiweiße, sondern auch viele Organfermente zu zerstören (siehe oben Autolyse, S. 308, 9). Aber es können auch kochbeständige, alkohol- und wasserlösliche, nicht näher untersuchte Organbestandteile (Extraktivstoffe) manche Fermente, z. B. die Harnsäureoxydase, hemmen und zerstören.³) Das Blutserum hemmt die Autolyse. Der Einfluß der Autolyse kann durch Alkalizusatz (0·05 bis 0·1° o Soda) aufgehoben werden. Die hemmenden Extraktivstoffe können nach Methode D oder durch Dialyse beseitigt werden.
- b) Von außen eingebrachte Stoffe. Hierzu sind auch die bakterielle Infektion und die zu ihrer Verhütung angewendeten Antiseptika zu rechnen. Die Auswahl der letzteren hat daher für jede Fermentleistung besonders zu geschehen. Uns hat sich das Toluol für alle Zwecke als das indifferenteste ergeben. Für Eiweißkörper sind alle bis auf das Chloroform gleich-

¹⁾ J. Feinschmidt, 1. c.

²⁾ E. Buchner, l. c.

³⁾ W. Wiechowski und H. Wiener, l. c.

Außerdem sind viele zur Fraktionierung der Extrakte benutzten gültig. Stoffe Schädlinge von Fermenten und Organeiweiß: Salze, Alkalien, Säuren, Alkohol, Harnstoff, Hierüber ist das bei der Fraktionierung Gesagte (S. 312 ff.) nachzusehen.

Im Anschluß hieran sei noch erwähnt, daß nicht nur höhere Konzentrationen sonst indifferenter Salze manche Fermentfunktion zu hemmen imstande sind, sondern daß andrerseits auch absolute Elektrolytfreiheit die Tätigkeit von Fermenten beeinträchtigen kann. Die Dialvse kann so, allerdings reparabel. Fermentleistungen beeinträchtigen, es können aber durch Dialyse auch Fermentaktivatoren spezifischer Natur verloren gehen (siehe Gallensalze für die Lipase 1).

Da sich die Organfermente gegenüber den besprochenen schädigenden Einflüssen durchaus nicht gleichmäßig verhalten, sollte es als Regel gelten, in quantitativen Versuchen jedes Ferment zunächst auf seine Empfindlichkeiten und insbesondere die beabsichtigten Zusätze auf ihre Indifferenz zu prüfen. Derartige Versuche sind allemal mit jenen minimalen Materialmengen anzustellen, welche eben noch ein bestimmtes Ausmaß von Leistung aufweisen, weil nur auf diese Weise geringgradige Schädigungen entdeckt werden können. Hierzu sind die obenerwähnten Organkollaturen, verdünntes gesiebtes Material, welche sich beide bequem mit Pipetten messen lassen, insbesondere aber die haltbaren und wägbaren nach "D" erhaltenen Organpulver geeignet. — Die übrigen Bedingungen solcher Fermentversuche sind optimal zu wählen, also insbesondere die Temperatur und bei Oxydasen die Durchlüftung. Die Art der letzteren ist durchaus nicht gleichgültig: in gleichen Zeiten zersetzten z. B. gleiche Mengen Harnsäureoxydase absteigende Mengen Harnsäure: beim Schütteln mit Luft, beim Durchleiten von Luft, beim bloßen Stehen. Die innigste Mischung mit Luft wird jedenfalls durch dauerndes Schütteln in halbvollen Flaschen erzielt. Auch für andere nicht oxydative Fermente kann das Schütteln von Vorteil sein, wenn das Ferment z.B. in einer unlöslichen, rasch sedimentierenden Organfraktion enthalten ist. Bedeutet der Luftsauerstoff für ein Ferment eine Hemmung, dann kann man mit Wasserstoff, Kohlensäure oder im Vakuum schütteln.

¹⁾ A. S. Loerenhart, 1. c.

B. Die künstliche Durchblutung resp. Durchspülung von Organen.

Von Franz Müller, Berlin.

Bidder, Alexander Schmidt und Ludwig verdanken wir die ersten Kenntnisse über die Durchströmung frisch ausgeschnittener Tierorgane. In den letzten Jahrzehnten ist die Technik der Durchspülungen in ganz außerordentlichem Maße vervollkommnet worden 1) und hat in der Wiederbelebung des menschlichen Herzens und dem Studium der in der überlebenden Leber sich vollziehenden Synthesen ihre größten Triumphe gefeiert.

Vorbereitung des Tieres.

Handelt es sich um Organe von Kaltblütern, so hat man nur dafür zu sorgen, daß die Tiere zuvor möglichst kühl gehalten werden und das betreffende Organ nach Tötung des Tieres nicht allzu lange undurchströmt bleibt. Es kommt aber auf 5 oder 10 Minuten dabei nicht an. Erheblich größere Vorsicht muß man beim Warmblüter anwenden. Man tötet bei Verwendung des Organs zum Studium biochemischer Fragen die Tiere in Athernarkose durch Verbluten aus beiden Karotiden und Femoralarterien. bei Verwendung des Organs zur Prüfung der Vasomotorentätigkeit oder ähnlichem am besten ohne Narkotikum durch Schlag oder schnelles Zerstören des verlängerten Marks mittelst eines scharf zugespitzten. 0:5 mm starken eisernen Stichels (einer Schusterahle), den man im Atlanto-Okzipitalgelenk einstößt, entblutet darauf möglichst schnell (Durchschneiden des Halses) und defibriniert das Blut durch Schlagen vermittelst Glasstabs oder Schütteln mit Glasperlen in Glas- oder Porzellangefäßen. Berührung mit Metall ist möglichst zu vermeiden. Während ein Assistent dies alles besorgt, operiert man das gewünschte Organ so, daß es, wenn angängig, im Körper des toten Tieres verbleibt und während der Operation so viel als möglich vor Abkühlung geschützt ist. Nur bei Verwendung des Langendorffschen Herzapparates (siehe später) oder ähnlicher Anordnungen, bei denen

¹) Eine große Anzahl der veröffentlichten Apparate, größtenteils Modifikationen der im folgenden ausführlich beschriebenen, siehe bei Skutul: Über Durchströmungsapparate. Pflügers Archiv, Bd. 123. S. 249 (1908).

das Organ an der Arterienkanüle frei hängt, wird es ganz aus dem Körper entfernt. Man bindet nach Abklemmung des Blutgefäßes zum Organ hin eine Kanüle in die Hauptarterie und eine zweite in die wichtigste abführende Vene, während alle anderen Gefäße sorgfältig unterbunden werden. Das ist oft z. B. bei den Hinterschenkeln relativ einfach, oft aber auch z. B. bei der Niere oder Leber des Kaninchens oder der Katze recht schwierig. Man muß sich je nach dem anatomischen Bau, der ja bei den Venen sehr wechselt, überlegen, an welcher Stelle man die abführende Kanüle am richtigsten einbindet (s. Operationstechnik).

Im allgemeinen soll man, wie gesagt, so schnell als möglich nach Aufhören der Zirkulation mit der Durchspülung beginnen, da die Gefahr der Gerinnselbildung bei längerem Liegen erhöht wird, ferner manche Organe, wie das Herz, nach starker Abkühlung nur schwer wieder funktionsfähig werden, andere, wie die Extremitäten und die Lunge, nach länger dauernder Pause bei der Durchspülung allzu schnell ödematös werden.

Die Kanüle soll nicht zu eng sein, da sie sich sonst leicht verstopft. Sie darf aber auch nicht mit großer Gewalt in die Gefäße eingedrückt werden, da diese sich dann kurz dahinter stark verengern und doch nur wenig Flüssigkeit hindurchlassen. Kurz vor Vereinigung der Arterienkanüle mit dem Blutzuführungsrohr des Apparates entfernt man die in der Kanüle oder der Arterie steckenden Gerinnsel durch Einführen einer weichen Federpose oder eines nicht zu dünnen Fadens, an denen bei mehrfachem Herumdrehen das Gerinnsel anhaftet und herausgezogen wird. Beim Herzen entfernt man nach Langendorff's Vorschlag die in den Höhlen steckenden Gerinnsel durch vorsichtiges Kneten in warmer Ringerlösung und Ausspritzen mit erwärmter Ringerlösung. Trotzdem muß noch der Eintritt von auch kleinsten Gerinnseln oder Luftblasen in die Gefäßbahn verhindert werden. Man läßt die Lösung kurz vor Eintritt in die Arterie des Organs ein kurzes Rohr (etwas weiter als die anderen Leitungen) mit locker gestopfter Glaswolle, einen "Gerinnselfänger", passieren, in dem sich kleine Fäserchen immer ansammeln, selbst wenn das defibrinierte Blut vor dem Einfüllen mehrfach durch Gaze oder Glaswolle filtriert war. Es müssen außerdem die noch in dem Organ befindlichen Gerinnselreste zum Beginn der Durchspülung ausgespült werden. Man hat daher die ersten Portionen der austretenden Flüssigkeit gesondert aufzufangen, neu zu defibrinieren und nochmals durch Gaze oder Glaswolle zu filtrieren, bevor man sie wieder einlaufen läßt.

Operationstechnik.

Leber.

Man führt am entbluteten Tier einen vom Kehlkopf bis zum Becken reichenden Schnitt in der Mittellinie des Körpers, trennt die Haut des Brustkorbes nach beiden Seiten ab, so daß das Brustbein freiliegt und eröffnet den Brustraum durch Entfernen des Brustbeins. Dabei werden die Rippen von unten

nach oben fortschreitend recht weit seitlich an der Knorpel-Knochengrenze, das Schlüsselbein am Sterno-Claviculargelenk jeweils unter Aufheben des Brustbeins und Schonung der darunter liegenden Teile, besonders der halswärts und zu den vorderen Extremitäten verlaufenden Venen ohne Blutung durchtrennt. Man eröffnet den Bauchraum, zieht unter Verlagerung der Därme nach links die Leber nach oben und unterbindet die Art. hepatica. die Gallengänge doppelt, durchschneidet zwischen den Ligaturen, führt in die V. portae möglichst nahe zur Leber eine weite Kanüle, eventuell unter Abklemmung der Vene zur Leber hin mit einer weichen, durch Gummi armierten Klemme mit langen Branchen (Darmklemme der Chirurgen). Die oft kurz vor Eintritt in die Leber einmündenden Seitenäste sind doppelt unterbunden zu durchtrennen. Zur Unterbindung muß ein weicher, nicht schneidender Wollfaden benutzt werden. Dann unterbindet man die V. cava inferior dicht unter der Leber (nach Durchtrennung des zur Niere führenden straffen Bandes) und bindet vom Brustraum aus oberhalb des Zwerchfells eine weite Kanüle in die V. cava ein. Man durchtrennt nach Anlegung von Massenligaturen alle zur Leber führenden Bänder, durchschneidet, wenn das Organ aus dem Körper entfernt werden soll, das Zwerchfell an seinen seitlichen Ansatzstellen und bringt Leber mit Zwerchfell in die Wärmekammer des Apparats.

Niere.

Nach Eröffnung der Bauchhöhle und nach Seitwärtsschlagen der Därme führt man, am besten nach Abklemmen zur Niere hin, die Kanüle in den Stamm der Aorta thoracica nahe zur Abzweigung der Nierenarterien. Man hat die kurz vor Eintritt in die Niere teils vom Stamm der Aorta teils von der Art. renalis selbst abgehenden Äste (Art. spermatica, Nierenkapselarterien, Art. suprarenalis) sorgfältig zu unterbinden. Die Venenkanüle führt man in die V. cava, gleichfalls unter genauer Beachtung der V. spermatica, suprarenalis u. a. m. ein. Bisweilen empfiehlt es sich, eine lange, dünne Kanüle in den Ureteren bis ins Nierenbecken hinein vorzuschieben. Die Nieren bleiben in ihrer Kapsel. Das Vordertier und die Beine werden entfernt.

Lunge.

Man führt eine Kanüle in die Trachea, eröffnet den Thorax beiderseits ganz seitlich, entfernt die Rippen möglichst ausgiebig, bindet die rechte Lunge durch eine Massenligatur an der Wurzel ab, legt eine feste Ligatur, die nicht schneidet, um die Mitte der Ventrikel nach vorheriger Entfernung des Perikards und schnürt die Ligatur fest zu. Als Ausflußkanüle dient ein recht weites Rohr an der äußersten Spitze des linken Herzohres. Der Einschnitt muß sehr klein sein, da der Riß leicht weiterreißt und die Kanüle dann nicht mehr zu befestigen ist. Als Zutlußbahn dient eine in die Art. pulmonalis eingeführte Kanüle: Man legt die Arterie neben der Aorta eine kleine Strecke weit frei und geht mit dem Kanülenfaden zwischen Aorta und Pulmonalis an einer leicht durchgängigen Stelle

mittelst durchlochten, stumpfen Finders durch. Dann schneidet man an und bindet ein. Um Blutverluste zu vermeiden, bindet man die A. anonyma, Carotis sinistra und Aorta am Arcus ab.

Sollen die Kanülen direkt in den Lungengefäßen liegen und die beiden Lungen durchspült werden, so führt man die eine Röhre vom linken Ventrikel aus durch das Ostium atrioventriculare in den linken Vorhof, die zweite wie oben in den Sinus arteriosus der Pulmonalarterie und entfernt die anderen Teile.

Darm.

Nach Eröffnung der Bauchhöhle unterbindet man den Darm unterhalb des Pankreaskopfes etwa an der Grenze vom Duodenum und Jejunum sowie an der Ileocökalklappe (etwa 1 m langes Stück beim großen Hund). Man sucht von der Aorta aus die Art. mesenterica superior und von der V. portae aus die V. mesenterica superior, bindet Kanülen ein und entfernt, eventuell nach vorheriger Unterbindung und Durchschneidung, die anderen Darmteile, die stören.

Will man den Darm außerhalb des Körpers durchströmen, so sind die Mesenterien zwischen Ligaturen zu durchtrennen und endlich an der Radix mesenterii zu durchschneiden.

Bein.

Man entfernt nach Eröffnung der Bauchhöhle den ganzen Darm nebst Magen, indem zuerst ganz tief im Becken unter vorsichtiger Schonung der Venen im Becken das Rektum unterbunden und durchtrennt wird, dann die V. und Art. mesenterica inferior, die Mesenterien und oberen Gefäße. der Magen an der Kardia kurz unterhalb des Zwerchfells. Anfangend vom Rektum, entfernt man dann Darm, Magen mit Milz. Kurz oberhalb der Teilungsstelle der Art. iliaca bindet man die zuführende Kanüle, die abführende möglichst weit herzwärts in den Stamm der V. cava ein, und unterbindet die seitlichen Äste sorgfältigst. Dann wird oberhalb der Nieren die Bauchwand mit Ausnahme der äußeren Haut schichtweise unter Unterbindung der größeren Gefäße bis auf die Wirbelkörper durchtrennt, die letzten Rippen durchschnitten und unterhalb der Nieren zwischen Haut und Bückenmuskeln ein fester Bindfaden zweimal hindurchgeführt. Er wird an seinen Enden mit Holzknebeln armiert und mit aller Kraft von beiden Seiten um die Wirbelsäule herum zugezogen und fest verknotet. Dann kneift man mit einer großen Knochenzange die Wirbel oberhalb der Ligatur durch, entfernt so das Vordertier und stopft den Wirbelkanal fest mit Watte aus. Trotzdem wird man im Anfang der Durchspülung noch Verluste aus den Schnitten der Bauchwand haben, da die zu den Bauchmuskeln führenden Venen oft tief unten von der V. femoralis ausgehen. Man muß dann neu unterbinden. Oft blutet es auch im Becken aus den Hämorrhoidalgefäßen, die durch Massenligaturen um die Harnblase herum gefaßt und unterbunden werden.

Herz.

Nach der Verblutung und Erlöschen der Atembewegungen entfernt man das Brustbein (siehe vorher) und die Rippen weit nach der Seite hin. öffnet das Perikard und führt in die Aorta eine weite Kanüle ein, die dicht oberhalb der Semilunarklappen enden muß. Man hebt das Herz an der Kanüle hoch und schneidet es von den Lungen ab, füllt in einer Schale mit erwärmter Ringerlösung die Kanüle, wäscht die Gerinnsel aus dem Stamm der Aorta aus und entfernt durch leichtes Kneten, ohne Luftblasen zuzulassen, die Gerinnsel aus dem Herzen, verbindet darauf luftfrei mit dem Apparat.

Uterus.

Die Gebärmutter von Katzen, Hunden. Meerschweinchen oder Kaninchen wird verwendet. Sie ist sehr empfindlich gegen Temperaturschwankungen, so daß schnell operiert werden muß.¹) Nach Eröffnung der Bauchhöhle entfernt man Uterus, Vagina und alle Ligamente, an der neben der Wirbelsäule gelegenen Spitze des Horns beginnend. Soll die ganze Vagina benutzt werden, so muß beiderseitige Pubiotomie vorgenommen und der Teil nach vorn geklappt werden. Man soll möglichst die Muskulatur gar nicht, nur die Ligamente berühren.

Zusammensetzung der Durchspülungsflüssigkeit.

Während man früher glaubte, nur mit Blut die Funktionen der Organe des Warmblüters extra corpus wiederbeleben zu können, weiß man heute, daß nicht bloß die Organe des Kaltblüters, sondern auch die höherstehender Tiere durch geeignete Lösungen wieder belebt und in ihrer Funktion eine Zeitlang erhalten werden.

Beim Froschherzen sind besonders eingehende Untersuchungen dar- über angestellt worden, welche künstliche Lösung sich am meisten eignet, wenn nicht mit dem doppelten Volumen 0.7° "iger Kochsalzösung verdünntes Säugetierblut vorhanden ist. Es hat sich herausgestellt, daß die Lösung folgende Zusammensetzung haben soll $^{\circ}$):

 $0.6^{-6}/_{0}$ Na Cl 0.03^{6}_{-6} K Cl $0.02^{6}/_{0}$ Ca Cl₂ $0.02^{6}/_{0}$ Na H CO₃ $0.1^{6}/_{0}$ Traubenzucker (Locke).

Bei lange dauernden Durchspülungen muß darauf geachtet werden, daß das zur Verwendung kommende destillierte Wasser, das meist aus

¹) E. Kehrer, Der überlebende Uterus als Testobjekt, Arch. f. exp. Pathol. u. Pharm. Bd. 58. S. 366 (1908). — Derselbe, Physiologische und pharmakologische Untersuchungen an den überlebenden und lebenden Genitalien. Arch. f. Gynäkologie. Bd. 81. S. 160 (1908).

²) Historische Darstellung der Frage siehe bei: *Langendorff*, Ergebnisse der Physiologie von *Asher-Spiro*, I. Jg. II. Teil. S. 302 (1902) und IV. Jg. S. 750 (1905).

Kupferblasen destilliert wird, zuletzt kurz vor dem Gebrauch noch einmal aus sehr gut gereinigten Glasgefäßen destilliert wird und nur mit Glas in Berührung kommt. Es darf vor dem Gebrauch nicht lange in Glasgefäßen, die ja Alkali abgeben, stehen, sondern wird zweckmäßig in Kübeln von innen glasiertem Ton ohne Na H CO3 und Traubenzucker aufbewahrt. Diese werden erst kurz vor dem Gebrauch hinzugefügt. Sauerstoffdurchleitung durch die Ringer-Lockesche Lösung erhöht den Effekt außerordentlich, ebenso der Zusatz von 0.1% Traubenzucker. Eine Zeitlang nahm man an, daß die Durchspülungsflüssigkeit beim Froschherz die gleiche Viskosität wie Blut haben solle und empfahl Zusatz von 20/0 Gummi arabicum. Es hat sich aber gezeigt, daß es nicht die Viskosität, sondern der Gehalt an Ca" und K' ist, der beim Gummizusatz wirkt. Wichtig ist, wenn man nicht reine Salzlösung, sondern Blut vermischt mit dieser verwendet, daß die Blutkörperchen sich nicht gelöst haben. Denn beim Lösen der Erythrocyten treten Kaliumionen aus, und diese sind starke Herzgifte. Durch Zusatz von Calcium hebt man diesen Effekt bis zu einem gewissen Grade auf.

Beim Warmblüter verwendet man am besten das defibrinierte Blut desselben Tieres oder derselben Tierart zum mindesten, vermischt mit 1—3 Teilen O·9°/₀iger Na Cl-Lösung. Blut anderer Tierart wirkt auf die Gefäße oft giftig; sie ziehen sich zusammen und machen eine Durchblutung unmöglich. Doch gibt selbst defibriniertes Blut bei manchen Organen, wie der Niere, oft schlechte Resultate, vielleicht weil beim Schlagen immer eine gewisse Zahl von Blutkörperchen zerstört wird und Blutfarbstoff, sowie Kalium-Ionen in Lösung gehen. Man macht die im artfremden Serum vorhandenen gefäßverengenden Substanzen (Vasokonstriktine) durch Erwärmen auf 56° unschädlich.¹) Meist darf man das Blut vom gleichen Tier oder der gleichen Tierart mit der gleichen Menge Ringerscher Lösung ohne Schaden verdünnen; im Gegenteil geht die Durchspülung dann noch etwas leichter, weil beim unverdünnten Blut oft Verlegung der feinsten Kapillaren eintritt.

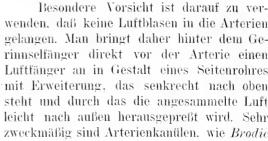
Hat man bei der Entnahme aus dem Körper das Organ sehr sorgfältig auspräpariert und alle Nebenwege unterbunden, so wird man bei nicht zu hohem Druck Verluste an Durchspülungsflüssigkeit leicht vermeiden können, wenigstens zu Anfang des Versuches. Nach einiger Zeit, und zwar bei den verschiedenen Tierarten verschieden schnell (besonders schnell beim Kaninchen, später bei der Katze und beim Hund), werden die Gefäße auch bei Verwendung von unverdünntem Blut durchlässig, allerdings schneller beim verdünnten oder bei reiner Salzlösung. Dann bleibt nichts übrig,

¹) Battelli (Battelli, Recherches sur les vasoconstrictines des sérums sanguins. Journ, physiol, path, gén. P. 625 et 651 [1905]) zeigte, wie infolgedessen Meerschweinchenorgane durch Blut oder Serum vom Rind, Hammel, Hund oder Kaninchen nicht durchströmt werden können, während Pferdeserum wenig schädlich ist. Andrerseits sah ich (Du Bois-Reymond, Brodie und Franz Müller, Einfluß der Viskosität auf die Blutströmung. Arch. Anat. u. Phys. Suppl.-Bd. S. 54 [1907]), daß Pferdeserum für Blutgefäße des Hundes außerordentlich giftig ist.

als die Flüssigkeit in einer untergestellten Schale aufzusammeln. Bei der Lunge tritt durch verdünntes Blut schnell, durch defibriniertes unverdünntes aber auch nach 1—2 Stunden Ödem ein. Auch für die Extremitäten sowie die Niere darf nicht zu stark mit Ringerlösung verdünntes Blut benutzt werden, da sonst allzu schnell Ödem und Versagen des Stromes erfolgt. Diese Durchlässigkeit tritt schneller auf, wenn die Arterialisierung nicht ausreichend ist.

Die Untersuchungen von Langendorff und seinen Schülern sowie von Locke haben gezeigt, daß folgende Zusammensetzung für die Organe von Warmblütern, insbesondere das Herz, am geeignetsten ist:

Manche Autoren empfehlen, der Ringerschen Lösung Blutserum im Verhältnis 2:100 hinzuzufügen.


Prinzip der Durchspülungsapparate.

Man wünscht ein System zu konstruieren, in dem bei Verbrauch von möglichst wenig Spülflüssigkeit eine der normalen Blutstromgeschwindigkeit möglichst entsprechende Zirkulation ohne Verlust bei gut regulierbarem Druck ohne Unterbrechung fortdauernd stattfindet. Um Flüssigkeit zu sparen, müssen daher die Verbindungsröhren so kurz wie möglich sein, und die als Druckgefäß dienende, in einer gewissen Höhe angebrachte Flasche mit konstantem Niveau (Mariottesche Flasche als Blutreservoir) respektive die den Druck liefernde mit komprimiertem Sauerstoff gefüllte Bombe leicht zu handhabende Hähne besitzen. Wenn man länger dauernde Durchspülungen ausführt sowie beim Intakterhalten des Herzens und der Gefäße des Warmblüters, soll die Berührung der Durchspülungsflüssigkeit, besonders des Blutes, mit Kautschuk, Metallteilen oder Korkstopfen vermieden werden und nur ausgekochte Gummistopfen. Glas oder Porzellan zur Anwendung kommen. Die Verbindungsstücke schließen Glas an Glas.

Der bei niederer Temperatur langsamer, bei 37° sehr merklich eintretende Sauerstoffverbrauch im Organ (besonders stark in muskulösen Organen und der Niere) muß durch reichliche Arterialisierung der ausfließenden Lösung ausgeglichen werden. Bei Salzlösungen, in denen sich nur wenig Sauerstoff, zumal bei 37°, löst, ist das nur in sehr beschränktem Maße durchführbar. Vielleicht beruht gerade darin der Vorzug, den Blutzusatz zur Ringerlösung vor reiner Salzlösung besitzt, daß der Blutfarbstoff so viel mehr Sauerstoff locker zu binden vermag. Der Sauerstoff muß bei geschlossenem System, in dem die venöse Flüssigkeit zum Anfangspunkt zurückfließt und wieder verwendet wird, eine möglichst hohe Schicht passieren, also von unten einströmen. Dabei schäumt das Blut stark auf.

Der Blutkolben muß infolgedessen ziemlich erhebliche Dimensionen besitzen und mit einem Sicherheitsgefäß, einer oder zwei Vorlagen zum Auffangen des Schaumes verbunden sein, wenn man nicht die Arterialisierung außerhalb des Apparates durch Schütteln vornimmt. Man empfiehlt auch, Bimssteinstückehen auf die Blutoberfläche zu bringen, um das Schäumen zu

verhindern; das gelingt aber bei starkem Sauerstoffstrom nur in geringem Maße.

sie verwendet, von der folgenden Form (Fig. 91):

3

Fig. 91.

Bei 1 tritt die Flüssigkeit ein, 2 ist der Seitenauslaß mit Gummischlauch und Quetschhahn zum Luftansammeln und -Ablassen, 3 eine birn-

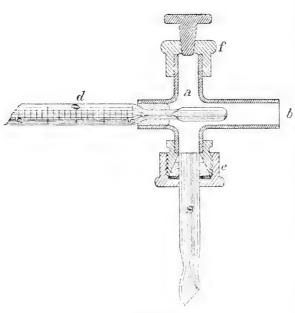


Fig. 92.

förmige Erweiterung, 4 die eigentliche Kanüle mit abgeschrägter, gerundeter, Spitze. Will man die Wirkung von Giften studieren, so sind diese in die arterielle b Bahn kurz vor Eintritt in die Arterie zu injizieren, damit man die Giftkonzentration den Moment des Eintretens in das Organ genügend scharf beurteilen kann, etwa bei 2 in der Kanüle (Fig. 91).

> Meist wird es sich empfehlen, das Organ in einem Wärmekasten bei konstanter Temperatur zu halten. Auf jeden Fall ist aber Sorge

zu tragen, daß die Durchspülungsflüssigkeit beim Eintritt in das Organ konstante Temperatur besitzt, die sich auch bei starkem Wechsel der Stromgeschwindigkeit um nicht mehr als einige Zehntelgrade (beim Herzen nur O·1°) ändert. Man erzielt das dadurch, daß man vor der Arterie ein

Schlangenrohr in einem Wasserbad von konstanter Temperatur einschaltet und die Temperatur durch ein Thermometer direkt vor Eintritt des Blutes in die Arterie kontrolliert, und zwar so, daß die Thermometerkugel auch wirklich vom Strom umspült wird (siehe *Langendorffs* Anschlußkanüle aus Metall, Fig. 92).

Endlich hat sich herausgestellt, daß Durchspülungen sehr viel besser bei rhythmischem Einlauf als bei kontinuierlichem Strom vonstatten gehen. Daher verwendet man nur noch in bestimmten Fällen die ursprüngliche, einfachste Einrichtung, bei der das Blut aus einer hoch über dem Organ hängenden Mariotteschen Flasche dauernd zufließt, sondern schaltet in das System Drucksaugpumpen in verschiedenster Form ein (siehe die Spezialapparate). Man muß bei der Druckregulierung darauf halten, daß der Druck zu Beginn des Versuches nicht gar zu hoch ist, da sonst leicht sofort vollkommener Verschluß der arteriellen Bahn eintritt. Es empfiehlt sieh, für das Froschherz den Druck bis etwa 15 cm Wasser, für das Säugetierherz bis etwa 30 mm Hg, bei der Leber bis 35—40 mm Hg (Blutstrom etwa 80 cm³ pro Minute), bei der Niere, dem Darm, der Milz bis 40—60 mm Hg, bei den Extremitäten bis 80—120 mm Hg allmählich ansteigen zu lassen und so zu erhalten.

Die einzelnen Apparate.

1. Froschherzapparate. 1)

a) Nach Williams-Dreser. 2) Besonders für pharmakologische Zwecke ist im Schmiedebergschen Institut von Williams ein einfacher Apparat zur Durchspülung des aus dem Körper entfernten Froschherzens mit Blut oder Ringerlösung konstruiert worden. Er besteht aus zwei je etwa $20\ cm^2$ fassenden Glasgefäßen, die etwa $20\ cm$ über dem Herzen stehen, unten eng zulaufen und jederseits zu einem Ventil führen.

Die Ventile (Fig. 93) bestehen aus einem weiteren, sich unten verengenden Rohr, in dem ein etwas engeres, sich stark verjüngendes und am Ende geschlossenes Rohr durch Schliff wasserdicht feststeckt. Dieses innere Rohr hat einen Schlitz, den man mit Goldschlägerhaut (Schafmesenterium, Fischblase) locker verschließt. Der Darm wird ober- und unterhalb des Schlitzes durch Ligaturen befestigt. In den neueren Apparaten sind die Ventile durch Glaskugeln gebildet. Sie werden so geschaltet, daß sie auf der einen Seite nur nach dem Herzen hin, auf der anderen nur vom Herzen weg den Durchgang der Flüssigkeit gestatten. Sie stehen beide unten durch ein Y-förmiges Metallrohr, an dem die in die Aorta einzuführende, etwas

¹) N\u00e4heres siehe bei Langendorff, Ergebnisse der Physiologie von Asher-Spiro, I, 2, Abtlg, S, 275 (1902).

²⁾ Williams, Über die Ursachen der Blutdrucksteigerung bei der Digitalinwirkung. Arch. f. exp. Path. u. Pharm. Bd. 13. S. 11 (1877). — Perles, Beiträge zur Kenntnis der Wirkung des Solanins. Ebenda. Bd. 26. S. 95 (1890). — Dreser, Über Herzarbeit und Herzgifte. Ebenda. Bd. 24. S. 223 (1888).

gebogene Metallkanüle sitzt, in Verbindung. Das gerade Stück des Y-rohres ist doppelläufig. Vor Beginn des Versuches füllt man den ganzen Apparat luftfrei mit *Ringer*scher Lösung und hat das Y-rohr, an dem später die Kanüle befestigt wird, durch einen Gummischlauch mit Klemme verschlossen. Dann präpariert man am Frosch das Herz heraus, führt, ohne das Herz aus dem Körper zu entfernen, in den Bogen der Aorta die mit Kochsalzlösung

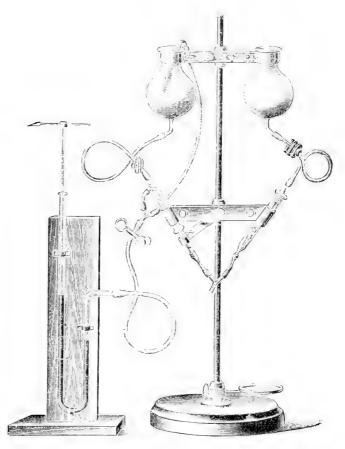


Fig. 93.

luftfrei gefüllte Kanüle ein, deren zwei seitliche Ansätze zur besseren Handhabung und zur Befestigung der Kanülenfäden dienen, damit das Herz während des Versuches nicht abgleitet, unterbindet die anderen großen Gefäßstämme, schneidet das Herz los und verbindet mit dem Metallrohr. Die Flüssigkeit strömt nun von der einen Seite durch das eine Ventil nach abwärts in das Herz hinein und wird durch den Schlag der Herzkammer nach der anderen Richtung hin in die Höhe gedrückt, um den Druck an einem seitlich angesetzten Manometer anzuzeigen oder durch eine nicht allzu hoch

über dem Herzen (10 cm etwa über dem Zuflußreservoir) angebrachte Auslaufspitze auszutropfen.

b) Der Jakobjsche Apparat¹) (Fig. 94):

In die linke Hohlvene wird — unter Unterbindung der anderen zum Herzen führenden Venen — eine Glaskanüle eingeführt. Ebenso wird in die linke Aorta eine feine Glaskanüle eingebunden und diese bis in den Bulbus arteriosus vorgeschoben; die andere Aorta wird unterbunden. Die beiden Kanülen sind gefüllt; sie werden unter Vermeidung von Luftblasen auf die auf einem Kork fixierten, mit kurzen Gummischläuchen versehenen Röhrchen, die der Zu- bzw. Ableitung der Nährlösung dienen, aufgesteckt. a führt mittelst Gummischlauches zu einem der beiden die Nährlösung, bzw.

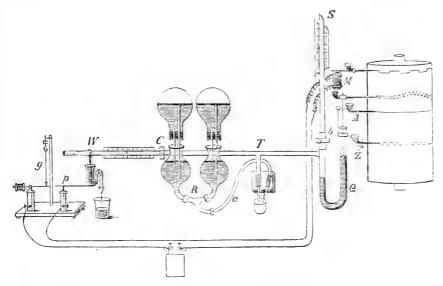


Fig. 94.

die Giftlösung enthaltenden Reservoire R (Mariottesche Flaschen). In die Leitung sind drei Hähne eingeschaltet (s. Fig. 94). Das wegführende Rohr wird mit einem T-Rohr verbunden. Es führt auf der einen Seite zu einem kleinen Hg-Manometer, auf dessen frei endendem Zuflußschenkel ein Steigrohr S aufgesetzt ist. Auf der anderen Seite ist das T-Rohr mit einer geraden Glasröhre W verbunden, in die ein das Lumen gerade ausfüllender Glasstab eingeschoben ist, so daß nur ein feiner zylindrischer Kapillarspalt übrig bleibt. Ein am Ende dieser Röhre um den hervorragenden Glasstab geschlungener feuchter Wollfaden gestattet der durch den Spalt austretenden Flüssigkeit gleichmäßig abzutropfen. Rohr W ist horizontal, einige

¹) Nach R. Heinz, Handb. exper. Pathol. Jena 1905. Bd. 1. Teil II. S. 836. Dort auch genaue Beschreibung des Apparates von O. Frank, der für biochemische Fragen wohl nicht in Betracht kommt.

Millimeter höher als das Niveau der Nährflüssigkeit in R, angebracht und der Nullpunkt des Manometers genau auf die gleiche Höhe eingestellt. Bei dieser Art der Versuchsanordnung fließt die vom Herzen ausgeworfene Flüssigkeit durch die Kapillare. Wird nun der Widerstand des Kapillarspaltes durch Einschieben des Glasstabes allmählich gesteigert, indem die Länge des Spaltes vergrößert wird, so erreicht man bald einen Punkt, bei welchem nur ein Teil der Flüssigkeit ausfließt, während der andere, zum Manometer strömend, die Steigröhre zu füllen beginnt und damit das Herz zwingt, gegen einen sich allmählich steigernden Druck zu arbeiten. Dieser kann mit Hilfe des Hg-Manometers Q auf dem Kymographion, neben einer Zeitmarkierung Z, registriert werden. Es lassen sich ferner durch entsprechende Verengerung des Hahnes b auch die einzelnen Pulsschwankungen zur Darstellung bringen.

Liegt das Flüssigkeitsniveau in R auch nur $10-20\,mm$ über der Atrioventrikulargrenze des Herzens, so beginnt das Herz kräftig zu arbeiten. Man wählt die Druckhöhe je nach der Weite der in die Vene eingebundenen Kanüle so, daß die Füllung des Vorhofes möglichst genau wie im Tiere selbst verläuft, so daß jedesmal in der Zeit der Diastole sich der Vorhof eben füllt, ohne daß eine Dehnung seiner Wand eintritt. Man wähle die in die Vene einzubindende Kanüle so weit wie möglich; je weiter die Kanüle, desto geringer kann der Druck sein.

Ließ Jacobj (bei einer Zuflußhöhe von 10—20 mm H₂O) das isolierte Herz arbeiten, so trieb der Ventrikel die Flüssigkeit in der Steigröhre auf 50—60 cm, ja bis auf 80 cm Wasserhöhe, während gleichzeitig aus dem Widerstandsrohre die Flüssigkeit in gleichmäßigem Tropfenfall abfloß. Durch Ausziehen des Glasstabes konnte nach einigem Probieren derjenige Punkt gefunden werden, bei welchem der Widerstand des Kapillarspaltes offenbar gerade dem des Gefäßsystems im Tiere entsprach, so daß trotz beständigen Abfließens der vom Herzen ausgeworfenen Flüssigkeit der Druck sich auf der im Blutdruckversuch am Frosch gefundenen Höhe hielt. Indem das Herz gegen diesen Druck anarbeitete, warf es mit jeder Systole zwei bis drei Tropfen, mit 10 Pulsen also 1·0—1·5 g aus, was bei einer Hubhöhe von 50 cm H₂O einer Arbeitsleistung von 50—75 gcm entspricht.

Um die aus dem Widerstandsrohr abfließende Flüssigkeitsmenge messen bzw. die Werte graphisch registrieren zu können, stellte *Jacobj* folgende Einrichtung her:

Die vom Wollfaden bei W abfließende Flüssigkeit wird in ein kleines Gefäß einfließen gelassen, welches in einen schwanenhalsförmigen Siphon ausläuft. Sobald es sich bis zur Höhe des Hebers gefüllt hat, wird es durch diesen plötzlich entleert. Das Gefäß ist am Ende eines Hebels befestigt und durch ein verstellbares Gegengewicht nahezu äquilibriert. Gleichzeitig wird dieser Hebel durch einen Gummifaden g getragen, so daß er, wenn das Gefäß leer ist, etwas über die horizontale Lage gehoben wird, bei Füllung des Gefäßes aber nach einiger Zeit unter Dehnung des Gummifadens mit der Platinspitze p die mit einer kleinen Platinplatte belegte

Stütze in horizontaler Lage berührt. Diese Stütze einerseits und der Hebel andrerseits sind in einen Stromkreis eingeschaltet. Füllt sich das Meßgefäß, so wird in dem Moment des Niedersinkens des Hebels der Kontakt zwischen der Platinspitze p und dem Platinplättchen der Stütze geschlossen, um in dem Moment, wo die durch den Heber bewirkte Entleerung des Gefäßes eintritt, unter Aufschnellen des Hebels wieder unterbrochen zu werden. Ein in den gleichen Stromkreis eingeschalteter kleiner Markiermagnet M registriert den Schluß und die Öffnung des Stromes über der Blutdruckund Zeitkurve auf dem Kymographion, so daß hierdurch auch die Menge der in der Zeiteinheit abgeflossenen Flüssigkeit in jedem Augenblick genauneben dem Blutdruck und der Pulszahl bestimmt werden kann.

2. Apparate für das Säugetierherz.

a) Der Langendorffsche Apparat.

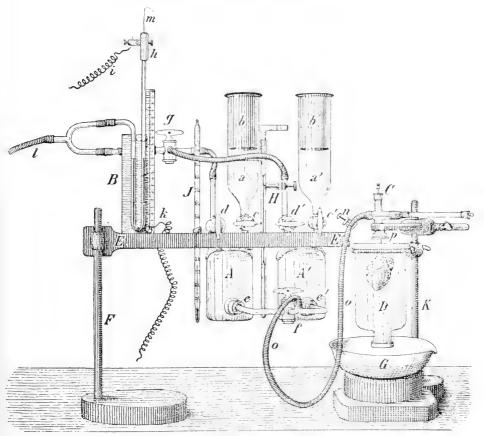


Fig. 95.

Das Blut befindet sich bei diesem Apparat in einem System von zwei Flaschen A und A' (Fig. 95), die durch eine Zuleitung mit eingeschaltetem

Kontaktmanometer B mit einer großen Druckflasche in Verbindung stehen. Die Druckflasche von etwa 17l steht oben (Fig. 96) mit der Wasserleitung in Verbindung und hat unten einen Auslaß. Das Manometer B (Fig. 95) besitzt an seinem freien Schenkel einen Metallaufsatz h, der durch i mit einer Stromquelle, durch den steifen Platindraht m mit der Quecksilberfläche in Verbindung steht. Der Draht k führt zu einer Klemmschraube und steht gleichfalls mit dem Platindraht m in Verbindung. Ein Doppelweghahn g gestattet durch Hahn d oder d' die Verbindung mit einem der beiden Blutreservoire (A und A'), deren jedes einen Bluteinfüllungstrichter (a und a') mit Hahn (a und a') mit Doppelbohrung trägt. Die eine Hahnbohrung ist gerade, die andere knieförmig, so daß A oder A_1 entweder mit dem Trichter oder der äußeren Luft verbunden oder gegen beide ab-

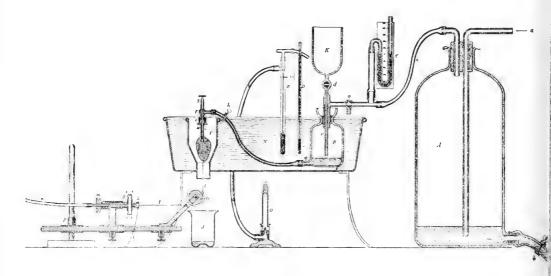


Fig. 96.

geschlossen sind. Man kann die eine der beiden Flaschen füllen, während die andere zur Speisung des Herzens benutzt wird, ohne daß beim Wechseln eine merkliche Druckschwankung entsteht. Auf die Einfülltrichter setzt man mit Sieben versehene Trichter (b und b), die die Gerinnsel des einzufüllenden Blutes zurückhalten. Die Leitung o führt zu der "Anschlußkanüle". Diese (Fig. 97) besteht aus einem vierschenkeligen Rohr a, in dessen Mitte ein Thermometer d hineinragt. Oben ist es durch einen aufgeschraubten Metallstöpsel f verschlossen, der zur Entfernung von Luftblasen dient, unten durch einen metallenen Ansatz e, in dem vermittelst durchbohrten Kautschukstopfens die Aortenkanüle s steckt. Der Metallansatz e ist mit einem Gewinde versehen, auf das eine Mutter paßt (in Fig. 97 ist sie aufgeschraubt, in Fig. 92 nur von außen sichtbar). Ist die Mutter losgeschraubt, so steckt man die Herzkanüle in den Kautschuk-

stöpsel hinein. Schraubt man dann die Mutter auf, so drückt diese den Stöpsel stärker in die Höhlung hinein und preßt ihn so fest um das Glasrohr, daß es dadurch absolut dicht in der Anschlußkanüle festsitzt.

In Fig. 97 ist auch das Herz selbst ohne das es beherbergende Gefäß, nebst dem an seiner Spitze mittelst des Häkchens g befestigten Fadens dargestellt. Der Faden läuft um die Rolle h zur Aufnahmekapsel (i). Die Rolle ist zugleich mit dem ganzen Aufnahmeapparat auf einem vierseitig-prismatischen Stahlstab (n) angebracht, der durch einen Fortsatz g

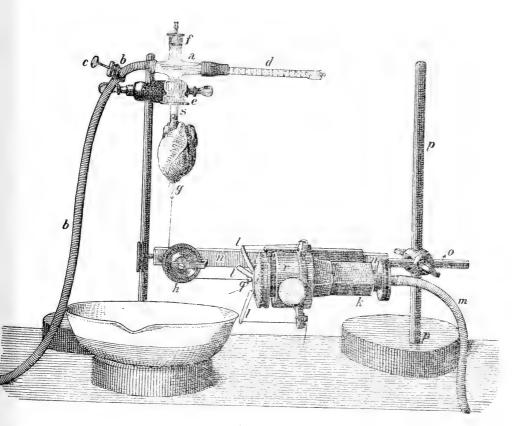


Fig. 97.

an dem schweren Stativ p verstellbar befestigt ist. Die Rolle kann so eingestellt werden, daß der Faden jedesmal genau senkrecht an der Doppelmembrankapsel i angreift. Auf der Aluminiumscheibe, die der vorderen Membran der Kapsel aufgeleimt ist, befinden sich außer einer Vorrichtung zur Befestigung des Fadens (q) drei dünne, aus Aluminium verfertigte Streben (l, l, l); an ihnen sind drei Gummifäden befestigt, die rückwärts zu dem die Kapsel tragenden Metallring r ziehen. Durch Verschiebung dieses hinteren Ansatzes der drei Fäden wird ein variabler elastischer

Zug ausgeübt, der zu starke Anfangsspannungen der beiden Membranen verhindert. Die elastischen Fäden wirken also wie eine Feder, die sich der Hervorwölbung der Kapselmembranen widersetzt. Es ist leicht einzusehen, daß dadurch die Exkursionsfähigkeit der letzteren beträchtlich gesteigert wird.

Die Aufnahmekapsel (deren hintere Membran in der Abbildung 97 nicht sichtbar ist) ist auf dem Stahlprisma nn grob verstellbar und läßt sich durch die Vorrichtung k, die der Feinstellung des Mikroskops nachgebildet ist, auch mikrometrisch einstellen; durch ein die Mikrometervorrichtung

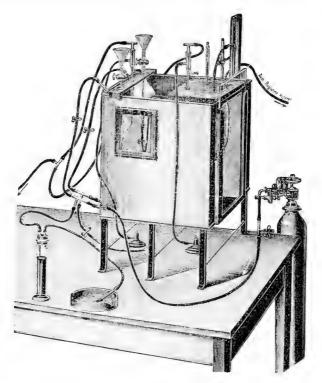
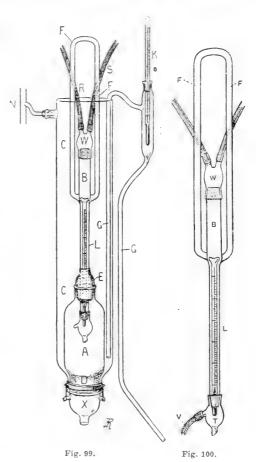


Fig. 98.

durchsetzendes Abzugsrohr steht sie mit dem zur Schreibkapsel ziehenden Schlauche m in Verbindung.

Alle Flaschen, Leitungen usw. sitzen in einem Wärmekasten mit Thermoregulator (Fig. 96), der zwei Abteilungen enthält (vgl. Fig. 98). Die hintere, mit Wasser gefüllte ist für die Blutflaschen A und A_1 nebst Schlauchverbindungen, ein kleiner vorderer Luftraum für die Anschlußkanüle nebst Herz. Die vordere Kammer wird vorne durch einen dieken Glasschieber abgeschlossen und besitzt unten eine Öffnung, durch die der Faden von g zu der Rolle h führt und außerdem das Blut aus dem Herzen in eine darunterstehende Schale abtropft.


Der Apparat von Langendorff hat sich so bewährt, daß es nicht mehr nötig erscheint, einen ähnlichen von Newell-Martin zu beschreiben. Einen etwas einfacheren Apparat), auch für andere Organe, zeigt Fig. 98.1) Die Temperatur und der Druck sind in ihm für längere Zeit nicht so konstant zu erhalten (\pm 3°). Will man vergiftetes Blut dem Organ zuführen und den Zeitpunkt genau kennen, in den es ins Organ gelangt, so kann man kurz vor der Arterienkanüle einen Zweiweghahn mit Querbohrung

einschalten, der von außen durch einen langen Hebel reguliert wird. Man läßt so den toten Raum sich schnell durch Verbindung mit der Außenluft mit dem Giftblut füllen und schaltet schnell um. Die Hahnumschaltung erfordert nur wenige Sekunden.²)

b) Der Brodiesche Herzapparat. 3)

Um die Temperatur noch sicherer innerhalb 0:1-0:20 durch viele Stunden konstant zu erhalten und den Zufluß der Lockelösung so gleichmäßig als möglich zu machen, um außerdem geringe Flüssigkeitsmengen zu benutzen, so daß Änderungen der Zusammensetzung oder Giftbeimischungen sich sehr schnell bemerkbar machen, ist der folgende, sehr kompendiöse, nur aus Jenaer Glas bestehende Apparat konstruiert worden (Fig. 99).

Die Kammer A sitzt durch Schliff D fest im oben offenen Wassermantel C. Oben bei Esteckt in A, durch ein Stück Schlauch befestigt, Rohr B.

Dieses ist bei E leicht beweglich mit Hilfe des **U**-förmigen Halters F aus kompaktem Glas (siehe auch Fig. 100). Unten sitzt an B die Anschluß-

¹⁾ Gottlieb und Magnus, Digitalis und Herzarbeit. Arch. f. exper. Path. Bd. 51. S. 38 (1904).

²) J. Wohlgemuth, Zur Methodik der Herzdurchblutung. Zentralbl. f. Physiol. Bd. 21. Nr. 25 (1907).

³⁾ T. G. Brodie und W. C. Cullis, An apparatus for the perfusion of the isolated Mammalian heart. Journ. of Physiol. Vol. 37. p. 337 (1908).

kanüle T für das Herz mit seitlicher Öffnung V zur Entfernung von Luftblasen. B wird oben mittelst Schliff verschlossen durch eine Glaskappe W, in die zwei Röhren, R und S, einmünden. Sie führen zu zwei Mariotteschen Flaschen. Der lange Teil von B wird fast ganz durch das Thermometer L erfüllt, so daß die Lösung nur in dünner Schicht an ihm vorbeigleiten kann und sehr schnell die Temperatur des Wassers in C annimmt. Das Wasser in C wird auf konstantem Niveau durch Rohr H und Auslauf N gehalten. Es passiert von der Wasserleitung aus eine Metallheizspirale. Im Auslaufrohr H sitzt ein Thermometer.

Zum Gebrauch bringt man C auf 37°, füllt die inneren Teile mit Salzlösung, befestigt dann das Herz an der Aortenkanüle und diese (nach Entfernung der Gerinnsel durch Auswaschen der Herzhöhlen) an B, dessen untere Öffnung dabei bis über D nach unten vorgeschoben ist. Dann zieht man B hoch (wie in der Fig. 99) und schließt die Kammer A durch eine unten durchbohrte Glaskappe X bei D ab. Sie wird durch zwei über Glashäkchen gelegte Gummibänder festgehalten. Durch die Öffnung tropft die ausfließende Lösung ab, eventuell unter Registrierung der Tropfenzahl, und geht die Verbindung von dem in der Herzspitze befestigten Haken zum Schreiber.

Der Apparat gibt außerordentlich feine Temperaturregulierung und dürfte auch für Versuche am Muskel, Uterus u. ähnl. von Nutzen sein.

3. Apparate zur künstlichen Durchblutung anderer Organe als des Herzens.

Die von *Ludwig* ausgedachte Anordnung, wie sie zuerst von *Cyon* benutzt wurde, ist im Laufe der Jahre zuerst im *Ludwig*schen, später auch im *Schmiedeberg*schen Laboratorium nach den verschiedensten Richtungen verbessert und modifiziert worden, so daß gute Druckregulierung, Gewähr für Konstanz der Temperatur sowie die Möglichkeit, daß das durchgeflossene Blut immer wieder zu dem Blutreservoir zurückströmt, erreicht sind. So genügt oft für biochemische Fragestellungen folgende Anordnung ¹):

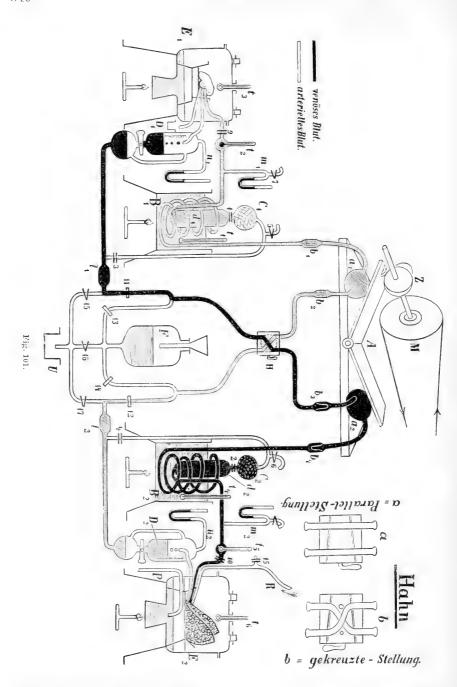
Das Blut fließt abwechselnd aus einem von zwei Scheidetrichtern durch eine auf 40° gehaltene Wärmeschlange in das Organ. Die Trichter werden von oben aus durch Verbindung mit der Druckleitung eines Münkeschen Wasserstrahlgebläses unter Druck gesetzt. Die Druckleitung passiert vor Eintritt in die Blutreservoire ein Quecksilber-Maximumventil. Ein Manometer zeigt den Druck an. Das venöse Blut fließt durch einen Trichter in eine Flasche ab, aus der es durch den Saughahn einer Wasserstrahlpumpe abgesaugt wird. Die überschüssige Saugluft arterialisiert das Blut unter Schäumen, der Schaum wird in einer Vorlegeflasche gesammelt. Allerdings werden bei dieser Anordnung größere Blutmengen (ca. 1½ 2 1) gebraucht.

Ygl.: Embden und Gläßner, Über den Ort der Ätherschwefelsäurebildung. Hofmeisters Beiträge. I. S. 313 (1902).

v. Frey und Gruber 1) haben zur besseren Arterialisierung als in der älteren Anordnung eine sogenannte künstliche Lunge, d. h. einen Glaszylinder, in dem das Blut in dünner Schicht an einem Innenzylinder herabläuft und mit Sauerstoff gesättigt wird, hinzugefügt.

a) Apparat von Jacobj.

In Anlehnung an diese Einrichtung konstruierte dann Jacobj seinen Durchblutungsapparat, der wohl für viele Zwecke das Vollkommenste darstellt, was wir zurzeit besitzen, wenn man auch nicht leugnen kann, daß die verwendete Blutmenge immer noch ziemlich erheblich ist (800 cm³), daß man bei Hunden das Blut also verdünnen muß und dadurch die Möglichkeit der Ausdehnung der Versuche über mehr als etwa 4 Stunden aufgibt (Ödembildung!), selbst wenn man die Tiere nach dem Verbluten eventuell mit hirudinhaltiger Kochsalzlösung ausspült, daß ferner die ganze Anordnung große Kosten, sehr erhebliche Einübung sowie gute Assistenz verlangt. Jacobj hat seine ursprüngliche Anordnung verbessert und in dieser Form soll der Apparat jetzt nach dem Original ziemlich wortgetreu beschrieben?) werden (Fig. 101):


Der Apparat besteht aus zwei Hälften, von denen die eine den Blutstrom in dem zu durchströmenden Organ unterhält, die andere den kleinen Kreislauf nachahmt, in den das Blut durch eine künstlich geatmete natürliche Lunge geleitet wird.

Jede Hälfte des Apparates kann, wie man aus der Zeichnung Fig. 101 sieht, einen in sich abgeschlossenen Kreislauf darstellen. Beiden Kreisen gemeinsam ist der doppelläufige Doppelhahn H, wie ihn Fig. 101 a und b im horizontalen Querschnitt zeigt. Der Hahn ist aus Messing hergestellt. Er besteht aus einem würfelförmigen Mantel, der je zwei zuführende und zwei abführende Röhren trägt, welche in einer horizontalen, durch die Achse des Hahnes gehenden Ebene liegen. In diesem Mantel bewegt sich der Kern des Hahnes, der zwei Bohrungspaare besitzt. Das eine Bohrungspaar durchsetzt den Kern derart, daß die beiden Bohrungen miteinander parallellaufend bei Einstellung ihrer Öffnungen auf diejenigen des Mantels die geradlinig gegenüberliegenden Röhren des Mantels miteinander verbinden und dementsprechend das durch das rechte Zuleitungsrohr tretende Blut zur rechtseitigen, das durch das linke Zuleitungsrohr eintretende zur linkseitigen Abflußröhre führen, so daß beide Ströme also parallel gerichtet den Hahn passieren, wie die Fig. 101 a veranschaulicht.

Bei dieser Stellung des Hahnes bildet das Rohrsystem jeder Hälfte des Apparates einen in sich abgeschlossenen Kreis. In einer mit der Ebene der eben beschriebenen Bohrungen des Hahnkanals einen rechten

 $^{^{1}}$) $v.\,Frey$ und Gruber, Untersuchungen über den Stoffwechsel isolierter Organe. $Du\ Bois'$ Archiv, S. 519 (1885) und $v.\ Frey$, Versuche über den Stoffwechsel des Muskels. S. 533 (1885).

³) C. Jacobj, Ein Beitrag zur Technik der künstlichen Durchblutung überlebender Organe. Arch. f. exper. Path. Bd. 36. S. 330 (1895).

Winkel bildenden Ebene befinden sich zwei weitere Bohrungen, welche in einem leichten Bogen aneinander vorbeigehend sich derart überkreuzen,

daß bei Einstellung ihrer vier Öffnungen auf die des Mantels durch Drehung des Hahnes um 90° das Blut des rechten Zuflußrohres nach dem linken Abflußrohr, das des linken Zuflußrohres aber zum rechten Abflußrohre geleitet wird, sich also bei dieser Stellung die Ströme im Hahnkerne kreuzen, wie die Fig. 101 b veranschaulicht.

Bei der letzteren Stellung des Hahnes werden die beiden Hälften des Apparates demnach in der auf Fig. 101 angedeuteten Weise miteinander so verbunden, daß das Blut in einem großen Kreise sowohl die Lunge als das Organ passiert.

Entsprechend den beiden Herzen im Organismus des Warmblüters, welche den großen und kleinen Kreislauf mit Blut versorgen, haben wir auch in dem Apparate (vgl. Fig. 101) zwei mit den stromrichtenden Ventilen b_1 , b_2 , b_3 , b_4 versehene] Herzpumpen a_1 und a_2 , welche abwechselnd von der Wippe A zusammengepreßt werden; die Wippe wird mittelst einer mit einem Motor verbundenen Exzenterscheibe Z auf- und niederbewegt.

Es entspricht a_1 dem linken, a_2 dem rechten Herzen (venös schwarz, arteriell hell). Die Herzpumpen saugen das Blut durch die Ventile b_2 und b_3 an, um dasselbe durch die Ventile b_1 und b_4 den in einem Gefäß mit Wasser von etwa 40° befindlichen Wärmespiralen B_1 und B_2 zuzutreiben. Am Ende dieser Spiralen befinden sich die Blasenfänger d_1 und d_2 , welche in dem Blut befindliche Luftblasen zurückhalten und zu entfernen erlauben. Der von der Luft völlig befreite Blutstrom, dessen Druck und Temperatur an den Manometern m_1 und m_2 und den Thermometern t_2 und t_5 abgelesen werden kann, tritt nun linker Hand in das zu durchströmende Organ, rechter Hand in die Lunge, beide Teile befinden sich in den Rezipienten E_1 und E_2 in einer auf Körpertemperatur erhaltenen, mit Wasserdampf gesättigten Atmosphäre auf entsprechenden tellerförmigen Unterlagen, in welchen sich das Blut bei eventuell eintretender Blutung der Organe sammelt, so daß es wieder in die Zirkulation zurückgebracht werden kann. Aus den Venen der Organe tritt das Blut beiderseits in die Meßgefäße D_1 und D_2 , Zylinder mit unterem weiten Hahn und Kugelansatz, bei dem Ober- und Unterteil noch eine seitliche Verbindung haben, so daß auch nach Verschluß des Hahnes keine Druckänderung bei Füllung des Zylinders eintritt.

