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Part I

SURFACE AND LONG WAVES

Chapter I

General Remarks on Waves

1. Introduction

In this volume we shall concern ourselves chiefly with such phenomena of the

oceans which have as their main characteristic a period, in contrast to the

ocean currents, which were discussed in Vol. I. This means that the movement
repeats itself after a certain time so that observations for this time interval

suffice to determine the process.

The surface of a motionless fluid must satisfy the condition that at every

point it is perpendicular to the forces acting on that liquid. When the fluid

is at rest, gravity is the only acting force and, therefore, the surface at rest

must coincide with a level surface. However, the ocean surface, even when
we only consider small parts of it, is never completely at rest. Many factors,

especially winds blowing over the ocean, generate waves which are present

most of the time; close to the shores we nearly always have a surf. A mirror-

like surface is an exception, whereas a sea covered with waves is customary.

Besides these short waves, which are easily visible, there are much larger

waves which, because of their great dimensions, cannot be detected by visual

observation. Over a certain length of time we can observe their effects, and

from the combination of such observations we can conclude as to the wave
character of these disturbances. These are the waves following earthquakes,

volcanic eruptions, etc. (dislocation waves), submarine earth slides and the

great phenomena of the tides which affects all the oceans. Each water particle

in these wave motions is not subjected to any large local displacement. The
water-masses shift relatively little backwards and forwards in a horizontal

direction. After a certain time they will generally return to their original

position; and in this they differentiate themselves from ocean currents, in

which a permanent transport of water takes place in a definite direction.

This pendulum movement of the separate water particles and their return

to their original position, which applies to nearly all waves, can be con-

sidered as oscillations around a steady position.

Before entering upon the nature of the waves proper, we will consider

some of their fundamental physical properties and establish some definitions

which we will have to use quite often.

In general there are two forces acting on a water surface which is in



2 General Remarks on Waves

a stable equilibrium: gravity and surface tension. If disturbances of this

equilibrium occur, both forces tend to restore the equilibrium. If gravity

causes the return to the state of equilibrium, we speak of gravity waves,

in contrast to capillary waves, for which surface tension is the restoring

force. All large waves in the ocean are gravity waves; only when dealing

with the smallest waves of a few centimetres length do we have to take the

capillary forces into account (see p. 77).

In water waves the disturbing motion of the individual particles is per-

pendicular to the direction of the wave and, therefore, they belong to a group

called "cross waves", in contrast to the "longitudinal waves", where the

separate particles oscillate backwards and forwards hi the direction of pro-

gress. In the longitudinal waves the elasticity of the medium is the force

that tries to bring the particles back to their state of rest. This elasticity

causes a succession of increases and decreases of the density of the medium.

To these longitudinal waves belong the sound waves, which have shown

their importance in oceanography by the utilization of echo sounding. They

also play an important part in submarine acoustics.

Classification of Waves

We can classify the waves according to the oscillations of the individual

particle: (a) in progressive and standing waves, according to the forces which

generate and maintain them; (b) in forced and free waves, according to the

relation between the velocity of the waves and the depth; (c) in surface or

short, or deep water waves and long or shallow water waves. The first class

can be subdivided into progressive and standing waves.

(a) Progressive waves are characterized by the fact that each water particle

in a certain level executes the same closed orbit within a definite time. How-
ever, all particles do not participate in this motion with the same phase.

The phase lags for the particles in the direction of the wave propagation and

is dependent upon the wave velocity. The simplest form of a progressive

cross-wave is obtained when we subject the individual particles of the surface

to displacements according to the law of harmonic oscillations. If we call

this displacement r/, we obtain

2n
r\ = A sina = v4 sin— t

.

(1.1)

A is the amplitude of the displacement (elongation), 2A is its range, a is

the angle determining the time of the displacement (phase angle). T, which

is known as the period of oscillation, is the time needed by each particle

for a complete oscillation. During this time, a passes through all values

from to 2tt; consequently, in a unit time the angle 2ji/T, so that, for any

given time t, a becomes {2njT)t and r\ takes the second form of (1. 1). / =
determines the time when the movement starts.
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Let us now suppose that the individual water particles of the surface

execute such harmonic oscillations in a vertical plane and that the energy

is transmitted from one particle to another successively in horizontal direction,

with each particle starting its motion somewhat later, but this difference in

time between each particle remaining the same. Let us designate this time

interval as t. Consider n successive particles; particle will execute the

harmonic movement as expressed by (LI), particle 1 the motion

. . 2n .

)h = Asm~ (f-r),

and in general the motion of particle i will be expressed by

, . 2n .

i]i = A sin — (/— it) .

Particle n should start its harmonic oscillation at the very moment when

particle has completed its first harmonic oscillation, then m = T. We can

replace t by Tin and the motion of particle i is given by

r}^ A sin
2^ It- ~t\. (1.2)

If we designate the horizontal distance between particle and particle n

as X, the distance between particle and particle i as x, then x: l = i: n

and we obtain from (1.2) the equation for the motion of each particle in

the following form

r} = A sin
In In

(1.3)

This is the general equation for a progressive wave travelling in the di-

rection +jc and of an harmonic type. Figure 1 illustrates the development of

such a wave for 15 consecutive equidistant particles. Particle has com-

pleted its harmonic oscillation at the exact moment of the start of that of

particle 12. This moment corresponds to the XII row of Fig. 1. A is called

the wave length; it is the horizontal distance between two particles which

are in the same phase of motion; it is, furthermore, the horizontal distance

between two corresponding points — like from trough to trough or from

crest to crest — for a given time. The form of the wave is an harmonic func-

tion and is given by the equation:

rj = A sin I C y x
)

The greatest elevations are called wave crests, the greatest depression

wave troughs; their vertical distance is the wave height, whereas the wave

amplitude is one-half of the wave height.
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Equation (1.3) shows that the waves advance unchanged in the -\-x di-

rection with a velocity c = x/t = l\T . c is called the wave velocity and

l/T = v is called the frequency of the wave. Often the quantity 2njT = a

is used which is called the "angular velocity" of the wave. We can similarly

7 8 9 10 II 12 13 W 15

Fig. 1. Development of an harmonic progressive transverse wave.

introduce a quantity 2n\l = x and call it the "wave number", because it

indicates the number of waves over a distance 2.-r. We thus obtain the fun-

damental equations applicable to all waves:

X = cT, a — xc 7] = A sin(o7— xx) (1.4)

In the wave motion discussed so far each particle of the medium executed

movements only perpendicular to the direction of propagation of the wave.

In water waves we have to add a rhythmic motion in the direction of pro-

pagation of the wave, so that each particle, with the passage of a wave,

executes an orbit. In this way a system of waves moving with a definite

velocity is developed on the surface which is called a wave train.

In case the particles move in circular orbits, we have to replace Fig. 1

by Fig. 2. The water particles numbered from to 15 move in their orbits

with the same uniform speed in such a manner that particle 12 starts its

movement at the exact moment when particle has completed its circle.

Therefore, it is in the same phase as particle and, consequently, the distance

to 12 represents the wave length. In this particular case the wave profile

is no longer harmonic, because the wave crest and the wave trough have

a different form, inasmuch as the wave crest is shorter and steeper, whereas

the wave trough is wider and flatter. This curve is a trochoid (p. 28). Within

a progressive wave the horizontal flow at the wave crest is in the direction of
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Fig. 2. Wave formation through circular motion of water particles.

progress, and at the wave trough it is opposite to the direction of progress
of the wave. The reversal of the current direction takes place at the
moment the particle passes through its level of equilibrium; at this point
the vertical velocities are greatest, whereas they are reduced to zero at the
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highest points of the wave crest and at the lowest points of the wave trough.

This distribution of the horizontal and the vertical velocities with the passage

of a wave is characteristic for a progressive wave train.

Fig. 3. Standing wave formed by interference of two progressive waves.
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Within a standing wave each individual water particle moves in an orbit

but, contrary to the progressive waves, the phase is the same for all particles,

and the amplitude of the movement is different for each particle. The points

where there is no vertical motion are called nodes, and the points where

there is no horizontal motion are called antinodes. We can study the pro-

perties of standing waves by superposing two progressive waves having the

same velocity and the same amplitude but opposite directions. From the

superposition results a simple standing wave. Figure 3 represents nineteen

different phases of such a case. In 1 both waves meet in the middle M of

the figure. In 2 both waves overlap for one-twelfth of the wave length. The

heavy line represents the sum of the ordinates of the two waves. In each

subsequent phase the original waves have progressed by one-twelfth of the

wave length. In 7 each wave has progressed by half its length. The superposi-

tion shows that both waves have cancelled each other out, because one wave

crest coincides with the wave trough of the other wave. At this particular

moment, all particles in the vertical direction go through their state of equi-

librium. Then, however, the vertical displacement starts again, in the middle

part downwards, in the sides upward. We can see that there are particles

which remain always at rest, because they are displaced by the progressive

wave going into one direction by exactly the same amount as by the other

progressive wave which travels in the opposite direction. Both waves cancel

each other and the particle remains at rest. These are the nodes Nx , N2 etc.

There are, furthermore, points called antinodes A x , A 2 etc. which have the

largest vertical displacements, up to the double amplitude of the progressive

wave. The antinodes, as well as the nodes, always remain in the same place.

The profile of the wave is subjected to continuous changes, but does not

move laterally and has no velocity, and therefore such waves have been called

standing waves. The wave length of a standing wave is equal to the distance

from one node to the next node, or from one antinode to the next antinode.

It can be shown that a standing wave results from a complete reflection of

a progressive wave on a vertical wall. The superposition of the incoming

wave and the reflected wave produces a standing oscillation, with always

an antinode at the wall. When r\x is the vertical displacement on a wave moving

to the left, which hits a vertical wall a x = 0, and >/2 the vertical displacement

of the reflected wave moving in the oppostive direction, the superposition

of both waves will give a total vertical displacement of tj = % + ??.> . This gives

r\x
= Asin((Jt— xx) ,

fj2 = Asiniat-r-y.x)

,

(1.5)

rj = rji+r)2 = 2A cos xx sin at .

This standing wave has its nodes wherever cosy.x = 0, viz. at x = \{n+ \)X

(n = 0, 1,2, ...). It has antinodes wherever cosx.v = ±1, viz. at

x = \n'h .
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It is obvious that there exists an antinode at the reflecting wall (n = 0).

The next node is at a distance from the wall of one-quarter of the wave length.

Standing waves not only have their vertical but also horizontal dis-

placements. However, in this kind of waves, individual water particles do

not move in closed orbits, but the particles return through the same points

of their trajectories through which they moved forward. Thus the movement

of the individual water particles resembles more an oscillation around a point

of equilibrium. The distribution of the horizontal and the vertical components

of motion within a standing wave is entirely different from that of progressive

waves. The particles in a progressive wave move upward at the front side

of a wave crest and downward at the rear side, whereas in a standing wave

their movement in the entire antinode is everywhere simultaneously upward

or downward. There are no vertical displacements in the nodal points, but

here occurs the greatest horizontal water displacements, which disappear

again in the antinodes. Standing waves thus have the character of a rocking

movement of the entire water-mass around fixed nodal lines. This readily

explains that in standing waves the current reverses itself everywhere

simultaneously, and this happens when the antinodes have the greatest

positive respectively negative displacements, viz. at high and low water.

The greatest horizontal velocity is found when the water surface passes

through its equilibrium.

A progressive wave r/ — 2Acos(at— xx) can be imagined to be composed

of the interference of two standing waves. r)x
= ^cos*.vcoso7 and

r]2 = A sin xx sin at. r\ x and rj2 are two standing waves of equal wave length

having a phase difference of a quarter period, and the amplitude of the two

systems be equal; consequently, the relation between them is that the

antinodes of the one are superposed upon the nodes of the other.

It is to be remembered that, if we disregard a harmonic wave profile,

each progressive wave can be represented by a function of (at±xx) (equa-

tion 1.4); here the negative (positive) sign applies for waves progressing in

the positive (negative) .v-direction. For standing waves, the function contain-

ing the coordinate for the direction x is separated from the time function.

As a rule, both appear in the form of a product (1.5). The mathematical

treatment of wave processes is facilitated if we consider standing waves as

composed of progressive waves. Therefore, it is important that each train

of progressive waves can be represented as a superposition of a system of

two standing waves with a phase difference of a quarter of the period.

(b) Free and forced waves. In every system capable of oscillation we can

distinguish free and forced waves. Free waves are generated by a single sudden

impulse and for their generation and maintenance they do not require an ex-

ternal force. A system with its equilibrium disturbed by a single impulse would

continue oscillating ad infinitum in the absence of friction. The amplitude

of the oscillations decreases with time according to an ^-function (damped
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oscillations), due to the ever present internal and external frictional forces,

and finally stops entirely. A damped wave can then be represented in a certain

locality by

7] = A e~P' cos at . (1.6)

If t]
n is the «th point of reversal of the oscillation on the positive side at

the time nT, the amplitude at this time will be

An = A e-"PT = A e-«y . (1.7)

The quantity y = (IT is designated as logarithmic decrement of the damped
oscillation. It is equal to the natural logarithm of the ratio of two consecutive

values of the amplitudes taken in the same direction of displacement, or it is

!nA„-lnA m7= (1.8)m— n '

if A n and Am represent the nth and /nth amplitude of the oscillation in the

same direction (Kohlrausch, 1935). The friction of a free oscillating system

can be characterized by y.

The period of the free oscillations depend exclusively on the dimensions

of the system, which for a closed basin bay are the length, the depth and the

width of the basin. Dissipating forces can increase the period of the free

oscillations (see p. 155).

Forced waves are generated in a system capable of oscillation by the

continuous action of a periodical external force. The tidal forces of moon
and sun subject the water-masses of the oceans to periodical displacements

in a horizontal direction, which displacements in turn contribute to the

formation of waves. The period of forced waves is always identical to the

period of the generating force. However, the amplitude and the phase are

not free as is the case with free waves, but they essentially depend on the

ratio between forced and the free oscillations of the system. The amplitude

and phase of the forced waves depend not only on the generating force,

but also on the dimensions of the oscillating system. The amplitude A of

the forced waves increases as the period of generating force x approaches

the period of the free oscillations T. Here applies the relation

(1.9)
oV

in which A k is the amplitude and ak the angular velocity of the generating

force. If a = ak or t and T are equal, the amplitude of the forced waves
increases steadily: the oscillating system then is in resonance with the

periodical force.

The phase of the forced oscillations is only then the same as the phase
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of the generating force, when the period of the generating force of the

forced oscillations is greater than the period of the free oscillations, viz. when
t > T. If, on the contrary, the period of the generating force is smaller than

that of the free oscillations (T > t), the phase of the forced waves is opposite

to the phase of the generating force. These properties of the forced oscilla-

tions pertain to a general dynamic principle of the wave theory and will be

frequently referred to in subsequent paragraphs.

(c) Short and long waves. We can divide the wave-like motion of water-

masses into two different classes, taking as a measure the ratio of the wave-

length A to the depth to the bottom h. If the bottom depth h is smaller than

half a wave length, it can be considered as "shallow"; if, on the contrary,

the depth exceeds about half a wave length, the water is called "deep".

In deep water waves, the orbital motion of the water particles decreases

fairly rapidly with increasing depth. Close to the surface the individual water

particles move in circular orbits. The radii of these orbits decrease with depth

and in intermediate depths of approximately half a wave length below the

surface, the diameter of the orbits is theoretically one twenty-third of the

orbit diameter at the surface. The movement of the wave is restricted to

a realtively thin surface layer. Hence the denomination of surface waves.

Scott Russel (1837, p. 417) named them secondary waves, and in the

English literature they are called quite often oscillatory waves. Let us imagine

the water-mass is divided into horizontal and vertical filaments of water

in a state of rest. The positions of the corresponding filaments during the

passage of a wave are shown in Fig. 4. Their distortion is greatest in the

Fig. 4. Behaviour of vertical line of particles during passage of a short wave (great depth).

upper layers and decreases rapidly with depth. In greater depth it becomes

imperceptible, and finally it disappears entirely. Thus the comparison made

by Leonardo da Vinci between a waving cornfield and such water waves

does not apply only to the oscillatory motion of the single particles and to
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the progressive form of the surface, but also to the oscillatory motion which

decreases rapidly with depth, in as much as the base of the cornsticks remain

equally at rest. The only difference is that the length of the stems remains

constant, whereas the water columns stretch and shrink as the wave passes by.

In shallow water where /? is smaller than half a wave length, the orbital

motion reaches to the bottom and is of about the same size in all depths.

The motion of the individual water particles then corresponds more to

a forward and backward shift of whole water columns whereby they become
at times wider and thus shrink in vertical extent or at times narrow and
thus stretch depending upon whether they are situated in a wave trough

or wave crest. Figure 5 shows rectangles of equal size in a position of rest

and during the passing of the wave and the resultant wave at the surface. In

these deformations the horizontal components of the velocity and acceleration

of the particles play the main role, whereas the vertical acceleration can be

neglected. With deep water waves (surface waves) on the contrary, the verti-

i
; ;-- -- +

Fig. 5. Behaviour of vertical line of particles during passage of a long wave (shallow depth).

cal component of acceleration must be considered. It is, therefore, quite

possible that an ocean is rather shallow relative to the long waves of ocean

tides, whereas it must be considered as very deep even for the largest of the

ordinary wave trains that can be perceived on its surface. Deep and shallow

water, therefore, are only to be considered in relation to the wave length.

Waves of tidal periods are the best example of such long waves, which

therefore are also called tidal waves; the name long waves is mostly used;

Scott Russell called them also primary waves.

An excellent summary of the most outstanding characteristics of ocean

surface and long waves has been given by Sverdrup (1942, p. 521) which

we quote here:

Character of wave

Velocity of progress

Movement of water par-

ticles in a vertical plane

Surface waves

Progressive, standing,

forced or free

Dependent on wave length

but independent of depth

In circles, the radii of which

decrease rapidly with in-

creasing distance from the

Long waves

Progressive, standing

forced or free

Dependent on depth but

independent of wave length

In ellipses which are so flat

that practically the water

particles are oscillating back
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Vertical displacement

of water particles

Distribution of pressure

Influence of the earth's

rotation

surface. Motion impercep-

tible at a depth which equals

the wave length. In some

types of surface waves the

motion is in wide ellipses

Decreases rapidly with in-

creasing distance from the

surface and becomes imper-

ceptible at a depth which

equals the wave length

Below the depth of percep-

tible motion of the water

particles the pressure is not

influenced by the wave

Negligible

and forth in a horizontal

plane. Horizontal motion

independent of depth

Decreases linearly from the

surface to the bottom

The wave influences the

pressure distribution in the

same manner at all depths

Cannot be neglected if the

period of the wave ap-

proaches the period of the

earth'srotation.The velocity

of progress of the wave and

the movement of the water

particles are modified

Surface waves and long waves are, of course, to be considered as the two

extremes of a continuous series of waves. However, the transition zone is

relatively small, so that the separation in "short" and "long" waves is

appropriate. From this difference in velocities between long and short waves

(see p. 1 8) it results that a group of waves composed of long waves remains

undivided, as each wave travels with the same velocity. This is not the case

with a group of surface waves, as the long waves travel faster than the shorter

ones. The group disintegrates with time. Long waves, consequently, show

no dispersion, whereas, in the case of surface waves, dispersion is faster

when the difference in the wave lengths becomes greater.

3. Group Velocity

In observing nature, we find that in general an ocean wave does not exist

by itself, but that in most cases a train of waves is composed of a system

of waves of all possible lengths, each wave progressing with the velocity

corresponding to its own particular wave length. The free surface, therefore,

is subjected to constant changes, and the wave profile shifts constantly. When
observing carefully, e.g. a wave train produced by a stone or a single falling

drop of water in a deep water basin, we find that the waves appear in groups.

Such an isolated group of waves as a whole shows a velocity smaller than

that of the individual waves composing it. Following a single wave in such

a group, we see it advances through the group, but, at the same time, it

gradually loses its height in approaching the front. The place it formerly
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occupied in the group is now occupied in succession by other waves which

have moved forward from the rear. It appears as if, on the front end of

a group, the waves constantly disappear, whereas new waves appear at the

rear. The group is then continuously composed of waves which travel through

them. The behaviour of such groups can be best explained, according to

Lord Raleigh (Lamb, 1932, p. 382), by the superposition of two systems

of waves of equal amplitude, but of a somewhat different wave length and

velocity. This overlapping will give the following equation of the free surface:

)) = As'm(xx— <Jt)—As'm(x'.\—<7't)

= 2A cos
x— x a —

a

sin
x^x a -\-

a'

—s— x ~— t

(1. 10)

As x and x' differ only very slightly x = x' -{- Ax, the cosine in the first

part of this expression changes its value very slowly with x; so that, at any

instance, the wave profile has the form of a sine curve, in which the

amplitudes vary between the values and 2A. The surface thus has the

appearance of a succession of groups of waves separated, at equal intervals,

by strips of almost smooth water. Figure 6 shows an example of the over-

lapping of two such waves: r\ = 1000cos6.\-sin60.v, for which x = 66° and

Fig. 6. Superposition of two waves with slightly different wave lengths (ratio 9 : 11). Group

maxima 30 units apart.

*' = 54°, and which correspond to the wave lengths of approximately 5 • 45
c

and 6 • 66°. The amplitude becomes = when

6.Y =

in intervals of 30

(2/7+ l)ijr (n = 0, 1 , 2...) , this means,

It looks as if the entire train of waves is composed of

wave groups, each of which has a length of 30°. The periodical phenomenon

under consideration can be explained by a superposition of two waves having

approximately the same wave length. It is easy to follow the path of such

wave groups by means of Fig. 7. It shows the superposition of two wave

systems whose velocities cx and c2 correspond to a ratio of 17 to 15, and

their wave length to the ratio 5 to 4. One can easily see that the wave groups
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Fig. 7. Behaviour of wave groups resulting from the superposition of two wave systems

(ratio of wave lengths 5:4); (ratio of wave velocities 17: 15) (From Grimsel-Tomaschek,

Lehrbuch der Physik, vol. 1, p. 405).

travel much slower than the separate waves. The behaviour of the separate

waves within the groups can be seen in this figure. The distance between

the centres of two successive groups, according to (1. 10) is 2n/(x— x') = 2n\Ax

and the time needed by the system to cover this distance is 2ji/(<j—o') = 2n\Ao.

The velocity of group C is consequently (a— a')/(x— x') = Aa/Ax, or in case

there is only a slight difference between the respective values of the de-

nominator and the numerator, C = da/dx. With A = 2n/x, one obtains

with (1.4) C = dxc/dx or C = c—l{dcjdX) (1. 11) when c is the wave velocity.

Generally the wave velocity increases with the wave length, and therefore

the group velocity is smaller than the wave velocity. Progressive waves at

the surface of a water layer of a depth h have a wave velocity of

c = [g/^tanhx/?] 1 '2 (see p. 18, equation 11.10). The group velocity of a train

of such waves will be

C = \c 1 +
2xh

sinh2x/i
(1.12)
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When the water is deep (short waves), the ratio between the group velocity

and the wave velocity is \ ; this ratio increases with decreasing water depth,

and becomes equal to 1, when the depth is small in proportion to the wave

length (long waves). In many natural phenomena dealing with superposed

wave trains, the group velocity is undoubtedly of more importance than

the velocity of separate waves, which can seldom be observed independently

of each other. What shows is the group velocity of the wave train, and in

many cases discrepancies between observation and theory are attributable

to confusion of the two quantities.

Equation (1. 11) is commonly derived from the interference of two wave

systems of the same amplitude and of a slightly different wave length; this,

however, should not be interpreted to the effect that the group velocity only

has any significance in case there are such interferences. According to its

intrinsic nature, it is much more general. For general deductions see Rossby

(1945, p. 187) and Munk (1947).



Chapter II

Theory of Short and Long Waves

1. Waves with Harmonic Wave Profile. (Stokes' Waves)

The basic prerequisite for a wave theory is that the motion of the water

mass obeys the hydrodynamic equations and the equation of continuity.

If this is the case, it only means that this motion is possible, and not whether

and under which conditions it occurs. This theory can first be considered

from the viewpoint that the motion of the individual water particles is

stationary and irrotational, i.e. that the motion can be generated from rest

by the action of ordinary forces. Then there exists a velocity potential ip which

will satisfy the equation of continuity in the form

S+S- - <™
Instead of the three equations of motion, we have the equation of Bernoulli

|+f +*+*-*». CH.2)

in which we substitute for the gravity potential gz. Let us consider oscillations

of a horizontal sheet of water. We will confine the problem first to cases

where the motion is in two dimensions, of which one (x) is horizontal and

the other (z) vertical, counted positive upwards; water surface at rest z = 0,

water depth z = — /?. The waves then present the appearance of a series of

parallel straight ridges and furrows perpendicular to the plane xz. The

amplitude of the waves shall be small at first and we will neglect factional

influences.

One of the kinematic boundary conditions to be fulfilled by the motion

of the water masses is that at the bottom (z = —h) the vertical velocity

component w = dcp\dz must disappear; the other boundary condition requires

that at the free water surface the normal component of the fluid velocity

be equal to the normal component of the surface itself. If I and r\ are the

horizontal and vertical displacements of the surface, then with sufficient

approximation

:

for

-O:*-"-*. (IL3)
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In addition to these kinematic boundary conditions there is a dynamic

boundary condition to be fulfilled at the free surface, namely that pressure

and counter pressure be equal. If we neglect the influence which the atmosphere

exerts on the water motion (see p. 83), this condition is simply reduced to

the requirements that the pressure at the surface be equal to the uniform

air pressure p . If the motion is small, we can neglect in (11.2) the square

of the velocity c in a first approximation and. provided the function F(t),

and the additive constant /) /o. be supposed merged in the value of dqjfdt

we obtain for

z~0:„—
J£.

(II.4)

The equation (II. 1) with the boundary conditions give the possible wave

motion in the water mass of the depth h (Airy, 1845; Stokes, 1880, vol. I,

p. 197; Lamb. 1932, p. 227).

If (p is a simple-harmonic function of x

<F
= Pcos(xx-at)

.

(II. 5)

According to (II. 1) P must satisfy the differential equation

cPP
y}P = ,

dz-

of which the general solution is P = Ae+xz +Be +xz
. The boundary condition at the bottom

ctpl'dz = for z = — h

gives

Ae
-yh = Be'*'1 = hC

and from (II. 5) results*:

(f
= Ccoshy.iz— h)cos(y.x-at)

.

(II. 6)

From the equations (II. 3) and (II. 4) we obtain drjjdt and >/. If we differentiate again with respect

to t we get d))\bt. By equating both terms we get the wave frequency in the form:

a- = gy.\.a.n\\y.h . (II. 7)

If we write

t) = Asm(y.x-ot)

,

(II. 8)

then we obtain for the velocity potential

gA coshx(z+h)
(f
= — cos(xx— at). (H.9)

a cosh y.h

The relation (II. 8) represents ah infinite train of progressive waves with

a harmonic wave profile, travelling in the —a- direction with the velocity

* Hyperbolic functions are used more often and therefore we give here their relationship with

the exponential functions:

ex—e~x eXjre~x ex—e~x

sinh.v = , coshx = , tanh.v = , sech.v =
;
x+e~x coshx
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27ih\

x y \2n2.
tanh

?.

(11.10)

When the wave length is smaller than double the depth (A < 2h) we can assume
that tanh(2^/z/A) = 1, and therefore

c = vXgZ/lji) or c = gT/271 . (II. 1 1)

The velocity is independent of the depth but proportional to the square

root of the wave length.

If, on the other hand, the wave length is moderately large compared
with h, we have xa.nh(2jth/A) nearly equal to (2nhlX), and we obtain the

velocity of long waves (Lagrange 1781)

c = }(gh). (11.12)

It is independent of the wave length and proportional to the square root

of the depth.

To determine the orbit of the individual water particles, we can compute with the aid of (11.9)

from the velocities it and v the component displacements in the horizontal and vertical directions:

cosh x(z+ h)
Xi—x2 = A cos(xx— at),

sinhar/j

sinh x{z-r h)
z x
— z2 = A — sin(xjt— at)

.

sinh y.h

(II. 13)

This gives for each individual particle an elliptic-harmonic orbit. The horizontal and vertical

semi-axes are

cosh x(z-\-h)

sinh*/?
and

sinh*(.z+/f)

sinh*/?

Both axes decrease from surface to the bottom (r = —h). Only a horizontal movement can

exist at the bottom, where the vertical semi-axis vanishes. Figure 8 shows such orbits and the

position of small perpendicular water filaments at rest in a shallow water wave (/j/A = 0*2). For

Fig. 8. Orbital motion and positions of water filaments in a progressive wave travelling to

the right in shallow water (h : ). = 0-2).

deep water waves (h > k) the quantities rj and £ become Aexz
, and each individual particle describes

a circular orbit with a constant angular velocity a = i/(2jigjX). The radii of the circle are given by

the formula Ae*: and decrease with depth in a geometrical progression. The velocity of the particles

is 2(A7i'
l
T)e >tz

.
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Table 1 and Fig. 9 show, according to Airy, for different values of /i/A listed in the first column,

the ratio of the horizontal motion at the bottom to that at the surface listed in the second column

and shown in curve one; the third column and curve 2 gives the ratio of the vertical to the horizontal

0-8

0-6

0-4

02

3/2 A V

0? 0-4 0-6 0-8 1-0

Long
wave ^

Surface -or short waves

FiG. 9. Relation between orbital motion and velocity of propagation and the ratio h\X.

verticalbottom
(1) sech /;: horizontal motion , (2) orbit:

(3)

surface

velocity of waves
,(4)

horizontal

velocity of waves

diameter at the surface,

velocity of short waves velocity of long waves

axis of the elliptic orbit of a surface-particle; the fourth and fifth columns (curves 3 and 4) give

the ratios of the wave velocity to that of waves of the same length on water of infinite depth, and

to that of long waves on water of the actual depth respectively. This presentation shows clearly that

deep water waves start with h = JA, whereas the long waves extend up to a maximum where h =
= OT A; the interval between those two belongs to a transition zone with more complicated

conditions.

Lord Rayleigh (1876) has given another elegant derivation of the wave theory when the

disturbance is small compared with the wave length. If waves travel in a certain direction with

a velocity c and if we give the water-mass a velocity equal but opposite to the direction of propaga-

tion, the motion becomes steady, while the forces acting on the individual particles remain the

same. Prandtl (1942) uses this method in a brief derivation of the velocity of propagation of surface

or short waves. A "reference system" travelling with the waves has a horizontal velocity in the

wave crest u1 = c— InrjT, r being the radius of the orbit and T the time of a revolution (period of

the waves). Then 2nr\T is the velocity on the circular orbit. The horizontal velocity in the wave

2*
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trough is u2
= c+ 2nrJ.T. The wave height is h = 2r, so that according to the equation of Bernoulli

for steady currents

Wg— u\ = 2^/? = 4gr
,

on account of the equality of pressure. With these values for w t and u2 the left side of the equation

becomes Sjicr/T, and c = gT(2n, which corresponds to (11.11).

Table 1 . Characteristic values of surface waves

Ratio: Ratio: Ratio: water velocity

Depth wave
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P = \gQA 2 s\n
2 {xx— at)

and for one wave length P = \gqA 2
l.

A water particle has in its orbit an angular velocity Aexz2n\T and the

kinetic energy of a volume element dxdz is represented by

p An2
... , ,

|
-= A2e^dxdz .

In order to obtain the energy for the whole water column, this expression

must be integrated for dz from — oo to 0. Considering (11.11), the kinetic

energy per unit area will be K = \ ggA
2 that per wave length \ QgA

2X. Con-

sequently, at any time the total energy per unit area in the case of a progressive

wave will be

E = \ QgA2
. (11.14)

The energy at any instant is always half potential, and half kinetic. The

energy of a progressive wave system of amplitude A, therefore, is equal to

the work required to raise up a waterlayer of thickness A through a height \A.

One has to remember that, in considering a part of the ocean surface, its

Fig. 10. Streamlines and orbits in a short wave travelling to the right.

wave energy depends not only on the wave height, but also on the wave

length. The long waves being mostly at the same time the highest ones, have

more energy than short waves. "

In each progressive wave there is a transport of energy in the direction

of propagation of the wave. If v is the velocity of this energy transport,

then vE is the amount of energy propagated across vertical planes which

are a unit width apart; for surface waves, according to Lamb (1932, p. 383),

this is

vE = ±QgA2cs'm2x(x-ct)

.

(II. 14a)
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The mean value for a wave length is

vE logAc2 = \Ec (11.146)

This equation can therefore be interpreted that either the entire energy is

propagated at half the wave velocity or half the energy at full wave velocity.

The latter interpretation appears to be the better one, because, according

to the above expression for P, rE = cP, which means that the potential

energy is transmitted with the wave velocity. To satisfy (II. 14), P = hE. It should

be observed that the potential energy is a periodical function, which advances

in phase with the deformation of the surface, whereas the kinetic energy

is evenly distributed along the entire wave and is independent of the position

or the velocity (Sverdrup and Munk, 1947) with which the surface de-

formation advances. See Fig. 1 1

.

Fig. 11. Variation of the potential and kinetic energy along a wave length of a progressive

wave over a great depth.

2. Further Development of the Stokes Wave Theory

The wave theory developed so far has as a condition that the wave height

must be small compared to the wave length. The profile of the wave was
a simple-harmonic. This condition is fulfilled at the beginning of the de-

velopment of a wave. But with the increase of the wave amplitude this

restriction should be abandoned. The determination of the wave-forms which

satisfy the conditions of uniform propagation without change of type, when
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this restriction is abandoned, forms the subject of a classical research by

Stokes (1847).

Stokes developed his theory by using Rayleigh's method by superposing

a wave disturbance upon a steady current.

If in the case of infinite depth, neglecting small quantities of the order

A 3/P, a stationary wave disturbance of the wave length I is superimposed on

a steady motion with the velocity c the velocity potential q> and the stream

function y will be:

<P
-x — Ae^s'mxx

c

- = — z+Ae*- cosxx
c

(11.15)

The equation of the wave profile of the disturbed surface \p = is found

by successive approximations from z

z = Ae*zcosxx = A (I + xz+lx2z2 -{-...) cosxx

= |xA2+A (1 +f x
2A 2

) cos xx+ 1 xA 2 cos 2 xx+ 1 x2A3 cos 3kx+ . . .

.

if

A(l->x2A-) =a
we obtain

r\ = \ xa2+ a cos xx+ | *tf
2 cos 2x:x+ 1 x2a3 cos 3xx-\- ... (11.16)

With increasing amplitude the wave profile difTers more and more from

the simple-harmonic type. The wave crests become narrower and steeper,

wave troughs wider and flatter. The wave profile as expressed in equation (11.16)

corresponds to the equation of a trochoid, in which the circumference of the

rolling circle is 2n\x = X and the length of the arm of the tracing point is a.

So far his profile corresponds to that of the Gerstner waves (see p. 26).

The ratio of 2a\l =
r
*
B represents already a high value (see p. 48) and,

neglecting the terms of 3rd order in xa we omit in (11.16) a value less than

one thirtieth of the wave height.

Burnside (1916) raised the question as to the convergence, both of the

series which form the coefficients of the successive cosines when the ap-

proximation is continued and of the resulting series of cosines. He even

doubted the possibility of waves of rigorously permanent type. Levi-Civita

(1925, p. 264; Geppert, 1929, p. 424) has proved the convergence and the

existence of waves of a permanent type in agreement with hydrodynamic

principles. The wave profile of a permanent wave as calculated by Levi-Civita

difTers very little from the profile computed by Stokes and Gerstner (trochoids),

and for small amplitudes there is practically no difference. With increasing

amplitude there is a gradual transition of the wave profile from the harmonic

type to the trochoidal form, and a further increase of the wave height will

change the profile again. If the trochoidal form were exact instead of being
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merely approximate, the extreme form would have cusps at the crests, as

in the case of Gerstner waves (Fig. 15). This, however, is not the case. Stokes

and Mitchell (1893, p. 430) have shown that the extreme form has angles

of 120°, similar to a roofline. The ratio between the height and the length

of this steepest wave form was 0142 or approximately 1 :7, and its velocity

of propagation was 1-2 times greater than for waves with infinitely small

heights.

Thorade (1931, p. 31) explains this striking result as follows. Figure 12 shows a small part

of a wave in the vicinity of the crest, where the water surface can be adequately represented by two

planes AB and A'B'; He adds the negative velocity — c according to the method of Rayleigh, and

he obtains a steady current towards the left, which is bounded by the crest acting as a solid wall;

Fig. 12 Streamlines and equipotential lines in the crest of the highest possible Stokes's wave.

