

Natural History Museum Library


-

# PHILOSOPHICAL TRANSACTIONS 

Giving Some

$$
\begin{aligned}
& \text { ACCOUNT } \\
& \text { OFTHE }
\end{aligned}
$$

Prefent Undertakings, Studies, and Labours

$$
\begin{aligned}
& \text { OF THE } \\
& \text { INGENIOUS } \\
& \text { In many Confiderable PARTS } \\
& \text { OFTHE }
\end{aligned}
$$

$V O$ L. XVI. For the Tears 636, and 1687.
LONDON, Printed by Fofeph Streater, and are to be Sold by Sam. Simith, at the Princes-Arms, in St . $P_{\text {aul }}{ }^{\text {S-Church-Card. }}$ MDCLXXXVIII.

## TOTHE

## RIGHT HONOURABLE



## PRESIDENT

OF THE

## ROY AL SOCIETY,G。

This Sixteenth VOLVME

> OF THE

## PHILOSOPHICAL TRANSAGTIONS

Is Moft Humbly Dedicated

> By EDMOND HALLEX:

$$
\begin{aligned}
& \text { 9मTOT } \\
& \text { EUTANDOAOH THOIST } \\
& \text { To } \\
& 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 管 } \\
& \text { TATESAD 40, ThA是 } \\
& \text { TbLHCIEGg }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } 2 \text { ILTOR I\& } 108
\end{aligned}
$$

$$
\begin{aligned}
& \text { 造逪空时 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bhamber vidmat soik al } \\
& \text { stacall aromaty }
\end{aligned}
$$

# To The <br> RIGHT HONORABLE FULKELord BROOKE 

 of 2ธeauchampsscourt.
## My Lord;

HAving Compleated the ffteenth $V_{0-}$ lume of the Philofophical Tranfactions, (which contains part of the great Stock of Experimental Learning, communicated to the Royal Society the laft year,) I now Humbly Dedicate it to Your Lordfhip; a Perfon of Honor, always ready to Favor, whatever makes for the Improvement of Knowlege, and the Public Good. But this imperfect Character of Your LordMhip, tho of it Self Jufficient to Juftify the prefent Addrefs, is not the only Inducement to it: I could mention, how much We are all indebted to Your Lordfhip, for a Uniform and Steddy Loyalty to the King, and a Pious Love for Pour Country:

I might add, That Your Lordship's Kindness has reach the Publisher of the fe Tracts, and made Him wholly Your Own: But I mut take care, not to be Uneafy to Your Lordfhip; who is more inclined to Dogreat things, then to Hear of them after they are done.

Wherefore, I ball only recommend to Tour Lordfhip's Patronage and 'Protection, the following Difcour Pes: Some of which retreive loft Prices of Antiquity, (as the Incombuftible Cloth, Gcc.) and by the fe means add to the Authority of the Antients, who have fifered in their Reputation by Our Ignorance: $\mathrm{O}_{-}$ thers extend the bounds of Learning, and inform Mankind by Nero Difcoveryes: These are all presented to Your Lordship, in token of a much greater Debt, from,

## Mr Lord,

Your Lord/bip's mot Obe-
dient Humble Servant, WILLIAM MUSGRAVE, Reg. Soc. Sec.

# $\left[\begin{array}{ll}1\end{array}\right]$ TRANSACTIONS. 

For the Months of Fanwary, and February, 1686.

## THE CONTENTS.

"AN Advertifement. 2. A Difoomye conserning Gravity, and its Properties, wher cin tre Defcent of Heavy Bodies, and the Motion of Projects is iriefly but fully bardled. Togetber with the Solution of a Problem of great ufe in Gunnery: By E. Halley. 3. An account of an Experiment bewn lefore the Royal Society, of Sbooting by the Rarifaction of the Air: By Dr. D. Papin, R. S.S. 4. Part of a Letter from Dr. Salomon Reifel, chief Pbyfician to the Duke of Wirtemburg, alout an Extraordinary Tincture given to a Stone. 5. A Catalogue of Simple and Mixt Colours, with a Specimen of eaio Colour prefixt to its proper Name: By R. Waller, Fellow of the Royai Society. Accounts of Books: 1. An Effay towarast te Recovery of the Jewifh Meafures and Weights, comprebending their Moneys, by belp of Ancient Standards, compared with ours of England: By Richard Cumberland, D. D. 2. Ephemeris ad annum a $\mathrm{Na}=$ tivitate Domini, $1686, \&$ ad Longitudinem Urbis Londinenfis, ex Novis Hypothefious exactiffime Supputata \& Regio Societati Dicata.

## ADVERTISEMENT.

T$T$ baving teen fourd by Experience that Ceveral Curious Perfons bive been and are defireus to receive forme Account of what the Liarned part of the World are for the prefent buffed a(a).

## $\left.L^{2}\right]$

Lout, in the examination of experimental and real Knowledge, and what Difcoveries they have made in any part thereof. The Royal Society have therefore thought fit to order, that Care be taken for the future, that fuch Accountss fball e pualifbed in the fe Tranfactions Monthly, as may anfwer their expectations: Wherein will be contained not only feveral Experiments, Iavented and try:d by divers of their own Body, lut aifo juch other ufeful Difcourfes or Relations concerning Phyfical, Mathematical, and Mechanical Theories or Obfervations as |Ball e communicated by their Correfpondants for that Intent, or !o all otiverwife be font to, or collected by the Perfon that batin eng ged imfulf in this Tondertaking. He dotio therefore iverely Advertife all fucis Curious Perfoas as Jaall be defirous to promote this Defogn, ly Contributing what Jall occur to them that nay be ufeful theriunto; that upon their Communications they Jball ba:e fuch Acknowledgments made them as fball be to their fatiofaction.

And wereas divers Books and Tieatifes of fuch Philofophical Matte:s as fall iunder the Societies Confieration, are publifbed in Foreign Parts, which are Seldom to be found till Some years after, if at all, to the great damage both of the Authors and the Printers of them, and mare efeccially to the Inquiftetive of this Nati n: It is therefore defired and boped that for the future, all fuch Authors or Publifhers, or fuch Ingeni us Gentlemen as fbatl in their Travels meet with Such Books or Tracts, will be pleafed to ferad or lend th $m$ to the indertaker of this Affair, that $\int o$ an Impartial Account and Extr ct of them may be communicated to the Carious.

And tho' upon ar extraordin ry occafon thefe Tranfactions bave for fome Munths last paft been omitted, yet that defect mill: be foon fupplyed by the Jpeedy Publication of what bas occurred fince December laft, anil will be for the future continued at leajt as punctually as beretofore.

Tb fethat defire to Contribute to the carrying on of this Work, mav leafe to fend the Accounts they would have Pxinted to Mr. H. Hunt at GreMam Colledge, London, for the Secretaries of the Royal Society.

# DISCOURSE 

 Concernimg G R A V T Y, and its Properties, wherein the Defcent of Heavy Bodies, and the Motion of Projects is briefly, but fully bandled: Together with the Solution of a Problem of great $\mathcal{V}_{\mathrm{Je}}$ in GUN NERY. By E. HALLET.NA T U R E amidft the great variety of Problems wherewith She exercifes the Wits of Philofophical men, fcarce affords any one wherein the Effect is more vifible, and the Caufe more concealed than in thofe of the Phanomena of Gravity. Before we can go alone, we muft learn to defend our felves from the violence of its Impulfe, by not trufting the Center of Gravity of our Bodies beyond our reach; and yet the Acuteft Philofophers, and the fubtileft Enquirers into the Original of this Motion, have been fo far from fatisfying their Readers, that they themfelves feem little to have underftood the Confequences of their own Hypotbefes.

Des Cartes his Notion, I mult needs confers to be to me Incomprehenfible, while he will have the Particles of his Celestial matter, by being reflected on the Surface of the Eartb, and fo afcending therefrom, to drive down into their places thofe Terrestrial Bodies they find above them: This is as near as I can gather the fcope of the 20, 21, 22, and 23 Sections of the laft Book of his Principia Pbilo opphie ; yet neither he, nor any of his Followers can hew how a Body fufpended in libero athere, fhall be carried downwards by a

## [4]

continual Impulfe tending upwards, and acting upon all its parts equally: And befides the obfcurity wherewith he expreffes himfelf particularly,Sect. 23 . does fufficiently argue according to his own Rules, the confufed Idea he had of the thing he wrote.

Others, and among them Dr. Vofius afferts the Caufe of the Lefcent of heary Bodies to be the Diurnal rotation of the Eanth upon its Axis, without confidering, that according to the Doctrine of Motion fortified with Demonftration, all Bodies moved in Circulo, would recede from the Center of their Motion; whereby the contrary to Gravity would follow, and all loofe Bodies would be caft into the Air in a Tangent to the Parallel of Latitude, without the intervention of fome other Principle to keep them faft, fuch as is that of Gravity. Befides the effect of this Principle is throughout the whole Surface of the Glob found nearly equal, and certain Experiment feems to argue it rather tes near the Equinoctial, than towards the Poles, which could not be by any means, if the Diurnal rotation of the Earth upon its Axis were the caufe of Gravity, for where the Motion was fwifteft, the Effect would be moft confiderable.

Others affign the Preffure of the Atmolphere, to be the Caufe of this Tendency towards the Centice of the Earth; but unhappily they have miftaken the Caufe for the Effert, it being from undoubted Principles plain, that the Atmposphere has no other Preffure but what it derives from its Gravity, and that the Weight of the upper parts of the Airs prefling on the lower parts thereof, do fo far bend the Springs of that Elaftick Body, as to give it a force equal to the Weight that Compreffed it, having of it felf no force at all: And fuppofing it had, it will be very hard to explain the Modos, how that Preffure fhould occafion the Defcent of a Body circumfcribed by it, and preffed equally above and below, without fome other force to draw, or thruft it downwards. But to demonftrate the contrary of this Opinion, an Experiment was long fince fhewn before the Royal Society, whereby it ap-

## $[5]$

peared that the Atmo/phere was fo far from being the Caufe of Gravity, that the Effects thereof were much more Vigorous where the preffure of the Atmo/phere was taken off; for a long Glafs-Receiver having a light Down-feather included, being evacuated of Air, the Feather which in the Air would hardly fink, did in vacuo defcend with nearly the fame Velocity as if it had been a Stone.

Some think to Illuftrate this Defcent of H:avy Bodies, by comparing it with the Vertue of the Loadstone, ; but fetting afide the difference there is in the manner of their Attractions, the Loadstone drawing only in and about its Poles, and the Earth near equally in all parts of its Surface, this Comparifon avails no more than to explain ignotum per aque ignotum.

Others affign a certain Sympathetical attration between the Earth and its Parts, whereby they have, as it were, a defire to be united, to be the Caufe we enquire after: But this is fo far from explaining the Modus, that it is little more, than to tell us in other terms, that heavy bodies defcend, becaule they defoend.

This I fay, not that I can pretend to fubftitute any Solution of this Important Pbilofophical Problen, that fhall more happily explicate the Appearances of Gravity, only it may be ferviceable to thofe with whom the Credit of great Authors fways much, and who too-readily affent in verba magiftri, to let them fee that their Books are not always infallible: Befides the detection of Errors is the firft and fureft ftep towards the difeovery of Truth.

Tho' the Efficient Caufe of Gravity be fo obfcure, yet the fimal Caufe thereof is clear enough; for it is by this fingle Principle that the Earth and all the Celeftial Bodies are kept from diffolution : the leaft of their Particles not being fuffered to recede far from their Swfaces, without being immediately brought down again by vertue of this Natural tendency, which for their Prefervation, the Infinite Wifdom of their Creator has Ordained to be towards each of their Centers;

## [6]

nor can the Glabes of the Sun and Planets. otherwife be deftroyed, but by taking from them this power of keeping their parts united.

The Affections or Properties of Gravity, and its manner of acting upon Bodies falling, have been in a great meafure difcovered, and moft of them made out by Mathematical demonftration in this our Century, by the accurate diligence of Galileus, Torricellius, Hugenius, and others, and now lately by our worthy Country-man Mr. Ffaac. Nenton, (who has an incomparable Treatife of Motion almoft ready for the Prefs) which Properties it may be very material here to enumerate; that they may ferve for a Foundation to all thofe that fhall be willing to fpend their Thoughts in fearch of the true Caufe of this def $f \in n t$ of Bodies.

The firft Property is, That by this principle of Gravitatiom, all Bodies do defcend towards a Point, which either is, or elfe is very near to the Center of Magnitude of the Earth and Sea, about which the Sea forms it felf exactly into a Spherical furface, and the Prominences of the Land, confidering the Bulk of the whole, differ but infenfibly therefrom.

Secondly, That this Pointor Center of Gravitation, is fixt within the Earth, or at leaft has been LG, ever fince we have any Authentick Hiftory: For a Confequence of its Change, tho' never fo little, would be the over-flowing of the low Lands on that fide of the Globe towards which it approached, and the leaving new Iflands bare on the oppofite fide, from which it receded; but for this Two thoufand years it appears, that the low Iflands of the Mediterranean Sea (near to which the ancienteft Writers lived ) have continued much at the fame height above the Water, as they now are found; and no Inundations or veceffes of the Sea arguing any fuch Change, are Recorded in Hiftory; excepting the Univerfal Deluge, wnich can no better way be accounted for, than by fuppofing this Center of Gravitation removed for a time, towards the middie of the then inhabited parts of the World; and

## [7]

and a change of its place, but the two theufandeh part of the Radius of this Globe, were fufficient to bury the Tops of the higheft Hills under water.

Thirdly, That in all parts of the Surface of the Earth, or rather in all Points equidiftant from its Center, the force of Gravity is nearly equal; fo that the length of the Pendulum vibrating feconds of time, is found in all parts of the World to be very near the fame.' Tis true at S. Helena in the Latitude of 16 Degrees South, I found that the Pendulam of my Clock which vibrated feconds, needed to be made fhorter than it had been in England by a very fenfible fpace, (but which at that time I neglected to obferve accurately ) before it would keep time ; and fince the like Obfervations has been made by the FrenchOb/ervers near the Equinoctial: Yet I dare not affirm that in mine it proceeded from any other Caufe, than the great height of my place of Obfervation above the Surface of the Sea, whereby the Gravity being diminifhed, the length of the Pendulum vibrating feconds, is proportionably fhortned.

Fourthly, That Gravity does equally affect all Bodies, without regard either to their matter, bulk, or figure; fo that the Impediment of the Medium being removed, the moft compact and moft loofe, the greateft and fmaleft Bodies would defcend the fame fpaces in equal times; the truth whereof will appear from the Experiment I beford cited. In thefe twolaft particulars, is thewn the great difference between Gravity and Magnetifm, the one affecting only Iron, and that towards its Poles, the other all Bodies alike in every part. As a Corollary; from hence it will follow, that there is no fuch thing as pofitive levity, thofe things that appear light, being only comparatively fo; and whereas feveral things rife and fwim in fluids, 'tis becaufe bulk for bulk, they are not fo heavy as thole fluids; nor is there any reafon why Cork, for inftance, fhould be faid to be light becaufe it fwims on Water, any more than Iron becaufe it fwims on Mercury.

Fifthly, That this power encreafes as you defcend, and de-

## [8]

decreafes as you afcend from the Center, and that in the proportion of the Squares of the diftances therefrom reciprocally, fo as at a double diftance to have but a quarter of the force; this property is the principle on which Mr. Newton has made out all the Pbenom:na of the Caleftial Motions, fo eafily and naturally that its truth is paft difpute. Befides that, it is highly rational, that the attractive or gravitating power fhould exert it felf more vigiroufly in a fmall Sphere, and weaker in a greater, in proportion as it is contracted or expanded, and if fo, feeing that the furfaces of Spheres are as the Squares of their Radii, this power at feveral diftances will be as the Squares of thofe diftances Reciprocally, and then its whole action upon each Spherical Surface, be it great or fmall will be alwaicsequal. And this is evidently the rule of Gravitation towards the Centers of the Sun, Fupiter, Saturn and the Earth, and thence is reafonably inferred, to be the general principle obferved by Nature, in all the reft of the Celefial Bodies.

Thefe are the principal affections of Gravity, from which the rules of the fall of Bodies, and the motion of Projects are Mathamatically deducible. Mr. Ifac Newton has fhewed how to define the fpaces of the defient of a Body, let fall from arry given highth, down to the Center. Suppofing the Gravitationt to increafe, as in the fifth Property; but confidering the fmalnefs of hight, to which any Projeit can be made afcend, and over how little an Arch of the Globe it can be caft by any of our Engines, we may well enough fuppofe the Gravity equal throughout, and the defcents of Projects in parralel lines, which in truth are towards the Center, the difference being fo fmall as by no means to be difcovered in Practice. The Oppofition of the Air, 'tis true, is confiderable againft alf light bodies moving through it, as likewife againft fmall ones' (of which more hereafter) but in great and ponderous Shot, this Impediment is found by Experience but very fmall, and may fafely be neglected.


Eabl


## [9]

## Propofitions concerning the Defcent of beary Bodies, and the Motion of Projects.

Prop. I. The Velocities of falling Bodies, are proportionate to the times from the beginning of their falls.

This follows, for that the action of Gravity being continual, in every face of time, the falling Body receives a new impulfe, equal to what it had before, in the fame fpace of time, received from the fame power: For inftance, in the firft fecond of time, the falling Body has acquired a Velocity, which in that time would carry it to a certain diftance, fuppofe 32 foot, and were there no new force, would defcend at that rate with an equable. Motion; but in the next fecond of time, the fame power of Gravity continually acting thereon, fuperadds a new Velofity equal to the former; fo that at the end of two feconds, the Velocity is double to what it was at the end of the firt, and after the fame manner may it be proved to be triple, at the end of the third fecond, and fo on. Wherefore the $V$ elocities of falling Bodies, are proportionate to the times of their falls, Q.E.D.

Prop. II. The Spaces defcribed by the fall of a Body, are as the Squares of the times, from the beginning of the Fall.

Demonftration. Let A B (Fig.i. Tab.i.) reprefent the time of the fall of a Body, B C perpendicular to A B the Velofty acquired at the end of the fall, and draw the line AC, then divide the line A B reprefenting the time into as many equal parts as you pleafe, as $b, b, b, b, \& c$. and through thefe points draw the lines $\mathrm{bc}, \mathrm{bc}, \mathrm{bc}, \mathrm{bc}, \& \mathrm{c}$. parallel to BC , 'tis manifeft that the feveral lines, bc, reprefent the feveral Velocities of the falling Body, in fuch parts of the time as $A \mathrm{~b}$ is of A B, by the former propofition. It is evident likewife that the Area-A B C is the fum of all the lines bc being taken, according to the method of Indivifibles, infinitcly many; fo that

## [ 10 ]

the Area ABC reprefents the fum of all the Velocities, between none and BC fuppofed infinitely many; which fum is the fpace defended in the time reprefented by AB. And by the fame reafon the Areas A b c, will reprefent the fpaces defcended in the times Ab ; fo then the fpaces defcended in the times $\mathrm{AB}, \mathrm{Ab}$, are as the Areas of the Triangles A B C, A b c, which by the 20 th of the 6 of Euclid are as the Squares of their $H_{0}$ : mologous fodes A B, A b, that is to fay, of the Times: wherefore the defcents of falling Bodies, are as the Squares of the times of their fall, Q.E.D.

Prop. III. The Velocity which a falling Body acquires in any face of time, is double to that, wherewith it would have moved the fpace,defcended by an equable motion, in the fame time.

Demonfration, Draw the line E C parallel to A B and A E parallel to B C in the fame fig. 1 . and compleat the Parallelogram A B C E, it is evident that the Area thereof may reprefent the fpace, a Body moved equably with the Velocity B C, would defcribe in the time A B, and the Triangle A B C reprefents the /pace defcribed by the fall of a Body, in the fame time $A B$, by the fecond propofition. Now the Triangle A BC is half of the Parallelogram A B C E, and confequently the fpace defcribed by the fall, is half what would have been defcriked by an equable Motion with the $V$ elocity BC , in the fame time; wherefore the Velocity B C at the end of the fall, is double to that Velocity, which in the time A B, would have defcribed the Space fallen, reprefented by the Triangle A BC, with an equable Motion, Q.E.D.

Prop. IV. Ail Bodies on or near the furface of the Earth, in their fall, defcend fo, as at the end of the firft fecond of time, they have defcribed 16 feet one inch London Meafure, and acquire d the Velocity of 32 feet two inches in a fecond.

Th is is made out from the 25 th propofition of the fecond part of that Excellent Treatice of Mr. Hugenius de Horologio Ofcillatorio; wherein he demonftrates the time of the leaft Vibrations of a Pendulum, to be to the time of the fall of a Body,

## [11]

from the height of half the length of the Pendulum, as the Circumference of a Circle to its Diameter; whence as a Corollary it follows, that as the Square of the Diameter to the Square of the Circumference, fo half the length of the Pendulum vibrating /econds, to the pace defcribed by the fall of a body in a fecond of time: and the length of the Pendulum vibrating feconds, being found 39,125 , or $\frac{8}{8}$ Inches, the diefcent in a fecond will be found by the aforefaid Analogy 16 Foot and one Inch: and by the third Propofition, the Velocity will be double thereto; and near to this it hath been found by feveral Experiments, which by reafon of the $\int$ iftne $\beta$ of the fall, cannot fo exactly determine its quantity. The Demonftration of Hugenius being the Conclufion of a long train of Confequences. I thall for brevity fake omit; and refer you to his Book, where thefe things are more amply treated of.

From thefe four Propofitions, all Queftions concerning the Perpendicular fall of bodies, are eafly folved; and either Time, Heigbt, or Velocity being affigned, one may readily find the other two. From them likewife is the Doctrine of Projects deducible, affuming the two following Axioms; viz. That a body fet a moving, will move on continually in a right line with an equable motion, unlefs fome other force or impediment intervene, whereby it is acceleyated, or retarded, or deflected.

Secosdly, That a Body being agitated by two motions at a time, does by their compounded forces pals through the fame points, as it would do, were the two motions divided and acted fuccefively. As for inftance, Suppofe a body moved in the Line GF, (Fig.2.Tab.r.) from $G$ to R, and there ftopping, by another impulfe fuppofe it moved in a pace of time equal to the former, from R towards K, to V. I fay, the body fhall paifs through the point $V$, tho' there two feveral forces, acted both in the fame timie.

Prop. V. The Motion of all Projegts is in the Curve of a Parabola: Let the line GRF (in fog 2.2 be the line in which the Project is directed, and in which by the firf Axiom it would

## [12]

move equal /paces in equal times,' were it not deflected downwards by the force of Gravity. Let G B be the Horizontal tine, and G C a Perpendicular thereto. Then the line G R F being divided into equal parts, anfwering to equal $\rho$ paces of time, let the defcents of the Project be laid down in lines parallel to GC, proportioned as the fquares of the lines $\mathrm{GS}, \mathrm{GR}$, GL, GF, or as the fquares of the times, from S to T , from R to V , from Lito X , and from F to B , and draw the lines TH , VD, XY, BC parallel to GF; I fay the Points T,V, X,B, are Points in the Curve defcribed by the Project, and that that Curve is a Parabola. By the fecond Axiom they are Points in the Curve ; and the parts of the def cent GH, GD, GY, GC $=$ to ST, RV, LX, FB, being as the fquares of the times (by the fecond Prop.) that is, as the fquares of the Ordinates, HT, DU, YX, BC, equal to GS, GR, GL, GF, the Jpaces meafured in thofe times; and there being no other Curve but the Parabola, whofe parts of the Diameter are as the Squares of the Ordinates, it follows that the Curve defcribed by a Project, can be no other than a Parabola: And faying, as RU the defcent in any time, to GR or UD the direct motion in the fame time, fo is U D, to a third proportional ; that third will be the line called by all Writers of Conicks, the Parameter of the Parabola to the Diameter GC, which is alwaies the fame in Projects caft with the fame Velocity: And the Velocity being defined by the number of feet moved in a fecond of time, the $P$ arameter will be found by dividing the fquare of the Velocity, by 16 feet 1 inch, the fall of body in the fame time.

## Lemma.

The Sine of the double of any Arch, is equal to twice the Sine of that Arch into its Co-fine, divided by Radius; and the $V$ erfed fine of the double of any Arch is equal to the fquare of the Sine thereof divided by Radius.

Let the Arch BC (in fig.3.) be double the Anch BF, and A the Center; draw the Radii $\mathrm{AB}, \mathrm{AF}, \mathrm{AC}$, and the Chord BDC,

## $[13]$

BDC , and let fall BE perpendicular to AC , and the Angle EBC, will be equal to the Angle ABD , and the Triangle BCE , will be like to the Triangle BDA; wherefore it will be as AB to AD , fo BC or twice BD ; to BE , that is as Radius to Co-jine, fo twice Sine, to Sine of the double Arch. And as AB to BD, fo twice BD or BC, to EC, that is as Radius to Sine, fo twice that Sine to the Ver $\int$ ed-fine of the double Arch; which two Analogies refolved into Equations, are the Propofitions contained in the Lemma to be proved.

Prop. VI. The Horizontal diftances of Projections made with the fame Velocity, at feveral Elevations of the Line of direction, are as the Sines of the doubled Angles of Elevation.

Let GB (fig.2.) the Horizontal diftance be $=z$, the fne of the Angle of Elevation, $\mathrm{FGB}, \mathrm{be}=s$, its Co-fine $=c, R a-$ dius $=r$, and the Parameter $=p$. It will be as $c$ to $s ; f o z$ to $\stackrel{s z}{c}=\mathrm{FB}=\mathrm{GC}$, and by reafon of the Parabola $\frac{p s z}{c}=$ to the fquare of CB , or GF . Now asc to $r$, fo is $z$ to $z r=\mathrm{GF}$, and $c$ its fquare $\frac{z z r r}{c c}$ will be therefore $=$ to $\frac{p s z}{c}$ : which Equation re duced, will be $\frac{P S C}{r r}=2$. But by the former Lemma $\frac{2 s c}{n}$ is equal to the Sine of the double Angle, whereof $s$ is the Sine: wherefore' 'twil be as Radius to Sine of double the Angle FGB, fo is half the Parameter, to the Horizontal rang or distance fought; and at the feveral Elevations, the ranges are as the fines of the double Angles of Elcvation R.E.D.

## Corollary.

Hence it follows, that half the Parameter is the greateft Randon, and that that happens at the Elevation of 45 degrees, the fine of whofe dөuble is Radius,. Likewife that the Ranges equally diftant above and below 45 are quals as $\mathrm{B}_{2}$ are

## $[14]$

are the fines of all doubled Arches, to the fines of their doubled Complements.

Prop. VII. The Altitudes of Projections made with the fame Velocity, at feveral Elewations, are as the verfed fines of the doubled Angles of Elevation: As $c$ is to $s:: f$ is $\frac{p s c}{r^{r}}$ $=\mathrm{GB}$ to $\frac{p s s}{r r} \mathrm{BF}$, and $\mathrm{UK}=\mathrm{RU}=\mathrm{BF}$, the Altitude of the Profection $=\frac{p s s}{4 r r}$ Now by the foregoing Lemma $\frac{2 s s}{r}=$ to the verfed jane of the double Angle, and therefore it will be as Radins, to ver Sed fine of double the Angle FGB, fo an 8 th of Parameters to the height of the Projection VK; and fo there heights at, feveral Elevations are as the faid verfed fines, Q.E.D.

## Corollary.

From hence it is plain, that the greateft Altitude of the perpendicular Projection is a $4 t h$ of Parameter, or half the greateft Horitombul Rangi, the zerfed fme of 180 degrees being $=2 r$.

Prop. VIII. The Lines GF, or times of the fight of a Project calt with the fame degree of velocity at different Elevations, are as the fines of the Elevations:

As $c$ is to $r: f_{0}$ is $\frac{p s c}{r r} G B$ by the 6 Prop to $\frac{p s}{r}=G F$, that is as Raditus to fine of Ele ration, fo the Paraimeter to the line GF; fo the limes GF areas the fines of Elevation, and the Times are proportional to thofe Lines; wherefore the Times are as the Sines of Etevation : Engo coriftat propofino.

Prop. IX. Problem. A Projection being made as you pleafe, having the Diftance and Altitude, or Defcent of an Object, through which the Project paffes, together with the Angle of Elevation of the line of Direction; to find the Parameter and Velocity, that is (in Fig. 2.) having the Angle FGB, GM, and MX.

Soluiton. As Radits to Secant of FGB, fo GM the diftance

## $[15]$

given, to GL; and as Radius to Tangent of FGB, fo GM to LM. Then LM - MX in beights, or +MX in defcents; or elfe MX-ML, if the direction be below the $H$ rizontal-line, is the $f$ all in the time that the dire:t impulfe given in G would have carried the Project from G to $\mathrm{L}=\mathrm{LX}=\mathrm{GY}$; then by reafon of the Paribola ; as LX or GY, is to GL or YX, :: fo is GL to the Parameter fought. To find the Velocity of the Impwfe, by Prop.2. \& 4, find the time in Seconds that a boaly would fall the pace LX , and by that dividing the line GL , the Quote will be the Velocity, or .Jace moved in a Second fought, which is alwaies a mean proportional between the Pa rameter and I6 feet I inch.

Prop. X. Problem 2. Having the Parameter, Horizontal diftance, and height or defcent of an Object, to find the Elevations of the line of direction necelfary to hit the given Object ; that is, having.GM, MX, and the greateft Randon equal to half the Parameter; to find the Angles FGB.

Let the Tangent of the Angle fought be $\beth t$, the Horizontal diffance $\mathrm{GM}=b$, the Altitude of the $O^{\prime}$ ject $\mathrm{MX}=h$, the $P a$ rameter $=p$, and Radius $=r$, and it will be,
As $r$ to $t$, fo $b$ to $\frac{t b}{r}=\mathrm{ML}$ and $\frac{t b}{r} b$ in afcents $=\mathrm{LX}$, and $p+b$ 于 $p h=\mathrm{GL}$ quad. $=\mathrm{XY}$ quad. ratione Parabole; but
$r$
$b b+\frac{t t b b}{r r}=\mathrm{GL}$ quad. 47. 1. Euclid. Wherefore
$\frac{p t b}{r} \mp p k=b b+\frac{t+b b}{r r}$ which Equation tranfoofed, is $\frac{t+b b}{r r}=\frac{p t b}{r}$ 干 $p h-b b$, divided by $b b$ is $\frac{t t}{r r}=\frac{p t}{b r}+\frac{p b}{b b}$ 1. this Equation fhews the Queftion to have two Anfwers, and the Roots thereof are $-\frac{t}{r}={ }_{2}^{p} \bar{b} \mp$
$\frac{\sqrt{p p \mp 4 p b}}{4 b b}-\mathrm{I}$ from which I derive the following Rule.

## [16]

Divide half the Parameter by the Horizontal diftance, and keep the Quote; viz. $\frac{p}{2} \frac{p}{b}$ then fay, as Square of the diftance given to the half Parameter, fo half Parameter $\mp$ double height defcent to the Square of a Secant $=\frac{p p+4 p b}{4 b b}$
the Tangent anfwering to that Secant, will be $\sqrt{\frac{p p \mp 4 p b}{4 b b}-1}$ or $r r$ : fo then the fum and difference of the afore-found Quote, and this Tangent will be the Roots of the Equation, and the Tangents of the Elevations fought.

Note here, that in Defcents, if the Tangent exceed the Quote, as it does when $p h$ is more than $b b$, the direction of the lower Elevation will be below the Horizon, and if $p h \leftrightarrows b b$, it muft be directed Horizontal, and the Tangent of the upper Elevation will be $\frac{p r}{b}$ : Note likewife, that if $4 b b+4 p h$ in afcents, or $4 b b-4 p h$ in defcents, be equal to $p p$, there is but one Elevation that can hit the Object, and its Tangent is $\frac{p r}{2 b}$ and if $4 b b+4 p h$ in afcents, or $4 b b-4 p h$ in defcents, do exceed $p p$, the Ob ject is without the reach of a Project caft with that Velccity, and fo the thing impoffible.

From this Equation 466 干 $4 p h=p p$ are determined the utmoft limits of the reach of any Project, and the Figure affigned, wherein are all the beights upon each Horizontal diftance beyond which it cannot pafs; for by reduction of that $E$ quation, $h$ will be found $={ }_{4}^{?} p-\frac{b b}{p}$ in beights, and $\frac{b b}{p}-\frac{1}{a}$ in defents; from whence it follows, that all the Points $h$ are in the Curve of the Parabola, whofe Forus is the Point from whence the Project is caft, and whofe Latus rectum, or Para meter ad Axem is $=p$. Likewife from the fame Equation may the leaft Parameter or Velocity be found capable to reach the

## [17]

Object propofed; for $b b=\frac{1}{4} p p$ 年 $p h$ being reduced $p$ will be $=\sqrt{6 b+b b} \pm h h_{\text {in defcents, }}$ in which is the Horizontal rang at 45 degrees, that would juft reach the Object, and the Elevation requifite will be eafily had; for dividing the fo found Semi-parameter by the Horizontal diftance given b, the Quote into Radius will be the Tangent of the Elevation fought: This Rule may be of good ufe to all Bombardiers and Gunners, not only that they may ufe no more Powder than is neceffary, to caft their Bom's into the place affigned, but that they may fhoot with much more certainty, for that a fmall Error committed in the Elevation of the Piece, will produce no fenfible difference in the fall of the Shot : For which Reafons the French Engineers in their late Sieges have ufed Morter-pieces inclined conftantly to the Elevation of 45,proportioning their Charge of Powder according to the diftanceof the Object they intend to ftrike on the Horizon.

And this is all that need to be faid concerning this Problem, of Shooting upon bights and defcents. But if a Geometrical conftruetion thereof be required; I think I have one, that is as eafy as any can be expected, which I deduce from the forgoing Analytical Solution, viz. $\frac{t}{r}=\frac{p}{2 b}+\frac{\bar{V}^{2} \overline{p p} \pm \overline{p b-b}}{b b}$, and tis this. Having made the right Angle LD A, Tab.r. fig. 4. make D A, DF $=p$, or greateft Rang, D G $=b$ the Horizontal diltance, and DB DC=h, the Perpendicular hight of the Object; and draw GB, and make DE= thereto. Then with the Radius A C and center E fweep an Arch, which if the thing be poffible, will Inter fect the line A D in H ; and the line D H being laid both waies from F will give the points K and L , to which draw the lines G L, G K; I fay the Angles LGD, KGD are the Elevations required for hitting the Object B. But note that if B be below the Horizon, its defcent $\mathrm{DC}=\mathrm{DB}$ muft be laid from A , fo as to have $\mathrm{AC}=$ to $\mathrm{AD}+\mathrm{D}$ C. Note likewife, that if in de $f$ cents DH be greater than F D , and fo K fall below D the

## [18]

Angle KGD fhall be the depreffion below the Horizon : Now this Conftruction fo naturally follows from the Equation; that I thall need fay no more about it.

Prop. XI. To determine the force or Velocity of a Project, in every point of the Curve it defcribes.

To do this we need no other pracognita, but only the third Propofition, Viz. that the Velocity of falling Bodies, is double to that which in the fame time, would have deferibed the fpace fallen by an equable motion: For the Velocity of a Project, is compounded of the conftant equal Velocity of the impreffed motion, and the Velocity of the fall, under a given Angle, viz. the complement of the Elevation: For inftance, in Fig. 2, in the time wherein a project would move from $G$ to L, it defcends from L to X , and by the third Propofition has acquired a Velocity, which in that time would have carried it by an equable motion from $L$ to $Z$ or twice the defcent $L X$; and drawing the line G Z, I fay the Velocity in the point X, compounded of the Velocities G L and L Z under the Angle GL Z , is to the Velocity impreft in the point G , as G Z is to GL; this follows from our fecond Axiome; and by the 20 and 2 I.Prop. Lib.1, conic. Midorgiz, XO parallel and equal to $G$ Z fhall touch the Pari ola in the point X. So that the Velocities in the feveral points, are as the lengths of the Tangents to the Parabola in thofe points, intercepted between any two Diameters: And thefe again are as the Secants of the Angles, which thofe Tangents continued make with the Horizontal line G B. From what is here laid down, may the comparative force of a , ott in any two points of the Curve, be either Geometrically or Arithmetically difcovered.

## Coroltary.

From hence it follows, that the force of a Shot is alwaies leaft at $U$, or the Vertex of the Parabola, and that atequal diffances therefrom, as at $T$ and $X, G$ and $B$ its force is alwaies equal, and that the leaf force in Uis to that in Gand

## $[19]$

B, as Radius to the Secant of the Angle of Elevation F G B.
Thefe Propofitions confidered, there is no queftion relating to Projects, which by the help of them may not eafily be Solved; and tho' it be true that moit of them are to be met withal, in Galileus, Torrice:i'ius and others, who have raken them from thofe Authors, yet their Books being Furreign, and not eafy to come by, and their $D$ monftrations long and difficult, I thought it not amifs to give the whole Doithins here in Englifh, with fuch fhort Analyytical Proof of my own, as might be fufficient to evince their Truth.

The Teuth Propofstion containes a Prol lem, untouch't by Torricellus, which is of the greatef ufe in Gunnery, and for the fake of which this $L i i_{\text {four }} /$ e was pr. ncipally iniended; It was firlt Solved by Mr. Ander fon, in is Book of the Genuine ufe and effects of the Gunn, Printed in the Year 1674 ; but his Solution requi ed fo muct: Calculation, that it put me upon fearch, whether is might not be done more eafily, and thereupon in the Year 1578 I found out the rule I now publiih, and from it the Ceometrical Conitruction: Since which time there has a large Treatife of this Subject Entituled, $L^{\prime} a r t$ de jetter les Bombes, been Publifhed in France by Monfieur Blondel, wherein hegives the Solutions of this Problem by Mefree urs Bout, Romer and de la Hire; But none of them being thie fame with mine, or in my Opinion more eafy, and molt of them more Operofe, and befides mine finding the Tangent, which generally determines the Angle better than its Sine, I thought my felf obliged to Print it for the ufe of all fuch, as defire to be informed in the Matbematical part, of the Arr of Gunnery.

Now thefe rules were rigidly true, were it not, as I faid before, for the Oppoiftion of the Medium, whereby not only the direct impreft Motion is continually retarded, by likewife the increafe of the $V_{e l} l_{c i t y} y$ of the $f_{s} \| l$, fo that the fpaces deffribed thereby, are not exactly as the fquares of the times: But what this Oppofition of the Air is, againft feveral $V$ :locities, Bulks, awd Weights, is not fueafy to determine. Tis

## [20]

certain that the weight of Air, to that of Water, is nearly as 1 to 800 , whence the weight thereof, to that of any Project is given; tis very likely, that to the fame Ve!ocity, and Magnitude, but of different matter, the Oppofition fhould be reciprocally as the weights of the fhott; as likewife that to fhott of the fame Coloioty and matter, but of different Sizes, it fhould be as the Diameters reciprocally: whence generally the Oppofition to fhote with the fame Velocity, but of differing Diameters, and Materials, fhould be as their Specifick Gravities into their Diameters reciprocally; but whether the Oppofition, to differing Velocities of the fame fhott, be as the Squares of thofe Zelocities, or as the Velocities themfelves, or otherwife, is yet a harder Queftion. However it be, tis certain', that in large Shott of Mettal, whole weight many Thoufand times Surpaffes that of the Air, and whofe force is very great, in propartion to the Surface wherewith they prefs thereon; this Oppofition is fcarce difcernable: For by feveral Eaperiments made with all Care and Circumfpection with a Morterpeice Extraordinary well fixt to the Earth on purpofe, which carried a Solid Brafs Shott of $4 \frac{5}{2}$ Inches Diameter, and of about 14 Pound weight, the Ranges above and below 45 Degrees were found nearly equal; if there were any difference, the under Ranges went rather the fartheft, but thofe differences were ufually lefs than the Errours committed in ordinary Practice, by the unequal Goodnefs and Drynefs of the fame fort of Pouder, by the Unfitnefs of the Shott to the Bore, and by the Loofnefs of the Carriage.

In a Smaller Brafs-Shott of about an Inch and half Diameter, caft by a Crofs-Bow which ranged it, at moft about 400 foot, the Force being much more Equal than in the Morterpeice, this difference was found more Curioufly, and Conftantly and moit Evidently, the under Ranges out went the upper. From which Trials I conclude, that altho in fmall and light Shott, the Oppofition of the Air, ought and muft be accounted for; yet in Shooting of Great and Weighty Bombs, there need be very little or no allowance made; and fo thefe Rules may

$$
[2 x]
$$

be put inPractice to all Intents and Purpofes, as if this loupediment were abfolutely Removed.

An Account of an Expriment Sheron before the Royal Society, of Shooting by the Rarefaction of the Air: By Dr. D. Papin, R.S.S.

WHereas ordinary Wind-Guns do their Effect by the Compreflion of the Air. Ottho Ghericke hath found a new Sort that fhoots by Rarefaction; and he hath Publifht that device at large in his Book about Pneumatick Experiments, but he doth not exprefs how ftrong was the Effect. I have therefore had the Curiofity to try it my felf by another Contrivance, which I take to be better than his: Firft, becaufe I can make a Rarefaction much more perfect than he could do. Secondly, becaufe his Device could not be ufed but for Guns of a fmall bore; but my way may be apply'd to the biggeft bore that can be made by Workmen: So that one might by this means throw up vaft Weights to a great diftance.

A A is a Pipe very equal from one end to the other.
B B a fmali Pipe foder'd to a Hole near the end of the Pipe A.A, and apply'd to the Plate of the Pnenmatick Ergine.

CCCC fome kind of Stool to bear up the hinder part of the Pipe A A.
D. a peice of Lead fitted to the bore of the pipe A A.

The pipe A A is to be fhut at bothends by Valves outwardly apply'd, and fo the faid pipe A A, though never fo big, may be exhaufted of Air by means of the Pneumatick Engine: Which done, the Valve towards D muft be fudden ly open'd, fo that the whole preffure of the Atmofpinere acting upon the Lead $D$ may drive it along the pipe $A A$ with

$$
\mathrm{C}_{3}
$$

fuch

## [22]

fuch a fwiftnefs, that it will be able to carry it to a great diftance: And becaufe fuch a Valve fhutting a great hole would prove very difficult to be opened, when the pipe A A is of a great Bore, the aperture towards D may be left much fmaller than the pipe ; the fwiftnefs of the Air being fogreat, that even through a pretty fmall aperture, it preffes the lead D as freely almoft as if the whole Bore was quite open.

Having prepared a Barrel carrying a lead of 2 ounces, the Experiment was fhewn before the Royal Society, and the Effect was found very confiderable, the force being little lefs than that of the Wind-Gun by compreffion ; the fame experiment being afterwards repeated with a longer Barrel, 'twas found that the length in this way of fhooting was very little, if any advantage.

Part of a LETTER from Dr. Salomon Reifel, Cbief Pbyfician to the Duke of Wirtemburg, about an extraordinary Tincture givento a Stone: Stutgardia, Febr. 120.1686.

AUrifaber Stutgardianus, qui \& gemmis \& Metallicis typis nummorum cudendorum infculpendis artificiofus eft, nomine Chriftopborus Muller, Anno 1685 , aurum aqua regis folutum, oleo Tartari precipitatum atque edulcoratum, quod aurum fulminans dicunt, dum in fcutella, quam Maturellam vocant, ex lapide Chalcedonico coloris unici pellucidi onychini feu Cornei, vitro pro fufione proparato rubro mixtum, \& aqua fontana imbutum tereret, ad facienda Encaufta feu fmalta; de quibus Anton. Nerius vertente Andrea Frifio, egit lib.6. Artis Vitraria; invenit iterato tertium eodem labore: quod color pulveris iftius puniceus, qui per dies aliquot ficcatus in vafculo manferat, quoufque inter te-

## [23]

rendum etiam ad marginem effuxit, reliftis tamen puris hinc inde fpatiis Onychini coloris, duriffimam hanc gemmam, qua limam fpernit, ita profunde penetraverit, non tantum in fcutella, fed \& ipfo piftillo, \& diftinxerit maculis atque circulis fat ordinate ductis, ut color hic neque fimplici aqua, neque lixivia, vel acriori alio liquore potuerit deleri, \& quidem fine politurx elegantioris detrimento.

Talis itaque tinctura per repetitas trituras dicti pulveris tentata denuo aliquoties, in fimilis coloris alio Vafculo, neque vero apparuit poftea ut antea nunquam. Sed hoc imprimiscirca tinctionem hujus vafculi obfervandum eft, quod fecundum texturam gemmx, tam nudo quam armato oculo, intincta interna, \& fincera externa parte vafis, notentur fibra feu ductus circulares, juxta quos, bracteis fucci lapidei novi per intervalla impofitis, in ejufmodi molem excrevife credendum eft ; uti Bezoar aliique lapidss laminis fuper accrefcentibus augentur, \& ligna, in quorum ultimorum tiunco, circuli feu annuli defignant fucci annui numerum \& in crementa: adeo ut hic, purpureus ille color lincis pallidioribus \&: obfcurioribus, prout vel denfiores vel rariores poros, molliorem vel duriorem texturam offendit, circulares ambitus circa veiticem aliquem, veluti circa medullám feu cor, ut appellant, aut granum aut paleam in aliis lapidibus \& lignis, fignaverit ; intermiftis quoque hinc inde maculis \& fpatiis obfcurioribus. Veluti Illuftr. Bogle, Specim. de Orig. \& Virt. Gemmarum, 6. 1. pag. 22, 23, in Adamante \& Granatis acies \& commiffuras tenuium bractearum aut planorum obfervavit; quod granum artifices feu planam contexturam non diffimilem fiffilitati ligni vocant.

Jam vero tingi poffe quoque Marmora \& Alabaftra \& Of fa per lixiviatos \& acres fuccos, hinc inde frriptum eft : quod fortaflis \& de Gemmis feerandum eft, quando Rcb. Boole Cit. 6. 2. pag. 123. ex iis tincturam manifertam cxtractam cffe fcribit, alibi, p.43.\& 190. per vapores minerales tinctos effe cryftallos petrofos, atque pag. 45 . ipfum Säpphirum per vapores fubterraneos.

## [24]

Cum denique ex obfervatione noftra manifeftum fit, revera tinctam effe gemmam Chalcedoniam, quamvis fortuito acciderit, neque repetito proceffu fimile quid evenerit, merebitur tamen meditationem, an ex aftrorum fluxu, aliave abfcondita potius vi venerit, \& tentamen; an ex mixtura falium \& fuccorum acrium poffit imitando produci ejufmodi Tinctura, \& quidem fine Igne, ut fplendor \& Pelluciditas gemmx non deltruatur, durities autem maneat, adeoque ipfa gemma pretiofitas non tantum feryetur, fed \& per tiocturani novam crefcat.

Hujus Tincturx figuram \& modum, fi forte quem delectet, addere placuit, qualis noctu oppofita Candelx vifa fuit, aliquomodo nec fatis accurate delineatum. Tab.I.Fig.6.

## A CATALOGUE of Simple and Mixt Colours, with a Specimen of each Colour prefixt to its proper Name: By R.WALLER, Fellow of the Royal Society.

HAving fometime fince feen a TABLE of the Simple Colo rrs made ufe of in Limping and Painting, Printed in the Year 1680, at Stckblim; I have here endeavoured to give a more Pbilofophical, and ufeful one by the addition of Come mixt Colours: Not that I pretend to give the Shades of all the mi $t$ Colours, which were indeed infinite as the Compofitions and Proportions of them may be unlimited; but I have mixt each of the Simple Tellows and Reds with each of the fimpthe Ble is, and thefe Mixtures give moft of the mean Co urs, viz. reens, Purples, \&c. To know what each of thefe mazit Cotous s is compounded of, you need but look to the Fop of che Tale dieetly over the Colour enquired after, where you may find the One Ingredient, and at the Side in the

## [25]

the fame Row, the other. As the $P_{\text {eppinjay-green }}$ is made of Blew Bice and Camlodia, an equal weight of each. I chofe Weight rather than Meafure, becaufe the heavier Colours have generally the more Bcdy, and therefore come neareft to an Equality that way. I have added the Latin, Greek, French, and Englifb Names that I knew, which the more skilful Reader may fupply where wanting. I propofe to my felf that this Table will be of fome ufe and advantage in the defcribing of the Colours of Natural Bodies, which may be done by this Table, and reprefented more nearly to the Reader provided with one of the fame Tables, with lefs ambiguity, I think, than is ufual: A Standard of Colours being yet a thing wanting in Pbilofophy. Thus to defcribe a Plant, it may be feen which of the $/ \mathrm{mmple}$ or mixt Colours comes neareft to it, and then the Word affixt to that Colour may be made ufe of, which the Reader, if defirous, may look in his Table, and find together with the Pattern thereof.

The Table of Colours is to be InSerted after this Leaf, which ought to be done with Guard and a White-leaf between after the Book is bound, left otherwife the Colours by beating fick together.

A bourt

## $[26]$

## A Gort Difcription of the Simple Colours 今pecified in this Table.

SPanijb White made of Cbalk and Alumn burnt together.
2. I take the Lapis Armenius to be the blew Bice fold in the Shops, for it is light and friable; formerly brought out of Armenia, now from the Silver Mines of Germany, called Melochites, in high Dutch Berghlaw.
3. Vitramarine is made of the bleweft lapis Lazuli, which is fieeft from Gold-veins, by Calcination; the method of preparing it being too large for this place, may be feen in Doctor Merret's ingenious Notes upon Neri's Art of Glafs; thb. 7.
4. Swalt is made of Zaffer and Pot-afbes, calcined together in a Glafs-furnace. Dr. Merret ib.
5. Litmafe, or Litmofe, I fuppofe the Juice of a Plant.
6. Indigo faid by Pliny to be brought from India: a kind of Mud adhering to the Froath about Reeds, and that when tryed with a Coal, the true burns with a Purple-flame, and fmells of the Sea: Linfohoten fays, it is called Anil, that it grows in Cam aia, and is a Plant like Rofemary, which is gathered and dryed, then wetted with fair Water, and beaten to a Mud; this Operation being repeated, it is dryed and fitted for ufe, cap. 69.
7. Indian Ink, its Ufe known to Pliny, tho' not its Compofition; which is yet undifoovered, except it fhould be burnt Rice, as hath been thought.

So much for the Blews at the Head of our Table; the Yellows and Reds made ure of, are thefe that follow.

1. Ceruse is the Rutt of Lexd made by a vaporous Calcination; Pling writes thus of it in the $34 . \mathrm{lib}$. cap. 18. Cerufe, or Pfomythinn is made in the Plummers Shops; of fmall

## [27]

Plates of Lead laid upon a Veffet of very frong Vinegar, what falls into the Vinegar is taken out, and dryed in the Sun: and in the 35 Book, Cbap. 6. he fays it was made at Rome of burnt Martle-fint quench'd in Vinegar.
2. Masticot is a kind of improper Calx of Tun.

3- Gutta Gambe, or Comodia, the infpiffated Juice of a Plant, not well known, itcomes from both the Indies. Some think it the Juice of Euploríum; others Scammony, or Tithimal; others Ricinus; others refer it to the greater Cataputia, Efula, or the Flowers of the Indian Ricinus, and will have it coloured with Turmerick: as Scröder.
4. Oker a kind of Natural Earth, there are two forts thereof, the one Native formerly brought out of Attica, now from Dacia and Hungaria, and from many places of England, efpecially in the Forreft of Dean: The other a factitious fubftance of Lead burnt and quench'd in Vinegar. In Pliny's time it was made of Rubrica, or Redale burnt.
5. Orpiment, a fat inflammable Mineral, juftly ranked amongft Poyfons for its extream Corrofive quality. Pliny fays it was dugup in Syrix on the Surface of the Earth; and that the Emperor Caligula had hopes of getting Gold out of it ; whirefore he caufed 14 Pounds of it to be tryed, which afforded him very good Gold, but in fo fmall a Proportion, that he loft by the tryal.
6. Umber is a Native Earth.
7. Red-lead, a Colour unknown to the Antients, made of Litharge or burnt Lead by a Reverberatory Calcination, or of Cerufe put in a Platter over the Fire, which muft be continually itirred till it has acquired a Red-lead colour. Dr. Charlton de Folf.
8. Burnt Oker is the common yellow Oker burnt in the open fire.
9. Cinnabar or Vermillion. There are two forts; Native or the Minium of the Ancients, which is the Mineral that yields Ruickfluer; whereof, and of Sulphur it chiefly confifts,
it is found in the Mines of Iftria. This Colour was among the Ancient Romans ufed to facred Purpofes, and on Feftivals Fupiters Face was painted therewith, as likewife the Bodies of thofe that entred in Triumph. The factitious Cinnabar is that which we now ufe; and is made by a fublimation of Mercury and Sulphur.
ro. Carmin made of Cochineel.
1 I. Lake, thought to be an Arabick word: It is made of Flocks dyed, or Shavings of Scarlet-cloath, or of the Cochineel Infect, or elfe of Kermes-berries, their Tincture being extracted with a Lye of Pot-ajbes, and then precipitated with a Solution of Roch-alum. After the fame manner a Lake may be made of any Plant or Flower ; a more exact Information touching this matter, may be had in Mr. Boyle's Treatife of Colours, Part. 3. Exp. 49. and Dr. Merret's Notes on Neri's Art of Glaß. lib. 7. There is alfo another fort of Lake made of Gum-lac, by extracting its Tincture with Zrine. Dr. Merret, ibidem.
12. Sanguis Drasonis is the Gum of a Tree which looks like dryed Blood, 'tis brought out of feveral places in the Eaft Indies; and the Tree which produces it is very well defribed in the Hortus Malabaricus,
13. Englifb Redalle or Rwddle; is found in many places of England, amongft the reft near Witney in Oxford-fire. Dr. Plot's Hift. of Ox. c. 3.
14. Lamp-black, by Pliny thus defcribed: It is made of the Soot of Rofin or Pitch burnt, Houfes being built on purpofe for it, that keep in the Smoak. Its Ufe is in Writing-books, 3i5. 35. cap, 6.

## [29]

In ufum Exterorium vifum eft Prafatiunculam hanc atque Catalo. gum Colorum Latinitate donare.

CU M aliquando viderim Nomenclaturam Colorum fimplicium Trilinguem Stockbolmice editam per D.Sl. Brenner; mihi in mentem venit opús me prafiturum Genio, ac fini Regie Societatis, nec abfonum, nec inutile, fi talis, non modo Simplicium, verum etiam Mixtorum Colorim Tabule conficiendx modum excogitare potuerim: magis autem fore gratum fi cuique Vocabulo Specimen Coloris apponi poffit; quod Amice Lector hic tandem effectum vides.

Conftructionem Tabula quod Spectat, in Capite omnes Carulei Simplices, \& Primarii apponuntur, \& ad Latus primo Luteos, ac deinde Rubeos affixos vides, cum Jpeciminibus propriis, \& nominibus in Officinis notioribus: Cxteri, viz. Pallidiores Carulèi, Flavi, Rubeique necnon Virides, \& Purpurci omnes, e mixtura Simplicium æquis partibus Orti, reliquam Tabulx partem complent. puta Specimen Colori Heibeo affixum, compofitum eft ex xquo pondere Cyprii ad Caput Tabula videndi, \& Gutte Gambe ad Latus, intime Commixtorum: Sic dicendum de cateris. Speciminibus etiam adjeci nomina Latina, Greca, Gallica, \& Anglica, faltem quæ mihi nota; que autem defiderantur magis verborum gnarus apponas Cu riofe Lector, ac noftro defcetui fubminiftres Rogo.

Ad ufum vero hujufce quod attiner, non leviufculum hinc enaturum confido : reftat enim hucufque quid Defoderatwa nempe jufta Colorum ftatera. Jam fiyuis Plantarum, vel Animalium Integumentum defcribere velit, ope hujus Tabule minimo Labore, fine ulla Ambage, vel Ambiguitate rem conficiet, idemque genuminis quafi depictum coloribus, Lectoris eadem inftructi Tabuta oculis fubjiciet. Exempli gratia, Gertianelle flos colore eft azurino, exterius in falignemm vergente, hujufque plante folia prope Herbei funt coloris.

Hoc quale cunque Tentamen in meliorem partem accipias, ftudioque noftro tibi fubferviendi fruaris foeliciter, \& faveas candide.

Vale.

## $[30]$

Sequitur Pigmentorum Simplicium in bac Tabula exbibitorum Deforiptio aliqualis.

CAndidum Hijpanicum fit ex Creta alla et Alumine in Crucibulo fimul calcinatis.
2. Montanum, vel Lapis Armenius, levis eit \& friabilis: olim ex Armenia deferebatur, hodie vero reperitur in Germania in Argenti fodinis; dicitur etiam Melochitis, Bergblaws. Scrod. Pharm. Med. Chym.l.4.Claf.4. 5.465.
3. Cyprium, vel Ultramarinum ex lapide Lazuli, feu Cyano per calcinationem fit. Hujus præparationis methodum cum nimis tradiofum foret hic percurrere, videas D. Dris Merreti Notas in Art. Vitrariam Neri.1.7.c. 115.
4. Smaltum Efficitur calcinando in fornace Zafferum, una cum cineribus clavellatis. Modum exhibet Ars Vitraria. Dr. Merret, lib.7.cap. 72.
5. Litmas vel Litmos, uti videtur, fuccus eft plantæalicu* jus infpiffatus.

Indicum, Authore Plinio ex India provenit, conftans limo quodam arundinum fpumx adhærefcente; prubatur carbone, fincerum enim reddit flammam excellentis purpure, ac dum fumat Odorem Maris redolet, l.3 5.c.6.

A Linfeboten vero aliter defcribitur. Anil, vel Indicum in regine Cambaiafit, ex planta quadam Roximarina fimilis, qua carpitur, \& exiccata, aqua denuo humectatur, ac tundendo maceratur, quo facto evaporatur aqua, ac pigmentum conficitur. Linfchot. cap.6.9.

Hodie vero in infula famaicaet alibi in Amexicanis noftris Coloniis copiofe provenit, ac ad hunc ferme modum propawature
7. Atramentum Sinicum vel Indicum Plinio, cui ignotum erat ex quo conftabat; neque etiam nobis plane innotuit quid fit: a quibufdam vero creditur Oriza ufta.

## $[31]$

Hoc fufficiat defcriptioni Ceyuleorm ad 「aput Ta's'rpofitorum. jam Pauca de Liteis \& Ru ris fubjicia.n.

1. Cerrffa st Erugo Plam'i per Calcinationem vaporofam. Diof.l.5. c io3. De hac ita Plinius; Ceruffa vel P firythium fir ex lammis Plumbi tenuifinis faper vas acetı aperrimi impofitis, atque ita difillantibus iss, quod in vas decidit, ad form ficcatur, lib. 34.cap.18. Iden teitatar aliud genus Rome factum, cremato filice Marmorofo \& reltincto accto, 1.35.c.6.
2. Mafticot eft Calc quædam impropria fic dicta ex Stamo confecta. Helvr.de Littri... i.
3. Gutia Gambe, fuccus infpiffatus Plantæ minus notæ; ex. India utraq; venit, juxta quofdam Euphor'ii, alios Ricini vel Tithimali; vel Scammonii fuccus eft. Sunt qui a $1 E$ fulam, \& Cataputiam majorem, vel ad flores Ricini Indi originem ejus referunt, coloremque ex Curcuma conciliatum volunt. Scrod. ib.l.4.c. 4 . 465.
4. Ochra, Terre fpecies: duplex autem habetur, Neitiva, qua apud nos multis in locis reperitur, pr fertim in Saltu de Dean. Factitio altera ex Plumbo adufto $\&$ in aceto extineto, facta vero eft tempore Plinii ex Calcinata Rubrica: Plin.l.35.c.6.
5. Auripigmentum, Arfenicum. Minerale eft pingue, \& inflammabile, jure inter venena referendum propter in infignem ejus qualitatem corrofivam. Plinius dicit in Syria effodi in fumma tellure, \& olim feeraffe Caligulams Impiratorem, aurum exinde colligi poffe; quamobrem excoqui juffit ad pond $l i b$. 14. ex quo purum quidem Aurum elicuit, fed tam exigua quantitate, ut experimenti fumptus non rependeret.
6. Vmbria Terra eft Nativa.
7. Miniam factitium, ignotum veteribus; Fit ex plumbo per calcinationem reverberatorii; vel ex Ceruffa in Patina fuper ignem pofita, ac continue Rudicula agitata, - donec colorem Minii acquifiverit. Dr. Charlton de foffl.
8. Ochra-ufta, Ochra eft nativa lutea nudo igne adufta.
9. Cinn -

## $[32]$

9. Cinnabaris Græcis Miltos, duplex eft ; Natiz'a, Minium Veterum : minera vero eft e qua excoquitur Hydrargyrum, quæq; ex eo et Sulphure plurimum conftat. copiofe provenit in Mercurii fodinis Iftrienfibus. Color hic apud Veteres Romanos in facros ufus adhibebatur, eoq; Yovis fimulachri faciem diebus feftis illinere folebant, ut \& Triumphantium corpora : Plinio veteres citante l.33.c.7. Ubi dicit Romam folummodo ex Hijpania advectum fuilfe. Altera Factitia ac nobis ufitata, fit ex Mercurio cum fulphure fublimato. Scrod.l.3.c. 15 .
10. Carmin fit ex Coccinella.
11. Lacca, vocabulum creditur Arabicum, efficitur autem Lacca hæc ex Coccino, ex floccis Scarlata tinctis, vel ex Coccinella, vel ex granis Kermes, Lixivio cineram clavellatorum extrahendo tincturam, qua deinde folutione Aluminis Rupei precipitatur: pari modo Vegitáilium quorumvis Laccam extrahas. Informationem pleniorem cupiens adeat. Nob. D. Boyle Tract.de Color. Part.3.Exp. 49. et Merreti Notrs in Art. Vit. Neril. 7.c.116. 119. Alia etiam datur Lacca ex Gummi-lac, cujus tinctura Urina bumana extrahitur.Merret, ib.
12. Sanguis Draconis, lachryma arboris cujufdam inftar fanguinis Exiccatı concreta; Ex India orientali advehitur, et arbor e qua Lachryma hec exudat accurate defcribitur in Hortu Malabarico.
${ }_{13 .}$ Rubrica Anglica, in multis Anglia locis reperitur.
13. Atramentum Fuliginofum, nihil aliud eft quam fuligo Refine, vel Picis concrematx collecta, qua propter officinas ædificavere fumum illum non emittentes; olim ad Atramentum Scriptorium in ufu erat. Plin. l. 3 5. c.6.

## [33]

An E S S A Y towards the Recovery of the Jewih Weights and Meafures, Comprebending their Money, by belp of Ancient Standards compared with ours of England. By Richard Cumberland, D. D. in OEtavo London, 1686.

THe Learned Author of this Treatife, has with a great deal of Induftry and Judgment, Collected the feveral Teitimonies both Ancient and Modern, Sacred and Profane, that may give any light into the difcovery of the Ancient FerijbWeights and Meafures: In the doing whereof he relies chiefly upon the Tryals of Mr. Greaves, whofe Integrity was never yet queftioned, and who with his own hands compared our Eng $h_{h} / b$ Standard Foot with the feveral Foreign Meafures our Author has occafion to ufe: The Book confirts of Four Chapters, whereof the fir $f$ by way of Preface, gives an account of the Method proper to be ufed in this Difcovery. The $\int$ econd proves by many Arguments the likelihood that the femilb Ammal or Cubit, was the fame with the prefent Egyptian Culit; to do which, he alledges that the ufual Rife of Nilus, neceffary for the fertilizing of $E_{\varepsilon y p t} t$, was in the days of Herodotus, as well as now, about 16 Cubits; whence he concludes, that the old Cubit of Egypt is not altered, but the Divifions on the Nilometrion are the fame as in all Antiquity: Alfo that the conftant neceffity of Surveying their Lands, by reafon the Annual over-flowing does Efface their Land-marks, obliged them to obferve a conftant Standard to avoid confufion. Next he alledges this $C u$ bit not to have been altered by any Conquest ; the Babyloniana Cubit of Five Palms being fhorter, and that of Six being the fame; that their next Conquerors the Greeks and Romans, have their $\boldsymbol{C} u k i t$ confiderably fhorter, and that the Turks their

## [34]

prefent Mafters have not introduced theirs, which is much longer, as appears by Mr. Greaves. Lastly, He proves out of Greaves, that the fide of the Great Pyramide, and the length of the Tom $b$ therein, are meafured by an even Number of fuch Egyptian Cubits; wherefore he concludes they were fo defigned at firlt ; viz. the Side of the Pyramide to be 380 Cu bits, and the length of the Tomb juft Four, which carries with it a great fhew of probability. This done, he proves the $\mathcal{F}$ ewilb Cubit, the fame with the Egyptian Cubit, by feveral probable Arguments; among which the chief feems to be, That the whole Nation of the Fews had been for fo many years Subjects of Egypt, and carried undoubtedly away with them their Weights and Meafires: and there is no Teftimony or Reafon to prove that the Fews have fince alt tered them. Hence he concludes the Old Scripture Cubit 21, 9 Inches Englifb fere, equal to what Mr. Greaves found the modern Egyptian Cubit: and fo makes a Table of all the other Meajures, whofe proportions to the Cubit are agreed upon.

The third Chapter treats of the Ep!a, and the other Meafures of Capacity, endeavouring to prove the Content of Epha, equal to of the Ardub, or Cule of the Egyptian Cubit; that is, Seven Gallons and half, and half Pint Circiter, or very near the Cube of a Foot Engli/h, and containing juft 1000 Ounces Averdupoize of Water; for the which he produces fuch Authorities, and compares them fo well together, that the has almoit put it out of doubt; giving at laft a Table of the Centents of all the other Scripture-Meifures of Capacity, having a known relation to the Epba.

The fourth Chapter treats of the Weights and Coyns mentioned in Scripture; and having by Tryal as well as Authority found the Weight of Shekel jult half the Roman Oanct, equal to the half Ounce Averdipoize, he determins its value $2 \mathrm{~s} .4 \mathrm{~d} .{ }^{*}$ and thence derives the value of the Gold and Sitver Talont, weighing 3000 Sbekels. Lastly, He recommends for a Univerfal Standard, the length of the Pendulam vibra-
ting Seconds, to be the Horay $r$ rd, which he fays is 3 Foot $3^{\frac{1}{4} \text { Inches Enghifh, following therein the Ingenious Mr. Hu- }}$ gens the finf Propofer thereof. By che way, he takes notice of the Harmony that is between the Mcalures and Weights thus fated; for having the Egyptian Cu' it given, the fixth part of its Cute is the Eploa, the tenth thereof Homer, the tenth of that Caiyla, the tenth of which is an Ounce Averdupsize in Water, whof hat is exactly the Weight of stekel. The whole Book baing made up of very rare Remarks, is well worth the perufal of $t$ C Curious Reader.

Note, That the Lcamed Dr. Edward Bernard in his late Aco count of Weights and Meafres, agrees nearly in the Capaciry of Epho, with what Dr. Cumberland has determined; for he makes the Cube of the Englifb Foot to contain 76.1. Troy of Sping-water, and the Epha, or rather Batt to contain 75 fuci Pounds, fo that it is a Pound lefs than the Cube of a Foor Englifh, which Dr. Cumberland has ftated about is Ounces of Water mote than the faid Cube: And whereas Dr. Bernard fays, the Epha contains 9 Gallons, 'tis a plain miftake of the Priater, of 9 for 7 ; for the Cule of a Foot, which is by his own account greater than Epha, fcarce holds 7 Galloris and half, fuch as by Statute are to contain 23I Cube Inches. As to the Value of Sbekel, Dr. Bern red fays, that none but BiThop 2 Joer ever made it fo little as $2 s .5 d$, which yet. Doftor Cumberland has reduced to 2 s. 4 d. :\%

Ephemeris ad Annum a Nativitue Domini 1686, ad Longitudinem てrbis Londinenfis: ex Novis Hypoibefbus exactiffime fupputata, 肦 Regie Societati dicata, Londini in Octavo. Impenfis Gulielmi Cooper.

THere being at this time a great want of Ephemerides of any tollerable exactnefs, feveral of our Afronomers were perfwaded to undertake the Calculation of one for this E prefent
prefent Year, which they have done from Ta'les of their nwn, whofe Numbe ss, by many years obfervation, have been found to anfwer with great precifenefs to the Celeftial Motions, the Moón only exc-pred; whofe Motion, by reafon of her manifold Inequalities, bor being yet reduced to the N r cety of the reft of the Flanets, ' t 'was thought needlefs to do any more than reduce her Tyc orack place in Argol, to our Meridian, and Compute the true Latitudes. The feveral Perfons conceried have promiled a Continuation thereof for fome years to come, which will make it valuable to all Lovers of Aftionomy.

## Imprimatur,

May 15. 1686.

S. PEPYS. R.S.Pr.

## LONDON,

Printed by 7 . Sirecter, and are to be fold by Sam. Smith, at the Sisnof t.e finces's Arms in St.Paul's Church-yard.

# $[35]$ <br> Num. 180. <br> PHILOSOPHICAL TRANSACTIONS. 

For March and April 1686.

## THECONTENTS.

THE Preface. An Account of a Voyage made by the Empeperour of China into Corea and the Eaftern Tartary in the rear 1682. Containing many Curious Obfervations and Difcoveries, of the beight of Mountains. Declination of the Compafs, and of the Latitudes and Diftances of Several Places, through which be paffed. A Relation of a fecond Voyage of the faid Emperour into the Weftern Tartary containing an exait Account of the Country Gover nment, Manners, and Cuftoms of thefe People, and feveral Obfervations concerning the Miraculous Wall, and the Prodigious Height of fome Mountains. An Explanation neceefary to juftifie the Geography fupposed in thefe Accounts. Some ObServations and Conjectures concerning the Character and Language of the Chinefe, Made by R. H. Fellow of the Royal Society, together with-the Characters and Method of their Numbers, and the Letters and Strokes out of which, both the Radical and alfo the Compounded and Decompounded Characters are conftructed: with a Specimen of three Varieties of Characters or ways of Writing, made ufe of by them, The Figure of the Roman Abacus, together with that of the Chinees now commonly made ufe of for the performing of all Arethmetical operations neceffary for Trade.

# [36] 

## THE

## PREFAGE

TArtary, and the North-Enft of China, being parts of Afia, the leaft knowa and bithereto the moft fabuloufly deforibed, I conceiv'd it nould not be unpleafing to the Curious in England, to be furnifbt with the Tranllation of tion Letters publiJbed lately at Paris, which give a confiderable Itfor ciation concerning the prefent State of them. The Pu'lifher Dedicated them to the French King, and affruns them to ke the Letters of the Famous Fatber Verbief, wom is one of the 3 Fathers $\begin{gathered}\text { yiz Hu- }\end{gathered}$ dovicus Buglius, Gabriel Magellanus, and Ferdinartos Verbieft) that wexe Left at Pekin ta Sollicite the gaufe of Chrieftianizty, and who by bis great, Skill in Mathematick Learning obtained accefs to that Emperour, and thereby many Favours for bimelf and the other Midfoparies; As appeats: by a Book, Printy ed in the Chinefe and Latiue Character in Quam Chey the Metropolis of the Prowince of Quam tum in China Aopo. 1671 .

But one Reafon more of Printing this Tranflate, was to manfeft by Experience, the great whe of Mathematical K powledgen which, by thefe, you will perceive bighly efteemod in Countries nobera 'itis more difficult to be obtained thexs bere, fo, that sphen no ather means could procure entrance upon the skirts of that vaft Empire of China, this alome has got admittance inato the Metropolis of the whole Empice, nay, into the Pallace and Prefenge of the Emperour, with the practical parts of which knowledge y your will here find Hima delighted andeven uaptivateds And that this Learned Fatber, judges it the moft effectual means to ir frauate into the Minds allo, of the moft rude and ignorant (of allother things aned parts of the World, but what their own Country affords") in order to propagate the Chriftian Religion. I Jball not now add as a Confirmation of this Opinion, what to this effect we bave long fince

## [37]

been informed of by the Hiftorical Relations about China,but on= ly take notice that befides this ufe, the $\int$ Letters will give another, viz. Several Curious Mathematical and Phyfical Ob/ervations there made by the Author, who it feems well underftood what would be beneficial to Europe as well at pleafing to the Chinefe. To men So equalified with Mathematical knowledge, wie one the Difcovery, of the before, unknown parts of the World, and from fuch we are to hope for the perfection of that knowledge, and the Difoovery of the reft. I bave upon this occafion added Some inquiries concerning the Literature of that Country, they are but conjectures, grounded upon the perufal of Some of their Books. A full Difcovery is not prètended, however I bope they may ferve as bints and incitements toothers, who have better abitity and orther advantages to compleat it. We bave bitherto not been admitted to the Skirts,but this Difoovery when perfected, will lay open to us an Empire of Learping, 'hithento ondy fabaloulydefcribed; This will admit us to converle with the beft and greateft of that Empire, that either are or ever have been; This will Difcover a new In-
 ther, which may not be unworthy, the confideration of ound owdourable Eaft-Indian-Company, As well as of Several Learnd Men, who bave leifure, and other opportunities to make further Progrefs in this Inquiry: To promote wleich, if the efind acceptance, I ball add lome further ot Jervations, together with the publication of one piece of their Philofophy, which is printed in their own Character, with the pronounciation and interpretation in Latine; which may Jupply a fit Subject for the Curious to practice upon, and give a taft of the Philofoploy and of the manner of Expreffion in that Remote Part of the World. To the $\int$ I 1 bave added the the figure of the Roman Abacus. Which queftion lefs was the Ground of the fignification of figures according to places. As alfo that of the Chinefe in the Dictionary of the Court Lano guage, differing from that of Martinius deforibed in the fir $\beta$ Decad of bis Chinefe Hiftory, ift. in that the Dignity of the places bere afcend from the Left to the Right; contrary to what be fayes of bis: and 2ly. In that this bas one bead only for the fifth or 6th. And his bath twoo;

## $[8 \varepsilon]$

## 

## E $\boldsymbol{R} \quad \mathbf{R} \quad \mathbf{A} \quad \mathbf{A}$

Page 56 line 22 for about read above. P. 64. $.23 . \mathrm{r}$.







## [39]

## A Voyage of the Emperour of China into the Eaftern Tartary, Anno. 1682.

THe Emperour of China made a Voyage into the Eaftern Tartary, in the beginning of this Year 1682, after having appeafed (by the Death of three Rebellious Kings ) a Revolt, formed in fome Provinces of the Empire : One of thofe revolted Princes, was frrangled in the Province, of which he had made himfelf Mafter: The fecond being brought to Pekin with the Principal Heads of his Faction, was cut in Peices in the fight of the whole Court: The moft Confiderable annong the Mandarines, acting with their own hands in this fad Execution, to Revenge upon this Rebel the Death of their Parents, which he had caufed to be cruelly murdered.

The third which was the moft Confiderable, (and indeed the Cheif of all the Revolt) had by a voluntary Death prewented his deferved Punifhment, and fo put an end to a Warr, which had lafted for feaven Years.

The Peace having been fetled, by the Re-eftablifhing in the Empire and all the Provinces, the Peaceable Injoyment of their-Ancient Liberties: The Emperour departed the 23 d . of March to go into the Province of Leatotum, the Country of his Anceftors, with a Defigne of vifiting their Sepulchres, and (after having honoured them with the ufual Ceremonies) of profecating his Journey into the Eaftern Tartary: This Journy was about rioo miles, from Pekin to the end of it.

The Emperour took with him his eldeft Son, a young Prince of ten years old, which had already been declared Heir of the Empire : The three principal Queens welltalfo in this Journy, each in their guilded Chariot; the princi-

## [40]

pal Kings alfo which compofe this Empire, were accompanying with all the Grandees of the Court: And the moft confiderable Mandarines of all the Orders, who having all a very great Train of Attendants, and very numerous Equipage, made a Court about the Emperour of more then 70000 Perfons.

It was his Will that I fhould accompany him in this Journey, and that I hould be always near him, to the end I might make in his Prefence, the Obfervations, neceffary for knowing the difpofition of the Heavens, the elevation of the Pole, the magnetical Declinations of every Place, and for meafuring with Mathematical Inftruments, the height of the Mountains, and the diftances of Places: He was well pleafed alfo to be informed of what concerned Meteors, and many other Phyfical and Mathematical Matters.

In fo much, that he gave Order to an Officer to carry upon Horfes fuch Inftruments as I fhould have occafion to make ufe of, and recommended me to the Prince his Unckle, who is alfo his Father in Law, and the fecond Perfon of the State, he is called by a Cbinefe Name, which fignifies an Affociate of the Empire : He gave Charge to him to caufe all things to be provided for me which were neceffary for this Journey, which this Prince performed with a very particular goodnefs, caufing me to lodge always in his own Tent, and to eat at his Table.

The Emperour ordered that they fhould give me Horfes of his own Stables, to the end I might the more eafily change in riding, and fome of thofe were of them he himfelf had rid, which is a mark of very extroardinary diftinction. In this Journey we always went toward the North-eaft : From Pekin to the Province of Leao-tum, the way beeing about 300 miles is pretty equal: In the Province it felf of Leaotum, it is about 400 miles, but much more unequal by reafon of the Mountains; from the Frontier of this Province to the City of cla, or the River which the Tartars call Songoro, and the Chinoife Sumboa, the way (which is about 400

## [41]

miles) is very difficult, being croffed fometimes by Mountains extreamly fteep, fometimes by Valleys of extraordinary depth, and through Defert Plains, where in for two or three dayes march we met withnothing. The Mountaines of this Country are covered on the Eaft file with great Oakes and old Forrelts which have not been cut for fome Ages.

All the Country which is beyond the Province of Leao. tum is exceeding defert where nothing is to be feen on all fides but Mountains and Vallys, and Denns of Bears, Tigres and other Devouring beafts, you can fcarce find a houfe, but only fome poor Reed butts, upon the fides of fome brooks, and ftreames. All the Citys and Burrow-towns which I have feen in the Province of Leao-tam, and which are in very great numbers are intirely ruined: One can fee nothing through the whole Country but old ruined Walls with Rubbell, Bricks, and Stones. In the out skirts of thefe Citys there have been of late fome few houfes built, but without any order. Some of them made of Earth, others of the Rubbilh of the old Buildings, the moft part of them covered with ftraw or thatch, and but few with tyles. There is now not the lealt foottteps remaining of a great number of Towns and Villages which were here before the Warr. Becaufe the petty King of the Tartars, who began to kindle this Warr having but a very fmall Army, caufed the Inhabitants of thofe places to take Armes, which places he forthwith deftroyed, that he might take from his Soldiers the hopes of ever returning again to their own Homes.

The Capital City of Levo-tum, which is called Xin-Yam, is a City very fair and prety intire, it has as yet the Rem aines of an antient Palace. It is (for as much as I was able to remark by divers Obfervations ) of the Latitude of 45 degrees 56 minuts that is to fay, two degrees above Pekin, tho' hitherto both the Europeans and the Chinefe have given that City the Latitude of 4 I degrees. There is in that City no declination of the Magnetick Neetle, as I have found by many reiterated Obfervations. The City of

## [42]

Cla which was almoft the very extream or our Journey lyes in 44 degrees and 20 minutes. The compafs there declines from the South to the Weft one degree 40 minutes.

But to Refume the profecution of our Journey, from Pekin to this Extream towards the Eaft there is made a new Way, by which the Emperour can commodiounly March with his Hore, and the Queens in their Chariots. This Way is about 10 foot broad, and as even and freight as could poffibly be made; it is extended above 1000 miles, it has a little Raifing on each fide of about a foot high every where equal and perfectly Parallel to one another; and this Way was as neat efpecially when the Weather was fair, as a Floor where the Husbandmen beat out their Corn in the Field, there were alfo certaine Perfons along this way, who only took care to fmooth and cleanfe it. The Chriftians have no where fo great care of fweeping their ftreets and publick Places where the holy Sacrament is to pafs in the Proceffions, as there Infidels have of cleaning the Ways, where their Kings and their Queens are to pafs, every time they go out of their Palaces.

There was made for their Return a way like the former, they plained or levelled the Mountains as far as they were able, they raifed Bridges over the Rivers, and for ornamenting them, they had extended on each fide of them a fort of Matts upon which they had painted divers Figures of Animals, which hád the fame effect with Tapeftry Hangings, with which the Streets are ufually hung in Proceffion.

The Emperor did very feldom make ufe of this Way, being almoft alwayes in Hunting: And when he accompanied the Queens he only Rode by the fide of it, to the end that the great number of Horfe which were in the Train that followed fhould not fpoile it: He ordinarily marched at the Head of this kind of Army. The Queens followed Immediatly in their Chariots, with their Train and their Equipage; they notwithftanding left fome fpace between the King and themfelves: After thefe marched the Kings, the Grandees of

## [43]

the Court and the Mandarines, every one according to his Rank, behind thefe an infinity of Attendants, and other people on Horfe-back brought up the Rere-guard.

As there was not one City upon all this way, that could either lodge fo great a Multitude, or furnifh them with Provifions, and that the greateft part of their Journey was through a Country very little inhabited, fo they were neceffitated to carry along with them all things that were neceffary for the Journey, and even Provifions of Victuals for: three Moneths.

Upon this Account there were fent before by the ways which were made on each fide of the Emperours Way, an Infinity of Waggons, Camels, Horfes, and Mules for to carry the Baggage : Befides thefe the Emperour, the Kings and almoft all the Grandees of the Court, had great numbers of Horfes led, for the ufe of changing from time to time. I do not here reckon the droves of Beefs, Sheep, and other Cattel, which they were obliged to have with them. And though this great Multitude of Men, Horfes, and Droves, paffed by a way at a good diftance from that of the Emperour, yet it raifed fo horrible a duft, that we always feemed to march in a cloud, and thence found it difficult to diftinguifh thofe that marched 15 or 20 paces from us,

The March was fo well regulated, that this Army incamped every night upon the fides of fome River or Brook. ${ }^{7}$ Twas for this Reafon that they caufed the Tents and the Baggage neceffary for this Incamping to fet out very early in the Morning ; and the Quarter-mafters upon their firft arrival, marked the Ground moft proper for the placing of the Emperors Tent, of the Queens, of the Kings, of the Grandees, of the Court, of the Mandarines, each according to his Dignity, and according to the Dignity he had in the Chinefe Militia, which is divided into eight orders or into eight Standards.

In the fpace of three moneths we paffed about 1000 miles, advancing towards the North-eaft, and about as many

## [44]

in our returne: In fine we arrived at $K_{a m-}-H_{y y}$, which is a Fort fituated between the South Sea and the Mountaines of the North: It is there where is the beginning of that fo much cellebrated Wall, and which feperates the Province of Leao-tum from that of Pekely; from whence it is extended very farr on the fide of the North over the tops of the higheft Mountains. When we entred this Province, the Emperour, the Kings, and the Grandees of the Court, quitted the great way of which we have hitherto Cpoken, to take that of the Mountains of the North, which are extended without interruption towards the North-Eaft: There fome dayes were paffed in Hunting, which was performed in this manner.

The Emperour chofe 3000 men of his Life-guard, armed with Arrows and Javellings, and difperfed them fome on this fide fome on that ; fo that they poffeft themfelves of a great circute about the Montains, which they invironed on all parts, which made a kind of Circle whofe Diamiter was at leaft 3000 paces; then marching to draw nearer together with equal progreffe and without quitting their range, what ever Obftacles they found in way (the Emperour having joyned with them feveral of the Captains, and of the Grandees of the Court, for the better keeping of their Order ) they Reduced this great Circle to another much lefs, which had about 300 paces in the Diameter: So that all the Beafts which had been ftayed within the firft, found themfelves taken in this laft as in a Net : for that every one fetting his feet upon the ground, they Locked themfelves together fo clofely, that they left no mefhing place for them to make their efcape by. Then they Purfued them fo Vigeroully in this little fpace, that the poor creatures tired with the violence of their Courfing, came and fell down at the feet of their Chafers, and fuffered themfelves to be taken without trouble. I faw taken in this manner two or three hundred Hares in lefs then one day, without counting an Infinite of Wolves and Foxes. I have feen the fame thing divers times

## [45]

done in that part of Tartary, which is on the other fide of the Province of Leao-tum, where I remember to have feen, amonglt others, more than 1000 Deer fo pent up by thefe fort of Netts, which came to caft themfelves into the hands of the Hunters, having found no paffage to fave themfelves by: they kill'd alfo Bears, Bores, and more than 60 Tigres, but thefe are taken by other meanes, and with other weapons.

The Emperour willd that I foould be prefent at all thefe different Huntings, and he recommended to his Father in Law, in a moft obliging manner the having a particular care of me, and of giving charge that I fhould not be expofed to any danger in the Hunting of the Tigers, and the other fierce Beafts ; I was the only Perfon of all the Mandarines who was without Arms, and fo near to the Emperor, though I made light of the Fatigue during the time we were on our Journey, I found my felf fo wearied every evening when I got to my Tent, that I was not able to fupport my felf; and I fhould have difpenfed with my felf divers times from following the Emperor, if my friends had not councel'd me to the contrary, and if I had not fear'd that he would have taken it ill if he fhould have perceived it.

After having paffed about 400 miles in Huuting daily after this manner, we arrived at laft at $X y n-\chi_{a m}$, the capital City of the Province, where we ftayed four days.

The Inhabitants of Coree came to prefent to the Emperor a Sea-calf which they had taken, the Emperor caufed me to fee it, and asked whither our European Books had fpoken any thing of this Fifh; I tould him we had a Book in our Library at Pekin which had explain'd the Nature of it, and difpatched prefently a Currier to our Fathers at Pekin, who brought it me in a few days: The Emperor was pleafed to fee that what was fayd of this Fifh in this Book, was agreable to this which he had feen, and caufed it to be carried

## [46]

back again to Pekin to be carefully preferved.
During the ftay which we made in this City, the Emper ror with the Queens went to vifit the Sepulchers of his Anceftors, which are not very far diftant, from whence he fent them back to $X{ }^{2} n-\mathrm{Tam}$, to continue his own Journey into the Eaftern Tartary.

After feveral days of Marching and Hunting, he arrived at Kirin, which is diftant from Xyn-Tam 400 miles: This City is built along the great River Songoro, which takes its fource from the Mountain Cham-pe, diftant 400 miles towards the South : This Mountain fo famous in the Eaft for having been the Antient Seat of our Tartars, is alwayes covered with Snow, from whence it had its Name, becaufe Cham-pe fignifies the white Mountaine.

So foon as the Emperour faw it, he alighted from his Horfe and fell on his knees on the bank of the River, and bowed himfelf three times to the Ground to Salute it: After which, he caufed himfelf to be carried upon a Glorious Throne of Gold, and fo made his entry into the City: All the people ran in a throng before him, teftifying by their Acclamations the Joy they had to fee him. This Prince took great pleafure in thofe Teftimonies of their Affection; and that he might give them fome Marks of his being very fenfible of it, he was pleafed to fuffer himfelf to be feen by all, and forbid his Guards to hinder the people from approaching him, - as they ufed to do at Pekin.

They make in this City Barks of a very particular manner: The Inhabitants keep alwayes a great number of them ready fitted to Repulfe the $M u$ foovites, who come often into this River, to difpute the fifhing of Pearls. The Emperor Repofed himfelf two dayes, after which he Defcended upon the River with fome Lords, accompanied with more then roo Boates, till he arrived at the City of Vla, which is the faireft of all this Country, and which at other times hath been the Seat of the Empire of the Tartars.

A little below this City, which is at moft about 32 miles
from Kirin, the River is very full of a certain fifh which refemble near enough the Plaice of Europe: and 'twas principally for the taking the Divertifement of Fifhing, that the Emperor went to " lla ; but the Rains coming on fo fuddainly, fwelled the River fo much, that all their Nets were broken and carried away, by the great Flood of thofe land Waters: The Emperor notwithiftanding itayed 5 or 6 dayes at Zla; but feeing the Rains were not at all difcontinued, he was obliged to come back to Kirin, without having injoyed the Pleafure of Fifing: as we afcended the River, the Bark wherein 1 was with the Emperors Father in Law, was fo indammaged by the agitation of the Waves, that we were conftrained to go a Shore, and mount a Charriot drawn by one Oxe, which carryed us very flowly to Kirin, the Rains not at all ceafing during our Journy.

In the Evening when the Emperor was entertained upon all thefe Adventures, he faid Laughing, the Fijb bave cheated us; at length, after we had ftayed two dayes at Kirin, the Rains began to Deminilh, and we re-took our way towards Leap-tum. I cannot here exprefs the paines and Fatigues thefe had caufed us to undergo, dureing the whole courfe of this Journy, by reafon of the ways which the Rains had fooiled, and rendered almoft Impoffible: we went without ftaying over the Mountains and over the Valiies, and we could not pafs but with extream Danger, the Brooks and Rivers which were fwelled by the Floods and Inundations which ran from all parts: the Bridg. es were either overtnrned by the Violence of the Currenes, or all covered by the great overflowing of the Waters. There were made in divers Places great Coliections of Water, and of Miudd, that it was almoft impoffible to be drawn out of it. The Horfes, Cammels, and other Beafts of Burthen, which carried the Baggage could not advance, but remained fticking in the Mudd of the Marfhes, or Dyed of tireing upon the Ways. The Men were not at all lefs incommoded, andall were enfeebled for want of Victuals, and of Re.
frefhments neceffary for fo great a Journy: Many of the Horfemen were obliged, either to lead their Horfes on Foot, who were no longer able to carry them, or to reft in the midle of the Fields to fuffer them to take Breath : And though the Quarter-mafters and the Harbingers, fpared not their Pains, nor for Wood (which they cut on all fides) to fill with Faggots all the bad Paffages : Yet notwithftanding after the Hories and Chariots, which took the Van early in the morning had quite paffed, it was Impoffible to pafs after thern: The Emperor himfelf, with his Son, and all the great Lords of the Court, were obliged more than once, to foot it over the Mud and the Marfhes, fearing to expofe themfelves to greater danger, if they fhould have paffed them on Horfe-back.

When they came to Bridges, or thofe other obftructions all the Army ftayed: And as foon as the Emperor was paffed, with fome of the moft confiderable Perfons, all the reft came together in a Throng, and every one friving to pafs firft,many were tumbled over into the Water: Others taking ways more about, found them more Dangerous, falling intoSloughs and Bogs, out of which they could not Recover themfelves. In fine, there were fo many Inconveniencies to be met with, in all the Ways of Eaftern Tartary, that the old Officers who had followed the Court above 30 years, faid they had never fuffered fo much in any Journy.

It was on thofe Occafions, that the Emperor more than once, gave me the Marks of a Refpect altogether particular: the firt day that we put our felves in the way for returning, we were itayed in the evening, by a Torrent fo great and Rapid, that 'twas impoffible to Fordit: The Emperor having by chance found a little Boat, which could not hold above 4 Ferfons-at molt, paifed firft-with his Sons, and fome of the Principal Kings followed: All the other Princes, Lords, and Man arizes, which the reft of the Army attended, (in the mean while) witi Impatience the return of the Boate,to carry them to the other ude of the Torrent, becaufe the night ap-

## [49]

proched, and the Tents had long before paffed: But the Emperor being come back to us in fuch another Boat as the former, demanded aloud where I was; and his Father in Law having prefented me to him, he added, let him come in and Crofs over with us: So we were the only perfons that paffed with the Emperor; and all the relt ftayed on the Bank, where they mult pafs the night under the open Heaven: The fame thing hapned che next day almoft in the fame manner. The Emperor at Noon meetins with a like Rapid andfwelled Torrent, gave order that the Bo. ts hould be nade ufe of for Tranfporting the Tents, Packs, and other Baggage tll the Evening, then willed that I fhould pafs alone with him and fome few of his Attendants, having left on the cther fide all the Great Lords, who were neceffitated to pafs the Night there: The Emperors Father in Law himfelf, having asked if he fhould not pafs with me, fince I lodged in his Tent and eat at his Table; thisPrince anfwered him, that he fhould ftay, and he himfelf would take Order to give me what was neceffary.

After we had paft, the Emperor fitting on the Bank-fide, made me fit by him, with the two Sons of the two Petty Weftern Kings, and the firft Colao of Tartary, whome he diftinguifhed on all Occations.

As the night was fair, and the Heavens very cleer; he willed me to Name in the Chinefe and Earopean Languages, all the Conftellations that then appeared above the Horizon, and he himfelf firft named all thofe he already knew; then unfolding a fmall Map of the Heavens, which I had fome years fince prefented him, he put himfelf upon inquiring the Hour of the Night, by the Stars in the Meridian: Pleafing himfelf to fhew to all, the Knowledg he had acquired in thefe Sciences. All the Marks of his Favours which he fo often gave me, even to the fending me to eat from his own Table; thefe marks I fay were fo Publick, and fo Extraordinary; that the two Uackles of the Emperor, who bore the Titles of Affociates of the Empire, bsing on their return to

## [50]

Pekin, faid that when the Emperor had fome Regret or appeared fomewhat Sad, he wonld Refume hisordinary Gaiietie upon the fight of me.

I arrived at Pekin in perfect Health the 9 th. day of June very late, though divers were detained in the way by Diftempers, of were returned from their Journy, Hurt and Lamed.

I fay nothing of what we did for Religion in this Journy, having Referved that for a particular Relation, by which it will appear, that oy the Grace of our Lord, the Favours we received at the Court of Clina, produced confiderable Fruits for the Church, and did not take away the Crofs from the Miffionaries.

I fhall here add the Tartarean Names, and the diffance of every Place through which we paffed in the Eaftern Tattary, from the Capital of the Province of Leao-tum even to Kivin, according to the order of Days which we fpent in this Progrefs. A Topograptick Chart may be made and inferted into the Map of the Province of Leao-tum, to be found in the Atlas of Father Martin Martintus, by changing only the Latitudes aecording to the hights of the Pole, which we have before Specified.

I fhall add one thing more which I Underftood from the Inhabitants of $\tau / a$, to wit that Nincrita (which is a Place much Renowned in thofe Parts) is diftant from Vla 700 Cbinefe Stadia (each of which is 360 Geometrical Paces) And that Imbarking at Nincrita upon the great River Hetum, into which the Songoro, and fome other more confiderable Rivers are difcharged, and following the courfe of the River, which runs towards the North-Eaft, or fomwhat more to the North, they arrive in 40 dayes Journy at the Eaftern Sea, which is (as I beleive ) the Streight of Anien : I was told this by the General of the Militia which is at Kirin; and who had performed this Voyage himfelf.

## $[51]$

The Diftances of the Places, through worich we paffed in the Eaftern Tartary

THe firft Day we paffed from Xyn-rm, the Capital of the Province of Leao-tum, and we arrived at SeacLyst, fo the place is called in the Cbinefe Language. - The 2d. day we arrived at Cha-cay Angha.-85. ftadia. The 3 d. day at another Torrent --
of the fame Name.
The 4th. at Kiaghuchen. $=--=50$. Aadia. The 5th. at Feyteri. $====-=-=-\quad$ Aadia.
The 6th. at the Torrent of Seipery. - - 60. Jadia.
The 7 th. at the Torrent of Ciam.-——60. Jtadia.
The 8th. at Courou. - 50. Atadia.
The gth. at the Burrow of Sape. - - 40. Aadia.
The roth. at Quaranny Pyra. - - 40. ftadia.
The inth. at Elten eme Ambayaga.--7-70. Jadia.
The 12 th. at Tpatan. $==$ 58. Atadia.
The 13th. at Suayen ny Pyra. $=\square$ 60. Jtadia.
The 14th. at Ylmen. - .-. 70. Jadia.
The 15 th. at Seuter. $=\square=\square 70$. Jtadia.
The 16 th. at the City of Kirin. -- $-\frac{70 \text {. At dia. }}{1028 \text {. }}$
All this Courfe being 1028 Cbinefe Stadia, contains 369 miles (each) of 1000 Geometrical Paces; the Chinefe Stadium containing as I mentioned before 360 Geometrical Paces.

## $[52]$

## A Voyage of the Emperor of China, into the Weftern Tartary, in the fear, 1683.

THe Emperor this Year, which is the 30th. of his Age, made a Voyage into the weftern Tartary, together with the Queen his Grand-mother, which they call the Queen Mot'er, he departed the 16 . of July, in the company of more than 60000 Men, and 100000 Horfe. He poffitively refoived, that $I$, with one of the two. Fathers that were at the Court of Pelin, the Choife of which he left to me, fhould follow him. I chofe Father Philip Grimaldi; becaufe he is the moft known, and becaufe he perfectly underftood the Mathematicks.

Several Reafons prevailed with the Emperor to Enterprife this Journy. The firlt was, that he might keep his Militia during the Peace as well as in the Warrs, in continual Exercife; and for this Reafon it was, that after he had eftablifh't a firm Yeace in all the Quarters of this fo vaft an Empire; he recalled his beft Troops hither out of every Province, and refolved in his Councel to make every Year Expeditions of this kind, in feveral Seafons, that by hunting of Deer, Bores, Bears, and Tigres, they might learn to overcome the Enemys of the Empire, or at leaft to prevent the cooling of their Courage, or the degenerating from their Priftine Valour, by the Luxury of China, in a too long Repofe.

In effect thefe kinds of Hunting had more of the thew of a Military Expedition, then of one for Divertifement, as I have already noted: The Emperor took in his Train, 100000 Horfe, and above 60000 Men, all armed with Arrows and Cimiters, divided into Companys and March-
ing in Battell-Array aftet their Colours, with the found of Drums and Trumpets : During their Hunting, they intirely inverted the Mountains and Forrefts, as if they had been Cities which they defigned to Beleaguer; following in this, the manner of Hunting ufed by the eaftern Tartars, of which I have fpoken in my lait Letter. This Army had its Vantguard and Rere-guard, and its Main Body, its Right Wing and left Wing, was commanded by fomany Generals and petty Kings. There were fpent more then Seventy days before they were on their March, in bringing together all the Ammunitions of the Army upon the Waggons, upon the Camels, upon the Horles, and upon the Mules, by reafon of the Incommodious Ways. For in all the weftern Tartary (I call it weftern ) not with relation to Cbina, which Lyeth in Refpect of it weftward it felf, but with refpect of the Eaftern Tartary) there is nothing to be found but Mountains, Rocks, and Vallies, there are neither Cities, Towns, nor Villages, nor fo much as any Houfes. The Inhabitants Lodge under Tents, pitched on all fides in the open Feilds. They are for the moft part Grafiers, and tranfport their Tents from one Vally to another,according as the Yaftures are better. There they Pafture their Beefs, their Horfes, and their Camels, they breed no Hoggs, nor any of thofe other Animals, which elfe where are fed in the Villages, as Poultry and Geefe. But only offuch as the Herbs, which an uncultivated Land doth Naturally produce, will ferve to fuftain. They pals their Life either in Hunting, or doing nothing. And as they neither Sow nor cultivate the Earth, fo they make no Harvelt. They Live upon Milk, Cheefe, and Fleth, and have a fort of Wine, not much unlike our Aqua-vita; with which they make their Feafts, and are often Drunk. In fhort they care for nought from Morning to Night, but to Drink and Eat ; like the Beafts, and Droves which they Feed.

They are not without their Preifts, which they call Lamas, for whome they have a fingular Veneration, in which they differ from the Oriental Tartars; the molt part of whome

## $[54]$

whome have no Religion, nor do they beleive any God. For the reft both of the one and the other are Slaves, and wholy depend upon the will of their Mafters, whofe Religion and Manners they Blindly follow : Like in this to their Droves, who go where they are Lead, and not where they ought to go.

This part of Tartary,Lyes without the Prodigious Wall of China about 1000 Cbinefe Stadia, that is to fay more than 300 European Miles, and extends from the North-eaft towards the north.

The Emperor Rides on Horfe-back, in the Head of his Army through thefe Defert Places; \& thefe Steep Mountains, and far from great Roads, expofed all the day to the Scorchings of the Sun, to the Rains, and to all the Injuries of the Air. Many of thofe which had beenin the laft Warr, affured me, that they had not fuffered fo much during all that, as during this Hunting. In fo much that the Emperor, whofe principal Aim it was, to give his Forcesa Breathing, performed effectually what he pretended.