Diese Meßgefäße können durch die alsbald eingehender zu schildernde "Zirkulationswage" ersetzt werden, welche die sie durchströmende Blutmenge unter völligem Abschluß der Luft fortlaufend genau zu registrieren erlaubt. Aus den Meßapparaten wird das Blut durch die den Nulldruck in den Venen konstant erhaltenden Ventile l_1 und l_2^{-1}) wieder von den Herzen a_1 und a_2 abgesaugt. In jedem Stromkreis ist je eine Nebenschließung eingeschaltet, welche von den Luftfängern d_1 und d_2 abzweigend und vor den Ventilen l_1 und l_2 mündend, durch Öffnen oder Schließen

¹⁾ Vgl.: C. Jacobj, Über das Funktionsvermögen der künstlich durchbluteten Niere, Arch. f. exp. Path. u. Pharm. Bd. 29, S. 27 (1891).

der Klemme 3 und 4 erlaubt, den Überschuß des durch die Ventile b_i und b. den Organen zugetriebenen Blutes unter Umgehung der Organe zu dem entsprechenden Herzen durch die Ventile b_3 und b_3 wieder zurückzuführen und so eine Stauung des Blutes vor und in den Organen zu verhüten. In diese Nebenschließungen, und zwar unmittelbar hinter den Luftfängern, sind zwei elastische Gummiballons C_1 und C_2 mit nicht allzu dicker Wand eingeschaltet. Dieselben haben in zusammengefallenem Zustande einen Durchmesser von 4-5 cm und sind mit einem Fadennetz überspannt, welches sie bei übermäßiger Steigerung des Blutdruckes vor einer Zerreißung schützt.1) Diese Ballons dienen in dem sonst zum größten Teile aus Glasröhren bestehenden starren Rohrsysteme als elastische Teile, entsprechend der elastischen Wand des natürlichen Arteriensystems, gleichzeitig dienen sie aber auch als Reservoire, welche ein zu plötzliches Ansteigen und Abfallen des Druckes in den Arterien der Organe verhüten. Die zwischen den eigentlichen Luftfängern und diesen Ballons angelegten Klemmen 1 und 2 ermöglichen die elastische Wirkung des Ballons zu regulieren und durch Öffnen und Schließen nach Belieben einen härteren oder weicheren Puls mit größerer oder kleinerer Druckschwankung herzustellen. Da man auch die bei der einzelnen Kompression von den Herzballons ausgeworfenen Blutmengen durch das Verschieben der Ballons a, und a, unter der Herzwippe und ebenso den Blutdruck durch die Menge des in das System aus dem Reservoir F angesaugten Blutes zu variieren vermag, so ist man in der Lage, jede beliebige Art des Pulses bei beliebigem Blutdruck künstlich zu erzeugen.

Füllung des Apparates.

Bei der Füllung des Apparates verfährt man in folgender Weise: Die in den Rezipienten E_1 und E_2 endenden, das Blut den Organen später zuführenden und abführenden beiden Schlauchenden werden je durch ein Glasröhrehen, welches zunächst die Stelle des Organs einnimmt, miteinander verbunden, darauf werden bei Parallelstellung des Hahnes H(Fig. 101) die Klemmen 16 und 3-8, die Hähne an den Meßgefäßen und Klemmen 11 und 12 geschlossen, die Klemmen 13, 14, 1, 2, 9, 10, 15 und 17 dagegen geöffnet; unter die Ausflußöffnung bei U wird ein Glas für das dort austretende Blut gestellt. Die nun in Bewegung gesetzte Wippe A läßt die Ballons a_1 und a_2 aus dem Reservoir F das Blut ansaugen und füllt die beiden Rohrsysteme und die Maßzylinder mit Blut. Dabei gibt man durch zeitweiliges Öffnen der Klemmen 5 und 6 der Luft Gelegenheit, aus den Luftfängern und Ballons C_1 und C_2 zu entweichen. Tritt das Blut bei 15 und 17 wieder aus, so schließt man diese Klemmen und öffnet gleichzeitig die Klemmen 11 und 12, worauf das Blut zu zirkulieren beginnt. Jetzt werden die Klemmen 9 und 10 so weit ge-

¹) Man bringt diese Ballons zweckmäßig so an, daß sie senkrecht hängen, damit die sich in ihnen ansammelnde Luft durch die Klemme 5 und 6 leicht entweichen und aus der Zirkulation entfernt werden kann.

schlossen, daß nur noch ein schwacher Strom hindurchtritt, wobei der Druck an den Manometern m_1 und m_2 entsprechend der aus dem Reservoir F angesaugten Blutmenge steigt. Das in dem oberen Teil der Maßgefäße befindliche Blut läßt man nun durch Öffnen der an den Maßgefäßen befindlichen Hähne in die kleinen unteren Reservoire eintreten, so daß diese bei späteren Messungen, sofern nicht die Zirkulationswage eingeschaltet werden soll, sich nie ganz entleeren können.

Ist der Druck an den Manometern m_1 und m_2 auf etwa 60-80 mm gestiegen, so schließt man 13 und 14 und läßt durch kurzes Öffnen der Klemmen 7 und 8 das Blut in die Manometer eintreten. Bei entsprechender Lagerung der Ballons a_1 und a_2 und ihrer Ventile gelingt es leicht, alle noch im Apparat befindliche Luft den Luftfängern d, und d. zuzutreiben, von wo aus man sie durch die Ballons C_1 und C_2 aus den Klemmen 5 und 6 entweichen läßt. Ist das ganze Rohrsystem bis auf den in den Maßgefäßen nötigen Luftraum in der beschriebenen Weise sorgfältig von Luft befreit, wobei der Druck wieder herabsinkt, so öffnet man zunächst die Klemme 13 wieder und läßt aus dem Reservoir F noch so viel Blut ansaugen, bis der Druck am Manometer m, 100-120 mm beträgt, dann schließt man dieselbe und läßt durch Öffnen von Klemme 14 den Druck in der rechten Hälfte des Apparates so weit steigen, daß das Manometer m. 20-30 mm zeigt. Der Apparat, in dessen beiden Teilen das Blut einstweilen noch getrennt und unter den angegebenen Druckverhältnissen zirkuliert, ist nun zur Aufnahme der Organe bereit.

Beim Einsetzen der Organe beginnt man mit der Lunge, in deren Arterie, Vene und Trachea vorher je eine Kanüle gut eingebunden ist. Sie wird in den rechten Kreislauf, dessen Druck, wie erwähnt, nicht über $30\ mm$ betragen darf, eingeschaltet. Zu diesem Zweck schließt man zunächst die Klemme 10 und öffnet Klemme 4 so weit, daß das Blut durch die Nebenschließung ungestört wieder zirkulieren kann. Das an Stelle des Organs interimistisch eingeschaltete Röhrchen wird sodann entfernt, und an die mit Blut gefüllte Arterienkanüle der Lunge der das Blut zuführende Schlauch unter Vermeidung von Lufteintritt angesetzt, die Klemme 10 langsam geöffnet, Klemme 4 dahingegen wieder ganz, Klemme 2 aber so weit geschlossen, daß das Manometer m_4 einen Druck von $20\ mm$ mit einer Pulsschwankung von $10\ mm$ Hg zeigt.

Es tritt nun das Blut in die Lunge ein und füllt deren Gefäße. Sobald das Blut aus der Venenkanüle zu treten beginnt, wird diese mit dem zum Maßgefäß führenden Schlauche verbunden, so daß das aus der Vene abfließende Blut vom Herzen a_2 wieder angesaugt werden kann. Da beim Füllen der Gefäße der Lunge der Blutdruck meist stark absinkt, so muß nun durch Öffnen von Klemme 14 für Zufuhr neuen Blutes gesorgt werden, doch ist stets darauf zu achten, daß der Blutdruck nicht über $30 \ mm$ steigt, da es sonst leicht zu Hämorrhagien in der Lunge kommt. Jetzt wird die Trachealkanüle mit der für die künstliche Atmung bestimmten Vorrichtung durch das Rohr R in Verbindung gesetzt. Man kann sich

zur Herstellung der künstlichen Atmung der Lunge eines Münckeschen Trommelgebläses bedienen, in dessen Luftstrom ein Miescherscher Atemschieber eingeschaltet wird, welcher durch Unterbrechung der Zufuhr von komprimierter Luft die Lunge in beliebigen Zeitintervallen abwechselnd aufbläst und ihr dann unter Entweichen der Luft durch die Klemme 15 wieder zusammenzufallen gestattet. Die Stärke der Lufteintreibung wird in diesem Falle durch die an dem T-Rohr befindliche Klemme 15, wie bei der gewöhnlichen künstlichen Atmung reguliert, und es ist zweckmäßig, bei dieser Art der Atmung die Lunge zwar ergiebig, aber doch nicht ad maximum aufzublasen und die exspiratorischen Pausen so einzurichten, daß die Lunge Zeit hat, wieder so weit zusammenzufallen, daß einerseits ein ergiebiger Luftwechsel, andrerseits aber keine Überdehnung derselben stattfindet. Während der Atmung nimmt bei ihrer Entfaltung die Lunge meist weiteres Blut auf, so daß eine neue Zufuhr aus dem Reservoir nötig wird.

An Stelle dieser die Lungen leicht etwas schädigenden Lufteinblasung kann man eine der natürlichen Atmung ähnliche Ventilierung der Lunge

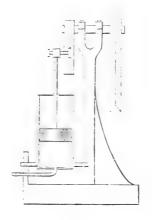


Fig. 102.

treten lassen, bei welcher die Luft wie im Brustraume des lebenden Tieres unter negativem Druck einströmt, wenn man folgendermaßen verfährt: Man bringt die Lunge in eine Schale, wie sie Fig. 104 E₂ zeigt, deren aufgeschliffener Deckel einen luftdichten Verschluß erlaubt, und bei welcher die das Blut führenden Leitungsröhren ebenso wie das die Trachealkanüle mit der äußeren Luft verbindende und endlich das in das Wasser der Schale eintauchende weite Rohr P luftdicht eingesetzt sind.

Man verbindet dann dieses letztgenannte Rohr P mit einer ventillosen Pumpe (Fig. 102), welche bei der Auf- und Niederbewegung ihres Stempels abwechselnd Wasser aus der Schale ansaugt und wieder in dieselbe zurücktreibt. Beim Ansaugen des Wassers wird ein negativer Druck

in der Schale entstehen, welcher zur Folge hat, daß durch das mit der Trachea verbundene Rohr von außen Luft in die Lunge einströmt und dieselbe entfaltet. Wird dann nach dieser Inspiration das Wasser wieder in die Schale zurückgetrieben, so wird durch die nun in derselben eintretende Verminderung des negativen Druckes die Luft aus der Lunge verdrängt und unter Kollabieren der Lunge wird es zu einer Exspiration derselben kommen.

Die Pumpe kann man von dem gleichen Motor treiben lassen, welcher die Herzwippe bewegt. Ist ihr Stempel mit der seine Auf- und Niederbewegung bewirkenden Exzenterscheibe so verbunden, daß seine Exkursion variiert werden kann, so ist man auch in der Lage, die Größe der Atemzüge nach Belieben zu variieren. Zweckmäßig wird es sein, zunächst die

Lunge sich etwas entfalten zu lassen, indem man bei geschlossener Schale eine entsprechende Menge Wasser abfließen läßt und dann erst die die Atemschwankungen erzeugende Pumpe ansetzt. Man kann selbstverständlich eine solche Pumpe auch zur Atmung mittelst einfacher Einblasung benutzen, wenn man sie mit den entsprechenden Ventilen versieht.

Ist die Lungenzirkulation instand gesetzt, so wird in das linke System in gleicher Weise das betreffende Organ eingeschaltet. Sobald auch hier die Zirkulation hergestellt und der Blutdruck auf 100-120 mm gebracht ist, wird der Hahn H um 90° gedreht, was durch eine am Hahngriff angebrachte Sperryorrichtung ohne Schwierigkeit zu erzielen ist. Hierdurch werden die beiden Systeme in der oben beschriebenen Weise derart verbunden, daß das aus der Vene des Organs austretende dunkel venöse Blut von der Herzpumpe a_2 der Lunge, das aus der Lungenvene fließende, schön hellrote arterialisierte Blut von der Herzpumpe a, angesaugt dem Organe wieder zugeführt wird, wie dies auf Fig. 101 durch die Schraffierung angedeutet ist. Es bleibt nun nur noch die Regulierung der Pulse und des Blutdrucks übrig durch Öffnen oder Schließen der Klemmen 1, 2, 3, 4. Wenn nicht Blutverluste eintreten, zirkuliert die eingebrachte Blutmenge stundenlang durch beide Organe, indem die dunkel auf der Zeichnung gehaltenen Teile mit venösen, die heller schraffierten mit schön arteriellisiertem Blute gefüllt sind. Es kann ein geringes Absinken des Blutdruckes auch eintreten, wenn es sich um Durchblutung einer Niere handelt, sofern aus den stets mit Kanülen zu versehenden Ureteren größere Flüssigkeitsmengen austreten, auch durch die Atmung scheint das Blut etwas Wasser zu verlieren, wodurch ebenfalls ein Sinken des Blutdruckes eintreten kann. Alle diese Verluste können ohne Störung dadurch ergänzt werden, daß man durch Öffnen der Klemme 13 aus dem Reservoir F entsprechende Blutmengen in den Lungenkreislauf ansaugen läßt. In dieses Reservoir kann auch das durch Blutung aus den Organen verloren gegangene und auf Unterlagen aufgefangene Blut wieder zurückgebracht werden. Sollen Lösungen dem Blute zugesetzt werden, so injiziert man dieselben am besten mit einer Injektionsspritze von Klemme 15 aus in das zirkulierende Blut.

Soll der Apparat nach beendetem Versuche und behufs Untersuchung des Blutes entleert werden, so werden, nachdem der Hahn H wieder in die Parallelstellung (Fig. 101a) gebracht ist, zunächst nach Schließen der Klemmen 9 und 10 an Stelle der Organe wieder die Schaltröhrchen eingesetzt. Man öffnet dann die Klemmen 9, 10, 15, 17, 13 und 14 sowie die Hähne an den Maßgefäßen D_1 und D_2 und schließt Klemme 11 und 12. Unter den Abfluß U wird das für die Aufnahme des abfließenden Blutes bestimmte Gefäß gesetzt. Es saugen nun die Herzpumpen zunächst den eventuell im Reservoir F enthaltenen Rest des Blutes $^{(1)}$ und dann Luft an

 $^{^{1}}$) Soll derselbe besonders abgelassen werden, so geschieht dies vorher, indem bei Verschluß der Klemmen 13, 14, 15, 17 Klemme 16 geöffnet wird, worauf sich bei U der Inhalt von F entleert.

und treiben alles Blut durch die Meßgefäße und die geöffneten Klemmen 15 und 17 aus. Durch Einbringen von Kochsalzlösung in das Reservoir und zeitweiliges Öffnen von 3 und 4 sowie 11 und 12 lassen sich die zurückgebliebenen Blutreste völlig ausspülen, so daß man auch für quantitative Bestimmungen die gesamte Blutmenge bequem ohne Verluste aus dem Apparate wieder gewinnen kann.

Ist das Blut durch Kochsalzlösung ausgespült, so kann man den Apparat noch einige Zeit mit gewöhnlichem Wasser nachspülen. Er ist dann für eine neue Durchblutung gereinigt, nur muß man vor derselben nun noch einmal mit Kochsalzlösung die Reste zurückgebliebenen gewöhnlichen Wassers ausspülen. Eine gründliche Reinigung, bei welcher die Teile auseinander genommen werden müssen, ist, wenn die Ausspülungen in der beschriebenen Weise gründlich und stets zuerst mit Kochsalzlösung vorgenommen werden, erst nach mehreren (5–6) Durchblutungen erforderlich.

Die Zirkulationswage.

Es wird jede Berührung des Blutes mit Luft, zumal bei der Messung des die Organe passierenden Luftstroms, vermieden und an Stelle der

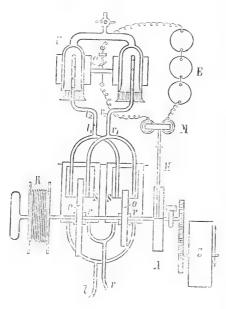
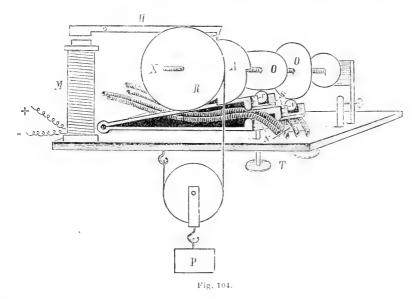


Fig. 103.

bisher angewandten Meßgefäße D_1 und D_2 eine Vorrichtung gesetzt, die den Blutstrom unter völligem Abschluß der Luft kontinuierlich zu messen und zu registrieren gestattet.

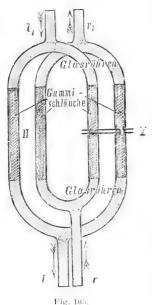

Der Apparat, wie ihn Fig. 103 von oben gesehen veranschaulicht, besteht aus 2 Hauptteilen, welche in Fig. 104 und 106 getrennt schematisch in Seitenansicht wiedergegeben sind. Den einen Teil bildet ein Stromwender mit einer Doppelklemme (Fig. 104), welche vier nebeneinander laufende Gummischläuche paarweise abwechselnd durch Kompression zu verschließen öffnen erlaubt. Schläuche sind in der auf Fig. 105 veranschaulichten Weise so miteinander verbunden, daß bei Verschluß des Paares I Zuleitungsrohr r und r_1

und das Ausflußrohr l mit l_1 verbunden ist, während bei Verschluß von Paar II r mit l_1 und l mit r_1 , also beide über Kreuz verbunden sind.

Der Verschluß und die Öffnung der beiden Schlauchpaare geschieht durch die zwei auf Fig. 104 sichtbaren, in ihren freien Enden mit abgerundeten Wülsten versehenen Scharniere S, deren unterer Teil durch eine Schraube T

in beliebiger Stellung fixierbar, deren Oberteil je mit einer Rolle r versehen ist, über welche die beiden, an einer gemeinsamen Achse befestigten ovalen Scheiben OO laufen, so daß sie die beweglichen Schenkel der Scharniere abwechselnd niederdrücken und wieder durch die Elastizität der zwischen ihren Wülsten durchgezogenen Gummischläuche auffedern lassen. Die beiden ovalen Scheiben sind an der gemeinschaftlichen Achse so befestigt, daß die langen Achsen der Ovale senkrecht zueinander stehen und also jedesmal, wenn das eine Oval mit der zugehörigen Scharnierklemme das eine Schlauchpaar durch Kompression verschließt, das andere Oval dem zu ihm gehörigen Scharnier erlaubt, sich zu heben, so daß das betreffende Schlauchpaar dadurch für den Strom durchgängig wird.

An der gleichen Achse wie die ovale ist eine mit vier Zahneinschnitten versehene runde Scheibe \mathcal{A} (Fig. 104) so befestigt, daß die vier Einschnitte



den vier Enden der beiden langen Achsen der Ovale, d.h. den Stellungen entsprechen, bei welchen je ein Schlauchpaar ad maximum geöffnet, das andere geschlossen ist. Über dieser letzten Scheibe schleift ein Sperrhaken H, welcher an dem Anker eines Elektromagneten M befestigt ist. so daß, sobald der Magnet den Anker anzieht, der Sperrhaken aus dem Einschnitt der Scheibe gehoben wird und sich die Achse durch den Zug eines Gewichts P, das auf die an ihr befestigten Rolle R einwirkt, zu drehen beginnt und erst zum Stehen kommt, wenn der Sperrhaken H wieder in einen Einschnitt des Arretierungsrades A einfällt.

Da bei jeder Drehung der Achse um 90° die Verbindung der beiden Röhrenpaare r l und r_1 l_1 derart geändert wird, daß einmal die gleichseitigen Röhren r und r_1 , l und l_1 parallel, dann wieder die ungleichseitigen

r und l_1 und l_2 und l_3 überkreuz verbunden werden, so bietet diese Vorrichtung Gelegenheit, bei Zuleitung eines konstanten Flüssigkeitsstromes von zwei getrennten Reservoiren abwechselnd gleichzeitig das eine zu füllen, das andere zu entleeren. Wenn jedesmal in dem Moment, in dem das eine Reservoir sich gefüllt und das andere sich gleichzeitig entleert hat, die Stromrichtung sich durch $^1/_4$ Drehung der Achse umkehrt, so wird der Zufluß mit dem leeren, der Abfluß aber mit dem vollen Reservoir verbunden.

Dies zu erreichen, dient der zweite, auf Fig. 106 wiedergegebene Teil des Apparats, welcher aus einer U-förmigen Glasröhre U besteht, die mit

ihren beiden parallelen Schenkeln auf den viereckigen Schalen einer kleinen Brückenwage Wruht. Die Ränder der Schalen sind rechtwinklig in die Höhe gebogen und stellen oben in scharfe Kante auslaufend je zwei Schneidepaare dar auf denen sich die Röhren bei der Auf- und Niederbewegung der dabei ihre horizontale Stellung beibehaltenden Wagschalen ohne Reibung abzurollen vermögen.

Die **U**-Röhre von etwa 3—4 cm Durchmesser ist an ihren beiden Enden durch je einen Gummikorken geschlossen, welcher in der Mitte eine Röhre durchtreten läßt, die im Innern des Rohres einen mit mehreren Seitenöffnungen versehenen Schlauch von etwa 10 cm Länge trägt. Über diese beiden Schläuche ist beiderseits ein am Gummikork fest anliegender länglicher Beutel aus ganz dünnem, weichem Gummi gezogen, welcher nach dem Einsetzen der Korke in das Rohr die durch den durchlochten Schlauch eintretende Flüssigkeit innerhalb des **U**-Rohres

absperrt, sich aber entsprechend dem Zu- oder Abfluß von Flüssigkeit ohne irgend einen nennenswerten Widerstand zu bieten, entfalten und zusammenlegen kann. Der zwischen den beiden Ballons liegende Raum läßt sich nun von einem an der Mitte der Krümmung des U-Rohres gelegenen und mit einem kleinen Hahn versehenen Ansatzröhrchen aus mit einer kalt gesättigten Chlorcalciumlösung füllen. Wird diese Füllung des Rohres mit Chlorcalcium vorgenommen, während der eine Ballon mit Flüssigkeit (Blut, Kochsalzlösung) gefüllt, der andere dagegen leer ist, so muß nun zunächst beim Auflegen des U-Rohres auf die Wage die mit dem das Chlorcalcium enthaltenden Schenkel belastete Wagschale infolge des höheren spezifischen Gewichtes dieser Lösung niedersinken beim Eintreiben von Flüssigkeit in den bisher leeren Ballon und bei dessen Entfaltung wird die Chlorcalciumlösung in den anderen Schenkel der U-Röhre getrieben werden und hierdurch einerseits die Entleerung des bis dahin

gefüllten Ballons herbeiführen, andrerseits aber nun auch infolge ihres höheren spezifischen Gewichtes die andere Wagschale zum Sinken bringen.

Die beiden aus jenen Gummiballons durch die beiden Korke austretenden Röhren r_2 und l_2 (Fig. 106), welche zunächst in horizontaler Ebene nach innen rechtwinkelig gebogen sind, dann aber nach beiderseitiger abermaliger rechtwinkliger Biegung hart nebeneinander parallel und horizontal verlaufen, sind mit den beiden in gleicher horizontaler Ebene sich befindenden Röhren r_1 und l_1 des den Strom wendenden Kompressoriums (Fig. 105) durch zwei etwa 20 cm lange Gummischläuche beweglich verbunden.

Fließt z. B. bei Kompression des Schlauchpaares l (Fig. 105) durch die Röhren $r,\ r_1,\ r_2$ das Blut zum rechten Gummiballon des **U**-Rohres, so

wird es hierbei die Chlorcalciumlösung in den linken Schenkel des U-Rohres hinübertreiben, und es muß entsprechend dem Zufluß auf dieser Seite gleichzeitig zu einem Abfluß der Flüssigkeit aus dem linken Gummibeutel durch die Röhren l_2 , l_1 , lkommen. Bei dieser Entleerung des Ballons auf der linken Seite und bei dem damit verbundenen Übertritt der Chlorcalciumlösung in diesen Schenkel des U-Rohres nimmt aber entsprechend der Differenz der spezifischen Gewichte des Blutes und jener gesättigten Chlorcalciumlösung

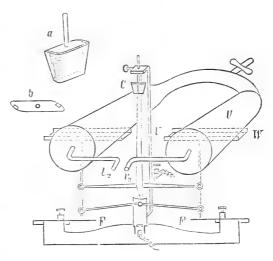


Fig. 106.

das Gewicht auf dieser Seite zu, auf jener sich mit Blut füllenden ab, es wird also entsprechend der Entleerung des linken Ballons die Schale dieser Seite niedersinken und die Zunge der Wage einen Ausschlag nach links bekommen. Es befindet sich in der Ebene, in welcher sich das obere Ende der aus einem feinen federnden Stahlstreifen hergestellten Wagezunge sonst frei hin- und herbewegt, eine nach unten keilförmig zulaufende, etwa 1—1.5 mm dicke Hartgummiplatte, wie sie Fig. 106 a schräg von vorn, Fig. 106 b von oben zeigt. An ihrer seitlichen, in der aus Fig. 106 a ersichtlichen abgerundeten Kante sind in der Rundung beiderseits Platinstreifen, einen Teil der glatten Rundung bildend, eingelassen. Diese etwa 0.5 mm breiten Streifen stehen in leitender Verbindung mit dem in der Mitte der Platte befindlichen Messingstifte, der seinerseits bestimmt ist, die Platte mittelst einer Schraube in entsprechender Stellung an der kleinen Messingsäule V (Fig. 106) zu fixieren.

Diese Platte wird zur eigentlichen Schwingungsebene der Wagenzunge etwas schräg gestellt, so daß die Zunge, wenn sie einen Ausschlag nach jener Seite macht, auf welcher die Platte ihre Schwingungsebene schneidet, gezwungen wird, an der Hartgummiplatte federnd entlang zu gleiten, wobei sie aus ihrer eigentlichen Bahn gedrängt wird. Sobald sie aber mit ihrer Spitze das Ende der Platte erreicht hat, gleitet sie über die abgerundete Ebene in ihre ursprüngliche Schwingungsebene, also auf die andere Seite der Platte ab und streift dabei über den dort angebrachten Platinstreifen. Verbindet man die Wage mit der an ihr leitend befestigten Zunge mit dem einen Pole einer elektrischen Batterie und führt von dem anderen Pole dieser Batterie die Leitung durch den Elektromagneten des Stromwenders zu dem isolierten, die Richtungsplatte tragenden Metallsäulchen V, so wird, sobald die Zunge über den Kontakt der Abrundung der Hartgummiplatte abgleitet, für einen Moment der Stromkreis geschlossen sein und es genügt dies, um von dem Elektromagneten durch das Anziehen seines Ankers den Sperrhaken H auslösen zu lassen, so daß die die ovalen Scheiben O tragende Achse durch das Gewicht in Bewegung versetzt wird. Diese Bewegung wird aber schon nach einer Vierteldrehung wieder arretiert, da mit dem Abgleiten der Zunge von der Hartgummiplatte der Strom auch sogleich wieder geöffnet wird, so daß der Magnet den Anker frei gibt und der Sperrhaken durch eine Feder in den nächsten Einschnitt des Sperrades einfällt. Da durch die ausgeführte Drehung der Achse um 90° die Richtung des Blutstromes umgekehrt worden ist, so wird es jetzt zur Füllung des eben entleerten Ballons und zu einer Austreibung des Inhaltes des vorher gefüllten Ballons kommen, bis infolge des hierdurch wieder nach der anderen Seite hin verlegten Übergewichts jene Wagschale soweit hinabgesunken ist, daß die Wagenzunge nun auf der anderen Seite der Kontaktplatte abgleitend von neuem die Umschaltung des Stromes durch Auslösung einer weiteren Vierteldrehung bewirkt.

Es ist klar, daß bei der Wage, wie dieselbe bisher beschrieben wurde, der die Stromumschaltung bedingende Kontakt jedesmal zustande kommen wird, sobald die Gewichtsdifferenz auf beiden Seiten genügt, um die verschiedenen, durch die Anordnung des Apparates bedingten konstanten Widerstände, wie die Reibung der Wagenzunge durch den Kontakt, den Torsionswiderstand der das **U**-Rohr mit dem Kompressorium verbindenden Schläuche usw., zu überwinden.

Da nun diese Widerstände verhältnismäßig klein sind, so würde die Umschaltung jedesmal schon durch den Eintritt geringerer Flüssigkeitsmengen eintreten, als für den Zweck einer längeren Strommessung erwünscht ist, wo die einzelne Umschaltung am besten nach einem Volumenwechsel von 50 cm³ erfolgt, außerdem aber gleitet die Zunge, wenn sie die Kante überschritten und der durch ihre Federwirkung gesetzte Widerstand damit plötzlich nachläßt, leicht zu schnell ab, um einen für die Auslösung des Sperrhakens genügenden Stromschluß herzustellen. Um diesen Übelständen ab-

zuhelfen, wurden unter den Wagschalen die beiden Federn F (Fig. 106) angebracht, auf welche der Führungsstab der Wagschalen beim Niedersinken stößt. Diese Federn bilden einen weiteren Widerstand, der je nach der Stärke der benutzten Federn und nach der variierbaren Länge derselben beliebig vergrößert oder verringert werden kann. Hierdurch wird es möglich, die Wage so einzustellen, daß die Umschaltung des Stromes jedesmal bei einer ganz bestimmten Menge des eingeflossenen Blutes eintritt, und damit ist die Möglichkeit einer Messung gegeben.

Da die Zahl der ausgeführten Umdrehungen der die ovalen Scheiben tragenden Achse durch Übertragung auf ein Zeigerwerk dort abgelesen werden kann, so ist ohne Schwierigkeit die Menge des durch den Apparat geflossenen Blutes am Schlusse eines Versuches zu bestimmen. Man braucht nur die Zahl der ausgeführten Vierteldrehungen mit der jeder Umschaltung entsprechenden Blutmenge zu multiplizieren. Es erlaubt aber die Anordnung auch, die Stromgeschwindigkeit graphisch darzustellen und ihre Veränderungen hierdurch genau zu kontrollieren. Zu diesem Zwecke schaltet man in den Stromkreis, welcher den Elektromagneten versorgt, noch ein elektrisches Signal ein, dessen Feder die jedesmaligen Umschaltungen neben einer die Zeit markierenden Schreibvorrichtung auf den laufenden Papierstreifen eines Ludwigschen Kymographion markiert. Da sich ferner an dem gleichen Kymographion die Blutdruck- und Pulskurve mittelst eines Manometers auftragen läßt, so ist Gelegenheit geboten, bei der künstlichen Durchblutung die Abhängigkeit der Stromgeschwindigkeit von dem Blutdruck und der Art der Pulsschwankungen in objektiver Weise darzustellen. Da die Zirkulationswage dem Strome keinerlei Widerstand bietet, und da die Pulsschwankung und der Druck sich durch dieselbe fortzusetzen vermögen, so wird durch den Apparat an sich der Strom nicht wesentlich verändert werden, und es können vielleicht gröbere Schwankungen in der Menge des durchfließenden Blutes auf diese Weise nachgewiesen werden.

b) Durchblutungsapparat von Brodie. 1)

Dieser Apparat ist sehr viel einfacher und billiger als der Jacobjsche, besitzt aber trotzdem, soweit mir bekannt, viele der Vorzüge, allerdings mit Ausnahme der weniger ausgiebigen Arterialisierung. Dieser Übelstand tritt störend bei Durchblutung von Extremitäten hervor, während für die Niere, den Darm, die Leber usw. die Sauerstoffversorgung vollkommen ausreicht. Die Druckregulierung, die Temperaturkonstanz des einströmenden Blutes, die Möglichkeit der Messung der Stromgeschwindigkeit ist jedoch in vollkommenster Weise erreichbar. Seine Grenzen findet der Apparat weniger in Mängeln der Konstruktion, als in der eben bei Durchblutung mit defibriniertem Blut oder Salzlösung nach einigen Stunden stets auftretenden Gefäßschädigung. Der Apparat (Skizze Fig. 107) besteht aus

T. G. Brodie, The perfusion of surviving organs. Journ. of Physiol. Vol. 29. p. 267 (1903).

einem Blutreservoir A von etwa 500 cm³ Fassungsraum, in welches der den Druck liefernde Sauerstoff aus einer Bombe unten einströmt. Das Gas passiert dann eine Schäumungsvorlage (W, Fig. 108) und durch eine T-Leitung, deren Höhe verstellbar, ein Maximumventil X in Gestalt eines mit Quecksilber gefüllten schmalen Zylinders, an das sich ein Manometer anschließt. Das Blutreservoir steht in einem auf konstanter Temperatur gehaltenen Wärmekasten; eine möglichst kurze Leitung (3—4 mm weit) führt zu der Arterie des Organs. In sie ist (in Fig. 107 weggelassen, in Fig. 108 vorhanden) ein T-Rohr R eingeschaltet, das mit Quetschhähnen abschließbar direkt unter Umgehung des Organs zur venösen Leitung führt. Außerdem befindet sich vor der Arterie ein etwa 6 cm langes und 1 cm weites Rohr T mit Glaswolle zum Abfangen der Gerinnsel und eine kleine, birnförmige Er-

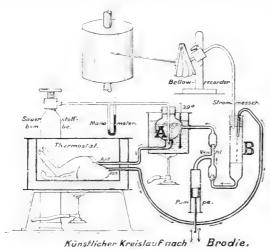


Fig. 107.

weiterung U mit seitlicher Öffnung zum Abfangen und Entleeren der Luftblasen. beide kurz bevor das Blut in das Organ eintritt. Die zuführende Bahn S kann an verschiedenen Stellen durch Ouetschhähne abgeschlossen werden. Aus der Vene strömt das Blut in einer Glasleitung zu einem Zylinder (B, Fig. 107, resp. N. Fig. 108) von etwa 10 cm Höhe und 2 cm Weite, der oben luftdicht einen dreifach durchbohrten Gummistopfen verschlossen ist (eine Öffnung fehlt in der Figur 108). Durch die eine

Bohrung führt das soeben genannte, das venöse Blut zuführende Rohr Q, durch die zweite ein kurzes Rohr, das durch einen Gummischlauch mit dem \mathbf{T} -Rohr R und der Zuflußleitung S in Verbindung steht. Durch die dritte Öffnung geht ein Glasrohr O, das zu einem zuvor geeichten Rekorder (echtem Volumschreiber) führt. Der Zylinder N verengt sich unten (M) und mündet in die eine Hälfte eines Ventilapparates ein. Dieser besteht aus einem kurzen \mathbf{T} -Rohr, an das sich jederseits ein etwas weiteres Rohr $(5-7\,mm)$ weit, $2-3\,cm$ lang) anschließt, das auf der einen Seite konisch zugeht. In die konische Öffnung paßt ein konisch zugeschliffenes Glastückehen. Die Ventile müssen so gearbeitet sein, daß sie außerordentlich leicht gehen und auch ohne Flüssigkeit fast vollkommen luftdicht, mit Flüssigkeit absolut wasserdicht schließen. Das \mathbf{T} -Rohr des Ventils (H) in Fig. 108) steht mit einer kleinen Pumpenvorrichtung in Verbindung, etwa einer $10\,cm^3$ fassenden Spritze (G), die behufs Reinigung vollkommen auseinander zu nehmen ist, und in der sich ein (am besten Metall in Metall

oder auch Glas in Glas gehender) auch ohne Dichtung mit Vaseline luftdicht schließender Stempel auf- und abbewegt. Die Kolbenstange des Stempels trägt einen Kopf F, welcher durch zwei seitliche Verschraubungen in einer halbkreisförmigen Metallspange D befestigt wird. Diese Spange wird durch eine Stange C, die an einer etwa $10\ cm$ langen, um eine horizontale Achse drehbaren Spindel sitzt und ihrerseits von dem Exzenter eines Elektro-

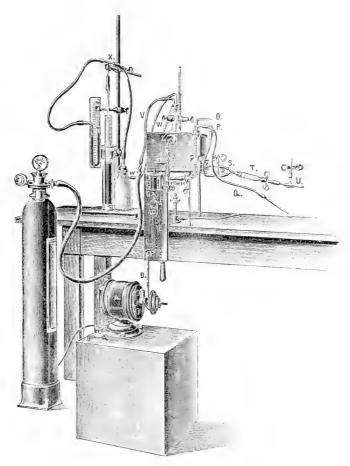


Fig. 108.

motors A und Stange B bewegt wird, in vertikaler Richtung auf- und abbewegt (s. Fig. 108).

Die Spritze wird durch zwei Metallspangen G auf einem Holzklotz festgehalten, der an dem Tischrand in vertikaler Richtung verschieden hoch angeschraubt werden kann (E). Grobe Verschiebungen des Pumpenhubes erzielt man durch Versetzen dieses Laufbrettes, die feineren durch Schrauben an

der Schraube der Spindel C. die sich unter der vertikalen Drehachse leicht zugänglich befindet. Es ist ein ganz besonderer Vorzug des Apparates, daß man das Spiel der Pumpe und damit die Durchblutung mit Hilfe dieser Mikrometerspindel sehr fein regulieren kann, ohne daß dabei die Durchblutung unterbrochen zu werden braucht. Die Pumpe treibt das Blut in der in der Skizze (Fig. 107) durch Pfeile angedeuteten Richtung durch das eine Ventil heraus nach A zurück und erhöht den Druck in A periodisch, so daß das Blut stoßweise ausfließt. Je nachdem die Pumpe den Zylinder B schneller entleert als Blut von oben in ihn hineintropft, wird der Luftraum über dem Blut in B wachsen oder abnehmen. Dementsprechend zeigt der Rekorder, der mit dem Luftraum von B luftdicht verbunden ist (O in Fig. 108), einen Anstieg bei stärkerer Blutzufuhr als Abfluß der Pumpe. einen Fall bei schwächerem Zutropfen und relativ stärkerem Arbeiten der Pumpe. Das Organ selbst befindet sich in einem auf konstanter Temperatur gehaltenen Wärmekasten. Man braucht bei den beschriebenen Dimensionen und möglichst kurz gehaltenen Leitungen aus Glas mit Gummi-Zwischenstücken etwa 30-35 cm3 Blut für Durchströmung der hinteren Extremitäten oder der Niere von Kaninchen oder Katze bei einem Druck von etwa 80 mm Hg, für die Lunge und den Darm etwa ebensoviel bei einem Druck von 30 mm Hg, für die Leber etwas mehr. Da man von einer Katze bequem 60-80 cm³ Blut bei einem Körpergewicht von 1.5 kg gewinnt, so kann man mit dieser Menge, die man aber noch ein wenig durch Kochsalzlösung erhöhen kann, auf das bequemste auskommen.

Will man die Stromgeschwindigkeit messen, so eicht man den Rekorder zunächst in der Art, daß man auf der Trommel des Kymographions zwei Abszissen zieht, deren Abstand einer Füllung von 1, 2 bis 5 cm³ Luft in dem Rekorder entspricht. Läßt man dann während der Durchblutung das Kymographion laufen und verzeichnet das Zufließen des Blutes in den Zylinder B bei bestimmtem, konstant gehaltenen Pumpenhub oder bei Stillstand der Pumpe unter gleichzeitiger Registrierung der Zeit, so beschreibt der Rekorder, wenn die Pumpe angehalten war, eine je nach der Schnelligkeit der Umdrehung der Trommel und des Einlaufs des Blutes verschieden steil ansteigende gerade Linie, oder wenn die Pumpe arbeitete, eine ansteigende, mit Pulsen versehene Linie. Läßt man sie die zuvor gezogenen Abszissen schneiden, so weiß man, unter Benutzung der Zeitmarken, in welcher Zeit die durch die Abszissenentfernung gegebene Blutmenge aus dem Organ bei dem herrschenden Druck ausgeflossen ist. Die Messung ist bei schneller Umdrehung der Trommel außerordentlich genau.

Handelt es sich darum, chemische Umsetzungen im durchbluteten Organ zu studieren, so kann der Brodiesche Apparat leicht entsprechend modifiziert werden. Es bedarf dann keiner so feinen Verstellvorrichtung an der Pumpe. Eine am Motor angebrachte Friktionsscheibe mit verstellbarem Übertragungspunkt nach Art der Übertragung am Trommelkymographion reicht aus. Die Pumpe wird auf einem horizontalen Brett neben dem Motor fest montiert und kann, wenn man etwas mehr Blut zur Ver-

fügung hat, von dem Ventilapparat entfernt aufgestellt und durch eine längere Leitung verbunden werden. Ferner muß die Arterialisierung besonders ausgiebig sein. Man leitet den Sauerstoff sehr gut durch ein nach unten umgebogenes Seitenrohr in das Rohr N ein, legt noch eine zweite Vorlegeflasche von Gestalt des Blutreservoirs L (Fig. 108) in horizontaler Lage zwischen L und W vor, so daß auch starkes Schäumen keine Verluste bringt, und sorgt besonders für restlose Gewinnung von so übergehendem oder sonst austretendem Blut. So versieht man den im Wasser

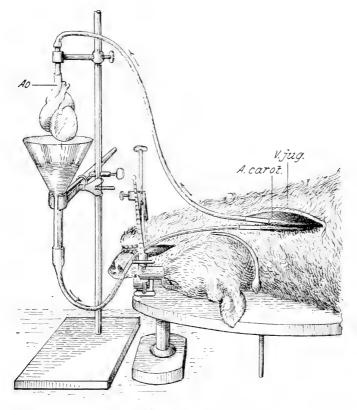


Fig. 109.

von 37° stehenden Kasten, in dem das Organ liegt, mit schrägem Boden und leitet das abfließende Blut durch Saugpumpwirkung in das Blutreservoir zurück. Auch mehrere Pumpen für mehrere nebeneinander zu durchblutende Organe lassen sich leicht eng nebeneinander anbringen. Weiter kann man die Ventile entbehren, wenn man mit 2 Pumpenstiefeln arbeitet, von denen der eine drückt, der andere saugt.

Bisweilen empfiehlt es sich, das Blut in N und L auf kleine Siebe aus Gaze tropfen zu lassen, an denen feine Gerinnsel hängen bleiben.

Der Apparat wird jedesmal nach dem Gebrauch auseinander genommen, von allen Gerinnselresten befreit und sehr sorgfältig gereinigt, was in wenigen Minuten geschehen ist, auch muß stets frische, mit Wasser durchspülte Glaswolle (zur Entfernung kleiner Fäserchen) in den Gerinnselfänger T vor dem Versuch gebracht werden. Vor dem Beginn der Durchspülung füllt man alle Teile zunächst luftfrei mit Kochsalzlösung, die man durch Blut verdrängt.

c) Durchblutungsverfahren von Heymans und Kochmann. 1)

Bei diesem dient das eine von zwei Tieren der gleichen Art als Blutspender, während das Organ des zweiten (dieses zweite Tier muß etwa

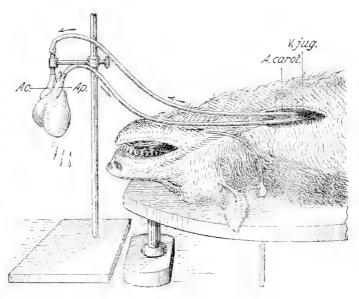


Fig. 110.

½mal so schwer sein wie das erste) durch seine Arterie mit der Karotis des ersten in Verbindung steht und das abtropfende Blut (beim Herzen) durch einen Trichter oder das aus den Venen ausströmende direkt in die Jugularis des Blutspenders zurückfließt. Man tötet das Tier, dessen Organ man benutzen will, durch einen Stich in das verlängerte Mark, leitet künstliche Atmung ein, bindet Kanülen beim Herzen etwa in die Aorta und die Arteria pulmonalis und unterbindet alle anderen Gefäße sorgfältig. Das blutliefernde Tier ist inzwischen narkotisiert, aufgebunden und bei ihm die Karotis und Jugularis in ihren zentralen Teilen mit Kanülen versehen. Die Kanülen sind

¹) Une nouvelle méthode de circulation artificielle à travers le coeur isolé de mammifère. Archives internat, de pharmacodynamie. T. 13, p. 379 (1904).

aufs sorgfältigste luftfrei mit *Ringersc*her Lösung gefüllt, ebenso die Verbindungsschläuche (Fig. 109, 110). Will man die Wirkung von Giften studieren, so bindet man eine Kanüle in die Beinvene, will man arterielle Blutproben entnehmen, eine solche in die Beinarterie.

Man muß bei dieser Methode besonders genau darauf achten, daß keine Luft in das Organ hineingelangt, muß also die zuführenden Gefäße vor der Verbindung mit dem Organ des anderen Tieres absperren und die Verbindungen aufs sorgfältigste gefüllt halten. Dann gelingt es oft, wenn auch nicht immer, eine sehr regelmäßige Tätigkeit zu erzielen. Bisweilen aber mißlingt der Versuch doch, da nach kurzer Zeit ohne bestimmten Grund Gerinnselmassen sich bilden oder wenn das Herz benutzt wird, Flimmern auftritt.

Dieses Herzflimmern, das sich auch bei der *Langendorff* schen Anordnung störend bemerkbar machen kann, legt sich bisweilen durch plötzliche, kurzdauernde. starke Erhöhung des Druckes, durch Injektion einiger Kubikzentimeter Kampferöl, oder nach *Langendorff* durch kurz dauernde Absperrung der Blutzufuhr.

C. Stoffwechseluntersuchungen an überlebenden Organen.

Von S. Baglioni, Rom.

In der folgenden Zusammenstellung sind nur Organe der Warmblüter berücksichtigt, und zwar deshalb, weil sie fast ausschließlich für die vorliegenden Untersuchungen in Betracht gekommen sind und wohl auch kommen werden. Eine Ausnahme bildet nur das Zentrahervensystem der Amphibien, von dem die Methode der Isolierung und der Erhaltung im überlebenden Zustande deswegen beschrieben ist, weil es bisher noch nicht gelingen wollte (die Möglichkeit ist nicht ausgeschlossen), es auch beim Warmblüter im überlebenden Zustande zu erhalten.

A. Allgemeines.

1. Theoretische Begründung.

Die in ihrer Gesamtheit betrachteten chemischen Vorgänge, welche sich im Innern der lebenden Organismen abspielen, zeichnen sich besonders durch ein Merkmal aus: nämlich durch ihre äußerst verwickelte Kompliziertheit. Ein nicht unwichtiger Grund dieser Erscheinung ist in dem Umstande zu erblicken, daß die einzelnen Vorgänge die Resultanten mehrerer chemischer Prozesse darstellen, die sich zugleich in den einzelnen, einigermaßen zerlegbaren und als homogen zu betrachtenden (weil aus gleichen Zellelementen bestehenden) Bestandteilen (Organe oder Gewebe) des Gesamtkörpers abspielen. Hat man nun vor, die gesamten Stoffwechselerscheinungen, die am ganzen unversehrten Tier nachweisbar sind, namentlich in bezug auf ihre Betriebsstätte, zu analysieren, so ist es naheliegend, ja geradezu geboten, die einzelnen Organe herauszuschneiden und mit ihnen allein weiter zu experimentieren.

Die erste Bedingung, die erfüllt werden muß, um einwandfreie Resultate zu erhalten, ist natürlich die, daß die vom Gesamtorganismus losgelösten Organe tatsächlich "überleben", d. h. Eigenschaften oder Merkmale zeigen, die ohne weiteres der Reihe der Lebenserscheinungen angehören. Infolgedessen hat man bei den einzelnen Organen nach einem leicht zugänglichen, einwandfreien und womöglich in seiner Intensität oder seinem Umfang

meßbaren "Lebenszeichen" (Indikator des Lebenszustandes) zu suchen, an der Hand dessen man imstande ist, zu verschiedenen Zeiten nach der Abtrennung aus dem Körper über den jeweiligen Grad der "Überlebung" des betreffenden Organs ein Urteil zu erhalten. Diese Aufgabe ist nun bei einigen Organen ziemlich leicht praktisch durchführbar, wie z. B. bei Muskeln oder Zentren, bei denen man die Prüfung der Kontraktionstätigkeit bzw. der Reflextätigkeit zur Verfügung hat. Bei anderen isolierbaren Organen hingegen ist ein derartiger Nachweis mit schwer überwindlichen Schwierigkeiten verbunden, wie z. B. bei Drüsenorganen, ganz besonders bei jenen. deren normale Funktion eine sogenannte innere Sekretion ist.

Aus dem Bestreben, diese Organe tunlichst lange Zeit und unter normalen inneren Bedingungen zu erhalten, kam man auf den naheliegenden Gedanken, die normalen Verhältnisse, welche die Organe im Körper aufweisen. künstlich wieder herzustellen. Auf diese Weise entstanden die zahlreichen, bisher beschriebenen Durchströmungs- oder Durchblutungsapparate (vergl. das vorhergehende Kapitel). Sie suchen den normalen Blutkreislauf nachzuahmen und namentlich die schädlichen Folgen der Asphyxie zu beseitigen. Trotz aller Bemühungen ist es jedoch einstweilen nicht möglich, die isolierten Organe länger als einige Stunden im brauchbaren "überlebenden" Zustand zu erhalten. Ja man ist sogar nach dieser Richtung nicht einmal berechtigt anzunehmen, daß die Erscheinungen, die bei der Mehrzahl der so behandelten Organe festzustellen sind, ohne weiteres mit denjenigen identisch sind, die dieselben mit dem übrigen Körper noch im Zusammenhang stehenden Organe normalerweise zeigen. Es spricht im Gegenteil vieles dafür, daß es sich dabei um Überbleibsel oder "Reste" von normalen Lebenserscheinungen handelt, die zudem auch nicht lange Zeit unverändert fortbestehen. Es tritt jedoch auch nicht sofort der Tod ein. Der Übergang vom Leben zum Tode ist ein allmählicher. In diesem Übergangsstadium treten Vorgänge auf, die als "nekrobiotische" oder Absterbeerscheinungen bezeichnet werden. Es wäre aber auch irrig anzunehmen, daß die durch diese nekrobiotischen Vorgänge erzeugten Erscheinungen ohne jede Bedeutung für die theoretische Erforschung der Lebensvorgänge wären, denn sie schließen das Rätsel der biochemischen Prozesse in sich ein. Im Gegenteil erscheinen sie sogar von vornherein von einem größeren Werte für die methodische Analyse des Stoffwechsels deswegen, weil sie vermutlich nur wenige Glieder der sonst so komplizierten Kette der Lebensvorgänge darstellen. Diese theoretische Anschauung wird durch die bisherigen unter Anwendung dieser Methodik erzielten Versuchsergebnisse bestätigt.

2. Allgemeiner Versuchsplan.

Abgesehen von den biophysikalischen Untersuchungen, die an überlebenden Organen ausgeführt worden sind und von denen hier nicht die Rede sein kann, wurden mehrere biochemische Fragen (Stoffwechselunter-

suchungen im weiteren Sinne des Wortes) unter Anwendung überlebender Organe zu lösen versucht. Der allgemein verfolgte Versuchsplan besteht etwa in Folgendem:

- 1. Die von der Tätigkeit der Organe hervorgerufenen qualitativen oder quantitativen Änderungen in den chemischen Bestandteilen der Durchströmungsflüssigkeit sucht man dadurch festzustellen, daß man die chemische Zusammensetzung vor und nach der Organwirkung, d. h. vor und nach der Durchspülung, vergleicht. Die Änderungen, d. h. die Stoffwechselerscheinungen, die hierbei theoretisch in Betracht kommen, sind etwa:
- a) Das Auftreten neuer Stoffe meist komplizierterer Struktur, die
 z. B. aus in der Flüssigkeit vorhandenen Bestandteilen durch synthetische Wirkung der Organe gebildet werden:

b) das Verschwinden in der Flüssigkeit vorhandener Stoffe, die durch die Tätigkeit der Organe irgendwie umgewandelt werden.

Sowohl im ersteren, wie im zweiten Falle können qualitative, ebenso wie quantitative Untersuchungen angestellt werden, bei denen die üblichen analytischen Methoden anzuwenden sind.

- 2. Da normalerweise einerseits nicht alle Umwandlungsprodukte in die durchströmende Flüssigkeit abgegeben werden, weil sie im Innern der Zellelemente in irgendeiner neuen Form aufgespeichert werden können, und andrerseits nicht alle von der Organtätigkeit verarbeiteten Stoffe aus der ernährenden zirkulierenden Flüssigkeit geschöpft werden, da sie auch im Innern der Zellelemente vorhanden sein können, so erstreckt sich die Aufgabe auch auf die analytische Verarbeitung der Organe selbst, deren Zusammensetzung vor und nach der experimentellen Behandlung ebenfalls durch die üblichen Methoden zu ermitteln ist. (Vgl. z. B. die neuerdings hierzu von W. Wiechowski vorgeschlagene Methode. Dieser Band, S. 282 ff. 1)
- 3. Damit die Folgen der Organtätigkeit am deutlichsten zutage treten, werden einige Kunstgriffe angewendet, die dahin zielen, die Tätigkeit der Organe selbst zu erhöhen oder die Dauer ihrer Überlebung zu verlängern. In ersterem Falle werden alle die Mittel verwendet, die bekanntlich die Lebensvorgänge steigern. Sie sind:
- a) Künstliche Reize. Hierher gehören namentlich die elektrischen Reize und die chemischen Reize, welch letztere meist in Form von Giften gegebenenfalls gute Dienste leisten können.
- b) Temperatur. Es ist eine nunmehr bekannte Tatsache, daß die Wärme bei Stoffwechselerscheinungen eine ausschlaggebende Rolle spielt. Man sollte also meinen, daß für solche Versuche eine hohe Temperatur (wie etwa 38—40°C) ausnahmslos die beste Bedingung darstelle. Die Vorteile der hohen Temperatur werden jedoch durch den Umstand eingeschränkt. daß sie durch Erhöhung des Atembedürfnisses der Gewebe die Überlebungs-

¹⁾ W. Wiechowski, Eine Methode zur chemischen und biologischen Untersuchung überlebender Organe. Hofmeisters Beiträge z. chem. Physiol. Bd. 9. S. 232—246 (1907).

dauer der isolierten Organe verkürzt. Wir werden in der Tat sehen, daß man neuerdings bei einigen Organen bessere Ergebnisse dadurch erzielt hat, daß man solche Untersuchungen bei Zimmertemperatur (15-- 20°C) ausführte.

- 4. Zu demselben praktischen Zwecke, die in der Durchströmungsflüssigkeit nachweisbaren Folgen der Organtätigkeit besser zutage zu fördern, dient schließlich der Kunstgriff, dieselbe, möglichst kleine Menge Ernährungsflüssigkeit mehrere Male durch das Organ durchströmen zu lassen. Bezüglich der Zusammensetzung dieser Flüssigkeit ist noch hervorzuheben, daß man im Verlauf solcher Untersuchungen allmählich die Notwendigkeit erkannt hat, das früher mit Vorliebe hierzu gebrauchte defibrinierte Blut durch die Ringersche Lösung zu ersetzen. Der Grund hiervon liegt wohl in dem Umstande, daß letztere Flüssigkeit wegen ihrer einfacheren und bekannten Zusammensetzung der chemischen Analyse unvergleichlich geringere Schwierigkeiten bietet als Blut.
- 5. Man sucht schließlich zur Erkenntnis der Art der Lebensvorgänge der Zellen selbst, für die ihre normale Struktur eine unausbleibliche Bedingung darstellt, im Gegensatz zu den Vorgängen, welche die Zellen mittelst chemischer von ihnen zwar erzeugten, aber auch von ihnen isolierbaren Agenzien (Fermente) bewirken, dadurch zu gelangen, daß man die Stoffwechselerscheinungen der isolierten Organe mit denjenigen vergleicht, die man in den durch Zerreibung und Ausziehung aus den Organen gewonnenen Säften wahrnimmt.

3. Einige allgemeine praktische Winke.

I. G. Brodie¹) gibt im Anschluß an die Beschreibung des von ihm erfundenen Durchblutungsapparates einige allgemeine Winke über die Isolierung der verschiedenen Organe und den Versuchsgang, die ich hier zum Teil wiedergeben möchte.

Mittel zur Unterhaltung der Körpertemperatur. Das Gefäß, welches das Durchspülungsblut enthält, wird in einem passenden und konstant erwärmten Wasserbad für sich gehalten, während die Organe je nach der verschiedenen Durchblutungsgeschwindigkeit verschieden behandelt werden. Fließt eine beträchtliche Flüssigkeitsmenge durch das Organ hindurch, wie es z. B. bei der Leber der Fall ist, so braucht man das Organ vor Abkühlung nur mittelst Umwicklung durch warme, feuchte Leintücher oder Baumwollbauschen zu schützen. In den Fällen jedoch, bei denen die Durchspülung langsam vor sich geht, ist es notwendig, das Organ in einen für jeden Fall besonders gebauten Wärmekasten zu legen. In den Fällen, bei denen das durchfließende Blut ohne Verlust aus einer einzigen Vene

¹) T. G. Brodie, The perfusion of surviving organs. Journal of Physiol. Vol. 29. p. 266—275 (1903).

aufgefangen werden kann, wie dies z. B. bei der Milz der Fall ist, taucht man am besten das Organ in ein erwärmtes Bad von Salzlösung. Für die Niere und andere Organe, bei denen der venöse Ausfluß aus der Oberfläche beträchtlich ist. muß ein passender Wärmekasten (aus Glas oder Porzellan) gebaut werden, in den das Blut abfließt und aus dem es durch die Pumpe aufgesaugt und in das Reservoir zurückgebracht wird. Ein guter und bequemer Wärmeregulator ist der *Locke*sche (vgl. unten).

Isolierung der Organe. In der Mehrzahl der Fälle (Herz, Darm, Hinterbeine, Nieren, Milz, Leber) verfährt man am besten so, daß man das Organ völlig aus dem Körper herausnimmt und für sich selbst weiter behandelt. Es gibt jedoch einige Fälle, bei denen es ratsam ist, das Organ in situ liegen zu lassen. Dies trifft namentlich für die Lungen oder die Leber zu, weil bei ihnen die Durchblutung besser vor sich geht, wenn sie von den ihrer äußeren Gestalt angepaßten Wänden des Thorax resp. des Zwerchfells getragen werden.

Bei Durchströmung der Leber fand Brodie oft einen beträchtlichen Blutverlust, wenn das ausfließende Blut aus der V. cava inferior dicht oberhalb des Zwerchfells (während ihr unteres Ende dicht unterhalb der Leber unterbunden ist) aufgefangen wird. Dieser Blutverlust stammt aus den freien Anastomosen der Lebervenen mit Venen des Zwerchfells oder mit anderen Venen. Um diesen Verlust zu vermeiden, fängt man das Blut am besten aus dem rechten Herzvorhof auf. Hierzu wird eine Kanüle in das Herzohr eingebunden, während eine Ligatur inmitten der Herzkammer den Weg nach den Kammern zu sperrt. Werden nun Füße und Kopf des Tieres etwas über das Herzniveau gehoben, während die Ausflußröhre etwas unter dem Herzvorhof geöffnet wird, so fließt das Blut leicht und fast ohne Verlust heraus. Zu diesem Zwecke sind weder die V. cava inferior unterhalb der Leber, noch die V. cava superior vorher zu unterbinden. Ein ähnliches Verfahren kann auch mit Vorteil bei der Nierendurchblutung verwendet werden, zumal wenn beide Nieren zugleich perfundiert werden. Bei der Leberdurchblutung durch die V. portae ist es von wesentlicher Bedeutung, die Leberarterien zu unterbinden. Es ist ratsam, Lungen und Gedärme zu entfernen. Ist die Durchströmung im Gang, so ist das Tier in ein Bad warmer Salzlösung zu versetzen, oder es wird (einfachere und doch mit gutem Resultat gekrönte Methode) der Bauch zugeschlossen und das Tier mittelst Baumwollbausche warm gehalten.

Zur Durchblutung einer Lunge öffnete Brodie den Thorax in seiner linken Seite, besonders darauf achtend, den rechten Pleuralsack nicht zu verletzen. Eine Kanüle wird dann in die erste Strecke der Art. pulmonalis und eine zweite in das linke Herzohr eingebunden. Beide Herzkammern werden dann unterbunden, sowie durch eine zweite Massenligatur die Wurzel der linken Lunge. Auf diese Weise kann nun die rechte Lunge perfundiert werden, die somit sehr gut geschützt wird. Die Lunge kann sogar durch die Trachea rhythmisch mit erwärmter Luft versorgt werden.

Auch G. Embden (und K. $Glä\betaner)^1$) beschrieb eine besondere Durchblutungsvorrichtung, mittelst welcher er und seine Mitarbeiter mehrere Untersuchungsreihen an der isolierten Leber, an Muskeln, den Nieren, den Lungen und dem Dünndarm ausgeführt haben. Bei ihren sämtlichen Versuchen wurden fast ausnahmslos zwei Hunde verwendet, ein größerer, von dem nur das Blut, und ein kleinerer, von dem außer dem Blute auch das zu durchblutende Organ in Anwendung kam. Um eine möglichst große Blutmenge zu gewinnen, wurden die Hunde in Äthernarkose aus beiden Karotiden gleichzeitig entblutet und ferner gegen Ende der Entblutung Thorax und Abdomen stark komprimiert. Der verwendete Operationstisch gestattete auch, das Kopfende des Tieres stark zu senken. Das gewonnene Blut wurde defibriniert und durch einen unten spitz zulaufenden Leinwandsack koliert. Wo es nötig war, wurde das Blut nochmals koliert, wenn es zum erstenmal das Organ passiert hatte. Bei der Füllung des Apparates wurde natürlich sorzfältig darauf geachtet, dat nirgends Luftblasen vorhanden waren

B. Spezielles.

1. Lunge.

Die Methode von Brodie wurde oben besprochen (siehe S. 362).