The stream lines then follow the deathered lines CC; the system of lines CB, C'B' perpendicular

to CC represent equipotential curves, whose successive distance is inversely proportional to the

velocity. If one knows the angle 2a formed by two rigid walls, and provided that in greater depth

the stream lines are horizontal, then both systems of lines are completely determined, as shown

in Lamb (1932, § 63, p. 68). On account of the continuity of the current, the velocity in A must

be zero; it decreases in approaching A and increases again afterwards. Below A the horizontal

component increases, until it reaches —c when the stream lines are horizontal, but in the crest of

each stream line the vertical component is always zero. The condition of continuity and the condi-

tion of irrotational motion determine the entire field of streamlines. In this case an additional condi-

tion is that the surface BAB' is a free surface, and the fixed walls can therefore be removed without

changing the motion. This condition fixes the angle 2a. Calculation gives for the value of a = 60°.

The equation of continuity in the present case is dujdx+dwjdz = 0, the condition of irrotational

motion dwjdx—dujdz = 0. We introduce instead of rectangular co-ordinates (x, z) polar co-ordinates

(r,&) with their centre in A (Fig. 13). Then x = rsinft and z = a—rcos&, and the transformation

of co-ordinates gives for both conditions the equations:

du dw du dw— sin# cos??1

-\ cos# H sin# = ,

dr dr rdd rd&

tu dw du dw— cos# -j sin# sin# H cos# = .

dr dr rd& rd&
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This gives the two equations:

duldr+8wlrd& = and iw\dr-du\rdd = 0.

The wave profile in the vicinity of A is given by >] = a— rcosa.

Bernoulli's theorem has the form of

P 1

- H— q
2 -\-g(a — rcosa) = constant ,

e 2

if the total velocity along BA is q.

This requires that, with p constant (free surface)

25

Fig. 13. Transformation from rectangular into polar co-ordinates.

In the vicinity of A, therefore, q must be proportional to j/r or «= C y rf(&) and w =
= C|/r(#). With the previous equations, we then obtain %f(&)+g'(&) = and ig(&)—/'(#) = 0,

which leads to the differential equation 4g"(&)+ g(d) = 0, with the solution & = Acos^#+ Bsin|#.

With & = 0, w = and we obtain u — — Cj/rcos|# and h> = + Cj/r sin £#. In each point (r,&)

the current vector forms with the -x-axis the angle J#. This also applies to the surface, where & = a,

for which a+\a = 90°, or a = 60°,

A simpler derivation of this condition can be obtained starting with the stream function accord-

ing to Lamb (1932, § 63 (3), p. 69). If the stream function in polar co-ordinates {r,&) has the form

ip = Cr"cosn& with the condition that y> = when & = ±a, this will lead to na = £tt. From this

we obtain q = nCrn
~ 1

, where q is the resultant fluid-velocity. But since the velocity vanishes at

the crest, its value at a neighboring point of the free surface will be given by q- = 2gr cos a.

Comparing q and q
2
, we see than n = | and therefore a = \ji = 60°.

The condition of uniform pressure at the free surface along the entire

wave profile (y> — 0) here again leads to a relation between wave velocity

and wave length. The total velocity is obtained from u and w from (11.15),

and the square will be c
2+ j4Vz— 2Ace"zcosxx. Therefore Bernoulli's theorem

gives for the free surface

— + ^- + ^ A2e2*i— cAe*'1 cos xx+ g>] = const.
q 2 2
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If we develop the ^-functions in series and substitute (11.16) for rj, we obtain

(11.17)VI
g^l.

The velocity of progressive waves with a wave profile not changing its

type slightly increases with the relative wave height, i.e. with the steepness

of the waves; however, the discrepancy with the simple formula is not great,

as ajK appears only in the second order. The somewhat more exact value

derived by Levi-Civita also corresponds with the first terms of (11.17).

The Stokes waves of the permanent type show the characteristic that

they possess relatively to the undisturbed surface a certain momentum in

the direction of wave propagation. The individual particles in these progressive

waves of permanent type do not have closed orbits, but they show a slow

but constant advance in the direction of the wave propagation. This is ex-

plained by the fact that, in the case of rather large wave heights, a particle

which moves in the wave crest at the surface to the rigth has a smaller velocity

in the wave trough in the opposite direction and that it does not come back

to its initial position below the former wave crest. The particle, in this way,

does not cover circles but loops. According to Stokes, the velocity of this

current in a depth z is

u = y}a%ce--xz = n2d2ce {
- 4nz)l*

when d is the ratio of the wave amplitude 2a = H to the wave length X (d is

called the wave steepness). The velocity of the current decreases rapidly with

increasing depth. Rayleigh (Thorade, 1931, p. 31) showed that, in an

irrotational wave motion there always must be a water transport, which is

also valid for other waves; Levi-Civita (1922, p. 85) has given the theoretical

proof of this statement. The mean velocity Q is given by the equation

Q = ^(a/h)2gh/c. If a = 10 cm, h = 500 cm and c = 50 cm/sec, we obtain

for Q = 2 cm/sec; compared with c, this is a small amount, which should

not be neglected generally.

3. Gerstner's Rotational Waves

In 1802, Gerstner developed a wave theory which gives an exact solution

of the hydrodynamical equations for waves over infinite depth. The exact

equations, according to Gerstner, express a possible form of wave motion.

Contrary to the Stokes waves, the motion in this fluid is rotational. The

vorticity is greatest at the surface and diminishes rapidly with depth. The

sense of the vorticity is opposite to that of the revolution of the individual

particles in their circular orbits and, therefore, unfavourable for the generation

of such waves, because it is impossible to originate these waves by the action

of ordinary forces on the surface at rest.

The derivation of the equations is facilitated by using the Lagrangian
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equations of continuity motion (see vol. I). If the .v-axis is horizontal in the

free surface at rest and if the positive r-axis is vertical downwards, and

q = \, we have

d2x dx IcPz _ \ dz_ (

p

'a¥da
+

\dr1 g 8a
+

da
0,

<Px dx ld*z _ \ dz dp _
dt2 dy

+
\dt2 8)dy

+
~dy~ '

(11.18)

D = dx dz dx dz dD
dt< a ( y dy da

'

a and y are the co-ordinates of this particle at rest at true /. Figure 14

shows that in general

x = a + rsin# , z = y -+- rcos&
,

Fig. 14. Orbit of a water particle B (a and 7 are the co-ordinates of its centre).

and if & = (xx—at), the path of any particle will be a circle with a radius r,

which can be a function of the depth y. After a time T = 2x/o and at a distance

;. = 27i/x, this circular motion is repeated. If such a motion is possible, then

the equations (11.18) must be satisfied. The expression for D gives

dr
D = 1 + xr— +

dy \dy

dr
wncostf

As Z> should be independent of t,

dr

dy'
= — xr , r = Ae~ y-y (11.19)

The radii of the circular orbits decrease with depth with an ^-power.

As e~
nls = 201, we have the simple rule established by Rankine, according

to which, with each increase of depth of one-ninth of the wave length, the

amplitude is reduced to half of the previous amount. Accordingly,
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8rD = 1 + xr — = 1 - *V 2 = 1 - x2A 2e- 2*?

dy (11.20)

The two equations (11.18) further give

dp

ca

dp

dy
= (a2— xg) r sin & and = (a2— xg) rcos# -\-g— a2xr 2

The boundary condition of uniform pressure at the free surface requires

that a2— xg — 0. This is identical with the equation (II. 7) for water of infinite

depth, which means that the velocity of propagation of the Gerstner waves
is also

c = Vigtylji) .

The equations for pressure are then reduced to

cp/ca = and dp/dy = g(l -x2r 2
) .

Consequently, when y = 0, i.e. for the free surface, the pressure p must
be equal to the atmospheric pressure:

P =Po+ g y-^A 2{\-e2*v) (11.21)

The constant A, which is the wave amplitude, can only increase to such

an extent that D in (11.20) does not vanish or becomes negative. As y varies

between and oo, this requires that

A 2 <
1 JA 2

2.T
(11.22)

As long as A < Xjln, the equation of the surface is at any time a trochoid;

when the amplitude becomes equal to l\2n, we have the extreme case with

acute angles at the crest (cycloid). If A > l\2n, we have a curve with loops,

which is impossible for steady motion. This is in agreement with (11.22).

Figure 15 shows in thin, solid circles the orbits of the water particles and

Fig. 15. Profile of a Gerstner wave: trochoid. Thin circles: orbits of the particles; dotted

curves: position of line of particles during passage of a wave.
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the decrease of the orbits with increasing depth: the dotted lines represent

the successive places of filament of particles which are vertical when they

pass through a crest or a trough. The solid drawn lines are the possible wave

profiles, which are trochoids, and their extreme form is a cycloid.

Stokes has already proven that a system of waves of the Gerstner type

in an ideal fluid cannot be originated from rest. It can be supposed that by

properly adjusted pressures applied to the surface of the waves the surface

takes the shape of Gerstner waves. According to Stokes, we require as

a generating condition an initial horizontal motion in the direction opposite

to that of the propagation of the waves ultimately set up. A wind blowing

over a water surface tends to provoke a steady horizontal current in the

direction of the waves. Therefore, this is an unfavourable condition for

producing Gerstner waves.

4. Short-Crested Waves

The previous theoretical investigations assume infinitely long wave crests

which advance perpendicularly to the direction of progress of the wave.

The surface should look like a sheet of corrugated iron. In reality, however,

the ocean surface looks like crepe paper. Jeffreys (1925, 1926) has given

the theory for these short-crested waves. We can represent this wave by

r/ = A cos (at— y.x) cos x'y , (11.23)

in which the wave advances in the 4-.v-direction with a wave length / = 2nfx,

the length of the crest being ).' = 2.t/*\ Figure 16 shows, according to Thorade,

Fig. 16. Three-dimensional wave motion (// = 7/). (By Thorade.)

a topographical map of the surface for /.' = 7/.. This presentation is still

too regular compared to the actual mixed-up waves as they occur in nature,

but there is already a difference with the waves discussed earlier. If x and y
are the axes in the horizontal direction and z is positive upwards, we can

express the velocity potential by

tp = — Aerz s'm(ot— y.x)co$y.'y . (11.24)

in which r'
2 = x- — v.'-. The amplitude has been selected in such a way that

the conditions for the continuity and irrationality are satisfied. We can deduct



30 Theory of Short and Long Waves

from (11.24) the velocity components u, v, w, and the co-ordinates of a particle

referred to the centre of its orbit.

This gives:

I = - Aerz sm(ot— xx)cosx'y ,

£' = Aerz cos {at— xx) sin x'y

,

(11.25)

ry = Aerz cos{at— xx)cosx'y .

If we use again Rayleigh's method by adding a wave velocity —c, we
transform the wave motion into a steady motion, and the square of the total

velocity of a particle («— c)2+ v2 -\-w2 = c2— 2uc if we neglect u2+ i?-\-w2

against c2
. Bernoulli's theorem then is

i

+ £»7 + ^ (c
2— 2wc) = const

;

which is only possible when g = cxajr. If ajx — c, we obtain

A2vW l, r (11.26)

The velocity of propagation increases when the crests become shorter.

We can deduct from (11.25) that the orbits are no longer circular, but elliptical,

and the plane of the ellipse is parallel to the direction of propagation (.v-axis),

but it forms an angle a with the vertical plane xz. This angle a is given by

tana = x'/rtanx'/y. These planes, therefore, are only vertical in the troughs

and in the crests; elsewhere they are inclined, and the vertical axis is larger

than the horizontal. The ellipses are standing up, which might seem strange.

It has not been possible to find out if such waves really exist. Another strange

fact is that the energy of such three-dimensional waves per unit area is smaller

than for a similar two-dimensional wave.

When t = 0, we have according to equation (11.23) rj = Acoskxcosk'y.

The potential energy of a v/ave crest can be computed by integrating Igqifdxdy

from —\X to +JA and from —J )' to +|A' and by dividing afterwards by

the area \17! . We then obtain E = IggA 2
. The kinetic energy is calculated

by integrating hgq2dxdydz, in which q is the total velocity. The limits of

the integration are the same as previously, and the additional limits are

z = to z = — oo. After dividing by j/U', we obtain Ek
= \ggA*.

Per unit area we find again that the energy is half potential and half

kinetic and that the total energy is IgqA 2
, which is only half that of a two-

dimensional wave system of smaller amplitude (equation 11.14).



Chapter III

Observations and Measurements

of Ocean Waves

1. Testing of the Theory by Laboratory Experiments

The first attempts to check experimentally the theoretical results of the wave

theory date back as far as Leonardo da Vinci (1452—1519), who always

endeavoured to support his views by experiments. The first systematical

experiments in wave tanks were made by the Weber brothers (1825). However,

the wave tanks used by them were not large enough and too narrow to avoid

disturbances at the ends. The results were also influenced by friction at the

side walls. Later on, Scott Russell (1845, p. 311) undertook measurements

under more favourable circumstances; he was principally concerned with

a kind of waves different from the wind waves of the oceans (waves of trans-

lation) (see p. 116). Later on the theories by Stokes, Airy and others have

been tested in hydraulic dynamic laboratories which were better equipped.

But the depths in wave tanks are generally small in proportion to the generated

wave lengths, and the term ''surface waves" can only be used with certain

reservations. At the bottom of the tank the water particles are still in motion,

and the friction at the bottom is liable to retard the propagation of the waves.

Recent experiments with long and relatively deep tanks are significant and

important, as they permit a survey of the principles on which the whole wave

theory is built.

We shall discuss the experimental tests made during 1938 and 1939 by

Mitchim in the hydraulic laboratory of the University of California (1940).

The tank had the shape of a canal with a length of slightly over 18 m, a depth

of 92 cm and a width of 30 cm. Through glass walls one could observe and

photograph waves travelling through the canal. He made 28 series of ob-

servations on waves with a constant wave length varying between approx-

imately I and lim. Such waves can still be considered as surface waves

in proportion to the depth h because hjX did not become smaller than 05;
according to Table 1 and Fig. 9, however, this is the lower limit for such

waves. We will show in diagrams the main results of the extensive observations.

Figure 17 shows for each series the relation between the velocity of pro-

pagation and the wave length and the solid line corresponds to the theoretical
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motion and the various relations between it and the generating force of the

wind. We wish to call special attention to this valuable collection of wave

photographs.

Waves, in the open ocean, are generated by winds which change their

direction very often and suddenly, especially outside the region of the trade

winds. Therefore, simple uniform wave systems over large areas cannot be

expected. These wave systems, with their great velocity of propagation, travel

great distances from their source. These waves, which were not generated

in the area under observation by the wind prevailing at that particular moment,

but are coming from great distances, are called swell. They are not subjected

any longer to the direct influence of the wind and can, therefore, be con-

sidered as free waves. By their roundish, and long-streched profile, which they

maintain despite their length and height, they look different from the real

wind waves. These wind waves, under the direct influence of the wind, have

considerably shorter wave lengths and shorter crests, which break very easily;

their profile is unsymmetrical and steeper on the front than at the rear side.

Long and high swells from the region of the trade winds of the two

hemispheres travel into the equatorial zones of calm, and occasionally

intersect here (cross sea). No less typical are the high and long swells, which

are almost permanently present in the calm area of the Hors latitudes, in

the polar border regions of the trade winds of both hemispheres. North-west

storms (in the Northern Hemisphere) which originate in the rear of atmospheric

low-pressure regions whip wind waves into mighty seas which gradually

move out from their source of origin. Eventually, they travel as far as the

north-east trade wind region and sometimes even into the Southern

Hemisphere. It is not difficult for an observer aboard a ship, especially if

he has some experience, to distinguish between "sea" and "swell". When
the sea is rough, one wave system will generally surpass the others by its

dimensions and thus strike the eye ; frequently they have a different direction

of propagation, so that, by observing them carefully, they are easily dis-

tinguishable.

In principle, it is not difficult to observe the period, velocity and length

of ocean waves. In case of a ship anchored in the direction of propagation

of the waves, the period of the waves can be determined by means of a stop-

watch, checking the times at which the consecutive wave crests pass the point

of observation ; or one observes the passage of n waves. If the time required

for this was tx , the wave period is T = t x \n. The wave velocity is obtained

from the time required by the wave crest to cover the distance from the bow
to the stern of the ship. If this time is t2 and the length of the ship /, the

velocity c will be ljt2 . From c and T, the wave length can be calculated from

X == cT. If the waves are shorter than the ship {I < /), their length can be

marked out on the ship hull and measured (preferably by two observers).

If the ship is moving, it is necessary to know and to take into account
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the course, direction and speed of the ship. The preceding formulae undergo

a change if the ship and the waves travel in the same or opposite direction,

then the speed of the ship has simply to be subtracted or added respectively

algebraically to the wave velocity. If the speed of the ship is V, the wave

velocity and the wave length will be, respectively

c = (l/t2)±V or X = tz(c±V).

If the course of the ship is not perpendicular to the wave crests, but maxes

an angle a, the above formula only gives the apparent wave velocity. In order

to obtain the real one, it must be multiplied by cos a; the angle here must

be smaller than 45°, else the result is not sufficiently accurate.

It is more difficult to determine the wave period when the ship is travelling.

An observer located in A (see Fig. 20) observes in tx sec the passage of n waves

Fig. 20. Determination of wave period and wave velocity.

(apparent period = tjn). For this observer AA' would be the last wave

front counted by him. For an observer who shifted from A to B, BB' is the

last one, as he did not count the waves on the stretch CB. Therefore, we

have to add to the n waves, CB\l waves. As CB = Vtx cosa, the period will be

T = tx :(n
Vtx COSa

\ = ^(wA+K^cosa)

It is easy to establish that the wave length A = cT will then be I
to. n

COS a,

i.e. the wave length is found from the apparent wave velocity multiplied

by the apparent period and by the cosine of the angle between the course

of the ship and the direction of the waves (Thorade, 1931, p. 24).

The wave length can also be measured directly by throwing out a log

board or a small buoy and letting the marked rope unwind long enough

3*
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for the log and the buoy, respectively, to line up with the stern of the ship

simultaneously on a wave crest. On account of the sag of the cord there is

a considerable error by obtaining too great wave lengths.

It is much more difficult to measure correctly the wave height. If the waves

are of considerable height, so that the horizon is concealed by them from

the observer when the ship is in a wave trough, he can climb up high enough

in the shrouds in the middle of the ship to see the crest of the approaching

wave line up with the horizon and thus determine the wave height. In using

this visual method, attention should be paid to the fact that, at the time of

the observation, the ship must lie entirely on a flat keel in the wave trough,

otherwise the observation would be worthless. In a similar way, Wilkes

(1845, p. 135) determined the height of the ocean waves, looking from the

shrouds of a ship in a wave trough across two successive wave crests. Figure 21

Fig. 21. Wave height measurement. (By Ch. Wilkes.)

illustrates this procedure. It should be considered that, in consequence of

its buoyancy, the ship makes dipping motions. This causes considerable errors

in the observations. In the wave trough the ship dips less than at the top of

the wave crests. Especially in observing the wave height, these corrections

should be made by means of very fine aneroid barometers. Neumayer was

the first to refer to this method, which was then frequently used later. The

conversion factor from pressure variations to differences in height varies

slightly with atmospheric pressure: at a pressure of 10399 mbar(780 mmHg),
a height difference of 40-5 in. (103 m) corresponds to a pressure increase

of 0- 1 3 mbar (01 mm Hg), whereas at 986-6 mbar (740 mm Hg) the difference for

013 mbar (01 mm) is 42-5 in. (108 m). The error resulting from dipping

oscillations can be estimated at ±40 in. (1 m) at the least. Furthermore,

there are errors arising from the elastic after-effect of the aneroid and from

short period variations of air pressure which have a different origin. Only

very sensitive aneroids and great care in measurements will give useful results.

If the wave heights are too small to be determined by the above-mentioned

methods, they can be estimated from high ships, provided one can watch

the exterior of the marked hull. In the open sea it is easy to carry out such

measurements from a small boat.

In former times it was left to the observer to decide which waves he was

going to measure, and observation instructions were rather vague. Thus,

the results of wave measurements were entirely inhomogeneous and could

hardly be compared. A procedure to standardize wave observations was

recently agreed upon. The aspect of a travelling wave system, as well as the
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record of a wave registering instrument (see below), show that the surface

of the ocean is composed of many very irregular wave groups. Due to this

fact, it can be expected that the determination of the elements of a wave will

give entirely different results depending on which parts of such a wave train

are considered and which are not. Figure 22 gives a typical record of a wave

A AAA
I / /

^Interval of 6 sec

Fig. 22. Registration of a wave train by a wave recorder of the Admiralty.

train made by the Admiralty's wave recorder. It shows the variations of the

ocean surface with time at a fixed point and, therefore, represents the up

and downward motion of an object floating at the ocean surface as seen

by an observer. This record shows at once the difficulties encountered in the

case of visual observation of the average period and height of the waves

at this point. In order to get representative values and to be able to obtain

comparative values with other observers, it seems necessary to consider

particularly such waves which do not change during their travel. These are

in the first place the waves which occupy the middle of the individual

wave groups. Recent instructions require that the observer should note the

period and height of these higher waves in each group, neglecting flat and

ill-developed waves {A in Fig. 22) in the intermediate region between wave

groups. The average period and height of fifteen to twenty of the higher

waves is to be determined. The individual waves do not belong to one group

and, therefore, the observations must not necessarily be on successive waves.

These waves were called "significanf' waves (see p. 87) by Sverdrup
and Munk. It is not until a large number of such exact determinations of

wave elements will be available that discordances in the results of individual

observers and of individual series of observations will disappear.

Wave-measuring instruments have been built by Froude and Paris

(1867, p. 731); they were only used occasionally by scientific expeditions.

The principle on which both devices work is the fact that the orbit of the

water particles is large in the surface layers, whereas the orbit decreases

rapidly with increasing depth. A few metres below the surface it is so small

that it can almost be neglected. We can construct a long divided staff which

is weighted at the lower end and has a floating anchor. This rod will float

without participating in the up and downward movement of the wave motion.

We can then measure the variations of the water level on the affixed scale.

The Froude instrument has its floating anchor made of a horizontal canvas-

covered frame tied to the staff by means of cords. This frame, which lies

in almost completely stationary water layers, damps nearly every vertical
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movement of the staff (see Fig. 23). The construction of the instrument built

by Paris is fundamentally similar, except that it is somewhat more stable.

A ring-shaped float around the lath is pushed up and down by each wave.

These motions are recorded by an automatic recording device affixed to the

top of the staff. Pabst (1933) (Hamburg ship-building laboratory) developed

VJcw§ crest

Fig. 23. Wave height meter by Froude.

a buoy which proved to be satisfactory for measuring waves, but it seems

to be very difficult to make it work when the sea is rough. No measurements

with this device have been published.

Recently wave-recording instruments have been developed or built which

either record approaching waves at a point not too far distant from the coast

or from aboard a ship. Such instruments have been described by Deacon
(1946, p. 13) for the Admirality Research Laboratory, Teddington, and

almost simultaneously by Klebba (1945) for the Woods Hole Oceanographic

Institution. Although the various instruments which were developed differ
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in many important respects, they are all based upon the following principles.

Surface waves induce pressure fluctuations in the entire column of water

between the surface and the sea bottom. For any given depth of water and

wave height the amplitude of these fluctuations depends on the wave period

in such a manner that waves of very short period are virtually eliminated.

The pressure fluctuations at the bottom are measured by an underwater unit.

A slow leak placed in this underwater instrument permits the selection of

wave periods, as that the instrument will eliminate very long waves, as, for

example tidal waves. The pressure fluctuations are converted into electrical

modulations which are transmitted by means of a cable to a shore recorder

(see Fig. 24). The natural wave is modified in three stages: (a) waves of short

Fig. 24. Wave recorder (schematic).

period are eliminated by hydrodynamic filtering; (b) waves of very long

period are removed by the slow leak in the underwater unit device; (c) the

remaining waves are recorded and then subjected to a harmonic analysis,

for further study.

The effect of the hydrodynamic filtering can be characterized by the ratio

Ap/Ap , in which Ap and Ap respectively are the amplitudes of the pressure

fluctuation at the bottom, immediately beneath the surface where h is the

water depth. From the equation (II. 9) it is easy to deduct that

Ap_ 1

cosh*/z

when y. = 27r/A. According to the equation (II. 7), however

g ,

a" = ItiV

T
tanh^/z

and the hydrodynamic filtering effect can be computed as a function of depth
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and of the wave period (Munk, 1947). It can be shown that wave periods

of less than 4, 8 and 15 sec are practically eliminated in depths of 40. 150

and 600 ft.

The underwater unit is different for each of the instruments developed.

We quote Munk "As a rule, the exterior pressure variations are transmitted

through an outer bellows into a second bellows inside the instrument casing.

Thus the pressure of the air inside the two bellows always equals the pressure

in the water outside. The air inside the bellows can pass through a slow leak

into the instrument casing, so that the average pressure inside the casing,

equals the average pressure in the water, that is the hydrostatic pressure ph .

The leak is so slow that the pressure inside the instrument does not change

appreciably during one wave period.

"The total displacement of the inner bellows depends on the difference

in pressure between the inside and the outside of the bellows and therefore

measures the deviations of pressure from the hydrostatic mean. These

deviations have an amplitude Ap.

"For waves of very long periods the fluctuation of air pressure in the

instrument casing cannot be neglected. Indeed waves of tidal period are

almost completely eliminated from the record, as the slow leak is able to

compensate for the gradual rise and fall of sea level during a tidal cycle.

In the general case the amplitude response of the instrument is proportional

to r 2
/(l +r 2

), where r = TJT. Tr
is the 'resonance' period, which depends on

the size of the slow leak, the air volume of the instrument, and the water

depth. T
r
has been assumed to equal about one hour. Owing to the combined

effect of hydrodynamic filtering and the slow leak, waves of short and very

long period are effectively eliminated. Maximum sensitivity is achieved in

the desired range by a proper choice of depth for the underwater unit and

of size for the 'slow leak'."

The methods used for measuring waves from aboard a ship are more

difficult and require the ship to stop during the measurements. The dimensions

of the waves at the ocean surface can be derived from the movements which

the ship makes under the influence of the passing waves. A picture of such

a recording is given in Fig. 44 (p. 100). Such measurements are, of course,

more intricate and can only be performed on commercial ships by trained

personnel.

3. Comparison between Theory and Observations

To compare observations with theory, we need the following relations

in metres per second:

c = 1 25yA , c = 1 56 T, T = 0-80M ,

A = 64 c2
, 7 = 064 c, A = 156T2

.

The fact should be stressed that a confirmation of these formulas by
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observation of ocean waves is not by any means conclusive with regard

to the wave profile. As a matter of fact, all these theories give very much

the same result as to the relation between the velocity of propagation c and

the wave length A, and the period T respectively, which is given numerically

in the above formulae. Table 2 gives a few correlated numerical values

according to the preceding formulae, together with the frequently needed

values for * and a.

Table 2. Surface,
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show the deviation to be expected from the theoretical values. Figure 25

gives the ratio between the wave length A and the wave velocity c, Fig. 26

gives the ratio between wave length I and period T. Each point corresponds

to a group of observations made by nine investigators. The solid curve
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Table 3. Comparison between velocities deducted from observations

and computed from wave length and period

(according to H. Thorade)

Author
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simultaneous observations of wind velocity and wave height have been used

to derive a mathematical relation between both values. Difficulty is that

the wind velocity is evaluated after the Beaufort-scale, and the reduction

of the values to m/sec is different according to the different observers and,

therefore, the observations are not always comparable. Another difficulty

is that very often the force of the wind is measured at deck height of the

ship and is different from the wind acting on the ocean surface. For this

reason, it is not surprising that the relations between the wind velocity v

(m/sec) and the wave height h (m) have shown variations according to the

different observers. Therefore, we will obtain a relation derived by Cornish

h — 0-37v which mathematically is not exact, but is rather a rule which tries

to represent average conditions.

This equation assumes that for a given wind velocity with a sufficient

duration, and if the fetch is long enough, there is a definite maximum wave

height.

We will discuss in another chapter the growth of the waves and the

experiments which determine the relation between the wave height and the

duration of the wind action (see p. 87). Table 5, by Cornish shows the

values of the different characteristics of a wave in relation to the wind velocity.

Table 5. Maximum dimensions of waves relative to wind force

(According to V. Cornish)

Wind
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of the wind velocity and the corresponding maximum and minimum wave

height. From this table it is easy to see that the deviation is quite large for

each group. Figure 27 is a graphic presentation of these average values and

the values given by Cornish in Table 5. Cornish's values are distributed

1 + V. Cornish

• *•— E. Zimmerman

Fig. 27. Relationship between wave height h and wind velocity w for well-developed ocean

waves __| \.
f
according to Cornish; , according to Zimmermann (averaged

from observations); , 6=1/3 v.

along a straight line which passes through the origin. The inclination coeffici-

ent is about 48 and a little larger than the average value given by Cornish

previously. The heavy solid line corresponds to the equation h = \i\ which

can be used for wind velocities below 6 Beaufort. Similar values were observed

in the Baltic (Bruns, 1936).

A distinct effect of the thermal stratification on the waves has been found

in wave measurements on ocean weather ships (Roll, 1952; Brown, 1953),

at lakes (Burling, 1955) as well as in laboratory experiments (Francis, 1954).

Appreciable temperature differences between air and water (e.g. the air 6°C

colder than the water) are connected with greater wave heights (approx. 22 %)
and greater wave lengths (approx. 15%) as compared to equal temperature

conditions in both layers, with the same wind velocity. These differences

are certainly caused by the unstable stratification of the air above the water,

giving rise to strong turbulence and small vertical wind shear. Thus, the

wind forces can exercise a greater influence on the surface of the sea.
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4. Stereophotogrammetric Survey of the Sea Surface

Kohlschuetter (1909, p. 135) on the "Planet" Expedition was succesful

in taking photographic pictures. Since then great improvements have been

made, both in the photographic material and in the measurement of the

stereo pictures. The fundamental conditions for stereophotogrammetry, which

are not always easy to fulfil aboard ships, are : the base-line should have an ap-

propriate length and the cameras must be high enough above the sea surface. The
great development of (Stereoplanigraph of Zeiss or aerocartograph of Hugers-

hoff) instruments to measure the plates have eliminated the necessity of

both photographic plates being in the same plane. Now it is only necessary

that in the measuring instrument the plates have the same orientation as

at the time of the exposure, and give again a good stereoscopic picture. The
Zeiss cameras used by the "Meteor" Expedition 1925—7 had a device which

consisted in that below to the wave cameras there were two other cameras

solidly attached at an angle of 90°. These auxiliary cameras photographed

each other (Fig. 28). For each picture they obtained four plates and on each

main camera

~~y*
auxiliary camera *t~l

Fig. 28. Position of the main and auxiliary cameras for stereophotogrammetric wave

pictures.

plate there was a horizon. There are sufficient points to determine the exact

position of the main plates. By evaluating the plates we obtain a topography

of the sea surface and we can measure this map in any desired direction

(Schumacher, 1939, p. 8; Weinblum and Block, 1935). The size of the

field depends on, and increases with, the length of the base line and the height

of the camera's above the sea surface. We obtain a plot in the shape of

a triangle with the point in the direction in which the picture was taken.

This field will be characterized by the height of this triangle (the depth of

the field) and by the width of the boundary line in the back. Table 7 gives

the length of the basis and the height of the cameras above the sea surface

which have been used up till now for stereophotogrammetric pictures. It also

gives the error in distance and height which can be expected by the evaluation

from a stereoplanigraph. The ideal solution, of course, is to have a base

line so long and so high that even in rough seas a picture containing several

wave trains can be obtained, which can be measured. One can see, for instance,

that a base-line of 6 m as used by "Meteor" Expedition was too small and

that, in such a case, it is a matter of luck to have in the field of observation

a full wave length from trough to trough or from crest to crest when the

sea is rough. The conditions on the "Deutschland" were already much better

and made it possible to secure several wave lengths on one picture. The
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greatest number of stereophotogrammetric pictures were taken during the

"Meteor" Expedition in 1925-7. To complete these observations, more

pictures were taken by the "Deutschland" on two winter cruises in the North

Atlantic, and the excellent pictures were discussed, together with the "Meteor"

observations, by Schumacher (1939). The discussion includes 17 maps of

the "Meteor" Expedition and 13 of the "Deutschland", which have all been

published in the results of the "Meteor" Expedition on a scale of 1 : 1000.

The contours are at an interval of 20 cm and they show extremely clearly

the multitude of forms. Furthermore, from each map there have been selected

a number of profiles, which have been added to the discussions. Average

waves were computed, which have been obtained by grouping several profiles

and by eliminating small irregularities. In this process the wave length was

standardized on 25, 50, 100 and 200 m. These average waves constitute an

excellent material for the study of wave profiles. Furthermore, we have to

mention the stereophotogrammetric pictures taken by Weinblum (1935)

on the "San Francisco" in 1934 in the North Atlantic, and the pictures taken

on the "Westfalen" in the summer of 1933 which Schumacher (1936, p. 239)

published.

The complete analysis of all maps gives much information on wave lengths

and wave heights and on the steepness of waves. All these data have been

condensed in Table 8. From this table we can see that with a well-developed

sea we often find wave lengths of 150 m and over. It is evident that in earlier

days the wave lengths were undervaluated because of the flat wave crests.

The concept of wave height has not been clearly established for natural

waves, because normally neither two successive troughs nor two successive

crests are in the same level. At present we accept as wave height, the average

between the wave trough and wave crest at the front and at the rear of the

wave. From Table 8 we can derive that as an average the wave height is not

too large, most values vary between 3 and 6 m. The largest difference in

levels measured by stereophotogrammetry on a picture taken on the "San

Francisco" was 18 J m and seems to belong to a wave of 16 m height. We
can, therefore, accept Cornish's statement that in many cases waves have

exceeded the height of 21 m.

According to the measurements by Schumacher, the ratio between the

wave height and the wave length varies from 1:17-6 to 1:92-2. This value

is for a swell near decay. Wind waves values vary from 1 : 19 or 1 :20; waves

generated by trade winds from 1:28 to 1:33. Maximum values of 1:10 and

more occur, according to Kruemmel (1911, vol. II, p. 82), only for waves

in their initial stages; when the waves are older, this ratio becomes smaller

and is, then, dependent on the stage of development of the wave. 101 waves

measured by Schumacher had the following distribution in percentages:

h\l = 1 : 20 : 25 : 30 : 35 : 40 : 45 : 50 : 55 : 60 : 65 : 70

7 4 15 8 23 19 11 7 4 1 1



Table 8. Compilation of stereophotogrammetric wave pictures taken by different expeditions

1
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The division of the frequency maxima in two regions shows perhaps the

border between wind waves ( > 1 : 35) and swell ( < 1 : 35). The average steepness

of the wave profile on the leeside and the windside are within a narrow range.

They are of the magnitude 005, which corresponds to an angle of inclination

of about 3°. But on short distances we have sometimes extraordinary large

waves inclinations, as is shown by the maximum values in the table. Values

of 0'4 (about 22°) have been observed, and 0-2 (about 12°) are frequent.

These values are very important in relation to the stability of ships.

It is of interest to discuss the angle formed by the wave crests. The ob-

servations available are too few to be grouped e.g. according to swell o.a.

Mostly the angle is in excess of 120°. Of 52 values we have 41, which is

about four-fifths, lying between 149° and 165°. Schumacher could find only

very few angles smaller than 120°, which corresponds to the limits of a Sto-

kes's wave. Weinblum concurs that the waves measured by him did not

have any angle formed by the crest smaller than 120°.

The wave profiles derived from the contour lines have not a simple ma-
thematical form. An approximation to a cosine form could not be found,

and even a trochoid profile could only be established in a few well-shaped

waves. Looking at the profiles as presented by Schumacher, one has the

impression of a very irregular appearance of the sea. But by grouping and
averaging and by elimination of the very numerous irregularities, he gets

for well-shaped wave trains a profile which is very similar to the form of

a trochoid. In Fig. 29 several profiles have been compiled and compared

200

Fig. 29. Comparison between averaged waves and trochoid profile, (mean values of several

profiles, wave length reduced to 200 m). Dotted lines: trochoid (height scale exagerated

10 times).

with the corresponding trochoid of similar height. One camrecognize a certain

similarity, especially on the windward side. On the leeside, the real wave

profile is below the trochoid. Such deviations, which make the crests steeper

and the troughs flatter, have already been observed in the pictures of Kohl-

schuetter taken on the "Planet". The deviation on the leeside, which cor-

responds to the Stokes theory, seems to be characteristic of the wave profile

for well-developed waves (see p. 80).

The stereophotogrammetric wave maps are morphological instantaneous
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pictures. These pictures do not give any information as to the motion of the

waves. We might consider perhaps the instantaneous pictures of the sea surface

between two wave crests or between two wave troughs as a picture giving

the change of the surface during a wave period. Kohlschuetter has interpreted

the pictures of the sea surface at a definite interval as a wave motion and

to derive from this motion the orbits of average waves. A complete wave
length was divided in twelve equal parts and around each division he placed

an orbit according to the trochoid theory, but instead of taking the corres-

ponding point of the trochoid, he took the point of the real wave profile

lying vertically beneath the trochoid point. Although these twelve points

are side by side in space they are considered to succeed each other in time.