The fecond Reafor he had of undertaking this Jupray, was that he might keep the weftern Tartars in their Duty, and to Prevent any purnitious Defigns, that might be formed againft the States.
It It, was for this that he entred their Country with fogreat an Ariny, and with for great Preparations tor Warrs. Having carryed along feverat great Gunns, that hé might caufe them to be Difcharged from time to time into the Vallies, and by the Noyle and Fire which iffued out of the Mouthis of thofe Dragons, which ferved toornament them, he might caft a De ead upon the Routir

Befides this geat Retinue, fie would yet be accompanyed with all the Marks of Gandarie, with which he was invironned at the Court at Fekin. To wit, with a Multitude of Drums, Trumpets,Timbals; and other Mufical Intruments, which formed Conforts During his fitting at Table, when The entred the Pallace, or when he went out. He caufed all thefe

## [.55]

there to march with him, that he might by this outward Pomp Aftonifh thefe Barbarous People, to ftricke them with a Fear and Refpect of his Emperial Majefty.

For the Empire of Cbina never had any Enemies more to be feared than thefe Weftern Tartars; which beginning on the eaft of China incompafs it with an almoft Infinite of people, and keep it as it were continually beleagured on the North and Weft fides thereof; and 'twas to make a Bulwork againft their Incurfions, that a Cbinefe Emperor in Antient times caufed this great Wall to be Built, which feperates China from their Countrey. I have paffed it fower times, and have confidered it very attentively. And I can fay without Hyperbolizing, that all the feven Wonders of the World put together, are not comparable to this worke. And all that Fame has fpred concerning it among the Europeans, is far fhort of what I my felf have feen.

Two things have more efpecially canfed my Admiration, The firt is, that in this long extent from the Eaft to the Weft, it paffes in feveral places not only through vaft champanes, but alfo above the tops of exceeding high Mountains, upon which it is raifed by little, \& little, and Fortifyed at certaine Intervales with great Towers, not diftant the one from the other more then two flight fhot. At our return I had the curiofity to meafure the hight of it in one place by meanes of an Inftrument, and I found that it was in that place 1037 Geometrical feet above the Horizon; in fuch fort that 'tis hard to comprehend how' 'twas poffible to Elevate this Enormous Bulwork to the hight we faw it, in places dry and full of Mountains, whence they mutt be obleiged to bring from a great diftance with Incredible Labour, the Water, Brick, Morter, and all the Materials necelfary for fo great a Work.

The fecond thing that Surprifed me was that this Wall is not continued upon the fame Line, but bent ia divers places following the Situation of the Mountains, in fuci manner that inltead of one Wall, one may fay that there are
three,

## $[56]$

three, which Inviron all this great Part of Clina. After all, The Monarch which in our Dayes hath Re-united the Cbinefe and the Tartars, under one and the fame Government, has done fome things more for the advantage of the Security of Cbina, than the Cbine $\int_{e}$ Emperor that Built the long Wall. For after having Reduced the Weftern Tartars, partly by Artifice, partly by. Force of Armes: He has Obleiged them to go and rem aine at 300 Miles Diftance from the Wall of China; and in this place he Diftributs to them Lands and Paftures, whilft he has given their Conntry to other Tartars, his Subjects which have their Habitation there at prefent: Notwithftanding which thefe Weftern Tartars are fo Powerful, that if they fhould agree together, they might make themfelves Mafters of all China, and of the Eaftern Tartary, Even in the face of the Oriental Tartars.
$I$ have faid, that the Tartarian Monarch that Conquered Cbina, ufed an expedient for Subduing the Weftern Tartars. For one of his firft Cares was to engage to his Intereft by his Royal Bounties, and by Demonftration of a Singular Affection, the Lamas (or Preifts) thefe Men having a great Repute about all thofe of their Nation, eafily perfwaded them to Submit to the Government of fo great a Prince, and 'tis in confideration of this Service done to the Eftate, that the prefent Emperor looks upon thefe Lamas with a Favourable Eye, that he beftows Prefents on them; and that he makes ufe of them to keep the Tartars in the O bedience which they owe him : Tho' at the Botom he hath nothing but Dis-efteem for their Perfons, and looks upon them as a Sort of Ignorant Fellows, which have not the leaft Tincture of the Sciences or Commendable Arts, in which without doubt this Prince fhews a Wife Policy, in fo Difguifeing his true Sentiments, by thefe Exteriour Marks of Efteem and Goodwil.

He has Divided this Vaftly extended Country into 48 Provinces, who have Submitted and are Tributary to him. From

$$
\text { [ } 57]
$$

From whence it comes to pafs, that the Emperor that Reigns at prefent in Cbina, and in the one and the other Tartary, may juftly be called the Greatett and moft Powerful Monark of Afia, having fo many vaft Eltates under him, without being any where interupted by the Territory of any Forrein Prince, and he alone being as the Soule which gives Motion to all the Members of fo valt a Body.

For after he had charged himfelf with the Government, he did not at all intruft the Care to any of the Colaos, nor to any of the great Men of his Court. He has not at all fuffered, that the Evnucks of the Palace, or any of his Pages, or any of the young Lords that have been Raifed by him, fhould difpofe of the leaft thing in his Houfe, or fhould Regulate any thing of themfelves: which appears very extraordinary; efpecially if we examine what Cuftomes his Prediceffors were wont to ufe.

He Chaftifes with wonderful Equity the Great Ones as well as the Inferiors; he Deprives them of their Charges, and makes them defcend from the Rank they held, Propor* tioning always the Penalty to the Heinoufnefs of their Fault. He takes Cognifance of the Affairs which are tranfacted in the Royal Councel, and in the other Tribunals, even to the caufing them to Render to him, an exact account of the Judgments there given. In one word, he of himfelf Difpofes and Orders all things; and 'tis by reafon of the Abfolute Authority which he hath thus acquired, that the greateft Lords of the Court, and Perfons of the higheft Quality in the Empire; even the Princes of the Blood, never appear in his Prefence, but with a Profound Refpect.

But to what remains, the Lamas or Tartarian Preilts, of whome we have fpoken, are not only refpected by the People, but alfo by the Lords and Princes of their Nation, who for Politick Ends teftify to them a great deale of Freindfhip: This makes us fear that the Chriftian Religion, will not find fo ealy an Entrance into the Weftern Tartary. They are allo very powerful upon the Mind of the Queen

## [58]

Mother, who is of their Country, and who is at Prefent Threefcore and Ten Years Old ; they are wont to tell her, that the Sect ( of which fhe makes Profeffion ) has no more declared Enemy then us. And'tis a kind of Miracle, or atleaft an extraordinary Protection of God, that notwithftanding this, the Emperor, who has very much Regard and Refpect for her, has not hitherto ceafed to heap on us Graces and Honours, confidering us after an other manner than the Lamas.

During the Journy, as the Princes and the cheif Officers of the Army went often times to the Queen to attend at her Court; and that we alfo were advertifed to do fo likewife: We were willing firft to confult a Perfon of the Court, who loved us vcry much, and who fake for us to the Emperor in our Affairs. This Lord having entered the Princes Tent, told him what had paffed, and prefently coming outagain: The Emperor (faid he to us) basgiven me to underftand, that 'tis not at all neceeffary for you to attend the Queen as others do; which made us to apprehend enough, that this Princeffe did not Favour us.

The 3 d. Reafon which the Emperor had for making this Journy, was for his Health: becaufe he knew by Experience long enough, that when he is too long at Pekin without going abroad, he cannot avoid his being attacked by feveral Diltempers, which he prevents by means of thefe long Progreffes. For during the whole time he never fees any Woman ; and that which is more furprifing, there appears not any one in all this Great Army, except thofe which are of the Retinue of the Queen Mother: 'Tis yet alfo a Novelty that She has accompanyed the King this Year, it having not been practifed above once, when he took with him the three Queens as far as the Capital City of the Province of Leaotum, to vifit the Sepulchres of their Anceitors.

The Emperor and the Queen Mother pretend moreover by this Journy, to avoid the exceffive Heats which are in $P_{e}-$

## [59]

Pekin, in the Summer during the Dog-days. For in this Part of Tartary, there Reigns daring the Moneths of Fuly and Auguf fo cold a Wind, efpecially in the Night, that 'tis neceffary to put on thick Cloths and Furrs.. The Reafon that may be affigned for this fo extraordinary Cold, is that this Region is very much elevated and ful of Mountains: There is one amongft the reft, upon which we continually afcended, for the Space of 5 or 6 Dayes March. The Emperor being defirous to know, how much it furmounted the Plains of Pekin, Diftant about 300 Miles; at our Return (after having meafured the Height of above a Hundred Mountains that lay in our Road) we found that it had 3000 Geometrical Pafe of Elevation, above the Sea that neareft approached Pekin.

The Salt Peter alfo with which theef Countrys abound, may contribute to this great Cold, which is fo Violent, that in Digging the Earth to 3 or 4 foot deep, there are fetched out Clods all Frozen and peices of Ice.

Divers of the Petty Kings of the Weftern Taxtary, came from all Sides for 300 Miles, and fome for 500 Mites, together with their Children, to Salute the Emperor. Thefe Princes, who for the moft part know none but their own Natural Language, which is very different from that of the Eaftern Tartary: took Regard of us, with Afpeets and Geftures of a Goodnefs very particular. There were fome amongft them, who had made a Journy to Pekin to fee the Court, and who had feen our Church.

One or two days before we arrived at the Mountain which was the boundary of our Journy, we met a Petty King very aged, who returned from accompanying the Enaperor, he feeing us ftayed with all his Retinue, and enquired by his Interpreter, which of us was called Nauboaij, one of our Servants having made a Signe that it was I; this Prince accofted me with a great deal of Civility, and told me that for a long time he had known my Name, and that he had defired to know me. He Ipoke alfo to Father Grimaldi,

## $[60]$

with the fame Marks of Affection: The favourable Entertainment hegave us in this Rancounter, gave fome Reafon to hope that our Religion might find an eafy Entrance to thofe Princes, particularly, if care be taken to infinuate into the Minds of thofe Princes, by the Means of the Mathematicks: Which if there fhould at any, time be a Defigne to penetrate into their County: The moft fure way for divers Reafons, (which I have not the Leifure to Explain here) will be to begin the Entrance with the other Tartars more Remote, which are not at all Subjects of this Empire, from whom we may pafs on to thefe, advancing by little and little towards Cbina.

During the whole Journy, the Emperor has continued to give us fingular Tokens of his Good Will, fhewing us Favours in the Sight of his Army, which he fhewed to none befides.

One time meeting us in a great Vally, where we were meafuring the height and the diftance of fome Mountains, he made a Stay with the whole Court, and calling to us from a greatidifance, 3 he demanded of us in the Chin fe Lainguage, Hao-mo? that is to fay, are you well in Health? And then asked us feveral Queftions in the Tartarean Language, concerning the beighth of thefe Mountains, to which $I$ anfwered alfo in the fame Language; after which turning to the Lords that were about him, he difcourfed with them concerning us in very obliging Expreffions, as I learned the fame Night from the Prince his Unckle, who was then by his fide.

He teftified alfo his Affection to us, by caufing often meat to be carryed to our Tents from his own Table, willing alfo that on fome Occafions we fhould eat in his ; and every time he did us this Honour, he had a Regard to our Days of Abftinence, and of Fafting, fending us only fuch Meats as we could ufe.

The eldeft Son of the Emperor after the Example of his Father, gave us Marks alfo of his Bounty, for having been

## [61]

conftrained to ftay more then 10 days, by reafon of a Fall from his Horfe, by which he was hurt in his right Shoulder; and one part of the Army in which we were, having attended, whilft the Emperor with the other continued his Hunting, he was not wanting in fending to us daily, and fometimes twice a day during this fpace, Food from his own Table. In fine, we lookt on all thefe Favours of the Royal Family, as the Effects of a particular Providence which watched over us, and over Chriftianity, for which we had fo much the more occafion to thank God, for that the Affection of the Emperor, was never fo conftantly Shewn to the Grandees of the Empire, nor to the Princes of the Blood.

As to what relates to the other Particularities of our Journy, they are like to thofe which happened to us the laft Year, in the Journy to the Eaftern Tartary, which I have fully difcribed in my lat Letter ; that is to fay, that we made ufe of the Emperors Horfes, and of his Litters, that we lodged in the Tents, and eat at the Table of the Prince his Unckle, to whome he had particularly recommended us.

During more than 600 miles, which we had paffed in going and returning (for we did not return by the fame Road) he caufed to be made a great High-way crofs the Mountains and the Vallies, for the Queen Mother, who went in a Charriot; he caufed alfo an infinite of Bridges to be made over the Torrents, as allo the Rocks to be cut, and the Points of the Mountains, with incredible Pains and Expences: Father Grimaldi fhall defcribe the other particulars in his Letter.

As to the benifit which the Religion maye draw from our Journy, I have fpoken elfewhere; it fufficeth to fay that the Emperor, to whofe Will we cannot make the leaft refiftance, without expofing all this miffion to a manifeft Danger, has ordered us to follow him. I ceafed not however to fpeak twice to that Lord of the Court, who is our

## [6.2]

particular Friend, to excureus for the time to come, from thefe long Journies, and efpecially me, who am not of an Age fit for it: I tryed to obtain at leaft that they would be contented to take only one of us; the Letters of our Fathers were daily brought us during the Journy, and I had the convenience of writing to them, by means of the Curriers which contimually went to and came from the Royal City: I write all this in haft, that I may continue to give you an Account of our Affairs.

An Explanation, neceffary to juftify the Geography : fuppofed in the fe Letters.

IT may feem wonderfal, that the Atthor of thefe Letters mäkes mention in his forner, of a kind of Warr between the Oriental Tartars and the Mofcovites, notwithftanding the extream diftance, the fe People appear to be from one another in our Geographical Chartsjbut thofe who know how much the Mof covites have extended the Bounds of the Empire along
 thofe whathave feen thefe Countrys, have made Difooveries much differing fitom thoferwich our Geographers have inforined us of hitherte. Wierylately Monfeiur D Arey, who

 Poland, and having been made Governor of a Place towards $=M 0$ (eotiv, the Nof covite Amballadors in their returne having paffed by him, and being by him, treated ha fueti a mamer as pent then intor very good Humor; one of then fliewed him a Chart of ehe Countrys between Mof co$2 y$ and China: and told him, that from 3 Citys whieh he Thewed him, whofe Names were Lopla, Abafinko, Nerginf$k o$, all 3 tader the Government of the great Dukes, tho' Situated in the great Tartary, there was a Way to Pekin, which

## [63]

which was not more than 25 or 30 days Journey. This Map it feems mut be kept very Secret in Muscovy: for the next day the MuScovite was in difpair, for having given it, flying that if it Should be known he fhould come to great Dammage. The Officer being come back fince into France, has given a Copy to the King, and another to Monsieur Le Marquis de Seignelay. To confirme this it may be added, what a French Man has writ from Muscovy within this two Months, that they are actually Railing Troops, to go to War with the Cbinefc.

## Some Obforvations, and Conjectures Concerning the Chinefe Characters. Made by R.H. R.S.S.

WHether there ever were any Language Natural, I difpute not: But that there have been, are and may be'artificial Languages'tis nor difficult to prove. The Chijefe Court Language is fail to be of this kind, invented and Spoken by the Literati and Mandarins throughout the whole Empire of China, differing from all the other Langurages Spoken in it, and I conjeCture it to be nothing els but the names of the Characters by which they write and expref their meaning, Arbitrarily Impofed by them, as we in Europe fer names to Arithmetical Figures, not as we pronounce words written with a Literal Character. This I Judge by comparing the Characters with the Names, Monofyllables or Words they Pronounce and Read them with. Nor do they afcend above a Monofyllabical Name tho' the Character be compofed of many fingle Characters, each of which hath its proper Sene and Monafyllabical Name, And though the meaning of each Character, be an ingredient in the Notion of that compounded Character.

I might give an inftance aldo in the Artificial Language,

## [ [64]

 invented by the Late Reverend Bifhop of Chefter Lr. Wilt kins, which in all the accomplifhments of Language doth excel any one yet extant ; to which is alfo annexed a real Character, Legible into that or any other Language Spoken. By which Language the Character and every additional Mark is effable, and yet the Character is not Litteral but Real, which is more curious and ufeful than the Crinefe way. Great pitty it is that Difcourfe is net publifhed in Latine, that the Learned of Europe, may think of further Improveing it, and bringing it to Ufe.But whatever we may judge of Language, tis paft difpute that Writing was ever Artificial, how Antiently fo ever it were in Ufe, and was the Invention of fome thinking and Stvdious Men. Tis alfo evident that there have been various ways thoughteforon Exirefling Significancy, according to the feveral Genii of the Perrons that were the Inventors. As may be gheffed by the Egyptian. Hieroglyphicks, the Cbine $\int_{e}$ Characters, the Mexican Chronology, and the Lizeral Characters of feveral Nations, each of which feem to proceed upon differing methods. and from differing thoughts of Invention.

Which of thefe ways is the moft Antient, is hard to Prove. The EgyptiandMumys and Obleisks prove a great Antiquity of the Hieroglyphicks, but yet the Chine $\int_{e}$ Chronology (if to be credited) outfrips the Egyptian in pretence to Antiquity. For the Cbinefe make Fobi the firft King of China to be the Inventer of thcir Character: And account him to have Lived 2950 Years before the time of Chrift, dureing all which time they pretend to have a certaine and written account in their Books: But their account of the times preceding, they efteem more Hypotheticaland Fabulous; depending cheify upon Fiction and Oral Tradition: As you will eafily beleive, when you underftand how many years they make it fince the Creation of the World to the prefent year 1686. which by the account thereof in Mr. Graves his tranflation of Vlug. Beig.will be found to be no lefs then eighty eight millions fix hundred and fourty thoufand

## $[65]$

one hundred and two Solar Years, there having been run out fince the Creation 8864 Ven. of Years (every Ven. conteining ten thoufand fuch Years) and of the prefent $V$ en. this Year 1686 is the 102d. Which account is abundantly more extravagant than the Egyptian:' But this need not Invalidate their Hiftory fince Fohi ; by which it appears that their Character was Invented before the time of Mo/es about 1400 Years, and even before Menes the firt King of Fgypt about 500 Years. So that the Cbinefe Invention of Writing or Characters, feems to be the molt Antient of that kind. And the Book Yekim faid to be writen by Fohi, the moft Antient Book.

Thefe accounts made me the more defirous to underftand fomewhat of the Reallity ahd Truth, of what is related concerning the Knowledge of Literature and Manual Arts, which thefe people of cibina are faid to have poffeffed fo long a time in fo great Perfection, and without Alteration from the Primitive Inftitution, efpecially upon the account of their Art of Printing, which gave a hint to the Inventors of that admirable and moft ufeful of all Inventions (for the Common Wealth of Learning) the way of Printing here in Europe. For Paulus Fouius affirmes that the firf Occafion of that Invention in Germany, was a Germane Merchant, who rcturning out of China into his own Country, Related what he had obferved concerning the Practife of it as ufed in that Country. And tho' the Chinefe way, be wholly differing as to the method of compofing, from what was Invented and Perfected here: Yet fuch an intimation was enough to an Ingenious Artift to improve the firt Contrivance, and make it more accomodate to the Literal way of Writing with us And as our way may poffibly be now brought to the greateft Perfection for exactnefs and expedition, fo without doubt muft be their way of Printing any thing juft as it is writen, Since I find, that they can Ingrave their Stamps for a fheet, as foon as one of our Compofiters can fet and correa afheet of our Literal Chameter, and when fo

## [66]

done one Man alone will print off 1500 Sheets in one day. And though tis generally believed to be much the fame with our Wooden Cuts for Printing, yet from fome Obfervations I have made, I believe it to be much another way; of which I fhall hereafter tay more when I difcribe their other Arts of Pottery, Staining, Vernifhing, \&c.

By a Cibinefe Manufcript, out of which I tranfcribed the Lords Prayer in the Year 1666 ( when it was loft) Ifound that the Pronuntiations had no Affinity with the ftroaks of the Character. Whence I conceived it was either a numeral Character confifting of Numbers, or elfe a real Character, but not a Literal, unlefs it were a Litteral Character of fome other Language than thatby which it was Pronounced, whofe pronountiation is loft though the Significancy be reteined, as if one fhould Read what is written in Hebrew Muscl into the Latine or Roman Language, In Principio Creavit inftead of Brafit bra. or Berefith Bara according to the Maforetha.

Since that time I procured from China a Dictionary of the Court Language, (as I found it writen upon by the perfon that fent it me from thence) But this whole Book (which I found was Printed ) eonffted only of the Chine $\int_{e}$ Chatacters without any interpretation, or Pronuntiation, however by the help of the picturs of that, and a Chirefe Almanack, I quickly found out their Characters for numbers and their way of Numeration, together with the Figure and ufe of their $A$ bacus or counting Board, for performing the Operations of Aritbmetick, which I find pretty near to agree with that of the Antient Romans (A Defeription and Picture of which is given by orfonus, Pignorites and Velferus a fave only that, inftead of pinns and fliding Groves of the Romane, the Chinefe Abacus hath Strings or Wires and Beads, to flide upon them ; and that, inftead of four pinns for Digits or Unites, the Cbinefe hath 5 beades: So that it may feem to argue that the Chinefe abacus was defigned for a Duodecimal Progrefion: Whereas that of the Romans was defigned for the De-

## [67]

One thing is remarkable in the Chine $\int e$, that I find the places in the abacus to lie borizantal, and their firft place to be that next the left hand, which I judge was alfo the firft in their old way of reading, much the fame with ours, though their other Characters are erected (as I fhall by and by fhew ) from the pofture of Writing and Reading, which 1 conjecture they did at firt make ufe of, and what does yet further agree with this conjecture, is Remarkale in the newly mentioned Treatife of Vlug Beig. That whereas the way of Writing and Reading ufed by the Arabs, was from the right to the left, the firt place or the place of Unts in their Numeation, was that next the right Hand ; and fo came firt to be read: as did that of China, who as I conceive read the contrary way, from the left to the right.

It appears therefore by this remark that we received this way of exprefling Numbers from the Arabians, for that we keep the fame pofture or poffition of places with them, though our progrffion in Writing and Reading be the contrary way. And though we now Read them alfo in the order they are fet, twenty one, twenty two, thirty fix, forty eight, \&c. yet we retaine alfo the other way of Pronounceing, viz, one and twenty, two and twenty, fix and thirty, eight and forty, \&c.

Now as the Cbinefe and Roman Abacus do much agree fave only that they proceed contrary wayes, fo doth their way of exprefling Numbers byLetters or Marks, oreftroke or line fignifying one, two lines, two, three linés, three, a crofs ten, two crofles, twenty, thee croffes thirty, and foonwards to a hundred, which they exprefled by a fquare mark, and crofs with a ftroake added for a thoufand, as will appear by the Table anexed. And thotigh the Characters are not all the fame; yet the order \& method of one agrees very near with that of the other, efpecially if I may be allowed my fuppofition, that the Primitive way of Writing and Reading with the Cbinefe was Horizontal, and like the Greek and Latine or Europian way. Now that thefe are prow
perly nomeral Figures ot Characters, is manifeft from this, that they have alfo word Characters for every Number, And they can (in the fame manner as the Romans could )ex prefs a Number by their numeral Charactars or Marks, and by their Litteral or word Characters ; for asone fliggle fitoke fignifyes one or the firft, fo does the Character (intbe plate-marked with E) fignify the fame thing, that is one of the firft.
Having thus difcovered their Characters for Numbers, and their way of Numeration, I was next defirous to underftand fomething concerning their Langyage and C haracter.

Upon Perufing all the Accounts I could meet with in Books, I found very little fatsfactionas to what I principally inquired after, which was firft concerning the Method of the Chatacter, whether it confifted of a certain Number of Marks Methodically difpofed like Letters in a Literal, or like Num bers in a Numeral or like Radicals in Compofite \& Decompofite Derivations? 'tis faid to be Legible into a great many Languages confiderably different one trom another, but how this iseffected is not related, only tris faid that the marks are of the Nature of 046 Arithmetical Figures; (which are be, come almof Univerfal at deaft to ushere in Europes) and fecondly, concerning the Number of thefe Gharacters? to which I found as little fatisfaction, for, by fome Relations I found that there were 120090, by others 8,0000 and by others 60000 , And that a maft mult be able to remember, to Write and Read at left 8oop, or woooo, before he will beaable to exprefs his meãning thereby, \& that it is the bidinefs of a Mans whole Life to be throughy undertanding in the whole Character;feming tointimaterthat the Characters are Immethodical, and there are many Pamitive C batacters as Words. Others tell us of various kinds of Chatacters which have been in ufe in feveral Ages. The firft they fay were $H i$ croglypbical like the Agyptian or Mexican confiting of the $\mathrm{Pi}_{\mathrm{T}}$ ctures of Animals \& Vegetables. But that thelaftaye made up of Lines \& Points, that they have nofuch thing as betters or

## [69]

Syllables, but every diftinct word \& notion has a diftinct Character, $\&$ that all are primitive or in compofit, So that if Calepines Dictionary were tobe tranflated into the Cbinefe, 'twere neceffary to have as many diftinct ${ }^{t}$ Radical Characters as there are words therein to be found.which accounts do feem to infinuate that this Character is the moft Difficult, \& the moft perplexed peice of Learning in the World, \& depends wholy upon the ftrength of thememory in retaining the form \& fignification of a perplexed fcraul. But whether they who gave us thefe accounts did do it knowingly, is much to be doubted, my own obfervations, at leaft, make me think otherwife.

I have not yet been able to procure fufficient helps to Inform my felf of the whole Art of Writing and Reading the Cbivefe Character, and I fear the Relations I have hitherto met with concerning it, were written by fuch as did not well underftand it, however from fuch helps as I had, what I collected or do conjecture, I hall here relate. The beft help I had, was the Perufal of fome Books Printed in Cbina, with the Pronuntiation and Signification of the Character in Latine Letters. By thefe Books then Tobferved, Firft, that every one of their Characters whether confifting of more or fewer ftrokes or marks, were comprifed within a certain fquare fpace, which is proportion'd according to the bignefs of the fize or manner of Writing, they defigne there to make ufe of, not that the whole Square is filled with every Claracter, but that no part of that Character does exceed the Limits of that Square, fo that though the Character have but one ftoak it takes as much room in the line as another that hath 20 or 30 feveral marks, fo that their Characters are moft exactly ranged in Rank and File, not unlike our Numbers in Arithmatick.

Notwithftanding, which I find they do vary the bignefs of the Character upon feveral Occafions, as in the Titles of Books, in the Titles of the Chapters or Sections, in the Comments Explications or Notes, and upon feveralother occafions of Variety, which they do at Pleafure with their Pencil, as we ufe variety of Letters in the Printing of a Book. The

## Titles

## [70]

Titles of Books ane generally in very large Characters, 6 op $S$ times as big as thofof the Book, the Explication notes: of the bignefs, the contents ufually twice as big, and the like variety on feveral other occafions. I have met with alfo three Reverat kinds of Characters, the moft ufual is the fixed or fet fquare form, The fecond fort is the Running hand in which the orders of the Courts are written by their Secretaries, of which I have feen 3 or 4 kinds, in which the Pencil is never taken off till the whole Character be Finifhed, and fometimes 2 or 3 are all written without break. The third feems to be fome what like the flourifhing great Letters ufed by Scriveners at the beginning of Deeds, and by the Germans in the beginning of Chapters and Sections. They are compounded of the fame ftrokes as the fet Character, but modulated and fhaped a little otherwife to make them appear the more beautiful \& regular. A Specimen of each of thefe three are in the plate. This third is made ufe of for Epitaphs and other Infcriptims on Buildings or Monuments. Thefe 3 forts I may call the three general kinds of writing, but there is to be found an almoft infinite yariety of forms, ywich menufe. This will be the more eafie to be bet lieved, when we confider that the Printed Charaters are exactly the fame with the written. infomuch that every vas riety in each ftroke, line or point, that is or can be made with the Pencil, is perfectly expreffed in the Impreffion, and the forme mode, of hand, as we call it of every Writer is exhibited fo curioully, that I think it hardly poffible to be performed after the way of wooden Cutts as Authors affirms it is, but mult be done after the Method of our Copper cutts, printed by a Roule-preff, which the way of expreffing the Running or Court-hand, does, I conceive mof evidently demonftrate, and from divers Circumftances, I could evidently make appear from the Book it felf, which I cannot fo well exprefs in writing Their Paper is gencrally very thin and fine, and very tranfparent, but brown, fo that what ever is Written or Printed on it, is almof as Legible

## [71]

on the back, as on the forefide which is of great ufe in the cutting of their ftamps. And thence they never write or print on both fides of the fame leaf but only on one, and to make the leaf appear printed on both fides they double the fheet with the printed fides outwards, and putting the folded part forward, they fow, bind or ftich together, all thefe fheets by the cut edges, and upon whole fheets inftead of fingle leaves; juft in the fame manner as the plate annexed to this difcourfe is printed. They begin the book on the top of the right-hand fide of the page that is next the right hand, and they read downwards to the bottom, then begin the next line towards the left hand at the top, and fo read to the bottom, and fo proceed to the end of the book. But this I fuppofe not to be the primitive or firft way of writing or reading. The Title of the Book is fet firft upon a whole Leaf, ufually of a thicker Paper, and fome Title is likewife written upon the folding or, edge of every Sheet, where is fet alfo the Number of the Book, and the number of the Sheet, half of which appears on one fide, and half on the other fide of the fold.

As to the Character it felf, (I find by all the books and writings I have yet met with of that kind ) that each of them is made up of a certain number of ftrokes, lines, or marks, which are very diftinct from each other in their fhape and pofition ${ }^{6}$ and by reafon that thefe are fingle ftrokes, and as I conceive uncompounded, I think they may be called the Letters, Elements, or Particles, out of which the more compounded Characters are conftructed or contexed. Thefe are the firft kind of which there are but a very few, And I think thofe I have defcribed in the $13^{t / \%}$ line of the Plate are all.

Two, three, four, or more of thefe joynd together in a certain order and contexture (in the doing of which there is a great Regularity and order obferved, which is not varyed from, and all within the regular fquare fpace) I conceive do make Syllables or Primitive Radical Characters,

## [ 72$]$

each of which have a primitive fingle or diftinct notion or fignification as will as found, which is made much ufe of in the more compounded Characters or Words. Of this kind I take thẻ Figures of the Numbers to be: If at leaft they are not fingle Letters like the way of expreffing Num. bers in the Hebrem Greek Arabick, \& c , Languages, for though there may be two or three of the fingle ftrokes joynd together into a compound Character, it hinders not, but that it may ftill fignify a Letter, as in the Greek s.A.A.I.r. п.T. In the Runick; where every Letter hath one upright line and fome other additional marks: In the Roman I.L.F.E.O.Q.V. Y: Or it may fignify a Syllable as in the Etbiopick, and in the Hanforet, and Sunfcrit Languages and Characters: The firt of which being the Brackmans Character we find in P. Kir. cber's Cbinailluy frata, defcribed by P. Roth who ftudyed it 7 Years; and the fecond (being a Literal Character ufed over all Irdia by the Merchants ) I have feen in a Tramfeript, brought lately out of India by a very Worthy Gentleman who lived there many Years, and had the curiofity to caufe to be tranfcribed and tranflated alfo into Englifh, A Dictionary of their Language in thein own Character: who did me the favour to let me perafe it.

In which Chararters or ways of Writing a Vowel is als ways joynd with a Confonant into one compound Character to make it effable. And then theifingle ftroaks may be taken for fingle Ineffable Letters as are the Confonants, and the Compofition of two or thiree (of which one at teaft may be a Vowel ) will make Syllables.

Of this kind, there are not fo many in the whole Cbinefe Charaster, but that it will be eafy enough to affigne each a proper Monafyllable which fhall only have one or two Confonants, and one or two Vowels: That is the Confonants together and not feparate, either both behind the Vowel ov Vowels, if it be a diphthong or both after it or them.

## [73]

Of this kind, I underftand there are about 500. probably $8 \times 8 \times 8$. or 512 . I could enumerate a great many, and give you alfo the name or words by which they are pronounced as alfo their fignification, but (as I faid before) firt, I conceive the prefent Cbine $\int_{e}$ Language to have no affinity at all with the Character, the true primitive, or firft Language, or Pronounciation of it, haveing been loft. And fecondly, I want fome further help to make a full and compleat Difcovery: what I have learnt from the Book of Fo,ji I fhall give the next opportunity; which wll explain the reafon of the multiplication of 8. and the order and method of places in the Letter or word Square.

The third fort of Chatacters, is a decompounded fort being made up of two three or more of thole of the fecond kind, diminifht proportionably in their fize, either as to their length, or bredth, or both, from what they have in the fame Writing when they are fingle and fill up the whole Letter Square or Words Square. For there being feveral of them to be crouded together within the fame Square, according as there are more in number, fo they are always more fqueezed together. In this Decompouad fort, there is a Regular order obferved in the placing of the feveral Characters of the 2d. fort; there being fome that are always on the Left fide, fome atways on the Right, fome at the top, fome at the bottom. Of which I doubenot but that they have a certain Regular Metloo, which had we Dictionarys, explained would be eaffee enough to be Difcovered.

This method alone of crouding together all the Charact. ets (how many foever go to make up the decompounded Charater) into one fquare (whichis of the fame fize for the molt Simple and for the nof Compound ) feems to be the great Singularity, by which the Chinefe Characters differ from thofe of all the reft of the World. And this I conceive has been the Reafon why all People, and poffibly even the very Chinde themfelves have, and do beleiver it to bela Reali and not a Literal Character: For if the Primitive Lan-

## $[74]$

guage, or Pronuntiation of the Characters be loft (as I conceive it is ) and that the difpofition, order, method, texture, or manner of placing the more Simple in the more Compounded Characters be alfo loft, forgotten, or not underftood; then the whole Characters becomes a Real and not a Litteral Character: And an Immethodical one to fuch as want a method, that muft be learnt by roat and depend wholy upon the ftrength of the Memory to retain it. But I conceive it might be at firit either a Litteral Character, and fo the whole fquare Character was compofed of fo many diftinct Letters or Syllables, which compofed the word fignifyed thereby; And fo there might be a regular orden of placing thefe Letters in the Character, That is, that the whole fquare being divided into fo many parts, there was a: Rule which was the firft $2 d .3 d$, and 4 th. place $;$ f $p$ that there being placed in thofe the feveral Letters that made up the word, according to the order they had in the word, it was eafy by that Rule to Decipher the faid Character, and thence to finde the word and the Signification, As Regularly as if the Letters had been written one after another, as moft other Litteral Characters we know are at this day written.

Or Secondly, it might be a Real Character confifting of divers Marks or Letters, that exprffed fo many, fimple No-, tions, feveral of which joyned together might make up the more compounded Characters, of which I have added fome examples in the Plate which may be alfo made Litteral and Pronouncable, tho' that confideration were not made ufe of when they were firft invented. What things Ihave Obferved in my Gbinefe Books that feem to reffect this method, I will give more particulers of by the next oppoftunity, by Printing a Specimew of the Book Te-kim which explicated by thefe Notions will I conceive appear more Intelligible, than by the accounts we find given of it by the Chineff commentators, and thofe that have itranflated them into Latine, who feem not to have undertood the true defign thereof fors both

## [ 75 ]

both the Cbinefe and European Commentators affert it to be a Conjuring Book, or a Book to tell Fortunes by, and to be made ufe of by the Cbinefe for that purpofe; whereas by the fmall Spcimen I have feen of it, I conceive it to contain the whole Ground, Rule or Grammer, of their Character, Language and Philofophy, and that by the underftanding of it, the Foundation and Rule of their Language and Chatacter, may be without much difficulty Decipered and Underftond.

The prefent ufe of this Character, I conceive to be differing from what it was at firft; both as to the pofition of Writing and Reading it, and as to the Expreffion and Pronunciation thereof,

For the way of Writing and Reading it, I conceive might at firft be exactly the fame with that of the Greeks, Romans, Englifh, and all other European Nations, and alfo the Etbyopick and Coptick. That is, they began at the the top of the Page towards the left Hand, and fo proceeded towards the right in the Horozontal Line to the end of it, and then began at the left end of the next line under the firft and proceeded with that in the fame manner, and fo with the next under that and ali the remaining. Continuing to Write the words of the line towards the right Hand, and the lines of the Page one under another till the whole Difcourfe were compleated, joyning leaf to leaf one under another, after the fame manner as the Roules are at prefent Writ, and as the Volumina were of the Antients. And to make the parts of the Volume to be the more eafily to be come at, without the trouble of Rouling and unrouling as the Ancient Romans did,and we do with our Roules they contrived to fold them, like the folds of a Fan, forwards and backward: and fo ftitching them tagether, that the written fides might lye outwards, and open freely one from another, and the fair fides might meet together, It came to make the prefent form of their book, which being laid as we generally place our books before us, they feem to begin at the top of the page on the Right-hand, and to proceed to the bottom, and then at the

## $[76]$

top of the next line towards the Left-hand, and defcend as in the former ; proceeding in this order with all the reft, which way mult needs be very Inconvenient for writing, however they may ufe their Pencil differing from our Pen. Though there be a way of Writing from the top to the bottom of the Yage, which is very convenient for Writing the Syriack, as allo for Writing Latine, Englifh, or Greek where the Writing is to be ufed for cutting the ftamps of Wood, or Graving of Copper Plates with the fame Character for Printing, in which Cafes the Letters mult be written backwards.

Secondly, as to the Pronounciation of this Character, by the Court Language, or by any other now ufed, I conceive it to be wholy differing from that of a Litteral Character, that is from being pronounced or fpoken according to the Marks or Figures thereof, whether they be fimple or compounded and made up of Smple Characters (though there are fome inftances of affinity in Characters and Words.) The reafon of which differing pronounciation I conceive may have proceeded, partly from the lofs of the Primitive Language, for which it was made, partly from a moft inconvenient affectation of Monalyllabical Words in this Court Language, to help the poverty of which, they are fain to make one Syllable to fignify many differing Notions, to do which they have introduced a kind of Mufical toning or accenting of each of them, and that not fingle but compound of two or three tones to each fignification of every one of thele Monafyllables: Partly from the uling of this: way of Writing, by divers Nations of Differing Languages, who minding only the Figure and Signification, Read it into their own Mother Tongues, as we in Europe do Arithmetical Figures : and partly, alfo from the miffion of moft Grammatical Diftinctions, the fame Character ferving for Subftantive and Adjective, Singular and Plural, in all Gafes, (fave only they have fomie Characters for Particles as of and to in Englim ) for the Verb in all Tenfes, and numbers, \&e.

## $[77]$

for the Abftract and the concrete Signification, and for divers Metaphorical ; if at leaft the Interpretation I have met with in the Books I have perufed be exact: Partly, alfo from the Syntaxis of them, it being neceffary to confider the whole Sentence to Difcover which Part of Speech each Character is of, in that Sentence, wherein the order and pofitions of the Characters to one another, for which they have Rules, hath its Signification: And lattly, from the lofs of the very Notion of a Literal Character, whence for the Expreffing of Proper Names, they are fain to make ufe of feveral Characters, whofe fonids or words come nearef to the founds of the Syjlables of that Name, as in the Plate tam,jo, van. for Adam. Fovan

Now, though I conceive this Character is not Effable properly as a Literal Character by any of their prefent Languages, And though poffibly it might be at firf a Real Character, that is each of them compounded of fuch ftrokes or marks as by their Figures Pofitions and Numbers in the Square, denoted the feveral Philofophical Ingredients, that made up the Notion of the whole Character, as the book Ye Kim feems to thew by giving Rules as I conceive for the Order and Significancy of places in the Square, ©゚c. Yet I think it not difficult to make it a Litteral or at leaft a Syllabical Character, and Legible into a Language fomewhat after the manner of the Univerfal Character I mention'd before. And tho' this would not be the Primitive Language for which it was made, yet for the prefent ufes of it (the chiefeft of which is the affifting and refrefhing the memory, andhelping the imagination by proper founds ) it might be as good: wherein the fingle Characters might be Monofyllables and the compounded difyllables trifyllables, for. According to the Number and Order of Simple Characters in the Square of the Compounded. And I am apt to think that the prefent pronounciation of Languages, as of Hebrew Syriack $A$ rabick Greek and Latine or any other Language that has been

$$
[78]
$$

fo long written, may be as much differing from what it was 2000 Years fince, as an Arbitrary one now invented, and grounded on the Letters, might poffibly be. And fuch an Arbitrary pronounciation if generally agreed upon might ferve As well for a help to learn the Signification of words, or Word Combinations of Characters, as if we now knew the exact Primitive Pronounciations, as Critically as the $\mathrm{Ma} / \mathrm{J}_{-}$retbie are faid to have done that of the Hebrew; and poffibly alfo Mucbs Better, for that by fuch a one a great many Irregularities and Difficulties of Pronounciation (which are to be found in all Languages now fpoken ) might be omitted, and the whole made exactly Regular and eafy, as might be fhown in the Hebrew and Greek, and efpecially ; 1 the Arabick, whofe difficulties are fufficiently manifettua by Alphabetum Arajicum, Printed at Rome 1592. Now as by fuch a Langnage the Character might be made Effable without Mufical Tones or Difficult Afpirations, fo had we Dictionarys of thé Signification of the Characters, we might as foon learn the Cbinefe Character, as we can Latine, or any other Language to be Learnt by Book, and not by Speaking.

## I MPRIMATUR,

JohnHoskyns Vice P. R. S. July 17 th 1686.

Printed by $\mathcal{F}$. Streater, and are to be fold by Sam. Smith at the Sign of the Princes's. Arms inSt. Paul's Church yard.

$\because 8$ cum Ansa omnium maxime diducta conspiciuntur


# PHILOSOPHICAL 

 TRANSACTIONS.
## May the 25 th, 1686.

## THECONTENTS.

A$N$ Account of an Engine that Confumes Smoak, Bown lately at St. Germans Fair in Paris; Communicat d by Mr. Juftell. R.S.S. 2. An Extrait of the Journals des Scavans of April. 22.ft. N. 1686. giving an account of two new Satellites of Saturn, difoovered lately by Mr. Caflini, at the Royal Obfervatory at Paris. 3. Two Aftronomical Obfervations of the Eclipfes of the Planet Jupiter by the Moon, in March and April laft, made at London. 4. A Difcourfe on the Problem, why bodes diffolved in Menitrua /pecifically lighter than themfelves fwim therein, by Mr. Will. Molineux, of Dublin R.S. S. with fome Reflections thereon by Mr. T. M. 5. A Letter from Dr. Sigifmond Konig, Phyjtian of Bern in Switzerland, to the R. Society, being a continuation of the Hiftory of his Patient Margaret Lower; phereof an account is given in the third Philofophical Collection, of Decemb.10. i68 r. 6. A Difrourle of the Rule of the decreafe of the height of the Mercury in the Barometer, according as places are elevated a'ove the furface of the Earth, with an attempt to dif cover the true real on of the Rifing and Falling of the Mercury upon change of $W$ eather. Accounts of Books. I. A free enquiry into the Vulgarly received notion of Nature, by the Honourable R., Boyle Efq; Printed by J. Taylor at the Globe in St. Pauls Cburch-1ard. A. 1686. in Octavo, 2. Traitte du Mouvement des eaux, \& des autres Corps fluides par feu Mr. Mariotte. A Paris, Anno 1686. in Octavo.

An Account of an Engine that confumes Smoak, Joown lately at St. Germans Fair in Paris Communicated by Mr. Juftell R.S.S.

T
O burn all forts of Wool in the middle of a Room without making any Smoak, is a thing fo extraordinary, that all thofe that bave hiard peak of it, as well Philofophers as others, bave afferted It impoffite : but Mr. Datefme Enginier, profecuting is difcoveries, bas found out a Machine, mbich tho very little and portable, con fumes all the Smoak of all forts of Wood whatfoever, and that fo, that the moft curisus eye cannot difcover it in the Room, nor the niceft Nofo fmell it, altho' the Fire be perfectly open. This bas given fucb fatisfaction to all that buve feen it, and to the King bimelf, that he bas caufed the Experiment to be made feveral times before Him.

This Engine is made after the manner reprefented in Fig. $f$. and is compofed of feveral boups of hammer'd Iron of about 4 or 5 Inolles diameter, which fbut owe into the other: It ftands upright in the middle of the Room, upon a fort of Trevet made on purpofe. $A$ is the place where the Fire is wade, where if you pur little peites of Wood, it will not make the leaft fmoak, weither at A nor B, of ver which you cannot bold your hand within half a foot, there comes out fogreat a beat : If you take one of thefe perices of Wood, out of the Fire at $A$, it fromaks prefently, but ceafes inomediately fo foon as it is cut in the Fire ngain. The moft fatid things, 45 Coal fleept in Catsipifs, which finks abomisably wher taker bat of the Fire, notwith tanding in this Engine makes not the leaft il fcent. The fame did Red-Merrings broiled tbereon; on the other fride all Perfimes axe loft in it, and Encenfe makes no fmell at all, when bunt therein. Whe kave fance learnt that this is mbifforin, but when the Fire ai A is well kindled, and the Tannel B D.very bot, fo that the Air that feeds the Fire cannot come that way, but mont all prefs in apon tbe open Fire; whereby the Snoak and Flame is all forced innards, and muft pafs throwgh the heap of burning Coals in the Furnace A, in inhich paffage the parts thereof are fo difperfed and refined, that they become imoffencive both to the Eye and Nofe.

## [79]

## An Extract of the Journal Des Scavans. of April 22

 ft. N. 1686. Giving an account of two new Satellites of Saturn, difcovered lately by Mr. Callini at the Royal Obfervatory at Paris.THe Variety of wonderful Difcoveries, which have been made this Century in the Heavens, fince the invention of the Telefcope, and the great Utility that may poffibly be drawn therefrom, for perfecting natural Knowledg, and the Arts neceffary to the Commerce and Society of Mankind, has incited Aftronomers more ftrictly to Examine, if there were not yet fomthing confiderable, that had not been hitherto perceived.

The diligence of thofe that have gon before, having left only the moft difficult and obfcure Objects to difcover, thefe Satellites of Saturn which are eminently fo, by reafon of their Smallnefs and great Diftance from the Sun and Earth, have fallen to the fhare of Sign. Cafini; who being furnifhed with Telefcopes of an extraordinary length and goodnefs, has been able to fee deeper into the Heavens, than thofe that have hitherto attempted. Mr. Hugens indeed found out one of them, viz. the fourth and biggeft about thirty Years fince, and made out the Theory of the Ring or Anfx of Saturn till then unknown; but it feems there remained yet four others to difonver. The middlemoft and outermoft, or third and fift Sign. Gaffini difcovered in the years $\mathbf{1 6 7 5 , 7 2}$ and 73, an account whereof is to be feen at large in Number 92 of thefe Tranfactions; the two innermoft were referved to this prefent time for the fame $\mathrm{Ob}-$ ferver, having now lately gotten yet better Telefcopes. The account he gives of thele Difcoverys is as follows.

## [80]

## The Diftance and Period of the firf Satellite.

The firft or innermoft Satellite of Saturn, by the Obfervations hitherto made, is never diftant from his Ring, above two thirds of the apparent length of the fame Ring, which we take for the meafure of the diftances of thefe Satellites: and it makes one Revolution about him, in one day, 21 hours and 19 minutes. Wherefore in lefs than two dayes it makes two Conjunctions with $S_{a t u r n}$, the one in the upper part of his Orbe, and the other in the lower part; and the Ring taking up the greateft part of the Diameter of the Circle, wherein this Satellite makes its Revolution, thefe Conjunctions are of a long continuance, in refpect of the whole Revolution, it being 8 hours and half in paffing the length of the Ring, which at prefent hides it every day for fo long time; and longer too, becaufe it is very hard to be diftinguifhed, when it is very near the Ring.

This happens particularly for thefe two or three years, when the Pofition of the Ring, in refpect of the Earth, being very Oblique, it appears very narrow; and the Circle of this Satellits Orb being nearly in the fame plain with it, they appear very clofe togather. In the following years when the Ring and the Orbs of thefe Satellites fhall be more open, there will be a greater diftance in Latitude between this Satellite and the Ring, and it may be feen both above and below the $A n \int e$, which at prefent cannot be.

Thefe Conjunctions of fo long duration hapning often at the times moft proper to obferve Saturn, have frequently hindred the feeing of this Satellite; and particularly before we had found the Rules of its Motion, fo as to be able to prepare to obferve it, at the times when it was far from its Conjunction. And feeing one Conjunction begins 14 hours after another is finifhed, and that each laits 8 hours and half; whenever we hapned to obferve after the beginning of a Conjunition, and continued the following days to obferve

## [81]

about the fame hour, there would be 9 or 10 days wherein this Satellite could not at all be feen, for this only reafon: and ifthe courfe of theObferuations were interrupted by ill Weather or any other caufe, it has been above 20 or 22 dayes before it could be feen again: So it hapned foon after the firft difcovery thereof, the which has for this caufe been incomparably more difficult to make, than any other hitherto made.

## The Diftance and Period of the fecond Satellite.

The fecond or penintime Satellite of Saturn, according to the Obfervations hitherto made, is but three quarters of the length of his Ring diftant therefrom, and makes his Revolution about him in 2 days, 17 hours and 43 minutes.

There feldome paffes a day wherein it is not joyned to Saturn, either in the upper or lower part of its Orb. The Conjunctions or times wherein it paffes the whole length of the Ring, laft 8 hours; and 25 hours after one ends another begins. By reafon that at frif it could not be diftinguifhed, when it was not at a good diftance from the Ring, and before we had found out the Rules of its Motion, to forefee the times proper to obferve it, we were feveral days without feeing it. Afterwards it was difcovered one day to the Eaftopard, the next day to the Weftward, and the third or fourth day at the fame hour, it was again in Conjunction with Saturn: and fo becaufe the firlt for Reveral days toge ther could not be feen at the fome hour, it often hapned that neither the one nor the other was Vifible, and when one began to appear, it was uncertain which of the two it was, both of them fhewing themfelves alternatly, on day on the Eaft fide, and the next day on the West fide.

This diftinction was ftill more difficult, for that the difference of their Elongations is folittle, that for the moft part the fecond Satellite is found within the limits of the E-

## [82]

longations of the firft, which likewife made it hard to determine their Degreffions. It was not without a great nnmber of choife Obfervations, that it was concluded that the proportion of the digreffion of the fecond, to that of the firft, counting both from the Center of Saturn, is as 22 to- 17.

## The Rule of the Proportion, that is between the Diftances and the times of their Periods.

The time wherein the fecond Satellite makes its Revolution, is to the time wherein the firf makes its, is as $24^{\frac{3}{4}}$ to 17, which is a greater Proportion by half a Degree than that of the Diftances, viz. 22 to 17. This is that very fame Proportion which Kepler obferves, between the Diftances \& Yeriods of the primary Planets, and which we have found between the other Satellites of Saturn, upon our former difcovery, and is verified in the Satellites of $\mathfrak{F u p i t e r}$. There is nothing that better fhews the admirable Harmony of the particular Syftemes, with the great Syiteme of the World.

## The Number of the Conjunctions, of thefe Satellites with Saturn.

Of all the Satellites that are, there are no two fo near placed to their primary Planet, as thefe two Satellites of Saturn, and which taken both togather make fo great a number of Conjunctions with their Planet in the fame face of time; for there are in all no lefs than 5.53 in a year, whereas the two firft Satellites of Fupiter make, one with another, but 617; the firft of Saturn's, makes dits Revolution in 3 hours longer time than the firft of Fupiters, but Saturns fecond has its Period 9 hours and half fhorter than Jupiters fecond Satellite.

## $[83]$

## The Glafles ufed to make thefe Difroveries.

The Diftance of thefe two Planets, which is almoft Infinite in refpect of their Magnitude, had kept them yet much longer concealed, if we had not for this purpofe made ufe of Glaffes of extraordinary Force. They were firft of all feen in March Anno 1684, by two excellent Object Glaffes of 100 and 136 feet, and afterwards by two others of 90 and 70 feet, all made by Sigr. Campani and fent from Rome to the Royal Obfervatory by the Kings order, after the dif. covery of the third and fift Satellites, which had been made by others of his Glaffes of 47 and 34 feet. We made ufe of them without Tubes, by a more fimple contrivance than thofe propofed either before or fince. We have fince feen all thefe Satellites with that of 34 feet, and continued to obferve them with Glaffes of Mr. Borelli of 40 anid 70 feet, and by thofe wbich Mr. Artouquel hath lately made, of 80,155 and 220 feet. It was eafy for us to fee thefe two Satellites by thefe different forts of Glaffes, after having found the Rules of their Motion, whereby we might with more particular attention look upon the places where they ought to be.

We placed thefe great Glaffes fometimes upon the Obfer vatory, fometimes upon great Mafts, fometimes upon the Tower of Wood, which his Majelty has caufed to be brought for this purpofe from Marly, upon the Terrafs of the Obfervatory. Laftly we put them in a Tube raifed upon a fupport made like a Ladder with three leggs, which had all the fuccefs we defired.

After having diftinguifhed thefe 2 Satellites from the fixt Stares, from the other Satellites of Saturn, and from each 0= ther, and found the periods of their Motion, we have eftablifhed Epoche from Obfervations, as near as we could to the Conjunctions.

## [84]

## Radices or Epocha of their Motions.

The firf Satelite was obferved 45 degrees diftant from its Perigee, moving towards the $W_{e f f}$, March $11 t b 1686 \mathrm{ft} \mathrm{N}$. at 10 h .40 min . at night, and returned to the fame poGition on the 14 th. of April at the fame hour.

The fecond was 36 degrees diftant from the Perigee to the Weft, the 30 th of March 1686 ft . N. at 8 of the clock in the evening.

## A Comparifon of the Revolutions of Saturns Satellites with Jupiters.

It were too much at this time, to give all we have obferved of the other Satellites, but we cannot mifs comparing the Periods of the $\mathrm{S}_{\text {stellites }}$ of Saturn with thofe of $\mathfrak{F}$ upiter, after the following manner, by which it appears that the Satellites of Saturn in the fame order, performe their Revolutions in lefs time, than thofe of I $\mathbf{y} p \mathrm{piter}$, that anfwer to them; except the firf, as may be feen in this Table.
day hour min.
The firt Satellite of Jupiter revolves in-1-18-29
The first Satellite of Saturn in $-1-21-19$

$$
\begin{aligned}
& \text { The fecond of Saturn in } \\
& \text { The fecond of Jupiter in- }-2-17-43 \\
& \hline-13-19
\end{aligned}
$$

The third of Saturn in
The third of Jupiter in

> The fourth of Saturn in $-15-23-15$
> The fouxth of Jupiter in


## [ 85$]$

Thefe are the particulars of the Difcovery, whereby the admirable Analogy and Uniformity of the parts of the Univerfe are moft evident, and the Infinite Wifdome and Power of the Creator is demonftrated to the Contemplative. In the Conclufion, the Difcoverer confiders that the Antient Aftronomers, having tranflated the Names of their Heroes amoung the Starrs, thofe Names have continued down to us unchanged, notwithftanding the endeavour of following Ages to alter them; and that Galileo, after their Example, had honoured the Houfe of the Medici with the difcovery of the Satellites of $\mathfrak{F u p i t e r}$, made by him under the Protection of Cofmus II; which Starrs will be always known by the Name of Sidera Medicea. Wherefore he concludes that the Satellites of Saturn, being much more exalted and more difficult to difcover, are not unworthy to bear the Name of Louis le Grand, under whofe Reign and in whofe Obfervatory the fame have been detected, which therefore he calls Sidera Lodoicea, not doubting but to have perpetuated the Name of that King, by a Monument much more lafting than thofe of Brafs and Marble, which fhall be erected to his Memory.

In our Figure we have omitted the Orbe of the outer $\mathrm{S}_{a}$ tellite, that fo the reft might not be crouded, but its diftance to that of Hugenius's, is as Cube Ront of 25 or 2,925 to 1.

## Two Aftronomical Obfervations of the Eclipeses of the Planet Jupiter, by the Moon in March and April laft, made at London.

The Lipfick Ephemerides of Mr. Godfrid K,irck, giving notice of thefe Occultations, they were thought of too great confequence to be neglected, if the weather proved fair. The firft hapned March 3 ith.at night, and was attended with a moft Serene Sky, no Clouds any where appearing, wherefore Mr. Hook and E. Halley undertook the Obfervation in

## [ 86 ]

Grafin Cillded, whit fucceeded as follows. Having taken Tome good Notes for the rectifying the Pendulum Clock, they expected the rifing of the Moon, fo much the rather, for that it was doubtful, whether the Planet would be eclipfed at the Rifing or no, for tho' Kirk's Ephemerides made the Immerfionat 9 b. 45 m , at Liplock, that is at London 8.6 .54 m. yet his Jupiters place being 13 m . too flow, it was plain that the Occultation would be very near the Horizon of Lond n. Accordingly at 9 h .26 m . the under Limb of the Moon, was juft rifen over Shooters Hill, and foon after Fupiter appeared near the Eaftetr Limb of the Moon, within a few Minutes of being eclipfed.

9 h. 33 m . As near as could be gueffed, was the Time of the central Immerfion, which was very difficult to be obferved, by reafon of the Afperity of the Moons Limb, which undulated and fparcled very much, as it appeared through the Vapours near the Horizon, fo that the contact of the Limbs could with no certainty be determined. The Ingrefs happened much about the length of the Spot, called by He velius palus Mareotis, to the North of the faid Spot, or about the 124 th. Degree of the outer Limb of his Selenography, nearly in the fame Latitude with the Moons Center.

10 h .30 m . The Wettern Edg of Jupiter began to emerg out of the dark Limb of the Moon.

10 h .31 m .20 s . The whole disk of Jupiter was entire, fo that he was about a minute and a third in coming out from behind the Moon, whereby the Diameter of this Planet may be determined.

The Emerfion was exactly in a right Line with the Monns Center, and the Northern Part of Palus Meotis, or about the 324 th degree of the inner Limb of the Selengraphick Table of Hevelius.

The other Occultation hapned May the 28th. Mane, or Aftronomically, the 27 th after mid-night; the preceding Night was cloudy dark Weather; fo that there was no encouragement to fet up for it; however by good hap, both

## $[87]$

Immerfion and Emerfion were obferved.
The Immerfion was feen at Totteridg (which place is about 9 Miles from London, and nearly 25 feconds of time to the Weftwards thereof) by Mr. Edward Haines, a Member of the R. Society, well verft in this fort of Obfervation: who between a gap of the Clouds obferved the Contact of the Moons limb and $\mathcal{F}$ upiters, at $15 \mathrm{~b} .3 \frac{1}{3} \mathrm{~min}$. the Clouds clofing again permitted him to obferve no more, however from this we may conclude the Central Immerfion at London, to have been I 5 b. $4: \mathrm{min}$.

The Emerfion was obferved at London by E. Halley, to fall out at 15 h. 49 min ; for at $15 h .50$ min. Fupiter was all out, and the limbs fo little feperated, that he juagged, that a minute before, the center of Jupiter had been upon the Moons edg: The point of the Emerfion was over againft the Southern part of the fpot, called by Hevelius. In ula Macra, or at the $34^{2 d}$ divifion of the inner limb of his Mapp of the Moon.

What has been obferved of thefe two Occultations elfewhere, would be very acceptable to the R. Society; fuch fort of Obfervations, if accurate, being of fingular ufe to determine the Longitudes of Places, efpecially thofe that are far remote; for which purpofe all Curious Perfons furnifhed with Inftruments and Skill in Aftronomical matters, are defried to let flip none of thefe opportunityes, which may be of fo great benefit to Geography.

## [ 88 ]

## A Difcourfe on this PROBLEM;

Why Bodes diffolwod in Menftrua Specifcally lighter than themat felves, favion therein.

## By Mr. WILLIAM MOLTNEVX, of Dublin. Member of the Royal Society.

THe Liberty of Philofophifing being now univerfally Granted between all men, I am fure that a difference in Opinion will be no breach of affection between two intirely Loveing Brothers: And therefore I fhall take the freedom to Propofe my Own thoughts in a matter wherein my Brother Mr.Thomas Molyneux hath Appeard publickly in the Novelles de la Repultique des Letres, Mais de Aout i684. Art 4 . and Mois de Fanvier 1685 Art 7. The Problem propofed is, Why Bodies diff lved float in Liquors ligbter than thenfelves; as for Example: Mercury diffolved in frong Spirit of Niter fur ims therein, tho each fmall Particte of Mefcury, be far heavyer than fol much of the Liquor whofe place it occupies. This, fays he, cannot be folved by the prime Law of Hydroftaticks, which is, that a Body which in an equal Quantity is heavyer then a like quantity of Li quor, finks in that Liquor; thus a Cubick Inch of Iron being heavier then a Cubick Inch of Aqua-Fortis, and each Particle (how fmall foever) of Iron being heavier then a like Particle of Aqua-Fortis; Iron being put into Aqua-Fortis fhould fink, and yet we find, that Iron being diffolved in a convenient Quantity of Aqua-Fortis floats therein, and does not fall to the Bottom. The Reafon which my Brother gives for this is, that the Internal Motion of the Parts of the Liquor, does keep up the Particles of the diffolved Solid, for they being

## [89]

fo very Minute, are Movable by the leaft Force imaginable, and the Action of the Particles of the Menftruum, is fufficient to drive the Atomes of the diffolved folid Body from place to place; and confequently, notwithftanding their Gravity, they do not fink in the Liquor lighter than themfelves. As a Proof of this in the 7 th. Article of $\mathfrak{F a n v i e r}$ 1685; he offers an Experiment known in Chymiftry, that a Menstruum over a digefting Fire (as the Cbymift fpeaks) will diffolve a greater Quantity of a Body put into it, than when tis off the Fire, and if it be taken off the Fire, and fuffered to cool, a great Portion will precipitate of that which was perfectly diffolved, whillt the Menstraam continued hot. For, fays he, the Particles of the Menstruum acquire a more violent agitation by the Fire, and are therefore able to raife and keep up a greater Quantity of the diffolved Body, or hereby they are able to Refilt a greater Gravity.

It has been objected againft this Notion, that the common Experiment of precipitation, by mixing an Alkaly with an Acid feems to contradict this; for thereby the Fluidity of the Menstraum is not taken away, and confequently, the internal Agitation of its Parts is not diminifhed, and yet thereupon, the Particles of the diffolved Body precipitate all to the Bottom. To this he anfwers in the forecited Article of Fanuary, that all Mixtures of different Liquors introduce in each a different Conformation of Pores, and therefore the Infufion of a new Liquor, drives the infenfible Parts of the diffolved Body from their Places, and forces them to ftrike againft each other, and cling together, and fo becoming more bigiand heavyer than formerly, the internal Agitation of the Liquor is no longer able to move and fuftain them, and confequently they fall to the Bottom.

This, as fairly and fhortly as I can propofe it, is his Sentiment of this Phænomenon.

## [90]

But I conceive an other Accoint may be given of this Appearance, and that the forefaid Law of Hydrostaticks is a little deficient. Tis true indeed, if we confider only the fpecifick Gravity of a Liquor, and the fpecifick Gravity of a folid Particle floating therein, the forementioned Rule is exact; but in finking there is requifite a feparation of the Parts of the Liquor by the finking Body; and there being a naturalinclination in the Parts of all Liquors to Union arifing from an Agreement or Congruity of their Parts, there is a refiftance therein to any thing that feparates this Conjunction : Now unlefs a Body have weight enough to overcome this Congruity or Union of Parts, fuch a Body will float in a Liquor feecifically lighter then it felf. But that a heavy Body, as Mercury or Iron may have its Parts reduced to that Minutenefs, that their Gravity or Tendency downwards, is not ftrong enough to feperate, the Cohefion or Union of the Parts of a Liquor, will be manifeft, if we confider, that the Refiltance made by the Medium to a falling Body, is according to the Superficies of the Bady; but as the Body decreafes in Bulk, its Superficies does not proportionably decreafe, thusia Sphere of an Inch Diameter, lias not eight times lefs Superficies than a Sphere of two Inches Diameter, tho' it have eight times lefs Bulk, and confequently pafling through a Medium, las fuppofe Air or Water, the Sphere of ian Inch Diameter is, propertionably to its Bulk, more refifed, than a Sphere of two Inches Diameter in proportion to its Bulk, and hence it will come to pafs, that at laftia Body may be reduced to that Minutenefs, that its Gravity prefling downwards(which is according to its Bulk) maybe lefs than the reffitance of the Medium, which operates on the Surface of the Body; feeng as I fayd before, the Surfaces of Bodys do not decreafe fo fatt as their Bulks, thefe decreafing in a Tri licate, but thofe in a Duplicate Ratio of the Bodies: Diameters.

This Account does not at all oppofe the Experiment of a Menftruum over the Fire, being able to diffolve or fuftain

## [91]

a greater Quantity of a heavy Body; for the Reafon of this, as 'tis given by my Brother, does not Contradict my Notion. The Account likewife, that He gives of Chymical Precipitation agrees very well with what I propofe: So that of thefe I fhall fay no more.

But becaufe in the beginning of my Difcourfe, I fay that the forementioned Law of Hydroftaticks is a little defective, I defire to explain my felf a little further in that Point. In Weights falling through the Air, were Gravity only confider'd, the Proportions of their Defcents would be exactly as Galileo has Demonftrated; but it is allow'd by all, that the Refiltance of the Air, not being confider'd in thofe Demonftrations, they are not Mathematically true in Practife, but that Really there is fomething of that Proportion hindred by the Airs Refiftance. Now, what is this lefs than to fay, that the Refiftance of the Air takes off fome of the Operation of Gravity, or is able to withftand or oppofe part of its Action? And if fo, what fhall we fay were an Iron Sphere let through a Medium of Water? Surely the Proportions of its defcents would be much more difturbed herein, as Water is much more Solid and difficult to be feperated or paffed through than Air, and confequently we muft needs Graunt, that more of the Operation of Gravity, is taken off or Refifted by this Oppofition of the Water, than that of the Air. And if fo, Surely there may be a certain degree of Gravity, that may be quite taken off by the Reffiftance of the Water: Were a Piftol Bullet let fall through the Air, it would Defcend imperceptibly nigh the Proportions that Galileo has affigned, but were a fingle grain of Sand fo let fall, it would be much hindred in its Courfe, and the half of this Grain would be more obftructed; what fhall we then fay of the ten thoufandth part, or of a part the ten thoufand millionth of this, and again of the Infinite Subdivifions of that, till at laft we come to a part that would be wholly refifted, or kept up;

## $[92]$

fuch as I conceive the Minute particles of a Body diffolved in a Menstruwm.

On this account 'tis I fay, that the forementioned Principle of Hydroftaticks is a little defective; for it confiders not the Natural Congruity of the Parts of a Liquor, whereby they defire, as't were, to unite and keep together, juft as we fee two Drops of Water on a Dry Board being brought together do jump and Coalefce, and therefore Liquors have an innate power of Refifting a certain degree of force that would feperate them; fuch as If fuppofe the degree of Gravity, in the moft Minute Particles of a Body difolved in a Menftruum.

The forementioned Rule holds true to the moft nice Sence in Great Bodys, but in thofe that are by many Millions of Divifions Smaller, it feems to fails.

This in fhort is my Conjecture in this matter, which I propofe, as my Brother did his, with all fubmiffion imaginable, and thereby to give occafion to others to enquire into the Caufes of this appearance, father then to publifh my own fentiments as the undoubted folution thereqf.

But this I muft acknowledg, that the Internall motion of the parts of a Liquor feems fo very agreable to truth, and explicates fo many Phxnomena eafily and plainly, that I would not be thought to deny it. Neither would I be thought wholy to Reject my Brothers folution of this Problem; for certainly that Motion(what foeyer it is) in a Mens struim, which is able to Diffolvef fuch a folid Bady as Iron, that is, which is able to disturb the clofe and ftrong Cohefion of the Parts of Iron, may very well be fuppofed fufficient to difturb or keep up thefe parts from refting in the Bottom of the Veffell, wherein the folution was made; And certainly no betteraccount can poffibly be given of fuch folutions, than by fuppofing fuch an Internall motion in the Parts of the Menstrumm infinuating themfelves into the folid body, and loofening its Parts. And tho it may be objected, that in the Parts of Water there may be fuppofed as Vio-

## [93]

lent an Internall motion, as in the Parts of Aqua-Fortis, and yet we fee Water will not diffolve Iron, as Aqua-Fcrtis does, and Common Bees-Wax is difturbed by neither of them, $I$ leave the Nice enquiry after this point to others, viz, What kind of Motion and peculiar Conformation of parts is requifite both in the Menftrumm and in the Diffolved Body, that a folution may refult from their Commixture.

Some Reflections on the foregoing Paper by Mr. T. M.
What my Brother has laid down in this Difcourfe, I think does moft undeniably evince that the received Law of Hy droftaticks is fomewhat defective. For Liquors, tho' they are Fluid yet they are Bodys, and therefore confilt of parts united; which Union tho' it be eafily deftroy'd, yet of neceffity it requires fome degree of Force for the effecting it ; nor is it more manifeft, if rightly confidered, that a Flint requires Force for the feparation of it's parts, than that Fluids do for theirs. But however, I imagine, this Property ought not to be rely'd upon as the fole Caufe of this Appearance, to which my Brother has apply'd it; nay perhaps does not fo much as concurr the leaft in the producing this effect; my Reafon in fhort is this: whatever is of fufficient Power to raife the minute Particles of a Heavy Body in a light Fluid, is certainly a fufficient caufe to keep them in that fate: now my Suppofition may give fome account of this, what my Brother fays, never can; for he muft neceffarily fuppofe them firlt raifed; and then he gives the reafon of their not finking: Whereas 'tis not to be queftioned but that that Force which raifed them, is the fame that keeps them from falling to the bottom.

But thefe Conjectures (for I efteeme them no more) I leave to the Confideration of thofe that defire to enquire further into this Matter.

## [94]

## A Letter of Dr. Sigimond Konig, Phyfitian of Bern in Switferland, to the Royal Society, being a continuation of the Hiftory of his Patient Margaret Looser; an Account whereof is given in the third Pbilofopbical Collestion, of December 1 oth. 168 r .

Illuftres Nobiliffimi doctiffimiq; Viri.

TAcito temporagreffu diffuginnt, nulloq; Jono Annus vertitur, vite emblemata quibus menfuramur, incitamurq; ea, qua alicujus boni effe poffunt, ne fero fufpendamus: moti unde, licet adbuc immaturum fructum decerpere, Historiamq; de petrificata noftra, (cujus obitum inane expectavimus) continuare, quam occultare malluimus; ne aut Phanomini baitenus nibil contigiffe, aut non obfervaffe putemur. Videmus enim binc et inde Historiam istam grate ucceptam, varijs prelis mandatame, fed non equaliter ad fenfum verborum translatam velt examinatam effe; plurimosq; doctos bac, et $\sqrt{2}$ pauca, ob cafus infrequentiam, admirari, progreffum monere, quosdam vero ad fortilegia, vel inter ittas species referre, qua fidem oculumq; fallant: AJfentiver forfan, nif fummus nature Author in hac prius imperforutabilia fapius recluderet, phyficoq; fcrutinio ad redundantem Nominis fui Gloriam simanda concederet: In boc dum laboramus Clariffimorum Virorum defiderium nos non impleturos, fed favorem excitaturos $\int$ peramus.

Ab eo quo Hiftoriam fecunda Calendarum Octobris Anni Seculi octogefani primi pertexni, agra noftra moderate vixit, fatq; benc; natura functionibus (ut ante relatum) in excipiendis excirnendis occupatis, ad decimam octavams Anni octogefimi fecun-

## [95]

 vomitus gitari capit: dato cardiaco cum fpiritu nitri dulci ad vio geforama nonam dicfi menfos ceffarunt fymptomati; bac vero fupew rioris $b^{\circ}$ inferioris ventris cruciations fummis angi, in latera volvi, ref piratione nempedirt, Hyfterico Paroxyf mo infoft ari, curo ructióws, cordis palpitatione er of citationa vifa; Ocarrrebatuy
 ob. inteffinalis motus inverfonem valde, borrebat.) fuccedebant expanfones é jact ationes arturm, motus convulfur totius abdominis, conftriow io sanfotormm laryuges of faucium cum Aphonia, tandemq; parturient is divor fibito aito $f$ e dititaths, quo contraitis omnibus membris, alvo dejecit imfequenti, trigefana, calculum Fig. tertix cruore con/perfum; cujus enixum Sequebantur altera die duo minores longe, cum hamorrboidalifuxu, dilaceratis vafis: Dosthac injtar puerperve habita, jufculis reftawrata, remedics fublevata convaluit, intraq; Septimanas paucas, refolutajam quaji. natara, ad actiones obeund dis queres colleg it.

Hec rerum trift is facies \& vicifftudo, bic agra tatus, ab ultimis preteritorum tolerabilior, in dolorificum verfus: Calculi non tantum majoris penderis fed or durioris fubstantic, waldeg; angulofi, nec frogulis dingestionibuts, fed velut in quadam matrise maturefcentes alrupti pelduntur, tertia quartarue feptimana infgnene nec ulterius fuperne exiluduntur: Alvus prius libera demsum adstringi incipit, ou una alterave a constrictione die lapidem parturit, Liriname arefica reddit paucam, potui in quantitate non refpondenten, vasiam, plinimume craffam er turbidam, que raro (apprimitur, fuppreffam enaingendo antecedit coldoxlas faba mang int udive majoris, angutofus, caterifg; per omnia fomilis: Et quod antehac per intexvalla, nunc quotidie contingit, mane dumacorinandi motus urget, quantitate aliqua fivente per vefioxno prius, nullo vel exigno intervallo, adteri womitu decedit ad uncias tres vel quathor, ejufdem coloris, congistentios, odonis urinofi, o' ex agra relatizhe, multifaria cum nauf ea, Saporis; quecunq; clarius in fpagyrico examine appasuere. Tumet abdomeñ nec folum ut ante in firistro hypochondrio durities, lapidumq; allidentium fonitus, fed ion tota ventris äextra vegione aliquando prof n nolius ob muf culorams laxitatem fentitur, magnumq; dolorem circa bypogastrium queritur. Appetit cibum

## [96]

ve modie, quii ex radice Glycyrrbiza,graminis ơ hordéo ufualis est, perq; vices aliquid vini tenuioris conceditur. Dormiendo fubfultat: Flusnt weenfes rarius é parcius nec tamen defistunt: Pulf fum babet ólanguidum, or celerem, e profundum, \& interceptum, pro variis (ymptomatibus variantem: Refpiratio liberior, non valida fed fensu vix perceptibilis: Menteq, plus nunquam movetur Tandemduodecima Decembris Anni ultimo elapfi, til ia Lextra Gangrana ad palma latitudinem correpta, fcarificatione caterifq; neceffar iiscurata, nunc Angina notha, ob tonfillarun inflammationem: premitur, plurimumq, arteriof f fanginis e faucibus fluit, majoris forfan excernendi lapidis proaxomus:revilfoonim per phlebotomian in pede ch clysmata tentatam fecutafuit, vigefima Februarij, de. jectio facum naturalium per inferiora; vigefima tertia vero © dejectio faculenta ${ }^{\circ}$ rejectio per fauces oleof a cly matis fubftantie, cum fotore abfo; lapillis, unde imminens fuffocationis metus abstinere juffit.

Hic Cafus rarus \& mirus varia ingenia fufcitavit: Naturam enim Sortilegia abborrere cujufounq; Pbilofopbi Sententia eft; ipfam vero alimite © communi experientia in agra nostra plurimum receffefe, foquis antebac propofita Phenomena in dubium vocavit, nunc fpectimina credat: Majorum fiquidem morborum arsumentum existif gravium fymptomatum ionturfus, que feorfim fumpta, etf explicatu jingula leviora videantur, juncta vero ob motus variet atem ardiue pugnant.

Calculos in bumano corpore, ad Macrocofmi leges, ex principiis alt ivis, vinculof alino, cunc ma ricaterra e phlegmate, diverfmode concref cere docet Añaly is; Inq; glandulof is partibus corporif $q$; ductibus generari nibil ignoti, quod graviffimi Authores teftantur, noftraq; obfervatione conftat, prater renum veficaq; calculos, anno feculi feptuagefimo feptimo, Catarin. Scertenleib puellam, excretis tuflerido plurimis lapillis tophaceis, in Nofocomio noftro Ptbyfa occubuiffe; E contra Sabulo multaq; pituita gypfea in inteftinis. concreta varie dejecta, Catarinam Blaferam Anno octogefimo in codern bofpitio integre reftitutaǹ effe; Virum Ampl. D. Joh.W. majoris Senatorii ordinis, artbriticum menfe Julio Anni octogefimi tertii, utroq; uretere calculis obstructo, ab impedita mictione, dicema

## [97]

áecima Ơ Septima morbi die, non juvantibus varies feri vachationibus, Pblebotomijs \& Lithontripticis, Apoplexia obijffe; quos, lapides, alterius longe a nostre agrote fubftantice, nulloq; acido $\int$ piritu ob oleof am imapragnationem folubiles, extraxi; Ren finifter naturali duplo, dexter vero triplo major, dilatatis tunicis, multo Sero tumidi fcatebant, plurimis obbarentibus lapillis rufis, afperis, cum ex ureteribus fecti effent apice rotundo, for an levigato in ductu, - forma glandis quercus minoris: Nuperifq; e tonfllis puella. Marix Haffnerix ad triginta duos tophos Secuit Civitatis bujus Cbirurgus expertiffomus D. Albertus Baurenkoningius: InJuper a Clariffimo veftro Dn. Doctore Sclareo Hiftor ia communicata de calculis felleis rara magnitudinis pro anguftia ductus cholidochj: Et alia filij Ebrai cujufdam undecem Annorum Weinhemii in Palatinatu degentis, lapillos diver $\int$ i generis, immo filices, per virgam anumq; excernentis, ab Vrbis Heidelbergæ Secretario Cl. D. Zweifelio mihi perforipta.

Verum cum fimilia vifu, reîfa plurimum diffimilia fint; ut Nature Cariofis oblectationem uliquam, generiq; bumano folatium fructumve preftemus, accuratiufq; loquamur, Phyfoco examini calculos hof ce fubjecimus.

1. Solvendo: Sic /piritus Sulphuris, Vitrioli, Acetiq; affufus, aliquem effervefcendi motum incipit, imprimis in ijs qui ventriculo excreti, rarioris texture, frialiliorifg; Jubftantie funt; fed citius, acidis fuis particulis inflexos poros ingreffs, fubffitit, nullamq; Solutionem perficit.
Salis Armoniaci Spiritus ne quicquam movet, $\sigma$ omni modo tentatus, veluti homogenius fubjecto (uo, conquiefcit.

Sed Nitrofus Achilles cuncta deftruendo fubegit.
2. Diftillando per retcrtam : Oefophago excreti Salis Volatilis cum Spiritu ơ Pblegmate paucum, terra plurimum, Salisque fixi fere nibil; Pofteriores alvo redditi, cum ijs ex vefica ejufdem figure \&o fubftantic, plus Volatilis, cum pauco ad guftum fubacido phlegmate, fed Spiritu urinofo forti, modicum fixi falis ac plurimum terra babebant. Calculorum borum uncia /ex exhibuesunt Capitis mortui uncias quinq; cum drachmis duabus, of ex bis Salis lixiviof vix forupulum cum dimidio, phlegmatis cum

## $[-98]$

Spixitu et immifto Jale volatili drachmas quing; 认 Jemis, adherente quadam portione recipientis lateribus : Hic liquor junctim fumptus, addito Spiritus vini Alkolifatí quanto, in Alembiso engguo caloris gradu fuilimatus, depofuit in Capite Jatis volatilis urino f frupulos duos $\begin{gathered} \\ \text { femis. Olei nibil conceptum nifl volati- }- \text { - }\end{gathered}$ lium fluoren falium oo referre velimus.
3. Pracipitando. Liquor diffillatus fpiritus Vitrioli additamento in rubram tincturam vertitur, tandemq; craffior evadens quodammodo Secedit in fundum; Affus usvero idem (piritus a diffillatione refiduo capiti mortuo, aut fali inde elixiviato, non aliam quam cum fale er oleo Tartari impetuc/am effervefoentiam excitat.

Sic Lapides noftri conftant plurima Terra,Sale Vol.exiguo,acido perpauco, quod Jale Spirituq; Urinofo infractum er edulcoratum e $\iint$ e, Spiritus Armoniaci ejuddem nature demoniftrat, actidorium partibus immixtus cas retundendo \& implicando in duleem Sapo rem cozit, post non refolubiles.

Exin concludimus falium lixivioforum naturam a alis Tartari non recedere in agra noftra; \& reperta matrice, inc porandi Iubjecto, accedente acido, motum (effervefcentia aliqia progref(a) invicem (ifti, inque calculos bofoe coire; prout Vitrioli piritus particulis fuis acutiffimis of flexibilibus (unde oleof uis tangztur) (al Tartari penetrando quidem deftruit, Sed deftructum in fui naturum aliter colligando cogit: In bifce calculis, ut jam ad fuam crafin difpofitis, nillpriftitit; verumfal fixum, igne fuslatis implicandi fpiritibus, in fuam naturam reduxit, ex qua congutum conftat.

E contra, Nitri $\int p i r i t u s ~ a c i d u s ~ q u i d e m, ~ \int e d ~ o b ~ f u b t i l i f i m i ~ f a l i s ~$ conjunctionem particulis rigidioribus, penetrantiffimis, infeparabilíus sonffans, non tantum wna qualitate cuncta folvebat, fed ó attera xeunionems impediebat; cum particula bujus rigidiores, in atta contima, fefe floctere, faliag; divifa in alienam naturam combinare non qualuerint.

Spirituis vero falis Armoniaci urinofus, falibus iftis volatilitus sorgimilis, exque fix is productus, illa non modo quieta reliquit, fed c. brec ut gremium fuum amplexus.

## [ 99 ]

Hinc longe alia calculorum borum generandi ratio \&o locus quam eorum qui abs renibus excluduntur; cum lie e particulis Seri rigidioribus, vel ad pororum renalium relationem craffinizus, Senfim obharenti' us cof $q$; olliterantibus contexentur; lukrici quidem aqua flexibilibus particulis decidat, falia vero fero innatantia volatilia infenfibiliter riticulo buic implicentur, tandemq; in lapideam daritiem accrefcant; Quod prius commini experientia conftans exbibet fenes, quibus craffores bumores, minus; meabiles meatus contingunt, in bunc affectum valde pronos; Pofterius diftillatione firmatur; etenim imminuendo ejusmodicalculos donec collum anguftum retorta ingridiantur, prodit fpiritus urinofus cum Sale volatili multo © aliquo oleo, remanentq; in fundo retorte non commote figur e lapidum, que in cineres commovendo decidunt, queq; vero rurfus affufo diftillato ligiore in calculos conjunguntur: ex quilus Salis volatilis copia © implicandi modus in bis optime conftant.

Qualiter vero ó ubi in agra nıfra generentur lapilli oo tophi Tartarei (ea in vivis) vix effet bujus loci \& temporis divinare, nifi rationi aliquid concedendum foret.
$V$ Vficas fub epidermide limpido Sero flagrantes, ibiq; ob impeditam cuticula-tranfpirationem obfructifg; glandularum. -ubcitanearum poros, denegantes refluxum collecto, fanguini pellenti non vero quieto ortum debent ; cum lic a tempore quo coagulari vifus eft, nufquam ampullas $\int u f$ citavit, © $\int$ ccus motui contrarium eefct: Mordax vero lancinanf $q$; bumoris qualitas atq; infpiffatio jingu. laris, acidi in corpore pradominantis argumentum; cujus rimaiz naturam difficile, cum levifima additione vel detraitione moture, bumores alterentur, ut ex chylo Sanguis, ex Sero Lympha, ex aqua forti regia generentur, aliifve naturalitus cernere evidens eft. Qui bumores in receptaculis fuis glandulofes, ut locis natalitivis, varie O- perverfim alterati tantas coagulationes efficient, cum stagnantes exbalato Alkali.Jpirituafo indpifantur or acefcunt; band fecus ac analogum Sanguini vinum, quod evanidis fulphuris particulis quibuf cum acide incorporate berebant, relictis his, ina orem vertitur: Et certe dulcis acidiq; ratio non alia eff, quaw diverfmoda major minorve acutarum partium cum aliis commixtio, aitufq;

## $[100]$

retardatio, ut in faccharo, melle; \& C. Hinc fanguis, et $f$ i tandem inSpifatus, tamendulcis lingue occurrit : immo pro tactus ratione magis minulq; feriunt, parva inter titillationem of dolorem dijeantia.

Merito erga glandule praprimis inferioris ventris, feri lymplatici (velpituite in hoc acido) receptacula os ergaftula, in vitio occurrunt, quo bumor, jam beterogeneus duct ibus fuis, baud exoneratus, ato; e pancreate in duodenum longo intervallo non Solutus, acidior evajut: Hinc prior bifce pre utero attribuenda mali labes, (cum inaturaliter abfq; impregnatione, menfuum fuppreffio ante Annos (enectutis, nulla conting at) quee in hoc corpore primos effectus latentes ederit, unde reftagnans fanguis majorem corruptionem, majorefo; turbas fovebat; non enim fubordinata caufepugnant.

Subita vero veficarum evanefcentia ad remedia refolventia volatilia commode refertur, quibus obftructiones wiverfa referare nitebamur; fact um unde ut una cum meatibus glandulofis patefait is non modo refluxus refoluto bumori datus, fed ón magnum pituita receptaculum pancreas, impetu in inteftina \& abbinc maffam chyli vifcofam, indeq; fanguinis univerfam, bumorem contentum acidum effuderit, Jocq; diathefin pravam buculq; continuatam induxerit: Qui Cbylus juxta principia fua alius vix fatui poteft, agra adbuc in fanis magno aquarum potui ad juvenilem vif cerum aftuantium calorem fupprimendum dedita; Aquis etfi in bac urbe faluberrimis in fubjecto capaci evidentem sauf am non detrabimus, ex qua confequens obftructio duct tum: glandularumve concinnari potuit: Quantum vero vel an contribuat bilis in petrificatione bac vix invenire e $e_{j} t$, cum bac aliter ac noftri calculi fale lixiviofo redundet.

Hinc ventriculis, inteftina, glandulte primarij generationis loci, quamvis © in vefoca Secundario procreentur: Latex quippe ur inofus prima digeftionis vitio ita inquinatus, fecunda excrementum, multo acido, faleq; ©́ craffo phlegmate imbutus, in vefica ftagnans, in coagutum invicem accedentibus particulis aptis coivit; unde ©' mucus or calculi abfque alterius rei acceffu vel diffipationis ope.

Qua-

## [101]

Quatenus vero ante, filices exiguos variaque cementa evomuerit, cum ábinc vomitu nibil excreverit, ca $\int$ a delitefoit in corpore ; aqzarum tamen pro raitione fubjectio occupati divei $\int a$, aives $\int$ a est lapides producendi \& incorporandi vis.

Pondus Pecimina probant, non enim deffente agendi vi in fubjecto dippofito, effectus continuantur, ut decem bactenus liuras jup. rarint.

Alience a podagricorum tophis fulftantic primos, ventriculo excretos, rarioris compacture, Aer non ut Salia bumectando, cum minima baberent,' in fluorem, fed rariores minuf 9 ; fromiter implexos angulos movendo infenfíiliter contritos in pollinem redegit; quemsadmodum in vitriolo albo, lignis corruptis exfuccis, aliifque as aere contingere videmus; contra vero vini fpiritus rectificatus ravos poros facillime intrans, nec aeris inftar vibrans, fibrillas quietas fuftinebat.

Motus natur am effe renitente objecto circulare vermiculariter al retrograde in noftro fubjecto, patet, majoribus lapillis ad angufti portam intra exitum Ilii © principium Coli circa Cacum obbarenti'us, retractis orbicularibus muf culofis inteftinorum fibris, periftaltici wotus inverfonem contigiffe, caulam vero tam violentama ut calcul ruw, facile valvulams aut ineptam everfaje, aut plane dirupiffe.

Hoc of io patente, quid ni ftimulata intefina Clyfmata furfoum alfque excrementis duriffimis rejecerint? cum foybala videamus in colicis adeo indurata cellulis inberere, tandemq; ad alvam defcendere, ut vix coifione Solvi, multoque minus cly mate dilisi poffint; Eque quidem mirum bec contigiffe co etiamnum contingere infartis ductibus craffioribus lapillis, verum al borum figure varictatem ノpectantes, cos non ad inteffinorum cavitatem conformari, red ubiq; latcraliter, immo in aliquibus per ip $\int$ a quibus perforantur foramina chylo defcenfum ó clyfmatibus afcenfum concedere.

Žrinof laticis colorem varic immutari, fubftantiamve alterari pro acceidentis vel d ficientis ratione quemvis dies docet; Carulex vero pellucide contra nature ordinem Succedentis cum tempore alia est perquirenda ratio; illis enim magis minafue bile faturatis in-
tenditir vel remittitur tinctura, aut admixtis variis beterogeneis, vel Spiritibus exhalatis incraffatur, inque opacam \& virulentam veritutur urina.

C'ujus collecita excretionem impediécat mucus in vefica, ejus col. lum glatinans, tantam vero octo librarum quantitatem vefica capere incapax, nif non naturatem extenfionem ei concedamus; qualewi in puella ficb finem anni Septuagefini Secundi Johanna Heufchleria ebferciavi; ad quam ut afciticam accerfotus, querenti caulas, obstigit inflizrmatio colli vefice; Anodyna \& post Catheterem applicare ju' $/ \hat{l}$, unde incredibilis lotij quantitas libras novem fuperans, fubfidente ventre, continuo fluxit, ipfaque convaluit; Zrinas vero non tam in vefica quam renibus, vafifque cateris redundare fuperius exemplum Dn. I. W. declarat.

Evenire unde potuit ut exced:ns bujus laticis urinofi quantitas apertis Caliace oftiolis in cavitatem ventriculi exudarit; verum propius obfervantibus conftat, urina non redundante ejuf modi fieri vacuationem, plurimum puram, aliquando vero quibusdam chyli ciborumq; particulis mixtam; Nec $\int$ quis antecedentem biftoriam ferio examinabit, ne quicquam excretiones ante primas agra ingeftum, multo minus huc ufque datum intelliget, quod urinofum faporem induere valuerit; Nec latex. Semper redundans vafa fanguifera eructave cogit: Inde ex ipflus rei contingentibus veris aliquid contra naturce leges in boc crpore contingere, conjicere licet,' for $\int$ anque continuate calculorum generationis aliqua caufa petenda, cum ventriculus, nova faburra perverfoq; fermento bumorum quotidie tentetur ; Secus jam jam remediis alteratus effet: Memor quiden exempli quod mihi contigit, Anno 1677. in Eva Zubera annorum quadraginta cive urbis bujus, qua enixu partus violento, vefica urina diftenta, fatus ēxitu valide compreffa, ba:q; violenta caufa aperto uracho, urine per umbilicum integro puerperio majorem portionem exoneravit, demum conSolidato boc, naturaliter fluxit; Ast a naturalibus © manifeftis ad non naturalia occulta baitenus concludendum non est.

Abfinentic thema Lentulus nofter ad divim Jacobum primum, Regem Anglix Potentiffimum pertractavit, ignota tum tranfpirationis bujufg; principii circulationis caufa varie ratioci-

## $[103]$

natus; fed ad banc reflectentes, bominem re/pirarc add; fubftantice deperdite reftaurationem refici, Ars ftatica docet plus inferfitilitere corpore excerni tran/pirando quam per omnes excretorias vias Jenfbiliter excludi

Vt vir roinftus in actione permanens cato librarum, potu cibcq; fingulis diebus Saturatus, tres tantum vel in fummum quatuor lis. manifeft is in excrementis deponat, fact a tarsen digeftione amplio us non pinderet quam cibum ante funtum: Hinc coctionum energia omnia imminui inq; ऽpiritus tandem refolvi, \& tranfirationis, in Solutione morborum infenfibili \& becticorum devorata fubftantia, veritas confffit ; qua non ob epidermidis conftipationem procedente, non opus erat refectione; Secus aer infpirari ad Spirituum vitalium refectionem debuit, ut expirari polsit, jirg; in motu manere; qui ipfe aer infpiratus, incraffatus, in vafis in Serum verfis, urinandi materiam tempore abftinentic commodans prabuit, ut byáropicos Sapius cernimus folo aere, aquofis fuis particulis, in crefcere.

Hac funt, Excellentiffimi Domini, qua olim defideráfis, exigua quidem, nif favore veftro, digna ad majora videantur. Pluri. ma borum Calculorum Specimina doctis praclaris amicifg; viris in rei teftimonium mittere voluimus, ut fi aliquid cum tempore ${ }^{0}$ S.ervari velint, hortari dignentur ; Inclyti enim Senatus noftri Ampliffimi mandato, pro Clementia fua in miSeros, agra-noftra publico loco Siffentatur et olfirvatar, cautumq; eft ne mortua ante exact am evifcerationem fepeliatur, quo publico ex ipfius laudatifimo defiderio aliquid boni redundare polfit.

Dabam Berne in
Helvetios ulti-
ma Feb. 1686.

## Sigifm. Konig. M. D. <br> Incl. Rpl. Ph.

Horum Calculorum fpecimina duo una mifit Cl.D. Konig, quorum figuras jufta magnitudine accurate exhibent Fig. 3 \& 4. R. Societas rei novitate permota, voluit eos fpagyrico examini fubjicere, adminiftrante Chymico excellentiflimo D.D. Slareo. Eventum e Tranfactione proxime edenda fcies.

## [104]

A Difcourfe of the Rule of the decreafe of the bight of the Mercury in the Barometer, according as places are Elevated above the Surface of the Earih, woith an attempt to difcover the true reafon of the Rifing and Falling of the Mercury, uponchange of Weather.

> By EDM.HALLEY.

THe Elaftick property of the Air have been long fince made out, by Experiments before the R. Society and elce where; and the Refiftance of its Spring is found to be nearly equal to the Weight or Force that compreffes it ; as alfo, that the fpaces the fame Air occupies, under differing Preffures are Reciprocally as thofe Preffures: it has been fhown likewife by undoubted Experiment, that the Specifick Gravity of the Air, near the Earths Surface to that of Wáter, was once as I to 840, again as I to 852 , and a third time, in a very large Veffell holding ten Gallons, as $\mathbf{1}$ to 860 ; all which, confidering the difficulty of the Experiment agree well enough, the Mercury ftanding at all thofe times about 29 Inches ${ }_{4}^{3}$; but by reafon twas Summer Weather and confequently the Air rarified when all thefe were tryed, we may without fenfible Errour fay in round Numbers, that the Barometer ftanding at 30 Inches, and in a mean ftate of Heat and Cold; the Specifick Gravity of the Air to Water, is as I to 800 : By the like Tryals the weight of Mercury to Water, is as $13 \frac{1}{2}$, 1 , or very near it, fo that the weight of Mercury to Air, is as 10800 to $\mathbf{1}$, and a Cylinder of Air of 10800 Inches or 900 Feet, is equal to an Inch of Mercury, and were the Air of an equal denfity like Water, the whole Atmophere would be no more than 5, I Miles high, and in the Afcent of every 900 feet the Barmeter would fink an Tnch. But the expanfion of the Air encreafing in the fame proportion as the incumbent weight of the Atmof plere decreafes, that is as the Mercury in the Barometer finks, the upper parts of the Air are much more rarified than the lower,

## [105]

and each fpace anfwering to an Incho of Quickfilver grows greater and greater, fo that the Atmo/phere mult be extended to a much greater hight. Now upon thefe principles, to determine the hight or the Mercury $\begin{gathered}\text { tany affigned hight }\end{gathered}$ in the Air, and econtra having the hight of the Mercury given, to find the hight of the place where the Barometer ftands, are Problems not more difficult than Curious; and which I thus refolve.

The expanfions of the Air being Reciprocally as the hights of the Mercury, it is evident, that by the help of the Curve of the Ityperbola and its Afymptotes the faid expanfions may be expounded to any given hight of the Mercury: For by the 65 th prop. lib. 2. Conic. Mydorgii, the Rectangles AB CE, AKGE, ALDE, \&c. (in fig. 5) are alwais equal, and confequently the fides $\mathrm{CB}, \mathrm{GK}, \mathrm{LD}, \& c$. are reciprocally as the fides, $A B, A K, A L, \& c$. If then the lines $A B$, AK, AL, be fuppofed equal to the hights of the Mercury, or the preflures of the Atmofobere, the lines $\mathrm{CB}, \mathrm{KG}, \mathrm{LD}$, anfwering thereto, will be as the Expanfions of the Air under thofe preffures, or the bulks that the fame quantity of Air will occupy; which Expanfions being taken infinitely many, and infinitely little, (according to the method of Indivifibles ) their fumme will give the (paces of Air between the feveral hights of the Barometer; that is to fay the fumme of all the lines between $C B$ and $K G$, or the Area C BKG , will be proportioned to the diftance or fpace intercepted between the Levels of two places in the Air, where the Mercury would ftand at the hights reprefented by the lines $\mathrm{AB}, \mathrm{AK}$; fo then the fpaces of Air anfwering to equal parts of Mercury in the Barometer, are as the Areas CBKG, GKL D, DLFM, \&c. Thefe Areas again are, by the Demonftration of Gregory of St. Wincent, proportionate to the Logarithros of the numbers expreffing the Rationes of AK to AB , of AL to AK, of AM to AL, icc. So then by the common Table of Logarithms, the hight of any place in the Atmofphere, having any affigned hight of the Mercury, may moft

## [106]

eafily be found: For the line CB in the Hyberbola, whereof the Areas defign the Tabular Logarithms, being 0, O144765; $t$ 'will be, as 0 , or 44765 , to the difference of the Logarithms of 30 , and any other leffer Number, fo 900 feet or the fpace anfwering to an Inch of Mercury, if the Air were equally preft with 30 Inches of Mercury and every where alike, to the hight of the Barometer in the Air, where it will ftand at that leffer Number of Inches: And by the converfe of this proporion may the hight of the Mercury be found, having the Altitude of the place given. From thefe Rules I derived the following Tables.
$A$ Table Jbewing the Altitude, to given bights of the Mercury.


A Table fbewing the bights of the Mercury, at given Altitudes.


## [ 107 ]

Upon there Suppofitions it appears, that at the hight of 41 miles, the Air is fo rarified, as to take up 3000 times the fpace it occupies here, and at 53 miles high, it would be expanded above 30000 times; but tis probable that the utmoft power of its fpring cannot exert it felf, to fo great an extenfion, and that no part of the Atmofphere reaches above 45 miles from the furface of the Earth.

This feems confirmed from the Obfervations of the Crepufoulum, which is obferved commonly to begin and end when the Sunn is about 18 degrees below the Horizon; for fuppofing the Air to reflect light trom its moft rarified parts, and that as long as the Sun illuminates any of its Atoms, they are vifible to an Eye not intercepted by the Curvity of the Earth, it will follow from Fig. 5. that the proportion of the hight of the whole Air, to the Semidiameter of the Earth, is much about, as 1 to 90 , or as the excefs of the Secant of about $8 \frac{1}{2}$ degrees to Radius: For if E be the Eye of the Obferver, S a place where the Sun fets at the end of $\mathfrak{t w i l i g h t}$ in E, and the Arch ECS, or TCA be found 18 degrees, the excefs of the Secant of half thereof ECH, would be the hight of the Air viz. GH : But the beam of the Sun ASH, and the vifual Ray EH do each of them fuffer a Refraction of about 32 or 33 minutes, whereby being bent inwards from H towards $G$, the hight of the Air need not be fo great as if they went ftreight; and having from the Angle ECS taken the double Refraction of the Horizontal Ray, the half of the remainder will be $8{ }_{i}^{\prime}$ degrees circiter, whofe Secant being 10 III it follows that as 10000 to 111 , fo the Semidiameter of of the Earth fuppofed 4000 miles, to 44,4 miles; which will be the hight of the whole Air, if the places E, S, whofe Vifible portions of the Atmofphere ERZH, and SHKB juft touch one the other, be 18 degrees affunder.