G. Embden und K. Gläßner¹) verfahren folgendermaßen. Unmittelbar nach der Entblutung aus beiden Karotiden wird die Trachea freigelegt, eine Glaskanüle eingebunden und alsdann nach breiter Eröffnung des Thorax eine Kanüle vom linken Ventrikel aus durch das Ostium atrioventriculare in den linken Vorhof vorgeschoben und hier eingebunden. Die zweite Kanüle wird vom rechten Ventrikel aus in den Sinus arteriosus der Pulmonalarterie eingeführt. Nachdem nunmehr die Trachea dicht unter dem Kehlkopf quer durchtrennt worden ist, werden die Lungen aus dem Körper entfernt und in einem weiten zvlindrischen Gefäß an der Trachea aufgehängt. Es folgt die Verbindung der Pulmonalarterienkanüle mit der Blut zuführenden, der Kanüle im linken Vorhof mit der Blut abführenden Leitung und der Trachealkanüle mit einem Handgebläse. Das unter ziemlich geringem Druck (40 mm) zugeleitete Blut durchströmt die Lungen sehr rasch, es fließt in äußerst kräftigem Strahl aus der Vorhofkanüle, gleichzeitig erfolgt die künstliche Respiration der Lunge durch das Handgebläse. Im weiteren Verlaufe des Versuches trat (wahrscheinlich infolge einer Blutdrucksteigerung) eine Blutung in das Bronchiallumen auf: es wurde deshalb die Trachea unterhalb der Kanüle abgebunden, und das Blut von

¹) G. Embden und K. Gläßner, Über den Ort der Ätherschwefelsäurebildung im Tierkörper. Hofmeisters Beiträge z. chem. Physiol. Bd. 1, S. 310—327 (1902).

nun an, ebenso wie bei den übrigen Versuchen, arterialisiert. (Übrigens war das aus der Vorhofskanüle austretende Blut so hell, daß eine Arterialisierung kaum nötig war.) Im weiteren Verlaufe des Versuches war ein Druck von nur 20 mm nötig. Die Durchblutungsdauer betrug drei Stunden. Das Blut und die sehr blutreiche Lunge wurden hierauf der chemischen Analyse unterworfen.

2. Leber.

Methode von Salaskin.

Die Durchblutungsversuche, die S. $Salaskin^1)$ an überlebender Hundeleber zum Nachweis der Harnstoffbildung aus Aminosäuren (Glykokoll, Leucin, Asparaginsäure) im Laboratorium Nenckis anstellte, wurden mit Hilfe des Dzierzgowskischen Durchströmungsapparates ausgeführt.

Im allgemeinen waren die Versuche in folgender Weise angeordnet: Für jeden Versuch dienten zwei Hunde, ein größerer und ein kleinerer; einerseits um ungefähr $1-1^{1/2}l$ Blut zu bekommen, andrerseits um nicht mit einer zu umfangreichen Leber zu manipulieren. Eine Leber von 150 bis 300 g erweist sich für diesen Zweck am meisten passend. Die Hunde waren vorher mit im Hinblick auf die Untersuchungen passend ausgewählter Diät gefüttert worden. 24 Stunden vor dem Versuch wurde ihnen jede Nahrung entzogen.

Sofort nach der Verblutung des Hundes wurde die Bauch- und Brusthöhle freigelegt, dann wurden die Gefäße der Leber auspräpariert und hier in situ Kanülen eingeführt: eine in die V. cava superior oberhalb des Zwerchfells, die andere in die V. portae; V. cava inferior, A. hepatica, Ductus choledochus und die Bänder fest unterbunden: nachher wurde die Leber samt dem Zwerchfell ausgeschnitten und auf einem mit Leinwand bedeckten Rahmen aufgelegt, der Rahmen mit der Leber sofort in die Wärmekammer des Apparates hineingebracht, die Kanülen mittelst Kautschuk mit den entsprechenden Teilen des Apparates in Verbindung gesetzt und der Durchblutungsversuch eingeleitet. Das vorher ausgelassene und defibrinierte Blut wird inzwischen durch dünne Leinwand filtriert und sofort in den schon vorher auf 38° C erwärmten Apparat hineingebracht. Die Blutmenge, die zu Versuchszwecken gebraucht wird, schwankt zwischen 1300 und 1500 cm³. Vom Tod des Hundes bis zum Beginn des Versuches verflossen nie mehr als 15–35 Minuten.

Nach der ersten Durchleitung wird das Blut stets aus dem Apparat herausgelassen und wieder durch Leinwand koliert. Dies hat den Zweck, die aus der Leber ausgewaschenen Fibringerinnsel zu entfernen, sonst werden die Leberkapillaren durch die Gerinnsel verstopft und bei der darauf fol-

¹⁾ S. Salaskin, Über die Bildung von Harnstoff in der Leber der Säugetiere aus Amidosäuren der Fettreihe, Zeitschr. f. physiol, Chem. Bd. 25. S. 128—151 (1898).

genden Durchleitung fließt das Blut nur tropfenweise ab und dies nur bei hohem Druck. Es gelingt nie, eine Blutung der Leber zu vermeiden. Das abfließende Blut wird in ein unter dem Rahmen, auf welchem die Leber ruht, aufgestelltes Gefäß gesammelt und wieder in den Apparat hineingebracht. Die Blutung beginnt gewöhnlich erst einige Zeit nach dem Beginn des Versuches.

Der positive Druck, unter welchem das Blut floß, schwankte zwischen 10—50 mm Hg, der negative (da der Durchströmungsapparat auch aus einem blutaspirierenden Teil besteht) zwischen 10—20 mm, wobei das Blut aus der V. cava in ununterbrochenem Strome abfloß.

Der Durchblutungsversuch wurde gewöhnlich ca. 4 Stunden fortgesetzt. Jede Durchleitung nahm etwa 10 Minuten in Anspruch, so daß die gesamte Blutmasse etwa 25mal durch die Leber geleitet wurde. Die ersten 3—5 Durchleitungen geschahen ohne jeden Zusatz, nachher wurde die erste Blutprobe, ca. 150 cm³, entnommen und dann erst allmählich die zu untersuchende Substanz in Lösung beigemengt. Am Ende wurde dann das durchgeleitete Blut analysiert.

Methode von Kraus.

Mit einem besonderen kompendiösen Durchblutungsapparat, der von E. Freund konstruiert und in dessen Laboratorium seit mehreren Jahren in Verwendung ist, stellte Fr. Kraus¹) seine Durchblutungsversuche an der Leber von Hunden an, um die Frage der Zuckerbildung durch die überlebende Leber zu erforschen. Behufs Isolierung des Organs wurden die Hunde in Morphium-Chloroformnarkose rasch entblutet, Abdomen und Thorax geöffnet, die Vena cava descendens knapp außerhalb der Leber unterbunden. ebenso die Art. hepatica, die Vena portae frei präpariert, ein Hauptast derselben durch Abbindungen isoliert und mit der zuführenden Kanüle des Durchblutungsapparates armiert, in die Vena cava ascendens oberhalb des Zwerchfelles die abführende (venöse) Kanüle des Apparates eingebunden. Zur Durchblutung, die meist 2 Stunden dauerte, wurde defibriniertes Hundeblut verwendet und die Temperatur von Blutmischung und Organ auf 36° bis 38° gehalten.

Methode von G. Embden und K. Gläßner.2)

Sie verfuhren bei ihren Durchblutungsversuchen an der Leber folgendermaßen. Zunächst wird das Abdomen des Hundes seitlich von der Linea alba, unter möglichster Schonung des Zwerchfells, in seiner ganzen Länge eröffnet und ebenso das Thoraxinnere durch Heraustrennen des Brustbeins und der Rippenknorpel in großer Ausdehnung freigelegt. Nun wird die Leber

¹) Fr. Kraus, Über Zuckerbildung in der Leber bei Durchblutungsversuchen. Pflügers Archiv. Bd. 90. S. 630—634 (1902).

²⁾ l. c. S. 363. Note 1 u. 2.

nach oben geklappt. Leberarterie und Gallengang werden nach doppelter Unterbindung zwischen den Ligaturen durchschnitten und darauf in die Pfortader eine möglichst große Kanüle eingeführt. (In der Pfortaderkanüle resp. im Hauptaste der Pfortader bildet sich sehr leicht ein äußerst störendes Gerinnsel. Um dieses sicher beseitigen zu können, wird von der Kanüle aus unmittelbar, nachdem sie eingebunden ist, ein dicker Faden möglichst tief in die Vena portae eingeführt. Das äußere Ende des Fadens wird zunächst an der Kanüle festgebunden. Der Faden wird erst unmittelbar vor der Verbindung der Kanüle mit dem blutzuführenden Schlauch entfernt und eleichzeitie das ihm fest anhaftende Gerinnsel.) Es folgt die Unterbindung der Vena cava inferior möglichst dicht unterhalb der Leber. Um bequem an die Stelle gelangen zu können, wo die Hohlvene hinter die Leber tritt. ist es zweckmäßig, vorher die von der Leber zur rechten Niere ziehende Peritonealfalte zu durchtrennen. Alsdann wird in die Vena cava oberhalb des Zwerchfells eine recht dicke Kanüle eingeführt. Nun werden die noch übrigen Bänder der Leber — soweit nötig, nach vorheriger Anlegung von Massenligaturen — durchtrennt, das Zwerchfell ringsum unmittelbar an seinem Ansatze an der Thoraxwand abgeschnitten und jetzt Leber und Zwerchfell gemeinsam unter Durchtrennung aller Verbindungsstränge aus dem Tierkörper entfernt.

Leber und Zwerchfell werden dann in eine feuchte Kammer, die durch ein Wasserbad auf etwa 39—40° gehalten wird, gebracht, die Pfortaderkanüle unter den üblichen Kautelen mit dem blutzuführenden Schlauche, die Hohlvenenkanüle mit dem blutabführenden Schlauche verbunden. Dann wird der Durchströmungsapparat in Tätigkeit gesetzt.

Bemerkung. Was die theoretische Verwertung der an der ausgeschnittenen Leber (und dies gilt auch für die Niere) erzielten Versuchsergebnisse anbelangt, glaube ich, daß man den folgenden Umstand nicht unberücksichtigt lassen darf. Man besitzt bisher kein äußeres bequemes Kennzeichen, das uns über den wirklichen Lebenszustand der Drüsenelemente benachrichtigen kann, wie dies z. B. beim Herzen durch Prüfung seiner Reizbarkeit (Zuckung) der Fall ist. Es läge in dieser Hinsicht nahe, die Gallenabsonderung als Indikator zu benutzen. Dabei stößt man aber erstens auf die praktische Schwierigkeit, daß trotz aller Bemühungen entweder kein Sekret mehr oder nur ein "pathologisches" Sekret (wie es bei der Niere sicher der Fall ist) aus der Drüse während der Überlebung herausfließt¹), und zweitens auf die theoretische Schwierigkeit, daß nach unseren heutigen Kenntnissen über die Funktionen der Leberdrüse die äußere Sekretion der Galle eine vielleicht nur sekundäre Leistung darstellt.

Eine Folge dieses Umstandes ist die, daß man bei solchen Untersuchungen im Gegensatz zu denjenigen an isolierten Muskeln oder Nerven

¹⁾ Nach älteren Angaben von Asp (1873) hört die Gallensekretion 10 Minuten nach Sistierung des Blutkreislaufes auf (zitiert nach K. Grube).

(einschließlich der Zentren) nie angeben kann, wie lange die wirkliche Überlebung des Organs gedauert hat. *Vernon* suchte allerdings bei der Niere neuerdings letztere Schwierigkeit dadurch zu überwinden, daß er als Lebenszeichen der überlebenden Drüse den Gaswechsel benutzt (vgl. unten).

Obige Kritik berührt jedoch nicht im geringsten die allgemeine prinzipielle Bedeutung der mit diesen Methoden nachgewiesenen und eventuell nachweisbaren spezifischen chemischen Vorgänge isolierter Organe, von denen man weiß, daß sie auch im Gesamtkörper stattfinden, wie z. B. die Harnstoffbildung. Ja zur Lösung derartiger Fragen ist die Durchspülungsmethode der isolierten Organe die einzig gebotene. Für ähnliche Fragen ist aber auch einigermaßen gleichgültig, ob sich in den Zellen normale physiologische oder nur nekrobiotische Vorgänge abspielen (vgl. oben S. 359).

Nach den Versuchsergebnissen, die K. Grube¹) unter Anwendung des Brodieschen Durchströmungsapparates an der künstlich perfundierten Katzenleber erhalten hat, scheint jedoch die Möglichkeit nicht ausgeschlossen, auch diese Drüse durch künstliche Durchblutung im wahren überlebenden Zustande zu erhalten. Die wesentliche Bedingung scheint in dem Umstand zu liegen, zwischen der Blutsperrung des normalen Kreislaufes und dem Beginn der künstlichen Durchströmung möglichst kurze Zeit verstreichen zu lassen. Tatsächlich fand Grube, daß, wenn er so rasch, wie nur möglich, die Durchblutung begann, die Sekretion von unblutiger Galle wieder auftrat und sich sogar neue Mengen Glykogen aus dem zuckerhaltigen, durchströmenden Blut in dem Leberparenchym bildeten, und dies trotz dem ungünstigen Umstande, daß zum Teil heterogenes Blut (vom Schaf) zur Durchströmung diente.

Methode von K. Grube.

Zur möglichst raschen Ausführung seines Versuches verfuhr K. Grube in folgender Weise. Der (unter Anwendung der von Engländern oft gebrauchten Alkoholchloroformäthermischung) narkotisierten Katze wird der Bauch längs der mittleren Linie geöffnet und eine Kanüle in die Milzvene eingebunden und mit dem Durchströmungsapparat verbunden, während eine Ligatur unterhalb der V. portae, unterhalb der Einmündung der Milzvene angebracht wird, ohne sie jedoch vorläufig festzuziehen. Dann wird ein Läppchen der Leber unterbunden, ausgeschnitten, hierauf gewogen und zur chemischen Analyse (behufs Glykogenbestimmung) in Alkohol aufbewahrt. Sodann wird der Thorax geöffnet und rasch eine Kanüle in die V. cava inferior eingeführt; unmittelbar darauf beginnt die künstliche Durchspülung und zur gleichen Zeit wird die Ligatur um die V. portae festgezogen. Dann werden Herz und Lungen entfernt. Nun wird zum Auffangen der von hier ausfließenden Blutmenge eine Kanüle in die Aorta eingebunden. Auf diese Weise verstreicht nur wenig Zeit zwischen der Sistierung des normalen

 $^{^{1})}$ K. Grube, On the formation of Glykogen in the artificially perfused liver. Journ. of Physiol. Vol. 29, p. 276 - 281 (1903).

Blutkreislaufes und dem Anfang der künstlichen Durchströmung. Die Durchströmung selbst dauerte etwa 2 Stunden und ging unter einem Druck von $20-30\ mm$ Hg vonstatten.

3. Darmschlinge.

Methode von G. Salvioli.1)

Nach dem letzten Atemzug des durch Verblutung getöteten Tieres (Kaninchen oder Hund) wird die Bauchhöhle eröffnet und unter sorgfältiger Erhaltung des zugehörigen Mesenteriums das ausgewählte Stück des Jejunums abgetrennt. Unmittelbar darauf wird ein entsprechend großer Lappen aus den Bauchdecken herausgeschnitten, nach Entfernung des Fells auf einer starken Korkplatte das Peritoneum nach oben ausgebreitet und festgesteckt. Auf dieser glatten, für die freie Beweglichkeit des Darmes vorteilhaften Fläche wird das letztere entfaltet und ebenfalls mit Nadeln befestigt. Dann sucht man den Ast der A. mesenterica superior und den der zugehörigen Vene auf, die sich in der isolierten Darmschlinge verzweigen, versieht beide mit Glaskanülen und sorgt dafür, daß die größeren kollateralen Blutgefäße unterbunden werden. Blutungen aus kleineren Ästchen werden erst später nach der Einleitung des künstlichen Stromes gestillt.

Will man Ödem und Bluterguß in und aus der Schleimhaut vermeiden, so darf die Höhe des Druckes im Durchblutungsapparat nicht über 100 mm Hg hinausgehen. Beim Kaninchendarm bediente sich Salvioli eines Druckes, der nicht über 60 mm Hg, bei dem Hundedarm eines solchen, der nicht über 75 mm Hg hinausging.

Als Durchspülungsflüssigkeit fand er am besten eine Mischung, die aus 30 Teilen frischen Kalbsblutes und 70 Teilen einer Na Cl-Lösung von 0.75%0 bestand.

Das Präparat wird dann natürlich in einen Wärmekasten von 37—40° C gebracht und darin während des Versuches gehalten.

Ehe man in die Darmhöhle die zu untersuchenden Stoffe einführt, ist der ursprüngliche Inhalt zunächst mittelst einer $O5^{\circ}/_{\circ}$ igen Na Cl-Lösung von 40° C auszuspülen. Nach Einfüllung der Versuchsstoffe müssen die beiden Mündungen des Darmrohres zugebunden werden. Bei der Füllung des Darmes ist darauf zu achten, daß die Wand nicht gespannt wird, es dürfen im Gegenteil die sich gegenüberliegenden Flächen der Schleimhaut nicht allzu weit voneinander entfernt sein, so daß der Querschnitt der Höhle eine elliptische Form behält.

Überlebungsdauer. Die Absterbeveränderungen erfolgen verhältnismäßig langsam, so daß man bei sorgfältiger Wahrung der beschriebenen Maßregeln 4—5 Stunden hindurch keine merklichen Abweichungen in den Versuchsergebnissen zu befürchten hat. Dies bezieht sich jedoch haupt-

¹) G. Salvioli, Eine neue Methode für die Untersuchung der Funktionen des Dünndarms. Arch. f. (Anat. u.) Physiol. Suppl.-Bd. S. 95—112 (1880).

sächlich auf die Lebensvorgänge der Muskelschichten (deren Bewegungen Salvioli aufzeichnete). Die Überlebungsdauer der Schleimhautorgane (Darmzotten), worauf es bei diesen Versuchen besonders ankommt, scheint dagegen geringer zu sein. Aus der Betrachtung der Schleimhaut gewann Salvioli die Überzeugung, daß sie sich bei längerer Dauer des künstlichen Blutstromes wesentlich ändert. "In der Regel rötet sich dieselbe, oft wird sie von Ödem geschwellt und ihr Epithel abgestoßen. Immerhin ist auch gegenwärtig der Resorptionsversuch nicht ganz hoffnungslos."

Durch Analyse der Durchspülungsflüssigkeit vor und nach dessen Durchströmen, sowie der in die Darmhöhle eingeführten Stoffe und des Darmes selbst kann man die biochemischen Vorgänge der überlebenden Darmschlinge (hauptsächlich Sekretions- und Resorptionserscheinungen, sowie Erscheinungen von Umformung der resorbierten Stoffe) erforschen.

Methode von Embden und Gläßner. 1)

Bei einem kleineren Hunde (vgl. oben S. 363) wird nach breiter Eröffnung der Bauchhöhle zunächst der Darm an der Grenze von Duodenum und Jejunum und ebenso etwa 1 m weiter abwärts doppelt unterbunden. Nunmehr wird die A. mesenterica superior von der Aorta abdominalis und ebenso die entsprechende Vene von der Pfortader aus aufgesucht. Es werden in beide Gefäße Kanülen eingebunden. Das Darmstück wird oben und unten abgetrennt. Dann wird das Mesenterium von den benachbarten Darmteilen ebenfalls unter vorheriger Anlegung von Ligaturen losgelöst und schließlich an der Radix mesenterii abgeschnitten. Das Ganze wird jetzt in eine feuchte Kammer von 40°C gebracht und nach Verbindung der Kanülen die Durchblutung eingeleitet. Das Blut entströmt der Venenkanüle in rasch aufeinander folgenden, stark venösen Tropfen. Der anfangs bewegungslose Darm geriet bei den Versuchen etwa zehn Minuten nach Beginn der Durchblutung in die lebhaftesten Bewegungen. Sie dauerten etwa 11/2 Stunden, um dann allmählich zu erlöschen. Die Durchblutungsdauer betrug 3 Stunden. Eine nennenswerte Blutung nach außen hatte nicht stattgefunden.

4. Niere.

Methode von Bunge und Schmiedeberg. 2)

Der Methode, der sich *Bunge* und *Schmiedeberg* bei ihren bekannten Untersuchungen über die Bildung der Hippursäure aus Benzoësäure und Glykokoll durch die Tätigkeit der ausgeschnittenen überlebenden Niere bedienten, war in ihren Hauptlinien die folgende:

¹) $G.\ Embden$ und $K.\ Gläßner$, Über den Ort der Ätherschwefelsäurebildung im Tierkörper. Hofmeisters Beiträge. Bd. 1. S. 310-327 (1902).

²) G. Bunge und O. Schmiedeberg, Die Bildung der Hippursäure. Arch. f. exper. Pathol. u. Pharm. Bd. 6. S. 233-255 (1876).

Die Tiere (meist Hunde) wurden durch Verblutung aus der Karotis getötet. Das gesammelte Blut wurde defibriniert und koliert (und mit Benzoësäure und Glykokoll versetzt). Dann wurden die Nieren mit der Fettkapsel zusammen ausgeschnitten und in die Arterie, in die Vene und in den Ureter Glaskanülen eingebunden. Die Arterienkanüle war mit dem Durchströmungsapparat verbunden. Aus denen der Venen und des Ureters wurden die herausfließenden Flüssigkeiten aufgefangen und chemisch untersucht.

Der Durchleitungsapparat war in folgender Weise gebaut. Das Reservoir für das durchzuleitende Blut bildete ein Glasballon, der ca. 17 Blut aufnahm, oben tubuliert war und unten in eine mit einem Glashahn verschene Röhre auslief. Den Druck für die Durchleitung des Blutes lieferte die Wasserleitung. Das Wasser floß in einen gewöhnlichen Gasometer und komprimierte in demselben die Luft; der Druck dieser komprimierten Luft wurde auf das Blut in dem Reservoir übertragen, indem der Luftraum in dem Gasometer mit dem über dem Blute in dem Reservoir befindlichen Luftraume kommunizierte. Durch den Hahn der Wasserleitung konnte der Druck bequem und genau reguliert werden. Das Blutreservoir befand sich in einer Blechwanne, welche mit Wasser von Körpertemperatur gefüllt war und auf dieser Temperatur durch eine darunter gestellte Gasflamme erhalten wurde. Die aus dem Reservoir austretende Glasröhre war mit der Glaskanüle der Nierenarterie in Verbindung gesetzt. Unmittelbar vor dem Eintritte in die Niere kommunizierte die Röhre mit einem seitlich angebrachten Quecksilbermanometer. Um etwaige Luftblasen aus dem Blute zu entfernen, waren in die Verbindungsröhre zwischen dem Blutreservoir und der Niere zwei T-Röhren eingeschaltet, an denen der eine Schenkel senkrecht nach oben gerichtet und durch ein Stück Kautschukschlauch und eine Klemmschraube geschlossen war. In diesem Schenkel sammelten sich alle mitgerissenen Luftbläschen und konnten nötigenfalls durch vorsichtiges Öffnen der Klemmschraube fortgeschafft werden.

Niemals ließ es sich vollständig vermeiden, daß eine geringe Menge Blut auch auf anderem Wege als durch die große Vene die Kapsel durchdrang. Soweit als möglich wurden solche Blutungen durch sorgfältige Unterbindungen gestillt.

Das aus der Vene fließende Blut war, stets dunkelvenös gefärbt. Vor dem Zurückgießen in das Reservoir wurde dasselbe stets so lange mit atmosphärischer Luft geschüttelt, bis es wieder die hellrote arterielle Färbung angenommen hatte und darauf durch Leinwand koliert.

Die Durchleitungen dauerten immer mehrere Stunden (von 3 bis 8 Stunden). Aus dem Ureter floßen mitunter spärliche Mengen einer anfangs klaren, alkalischen, gelblichen Flüssigkeit, die Eiweiß enthielt und zuletzt eine rötliche Färbung (Hb) annahm. In anderen Fällen floßen nur wenige Tropfen "einer serumähnlichen" Flüssigkeit ab.

Der am Manometer abgelesene Durchströmungsdruck schwankte zwischen 100—120 mm Hg.

Die gebildete Hippursäure wurde sowohl in dem "venösen" Blut, wie in der Ureterflüssigkeit, wie im Nierenparenchym gefunden.

Von den Methoden, die man neuerdings für Stoffwechseluntersuchungen an isolierten Warmblüternieren vorgeschlagen und zum Teil angewendet hat, seien noch die folgenden erwähnt:

Methode von Jacobj und v. Sobieranski.1)

Die Methode der Nierenisolierung, deren sich C. Jacobi und v. Sobieranski zu ihren Durchblutungsversuchen bedienten, war die folgende. Sie wurde ausschließlich an frischen Hundenieren ausgeführt. Aus einer in die Carotis des Tieres eingeführten Kanüle läßt man die zum Füllen des besonderen, von C. Jacobi erfundenen Durchströmungsapparates erforderliche Blutmenge (meist 300-400 cm³) ausfließen. Dann klemmt man das Gefäß wieder ab und stellt mit dem aufgefangenen, gut defibrinierten und kolierten unverdünnten Blute den Apparat zur Aufnahme des Organs völlig fertig. Sodann entzieht man dem Tiere von neuem so viel Blut, bis es völlig bewußtles wird. Jetzt wird die Bauchhöhle durch einen Schnitt in der Linea alba geöffnet, bei noch erhaltener Zirkulation die Niere durch Massenligaturen mit der Fettkapsel von der Umgebung getrennt, die Arterie und Vene präpariert, die zum Abbinden der zentralen Gefäßenden und zum Einbinden der Kanüle nötigen Ligaturen vorbereitet, sowie der Ureter mit einer Kanüle versehen. Ist dies alles geschehen, so läßt man das Tier entweder schnell völlig verbluten, oder es werden bei noch erhaltenem Leben nach zentraler Unterbindung der Nierengefäße in das periphere Ende derselben die Kanülen eingebunden, die der Arterie mit Blut gefüllt und nun schnell die Niere völlig losgetrennt und in den Apparat eingeschaltet. Die Temperatur des Blutes und des Organs wurde etwa bei 37-38° C gehalten.

Verfahren von Skutul.²)

Die Tiere (Hund. Katze, Kaninchen) werden durch Verbluten getötet. Durch die eröffnete Brusthöhle wird eine Kanüle in die Aorta thoracica und eine zweite in die Vena cava inferior eingeführt. Durch die erstere wird das Tier mit auf 39° C erwärmter, mit O2 gesättigter Lockescher Lösung so lange durchgespült, bis die aus der Vene fließende Flüssigkeit ganz klar ist. Darauf wird die Bauchhöhle in der Linea alba eröffnet. Die Darmschlingen werden so weit seitlich verzogen, bis das Organ frei zutage liegt. Danach wird es stumpf oder mit einem Messer von dem umliegenden Fettgewebe samt der Kapsel und einem Teil des anhängenden Fettes losgelöst und die A. resp. V. renalis gleich nach dem Abgang von der Aorta ab-

¹) C. Jacobj und W. v. Sobieranski, Über das Funktionsvermögen der künstlich durchbluteten Niere. Arch. f. exper. Path. u. Pharmak. Bd. 29. S. 25—40 (1892).

²) K. Skutul, Über Durchströmungsapparate. Pflügers Arch. Bd. 123. S. 249 bis 273 (1908).

dominalis resp. der Vena cava durchschnitten, um die Kanülen noch vor der Teilung der Gefäße im Hilus der Niere bequem einführen zu können. Die Kanüle in der A. renalis wird unter Beobachtung der üblichen Vorsichtsmaßregeln, die für die Vermeidung von Luftembolien unumgänglich sind, eingeführt. Zur Untersuchung wurde stets die linke Niere bevorzugt, weil ihre Gefäße länger sind und das Einführen der Kanülen daher leichter ausführbar ist. Als Durchströmungsapparat diente der von Skutul neu konstruierte Apparat. Es fehlen Angaben über die damit erzielten Versuchsergebnisse, die ein Urteil über den Wert der angewandten Methode gestatten könnten.

Bemerkung. Muß die Sekretion eines, wenn auch verdünnten, sonst aber doch nur normale Harnbestandteile enthaltenden Nierensekretes das Richtmaß sein, nach dem die Lebenstätigkeit einer isolierten Niere beurteilt werden soll, so ist man bis jetzt nach *Pfaff* und *Vejnx-Tyrode*¹) noch nicht dazu gelangt, mittelst künstlicher Durchblutung aus der isolierten Niere ein wirklich normales Sekretionsprodukt zu erhalten. Sie suchten selbst durch zahlreiche Versuche dieses Ziel zu erreichen. Sie sahen nur, daß defibriniertes Blut ein für die Ernährung der Niere ungeeignetes Material ist, und daß man dazu künftig vielmehr durch Blutegelextrakt ungerinnbar gemachtes Blut mit Aussicht auf Erfolg anwenden sollte. Auch sie hielten die Temperatur des Blutes und des Organs auf etwa 38—40°.

Die Unzulänglichkeit der bisherigen Durchblutungsmethoden an der isolierten Niere, wenn man vorhat, mittelst derselben physiologisch normale Lebensvorgänge dieser Drüse zu erforschen, erkennen übrigens auch Brodie und Cullis²) in ihren Untersuchungen über die Harnsekretion an.

Eine anscheinend vorteilhafte, jedenfalls mit geringeren praktischen Schwierigkeiten verbundene Änderung in der Methodik für Stoffwechseluntersuchungen an ausgeschnittenen Warmblüternieren haben T. Sollmann 3) und H. M. $Vernon^4$) bei ihren zahlreichen Versuchen eingeführt.

Sie bedienten sich einerseits zur Durchströmung des isolierten Organes (anstatt des Blutes) der sauerstoffhaltigen *Ringer*schen Salzlösung, und andrerseits stellten sie ihre Versuche nicht bei Körpertemperatur, sondern bei Zimmertemperatur (15—20°C) an. Der Flüssigkeitsdruck war ferner ein konstanter.

¹) E. Pfaff und M. Vejnx-Tyrode, Über Durchblutung isolierter Nieren und den Einfluß defibrinierten Blutes auf die Sekretion der Nieren. Arch. f. exper. Path. und Pharmak. Bd. 49. S. 324—341 (1903).

²) T. G. Brodie and W. C. Cullis, On the secretion of urine. Journal of Physiol. Vol. 34. p. 222-249 (1906).

³⁾ T. Sollmann, Perfusion experiments on excised kidneys. The American Journal of Physiol. Vol. 13. p. 241—303 (1905); Vol. 19. p. 233—254 (1907); Vol. 21. p. 37 bis 50 (1908).

⁴⁾ H. M. Vernon, The Rate of Tissue Disintegration, and its Relation to the Chemical Constitution of Protoplasm. Zeitschr. f. allgem. Physiol. Bd. 6. S. 393—441 (1907). — Derselbe, The Conditions of Tissue Respiration. Journ. of Physiol. Vol. 35. p. 53—87 (1906—1907) und Vol. 36. p. 81—92 (1907).

Methode von Sollmann.1)

Sollmann verfährt folgendermaßen. Die Tiere (Hunde) werden zunächst durch Morphium und Äther narkotisiert. Durch einen medianen Längsschnitt und einen zweiten Querschnitt (unterhalb des Rippensaumes) durch die Bauchwand werden die Nieren bloßgelegt. Ihre Fetthülle wird entfernt, ohne Verletzung der fibrösen Kapsel. Ureter und Nierengefäße werden isoliert und freipräpariert. Eine Kanüle wird in den Ureter eingeführt und ihr freies Ende mit einer gebogenen Ausflußröhre verbunden, die zu einer Öffnung von etwa 1 mm Durchmesser ausgezogen wird. Die Nierenarterie wird dann dicht neben der Aorta unterbunden und in ihr peripheres Ende eine Glaskanüle eingebunden. Diese Glaskanüle, mit der Salzlösung gefüllt, wird dann mit dem Rohr des Durchströmungsapparates verbunden, der inzwischen vorbereitet war, indem er mit der (im allgemeinen 1% Na Cl) Salzlösung gefüllt und auf einen Druck von 100-140 cm Wasser eingestellt wurde. Ohne weiteres wird nun die Durchströmung begonnen und so lange fortgesetzt, bis die Flüssigkeit aus der Vene fast farblos erscheint. Diese vorläufige Durchströmung hat den Zweck, die intravasale Blutgerinnung zu verhindern. Wird diese Maßregel nicht getroffen, so dauert es dann lange Zeit, ehe sich ein konstanter Ausfluß einstellt. Hierauf wird die Durchströmung sistiert und die Nierenvene dicht neben der V. cava unterbunden und in deren Lichtung, gegen die Niere zu, eine andere Glaskanüle eingeführt, Sodann werden die Gefäße unterhalb der Kanülen durchschnitten. die Niere herausgenommen und auf ein kleines Stativ gelegt. Eine kurze gebogene Glasröhre, die zu einer Öffnung von etwa 3 mm Durchmesser ausläuft, wird zum Auffangen der ausfließenden Flüssigkeit mit der Venenkanüle verbunden. Die Arterienkanüle wird unter Vermeidung jeglicher Knickung der Gefäße mittelst einer Klemme befestigt. Die Niere wird vor Austrocknung dadurch geschützt, daß sie nach Munk mit einem aus der Bauchwand herausgeschnittenen Hautmuskellappen bedeckt wird.

Die aus der Vene und dem Ureter ausfließende Flüssigkeit wird in Bechern aufgefangen und dabei schätzt man die Durchströmungsgeschwindigkeit entweder durch Zählung der ausfließenden Tropfen oder durch Messung der Zeit, die notwendig ist damit sich eine bestimmte Menge (gewöhnlich 15 cm³) gesammelt hat. Dabei ist der Umstand zu berücksichtigen, daß wegen der geringeren Lichtung des Ausflußrohres die aus dem Ureter stammenden Tropfen ein Drittel bis eine Hälfte der Größe derjenigen haben, die aus der Vene herauskommen.

Während der Durchströmung sickert immer etwas Flüssigkeit aus der Nierenoberfläche durch die Kollateralgefäße, was jedoch keinen weiteren Einfluß auf die Versuchsergebnisse hat.

¹) T. Sollmann, Perfusion experiments on excised kidneys. The American Journal of Physiol. Vol. 13. p. 241-303 (1905): Vol. 19. p. 233-254 (1907): Vol. 21. p. 37 bis 50 (1908).

Manchmal teilt sich die Nierenarterie so nahe der Aorta, daß es unmöglich ist, in den Gesamtstamm eine Kanüle einzuführen. Bei solchen seltenen Fällen wurde die Kanüle in den Hauptzweig eingebunden und der andere unterbunden.

Ganz besonders muß man darauf achten, daß keine Luft in die Nierengefäße hineingelangt. Sie hat sonst eine plötzliche Verminderung des Venen- und Ureterausflusses zur Folge und macht die Niere für etwa eine Stunde unbrauchbar.

Der von Sollmann bei seinen Untersuchungen angewendete Durchströmungsapparat ist äußerst einfacher und bequemer Handhabung, wie aus der nebenstehenden Fig. 111 zu entnehmen ist. Das Reservoir hat eine Kapazität von 100 cm³ bis 2 l, und wird etwa 15 m oberhalb der Niere mittelst einer Rolle suspendiert. Der Durchströmungsdruck wird zwischen der Niere und dem unteren Ende des im Reservoir befindlichen und in die Flüssigkeit tauchenden Glasrohres, das bei der An-

ordnung Luft durch die Flüssigkeit hindurchperlen läßt, gemessen. Das Verbindungsrohr zwischen dem Reservoir und der Niere besteht aus sich abwechselnd folgenden Stücken Kautschukschlauch und Glasrohr, damit etwaige Luftblasen leicht entdeckt werden. Das **T**-Rohr neben der Niere gestattet die Entfernung dieser Blasen, sowie das eventuelle Wechseln der Durchspülungsflüssigkeit.

Die auf diese Weise durchströmte Niere kann nach Sollmann einen Tag lang in einem Zustand erhalten werden, der einige Erscheinungen gewisser Reste von Vitalität der Drüsenelemente erkennen läßt. Diese Befunde sind: 1. gewisse Unterschiede in der Zusammensetzung der Durchspülungsflüssigkeit und der Ureterflüssigkeit; 2. Synthese der Hippursäure: 3. Pigmentexkretion: 4. Reduktion des Hämoglobins. Andere Lebenserscheinungen beziehen sich nicht auf die eigentlichen Drüsenelemente, sondern auf die Gefäße, wie z. B. Adrenalinwirkung.

Fig. 111.

Vernon führt noch andere Momente zur Kontrolle der Vitalität der Zellen an, z. B. die Verfolgung des Gasstoffwechsels.

5. Muskelsystem: Herz.

Als das für Stoffwechseluntersuchungen am isolierten überlebenden Warmblütermuskel geeignetste Versuchsobjekt ist wohl beim heutigen Stand der Wissenschaft der isolierte Herzmuskel (von Kaninchen, Katze, Hund) zu bezeichnen. Die Vorteile dieses Verfahrens sind in den folgenden Umständen zu erblicken:

- 1. Die verhältnismäßig einfache und schnell ausführbare Isolierung des Organs.
 - 2. Die lange Überlebungsdauer, wenn man die Methode Langendorffs

der direkten Speisung des Herzmuskels durch das Koronarsystem anwendet. (Dabei schlägt das Herz leer.)

- 3. Die Bequemlichkeit, den Zustand der Lebenstätigkeit des Organs zu jeder Zeit zu verfolgen und zu kontrollieren, weil es selbst durch seine Pulse (deren Frequenz und Intensität, möglicherweise unter Anwendung der graphischen Methoden vor allem zu berücksichtigen sind) den jeweiligen Zustand seiner Tätigkeit ausdrückt. Hierdurch ist sogar die Möglichkeit gegeben, die Beziehungen des Stoffwechsels zum Kraftwechsel experimentell zu ermitteln.
- 4. Die leichte Ausführung der Durchströmung, sei es hinsichtlich der geeignetsten Nährflüssigkeit (die einfache *Ringer-Locke*sche Lösung), sei es hinsichtlich der dazu nötigen Apparate, bei denen die Notwendigkeit wegfällt, den Flüssigkeitsstrom rhythmisch zu unterhalten.

Zwecks der Trennung des Herzens von den übrigen Körperbestandteilen (namentlich suchte man hierbei das Herz vom Einflusse des Nervensystems zu befreien) wurden von den Physiologen mehrere Methoden angegeben. Von diesen kommen aber hier nur diejenigen in Betracht, die das vollständige Isolieren des Herzens von allen übrigen Geweben erzielen. Das Langendorffsche¹) Verfahren ist wohl dasjenige, das sich für Stoffwechseluntersuchungen am isolierten Herzen ganz besonders eignet, was auch aus den bisher schon ausgeführten Untersuchungen [(Joh. Müller²), Locke und Rosenheim³), M. Camis⁴)] hervorgeht.

Langendorffs Verfahren.

Die Versuchstiere (Kaninchen oder Katzen) werden aus der Carotis entblutet. Während oder nach Ablauf der terminalen Atembewegungen wird das Herz durch Entfernen des Brustbeines freigelegt, wobei im ersteren Falle eine Verletzung der Venen wegen der Gefahr einer Luftembolie zu vermeiden ist. Nach Spaltung des Perikards wird um die Aorta eine Schlinge gelegt, eine Öffnung in die Aortenwand geschnitten, durch welche zunächst die Blutreste fortgespült werden. Dann wird die an den Schlauch einer warme Ringersche Lösung enthaltenden Spülflasche angesteckte einfache Glaskanüle, deren Lumen dem der Aorta entspricht, unter einem schwachen Flüssigkeitsstrahl in die Aorta eingeführt und festgebunden. Dabei ist darauf zu achten, daß die Spitze der Kanüle nicht zu nahe an die Klappen geschoben wird, weil dadurch deren Schlußfähigkeit leiden könnte. Das durch einige Scherenschnitte losgetrennte Herz wird sodann in eine Schale mit warmer Ringer-Lösung gelegt und durch leichtes Kneten von dem

¹) O. Langendorff, Untersuchungen am überlebenden Säugetierherzen. Pflügers Arch. Bd. 61, S. 291—332 (1895).

²⁾ Joh. Müller, Studien über die Quelle der Muskelkraft. Zeitschr. f. allg. Physiol. Bd. 3. S. 282—302 (1904).

³) S. Locke and O. Rosenheim, Contributions to the Physiology of the isolated Heart Journal of Physiol. Vol. 36. p. 205—220 (1907).

⁴⁾ M. Camis, Sul consumo di idrati di carbonio nel cuore isolato funzionante. Zeitschr. f. allg. Physiol. Bd. 8. S. 371-404 (1908).

Blutinhalte möglichst befreit $[(J. M\"{u}ller^4), H. Winterstein^2)]$. Hierauf wird das Herz mit dem Durchströmungsapparat verbunden.

Von allen bisher beschriebenen Durchströmungsapparaten für das isolierte Herz scheint mir derjenige, den neuerdings *Locke* und *Rosenheim* ³)

angewendet haben, am besten für Stoffwechseluntersuchungen geeignet zu sein, namentlich wenn es sich (was wohl am häufigsten zutreffen wird) um Bildung oder um Verschwinden bestimmter Stoffe in resp. aus der Durchspülungsflüssigkeit durch Herztätigkeit handelt. da bei der Methode dieselbe Flüssigkeitsmenge zu wiederholten Malen das Herzgewebe passiert.

Nebenstehende. Fig. 112 veranschaulicht das Verfahren. Aus dem Reservoir C fließt die Durchströmungsflüssigkeit infolge ihres hvdrostatischen Druckes durch das Schlangenrohr zum Herzen und. nachdem sie durch Aorta und Coronargefäße durchgeströmt ist, tropft sie in den das Herz umgebenden zylindrischen Trichter H ab, um von hier durch das senkrechte Rohr A (Ausflußrohr) hinunterzufließen.

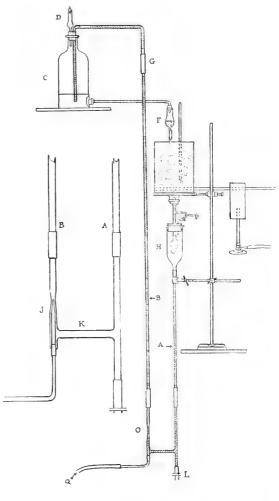


Fig. 112.

Das Ausflußrohr hat eine Lichtung von 9 -10 mm. Von hier geht die Flüssigkeit zunächst durch das wagerechte Verbindungsrohr zur Sauer-

¹⁾ Joh. Müller, 1. c.

²) H. Winterstein, Über die Sauerstoffatmung des isolierten Säugetierherzens. Zeitschr. f. allg. Physiol. Bd. 4, S. 333—358 (1904).

³⁾ S. Locke and O. Rosenheim, I. c.

stoffpumpe O, durch welche der komprimierte Sauerstoff als eine langsame und regelmäßig kontinuierliche Reihe von Gasblasen hinaufsteigt. Das aufsteigende Gas reißt durch das Aufsteigrohr (B) von 7 mm Lichtung die Flüssigkeit als eine Reihe von kurzen Säulen verschiedener Länge mit sich, bis es schließlich in das Reservoir zurückfließt. Hierdurch wird offenbar nicht nur das Zurückströmen der Flüssigkeit, sondern auch deren Oxygenation am besten bewirkt.

Bei ihrem Durchgang vom Reservoir zum Herzen fließt die Flüssigkeit zunächst durch einen Filter aus Glaswolle (F) und hierauf durch das Schlangenrohr, wo sie sich erwärmt. Das kupferne Wasserbad, in dem das Schlangenrohr enthalten ist, wird mittelst eines in seine Wand gelöteten, 1 cm dicken Kupferstabes, dessen freies Ende durch einen an ihm befestigten Bunsen-Brenner erwärmt wird, auf annähernd konstanter Temperatur (36—38°) erhalten. Durch passende Änderung des Abstandes des Brenners vom Bad ist man imstande, dessen Temperatur bequem und gut zu regulieren. Der Wärmegrad wird an einem im Wasserbad versenkten Thermometer abgelesen.

Die Kanüle, die das Ende des Schlangenrohres mit der Aorta verbindet, hat 8 mm Lichtung und wird durch den paraffinierten Pfropfen gesteckt, der den zylindrischen Herztrichter zuschließt. Das der Herzkanüle angeschlossene Seitenröhrchen, das ebenfalls durch den Pfropfen durchgeführt wird, ermöglicht das Entweichen etwaiger Glasblasen ohne Verlust der Durchströmungsflüssigkeit.

Die Höhe des Ausflußrohres, vom unteren Ende des zylindrischen Trichters H bis zum Verbindungsrohr gemessen, beträgt 65—70 cm. Die Höhe des Aufsteigrohres, vom Verbindungsstück zum Niveau der Reservoirflüssigkeit, beträgt hingegen 115—120 cm.

Der komprimierte Sauerstoff strömt aus seinem Behälter zunächst durch eine (in der Figur nicht gezeichnete) Woulffsche Flasche, die Wasser enthält. Das Gas wird hierbei gewaschen und gleichzeitig sättigt es sich mit Wasserdampf. Dieser Prozeß dient zur Verminderung des Wasserverlustes, der während der Durchleitung infolge der Verdampfung entsteht. Zwischen der Woulffschen Flasche und der Pumpe wird zur Vermeidung von eventueller Zurückströmung der Durchleitungsflüssigkeit ein Glasventil eingeschaltet.

Einige Zentimeter oberhalb des Verbindungsrohres K (vgl. die neben der Hauptabbildung einzeln gezeichnete Sauerstoffpumpe) verengt sich die Lichtung des Aufsteigrohres von 7 mm zu etwa 3 mm. An dieser Stelle befindet sich die Sauerstoffspritze (J), die 1 mm Lichtung besitzt. Die Flüssigkeitssäule im Ausflußrohr zeigt eine um so geringere Höhe, je mehr die Pumpe arbeitet.

Die Durchspülungsflüssigkeit hat folgende Zusammensetzung: Na Cl0.99%; K Cl0.042%; Ca Cl2.0.024% (als wasserfrei gerechnet); Na HCO $_3$ 0.02%. Beim Beginn des Versuchs wird das Na HCO $_3$ allein zur Lösung zugesetzt, um die schwache Fällung von Ca CO $_3$ möglichst einzuschränken

Die Lösung enthält außerdem Glukose von 0·1—0·25%, die immer frisch beim Beginn des Versuches hinzugefügt wird.

Das relative Maß der Durchströmungsgeschwindigkeit wird durch Zählung der Tropfen geschätzt, die in jeder Minute durch den Glasfilter passieren, der gewöhnlich etwas Luft enthält. Im wiedergegebenen Versuch schwankte die Durchströmungsgeschwindigkeit zwischen 120 und 65 Tropfen pro Minute bei einem Druck von 41 cm Lösung. Die Temperatur des Wasserbades war 36:4–37°.

Die absolute Menge der Durchströmungsflüssigkeit schwankte bei allen Versuchen zwischen 100 und 250 cm^3 . Das isolierte Kaninchenherz schlug unter diesen Versuchsbedingungen während der ganzen Versuchsdauer, die immer 7- 10 Stunden betrug, immer regelmäßig und kräftig: Bemerkenswert ist noch der Umstand, daß in keinem Fall Herzschwäche den Grund der Versuchsunterbrechung darstellte.

Skelettmuskeln.

Von den Beobachtungen ausgehend, daß die bis dahin zum Studium des Stoffwechsels isolierter Organe ersonnenen Methoden stets nur einen Teil des Prozesses der Messung zugänglich machen, indem man entweder nur den Gasaustausch oder sonst bloß den Wechsel von nicht flüchtigen Produkten zwischen Blut und Gewebe ins Auge faßte, suchten M. v. Frey und M. Gruber²) eine Durchspülungsvorrichtung herzustellen, welche sämtliche Produkte, die der Stoffwechsel des ausgeschnittenen und künstlich durchgeleiteten Organes liefert, der Untersuchung zugänglich macht. Bei diesem Apparat gelangt zum Zwecke der Anhäufung der nicht gasförmigen Produkte nur eine mäßige Menge Blut zu oft wiederholten Malen zur Durchleitung. Ihre Arterialisierung wird aber stetig und in solcher Weise bewerkstelligt, daß die gesamten ausgetauschten Gasmengen gemessen werden können. Durch Bestimmung der im Apparat jedesmal kreisenden Blutmenge und durch Analyse der am Schluß des Versuches quantitativ gesammelten Blures ist man imstande, die durch die Tätigkeit des untersuchten Organs bewirkten biochemischen Änderungen im durchgeleiteten Blut zu ermitteln. Durch die chemische Analyse des Organs selbst kann man andrerseits die in ihm stattgefundenen chemischen Änderungen feststellen.

Die Brauchbarkeit des Apparates wurde von *M. v. Frey* am isolierten Hinterteil des Hundes erprobt. Dieses Präparat, dessen Isolierung wir sofort beschreiben wollen, besteht eigentlich aus Muskel. Haut und Knochen. Die an ihm beobachteten Stoffwechselerscheinungen sind also auf die Umsetzungen zu beziehen, welche jedem der drei Gewebe für sich zukommen. Hierbei ist jedoch nach *v. Frey* der Muskel der bestimmende Teil, nicht

^{1) 100} Tropfen = 9 cm^3 .

²) M. v. Frey und M. Gruber, Untersuchungen über den Stoffwechsel isolierter Organe. Archiv f. (Anat. u.) Physiol. S. 519—562 (1885).

nur, weil er im Gesamtgewicht des Präparates mit dem größten Anteil (60% und darüber) vertreten ist, sondern weil er außerdem am reichlichsten vom Blut durchströmt wird. Die Haut zeigt ein wechselndes Verhalten. Bei Körperwärme ist sie gerötet; Einschnitte führen zu kleinen Blutungen. unter Körperwärme ist sie blaß und so blutarm, daß man gefahrlos einschneiden darf. Ebenso sind aus durchschnittenen Knochen die Blutungen äußerst geringfügig. Immerhin wird man aber, namentlich bei Körperwärme. die Ergebnisse nur mit Vorbehalt auf den Muskel beziehen dürfen. Ein Vorteil bei dem Präparat ist jedoch in dem Umstand zu erblicken, daß die Muskeln in der unversehrten Hautdecke gegen Gasdiffusion nach außen geschützt werden. Dieser Schutz wird noch erhöht und zugleich ein Mittel zur sicheren Regelung der Temperatur gewonnen, wenn das ganze Präparat unter Wasser versenkt wird. Weitere Vorteile des Präparates gegenüber anderen Methoden, bei denen die Muskeln ganz isoliert werden, sind ferner 1. die leichte Gewinnung großer Muskelmassen, 2. die rasche und sichere Art, sie in die Durchleitung aufzunehmen. 3. die Möglichkeit, die Muskelnerven selbst in den Stämmen und Wurzeln reizbar zu erhalten.

Einwandfreie Ergebnisse sind an diesem Präparat in den Fällen wohl zu erhalten (d. h. bei der Mehrzahl der an den Muskeln angestellten Untersuchungen dieser Art), bei denen es sich um Vergleiche zwischen Ruhe und Arbeit handelt. Es ist unzweifelhaft zulässig, die Veränderungen, die sich infolge von Reizungen des Muskels im Stoffwechsel einstellen, auf das gereizte Gewebe zu beziehen.

Behufs der Isolierung seines Hinterteiles wird der Versuchshund durch Verblutung getötet. Unmittelbar nach dem Herzstillstand werden die Bauchdecken dicht am Rippenrande durchtrennt, die Eingeweide in die Höhlung des Zwerchfells gedrängt und mit Ausnahme des untersten von der Art. mesenterica inf. versorgten Stückes des Mastdarms von ihrem Mesenterium abgelöst; der Stumpf des Mastdarms wird unterbunden. Endlich wird die Wirbelsäule samt ihren Muskelmassen zwischen Brust- und Lendenteil, oberhalb der Nieren durchschnitten. Das Präparat ist hierdurch vollkommen abgetrennt und enthält an Eingeweiden nur noch die Nieren und die im kleinen Becken befindlichen Teile. Der nächste Akt ist die Einsetzung ie einer Glaskanüle in die Vena cava und Aorta, und zwar dicht unterhalb des Abganges der Nierengefäße. Die Nieren werden also nicht in den künstlichen Kreislauf aufgenommen; ihre vollkommene Ausschließung erfolgt durch eine Fadenschlinge, welche die durchschnittenen Muskeln der Lendenwirbelsäule umgreift und zwischen den Nieren und den Glaskanülen durchgezogen wird. Unmittelbar darauf, d. h. 10-15 Minuten nach dem Tode des Tieres, beginnt die Einleitung von defibriniertem Blut des Durchspülungsapparates. Das Blut, das zunächst aus der Vene des Präparates kommt, läßt man herausfließen. Es wird nicht weiter verwendet.

Besondere Sorgfalt ist der Stillung des aus allen übrigen durchschnittenen Blutgefäßen des Präparates herausfließenden Blutes zu widmen. Drei Massenligaturen reichen aus, um sämtliche Gefäße der Schnittwunde vollkommen sicher zu verschließen. Die erste derselben ist für die durchschnittenen Venen des Wirbelkanals und wird hergestellt durch einen kleinen Kork, der nach Abtragung eines kurzen Stückes Rückenmark etwa 5 mm weit in die Höhlung eingesteckt wird. (Aus den Gefäßen des Rückenmarks selbst entsteht keine Blutung.) Die zweite Gesamtligatur hat die ganze Muskelmasse zu umgreifen, welche den Stumpf der Lendenwirbelsäule einhüllt. In dieser Beziehung kann die oben erwähnte Fadenschlinge, die unterhalb der Niere durchgezogen worden ist, nur als eine provisorische Ligatur gelten, welche größere Blutverluste bei der vorläufigen Durchspülung verhindern soll. Die vollständige Stillung der Blutung gelingt nur durch sehr kräftige Kompression. Hierzu wird der Wirbelstumpf samt Muskeln und Rückenhaut von den Armen einer starken eisernen Zange umfaßt und durch Anziehen von Schrauben eingeschnürt. Die Nieren werden hierauf entfernt. Die dritte Massenligatur hat schließlich die Aufgabe, Blutungen aus den durchschnittenen Gefäßen der Bauchwand zu verhindern.

Zu diesem Zwecke dient der Eisenreif der nebenstehenden Abbildung (Fig. 113) als sicheres und bequemes Hilfsmittel.

Der Reif muß von einer Größe sein, daß er sich in die Bauchhöhle des Präparates bequem einführen läßt. Dabei sollen die Bauchwandungen über den Reif zu liegen kommen. Die nach innen gebogenen Enden ruhen auf den Querfortsätzen der Wirbel; es bleibt somit nur der Wirbelkörper mit den auf ihm liegenden großen Gefäßen frei. Wird nun ein starker Draht über den Weichteilen in die Kehle des Reifes gedrückt, hinter der Wirbelsäule herumgeführt, und

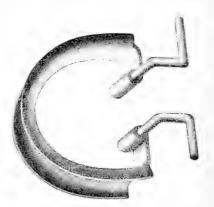


Fig. 113.

werden nun seine Enden von einer passenden Schnürvorrichtung gefaßt und angezogen, so sind sämtliche Weichteile — Haut und Muskeln — durch die eine Schlinge umfaßt und deren Gefäße unterbunden. Nur für die Arterien der tiefen Rückenmuskulatur ist diese Ligatur zuweilen nicht ausreichend, weshalb noch die oben genannte Wirbelzange in Anwendung kommt. Um ein Umkippen des schmalen Reifes zu verhindern, erhält er vermittelst der beiden doppelt knieförmig gebogenen Eisenstäbe eine Führung in der Wirbelzange, in der er sich wie in einem Scharnier bewegen kann. Den Schluß der Vorbereitungen am Präparat bildet das Aufbinden einer Schürze aus Kautschuktuch in der Kehlung des Eisenreifes. Die Schürze wird nach rückwärts über die Lichtung des Reifes gespannt, um die Glaskanüle und die Wirbelsäule geschlungen und hier nochmals festgebunden. Sie hat die Aufgabe, Verdunstung aus der Bauchhöhle und Diffusion von Gasen hintanzuhalten. Auch Füllung der Bauchhöhle mit Na Cl-Lösung wurde von v. Frey zu dem Zwecke verwendet. Damit ist

das Präparat zur Aufnahme in den Apparat fertig. Das Präparat wird nun bis an den Eisenreif in das Wasserbad versenkt und in dieser Stellung festgehalten. Die Kanülen der Aorta und der Cava werden mit den Enden der Blutleitung verbunden.

Die Lebenstätigkeit der Muskeln kann man durch elektrische Reizung der zugehörenden Nerven feststellen und verfolgen. Um alle motorischen Nerven zusammen zugleich reizen zu können, führt man die eine Elektrode in Gestalt einer langen und schmalen Drahtschlinge in den Rückenmarkskanal ein, so daß sie zwischen Dura und Wirbelbögen zu liegen kommt. Die Schlinge schmiegt sich also, indem sie den Körper des Rückenmarks zwischen sich nimmt, an die hintere Fläche der austretenden Wurzelpaare an. Als zweite Elektrode dient der oben erwähnte Umschnürungsreif, dessen Enden fest gegen die Querfortsätze der Wirbel drücken. Beide Elektroden lassen sich ohne neue Verletzungen dem Präparate anlegen und die Reizung trifft sämtliche Nerven, die aus dem Lendenmark entspringen. Ihre Wirksamkeit beweist, daß, wenn nicht dem Rückenmark, so doch den Nervenwurzeln die Reizbarkeit erhalten bleibt. Am besten läßt sich dies bei den "kalten" Versuchen, wo sie selbst nach 7stündiger Versuchsdauer noch ungeschwächt befunden wird, beweisen. Aber auch bei den "warmen" Versuchen, bei denen die Reizbarkeit rascher abnimmt, läßt sich durch vergleichende Prüfung der direkten Muskelreizbarkeit zeigen, daß der Grund des geringeren Erfolges im Muskel und nicht im Nerven zu suchen ist.

Die von Frey angewendeten Reizungen waren meist tetanisch. Die dadurch ausgelösten Bewegungen betreffen alle Muskeln zu gleicher Zeit. Das Ergebnis ist aber infolge des Überwiegens der Mm. extensores eine Streckbewegung. Sie geht in dem Wasserbade vor sich. Um sie beobachten zu können und gleichzeitig ein Maß für den Betrag der Streckung und damit für die Wirksamkeit des Reizes zu gewinnen, wird an jede Pfote eine Schnur mit Gewicht (meist $500\,g$) gebunden, welche derart über Rollen läuft, daß während der Ruhe die Beine an den Leib angezogen werden. Jede Streckung wickelt einen Teil der Schnur ab und es können die Längen an einer Millimeterskala abgelesen werden. Die Arbeit jedoch, welche die Streckmuskeln leisten, ist, da sie den Widerstand der Antagonisten zu überwinden haben, viel größer als der sichtbare äußere Effekt.

Überlebungsdauer.

Es wurde schon betont, daß die Überlebungsdauer in enger Beziehung zur Temperatur steht. v. Frey unterscheidet in bezug auf die Temperatur drei Versuchsreihen: 1. Kalte Versuche, bei denen Blut und Präparat auf Zimmertemperatur, ca. 20°C, gehalten werden. 2. Halbwarme Versuche, bei denen das arterielle, auf Körpertemperatur vorgewärmte Blut in einen Muskel gelangt, der sich in einem Wasserbade von ca. 20° befindet, wodurch das venöse Blut auf 32 bis 34° abgekühlt wird. 3. Warme Versuche, bei denen die Bluttemperatur zwischen 36 und 39°C schwankt.

Mit der Temperatur ändert sich natürlich nicht nur die Überlebungsdauer, sondern auch der Gesamtstoffwechsel des Präparates. Am längsten überlebt das kalte Präparat (etwa 7 Stunden).

Die Technik der Durchleitungen ist, nach v. Frey, also immer noch von der Art, daß es nur bei Zimmertemperatur gelingt, das Präparat durch längere Zeit — sicher durch 7 Stunden, wahrscheinlich noch länger — in einem konstanten, dem normalen ähnlichen Zustande zu erhalten. Unter dieser Einschränkung bietet aber der Versuch schon jetzt ein zuverlässiges Mittel, um die Erscheinungen des Stoffwechsels an ausgeschnittenen Organen zu studieren. Handelt es sich dagegen um die Frage, welche Größe der Umsatz am isolierten Organ unter den günstigsten Bedingungen erreichen kann, so können nur die warmen Versuche in Betracht kommen.

Methode von Embden und Gläßner.1)

Die Methode ist einfacher. Bei dem zu durchblutenden, kleineren Hunde wird unmittelbar nach der Entblutung aus beiden Karotiden die Bauchhöhle in der Linea alba vom Processus xiphoideus etwa 25 cm nach abwärts eröffnet, das Rektum möglichst tief doppelt unterbunden und zwischen beiden Ligaturen durchtrennt, alsdann der Magen an der Cardia ebenfalls zwischen zwei Ligaturen durchschnitten. Nun werden Magen und Darm entfernt; auch die Leber wird herausgenommen.