These twelve points were then considered as an orbit of the observed wave
profile. This is only permissible if the wave profile remains constant during

its travel, which might be acceptable for one wave length if the movement
is harmonic. Figure 30 represents one of the six cases on which Kohlschuetter

Fig. 30. wave profile according to stereophotogrammetric pictures taken on the

"Planet"; , trochoid of the same height; , real orbit (wave height not exagerated

in height) (Kohlschiitter).

worked. The wave profile shows again the characteristic deviation from the

form of a trochoid. On the left, the poi-nts give the derived orbit. The troughs

are flatter and the crests are steeper, and, therefore, the orbit is not circular

but oval, with the pointed end on top. These experiences of Kohlschuetter

have not been repeated recently, probably because the fundamentals are not

considered too accurate.

A good way to broaden our knowledge in the mechanics of ocean waves

would be to take a stereophotogrammetric moving picture. This would be

essential for the research on orbits.

5. Apparent and Real Characteristics of Waves, the Complexity of Wind-

Generated Waves

In former timeS, the numerical investigation of the wind-generated sea

consisted in determining some average value of wave period, wave length

or propagation velocity, and wave height. Such average values apply only

to ideal wave trains, that is, to an infinite succession of congruent waves

of permanent form. Therefore, it was not to be expected to find definite

relations between these quantities on the one hand and to the wind force

on the other. The wind does not generate a single wave, and especially not

a simple harmonic wave. As soon as the first formation of waves appears



Observations and Measurements of Ocean Waves 51

on the sea surface, energy supplied by wind to waves is distributed more
and more over a certain range or wave length with different heights as the

sea grows. A spectrum of ocean waves is being formed, with wave components

ranging from ripples to large billowing waves in a storm sea. Therefore, it

is not possible to describe the wind-generated wave pattern by the previously

used quantities which apply only to some kind of a fictitious single wave train.

The basic values of wave motion as obtained from visual observations

or wave recorders shall be ascribed to "'apparent waves". The apparent wave

height H is to designate the height difference between a wave crest and the

preceding trough. The apparent wave period T gives the time difference and

the apparent wave length L the distance between succeeding crests at a fixed

position. As the motion of the sea is not a periodical phenomenon in the

mathematic-physical sense, but rather a superposition of a large number of

partial waves whose frequencies are in an irrational proportion, the structure

of the oscillation is subject to perpetual changes and the above "apparent

basic values" give only a rough approximation of the motion of the sea.

The true quantities, that is, the amplitude, the period and the height of

harmonic wave components, can neither be observed nor directly measured.

A spectrum of sea motion can be obtained quantitatively only by means
of harmonic analysis. More recent systematic observations of apparent wave
quantities in deep water are not very numerous (Seiwell, 1948; Putz, 1952;

Neumann, 1952/?, 1953a, b; Waiters, 1953; Darlington, 1954; Roll,
1953, 1954), but they stress the importance of such investigations. An example

of the frequency distributions obtained in this way is given in Fig. 31.

rllWl !

1
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6. The Energy Spectrum and the Spectral Analysis of Recordings of Ocean

Waves

The actual complex wave pattern characterized by the distribution of the

apparent periods T and the apparent heights H is closely related to the

spectrum of the wind-generated waves. It is not difficult to derive theoretically

this spectrum from very simple basic assumptions (Neumann, 1953/?, 1954).

It will be pointed out that theoretically all periods T of the frequencies

a = InjT are present in this spectrum. Analogous to the distribution of

thermal radiation in the individual frequency intervals of continuous spectra,

it is postulated that to a given range AT there belongs an energy interval AU.

Then, the spectral energy density of the sea motion can be defined by the ratio

WT =^ [erg cm-2 sec"1
] . (III. 1)

The spectral wave energy AUT for the average period T in the interval AT
is proportional to the square of the spectral wave height HT in the same

interval. Therefore

Ht =^ [cm2 sec- 1
], (III. 2)

where h% is the square of the heights of individual waves in the spectrum.

With sufficient accuracy for our purpose and with (11.14)

1 dhl
dUT = WTdT = igQjfdT [erg cm- 2

]
(III. 3)

can be defined as the mean energy per unit area of the sea surface of waves

whose periods lie between T— \AT and T+\AT. The total energy in the

wind generated wave pattern will be given by

U :QJ~dT. (III. 4)

The spectral wave height will be not only a function of the wave period (or

wave length), but it also will depend on the wind velocity.

Again, analogous to the classical theory of thermal radiation, it must be

assumed that the spectral wave energy bUT or the energy density WT , re-

presented as a function of the period T, will attain a maximum with a certain

wave of a period Tnmx and, with a further increasing period, it will drop until

it practically disappears. This form of the spectrum is also suggested by the

frequency distribution of the composite sea motion.

In order to arrive at a mathematical form of the energy-distribution curve,

one may use the empirical relation derived from the statistics of basic values

of the apparent waves (Neumann, 1953a, b):
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(///L) r ~exp[-(gr/27rr2
)]

where v is the wind speed.

The relation valid for the single wave components

L== iH
In

53

(III. 5)

(III. 6)

can be substituted for the spectral wave steepness, and from (III. 3) with

a = 2tt/T we obtain the spectrum of the wave frequencies:

2g2
ldUT = W„da = -CggWa-texp

o-r-
da . (Ill, 6a)

The constant C [sec
-1

] must be determined, similar to a respective constant

in Planck's Law of Radiation, from the total wave energy of the fully arisen

wind generated waves for a given wind velocity. Figure 32 shows for three
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frequencies between a = 083 and a = 300, that is, in terms of periods

between 12 and 3 sec. The maximum of spectral energy is concentrated in

an optimum band around o-max = 01 24 or rmax = 81 sec.

With increasing wind speed the range of significant frequencies extends

more and more towards smaller a values, and with a 30 knot wind the

significant range is between about a = 048 and a — 0-24, or between

T = 21 and T = 4 sec. The optimum band is displaced to lower frequencies

at <rmax = 00826 or rmax = 121 sec.

The frequency of the optimum band, <rmax , is found from equation (III. 6)

by differentiating the energy distribution function with respect to a. One obtains

ffmaxtf = } hg. (III. 7)

The law that theproduct ofthefrequency ofthe energy maximum and the wind

speed is constant (= j/f.g), corresponds to Wien's law in the theory of

thermal radiation. It is one of the theoretical results which can easily be

checked by observations, if in the future reliable spectral analyses are available

from sea surface wave records of pure fully arisen wind generated sea.

Equation (III.7) can also be written

7W = 0-785« (III. 8)

where Tmax means the period of the energy maximum in the energy curve

for the wind speed v. With increasing frequency the spectral energy rises

rapidly to the maximum <rmax , whose position is given by (III.8). Beyond this

value it drops approximately inversely proportional to the sixth power of a.

The total wave energy in the spectrum between the period and T, or

between the frequency oo and a is obtained by integrating 3 12 between these

limits (Pierson, Neumann and James, 1953):

u™= c^\lV^ { (III. 9)
e~x% [jc

3 3x)

) b 5 \2 4)

where b = 2g2/v2 and .y
2 = b2/a2

;
(III. 10); &(x) is the error integral. The

function (III.9) is called the co-cumulative power spectrum of waves and the

curve which represents this function in a graphical form is called the CCS-curve.

Examples of such CCS-curves are shown in Fig. 33 for wind velocities between

20 and 30 knots. The ordinate is scaled in ^-values which are related to the

wave energy U by equation:

U = IgQE . (III. 10)

E has the dimension of a (length)2
. This is done in order to facilitate the

practical use of the CCS-curves.

The total wave energy in the case of fully arisen sea follows from equa-

tion (III.6) by integration between the limits a = oo and a = or from

equation (III.9) with x = oo:
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U Cqtt?!/
3 1

32 g*

—v (III. 11)

The total energy accumulated in the composite wave motion of a fully arisen

sea increases in proportion to the fifth power of the wind speed. The con-

stant C can be determined from observations (Neumann, 1953a), and

one obtains with C = 8-27 :: 10" 4
sec

-1
,
q~1 and g = 981 cm/sec2 and

v in cm/sec

U = 3-125 x 10^ 9
r
5 [ergcm- 2

] . (III. 12)

The actual wave spectrum of a sea is obtained by harmonic analysis of

recordings of sea motion; this procedure is based on the conception that

£,

0-06 OiO 014 018 0-22 0-26

Fig. 33. Co-cumulative power spectra for ocean waves at wind velocities between 20 and

36 knots. The ordinate Ef are proportional to the total wave pattern and determine the

height characteristics of the sea.

the actual wave motion results from a linear superposition of harmonic

waves according to the principle of Fourier. The wave analysis is done by
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energy is indicated for 8 8, 9 and 9-5 sec. The lower diagram shows in the same

form, a wave spectrum of a pressure record. This is a typical swell spectrum

with a narrow period range of 11-15 sec.

Seiwell (1949) and Wadsworth (1949) have doubted the results of wave
analysators, which they considered as physically unfounded. They feel that

a period analysis by autocorrelation will lead to more plausible and physically

more simple results. Frequently, there was only one single harmonic wave

upon which local oscillations are superposed by chance. The former, the

"cyclic" component, corresponds to the situation forced by the wind, the

latter, the "oscillatory" components, are regarded as depending upon ac-

cidental local disturbances. These doubts are only in part justified. In some
cases with a narrow frequency range Seiwell and Wadsworth may be right,

but in general the wave pattern is much more complicated, and the assumption

that this pattern is formed by the superposition of a great number of waves

with different periods, amplitudes and heights will be more correct.

7. Statistical Relations Between the Different Apparent Wave Characteristics

and their Interpretation

It is possible to compute the average period T, that is, the average of time

intervals between succeeding wave crests at a fixed position, from the

theoretical energy spectrum of wind generated waves. This value is cal-

culated by

(/

oo \ 1/2

JdUada \

i- • (HI. 13)

fda*Ua do
'

We obtain for the average period

f/v = 7t\/3/g or ? = 0-555fl (III. 14)

where v is given in m/sec
_1

. If v is given in knots, then T = 0-258?'.

With equation (III. 8) we obtain the ratio

Tmax/T = \/2 = 1-414 . (III. 15)

Therefore, the apparent wave with the "average period" T is not identical

with the energy-richest wave of the spectrum, but its period is considerably

smaller than the period Tmas .

From the energy spectrum of sea motion one can easily estimate in which
period range the most important wave components must be found. The
energy richest part of the spectrum, which contains 92% of the total wave
energy, can be said to give the actual pattern of the sea motion. This main
part can be limited such that 3 % of the total energy at the short-wave end
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(in Fig. 27 in the right portion of the CCS-curves) and 5 % at the long-wave

end are supposed to be cut off. In this way, we get the limit periods Tu and

T , which, together with T and rmax , define the total period characteristics.

These limit values are given for different wind speeds in Table 106. Neumann
(1954) has shown that the theoretical values agree very well with the ob-

servations.

The determination of the "average wave length L" of the composite sea

motion is more difficult. It is not allowed to compute L from the classical

formula valid for harmonic waves with T. Using the theoretical wave spectrum

for a fully arisen sea, Pierson (1953) has computed the average "apparent

wave length" L as a function of the average "apparent period" T and found

L = Vf^2 = 0-577 ^r- (HI. 16)
3 2n 2ti

This relation is valid only for infinitely long wave crests. Taking into account

the length of the wave crests, Pierson derived an other relation between

the average values of the apparent wave length and the apparent period

by extending the energy spectrum to two dimensions:

t-3%-. (III. 17)

Thus, the average apparent wave length of short-crested wind-generated waves

is only two-thirds of that value which can be computed from the apparent wave

period by means of the classical formula. This relation is not yet verified

by observations, but we know that in general the application of the classical

formula with the apparent wave period gives too large apparent wave lengths.

The characterizations of wave height data in terms of the average wave

height H, the height of the highest third of the waves (£ highest, or significant

waves) //
1/3 , or the highest tenth of the waves (1 to 10 highest waves) Hi:i0 ,

give useful descriptions of the ocean wave pattern for many practical purposes.

Observations indicate that, in general, a similar distribution of wave heights

prevails in the wave pattern generated by different winds, although the absolute

heights and the wind speed vary considerably. According to a summary by

Munk (1952), the ratios of the average wave heights H, and of the average

of highest 10% 7/1/10 , to significant wave heights (Hl!z) are

H/Hm = 065

#i/io/#i/8 = 1 29
(computed from wave records). (III. 18)

As was shown by Longuet-Higgins (1952), the distribution of the ap-

parent wave heights can be computed with the following assumptions:
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(1) The wave spectrum is composed of a frequency band which must

not be too wide.

(2) The ocean wave pattern is formed by the supersposition of a large

number of waves of small amplitude and a random distribution of phases.

It has proved convenient to express all quantities by the energy E defined

in equation (III. 10). It represents the sum of the squares of the amplitudes

of the individual component wave trains, which go to make up the actual

wave motion as it is observed; E is with equation (III. 10) related to total

potential energy of the composite wave motion, and can be calculated for

any stage of wave development by equation (III. 8). Table 8 a contains the

statistical height distribution of apparent waves in a wind generated wave train.

Table 8a. Statistical distribution of the heights of apparent waves

in a composite ocean wave pattern

(after Longuet-Higgins, 1952)

In long observation series there occur:

10% of all waves higher than 304 j/E

20% of all waves higher than 2' 54 j/E

30% of all waves higher than 2-20 J/E

40% of all waves higher than 1*92 j/E

50% of all waves higher than 1*66
j E

60% of all waves higher than 1*42
j E

70% of all waves higher than 1*20
\ E

80% of all waves higher than -

94 j/E

90% of all waves higher than 064 j E

100% of all waves higher than 000 - E

The most important characteristics of wave height data can be found

from the

most frequent value (mode) H/= 1414] E
average value (mean) H = 1-772 | E
significant value 7/i 3 = 2 832 j E

j

average of highest ten percent Hi M = 3-600
| E )

(III. 19)

It follows

HjHv.z = 625 and Hll0/H13 = 1 27 (III. 20)

which is in good agreement with equation (III. 18). These results demonstrate

that the statistical theory is capable of reflecting the actual conditions in

a very satisfactory manner, and it seems that the statistical distribution of

apparent wave heights does not so much depend on the width of the frequency

band. As an example of the application of the theoretical results we will

consider the case of a fully arisen sea at a wind speed of 30 knots

(v = 15-43 m/sec
-1

). Equation (III. 12) gives U = 27-4 erg cm" 2 or E = 5-48 m2
.

The same value can be obtained from Fig. 33. Then the characteristic heights

are: H = 4 1 m, H
ll3
= 6-6 m and Hlll0

= 8-4 m. According to Table 8a,

10% of the total waves present will be higher than 71 m, 20% higher than

6 m, 30% higher than 515 m, 40% higher than 4 5m and 50% higher
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than 3-9 m. The average period T is 8-6 sec; besides, Tmax = 121 sec,

T = 16-7 sec and Tu
= 4-7 sec.

8. Scales of Sea Motion and Wind

For practical purposes, the state of the sea (sea motion) has been defined

by a number from a scale divided into ten parts. The different steps of this

scale have been defined by international meteorological congresses and were

gradually improved. Unfortunately, different authors have used difference

scales which were not always comparable. The scales which are used most

often are the scales adopted in Paris in 1919 (Paris scale), the Douglas scale

adopted in Copenhagen in 1929 and the new scale adopted at the Inter-

national Meteorological Conference held in Berlin in 1939 (s^e Table 9)

Table 9. State of the sea
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predominant : in the lower latitudes (zone of the trade winds and doldrums)

more than 50% of all observations fall between the scale points and 3.

Even in the middle southern latitudes (the west wind zone), about 50% of

the observations fall in the categories to 4. In the northern and north-

western part of the Indian Ocean it is necessary to make a division for the

two main seasons, because of the change of the monsoon (from May to

September : the south-west monsoon and from October to April : the north-

east monsoon). These tropical seas are in the south-west monsoon period

about just as agitated as the annual average of the west wind zones. However,

in the season of the north-east monsoon 84% of all observations indicate

a slight sea; state of the sea 4 or 5 are exceptional.

The presentation by Schumacher should be considered a first trial. It has,

however, been very useful and it seems that a more detailed statistical

presentation of many more observations on the state of the sea will give

excellent results.

Schumacher has also tried to relate the scale of the state of the sea to

absolute values derived from wave measurements. Such comparisons were

also attempted in former times, but they were rather inaccurate as they were

based only on estimates of wave motion.

The International Maritime Commission organized from 14th to 19th

November, 1938, an international week to observe swell in the Atlantic Ocean,

in which 210 ships and 70 coastal stations participated. The extensive ob-

Table 10. State of the sea motion and dimensions of the swell

(for winds 0-5 Beaufort)

Swell scale figure
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as well as height and length of the swells which were observed. This table

contains only observations for winds from to 5 Beaufort, in order to be

reasonably sure that only swell and no waves produced by strong winds

were observed. The proof that generally this was the right procedure is shown

in the bottom lines of the table, where the average period of waves is given

for each wind speed, and there is no correlation between the two quantities.

The characteristics of sea motion (state of the sea) with different wind

speeds, which are based on the statistical wave values, can be derived from

the most important spectral features of wind generated ocean waves. Such

characteristics can, of course, only be given for fully arisen seas, because

the ocean wave pattern at the time of generation depends not only upon

the wind speed r but also upon the wind duration t and the fetch F. To a fully

arisen sea belong minimum values Fm and tm ,
given in the right of Table \0a.

This table contains the most important wave values for fully arisen seas;

it is, besides other tables, based upon the energy spectrum for all states of

generation for given values of F and / (Pierson, Neumann and James

1953) of utmost practical importance for the prediction of sea-motion

characteristics.

9. The Mathematical Formulation of the Actual Ocean Wave Pattern

The state of the sea surface at a fixed point and at a certain time can,

without doubt, be described by the interference of a very large number of

harmonic waves of relatively small amplitudes, which progress in different

directions. They have different frequencies and become superposed with

random phases. It has been attempted to give a general representation of

the sea motion by means of a step-by-step approximation. The investigations

by Pierson (1952) are of importance in this connection, which he suggested

from procedures in theoretical statistics and in part carried out himself.

Pierson presents the motion of the sea surface at a fixed point (zero point)

by the following integral as a pure function of time

oo

r)(t) = jcos[at^d(a)]} {[h(a)fda} . (111.21)

o

This unusual integral cannot be solved by common methods; it represents

a mathematical abstraction which can be approximated with desirable ac-

curacy by a partial sum. h2(a) is the energy spectrum according to (III.4),

6(a) is of the character of a random phase; all values between and 2n are

of equal probability and are independent of one another. To each a there

belongs a certain da, where

W[a < b{a) < 2na\ = a
,

(01.22)

that is, a is the probability of d(a) falling within the range 0-2jra. In order
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to determine the integral (III. 21) it is dissolved into a partial sum of cor-

responding terms, so that

Q

7](t) = lim ^ C0S[<7ill+1 t + d(a2n + 1)]Y{h2
(<J.2„ + 1)[<J2n + 2—O2nV>. (111.23)

J2n+2 °2n
O.T„—CO

For practical purposes it is not necessary to subdivide the interval into too

small parts. A satisfactory approximation will also be obtained by a sufficiently

large but finite frequency band. This new kind of representation of the sea

motion corresponds much better to natural conditions than those used

formerly. Towards a practical application only the first steps have been made;

Pierson has also extended this method to short-wave sea motion, but final

results are still missing (see Roll, 1957).



Chapter IV

Generation, Growth and Propagation

of Waves

1. Observations of the Generation of Waves

Observations on a large water surface show that, when the equilibrium

is disturbed, waves propagate from this point in all directions; the crests of

these waves are concentric circles. This is easy to understand, when we think

of the nature of wave motion. Pressure disturbances are transmitted from

the point of disturbance to the neighboring water particles and thus generate

a wave. It is more difficult to understand how a continuous force, like the

wind, blowing over the surface previously at rest, can put it into a rhythmic

oscillation. The effect of an air current on the water surface is not only the

development of a wind current, but also the generation of small horizontal

pressure differences which can cause wave formation. These pressure dif-

ferences are caused by the eddy motion of the wind, or its turbulence which

is the principal source of wave generation.

We quote Scott Russell (1844, p. 317) and (Lamb, 1932, p. 630) the

description of the process of wave generation. "A wind velocity of less than

half a mile an hour (8| in. or 23 cm/sec) does not sensibly disturb the

smoothness of the reflecting surface. A gentle zephyr flitting along the surface

may destroy the perfection of the mirror for a moment, but when it disappears,

the surface is as smooth as before ; if the wind has a velocity of about a mile

an hour (45 cm/sec) the surface of the water becomes less capable of distinct

reflection, and it is to be noticed that the decrease of this reflecting power

is due to the presence of those minute corrugations of the superficial film

which form waves of the third order (capillary waves). At this first stage

of disturbance the phenomena on the surface cease almost simultaneously

with the intermission of the disturbing cause, so that a spot which is sheltered

from the direct action of the wind remains smooth. The waves of the third

order are incapable of travelling spontaneously to any considerable distance,

except when under the continued action of the original disturbing cause.

While it remains it gives that deep blackness to the water which the sailor

is accustomed to regard as the index of the presence of wind, and often as

the forerunner of more."
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"The second state of the development of wave motion is to be observed

when the velocity of the wind acting on the smooth water has increased to

two miles an hour (90 cm/sec). Small waves then begin to rise uniformly

over the whole surface of the water, these are waves of the second order.

Capillary waves disappear from the ridges of these waves, but are to be found

sheltered in the wave troughs between them and on the anterior slopes of

these waves. The regularity of the distribution of these secondary waves

over the surface is remarkable; they begin with about an inch of amplitude

and a couple of inches long; they enlarge as the velocity or duration of the

wave increases; by and by the coterminal waves unite; the ridges increase,

and if the wind increases the waves become cusped, and are regular waves

of the second order (gravity waves). They continue enlarging their dimensions,

and the depth to which they produce the agitation increases simultaneously

with their magnitude, the surface becomes extensively covered with waves

of nearly uniform magnitude." Scott Russell's wave of the first order is the

"solitary wave."

Similar observations were made by Apstein (see Kruemmel, 1911, p. 57)

aboard the "Valdivia" and on the research steamer "Poseidon" in the open

ocean, partly by means of photographs of the ocean surface taken from

a very short distance. Mostly several kinds of waves were present

simultaneously. The capillary waves cover all areas hit by the wind; their

length is about 2-3 cm, their crests are, without exception, slightly curved;

the shape of these wave crests, which have a length of about 9-15 cm, make

the water surface look to be covered with irregular "rhombic corrugations".

Beside these "elementary" waves appear, as next larger size, waves of

6-12 cm length and, following these, waves of 18-25 cm, also 30 cm length.

At a wind speed of 100 cm/sec, waves several metres long appear, and the

length of the crest is at an average 3-5 times the wave length. Until longer

wave crests and regular wave trains are formed, the water surface has the

appearance of a piece of crepe paper rather than of a sheet of corrugated

iron.

All these observations deal rather with the qualitative aspect of the process

of wave formation, whereas the quantitative indications are mostly based

on estimates and not on instrumental measurements. Jeffreys made a few

more exact observations of this kind on ponds near Cambridge, in order

to test the theoretical results. He observed, with wind speeds of less that

104 cm/sec, small disturbances which did not have the characteristics of

waves. Only beyond this limit did the first distinct waves appear and at wind

speeds of 104, 110 and 116 cm/sec the wave length was 80, 8-8 and 9-8 cm.

Stanton, on the contrary, found in wave tanks, with wind velocity of

250 cm/sec, wave lengths of only 6 cm. More thorough systematical in-

vestigations, taking into account all factors which might influence wave

formation, would be most desirable, the more so as the theory of the process
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of wave formation is far ahead of observations and needs to be checked by

experiments.

2. Propagation of a Wave Disturbance Through a Region Previously Undisturbed

Before going more thoroughly into the theory of the generation and growth

of water waves, it is advisable to know something about the propagation

of the waves which, after being generated at a certain point, advance from

this source in a given direction. The theoretically very difficult memoirs by

Poisson (1816, p. 71) and Cauchy (1827) give the nature of such a pro-

pagation. A disturbance is produced on the surface of an infinitely large

water mass of great depth. The problem now is to find out how the disturbance

changes the form of the surface and how does the disturbance propagate.

We can imagine that this disturbance is composed of an infinite number

of sine and cosine waves of all possible wave lengths, according to Fourier's

Theorem, and we can discuss the further development of this package of waves.

The formulation of the problem can be accomplished in two ways: (1) we
start with an initial elevation of the free surface without initial velocity; (2) we
start with an undisturbed surface (and therefore horizontal) and an initial

distribution of surface pressure impulse.

Every kind of disturbance can be brought back to a combination of these

two basic kinds. The results from the theory are essentially identical for

both kinds of initial disturbances, so that it will be sufficient to deal only

with one of them. In doing so, it will be well to distinguish between the cases

in which, the propagation of the disturbance takes place only in one direction

(canal waves) or occurs in all directions (circular waves). The results are

not essentially different, so far as the form and the velocity of the propagation

are concerned. Therefore, we will only concern ourselves with canal waves.

The theoretical developments of these cases can be found in Lamb's Hydro-

dynamics (1932, p. 384). The disturbance at a point x = in the canal is

confined to the immediate neighborhood of the origin. If b is the width of

the canal and F the area between the disturbed and the undisturbed water

surface, then Fb will be the volume of water originally lifted up above the

surface and causing the disturbance by falling back to the level of the undis-

turbed surface. It will then cause a change in the level at a far distant point

which has the form

rj = -y—[C(w)cosw+S(w)smw]
,

(IV. 1)
X f 71

with

V2

v.
W

4.v

C(w) and S(w) are the integrals of Fresnel, which are of great importance

in the theory of the diffraction of light. Tables of these integrals can be found

in Jahnke and Emde (1933). When the quantity vv is larger, i.e. after
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a relatively long period of time, the values of the functions C(\v) and S(w)

are simplified to the extent that we obtain approximately

Lamb (1932, p. 385) writes: "It is evident that any particular phase of the

surface disturbance, e. g. a zero or a maximum or a minimum of r\ is

associated with a definite value of vv and therefore that the phase in question

travels over the surface with a constant acceleration. Consequently, an endless

series of waves travels from the disturbed region, and the amplitude of these

waves would rapidly decrease with increasing distance from the origin, if

only the distance was taken into consideration. However, inasmuch as the

amplitude is at the same time proportional to the time ?, it constantly in-

creases. This result, at first sight, seems contradictory, but finds its explanation

in the assumption of the initial accumulation, of a finite volume of elevated

water on an infinitely narrow base which implies an unlimited store of energy."

It is mathematically possible to consider an initial elevation distributed over

a band of finite breadth; then all pecularities of a concentrated linesource

of disturbance disappear, but the formulae become much more complicated

without altering essentially the results. Thorade has given in Fig. 36 a graphical

km from origin of disturbance

4 5 6 7
T

Fig. 36. Progress of a single disturbance according to Poisson and Chauchy's theory

(computed by Thorade). (130 and 140 sec after the disturbance. One has to assume that

the right part of the curves are extended so far that they cross the x-axis, go through

a minimum and then tend asymptotically towards the x-axis.).

presentation, according to (IV.2), of the front waves computed for a distance

of 10 km from the origin after 130 sec and after 140 sec and also the surface

wave. We can no longer speak of a simple-harmonic wave profile. The wave

crests and wave troughs have different lengths; the wave crests flatten out

and at the same time lengthen as the disturbance moves on, as observed in
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nature. The same follows from (IV. 2). Nodes appear when w = {2n— \)hn-\-nl4

(n = 1,2,3, ...). The first one at the time tx is near xx , the next one near x2 ;

the wave length then is xz
—xx and

4x± 4x2

If the difference between both quantities w remains equal, then at a later

time to, the quantities gt2 , xx and x2 and also the distance x2
— xx have in-

creased correspondingly. Each wave, therefore, lengthens while propagating,

and this explains the accelerating pace of the wave disturbance. For suf-

ficiently great values of t, the changes in length and the height from wave

to wave are very gradual, so that in first approximation a considerable number
of consecutive waves may be represented by a curve of sines. In a progressive

wave for this short distance at— xx = (gt2)/(4x). When we vary in this ex-

pression only the time /, we obtain the wave period

T =— . (IV.3)
gt

K

Whilst if we vary x alone we obtain the wave length

Stix2

gt*

The wave velocity then is

(IV. 4)

This, however, is the velocity of propagation of an infinitely long train simple-

harmonic surface waves according to Stokes equation (11.11). Each individual

wave, therefore, behaves in first approximation like other simple water waves.

But when we consider a group of waves having approximately a wave length

A , then at a time t and at a locality x , h = Snxl/gtl and the velocity of

the group

$-W& (lv - 6)

which is half that of the component wave. The group does not maintain

a constant amplitude as it advances. This is in agreement with the relation

on p. 12.

These theoretical results are confirmed by many observations, in wave

tanks and in nature. Only a portion of the energy of a wave advancing

in calm water travels along with the wave form, whereas the remaining portion

of this energy remains available for the next wave. In this manner, each single

wave in a wave train in deep water acquires energy from the preceding wave

and leaves a portion of its energy for the wave following it. Due to this



Generation, Growth and Propagation of Waves 71

process, it appears to an observer at a given distance from the wave source

that the first waves of a long wave train are of a very small height. This

height can be so small, that these waves often escape the observer's attention.

Then the wave height increases with time and, when the wave train is only

composed of a finite number of waves, i. e. when the wave source only sends

out a finite number of waves, the maximum wave height is found in the

centre of the group, whereafter it decreases again. The rate of travel of the

place in the group where there is maximum wave height always equals the

group velocity, although each wave travels with its own wave velocity

(see p. 12). On the contrary, when there is a continuous generation of waves

of constant height at the source, one will find that after a transient stage

of wave growth, a steady state condition involving constant wave height

will be approached.

Sverdrup and Munk (1947) based their study of the propagation of

a disturbance into an area of calm, on considerations of energy.

It has been previously shown, equation (11.146) that the energy of a wave,

and also of a wave group, is propagated with half the wave velocity vE = {\E)c;

inasmuch as half of the wave velocity is equal to the velocity C of the wave

group, we can also say that all the energy advances with the group velocity C,

vE = EC so that v = C. Here is again the question (1) does all the energy

travel with the group velocity C; or (2) does half of the energy travel with

the wave velocity c? In order to decide between these two possibilities, we
consider the flow of energy through a parallelepiped of unit width, length dx,

which extends from the surface to a depth where wave motion is negligible.

The time rate of change of energy within this parallelepiped must equal

~8vE/dx, the net inflow in the direction of the x-axis, and therefore

The first of the two interpretations gives

SF SF—+C— =
9t
+

dx
'

with the solution

E=f{x-Ct).

It does not explain in which manner E varies with x.

The second interpretation of equation (IV.7) gives the differential equation

SE 31E

As the energy of a wave is proportional to the square of the wave height,

equation (IV.8), taking into consideration the necessary physical boundary
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conditions, will explain the transient state in wave height when the wave
advances into calm areas.

The process of the transmission of energy, according to observations on
wave propagation in deep water was qualitatively expressed in the following

form by Gaillard (1935, p. 194) and quoted here from Sverdrup and

Munk (1942):

"Suppose that in a very long trough containing water originally at rest,

a plunger at one end is suddenly set into harmonic motion and starts generat-

ing waves by periodically imparting an energy \E to the water. After a time

interval of n periods, there are n waves present and equals the time in periods

since the first wave entered the area of calm.

"If the position of a particular wave within this group is indicated by m
and equals the distance from the plunger expressed in wave lengths, m = 1

represents the wave just generated by the plunger, m = \{n-\-\) will be the

centre wave and m = n the wave which has travelled farthest. Let the waves

travel with constant velocity c and neglect friction."

The first wave generated by the plunger's first stroke will have the energy \E.

One period later this wave will have advanced one wave length, leaving

behind one-half of its energy or IE; it now occupies the space of a wave length

of the previously undisturbed area, into which it brings the energy \E. A second

wave has been generated by the plunger occupying the position next to the

plunger, where \E was left behind by the first wave. The energy of the second

wave equals %E+ \E — \E. This is repeated, and when three waves are present

on the water surface, the one which has just advanced into the undisturbed

area has an energy of IE, the second one of this series \E-\- | of IE = f£,

the third one I of %E+%E = IE, and so forth. Table 11 shows the dis-

tribution of energy in such a short wave train.

In any series, n, the deviation of the energy from the value \E is sym-

metrical about the centre wave. Relative to the centre wave all waves nearer

the plunger show an excess of energy and all waves beyond the centre wave

show a deficit.

For any two waves at equal distances from the centre wave the excess

equals the deficiency.

In every series, n, the energy first decreases slowly with increasing distance

from the plunger, but in the vicinity of the centre wave it decreases rapidly.

Thus, there develops an "energy front" which advances with the speed of

the central part of the wave system, that is, with half the wave velocity.

According to the last line in Table 11 a definite pattern develops after

a few strokes: the wave closest to the plunger has an energy E(2n— 1)/2" which

approaches the full amount E with increasing 77, the centre wave has an

energy \E, and the wave which has travelled the greatest distance has very

little energy (E/2
n
).

An exact distribution of energy and therefore also of the wave height
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Table 1 1 . Distribution of energy in a short wave train

73

Series
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region is so small that they will pass unnoticed, so that, due to the continuous

transmission of energy into the undisturbed water in front of the wave train,

the speed of propagation of a disturbance will appear to be one half of the

wave velocity, even though each wave travels with the full wave velocity.

This will be especially important in predicting the spreading of a wave dis-

turbance into undisturbed water.

These results by Sverdrup and Munk are in good agreement with those

found by Poisson and Cauchy; they have the advantage of being much
clearer than these latter.

3. Theories of the Generation and the Growth of Waves

(a) General Remarks

The generation of waves by the action of an air current on a water surface

will be more easily understood when we return to the dynamic fundamentals

of wave processes based on Bernoulli's Theorem. Let W, in Fig. 38, be

Fig. 38. Stationary waves and Bernoulli's theorem.

a wave-shaped wall extending in a horizontal direction, which has as its

lower boundary a current moving to the right. The motion of the water-

masses exercises pressures upon this wall. At a point B, where the section

across the current is greater, the velocity must be smaller, whereas at a point T,

where the section is smaller, the velocity must be greater. In other words,

in steady motion the pressure is greatest where the velocity is least and vice

versa. When the motion is steady the velocity is constant in magnitude and

direction at every point. Consequently, the water motion, according to

Bernoulli's Theorem, will generate an excess pressure at the point B, and

a deficit in pressure at the points T. The consequence of this is that the water

motion will try to exaggerate the deformation of the wall. Between B and T,

consequently, there is a "dynamic" pressure gradient in the direction opposite

to- that of the current (to the left). The force of gravity acting on the water

mass in the direction S generates pressure forces which increase with depth.

Should gravity act alone, the pressure at all points below B would be greater

than at the points below T, and between B and T there would be a "hydro-

static" pressure gradient to the right (in the direction of the current). Current

and gravity, therefore, produce between B and T, pressure gradients acting

in opposite directions. The velocity of the current can now be selected in

such a way that the two equalize each other and that the differences in
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pressure between B and T vanishes. Then there is equilibrium in all forces

present and the wall can be removed without changing the situation. We
have a water current with a stationary wave surface. For an observer who

is moving with the inner velocity of current to the right, we have surface

waves travelling to the left with a constant velocity, whereas the deeper water

is motionless. The process of stationary wave motion can be based in principle

on the fact that the statical and dynamical pressure differences within the

water masses are in equilibrium. See Einstein (1916, p. 509) and Cornish

(1934, p. 139, Notes of H. Jeffreys).

We can see that, in this case, the air above the wavy water surface must

have the same velocity as the velocity of propagation of the waves (to the

left), in order that there be equilibrium. If this is not the case, the wave motion

is no longer in equilibrium. If the wind velocity is greater than the wave

velocity, then the negative pressure generated in O in Fig. 39 by the air

to to

Fig. 39.

movement in a wave crest is greater than the excess pressure caused in U
by the water motion. Then there exists an excess pressure in the wave crests

on the side of the water, which tries to lift the water surface. The wave must

increase in height. If, on the contrary, the wind velocity is smaller than the

wave velocity, the wave must lose some of its amplitude, so that it approaches

again a stationary, stable condition.