At this height the Air is expanded into above 3000 times the fpace it occupies here, and we have feen the experience of Condenfing it into the 6oth part of the fame fpace, fo that it fhould feem, that the Air is a fubftance capable

## [108]

of being compreffed into the 180000 th part of the fpace it would naturally take up, when free from preffure; Now what texture or compofition of parts fhall be capable of this great expanfion and contraction,feems a very hard queftion; and which, I fuppofe, is fcarce fufficiently accounted for, by the comparing it to Wool, Cotton, and the like fpringy bodies.

Hitherto I have only confidered the Air and Atmofpher, as one unaltered body, as having conftantly at the Earth's furface tlie 800th part of the weight of Water, and being capable of rarefaction and condenfation in infinitum ; neither of which Hypotbefes are rigidly true: for here in England 'tis notorioully known, that the weight of the whole Atmofphere is various, being counterpoifed fometimes by $28 \frac{1}{2}$ inches of Mercury, and at other times by no lefs than 30 ${ }_{2}$, fo that the under parts being preffed by about a 15 th part, lefs wéight, the Specifick gravity of the Air upon that fcore will fometimes be a $\mathbf{1} 5$ th part lighter than another; Befides heat and cold does very confiderably dilate and contract the Air, and confequently alter its gravity, to which add the mixture of efluvia or fteams rifing from allmoft all Bodies, which affimulating into the form of Air are kept fufpended therein, as Salts diffolved in Liquors or Mettles in corroding Menftrua, which bodies being all of them very much Heavier than Air, their particles by their admixture muft needs encreafe the weight of that Air they lie incorporated withal, after the fame manner as melted Salts do augment the Specifick Gravity of Water. The other confideration is that the Rarefaction and Condenfation of the Air is not precifely according to the proportion here laid down, for tho experiment very nearly agrees thereto, as may be feen in the 58 th Chapter of Mr. Hooks Micrographie, yet are the Condenfations not poffible beyond certain degrees, for being compreffed into an 8ooth part of the fpace it takes up here, its confiftence would be equally denfe with that of Water, which yeilds not to any force whatfoever, as hath been found

## [109]

found by feveral experiments tryed here, and at Florence, by the Academia del Cimento. Nor can the Rarefaction proceed in infinitum; for fuppofing the Spring whereby it delates it felf, occafioned by what texture of parts you pleafe, yet muft there be a determinate magnitude of the natural ftate of each Particle, as we fee it is in Wooll and the like, whofe bodies being compreffable into a very fmall fpace, have yet a determinate bulk which they cannot exceed, when freed from all manner of preffure.

Thefe objections being true do difturb the Geometrical accuracy of thefe conclufions, drawn from the fpecifick gravity of the Air obferved at any time; but the Method here fhewn will compute by a like calculation, the hights of the Quickfluer, and the Rarefactions of the Air from any affigned hight of the Barometer at the Earths Surface, and any fpecifick Gravity given. As to the Condenfation and Rarefaction by heat and cold, and the various mixture of Aqueous and other Vapours, thefe two objections feem generally to compenfate each other, for when the Air is rarified by heat the Vapours are raifed moft copioully, fo that tho? the Air properly fo called, be expanded and confequently lighter, yet the interftices thereof being crouded full of Vapours of much heavier matters, bulk for bulk the weight of the Compofitum may continue much the fame; at lealt a moft Curious experiment made by the Ingenious Mr. Fobw Cafwell of Oxford upon the top of Snowdon hill in CaernarvanSheir, feems to prove that the firft Inches of Mercury have their portions of Air near enough to what I now determine; for the hight of the hill being 1240 yards or very near it, he found the Mercury to have fubfided to 25,6 inch. or 4 inch. below the mean Altitude thereof at the level of the Sea, (which is a greater difference than has been found in any of our former Experiments,) and the fpace anfwering to 4 inch. by my calculation fhould be 288 yards ;and it agrees as well with the Obfervations in the Appendix to Mr. Pafcall's Book, del' Equilibre des Liqueurs, made on the high hill in

## [ 110 ]

Auvergne, call'd le puy de Domme. So that the Rarefaction and Vapours feem not to have altered confiderably, the Gravity of the under parts of the Air; and much above the hight where thefe Experiments were made, do few Vapours afcend, and the cold is fuch that the Snow lies continually, fo that for the more elevated parts of the Sphere of Air there is much lefs reafon to doubt.

But now we have had occafion to mention the difference there is between the hight of the Mercury at one time, from the hight thereof at another, it may not be unacceptable to offer at fome reafons for the faid difference, which, at leaft to my felf, feem to have fome appearance of truth; fir $f$ then tis undoubtedly demonftrable that the hight of the Cylinder of Mercury, is equal to the weight of the whole incumbent Air, and confequently that that whole is fomtimes a fifteenth more than at other times, which cannot otherwife be, but by the accefs of new matter when tis heavy, and its diminution when tis light; that Hypothefis therefore that fhews how the Air fhall be encreafed or diminifhed, in any particular place, will give a reafon for the greater and leffer hight of the Mercury in the Barofcope: but to direct usin the choice of the feveral caufes, which may be affigned for the encreafe and decreafe of the Air, twill not be unneceffary to enumerate fome of the principle obfervations made upon the Barometer, moft whereof are fufficiently known already to all thofe that are curious in thefe matters.

The firft is, that in calm weather when the Air is enclined to Rain, the Mercury is commonly low.
2. That in Serene good fetled weather the Mercury is generally high.
3. That upon very great Winds tho' they be not accompanied with Rain the Mercury finks loweft of all, with relation to the point of the Compafs the Wind blows upon.
4. That coteris paribus the greateft hights of the Mercury are found upon Ealterly and North-eafterly winds.
5. That in calm frofty weather the Mercury generally ftands high.

## [111]

6. That after very great formes of Wind, when the Ouickfilver has been low, it generally rifes again very faft.
7. That the more Northerly places have greater alterations of the Barofcope than the more Southerly.
8. That within the Tropicks and near them, thofe accounts wee have häd from others, and my own Obfervation at St. Helena make very little or no variation of the hight of the Mercury in all weathers: Now that Theory that can well account for all thefe Appearances, will in all probability approach nearer the true Caufe of the Barometers variations, than any thing hitherto offered ; and fuch an one I am bold to believe, is that which I here lay down, with fubmiffion to better Judgments.

I conceive that the principal Caufe of the rife and fall of the Meroury, is from the Variable Winds, which are found in the Temperate Zones, and whofe great unconitancy here in England is moft notorious: I fhall not at prefent inquire into the Caufe of its uncertainty, but the matter of Fact being moft undoubted, the Legitimate Confequences thereof muft be allowed me; let it proceed from what it will.

A Second Caufe is the uncertain Exhalation and Procipitation of the Vapours, lodging in the Air, whereby it comes to be at one time much more crouded, than at another, and confequently heavier; but this latter in a great meafure depends upon the former. Now from thefe Principles I fhall endeavour to Explicate the feveral Phenomena of the Barometer, taking them in the fame Order, I layd them down.

1. Why in Calm Weather, the Air being inclined to Rain, the Mercury is commonly low? I Anfwer that, the Mercury's being low, enclines it to Rain, for the Air being light, the Vapours are no longer fupported thereby, being become fpecifically heavier than the Medium wherein they floated; fo that they defcend towards the Earth, and in their fall meeting with other aqueous Particles, they incorporate to* gather and forme little drops of Rain ; but the Mercurys be-

## [ 112 ]

jing at one time lower than at another, is the effect of two contrary Winds blowing from the place where the Barometer ftands; whereby the Air of that place is carried both wais from it, and confequently the incumbent Cylinder of Air is diminithed, and accordingly the Mercury finks; as for inftance, if in the German Ocean it fhould blow a gale of Wefterly Wind, and at the fame time an Eatterly Wind in the Irijb Sea; or if in France it fhould blow a Southerly Wind, and in Scotland a Northern ; it muft be granted me that that part of the Atmofphere impendent over England, would theresy be exhaufted and attenuated, and the Mercury would fubfide, and the Vapours which before floated in thofe parts of the Air of equal Gravity with themfelves, would fink to the Earth.
2. Why in Serene good fetled Weather the Mercury is generally bigh? To this I anfwer, That the greater hight of the Barometer, is occafioned by two contrary Winds blowing towards the place of Obfervation, whereby the Air of other places is brought thither and accumulated; fo that the incumbent Cylinder of Air being encreafed both in hight and weight, the Mercury prtfled thereby mult needs rife and ftand high, as long as the Winds continue fo to blow ; and then the Air being fpecifically heavier, the Vapours are better kept fufpended,fo that they have no inclination to Prxcipitate and fali down in drops, which is the reafon of the Serene good Weater, which attends the greater hights of the Mercury.
3. Why upon very great Winds or Storms though accompanied with no Rain, the Mercury finks limeft of all, with relation to the point of the Compars upon which the Wind blows. This is caufed by the very rapid motion of the Air in thefe Storms; for the Tract or Region of the Earths Surface wherein thefe Winds rage, not extending all round the Globe, that ftagnant Air which is left behind, as likewife that on the fides, cannot come in fo faft as to fupply the Evacuation made by fo fwift a Current, fo that the Air muft neceffarily be atte-

## [113]

nuated when \& where the faid Winds continue to blow, and that more or lefs according to their Violence ; Add to which that the Horizontal motion of the Air being fo quick as it is, may in all probability take off fome part of the perpendicular preffure thereof: and the great agitation of its particles, is the reafon why the Vapours are diffipated and do not condenfe into drops, fo as to form Rain, otherwife the natural confequence of the Airs rarefaction.
4. Why cateris paribus the Mercury ftands bighoft upon an Eafterly or North-eafterly Wind. This happens becaufe that in the great Atlantick Ocean on this fide the 35 th degree of North Latitude, the Wefterly and South-Wefterly Winds, blow almoft always Trade, fo that whenever here the Wind comes up at Eaft and North-Eaft, 'tis fure to be checked by a contrary. Gale, as foon as it reaches the Ocean; wherefore according to what is made out in our fecond Remark, the Air muft needs be heaped over this Ifland; and confequently the Mercury muft ftand high, as often as thefe Winds blow. This holds true in this Country, but is not a general rule for others, where the Winds are under different Circumftances : and I have fometimes feen the Meroury here as low as 29 . Inches, upon an Eafterly Wind, but then it blew exceeding hard, and fo comes to be accounted for by what was obferved upon the 3d. Remark.
5. Why in calm frofty weather the Mercury generally ftands bigh. The caufe hereof is, as I conceive that it feldom freefes but when the Winds came out of the Northern and North= Eaftern Quarters, or at lealt, unlefs thofe Winds blow at no great diftance of, for the Northern parts of Germany, Denmark, Sweden, Norway, and all that tract from whence North-Eaftern Winds come, are fubject to almoft continual Froft all the Winter ; \& thereby the lower Air is very much condenfed, and in that State is brought hitherwards by thofe Winds, and being accumulated by the Oppofition of the Wefterly Wind blowing in the Ocean, the Mercury muft

## [ 114 ]

needs be preft to a more than ordinary hight, and as a concurring caufe, the fhrinking of the lower parts of the Air into leffer room by cold, muft needs caufe a defcent of the upper parts of the Atmof phere to reduce the cavity made by this contraction to an ALquilibrium.
6. Why after very great Storms of Wind, when the Mercury has been very low, it generally rifes again very faft. This I have frequently obferved, and once found it rifen an Inch and half in lefs than fix hours, after a long continued Storm of South-Weft Wind. This feems to be occafioned by the fudden acceffion of new Air to fupply the great Evacuation which fuch continued Storms make thereof, in thofe places where they happen (as in the third remark) and by the Recoile of the Air, after the force ceafes that impell'd it; and the reafon why the Mercury rifes fo faft, is becaufe the Air being very much rarified beyond its mean denfity, the neighbouring Air runs in the more fwiftly to bring it to an Equilibrium, as we fee water runs the fafter for having a great declivity.
7. Why in more Northerly Places the Variations of the Bärofcope are greater than in the more Southerly; The truth of the matter of fact is proved from obfervations made at Clermont. and Paris compared with others, made at Stokholm, as may be feen in the Appendix to Mr. Pafcals book before cited. The reafon I conjecture to be, that the more Northerly parts have ufually greater Storms of Wind than the more Southerly, whereby the Mercury fhould fink lower, in that extream; and then the Northerly Winds bringing the Condenfed and Ponderous Air from the Neighbourhood of the Pole, and that again being checked by a Southerly Wind, at no great diftance, and fo heaped, muft of neceflity make the Mercury in fuch cafe ftand higher, in the other extream.
8. And Laftly, Why near the Equinostial as at Barbadoes and St. Helena, there is very little or no Variation of the beight of the Barometer. This Remark above all others, Confirms the Hypothefis of the Variable Winds being the caufe of there

## $[115]$

there Variations of the height of the Mercury, for in the places above named, there is always an eafy Gale of Wind blowing nearly upon the fame point, viz, E.N.E. at Barbadoes and E.S. E at St. Helena, fo that there being no contrary Currents of the Air, to exhault or accumulate it, the Almo/phere continues much in the fame State: However upon Hurricanes, the moft Violent of Storms, the Mercury has been obferved very low, but this is but for once in two or three years, and it foon recovers its fetled ftate of about 29 ${ }_{2}$ Inches. I doubt not but the fame thing is in the Eaft Coaft of Africa and in India, where the Monfoons or Winds are Trade for half the year one way, and half the year another ; only tis probable, that there may fomething worth noting happen, about the times of the Change or fhifting of the Winds, which might be obtained if any body had the curiofity to keep the Baroweter at our Factories in India.

I doubt not but this Doctrine will find fome Oppofers, and that one principal Objection will be, That I fuppofe the Air fometimes to move from thofe parts where it is already evacuated below the Equilibrium, and fometimes again oowards thofe parts, where it is condenfed and crouded above the mean ftate, which may be thought contradictory to the laws of Staticks and the rules of the Equilibrium of Fluids. But thofe that fhall confider how, when once an Impetus is given to a fluid body, it is capable of mounting above its level, and checking others that have a contrary tendency to defcend by their own gravity, will no longer regard this as a material Obftacle; but will rather conclude, that the Great Analogy there is between the rifing and falling of the Water upon the Flux and Reflux of the Sea, and this of the accumulating and extenuating the Air, is a great Argument for the truth of this Hypothefis. For as the Sea, over againit the Coait of Effes, rifes and fwells by the meeting of the two contrary Tides of Flood, whereof the one comes from the S. $W$. along the Chanel of England, and the other from

## [116]

the North; ) and on the contriary finks below its level upon the retreat of the Water both ways', in the Tide of Ebb; fo it is very probable, that the Air may ebb and flow, after the fame manner; but by reafon of the diverfity of Caufes, whereby the Air may be fet in moving, the times of thefe fluxes and reflixises thereof, are purely cafual and not reducible to any Rule, as are the Motions of the Sea, depending wholly upon the regular courfe of the Moon. The next Tranfaction fhall give an Hiftorical Relation of thofe Winds which are found to liave any thing of Conftancy, and fhall endeavour to affign the Caufes therebf.

## An Account of two Books, (i.) A Free Enquiry into the Vullyarly received Notion of Nature, by the Honourable R. Boyle, Efq; Printed by F. Taylor at the Globe in St. Paul's-Church-Yard, Anno 1686.8 vo.

TIS not without reafon, that the renowned Author of this Treatife wonders that none have written concerning Nature herfelf, and yet fo many have fo largely treated of the Works of Nature. But this will feem lefs ftrange to him that confiders for how many Ages the whole Learned World has been devoted to the Peripatetick Principles of Matter and Form, and with how blind an obedience the Doctrine of Ariffotle hath been univerfally received and maintained; For the vulgar Notion of Nature, concurring with the Peripatetick, having been generally admitted, all men thought it unfafe to oppugn the opinion of the multitude, and at the fame time to call in queftion the authority of thofe reputed for Learning; fubjecting their own judgments, by a fervile refignation unworthy the name of a Philofopher to the Dogmes of others. This feems to be the chief, if not the only caufe of the propagation

## $[117]$

tion of Errours, as well in Pbilofophy, as in other matters of more concern, as Religion and Divine Worfhip: but thefe not being the prefent fcope of our Author, he in this excellent and learned Effay fhews, that in Philofophical Inquiries, the vulgarly received Notion of Nature hath given great occafion of Errour, being admitted without a due examination.

The whole is divided into eight Sections, the fcope of which is briefly as follows:

In the firf Section, after having premifed fomething of the manner of conception in the rational foul, our Author, with his ufual acutenefs, anfwers two Objections, hewing, that it is neither ungrateful nor blameable, for a Son of Na ture to oppugn Nature, after this manner : likewife, that there is fometimes a neceflity to recede from the common opinion of men.

The fecond Section reckons up the feveral vulgar acceptations of the word Nature, and then fubftitutes in their places, other Words and Exprefions more fuitable to the thue notion of Nature.

The third, examins the Ariftatelian defnition of Aature, and provesit obreute, intricate and affording ho light, whereby to explain other things; which done, our Noble Author fets forth the reafon why he endeayours to avoid the frequent ufe of this word Nature.

The fourth Section, in the firft place, examins feveral Axioms concerning Nature, whereby fhe is defcribed after the vulgar apprehenfion; and then lays down ad much better defcription of her, after a moft learned differtation concerning the feveral forms of fpeech relating thereto: Here our Author diftinguifhes Nature into general, which he calls Cofmical Mechanifm, and particular, which he names Individual Mechanifm. In the conclufion is fhewn the original of Polytheifm, and how Nature came to be a made Goddefs by the Antients.

## [148]

The fift propofes the Reafons whereby our Authonwas perfwaded to rejeet the received Notion of Nature ; as firft, that fuch a Notion has no fufficient proof to eftablifh it; that it is unnecelfary, obfcure and unintelligible, that it is dangerous to Religion in general, and confequently to the Chifitian, and that it is contradited by the daily obfervation of feveral Phenomena, \&c.
The fixth difcuffes the Arguments in behalf of Nature, drawn from the common confent of Mankind ; from the endeavour obfervable in Bodies to maintain their Natural ftate; from the diftinction of Motion into Natural and Violent; from the Crijes of Difeafes, toc.

The feventh Section, with the ufuat clearnefs and fubtilty of our Author; expounds, according to the Doctrine here laid down, the feveral received Axioms or Attributes of Nature ; among others, thefe two, Natura Vacuum Horret, and Natura est Morborum Medicatrix,' are largely and moft accúrately handled.

The eighth and laft Section fhews, that Nature, according to the vulgar Acceptation, is not a real, but an imaginary Being; and conformable to the Doctrine of this Treatife, a new and peculiar Hypotheifis of Divine Providence is propofed; In the end, the Advantages and Utility of the whole are briefly touched upon.

## [119]

## Traite du Mouvement des eaux et des autres Corps flui-

 des par feu Mr. Mariotte, A Paris. An. 1686. OEtavo.THis Book having been defigned by the Ingenious Mr . Mariotte, and by him in a great Meafure compleated at his Death; has had the good Fortune to receive the laft hand from Mr. De la Hire, whofe great abilities in the Mathematicks, are too well known to need mention in this place. The whole is divided into five Parts, and each Part again into Difcourfes or Chapters; the firf Part contains 3 Difcourfes, whereof the firft is about the feveral Properties of fluid Bodies, as their Glaciation, Evaporation, Dilatation upon Heat, and admiffion of the Air into their Pores, ©rc. The $2 d$. is about the Original of Fountains, which he deduces from the Rains that fall, and fink into the Earth, till they meet with a Clayey or Rocky Soyl, which being not able to pafs, they run alongft, till they find their way out into the Air, where they become Fountains. And to prove the quantity of Rain Water, fufficient to furnifh the Rivers, he fhews by Experiment that there falls in the Countries about the Fountains of the Seine, at leaft 7 times as much Water, as the faid River evacuates. The $3 d$. is about the Origine and Caufe of Winds, of which he affignes 3 general and 4 particular Caufes, the firft of the general, is the Diurnal Motion of the Earth; the fecond is the Condenfation and Rarefaction of the Air, caufed by the heat of the Sunn. The $3 d$. is from the Moons refpect to her Apogron or Perigaon, whereby fhe fometimes rifes from, other times defcends towards the Earth. The particular caufes are, $1 /$. the extraordinary rifing of the Va pours and Exhalations out of certain places of the Earth.

## [120-7]

2d. The fall of great Rains and Hails. 3d. The great Quantity of nitrous and Sulphureous Exhalations in Earthquakes. $4^{t h}$. The Soudain melting of Snow in the High Mountains; and fron thefe feveral caufes combined, he thinks he can account for all the Phonomena of Winds, particularly the Trade Winds between the Tropicks, called by him Vents Ali$z e z$, but in fo doing he feems not fufficiently informed in their Hiftory: In this Difcourfe are feveral curious Remarques, and Obfervations touching the Courfe, Propagation, © $\%$. of the Wind.

The fecond Part Treats of the Equilibrium of Fluids; the firft Difcourfe demonftrating from the Principles of Mechanicks, how Fluids counterpoife one anothers weight, and giving the Rules of the Doctrine of floating Bodies : The fecond Difcourfe fhews the Nature of the Elafticity of Air and Flame, and how their Spring is counterpois'd by weight. The third Difcourfe Treats of the Equipollence of a Fluid Body to a ftroak or fhock; fhewing the Rules of the force of $\mathcal{F}$ ets ${ }^{1} \mathrm{c} \mathrm{can}$, from feveral hights of the Refervatory, and differing Diameters of the Bore of the Pipe; giving in the end an account of the comparative force of Wind and Water-mills, with the manner of computing them, togather with a Defcription of 3 or 4 forts of Mills with Horizontal Sails, and the Authors Opinion thereupon?

The thiid Part Treats of the Meafure of running and fpouting Waters'; in the ift. Difcourfe, are produced feveral experiments to find the quantity of Water paffing through a Bore of an Inch Diameter, juft upder the Surface of the Water, which at length is concluded to be 14 Paris Pints in a, Minute, or 72 mumides in a natural Day: whiefe by the way, notice is taken of the length of the Pendutum vibrating feconds, in parts neid the Equinootiat, having been found at Caycene a tenth, and at the Tlle of Gare, near Cape Verde an eighth of an Inch fhorter than at Paris, of which the Caud is propofed to proceed fforn the diuthial Motion of the Earth.

## $[121]$

The fecond Difcourfe fhews by Experiment that the quantity of Water expended by ajet d'eazs of the fame Diameter of Bore, but at different hights of the refervatory, are in a fubduple proportion of thefe hights; and it being found that at the hight of 13 foot, a jet dean of : of an Inch Diametef, evacuated 14 Paris Pints, or 14 parts of 35 of the Paris Cube Foot in a Minute, thence is concluded the expence of Water at any other hight of the Refervatory through the fame Bore.

The third Difcourfe fhews that the quantity evacuated by different Bores at the fame hight of the Refervatory, are as the Squares of the Diameters of the Bores, the which is proved both Mathematically and Experimentally: The fourth Difcourfe fhews the manner of finding the quantity of Water which a River or an Aqueduct furnifhes, which is illuftrated by the Example of the Seine at Paris.

The fourth Part Treats of the height to which the Water of Fountains rifes, and its firt Difcourfe, fhews that the jeits il' eau never rife fo high as their Refervatories, but allways fall fhort thereof, by fpaces which are in duplicate Proportion of the heights they rife to, which is proved by feveral Experiments: The next thing inquired after is the belt fort of Ajutages or fpouts for jets d'eau, affirming from Experiment, that an even polifhed round hole in the end of the Pipe, gives a higher ject than either a Cylindrick or Conical Ajutage, of which yet the latter is the better. Laftly 'tis made out, that very great heights of Refervatory are altogether ufelefs, the Water being by its great Velocity difperfed into fmall drops and its force loft, fo that the height of the ject is not proportionably encreafed: A fecond Difcourfe of this Part handles the Amplitudes or Ditances of Oblique jects, according to the Doctrine of Galileo and Torricelli, and concludes with a Geometrical way of finding the height of the Refervatory by the Horizontal Stream iffuing out of a Hole bored in the fide of the Pipe.

## [122]

The fift and laft Part treats of the Pipes that are to convey Water, and of the Strength neceffary thereunto, and confilts of 3 Difcourfes, the firft whereof fhews the fize of Pipes requifite for the feveral expences of Water, proving that in fmall Pipes emptying the fame Water, the Water running fafter, has more friction and is confequently more retarded; to avoid which this Rule is given, that the Squares of the Diameters of the Pipes be as the quantity of Water to be expended, in which cafe the Water will run in all alike faft, and the friction be the fame; and when a great Pipe branches into feveral fmaller, diftributed to differing Jets, the fquare of the Diameter of the main Pipe mult be proportioned to the fum of all the Expences of its Branches; and for a Foundation of a Calculus of the molt commodious fize of Pipes, 'tis laid down that for a Refervatory of 52 fuot high-, whofe Ajutage is half in Inch Diameter, the Pipe ought to be 3 Inches Diameter. The fecond Difcourfe Treats of the ftrength of Pipes requifite for beating the weight of the Water, where are Ceveral pretty Experiments of the refiftance of Solides. The laft of all gives a method of diftributing Water by Pipes into a City, and fhews how thofe Pipes are to be cleanfed from Mud,by leaving Apertures to let out the Water in thofe places where the pipes lie loweft; and from Air, by the like Apertures left on the tops of thofe eminences where the Pipes pafs.
N.B. That the Paris foot Meafure is to the London foot as 1279, to 1200, viz. 79 Centefmes of an Inch greater; fo that to reduce the Experiments here produced, 'tis to be noted that 14 Paris Pints, or 14 parts of 35 of the Cube of the Paris foot, is equal to 3 gall. 5 pints, or 29 pints London Meafure; and fo much was evacuated in a minute through a Bore of a Paris Inch diameter, juft under the Surface of the Water ; but a Bore of a London Inch fo placed, will pafs but, 3 gall. I: pint or 25 : pints our. Meafure in a minute at which rate near 73 Hogsheads will run through fuch a Bore in a Day.

The fame Quantity of Water will by the Experiment of our Author, furnifh a Fet d'eau of the diameter of a quarter of a London Inch, when the Refervatory is at the height of 13 French feet,or $13 . f .10 \div$ Inch. Englib; and the Expences of Fountains of the fame Bore, being as the Square Roots of the heights of the Refervatory, 4932 gall. or 78 Hogsheads will furnith a Fect of 16 foot high, with a Quarter of an Inch Bore. Generally the Rule is, that the Expences of all Fountains, are as the Square Roots of the heights of their Refervatories, into the Squares of their Bores, and according to what is delivered in the 5 th. Part of this Book, the Squares of the Diameters of the Pipes mult be proportioned thereto.

## I MPRIMATUR,

John Hoskyns Vice P. R. S.
July 17 th 1686.

Printed by $\mathcal{F}$. Streater, and are to be fold by Sam. Smith at the Sign of the Princes's Arms in St.Paul's Cburch-yard.

$$
\begin{aligned}
& \text { a⿱宀㠯犬 }
\end{aligned}
$$




# $[125]$ <br> Num. 182. <br> PHILOSOPHICAL 

 TRANSACTIONS.Fune the 26. 1686.

## THECONTENTS

'A$N E \iint a y$ towards an Univerfal Alphabet, together with a farther effay concerning an Univerfal Primer, to which is added a Specimen of a new Character fitted to the Said Alphabet by Fr. L. Reg. Soc. S.
2. Some farther Remarks on the inftrument by an Anonymous French Author, for effecting a perpetual Motion, an account whereof is given in Num. 177 of thefe Tranfactions. by D. Papin. M. D. R.S. Soc.
3. A bort Examen of the Stones fent the R. Society from Bern; of which there is a large account in the lajt Tranfaction. by Frederick Slare. M. D. Reg. Soc. S.
4. Two Obfervations of the laft Ecliple of the Moon on Novemb. 30th laft, made at Nuremberg; the one by Mr. G. C. Eimmart, the other by Mr. J. Ph. Wurtzelbauer; communicated by Mr. Theodore Haak R. S. Soc.
5. An Extract of a Letter written from Aramont in Languedoc near Avignon, giving a Relation of an Extraordinary Swarm of Grafshoppers in thofe parts, communicated by Mr. Jultell. Reg. Soc. S.

Towards An

## UNIVERSAL ALPHABET.

## By Mr. Francis Lodidick R. S. S.

HAving obferved a great difficulty in truly writing what is pronounced, or truly pronouncing what is written, either in our own or foreign Languages, by the Ordinary Alphabets now in ufe, arifing either from the want of fome Letters, or the differing Pronunciation of the fame Character or Letter in differing Languages, and the irregularities of its various Sounds in any one Language; I Caw a neceflity of fome fuch expedient as I have here attempted, Viz. An Univerfal Alphabet, which fould contain an Enumeration of all fuch fingle Sounds or Letters as are ufed in any Language, which I have endeavoured by Examifning all thofe Languages, which hitherto I have confidered: Altho' this my attempt be not new, but what before by others hath been attempted, yet I hope what herein I have done will not be unufeful.

The Benefits of fuch a Collection being perfect,

1. Children from their firt beginning, being taught and accuftomed to the true Expreffion of all thefe fingle Sounds or Letters, will without difficulty be brought to pronounce truly and readily any Language how feemingly difficult fo-

## $[127]$

ever; for the pretended difficulty to fome Perfons of Pronouncing fome Letters, is only that they have not been accuftomed to pronounce them, either fingle or in conjunction with others: and this difficulty is chiefly in Perfons come to Age.
2. It will enable any one, accuftomed to the true Pronunciation of this Alphabet, truly to defribe the Pro nunciation of any Language whatever, that fhall in his hearing be diftinctly pronounced; fo as another alfo accultomed to this Alphabet, altho' he before never had heard this Language pronounced, fhall notwithtanding at firf fight of fuch Writing, be able fo truly to pronounce it, that it Chall (if at all) very little differ from the Original Pronunciation. Whereas by the ufe of the common Alphabets, if any ftrange Language be written, another that's a ftranger to that Language, fhall never be able truly to pronounce fuch Writing, as it fhould be, or was by the Writer intended, nor even the Writer himfelf fometime after that he hath forgotten what Sound he defigned to defcribe.
3. It will alfo be ufeful to perpetuate the true Sounds of any Language, and ferve as a Standard thereof to after-Ages: For if all the fingle Sounds expreffable, be here CharaEterized. And that no one Cbaracter have more than dac Sound, nor any one Sound be expreffed by more thans one Char er; it cannot fall out that any Character fhould be fally promounced, but it will foon be diffovered, for this falfe Sound he givethit, mut be the true Sound of 18 me othe Letter of this Alphabet: and fo none can Erre herein, but he that wilfully or carelefly will do it.

## In this Collection I proceed according to thefor Rubes.

1. Hat no true fingle Sound can be truly defcribed or expreffed by the Conjunction of any twa or more other fingle Sounds, $\sqrt{2}$, If a Vowel, by the Conjunction 9t T R 2 of

## [128]

of other fingle Vowels, or if a Confonant, by the Conjunction of other fingle Confonants.
2. That whatever Sound cannot be expreffed or defcribed, but by the Conjunction of two or more fingle Sounds, is no fingle but a compounded Sound-
3. That in every compofition of fingle Sounds, the particular fingle Sounds which make up that Compofition, ought to be truly and clearly difcerned in the Sound of the Compofition, otherwife it cannot be truly faid to be a Compofition, and compofed of fuch fingle Sounds.

## The Single Sounds

USually named Letters, are commonly diftinguifhed into Vowels and Confonants. Vomels are fuch as are fingly expreffable, as, a, e, o, \&c. Confonants are fuch as cannot fingly be expreffed without the Conjunction of a $V$ om$e l$, as, $b, d, f, g, \& c$

## Of Vowels

THe whole number of them are thefe 14 following, to which, for the better difcerning of their Sounds, I have annexed fo many words wherein they are expreffed, all Engli/b but three, Viz. the 7, 8, 12, becaufe no Enbib words occurred to my Memory, wherin they are expreft.


The

## $[129]$

Thefe are the Vowels, each of which are long and fhort. Short as in the words, God, Man, Sin.
Long as in Ball, Demand, Seen, ơc.

## Of Diphthongs

ADiphthong in the ordinary ufe of the Word fignifieth a Compound of two Vowels; but thofe in ordinary fo named, are moft of them nothing but only fingle Vowels, as ea, oo, ou, eo, ai, in the Words teal, tool, tould, people, main, \&c. That thefe are but fingle Sounds will appear, if we confider the Sounds of the Vowels fingly, that make thofe fuppofed Compofitions, and then whether thofe Sounds in Compofition will make out the true Sound required; fo as both of them may be clearly difcerned in thefe pretended Compounds. For inftance; in ea in Teal.

Confider the Sound of $e$ in the Word /ent, or in the Word fcene; and $a$ in the Word ball, or in the Word and, or in the Word tale, and then whether $e$, in either of the two Sounds going before, and $a$ in either of the three Sounds following joyned together, will make out the true Sound of ea in the Word teal, if not, then is it a fingle Sound; thus, if you proceed to examine all the other, you will I doubt not find the fame event, and I believe the true Diphthongs and Triphthoings of the Greeks were no other but a true expreffion of the fingle Vowels they joyned together, but in fo fhort a time, as both or all three were exprefs'd in the time that ordinarily one fingle Vowel was exprefs'd.

## $[130]$

## Of Confonants.

THe whole number of Confonants are thefe undermentioned, as nigh as I could Collect, by examining all the Languages I am acquainted with,or have heard exprefs'd, and I think butfew, if any, fingle Confonants have efcaped my Notice, all which in this following Table I have ranged in 11 Files, and 6 Ranks.



The Firt File contaneth thee Confonants, the Second fix, the Third and Fourth ten, the Fifth and Sixth four the feventh two, the remaining four each one, in all twenty nine Confonants.

The fecond Rank in each File contains Derivatives [ fo I Shall name them ] in relation to the Firft Rank, or their Primitives, all alike in kind, fo alfo all the Derivatives in the Third Fourth and Fifth Ranks, whereby their Sounds will be the better oomprehended.

## $[131]$

Thofe places filled by two ftrokes ( $\Rightarrow$ ) fignifie that Sounds may be exprefs'd by the fame pofture of the Mouth with their Primitives, anfwering in kind to thofe in the fame Rank wherein they ftand, but they would be fo like in pronunciation to fome others in the Table, that the difference would be too nice for common difcernment, and alfo for that I have not obferved them ufed in any Language I have heard exprefs'd by a perfect Mouth, I thought it needlefs to characterize them.

As thofe of the Fourth and Fifth Rank in the Firft File are like thofe of the Fourth and Fifth Rank in the Fifth File, $\&$ thofe of the Firft,Second, $\&$ Third Ranks in the Fifth File, are like thofe of the fame Ranks in the Firft File,fo thofe of the Firft, Second, Third Ranks in the Sixth File, are like thofe of the fame Ranks in the Second File.

Some of thefe above-mentioned twenty-nine fingle Confonunts, are vulgarly fuppofed compounded, as th, ch, $\mathrm{jb}, \mathrm{gn}$, ng, \&c. But if you confider the Sound of each jingle Confonant in the Compofition apart, and then the Conjunction of them in that order, fo as the fingle Sounds may be clearly difcerned in the Compofition, you will never make the Sounds required, and if neither by this nor by any other Conjunction the required found can be made out, it muft be a fingle and no compound Sound.

Whereas thefe fingle founds, yulgarly defcribed as Compounds, ought to have fingle Characters and Secondly, that fome of the fingle Characters have in the fame Language a different Sound, as $c$ in the Words, can, mice; $g$ in the Words George, Game, \&c. and alfo a different Sound in different Languages, as I Confonant differently exprefs'd in feveral Languages, as in Englifh, Low Dutch, French, Spaniff : and Thirdly, that fome fingle Sounds are differently characterized in the fame Language, as the Sound of $\int$ in $f a m e$, and $c$ in mice; (the fame Sound by two different Characters;) fo alfo $c$ in can, and $k$ in kind the fame, ofr. and the fame alfo in different Languages, as $c b$ in the French Word chofe. and $/ b$ in the Word flall, the fame, orr. It will be impor

## $[132]$

fible in the ufe of the prefent Characters or Alphabets, to add thofe wanting, and to correct and limit the Sound of others in ufe; thereby to conftitute a perfect Alphabet, becaufe people fo long accuftomed, or habituated to fuch corrupt and differing Expreffions of the prefent Characters, will be always fubject on the fight of the old, to give them thofe Sounds they have been ufed to, and to fpell words according to their old and corrupt Cuftom, whatfoever Rules fhall be fet to the contrary ; and therefore there will be a neceflity of a whole new Set of Characters, both of Vowels, and Conforants.

Hitherto I have endeavoured to make a Collection of all the fingle Vowels and Confonants, which are ufed in any Language ; in which, if I have not collected all thofe that are, yet in the method I have ufed therein, I hope I have attained nigher to it, than any other Collection extant. I have likewife fhown the neceffity of a new Set of Literal Characters,\& fuch a one is this I here propofe; Firft the Set of Confonantal Characters, are to be feen in the top of Page (137) being ranged in the fame method $\&$ order with thofe in the foregoing Table. The firt Rank in every file are thofe I name Radical Characters, the other fucceeding Ranks have each a diftin̄ Characteriftical Addition to diftinguifh them one from another, which caufeth fome complication; but yet I judged it neceffary to exprefs the fame in the Character, the more regularly to fort them into Claffes, and to exprefs the derivation of Letters of the fame Organe, the one from the other.

The Set of Vocal Characters is likewife in the fame Page with the Confonants; in writing they are to be placed over the Confonants, which they follow in Expreffion; and whereas fome Syllables begin with a Vowel, place the $12 t h$. Confonantal Character, anfwering to the Hebrew, Aleph; and over the fame place the Vowel beginning fuch a Syllable.

This Character may feem fomewnat to complicate for difpatch in ordinary Writing, but for Printing it will be
the fame with that now ufed, and I only defigned it for that purpofe, but for the Pen, others more convenient may be invented.

To diftinguifh the long Vowel from the fort, add a prick to the Vocal Character.

The 9.II.I2.13.14 th. vocal Characters, are (for want of fingle ftrokes) compounded of the firft and fecond.

The Diphthongues truly fuch (as I have before noted in the firf Part ) may be made by the Conjunction of the Single Vocal Characters in the order as they follow, and will be eafily diftinguifhed from the 5 foregoing compounded Characters of the fingle Vowels, becaule there will not lightly occur any Diphthongs compounded of the firft two Vowels.

The Accent may be a thwart line under the Syllable that is to be accented.

The 4 Marks of paufes ordinarily unfed, namely, ;:. may be continued.
The Characters fignifying the various Modes of Expreffion may be the le following, and ought to be placed at the begining and end of every Sentence requiring it.

$$
\left.\begin{array}{l}
{[\quad] \text { Explication. }} \\
\text { ( ) Parenthefis. } \\
i \quad \text { i Emphafis. }
\end{array}\right\}_{i<}^{!} \text {! Irony. } \begin{aligned}
& \text { Interrogation. }
\end{aligned}
$$

## [134]

## A Second Efay concerining the UNIV ERSAL

 PRIMER.AS the prefent Alphabets are imperfect, (as in the foregoing Effay is declared, ) fo are alfo the Primers or firlt Books, wherein Children and othersare Taught to Spell and Read, firft in not having a perfect Alphabet. Secondly in not being digefted in fuch a Method as is fit and proper to teach them, as they ought to be taught, for the ufual way of teaching to feell, is to difmember every fyllable (of more then one Letter) into many Syllables, by exprefling every Letter apart, and Syllabically, and the Confonants with fuch a Vowel as they are ordinarily named with, and then requiring them to joyn all thefe Syllables into one word, but how prepoftorous this method is, one inftance for all will manifeft, fuppofe the monofyllable Brand be to be fpell'd, they will teach them thus to difmember it Bee, er, a, en, dee, and then require them to joyn thefe into one Syllable, which it is impoffible to do, and they muft be neceffitated as they have begun, to exprefs this one Syllable by five Syllables, which was not defigned, whereas they fhould teach them to exprefs every Syllable entire at firft fight, without difmembring it. And to do this, they muft proceed gradually, firft beginning with the moft fimple Syllables, and fo by degrees proceeding to the more difficult and Compounded, till they can readily pronounce a whole Syllable at firft fight, even the moft difficult that are.

To that end, let all the Primers be thus contrived; at the top of the leaf, let all the Vowels be placed fingly in order as they follow in one Rank, and under the fame place, Syllables, firft, of one Vowel and one Confonant, following it throughout all the Variations; then of one Confonant and one Vowel following , $2 d l y$. of two Confonants before, and one Vowel following throughout the Variations, $3 d l y$, of one Vowel and three or four Confonants

## [. 135 ]

fonants following. And of three Confonants going before, and one Vowel following. $4^{\text {thly }}$ of one, two or three Confonants going before a Vowel, and one two, three, or four Confonants following. 5thly, of fome Syllables with Dipththongs or Tripththongs. For Inftance,

> a. e. i. o. ab. \&c. ab. eb. ib. ob. ad. ed. id. od. ud. \&c. ba. be. bi. bo. bu. \&c. ald. eld. ild. old. uld. \&c. dra. dre. dri. dro. dru. \&c. balm. belm. bilm. bolm. bulm. \&c.

After this place, a number of words of two, three, or four Syllables, from the more eafie to the moft difficult expreffions, without heed to their Sgnifications.

Further let there follow fome words of feveral Syllables, with the Accent Varioufly placed, as on the firft, fecond, third, ero,

Let there be two or three fmall Difcourfes writ with this Alphabet, in fo many feveral Languages, with the Accent rightly placed, and truly diftinguifhed by their paufes. And thus you have a perfect Primer for the Defign.

## Of teaching with this Primer.

Firft, begin to teach them the true found of all the Vowels fingly, then proceed to the following fingle Syllables, beginning with the eafieft of Expreffion, and fo proceed on gradully to the moftdifficult, and then to the words of more Syllables, and laftly, to the ufe of the Accent and Paufes when the learner hath palt all thefe, you may exercife him in the reading of the following Difcourfes, and therein let

## $[136]$

him exactly obferve the Accent and the Paufes, and hithern to it will not be Material, whether the Syllables be fignifis cant or not, or whether they underifand the fmall difcourfes or no, for hitherto we fuppofe them by this inftruction; only capable of Reading or uttering exactly what foever is written in this Alphabet and Character, in what Language foever, which is the defign of this Primer.

And to gain a greater readinefs and habit herein, teach them to write truly what they hear diftinctly expreffed, according to this Alphabet, proceeding therein gradually as before, and rightly to place the Accent and Paufes, and alfo the ufe of the Signes of the different modes of fpeaking.

## In Teaching, Obferve thefe neceffary Rules.

r. Proceed leifurely and orderly. Suffer them not to pafs by any mifpronunciation uncorrected, from the beginning to the end, caufe them fo oft to repeat a wrong pronunciation, till with your affiftance they pronounce it truly, allowing for the natural defeets in the Speech of fome perfons, the younger will learn thefe pronunciations more eafily, but the elder may attain them alfo, although with more difficulty.
2. Suffer them at no hand in felling, to difmember any Syllable by repeating the Letters fingly, but that they pronounce them whole as they find them.

Think not this method tedious, the end will crown and reward the labaur, and what the learner hath thus attained and habituated himfelf to, will remain with him all his life time.

This new Primer will without change except in the Title, be the fame for all Nations and Languages.

The following Page gives the Alphabet and Character mentioned in this Difcourfe, with the Lords Prayer in Engt lifh, written therein as a Specimen.

The Univerfall Alphabet .


The Lords Prayer in Englifh-.







## $\left[13^{8}\right]$

Some furiber Remarks on the Inftrument propofed by an Anonymous French Author, for effecting a perpetual Motion an accont whereof is given in No. 177 of thefe Iranjactions, by Dr. Papin. M.D. R.S.S.

HAving feen in the Fournat des Scavans of May I3th. and in the Nouvelles de la Republque des Letres of the Month offane, that the Author of the Perpetual Motion is not fatisfied, but doth endeavour to anfwer the Objection that I propounded againft hiscontrivance, in the Philofophical Tranfactions of the Month of December, 1685. I find I muft explain my felf more at large than I did in that Paper; but I begg his pardon if I fay nothing concerning the new difpofition, which he fay's might be given to his Engine : My want of time makes me avoid new matters of difpute, and I think it enough for me, if I do but fhew that his firft Defrription can nëver fucceed.

I am very forry, that this Author took fo much trouble in trying tis - Bellows with feveral Liquors, as Oyl, Mercury, Water. I thought I had fayd nothing, that might make him beleive, that I did in the leaft queftion the truth, which he intended to prove aganfic me by thofe Experiments; and without dhy tryals I am fally enougliconvinced, that the Mercury in his Engine muff follow thetawes of the equilibrium of furit Boxiest But the confequence which he draws from that Principle, feems to me very groundlefs; for altho' the lowernolt part of the Bellows be pres't by the weight of 40 inches of Mergury, it doth not follow, that all the parts which tre fituated higher muft bare the fame preffure: To the quite contrary, it is plain that the upper part having no Mercury above it bears none at all ; the parts that lye in the middle near the Axes of the Bellows, bear but 20 inches, and foall the reft mult bear more or lefs, according as they lye higher or lower: It is evident therefore, that there are

## [139]

as many parts that bear lefs then 20 inches, as there are that bear more, and the increafe of preffure following an Arithmetical Progreffion, it is undenyable, that all thefe preffures added togethèr, will do no more than one uniform preffure, that would be equal to 20 inches every where,

Having thus found the quantity of preflure caufed by the Mercury within the Bellows, we muft remember that the preffure of the Atmof phere within the fame Bellows, is equivalent but to 5 inches, as I obferved in my firf Paper vid. Philofophical Tranfaction No. 177 pag .1241 : So that we find that the inwad preffure is equivalent but to 25 inches of Mercury inall. Now the prelfure of the Atmophere upon the outfide is every where equal to 27 inches, from whence it appears that the preflure without is ftronger than the preflure within, and fol had reafon to fay, that the Bellows ftanding upright, muft rather Shut than open.

I did not think to have given this Computation fo at large, but I have been neceffitated to do it (as Ifaid in the beginning ) fince my firft Paper was not fufficient to make me be underitood by the Author of the Perpetual Motion, however, I will be careful to fave the time of the Reader as much as I can; and although I might obferve fome other things in his Defcription, that will increafe the difficulty of opening the Bellows, I forbare to fpeak of them; and I will ftick only to that which is moft material, and makes his Perpetual Motion to be altogather impoffible.

As for the Argument the Author drawes from comparing his Engine to an ordinary Siphon; I do befeech him to confider what a difference there is between a Siphon that lets the water run down at the bottom, and his Engine; that fhould gather up the heavy liquor into the higheit part of the Inftrument, and I do not quettion but he will acknowledge the weaknels of this Argument.

A fort Examen of the Stones fent the R. R. Society from Berne, whereof an account is given in the laft Tranfaction: By Frederick Slare M.D.R.S.Soc.

THofe that have made Experiments in Hyarofaticks, do find all pure Metals to have Specific and pecaliar Gravities to themfelves, and thofe very differing one from another, From this hint I formerly endeavoured to difcoye the Näture of the Calcul is Humanus (which I found to Heve no atributes that are proper to a real Stone and bringing them to a Hydrofatical'Tef, Ifound them very differing in their fecifick Gravity, and very remote from an equal proportion to their bulke of common Stone, when weighed in Watér." After the fame manner in order to the better inquiry into the Nature of this Helvetian Concretion, I made itmy fift attempt to compare it with its Relative Pondus to Water, having fift of all fatisfyed my felf that there is a certaine Term of Gravity that all true and genuine Stones ( ${ }^{(t h e ~ w h i c h a r e ~ a ~ f o r t ~ o f ~ N a ̂ t u r a l ~ V i t r i f i c a t i o n s ~) ~ d o ~ m e e t ~ i n ~}$ or artive at That is, that there is a Standard of Gravity fo conpetent to all real'Stones, that where they declime from this Standard, we have good reafon to queftion thiofe Coniretoons, whether they are Stones or no. The Standard of Gravity for real Stones I find to be geñerally about two to one of the common Fluid, that is the bulke of the forner, to anfyer double the bulke of the latter, and a fitte more In our Examen of this Conicretion, this Stone was very liard and feeminoly heavy, but being brought to the Hyaroft atical Tryat, it was very Spungy, for when it lay under Water, There pated a good while gefore I could dear it of the lurk ing bubbles, of that it grew heaver, form tinde to tiffe as the bubbles were expeld, and at laft arrived near the Standard of a true Stony Concretion, or rather fomwhat beyond it.

$$
[141]
$$

This Stone fent us for thirteen Dramms, mult either have been Averdupoife, or elfe is wafted fomething, for I found it only to weigh

$$
\begin{aligned}
& \text { In the Air } 12 d r .-36 \mathrm{gr} \\
& \text { In } W \text { ater } 6 d r_{0}-48 \mathrm{gr}
\end{aligned}
$$

The difference betwixt the weight of this Stone fo called, in the Air and in $\} 5 d r .-48 \mathrm{gr}$. Water comesto

The proportion betwixt this Concrete and Water, proves to be as 756 to 348 , or as two and fomewhatmore than a fixth to one. This extraodinary Pondus or Gravity makes the matter of a greater confideration, and worthy our further Inquiry whether there be not fome Metallick Ingredient in it.

Whilft I was making thefe Tryals, I was willing to compare this matter with common Cbalk, which I found fpecifically lighter, bearing only the proportion to Water of 52 I to 290 , confiderably fhort of that of 2 to one. Shells and Teftaceous Bodies do very near agree with this matter; which takes off the former opinion that this Patient, had perhaps devoured Wall, Lime, and fuch like Teftaceous Matter, from whence the Stone might receive its original : For this being broken into peices, will not fo eafily cement again into fo compact a Body as it was formerly of, as we fee in Whiteing that is lighter than Chalk: Wherefore this being vaftly heavyer than Cbalk, can farfe be thought a Concretion of fuch a matter.

I then compared it with petrified Water, being an Icecle that was broken off a Grotto, where the petrifying Spring did furnifh enough : This came very near the Gravity of our Rarity, and the ufual weight of ordinary Stones; a peice that weighed five drams out of the Water, difcovered its weight to beare the proportion of 403 to 184 ,or 75.6 to 345 to that of Water. This Anomalous Subftance being fo near the weight of our petrifyed Water, would almoft in-

## [ 142 ]

cline a Man to believe it real Stone, and the rather, becaufe we are informed the Patient Drank much Water. Moreover,the following Experiments upon this matter, do feeme to give proof of its being rather of the ordinary Stony Conflitution, than of that which is proper to Animal Concretions. For Inftance, we firft of all poured upon it ordinary Vinegar, and it prefently wrought upon it with a fiffing noife, as it did on the petrifyed Water when powder'd. We poured on it Spirit of Vitriol, and that alfo wrought upon it and diffolved it, but let it fall again', as. Aqua-fortis does Tinn when it has corroded it; which is agreeable to the Relators Account.
But I do not find he ufed Spirit of Salt, for this wrought upon it very vigoroufly, and prefently diffolved it, and kept fo without any Precipitation.

Thefe Fxperiments do all of them diftinguifh this Concret (whatever it be ) from the ordinary Animal Ones, as the Stone in the Bladder, Kidmey, the Tophi, \&c'. for thefe will not be diffolved,or in the leaft corroded by any of the mentioned Acids: Tho'Spirit of Nitre be a general Menflruum, that diffolves them all readilif.

There are fome things yet very flrange, which make this Cafe peculiar: Namely that thofe Stones which are generated in the habit of the Body, I mean in the very ferous part of the Blood, and thofe that pafled the Bladder have juft the fame Nature, with thofe that are extra habitum, even thofe evacuated ex Stomacho and ex Ano: for one as well as the other will be prefently corroded, by fo mild an Acid as plaine Vinegar.

The Relator in his Analyfs of thefe' Stones, gives an Account offogreat a quantity of $V$ olatile and $f x t$ Salt obtained by his diftillation, that thofe tryals do neceffarily make it an Animal Subftance; which Experiment fo far failed us, that I am not fatisfyed as to the matter of Fact.

Thus we muft at prefent leave the Difcovery imperfect, for according to the Defcription the Cafe is very Singular; efpe-

## [143]

efpecially as to thofe Concretions generated extra Habitum in the Stomack and Guts: That theefhould abound with Volatile Salt is ftrange, I have tryed the Bezoar Stone faid to be generated in the Stomacks of fome Aniraals, and could obtain no Volatile Salts from that Subftance; though it herein agree with this Subftance, that it is eafily wrought on by many Acids.

## A Short Review.

We need not much doubt, though it be not mentioned, that thofe cragged and large Stones, were ejected per Anwon, for the $O e$ eophagus could not poffibly pafs them.

The Stone in the Kidney is often fo foft, that it anfwers the Cylindrical Figure of the Treter, but thefe are much harder, and do not in any meafure comply with the Conftriction of the Bowels.
We may in fome meafure queftion that principle, or rather Hypothefis of Acidum, our Correfpondent trults to, for the Combination or Congulation of the Humors in the Body, in order to this Petrifaction; it being fuppofed not proved.

We may alfo queftion whether the fixit or Alcalizate Salt, found in the Caput Mrrturm after Diftillation, were really pre-exiftent in that forme in the Blood, or other Humors, and not rather a product of the Fire.
It may not be impertinent to inquire after fome metallick particles, whether they may not be an Ingredient in this ponderous Stone, efpecially fince Dr. Lifter has found them in much lighter Concretions, as thofe of the Kidneys are. For though we find them not in this unprepared ftone, yet after Reverberation or a ftrong Calcination, many bodies have detected an Iron Contexture. The Marchafite it felf, though very pregnant with Iron, fhews it not, till it has been calcined: which fhall be done with fome of the remainder, after the Tryall by Diftillation.

## [144]

To deviate a litile, though not from a Propofition made before the Royal Society, which was to endeavour what we could, to reduce bodys to fuch fetled Standards, as might fomewhat reprefent their Natures, and free us from falfe and confufed Conceptions of Things, or give us an account of fome bodies, whofe Natures we are doubtful of. In a fmall Treatife of the Calculus Humanus, I found reafon to complain of the Impofition of our Senfes upon our Conceptions in calling that a Stone by its.external appearance, when it has no real properties of a Stone. I have alfo, in this, Reafon to except againft Cbalke, (commonly taken for a Stone) for being brought to the Hydroftatical Examen, (if that may be allowed as a Standard) it wants much of the true Confiftence of a Stone, as the Calculation mentioned does manifeft. For it wants much of that weight; which real Stones are proved to have in Water, and it may perhaps be better reckon'd amongft Boles than Stomes. I found this true, not only in Chalk, but various other bodies taken for granted to be Stones at large: fome of which are nearer Earths than Stones, others have nothing but Earth and -Sulphur and Metall, and yet muft be called Stones, (as all Marchajites are.) Of thefe the former, (namély the Boles) many of them fall Short of our Standard, others are more ponderous and fo exceed our Standard, whereas true Stones though differing much in hardnefs, whether Pebbles, Flints, petrifyed Waters, ơc. do anfwer the fame Standard of Spen cifick gravity that a Diamond does. But that thefe natural bodies thould as exactly agree, as Metalls do, when they are by art feparated from all Heterogeneity, cannot be expected in Compound Bodies, though I doubt not but much ufe may be made of it by thofe that are more accurate:

## [145]

A furiber Tryal of the Jaid Stones by Cbymicall difililation, By the fame.

WE brought this Stone to a grofs powder, and conveyed it into a coated Retort, which coated Retort was kept for fome Houres in a naked Fire, fohot that the Glafs melted.

The quantity we put into the retort amounted to half an ounce, twenty Graines. The liquor that came over feems fcarce to afford 3 or 4 drops, which looks like Spirit of Hartshorn rectified, and fmells much like the fame: which plainly difcovers it an Animal sugfance though it affords much lefs than the Calculus Humanus does: and by confequence gives us a much larger proportion of Caput Mortuum or Refiduum in the Retort: All which is very confentaneous to the nature of the Stone, for its Specific Gravity was much heavier than the Stones are, we ufually find in the Humane body; and therefore the parts may be fuppofed more fix'd, or to confift of fewer volatile parts, fuch as are carryed over by Diftillation.

We weigh'd the Remainder in the Retort and it came to three Drams and fifty Graines ; Ten Graines of which feem'd to hang about the neck of the Retort in the form of a dirty hard baked Oyl. The other 20 Graines are partly gone off in Vapour through the Lute, and what we find in the Receiver in a liquid form.

We tryed part of this Caput mortuum by applying Mr. Haaks ftrong Magnet, to enquire whether it contained any Iron Particles, but did not find any would adhere. However there remains yet one Tryal to be made, and that is to give it a much ftronger Reverberation in the Fire, and then to fee whether fome Particles will not prove Martial, which may be done at another feafon.

## [146]

## Two Obfervations of the laft Eclipfe November 3oth

 laft, made at Nuremberg ; the one by Mr. G. C. Eimmart, the other by Mr. J. Ph. Wurtzelbaur: Communicated by Mr. Theodore Haak R. S. S.THis Eclipfe of the Moon was the more remarkable, for that it fell out very near the Apogrom of the Moon, and was nearly central ; fo that the duration was as great as pofrible. But fo it hapned, that neither at London, nor Greeinpich, nor Paris, it could be feen by reafon of thick Clouds, for the whole time intercepting the fight of the Moon: The only Account we have received is already publithed, from Letters of the Famous Mr. Hevelius of Dantzick, in Num. 178 of thefe Tranfactions: And now thefe two from Nuremburg, made by the Indultrious Obfervers Mr. Eiminiart and Mr. Wurtzelbaur.

The Obfervation of Mr. Eimmart mas as follons.
F9.b. 19. min. the Penumra was very obfcure, and the beginning of the Eclipfe was at hand.

9b. 23 m. 30 . the Eclipfe was begun, the quantity almof halfa digit, and the diftance between the cufps was about 42 degrees of the Moons limb. and Palus Mareotis was juft all Eclipfed ; lience we may conclude the beginning about 9\%.24m. $30 \%$.

10h. $23 \mathrm{~m} .30 \%$ as near as c can collect from the Obfervators words, was the time of the total Immerfion inta the fhaddow ; to verefie which,the Azimuth of the Moons center was obferved to the Eaft, $41 \mathrm{gr} .48 \mathrm{~m}, 2 \mathrm{~min}$. 12 fec . of time after the faid Immerfion.
$12 b$. 13 min, or $10 m$. 13 /ec. before the Culmination of the right fhoulder of Orion, was the Emerfion or firt appearance of the Moon out of the total Darknefs.

13h. 14 min fere was the juft end of the Eclipfe, being 2 m . 20 ec. before the Culmination of Sirius or the great Dogg. Whence

## [ 147 ]

Whence the middle of this Eclipfe fhould have hapned at 11 1 . 18 min P. M. at Nuremburg : the total duration 36.52 min. 30 fec. and the total darknels xh .49 m .30 s .

The Meridian Altitude of the Moons upper limb was obferved 63 gr .23 m .50 Jcc , and the Moons apparent Diameter whiletotally Eclipfed was found 30m. 7 fec.

The other Obferver Mr. Wurtzelbaw made ufe of the Pendulum Clock, corrected by Altitudes. According to his Obfervation.
97. 23 m . 30 /ec. was the beginning of the Eclipfe, at a. bouts 159 degrees of the limb of the Moon in Hevetius's Seles nography.

9h. $24 m$. 50fer. Palus Mareotio was all covered.
roh. 2 sm .20 (ec. The Total Immerfion; about the 299 th degree of the limb of the Moon.

12h. Inm. 30 ee. The Moon began to Emerge out of the Thaddow, about the 12 th degree of her limas

13h. 14m. 30 Fec . The End of the Eclipfe about the 295 tl degree of the limb.

By thefe Obfervations the middle of the Ecliple ought to have been about 11h. 19m. P.M. at Nuremburg, difering but one minute from Mr. Eimmarts Obfervation. The duration will be $3 h .51$ min. and the total Darkness ib. 46 m . The Longitude of Nuremburg has been formerly ftated in degrees from London, $\&$ fince found to be fo by Obfervations of the laft Eclipfe of the Sun Fuly $2 d 1684$, which made it 44 min. of time. So that the middle of this Eclipfe at Loordon fhould have been $10 \mathrm{~h} .34: m$. which from the Obfervation of Mr . Hevelius had been formerly concluded 10h. 35 m .
An Extract of a Letter written from Aramont in Languedoc near Avignon, giving an account of an ex traordinary fwarm of Grashoppers in thofe parts; communicated by Mr. Juftell R.S.S. that have eaten up our Harvelt the laft Year, and which

## [148]

give us fo much trouble todeftroy then this, I will dowhat It prefent can to fatisfie you. Thefe Infects are undoubtedr ly of a peculiar Species, although to look on them, they appear in nothing different from the common fort, but they take their flight like Birds, which is particular to them. They are much about an Inch in length, of a Grey Colouir; The laft Year the Earth in fome places was covered 4 fingers thick with thenr in the morning before the heat of the Sun was confiderable, but as foon as it begun to be hot, they took wing and fell upon the Corn, eating up both leaf and ear, and that with fuch expedition, by reafon of their great number, that in three hours they would devour the Corn of a whole field, which you will hardly conceive unlefs you had feen it, after which they again took wing and their fwarms were fo thick, that they covered the Sun like a Cloud, and were whole hours in paffing. They flew againft the Wirfd, and went over the Caftle whichis very high, and feas'd upori ariother field of Corn which they deftroyed like the former. After having eaten up the Corn, they fell upon the Vines, the Pulfe, the Willows and even the Hemp notwithflanding its great bitternefs. Afterwards about the end of Anonft they ceafed flying, and copulated, and the Fémale fucls her tayle into the hard Eath where the caft a foam, and made therewith in the ground, a hole as big as that of a Goofe quill, and about an Inch long, wherein the laid her Eggs, which are much of the fize of Miflet Feed, there woutd be fometimes 50 of thefe Eggs in a hole, which are Po covered over with the fane Eavth that the Water does not get in.After this all thefe Infects died and flunk very much They begun this Year to hatch in the Month of $A$ pril, and fome there are, that are not yer fratched. In March, we thought upon deftroying thieiv Eggs which lye not above a fingers beadth in the Earthy and we took of them 180 Quintals being 9 Tuns: it had been well if we had thought of this expedient fooner. Since their hatching they haye taken above 15 Tuns of the young Grafshepfers

$$
[149]
$$

hoppers which are not yet bigger than flyes. There are yet a muiltitude that have efcaped us becaufe they are in the Corn which is too forward to be gone into, without fpoiling it. They have undone the People of our parts, who had no Harveft the laft Year, and it will coft above 3000 Livers to deftroy them this year. They have taken them in Abundance in the Neighbouring Villages. If this care had not been taken, there would have been enough of them to have eaten up the Corn of the whole Province.

Whereas in the laft Tranfaction an Hiftorical Account anas proa mifed of the Trade Winds, the Patience of the Reader is entreated till the next; for by reafon of the Abfence of a Perfon extraordinaryly Knowing in this Matter, whofe Information was thought. nece $\iint$ ary, the faid Account could not as yet be perfected.

Erratum in Nūm. 181. Pag. 112.1.6.v. a Northerly Wind, and in Scotland a Southerly.

Printed by 7 . Streater, and are to be fold by $S_{\text {am }}$. Smith at the Sign of the Prince's Arms in St.Paul's Cburch yard.

$$
\begin{aligned}
& \text { Ox } \\
& \text { and and }
\end{aligned}
$$




# [151] <br> Num. 183. <br> PHILOSOPHICAL TRANSACTIONS. 

For the Months of $\mathcal{F}$ uly, Ausuft and September 1686.

## THECONTENTS.

1f. $\triangle N$ Extract of two Effays in Political Arithmetick concerning the comparative Magpitudes, People, and Wealth of the Cities of London and Paris, tending to prove that at this day the City of London is the moft connderable upon the face of the Earth. by Sr. William Petty Knight. R. S. S. 2. An Hiftorical Account of the Trade Winds and Monfoons, obfervable in the Seas between and near the Tropicks, with an. attenst to affon the Phyfcal Caule of the faid Winds, by E . Halley. 3. a Dioptrick Prólem, Why four Convex Glaffes. in a Telefope Joew Qbjects Erect, by William Molineux of Dublin Elq. R. S. Soc. 4. An uncommon Infoription lately found os a very great Bajis of a Pillar, dug up at Rome; with an Interpretation of the fame, by the Learned Dr. Vollus. 5. Several ObServations of the Eclipse of Fupiter by the Moon on March the 31 th. 1686, St. Vet. (mbereof Some account has alresely been given in Tranfaction. No. 18 r.) viz. of Mr. Caffini at Paris, of P. Bonfa at Avignon, of Mr. Zimmerman and M. Wurtzelbauer at Nurenburg. 5. A Letter of the fainous M. Hevelius, Conful of Dantzick to the R. Society, containing bis Offervation of the farze Eositfe at Dantzick. 7. An account of a Book. Methodus Figurarum lines rectis \& curvis comprehenfarum Quadraturas determinandi. Authore F. Craige. 4.ts. Londini. 1685. With an aldition tbereto by the Author.

## An Extract of two Effays in Political Aridmmetick cont cerning the comparative Magnitudes, ord of London and Paris by Sr. William Petty Knight R.S.S.

The excellent Author of thefe two Eflays, has in feveral former of the fame Nature made it appear that Mathematical Reafoning, is not only applicab le to Lines and Numbers, but affords the beft means of Judging in all the concerns of humane Life:; In the ${ }_{6}$ prefent he endeavours to prove London, as it now is, the moft confiderable City now in being, by fhewing it much to exceed Paris, (which not only the French But "oreigners have afferted to be the chief City of Europe. ) both in People, Houfing, and Wealth: The fiffe by comparing the Bills of Niortality, whereby he finds that the People of London are as nany as thof of Paris and Rowen put togather. The fecond by compareing the number of Houfes, which by the Chimny-Books are found above $800 c o$ in London, whereas a great Author among the French, (who feldome faile to magnifie theil own things, 2, reckons but scoco Houfes in Paris. As to the thitit, to wit the Wealth, he conceives that there is yet a nued dreayt ter difproportion, there being no compasrifon between them for Trade, and befides a good argument drawn from the Law-Suites of both places, he Concludes from the Paris bifls of Mortality, that two 5 ths of the Peopte of Pands'sate fo poor that they chufe rather to die in Hofpitals, than lie fick at their own Charges; and that a third of the whole People of that City, die out of the moft wretched Hofpitall of $L^{\prime}$ Hoftel Dien; wheras at London there dies fcarce one in fiftie in our Hofpitals. Hereupon in the fecond Effay our Airthor extends his Charity to thofe poor wretches, thewing how by a reafonable expence, $3 c 00$ perfons might be there faved per Annum, who die for want of good aocommodation. The whole is fo clofe writt, that it will not bare Epitomizing, wherefore I rather recommend it to -the Curious who cannot but be fatisfied therewith.

An Hiftorical Accornt of the Trade Winds, and Monfoons, obfarvable in the Seas between and near the Tropicks, woith an athempt to alligh the Pbifical caufe of ibe faid Winds, by E. Halley.

AN exact Relation of the conftant and Periodical Winds, obfervable in feveral Tracts of the Ocean, is a part of Natural Hiltory not lefs defireable and ufeful, than it is difficult to obtan, and it's Pheromenena hard to explicate : I am not Ignorant that feveral Writers have undertaken this fubject, and aithough Vareniw. (Lib. I. Chap. XXI. Geo. Gen ) feems to have endeavoured after the beft information from Voiagers,' yet cannot his accounts be admitted for accurate, by thofe that fhall attentively confider and compare them togather; and fome of them are moft evident miftakes; which, as near as I can, I fhall attempt to refify, having had the opportunity of converfing with Navigators acquainted with all parts of Indiz, and having lived a confiderable time between the Tropicks, and there made my own remarks.

The fubftance of what I have collected is briefly as follows.

The Univerfal Ocean may moft properly be divided into three parts. viz. ' . The Atlantick and Lithiopick Sea: 2. The Indiant Ocean: 3. The Great South Sea or the Pacifick Ocean; and tho' thefe Seas co all communicate by the South, yet as to our prefent purpofe of the Trade Wiads, they are fufficiently feparated by the interpofition of great tracts of $L$ nd ; the firft lying between Africa and Ameria, the fecond between Africa, and the Indian I/wnels and Hollandiz Noc:a; and the laft, between the Pbilippine Iles, China, Yapan and Hotlandia Nova on the Wef, ans the Coaft of America on the Eaft. Now following this natural divifion of the Saas, fo will we divide our Hiitory intu three parts, in the fame order.

## $[154]$

I. In the Atlantick and Etbiopick Seas, between the Tropicks, there is a general Eaferly Wind, all the Year long, without any confiderable variation, excepting that it is fubject to be deflected therefrom, fome few points of the Compas towards the North or South, according to the pofition of the place. The Obfervations which have been made of thefe defections, are the following.

1. That near the coaft of Africa, affoon as you have paffed the Canary Ifes you are fure to meet a frefh Gale of N.E. Wind about the Latitude of 28 .degrees North, which feldom comes to the Eaftwards of the E.N.E. or paffes the N.N.E. This Wind accompanies thofe bound to the Southward, to the Latitude of 10 North, and about 100 . Leagues from the Guinea Coaft, where till the $\langle$ th. degree of North Latitude, they fall into calmes and Tornadoes, of which more hereafter.
2. That thofe bound to the Caribbe Iffes, find, as they approach the American fide, that the aforefaid North-Eaft Wind, becomes ftill more and more Eafterly, fo as fomerimes to be Eaff, fometimes $E_{\text {aft }}$ by $\mathrm{S}_{\text {outh }}$, but yer moit commonly to the Northimard of the Eaft a point or two, feldome more. 'tis likewife obferved, that the ftrength of thefe $W$ inds does gradually decreafe, as you faile to the $W$ eft varis.
3. That the limits of the Trade and Vaia le Winds, in this Ocean, are farther extended on the Ameri:an lide tian the African: for whereas you meet not with this certain Wind till after you have pafled the Latitude of 8 degrees on this fide; on the American fide it commonly holds to 3 . 31 or 2 degrees of Latitude; and this is verified likewfe to the Soutbourds of the Equinuctial, for near the Cape of GodHope the limits of the Trade Winds, are 3 or sacgrees neater the Line, than on the coaft of Brazile.
4. That from the Latitude of 4 degrees North, to the aforefaid limits on the Soutb fide of the Equator, the Winds are gencrally and perpetually between the Sout and Eaft, and moit commonly between the South -Eaft and Eaft, oderving al-

## $[155]$

always this Rule, that on the African fide they are more Soutiserly, on the Braflian more Eaferly, fo as to become almoft due Eaft, the little deflection they have being ftill to the Southwards. In this part of the Ocean it has been my fortune to pafs a full year, in an employment that obliged me to regard more than ordinary the Weather, and I found the Winds conftantly about the South-Eaft, the moft ufual point SEbE; when it was Eafterly it generally blew hard, and was gloomy, dark, and fometimes rainy weather ; if it came to the Southwards it was generally Serene, and a fmall gale next to a Calme, but this not very common. But I never faw it to the Weftwards of the South, or Nortbwards of the Eaft.
5. That the feafon of the Year has fome fmall effect on thefe Trade Winds, for that when the the Sun is confiderable to the Northwards of the Equator, the South-Eaft Winds, efpecially in the ftraight of this Ocean (if I may fo call it) between Brafile and the Coaft of Guinea, do vary a point or two to the Southmards, and the North-Eaft become more Eafterly; and on the contrary when the Sun is towards the Tropick of $v s$, the Souts-Eafterly Winds become more Eafter$l y$, and the Nortb-eafterly Winds on this fide the Line vere more to the Nortbwards.
6. That as there is no general Rule that admits not of fome exception, fo there is in this Ocean a tract of Sea wherein the Soutserly and S. Weft Winds are perpetual, viz. all along the Coaft of Guinea, for above 5 co . Leagues together, from Sierra Leona to the I/le of St. Thomas; for the South-Eaft Trade-Wind having paffed the Line, and appoaching the Coalt of Guinea within 80 or $10:$ Leagues inclines towards the fhore, and becomes S.S.E, and by degrees, as you come nearer, it vears about to South, S. S. Weft, and in with the land Soutl-Weft, and fometimes Weft SouthWeft; which variation is better expreffed in the Mapp hereto annexed, than it can well be in words. Thefe are the Winds, which are oblerved on this coaft when it blows
true, but there are frequent Calms, Violent fuddain Gufts called Truado's, from all points of the compas, and fometimes unwholfome foggy Eafterly Winds called Hermitaa by the Natives, which to often infeft the Navigation of thefe parts.
7. That to the Northwards of the Line, between 4 and 10 degrees of Latitude, and between the Meridians of Cape Virde, and of the Eaftermof Iflands that bear that name, there is a tract of Sea wherein it were improper to fay there is any Trade Wind, or yet a Variable ; for it feems condemned to perpetual Calms,attended with terrible Thunder and Lightning, and Rains fo frequent, that our Navigators from thence call this part of the Sea the Rains: the little Winds that are, be only fome fuddain uncertain Guits, of very little continuance and lefs extent; fo that fometimes each hour you fhall have a different Gale, which dies away into a. Calme before another fucceed; and in a fleet of Supps in fight of one another, each fhall have the Wind from a leveral point of the Compafs; with thefe weak Brazes Stipps are obliged to make the beft of their way to the Soutioward through the aforefaid fix degrees, wherein 'tis reported fome have been detained whole months for want of Wind.

From the three laft obfervables is fhewn the reafon of two notable occurrents in the Eaft-India and Guinea Navigations. The one is, why notwithftanding the narroweft part of the Ssa between Givinea and Brafle be about 5 o leagues over, yet Shipps bound to the Soxthward fometimes, efpecially in the months of Fuly and Aggiff, find a great difficulty to pafs it. This happens becaufe of the South-eaft Winds, at that time of the year commonly extending fome degrees beyond the ordinary limit of aicgrees North Lat. and withall theycom e fo much Southerly, as to be fometimes $S$ suth, fometimes a point or two to the $W_{\text {eft }}$; there remains then only to plie to Wind-ward, and if on the one fi e they ftand away W. S. W. they gain the Wind itill more and more Eafterly, but there is danger of not weathering the Braflitian, fhore, or at leaft the fhoals upon that Coaft.

## [157]

But if upon the other tack they go away E.S.E, they fall into the neighberhood of the Coalt of Guinea, from which there is no departing without running Eafterly, as far as the Jle of St. Thomas, which is the conftant practife of all the Giuiny Shipps, and which may feem very ftrang without the confideration of the fixth remark, which fhews the reafon of it. For being in with the Coaft, the Wind blows generally at S.W. and W.S.W, with which Winds they cannot go to the Northward for the Land, and on the other tack they can lie no nearer the Wind thanS.S.E. or South; with thefe courfes they run off the fhore, but in fo doing they alwaies find the Winds more and more contrary;fo that when near the fhore they could lie South, at a greater diftance they can make their way no better than S. E. and afterwards E.S. E, with which courfes they fetch commonly the Ine of St. Thomas and Cape Lopez, where finting the Winds to the Eaftward of the South, they keep them favourable by running away to the Weftuard in the Soutb Lat. of 3 or 4 degrees, where the S. E. Winds are perpetual.

For the fake of thefe general Winds, all thofe that ufe the $V V$ eft-Indian Trade, even thofe bound to Virginia, count it their beft courfe to get as foon as they can, to the Southwards, that fo they may be certain of a fair and frelh gale to runn before it to the Weftivards; and for the fame reafon thofe homewards bound from America, endeavour to gain the Latitude of 30 degrees, as foon as poffible, where they firft find the Winds begin to be Variable; though the molt ordinary Winds in the Northern part of the Atlantick Ocean come from between the South and Weft.

As to thofe furious formes called Hurricanes, which are as it were peculiar to the Caribbe Ifles; and which fo dreadfully afflict them in the month of Auguft, or not much before or after, they do not fo properly belong to this place, both by reafon of their fmall continuance and extent, as likewie becaufe they are not Anniverfary, fome years having more than one, and fometimes for feveral years togea-

## [158]

ther there being none at all. But their Violence is fo unconceivable, and their other Pbonomena fo furprifing, that they merit well to be confidered apart.

What is here faid, is to be underftood of the Sea Winds at fome diftance from the Land; for upon and near the fhores, the Land and Sea Brizes are almoft every where fenfible; a nd the great Variety which happens in their Periods, Force and Direction, from the fituation of the Mountains, Vallies and Woods, and from the various texture of the Soil, more or lefs capable of retaining and reflecting Heat, and of exhaling or condenfing Vapours is fuch, that it were an endlefs task, to endeavour to account for them.
II. In the Indian Ocean, the Winds are partly General, as in the Athiopick Ocean, partly Periodical, that is half the Year they blow one way, and the other half near upon the oppofite points; and thefe points and times of Chifting are different in different parts of this Ocean; the limits of each tract of Sea, fubject to the fame change or Monfoon, are certainly very hard to determine, but the diligence I have ufed to be rightly informed, and the care Ihave taken therein, has in a great meafure furmounted that difficulty, and I am perfwaded that the following particulars may be relied upon.

1. That between the Latitudes of ten Degrees and thirty Degrees South, between Madagafcar and Hollandia Nova, the General Trade Wind about the S. E. by E. is found to blow all the Year long, to all intents and purpofes gfter the fame manner as in the fame Latitudes in the Etbiopick Ocean, as it is defcribed in the 4 th. Remark aforegoing.
2. That the aforefaid S. E. Winds extend to within two Degrees of the Equator, during the Months of Fune, Fuly, Auguft, \&c. to November, at which time berween the South Latitudes of 3 and 10 Degrees, being near the Meridian of the North end of Madagafcar, and between 2 and 12 South Latitude, being near Sumatra and Fava, the contrary Winds from the N. W. or between the North

## $[159]$

and Weft, fet in and blow for half the Year, viz. from the beginning of December till May: and this Monfoon is obferved as far as the Miohuca Inles, of which more anon.
3. That to the Nortbward of 3 Degrees South Latizude, over the whole Arabian or Indian-Sea and Gulph of Bengall, from Sumatra to the Coaft of Africi, there is another Monfoon, blowing from October to April upon the North Eaft Points; but in the other half Year, from April to October, upon the oppofite Points of S. W. and W.S.W. and that with rather inore force than the other, accompanied with dark, rainy weather, whereas the N.E. blows clear ; 'tis likewife to be noted, that the Winds are not fo conftant, either in fremgth or point, in the Guiph of Bengall, as they are in the Indian-Sea, where a certain fteady Gale fuarce ever fails. 'Tis alfo remarkable, that the S. W. Winds in there Seas are generally more soutberi'y on the Ajrican fide, more Wiferiy on the Indian.
4. That as an Apperdix to the laf defcribed Monfoon, there is a Tract of Sea to the Sout wards of the Equator, fubject to the fame changes of the Winds, viz. near the African-Coaft, between it and the Illand Madazafaar or St. Lawence, and from thence Northoards as far as the Line: wherein from April to Octo er there is found a conftant frefh S. S. W. Wind, which as you go more Nortberly, becomes filit more and more Wefterly, fo as to fall in with the W.S. W. Winds, mentioned before, in thofe Months of the Year to be certain to the Nortsmard of the Equator: What Winds bluw in thefe Seas, for the other half Year, from 0 Fo or to $A p r i l$, I have not yet been able to obtain to my iull facistaction, for that our Navigators always return from Inio wit'out Malagaf $f a r$, and fo are little acquainted in twih, meter ; the Account has been given me is only this, that the Winds are much Eaferly hereabouts, and as ofeen to the North of the true Eaft as to the Southwards thereof.

## $[160]$

5. That to the Eaftward of Sumatra and Mslacea, to the Northivards of the Line, and along the Coaft of Camioia and Cibina, the Monfoons blow North and South, that is to fay, the N. E. Winds are much Nortiverly, and the S. W. much Southerly: This Conftitution reaches to the Eaftwards of the Pilippine-Ifles, and as far Northerly as 7 pan. The Northern Monfoon fetting in, in thefe Sas, in October or Novernber, and the Soutsern in 'Mpr', blowing all the Summer Months: Here it is to be noted, That the Points of the Compafs, from whence the Wind comes in thefe Parts of the IVorld; are not fo fixt as in thole lately defribed; for the Southerly will frequently pals a Point oi two to the Eaftwards of the South, and the Nortiserly as much to the Weftwards of the North, whic Foms occafioned by the great quantity of Land which is 1...erfperfed in thefe Seas.
6. That in the fame Meridians, but to the Southwards of the Equator, being that $\mathrm{T}_{1}$ act lying berween Sumatra and IFava to the Weft, and New Guinea to the Eaft, the fame Northerly and Soutberly Monfoons are obferved, but with this difference, that the inclination of the Norther$l y$ is towards the N. W. and of the Southerly towards the S. E. but the plage venti are not more conitant here than in the former, viz. variable 5 or 6 Points; Befides the times of the Change of thefe Winds, are not the fame as in the Clizefe Seas, but about a Month or fix Weeks later.
7. That thefe contrary Winds do not fhiftall at once, but in fome places the time of the change is attended with Calms, in others with variable Winds; and it is particularly remarkable, that the End of the Wefterly Monfoon on the Coalt of Coromandel, and the two laft Months of the Sautherly Minfoon in the Sas of Cbina, are very fubject to be tempertuous: The violence of there ftorms is fuch, that they feem to be of the nature of the Weft-India Hurricanes, and render the Navigation of thele
parts very unfafe about that time of the Year. Thefe Tempetts are by our Seamen ufually termed, The breaking up of the Monsoons.

By reafon of the fhifting of thefe Winds, all thofe that fail in thefe Seas, are obliged to obferve the feafons proper for their Voiages, and to doing they fail not of a fair wind and fpeedy paflage; but if fo be they chance to out-ftay their time, till the contrary Nondoon fet in, as it frequentiy happens, they are forced to give over the hopes of accomplifhing their intended voazes, and either return to the port from whence they came, or elce put in to fome ocher Harbour, there to fpend the time till the Winds fhall come favourable.
III. The third Ocean called Mare Pacificum, whofe extent is equal to that of the other two, (it being from the Weft Coaft of Ancerica to the Pbilippine Ilands, not lefs than 150 degrees of Longitude ) is that which is leaft known ro our own or the neighbour Nations; that Navigation that there is on it, is by the Spanyards who go yearly from the Coaft of new Spain to the Manilba's, but that but by one beaten track; fo that I cannot be fo particular here as in the other two. What the Spanilb Authors fay of the Winds they find in their Courfes, and what is confir ned by the old Accounts of Draie and Candifh, and fince by Schooten, who failed the whole breadth of this Sea in the Southern Latitude of 15 or 16 degrees, is, that there is a grear conformity between the Winds of this S a, and thofe of the Atlantick and Etpoigizk; thar is to fay, that to the Nortiwaids of the Equatok, the predominant Wind is berween the Eaf and Nort-Eaft and to the $\mathbf{S}$ ut wasds thereof there is a conftant fready gale ber tween the Eaft and Sout-Eaf, and thag on bothy fides the Line with fo much conitanc, that they ccarce ever meed to attend the Sails, and itrength, $t$ at it is rave to ifril of crofing this valt Ocean in ten weeks time, which is about 13 miles per diem; befides 'ris faid t ac Stormes and Tempefts are never known in thefe parts: Suthat here is the ve-
y beft of Sailing; no want of a frefh fair Wind, and yet no danger of having too much: Wherefore fome have thought it might be as fhort a Voiage to $\mathcal{F}$ apan and Cbina, to go by the Streights of Magellan, is by the Cape of Good-hope.

The limits of theefe General Winds are alfo much the fame as in the Atlantick Sea, viz. about the 3 cth. degree of Latitude on both fides; for the Spanyards homewards bound from the Manilta's, alwaies take the advantage of the Southerly Monfoon, blowing there in the Summer months, and run up to the Nortbwards of that Latitude, as high as Fapan, before they meet with variable Winds, to Chape their courfe to the Eaftwards. And Schooten and others that have gon about by the Magellan Streights, have found the limits of of S. E. Winds, much about the fame Latitude to the Southivards; befides a farther Analogy between the Winds of this Ocean, and the Ethiopick, appears in that, upon the Coaft of Peru, they are alwais much Southerly, like as they are found near the Shores of Angola.

Thus far matter of Fact, wherein if the information I have received be not in all parts Accurate, it has not been for want of inquiry from thofe I conceived beft able to ins ftruct me; and I fhall take it for a very great kindnefs if any Mafter of a Ship, or other perfon, well informed of the Nature of the Winds, in any of the aforementioned parts of the World, fhall pleafe to communicate their Obfervations thereupon; that fo what I have here collected may be either confirmed or amended, or by the addition of fome material Circumftances enlarged. It is not the work of one, nor of few, but of a multitude of Obfervers, to bring togather the experience requifite to compofe a perfect and compleat Hittory of thefe Winds; however I am not much doubtful that I have erred in, or omitted any of the principal Obfervables, whatever leffer particulars may have ef caped my knowledg.

To help the conception of the reader in a matter of fo much difficulty, I believed it neceffary to adjoyn a Scheme,

## $[163]$

fhewing at one view all the various Tracts and Courfes of thefe Winds; whereby 'tis poffible the thing may be better underftood, than by any verbal defcription whatfoever.

The limits of thefe feveral Tracts, are defigned every where by prickt lines, as well in the Atlantuck and Ethiopick, where they are the boundaries of the Trade and Variable Winds, as in the Indian Ocean, where they alfo fhew the extent of the feveral Monfions. I could think of no better way to defign the courfe of the Winds on the Mapp, than by drawing rows of ftroaks in the fame line that a Ship would move going alwaies before it ; the fharp end of each little ftroak pointing out that part f the Horizon, from whence the Wind continualiy comes; and where there are Monfoons the rows of the ftroaks run alternately backwards and forwards, by which means they are thicker there than elfewhere. As to the great South Sea, confidering its valt extent, and the little Variety there is in its Winds, and the great Analogy between them, and thofe of the Atlantick and Athiopick Oceans, befides that the greatelt part thereof is wholly unknown to us ; I thought it unneceffary to lengthera the Niapp therewith.

In the foregoing Hiftory are contained feveral Problems, that Merit well the confider tion of our acuteft Naturalifts, buth by reafon of the contancy of the effect, and of the immenfe extent there $f$; near half the furface of the Globe being concerned. The chief of thefe Problems are. 1. Why there Winss are perpecually from the Eaft in the Atlantick and Atrsiopick, as likewife in the Pactfok Ocean, between the Latitudes of 30 Nurth and South. 2. Why the the faid Winds extend no farther with Conftancy than to the Latitudes of $\mathfrak{z} d g$. 3. Why there should be a conftant Southwefterly Wind upon and near the Coaft of Gusinea.4.Why in the North part of the India: Ocean the Winds, which for one half year do agree with thofe of the other two Oceans, fhould change in the other half Year, and blow from the cppofite Points; whillt the Suuthern part of that Ocean followes the

## $[[164]]$

General Rule,and hasiperpstual Winds about S. Ee 5. Why in thefe General Trade-Winds it fhould be alwaies, true, that to the Northward of the Equator it is enclined to the Northwards of the Eaft; and in South Latitudes, to the Southward thereof. 6. Why in the Seas of China there fhould be for greats an Inclination from the Eart to the North, more than elcewhere ; with many more, which it would be much eafier to propofe than Anfwer.
But leaft I fhould feem to propofe to others, difficulties which Ihave not thought worth my own time and Paines, take here the refult of an earneft endeavour after the true reafon of the aförefaid Pbenomeja, whereein if I am not able to account for all particulars, yet' tis hoped the thoughts $I$ have fpent thereon, will not be judged wholly loft, by the curious in Naturał Inquiries.

Wind is moft properly defined to be the Stream or Current of the Air, and where fuch Current is perpetual and fixt in its courfe, 'tis neceflary that it proceed from a permanent unintermitting Caufe. Wherefore fome have been enclined to propofe the diurnal Rotation of the Earth upon its $A x i$ s, by which, as the Clobe turns Eaftwards, the loofe and fuid particles of the Air, being fo exceeding light as they be, are left behind, fo that invelpect of the Earths furface they move Weftwaids, and become a Conftant Eafterly Wind. This opinion feems confirmed, for that thefe Winds are found only near the Equinosizizl, in thofe Parallels of Latitude where the diurnal Motion is fuifteft; and I fhould readily affent to it, if the contant Calms in the Atlantick Sea, near the Equator; the Wefteriy Winds near the Coaft of Guiny; and the Periodical Wefterly Monfoons under the Equator in the Indian Seas, did not declare the infufficiency of that Hypotbefis. Befides the Air being kept to the Earth by the principle of Gravity, would acquire the fame degree of Velocity that the Earths furface moves with,as well in refpect of the diurnal Rotation, as of the Annual about the Sun, which is about thirty times fwifter.

## $[165]$

It remains therefore to fubftitute fome other caufe, capable of producing a like conftant effect, not liable to the lame Objections, but agreable to the known properties of the Elements of Air and Water, and the laws of the Motion of fluid Bodies. Such an one is, I conceive, the Action of the Suns Beams upon the Air and Water, as he paffes every day over the Oceans, confidered together with the Nature of the Soyl, and Scituation of the adioyning Continents: I fay therefore, firf that according to the Laws of Siaticks, the Air which is lefs rarified or expanded by heat, and confequently more ponderous, muft have a Motion towards thofe parts thereof, which are more rarified, and lefs ponderous, to bring it to an Eiquilibrium ; and fecondly, that the prefence of the Sun continually fhifting to the Weftwards, that part towards which the Air tends, by reafon of the Rarifaction made by his greatelt Meridian Heat, is with him carried Weftward, and confequently the tendency of the whole Body of the lower Air is that way.

Thus a general Eafterly Wind is formed, which being impreffed upon all the fir of a vaft Ocean, the parts impel one the other, and fo keep moving till the next return of the Sun, whereby fo much af the Motion as was loft, is again reftored, and thus the Eafterly wind is made perpetual.

From the fame Principle it follows, that this Eafterly Wind Should on the North Side of the Equator, be to the Northwards of the Eat, and in South Latitudes to the Soutiswards thereof; for near the Line, the Air is much morevarified, than at a greater diftance from it; becaufe of the Sun twice in a year Vertical, and at no time diftant above $23 \mathrm{c} g$. and a half, at which diftance the heat, being as the Sine of the Angle of Incidence, is but little fhort of that of the perpendicular Ray. Whereas under the Tropicks, though the Sun itay long Vertical, yet he is as long 4.7 dg .off; which is a kind of Winter, wherein the Air fo cools, as that the Summer Heat cannot warm it to the fame Degree with that under the Equator. Wherefore the Air to the North-

## [ 166 ]

wards and Southwards, being lefs rarified than that in the middle, it follows, that from both fides it ought to tend towards the Equator: This Motion compounded with the former Eafterly Wind anfwers all the Phanomena of the general Trade Winds, which if the whole furface of the Globe were Sea, would undoubtedly blow all round the World, as they are found to do in the Atlantick and Eithiopick Oceans.

But feeing that fo great Continents do interpofe and break the continuity of the Oceans, regard muft be had to the Nature of the Soil, and the pofition of the high Mountains, which I fuppofe the two principal Caufes of the feveral Va riations of the Winds, from the former general Rule: for if a Country lying near the Sun, prove to be flat, fandy, low Land, fuch as the Defarts of Lybia are ufually reported to be, the heat occáfioned by the reflection of the Suns Beams, and the retention there of in the Sand, is incredible to thofe that have not felt it; whereby the Air being exceedingly rarified, it is neceflary that this cooler and more denfe Air ihould run thitherwards to rettore the Equilibrium: This I take to be the caufe, why near the Coaft of Guinea the Wind always fets in upon the Land, blowing Weiterly inftead of Eafterly, there being fufficient reafon to believe, that the Inland Parts of Africa are prodigioufly hot, fince the Northern borders thereof were fo intemperate, as to give the Ancients caufe to conclude, that all beyond the Tropick was made inhabitable by excefs of heat : From the fane caufe it happens, that there are fo conitant Calms in that part of the Ocean, called the Raines. (defcribed in the 7 th. Remark on the Atlantick Sea) for this Tract being placed in the middle, between the Wefterly Winds blowing on the Coaft Guinea, and the Eafterly Trade-Winds, blowing to the Weftwards thereof, the tendency of the Air here, is indifferent to either, and fo ftands in Eq:ililriobetween both; and the weight of the incumbent Atmofphere-being diminifhed by the continual contrary Winds blowing from hence, is the reafon

## [167]

that the Air here holds not the copious Vapour it receives, but lets it fall in fo frequent Rains.

But as the cool and denfe Air, by reafon of its greater Gravity, preffes upon the hot and rarified, 'tis demonftrative that this latter mult afcend in a continued ftream as faft as it Rarifies, and that being afcended, it muft difperfe it felf to preferve the Equilibrium; that is, by a contrary Current, the upper Air muft move from thofe parts where the greateft Heat is: So by a kind of Circulation,the North-Eaft Trade Wind below, will be attended with a South Wefterly above, and the South Eafterly with a North Weft Wind above; that this is more than a bare conjecture, the almoft inftantaneous change of the Wind to the oppofite $P$ oint, which is frequently found in paffing the limits of the Trade Winds, feems to affure us; but that which above all confirms this Hypothe is is the Phenomenon of the Monfoons, by this means moft eafily folved, and without it hardly explicable.

Suppofing therefore fuch a Circulation as above, tis to be confidered that to the Northward of the Indian Ocean there is every where Land within the ufual limit of the Latitude of 30. viz. Arabia. Perfia, India \&c. which for the fame reafon as the Mediterranean Parts of Africa, are fubject to unfufferable heats when the Sun is to the North, paffing nearly Vertical; but yet are temperate enough when the Sun is removed towards the other Tropick; becaufe of a ridg of Mountains at fome diftance within the Land, faid to be frequently in Winter covered with Snow, over which the Air, as it paffes, muft needs be much chilled. Hence it comes to pass, that the Air coming according to the general Rule, out of the $N . E$. in the Indian Seas, is fometimes hotter, fometimes colder, than that which by this Circulation is returned out of the S. W. and by confequence, fometimes the under Current or Wind is from the $N$. E. fometimes from the $S$. $W$.

## [ 168 ]

That this has no other caufe, is clear from the times wherein thefe Winds fet in: viz. in April, when the Sun begins to warm thofe Countries to the North, the S. W. Monfoon begins, and blows during the Heats-till Oit ber; when the Sun being retired, and all things growing cooler Northward, and the Heat encreafing to the South, the Nurth-Ealt Winds enter and blow all the winter till April again. And it is undoubtedly from the fame Princip'e that to the Southwards of the Equator, in part of the Indian Ocean, the North-Weft Winds fucceed the South-Eaft, when the Sun draws near the Tropick of Capricorn; but I mult confefs, that in this latter occurs a dificulty, not well to be accounted for, which is, why this Change of the Monfoons fhould be any more in this Ocean, than in the fame Latitudes in the Athiopick, where there is no thing more certain than a S.E. Wind all the Year.
${ }^{\prime}$ Tis likewife very hard to conceive why the limits of the Trade Wind Thould be fixt, about the thirtieth degree of Latitude all round the Globe; and that they fhould fo feldome tranfgrefs or fall fhort of thofe bounds; as alfo that in, the Indian Sea, only the Northern Part fhould be fubject to the changeable Monfoons and in the Southern there be a conftant S.E.

Thefe are particulars that merit to be confidered more at Large, and furnifh a fufficient Subject for a juit Volume; which will be a very commendable Task for fuch, who being ufed to Philofoplick contenplation, thall have leafure, to apply their ferious thoughts about it.

## $[169]$

A Dioptrick Problem, wh four Convex-glafles it a Teleficope, Abew Objects Erect. by William Molineux of Dublin E/q.R.S. Soc.

INthe Fournal des Scavans for Munday the $17 t h$. of September 9685. pag. 466 . Amft. Edition, we find this pafo sage. As Perfpectives of one Convex-glafs make Objects appear Tipright, which thofe of two Convex-glaffes invert, and again thofe of toree rectify; fo it bould Seem that thofe of four ought to invert: And yet Experience fhens us that Objects appear upright throughb thefe glaffes. The Singularity of this Phanomenon obliges" all Skil'd in Dioptricks to inquire tbe reafon thereof, but hitherto they have found none. Mr. Regis, who applies himfelf particularly to this part of Natural Philofophy, beleives that he bas hit upon the Reafou, and makes us hope that he will fuddenly Pabliff it.

Thus far the Fournal, but it does not tell ius whofe remark this is, though $\mathbf{I}$ am apt to beleive 'twas written by Mr. Regis himfelf, to the Publifher of the Fournal.

To me this Phenomenon appears very eafily explicable, from the confideration of placing Glaffes in a Tube. Which is thus; after the 0 bject-glafs, the Eye-glafs is placed fo much diftant (towards the Eye) from the Focus of the Objectglafs as is the Focus of the Eye-gla/s; then the middle Eye-gla/s is placed fo much diftant from the Focus of the firt Eye-glals, as is the Focus of this middle Eye-zlaff; laftly; the neareft Eycglaf $f_{s}$ is placed fo much diftant frem the Focus of this middle Eye-glafs, as is the Focus of this neareft Eye-glafs; and the Eye looking through them all is placed in the Foous of this neareft Eye-glafs.

Ifay therefore fifft, that one fingle Convex-glafs, cannot properly be faid by it felf to fhew Objects erect or reverfe, but in refpeet of placeing of the Eye that looks through it. For if the Eye that looks through fuch a fingle Convex-glafs X

## [ 170 ]

be placed nigher thereto, then the Glaffes Focus, the Objects are ereet, if the Eye be placed juft in the Focus, the Objects are neither ereCt nor reverfed, but all in confufion between both; and if the Eye be placed further from the Glafs than the Fosus, the Objects are reverfed. I mean here diftant Objects, the Rays flowing from any point whereof may be counted to come parallel towards the $O$ lject-gla $/ \mathrm{s}$, for fuch Objects we are to confider when we fpeak of looking thro' Telefoppes.

This being laid down, I affert. Secondly, that the $O b$ -ject-glafs of a Telefcope reverfes the Object, both to the EyeGlafs and the Eye, that looks through it : For the Eye-glafs is placed farther from the Object-gla/s than is the Focus of the Object-gla/s. But the Eye-glafs does nothing towards the Rectification or Reverfion; the Eye being placed juft in it's Foous. Thus we fee that the Reverfing of Objects in a Telefsope of two Convex-glaffes proceeds, wholy from the Object-glafs and its pofition, and the Eje-glafs has nothing to do in the Afdire; for were the Eye it felf in the place of the Eye-glafs it would fee the Objects inverted thro' the fingle Object-glafs.

I come now to confider the fecond Eyerglafs placed after the firt Eye-glafs. (the firft Eye-glafs being that next the Ob-ject-glafs) And here it is manifeft that placing this as it ought in a Teleffope, if we place our Eye nearer to this middle Eye-glafs than it's Foous, the Eye fees the Objects inverted and confufed. Place the Eye in the Fochs, it fees the Objects all in confufion, neither ereet nor reverfed; for here ${ }_{j}$ again there is a diftinct Reprefentation of the Objects to be received on a piece of Paper, as in the Foous of the Object--slafs; and the Eye being placed at any time at this place (which is ufually called the Diftinit-Bafe) fees all in confufion. But then let the Eye be placed farther from this middle Glafs then its Focus for fo is the third or immediate Eye-glafs, it being alwayes diftant from the middle Eye-gla/s, the Aggregate of both their Fooi) it perceives the Objects ereet and confufed.

## [171]

Laftly. the third or immediate Eye-gla/s does nothing towards the erecting or reverfing the Species, which it receives erect from the middle Eye-glafs; no more than in a Telefcope of two Convex-glaffes, the Eye-gla/s does to the Species it receives from the Object-glafs, as we have fhewn before. The reafon that this laft or immediate Eye-glafs has nothing to do in the erecting or reverfing the Species is the fame, as in a Teiefcope of two Convex-glaffes, viz. the Eye is placed in its Focus, and therefore fees the Species as 'tis reprefented in the Liftinct Bafe; that is, the Species is inverted in the Diftinct Bafe of the Object-glafs, and therefore a fingle Convex Eye-glafs brings it to the Eye inverted; but in the Difinct-Bafe of the middle or fecond Eye-glafs the Species is erect, and therefore the third or immediate Eye-glafs brings it to the Eye erect.