Es folgt die Freilegung der Aorta und Vena cava an ihrem unterhalb des Abganges der Nierengefäße gelegenen Teil. Die innerhalb dieses Gebietes abgehenden Seitenäste werden unterbunden und alsdann in die Aorta und die Vena cava möglichst kurz über ihrer Gabelung Kanülen eingebunden. Längs der beiden Seitenränder der Bauchwunde wird je eine Massenligatur angelegt, außerdem noch auf jeder Seite in der Höhe des unteren Nierenpols eine querlaufende Ligatur, welche Haut und Muskulatur umfaßt. Der hintere Teil des Tieres wird alsdann in eine Wanne mit Wasser von 39—40° C gebracht derart, daß die hinteren Extremitäten zwar völlig eintauchten, aber kein Wasser in die Bauchhöhle lief. Nunmehr werden Arterien- und Venenkanüle mit dem zuführenden resp. abführenden Schlauch in Verbindung gebracht und die Durchleitung in Gang gesetzt.

6. Zentralnervensystem.

Stoffwechseluntersuchungen im engeren Sinne wurden bis jetzt an isolierten Zentren der Amphibien, abgesehen vom Gaswechsel (H. Winterstein 2), noch nicht ausgeführt. Die bisher nach dieser Richtung ausgeführten biochemischen Untersuchungen beschränkten sich nur darauf, diejenigen äußeren chemischen Bedingungen festzustellen, bei denen eine lange und normale Überlebung der Zentren möglich ist.

¹⁾ l. c. S. 363, Fußnote 1.

²⁾ H. Winterstein, Über den Mechanismus der Gewebsatmung, Zeitschr. f. allgem. Physiol. Bd. 6, S. 315—392 (1967).

Indessen scheint mir besonders das zuletzt von mir beschriebene Verfahren¹) der Isolierung des ganzen Zentralnervensystems der Kröte (Bufo vulgaris) dazu geeignet, eigentliche Stoffwechseluntersuchungen zu gestatten. Deshalb erlaube ich mir, im folgenden die Methode seiner Isolierung kurz zu besprechen.

Das Tier wird mit dem Rücken nach oben und ausgestreckten Extremitäten auf eine dicke Korkplatte aufgebunden. Anstatt der üblichen Methode, die Füße mit Stecknadeln durchzustechen, schlingt man um den Hals jedes Fußes ein Stück jenes biegsamen und bedeckten Kupferdrahtes, der zur elektrischen Leitung der gewöhnlichen kleinen Induktorien dient, und befestigt dann die Schlinge an den entsprechenden, für sich allein fixierten Stecknadeln.

Mittelst einer kleinen Schere wird die Haut zunächst am Hüftgelenk dicht oberhalb der Drahtschlinge herausgeschnitten und von da ab bis zum Kopf abgetragen. Die Hinterfüße werden nicht abgehäutet, denn ihre Haut dient zur Prüfung der Reflextätigkeit. Besondere Sorgfalt ist schon beim Beginn des Versuches der Durchschneidung der Haut zu widmen, damit ein Ausdrücken der zahlreichen Hautdrüsen verhindert wird. Ihr saures milchiges Sekret darf nicht mit den Nerven des Präparates in Berührung kommen, weil es auf diese eine äußerst schädliche Wirkung ausübt.

Durch Abtragung der seitlichen Muskelmassen des Rückens wird dann die dorsale Fläche der Wirbelsäule in ihrer ganzen Ausdehnung bloßgelegt. Nachdem man den dorsalen Umfang des Wirbelkanals zwischen dem 8. und dem 9. Wirbel quer gespalten hat, beginnt man unter Anwendung einer kleinen kräftigen kurzen Knochenschere die Wirbelringe beiderseits kopfwärts zu durchtrennen. Dabei hält man die Wirbelsäule mit den Fingern der linken Hand fest und achtet ganz besonders darauf, daß mit der Schere niemals das Rückenmark berührt wird. Die Zentren sind nämlich ungemein empfindlich gegen die auch äußerst geringen mechanischen Mißhandlungen-Ist ein solcher mechanischer Reiz erfolgt, so äußert sich die dadurch erzeugte Erregung der Zentren als langdauernde tetanische bzw. fibrilläre Zuckungen der entsprechenden Muskeln des Körpers. Meist folgt eine unwiederrufliche Lähmung der Zentren und mithin ein Unbrauchbarwerden des Pränarates.

In gleicher Weise wird das Schädeldach entfernt. Gewöhnlich ist man dann gezwungen, die Längsöffnung der so entstandenen Zentralrinne seitlich weiter zu erweitern und die Ränder zu regulieren. Hierauf schreitet man zur eigentlichen Bloßlegung der Zentren, indem man unter Beachtung der Vorsichtsregel, die Zentren selbst kaum oder gar nicht zu berühren, diese mittelst einer feinen gebogenen Pinzette von der schwärzlich gefärbten und kalkreichen Dura befreit.

¹) S. Baglioni, Contributi alla fisiologia generale dei centri nervosi. Zeitschr. f. allgem. Physiol. Bd. 9, S. 1-54 (1909).

Mittelst eines kleinen stumpfen Schlingenführers wird dann ein vorher mit Ringerscher Lösung befeuchteter Faden unter die bei der Kröte so eigentümlich lange Cauda equina durchzogen, ohne jedoch die höher liegende Int. post. irgendwie zu zerren. Die anatomische Besonderheit, eine so lange Strecke von intraspinal verlaufenden Nervenbündeln ohne Beimengung von Ganglienmassen, im Gegensatz zum Frosche, zu besitzen, ist eben der

Grund, weshalb die vollständige Isolierung der Zerebrospinalachse nur beim Bufo gelingt.

Sodann werden beide Unterschenkel, sowie beide Nn. ischiadici bis zu ihren Austrittstellen aus dem Wirbelkanal präpariert. Hierauf schiebt man vorsichtig unterhalb der mittelst des Fadens gehobenen Cauda die eine Klinge der kleinen Knochenschere und trennt hier die Wirbelrinne durch. Mit der linken Hand hebt man nun beide Hinterfüße des Präparates und zieht hierdurch schwach die Zerebrospinalachse, die der Wirbelrinne schließlich herausgeholt wird, indem die von den abgehenden Zentren Nerven kopfwärts, und zwar von den Spinal-

Fig. 114.

wurzeln an bis zu den Nn. olfactorii durchschnitten werden. Auf diese Weise erhält man das in der obenstehenden Fig. 114 abgebildete Zentrenpräparat. Seine Überlebung, die durch die Fußreflexe leicht zu prüfen ist, steht nun vor allem in direkter Beziehung zur äußeren Temperatur, sowie zum Umgebungssauerstoff. Aus meiner bisherigen Erfahrung geht hervor, daß ein solches Präparat in einer feuchten Kammer dem Luftsauerstoff frei ausgesetzt, bei Zimmertemperatur von 8—10° C bis mehr als 24 Stunden, bei Zimmertemperatur von 20° hingegen etwa 8 Stunden imstande ist, zu überleben.

D. Die Fermente des Kohlehydratstoffwechsels in Tierund Pflanzenwelt.

Von M. Jacoby, Berlin.

Die tierischen Zellen speichern Kohlehydrate als Glykogen und bedürfen daher eines Fermentes, welches Glykogen spaltet. $F.\ Pick^+)$ hat die Isolierung und das Arbeiten mit diesem Ferment eingehend studiert.

Die lebenswarm entnommene Leber wurde von der Pfortader aus so lange mit Leitungswasser durchgespült, bis dieses aus den Lebervenen farblos abfloß, dann zerhackt und mit dem fünffachen Volumen $96^{\circ}/_{\circ}$ igen Alkohols 24 oder mehr Stunden stehen gelassen, dann abgepreßt und das nach vorherigem Trocknen bei Zimmertemperatur oder bei 38° erhaltene Leberpulver mit einer Lösung von 0·2 g Fluornatrium auf 100 g physiol. Kochsalzlösung ausgezogen. Die Extraktion erfolgte in einem bei 38° gehaltenen Schüttelapparat. Nach 24stündiger Digestion wurde das Gemisch koliert, die abgepreßte Fermentlösung im Falle des Bedarfes filtriert und dann eine abgemessene Menge zu ebenfalls in Kochsalz-Fluornatrium gelöstem Glykogen zugesetzt. Vergleichsproben wurden stets auf ein gleiches Volumen gebracht.

Man kann dann bei der Prüfung der Wirksamkeit des Fermentes entweder das der Spaltung entgangene Glykogen oder den gebildeten Traubenzucker bestimmen. In dieser Beziehung muß auf andere Teile des Handbuches verwiesen werden.

Kisch²) hat dann die Methode bearbeitet, deren man bedarf, um die fermentative Zersetzung des Glykogens in den Organen zu studieren, ohne das Ferment zu isolieren. Sehr zweckmäßig ist das von Kisch benutzte Verfahren, dem Organbrei jedesmal Glykogen im Überschuß zuzusetzen, wodurch man einmal unabhängig von dem Glykogengehalt der Gewebe wird, sodann immer über einen so großen Glykogenüberschuß verfügt, daß

¹) Friedel Pick, Über das glykogenspaltende Ferment der Leber. Hofmeisters Beitr. Bd. 3. S. 163—183 (1903).

²) Franz Kisch, Über den postmortalen Glykogenschwund in den Muskeln und seine Abhängigkeit von physiologischen Bedingungen. Hofmeisters Beitr. Bd. 8. S. 210 bis 237 (1906).

Ungleichmäßigkeiten und die Fehlerquellen der Bestimmungsmethoden ausgeglichen werden. Beachten muß man nur, daß Glykogen sehr leicht der Zersetzung in Traubenzucker verfällt, so daß ältere, von chemischen Fabriken bezogene Präparate nur zum Teil aus Glykogen, zum anderen Teil aus Traubenzucker bestehen.

Ebenso wie Glykogen wird auch Stärke von den Organzellen gespalten. Für die quantitativen Bestimmungen des diastatischen Fermentes bei der Prüfung mittelst Stärke hat neuerdings Wohlgemuth 1) eine bequeme Methode beschrieben:

Man beschickt eine Reihe Reagenzgläser mit absteigenden Mengen der zu untersuchenden Fermentlösung, fügt zu jedem Röhrchen 5 cm³ einer 1º/₀igen Stärkelösung und stellt sofort jedes Röhrchen in ein Gefäß mit Eiswasser, in dem sich ein Drahtkorb zur Aufnahme der Gläschen befindet. Die Anwendung des Eiswassers hat den Zweck, jede Fermentwirkung zunächst vollständig auszuschließen. Wenn dann alle Gläschen in dieser Weise vorbereitet sind, wird der Drahtkorb mit sämtlichen Gläschen in ein Wasserbad von 40º übertragen: dadurch wird erreicht, daß die Wirkung des Ferments in allen Portionen zu genau dem gleichen Zeitpunkt einsetzt. Bei dieser Temperatur bleibt der Drahtkorb 30—60 Minuten, je nachdem man den Versuch ausdehnen will, und wird nach Ablauf der entsprechenden Frist wieder in das Gefäß mit Eiswasser übertragen und kurze Zeit darin belassen: auf diese Weise wird die Fermentwirkung wiederum in sämtlichen Portionen zu genau der gleichen Zeit unterbrochen. Damit ist die eigentliche Ausführung des Versuches beendet.

Um nun festzustellen, wie stark die Fermentlösung war, wird folgendermaßen weiter verfahren:

Sämtliche Reagenzgläschen werden etwa bis fingerbreit vom Rande mit Wasser aufgefüllt, zu jedem Gläschen je ein Tropfen einer n/10-Jodlösung zugesetzt und umgeschüttelt. Dabei beobachtet man verschiedene Färbungen, wie dunkelblau, blauviolett, rotgelb und gelb. Als unterste Grenze der Wirksamkeit (limes) wird dasjenige Gläschen bezeichnet, in dem zum ersten Male die blaue Farbe unverkennbar auftritt, das ist also dasjenige Gläschen, das die violette Farbe zeigt.

Aus der vorhergehenden Probe wird dann die Wirksamkeit des Ferments so berechnet, daß die Anzahl Kubikzentimeter einer 1% jegen Stärkelösung bestimmt wird, die durch 1 cm³ der Fermentlösung in der für den Versuch angewandten Zeit bis zum Dextrin total abgebaut wird. Hat man z. B. diese Grenzwirkung durch 0.1 cm³ einer Lösung erhalten, so würde 1 cm³ 50 cm³ der Stärkelösung in der betreffenden Weise umwandeln. Unter Berücksichtigung der Versuchszeit und Versuchstemperatur bezeichnet Wohlgemuth dann die diastatische Kraft der Lösung mit $D_{30'}^{400} = 50$.

¹⁾ J. Wohlgemuth, Über eine neue Methode zur quantitativen Bestimmung des diastatischen Ferments. Biochem. Zeitschr. Bd. 9. S. 1-9 (1908).

Als Stärkelösung wurde Kahlbaums lösliche Stärke benutzt, von der man möglichst frische Lösungen verwendet. Je nach der Intensität der zu prüfenden Fermentwirkung muß man die Digestionsdauer auf 1 Stunde oder auch 24 Stunden ausdehnen. Bei der Herstellung der Verdünnungen muß beachtet werden, daß die Chloride die Diastasewirkung verstärken.

Bei Organsäften stört die Beurteilung der Farbenreaktionen, daß die Extrakte meist trübe sind. Wohlgemuth empfiehlt daher, nach Beendigung der Digestion die klare, überstehende Flüssigkeit in bereitgehaltene Reagenzgläser abzugießen und dann erst die Verdünnung mit Wasser vorzunehmen.

In manchen Reihen begegnet man bisweilen Röhrchen, in denen neben einem starken Rot ein leichter blauer Farbenton vorhanden ist. Wenn man schwankt, ob dieses Röhrchen schon als unterste Grenze aufzufassen ist oder nicht, so tut man gut, noch 1 Tropfen Jodlösung in dieses Röhrchen zu tun und beobachtet nun beim Umschütteln, ob der blaue Farbenton bestehen bleibt oder durch eine rotbraune Farbe verdrängt wird. Im ersteren Falle wäre das Röhrchen tatsächlich schon als limes aufzufassen, im letzteren Falle dagegen erst das nächst tiefere. Nach Erfahrungen, die Hata in meinem Laboratorium gesammelt hat, erleichtert es die Bestimmung der Grenze, wenn man die Proben mit Chloroform schüttelt. Man erkennt dann ohne Mühe, in welcher Probe zuerst ein blauer Ton Bestand hat.

Ob das Glykogen erst nach der Spaltung oder auch direkt verbrannt werden kann, wie Pavy vermutet, ist zweifelhaft. Da im Organismus sehr verbreitet sich Diastasen finden, so ist anzunehmen, daß im allgemeinen der Verbrennung die Spaltung in Traubenzucker vorangeht, ebenso wie der Organismus ja auch das Glykogen aus Traubenzucker aufbaut. Ob dabei Zwischenprodukte entstehen und sich dazu geeignete Fermente in den Organen finden, ist noch unsicher. Da die Organe jedoch nicht nur Glykogen, sondern auch Stärke spalten können, so ist zu vermuten, daß auch dabei entstehende Dextrine gespalten werden, also Dextrinasen vorhanden sind (P. Mayer¹).

Die Isolierungsmethoden der diastatischen Zellfermente sind bei den Pflanzenenzymen weiter vorgeschritten als bei den tierischen Enzymen. Das kommt wohl daher, daß diese Enzyme weniger labil und intensiver wirksam sind.

Die Malz-Diastase haben S. Frünkel und Hamburg²) in wirksamer Form und sehr gereinigt nach einer allerdings ziemlich schwierigen Methode erhalten. Das Verfahren beruht darauf, daß das Enzym in Lösung

¹) Paul Mayer, Über das Verhalten von Dextrin und Glykogen im Tierkörper. Fortschr. d. Med. Nr. 13 (1903).

²) Sigmund Fränkel und Max Hamburg, Über Diastase. Erste Mitteilung. Versuche zur Herstellung von Reindiastase und deren Eigenschaften. Hofmeisters Beiträge. Bd. 8, S, 389—398 (1906).

gehalten wird, während Beimengungen zunächst ausgefällt werden; sodann wird das Ferment durch Tonfilter filtriert. In der Hauptsache wird das Ferment dadurch gereinigt, daß es aus eiweißarmen Lösungen gewonnen wird, in denen der Zucker vergoren wird.

Es werden $5\,kg$ Malzschrot von sehr diastasereichem Malz mit $15\,l$ Wasser von $25\,^{\circ}$ C eingemaischt. Nach einstündigem Umrühren überläßt man die Maische einer halbstündigen Ruhe, worauf man koliert und den Rückstand auspreßt. Die Kolatur wird zum Absetzen des mitgegangenen Malzmehles in der Kälte sedimentieren gelassen und hierauf vorsichtig abgepreßt.

Nun wird folgendes Verfahren eingeschlagen: Man bestimmt in abgemessenen Mengen des wässerigen Auszuges die diastatische Kraft in bezug auf Verflüssigung und Verzuckerung und setzt anderen Proben derselben Menge des wässerigen Auszuges gemessene Quantitäten einer Lösung von basisch essigsaurem Blei so lange zu, als die diastatische Kraft keine merkliche Veränderung erfährt. Jetzt mißt man die Hauptmenge ab und setzt ihr die berechnete Menge derselben Bleiessiglösung zu. Bei diesem Verfahren überzeugt man sich, daß im Filtrat nach der Bleifällung Schwefelammon keine Bleireaktion zeigt. Man läßt absitzen, filtriert durch Papier, zieht die gesamte Lösung durch große, sterile Pukalfilter rasch in sterile Flaschen und läßt nach Impfen mit einer geringen Menge einer Reinkultur von Frohberghefe, die man vorerst an zuckerarme, diastasereiche Nährböden gewöhnt hat, bei 28°C im Thermostaten vergären. Sobald die Gärung zu Ende, zieht man wieder durch Pukalfilter in einen vorher sterilisierten Vakuumapparat ein, destilliert die Lösung bei einem Druck von 10 mm Hg und engt etwa auf 500 cm³ ein. Ist die Lösung sauer geworden, so ist es notwendig, mit etwas kohlensaurem Kalk zu neutralisieren. Es ist dabei notwendig, auch den kohlensauren Kalk, der dabei eingetragen wird, zu sterilisieren. Nun wird die Lösung mit sehr wenig einer Mischkultur von Frohberg- und Logoshefe, die in oben erwähnter Weise vorbehandelt ist, geimpft und einer neuerlichen Gärung unterzogen. Bei der zweiten Gärung empfiehlt es sich sehr, die Hefen vorerst stickstoffhungrig zu machen. Nun sucht man möglichst den Endvergärungsgrad zu erreichen, engt wieder die Lösung nach dem Filtrieren durch Pukalfilter im Vakuum ein und erhält unter günstigen Arbeitsumständen eine sirupöse Flüssigkeit, die durch Einengen im absoluten Vakuum über Schwefelsäure in ein Pulver verwandelt werden kann.

Das so erhaltene Diastasepräparat ist im Gegensatze zu den gewöhnlichen unreinen Diastasepräparaten chemischen Einflüssen gegenüber ungemein empfindlich. Löst man das Präparat in wenig Wasser und versetzt es mit Alkohol, so geht nach kurzer Zeit die Diastase zugrunde, wenn man nicht sehr rasch die Fällung der weiteren Einwirkung des Alkohols entzieht. In gleicher Weise wirkt Aceton.

Das Präparat stellt ein lichtgelbes, in Wasser leicht lösliches, in Alkohol unlösliches Pulver vor. welches die Biuretreaktion sowie die Xanthoproteinreaktion nicht mehr gibt, mit alkalischer Bleilösung gekocht, keine Schwarzfärbung zeigt. Hingegen zeigt es meist spurenweise Millonsche Reaktion. Die Lösung reduziert Fehlingsche Lösung nicht, zeigt aber einen positiven Ausfall der Molischschen Reaktion, ferner schwache Pentosenreaktion. Die Seliwanoffsche Reaktion auf Lävulose fällt negativ aus. Die wässerige Lösung läßt sich zum kleinen Teil sowohl durch Kochsalz, Ammonsulfat und Magnesiasulfat aussalzen. Die Niederschläge zeigen starke diastatische Eigenschaften, aber auch die salzgesättigte Lösung. Salzsäure. Schwefelsäure und Phosphorsäure bewirken in der wässerigen Lösung schwache Trübung, ebenso essigsaures Blei und basisch essigsaures Blei.

Neben der Diastase ist das Invertin, welches den Rohrzucker in Traubenzucker und Fruchtzucker spaltet, wohl das wichtigste Polysaccharide spaltende Enzym der Pflanzenzellen. Die Isolierung des Invertins aus der Hefezelle hat Hafner¹) im Laboratorium von Hüfner sorgfältig ausgearbeitet: seine Angaben enthalten viele Winke, die bei Isolierungsversuchen allgemein verwertbar sein dürften.

5 kg reine Preßhefe, die von der Hefezuchtanstalt des Vereines deutscher Spiritusfabrikanten geliefert war, wurde nach Osborne mit 5 l 95-96° gigen Alkohols in einer großen Reibschale gut angerieben, sodann, nachdem man den Brei einen Tag lang ruhig hat stehen lassen, der Alkohol durch Filtration entfernt, die zurückbleibende Hefe wieder einige Tage lang in einem großen Becherglase bei ziemlich kühler Temperatur mit etwa 61 Wasser, am besten unter beständigem Umrühren mittelst eines Rührwerkes digeriert und am Ende auf mehrere große Faltenfilter gebracht, um vom wässerigen Auszuge getrennt zu werden; diese Extraktion wird wiederholt, bis eine Probe des Extraktes kaum noch invertierend wirkt.

Nun fügt man Ammoniak hinzu, bis die Lösung deutlich danach riecht, der entstehende Niederschlag wird bald nach dem Absetzen abfiltriert, das Filtrat eventuell noch durch einen Pukalschen Tonfilter zur Klärung geschickt, endlich bei höchstens 40° im Vakuum eingeengt. Aus dem zurückbleibenden Sirup wird das Invertin durch absoluten Alkohol ausgefällt.

Das so erhaltene Rohpräparat wird zunächst mit absolutem Alkohol gewaschen, hierauf mit lauwarmem Wasser in eine Reibschale gespült und darin zu einem dünnen Brei angerieben, den man in einem Becherglase noch weiter verdünnt und einige Stunden stehen läßt. Nunmehr wird wieder ein schleimiger Niederschlag durch Filtration entfernt. das Filtrat wiederum durch Ammoniakausfällung gereinigt, endlich die Flüssigkeit einer längeren Dialyse unterworfen, bei der das vorher unwirksame Invertin wieder aktiv wurde. Man dialysiert in einem größeren Dialysierapparat, möglichst indem man die Flüssigkeit dabei dauernd be-

¹⁾ B. Hafner, Einige Beiträge zur Kenntnis des Invertins. Zeitschr. f. phys. Chem. Bd. 42. S. 1-34 (1904).

wegt. Vor Fäulnis schützt man sich durch Toluol. Schließlich wird die Innenflüssigkeit des Dialysators mit absolutem Alkohol ausgefällt, der entstehende Niederschlag mit Alkohol und Äther gewaschen und im Vakuum über Schwefelsäure getrocknet. So erhielt Hafner aus $5\,kg$ reiner Prehhefe $3\cdot 1\,g$ sehr wirksamen Invertins.

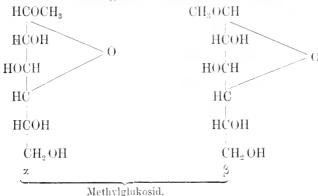
Diese Methode der Invertindarstellung hat jedoch den ernsten Nachteil, daß die Präparate bei der Behandlung mit Ammoniak, namentlich aber noch zum Schlusse bei der Einwirkung des Alkohols unwirksam wurden. Hafner meint, daß diese Empfindlichkeit der reinen Hefe mit ihrer Reinzucht in innerem Zusammenhange steht, jedenfalls hatte er bessere und konstantere Erfolge beim Arbeiten mit untergäriger Bierhefe.

Die frische Bierhefe wurde durch Sieben und Waschen mit Wasser von 1—3° Temperatur von den Bestandteilen der vergorenen Bierwürze gereinigt, hierauf durch Absaugen auf der Nutsche möglichst vom Wasser befreit. Der Rückstand wurde mit dem gleichen Gewichte 96°/₀igen Alkohols übergossen, damit zu einem gleichmäßigen Brei angerieben und dieser 24 Stunden sich selbst überlassen. Dann wird der Alkohol durch ein Flanelltuch abgeseiht, der Rückstand mit dem doppelten Gewicht Toluolwasser angerührt und der Brei 2—3 Tage lang bei 2—5° dauernd gerührt. Nun wird durch Faltenfilter filtriert, ev. noch durch spanische Erde geklärt. Die klare Flüssigkeit wird bei 40° im Vakuum zum dünnen Sirup eingeengt, der Sirup in ein Becherglas gegossen, mehrere Stunden im Kühlen stehen gelassen und, nachdem sich noch anorganische Salze u. a. abgesetzt haben, wieder filtriert.

Nunmehr wird zu Portionen von $50~cm^3$ etwas mehr als $50~cm^3$ absoluten Alkohols langsam zugefügt. Sobald milchige Trübung sich gebildet hat, werden schnell $300~cm^3$ absoluten Alkohols zugetan. Man schwenkt einmal um und läßt die Mischung ruhig bis zum Absetzen von Flocken stehen. Dann wird der noch milchige Alkohol abgegossen, der Niederschlag nochmals mit $200-300~cm^3$ absoluten Alkohols überschüttet. Zu vermeiden ist Rühren mit einem Glasstab, da sonst harzige Massen entstehen, die nach dem Trocknen unwirksam sind.

Das ausgeschiedene Rohinvertin wird noch 1—2mal mit kleinen Mengen absoluten Alkohols übergossen; erst nachdem es durch mehrstündiges Stehen hart geworden ist, auf Filter gebracht, mit Alkohol und wasserfreiem Äther ausgewaschen und durch Absaugen getrocknet. Man wäscht aus und trocknet am besten auf mehreren kleinen Filtern. Aus dem milchigen Alkohol erhält man noch eine Portion Rohinvertin. Schließlich wird das Präparat im Vakuum über Schwefelsäure getrocknet.

Die endgültige Reinigung erfolgte auch hier wie bei den Präparaten aus der reinen Preßhefe durch Ammoniakausfällung und Dialyse.


Ich füge nun einiges zur Erläuterung der Methode an. Da es lange bekannt ist, daß das Invertin von der lebenden Hefe kaum abgegeben wird, muß man die Zellen zunächst töten. Dazu dient die anfängliche Behandlung mit starkem Alkohol. Die Anwendung niedriger Temperaturen ist zweckmäßig, um die Entstehung von Eiweißspaltungsprodukten durch die Einwirkung des in der Hefe sich findenden proteolytischen Enzyms zu vermeiden.

Wie aus Versuchen von E. Fischer u. a. hervorgeht, kann man die Abtötung der Hefe, welche der Isolierung des Invertins vorausgehen muß. auch durch mechanisches Zerreiben bewerkstelligen.

Es ist nicht nötig, alle Fermente, welche Polysaccharide spalten, besonders zu besprechen, da sich methodisch keine neuen Momente ergeben. Jedoch soll noch einiges über die glukosidspaltenden Fermente und insbesondere über das wichtige Emulsin angefügt werden.

Das Emulsin, welches aus den Kernen der bitteren Mandeln gewonnen wird, ist bei Kahlbaum, Schuchardt und Merck in gut wirksamer Form zu haben. Es spaltet Amvgdalin in zwei Moleküle Traubenzucker, in Blausäure und Benzaldehyd, andere Aldehyde entsprechend. Man erhält z.B. nach Beitzke und Neuberg 1) eine Fermentlösung, welche Amygdalin sehr kräftig spaltet, wenn man das käufliche Kahlbaumsche Präparat 20 Stunden bei 38° mit Toluolwasser extrahiert und dann filtriert. Das fast klare Filtrat ist sehr wirksam. Amvgdalin wird durch einen wässerigen Extrakt aus Bierhefe in Traubenzucker und Mandelnitrilglukosid gespalten, welches sich nur durch das Fehlen eines Moleküls Traubenzucker vom Amvgdalin unterscheidet.2) Aus diesem Mandelnitrilglukosid spaltet Emulsin dann das zweite Molekül Traubenzucker ab.

Am übersichtlichsten sind die Versuche Emil Fischers über die Spaltung von synthetisch dargestellten Glukosiden durch Fermente.³⁾ Als Beispiel erwähnen wir die Versuche mit den Methylglukosiden. Die Methylglukoside werden nach Emil Fischers Vorschrift dargestellt.4) Folgendes Schema gibt ihre Struktur und ihre Konfiguration wieder:

¹⁾ H. Beitzke und C. Neuberg, Zur Kenntnis der Antifermente. Virchows Archiv. Bd. 183. S. 169-179 (1906).

²⁾ Emil Fischer, Über ein neues, dem Amygdalin ähnliches Glukosid. Chem. Berichte. Bd. 23. S. 1508 (1895).

³⁾ Emil Fischer, Bedeutung der Stereochemie für die Physiologie. Zeitschr. f. physiol. Chem. Bd. 26. S. 60-87 (1898).

⁴⁾ Emil Fischer, Über die Verbindungen der Zucker mit den Alkoholen und Ketonen, Chem. Berichte, Bd. 28, S. 1145 (1895).

Fügt man 1 Teil Emulsin zu 2 Teilen β-Glukosid in 20 Teilen Wasser und beläßt das Gemisch 15 -20 Stunden bei 30 -35°, so kann man 90° o des Traubenzuckers durch Titration mit Fehlingscher Lösung als abgespalten nachweisen, während das z-Glukosid unverändert bleibt. Umgekehrt greift Invertin nur das z-Glukosid an. Fischer stellte sich das Invertin selbst dar, da käufliche Präparate keine guten Resultate ergaben. 1 Teil lufttrockene Hefe (Saccharomyces cerevisiae, Typ. Frohberg-Reinkultur) wird 15 Stunden mit 15 Teilen Wasser bei 30—35° digeriert. Von dem z-Glukosid wurde durch dieses Enzym etwa 50°/o abgespalten.

Anscheinend sehr bedeutsame Feststellungen über das Emulsin hat in neuester Zeit Rosenthaler gemacht.1) Danach besitzt das Emulsin außer den Glukoside spaltenden Fermentwirkungen noch andere Funktionen, die sich von der eigentlichen Emulsinwirkung unterscheiden. Zu den Versuchen diente das Schuchardtsche Präparat, dem das Mercksche in dieser Hinsicht nachsteht. Nach Rosenthaler entsteht unter dem Einfluß von Emulsin aus Benzaldehyd und Blausäure d-Benzaldehydcyanhydrin, das durch Salzsäure in l-Mandelsäure übergeführt werden kann. Zum Benzaldehyd wird die wässerige Emulsinlösung hinzugefügt, dann sofort die gewöhnlich 50/0ige Blausäure und mit Wasser auf 100 cm3 ergänzt. Nach der Einwirkung des Emulsins wird mit Chloroform ausgeschüttelt, die Chloroformlösung wird mit entwässertem Natriumsulfat und, wenn zur Klärung nötig, noch mit Kieselgur behandelt, dann abfiltriert und nach Vereinigung mit dem Waschchloroform in die Polarisationsröhre eingefüllt. Um die aus dem d-Benzaldehydcvanhydrin zu erhaltende l-Mandelsäure zu bestimmen, wird die Chloroformlösung zunächst mit 25 q rauchender Salzsäure 1, Stunde stehen gelassen, dann wurde das Chloroform abdestilliert, der Rückstand unter Nachwaschen mit 15 q rauchender Salzsäure in eine Schale gespült und diese auf dem Dampfbad bis zum Auftreten von Kristallen erwärmt. Nach dem Erkalten wurden die Kristalle in Wasser gelöst und das Filtrat durch Nachwaschen auf 100 cm³ gebracht. Diese Lösung wird dann am Polarisationsapparat untersucht.

Wird das Gemisch bei der Einwirkung des Emulsins regelmäßig geschüttelt, so erhält man größere Umsetzungen. Einstündiges Erhitzen des Emulsins auf 80° macht das Emulsin unwirksam. Der hydrolysierende Anteil des Emulsins geht bei längerer Erhitzung auf 40° verloren, während der Synthesen befördernde teilweise erhalten bleibt. Den letzteren nennt Rosenthaler $\sigma \omega$ -Emulsin oder σ -Emulsin, den anderen $\delta \omega$ - oder δ -Emulsin. Auch aus anderen Aldehyden wurden unter dem Einfluß des σ -Emulsins aktive Nitrile erhalten.

Bei Halbsättigung von Emulsinlösungen mit Ammonsulfat geht σ -Emulsin in den Niederschlag, das Filtrat enthält nur δ -Emulsin.²) Ebenso

¹) L. Rosenthaler, Durch Enzyme bewirkte asymmetrische Synthesen. Biochem. Zeitschr. Bd. 14. S. 238-253 (1908).

²) L. Rosenthaler, Durch Enzyme bewirkte asymmetrische Synthesen. 2. Mitteilung. Biochem. Zeitschr. Bd. 17. S. 257—269 (1909).

verhält es sich bei Ganzsättigung mit Magnesiumsulfat, indem man auch hier im Niederschlag das σ-Emulsin-, im Filtrat das δ-Emulsin findet. Dabei erhält man aber in beiden Fällen nur das δ-Emulsin, frei von σ-Emulsin, während die σ-Emulsinfraktion immer noch δ-Emulsin enthält.

Endlich findet sich im Emulsin noch eine dritte katalytische Substanz¹), welche die Anlagerung von Blausäure an Aldehyde beschleunigt, ohne auf die Entstehung der optischen Aktivität von Einfluß zu sein. Sie wirkt auch da, wo optisch inaktive Nitrile entstehen. Diese Substanz widersteht längerer Einwirkung der Siedehitze. Wahrscheinlich handelt es sich um Calcium-Magnesium- und Kaliumverbindungen.

Die Methodik der Zellfermente, welche den Traubenzucker vergären. baut sich auf Buchners Entdeckung, der Zymase, auf. Wer sich mit experimentellen Studien über fermentative Traubenzuckervergärung beschäftigen will, muß unbedingt die wichtige Monographie von Buchner und Hahn²) über die Zymasevergärung genau durcharbeiten. Wenn wir auch versuchen werden, hier möglichst alles wesentliche der Buchnerschen Methodik wiederzugeben, so muß doch für zahlreiche Details auf das Original verwiesen werden.

Als Material für die Zymasedarstellung diente untergärige Bierhefe. die entweder aus Brauereien oder aus der Hefefabrik von A. Schroder in München stammte. Obergärige Hefe liefert auch Zymase; doch sind die Erfahrungen mit ihr bei weitem weniger zahlreich.

Die Herstellung des Hefepreßsaftes zerfällt in folgende Abschnitte: 1. Waschen der Brauereihefe, 2. Entwässern der gewaschenen Hefe, 3. Mischen mit Quarzsand und Kieselgur. 4. Zerreiben unter Zerreißung der Zellmembranen, 5. Auspressen der erhaltenen teigförmigen Masse,

4. und 5. werden nochmals wiederholt.

Das Waschen der Brauereihefe und Entwässern der gewaschenen Hefe. Die aus der Brauerei bezogene Hefe wird zunächst gewaschen; man bringt dieselbe auf ein Haarsieb und schwemmt sie mittelst aufgegossenen Wassers durch das Sieb hindurch in hohe Gefäße (251 Inhalt) mit Wasser. Nun wird auf den Boden der großen Gefäße mittelst eines langen Schlauches Wasser unter Druck geleitet. Das schließlich oben über den Rand des Gefäßes abfließende Wasser nimmt die Verunreinigungen und auch einen großen Teil der toten und der "wilden" Hefezellen mit, die im Gegensatz zu den "Kulturhefen" meistens kleineren Rassen angehören.

Die gewaschene Hefe muß sodann möglichst entwässert werden, wozu man sie am besten in ein beutelförmig gefaltetes und oben zusammengebundenes Koliertuch und hierauf noch in ein Preßtuch einschlägt und in der hydraulischen Presse einem schließlich 5 Minuten anhaltenden Druck

¹⁾ L. Rosenthaler, Über katalysierende Emulsinbestandteile. Biochem. Zeitschr. Bd. 19. S. 186-190 (1909).

²⁾ Eduard Buchner, Hans Buchner und Martin Hahn, Die Zymasegärung, Untersuchungen über den Inhalt der Hefezellen und die biologische Seite des Gärungsproblems. München und Berlin 1903, Verlag von Oldenbourg.

von 50 Atmosphären unterwirft. Als Preßtuch benutzt man ein starkes, baumwollenes, nicht appretiertes Tuch, wie solches als wasserdichtes Segeltuch zur Überdeckung von Zelten Anwendung findet und z.B. von Oskar Eckert. Berlin O. 24, Holzmarktstraße 12, geliefert wird.

Mischen mit Quarzsand und Kieselgur — Zerreiben unter Zerreißung der Zellmembranen. Die entwässerte Hefe wird hierauf in einer großen Schale mit feinem Quarzsand, der durch ein Sieb von 200 Maschen auf 1 em^2 hindurchgegangen ist, und mit Kieselgur oder Infusorienerde im Verhältnis von

 $\begin{array}{c} 1000\,g \ \ {\rm entwässerte} \ \ {\rm Hefe}, \\ 1000\,g \ \ {\rm Quarzsand}. \\ 2000-3000\,g \ \ {\rm Kieselgur} \end{array}$

mit den Händen tüchtig gemengt und durch ein grobes Sieb (9 Maschen auf $1\ cm^2$) geschlagen. Zur Zerreibung kommt das staubtrockene, fast weiße Pulver hierauf in Portionen von 300—400 g in eine große Porzellanreibschale von $40\ cm$ Durchmesser. Da dieses Zerreiben sehr gründlich ausgeführt werden muß, erleichtert man es sich zweckmäßig durch die Benutzung einer Handzerreibungsvorrichtung, wie sie in Apotheken angewendet wird. Eine besondere Zerreibungsmaschine bewährt sich weniger. Eine mikroskopische Kontrolle kann darüber Auskunft geben, ob die Zellen ausgiebig zertrümmert worden sind.

Auspressen der erhaltenen teigförmigen Masse. Zum Zwecke des Auspressens wird die teigförmige Masse entsprechend 1 kg Hefe nummehr in das oben beschriebene Preßtuch eingeschlagen. Das Tuch wird vor dem Gebrauche mit kaltem Wasser durch Einweichen gründlich durchtränkt und hernach in der hydraulischen Presse bei 50 Atmosphären Druck von dem Überschuß an Wasser befreit; in dem für 1 kg Hefe benötigten Preßtuch (60 \times 75 cm) bleiben noch 35—40 g Wasser zurück.

Als Presse bedient man sich einer hydraulischen Handpresse, wie sie für das *Buchner*sche Verfahren jetzt von vielen Fabriken geliefert wird.

Die auszupressende Masse wird in das Tuch eingeschlagen, auf die Preßplatte gelegt, mit dem vielfach durchlochten Preßkorb umgeben und darauf die vertikale Spindel durch möglichstes Anziehen des Handrades angepreßt. Sodann setzt man auch die horizontale Spindel durch Drehen der Kurbel in Tätigkeit, wodurch erst der Hauptdruck zustande kommt; der erzielte Atmosphärendruck gelangt am Manometer zur Ablesung; man steigert denselben langsam, damit das Preßtuch nicht reißt, von 50 zu 50 Atmosphären und erhält ihn durch öfteres Nachziehen der Kurbel und auch des Handrades konstant.

Nachdem die zerriebene Hefe einmal ausgepreßt ist, was aus 1 kg 320–460 cm^3 Preßsaft ergibt, wird dieselbe, um eine gute Ausbeute zu erzielen, nochmals in der großen Reibschale zerrieben. Die zweimal zerriebene Hefe kommt nun abermals in die Presse bei einem Druck von 90 kg auf 1 cm^2 .

Der abfließende Preßsaft tropft direkt aus der Presse auf ein gewöhnliches Faltenfilter und fließt durch dieses in ein in Eiswasser stehendes Gefäß. Die Ausbeute beträgt zwischen 450-500 cm³.

Der so erhaltene Hefepreßsaft enthält bekanntlich zahlreiche Fermente. Hier interessiert lediglich das wesentlichste, nämlich das Traubenzucker spaltende. Die Fermentkonzentration des Saftes ist ziemlich groß. Nach Buchner kann guter Preßsaft bei 28° und geeigneter Zuckerkonzentration in einer Stunde das 1½-2½ fache seines Volumens an Kohlen-Wie bei der Gärung unter dem Einfluß der lebenden Hefezellen entsteht auch bei der Zymasegärung Alkohol in einer der Kohlensäure entsprechenden Menge.

Man kann zu den Versuchen Rohrzucker, Malzzucker, Glukose oder Fruktose benutzen, als Antiseptikum genügt Toluol.

Beim Stehen wird der Preßsaft auch im Eisschranke bei Luftabschluß und unter aseptischen Kautelen bald unwirksam, die Zymase ist nur mäßig filtrierbar und kaum durch Pergamentpapier dialysabel. Durch Zentrifugieren wird sie nicht abgeschieden, wohl aber kann man durch Ausfrieren die Fermentkonzentration steigern.

Diese Eigenschaft läßt sich sehr zweckmäßig verwerten. Während man, wie wir gesehen haben, eine Zymaselösung im Eisschrank kaum über Nacht wirksam erhalten kann, bewahrt die Zymase nicht nur ihre Aktivität. sondern läßt sich sogar konzentrierter wiedergewinnen, wenn man das Gefäß mit der Zymase über Nacht in eine Kältemischung bringt und am nächsten Tage in Wasser von 2-5° langsam wieder auftauen läßt.

Bei 32-35° kann man im Vakuum den Saft trocknen, ohne daß die Zymase Schaden leidet. Jedoch muß man dabei sehr vorsichtig sein, besonders die Zeit des Eindampfens muß sehr kurz bemessen werden.

Trägt man 50 cm3 Preßsaft unter starkem Turbinieren in ein Gemenge von 400 cm³ Alkohol absol. und 200 cm³ Äthyläther, saugt den Niederschlag sofort ab, wäscht ihn rasch mit Alkohol und dann mit Äther und trocknet ihn im Vakuumexsikkator über Schwefelsäure, so erhält man ein wirksames Zymasepulver, das man am besten in Glyzerinwasser auflöst. Auch mit Aceton ist die Zymase fällbar. Diese Eigenschaft der Zymase wurde benutzt, um ein wirksames Dauer-Trockenpräparat für den Handel herzustellen.

Frische, ausgewaschene Brauereiunterhefe wird bei einem Druck von 15—30 kg auf 1 cm^2 entwässert, was bei der verwendeten hydraulischen Presse 50—100 Atmosphären Druck und einem Wassergehalt der Hefe von 72-66% (bestimmt durch Trocknen bei 105%) entspricht. 500 q davon, zwischen den Händen zu einem groben Pulver zerrieben, werden auf einem Sieb (100 Maschen auf 1 cm²) in einer flachen Schale in 3 l Aceton eingetaucht und durch Heben und Senken des Siebes in der Flüssigkeit unter Nachhilfe mit einem Bürstchen 3-4 Minuten durch die engen Maschen geschwemmt. Die Hefe bleibt nach dem Eintragen unter häufigem Umrühren noch 10 Minuten in Aceton liegen. Hierauf wird nach kurzem Absetzen die Flüssigkeit größtenteils abgegossen und die Hefe in einer Nutsche

auf gehärtetem Filtrierpapier unter kräftigem Anpressen mit einem geeigneten Stempel möglichst trocken abgesaugt. Den nunmehr grob zerkleinerten Hefekuchen übergießt man aufs neue in der Schale mit 1l Aceton, rührt 2 Minuten damit durch und saugt die Flüssigkeit abermals durch Anpressen der Masse an die Nutsche möglichst vollständig ab. Die Masse wird sodann grob gepulvert und in einer kleinen Schale mit 250 cm³ Äther übergossen, nach 3 Minuten dauernder Einwirkung, die durch Durchkneten unterstützt wird, filtriert man vom Äther auf der Nutsche unter kräftigem Saugen ab und breitet die zu feinem Pulver zerriebene Hefe direkt oder noch besser, nachdem man sie durch ein mittelfeines Sieb geschlagen hat, in dünner Schicht auf mit Filtrierpapier belegten Hürden aus. Nach 1/2—1 Stunde Lagern an der Luft, wobei der Äther größtenteils verdampft, schiebt man die Hürden, weil sonst die Hefe wieder Wasser aus der Luft anziehen würde, in einen Trockenschrank von 45° C. Nach 24stündigem Verweilen ist das Präparat fertig.

Dieses Präparat wird unter dem Namen Zymin von Schroder in München verkauft.

Trennung vom Ferment und Coferment der Zymase.

Wenn ein Preßsaft einige Zeit Zucker vergoren hat, wird er unwirksam. Es hat sich herausgestellt, daß das aus dem Zugrundegehen eines Cofermentes zu erklären ist, welches neben der eigentlichen Zymase zur Wirkung nötig ist. Das von Harden und Young 1) entdeckte Coferment ist leichter filtrierbar als das Ferment, wird durch die Siedehitze nicht zerstört, unterscheidet sich aber auch sonst in mannigfaltiger Weise vom Ferment. Wahrscheinlich ist es eine organische Phosphorverbindung, welche durch Lipasen und durch Verseifung unwirksam wird.

Buchner und Duchaček²) haben begonnen, ein Trennungsverfahren des Ferments von dem Coferment auszuarbeiten, welches Differenzen in der Fällbarkeit der beiden Substanzen verwertet.

Der sog. Kochsaft, der das Coferment enthält, wird folgendermaßen bereitet:

1 kg abgepreßte Hefe wird auf dem Dampfbad, wenn nötig, unter Wasserzusatz erhitzt, bis sich ein dünner Brei gebildet hat. Mischt man dann Kieselgur zu, bis das Ganze fest geworden ist, und bringt die Masse, in ein Preßtuch eingeschlagen, in eine hydraulische Presse, so resultiert bei 300 Atmosphären Druck eine gelblich klare Flüssigkeit, die nur aufgekocht und filtriert zu werden braucht.

Dieser Kochsaft regeneriert ein nicht mehr wirksames Zymase-Zuckergemisch nur, wenn es bald nach dem Erlöschen der Gärwirkung zugesetzt wird. Der Kochsaft selbst ist sehr haltbar.

¹⁾ Arthur Harden und William John Young, Der Einfluß von Phosphaten auf die Gärung der Glukose durch Hefesaft. Proceedings Chem. Soc. Vol. 21. p. 189—190; nach Chem. Zentralbl. Bd. 2. S. 347 (1905).

²) E. Buchner und F. Duchaček, Über fraktionierte Fällung des Hefepreßsaftes, Biochem. Zeitschr. Bd. **15.** S. 221—253 (1909).

Buchner und Duchaček haben mit Hilfe von Aceton eine gewisse Fraktionierung von Ferment und Coferment erreicht. Quantitativ sind die Resultate noch wenig befriedigend. Das liegt aber nicht etwa daran, daß Aceton die Substanzen zerstört. Früher wurde ja schon erwähnt, daß man ein wirksames Trockenpräparat herstellen kann, wenn man Preßsaft in Aceton einträufelt. Um aber Fraktionen zu erhalten, welche sich scharf durch eine verschiedene Fällbarkeit durch Aceton unterscheiden, muß man das Aceton in den Preßsaft eintragen. Denn nur so kann vermieden werden, daß vorübergehend die Acetonkonzentration zu hoch ist. Bei diesem Vorgehen entstehen aber stark wasserhaltige Niederschläge, in denen vielleicht die wirksamen Substanzen durch Fermentwirkungen geschädigt werden. Lediglich auf Verzettelung läßt die mangelhafte Ausbeute sich nicht zurückführen. Denn auch die vereinigten Niederschläge erreichen nicht die Wirksamkeit eines Präparates, welches durch Eintragen des Preßsaftes in das Aceton gewonnen wird.

Um durch schnelles Arbeiten die einwirkenden Schädigungen möglichst abzuschwächen, werden die Niederschläge durch Ausschleudern auf einer Zentrifuge abgetrennt, welche in der Minute 3000 Umdrehungen macht, worauf die überstehende Flüssigkeit einfach abgegossen werden kann.

Im einzelnen gestaltet sich ein Trennungsversuch etwa wie folgt: In 100 cm³ frischen Preßsaftes aus Berliner Unterhefe, der durch Zentrifugieren noch von Kieselgursplittern und Hefezellresten befreit wird, wird unter starkem Turbinieren eine Mischung von 50 cm3 Aceton und 50 cm3 Wasser eingetragen. Die entstandene erste Fällung trennt man durch Zentrifugieren vom Niederschlag. Zur Herstellung der zweiten Fällung wird die abgegossene Lösung abermals mit 100 cm³ Aceton versetzt. Gleichzeitig wird die erste Fällung mit 100 cm3 Aceton angerührt. Die Niederschläge werden sodann wiederum abzentrifugiert. In die von der zweiten Fällung abgegossene Lösung wird hierauf von neuem 200 cm3 Aceton eingetropft. worauf sich die dritte Fällung beim Zentrifugieren als flockiger, aber halbschmieriger Niederschlag am Boden des Gefäßes absetzt. Zu gleicher Zeit werden wiederum die erste und die zweite Fällung mit je 100 cm³ Aceton aufgeschwemmt und sodann zentrifugiert. Endlich werden alle drei Fällungen nochmals mit je 100 cm³ Aceton und mit je 100 cm³ Äther durchgerührt, jedesmal hernach zentrifugiert und die Niederschläge schließlich im Vakuum über Schwefelsäure getrocknet. Die erste Fällung stellt nun ein feines, weißes Pulver, die zweite ein gelbliches, gröberes Mehl dar, während die dritte eine gelbe, feste und zerreibbare Masse bildet, die sehr zerfließlich ist.

Die ganze Operation dauert 2 Stunden. Das Verfahren ist so eingerichtet, daß alle 3 Fällungen die gleiche Zeit mit dem Aceton in Berührung bleiben.

Der Gang des Versuches kann etwa so tabellarisch wiedergegeben werden:

Angewandt: 100 cm³ Hefepreßsaft.

Erste Fällung erzielt durch ein Gemisch von 50 cm3 Aceton + 50 cm³ Wasser, gewaschen schrittweise mit $100 + 100 \, cm^3 \, \text{Aceton} + 100 \, cm^3 \, \text{Ather};$

Zweite Fällung, erzielt durch 100 cm3 Aceton, ge-

waschen mit $100 + 100 cm^3$ Aceton + $100 cm^3$ Äther: Ausbeute: 8:34 q

Dritte Fällung, erzielt durch 200 cm3 Aceton, ge-Ausbeute: 1.72 g

waschen mit $100 cm^3$ Aceton + $100 cm^3$ Äther:

Gesamtausbeute: 14.83 q

Ausbeute: 4.77 q

Die mit diesen 3 Präparaten angestellten Gärversuche ergeben nun, daß hauptsächlich die erste Fraktion Ferment enthält, weniger die zweite. die dritte überhaupt nicht, während in dieser dritten Fraktion Coferment sich findet.

Bei der Traubenzuckervergärung durch die Hefezymase entsteht als Neben- oder Zwischenprodukt Milchsäure, Auch die Milchsäure wird durch tierische und pflanzliche Enzyme zerstört. Buchner und Meisenheimer, welche das Enzym in der Hefezelle, das die Milchsäure spaltet, Laktacidase nennen, haben auch eine Methode zum Nachweis der Existenz einer Milchsäurebakterienzymase beschrieben. 1) 10-15 Minuten dauerndes Verweilen unter Aceton und mehrmaliges Auswaschen mit Äther tötet die durch Abzentrifugieren aus der Nährlösung isolierten, 15-20 Stunden auf Ton an der Luft getrockneten Milchsäurebakterien (Bacillus Delbrücki) vollkommen zuverlässig. In den Preßsaft geht das Enzym nicht über, man kann es vielmehr nach dem Auspressen aus dem Rückstand durch Acetonausfällung frei von lebenden Bakterien gewinnen.

Die abgetöteten Bakterien werden mit Rohrzucker oder Maltose unter Toluolzusatz zusammengebracht. Offenbar sind neben dem Milchsäureferment gleichzeitig stets hydrolytische Enzyme vorhanden, wie daraus hervorgeht, daß sehr bald Fehlingsche Lösung reduziert wird. Durch Kontrollen wurde nachgewiesen, daß weder die Bakterien vor der Fermenteinwirkung Milchsäure enthalten, noch unter dem Einflusse erhitzter Fermentlösung Milchsäure entsteht. Es wurde immer inaktive Milchsäure gefunden.

Über das Auftreten und den Nachweis von fermentativ entstandener Milchsäure in den tierischen Organen wird in dem Kapitel Autolyse berichtet.

Auf die Essigsäuregärung und ähnliche Vorgänge kann hier nicht eingegangen werden, da es sich hier um die Wirkung von Oxydasen handelt, zum Teil auch die Isolierung der Fermente noch aussteht.

Da auch im Organismus der höheren Tiere die Verbrennung des Traubenzuckers eine große Rolle spielt, so ist es kaum anders möglich, als daß die tierischen Zellen auch glykolytische Fermente besitzen.

¹⁾ Eduard Buchner und Jakob Meisenheimer, Über die Milchsäuregärung. Liebigs Annalen, Bd, 349, S. 125-139 (1906). Die Autoren reservieren die Bezeichnung "Zymase" für die Fermente, welche direkt den Zucker angreifen.

Der Nachweis der fermentativen Glykolyse begegnet jedoch mannigfaltigen Schwierigkeiten. Zunächst wurde mehrfach behauptet, daß die Antiseptika die Zuckerzerstörung durch tierische Fermente erheblich beeinträchtigen. Das ist wohl wahrscheinlich durchaus richtig. Da aber Bakterien bekanntlich sehr stark Zucker zersetzen, aseptisch sich diese Versuche kaum in größerem Umfange durchführen lassen, so werden eben nur Methoden sich verwerten lassen, die nicht auf Antiseptika zu verzichten brauchen. Hier ist insbesondere das von Cohnheim ausgebildete Verfahren zu erwähnen. Wir werden sofort sehen, was für unendliche Schwierigkeiten sich hier störend bemerkbar machen, Schwierigkeiten, die in den verschiedensten Umständen bedingt sind. Folgende Punkte seien hervorgehoben:

- 1. Das Vorkommen von Glykogen in den Geweben, das während der Versuche durch gleichzeitig vorhandene diastatische Enzyme zersetzt wird. So kann Zerstörung des Traubenzuckers durch Neubildung aus Glykogen verdeckt werden.
- 2. Die Schwierigkeiten der Zuckerbestimmung in den Organextrakten. Dieser Übelstand ist anscheinend von Cohnheim durch die Verwertung von Parus Methode überwunden worden.
 - 3. Die Abhängigkeit der Enzymwirkung vom Milieu.
- 4. Die Abhängigkeit der Wirkung von der Menge des vorhandenen Enzyms und speziell von dem Verhältnis, in dem die zur Wirkung notwendigen Faktoren zueinander stehen.

Cohnheim 1) hat allmählich folgenden methodischen Gang vorgeschrieben:

Die zu den Versuchen dienenden Katzen wurden durch Äther betäubt und durch Durchschneiden des Halses getötet, wobei eine erhebliche Menge Blut in den Gefäßen zurückbleibt. Das Rindfleisch, meist vom Vorderbein stammend, wurde frisch vom Schlachthaus geholt und kam noch vor stärkerer Abkühlung und vor Eintritt der Totenstarre zur Verarbeitung. Meist zuckten die Muskeln noch beim Durchschneiden. Das Fleisch wurde zweimal durch eine Fleischhackmaschine gegeben und kam dann sofort in das eiskalte Wasser. Dem Eis und Wasser wird 1—1:2 g oxalsaures Natron für $300-500\,g$ Muskeln zugesetzt, außerdem etwas Magnesiumkarbonat.

Die Menge der Extraktionsflüssigkeit kann in weiten Grenzen schwanken. 170 und 600 cm3 pro 100 y Muskel macht keinen Unterschied. Die Extraktionsdauer beträgt $1^{1}/_{2}$ –4 Stunden, ebenfalls ohne erkennbaren Unterschied. Man fügt soviel Eis hinzu, daß am Schlusse der Extraktion noch reichlich Eis da ist. Nach Schluß der Extraktion wird soviel Chlorealeium zugesetzt, daß gerade alles Oxalat ausgefällt ist. Dann wird gut durchgeschüttelt, endlich das Extrakt durch Gaze mit der Hand ausgepreßt.

Die erhaltene Flüssigkeit wird zwecks Mischung gut geschüttelt und dann in gleichen Portionen, die immer ziemlich genau je $100\,g$ Muskeln

¹⁾ Otto Cohnheim, Über Glykolyse. IV. Mitteil. Zeitschr. f. phys. Chemie. Bd. 47. S. 253—285 (1906).

entsprechen, untersucht. Pro Portion wird genau 1g Traubenzucker, Magnesiumkarbonat, 20 cm^3 Toluol und am besten auch noch 6—10 cm^3 Chloroform hinzugefügt. Das Chloroform wird vor der Reduktionsprüfung durch genügend langes Kochen wieder entfernt. Die Bestimmung der Reduktion erfolgt nach Pavy.

Im gefrorenen Zustande bewahrt das Muskelextrakt seine glykolytische Fähigkeit, im Eisschrank verliert sie sich bald.

Bei Hunden scheint die Anwendung des Oxalats bei der Methode vorläufig unstatthaft.

Nicht alle Katzenmuskeln sind glykolytisch wirksam. Will man starke Glykolyse finden, so setzt man die Katzen in ein kaltes Zimmer und gibt ihnen mit Zucker versetzte Milch. Soll die Glykolyse fehlen, ermüdet man die Katzen durch Morphin oder durch Arbeiten im Tretrade und läßt sie dann im warmen Raum hungern oder füttert sie mit Speck, Butter und Öl.

Nach Cohnheim besitzt das Pankreas einen Aktivator, der die Glykolyse der Muskeln verstärkt, ohne selbst Traubenzucker zu verändern. Um ihn aus Katzenpankreas in möglichst wirksamer und reiner Form zu gewinnen, wird der Organbrei frisch in kechendes Wasser getan, durch Gaze abgepreßt, der Rückstand mehrmals mit Alkohol von 96° extrahiert, die Extrakte mit dem ersten Wasserextrakt vereinigt und auf dem stark siedenden Wasserbad zur Trockene eingedampft. Dabei muß man zu starkes Eintrocknen vermeiden. Der Rückstand wird mit 96% jegem Alkohol aufgenommen und filtriert. Diese alkoholische Lösung wird direkt den Muskelextrakten zugesetzt. Bruchteile eines Kubikzentimeters genügen für den Extrakt von 100 g Muskeln. Überschuß des Aktivators hemmt die Glykolyse und muß daher vermieden werden, eventuell muß man für die besonderen Versuchsbedingungen die gehörige Menge ausprobieren. Meistens ist Extrakt, das 0.03 g Pankreas entspricht, die richtige Menge.

Für das glykolytische Enzym der höheren Pflanzen geben wir Stoklasas 1) und seiner Mitarbeiter Methode wieder:

Zur Isolierung der Rohenzyme werden gewöhnlich 5—6 kg junge und frische Pflanzensubstanz verwendet. Die frische Pflanzenmaterie, welche keinerlei Zersetzung durch Fäulnis aufweisen darf, wurde zerstückelt und der Saft aus der so erhaltenen Masse unter einem Drucke von 300 bis 400 Atmosphären ausgepreßt. Dem so gewonnenen Saft wird ein Gemisch von Alkohol und Äther zugesetzt, worauf ein an Eiweißstoffen reicher Niederschlag sich absetzt.

Diese Operation geschieht in einem hohen, sterilisierten Zylinder. Auf $500~cm^3$ des zellfreien Saftes kommen $600~cm^3$ eines Gemenges von $400~cm^3$ Alkohol und $200~cm^3$ Äther. Nach einem Augenblicke setzt man Äther im Überschuß zu und die oberhalb des Niederschlages aus Alkohol und Äther bestehende Flüssigkeit wird sofort abgehebert. Nun wird neuer-

¹) Julius Stoklasa, Adolf Ernest und Karl Chocensky, Über die glykolytischen Enzyme im Pflanzenorganismus. Zeitschr. f. phys. Chem. Bd. 50. S. 303—360 (1907).

dings Ather aufgegossen und sodann sofort die überstehende Flüssigkeit abgehebert.