These fundamental considerations show that, each time there is the slightest

disturbance of the water surface by air in motion, the smooth sea surface

represents an unstable situation and the wavy water surface a stable situation

and that to each wind velocity at the sea surface corresponds a fixed, stationary

wave system. Helmholtz(1889, p. 761, 1890, p. 853) was the first to conclude,

from general viewpoints that the generation of waves is related to an unstable

condition of the smooth sea surface. It can be proven that a wavy surface

is in a stable, stationary condition, when in a system of two superposed layers

of water and air in motion the difference of the potential and kinetic energy

of the system is at a minimum. The determination of the wave form belonging

to this system is very difficult. Wien (1894, p. 509) has elaborated the thoughts

expressed by Helmholtz and has derived a number of theoretical wave profiles

which satisfy these conditions. The results obtained by him, however, are
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not very satisfactory, because they do not agree with the observations. More
research work on this theory has been done by Burgers (1927, p. 333) and

ROSENHEAD (1931).

Lord Kelvin (1871) showed earlier that surface waves can be formed

in the absence of friction as a consequence of the dynamic pressure variations

previously discussed and, that this was the principal cause for the generation

of waves by the wind. Later on, Rayleigh has shown in a simple way how
a system of progressive waves may be maintained against dissipative forces

by a properly adjusted distribution of pressure over their slopes. This is

especially true when the pressure is largest on the wind side and smallest

on the lee side of the wave (Lamb, 1932).

This shows that through an excess of pressure on the rear slopes of the

waves, combined with a tangential stress on the exposed wave crest when

the wind velocity is greater than the wave velocity, the wave crests will become

larger and that the energy lost by friction has been equalized by the work

accomplished by these forces on the surface. The following investigations,

made by different authors at the same time, have accentuated this concept

of wave formation. In order to gain a good insight into all the factors which

have to be considered we will discuss each one, its relation and its influence

on the formation of waves. Many equations will be derived later in the section

dealing with internal waves on boundary surfaces of the density (chap. XVI).

(b) Stability of Internal Waves in Moving Water Masses

If we have two superposed homogeneous fluids with a density o t and o2

then there is a possibility of internal waves on their boundary surface having

the character of short or deep water waves. Their wave velocity is given by

the equation

IgX Q x—Q^
I In Qx-\-Q2

(IV. 9)

The wave velocity as expressed in equation (11.11) is reduced in

equation (IV. 9) with the square root of the difference in density of both

water layers. The equation (IV. 9) is in reality only valid when both layers

have an infinite depth, but if the water depth is several times a multiple of

the wave length (short waves), then the discrepancy with the exact formula

(see equation (XVI. 17) is extremely small.

If both water masses have a motion parallel to their common boundary

layer and have the velocities U1 and U2 , the wave velocity of the internal

waves is

8 Qi (h _ Q1Q2 ,tj _tj \2

XQx+Qz {Q1+Q2)
2

1/2

(IV. 10)

in which x = 2n/X. The first member of this equation can be considered the

average velocity of both currents and, in relation to this velocity, the internal
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waves have a velocity of propagation ±c, which is given by the equation

*-*-T£*&v*- vif ' (,V11)

One can easily recognize that the values from c in (IV. 1 1) becomes imaginary,

in other words that the wave motion becomes unstable, when

(Ux-U2f> 69"~ Q -2

x QiQ2

As the right member of the equation decreases unlimitedly with A, this would

mean that, in the absence of all other factors, the smallest wind will be capable

of generating waves of extremely small wave lengths.

(c) Influence of the Surface Tension

The wave lengths of the waves which are generated first (capillary waves)

are extremely small. Therefore it is to be expected that the surface tension

has to be considered if the condition of pressure on the boundary surface

is to be fulfilled. If both media are at rest, the velocity of propagation of

the waves on the boundary surface is now given by (IV. 13) if we designate

the capillary coefficient, or surface tension by T

rf-l/feSCfc + J*-). (IV.l3)
r \* Q1+Q2 Q1+Q2I

If the values of X are sufficiently large, the first term of this equation becomes
large relative to the second term, in other words the decisive factor in a wave
motion is the gravity. However, if a is very small, then the second term is

more important, and the wave motion is conditioned mainly by the surface

tension.

Although the wave length decreased continuously from 00 to zero, the

wave velocity tends towards a minimum and then increases again. If we
put TJQi — o., == T', this minimum value c^ ia

is given by

Ql
~

Qi
2ten*

.Q1+Q2

and the corresponding wave length is

•Vi-''min — *-

We can compute that for A > 3Amin the influence of the surface tension on
the wave velocity will not exceed 5 %, and the influence of the gravity de-

creases to a like degree if I < pmin . For water-air at 20° C, Tis approximately

74 (cm/sec
-2

), whiles = 981 (cm/sec
-2

) Amin = 172 cm and c'miQ = 23T5 cm/sec.
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Waves with a wave length smaller than Amin are called capillary waves or,

after Kelvin, ripples. These theoretical results are in good agreement with

observations of Matthieson (1889) and Kaplan (1950).

If in the case of two superposed currents, we take the capillarity into

consideration, then we have to add to the equation (IV. 10) to the right side

the term Tx/(q1+ q2) and we obtain for the wave velocity of such waves again

the equation (IV. 11), with the change that instead of c we now have c of

the equation (IV. 13). For quantities fulfilling the inequality

M-u^Z&z^+ik^^

,

(iv. 14)
X QX Q2 QX Q2

the velocity of propagation of the wave becomes imaginary, in other words

the slightest disturbances cause the formation of small waves, and the

amplitudes of these waves will increase gradually. The equation on the right-

hand side has a minimum for

f(Qi-Q2)

1/2

(IV. 15)

or for a wave length A = Amin . The smallest difference in velocities where

there exists the possibility of wave formation is

Qi+Qt
K ^0,1— ^0,2;" ^ ^

also:

(U0.1-

U

,2f 2> 2 ^^gT(Ql-Q2)^ ,
(IV. 16)

Q1Q2

TJ TJ > 6l+Qi

V(QiQd

In case the media are water of 15°C and 35°/00 salinity and air where

Ql = 1026 and & = 0-00122

U ,i
- U0>2

;> 67 1 cm/sec
,

(IV. 1 7)

whereas A = 1 -7 cm and cmin = 23 cm/sec. The wind will only start generat-

ing waves when its velocity is about 6-7 m/sec, which corresponds to a force

on the Beaufort scale of 4. The first waves are of the order of the capillary

waves. This result is not in accordance with the observations and we can,

therefore, see at once that the capillarity is not as important an element in

the formation of waves as it was believed formerly.

{d) Frictional Influences

The amplitude of waves in a wave train due to the internal friction would de-

crease gradually and the wave would finally disappear completely, were it not

for the fact that energy is fed continuously into the wave train. We have men-

tioned previously that the first capillary waves which come on to a motion-
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less water surface disappear instantaneously the moment the force acting on

the water surface subsides. The damping force is the internal friction or

viscosity.

According to p. 17, we have for free oscillatory waves on deep water,

and neglecting viscosity a certain velocity potential

(f
= —Ace* z cos x(x—ct)

belonging to a wave train

r\ = A sin x{x-ct) . (IV. 18)

From this it follows that the total velocity is

q
2 = u2+ w2 = x2c2A 2e2*z

.

The energy used up by the viscosity per unit time is, according to Lamb
(1932, p. 677),

in which ju is the coefficient of viscosity of water and dS is a unit area of

the volume under consideration. We select a volume of water which extends

vertically from the surface with a width b and with the length A, to the bottom.

Then with the above-mentioned value for q, we have

R„ = 2fix
3c2A 2 Xb . (IV. 19)

The loss of energy through viscosity per unit area is then

R, = -2[ix*c2A 2
. (IV. 19a)

The total energy of the wave for the same volume is according to

equation (11.12)

E= lqxc2A 2 -Xb . (IV. 20)

If we equalize the velocity of the decrease of energy with the loss of energy

through friction, we have

j (i qxc2A 2
) = - 2p#<*A*

,

(IV. 21

)

or

-j- = —Ivy?A
dt

and from this follows:

A =A e- 2™2
', (IV. 22)

in which A is the amplitude at the time t = and v = p/q is the kinematic

coefficient of viscosity. The damping factor t or modulus of decay which
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represents the time in which the wave amplitude has been reduced to the

fraction e of its original value (e = 2-718), becomes r = \\2vk% or in terms

of the wave length (IV. 23)

In the case of water
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Apart from these first effects of the wind, one can observe a continuous

action of the wind in well-developed wave trains. When an air current blows

over the wave crests, phenomena appear which are similar to those when

wind flows over a fixed obstacle. Only when the flow of air is small compared

to the wave velocity, the streamlines of the air motion join the wave profile.

The pressure exerted on the windward side of the wave will be greater than

that on the lee side. Air pockets will develop in the wave troughs and on

the lee side. When the wind becomes much stronger, lee eddies are formed,

which, with large wave heights, become characteristic for the wind dis-

tribution above the water. Weickmann has experimented in 1930, during

the "Meteor" Expedition in the waters of Iceland-Greenland, with small

balloons floating just above the water, and the results showed clearly the

streamlines of the air above the wave profile, as described by Defant

(1929, p. 165). Despite the difficulties of this experiment, the air movements

on a small scale were similar to those occurring on a large scale above dunes

and which are used by gliders. Apparently there must be an excess pressure

on the windward slopes of the waves and a pressure deficit at the leeside,

which try to increase the wave height for such a time until the loss of energy

by friction is compensated by the work done by the pressure forces.

Motzfeld (1937, p. 193) and Stanton (1932) have measured in a wind

tunnel the pressure distribution on models of water waves in order to test

the distribution of pressure caused by wind on a wavy surface. These models

consisted of (1) a train of three sine waves with a wave length I = 300 mm
and a height 2^4 = 15 and 30 mm respectively; (2) a train of six waves with

a trochoid profile with I = 150 mm and 2A = 14-5 mm, and finally (3) a train

of six waves with sharp crests (crest angle 120°) with X = 150 mm and

2A = 20 mm.
Figures 40 and 41 show for the second and the third case the streamlines

of the air motion over the wave-shaped surface and the total pressure on

the streamlines. Where the crests are rounded, the streamlines hug to the

wave profile, being more crowded over the crests than over the wave troughs.

The wave profile with sharp crests shows the strong air current upward at

the windward slope of the wave, whereas on the leeside an eddy reaches

from the crest to the bottom of the trough. The wave shape of the streamlines

has shifted a distance of approximately one-fourth of the wave length in

the direction of the wind with reference to the profile of the wave. Consider-

ing the total pressure on the streamlines, it shows that behind the wave crests

at the lower stramlines there is a loss of energy which then reaches the inside

of the current more downstream. With decreasing static pressure the energy

on the lower streamlines increases again. This energy increase has its origin

inside the current, because there is here a continuous decrease of the total

pressure on the streamlines. During these tests, the air resistance (pressure

resistance) of the waves Wd was measured and it was found according to
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Wd
cd

QW2)l ' (IV. 24)

it was for the four models 00085, 0024, 00028 and 0195 respectively.

The experiences made by Motzfeld prove that the distribution of pressure

on the water surface becomes unsymmetrical through the influence of friction.

g

Fig. 40. Streamlines of the air motion over the wave-shaped surface and the total pressure

on the streamlines. Wave with a trochoid profile with A = 150 mm and 2A = 145 mm.

1
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(/) The Action of Normal Pressure Forces and of the Tangential Stress of the

Wind on the Waves

All waves, once generated, suffer a loss in intensity coupled with decreased

wave height through viscosity and through air resistance. To generate and

maintain waves on the surface, it is necessary to supply energy from the

outside, mainly by wind blowing over the water surface. The question as

to how waves are generated and grow can be brought back to what the

action of the wind is on the waves. Jeffreys (1925, p. 189; 1926, p. 241)

has made the first test of a theory of wave generation which goes beyond

the general description given by Lord Kelvin of the influence of an unsym-

metrical distribution of pressure on the wave formation. According to

Jeffreys (1925) the principal supplier of energy RN is the wind pressure

A , which he assumes to be proportional to the product of the square of

the relative wind velocity (U— r)2 , the density of the air q2 , and the slope

of the surface in the direction of the wind drj/dx. We thus have

AP =SQIU-Cf
d
-^,

wherein s is an unknown proportionality constant called by Jeffreys

"sheltering coefficient". As drj/dt is the elevation of the surface in unit time,

the pressure Ap performs in unit time over the area dxdy the work

se2(U-cffxft dxdy.

For an area of the width b and of the length X we then obtain with the help

of (IV. 18) an equation for energy transferred to a wave by normal pressure.

RN = l(SQ2)(U-cf>c
2A2cbX . (IV. 25)

(for c < U) .

This equation (IV. 25) is for waves with a velocity smaller than the wind

velocity. If the latter exceeds the wave velocity and if the relative wind blows

in the direction opposite to the wave motion, a negative sign must be inserted

into the equation for Ap, which means that Ap is 180° out of phase with

the slope, and we obtain

rn = -i(SQ2)(U-c)2 x2A2c-bl (fore > U) . (IV.25b)

The loss of energy through viscosity is given by the equation (IV. 19).

Jeffreys assumes that a wave can only grow when the energy it receives RN is

greater than the energy dissipated by viscosity Rfi. Jeffreys' criterion for the

growth of deep water or surface waves is then

W=#c*^k. (IV. 26)
C SQ2
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If we neglect the influence of the surface tension, then equation (IV. 9)

is applicable to c and the equation (IV. 26) becomes

(U- cfc ;> 4M fo
.
^Z£l

. (IV. 27)
S £?2 £l+ £?2

The smallest wind velocity (7 which is capable of generating and maintain-

ing waves is the one which gives a maximum in the left hand term of equa-

tion (IV. 27). It occurs when c = \U and, in this case,

ULn = 27 -^ £ . ^ZJt (IV . 28)
y & ei

4-
Q2

and with (IV. 9) the corresponding wave length follows from

3 _ 2 g el gi— g2

^min — 22"
1

V'l go Pi T- g2

It is not possible to test Jeffreys' suppositions by experiments, because

the value of the sheltering coefficient s is unknown. Jeffreys can only deduct

from his observations of the first waves generated by the wind (A = 8-10 cm
at a minimum wind velocity of 104-1 10 cm/sec, see p. 67) that s has plausible

values between 318 and 0-229, which he considers to confirm his theory.

For U^ = HO cm/sec and (i = 0018, g = 980 and g2 = 1 25 x 10~8 one

obtains s = 0-27. The corresponding wave velocity it/min is approximately

35 cm/sec and the wave period Tmia = 0-22 sec, which would be in agreement

with observations.

Motzfeld, in his laboratory experiments in a wind tunnel, has submitted

Jeffreys' theory to a test and was able to prove that the air resistance of the

waves in Jeffreys' hypothesis in respect to the pressure distribution leads to

values cd of a pressure resistance coefficient which do not agree as to the order of

magnitude with those derived from the laboratory tests. Therefore, he does

not find a satisfactory solution of the problem in the hypothesis of Jeffreys.

In Jeffreys' postulate the pressure coefficient has a value cd = sA2%2
, which

is proportional to the square of the ratio A\l = d, the average slope of the

wave. Motzfeld, elaborating on Jeffreys' postulate, puts cd — sA"kn
, in which

s and n are at first unknown, but which can be derived empirically from

laboratory experiments. He thus finds for the value of the coefficients in

the two first model tests n = 1-5 and s = 0014. The value of s, consequently,

is about 20 times smaller than the value claimed by Jeffreys. Stanton (1937,

p. 283) has obtained a similar result with his tests on small wooden models

of waves placed in the wind tunnel. The pressure distribution was measured

along the wave profile and allowed the numerical determination of the

sheltering coefficient s. It is of the order of magnitude of 005, i.e. about

5 to 10 times smaller than found by Jeffreys. It follows that the normal
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pressures exercised by the wind on the wave surface cannot by themselves

account for the generation and the growth of waves, especially as a trans-

mission of energy from the air to the water can only take place when the

wind velocity exceeds the wave velocity.

Another hypothesis for the transfer of energy consists in that a tangential

stress is exercised on the water surface through the boundary friction between

water and air. A computation of Jeffreys showed that, when we take the

tangential stresses proportional to the square of the relative velocity between

water and air, a minimum wind velocity of 480 cm/sec would be required

to generate waves on a water surface, and these first waves should have

a length of 140 cm. This value, however, is contradictory to observations,

for which reason Jeffreys was of the opinion that the tangential stresses of

the wind can hardly be accepted as the initial cause of wave formation. The

average rate at which energy is transmitted to a wave by tangential stress

equals

x

RT = i j ru dx, (IV. 29)

b

if « is the horizontal component of particle velocity in its orbit at the sea

surface and where x is the stress which the wind exerts on the sea surface.

According to Rossby (1936), the stress of the wind with wind velocities

of above 500 cm/sec is

r = k-2Q2U2
,

(IV. 30)

q2 being the density of the air, U the wind velocity at a height of 8—10 m and

k2 = 00026 the resistance coefficient (see, Physical Oceanography vol. 1). This

value k2
is valid provided that the difference between the wave velocity and

the wind velocity is not too great. If this condition is not fulfilled, k2 should

probably be increased. Introducing equation (IV. 30) in equation (IV. 29)

assuming r to be independent of x:

rt = k2QoU2

J u dx . (IV. 30a)

For waves of small amplitude (see II. 9)

u = — ;-H = g— sm(kx—ct) — ndcsink(x— ct) .

\ ox/z=o a

d = i//A = 2A\X is the average slope or steepness of the wave, and the

integral in equation (IV. 30a) vanishes. These seem to be the main reason

why Jeffreys assumed that the tangential stress of the wind is of no importance

for the generation of waves. Sverdrup and Munk (1947), however, draw

the attention to the fact that for Stokes's waves of finite amplitude (see

p. 26) accompanied by mass transport u = n2 d2ce~ 27lz the value for
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for the surface is u = n2d2
c. One obtains for the transfer of energy by

tangential stress

RT = k2
7i
2
Q2 d

2cU2 (U > 500 cm/sec)

.

(IV. 31)

If we take this transfer of energy also into account, the energy of waves

can increase only if RN+RTi the rate at which energy is added by both normal

and tangential stresses of the wind, exceeds R^, the rate at which energy

is dissipated by viscosity, or when

±sq2(U- cfc+ 2k2
g2U2c > 4]ug

,
(IV.32)

in which + refers to c < U. This equation replaces the Jeffreys criterion

(IV. 27) for the growth of waves. This cancels the conclusion drawn from

the Jeffreys criterion that the waves cannot attain a velocity exceeding the

wind velocity. According to (IV.32), waves can go on growing even after

their velocity exceeds that of the wind, which is in agreement with observations.

This is then an action of the tangential stress which accelerates the motion

of the particles in the wave crest and slows it down in the wave trough, which

equals an increase of energy, just when the wave moves faster than the wind.

Since it must be assumed that the wave velocity increases the longer the

wave travels, the ratio (3 = c/U will indicate the state of development of

the wave and can appropriately be considered a parameter which describes

the age of the wave.

Equation (IV.32) is valid only for U > 500 cm/sec and, therefore, cannot

be applied to the problem of the first formation of waves which takes place,

when U is approximately 100 cm/sec. At wind velocities less than 5C»0 cm/sec

the sea surface is hydrodynamically smooth according to Rossby (1936),

and the relation between the stress and the wind velocity differs from that

expressed in (IV. 30).

The effect of molecular viscosity is always small compared to the wind

effect; thus, Sverdrup and Munk show that:

for U= 500 cm/sec /S=0-1, and c= 50 cm/sec respectively,

for U = 1000 cm/sec /? =01, and c = 100 cm/sec respectively,

RJ(RT+RN) becomes -0-296 and -0036 respectively. Consequently, for

all very small values of /? and for moderate and large values of U, R^ is

small compared to RT -\-RN and can be neglected when dealing with the

growth of waves.

(g) New Considerations and Measurements

The arrangements given in the preceding sections on influences of wind

pressure upon the water and on the boundary friction between air and water

have recently been improved. W. Wust (1949) has applied these arrangements
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to the initial generation of waves and obtained for the minimum velocity

a value of about 70 cm/sec. A similar result was arrived at by Neumann
(1949). At first he tried to get a quantitative value of the frictional coefficients

cd for actual waves. By means of corresponding comparison values he de-

termined these coefficients as a function of wind speed and found a simple

proportionality between cd and d (the siope of the wave), contrary to Jeffreys

and Motzfeld (see p. 84). The balance equation, which states that the energy

supplied by the wind must at least be equal to the energy dissipated by

friction if the wave is to be generated or maintained, leads in the case of

deep water to a lower limit of wind speed for the generation of initial waves

t/min = 69-6 cm/sec. (IV. 33)

This value agrees very well with the value given by Wiist. Neumann finds

for the length of the initial waves

/n

9g 9g J g .

(IV. 34)

The root becomes zero for Um = 69-5 cm/sec and T = 73 cm3/sec~", that

is, the first wave has a length of 1 -72 cm and a minimum velocity of

cmiQ = 23 T 5 cm/sec. However, these are the values for the smallest capillary

waves. This result is due to the fact that the energy transmitted to the waves

by the wind attains a maximum when U is three times the wave velocity.

For the generation of the slowest waves with cmin = 23 T 5 cm/sec the in-

fluence of a wind Umin = 3cmin = 69-5 cm/sec is most favourable. New de-

terminations of the minimum wind speed and of the length of the initial

waves in wind-wave channel experiments gave mostly Umin = 200-300 cm/sec

(Weinblum, 1938; W. Wust, 1939; Schooley, 1955), that means much too

high values. Observations and measurements by Roll (1951) at undisturbed

water surfaces show that in closed water basins the first distinctly noticeable

waves will not appear in the immediate vicinity of the windward edge but

only at a certain leeward distance from it. This distance increases rapidly

with decreasing wind speed, and for U = 100 cm/sec it amounts to about

40 m. Thus, there are considerable differences between the wave generation

in nature and in experiments. It is quite obvious that in the relatively short-

wave channels, as used in laboratories, much higher wind speeds are required

than in nature to generate the first waves.

4. Theory of the Growing of Significant Waves by Wind
The former theories of wave generation supposed that initially there must

be small disturbances on the sea surface which may then grow by the wind.

Eckart (1953) has studied the cause of such primary disturbances. First,

he considered the effect of a single gust on the water surface. The disturbed
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pressure system (low pressure in front and high pressure in back) moves
over the water surface with the mean wind speed, the wind pressure being

perpendicular to the disturbed surface. He was able to show that such

a pressure disturbance generates a V-shaped "wake" similar to that generated

by ships. After the gust has passed, the waves progress as a group of free

gravity waves. The question as to the occurrence of the observed wave heights

remained unsolved, as the pressure differences associated with the passage

of the gust are not sufficient to form so high waves.

The first theory of wave growth by wind was given by Motzfeld
(1937), based on his model experiments in wind channels. The main relation

starts out from the principle that, according to the conservation of energy,

the time variation of the total wave energy (equation IV. 20) must be equal

to the difference between the energy supplied and the energy dissipated by

internal friction (equation IV. 19). For the energy supply Motzfeld takes

only the work of normal pressure according to equation (IV. 25), where he

substitutes A 2k2 by An
k" according to his experiments (see p. 82). The influence

of the wind stress on the sea surface is ignored. It is found that to each

wind speed and to each amplitude there belongs a corresponding stationary

wave length, and to each wind speed a maximum wave length, which occurs

with a wind speed of U = 3c. In this theory it is not possible to make the

computed wave values agree with the observed values, even if the surface

tension is considered in addition.

A more comprehensive theory of the growing of waves was developed

by Sverdrup and Munk (1946, 1951). It is based on the formerly shown

complexity of the actual wind sea and on the dependence of the wind sea

upon the effective fetch on the one hand, and upon the wind duration on the

other. If the wind duration were unlimited, the wind sea would depend solely

upon the wind speed and the effective fetch. With a sufficiently long fetch

a stationary final state, corresponding to the given wind speed, would be

reached ("fully arisen sea"), and everywhere the energy supplied by the wind

would equal the energy dissipation. In this case all wave values would be

independent of the time at all places, even though simultaneous local dif-

ferences may exist. This ideal case may occur in small sea areas if the wind

duration is long enough. If, however, the sea region affected by a homogeneous

wind field is unlimited, the structure of the wind sea is determined by the

wind speed and wind duration. Also in this instance the stationary state

of a "fully arisen sea" is reached after a certain wind duration. There are

no local differences in this ideal case, but uniform time variations at all places.

This case will occur on the ocean most easily with a short wind duration

(Roll 1957). The theory of Sverdrup and Munk takes full account of the

differences in time and space of the wind sea, in other words, here the ocean

waves are not "conservative" and do not maintain their identity during

propagation.
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It has been pointed out (p. 36 ff.) that the new instructions for wave

observations aim at obtaining the characteristics of wave trains. Experience

shows that a careful observer will always note wave values fitting the defined

values of significant waves. The significant waves behave differently than

do the classical waves composing a single wave train. The individual waves

of such a train are conservative and as its wave length remains unchanged,

in the neighborhood of a geometrical point which travels with a group

velocity C (see p. 14) we obtain

dX dX dX 8c ccc

dt dt dx dt 2 dx

We can see from this relation that a steady state (dc/dt = 0) cannot exist

simultaneously with an increase of the wave velocity (or period) with distance

in fetch. Nor can there exist a transient state during which the wave velocity

(or period) increases with time, while it remains uniform over the area under

consideration (dc/dx = 0).

These conclusions are in contrast with experience as to the behaviour

of the significant waves. When a wind of constant velocity blows for a long

time over a limited stretch of water (a lake), a steady state will soon be

established. At any fixed locality the characteristics of significant waves do

not change with time, but on the downward side of the lake the waves are

higher and longer than on the upwind side. If, on the other hand, a uniform

wind blows over a wide ocean, the waves grow just as fast in one region

as in any other region and the significant waves change with time, but they

show no alteration in a horizontal direction.

The discrepancy between the behaviour of significant waves and individual

waves lies in the fact that the crests of significant waves do not maintain

their identity, i. e. significant waves are not conservative in the storm area.

This follows from the wave picture resulting from the superposition of several

simple conservative wave trains, as shown in Fig. 7. In all events, in order

to agree with the observations, the relations between waves and wind, fetch,

duration, must be based upon a study of significant waves. Such a study

represents a radical departure from the study of the conservative waves of

the classical theory.

To deduct the fundamental relations between waves and wind, Sverdrup

and Munk (1947) determine the energy budget of conservative and significant

waves, giving particular consideration to the manner in which the energy

progresses with the wave. We will first discuss the transient or unsteady

state.

The total energy per unit crest width of a wave equals EX, where E is the

mean energy per unit surface area. The energy added each second by the

normal pressures of the wind is ±RNX (IV. 25) and that which is added by

tangential stress equals RTX (IV. 31). Only half the energy, the potential
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energy, travels with the wave (see p. 22); the kinetic energy, on the contrary,

is constantly gathered at the forward edge of the wave and left behind at

the rear edge. This can be illustrated by considering a parallelepiped of unit

width, extending to a depth below which wave motion is negligible and whose

forward and rear edges travel beneath two adjacent wave crests (see Fig. 42).

Fig. 42. Energy changes of an individual wave of length L (A in text) travelling from left

to right with a velocity c.

At the forward edge of the moving parallelepiped energy is gained at the

rate of

E
,

. 8 ( E
C2^ X

Vx\
C
2

and at the rear edge energy is lost at the rate c\E. The total energy budget

is therefore

d(EX)

dt
R*±R«+U4 (IV. 36)

The rate at which the wave length increases and therefore at which the

parallelepiped "stretches", is determined by the difference in speed between

the two adjacent wave crests:

dk dc
,

8c 1 dk , gX
~r = — X or — = T -=- or again as c- = ^~
dt 8x 8x X dt

6 2n

this equation can be written

8c _ 2 dc

8x c dt
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We thus obtain from the equation (IV. 36):

This relation applies to a train of conservative waves, but not to significant

waves, because experience shows that under the stated conditions the energy

of the significant waves is independent of x; therefore, dEJdx = 0, with this

condition the equation (IV. 37) takes the form

dE E dc

f+f£ = *r±*„. (iv.38)

The integration of (IV.38) gives the change with time of the significant

waves at any locality in the storm area. Initially the significant waves will

have originated in the immediate neighbourhood of the locality under con-

sideration. As the time increases, the waves reaching this locality will have

travelled a longer time and originated at larger distances. In practice, the

distance from which waves can come is limited by the dimensions of the

storm area or by a shore line. This distance is called the fetch. The time

necessary for the waves to travel from the beginning of the fetch to the locality

under consideration is called the minimum duration /min . If the duration

of the wind exceeds /min , the character of the significant waves which are

present in the fetch remains constant in time and a steady state is established.

To examine the steady state, consider a parallelepiped fixed in space of

unit width and of the length dx, but otherwise similar to the one shown in

Fig. 42. Since the parallelepiped is fixed in space, potential energy flows

into the volume at the rear edge at the rate chE and leaves at the forward

edge at the rate

4+k(4) dx -

The local change in energy must equal the sum of the amounts which enter

or leave the parallelepiped and one obtains

cE c cE E dc „ „ ,„ T v

p7+o p-+T - = Rt±Rn. (IV. 39)
at 2 dx 2 ex

This equation applies only to conservative waves. In order to apply it to

significant waves which are present over a limited fetch after a steady state

has been reached, we must write 8E/dt = and we obtain:

ii+f !-*=«- <IV - 40>

In the equations (IV.38) and (IV. 40) the + and — sign applies respectively,
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when we have c < U and c > U respectively. The solution of the equa-

tion (IV. 40) gives the height and velocity as function of fetch after a steady

state has been reached, i.e. for t > ?min . It will be shown that ?min depends

upon fetch and wind velocity. The value of tmin determines whether the

equation (IV. 38) (the duration equation) or the equation (IV. 40) (the fetch

equation) is to be used for determining the characteristics of the significant

waves.

Each of these relations contains two unknowns, the energy and the wave
velocity. As the energy depends only on the wave height, we can consider

this latter and the wave velocity as the unknowns. A third relation is necessary

for the solution of these equations. Sverdrup and Munk form this relation

from empirical data derived from observations, and therefore their theory

is based only partly on purely theoretical deductions.

In the past many fruitless attempts have been made to relate wave steepness

to wind velocity or other variables, but it has not been attempted to relate

steepness, 3 = H/A to wave age = c/U. Such a relationship is suggested

by dimensional considerations and, if existing, has the advantage of being

$--<(#)
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Fig. 42a. Wave height d as a function of (5 = c/U.

independent of fetch and duration. The question can be examined by sets

of more recently collected observations. The corresponding values of the two

non-dimensional parameters d and /? are plotted in Fig. 42a, which clearly

demonstrates that the two variables are related (Sverdrup and Munk,
1947; Neumann, 1952). The data were collected from observations at many
different localities and, although these values are scattered, there is nevertheless

a marked relation between the values. The heavy drawn curve has been fitted
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to the average values and to the observations. More recent observations

suggest that a rapid increase of the wave steepness in the first stages of

development up to the maximum value 6 = -1. This value seems to remain

constant to about /S = \. Since this first stage is passed very fast, it will

probably have only little influence on the following development of the

wave pattern.

With these relations, the equations (IV. 38) and (IV. 40) can be solved.

These solutions can be given as relations between non-dimensional parameters

and can be compared with observations. It is not possible to give here the

rather long derivations of these solutions and we must refer to the original

paper.

The results are presented in the form of diagrams giving the most important

wave quantities and their dependence on fetch and duration. Bretschneider

(1952) has summarized the results into one diagram (Fig. 43), which presents

all the basic information on the generation of waves. It contains, first of

all, the dependence of c/U and gH/U 2 on the quantity gF/U2 that is, on F
the fetch and U the wave velocity, for an unlimited wind duration. The

variation of these quantities is so large that, to represent it graphically, one

needs a 4 x 5 cycle logarithmic paper. The curves represent the theory, the

points the observations. The latter were greatly increased by Bretschneider,

who included data which have been obtained from wave-channel experiments,

from measurements on small lakes, and from observations and wave-recorder

measurements of ocean waves. Thus, the entire curve is covered by ob-

servations points.

The duration curve tU/F and the curve H/L versus gF/U2 also have been

presented in Fig. 43. These curves give in a similar manner the wave velocity

and the wave height as a function of wind duration t for unlimited fetch.

Also here there is a close agreement with the observations. The curve tU/F

was determined assuming that for a given fetch length, waves generated by

a particular wind velocity reach their limiting values in a particular time.

This time increases as the fetch length increases, resulting in increased limit-

ing values of wave height and period. For any particular fetch length and

wind velocity, there is a duration of wind, after which no future increase

in height and period occurs. This limited time is the time required for the

energy front associated with the significant waves to advance at the variable

group velocity from the beginning of the fetch to the end of the fetch.

5. Observations on the Growth of Waves

We have seen previously that there is a fair agreement between the theory

and observations on wave velocity, wave length and the wave period. It was

always more difficult to reconcile observations and theory on the wave height,

especially now that it is recognized that one has to consider the fetch and

the duration of the wind. The theory developed by Sverdrup and Munk has
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shown in which way these two variables have to be considered in the growth

of waves. In order to test the theory we need complete observations, consist-

ing of at least the following five variables:

(a) Significant wave height H.

(b) Significant wave period T, or velocity c or length X.

(c) Wind velocity U.

(d) Wind fetch x.

(e) Wind duration t.

It must, furthermore, be borne in mind that the waves in any one region

are the result, not only of local winds but also of winds in other areas, and

that the relation between wind and waves during the periods of growth or

of decay (sea or swell) should be considered separately.

The observations which have been entered as points in Fig. 43 have been

collected from different series of older and newer observations, where it was

possible to determine the non-dimensional parameter through special ob-

servations. However, generally it is not possible to have such complete series

of observations available.

From earlier days we have empirical relations between the wave height,

the distance and the duration of the fetch, and also between the wave height,

the wave velocity and the force of the wind. However, these relations are only

approximate, e.g. Stevenson (1851, p. 189, 1852, p. 358) has established an

empirical formula giving the "greatest" wave height //as function of the fetch

(both in cm), according to which H = 0105 \/x. The formula was established

by means of data from lakes, where the value of x ranged from a few kilo-

metres up to 250 km. For the Mediterranean Cornish has verified the relation

for fetches up to 830 km, and it is generally assumed that the relationship

holds for values of x up to 1000 km. The formula is incomplete, since it does

not take the wind velocity into account, but it is intended to apply at the

highest wind velocity which can be expected to occur. Figure 43 gives the

dimensionless relationship between //, x and U, and Stevenson's formula

fits this relation only when there is a definite connection between the wind

force and the fetch.

Boergen (1890, p. 1) has given an empirical formula for the relation

between wave height and duration of the wind; it is a linear formula, in

which H = HJ{\ +a/t). H is the wave height to be determined and Hm the

maximum wave height for any given wind velocity and t the duration of

the wind action ; for / = 0, H = 0, and for t = oo, H = Hm . The coefficient a

must be determined from observations. Although a comparision of this

formula with theory is not possible, its chief features seem to be in agreement.

Boergen has attempted to combine the three factors: wind, velocity, duration

of the wind action and active length of the fetch, and devised the formula
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-^max*-'A =
aU
D 1 +

(IV.41)

a and fi are constants to be determined empirically. A max is the wave
amplitude of matured waves, that is after a great fetch and lengthy wind

action. Thorade reasons rightly that this equation in the form

A -^maxC/(l-e-^)(l-^m'«)) (IV.42)

would be more justified. Boergen has tried to test his formula to observations

made by Paris; Krummel (1911, Vol. II, p. 66), however, is of the opinion

that the observations are not suited for this purpose.

The relationship between wave height and wind velocity as given by

Sverdrup and Munk is H = (2n/g) U2
dft

2
, i. e. it depends not only on the

wind velocity, but also on the fetch and the duration of the wind, since d

and ft are functions of these variables. The maximum wave height is found

by setting in this relation /3 = @M , and for d = dm , and therefore depends

upon the wind velocity only. Hm = (0-26/g) U2
, a relation which is in good

agreement with a formula suggested by Rossby and Montgomery (1935,

p. 1011) from quite different considerations.

Linear relations between wind velocity and general wave height (not

maximal) have been derived and were already discussed previously. It was

pointed out that both the length of the fetch and the duration of the wind

action exert an influence on the wave height and that the simple linear

relations of Cornish and Zimmermann are only rough approximations of

the reality.

Table 12. Average wave characteristics in tradewind regions

Locality
Observations U
made by (cm/sec)

c

(cm/sec) (clU)

d

(HIA)

Tradewind, N. Atlantic Ocean
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cording to Schott, c = 0-76(7, that is, the wave velocity is less than the wind

velocity. According to the newer theory, it is perfectly possible that c > U.

Observations from the trade wind region, where the wind blows over large

areas with great uniformity and moderate velocity, show clearly that wave

velocities may exceed wind velocities in the generating area. Table 12 by

Sverdrup and Munk is a compilation of wave characteristics in tradewind

regions and is highly instructive.