Wherefore we are to confider the Telefcope confilting of an Object-glafs and three Eye-glaffes, as two Telefcopes, each confifting of two Convex-glaffes. The firft confifts of the Object-glafs and firt Epe-glafs, and this inverts the Species; that is, the Species is inverted in the Diftinct-Bafe of the Object-glafs, and fo brought into the Eye. The fecond Telefcope confifts of the two immediate Eye-glaffes, and this erects what the former inverted, that is, the Species in the Diffinct-Bafe of the middle Eye-glafs is erect, and is fo brought into the Eye by the Eye-glafs; the Eye-glaffes themfelves in neither cafe having any thing to do with the erecting or inverting, but meerly in reprefenting in the fame polture the Species immediatly before them.

The French Problem therefore fhould not have broken a Telefcope of four Convex-glaffes into four peices, but into two, and the cafe would have been plain; whereas by breaking it into four Perfpective-Glaffes, they attribute that to two of them, which neither of them does, viz. inverting and erecting.

Therefore I fay laftly, that one Convex-glafs as pofited in a Telefcope inverts, the fecond(that is the firft Eye-glafs)

$$
[1 / 2]
$$

does notling towards erecting or reverling, but reprefents the Image as it is in the Diftinct-Bafe of the Objet-glafs before it, that is, inverted. The third Glafs erects, or rather reftores what was before inverted. The fourth repreSents the lonage as it receives it from the Difinit-Bafe of the third, that is, crect. And this I think a fufficient Solution of this Problem.

An inncommon Inccription lately faund on a very great Bafis of a Pillar, dug up at Rome; woith an Interpretation of the Jame by the learned Dr. Voffius.

THis Infcription was fent by that excellent Philofopher and Mathematician Mr. Adrian Auzout, who coppyed it from the Stone, to Mr . Fiuffel, who was pleafed to communicate it to the Royal Society, together with the Sentiments of Dr. Vofinus therupon, of which the Reader may Judg.

The Infcription is three fold upon three fides of the Bafis, and as follows.

P.SVFENATI.P.F.PAL. MYRONI

EQVITI. ROMANO, DECV
RIALI. SCRIBARVM. AEDILI
VM. CVRVLIVM. LVPERCO. LAVRENTI
LAVINATI. FRETRIACO. NEAPOLI. ANTI
NOITON. ET. EVNOSTIDON. DE
CVRIONI. IIII, VIRO. ALBA

$$
[173]
$$

NI. LONGANI. BOVILLEN SES. DECVRIONES OB ME RITA. EIVS. L.D.D.D
P. SVFENATI. P.F.
pal. SEVERO. SEMPRO
NIANO. DECVRIALI SCRIBARVM. AEDILIVM. CVRV
LIVM. FRETRIACO. .NEAPOLI. EV
NOSTIDON. DECVRIONI. ET
SACERDOTI. APOLLI
NIS. ALBANI. LONGA
NI. bOVILLEN:ES. DE
CVRIONES. OB. MERI
TA. SVFENATIS. HER
METIS. PATRIS. EIVS

> L. D.D. D.
P. SVFENATI. P. F. -- -MYRONI.
EQVITI. ROMANO. DEC =- -

# ALI. SCRIBARVM. AED -.. 

 CVRVLIVM. LVPERCO...
## TI. LAVINATI. FRETRIAC --

APOLI. ANTINOITON .-.
NOSTIDON. DECVR -- -
IIII. VIRO. ALBANI--
GANI. BOVILLEN:-MVNICIPES. OB.

## EIUS. L....D.....-

# An Extract of the Letter of Dr. Voffus to Mr. Mufel upon the Subject of this Infription. 

--Bene nofticlaffem Agyptiacam five Cataplum Alpxandrinum antequam portus Oftia effet exftruct us, fingulis Annis appur liffe Puteolos, unde demum frumentum Romam deferebatur. Poft quam vero Augufus, o Claudius Cafares of poftea Nero Offa a portum aperuerwnt, jam annona non tantum Puteolos fed © longe maxima fuiparte Oftiam appetebat. Conftat autem tempore Tiberii pulfos Roma fuiffe Fodqos \& Egyptios; unde factum eft ut abOftia per agrum Laurenters deportaretur frumentum Ariciam et Albam Longam uSque ad Bovillis, ad decimum nempe ab Trbe Lapidem; neque enim longius progredi permittebatur. A Bovillis enim Romam per Inftioores Romanos deferebatur, neque enim Aggyptio's aut Judais- in Wrbe babitare aut borred bajere erat licitum. Menforibus vero ó Venditoribus frumenti Oftia ópafim alibi prefuiffe Decuriones ér hoc quoque ex jure conftat Sed veroomnibus ift is-minoribns Decurionibüs, qui in fingulis locis Gérbibus frumenti suram baberent, prefuife alium Decurio-

## [ 175 ]

nem, qui vicen Prafecti Annona obiret, $\mathcal{G}$ in omnibus iftis inferiorum Decurionum Collegiis primums teneret licuna, id manifefte ex bac patet Inforiptione, ubi minores Decuriones Bovillani honorem faciunt Equiti Romano of Palatino, qui Decurio feu Curialis © Fretriacus in omnibus effet locis © urbibus, a quibus Coper quas Annona Egyptiaca Romam devehebatur. Decuriones vero promotos fuiffe ad bonorem Sac erdotii, ita ut fimul Flamines, Luperci, Epulones Fovis, \&゚ Parajiti fierent Apollinis; \& hoc quoq; maltis conftat exemplis. Omne vero dubium tollit, quod in bac Inifriptione eques ille Romanus vocetur Antinoiton ÉGnoftidon Decurio. Antinoi enim urbs pracipua tum tempporis Agypti fuperioris erat Civitas, unde per multas foffas frumentum deferebatur ad Mareotin lacum, qui ad Eunofic portum exit in Mare. Ab hoc portu dicti Eunofide curatores frumenti Egyptiaci; unde demum confectus deus Eunoftus rei frumentarici InSpector, qui buic prafideret portui.

## Several Obfervations of the Eclipfe of Fupiter by

 the Moon on March the 3 rtb. 1686 . St.Vet. whereof fome account has already been given in Tranfaction No. 181.$T$He moft accurate Obfervation of this Eclipfe we have received, is that of Mr . Cafini, made in the Royal Obfervatory at Paris, publifhed in the Fournal des Scavans of the 10 th of $\mathcal{F}$ une laft, the fubftance whereof is as follows.

April ioth. St, N. Vefperi Mr. Cafini, affifted by other Aftronomers, attended upon this Occultation with Telefcopes of 21 and 70 foot, while one was deputed to take the Altitudes of $\psi$ to verifie the time.

At 9 h. $31 \mathrm{~m} .6 \int e c . \psi$ was in a perpendicular falling on the Limb of the , over againft the Northern Part of the fpot Grimaldi (Mareotis) near to Riccioli ( ftag. Miris) and Was diftant from the Limb about four times as much as the faid fpot.

## [ 1.76 ]

9h. $4 \mathrm{m}$.21 fec. 1 touched the circumference of $)$, which undulated by reafon of the Vapours near the Horizon.
9. 41. 20 . he quite difappeared in the inequalities of the $\rightarrow$ s Limb, the total Immerfion might be fome feconds later.

So the central immerfion was at $9 b .40 \mathrm{~m} .51 \mathrm{fec}$.

* entred over againft that part of Grimaldi next Riccioli. The Vapeurs of the Horizon hindered the Obfervation of the Immerfions of the Satellites, but not their Emerfions, for

At $10 h .30 \mathrm{~m} .2 / e c$. the outermo/t Satellite which preceded $\psi$, appeared over againft the middle of the Cafpian Spot (pal. Meotis) through which the fection of Light and Darknefs paffed, and made nearly an equilateral Triangle with the Extremities of that fpot.

At $10 \mathrm{~h} .4 \circ \mathrm{~m} .24$ fec. the firf Limb of $\psi$ began to come out of the dark fide of the , , over againft the North part of the Cafpian fpot, about Cleomedes, (ad montes Riphaos)

At ioh. 40 m .56 fec . the center of 4 did emerge. It was difficult to diftinguilh the moment when us disk was fully clear, but at 1 ch .41 m .36 fec . the Eclipfe was certainly paft.

At the Emerfion of the Center, the Altitude of $\psi$ was 1Jd. 3 Im .

At 106.42 m .49 , the fecond Satellite, being the nearef of the three that followed the Planet, emerged.

At 1 ch .45 m . If. the innermof Satellite, being near its greateft Elongation, emerged.

At $10 \mathrm{~h}, 50 \mathrm{~m} . A \rho /$ the third or penextimus satelles, being likewife near its greateft Elongation, began to appear over fagaint the Northern Edge of the Cafpian Spot.

At I 16.45 m . the Diameter of the, was 32 m .27 f . and according to the calculus of Mr. Caffini, her parallax was $6!\mathrm{min}$.

Together with this Oofervation is joyned that of $R$. $P$. Bonfa.made at Avignon who obferved the central immerfinn at 9 h .42 m .13 J . and the central Emerfion at 10 h .45 m . 2 f .

## [177]

over againft the Southern part of the Calpian Spot.
The fame P. Bonfa has alfo obferved at Avignon the other Eclipfe of the fame Planet, April 28th. ft. vet Mane. The Immerfion of the Center hapned at 3 b. $37 \mathrm{~m} .23 \%$. on the Ealt fide of the Spot Xenoblanes. The Emerfion wasat 4 b. 28 m . 24 . between Seneca and Bero/us, accurding to Riccicli, or ad montes Aianos Hevelii, a little to the Northward of the Palius Maotis. This occultation could not be obferyedat Paris by reáfon of Clouds.

Another printed Paper about the Eclipfe of March. $3 \mathrm{r} t \mathrm{t}$, is fince come to hand from Nurenburg, where it was obferved part, by Mr. I. Iac Zimmerman, and by Mr. Wurtzelbauer, the fubftance of whoie Obfervations is as follows.
At 1ob. 19m. 56 f . Mr. Zimmerman obferved the firft contact of the Limbs of $\psi$ and the ), and at 1oh. 20m.475. $x$ was all eclipfed.
At rih. $22 \mathrm{~m} .5 \mathrm{I} / .4$ was wholly clear from the Eclipfe.
The Immerfion was about the in 7 th, the Emerfion at the $32 \mathrm{t} t \mathrm{~h}$. Degree of the Limb, in the Chart of Hevelius.

At inh. $3 \mathrm{I} m .06 \int$. the third Satellite of 4 emerged. Thefe times were collected from the Culminations of fixt Stars, and the Vibrations of a Pendulum.
The Relation of the other Obferver Mr. Wurtz:lbaues is to this purpofe.

At 10h. 20 m .50 . 4 applyed to the Limb of the , over againft the locapaludofa Infule Circinize.

At Ich. 22 m .00 / he appeared about half eclipfed.
At 10 h. 22 m .3 cf . he was wholly hid.
At Inb. $19 \mathrm{~m} .40 \%$. $\psi$ began to Emerge.
At $11 b .21 \mathrm{~m} .20 \%$. he was quite free from the interpofition of the ). The point of the Emerfion was fomewhat to the North of the Palus Meotis.

No Spot in the ) was fo near the apparent magnitude of us disk as the Infula Besbicus Hevelii.
At inb. 40 m .00 . the Altitude of Procyon was 8 gr .37 m . whence the Pendulum Clock, which had been fet by AltiY tudes

## [178]

tudes of the © the afterncon preceding, may be examined.

The Account we have but now lately received from rhe famous Mr. Hevelius from Dantzick, of thefe fame Eclipfes, is contained in this following Difcourfe addreffed in a Letter from the Obferver to the $R$. Society.

## Occultatio Fovis Anno 1 686, die 10 April. A. n. vefperi, obfervata Gedani a Joh. Hevelio.

AD hanc Obfervationem fumma alacritate acceffr, non obftante invaletudine mea, cum Colum fere undeq; effet ferenum, nifi quod circa Horizontem, ubi Luna atq; Jupiter exoriri debebant, vapores quidam atq; nubeculx exifterent. Inprimis ex eo maximopere fui excitatus, quod hujus generis Obfervationes, Occultationes nempe Jovis admodum raro contingant, fed adhuc rarius ex voto obferventur. Me quod attinet, fcias, mi Lettor, etiamfi hucufq; per 56 annos Rebus Coeleftibus pro meo modulo operam dederim, atq; nullam Obfervationem alicujus momenti, ( abfit gloriola) lubens neglexerim, haud feliciorem fuiffe quam quod in hunc ufq; diem fatio 50 circiter annorum, non nifi tres tales Jovis Eclipfes rite deprehendere \& annotare potuerim : utpote primam Anno 1646, die 24 Decemb. vefperi, fed tantummodo ejus finem: fecundam, Anno 1679, dié Junii ante meridiem de die, quo tempore res omnis felicius fucceffit ; tertiam hoc Anno currente 1686 die 10 April. vefperi.

Quam Obfervationem, mi Aftrophile, prout peragi potuit, a me nunc benevole accipias, rogo. Que vero obtenta, atq; annotata fuerunt, ex fubféquente Tabella \& Obfervationis Typo patebunt. Omnium primo nonnullas Altitudines Solis, \& Arcturi Quadrante fingula minuta commonftrante obfervavi, ad corrigendum Horologium ambulatorium aliquanto tardius incedens. Deinde, exoriente atq; ex

## $179]$

nubeculis circa Horizontem vagabundis erumpente Luna ac Jove, nonnullas Diftantias a limbo Lunx orientali cepi, ea ratione, qua tum licuit meliori. Inter alia autem notandum occurrit, quod hæcce Occultatio non Luna omaino exiftente plena, fed altera die circiter poft ipfum Plenilunium ve§peri acciderit; \& quidem eodem tempore (quod permirum fane accidit, \& elt cafus, qualis haud facile unquam continget) eademq; facie, ut itla Occultatio Anni 1646 die ${ }_{4} \frac{1}{}$ Decemb. vefperi vifa eft; quo tempore Luna jam ad biduum pariter decreverat, \& fine dubio eandem Librationem etiam exhibuit, quam in hac noftra ultima Obfervatione. Nam Sectio Luminis atq; umbre plane fuit eadem, \& per eafdem maculas tranfiit (quod fatis admarari nequeo) nimirum adLacum Hyperboreum majorem \& minorem, tum ad montes Riphæos, per paludem Mæ otidem, per Lacum majorem maris Cafpii, \& finum ejus inferiorem ad Montem Nerofum.

E contrario, Jovis Occultatio Anno 1679 a me habita, plane extitit diverfa, fiquidem illa non circa Plenilunium, fed Novilunium accidit, tertia circiter die ante Conjunctionem ipfam, adeo ut phafis tantummodo parvula decrefcens confpecta fit, inftar Phafeos mex Lunx cornutæ decrefcentis, fub Numero 37, in mea Selenographia, pag. 402 confpicux: tranfibat enim per finum Apollinis, per loca paludofa Infulæ Cercinne, Mare Syrticum, Montem Cataractes, \& partem inferiorem Sin. Sirbonis, montemq; Lion: prout ex ipfo fchemate dicte Occultationis An. 1679 , in Anno meo Climacterico pag. $3^{8}$. clare liquet.
Poftquam itaq;initio, ut fupra dicebam, nonnullas Diftantias Jovis a limbo Lunæ Orientali ceperam, atq; Jupiter magis magifq; Lun appropinquaret, omni diligentia invigilavi, ut non folum quam accuratiffime ipfum momentum temporis annotarern, quando Jupiter prius Limbo fuo occiduo limbum Lunx orientalem attingeret, fed etiam quando dimidius, nec non quando omnino totus effet tectus. Hxe etenim recte fcire Altronomix plurimum intereft ; prefer-

## $\left[18 e^{7}\right]$

tim, cum a nemine Obfervatoruan hucufq; nondum, quantum fciem, adhue fit-deprehenfa. An in hac Obfervatione a quopiam fint annotata, adhuc me latet; tempus tamen docebit.

Me quod attinet, hæc omnia ex voto obtinui, non folum circa initium, fed etiam circa finem hujus Occultationis, fic ut ipfum momentum temporis rurfus primæ apparitionis Jovis occafum verfus, ad Sectionem Luminis \& Umbre, nec non cum dimidius, ut $\&$ totus appareret, exactiffime deprehendere potuerim. His acquifitis Dametrum Lunæ optimo Micrometro, atq; Telefcopio duodecin circiter pedum inveftigavi, pariter unam aut alteram Jovis Diftantiam a confinio Lucis \& umbre, a parte filicet Lunæ occidentali, pro majori confirmatione reliquarum Obfervationum, ficuti ex annexa Tabella atq; Obfervationis Typo elucet: quæ præmittenda effe duxi, antequam ad alia nonnulla bene notanda me conferam.


## $[181]$

| H. M. S. |  | H. M. S. |
| :---: | :---: | :---: |
| 102130 | Jovis diftantia erat tanta, quanta diftan tia M. Sinai a Palude Maræotide. | 103130 |
| 104035 | Jovis diftantia erat fere æqualis diftantix inter M. 压tnam \& M. Porphyritem. | 10 515 |
| $\overline{105130}$ | Jovis limbus a $>$ limbo diftabat tanto interfitio, quanto Pal. Maraotis a limbo ) | II |
| $1056 \quad 9$ | 4 limbo fuo tangere incipiebat Lunx limbum, atq; fic initium Occultationis | 1178 |
| 105654 | Dimidius Jupiter occultabatur. (accidit. | II 7354 |
| $10 \quad 57 \quad 39$ | Totus Jupiter omnino a > tectus. | 11839 |
| 11.831 | Occultatio Comitis Jovis ultimi ad M. Alabaftrinum accidit. <br> Duo tantummodo Comites a parte orientali confpecti funt. |  |
| $\overline{17.544}$ | Altitado Lyrx.32 59  | 26 |
| 11190 | Infula Besbicus \& R hodus re periebantur fub eodem perpendiculo;id quod ad 35 gr . circ. a Linea ) verticali re- |  |
| 112137 | Altitudo Lyre. (movebatur. 3350 | 113215 |
| 112457 |  | $11 \quad 3624$ |
| 113815 | Emerfionis initium Jovis. | 11 4915 |
| II 390 | Dimidius Jupiter emergebat. | 11 50 <br> 1 0 |
| 115945 | Totus Jupiter apparebat. <br> Diameter Lunæ Micrometro obfervata erat $21 \mathrm{~m} . \mathrm{c}$. | 1150.45 |
| ii 5410 | Diftantia Jovis a confinio Lucis \& Umbræ ) erat æqualis diftantix M. 压tn a M. Porphyrite. | $12 \quad 540$ |
| 115720 | Diftantia Jovis a confinio Lucis \& Umbræ elongabatur intervallo inter Infulam Besbic. \& M. Atnam. Et comes \% remotiffimus a Jove tantum aberat, quantum iple comes a dicto confinio Lucis. | 12920 |
| 12 6 |  | 121839 |
| $\begin{array}{lllll}12 & 9 & 18\end{array}$ | Eadem Altitudo denuo. $\quad 4046$ | 122149 |
| 121320 |  | 12214 |

## $[182]$

Primo liquidum eft ex ipfa Obfervatione \& occultationis Schemate, quod orbita, feu Linea Jovis itineraria, per Montem Alabaftrinum, per M. Chrifti, M. Carpathes, infra M. Macrocemnios, \& per Lacum Hyperb orium inferiorem incefferit. Secundo, quod Infula Besbica \& Infula Rhodus fub uno eodemq; perpendiculo, tempore occultationis, hora circiter 11 m .30 extiterit; fic ut 35 gradus Luna limbi culminaverit. Intravit itaq; Jupiter limbum Lunx illuminatum circa 6 I gradum, a limea fcilicet perpendiculari Nonagefimi atq; puncto Zenith, ortum verfus; exivit vero circa 3 r gradum a dicta linea perpendiculari Nonagefimi occafum verfus, ad limbum Lunx obfcuratum. Proinde Linea Jovis itineraria fuit fubtenfa $1 \subset 4$ fere graduum, attenta videlicet parte Lunx Boreali.

Praxterea etiam maxime notatu dignum, quod ex hac obfervatione Diametrum Jovis exquifite elicere potuerim, \& quidem hac ratione : cognita nimirum tota duratione Occultationis 42 m . $\delta 6$. atq; data fimul Diametro Lunari 3 Im . protinus innotefcit, ex illa temporis mora, cum fcilicet Jupiter limbo fuo primum Lunx limbum attingeret, \& cum totus occultaretur (id quod factum ef featio temporis 1 m .3 O . ) Dia meter Jovis $51 \mathrm{~m} .42 /$.

Et tantx Magnitudinis extitit etiam Diameter Jovis 50 circiter fecund. quoties illam per maculas Lunx dimenfus fúm: utiex parte fecunda Machinx noftra coeleftis fuo loco patet. Quod autem Anuo 1679. die 5 Jun. cum fir milem Jovis Eclipfim obfervarem, longe ea extiterit minor, nimirumi tantum 30m. 53 . Id ex eo eveniffe puto, quod Obfervatio illa, tempore diurno, fplendente Sole fuerit obfervata; quo radii Stellarum \& Planetarum adventitii magis a Luce Solis abfterguntur, quam tempore nocturno, nocte obfcura. Riod fi autem quaras, quamnam Diametrum apparentem veriorem exiftimem? fcias illam, quam Anno 1679 , 5 Jun, de die, fole fplendente obfervavi. Non quidem ex eo quod noi $x$ que diligenter hanc quam illam determinaverim ; fed quod tempore nocturno, radii adven-

## $[183]$

titii magis obftent, ficuti diximus, quam tempore diurno. An vero recte Judicium meum expono, futuræ Obfervationes, dummodo accuratiffime peragentur, docebunt.

Poftremo Corollarii loco, adhuc adjiciam Tabellam, calculum hujus occultationis Jovis, ex diverforum Auctorum, videlicet Keppleri, Lansbergii, Bullialdi, Riccioli \& Wingii Tabulis exhibentem; ut fub uno ftatim intuitu quilibet habeat in quantum ab ipfa Obfervatione \& ipfo coelo dicta Tabulx difcedunt. Invenies non tantum in plurimis integris Minutis, fed ad femihoram, imo integram nonnullas a vero exorbitare; fic ut Rerum Coeleftium Cultores abunde adhuc habeant, quod quarant, caltigant.

## Calculus ad Horizontem Gedanenfem.

|  | Ex:Obferv. Ex Keple. Ex Lanfb.Ex Bulli.Ex Riccio.ExWTing H. M. S. H. M. S.H. M. S. H. M. S.H. M. S. H. M. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Initium. | II 79 | 10 | 31 | 12 |  |  |  | 3 |  | , |  |  |  |  | 10 |  |  |  |
| Immerfio. | 11839 <br> 189 | 10 | 3317 |  |  |  | 10 | $\bigcirc$ |  | $4{ }^{\text {I }}$ |  |  |  |  |  |  |  |  |
| Emerrio. | If 49 I5 |  | 1745 |  |  | 26 | 61 | 2 | I | 43 |  |  |  |  |  |  |  |  |
| Finis. | 1150451 |  | 1957 | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Duratio. | 042610 |  | $4^{8} 52$ |  | 49 |  |  |  |  | 42 |  |  | 23 |  |  |  |  |  |
|  | - |  | 1612 |  |  |  |  |  |  |  |  | 16 |  |  |  |  |  |  |

Quibus finio, \& Te, Benigne Aftrophile, bene valere jubeo, rogans, ut qualem qualem hancce Obfervatiunculam boni confulas, donec quædam preftantiora in Lucem prodeant. \&c.

PRiufquam hafce literas obfignarem, in manus meas inciderunt paucula illa, que de conjunctione Lunx \& Jovis pofteriori, die 8 Maj . St. N. mane, a me fuerunt annotata. Jdcirco \& ea volui, licet nullius fint ponderis, vobis communicare.

## $[184]$

Primo, obfervata eft Altitudo Arcturi, pro corrigendo tempore ; deinde quardam Diftantias determinavi, ea intentione, me forte adhuc puffe, ante ipfum occafum horum fiderum, minimum, initium Occultationis deprehendere; fed fpe fruftratus fum. Nam citius circa Horizontem \& Lunam \& Jovem Nubeculx exceperunt, atq; paulo polt obitus horum Planetarum omnino incidit.

|  | Occultatio Jovis qux accidere debuit |
| :---: | :---: |
| Secun.Horo | Dantifci Anno 1686 . die 8 Maji. Tempus |
| $\log$ ambul. | St. N. mane. Correct. |
| H. | gr.m. J.H. M. S. |
| 32320 | Altitudo Arcturi. $\quad \\| 3 \mathrm{I} 160312012$ |
| 32435 |  |
| $4+30$ | (Jupiter a limbo ) diftabat majori ad-3 41 30 huc intervallo quam $M$. Sinai a $M$. Etna. |
| 47 | Jovis diftantia erat tanta, quanta $M \cdot 344 \mathrm{C}$ Porphyritidis a Byzantio. |
| 520 | Jovis a limbo Lunæ diftantia erat æqua- 3 lis diftantix Infulx Sardinix \& Paludis Maræotidis. |
| 59 - | Jupiter a limbo Lunæ paulo plus difta- 3 3 56 o <br> bat quam Pal. Maræotis ab Etna. |
| 4.1640 | $\qquad$ tur fere Diftantix M. Porphyritidis ab Infula Cercinna. <br> Planetarum Occafus factus eft. |

Adeo ut nihil quicquam de ipfa Occultatione nobis hic, Gedani in confpectum venerit; quibus valete iterum iterumq; quam teliciffime.

FOHANNES HEVELIUS.

## [185]

An account of a Book. Methodus Figurarum lineeis rectis ঞ curvis comprebenfarums quadraturas deierninandi Autione J. Craige. 4to. Londini $163 \%$.

THE great ufe of drawing the Tangents of Curve Lines, has made the moft famous amongtt the Mo. dern Mathematicians endeavour to find out General Methods of finding the Tangents of Cuive Lines, as may be feen from the feveral ways invented by Des Cartes, Morfieur Fermat, Slufuus, Dr. Barrow, Dr. Wallis, TCchurnehuys, and Leibnitius; But as yet none has attempted to invert this problem generally, that is, having the Tangent to find the Curve Line whofe tangent it is. Therefore the Author of this Treatife perceiving that the doing of this would give a General Method of determinating the Quadrature of any Curvilinear fpace, has laid down a rule for inverting Slufus his method mentioned in the Pbilofophick Traeffactions Num. 90. He has illuftrated his Method of Quadratures by feveral Figures which have been already confidered by Geometers. As for the Circle \& Hyperbola, he afferts that their indefinite Quadratures are impolible, and therfore in thefe $\&$ fuch like cafes, he expreffes the Area by an infinite Series, which is eafily done by his Method, except the Series confift of irrational termes, for in thefe he has recourle to Leibnitius his method of finding Tangents, where the Calculation will be more tedious. By his refolving the Area of the Hyperbola into an infinite feries, he comes to the fame expreifion with that of $N$. Mercator: And in meafuring the Zone of a Circle, his exprefion falls in with that invented by Mr. I/aac Newton, as Mr. David Greg ry relates in his Treatise. He has fubjoyned a Method of meafuring the Cuive Superficies made by the ratation of any Curve upon its $A_{\text {i }}$ is; with a fmall Animadverfion on the Nethod of Qiadiratrices, publimed in the AIFa Lipfanfa Erudiverum of Oitober, 168 .

Since the Pu'lication of this Treatife, the Authour is ple.tfed to mike the following Aodition.

## $[1861]$

## $711!3$

## Addifio ad Meftodum Eigurarum Quadraturas De-

 terminandi. Autore Jobane Craige.QToniam onniun Figurarum Quadrature ex perfecta noftri primi problematis Solutione determinantier: propterea utile judicabarn nonnulla addere, que falitionem meam non modo plenius illuft rant fed omnino perfaiunt: non adeo tamen funt obfura, quin facile quifquan in ifinumodi retusverfatus, ex ios que jam expofui, ominia fupplere pojfit. Probleñasfic fe babet. Data expreffione Andlytica linee inter ordinatam Go Curve perpendicularen defognate, Invenire equationeranaturan illius Curve definientem. Hoc problema tres cafus incledit. 1. Cum expreffio iftius linex talis eft, qualis a vulgaritus tangentium Methodis exbibetur. 2. Cum ad fompliciorem redicitior, fata divifone numeratoris denominatoris per conimuine fomptich diviforem. 3. Cum expreffo fit fimplicijgm, atvidendo per aiviforem compofitum. Duos priores cafus Regula, prout eam explicit, univerfliter comprehendit; fuperef taritum ut oftendam quoे pacto tertium pariter cafum comprebsendat.

Poftquam expreffo data per y multiplicatur, appinantur omnes termini qui fub maximo continentur (Termnorwin monitudinem e dimenfonious quantitatis y menfurans) \& conseitantur figno afirmativo vel negativo, prout libuerit; adagsentir omnes illi termini (prius in coefficientes incognitas multiplicati) Quadrato quantitatis per x defgnate: eritq; ince refuitans equatio quefota, vel quafitam ircludet; fo determinationes coefficientium terminos equationem conftituentes a reliquis diffinguent.

## [ 187 ]

Sit in appofito fobemate abfijfa $A M=y$, ordinata $M C=z$, © Curve ACE proprietas $\mathrm{z}_{2}=\frac{\mathrm{a}_{2} \mathrm{y} 2+\mathrm{y} 4}{\mathrm{p} 2}$, or invenienda fat p2 ${ }^{2}$ Are in rectis an
 quadratura Area a lineis rectis er illa Curva comprehenfa. Quarenda eft alia Curva A G H, inqua P $\mathrm{M}=$ $\sqrt{\frac{\mathrm{a}^{2} \mathrm{y} 2+\mathrm{y} 4}{\mathrm{p}}}=\mathrm{z}$; ubi P G Curve quefite perpendicularem, \& $\mathrm{MG}=\mathrm{x}$ illius ordinatam denotat. Cumq; bac expreffio linex PM in y multiplicata contineat fextam quantitatis y dimenfionern, ideo appono omnes terminos fub illaferta dimenfone contentos, unde refultans aquatio eft. $\frac{\mathrm{na} 6+\mathrm{mas} y+1 \mathrm{la}_{4} 2+\mathrm{ha} \mathrm{y} 3+\mathrm{ka} 2 \mathrm{y} 4+\mathrm{gay} 5+\mathrm{fy} 6}{\mathrm{p}^{2}}=\mathrm{x} 4$.

Ex bac equatione invenio valorem Linea P M. quem comparo cum valore dato, unde
 $=1{ }^{22 y} \frac{1}{P P}$. a ferantur fractiones osigna radicalia, oo deter-
minentur coefficientes $\mathrm{n}, \mathrm{m}, 1 \& \mathrm{c}$ : (it in prob: 2 tractatus nof-
 catere, in quivisis in thale conting it, equationem conftituent. Sic in excemplo propofito, erit $\mathrm{f}=\frac{4}{9}, \mathrm{k}=\frac{12}{9}, 1=\frac{12}{9}, \mathrm{n}=\frac{4}{9}$. Ced dum g determino, invenio $2<4=149$, quod absurdum involvit; \& Jic pro h comparatic syital $=6 \mathrm{~b}$ unie nullus illius valor, ơ pro m erit $4 \mathrm{~m}=44 \mathrm{~m}$, quad itiden eft abfurdum: quapropter termini a quantziatibuss, h, majecti ad requationem non pertinebunt; wnde reliqui aliteris $\mathrm{n}, \mathrm{l}, \mathrm{k}, \mathrm{f}$ affecti aquationem naturam Curve definientem confituent. $\int$ co $\frac{4 \mathrm{a} 6+12 \mathrm{a} 4 \mathrm{y}^{2}+1222 \mathrm{y} 4+4 \mathrm{y}^{6}}{9 \mathrm{p}^{2}}$
$[188]$
$=\mathrm{x} 4$, adeoq; $\mathrm{AMC}=\sqrt{\frac{\mathrm{a}+\frac{1}{2} \mathrm{a} 4 \mathrm{y}+3 \mathrm{a} 2 \mathrm{y} 4+\mathrm{yb}}{6 \mathrm{p} 2}}=\frac{\mathrm{x} 2}{2}$. Exem. 2
Sit Curve Linee A C E talis proprietas $\mathrm{z}_{2}=9{ }^{9} 2+\mathrm{y} 3$ or inve. nienda fit Quadratura patii A M C. Qurenda oft Curva AGH in qua $\int_{i t} \mathrm{P} M=\sqrt{q y} \frac{4}{\mathrm{p}}=\mathrm{Z}$ \& quoniam bic valor in y multiplicatus continet quint am quantitatis y dimenfonem, apponantur omnes termini fú illa quinta dimenfione, ó equentur quadrato quantitatis per $\mathbf{x}$ defignatic; unde aquatio refultans eft.
$\frac{\mathrm{nq}_{5}+\mathrm{mq} 4 \mathrm{y}+\mathrm{lq} 3 \mathrm{y}+\mathrm{kq} \cdot \mathrm{y}_{3}+\mathrm{hq} \mathrm{y}_{4}+\mathrm{fy} 5}{\mathrm{p}}=\mathrm{x}_{4} \cdot$ atg; ola coeff. cientis ( m ) determinatio abfurdum involvet, eruntq; relique, $\mathrm{n}=\frac{64}{225}, \mathrm{l}=-\frac{15}{15}, \mathrm{k}=-\frac{6}{45}, \mathrm{~h}=\frac{16,}{15} \mathrm{f}=\frac{16}{25}$, unde aquatio curvam quefitam definiens eft.
$\frac{64 q 5}{225 p}-\frac{16 q 3 y^{2}}{15 p}-\frac{16 q 2 y 3}{45 p}+\frac{16 q y 4}{15 p}+\frac{16 y 5}{25 p}=x 4$ adeoq;

$$
A M C=\sqrt{16 q 5} 2 \frac{4 q 3 y^{2}}{22 p}-\frac{4 q 2 y 3}{45 p}+\frac{4 q y 4}{15 p}+\frac{4 y 5}{25 p}=\frac{x x}{2}
$$

Exem. 3. Inuenienda it Quadratura fpatii AMC, definitit natura Curve ACE bac Equatione $\mathrm{z}^{2}=\frac{3 \mathrm{a}}{4 \mathrm{y}+4 \mathrm{a}^{\mathrm{a}}}$. Queratur alia Curva AGH , in qua $\mathrm{PM}=\sqrt{ } \frac{\mathrm{a3}}{4 \mathrm{y}+\mathrm{a}}=\mathrm{z}$. Ex pramiffis conftat Equationem prinsum fore $\frac{\text { na } 3 \mathrm{y} 2+\mathrm{ma} 4 \mathrm{y}+16 \mathrm{a} 5}{4 \mathrm{a}+4 \mathrm{y}}=4 \mathrm{x}$ \& determinationes Coefficientium $n=15, m=32,1=16$. Quibus fubffitutis, erit aquatio $\frac{163 y^{2}+32 a}{4 y+4 a} y=16 a 5$ $=a^{2} y+4 a 4:$ adpog; $A M C=\sqrt{a y+a}=\frac{1}{2} \times 2$.

Notatu dignificmsum eft, has tres ( (Guct infinitas alias) Quadraturas abfoife AM (fen y) non convenire. R Roniam in iftusmodi

## [189]

modi Figuris, Simpliciffima Area expreffo buic portioni non refpondet: attamen Quadratura abdoiffe conveniens exinde parvo labore deducitur. Ut in Exem: 3. whit Area eft $\sqrt{a 3 y+a 4 ;}$ fiat y $=0,60$ erit Area $\sqrt{ } \mathrm{a}_{4}=\mathrm{a} 2$, \&o fubducatur bac ex generali, proveniet Quadratura portionis abcoijfe refpondentis, $\int c_{0} \sqrt{a 3 y+\mathrm{a}}-\mathrm{a} 2$. Onam obServatiuncilam mibi priwus fignificavit Vir celeberrimus D. Ifaacus Nenton.

Tentetur jam idem proceffus in Circulo ACE, cujus diameter fit r , ac proinde $\mathrm{Z}=\sqrt{\mathrm{ry}} \mathrm{y}^{2}$, Querenda eft Curva AGH in qua $\mathrm{PM}=\sqrt{\mathrm{ry}-\mathrm{y} 2}=\mathrm{z}$, Sed ex dictis conftat aquationem primam forenr $4+\mathrm{mr} 3 \mathrm{y}+\mathrm{lr} 2 \mathrm{y} 2+$ hry $3-\mathrm{ky} 4=\mathrm{x} 4$ : © ion ingule coefficientium determinationes erunt impoffibiles; adeoq; nutla datur Gurva AGH in qua $\mathrm{PM}=\sqrt{\text { ry- } \mathrm{y}^{2}}$, ac proinde Circuli Quadratura indefinita eft impol ${ }^{3}$ ilis. Fieri tamen poteft ut fit aliqua bujuf modi Curva AGH, fed ex carum numero, quas post Cartefium Mechanicas Geometre communiter appellant: Sed quia barum ufus non libenter admittunt LITatBematici, prestat bujusmodi Quadratuturas per Series infinitas exbibere.

## Benervole Leetor

Ob inopiam Typorum Numeralium minufculorum, qui ad defignandas quantitatum poteftates fupra Symbola dextrorfum apponi folent, feftinante prolo, Typograpbus paulo majoribus ufus eft in eadem linea immediate fequentibus; ubicunq; itaq; offenderis a3, vel x2, ©.c. cubum vel quadratum, ©oc. e quantitate, cui fuffigitur numerus, intelligas.

$$
[190]
$$

## LONDON,

Printed by Fofeph Streater, and are to be fold by Samuel Smith, at the Princes Arms in St. Pauls Church Yard.

# [ 191 ] <br> Num. 184 , <br> PHILOSOPHICAL 

 TRANSACTIONS.For the Month of OZFoier, 1636.

## THE CONTENTS.

4t. $\boldsymbol{N}$ Account of the Courfe of the Tides at the Port of Dublin in Ireland; communicated in a Letter to the Puliliber, from Mr. William Molineux E/q. R.S.S. with a Remark t ereup n. (2.) A Demonftration of the Velocity wherewith tie Air $r$ bes into an exbayfed Receiver, lately produced before the R. Suciety by Dr. D.Papin, Reg. Soc. S. (3) An Extract of Letter from Mr. J. Flamfteed Aftr. Reg. and Reg. Soc. S. giviny bis Calculation of the Eclipfes of Jupiters Satellites, fir the Tear 1687 , togather with a Table of the Para'Laves of the Orb, and am Ephemeris of Jupiters Geocentrick Place for the $\int$ ame Tear; to which is added an Otfervation of the Ecliple of the Moon Novemb. $3^{\text {th }} 1685$, made at Lisbon; and Mr. Flamiteed's own O. Servation of the Ecliple of Jupiter by the Moon on the 3 th. of March laft. Accounts of Books, (1) Tise Nasural Hiftory of Stafford-Shire, By Robert Plot LL.D. Keeper of the Aihmoleas Mufxum, and Profeffor of Chimiftry in the Univerfy of Oxford. (2) Sciothericum Telefcopicum or a new Contrivance of addpting . Telefcope to an Horizontal Dial, for obferving the Monent of Time by Day or Nig t, by With. Molineux Efq. R. S. S. Printed af Dablin, Amo 486. ヶ.to.

## $[192]$

An Account of the Courre of the Tides in the Port of Dublin in Ireland, commanicated in a Letter tothe Publifber, from William Molineux E/q. R. S. S. with a remark thereupon.

AT the Barr of Dublin, on the New and Full Moons, a South-South-Eaft Moon makes high Water, that is, at half an hour after Ten.
At Rings-End at Tliree Quarters after Ten. At the Cuftome-Houf at Dublin at Eleaven. On the Quarter Days.
High Water on the Barr at five of the Cloek.
At Rings-End at a Quarter paft Five.
At the Cuftom Houle half an hour paft Five.
A Southerly Wind between S. S. E: and S. S. W. blowing frefh makes it flow near half an hour longer than it's ufuat Courfe.
N. B. that this obfervation makes the Tides, upon the Quarter Moons, come in later, in refpect of the Moons Southing, than upon new and full Mons, by half an hour': whereás in the River of Thames, as high as Lendon, the Quarter Moons make high Water above an hour an Quarter fooner, in that refpect, than the New and Full ; as may be feen by the accurate Tide Tables of Mr. Flamfleed: but it is from hence Evident that the fame Tables are not applicable to the Sea-Ports ; where there is not the fame reafon for the Anticipation of the Nepe Tides upon the Quarter Moons: The caufe of this Phancmenon feems to be, that the Impulfe of the Ocean in the Quarter Moons is not fo Vigorous as in the New and Full; nor the Motion of the Waters fo'quick: (as is evident by dayly experience) whence it comes to pafs that in the open Sea, and in Ports upon the Sea-Coaft, as this of Dublin, the high Watef time falls out later, than when the motion is more rapid in the New and Full; but on the

## $[193]$ :

contrary, in Rivers, at any conliderable diftance from the Sea, the refiftance of the weight of the frefh Water, which is kept fufpended during the time of the Flood, is longer overcome by the more potent Impetus in the New and Full, than by the weaker in the Quadratures: and from hence this difference hould be ftill more and more confiderable as the Pore is farther removed from the Sea.

A Demonfration of the Velocity wherewith the Air rufbes into an Exbauffed Reciiver, lately produced before the R. Society by Dr. D. Papin. Reg. Soc. S.

$T$Here being feveral Occafions wherein it would be ufeful to know the Velocity of the Air, according to the feveral preffures that may drive it; The Royal Academy at Paris hath attempted by fome Tryals to attain that Knowledg, and by means of a Bladder, which they did fometimes fill up with Water, and fometimes with Air; they found that (although the Weight to fqueeze out thefe Liquors, and the hole to let them out were the fame) neverthelefs, the Bladder when full of Air, could be empty'd in the 25 th. part of the time that was required to fqueeze out the Water of the fame Bladder: from thence they concluded that the fwiftnefs of the Air is 5 times greater than that of water, when both thefe liquors bare the fame preffure. This Experiment was very well thought on, and might ferue till a better fhould be found out; but thofe Gentlemen could not but know, that this was not Perfect: The Reafon is that the Air yieldeth much, and so the Bladder being fill'd with it, will become pretty flatt, as foon as a confiderable weight is layd upon it. It is plain therefure that the weight bearing upon a large fpace doth not prefs euery part with the fame force as it would do, if the Bladder did for a while reman Plump, as it doth when full $f$ water : moreouer, the water it felf being heauy in the Bladler, makes fome preffure: fo

## $[194]$

that it appears, that the preffure in this experiment was not quite fo great vpon the Air as vpon the water: I haue therefore thought of another way, which I think better, to come to the fand Knowledge; and I do humbly fubmit it to the R. Society.

My way is grounded -upon this Hydreftatical Principle. that liquars hawe a flrengstb to afcend as ,igh as their fource is;' and aithough the reliftence of the Medium doth always hinder Iect sd d'cau in the open Air from reaching quire fo high, neuerthelefs the liquor at its firtt fpouting out, hath the neculfary fwiftnefs to come to that height.

## Propofition. I.

From this Principle may eafily be deduced this Propofition, that of two differing liquor's driven by the fame preffure, that which is in /pecie lighter muft afcend higher than that which is heauier, and their heigths will be reciprocally in the fame reafon as their feecifick gravity's are. Thus, Quickfiluer being 13 times and a half heauier than water, bears as much preffure when its §pring is one foot aboue the fpout hole, as water duth whēn it's lpring is 33 foot and a haif high, and the heigth to which Mercury fhall alcend will be 3 times and 2 half leffer than the heigth to which water fhall be driven by thofe equall preffures.

## Propcfition. II.

- From the foregoing Propofition another may cafily be deduced, $\tau i z, 7$ liat of differing liquors bareing the fame pref fure thofe that are lighter in Jpecie muft acquire a greater fwiftnefs, and thein differing velocity's are to one another as the routs of the fpeeifick Grauity's of the fayd liquor's

For we haue feen $/$ rop. 1. that the heigth's to be attain'd are in the fame reafon as the fpecifick grauity'si Now Gadibaus, $H_{y}$ s suius and others haue demonftiated that the Velo-

## [ 195 ]

city's of bodies are to one another as the fquare roots of th heigths to which they may afcend: and so in this occafion they are alfo as the roots of the fpecifick Grauity's.

If therefore we would know what is the Velocity of Air being driven by any degree of preffure whatfocuer, we ought but to find what would be the velocity of water vnder the fame pieffurt: and then take the fquare roots of the fpecifick grauitys of thefe two liquor's becaufe as much as the fquare root of the fipecifick Gravity of Water, doth exceed the fquare Root of the Ipecifick Gravity of Air ; fomuch in Proportion will the vel-city of A rexceed the velocity of water. For cxample, when I would compute what fhould be the fwiftnefs of a bullet fhott by the Pneumatick Engine, as hath been defribed in Philofopjical Tranfaction, Num. 199. 1 hhould firft compute what was the velocity of the Air it felf that droue the Bullet: I did therefore take notice that in this occafion the Air bares a preffue much about the fame as that of water when it's fring is 32 foot high: now fuch water would fpout out with a lufficient velocity to afcend 32 foot perpendicular, and therefore, according to the rules and obferuation of Galilems, Halley and others, fuch water hath the velocity of 45 foot in a fecond. It remains therefore but to know the proportion of the grauity of Air to shat of Water : and we have found it not to be always the fame; becaufe the heigth, the heat, and the moifture of the Atmofphere are variable : neuerthelefs we may fay in general that the reafon between the fpecifick grauitys of water and Air is much about 840 to $\mathbf{3}$. Taking then their fquare roots, as I haue fayd aboue, which roots are 29 and 1 , we may conclude that the velocity of Air mult exceed that of water by 29 imes: and fo multiplying 45 , the velocity of water, by 29 , we fhall find that the velocity of the Ais driven by the whole preffure of the Atmofphere, is about $13-5$ foot in a fecond.

## [199]

An Extract of a Letter from Mr. J, Flamfteed Afts, Reg. and Reg. Soc. S. giving bis calculation of the Eclipfes of 7 fupiters Satellites for the Year 1687 . Togather with a Table of the Parallaxes of the Orb, and an Epbemeris of 7 uppiters Geocentric Place for the fame Tear, to which is added an Obfervation of the Eclipfe of the Moon, Novemb. 30, 1685 made at Lisbon, and Mr. Flamfted's oovn Obfervation of the Eclipfe of Jupiter by the Moon on March 31 th. paft.

IGive you here a Catalogue of all the Eclipfes of $\psi s \mathrm{sa}-$ tellites, for the enfueing year 1687 . and togather with it 2 Tables, one of his Geocentrick places, the other of the Pad rallaxes of his Orbit to every day in the faid Year. This is the $4 t$. Catalogue Thavegot publifhed in the Tranfactions. With the 1 1to printed Dec. 1683 . Num: 154. I fhewed their ufes, and how by their help the difference of Longitude, bet wixt any two places on the Earth, where they fhould be obferved, might bedetermined. And I Taught a Mêthod of finding out within what fpacejon our Globe any of then would be obfervable: This was done in Englifh for the ufe of our Country-men. Next Year in Deceriber 1684. I repeated thofe Directions in Latin Numbi 65. pag. 760 . for the benefit of Forreignersial In the two Tranfactions of Detem. 85. Num. I77 and an8, with the Catalogue of Eclipfes $\mathbf{I}$ defcribed a (math Intrument, and fhewed by the help of it, ${ }^{2}$ thefaid Catalogue, and the Tables of 2 Geocentrick places end Parallexes, thie appearances of the Satellits/at any thme with in the compars of that Yean mightbe difoovered and des lineated; if theirefore the; Readeridefire to be informed concerning the ufe of the Catalogue and Tables Hierewith print-

## $[197]$

ed, he may repair to the above-mentioned Tranfactions. I fhall only add.

That whereas for the two Years laft paft, the 4 th. Sateltit has not been Eclipfed. As this Year enters, it begins to fall into us fhadow, and that, its Eelipfes will again be obfervable for the 4 next Yeares. The firlt that happens $F_{e} b$. 2. In the Morning will be well worth the attention of the Curious; in that its duration is the fhorteft of any that fullow it this Year; both the Ingreffe and Emerfion are Vifible with us, as are all thofe in the Catalogue which are alike marked with an Afterifck (*) which if they fhall be exactly obferued, may ferue to determine the place of the Node of the orbit of $\psi s$ Sateliits; and its Inclination to the orbit of $\psi$, by compareing the obferuation either with fuch as wee haue already obtained, or as may be made hereafter.
In my laft obreruations, the Eclipfes of the $2 d$ and $3 d$ Satellit have anticipatea my Calculations fomething more than I expected in fo fhort a time, of which I thought it conuenient to acquaint the Reader, that hee may attend them one quarter of an hour earlyer than the times noted in the Catalogue. In 2 or 3 years more wee may expect opportunitys of obferuations, which will afford us fuch a correction for the error, that the Numbers fhall fail no more in them, than in the $1 \beta$. whofe Eclipfes haue not yet differed aboue 3 minutes from the Calculation.
I giue you further herewith an obferuation of the Lunar Eclipfe Nouember 30, 1885. made at Lisbon by my kind Friend Mr. Henry lacoss: and another of my own of the Occultation of 4 by the Moon, March the $3^{\text {th }}$, this Year 1686: of which you haue publifhed feperall forreign obferuations already.

'Tab.





quente 1687 vifibilium, tempora Ingreffuum illorum in $\psi^{s}$ Umlam, \& ab ea Emerfionum fub Meridiano Grenovicano apparentia chibens, Juxta Calculum Fo. Flamftedii Math. Reg. \& R S. S.


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





# Defectus Lunaris Wliffippona a Do. Jacobeo Obfer* vatus Nov: 30.1686. 

Initivn
Imanerfio
Emerfio
Finis
H. M.

802
906
1050
If 57

Fovis a Luna tectio Obfervationes Grenovici habita a Jo. Flamfteedio Math. Reg. Martii 31. 1686.

Temp. corr
per boriof cil
H. M. S.

Marsii 31 9.32. 30 廿s limbur tangobat limbinn Lume lucidum,
ริ Marcotidis diametirum a termino sjw barco.
33.42 4 Totus tectius erat Quantum per vapores borizontis of undulationen limbi walde turhidam, licuit conjicerc.
10. 11.12 Differentia declinationum limis Luma vere Auftrini \& Loci IngeefJus, Twbo ped. 8 or Micrometro $1 \$ 46=12$ 1 1 . 42 fec. 30.30 Fovis particula enserferat, a regione Bo realis limpi Meotidio .
31.36 Fupiter totus liver.
35. 50. Diferentia declinati oum centri Fowis, © limbi Luna Aufrimi $346=28$ m. 15 ).
41.40 Repot $35^{\circ} 529$ m. 28 f
44.00 Lame Dinmeter $3,006=32 m .07$ )
45.44 Repet: $3915=32 \mathrm{~m} .11 \mathrm{f}$.

## Accounts of Books. The Natural Hifory of Staffordhire.

 By Robert Plott L. L. D. Kecper of the Afhmolean Mufxum and Profeffor of Chymittry in the $V_{\text {niver- }}$ fity of Oxford.THere is very little need to take notice of the Method of this Work fince it is drawn up according to the pattern laid down in the Natural Hifory of Oxford-Bire written fome yeares fince by our Author. He begins with the Heavens and Air, giving account of thofe unufiall Meteors, which have fometimes appeared in this Countrey; fuch are the Solar Rain-bow obferved by Mr. Wolverftan Dec. 4. 1680. Which appeared at firlt about the Azimuth of Two, two houres before the Sun, and thro the thin diaphanous clouds was miftaken for another fun, but foon after exhibited the Ufual colour of a folar Rainbow: as alfo feveral Lunar Iris's, and very fevere Winter 'Tempelts. Here he takes an occafion to deduce the caufe of the circles in Graffe called commonly Fairy Watkes, which he doth not think do owe their caufe to the Field Conventicles of Demons and Witches nor to the fubterraneous Courfes of Moles and Ants, but rather to percuifions made by Lightnings, which breaking out of the clouds in Concave Cones have made Circles on the ground conterminous to the Rims of thore Cones, and according as the Cones breakeing forth from the clouds have had a greater or leffer inclination to the Fhorixon, and to have either touched with all the Bafe, or only dipt with the Lower part, have made Circles, or Quadrants, or Sextants \&c. Here likewife he relates the wonderfull Raines, which have brought Frogs, whofe Genetion cannot (fayshe) be referred to the Ordinary wioy by feed Ciap. I.

He then comes to treat of Weters and the Texture of Ambient Air, the Confervatory of all the Exhalations, which are perpetually forced by the funs heat out of the Earth ; as C c
alfo

## $[208]$

alfo of the wonderfull Intermittent Springs obferved up and down in this country, which leads him to the Examination of the caufes of the Rife of Springs and Wells, of which the World has had a Relation fome time fince, when we gave an Account of Dr. Plott's Latine Book De Origine Fontium, the Reafons whereof are here again at large repeated in Englifh. Afterwards he particularly enumerates what Fountaines are Medicinal, as thofe at Willowbridge; what abound in Salt, as the Brine Pitts at Wefton, which tho' inferiour to thofe in Worcefterbire and Chefbire by reafon of the weakeneffe of the Liquor, yet after a tedious proceffe to Cryftalife the Salt, become very ufeful to the whole Countrey; and laftly, what are for Colour, or Taft, or any other Accident, remarkable, as a Well between Over and Nethcr Tene, which in Autumn fends up a great Quantity of fmall Bones of Frogs, which creeping into thofe Caverns, whence the Springs come, are killed by the cold; and the acidity of the water corroding the flefh, thofe Bones are driven up and carried away by the ftreame of the Fountain. Cap. II.

From Waters our Author paffes to Earths and Minerals: Of the firft of which the Number is very great, efpecially of fine Clays for Pottery-Ware and Bricks: But the CoaleWorkes with the Iron-Mines moft deferve our confideration. The Coale-Mines are very accurately defcribed, both as to their Inclining Pofition, or Dipping under the furface of the Earth, and as to their feveral differences in goodnefs and ufefulnefs, fuch are thofe ofCannal, with which theChoire of Litchfield Cathedral is paved; thofe of Wednesbury moft fit for Culinary Fires, \&c. Upon this occafion the Nature of Damps is examined, which are refolved into the ftagnation of the Air contained within the Rifts of the Coale, that are emptied of the running Water (which in VirginMines always fills the Rifts, and keeps them from this ftagnating Air) by the Soughes made for that purpofe; or which Cometimes are occafioned by working fo deep, as that thereby the Intervention of the upper Air is wholly ftoppt. Cap. III.

Before we come to the Iron-ftones, our Author confiders thofe great Quarries of Marble, Alabafter, and other ufefull frones difpersed up and down the Country; all which he fuppofes to be made by a Petrification upon the meeting of the folutions of Aced and Alkalifate falts, which compound transparent, opake, and femiopake ftones, as they are mixed with fulphures or Earths of different fineffes. He confiders Pebles and Fireftones by themfelves, as wherein the Sulphur is predominant; and therefore are they eafely Calcinable. When he comes to the Iron-workes he explaines the way how their Fornaces are built, how they melt their Iron-ftone, how the goodnefs is difcernable, and the like. As for the Copper-mines tried by Si. Rich: Fleetwood, they would turn to no Account.

Other ftones have been fometimes found in Staffordbire, which have had a determinate Form, as the Afteria of a Pentagonall furface, with Rayes iffuing from the Center, and to each angular point. Thele are either fuch as refemble Animals or fome of their Parts: fo one was found like a Pullets heart, others like molt Teftaceous Fifhes, which have been long theught to be petrityed fhells, tho fome Naturalifts are perfwaded to the contrary; or elfe fuch as are like Vegetables, whereof in mineral ftones and Oares there is great Variety. Gold Oare hath refembled Branches of Trees, and Wormius had a piece of filver Oare exactly like a Vine; which Figures are ordinary in Bohemia as Balbinus informs us, and when he afterwards fpeakes of the Entrochi and Trochite he explaines very curioufly feveral Figures not taken notice of by Mr. Betumont. Cap. 5.

Next he comes to Plants, tho' there he owns little can be added to what Mr. Ray had found in his accurate Catalogue of Engligh Plants, yet he found fome few omitted by him, as a fort of Cup-Mofle with Scarlat Heads, and fome Fungi[ tho the Fungus Phalloides is defcribed, and a Cutt annexed in the 2d. Edit. of Mr. Rayes Catalogue ] together with fome few Trees, which Mr. Ray took for ftrangC c 2 ers

## $[210]$

ers to our foil, as the Firrs, which D. Plott feemes to thinke are Natives here, which he grounds upon the great Numbers that have bin digged up in the Moffes, and can by no means be allowed to have bin under ground ever fince the Flood; but were rather Trees, which being felled and not prefently ufed, gathered and kept in the Rain Water, which in time bred there a Marl, and being buried in earth by thofe frequent Deterrations from the adjoyning Hills, in time were fo far covered, as we now fee them. Some Treeshe finds of wonderfull Grow th in this Countrey, as the Wiche-Elme cutt down in Sr. Harvey Bazgot's Yark, that weighed near ico, Tuns: and that this may not be thought incredible, all the Demenfions are fett dówn with Acteftations of Workmen and of S. Harvey himfelf. Cap. 6.

Under Brutes, our Author comprehends all irrational liueing Creatures amongit birds he takes notice of a Swan with Red Leggs, and a fort of Colymbus or Ducker not defribed by Mr. Wiflug the Pewet-Catching in Norbury Pond, with their way of Living, and their affection to the Family of the Skrymbeers is exactly defcribed. Of Infects he defcribesă water Eruca, a white Earwig and feveral more. He found amongf Fifhes a Mufela Fluviatilis, with yellow fpots not obferved by Naturalits. Speaking of Eels, he opferves many which goe from cne Pond to another in fearch of Pravender, and then fhews by the concurrent fuff frage of Natural Hiltorians, that it is no fuch Arang thing; as is not alfo the finding of Toades in Trees and ftones, whered many intances are produced, which principally (fays our Author) comes from a Toades being enclofed in a narrow Rift in winter, whichafterwards clofing too hard, imprifons them there, without killing them; Toads haveing little blood, and very vifcous juices, require not much per. Piration.In difcourfing of fheep, he folves the Problem why the Teiticles and Horns fe mutuo ponunt ac tollunt, becaufe thofe excrementitious juices which form hair, horns \& wooll are more vigorously thrown out in Males than in Females,

## [2II]

and in thofe when uncaftrated, than when guelt; All a long, many Monfters and Lufus nature are defcribed, and many cutt in Brafle. Cay. 7.

The Next Chap. is of men and women. And firt he fpeakes of a man in Stafford-Gire who married being ic 8 years of Age, and had a child extremly like him; next of a woman who had a Monftrous Birth, with a Bagg filled with Grinder-Teeth, and very hairy: of another woman who was brousht a-bed without Knowing fhe was with child. [This Ur. Plott fayes is a cafe he never before met with, but it may be confirmed by the like inftance of a young Woman, the wife of Philip Barker junr. of Wrentham in the County of Suffolk, who was alfo brought to bed of her fecond child, a lufty Boy, laft Year'without any fufpition of being with child; for about three days or a week before, fhe took Phyfick for a Tympany, which the good Women of her acquaintance perfwaded her fhe was troubled with] Then our Author fpeakes of Famous men born in the County, as Arch Bifhop Sbeldon, Mr. Ajbmole \& c. And afterwards of thofe who are otherwife memorable for odd \& occafional things, as the Boy of BiJon, who counterfeited being bewitched (where our Author takes occafion to differ very materialy from the old Relations ) ; Mary Fofter who recoveringof a Fright, flept 14. days and nights feveral deaf men who could underftand what was faid by the motion of the fpeakers Lips: then he mentions others eminent for Piety, particularly in building Churches, as Mr. Chetwind who built a noble Church at Ingeftre, and others whofe deliverances from dangers are very remarkable, as our Late Dread Sovereign K. Charles the feconds Prefervation by Coll. Lane \& c. Afterwards when he comes to fpeake of the Corporation of Majons he fully confutes the Fabulous Accounts, they give of their Charter Privileges; the rife whereof they date from St. Amphibalus alias S. Albans Cloake: he concludes with a numerous catalogue of men and women, who have lived to an Extraordinary Age. Cap. 8.

## $[212]$

In the next Chap.our Author treates of the mof curious things relating to Arts in this County, fuch as in WaterWorkes is the Jack turned by water falling vpon a Wheel after the manner of an Overfhott Mill.So in Agriculture he examines all forts of Compoft, wherewith they emprove their Ground, as Marles, Lime-ftones, Effe or Turf burnt to Afhes, and Turfes and Dung. He fhewes what Land requires any Particular Compoft; and what increafe, when well manured, they ufually produce. From Husbandry he paffes to Buildings, where he defcribes the Cathedral at Litchfield, and upon account of its declination from Eaft. towards N. he difcourfes of the reafons that enduced Pagans and Cbriftians to build their Temples E.\&W. He curioully defcribes the ftairecafe to the fteeple of the Coliegiate-Church at Tamworth, which is made with two Cochlea's winding one within the other round the fame Cylinder, fo that one may afcend in one Cochlea, and ariother in the other, unfeen by each other: One Cocblea opening to the Church-yard and the other in the Church. He then tells of thofe carious Iron Works, Locks, Boxes, Spurs \& c. for which Wolverhankpton in particular, and this whole County in General is fo much admired by ftrangers. Amongft other things he defrribesthat remarkable Bridle for Scolds ufed in fome parts of the County, which put into their mouths hinders their fpeakeing, and effectually fhames them, whilf they are carryed over the whole Town where they live, thus Gagged. Cap. 9 -

The Antiquities in this County are either Britijb, Roman, Saxon, Danihb orNorman. Near Wrottefley there is a Ditch 4 Miles in Circumference, crofs which there are to be feen Remainders of Streets, and here and there Foundations that feem to be of Britijb Original; as alfo thofe Inftruments of Stone like Darts and Arrow Heads, ufed by the Britans, which are here fometimes feen up and down. The Principal Roman Monuments are,W Watling-jfreet, and Icknild-flreet, which crofs each other in this County, on which were the Stages where

## $[213]$

they lodged their Troops; as Eto $\int$ etum, now Wall, and Pennocrafium now Stretton. In the Saxon time we find Litchfield raifed by Wlpbere K. of the Mercians to the Honour of St. Ciadda; Wlpbere Caftle at Berry-bank has yet fome Ruines which are vifible: Tamworth was K. Offa's Seat ; and Wolverhampton, or Wulpbrunes-Hampton, called fo from Wulphrune Wife to Althelm Duke of Northampton in K. Edgar's Reign, was by her endo wed with a Deanary and Prebends; and feveral Loms or fepulchral Hillocks, raifed by the Saxons are to be feen up and down, Marks of thofe Bloody Engagements between them and the Danes. There are no Danilb Antiquity, more remarkable than their wooden Almanacks, ftill in uie in Denmark and Stafforafbire; one of which ufed in this County, our Author accur ately defcribes, and explains its deviations from thofe now made in Norvey. Laftly he clears many Cuftoms and Tenures brought in by the Normans, as the Chufing the King of the Minftrels, and the Bullrunning (inftituted by Foin of Gaint) at Tulbury, the claiming of the Gammon of Bacon at Whitchnover, and feveral others. Cap. X.

## 2.SCIOTERICUM TELESCOPICUM or a new Con-

 trivance of adapting a Telefcope to a Horizontall Diall, for obferving the moment of Time by Day or Night. by Will: Molineux Efq. R.S.S. Dublin . 1686 in $4^{t o}$.THE Author dividing his Book into XI Chapters, he firft declares the Ufe \& Advantage of this new Contrivance, which he conceives fo great, that fince the firft mention of Dials, he hath not heard of a more plain and eafy addition for their advancement ; efpecially, when the Obfervation of the exact moment of time is fo neceffary, that neither Geograpiv, Navigation, or Aftronomy can be brought to perfection, nor the Longitude or the Truth of Aftronomical

Tables.

## $214]$

Tables fully difcovered. The Methods which commonly are ufed for obferving the Moment of Time, are either by Dials, or by taking the Suns Altitude by day, or that of Stars by night ; or by obferving the Altitude and Azimuth of the Sun or Stars ; or by the Tranjits of the Sun or Stars through the Meridian, or the comeing of fome Circumpolar Sars in the fame Vertical with the Pole-Star. All which Methods are attended with many inconveniences and difficulties, the which our Author believeth his Way will avoid; at leaft the moft material ones, which commonly arife in the Practife.For whereas Dials mutt be verylarge, if there fhall be any divifion for Minutes made difcernable, fo the uncertainty of the Shadow caft from a large Gnomon renders them ufelefs for nicenefs, when alfo their fervice is only by Day, and when the Sun fhineth. All which hindrances are taken off by this new contrivance of our Author, where alfo there is no need of any Calculation of Oblique Spherical Triangles, all being done by a plain and fimple Obfervation, and by the Addition and Subiltraction of two or three Chall Numbers; and that to fuch exactnef, that not a quarter of a Minute, or 15 Seconds fhall be wanting,performable alfo both by day or night. Defcribing therefore his Inftrument in the $3 d$. Chap. he tells, that the Contrivance confifteth in making a very large Horizontal Dial, adapted to the Latitude of the place where the Obfervation is to be made,capable of receiving divifions into minutes, and parts of a minute, fitted with a large, ftrong, and double Gnomon: He calls that a double Gnomon, that cafts the Morning Shadow from its Weftern Edge, and the after-noon Shadow from its Eaftern Edge,and the Noon-fladow by its thicknefs. This Dial is to be furnifhed with two pair of Sights.or Rulers, one is to forve in the Morning,or for Stars on the Eaftern fide of the Meristian, the other to ferve in the Afternoon, or for Stars on the Weftern fide of the Meridian. Each of thefe confilts of two moveable Ruters; One lie calls the Horizontal Ruler, the of ther the Gmomonick, or Stile-Ruler. Thefe two Rulers muft

## $[215]$

be fo adapted that their two Edges, which are next to the Gnomon, may be perpetually in the fame Plane with their correfpondent edge of the Gnmon. On the Stile-Ruler he puts Telefopicall Sights, with Croff-hairs in their due place. This Inftrument is reprefented by a large Scheme annexed to the end of the Book. How every part of this Inftrument mult be framed, and the Stile-Nut and Ruler-Joynt compofed, is at large defcribed in the 4 th. Chapter. As for Telefcopick Sights, and their true adjuiting; he tells Chap. 5. how to pur in the Menfurator, or to place the interfection of the Crofs-Hairs, fo that they may ftand neither too high nor too low, nor too much to the right or left Hand, which elfe would produce Errors in the Azimuths and Altitudes: alfo for making the Line of Sight or Collimation parallel to the fides of the Ruler, he applyech two Pins, which will ferve in the fame manner for finding the Declination of the Magnet, whereas the Ways propofed by Mr. Hautev ille and Sturmius, feem to be defective. The way of fetting the Dial to his true Pofition, is explained in the $6 t h$. Chap. where he tells that two things are requifite, firf that the plain of the Dial be in an exact Horizontal Pofture, by accurate Levels, and fecondly, that the Meridian, or 12 a Clock-Line, be exactly towards South and North; for that being 12 minutes of a Degree ill placed, will make a Dial err a minute of Time, in the Latitude of 53 Degrees: and for this Reafon he fheweth Chap. 7. how to find the Meridian Line by his Inftrument, in taking feveral equal Altitudes of the Sun in the fore and afternoon, and having drawn the Azimuths thereto, the Bifection of the included Angles, will hew the true Meridian Line, which alfo may be found after the fame manner at night by the Stars. But coming finally in the $8 t h$. Chap. to the manner of obferving the Time, after the Dial is juftly levelled and ftated; he fhews it to be done by looking at the Sun through the Telefcopick or Stile Ruler, and bringing the Menfurator upon the Suas Center; and then the Horizontal Ruler fhall cut the hour, minute, and part of a mi-

## $[216]$

nute moft exactly in the Dial. By the fame Telefcopical Sight, the motion of the Sun will be perceived fo quick and nice, that two beats of a Secord-Pendulum may be determined, and the time of the day or night to 3,5 , or; Seconds dincerned. The way of ufing this Dial on the Stars by Night is much the fame, only that for thefe are requifite certain Tables (put at the end of the Book) of the Sun and Stars temporary Right-Afcenfions: For in looking at the Star through the Telefcepick-Ruler, the Horizontal-Ruler cuts the Stars horary diftance from the Meridian, to which adding the Stars Right Afcenfion, and from the fum fubitracting the Suns Right Afcenfion, the remainder gives the Hour, Minute, and Second of the Night ; and by this Method inverted, the Author thinketh the Right Afcenfion of any Star may be eafily had. The way to calculate the Suns and Stars Aicenfions, he declareth in the gith. Chap. and alfo Chap io, the Equation of Time, upon fuppofition of the equability of the Earths Revolutions ; he fhows alfo by a Calculus how to correct the length of the Pendulum of a Clock, and giveth in the $11 t b$.and laft Chap. Tables of the Circumpolar Stars their Calculation and Ufes.

## LONDON,

Printed by fofeph Streater, and are to be fold by Samuel Smith, at the Princes Arms in St.' Paul Church Yard.





# PHILOSOOPHICAL TRANSACTIONS. 

For the Mor ths of November and December 1686.

## T THECONTENTS.

 1). Table Gewing the time of High Water on the Coafts and in the ports of France, on the days of the New or Full Moon, taken from the French Ephemerides called La Connoiffance des Temps. for the Year 1687. (2.) The Verbal Procefs upon the Difcovery of an Antient Sepulchre, found in the Village of Cocherel upon the River Eure in France. (3.) As Extract of a Letter written from Rome, dated the $\mathbf{1} 6$ th. of November laft, to Sigr. Sarotti, concerning difcovery made uf= on the late Inwndation of the Tevere: Tranlated out of the Italian. (4) A Relation of a Petrified Glandula Pinealis lately found in the diffection of a Brain.Communicated by Sr: Edmond King Knt. M. D. and Reg.Soc. S.( 5 )A Correct Tide-Table, 及bewing the true times of the High-Waters at London-Bridg, to every Day in the Year 1687. By J. Flamfteed Math. R. and R.S. S. (6) Eclipfis Lunæ Obfervata Dublinii, Novembris 19 no. 1686, a Dno. Gulielmo Molineux Reg. Soc. S. \& ab eodem Regix Societati communicata. (7) A further Affertion of the propofitions concerning the Magnitude, boc. of London, contained in two $E /$ Says in Politicall Aritbmetick, mentioned in Philos. Tranfact. Numb.183. Together witb a Vindication of the faid Effays from the Objections of Jome Learned perfons of the French Nation, by Sr. William Petty Knt. R.S.S. (8) A Defcription of an Invention whereby the Divifions of the Barometer may be enlarged in any given proportion: Produced before the R. Society by Mr. Robert Hook R. S. Soc. and Prof. Geom. Grefh. Accounts of Books. (I ) Le grand \& fameux Probleme de la Quadrature du Cerole, refolu Geometriquement, par le Cercle \& la ligne droite. par Monfr. Mallement de Meffange. A Paris $12{ }^{\circ}$. 1686. With a Refutation of the Same by Mr. D. Cluverius R. Soc. Soc. (II) Voiage de Siam, des Peres Jefuites envoyez par le Roy aux Indes \& a la Chine; a Paris. 4to. 1686. With a Remark thereon concerning the Longitude of the Cape of Good Hope.
## [220]

A Table Sberoing the time of High $W$ ater on the Coafts, and in the Ports of France, upon the day of the New and Full Moon. Taken from the French Ephemerides called La Connoiffance des Temps for the Year 1687.

On the Coaft of Gafony and Guienne.
At 3h. at the Mouth of Garonne, and the Ifle of Ree. At $3 \frac{1}{2} b$. at St. Fohn de Luz, at Bayonne, and Memijanv.
At $3^{\frac{3}{4} h}$. at Royan, Brouage and Rochelle.
At 3 h. on the Coaft of Poitou.
At $3 \frac{1}{4} b$. at Ollome and Beauvoir.
On the Coaft of Britany.
At $I \frac{1}{2} b$. at Bell Ifle.
At $3 h$. at the mouth of the Layre, at Garaude, Morbihan, Blavet, and Concarneau.

At $3 \frac{3}{4} h$. at Aperars, Vannes, and Aaray.
At $2 \frac{1}{4} b$. at Apenmark, Audierne, ohe Race of Fontenay, and Le Conquet.

At $2 \frac{3}{4}$ h. at Breff, and at Cape de Four.
At 4b. at St. Paul de Leon.
At $4 \frac{1}{2}$ b. at Port Blanc.
At 6 b. at St. Malo and Cancale.
On the Coaft of Normandy.
At 7 h . at Granville, and Barneville:
At 8h. at Cherbourg and Barfeur.
At 9 h . at Caen and Honfleur, at the Mouth of the Seine,and at Haveé de Grace.

At $9 \frac{3}{4}$. at $\mathrm{Fef}_{\text {far }}$ and St, Yaleri.
At $10 \frac{1}{2} b$. at Rowen, Dieppe, and Treport.
On the Coan of Picardie.
At inh. at the Mouthof the Somme, at Eftaple, Boulogne, and Ambletenfe.

At $11 b$. at Calais.
At 12b, at Dwikerk, Newpert and Offerd.

## [221]

The Verbal Procefs wen the Difcovery of an Antient Sepulchre, In the Village of Cocherel upon the River Eure in France.

IN the yeare 1685 , the IIth. day of Iuly; Wee Olivier Eftienne an Advocate in Parliament, fubdelegated by Monseigneur de Marillac, Concellour of State in ordinary, having the conduct of the workes that are making upon the River of Eure below the Village of Paffy, Doe Certio fye to all prefent and to come, that upon the petition of Mefire Robert, Prevoft of Cocherel, Knight and Lord of the Mannour of the upper and lower Cocherel, wee have this day come to the fayd town of Cocherel, having with us feveral Witneffes, and from thence to a piece of Land of the fayd Mannour of upper Cocherel called les Hiutberges, upon the top of a rifing Ground expofed on all fides to the Sunn, a little declining from South to Weft. Where being come the fayd Lord of the Mannour of Cocherel did remonftrate unto us, that having occafion for a confiderable quantity of Free-Stone for the reedification of the gate or Sluice for boates of the Mills of Cocherel, and which hee is to repaire by the Kings order, hee had for that purpofe caufed two great Sones, which appeared in this place above gound onely as two Limits or Bounds, the one about a foot and the other about 8 or 9 Inches to be further uncovered, and they had been found to bee 6 foot heigh, and about a foot and a half thick; marked in the figure of the Sepulchre A and B; the bredth of the one marked $A$ of three foot, and the other marked B of two foot and a half, fet end ways by one another; and they had further obferved in making this difcovery, that it was an Antient Sepulchre, fhut only on three fides, viz.at one end at the head by the twoStones already mentioned; on the right fide by a Stone placed edg-ways upon its thicknefs of about 14 Inches, and being above 5

## $[222]$

foot and a half long, and about 3 foot broad, touching in a Right Angle the Stone marked B at the head; and at the feet another Stone was fet, it was marked D , of the fame thicknefs of the precedent, and about 4 foot Iquare; all thefe Stones were cemented together with Morter made of the Chalk or Marle taken out of the fame hole, and mingled with little Stỏnes or Gravel.

That in this Sepulchre were found the Bones of about twenty Bodies of Men, of the ordinary Stature, between 5 foot and a half, and 6 foot, except two Youths of about 15 or 16 Years old ; all thefe Boties lay extended North and South, the Arms along the Bodies, and the Heads all placed along the two Stones A. B. In the Right Angle there were two Bodies feparated from two others by the Stone E, of about a foot thick, 4 foot broad, and 5 foot and a half long, that lay in the manner of a Tomb Stone upon the two Bodies underneath. All thefe heads had very fair found Teeth in them, and the Cranium and other Bones of the Head, were much ftronger and thicker than thofe of ordinary Heads; which argues them to have been of ftrong well conftitution'd Men; amongft them all there was not any Womans Head.

In proceeding ftill to examine the Sepulchre, we did obferve, that at the fame diftance from the Superficies of the Earth, and from thofe Bodies thus buried, there was three little earthen Pots, of about 4 Inches Diameter, and between 4 and 5 Inches high, of a black Earth as foft as Wax ; which could not be feparated from the other Earth without breaking them, and the peices being come into the open Air turn'd of a greyifh Colour and grew hard: Thefe Pots were full of Wood Coals and Alhes, which were not much examined.

All thefe large Stones of the Sepulchre were rough, and had not been cut, but. feem'd to have been fetcht from a Neighbouring Quarry, which is about 400 foot off, upon the fame Hill.

## [223]

We obferved befides, that in the place where were laid the two Heads of the Bodies, that lay upon the Tomb-Stone E there were found two Stones: The one whereof was about. 6 Inches long, and fome 15 Lines broad in its broadeft place, and about 4 Lines thick; fram'd like the head of a Pike, very fharp and cutting at both ends and on the fides; it was a yellow Flint, of which the belt Fire-lock Stones are made, being almoft as hard as an Agat. The other Stone, which was likewife under one of thefe Heads, was thap'd like the head of an Axe, about 4 Inches long, and 3 Inches broad, having a hole at the narroweft end, and about 6 Lines thick, very harp and of a greenifh Stone, fpotted with white foots as hard as Agat : the French Lapidaries call it Pierre de Fade, or the Nephretick Stone.

Under the two Heads which were under the Tomb-Stone $E$, there were alfo found two other Stones; the one much of the fame Nature with that firft defcribed, but fomething longer, and the fharp end a little dull'd. The other was likewife in the fhape of an Axe Head, very fharp and cutting, of about 3 Inches long and 2 and a half broad, and 6 Lines thick, with a hole in it at the narrow end: The Stone was of a dark green Colour, which the Lapidaries call, Oriental Serpentine.

On the left fide of the Sepulchre which was open, there were fixteen Bodies in the fame Situation as the firft, placed North and South, their Heads along the great Stone A, and the Arms extended along the Bodies, the Bones all entire, though they appeared very Antient, and after two Days lying in the Air fell all to Duit.

All the Bones of thefe heads, as has been faid before, were very thick, there was one that had been pierced by fome blow, and Nature had repaired the Wound; within, the hole was round as having been made by fonte fharp round Weapon, which argued likewife the wounded to have been a Souldier. Under every one of thefe heads, there was a little Stone: Two were round, one of a reddifh colour, of about Ee 2

## [224]

an inch thick, having a hole at each end, which lefiened and grew narrower towards the middle. Another of a Chefnut colour and about the bignefs of a Chefnut, made in the fhape of a Coat-button, with a hole clean through it, but roughly polifhed and hard, feeming on one fide to have fuffered by the fire.

There were likewife two other little Stores, which according to probability were under the Heads of the young Bodies; whereof one was about two inches long and eight lines broad and $t$ wo lines thick, pretty fharp at the broader end, and having a hole at the narrow end: it is thought to be of the fame Pierre de Fade,green and white,but tis nothing neer fo hard as the firtl.

The other Stone was about 17 lines long, and 8 broad, two lines thick, fomewhat fharp at the broad end, and having two holes at the narrow end, the one bigger than the other: tis thought to be of a white Marble or Alabafter.

There were moreover found under thefe. Heads three Stones, whereof two were of a grey Pible, fuch as we find by the Sea fide, fhaped like Axes Heads, fharp and polifhed, about four or five inches long and four broad at the broadeft end, about an inch and a half at the narroweft, and in the middle about an inch thick. Thefe Stones were by their narrow end to be put into a piece of Staggs Horn fitted to receive them, as appeared by feveral pieces found in this Sepulcher, which had an oval hollow at the end to receive one of thefe Stones, thefe pieces were about fix inches long, and had a hole at the other end, by which they might be faftened to a longer ftick.

The Third Stone was of the fhape of the precedent, but of a black Pible like a Flint, of which this Country is very full; and it was befides remark'd that the pieces of Staggs Horn were worn at the end, and polifhed upon fome Stone, but not cut with Iron.

Under all the other Heads there were ten little Stones iike black flint, one under each Head, cut all in the fame fhape

$$
[325] .
$$

fhape, fmooth on one fide and fharp on the other; tis thought they might ufe them as Knives.

There was likewife found in the Came place under one of the Heads a Stone, which within was of black flint, having the outfide of a white fubftance, as that fort of Stone ufes to be, this had two Eminences iike Teeth, which we took to be Natural, and not Artificial. All thefe Stones thus placed under their heads hewed that they had them in great Efteem.

Amongft thefe dead Bodies has been alfo found fome Bones fharpened, to put at the end of a Stick, or at the end of an Arrow ; one was of the fmaller Bone of a Horfes Legg, and the other was made of the fharp end of the Andouilleres of a Staggs Horn.

Amongtt all thefe Stones there has been found no fort of Infcription, Sculpture or Character either in rilievo or otherwife, which might oblige us to think that thefe Men had any knowledge of Chriftianity; but rather that they had fome Idolatrous Superfition, as thefe Stones feemed to Indicate. Wherefore we thought fit to declare to the faid Lord of the Mannour of Cocherel, that he might without Scruple ufe thefe Stones for what ufe he thought fit.

Since the Expedition of the prefent verbal procefs, there having been further digging on the left fide of this Sepulcher, it has been difcovered that the bottom of the Sepulcher was raifed, and not fo deep by a foot and a half as that part where the Bodes were buryed. And it is perceivable that in this place feveral Bodies have been burnt, whofe Afhes and, burnt Bones have been thrown confufedly into this hole: and 'tis obfervable that all along the Sepulcher, there is a veine of Coales and Afhes, which runns about two foot below the fuperficies of the Earth, and all thefe Afhes, and Bones are under this Bedd of Coales and Afhes which are fo falt and, ungent that they make one fneeze; and when thefe Bones are handled they produce a tingling in ones fingersends, as if one had handled the fharpett Salt-Peter.

## [226]

There has not been time yet to finilh entirely this difcovery by digging into the Earth that has been put into this Sepulcher, which was digged on purpofe in the Chalke to bury thefe Bodies, and likewife the Afhes and Bones of thofe others that were Burnt. So that it feems difficult how to reconcile the two Cerimonies of Burying and Burning. Except we fhould fay that there has been a fight in this place between the Gaules and fome barbarous Nation, who had Invaded them; that the Gaules have burn't their dead, and facrificed to the manes of them their Prifoners taken in Warr, whom they buried with the Cerimonies proper to thofe Barbarians, the thicknefs of whofe Sculls fhew that they went bare-headed; and their Armes fhew that they had not the ufe either of Iron or Brafs to make Arms of, but ufing fuch as Nature afforded firft, as fome Indian Nations do now.

There remains nowto guefs, by thefe Stones and what Antiquities we have left in Hiftory, who thefe Barbarians fhould be, and at what time this Sepulcher might be made.

The Sepulchres and Monuments of the Dead baving been in all times held sasred, and it being lookt upon as a piaculum to remoue or deface them: Mr. de Cocherel having difiovered this but now defcribed, thought it his duty to inquire into the Condition therofof, as not being willing, without Legall Authority, to difturb the Bones of thofe there interred: This was the occafion of this Verbal Procefs, whi h for the Novelty of the thing, was thought fit to be Publibed in the form of Lain, as it was communicated by Mr. Juftell. Reg. Soc. S. who has promeded to procure, if poffi-1 ble, the Figures of the Arms of Stone found in the Said Sepulchre, which infome following Tranfaction ball be given.

## [227]

## An Extract of a Letter TWritten from Rome, dated the

 16 th. of November laft, to Signior Sarotti, concerving a Difcovery made upon the Inundation of the Tevere. Tranflated out of the Italian.IBelieve you have already heard how the Inundation of our River has done feveral confiderable Mifchiefs all about this City, fpoiling feveral fine Houfes, and very large Aqueducts, by breaking down their conducts, \&c. It has in feveral Places, ( efpecially without this City ) by breaking the Ground, difcovered Vaults unknown before,great part of them full of earthen Urnes, and Sepulchers, but of no great confideration, by the Infcriptions they had upon them: Only in a Place within two Miles of this City, where there was fome great antient Ruines, the Water having pierced a ftrong thick Wall which joyned to a great Country Palace, and paffing under the fame, broke out at a corner of an Aqueduct by the faid Houfe, where there was found a fmall Vaulte of an Oval Figure, in which there was a Stone Sepulcher pretty large, with the following Infcription P. M. R. C. cum Uxore, and more, which could not be difcerned; By this fame there was a great earthen Urne fhut up very clofe, which being opened, there came out fuch a ftrong Smoake, that it made the Man that was by it almoft giddy; the Smell was like Bitumen, but being quickly difperfed, they found in the bottom of the faid Urne an earthen Pot made up as a Lamp, full of a Materia Oleofa, which by degrees, as the cold Air got into it, grew hard.

Several perfons fuppofe this to be one of thofe perpetual Lamps that the Antients mention: For my part, I cannot give yet my Iudgment; but after that the bufinefs fhall be better examined, I fhall give you a further Account of it; intending to go my felf to fee it, becaufe the Gentleman in whofe Palace it was found is my good Friend.

## [228]

A Relation of a petrified Glandula Pinealis, lately found in the Diffection of a Brain: Communicated by Sr. Edmond King Knt. M. D. and Reg. Soc. S.

Mr.

ROBERT BACON, Mafter of Arts, of Corpus Chrifti Colledge in Oxford, a Pious Learned Man, above 75 Years of Age, was formerly employed in Tranfcribing and Publifhing the pofthumous Works of Dr. Robert Gell; he had been before a Preacher at Bußleton, near Briftol, and afterwards in the Town of Windfor; he was Sanguine, and chearful in his natural Temper.

About 12 Years fince, his Friends obferved that at his return home from walking, he would bend double to his right Side, infomuch that he would be ready to fall, and has been brought home in Coaches and Sedans, yet was always temperate, and never obferved to be difordered with Drink in his Life.

He would often fay, that he feared Fatuity, or Diftraction, and would pray that God would keep him in his right Mind.

His Appetite to all forts of Food in his latter Years inclined to Canine, and his Thirft very great.

He often complained of pain in his Bowels.
He was always defirous to have his Head rubb'd many times in the day, and this too was of late Years.

His Urine of late Years, and Excrement came away ale ways involuntary at Bed, Board, \&rc. of which he did not feem at all to be fenfible.

Of late he wouldalways hang down his Head in a prone fleeping Pofture; and his Head was very hot: he did fweat very much every night, and wet his Linnen extraordinanily.

And in the whole his rational Faculties feemed to be quite loft, for a great while before he dyed; for he would ufually

## $[229]$

take up Tongues,Fire-fhovel, Brooms (many times alltogether) to walk by, though he had a Staff of his own ; he would alfo hale the Chairs about the Houfe and up the Stairs, and grafp at any thing with his hands; he would often tumble on the ground, and feldome rife without help; he did rather creep along by Walls and Chairs than go, though formerly he went very upright; of late it was 2 or 3 Folks Work to fupport him to his Bed; he would put 2 or 3 Hatts at a time upon his Head like an Antick, he would many times ftrike thofe that attended him, yet at Intervals would fay to his Daughter, Pray thee be reconciled to me, or words to that Effect.

I hearing of thefe things before this Gentleman dyed, defired that I might open his Head, and examine the Brain to fee what I could find or obferve therein extraordinary, that might occafion fo great a Change as was in him fome Years before his Death.

He dyed of a Feaver, November the 4th. 1686, about 6 in the Evening.

## Nov. 6th. 1686.

Upon Diffecting the Body of Mr. Robert Bacon aforefaid; We found in the loweft Venter as followeth.

> The Liver indifferently well coloured and firm.
> The Spleen firm and good, but fhrivill'd.
> The Stomack firm, large, and ftrong.
> The Intertines all well coloured.
> The Oinenctim whole but ill coloured.
> The Pancr as very firm and good.
> The Mefenserie well endigh.
> The right Kidney found, with a few fmall fones.
> The leff Kidney two parts of three wafted, and fome courfe

## $[230]$

courfe Gravel, but both Kidneys very fatt.
Thie Bladder of Gall fill'd with one Stone only, and that no bigger than a long Nutmeg.

The Bladder of Urine found, but fome little courfe Gravel and fmall Stones in it.

The middle Venter being opened; the Lungs were well enough, only by the ftagnation of Blood difcolour'd, and fill'd in feveral places with Icorous Spumy Matter.

The Heart ftrong and Vigorous as I have feen.
The Pericardium very thin, and too tender, and toolittle Water in it ; very little Blood in the Ventricles: No adhefion of his Lungs to his Ribbs.

The Auricies of his Heart perfectly found and ftrong, as of any found Man of 20 Years old ; thofe and the frength of the Mufcles of the Heart I admir'd

## The Head being opened,

The Dura Mater extreamly hard, thin and white, a flender Imboy dery of Veffels.

The Pia Mater all full of feeming turgid Glands, and a great diftention of Lympheducts full of coagulated Lympha.

The fub?ance of the Brain loofe and fhrunk, very white, very little of the cineritious Colour to be feen.

The Corpss Callofum very flaccid more than ordinary.
The whole Body of the Brain was fhrunk about a third part.

Between the two Meninges of the Brain, was near a pint of extravafated Serum, that muft needs opprefs the Brain very much.

The Ventricles of the Brain full of Serum.
The Plexus Cboroides extreamly large, in length as well as breadth and thicknefs.

The Nates and Tefes very fmall, and fhrunk:
The Thalami Nervorum Opticorum plump and fair.

## [231]

The Corpora Striata large and fair, full of large Stric as I have feen.

The Glandula Pinealis firm and fair, well colour'd to look on, of the exact Figure, and ordinary fife : Feeling of it, and finding it harder than ordinary (and talking to a Gentleman then prefent of Des Cartes his Opinion, that it was the Seat of the Soul) I preft it, and found in it a Stone in a film, or rather a petrified Gland in a film ; I took out the Stone, and kept it as a great Raritie ; I do not remember I ever heard of fuch a thing before, I am fure of all the Brains I have diffected (and I may fay I have diffected more than an hundred) I never faw fuch a one.

The Glandula Pituitaria was half wafted, that part that was left was very hard and brittle, had not the Tone of a true Gland, nor fubftance, according to my Obfervations, unlefs of a vitiated Gland.

The Cerebellum feem'd well enough, and all down the Cawda Medulla oblongata.

The other parts of the Brain unmentioned had nothing remarkable, nor have I time now to Philofophife upon the Remarques to be made upon the above-named Obfervations.

Before he becante fo mopifh, he would fay he felt a certain kind of fiercenefs within him, which (it is probable) made him to utter fome kind of Vociforation when he was difpleafed at any thing.

Remedies were applyed to all thefe Diftempers for feveral Years, both inwárd and outward ; outward as in Plaifters, Cerates, opening the Jugular, foc inward as Cardiacks, Cephalicks, and Febrifuges, orc.

Thus having told you Matter of Fact, attefted by his own Relations, (who were Eye Witneffes of it) I leave thefe my Obfervations upon the Diffection of his Body to the Confideration of the more Curious and Inquifitive.

## Edm. King.

 of the High-Waters at London-Bridg to every Day in the Year 1687. By F. Flamficed Math, R. \& R. S. S.
[233]

| April. | May. Inue. |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $7 \square 40$ 2 | 0320002 | 2430 |  |
|  | 4424 | - | 58 |
| ${ }^{8}$ | 2038 | 414.144 | 32 |
| ${ }^{38} 3$ | 5531594 |  | 7 |
| 11 49 | 3044 |  | 66 |
|  | 585 59 <br> 50  | $4{ }^{3} 460$ |  |
| 24 | ${ }_{516}{ }^{6}$ - 497 | 157 | 59 |
|  | 527  <br> 528 46 <br> 40  |  | 12 |
| 1119083 |  | 5810 |  |
| 12102210 | 50103510 | 51102311 |  |
| 13151815 | 43 II 1811 |  | 28 |
| 15 |  | 110 |  |
|  | ${ }_{42}^{58} 9003921$ |  |  |
| $17{ }^{2} 00312$ | 23320 |  | 56 |
| ${ }^{18} 82812$ | ${ }_{0} 013063$ |  |  |
| $\begin{array}{lll}19 & 19 & 183 \\ 20\end{array}$ |  | 64 |  |
| 214 | 55513 | 386 |  |
| 225195 | 4560065 | 337 |  |
| (156 |  | $\begin{array}{lll}311 & 208 \\ 344 & 219\end{array}$ | 51 58 |
| 8309 |  | 34102811 |  |
| 2693910 | 13100910 | 3811036 |  |
|  | 11 c 811 | ${ }_{11}{ }^{1} 108080818$ |  |
| - 180 | - 41 |  |  |
| $1 \quad 131$ | 3512 | $0012$ |  |

$[234]$



## [236]

Eclipfis Land Obfervata Dublinii, Novembris 19 no. 1686. a Dno. Gulielmo Molineux Reg. Soc.S. ©o ab eodem Regie Societati communicata.

Penumbra-notdailis
Initium ob interpofitas Nubes pracife determinare band licuit, ideoq; incertius pond Eclipson incepiffead 9 h .25 m . vel

Umbraid Paludem Marsotim
Palus Mar cotis tecta ${ }^{3}$
Mons Sinai Tegitur
Mons Thambes Tectus
Mons Audus Tegitur
Mons Neptunus Tectus
Umbriad Montem Sipylum
Infula Circinnategitur
Ad Montem Didymum
Mons.Didymus tegitur
Emergit M. Audus
Timbriad paludem Maraotim.
Emergit Maneotis
Ad Montem Silfai
Emergit Sinais
Finis Eclipfis
$\begin{array}{ccc}H & M & S \\ 9 & 15 & 00\end{array}$

| 9 | 2700 |
| :--- | :--- |
| 9 | 38 |

## [237]

Initium ponunt ad 9 h .3 m . be vero ad 9 h . 38 m . Meridianorums babito refpectu.

In ajjonnadis autem Medio, Fine, Quantitate or Duratione Epheme rides Anglice Gallicis Junt accuratiores; Finis enims ab Anglicis ponitur ad 121014 m . a Gallicis vero ad 12h. 29 m . Quantitas ab illis Jupputataf fexs fere Ligitorum; ab his 7 真Dig.

A further Affertion of the Propofitions concerning the Magnitude, \&c. of London, contained in two Effays in Political Arithmetick; mentioned in Philof T ranfact. Numb. 183 ; togetber wiih a Vindication of the faid Effays from the Objections of fome Learned Perfons of the French Nation, by Sr. W. Petry Knt. R.S.S.

1. T could not be expected that an Affertion of Londons being bisger than Paris and Roven, or than Paris and Rome put togetier, and bigge than any City of the World, fhould fcape uncontradicted, and 'tis expected that I (if continuing in that Perfwation) Should make fome Reply to thefe contradictions.
2. I begin with the Ingenious Author of the Novelles de la Repubiaque des Lettres, who faith, that Keyin Per $\int a$ is far bigger than Lonaon; for that in the 6th. Century of Chriftianity (I fuppofe $A x .550$.) It had 1500 , or rather 4 thoufand M ofchees or Mabimetax Temples. To which I reply, that I hope this Objector is but in jeft, for that Mabomet was not borre till about the Year 570, and had no Mofchers till about 5 Years after.
3. The next is the excellent Monfour Auzout from Rome, who is content, that Lowdon, Weftminfter, and Southwarkwith the contiguous Houfing may have as many People as Paris and its Suburbs; and but faintly denyeth, that all the Houfing within the Bills, may have almoft as many People as Paris and Roven, but faith that feveral Parifhes inferted

## $[238]$

into there Bills, are diftant from, and not contiguous with London, and that Grant fo underftood it.
4. To which (as his main, if not only Objection) weanfwer. 1f. That the London Bills appear in Grants Book to have been, fince the Year 163t, as they now are. 2. that about 50 Years fince, 3 or 4 Parifhes formerly diftent, were joyn'd, by interpofed Buildings, to the Bulk of the City, and therefore then inferted into the Bills. 3. That fince 50 Years the whole Buildings being more than double, have perfected that Union, fo as there is no Houfe within the faid Bills, from which one may not call to fome other Houfe. 4. All this is confirm'd by Authority of the King and City, and fo long Cuftom. 5. That there are but three Parifhes under any Colour of this Exception, which are farce a two and fiftieth part of the whole.
5. Upon fight of Monfieur Auzouts large Letter, I made Remarques upon every Paragraph thereof, but fupprefling it (becaufe it lookt like a War againft one with whome I intended none, whereas in truth it was but a reconciling Explication of fome Doubts, and therefore) I have chofen the fhorter and fweeter way of anfwering Monfeur Auzout, as followeth, viz.

## Concerning the Number of People in London, as alfo in Paris, Roven, and Rome, viz.

MOnfeur. Auzout alleageth an authentick? Regifter, that there are 23223 Houfes in Faris, wherein do live above 80 thoufand Families, and therefore fuppofing $3 \frac{1}{2}$ Families to live in every of the faid Houfes one with another; the Number of Families will be 81230 ; and Monfeur Auzout alfo allowing 6Heads to each Family, the utmof Number of People in Paris, according: to Mr , Ausout's Opinion, will betibit jus and

[^0]$\because 0$
The

## [239]

The Medium of the Paris Burials was allowed by Monsieur Auzout to be $1,8 \circ 7$, and that there dyed 3505 unneceffarily out of L'Hotel Den, wherefore deducting the fair lift Number, the neat Standard for Burials at Paris, will be 1638 1, fo as the Number of People there, allowing but $>491430$. one to Dye out of 30 (which is more advantagiJus to Paris than Monsieur Auzouts Opinion of one to Dye out of 25) the Number of People at $P a$ rif will be 491430; mure than by Monfeur Aurouts lat mentioned Accompr.

The Medium of the fid two Paris Accompts is -488055. The Medium of the London Burials is $2: 2 \mathbf{2}$,? which Multiplyed by 30 (as hath been done for Paris) the Number of the people there will bee.

The Number of Houles at London appears by the Register to bee 105315 . Whereunto adding a roth. part or $1053 \mathbf{1}$, as the leal NumbDer of double Families that can bee fuppofed in London, the total of Families will be 1550 : and allowing 6 Heads for each Family; as was done for Paris, the total of the People at London will be.

The Medium of the 2 lat London Accounts is $\pm 695718$.
Tin People $P$ Pis the above-laid Account is $\} 488055$.

Of Rome according to his own? Report thereof.

## $[240]$

$\mathrm{S}_{0}$ as there are more People at London, than? at Paris, Rover, and Rome by
2663.

Memorandum, that the Parifhes of Iflington, Newington, and Hackney, for which only there is any Colour of Non-contiguity, is not a two and fiftieth part of what is contained in the Bills
114284. of Mortality; and confequently Landon without them, hath more People than Paris and Rover put together, by

## Several other Eftimates, Viz.

I. That London alone is equal to Paris, Rover, and Rome, as aforefaid.
II. That London, Brifol, and Dublin are equal to Paris, Amitterdam, and Venice.
III. That London alone is to Amferdam, Venice, and Rover, as 7 to 4.
IV. That London and Briffol are equal to any four Cities of France?
V. That Dublin is probably equal to the fecond belt City, of any Kingdom or State in Chriftendome.
VI. That London, for ought appears, is the greateft City oof the World, but manieftly the greater Emporum.

## $[241]$

A Defcription of an Invention, whereby the Divifions of the Barometer may be enlarged in any given proportions; produced before the Royall Society, by Mr. Robert Hook R.S. Soc, and Profefs. Gcom. Grehham.

5Ince the difcovery of the Alterations, that are in thefe parts of the World, in the weight of the Atmofphere, by the means of the Torvicellian Tule, there has been feveral contrivances thought on, to make the more minute variations in the Airs preffure fenfible.