Der ganze Vorgang bei Fällung des Pflanzensaftes muß rasch vorgenommen werden, so daß Alkohol und Äther nur möglichst kurze Zeit auf das Enzym einzuwirken vermögen und infolgedessen seine Aktivität nicht abschwächen. Die Flüssigkeit über dem Niederschlag wird deshalb rasch abgegossen oder abgehebert und der so gewonnene, das gärungserregende Enzym enthaltende Niederschlag sofort abfiltriert. Die Filtration läßt sich am schnellsten mittelst Leinwand bewerkstelligen. Auf die sterile Leinwand wird die erhaltene Masse aufgeschüttet und gut abgepreßt.

Das so gewonnene Rohenzym wurde entweder im Vakuum oder in sterilen, zu diesem Zwecke besonders arrangierten Kolben getrocknet.

Diese Kolben waren wie folgt zusammengestellt: In dem Hals jedes der Kolben war ein dreifach gebohrter Kautschukstöpsel eingepaßt. Durch die eine dieser Öffnungen ging eine ziemlich breite, knieförmig gebogene Röhre, welche bis fast an den Boden des Kolbens reichte und mit Watte gefüllt war. In die zweite Öffnung des Stopfens war eine kurze, gerade Röhre gesteckt, die ebenfalls mit Watte gefüllt war und knapp unter dem Stopfen mündete. Die dritte Öffnung war mittelst einer Glasstange verschlossen, welche, sobald die Kolben einer dreifachen, fraktionierten Sterilisation unterworfen waren, durch ein Thermometer ersetzt wurde. Das Thermometer wurde, bevor man es in den betreffenden Kolben eingelassen hatte, gründlich mit einer Sublimatlösung abgewaschen und dann auf die Weise abgesengt, daß es in Alkohol getaucht und die sehr schwache Alkoholschichte angezündet wurde.

Sodann erfolgt die Wägung jedes der Kolben. Unter Beobachtung aller Kautelen gegen die Invasion von Mikroben wurde hierauf in die Kolben ein bestimmtes Quantum des ausgesüßten Niederschlages eingetragen und dessen Trocknung durchgeführt. Die Kolben mit dem Enzym wurden nämlich in kupferne Trockenapparate getan, in welchen eine Temperatur von ca. 36--38° C erhalten und sterilisierte Luft in starkem Strome in der Weise durchgetrieben wurde, daß die kurze, unterhalb des Stopfens in den Kolbenhals mündende Röhre mit einer Wasserpumpe in Verbindung gebracht wurde, während die längere Röhre, welche fast bis an den Boden des Kolbens reichte, mit etlichen Waschflaschen, die eine konzentrierte Lösung von Sublimat enthielten, und mit etlichen Zylindern, in deren mit steriler Watte gefülltem Innern mehrere übereinander geschichtete Lagen feinkörnigen Thymols untergebracht waren, verbunden ist.

Mit 6-10 g dieses Enzyms werden dann 50 cm³ einer 15% igen Traubenzuckerlösung 0.5 K. PO, unter aseptischen Kautelen und unter Zusatz von Thymol zusammengebracht und dann der Verlust an Zucker und die gebildeten Produkte bestimmt.

E. Die Fermente des Fettstoffwechsels in Tier- und Pflanzenwelt.

Von M. Jacoby, Berlin.

Der intermediäre Fettstoffwechsel und seine Beeinflussung durch Fermente beginnt mit dem Augenblick, in dem das Fett in irgend einer Form die Darmwand passiert hat und in das Blut übergetreten ist. Ob es im Blute gespalten wird und die Komponenten irgendwie an die Eiweißkörper gekuppelt werden oder wie sonst das Fett dem direkten Nachweis entzogen wird, ohne seine Disponibilität einzubüßen, ist noch nicht hinreichend geklärt.

Nach der Methode von Connstein¹) und Michaelis kann man jedenfalls nachweisen, daß Fett, welches man dem Blute zusetzt, seine Ätherlöslichkeit verliert. Als Antiseptikum bewährte sich Fluornatrium; die ständige Zufuhr von Sauerstoff ist unentbehrlich.

Ein derartiger Versuch gestaltete sich dann folgendermaßen: Es werden gemischt:

1573 g Blut, enthaltend $0.040^{\rm o}/_{\rm o}$ Fett, mit 31.7 g Chylus, ... $2.607^{\rm o}/_{\rm o}$...

Der Fettgehalt des Gemenges berechnet sich somit auf 0·889 g; statt dessen werden bei der Analyse des Gemenges gefunden: 0·225 g. Es sind somit verschwunden: 0·644 g, d. h. 74·29/ $_0$ des ursprünglich vorhandenen Fettes.

Inwieweit hier das ätherlösliche Fett abgenommen hat und mit welchem Anteil Lecithin und andere Lipoide beteiligt sind, ist nicht ganz sichergestellt.

Während eine fermentative Spaltung der Körperfette durch Blutserum bisher nicht nachgewiesen und nicht einmal wahrscheinlich gemacht ist, kann man zeigen, daß Blutserum mehr oder weniger leicht spaltbare Ester, wie z. B. das Monobutyrin, in gewissem Umfange zerlegt. Man stellt das nach dem Verfahren von *Hanriot*²) fest, das darin besteht, daß man

¹) Withelm Connstein, Über fermentative Fettspaltung. Ergebnisse d. Physiologie. Bd. 3. 1. S. 194—232 (1904).

²) Vgl. Wilhelm Connstein, Ergebnisse der Physiologie. Bd. 3. 1 (1904).

Monobutyrin zu Blutserum zusetzt und sich nach einiger Zeit durch Titration mit Phenolphtalein als Indikator überzeugt, daß freie Säuren auftreten. Deren Menge wird durch die Quantität Soda bezeichnet, die zur Neutralisation sich als nötig erweist. Um Bakterienwirkung auszuschließen, wird Chloroform oder ein anderes Antiseptikum benutzt, als Kontrolle wird auf mindestens 65° erhitztes Serum verwandt.

Diese Esterspaltung findet nun auch in den Geweben statt und man kann esterspaltende Fermente aus den Organzellen extrahieren. Sehr leicht demonstrierbar ist die Spaltung des Salizylamylesters durch Leber und andere Organe und Organextrakte, welche zuerst *Chanoz* und *Doyon* beschrieben haben.

Magnus¹) hat eine gewisse Isolierung dieses Ferments erreicht und einige bemerkenswerte methodische Punkte hervorgehoben.

100 cm³ Lebersaft werden mit der gleichen Menge gesättigter Uranylacetatlösung ausgefällt, mit gesättigter Lösung von Soda und Natriumphosphat neutralisiert und noch so viel Natriumphosphatlösung zugefügt, bis im Filtrat mit Natriumphosphat kein Niederschlag mehr zu erzielen ist. Darauf wird sofort abfiltriert, der Niederschlag 20 Stunden unter 100 cm³ 0·90/o iger Na Cl-Lösung stehen gelassen und darauf wieder abfiltriert. Das Filtrat, welches schwach alkalisch reagiert, wird mit n 20-H₂ SO₄ versetzt, bis eine leichte Trübung auftritt, und dann wieder soviel n 20-Na OH zugefügt, bis die Trübung gerade anfängt zu verschwinden. Dann reagiert die Flüssigkeit gegen Lackmus neutral und wird unter Toluol aufbewahrt.

So gewonnene Lösungen sind in den meisten Fällen außerordentlich wirksam, unter Umständen quantitativ ebenso wirksam wie eine entsprechende Menge des Lebersaftes (20 cm³ spalten in 4 Tagen bei 37° von 1 cm³ Ester so viel, daß die gewonnene Salizylsäure noch in einer Verdünnung 1:20,000 mit Eisenchlorid nachweisbar ist; das entspricht nach einer approximativen Schätzung ungefähr 0:3 g Salizylsäure).

Der Eiweißgehalt dieser Lösungen ist ein geringer, aber wechselnder. In einer Darstellung, welche stark wirksam war, ließ sich Eiweiß nur in Spuren nachweisen (Biuretprobe unsicher, Kochprobe und Kanthoproteinreaktion ganz minimal, Millons, Adamkiewiczs und Molischs Reaktion negativ).

Ganz eiweißfreie Lösungen sind stets unwirksam. Nach mehrtägiger Dialyse gegen fließendes Wasser werden die fermenthaltigen Flüssigkeiten stets unwirksam. Sie werden auch nicht wieder wirksam, wenn man sie nach der Dialyse wieder auf einen Gehalt von 0.9° Na Cl bringt. Die alte Wirksamkeit kehrt jedoch sofort zurück, wenn zu der unwirksamen Fermentlösung einige Kubikzentimeter gekochten Lebersaftes gesetzt werden, der für sich allein ebenso völlig unwirksam ist. Statt des gekochten Lebersaftes kann man eine entsprechende Menge einer gekochten Fermentlösung nehmen, welche mit Uranvlfällung gewonnen, aher nicht dialysiert worden ist.

¹) R. Magnus, Zur Wirkungsweise des esterspaltenden Ferments (Lipase) der Leber. Zeitschr. f. phys. Chemie. Bd. **42**. S. 149—154 (1904).

Es erhält also eine dialysierte unwirksame Fermentlösung durch Zusatz der für sich ebenfalls unwirksamen, nicht dialysierten, aber gekochten Lösung ihre esterspaltende Eigenschaft zurück.

Dialysiert man 100 cm³ Fermentlösung gegen ca. 1 l Wasser, das am 2. und 4. Tage gewechselt wird, und engt nun diese 2 l Außenwasser ein, so erhält man eine Flüssigkeit, welche neutralisiert auch nach dem Aufkochen die Fähigkeit besitzt, eine unwirksame dialysierte Fermentlösung wieder wirksam zu machen.

Das Coferment, das also durch Uranylacetat fällbar, dialysiert und kochbeständig ist, ist alkohollöslich, unlöslich in Äther, wird durch neutrales essigsaures Blei nicht gefällt und durch Veraschen zerstört.

Es muß betont werden, daß die Angaben von Magnus über den Einfluß der Dialyse auf die Wirkung des Ferments und das Coferment sich lediglich auf die Spaltung des Amylsalizylesters beziehen. Ersetzt man den Amylsalizylester durch den Äthylbuttersäureester, so wird die Fermentwirkung weder durch Dialyse aufgehoben, noch durch entsprechende Zusätze verstärkt.

Saæl¹) hebt kritisch gegenüber manchen anderen Angaben hervor, daß man Organextrakte mit einiger Exaktheit auf den Gehalt an Säuren, die durch Esterspaltung frei geworden sind, nur titrieren kann, wenn man die Eiweißkörper zuvor durch Koagulation entfernt, wenn man ferner die Proben mit dem Ester nicht zu lange im Brutschranke beläßt. Bei längerer Autolyse entstehen nämlich aus dem eigenen Material der Organe zu viel saure Produkte, welche die Fehler der Methode zu sehr vergrößern.

Saxls eigenes Vorgehen gestaltete sich folgendermaßen:

Frische Organe wurden fein gehackt und Portionen von je 5 g davon abgewogen; diese wurden in Pulvergläser mit eingeschliffenem Stöpsel gebracht und nach Zusatz von 50 cm^3 physiol. Na Cl-Lösung und 3 cm^3 Toluol gut durchgeschüttelt; die Gläser wurden sodann in den Brutofen gestellt, nach 24 Stunden einzelne Portionen mit 0·25 cm^3 Buttersäureäthylester versetzt, während andere als Vergleichsportionen ohne Esterzusatz verblieben; nun wurden die Proben noch 1 Stunde im Brutofen gelassen, sodann alle aufgekocht und filtriert, nachdem den Proben ohne Esterzusatz unmittelbar vor dem Aufkochen noch 0·25 cm^3 Ester zugesetzt worden war. Die Filtrate wurden mit n/10-Na OH (Lackmustinktur als Indikator) titriert; die Unterschiede der mit Esterzusatz im Brutofen beschickten Portionen und der Kontrollproben ergaben den Aciditätszuwachs durch die Esterspaltung.

Die Erfahrungen über die Spaltung von Neutralfetten, welche mit den Fetten des Tierkörpers direkt zu vergleichen sind resp. zu ihnen gehören, sind noch gering. Wir verweisen auch hier auf die von Saxl verwandte Technik.

Mehrere Portionen zu je 10 g Leber und zu je 10 g Lunge wurden aufs feinste zerhackt und mit je 50 cm³ physiol. NaCl-Lösung versetzt; zu

¹⁾ Paul Saxl, Über Fett- und Esterspaltung in den Geweben. Biochem. Zeitschr. Bd. 12. S. 343-360 (1908).

den einzelnen Lungen- und Leberportionen wurde je 1 g Kuhbutter, die gegen Lackmus neutral reagierte, hinzugefügt, alle Proben mit 3 cm³ Toluol versetzt, gut verkorkt, durchgeschüttelt und in den Brutofen gestellt. Nach einiger Zeit wurden diese Organportionen dem Brutofen entnommen, aufgekocht, filtriert, die Filter nachgewaschen und die Filtrate mit n'10-Lauge titriert, wobei Phenolphtalein als Indikator diente.

	Titrationswert in n10 Lauge				
	mit Butterzusatz	ohne Butterzusatz	Differenz in Kubik- zentimeter n 10-Lauge		
	Lunge:				
Je 10 g	-				
Nach 24stündigem Verweilen im			2.0		
Brutofen	7:0	4.1	2.9		
Nach 72stündigem Verweilen im					
Brutofen	8.0	4.7	3.3		
	Leber:				
Nach 24stündigem Verweilen im					
Brutofen	41:0	37:0	4.0		
Nach 72stündigem Verweilen im					
Brutofen	51.0	39:5	11:5		

Wenn die Spaltung erst spät einen größeren Umfang annimmt, so beruht das vielleicht auf dem Einflusse der erst allmählich durch die Autolyse zunehmenden sauren Reaktion der Gemische. Denn wir werden gleich erfahren, daß entsprechende Erscheinungen Connstein und seine Mitarbeiter bei dem Studium der fettspaltenden Enzyme der Pflanzen beobachtet haben. Diese Methodik muß jedenfalls für Versuche mit tierischen Organen noch nach verschiedenen Richtungen ausgebaut werden. 1

Von den lipolytischen Enzymen der Pflanzen sind am genauesten die Methoden der Darstellung und die Prüfungsverfahren für das fettspaltende Ferment des Rizinussamens ausgearbeitet. Diese fermentative Fettspaltung ist von Connstein und seinen Mitarbeitern für die Zwecke der Technik verwertet worden. Die Angaben beziehen sich daher eigentlich auf das Arbeiten mit großen Mengen. Es ist aber nicht schwierig, sich danach auch bei Laboratoriumsstudien zu richten. Wir geben hier eine Schilderung, die sich an die Arbeit von Houer²) anschließt:

Der geschälte oder auch ungeschälte Rizinussamen wird in einer von Friedrich Krupp, Grusonwerk, Magdeburg-Buckau, gelieferten Exzelsiormühle

¹) S. Bondi und Th. Frankl, Über Lipoproteïde und die Deutung der degenerativen Zellverfettung IV. (Biochem. Zeitschr. Bd. 17. S. 555—561 [1909]) haben gefunden, daß sog. Lipopeptide (Laurylglycin und Laurylalanin) durch Leber- und besonders Nierenbrei des Kaninchens, aber nicht durch Magen-Darmfermente gespalten werden. Eine Isolierung des wirksamen Fermentes gelang bisher nicht. Über die Darstellung der Lipopeptide vgl. S. Bondi, Über Lipoproteide und die Deutung der degenerativen Zellverfettung II (Biochem. Zeitschr. Bd. 17. S. 543—552 [1909]). Die Methode der Fermentspaltungsversuche findet sich in der vierten Mitteilung.

²) E. Hoyer, Uber fermentative Fettspaltung, Zeitschr. f. phys. Chemie. Bd. 50, S. 414-439 (1907).

mit Wasser fein vermahlen. Die gebildete Samenmilch passiert eine Überlaufzentrifuge von hoher Umdrehungszahl, in der alle lipolytisch unwirksamen Bestandteile des Rizinussamens zurückgehalten werden, während das Enzym als zarte Emulsion ("Fermentmilch") die Zentrifuge verläßt. Diese "Fermentmilch" enthält den größten Teil des Rizinusöles aus dem Samen emulsioniert mit den unlöslichen Eiweißstoffen des Protoplasmas; darunter auch das fettspaltende Enzym. Das Emulsionswasser hat alle wasserlöslichen Bestandteile, worunter auch das säurebildende Enzym, aufgenommen. Diese zentrifugierte Fermentmilch wird nunmehr bei ca. 24° der Gärung überlassen. Hierbei setzt sich die fermenthaltige Emulsion als dicke "Sahne" an der Oberfläche des sauren Unterwassers ab und kann so leicht gewonnen werden. Diese Sahne enthält das Ferment. Die Lösung enthält außer dem Enzym etwa

38% Rizinusölsäure,

4% Eiweißkörper resp. andere feste Substanzen,

58% Wasser.

Bekanntlich wird das Enzym durch Säure, am besten — weil am unschädlichsten — durch Essigsäure, Buttersäure oder Milchsäure in seiner Wirksamkeit verstärkt, aktiviert. Im Überschuß ist aber Säure für das Ferment schädlich. Das nach der eben beschriebenen Methode dargestellte Ferment bedarf keines Säurezusatzes, es muß vielmehr Zusatz von weiterer Säure vermieden werden. Die Wirkung des Enzyms wird verstärkt durch kleine Zusätze von Manganoxydulsulfat; $0.15-0.5\,g$ Manganoxydulsulfat auf $100\,g$ Palmkernöl und $7\,g$ Ferment waren die geeigneten Dosen.

Das Ferment ist einigermaßen haltbar, wenn man steril arbeitet und die Präparate kühl aufbewahrt. Doch auch dann ist eine Abnahme der Wirksamkeit unverkennbar, wie folgende Tabelle lehrt.

Je $100\,g$ Leinöl wurden mit $4\,g$ Ferment und $40\,cm^3$ einer $0.5^{\circ}/_{\circ}$ igen Mangansulfatlösung zusammengerührt und der Spaltung überlassen.

Alter de	es Ferm	en	ts		Lei	nö	lsp	alt	un	g nach je 20 Stunden
õ	Tage									$75^{\circ}/_{\circ}$
13	,,,									$74^{\circ}/_{\circ}$
	**									0
	22									0
	22									
15	Mona	te								440

F. Die Fermente des Eiweißstoffwechsels in Tier- und Pflanzenwelt.

Von M. Jacoby, Berlin.

Die Eigenart der Methodik für die Fermente des Eiweißstoffwechsels der Tier- und Pflanzenwelt beschränkt sich auf die Isolierung der Fermente.

A. Tierische Fermente. Es ist bisher erst in wenigen Fällen möglich, die Einwirkung der proteolytischen Organfermente auf isolierte Substanzen zu untersuchen. Wenn man nämlich mit einem Organextrakt oder einem aus einem Organextrakt hergestellten Fermentpulver Eiweißkörper, wie z. B. Gelatine, Kasein oder Edestin resp. durch Synthese gewonnene Verbindungen, wie Polypeptide, zusammenbringt, so kann man im allgemeinen die Wirkung der Fermente nicht ohne weiteres durch Abnahme der Menge des Eiweißkörpers oder durch den Nachweis des Auftretens der Spaltungsprodukte feststellen. Denn die Organpräparate enthalten selbst Eiweiß, dessen Menge sich bei der Verdauung vermindert und an dessen Stelle dann Spaltungsprodukte auftreten, die nicht immer von den Spaltungsprodukten der zugefügten Eiweißsubstanzen verschieden sind. Man ist dann auf sogenannte Kontrollversuche angewiesen. Ein Beispiel möge das erläutern: Es soll festgestellt werden, ob Edestin durch Lebersaft verdaut wird. Man bringt dann in mehrere Gefäße gleiche Mengen des Lebersaftes. Zu einer Probe des Lebersaftes fügt man eine bestimmte Menge Edestin. Außerdem setzt man ein Gefäß allein mit dem gleichen Volumen Lebersaft an, ein weiteres mit der oben benutzten Quantität des Edestins. Selbstverständlich werden von allen diesen verschiedenen Proben mehrere Parallelversuche verwandt. Nun überläßt man alle Proben im Brutschranke der Verdauung für einige Tage. Wenige Stunden genügen nicht, da bei der geringen Intensität der Fermentwirkungen die Ausschläge dann zu klein sind. Um Bakterienwirkungen zu vermeiden, fügt man von Anfang an dem Organsaft, aber auch der einzeln angesetzten Eiweißlösung, also in unserem Beispiel dem Edestin, ein Antiseptikum zu, am häufigsten Chloroform, das sehr energisch antibakteriell wirkt, aber vielleicht auch besonders schädlich für die Enzyme ist, oder Toluol, das weniger wirksam im erwünschten und unerwijnschten Sinne ist.

Waren die Flaschen hinreichend lange im Brutschranke, so erfolgt die Aufarbeitung in der Art, daß der Eiweißgehalt der Lösungen bestimmt wird. Auf die hierbei zweckmäßig verwandten Verfahren gehen wir an dieser Stelle nicht ein, hier kommt es zunächst darauf an, auseinanderzusetzen, wie die Einzelproben getrennt resp. vereint verarbeitet werden müssen, um beweisende Resultate zu erzielen. Den Mittelpunkt der Versuchsreihe bildet die Probe, in der der Lebersaft und die Eiweißkörper gleichzeitig und in nicht erhitztem Zustande vereint der Verdauung ausgesetzt waren. Indem man diese Portion enteiweißt und den Stickstoffgehalt des eiweißfreien Filtrates bestimmt, erhält man ein Kriterium, wieviel Verdauungsprodukte von Eiweißkörpern im ganzen vorhanden sind. Um nun zu erfahren, wieviel davon aus der Verdauung der Lebereiweißkörper stammen, vereinigt man von den in den Brutschrank gestellten Portionen je eine, die nur Lebersaft enthielt, mit einer, die nur aus Edestin besteht, und enteiweißt das Gemenge sofort nach dem Mischen. Bei dieser Kontrolle war dann die Möglichkeit der verdauenden Einwirkung des Leberfermentes auf das Edestin ausgeschaltet, andrerseits die Möglichkeit gesichert, Veränderungen der Leber sowohl wie des Edestins, die im Brutschrank auftreten, zur Geltung kommen zu lassen. Die Differenz der beiden Versuchsreihen kann dann als Resultat der gegenseitigen Beeinflussung der beiden Faktoren ausgesprochen werden. Wenn der eine Faktor ein gereinigter Eiweißkörper wie das Edestin ist, bei dem verdauende Wirkungen nicht anzunehmen sind, so kann man eine aktive Wirkung des Lebersaftes resp. eines in ihm enthaltenen proteolytischen Ferments als bewiesen ansehen.

Da die Organextrakte die in ihnen enthaltenen Eiweißkörper bei ihrer nativen Reaktion verdauen, so kann man bei der Prüfung auf Proteolyse gegenüber zugesetzten Eiweißsubstanzen sich zunächst auch an diese Reaktionen halten. Erzielt man negative Resultate oder will man genauer feststellen, ob das vermutete Enzym der Gruppe der Pepsine oder der Trypsine nahesteht, so kann man dieselben Versuche natürlich auch mit abgeänderter Reaktion, also bei verschiedenen Graden der sauren oder alkalischen Reaktion wiederholen.

Ganz bedeutend vereinfachen würde sich die Untersuchung auf proteolytische Organfermente, wenn man optische und andere physikalische Zustände der zugesetzten Eiweißkörper zur Erkennung der eingetretenen Wirkung verwerten könnte, wenn man also untersuchen könnte, ob Fibrinflocken oder Mettsche Röhren gelöst werden, Rizin aufgehellt wird, Edestin resp. Kasein nicht mehr ausfällbar ist. Solche Versuche würden einmal zur Orientierung sehr bequem sein, dann auch für quantitative Reihenversuche Bedeutung haben. Es fehlt aber bisher an brauchbaren Erfahrungen in dieser Beziehung. Einigermaßen verwertbar ist zurzeit nur die Gelatinemethode von Fermi. Man bereitet sich eine 5-8% gie Gelatine, der man Chloroform zusetzt, und bringt davon $5-10~cm^3$ in Reagenzgläser und untersucht, ob die Gelatine noch erstarrt, nachdem sie mit Organsubstanz oder Organextrakten zusammen im Brutschrank gewesen war.

Am günstigsten liegen die Verhältnisse bei den Versuchen mit synthetischen Polypeptiden, die Abderhalden und seine Mitarbeiter angestellt haben. Wenn hier Aminosäuren abgespalten werden, die bei der Selbstverdauung des betreffenden Organes, z.B. der Leber, nicht gebildet werden, so ist man sicher, daß die zugefügte Substanz gespalten worden ist.

Aus alledem geht aber hervor, daß es sehr wünschenswert wäre, möglichst reine oder wenigstens so gut wie eiweißfreie, proteolytische Organfermente zur Verfügung zu haben. Eine Isolierung der Fermente schützt auch am sichersten davor, daß Hemmungsstoffe und Antifermente den Spaltungsprozeß stören. Bisher ist man aber noch sehr wenig in der Isolierung dieser Fermente vorwärts gekommen. Da wir vorläufig noch nichts besseres besitzen, werde ich hier das Verfahren von Rosell beschreiben. Nachdem ich mit dem Uranylacetat bei der Isolierung der Aldehydase der Leber brauchbare Resultate erhalten hatte, hat Rosell 1) das Uranylacetat ganz allgemein benutzt, um wirksame Fermentlösungen aus Organen herzustellen. Seine Fermentlösungen hatten vielfach auch deutlich peptische und tryptische Wirkungen. Auf einen Umstand muß aber dabei aufmerksam gemacht werden. Als Magnus zu seinen im vorigen Abschnitt geschilderten Versuchen über fermentative Esterspaltung die Uranylacetatmethode benutzte, hatte er stets gute Resultate. Bei Benutzung eines neuen Präparates, das ebenso wie die früheren von Merck als Uranylacetat purissimum bezogen war, bekam er keine Spur des Ferments in den Niederschlag, während das alte Präparat stets auch in Zukunft sich als wirksam erwies. Eine Anfrage bei der Fabrik ergab, daß das Reinigungsverfahren verbessert war. Magnus und ich haben dann zusammen versucht, die Ursache der Verschiedenheit der beiden Präparate aufzuklären, die Versuche aber vorzeitig abgebrochen. Radium schien keine Rolle zu spielen. Ob die von Neuberg gefundene katalytische Uranwirkung bei dem Phänomen beteiligt ist, wäre noch zu untersuchen. Jedenfalls ist aber bei Fehlversuchen an diese eigenartigen Erscheinungen zu denken.

Das Rosellsche Verfahren gestaltet sich nun nach den Angaben des Verfassers folgendermaßen:

Die Gewebe werden mit der Fleischhackmaschine zerkleinert, mit Quarzsand verrieben, mit zirka einem Viertel ihres Volumens Wasser angesetzt und reichlich 2 Stunden auf der Schüttelmaschine geschüttelt, dann die Masse koliert. Man erhält dabei eine trübe Flüssigkeit, welche, ohne filtriert zu werden, mit einer gesättigten Lösung von Uranylacetat versetzt wird. Während des Zusatzes wird sie durch Zufügen einer Mischung von Natriumkarbonat und Natriumphosphat alkalisch gehalten. Das Natriumphosphat dient dazu, die schließlich resultierende Fermentlösung frei von Uranylacetat zu gewinnen; das Karbonat verstärkt dessen geringeren Al-

¹⁾ Max Rosell, Über Nachweis und Verbreitung intrazellulärer Fermente. Dissert. Straßburg i. E. 1901, Josef Singer.

kaleszenzgrad und läßt dadurch den Zusatz zu großer Flüssigkeitsmengen vermeiden. Man fügt solange Uranylacetat hinzu, bis sich grobe Flocken bilden, welche in kürzester Zeit sich abzusetzen beginnen, dekantiert und filtriert. Der Rückstand bleibt, nachdem er mit 0·20/oiger Sodalösung fein verrieben ist, mindestens 12 Stunden stehen, worauf er filtriert wird. So gewinnt man eine klare, eiweißarme Flüssigkeit, in welcher die Fermente in wirksamer Form enthalten sind. Wünscht man reinere Präparate, so kann man Fällen und Ausziehen wiederholen. Zweckmäßigerweise setzt man behufs Konservierung erst jetzt Toluol hinzu, da dessen Anwesenheit sonst den Verlauf der einzelnen Operationen zu sehr verlangsamt. Schnelligkeit des Arbeitens ist nämlich wegen der auch bei Zusatz antiseptischer Mittel drohenden Fäulnis zu empfehlen. Ferner wird die Fermentausbeute desto geringer, je später die Enzyme aus dem Uranylacetatniederschlag ausgezogen werden.

Neuerdings hat in meinem Laboratorium *Hata* ¹) eine Methode der Isolierung eines proteolytischen Leberfermentes ausgearbeitet, die zunächst nach folgenden Angaben ausgeführt wurde:

Möglichst fein zerhackte Leber wird mit physiologischer Kochsalzlösung (1 cm^2 pro 1 g) versetzt, gut geschüttelt und bleibt eine Nacht auf Eis. Dann wird koliert und der Saft abgepreßt und nochmals filtriert. Das Filtrat wird mit Chloroform im Eisschrank aufbewahrt. Die ganze Darstellung bis zu diesem Punkt muß bei möglichst niedriger Temperatur erfolgen. Geht man so vor, so erhält man bessere Ausbeuten und ebenso wirksamen Saft, wie wenn man die Leber mit Quarzsand und Kieselgur verarbeitet. Dieses erste Extrakt ist trüb und sehr eiweißreich.

Eine weitere Reinigung läßt sich leicht folgendermaßen erreichen: Zu einem Volumen des Extrakts fügt man $^{1}/_{10}$ Volumen Normalsalzsäure. Man wartet, ohne den entstehenden Niederschlag abzufiltrieren, eine Stunde und fügt nun Sodalösung soviel hinzu, daß die Säure fast vollkommen neutralisiert ist. Dann wird filtriert. Man erhält so eine klare und proteolytisch gut wirksame Flüssigkeit.

Dieses Verfahren habe ich hier geschildert, weil die Kenntnis dieses Vorgehens das Verständnis eines noch vorteilhafteren Verfahrens erleichtert, das ebenfalls *Hata* in meinem Laboratorium ausgearbeitet hat.

100~gPferdeleber werden in einer Reibschale tüchtig zerrieben und dann mit $100~cm^3$ n/20-Salzsäure versetzt, die zugleich $0.85\,^{\rm o}/_{\rm o}$ Kochsalz enthält. Man fügt $10~cm^3$ Chloroform dem Gemisch zu. Nun überläßt man das Gemisch sich selbst, schüttelt nur von Zeit zu Zeit durch. Braucht man die Fermentlösung bald, so führt man den Versuch 24 Stunden bei 37° durch. Im anderen Falle beläßt man das Gemisch 7 Tage bei Zimmertemperatur. Nach Beendigung der Digestion wird durch Gaze isoliert, mit Normal-Sodalösung neutralisiert und filtriert. Man erhält dann ca. 125 cm^3

¹) S. Hata, Zur Isolierung der Leberfermente, insbesondere des gelatinolytischen Leberfermentes. Biochem, Zeitschr. Bd. **16**, S. 383—390 (1909).

einer peptischen Fermentlösung, von der 0·2--0·25 cm3 in 6--12 Stunden 2 cm³ einer 5% igen Chloroformgelatine verdauen.

Diese Fermentlösung läßt sich dann mit Ammonsulfat noch weiter reinigen. Man beseitigt zunächst den bei 33% Salzsättigung entstehenden Niederschlag und bringt dann die Sättigung mit Ammonsulfat auf 70%. Dann erhält man das Enzym im Niederschlag.

Aus Leukozyten stellten Jochmann und Lockemann 1) nach folgender Methode ein proteolytisches Ferment dar:

Knochenmark wurde durch Auspressen von menschlichen Rückenwirbeln am Schraubstock gewonnen, Eiter wurde erhalten, indem entweder Kokkenabszesse benutzt wurden oder beim Menschen steriler Eiter durch Terpentininjektion angesammelt wurde.

Das Ausgangsmaterial wurde 24-48 Stunden der Autolyse im Brutschrank bei 55° ausgesetzt. Das Autolysat wurde mit der ungefähr fünffachen Menge eines Gemisches von 2 Teilen Alkohol und einem Teil Äther verrührt, um die fettartigen Stoffe herauszulösen bzw. die eiweißartigen Verbindungen zu fällen. Nach eintägigem Stehen wurde filtriert, der Rückstand zunächst zur Verdunstung von Alkohol und Äther auf Ton ausgebreitet und dann mit einer entsprechenden Menge (bei flüssigem Ausgangsmaterial mit etwa 1/4 Volumen) Glyzerin und der gleichen Menge Wasser innig verrieben, nach ein- bis zweitägigem Stehen im Dunkeln wurde auf einem Büchnerschen Trichter abgesaugt und das klare Filtrat in die 5-6fache Menge eines Alkoholäthergemisches (2:1) unter Umrühren allmählich eingegossen. Der dabei entstehende weißliche Niederschlag, welcher sich allmählich an dem Boden des Becherglases ziemlich fest absetzt, wurde nach dem Abgießen der darüber stehenden Alkoholätherlösung auf Ton gebracht und im Vakuumexsikkator über konzentrierter Schwefelsäure getrocknet. Dabei färbt er sich gelbbraun und geht nur, besonders in dickeren Schichten, sehr allmählich in trockenen, zerreibbaren Zustand über. Das so gewonnene Produkt, welches das Enzym enthält, ist etwas hygroskopisch. Es löst sich beim Zerreiben mit Wasser oder physiologischer Kochsalzlösung mit bräunlicher Farbe.

Die Prüfung auf fermentative Wirkung kann nach der Müller-Jochmannschen Methode vorgenommen werden. Man bringt auf eine Löffler-Serumplatte, wie sie in der Bakteriologie für Kulturzwecke benutzt wird. ein Tröpfehen der zu prüfenden Fermentlösung und beläßt die Platte 24 Stunden bei 55°. Dann bildet sich, wenn ein aktives, proteolytisches Ferment vorhanden ist. in der Platte eine tiefe Delle.

Das Leukozytenferment löst auch Fibrinflocken, erstarrte Gelatine und erstarrtes Blutserum, verdaut Kasein und spaltet aus Peptonen Tyrosin, Tryptophan und Ammoniak ab.

¹⁾ G. Jochmann und G. Lockemann, Darstellung und Eigenschaften des proteolytischen Leukozytenfermentes. Hofmeisters Beitr. Bd. 11. S. 449-457 (1908).

Hat man die Organfermente hinreichend isoliert, was mit der Zeit immer besser gelingen wird, so wird man sich zur qualitativen und quantitativen Untersuchung der proteolytischen Organfermente sehr vorteilhaft der Abderhaldenschen Methoden bedienen können. Abderhalden 1) setzt zu den Fermentlösungen synthetisch hergestellte Polypeptide und untersucht, ob und wieviel von den Spaltungsprodukten auftreten. Sehr einfach gestalten sich die quantitativen Bestimmungen, wenn man das Drehungsvermögen der Aminosäuren verwerten kann. So ist z. B. d-Alanyl-d-Alanin sehr geeignet, weil das d-Alanin sich im Drehungsvermögen scharf von dem d-Dipeptid unterscheidet. Das nähere über die Methode findet sich an anderer Stelle des Handbuches. Hier sei nur ein Versuchsbeispiel wiedergegeben, das den Effekt gut demonstriert:

0°6 g d-Alanyl-d-Alanin in 7°6 cm³ Hefepreßsaft + 0°4 cm³ physiologischer Kochsalzlösung gelöst:

Drehung	nacl	ı 5	Minuten			-1.08°
,,	77	12	**			-0.85°
*9	22	19	29			-0.29_{0}
**	**	26	**			0.53 ₀
**	**	30	**		-	-0.09_{0}
**	23	35	**			$\pm 0.02_{o}$
		40	.,			$\pm 0.10^{\circ}$

B. Pflanzenfermente. Die in den Pflanzenzellen tätigen proteolytischen Fermente hat man sowohl in ruhenden Keimen wie in gekeimten Pflanzen untersucht. In beiden Fällen hat man einmal mit autolytischen Methoden die Vorgänge verfolgt, außerdem aber auch die Enzyme aus den Zellen extrahiert. Wir geben zunächst wieder, wie man bei der Untersuchung der ruhenden Pflanzenteile, wie sie als Futtermittel in Betracht kommen, vorgegangen ist. Grimmer hat die Autolyse der Futtermittel studiert. Die Methoden der Autolyse werden später noch besonders beschrieben, hier sei nur hervorgehoben, daß wir unter autolytischen Methoden die Verfahren verstehen, welche darauf verzichten, isolierte Enzymlösungen auf zu fermentierendes Material einwirken zu lassen, die vielmehr sich darauf beschränken, die Änderung der Zusammensetzung von Organen oder Organextrakten bei bestimmten Temperaturen unter Bedingungen zu untersuchen, bei denen Enzymwirkungen in Frage kommen.

Grimmer 2) ging folgendermaßen vor:

100 g der zu untersuchenden Futtermittel: Pferdebohnen, Wicken, Gerste und Hafer, wurden mit $1000 \ cm^3 \ 0^2 \ 0^{\circ}$ ger Salzsäure oder Wasser oder $0^{\circ} \ 2^{\circ}$ ger Sodalösung, also bei entsprechend saurer, neutraler und

¹) Emil Abderhalden und A. H. Koelker, Die Verwendung optisch aktiver Polypeptide zur Pr\u00e4fung der Wirksamkeit proteolytischer Fermente. Zeitschr. f. phys. Chemie. Bd. 51. S. 294—310 (1907).

²) W. Grimmer, Zur Kenntnis der Wirkung der proteolytischen Enzyme der Nahrungsmittel. Biochem. Zeitschr. Bd. 4. S. 80—98 (1907).

alkalischer Reaktion 6, 12 und 24 Stunden im Thermostaten bei Körpertemperatur (37°C) belassen. Nach dieser Zeit wurden durch Kolieren und Filtrieren die festen und flüssigen Anteile des Digestionsgemisches voneinander getrennt und das Filtrat auf 1500 cm3 gebracht. In 25 cm3 des Filtrates wurde die Gesamtmenge des gelösten Stickstoffes bestimmt, in weiteren 50 cm3 durch Aufkochen mit Essigsäure und nachfolgendes Neutralisieren koagulables Eiweiß und Syntonin entfernt und im Filtrat die Menge des übrigen gelösten Stickstoffes bestimmt. Zur Ermittlung des an Albumosen gebundenen Stickstoffes wurden 1000 cm³ nach Entfernung des koagulablen Eiweißes auf 200 cm2 eingeengt und die Menge der Albumosen in schwefelsaurer Lösung durch Zinksulfat nach Zunz gefällt. Ein Teil des Filtrates wurde zur Bestimmung des nunmehr darin verbliebenen Stickstoffes benutzt, während in einem anderen die mit Phosphorwolframsäure fällbaren Anteile gefällt und deren Stickstoffgehalt ermittelt wurde. Um die Menge des Stickstoffes festzustellen, der vor der Autolyse vorhanden war, wurden 100 q der betreffenden Futtermittel mit eiskaltem Wasser ca. 10 Minuten in Berührung gelassen, dann im Eisschranke filtriert und das Filtrat in der eben beschriebenen Weise untersucht. Zieht man die Menge des ursprünglich vorhandenen löslichen Stickstoffes von der Menge des bei den Digestionsversuchen gefundenen ab, so erhält man die Menge des durch die Enzyme gelösten Stickstoffes, die zum Teil sehr beträchtlich ist.

Aron und $Klempin^{-1}$) wandten bei ähnlichen Versuchen die von Rona und Michaelis angegebene Enteiweißung mit Hilfe von Mastix an, ein für die Autolyseversuche gewiß vielfach anwendbares Verfahren.

Um zu beweisen, daß im Hafer mehr proteolytisches Enzym vorhanden ist, als durch die autolytische Spaltung des Hafereiweißes direkt zur Erscheinung kommt, setzten sie bestimmten Quantitäten rohen Hafers (z. B. 15 g und 75 g) noch 15 resp. 225 g gekochten Hafer zu. Die Anordnung der Versuche geht von folgenden Erwägungen aus. Man kennt die aus 15 g gekochtem Hafer zu erwartende Menge löslichen Stickstoffes und ebenso die in 15 g rohem Hafer vorhandene Menge löslichen und durch das Ferment löslich gemachten Stickstoffes.

Ist die Menge des inkoagulablen Stickstoffes größer geworden, so muß das in $15\,g$ rohem Hafer enthaltene Ferment — da es ja erfahrungsgemäß von dessen Eiweiß nichts mehr lösen kann — das Eiweiß des gekochten Hafers angegriffen haben.

Mit entsprechender Versuchsanordnung ließ sich auch prüfen, ob das Ferment einer Getreideart auch die Eiweißkörper anderer Getreidearten zu spalten vermag. Es war nur nötig, ungekochten Hafer auf gekochte Wicken und gekochte Gerste unter den nötigen Kontrollen einwirken zu lassen oder ungekochte Gerste auf andere gekochte Getreidesorten. Natür-

¹) Hans Aron und Paul Klempin, Studien über die proteolytischen Enzyme in einigen pflanzlichen Nahrungsmitteln. Biochem. Zeitschr. Bd. 9. S. 163-184 (1908).

lich war das Verfahren auch anwendbar, um zu untersuchen, ob die Pflanzenfermente auch isolierte Eiweißsubstanzen pflanzlicher oder tierischer Herkunft zu spalten vermögen. Aron und Klempin prüften mit positivem Ergebnis die Pflanzenpräparate "Roborat" und "Laktagol", von tierischen das Kasein, während Eiereiweiß gar nicht, Serum nur in gekochtem Zustande verdaut wurde.

Zur Isolierung des Haferfermentes gingen Aron und Klempin folgendermaßen vor:

Geschroteter Hafer (Hafermehl erwies sich weniger günstig) wurde 10—12 Stunden in der Kugelmühle in einem Gemisch gleicher Teile Wasser und Glyzerin gründlich zermahlen, der feste Rückstand in einer Filterpresse abgepreßt und das ablaufende Filtrat in hohen Zylindern durch Sedimentieren geklärt. Die dann abgeheberte braungelbe Flüssigkeit wurde schließlich noch mehrmals filtriert.

Der so gewonnene Glyzerinextrakt erwies sich auch nach wochenlanger Aufbewahrung im Eisschrank proteolytisch wirksam gegenüber den Eiweißkörpern, die auch bei den Autolyseversuchen sich als angreifbar durch das Haferferment erwiesen hatten.

Für alle diese Versuche sei hervorgehoben, daß diese Fermente am stärksten bei saurer, weniger gut bei neutraler, am schwächsten bei alkalischer Reaktion wirken.

Während diese Versuche und Methoden von Interesse für Ernährungsfragen sind, sind die Versuche an Keimpflanzen für die Frage des intermediären Eiweißstoffwechsels der Pflanzenzellen von Bedeutung.

Die betreffenden Versuchsanordnungen haben sich im wesentlichen im Anschluß an die Arbeiten von E. Schulze über die Eiweißbildung und den Eiweißabbau in den Pflanzen entwickelt. Aus Schulzes Versuchen war bereits als wahrscheinlich zu entnehmen, daß proteolytische Enzyme während der Keimung in den Pflanzen tätig sind. Schulzes 1) Methoden sind nicht direkt Fermentprüfungsmethoden. In diesen Arbeiten wurde vielmehr in Keimpflanzen und Teilen von Keimpflanzen zu verschiedenen Zeiten der Entwicklung möglichst quantitativ auf Amidosäuren untersucht. Zu den Versuchen werden etiolierte Pflanzen in verschiedenen Stadien der Keimung verarbeitet, entweder die Pflänzchen im ganzen oder die Achsenorgane und die Kotyledonen getrennt. Nach der Ernte werden die Pflanzen zunächst mit Wasser gewaschen, um sie von anhaftender Erde und Sand zu befreien, dann werden sie bei 600 getrocknet und zerkleinert. Dann wird bestimmt der Gesamt-N nach Kjeldahl, der Eiweiß-N nach Stutzer durch Erhitzen unter Zufügung von Kupferoxydhydrat, der mit Phosphorwolframsäure fällbare N, um einen ungefähren Anhalt über den Gehalt an Basen zu erhalten, endlich der Amidstickstoff durch Bestimmung des N, der -

E. Schulze, Über den Umsatz der Eiweißstoffe in der lebenden Pflanze, Zeitschrift f. physiol. Chemie. Bd. 24. S. 18 (1898) und 2. Abhandl. Bd. 30. S. 241-312 (1900).

vor und nach Zerkochung der Substanz durch Salzsäure — durch Magnesia austreibbar ist. Der Hauptwert wird aber bei diesen Arbeiten auf die möglichst quantitative Darstellung der einzelnen kristallinischen Spaltungsprodukte gelegt, die als solche dargestellt werden. Diese Methoden brauchen hier nicht geschildert zu werden, da bei zukünftigen Untersuchungen doch die neuesten Fortschritte der Eiweißchemie berücksichtigt werden müßten. Ich gebe nur einige Versuchsresultate von Schulze wieder, um zu zeigen, um welche quantitativen Verhältnisse es sich bei diesen Arbeiten handelt.

Vom Gesamt-N entfallen in Prozenten auf:

	Proteinstoffe	nicht proteinartige Verbindungen
Lupinus luteus:		
Ungekeimter Samen	93:36	6.64
6tägige Keimpflanzen	58.89	41.20 schneller Eiweiß-
15 , ,	18:30	81.61 zerfall
24 " "	18:96	81:04
Lupinus angustifolius:		
Ungekeimter Samen	92.89	7:11
3tägige Keimpflanzen	84.13	15.87
6 , , , , , , , , , , , , , , , , , , ,	48 31	51.69
9 , , , , , , , , , , , , , , , , , , ,	34.73	65:27 schneller Eiweiß-
12 , , ,	28.67	71·33 zerfall
15 , , , , , , , , , , , , , , , , , , ,	22:33	77:67
18 " "	22:78	77:22
Zea-Mais:		
Ungekeimter Samen	97:95	2:05
5tägige Keimpflanzen	95.82	4.18
9 , , ,	91.62	8:38 langsamer Eiweißzerfall
12 , , , , , , , , , , , , , , , , , , ,	85:30	14·70 EIWeibzerian
16 " "	66.67	33·33

In ungekeimten Samen wurden keine Aminosäuren, in 6-7tägigen Keimpflanzen 0·6º/₀ Aminosäuren bei unvollkommener Ausbeute gefunden.

Butkewitsch¹) hat dann die Versuche von Schulze mit einer direkten autolytischen Methode weitergeführt. Zunächst wurden die gekeimten Samen bei 35—40° getrocknet, dann das Pflanzenpulver mit Äther getrocknet. Dann wird das Pulver mit Wasser und Thymol bei Brutschranktemperatur einige Zeit gehalten. In einem Kontrollversuch wurde die Wasseraufschwemmung des Pulvers am Beginn zum Sieden erhitzt. Die Untersuchung der entstandenen Spaltungsprodukte entspricht dem Vorgang von Schulze.

Das proteolytische Enzym läßt sich durch Glyzerin extrahieren und ist in dem Alkoholniederschlag des Extraktes enthalten. Setzt man das Enzym zu Konglutin, so konnte Leucin und Tyrosin nach Einwirkung des Enzyms nachgewiesen werden.

¹⁾ W. Butkewitsch, Über das Vorkommen eines proteolytischen Enzyms in gekeimten Samen und über seine Wirkung. Zeitschr. f. physiol. Chemie. Bd. 32. S. 1 (1901).

Weis¹) hat ein peptisches Enzym aus Gerstenkörnern dargestellt. Fertig gekeimte Gerstenkörner werden in einer Fleischhackmaschine zu einem dicken Brei zerquetscht und 3 Teile Malz mit 4 Teilen Wasser angerührt. Nach einiger Zeit, in welcher mehrfach umgerührt wird, filtriert man durch Faltenfilter und gießt die Flüssigkeit so lange durch dasselbe Filter, bis sie völlig klar ist. Bei 0° ist das Ferment ca. 8 Tage haltbar. Bei der Einwirkung auf Weizenglutin wird die Wirkung dadurch nachgewiesen, daß die mit Tannin nicht fällbaren Substanzen zunehmen. Wurde bei alkalischer Reaktion auf die Gegenwart einer Tryptase geprüft, so konnte mit derselben Methode nachgewiesen werden, daß mehr Spaltungsprodukte entstehen, die mit Tannin nicht fällbar sind.

Da offenbar viele Pflanzenfermente bei ihrer Wirkung aus dem Eiweiß Tryptophan abspalten, benutzt Vines ²) die Bromwasserreaktion, um sich schnell zu orientieren, ob in Pflanzen ein proteolytisches Enzym vorhanden ist. Zu diesen Versuchen kann als Eiweißkörper auch Fibrin herangezogen werden. Die Reaktion ist auch benutzbar, um die Schnelligkeit der Enzymwirkung zu studieren, da man leicht ihr erstes Auftreten in den Verdauungsgemischen feststellen kann.

Abderhalden³) hat in Gemeinschaft mit Schittenhelm und Dammhahn in keimenden Samen auch peptolytische Fermente nachgewiesen. Im ruhenden Samen sind sie vielleicht in inaktiver Form vorhanden, da der aus ungekeimten Samen bereitete Preßsaft zunächst unwirksam war und erst nach längerem Stehen bei 37° wirksam wurde.

Die Versuche wurden mit Lupinensamen, Weizensamen, Maiskörnern und Gerstensamen angestellt. Die Samen wurden vor ihrer Verwendung mit 4% iger Borsäurelösung gewaschen, dann mit Quarzsand zu einem feinen Brei zerrieben und mit soviel Kieselgur vermengt, bis das Ganze eine plastische Masse bildete. Diese Masse wurde nun in festes Koliertuch eingepackt und zunächst bei 150 Atmosphären Druck ausgepreßt. Eine weitere Fraktion an Preßsaft wurde unter Anwendung von 150—300 Atmosphären Druck gewonnen, diese letzte Fraktion zu den Versuchen benutzt.

Dann wurde zu dem Preßsaft eine bestimmte Menge Glycyl-l-tyrosin hinzugefügt, nach Beendigung der Digestion entweder die Spaltungsprodukte isoliert oder die Hydrolyse durch Beobachtung des Drehungsvermögens der Lösung verfolgt. Die Versuche mißlingen bei Anwendung tyrosinhaltiger Polypeptide oft, weil die Lösungen sich durch Oxydation von Tyrosin dunkel

²) S. H. Vines, Proteolytische Enzyme in Pflanzen. Annal. of bot. Vol. 17. p. 237 bis 264 (1903), zitiert nach Maly, Bericht über 1903.

¹) Fr. Weis, Über das proteolytische und ein eiweißkoagulierendes Enzym in keimender Gerste (Malz). Zeitschr. f. physiol. Chemie. Bd. 31. S. 79 (1900).

³) Emil Abderhalden und Alfred Schittenhelm, Die Wirkung der proteolytischen Fermente keimender Samen des Weizens und der Lupinen. Zeitschr. f. physiol. Chemie. Bd. 49. S. 26 (1906) und Emil Abderhalden und Dammhahn, Über den Gehalt ungekeimter und gekeimter Samen verschiedener Pflanzenarten an peptolytischen Fermenten. Zeitschr. f. physiol. Chemie. Bd. 57. S. 332—338 (1908).

färben. Zur Kontrolle werden Proben von Preßsaft ohne Polypeptidzusatz untersucht.

Praktisch wohl das wichtigste proteolytische Pflanzenenzym ist das Papayotin, das aus den Früchten des Melonenbaumes, Carica papaya, dargestellt wird. Seine Darstellung bietet nichts besonderes, auch ist das Ferment in gut wirksamer Form als Handelspräparat zugänglich. Man weiß seit langer Zeit, daß das Enzym Eiweiß bei sehr verschiedener Reaktion zu spalten scheint. Aber es schien die Wirkung des Enzyms eine begrenzte. indem unter seinem Einfluß nur Albumosen und Peptone, aber nicht die letzten Spaltungsprodukte, die Aminosäuren, entstehen sollten. Emmerling sowie Kutscher und Lohmann haben nun die Methode so gestaltet. daß auch bei der Papavotinverdauung die Aminosäuren unter den Spaltungsprodukten nachgewiesen werden können. Das Papavotin entfaltet seine Wirkung anscheinend nur sehr langsam; man muß daher die Versuche sehr ausdehnen. Allmählich verliert aber das Enzym seine Wirksamkeit: es ist infolgedessen notwendig, von Zeit zu Zeit Ferment von neuem dem Verdauungsgemisch zuzuführen. Die Aminosäuren wurden von Emmerling nach der Fischerschen Methode der Veresterung und fraktionierten Destillation, Arginin nach Kossel dargestellt.

Die Verdauung wurde von *Emmerling* 1) im einzelnen folgendermaßen durchgeführt:

In 2 Kolben wurden 1000 q trockenes Blutfibrin mit schwach alkalischem Wasser übergossen und nach Toluolzusatz zunächst einen Tag bei gewöhnlicher Temperatur stehen gelassen. Die nun stark aufgequollene Masse wurde mit Wasser eben bedeckt und mit je 20 g Papavotin versetzt. Die gut verschlossenen Kolben kamen in einen konstant auf 34° gehaltenen Raum. Nach 14 Tagen wurden abermals je 10 y und nach 4 Wochen weitere 10 q Papavotin zugesetzt. Allmählich erfolgt Lösung.

Kutscher und Lohmann²) ließen das Papavotin 10 Monate auf Fibrin einwirken und entfernten das noch vorhandene Eiweiß und die Albumosen durch Ausfällung mit Tannin.

Sehr eigenartige methodische Verhältnisse leiten sich aus Beobachtungen ab, welche Delezenne, Mouton, Pozerski über die Einwirkung von Papain (Merck), das dem Papavotin nahesteht, auf Hühnereiweiß und Hammelserum gemacht haben. 3)

Versetzt man frisches Hühnereiweiß oder Hammelserum mit einer großen Menge Papain und läßt gleiche Proben verschieden lange Zeit im Brutschrank oder bei Zimmertemperatur, säuert dann mit Essigsäure an und kocht auf, so nimmt mit Zunahme der Digestionsdauer die Menge des

¹⁾ O. Emmerling, Über die Eiweißspaltung durch Papayotin. Chem. Berichte. S. 695-699 (1902).

²⁾ Kutscher und Lohmann, Zur Kenntnis der Papayotinverdauung. Zeitschr. für physiol. Chemie. Bd. 46. S. 383-386 (1905).

³⁾ Literatur bei Fritz Sachs, Über die Verdauung von rohem Hühnereiweiß durch Papain. Zeitschr. f. physiol. Chemie. Bd. 51. S. 488-505 (1907).

koagulablen Eiweißes zu. Werden die Proben aber nicht erhitzt, vielmehr das Eiweiß durch Alkohol oder mit Trichloressigsäure am Schlusse des Versuches ausgefällt, so wird dieselbe Eiweißmenge gefunden wie in den Kontrollversuchen, in denen die Fermentwirkung ausgeschaltet war. Die französischen Autoren und namentlich Sachs haben das Phänomen dahin aufgeklärt, daß Hühnereiweiß und Hammelserum bei Brutschranktemperatur vom Papain überhaupt nicht nachweisbar angegriffen werden und die Verdauung erst während der Steigerung der Temperatur beim Aufkochen ganz plötzlich stattfindet. Daß die Proben, welche länger bei mittlerer Temperatur gehalten waren, mehr Eiweiß nach dem Aufkochen enthielten, kommt dadurch zustande, daß das Ferment durch längeres Zusammensein mit dem Eiweiß in seiner Aktivität abgeschwächt wird, demnach dann beim stärkeren Erhitzen weniger aktives Enzym disponibel ist.

Nach Abderhalden und Teruuchi¹) werden auch Polypeptide durch Papayotin gespalten. Wenn das in Wasser glatt lösliche Glycyl-l-tyrosin der Einwirkung des Ferments ausgesetzt wird, so kann man die eingetretene Spaltung daran erkennen, daß das in Wasser kaum lösliche Tyrosin aus der Lösung ausfällt.

ANHANG.

Das Sekretin. 2)

Nach Versuchen von Bayliss und Starling kann man das Pankreas zu reichlicher Sekretion veranlassen, wenn man einen besonders präparierten Dünndarmauszug Versuchstieren intravenös einspritzt. Die Substanz wird Sekretin benannt und folgendermaßen dargestellt. Man schabt die Schleimhaut des Duodenums und der oberen Teile des Dünndarms ab, zerreibt sie in einem Mörser mit Sand unter Zusatz von $0^{\circ}4^{\circ}/_{\circ}$ Salzsäure, kocht die Mischung auf freiem Feuer und neutralisiert die gekochte Flüssigkeit mit Kalilauge. Man filtriert einen Niederschlag ab und hat dann ein eiweißfreies, klares Filtrat, welches das Sekretin enthält. Diese Lösung kann man noch weiter reinigen, wenn man in ihr mit Alkoholäther Niederschläge erzeugt. Das Sekretin bleibt dabei in Lösung und kann aus ihr durch Eindampfen gewonnen werden.

Will man die Wirksamkeit eines Sekretinpräparates prüfen, so spritzt man einige Kubikzentimeter in die Vene eines Versuchstieres (z. B. Katze oder Kaninchen), bindet vorher eine Kanüle in den Ausführungsgang der Drüse- und beobachtet die Zunahme des Sekrets unter dem Einfluß der Sekretinzufuhr. Das Sekretin kann von den verschiedensten Wirbeltieren stammen, seine Wirksamkeit ist nicht an dieselbe Spezies oder Art gebunden.

¹) Emil Abderhalden und Yutaka Teruuchi, Vergleichende Untersuchungen über einige proteolytische Fermente pflanzlicher Herkunft. Zeitschr. f. phys. Chemie. Bd. 49. S. 20—24 (1906).

²) W. M. Bayliss und E. H. Starling, Die chemische Koordination der Funktionen des Körpers. Ergebnisse der Physiologie. 5. Jahrgang. S. 670-676 (1906).

Außer den schon angeführten Eigenschaften des Sekretins seien noch einige weitere erwähnt, welche eventuell für die Isolierung des Sekretins methodisch verwertet werden könnten. Das Sekretin dialysiert leicht und wird weder durch Gerbsäure noch durch Phosphorwolframsäure ausgefällt. In alkalischem Medium und beim Stehen an der Luft wird das Sekretin unwirksam. Bei der Darstellung des Sekretins aus der Schleimhaut kann die Salzsäure auch durch Seifen ersetzt werden. Alle starken, mineralischen Säuren sind wirksam, dagegen schwache wie die Borsäure ohne Wirkung. Trypsin zerstört das Sekretin.

Bayliss und Starling nehmen an, daß die Darmschleimhautzellen ein Prosekretin enthalten, aus welchem hydrolytische Agenzien Sekretin abspalten. Diese Vorstufe ist unlöslich.

In Sekretinlösungen fanden v. Fürth und Schwarz¹) Cholin, welches auch an und für sich die Sekretion des Pankreas anregt. Jedoch ist die Sekretinwirkung nicht ohne weiteres mit der des Cholins zu identifizieren.

¹) O. v. Fürth und C. Schwarz, Zur Kenntnis des "Sekretins". Pflügers Archiv. Bd. 124. H, 9-10; zit. n. Biochem. Zentralbl. Bd. 7. S. 920 (1908).

G. Die Fermente des Nukleinstoffwechsels und deren Wirkung.

Von Alfred Schittenhelm, Erlangen.

Während im Magen-Darmkanal unter dem Einflusse der Verdauungsfermente die Nukleinsäure aus den Nukleoproteiden in Freiheit gesetzt und dann, offenbar ohne eine tiefere Aufspaltung zu erleiden, in eine resorptionsfähige Form gebracht wird 1), unterliegt sie jenseits des Verdauungstraktus der Wirkung einer Reihe von Fermenten, welche sie aufspalten und die Spaltprodukte weiter verändern. Unsere Kenntnis bezieht sich nur auf diejenigen Fermente, welche die Nukleinsäure aufspalten und die einzelnen Bausteine in Freiheit setzen; wir bezeichnen sie als Nukleasen.

Wir kennen ferner eine Reihe von Fermenten, welche die aus der Nukleinsäure freigewordenen Purinbasen verändern. Dieselben stellen sich im einzelnen als folgende dar:

Purindes amidasen (Guanase, Adenase). Unter der Einwirkung dieser Fermentstufe wird das Adenin in Hypoxanthin und das Guanin in Xanthin umgewandelt.

Xanthinoxydasen. Sie bewirken eine Oxydation des Hypoxanthins zu Xanthin und des Xanthins zu Harnsäure.