6. Growing of Spectral Components of the Wind-Generated Sea

The introduction of the wave spectrum in studying the characteristics

of the wind-generated sea led to the problem of the growth of the individual

components of sea motion. Neumann (1952, 1953, 1954) and, in another

way also Darbyshire (1952), have tried to solve this problem. Since the

ocean waves will only grow as long as the energy supplied by the wind

exceeds the loss in energy, the complete energy equations permit to compute

this growing theoretically. The computations by Neumann are physically

more founded than those by Sverdrup and Munk, as Neumann took into

account the internal friction and turbulence in the water as well as the

periodical changes of wind stress along the profile. Again, the results are

represented in diagrams with dimensionless wave quantities and become

especially clear when the co-cumulative energy spectra (CCS-curves) are

used. An example is given in Fig. 43a for wind speeds of 10 to 36 knots.

The energy spectrum in this figure is the same as in Fig. 33, but Fig. 43a

contains also duration or fetch lines.

The intersection points of the CCS-curves with the duration or fetch lines,

respectively, show the limit of the development of the composite wave motion

at the given duration or fetch. Physically, it means that the state of development

is limited by a certain maximum amount of total energy which the wave

motion can absorb from the wind with the given conditions. The E value

of the ordinate of each intersection point is a practical measure of the total

energy accumulated in the wave motion of the non-fully arisen state, limited

either by the fetch or duration. From the E = l(gg)E* value, the wave height

characteristics can be computed, as in the case of a fully arisen sea.

The upper limit of significant periods in not fully arisen sea is approx-

imately determined by the "frequency of intersection",/, that is, the frequency

of the intersection point between the CCS-curve of a given wind speed and

the given fetch or duration line, respectively. By this, theoretically, the wave

spectrum is cut off abruptly at a given maximum period, T
t
(or minimum

frequency, fy without considering possible wave components with periods

a little longer than T
t
= l/ft , which are just in the beginning stage of de-

velopment. These wave components probably have a small amplitude, and

contribute so small amounts of energy to the total wave energy that they

may be neglected in most practical cases of wave forecasting.



98 Generation, Growth and Propagation of Waves

James (1954) checked Neumann's theory by comparing it with ocean

wave records and obtained very satisfactory results; the results found by

G-26

Fig. 43a. Duration and fetch graph for wind speeds from 22-36 knots as a function of

duration and fetch respectively. , isolines for duration in hours; , isolines

for fetch in nautical miles.

Rattray and Burt (1956), however, who studied the wave heights in a storm

weather situation, are not so good, so that it is not possible to form a final

judgement.

The investigations by Darbyshire (1952) are based on direct measurements

of the development of wind sea spectra off the British west coasts and in

lakes. He found empirical relations between wind and waves for fully arisen

sea as well as for the times of generation with different duration and fetch.

The basic assumption of the physical relations is the following: there is no

energy exchange between the different wave components of the spectrum,

so that they progress independent of one another, with the corresponding
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group velocity cg
= \c and grow by wind. One of the main results of Darby-

shire's is that the wave spectrum is fully arisen already after a fetch of 200-

300 nm, with the longest wave period of the spectrum being, in sec, \v
g ,

where v
g
means the maximum gradient wind speed. The period of the highest

waves is Tmax = \v
g
and the steepness of the higher waves <5max ~l/j/

v

All results are summarized in an amplitude spectrum containing the stages

of generation and the fully arisen waves

[h(o)Y = —-r- expxp{- 20 4 6(1 + 1 25 x 10- 4F)(l-e-° 23^) (IV. 43)

In this equation v
g

is the gradient wind speed and F the fetch in nm. For

great values of F the equation gives the simple energy spectrum of the fully

arisen sea, the wind speed v at the sea surface is 0-667 v
g . The constant C

was found to be 22 cm2 sec
-2

. In general, the theory of Darbyshire seems

to be verified by the observations. In some cases there will be differences

in the results gained from Neumann's and Darbyshire's theories. The reason

for these differences will probably be the fact that each theory assumes an

entirely different mechanism of wave generation by wind. As mentioned

above, in Darbyshire's theory each component of the wave spectrum grows

independently of the other components present; whereas Neumann assumes

that after the beginning of wind action short-period steep waves develop

from the initial waves which soon break up, that is, become unstable. They

are run under by the longer waves and in part give their kinetic and potential

energy to the longer waves. After this stage and with sufficiently long duration

and fetch long waves develop, which progress with the wind speed. After

Neumann, the longer waves will appear and grow only after the shorter

ones are fully arisen. These discrepancies between the two conceptions will

be settled only by further research.

7. Swell, Observations and Theory

(a) Observations on the Propagation of Swell

A strong wave motion, generated by a storm of long duration, travels

from the generating area with a great velocity. Alteration of the wave profile

transforms the wind-sea into a swell. As soon as the wind decreases in force,

the waves change their shape quite characteristically. The irregularities in

form in the wave profile smooth out, the shorter wave disturbances vanish

first and only the waves of greater height and length remain. This is the swell,

where the waves are not any longer subjected to action of the wind (U < c).

In a system of waves of different lengths, the waves of greater wave length

move with a greater velocity than the shorter ones. One can observe how

these smaller waves apparently climb backwards to the crests of the large

waves. Finally, only the large waves remain and the wave trains acquire shapes

7*
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with long crests and almost straight fronts. This is a well-developed swell,

propagating in its original direction independently of the wind.

In the area of generation the ratio between wave height H and wave

length A is about 1:20, and occasionally 1:10; according to Count von
Larisch (1925), this ratio is for swell 1:30 to 1:100; great wave lengths

and small heights are predominant and round trochoidal profiles are their

characteristic shape (see Table 8). The stereophotogrammetric picture one

sees is a mixture of waves of the most varied wave lengths, which last only

a short time, on account of the different velocities of its components. The

long waves, with their greater velocity, rapidly leave the wind area and the

long waves with small height dominate entirely in the swell. Owing to the

smaller energy per unit area the short-crested waves will be destroyed more

rapidly by friction and by turbulence. Photogrammetrical pictures have

confirmed that waves with great wave length are also present in the generation

area. In the storm area they become inconspicuous because of the usually

steeper and chopped waves.

A wave group can be represented by the superposition of two normal

wave trains of nearly equal wave length. The phenomena of the reappearance

of particularly high wave crests (see p. 13) can also be explained in this

manner. Such a superposition is graphically illustrated in Fig. 6. It shows

the wave composed of "wave groups" alternating with smooth surfaces,

where the amplitude of the wave decreases to zero. Figure 44 reproduces the

5
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Fig. 44. Registration of waves on a "Petravic" pendulum. "Meteor", 30 March 1925.

records of a "Petravic" pendulum which registered the approaching waves

aboard the "Meteor" while the engines were stopped. The wave groups present

can easily be represented by the interference of two wave systems of nearly

the same wavelength (see also Fig. 22).

The simple theory of interferences cannot explain all phenomena relative

to wave groups, for instance, the question how it is possible that a field of

waves continues to travel after the generating force has ceased to exist.

Swell is particularly characteristic in the trade wind regions, where in the

winter months of the respective hemispheres it grows to considerable pro-

portions. It always comes from the poles and originates in the storm areas

which cross from west to east the higher mid-latitudes. When a large

storm area remains for some time over a region at sea or travels slowly

eastward, enormous wind-seas develop mostly on the backward side of the

depressions. These waves are very long; consequently, they travel with great

velocity towards lower latitudes, and will reach eventually the polar boundary
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of the tradewind region, which they penetrate sometimes. Strong swells have

been observed to cross the whole region of the tradewinds and penetrate

into the equatorial calm zone, and even into the tradewind area of the other

hemisphere. This occurs in the North Atlantic Ocean, where the swell generated

by the north-westerly storms of the moderate latitudes travels across the

zone of the north-east tradewind and the equatorial regions of calm air

into the region of south-east tradewind. For instance on Ascension Island

(8°S. lat.) and even on St. Helena (16°S. lat.), there is sometimes a strong

surf (the famous "rollers") from a swell generated about 4000 nautical miles

distance. If the storm waves have an original wave length of 1 50 m and keep

up their original velocity of 15 m/sec, they can travel the distance of 4000 miles

within 137 h = 5 days and 17 h. This time, however, will be shorter, as the

wave velocity increases with the increase of the wave length.

In the same way, the imposing swell causing the constant surf at the coast

of Guinea (the Kalema) originates from a region near Tristan de Cunha
in the moderate latitudes of the southern hemisphere. It consists of very

long waves, whose average period in a series of 60 waves was 15 1 sec with

extreme values of 6 and 24 sec. The waves, therefore, had the enormous

length of 350 m and travelled with a velocity of 23 | m/sec; they only need

1 day for 1100 miles and only 2-3 days to reach the coast of French Guinea.

The swell in the trade-wind region of the North Atlantic Ocean and the

surf on St. Helena are correlated to the north-westerly storms of the North

Atlantic Ocean, as shown by the comparison of their monthly variations.

Table 13. Yearly number of breakers at St. Helena and number of storms

in North Atlantic Ocean

Month
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of storms according to the maps of the Atlantic Ocean of the German Seewarte

is given in per cent of all observations. In the equatorial area of calms there

is generally a strong north-westerly swell in the northern winter and spring,

which is a consequence of the winter gales in the northern hemisphere, whereas

in summer the swell is more from the south and the south-west, which are

caused by winterly storms in the high latitudes of the southern hemisphere.

The behaviour of swells on the European coast has been observed by

Cornish (1910); he found that wave lengths of a very long period (12-20 sec)

are not exceptional; once he found an average period of 22-5 sec, which would
correspond to a wave length of more than 1200 m in the open ocean. Thorade

once observed, from gauge recordings in Heligoland, waves with a period

of about 15 sec.

There is as yet no absolute certainty as to whether the large waves of the

swell are already present in the storm area, and concealed there by the

amplitudes of the stronger wind-sea; according to Poisson and Cauchy's

theory, it is not right to deduct the wavelength of the wave in the generating

area from the length and period of the waves in the swell; it was found that

the wave length increases considerably as the waves travel (p. 68, Fig. 36).

The relation between a swell and the storm-waves which generated it,

has been investigated more or less successfully in some special cases. Krummel
reports a few interesting cases in the southern part of the Indian Ocean
(Paris) and in the southern Atlantic Ocean (Gassenmayer) in which it is

quite probable that there really was a connection between these two

phenomena. He investigated more thoroughly in a synoptical way several

cases in the North Atlantic Ocean by drawing charts of the state of the

waves based on the diary of the German Seewarte. Observations were

made during the international wave week held from 14th to 19th November,

1938, in the nothern Atlantic Ocean. A synoptical presentation of the ob-

servations for each day at 12 G.M.T. was given by Keyser. Figure 45 gives

a simplified example of these charts; it shows the distribution of the swells

for the entire northern Atlantic Ocean for the 15th of November. This chart

shows also the distribution of pressure at the ocean surface; however, the

winds have been omitted, in order not to clutter up the picture. They can

be derived with sufficient accuracy from the pressure distribution. The direc-

tion and the force of the swell according to the Douglas scale is given for

each separate position of the ships. An attempt was made to draw from

these values the wave fronts of the existing swell. One wave-train spreads

from the western North Atlantic to the north-east, thereby increasing in force.

A second wave-train covers the eastern part of the ocean and spreads to the

south-east almost perpendicularly to the first one. The first wave-train is

probably the result of an extensive low-pressure region, which on November
14th travelled rapidly eastward from northern North America and which

was on 15th November with its centre above the Davis Strait. The second
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wave-train is the remainder of a itrong swell which developed on the southern

side of a cyclone which moved towards the British Isles, thereby decreasing

in force. Simultaneous!v the force of the swell decreased.

Fig. 45. Swell in North Atlantic 15 November 1938, 12h G.M.T. (Keyser).

Particularly interesting is the study of the propagation of a strong swell

which started at the end of February 1 886 from a storm area south of New-
foundland (40°N., 55°W.) and which could be followed, according to the

ships logs, right across the subtropical and tropical Atlantic Ocean to the

coast of Ascension Island (March 1886). This study allows some insight

into the behaviour of swells during such a long travel over large oceanic

areas. The main results have been summarized in Table 14. Seven reliable

time measurements, recorded in the ships logs, permitted to follow a part-

icularly high wave-train in its progress through the trade-wind region. The

distances have been measured from the assumed centre of the hurricane

(on 25th February) in 40°N., 55°W. along the great circle. Even though

the time of the start for determining the "age of the swell" is undertain, the

time differences between the observations of the individual ships are probably

dependable. The velocity computed from these observations is approximately

30 n.m.per hour at the start, increasing then to 41 A, and off Ascension it was
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48J n.m. per hour. The wind-sea might have had periods of 8, maximum
9 sec i.e. velocities of 24 to 27 n.m. per hour in the storm region, and the

velocity of propagation of the swell can be assumed to have been accelerated

with increasing age. Thorade wanting a more precise answer to this question

has submitted the values of Table 14 to an analysis by the method of the

least squares and found that the observations are in somewhat better

Table 14. Tracking a heavy North Atlantic swell from 25th February

to 1st March 1!
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After the waves have left the generating area, they travel through a region

of calm, where the wind velocity is small compared to the wave velocity.

The waves receive no energy by normal pressures but, on the contrary, air

resistance causes a loss of energy. According to the equation (IV. 256), this

loss of energy per unit area equals

RN = -|.W= - S
ff-H*c-\ (IV. 43)

the transfer of energy due to tangential stress of the wind can be neglected

(RT = 0).

A KHF ,TF ,tF\

,P(H ,TD .tD )

Fig. 46a. Registration of swell.

The swell composed of different wave systems can now be explained by

means of the significant waves. The theory of Sverdrup and Munk for the

decay of waves is closely related to the theory of the growth of waves and

thus explains for the first time, on a general physical basis, this important

phenomenon of ocean waves. The differential equation for the change of

wave velocity with propagation of the wave is simplified and can be solved

without introducing other hypotheses and constants. The most important

results is that the period of the waves increases with increasing distance

from the end of the fetch, whereas the wave height decreases simultaneously.

The distance is called the distance of decay D. The theory shows that the

ratio between the period at the end of the decay distance and the period at

the end of the fetch TD :TF , and the ratio between the corresponding wave

heights HD :HF , as well as the ratio between the travel time and the period

at the end of the fetch tD :TF can be represented as functions of the same

non-dimensional parameter D/gTF . The observations then available to Sver-
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drup and Munk were but sparse and unreliable, but in the main they confirm

the theoretical results. The theory clearly shows that, while the swell waves

travel from the storm area, the period, wave length and velocity of propagation

increase and the wave height decreases. Later on, Sverdrup (1947a) com-

pleted his theory. Assuming that swell generally has the same characteristics

as the waves in the generating area, it is shown that the air resistance which

the swell encounters leads to a selective dissipation. The energy associated

with the shorter period waves is dissipated more rapidly than that of longer

period waves, and consequently the energy maximum shifts toward longer

periods, that is, the period of the significant waves increases. The effect is

modified by following or opposing winds. Numerical examples are in satis-

factory agreement with results from the formerly semi-empirical graphs.

This result was fully confirmed by Darbyshire (1952). Using his wave

spectrum and introducing a coefficient of friction proportional to the wave

steepness (see p. 87), he explained the transformation of swell waves by

the different extinction of the spectral components progressing independently

of one another. This extinction is due to the air resistance. Groen and

Dorrestein (1950), and later Bowden (1950), give a completely different

explanation for the energy loss of swell waves. The former regard the

turbulence friction as the main cause of the loss of energy, and take the

turbulence coefficients to be proportional to the 4/3 power of the wave length

(after von Weizsacker, vol. I no. 1), while Bowden takes them to be pro-

portional to the velocity and amplitude of the waves. Both assumptions

are capable of explaining completely the transformation of swell waves. It was

not possible to decide whether this transformation is due more to air resistance

or to turbulence friction. This fact will not be changed by the application

of a refined method by Groen (1954). It was also possible to prove that

the tidal currents exercise an influence on the swell waves (Deacon, 1949;

Darbyshire, 1952).

Hitherto, only the influence of air resistance and of turbulent friction

has been discussed. We shall now deal with the influence of dispersion on

the transformation of swell waves. Since long waves progress faster than

shorter waves, the wave spectrum of a wave pack will gradually change.

The apparent wave period of the swell must increase with time with increasing

fetch whereas at a fixed point the period decreases. At the same time the

dispersion requires a decrease in wave energy. This leads to a reduction of

the heights of significant waves. The first study of the transformation of

swell waves on the basis of the effect of dispersion was made by Breit-

schneider (1952), who started out from the wave values of significant waves.

He wants to determine, on the one hand, the dependence of the wave heights

of a swell HD upon the fetch F, upon the height of the wind-sea at the end

of the wind-field and upon the decay distance, and, on the other hand, the

dependence of the period TD upon the fetch, upon the period of the wind-
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sea TF and upon the decay distance The results were given in the form of

dimensionless parameters which can be checked against the observations.

The conclusions drawn confirm what had been expected from qualitative

considerations: For a given wave period TF and a decay distance D the

increase of the period and the decrease of the height of a swell are the greater

the shorter is the fetch. These conclusions are more comprehensive than

those of Sverdrup and Munk, who investigated only the influence of

TF and D. Besides, the graphs show that the theoretical results fit the ob-

servations only in part, which is not surprising if one regards the simultaneous

influence of so many factors.

Pierson, Neumann and James (1952, 1953) have treated this problem

in an entirely different way. Based on the energy spectrum of short-crested

wind generated waves, they try to solve the influence of dispersion and of

lateral angular spreading. For the case of a line-shaped source of wave

generation, having a width B, Fig. 46 b gives the quantities used. Tx designates

Wmdfieid

Fig. 46b. Registration of a swell filter in a linear area of wave origin. P point of observa-

tion of swell.

the period of those waves which have just passed the point of observation P
at the time tD , T2 the period of the waves which just reach P at the time t D .

d x and d2 are the angles of propagation of those waves which just pass "above"

and "below" P. Using the group velocity for each period, Tx can be computed
from the duration of the emission of such waves from the source, 6 X and 2

from the width B. The wave periods and directions existing in P at the time

tD are between Tx and T2 and X and 62 , respectively. The formerly broad

energy spectrum is contracted into a narrow spectral band of the swell in P
at the time tD . The entire process is similar to the effect of a filter. The period

range of the swell can be determined by applying this method to the energy
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spectrum of the wind generated sea; then it is possible to compute the structure

of the swell at any place. With increasing distance between P and the wave
source the frequency band and the scope of the direction of the swell will

become narrower, the crests longer and the periods more uniform. Therefore,

the principal features of "old swells" can be easily understood. This theory

by Pierson, Neumann and James seems to give a correct interpretation of

the development of swells and, together with the above considerations, will

give an insight into this kind of ocean waves.



Chapter V

Shallow Water Waves and Their

Transformation through External

Factors; Surf

Surface or short waves generated by wind on deep water travel eventually

on to shallow water, where their profile changes when the depth becomes

equal to the wave length.

In order to understand the phenomena accompanying this transformation,

it is necessary to deal first with the theory of the shallow water waves, that

is with waves whose vertical motions, in shallow water, can no longer be

regarded as small in relation to their horizontal motions.

1. Shallow Water Waves; Theory and Observations

As shown in the second chapter (see p. 16) there is a gap between surface

waves and tidal waves which is filled by waves where the water depth varies

between TV to h of the wave length. The orbits of the single water particles

in such waves are flat ellipses, whose vertical axes become gradually smaller

until they vanish at the bottom, where the ellipses degenerate into straight

lines. Figure 8 shows the wave profile and the position of the line of particles

which is vertical at rest. The velocity of propagation of such waves is given

by equation (II. 10), and the middle section of Fig. 9 shows its relation to

the ratio /?:/. The extreme values in either direction are the well-known

equation for the velocity of surface or deep water waves c =
] (g/%) and

for the long waves of small amplitudes c = }/(g/h). In a first approximation

the wave profile, for small amplitudes in shallow water, is very similar to

a harmonic form, but with large amplitudes the profile changes differently

for small and great depths. A short time ago, Struik (1926, p. 595) was

able to prove, by using a similar analysis as used by Levi-Civita (1925)

for deep water waves, that waves of a permanent type are possible in shallow

water. However, it is not yet known how the waves are generated and

maintained. Korteweg and de Vries (1895, p. 422) developed a theory

of a system of oscillatory waves of finite height in a canal of limited depth.

It gives wave profiles with steep crests and wide troughs as they are regularly

encountered in rather high shallow water waves. Regarding the theory of

these waves, we refer to Lamb's Hydrodynamics (1932, para. 253, p. 426).
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The wave profile of these cnoidal waves has the form

r, =2Aaf-(lK
X
^, (V.l)

in which en represents the Jacobi elliptical function and K the complete

elliptic integral of the first kind. The module k is computed from the relation

v
2A

h

AKk

1/3
(V.2)

where h is the depth (from wave trough to bottom) and 2A the wave height

measured from trough to crest. We can replace the module k by sin a. For
a = 0, k = and for small values of X we obtain in a first approximation

sine waves, which means a harmonic wave profile in the sense of the Stokes

theory. If, on the other hand, a = 90°, then k = 1 and, with K = oo, X = oo.

The wave profile nears a sech-function and thus corresponds to that of the

solitary wave (p. 116). The theory of Korteweg and de Vries is important

because it bridges the gap between "long" and "short" waves.

To test the theory on observed waves, Thorade (1931, p. 183) proceeded

as follows: From the observed wave length I and the values h and A the

value at the left side of (V.2) is computed. From Table 15 or from a graphical

presentation the auxiliary angle a is obtained. With this value we find in

the Table on p. 134 of functions by Jannke and Emde (1933) the numerical

Table 15. For determining cnoidal wave profiles

V-h \ h
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consists almost exclusively of narrow, steep wave crests, separated by a stretch

of almost smooth surface. Such degenerated waves have sometimes really

been observed in shallow water (for I = 50 m, a wave height of 4 m, and

10



112 Shallow Water Wave Transformation through External Factors

in which K and E are the complete elliptic integrals of 1st and 2nd kind; the

deviation from the Lagrangian value
j
(gh) is very small for great wave

lengths.

The extensive and detailed experiments of the Weber brothers (1825)

in their inadequate wave tank have been partly used by Thorade to attempt

a test of the theory. It has, however, been found that they do not suffice to

answer all problems. Most of the experimental series deal with shallow water

waves. Their velocity of propagation should correspond to the equation of

Laplace (p. 18) c =
j
(8/x)tanh^//. In the case of long waves, they would

have to conform to the equation by Lagrange c = j (gh). Krummel (1911,

vol. II, p. 22) has given the comparison with the values of Lagrange, whereas

Thorade (1931, p. 189) has given the comparison with the Lagrangian values.

Table 16 gives a comparison between these observed values in the tanks

and velocities computed according to the equations by Laplace and Lagrange.

We can see that for increasing depth the Laplace formula is in better agreement

with observations.

Table 16. Shallow water wave in Weber's wave tank

Depth (h) cm
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300
_l

Fig. 50. Section from a wave map of a stereophotogrammetric picture taken about

400 m South-west of the east breakwater at Heligoland on 24 February, 1911, 5-25 h

(A. Eckhardt).
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parison between observed values and the wave velocity calculated according
to the Laplace formula. The observations were grouped to eliminate random
observational errors. The agreement is good, notwithstanding a slight tendency
of the observed wave velocities to exceed the theoretical ones. However,
deviations are small.

A few good stereophotogrammetric wave pictures made by Eckhardt
(1931) for the construction of the harbour of Heligoland, can be used for

testing the theoretical results. Those taken on 24 February and 6 November,
1911 are particularly remarkable. Figure 50 shows in the first series of pictures

a partial section of the wave plane south-west of the western breakwater,
where the wave-train is not yet disturbed by the harbour construction. More
to the north, there was a rather strong shock surf against the breakwater.

From both series of pictures an average wave-train was derived, for an
appropriate zone (in the first case over a width of 200 m, in the latter case

over a width of 450 m) by drawing longitudinal profiles, if possible per-

pendicular to the wave crests and by averaging same. This could be done,

in view of the very uniform waves in the area. Small irregularities were thus

eliminated and a good wave profile obtained. Figures 51 and 52 give these
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which appears to be disturbed in its length), in the latter case from 136 to

153 m. In both cases the depth decreases in the direction of propagation

from about 8 to 6 m, and 9 to 7 m respectively, except for a small elevation

of the ocean bottom up to a depth of 4 m underneath the second wave trough

in the first case, and a larger elevation up to a depth of 6 m beneath the

fourth crest in the second case. The profile keeps its form, but during its

travel the crest becomes sharper on both sides. The trough is very flat and

in many localities the wave trough is practically level over a large surface.

This flattening shows particularly well in the median waves in the second

case; the last wave has an absolutely flat trough.

To test the theory, the first four half waves were averaged. These average

wave profiles are shown in Fig. 53. To compute the cnoidal wave profiles,

5

4

E
3

-^
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Gaillard (1924) derived from 533 waves of very different amplitudes that

Stokes's equation (II. 10) is valid. He also pointed out that, with decreasing

depth the wave length decreases, which causes a decrease in the wave velocity.

If the bottom slopes up very slightly, he found that the empirical formula

2 r K
is applicable, in which c x

and c2 represent the velocity of the same wave

corresponding to a depth h x and to the shallower depth h2 . We can see that

in shallow water waves the cnoidal waves represent quite well the actual

waves.

2. The Solitary Wave of Scott Russell

Scott Russell (1845, p. 311) during his experiments in wave tanks

(610 m long, 30-5 cm wide, rectangular basin), found a particular type

of wave, which he called the solitary wave. The wave was generated on one

end of the tank, ran through it and was reflected on the other end. He re-

peated this reflection 60 times, and he could, in this way, observe the wave

over a length of 360 m. This wave consists of a single elevation, of a height

not necessarily small as compared with the depth and which, if properly

started, may travel for a considerable distance along a uniform canal with

little or no change of type. The velocity of propagation of this wave is

constant and is given by

c=\/ [g{h + a)} (V.4)

in which a is the height of the wave crest (the maximum elevation above the

undisturbed level). Scott Russell considers the wave profile a trochoid.

It has been tried to generate waves which consisted only of a wave trough,

having the same amplitude as the solitary crest. However, the experiments

were unsuccessful and the wave thus generated always broke up in shorter

waves after a relatively short time.

Bazin (1865) confirmed the results obtained by Scott Russell by ex-

perimenting in two long canals of rectangular shape, one 450 m long, 1 99 m
wide, 1 95 m deep, and also in another canal 500 m long, 6-5 m wide and

2-4 m deep. He also found that the form of the wave profile was quite

permanent and that the wave velocity was expressed correctly by equa-

tion (V.4). Even if the water is in motion, equation (V.4) is valid, if we take the

wave velocity relative to the velocity of the water. If we have waves travelling

in a direction opposite to the current, we get a change in the wave profile,

and finally the wave breaks up. According to Scott Russell, this would happen

when h = a, but Bazin found that it happens a little earlier.

Boussinesq(1871, 1877) and Rayleigh(1876,p. 257) have developed inde-

pendent theories on the solitary wave in which they considered the vertical
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velocity component. Scott Russell's solitary wave may be regarded as an ex-

treme case of Stokes's oscillatory wave of permanent type, the wave length

being great compared with the depth of the canal. The theory showed that

the wave profile is not a trochoid as assumed by Scott Russell, but given

by the formula
y

n = osech2 ^-
,

(V.4.7)
lb

in which b is a quantity depending on the wave height A and the depth h.

Figure 54 shows the wave profile of the solitary wave and the theoretical wave

o

Fig. 54. Profile of the solitary wave.

line according to equation (V.4). With increasing wave amplitudes the

agreement is not so good now. Mc Cowan (1891) found sharper pointed

crests. The waves are no longer permanent, and the limiting value of the

waves a/h was found to be 0-68 h, in which case the velocity is given by

c2 = \-56 gh (see also Michell, 1893; and Gywgther, 1900).

The theory of the solitary wave starts as usual with the equations of motion

du 1 dp dw 1 dp— =
, — = g (V.5)

dt q dx dr o 8z

and the equation of continuity

du dw- + - = 0. (V.6)
dx dz

The origin of the co-ordinates is at the bottom of the ocean and i] is the elevation of the water

above the undisturbed level h. If U is the average horizontal velocity component in the whole water

column of a height h+rj, then we can give the equation of continuity the form

dn 8U- + (h+r
l) 7
- = 0, (V.7)

dt dx

in which
h+ rj

(h+t])U= j udz.

We can now integrate the second equation of motion from any level where there is a pressure p

to the surface z = h+i], where the pressure p = 0. From the equation (V.6) we can obtain by

integration from z = 0, where w = 0, to z

dU
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and from the integration of the second equation of motion we have

Q 2(h+ ri) dt*
(V.8)

If we substitute this value for p in the first equation of motion (V. 5) and if we integrate

this relation over the whole water column from until h+ i], and neglecting small quantities, we
obtain,

cU 8U dti h dsri— +U—+g-^ - = 0. (V.9)
8t 8x 8x 3 8x8t 2

We can substitute for the time t the velocity of propagation c of the wave disturbance and if

we give the disturbance the general form of rj =f(x—ct) and U = F(x—ct), eliminating the first

and second differential, we obtain

8U 8U 82
rj 8h)— = — c— and — = c a —

,

8t 8x 8t 2 8x2

and equation (V.9) gives us

Us c2h 82n
,

cU grj =0.
8x\ 2 3 8x2

(V.10)

Since there were 7] = 0, also U = the value between parentheses is always equal to 0, so that

in 'general we have

U2
c2h 82n

cU - -gr\- — = 0.
2 3 8x2

(V. 11)

We can eliminate U through the equation of continuity (V. 7) and equation (V. 10) and then

have U = [cl(h+7])]t] and from equation (V. 11) we obtain in first approximation

c2 = gh
3 n h2 82

rj

1+- 7 +
2 // 3r] 8x 2

(V.12)

This is the formula for the velocity of propagation of a wave disturbance ii according to Bous-

sinesq; this velocity is dependent on the wave form /; and also on the curvature of the water surface.

It is possible to get a wave profile i] of the permanent type, and in which the influences of ti and

d2ri/8x2 cancel each other; the terms can then be replaced by a constant a. The velocity of propaga-

tion of the disturbance would then be c — \?[gh(\ -\-a)].

This condition would give a differential equation

8h) 9>f 3a//

2/;
3 Ir

= .

8,j
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derived from equation (V. 13), the wave profile has no horizontal tangent, the wave disturbance

consists of a single crest. The wave profile relative to the middle of the crest has the form

*("V?),-asechM— -1/ — I. (V.15)

For this wave profile (see Fig. 54) we have no definite "wave length", but we can establish,

an approximate wave extent by assuming the limit there where the elevation r\ is one-tenth of

its maximum value. This will occur for xx\'3a\h3 = 3
-

636; if a = 2 m and h = 12 m, the length

of the wave disturbance will be 130 m. Boussinesq has shown that if the ratio ajh is small, the path

of each particle is an arc of a parabola having its axis vertical and its apex upwards, when the soli-

tary wave passes by. The wave disturbance is not periodic but there is a permanent displacement

of the water particles, which is associated with mass transport. Lamb (1932), describes Lord

Rayleigh's derivation of the solitary wave. The result is slightly different, as we have to substitute

in equation (V.15) the root \/[h2 (h+a)] for/?3 . The Rayleigh equation gives, therefore, for larger

values of the ratio a\h flatter slopes, but the difference is not very considerable.

According to Lamb, the cnoidal waves of Korteweg and de Vries can be derived from the above-

mentioned formulas. The equation (V. 13) has the form

and the solitary wave requires that the constant C is equal to zero. However, in a general way C is

different from 0, and the right side of this equation (V. 16) must vanish, both for the wave crest

and for the wave trough. This will give us a cubic equation of the form rf—afaf— ih3C = which

must have three real roots. As a > 0, this requires, as the discriminant shows, that c < — 4a3
/9.

As C is negative, the two roots rjx = a and rj2 = b must be positive and the third one r\3 = — abl(a+ b)

negative. We then obtain easily

a2+ab+b2 3a2b2

ah = and C =
a+b h3(a+b)

and the equation (V. 16) takes the form

a/A 2
3 / ab \

_) = _ (a_,„,_ 4)
|,
+ _j. (V.17)

If we put >/ = rtCos'
2x+£ sui2

X> we obtain from the integration the equation

IKx
r] = b+(a-b)cn2

, (V.18)
A

l-b2

mod k =
\ a2+ 2ab

At the same time we have

V-:
, h3(a+b) ,
/

2^, .,
and c = V[gh{l + a)].

If we know the values of three out of the four quantities, h, a, b, and A then we have determined

mathematically the value of the fourth one. Equation (V.18) represents the cnoidal waves (equa-

tion V.l).
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3. Changes in Form of Waves by Exterior Causes

When the wind increases in force, the wave crests become higher and

sharper and the waves will show a tendency to break. We observe the

formation of foam on the wave crests and this will occur with a wind force

of about 4 Beaufort. This is so constant that the appearance of foam on the

ocean is a characteristic for this wind force. If the wave height increases

to the limit of the cycloid and above, the motion of the water particles in

the wave crest becomes discontinuous, which will lead to the breaking of

the wave crest and to the making of foam. But after the explanations of the

preceding chapters, this usual explanation is not any longer valid. If wind

velocity and wave height are not any longer in equilibrium (unsteady state)

then with too great a wind we have the deficiency in pressure in the faster

moving air become greater and greater, and the excess pressure on the side

of the water in the wave crests is increasing. The displacement upwards of

the water particles becomes stormy and unsteady (p. 75). The water is mixed

with air and, consequently, we have foam on the wave crests. The first forma-

tion of foam on relatively small waves for a wind force of 4 can be attributed

to a not yet attained steady state between wind and waves. We have to

compare this to the foam which appears, when the larger waves increase

their unsymmetric wave profile and the wave crest topples over. This happens

either because the wind becomes too strong and forces the wave profile

to become asymmetric, or because the water depth decreases and produces

the surf.

With very strong winds, we observe these enormous breakers, which can

become highly destructive. We observe very high waves and mighty breakers

where a swell runs against a strong current, i.e. in estuaries and in areas

with strong ocean currents and tidal currents. In the vicinity of the wave

crest, the orbit of the wave motion becomes compressed through the opposing

currents, the crests become higher and steeper until they break in the di-

rection of the current. Waves change considerably when approaching the

shores, especially when the water depth becomes smaller than half the wave

length. The character of the wave changes from a short wave in a deep ocean

to a long wave in the vicinity of the shore. The wave velocity decreases from

the moment that the wave enters shallow water until it breaks, but the wave

period remains unchanged. When a wave continues in shallow water, its

wave length becomes smaller and, in general, the wave height becomes

larger because the wave fronts are compressed.

Green (1837) has investigated the influence of the reduction of the cross-

section of the wave motion and its influence on the wave height. He found

that the wave height is inversely proportional to the fourth root of the water

depth; the influence of the variation of the cross-section becomes more

important if a wave enters a funnel-shaped estuary, and the wave height

changes here inversely proportional to the square root of the width of the
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water basin. Lord Rayleigh (1876, p. 260) has shown that this follows

from the law of conservation of energy.

Sverdrup and Munk (1946) have presented this problem in a simple

way. In deep water, half of the total energy E travels at a velocity c

(see p. 22). In shallow water, only a fraction n of the energy E travels at

a velocity c. The fraction n is sometimes used to express the relationship

between the wave and group velocities. The ratio of the energies equals

E_ 1 Co

In c
(V.19)

and the ratio of wave heights is proportional to the square root of the energy

F.-1/lVfe?)- (v ' 20)

As the wave period remains constant, and I = cT, the height H will be

approximately proportional to the fourth root of the depth. The ratio c/c

and n have both been expressed theoretically by Stokes as functions of

a ratio h/?. , where /? is the depth and / the wave length in deep water. This

ratio has been called "relative depth"; the exact derivation was given by

Munk and Traylor (1947). Figure 55 shows the theoretical relationship
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Fig. 55. Ratio wave height over deep-water wave height as function of relative depth. Line

gives theoretical relationship, filled-in figures show distribution of observed values. Theory

and observations both show initial decrease followed by increase (Sverdrup and Munk).

between H/H and hjX , according to Sverdrup and Munk, from whom we

quote the following paragraphs/

"As the wave comes into shallow water, the theory shows first a decrease

of 8% in wave height and then an increase. The changes are small and

difficult to detect from individual observations. A statistical study of a large

number of observations made at the University of California in a wave tank

gives evidence of the dip and the subsequent increase. Field observations

have confirmed the computed increase, but have been too inaccurate to
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confirm or deny the small initial decrease in wave height. The observations

shown in Fig. 55 refer only to waves before they break during a short

interval immediately preceding the breaking, an increase in wave height

takes place, which is more rapid than the one given by the Stokes theory.

The reason for this descrepancy can be found in the rapid change in the

wave profile where the wave height is not any longer proportional to the

square root of the energy" (see p. 130).