And firt, the Wheel-Barometer was invented and Publifhed by Mr. Hook, Anno 1665, in his Micrography: ( where it is defcribed at large) but this did not anfwer folly the defigned exactnefs, both for that the Mercury being apt to ftick againft the fides of the Glafs, would rife and fall per Saltum, all at once, and becaufe it is very difficult to adjuft the Ball and Thread and other apparatus of this Inftrument, as alfo that it is exceeding apt to be out of order, for which reafon it is at prefent almoft wholly laid afide.

Upon this in June 1668 ( as appears on the Journal of the Royal Society ) he bethought himfelf of an other device to do the fame thing, which was to encreafe the divifions by putting coloured Spirit of Wine,or fome other Liquor not capable of Freezing,on the Mercury, which Liquor was made to rife as the Mercury fell, and fall as it rofe, in a narrow Cane, fo as to make the utmoft limits about two foot afunder. This Invention was afterwards in the Year 1673 Publifhed in France by Mr. Hisbin, who neatly performed the Glafs-work; but the Cane being neceffarily fmall and apt to be be obftructed with bubbles, (whereby the intercourfe of the outward Air would be intercepted) and befides the utmoft limits of rife and fall fcarce reaching two foot and a half, Mir. Hook was not yet fatisfied, till he had found out the

## [242]

the means of encreafing the Divifions of the Barometer ad libitum, by a way free from fuch Objections, which finally he produced before the R. Society at their meeting on Feb. 3d. 168 ; f. vet. The contrivance whereof is this.

Figure I. Tab. II. Reprefents the Glafs of this Barofoope: the Cylinder A may be of what Diameter you pleafe, the bigger the better, but it need not be above 2 inches long, the Cane A D mult be fo long, that the upper part of the Cylinder B may be 29 Inches + fuch a part of the hight of the other Cane BC, as the weight or fpecifick Gravity of the Liquor that is to fill that Cane is to the Specifick Gravity of Mercury, below the line $a b$ in the Cylinder A. The third Cylinder C may be as high as you pleafe above the Cylinder B , but is moft conveniently made, fo as the fquare of the Diameter of the Cane BC be to the quare of the Diameter of the Cylinders Bor C, (which muit be exactly equall ) as the rife of the Mercury in the Cylinder $B$, is to the whole Length of the Cane $B C$ : for in this cafe there will be nothing Superfluous, but the divifions enlarged to the utmoft advantage.

As to the method of filling this Barofoope, though the Inventor hath not yet declared his own contrivance for the doing it, yet it will not be unneceffary to fhew here how it may be done. One way, (and the beft that occurs at pretent ) is to leave a fmall hole at the top ef the Cylinder $A$, and another near the top of the Cylinder B: this latter being well ftopt, pour in as much Mercury, at the other hole in $A$, as fhall fill both Canes as high as the Level of the faid hole ; which done, fop either by Hernetical y fealing it, or elfe by a dr $p$ of feal-wax (the glafs being firit ground rough to make it ftick) the hole in $A$; then opening the hole in $B$, draw off as much of the Mercury of the Cane B C till it will runn no longer : which done, ftopp firmly the hole in $B$ ( which may be done as you pleafe, there being no preffare againf you) and you will have the Cylinder A evacuated of Air for your purpofe; and the hight of the Mercury will be as is ufual in the ordinary plaine and Wheele-Barometers.

## [243]

Then pour into the Cane BC as much Spirit of Wine tinged with Cochineele, and Oyle of Turpentine, equall parts of each,as fhall ftand above the furface of the Mercury fo many feet as you make the enlarged fcale of your Barometer, or as is between the middle of the Cylinders B and C, and you will find the Mercury fink in the Cane BC, and Rife in the other Cane A D, in fuch proportion, that each 13 foot of Oyle and Spirit, will raife the Nercury ten Inches: This done, you muft pour on, by the (ane $\mathbf{B} \mathbf{C}$,fo much Mercury as may fill up the Cylinders A \& B to fuch hights, confidering the prefent weight of the Atmofphere, that the furface of the Mercury in both, may, at the utmoft limits, (which have not in England been found to exceed 30, 6 and 28 , 6. Inches) always fall within the bodies of the Cylinders, and never enter into the Canes.

Here note that thefe Liquors are chofen upon two accounts, Firft they are exceeding near of a weight, and Spirit of Wine highly rectified is fomewhat lighter than Oyle of Turpentine, but by a very fmall addition of Phlegme or Water, the Spirit will proponderate and be undermoft; fo that you may make them as near of a weight as you pieafe, and confequently a Cylinder of the Oyle infenfibly differing from an equal Cylinder of Spirit of Wine. Secondly they are Liquors that will not mix ; fo that the Oyle of Turpentine fwiming on the top, will be divided by a line only from the tinged Spirit of Wine, which the Oyle will keep from Evaporating.

The effect of this Barofcope will be, that when the Atmofphere is heavy, and the Mercury raifed high in the Cylinder $A$, and retired out of $B$, the Spirit of Wine will defcend into: the Cylinder B, and the Oyle of Turpentine will fill the Cane, fo as to make the partition of the two Liquors near the Cy linder B. But on the contrary when the Air is light, the Mercury will fink in $A$ and rife in $B$, fo as to drive the Spirit of Wine into the Cane, and the Oyle of Turpentine into the Cylinder C, fo that the fection of the 2 Liquors will be near C, and the Variation of the hight of the Mercury will be en-larg-

## [244]

larged into almoft the length of the Cane, without that the Counter-preffure from the Liquors will be in the leaft altered, the hight and weight of the Incumbent Cylinders being always the fame.

That little alteration that may happen by the dilatation and contraction of the Spirit of Wine by heat and cold, which ought to be accounted for, may be beit difcovered by a Thermometer hanging by it (containing the fame quantity of Spirit of Wine, and whofe Cane is, as near as may be, of the fame Diameter with the (ane BC in the Barometer) whofe defcent and afeent mult be added and fubfitracted to reduce it to a rigorous exactnefs; but it is ftill worth while to enquire if the Mercury it felf do not fhrink and fwell with cold and heat, fo as not to need this correction.

Thus is a remedy found out for the defects and inconveniences of the Barometers hitherto produced, and an Inftrument difcovered, which like a new Sence, will moft nicely fhew thofe ahyerations in the Air, which without it would by no means be perceptible, and of which undoubtedly very great ufes might be made in order towards a perfect Meteorologie, which, without fome fuch help as this, can hardly arrive at any great point of certainty.

But I forbear to fay more about. its, leaft ( by omifion of fome material circumitance ) I fhould prejudice the Ingenious Author of this difcovery, who has promifed to publifh a more particular account thereof; what is here faid being only intended to affert the Right of the firf Invention of this Ufeful and Subtile Inftrument to its proper Author, trom the pretentions of all others.

## [245]

Accounts of Books. (1.) Legrand er fameux Probleme de la Quadrature du Cercle refolu Geometriquement par le Cercle ou la Ligne droite, par Monfieur Mallement de Meffange. $A$ Paris, in $12^{\circ}$ 1686. With a Refutation of the fame, by Mr. D. Cluverius. Reg. S. Soc.

$T$His Author is one of thofe unhappy Geometricians, who without having acquired a through Underftanding of the Principles, have yet thought themfelves able to mafter the abftrufeft Difficulties in this nice Mathematical Science, where the leaft overfight or miftake fubverts the whole fuperftructure. Hence it is, that the true Quadrature of the Circle here pretended to, is loft upon the fame Rock with thofe many others, which the lefs knowing and more opinionated of their own Skill have produced, in this and the laft Century: But briefly to Shew wherein the Paralogifm of our Author confifts, we muft firf lay down the confruction, whereby he pretends to do the Bufinefs: In Tab.2. Fig. 2. let $f k z k$ be a Circle, $f a z$ the Diameter, a the Center, $k \approx k$ an equilateral Triangle infcribed, Bba line equal to the three fides of that Triangle, and dividing the Arch $f k$ equally in $i$, the line $i e$ will be half the fide of a Hexagon infcribed, which fide taken 6 times, is the line e $E$ =to the circumference of the Hexagon; and dividing the Arch if in $h$, the fine $h d$ is half the fide of the Dodecagon infcribed, and $D d=24 b d$ is the circumference of the Dodecagon; and proceeding after the fame manner, the circumferences of Polygons of $\mathbf{2 4}, 48,96$ fides, \&c. may be found, approaching ftill nearer and nearer to the circumference of the Circle, which at length will be equal to the line $f F$ in the Tangent ; but how to find the Point $F$ is all the Skill : Here our Author tells us, that the Points BEDF areall in the Arch of a Circle, whofe center is in the line Hh
$f z$ continued; but to contract his Work into a little compafs, he affures us that it is all, one, if inftead of the whole circumferences $B b, E$ e, Dd, $F f$ he take the lines $b q$, $e p, d o, f m$, each a third part of its correfpondent, and that in this cafe too, the Circle whofe Center is $L$, taken in the Diarneter $f$ ziontinued, Shallipafs through the Points $b, p, q$ and interfect the Tangent $F f$ in the Point, fo as to leave $f m$ $=$ to a third of the circumference of the Circle; which fuppofition being proved to be groundlefs and erroneous, all the confequences drawn from thence mult be fo too. If our Author had but confidered what the intermediate Points of the Curve between o $8 p, p \& q \& i$ ought to exprefs, he could not buthave difcovered the fallacy himfelf, for the lines $a, d, p e, q b$ are each proportioned to $f$, as the fines $k$, $i c, h d$ to their refpective Arches $k \cdot \frac{1}{} f$, $i f$, anid fo of all the reft betweeno and me . This would have taught him, that the Curve he has oocafion to ufe, did unfiverfally exprefs the Proportion of the Arches to their Sines, by that of the line $f m$ to its refpective ordiriates; that it was a fort of Einea Quadratrix, to be reckoned among the Linee Geometrice Irnationales, worfuch twhoferelation between the pafts of the Diameter and the Ordinates, are not generally expreffible by any one Equation; that this Curve did interfect the Circle in the middle of the Arch $k \approx$, and continge it in the point z. ThisCurve will be better underfood in Fig. 3, where it is drawn as it ought, and wherein the proportion of the line $f$ in to the lines $q b$ is as any Arch $k f$ is to its Sine $k .6$.

Tis evident, that this Curve is not the Circle mop $q t$ in Fig. 2, yet'tis not apparent but that a Circle paffing through the point $m$, may interfect it in feveral points, as $o, p, q$ : (but to fuppofe it to pafs through all the extremities of the Circumferences of the infinite Rolygons between the Cirele and Triangle, or their thirds, is to make it coincident with that Curve.) It remains therefore to fhew, that the Circle paffing through $p$ and $q$, whofe center is in the Line $f z$, does not

$$
[247]
$$

pafs through the point 0 , which from the following Confide rations will be made evident.

Firft let it be required, by the extremities of the lines $a, b, \varepsilon$, or $h, g, f$ (in $F i g .4$ ) parallel one to another and $d, e$, or $k, l$. given as parts or fegments of the Axis or Diameter of theFigure, to determine what curvity paffeth through their extremities, according to the conditions of the five Conical Sections. Firft if it be found that $\frac{b b-a a}{d e}-\frac{c+a a}{d e+e e}$ is equal to $I=$ $\frac{c c-a d}{d d+e d}-\frac{c+b b}{e d}$, then it is the Characteriftic of a Circle, the Lines $a, b, b$ being difpofed in an uniform increafing order: But if $c$ the biggeft ftands in the middle, than $\frac{c c-a a}{d d+e d}+\cdots$ $\frac{c c-b b}{c e+d e}=1=\frac{c c-b b}{d e}+\frac{b b-a a}{d e+d d}$ will thew the fame. If the Lines $d, e$ be fegments of a line drawn parallel to the $A x i s$, then transpofing and ordering the foregoing Equations, Rules alfo may be found accordingly. $\operatorname{If}^{c} \frac{c-b}{b-a}=\frac{c}{d}$, or $\frac{c-a}{b-a}-\frac{c}{d}$ \# 1 ,then the Line paffingithrough che Extremities is right:
 riftido ofan捡yperbla or Elliphis differs not from that of a Circle, butonly bya Relation to the inequality of the Axes, ant the mberation of the Sighs fand L!
 in the Arch of a Circle, to find the Diftance from the Center $=$ to $m$, or $m+e$, and to determine the Radius. There is a little variety in the cafe, when the given lines are in the fame Quadrant or otherwife : but there being only occalion for this firt Cafe, the Rule is this, $\frac{c-b b}{2 e}+\frac{1}{2} e=e+m:$ And

$$
\sqrt{\frac{c c c c-2 c c b b+b b b b}{4 e c}+\frac{1}{4} e c+\frac{1}{2} b b}+\frac{1}{2} c c=\text { Radius } .
$$

Thirdly, in a Circle, having $a, b, d$ and $e$, to find $c$ : The
$\mathrm{Hh}_{2}$
Equa-

## [248]

Equation is $\frac{b^{2} e-a^{2} e}{d} d e-e^{2}+b^{2}=c^{2}$. Fourthly: To infcribe Polygones in a continual double Progreffion within a Circle, many different Rules may be given: the following will ferve, which is the fame with that, how to find the fubtenfe of an Arch, out of the fubtenfe of a double Arch. The Rule is thus; $2 R^{2}-\sqrt{4 R^{4}-A^{2} R^{2}}=B^{2}$; Suppofing $A$ to be the Chord of a double Arch, and B ofa fingle Arch. From hence: it is eafily deduced, that $\sqrt{ } 3 \mathrm{R}^{2}$ being the fide of an equilateral Triangle infcribed, the fide of a Hexagon will be R :of the Dodecagon $\sqrt{ }$ un ${ }_{3}^{2} \mathrm{R}^{2}-\sqrt{ } \frac{1}{2} \mathrm{R}^{2}$ : and fofor the reft. Now reducing according to thefe Equations the Lines to Numbers, it ${ }^{-}$ will be found that in Fig. 2 Tab. 2

$$
\begin{aligned}
& b q=173205,08 \quad a b=50000,40 \\
& c p=2000 c 0,00 \quad e b=36602,54 \quad f m=209439,51 \\
& d_{0}=207055,23 d e=9990,04
\end{aligned}
$$

But fuppoling, as our Authour will have it, that o of tands in the fame Circle with $b q$ and $e p$, it follows that the Square of $d a=422638679 d^{\circ} c_{0}$ whereas it fhould have been equall to 428718707 drc. Square of do inithe Table. The Square of the Tangent $f m$ is alfo a great deal to fmall, and the whole, Quadrature to little: All which make it appear, that the Glory of Lewis the Great is not (as this Book pretends) much advanced by the Atchiyements of this. Author: who would have done well, in a Matter that folittle needed it, man. have forborn to make ufe of the facred Words of our Savioar, Math. xith. 25 th.

## [249]

If Voiage de Siam des Peres fefuites envoyez par le Roy aux Indes ơ a la Chine. $A$ Paris $1686.4^{\circ}$.

THis is a fecond Relation of the Voiage and Embafly of the French to the King of Siam in the Year $1685_{2}$ and being a more particular Account than the former, an extract of this, 'twas thought, might fuffice for both: That was compofed by le Chevalier Chaumont the Embaffadour, and now this by le Pere Tachart Jefuite, who was one of fix Fathers of his Order, that went with the Embaffadour, as Miffionaries to Cbina. The whole being much interfperfed with matters of Religion and Ceremony, I fhall only take notice of fuch things as relate to Arts and Sciences, and particularly of the Aftronomical Qbfervations made at the Cape of Good Hope and at Siam; whereby the Longitudes of thofe places are ftated: following herein the Authors method.

He divides his Treatife into fix Books, whereof the firft contains the Voiage from Breft to the Cape of Gcod-Hope. Here he gives the reafons and motives of Jending this Embaffie, as likewife the fix Jefuites who are Mathematicians and by the Kings Letters Patents are fo ftiled; Their Inftructions being, befides their Spiritual Function, to profecute the bufinefs of the Royal Academic of Paris (of which they are admitted Members ) by accurately obfervingthe curious things in Art and Nature, and particularly to make Obfervations for difcovering the Longitudes of the Places where they pafs ; for which purpofe they are well provided with Inftruments. They failed from Breft on the third of March ff. n. and arrived at the Cape of Good Hope the laft day of May, taking notice by the way of the feveral remarkables in that Voiage, which are here too well known to need repeating; But mentioning the faultinefs and rectification of the Southern Conftellations, our Author is not willing to take notice of what has been done in that matter by a member

## $[250]$

of the Royal Society of London, tho' his Catalogue of thofel Starrs hath been tranllated from Latine into French and Printed at Paris, and an Account thereof is in the Fournal des Scavans of Aug.7. \& Sep. 4. 1679; but fpeaks of it as a thing not done, wifhing they had had the opportunity to augment the Science of Affronomy, by obferving them themfelves.

The fecond Book is entituled the Voiage from the Cape of Good Hope to the Iland $\mathfrak{F a v a}$; but is chiefly taken up with the defcription of the Colonie of the Hollanders there, the Natives, and the Aftronomical Obfervations they made there during their ftay, by which they have determined the $\mathrm{L} \subset \mathrm{n}$ gitude of the Cape of Good Hope is degrees to the Eaft of Paris: (but here we muft begg leave to make a Remark) He mentions 7 feveral Nations of the Natives, viz. the Hortentots, whom he defcribes at larg, the Namaquats, of thefe two there are the Figures) the Ubiqurass, the Goiriquats, Ilat Iflquas, Sonfiquads and the Odiquads: and here he' relates a Voiage made in the Year $\mathbf{I} \in 85$, as farr as the Tropick, by the Governour of the Cape, Mra Vanderftell; who is faiduro hate found about the Latitude of 27 degrees and about 10 or 12 leagues from the Shore, a Nation of Nateres that hre very Muficals who have long Hair flowing on thieir Mioulders, fome-of the Menas White as Emopeanise dneffief T Wament Naturally very White, but they Blacken ethemferies to pleafe their Husbandswa his Nation feens to have muth
 Itances feem touargue it Eabuloas?


 whereof ene is strade a chave) z faiti Ciofes bff his tack


 as bigg as ordinary Elephbinte, but, By c whow Hot what niv


## [251]

age from the Cape to faua (in figlit whereof they arrived Aug. sth.f. n.) containes nothing very Extraordinary.

The third Book is the Voiage from 7 ava to the Kingdome of Siam: which is chiefly taken up with what occurred at Baztam and Batavia, and at their arrival on the Coaft of Siam, here are reprefented the Roads of Bantam and Batavia, together with the Plan of the City and Fortrefs of Batavia.

The fourth Book defrribes the Entry and Audience of the French Embaffadour at the Court of Siam; who, as they fay, was received with more Honour and Refpect, than was ever yet thewn to any Ambaffadour whatever; and that even thofe of Perfa, the Mogul and the Tartar Emperour of China, ( tho' his neighbour, and by much the moft Potent Monarch of the Univerfe) prefent themfelves before the King of Siam on their Knees, whereas Mr. Chaumont the French Ambaffadour made his harangue, fittingwith his Hat on his Head. Here are defcribed the Baloonsor Barges of State which are ufed at Siam, which are of a very odd Figure, as of Serpents or Sea -Horfes, but which by their fharpnefs and number of Oars are of an incredible Swiftnefs: here likewife 'tis related that the old White Elephant of the King of Siam is near upon 300 Years Old; as alfo that there are Tumblers there, of an extraordinary Agility, as that they would ftand upon one Foot on the top of a Bamboo of 80 or $\mathbf{1 0 0}$ Foot high, and then turn themfelves, and ftand on their Heads thereon, and afterwards hang, by the Chin only, on the top of the fame, and then defcend by a Ladder down right, with an incredable Swiftnefs, working their Bodies all the while through the Rounds of the Ladder.

The fifth Book is entituled the Return of the Voiage of Siam, and firit relates feveral notable Shews prefented to entertain the Ambaffadour; as the fight of two Elephants; who were only fuffered to twift each others Teeth,as Bulls do their Horns; the fight of an Elephant and a Tiger or rather a Panther, according to the deforiptiow; and the manner of catching the

## [252]

wild Elephants, by alluring them into an inclofure by the means of a Female tame Elephant, and the like. Next are related feveral Obfervations of the variation of the Magnetical Needle, which was found towards the end of the Year 1685 , to be about half a degree Weft, at Louvo near Siam; as likewife the Obfervation of an Eclipse of the Moon on the 10 th. Decermber ft. n. poft mediam noctem, made at a place near Louvo called Thlee-Pouffonne, in the prefence of the King. It begun about 15 h .20 m. the Total Darknefs at 16 h .23 m .45 S . the Emerfion or end of Total Darknefs at 18 h .2 m .366 . or rather, as is there faid, at $186.10 m .25$. whereby the Longitude of this place is found 98 degrees and half from Paris, and about $6 h .45 \mathrm{~m}$. to the Eaft of London, as may be feen by comparing this Obfervation with the Obfervations thereof made at Dantzick, Nurenburg and Lisbon, Publifhed in Pbi: lof. Tranfact. Num. 178, 182 and 184. And whereas tis here faid that fome Charts have made the Longitude of Siam above 20 degrees more than it is, tis to be underftood only of the Charts of Sanfon, which in this particular are the worft extant : But that this Correction is juft, we are fully fatiffied, by the like errors in thofe parts, difcovered and publined in the Philofoph. Collect. of Feb. $1 \in 8 \frac{1}{2}$, and in Philos. Tranf. of Fune 1683. The relation of the homeward bound Voiage ( which was of about 6 Months (is Chort and contains very few confiderable Remarks.

The fixth and laft Book is of the manners and Religion of the Siammers, where is a fhort defcription of the Kingdome and Capital City of Siam: Next the habits of the People, and their ufe of Betele, Arek, and Tea is defcribed, as likewife the Root Ginfeng fo much efteemed in the Eaft, with its Vertues and Ufes. As to the Religion of this people, which is here defcribed at large, I fhall lay little to it, as not falling under our Argument, only one principal point therein is the Metempfychofis of Pythagoras and the Bramines, and they hold the Eternity of the World, but on the contrary they fuppofe God Mortal, Corporeal and produced intime: heir prefent God they call Sommonokhodom.

## $[253]$

A Remark concering the Longitude of the Cape of Good Hope.

IN the fecond Book of this Voiage are related two Obfervations of the Satellites of $\mathfrak{F} u p i t e r$, capable, if well made, to afcertain the Longitude of the Cape of Good Hope. The
 20f. the firft or innermoft Satellite touched the Wefters edge of Fupiter and at inb. 30 m .50 . it appeared no more : this Obfervation is faid to be made with an excellent Telefope of. twelve Foot: The other was on Fune 4 th. following $f t$. $n$. when the Emerfion of the fame Satellite was obferved at $9 b$. 37 m .40 o . from which latter is concluded, that the Longitude of the Cape is $\mathbf{8} \mathrm{gr}$.to the Eaft of Paris, for that the faid Emerfion, according to the Calculus of Sigr. Cafini, in the Meridian of Paris ought no have happen'd at 8 h .26 m . This fame Emerfion is computed by Mr. Flampfeed at 8 h . 19m. at London, that is, 3 m . later than by Sigr. Cafini ; and confidering that neither is verified by Obfervation in Europe, the Longitude hence deduced is doubtful at leaft 3 minutes, if this had been the onlyObfervation : But the former being confidered will yet fhew that there is a much greater doubt ftill remaining: For from certain Affronomical principles the parallax of the Orb, or difference between the place of $\mathcal{F}$ upiter feen from the Sun and Earth was,at the time of the firft Obfervation, 9 g . 19 m . which Arch that Satellite moves in $\mathbf{x b} .6 \mathrm{~m}$. and the utmoft duration of an Eclipfe thereof in this pofition of $\mathfrak{F}$ upiter being fcarce $2 h .20 \mathrm{~m}$. (as appears by the accurate Obfervations of Mr. Cafjini and Mr. Flamfteed) it will follow, that from the Immerfion behind $\mathcal{F u p i t e r s}$ Weftern Edg; to the Emerfion out of the fhaddow, there could not be full 3 b .26 m . wherefore the Emerfion out of the fhaddow, on fonne $2 d$. ought, according to the time of the Immerfion, to be at $\mathrm{I} 4 . \mathrm{b}$. 56 m . at lateft, at the Cape; which by Mr. Flamfteeds Calculus was at London 13h. 5 mm . or according to Sigr. Caffini at

## [254]

135.58 m . at Paris. Hence the Longitude of the Cape will be found but 14 degrees and half at moft to the Eaft of Paris; fo that thefe 2 Obfervations will differ in the refult about a quarter of an hour; which is a little too much. However there are fome reafons that feem to argue for this latter Longitude rather than the former ; for it is much eafier to obferve what becomes of a luminous Object that appears, than to wait upon the firft appearance of a Star Eclipfed: and tis probable that the Satellite might, in the latter time, be feveral minutes Emerged out of the hhaddow, when they might firft perceive it; but they could not but fee the application to the Body of Fupiter in the former, if we may fuppofe their Telefcopes fo good as they are faid to be: And that the Cape of Good Hope is not more than an hour to the Eaft of Paris, is proved by the conftant confent of our Navigators, who find by their Reckonings that the Ifland of St. Helena is about 22 or 23 degrees of Longitude to the Weftward of the Cape: (and that Sailing both backward and forwards tis the fame, which takes away the Objection of Currents) now by accurate Obfervations made at St. Helena, and compared with others made in Europe at the fame time, the Longitude of that Inle is certainly about $8 \frac{1}{2}$ degrees to the Weft of Paris: It follows theretore that the Cape cannot be much more than 14 or 15 degrees to the Eaft of Paris ; and undoubtedly it mult be lefs than 18, for 3 degrees is much too greatan Errour to be committed in fo fhort a diftance Sailing.


## [255].

# PHILOSOPHICAL 

## TRANSACTIONS

For the Months of Fanuary, February and March, 1687.

## The C ONTENTS.

"A$N$ account of a Comet Seen at Lipfick in September 1586. taken from the Lipfick Acta Eruditorum for the Month of November laft: (2) Part of a Letter written to the Revd. Thomas Gale, S. T. D. Reg. Soc. Secr. from Carniola, by Mr. John Weichard Valvafor liber Baro, containing the Method of Cafting Statues in Metal; together with an Invention of his for making fuch Statues of an extraordinary tbinnefs, beyond any thing bithertoknown or practifed.(3) The Anfwer of Dr. Papin to feveral Objections made by Mr. Nuis againft bis Engine for raifing Water by the Rarefaction of the Air; ; whereof a defcription is given in Numb. 178. of thefe Tranfactions. (4) An Anfwer of the fame to the Author of the Perpetual Motion. (5) Occultatio Saturni a Luna plena, Anno 1687. Martii 19no. mane: oblervata a D. Ed. Haines R. S. S. ad Totteridg prope Londinum,fub Lat. 51 gr. 39 m . (6) A Difcour fe concerning the meafure of the Airs Refjitance to Bodies moved in it : By the Reverend John Wallis S.T. D. and R. Soc. Soc. (7.) Part of a Letter from Mr. William Cole of Briftol to the Publifber, about the Grains refembling Wheat, which fell lately in Wilthire. (8) An Extract of a Letter written by Mr. Veay Phyjitian at Tholoufe, to Mr. de St. Uffans,concerning a very extraordinary Hermaphrodite in that City. Communicated by Dr. Aglionby, R. S. Soc. Accounts fo. Books. I.
I. Hiftoria

$$
[256]
$$

I. Hiforia Plantarum, fecies haitenus editas aliafque infuper multas noviter inventas ér defcriptas complectitens, ér. Autore Joanne Rajo e Societate Regia. Tomus primus. Londini, 1686. Fol. Apud Henricum Faithorne R. S. Typograpbum; ad Infigne Rofa in Cameterio D. Pauli.
II. Pbilofophiic Naturalis Principia Matbematica, Autore If. Newton, Trin. Coll. Cantab. Soc. Mathefeos Profeffore Lucafiano of Societatis Regalis Sodali. Londini. 4 to. Proftat apud plures Bibliopotas

## An Account of a Comet feen at Lipfick, Sept. 1686. taken from the Lipfick Acta Eruditorum for the Month of November laft.

THat Coniets are fo frequently feen of late above what has been formerly obferved, happens rather from the diligence and number of thofe that now apply. themfelves to the ftudy of the Coleftial Motions, than from any cafual concourfe of thofe Bodies. That this is fo, may be concluded from the five Comets, that in lefs than fix years time have been feen to traverfe the Heavens, of which yet only the two firt (wiz: thofe of E 68 I and 1682) by reafon of their long tailes were generally regarded. That that appeared in Fuly and Aubuft 1683 . was not; as I can hear, any where obferved in France. That that appeared in fune 1684 was no where elfe taken notice of but at Rome: and now this of September 1686. we have no other account of, than this from Lipfock. The truth is, that where Comets are deftitute of a tayle and appear only like an obfeure hazie Star, as thofe of 1683 and 1684 did, they that firt difcover them had need be well ac-

## $[257]$

quainted with the Conftellations (which few People are,) and muft look over the Heavens defignedly with great at tention, notwithftanding all which 'tis poffible for fuch obfcure Stars to pafs by unfeen.

This Comet was obferved at Lipfock by the diligent and accurate Mr. Kirck; in whofe Ephemerides for this year there is likewife a brief account thereof; He faw it only twice, viz. on the 8 th. and 5 th. of September $\uparrow$. vet. 1686. and obferved it as follows.

Sept. 8. $4^{h}$ mane about day-break, he found the Comet in the Conftellation of Leo, to the right hand of the $L u$ cida in Lumbis $\Omega$ (as is conceived, for the Latin Copy is defective in this place ) and refembling that Star in colour and magnitude, with a thin and fhort taile extended upright. Over the Comet in the fame verticall was the Star $\theta \Omega$ of Bayer, or 2 I Tychoni, diftant therefrom by the Micrometer, exactly a degree; and a Line drawn from the lucida in tumbis $\Omega$ to the Comet paffed much about half a degree to the right hand of the faid $\forall$ Leonis. The diftance of the Comet from Regulus taken by a Radius was about 17 gr . The next Morning, Sept. 9. the Comet appeared again obfcurer and more difficult to obferve than before, by reafon of the day-light : however, at $3 b 5^{8} \mathrm{~m}$ the diftance, thereof from $\theta \Omega$ was found by the Micrometer $2^{\circ} \cdot 23^{\frac{1}{2}} \mathrm{~m}$. and at $4 h 40 \mathrm{~m}$. again $2 \mathrm{gr} .25 \frac{3}{4} \mathrm{~m}$. To verifie the Times, the Altitude of the Lucida in Lumbis $\Omega$ was Obferved 1 Igr . Icmin. at 4 h. 08 m . mane. A right Line drawn by the Comet and the faid o Leonis towards $\beta$ Leonis, or the the Lucida Colli, left that Star a little to the right hand. The following days being Cloudy no more could be Obferved.

This Comet was feen by a Country-man, who firf gave notice therof, from the $6 t$ to the $12 t h$ of September; the refult of whofe Obfervations is, that the Comet was direct in motion, that it moved about $1 \frac{1}{2}$ degree per diem, and that it feemed rather to decreafe in Latitude. On the 7 th

## [258]

of Septemb. it was about 24 min . diltant from $\theta$ Leonis, but its bearing therefrom is not fet down. From other parts it is faid to have been feen from the firft of Septemier, but nothing obferved.
$N . B$. That this Star $\theta$ Leonis was then in $9 g r-2 \mathrm{~min}$. of $m$ with North Latıtude $9 \mathrm{gr} .41 \frac{x}{2} \mathrm{~min}$. Whence at the time of the firlt Obfervation it may be concluded that the Comet was in 9 gr .55 of m with North Latitude $9^{\circ} 15 \mathrm{~min}$ And at the fecond Obfervation the Longitude of the Comet will be found about in gr .25 min . in $n$, with much the fame North Latitude as before.

Thefe Obfervations being fo few, do fcarce fumice to conclude any thing concerning the preceding or confequent motions of this Comet, which being near the Sun and ftill approaching him was foon loft in his Beams. It may however ferve one day, when the Theory of Comets Shall attain its perfection, to confirm an Hypothefos, and help to afcertain the number of thefe Heterogeneous Planets, whofe frequency makes in more than probable that they have their periodical returns, tho hitherto unknown. And that the Prophecy of Seneca [ Erit qui demonftret aliquando in quibus Comet a partibus errent; cur tam feducti a reliquis, quot quale [que fint, ] is not wholly to be defpaired of, will foon appear, from the accurate Theory of the Comet of $168^{\circ}$, to be found in the incomparable Treatife of $M$. If $\mathfrak{a}^{-}$ ac Newton, an account whereof is given at the end of this Transaction



## [259]

Part of a Letter written in Latin to Thomas Gale, S. T. D. Secret. Reg. Soc. from Carniola, by Mr. John Weichard Valvafor liber Baro; containing the Method of cafting Statues in Metal; together with an Invention of bis for making fuch caft Statues of an extraordinary tbinnefs, beyond any thing bitherto known or practifed.

ISend you likewife my Method of cafting Statues in Metal, in obedience to the Commands of the Royal Society ; it is as follows. Firf, I form out of good Clay, that will endure the Fire, and not crack either in drying or burning, fuch a Figure or Statue as I defire to caft; when this is well dry, I make, all over the Figure, little holes of nogreat depth (but both fize and depth proportionate to the bignefs of the Statue) into which I let fmall pieces of Metal, and with fome of the fame Clay fix them firmly in the holes; the ufe of thefe bitts of Metal, marked in Figure. I. $a, a, a, a, a$, is to keep the Core and Mould from touching one the other, or falling together when the Wax runs out; and that they may remain conftantly in the fame fixt Pofture. This done, I crape away with fome proper Inftrument as much of the Clay in thicknefs as I defign for the thicknefs of my Statue, and then laying it in a Furnace, I burn the Core till it be redhot. (by the Core I mean always the Statue firft made in Clay.) When it is cold I rub the Core all over with that fort of Earth or colour, which our German Potters ufe, to colour the joynts of the Tiles when they fett Stoves of Tiles or (Kachel-Ofens; ) 'This Colour refembles much that which the French call Plomb de mer (Black Lead) Kk
which

## $\left[260^{\circ}\right]$

which is ufed to defign on Paper, and eafily wipes out with Bread, but it is not the fame: this colour I mix with Water, and daub all over the Core, becaufe the Metal is found to run freely upon it. There are other Subftances proper for this purpofe, but I have always made ufe of this, efpecially for thin Statues. This done, I lay on upon the Core as much yellow Wax mixed with Pitch or Rofin as will make the thicknefs of the intended Statue, which I form in the Wax with all the exactnefs poffible.

Here note, that the Particles of Metal mentioned to be fet into the Core, to keep it at a diftance from the Mold mult be fo fet as to fall in with the furface of the Wax exactly: and that the reafon of mixing Pitch or Rofin with the Wax is, becaufe that when it is burnt out, it makes a great fmoak, and that fmoak adhering to the Mold occafions the Metal to run more freely: as I have experienced it. Next I put all over upon the furface of this Statue of Wax, little pieces of Wax which I call the little chanels; in the Figure marked c.c.c. c. c.c. (all which mult be contrived fo as to enter into the great Chanels d.d.d.) This done, I cover the Core and wax all over with the fame fort of Clay, that will endure the Fire without cracking ; and foI liave my Concave Statue or Mould made. Upon this I lay the great Chanels marked d. d.d.d. both upright and tranfverfe, formed likewife in Wax, and placed according to Judgment, foas beft to receive the ends of the little Chanels c.c.c.c.c.c. for the more eafie diftribution of the Metal. Thefe great Chanels muft all meet at the top of the Statue, fo as to come out by one hole, as at $E$, where the Metal is to be poured in; it is alfo necefflary to havea Chunel or two to let out the Air as the Metalenters, as thofe marked $f$. $f$ : and there mult be a hole or two left at the foot, as $g . g$, where the great Chanels and waxen Statue joyn; and whereat, when the Mould is burnt, the wax as well of the Statue as of the Chanels may run out. The great. Chauels being thus placed, the Mould muft
muft be again laid over with the fame fort of Clay. (I ufe conftantly to bind about the Mould with Tron Wire and then lay on more Clay ) and when this Mould is well drie, then I heat it red hot; as I did before the Core, fo now both together.

The firlt time I practiced this method, I burnt both Core and Mould together, and all the fmall bitts of Metal melted, fo that, though it chanced to fucceed well, yet I was in great danger of mifcarriage; and ever fince I burn the Core firft, that fo there may not need fo ftrong a fire to burn the Mould: but for fmall manageable Statues of not above a foot or two high, they may be both burnt together, and there is no need of the holes $g . g$, but the Mould may be inverted, and the Wax run out by the Chanels $f . f$. and $E$.

The Mould being thus burnt, I ftop with the fame Clay the two holes $g . g$. and then I bury it in a pit, and proceed as is ufual in cafting of Bells and the like, but care muft be taken that the Metal be very well in fufion.
If it be a fmall Statue not above a foot or two high, whofe Mould may be managed in ones hands; then I make me a concave Statue of Wax, of the thicknefs I defire, and then place upon it all thofe great and leffer Chanels, as afore: which done I put it all togather, into a liquid fubftance made of Plaifter and Tile or Brick duft tempred with water; but I doubt not but the way of cafting in Plaifter is well known in London, and therefore fhall not need to write it.

If the Statue be intended very thin, then I take Copper, and when it is well in fufion, I mix with it a good quantity of Zinc, without obferving any certain proportion of weight; the more Zinc the better the Metal runs. I have fometimes for fmall and thin Statues put in above a third part of Zinc. now Zinc is a certain Mineral Subftance like Marcafite or Bifmuth, in French du Zinc; without it our work would not fucceed if it be very thin, and K k 2

## $[262]$

I have found by experience that this Mineral makes the Meral run moft freely, and gives it a fair golden Coulour.

The Statue being caft, I take off the Mould and cut off all the little Chanels; all which both great and fmall are filled with Metal, which may be kept for further ufe: In thefe there is much more Metal than in the whole Statue; for if the Statue be very thin, there mult be more and bigger Channels; and fo the cheaper the the Statue the more weighty the Chanels and the more Metal remaining.

To know the quantity of Metal requifite for my intended work, I take a lump of thes fame mixture of Wax and Pitch, with which I make the Mould of my Statue; and having weighed it, I make a Mould upon it, and caft in the fame a lump of Metle of the fame fine ; which I weigh and thereby compute the proportion of the weight of the Mettle and Wax; then obferving how many pounds of WaxI ufe about the Figure and Chanels, Ican calculate to a frnall matter how much Metal I need to melt.

This is my manner of cafting \%flatues very thin, and which alwais fucceeded happily with me. Hitherto I have caft no ftatue above nine foot high; but I doubt not but I could, by the fame methods, caft one of any bignefs defired. And when we fhall be more at eafe from our ill neighbour the Tirk, I will calt at one fufion the Statue of our Emperour Leopold. I. fetting on Horsback, much greater than the life; I have been already in treaty about the charges thereof with the States of this Country ; and if thefe Turkijb troubles had not come upon us, it lad been now finifhed. - \& c.

## [263]

The Anfwer of Dr. Papin to feveral Objections made by Mr. Nuis againft bis Engine for raifing Water by the rarefaction of the Air, wepereof a defcription is givien in No. 178. of thefe Tranfactions.

Having feen in the Nouvelles de la Republ. des Lettres of the Month of December laft, fome difficulties which Mr. Nuis doth find in my new way for raifing Water,publifh't in the Philofophical Tranfactions of the month of Fanuary; I am obliged to anfwer them as clearly as I can in thefe fhort notes.

In his firt Objection he faith, that it would be a very hard matter to hinder but fome Receptacles would come to be fill'd too much: $\mathrm{S} \delta$ that the water filling alfo the pipes CDD would hinder the effect of the Engin. To this I anfwer that it being neceffary to let out the water of the higheft Receptacle, Ithought it might be conceived that the water may alfo be let out of the inferiour Receptacles by inferting into each of them a crooked pipe, reaching a pretty way downwards, and having its fower aperture fhut up with a valve; whereby the water might run out when the Receptacle fhould be fill'd to a certain height: and fo I did not Iudge it needfull to prevent this Objection.

The fecond Difficulty, which I had very well forefeen (as it is plain in myfirt explication) lyes in the great quantity of Air to be rarefied: So that Mr. Nuis, by his computation, doth find that the Pump's fhould every one contain, 84 cubick feet of raiefied Air to raife water at 12000 foot diftance. To this I may anfwer, firft that I have not pofitively promifed a good fuccefs but for Windfor and St.Germain; but when I fpoke of Verfailles I ufed the word perbaps, thereby fhewing that before any one fhould go about fuch a great undertaking he fhould reflect vpon

## $[264]$

it more than I would then do, not having occafion for fuch work : but fince I have feen Mr. Nuis his Objection, I have been Obliged in order to anfwer him to make the following computation.

Let the diftance as he fuppofeth be 12000 foot, and the Capacity of each Receptacle be about one half of a cubick foot: I might make the wheel with the Axis to make their revolution in one minute of time, and fo order all things that the Air under the afcending plugs might come to be rarefied to fuch a degree, that by its Elafticity it might not counterpoife more than 7 foot of water:but at the fame time the Air in the Receptacles A A, B B, would even in it's great eft dilatation be able to counterpoife 17 foot: fo it is plain that the Air will be driven from the Receptacles into the Pumps by a ftrength equivalent to ten foot of water : Now if we compute after the method publifh'd in the Tranfaction of the month of October laft, what fhould be the Velocity of the Air driven by fuch a preffure: we fhall find that the faid Velocity will be about 740 foot in a fecond : So that in half a minute, during which the plug goeth up, this Air might pafs above 2200 foot, although it were not rarifi'd at all; but being rarefi'd, as we do fuppofe it to be, it might go a great deal further.

I muft now take notice that according to the Honourable Mr. Boile's Experiments quoted by Mr. Nuis, the Rarefaction of the Air is much leffer than he takes it to be: For the Water contain'd in the Pipe NO. is fo far from caufing the Air to fill up a face four times bigger, that it will not extend it felf to a fpace once bigger than before; confidering therefore the Velocity of the Air and the fmall dilatation it doth fuffer, if any one will take the trou'ble to compute, he will find that if the Pumps have in Diameter the Diagonal of a Square Foor, and the fame heighth: and if the fmall Tubes of communication be made of $\frac{1}{9}$ part of an Inch in Diameter, fo that being 12000 Foot long, they may contain about one cubick Foot of

## [265]

Air, that would be more than fufficient to make the neceffary Rarefaction in the Receptacles: And thus much might anfwer Mr. Nuis his Objection.

But for the good fuccefs of the Engine it is not enough to make the Air pals from the Receptacles into the Pumps, it muft alfo return from the Pumps into the Receptacles: Now for this intent it would be neceffary to fet the Recepticles but five Foot above one another; fo to drive the Water up the Pipe $N O$, it would be enough that the Air in the Receptacle $B$ fhould prefs with a ftrength equivalent to 23 Foot of Water: For it is plain that 5 Foot in the Pipe NO, together with a preffure equivalent to 17 Foot which I have fuppofed to be in the upper Receptacle $A$, will make but 22 Foot in all: and therefore 23 Foot preffing in the Receptacle $B$ mult prevail and caufe the Water to afcend: now the preffure in the Receptacle being but 23 Foot, and the Air in the Pump returning to its ordinary preffure, which is avout 33 Foot; it is plain that the Air going back to the Receptacle will be driven by a ftrength equivalent to ro Foot, as well as it had been in coming from the Receptacle towards the Pump: and fo the bignefs affigned for the communication-Pipes will alfo prove more than fufficient to this effect.

From what I have been faying it is plain, that in great diftances there fhould be made as many Pumps as Receptacles, as I had propounded in the firft explication of my Engine: and for to raife Water but 60 Foot high, there Should be required 13 or 14 Receptacles and as many Pumps of the bignefs aforefaid. Some people may take this for a great difficulty. But I anfwer that in this Engine this is not fo much as it feems at firit; becaufe the preffure being all from without, there is no need of any great ftrength to refilt it, and fo the Metal for the Pumps will coft but little: there may alfo be found occafions where to make fo good ufe of them, that fuch an Engine as I have defcribed would in a years time fave labour enough to pay

## [266]

for many Pumps, fince it might every hour raife about 1800 pounds of Water to the height of 60 Foot: Mean while I don't pretend to have given here the beft proportion for the bignefs of every part of the Engine; but it may be, by altering the Capacity of the Pumps, of the Pipes, or of the Receptacles, a much more confiderable effect might be produced: but I'le leave this to be lookt after by thofe that may have occafion for it; and for my part I content my felf having fhewn the truth of what I had at firft, though but doubtfully, propounded: For the River Seine, where it is neareft to Verfailles, not being above 20000 Foot diftant, it is eafie to fee that, to fupply this increafe of diftance, we might leffen at pleafure the capacity of the Receptacles, or increafe the capacity of the Pumps and of the Pipes, or caufe the wheel to fpend more time in its revolution: 'tis true the Engine would produce lefs effect, but upon a great River the number of the Ensines might be multiplied, and vaft quantitys of Water ftill be railed. I fhall therefore, to prevent new difficulties, add only this: that as well as in the Receptacles I have a way to prevent the overflowing with Water; fo in the Pumps I might alfo prevent the overfilling with Air, by making a Valve that fhould open as foon as the Air in the Pump Should be more compreft than the outward Air: So the Air getting in through any pores would conftantly be let out.

As for the third objection wherein Mr. Nuis fays that it doth not appear how the Water in our Engine may, by Rarefaction, afend higher than 32 Foot. I anfwer that the Water doth not at any time afcend higher than froma lower Receptacle into the next upper Receptacle, which heighth is but 12 Foot: So that it is plain enough that the preffure of the Air may be fufficient to drive it up. It is indifferent whether it be by Rarefaction or otherwife that the Water comes into the Receptacle $A$; it is enough that the Water is the:e, and that the Air pieffes

## [267]

upon it with fuch a ftrength as will prevail againft all that oppofeth it, as I have fhewn above.

To the fourth Difficulty I anfwer: That although the ufe of the Pipes be meerly for the conveying of Air: They may neverthelefs eafily be fili'd with Water when need requires, and fo the defects in them may as well be found out as in the Pipes that are ufed for the conveying of Water. This is all I may anfwer at prefent, and I hall make an end with affureing Mr. Nuis that i'le make ufe of his advice when ever he will be pleafed to give it me.

## An anfreer of the fame to the Author of the perpetual

 Motion.IN the laft papers I publifhed in Phil. Tranfact. N. 184 againft this perpetual Motion defribed in N . 177. I intreated the Author to permit me to fay nothing as to what alterations he might make in his Engine; refolving to leave it to others to fhew him that upon that principle all he can do fignifies nothing. But I find fince, in the Nouvelles de la Republ: for December laft, that he ftill perfifts to urge fome new contrivances, which being added he conceives his Engine muft fucceed. To this I anfwer that I undertook only to fhew that his firft device would faile, which yet I fhould fcarce have done, if I had thought a difpute of this nature could have lafted fo long. To come therefore to the point, where he faith that this Engine may well fucceed without alteration, becaufe he hath tryed with Liquors put into Bellows immerfed in Water: I again fay that I grant him the truth of the Experiments, but deny the confequences he would

## [268]

draw from them, I have already given the reafons of my diffent, which this Gentleman is not pleafed to underftand. But to end all controverfies he may pleafe to confult Mr. Perrault, de la Hire, or any other at Paris well known to be skilled in Hydraulicks: and I doubt not but he will find them of the fame opinion with Mr. Boyle, Mr. Hook and other knowing perfons here, who all agree that our Author is in this matter under a miftake.

Occultatio Saturni a Luna plena, Anno 1687. Martit 19no. mane : obfervata a Dno Ed. Haines R.S.S.ad Totteridg prope Londinum, fub Latitudine 5 I. 39.

Ingruente Eclipfi, ad corrigendum Horologium Ofcillatorium cepit aliquot Altitudines Pollucis. viz.
Horologii
Temp corr


ADif-

## [269]

A Difcourfe concerning the Meafure of the Airs refiftance to Bodies moved in it. By the Learned John Wallis S. T.D. ơ R. S. Soc.

'THat the Air (and the like of any orher Medi$u m$ ) doth confiderably give refiftance to Bodies noved in it ; ( and doth thereby abate theit Celerity and Force :) is generally admitted. And Experience doth atteft it: For otherwife, a Cannon Bullet projected Horizontally, fhould (fuppofing the Celerity and Force undiminifhed ) ftrike as hard againft a perpendicular Wall, erected at a great diftance, as near at hand: which we find it doth not.
2. But at what Rate, or in what Proportion, fuch refiftance is ; and (confequently, at what Rate the Celerity and Force is continually diminifhed) feems not to have been fo well examined. Whence it is, that the Motion of a Project (fecluding this Confideration) is commonly reputed to defcribe a Parabolick Line; as arifing from an Uniform or equal Celerity in the Line of Projection, and a Celerity uniformly accelerated in the Line of Defcent: which two fo compounded, do create a Parabola.
3. In order to the computation hereof; I firft premife this Lemma, (as the molt rational that doth occur for my firt footing, ) That (fuppofing other things equal) the refiftance is proportional to the Celerity. For in a double Celerity, there is to be removed (in the fame time) twice as much Air, (which is a double Impediment) in a treble, thrice as much ; and fo in other Proportions.
4. Suppofe we then the Force impreffed (and confequentily the Celerity, if there were no refiftance) as 1 ; the refiftanie as $r$. (which mult be lefs than the Force, or elfe the Force would not prevail over the Impediment, to create a Motion.) And therefore the effective Force at a firft Moment, is to be reputed as $1-r$ : That is, fo much as

## [270]

the Force impreffed, is more than the Impediment or Refiftance,
5. Be it as $I-r$ to $I$; fo $I$ to $m$. (which $m$ is therefore greater than 1.)
6. And therefore the effective Force (and confequently the Celerity ) as to a firft Moment, is to be $\frac{1}{m}$ of what it would be, had there been no refiftance.
7. This $\frac{1}{m}$ is alfo the remaining Force after fuch firft Moment ; and this remaining Force is (for the fame Reafon ) to be proportionally abated as to a fecond Moment: that is we are to take $\frac{\underline{m}}{m}$ thereof, that is $m$ 首 $m$ of the impreffed Force. And for a third Moment (at equal diftance of time) $m^{\frac{1}{2} m}$; for a fourth $m^{\frac{1}{4}}$; and fo onward infinitely.
8. Becaufe the length difpatched (in equal times) is proportional to the Celerities; the Lines of Motion (anfwering to thofe equal Times are to be as $\frac{1}{m}, \frac{1}{m^{2}}, \frac{1}{m^{3}}, \frac{1}{m^{4}}$, cr. of what they would have been; in the fame Times, had there been no refiftance.
9. This therefore is a Geometrical Progreffion; and (becaufe of $m$ greater than $I$ ) continually decreafing.
10. This decreafing Progreffion infinitely continued ( determining in the fame point of Reft, where the Motion is fuppofed to expire) is yet of a Finite Magnitude ; and equal to $m^{\frac{ \pm}{1}}$ of what it would have been in 5 much Time, if there had been no refiltance. As is demonftrated in my Algebra, Chap. 95 . Prop. 8. For (as I have elfewhere demonitrated) the Sum or Aggregate of a Geometrical Progreffion is $\frac{V R-A}{R-1}$ ( fuppofing $V$ the greatelt term, $A$ the leaft, and $R$ the common multiplyer.) That is $\frac{V R}{R-1}-\frac{A}{R-1}$. Now in the prefent Cafe, (fuppofing the Progreffion infinitely continued) the leaft term $A$, be-

## [271]

becomes infinitely mall, or $=0$. And confequently $\frac{A}{R-1}$ doth alfo vanifh, and thereby the Aggregate becomes $=\frac{V R}{R-1}$. That is
(as will appear by dividing $V R$ by $R-1$;) $V+\frac{V}{R}+$

$$
\mathrm{R}-1) V R\left(V+\frac{V}{R}, \frac{V}{R R},\right. \text { od. }
$$

$\frac{V}{R R}+\frac{V}{R^{3}}+\& c .=\frac{V R}{R-\mathrm{I}} ;$

$$
\mathrm{V} R-\mathrm{V}
$$

$$
\begin{aligned}
& \frac{+V}{+V-\frac{V}{R}} \\
& +\frac{V}{R}
\end{aligned}
$$

at $\frac{V}{R}=\frac{1}{m}: \int \frac{V}{R-I}=\frac{V}{R}+\frac{V}{K R}$
$+\frac{V}{R^{3}}+\sigma^{c} c$. That is, in our prefent Cafe (becaufe of $V=1, \& R=m:)^{\frac{1}{n}}+\frac{1}{m}+\frac{x^{3}}{i n}$
$\& \mathrm{c} .=m^{\frac{1}{-}} \mathrm{I}$. That is, $(\text { putting } n=m-1)^{\frac{1}{n}}$ of what it would have been if there had been no refiftance.
11. This infinite Progreffion is fitly expreffed by an ordinate in the exterior Hyperbola, parallel to one of the Afymptotes ; and the feveral Member of that, by the faveral Members of this, cut in continual Proportion. As is there demonftrated at Prop. 15. For let $\mathcal{S} H$, (vide. Fig. III.) be an Hyperbola between the Afymptotes $A B, A F$ : And let the ordinate $D H$ ( in the exteriour Hyperbola, arallei to $A F_{2}$ ) reprefent the impreffed force undiminiShed; or the Line to be defcribed in fuch time, by a Celerity anfwesable to fuck undiminifhed force. And let $B S$ ( a like ordinate) be $\frac{1}{m}$ thereof; which therefore, being left than DH

## [272]

$D^{\prime} H$ (as being equal to a Part of it) will be further than it from $A F$. In $A B$ (which Iput $=1$ ) let $B d$ be fuch a Part thereof, as is $B S$ of $D H$. Now becaufe (as is well known) all the infcribed Parellelograms, in the exteriour Hyperbola, $A S, A H, \& \mathrm{c}$. are equal ; and therefore their fides reciprocal: Therefore as $A d=1-\frac{1}{m} \quad$ (fuppofing $B d$ to be taken, from $B$ toward $A$,) to $A B=1$, (or as $m-1$ to $m$ : fo is $B S$ $=\stackrel{1}{m} D H$, to $d b$, which $m-\mathrm{J})$ ( $\left(\frac{1}{m}+\frac{1}{m m}+\frac{1}{m^{3}}+\& c\right.$. is therefore equal to $m \stackrel{\perp}{-} \mathrm{I}$ of $D H$; that is (as will appear by dividing 1 , by $m-1$, to $\frac{1}{m}+m^{\frac{1}{m}}$ $+\frac{1}{3}^{3}$ dc. of $D H$.

Or if $B d$ be taken beyond $B$; then as $A d=$ $1+\frac{1}{m}$, to $A B=1$, or as $m+\mathrm{r}$ to $m$, fo is $\frac{1}{m} D H$ to $d h$, which is therefore equal to $m+1 D H$; that is ( as will appear by like dividing of 1 by $m+1$;) $=$ to $\frac{2}{m}-\frac{1}{m}+\frac{m^{3}}{m^{3}}-\mathcal{O}^{\circ}$. of $D H$.
12. Let fuch ordinate $d h$, or (equal to it in the Afymptote) $A F$, be fo divided in $L, M, N \& c$. (by perpendiculars cutting the Hyperbola in $l, m, n, 8 c$. ) as that $F L, L M$ $M N$ be as $\frac{\hat{m}^{2}, 2^{2} m, \dot{m}^{3}}{m^{3}}$ c. That is, fo continually decreafing, as that each antecedent be to its confequent, as 1 to $\frac{1}{m}$, or as $m$ to I. See Fig. IV
13. This is done by taking $A F, A L, A N$, \&c. in fuch proportion. For, of continual proportionals the difefences are alfo continually propoitional, and in the fame
proportion. For let $A, B, C, D, \& c$. be fuch proportionals; and their differences $a, b, c, \& c$. That is $A-B=a, B-$ $C=b, C-D=c, \& c$.
Then, becaufe $A, B, C, D, \& c$. are in continual proport:
That is
And dividing
That is
And alternly a.b.c. \&c.:: B. C. D. \&c. :: A. B. C. \&c. That is, in continual proportion as $A$ to $B$, or as $m$ to $I$.
14. This being done; the Hyperbolick fpaces $F l, L \mathrm{~m}$, $M n, \& c$ are equal. As is demonftrated by Gregory Sax. Vincent ; and as fuch is commonly admitted.
15. So that $\mathrm{Fl}, L \mathrm{~m}, \mathrm{Mn}_{n}$ \& c.may fitly reprefent equal times, in which are difpatched unequal lengths, reprefented by $F L, L M, M N, \& c$.
16. And becaufe they are in number infinite (though equal to a finite Magnitude) the duration is infinite. And confequenlty the impreffed force, and unotion thence arifing, never to be wholly extinguifhed ( without fome further impediment ) but perpetually approaching to $A$, in the nature of Afymptotes.
17. The fpaces $F l, F m, F n, \& c$. are therefore as Logarithms (in Arithmetical progreffion increafing) anfwering to the lines $A F, A L, A M, \& c$. ; or to $F L, L M$, $M N, \& c$. in Geometrical progreffion decreafing,
18. Becaufe $F L, L M, M N, \& c$. are as $\frac{1}{m}, \frac{1}{m} m, \frac{2^{3}}{m^{3}}, \& c$ (infinitely) terminated at $A$; therefore (by 10 ) their Aggregate $F A$ or $d h$, is to $D H$, ( fo much length as would have been difpatched, in the fame time, by fuch impreffed force undiminifhed) as 1 to $m-1=n$.
19. If therefore we take, as i to $n, \int \circ A F$ to $D H$; this will reprefent the length to be difpatched, in the fame time, by fuch undiminifhed force.
20. And if fuch $D H$ be fuppofed to be divided into equal parts innumerable (and therefore infinitely fmall;) thefe anfwer to thofe (as many) parts unequal in $F_{A}$, or $h \mathrm{~d}$.

## [274]

21. But, what is the proportion of $r$ to $r$, or (which depends on it) of $x-r$ to 1 , or 1 to $m$; remains to be inquired by experiment.
22. If the progrefion be not infinitely continued; but end (fuppofe) at $N$, and its leaft term be $A=M N$ : then, out of $\frac{V}{K-1}=\frac{1}{m}+\frac{1}{m m^{2}}+\frac{1}{m^{3}}, \& c_{0}$ is to be fubducted
$\frac{A}{R-1}$ (as at $\mathbb{I} 10$ ) that is ( as by divifion will appear) $\frac{A}{R}+\frac{A}{R^{2}}+\frac{A}{R^{3}} \&<$. Thaw is $($ in our prefent cafe $) \frac{a}{m}+$ $\frac{a}{m m} 4 \frac{a}{m^{3}} \& c$. And fo the Aggregate will be $\frac{1-a}{m}+\frac{1-a}{m m}$ $+\frac{1-a}{n} 8 c,=\frac{1-a}{n}$
biAnd thus as to the line of Projection, in which ( fecluding the defidtance I the motion is reputed uniform; difpatching equal lengths in equal times. Confider we next the line of Defeent.
23. In the Defcent of Heavy Bodies, it is fuppofed, that to each moment of time, there is fuperadded a new Impulfe of Gravity to what was before: And each of thefe, fecluding the confideration of the Airs refiftance, to proceed equally (from their feveral beginnings ) through the fucceeding moments. As (in the erect lines)
 tinually as in the lime of of Projection.
24. Hence arifeth (in the tranfverfe lines) I I for the firt moment ; for the fecond $1+1, \leq \leq 1$ for the third $1+r+1$, and fo forth, in A- \&ce. rithmetical progreflion As are the Ordinates in a Triangle, at equal diftance.
25. And fuch are the continual increments of the Diameter, or of the ordinates in the exterior Pacabola, anfwering to the interior Ordinates, or Sedments of the Tan-

## [275]

gent, equally increafing. As is known, and commonly admitted.
26. If we take-in the confideration of the Airs refiftence; we are then for each of thefe equal progreffions, to fubftitute a decreafing progreffion Geometrical ; in like manner (and for the fame reafons) as in the line of Projection.
27. Hence arifeth, for the firft moment $\frac{1}{m}$; for the fecond $\frac{1}{m}+\frac{m^{2}}{m^{2}}$; for the third $m+m^{\frac{1}{2}}+m^{\frac{1}{3}} \& c$. And fuch is

$$
m
$$ therefore the Defcent of a heavy Body falling by its own weight. The feveral impulfes of Gravity being fuppofed equal.

28. That is (in the figure of बा 12 ) as $F L, F M, F N$, $\& c$, in the line of Defcent, anfwering to $F L, L M, \angle 1 N$, \&c. in the line of Projection.
29. But though the Progreffions for the line of Projection, are like to each of thofe many in the line of Defcent : it is not to be thence inferred, that therefore $\frac{1}{m}$ in the one, is equal to $\frac{1}{m}$ in the other: But in the line of Projection (fuppofe) $\frac{1}{m} f$ (fuch a part of the force impreffed, and a celerity anfwerable: ) in the line of Defcent, $\frac{1}{m} g$ (fuch a part of the Impulfe of Gravity.)
30. Thofe for the line of Defcent (of the fame Body) are all equal, each to other: Becaufe $g$ (the new Impulfe of Gravity ) in each moment is fuppofed to be the fame.
31. But what is the proportion of $f$ to $g$ ( that of the force impreffed, to the Impulfe of Gravity in each Body ) remains to be enquired by Experiment.
32. This proportion being found as to one known force; the fame is thence known as to any other force

## [296]

(who's proportion to this is given) in the fame uniform Medium.
33. And this being known as to one Medium; the fame is thence known as to any other Mediam, the proportion of who's refiftance to that of this is known.
34. If a heavy body be projected downward in a pendicular line ; it defcends therefore at the rate $\frac{1}{m}, \frac{1}{m m}, \frac{1}{m^{3}}$, \&c. of $f$ (the impreffed force) increafed by $\frac{1}{m}, \frac{1}{m}+m^{\frac{1}{2}}, \frac{1}{m}+$ $\frac{m}{2}^{\frac{1}{2}}+\frac{m^{3}}{m^{3}}$ \&c. of $g$ the impulfe of Gravity : (by $\$ 7 . \&$ 9T 27. ) Becaufe both forces are here united.
35. If in a perpendicular projection upwards; it afcends in the rate of the former, abated by that of the laiter. Becaufe here the impulfe of Gravity is contrary to the force impreffed.
36. When therefore this latter (continually increafing) becomes equal to that former (continually decreafing) it then cealeth to afcend; and doth thenceforth defcend at the rate wherein the latter continually exceeds the former.
37. In an Horizontal or Oblique projection: If to a Tangent who's increments are as $F L, L M, M N, \& c$; that is as $\frac{1}{m} f, \& c$. be fitted Ordinates (at a given angle ) who's increments are as $F L, F M, F N, \& c$. that is as $\frac{1}{m} g, \& c$ : The Curve anfwering to the compound of thefe Motions, is that wherein the Project is is to move.
38. This Curve (being hitherto without a name) may be called Linea Projectorum; the line of Projects, or things projected; which refembles a Parabola deformed.
30. The Celerity and Tendency, as to each point of this line, is determined by a Tangent at that Point.
40. And that againft which it makes the greatef ftroke

## [277]

or percuffion, is that which (at that point ) is at right angles to that Tangent.
41. If the Projection (at \$127.) be not infinitely continued, but terminate (fuppofe) at $N$, fo that the laif term in the firft Column or Series erect be $a$; and confequently in the fecond, $m a$; in the third, $m m a$, \&c. (each Series having one term fewer than that before it :) then(for the fame reafons as at 9 22.) the Aggregates of the feve. ral Columns (or erect Series) will be $\frac{1-a}{n}, \frac{1-m a}{n}$,
$\frac{x+m m a}{n}$, and fo forth, till ( the multiple of a becoming $=1$ ) the progreffion expire.
42. Now all the abatements here, $a, m a, m m a$, \&c. are the fame with the terms of the firft Column taken backward. For $a$ is the laft, $m$ a the next before it ; and fo of the reft.
43. And the. Aggregate of all the Numerators is fo many times 1 as is the number of terms (fuppofe $t$, ) wanting the firft Column ; that is $t-\frac{1-a}{n}$, or $\frac{n t-1+a}{n} ; \&$ this again divided by the common denominator $n$, becomes $\frac{n t-1+a}{n n}$. And therefore $\frac{n t-1+a}{n n} g$, is the line of defcent by its own Gravity.
44. If therefore this be added to a projecting force downward in a perpendicular; or fubducted from fuch projecting force upward; that is, to or from $\frac{1-a}{n} f$ : The Der fcent in the firft cafe will be $\frac{3-a}{n} f+\frac{n t-1+a}{n n} g$; and the Afcent in the other cafe $\frac{1-a}{n} f-\frac{n t-1+a}{n n} g$. And in this latter cafe, when the ablative part becomes equal to the pofitive part, the Afcent is at the higheft: and M m thence-

## $\left[\begin{array}{ll}278]\end{array}\right.$

thenceforth ( the ablative part exceeding the (pofitive) it will defcend.
-45 . In an Horizontal or Oblique projection; having taken $\frac{1-a}{n} f$ in the line of Projection, and thence $($ at the Angle given) $\frac{n t-\mathrm{r}+a}{n n} g$ in the line of Defcent; the point in the Curve anfwering to thefe, is the place of the Project anfwering to that moment.
46. I am aware of fome Objections to be made, whether to fome points of the Procefs, or to fome of the Sup $\sqrt{ }$, pofitions. But I faw thot well how to wave it,', without making the Computation much more perplexed, And ${ }^{\text {m }}$ a matter fo nice, and which muft depend upon Phyfical Obfervations, $\mathbf{t}^{\prime}$ will be hard to attain fuch accuracy as not to ftand in need of fome allowances.
47. Somewhat might have been further added to direct the Experiments fuggefted at IT 2 s . and gt. . But that may be done at leifure, after deliberation had, which way to attempt the Experiment.
48. The like is to be faid of the different refiftence which different Bodies may meet with in the (ame yhMedto $u m$, according to their different Gravities (exteqfively or intenfively conifidered) and their different figures and Pofitions in Motion. Whereof we have hitherto taken no, account; but fuppofed them, as to ail thefe, to be alike and equal. alfa defired) be thus reprefented by Lines and Spaces. The Ablatives $a, m a, m m a, \& c . y$ being the fame with the firlt Columitaken backwaid') are fitly weprefented by the fegs ments of $N F$ (beginning at $N$ ) in Figure IV. and V. and therefore by Parallelograms on thefe Bafes, affuming the common hight of $F b$ or $N Q$ : the Aggtegate of which

## [279]

is $N b$, or $\mp 2$. And, fo many times 1 , by fo many c. qual faces, on the fame Bafes, between the fame Parallels terminated at the Hyperbola: The Aggregate of which is $h F N$ Q $n$. From whence if we fubduct the Ag. gregate of Ablatives $F Q$; the remaining trilinear $h Q n$, reprefents the Defcent.
50. If to this of Gravity, be joyned a projecting Force; which is to the impulfe of Gravity as $b K$, to $h F$ (be it greater, lefs, or equal) taken in the fame line : the fame parallels determine proportional Parallelograms, whofe Aggregate is $K ?$
51. And therefore if this be a Perpendicular Projection downwards; then $b K k n$ ( the fumme of this with the former) reprefents the Defcent.
52. If it be a Perpendicular upwards; then the difference of thefe two reprefents the Motion. which follong as $K Q$ is the greater, is Afcendent but Defcendent when $h 2 n$ becomes greater: and it is then at the higheft when they be equal.
53. If the Projection be not in the fame Perpendicular, (but Horizontal, or Oblique $)$ then $K$ Q reprefents the Tangent of the Curve; and $h \ell n$ the Ordinates to that Tangent, at the given Angle.
54. But the Computation before given I take to be of better ufe than this reprefentation in Figure. Becaufe in fuch Mathematical enquiries, I choofe to feparate (as much as may be ) what purely concerns Proportions ; and confider it abftractly from lines or other matter wherewith it is incumbered.

As to the queftion propofed ; whether the refiftance of the Medium do not always take off fuch a proportional part of the force moving through it, as is the Specifick Gravity of the Medium to that of the Body moved in it: (for, if fo, it will fave us the trouble of Obfervation.)

Ithink this can by no means be admitted. For there be many other things of confideration herein, befide the In-

## [280]

tenfive Gravity (or, as fome call it, the Specifick Gravity ) of the Medium.

A vifcous Medium fhall more refift, than one more flums id, though of like Intenfive Gravity.

And a fharp Arrow fhall bore his way more cafly through the Medium, than a blunt headed Bolf, though of equal weight, and like intenfive Gravity.

And the fame Pyramide with the Point, than with the Bafe forward.

And many other like varieties, intended in my $\mathbb{T} 48$.
But this I think may be admitted, namely, That different Medilms, equally Lquid, (and other circumitances alike,' do in fuch proportion refift, as is their Intenfive Gravity. Becaufe there is, in fuch Proportion, a heavier object to be removed, by the fame Force. Which is one of the rhings to which 1 33. refers.

And again: The heatyer Project once in motion, pbeing equally fwift, and all othier circumftances alike $\Rightarrow$ moves through the fame Medium in fuch proportion more ftrongly, as is its Intenfive Gravity. For now the Force is in fuch proportion greater, for the removal of the fame refiftance. And this part of what my $1 / 32$. infinuates.

But where there is a complication of thefe confiderations one with another, and with many other cifcumftances whereof each is feverally to be confidered: there muft be refpect frad to all of them.

## $[281]$

Part of a Letter from Mr. William Cole of Briftol to the Publifber, about the Grains refembling Wheat which fell lately in Wilt-hire.
——This City and Country round about, is filled with Reports of Raining Wheat about Warminfter, and other Places within Six or Eight Miles of it, and many believe it; I have procured feveral Parcels of it, and carefully examined them, and find it to be the feeds of Ivy-Berries, which from 'Towers and Churches, Chimneys, Walls and high Buildings, were lately by very fierce Tempelts of Wind and Hail, driven away from the holes, chinks and other parts where Birds had brought them, efpecially Sterlings and Chonshs: It were to little purpofe to tell you the prodigious Stories which have been made of it, among many others, it was confidently affiimed (and backt by feveral, who affirme they had feen it ) that thofe Grains were found in the Hail, as Seeds in Comfits: I do here acquaint you with it (upon Notice I had of fome who have fent feveral Parcels of it to your Society, with itrange Relations of it) to the end you may inform them of the Truth ; For I have by all the ways I can Imagine examined and compared them with the Seeds of Ivy Berries, by the talt, fmell, fize, and Figure; with the affiltance of Magnfying Glaffes, viewing them in both the fuperficial and inward Parts. This perhaps they may have difcovered before this comes to their Hands, if they defire farther Satisfaction concerning it, I thall be ready to ferve them, er.

## William Cole,

## $[282]$

# An Extract of a Letter written by Mr. Veay Phy- 

 fician at Tboloufe to Mr, de St. U/Jans, concerning a very extraordinary Hermaphrodite in that City. Communicated by Dr. Aghonby. Reg. Soc. S.JE venx Monfiear, vous faire part d'une chofe fortextraordinaire, qui m'e ft arrivée il y a quelques jours dans l' 1 Hof . pital S. Jacques, ail quartier des femmes; ouje fuis de tour pendant se femejtré. On apportitine fervante malade Hermaphrodite. Elle eft du tien de Pourdiac a Sept lienes de Tholoufe. Elle a eté baptifée en quadite de fille, fous be nom de Marguerite. Son Pere ett pauvore bomme de Pourdiac, qu'on appelle Malaufe Elle cft agde de 24 a 22 ants, ayant bidar la mine exterieure a une fite, mais les margaes réelles d'uñ bonme bien puiffant. Son vi dgg eft feninin do affés agreable, la gonge bien jolie, of les mammelles aufibien faités qu' on les puiffe defirer a une fille, les feffes ó les ruiffes granedes comme aux fermmes, les parties bonteyses tout tomme celles d't ine femme, mais elle $n$ 'eff percêe que de la profondeur de dens petits traverside doigts; $\sigma$ au milien de cette fente, il pendiun membre viril d'une groffeur fort confiderable, \& qui dans l'erection luy fort au dehors d'enuiron buit pouces. Ce membre eft bien formé, bormis qu'il n'a point de prepuce, \&o qu'il n'eft pas accompagné de tefticules apparens. L"urine of la femence en fortent comme aux. hommes, 'o ce qu il y a de particnlier, c'eft que le Jang menftrual coule aufs par ce méme conduit de la Verge.
$\mathcal{F}^{\prime}$ aurois en de la peine a le croire, $\mathfrak{j}$ je ne $l^{2}$ auois veu moyméme, ©o examiné fort exactement dans le temps que fes menArues couloient, lesquelles luy furviennent prefque tous les mois affez regulierement, ne pafjant gueres deux mois de temps fans les avoir; mais prefque toujours avec de grandes douleurs \& une tenfion au bas ventre qui marque une efpece d'inflammation dans ces parties.

## [283]

I' ay fait voir cela a plufleurs de nos medecins, ef apres avoir confulté Meffeurs les Vicaries Generaux, nous luy avons fait prendre un habit d'homme, fous le nom d' Arnaud Ma. laufe; du, on wa prefentement luy faire apprendre quelque metier. Il $n^{\prime} y$ avoit pas a befoter la deffus, parce que notre Hermaphrodite peut fort bien faire la fonction d' bomme, opoint du tout celle de femme.

F'ay cru vous faire plaifir de vous ecrire ce fait, qui commence deja d'etre public dans cette ville, mais qui eft bien rere, or bien extraordinare.

Tholofe
Decemb. 4. 1686.

## Accounts of BOOKS.

1. Hiftoria Plantarum, Species bactenus editas aliafq; infuper multas noviter inventas © defcriptas compleetens ©rc. Autore Joanne Rajo e Societate Regia. Tomus primus.Londini, 1686 Fol. Apud Henricum Faithorne R.S. Typographum; ad infigne Rofe in Cameterio D. Pauli.

,He excellent Author of this great Work, is fo well known for his incomparable Skill in the Botanick Science, and other Parts of ufeful Learning, that it will be needlefs to fay any thing of him. The Forreign Jour. nals having given Accounts of this Book have prevented the mentioning of many particulars, but they only fpeaking in general, and per $\int$ altum, neglecting the Divifions, Subdivifions, and the Method; I fhall therefore only confine my felf to thofe Particulars.

The Firft Tome contains 18 Books, to which are premifed a Botanick Lexicon, or Interpretation of Terms of Art;

## $[284]$

together with an Account of moft of the Writers that have handled the Subject of Plants. The firft Book treats of Plants in general; as of their Roots, Stalks, Sap, Juices, their Motions, and Differences; of Gems or Buds, Leaves, Flowers, Fruits, Seeds, Clavicles or Climbers, Prickles, their Varieties, and Vegetations; of Sowing, Propagating, Cultivating, Grafting, or Inoculating ; of the Tranf: mutation of Plants, their Statures or Magnitudes, their Ages or Duration, their Faculties, Tafts, and Ufes, their Places, and Divifions ; of Collecting, Drying, and Preferving them, their Chymical Analyfs, and their Difeafes.

The 2d. Book begins with Particulars, as the imperfect Plants, fuch as feem to have no Flower or Seed; thefe are either Submarine; as the Corals, Sponges, Aiga's, Wracks, ơr. or Terreftrial, as the $M u f$ brooms, and barren Moffes. Or Subterraneous, as the Trufles; Tome of the Fungi and Moffes, have vifible Seeds: Thefe are all fubdivided into fubordinate Genera, as the Mufbrooms according to their Lamelle, Plates, Brims;' and Caps; and as they are noxious, or effulent; or grow upon Trees.
The 3 d. Book contains the Capillary or Acanlofe Herbs, which bear their very minute Seeds on the backs of their Leaves, that are confpicuous by the Microfoope: Thefe are fubdivided according to their Leaves, as they are whole, entire and undivided ; or varioully cut, laciniated, pinnate, and ramofe. Of this Kind are the Ferns, the Spleenworts, Polypodies, Maiden-Hairs, erc. which have nothing like a Flower.

Tbe 4th. Treats of fuch Herbs as have an imperfect or ftamineous Flower, commonly call'd Apecalofe, becaufe it is not compofed of Petala or tender fugacious, coloured Leaves, only of a Calyx or Cup, of Staminia or Capillaments of Styles. Theie are fubdivided, I. into fuch whofe. Fruits are not contiguous to their Flowers; as in Hops, Homp, Netths, Spinache, Mercury, Palma Gbrijti,the Ameerican

## $[285]$

Pbyfck -Nut, efo. II. Into fuch that have a triquetrous, or triangular Seed, as the Docks. Sorrels, Arfmarts, Knot-grafs, Snake-wreds. III. Into thofe that have round, compreffed, and otherwife figured Seeds, as the Pond.Weeds, Orraches, Se, -Purflane, the Blites, the Amaranthi, the Beets, fome Kan li's, \&c.

The $5 t h$. Book begins with thofe that have a perfect planifolious Flower, or tender coloured Petala, or Leaves, that make up a compound Flower: thefe are, I. either lactefent, milky, and pappofe, containing their Seeds in a lanugo or downy Subftance; as the Lettuces, Son-thifles, Succorys, Hawk-weeds, Moufe-ears, Dandelyons, Scorzoneri's or Viper-graf $f$, Goats-beard, ©rc. II. Such as have folid Seeds without any pappus or lanugo ; as Endive, Nipple-wort, and fome Succorys; thefe are lactefcent.

The $6 t$. Book contains the Herbs that are not Milky, and yet bear their Sreds in a downy or pappofe Subftance, fucceeding the Flowers; thefe have either radiated, difcofe, and flat Flowers; as Colts-foot, the Conyza's or Fleabanes, Elecampane, the Star-worts, the Leopards Banes, the Golden Rods, the Stacha,s, the Facobaa's or Ragworts; or elfe the Flower is difpofed into a Tbyrus or Spike, as in the Petafitis or Butter-bur.

The 7 th. Is of the capitate Herbs, whofe Flowers are fifular, and whofe Seeds are included in a Squamofe Calyw or cup,conglobated into a Head, fill'd with a Paypus: of this Kind are the Blem-bottles, Saw-wort, the Facea's or Knapweeds, the great Centory, the great Burr-dock, and moft of the Thijtles, which are fub-divided according to their Heads, Flowers, Prickles, Spots, Confiftence of their Leaves, ér.

The $8 t$ b. Comprehends the Corymbiferous, that are not Pappofe, thefe have either a radiated, or a naked Flower, and are fubdivided according to the Colours of the Barbula and $D_{i}$ cuss, and from the Figures the Flowers make; of this Tribe are the Sun-fowers, the Chry anthemum's and $^{2}$ Marigolds, the Yarrows, Dajles, Feverfew, the Lavender-cotNn 2

## [286]

tons, the Tanfies, Wormmoods, Southernwoods, Mugmorts, Scabiofes, Teafels, Eringo, the Globe-thifle, ©ra.

The gth. Treats of the Umbelliferons Herbs, to which are premifed fome Herbs that are a little a Kin to the $\mathrm{Z}_{\mathrm{m}} \mathrm{melli}$, only they have a fingle Seed fucceeding each Flower; whereas the true Zmbelli have two ; of the firft Kind are many Valerians, the Sea Lavenders, the Marvel of Peru, Agrimony, Burnit, Meadow-Rue. Fumitary, \&r. The genuine $Z$ Zimbelli have Pentapetalous Flowers, to each of which, fucceed two naked Seeds joined together; thefe are put under fo many fub-divifions, according to the various Figures of their Seeds, and Leaves; of this $V_{m b e l l i f e r o u s ~} \mathrm{Fa}$ mily are the Parfneps, the Fennels, the Angelica's, the Cummins Parllys, Hemlocks, Smallage, Anifeed, Caraways, the Carrots, Coriander, \&oc. all which are very nicely diftinguifhed, and varioully fub-divided.

The ioth. Contains the Stellate Herbs, whofe Leaves like a radiated Star embrace the Stalk ; their Flowers are Monopetalous, tho' divided or cut into four Segments, or coloured Leaves; to each Flower there generally fucceeds two Seeds; of this Kind are the Madders, the Crofworts, the Ladies Bed-ftraw, the Wood-roofs, the Cleavers or Goofe$\operatorname{grafs}, \& \mathrm{cc}$. The fecond Section of this Book, comprehends the A/perifolious Herbs, whofe Flowers are Monopetalous, and generally reflected at the end like a Scorpions Tail, yet cut into five Margines or Segments; to every one of thefe Flowers fucceed for the moft part four Seeds; of this Kind are the Pulmonaria Maculofa, or Sage of Ferufalem, the Hounds-Tongues, Borage, Buglofs, Alkanet, the Heliotropes or Turnfoles, the Gromils, Scorpion-grafs, Comfrey, the HoneyWorts, \&c.

The 1 x th. is of the Verticillate Herbs, fo called from the Flowers embracing the ftalk like a whirl, or wherle, the Leaves are generally placed together exactly oppofite on the Stalk, the Flowers are Monopetalous, labiated for the moft part or galeated; to each Flower fucceeds 4 Seeds, which

## [287]

which the Calyx or Perianthium ferves inftead of a Veffel; thefe are fubdivided according to their fubftance and duration, as they are Lignous, Fruticofe, Perennial, and Herbaceous. Of this tribe are the Sages, the Lavenders, Rofemary, the Hy $\int$ ops, the Savoury's, Thymes, Poley-mountain, the Germanders, the Mints, Penneroyalls, Vervain, the Majorams, Bafll, the Clarys, Betonys, Marrubiums, Lamiums, Sideritis, Ground-Ivy, Baulm, Calamint, Ground-pine, Bugle, orr.

The 12 th. Comprehends thofe Herbs, to each of whofe Flowers fucceed more than 4 naked Seeds, whofe number is indefinite, they being Poly/permous; here we may note that Mr. Ray takes thofe for naked Seeds whofe Follicules or Covers (if they feem to have any ) are not caft off, but fall with the Seeds from the mother Plant, being not feparable from them. Of this family are the Hepatica's, the Ranunculi, the leffer Celandine, fome Mallowes and Althe$a^{\prime} s$, Avens, Serawberries, Cinquefoils, Tormentill, \&'c. The fecond Section of this Book is of fuch Herbs as have many naked Seeds, and a Flower without any Perianthium or Calyx, as the Travellers-joy, and fome Climbers; Dropwort, Meddow-fweet, the Anemonies, Pa/que-flowers: Thofe of the former Section having Perianthia or Cups about their Flowers.

The 13 th. Is of the Pomiferous, and Bacciferous Herbs, thefe are diftinguifhed by the Magnitude, and Skins of their Fruits ; the Flowers are naked, Monopetalous, divided into five Margines or Segments, placed on the top of the Fruit like a Corolla or Umbilicus. Of this kind are the Gourds, the Pompions, the Coloquintida, the Citruls, Melons, Cucumbers, the Paffon-flowers, Or. Cbina, Bryony, Solomon'sfeals, Solanum's or Nigitflades, Mandrakes, Capficum's or Guinny pepper, Sparagus, Lillies of the Vallie. \&c.

The 14th. Contains the Multifliquofe or corniculated Herbs, which after each Flower bear many Pods or horned Seed Veffels. Of this kind are fome Sedums or Houfeleecks,

## [288]

leeks, Orpines, Peionys, black Hellebore,fome Alhbea's, Monksboods, Columbines, Larks-fpur's.

The 15th. Is of fuch Herbs as have a uniform Monope. talous Flower, and befides the Calyx of the Flower have a diftinct and proper Seed Veffel, fuch as are the Henbanes, the Tobacco's, the Gentians, the Convolvuli or Bind-weeds, the Bell-flowers, Throatworts, Rampions, Stramonium's or Thorn Apples: The other Section is of the deform'd Monopetalous Herbs, both of which are fubdivided according to the Figures and Valves of the feminal Veffels, of this laft kind are the Buttermorts, the Toad-flax or Linaria, Birthworts, Figworts, Foxgloves, Cock-combs or Rattles, Eyebrights, Cow-wheats, \& $c$.

The 16 th. Treats of fuch Herbs as have a uniform $T_{e}$ -trapetalous-or four leav'd Flower with a deciduous quadrifolious Calyx or Periantbium, to which fucceed long or broad Seed Veffels, or fhort ones : the firt are Siliquofe, the other Capfular ; of thefe kinds are the Stock-gilliflowers, the Wallflowers, Tootbworts, Rockets, Muftards, Ciabbages, Colliflowers, Turneps, RadiJhes, Creffes,Scurvigraffes, orc. all which are fubdivided according to their various Pods, and Cap fula's. To thefe are fubjoyn'd many Anomalous tetrapetalous Herbs, or rather Monopetalons, their Flowers being laciniated or cut into 4 parts; of this latter kind are fome Veronica's or Speedwells, fome Chickweeds, Brooklinsss, Poppies, fome Lyfimachic or Willow-herbs, Rues, the Spurges, Plantaines, Orc, thefe make the 17 th . Book.

The 18 th. and laft Book of the firft Tome comprehends the Legumes or Papilionaceous Herbs, whofe Flower fomewhat reprefents a Butterfly with expanded wings, and is properly a deform'd Monopetalous Flower, 'tho' laciniated into 4 unequal Segments. Thefe are divided I. into fuch Legumes as climb, and run up fticks, or perches, as the Kidney Beans, Peafe, Tares, Vetches, Lentills, \&c. II. into fuch as have no clafpers, and doe not climb, neither are trifoliated, thefe are fubdivided into many fubordinate

## $[289]$

genera, according as their Pods are fimple and erect, as in Lupines, Beans, common Liguorice, Goats-Rue; or echinated and monofpermous, as in Cocks-bead; or propendent, as in the Orobi, Aftragoli or Heath-Peafe, Chiches; or as their Cods are included or hid in Bottles, or Veficles, as in the Antbyllis; or joyned, as in fome Colutea's, Ferrum equinum, Ornithopodium or Birds-foot; or double, containing a double Series of Seeds, as in the Tragacanths, \&c. The III. general divifion is into fuch Legumes as are trifoliated, which are varioully fubdivided, according as their heads are thicker or thinner fpicated; or their Pods hid in the Calyx, or appear out of it, or are longer, fhorter, intorted or cochleated; of thefe kinds are all the Trefoils, Haresfoot, Melilots, Faruoreek, Anonis or Reft-Harrows Saintfoin or Medick-Fodder, the Medica's or Snail Trefoils, the Lo$t i$ which are almoit Pentaphyllous or five leaved Legumes, the Cytif or Jhrub Trefoils; to thefe are fubjoined many anomalous filiquofe Herbs, very near a kin to the Papilionaceous; as feveral Fumitorys, Acafa's, Mimofa's or fenfitive Plants.

So much for the general Method of this Book; as for the fubdivifions of each tribe, they are fo numerous and very nice, that I could not trace and fet them down in this account for want of room and words : therefore the Reader is referr'd for them to Mr. Ray himfelf, who difcovers in every part a vaft Memory, a quick Apprehenfion, a clear Judgment, and a long Experience.

Before we leave this Work it may bee neceffary to note, that all the Plants confufedly difperfed up and down in Books, are collected and Methodically digefted in it, together with many new ones never before publifhed; in the Hiftory of each Plant Mr. Ray obferves this excellent Order, firft he gives the Etymologies, then the Gbaracteriftick Notes of diftinction, the beft Synonymous Names, defcriptions of all the parts, the times and places of Growth, and the ufes as well Medicinal as Mechanical.

## [290]

The fecond and laft Tome is already far advanced in the Prefs, above 100 Sheets being work't off, and the whole will certainly be finifhed and publifhed by the end of this Summer; this Volume will contain the Pentapetalous and Polypetalous Herbs, the Bulbs and thofe a kin to them, the Culmiferous and Graminifolious, as the Corns, Graffes, Reeds, Rubles, \&c. After which follows the Anomalous or diforderly rribe of Herbs; and then the Dendrology or Hiftory of Trees and Shrubs begins, all which will be digefted in a new and moft natural Method; there will alfo be a veyy large Appendix. As foon as this Volume is publifhed a particular account fhall be given of it; in the mean time a fhort general Specimen of the Dendrotogy may be inferted, containing only a few of the principal heads.

Firft Mr. Ray divides the Trees into fuch as have caurdicem. fimplitem non pamof um, and fuch as have caudicem ramofum: the firft have a fimple Stemme without any Branches, and produce but one great Gemma or Bud ; the fecond that are ramofe, are firft diftinguifhed into fuch as have $f_{0}$ rem a fructu dijjunctum feu remotum, and fuch as have foorem Fructui contiguinm; of the firft fort fome have the Flower remote from the Fruit in the fame Plant, and fome totis Plantis fejunictum. Of fuch as have alfo the Flower contiguous to the Fruit, fome have it fummo Fructui infor dentoco, and others ino Fructui admafoentem; of the firt of thefe( which have for the moflt part a Corolla or Umbilicus on the top of the Fruit ) fome contain their feed in Pericarpio Seu pulpa bumida, others in materia Sicciore. Each of thefe may be divided according to the number of the Seeds which the Fruit contains, into thofe that have Fructum
 polycocsum; ; after the fame manner allo may the other fort which have Florem imo Frucwio adna/fentem be divided: there will be many other Heads, of which at large and in particular when the Work comes forth.

## [291 ]

11. Pbilofopbice Naturalis Principia Mathematica, Autore II. Newton Trin. Coll. Cantab. Soc. Matbefeos Profeffore Lucafiano, of Societatis Regalis Sodali, 4 to. Londini. Proftat apud plures Bibliopolas.

THis incomparable Author having at length been prevailed upon to appear in publick, has in this Treatife given a moft notable inftance of the extent of the powers of the Mind; and has at once lhewn what are the Principles of Natural Philofophy, and fo far derived from them their confequences, that he feems to have exhaufted his Argument, and left little to be done by thofe that fhall fucceed him. His great skill in the old and new Geometry, helped by his own improvements of the latter, (I mean his method of infinite Series) has enabled him to mafter thofe Problems, which for their difficulty wouid liảve ftill lain unrefolved, had one lefs qualified than himfelf attempted them.

This Treatife is divided into three Books, whereof the two firft are entituled de Motu Corporum, the third de Syftemate Mundi.

The firf begins with definitions of the Terms made ufe of, and diftinguifhes Time, Space, Place and Motion into abfolute and relative, real and apparent, Mathematical and vulgar: fhewing the neceflity of fuch diftinction. To thefe definitions are fubjoyned, the Laws of Motion, with feveral Corollaries therefrom ; as concerning the compofition and refolution of any direct force out of, or into any oblique forces, (whereby the powers of all forts of Mechanical Engines are demonitrated:) the Laws

## $[222]$

of the reflection of Bodies in Motion after their Collifion : and the like.

Thefe neceffary Precognita being delivered, our Author proceeds to confider the Curves generated by the compofition of a direct impreffed motion with a gravitation or tendency towards a Center : and having demoniftrated that in all cafes the Areas at the Center, defcribed by a revolving Body, are proportional to the Times; he fhews how from the Curve deferibed, to find the Law or Rule of the decreafe or increafe of the Tendency or Centripetal forces (as he calls it) in differing diftances from the Center. Of this there are feveral examples : as if the Curve defcribed be a Circle paffing through the Center of tendency; then the force or tendency towards that Center is in all points as the fift power or Iquared-cube of the diftance therefrom reciprocally, If in the proportional Spiral, reciprocally as the cube of the diftance. If in an Ellipfe about the Center thereof directlly as the diftance. If in any of the Conick Sections about the Fous thereof; then he demonftrates that the VisCentripeta, or tendency towards that Focis, is in all places reciprocally as the fuare of the diftance therefrom; and that according to the Velocity of the impreffed Motion, the Curve defcribed is an Hyperbola ; if the Body moved be fwift to a certain degree than a Paxabola; if llower an Ellipfe or Circle in one cafe. From this fort of tendency or gravitation it follows likewife that the fquares of the Times of the periodical Revolutions are as the Cubes of the Radiz or tranfverfe Axes of the Ellipfes. All which being found to agree with the Phenomena of the Celeftial Motions, as difcovered by the great Sagacity and Diligence of Kepler, our Author extends himfelf upon the confequences of this fort of $V$ is centripeta; Shewing how to find the Conick Section which a Bodie fhall defribe when caff with any velocity in a given Line, fuppofing the quantity of the faid force known: and laying down Ceyeral neat conftructions to de-

## [293]

termine the Orbs, either from the Focus given and two points or Tangents; or without it by five points or Tangents or any number of Points and Tangents making together five. Then he fhews how from the Time given to find the Point in a given Orb anfwering thereto; which he performs accurately in the Parabola, and by concife approximations comes as near as he pleafes in the Ellipfe and Hyperbola: all which are Problems of the higheft concern in Aftronomy. Next he lays down the Rules of the perpendicular defcent of Bodies towards the Center, particularly in the cafe where the tendency thereto is reciprocally as the fquare of the diftance; and generally in all other cafes, fuppofing a general quadrature of Curve lines: upon which fuppofion likewife he delivers a general method of difcovering the Orbs defcribed by a Body moving in fuch a tendency towards a Center, increafing or decreafing in any given relation to the diftance from the Center ; and then with great fubtilty he determines in all cafes the Motion of the Apfides (or of the Points of greateft diftance from the Center in all thefe Curves, in fuch Orbs as are nearly Circular. Shewing the Apfides fixt, if the tendency be reciprocally as the fquare of the diftance; direct in Motion in any Ratio between the Square and the Cube and retrograde; if under the Square : which Motion he determines exactly from the Rule of the increafe or decreafe of the Vis Centripeta.

Next the Motion of bodies in given Surfaces is confidered, as likewife the Ofcillatory Motion of Pendules, where is fhewn how to make a Pendulum Vibrate always in equal times, tho' the center or point of tendency be never fo near ; to which, the Demonftration of Mr. Hugens de Cycloide is but a Corollary. And in another Propofition is fhewn the Velocity in each Point, and the time fpent in each part of the Arch defcribed by the Vibrating Body. After this the Effects of two or more Bodies, towards each of which there is a tendency, is confidered; and 'tis made out that two Bodies, fo drawing or attracting each other, defcribe

## [294]

about the common center of Gravity, Curve Lines, like to thofe they feem to defcribe about one another. And of three Bodies, attracting each other, reciprocally as the Square of the diftance between their Centers, the various Confequences are confidered and laid down, in feveral Corollarys of great ufe in explicating the Phenomena of the Moons Motions, the Flux and Reflux of the Sea, the Preceffion of the Equinoctial Points; and the like.

This done our Author with his ufual Acutenefs proceeds to examine into the Caufes of this Tendency or centripetal Force, which from undoubted-Arguments is fhown to be in all the great Bodies of the Univerfe. Here he finds that if a Sphere be compofed of an infinity of $A$ toms, each of which have a Conatus accedendi ad invicem, which decreafes in duplicate Proportion of the Diftance between them; then the whole Congeries shali have the like tendency towards its Center, decreafing, in Spaces without it, in duplicate Proportion of the Diftances from the Center; and decreafing, within its Surface, as the diftance from the Center directly ; fo as to be greateft on the Surface, and nothing at the Center : and tho this might fuffice, yet to compleat the Argument, there is laid down a Method to determine the forces of Globes compofed of Particles whofe Tendencies to each other do decreafe in any other Ratio of the Diftances: Which Speculation is carryed on likewife to other Bodies not Spherical, whether finite or indeterminate. Laftly is propofed a Method of explaining the Refractions and Reflections of tranfparent Bodies from the fame Principles; and feveral Problems folved of the greatelt Concern in the Art of Dioptricks.

Hitherto our Author has confidered the Effects of com pound Motions in Mediis non refjfentibus, or wherein a Body once in Motion would move equably in a direct Line, if not diverted by a fupervening Attraction or tendency. toward fome other Body. Here is demonitrated what

## [295]

would be the confequence of a refiftence from a Medium, either in the fimple or duplicate Ratio of the Velocity, or elfe between both: and to compleat this Argument is laid down a general Method of determining the denfity of the Medium in all places, which, with a uniform Gravity tending perpendicuarly to the plain of the Horizon, fhall make a Project move in any curve Line affigned; which is the roth. Prop. Lib.II. Then the circular Motion of Bodies in refifting Media is determined, and 'tis fhown under what Laws of decreafe of Denfity, the Circle will become a proportional Spiral. Next the denfity and compreffion of Fluids is confidered, and the Doctrine of Hy droftaticks demonftrated; and here 'tis propofed to the Contemplation of Natural Philofophers, whether the furprizing Pbenomena of the Elafticity of the Air and fomeother Fluids may not arife from their being compofed of Particles which flie each other ; which being rather a Phyfical than Mathematical Inquiry, our Author forbears to Difcufs.

Next the Oppofition of the Medium and its. Effects on the Vibrations of the Pendulum is confidered, which is followed by an Inquiry into the Rules of the Oppofition to Bodies, as their Bulk, Shape, or Denfity may be varyed : Here with great exactnefs is an Account given of feveral Experiments tried with Pendula, in order to verify the aforegoing Speculation, and to determine the quantity of the Airs Oppofition to Bodies moving in it.

From hence is proceeded to the undulation of Fluids, the Laws whereof are here laid down, and by them the Motion and Propagation of Light and Sound are explained. The laft Section of this Book is concerning the Circular Motion of Fluids, wherein the Nature of their Vortical Motions is confidered, and from thence the Cartefian Doctrine of the Vortices of the Celeftial Matter carrying with them the Planets about the $S_{r n}$, is proved to be alltogether impoffible.

The

## [296]

The III. and laft Book is entituled de Syftemate Mundi, wherein the Demonftrations of the two former Books are applyed to the Explication of the principal Phenomena of Nature: Here the verity of the Hypothefis of Kepler is demonitrated ; and a full Refolution given to all the difficulties that occur in the Aftronomical Science ; they being nothing elfe but the neceffary confequences of the Sun, Earth, Moon, and Planets, having all of them a gravitation or tendency towards their Centers proportionate to the Quantity of Matter in each of them, and whofe Force abates in duplicate proportion of the Diftance reciprocally. "Here likewife are indifputably folved the Appearances of the Tides, or Flux and Reflux of the Sea; and the Spheroidical Figure of the Earth and Fupiter determined, (from which the preceffion of the Equinoxes, or rotation of the Earths Axis is made out, ) together with the retroceffion of the Moons Nodes, the Quantity and inequalities of whofe Motion are here exactly ftated a priore : Laftly the Theory of the Motion of Comets is attempted with fuch fuccefs, that in an Example of the great Comet which appeared in i68롶, the Motion thereof is computed as exactly as we can pretend to give the places of the primary Planets; and a general Method is here laid down to ftate and determine the Trajectoric of Comets, by an eafy Geometrical Conftruction; upon fuppofition that thofeCurves are Para'olick, or fo near it that the Parabola may ferve without fenifible Error ; tho' it be more probable, faith our Author, that thefe Orbs are Elliptical, and that after long periods Comets may return again. But fuch Ellip/es are by Reafon of the immenfe diftance of the Foci, and fmaflnefs of the Latus Rectum, in the Parts near the Sun where Comets appear, not eafily diftinguifhed from the Curve of the $P_{a-}$ rabola: as is proved by the Example produced.

The whole Book is interfperfed with Lemma's of General ufe in Geometry, and feveral new Methods applyed, which

## [297]

which are well worth the confidering; and it may be juftly faid, that fo many and fo Valuable Pbilofophical Truths, as are herein difcovered and put paft Difpute, were never yet owing to the Capacity and Induftry of any one Man.

## ADVERTISEMENT;

Whereas the Publication of thefe Tranfactions has for fome Months laft paft been interrupted; The Reader is defired to take notice that the care of the Edition of this Book of Mr. Newton having lain wholly upon the Publifber (wherein be conceives be hat h been more Serviceable to the Commonwealth of Learning ) and for Some otber prefing reafons, they could not be got ready in due time; but now they will again be continued as formerly, and come out regularly, either of three Jbeets, or. five with a Cutt; according as Materials §ball occur.