Die Harnsäure endlich unterliegt der Einwirkung von urikolytischen Fermenten. Dabei entsteht beim Tiere (Hund, Kaninchen, Schwein etc.) aus der Harnsäure Allantoin, welches nicht weiter zersetzt wird. Ob noch andere Abbauprodukte der Harnsäure existieren, steht noch dahin. Beim Menschen gelingt der direkte Nachweis urikolytischer Fermente in Organextrakten nicht mit Sicherheit. Der Stoffwechselversuch zeigt jedoch, daß die Harnsäure abgebaut wird, und zwar bis zum Harnstoff. Es finden sich auch kleine Mengen von Allantoin im menschlichen Urin, dessen Herkunft jedoch noch zu erforschen ist.

¹) E. Abderhalden und A. Schittenhelm, Der Ab- und Aufbau der Nukleinsäuren im tierischen Organismus, Zeitschr. f. physiol. Chemie. Bd. 47, S. 452 (1906).

Durch welche Fermente und über welche Stufen der Abbau der gleichfalls im Nukleinsäuremolekül enthaltenen Pyrimidinbasen. Thymin, Cytosin und Uracil, vor sich geht, wissen wir nicht. Sicher ist nur nach dem Stoffwechselversuch, daß auch diese aufgespalten werden. Vielleicht wird dabei aus dem Thymin sowohl wie aus dem Cytosin zunächst Uracil gebildet.

1. Nuklease.

Allgemeiner Nukleasenachweis durch z-thymonukleinsaures Natrium.

Zum allgemeinen-Nachweis einer Nukleasewirkung hat es sich als praktisch erwiesen¹), eine 3—50 oige Lösung von z-thymonukleinsaurem Natrium, welchem bekanntlich die Eigenschaft, in dieser Konzentration zu gelatinieren, zukommt, in kleinen Gläsern erstarren zu lassen und nun auf die Oberfläche der gelatinierten Nukleinsäure das auf die Nukleasewirkung zu prüfende Material zu geben. Die Gegenwart von Nuklease wird durch die Verflüssigung der gelatinierten Nukleinsäure angezeigt. Man tut jedoch nach Sachs (l. c.) gut, stets zu versuchen, ob sich nicht noch vorhandene gelatinierende Substanz nachweisen läßt. Dazu wird das Versuchsgemenge heiß filtriert und dann mit Alkohol und etwas Natriumacetat versetzt, wodurch etwa noch vorhandenes z-thymonukleinsaures Natrium aus der wässerigen Lösung ausgefällt wird. Dieses kann, in wenig heißem Wasser gelöst, nach dem Erkalten der Lösung selbst in geringer Menge als gelatinierende Substanz erkannt werden.

Diese Methode des Nachweises der Nuklease besagt natürlich über die Art ihrer Wirkung nichts weiter, als daß sie gelatinierende Nukleinsäure verflüssigt. Dieselbe Wirkung kann aber sowohl mit reinen Verdauungssäften (Hundepankreassaft aus Pawlowscher Fistel²), wie mit intrazellulären Fermenten aller Art (Extrakten von Darm, Leber, Milz, Pankreas etc.) erreicht werden. Zur genaueren Feststellung muß man daher Versuche ansetzen. welche zeigen, ob die Nukleinsäure bei der Verflüssigung auch zerlegt wird. Es hat sich dabei herausgestellt, daß es ein Ferment gibt, welches das z-thymonukleinsaure Natrium verflüssigt und dessen kolloidale Form dabei in eine dialysierbare umzuwandeln scheint, ohne daß jedoch eine tiefere Aufspaltung erfolgt; diese Form der Nuklease findet sich in dem in den Darm sich ergießenden Pankreassekret. Demgegenüber steht die echte Nuklease, welche die Nukleinsäure in ihre Bestandteile zerschlägt und zum Auftreten freier Phosphorsäure, freier Purinbasen etc. führt; diese Form findet sich

¹⁾ T. Araki, Über enzymatische Zersetzung der Nukleinsäure. Zeitschr. f. physiol. Chemie. Bd. 38. S. 84 (1903). — H. Plenge, Über die z-nukleinsaures Natron lösende Wirkung einiger Mikroorganismen. Zeitschr. f. physiol. Chemie. Bd. 39. S. 190 (1904). — M. Nakayama, Über das Erepsin. Zeitschr. f. physiol. Chemie. Bd. 41. S. 348 (1904). — F. Sachs, Über die Nuklease. Zeitschr. f. physiol. Chemie. Bd. 46. S. 337 (1905). -E. Abderhalden und A. Schittenhelm, 1. c.

²⁾ E. Abderhalden und A. Schittenhelm, l. c.

nicht unter den Verdauungsfermenten, sondern nur intrazellulär; sie wird nicht nach außen sezerniert, sondern kann nur nachgewiesen werden, indem man die Zellen selbst resp. ihre künstlichen Extrakte zum Versuche verwendet.

Spezieller Nachweis der aufspaltenden Nuklease und Isolierung der Abbauprodukte.

Zahlreich sind die Versuche, durch Autolyse der Hefe und tierischer Organe und durch Aufsuchen freier Phosphorsäure und freier Purinbasen unter den Autolyseprodukten eine durch Fermente bewirkte Nukleinspaltung zu beweisen. Es bedarf besonderer Erwähnung, daß bei Digestion des Buchnerschen Hefepreßsaftes Purinbasen und Phosphorsäure als Abbauprodukte nachgewiesen werden konnten. 1) Der exakte Nachweis der Nuklease ist jedoch erst nach Verwendung von Nukleinsäure erfolgt.

Nukleasenachweis in Organextrakten²): Eine 4% ige Lösung von z-thymonukleinsaurem Natrium (50-100 cm³) wird einige Tage der Wirkung des zu untersuchenden Extraktes ausgesetzt: dann wird das Gemisch filtriert und das Filtrat zur Beseitigung etwa noch vorhandener Nukleinsäure mit Schwefelsäure versetzt. Der dabei etwa ausgefallene Niederschlag wird abfiltriert: aus dem Filtrat werden die Purinbasen mit Quecksilbersulfatlösung ausgefällt. Der so erhaltene Niederschlag wird abgesaugt, in Wasser aufgeschwemmt und unter Zusatz von etwas Salzsäure mit Schwefelwasserstoff zerlegt. Dann wird wiederum filtriert und das Filtrat durch Durchleiten von Luft vom Schwefelwasserstoff befreit. Nun wird es mit ammoniakalischer Silberlösung gefällt, der entstandene Silberniederschlag abfiltriert, gut ausgewaschen, in Wasser aufgeschwemmt und unter Zusatz von Salzsäure in der Wärme zerlegt. Vom Chlorsilber wird abfiltriert, durch das Filtrat noch einige Blasen Schwefelwasserstoff geleitet und dann wiederum filtriert. Das letzte Filtrat wird zwecks Abscheidung von Kristallen (salzsauren Purinbasen) eingedampft. Die etwa ausgeschiedenen Kristalle werden samt dem Rückstand in salzsäurehaltigem Wasser gelöst, die Lösung filtriert und wiederum bis zum völligen Auskristallisieren eingedampft. Die Kristalle werden mit Alkohol und Äther getrocknet und gewogen. Will man den Beweis, daß man freie Purinbasen vor sich hat, noch weiterführen, so prüft man die Kristalle mit Hilfe der von Burian 3)

 $^{^{\}rm 1})$ Hahn und Geret,Über das Hefe-Endotrypsin. Zeitschr. f. Biol. Bd. 11. S. 117 (1900).

²⁾ Fr. Sachs, Über die Nuklease. Zeitschr. f. physiol. Chemie. Bd. 46. S. 337 (1905).

³) R. Burian, Diazoaminoverbindungen der Amidazole und der Purinsubstanzen. Chem. Berichte. Bd. 37. S. 696 (1904). — Derselbe, Zur Kenntnis der Bindung der Purinbasen im Nukleinsäuremolekül. Chem. Berichte. Bd. 37. S. 708 (1904). — Derselbe, Weitere Beiträge zur Kenntnis der Diazoaminoverbindungen der Purinbasen. Zeitschr. f. physiol. Chemie. Bd. 51. S. 425 (1907).

als charakteristisch für die freien Purinbasen angegebenen Diazoreaktion, am besten nach Sachs in der Paulyschen Modifikation. 1)

Es ist hierzu zu bemerken, daß man die unzersetzt gebliebene Nukleinsäure auch mit Alkohol unter Zusatz von Natriumacetat oder durch Zugabe von gelöstem Kupfersulfat oder Kupferchlorid nach Ansäuern mit Essigsäure als Kupfersalz entfernen kann. Es wird sofort abfiltriert und im Filtrat werden die freien Basen, eventuell nach Entfernung des Kupfers mit H₂S, mit ammoniakalischer Silberlösung oder mit der Kupfersulfat-Bisulfitmethode isoliert.

An Stelle der Thymonukleinsäure kann man natürlich auch jede andere reine Nukleinsäure, z. B. die Hefenukleinsäure resp. ihr Natriumsalz, zu den Versuchen verwenden. Die Art der Entfernung unzersetzter Nukleinsäure und die beschriebene Methode der Gewinnung der Purinbasen bleibt dieselbe. Nur muß man auf die Beobachtung der Verflüssigung verzichten, da die Hefenukleinsäure nicht gelatiniert.

Außer auf freie Purinbasen kann man im Reaktionsgemisch noch nach freier Phosphorsäure und freien Pentosen mit den üblichen Bestimmungsmethoden suchen. Über die Isolierung der Pyrimidinbasen siehe Bd. II. S. 584 ff. und Bd. III. Abschnitt: Stoffwechselendprodukte.

Nachweis der Nuklease in Schimmelpilzen und Bakterien: Auf der zur Gelatine erstarrten Lösung von z-thymonukleinsaurem Natrium züchtet man die zu untersuchenden Schimmelpilze²) und Bakterien.³) Unter Verflüssigung tritt mehr oder weniger schnell die Zersetzung ein, welche man, wie oben beschrieben, feststellt.

Zur Verfolgung der bakteriellen Spaltung⁴) der Nukleinsäure kann man auch eine Nährlösung benutzen, welche zweckmäßigerweise folgendermaßen zusammengesetzt ist: Nukleinsaures Natrium 15:0 g. Chlornatrium 6:0 g. Chlorcalgium 0:1 g. Magnesiumsulfat 0:3 g. Wasser 1000 cm³. Diese Lösung wird im Dampftopf sterilisiert und dann täglich mit den entsprechenden Kulturen geimpft. Nach 4—5 Tagen kann bereits auf die Zersetzungsprdukte untersucht werden. Dabei können außer den genannten Körpern noch eine Reihe anderer (Ammoniak, Alkohol, Oxalsäure, Ameisensäure etc.) gefunden werden, da die Zersetzung weitergeht und die Bakterien z. B. auch die Purinbasen angreifen und zerlegen.

H. Pauly, Über die Konstitution des Histidins. I. Mitteil. Zeitschr. f. physiol. Chemie. Bd. 42. S. 516 (1904).

²) Untersucht sind Aspergillus niger, Mucor stolonifer und Penicillium glaucum, siehe L. Iwanoff, Über die fermentative Zersetzung der Thymonukleinsäure durch Schimmelpilze. Zeitschr. f. physiol. Chemie. Bd. 39. S. 31 (1903).

³⁾ Untersucht sind Bact, coli, Bac, Typhi hominis u. a., siehe H. Plenge, Über die α-nukleinsaures Natron lösende Wirkung einiger Mikroorganismen. Zeitschr. f. physiol. Chemie, Bd. 39, S. 190 (1904).

⁴⁾ A. Schittenhelm und F. Schröter, Über die Spaltung der Hefenukleinsäure durch Bakterien. Zeitschr. f. physiol. Chemie. Bd. 39. S. 203 (1903); Bd. 40. S. 62 und Bd. 41. S. 284 (1904). Untersucht sind Bact. coli, Staphylokokken und Fäzesbakterien.

Darstellung und Eigenschaften der Nukleasen.

Darstellung: Man kann einen wässerigen Extrakt der Rindermilz 1) oder Rinderleber 1), der Pankreas- 2) oder Thymusdrüse 2) nehmen, und zwar macht man ihn zweckmäßig so, daß man 1 Teil fein zerkleinertes und zerriebenes Organ auf 2 Teile Wasser (oder auch 1 Teil) nimmt, Toluol, eventuell auch etwas Chloroform zusetzt, tüchtig mischt, mehrere Stunden bis 1/2 Tag (nicht zu lange!) bei Zimmertemperatur stehen läßt, dann koliert und filtriert. Der so erhaltene Extrakt ist direkt wirksam.

Die Nuklease läßt sich auch als Trockenpräparat erhalten.²) 570 g Pankreas werden mit Sand und Kieselgur zerrieben und mit der Buchnerschen Presse gepreßt. Der gewonnene Saft (100 cm³) wird sofort mit Ammonsulfat bis zur Sättigung versetzt, der entstandene Niederschlag abfiltriert und mit Alkohol und Äther getrocknet. Der getrocknete Niederschlag verflüssigt, in destilliertem Wasser gelöst, nukleinsaures Natrium vollkommen in wenigen Stunden. (Probe auf Gelatinieren fällt nachher negativ aus.) Das Pulver hat seine Wirkung auch nach zweimonatlichem Lagern noch behalten.

Auch aus Schimmelpilzen ³) und aus Lupinenkeimlingen ⁴) kann man durch Zerreiben derselben und Auspressen des Saftes einen wirksame Nuklease enthaltenden Extrakt bekommen.

Eigenschaften: Die Nuklease wird durch aktives Trypsin allmählich zerstört. Die Schwach saure Reaktion, wie sie z.B. im frischen Pankreasextrakt von vornherein besteht, ist für die Wirkung der Nuklease am günstigsten; intensivere saure Reaktion sowie alkalische Reaktion (Natriumkarbonat) schwächen die Wirksamkeit ab resp. heben sie auf. Die Nuklease dialysiert nicht. Durch längeres Kochen wird sie zerstört; kurzes Erhitzen auf 80° scheint sie nur zu schädigen.

2. Purindesamidasen.

Nachweis der Fermentwirkung. 6)

Derselbe geschieht durch den Nachweis der Umwandlung von Guanin in Xanthin und Adenin in Hypoxanthin.

 $500\ cm^3$ Rindermilzextrakt resp. Fermentlösung (oder 500 cm^3 Extrakt anderer Organe, siehe unten) werden mit 0·5g in möglichst wenig Nor-

- ¹) A. Schittenhelm, Über die Harnsäurebildung in Gewebsauszügen. Zeitschr. für physiol. Chemie. Bd. 42. S. 251 (1904).
- ²) Fr. Sachs, 1. c. Wahrscheinlich enthält nach Sachs auch die Kalbsniere Nuklease, nicht aber der Rindermuskel und das Rinderblut.
 - 3) L. Iwanoff, 1. c.
 - 4) A. Schittenhelm. Noch nicht publizierte Versuche.
 - 5) Fr. Sachs, 1. c.
- 6) A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels. Zeitschr. f. phys. Chemie. Bd. 43. S. 228 (1904) und derselbe, Über die Harnsäurebildung und Harnsäurezersetzung in den Auszügen der Rinderorgane. Zeitschr. f. physiol. Chemie. Bd. 45. S. 121 (1905).

malnatronlauge gelösten Guanins versetzt und unter Zugabe von Chloroform und Toluol gut verkorkt mehrere Tage bei 375° gehalten. Nach Abbruch des Versuches wird die Mischung entweder direkt enteiweißt; sie wird dazu erhitzt, leicht alkalisch gemacht, dann mit Essigsäure schwach angesäuert, unter Zugabe von einigen Gramm Kochsalz aufgekocht und filtriert. Zweckmäßiger wird die Mischung jedoch zunächst mit 10-15 cm² konzentrierter Schwefelsäure versetzt, 3 Stunden am Rückflußkühler gekocht, dann erst mit Natronlauge alkalisch, mit Essigsäure schwach sauer gemacht, kurz aufgekocht und filtriert. Der zurückgebliebene Eiweißniederschlag wird dann nochmals in Wasser suspendiert, durch Alkali in der Hitze gelöst und wieder gefällt. Aus den vereinigten Filtraten werden die Purinkörper mit der Kupfersulfat-Bisulfitmethode (siehe Bd. III. Abschnitt: Stoffwechselendprodukte) gefällt. Die so erhaltenen Kupferoxydulverbindungen werden abfiltriert, mit heißem Wasser gut ausgewaschen, dann in ca. 500 cm³ heißem Wasser suspendiert und durch Schwefelwasserstoff zerlegt. Es wird kurz aufgekocht, sofort filtriert und salzsauer eingeengt. Am besten wird dann der Rückstand zur weiteren Reinigung in 500 cm³ Wasser unter Zugabe von etwas Natronlauge heiß gelöst, mit Essigsäure neutralisiert und nun sofort die Kupfersulfat-Bisulfitfällung, wie beschrieben, nochmals durchgeführt. Das die Purinkörper enthaltende Endfiltrat¹) wird schwach salzsauer eingedampft. Der Rückstand wird in ca. 100 cm³ verdünntem Ammoniak digeriert und mehrere Stunden kalt stehen gelassen. Dabei fällt Harnsäure und Guanin aus, welche durch verdünnte Salzsäure getrennt werden. In Lösung bleibt Xanthin, das durch Einengen in charakteristischen Schollen erhalten wird. Die weitere Identifizierung siehe Bd. III, Abschnitt: Stoffwechselendprodukte.

Will man die Umwandlung von Adenin in Hypoxanthin studieren, so setzt man den Versuch mit 0.5 q in wenig Normalnatronlauge gelösten Adenins an. Der Gang des Versuches und die weitere Verarbeitung sind dieselben. Man erhält so nach Eindampfen des salzsauren Filtrates einen Rückstand. Dieser wird mit wenig Wasser (60-80 cm³) in der Wärme digeriert und das Gemisch einige Stunden in der Kälte stehen gelassen. Das Ungelöste wird abfiltriert; es ist Xanthin und eventuell etwas Harnsäure, welche durch Ammoniak getrennt werden. Das in Lösung Gegangene wird heiß mit Pikrinsäure (1 g) in Substanz versetzt. Falls noch Adenin vorhanden ist, so fällt es beim Abkühlen sofort in nadelförmigen Kristallen aus und wird sogleich abfiltriert. Aus dem Filtrat, welches eventuell etwas eingeengt wird, kommt das Hypoxanthinpikrat bei längerem Stehen in der Kälte in großen tafelförmigen Kristallen heraus. Dieses Pikrat wird auf dem Filter gesammelt und mit wenig kaltem Wasser gewaschen. Zur weiteren Identifizierung wird es in ca. 100 cm³ Wasser unter Zusatz von 4-5 cm³ Salpetersäure gelöst, die Lösung durch Ausschütteln mit Benzol von Pikrin-

¹) Klärt sich nach dem Einleiten von Schwefelwasserstoff und Aufkochen die Lösung nicht genügend, so kann man nach den Angaben von Wiener einige Kubikzentimeter einer gesättigten Aluminiumacetatlösung zugeben und leicht essigsauer machen. Dadurch erhielt man ein klares Filtrat.

säure befreit, filtriert und stark eingeengt. Dabei scheidet sich das Hypoxanthinnitrat ($C_5\,H_4\,N_4\,O\,.\Pi NO_3\,+\,H_2\,O$) in schönen, wetzsteinförmigen Kristallen aus. Bei dem Adeninversuch findet man in der Regel neben dem Hypoxanthin auch Xanthin, da das erstere durch die in der Lösung gleichfalls vorhandene Oxydase sofort zum Teil weiteroxydiert wird.

Es muß übrigens hier bemerkt werden, daß die Umwandlung der Aminopurine in Oxypurine bei dieser Versuchsanordnung, sobald Luft durchgeführt wird, sehr schnell vor sich geht. So ist z. B. die Umsetzung von Oß g Guanin in 350 cm^3 Milzextrakt bereits nach 20 Minuten nahezu vollständig erfolgt. 1)

Darstellung und Eigenschaften der Purindesamidasen.

Darstellung: Man kann wässerige Extrakte von tierischen Organen direkt benutzen. Dieselben werden, frisch vom Schlachthaus bezogen, in der Fleischhackmaschine fein zerkleinert, was für Milz, Leber und Thymus zumeist genügt, während Lunge, Darm, Muskel, Niere etc. zweckmäßig noch mit Hackmessern zerkleinert und dann entweder durch ein feines Sieb gepreßt oder noch mit Sand und Kieselgur im Mörser fein zerrieben werden. Der so erhaltene feine Organbrei wird mit Wasser versetzt, so daß 2 bis 3 Teile Wasser auf 1 Teil Organbrei kommen. Die Masse wird nun unter Zusatz von Chloroform tüchtig durchgerührt und geschüttelt und dann mehrere Stunden stehen gelassen. Hernach wird koliert und unter Anwendung der Saugpumpe zunächst durch Watte und dann durch aufgeschwemmtes, fein verteiltes Filtrierpapier filtriert. Der so erhaltene Extrakt ist noch mehr oder weniger getrübt, enthält aber keine gröberen Bestandteile und nur wenig Purinkörper (in 300 cm² Milzextrakt ca. 0·1 g, in den Extrakten anderer Organe weniger). Die Extrakte sind stets gut wirksam.

Es ist sehr bemerkenswert, daß man bei Verwendung von Rinder- und Pferdeorganen in den Extrakten stets die Umsetzung von Guanin und Adenin in gleich intensiver Weise nachweisen kann. Bei Verwendung von bestimmten Organen des Menschen, des Schweines, des Hundes und des Kaninchens dagegen geht die Umsetzung häufig scheinbar nur für den einen Körper; so vermag Menschenmuskel und Menschenleber ebenso wie Kaninchen- und Hundeleber nur Guanin, Schweinemilz und Schweineleber nur Adenin umzusetzen. Daher werden zwei verschiedene Fermente angenommen, eine Guanase und eine Adenase. 2) Es hat sich aber gezeigt, daß die Unterschiede zumeist wahrscheinlich nur quantitative sind, indem auch diese Organextrakte zum Teil beide Wirkungen entfalten können, nur die eine weniger schnell und weniger umfangreich. Man muß die Versuche vor allem länger gehen lassen. 3) Ein Vergleich der im

A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels. Zeitschr. f. phys. Chemie. Bd. 57. S. 21 (1908).

²⁾ W. Jones und C. L. Partridge, Über die Guanase. Zeitschr. f. physiol. Chemie. Bd. 42. S. 343 (1904). — W. Jones und M. C. Winternitz, Über die Adenase. Zeitschr. f. physiol. Chemie. Bd. 44. S. 1 (1905). — W. Jones und C. R. Austrian, Über die Verteilung der Fermente des Nukleinstoffwechsels. Zeitschr. f. physiol. Chemie. Bd. 48. S. 110 (1906).

³) A. Schittenhelm, Der Nukleinstoffwechsel und seine Fermente bei Mensch und Tier. Zeitschr. f. physiol. Chemie. Bd. 46, S. 354 (1905). — A. Schittenhelm und J. Schmid,

Stoffwechselversuch gewonnenen Resultate mit denen der direkten Fermentversuche mit Organextrakten ergab ferner, daß die letzteren mit den ersteren nicht zusammenstimmen. Ein negatives Resultat mit dem überlebenden Organ ist daher noch kein vollgültiger Beweis für das Fehlen einer der Purindesamidasen im Leben des Organismus resp. im lebenden Organ. 1)

Die Purindesamidasen sind auch in Bakterien²) und in den Keimlingen der Lupinen³) zu finden.

Man kann die Purindesamidase auf verschiedene Weise aus den Extrakten bis zu einem gewissen Grade isolieren.

Eine sehr bewährte Methode 1), welche auch gleichzeitig zur Isolierung der sofort zu beschreibenden Xanthinoxydase führt, ist die fraktionierte Aussalzung mit Ammonsulfat nach Jacobys Angabe. Man verwendet dazu einen nach den oben stehenden Angaben dargestellten Extrakt von Rindermilz und versetzt ihn mit einer gesättigten Ammonsulfatlösung so lange, bis der Sättigungsgrad 66% beträgt, bei welchem die Fällung des Ferments am ergiebigsten ist. Man läßt nun etwas stehen, bis sich der Niederschlag deutlich absetzt, filtriert und suspendiert den Niederschlag in Wasser (1 l bei Verwendung von 2 Milzen als Ausgangsmaterial), versetzt die Mischung mit etwas Chloroform und Toluol, schüttelt kräftig durch und dialysiert nun das ganze gegen fließendes Wasser, bis kein Ammoniak mehr nachweisbar ist, was stets mehrere Tage erfordert. Nun wird filtriert und das so erhaltene, leicht gelblich braune Filtrat, welches eventuell noch verdünnt werden kann, direkt zu den Versuchen verwandt. Diese Fermentlösung ist stets hochwirksam; sie enthält nur noch wenig organische Substanz (3-4%) und Aschenrückstand (0.5 bis 1.0%) und ist so gut wie frei von Purinkörpern.

Man kann weiterhin den wässerigen Milzextrakt mit gleichen Mengen Alkohol fällen. Der dadurch erhaltene Niederschlag wird nach kurzem Stehen abfiltriert, in Wasser (ca. $^2/_3$ der ursprünglichen Milzextraktmenge) suspendiert und einige Stunden bei gewöhnlicher Temperatur geschüttelt. Nun wird filtriert. Das Filtrat ist die Fermentlösung, von der der Alkoholrest bei 40° oder durch Luftdurchleiten entfernt werden kann. Die Lösung enthält wie die obige auch die Xanthinoxydase, ist aber nicht ganz so wirksam.

Endlich kann man die Purindesamidase auch nach Wiechowskis Methode konservieren, indem man ein Trockenpulver des Organes herstellt. Diese Methode dient zugleich dazu, die Xanthinoxydase so zu schädigen,

Über die Fermente des Nukleinstoffwechsels. Zeitschr. f. physiol. Chemie. Bd. 50. S. 30 (1906). — A. Schittenhelm und J. Schmid, Ablauf des Nukleinstoffwechsels in der Schweineleber. Zeitschr. f. experim. Path. u. Ther. Bd. 4. S. 432 (1907).

¹) A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels menschlicher Organe. Zeitschr. f. physiol. Chemie. 1909. Bd. **63**. S. 222.

²⁾ Schittenhelm und Schröter, 1. c.

³⁾ A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels in Lupinenkeimlingen. Zeitschr. f. physiol. Chem. 1909. Bd. 63. S. 262.

⁴) A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels. Zeitschr. f. physiol. Chemie. Bd. 43, S. 228 (1904).

daß ihre Wirkung wegfällt oder erst bei tagelangem Gehen des Versuches wieder zum Vorschein kommt. Man kann die Methode dadurch vereinfachen, daß man das Organ auf Glasplatten trocknet und nun sofort wässerige Auszüge des Trockenpulvers macht, ohne dasselbe weiter zu reinigen. Gibt man nun Adenin und Guanin, wie beschrieben, zu und leitet Luft durch, so geht die Desamidierung bereits in einigen Stunden vor sich.

Eigenschaften der Purindesamidasen: Dieselben sind relativ wenig empfindlich. Sie halten sich in Lösung wochenlang, in Pulver ebenfalls. Durch Erhitzen werden sie dagegen sofort zerstört. Sie dialysieren nicht. Ihre Wirkung äußert sich gleich gut bei schwach saurer, neutraler und schwach alkalischer Reaktion.

3. Xanthinoxydase.

Nachweis des Ferments.1)

Derselbe geschicht durch die Umwandlung von Hypoxanthin in Xanthin und von Xanthin in Harnsäure. Ob beide Umwandlungen durch ein und dasselbe Ferment bewirkt werden, oder ob es sich auch hier um zwei Fermente handelt, bedarf noch besonderer Untersuchung. Da die Organe, welche Xanthinoxydase enthalten, auch die Purindesamidase in hochwirksamer Form besitzen, so kann man die Umwandlung der Aminopurine direkt in Harnsäure erreichen. Bei der Auswahl der Organe muß man jedoch berücksichtigen, daß in einzelnen neben der Xanthinoxydase auch eine urikolytische Fermentation besteht und daß die letztere, indem sie die frisch gebildete Harnsäure wieder zerstört, den Nachweis der ersteren erschweren kann. Sicher gelingt er stets in der Rindermilz, welche keine urikolytische Fähigkeit hat.

 $500\ cm^3$ Rindermilzextrakt werden mit $0.5\ g$ in wenig Normalnatron-lauge gelöster Purinbase (Adenin, Guanin, Xanthin oder Hypoxanthin) und etwas Chloroform und Toluol versetzt; die Mischung wird auf eine konstante Temperatur von 37° gebracht und nun Luft in kräftigem Strom durchgeleitet. Nach wenigen Stunden ist der Versuch beendet und die zugegebene Purinbase quantitativ als Harnsäure wiederzufinden. Man verfährt dabei wie zur Isolierung der Purinbasen (S. 425), indem man zunächst enteiweißt und dann die Kupfersulfat-Bisulfitmethode verwendet. Das salzsaure Filtrat vom Schwefelkupfer wird auf dem Wasserbade auf ca. $10\ cm^3$ eingeengt und dann noch 1-2 Stunden stehen gelassen. Die so gewonnene kristallinische Harnsäure kann zur Sicherheit nach $Horbaczewski^2$) umkristallisiert werden. Dabei verfährt man so, daß je $0.1\ \dot{g}$ Substanz in $2.0\ cm^3$ konzentrierter Schwefelsäure, eventuell unter ganz vorsichtigem schwachen Erwärmen gelöst und dann mit dem vierfachen Volumen Wasser wieder

¹) A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels. Zeitschr. f. phys. Chemie. Bd. 57, S. 21 (1908).

 $^{^{2})\} J.\ Horbaczewski,\ Über die Trennung der Harnsäure von den Xanthinbasen, Zeitschr. f. phys. Chem. Bd. 18. S. 341 (1894).$

gefällt wird; dabei fällt die Harnsäure quantitativ wieder aus, während etwa vorhandene Purinbasen in Lösung bleiben.

Darstellung und Eigenschaften der Xanthinoxydase.

Darstellung: Man kann eine relativ einfach zusammengesetzte, gut wirksame Fermentlösung durch Aussalzung mit Ammonsulfat, viel weniger gut wirksame durch Fällung mit Alkohol aus der wässerigen Rindermilzextraktlösung herstellen. Die genaue Ausführung entspricht völlig den Angaben zur Isolierung der Purindesamidasen.

Außer in der Rindermilz 1, 2) ist die Xanthinoxydase auch in den Extrakten der Lunge 2), des Darmes 2), der Leber 2, 3, 4) und des Muskels 2, 4) vom Rinde, der Milz vom Pferde 2), der Leber des Menschen 5), der Leber des Schweines, der Milz 6), des Darmes 7) und der Lunge 7) des Hundes aufgefunden. Bei Versuchen mit Rinderleber und Rindermuskel ist jedoch darauf zu achten, daß die gebildete Harnsäure zum Teil durch die zugleich vorhandene Urikolyse weiter zerstört wird.

Eigenschaften. Die Xanthinoxydase ist viel empfindlicher als die Purindesamidasen. Sie wird in der wässerigen Lösung langsam zerstört. Bei der Darstellung als Trockenpulver nimmt ihre Wirksamkeit bis zum völligen Verschwinden ab. Überhaupt leidet sie bei jeder Art der Isolierung, indem dann der Versuch längere Zeit bis zur quantitativen Harnsäurebildung gehen muß, als wenn ein ganz frisch bereiteter, wässeriger Rindermilzextrakt genommen wird. Der letztere ist immer das am besten wirksame. Das Ferment ist nicht dialysabel und wird durch Aufkochen zerstört. Es ist bei schwach saurer, neutraler und schwach alkalischer Reaktion gut wirksam. Stärkere Säuerung oder Alkaleszenz zerstört es jedoch.

Es mag-hier bemerkt werden, daß unter Umständen bei der Umsetzung der Aminopurine die Xanthinoxydase zuerst wirkt. Dann entsteht aus Adenin als Zwischen-

¹) W. Spitzer, Die Überführung von Nukleinbasen in Harnsäure durch die sauerstoffübertragende Wirkung von Gewebsauszügen, Archiv f. Physiol. Bd. 76. S. 192 (1899).

³⁾ A. Schittenhelm, 1. c.

³⁾ H. Wiener, Über Zersetzung und Bildung der Harnsäure im Tierkörper. Archiv f. experim. Path. u. Pharm. Bd. 42. S. 373 (1899).

⁴⁾ R. Burian, Über die Oxydation und die vermeintliche synthetische Bildung von Harnsäure im Rinderleberauszug. Zeitschr. f. physiol. Chemie. Bd. 43. S. 497 (1905). — Derselbe, Die Herkunft der endogenen Harnpurine bei Mensch und Säugetier. Ebenda. Bd. 43. S. 532 (1905).

⁵) A. Schittenhelm und W. Künzel, Zur Frage des Nukleinstoffwechsels beim Menschen. Zentralbl. f. d. ges. Physiol. u. Path. d. Stoffw. Nr. 19 (1908). — A. Schittenhelm, Über die Fermente des Nucleinstoffwechsels menschlicher Organe. Zeitschr. f. physiol. Chem. Bd. 63. S. 222 (1909).

⁶⁾ W. Jones und C. R. Austrian, l. c.

⁷) A. Schittenhelm, Über die Harnsäurebildung in Hundeorganen. Zentralbl. f. d. ges, Physiol, u. Path. Nr. 21 (1909).

produkt, 6 Amino-2-8-Dioxypurin, welches von Nicolaier) bei Ratten nach Injektion von Adeninlösung aus den Nieren isoliert werden konnte. Aus Guanin entsteht dabei 2 Amino-6-8-Dioxypurin, dessen Vorkommen bei der Digestion von Guanin mit Schweinemilzextrakt durch Schittenhelm) wahrscheinlich gemacht wurde.

4. Urikolytisches Ferment (Harnsäureoxydase).

Nachweis der Urikolyse.

Der Nachweis geschieht dadurch, daß man das Verschwinden der Harnsäure konstatiert 3) und das Abbauprodukt derselben zu isolieren versucht, als welches Allantoin 4) erkannt wurde. Ob es nicht andere Abbauprodukte gibt, muß zurzeit noch dahingestellt bleiben.

Die Harnsäurezersetzung geschieht in den verschiedensten Organen und man kann zu deren Nachweis einfach wässerige Extrakte derselben benutzen, die genau so hergestellt werden, wie oben für die Purindesamidasen und die Kanthinoxydase angegeben ist. Am geeignetsten ist die Rinderniere. Der Versuch geht dann folgendermaßen:

 $350\ cm^3$ Rindernierenextrakt werden mit $03\ g$ in möglichst wenig Normalnatronlauge gelöster Harnsäure versetzt; dann wird etwas Toluol und Chloroform zugegeben, gut gemischt und nun das Gemisch bei 37° unter ständiger Luftdurchleitung gehalten oder in der Schüttelmaschine geschüttelt. Nach 4-7 Stunden ist alle Harnsäure verschwunden. Die Methode der Harnsäureisolierung ist bei der Xanthinoxydase angegeben.

Anstatt Rinderniere ^{5, 6}) kann man auch Hundeleber ^{5, 7}), Leber und Muskel des Rindes ^{5, 6, 8}), Schweineleber ^{5, 9}) und Pferdeniere ⁵), Leber und Niere von Kaninchen ¹⁰) sowie Leber von Katzen ¹⁰) nehmen. Mit menschlichen Organen gelingt es nicht, den einwandsfreien Beweis einer Uriko-

- ¹) A. Nicolaier, Über die Umwandlung des Adenins im tierischen Organismus. Zeitschr. f. klin. Med. Bd. 45. S. 430 (1902).
- ²) A. Schittenhelm, Der Nukleinstoffwechsel und seine Fermente bei Mensch und Tier. Zeitschr. f. physiol. Chemie. Bd. 46. S. 354 (1905); siehe auch A. Schittenhelm, Bemerkungen über den Nukleinstoffwechsel. Deutsches Archiv f. klin. Med. Bd. 89. S. 266 (1906).
- ³) A. Schittenhelm, Über das urikolytische Ferment. Zeitschr. f. physiol. Chemie. Bd. 45. S. 161 (1905).
- 4) W. Wiechowski, Die Produkte der fermentativen Harnsäurezersetzung durch tierische Organe. Hofmeisters Beitr. d. chem. Physiol. u. Path. Bd. 9. S. 295 (1907).
 - 5) H. Wiener, Über Zersetzung und Bildung von Harnsäure im Tierkörper, 1. c.
- 6) A. Schittenhelm, Über Harnsäurebildung und Harnsäurezersetzung, I. c.; siehe auch W. Künzel und A. Schittenhelm, Über den zeitlichen Ablauf der Urikolyse. Zeitschrift f. experim. Path. u. Ther. Bd. 5 (1908).

Brunton, Über Harnsäurezersetzung, Zentralbl, f. Physiol. Bd. 19, Nr. 1, S. 9 (1905).

⁸) R. Burian, 1, c.

⁹) A. Schittenhelm, Der Nukleinstoffwechsel und seine Fermente bei Mensch und Tier, l. c.; siehe auch A. Schittenhelm und J. Schmid, Ablauf des Nukleinstoffwechsels in der Schweineleber. Zeitschr. f. experim. Path. u. Ther. Bd. 4. S. 432 (1907).

10) A. Schittenhelm und J. Schmid, Über die Fermente des Nukleinstoffwechsels.

Zeitschr. f. physiol. Chemie. Bd. 50. S. 30 (1906).

lyse zu erbringen, da deren Extrakte, wenn überhaupt, nur sehr geringe Wirksamkeit haben. 1) Dennoch besitzt der menschliche Organismus im Leben eine ausgiebige harnsäurezerstörende Fähigkeit, wie der Stoffwechselversuch sicher beweist,2)

Genau so gute Resultate wie mit den frischen Extrakten erhält man mit den nach dem Verfahren von Wiechowski isolierten Ferment $l\ddot{o}sungen^3$), welche zweifellos auch die zurzeit zweckmäßigste Art, das Abbauprodukt Allantoin zu erhalten, ist. Die Methode ist mit Hundeleber und Rinderniere durchgeführt (genaue Beschreibung siehe bei Wiechowski, Bd. III. S. 282 ff.). Sie beruht darauf, daß man sich ein Organpulver durch rasches, wenige Stunden währendes Trocknen der blutfrei gespülten, überlebenden Organe in dünnster Schicht bei 37° darstellt, welches lange haltbar ist, und dieses vor dem Gebrauche durch ein besonderes Verfahren (Vermahlen mit Toluol in einer Farbreibmühle, Abnutschen und Farbstoff-Freiwaschen mit Toluol auf der Nutsche) reinigt. Durch Dialyse gegen schwache Sodalösungen werden die zermahlenen Organe so weit aufgeschlossen, daß das Ferment völlig in Lösung geht. Durch Fällen solcher dialysierten Emulsionen mit niedrigen Konzentrationen von Kaliumacetat lassen sich die gelösten Eiweißkörper von einer nur opaleszent löslichen und einer unlöslichen Organfraktion durch Filtration trennen. Die Fällung enthält das Ferment, welches nach neuerlicher Dialyse dieser Fällung in fast eiweißfreier Lösung quantitativ in das Filtrat übergeht (Hundeleber) oder ebenso vollständig durch die Zentrifuge in opaleszenter Lösung erhalten werden kann (Rinderniere). Man erhält so eine sehr wirksame und einfach zusammengesetzte Fermentlösung, welche der Isolierung des Allantoins keine Schwierigkeiten bietet. Diese geschieht nach den für die Isolierung des Allantoins aus dem Urin angegebenen Prinzipien (siehe Bd. III, Abschnitt: Stoffwechselendprodukte.

Eine Isolierung des Ferments, welche jedoch weniger sicher ist, wie die eben beschriebene, geht auch mittelst der von Rosell4) augegebenen Methode des Nachweises intrazellulärer Fermeute. 5) Dabei wird wässeriger Nierenextrakt mit einer gesättigten Lösung von Uranylacetat unter gleichzeitiger Zufügung einer Mischung von Natriumkarbonat und Natriumphosphat, so daß die Lösung stets alkalisch bleibt, so lange versetzt, bis sich grobe Flocken bilden, welche sich dann weiterhin gut absetzen. Man dekantiert und filtriert. Der Filterrückstand wird in 600 800 cm³ 0.2° jeer Sodalösung fein zerrieben oder besser einige Stunden geschüttelt und bleibt dann ca. 12 Stunden stehen. Nun wird extrahiert und eventuell dialysiert. Diese Lösung enthält das Ferment.

²) F. Frank und A. Schittenhelm, Über die Umsetzung verfütterter Nukleinsäure beim normalen Menschen. Zeitschr. f. physiol. Chem. Bd. 63. S. 243 (1909).

4) Rosell, Über Nachweis und Verbreitung intrazellulärer Fermente. Inaug.-Diss. Straßburg 1901.

¹⁾ W. Wiechowski, Über die Zersetzlichkeit der Harnsäure im menschlichen Organismus, Arch. f. exper. Path. u. Pharmak. Bd. 60. S. 185 (1909). - A. Schittenhelm, Über die Fermente des Nukleinstoffwechsels menschlicher Organe. l. c.

³⁾ W. Wiechowski, l. c. und W. Wiechowski und H. Wiener, Über Eigenschaften und Darstellung des harnsäurezerstörenden Ferments der Rinderniere und Hundeleber. Hofmeisters Beitr. Bd. 9. S. 247 (1907).

⁵⁾ A. Schittenhelm, Über das urikolytische Ferment, l. c.

Eigenschaften des Ferments.1)

Das Ferment wirkt am besten bei Schütteln mit Luft und bei Luftdurchleitung. Die Reaktion ist zweckmäßig schwach alkalisch (0·05°/₀ Soda); stärkere Alkaleszenz kann schaden; saure Reaktion schädigt. Die Fermentmenge ist von wesentlichem Einfluß auf die Schnelligkeit der Fermentreaktion, indem dieselbe um so geringer ist, je weniger Ferment angewandt wird. Antiseptische Zusätze (Toluol, Thymol, Chloroform, 0·2—0·8°/₀iges Fluornatrium) haben keinen Einfluß; dagegen hemmt ein Überschuß an Salzen. Erhitzen des Ferments in Lösung und als Trockenpulver zerstört das Ferment. Behandlung des Trockenpulvers mit Toluol und Äthylalkohol schädigen das Ferment nicht, während Äthylalkohol, der Fermentlösung in größerer Menge zugesetzt, hemmt und zerstört. Die proteolytischen Fermente, Harnstoff schon zu 5°/₀ und Ammonsulfat, schädigen das Ferment. Natives Kaninchenleberplasma (aus frischem, nicht getrocknetem Organ gewonnen) zerstört das Ferment. Hemmend wirkt auch Zusatz von harnsäurebildenden Milzextrakten. Es ist nicht dialysabel.

¹) W. Wiechowski und H. Wiener, l. c. sowie A. Schittenhelm, l. c. und W. Künzel und A. Schittenhelm, l. c.

H. Weitere Fermente des intermediären Stoffwechsels mit Einschluß der Methoden zur Untersuchung der Autolyse von Organen.

Von M. Jacoby, Berlin.

Unter Autolyse im weitesten Sinne des Wortes versteht man die fermentativen Umsetzungen, die sich in Organen von Tieren und Pflanzen nach dem Tode nachweisen lassen, ohne daß Zusätze von Fermenten oder von Substanzen, welche durch Enzyme verändert werden, gemacht werden. Salkowski, der die Autolyse entdeckte und sie zuerst unter dem Namen Autodigestion beschrieben hat, hat genaue Angaben darüber gemacht, wie man sich von der Zerlegung der Eiweißkörper, der Nukleine und des Glykogens bei der Autolyse überzeugen und die Vorgänge auch quantitativ verfolgen kann. Wir geben zunächst das vielfach angewandte Salkowskische 1) Verfahren wieder:

Die Leber eines soeben durch Verbluten aus der Carotis getöteten großen Hundes wird möglichst schnell zerhackt und eine abgewogene Quantität, etwa 250 g. mit Chloroformwasser verrieben und in eine starkwandige Glasstöpselflasche gespült. Chloroformwasser wird hergestellt, indem man destilliertes Wasser stark mit Chloroform schüttelt. Zum Verreiben und Nachspülen werden im ganzen 21 l vorher bereitgestelltes Chloroformwasser verwendet, so daß das Verhältnis zwischen der Quantität des Organes und dem Chloroformwasser etwa 1:10 ist. Das Volumverhältnis kann indessen ohne Schaden auch erheblich enger sein; spätere Beobachter haben sogar nur 1:3 genommen. Die Flasche wird so groß gewählt, daß sie starkes Schütteln gestattet. Zu der Mischung werden dann noch $2^{1/2}$ cm³ Chloroform hinzugesetzt, um der Sättigung der Mischung mit Chloroform sicher zu sein, wiederholt kräftig geschüttelt, die Flasche 60 70 Stunden hindurch im Thermostaten bei ca. 40° gehalten und öfters geschüttelt. Die Verdauungszeit kann natürlich auch länger oder kürzer gewählt werden. Zum Schlusse wird die Mischung enteiweißt und im Filtrat der Stickstoff bestimmt.

¹⁾ E. Salkowski, Über Autolyse. Die Deutsche Klinik. Bd. 11 (1903).

Der Kontrollversuch, welcher nötig ist, um festzustellen, inwieweit die Veränderungen durch die Autolyse bedingt sind, wird so angestellt, daß ebenfalls 250 g Leber sofort mit der zehnfachen Quantität Wasser zum Sieden erhitzt werden. Nach dem Erkalten bringt man alles in eine Flasche, fügt ca. 15 cm^3 Chloroform hinzu und überläßt das Gemisch gleichzeitig mit dem Hauptversuche der Verdauung.

Die Autolyse der tierischen Organe läßt sich auch nachweisen, indem man zunächst einen Preßsaft mit Hilfe der Buchnerschen Presse herstellt oder, falls solche fehlt, indem man das Organ einfach gehörig zerkleinert, Wasser zusetzt und dann durch Kolieren den Zellsaft von den unlöslichen Teilen abtrennt. Um den Zellbrei gehörig zu extrahieren, pflegt man hier wie in ähnlichen Fällen das Gewebe-Flüssigkeitsgemisch tüchtig miteinander zu schütteln. Es sei aber darauf aufmerksam gemacht — und Abderhalden hat gelegentlich darauf besonders hingewiesen —, daß man durch zu intensives Schütteln auf der Maschine unter Umständen das Gegenteil des beabsichtigten Zweckes erreicht. Eine vor dem Schütteln gut wirksame Fermentlösung kann durch diese Prozedur ihre Wirksamkeit einbüßen.

Die direkte Beobachtung der Autolyse bietet auch einiges Interessante. Der vorhandene Brei nimmt ab, die Flüssigkeit färbt sich dunkler. Hat man Toluol als Antiseptikum angewandt, so sieht man das überstehende Toluol allmählich sich färben, indem Produkte entstehen, welche im Toluol sich lösen. Autolysiert man z. B. Leber, so entsteht Urobilin, das sich im Toluol löst. War die Flüssigkeit bei Beginn des Versuches durch Glykogen milchig, so klärt sie sich bei der Autolyse.

Will man den Verlauf der Autolyse studieren, besonders den Einfluß der Reaktion des Mediums, die Einwirkung von Gasen, pharmakologischen Agenzien und Giften auf die Autolyse untersuchen, so bedarf man einer zuverlässigen quantitativen Methodik. Eine solche ist in Salkowskis Verfahren gegeben. Jedoch hat sich für gewisse Verhältnisse auch ein anderes Vorgehen als zweckmäßig erwiesen. Salkowski bestimmt, wieviel koagulables Eiweiß am Anfang des Versuches und nach bestimmten Fristen in den Autolysegemischen vorhanden ist. Die Gemische müssen also enteiweißt werden. Da hier nun natürlich sehr viel darauf ankommt, daß bei der Enteiweißung nicht etwa durch die zugesetzte Säure Eiweiß gespalten wird, so haben die Hofmeisterschen Schüler vielfach die saure Reaktion durch Mononatriumphosphat hergestellt, was in der Tat ein sehr vorsichtiges und brauchbares Verfahren ist.

Will man im einzelnen feststellen, was für Spaltungsprodukte auf Kosten des Eiweiß bei der Autolyse auftreten, so muß man die betreffenden Fraktionen herstellen, deren Wert nicht gleichmäßig ist. Handelt es sich aber, wie das sehr häufig der Fall ist, nur um die quantitative Ermittlung des Grades der Autolyse, so kann man die Trennung zwischen komplizierten und einfachen Substanzen an sehr verschiedenen Punkten vornehmen. Dann genügt es, daß eine quantitative und gleichmäßige Versuchsanordnung vorliegt.

Gewisse Vorteile in diesem Sinne bietet das Aussalzungsverfahren. Da Stickstoffbestimmungen in Betracht kommen, kann man natürlich nicht Ammonsulfat benutzen, ersetzt es vielmehr durch Zinksulfat. Das Zincum sulfuricum purissimum des Handels läßt sich fast immer direkt anwenden. da es meistens stickstofffrei ist; man überzeugt sich aber davon natürlich und entfernt eventuell die Spuren Ammonsulfat. Man geht dann folgendermaßen vor:

Man sättigt die Gemische mit Hilfe von gesättigter Lösung von stickstofffreiem Zinksulfat und Zufügung des Salzes in Substanz, fügt dann so viel stickstofffreie Schwefelsäure zu, daß die Konzentration etwa 04% beträgt. Nach einigen Stunden wird filtriert, die Niederschläge werden mit gesättigter Zinksulfatlösung, der Schwefelsäure zugefügt wird, ausgewaschen und in Portionen des Filtrates dann der N bestimmt. Vertreibt man das Wasser auf dem Wasserbade und Sandbade und zersetzt in Jenenser Kolben, so macht der große Salzgehalt der Filtrate keine unüberwindlichen Schwierigkeiten.

Sehr beguem ist die Methode nicht, weil die Stickstoffbestimmungen in den konzentrierten Salzlösungen immer gewisse Schwierigkeiten bereiten. Es stehen aber auch noch andere Verfahren zur Verfügung. Da ich gezeigt habe, daß der Ammoniakstickstoff bei der Autolyse zunimmt, so kann auch dieser Stickstoff als Maß der Autolyse benutzt werden. Die Schlösingsche Methode und ihre Modifikationen sind weniger geeignet, da die Apparatur meistens zu platzraubend ist. Zu brauchbaren Resultaten gelangt man, wenn man die Magnesia-Destillationsmethode anwendet. Auch sie kann zweckmäßig nur bei Leberextrakten und nicht mit Leberbrei benutzt werden. Das Verfahren gestaltet sich sehr einfach, indem man die zu untersuchende Flüssigkeit mit Wasser verdünnt, mit Magnesia usta versetzt, die man zur Sicherheit vorher in einer Nickelschale noch einmal glüht, um sie von Ammoniakspuren zu befreien und dann direkt in die vorgelegte Säure destilliert. Noch sicherer ist es, wenn man in den Kolben zunächst destilliertes Wasser und die Magnesia bringt und leer destilliert und dann nach dem Abkühlen den Organsaft zusetzt. Ein Mißstand bei der Methode ist, daß der Schluß der Destillation asymptotisch erreicht wird, so daß man nur im Einzelfall durch die Erfahrung feststellen kann, wann man die Destillation abschließen darf.

Brauchbar ist auch das Verfahren von Hedin und Rowland 1), die Tanninfällung anwenden. Man fällt den Lebersaft mit einer mit etwas Essigsäure versetzten 7º sigen Gerbsäurelösung und bestimmt im Filtrat den Stickstoff.

Endlich sei auf eine von mir praktisch noch nicht erprobte Methode aufmerksam gemacht, auf das Mastix-Verfahren von Michaelis und Rona, welches sich wohl auch für autolytische Zwecke ausarbeiten lassen wird.

¹⁾ S. G. Hedin und S. Rowland, Über ein proteolytisches Enzym in der Milz und Untersuchungen über das Vorkommen von proteolytischen Enzymen im Tierkörper. Zeitschr. f. physiol. Chemie. Bd. 32. S. 341-349 und 531-540 (1901).

Die Hausmannsche Methode, welche die mit Phosphorwolframsäure fällbaren Substanzen von den nicht fällbaren trennt, bietet für die Untersuchung der Autolyse keine Vorteile, die direkte Bestimmung der basischen Produkte nach Kossel kommt für Einzelfragen in Betracht, bei den Argininwerten ist auf die Existenz der Arginase Rücksicht zu nehmen.

An diese Methoden, welche bestimmen, wieviel Eiweiß in einfachere Bruchstücke zerfällt, reihen sich dann die physikalisch-chemischen Methoden, welche darauf hinauslaufen, die Zunahme der Moleküle bei der Autolyse festzustellen. Es unterliegt keinem Zweifel, daß derartige Methoden eventuell für größere Reihenversuche Vorteil bieten.

Bisher benutzt worden ist die Kryoskopie und die Bestimmung der Leitfähigkeit. Möglich ist, daß auch Viskositätsbestimmungen und die Bestimmung der Refraktion sich vorteilhaft verwenden lassen.

Auch histologisch hat man das Verhalten der aseptisch autolytischen Gewebe studiert.

An die Autolyseprüfungen schließt sich eng die Untersuchung der Heterolyse an. Als Heterolyse habe ich die Einwirkung der Fermente eines Organes auf die Bestandteile eines anderen Organes desselben Tieres bezeichnet. Das Verfahren gestaltete sich in meinen Versuchen folgendermaßen¹):

Für die einzelnen Versuche wurden immer ein oder zwei Hunde durch Verbluten getötet, die Organe sofort zerhackt. Der Leberbrei wurde mit destilliertem Wasser oder $0^\circ 9^\circ/_0$ iger Kochsalzlösung unter Toluolzusatz so versetzt, daß auf 100 g Leber 100 cm^3 Flüssigkeit genommen wurden. Dann wurde durchgerührt und nach kurzer Zeit filtriert. Man erhält so einen dünnen Lebersaft, der neben anderen Substanzen Eiweißkörper und Fermente, darunter auch das Lebereiweiß spaltende Ferment enthält.

Vom Lungenbrei wurden Portionen (in den einzelnen Versuchen von $10-100\,g$ schwankend) abgewogen. Zu jeder Portion wurde die gleiche Menge Kochsalzlösung und Toluol zugefügt, bei einem Teil der Proben wurden einige Kubikzentimeter der Kochsalzlösung (in den einzelnen Versuchen schwankte das zwischen 10 und $25\,cm^3$) durch Lebersaft ersetzt.

Von dem Lebersaft wurde außerdem eine Reihe entsprechender Proben besonders abgemessen.

Alles kam dann auf 24—48 Stunden in den Brutschrank bei 37°. Dann wurden die Proben ohne Lebersaft mit den besonders digerierten Lebersaftproben vereinigt, einige Lebersaftproben auch besonders verarbeitet.

In einigen Portionen wurde nun der mit Zinksulfat nicht aussalzbare Stickstoff, in anderen der nicht koagulable Stickstoff bestimmt.

Zusatz von Lebersaft vermehrt nicht den nicht koagulablen Stickstoff bei der Spaltung des Lungengewebes, wohl aber den nicht aus-

¹⁾ Martin Jacoby, Zur Frage der spezifischen Wirkung der intrazellulären Fermente. Hofmeisters Beitr. Bd. 3. S. 446-450 (1903).

salzbaren Stickstoff. Es wird also infolge Einwirkung des Lebersaftes nicht mehr Eiweiß gespalten, wohl aber die Quantität der niederen Spaltungsprodukte vermehrt, also mehr Albumose weiter gespalten als in der normalen Lungenautolyse.

Von dieser Methode ist insbesondere für Fragen der Pathologie Gebrauch gemacht worden, namentlich hat man Abweichungen von der Norm bei Karzinom in dem Sinne beschrieben, daß auch die koagulablen Eiweißkörper heterolytisch zersetzt wurden.

Im Anschluß an die antiseptische Autolyse habe ich auch untersucht. ob die autolytischen Spaltungen auch vor sich gehen, wenn die Organstücke ohne jede Prozedur aus dem Körper genommen werden und die bakteriellen Keime lediglich durch strenge Asepsis ferngehalten werden. Es sollte damit möglichst jede sekundäre Reaktion ausgeschlossen werden. Diese Versuche sind dann von Conradi¹) zu einer besonderen Methode der aseptischen Autolyse entwickelt worden, Magnus-Levy hat die aseptische Autolyse besonders in seiner Arbeit über die autolytische Säurebildung benutzt. Die aseptische Autolyse hat deshalb einen Wert, weil die autolytischen Prozesse offenbar durch die Antiseptika gehemmt werden und man daher bei antiseptischem Vorgehen nicht den vollen Umfang des Prozesses kennen lernt. Trotzdem wird das Verfahren nur für ganz bestimmte Fälle zu empfehlen sein, da den Vorteilen große Schwierigkeiten gegenüberstehen. Denn nur bei größter Vorsicht kann natürlich bei einem Material, das einen so ausgezeichneten Nährboden für Bakterien darstellt. Infektion vermieden werden. Auch darf man nicht übersehen, daß Bakterien unter Umständen auch der bakterioskopischen und allenfalls auch der kulturellen Prüfung entgehen können. Man darf sich übrigens bei aseptischer Autolyse nicht durch den Geruch verleiten lassen, einen Versuch zu verwerfen. Von stinkender Fäulnis ist zwar der Geruch einer aseptischen Autolyse durchaus zu unterscheiden, wohl aber riechen die Gemische sehr unangenehm, insbesondere wohl wegen des Auftretens von Fettsäuren. Bei der antiseptischen Autolyse sind diese Substanzen nicht nur quantitativ weniger vertreten, ihr Geruch wird auch durch den der Antiseptika verdeckt.

Wir lassen nun Conradis Angaben über die Versuchsanordnung bei der aseptischen Autolyse folgen:

Zu einem Versuche über aseptische Autolyse ist außer dem Operateur ein Assistent erforderlich. Das Versuchstier (Hund oder Kaninchen), das 24 Stunden gefastet hat, wird durch Chloroform oder Genickschlag getötet. Von dem Assistenten wird unmittelbar nach erfolgtem Tode die Haut von der Symphyse bis zum Jugulum freigelegt und möglichst weit zurückpräpariert. Die freigelegte Fläche wird mit Sublimat überspült und mit Sublimat durchtränkten Tüchern ringsum bedeckt. Der Operateur, der besser

¹⁾ H. Conradi, Über die Beziehung der Autolyse zur Blutgerinnung. Hofmeisters Beitr. Bd. 1. S. 136-182 (1901).

der Keimfreiheit seiner Hände mißtraut und sich der mit Sublimat sorgfältigst behandelten Gummihandschuhe bedient, eröffnet sogleich mit sterilisiertem Messer die Bauchhöhle und holt das betreffende Organ in toto heraus. Dieses wird sofort in ein bereitgehaltenes Gefäß mit kochendem Wasser geworfen, der Deckel geschlossen und das Organ 1-2 Minuten lang im kochenden Wasser gehalten. Mittelst einer großen sterilen Pinzette wird dann das Organ in ein ca. $10\,l$ fassendes Gefäß mit sterilisiertem, erkaltetem Wasser übertragen und von hier in eine große, sterile Doppelschale eingebracht. Vor der Sterilisation war in dieselbe ein kleines Glasgefäß mit sublimatbefeuchteter Watte hineingestellt worden. Diese "sterile, feuchte Kammer" wird im Brutschrank bei 37° bis zum Ende der Autolyse verwahrt.

Beabsichtigt man, statt an Laboratoriumstieren die aseptische Autolyse an Organen der Schlachttiere vorzunehmen, so verfährt man zweckmäßig folgendermaßen: Das betreffende Organ wird in toto herausgeschnitten und in ein verschließbares, mit 1% ger Sublimatlösung gefülltes Gefäß gebracht. Im Laboratorium wird das im Sublimat befindliche Organ mit sterilem Messer, wenn nötig in kleinere Portionen zerteilt. Das Organ wird dann mittelst steriler Pinzette in ein neues Gefäß gebracht, welches ca. $10\ l$ kochendes Wasser enthält. Nach 1-2 Minuten langem Aufenthalte in kochendem Wasser kommt das Organ in steriles, kaltes Wasser, dem vor dem Kochen Schwefelammonium oder Schwefelnatrium zugesetzt wurde; erneute Übertragung in sterilisiertes, kaltes Wasser usw. wie oben. Nach Beherrschung dieser Methode gelang es in den meisten Fällen, eine aseptische Autolyse der meisten tierischen Organe durchzuführen. Am schwierigsten ist bei der Leber die Autolyse aseptisch auszuführen.

Bei dieser aseptischen Autolyse, die übrigens schneller vor sich geht wie die antiseptische, findet man, soweit das bisher untersucht worden ist, dieselben Spaltungsprodukte wie bei der antiseptischen Autolyse. Tyrosin kann man sehr bald auskristallisieren sehen. Natürlich läßt sich die Versuchsanordnung in sehr weiten Grenzen variieren, man kann Sauerstoff oder auch andere Gase, wie CO_2 , CO_3 , Blausäure etc. zuführen, man kann den Wassergehalt der umgebenden Luft verändern u. a. m.