One of the most characteristic features of the onrushing swell on a sloping

beach in the form of breakers is the very regular formation of long-crested

waves. Jeffreys (1924) explains that, when a wave system composed of

different wave lengths advances into shallow water, the dissipation of energy

destroys the short-crested waves before the low crested waves of the swell.

Airy (see Lamb, 1932, para. 188, p. 281) has shown that when the

elevation rj is not small compared with the mean depth h waves are no

longer propagated without change of type. The waves become steeper and

steeper because on the front slope of the wave the water particles are moving

faster, whereas on the rear slope of the wave the water particles move slower,

and we get to a point where the vertical accelerations can no longer be

neglected in comparison to the horizontal ones. The observation shows that

the wave topples over and breaks. Applying the method of successive ap-

proximations, we can derive the gradual development of an asymmetric wave

profile. The second approximation adds a second term to the simple wave

train which increases the duration of the fall and decreases the rising time

of the water surface. The wave profile has then the following form:

r\ = acosx(x— ct)-\- . ^—^- xsm2>t{x— ct)

.

(V.21)

The second term in the equation contains the factor x in the amplitude.

This means that this first approximation is valid only for a small distance x.

At a certain distance x the unsymmetry of the wave profile becomes so large

that the approximation (V.21) can hardly be maintained. This limit is at-

tained when the amplitude of the second term becomes equal to that of the

first one. This happens when

5 f^ r - 1

4 c2 "
x ~ l

•

The distance the wave can travel without overturning will be

4 ^_
3 gxa

'

Fjelstad (1941) solved mathematically the differential equations for this

change of profile. He neglected only the vertical accelerations so that he was

justified to substitute for the pressure its hydrostatic value. He considered com-
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pletely that the differential equations were not linear. The solution is valid

irrespectively if one starts either with Euler's equations or the Lagrangian

equations of motion.

The approximation by Airy (V.21) applies to a simple two-dimensional wave train. Jeffrey

analysed in the same manner a three-dimensional wave system with shorter crested waves, as already

discussed on p. 29. If we take as an undisturbed wave form

r] = bcosx'(x—c't)cos,uy,

we find here too that if b attains the order of magnitude of depth, the wave profile becomes asym-

metric. In a first approximation

3 gx'b2
c'

2

r\ = bco%x\x — c t)cos[iy J
\ .\sin2x; (x—c i)cos2juy

.

(V.22)

As found before, the waves will overturn at a distance of about

8 c*
x = -

3 gx'bc"2

In order to determine which of the two wave systems can keep itself longest before breaking

we establish the ratio of the two distances where the waves break. This ratio is x c'
2b\2xac2

. Inas

much as c is larger than c, the value of c will be > x'bjlxa, as long as fi is not large in compari

son to x'

.

From observations made far out from the coast it was found that the amplitudes of the long-

crested waves are so small that they are barely noticeable in a cross-sea. Consequently, b is many
times larger than a. Furthermore, the short-crested waves of a cross-sea have a short length as

compared with the long waves of the swell ; we therefore have x' > x. For these two reasons, the

value of the above-mentioned ratio is very large. This means that when a cross-sea enters into

shallow water close to the beach, the short-crested waves are destroyed rather soon by collapsing

and overturning. They vanish from the oncoming waves, whereas the long-crested swell is main-

tained. Numerical examples show that, generally, a stretch of water 500—1000 m long consists

only of long-crested swell, and this is also confirmed by observations.

4. Surf on Flat and Steep Coasts

The further development of shallow water waves advancing towards the

coast depends upon whether they can expand on a gradually sloping beach

or whether they progress against a steep coast where the water remains

relatively deep.

(a) Coastal Surf

If the coast is gently sloping, the surf is regular and constant provided

the height of the waves is not too large and can be followed up qualitatively,

although not by mathematical analysis. In a wave system travelling from

deep water towards a soft sloping shore, the orbits which are in deep water

perpendicular to the wave front and to the water surface at rest, become

inclined from this vertical plane. Finally, these orbits will be parallel to the

plane of the beach. The projection of the orbit on the horizontal plane is,

therefore, a straight line in front of the coast; on approaching the shore,

it becomes an ellipse which gradually changes its main direction. When the
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angle formed by the orbit and the vertical plane exceeds 45°, the transversal

horizontal component of motion in the ellipse will exceed the vertical one.

In addition to this change of plane of the orbits, there is a decrease in the

velocity of propagation of the wave, as a consequence of decreasing depth.

The wave crests turn parallel with the shore line (see p. 127). Bjerknes (1921)

has illustrated by two examples the geometrical viewpoint when the waves

run on to the shore (Fig. 56). In connection with these presentations, we

Coast
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waves and a stronger sloping beach, this ratio h: 2A can increase to 2-71.

The crest of the breaking wave is then at 0-65-0-85 x 2A above the surface

at rest. The approaching wave gives the impression of having a larger water

volume than the retreating wave. This may partly be due to an optical

illusion because, in accordance with the nature of the eddy, the water starts

already flowing back in the rear part of the wave, while in the front and

upper part the water is still advancing. According to Wheeler (1903, p. 37),

a substantial amount of water oozes through the gravel beach.

Krummel (1911, vol. II, p. 110) emphasizes that the breaking of the

waves is not only dependent on the ratio between depth and wave height,

but also on the dimensions of the orbits in the deeper layers and at the

bottom. The breaking of the waves is, therefore, also influenced by a dis-

turbance of the horizontal water motion in greater depth. Gaillard found

that if the beach is shaped in terraces and its slopes vary between 1 : 30 and

1:90 the critical depth increases to 1-84 of the wave height. Coastal banks

which are located far into relatively deep water, or shoals in the open ocean

are generally visible by an increase in the swell. Often-times it produces

a heavy surf and thus the position of the shoals is indicated. According to

a compilation made by Krummel, surf phenomena occur for ocean depths

ranging from 15—20 to 200 m and over, probably as a consequence of

a terrace-like topography of the ocean bottom (Cialdi, 1860). These strong

currents extending into great depths without a particularly high visible swell

at the surface are called groundswell by seamen.

More accurate observations and analyses have provided a theory about

the cause of a wave to break when approaching the shore. Sverdrup and

Munk (1946. p. 828) have elaborated on an interesting observation that

at the approximate moment of breaking, a wave behaves like the solitary

wave of Scott Russell. This seems to follow from the theory of shallow water

waves and of the solitary wave. According to the theory of Korteweg
and de Vries (1895) the profiles of the cnoidal waves correspond very

closely to those of waves in shallow water, just before they break. It was

shown on pp. 110 and 119 that the solitary wave is theoretically a special

case of these cnoidal waves. Therefore, it can be expected that the shallow

water waves behave in breaking like the solitary waves.

When the water becomes so shallow that the ratio of depth h to wave

height H reaches the value of 1-28 (see p. 117), then the water at the crest

moves faster than the crest itself, and the wave breaks (Sverdrup and Munk).

From the theory of the solitary wave and from the assumption of conservation

of wave energy one can derive a relationship in which the ratio of wave

height H at the moment of breaking to wave height over deep water H
is a function of the initial steepness (ratio: wave height to wave length

in deep water) H /X . The solid line in Fig. 57 shows graphically this ratio.

The dots are observed values on the Atlantic and Pacific beaches. Although
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individual observations deviate considerably from the theory, on the average

the theoretical relationship seems to apply for all but the steepest storm waves.

One may conclude that friction cannot play a decisive role in the trans

-
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Fig. 57. Theoretical and observed ratio breaker height to deep water wave height as func-

tion of initial steepness (Sverdrup and Munk).

formation of waves travelling from deep into shallow water. Sverdrup and

Munk state that a careful analysis of all available data covering slopes of

beaches from 1/20 to 1/100 shows that the loss of energy due to friction does

not exceed 10% of the original wave energy and is even much smaller on

the average.

It is confirmed by a large number of observations in the laboratory and

in the field that surf waves start breaking at a ratio of depth and wave height

of 1 28. However, there are three exceptions not covered by the theory:

(1) Abrupt changes in the beach slope may lead the waves to break already

at considerable depths.

(2) Very steep storm waves break in water deeper than the depth indicated.

(3) Very flat waves break in water of smaller depth than indicated.

After eliminating all cases of abrupt changes in beach slope from 555

individual observations in different localities, the average observed ratio of

depth over breaker height equals 1-27 as compared to the theoretical value

of 1 28. Individual observations lie roughly between 11 and 15, and this

deviation cannot be altogether ascribed to accidental circumstances one

differing strongly from the next. The deviations will also result from the fact

that the profiles of individual breakers differ: some are steeper, others less

steep than the solitary wave. But on the average the breakers seem to resemble

the profile given by the solitary wave theory and follow the theoretical rules.
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A special topography of the beach can produce a repeated surf. The water-

mass which broke during the first surf process moves on over the beach as

a rather low wave, which can break again when the depth decreases more.

This action can even repeat itself. Figure 58 gives, according to Kriimmel,

Fig. 58. Multiple surf ( W» to Wh ). Rip current at bottom (Kriimmel).

a picture of such a repeated surf. Associated with such a surf is a "rip cur-

rent", which is a current particularly strong at the bottom, and which carries

from the beach towards the sea any objects that are not fixed to the bottom.

(b) Refraction of Ocean Waves

The preceding explanations refer to waves which travel towards the shore

and whose crests are parallel to the depth contours of the beach, and their

direction of propagation remains constant. This is no longer the case when

they approach the coast at an angle. The wave crests then tend to turn

parallel to the shore. The reason is that the wave velocity decreases with

decreasing depth, so that the part of the wave crest nearest to the shore

moves slower than the crest in deeper water which races ahead. Figure 59

makes this clear. This endeavour of the crest line to become, parallel with

the coast is similar to the one causing the bending of light rays in optical

systems. It is called wave refraction.

Gaillard (1904, p. 66) and Stevenson (1864, p. 165) observed the

changes which waves undergo on account of different contours of the coast.

Gaillard found that a wavy coastline may cause a decrease in swell, in view

of the tendency of the waves to establish the wave front parallel to the coast

and consequently to stretch their crests. The swell is becoming less pronounced

when it moves into a harbour through a narrow opening. If b is the width

of the opening, an arc-shaped diffraction wave is formed, which at the dis-

tance m from the entrance has a radius m. If this arc has the length B, the

ratio between the later and the earlier wave height, according to Stevenson, is

v-,
•0-0269 1 + | mT Bj

(everything in m). If waves are deflected by a breakwater and the angle of
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deflection is a, the wave height will decrease by

hz\hx
== 1-006) a

provided the deflected waves can expand freely. However, if the waves, after

having been deflected, move by the breakwater without hitting it, we have

h2 :!h = 1-1-04 ya

(see Forchheimer, 1924, p. 378).

Orthogonois

A

Contours

Slight (Divergence along entire coast-line~——-— ~
'MV///-V//

Shore line

Fig. 59. Refraction of waves along beach with straight parallel depth contours. The wave

crest along the orthogonal B is always in deeper water than along A and therefore moves

with greater velocity. As a result, the waves tend to turn parallel to the shore.

Blaton (1937) was the first who attempted to give a theoretical ex-

planation by transposing similar problems from geometrical optics to grav-

itational waves, in applying the principle of Fermat. Munk and Traylor
(1947) have investigated this problem thoroughly and were able to devise

a theory for forecasting purposes.

The process of refraction for a beach with depth contours running parallel

to the shore is governed by Snellius's Law

sin a

sina

c

Co
(V.23)

in which a is the angle between the wave crest and the contours at any depth

and c the wave velocity at the same depth under consideration; the parameters

with subscript refer only to deep water, where the direction and the velocity

of the waves are constant.

If the topography of the bottom is more complicated for which the depth

contours are neither straight nor parallel, the changes in the direction of
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propagation and in the height of the waves can be found graphically by

constructing a "refraction diagram", a term first used by O'Brien and

Mason (1940).

A refraction diagram is one on which the position of wave crests at the

sea surface is shown by a series of lines. These are evenly spaced in deep

water — that is, in water of depth greater than half the wave length. Beyond

this depth the effect of bottom contours on any of the wave characteristics

is negligible. At shallower depths the relation between wave velocity and

water depth is known (see later reference), and a refraction diagram can

be constructed by advancing various points on a crest through distances

determined from any chosen time interval and the average depth. The

direction of advance is drawn normal to the crest. In Fig. 59 for example,

the chosen time interval is one wave period, and the distance A -A'. The

distance B -B' represents the advance of point B during the same time

interval, but for the average depth between B and B' . The lines A -A' and

B -B' are normal to the wave crests. By locating a set of points, A', B', C, ...,

the new crest can be found with sufficient accuracy by drawing a smooth

line through these points. Advancing one wave length at a time, the crests

may be carried into any depth of water desired, and the completed diagram

shows the continuous change in the direction of a wave advancing from

deep into shallow water.

Description of a practical procedure for constructing refraction diagrams,

together with the necessary graphs and tables, can be found in the forecasting

manual (Written by Sverdrup and Munk and published by the Hydrographic

Office, 1944). The completed diagram can be interpreted in one of two ways:

(1) As a series of lines representing the positions of a single wave crest

at various times as the crest advances towards shore. Crest interval is then

defined as the interval between these times. In Fig. 59 the crest interval equals

one wave period.

(2) As a series of lines representing the position of certain wave crests

at a single instant ; a crest interval of one wave length means that every crest

is represented (Fig. 59), because the advance of any point on a crest during

one wave period equals one wave length by definition. A crest interval of

two wave lengths means that only every second wave crest is shown; a crest

interval of one-half wave length, that the position of every crest and trough

is shown.

Wave height is defined as the vertical distance between crest and trough.

In order to evaluate the effect of refraction on wave height, a set of orthogonals,

that is, a family of lines which are everywhere perpendicular to the wave
crests, must be constructed. The lines A -A and B -B in Fig. 59 are or-

thogonals; they may be visualized as the wakes behind two surfboards which

are continuously oriented normal to the crest, that is, in the direction of

wave motion. Assuming that the wave energy is transmitted in the direction
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of wave motion, the total flow of energy between two orthogonais must

remain constant. Thus, if orthogonais converge, the crests are compressed,

and the energy per unit crest length is relatively large; if orthogonais diverge,

the crests are stretched, and the energy per unit crest length is relatively small.

It has been derived previously that the change in wave height, when the

waves enter into shallow water follows the relation

I-VU?)- (v - 24)

The breaking waves, with their sharp crests isolated by long flat troughs,

have the appearance of "solitary" waves (see pp. 116 and 121), for which the

height is proportional to the cube root of the energy. We then have, instead

of the relation (V.24), the relation

— =—^ , (V.25)

H 3-3 ViHM
in which H /A is the slope of the wave or wave steepness in deep water.

These relations are only valid when the orthogonais are parallel, which is

to say with rectilinear propagation of waves. Munk and Traylor show that,

when the orthogonais are convergent or divergent, equation (V.25) must be

corrected with a factor which takes into account the variation in distance s

between two adjacent orthogonais. Let H designate the wave height and s

the distance between adjacent orthogonais on the refraction diagram. Para-

meters with subscript again apply in deep water, those with subscripts b

at the breaker point, and parameters without subscript at any depth inter-

mediary between deep water and the breaking point.

jf
= yK, ^ = ybKb ,

(V.26)

where y and yb are the right-hand terms of equations (V. 24) and (V. 25) and

have constant values along a fixed depth contour

K -j/^ and Kb =j/
S

j
(V.27)

vary along a depth contour and will be referred to as the "refraction factors".

Equations (V.26) are derived from the postulates that the energy flows

along orthogonais and that energy is conserved. This, in turn, implies two

assumptions

:

(1) The effect of diffraction (which would bring about the flow of energy

across orthogonais from regions of high waves to regions of low waves)

can be neglected.

(2) The effect of bottom friction is negligible. The validity of these assump-

tions is borne out by the good agreement between computed changes in



Shallow Water Wave Transformation through External Factors 131

breaker height according to equation (V.26), and observations along the

beach north of La Jolla, California. There has been a tendency in the

literature to emphasize the effect of bottom friction on wave motion and

other wave characteristics. Studies dealing with generation of waves by wind

and with absolute changes of wave height in shallow water and the dynamics

of breaking waves indicate that the wave motion in general is not appreciably

affected by frictional processes.

Refraction type examples: beach with straight and parallel depth contours.

For this simple case the change in wave direction can be expressed analytically

by equation (V.23). Figure 59 is a schematic drawing of wave refraction along

a straight coastline with parallel depth contours. Figure 60 is an aerial photo-

Fig. 60. Aerial photograph showing swell turning parallel to shore north of Oceanside,

-. California.

graph showing long waves from the south-south-west coming into the beach
north of Oceanside, California. There is a divergence of the orthogonals

indicated by the values of s computed from the equation

cos a

cosa
(V.28)

9*



132 Shallow Water Wave Transformation through External Factors

Combining equations (V.23), (V.27), and (V.28) leads to equation

Kb =
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A Smoll divergence

Shore line

flkc
>'

Fig. 62. Refraction of waves along two sections of straight beaches with different exposures.

The divergence along section A-B is less than along B-C, and the wave height along A-B

exceeds therefore the wave height along B~C (Munk and Traylor).

Table 17

Section of coastline (Fig. 62)
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Submarine ridges. Underwater ridges near shore have an effect opposite

to that of canyons. Waves passing over the ridge are in shallower water and

are therefore retarded, and on either side waves move ahead, creating a con-

vergence over the ridge. This is borne out by frequent observations of

unusually violent breakers over the shoal portion of underwater ridges.

Other interesting cases are the influence of promontories, of bays and

islands on the surf, for which Munk and Taylor and Arthur (1946,

p. 168) have given good examples and which fully confirm the theory. It

seems quite possible to forecast the direction and force of the expected surf

with the aid of previously computed refraction diagrams for wave systems

of definite periods. The investigations are also of importance in connection

with the action of the surf on the topography of beaches,

(c) Surf Breaking against Cliffs

If a wave train moves towards a vertical surface or against a shore sloping

down steeply into great depths at a sharp angle, it will be totally or partly

reflected. The reflected wave superimposes itself on the approaching one

and the result is a complete or incomplete standing wave. The water motion

in front of the wall then remains more or less at rest and, in an extreme

case, the wave attains twice the height of the approaching wave. With such

a simple reflection, there will be no shock from the approaching wave against

the vertical wall, because there are only vertical displacements of the water

particles (antinode). When there is such a motion, a vessel can venture to

come up close to the wall (breakwater, etc.) without risk of damage. In general,

however, the result of the reflection is not such a regular process, and the

incoming and reflected waves mix up confusedly.

If the waves are high and move fast, they generally bounce against the

steep shore in breaking or shortly before; huge water-masses from the wave

crests are thrown jet-like against the wall. This is the shock or cliff surf.

The shock waves are, of course, closely related to the place where the

wave crests overturn, and this place is dependent on the wave velocity and

on the slope of the beach, as well as on the latter's nature. The waves, when

hitting a barrier, exert a dynamic pressure, which is added to the generally

far smaller static pressure. When a liquid hits perpendicularly a large wall,

the particles change their motions gradually by a right angle, until the total

energy of motion in the direction of the pressure is counterbalanced by the

counterpressure of the wall. If the cross-section of the approaching water-

mass is F, then the mass of the shock in the unit of time with a velocity U
is oFU and its momentum qFU2

, so that the shock pressure at the wall

becomes P = qFU2
. Stevenson (1864, p. 285) was the first to determine

this shock pressure of surf waves and built a spring dynamometer which,

based on the principle of railway buffers, determined numerically the shock

pressure of the waves. Experiments made with such an instrument in 1843

and 1844 at the cliffs of Skerryvore (in the west of Scotland) gave an average
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0-298 kg/cm2 (611 lb./sq ft) for five summer months and 1018 kg/cm2

(2090 lb./sq ft) for six winter months, with a maximum of 2 97 (6090 lb./sq ft).

At Dunbar on the north coast of Scotland, the maximum found was 383

(7840 lb./sq ft) and near Buckie, over several years of reading, 3-28 kg/cm2

(6720 lb.). As a result of experiments on how the pressure varies with height,

it was found that the shock pressure of the waves is strongest at high-water

level and decreases rapidly with increasing water depth. Off the German
coast of the North Sea, Franzius and Schilling (1901, p. 22) found as

largest shock pressure 15 kg/cm2
, at the Baltic coast 10 kg/cm 2

, so that

it can be assumed that at points exposed to the beating of the waves the

largest shock pressure varies between 1-5 and 2-5 kg/cm2
. More recently,

experiments have been made with manometer and oscillograph pressure

gauges respectively, which have given values of the same order of magnitude

;

the highest pressure hitherto recorded of 6-9 kg/cm2 was observed on the

east mole of the harbour of Dieppe on 23rd February 1933, by means of

a recording device which was located 35 cm above the base of the vertical

wall, and which was hit by a wave 5 m high (horizontal velocity 8-50 m/sec,

initial vertical velocity 23 m/sec). The breaker had a height of 36 m, a length

of 40 m and a wave velocity of 6 m/sec (De Rouville, 1938). Other mea-

surements, made simultaneously with several recording dynamometers, were

reported from the east coast of North America (Portland, Maine). However,

the pressure values remained far below the maximum value observed at

Dieppe. A comprehensive survey has been compiled by d'Arrigo (1940).

Gaillard (1904), at North Beach (Florida), studied the relationship between the dimensions

of the waves and the shock pressure. The shore line at that point is straight, the beach is flat, and

the pressure gauges were mounted on upright poles, 8x8in., in such a manner that they received

the full shock of the waves. When we take p = kqi^if) as dynamical pressure, the pressure coef-

ficient k = Iplgii1 and, theoretically, it can attain a maximum value 2. Gaillard assumes it is the

sum of the wave velocity c and the velocity v of the water particles in their orbit, so that

c+v =V&V^h
in which a and b are the semi-axis of the orbit at the surface. He thus obtains Table 18, from which

we can see that the shock pressure, even with relatively large waves, hardly attains the average

value of 0-5 kg/cm2
; the pressure coefficient here is 1-2, which is considerably below the theoretical

maximum value. The destructive force by a breaker is estimated by d*Auria (1890-1891) as follows:

a breaker with a frontal height h, a length A, with a velocity u (approximately equal to c) has per

unit width the kinetic energy (qIiK)u2
. The onrush occurs during the time K:u. If during this time

the total kinetic energy has been used up, then, according to the impulse theorem,

P k qhlu P q/i
= mass x velocity = or — = — ii

2
,

2 w 2 2 2

where the average resistance = %P. The greatest resistance may be approximately twice as much.

If spread at the vertical wall over an area of the height h, the maximum shock pressure per unit

surface of a breaker will be p = u2
, which is in agreement with the result obtained by Gaillard.
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This force is able to displace horizontally and lift considerable water masses simultaneously.

With a velocity u, a water mass can climb a height u2
/2g. for instance with 10 and 14 m/sec res-

pectively the height can be 5 to 10 m. Therefore, it is not surprising that breakers can cause enor-

mous destructions. KrOmmel (1911, vol. II, p. 118) has given a compilation of such surf break-

ers with a powerful visible effect.

Table 18. Pressures of wave impacts for different sizes of waves

(According to Gaillard)

Maximum wave dimension
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is smaller than it was previously. Only in this case, the noise of the surf

is sharp.

It was expected that, by experimenting in the wave tank, the process could

be controlled in such a manner that each experiment could be repeated in

Fig. 64. Several possibilities in the behaviour of the breakers on a vertical barrier (Bagnold).

the same way at any time, thus permitting an exact analysis of the phenomenon,

especially of the maximum pressure. Although the greatest precautions were

taken, this could not be attained. With external circumstances unchanged,

and one wave being quite similar to the other, the maximum shock-pressure

turned out to be different in each case, and it seems that the smallest, hardly

noticeable changes in the wave itself and in the outside factors cause varia-

tions in the shock. The development of small air cushions has also a con-

siderable influence and much depends upon whether one single air cushion

is formed or whether, as shown in Fig. 65, it is split up into several small

cushions. The greatest shock-pressure that could be observed for a normal

wave of 25-4 cm high, and a velocity of 1-80-2-40 m/sec was, according

to visual observations, 5-6 kg/cm2
. The tests showed that the shock-pressure

became very small when the thickness of the enclosed air cushion exceeded

half its height and that its intensity increased when this thickness decreased.
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Despite the great diversity in maximum pressures, the area enclosed by the

time-pressure curve remained constant. The higher the maximum pressure, the

smaller its duration will be. Figure 66 gives a graphic presentation of a time-

Fig. 65. Normal shape of an imbedded air pocket and its disintegration into several parts

Oi 02 03
sec

0-4 05

Fig. 66. Left: normal curve of shock pressure in Bagnold's experiments. Right: recordings

of pressure at the vertical breakwater at Dieppe.

pressure curve, showing how rapidly the pressure increases and decreases in

shock-surf; besides, there are two recordings of shock-pressures of a surf

wave against the breakwater of Dieppe. We can see that the order of

magnitude of the shock-pressures of the waves is the same in the tank as

in nature. The maximum pressure obtained in the test was 5-6 kg/cm2
, as

mentioned above. The linear dimensions in nature are increased in the

proportion 12:1, and one could expect here maximum pressures of 70 kg/cm2
.

However, the maximum pressure found in Dieppe was only 6-9 kg/cm2 and

the values, in all other respects, remain of the same order of magnitude as

the laboratory tests. Bagnold is of the opinion that this striking fact must

be ascribed to the considerable difference existing between sea water and

fresh water used in laboratory tests. The formation of foam which occurs
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so easily with sea water, the circumstance that in nature the entire water-

mass of surf waves is interspersed with innumerable bubbles, and perhaps

also the fact that sea water is rich in plankton, apparently contribute to this

considerably different behaviour in the two cases.

5. Calming Effect of Oil on Waves

Substances which are either mixed freely with the water, such as mud,

ice, seaweed, eelgrass, etc., or cover the sea surface, like some oils, and even

fresh water, can prevent the regular development of waves and cause existing

waves to decay rapidly. The wave-stilling action of mud and ice is a well-

known phenomenon. The ice crystals formed by the freezing sea water dampens

the swell very rapidly. The wave energy is dissipated more quickly by in-

creased friction. The same applies to drift ice in polar seas which dampens

considerably the wave action and reduces the swell. Sea weeds and eel grass

in sufficient quantity can also prevent development of a strong swell. It has

often been observed that rainfalls have a wave calming effect. It should be

remembered that fresh water has a considerably lower density than the saline

sea water and that so long as it does not mix with the lower layers, it can

spread out over the surface in a thin layer. In this manner it has the same

effect as a thin layer of oil spreading over the surface. The wave dampening

action of the rain vanishes very soon because the difference in density rapidly

decreases through mixing. An old and successful way to calm large waves

in the stormy seas is to pour oil on the surface. Canvas bags filled with tow

or twist, can absorb a large quantity of oil, which is released drop by drop

through tiny holes punched into the canvas; this oil spreads with great

rapidity over the surface as an extremely thin film suppressing all capillary

waves and leaving only the long waves of the swell. It removes the breakers,

if the swell is not too high; the oil-covered surface becomes very smooth.

This smoothing action is completed within a few minutes (Grossmann, 1892).

Experience has taught that not all oils have such action and that viscous

heavy animal oils, like fish oil, cod liver oil, also rape seed or colza oil are

more effective than mineral oils; petroleum and soap solutions proved to be

useless. Even a small quantity like one or two litres of oil per hour is sufficient

to smooth a surface of 20-100 m around the vessel. There is no doubt

whatsoever as to the calming effect of oils on windsea and swell.

The damping effect of oil has been associated for a long time with the

surface tension of the water and .of the damping liquid (Koppen, 1893). Each

wave motion tends to alternate the contraction and expansion of the surface

as can be rapidly deducted from Fig. 4. An expansion of the surface counter-

acts the surface tension. A smaller surface tension must, therefore, facilitate

the wave formation. The surface tension of sea water is approximately 78,

that of olive oil 37, or rape seed oil and cod liver oil 32 to 33, of petroleum 31

to 32 dynes, which is only about half that of pure water. The addition of



140 Shallow Water Wave Transformation through External Factors

damping liquid reduces consequently the surface tension of the upper layer

and capillary wave action of the oily surface is started more easily than with

sea water alone and, therefore, a damping action cannot set. The calming

effect of the waves by oil cannot be attributed to the difference in surface

tension of water and oil alone.

Because the surface tension of sea water is greater than the tensions at the

surfaces of separation of oil-water and oil-air, a drop of oil on the water will

spread rapidly into a very thin film. If this layer becomes sufficiently thin, that

is of the order of magnitude of one-hundred thousandth or one-millionth of

a millimetre, it is found that the surface tension is no longer constant but

increases when thickness of the layer is reduced and vice versa. Each expansion

of the surface results in a reduction of the thickness of the oil film and, conse-

quently, an increase in surface tension and vice versa. Therefore a surface

opposes any motion connected with an expansion of the surface. The conta-

minated water surface therefore behaves as an elastic skin. The expanding and

contracting movements of the surface accompanying the wave motion generate

alternating tangential drag on the water, with a consequent increase in the rate

of dissipation of energy and reducing the possibility of wave formation. The

expansions are greater where the waves are shorter and steeper. Moreover, the

expansions are greater in the place where the waves are cusped than in the flat

troughs and consequently the calming effect of the oils will be more apparent

with shorter waves, and will be more visible at the wave crests than in the

wave troughs. This is exactly what has been observed.

The calming effect of a thin layer of oil can also be considered as a result of the greater viscosity

of the oils, even though this explanation, physically speaking, is not as correct as the one mentioned

before. The damping time for waves, according to equation (IV. 23) is

A.
2

Stzv
'

in which v — fiJQ is the kinematic viscosity of the liquid. For water v is of the order of magni-

tude 01, for petroleum and liquid oils only little more (0011-006), for olive oil v is already

80 times (v — 0808), for rape seed oil 70 to 100 times (v = 1-2) greater than for pure water. The

damping time for such liquids is, therefore, many times smaller than for water. A capillary wave

of X = 5 cm vanishes on water in 32 sec, on rape seed oil in 0-26 sec; a wave of A = 20 cm needs

for this 507 sec, on rape seed oil only 0-4 sec; a wave 1 m long on water takes 3i h, on rape seed

oil only 1-75 min. One also observes that petroleum, due to its small viscosity, similar to that of

water, cannot have a great wave calming effect. The great viscosity of the new surface should there-

fore, be decisive. In this explanation little consideration is given to the effect of the abnormal behav-

iour of the water surface contaminated by oils in regard to the surface tension, also the fact that

the oil spreads on the water in an extremely thin layer, which makes the effect of the alternating

variations in the surface tension possible.

An exact theory by Reynolds (1880) and Aitken(1883, p. 56) starts with these variations

considering the oil layer as a quasi-elastic skin, the effect of which is the greater, the shorter the

wave length is. If this wave length becomes sufficiently small, the surface is practically inexpandible

and the horizontal velocity at the surface will vanish. In deriving the relations on the influence of
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internal friction on water waves, the condition for the normal tension remains the same as in the

case of pure water; however, the condition that the tangential stress must vanish is now replaced

by the one indicated above. We then obtain for disturbances of the surface with a wave number x

and with a frequency a a modulus of decay of t^ = (2 ^/2)/(v1/2 k«t
1/2

) instead of the value l/(2m2
).

The ratio of this to the modulus obtained on the hypothesis of constant surface tension will be

r, , lvx*Vl* 1

which is by hypothesis small. That is the damping time is the greater, the smaller the wave length

and many times smaller than with water that has not been contaminated.



Chapter VI

Long Waves in Canals and Standing

Waves in Entirely or Partly

Closed Basins

1. Long Waves in Canals

(a) Canal of Uniform, Rectangular Cross-section

In the general wave theory it has already been shown that, when the water

depth becomes small in proportion to the wave length, the nature of the

wave motion is changed completely, and that the propagation of the waves

at the surface of such a water-mass obeys another law as surface waves or

short waves, do. The equations applying to "long waves" can easily be

derived from the equations of motion, if the characteristic features of these

waves are considered at the time the basic equations are formulated. These

characteristics are chiefly the following: on account of the small water depth

relative to the wave length, the vertical motions become less important than

horizontal motion, and the vertical acceleration of the water particles can

be neglected. This means that at any point the pressure is in each case equal

to the statical pressure exercised by a column of water extending from the

free surface to the depth of the point under consideration. From the neglect

of the vertical acceleration follows that the horizontal motion is always the

same for all water particles in a vertical plane perpendicular to the direction

of propagation of the wave; in other words, the horizontal velocity u is

a function of the direction x and of the time t only.

In a straight canal with a horizontal bed and parallel vertical sides and

with a constant, regular cross-section we place the x-axis parallel to the

length of the canal, the r-axis vertical and upwards.

Let the ordinate of the free surface corresponding to the abscissa x, at

time /, be denoted by h + rj, where h is the ordinate in the undisturbed state.

Then the pressure at any chosen point will be

where p is the (uniform) external pressure. Hence
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The equation of horizontal motion, viz.:

du du 1 dp

dt ox Q dx

is further simplified in the case of infinitely small motions by the omission

of the term u(du/dx) which is of the second order so that

- = -S^. (VI.3)
dt

g 8x K }

Now let
t

I =judt, (VI. 4)

i.e. we introduce the horizontal displacement £ instead of the horizontal

motion u for the water particles in the .v-direction until the time /. Equa-

tion (VI.3) may now be written

— = -*^ (VI 5)
dt2 g dx'

K }

which is the equation of motion for long waves. The ordinary form of the

equation of continuity

Thus

du dv _
dx dz

»!*--*£ (V,6)

»•

if the origin be for the moment taken in the bottom of the canal. This formula

shows as a consequence of our assumption that the vertical velocity of any

particle is simply proportional to its height above the bottom. At the free

surface we have Z = h+ rj and the equation of continuity in a canal with

a rectangular cross-section is found by

,—*|. (VI. 7)

If we eliminate from equations (VI. 5) and (VI. 7) either r
t
or £ we obtain

3-*3-- S-*£- (VI - 8)

It is easy to prove that its complete solution has the form

I or tj = F(x- ct) +f(x+ ct) (VI. 9)

in which c = j/(gA), and where F and / are arbitrary functions. In other

words, the first term is a progressive wave travelling with velocity c in the
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direction of .v-positive. In the same way the second term of equation (VI. 9)

represents a progressive wave travelling with velocity c in the direction of

x-negative and it appears, since equation (VI. 9) is the complete solution

of equation (VI. 8), that any motion whatever of the fluid, which is subject

to these conditions, may be regarded as made up of waves of these two kinds.

If in any case of waves travelling in one direction only, without change

of form, we impress on the entire water mass a velocity —c, equal in force

and in opposite direction to the velocity of progation, the motion becomes

steady, whilst the forces acting on any particle remain the same as before.

Bernoulli's theorem for the free surface gives then

— + gn + 2 ("- c)2 = constant

.

(VI. 10)
{?0

If b is the width of the canal, a water-mass b(h + rj)(u— c) flows through

the cross-section bih + rj) to the left, whereas for a cross-section not yet

reached by the wave the mass flown through is —bhc. If the slope of the

wave-profile be everywhere gradual, and the depth h small compared with

the wave-length, the horizontal velocity may be taken to be uniform throughout

the depth and approximately equal to the velocity. The equation of con-

tinuity then gives

« = rr-1 (VI. 11)

or, if r] is small compared to h, u = c/htj. If we substitute in (VI. 10), we obtain

+ g*l+ f (l -
ff
= constant

.

(VI. 1 2)

With the condition for a free surface p = const, and by developing into

series, we obtain the relation

2n Jr ^ c%
rLjr = c2 -gr]

I

2
C

^2
-h... y

If if is small compared to h\ we get for c the Lagrangian formula c =
j
(gh)

;

sl closer approximation gives

c = \(gh)-[\ + Hv/h)]. (VI. 13)

This equation by St. Venant (1870) states that the wave velocity in this

second approximation is also independent of the wave length, but it varies

with the height, and consequently, such a wave cannot be propagated without

change of profile. Airy (1842) has shown, in applying the method of suc-

cessive approximations, what variations occur; a complete solution for this

has been given by Fjelstad (1941). In an advancing wave system, the front

slopes become steeper, the rear slopes flatter, until finally a point is reached
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where it is no longer possible to neglect the vertical acceleration. The wave

crests overturn and break.

Table 18a gives the Lagrangian velocity of propagation c for various

depths. The appendix contains an extensive table. The bottom line of the

Table 18 a. Wave velocity according to Lagrange for several depths

h in m
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Table \Sb. Velocity of long waves according to Lagrange's Equation

in n.m. for 45° latitude

Depth (m)
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bt = b ll

level remains entirely free; on the contrary, the width b, of the canal above

this level must satisfy the equation

2z\~ 3/2

1/

The origin of the co-ordinates lies in this level, the x-axis in the direction

of the canal, the r-axis upwards, the v-axis in a direction perpendicular to

the jc-axis and h is the mean depth of the lower part of the canal (Fig. 67).