## $L O N D O N$,

Printed by $\mathcal{F}$. Streater, and are to be fold by $S a$ muel Smith at the Princes Arms in St. Paul's

Church-yard.
45....entanyy
$\qquad$

# [297] <br> Num. $187^{\circ}$ <br> PHILOSOPHICAL TRANSACTIONS 

For the Months of April, May and Fune $\mathbf{1 6 8 7}$

## The CONTENTS.

AReceipt to Cure Mad Doggs, or Men or Beafts Bitten by Mad Doggs. Communicated to the R. Society by Sr. Rob. Gourdon Knt. R. S. Soc. by bis Majefties Command. (2.) A Letter of Monjieur Caffini to the Publijber, giving bis Correcitions of the Theory of the frve Satellites of Saturn : With Tables of the Motions of thofe Satellites, adapted to the Meridian of London and the Julian Account. (3) Ans Account of Several curious Obfervations and Experimexts concerning the growth of Trees; made by Thomas Brotherton of Hey in the County of Lancafter Efq. Brought in and Read before the R. Society, by Mr. Robert Hook Fellow of the faid Society. (4) A Difcourfe concerning the Apparent Magnitude of the Sun and Moon; or the Apparent Diftance of 2 Starrs wher nigh the Horizon, and when bigher elevated; by William Molineux of Dublin E/q. Reg. Soc, Socius. (5.) The Sentiments of the Reverend and Learned Dr. John Wallis R.S. Soc. vpon the aforefaid Appearence. Communicated in a Letter to the Publifber. Account of a Book. AContinuation of the New Digefter of Bones: Its Improvements and new TVes, it hath applyed to, both at Sea and Land: Together with fome Improvements and new $\tau$ Ses of the Air Pump, tryed both in England and Italy, By D. Papin M. D. © R. S. Soc.

## [298]

A Receipt to cure Mad Dogs, or Men or Beafts bitten by Mad Dogs: Communicated to the Royal Society, by Sr.Rob. Gourdon. By His Mffesties Command.

及 A Grimony Roots, Primrofe Roots, Dragon Roots, Single Peony Roots, the Leaves of Box, of each a Handful; the Starr of the Earth two Handfuls; the black of Crabs Claws prepared, Verice Treacle, of each one Ounce; all thefe are to be beaten and bruifed together, and boyled in about a Gallon of Milk, till the half be boyled away ; then put it into a Bottle, unftrained, and give of it, about 3 or 4 Spoon-fuls at a time, to the Dog or Beaft, three Mornings together before new and full Moon.

Obferve, that it will be neceffary the day before you adminifter the Medicine, to take away a little Blood.

Some of thefe Roots and Herbs, being difficult to be gotten in the Winter, they may be gathered in their Sedfon, and being dryed, and well powdered, may be given mixt with the Crabs Claws, and Verice Treacle, with Sallet Oyl or Butter, and it will do as well.

If it be for Men or Women that are bitten with Mad Dogs; take the fame Ingredients in the fame Quantities, and the Roots and Herbs being bruifed altogether, with the Crabs Claws and Venice Treacle; let them be infufed warm in two Quarts offtrong White Wine, for at leaft 12 Hours. This being ftrained, the Party bitten is to take about a quarter of a Pint Evening and Morning, three Days before the new and full Moon; it may be fweetned, either with Sugar or fome Cordial Syrup.

N B. The Plant in this Receipt called; Sarr of the Earts, and which is the chief Ingredient, is known among the Botanifts, by the Name of Sefamoides Salamantica, Parkinfoni, five Ly-hnis vifcof a flore mufcofo, Calp. Baubini. Anglice, spanib Catch-flic. It grows plentifully about Thetford, and about the Nills near Nerr-Market. Vide Raii Catalogum Plantarum Anglic, © Hiftor. Plant-Tom. II. inter Lychnides.

## A Letter of Monfieur Caf/ini to the Publifher, giving his Corrections of the Theory of the five Satellites of Saturn; With Tables of the Motions of thofe Satellites, adapted to the Meridian of London, and the fulian Account.

CE que j"ay efcrit jufqu" a prefent fur les nouvelles decourvertes, que j'ay faites depuis quelque temps dans le Ciel, est $\sqrt{2}$ pen de chbojé, que je ne l'ay pas jugé digne d' eftre prefenté a la Societé Rayale.
Fe n' eus pas plustoft donné au Fournal la decouverte des denx noneveaux Satellites de Saturne, que je vis qu'il y avoit quelgue chofe a elaircir, touchant leur diftances, ©o la durée de leur conjonctions.

La diftance du premier Satellite au centre de Saturne m'a paru van riable, $\forall_{0}$ Son mouvement fenfiblemest inegal, plus vifte, en ce temps, dans le demicerle sccidental, que dans loriental. F'ay dernierement determiné fa mojenne dijfance dee $\frac{3.3}{4.0}$ du diametre de le anneau de Saturne, fon mourvement journalier de 6 fig. Io d. $41^{\prime} .31^{\prime \prime}$. Ainf/if fon mouvement eftoit egal, la duree de fa conjonction avec Saturne, c'eft a dire $_{2}$ tout le temps quil met a parcourir fon anneau, Seroit de $7 \mathrm{~h} .4^{\prime}$. Elle m'a paru plus grande par les obfervations immediates, mais il eft a remarquer que je n'ay jufqu' a prefent pù voir ce Satellite plus pres de Saturne, que d'un Quart d'un Anfe.
F'ay calculé $l$ Epogue de fon mouvement, pour le dernier Decembre 1685. a midi au meridien de Paris en 2s 24 d. $50^{\prime}$.

La difance du fecond Satellite du centre de Saturne m' a paru plus uniforme. Je l'ay determinée d'un diametre de l'anneau \& $\frac{1}{4}$. Son mouvement paroit auff plus egal. F̛a ay calculé le journalier de 4 fig. II d, $3 \mathrm{I}^{\prime} \cdot 30^{\prime \prime}$. Ainfi la durée de fa conjunction deuroit eftre de $8 \mathrm{~h} .36^{\prime}$. Fe n'ay pas non plus vin jufqu' a prefent ce Satellite plus proche de l'anneau de Saturne que d' $\frac{1}{4}$ d'un anfe. Comme ce Satellite Se voioit las plus part du temps dedans les confins de la diftance du Premier, au quel il est egal en grandeur, © Semblable dans la coleur, la difficulté de difinguer l'un de l'autre a éfté extreme, de fort gue Jans un affrduité particuliere aux obfervations, o fans une grande multitude de combinaions je n'en ferois pas venu a bout.

## (300)

T'ay determiné $P$ Epoque de ce Satellite pour le 31 Decembre 1685. a midi.en M 9.d. $10^{\prime}$.

La diftance du Troifeme du centre de Saturne paroit d' un diametre de l' annearu © ${ }^{\frac{3}{4} .}$. Son mourvement journalier 2 fig. 18.d. $41^{\prime} .50^{\prime \prime}$. Ainfli Ja conjonction doit durer to beures. L'epogue de fon mouvement pour le midì du dernier de l'anzée 1685. पl 9.d. 39'.
La diftance du Quatrieme Satellite au centre de Saturse paroit de 4 diametres de $l^{l}$ 'anneau. Son mourvement journalier de 22 d. $34^{\prime} \cdot 38^{\prime \prime \prime}$, la duree de Ja conjonction is h. 6'. L'epoque de Son movivement au mefme temps © 6 lien que les autres en $*$ I $8 \mathrm{~d} . I^{\prime}$.

La diftance du cinquiéfme Satellite au centre de Saturre de 12 diametres de l'anneau. Son mouvement journalier ite $4 \mathrm{~d} .3^{\prime} \div 17^{\prime \prime}$. Ses conjonctions durent 24 beures. L'epoque de fon mouvement au mefme
 bles, © les Epbemerides.
Voicy, Monfieur, en deux pages le refultat d'un Travail tres long etres penible, que je vous prie de communiquer a la Societé Royale, la fuppliant de l'agreer, or d'attribuer au perfond refpect, gue je lay dois, la refervé que j'ay eïe de ne luy prefenter que des chofes bien digerées, $\&$ c.

Pàris, le 10. OEtobre, 1686.

Calfoni

FOR the fake of the Curious in Aftronomical Matters, and to help them to know where to look for thefe obfcure little Stars, it was thought fit to deduce from the Elements delivered in this Letter, the following Tables, ferving to compute eafily their Places at any time affigned.

## Tabula

## (301)

## Tabula Motus Medii Intimi Satellitis

Saturni, à Caffino Detecti Anno 1686.


## (302)

## Tabula Motus Medii penintimi Satellitis

 Saturni, à Caffino Detecti Anno 1686.

## (303)

## Tabula Motus Medii Satellitis Saturnii

 Medii, à Caffino detecti Anno 1673.| Ann. Chrif. Curr. | Epache <br> o. <br> ? | $\begin{array}{\|c\|c\|} \hline \text { Mot. Med } \\ \hline \text { s. o. } \\ \hline \end{array}$ |  | $\begin{aligned} & \text { Mot. Med. } \\ & \text { s. o. } \quad . \end{aligned}$ |  | Mot.Me. $\text { sex. }{ }_{j}^{\circ} \cdot \frac{1}{i}$ |  | Motus Med. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1661 | $=3.22 .50$ | I 9.14 .29 | 1 | 2.18 .42 |  | 0. 3.17 |  |  |
| 1681 | 19.16.3 | 2 6.28.58 | 2 | 5. 7.24 |  | 0. 6.33 |  | 1. 45 |
| 1685 | m. 2.41 | 34.13 .27 | 3 | 7.26.05 |  | 0. 9.50 |  | I. 48 |
| 1686 | m. 17.10 | 4 4.16.38 |  | 10.1447 |  | 0.13 .7 |  |  |
|  |  | 512.01 .08 | 5 | I. 3.29 . |  | 0.1 |  | +. 55 |
| 168 | III. I6. 9 | 611.15 .37 | 6 | 3.22.11 |  | 0.1 |  | C. 58 |
| 1689 | II. 19.20 | 78.00 .06 | 8 | 6.10 .53 |  | 0.2 |  |  |
| 1701 | $\Omega .9 .15$ | 8 9.3.17 | 8 | 8.29.35 |  | 0.2 |  |  |
| Mens. | Mot. Med | 96.17 .46 |  | 1.18.16 |  | 0.29.3 1 |  |  |
| Anni |  | 104402.15 |  | 2. 6.58 |  | 0.32 .47 |  | 2. 11 |
|  | 0. 0.0 | II 1.16 .45 |  | 4.25 .40 | II | 0.36.0 |  |  |
| Fan. | O. 0.0 | 12 I.19.55 | 12 | 7.14 .22 | 12 | 0.39.2 1 |  | 2. 18 |
| Febr. | 9. 9 | 1311.04 .2 | 3 | 10.03 .04 | 130 | 0.42 .3 |  | 21 |
| Mar. | 10.23. 8 | 14 8.18.5 |  | 0.21 .46 |  | 0.45.5 |  |  |
| Apri. | 8. 2.45 | 15 6.03 .23 <br> 6.6 .3  | 15 | 3.10 .27 | 15 | 0,49.11 | 45 |  |
| Maii | 2.23 .40 |  |  | 5.29.09 |  | 0.52 .28 |  |  |
| Funi2 | - 0.3 .17 | 17 3.21.03 | 17 | 8.17 .51 | 170 | 0.55.45 |  |  |
|  |  | 18 1.05.32 | 18 | 11.06 .33 | 180 | 0.59. 1 |  |  |
| Aug. | 4.3.49 | 19 10.20.01 | 19 | 1.25.15 |  | I.02.18 |  |  |
| Sept. | 1.13 .25 | 2011023.12 | 20 | 4.13.57 | 201 | I. 5.35 | 50 |  |
| Octo. | 8. 4.20 |  | 21 | 7.02.39 |  | c. 8.52 |  |  |
| Nor Dece. | $\begin{aligned} & 5.13 .57 \\ & 0.4 .52 \end{aligned}$ |  | 22 | 9.21 .20 | 22 | I.12.08 |  | 2. 52 |
|  | 0. 4.52 |  | 23 | 0.10 .02 | 23 | I. 15.25 |  | 2. 54 |
|  |  |  | 24 | 2.28 .44 |  | I. 18.42 |  | 2. 57 |
|  |  | poft Fe- | 25 | 5.17 .26 | 25 | 1.21.59 |  | 3. 00 |
|  |  | um di. | 26 | 8.06.08 | $361$ | 1.25.15 |  | 3. 4 |
|  | , motum | competen- |  | 10.24 .5 | 71 | I.28.32 |  | 7 |
| term |  |  | 28 | I.I | 28 | 1.31 .4 |  | 10 |
|  |  |  | 29 | 4.02 .1 | 9 | I. 35.0 |  | 3. 13 |
|  |  |  | 30 | 6.20 .55 | 301 | I. 38.22 |  | 13. 17 |

## (3042)

## Tabula Motus Medii penextimi Satellitis Saturni, ab Hugenio inventi Ammo i655.



## (305)

## Tabula Mediorum Motuum Extimi Sa-

 tellitis Saturnii, à Caffino detecti Anno 1671.

## ( 306 )

A$S$ to the Ule of thefe Tables, it is fuppofed that the Reader is fo much verfed in Aftronomical Calculation, as to know how to compute by them, they being in the ufual Form ; if not, there is fufficient direction given in the Correction of Hugens's Satellite, to be found in Numb. 145 , of thefe Tranfactions. I hall only add, That the Proportion of the Squares of the times of the Periods, to the Cubes of the Diftances, (which is propofed as probable by Kepler, but now demonftratively found true by Mr. Newton, gives us nicely the Proportion of the Diftances of thefe Planets from the Center of Saturn; and fuppofing the Satellite of Hugens four Diameters of Saturn's Ring diftant from him, we fhall find by the Periods, the Diftances, as follows.


Thefe Diftances may be ufed, as more accurate than thofe obtained by Obfervation, which yet differ but little therefrom. The outermoft Satellite being fo far diftant, cannot fail of being feen every greateft Elongation. This prefent Year 1687, it will be in its greatef occidental diftance fuly 24. again OEtOb. 12. and fan. 2. 1688. and on the Oriental Side on Sept. 3. 1687. Nov. 23. and about the middle of Feb. 1688. at which Times all thofe that are furnifhed with good Telefcopes may fatisfic themfelves of the Truth of there Difcoveries.

Thofe that defire a fuller Account of this Matter, may find it in N. 92. N. 145. N. 181. of thefe Tranfactions.



## [ 307 ]

An Account of feveral curious Obfervations and Experiments, concerning the Growth of Irees; made by Thomas Brocherton, of Hey, in the County of Lancalter, Efq. Brought in and Read before the R. S. by R.H. Fellow of the faid Socienty:

The Experiments and Obfervations, were made at Hey , in the County of Lancafter.

THe firf Experiment was made in the Year 1671 , upon a Crab Tree, about four Inches in Diameter; it was hacked round with a Hatchet, fo as to cut pretty deep into the Wood, befides the cutting off of the Bark, for about four Inches wide, After which it was the fame Year obferved to increafe above the faid hacking very confiderably, and to fhoot in length of Wood, about one Foot ; the next Year it increafed confiderably, and fhot in length about nine Inches: But the third Year it dyed to the very Root.

Much the like was obferved in another, part of whofe Bark was eaten off by a Canker, that the lower part ftood, without increafing, and by degrees the Wood rotted and mortifyed; but the upper part increafed to the 3 d . year when it Dyed allo.

Moft of the following Experiments, were tryed on the Abies or Scotch-Firr, and on the black Poplar with white Bart, and on Hazel and Ajb Trees.

A Scotch-Firr of three Years growth, having a Ring of the Bark cut off, of the breadth of tiree Inches, near the bottom of the Stem or Stalk, below the upermoft Knot or Joynt, was obferved to grow and fhoot out its Top, about

## $[308]$

half a Yard ; and the Parts all about the Ring, to increafe very much in thicknefs the fame Year the Section was made, and to increafe in thicknefs, much more than it would have done if the Section had not been made:but all that part of the Stock,between the the fald Ring and the Knot next below it, increafed not at all ; but that part which was below the next Knot increafed fomewhat, yet not fo much as if the faid Ring of the Bark, had not been cut off. The 2d. Year it alfo increafed confiderably, but not fo much as the firft ; but the third Year it died. The Branch that was here produred, had the Ring cut off from it, Apr. the 1ft. 1686, and the part above the Section increafed, and grew till the 17 th. of Obctober following, when it was cut off from the Tree. In this fpace of time the part below the Ring increafed not at all, but ftood at a ftay; but the part about the Ring fhot out a new Joynt, between a Foot and half a Yard, and increafed in thicknefs for the whole length of it, and in all its parts twice as much as it would have done, if it had not been Cut, as was apparent by a like Branch on the oppofite fide of the Knot, which was not cut or barked round in the fame manner: The Bark alfo of the part above the Setion, fwelled, or grew downwards over the woody part,(which was bare) above half an Inch in breadth.

The úfual time for making this Section, was either in March or the beginning of April.

Tryal was made upon fome young Trees cutting a helical fwath of the Bark, a bout halfe an inch in breadth, by leaving a like helical fwath of Bark to comunicate between the upper and under part; in this Tryal, the difference of growth fucceeded not, but the remaining fwath of the Bark fwelled downwards, and by the end of the Year, covered the bared part of the Wood.

The like event almoft followed, upon making an indented Section round, of about half an Inch in breadth; the uper

## $[309]$

uper Bark quickly fwelling downward, and joyning again with the lower.
It was alfo obfervable, that as the upper Bark grew downwards; fo it increafed allo in thicknefs, whereas the Bark below the Section thickned not at all.

Several of thofe Bows, which were about one Inch in Diameter, and had increafed, as above the Summer before were obferved to out live the great Froft, and to receive no confiderable Damage; whereas many others otherwife ordered, were killed by it, as will appear by and by, more particularly.

In the firt Fig. is reprefented a Scotch Firr of three Years growth (it fhooting forth eyery Year, both from the Body, and the Branches a new Joynt and circumambient Sprouts, to a determinate length) barked with three Rings, of about $x^{\frac{1}{2}}$ Inch broad, each about the middle of the Internodia or parts of the Stock between the Joynts, at $c b, \& a$; this in one Year increafed and fhot forth branchings, as in the fecond Fig. that is the Stock at $a$, which was about the bignefs of a Quill, below the Ring to the next Joynt continued of the fame bignefs, but above the Ring it increafed and grew to the bignefs of ones Finger, and from the new Joynt at e fhot out new Limbs and Stock about a quarter of a Yard, which was fomewhat bigger, than if there had been no Ring made. Next the Branches $f f$ increafed likewife proportionably, by fwelling in bigneff, and from a new Joynt fhooting out new Body and Limbs, as the Top or Body ; and the Body of' the Tree below the Joynt $b$ to the Ring $b$, increafed more than if the Ring had not been made; but the part of the Stock below the Ring to the next Joynt, increafed not at ali. The like fhooting forth and increafing, was obferved in the 2d. Limbs Joynt and Stock below it $g \mathrm{~g} . i$ to $c$, between which and $k$, it increafed not.

The like alfo fucceeded in the lower Branches $l l$, and Joynt $k$, and in the Stock $d$, below the Joynt $k$.

## [310]

Fig. the $3 d$. Reprefents a young Scotch Firr of two Years old, on one of the lowermoft Branches $t$, was made a Ring Section between the Body and firft Knot of the Limb. The following Year, that part of the Limb above the Ring, 'increafed twice or thrice as much as the correfponding parts of the other Limbs, from the fame Knot, as $a$, which increafed as if there had been no Section made at $B$, but the part below 6 to the Body, increafed not at all.

Fig. 5 reprefents a young Hazel cut into the Body with a deep gafh, and the parts of the Body above and below cleft upwards and downwards and the Splinters $a$ and $b$, by wedges kept off from touching each other, or the reft of the Body. Thefe the following Year were obferved to be in the State reprefented in the 6 th. Fig. that is the Splinter $a$ above the gath, was grown very much, but the Splinter b below, flood at a thay and grew not, but the refl of the Body atc, grew as if there had been no gafh made.

Fig. 7 Reprefents a like gafh made juft above the lowermoft Knot; and the parts 'plinter'd or cleft and wedged off from each otiver, and from the Body as before, but there is left a Branch upon the lower Splinter to fee what will be the State thereof the next Year, or in October next. When'tis probable by the other Experiments the lower Splinter and Branch upon it, will be found to have grown and increafed as the Splinter in the former Experiment did above the gafh, though not in the fame Proportion.

Fig. 8 Reprefents four young Poplar Trees, $A, B, C D$, all of equal bignefs, growth, fituation, and foyl as near as could be found; thefe were ordered as is reprefented in the $g t b$ : Fig. that is $A$ had all its branches and top cut off $B$ had all its branches pruned off, but it was left with a fmall Head at the top. $C$ had the branches cut about half way, and thofe of the uper half left growing, $\quad D$ was left

## [3 $\left.3^{1 \mathrm{II}}\right]$

growing without being at all pruned or lopped ; the event was expected.

The fuccefs was found to be thus $A$ in the following Years fhotout many Twigs round about, but the Body increafed but little in heighth or bignefs. B fhot out likewife many Twig's where it had been pruned, and the topbranches and top alfo increafed confiderably, and the Budy alfo increafed much more in heighth and bignefs than did the former $A$. $C$ increafed yet much more in all its parts than B. But $D$ increafed in Limbs, Heighth, and Bignefs moft of all; fwelling in bignefs, and ftretching in heighth and fpreading in its Boughs much more than $C$; and in about io Years, was more than four times as bigg as $A$.
The fame worthy Perfon alfo obferved,that all the Poplars that had been pruned, dyed in the great Froft 1684; in fo much, that of 25 that were fo ordered, he obferved ig of them to be killed by it, and the remaining to be very weak and hardly able to recover, and increafed very little in the following Years. Thefe Poplars were about 30 Foot high, and had only a fmall Head left at the top unloped, of about 4 or 5 Foot, and were pruned, the Spring before the great Froft. He obferved alfo, that divers of thofe which had been pruned two Summers before the Froft, were killed by it : But none of thofe which had not been pruned at all, were hurt by it. He took Notice alfo, both in Lancafbire and Chefbire, that Trees of 60 Foot in highth, that had been pruncd, and had only a fmall Top left, were alfo killed by the faid Froit ; whereas thofe Trees of the fame Kind and Heighth, which ftood near to them, bur had not been pruned, continued to flourifh, and fuffered no harm thereby. Several of thofe Branchés of about an Inch Diameter,, and Trees that had been barked round, as above, the Spring before the great Froft, out lived the violence of the fame, and the proceding Winter.

Where

## $\left[3 \mathrm{r}_{2}\right]$

Wherethefe prunings had been tryed upon Trees 20 Foot high ; the difference of their Increafe, was fenfible the following Summer, but in 7 or 8 Years time, the difference is prodigious; the un-pruned Trees growing feveral times bigger than the pruned, both in Body and Branches, even to Admiration.

He hath often obferved, alfo that when the top Branches would fhoot out and grow 2 Foot, or more, in length; the lower Branches would not fhoot above 4 Inches. And further', that in the Branches of the Scotcb Fir, the Joynts above the Rings barked round, would increafe and grow much bigger in 3 Years, than they would in 5 Years, if the faid Rings were not cut off.

The fame Perfon upon Difcourfing fome, other particular Inquiries about the Spreading and Increafe of the Roots, affured me, that he had obferved a very large $P_{i}$ reafer about two Foot and an half in Diameter, and of a heighth proportionable (viz: of about 20 Yards; the loweft Boughs of which, were about 30 Foot above the Ground) did fpread and flourifh on every fide a like, though it had no Root at all towards three quarters of its Situation, but only toward one quarter, into which it fpread its Roots very farr and large,divers of them reaching about 70 or 80 Foot from the Body of the Tree: The Reafon of which fpreading was occafioned by its being planted juft within the fquare Angle of the Corneir of a deep thick and ftrong Stone Wall, which was a kind of Bauking or Wharfing aagainft a River that ran by it: This Tree-I fay, tho' it had nourifhment only from one quarter of four to its Roots, yet did the fame flourifh and fpread equally on $e$ very fide.

Uapoa Conilyation of thefe and divers other Obfervations, and Experiments Mr. Brotherton is of Opinion. 1 That the Sap (moft of it if not all) afcends in the Veffels of the lignous part of the Tree, and not in the Cortical Part, tior between the Cortical and Lignous parts.
2. That

## $[313]$

2. That the Increafe and Growth of a Tree in thicknefs is by the defcent of the Sap, and not by the afcent; and if there were no defcent, a Tree would Increafe but very little, if at all.
3. That there is a continual Circulation of the Sap all the Summer Seafon, and during fuch time as the Sap is ftirring, and not a Defcent at Michaelmas, only, as fome have held.

To me it feems very probable, that the Bodies of Plants, as well as thofe of moving Animals, are nourifht and increafed by a double Food ; the one an impregnated Water, and the other an impregnated Air, and that without a convenient fupply of thefe two, the Vegetable cannot fubfift, at leaft not increafe. Thefe do mutually mix and coalefs, and parts of the Air convert to Water, and parts of Water convert to Air. As fome of this latter are rarifyed and freed from their Chains and become Spiritual and Aiery, fo others of the fore-mentioned, are clogge'd and fettered and become debaled. To this purpofe all Plants as well as Animals, have a twofold kind of Roots, one that branches and fpreads into the Earth, and another that fpreads and fhoots into the Air, both Kinds of Roots ferve to receive and carry their proper Nourifhment to the Body of the Plant,and both ferve alfo to conveigh and carry off the ufelefs Recrements; ufelefs I mean any further within the Body of the Plant, though ufeful to it when they are feparated, aud without it, the one for Seafoning the Earth and Water wherein it is planted, and the o ther for feafoning and preparing the Air, the Method of which I have els where explained.

## [354]

Concerning the Apparent Magnitude of the Sun and Moon, or the Apparent Diftance of two Stars, when nigh the Horizon, and when Higher elevated.

IDo not Defigne fo much to eftablifh any thing of my own that may be fatisfactory in folving this admirable appearance, as to detect the Errors of thofe that have offered at afolution thereof, and have come fhort (as I conceive ) of being fatisfactory; that thereby I may a gain fett the minds of Philofophers on Work, and roufe them up to enquire a new after this furprifing Phanomenon. That I may doe this the more Effectualy, I fhall breifly declare the Matter of Fact and then proceed to the Reafon thereof, given by feveral, and to their Confutations.

Firft therefore it is well known that the mean apparent Magnitude of the Moon is 30 m .30 f . we will take it Numero Rotundo to de 30, that is, an Arch of a great Circle in the Heavens of 30 Minuts is covered by her Diameter, and this we'll fuppofe to be her apparent Diameter, ate full Moon in the midit of Winter, and when fhe's in the Meridian, and at her greateft Northern Latitude and Confequently the utmolt that fhe can be elevated in our Horizon'; tis as well known alfo that when fhe is in this Pofture, being Looked upon by the Naked Eye fhe appears (that we may accomodate all to fenfible Meafures.) to be Magnitudivis Pédalis, about a foot broad. But the fame Mioon being Looked upon juft as fhe rifes, the appears to be three or four foot broad, and yet if with

## $[315]$

an-Inftrument we take her Diameter, both in one pofture and $t$ 'other, we fhall find that ftill fhe fhall be but 30 Mi nutes; the feveral ways of trying this I will not Mention, they being as Various as are the Methods of taking the Moons apparent Diameter, common enough amongft the Aftronomers; neither will I infift upon the truth of the Matter of Fact, for that I think cannot reafonably be queftioned, after fo many tryals and fo many experiments thereof, faithfully recorded by undoubted witneffes; and it would be very unreafonable to Imagine that fo many Authors fhould rack their Brains for folving an appearance, wherein they were not certain of the matter of Fact. But becaufe of Nullius in Verba, I can affert that I have accurately tryed it my felfe, and I have fo found it: one of the ways I proceeded was thus, I took a very good Telefcope of about 6 foot long, in the inward Focus of whofe Eye-Glafs I apply'd a very fine Lattice made of the fingle hairs of a Mans Head; then Looking with this at the Moon when fhe was juft Rifen and Looked Extraordinarily big, I obferved what Number of the fquares of the Lattice were Occupy'd by her body; then obferving her again, when more Elevated and free from all Extravagant greatnefs, Iftill found the fame fquares of the Lettice poffeffed by her. This way is Equivalent to that now more ufed, of taking her Diameter by Mr. Tomnlys Micrometers: but I have alfo tryed and found the fame thing by an Accurate Sextant, taking the diftance of the Moons Oppofite Limbs.

Now this Pbenomen n affords two things to be confiderd, firft why the Moon (Iftill name the Moon as being an Object more adapted for our fight, for the fame thing holds in the Sun ) fhould feem bigger a bout the Horizon, then when more elevated; and fecondly, fhee appearing bigger, how it comes to pafs, that her Diameter being taken, it is no greater then when the appears lefs. But the Difquifition concerning this latter being likely to

## $[316]$

Comprehend the former, $I$ fhall not divide my difcourfe into two Branches, but proceed in the Method Propofed. Only I defire it may be noted, that I fuppofe the Horizon$t a l$ and Meridional Moon to be found both of the fame Angle, wheras in truth the Meridionall Moon (tho appearing lefs ) Shall be found of the greater Angle : which increafeth the Wonder. But this proceeding from the different diftances that one and t'other is looked at(the Meridional Moon being nigher us by almoft a Semidiameter of the Earth) and confequently eafily folved that way; I have therefore chofen to put between them a plain equality, for avoiding Confulion and Intricacy in Difcourfe.

Wherefore let us hear what the Ingenious of thefe latter days can fay to this appearance. And firt we find the Celebrated Des-Cartes attributing this appearance rather to a deceived Iudgmeut than to any Natural Affection of the Organ or Medium of fence; for the Moon (fays he) being nigh the Horizon, we have a better opportunity and advantage of making an Eftimate of her, by comparing her with the various objects that incur the fight, in its way towards her; fo that tho we Imagine fhe looks bigger yet tis a meer Deceipt: for we only think fo, becaufe the feems nigher the tops of Trees or Chimnys or Houfes or a fpace of Ground, to which we can compare her, and Eftimat her thereby; but when we bring her to the Teft of an Inftrument that cannot be deluded or Impofed upon by thefe appearances, then we find our Eftimate wrong, and our Sences deceived. Thefe thoughts, my-thinks, are much below the Accuftomed Accuracy of the Noble DcsCartes; for certainly if it be fo, I may at any time increafe the apparent Bignefs of the Moon, tho in the Meridian;for it would be only by getting behind a Clufter of Chimnys, a Ridg of a Hill,or the top of Houfes, and comparing her to them in that ponure,as well as in the Horizon: befides if the Moon be look'd at juft as fhee is Rifing from an Horizondetemmed by a finooth Sea, and which has no more Vari-

## $\left[3^{17}\right]$

Variety of Objects to compare her to, then the Pure Air; yet fhe will feem bigg, as if lookt at over the Rugged top of an uneven town or Rockey Country. Moreover, all Variety of adjoyning objects may be taken off, by looking through an empty Tube, and yet the deluded imagination is not at all helped thereby. I come next to the folution hereof given by the Famous Thomas Hobbs: and for this we fhall ftand in need of the firft Fig. wherein fays he, let the Point $G$ be the Center of the Earth, and $F$ the Eye on the furface of the Earth; on the fame Center $G$, let there be ftruck the two Arches, E $H$ determining the Atmofphere, and $A D$ to Reprefent that blew furface in which we Imagine the fixed Stars: and let FD be the Horizon. Divide the Arch $A^{\prime} D$ into three equal parts by the lines $B F, C F$; it is manifeft that the Angle $A F B$ is greater then the Angle $B F C$, and this again greater than the Angle $C F D$. Wherefore fays he, to make the Angle $C F D$ equal to the Angle $C F B$, the Arch $C D$ muft be greater then the Arch $C B$; and confequently, that the Moon may in the Horizon appear under the fame Angle as when Elevated, fhe muft cover a greater Arch, and therefore feem greater; that is the Moon in the Meridian appearing under the Angle $B F C$, that fhee may appear under an equal Angle in the Horizon, as fuppofe $C \mathrm{~F} D$, tis neceffary that Arch $C D$ fhould be greater then $C B$; and confequently tho thee appear to fubtend a greater Arch when in the Horizon then when Elevated, yet thee appears under the fame Angle. And all this without Refraction. The Geometry of this Figure is moft certainly true and Demonftrable. At this I quarrel not; but it makes no more in our prefent Difficulty then if nothing had been faid: for the Philofopher has here made a Figure of his own, and from thence he Argues as confidently, as if Nature would accommodate herfelf to his Scheme, and he not Obliged to Accommodate his Scheme to Nature ; for here he has made the Circle $G$ F reprefenting the Earth very large

## $[318]$

in proportion to the Circle $A D$; and then indeed taking the Point $F$ in the Earths furface, and by lines from thence dividing the Angle $A F D$ into what ever equal parts, the Intercepted Arches $A B, B C, C D$ fhall be unequal. But if he had confidered, that the Earth is as it were a point in Refpect of the Sphere of the fix'd Stars, nay the very Annual Orbit of the Earth is almoft if not altogether imperceptible (faving the truth of Mr. Hooks Attempt) he would have found that the Lines $F B, F C$, $F D$, mult be all conceived as drawn from the point $G$, and then equal Angles will intercept equal Arches, and equal Arches equal Angles: and fo it happens (at leaft beyond the Poffibility of difcovery of fence ) to the Eye on the furface of the Earth. And befides he fhould have confidered, that all Obfervations Aftronomical are performed as from the Center of the Earth, and therefore it is that they keep fuch a ftir about Parallax; fo that his drawing his lines fo far from $G$ as $F$ is, and to another concentrick Circle fo nigh as $A D$, deceived him in this Point.

The Famous Gaffendus has written 4 large Epiftles on this Subject, the fubftance of all which is, that the Moon being nigh the Horizon and looked at through a more Foggy Air, cafts a weaker Light, and confequertly forces not the Eye fo much as when brighter; and therefore the Pupil does more inlarge it felf,thereby tranfmiting a larger Projection on the Retina.In this Opinien I doe find he is not alone, for in the Journalls des Scavans, this difquifition being again revived by a French Abbe, He therein follows this Sentiment of Gaffendus; it was firft Publifhed in the 3d. Conferance prefented to the Dauphin in Auguft 1672 , But by Reafon of an Objection moved by Father Pardye, it was fain to be republifhed with fome additions and amendments in OCtob. 1672. The addition was, that this Contracting and enlarging of the Pupill caufeth a different thape in the Eye; an open Pupil making the Cryftalline flater and the Eye longer, and the narrower Pupil Short-

## [319]

ning the Eye, and making the Cryfalline more convex the firft attends our looking at Objects which are Remote or which we think fo' ; the latter accompanies the veiwing Objects nigh at hand. Likewife an open Pupil and flat Cryftalline attends Objects of a more Sedate Light, whilft Objects of more forcible Rays require a greater Convexity, and narrow Pupil. From thele Pofitions the Abbe endeavoured to give an account of ourP henomenon, as follows. When the Moon is nigh the Horizon, by comparifon with interpofed Objects, we are apt to Imagine her much farther from us then when more Elevated, and therefore ( fays he) we order our Eyes as for veiwing an Object farther from us, that is, we fomthing enlarge the Pupil, and thereby make the Cryftalline more flatt: moreover the Duskifhnefs of the Moon in that pofture does not fo much ftrain the fight ; and confequently the Pupil will be more large, and the Cryftalline more flat: hence a larger Image fhall be projected on the Fund of the Eye, and therefore the Moon fhall appear larger. And this difpofition of the Eye that Magnifies her, Magnifies alfo the divifions of our forementioned Lattice, and confequently fhee by her Body fhall poffefs no more of the divifions, then when fhee feems lefs. Thefe two forementioned accidents, viz. the Moons Imaginary diftance and Duskifhneis', gradually vanifhing as fhee rifes, a different Species is hereby introduced in the Eye, and confequently fhee feems gradually lefs and lefs, till again fhee approaches nigh the Horizon. Thefe two Opinions of Gaffendus and the Abbe being fo nigh a kin, I thall confider them both together, and firft I affert that a wider or narrower. Aperture increafes not, neither diminifhes the projection on the Retina. I know Honoratus Faber in his Synopfis Optica endeavours to prove the clear contrary to this my Affertion, and that after this manner. Fig. II $A$ B is an Object, EF the greater aperture of the Pupil,admiting the projection $K$. Ion the Retina, whereas the leffer
aperture

## $[320]$

Aperture $C D$ admits only the projection $G H$; but $G H$ is lefs then $K I$, wherefore a leffer Aperture diminifhes the projection. I admire that any Man that undertooke (as Honoratus Faber) to write of Opticks more accurately then all that went before him, fhould be guilty of fo very grofs an Error; and I do more admire that the Celebrated Gaffendus, and with him the Noble Hevelius Chould be of the fame Opinion : for tho the forefaid Figure and Demonftration hold moft certainly true in direct projections, as in a dark Room with a plain Hole; yet it will not hold in Projections made by Refraction, as it is in thofe on the Retina in the Eye, by means of the Cryffalline and other Coats and Humours of the Eye. For a Demonftration of this obferve the third Fig. wherein lett $A B$ be a Remote Object, and $E$ F the Cryftaline at its large aperture, projecting the Imáge I M on the Retina. Let then $C D$ be the leffer Aperture of the Pupil before the Cryfalline: I fay the Image $I M$ fhall be projected as large as before, for the Cone of Rays EAF comfifts partly of the Cone of Rays C $A D$, therefore where the former $E A F$ is Projected, the latter $C A D$, as being a part of the former, hall be projected alfo. So that no more is effected by this narrow Aperture, but that the fides of the Radiating Cones are intercepted, and confequently the Point $I$ fhall be affected with lefs light, but it fhall fill be in the fame place: what is faid of that Cone and that Point may be faid of all other Cones and other Points of the Object. From hence appears firff, the Invalidity of the Account given of the Moons appearance by Galfendus from this Reafon; $2 l y$.The Reafon appears why a Telefcopes greater or leffer Aperture, makes no difference in the Angle it receives: for imagine $E F$ to be an Object-Glafs of a Telefcope, and $t$ 'is plain. 3y: 'Tis Evident why a greater or lef's Aperture on a Telefoope fhould make the Objects appear Lighter or Darker, for thereby more or lefs Rays are admited to determine on the Projection of each Point. But all this

## $[321]$

by the by. And this is fufficient for a Confutation of Gaffendus and Faber; But our forementioned Abbe fuperadds to a greater or leffer Aperture of the Pupill, as a neceffary Confequent, a greater and leffer Convexity of the Cryftalline, as alfo a lengthening and fhortening the Tu'e of the Eye. And this I muft confefs would do fomething if we find it true in our Cafe; and this let us try. Firft fays he the Duskifhnefs of the Moon nigh the Horizon admits the Pupill to enlarge it felf, the Cryftalline to flatten, and the Eye to lengtien : but what if we change our Object, and inftead of the Moon take the Diftance between fome of the fixt Stars; (as fuppofe thofe of Orions Giidle,) we fhall find the fame Phenomenon in them, and yet I hope neither he nor $G a \iint e n d u s$ will Affert, that they at one time ftrain the Eye more than at an other, or that at any time their fulgur ftrains the Eye at all; if he do, let him take Stars of the leffer Magnitudes, nay even thofe that can but juft be perceived, and then he will be convinced: Or let him confider whether this will hold in looking at the Sun through very dark Glaffes, which render the Sight thereof as inoffencive to the Eye, as that of a green Field; but perhaps he will then fay that this other Reafon holds which is $2 l y$ that the greater Imaginary diftance at which we think the Moon near the Horizon, than when more elevated, makes us Contemplate her as if really fhe was fo, viz. with ample Pupills, orc. but this I have fufficiently overthrown in my Remarks againft DesCartes: therefore I pafs it over, only fubjoyning that if there were any thing in this Surmife, my-thinks the $H_{0-}$ rizontal Moon fhould be fancyed nigher to us then farther from us; for if we are for trying Natural thoughts, let us take Children to determine the Matter, who are apt to think, that could they go to the edg of that fpace that bounds their Sight, they thould be able (as they call it) to touch the Sky; and confequently the Moon feems then rather nigher to us than farther from us.

## $[322]$

After I had writ thus far I accidentally caft my Eye upon Riccioli's Treatife of Refraction, at the end of his $2 d$. Volume of the Almageft, Lib. 10. Sect. 6. cap. 1. Queft. 13. wherein he fpeaks of our prefent Difficulty; But to my wonder I find him Affert, that he and Father Grimaldi had often taken the HorizontallSun and Moons Diameters by a Sextant, when to the naked Eye they appeared very large; (Grimaldus directing his Sight to the left edg, and Ricciolus to the right, ) and that even by the Inftrument they always found the Diameters greater than when more elevated, the Sun often fubtending an Angle of almoft a Degree, and frequently 45 Minutes, the Moon alfo $3^{8}$ or 40 Minutes. This is down right contrary to the matter of Fact, which I have before alledged, and directly repugnant to the matter of Fact afferted by the French Abbe in the forecited Journal. Whether of us be in the right I leave to Accurate Experiment to determine, and fubmit the whole to the Decifion of the Illuftrious Royal Society. Only give me leave to add one word againft Riccioli, for had his Experiments been Accurately profecuted, he fhould have tryed them when the Horizontal Moon had look'd ten times more large in Diameter than ordinary; and then if it be true, that even by an Inftrument fhe will be found proportionally broader than really, fhe fhould fubtend an Angle of 300 Minutes, or 5 Degrees: for very often I have feen the Moon when fhe appeared to times broader than ordinary, which the frall addition of 8 or to Minutes to her ufual Diameter will never Caufe.

Laftly as an Apology for my reviving this difquifition to that Noble Company of Englijb Philofophers, I fhall only intimate the words of the forementioned $A b b e$ 's Letter. Pour la Raijon de cette Apparence, é de la tromperie de nos Sens, je la tiens plus Diffcile a trouver, que les plus grands Equations d' Algebre, é' quand vousy aurez bien penfe, vous m' Obligerez de m'en dire voftre Sentement, \&c.

## $[323]$

After whichi I have only to Subferibe my felf an unworthy Member, and an humble Scrvant and Admirer of that Illuftrious Company.

## Dutiva <br> Manch 10th. 8 兵

William Molyneux:

The Sentiments of the Reverend and Learned Dr. John Wallis R. S: Soc. upon the aforefaid Appearance, communicated in a Letter to the Publifber.

AS to the laft Inquiry (concerning which, you fay, the Royal Society would be glad to know my Opinion; ) about the apparent Magnitude of the Sun near the Horizon, greater than when confiderably high:

The Inquiry is Ancient : And, I remember, I difcourfed it near fourty Years ago with Mr. Fofter, then Profeffor of Aftronomy in Grefbam College. Who did then affure me ( from his own Obfervation, I fuppofe; for I have never examined it my felf, that the apparent Magnitude taken by Inftrument (however the Fancy may apprehend it is not greater at the Horizon, than when higher. And Mr. Cafwell (when your Letter was communicated to our company here) affirmed the fame.

And (though I have not my felf made the Obfervation ) I do not doubt but the thing is fo. For it is agreed; That Refraction near the Forizon, though (as to appearance ) it alter the Altititude of the thing feen; yet it alters not the Azimuth at all.
And it mult needs be fo. For, fince this equally refpects all points of the Horizon; let the Refraction be

## $[324]$

what it will, the whole Horizon can be but a Circle: So that there is no room for the breadth of a thing (as to the Angle at the Eye ) to be made greater, what ever its Tallnefs may ( the Refraction not equally affecting all parts in the Circles of Altitude.) Nor is there any reafon why this fhould rather thruft the other, than that the other thruft this, out of place.
Whereas, in the Altitude, it is otherwife: For while what is near the Horizon is inlarged, that which is further off is thereby contracted: which as to the Azimath or Horizontal Pofition cannot be.

In Spectacles indeed it is otherwife; for they reprefent the Object every way inlarged; and do thereby hide the adjacent parts. But in Refraction by Vapours, fuppofing all parts of the Horizon equally affected by them, one part cannot be expanded in breadth (whatever it may be as to the highth) without thrufting out an other ( for the whole Horizon can be but a Circle ) and, swivy one part rather than another?

Unlefs we would fay (as perhaps we may, if there Shall appear a neceffity for it/) Thao the Rays of a lucid Body do expand themfetves everyo way so the prejudice of the part's adjacent, by covering themv
But fuppofing (which I am apt to believe, till the contrary fhall be evinced by Experiment) that the Sun or Moon's apparent Diameter taken by Inftrument near the Horizon, is the fame as taken in a higher Pofition, (I mean, its Horizortal Diameter, or that parallel to the Horizon; for the erect Diameter, in a Circle Perpendicular to the Ho rozon, may by the Refraction be varied, and thereby made, not greater, but lefs than when higher; as hath been noted in the Name of Sol Ellipticus at the Horizon.) fuppofing, I fay, that the Sun's apparent Diameter Horizontal, taken by Inftrument, is the fame near the Horizon, as in a higher Pofition, I take its Imaginary greatnefs which is fanfied near the Horizon, to be only a decep-

## $[325]$

tion of the Eye; or rather the Imagination from the Eye.

For fure it is, that the Imagination doth not eftimate the greatnefs of the Object feen, only by the Angle which it makes at the Eye; but, by this compared with the fuppofed diftance.

True it is that, Cateris paribus, we judg that to be the greater Object, which makes at the Eye the greater Angle: But not fo if apprehended at different Diftances.

For if through a Cafement (or leffer aperture) we fee a Houfe at 100 Yards diftance; this Houfe (though feen under a lefs Angle.doth not to us feem lefs than the Cafement through which we fee it, (or this greater than that, becaufe it makes at the Eye the greater Angle:) But the Imagination makes a comparative Eftimate from the Angle and Diftance joyntly confidered.

So that, of two things feen under the fame or equal Angles, if to one of them there be ought which gives the apprehenfion of a greater Diftance, that to the Imagination will appear greater.

Now fure it is, that one great advantage for Eftimating of a thing feen, is, from the variety of intermediate Objects between the Eye and the thing feen. For then the Imagination muit allow room for all thefe things.
Hence it is that if we fee a thing over twoHills, between which there lies a great Vally unfeen, it will appear much nearer than if we fee the Vally alfo: and it will appear as juft beyond the firft Hill. And if we move forward to the top of the neareft Hill (that fo the Vally may be feen ) it will then appear much further than before it did.

And on this account it is, that the Sun fetting, appears to us as if it were but juft beyond the utmoft of our vifible Horizon; becaufe all between that and the Sun is not feen. And, upon the fame account, the Heaven it felf feems Contiguous to the vifible Horizon.

Now when the Sun or Moon is near the Horizon, there S $\Gamma_{2}$

## $[328]$

But now when the Diftance grows fo great, as that the Pofition of thefe vifual Axes become Parallel, or fo near to Parallel, as not to be diftinguifhable from it: This advantage is loft, and we can thenceforth only conclude, that it is far off; but not how far.

Hence it is, that our view can make no diftinction of the Moons Diftance, from that of the other Planets, of even of the fixed Stars:' But they feem to us as equally remote from us; though we otherwife know their Diftances from us to be vartly different. Becaufe the Parallax (as I may fo call it) from the different Pofition of the two Eyes, is quite loft, and undifcernable, in Diftances much lefs than the leaft of thefe.

And fo, of the fixed Stars amongft themfelves: Which, though they feem equally remote from us; many (for ought we know ) be at Diftances vaftly different. Nor can we tell, which of them is neareft: (unlefs perhaps we may reafonably guef, thofe to be neareft, which feem biggeft. ) Becaufe, here not only the Parallax from the Diftance of the two Eyes; and that from the Earths Semidiameter; but even that from the Semidiameter of the Earths great Orb, is quite loft ; and none remaining, whereby to eftimate their Diftance from us.

But ( to return to our cafe in hand; ) though as to frall Diftances, we may make fome effimate from the known Magnitude of the Object: And, as to middling diftances, from the Parallax (as I may call it) arifing from the interval of the two Eyes: Yet even this latter will hardly reach beyond, if fo far as the vifible Horizon: and all beyond it, is loft.

So that, there being nothing left to affift the fancy in eftimating fo great a diftance, but only the intermediate Objects: Where thele intermediates appear to the Eye, (as, when the Sun or Moon are near the Horizon: the diftance is fanfied greater, than where they appear not, (as when farther from it: ) and confequently (though

## $[329]$

both under the fame or equal Angles ) that near the Hori$z o n$ is fancied the greater. And this I judg to be the true reafon of that appearance.

You will excuee (I hope ) what excurfion I have made; becaufe though fome of them might have beed fpared, as to the prefent cafe; yet they are not impertinent to the Bufinets of Vifion; and the eftimate to be thence made, of $M$ agnitudes and Diftances, by the Imagination.

The Suns Eclipfe May Iff. was here obferved about $\frac{1}{2}$ a Digit ; between one and two a Clock after noon.

## Account of $a \cdot B O O K$.

A Continuation of the Ners Digefter of Bones: It's Improvements and new Vfes it batb been applyed to, both at Sea and Land.
Together with •ome Improvements and new V̌es of the Ayre Pump, tryed both in England and Italy. By D. Papin M. D. Fellow of the Royal Society.

THis Treatife is divided into three Sections; the firft contains the Improvements made by the Author 0.2 the Digefter; ; with the new Ufes it hath been apply'd to. Firft is given the Defcription of that which he had made for His Majefty King Charles the 2d. of bleffed Memory ; and he doth not think (confidering the alterations whereby this exceeds the firf Invention) that any thing better can be made for fuch things, as muft be ftew'd in their own Juices: But for other things that muft be boil'd with Water, as Pulfe, Gellies, ofr. He gives the Defcription of another Engine, which he finds to be, for feven

## $[330]$

Reitfont, preferable to the other; fo as that a fimall En. gine of this Faflhion, if it hoolds but 6 or 7 Pounds of Water, wull be enought to make 150 Pounds of Gelly in 24 Hours, and will not confume above it Pounds of Charcoall He doth afterwards relate the new Ufes this Engime hasth been applyed to, bur for brevities fake, I will memention but one that feems to be very confiderable. He laatth aryed, that Dones being as much falted as Bones can be, if they be lefí to foak in Sei Water, as they do for the Meat at Sea, they will be fit to make frefh Gelly feveral times: fo that all the Bones that are thrown away as ufelefs in long Voyages, may henceforth ferve to make a Food wholfomer and better, than the Meat it felf. The Author doth afterwards relate, how thefe Gellies may be applyed for the preferving of Summer Fruits: Upon this he alledgeth many Experiments, which give him Occafion to make feveral Obfervations ; as for Example, he faith that Strawberries, that are brought up by Art in the latter Seafon, have much lefs Spirits, than thofe that ripen in the Spring of the Year: So that fome Strawberries which he had thus fhut up in the Month of October, became very fower in 3 Months time; whereas other Stramberries which he fhut up in the Month of Func, having been kept 8 Months, were not fower at all, but had given a Vinous Taft to the Gelly : He doth afterwards impart his Way for making and clarifying Gellies, which hath given him Occafion to contrive two Engines for filtrating quickly, and a contrivance how to make Evaporations quicker, and with lefs Fire than they ufe to be donie, and thefe are very plainly defcribed in the Book. He gives alfo the defcription of an Engine for diftiling per def fenf fum in feveral degrees of Rarefaction and Condenfation of Air ; and he gives an Atcount of fome Experiments which he hath already made with this Inftrument, from whence it appears, that in fome Cafes the Condenfation of the Air will be of great advantage for a quick Diftillation.

## $[331]$

In the fecond Section are explain'd the Improvements made by the Author, on the Pneumatick Engine; and he doth not think, that ever any hath been fo good as his : he gives a full Defcription of it, and takes Notice of all that contributes to its exactnefs; and he relates fome Experiments that he hath made to prove his Affertion: He doth by the by, Anfwer Mr. Bernoull, who hath written fomething againft the Honourable Nir. Boile, about the weighing of the Air in a Bladder; and afterwards he comes to the new Ufes this Engine hath lately been apply'd to; whereof I'll mention but this, that feems to be of great Moment, becaufe without any Sugar or any other alteration, than what can be made by a little boiling, he can preferve great Quantities of Fruit with their Talt: The Way is this ; he fhuts up the Fruits in Glafs Veffels exhaufted of the Air, and then puts the Veffel thus exhaufted in hot Water, and lets it ftand there for fome while ; and that is enough to keep the Fruit from the Fermentation, which otherwife would undoubtedly happen: Yet it is obfervable, that this is not generally true; but that it is good to have feveral ways for the preferving of Fruit: Rafberries, for Example, that keep in Gelly better than any other Fruit, cannot be preferved although they be heated in vacuo. Such or the like Obfervations are annexed to almoft every Experiment, and at the latter end of this Section, the Author anfwers fuch Objections as may be brought againft the real uffulnefs of thefe Engines; whereupon he defcribes a Way how to exhault the Air very fpeedily out of great Veffels, to be kept thus exhaufted as long as we pleafe.

The third Section gives a Relation of what hath been done in two Years time, in Mr. Sarrotli's Academy at Venice; which had fome Relation to the Matter treated of in this Book: There may be feen feveral new and curious Experiments about Matters of Moment : But I fhall only relate two of them, from whence the reader may judg

## $\left[33^{2}\right]$

of the reft ; the firt is, that two equal peices of Iron were put at the fame time into two equal Quantities of Aquafortis, the one in vacho, and the other in the open Air; and being afterwards taken out at the fame time ; it was found that the Iron in the open Air, had been 16 times more diffolved than the Iron in vacuo.

The fecond Experiment is, that two equal Quantities of Rofes were put into two Inftruments for Diftillations, like one another ; but the one was exhaufted of Air, and the other was full; the Diftillation was abundantly greater and quicker in the evacuated Inftrument, than in the other, althougfi they were both heated by the fame warm Water; it was alfo obfervable, that the Rofe Water diftilled in vacuo did congeal, which doth not happen in ordinary Diftillations: So it is plain, that in fome Circumftances, the Vacium helps Diftillations; as well as in the firlt Section it was feen, that in other Circumftances the compreffion of Air is more advantagious. In this whole Seition are intermixed the reafonings of the Academy, about the Matters in hand, and two Difcourfes made in the Academy, by Sigr. Ambrofio Sarrotti in the beginning of each Year: So the Reader may here be diverted as well as inftructed in the Operations of Nature. It may be fayd in fhort, that it is rare to fee a Book, that in fo fmall a Volume doth contain fo many things recommendable, both for Ufefulnefs and Novelty ; but no Wonder, fince it is owing to the Inftructions and Directions of the R. S. as the Author acknowledgeth in his Epiftle, which he infcribeth to My Lord of Carbery, Prefident of that Illuftrious Company: Neverthelefs, the better to convince thofe that would queftion either the Truth, or the Ufefulnefs of the Contents of his Book ; the Author engageth to let People fee them try'd once a Week, and he appoints a certain Time and Place for that Purpofe.

London, Printed by F. Streater, and fold by S. Smith, at the Prince's Arms, in St. Paul's Church-Yard.

# [33.1] <br> Numb。 188. <br> PHILOSOPHICAL 

 TRANSACTIONSFor the Months of Fuly and Auguft 1687.

## The C ONTENTS.

OBfervations of what did praternaturally occur in opening of the Body of Mr. Smith of Highgate Fu० by 8th. 1687. Communicated by that Learned Phyjtian Dr. Edward Tyfon Reg. Soc. Soc. (2) A Relation of an extraordinary effect of the power of Imagination: Communicated by Mr. Edward Smith, Secretary to the Pbilofophical Society at Dublin, as it was brought before that Company, by Mr. St. George Afh. R. Soc. S. who bad Seen the thing. (3) De Conftructione Problematum Solidorum, five Æquationum tertix vel quartx Poteftatis, unica data Parabola ac Circulo efficienda, differtatiuncula: Authore Edm. Haltey. (4) A Letter of Mr. De la Hire of the Royal Academy of the Sciences at Paris, concerning a new fort of Magnetical Compafs, with feveral curious Magnetical Experiments. (5) A relation of the great effects of a new Sort of Burning Speculum lately made in Germany; taken from the Acta Eruditorum of the Month of January laft: being a Letter from the Inventor. to the Authors of that Fournall.

## [332]

Obfervations of wobat did praternaturally occur in the opening of the Body of Mr . Smich of Highgate Fuly 8th. 1687. Communicated by that learned Phyfitian Dr. Edward Tyfon Reg. Soc. Soc.

I$N$ the firft place dividing the Abdomen, immediately upon Inaifon made into the Peritonaum, we difcovered thee Bladder very Schirrom and thick, uiz. $\cdot \frac{\text { of }}{4}$ an Inch ; of a Praternatural Figure, and diftended to the bignefs of a Childs Head, And at the entrance of the Z火eiters on each Gide were two P Yotuberancies, of the bignefs of a Hens Egg each; the Ureters were of the largnefs of the fratl Gutts in Children, fo that they could eafly admit two fingers into their Cavity. They were both repleat with Urine or a ferous matter; which upen prefliure did eafily regurgitate into the Kidneys, but would not pafs at all into the Bladder. The Kidneys were of their Natural bignefs and Figure, but fo emaciated that they were rather large Baggs than of a felhy Subftance ; The Cavity of the Pelvis being folarg as to contain above 3 ounces of Water: But to return to the Bladder, therein upon Apertion we difcovered a very frange fort of Cyfes, or Bags, of the exact Figure of Eggs, of teveral dimenfions, fome larger than Goofe Eggs, others as big as Hen Eggs, to the number of twelve in all; and about eight of them whole and repleat with a Limpid Serum: The Coats of thefe Bladders were fome of them confiderably thick, others very thin and tender; all of them loofe and free without the leaft adhefion, either to one another or to the Coat of the Bladder. There was little or no Urine in the Bladder but

## [333]

what was contained in thefe Bags. Nor could we Ima. gine that this miferable Patient could poffibly make any Water, but what happned upon the breach of fome of thefe Watery Tumours, when the Bladder was crouded beyond its dimenfions; for that the paffage by the Ureters into the Bladder was impervious: And though the Vreters were full of Serum, yet could none be forced into the Cavity of the Bladder.

This Liquor contained in thefe Baggs, we did conjecture to be of the Nutritious juice of the Body; and upon tryal of boyling a fmall quantity of it, we found it thicken and come to the confiltence of a ftiff and glutinous Gelly. Thefe $V_{e f i c u l e}$ were undoubtedly formed from the tenacity of the matter between the Membranes of the Bladder, in its oblique paffage through them; for that being fo glutinous, it was here detained till its Superficies were condenfed into a firm Coat, and fo by the coming of more matter was forced into the Cavity of the Bladder. This I fuppofe, from our finding two of thefe $O v a$ in a diftinct Sinus from the reft, between the Coats of the Bladder, at the entrance of each Ureter.

The Liver we found very large and hard, of the Colour and Subftance of a boyled one. It adhered to the Peritoneum on the external part, and by its vaft bignefs had fo ftraitned the Thorax, that there was very little room for the Lungs.

The Lungs we found of a livid Colour, adhering clofe tothe Pleura on the right lide; upon Incifion we found them wholly repleat with a Purulent matter, and a Stone of the bignefs of a Cherry-Stone in one Lobe.

Dividing the Pericardium we found a Fungous Subfance covering the Heart all over ; and Fibres from it, that rann to the Pericardium in a great number; fo that they were by thefe Fibres every where united.

The Heart was very large, the right Airricle and Ventrisle were one large undivided Cavity, and therein a large

## [334]

Polypus; which run up the defcending Branch of the Vene Cava to the very Fugular, another Part was diftributed to the Pulmonary Artery.

In the left Ventricle was another $\boldsymbol{P}$ clypus not fo large as the former: it had two Branches, one in the Pulmonary Vein, another in the Arteria Magna, or Aorta.

One of the Veffcule being opened had a larg clufter of fmall $O v a$ as big as Grapes, all repleat with Liquor: All the reft contained nothing but Sersm.

A Relation of an extraordinary effect of the power of Imagination: Communicated by Mr. Edward Smith, Secretary to the Pbilofop bical Society at Dublin, as it was brought before that Company, by Mr. St. George Afh. R.Soc. S. who bad feen the thing.

ONe Elizabeth Dooly of the County of Kilkenny was aged 13 Years in January laft: Her Mother being with Child of her was frighted by a Cow as thee milked it, thrown down and hit on her Temple, within an eighth of an Inch of her Eye, by the Cows Teat. This Child has exactly in that place, a peice of Flefh refembling a Cows Teat, about 3 Inches and half in length: 'Tis very red, has a Bone in the midlt about half the length of it; tis perforated and fhe Weeps through it; when fhe Laughs it wrincles up and contracts to two thirds of its length, and it grows in proportion to the reft of her Body. She is as fenfible there as in any other part . This is lookt upon to be as ftrange an inftance of the ftrength of Imagination as can be produced.

## $[335]$

## De Confructione Problematum Solidorum，five Æquationum tertix vel quartx Poteftatis，unica data Parabola ac Circulo efficienda；differtatiun－ cula Authore Edm．Halley．

QVo pacto aquationes omnes Cubum vel Quadrato－qua－ dratum quantitatis incognite involventes，ope Parabolie cujufounq；date er Circuli，conftrui poffint，clare tradit ac Li－ quido demonftrat preclarus ille Cartefius in Lib．III．Geome－ tria fue：Sedprimum juket Secundum equationis terminum，$\sqrt{2}$ adfuerit，tollere，ac deinde reductio equationis Radices reginla ibidems expofita elicere．Cum vero operatio ifta nimis laborio－ fa videatur，nonnullis vifum eft conftructionem fimilem etians abSq；ulld previa reductione comminifoi；inter quos Francifcus a Schooten Methodum valde facilem ac fmplicilfimam pro con－ fruendis Cubicis quomodolibet affectis prodidiffet，fo modo ex－ pofito principio unde regulam derivavit，Lectoris memorie， quam plurimis ac intricatis cautionibus obruit，melius ftuduif－ fet．Nuper veroVir Cl．D．Thomas Baker noftras，integro libello de conftructionibus bifce confcripto，non folum Cubicas fed etiam Biquadraticas omnes cujufcunq；generis unica generali regula complexus eft，eamq；demonftrationibus ac Exemplis per omnes of fus abunde fatis illuftravit；nec non fub finem modun proponit unde regula ifta generalis inv＇ftigari poffit：Haud ta－ m：n illum ipfum oftendit，cujus ope（uti fufpicor）Clavem fuam Geometricam Catholicam obtinuit，vel faltem multo facilius obtinere potuit．Cumn；perplexis cautionibus de fignis＋ ぶーRegula hec D．Baker1 non minus cbnoxia fit quam illa Schooteni，ut vix abfente líro conftructiones illas quis tuto peragat；baud injucundum nee Tyronibus incommodum fore vi－

[^1]fum
fum eft, utriufq; fundamentum exponere, ac fimul emendata methodo, in re tam difficili, lucem quantum valeam afferre.

Conftructio quam tradit Cartefius, queq; facillime-radices equationum omnium Cubicarum vel biquadraticarum, ubi deficit fecundus terminus, eruit, ut nota fupponi poteft; attamen cum cardo fit a quo (ubSequentia pendent, ne difertatiuncula ban capite truscata videatur, ex illius Geometria defumptam placuit Regulam adjungere, pauculis nonnullis in melius uti reor tran Poofitis.
Deficiente Secundo termino omnes aquationes Cubices reducuntur ad banc formam $\mathrm{z}^{3} \cdot * \cdot$ a p z. a a q. $=0$, ac, Biquadratice ad bano $\mathrm{z}^{4} \cdot * \cdot \mathrm{apzz}$ a aq z. $\mathrm{a}^{3} \mathrm{r}=\mathrm{o}$. (ubia defignat Latus rectum Parabole cujus vis date, quam in Conftructione adbiberes licet, ) vel. Jumendo a pro てnitate, ad banc $\mathbf{z}^{3} * * . \mathrm{pz} . \mathrm{q}=0$, vel ad banc $\mathrm{z}^{4} \cdot * \cdot \mathrm{pzz}$. q z. $\mathrm{r}=0$.

Fam data Parabola FA G oujus Axis $\int t$ A CD K L ac latus rectum a vel $\mathbf{I}$, fiat A C ejus dimidium ac collocetur Semper a vertice A verfus interiora figure : dein Jumatar $C D=\frac{1}{2}$ in linea illa $A C$ continuataverfus $C$ $\int$ in aquatione fierit - p , vel verfüs alteram partem fo babeatur + p.Porro epunito D , aut ex puncto C finonbabeatiar quantitas p , erigenda eft ad axem perpendicularis D -
 E equalis $\frac{1}{2} \mathrm{q}$, dextrorJum quidem $\beta$ f fuerit - q , ad alterum vero axis latus $\sqrt{2}$ fuerit +q ; ac Circulus centro E radio $A \mathrm{E}$ defcriptus, $\overline{(I}$ aquatio fu-: crit tantum Cubica, Parabolam tot punctis F o G interfecajit quot veras habet Radices, quarum quidem afirmative ut G K
ervant ad dextram Axispartem, Negative ut FL ad fuijtram. Aft fo Equatio Biquadratica fuerit, augeri vel ninum debet Circuli Radius $A \mathrm{E}$, addendo fo fuer it -r , vel fubducersdo, fo $f$. + r , ex ejusquadrato rectangulum a re Seur contentums fub Latere recto oc quantitate datar; id q ol nullo fure negotio efficitur Geometrice. Hujus vero Circuti interfectiones Gum Paraboba onñesver as Biquadratice Aquationis radices aimifis ad $A x$ em perpendiculis exbibebunt; Afjrmativas quidem ad dextram Axis, Negativas vero ad finiftran. Totius demonftrationem Cartefio cjus inventori relingioo.

Notandum bic mioperam dave ut femper babeantur Radices affirmativa ad dextrum Axistatus, ut evitetur coñfufo a pluribus cautionibus, quarum caufa minime evidens eft, neceffario oritura.

Hispramiffs, ut aditus pateat ad conftructionem etiam earum aquationum ubi reperitur terminus fecundus, confideranda venit regula pro tollendo termino fecundo, ac reducenda áquatione ad aliam que methodo precedente conftrui poffit. Omnes vero bujus claffis equationes cubice ad banc formam $\mathrm{z}^{3} \cdot \mathrm{~b} \mathrm{z} \mathrm{z}$ : a p z . a a$\mathrm{q}=0$, vel ad banc $\mathrm{z}^{3}$. bz z .*. a a $\mathrm{q}=0$. Biquadratice vero ad banc $\mathrm{z}^{4} \cdot \mathrm{~b} \mathrm{z}^{3}$. a pzz . a a q z . $\mathrm{a}^{3} \mathrm{r}=0$, vel banc $\mathrm{z}^{4}$. $\mathrm{bz}^{3} \cdot * \cdot \mathrm{a} q \mathrm{z} \cdot \mathrm{a}^{3} \mathrm{r}=0$, , $\mathrm{el} \cdot \mathrm{z}^{4} \cdot \mathrm{bz} \mathrm{z}^{3} \cdot \mathrm{apzz} \cdot * \cdot \mathrm{a}^{3} \mathrm{r}=\mathrm{o}$ vil deniq; ad banc $\mathrm{z}^{4} \cdot \mathrm{bz} \mathrm{z}^{3} \cdot * \cdot * \cdot \mathrm{a}^{3} \mathrm{r}=0$ reduci poffunt: $e$ quibus omnibus, prout fignis + $-\infty-$ diver omode connectuntur, ingensoritur varietas'; unde Regula generalis omnibus inferviens ójfcura ac mixime diffcilis redditur, nifl methodo quam fubjungimus illuftrata nodifg, extricata tractetur.

Tollitur in Biquadraticis fecundus terminus, ponendo $x=z$ $+\frac{1}{4} \mathrm{~b}, \int$ fuerit +b in aquatione, vel $\mathrm{x}=\mathrm{z}-\frac{1}{4} \mathrm{~b} \int$ fuerit
 $\mathbf{z}$; © ; in equatione quavis propogita, fubfituta loco z quantitate aquali, prodibit nova equatio termino fecundo carens, cujus radicesomnes x data differentia $\ddagger \mathrm{b}$ vel evacedunt vel deficiunt a radice quefita z: Cum vero in rebus ifiusmodi plus exempla qum precepta valere folent, proponatur uar vel altera requatio Conftruenda.

## $\left[33^{8}\right]$

## Exemp. I.

$z^{4}+b z^{3}-a p z z-a a q z+a a a r=0$.
Sit $\mathrm{x}-\frac{1}{4} \mathrm{~b}=\mathrm{z}$
Et erit
$x x-\frac{1}{2} b x+16 b b=z z$
$\times \times x-\frac{3}{4} \times x b+\frac{3}{16} \times b b-\frac{1}{54} b b b=z^{3}$
o $x^{4}-b x^{3}+5 b b x-{ }^{\frac{1}{6}} b^{3} x+z^{\frac{2}{3}} b^{4}=z^{4}$.
binc.
$x^{4}-b x^{3}+\frac{3}{8} b b x x-\frac{1}{16} b b b x+{ }_{2} \frac{5}{5} 6 b^{4} .=z^{4}$ $+b x^{3}-\frac{3}{4} b b x x+\frac{3}{6} b b b x-\frac{1}{64} b^{4}=+b z^{3}$ $-a p \times x+\frac{1}{2} a p b x-{ }^{2}{ }^{2} a p b b=-a p z z$
 + aaar

Harum omnium fumma fo equatio nova fecundo termino carens, quaq; proinde juxta regulam Cartefianam conftrui pejfit, fumen do loco $\frac{1}{2} \mathrm{P}$ dimidium coefficientis termini tertii per a five Lattes rectum divif, hoc eft $-\frac{3}{16} \frac{\mathrm{~b}}{\mathrm{a}}-\frac{1}{2} \mathrm{p}$; ac $\operatorname{Loco\frac {1}{2}} \mathrm{q}$, dimidium coefficientis terminiquarti per a a diviff, five $+\frac{1}{16} \frac{b b}{a}$ $+\frac{\mathrm{pb}}{\mathrm{a}}-\frac{1}{2} \mathrm{q}$ Cujus partes $\int \mathrm{g}_{\mathrm{n}} \mathrm{D}+$ notate finiftrorfum ab Axe, figno - notate dextrorfum collocande funt, ut baleatur, centrum Cirouli ad conftructionem requijuti, ac cujus interfectiones cum Parabola, dimiffs in axem perpendiculis, radices omnes veras x defignet, affrmativas quidem ad dextram axis, negativas vero ad finiftram. Cum vero $\mathrm{x}-\frac{1}{4} \mathrm{~b}=\mathrm{z}$, ducendo li-
 perpendicula illa ad banc parallelam terminata defgnabunt omnes radices quefitas z , affirmativas ad dextram, negativas vero ad finiftram. Radium circuli quod attinet, habetur ille addendo partes negativas ac auferendo partes affirmativas termini quinti per a a divifo, equadrato linea $\mathbf{A} \mathbf{E}$, a centro invento $\mathbf{E}$ ad

## [339]

Verticem Parabole A ducte : id quod maxima ex parte efficitur sapiendo loco linea AE lineam E O , que ad O inter $\int$ ectionem Parabole ac parallele pradicte terminatur; ejus enim quadratum omnes termini quinti partes ex ablatione termini fecundi aquationi nova ingeftas complectitur (uti facile probabitur:) ac reftat folummodo ut ipfius E O quadratum augeatur, $f$ in aquatione babeatur - r, vel minuatur fi fit +r , additione vel fubductione rectanguli a r, unde conflatur quadratum Radii Circuli quafiti.

Hac eft methodus inveftigandi regulam centralem Dni Bakeri omnibus cautionibus libera ac Satis facilis; ac fola differentia ex eo provenit, quod egojuxta Axem, ille vero juxta Axi parallelam circuli ejufdem centrum determinat : quodq; ego femper radices affrmativas ex Axis dextro latere invenio, quas ille nunc dextro nunc finiftro conftituit.

Squationes cubicas quod attinet, ex reduci debent ad Biquadraticas, antequam eadem regula generali conftrui pofint; id quod fit ducendo aquationem propofitam in radicem $\int$ uam Z , unde provenit aquatio Biquadratica in qua deficit terminus ultimus five $r$ : quapropter Sublato fecundo termino ơ invento centro E, linea EOeft radius Circuli; cum foilicet a r fit $=0$, er in nova aquatione totus terminus quintus ex ip a a ablatione termini fecundi oriatur. Conftruenda fit hec equatio.

## Exemp. II.

$\mathrm{z}^{3}-\mathrm{bzz}+\mathrm{apz}+\mathrm{aaq}=0$ : Que ductain z fir
$z^{4}-b z^{3}+a p z z+a a q z=0$
Ad tollendum fecundrom terminum ponatur $\mathrm{x}+\frac{1}{4} \mathrm{~b}=\mathrm{z}$, © fie $x^{4}+b x^{3}+\frac{3}{8} b b x x+{ }_{16}^{\frac{1}{6}} b^{3} x+{ }_{2}^{\frac{1}{5}} b^{4}=+z^{4}$
$-b x^{3}-\frac{3}{4} b b x x-{ }^{\frac{3}{1} 6} b^{3} x-{ }_{6}^{\frac{1}{4}} b^{4}=-b z^{3}$ +apxx+1${ }^{\frac{1}{2}} a b p x+{ }_{1}^{1} a p b b=+a p z z$ +aaqx+先aaqb=+aaqz
In bac nova Equatione, tertii termini femicoefficiens per a divifa, viz. $=\frac{3 \mathrm{bb}}{16 \mathrm{a}}+\frac{1}{2} \mathrm{p}$, loco $\frac{2}{2} \mathrm{p}$ ufurpanda eft; ac socffi-

## [340]

cientis termini quarti dimidium, divifumper a a Lateris rectit quadratum, viz. $-\frac{\mathrm{bbb}}{16 \mathrm{a} a}+\frac{\mathrm{pb}}{4 \mathrm{a}}+\frac{1}{2} \mathrm{q}$, vicem ipfius $\frac{1}{2} q$ in conftructione Cartefii fubit; unde centrum E determinatur. Deinde ducta Axi parallelia ad dift antiam $\frac{1}{4} \mathrm{~b}$ ad finiftrum ejus latus (ob $\mathrm{x}+\frac{1}{4} \mathrm{~b}=\mathrm{z}$ ) iujus interfectio cum Parabola fit O ; circulus centro E, Radio EO defcriptus Para'olam Secet vel tanget in tot punctis quot aquatio veras babet radices: qua quidem radices feu Z funt perpendicula de punctis illis in Axi parallelam demiffa; ad dextram quidem Affirmativa, Negativa ad finiftram.

Si in aquatione defuerit terminus tertius vel quartus vel uterq; , in inveftiganda regula centrali nulla omnino obfervanda eft methodus differentia, fed deficiente quantitate p vet q , deerunt partes ille linearum C D ac DE ex quantitate illa aliqua modo deducta, ac procedendum ef cum reliquis coefficientibus termini tertii 6 quarti in aquatione nova, ficut in pramiffis exemplis prafcriptum eft.

Hactenus Cl. Bakeri methodum generalem pertractavimus, qua quidem nulla alia facilior ac paratior expectanda eft, affumpta ad conftructionem five Parabola, five alia quavis linea curva, cum fcilicet equatio ad Biquadraticiom afcendit. Etenim dum hac foribo mibi occurrit reguld Centralis Effectio Geometrica prater cmzzem fiem expedita, ac barum rerum Curiofis abunde fatiffactura.

Def cripta Parabola N A M, cujus vertex A, Axis A B C ac laius recium a, reducatur aquatio ad banc formam $\mathrm{z}^{4} \cdot \mathrm{~b} \mathrm{z}^{3}$. a pzz. a aqz. a ${ }^{3} \mathrm{r}$. = o vel ad hanc $\mathrm{z}^{3}$. b z z.apz. a a q $=\mathrm{o} f$ cubica tantum fuerit: dein ad diftantiam $\mathrm{B} \mathrm{D}=\frac{1}{4} \mathrm{~b}$ ducatur linea D H Axi parallela, ad jiniftram quidem fo fuerit - b , ad dextram $\mathrm{f}+\mathrm{b}$, parabole occurrens in puncto D ; de quo dimittatur perpendiculum in axem B D. In linea AB continuata verfus B fiat $\mathrm{B} \mathrm{K}=\frac{1}{2}$ a, é ducatur linea D Kutrinq; interminata. Porro fit $\mathrm{KC}=2 \mathrm{AB}$ in Axe femper ultra K continuato; ac fi babeatur quantitas p figno - affecta, verfus eaddem partes etiam fumatur $\mathrm{CE}=\frac{1}{2} \mathrm{p}$, vel in contrarias,

## [34] ]

fi babeatur +p , ace puncto E erigatur Axi perpendiculume E F (vel epunato C fo defuerit quaztitas p) linea D K, fo opus eft continuate, occurrens in puncto F ; quod quidem circuli requijo. ti centrum eft, fi defuerit quantitas q ; Aft fi babeatur q, fumenda eft in FE, fo opus eft continuata, linea $\mathrm{FG}=\frac{1}{2} \mathrm{q}$, , inijtvorfum quidem- $-\sqrt{2}$ fuerit +q , dextrorfum $\beta-\mathrm{q}$ collocanda: Et punctum Gerit centrum circuli ad conftrictionem propofitam idonei ; ejus $q$; Radius, $f$ defuerit quantitas r, boc eft
 fi tantum cubica fuerit,erit linea G D; cujus quadratum in Biquadraticis augenduma eft. $\sqrt{2}$ fuerit - r ,vel minuendum $f \mathrm{f}+\mathrm{r}$ additione vel fubductione rectanguli fub r \& latere recto. Defcripto fic Circulo, $a^{\prime}$ interfectionibus ejus cum Parabola demiffs in lineam D H perpendiculis, que ad jiniftram funt, ut N O , radices equationis negativas Semper defignant, que ad dextram ut M L affrmativas. Aliter ac paulo fmplicius Eiquationes cubice juxta Schooteni Regulam conftruuntur,quaq; etiam radices ad Axem referuntur: quoniam vero ipfe inventor nec modum inveniendi nec demonftrationem inventi exponit, non abs re erit ejufdem fundamentum bic adjicere, , Imul atg; Effectionem Geometricam concianiorem reddere, atq; cautionibus quibus implicatur extricare.

Hec Regula derivatur es eo quod omnis equatio Cubica reduci pofit ad Biquadraticam, in qua deficiet terminus Secundus: Hoc fit ducendo equationens propofitam in $\mathrm{z}-\mathrm{b}=0$, $\sqrt{\text { f fuerit }}+\mathrm{b}$ in

## [ 342 ]

aquatione, velin $\mathrm{z}+\mathrm{b}=0$, 1 fuerit -b ; er aquatio nova producta eafdem babebit radices cum Cubica, atq; infuper alteram ipf $i$ - b equalem, fifuerit - b in equatione; vel contra.

Proponatur conftruenda $\mathrm{z}^{3}-\mathrm{z}^{2} \mathrm{~b}+\mathrm{ap} \mathrm{z}+\mathrm{aaq}=0$. Hac ducta in $z+b f i t$
$z^{4}-z^{3} b+a p z^{2}+a a q z$
$+z^{3} b-b b z z+a b p z+a a q b:$ Hic deficit fecundus terminus, ac coefficiens tertii - b b+ap dat $-\frac{\mathrm{bb}}{2 \mathrm{a}}+\frac{1}{2} \mathrm{p}$ loco $\frac{1}{2} \mathrm{p}$ vel C D in Conftructione Cartefii, or ex dimidio coefficientis termini quarti fit $+\frac{1}{2} \mathrm{q}+\mathrm{b} \mathrm{p}$ loco $\frac{1}{2} q$ vel DE ufurpanda; adeoq; determinatur centrum circuli quafuti: atg; ob datam unam ex radicibus aquationis nover, viz. vel $+b$, dabitur etiam punctum in circumferentaa, id eft Radius ejus. Deniq; defcripto circulo, ab interfectionibus ejus.cum. $P$ arabola demifJa in Axem perpendicula equationis radices exhtbebunt, afirmativas énegativas, eadem lege ac fupra.

Inveftigatur autem centrum Circuli conftructione perquam facili, caterifg; omnibus in Cubicis praferenda. Defcripte Parabole A M D fit vertex A, atq; Axis
AF: ad diftantiam iph b equalens ducatur $A x i$ parallela DK, ad dextram fifuerit +b in $\mathrm{a}-$ quatione, ad finiftram $\rho_{i}$ -b, qua Parabole occurrat in puncto D. Centris D o A defcribantur radiis equalibus arcus occulti utring; Sefe interSecantes, ac per Sectionum puncta ducatur linea interminata B C, que medió linees fuptofite AD
 perpendiculariter infiftat, or Axi occurrat in puncto E . Ab E, inferne quiders ô in a furtione babeatur - p , velfuperne verfus A \& fucrit +p , pona-

## [343]

 perpendiculum F G, linee BC occurrens in puncto $G$; $\sigma$ in GF producta fat $\mathrm{GH}=\frac{1}{2} \mathrm{q}$, dextrorf um quidem $f$ in equatio one babeatur - q, aliter finiftror Sum, applicanda: ac punctum Herit centrum qutufituin, HD vero sirculi Radius, qui demifis in axem perpendiculis ab interSectionibus, wis cim Para bola, ut L M, Radices omnes, ut prius, commonftrabit. Quomodo vero conftructio bac ex premiffos confequatur, per fe fatis edens eft, nec opus eft ut in eadem demonftrinda diutius imm znorer.

Ne in his edendis frufraneam navaffe operam; er ex aliorum inventis gloriolam captare videar, confulat Eector Cl. Bakeri Librum Anno 1684 Londini editum, © qua de boc Argumento frripfit a Schooten in Commentario fuo in Librum III. Geometrie Cartefinne. Brevi conceffo otio tractatulum alium de mumero Radicum in bujufmodi Aquationibus, earumq; ;imitibus, ex contemplatione Conftructionum pracedentium, aggredi ac in lucem proferre ftatuo.

## [344]

A Letter of Mr. De la Hire of the Royal Academy of the Sciences at Paris, concerning a new fort of Magnetical Compafs, woith feveral curious Magnetical Experiments.

YOU know Sr. that there is nothing which creates fo much trouble in long Voiages on the Sea, as the Variation of the Magneticall Needle, both becaufe this Variation is different in differing places, and becaufe in the fame place it changes confiderably in procefs of time. It feems that if wee had exact Obfervations of the irregularities of this Variation, made all over the Earth, and at a confiderable interval of time, one might difcover fome Perioa of this Motion, and eftablifh a Syftem which might be of great ufe in Navigation. But feeing our oldeft Obfervations were made but about a hundred Years fince, and in fome particular places only, they only ferve to let us know, that if there be a regular Motion, it muft needs be very flow: So that we can conclude nothing certain for the time to come from all that has been hitherto Obferved. This is not becaufe of any difficulty that there is in afcertaining this variation by Obfervation, fince it is found to Change but few Minutes in a Year ; but too much reliance muft not be upon the Obfervations of Pilotes, by reafon of the grofs Errors which it is not eafy for them to prevent. For it often happens that near the place where the Compafs is, there is much Iron, which draws the Needle, and caufes-it to fhew a point on the Horiz on much different from what it would, were it farther from the Iron; which makesit be thought that there is a confiderable Variation where perhaps there is none

## [345]

at all. And it may fo happen that in the fame place where the Year before an Obfervation was made, if in the next; the Iron Inftruments be found otherwife placed than they were the time before, either in the fame Shipp or another, the Needle will fhew a Variation much differing from that found the firft time. And this fort of Caution not being Obferved at Sea may be caufe of very great Errours in the Obfervations of the Needles Variation tho' not affecting the Courfe of the Veffel. For the Needie being drawn after a certath manner will contantly obferve the fame fituation in refpect of the North, provided the Iron round about it be not ftirrd: And you hall not faile to ftear true upon any point of the Compafs, if this falfe Variation be obferved after the ufual Manner by the Amplitudes of the Sun. We cannot therefore hope to be fecure of any thing from the Obfervations we have at prefent, and efpecially from thofe made at Sea, which are the moft confiderable. This put me upon finding out fome means independent from Obfervations to difcover the Variation at Sea; but having confidered that feveral learned Men of this age had propofed divers ways of making Magnetical Needles, which fhould not be fubject to Variation, and that all thefe propofitions had had no effect; I judged that after all that they had done by means of the Loaditone, it was not tobe hoped to draw any farther advantage from it ; fince the Stone it felf, as far as might be gueffed from the Experiments hitherto made, was fubject to the fame Variation :

I had quite given over this Enquirie, when there accidentally fell into my hands a Terrella or Spherical Loadftone, of three Inches Diameter ; with which being minded to make fome Experiments, with a little Needle whofe foot might eafily be placed upon the Stone, I foon Obferved that which hath been already noted by feveral, viz. that this Globe of Magnet caufed the Needle to have the fame changes which are found in the Compafs in diffe.

## [346]

Tent parts of the World, as well in refpect of the direction towards the two Poles, as of the Inclination towards that which is next it: and upon tryal I fatisfiod my felf that it was not poffible to find the Point where the Needle would ftand indifferently in any pofition, ( which Point would have exactly hewed me the Pole of the Stone ) Obut that the Needle however placed, always directed it felfome one way. I determined by this means, as well as I could, the Point called the South Pole; but I was much furprifed to find it 18 Degrees diftant from a Crofs deep engraven on the Stone, which according to all appearance had heretofore been the Pole of this Stone, as it had been Obferved by him that Cut it. This change of the Poles of this Stone having revived my former thoughts concerring the Variation of the Needle, I believed that if it were true that the Poles of the Magneticall Vertue changed in the Loadftone, as we fee they change in the Earth, one might derive great advantages therefrom as to the Variations of the Magneticall Needle. For if this cliange of thefe Poles in the Eoad-ftone were certain, and that it was Analogous to the change of the Poles of the Magnetique Vertue in the Earth, it is not to be doubted butaTerrella, being fufpended at liberty, would remain immoveable, and that one point thereof would regard the Pole of the World, which might be called the true Pole of the ftone, whileft the Poles of its Vertue would pafs fucceffively from one part to another, after the fame manner as they change in the Earth.
After having well confidered this Hypothefis,and having cleared up fone doubts whicli had, concerning the Pofition of the Stone at the time when its pole had formerly been determined; I concluded that this former Pole was diftant from the point I call the true Pole, thirteen Degrees towards the Eaft, in the place where it had been marked (and which is unknown to me) fince that at this cime in this Country the Needle Varies about five Degrees Welt ward.

Upon

## [347]

Upon this Hypothefis, which I know not that any one elfe has yet thought upon, I have invented a new fort of Needle for the Compafs, which may have the fame alte rations as a Sphxricall Load-ftone, and at the fame time the fame conveniencies as the ordinary Needle hath.

I caufed a Ring of three Inches diameter to be made of Steel Wire ; from which there went three Radii of very fine Brafs-wire meeting at the Center in a Cap perfectly like that of an ordinary Compafs, that fo this Circle might reft on a Pin in its Center, and be at full liberty to turn round, its Center being fixt. This done I gave the Magneticall touch to this Steel Ring, by applying indifferently to a Point thereof one of the Poles of a ftrong Load-ftone, and the other Pole of the Stone to the oppolite Point, to give the greater Vertue to the Ring. Then I obferved that the Ring was itrongly Magneticall, and that the Point called the South Pole did readily turn it felf towards the North, and after feveral Vibrations ftopped there; and that it had alfo the fame inclination towards the Pole which is found in Needles after they have been touched: Laftly I fixed upon the Ring a fmall Fleur de Lis of Brafs, in the Point which exactly refpected the North, the Ring being firft well fettled.

If the Poles of the Magnetick Vertue change in the Load-ftone after the fame manner as they do on the Earth; it feems likely that the fame thing fould happen to this Ring, and that one Point thereof fhould alwais exactly refpect the North. But to informe my felf if a Steel Ring had the fame effects as a Terrella, I made the following Experiment. Having touched a Steel Ring, and having laid it on a Paper, I ftrewed the filings of Steel upon it; and then gently fhaking the Paper, I faw that the direction of the Magneticall matter paffed directly crofs the Ring from one Pole to the other, and that there were two Vortices on the fides, as it is obferved in the Sphæricall Magnet; which feems very furprifing: For

## [348]

according to the ordinary Hypothefis of the Magnet; the Magnetical Vertue paffing more eafily in the Steel than in the Air, Chould runn on both fides of the Pole round the Ring, and only form a Pole oppofite to the firft. But I was further confirmed in this Opinion by applying a flatt and pointed piece of Iron, like the blade of a Knife, to a Load-ftone, fo as the point of the Iron reached beyond the Stone; and having after wards prefented this point to the Magnetical Ring, I obferved that different Points of this Ring did apply to the Point of the Iron, according as the feveral parts thereof had been applyed to the Stone: which happens not in the Magnetical Needle, for that always prefents one of its ends to the Point of the Iron, being not difpofed, by reafon of its length, to receive the Magnetical matter in all the parts thereof analogous to thofe of the Stone. It muft only be noted that in an irregular Stone the Magnetical Vertue appears ftronger towards the Angles than in the other parts, which may caufe fome irregularity in this Experiment, if it be tried with a Stone that is very uneven.

Thefe Experiments gave me the Curiofity of making another, by touching two Semi-circles of Steel. Having joyned the two ends touched by the fame Poles, I obferved by the Steel-duft the fame effect as in the Ring. But having joyned the ends differently touched; I found that immediately the two half-rings run together and ftuck to each other ; and by the Steel-duft ftrowed on Paper I obferved, that there were four Vortices, one in the middle of each femi-circle, and one at each of the places where they were joyned, and that the two latter were lefs than the others and much ftronger. II faw likewife that there were four Poles, each of which was within a Vortex, and that each retained in its femi circle the Vertue of the ends of the half Rings.

I would trie, after having touched a Steel-Wire that was ftreight, to make a Ring thereof; but I found that it had quite

## [349]

quite loft its Vertue : which cannot be attributed to the junction of the Poles, fince they ought to ftick together, according to the other Experiments which have been made ; but only to this that hath been already noted, that when a Magnetical Virgula is a little bent, it loofes its Virtue, which cannot happen but from the alteration of the Pores of the Steel.

I farther remarked that a Ring of Steel having been touched does for a long time retain its Vertue, although it be put in a pofition contrary to its Poles. And this Experiment is confirmed by another much more confiderable: Which is, that a Ring of Steel having been touched with a ftrong Load-ftone, cannot without difficulty recieve a contrary touch from a Magnet lefs ftrong than the firft ; but that in time by little and little it refumes its former Vertue, much as we fee Magnets do, which being applyed to another Stone, by the Poles of the fame denomination, loofe their firft Vertue and take a contrary; which they afterwards loofe by degrees, to reaffume their firf.

After I had prefented this new Syfteme of the Magnet to the Academy, there were made fome Experiments upon a Terrella of much the fame diameter with mine, but whofe Poles were not diametrically oppofite; and upon a half-Globe very much bigger than the Terrella. Wee could find in them no confiderable difference or alteration of Poles: Yet becaufe of fome circumftances, the Company thought fit that fome Experiments fhould be made with this fort of Compafs.

If fome of thefe compaffes were carried into very remote parts, where it is known that the Magnetical Needle has a great Variation; one might be certain in little time whether this Hypothefis hold or no, and whether we may expect from it thofe advantages, which I have concluded from the fuppofed immobility of a Terrella hung at liberty.

## [350]

It remains only to explain after what manner thefe circular Needles may be touched a new, when it is perceived that they have loft their firft Vigour. According to this Hypothefis, it is evident that if the Circle be not touched in the point that anfwers to that of the Stone, with regard to its Variation, the little Fleur de Lis which marked the true North, may decline a little from it ; and the difficulty of finding the correfponding points on the Ring and the Stone, would caufe that the touch of the Circle could not be refrefhed, without taking great care and firlt obferving the Meridian line. But to avoid all thefe difficulties, you need only apply the Poles of the Stone to the Ring ; and the Ring, which is fufpended upon its pivot, will turn fo as the Point anfwering to the Pole of the Vertue of the Stone which is applyed to it, will come as near to it as poffible: In fo much that without touching the one or the other, the Ring will not fail to receive very much force. The fame may be done at the oppofite Pole.

I doubt not but you are curious enough to fee if the poles do change in the Terrella, when you fhall meet with one fit for this Experiment. There might feveral other things be noted upon this Subjuct, and it were to be wifhed that fome other particular obfervations might be made as opportunity thall offer; but unlefs curiofities of this nature fall into the hands of fuch as have a great love for the advancement of the Sciences, it is not to be hoped that we fhall have any certain information in a matter to nice, Ớ.

$$
\begin{gathered}
\text { Paris } \\
\text { April. 26. } 168 \%
\end{gathered}
$$

This Letter having been produced and Read before the Royal Society; it was Ordered that the Terrella, which has been in their Repofitory thefe 25 Years,

## $[351]$

the gift of their Royal founder King Charles the Second, Thould be examined, to fee if there be any fenfible alteration in the Poles thereof: And upon tryal it was found that the Points which are marked thereon with croffes, were as near as could be difcerned the true Poles of the Stone; notwithftanding that the Variation has changed at London full 4 Degrees fince this Terrella has been in the Societies Cuftody ; and perhaps many more fince it was marked: and had there been a change in the Poles of the Load-ftone analogous thereto, it mult needs have been perceived in this, whofe Diameter is about $4 \frac{1}{2}$ Inches. However to put this matter paft difpute, care was taken to find out exactly and mark the Poles of the Societys great Load-ftone, the Sphere of whofe Activity is above 9 Foot Radius, and whofe Poles are 13 Inches afunder, whereby if this Tranflation of the Poles be real, it cannot fail of being made very fenfible in future times, As to the fuppofition that the Points in which the Iron hath received the Magnetical Vertue may change place,after the fame manner as the Poles of the Earths Magnetifme are obferved to do; tho' it was lookt upon as an ingenious hint and worth profecution, yet fome of the Company, well skill'd in Magneticks were of opinion, rather that fuch a Circular Needle would librate on its Center, fo as to refpect the Magnetical Meridian with the Points that had at firft received the touch, than that the Ring remaining immoveable, the directive Vertue fhould be transfer red therein from place to place, either by length of time, or by tranfporting this Compafs into thofe parts where the Variation of the Needle is confiderably different.

$$
O_{\text {Sere }}^{L}
$$

## [352]

A Relation of the great effects of a new fort of Burning Speculum lately made in Germany: taken from the Acta Eruditorum of the Month of January laft: being a Letter from the Inventor to the Authors of that Fournal.

OF the concave burning Speculum which I lately caufed to be made in Luface, take this following Account.

The like thereof hath not yet been made, that I know of, for in Magnitude it exceeds even that great one which 'they fhew as a Sight at Paris, and whofe meafure I took when I was there, by about three eights of a Lipfock Ell. The outer Circle of mine is near three fuch Ells in Diameter, and is made of a Copper Plate fcarce twice fo thick as the back of an ordinary Knife ; and may therefore be eafily removed from place to place, and ordered for ufe; whereas thofe which I have yet feen that are large, and capable of producing confiderable effects, being Caft thick of a Mixt Miettal, are becaufe of their bulk and weight, lefs Tractable. The workmanfhip of this Speculum, which in one of the other fort, of this Magnitude, would be an immenfe Labour, may by the contrivances I have invented, be eafily and in little time performed by one Man.

The Polifh thereof is very good, and reprefents by diftinct reflections all thofe appearances which arife from the concave Figure thereof; reprefenting a Dwarfe like a Gyant, or the Head or other part of a prodigious Magnitude. The Eye being placed nearer the Speculum than is the Fosus thereof, all Objects are feen within it, in

## [353]

an erect Pofture, and as at a great diftance ; but the Ey being farther off than the Focus, all things appear inverted and without the Speculum: And becaufe the Focus is two Ells off, it is plealant to fee Objects diftinctly as it were hanging in the Air; and if a Sword be drawn againtt the Speculum, a Spectator not ufed to fuch Optical Delufions, would be apt to be Frighted, Imagining a Pafs to be made at his Face.

The Force of this Speciulom in Burning is fuch, that even Chymifts, who beft know the power of Fire, will hardly credit it, unlefs they fee it with their own Eyes. For (1) a peice of Wood put into the Focus Flames in a Moment, fo as a frefh Wind can hardly put it out. (2) Water applyed in an earthen Veffel prefently Boyles, fo as to Bo yle an Egg, and the Veffel being held there fome time, the Water evaporates all away. (3) A peice of Tinn or Lead three Inches thick, as foon as it is put into the Focus, melts away in drops, and held there a little time is in a perfect Fluor, fo as in two or three Minutes to be quite pierced through. (4) A plate of Iron or Steel placed in the Focus immediately is feen to be red hot on the backfide ; and foon after a hole is Burnt through; I have made three fuch holes in a plate, in fix Minutes time. (5) Copper, Silver and the like applyed to the Focus melt, which I have tryed with feveral forts of Coin; among the reft with a Rix Dollar, and the fame hapned to it as to the aforefaid Iron Plate in 5 or 6 Minutes. (6) Things not apt to melt as Stones, Brick and the like, foon become red hot like Iron. ( 7 ) Slate at firt is red hot, but in a few Minutes turins into a fine fort of black Glafs, of which if any part be taken in the Tongues and drawn out, it runs into Glafs threads. (8) Tiles which had fuffred the moit intenfe Heat of Fire, in a little time melt down into a yellow Glafs, as do. (9) Pot-fhreads, not only well burnt at firt, but much ufed in the Fire, into a blackifh-yellow Glafs. ( 10 ) Pumice-Stone faid to be that

## [354]

of burning Mountains, in this Solar Fire, melts into a white tranfparent Glafs. (11) A piece of a very ftrong Crucible put in the Focus, in 8 Minutes was melted into a Glafs. (i2) I have likewife feen Bones turned into a kind of Opake Glafs, and a clod of Earth into a yellow or greenifh Glafs.

It is to be noted that I made thefe Experiments in the latter end of Auguft and September, when the Sun has not the fame Force as when he is about the Summer So'lfice; at which time I promife my felf yet more wonderful effects; tho from hence it is evident, that there is no other Fire in Nature of the like Force and Efficacy.

I might add feveral other things well worth Notice, but fhall only give you this one. I tryed what effect the Beams of the full Moon, concentred with this Speculum, would have, at the time when fhe was at her greateft Altitude ; but there was not found any degree of Heat, tho' the Light was not a little encreafed.

This palfage of the Lüpfick Journall was produced at one of the meetings of the Royal Society by Mr. Ho*, as feconding a propofal he had fome Years fince made to them concerning the fame thing. He fuppofed that if fuch a Speculum were made of many Foot diameter, Its eff fects muft needs be prodigious; and might be of great afe in perfecting the Art of Pafts or Factitious Jewells, which require the moft intenfe degree of Heat, to bring them to an exact mixture. He conceives fuch an one might be made very large for a fmall Price, being hammered out of a Copper Plate, and tinned over with a míxture of Tin, Lead and Tin-glafs, which is found to bear a very good Polifh.

## LONDON

Printed by $\mathcal{F}$. Streater, and are to be Sold by Sam. Smith at the Princes Armes inSt. Paules Churchyard.

# [.355] Nemb. B8. PHILOSOPHICAL TRANSACTIONS. 

For che Months of September and October, 1687.

## The CONTENTS.

(1.) $A$N Account of fome Saxon Coyns found lately in Suffolk. Communicated by Sir P.S. Fellow of the Royal Society: with Some Remarks thereon by Mr. W. W. likewife R. S. Soc. (2.) An Eftimate of the Quantity of Vapour raifed out of the Sea by the warmth of the Sun; derived from an Experiment Jhewn before the R. Society at one of their late Meetings, by E Halley. (3.) Obfervationes nonnullx Eclipfeos nuperx Solaris Maii 1. St. vet: diverfis in locis habitw, ac cum R.Societate commanicatre, Accounts of Books. I. Memoirs for a Naturat Hiftory of Animals; containing the Anatomical Defriptions of feveral Creatures diffected by the Royal Academy of Sciences at Paris. Engli/bed by Alexander Pitfield Efquire, R. S. Soc. To which is added an Account of the Meafure of a Degree of a great Circle of the Earth, publifhed by the fame Academy, and Englifhed by Rich. Waller, Efq; Reg. Soc. Sect. Lond. Fol. 1687. II. CONFUCIUSSINARUM PHILOSOPHUS, five Scientia Sinenfis Latine expofita, Studio \& Operâ Patrum Societatis JE S U, Ẽ̛c. Adjecta eft Tabula Chronologica Sinicx Monarchix ab hujus exordio ad bec ufque tempora. Parifis. Fol. 1687.