Die aseptische Autolyse ist gewissermaßen ein Grenzgebiet zwischen Chemie und Histologie. Denn man kann das Gewebe, das ja hierbei mechanisch und chemisch verhältnismäßig weniger künstlich beeinflußt wird, als bei dem antiseptischen Vorgehen, auch mikroskopisch untersuchen. Diese Untersuchungen dürfen aber nicht zu chemischen Schlußfolgerungen herangezogen werden. Wenn man z.B. in ein Leberstück nach dem Tode Phosphoröl injiziert und es dann der aseptischen Autolyse überläßt, so entsteht allmählich das histologische Bild der Verfettung. Die chemische Prüfung weist aber nach, daß eine Zunahme des Fettes nicht eingetreten ist, das vorher vorhanden gewesene Fett ist nur sichtbar geworden, weil die übrigen Gewebsbestandteile sich verändert haben.

Wir schließen hier Angaben über methodische Einzelheiten beim Verarbeiten autolytischer Gemische an.

Magnus-Lery 1) untersuchte die bei der Autolyse gebildeten organischen Säuren und ging im allgemeinen so vor:

4- 6maliges Auskochen der Organe bei nahezu neutraler Reaktion (Zusatz von Kaliumbisulfat bei frischen, von Natriumbikarbonat bei autolysierten Organen), Eindampfen, Zusatz von Ammoniumsulfat und Schwefelsäure, nach längerem Stehen Abfiltrieren von ausgeschiedenem Eiweiß, Albumosen, Fetten und höheren Fettsäuren; Erschöpfung des Filtrates mit Äther, Kontrollversuche, in denen die saure mit Äther erschöpfte Lösung neuerdings mit Alkohol-Äthermischung behandelt wurde, zeigten, daß die Ätherextraktion stets über 90, meist über 95% der ätherlöslichen Säuren aufgenommen hatte. Die ätherische Lösung wurde zur Befreiung von auorganischen Säuren mit wenig Wasser gewaschen, dem Waschwasser die geringen von ihm aufgenommenen Mengen organischer Säuren durch erneute Ätherbehandlung wieder entzogen. So behandelt, war das Ätherextrakt stets frei von Mineralsäuren. Der Äther wurde unter möglichster Vermeidung von Verlusten an organischen Säuren abdestilliert, der Rückstand in Wasser gelöst, die flüchtigen Säuren mit Wasserdampf abgetrieben und mit Natronlauge titriert. Auch die Menge der nichtflüchtigen Säuren im Destillationsrückstand wurde (an einem Bruchteil) titrimetrisch bestimmt. So war die Menge der gesamten Säuren wie auch das Verhältnis zwischen flüchtigen und nichtflüchtigen stets bekannt. Die höheren Fettsäuren wurden bei dieser Behandlung nicht mitbestimmt. Überall wurden die gefundenen Zahlen auf 100 q ursprünglicher Lebersubstanz umgerechnet.

Von besonderem Interesse ist vielleicht das Vorkommen der Milchsäure unter den Produkten der Autolyse, Jedoch bietet die Gewinnung des Zinksalzes der Milchsäure keine besonderen Schwierigkeiten. Mochizuki und Arima²) erhitzen zu dem Zwecke die digerierte Flüssigkeit zunächst zum Sieden, behandeln sie erst mit Barytwasser, dann mit Kohlensäure, dampfen die Lösung ein, ziehen den Sirup mit Alkohol aus. Der Extraktrückstand wird dann mit Phosphorsäure angesäuert, mit Äther ausgeschüttelt, aus dem Ätherrückstand wird das Bleisalz und aus ihm das Zinksalz dargestellt.

Inouye und Kondo 3) konnten übrigens das Ferment, welches bei der Autolyse die Milchsäure bildet, auch im Preßsaft nachweisen, wie folgendes Beispiel erläutert:

425 q frische, zerkleinerte Kaninchenmuskeln wurden mit Quarzsand fein zerrieben, mit 425 cm² Chloroformwasser durchgerührt und mittelst

¹⁾ Adolf Magnus-Levy, Über die Säurebildung bei der Autolyse der Leber. Hofmeisters Beitr. Bd. 2. S. 261-296 (1902).

²⁾ J. Mochizuki und R. Arima, Über die Bildung von Rechtsmilchsäure bei der Autolyse der tierischen Organe. Zeitschr. f. physiol. Chemie. Bd. 49. S. 108-112 (1906).

³⁾ Katsuji Inouye und K. Kondo, Über die Bildung von Rechtsmilchsäure bei der Autolyse der tierischen Organe. III. Mitteilung. Die Milchsäurebildung bei der Autolyse des Muskels. Zeitschr. f. physiol. Chemie, Bd. 54. S. 481-500 (1908).

einer Presse ausgepreßt. Das Extrakt lieferte nach Filtration eine Flüssigkeit, die sich unter dem Mikroskop als frei von Zelldetritus erwies; diese Flüssigkeit wurde in zwei Anteile von je 250 cm³ geteilt, der eine nach dem Kochen, der andere sofort bei Gegenwart von Toluol, bei Bruttemperatur digeriert. Nach 4tägiger Digestion wurden die beiden Anteile auf Milchsäure verarbeitet. Es wurden gefunden:

aus dem nach dem Kochen digerierten Anteil 0·3795 g Zinklaktat, aus dem sofort digerierten Anteil 0·5123 g Zinklaktat.

Die angewandten Methoden der Milchsäuredarstellung sind natürlich keine wirklich quantitativen, jedoch sind die erhaltenen Ausschläge außerhalb der Fehlerquellen der Methodik. Zu wirklich exakten Zahlen kann man hoffentlich mit Hilfe der von Jerusalem ausgearbeiteten Methode der quantitativen Bestimmung der Milchsäure in tierischen Organen gelangen. Vorläufig gibt Jerusalem 1) an, daß man aus Autolysengemischen nach dem Auskoagulieren die Eiweißreste mit Phosphorwolframsäure ausfällen soll. Die Milchsäurebestimmung soll nach seiner Methode in diesen Flüssigkeiten dann zwar sehr mühselig sein, dafür aber anscheinend manche Fehlerquellen vermeiden.

Magnus-Levy hat auch die Gasbildung bei der Autolyse untersucht. Gasbildung findet in reichlichem Maße bei der Autolyse der Leber, in geringem auch bei der einzelner anderer Organe statt. Bei antiseptischer Autolyse ist sie nicht so bedeutend, dagegen liefert die aseptisch behandelte Hundeleber sehr viel Gas. Die Anwesenheit geringer Mengen von Schwefelwasserstoff, die sich dem Geruch entziehen, ist leicht nachweisbar. Papier oder Watte, die, mit Sublimat oder Bleiacetat getränkt, in kleinen Gläschen in die großen Autolysierschalen eingebracht wurden, zeigten ausnahmslos Schwärzung, auch das Quecksilber in den Absorptionsröhren wurde dunkel gefärbt. Magnus-Levy brachte unter aseptischen Kautelen ein Leberstück in ein trichterförmiges, mit antisentischer Flüssigkeit gefülltes Gefäß. Aus einem Halbliterkolben wurde der Boden ausgesprengt. der Hals zu einer feinen Röhre ausgezogen, die durch einen kapillaren Gummischlauch mit Bunsenschen Gummiventilen verschlossen werden konnte. Dieses zur Aufnahme der Leber bestimmte Gefäß kam in ein großes Becherglas zu stehen. Die beiden wurden nach trockener Sterilisation mit Toluolwasser und reichlichem überschüssigen Toluol gefüllt. Das sterile Leberstück wurde unter aseptischen Maßnahmen in das Trichtergefäß hineingebracht und dieses dann durch Ansaugen mit dem Toluolwasser gefüllt, und zwar so, daß auch hier überschüssiges Toluol an der Oberfläche schwamm. Bei der Autolyse war somit die Außenschicht des Leberstückes und der ausfließende Saft einer etwaigen Bakterienwirkung entzogen, aber auch die Autolyse und Gasbildung dieses Anteiles sehr beschränkt. Der innere Kern des Organstückes, der der Tiefenwirkung des

¹) Ernst Jerusalem, Über ein neues Verfahren zur quantitativen Bestimmung der Milchsäure in Organen und tierischen Flüssigkeiten. Biochem. Zeitschr. Bd. 12. S. 361 bis 389 (1908).

Antiseptikums nicht unterlag, mußte hier das Gas liefern. Am Schlusse dieser Versuche wurde die Leber mit besonderer Sorgfalt bakteriologisch untersucht. Das an der Spitze des Trichters sich sammelnde Gas konnte zu beliebigen Zeiten entnommen und zur Messung und Analyse benutzt

Die Gasbildung beginnt erst nach 6 Stunden, neben Kohlensäure wurde Wasserstoff gefunden.

In den Organzellen findet man neben den autolytischen Fermenten. welche das Eiweiß zerlegen, auch Fermente, welche die primären Spaltungsprodukte weiter zerlegen. Hier ist besonders die Arginase von Kossel und Dakin 1) zu nennen, welche das Arginin in Ornithin und Harnstoff spaltet. Die Arginase geht in den Preßsaft über, sie kann, wenn auch unvollständig. aus dem Leberbrei durch Wasser oder verdünnte Essigsäure extrahiert und aus der Lösung durch Ammonsulfat sowie durch Alkohel und Äther gefällt werden. Ein Trockenpräparat kann man sich aus dem Leberpreßsaft herstellen, wenn man ihn mit einer Mischung aus 2 Teilen Alkohol und einem Teil Äther ausfällt und den Niederschlag vorsichtig trocknet.

Die Spaltung des Arginins durch die Arginase erfolgt schnell, die Spaltungsprodukte können durch die Analyse sichergestellt werden. Durch die Existenz der Arginase ist es wohl bedingt, daß man in Autolysengemischen meistens das Arginin vermißt oder nur in geringer Menge antrifft.

Die stärkste Arginasewirkung hat die Leber, wirksam sind auch Niere. Dünndarmschleimhaut, Thymus und Lymphdrüsen, zweifelhaft ist die Wirksamkeit der Muskeln und des Blutes. Nebenniere und Milz des Hundes spalten nicht Arginin. 2)

Nach Gottlieb und Stangassinger 3) wird bei der Autolyse Kreatin in Kreatinin umgewandelt, außerdem Kreatin aus unbekannten Vorstufen gebildet und endlich Kreatin und Kreatinin noch weiter zerstört. Diese Untersuchungen erfordern eine Methode der Kreatin- und Kreatininbestimmung in den Organextrakten. Das Kreatinin wird nach Folin bestimmt. Die Folinsche Methode verwertet kolorimetrisch die Jaffésche Pikrinsäurereaktion. Ihr Prinzip beruht in der Reduktion von alkalischer Pikrinsäure zu der roten Pikraminsäure durch Kreatinin. Mit Hilfe eines Kolorimeters wird die erhaltene rote Flüssigkeit mit einer n/2-Kaliumbichromatlösung verglichen. Man verdünnt 15 cm³ 1·20 sige Pikrinsäurelösung und 5 cm³ 10% ige Natronlauge auf 500 cm3. Gottlieb und Stangassinger haben in der

¹⁾ A. Kossel und H. D. Dakin, Über die Arginase. Zeitschr. f. physiol. Chemie. Bd. 41. S. 321-331 (1904) und Weitere Untersuchungen über fermentative Harnstoffbildung. Zeitschr. f. physiol. Chemie. Bd. 42. S. 181-188 (1904).

²⁾ Über die peptolytischen Organfermente vgl. das Notwendige bei den Fermenten des Eiweißstoffwechsels.

³⁾ R. Gottlieb und R. Stangassinger, Über das Verhalten des Kreatins bei der Autolyse. Zeitschr. f. physiol. Chemie. Bd. 52. S. 1-41 (1907). - R. Stangassinger, II. Mitteilung. Zeitschr. f. physiol. Chemie. Bd. 55. S. 295-321 (1908).

Werkstätte von Runne in Heidelberg einen billigen Kolorimeter für diese Methode besonders anfertigen lassen. Wegen der Empfindlichkeit der Reaktion müssen die beiden Farbenfelder sehr genau eingestellt werden, aber auch sonst ist die Methode sehr vorsichtig auszuführen, insbesondere, da die in den Organextrakten enthaltenen Substanzen leicht Störungen verursachen.

Wir besprechen zuerst die Kreatininbestimmung in den Organextrakten, dann erst die Kreatinbestimmung, welche indirekt erfolgt. Gottlieb und Stangassinger haben ursprünglich die Autolysegemische zur Kreatininbestimmung unter Zusatz von Kochsalz und Essigsäure koaguliert, dann die Flüssigkeit eingedampft. Diese Methode hat neuerdings Rothmann 1), der Gottliebs und Stangassingers Versuche im Heidelberger Institut fortgesetzt hat, nach dem Vorgange von Mellanby aufgegeben. Mellanby und Rothmann koagulieren mit Alkohol und dampfen das Filtrat bei einer 37° nicht übersteigenden Temperatur ein. Der Rückstand wird nochmals mit 75°/oigem Alkohol extrahiert und wieder abgedampft. Dieses Verfahren vermeidet den Fehler, daß beim Eindampfen bei höherer Temperatur Kreatinin aus Kreatin entsteht.

Mitunter geben längere Zeit autolysierte Extraktlösungen auch ohne Zusatz alkalischer Pikrinsäure rote Farbennuancen. Gottlieb und Stangassinger halfen sich, indem sie Extraktproben ohne Kreatin- oder Kreatininzusatz parallel mit den Hauptversuchen behandelten und die durch die rote Farbe dann vorgetäuschte Kreatininmenge feststellten. Diese Zahlen wurden dann von den Zahlen des Hauptversuches abgezogen. Abgesehen von diesem Hilfsmittel verringern sich die Fehler auch dadurch, daß man wegen der Feinheit der Methode in sehr starken Verdünnungen arbeiten kann, wodurch man allerdings zu größeren Multiplikationen genötigt ist.

In einer anderen Portion des Autolysegemisches wird das Kreatinin bestimmt, nachdem das daneben vorhandene Kreatin in Kreatinin übergeführt ist. Die eiweißhaltigen Lösungen werden in 150 bzw. 300 cm³ 5% jege siedende Chlornatriumlösung eingegossen, bis zum Auftreten eben saurer Reaktion mit verdünnter Essigsäure versetzt und rasch aufgekocht. Das auskoagulierte Eiweiß wird abfiltriert und mit siedendem Wasser gut nachgewaschen. Die gesamte Flüssigkeit wird eingeengt und auf 100 cm³ mit dem Gehalt von $2^{\circ}2^{\circ}/_{\circ}$ Salzsäure gebracht. Dieses Koagulationsverfahren, das ursprünglich auch bei der Kreatininbestimmung benutzt wurde, wurde beim Gesamtkreatinin beibehalten, weil es hier ja nichts ausmacht, wenn Kreatin in Kreatinin übergeht. Denn später wird ja doch alles in Kreatinin umgewandelt.

Die salzsaure Lösung wird nun in einem Erlenmeyerkolben zur Umsetzung des vorhandenen Kreatins 3 Stunden auf einem lebhaft siedenden Wasserbade erwärmt. Dann wird der Kolbeninhalt, ohne die Lösung zu

¹) A. Rothmann, Über das Verhalten des Kreatins bei der Autolyse, III. Mitteilung. Zeitschr. f. physiol. Chemie. Bd. 57. S. 131—142 (1908).

neutralisieren, in eine Schale gegossen und zur Trockene gedunstet. Der so erhaltene Trockenrückstand wird in wenig Wasser gelöst, bei Zimmertemperatur mit der erforderlichen Menge natronalkalischer Pikrinsäure versetzt, nach 5 Minuten dauernder Einwirkung derselben in einen Maßkolben gespült und auf das erforderliche Volumen verdünnt; von den ausgeschiedenen kohligen Zersetzungsprodukten wird abfiltriert und die klare Lösung auf den Gesamtgehalt untersucht.

Der Salzsäuregehalt von 2·20/0 darf nicht immer verwandt werden. Die zur quantitativen Umwandlung von Kreatin in Kreatinin nötige Säuremenge schwankt nämlich je nach dem chemischen Milieu, in dem sich das Kreatin befindet. Bei den Autolyseversuchen bewährte sich in Versuchen Rothmanns die Konzentration von 2.20%.

Die für die Versuche notwendigen Organextrakte wurden folgendermaßen bereitet: Die Organe wurden durch die Fleischhackmaschine getrieben, aus der der Organbrei in Toluolkochsalzlösung aufgefangen wurde. Sodann wurde der Organbrei mit Quarzsand gründlich verrieben und dieser dünnflüssige Brei blieb 1—2 Stunden im Eisschrank; danach wurde er durch Tücher koliert. Die Menge zugesetzter Flüssigkeit betrug im Verhältnis zum Organgewicht 1:1.

I. Methoden zur Bestimmung der Atmung tierischer Gewebe.

Von F. Battelli und Lina Stern, Genf.

Bei allen hierher gehörigen Methoden handelt es sich darum, entweder die Sauerstoffaufnahme oder die Kohlensäureabgabe oder beides zugleich zu bestimmen.

Die gasanalytischen Methoden werden an anderer Stelle beschrieben. Hier sollen hauptsächlich die Bedingungen, unter denen der respiratorische Gaswechsel der zu untersuchenden Gewebe gemessen werden kann, auseinandergesetzt werden.

I. Der Gaswechsel in Gegenwart von Sauerstoff.

A. Untersuchungsmethoden des respiratorischen Gaswechsels ganzer Organe.

1. Die Organe oder Gewebe sind in situ am lebenden Tier; die Nervenverbindung und die natürliche Zirkulation sind intakt.

Die zu dieser Gruppe gehörenden Methoden bezwecken den Gaswechsel der verschiedenen Gewebe unter möglichst normalen Bedingungen sowie den Einfluß verschiedener Faktoren: Ruhe oder Tätigkeit, Wirkung verschiedener Substanzen usw. auf den respiratorischen Gaswechsel der verschiedenen Gewebe studieren zu können. Das allgemeine Prinzip dieser Methoden besteht darin, das arterielle Blut mit dem vom zu untersuchenden Gewebe oder Organ kommenden venösen Blut in bezug auf ihren Gehalt an O_2 und CO_2 zu vergleichen.

In einigen Fällen genügt es, die Proportion dieser Gase im arteriellen und venösen Blut zu bestimmen. Diese Untersuchung bietet keine weiteren Schwierigkeiten.

In der Mehrzahl der Fälle handelt es sich jedoch darum, die Mengen des aufgenommenen Sauerstoffes und der abgegebenen Kohlensäure in der Zeiteinheit zu messen und zugleich die physiologischen Bedingungen, unter denen das zu untersuchende Gewebe oder Organ sich befindet, festzustellen.

Bei Anwendung dieser Untersuchungsmethoden muß man hauptsächlich folgende Punkte berücksichtigen: 1. die Vorbereitung des Tieres, bei dem der Gaswechsel eines Organes oder Gewebes studiert werden soll, 2. die Blutentnahme aus den Arterien und Venen und die Analyse der darin enthaltenen Gase, 3. die Menge des in der Zeiteinheit im Organe zirkulierenden Blutes. 4. das Verfahren, um die Funktion des Organes nach Belieben zu steigern oder herabzusetzen.

a) Die Vorbereitung des Versuchstieres.

Die allgemeine Vorbereitung des Tieres, d. h. die Fesselung, die Narkose usw., weist keine Besonderheiten auf. Die Vorbereitung des zu untersuchenden Organes oder Gewebes, der aus demselben kommenden Vene sowie des Nerven, dessen Einfluß auf den Gaswechsel des betreffenden Gewebes studiert werden soll, wird natürlich je nach dem in Betracht kommenden Gewebe verschieden sein (siehe weiter unten). Was das arterielle Blut betrifft, so kann dasselbe einer beliebigen Arterie des Körpers entnommen werden: Karotis, Femoralis usw., da die Zusammensetzung des arteriellen Blutes in allen Blutgefäßen dieselbe ist. In manchen Versuchen ist es vorteilhaft, das Blut vorher ungerinnbar zu machen. Die Ungerinnbarkeit des Blutes ist am besten durch eine intravenöse Einspritzung von Hirudin (0.01 q Hirudin pro 1 kq Tier) zu erzielen.

b) Die Blutentnahme und die Gasanalyse.

Bei der Blutentnahme zur Gasanalyse ist vor allen Dingen darauf zu achten, daß das Blut nicht mit der Luft in Berührung kommt. Zu dem Zwecke wird das Blut unter einer Ölschicht aufgefangen und mit Quecksilber defibriniert, wenn es nicht vorher ungerinnbar gemacht worden war. Andrerseits kann das Blut mit Hilfe einer Spritze entnommen werden, die 1 cm³ einer 1º/oigen Oxalatlösung für 9 cm³ Blut enthält. In letzterem Falle ist es notwendig, die Zirkulationsgeschwindigkeit im betreffenden Organ bereits zu kennen.

Die Analyse der Gase des arteriellen und venösen Blutes kann nach irgend einer der jetzt angewandten Methoden (siehe das entsprechende Kapitel) vorgenommen werden.

c) Bestimmung der im Organ zirkulierenden Blutmenge.

Die im Organ zirkulierende Blutmenge wird aus der Menge des in einer gewissen Zeit aus der Vene kommenden Blutes berechnet. Diese Blutmenge ändert sich natürlich, wenn der Druck in der aus dem Organ kommenden Vene geändert wird. Es ist also notwendig, das Blut unter Beibehaltung des normalen Widerstandes aufzufangen, d.h. der Widerstand. den das aus der Vene kommende Blut bezwingen muß, soll dem in der

Vene normal existierenden Drucke gleich sein. Unter diesen Bedingungen erleidet die Zirkulation im zu untersuchenden Organ keinerlei Veränderung, und die in der Zeiteinheit gesammelte Blutmenge entspricht ungefähr der normal in der Zeiteinheit zirkulierenden Blutmenge.

Wenn es sich darum handelt, eine gewisse Präzision zu beobachten, darf man die Kanüle nicht direkt in die vom Organ kommende Vene einführen, weil dadurch der Blutstrom behindert wäre. In diesem Falle muß man eine andere Methode anwenden. Wenn die anatomische Disposition es gestattet, kann man die Kanüle in eine große kollaterale Vene einführen. So bindet man z. B. bei Untersuchung des respiratorischen Gaswechsels der Muskeln der hinteren Extremität des Hundes nach dem Verfahren von $Zuntz^{\pm 1}$) die Kanüle in die Vena femoralis profunda unmittelbar vor der Vereinigung mit der Vena femoralis superficialis ein. Oberhalb der Vereinigung dieser beiden Venen wird eine Schleife angelegt. Solange die Schleife lose bleibt, strömt das Blut der hinteren Extremität durch die Vena femoralis superficialis unbehindert dem Herzen zu. Will man nun das Blut zur Gasanalyse auffangen, so hebt man die Schleife empor; das Blut fließt dann durch die Kanüle der Vena femoralis profunda und wird in einem graduierten Gefäße unter Öl aufgefangen.

Wenn keine größere kollaterale Vene vorhanden ist, so bindet man die Kanüle in die Vene ein, in welche die aus dem zu untersuchenden Organ kommende mündet, nach vorheriger sorgfältiger Unterbindung der aus anderen Teilen kommenden Venen. So führt man z. B., wenn man das aus der Niere kommende venöse Blut auffangen will, eine weite Kanüle in die untere Hohlvene, unmittelbar vor der Einmündung der Nierenvene ein. Die Aorta abdominalis wird gleich nach dem Austritte der Nierenarterie unterbunden. Ferner werden alle die in die Caya einmündenden Venen, mit Ausnahme der Nierenvenen, unterbunden. Eine Schleife wird um die Vena cava unmittelbar oberhalb der Einmündung der Nierenvene gelegt. 2) Will man nun das aus der Nierenvene kommende Blut auffangen, so zieht man die Schleife zu; das Blut fließt dann durch die Kanüle. Man kann auf diese Weise zugleich auch die Menge des in der Zeiteinheit in der Niere zirkulierenden Blutes bestimmen. Wenn es sich um das Nierenblut handelt, darf man die in der Zeiteinheit sezernierte Harnmenge nicht außer acht lassen. 2)

Die Zirkulationsgeschwindigkeit des Blutes in einem Organ kann auch, weun die anatomischen Verhältnisse es gestatten, durch die Volumenvergrößerung des in einem Plethysmographen eingeschlossenen Organs gemessen werden, indem man die abführenden Gefäße für eine kurze Zeit

¹) N. Zuntz, Über den Einfluß der Innervation auf den Stoffwechsel ruhender Muskeln. Berliner klin. Wochenschr. S. 141 (1878).

²) Barcroft and Brodie, The gazeous metabolism of the kidney. Journ. of Physiol. Vol. 32. p. 18—28 (1905); Vol. 33. p. 52—69 (1905—1906).

nach dem Verfahren von Brodie und Russel verschließt. 1) Ein längerer Verschluß der Venen könnte die Zirkulation in den Kapillargefäßen stören. Unter normalen Bedingungen sind die Venen nicht vollständig gefüllt, so daß sich eine gewisse Menge Blutes in denselben ansammeln kann, ohne die Zirkulation merklich zu stören. Die Zeit, die nötig ist, um das Volumen des betreffenden Organes um $^{1}/_{2}$ cm 3 durch den Zufluß des arteriellen Blutes zu vergrößern, wird bestimmt und danach die in der Zeiteinheit im betreffenden Organ zirkulierende Blutmenge berechnet. Wenn es sich um eine Drüse handelt (wie Pankreas, Speicheldrüse, Niere usw.). muß eine Korrektur bei der Berechnung der zirkulierenden Blutmenge gemacht werden. Das aus der Vene kommende Blut stellt nicht ganz die Menge des arteriellen Blutes vor, indem ein Teil des Wassers durch die Sekretion entzogen wird. Man muß also dem aus den Venen aufgefangenen Blute diese bei der Sekretion verbrauchte Wassermenge hinzurechnen. Man kann die nötige Korrektur in der Weise bestimmen, daß man die Zahl der roten Blutkörperchen in einer gegebenen Einheit des venösen Blutes mit der Zahl der roten Blutkörperchen im arteriellen Blute vergleicht, wie es Barcroft²) getan. Man kann ebensogut die hämatometrische Methode anwenden, d. h. man vergleicht das venöse Blut mit dem arteriellen in bezug auf ihren Hämoglobingehalt. Man bemerkt auf diese Weise, daß das venöse Blut reicher an anatomischen Elementen und ärmer an Wasser ist als das arterielle Blut. Die fehlende Wassermenge findet sich zum größten Teile in der Sekretionsflüssigkeit (Speichel, Harn usw.), zum Teil aber auch in der Lymphe wieder. Für die Submaxillaris findet Barcroft, daß man zum aufgefangenen Venenblut die in der Zeiteinheit sezernierte Speichelmenge, mit 1.2 multipliziert, hinzufügen muß. Man darf auch nicht außer acht lassen, daß in der Sekretionsflüssigkeit eine mehr oder minder große Menge CO. enthalten sein kann, die man bei der Berechnung des respiratorischen Gaswechsels nicht vernachlässigen darf, falls es sich um genaue Angaben handelt

d) Verfahren, um die Tätigkeit des zu untersuchenden Organes zu beeinflussen.

Die zu dem Zwecke zu benutzenden Methoden können je nach dem in Betracht kommenden Organ verschieden sein. Die Tätigkeit eines Organes kann durch Durchschneidung der Nerven oder durch Zufuhr von giftigen Substanzen herabgesetzt werden. Durch Reizung der entsprechenden Nerven oder durch Anregung der physiologischen Tätigkeit des Organes oder auch durch Einführung gewisser reizender Substanzen kann die Tätigkeit des Organes verstärkt werden (siehe weiter unten).

siology. Vol. 25. p. 479—487 (1900).

 ¹⁾ Brodie and Russel, On the determination of the rate of blood-flow trough an organ. Proceedings of the Physiological Society, Mai 1905. Journ. of Physiol. Vol. 32.
 2) Barcroft, The gazeous metabolism of the submaxillary gland. Journ. of Physiol.

Beispiele zur Erläuterung der Untersuchungsmethoden des respiratorischen Gaswechsels an den in situ belassenen Organen am lebenden Tier. Eine große Anzahl von Organen sind auf ihren respiratorischen Gaswechsel untersucht worden (Niere, Darm, Nebenniere, Pankreas, Speicheldrüsen, Hirn, Muskeln usw.).

Die Muskeln bieten ein ganz besonderes Interesse, weil der größte Teil des respiratorischen Gaswechsels in den Muskeln stattfindet, namentlich, wenn man die große Masse des Muskelsystems — ungefähr die Hälfte

des Körpergewichtes — in Betracht zieht.

Zum Studium des respiratorischen Gaswechsels in den Muskeln kann man die Muskeln der hinteren Extremität benutzen, wie es Zuntz¹) am Hunde versucht hat, indem man eine Kanüle in die Vena femoralis einbindet (siehe oben). Man entnimmt zu jeder Analyse 10 cm³ venöses und arterielles Blut. Der Gasgehalt des arteriellen und venösen Blutes gibt, wenn die Muskeln in völliger Ruhe verharren, Aufschluß über den respiratorischen Gaswechsel des tonischen Muskels. Durch Reizung des entsprechenden Nerven, Ischiadicus oder Cruralis, tetanisiert man den Muskel. Man kann so den Gaswechsel während der Muskelkontraktion studieren. Durch Durchschneidung der entsprechenden Nerven hebt man den Muskeltonus auf, und man kann nunmehr den Gaswechsel des erschlafften Muskels untersuchen. Der respiratorische Gaswechsel des tonischen Muskels ist doppelt so groß wie der des schlaffen Muskels. Während der Muskelkontraktion wird der Gaswechsel bedeutend gesteigert.

Der Einfluß der freiwilligen Muskelkontraktion kann z. B. während des Kauens nach dem Verfahren von Chauveau und Kaufmann²) am Kaumuskel des Pferdes und der Kuh studiert werden, indem man eine Kanüle in die Vena maxillo-muscularis einführt. Es ist vorteilhafter, zu dem Zwecke den Musculus levator labii superioris beim Pferde nach dem Verfahren der genannten Autoren³) zu verwenden, weil die anatomische Disposition dieses Muskels beim Pferde es gestattet, durch Einführen einer Kanüle in die abführende Muskelvene alles und ausschließlich das aus diesem Muskel kommende Blut aufzufangen. Während des Kauens wird die Zirkulation bedeutend stärker und zugleich steigert sich der respiratorische Gaswechsel des betreffenden Muskels.

Drüsen. Der respiratorische Gaswechsel der Parotis kann im Ruhezustande und während der funktionellen physiologischen Tätigkeit, die durch

¹⁾ Zuntz, 1. c.

²) Chauceau et Kaufmann, La glycose, le glycogène, la glycogénie en rapport avec la production de la chaleur et du travail mécanique dans l'économie animale. Deuxième étude: Calorifications dans les organes en travail. Compt. rend. de l'Acad. des Sciences. T. 103. p. 1057 (1886).

³) Chauveau et Kaufmann, Nouveaux documents sur les relations qui existent entre le travail chimique et le travail mécanique du tissu musculaire. De l'activité nutritive et respiratoire des muscles qui fonctionent physiologiquement sans produire de travail mécanique. Compt. rend. de l'Acad. des Sciences. T. 104. p. 1763 (1887).

Kauen verursacht wird, studiert werden nach dem Verfahren von Chauceau und Kaufmann 1) und man kann somit den Einfluß der physiologischen Tätigkeit auf den respiratorischen Gaswechsel der Drüse untersuchen. Das zur Gasanalyse zu verwendende venöse Blut wird mit Hilfe einer in die Vena auriculo-parotidis eingeführten Kanüle aufgefangen.

Die Tätigkeit der Submaxillaris kann künstlich durch Reizung der Chorda tympani angeregt werden nach dem Verfahren von Barcroft. 2) Eine Kanüle wird in die Vena jugularis eingebunden, nach vorheriger

Unterbindung aller in die Jugularis einmündenden Gefäße.

Die Tätigkeit des Pankreas kann nach dem Verfahren von Barcroft und Starling 3) durch Einführung von Sekretin in die Blutbahn angeregt werden. Eine Kanüle wird in die Vene des Pankreasschwanzes eingebunden. Das aus dieser Vene kommende Blut stellt ungefähr 1/6 der Gesamtmenge des im Pankreas zirkulierenden Blutes dar. Der respiratorische Gaswechsel ist während der sekretorischen Tätigkeit des Pankreas ge-

Die Niere kann nach dem Verfahren von Barcroft und Brodie⁴) durch Einspritzung von diuretischen Substanzen zur Tätigkeit angeregt werden. Man beobachtet auf diese Weise, daß der Sauerstoffverbrauch während der Tätigkeit der Niere bedeutend zunimmt, die Kohlensäurebildung hingegen

ziemlich konstant bleibt.

Um die Tätigkeit des Darmes zu steigern, kann man nach dem Verfahren von Barcro/t 5) in die zu untersuchende Darmschlinge eine leicht absorbierbare Substanz, wie Pepton, einführen. Die Blutzirkulation wird bedeutend lebhafter. Zugleich nimmt die Sauerstoffzehrung stark zu, während die Kohlensäureentwicklung keine Anderung erfährt.

Das Gehirn. Die Untersuchung der Blutgase des aus dem Gehirn kommenden Blutes bietet große Schwierigkeiten, weil es sehr schwer ist, ausschließlich aus dem Gehirn kommendes venöses Blut zu entnehmen und zu gleicher Zeit die Geschwindigkeit der Blutzirkulation des Gehirns zu bestimmen.

Bisher hat man sich darauf beschränken müssen, die Veränderungen des Gasgehaltes des Blutes in den Hirnvenen zu bestimmen, nach der Methode von Hill und Nabarro. 6) Diese Autoren trepanieren den Schädel an der Torcula Herophili. Eine Kanüle wird in die Trepanöffnung einge-

2) Barcroft, The gaseous metabolism of the submaxillary gland. Journ. of Physiology. Vol. 25. p. 265-283 und 479-487 (1899-1900).

3) Barcroft and Starling, The oxygen exchange of the pancreas. Journ. of Physiol.

Vol. 31. p. 491 (1904).

4) Barcroft und Brodie, l. c.

6) Hill and Nabarro, On the exchange of blood-gases in brain and muscle during

states of rest and activity. Journ. of Physiol. Vol. 18. p. 218 (1895).

¹⁾ Chauveau und Kaufmann, l. c.

⁵⁾ Barcroft, The gaseous exchange of the small intestine during absorption of Witte's peptone. VII. Internat. Physiologenkongreß. Heidelberg 1907. Archives internat. de Physiol, T. 5. p. 86 (1907).

führt. Man fängt auf diese Weise das aus dem Sinus longitudinalis superioris kommende Blut auf. Die Tätigkeit des Hirns kann durch Reizung sensibler Nerven oder auch durch Einspritzung erregender Substanzen, wie Absinth z. B. (Hill und Nabarro), gesteigert werden. Man kann unter diesen Umständen ein Anwachsen des respiratorischen Gaswechsels, namentlich was die Sauerstoffaufnahme betrifft, beöbachten. Doch sind die auf diese Weise enthaltenen Zahlen von Hill und Nabarro recht niedrig, was auf einen bedeutend geringeren Gaswechsel des Gehirns als der Muskeln hindeuten würde. Die bisherigen Untersuchungen über den respiratorischen Gaswechsel des Gehirns sind im allgemeinen unzulänglich.

2. Die künstliche Durchblutung ganzer, vom Körper losgetrennter Organe.

Die allgemeinen Methoden der künstlichen Durchblutung sind bereits im entsprechenden Kapitel S. 321 ff. beschrieben worden. Hier sollen nur die beim Studium des respiratorischen Gaswechsels zu beachtenden Punkte auseinandergesetzt werden. Die Anwendung der künstlichen Durchblutung bietet den Vorteil, daß die Versuchsbedingungen nach Belieben variieren können. Die Durchblutungsflüssigkeit kann beliebig zusammengesetzt und diese Zusammensetzung konstant gehalten werden. Um den Gaswechsel des zu untersuchenden Organes zu messen, genügt es, den Sauerstoff- und Kohlensäuregehalt der Durchblutungsflüssigkeit vor und nach der Durchströmung des betreffenden Organes zu vergleichen.

Die künstliche Durchblutung muß so schnell wie möglich nach der Lostrennung des Organes beginnen, namentlich wenn es sich um Gewebe handelt, deren Atmungsfähigkeit sehr schnell nach dem Tode des Tieres abnimmt, wie z. B. die Leber, das Herz, das Gehirn usw. (siehe weiter unten). Außerdem zeigt das Gewebe, wenn es längere Zeit ohne Zirkulation geblieben ist, eine größere Neigung zu Ödemen.

Man wird also die Vorsicht gebrauchen, das zu untersuchende Organ erst im letzten Augenblicke, wenn alle Vorbereitungen bereits getroffen sind, vom Körper loszutrennen. Ein Erkalten des Organes während der Vorbereitungen soll womöglich vermieden werden. Falls die Versuchsbedingungen es nicht durchaus erfordern, soll das Waschen des Organes mit physiologischer Kochsalzlösung vermieden werden, weil man auf diese Weise leicht Ödeme verursacht und die Atmungsfähigkeit der Gewebe herabsetzt.

Die Durchblutungsflüssigkeit kann aus Blut oder aus isotonischen, sauerstoffgesättigten Salzlösungen, wie sie *Vernon* 1) verwendet, bestehen.

Man verwendet gewöhnlich eine Ringersche Lösung nach dem Verfahren von $Vernon^2$), Brodie und $Cullis.^3$) Die Verwendung von Salzlösungen für die künstliche Durchblutung weist mehrere Nachteile auf. Die

¹) Vernon, The conditions of tissue respiration. Journ. of Physiol. Vol. 35. p. 53 bis 87 (1906/07).

²⁾ Vernon, I. c.

³) Brodie and Cullis, The analysis of oxygen and carbonic acid in small volumes of saline solutions, Journ. of Physiol. Vol. 36, p. 405 (1907/08).

wichtigsten darunter sind vor allem die häufigen Ödeme sowie der Umstand, daß mehrere in den Geweben enthaltene Substanzen in Lösung gehen und fortgeschwemmt werden. Außerdem ist der Sauerstoffgehalt dieser Lösungen recht gering, so daß sie mit Erfolg nur beim Studium des respiratorischen Gaswechsels von Kaltblütern benutzt werden können. Wenn es sich aber um Warmblüterorgane handelt, sind die in diesen Salzlösungen enthaltenen Sauerstoffmengen völlig ungenügend. Die Sauerstoffspannung kann allerdings erhöht werden dadurch, daß man die Durchblutung bei niedriger Temperatur (18-20°) vornimmt. Doch bedeutend empfehlenswerter ist es, zur Durchbiutungsflüssigkeit gewaschene rote Blutkörperchen. die in der Salzlösung suspendiert bleiben, hinzuzufügen.

In den Durchblutungsversuchen mit Ringerscher Salzlösung nimmt der respiratorische Gaswechsel allmählich ab. Um diesem Übelstande abzuhelfen, empfiehlt Vernon, zur Ringerschen Lösung etwas Blutserum in einer Proportion von 2%, außerdem kleine Mengen je nach den zu untersuchenden Organen verschiedener Substanzen (Harnstoff für die Niere, Dextrose für das Herz usw.) hinzuzufügen.

Die Temperatur des Blutes und des das Organ enthaltenden Gefäßes muß 37-38° betragen, wenn es sich um Warmblüter handelt, und wenn man einen möglichst hohen Gaswechsel erzielen will. Bei der Untersuchung von Kaltblüterorganen begnügt man sich mit der gewöhnlichen Zimmertemperatur (18-22°).

All diese soeben beschriebenen Methoden geben recht unbefriedigende Resultate in bezug auf den Gaswechsel. Bedeutend bessere Resultate erzielt man mit der Durchblutungsmethode von Heymans und Kochmann (siehe diesen Band, S. 355), die sich am meisten den normalen Bedingungen des Tierorganismus nähert.

So beträgt z.B. in den Versuchen von Ludwig und Schmidt 1), von v. Frey 2) und Gruber die Sauerstoffaufnahme des Muskels 0.2 cm3 für 100 g und 1 Minute, während in den Versuchen von Barcroft und Dixon 3). die die Methode von Heymans und Kochmann benutzen, der Herzmuskel mindestens 1 cm³ O₂ für 100 q und 1 Minute aufnimmt.

B. Untersuchung des Gaswechsels fragmentierter Gewebe.

Diese Methode ist seit Spallanzani+) von einer großen Anzahl von Forschern angewandt worden. Sie besteht darin, die Gewebefragmente in

¹⁾ Ludwig und Schmidt, Das Verhalten der Gase', welche mit dem Blut durch den reizbaren Säugetiermuskel strömen. Arbeiten aus der physiol. Anstalt zu Leipzig.

²⁾ v. Frey, Versuche über den Stoffwechsel des Muskels. Arch. f. Physiol. S. 533 bis 562 (1885).

³⁾ Barcroft and Dixon, Gaseous metabolism of heart. Journ. of Physiol. Vol. 35. p. 182-204 (1906,07).

⁴⁾ Spallanzani, Mémoires sur la respiration. Französische Übersetzung von J. Senebier. Genf 1803.

Gefäße von bekanntem Rauminhalt, die mit Luft oder Sauerstoff gefüllt sind, zu bringen und nach einer bestimmten Zeit die verbrauchte Sauerstoffmenge und die entwickelte Kohlensäuremenge zu bestimmen. Bei der Beschreibung dieser Methoden müssen wir folgende Punkte beachten:

- 1. Die Zubereitung der Gewebefragmente und
- 2. die Apparate zur Untersuchung des respiratorischen Gaswechsels der Gewebefragmente.

1. Zubereitung der Gewebefragmente.

Die Vorbereitung des Tieres, dessen Gewebe untersucht werden sollen, bietet keine besondere Eigentümlichkeit. Die Gewebe müssen so schnell wie möglich nach dem Tode des Tieres verwendet werden. Wenn die Untersuchung längere Zeit (mehrere Stunden) dauern soll, ist darauf zu achten, daß keine Fäulnisprozesse eintreten, und man wird daher bei allen Manipulationen so aseptisch wie möglich verfahren. Eine große Zahl früherer Untersuchungen haben keinen Wert, eben weil die Forscher keine Maßnahmen zur Verhütung von Bakterienwirkung getroffen hatten. Es ist allerdings nicht immer möglich, völlige Asepsie zu erzielen, namentlich wenn es sich um gewisse Organe, wie Lunge oder Darm, handelt Andrerseits ist das Präparat oft trotz aller Vorsichtsmaßregeln durch die Mikroorganismen der Luft infiziert.

Die Größe der Oberfläche, die mit der Gasatmosphäre in Berührung kommt, ist von großer Wichtigkeit für die Intensität des Gaswechsels.

In den vergleichenden Untersuchungen müssen die Gewebefragmente von einem bestimmten Gewicht dieselbe Oberflächenausdehnung besitzen. Zu dem Zwecke empfiehlt es sich, die einzelnen Gewebeschnitte zwischen zwei Metallnetze aus verzinntem oder lackiertem Messing oder Kupfer auszubreiten, wie es Lussana¹) getan hat. Durch eine Metallfeder werden die Metallnetze aneinandergepreßt, so daß die Fläche des Gewebes eine gleichmäßig ebene ist. Wenn das zu untersuchende Gewebe zerrieben wird, kann man den Gewebebrei in kleine Röhrchen aus lackiertem Metalldraht nach dem Verfahren von Garnier und Lambert²) bringen. Letztere Methode eignet sich besonders, wenn man die Wirkung verschiedener Substanzen auf den respiratorischen Gaswechsel des fragmentierten Gewebes studieren will.

2. Apparate zur Untersuchung des respiratorischen Stoffwechsels fragmentierter Gewebe.

Wenn es sich um größere Gewichtsmengen eines Gewebes handelt, 10 oder 20 g z. B., kann man zur Untersuchung des respiratorischen Gas-

¹) Lussana, Sugli scambi respiratori del fegato e sul loro valoro in rapport all'amilolisi epatica. Arch. di fisiol. Vol. 2. p. 445 (1905).

²) Garnier et Lambert, Action du chlorure de sodium sur l'activité cellulaire. Arch. de Physiol. p. 421 (1898).

wechsels sehr einfache Apparate benutzen. Zu dem Zwecke genügt es, die Gewebsfragmente in ein luftdicht verschließbares Gefäß zu bringen, welches einerseits mit einem Quecksilberbehälter, andrerseits mit einem Eudiometer in Verbindung gebracht werden kann. Das Quecksilber dient dazu, die zur Analyse entnommene Gasmenge im Gefäß zu ersetzen. Das zu untersuchende Gewebe darf nicht auf dem Boden des Gefäßes liegen, sondern muß frei im Gefäße hängen, so daß es von allen Seiten von Gasatmosphäre umgeben ist. Der Rauminhalt des Gefäßes darf nicht zu klein sein, 1000 cm3 mindestens für 10 q Gewebe, wenn der Versuch eine gewisse Zeit dauern soll.

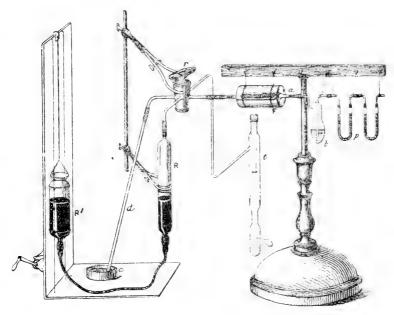


Fig. 115.

Es empfiehlt sich, die Luft durch reinen Sauerstoff zu ersetzen, weil dadurch der Gaswechsel der Gewebe gesteigert wird.

Der Apparat von Tissot für länger dauernde Untersuchungen des respiratorischen Gaswechsels überlebender Gewebe. Wenn man den respiratorischen Gaswechsel eines überlebenden Gewebes längere Zeit verfolgen will, kann man den Tissotschen Apparat¹⁾ (Fig. 115) benutzen, der den Vorzug hat, nicht kompliziert zu sein. Das Gewebe wird so aseptisch wie möglich vom Körper losgetrennt und in die sorgfältig sterilisierte Flasche F gebracht.

¹⁾ Tissot, Recherches sur la respiration musculaire. Archives de Physiologie normale et pathologique. T. 6. p. 838 (1894).

Diese Flasche hat zwei Hälse, von denen der eine mit einem Vierweghahn verbunden ist. Die eine der Bohrungen steht mit dem Aspirator t in Verbindung, eine andere kommuniziert mit dem Rohre d, das in die Quecksilberschale c mündet, die dritte Bohrung steht mit dem Quecksilberreservoir R in Verbindung und die vierte kann mit den Kaliflaschen p und der Barytflasche b verbunden werden.

Nachdem das zu untersuchende Gewebe in die Flasche F gebracht worden ist, stellt man die Verbindung der Flasche mit dem Aspirator her. Ein durch Kalilauge von Kohlensäure befreiter Luftstrom wird durch die Flasche getrieben, um die eventuell in der Flasche befindliche Kohlensäure auszutreiben. Der Hahn wird geschlossen sowie auch das Rohr a. welches zu den Barvt- und Kaliflaschen führt. Wenn man nun das in der Flasche Fenthaltene Gas analysieren will, so beginnt man damit, daß man die Verbindung des Quecksilberbehälters R mit dem Glasrohr d herstellt und letzteres vollständig mit Quecksilber füllt. Man verbindet darauf den Quecksilberbehälter R mit der Flasche F. Durch Senken des Reservoirs R' führt man in R eine gewisse Menge Gas ein, welches man durch das Rohr d in einen Meßzylinder, der auf der Quecksilberschale ruht, überleitet. Das Gas wird dann analysiert. Wenn man den Rauminhalt der Flasche F kennt, ist es leicht, die Gesamtmenge des verbrauchten Sauerstoffs und der entwickelten Kohlensäure zu berechnen. Wenn man nun den Versuch fortsetzen will, läßt man die Flasche F mit dem Aspirator t kommunizieren und erneuert so die Luft der Flasche. Man verfährt im übrigen wie vorher. Diese Manipulationen können so lange fortgesetzt werden, bis die Gasatmosphäre der Flasche F keine Änderung mehr aufweist, d. h. bis der Gaswechsel völlig aufgehört hat. Will man den Versuch bei einer bestimmten Temperatur ausführen, so kann man die Flasche F in ein Wasserbad von konstanter Temperatur versenken.

Das Eindringen von Mikroben in die Flasche F während der Versuchsdauer muß möglichst verhindert werden. Zu dem Zwecke wird ein sterilisierter Wattebausch in die Mündungen der Flasche F gesteckt. Der Luftstrom muß diesen Wattebausch passieren, bevor er ins Innere der Flasche gelangt.

Mikrorespirometer von *Thunberg*. Wenn man den respiratorischen Gaswechsel sehr kleiner Mengen Gewebes untersuchen will, kann man sich mit gutem Erfolge des *Thunberg*schen Mikrorespirometers (Fig. 116) bedienen.

Mit Hilfe des kleinen Mikrorespirometers 1) bestimmt man bloß die Sauerstoffzehrung oder den respiratorischen Quotienten, während das große Mikrorespirometer 2) zur Bestimmung der verbrauchten Sauerstoffmenge sowie der gebildeten Kohlensäure benutzt werden kann.

¹) Thunberg, Eine einfache Anordnung, um die Sauerstoffzehrung kleinerer Organismen oder Organe zu demonstrieren. Zentralbl. f. Physiol. Bd. 19. S. 308 (1905).

²⁾ Thunberg, Ein Mikrorespirometer. Skand. Archiv f. Physiol. Bd. 17. S. 74 (1905).

Das einfache kleine Mikrorespirometer besteht aus zwei kleinen Glasfläschchen von gleicher Form und Größe A und B von einem Rauminhalt von ungefähr 3 cm³. Die beiden Fläschehen sind durch ein Mittelstück miteinander verbunden. Das Mittelstück ist eine weite, dickwandige Kapillare, die ein wenig nach unten gebogen ist. An den beiden Enden der Kapillare befindet sich je ein Dreiweghahn, so daß die entsprechenden Fläschchen nach Belieben mit der Außenluft oder mit der Kapillare oder auch mit beiden zugleich verbunden werden können. In der Kapillare befindet sich ein leicht beweglicher Petroleumtropfen I. der als Index dient und sich längs einer Millimetereinteilung bewegen kann. Durch Vorversuche bestimmt man die Kapazität, die einem Millimeter der Skala der Kapillare entspricht. Die Biegung der Kapillare dient dazu, die einzelnen Teilchen des Tropfens sich in der Mitte sammeln zu lassen, wenn der Tropfen durch eine plötzliche Druckschwankung zersprengt worden war.

Fig. 116.

Das zu untersuchende Gewebe wird in eines der Fläschchen gebracht. Der atmosphärische Druck wird in beiden Fläschchen hergestellt, indem man durch geeignete Stellung des Hahns das Innere der Fläschchen mit der Außenluft kommunizieren läßt; darauf werden die Fläschehen mit der Indexkapillare vereinigt. Die Temperatur wird durch Versenken des Apparates in einen Wasserthermostaten konstant erhalten.

Der Thunbergsche Apparat bildet somit ein in sich geschlossenes System und die Änderung des Gasvolums in dem Analysenfläschehen wird durch Verschiebung des Petroleumtröpfchens angedeutet. Bringt man etwas Kalilauge in das Fläschchen, welches das Gewebe enthält, so wird die gebildete Kohlensäure absorbiert und die Verschiebung des Tröpfehens nach dem Organ hin zeigt die Menge des aufgenommenen Sauerstoffes an. Um die Absorption der Kohlensäure durch die Kalilauge zu erleichtern, empfiehlt es sich, die Fläschchen von Zeit zu Zeit leicht zu schütteln.

Läßt man die Kalilauge fort, so zeigt die Verschiebung des Petroleumtröpfchens nach der einen oder anderen Seite des Apparates den respiratorischen Quotienten an; der Quotient ist kleiner als 1. wenn das Tröpfchen sich nach dem Organ zu verschiebt; er ist größer als 1. wenn das Tröpfehen sich nach der entgegengesetzten Seite verschiebt, und der Quotient ist gleich 1. wenn der Tropfen seine Anfangsstellung bewahrt hat.

Die Stellungsänderung des Indextröpfehens zeigt nicht die absolute reelle Größe des absorbierten oder entwickelten Gases an, denn die Volumveränderung in einem geschlossenen System wird durch die respektive Druckänderung in den beiden Fläschehen beeinflußt. Nach der Berechnung von Winterstein erhält man die absolute Größe der Gasvolumenveränderung des das Gewebe enthaltenden Fläschehens, indem man den an der Skala des Kapillarrohres angegebenen Wert mit 2 multipliziert.

Der Apparat ist sehr empfindlich und erfordert daher große Vorsicht bei der Hantierung, da verschiedene Faktoren die Resultate

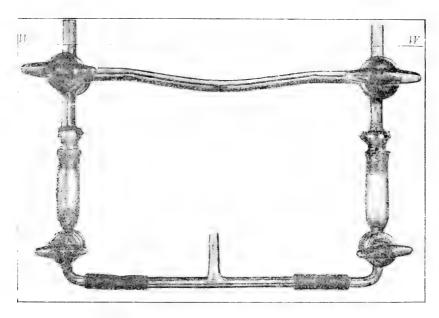


Fig. 117.

trüben können. Eine Hauptbedingung ist, daß die Temperatur im ganzen System eine gleichmäßige sei. Man wird also einige Minuten abwarten müssen, bevor man den Versuch beginnt, damit die verschiedenen Teile des Apparates sich mit der umgebenden Temperatur ins Gleichgewicht setzen. Die Spannung des Wasserdampfes muß in den beiden Hälften des Apparates eine gleiche sein. Man wird deshalb in die beiden Fläschchen etwas Flüssigkeit bringen.

Winterstein 1) hat diesen soeben beschriebenen Thunbergschen Mikrorespirometer etwas abgeändert (Fig. 117), so daß der respiratorische Gas-

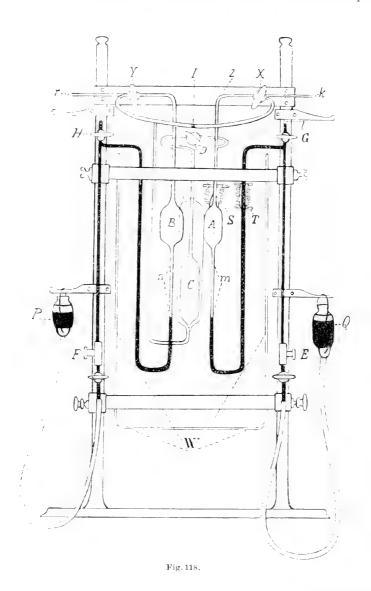
¹⁾ Winterstein, Über den Mechanismus der Gewebeatmung. Zeitschr. f. allgem. Physiol. Bd. 6, S, 315 (1905).

wechsel in verschiedenen Gasen untersucht werden kann. Der freie Schenkel des Dreiweghahnes, der die Fläschchen mit der Außenluft kommunizieren läßt, ist nach oben gebogen, statt wie im Thunbergschen Apparate nach der Seite, so daß der ganze Apparat bis über die Hähne — einschließlich der Indexkapillare — sich unter Wasser befinden kann und die verschiedenen Manipulationen vorgenommen werden können, ohne den Apparat aus dem Wasser zu heben. Jedes der Fläschchen kann außerdem an seinem unteren Teile durch einen Hahn mit einem Rohr in Verbindung gesetzt werden, durch welches das gewünschte Gas in die Fläschchen geleitet werden kann. Jeder Teilstrich der Indexkapillare entspricht einem Rauminhalt von 2·1 mm³. Eine Verschiebung des Tröpfchens um ½ eines Teilstriches kann noch genau bestimmt werden. Da die reelle Größe der gesamten Volumveränderung des Gases in dem Fläschchen doppelt so groß ist wie die an der Indexskala abgelesene (siehe oben), so folgt daraus, daß

Volumveränderungen von $\frac{2\cdot 1\times 2}{3}=1\cdot 4$ mm³ noch genau festgestellt werden können.

Das eigentliche Mikrorespirometer von $\it Thunberg$ ist durch folgende Fig. 118 dargestellt.

Die Pipetten A, B, C sind in ein Wasserbad W von konstanter Temperatur versenkt, das gehoben und gesenkt werden kann. Das zu untersuchende Gewebe wird in die Pipette A gebracht. Pipette B dient als Kompensationspipette. Die beiden Pipetten A und B stehen an ihrem unteren Teile mit Kapillarröhren, die mit Quecksilber gefüllt sind und eine Millimetereinteilung tragen, in Verbindung. An ihrem oberen Teile können die Pipetten durch die Hähne X und Y mit der Außenluft oder mit der Indexkapillarröhre I, welche ein leicht bewegliches Petroleumtröpfehen enthält, kommunizieren. Die Analysenpipette A kann außerdem durch den Hahn D mit dem Kaliapparat C verbunden werden.


Die Analysenpipette $\mathcal A$ mit dem entsprechenden Quecksilberrohr kann an den Punkten S und T losgetrennt werden, um das Untersuchungsobjekt in die Pipette einzuführen.

Die Quecksilber enthaltenden Kapillarröhren können mit Hilfe der Quetschhähne E und F mit den Quecksilberbehältern F und Q und mit Hilfe der Hähne G und H mit der Außenluft verbunden werden. Die Hähne G und H haben zugleich den Zweck, die bei der Füllung der Röhren mit Quecksilber zurückgebliebenen Luftblasen beseitigen zu können.

Der Rauminhalt der Kompensationspipette B ist ungefähr 55—70 cm³; das Volumen der Analysenpipette A ist 65-70 cm³. Die Kapillarröhren m und n haben eine Länge von 20 cm und besitzen eine Millimetereinteilung, 1 mm entspricht in den verschiedenen von Thunberg verwandten Röhren einen Rauminhalt von 14-30 mm³.

Die Versuchsanordnung ist folgende: Man beginnt mit der Einführung des zu untersuchenden Gewebes in die Analysenpipette A. das Gewebe wird in die Mitte der Pipette placiert. Die Pipette wird sodann eingesetzt und

sorgfältig befestigt. Das Wasserbad wird gehoben. Wenn die Atmung des Gewebes in einer Luftatmosphäre stattfinden soll, so läßt man die Pipetten A und B mit der Außenluft kommunizieren und führt durch Emporheben

der Quecksilberbehälter P und Q das Quecksilber in die Kapillarröhren m und n bis zur gewünschten Höhe. Nachdem der Apparat sich mit der Temperatur des Wasserbades ins Gleichgewicht gesetzt hat, werden die Pipetten A und B mit der Indexkapillare I vereinigt. Man verzeichnet die Stellung des

Quecksilbers in der Kapillarröhre der Analysenpipette A. Je nach dem Werte des respiratorischen Quotienten, wird das Petroleumtröpfehen sich nach der Pinette A oder der Pipette B verschieben. Wenn man nun das bei der Atmung verbrauchte resp. gebildete Gas bestimmen will, stellt man das Quecksilber in der Kapillarröhre der Analysenpipette so ein, daß das Indextröpfehen zur Nulllage zurückkehrt. Man verzeichnet die neue Stellung des Ouecksilbers in der Kapillarröhre m und unterbricht die Verbindung der Analysenpipette A mit der Indexröhre I. Der Hahn I) wird nun geöffnet und durch Emporheben des Quecksilberbehälters Q wird das Gas der Analysenpipette A in den Kaliapparat C übergeführt. Das Gas wird sodann von neuem in die Analysenpipette geleitet und die Kommunikation mit der Indexröhre wieder hergestellt. Mit Hilfe des Quecksilberbehälters wird das Petroleumtröpfehen von neuem in die Nulllage zurückgebracht und die neue Stellung des Quecksilbers in der Kapillarröhre m verzeichnet. Der Unterschied zwischen der Anfangsstellung des Quecksilbers und der Stellung nach dem Durchleiten des Gases in den Kaliapparat zeigt die Menge des verbrauchten Sauerstoffes an. Die gebildete Kohlensäure wird durch den Unterschied des Gasvolumens vor und nach der Einführung des Gasgemisches in den Kaliapparat angegeben.

Wenn man zur Atmung des Gewebes ein anderes Gas als atmosphärische Luft verwenden will, O. z. B., so beginnt man damit, daß man das Quecksilber nur bis unterhalb des Halmes G cinführt. Das zu untersuchende Gewebe wird sodann in die Analysenpipette A gebracht. Die Röhrenmün- $\operatorname{dung} k$ wird mit einem Sauerstoffgasometer verbunden und ein kräftiger Strom des entsprechenden Gases durch die Analysenpipette getrieben, bis alle in der Pipette vorhanden gewesene Luft verdrängt worden ist. Das Gas strömt durch die Abzugsmündung l aus. Die Hähne G und X werden sodann geschlossen, das Quecksilber wird in das Kapillarrohr m bis zur gewünschten Höhe eingeführt und die an der Umbiegungsstelle des Quecksilberrohres eventuell vorhandenen Luftbläschen werden durch Öffnen des Rohres G entfernt. Die Pipetten A und B werden durch geeignete Einstellung der Hähne X und Y mit der Außenluft verbunden, darauf wird die Verbindung mit der Indexröhre hergestellt. Im übrigen verfährt man in der früher angegebenen Weise.