Fig. 67. Section of canal to compute the transverse current with longitudinal waves in

a canal (MacCowan).

It is not necessary that, like in the figure, the cross-section of the lower part

of the canal be symmetrical to the centre line, only the upper part must satisfy

this condition. The sharp bend of the slope appearing in the low water line

reminds, as Thorade remarks, of the channels of the Watten, but it is doubt-

ful whether, cross currents can be completely disregarded in such cross-

sections. Thorade (1931, p. 76) has estimated the cross-currents which are

possible in such cases, provided there is no transversal slope of the water

surface.

In the shaded part of the cross-section F in Fig. 67 reaching from y = to y, the flow section

is F+yrj and the the volume of the flow per second M = u(F+ yrj). Through a second cross-

section at a distance 8x flows a volume M+ (dMldx)dx. The amount of water staying per second

in the considered volume element is — (dMjdx)dx. Let v be the velocity of the cross-current, which

will be equal to zero in the middle of the canal if the cross-section is symmetrical; in the lateral

distance y the velocity will be v and through the profile (h+rj)dx flows the volume v(h+ij)8x. In

this volume element there remains per second the water volume — v{h+rj)8x. The increase in

volume must result in a rise of the water surface drj/dt per second above a surface ydx. This gives

following equation:

(F+ yrj)
8u

8x
yu

drj

dx

drj

v(h+ rj)+ —y
ct

If we add the equation of continuity (VI. 7) in which I is replaced by u (h is the mean depth) and

neglect the members of second order, this equation is simplified to

10<
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- 8u F—hy 8r\

vh = (hy—F) — or vh = —=
.

8* h 8t

If we put

t] = Zcos(o7— xx) ; u= Ucos(at—xx) and v= Vsm(at— xx) (VI. 15)

we obtain

V 2n yh—F

u x it

This means that the ratio of the maximum values of the cross-current and longitudinal current

is proportional to the area by which the hatched part F exceeds the rectangle yh; besides, u is pro-

portional to A and h. For a canal with a rectangular cross-section we have always F = yh, so that

everywhere v = 0; for a concave canal (as in Fig. 67) we always have F> yh until at y = \b = a

(half the width of the canal) F'
= \Q = ah, and there v also becomes zero. Therefore, v has always

the same sign as Brjjdt. If the water rises in the canal, the cross-current flows from the middle to

the bank; if it drops, it flows from the bank to the middle. These conclusions, of course, apply

only if there is no tranversal slope of the water surface in the canal.

Airy (1842, par. 358—63) has expressed the opinion that, in a wide canal,

in which cross-currents are probable, the wave crests are bent because the wave

will travel faster in the middle of the canal than at the shallower sides. But

rather soon it was recognised that this idea did not seem to be conclusive.

Much later Proudman (1925, p. 466) has proven that for a canal with

a parabolic cross-section, Airy's assumption in regard to the bending of the

wave crests is not correct. The crest line is always a straight line perpendicular

to the canal, and the effect of different velocities of each part of the wave are

equalized. To the contrary, the wave height perpendicular to the canal does not

remain constant and increases towards the bank. At high water, the current

flows in the direction of the canal and the cross-current is zero ; with falling

tide the current flowing towards the middle of the canal becomes stronger and

attains its maximum, when the surface goes through its position of equi-

librium, then it decreases again and becomes again zero at low water, when

the current flows again in the direction of the canal, but now in the opposite

direction. With rising water, the cross-current flows from the middle to the

banks. The current, therefore, can be represented by an ellipse with a dif-

ferent direction of rotation at both banks; in the middle of the canal there

is only an alternating current.

The equations of motion and the equation of continuity, in this case have the form

8u 8r\ 8v 8ij

dt~~ g
dx' 8t~

8
8y

d 8 8n— (h.u)+—(h.v)+ — = 0.
8x 8y 8t

(VI. 16)

Moreover, the solution must satisfy the condition that (VI. 18)

hv = for y= ±a, (VI.17)
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when a is the half width of the canal (origin of co-ordinates in the middle of the canal). We assume

a solution of the equation (VI. 15), in which Z, U, V must only be functions of y. If we introduce

these values into (VI. 16), these functions must fulfill the following equations (c = ajtt)

u = g
-z,
c

g dZ d dZ
- — , - [h—
c dy dy\ dy

x2h\Z = 0.

The boundary condition (VI. 17) becomes

dZ
h— = for v=±o
dy

If we consider a canal of parabolical cross-section, then

(VI. 18)

(VI. 19)

(VI. 20)

in which h is the maximum depth in the middle of the canal. The mean depth of the water is

h = f/? . The equations (VI. 18) and (VI. 19) now become

d

~dy

f\ dZ
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Z= A

g

Atl-cjt y
2 16tt

4
74

y
4

i+ + + ..

6 a2 216 a4

V Z and V =
# 2.T:a j
-A — -
c i a

47i2a? y2
(VI.26)

Thus if a canal has the following dimensions 200 km wide (a = 100 km) h = 100 m and A = 100

in the middle of the canal, with a wave period T = 12 h 25 min (tidal wave period), the distribu-

tion of wave heights and of the ratio V:U across the canal (Table 18c) the wave velocity becomes

Table 18r

y\a
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and separate the terms with co%a{t—q>) and s\na(t— cp), which by themselves must be zero, we
obtain the relations

and

(hb)'
r]

<p'+ 2hbrj'(p'+ hbr\ a
(p" = .

From the last equation follows hbrf <p' = constant = C; so that

d l drj \ lb C-' \

sr^) +
(r*sr:)

<"" =
- (VL30)

. . dx
If the variable velocity, according to Kelland, were \'(gh), then q> = J

—, ; then the second

term at the left of the equation (VI. 30) will vanish provided that

r? = prop b-^h- 1 '*
. (VI.31)

The equation (VI. 30) is therefore satisfied assuming that the first term can be neglected. But

(VI.31) is the law of amplitude by Green which has as a condition that

d l dr\\ bo2

-r[hb^-\<—rh . (VI. 31a)
dx \ dx J g

11 1 1 lb' h' IlTtV
It can be shown that - (b 'lb), - (b lb)

2
, and - (h jh), — (h jhf and <| — respecti-

2 4 4 16 2 b h \A J

vely. In order that, for instance

- A'2 <§ 64jr2 ,

h2

dh/dx must be small compared to h\X. The same applies for the other terms i(b'lb), i(b'/b)
2
,

WlhX^ih'/h) and \{b'h'\bh) < (2tt/A)2 respectively. (VI.

3

la) is equivalent to the condition that

/.(dbldx), and ?Adhjdx) are small compared with b and h respectively. In other words, it is assu-

med that the transverse dimensions of the canal vary only by small fractions of themselves within

the limits of a wave length. Therefore, it is not to be expected that the law of Green applies to

long waves, such as tidal waves and sea-quake waves, (see p. 237), whereas it can be used, for

instance, for shorter shallow water waves.

It was customary to substitute the mean or average depth h for the exact

depth h is the equation c =
}
(g/h) (when the depth changes in the direction

of the propagation of the wave). Sometimes the average depth of a sea was
computed from the duration of travel of a long wave. The bad results

(see p. 239) obtained have shown that the use of the simple formula c = \{gh)

is not permissible. Du Boys (see Forel, 1895) has tried to avoid these dif-

ficulties in assuming for the travel time of a long wave

(VI. 32)
y[gh(x)]'

Green's investigations have shown that this formula can only be used under
certain conditions, which are not satisfied for all long waves in nature.

Thorade (1926 a, b, p. 217), investigated the behaviour of a long wave,
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II
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when the depth changed rapidly. He determined the shape of a long wave,

travelling from deep ocean (depth h ) over a concave, convex or flat slope

into a shallow sea (depth h x). The dimensions of the bottom profile cor-

responded approximately to those of the continental shelf, which slopes

down from the shelf to the deep sea. His method consisted in the splitting

up of a progressive wave
t] = t] O cos (at — xx)

into two standing waves

V — r) x cosot }- fysmat
,

whose behaviour was examined separately. Their superposition then re-

presents the progressive wave. Figs. 68 and 69 are examples, namely for

h = 3200 m and hx
= 200 m, for a slope 100 km long, which is defined

by the bottom h = h (l±x2/a2
) and a = 115-5 km. The wave length over

the deep water is A . The dotted wave trains represent the partial waves rjx

and r}2 and are at the same time wave profiles for at = 0° and 90°. For

at = 180° and 270° the wave profiles are obtained by inverting v\ x and rjz and
it can be seen that when the wave passes over the slope its wave length de-

creases with its amplitude increasing. For X = a and smaller values Green's

formula still applies with fairly close approximation, but for greater wave
lengths the two partial waves do not fit any longer and are displaced in such

a way that there are important deviations from this equation. The variation

in amplitude (full line) does not agree any longer with this law

but follows the simpler one

\h : \hx
= 2 ,

j//* : y'h! = 4

Therefore, the ratio shows a considerably higher value than Green's equations.

Table 19. Travel time of high water in minutes over a slope

100 km long and rising from 3200 m to 200 m depth

(a= 200: j/3 = 115-5 km)

Wave length over

3200 m depth
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Also the travel time, where a distinction should be made between that of the

wave crest and that of the high tide, are different from those obtained from

Green's hypothesis, as can be seen from Table 19 for the travel times of high

tide. The difference as against those computed from the Green-Du Boys

equation is considerable, especially for the ones computed from the mean

depth h.

Thorade's papers are important for tidal waves coming from the deep

ocean on to the continental shelf. Unfortunately, there are hardly any ob-

servations available to test the theoretical results. Tidal waves passing over

irregularities of the ocean bottom, as for instance a wavy bottom, shallow

places and the like, will show variations in their wave length and amplitude.

It would certainly be well worth while to make systematical observations

on such variations.

2. Standing Waves in Closed Basins

(a) Constant Rectangular Section

The equations of motion as formulated in (VI. 8) also has a solution in

the form of a standing wave, for the reason that the superposition of two

progressive waves with corresponding phase difference always causes a stand-

ing wave.

This standing wave can also result from the superposition of an incoming

wave and its reflection from a vertical wall. If the reflection occurs at x =
at the vertical wall, and if t\ x is the incoming, rj2 the reflected wave then

rj! = lacos(at— xx) , tj2 — %acos(ot+ xx)
,

V = ?h+ *?2 = acosxxcosot . (VI. 33)

Equation (VI. 8) required that c = ajx =
j
(gh), or that the period of

the oscillation T = ?./\ gh or

T = -^j—

,

(VI. 34)
n) (gh)

when n is a positive integer greater than zero and / the length of the rectangular

basin (Merian's formula). It is readily seen that n is the number of nodes

of the standing wave.

For (n = 1) we obtain the longest period of the free oscillating water-mass

T = 2l/y/(gh); in the centre of the basin (x = \l) there is one nodal point

(,; = 0) with maximum values of f, which also follows directly from solv-

ing for

£ = —7— sin xx cos at and u = -i-sinxxsinot

.

(VI. 35)
tiK n

For n = 2, 3, etc., we have two, three, etc., node oscillations. For the nth

nodal oscillation, the node is situated at
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.xk =^(2k+l),

in which k will be 0,1, ... to (w— 1). The antinodes, on the contrary, are

situated at xB = (l/n)k and k = 0, 1 , ... to n.

The streamlines of a two-nodal standing wave are represented in Fig. 70.

It shows that, at the antinodes the horizontal motion of the particles dis-

appears completely, and the vertical motion is at a maximum, whereas at

the nodal points the movements are reversed.

Fig. 70. Streamlines of a binodal standing oscillation.

When the depth is not negligible compared with the wavelength A, we obtain with equation

T = 2//c as a more exact equation for the period of the free oscillation with one node (see von
DER Muehl, 1886, p. 575).

T= 2
]/(t

Jih

coth —
/

If nh\l is small, we obtain as a second approximation instead of (VI. 34)

2/

n\\sh)

We also wish to point out that in the equation for the period of oscill-

ation (VI. 34) the density of the oscillating medium does not appear. Forel

has proven this by means of laboratory tests in a trough with water, mercury

and alcohol.

(b) Effect of Friction on Oscillations in a Rectangular Basin

The motions related to the oscillations of a water-mass in a basin are

subject to frictional influences which are due, on one hand to molecular

friction and, on the other hand to frictional stresses at boundary surfaces,

namely at the bottom and the walls of the basin. The free oscillations of

a water-mass in a basin of a given cross-section would last indefinitely, once

they are generated, were it not that the energy is gradually dissipated through

friction. When there are no other disturbing influences, the amplitude of

the oscillations decreases gradually, whereas the period of the oscillations

increases slightly through friction. The influence of the friction can be

illustrated by adding to the right side of the equation of motion for the

horizontal displacement of the water-mass (VI. 8) another term of the form
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—p(d£/dt). The frictional force is thus assumed to be proportional to the

horizontal velocity u, an assumption which can indicate only roughly the

real frictional influences but which permits to make numerical computations.

This gives some idea of the effects of friction. The quantity /? has the di-

mension [sec
-1

] and characterizes the boundary friction at the bottom and

on the walls of the basin.

The equation of motion

— = -/?— +c2— (VI.36)
8t 2

'

dt 8x2

has a solution in the form £ = aeyt+iHX, and by substituting we find that

f+ fiy+ c*x2 = or y = %p±i p/(c2*2- ii?
2
)

If with x = tm/l, £ = for x = and x = I and when, moreover, we

put for the free constants

ax
= \Ae+ iE and a2 = — iAe+k

we obtain as the final equation of oscillation for I

| = Ae~y'cos W(c*-x\-lp*)(t-e)\swxx . (VI.37)

The damping factor is represented by e~^^' and the logarithmic decrement

X can be computed from the decay of the amplitude (see p. 9). The coefficient

of friction j3 can be computed from the logarithmic decrement; when A x is

the amplitude at the start and T the period, the amplitude after n half waves is

A. = Ale~^> ,

and from the equation (VI.37) results

A = i0T. (VI. 38)

If we designate by Tn
= 2ljn\/{gh) the period without any effect of

friction, the period of the damped oscillation T
r
will be from (VI.37)

Tr = 77

2/—:-- = Tn (l + Sg + ...) . (VI. 39)

V(-S)
32tt2

For water depths of 50-100 m £ is of the order of magnitude of 10~ 5
sec

-1

and the factor of T2 in the brackets is of the order of magnitude of 3 x 10" 13
.

This leads to belief that the influence of the friction on the period of the

oscillations of water-masses in closed basins is small under normal circum-

stances.

The influence of the molecular friction on standing waves can be determined

more correctly by starting from the complete equations of motion with the

usual frictional terms. Its solution leads to simple results, assuming that
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the kinematic coefficient of viscosity v is small, which is the case for water.

For a standing wave in a rectangular basin of the length / Hidaka (1932)

finds in this manner that in a first approximation the period of the free oscill-

ation is not different from Merian's formula, but that the amplitude of the

nth nodal oscillation decreases with the damping factor r = l
2/(2n2

jc
2
v). This

is the same damping factor found previously for the decrease in amplitude

of waves of the wave length 2l/n through friction (see p. 79).

Using greater values of v, far more correct solutions of the equations of

motion are obtained where the frictional terms and the corresponding

boundary conditions are taken into consideration. Solutions of this kind

have been given by Defant (1932); they are to be found also in a paper

of Proudman and Doodson (1924, p. 140), to which we will refer later.

However, they do not show the frictional influences as clearly as the simple

assumption stated previously.

The stresses in different fluids under similar circumstances of motion will

be proportional to the corresponding values of /j,; but if we wish to compare

their effects in modifying the existing motion we have to take account of

the ratio of these stresses to the inertia of the fluid. From this point of view

the determinining quantity is the ratio /h/q = v, the kinematic coefficient of

viscosity.

The equations of motion and of continuity now takes the form

du du du2
, d f , dr]

» = ~*ta H"V and
ai J

udz+
»7
= °

'

(VI ' 40)

-h

when v is the kinematic coefficient of viscosity (cm2
sec

-1
) and when the

origin of the co-ordinates lies in the undisturbed water surface and the

depth is —h.

We have to add, the boundary conditions that u = for x = and x = /,

as well as for z = —h; also no wind on the water surface and du/dz = for

z = 0. Part of the condition is fulfilled at once, if we start with u propor-

tional to sin^.v, where xl/n =n (n = 1, 2, 3, ...).

For the general solution one can select the form

xrj = cos xx • e~ Uvlh2)t
,

-^= u = sin xx • v (z) e~(Evlh2)t

gh2

« is a numerical parameter and v(z) a certain function of z. If we put

(VI.41)

a= , (VI. 42)
gx2h b

the equation of continuity gives

u

I v(z)dz = as ,

-h
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and the equation of motion

d2v
h2 [-ev+l = 0.

dz 2

A solution of the latter equation, when the boundary conditions are fulfilled, is

1 (cose1
!HzIh)1 fcosf1/2
(r//z) )

>& = -{ br*- 1
}'

e { cose1 ' 2
)

whereas the former gives an equation for £ in the form

tan W2 = £i/2+ ae5 ' 2
. (VI. 43)

To each root of this equation es corresponds a ?'
s(z), and the general solution of the two equations

(VI. 40), when As are constant coefficients, is

xr] = cosjcc £ Asse~
(-esvlh^ t

,

s

—
2
u = srnxx^ As vs(z)e-(

£
i
vlh2)t

. (VI. 44)

Most important is the determination of the roots es of equation (VI. 43), if a is given, which

Proudman had done in an elegant manner. First, it can be shown that, if a is considered as a func-

tion of e, this equation has a minimum for the values

£i/2 = 1-1122 and a = 0-5370. For values a < 0-5370

there are no real values smaller than \n, but there are two conjugated complex roots. The real

values can be computed approximately from \nr (r = 3, 5, 7, ....), except if a is very small, from

e1 !2 = \nr— 6 in which

1/0 = Jra+ a(rj7r)5

(r= 3,5,7,....).

For the complex roots when a < 0-5370 we put e1 ' 2 = £+n? and a = a+ ib, where £,rj,a

and b are real and we then derive

(t-£-ntT)+i(T-n+sm
a =

(l-hjT)(g+irj)B

in which

/ = tan | and T = tanh»?

.

We now must find these correlated values for | and r\, for which b = 0. The numerical determi-

nation occurs in such a way that, with an arbitrary value of t], I is being varied until the relation

for a gives b = 0. Table 20 gives such correlated values up to I = n, according to Proudman and

Doodson; an extension to | = 100 was made by Lettau (1934, p. 13). As es = (I
2— r)

2)+2$r)i

and if

As - p+iq

we obtain as a contribution to xy:

Rcos xx exp

R = -2
V'(p

2 + q
2
)

tany = qjp

(£
2- rf) -

2
• cos I 2£/? - - y } . (VI. 45)
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This is a standing wave with a damping coefficient

y = (£
2 -*?2

)^
and the period

Tr

Till
2

£r)v 1^r\\ a
(VI. 46)

when T is the period according to Merian's equation.

The value of a is determined with (VI.42) for a given basin by its di-

mensions and the magnitude of the frictional constants; Table 20 gives the

corresponding value of 2£// which can also be taken from a graph.

Table 20. Computation of the period of the free

oscillation in a rectangular trough, taking

into account the effect of friction
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basin, the less the period will be affected by friction; the same applies for

the logarithmic decrement, which is inversely proportional to the depth of

the water-mass.

An example will illustrate the computation. Let us assume a closed basin of / = 100 km and

h = 20 m. Let the frictional coefficient bz v = lOOcm^/sec; then T will correspond to 3-96 h.

From (VI. 42) it follows that a = 0-00322 and from a graph of f— r\ and 2£//j/a over j/a we get

the values I = 2-994 and r\ = 2-692. We thus obtain Tr = 4-35 h or an increase through friction

of 9-9% of the period of the free oscillation. The damping coefficient is y = 4-2 9x 10
-5

sec
-1 =

2-57 x lO^min-1 with a logarithmic decrement X = 0-336. We can compare these values with

the Vattern lake in Sweden with a length / = 124 km, greatest depth 120 m, mean depth approx.

54 m. Since for this lake T= 2-99 h one obtains the values y = 0-7 x 10~3 min-1 and I = 0-06

(see p. 184).

(c) Variable Cross-section. Theories of Seiches

Oblong lakes can be considered as basins of variable width and depth.

It is to be expected that periodic fluctuations of the water-level will be observed

when the water-masses in the lake basin, once the equilibrium is disturbed,

oscillate back into equilibrium position. Already in the eighteenth century

such oscillations were reported to have been observed in the Lake of Geneva.

According to an old chronicle by Schulthaiss, oscillations of this kind were

note at the Lake of Constance as early as in 1549. Forel (1895) was first

in making systematical and methodical observations of the oscillations of

the Lake of Geneva in 1869. Since then, these oscillations have been observed

in other lakes; they are known as "Seiches
,

\ These seiches are free oscill-

ations of a period that depends upon the horizontal dimensions, the depth

of the lake and upon the number of nodes in the standing wave. Forel com-

pared the observed periods of the free oscillations of the lake of Geneva with

the period derived from Merian's equation: T = 21/ \
(gh) which only applies

to a rectangular basin of constant depth. He substituted for the depth h the

mean depth of the lake, but the result was not very satisfactory; later on,

Du Boys proposed that, if the travel time of the wave is T = 2l/c for a dis-

tance 21, when the depth h is a constant, the period of a lake with varying

depth should be

i 1 (gh)

in which h represents the depths along a line connecting the lowest points of

the bottom of the lake called "Talweg" (valley-way). Although a little better,

this relation still left many discrepancies unexplained, especially for the harmo-

nics (multinodal seiches). Forel rightly wondered why the depths of the "Tal-

weg" are taken for h, instead of the mean depths of the single cross-sections,

as it is these cross-sections which determine the oscillating process in the

whole lake.

The problems connected with free oscillations (seiches) in closed basins

of an oblong from, but of variable width and depth, have been the subject
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of very complete theoretical investigations. The literature on the seiches

theories is very extensive and, therefore, we can only refer here to the most

important works. The theoretical considerations only apply for oblong basins,

i.e. such basins where there are no components of the horizontal motion

in a direction perpendicular to the "Talweg" so that the motion of the water

is always parallel to the .v-axis, i.e. along the "Talweg" of the lake (see

Stenij, 1932).

The equation of motion has the same form as it had previously [see

equation (VI. 5)], whereas the equation of continuity [see equation (VI.27)]

becomes

» =~W)^sm '
(VL47)

if b(x) and S(x) are respectively the variable width at the surface and the

variable cross-section of the lake at the point x of the "Talweg". The boundary

conditions, neglecting the friction, are

£ = for x = and x = I

.

(i) The theory of Chrystal (1904, p. 328; 1905a, p. 599; 19056, p. 637).

If we introduce into the equations (VI. 28) and (VI. 47) two new variables

and if we put

we obtain

u=S{x)l; and v = / b{x)dx (VI. 48)

S(x)b(x) =o(v), (VI.49)

82u , .82u , 8u

For a lake of a constant width b, but of a variable depth h(x) we obtain,

if we put u = h{x)£,

82u . , .82u , 8u
f r

_ ._= ?/,(.v)- and *--£. (VI. 51)

The equations (VI. 50) and (VI. 51) are identical if we replace x with the

variable v. Chrystal proceeds as follows: a great number of cross-sections

close to each other are drawn. The width of these cross-sections at the

surface is bx ... b2 ... b„. The area of each section is called St ... S2 ... Sn . The
surface of the lake from section o to section i is designated v

t
. Chrystal draws

a curve which has as abscissa v
t
and as ordinate the product a

t
= ^.5,-. This

curve is called by Chrystal, the "Normal curve". A comprison of (VI. 50) and

(VI. 51) shows that the oscillations of an arbitrarily shaped lake [b(x), S(x)]

are the same as those of a rectangular basin with variable cross-section in the

x-axis, provided the "normal curve" is the "Talweg" of the lake. The form of

n
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the oscillations is geometrically similar in both cases, so that it is sufficient

to deal with the simpler case. This "normal curve" alone is decisive for the

forms of oscillations of the lake under consideration.

If we select, according to the oscillation

u = A (x) cos (cot -he) when co

then the first of the equations (VI. 50) gives

d2A

IjijT,

dx2 gh (x)
A =0, (VI. 52)

which is to be solved. The problem, therefore, lies in the determination of

the form of the oscillations of a basin of constant width but of variable

rectangular cross-sections. A requirement by the theory is to have the

"normal curve" of a lake substituted by one or several mathematical curves.

The "normal curve" can be approximated with sufficient accuracy by a curve

or parts of several simple analytical curves.

Chrystal has given the solution for various longitudinal profiles h(x),

in which

horizontal

two sloping straight lines

convex parabolic

concave parabolic

convex "quartic"

concave "quartic"

h=h 1±
x

h=hA\ +

h = hA\

h=hAl +

h=ho[l~

Table 21. Period of free oscillation of basins

with various longitudinal profiles

Period of free oscillation
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If T =
2//i (gh ), lakes with such longitudinal profiles will have the

following periods for the uninodal and multi-nodal (harmonic) oscillations

(Table 21). This compilation shows that convex forms shorten the time of

all oscillations compared with the simple, horizontal profile, whereas concave

forms increase it. Furthermore, it is shown that the nodes of the harmonics

tend to move towards the shallow ends of the lake. The shallower the extreme

ends of the lake, the stronger this movement is. This is clearly shown in

Fig. 71, which indicates the position of the nodes for the uninodal and multi-

Fig. 71 . Positions of nodal lines of oscillations having 1-4 nodes in basins of different shapes.

The numbers at the different curves (bottom shape) give the positions of the nodes for

the 1-4 nodal oscillations.

nodal oscillation of the different longitudinal profiles. A number of theoretical

investigations of free oscillations in water basins of different "Talweg", is

also given by Hidaka in "Problems of water oscillations in various types

of basins and canals", Parts I to X, mostly in Mem. Imp. Mar. Obs. Kobe,

1931-1936.

The application of Chrystal's method to certain basins requires that the

"normal curve" be replaced by carefully selected sections of the above

mentioned longitudinal profiles. Where these sections join, the horizontal

and vertical displacements I and r\ must tend to the same values, from both

sides, and at the end of the lake I must vanish. The general solutions for

the simple longitudinal profiles contain sufficient number of constants to

satisfy these requirements. As a final result of the elimination of these free

constants, there remains a transcendental equation for the determination of

the period of the free oscillation after a computation which grows more

intricate with the number of sections. The computation to find the position

of the nodes is very long, and therefore Chrystal's method has not been

applied often in practice; but wherever it has been used it has given very

satisfactory results. (In the following paragraph an example of this is being

given p. 182). .
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(ii) The Japanese Method. Investigating the oscillations in several bays

along the Japanese coast, Honda, Terada, Ioshida and Isitani (1908, p. 1,

see also Defant, 1911, p. 119) have developed a method to determine the

period of the free oscillation of the water-masses of an irregularly shaped

basin, which method is based essentially on Rayleigh's theory of air oscill-

ations in a tube of variable cross-section. Here is a brief outline of the method:

if the kinetic and potential energy of the oscillating system can be expressed

by quadratic functions of a co-ordinate (p, in such a way that

T = \a{^\ and V = hc<?

then the Lagrangian equations of motion give the equation of oscillation

for the system Lamb (1932, p. 251).

a(d2
(p/dt

2
) + c<p =

and the period of free oscillation of the system simply results from

f27t\ 2_ c_

TJ ~a'

when <p = Acos(wt—e). Therefore if both T and V can be expressed by

quadratic functions the period of oscillation of the system can be determined

without directly deriving the equations of motion.

8X
Considering an oblong basin, we put S(x)^ = X, and as, according to (VI. 47), b(x)$ = — —

-

ox

then

1 } 1 (BXV gQ / 1 lcX\
,- p I - — I dx and V = — j

- —
) dx

Now if we assume for X an expression of the same form as is obtained if S were a constant,

then

v-i tin

X = 2j ^/i sin
— x cos ion t .

If we select as a new co-ordinate <pn
= an coso)n t, then we get after a long computation

n » ' n m
and

y= 2 {Cn+ACn }<p
2

„+ XS 4Cn,m'»<Pn-<Pm
n n m

in which

p r \ tin 1 n2n2gQ r \ nn
An+AAn =

| J
- sin2— xdx and C„+ ACn = - —^— J

- cos2— xdx .

o

The summation has to be done over all n # m. When the lake approaches a rectangular basis of

constant cross-section AA„ and ACn become small. If both S(x) and b(x) do not vary too rapidly
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and to greatly, the double in these equations are small compared with the first term and can

be neglected. The period of oscillation of the lake can then be computed in first approxima-

tion from

llnV Cn +ACn

Jn J An +AAn

After a few transformations, we finally obtain

T = 2/

n |
(gh n )

1 t (IS Ab\ Inn ,

- c°s xdx
n \

,V Of I

(VI. 53)

in which V is the volume and O the surface area of the whole lake and AS
and Ab are the deviations from the mean values S and b and S /b = h ,

where S is the mean area and b the mean width of the mean cross-sections.

The term in parentheses is the correction to be applied to Merian's formula

for the period of free oscillation of an irregularly shaped lake. The first part

of this correction represents the effect of the variations in cross-section, the

second one that of the variations in width. It is easy to see that there will

be an increase of the period when the lake narrows in the centre whereas

the period will decrease when the lake narrows at the end.

To apply equation (VI. 53), one makes a numerical integration by dividing

the lake in a sufficient number of cross sections perpendicular to the "Talweg",

which are carefully measured. This method, which is limited to lakes with

a fairly regular shape, gives only the period, and does not give any information,

either on the position of the nodal lines, nor on the relative magnitude of

the horizontal and vertical water displacements, caused by the oscillations.

In this respect this method is inferior to the other ones.

(iii) Defanfs method (1918). It finds its origin in the equations of motion

and of continuity transformed by Sterneck (1915). Their solution can be

adapted accurately to the most complicated shape of basins by stepwise

integration, using finite difference-method. Besides the period, Defant's method
gives at the same time the relative magnitude of the vertical and horizontal

displacements and, consequently, also the position of the nodal lines along

the entire basin. In this it is superior to other methods, even though it

generally requires considerable work (see Defant, 1918, p. 78).

As a solution of the equation of motion (VI. 5) and of the equation of

continuity (VI. 47), one assumes, periodic functions of t in the form

£ = £o(*)cos(-=-f — el and r\ = ^ (x)cos(^r— el

in which | and r] represents the horizontal and vertical displacements and
are functions of x only. If we substitute these expressions into the equa-

tions (VI. 5) and (VI. 47), we obtain for the small variations zlf and Arj which
occur along a small distance Ax of the "Talweg", the relations
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4n2
1 C

Ar\ = -=^%Ax and £ = — ~ I n]bdx (VI. 54)

Furthermore, we have to add the boundary conditions, which for both ends

of the lake x = and x = / require 1=0. The first approximation for the

period of the free oscillation with one node Tx gives Merian's formula (VI. 34),

if we substitute for h the mean depth of the lake. Then a = (4ji2/gT
2)Ax is

known approximately. If the cross-sections drawn along the "Talweg" are

closely spaced, it can be assumed in a first approximation that the changes

of the displacement between two successive cross-sections are linear. For
the practical computation, the equations (VI. 54) then take the easier form:

S2

S2 1 +
av2

4S2

, >h + %

Qi >h «!m (VI. 55)

The quantities with the subscripts 1, 2 represent respectively the value

for two successive cross-sections, whereas v
t

is the surface area of the sea

between section (i— 1) and the i. The quantity q is equal to zero. First, an

approximate value of T is found by means of Merian's formula (VI. 34),

using the average depth of the basin. The result is an approximate value of a.

The computation is then started at one end of the basin x = 0, £x
= 0, and

where rjx
= 100 cm (an arbitrary value). The second equation (VI. 55) then

gives |2 and introducing this value in the first equation of (VI. 55) we get

the vertical displacement rj2 at the second cross-section. The third equation

then gives q2 . Now all quantities are given at the second cross-section, and

from there to the next cross-section the computation can then be continued,

repeating the previous computation with the new values of £ and r\. If the

approximate period which was derived from Merian's formula (VI. 34) is

correct for the simplest seiche, the computation must arrive at a value q and

I = at the other end of the lake, in order to fulfil the boundary condition.

The computed value will usually differ from zero and, hence, it will be necess-

ary to select another value of the period, i.e. another value of a and to repeat

the entire computation. If this second value of the period does not lead to

a correct result, one has to select a third one, which can then usually be deter-

mined by suitable interpolation. The final result will give relative values of the

displacements and its related currents, and the exact locations of the nodal line,

and finally also the currents related with the oscillations within the lake. Ac-

cording to (VI. 4), u = d£/dt, the horizontal component of the current
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u = — y £ (X)sin —/-£ 2jc .= y| COS
2jzI T
tV+ 4

(VI. 56)

The largest current intensity corresponding to the seiches therefore is

(2njT)£ and its phase differs by one quarter period from that of high tide.

This method is not limited by the exterior form of the oscillating water-

mass; however, it naturally gives the unequivocal results, especially when
the main direction of the oscillation is determined by the direction of the

longitudinal extent of the lake. For a correct application, it requires a good
knowledge of the orographic nature of the lake. An example of the application

of the method will be given on p. 198.

(iv) Proudmari's Method. This method starts with the equation of mo-
tion (VI. 50) of Chrystal, which if

is transformed into

u = S$

d2A
dv*

+
a{v)

A

v4cos(cof+ e)

X
0, (VI. 57)

which is similar to equation (VI. 52) and in which I = a>
2
/g the function

a(v) = b(x). S(x) is given by the "normal curve" of the lake. (VI. 57) is

to be solved with the boundary conditions that A = for v = o and v = a,

that is to say the entire surface of the lake. Proudman (1914) has given an

exact theoretical analysis of this differential equation, and also the procedure

of computing the free oscillations of a basin of any shape. Doodson, Carey
and Baldwin (1920) have applied this method to the lake of Geneva with

excellent results. This method is better than the one by Chrystal, in so far

as it is not necessary to adapt the "normal curve" to fragments of analytical

curves, which is always very difficult with an irregular "normal curve".

We will only discuss here the characteristic features of this method.

As a solution of (VI. 57) we can establish an infinite series of the form:

oo

A = £ {-K)nJn{v) = J -Jlk+JA^-J3X
3+ ...

n=o

The determination of the functions Jn(v) considering the boundary condition v = gives

M

and

and generally

Cj
x

r V
(V) = V, — = A= —

ov J aU

V

JI = J JydV

(v)
dv

' •>n — l

Jn(v)= -^—^dv and JJv) = \ J'n dv .

J a(v) J
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As the normal curve a(v) is known, the integrals can be easily computed

by simple summations, but not for the ends when v = and v = a, as for

these a(v) = and the expressions under the integrals are indefinite. At the

first place, however, where v = 0, all Jn = 0, so that only the Jn(a) are to be

computed. In order to overcome this difficulty, Doodson divides the lake

into two equal parts at v = \a and determines the /„ by two integrations

first, starting from one end (east end) Je

n , and then the J™ from the other end

(west end) up to the middle of the lake. As, due to the unsymmetry of the

lake, the two parts are not identical, the /„ values obtained for the middle

of the lake will not agree. As the equations of (VI. 57) are linear, it is possible

to adjust the two values to each other by a multiplication factor. For the

other end of the basin the theory then gives the conditional equation

n

r=

in which the argument \ a has to be taken for the functions J and J in the

left-hand term of the expression in parentheses. As these values are known
for the middle of the lake, the /„ can also be determined for the other end.

Doodson and his collaborators determine these Jn for 10 values of v of

the western and the eastern half. When v = 0, the Jn(0) = and, therefore

there are in all, till v = a, 18 values of /„. At both ends of the lake, A must

be equal to 0. This condition is automatically fulfilled for the end v = 0,

as here all Jn
= 0; for the other end, however, v = a must be

2(r-XfJJLa) = J&a)-Ux(a)+mAa)-...+ 2PJJfi) = .

n

This is the equation for the determination of the values of A, which accord-

ing to (VI. 57) define the periods of the free oscillations of the lake. This

equation is solved by Doodson according to the method of Horner.