## [356]

## An Account of fome Saxon Coyns found in Suffolk; Com:

 municated by Sir P.S. R.S.Soc.IN May 1687, at Honedon nigh Clare in Suffolk, the Sexton, as he was digging a Grave in the Church-yard, met with Some Jay a Skull; and near it his Spade broke a Yellow Earthen there endas wherein were many Silver pieces of Saxon Mony, no Pot.
fome of which I have feen, and endeavoured to read the Infcriptions, which are fo various, that there are fcarce two alike, tho they are generally of the fame bignefs, viz. of a Groat, and about the fame weight. I ghefs this variety of Infriptions arifeth from the many Mafters of the Mint who were appointed to coyn Mony in Reveral Places, and who might each of them have a different Stamp: and I find this Conjecture of mine countenanced by a Paffage in K. At thelffan's Laws, Printed by Lambard.

Cantuarie Monetarii VII Sunto, quorum quidem IV Regis. II Prafuli ac unus Canobiarche dejervito. In Civitate Roffenfi tres fint, Regii duo, tertius Epifcopi. Londini VIIf. Vintonie VI. In vico Lewifio II. In vico Hafingo I. Ciceftria I. Hamtone II. Exceftrie II. Werbam II, Schaftsbarie II. Ad aliud quodque oppidum Monetarius unus efto.

To confirm my Opinion, That the feveral Mafters of the Mint made different Reverfes, I have obferved great variety in Henry HI Coyn, viz.
NICOLE ON LVND.
WILLEX OV LVND.
WILLEM O CINT Canterbary quxr.
RICHRD OV GLOV.

Thefe Names being probably the Matters of the Mint's, the Laws à to the Mints being not altered. 1 Hen. VI. Cap. 1. The King's Council might affign Mony to be Coyned in as many Places as they will. (a)

But now in France, tho' there be Mints in feveral Cities, zet there is no difference in the Infcriptions, only a Letter of

## [357]

the Alphabet, to fignifie where the Mony is ftamp'd; as $A$ for Paris, \&c.

Thefe Saxon Monies were Denarii, or Pennies; for Greaves, of the Denarius, p. 117 . fays, In Ethelred's time it was the 20 th part of the filver Ounce Troy, and bigger than three of cur prefent Pennies; and our Goldfmiths weigh by this Penny-weight or 24 Grains. Five of the Saxon Pennies made a Shilling, and ( as Lambard's Gloffary fays) sherefore 48 of thofe Shillings made a Pound, and 240 Pennies made a Pound, which is the prefent Proportion of our Penny and Pound, tho' the intrinfick value be abourthree to one differeara.

I cannot yet meet with any fatisfactory Reafon, why this Mony fhould be thus buried; tho' very probably it was upon a fuperftitious Account: I hall only offer a bare Conjecture of mine; There were, they fay, between 200 and 300 pieces found in the Grave; and if $\mathbf{2 4 0}$, i.e. I l. then the Deceafed might order fo many to be buried with him, as a kind of Expiation for having privately killed a Dane of fervile Condition; for in Ethelred's Law there is this Penalty, Servilis conditionis Dacum $\sqrt{1}$ Anglus morte affecerit, integram folvito Libram. If more or lefs was found, it might anfwer another Mulct enjoined by the Saxcn Laws for killing or maiming fome Perfon of another Quality. Or the aftimatio capitis might be laid in the Grave with the Perfon that was killed.

Thofe who believe they were Peter-Pence, Rome-Scot, Rome Feoh, or Hearth Penny, I think are under a Miftake; for that Mony was collected every Year, and carry'd out of the Nation. Nor it cannot be the Soul Scot mentioned in Canute's Laws, (but firft required by the Council or Parliament at Eanham in Ethelred's time) to bepaid at the opening of the Grave, (whence Sir Henry Spelman, De Sepulturà, thinks the Fee demanded for the Office of Burial is derived) for it is not likely that Fee or Soul-Scot paid to the Prieft did amount to the Sum found in this Grave; and it is more unlikely that the Prieft fhould fo eafily part with his Mony, by burying it.

I Thall, as well as I can, give you the Infcriptions on thofe I faw; viz.

## 



II
II ELSTAN RE+ $+\begin{aligned} & L A N D+ \\ & +W^{+} C\end{aligned}$ 3 wt 25 grains EDELSTAN RE+ $\left\{\begin{array}{l}S T E F \\ +++ \\ A N V S\end{array}\right.$ 4DELSTAN RE $+\left\{\begin{array}{l}A R^{+} E M \\ +{ }^{+}+d \\ O N E M\end{array}\right.$

On fome of thefe Monies there are very odd Saxon Charaters, which are not drawn here very exactly. It would be a ufeful piece of Learning to have an Al. phabet of the feveral Charaters or Shapes of Leters oblerved in antient MSS. Coyns, and Monuments of Stone, © 6 c. and there might be added an Explarnation of Words abbreviated, as in thefe


Some Pieces are dimininifhed in their Weight, by lying long under ground, and feveral of chem coloured Green. (c)

7 ig. gr.
EADHNND RE- $\int_{E^{+}+1+B G}^{A+B}$
$\underset{\text { EADMVND RE }}{8}+\left\{\begin{array}{l}1 V E+ \\ +++ \\ N_{!}^{+}+T^{+} \\ \vdots\end{array}\right.$


12
EADMVND RE+ $\left\{\begin{array}{l}M A N \\ M A N O\end{array}\right.$

Spanbemius, in his Differtations de Numifmatis, tells us of the way of Writing Letters backwards, In Antiquiffimis aliguot Grecorum Numifmatis, : in guibus ZAAEI pro TEAAE; NMIATSBJIZ pro EEFE-7 ETÁION, \&c. aliaq; ad genuc Pboa nicum more finiffrorfum non Semel' fcripta legüntur. Eandem quoque fariptucce rationems in Antiquis aliquot Gothotum Saxis adnotavit Antiquitatus patrie reftaurator Olaus Wormils.

This

## [359]

## 13

## EADMVND RE+

24: EADHVND REPT + $\varepsilon d_{\text {mun }} d_{i}$ facies
REIHGRHZ1OH
25 EADMVND RE $+\left\{\begin{array}{c}E \cdot \dot{R} H \\ 0+0 \\ +0\end{array}\right.$
16. 24 gr.

EADTVND
$+\quad$ REX $:\left\{\begin{array}{l}++++i \\ +\quad+{ }^{+}+\end{array}\right.$
it $25 . \mathrm{gr}$
EADHVND RE +
$+$

$18+E A D R E D \quad R E+21 \cdot g r$. Edredi facies.
FREDRED MONETA+ 19 + EADRED RE + Edredi facies MANEEHINNO+
20 + EADRED +
Zdredi facies
21 EEADRED REX $24 \cdot \mathrm{gr}$. Edredi facien
HA HEEHINO NEM

The fame Reverfe with the laft.
This Reverfe is written round the 十, whereas moft of the Reverfes are not f ; but there are two Lines of Letters with three Crofles between 'em.

The little 0 in fome of there Monies is periodical.

Thefe following Reverfes are written round the +

The $\boldsymbol{f}$ is a very clear Chara. cter, and ftands for a Letter that is not defaced.

Sterling, \&c. P. © T. pafim cono fundi Docti obfervant, wipme pro
 pro Roftina, \&cc. Bochart. Geogr. pag. 450.706 . Denarium © Sterlingum eundem effe Nummum, (Matth. Paril. in Hen. III. tredecims olidis ©゚ 4 fterling is pro Marsa gualibet computatis) Vox ip $\int$ a, (Eterlims, utrim formatur à figno quod imprimebatur iffi. Nummo, ó Sterlingus $\rho$ it quafi Stellatus, an potius Eafterlingus denominatus a Populis, gui Eafterlings dicuntur, ambign. um faciunt Scriptores. Gronovius de Siftertiis, pag. 346. (l).

## $[360]$

But I find Gronovius may be corrected in what he writes in the Addenda to the fame Treatife by this Reverfe; Dubium non eft (fays hé) fi Saxonibus Anglis deberetur ea Vox, ©sterling, in monumentis illorum repertam iri. - conftat inter omnes ante Normannorum ingreffum in Angliam, non reperiri mentionerf bujus Vocabuli; cum iffo Gulielmo primùm legi, Sterlingos, \&c. appellatos, ergo his debetur eaVox in Anglia, Yet 1 believe what he writes juft before, Denarios autem nomen etiam stertingeg fuiffe, in Continente quă Normanni imperabant, oftendunt duo refcripta Pontificum Romanorum in Decreto Gregorii ; and he might well have added, That the Normans borrowed of the Franks that Word Sterling, as well as deforiptionem Librce per folidos denariofque. But it may be, when Gronovius writ, no Coyn or Monument of Antiquity was then difcovered in England that mentioned Sterling before William I. whofe Name brings to my mind, that on his Coyn $P$ is put for $W$. (i)

Sir Henry Spelman, in his Gloffary, fpeaks of Sterling and Denarius to be the fame; and he directs to the Statute made An. 1302, 3 I Edw. I. wherein the Penny is called Sterling, and the weight of the Sterling is 32 Grains of dried Whear; (and $I$ have weighed $3^{2}$ Grains of Wheat, and they are equal to 24 Grains Troy-weight, which is our Saxow Penny.) And Ann. 1496, 12 Hen. VII. Cap. 5, there is another Statute wherein the Sterling is of the fame weight.

Iam credibly inform'd, fome of Egbert's and Etbelbert's Coyn were found amongft them: Thofe I faw, were EthelAtan's, who began his Reign about the Year 925. Edmund Etheling's his Brother, (for I take the Edmunds to be his) who began his Reign 940; Edred, another Brother, who began his Reign 946.

I hope others more skilful in Antiquities, and that have better advantage by our Records and ancient Hiftories, will give a clearer Interpretation of the Words, Charackers, and other Circumftances relating to thefe and other Saxom Monies.

## [361]

In the Church-yard at Foulthbam in Norfolk, there is a Tomb-ftone with this Infcription, which fome of the Learned in thefe Curiofities may perhaps explain.


## Remarks upon the foregoing Obfervations by W.W.

 Reg. Soc. Soc.(a) His Law was in force till Henry VII. who, firft, that I can find, quartered the Arms of England and France in his common filver Coyns, on their Reverfes: This his Succeffors have fince followed; before they writ, Civit. London; Civitas Cantuarie, Villa Calefie. The want of knowing this Cuftom, has caufed fome Learned Men to miftake fome Coyns of Edward IV. with Civitas Norwic. on the Reverfe, for Medals flamped in memory of Kett's Infurrecti. on, by Edward VI. Golden Medals, in memory of great Actions, are of ancient ufe amongft us; witnefs that golder Coyn of Edward III. where a Shield, with the Arms of England and France over a Ship, is ftamped, to fhew his Title to the Kingdom of France, which he then claimed; yet this can hard: ly be fhewn in filver Coyns which then paffed for current Money: that feems to have been peculiar to the Greeks and Romans, except fome Inftances in thefe two laft Ages.

The fingle Exception of Edward III. who quarter'd England and Fraxce in his Mony, doth not weaken my Affertion, fince it was extraordinary, as a more publick Proclamation of the JuAtice of that Title, which he fet on foot againt Pbilip de Valois.
(b) This Reverfe is to be read PENE FEHO; i.e. Pennymony, a Duplication ufual amongt the Saxows; fo afterwards Sterling

## [362]

Sterling-mosy. Feho, or Feoh, is a common Word for Mony. St. Mark xii. 41. pa rxe re bxlend onzen pxne zollyceamol, 1 \}ereah hu $\$$ folc hypa peoh; Then fet fefus over againft the TreaJury, and faw the People put in Mony.
(c) LAND WEHO; This was coyned in Memory of a Land Tax, raifed by Etbelftan, to fupport his Wars againft the Danes and Scots; againft whom, efpecially the Scots, he was always' victorious. Our Writers (Ingalph. Hijl. Croyland. p. 29.) fay that he killed Conftantine King of the Scots, with five more Kings at the fame time; but the Chronicle of Mailrofe, written by the Abbot of Dundrainand, a Scottifhman, fays only, Regem Scottorum Conftantinum prelio vicit, \& fu. gavit; (ad An.926. p. 147.) And this is the only IXthelfan who was ever King of England: There was another ÆthelJtan King of Kent only, Son to Egbert, who beat the Danes at Sandwich in Ann. 852.

The variety of Letters in thefe Reverfes is remarkable: The laft Word in thefe two Reverfes is manifeftly to be read alike, yet the form of the Letters is vaftly different. This variety arofe from the multitude of Mints, which did not all tye themfelves up to one Stamp, nor to the fame Letters.

AREM ONETA.
(d) This I fhould read REgia Moneta, to diftinguifh it from the Bi/bops or Abbots, for it was probably coyned at Canterbury; $A$, I take to be a Mint-mafters Mark.
(e) Tho' thefe Coyns, as far as I can judge, are as good Silver as any current with us, if not better; yet fince what Alloy is in them is of Brafs, I am apt to think, that the acid Steams in a long feries of Ages arifing from the Humane Bodies, might corrode fo far into the Metal, as to raife fome little Verdigreafe upon the Surface of the Coyns; to which that Greennefs is to be imputed.
( $f$ ) Probably this Albericus was a Nobleman, and they might have had the Jus monetie as well as BiJhops and Abbots; but 1 muft confefs I cannot make that out clearly. $H$ before $G$ is an ufual Tranfpofition ; fo HClotharizs, HLudowicus.

## [363]

(g) This I read IVE MONETA, or Ive Money, that is, Mony coyned at St. Ives in Huntingdonghire. The H, as alfo $\Pi$, both ufed for $M$, are remarkable. Bouteroüe, in his Difquifitions on the old French Monies, gives us fome Gallick Epitaphs from which he draws an Alphabet of the old Gauls: in that, $H$ and $H$ are ufed for $M$; fo that poffibly the Britains might likewife ufe them : it is manifeft they are not Saxon Letters; and I fee no Abfurdity to allow the Saxons to have borrow'd them from the Britains, and to have ufed them amongft their own Capitals. There is a Coyn in Tab. 3. Coyn I4. of the Collection prefixed before $\mathbb{F l f r e d}$ 's Life, which has two other of thofe Gallick Letters of which Bouteroüe has given us an Alphabet. The Coyn is,


The $\infty$ and $\boldsymbol{E}$ are $S$ and $F$ in his Alphabet; and I am apt to think, that that Inverfion of Letters in thefe Saxon Monies, as $\amalg$ for $M, \amalg$ for $M, \notin$ for $F$, took its rife from them; for in this Alphabet we have $\Delta$ and $\nabla$ for $D ; c, 2, Z$, for $S$ : however, this will evince, in fome meafure, the Practice of fuch Inverfions, which made fome Learned Men take them for Runic, Gothic, or indeed for any Characters with which they were little acquainted.
(b) This and the Reverfe of the II, are to be read alike, tho' they were coyned at different Places, as appears from the variety of the Letters.
(i) $\Pi$ which is ufed here for $M$, is frequently ufed in that Collection of Saxin Coyns prefixed to $\mathbb{E l f r e d}$ 's Life.
( $k$ ) This Gote mone, or Gods Mony, was the Peter-Pence which was collected yearly, and fent to Rome. Ina, one of the Kings of the Mercians, firl gave it: thence it was conftantly

$$
[364]
$$

paid afterwards, tho now and then intermitted in the heat of the Dani/b Wars, I fuppofe this Coyn came out of an Ecclefiaftical Mint.
(l) The true Original of Sterling is Starry. The Common People obferving the Croffes upon the Coyns, which looked like fo many Stars, called them Sterlings, Starry pieces. Ling is an adjective Termination in the Saxon Language; fo in time, the Word became Subftantive, and was ufed promifcuoufly for Penny.
( $m$ ) The 19 and 21 Reverfes are to be read alike, tho' poffibly they might be made from different Stamps. The Letters in both (for neither are very clear) will mutually explain each other. I read it MTLHEEHI HONE, or Malmef. bury Mony: The F , which is an entire Letter, feems to have been taken from the fquare $B$, or $\mathbf{B}$.
(n) This P was the old Saxon P or $W$; fo it was Willem, not Pillem. The Saxon Character, which was full and plain, gave rife to that fmall beautiful Character which we ufually call the Roman Letter. The ancient Romans, for ought as yet appears to the contrary, wrote all with one uniform Character, fometimes greater and fometimes lefs, of the fame Figure with the great Letters in our Alphaber. This they took from the Greeks; and it is ufual in all the Alphabets of the Oriental Nations. The three Infcriptions in Gruter, (pag. 185.3. p. 652.2. p. 882.7.) only prove that they had our fmall $t, p, b, b$, for we have no Hints in our MSS. of any others. After them fucceeded the Francick or Merovingian Character, entirely left off in tranfcribing Books after Cbarlemagne. The Notaries kept it longer ; only by making it longer, they brought it to fomething like the ltalica, to which it poffibly gave rife. The Specimens in Mabillon's fourth Book de re Diplomatica, will pue this paft doubr. All this while the Saxon Character was ufed in England, whofe Alphabet is evidently the fame with the fmall Roman, except fome Letters which expreffed Sounds proper to their Language, as $\$, \mathrm{p}, \gamma$ : wherefore when Alcwinus (Scholar to Egbert Arch-bihop of York) went over into

France.

## [365]

France to Charles the Great, and afterwards fent for Books our of Egbert's Library, as may be gathered from William of Malmesbury, he introduced that fine way of Writing, which immediately took place with all but the Publick Notaries. Mabillon owns the thing in effect, tho' he diffembles the Original: Primâ ftirpe extinctâ, Carolus M. Literas expolire capit, aut certe jam tantijper expolitum Scripturegenus à Merovinginco in elegantiorem formam commutavit, que in eandem formam evafit; que bactenus minuti Romani Characteris nomen retinet. (Lib. I. Cap. I I. num. ro.) And if this Change was not wrought in a moment, becaufe the Tranfcribers us'd to the old Merovingian hand conform'd it to the new, as much as they could, yet that wore off by degrees: fo Mabillon, que [Carolina Scriptura] principio nonnibil Merovingici Characteris habebat intermittum; at fubinde politior effecta, in eandem formam, \&c. Mabillon acknowledges, that Alcuin introduced the modern Punctuation into the French MSS. and Records, which he learned from the Saxons, particularly $[\because]$ for a full Period, as is manifent to all that hall look into the Saxon MSS, or printed Books in imitation of them.

Befides, all our Latin MSS. in England, 'till fome time after the Conqueft, were writ in the Saxon Character. So Archbihop Parker publifhed Afferius Menevenfis : and there are feveral Latin MSS. in the Univerfity-Library of Cambridge, written in the Saxon Character. And it is no wonder that thofe Letters which expreffed Sounds not ufed in the Roman Tongue, thould be left out by the French Tranfcribers, who at the fame time might ufe Saxon Copies: fo that it is not ftrange Vofius fhould be miftaken, when he thought $\Omega$ and $\oplus$ were from the Greek $\Omega$ and $\Theta$, who did not confider them to be both Runic Letters, which were introduced upon a particular occafion, by Chilperic, who took them from the Vifigoths in Spain, as Wormius (de Literaturâ Runicâ ) has probably proved from Gregorius Turonenfis and a Conftitution of the fame Chilperic printed in Goldaftus : yet I will not deny but Theodore, or fome other of thofe Greeks, who in that Age had fo

## [366]

great Intercourfe with England, might introduce fome Greek Letters to exprefs thofe Sounds which they had not in their own Language ; from hence they were carried into France, with the reft of the Saxon Alphabet, and fo into Italy; which Mabillon alfo in effect acknowledges when he fays, Hanc tamen Scripturce formam non Franci a Romanis, qui Langobardicis paffim Elementis tunc utebantur, Sed à Francis Romani accepiffe videntur. But it would take up too much time here to difcourfe of the Original of the Saxon Character, and whence thofe Agreements between it and the pure Merovingian and Lombard Characters might at firft arife ; and perhaps the thing it felf does not deferve any farther enquiry.

> An Eftimate of the Quantity of Vapour raifed out of the Sea by the warmth of the Sun; derived from an Experiment Shown before the Royal Society, at one of their late Meetings : by E. Halley.

THat the quantity of aqueous Vapours contained in the Medium of the Air, is very confiderable, feems moft evident from the great Rains and Snows which are fometimes obferved to fall, to that degree, that the Water thus difcharged out of the Interftices of the Particles of Air, is in weight a very fenfible part of the incumbent Atmofphere : but in what proportion thefe Vapours rife, which are the Sources not only of Rains, but alfo of Springs or Fountains (as I deftgn to prove) has not, that I know of, been any where well examined, tho it feem to be one of the moft neceflary Ingredients of a real and Philofophical Meteorology; and as fuch, to deferve the confideration of this Honourable Society. I thought it might not be unacceptable, to attempt, by Experiment to determine the quantity of the Evaporations of Water, as far as they arife from Heat; which, upon Tryal, facceeded as follows.

## [367]

We took a Pan of Water, about 4 inches deep, and 7 inches $\frac{9}{10}$ diameter, in which we placed a Thermometer, and by means of a Pan of Coals, we brought the Water to the fame degree of heat which is obleaved to be that of the Air in our hotteft Summers; the Thermometer nicely fhewing it. This done, we affixed the Pan of Water, with the Thermometer in it, to one end of the Beam of the Scales, and exactly counterpoifed it with weights in the other Scale; and by the application or removal of the Pan of Coals, we found it very eafie to maintain the Water in the fame degree of Heat precifely. Doing thus, we found the weight of the Water fenfibly to decreafe; and at the end of two hours we obferved that there wanted halt an ounce Iroy, all but grains, or 233 grains of Water, which in that time had gone off in Vapour; tho one could hardly perceive it finoak, and the Water were not fenfibly warm. This Quantity in fo fhort a time feemed very confiderable, being little lefs than 6 ounces in 24 hours from fo fmall a Surface as a Circle of 8 Inches diameter. To reduce this Experiment to an exact Calculus and determine the thicknefs of the skin of Water that had fo evaporated, Iaffume the Experiment alledged by Dr. Edward Bernard to have been made in the Oxford Society, viz. That the Cube foot, Engli/th, of Water weighs exactly 76 pounds Troy; this divided by 1728, the number of inches in a foot will give $253^{\frac{2}{3}}$ grains, or $\frac{1}{2}_{2}^{2}$ ounce $13^{\frac{1}{3}}$ grains for the weight of a Cube inch of Water ; wherefore the weight of 233 grains is $\frac{223}{253}$ or 35 parts of 38 of a Cube inch of Water. Now the Area of the Circle, whofe Diameter is $7 \frac{2}{10}$ inches, is 49 fquare inches; by which dividing the quantity of Water evaporated, viz, $\frac{3 i}{38}$ of an inch, the Quote $\frac{35}{2582}$ or $\frac{x}{53}$ thews that the thicknefs of the Water evaporated, was the $53 d$ part of an Inch: but we will fuppofe it only the fixticth part, for the facility of Calculation. If therefore Water as warm as the Air in Summer, exhales the thicknefs of a 60 part of an inch in two hours from its whole Surface, in twelve hours it will exhale the $\frac{1}{10}$ of an inch; which quantity, will be found abundantly fufficient to ferve for all the Rains,

## [368]

Springs and Dews, and account for the Cafpian Seas being always at a ftand, neither wafting nor overflowing; as likewife for the Current faid to fet always in, at the Streights of Gibralter, tho thofe Mediterranean Seas receive fo many and To confiderable Rivers.

To eftimate the quantity of Water arifing in Vapour out ot the Sea, I think I ought to confider it only for the time the Sun is up, for that the Dews return in the Night, as much if not more, Vapours than are then emitted; and in Summer the Days being longer than twelve hours, this excels is ballanced by the weaker Action of the Sun, efpecially when rifing, before the Water be warmed: fo that if I allow $\frac{1}{10}$ of an inch of the Surface of the Sea to be raifed per diem in Vapours, it may not be an improbable Conjecture.

Upon this Suppofition, every ro fquare Inches of the Surface of the Water yields in Vapour per diem a Cube inch of Water; and each fquare foot half a Wine pint, every face of 4 foot fquare, a Gallon; a mile fquare, 6914 Tons; a fquare Degree, fuppofed of 69 Englifh miles, will evaporate 33 Millions of Tons: and if the Mediterranean be eftimated at 40 Degrees long and 4 broad, Allowances being made for the Places where it is broader by thofe where it is narrower, (and I am fure I ghefs at the leaft,) there will be 160 fquare Degrees of Sea ; and confequently, the whole Mediterranean muft lofe in Vapour, in a Summers day, at leaft 5280 Millions of Tons. And this quantity of Vapour, tho very great, is as little as can be concluded from the Experiment produced : And yet there remains another Caufe, which cannot be reduced to Rule, I mean the Winds, whereby the Surface of the Water is lick'd up fometimes fafter than it exhales by the heat of the Sun; as is well known to thofe that have confidered thofe drying Winds which blow fomerimes.

To eftimate the quantity of Water the Mediterranean Sea receives from the Rivers that fall into it, is a very hard task, unlefs one had the opportunity to meafure their Channels and Velocity; 'and therefore we can only do it by allowing more

## [369]

than enough; that is, by afluming thefe Rivers greater than in all probability they be, and then comparing the quantity of Water voided by the Ihames, with that of thofe Rivers whofe Water we defire to compute.

The Mediterranean receives thefe confiderable Rivers; the Iberus, the Rhone, the Tiber, the Po, the Danube, the Neijfer, the Borybenes, the Ianais, and the Nile, all the reft being of no great note, and their quantity of Water inconfiderable. Thele nine Rivers, we will fuppofe each of them to bring down ten times as much Water as the River Ibames; not that any of them is fo great in reality, but to comprehend with them all the fmall Rivulets that fall into the Sea, which otherwife I know not how to allow for.

To calculate the Water of the Thames, I affume that at Kingston Bridge, where the Flood never reaches, and the Water always runs down, the breadth of the Channel is 100 Yards, and its depth 3 , it being reduced to an equality; (in both which Suppofitions I am fure I take with the moft.) Hence the Profil of the Water in this Place is 300 fquare Yards: this multiplied by 48 miles, (which I allow the Water to run in 24 hours, at 2 miles an hour) or 84480 Yards,gives 25344000 Cubick Yards of Water to be evacuated every day; that is, 20300000 Tons per diem; and I doubt not but in the exeefs of my meafures of the Channel of the River, I have made more than fufficient allowance for the Waters of the Brent, the Wandel, the Lea, and Darwent, which are all worth notice, that fall into the Thames below Kingston.

Now if each of the aforefaid 9 Rivers yield 10 times as much Water as the Thames doth, 'twill follow that each of them yields but 203 millions of Tons per diem, and the whole 9 but 1827 millions of Tons in a day; which is bue little more than $\frac{x}{3}$ of what is proved to be raifed in Vapour out of the Mediterranean in 12 hours time. Now what becomes of this Vapour when raifed, and how it comes to pais that the Current always fets in at the mouth of the Streights of Gibralter, is intended, with leave, for a farther Enter

## [370]

tainment of this Honourable Company: in the mean time, it it needful to advertife the Reader, that in making the Experiment herein mentioned, the Water ufed, had been falted to the fame degree as is the common Sea-water, by the Solution of about a 40 th part of Salt.

Obfervationes nonnullæ Eclipfeos Nuperæ Solaris, Maii 1. St. vet. diverfis in locis habitr, ac cum Regiâ Societate Communicatz.

H无C Eclipfis, etiamfl contemnende quantitatis fuerit, ac nudis oculis non omnino percipi potuerit, tamen ad accuratam determinationem Parallaxis ©o Latitudinis Luna maxime idonea videtur. 2uapropter quas bactenus obtinere potuimus obfervationes cape Lealor Benevole.

Londini Seorfim obfervantibus Hookio ©̛ Halleio; Initii momentum, calo licet purifimo, ob obliquam incidentiam Luna, debite definire non licuit. Sed bora $\mathbf{I}^{\mathrm{h}}$. $\mathbf{1} \mathbf{6}^{\prime}$. jam capta erat Eclipfis fatis notabiliter: circa $\mathbf{1}^{\mathrm{h}} .40^{\prime}$. prope medium Eclipfis, Chorda partis Eclipfate, five inter cornua, inventa eft $9^{\prime \prime} \cdot 30^{\prime \prime}$. cui refpondet arcus 36 gr . in diametro vero non nif斤 $\mathbf{1}^{\prime} \cdot 30^{\prime \prime}$. Finis confenfu utritffue obfervatoris contigit accurate hora $2^{\mathrm{h}} \cdot 3^{\prime} \cdot 00$.

Grenovici in Obfervatorio Regio Flamfteedius eadem de caufa Initium non vidit, fnem verodeterminavit $\mathbf{2}^{\text {h }} \cdot 4^{\prime} \cdot 15^{\prime \prime}$. Medio Eclipfis five maximâ obfcuratione, Chorda partis Eclipfate erat $9^{\prime}, 54^{\prime \prime}$.

Apud Totteridge prope Londinum verfus Corum, finem videt Dominus Haines, Reg. Soc. Soc. ad 2 ${ }^{\text {h. }}$ 2'. Quantitatem vero $^{2}$ Maximam dimidii Digiti, ab Auftro.

In Infula Barbada, ad Oppidum Bridge-Town, fub Lat. 12 gr. 58'. Finem habuit Dominus Frank 1'. $30^{\prime \prime}$. temporis ante quam Solis Altitudo fuit 3I gr. 47'. ad ortum, hac eSt hora $7^{\mathrm{h}} \cdot 56^{\prime} .45^{\prime \prime}$. A. M. Quantitatem Maximam affimatione definivit duorum digitorum ab Auftro.

Norim-

## [371]

Norimbergx eandem Eclipfim obfervavit J. P. Wurtzelbaur. lnitium quidem accurate ad $\mathbf{1}^{h} \cdot 5^{\frac{1}{2} \frac{1}{2}}$; circa medium, fe. ad $2^{\prime \prime}$. 36': quantitatem maximam duorum dig. precife; Finem vero ad $3^{\prime \prime} \cdot 18^{\prime} \cdot 33^{\prime \prime}$ 。

Ulmx Suevix, observavit Honoldus Initium ad $\mathbf{1}^{\text {b }} \cdot 4^{8^{\prime}} 5$ 2月antitatem maximam $\mathbf{2}_{3}$ dig. Finem veroad $3^{h} \cdot 16^{\prime}$.

Lipfix, obfervatore Kirchio, Eclipfis jam fatis not abilis ad ho. $\operatorname{ram} 2^{\mathrm{h}} .20^{\prime}$. $10^{\prime \prime}$. ad $\mathbf{2}^{\mathrm{h}} \cdot 47^{\prime \frac{1}{2}}$ digiti $\mathrm{I}_{\frac{3}{3}}$ circiter. Finis vero incidit precije in $3^{h} \cdot 15^{\prime}$.

Vratiflavix Silefie denique observavit D. G. Schultzius Maximam obfcurationem, paulo citius quam $3^{h} \cdot 12^{\prime} \pm$ fuife $I_{2}^{\frac{x}{2}}$ dig. Finem vero hora $3^{\mathrm{h}} \cdot 37^{\prime \prime}$.

In omnibus hujufmodi obfervationibus momentum Finis multo tutius determinatur; itaque buic potius fidendum eft, presertim in Eclipfibus parwis, ubi ob incidentiam maxime obliquam diu barent quafi in Contactu Luminaria.

Memoirs for a Natural Hifory of Animals; containing the Anatomical Defcriptions of feveral Creatures, diffected by the Royal Academy of Sciences at Paris; Englifhed by Alexander Pitfield,' $E$ (quire, R. S. Soc. To which is added, An Account of the Meafure of a Degree of a great Circle of the Earth: Publighed by the fame Academy, and Engli/hed by Richard Waller, Efquire, R. S. Secr.

THis Book, containing the Andtomical Obfervations of 28 Species of Animals, and about 70 Individuals, was publifhed in two very large Folio's by the Royal Academy at Paris, and owned by them; as their united Labours, as they are a Body. The Difficulty of procuring Copies of the French Edition, few of the Learned having ever feen the Book, tho' Printed fome Years funce, was no fimall Inducement, as the Tranflators fay, to their Undertaking.

## [372]

Waving what may be faid as to their Preface, and of the firt 12 Species of Animals; viz. two Lyons and a Lyonefs, a Camelion, a Dromedary, a Bear, five Gazella's or Antilopes, a Chat Pard, a Sea-Fox, a Caftor, an Otter, two Civet Cats, an Elke, and a Coati mondi, of all which, a large Account has been already given by Mr. Oldenburg in his Philofophical Tranfactions, Numb. 49. \& 124 to which I refer the Reader; I fhall proceed to give fome Account of the fixteen remaining Species; all which were publifhed in the Second Volumn of the French Edition.

The Thirteench Species then is the Sea.Calf, which, from Rondeletius, they obferve to be of two kinds, the larger from the Ocean, the leffer from the Mediterranean, of which fort this was. That which is moft extraordinary in it, was the Epiglottis, much larger than in other Animals; its Ventricle like an Inteftine: it had all the Organs for Secretion of Urine, and the Kidneys feemed compofed of feveral Glands, each provided with a particular Pelvis: it had Lungs like other Amphibious Animals; and the foramen Ovale giving Paffage to the Blood from the Cava to the Aorta. It had the Criftalline more convex before, which is not common; and feveral Particularities in the Formation of the Eye favauring the Opinion of the Reception of the vifual Species on the Retina.

The Fourteenth, the Barbary Cow, an Animal fomething refembling a Deer: it had but two Teats, four Ventricles like other ruminating Animals, a very large Cocum, and nodiftinct Lobes in the Liver. It was in feveral Particulame like the common Cow.

The Fifteenth is the Cormorant, wherein the fhortnefs of the Iegs is remarkable, and ftructure of the Feet for fimiming with one Foot while the other holds the Prey: the largenels of the Oefophagus: want of the two Cecums, found in moft Birds: the Kidneys feparated from the other Hifcera by a particular Membrane: the Tongue and Eye very fmall, this Warer-Fowl being to feel for its Food under the Water, rather than difeover it from afar.

## [3:3]

The Sixteenth, the Chamois or Rupicapra, in whofe Ventricle a Ball was found; whence they take occafion to difcourle of the Balls found in the Stomachs of Creatures, as Cows, Horfes, ©Gc. and obferve that they are compos'd of lignous Fi. breo and not Hair, as is ufually thought : befides feveral other Obfervables, the Cornua uteri were very long and winding; the Heart had a Callous Apophyfis, \&c.

The Seventeenth and Eighteenth are the Porcupine and Hedg-hog, a comparifon being made between thefe two Animals. They obferve the external Ear of the Porcupine to be like a Mans; the end of the Tongue armed as it were with Teeth; the Skin provided with an extraordinary Mufcle for Ejaculation of the Quills. Of thefe they diffected fix. In comparing the Hedg-bog with them, they defcribe the Mufculus carnof us, which ferves to bring the Head round into the Breech like a Foot ball; whereas in the Porcupines the Cacum was very large, in the Hedg-bog there was none at all; the Epididymis, in the Porcupine, was feparate from the Teftis; in the Hedgbog united to it: in the Hedg-bog they obferved a large Cryftalline filling almoft the whole Globe of the Eye.

The Nineteenth are four Monkeys; where they in general obferve, that this Animal more refembles Man in his outward fhape than inward Formation of the Parts, which in many things are like a Dog; the genital Parts of the Male like neither; of the Female much like Woman; the Anfractuofities of the Brain like Mans, but the Proceffus mammillares were hard and membranous, which they are not in Man: they conclude with a comparifon of the $M u$ cles, which very much refemble thofe of Men.

The Twentieth is the Stag of Canada and Sardinian Hinde. In the Stag, the length of the Inteftines is obfervable, being in all 96 feet; and indeed, generally all grafing Animals have long Guts. In the Hinde, the four Ventricles were more diftinguiflable than in the Stag; the Cornua uteri long and winding, as in the Chamois: in the Trunks of the fugulars were found 16 Valves, which were in fituation contrary to the Cir-

## [374]

culation of the Blood. In the Carotides were obferved feveral tranfverfe Incifures.

The Twenty firft, ten Pintadoes; where, after a full defrription of the outward Form, they defcribe feveral Parts like the common Hen; the Pancreas wanting: the Bladders in the lower Belly were raifed by blowing into the aßpera Arteria, whence they hint at the ufe of Refpiration.

The Twenty fecond, three Eagles : after having difcourfed of the fix kinds of Eagles, according to Ariftotle and Pliny; they obferve, That the Inteftines, after the ufual manner of voracious Animals, were flender and fhort, as alfo the Kidneys; fome had the Cacum, others none: the Globe of the Eye was large, and the Cornea very prominent. In this Subject they firft difcovered that the Spinal Marrow in the middle of the Back was divided in two, with a Ventricle like thofe in the Brain betwixt: this was afterwards found common to all Birds.

The Twenty third, two Indian Cocks, not our Turky Cocks. 'They were both Males: in one there was two Pancreas's, with three Cbolidoci, and two Pancreatici ductus into the Inteftine : in the other was but one Pancreas, and a fingle ductus: the Intefines were 12 feet long, and Cacum fix: the A/pera Arteria made a fold in the Craw bone, after a moft particular manner.

The Twenty Fourth, fix Buftards; in which the Craw was farce diftinguifhable from the OE Sophagus, and furnifthed with a great number of Glands moft confpicuous in this, but to be found in moft Birds: a particular defeription of the Gizzard follows, and of a third Cacum near the Rectum or the Burfa Fabritii: between the Cornea and Sclerotica a cartilaginous Circle was obferved. They end with the difcovery of a black Purfe in the Eyes of Birds.

The Twenty fifth, fix Demoifelles of Numidia, a kind of Crane, in which they found the Liver very large, and without Gall-bladder in fome Subjects. In the Female a kind of Gland befides the Ovary, refembling the Tefticles of the Male. Amongt other Obfervables, the Structure of the Wind-pipe was very unufual, entering with a winding into the Bone of

## [375]

the Sternum: at its Union with the Lungs it had a kind of Larynx: the Punctum Lachrymale in the Eye was double, Orc.

The Twenty fixth, eight Oftriches, in which they very largely difcourfe of the make of the Feathers of Birds, and joyning of the Fibres of each Feather to one another; a great part of which, feems to have been taken out of Mr. Hook's ingenious Book of Microfcopical Obfervations, tho' they have not thought fit to own it. The Foot of this Animal feems contrived for a fpeedy Courfe, in which its Wings are of great ufe: the different length of the Inteffines is obfervable, in fome being 50, whereas in another they were but 29 feet; the Cecum, which was double, was wreath'd like a $S c r e w$, and the infide of the Colon provided withValves or femilunar leaves, like Membranes. At the extremity of the Rectum was found a Bladder filled with Urine. In this Defcription they difcourfe largely of the Ureters and genital Parts of Birds, as likewife of the Lungs, and its Divifions or Diaphragmes, and its Communication with the Bladders containing the Ventricle and Inteftines : together with the manner and ufe of Breathing in Birds, explaining it by a pair of double Bellows, \&c.

The Twenty feventh, the Ca/fowar, a Bird but lately known to the Europeans : it has no Quills nor Feathers for flying, and indeed but fhort Wings : that which was moft unufual was the want of a mufculous Gizzard, tho' a granivorous Animal; which might in fome fort be fupplied by the number of Ventricles. In this Subject they more particularly infift on the Muf cles of the Thorax neceffary for Refpiration, and a curious defeription of the Parts of the internal Eye lid in Birds, as to its Meshanifm and Ufe.

The Twenty eighth. They conclude thefe Difcourfes with that of a very large Land Tortois, being four foot and $\frac{8}{2}$ from the extremity of the Head to the Tail. Amongft the Internal Parts, the Structure of the Wrine Bladder is very curious for its exte-riour-Tunicle being membranous: the infide was ftrengthened with an infinite number of mutculous Fibres, not unlike thofe in the Ventricles of the Hearts of Animals. This Contrivance

## [376]

feems neceffary for the preffing out of the Urine in this Ani. mal, which has an unyielding Belly, not capable of Compre $\sqrt{z}$ on; nor was the formation of the Heart lefs obfervable : it had three Ventricles communicating with each other by boles in the Septum: the Vena Cava had two Branches into two of the Ventricles, which likewife received Blood from two Vene pulmonares to be tranfmitted to the Aorta, © c. Having been already too large, I hall pafs by what was obferved of the extraordinary Structure of the Lungs, with a Difcourfe of the Lungs of Animals in general, which they reduce to three forts; treating next of Refpiration, together with an Ex-

An Experiment to this purpofe made by Mr. Hook. Vid. Ph. Tr. n. 28. p. 539. periment of blowing up the Lungs of a Dog with a pair of B.llows; but I fhall refer, ás to the other Particulars in this and the former Anatomical.Difcourfes, to the Book it felf, very well deferving the Perufal of all Perfons curious in Anatomy and Cbirurgery, containing many ufeful Remarks and natural Difcoveries, of which this is but a very imperfect Account.

I fhall fay nothing of the Meafure of the Earth added to the end of this Edition, a very full Account having been given of it in the Pbilof. Tranf. Numb. 1 12. to which I refer the Reader : only the Tranflators thought fit to annex it, the Curioufnefs of its Subject, and exceeding Scarcity, being fufficient to recommend it to this Learned and Inquifitive Age.

Confucius Sinarum Philofophus, five Scientia Sinenfis Latine expofita, Studio e̛ Operâ Patrum Societatis $\mathcal{F} E S U$, \&c. Adjecta eft Tabula Cbronologica Sinica Monarchice ab bujus exordio ad bec ufque tempora.

THE famed Cbinefe Philofopher CUM-FU-CU, or as we call him Confucius, being in fo great efteem in his own Nation, and having never yet appeared in an European Drefs, cannot but be gratefully received by the Curious, efpecially fince the Verfion is perform-

## [377]

ed by very ancient Miffionairs fufficiently accomplifhed in the knowledge of the Cbinefe Character, and at the Command (as is faid ) of the King of France.

The Subject of this Book being foreign to our purpofe, as confifting chiefly of Moral and Political Precepts and Apophthegmes of the Philofopher, I fhall not enlarge thereon; only to recommend it, the Tranflators affure, That the Memory of the Author is ftill precious in Cbina; and that in refpect to bim, his Pofterity, after: above 2200 Years, enjoys certain great Priviledges never granted but to the Royal Family; is exempt from all Taxes; and whofoever is advanced to the Degree of Doctor, gives, as a mark of his Refpect to the great Confucius, fome Prefent to the eldeft of his Family, who is now 68 . Generations removed from him.

As to the time when Confucius lived, 'cis here precifely fet down from the Cbinefe Annals: He was born Anno 55 1. ante Cbritum, and lived 73 Years; fo that he was contemporary with the moft ancient Greek Philofophers, and not long after Pytbagoras, flourifhing about the time of Tarquinius Superbus and the firf Confulats; when Darius Hyftafpis held the Perfian Empire. He is faid to be defcended of a Branch of one of the moft ancient Royal Families, which might not a little contribute to gain Refpect and Credit to his Writings.

But what may not improperly find place here, is, the Cbine $\int_{e}$ Chronology, whereof fuch wonderful Relations have been brought into Europe: This Matter the Author of this Part of the Book, P.Couplet, feems well to have examined, and to have fifted the credible from the fabulous. They begin their Account with the Years of the Reign of King Fobi, who was the Founder of their Empire,about the Year before Chrift 2952 ; rejecting, as ill grounded, and not to be believed, all that fome Authors have faid of the Times before, and following therein the Opinion of the beft reputed Cbinefe Hiftorians. This Fobi is faid to have reigned IIf Years, and to have invented the Character now in ule in Cbina, and his Succeffor Xinnum is made to govern 140 Years: Thefe two Kings are by our Author, by reafor of fome manifeft Fables in their Hiftory; reputed doubtful; wherefore they, as from a more certain EEra; choofe to begin their Annals with the third King Hoam-ti, and the Year before Chrift, 2697. This Hoam ti is faid to have inftituted the Sexagenary Cycles or Periods of 60 Years, according to which this Chronology is adjufted, and for want of which or the like, our Account of Time, both Sacred and Profane, is fubject to too great Uncertainties; the Years of the Reigns of Kings, where the Months and Days are neglected, introducing great Errors in length of time,
which by this method are prevented. Since this Inftitution, there are now 73 Periods elapled, and the 74 is current; in which time they account that there has been 234 Kings of Cbina, fprung from no lefs than 22 feveral Royal Families; the King now reigning being the fecond of the Race of the Tartars, who within thefe 50 Years have throughly fubjected Cbina.

In this Chronology are fet down the beginnings of each Kings Reign, with a fhort Character of the Prince, and the principal of his Acts, with the moft notable Contingencies of his time: amorigft the reft, feveral Eclipfes of great Antiquity are recorded, whereby this account may be examined.

The third King, Cbuen-bio, is faid to be the Author of the Cbisefe Kalendar, and to have appointed the beginning of the Year to be on the New-Moon next the beginning of the Spring, which the Cbimefe account to be when the Sun is in sgr. of Aguarius: this Account is now in ufe, tho' inftituted 2500 Years before Chrift. About 700 Years after, the King Cbim tam reduced the beginning of the Year to the Winter Solftice; but the former was reftored about ioo Years before Chrift, and fill continues:

The Years of this Account are Luni-folar, or confifting of 12 Lunar Months, half of 30 days, and the reft of 29 days, with the Intercalation of 7 mon. in 19 years; fo that 7 years in each Cycle have 13 mon. This Diftribution of mon. was ordained by K. rao, above 2300 years ante Cbriftum, and is, if rightly intercalated, a more exact meafure of the Coeleftial Motions than our $\mathfrak{F u l i a n}$ Account or old Seyle, for that fails a day in I 31 years, whereas this Account of the Cbinefe (which is nearly the fame with the $\mathcal{f}$ ewifh) fails but a day in 225 years, or 4 days in 900 years; but fince their method of Intercalation is not here expounded, I thall not fay more in a matter of fuch Uncertainty.
${ }^{\prime}$ Tis here faid, that the famous Wall of Cbina, extending above 400 Leagues, was begun by King Xi-Hoam-ti about the year ant. Cbr. 2 гo. to hinder the Incurfions of the Tartars, which in all Ages have infefted this Country. The following Cycles are more amply defribed, and towards the End, the Tranfactions of the Romih Miffionaries are inferted, with a brief account of that great Revolution in Cbina, by the entire Conquef of that Kingdom by the Tartars. This Chronology ends with the yean of Chrift 1683, being the lapt of the 73 d Cycle, fince the King Hoamti; and contains in all 4380 years.

Twill be needlefs to advertife, that this Account places the beginning of the Cbinefe Empire long before the Deluge, according to the Holy Scriptures; wherefore if chis be to be wholly rejected, as fabulous; or if not, how it is to be reconciled with the dacred Chronology, beiongs more properly to the Difquifition of the Divines.

THEROYALSOCIETY, Burlington House,

Piccadilly,
London, W.



$$
[383] \quad \text { Num. } 190 .
$$

# PHILOSOPHICAL 

## TRANSACTIONS

For the Month of November. 1687.

## The $C O N T E N T S$.

(I)E SESTERTIO Differtatiuncula, fub finem Voluminis Quarti opufculorum Ce leberrimi D. D. Ifaaci Barrow, S. S. Theologice Profefforis nuper edita, Cum Tabula valorem Nummi Romani in moneta Noftra Anglice exhibente. Quam ob eximium cjus ufum in legendis veteribus ex loco quodammodo impropriohuc transferre vifum eft.
(2.) De Numero Radicum in Equationibus Solidis ac Biquadraticis, five tertix ac quartx Poteftatis, earumq; limitibus, ex contemplatione interfectionum Circuli \& Parabolæ datæ in Conftructionibus hujufmodiæquationum tractatulus. Authore E. Halley.
(3.) An Account of fome Obfervations lately made at Nurenburg, by Mr.P. Wurtzel-baur ; fhewing that the Latitude of that Place, has continued without fenfible alteration for 200 Years laft paft ; as likewife the Obliquity of the Ecliptick; by comparing them with what was obferved by Bernard Walther, in the Year $14^{87}$ : Being a Difcourfe read before the ROTAL SOCIETY, in one of their late Meetings.

## DE SESTERTIO Differtatiuncula ex Opufculis Pofthumis Viri Celeberrimi D.D. 1faaci Barrow nuper editis decerpta.

GAfferidus pecuniam Gallicam confert cum multiplis Seftertii nummi: Supponit autem denarium, Seftertii quadruplum, fub primoriom Cæfarum temporibus octavam uncie partem aquaffe pondere: quam inpothefin aliquatenus redarguit nofter Gravius: ( De Den. pag. 96, \& 13. ) probat enim fub illis, qui Vefpafiano priores imperarunt Cefaribus,varium of inconftans denarii pondus extitiffe; majus cilicet \& minus alternation, fapius tamen decrefcendo, ita ut ab Augufto ad Vefpafianum decreverit a Septima parte uncie ad partem octavam;in quo ferme ftatu perftitit a Vedp fiano ad Alexandrum Severum.

Unde confequi videtur ad lecticnem veterum authorum magis conducere, ut moderni nummi cum Confulari denario (recentiore nimirum ) comparentur, tum quoniam is ftati certique ponderis fuit (uncie foptimam partem adequans) tum quia tempus, quo in ufu fuit, plerof que comprehendit poetas \& biftoricos nobiliores, tum quia verifmilius eft pracipuos authores ad bunc potius refpexiffe, quam ad Cafarium illum mutabilem $\sigma$ nullo certo pondere definitum. Pag. 119.

Denarium vero Confularem nofter Gravius (Pag. 61.94; \&c.) ex appenfis multis denariis, ex corundem cum aliis aureis argenteifque nummis ( Romanis, Hebreis, Grecis, Perfocis, Or.) collatione, © exVefpafanei congii menfura dedicit cum LXII granis Anglicis equiponderare. (Pag. $8 \mathbf{1}$.) Znde cum denarius nofter octo grana pendat, Confularis ifte denarius valebit feptem denarios noftros cum tribus quartis. At denarius Cafareus, $\frac{1}{8}$ uncie pondus habens, pendet $54 \frac{1}{4}$ grana, valebitque denarios $6 \frac{25}{3}$.

Breerwoodus autem denarium Confularem ( $\frac{1}{7}$ uncie pendentem) aftimat denariis noftris $8 \frac{4}{7}$; © Cafareum ( $\frac{1}{8}$ uncia) denariis $7 \frac{1}{2}$ : que magna eft a Gravio difcrepantia. Sed isnon videtur Romana pondera cum noftris accurate contuliffe.

In eo quoque graviter errare videtur idem Breersoodus, quod Cafareum denarium Attice dracbme putat aqualem: cum buic potius equetur denarius Confularis; imo quim exquifitius rems penfotando Attica drachma etiam Confularem denarium (tanto majorem Cafareo) 5 granis Anglicis exjuperet, ut luculente probat Gravius. Pag. $7^{2}$.

Confultius itaque vifum eft a Gravio adfertis proportionibus adharere; Et cum Confulari nummo pectnias noftras conferre. Quibus ex fuppofitis adjuncta tabella computatur.

Tabula valorem Nummi Romani in moneta notra Anglic exhibens.

[ $3^{86}$ ]


## [ 387 ]

## De Numero Radicum in Æquationibus Solidis ac Biquadraticis, five tertix ac quartx poteftatis, earumq; limitibus, tractatulus Authore E.Halley.

CUm in tractatulo, quem nuper publici juris feci in actis bifce Pbilofophicis, Num. 188; Metbodum aperuifem, qua Problemata Jolida utcunq; affecta minimo negotio, unica data Parabola © Ci Circulo, Jimpliciljome conftrui pofint; fub finem mihi fefe obtulit contemplatio jucurda atis, nempe ex his Confructionibus Numerum radicum in quavis Equatione, carumq; Limites ac figna faille confequi ac determinari : quocirca fidem dedi me brevi de bac materia differtatiunculam aliquam frripturum, in quafi non Principibus; /altem fecunda clafles Geometris, me non ingratum nec inutile praftiturum omnino perfuafum babui.

Propius vero infpicienti mibi compertum eft, me imprudentem inter ardua Geometrica illap fum, ac jam iis tractandis deJgnatum, quibus olim laboraviere Viri illuffes Harriottus noftras; 'ac Cartefius; in quibus pari fato utriq; Paralogifmum, (forf an in eorum I criptis Geometricis unicum) diverfo tamen modo, admiJere ; uti pofthac probabitur: Sed Quandoq; bonus dormitat. Quapropter agnita rei tum diffoultate tum prefantia, totisviribus incumbere fatui, ne promifas exequendis impar crederer, ac ne Geometric pars tam eximia, tamq; parum culta, diutius tenebris involuta :lateret; Sed ope noftra lucide bis paucis expofita daretur.

Imprimis vero Lectorem monitum velim, quod dum his legendis operam dat, oportet pradictam differtationem Num.188. editam, ad manum habere, ac Confructiones ibidem traditas probe callere ; quia que Sequuntur ab illis maxima ex parte pendent, quas tamen bic repetere vix integrum effet.

## [388]

Ex Cartefio of ex ibi dictis conftat, tam in Cubicis quam in Biquadraticis aquatioxibus, radices exponi poffe demittendo perpendicula in Axem, datamve diametrum Parabole date, ab inter $\int$ ectioni' us Curve illius cum Circulo. Cumq; Circulus Parabolam fecans, vel in quatuor vel duobus punctis eam inter $\int$ ecare neceffe eft, conftat in Biquadraticis vel duas vel quatwor radices veras, Afirmativas vel Negativas, Semper haberi; uti etiam fi forte Circulus illam tangat, quo in cafu equalitas duarum radicum ejuldem figni concluditur. In Cubicis autem, quoniam una ex inter(ectionibus ad Conftructionem requiritur, non nif $u$ na vel tres reliqua radices defignant unam vel tres; uti in Cafu contactus, unde conftat duas aquales reperivi Radices, Problemaq; unde refultat aquatio revera planum effe.

Cubica itaq; omnes quomodocunq; affecta una vel triplici radice explicabiles Junt, utiq; 'Semper polfibiles, nempe $\sqrt{i}$ radices Negativas pro veris admiferis: fic Biquadratice, quarum terminus ultimus r gigno-affecta eft, duabus vel quatuor. Aft $\rho$ habeatur +r in equatione, eaq; tanta jot, ut $\sqrt{ } \mathrm{GDDq}$-a r , (vide fig. pag. 341) minor git quam ut Circulus, eo Radio ac centro $G$ defcriptus, Parabolaws contingere in aliquo puncto polfit, equatio data omnino impofibilis eft, nec ulla. Radice Ncgativa vel Affrmativa explicabilis: Sed de bis, plura in Sequentibus.

Quoniam vero tanta intercedit differentia inter cafus Cubicarum of Biquadraticarum, ut fomul comprebendi nequeant; primum Cubicas deinde alteras tractabimus. Cubice vero infinitis Circulis in data Parabola conjtruuntur, Biqusdratice autem unico tantum ((altem bis metbodis): íd adeo quia ponendo z -e five indeterminata aliqua, aqualem nibilo, equatio Cubica reducitur ad Biquadraticame eafdem radices cum Cubica babentem, atq; infuper aliam ipfie equalem; unde fit ut tot Circulis diverfis conftrui poffit Cubica, quot im ginari velis quantitates e, id eft infinitis. Inter has vero Conftructiones illa, guam dedi (pag. 342.) Longe facillima if. Huic tamen non multum cedit aili., gite adenuclearionern Numeri Radicum, earimq; limi-

## [389]

tum magis accommodata videtur, queq; ortum trabit ex allatione Secundi termini,ponendo modo vulgari $\mathrm{x}=\mathrm{z}+$ vel-tertia parte Coefficientis termini Secundi. Hac autern eft. Data Parabola A B Y (Fig. I.) ejufq; Vertice A, axe A E ç Latere recto a, reducatur equatio ad formam confuetam, viz. $z^{3}$. $\mathrm{b} \mathrm{z}^{2}$. a p z. a a $\mathrm{q} .=\mathrm{o}$. Deinde ad diftantiam $\frac{1}{3} \mathrm{~b}$ ducatur Axi parallela BK , dextror $\int m$ quidem $\int i$ fuerit +b , aliter $\rho i-$ niftrorfum, Parabole occuryens in B; ac linea fuppofita A B esigatur perpendicularis utrinque interminata DP , axi occurrens in puncto G. De B in Axem demitte perpendiculum B C, ó ip$f 1$ A Cfiat G E femper aqualis, ac verfus inferiora ponatur. ${ }^{\prime} b^{2} \mathrm{E}$ fat $\mathrm{EH}=\frac{1}{2} \mathrm{p}$, fursum quidem, $\sqrt{2}$ in aquatione fuerit $\& \mathrm{p}$, deorfum vero $\sqrt{\mathrm{i}}$ - p , ac e puncto $H$ (vel ex $\mathrm{E} f$ defuerit quantitas p) educatur perpendiculum $\mathrm{H} Q$ interminata $\mathrm{D} P$ occurrens in puncto O . Denique in linea HQ interminata, fiat $\mathrm{OR} \equiv \frac{1}{2} \mathrm{q}, a b \mathrm{O}$ dextrorfum $\sqrt{2}$ fuerit -q , finiftrofum $\sqrt{6}+\mathrm{q}$, collocanda: ac Circulus centro R , radio R A defcriptus, tot punctis fecabit Parabolam, quot equatio propofit a veras habet radices; eeq; erunt perpendicula $\mathbf{Z} \mathbf{Y}$ a punitis interfectionum $\mathbf{Y}$ in axi parallelam B K demi $\iint a$ a quarum qua ad dextram linee B K Affrmative Sunt, ad finiftram Negativa.

Hajus Conftructionis commoditas in eo confiftit, quod circulo per Verticem tranfeuntc peragitur, perinde ac /i defuiffet $\int e-$ cundus Terminus; ideoq; ad Radicum Numerum determinandum, ufficit Loci five Linee Curve proprietates perfpectas habere, que $\int$ patia difcriminat, ubi $\sqrt[3]{ }$ ponatur centrum Circuli qui per Parabole Verticem tranfeat, circumferentia ejus vel uno vel tri'us aliis punctis eam ficabit; hoc eft Linee curve, in quam incidunt centra omnium Circulorum per verticem tranfeuntium ac deinde Parabolam tangentium, naturam definire.

Locus autemi ille eft Parabolois, quam cum Cl. Wallifio femicusicalem appellare licet, five in qua Cubi applicatirum ad Axem Sunt inter $\int$ S ut Quadrata portionum Axis. Cujus Latus rectum eft $\frac{27}{8}$ Lateris recti date Parabole, Vertex vero punitum V (Fig. I) exiftente A V dimidium lat ris recti cjufdem Parabole. Hoc eft, $j$ p ponatur Unitas pro latere recto dite ParaCcc 2
bole,

## [ 390 ]

lobe, ${ }^{\frac{3}{2}}$ culut ordinatim applicate aquaburtur quadrato partis dianetri, five cubus ex $\frac{2}{3} V$ Hquadrato ex HR , fi cail. R fit centrum circuli qui per verticem Parabole tranfeat eamq; deinde contingat; Hac eft Cur va illa quam primus mortalium Nelius Noftras recte date equalem demonftravit, eaq; occafione apud Principes Geometras dudum celebris; ejufq; proprietates CI. Wallifius Jub finem Libri de Ciffoide, © Hugenius prop. 8 \& 9 de linearum Curvarum evolutione,alig; acri ingenio di Iquij $_{6}$. vere, Quorum foripta confulat Lector. Hac Curva utring; ab Axe Parabole deforipta, viz. V NL, V P X, Spatium complectitur, in quoji ponatur centrum Girculi, qui per verticem A tranfeat, interfecabit ille Parabolam in tribus aliis punctis ; Spatia vero ab Axe remotiora centra prabent circulis non nif uno prater verticem puncto Parabolam fecantibus.

His probe intellectis jam ad determinandum Radicum numerums accingimur: Ac primum deficiat fecundus terminus; Jotqug Latus rectum 1 , vel $\mathrm{AV}=\frac{1}{2}$; In conftructione $\mathrm{V} \mathrm{H}_{\text {eft }}^{2} \mathrm{p}$, HR vero $\frac{1}{2} \mathrm{q}$; cumq; $\sqrt{2}$ fuerit $+\mathrm{p}, \mathrm{ab} \mathrm{V}$ ver $\mathrm{J}_{\mathrm{us}}$ fuperior a ponenda fot $\frac{1}{2} \mathrm{p}$, centrupn circuli extra/patium LVX Semper conAtituitur; ideog; unatantum radice explicabilis eft, affrmativa $\mathfrak{f}-\mathrm{q}$, negativa $\sqrt{\jmath}+\mathrm{q}$ : que quidem radices Cardani Regulis inveftigantur. Si verofuerit - $\mathrm{p}, \mathrm{V} \mathrm{H}=\frac{1}{2}$ p inferne ponitur, ac fieri poteft ut HR cadat inter Axem © Curvam V X vel V L, $\beta$ fcilicet Cubus ex $\frac{2}{3} \mathrm{~V}$ H, jive ex $\frac{1}{3} \mathrm{p}$, major fit quam quadratum ex $\frac{1}{2} \mathrm{q}$, five $\frac{\leq}{7} \mathrm{p} . \mathrm{pp}$ major quam $\frac{1}{4} \mathrm{q} q$, quo in cafu tres dantur radices, due Negative, fi fuerit - q , ac una Affrmativa earum Summe equalis; vel $\rho+\mathrm{q}$, dua Afirmativa unaq; Negativa. Luod ji ${ }_{2}, \mathrm{ppp}$ minor jut quam $\frac{1}{4} \mathrm{qq}$, una tantum reperitur Radix, Affrmativa $\sqrt{i}-\mathrm{q}$, negativa $f$ + q. Atq; bac paffim docentur ab iis qui banc Geometria partem tractarunt.

Tam adfint omnes termini, ac primum proponatur, Exempli caufa, equatio bec $\mathrm{z}^{3}-\mathrm{z}^{2} \mathrm{~b}+\mathrm{zp}-\mathrm{q}=0$;cui etiam Figuram I . adaptavimus. In bujus conftructione $\mathrm{BC}=\frac{1}{3} \mathrm{~b}, \mathrm{VG}=\frac{1}{2} \mathrm{AC}$ $E_{1}^{\frac{1}{8}} \mathrm{bb}, \mathrm{VE} \frac{1}{6} \mathrm{bb}, \mathrm{VH} \frac{1}{6} \mathrm{bb}-\frac{1}{2} \mathrm{p}, \mathrm{GH}{ }_{\frac{1}{9}} \mathrm{bb}-\frac{1}{2} \mathrm{p}$ vel $\frac{1}{2} \mathrm{p}-\frac{1}{9} \mathrm{bb}$, binc $\mathrm{HO}={ }_{2} \frac{1}{7} \mathrm{~b}^{3}-\frac{1}{6} \mathrm{~b} \mathrm{p}$ vel $\frac{1}{6} \mathrm{~b}-{ }_{2 \frac{1}{2}} \mathrm{~b}^{3}$, atq; HR five diftan-

## [391]

tia Centricirculi $\mathrm{R} a b$ Axe, ef Semper differentia inter $\frac{1}{6} \mathrm{~b} p$ $\mathrm{O}_{2}{ }_{2} \frac{1}{7} \mathrm{~b}^{3}+\frac{1}{2} \mathrm{q}$; que $\int \frac{1}{2}$ cquantur, centrum cadit in $A x e ; \int \frac{2}{6} \mathrm{~b} \mathrm{p}$ major fit quam $2_{2}^{\frac{1}{7}} \mathrm{~b}^{3}+\frac{1}{2} q$ ad finiftram Axis, fin minor ad dextram. Si itaq; Cubi ex $\frac{2}{3}$ VH, (boc eft ex $\frac{1}{9} \mathrm{~b}$ b $-\frac{1}{3} \mathrm{p}$ quam nominemus d) Latus quadratum five $\sqrt{ } \mathrm{d} \mathrm{d}$ d, majus fit quam HR , five differentia inter $\frac{1}{27} \mathrm{~b}^{3}+\frac{1}{2} \mathrm{q}$ © $\frac{1}{6} \mathrm{~b} \mathrm{p}$; reperitur centrum R intra ppatium N PV, Paraboloidibus V P X, V N L. ac recta interminata D N P circumforiptum: as proinde circulus Parabolam Secabit in tribus punitis Y, Y, Y, ad dextram linee B K fitis, atq; adeo equatio tres habet radices Affrmativas. Centro vero extra boc Spatium N V P conftituto, nonnifi una radice Affrmativa explicari poteft. Hic obiter notan= dum rectaim DP Paraboloidem VPX tangere in puncto $P$, exiftente $\mathrm{E} \mathrm{P}{ }_{\frac{1}{2}}^{\frac{1}{7}} \mathrm{~b}^{3}$; alteram vero V L fecare in puncto N , ita ut demiffo in axem Perpendiculo N F, V F fit pars quarta ipfus E V five $\frac{1}{2} \mathrm{bb}, \mathrm{NF}$ vero ${ }_{1} \frac{1}{0} \mathrm{~S}^{3} \mathrm{~b}^{3}$. V W autem, quae e puncto V axi perpendiculariter erecta linea D P occurrit in W , aqualis eft $\xi_{4}^{\frac{3}{4} \mathrm{~b}} \mathrm{~b}$ b five $\frac{1}{2} \mathrm{E} \mathrm{P}$.

Hinc tuto concluditur fi in aquatione vel p major fit quam $\frac{1}{3} \mathrm{~b} \mathrm{~b}$, vel q major quam ${ }_{2} \frac{1}{2} \mathrm{~b}^{3}$, non nif unam eamq; affirmativam radicem reperiri; Fallit itaq; Regula Cartefii (Edit. Amft. 1659 pag. 70) ubi tot veras dari radices quot funt in rquatione mutationes Jignorum + 心- pronunciat, fruftraco tiam in Commentariis fuis Sphalma boc excufante Schootenio; Fingi enim podfunt infinite plures aquationes precedentis formule tres fignorum mutationes babentis, que unam tantum quam que tres babeant radices. Propofitio etiam quinta Sectionis quinta Artis Analytica Harriotti Noftri, uti Prob. 18 Numerofe Poteft. Refol. Vietx, vix fatis firma eft, cum ex limitationibus quas ibi pofuerunt, toti par allelogrammo P I V W id conveniat, quod foli patio N V P jam competere probavimus, boc eft uit rentrum prabeat circulo tribus aliis punctis prater vorticem Parabolann fecinte.

Quantitas anten q , fre terminus ult., datis b \& p , ea lege nt p minor fit quaim $\frac{1}{3} \mathrm{bb}$, accurate limitatur exprecedente aquatione $\downarrow \mathrm{ddd}={ }_{27}^{\frac{1}{7} b^{3}+\frac{1}{2} q \cos \frac{1}{6} \mathrm{~b}}$; cum foil. Circulus ParaboDdd

## [.392]

lam contingat. Itaq; $\frac{1}{2} \mathrm{q}$ minor effe debet quam $\frac{2}{6} \mathrm{~b} \mathrm{p}-{ }_{2} \frac{1}{7} \mathrm{~b}^{3}+$ $\sqrt{ } \mathrm{d} \mathrm{d} \mathrm{d}$; at $\int \mathrm{p} \mathrm{p}$ major fuerit quam $\frac{1}{4} \mathrm{~b} \mathrm{~b}$, majoremetiam e $\iiint_{\mathrm{o}}$ oportet $\frac{1}{2} q$ quam $\frac{5}{6} \mathrm{~b} \mathrm{p}-2^{\frac{1}{2}} \mathrm{~b}^{3}-\sqrt{ } \mathrm{d}^{3}$ ne cadat centrum in $\int$ patiolo N V W: Atq; bis conditionibus aquatio Semper triplici radice explicabilis erit, aliter non nif̂ una. Semper vero, five tres five una, Affirmative funt, ob pofitionem centri R ad dextram linea D P.

Atq; bic eft cafus maxime difficilis, ita ut quicunq; pramiffa bene calleat fequentia facili negotio intelliget. Detur jam aquatio $\mathrm{z}^{3}-\mathrm{b} \mathrm{z}^{2}+\mathrm{p} \mathrm{z}+\mathrm{q}=0$. Hic ut tres babeantur radices, oportet centrum circuli alicubi intra fpatium $\mathrm{P} N \Delta$, rectis $\mathrm{P} N, \mathrm{P} \triangle \ddot{O}^{c}$ curva Paraboloidis $\mathrm{N} \Delta$ definitum, reperiri; quapropter cum $\mathrm{E} \mathrm{F} / i t=\frac{1}{8} \mathrm{~b} \mathrm{~b}, \mathrm{p}$ minor effe debet quam $\frac{1}{4} \mathrm{bb}$; jam ad determinationem quantitatis q , exiftente $\mathrm{d}=\frac{1}{9} \mathrm{bb}-\frac{1}{3} \mathrm{p}$ ut antea, $\sqrt{ } \mathrm{ddd}+{ }_{2} \frac{1}{7} \mathrm{bbb}-\frac{1}{6} \mathrm{~b} \mathrm{p}$ femper major effe debét quam $\frac{1}{2} \mathrm{q}$, ut confituatur centrum circuli in $\int$ patio pradicto. P $\mathrm{N} \triangle$ : quod cum fit equatio talis duas babet radices Affirmativas ac unam negativam. Si vero p major eft quam $\frac{1}{3} \mathrm{~b} \mathrm{~b}$, uel $\frac{1}{2} \mathrm{q}$ major quam゙ $\sqrt{ } \mathrm{d} \mathrm{d} \mathrm{d}+\frac{1}{2,} \mathrm{bb} \mathrm{b}-\frac{1}{6} \mathrm{~b} \mathrm{p}$, non nifiuna eaq; negativa radice explicabilis eft.

Proponatur jam aquatio $\mathrm{z}^{3}-\mathrm{bz}^{2}-\mathrm{pz}-\mathrm{q}=\mathrm{o}$. Ut hac aquatio tres habeat Radices, oportet centrum circuli alicubi inveniri in fpatio indefinito, inter rectam D PD or curvam Paraboloidis PX ; bic quantitas p non eft obnoxia limitationibus, $\frac{1}{2} \mathrm{q}$ vero $\int$ emper minor e $\iint \mathrm{J}_{\mathrm{e}}$ debet quam $\sqrt{ } \mathrm{ddd}-\frac{1}{2}, \mathrm{bbb}-\frac{1}{6} \mathrm{bp}, p o f i=$ to $\mathrm{d}=\frac{1}{9} \mathrm{bb}+\frac{1}{3} \mathrm{p}:$ Hoc pacto dur dantur Radices Negative, ac una Affrmativa; aliter vero $i \frac{1}{2} q$ major fit quam $\sqrt{ }$ ddd $2^{2}, \mathrm{bbb}-\frac{1}{6} \mathrm{~b}$, unica tantum Affrmativa exponi poteft. Quarto loco fit aquatio $\mathrm{z}^{3}-\mathrm{b} \mathrm{z}^{2}-\mathrm{p} \mathrm{z}+\mathrm{q}=0$, que duas Afirmativas babet Radices ac unam Negativam ficentrum circuli reperiatur in patio indefinito inter rectas $\mathrm{P} \triangle, \mathrm{PD}$ ac, curvam Paraboloidis $\triangle \mathrm{L}$; hoc eft, (pofito $\left.\mathrm{d}=\frac{1}{9} \mathrm{bb}+\frac{-1}{3} \mathrm{p},\right) \cdot\left(\frac{1}{2} \mathrm{q}\right.$ minor fit quam $\sqrt{ } \mathrm{d} \mathrm{d} \mathrm{d}+{ }_{2}^{\frac{1}{7}} \mathrm{~b} \mathrm{~b} \mathrm{~b}+\frac{1}{6} \mathrm{~b} p ; \sqrt{1}$ vero. $\frac{1}{2} \mathrm{q}$ majon bac quantitate fuerit, una tantumNegativa ineft radix.
Quatuor autem equationes reliquie, in quibushabetur +b , quan ad limitationem Numeri Radicum non differunt a predictis, fijo:

## [393]

num tcrmini ultimi mutetur, fervato Jignotermini tertii ; que vero Affrmative erant radices in illis bic funt Negative; © vice ver $f a$. Sic in aquatione $\mathrm{z}^{3}-\mathrm{bz}^{2}+\mathrm{pz}-\mathrm{q}=0$ Vna vel tres erant Affrmativa Radices; in bac vero $\mathrm{z}^{3}+\mathrm{bz} \mathrm{z}^{2}+\mathrm{pz}$ $+\mathrm{q}=0$ vel ina wel tres Negativa funt, fub iijdem conditionibus; nulla vero omnino Affrmativa. Sic in $\mathrm{z}^{3}+\mathrm{bz}^{2}+\mathrm{pz}-\mathrm{q}=0$, due funt Negative © una Affrmativa, fip minor fit quam $\frac{2}{3} \mathrm{~b} \mathrm{~b}$, ac $\frac{1}{2} \mathrm{q}$ minor quam $\sqrt{ } \mathrm{d}^{3}+_{2}^{\frac{1}{7}} \mathrm{~b}^{3}-\frac{1}{6} \mathrm{bp}$, quemadmodum in $\mathrm{z}^{3}-\mathrm{b} \mathrm{z}^{2}+\mathrm{pz}+\mathrm{q}=\mathrm{o}$ duce crant Affrmativa of una $N_{e}$ gativa; excedentibus autem leges pralcriptas p vel q , unatantum bic eft radix Afirmativa, que ibi Negative erat. Pari modo in $\mathrm{z}^{3}+\mathrm{b}^{2}-\mathrm{p} \mathrm{z}+\mathrm{q}=0$ vel dua Jurt Affirm. ac una Neg. vel una Negativa tantum. Deniq; iijdem de caufis in requatione $\mathrm{z}^{3}+\mathrm{bz}^{2}-\mathrm{pz}-\mathrm{q}$ dua Junt Negativa o ura Affirm. vel una Affirm. tantum, quibus in aquatione $\mathrm{z}^{3}-\mathrm{bz}^{2}$ - $\mathrm{pz+q}+\mathrm{dux}$ erant Affrm. © una Negativa, vel una Negativa tantum, nempe prout $\frac{1}{2} \mathrm{q}$ major vel minor fuerit quam $\sqrt{ } \mathrm{d}^{3}+$ ${ }_{2}{ }^{\frac{1}{7}} \mathrm{~b}^{3}+\frac{1}{6} \mathrm{~b} \mathrm{p}$.

Si defuerit terminus tertius, five p z , centrum R femper cadit in linea IPE $\triangle$, quocirca $\int$ fuerit $\mathrm{z}^{3}-\mathrm{b}^{2} . * \cdot-\mathrm{q}$ vel $\mathrm{z}^{3}+\mathrm{b} \mathrm{z}^{2} \cdot{ }^{*}+\mathrm{q}$, una tantum effe poteft radix, $\rho_{i}-\mathrm{b}$ Afirmativa, $\mathfrak{\rho}+\mathrm{b}$ Negativa. At fifuerit $\mathrm{z}^{3}-\mathrm{b} \mathrm{z}^{2} \cdot * \cdot+\mathrm{q}$ vel $\mathrm{z}^{3}+\mathrm{b} \mathrm{z}^{2}$. *. -q , duc poffunt effe Affrmative ac una $N e-$ gativa in priore, vel una Affirm, © dua Neg. in poferiori, cadente centro in linea $\mathrm{P} \Delta$ inter P ac $\Delta$, boc eft $f \frac{1}{4} q$ minor fit quam ${ }_{2} \frac{1}{7} \mathrm{~b}^{3}$; fin major fuerit, una tantum Negativa in priore, vel una Affirm. in pofteriore dari poteft.

Hactenus numerum radicum in Cubicis aquationibus plenius affecuti fumus, reftat ut nonnulla adjiciam de quantitate radicum. Hic primum notandum quod omnis equatio tres habens radices ope Tabille Sinuum, Trifectione foilicet anguli, fatis expedite refolvi pofit; ponendo foil. $\sqrt{\frac{4}{9} \mathrm{bb}-\frac{4}{3} \mathrm{p}}$ vel $\sqrt{4} \mathrm{~d}$, Iिfue~ rit +p in aquatione, vel $\overline{\sqrt{\frac{4}{9}} \mathrm{bb}+\frac{4}{3} \mathrm{p}}, \sqrt{i}-\mathrm{p}$, pro Radio Circuli; Angulum vero tri $\int$ ecandum qui Sinum babeat in TaGula Sinuum $\frac{2^{\frac{1}{z}} b^{3}+\frac{1}{6} b p+\frac{1}{2} q}{\sqrt{d d d}}$ : Invento boc angulo, Sinus

## [ 394 ]

tertice paytis ejus, ut \& Sinustertice partis compl. ad Scmicircu$l_{u m}$, corumq; $\int u m m a$, ex Tabula Sinuum dabuntur. Hi vero Sinus in Radium $\sqrt{\frac{4}{9} b b+\frac{4}{3} p}$ ducendi $\int$ unt, \& babebuntur quantitates (y \&,y \&, y \&, in Fig) quarum \& $\frac{1}{3} \mathrm{~b}$ vel fumma veldifferentia, prout cafus poftulat, veras radices Aiquationis exhibebunt. Hec omnia ex inventis Cartefii derivantur: Zit vero cafus onnes quantum fieri poffit breviter complectar, dico quod centro R , in prima cequationum formula, cadente in $\int p i-$ tio V G P, fectiones duce Y, Y, cadunt inter A \& B, ac proinde utraq; ex minoribus radicibus minor eft quam $\frac{1}{3} \mathrm{~b}$, tertia auter er major $\int$ emper $\int u p e r a t \frac{1}{3} b$, fuperatur vera $a b$. Quod $f$ cadat in fpatio G NV, dux majores funt quam $\frac{1}{3} \mathrm{~b}$, minores vero quam $\frac{2}{3} \mathrm{~b}$, tertia vero eft b - dua'us alteris, ac proinde minor quam $\frac{1}{3} \mathrm{~b}$ : Sed adbibita limitatione quantitatis p , arctiooribusterminis radices includuntur. Maxima enim radix minor eft quarn $\sqrt{\frac{4}{9} \mathrm{~b} \mathrm{~b}-\frac{4}{3} \mathrm{p}}+\frac{1}{3} \mathrm{~b}$, major vero quam $\overline{\sqrt{\frac{1}{4}} \mathrm{bb}-\mathrm{p}}$ $+\frac{1}{2} \mathrm{~b}$; at cum $\frac{1}{4} \mathrm{~b}$ b minor eft quam p , limes ille fit $\sqrt{\frac{2}{9} \mathrm{bb}-\frac{1}{3}} \mathrm{p}$ $+\frac{x}{3} \mathrm{~b}$. Radix media femper minor eft quam $\sqrt{\frac{1}{4} \mathrm{bb}-\mathrm{p}}+\frac{1}{2} \mathrm{~b}$; major vero quam $\frac{1}{3} \mathrm{~b}-\sqrt{\frac{1}{9}} \mathrm{bb}-\frac{1}{3} \mathrm{p}$; bunc vero limitem nun-


In fecunda formula preforiptis legibus duae Junt affirnative ac una negativa, ac cadente centro in Jpatio GPE altera ex affirmativis major eft, altera minor quam $\frac{1}{3} b$, major vero non excedit $b$, Negativa autem major non effe poteft quam $\sqrt{\frac{1}{3} \mathrm{bb}}-\frac{1}{3} \mathrm{~b}$, eft autem differentia ipfius $b$ ó fivnme Affrmativarum. Centro autem in $\int$ patio $\mathrm{E} \mathrm{NG} \triangle$ pofito, utrag; Affirmativa major eft quam $\frac{1}{3} \mathrm{~b}$, minor vero quam $\overline{\sqrt{3}} \frac{1}{3} \mathrm{bb}+\frac{1}{3} \mathrm{~b}$, Negativa wero femper minor eft quam $\frac{1}{3}$ b. Limites autem propiores ex data p evadunt, radicis quidem maxime Affrmative $\sqrt{\frac{1}{4} \mathrm{bb}-\mathrm{p}}+\frac{1}{2} \mathrm{~b}$, qua femper minor eft, ut © major quam $\sqrt{\frac{1}{9} b b-\frac{1}{3} p}+\frac{1}{3} b$; boc tamen limite mino eft altera Affirmativa, que cum quantitate q minuitur. Negativa vero Jemper minor ef quam $\sqrt{\frac{4}{3} \mathrm{bb}-\frac{4}{3}} \mathrm{p}-\frac{1}{3} \mathrm{~b}$, ac deficiente quantitate q evanefoik. - In tertia formula dua Negat. funt ac una Affrmativa: in bac,

## [395]

ut \& in quarta, Radices non limitantur a quantitate b. Afir mativa vero Semper minor eft quam $\sqrt{\frac{4}{9} \mathrm{~b} \mathrm{~b}+\frac{4}{3} \mathrm{p}}+\frac{1}{3} \mathrm{~b}$, major tamen quam $\sqrt{\mathrm{p}}+\frac{1}{4} \mathrm{~b} \mathrm{~b}+\frac{1}{2} \mathrm{~b}$ : maxima vero ex Negativis femper major eft quam $\sqrt{\frac{1}{9} \mathrm{bb}+\frac{1}{3}} \mathrm{p}-\frac{1}{3} \mathrm{~b}$, minor vero quam $\sqrt{\mathrm{p}+\frac{1}{4} \mathrm{bb}}-\frac{1}{2} \mathrm{~b}$. Minor autem ex Negativis Semper minuitur cum minuta quantitate $q$.

In quarta formula, cadente centro intra $\int p a t i u m \mathrm{~L} \triangle \mathrm{PD}$; Si dua fint Affrmative ac una Negativa, maxima esc Affrmativis major effe nequit quam $\sqrt{\mathrm{p}+\frac{1}{4} \mathrm{bb}}+\frac{1}{2} b$, nec minor quam $\sqrt{\frac{2}{9}} \mathrm{~b} \mathrm{~b}+\frac{1}{3} \mathrm{P}+\frac{2}{3} \mathrm{~b} ;$ minor vero radix ab hoc limite minuitur, minuta quaktitate q. Negativa autem minor ef quam $\sqrt{\frac{4}{9} \mathrm{~b} \mathrm{~b}+\frac{4}{3}} \mathrm{p}-\frac{1}{3} \mathrm{~b}$; major vero quam $\sqrt{\mathrm{p}+\frac{1}{4} \mathrm{bb}}-\frac{1}{2} \mathrm{~b}$.

Notindum vero bic radices Negativas ubiq; figno Affrmativo notari,quia be funt radices Affirmative quatuor equationum illarum, in quibus babetur +b, ac q /igno contrario notatur; ut Supramonui. Horum onnium demonftratio ex co conSequitur, gnod ubicund; centrum circuli R incidit in Lineas Curvas V P X vel V $\triangle \mathrm{L}$, circumferentia ejus Parabolam tangit in puncto, cujus diftantia ab axe eft $\sqrt{2} \frac{2}{3} \mathrm{~V}$, eamq; fecat ex altera Axis parte, ad diftantiams $2 \sqrt{ } \frac{2}{3} \mathrm{~V} \mathrm{H}$; cums vero centrums cadit in lineam DPD , altera ex radicibusfit $=0$, ac proinde $\mathrm{Cu}_{1}$ bica reducitur ad Quadraticam, five ad $\mathrm{z}^{2}-\mathrm{bz}+\mathrm{p}=0$ cujus radices limites deffigant ubi evanef it quantitas q: ac quo minor eft q , eo propius ad bas limites accedunt radices. Quadratica eft etiam cum centrum cadit in Axe; hoc eft, cum $\frac{1}{2} \mathrm{q}=$ $\frac{1}{6} \mathrm{~b}-{ }_{2} \frac{1}{7} \mathrm{~b}^{3}$ in prima formula; wel $\frac{1}{2} \mathrm{q}={ }_{2,} \frac{1}{7} \mathrm{~b} \mathrm{~b} \mathrm{~b}-\frac{1}{6} \mathrm{~b} \mathrm{p}$ in Secunda; in tertia impoflabile eft; at in quarta cum $\frac{1}{2} q=$ ${ }_{2} \frac{1}{7} \mathrm{~b} \mathrm{bb}+\frac{1}{6} \mathrm{bp}$; quo in cafuminor ex, Radicibus Affirmativiseft $\frac{2}{3} \mathrm{~b}$, major $\sqrt{\frac{2}{3} \mathrm{~b} \mathrm{~b}+\mathrm{p}}+\frac{2}{3} \mathrm{~b}$; Negativa vero $\sqrt{\frac{1}{3} \mathrm{~b} \mathrm{~b}+\mathrm{p}}$ $-\frac{2}{3} \mathrm{~b}$. In prima, Radices funt $\frac{1}{3} \mathrm{~b}$ \& $\frac{1}{3} \mathrm{~b} \pm \sqrt{\frac{2}{3} \mathrm{~b} \mathrm{~b}-\mathrm{p} \text {. }}$ I/3 fecunda vero formuula, $\frac{1}{3} \mathrm{~b}$ \& $\sqrt{\frac{2}{3} \mathrm{~b} b-\mathrm{p}}+\frac{1}{3} \mathrm{~b}$ funt Affrmativa: Negativa autem $\overline{\sqrt{\frac{2}{3}} \mathrm{~b} b-\mathrm{p}}-\frac{1}{3} \mathrm{~b}$.

Atg; bec in Cubicis fufficere poffe videntur; ob eximium vero Vfum Methodi, qus ope Tabule Sinuum radices harum equatiEee

## ［396 ］

onum inveniuntur，placuit unum vel alterum exemplum adjun－ gere，ut praxis illius compendium inde innote／cat．Proponatur Aquatio $\mathrm{zzz}-39 \mathrm{zz}+479 \mathrm{z}-188 \mathrm{I}=0$ ；quaruntur radices z ．$\sqrt{\frac{1}{9} \mathrm{~b} \mathrm{~b}-\frac{1}{3}} \mathrm{p}=\sqrt{ } 9 \frac{1}{3}=\sqrt{ } \mathrm{d}$ ，cujus duplum $\sqrt{ } 37 \frac{1}{3}$ radius eft Circuli；\＆$\frac{\frac{1}{2} \mathrm{bbb}+\frac{1}{2}}{\sqrt{\mathrm{~d} d}-\frac{1}{6} \mathrm{~b}} \mathrm{p}=\frac{2197+940 \frac{1}{2}}{9 \frac{1}{3} \sqrt{ } 9 \frac{\frac{1}{3}}{3}}$ － $3113 \frac{1}{2}$ ，five $\frac{24}{9^{\frac{1}{3}} \sqrt{ } 9^{\frac{1}{3}}}$ ef finus Tabularis Anguli，boc ef，facta divifione ope Logarithmorum，Log． 9.9251560 ，cui refpondet Angulus 57 gr ．19m． $11 \mathrm{~s} . \frac{1}{2}$ ．Hujus tertia pars 19 g .6 m .24 s ． © complementi 40 g .53 m ． 36 s ．Sinus dant Log．9．514983． \＆－81601 $\mathbf{1}$ ，qui ducti in Rad．$\sqrt{37 \frac{1}{3}}$ producunt $\mathbf{Y} \&$ ，\＆ $\mathbf{Y} \&$ $\log , 0.301030=2$ \＆Log． $0.601059=4$ ，tertia vero $\mathrm{Y} \&$ aqualis eft corum fumme five 6．Ideoq；radices funt $13-4=9$ ． $13^{-2}=11$ が $13+6=19$ ，ex quibus singulis conflatur predicta aquatio．Ubi Notandum duas minores radices non excedere $\frac{1}{3} \mathrm{~b}$ vel 13，quia centrum R in conftructione cadit ad dextram Axis；id eft $\cdot \frac{\mathrm{b}}{6} \mathrm{p}$ minor eft quam $\frac{1}{2} \mathrm{~b}^{3}+\frac{1}{2} \mathrm{q}$ ．

Exemplum alterum fit $\mathrm{x}^{3}-15 \mathrm{x}^{2}-229 \mathrm{x}-525=0$ ． \＆querantur radices．$\sqrt{\frac{1}{9} b b+\frac{1}{3}} \mathrm{p}=\sqrt{101 \frac{1}{3}}=\sqrt{ } \mathrm{d}$ ，$\circlearrowleft R a-$ dius Circuli $\sqrt{ } 405 \frac{1}{3} \cdot \frac{\frac{1}{2}, b^{3}+\frac{1}{6} b p+\frac{1}{2}}{\sqrt{ } \mathrm{~d}} \mathrm{dd}=\frac{125+572 \frac{1}{2}+262 \frac{1}{2}}{101 \frac{1}{3} \sqrt{101 \frac{1}{3}}}$ $\frac{960}{\frac{1}{3} \sqrt{\text { IOI } \frac{1}{3}}}=$ SinuiT abulari Arcus，cujus Log．9．9736426， \＆Arcus ip $\int$ e 70 gr ．14m． 22 s ．bujus pars tertia eft 23 gr .24 m ． 47立s．© complementi 36．35．12⿺辶 ；quorum Sinus Log． funt 9.599183 び 9.775275 ，quibus addito Log．$\sqrt{ } 405 \frac{1}{3}$ furnt
 $=20$ ．Hinc concluditur $20+\frac{1}{3} \mathrm{~b}$ vel 25 aquari radici Affir－
 quatio fuiffet $\mathrm{x}^{3}+15 \mathrm{x}^{2}-22 \mathrm{x}+525=0,3$ \＆fuiffent Affr－ mative； 25 vero Negativa．Ceterce autem Cubice unica tantum Radice explicabiles juxta Regulas Cardani refolven－ de funt，poftquam demptusfuerit Secundus terminus；nec vi－ deoquo pacto minori calculo boc negotium peragi poffit．At $\sqrt{2}$ defideretur radix hec in Quantitatibus $\mathrm{b}, \mathrm{p}, \mathrm{q}$ expreffa，dico

## $[397]$

eam effe in prima formula, $\frac{2}{3} \mathrm{~b}+$ vel - fummavel differentia Radicum Cubicarum ex $\sqrt{\frac{2}{4} \mathrm{qq}^{-\frac{1}{0}}{ }_{8} \mathrm{p}^{2} \mathrm{~b}^{2}+{ }_{2} \frac{1}{7} \mathrm{~b}^{3} \mathrm{q}-\frac{1}{6} \mathrm{bpq}}$ $+_{2}^{\frac{1}{7}} \mathrm{p}^{3} \pm_{2} \frac{1}{7} \mathrm{~b}^{3}+\frac{1}{2} \mathrm{q}-\frac{1}{6} \mathrm{~b} \mathrm{p}:$ viz.,$+ \int_{2} \frac{1}{3} \mathrm{~b}^{3}+\frac{2}{2} \mathrm{q}$ major $\int$ st quam $\frac{2}{6} \mathrm{~b}$ p, aliter -; Summa vero quoties $\frac{1}{3} \mathrm{~b} \mathrm{~b}$ major eft quam p; Sin minor fuerit $\frac{1}{3} \mathrm{~b} \mathrm{~b}$, differentia. Inq; cateris formulis radix femper conflatur ex iisdem elem entis, variatis tamen. fignis $+\odot-$, ut facile percipiet qui velit experiri.

Ope veroTabula Logarithmice Sinuum Verforum Radices ba fatisprompte inveniuntur; nempe fi Coeffcientes Numeri fint Surdi vel fracti,ac radices Numeris ineffabiles; ut plerumq; fit. Hec autem eft Regula: In prim ac Jecunóa formula, $\sqrt{2}$ $\frac{2}{3} \mathrm{~b} \mathrm{~b}$ minor fit quam $\mathrm{p} ;$ jut $\frac{2}{3} \mathrm{p}-\frac{1}{9} \mathrm{~b} \mathrm{~b}=\mathrm{d}$, \& pofita differentia inter $\frac{1}{6} \mathrm{~b} \mathrm{P} \mathrm{O}^{2}{ }_{2}^{\frac{1}{2}} \mathrm{~b}^{3}+\frac{1}{2} \mathrm{q}$, hoc eft HR , in prima, ac inter $\frac{2}{6} \mathrm{~b} \mathrm{p}+\frac{1}{2} \mathrm{q} \mathrm{O}_{2} \frac{1}{2}, \mathrm{~b}^{3}$, infecunda, pro Radio; inveniatur angulus cujus Tangens eft $\mathrm{d} \sqrt{ } \mathrm{d}$. Deinde ut Co-jinus bujus anguli, ad ejuSdem Sinum verfum: ita differentia pro Radio babita, ad quartum; cujus Latus cubicum trifecando Logarithmum babebitur: ac divifo $\frac{1}{3} \mathrm{p}-\frac{i}{9} \mathrm{~b}$ b per hoc Latus Cub. e Quoto Subducatur Divifor: Refiduum erit quantitas Y \&, in Fig. I. Hujus Refidui ac $\frac{1}{3} \mathrm{~b}$ fumma, fi centrum cadit ad dextram Axis, aliter differentia carundem, Radix erit quafita. Quod $\int \frac{2}{3} \mathrm{bb}$ major fit quam p , pofito H R pro Radio, jit $\mathrm{d} \sqrt{ } \mathrm{d}$ jive diftantia Paraboloidis ab Axe, Sinus Arcus cuju/dam; Hujus Sinus verfus ducatur in Radium, five $\frac{1}{6} \mathrm{~b} \mathrm{p}-\frac{1}{2}, \mathrm{~b}^{3} \pm \frac{1}{2} \mathrm{q}$, ac trifecto producti Logarithmo, babebitur ejus Latus Cubicum, per quod dividatur $\frac{1}{9} \mathrm{~b}$ b $-\frac{1}{3} \mathrm{p}$. dico Quoti ac diviforis fummam eadem Lege additam vel ablatam ex $\frac{2}{3} b$, Radicem quafitam exbibere. Ac par eff ratio in tertia ac quarta formulis, nifl quod $2 \frac{1}{7} \mathrm{bb} \mathrm{b}$ $+\frac{1}{6} \mathrm{~b} \mathrm{p} \pm \frac{1}{2} \mathrm{q}$ pro Radio affumenda eft, ac $\frac{1}{9} \mathrm{~b} \mathrm{~b}+\frac{1}{3} \mathrm{p}$ in $\sqrt{2} \mathrm{~b} \mathrm{~b}+\frac{2}{3} \mathrm{p}$ five $\mathrm{d} \sqrt{ } \mathrm{d}$ pro Sinu: Sed bac pracepta exemplis fortaffe melius percipientur.

Sit equatio Cubica $\mathrm{zzz}-17 \mathrm{zz}+54 \mathrm{z}-350$, ac quaratur Radix z : Hic $\frac{1}{3} \mathrm{~b}$ b major eft quam p , Sed q major eft quam Cubus ex $\frac{2}{3} \mathrm{~b}$, ideog; una tantum Afirmativa Radice explicabilis eft. Fams $\frac{28}{9} \frac{2}{9}-\frac{s_{3}}{3}$ eft d, ac $\frac{12}{9} 2 \sqrt{1 \frac{2}{9} 2}$ pro Sinu babenda eft, ad Radium $4^{\frac{3}{2} \frac{1}{7} 3}+175-153$, hoc eft $\frac{150_{2} 7}{2}$ : Eee 2

Arcus

## [398]

Arcus vero competens fit 15 gr .3 m .49 s . Hujus Sinus Verfi Log. 8.5362376. additus Log.Radii 2.3095913. dat 0.8457889. cujus tertia pars 0.28 19276. eft Log. Radicis Cubice 1.91394, quo divifore divifo $\leq \frac{272}{9}$ five d, fit Quotus 7.37281; Quoti ac diviforis fumma, aucta additione $\frac{1}{3} \mathrm{~b}$, fit Radix quafita, nempe 14.9534 , \&c.

Exactis Cubicis Biquadraticas jam aggrediamur; He femper vel nullam, vel duas, vel quatuor Radices veras habent, quarum determinatio partim a Coefficientibus, partim a figno ov magnitudine numeri abSoluti dati, pendet; Harum omnium Conftructionem generalem (in $\mathrm{N}^{\text {o. 188.Pag. 34I) Satis con- }}$ cinnam prodidi, quam Lector jam vidiffe fupponitur; Figuram tamen eo fpectantem (Fig. II.) buc transferre vifum eft. In Confructione equationis $\mathrm{z}^{4}-\mathrm{b} \mathrm{z}^{3}+\mathrm{pzz}-\mathrm{qz}+\mathrm{r}=0$, fit $\mathrm{BD}=\frac{x}{4} \mathrm{~b}, \mathrm{AB}={ }_{1} \frac{1}{6} \mathrm{~b} \mathrm{~b}, \mathrm{BK}=\frac{1}{2}$, five dimidio Laterjs recti, $\mathrm{KC}=2 \mathrm{AB}=\frac{1}{8} \mathrm{bb} . \mathrm{KE}=\frac{1}{8} \mathrm{bb}-\frac{1}{2} \mathrm{p}, \mathrm{AE}-\frac{1}{2}=\frac{3}{16} \mathrm{bb}-\frac{1}{2} \mathrm{p}$ $\mathrm{FE}={ }_{1}^{1} \frac{1}{6} \mathrm{~b}^{3}-\frac{1}{4} \mathrm{~b} p$, ac $\mathrm{E} \mathrm{G}=\frac{1}{16} \mathrm{~b}^{3}-\frac{1}{4} \mathrm{~b} \mathrm{p}+\frac{1}{2} \mathrm{q} ; q u 0$ facto Circulus centro G, Radio $\sqrt{\mathrm{G} \mathrm{D}^{2}} \mathbf{r}$, interfecabit Parabolam vel nullo, duobus aut quatuor punctis, que perpendiculis in lineam DH, Radices omnes z exbibent. Vet autem quatuor fint, evidens eft centrum circuli alicubi conftitui debere intra fpatiwom, de cujus puncto quovis tria perpendicula in Carvam Parabola demitti poffint; at $;$; imul radium minorem effe maximo ex illis perpendicularibus, majorem vero medio. Quod fi centrum conftituatur extra boc fpatium, ut non nifi una perpendicularis in Parabolam demitti poffit, qua major fit radius; vel fo minor fit media ex tribus perpend. major vero quam minima ex illis, due tantum poffunt efferadices; mulla vero omnino datur, quoties radius $\sqrt{ } \mathrm{GDD}^{2}-\mathrm{r}$ minor eft minima ex tribus, vel una illa, guoties una tantum eft.

Fam quale fpatium boc fit, quibuf $q$; limitibus difcernitur, ac quibus conditionibus radius Circuli minor vel major fit pradictis perpendicularibus, nobis reftat inquirendum; ac primum quo pacto perpendicularis in Parabolam demitti poffo oftendendum eft.