Der Bequemlichkeit wegen nimmt man an, daß das Gewebe und die umgebende Gasatmosphäre in bezug auf den Stickstoff sich im Diffusionsgleichgewicht befinden und daß das entwickelte Gas ausschließlich COs und das absorbierte Gas ausschließlich O. sei.

Um die durch die verschiedene Spannung des Wasserdampfes entstehende Veränderung des Gasvolumens zu vermeiden, empfiehlt es sich. die verschiedenen Teile des Apparates mit Wasserdampf zu sättigen. Zu dem Zwecke wird etwas Wasser auf den Boden der beiden Pipetten A und B gegossen.

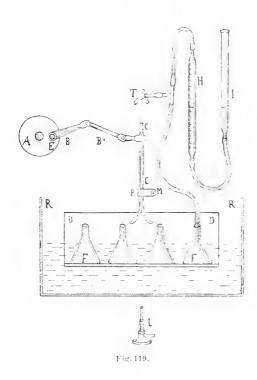
Bei der Bestimmung der Kohlensäure ist es besser, das Quecksilber in die Analysenpipette 4 nicht bis in die obere Kapillarröhre zu treiben. Man vermeidet auf diese Weise das Zurückbleiben von Flüssigkeitsteilchen in der Kapillarröhre und die dadurch bedingte Verhinderung der Kommunikation der Analysenpipette mit der Indexkapillare. Es empfiehlt sich also, das Überführen des Gasgemenges der Analysenpipette A in den Kaliapparat zweimal vorzumehmen, wobei jedesmal das Quecksilberniveau die Ansatzstelle der oberen Kapillarröhre nicht überschreiten darf. Man wird auch darauf achten, daß keine Quecksilbertröpfehen am Gewebe haften bleiben und daß das Quecksilber nicht isolierte Tropfen bildet.

Die Schnelligkeit, mit der das Gasgemenge aus der Pipette A in den Kaliapparat geleitet und aus letzterem in die Pipette A zurückgeführt werden kann, hängt vom Diameter der Kapillarröhre, die die beiden Pipetten verbindet, ab. Bei einem Durchmesser der Kapillarröhre von 19 mm kann die Gasanalyse in 3—4 Minuten vollendet sein, während bei einem Durchmesser von 14 mm die Dauer der Gasanalyse 5—6 Minuten beträgt.

C. Atmung der in Flüssigkeiten suspendierten Gewebe.

Diese von Battelli und Stern eingeführte Methode besitzt gegenüber den früher beschriebenen einige Vorzüge. Sie gestattet vor allem, den Mechanismus der Gewebeatmung besser zu analysieren, sowie den Einfluß der Zusammensetzung der Suspensionsflüssigkeit zu studieren und zugleich einen sehr energischen Gaswechsel zu erzielen. Die fein zerriebenen, in einer Flüssigkeit suspendierten Gewebe müssen energisch geschüttelt werden, damit immer neue Sauerstoffmengen in der Flüssigkeit sich lösen und so den von den Geweben verzehrten Sauerstoff ersetzen.

Bei Anwendung dieser Methode ist folgendes in Betracht zu ziehen:


- 1. Die zum Schütteln dienenden Apparate.
- 2. die Gasanalyse,
- 3. die Zubereitung der zu untersuchenden Gewebe,
- 4. die Zusammensetzung der Suspensionsflüssigkeit,
- 5. die Hauptatmung,
- 6. die akzessorische Atmung.
- 7. der Einfluß der verschiedenen Substanzen.
- 1. Der Schüttelapparat. Die zerriebenen Gewebe müssen, sobald sie in die die Flüssigkeit enthaltenden Flaschen eingeführt sind, energisch geschüttelt werden. Zu diesem Zwecke kann man sich des von *Battelli* und *Stern*⁴) benutzten Apparates, der in Fig. 119 abgebildet ist, bedienen.

Die Achse des Rades A ist mit der Achse einer Riemenscheibe, die durch einen Elektromotor in Bewegung gesetzt wird, verbunden. Das Rad A ist mit einer Exzentrik E versehen. An dieser Exzentrik ist die horizontale Kurbelstange B-B', die ihrerseits in die vertikale Stange C eingefügt ist, befestigt. C ist an ihrem unteren Ende in der Metallplatte P befestigt. Letztere weist eine zirkuläre Bohrung auf, durch welche eine horizontale

¹) F. Battelli et Mile L. Stern, Recherches sur la respiration élémentaire des tissus. 1er mémoire. Journ. de Physiol. et Pathol. générale. p. 1 (1907).

Stange M, die an ihren beiden Enden an zwei Metallstützen befestigt ist, geht. Die Platte P kann somit sich um die Stange M, die eine horizontale Achse darstellt, drehen. An dem unteren Teil der vertikalen Stange C ist ein vertikal gestelltes Holzbrett festgeschraubt. An seinem unteren Teil trägt dieses Brett unter einem rechten Winkel ein horizontales Brett, das zur Aufnahme der Flaschen F bestimmt ist.

Das Rad A kann 150 Umdrehungen in der Minute machen, so daß das Brett D 150 Doppelschwingungen um die Achse M macht. Die Flaschen erhalten somit 300 Stöße in der Minute, denn jede Doppelschwingung des

Brettes ruft in den Flaschen ein Hin- und Herstoßen hervor. Die in den Flaschen enthaltene Flüssigkeit wird auf diese Weise kräftig geschüttelt. Das Brett und die darauf befindlichen Flaschen können mehr oder weniger tief ins Wasser des Thermostaten R versenkt werden. Während des Schüttelns sind die Flaschen nur 2—3 cm tief unter Wasser; wenn man sie tiefer senken wollte, würde man das Schütteln stark erschweren. Die Temperatur des Thermostaten muß ungefähr 38—40° betragen, wenn man die maximale Atmungstätigkeit erzielen will. Oberhalb und unterhalb dieser Temperaturgrenze ist der respiratorische Gaswechsel geringer.

2. Einleiten der Gase in die Flaschen. Messung der Gase. Der respiratorische Gaswechsel der Gewebe ist in einer Sauerstoffatmosphäre bedeutend stärker als in einer Luftatmosphäre, namentlich wenn die betreffenden Gewebe sehr frisch sind, d. h. wenn sie den größten Teil ihrer respiratorischen Fähigkeit noch bewahrt haben. Wenn aber die Gewebe mehrere Stunden nach dem Tode des Tieres untersucht werden, zu einer Zeit, wo die respiratorische Tätigkeit derselben bereits stark herabgesetzt ist, ist der Unterschied des Gaswechsels in einer Sauerstoffatmosphäre gegenüber der Atmung in gewöhnlicher Luft kein bedeutender.

Wenn der Versuch in einer Sauerstoffatmosphäre gemacht werden soll, führt man das zu untersuchende zerriebene Gewebe und die gewünschte Flüssigkeit in die Flasche ein, darauf wird mit Hilfe eines energischen Aspirators die in der Flasche vorhandene Luft ausgepumpt, bis zu dem Augenblicke, wo die Flüssigkeit zu schäumen beginnt. Die Verbindung mit dem Aspirator wird sodann unterbrochen und die Flasche mit einem Sauerstoffgasometer vereinigt. Nach vollendeter Füllung der Flasche wird die Verbindung mit dem Sauerstoffbehälter abgebrochen und die Flasche wird auf dem Schüttelapparat befestigt.

Wenn die Flasche mit Luft gefüllt ist, wird die Bestimmung des Sauerstoffes und der Kohlensäure, die in dem Gasgemenge der Flasche am Ende des Versuches enthalten sind, nach den gewöhnlichen gasanalytischen Methoden vorgenommen. Wenn aber die Flasche mit Sauerstoff gefüllt war, verfährt man auf folgende Weise. Jede Flasche wird durch einen Gummischlauch mit einer Hempelschen Bürette, die als Wassermanometer dient, verbunden. Vor dem Beginne des Versuches wird die Flasche vollständig in das Wasser des Thermostaten versenkt und darin so lange gelassen, bis das Gasvolumen im Innern der Flasche konstant bleibt. Das T-Rohr wird nun geöffnet und die Flüssigkeit in den Röhren H und I stellt sich auf dasselbe Niveau ein. Das T-Rohr wird nun geschlossen. Die Flasche wird sodann teilweise aus dem Wasser gehoben und der Schüttelapparat in Bewegung gesetzt. Nach Beendigung des Versuches wird die Flasche von neuem völlig ins Wasser des Thermostaten versenkt. Man wartet 2-3 Minuten, das ist die Zeit, die nötig ist, um das Temperaturgleichgewicht zwischen der Flasche und dem Thermostaten herzustellen und stellt darauf durch Heben oder Senken der Röhre I die Flüssigkeit in den Röhren H und I auf gleiches Niveau ein. An der Röhre H kann man leicht die Vergrößerung oder Verminderung des Gasvolumens in Kubikzentimetern ablesen. Man mißt die in der Gasatmosphäre vorhandene Kohlensäuremenge nach den gewöhnlichen Methoden. Eine einfache Berechnung gibt die Menge des verbrauchten Sauerstoffes an. Es bleibt nur noch übrig, die in der das Gewebe enthaltenden Flüssigkeit gelösten Gase zu messen. Die in Lösung befindliche Sauerstoffmenge kann ohne weiteres vernachlässigt werden, namentlich wenn man bei 38° operiert und wenn das Gewebe einen energischen Gaswechsel aufweist. In der Tat nimmt das Gewebe während der wenigen Minuten, die das Ablesen an der Bürette K erfordert, allen in der Flüssigkeit gelösten Sauerstoff auf. Um die in der Flüssigkeit gelöste Kohlensäure zu messen, wird die Flüssigkeit mit Phosphorsäure angesäuert und die Kohlensäure mit Hilfe der

pneumatischen Quecksilberpumpe extrahiert. Bei der Berechnung der Kohlensäure darf man jedoch die im Gewebe zu Beginn des Versuches präexistierende Kohlensäuremenge nicht vergessen. Diese präexistierende Kohlensäure wird in der Weise bestimmt, daß man eine bestimmte Menge des zerriebenen Gewebes ansäuert und die Kohlensäure mit Hilfe der Quecksilberluftpumpe extrahiert. Um nun die Gesamtmenge der während des Versuches gebildeten Kohlensäure zu berechnen, braucht man nur zu der in dem Gasgemenge der Flasche enthaltenen Kohlensäuremenge die in der Flüssigkeit gelöste hinzuzufügen und von der erhaltenen Summe die präexistierende Kohlensäuremenge abzuziehen. Wenn der Flüssigkeit Karbonate, z. B. Natriumbikarbonat, hinzugesetzt worden waren, wird die Messung der durch das Gewebe entwickelten Kohlensäure unmöglich, es sei denn, daß man die vom Bikarbonat stammende Kohlensäuremenge vorher bestimmt.

Will man die Sauerstoffaufnahme fortlaufend verfolgen, so ist es nötig, die Kohlensäure in dem Maße, wie sie sich bildet, zu entfernen. Zu dem Zwecke kann man folgendes Verfahren benutzen (Battelli und Stern): Das zu untersuchende Gewebe und die entsprechende Flüssigkeit werden in eine Flasche von 25 cm Höhe und einem Rauminhalt von 1500 cm3 eingeführt. Die Flasche besitzt eine weite Öffnung, die durch einen Gummipfropfen verschlossen werden kann. Der Gummipfropfen hat 2 Bohrungen. Durch eine dieser Bohrungen geht ein Glasrohr I, das mit der graduierten Hempelschen Bürette H verbunden ist (siehe Schüttelapparat Fig. 119); in der anderen Bohrung befindet sich ein Messingstab T. der den Kaliapparat trägt. Der Kaliapparat besteht aus 2 Messingzvlindern von verschiedenem Durchmesser, die ineinander gestellt, an ihrem oberen Ende offen und an ihrem unteren Ende geschlossen sind (Fig. 120). Die Zylinder sind 10 cm hoch. Der Zylinder B hat einen Durchmesser von 2 cm und der äußere Zylinder A einen Durchmesser von 3:5 cm. Der innere Zylinder ist in seiner ganzen Ausdehnung durchlöchert, während der äußere Zvlinder nur in seinem oberen Teile in einer Ausdehnung von 7 cm von Löchern durchsetzt ist, der untere 3 cm hohe Teil des Zylinders hat keine Öffnungen. An der Vereinigung dieser beiden Teile befindet sich ein zirkulärer Ring C, der nach innen und unten gebogen ist und bis zum inneren Zylinder reicht. Die Löcher sind sehr zahlreich, dicht beieinander und haben einen Durchmesser von $4 \, mm$. In den inneren Zylinder B führt man die Kalistangen, die bis an den oberen Teil des Zylinders reichen, ein.

Die Flasche wird in der früher beschriebenen Weise mit Sauerstoff gefüllt und energisch geschüttelt. Die bei der Atmung des Gewebes entstehende Kohlensäure wird schnell durch die im Zylinder B befindlichen Kalistäbe absorbiert. Häufig spritzt während des Schüttelns etwas Flüssigkeit auf den Kaliapparat. Ein Teil dieser Tröpfchen wird durch den äußeren Zylinder A zurückgehalten, ein Teil aber gelangt zum inneren Zylinder und zu den darin enthaltenen Kalistäben: von da aus gelangt die Flüssigkeit ins Innere des Zylinders und sammelt sich im unteren Teile des Zylin-

ders A. Der zirkuläre Ring C verhindert das Austreten der Flüssigkeit aus dem Zylinder während des Schüttelns.

Wenn man nun die Menge des bei der Atmung aufgenommenen Sauerstoffs bestimmen will, senkt man die Flasche vollständig ins Wasser des Thermostaten und wartet 2-3. Minuten, bis das Temperaturgleichgewicht hergestellt sei, d. h. bis das Gasvolumen unverändert bleibt. Die verbrauchte Sauerstoffmenge wird unmittelbar an der graduierten Bürette H abgelesen.

3. Die Zubereitung der Gewebe. Das zu untersuchende Gewebe wird in einer gewöhnlichen Fleischmühle fein zerrieben. Die Löcher der

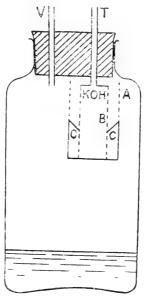


Fig. 120.

Fleischmühle müssen einen Durchmesser von ungefähr $2\,mm$ besitzen. Sind die Löcher größer, so wird das Gewebe nicht genügend zerrieben und der Gaswechsel wird dadurch herabgesetzt. Sind hingegen die Löcher kleiner, so kann das zerriebene Gewebe nur schwer hindurchtreten, namentlich wenn es sich um Drüsenorgane handelt. Das so zerriebene Gewebe wird in einen dickwandigen, stark ausgebauchten Kolben gebracht und die Flüssigkeit von bestimmter Zusammensetzung hinzugefügt. Die Menge derselben muß groß genug sein, damit das Gewebe in derselben schwimmen kann. Man kann $2\cdot5\,cm^3$ zu je $1\,g$ Gewebe hinzusetzen. Man erhält auf diese Weise eine Gewebeaufschwemmung. Wenn es möglich ist, ist es ratsam, größere Gewebemengen zu benutzen, $40\,g$ z. B. In dem Falle muß der Kolben einen Rauminhalt von mindestens $1000\,cm^3$ besitzen, wenn der-

selbe mit Luft gefüllt wird; wird jedoch der Versuch in einer Sauerstoffatmosphäre ausgeführt, so genügt bereits ein Rauminhalt von 500 cm³.

Die Schnelligkeit der Entnahme des Gewebes nach dem Tode des Tieres spielt eine Hauptrolle in der Intensität des respiratorischen Gaswechsels. In dieser Hinsicht bieten einige Gewebe zwei Phasen in ihrer Atmungsfähigkeit. Während der ersten Phase nimmt die Intensität des Gaswechsels allmählich ab. Während der zweiten Phase hingegen bleibt die Atmungstätigkeit mindestens einige Tage lang konstant. Die erste Phase wird von Battelli und Stern¹) als Hauptatmung, die zweite als akzessorische Atmung bezeichnet. Der Atmungsprozeß der ersten Phase ist an die Vitalität der Zellen gebunden, während der Prozeß der zweiten Phase auch in einem von Zellen völlig befreiten Auszuge vor sich gehen kann.²)

Die Dauer der Hauptatmung (erste Phase) ist in den verschiedenen Geweben nicht gleich groß.³) Im allgemeinen bewahren die roten Muskeln des Rindes, des Pferdes, der Taube u. a. ihre Atmungstätigkeit ziemlich lange, so daß man diese Gewebe zum Studium der Hauptatmung 1 Stunde und mehr nach dem Tode des Tieres verwenden kann. Die Niere des Hundes und des Kaninchens besitzen in dieser Beziehung ebenfalls eine große Widerstandsfähigkeit. Hingegen weisen die Leber, das Herz, die Bauchspeicheldrüse u. a. eine sehr schnelle Verminderung ihrer Atmungstätigkeit auf. So besitzt z. B. die Leber des Hundes eine Stunde nach dem Tode des Tieres oft nur ein Drittel oder Viertel der Atmungsfähigkeit, welche sie gleich nach dem Tode des Tieres aufweist. Das Gehirn des Hundes weist eine große Unbeständigkeit in der Dauer der Hauptatmung auf.

Die Hauptatmung der Gewebe bewahrt sich um so besser, je niedriger die umgebende Temperatur ist. Wenn man also die Hauptatmung in einem Gewebe, zum Beispiel in der Leber, einige Stunden nach dem Tode bewahren will, so schneidet man das betreffende Gewebe in Stücke von ungefähr 3—4 cm Höhe und bringt sie in ein von Eis umgebenes Kristallisiergefäß. Aber selbst bei einer Temperatur von 0° verlieren gewisse Gewebe nach 12—24 Stunden den größten Teil ihrer Atmungsfähigkeit.

Einzelne Gewebe, wie der Herzmuskel, die Skelettmuskel des Hundes und des Kaninchens u. a., besitzen keine akzessorische Atmung. Wenn man also diese Gewebe einige Stunden nach dem Tode des Tieres untersucht. beobachtet man keine oder nur eine sehr geringe Sauerstoffaufnahme. Die akzessorische ist hingegen in der Leber und der Niere stark ausgeprägt. Diese Organe bewahren folglich, nachdem die Hauptatmung aufgehört, einen ziemlich bedeutenden Gaswechsel während mehrerer Tage unverändert.

¹) F. Battelli et L. Stern, Recherches sur la respiration principale et la respiration accessoire des tissus animaux. Soc. de Biol. T. 66. p. 372 (1909).

²) Battelli und Stern, Die akzessorische Atmung in den Tiergeweben. Bioch. Zeitschr. Vol. 21, p. 487, 1909.

³⁾ Battelli et Stern, Recherches sur la conservation de l'activité respiratoire dans les différents tissus animaux après la mort. Journ. de Physiol. et de Pathol. générale. p. 410 (1907)

Der Grad der Frische des Gewebes ist nicht nur von Bedeutung für die Intensifät des respiratorischen Gaswechsels, sondern beeinflußt auch stark die Wirkung der verschiedenen Substanzen auf die Atmungsfähigkeit der Gewebe. Die Hauptatmung, welche an die Vitalität der Zellen gebunden ist, wird durch gewisse giftige Substanzen, selbst in minimaler Dosis, stark herabgesetzt oder gänzlich vernichtet (arsenige Säure, Blausäure, Fluorsäure usw.), so daß der Gaswechsel auf ein Fünftel oder ein Zehntel herabsinkt. Dieselben Substanzen, selbst in bedeutend stärkerer Dosis, beeinflussen nur unbedeutend die Atmungstätigkeit der Leber, der Niere, des Gehirns usw., wenn diese Organe anderthalb oder zwei Stunden nach dem Tode des Tieres untersucht werden, d. h. wenn sie nur noch die akzessorische Atmung besitzen. Das Pnein (siehe weiter unten) verstärkt nur die Hauptatmung und ist ohne Einfluß auf die akzessorische Atmung. Infolgedessen bleibt das Pnein ohne Wirkung auf den Gaswechsel der Gewebe, wenn dieselben zu spät nach dem Tode des Tieres benutzt werden.

Wenn es sich darum handelt, die Hauptatmung allein, getrennt von der akzessorischen Atmung, zu untersuchen, so kann man die Muskeln des Hundes, des Rindes, des Hammels usw. verwenden. Die Leber der verschiedenen Tiere (Hund, Pferd, Rind, Schaf usw.), einige Stunden nach dem Tode des Tieres entnommen, eignet sich vorzüglich zum Studium der akzessorischen Atmung. Wenn man die Leber, die Niere, das Gehirn usw. gleich nach dem Tode des Tieres untersucht, erhält man die Gesamtmenge des respiratorischen Gaswechsels, der zum weitaus größten Teile der Hauptatmung zuzuschreiben ist, während ein kleinerer Teil desselben durch die akzessorische Atmung verursacht wird.

Die verschiedenen Gewebe, selbst wenn sie sofort nach dem Tode des Tieres verwandt werden, besitzen nicht die gleiche Atmungstätigkeit; mehrere Gewebe weisen einen nur geringen Gaswechsel auf. Wenn man einen energischen Gaswechsel erzielen will, so kann man die roten Muskeln der verschiedenen Tiere benutzen; die Muskeln der Taube eignen sich hierzu ebenfalls, doch muß man darauf achten, daß die Taube sich in einem guten Gesundheitszustande befinde und nicht durch längeren Aufenthalt im Käfige abgemagert sei. Die Muskeln des Kaninchens besitzen eine ziemlich geringe Atmungstätigkeit. Die Leber und die Niere des Hundes oder des Kaninchens eignen sich ebenfalls sehr gut zu den verschiedenen Untersuchungen, betreffend den respiratorischen Gaswechsel. Das Gehirn des Hundes gibt unregelmäßige Resultate. Die Lunge, die Milz und der Pankreas des Hundes oder des Kaninchens weisen einen sehr schwachen Gaswechsel auf. Die übrigen Organe der Laboratoriumstiere, wie die Thyroidea, die Nebenniere, die Ovarien u. a., sind zu klein, um zu ähnlichen Untersuchungen benutzt werden zu können. Unter den Geweben, die vom Schlachthofe bezogen werden können, eignen sich die Muskeln sehr gut zum Studium der Hauptatmung. Die anderen Organe oder Gewebe können nur zum Studium der akzessorischen Atmung dienen, da sie, bevor sie ins Laboratorium gelangen, den größten Teil ihrer Hauptatmung bereits eingebüßt haben.

4. Die Zusammensetzung der Suspensionsflüssigkeit. Die Zusammensetzung der Flüssigkeit, in der das zu untersuchende zerriebene Gewebe suspendiert wird, hat einen großen Einfluß auf den respiratorischen Gaswechsel der Gewebe, falls dieselben den größten Teil ihrer Hauptatmung noch nicht eingebüßt haben. Ist jedoch die Hauptatmung verschwunden, so daß nur die akzessorische Atmung in Betracht zu ziehen ist, so ist die Zusammensetzung der Suspensionsflüssigkeit ebenso wie all die verschiedenen anderen Faktoren von wenig Wichtigkeit.

Die Menge der Flüssigkeit muß groß genug sein, um das Schütteln des Gewebes zu ermöglichen; sie darf anderseits nicht zu groß sein, weil dadurch der Gaswechsel stark herabgesetzt werden kann. Gute Resultate erzielt man bei Anwendung von $2.5-3\ cm^3$ Flüssigkeit (Blut oder alkalische Lösung) für je $1\ g$ Gewebe.

Die Reaktion des Mediums spielt in der Zusammensetzung der Suspensionsflüssigkeit die Hauptrolle. Dieselbe muß schwach alkalisch reagieren. Die gewünschte Alkalinität erhält man durch Hinzufügen von Na $_2$ CO $_3$, 10 H $_2$ O in einer Konzentration von 0.4-0.5%, oder von Na H CO $_3$ in einer Konzentration von 0.2%, oder besser noch von Na $_2$ HPO $_4$, 12 H $_2$ O in einer Konzentration von 1%. Wenn man bloß die Sauerstoffaufnahme bestimmen will, kann man mit Erfolg folgende Mischung benutzen: Eine Lösung von Na $_2$ HPO $_4$ 12 H $_2$ O wird durch Hinzufügen von HCl gegen Lackmus amphoterisch und darauf durch Hinzufügen von Na $_2$ CN $_3$, 10 H $_2$ O in einer Proportion von 5:1000 alkalisch gemacht.

Die äußerst günstige Wirkung der phosphorsauren Salze hängt wahrscheinlich von der dreifachen dreibasischen Funktion der Phosphorsäure, wodurch eine Regulierung der Alkalinität des Mediums erzielt wird, ab.

Der respiratorische Gaswechsel vollzieht sich ebensogut in einer hypotonischen, wie in einer isotonischen Flüssigkeit. Es ist also überflüssig, Na Cl oder ein anderes Salz hinzuzusetzen, um die Flüssigkeit isotonisch zu machen. Die Hauptatmung wird bei Anwendung hypertonischer Flüssigkeiten stark herabgesetzt; auf die akzessorische Atmung ist die Wirkung dieser Flüssigkeiten bedeutend geringer.

Das Blut verstärkt bedeutend die Hauptatmung. Diese begünstigende Wirkung ist zum weitaus größten Teile durch die Blutkörperchen bedingt. Das Serum übt häufig vielmehr eine inhibitonische Wirkung aus. Es ist nicht notwendig, daß die Blutkörperchen intakt seien; man kann mit gleichem Erfolge eine wässerige Lösung hämolysierter Blutkörperchen verwenden. Die günstige Wirkung der gewaschenen Blutkörperchen wird noch verstärkt, wenn die Flüssigkeit in der vorher angegebenen Weise alkalisch gemacht wird. Es ist nicht notwendig, das Blut der gleichen Tierart zu verwenden; die begünstigende Wirkung der verschiedenen Blutarten ist ziemlich die gleiche.

Verwendet man als Suspensionsflüssigkeit Blut oder eine $1^{\circ}/_{\circ}$ ige Na₂ HPO₄-Lösung und führt man den Versuch in einer Sauerstoffatmosphäre aus, so erzielt man einen äußerst energischen Gaswechsel, wenn die Ge-

webe recht frisch sind. So kann zum Beispiel der Muskel oder die Leber des Hundes unter diesen Bedingungen pro 100 g Gewebe in der ersten Stunde 400 cm³ Sauerstoff aufnehmen und 300—400 cm³ Kohlensäure abgeben. Der Gaswechsel nimmt mit der Dauer des Versuchs bedeutend ab.

5. Die Hauptatmung. Der fundamentale Atmungsprozeß; das Pnein: die hemmenden Substanzen in den Geweben. Die Hauptatmung verschwindet in den Geweben mehr oder weniger schnell nach dem Tode des Tieres und ist an die Vitalität der Zellen eng gebunden (siehe weiter oben). Alle Einflüsse, die die Vitalität der Zellen herabsetzen, hemmen zugleich die Hauptatmung. Es ist wahrscheinlich, daß die Hauptatmung allen Geweben zukomme. In einzelnen Geweben, wie in den roten Muskeln des Hundes und des Rindes, ist der respiratorische Gaswechsel gänzlich durch die Hauptatmung bedingt. In der Leber, der Niere, dem Gehirn u. a., wenn dieselben gleich nach dem Tode des Tieres untersucht werden, gesellt sich zur Hauptatmung auch die akzessorische Atmung.

In der Hauptatmung kann man das Zusammenwirken zweier Faktoren unterscheiden: das Pnein und den fundamentalen Atmungsprozeß.

Aus den Geweben lassen sich mit Wasser eine oder mehrere Substanzen extrahieren, die die Fähigkeit besitzen, den respiratorischen Gaswechsel der Gewebe zu steigern.¹) Diese Substanzen sind bisher nicht isoliert worden. Battelli und Stern haben angenommen, daß es sich um eine einzige Substanz handelt und haben dieselbe Pnein genannt.²) Die von Pnein mit Hilfe von Wasser befreiten Gewebe besitzen nur sehr geringen oder keinen respiratorischen Gaswechsel mehr, aber wenn man ihnen das Pnein hinzusetzt, steigt der Gaswechsel wieder an. Unter der Bezeichnung "fundamentaler respiratorischer Prozessus" versteht man den Prozessus, der dem im Wasser unlöslichen Teile des Gewebes zukommt und welcher nach Hinzufügen von Pnein die respiratorischen Erscheinungen aufweist (Battelli und Stern).

Das Pnein ist nicht in gleicher Menge in den verschiedenen Geweben vorhanden; die wässerigen Auszüge der Muskeln vom Rind oder vom Pferd besitzen die größten Mengen dieser Substanz; in zweiter Linie kommen die Auszüge der Leber und der Milz und erst in dritter Linie die Auszüge der Niere, der Lunge, des Pankreas, des Hirns, des Thymus. Das Blutserum, die Milch, der Harn scheinen kein Pnein zu besitzen. Das Pnein erfährt in den Geweben keine Verminderung nach dem Tode; man kann es 24 Stunden nach dem Tode aus den Muskeln extrahieren.

In mehreren Geweben kann das Vorhandensein von Pnein durch gleichzeitiges Vorhandensein von hemmenden Substanzen maskiert sein.

¹) Battelli et Stern, Activation de la respiration tissulaire par l'extrait des différents organes et par les liquides de l'organisme. Archives internationales de Physiol. T. 5. p. 262 (1907).

²⁾ Battelli et Stern, Recherches sur la pnéïne et le processus respiratoire fondamental. Soc. de Biol. Bd. 65. p. 489 (1908).

Die beste Art, die hemmenden Substanzen zu entfernen, besteht in der Anwendung von Essigsäure, wodurch diese Substanzen gefällt werden.

Um eine an Pnein reiche Lösung zu erhalten, rührt man fein zerriebenes Muskelgewebe mit 15 Gewichtsteilen Wasser 15 Minuten lang. preßt sodann den Muskelbrei durch ein leinenes Tuch und zentrifugiert. um die Lösung von eventuell vorhandenen gröberen Teilchen zu befreien. Die etwas trübe Lösung, die man auf diese Weise erhält, kann ohne weiteres benutzt werden, aber wenn man eine klare, durchsichtige Flüssigkeit haben will, fügt man etwas Essig- oder Salzsäure in einer Proportion von 0:15:100 zu und filtriert. Die Lösungen von Pnein können im Marienbade oder im Vakuum bis zu sirupöser Konsistenz eingeengt werden, ohne ihre aktivierenden Eigenschaften zu verlieren. Das Pnein wird durch Siedehitze nicht zerstört; aber wenn man die bis auf sirupöse Konsistenz eingeengte Pneinlösung auf 200° erhitzt, wird das Pnein zersetzt. Das Pnein dialysiert.

Das Pnein wird weder durch Säuren noch durch Alkalien einschließlich des Baryts gefällt. Wenn man eine bis zu einer Densität von 1250 konzentrierte Pneinlösung mit 3 Volumen 95grädigen Alkohols behandelt. wird der größte Teil des Pneins gefällt; das Filtrat enthält nur geringe Mengen dieser Substanz. Durch Sieden mit Cl. Fe wird das Pnein nicht gefällt.

Das Pnein ist nicht autoxydabel; eine an Pnein reiche Lösung nimmt keinen Sauerstoff auf. Das Wasserstoffsuperoxyd ruft keine Veränderung der aktivierenden Fähigkeit dieser Substanz hervor.

Die Wirkung des Pneins ist durch keine andere bis jetzt bekannte Substanz des tierischen Organismus erzielt worden.

Um die Wirkung des Pneins zu studieren, kann man entweder die verschiedenen zerriebenen, aber sonst unveränderten Gewebe, oder die roten Muskeln, die vorher mit Wasser behandelt worden waren, benutzen. Das letztere Verfahren eignet sich bedeutend besser. Wenn man das Pnein auf die nicht vorher gewaschenen Gewebe einwirken lassen will, kann man die Leber, die Niere, das Gehirn usw. benutzen. Die Gewebe müssen schnell nach dem Tode des Tieres zur Verwendung gelangen. Wenn man zwei oder drei Stunden oder noch weniger nach dem Tode des Tieres verstreichen läßt, bleibt das Pnein ohne Wirkung auf den respiratorischen Gaswechsel dieser Gewebe, weil der fundamentale Prozessus eine Abschwächung erfahren hat (siehe weiter unten).

Wenn man rote, nicht gewaschene Muskeln benutzt, muß man dieselben im Gegenteil erst drei bis vier Stunden nach dem Tode des Tieres verwenden; gleich nach dem Tode des Tieres bieten die Muskeln häufig das Maximum ihres respiratorischen Gaswechsels und das hinzugefügte Pnein bleibt in diesem Falle wirkungslos. Wartet man jedoch einige Stunden ab, so ist die respiratorische Fähigkeit der Muskeln vermindert und das Pnein kann alsdann seine aktivierende Wirkung zur Geltung bringen.

Der Gaswechsel eines Präparates, welches den fundamentalen Prozessus besitzt, steigert sich anfangs mit der zunehmenden Menge des hinzugefügten Pucins bis zu einem gewissen Maximum, das durch Hinzufügen von neuen Mengen Pucins nicht überschritten wird.

Dieses Maximum wird häufig erzielt, wenn man zu 30 g frischen Gewebes oder gewaschenen Muskelrückstandes (siehe weiter unten) das Pnein von ungefähr 50 g Muskel hinzufügt.

Zur Untersuchung des fundamentalen respiratorischen Prozessus wählt man die Muskeln von Rind oder Pferd; das Zwerchfell eignet sich ganz besonders zu dem Zweck. Der fundamentale Prozessus der anderen Gewebe ist zu labil und wird durch Behandeln mit Wasser vollständig vernichtet. Der Muskel wird wie gewöhnlich mit Hilfe einer Hackmaschine zerrieben, während 5 Minuten mit Wasser verrührt und durch ein Tuch unter Anwendung einer Handpresse gepreßt. Man erhält auf diese Weise einen Muskelrückstand, der zum Studium der Eigenschaften des fundamentalen Prozessus dienen kann.

Es ist ziemlich schwer zu entscheiden, eine wie große Menge Wasser zur Bereitung des Muskelrückstandes benutzt werden muß. Wenn die hinzugefügte Wassermenge zu groß ist, erhält man einen Muskelrückstand, der allein genommen keine respiratorische Tätigkeit mehr aufweist, aber oft sich nur schwach durch das Pnein aktivieren läßt. Ist hingegen die hinzugefügte Wassermenge zu klein, so erhält man einen Muskelrückstand, dessen respiratorische Tätigkeit noch sehr energisch ist; das Hinzufügen von Pnein hat in diesem Fall eine unbedeutende Wirkung. Die zu verwendende Wassermenge muß sich nach der Reizbarkeit des Muskels richten. Um diese Reizbarkeit zu prüfen, versetzt man dem Muskel einen harten Schlag. Ist die Reizbarkeit groß, so bemerkt man eine starke Kontraktion des ganzen Muskelbündels. In dem Falle fügt man 3-4 Gewichtsteile Wasser dem Muskel von Rind, und 5-6 Gewichtsteile Wasser, wenn es sich um Muskeln von Pferd handelt, zu. Ist die Reizbarkeit des Muskels etwas geringer, so fügt man 2.5 Gewichtsteile Wasser zu dem Muskel von Rind und 4 Gewichtsteile Wasser zu dem Muskel von Pferd. Endlich, wenn die Erregbarkeit des Mukels nur gering ist, begnügt man sich mit 1.5 Gewichtsteilen Wasser für den Muskel von Rind und 3 Gewichtsteilen Wasser für den Muskel von Pferd. Der Muskel von Rind liefert einen weniger feuchten und weniger gefärbten Rückstand als der Muskel von Pferd. Das Gewicht des Muskehrückstandes ist gewöhnlich geringer als das Gewicht des ganzen Muskels. Der Gewichtsverlust beträgt je nach der Behandlung des Muskels 1/4—1/2 des Gesamtgewichts. Der Muskelrückstand muß so schnell wie möglich nach seiner Zubereitung benutzt werden. Zu je $1\,g$ des Muskelrückstandes setzt man 2:5 cm3 der das Pnein enthaltenden Flüssigkeit hinzu.

Der Muskel des Hundes eignet sich weniger zu dieser Präparation; der respiratorische Gaswechsel dieses Muskelrückstandes wird durch das Pnein nur wenig aktiviert.

Der fundamentale respiratorische Prozessus besitzt in den verschiedenen Geweben eine ungleiche Stabilität. Er ist am widerstandsfähigsten in den Muskeln von Rind und von Pferd, während er in der Leber, im Herzen usw. äußerst labil ist; letztere Gewebe verlieren den größten Teil ihrer respiratorischen Fähigkeit sehr bald nach dem Tode des Tieres. Diese zerriebenen Organe, mit Wasser behandelt, liefern einen Rückstand, der durch das Pnein fast nicht aktiviert werden kann.

Die respiratorischen Eigenschaften des fundamentalen respiratorischen Prozesses werden durch Sieden in allen Geweben völlig vernichtet.

Mehrere Gewebe enthalten eine oder mehrere die Atmung der Gewebe hemmende Substanzen. 1) Diese Substanzen sind hauptsächlich in der Milz, den Lymphdrüsen von Pferd und Rind, der Lunge von Hammel und Pferd, den Hoden von Hammel und Hund enthalten. Das Blutserum wirkt ebenfalls häufig hemmend.

Die hemmende Substanz ist in Wasser löslich: sie wird aus ihren wässerigen Lösungen durch schwache Säuren gefällt. Um diese Substanz zu bereiten, zerreibt man fein Milz oder Hoden usw. und rührt das Gewebe mit 1.5 Gewichtsteilen Wasser 10 Minuten lang um. Man preßt hernach den Gewebebrei durch ein dickes Tuch und erhält auf diese Weise eine trübe Flüssigkeit, die häufig den respiratorischen Gaswechsel der Gewebe stark herabsetzt. Wenn man die hemmende Substanz in konzentrierterer Form erhalten will, so säuert man den wässerigen Auszug der Milz, der Hoden usw. mit Essigsäure in einer Proportion von 0.15:100 an und zentrifugiert. Der Niederschlag ist reich an hemmender Substanz, während der flüssige Teil keine hemmende Wirkung mehr besitzt.

Die hemmende Substanz wird durch Sieden zerstört; sie dialysiert nicht.

Wenn man den Einfluß der hemmenden Substanz auf den respiratorischen Gaswechsel der Gewebe untersuchen will, wählt man ein Gewebe, dessen Gaswechsel sehr energisch sei, zum Beispiel die Muskeln der Taube. Zu 20 g Muskel setzt man 20 cm³ eines Auszugs aus Milz oder Hoden, 25 cm³ Wasser und die nötige Menge $\mathrm{Na_2\,HPO_4}$. $12\,\mathrm{H_2\,O}$, um eine Konzentration von 1:100 zu erzielen, hinzu. In dem Kontrollversuche wird der Gewebeauszug durch eine entsprechende Menge Wasser ersetzt. Die beiden mit Sauerstoff gefüllten Flaschen werden eine halbe Stunde lang energisch geschüttelt und darauf die verbrauchte Sauerstoffmenge und die entwickelte Kohlensäure in der oben beschriebenen Weise gemessen. Wenn die zum Versuche angewandte Milz, Hoden usw. reich an hemmender Substanz waren, kann der Gaswechsel um die Hälfte und noch mehr vermindert sein.

Die Menge der hemmenden Substanz in einem bestimmten Gewebe variiert von einem Tier zum anderen in derselben Tiergattung. In einigen Fällen scheint diese Substanz in den Geweben, die gewöhnlich die größten Mengen derselben enthalten, gänzlich zu fehlen.

¹) F. Battelli et M¹¹º L. Stern, Nouvelles recherches sur l'action que les différents tissus animaux exercent vis-à-vis de la respiration musculaire. Société de Biol. T. 62. p. 832 (1907).

6. Die akzessorische Atmung. Unter akzessorischer Atmung versteht man den Atmungsprozeß, der längere Zeit nach dem Tode des Tieres unverändert fortbesteht und von der Vitalität der Zellen völlig unabhängig ist (siehe früher oben). Die akzessorische Atmung ist wahrscheinlich enzymatischer Natur und ist namentlich in der Leber und in der Niere stark ausgebildet. Um diesen Atmungsprozeß studieren zu können, muß man die betreffenden Gewebe mehrere Stunden nach dem Tode des Tieres, wenn die Hauptatmung bereits völlig erloschen ist, verwenden.

Die Substanzen (Enzyme u. a.), die bei der akzessorischen Atmung zusammenwirken, können als trockenes Pulver oder auch als klare, von Zelltrümmern völlig freie Flüssigkeit dargestellt werden. Zu dem Zwecke wird die Leber (oder die Niere) wie gewöhnlich zerrieben, mit 3 Volumen Aceton versetzt. 5 Minuten lang verrührt und durch ein Tuch gepreßt. Der Niederschlag wird sodann zwischen Filtrierpapier ausgepreßt und im Vakuum über Schwefelsäure bei Zimmertemperatur getrocknet. Nach 2 bis 3 Stunden ist der Niederschlag trocken genug, um zu den Versuchen verwandt zu werden.

Es genügt nun, diesen Niederschlag in Wasser zu bringen, worin er eine Suspension bildet. Will man eine klare Flüssigkeit, die die akzessorische Atmung aufweisen soll, erhalten, so läßt man den Acetonniederschlag unter Luftausschluß in einer 0·0·7°/₀igen Ammoniaklösung unter öfterem Schütteln digerieren. Die Flüssigkeit wird dann abgehoben und zentrifugiert, wenn man dieselbe völlig klar herstellen will. Die Alkalinität wird durch Hinzufügen von HCl herabgesetzt, bis die Flüssigkeit nur schwach alkalisch reagiert. Die auf diese Weise bereitete Flüssigkeit wird sodann wie gewöhnlich in Gegenwart von Sauerstoff energisch geschüttelt.

Die Erhaltung der akzessorischen Atmung in den Acctonniederschlägen variiert je nach dem Präparat. In einigen Fällen nimmt die akzessorische Atmung sehr bald ab, in anderen Fällen besteht sie wochenlang unverändert fort.

Anstatt des Acetons könnte man zur Fällung der Gewebe auch Alkohol benutzen. Doch hat man in diesem Falle den Nachteil, daß der Alkohol durch die in mehreren Geweben enthaltene Alkoholase oxydiert wird. Wenn der Niederschlag nicht äußerst trocken ist, könnte die Sauerstoffaufnahme durch die Oxydation des Alkohols und nicht nur der in den Geweben präexistierenden Substanzen bedingt sein.

Die akzessorische Atmung ist in neutralem Medium ebenso stark wie in leicht alkalischem. Eine etwas stärkere Alkalinität, z. B. 0²0% Na OH, setzt die Kohlensäurebildung stark herab oder hebt dieselbe völlig auf, während die Sauerstoffaufnahme kaum beeinflußt wird. Ein etwas stärkerer Säuregrad hebt die akzessorische Atmung völlig auf.

Das Temperaturoptimum der akzessorischen Atmung ist in neutralem oder leicht alkalischem Medium für die verschiedenen Gewebe ungefähr 55%. Das Temperaturoptimum der Hauptatmung ist ungefähr 40%. Vorheriges Sieden der Gewebe vernichtet vollständig die Kohlensäurebildung.

Die Sauerstoffaufnahme besteht, wenn auch in sehr geringem Maße, fort, namentlich in der Leber. Es handelt sich hier wahrscheinlich um autoxydable Substanzen.

7. Der Einfluß der verschiedenen Substanzen. Die hier beschriebene Methode eignet sich vorzüglich zum Studium des Einflusses der verschiedenen Substanzen auf die elementare Atmung der Gewebe, unabhängig vom Nervensystem, von den Zirkulationsänderungen usw. Man kann auf diese Weise die direkte Wirkung der verschiedenen Gifte, der Narkotika, der Antipyretika usw., wie es Senta 1 getan, untersuchen.

Man kann den Einfluß der verschiedenen Substanzen, sei es auf die Hauptatmung (frischer roter Muskel), sei es auf die akzessorische Atmung (Leber, einige Stunden nach dem Tode des Tieres entnommen) studieren. Wenn man die Leber oder die Niere unmittelbar nach dem Tode des Tieres verwendet, so wird die zu untersuchende Substanz sowohl die Hauptatmung als auch die akzessorische Atmung beeinflussen können.

Die Wirkung der hemmenden Substanzen ist bedeutend stärker auf die Hauptatmung als auf die akzessorische Atmung. Es empfiehlt sich also, zu ähnlichen Untersuchungen recht frische Gewebe, die einen sehr energischen Gaswechsel aufweisen, zu verwenden. Die Muskeln der Taube eignen sich hierzu vorzüglich.

Es gibt eine große Anzahl von Substanzen, die die Atmungsfähigkeit der Gewebe herabsetzen. Unter den in der Hinsicht wirksamsten Substanzen sind vor allem die arsenige Säure (die Arsensäure besitzt eine ziemlich schwach hemmende Wirkung), die Blausäure. die Aldehyde, und zwar das Salizyl- und das Formaldehyd zu nennen. Das Natriumarsenik z. B. beeinflußt die Hauptatmung bereits in einer Konzentration von 1:50.000. In einer Konzentration von 1:2000 setzt diese Substanz die Atmungstätigkeit der Muskeln auf ein Minimum herab. Die Anästhetika, wie Chloroform, Äther, Chloralhydrat, schwächen ebenfalls bedeutend die Atmungstätigkeit der Gewebe. Die Aminosäuren (Glykokoll, Leucin, Tyrosin) setzen nach Lussana den Gaswechsel der Gewebe ebenfalls herab.

Unter den Substanzen, die eine stark hemmende Wirkung auf die Atmung ausüben, muß man auch die Galle nennen; ihre Wirkung ist auf die darin enthaltenen Gallensäuren zurückzuführen.

Die Zahl der Substanzen, die die Atmungstätigkeit steigern, ist äußerst gering. Außer den Substanzen, die durch ihre alkalische Reaktion wirken, wie die Karbonate und Phosphate, kann man nur das Hämoglobin und das Pnein nennen. Der Gesamtaustausch des von Pnein befreiten Muskelrückstandes wird durch das Hämoglobin nicht gesteigert.

Ein besonderer Platz gebührt der Harnsäure, die durch das in verschiedenen Geweben enthaltene urikolytische Ferment oder die Urikase unter Kohlensäurebildung und Sauerstoffaufuahme zu Allantoin oxydiert

¹⁾ Senta, Action des antipyrétiques et des alcaloides sur la respiration des tissus "in vitro". Arch. internationales de Pharmacodynamie et de Thérapie. T. 18. pag. 217 (1908).

wird.¹) Die Niere des Rindes und die Leber des Pferdes oder des Hundes sind die an Urikase reichsten Organe. Die Oxydation der Harnsäure vollzieht sich sehr schnell in Gegenwart dieser soeben genannten Organe.

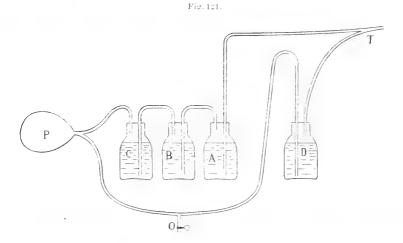
Bei Anwendung frischer Organe nähert sich der respiratorische Quotient, der durch die Oxydation der Harnsäure bedingt ist, der Zahl 2. Die Aufnahme von \mathcal{O}_2 und die Entwicklung von \mathcal{O}_2 summiert sich mit der eigenen Atmung des Gewebes. ²) Die Steigerung der Kohlensäureabgabe entspricht den theoretischen Werten. So erhält man z. B. bei der Oxydation von 1 g Harnsäure 133 cm^3 CO_2 mehr als in der Kontrollflasche, wo das Gewebe allein, ohne Harnsäure geatmet hat.

Die Glukose, mehrere organische Salze, wie ameisensaures, essigsaures und milehsaures Natrium oder Calcium, desgleichen Aceton, die Purinbasen, Harnstoff usw., haben keinen deutlichen Einfluß auf den respiratorischen Gaswechsel der Gewebe, es sei denn, daß man diese Substanzen in sehr starker Konzentration verwendet. In dem Falle setzen sie die Atmungstätigkeit herab. Der Äthylalkohol steigert die Sauerstoffaufnahme der Leber verschiedener Tierarten bedeutend. Diese Wirkung ist durch ein besonderes Ferment, die Alkoholase²), welche den Alkohol zu Aldehyd oder zu Essigsäure oxydiert, bedingt. Die Leber des Pferdes ist das an Alkoholase reichste Organ.

II. Entwicklung von Kohlensäure in Abwesenheit von Sauerstoff.

Diese Untersuchungen bezwecken hauptsächlich, zu entscheiden, ob die in einem Gewebe gebildete Kohlensäure in enger Beziehung zum aufgenommenen Sauerstoff steht oder mehr oder weniger unabhängig von den Oxydationsvorgängen ist. Mehr oder minder große Mengen Kohlensäure präexistieren in allen Geweben; daher die Notwendigkeit, die in den zu untersuchenden Geweben präexistierende Kohlensäuremenge bestimmen zu können.

Mehrere der weiter oben beschriebenen Methoden können zum Studium der Kohlensäurebildung unter Ausschluß von Sauerstoff angewandt werden. In diesen Untersuchungsmethoden hat man folgende Punkte zu beachten:


- 1. Die künstliche Durchblutung ganzer überlebender Organe,
- 2. die künstliche Durchblutung des ganzen Tierkörpers,
- 3. die Untersuchung fragmentierter Organe,
- 4. die Bestimmung der präexistierenden Kohlensäure.
- 1. Die künstliche Durchblutung ganzer überlebender Organe. Die künstliche Durchblutung unter Ausschluß von Sauerstoff kann mit Hilfe einer der oben beschriebenen Methoden vorgenommen werden.

¹) Battelli und Stern, Untersuchungen über die Urikase in den Tiergeweben. Bioch. Zeitschr. Bd. **19**. S. 219. 1909.

 $^{^{2})\} Battelli$ et Stern , L'alcoolase dans les tissus animaux. Soc. de Biol. Vol. 67. p. 419, 1909.

Die Flüssigkeit, die zur Durchblutung dienen soll, wird von dem darin enthaltenen Sauerstoff durch Sieden befreit; oder man läßt durch die Flüssigkeit einen Strom eines inerten Gases längere Zeit streichen. Die Gefäße, die zur Aufnahme des betreffenden Organes und der Flüssigkeit bestimmt sind, müssen ebenfalls von dem darin enthaltenen Sauerstoff befreit sein. Die Vorbereitung des zu untersuchenden Organes, die Messung der entwickelten Kohlensäure usw. bieten keinerlei spezielle Eigentümlichkeiten.

2. Die künstliche Durchblutung des ganzen Tierkörpers unter Ausschluß von Sauerstoff. In dieser von Battelli¹) angegebenen Methode wird der ganze Tierkörper künstlich durchblutet, indem das Herz massiert wird, und die durch die Lunge entweichende Kohlensäure gesammelt. Außer ihrer großen Einfachheit bietet diese Methode den Vor-

teil, die Organe intakt unter den sonst während des Lebens herrschenden Bedingungen zu lassen. Diese Methode kann sehr gut beim Hunde angewandt werden; die Kaninchen sowie die Meerschweinchen eignen sich nicht recht dazu, weil bei diesen Tieren das Herz sehr bald blutleer wird.

Um die aus der Lunge entweichende Kohlensäure aufzufangen, wird die künstliche Atmung mit Stickstoff vorgenommen. Zu dem Zwecke benutzt man die in der Fig. 121 dargestellte Anordnung.

Die Röhre T kann einerseits mit der Trachealkanüle und andrerseits mit den als $M\"{a}ller$ sche Ventile funktionierenden, mit einer Barytlösung gefüllten Flaschen in Verbindung gesetzt werden. Die Flaschen sind mit einem dickwandigen Gummiballon P von $600~cm^2$ Rauminhalt, welcher als Saug- und Druckpumpe funktioniert, verbunden. Bei jedem Zusammen-

¹) F. Battelli, Contribution à l'étude du métabolisme en cas de circulation artificielle. Arch. internationales de Physiologie. T. 1. p. 47 (1904).

pressen des Ballons P wird das Gas durch die Kanüle T-nach Passieren der Flasche B in die Lunge getrieben. Sobald die Kompression des Ballons aufhört, sucht letzterer sein früheres Volumen wieder zu gewinnen und saugt das Gas, welches die Flaschen A, B, C passieren muß, an. Der Gummiballon sowie die Flaschen müssen natürlich vorher von Luft völlig befreit und mit Stickstoff gefüllt werden. Man wird mehrere Reihen Barytflaschen, die in der gleichen Weise angeordnet sind, bereit halten, um im gegebenen Augenblicke die bereits benutzten zu ersetzen.

Die Versuchsanordnung ist folgende: Das Versuchstier wird gefesselt, tracheotomiert und eine Kanüle in die Trachea eingebunden. Die Trachealkanüle wird mit dem Rohr T verbunden.

Die spontanen Atembewegungen werden durch rythmisches Zusammenpressen des Gummiballons verstärkt. Nach einer gewissen Zeit verschwinden die Reflexe. Man öffnet alsdann die Brusthöhle, legt das Herz bloß und massiert es kräftig, während die künstliche Atmung mit Stickstoff fortdauert. Die Zirkulation vollzieht sich sehr gut während der ersten Viertelstunde, später aber wird das Herz infolge der eintretenden Lähmung der Vasomotoren allmählich blutleer. Man hebt dann den hinteren Teil des Tieres empor und führt außerdem von Zeit zu Zeit eine isotonische, auf 40° erwärmte Kochsalzlösung in die Vena femoralis ein.

Um das Abkühlen des Tieres soweit wie möglich zu verhindern, wird dasselbe auf eine mit Wasser gefüllte und auf 45° erwärmte Zinkkiste gelegt und mit Wolldecken sorgfältig bedeckt. Man kann das Tier auch in ein Salzwasserbad, das auf 38° erwärmt wird, bringen.

Wenn die Lunge durch das Gas, welches in dem zur künstlichen Λ tmung dienenden System enthalten ist, nicht genügend erweitert ist, kann man eine mehr oder minder große Menge Stickstoff durch das Rohr O in die Lunge einführen.

Wenn man es für nötig findet, werden die zur Absorption der Kohlensäure während einer gewissen Zeit benutzten Flaschen entfernt und durch eine andere Reihe mit titrierter Barytlösung gefüllter Flaschen ersetzt. Der Versuch wird bis zu dem Augenblicke fortgesetzt, wo die Barytlösung keine merkbare Trübung mehr aufweist, was ungefähr nach 2 Stunden der Fall ist. Man vereinigt die in den verschiedenen Flaschen enthaltene Barytlösung und bestimmt die Kohlensäure nach der gewöhnlichen Methode.

Man kann auch die in dem Blute und in den Geweben zurückgebliebene Kohlensäuremenge messen.

Mit Hilfe dieser Methode kann man konstatieren, daß die Abgabe von Kohlensäure durch die Lunge während der ersten 15 Minuten der künstlichen Durchblutung unter Ausschluß von Sauerstoff bedeutend abnimmt; darauf bleibt sie während einer halben Stunde konstant und sinkt dann aufs neue. Nach 90 Minuten erhält man nur geringe Mengen Kohlensäure. In den Geweben und im Blute bleibt nur sehr wenig Kohlensäure. Die Reaktion des Blutes und der Gewebe ist ausgesprochen sauer.

Die Menge der während der zweistündigen künstlichen Durchblutung unter Ausschluß von Sauerstoff erhaltene Kohlensäure entspricht ziemlich genau der Kohlensäuremenge, die der Berechnung nach im Tierkörper im Augenblicke des Todes durch Ersticken existieren mußte.

3. Untersuchung fragmentierter Gewebe. Die Untersuchungen an fragmentierten Geweben unter Ausschluß von Sauerstoff sind von zahlreichen Forschern gemacht worden. Die verschiedenen Methoden, die zur Untersuchung des respiratorischen Gaswechsels fragmentierter Gewebe in Gegenwart von Sauerstoff augewandt werden und die weiter oben beschrieben worden sind, können auch benutzt werden, wenn man die Gewebe in einer Stickstoff- oder Wasserstoffatmosphäre atmen lassen will. Nachdem das zu untersuchende Gewebe in den Apparat gebracht worden ist, treibt man einen starken Strom des entsprechenden Gases, Stickstoff oder Wasserstoff, durch das das Gewebe enthaltende Gefäß. Der Apparat von Tissot eignet sich sehr gut zu diesen Untersuchungen. Die Kaliflaschen p (siehe Fig. 115) sind mit einem das betreffende inerte Gas enthaltenden Gasometer verbunden und die Aspiration des Gases wird mit Hilfe eines Wasseraspirators erzielt.

Die Zubereitung des Gewebes, die Messung der entwickelten Kohlensäure bieten keinerlei Besonderheiten.

4. Bestimmung der in den Geweben präformierten Kohlensäure. Wenn man erfahren will, ob ein gegebenes Gewebe in Abwesenheit von Sauerstoff Kohlensäure produziert hat, muß man vor allen Dingen die Kohlensäuremenge, die im Augenblicke des Lostrennens vom Tierkörper im Gewebe existiert hat, bestimmen. Dieser Umstand ist von den meisten Forschern, die sich mit dieser Frage beschäftigt haben, nicht in Betracht gezogen worden.

Mehrere-Methoden können zu dem Zwecke angewandt werden. Die einfachste Art besteht in folgendem: Man wiegt schnell das zu untersuchende Gewebe und bringt es sofort in ein hermetisch schließendes Gefäß, welches 10 Gewichtseinheiten auf 20° erhitztes, aber nicht siedendes Wasser enthält. Die Flasche wird sodann vollständig mit Wasser gefüllt und mit einem mit einem Hahn versehenen Glasstöpsel versehen. Alle Luft kann durch den Hahn entfernt werden. Der Hahn wird geschlossen und die Flasche bleibt ungefähr 5 Minuten lang bei einer Temperatur von 90°. Man läßt abkühlen und schüttelt die Flasche, um etwaige Gasbläschen, die an den Wänden der Flasche haften geblieben sind, zu lösen. Man öffnet nun die Flasche und zerschneidet schnell das Gewebe in kleine Stückchen mit Hilfe einer Schere, ohne das Gewebe aus dem Wasser zu heben. Das Ganze wird nun in einen Ballon gebracht, mit Phosphorsäure in einer Proportion von 1:100 angesäuert und das Gas mit Hilfe der Quecksilberluftpumpe extrahiert, wobei man das Ganze leicht erwärmt. Die Kohlensäure wird in der gewöhnlichen Weise gemessen.

Man kann auch die Kohlensäure aus dem Gewebe extrahieren, ohne letzteres zuerst zu erhitzen, denn man kann annehmen, daß infolge der

starken Azidität der Flüssigkeit jede Neubildung von Kohlensäure völlig ummöglich gemacht wird. Das Gewebe wird schnell gewogen, in 10 Gewichtsteile kalten Wassers getan und unter Wasser rasch in kleine Stückchen zerschnitten. Das Ganze wird schnell in den Ballon gebracht, die nötige Menge Phosphorsäure, um eine Gesamtkonzentration von 2:100 zu erzielen, hinzugefügt und das Gas mit Hilfe der Quecksilberpumpe extrahiert.

Die in den Geweben enthaltene Kohlensäure kann auch durch andauerndes Sieden extrahiert werden nach dem Verfahren von *Stintzing.*¹) Die mit Hilfe der letzteren Methode erhaltenen Werte sind etwas höher als die mit den anderen Methoden erhaltenen.

Die in den verschiedenen Geweben gefundenen Kohlensäuremengen sind verschieden. In den Muskeln der Säugetiere findet man gewöhnlich 15—20 Volumprozente Kohlensäure.

Das Vakuum allein genügt nicht, um sämtliche in den Geweben enthaltene Kohlensäure extrahieren zu können. Ein Gewebe, dem durch das Vakuum Kohlensäure entzogen worden ist, setzt seine Kohlensäureabgabe fort, wie es *Hermann*²) gezeigt hat. Diese Erscheinung könnte dadurch bedingt sein, daß das Gewebe nach dem Tode immer mehr sauer wird und somit neue Mengen gebundener Kohlensäure in Freiheit setzt.

¹) Stintzing, Fortgesetzte Untersuchungen über die Kohlensäure der Muskeln. Arch. f. d. ges. Physiol. Bd. 20. S. 189 (1879).

²) Hermann, Untersuchungen über den Stoffwechsel der Muskeln. Berlin 1867.

		٠



QH Abderhalden, Emil
324 Handbuch der biochemischen
A3 Arbeitsmethoden
Bd.3
Spez.T.1

BioMed

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