## 399．］

Sit A B C Parabold，A E Axis ejus，A V（Fig．III）femi－ Latus rectum， G punctum de quo demitterida eft pexpendicularis： Ducatur Axi perpend．G E，acbifecetur V E in F ，ou erecta perpend．F H ad idem Axis Latus，fiat $\mathrm{FH}=\frac{1}{4} \mathrm{GE}$ ；dico quod Circulus，Centro H，radio HA defcriptus；Parabolam inter－ fecabit in punctis tribus vel wea Z，ad qua ducte rétue G Z Curve Parabolige perpendiculariter infiftunt．

Ut autem tres fint hiujufmodi interfectiones，oportet cen－ tram circuli H itacollosari，ut fit intra patium Para oloidibus （in Fig．I．）inclufum；boc efa ut FH minor jut quam $\sqrt{ } \frac{8}{2} \mathrm{VF}^{3}$ five $\mathrm{FH}^{2}$ minus quam cubus ex．$\frac{2}{3} \mathrm{U} \mathrm{F}$ ：atg；adeo．GE＝4FH minor erit quam $4 \sqrt{ }{ }_{2} \frac{8}{7} \mathrm{~F}^{3}$ five $4 \sqrt{ }, \frac{1}{2} \sqrt{3} \mathrm{E}^{3}$ ，boc eft quadra－ tum ex GE minor erit quam $\frac{15}{2} \frac{\mathrm{~V}}{\mathrm{~V}} \mathrm{E}^{3}$ ．Coincidint itaq；bi li－ mites cum Paraboloidibus duabus ejufdemgeneris cum iis quibus in Cubicis uf fumus，Sed quaruin Latus rectum duplo minor ieft； viz．$\frac{21}{16}$ Lateris recti Parabolx，boceft ing ipfus A V：ideoq； ea ipfa eft linea Curva cujus evolutione：generatur Parabola，fic demon trante Hugenio；quainq；Semper contingit linea D F， （Fig．II．）que Parabole perpendiculariter infiftit in punito D． Punctum autem P ，jive in quo contingit recta D F Paraboloi－ dem，centrum eft Circuli，qui radio D P deforiptus cums Para－ bola in puncto D coincidit，ive eju．（dem Curvitatis eft；ut per fe fatis conftat．

Defcriptis itaq；bujumodi Paraboloidibus V XP，V．N $\Delta$ （Fig．II．）utrinq；ab Axe；perfpicuum eft quod，nifi centrum Circuli conftituatur intra bos limites，non pofit ille plaribus． quam duobus in punctis Parabolam inter fecare：unde determi－ nare licet quibus fula conditionibus Coefficientes terminorum in－ termediorum coercentur，in requationibus Biquadraticis，ut babe－ antur quatuor radices．：Ac prima fronte clarum eft p majorem effe nom poffe quame $\frac{3}{8} \mathrm{~b}$ b（frila in formulis ubi babetur +p ） nec $q$ quam $1_{1}^{\frac{1}{6}} b^{3}$ ，Generaliter vero $\frac{1}{6} b^{3}$ 耳 $\frac{1}{4} \mathrm{pb}$ 干 $\frac{1}{2} \mathrm{q}$ ，id eft diftantia centri ab wixe E G，minor．effe debet quam E H $=4 \sqrt{ } \frac{1}{20} \mathrm{VE}^{3}$ ，bocef（ob $\mathrm{V} \mathrm{E}=\frac{3}{16} \mathrm{~b} \mathrm{~b}$ 干 $\frac{1}{2} \mathrm{p}$ ）quam $\frac{1}{4} \mathrm{bb}$ $\mp \frac{2}{3} \mathrm{p} \sqrt{2 \frac{2}{6} \mathrm{~b} \mathrm{~b}+\mathrm{vel}-\frac{1}{6} \mathrm{p}}$ ；jgnis＋o－indubiorelictis，ut fecundum equationis cujuswis naturam variari pofint；quem－
 dium injicere, aint dif fentibus fingula particulutimu rimandi toluptatem ac exercitationem praripere.

Termini autem ultimi r limitatio eadem facilitate inveniri nequit; id adeo, quia Problema Jit Solidum, in Curvam Para* bole demittere perpendicularem; quodq; non fine folutione aquationis Cubica refolwi poffit. Itaq;primo loco deficiat fecundus terminus, vel $\hat{1}$ adfuerit, tollatur, ut equatio habeat formu-
 vel quatuor Radicibus explicari poteft; ut autem quatuor fint, oportet centrum circuli intra Paraboloides predict as conftitui, five ut $f i t-\mathrm{p}$, ac qq quinus quam ${ }_{2}^{\frac{8}{3}} \mathrm{p}^{3}$ five cubo ex $\frac{3}{3} \mathrm{p}$. Deinde babeantur radices aquationis bujus $\mathrm{y}^{3} \cdot * \cdot \frac{1}{2} \mathrm{p} \mathrm{y} \cdot \frac{1}{4} \mathrm{q}=0$, quantitatibus per q iifdem fignis annexis quibus in Biquadrat tica. He autem Radices auxilio Tabula Sinuum fatis expedite inveniuntur. Inventis autem tribus illis y, (que funt ordination applicate ad Axem Parabole, de panctis subi incidunt perpendicula in Curvam ejus. fcil. Z Y in Fig.III.) p yy $-3 \mathrm{y}^{4}$ ex minore y , quantitatem maximam redefgnabit, fif fuer it -r ; qua fi minor fuerit r , equatio quatuor babebit radices, aliter dosas. Aft fi fuerit +r , oportebit eam minarem effe quam $3 y^{*}-\mathrm{pyy}$ ex media $y$, nam $f 2$ major $j i t$, non vifi duws bubere potef radices, faltem fi minor fit r quam $3 \mathrm{y}^{4}-\mathrm{p}$ y yex maxima y. Hac vero fi major fit, nulla omino radice vera explicabilis eft equatio. Hi vero iidem limites aliter defignantur ex quantitate oq, fici, $\frac{1}{2} q y-\mathrm{y}^{4}$ in primo iafu, $\mathrm{y}^{4}-\frac{1}{2} q \mathrm{y}$ in fecando, at $\mathrm{y}^{4}$ $+\frac{1}{2} \mathrm{q}$ y in tertio.

Fieri autem poteft ut idre mixses quantitates y non longe diftent ab invicems unde evenit quodutraq'; ex perpendiculitribus major fit quam recta $\mathrm{G} A, \int$ cill cum $\mathrm{q} q$ majus got gram
 raboloidibus utriufg; Figurese I oul I interjeetum. Hoc in ta$f u, \sqrt{v}$ fuerit +r , non nifa duc poffunt effe ridices, exiffexte $\mathrm{y}^{4}$ + $\frac{1}{2} q$ y ex maxima y , major quam r ; aliter nulla. At. $\beta \frac{1}{2} \mathrm{q}$ y $-y^{4}$ exminima $\bar{y}$, major fuerit quam y figno - notata, r vero major quam $\frac{1}{2} q y-y^{4}$ exmedia $y_{i}$ turr haderinur quatuor radices

## [40 ]

dices; at dux tantum fi vel major priore vel minor pofteriare inventa fit r .

Si vero in aquatione fuerit +p , vel $\int \sqrt{j} \mathrm{it}-\mathrm{p}$ © q q majus fuerit quam $\frac{3}{2} \mathrm{p}^{3}$, equatio $\mathrm{y}^{3} \cdot * \cdot \frac{\frac{2}{2} \mathrm{p}}{} \mathrm{y} \cdot \frac{\pi}{4} \mathrm{q}$ unica tantum explicatur radice y; boc eft una tantum perpendicularis de centro Circuli demittipoteft: unde certo concluditur duas tantum radices baberi poffe in aquatione data; quarum fumma, ji fuerit-r, cum quantitate r augetur ; at $\int \mathrm{i}$ babeatur +r , obtenta quantitate y , quantitas illa r minor effe debet quam $\mathrm{y}^{4}+\frac{1}{2} \mathrm{q} \mathrm{y}$; nam fi ea major fit, aquatio propofita abfurda or impofibilis eft.

Longum \& fuperfluum effet omnes bujus cenfus aquationes percurrere, cum ex jam dictis attendenti $\int$ atis evidens $\int 2 t$, qua Negative, que Affirmative fint; atq; quod Radicum harum Limites ex quantitatibus inventis y petantur. In exemplum vero, quod cuivis incateris imitari licet, proponantur indagandi limites five conditiones, fub quibus in Aquatione Biquadratica 4 Radices Affrm. dari poffint. Hoc autem fit quoties centrum circuli G ponitur in (patio U P K, (Fig. II.) ac fimul babetur +r fue Circuli radius minor quam G D : Vnde patet, equationem de qua agitur bujus effe formule $\mathrm{z}^{4}-\mathrm{b}^{3}+\mathrm{p}^{2}$ $-\mathrm{q} \mathrm{z}+\mathrm{r}=\mathrm{o} ; \mathrm{p}$ vero majorem effe non poffe quam $\frac{3}{8} \mathrm{bb}$, nec $\frac{1}{4} \mathrm{pb}$ boc in caf $u$, quam $1_{1} \frac{1}{6} \mathrm{~b}^{3}+\frac{2}{2} \mathrm{q}$; deinde opus eft ut $\frac{1}{4} \mathrm{bb}-\frac{2}{3} \mathrm{p}$ in $\sqrt{{ }^{\frac{2}{6}} \mathrm{bb}-\frac{1}{6} \mathrm{p}}$ major fit quam ${ }_{1}^{\frac{1}{6}} \mathrm{~b}^{3}+\frac{1}{2} \mathrm{q}-\frac{1}{4} \mathrm{pb}$; or ex his limitibus certo conftabit centrum intrafpatium U P K inveniri. Ut vero definiatur quantitas r , folvenda primum eft Cubica $\mathrm{y}^{3} \cdot * \cdot-\frac{3}{16} \mathrm{~b}^{2}-\frac{1}{2} \mathrm{p} y={ }_{3} \frac{1}{2} \mathrm{~b}^{3}+\frac{1}{4} q-\frac{1}{8} p \mathrm{~b} ; \mathrm{e}^{2}$ babcbuntur puncta, in que perpendiculares de centro in Curvam Parabole cadunt.

Inventis autem tribus valoribus bujus $\mathrm{y}, \mathrm{r}$ minor effe debet quam ${ }_{2} \frac{3}{5} 6^{4}+\frac{x}{4} b q-\frac{1}{2} b b p+3 y^{4}-\frac{3}{8} b^{2}$ y $y+p$ y y $e x$ media y , major vero quarm ${ }_{2} \frac{3}{3} \mathrm{~b}^{4}+\frac{1}{4} \mathrm{bq}-{ }_{1} \frac{1}{6} \mathrm{bb} \mathrm{p}+3 \mathrm{y}^{4}$ $-\frac{3}{3} b^{2}$ y +p y y ex minima y. Hos vero limites $\int \mathrm{i}$ excedat r , non nif due Radices haberi poffunt. Deniq; $\int_{2}{ }_{2}^{\frac{3}{3} 6} \mathrm{~b}^{4}+\frac{1}{4} \mathrm{~b} \mathrm{p}$ $-_{1}^{\frac{1}{6}} \mathrm{bb} \mathrm{p}+3 \mathrm{y}^{4}-\frac{3}{3} \mathrm{bby} \mathrm{y}+\mathrm{py}$ у ex maxima y , minor fuerit quam r , equatio propofita impoffibilis ef.

## [402]

Accidit etiam ut quatuor fint Affrmiativa, cum Centrum G conftituitur in fpatiolo V TS ; ducta coil. RTS perpendiculari in medium fuppofita lince AD: Hoc autem fit cum p major eft quam ${ }_{1}^{2} \frac{5}{6} \mathrm{~b}$, ac $\frac{2}{4} \mathrm{bb}-\frac{2}{3} \mathrm{p} \sqrt{\frac{1}{1} \frac{\mathrm{~b}}{6} \mathrm{~b}-\frac{1}{6} \mathrm{p}}$ major quan $\frac{1}{3} \mathrm{pb}-{ }_{1} \frac{5}{2} \frac{\mathrm{~b}}{\mathrm{~b}} \mathrm{~b}$ b $-\frac{1}{2} \mathrm{q}$. Quo in cafu $\int$ emper due, aliquando tres.ex Radicibus fiunt majores quam $\frac{2}{4} \mathrm{~b}$ :

Notandum vero bic limitem illum ex minima y prodictum, aliquando negativum fieri, five minorem nibilo; quoties foil, maxima ex tribus perpendicularibus major eft quam G D. (Fig.II. ) Hoc fa acciderit quantitas +r a limite prafcripto ex media y, in nibilum minui poteft. Defectus vero limitis ex minima y monftrat quanta pofit effe -r in equatione, Si babeantur tres radices Affrrnativec ac una Negativa; quam $f i$ excedat, non nifi due, altera Affirmativa, altera Negativa, dari poffunt. Hac autem omnia demonjfrantur ex eo quod predicti limitesquantitatis.r, fint differentice : Quadratorum lines. G D óperpendicularium in Curvam Parabole.

Ob perplexas vero cautiones, quas parit in aquationibus bifce fignorum diverfitas, praftat femper fecundum terminum tollere, ac deinde jiixta precepta jam tradita radicum numerum ac figna inquirere; prefertim fiquantitates ille y non multum diftent ab invicem. Ex quatuor autem bifce radicibus Affirmativis, due femper funt minores quam $\frac{1}{4} b$, duce vero majores; nempe $\int_{i} \mathrm{DG}$ minor fit quam AG , $\sqrt{1 v e} \frac{1}{4} \mathrm{p}$ quam ${ }_{6}{ }^{\frac{3}{6}} \mathrm{~b}^{3}+\mathrm{q}$. Tres autem minores Junt quam $\frac{1}{4} \mathrm{~b}$, quoties perpendicularis media, five ex media y inventa, majox eft quam A G, jize $\frac{3}{8}$ bby major quam $3 \mathrm{y}^{3}-\mathrm{p}$ yy ex eademmediay; Quarta vero ev maxima radix major ef quam maxima $y+\frac{1}{4} \mathrm{~b}$; requatur alltem differcntie ipfius b © fumme caterarum trium radicum, ideog; minor eft b. Sed jam Manum de Tabula; For'tafis illi qui naturam Parabole penitius perlpectam babent, majori compendio hac ommia peragere valebunt; at quantitates be omnes b. p.q.er, abfor refolutione Cubice équationis rite determinari pofint, no n fine caula ambigitur; quacung, enim aquationibusplanis bac in refiunt, non veros"limites, fed"approximationes tintum exbibent.

$$
[403]
$$

An Account of fome Obfervations lately made at $\mathrm{Nu}-$ renburg by Mr. P. Wurtzelbaur, flewing that the Latitude of that Place bas continued woithout fenfible alteration for 200 Years laft paft; as likeroife tbe Obliquity of the Ecliptick; by comparing them woith what was obferved by Bernard Walther in the Year 1487 being a Difcourfe readbefore the Royal Society in one of late Meetings.

wHether the Poles and Axis of the Earth be really fixt in the Globe, or fubject to be transferred from place to place is an old Enquiry, though now lately revived by Mr. Hook in his ingenious effays upon the great mutations and Cataffropbies which in all appearence have hapned to the Earths Surface. A neceffary confeqvence of fuch a tranflation of the Poles would be the change of the Latitudes of places, which would encreafe in thofe Regions towards which the Poles approach, and decreafe in thofe from which they recede: and under the Meridian 90 degrees removed from that in which the Poles shift, the Latitudes continuing the fame, the Meridian line would only Alter; but no two places confiderably differing in Latitude can be fuppofed, wherein if there be any fenfible motion of the Poles, it fhall not be perceived by the alteration of the Latitude of one or both of them.

The accurate Mr. Wurtzelbaur, has lately furnifhed us with the means of examining this Hypothefis by obfervation, having fent us the Meridian Altitudes of the Sun taken at Nurenburg about the two Solftices in the Year 1686. Fune the roth, he found the Meridian altitude of $064 \mathrm{~g} \cdot \mathrm{r}$. 2 m .20 s . and the next Day 64 gr .2 mm . 25 s . and on December $14^{\circ} \cdot 3$ days after the Solftice, wherein the Sun was got two minutes higher, he found the Meridian Altitude 17 gr . Ggg

## $[404]$

9m. Ios. wherefore the folftitiall Altitude was 17 gr .7 m . ios. Thefe heights were taken by an Inftrument of 6 foot Radius of Brafs; and the skill and diligence of the obferver is not to be doubted.

To compare with thefe I find among Bernard Walthers obfervations made in the fame City of Nurenburg, two hundred Years before. viz. in the Year 1487, that the Meridian Altitude of the Sun in the fummer Solftice was obferved by the Parallactick inftrument of Ptolomy wherby the Chord of the Suns diftance from the Zenith was obferved $44^{8} 90$ parts of 100000 Radius; the fame being confirmed by the concurrence of the obfervations of feveral Years both before and after. The arch anfwering to this Chord gives the Suns diftance from the Zenith 25 gr .56 m .30 s . and confequently the Meridian Altitude its Complement to a Quadrant, 64 gr . 3 m . 30s. Again the fame Year 1487 the Chord of the Meridian diftance of $\odot$ from the Zenith, on the day of the Winter folltice was found 118790 , confirmed likewife by many fubfequent obfervations; the arch anfwering to this Chord is 72 gr .52 m .40 s . and its complement 17 gr .7 m .20 s . the Meridian hight of the Sun in the Winter folftice.

Hence it appears that the folftitiall hights were very nearly the fame at Nurenburg 200 Years ago as now they are, that of the Summer folftice being but one minute differing, the other only 10 s. both which may poffibly arife from the defects of the Inftruments of thefe obfervers, being made with plaine fights; but what I fhall neceffarily conclude from hence is, that if there be fuch a motion of the Poles, it is either very flow, or elfe nearly at right angles to the Meridian of Nurenburg; in which latter cafe the Latitudes of places about Tunking, Siam, Malacca and Java on the one fide, and in our American plantations of New-England, Virginia, Famaica orc. on the other, ought to change fafteft ; but I have never yet heard of any fuch tling obferved by any of our Navigators; whence if there

$$
[405]
$$

be fuch a change of the Earths Poles, it muft neceffarily require a long time to become fenfible.

Befides from thefe Obfervations it appears that the obliquity of the Ecliptick has continued unaltered for thefe 200 Years laft paft, that is to fay that the Angle which the Earths Axis makes with the plain of the Ecliptick or Orb wherein fhe moves annually round the Sun, has been without fenfible Change in all that time ; which will be very hard to conceive, if we allow a tranflation of the Earths Poles; for the direction of the Axis being perfectly at Liberty, it muft be purely cafual, if it fo hit, that after fuch change, it make the fame Angle with the Ecliptick as before.

A farther argument of this flownefs of the change of the Poles is the Latitude of Alexardria, the habitation of thofe Famous Aftronomers of antiquity Eratofthenes, Timocharis, Hipparchus and Ptolomy, and for that reafon it may be concluded that this of all the Latitudes the ancients has left us, ought to be one of the moft correct. This by Ptolomy is faid to be 30 gr . 58 m . North, (which he ufes in all his computations in his Almegift, and feems derived from the proportion of the Gnomon to its Equinoctial fhadow, as 5 to 3 ) but in his Geography, 3 Igr. juft. In the Year 1638 the curious and Ingenious Mr. Greaves, when he went to vifit the Agyptian Pyramides, of which he has given fogood an account, did with a fufficient Inftrument obferve the Latitude of Alexandria, and found it 31 gr . 4 m. or 6 minutes more than it is reputed by Ptolomy, and before him by Eratofthenes; fo that in about 2000 Years the Latitude of Alexandria has altered only a few minutes, and fo few that the accuracy of the obfervations of the ancients may well be queftioned: But both being granted, this motion will amount to no more than a degree in 20000 Years.

This is faid not with intent to invalidate what Mr. Hook hath from fo good grounds advanced, viz. that the Ggg 2 Ball

## [ 406 ]

Ball of theEarth, at leaft the fluids thereof,being neceffarily of the Figure of a Spheroides prolatus or flat Ovall whofe fhorteft diameter is the Axis, and greateft Circle the Equinoctial ; if the Poles be fuppofed changed, the Equinoctial will be fo too; and confequently the Water mult rife and cover thofe parts from which the Poles recede, and fall off and leave bare thofe places towards which the Poles approach. By this means it may be accounted for, how fuch ftrange marine things are found on the topps of hills, and fo deep under ground; and fcarce any other way. But from thefe and the like obfervations it will follow, that if thefe inundations are produced by any regular motion of the Poles, it would require a prodigious number of Ages to effect thofe changes we may be certain have been. Befides if the accefs and recefs of the Sea were after fuch a graduall manner, as when produced by fuch an eafie tranflation of the Poles, as can by obfervation be admitted, thofe Inundations could never be fatall to the Inhabitants, for that they would alwais give notice of their Coming, fo that the People might provide for their fafety. But the Holy Scriptures and Pagan Tradition do unanimoully agree, that the laft great Deluge was brought to pafs in a few days, with no previous notice, fo that the account we have thereof, could not by this Hypothefis be made our, without the fuppofition of a great and fudden alteration in the Poles of the Earths diurnal Revolution; for which whether wee Should have recourfe to the Intelligent powers that firft impreft this whirling motion on the Ball; or leave it to be performed naturally, by the cafuall Choc of fome tranfient body, fuch as a Comet or the like, whereby the former Axis might be loft and a new Revolution produced, differing both in time and pofition from the old; I thall not undertake to difpute : fuch a fuppofition would include likewife a change of the length of the Year and Eccentricity of the Earths Orb; for which yet we have no fort of Authority.
LONDON, Printed by $\mathcal{F}$. Streater, and are to be Sould by Sam. Smith at the Princes Armes in St. Pauls-Church-rard. 1687.

# [407] <br> Num. 191. <br> PHILOSOPHICAL RANSACTIONS 

For the Month of December, 1687.

## THE CONTENTS.

"A$N$ Account of the Difeafes of Doggs, and eeveral Receiptsfor tie Cure of their Madnefs, and of thofe bitten by them. Extracted from the Papers of Sr. Theodore Mavern, and Communicated by Sr. Theodore de Vaux. K.t. R.S. Soc. 2. An Extract of a Letter written to the R. Society ont oraiold by Mr. J Weichard Valvafor R.S.S. bein a full and accurate Defiription of the wonderful Lake of Cirknits in that Country. (i.) A Correct Tide-Table, Jbewing $t e$ Times of the High-Waters at London-Bridge, to every ay in the Tear, 688. by J. Flamiteed, Math. Reg. \& R.S.S. (4.) A Conjecture at the Quantity of Blood in Men, trgether with an Efimate of the Celerity of its Circklation, by Allen Moulin M. D. and Reg. Soc. S. (5.) Catalogus Eclipfium omnium Satellitum Fovialium Anno 1688, per univerfam Terram Vifibilium ; momenta Oca cultationum corum in Govis Umbra, ac ex eadem Egreffuu:n fub Meridiano Londinenfi exhibens: Supputante $E$. H. (6.) Accounts of Books. I. Propolitiones Hydroftaticx ad Illultrandum Arijtarchi Samii S ftema deftinatx, \& quxdam Phænomena Nature generalia. Authore Francifoo Feffop, Arm. Lond. $4^{\text {to. }} 1687^{\circ}$ ( II.) Tabularum Altronomicarum pars prior, de Motibus Solis ac Lune, nec non de pofitione Fixarum, ex ipfis Obfervationibus deductis : Cum Ufu Tabula um, orc. Authore Ph. de la Hire, Regio Mathefeos Profeffore, \&f. $4^{10}$ Parifiis, 1 6 7. (7.) The Report of the Parifh-Clerks of London, made to His Majefty, of the Number of Chriftenings and Burials, in the Years : 6 6, and 1687. (8.) An Index to the Sixteenth Volime of the Philofophical Tranfactions. Hhh An

## [408]

An Account of the difeafes of Doggs, and feveral Receipts for the Cure of their Madnefs, and of thofe bitten by them. Extracted from the Papers of ír. Theodore Mayern, and Communicated to the Royal Society by Sir Theodore de Vaux Knt. and R. Soc. S.

DOggs are Subject to thefe feveral forts of Madnefs or rather difeafes. (1) The Hot Maane/s which is incurable without hope. They fly upon every thing and can hold out but 4 days (2) the Running Madnefs which is likewife incurable. They fly only upon Doggs, and that by Fitts, and $m$ y fometimes hold out y months (3) La Rage Mue whicu is a difeafe that lies in the Blood (4) The Falling Madnefs which feafes on the Head, and is as a fort of Epilepfie (5) The Blafting or Withering; this lies in the Bowells which Chrink up exceedingly (6) The Sleepie Difeafe, which comes from little worms in the mouth of the Stomach: Thefe Dogs die flveping. (7) The Rheumatick $D i f e a \int e$, This fwelli, the Head very much and makes the Eye, yellow.

Thefe five latter are not properly Madnefs but other difeafes. In them the Dogs will not eat, nor at any time when they are fick, but in thefe five they live 8 or 9 days without hurting any body, and then die of Hunger. The two firt are catched by the breath of Dogs being together as is the Plague among Men, the latter are likewife Contagious but Curable,

## [409]

## A Never filing Remedy for the Bite of a Mad Dog. by Sr. Theodore Mayern.

Take Virginia Snake-Root and Flowers of St. Fobns rort gathered in their prime, equal parts of each, lett them be made into very fine Pouder. The Dofe is from a Scruple to a Dram, to be taken in any fort of Decoction prepared with Specificks. To a Horfe give 2 Dr. to a Dog from one to $\ell_{\frac{1}{2}}$ Dr. This before the ninch day after the Bite.

## Another Receipt for the fame, tiken from

 D. Mathias Hulsboos.Take Leaves of Ru: pickt from the ftalks and bruifed 6 Oun London Treacie ( or which is better Vinice Treacle) Garlick Pild and bruifed, and fine filings of Tin, each 4 Oun. put them into 4 l. of Cana y or good White Wine, or in cafe of a nice or hot conititution, into the fame quantity of ftrong and well-workt Ale, in an Earthen veffel well ftopt. Then let there be made a digeltion or gentle boyling therof in Baineo, for 4 hurs, thutting in the ffeam, then prefs it and ftrain it.

The dofe is from two to three Ounces (and in fome Perfons more ) to be taken every Morning for 9 days. The Party bitten muft faft for three hours after it, and the dreggs that remain after expeeffion muft be bound upon the wound received, renewing it every 24 hours. N. B. That the ninth day after the bite muft not be let flip, before this medicine be taken, leaft the Poyfon feafe the Blood too Strongly* It muft be given cold, or at leaft only a little aired. A Double Quantity may be given to a Bealt foon after the Bite.

This Remedy I have given many times by Sr. Theodore Mayerns direction, and I never found it to faile.

Theodore De Vaux.

## Anotber approved Remedy.

Pluck the feathers from the breech of an Old Cock, and apply it bare to the Bite, and do this uponeach of the Wounds. If the Dog were Mad, the Cock will Cwell and die, and the Perfon Bitten will do well; but if the Cock dies not, the Log was not Mad. If the Wounds be very frall, it is requifire to open them with a Lancett.

## Another Procefs if Sr. Theodore Mayerns.

Let the Party be Nine times Plunged in the Sea, while he is fafting, as foon as may be after the Bite.

Let the Bitten Part be waihed with a Lie of the Ahes of Oke-W'ood and Crine, and apply a Cataplalme of London Treacle, Alliaria or Hedge Garlicie, Rut and Salt.

Take dried Rue and Soordium eac 12 Dr. Virinia SnakeRoot ${ }^{\frac{1}{2}} \mathrm{Dr}$. Flowers of st . Joins wort 3 Dr. fine filings of Tinn and Girlik cut fanall, each. Dr. Londin Treacle 1 Ounce. Let them be all beaten and exafly mixed togather, adding Syrup of 1 emion Pils as much as fuffices to make it into an Electuary; Divide this into Nine equal prts to be taken every day one, drinking after it a fmall draught of Good ftrong Ale. Let him walk upon it and not dine till 4 hours after.

Ufe as little of the aforefaid Syrup of Lemon Pils as may be: and if that be not at hand, a Syrup made of Malagawine, adding as much Sugar as it can difolve,may ferve the turn.

Make up of this Electuary $4 \frac{1}{2}$ Ounces at a time, that fo the Dofe may be half an Ounce.


A $\cos ^{2}$


文i $\because 8$

> !


## [4III]

An Extract of a Letter written to the Royal Society out of Carniola, by Mr. John Weichard Valvalor R. Soc. S. being a full and accurate defcription of the zoonderfull Lake of Zirknitz in that Conntry. Vide Phil Tranfact. N. 54, \& 10.

THis Lake was by the Ancients called Lugea Palus, by the moderns Lacus Lugeus, tho at prefent it's Latine name be Lacus Girknicenfis, in high Dutch Zirck*izerffee, and in our Carniolan tongue Zirknisko Jefero. Why it was fo called of old is unknownor very uncertaiu; but the original of the prefent name is more fure, it being derived from the adjacent town of Cirknits: and that had its name, from a Chappel of the Virgin Mary, which at firt ftood a' one, but now the town is built round it. This Chappel was no great edifice at Girft, and therefore was called the little Chappesl, which in the Language of the Countrey is Zjrkviza; whence the Lake was named Zirkwisko Feferv or the Chappel-Lake, but now by abufe * being changed inte zirknisko Fofero.

It is diftent from the Capitall City of the Province Labac, fix German miles ; it isa good German Mile long, or better than 4000 Geometrical paces, and is about balf as much in breadth. Its ordinary depth is so Cubits, its leaft slor 6 , rarely three, but its greatelf is lixteen Cubits. It is every where furrounded with woody mountains, which on the South and Weft fide are very high and three Miles broad, running far in length into the Turkilk country, and afford nothing but horrid ftony defeuts, lovergrown wich trees. On the North and Eaft Ii i
fide

## $[412]$

Gide there is,between thê Mountains and the Lake, a fmall territory, which tho narrow is neverthelefs pleafant, and is inhabited by one Town, three Caftles and nine Villages, adorned with twenty Churches: as may be feen in the Map I fend (Fig. I) which was drawn by my feff upon the place, with all poffible care.

In the Montain called lavornik fanding near the Lake, there are two holes, or exceeding deep precipices, in which many thoufand wild Pidgeons sooft abt the. Winter; eintring in Autumn, and coming nut with the firft of the Spring: What they live upon in thefe caverns is unknown, bidit take it to be the Nitrous Sand. In the other hill called Slivenza, tis the belief of the Country People that the Witches hold there affemblys, becaufe that Teveral times lights like Fgnes fatui are obferved there. On the top of this hill is a hole of an unkhewn depth, out of which there ofteribreatli out noxious fteanst, fuppofed tooccafion tempefts of Thünder and Lighṭning and Hails, and forthis reafon the Prieft of Zircknits every WhitfonMuriday goes to the Hole in Proceefion, and ufes over it a certainform of Exoreifme.
-1 There runn into this Lake continually eight Rivulets: The two leaft are called Belle rect and Trefenz; the third is the fountain Oberch, out of which abundance of Water gufhes with great force; the fourth fifth and fixth called
 nefs deierve the name of Rivers ? the feaventlicalled Mattinf $f i z t$ breaks out at a cleft in the Roek tThe Laft called Cirknizer-Lach is a pretty larg River.

Now this Lake being every where furtounded with Mountains, and thowhere running over, Nature has given fit two vifible Chan inels for fony Caverns, called $\bar{V}$ elk a Karlouza and Mala Karl wiza by bow the Water runs under the Mountain; and a third concealed fubterraneous Paffage, which without doubt commünicates with the 0 ther two under ground (as I Ihall hereafter prove) Thefe .cesty now awotervhaving

## $[413]$

having run half a German Mile, come out at the other fide of the Mountain, near the Chappel of St. Cantian ( as I have faithfully drawn it in Fig. II. ) in a defert place at a fony Cave A; and become the River called by the inhabitants Fefero, that is the Labe. This River Freero marked $B$, is reafonably bigg, and having run talf a quarter of a Mile, enters a wide ftony Cavern, 1 , running flowly under the hill for the Pace of a good Mufquetfhott; then coming out again on the other fide, after it has run thro a fmall platt $m, m$; it enters a third Cavern or Grotto $C$, wherein having paffed so Paces, one may fay Sifte Viator, ne plus ultra, for it runs no longer peacibly as before, but with great noife and roaring falls down a very much inclined channel of ftone,fo that neither I nor any elfe durft follow it farther. In Ffune $\mathbf{1} 678$ I went my feff in a fmall fifher-boat under the Mountain, through the Cave $I$, and entred the Grotto $G$, till $I$ came to the aforefaid Falls, without any danger or trouble, the paffage being wide enough.

It mult be noted, that the Valley wherein this River Fefero runs, is exceeding fteep, but the Plat of Ground $m, m$, is plain and foony, of an Oval Form, and is furrounded with (as it were) a very high Rampart $K K K$, fo fteep, that it would be impoffible for a Cat to climb out of it, unlefs at one place, whereat a Man may make a fhift to go up and down, tho' not without peril of his Life; the Way being in fome places not above three or four Inches, and no where absue fix Inches wide. In the Year : $68{ }_{4}$ I went down here in Company with a French Gentleman, but the Water being up and we wanting a Boat, we could not go under the H.H nor enter the Grotto $C$, fo we returned, and with great difficulty defcended by a fteep and narrow Paflage at $D$, and came to a Cave bigger than any Ciurch, turvu;h which the River Fefero funs. Here we found feveral Figures of Stone, the Workmanhlip of Nature, and frange Holes or Caverns in the

## $\left[41^{1}, 4\right]$

Earth; but by reafon the River was then up, we could go no fartber: At othar times when the Whater is dow a one may go with haghted Torches a great way under ground; and'tis faid there are here very odd Figures farmed by the petrified Water: amang the reft, one refemr bling a Weaver at Work, of which the Copuntry People want not their Superftitiqus Traditions.

But toreturn to qur Lake; I fay that about the Feaft of St , Fahin Baptift or St , James-Tide, and fametimes not till, Augut), the Water cuns away and it is dry : But it fills again moft commonly in $O$ cthber or Nouember, yet fa as not: to obferve any certain time; for fomtimes ic has been drie twice or thrice in a Year : as in the Year 1685 , it was drix in J nuary. Again the Whater began to draw off,on the 15 $5^{\text {th. }}$ of $A u g g^{\prime \prime} t^{\mathrm{St}}$. N. and it was quite clear by the $8^{\text {th }}$. of Sept.and this prefent Year 1687 , it has been thrice, empth, which makes the Fifhing very poor and inconfiderable. Sometimes again, tho' but feldom, it has hapned to be three or four Years together full of Water, and then is the beft of the Fifhing, But it never yet was, obferved that this.Lake was dry for a whole Year together.

The right of Fifhing in this, Lake, upon certain Terms agreed on, does at this time belong to: the Lordhips or Caftles following, 1t to Haafperg, 2. Steegberg, 30 Laud; 4. Schneeperg, 5.Avefferg, 6. to Sitticium, which is a Monaftery of Cifectian Monks.

There are tliree Ilands in this Lake, wiz. Malh-Goriza and $V$ elka-Goriza which are unuhabited. The third is a very pretty Iland called Varnek that is reafonably big, having upon,tt a Village of four Houfes called Ottok;above this Town upon a litele eminence ftands a Church, which is no fmall Ornament. Thofe that live on it have Field, Meddows, Paftures, Wood, Gardens and Orchards, and all things neceffary for Lite.

There is alfo a very fine Peninfula, all cavered with Wood, called Doryudekt. When the Lake is up and one

## $[415]$

comes in a Boat berween the lland Vormek and this Peninfula, the farther part of the Lake, lying under the Mourr tain, very well refembles a curious Port for Shipping. At the farther end wher the Water draws off, there appears rows of Stakes, a Signe that there hath been formerlya Bridge, and therefore it is at this day called the Otd Bradge.

In this Lake there are many Pitts in the fhape of Bafons or Cauldrons, which are not all of the fame depth or breadth, the breadrh of them being from 20 to 60 Cubits more or lefs, and the depth from 8 to 20 Cubirs. In the bottom of thefe Pitts are feveral holes, at which the Water and Fifhes enter, when the Lake ebbs away.

The principal Pitts in which they Fifh are Eighteen, fituated and named as is repre fented in the firlt Fig. They are called Maljoberch, Velkjober'h, Kamine, Sucinskajamma, Kodonos, Louretfobka, Kyalouduor, Refcieto, Ribeskaj amma, Rethje, Sittarza, Lipauza, Gebno, Katen, Ainz, Zeflenza, Pounigk, and Levilbe. Befides thefe there are feveral other leffer Pitts of no Note, becaufe there is no fuch Fihhing in them as in thofe but now mentioned.

In the Months of $\mathcal{F} u n e, ~ \mathcal{F u l y}$, and $A u g u f$, when this Lake begins to draw off, it grows quite drie in 25 Days, if no great Rains intervene. And the aforefaid 18 Pitts, are all emptied one after the other, in a certain and never failing Order of Time.

When the Lake begins to fink, which appears by a certain Stone which they obferve, the Inhabitants of the Town called Oberdorff or Seedorf, give Notice thereof to all the Neighbouring Fithermen, that are appointed by, the feveral Lords having Right in this Fifhing. The People of this Town have Orders not only to watch the falling away of the Water, but likewife to take care that no body prefume to Fifh in the Lake when it is full of Water; that being forbidden: fo that thefe are as it were the Keepers of the Lake.

## $[416]$

The firf Pitt called Maljoberch, is not properly a Pitt like a Cauldron, but only a depreffion of the bottom without any holes in it : but there grows much Grafs and Weeds, and may Fifh are Catched therein: Three days after the Water begins to Ebb, this Pitt is emptied: Then the Parifh Clark of Seedorff gives Notice thereof by Tolling a Bell, and all the Inhabitants of the Town, Old and Young, Men and Women, lay afide all other Bufinefs and go to Fifhing, ftark naked as they were born, without any regard to Modefty or Shame. The Fifh they Catch, they divide in halves, one part the give to the Prince of Eggenberg, as the Lord of the Mannour, the other half is their own.
(2.) Thie Pitt Velkioberch is emptied the third day after Maljoberch, the manner and right of Fifhing as in that.
(3.) Four Hours after this, the Pitt Kamine begins to empty; here they generally Fifh with a Trawle, as in feveral other Pitts of leffer Note, having firft purchafed leave of the aforefaid Lord of the Mannour. Here, as likewife in the Pitt (4.) Sueinskajamma. (which finks one hour after K(amine) is much Filh caught, and din abundance of large Crabts, but they are lean and of nogood taft.
(5.) The fifth Pitt Vodonos, dries five days after $K$ al mine. In this and the other Pitts which follow, they Fifh with a long Nett or Sayne. Herein they can have no more than five or fix Hawl's, by reafon of the great fwiftnefs wherewith the Water runs a way at the holes in the Bottom, (which is fuch that a Horfe can hardly keep pace with it) and carrfes away the Finh with grear viod lence under the Earth. Sometinmes then the Fifhermen are not nimble, they can fearceget two fawl's before the $W$ ater be gon; to prevent which they lave a Mark near this Pitt, viz. the Sune Rubes cianen, that is The Fijh rs Stome, which as focn as it besins"to ppetrop the rerefs

## $[417]$

cefs of the Water, gives Notice that it is time to begin the Finhing.
(6.) The Pitt Louretfobla is evacuated a day and a half after Vodonos, the Fiffing is after the fame manner, and the fame Caution neceffary, becaufe of the fuddain recefs of the Water.
(7.) The Water leaves the Pit Kratouduor twelve hours after Louret ( $b k a$;and three days after that (8.) the Pitt Refcheto. In this latter, in the Year :685, after the Lake had been fome Years withuut being dry, there were taken at the firft Hawl, 21 Carts of Fifh, at the fecond 17 , and at the third 9 , as I have been credibly informed by thofe that were prefent.
(9.) The Pitt Ribeskajamma falls dry at the fame time with Refcheto, which is that next to it. In this Pitt they fifh under ground, which is a Curiofity not unpleafant, and differing from all the reft. For there is in the Botrom a great hole in the Stone, by which Men may eafily go down with lighted Torches, as into a deep Cifterri; and there is under ground a large Cavern like a Vault, the Bottom or Pavement whereof is as it were a Sive full of little Holes, whereby the Water runs away leaving the Fifh dry, where they are Caught.
(10.) The Pitt Retbje is empty two hours after Ribeskajamma, and is of no great Confequence for Fifh: An hour after this the Pitt (11.) Sittar $z a$, and in five or fix hours more (12.) Lipauza falls dry.
(13.) The third Day after Refcheto the Pitt Gebno is evacuated; in this they rarely Fifh with Netts, but let it fall'dry, and the Holes in the Bottom being fo fmall, that they exceed not the fize of a Mans Arm, all the great Tifh are left beliind in the Pitt.

$$
\begin{aligned}
& \text { (14. Two days after Gebno the Pitt Koten becomes } \\
& \text { dry In this they fometimes take the Fifh as in the for- } \\
& \text { mer, but the Holes being greater let bigger Fifhes pafs. } \\
& \text { ( } 5 \text { S.) The Pitt Ainz empties } 4 \text { or } 5 \text { hours after Koten: In } \\
& \text { this }
\end{aligned}
$$

## $[418]$

this they feldom (unlefs they cannot help it y let the Wiater run away withoutufng theirNetts, as in Geboo; becaufe of one great Hole in the Bottom, whereby many great Fifhes may efcape. ( $\mathbf{x}$.) The Pitt Zeflowza links three hours after Ainz:; in this they allways Finh with Netts, as in (17.) Pounigh, which is emptied the next day after Kotem.
(18.) The latt Fitt called Lewifche is evacuated the thind Day after P.ounigh, that is the $25^{\text {the }}$. Day from the beginning of the Recels of the Water of the Lalke, fo that in 215 Days the Fifhing of this Lake is over. In this latt Pitt, about ${ }_{17}$ Years fince, I am certainly informed, that there fell a Flafh of Lightning, about the Time of Fifhing; which ftunned a great Multitude of large Fifhes, Co as they filld 28 Carts with them: (Bya Cart is meant asmuch as one Harfe can draw ) Théfe Fifh are not properly Thunder-ftruck, but only funned with the Violence and Sulfurious Vapour of the Lightning, which makes them rife and $\mathrm{f}_{\mathrm{wim}}$ as dead upon the top of the Water; but if they be taken up and put in frefh Water, they foom recover, otherwife they Die: This is no uncommon Accident in this Lake.

The Fihhing being thus ended, a Signe is given by tolling the Bell in the Chrappel of St. John Baptift, near the Town of Cirkniz. Upon which all the Iahabitants of the neighbouring Villages and of Cirkniz, without regard eitherso Age or Sex, go, for the moft part ftark naked, into the Lake, and look for Filh among the Weeds and Sedge, and in the fmaller Piuts. And many creep into the Subterraneous Caverns and Palfages, and find fore of large Fifhes there. They Luwing tull Liberty to fearch all over the I.ake, excepting in the Pitts. Piauze, Narte, and Velijgberch. This Barbarous and Immodelt Cuifom of going Naked, has been often atfempted to be reclaimed by the'Carthyrfon Mooks, but all in vain, for fo prevalent isia Habit of vicious Practices over good Precepts, that
they

## [ 419 ]

they have not yet been able to perfwade them fo much as to cover their Secrets.

There are befides thefe fome other Pitts in the Lake, as Skednenza, Mala and Velka-bobnarza, in which they Fifh likewife, as alfo in Mala-karlouza and Velka-karlouza: In both thefe they go far under ground with lighted Torches and find Fifh, but thefe Pitts are of no great value. In Velka-bobnarza one may go in at great holes, and defcend many Fathoms under ground. Thefe two Names Kelka and Mala-bobnarza, fignifie in the Carniolan Tongue the Greater and Leffer Drummer; nor is it without Reafon that thefe Pitts are fo called ; for when it Thunders and Lightens, there is heard in thefe two Pitts, as it were, the Sound of many Drums Beating, which Anno 1685,1 heard with my own Ears; it Thundring three times fucceffively, and the Sound of Drums anfwering accordingly.

The two Pitts Narte and Piauze, are never emptied, but always remain Fenny, when the reft of the Lake is quite dry. It is believed, that in thefe Pitts the Filh lay their Spawn, and therefore it is prohibited to Fifh in them. In them is anincredible Number of Hor $\mathrm{f}_{\mathrm{e}}$ leeches, which according to the vulgar Opinion, underftand certain Words; for that upon repeating them, they will come in great Parties towards him that repeats them, whereas if he be filent, very few of them will touch him. Thefe Horfe-Leeches, often ftick upon the People in the fifhing time, (fome of them being difperfed all over the Lake) and the Method they take to get them off, is to get fome other Perfon to pifs upon the Leech, which makes it let go its hold; and this without any refpect to Modefty is practifed, "as well upon the Women as Men.
There are in the Mountain nigh the Lake, but fomething higher than it, two great and terrible ftony Caves, the one called Vrainajamma, the other Sekadulze, which tho far diftant one from the other have yet the fame Effect, viz. when it Thunders and Lightens, thefe two

Kkk Caves

## [420]

Caves do emit Water with a wonderful and incredible force, and with it fometimes a great quantity of Ducks with fome Fih; which I my felf obferved in October 1685, not without great danger of my Life. I took my Horfe and rid Crofs the Lake, as far as the Iland Vornek, in Company with two old experienced Fihhermen; when fuddainly the Cavern in the Mountain Slivenza, began to breath forth milty Vapours forming a Cloud. Upon which my Fifhermen advifed me to make haft, for with, out doubt thofe Clouds would produce a Tempert. They had fcarce faid fo, when it began to Lighten and Thunder dreadfully; and I had difficulty to perfwade them to accompany me as far as the Pitt Velkabobnarza, being defirous to examine what is faid of it, that when it Thunders the Sound of many Drummers is heard init. This I found three times to fucceed as reported; and then with all the fpeed we could, we hafted to the Iland Velka-Gori$z a$, not being able to go farther, becaufe the Water was in many places grown out of our depth, where two hours before we had paffed drie. Here we got one of the little Fifher-boats, which when the Lake is drie lie difperfed here and there on the bottom; and having got in my Horfe, we began our Voyage, but had the ill luck to overfet our Boat, and fo were obliged to Swim for't,' and with much to do arrived fafe on the other Shore. Then we could fee from the other fide that the Water gulhed with great Impetus out of the Cave Sekadulze, being caft three or four Fathoms, as if it were forced by a Fire-Engine, and feveral blind Ducks were thrown out by the Water. It is not to be wondred that the Lake fills fo faft, for confidering the Violence wherewith the Water rufhes, it is as much as a great River; this Cave Sekadulze, being a Fathom wide, and higher than a Man. It is lookt upon as a dangerous thing to enter into this Cave, becaufe the Water come fo all on a fuddain, that if it fhould chance to come, it is impoffible to efcape it.

## $[421]$

When it Rains moderately, the Water fpouts with great Violence two or three Fathoms perpendicularly, out of the Pitts Koteu and Zelenza. It comes likewife forceable out of the Spring Trefenz, as likewife out of Vel kioberch, bringing with it at this latter abundance of Fifh, and fome Ducks. But when it Rains very hard and long togather, efpecially with Thunder, then the Water breaks out with very great force, not only from all the aforefaid Pitts, Holes and Caves, but likewife at feveral thoufand other little holes (which are all over the bottom of the Lake, and which when the Lake is dry, drink up the Waters of the eight Rivulets that run into it) fpirting feveral Fathoms high, from fome perpendicularly, from others obliquely, fo that there is not a pleafinter fight than this. And out of the Pitts, Vodonos, Refocheto, and fome others having great holes at the Bottom, there comes with the Water a great quantity of Fifh. In cafe of great Rains, the eight Rivulets are likewife much encreafed, fo that all things concurring, this Lake in 24 hours time, will from quite dry be full of Water, and fometimes in 18 hours; tho' at other times it has been known to be three Weeks in filling: But it is a conftant Obfervation, that Thunder and Lightning help much to fill it fpeedily.

This Lake being thus by turns wet and dry, ferves the Inhabitants for many purpofes. For, firft, while it is full of Water, it draws to it feveral forts of Wild-Geefe and Ducks, and other Water-Fowl, as Herons, Swans, and the like, which may be fhot, and are very good Meat.

Next as foon as the Lalee is emptied, they pluck up the Rufhs and Weeds, which make excellent Litter for Cattle. 3. Twenty days after it is fully dry, they do cut a great quantity of Hay upon it. 4. After the Hay is inn, they Plow it and fow Millet, which fometimes by the too fuddain coming of the Water is deltroyed, but it generally comes to Maturity. 5. While the Millet is on the $\mathrm{KHk}_{2}$

Ground

## [422]

Ground they catch a great Number of Quails. 6. The Mille t being inn, there is good Yafture for Cattle. 7. When the Lake is dry, there is great variety of Huating ; there coming out of neighbouring Woods and Mountains plenty of Hares, Foxes, Deer, Swine, Bears, ơo. fo foon as the Water is gone. 8. When it is full, one may Fifh in it. 9. In Winter time it will be fo firmly frozen as to bear all forts of Carriages, and is a great convenience to the People to fetch their Wood and other Neceffaries; laftily at the time when the Water goes away, it yields great abundance of Fifh, as has been already faid. And that which is moft Wonderful: is, that all this comtes to pafs in the fame place, and the fame Year, viz. If the Lake be eart ly dry, and it fill not too foon; but it is to be noted, that the Hay does not grow, nor is the Millet fown all over the Lake, but only in the more fertile places.

There are only three forts of Jifh taken in thisiLake, which are very well tafted. They are the Musfela Flaviatilis or Eel-pout, fome of them weighing 2 or 3 Pounds. Tench, fome of them weighing 6 or 7 Pounds; and thirdly Pikes in very great plenty, of $\mathbf{1 0}, 20,30$, and fome of 40 Pound weight; in the Bellies of thefe it is commonto find whole Ducks. Crablbs are found no where but in the Pitts Kamine and Sueinskajanma; ; they are large but ill tafted.

The Caufe or rather Modws of all thefe wonderful Phot nomenain the Lake of Zirknitz is, according to my Opinion and Speculations, as followeth. There is under the Bottom. of the Lake, another Subterraneous One, with which it communicates by the feveral holes defcribed : There are alfo one or more Lakes under the Mountain $\mathfrak{F a} d-$ zornik; but whofe furface in higher than that of the Lake of Zirknitz. This upper Lake is poffibly fed by fome of thofe many Rivers, which in this Country bury themfelves under ground, and has a. Paffage fufficient to carry the Waters they ordinarily bering unto it ; but when it

## $[423]$

Rains, efpecially in Thunder Showers, which ate the moft hafty, the Water is precipitated with great Violence down the fteep Walleys, In which are the Channels of thefe Rivulets; fo that the Water in this Lake, being encreafed by the fuddain coming in of the Rains fafter than it can empty, fwells prefently : and firding feveral Holes:or Caverns in the Mountain higher than its ordinary fuifface, it runs oves by then both into the Subterraneous Lake under that oficirkuras, (into which the Water comes tap by the feveral Holes or Pitts in the Boteon thereof) as likewvife by vifible Paflages aboveground, fuch as Uraisajamma, Sekadutwe, Jand Trefent.

That fome of thefe Paffages, bring Fiff, fome Ducks and Fijh, others only Water, feems to depend on the pofition of the inward Mouths of thefe Subterraneous Channels; for if they be fo conftituted; as to draw off the Water from the furface of the upper Lake, on which the Ducks fwim, they muft needs be drawn away by the Stream into thefe Caverns, and come out with the Water: But if fo be that the Channels open, into the upper Lake, under the furface of the Water, and from thence afcend obliquely for fome fpace, before they come to defcend; then the Watee they carry is drawn from below the furface, and confequently can bring with it no Ducks, but only Fifh. Thofe Pitts which yield only Water, may well be fuppofed to be fed by paffages too narrow to let the $\mathrm{T}^{\mathrm{i} j} \mathrm{~b}$ pafs, tho' their multitude may make the quantity of Water they emit to be very confiderable.

The Manner of the falling away of the Water or emptying of the Lake, I thus explain. After a long drought or want of Rain, all the Springs that feed the upper Lakie under Favornik are much diminifned; fo that wanting frefh fupplies, it ceafes to run over by the feveral Channels, but now mentioned: hence the Lake of Zirknitz, and that under it, are fed only by the eight Rivulets that alwais fall into them; and then the Water drays off fafter Kkk 3
than

## $[424]$

than itcomesin, both by the Chanels of Mala and Velkakarlouza, as alfo by a concealed Subterraneous Paffage out of the under Lake, which latter alone is able to tranfmit more Water, than the faid eight Rivulets afford. Confequently the Lake muft fink, and that in a certain proportion of Time, depending on the quantity of Water to be evacuated, compared with the excefs of that that runs out above that that enters it, in the fame time: Thofe Pitts that are higher are fooneft drie, the lower lateft, and fo come to be emptied in the Order above defcribed. And when the Lake is all dry, then the faid Rivulets foak by feveral little holes in the Bottom, into the under Lake; and all their Water is carried away by the aforefaid Subterraneous Paffage.

That there is fuch a Paflage is very evident, and that it communicates under ground with the Chanels of Mala and Velka-Karlouza, coming out with them, ashas been already faid, near St.Cantian at a Rocky Cave,and making the River $\mathcal{F}$ fefro. For when the Lake of Zirknitz is very full, and runs out at both $V^{\prime} e l k a$ and Mala-Karlouza, the River $\mathcal{F} f$ efo at St. Cantian overflows's and runs with great Violence. When it only runs out at Mala-Karlouza (which is fom what lower than the other) then the Water of Fefere is much lefs rapid. But when the Lake is fo: fallen, that it runs out at neither of the two, the River Fefero is fill lefs, butruns with a confiderable Stream, till two days after the Lake has been dry ; after which, the faid River becomes little, voiding no more Water than the Lake receives from the eighit Rivulets that run into it ; by which it is clearly proved, that this Subterraneous Paffage does meet with the Channels of Velka and Mala-Karlouza, and needs no farther Illuftration.

Hence in appears, why this Lake fometimes is twice or thrice drie in a Year, at other times continues full for 3 or:4 Years together, but was never known to be drie for a whole Years time; for it falls drie at any time when
there

## [425]

there falls but fittle Rain ina long fpace of time; and in Rainy Years it continues always full; but it never happens in this Country, that there is a drought for a whole Year together.

The Ducks I have fo often mentioned, and which are caft out with the Water, are generated in the Lake, under the Mountain ${ }^{\text {Favernic ; }}$; when they firt come out, they fwim well, but are ftark blind, and have no Feathers on them, or but few, and therefore are eafily caught; but in 14 days time they get Feathers, and recover their fight yet fooner, and after wards fly away in Flocks. They are black, only white on the Fore-head, their Bodies not bigg, refembling ordinary Wild-Ducks, and are of a good taft, but too fatt, having near as much fatt as lean.

I kill'd fome of them as foon as they had been caft out at Sekadulze, and opening their Bodies, I found in them much fand, and in fome few, fmall Fifhes; in others green ftufflike Grafs or Herbs: which was the more ttrange, becaufe I never found any green thing growing in any of our Subterraneous Grottoes or Lakes in Carniola; I tried alfo to procure fome of the Fifh at the time of their being caft out, to open them and fee what they live upon, but notwithftanding all my endeavour, I could not get any of them to fatisfie my Curiofity withall.

Almof every Year, at a Hole in the Mountain called Storfeg, about halfa German Mile from the Lake of Zirkniz, near the Town of Laas, whenever there happen greatFloods of Rain, this fort of Ducks is caft out in great abundance, by the Water gufhing out with much force. I conceive that this Cavern Stor $\mathrm{feg}_{\mathrm{g}}$ is another Paffage out of the fame Lake under Favornic, that overflows and fills up our Lake of Zirknitz; but this bcing fomewhat higher, it never runs out, unlefs the faid Lake be more than ordinary fwell'd by the Violence of the Rains. The calting put of great Numbers of Ducks here, is fo common that it is lookt uponas no Rarity.

It may feem fteange and hard to believe, that theire fhould be fuch Subterraneous Lakes and Channels as we here fuppofe; but belides that without them it w ould be impoffibie to account for all thefe feveral Effects, which are moft true, and which I ney felf have obferved; there is a moff Notable Inftance of the like things, found in the Subterranean Cavern called, The Grotto Podpet/fbio, which is reprefented in Fig. III.

This Grotto is in Cavinola in the Parih of Guetenfeld, diftant four German Niifes from the Citey Labac. : $a$ is a Hole or entrance into the Kocky Mountain; 6 is a great Cavern inthe Mountain, capabie to hold above a hundred Horfemen, $i, k$ is a Channel bigg enough for a Man to pafs by, as far as the Lakeo, out of which Lake the Inhabitants Fiereabouts draw all theif Water, (having none nearer) and fetch it with lighted Torefies. Into this Lake $\sigma$ the Water runs with a great ftream by the Channel 1. And out of this Lake it fall: down a Precipice into a great Cavern, witie fo much noife that the difcharge of a Piffoll would net be heard hevel There is hikewile atho: ther Channel whief tends uptwards obliquely, and leads to the great Lake $n$, whofe length and breadth are hitherto undifcovered, 1 lookt abdut it with many lights, and could fee nothing but Water, and throwing Stones feveral ways Water: and I found the de ptli of it near the Bank to be ro Cubies, and doubt not but it is muill deeper in the middle.
The Country People told me, that this Channel $l$ affords always an equat quantity of Water, of elfe is quite dipy and that fomtimes it will ceafe to run if a Moment, and continue dry for fome Weeks, and then of a fuddain it will run again witt great force, fo as the Noife thereof frequently frights the Peopleas they come for Water.

Out of the eave 6 there is antother Chanrel $t$, which is divided into three others $d, e, f$. This Cladintlif tends obliquely
obliquely downwards, till it comes to a running Water in $g$, from whence one may go on to $h$, where looking thro' a little hole, one may fee another little Lake.

All the Channels I have mentioned, are formed in a very hard Rock, and are fmooth or polifhed, as if cut by Mens Hands: Thele maybe feen by any one that will go with lighted Torches ; and there are many fuch, in which I have not been.

If any, one would carry a Boat to the Lake n, and would row upon it, I doubt not but he might find feveral curious things. I believe this Subterraneous Lake to be a German Mile long: for from this Grotto Podpet chio, at a Miles diftance, there is a Village called Kumpale, whofe Inhabitants have no other Water, than what they fetch out of a hole in the Rock, going with lighted Torches, by a large Channe!, to a great Lake under ground. I meafured with good Geometrical Inftruments, fuch as Miners ufe, the Level of thefe two Lakes of Podpet ctrio and Kumpale, and found them to be in one Horizon ; and this I did twice, both when the Channel $l$ at Podpet $\int$ chio run, and when it did not run. When it began to run, I found that the Lake $n$ was two Cubits higher than it had been before; when it ceafed to run, I came again on purpofe to obferve it, and found that then alfo, the other Lake at Kumpale was in the fame Level; from whence it is moft certain, that thefe two, are only one continued Subterranean Lake, © cc.

A Correct TIDE-TABLE, by F. Flamfreed, Math. Reg. \&R.S.S.




## M fands for Morning, A for Afternoon, © for Sunday.

This Table may be made to ferve the underwritten Places by


But Note, that in fuch of thefe Places as lie open to the Sea, and where no great Rivers are, the Quarter-moon high-waters, hold out longer than the times lhewd by this Reduction, near half an hour.

As alfo that, when by reafon of the long Droughts in Summer, or continual hard Frofts in Winter, the frefh Waters are low ; or when the Wind blows hard at $N$, or $N . W$. the Tides may hold up longer in the River of Thames, than the Times fhewed in the 1 able. But when the Wind is ftrong at $W$. or $W$. by $S$. or there are great Frefhes; they hold not out fo long, but the difference is feldom above half an hour.
$A$ Conjecture at the Quantity of Blood in Men, together with an Eftimate of the Celerity of its Circulation. By Allen Moulin M. D. Keg. Soc. S.

IN a Sheep weighing alive $1 \mathrm{I} 8 \%$. we found but $5 l . \frac{1}{4}$ of Blood which is but $\frac{123}{47^{2}}$ of the weight of the Sheep. In a Lamb weighing $30 l . \frac{1}{2}$ when living, there was but $1 \frac{1}{2} l$. of Blood which is nearly a 20 t . part.

In a Duck weighing alive 21.14 Ounces 50 gr . we found an ounce a half and 53 gr . of Blood, which is lefs than a $28 t h$. of the whole weight of the living Duck.

In a Rabbit weighing 10 Ounces, 7 Dr. and 50, gr. we found 2 Dr. 57 gr. of Blood, which is about a 30th. Part.

In the right Ventricle and Auricle of the Heart of a Dog, I found 6 ounces of Blood, after that I injected into the jugular Vein a Liquor that coagulated the Blood. I found a greater quantity of Blood in the Heart of another Dog, whom I treated after the fame manner. The Hearts were much diftended by the Blood found in them. I fhall therefore fuppofe that 4 ounces only were received at a time by thefe Hearts without force, that is naturally: And leaft I fhould fuppofe a greater quantity of Blood to be admitted at a time than really is, I will fuppofe a Mans Heart which is much larger, (and has much larger Veffels than thofe I fpeak of) to receive but 4 ounces at each Diaftole. Allowing 75 Pulfes to every Minute, there will be 4500 in an hour, and 18000 ounces of Blood tranfmitted in that time. This laft Number is the Product of the foregoing 4500 , being multiplyed by 4 , the Number of Ounces at a Diajfole.

## [434]

Now if we fhall fuppofe that a Mans Blood bears the fame Proportion to his weight, as that of any of the aforefaid Animals had to its weight, which in a Lamb was the greateft, being $2_{20}$ part, it will follow that the quantity of circulating Blood in a Man weighing $160 \%$ will not exceed 81. or 128 ounces; According to which computation the Blood will circulate 140 times in an hour: But let usfuppofe that inftead of $8 i$. the maffe of Blood in fuch a Man be $12 \%$ it will follow that it will circulate between 99 and 94 times in an hour; which is a circulation and half, and fome what more, every minute. I take this laft'computation to be very modeft, when efpecially it is confidered that in the Lamb when opened, there was fcarce a dram of Blood; in the Sjeep not 3 oun. to be feen. From the celerity of the motion of the Blood now mentioned, we may give a good account of the fuddain Refection with victuals, and particularly fuction are liquid:- we may alfo account,for the quick paffing of Urin, from the fame thing ; and allo the quick motion of the Cibyle into the Brealts of Nurfes, without fuppofing unknown paffages, from the Stomach or any other part, into the Bladder:and Breafts.

Half an ounce of Blood at a Diafole is the greateft quantity that 1 remember any Anatomift fuppofes to gett into the Heart, and they fuppofe the quantity of Blood in the Body to be between 15 and $25 l$. by whichit will appear how their computations and mine differ.

## [435]

## Catalogus Eclipfium omnium Satellitum Jovialium Anno 1688 per univerfam Terram Vifibilium; momenta Occultationum eorum in Jovis Ulmbrâ, ac ex eâdem Egreffuum fub Meridiano Londinenfí exhibens. Supputante $E$. $H$.

C$U M$ infituto perutili Cl . Flamfteedius Afronomus Regius, $b a-$ rum Eclipfium Catalogo ACIa Pbitooopbica per annos aliquot ultimo elapfos auxerit, ejufgue ifus eximios ad inveniendas Locorium Longitudnes docuerit, in Num. $154 . \& 165$; nimis publici intereffe viJum eft, quam ut opas refitutioni Geograpbia maxime accommodatum non continuaretur. Cumque accuratus ille Autbor, proculdubio magrs arduis intentus, inf antis anni Catalooum Supputatum non dederit, alienà ope uti neceffe erat; ideoque ex Tabulis aliis, neque parem cum celo con Senfum profeffis, prodit bac Eclipfium feries, quam Aftronomis univerfis ferio commendamus; ut tandem Reftauratx Geographix fundamenta, bac methodo facillimâ ac nullo fere Inftrumentorum apparatu praffandâ, Sed que. minime fallat, jaceantur.

Oue buc pertinent praccepta Aftronomicè doctos latere noss pofunt; difcere cupidi Nun. 154. quod quarunt abunde invenient. Unicum monere non abs re erit, nempe, Tubo octo vel etiam leptem pedum, bec eft, facile portatili, momenta barum Eclipfum fatis dijtincte obfervari pofe, prafertim in exterioribus Satellitibus, $\sqrt{2}$ modo Lentis Objectiva apertura $2 \frac{1}{2}$ vel 3 pollices pateat. Sic enim Radiorum maxima copia ad oculum refracta perveniet, unde minime be Stellala in vicinia Jovis conficic poffint, gure alias luce ejus nimiâ obfufcarentur; ac quamvis coloribus tingantur, ac Jovis limbus parum nitidus videatur, tamen cum de momento amiffe vel recuperata Lucis unice agatur, Jufficit eas lumine guantum fieri poffit auctas in oculos certius incurrere.

In Catalogo quem jam damus im. © em. Immerfiones \& Emerfones denotant Satelitis ejus quem numerus ampexus commonjtrat; Intimo pro primo babito, extimo pro guarto. Aferijcus wero (*) eas ex bis Eclipifibus qua Londini vifbiles effe pofjunt defignat, quaque Fufju Societatis Regice annuente calo obfervari debent.

Intra Hor c quadrantem momenta bic pofita cum celo confentientia peramus: is primo ac tertio Satellite multo propius, in quarto \& Jecundo ambiguum: Itaque paulo ante tempus prefignatums objervator attendere debet. e Equationem Luminis ex diverfis 'Fovis a Terra ditantics ortam confulto omijfmus, eo fine ut neceffitas ejus quantaque fit oblervanti perciperetur.

M mm
Cata-

Catalogus Eclipfium Satellitum Jovis Anno 1688. per totum TerUmbram \& ex ea Emérfionum fúb Meridiano Londinenfi

| $\begin{aligned} & \begin{array}{l} \text { Januarii. } \\ \text { D. H. } \end{array} \text {. } \end{aligned}$ | Februarii. D. H. M. |  |
| :---: | :---: | :---: |
| $\begin{array}{ll} 209 & 56 \lim _{1} \\ 17 & 9 \operatorname{im} 4 \end{array}$ |  | $\begin{aligned} & 216 \lim _{3} 3 \\ & 5 \quad 40 \mathrm{em} 3 \end{aligned}$ |
| 31047 im 2 | 3.625 im I | 2148 im |
| 18.22 im 3 | 41023 im 2 | 320.52 im 2 |
| $4 \quad 424 \mathrm{im} 1$ | 5054 mm | 4836 im I |
| $522582 / \mathrm{im} \mathrm{I}$ | $5{ }^{5} 951 \mathrm{~mm} 4$ | $6 \quad 3 \quad 6 \mathrm{im} \mathrm{I}$ |
|  |  |  |
| 9 II 488 mm | 72341 lm 2 | $8 \quad 618 \mathrm{~lm} 3$ |
| 10 13 215 im 2 | 81352 lm I | 948 mm 3 |
| 2220 im 3 | 1415 jm 3 | $9 \mathrm{I} 64 \mathrm{im} \mathrm{i*}$ |
| $\begin{array}{llll}\text { II } & 6 & 16\end{array}$ | ro 820 im I | 1719 im $4 *$ |
| $13 \bigcirc 44 \mathrm{im} \mathrm{I}$ | 1 ll 1259 im 2 | 21.19 em 4 |
| 14.2381 mm 2 | $\left[\begin{array}{llll}2 & 2 & 49 \mathrm{im} \\ \\ \end{array}\right.$ | 102330 im 2 |
|  | 132118 im I | 1 II 1034 im I |
| 161340 im 1 | 15.218 im 2 | $\begin{array}{llll}13 & 5 & 3\end{array}$ |
| 1715551 im 2 | 1546 im 1 | I4 412494 lim 2 |
|  | $1815 \mathrm{im} 3 *$ | 2332 im I |
| 89 im | 2141 em 3 | 151019 im 3 |
| 19 II $61 \mathrm{im}_{4}$ | 77 IO 15 jim I | 13 50em 3 |
| $20 \quad 237 \mathrm{im} \mathrm{I}$ | $18 \quad 15 \quad 37 \mathrm{im} 2$ | 16818.2 im I |
|  | 19.444 im I | $18 \quad 2$18 8  <br>  12  <br> 10   |
| 2 I 61 mI | $2023{ }^{2} 31 \mathrm{im} \mathrm{I}$ | 1231 im I |
| $\begin{array}{lllll}23 & 15 & 34 & \text { im }\end{array}$ | $212311 / \mathrm{im} / 4$ | 207 ofim I |
| $24.1830 \mathrm{im} 2 *$ | $22 \quad 3 \quad 70 \mathrm{em}_{4}$ | 2 I 15 57im $2 *$ |
| 25616 im 3 | 456 im 2 | 22.1291 mm |
| $10.2 / \mathrm{im} \mathrm{I}$ | 1742 iin $1 *$ | 1421 im 3 |
| $\begin{array}{lll}27 & 4 & 31 \\ \text { 2 im } \\ \text { I }\end{array}$ | 2217 im 3 | 1752 em 3 |
| $\begin{array}{llllllllll}28 & 7 & 47 \\ & \text { im }\end{array}$ | 23.144 em 3 | $23 \begin{array}{lll}23 & 19 & 58 \mathrm{im} \mathrm{I}\end{array}$ |
| 230817 | $\begin{array}{llllll}24 & 12 & 12 & \mathrm{im} \\ 25 & 18\end{array}$ | $25 \quad 446 / \mathrm{im} 2$ |
|  | 251815 im 2 |  |
| 3 L 21.5 mm 2 |  | $\begin{array}{\|ccc\|} 26 & 11 & 26 \\ & 15 & 32 \\ & 15 & \operatorname{lm} 4 \end{array}$ |
|  | 297341 lim 2 |  |
|  | 19391 mm I | 28 17. 5 im $2 *$ |
|  |  | 293355 im 1 |
|  |  | 1821 im 3 |
|  |  | 30. $21.54 \mathrm{lim}^{2}$ |

rarum orbem Vifibilium, momenta Immerfionum in Jovis exhibens, Calculante E: H.

| $\begin{aligned} & \text { Aprilis. } \\ & D . \quad H . \quad M . \end{aligned}$ | D. Mail. ${ }_{\text {H. }}$ | $\mid{ }_{\text {D. }}{ }^{\text {Junni. }}{ }_{\text {H. }}{ }^{\text {a }}$ |
| :---: | :---: | :---: |
| I 723 lim 2 | I 1834 lm I | I II $44 \mathrm{im} \mathrm{A}^{*}$ |
| $1623 \mathrm{im} \mathrm{I} *$ | 3710 im 2 | 16 Ioem4* |
| 31052 im I | 132 ml * | 2624 im 3 |
| 42041 im 2 | $41426 \mathrm{im} 3 *$ | 156 imI |
| $5 \quad 5 \quad 21 \mathrm{im} 1$ | 1800 em 3 | 4647 im 2 |
| 22.25 im 3 | 5731 im 1 | 935 mI |
| 6 I 57em 3 | 62028 im 2 | 6 4.3im I |
| ${ }_{8} 2350 \mathrm{im}$ I | $7{ }_{8}^{7} 2000 \mathrm{im} 5$ | 720 5im 2 |
| 810 otim 2 | 82028 im I | 2232 im I |
| 18 19im I | 10946 im 2 | 9 10 22 $\mathrm{mm}^{\text {\% }}$ |
| 101248 im | $1457 \mathrm{im} \mathrm{I} *$ | 1700 mI |
| II - 23 19 $\mathrm{im}^{2}$ | $\begin{array}{llll}11 & 18 & 27 & \mathrm{im}_{3}\end{array}$ | II 922 im 2 |
| 12533 im 4 | 22 Iem 3 | If 28 im \% |
| 717 im I | 12925 im I | 13556 mm |
| 943 em 4 | 13 23. 4 im 2 | 1422391 m 2 |
| $13-26 \mathrm{im} 3$ | $14 \quad 3 \quad 54 \mathrm{~mm}$ | 15024 im I |
| 558 em 3 | $15 \quad 17 \quad 41 \mathrm{im} 4$ | 161421 im 3 水 |
| 14146 im 1 | 223 em 4 | 1852 im I |
| 151238 im 2 | 22.23 im I | 18546 im 4 |
| 2015 im I | 17 12 $21 \mathrm{im} 2 *$ | II 57im $2 *$ |
| 171444 im * | 1651 ma | I3 $20 \mathrm{imI*}$ |
| 19.56 im 2 | 1822 26im 3 | 20749 imI |
| 913 im 1 | 19 2 oem 3 | 22 I 14 im 2 |
| 20.26 im 3 | 11 19 im I* | 2171 mI |
| 10 00 em 3 | 21.159 im 2 | 2318 19im 3 |
| $21 \quad 342 \mathrm{~mm}$ | 5 48 im 1 | 2046 ml |
| 22.15 15 im $2 *$ | 23.16 im 1 | 25.14 31 mm 2 * |
| 22.1 m I | $2414.56 \mathrm{im} 2 *$ | $1514 \mathrm{im} \mathrm{x}^{*}$ |
| $241640 \mathrm{im} 1 *$ | I8 45 im I | 27942 mI * |
| 26433 mm 2 | 26224 im 3 | 29349 im 2 |
| II 91 im I | $\text { 13 } 13 \lim \text { I }$ | 4 IIImI |
| 271027 im 3 | 284 I3 im 2 | 3022181 m 3 |
| $141 \mathrm{~cm} 3 *$ | $741 \lim$ | 22. 39 imI |
| $28 \quad 537 \mathrm{im} \mathrm{I}$ | 3029 mm |  |
| 2337 im 4 | 311730 im 2 |  |
| 29355 em 4 | 2030 im I |  |
| 1752 im 2 |  |  |
| 3006 im I |  |  |

Refiduum precedentis Tabulx.


| Refiduum precedentis Tabulx. |  |  |
| :---: | :---: | :---: |
| Octobris. <br> E $\quad$ H. $M$. | Novembris. <br> D. $H$. $M$ | $\left\|\begin{array}{ccc} \text { Decembris. } \\ D . & H . & \text { M. } \end{array}\right\|$ |
| 128 em I | 12245 em I | 2042 em I |
| 2.237 im 3 | 3 I 714 em I | 16 II em 2 |
| 6 I7 em $3 *$ | $4555 \mathrm{em} 2 * *$ | $195 \operatorname{im} 4$ |
| 20.37 em I | 5 II 43 em I | 2355 em 4 |
| $3.612 \mathrm{em} 2 *$ * | $6 \quad 22.40$ im 3 | 3 If roem I |
| 415.6 em I | $7 \quad 2 \quad 20 \mathrm{em}_{3} \mathrm{l}^{2}$ | 51338 em r |
| $6935 \mathrm{em} \mathrm{I} *$ | 6. 11 emi* | 18 Io em 3 |
| 1930 em 2 | 19 13 em 2 | $\begin{array}{llll}6 & 5 & 27 \mathrm{em} 2 *\end{array}$ |
| 844 em I | 9039 em I | $7 \quad 8 \quad 5 \mathrm{em} \mathrm{I}$ |
| 9639 im $3 *$ | 101970 em I | $\begin{array}{lllll}9 & 2 & 3 & 33 \mathrm{em} \mathrm{r}\end{array}$ |
| - 10 Iglem 3 | $\begin{array}{llllll}11 & 8 & 30 & \text { em } 2\end{array}$ | 1843 em 2 |
| 22.33 cm I | $\begin{array}{lllll}12 & 13 & 35 & \mathrm{em} \mathrm{I}\end{array}$ |  |
| IO $8 \quad 49 \mathrm{em} 2$ * | 142381 m 3 | 12 15 288 em I |
|  | 6 I8 em $3 *$ | 226 em 3 |
| 131151 em I | 84 em r | 13759 em 2 |
| 1253 im 4 | 21.47 em 2 | $\begin{array}{llll}14 & 9 & 56 \\ \mathrm{lem}\end{array}$ |
| 17 39 em 4 | 16. 14 im 4 | I6 4 24 em I * |
| 228 em 2 | 23 I em I | 2116 em 2 |
| $156 \mathrm{cem} \mathrm{I*}$ | $5.52 \mathrm{em} 4 *$ | $\begin{array}{lllll}7 & 22 & 52 & \mathrm{em} \mathrm{I}\end{array}$ |
| 161040 im 3 | 172059 em 1 | I9 13 5im 4 |
| 1420 em 3 | 18 II 3 em 2 | 17 Igem 1 |
| 17 - 28 em | 19 15 27 em I | $17 \quad 55 \mathrm{em} 4$ |
| II 26 em 2 | $2 \mathrm{E} 635 \mathrm{im} 3 *$ | $20 \quad 2 \quad 3 \mathrm{em} 3$ |
| 1857 em I | 955 cmI | Io 31 em 2 |
| 201320 em I | 1015 em 3 | 211147 em I |
| - 44 em 2 | $22-21 \mathrm{em} 2$ | 23615 emI |
| $22.754 \mathrm{em} \mathrm{I} *$ | $\begin{array}{llll}23 & 4 & 23 & \mathrm{em} \mathrm{I}\end{array}$ | 23 49 em 2 |
| 2314.40 im 3 | 24.2251 eml | 25043 em I |
| 1820 em 3 | $\begin{array}{llll}25 & 13 & 38 \text { em } 2\end{array}$ | 26 19 Io em I |
| $24 \quad 223 \mathrm{~cm} \mathrm{I}$ | 261919 em I | 27. 6 - olem 3 |
| $14 \quad 2 \mathrm{eml} 2$ | 28 II 47 em I | 135 lem 2 |
| $25 \quad 20.52 \mathrm{em} \mathrm{I}$ | I4 12 em 3 | 281338 em |
| 71520 em I | 29254 em 2 | 30835 em I |
| $28 \quad 320 \mathrm{em} 2$ | $306144 \mathrm{em} \mathrm{I} *$ | $3 \mathrm{I} \quad 22 \mathrm{I}$ em |
| 29.949 em I |  |  |
| 30. $700 \mathrm{im} 4 *$ |  |  |
| II 48 em 4 |  |  |
| 1840 im 3 |  |  |
| 22-20em 3 |  |  |
| 3 I 4 I 7 em I |  |  |
| $16 \quad 38 \mathrm{em} 2$ |  |  |

## [440]

## Accounts of BOOKS.

## Propofitiones Hydrofaticuad Illufrand. Ariftarchi Samii

 Syftema deftinate, wo quedam Pbenomena Nature Generalia. Auth. Francifco Jeffop, Arm. Lond. $4^{\text {to. }} 1687$.TH IS Book contains an Hypothefis, and Demonftration thereupon, concerning the Nature of Bodies and their motions. The Author defines a denfe Body to be that which hath leaft Vacuity. A Bubble a rarer Fluid in a more Solid: a Drop a denfer Fluid in a more Rare. His Pofition is, That a denfe Body is more potent than a rare. His Suppofition is, That in a Body mixt of thefe two, both endeavour to recede from the Center of it: And thence his firf Propofition is, That the moft denfe Parts will get out moft, the lefs denfe will remain in inner Stations, which he calls natural. 2. He fuppofes, any other Body immers'd in this will find and take its natural Station, according to its comparative Denfity: the endeavour to go to this natural Station, if downwards, is Gravity; if upwards, is Levity. Thefe Bodies are comprefs'd by External Bodies. Thence, 4. he concludes, Spherical figured Bodies to have leaft of any figured Bodies of this Compreffion. 5. Hence, That denfer and rarer Bodies will not mix, but 6. the inclofed will be preft by the other into a Spherical Body, a Drop, or Bubble. 7. If the Figure be alter'd, it will have an endeavour to reftore it felf. 8. Leffer Globules will have more of that endeavour ; whence a greater broken into leffer Globules produces more of this endeavour outward. 9. That a Globule, in its natural place, is eafily diffipated. Io. The nearer a Globule is to its proper place, the lefs is its Gravity or Levity. But, ir. In a turbid Body the denfer parts will fettle about the Center, the rarer outwards: thofe he calls a Terrella, thefe an Atmofipere : this Compound will find

## $[44]$ ]

its natural ftation with refpect to others: two of thefe meeting, may coaleice, and make one Terrella and one Atmoßphere; many of them will make a Terra. If two or more of thefe touch, and do not mix, they will be difficult to be feparated : the more there are of thele in the fame fpace, the harder they will be to be feparated: hence he deduces a Problem, That 'tis poffible to diminifh Bodies, that the Coherence thence arifing fhall be greater than a given Power: this he fuppofes the caufe of Hardnefs. His next Pofition is, That a heating Globule immers'd in a terminated Fluid, whether Spherical, or Oval, will fettle it felf in the Center of Gravity of it : but if through this Fluid there be a paffage to another Fluid, the heating Body will be put out of that Center into the Focus of the Oval: The Conflict between the included and paffing Particles will create a Vortex, whofe included matter thall move exactly as the Elliptical Hypothefis of the Planets fuppofes, and anfwer not only to that but to any other Hypothefis.

The Application of this Hypothefis he explains in a Letter to Mr. Afton; in which he expreffes his Efteem of Ariftarchus, the vindicating whofe Honour, put him, about two years fince, upon thefe Principles, which he in the interim digefted, and fent to the Oxford Society; from whom receiving no Objections, he thought good to publifh now : and that becaufe they will ferve to explain not only the Arijtarchian but the Ptolomaick, Tychonick, and perhaps any other Syftem of the World, and any kind of Philofophy, not ridiculous at: firft fight, whether a Vacuum be afferted or denied. But as to Elafticity, he does not affert thefe Principles to have given the only caufe, nor that they can explain Vegetation without an Anima; but he fuppofes them fufficient to explain Cohefion. He explains a threefold effect of Preffure; r. That which acts on a Body in its own place: 2. That which preffes it towards the Center when out of its place: 3. The difference between the Moment and Impediment tending upwards or downwards. Thus far he communicated to the

## [442]

Oxford Society. To this he adds quatuor Lemmata de novo; which he applies to the Explication of Cartefius his Syftem, fuppofing the matter between the Vortices that joyn to that of the Sun, to influence that by its Ingrefs, fo as to keep the Sun in the Focus of the Elliptick Vortex. This premifed, he fubjoins his firft Lemma, where he prefents the Sun in the Center of Gravity of its Syftem without Vortex or turbinated motion: in the fecond he directs it to the Forus of the Ellipfe: in the third he generates the Vortex by the conflict of the entring and contain'd matter, exactly agreeing with the Phænomena; and turns round the Sun by the motion of the Vortex, giving the Planets their exact Motions, which they cannot deviate from.

Laftly, He generates Earths or Planets by the Coalition of many fmaller into greater Bodies: thefe he explains more particularly from his Principles; and then anfwers two Ob jections which may be made againft it (as he conceives, ) and a third which a Demonftration of Mr. Newoton's, upon a Suppofition of his, doth directly oppofe: to which be anfwers, That that Hypothefis ought to be corrected; and gives his Reafons which he thinks fufficient. He difapproves of the Hypothefis of the Planets gravitating upon each other, and explains his Reafons from the fimilitude of a Ship in the Water; and ends his Epiftle with this Conclufion, That though the Moon were a thoufand times bigger than the Earth, it would not be able to move the leaft Sand out of its place, if that were the Center of the Earth: the like he fuppofes of the other Planets, with refpect to the Sun.

## Tabu-

## $[443]$

Tabularum Aftronomicarum pars prior, de motibus Solis er Lune, necnon de pofitione fixarum, ex ip is Obfervationibus deductis: cum uf Tabularum, \&c. Autbore Ph. de la Hire Regio Matbefeos Profeffore ac Regic Scientiarum Academide Socio. $4^{\text {to. Parifis. } 1687 .}$

TH I S Author, long fince eminent for his Skill in Geometry, does now fucceed the accurate Mr. Picart in the Royal Obfervatory at Paris, and this Book is the firft Fruits of his Aftronomical Endeavours. It is chiefly defigned to teach an accurate method of Calculus for Eclipfes, efpecially Solar; where he makes ufe of the Contemplation of the Conftructions of them, by the parallel of Latitude fuppofed to be projected into an Ellipfis, which is here attributed to the excellent Mr. Cafjiwi, though firt publifhed in Englifh by Mr. Flamfteed in Sir Fomas Moor's Works, under the Title of The Doctrine of the sphere, and there afferted to its firt Inventor, Sir Chriftopher Wren.

What is moft confiderable in this Book, is the large Table of the Longitudes and Latitudes of Places, chiefly in France, which have been taken by the King's Order, with great exactnefs, and may poffibly be inferted in the next Tranfaction. 2. A Table of the right Afcenfions and Declinations of fixty three principal fixt Stars, to the Year 1686. compleat, deduced from new and accurate Obfervations. 3. An Empirical Table of the Moons Equations in the New and Full; deduced fimply from Oblervations of Eclipfes: here the greatelt is made $4^{\circ} \cdot 57^{\prime} \cdot 44^{\prime \prime}$. and the reft nearly ofcillatory, or equal at equal difances either from Apogeon or Perigeon, which our Mr. Street, in his Aftronomia Carolina, has made precifely fo, only his greateft Equation is about three minutes bigger. 4. A Correction of the Moons Motion, arifing from the diftance of the Moon from the Apogeon of the Sun, or which is all one, from the Anomaly of the Sun; about the Inven-

## [ 444.$]$

tion whereof, there is a Difpute between this Author and one Mr. Le Febure, each of them efteeming it a Difoovery worth contending for. Mr. De la Hire makes the greateft quantity of this Equation to be thirteen minutes, in the mean diftance of the Sun, to be added to the Moons place in September and fubfiracted in March; which Le Febure allows to be but $11^{\prime} .9^{\prime \prime}$. If there be any thing due to the firt Propofer of this Difcovery, it will appear that neither the one or the other of thefe Pretenders have any juft claim to it; for that it is conceived, that the whole matter is fully and amply fet forth in the Appendix to the Catalogue of the South. ern Stars, publifhed in London by E. Halley in the Year 16792 and foon after Tranllated into French, and printed in Paris; witnefs the Journal des Scavans of Sept. 4. 167.9. There thefe Meffieurs might have read, under the Title of 2uedam Lunaris Theoric Emendationem Spectantia, the following Paffage, Quoniam tantas indqualitates in Terra revolutionibus non patiuntur Horologia, neceffe est Lunam ipfam citatiori motu ferri in fua orbita, quum Terra est Aphelia, remilfzori cum in Peribelio ita ut onsnium accelerationum fumma menfe Septembri, ad tredecem minüta circiter affurgat. Retardationes vero onsnes aggregate, menfe Martio, tantundem efficiant. Adhibeatur itaq; ijta temporis aquatio qua Terne matum diurnum dquabilem fatuit; in Calculo vero loci Luna, medio Luna motui addenda eft nona pars equationis Solis Sublative, auferenda vero ab eo, fe aquatio fit additiva: wherein is contained not only the Form of this Equation of the Lunar Motions, but the very Quantity, viz. thirteen Minutes, exactly as Mr. De la Hire has it. Hence it fhould feem, either that this inequality is moft juftly ftated by the exact Coincidence of the Conclufions of two fo different Inquirers; or thar the latter having feen the afore-cited Paffage, and finding it warranted by Obfervation, might think it an Invention not unworthy a Frenchman: And whereas Mr. De la Hire feems to conclude, that this Equation ceales in the Quadratures, and is greateft in the New and Full Moons; when he comes to the confidera-

## [445]

tion of the Lunar Motions extra Syzygias, (which is here promifed) he will find it no lefs requifite in the Quadratures than in Eclipfes; feveral undoubted Obfervations Ihewing the Neceffity thereof.

Among the Precepts for the ufe of the Tables, there is a pretty Remark concerning Refractions, which this Author faith he hath often experienced ; viz. That the Beams of the Stars being obferved in a deep Valley to pafs near the Brow of the Hill, are always more refrated than if there were no fuch Hill, or the Obfervation were made on the top thereof ${ }_{j}$ as if the Rays of Light were bent downwards in a Curve, by paffing near the Surface of the Mountain.

The Report made to bis Majefty by the Company of Parifh Clerks of London, of the Number of Chriftnings and Burials in the Years 1686 and 1687.

Anno 1686.
Chriftned $\left\{\begin{array}{lll}\text { Males } & 7575 & \text { Males } \\ \text { Females } & 7119 & \text { Females } \\ \text { In } & 7214 \\ \text { In all } & 14694 & \text { In all } \\ \text { I } 495 \mathrm{I}\end{array}\right.$
Buried $\left\{\begin{array}{lll}\text { Males } & 11828 & \text { Males } 11174 \\ \text { Females } & 10781 & \text { Females } 10286 \\ \text { In all } & 22609 & \text { In all } \\ & & 1460\end{array}\right.$

Anno 1687.

## An $I \mathcal{N}(\mathcal{D} E X$ to the Sixteenth Volume

 of the Pbilofophical Tranfactions; beginning $\mathcal{X}$ (umb. 179 , and ending with $\mathcal{N}$ umb. 191 . inclufive.> The first Figure refers to the Number of the Tracts, the fecond to the Page.
A.

MHE Abacus of the Cbinefer 180:66 $A I R$, its Oppofition to Projects
179. 19 Shooting by the Air's Rarefat ction 179. 21 Specifick Gravity of Air 18I. 104 How faft the Air rufhes into an exhaufted Receiver 184. 193 The Refiftance of Bodies to Ain meafured 25.503 186.269 A univerfal Alphabet 182.126 ASTRONOMY. Two new Satellites of Satura dificovered by
 Fupiter eclipded by the Moon Mart. 31. and Maii 28. 1686. obferved at London 181.86. at Paris 183. 175. at Avignon and Nurenburg ib. 177. at Greenwvich 184.206

Moons Eclipfe of Nov. $3^{\circ} .1685$. obferved at Nurenburg 182. 146. at Lisbon 184. 2Q6. 4t Bian

Fupiter's Geocentrick Place for the Year 1687.
184.204 Eclipfes of $\mathcal{F}$ upiter's Satellites for 1687. 184. 200. for 1688. 191.435

Eclipfe of the Moan Nov.Ig.1686. obferved at Dubhin 185.236 Saturn eclipfed by the Moon Mart. 19.1687. obferved at Totteridge
186. 268 Several Obfervations of the fmall Eclipfe of the Sun Maii 1.1687.
189.370 The height of the Atmofpbere 18 r .

107
B.

Heights of the Mercury in the Barometer, at given Altitudes from the Earth 181. 106 Principal Phxnomena of the Ba- rometer, ib. 110 . the caufe of the fame

> ib. III A new fort of Barometer, encrea- fing the Divifions ad libitum 185.24I

Quantity of Blood in Man eftimated, and the Celerity of its Circulation
191. 433

Bodies diffolved in corroding Menftrua, why they fwim therein 18 r. 89
BOOKS. An Effay towards the Recovery of the Jewifh weights and meafures, by R. Cumberland, D.D.
179.33

Ephemeris ad Annum 1686. \& Longit. Urbis Londin. 179.35
A true Enquiry into the vulgarly received Notion of Nature, $6 \boldsymbol{c}$. 18 I .116
Traitte du Mouvement des eaux Ofc. par Mr. Mariotte 18I. 119 Two Effays in Political Arithmetick, by Sir Will. Petty, Knight.
183.152

Methodus Figurarum lineis rectis $\&$ curvis comprehenfarum Quadraturas determinandi. Auth. 7. Craige $\quad 183.185$

The Natural Hiftory of StaffordShire, by R.Plott,L L.D. 184.207 Sciotericum Telefcopicum; or a new Contrivance of adapting a Telefcope to a Sun-Dial, by W. Molineux, Efq; ${ }^{184.213}$

La Quadrature du Circle, par Mr. Mallement de MefJange, and the fame refuted
185.245

Voiage de Siam des peres Jefuites
185.249

Hiftoria Plantarum, Tom. I. Authore If. Raio
186.283

Philofophire Naturalis principia Mathematica. Auth. If. Newton
186.29

A Continuation of the new Digefter of Bones, by D. Papiz 189. 329

Memoirs for a natural Hiftory of Animals, Tranlated by $A$. Pitfield, Efq; 189.37I

Confufius Sinarum Philolophus, five Scientia Sinenfis Latine expofita 189.376 Propofitiones Hydroftatica ad illuftrandum Ariftarchi Samii Sy. ftema deftinatx. Auth. F. Jelfop
191. 440

Tabularum Aftronomicarum, pais. prior. Authore Pb. de la Hire
191. 143 Burials and Chriftnings in Ěondon Anno 1686 and 1687.191 .445 Burning Speculum, its great force.
188.352

## C.

Cape of Good-bope, its Longitude flated
185.253

Cafting Statues, how to do it, and make the Metal run thin 186.
The Celerity of the Circulation of the Blood 191.433

A Specimen of a New Cbaracter.

$$
182.137
$$

Cbinefe Character confider'd 180.6; Cbineje Abacus, or way of Numbring 180.66 Cbinefe Wall defcribed 180.55. when built
189.378

Cbinefe Calendar and Cbronology
$189.37 \%$ Emperour of China his manner of Hunting $\quad 18 a_{0} 44$ Cbriftrings and Burials of Londors An. 1685. and 1686. 191. 445 Circular Magnetical Needle of Mr. De la Hire
188.344

A Ca.

- Catalogue of fimple and mixt Colours, and their Production 179.26

A Comet feen in September 1686. 186.256

- Conftruction of Cubick and Biquadrate Equations by a given Pa rabola

188. 335

An Account of Saxon Coins found in Suffolk $\quad 189.356$
Curvilinear Figures fquared 183 . 186
D.

Mad Dogs, Receipts to cure them, and thofe bitten by them. $187^{\circ}$. 298. ©́ 191. 408 Ducks bred under ground 191.425

> E.

Eclipfes, vide Aftronomy

- Equations, Cubick and Biquadratick, conftructed by a Parabola 188.335. The number of Roots in fuch Equations, and their Limits 190. 387. The Roots of all forts of Cubicks extracted by the Table of Sines 190.396 Experimen. concerning the growth of Trees, by Mr. Brotberton 187.

307

$$
F .
$$

- The perpendicular Fall of Bodies 179.9 Fifhing under ground 191.417 Fountains, their expence of Water computed
181.122 Force of the Air rufhing into an exhaufted Receiver 184.193


## A Glandula Pinealis petrified 185.

 228Grahoppers, a great (warm of them in Languedoc.
182. 147 Gravity, its Properties confidered 179.3

Specifick Gravity of Air 181. 104 A Problem of great ufe in Gumery folved

## H.

179.15

An Account of an Hermaphrodite, from Tbolofe
186.282 Hydatides found obfructing the
 I.

Fect d'eau, vide Fountain
Imagination, an inftance of its great force in Women with Child 188.334 Fupiter eclipfed, vide Aftronomy
An odd Infcription found on the Bafis of a Pillar at Rome 183.172 with the Interpretation of the fame, by Dr.Voffius
ib. 174

## L.

Lake of Cirknitz accurately defcribed
191.415

Perpetual Lamp found in a Sepulchre at Rome
185.227

Latitude of Nurenburg unaltered in thefe two hundred years laft paft
190.403

The Limits of the Roots in folid. Equations
190.387

Sidera Lodoccea
181. 85

London bigger than Paris 183.152 People of London, how many 185. © 185.237. The number of People and Houfes in London 185.238

Longitude of the Cape of Good-bope 185.253. Of Nurenburg 182.147

## $M$.

Madnefs in Dogs, how cured. vide Dogs

- Magnetical Néedle, a new fort, with an Hypothefis thereon 188.344 Mercury, how much it falls in the Barometer, in Places above the Earths Surface 181. 106. Why it rifes and falls upon change of Weather isi.rii. ©r deinceps Metals, why they fwim in corroding Menftrua

181. 88

Monfoons in the Indian Seas, their Hifory 183.158 . Their caufe inquired
Why the Moon appears 'greater near the Horizon $187.314 \sigma^{\circ} c$.
French perpetual Motion refuted 182.138. O゚ 186.267

A Mountain of a vaft heighth in Cbina
180.59
N.

Nurenburg, its Longitude determined, vide Longitude

$$
0 .
$$

Objects, why feen erect in a Te lefcope with 4Glaffes 183.169
P.

Papin's Engine for raifing Water, defended againt Mr, Nuis 186. 263

Perpetual Motion refuted, ${ }^{228}$
M Motion
A Perrified Glandula Pinealis 185 .
A Univerfal Primer $\quad 182.134$
The Verbal Procefs on an ancient Gaulifh Sepulchre found in France 185.221
The Motion of Projectiles in a Pa-。 rabola made out
179. 11
இ.

The Quadrature of Figures comprehended by curve Lines and right, improved 183.186 Quadrature of the Circle refuted
185.245

The Quantity of Vapour raifed out of the Sea by the Sun 189. 366 The Quantity of Blood in Man
191.433
$R$.
(281
Raining Wheat in Wilffhire 186. Receipts to cure Mad Dogs and their Bite, vide Dogs.
Refiftance of the Air to Bodies meafured $\quad 186.269$ Roots, their Number in Cubick and Biquadratic Equations 190.

$$
S
$$

389

Saturn's Eclipfe by the Moon obferved Mart. 19. 168\%. 186.268 Two new Satellites of Saturn difcovered by CaJini 181.79 ó $18 \%$ 299
Tables

Tables of the Motions of the five Satellites of Saturn 187.301 dillites of Fupiter eclipfed, vide Aftron.
Saxon Coins found lately in Suffolk
189. 356

An ancient Gaulijh Sepulcbre found near the River Eure in France
185.221

De Sefertio differtatiuncula 190. 384

- Smoak confumed by an Engine 181. 78

Solid Problems conftructed 188.335
Concave Burning Speculum, its great effects 188.352 Statues, how to be caft very thin 186.259

A frange Tincture given to a Stone without Fire 179.22 Stones very large voided by Stool, from Bern in Switzerland, 18 I . 94. An Examen of thofe Stones 182.140

Arms of Stone found buried in France
185.223

Why the Sun appears fo big near the Horizon $187.3 \mathbf{1} 40$ deinceps.

## T.

Why a Telefcope with four Glaffes fhews Objects erect $18 \mathbf{3 . 1 6 9}$ Tides, their Courle at Dublin 184. 192. On the whole Coaft of France
185.220

Tide-Table for the Year 1687. 185. 232. for the Year 1688.
191.428

Trade-Winds between the Tropickśconfidered 18 . 153 . how
blowing in the Atlantick and Etbiopick Oceans ib. 154 in the Pacifick Sea. Ib. 16r. their Caufes inquired
ib. 164 Trees, their growth explained
187.307

$$
V .
$$

Value of Roman Monies compared with the Englifh ${ }^{190.385}$ Vapour, how much raifed by the heat of the Sun 189.366 Variation of the Magnetical Needle oblerved at Siam 185.252. in Leaotum to the North-eaft of Cbina 180.41 Voyage of the Emperor of Cbina into Corea and Eaft-Tartary 180. 39. into the Weftern Tartary ib. 52
Ureters obftructed by Hylatides 188.332

$$
W
$$

The Wall of Cbina defcribed 180.55

Water-Engine of Papin defended from the Objections of Mr.Nuis 186.263 Wheat faid to have fallen in Rain in Wilffhire
186.28I Winds, their being variable the canfe of the riifing and finking of the Mercury in the Barometer
181. 111

Wind Gun by Rarefaction of Air

$$
z .
$$

Zirknitzer:See defcribed IgI.41i


## Phitofoph. ©ranfact. Number, ı67.@



Fig. 万.


MBurghers foulp:

# PHILOSOPHICAL TRANSACTIONS. 

$$
\text { Fan. } 28 \text { th. } 168 \frac{4}{5}^{\circ}
$$

## The CONTENTS.

1. Some Experiments about Freezing, and the Difference betwixt common frelh-water Ice, and that of Sea-water; alfo a probable Conjecture about the Original of the Nitre of Egypt: by Dr. Lifter. 2. A Letter from Dr. Turbervile of Salisbury, containing some confiderable obfervations in the Pradtife of Phyfic. 3. Obfervations on the Cicindela Volans; by R. Waller ESq. F. of the R.S. 4 . A Letter from Mr. J. Davis concerning the Wurtemburg Siphon. 5. The Defoription of a Siphon, made to perform all the Effects expreft to be done by the Wurtemburg Siphon: by Dr. Papin; F of the R.S.6. A Catalogue of Experiments drawn up by Sr. W. Petty, prof. of the Phil. Soc. of Dublin; and by bim prelented to that Society. 7.A Letter from Mr. F. Beaumont jun, concorning a new way of Cleaving Rocks. 8. A Difcourle proving from Experiments, that the larger the wheels of a Coach, Exc. are, the more eafily they are dram n over Stones; Jv. lying in the way. 9. An account of a large praternatural Glandulofe Subftance, found between the Pericardium, and Heart of an $\mathrm{Ox} \quad$ 10. Accounts of three Books; i. De Origins Fontium per R. Slot LL. D. Tufa A/bmoteani Oxonix Prapfitum, © R. S.S. 2. Medicina breptentrionalis Collatitia, Opera Theoph. Boneti, 3 Pechlini Dialogus de Potu Thew.


[^0]:    487680,

[^1]:    Uu