Figure 72 shows the normal curve of the lake of Geneva and Fig. 73 the

distribution of the vertical displacement along the lake for the uni- and two-

nodal Seiches. According to the method of Proudman, the periods are

7\ J2 T
74-45 min 35 1 min 28 min,

whereas Forel has observed the following values:

740 min 355 min

The position of the nodal lines are also agreeable with those derived from

the limnographic recordings. Fig. 73, moreover, shows very clearly how much
the profile of the seiches can deviate from a cos-line in irregularly shaped

lakes. The method of Proudman has not yet been tested for other lakes.
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W + W)
A ~° (VI.58)

with

. _4ji2a2

X --gTf

Equation (VI.58) is to be solved with the boundary conditions ^4(0) and

^4(1) =0. This differential equation, according to the said theorem of the

calculus of variation, is equivalent to the relation

i

/ {(ar)'
- 5®*}* --w - Minimum

•

(VI - 59)

o

We now assume a solution A in the form of a finite series

A = A ip +A 1 ip1 +A 2y>2+ ...+Am ipm , (VI.60)

in which the m + 1 functions ip
t
must satisfy the same boundary conditions

as A itself: y,-(0) = y,-(l) = for i = 0, 1, 2, ..., m. If we choose yt
t
(z)

— z{\— z)z' then these boundary conditions are fulfilled and A becomes

m

A = ^z(l-z)ziA i . (VI. 61)
1=0

The determination of the unknown A
t
results from the fact that after sub-

stituting (VI. 61) into (VI. 59) J{A) must be a minimum. This requires that

8J n 8J a dJ n

After a few calculations, we finally obtain for determining A
t
the equation

m

yi( _1 2(i+ 1)0 + 1) (/+2)Q + 2)

Zj\\i+j+\ z+y+ 2 i+j+3
i=0

C zH\ — z¥?i+J
\

A
zyi z)z

dz [A (VI. 62)

The integral can only be evaluated, if a(z) can be represented as an analytical function of z. In

order to avoid singularities at the end of the lake, Hidaka puts

a(z) = hzQ.-z)<p(z),

in which h is a constant with the dimensions (L3
) and q>{z) represents a function of z which is always

positive in the interval ^ z ^ 1. <p(z) must now be approximated as well as possible from the

normal curve by a suitable analytical function. Hidaka has done this for the Lake of Yamanaka
and then evaluated the integral. If the normal curve is irregular, such a function cannot easily

be found ; in that case it is better, as Neumann has done in the case of the Baltic, to compute the

integral directly by numerical integration, in which, of course, the limiting values at z = and

z = 1 in (VI. 62) require special attention.
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Equation (VI. 62) then gives m+ 1 simultaneous, homogeneous equations.

^-U) A + I ---M) A,+ I— -J,A

They can only exist when their determinant vanishes:

1 1 1

JnA — — •/1 a y>a
3 6 10

1 2 1

-y,A -j,x — /3 a
6 15 10

1 1 3
JaA J'lA J A A

10 10 35

in which

'--/
z2(l-z2)z"

o{z)
dz .

(VI. 63)

In case that in (VI. 61) A only consists of three terms {m = 2), we get A = z(l — z)(A JrA lz+A 2 z
2
)

and the determinant is restricted to the terms shown in (VI. 63). From this we obtain as a determin-

ing equation for A the cubic equation:

3,1 2 _ 1

A
2 +

+
1 3 53 1 1

700 350 2100 30 60
A-

I

10500

The roots of this equation must all be positive and can be determined

by applying the "regula falsi" or the method of Newton. If they are A1? a2

and A3 , the second of the equations (VI. 58) gives as period of the uni-nodal,

two-nodal and three-nodal seiches the values

Tt

Ina

7&g)
(VI. 64)

Hidaka has applied his method to Lake Yamanaka, which has a beautiful,

regular shape and has obtained results which agree exceptionally well with

the observed periods of this lake. Neumann has applied this theory to the

large, almost completely closed water-masses of the Baltic Sea. We will refer

later to this important paper (p. 194).
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(vi) The method of Ertel. Ertel (1933) has developed a new and an elegant

method which follows the wave mechanical perturbation theory. The only

restriction to its application is that the lake should extend preponderantly

in the x-direction, so that transversal oscillations can be disregarded. It starts

out from the Chrystal equation, to which we can give the form

d2A m2

w+^-°- ,VL65>

It is identical with equation (VI. 58) if we put

co
2 I

in which

<p{z) = (g/a2)<*(z) and a(z)

v
is the normal curve of the lake, referred to the abscissa z = -

a

(0 < z < a , if < x < /)

.

If we assume a rectangular cross-section of constant depth of the width

b and an area So = b h , then b l = a and y = gh /l
2

. Considering here

only the longest free oscillation, we have for this rectangular basin

with ^o(O) and A (\) =0. Its solution is

A = ]/2sin(jrz)

,

(VI. 67)

and its proper frequency is

eo =n\/<p
,

(VI. 68)

or as period of the free oscillation Merian's formula TQ = 2//j/(g/7 ). This

amplitude in (VI. 67) has been selected so that

i

| Aldz = 1 (normalized eigenfunction). (VI. 69)

In order to obtain a general solution of (VI. 65) we make the usual

assumption in the perturbation theory

A = A +AA and -^ =^ +A l-^-X (VI.70)

and substituting in (VI. 65), we obtain

»'AA
+ 4 AA ^_A (^\ A<1 , (VI.71)

fe2
f \<p(z)
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/co2
\ Aw2 Aw

Ertel transforms the perturbation term —A\— A into Mo-r^- >

\ <P I <f
Aw-

Aw
neglecting quantities of second order, which can be done only if -< 1,

Aw

as was shown by Fr. Defant (1953). This will not always be so; therefore,

one must use equation (VI. 71).

For the frequency of uni-nodal seiches, we then obtain with (VI. 67)

2
i

ft»

sin-.-rr

' [1+(#W]

dz. (VI. 72)

For Aw = (rectangular basin w = w ) the integral becomes 1/2 and « = ft> .

With the two-nodal or multi-nodal seiches, nz in (VI. 72) must be substituted

by 2nz or nnz. This method was first applied by Fr. Defant in the determination

of the free oscillations of Lake Michigan. The periods obtained deviate by

less than 1 % from those computed by means of other methods. It can be

shown that the "Japanese method" (see p. 164) is a special case of the method

given by Ertel. It does not give especially good results as compared to other

procedures, because Ertel did not consider terms of higher order in AS/S

and Ab/b .

As the homogeneous equation (VI. 66) has the solution (VI. 67), the in-

homogeneous equation (VI. 70) can only be solved according to the theory

of differential equations, if the condition (VI. 73) is satisfied:

i

f
A
(jU

Ald2=o - (VL73)

(d) Standing Waves in Partially Open Basins

A water-mass in a basin not enclosed on all sides, but communicating

in one or several points with a considerably larges body of water, can also

have standing waves. We have then to deal with the free oscillations of bays

and canals. In such oscillations the water-masses will be drawn in a horizontal

direction from the great body of water of the ocean; there must always be

a nodal line across the opening of such bays and canals. The longest free

oscillation of a bay must, therefore, be identical with that of a basin consist-

ing of two identical sections which are mirror images in respect to the opening

which joins the two parts. If the length of the bay is / its cross-section

rectangular and its depth constant (canal closed on one side of rectangular

cross-section and of a depth h) then

4/
T = -r^— . (VI. 74)

}(gh)



174 Long Waves in Canals and Standing Waves in Closed Basins

It will be necessary to introduce a correction for a canal or bay with a wide

opening to the free ocean, in whose width b at the opening is an appreciable

fraction of the length of the canal /. This correction increases the period,

similar to the behaviour of vibrations of air in pipes which are open at one

end. As a matter of fact, in the oscillatory processes at the opening, the water

not only flows forth and back in the longitudinal direction of the canal, but

it is also drawn from the side and thrown back sideways. The investigations

made by Rayleigh (1897) show, as is to be expected, that the correction

is the greater, the wider the opening of the bay is in proportion to its length.

The corrected period of the free oscillation then is T{\ +e), if T is the period

computed according to Merian's formula (VI. 74). For e we find, if b is the

width and / the length of the canal closed on one side,

b G .nbS=
xl\2-

ln
4l

in which y is Euler's constant 057721 5. Different ratios

for 1+e (Table 22).

Table 22

y\ (VI. 75)

/ gives the values

Width

Length

Correction factor

1/2 1/3 1/4 1/5

1-371 1-297 1-240 1-203 1-176

1/10

1110

1/20

1066

It can be seen from these values that when the width of the bay equals

the length, the increase in the period is 37 % but is reduced to about 1 1 %
if the width is one-tenth of the length. Proudman (1925, p. 247) has pointed

out that this mouth correction only applies if the shore from which the canal

Fig. 74. Computation of the correction for the opening.

branches out is straight and if there is a uniform distribution of a current

transverse to the open end of the canal. If the coastline is funnel-shaped and
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makes an angle nn with the centre axis of the canal (see Fig. 74) equations

(VI. 75) is replaced by

in which

r i—a— o"

A. = »J
£

,
' dt. (VI. 77)

The influence of the shape of the opening proves to be very great. Thus we

find for

According to Rayleigh's

equation

n = 1/4 1/2 3/4 1/2

rm = 45° 90° 135° 90°

Correction factor (1+e) = 1285 1-259 1233 1265.

For a canal of the length / open on both ends we obtain again as period

of the longest oscillation T = 21/]/ (gh) ; nodal lines are present at both ends

and, except these, this oscillation has no further nodal lines.

The longest possible period of a standing oscillation is therefore the same

as the period of a lake of similar shape, but in a lake antinodes are located

at the ends of a lake, whereas in a canal open on both ends, nodes are found

at the ends.

The computation of the period of the free oscillation of ocean bays and

canals (straits) of irregular shape can be made after the methods explained

previously; particularly well suited for this is the method of a step by step

approximation, because it can also be applied in the case of very complicated

bottom configuration. For ocean bays the computation is started at the inner

end with an arbitrary value of rj and £ = and, if the period is selected

correctly, we must obtain ry = at the opening. However, we can also start

at the opening with £ arbitrary and r\ = 0, and we then obtain, if T is cor-

rectly selected, I = at the inner end.

3. The Character of the Oscillation of Connected Systems

(a) Free Oscillations of Connected Systems

The determination of the period of the free oscillation of the lakes and

ocean bays with a complicated- configuration becomes difficult with the

methods previously mentioned, especially if the cross-sections become so

narrow that the whole area of oscillation can no longer be adequately re-

presented by one and the same oscillatory function of time and place. In such

cases, the total oscillatory system is split up into separate parts, which are

considered as separate areas for theoretical oscillatory problems. Together

they form the total oscillatory system. The following example will illustrate
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this. An oblong lake communicates at one end with a second basin through

a narrow canal. If the opening to the second basin is sufficiently narrow,

there will be in the oblong lake seiches, with, in first approximation, an anti-

node at the end partially closed, so that the oscillation of the lake will reach

approximately the narrow connecting passage. In this connecting canal there

will be variations in the water level and consequently periodical horizontal

currents. Oscillations can start also in the second basin. In this way, the water-

masses in the connecting canal oscillate back and forth with the period of

the free oscillation of the lake, but the physical process in the canal is quite

different from the seiches in a lake. However, it reacts back on the oscillations

in the oblong lake, and the resulting period of the whole oscillatory system

is somewhat different from the period of the free oscillation of the oblong

lake when it is completely closed and also completely different from the

case where the oscillation in the connecting canal is unhampered. Such con-

necting oscillatory systems have been described in the well-known work on

the oscillations of Japanese bays by Honda (1908) and his collaborators.

An interesting case has been computed by Sterneck(1916) (see also Defant,

1917, p. 329) in his solution of the Euripus problem. Endroes (1927, p. 74)

has pointed out the remarkable long period of oscillation of lakes composed

of separate basins and explained them to be compensating oscillations of

connected systems. Zeilon (1913), too, has dealt with similar problems

in investigating the oscillations of the Gullmar-Fjord. Neumann (1943,

p. 409) has given an extensive analysis according to a new method. We will

first explain, with the help of hydrodynamics, the case of free oscillations

in two lakes communicating by means of a narrow canal.

Let us assume that a short and narrow rectangular canal II connects an

oblong rectangular basin I with a smaller basin III. Let their length be /,

their width b and their depth h and the suffixes 1, 2, 3 refer to each quantity
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in its respective basin. Let their surface be O = bl, their cross-section S = bh,

their longitudual section F = //?, and their volume Q = Ihb. Let the horizontal

and vertical displacements of the water particles be £ and r\ (see Fig. 75;

everywhere in this figure £ stands in place of rj).

Suppose basin I oscillates regularly (seiches); then there will be in the

connecting canal II periodical pressure variations and a corresponding per-

iodically alternating current, whereas in basin III the oscillations are caused

through the filling and emptying of the basin in the same rhythm as the

free period of the complete system. The resulting period of the connected

system to depends, of course, first of all on the dimensions of the system,

which will be expressed in the boundary conditions. These boundary con-

ditions have been added to Fig. 75 underneath the three points jc = 0, /x

and lx+h and do not need any further explanation. L and R as upper indices

mean left and right of the section in question.

The oscillations in III are simple variations in level caused by water

flowing in or out at x = lx + k and the condition for continuity gives

&& = Oa%- (VI. 78)

In II the equation of motion (VI. 5) applies

d2
£2 dr

J2

dt2
= 8 dx ffof-irf), (VI. 79)

because this is a simple pressure current.

All | and r\ in the oscillatory system are proportional to a periodical

function of the time, and therefore I, ?;~e"°' Considering (VI. 78) and the

boundary condition at x = /x , it follows from (VI. 79)

in which

l-^)^|rf + frf=0, (VI. 80)
or) o2 lo

555-*<£— (VL8I)

So
c3 = Y(gh3) and a, - -y .

In analogy to the theory of the resonators of Helmholtz, a can be designated

as the "conductivity" of the canal and

2ji _ / a2

is then in agreement with Rayieigh's equation for the natural frequency of

such a resonator.

The equation (VI. 80) represents a relation between If and »/f of basin I.

A second equation can be derived from the equation for the oscillations

12
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of this basin itself. From the equations (VI. 8) and (VI. 6) we obtain, when
considering the boundary condition x = and neglecting the time factor e'

w
\

if if
I,
=——r-sin^A- and m = —lux- T cosxx (VI.82)

smxlx sinji/j
v J

with xcx
= co.

The second equation gives for the right side x = lx the second relation

between If and ??f, in the form

7thx co\7ck£ + 7$ = . (VI.83)

The two equations (VI. 80) and (VI.83) can only exist when their de-

terminant vanishes, which gives the equation for the frequency co of the

connected system. After a few transformations, we obtain

coUlx
=^-(\-^\. (VI. 84)

a2 \ co
2
/

The period T of the system is given if we put w3 = 2n\Tz and Tx
= 2lx/y (gh x )

(period of I when completely closed at the right):

«**?» = **. I (l_?3. (VI. 85)
T cx a2 T\ Tsl

This formula applies only on the condition that in the connecting canal

there will be compensating currents and no oscillations. This is identical

with the condition that the cross-section of the canal be small, compared
with S2 , which is the cross-section of the lake. Equation (VI. 85) can also

be applied for irregularly shaped lakes provided that first Tx be determined

considering the width and depth according to one of the preceding methods,

and then T be corrected by equation (VI. 85).

If xlx is small (lx small compared to the wave length of the total oscillation),

we can substitute in the equation (VI. 84) \/(xlx) for cotxlx and after a few

tranformations we obtain

Ml
Ag Fx+F3

This is the equation derived by Honda and his collaborators. Equa-

tion (VI. 86) corresponds with the relations which have been derived in

hydraulics for the oscillations in U- shaped tubes and for oscillations in

a "Wasserschloss", see Forchheimer (1924, p. 344) who also considers

the damping through friction. This method can also be applied to Seiches.

One can derive in the same way the period of a bay connected with a small

basin through a narrow canal. If the opening of the bay into the open ocean

lies at x = 0, the equation for its period will be

to,-.^ =_^I(l_^
>

(VI.87)
IT c x

a2 T \ Ts f

Vlst
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in which Tx
= 4/j/j (ghx) represents the period of the free oscillation of the

bay closed at one end, and corrected for the opening.

Neumann has tested his theory by interesting experiments in a wave tank,

which, in spite of inherent difficulties have shown a very satisfactory

agreement between the theory and the observation. Applications of these

formulas are given in the following paragraph.

(b) The Impedance Theory of Neumann
It is very difficult to deal with the theory of combinations of basins such

as they occur very often in nature. It, therefore, was an excellent idea of

Neumann (1944, p. 65, 193) to apply the impedance of oscillating systems,

which was proved to be so valuable in the theory of electrical and acoustic

oscillations, also to the oscillations of water-masses. In this manner, it is

possible to derive in an elegant way the equations for the period of the various

combinations of lakes and bays. It is true that the formulas thus derived

apply only for rectangular basins of constant width and depth, but they can

also be applied, with small changes, to lakes and bays of irregular shape.

We will give here only the fundamentals of the theory; the applications and

the proof of its manifold uses will be presented later (p. 186), along with

a number of examples based on observations.

The general periodical motion of water-masses in lakes and bays follows

the equation (VI. 36) if the frictional influences are also considered. If we
introduce |~e'* v and if we assume that the oscillations are produced by

a force X acting in the horizontal direction we obtain as the fundamental

equation of the forced oscillations of a system (see Defant, 1916, p. 29)

in which xc = a is the natural frequency of the system.

We will now put X = Aekut
, in which to is the frequency of the exciting

force, and if we assume

dh 1

u = — = Ueiwt
, £ =— Ueia"

dt ito

then from (VI. 88) follows

n
U[ia) + p + -)=A. (VI.89)

1(0

In analogy with Ohm's law for alternating currents and in accordance

with the definition in the theory of acoustical filters, the quantity

Z = £ = p+Uo + * (VI.90)
U ico

is called the impedance of the hydrodynamical oscillatory system. It can be

12*
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shown that for this quantity the following equation can be used as its

definition

:

Z= Po = amplitude of pressure

S(d£/dr)max area x amplitude of velocity ^ '
'

If this quantity is known, the natural frequencies co of the system can be

computed from Z = 0, if frictional influences are disregarded (otherwise

from Z = minimum).

The correctness of this argument can be proved from (VI. 90). Without

friction /? = 0, Z = only when co = a, which means the system oscillates

with its natural frequency.

In a canal closed on one end (head of the canal x = 0, opening x — — /, depth h, width b)

there follows from (VI. 8)

ax . [d$\ aI

£ = £ sin — e iat and I —
)

= — /Vr£ sin — (for x = — /)

.

From (VI. 91) follows

and as, according to (VI. 7),

with S = bh

= gg*7max

a ox
r\ = — /?-| cos —

ipc jI
Z=-^cotg-. (VI. 92)

5 c

4/
gives as the period of the free oscillation the well-known formula T =

V(Qh)

Neumann has computed for the various parts of an oscillatory system

their impedance Z. The most important cases are (using the customary

designations, q = bh cross-sectional surface of a connecting canal, 5 = bh

that of a lake, q density of water and X wavelength:

(1) Basin closed on one end

Z = -^cot^ (VI. 93)

with / = \X. For a canal closed at both ends the formula remains the same,

but we have / = J A.

(2) Basin open at both ends

Z = ^tan
a/

(VI.94)
o c

with I = \l.

(3) Narrow flow-off opening or narrow canal (Cross-section q, length /' *)

Z =^ . (VI. 95)

* An effective length /' = I+a can be introduced in lieu of the geometrical length / to take

into consideration the co-oscillation of water-masses of the open ocean near the entrance.
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(4) For a basin connected with the open ocean by a narrow opening we

obtain, provided the dimensions of the basin are of equal magnitude in all

directions,

_ igol ioc2

In this case, the water level in the whole basin rises and falls simultaneously

and higher forms of oscillation are not easily produced. The impedance is

composed by two parts: one given by (VI. 95), which is that of the flow-off

igc2

(VI. 96)

opening, and secondly that of the closed water volume Z
Qa

(VI. 97);

which results from (VI. 93), if al/c is small, so that cot al/c can be replaced

by c/al.

(c) Free Oscillations of Combination of Basins

In dealing with these oscillatory systems it is to be noticed that the impe-

dance of each part is added in the same manner as the resistances of electrical

circuits. A distinction should here be made as to whether the basins are con-

nected "in parallel" or in "series". The following example will illustrate

this. Figure 76 shows the oscillatory system of a ramified closed canal: Canal I

I t>
t , h, , (,

Fig. 76. Closed canal which branches out.

forks into the canals II and III. Here the canals II and III with their impedan-

ces Z2 and Z3 are placed "parallel" behind I with the impedance Zx . If P is

the total impedance of II and III, then we have:

1 =1+1 or J>=-?S_ (VI.97a)

On the contrary, if I and (II and III) are connected in series, tl»e total

impedance of the entire system is

Z = Z1^P=^Z1 -h
Z2Z3

Z0+Z3
(VI.976)
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The natural frequency then results from

If we introduce the values for Zx from (VI. 93), we obtain as the equation

for the period of the system

Vitan^1 + 62 c2tan—" +V3 tan— = . (VI. 98)
Cl C2 C3

Similarly, we obtain:

If canal I is open towards the ocean, II and III being closed

i oh r Glo J olo ^—b&cot h&2 c2 tan \-b3 c3 tan — = .

Cl c2 c3

If canals I and II are open, III being closed

, oh i oL , ah .

—OiCiCot—- — 2 c2 cot \-b3 cAsLn — = 0.
Ci c2 c3

If all three canals are open:

i oh i
o79 , oh n

biCxCot ho2 c2cot— +o3 c3 cot— = .

Ci c2 c.

These frequencies are identical with those derived by Zeilon (1913) in

the usual hydrodynamical way. Neumann has also derived the equations for

the periods for other basins with different configurations.

(4) Observed Standing Waves in Lakes, Bays and Adjacent Seas

(a) Seiches in Lakes

It is not our intention to give here an extensive review of oscillations

observed in lakes, as this would fit better into a text-book of hydrology.

A compilation of older literature can be found in Forel, in Chrystal, as well

as in the text-book of limnology by Halbfass (1923). Good reviews have

also been given by Endros (1908, p. 39; 1927, p. 74). We will only mention

here a few essential points of these phenomena which are particularly cha-

racteristic and which are connected with the theoretical explanations given

previously.

At present, there are only a limited number of obling lakes, for which

a complete analysis of the seiches and a comparison between observations

and theory has been given. Table 23 contains a compilation of observed and

computed periods for some lakes, as well as enumerations of the methods

used for the computation. We can see that the agreement between observa-

tion and theory is always very good, and even better than could be expected

when influences of a secondary nature (friction, Coriolis-force, etc.) are
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Table 23. Observed and computed values of the period

of several lakes (in minutes)

Period Loch Earn Loch Treig Lake Garda
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of its level. As an example of such oscillations, Fig. 77 shows simultaneous

registrations at both ends of the lake. It shows the uninodal seiche, and it

can be noticed how the displacements of the water level at one end are the

mirror image of the displacements at the other end.

22 24 2

5 12 1913

8 10 12 14 16 18 20 22 24 2 4

612 1913

6 8

Fig. 77. Simultaneous recordings of the uni-nodal seiche in Lake Vattern at Bastedalen

and Jonkbping.

Bergsten divided the lake (Fig. 78) in four parts, and could very well

approximate the normal curve, by means of parabolical and quartic curves

and then apply Chrystal's method for the determinations. The result can be

dbnkoping

SO 2

flstersuna

20 22 24 26 N

\ o„ 25525
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In recent times, also, other lakes were investigated according to the methods

described above. Fr. Defant computed the seiches of Lake Michigan,

applying methods by Defant, Christal and Ertel. The results obtained were

in good agreement, so that all these methods seem to be equivalent.

A comprensive study by Servais (1957) on the seiches of Lake Tanganyika

was published recently. Besides an exact computation of the seiches of this

lake after methods by Defant and Hidaka as well as newer formulae by Fred-

holm and Goldberg, it gives a detailed review of all seiche theories, to which

special attention is drawn. For the results see Table 23. Furthermore, Servais

gives a special theory for transversal seiches and obtains good results, apply-

ing it to the Lakes of Geneva and Tanganyika.

The seiches in their simplest form only appear, of course, in oblong lakes,

and the previous theories pertain to this special case. If the bottom con-

figuration of the lake is more complicated, the seiches become more involved.

Seiches of different periods are produced, depending on which parts of the

lake are oscillating and of the direction of the forces causing the oscillations.

A typical example of this are the seiches of the Chiemsee (Bavaria), which

have been thoroughly examined by Endros (1903). The complicated oro-

graphical configuration of this lake favours several oscillation axes, and parts

of the lake oscillate separately, so that there can be simultaneously eight

oscillations in the lake. It is obvious that the seiches of such a lake can only

be studied by detailed pictures taken simultaneously at different points on

shore. Generally, all observed periods could be assigned to specific areas

and the periods did agree with the ones computed from the dimensions of

the oscillating water-masses.

Only in few lakes did the theory fail to be successfully applied. These excep-

tions occurred always when the configuration of the basins was very excep-

tional. Endros has drawn attention to several cases where, besides the regular

seiches, there are also oscillations of an exceptionally great period. He has been

able to prove that this is due to the rising and falling of the entire level of the

lake, and that this process should be considered as a periodic compensation

with a second basin through a narrow canal. Such cases have been fully ex-

plained by the impedance theory of Neumann.

If the oscillating system consists of two different basins 1 and 2, connected

by a canal (b,h,l) which has a cross-section q, then the impedance of the

entire system equals the sum. of the impedances of each individual part.

With equations (VI. 93) and (VI. 95) we obtain

Zx+Zq+Z2 = — -^r cot— H -^r cot — =

or

2n I c, 7\ ,
Co To

-S7 - = TT COtTT -£ + -=- COtTT ~
T q Ox T So, T
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in which Tx and T2 are the periods of partial oscillation, when each basin is

assumed to be completely closed at the connecting canal q. These periods

can be determined accurately by using one of the methods previously ex-

plained, and then it is not difficult to determine the period of the oscillation

of the connected system.

Examples are the Hallstattersee (Salzkammergut, Austria), the Konigssee

and the Waginger-Tachinger See (Bavaria) and others which consist of two parts

connected by a more or less narrow canal. The computations made by Neu-

mann of the period of the connected system have shown that there is a very

satisfactory agreement between the observations and the theory (see Table 24).

Table 24. Lakes composed of two inter-connected parts

(l and b in km, h in m, S in 1000 m2
)

Period of oscillation

Computed
Observed Endros
1905, 1906, 1927

Hallstattersee

Southern Basin: /x
= 5-47

Northern Basin: l% = 2-79

Connecting Canal: / = 0-20

Konigssee

Northern Basin: ly
= 5-28

Southern Basin: h = 2-22

Connecting Canal: / = 0-38

Waginger-Tachingersee

Wagingersee: /j = 6-9

Tachingersee: L = 3-9

Connecting Canal: / = 014

b x
= 108

b, = 0-72

b = 0-40

/; x
= 81-0 LSi= 87-5

h2
= 23-0

/* = 13-6

S2 = 16-5
S

bi = 0-69
5 /»! = 1 14-5:5! = 79-54)

b, = 0-644 h2 = 59-SS, = 38-5

b = 0-27 q = 8-1
j

/>!= 1-123

b, = 0-683

ih = 141

lh = 8-8

q = 009

Sx
= 16-82

52 = 603

16-25

110

64

16-4 min

10-6 min

about 62 min

The damping of the seiches in lakes permits one to estimate the influence

of friction on the oscillation. Endros (1934, p. 130) has given a compilation

of the logarithmic decrements of the seiches of many lakes, part of which is

reproduced in Table 25. It shows that there is a great variation in logarithmic

decrements, ranging from the smallest value of 0015 in the Lake of Geneva

to its twenty-fold, viz. 03 10 in the Waginger-Tachinger See. Therefore, the

successive amplitudes decrease for the Lake of Geneva by 0-3%, for the

Waginger-Tachinger See by 48%. The values of the damping factor |/3 =
= 2/i/T show still greater variations. Leaving the large value of a fish-pond near

Freising out of consideration, the Lake of Geneva has again the smallest value,

viz. 0-4 x 10
_3 min_1 , the Konigssee the fifty-fold of this, viz. 19 6 x 10~ 3

min -1
. It can be concluded from the compilation by Endros that the strongest
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Table 25. Logarithmic decrements of seiches in lakes

(According to Endros)

Lake
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(with the nodal line at the opening) had a period of 45-5-57-5 min; there is

also a transverse oscillation with a period of 21-9-24-5 min. The computed

periods were 453 and 23-6 min; the scale model gave 470 and 23-6 min.

Figure 80 shows the streamlines of the most frequent oscillations, which

were also the easiest to reproduce in the model.

Tomikowa

oHakodote

Fig. 80. Oscillations in the Bay of Hakodate.

These standing waves have also been observed in the bays and channels

of the European coasts, and a mere look at the coastal configurations on

charts will suffice to locate the points where they can be expected. Thus,

Westphal (1899, p. 53) has been able to find in the tide-gauge registrations

seiches-like variations of the ocean surface for a number of German coast

localities and Paulsen (1906, p. 13) has done the same for Danish localities

around the Baltic and Belts.

Numerous seiches have been observed in the Mediterranean. Platania

(1904-7), Oddone (1908) and Forel (1895, p. 229) have given a compila-

tion for a number of localities on the Italian shore. At the west coast of Sicily,

from Trapani to Sciacca, there is a phenomenon, referred to as the "Marub-

bio", which has the character of seiches with large oscillations of the sea

level. Airy identified seiches in the harbour of Malta, which he assumed to

be standing waves on the coastal shoal extending towards Sicily and in the

Tunisian straits. Kruemmel made the remark that they might be the oscilla-

tions of the harbour of La Valetta, with an average period of oscillation

of 23-4 min; the dimensions of the bay agree very well with the observed

period.

Seiches-like oscillations exist in the bays and channels of the Adriatic.

Stahlberger (1874) has been the first to give a paper on the sea-level registra-

tions in the Gulf of Fiume; later on, Mazelle (1907) has tried to derive

quantitatively from these registrations the oscillations between the islands

and in the numerous bays, which are accompanied by strong currents (called

stigazzi). An extensive paper by Sterneck (1914) on the seiches in the

Adriatic is available. He has found, from the dimensions of the bays and
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canals under consideration, a plausible explanation based on Merian's for-

mula for most observed periods. In general, the oscillations in these bays

and harbours have a period smaller than half an hour. Only on Trieste there

is sometimes a seiche with an average duration of 3-2 h which is always ac-

companied by great variations in water level (the average of fifteen cases

was approximately 75 cm, with a maximum of 156 cm). These are oscilla-

tions of the whole Gulf of Trieste, which can be imagined to be closed off

from the open sea by a line drawn from Capo Salvadore to a point located

somewhat to the west of Grado. This line is, in fact, the nodal line of the

oscillation. Merian's formula with a correction for the opening of 1-2943

gives a period of 3 1 h, in good agreement with the average observed period

(see Caloi, 1938). It seems, however, that part of the Adriatic west of this

nodal line participates in the oscillation, because the tide gauge at Falconera

(about 30 km to the west of Grado) clearly shows an antinode with a phase

opposite to that of Trieste. Smaller oscillations (0-78 h and less) registered

in Trieste are oscillations of the Bay of Muggia and of the harbour. For the

causes of the great seiche of 3-2 h we refer to p. 224.

In the eastern part of the Mediterranean there occur also seiches at any

point where the configuration of the coast is appropriate for free oscillations

of the water-masses. If the amplitude of the tide is small and the seiches

rather large, then it happens that the tides are concealed by the seiches.

The most famous example of standing waves in the Mediterranean is

considered to be the currents in the narrows between the Greek mainland

(Phokin and Voiotia) and the island Euboea. Forel (1879, p. 859) was the

first to relate the rapidly changing currents (4 m/sec) in the narrows of Khalkis

with the seiches in the northern and southern channels. Kruemmel (1888,

p. 331), submitted the observations of Miaulis to a thorough discussion,

which confirmed to him the correctness of Forel's assumption. Endros (1914)

and Sterneck (1916) (see also Defant, 1917, p. 329) have solved the Euripus

problem, on the basis of hydrodynamical considerations. The narrows at

Khalkis are composed of two parts each of 18 m length and approximately

6 m respectively 1 m depth (total cross-section 126 m2
), and separated by

a small island. The currents in these narrows are very irregular, which is to

be attributed to differences in the level of the sea surface north and south

of the narrows. Endros considers these differences in the water level to be

caused by (1) difference in the tides north and south of the narrows; (2) the

occurrence of seiches in the northern and southern channels; (3) piling up

of water in the channels by the winds.

The tides of the Aegean Sea reach the narrows of Khalkis from the north

through the Trikeri and Oreos channel and from the south-east through the

Gulf of Petali. Both Endros and Sterneck were able to compute from the

observations of Miaulis the tidal constants of the semi-diurnal tides for the

northern and southern harbour of Khalkis. They found that the large dif-
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ference of the amplitudes of the tides was the main cause of the Euripus cur-

rents. The maximum differences of 1 m in the northern harbour and of 20 cm
in the southern harbour changes its sign every 6 h and, consequently, causes

these strong currents. The "reversal of the high waters" in Khalkis was
previously considered a peculiarity; it describes the fact that the times of

the high and low water on the 9th lunar day are just interchanged from
those of the 6th lunar day. The same is true for the 23rd in comparison with

the 21st lunar day. It is a phenomenon which necessarily results from the

tidal constants and which is somewhat strengthened by the fact that the

ratio of S2 : M2 for Khalkis is 64, which is considerably higher than the

normal value of 0-46.

The narrows of Khalkis can be considered as a wall which almost com-
pletely closes the Evoikos and Evrippon Euripus, because, as a consequence

of its small cross-section, there can hardly be any exchange of the water-

masses through it. Therefore, the tides of both the northern and the southern

canal will be a co-oscillation with the tides of the Aegean Sea at the respective

openings of the canal. Sterneck has computed these co-oscillating tides for

the two canals, taking fully into account their bottom configuration, and he

obtained the range of the tide along the longitudinal axis of these canals

up to the narrows of Khalkis, as represented in Fig. 81. Despite the nearly
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Fig. 81. Range of the semi-diurnal tide in the Euripus Channel co-oscillating with the

Aegean Sea in the north and in the south.

equal amplitude of the semi-diurnal tide at both the north and south opening

of the channel in the Aegean Sea, the amplitude of the tide in the northern

canal rises first rapidly and then slower to 79 cm in the northern harbor of

Khalkis. In the southern harbour, on the contrary, the rise is very small and

the amplitude only attains 23 cm. These theoretical values show a very good

agreement with the observations of Miaulis. They also explain fully the an-

normal value of the ratio S2 : M2 for the penetrating tides and the small

value of the diurnal tides. They also explain the reversal of the high water

hours, which is linked with the reversal of the regular current before and
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after the quadratures. The regular part of the Euripus currents, therefore,

is a consequence of the variety of the tides in the northern and southern

harbours of Khalkis.

In both of these harbours there are always seiches. Contrary to the tides,

these seiches are of small amplitude in the northern harbour; Miaulis ob-

served during one month, despite stormy weather, only once amplitudes

of 15 cm during two oscillations; otherwise they were smaller than 5 cm.

The seiches in the southern harbour are a daily occurrence and have greater

amplitudes. The period of the seiches for Khalkis north is 1 -44 h, for Khalkis

south 1 84 h. The Japanese method (p. 164) was used to explain the period

of these seiches. It gave for the Evrippon Euripus (node at the opening near

the Isle of Kavalianis) 1 -87 h, in accordance with the observations. The

regularly shaped bay, the narrowing near the opening and the funnel-shape

of the adjoining Gulf of Petali call for greater amplitudes, as it was observed.

The period of the free oscillations of the entire northern canal with a correc-

tion for the opening is 6-49 h for the uni-nodal wave and 104h for the two-

nodal wave. It is doubtful, considering the complicated form of the northern

canal, whether such oscillations occur. They have not been observed. It is

possible that the 1 -44 h seiche is the one of the Talantic Euripus combined

with the seiche of the Mali Gulf, with an opening in the Oreos channel. If we
consider this as a closed system, the period of the free oscillation will be

96 h, hence smaller than the observed period of l-44h. With this disagree-

ment it can be expected that the amplitudes of the seiches in the northern

harbour, if there are any at all, will be small. Since in the southern harbour

the amplitude of the tide is small, the seiches become especially important

for the Euripus currents. According to their period, they can, under certain

circumstances, cause the current to alternate fourteen times in the course

of 24 h in the narrows of Khalkis. If we consider these irregular currents as

the actual Euripus problem, then Forel, in referring to the seiches, was the

first to give a correct explanation.

A close scrutiny of the differences in the level in the northern and southern

harbours of Khalkis permits to get a better insight into the phenomena of

the reversal of the currents. Endros concluded from the observations of

Miaulis that these currents are not horizontal displacements, like in the

vicinity of the nodes in standing waves, but a compensating gradient current.

The reversal in the direction of the current occurs simultaneously with the

change of sign of the difference in level, and not at the time of extreme levels

in the north and the south of the narrows, as would happen in the case of

the water-masses oscillating through the narrows. The number of changes

in the direction of the current during one day depends also, however, on the

general daily level in the entire area of the Euripus. These variations in level

are superimposed on the tidal and seiches currents and they fix the sequence

of the changes in the current. The variations of the daily mean level originates
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partly from the unperiodical variations of the ocean surface of the entire

Aegean Sea and partly from the piling up of the water by the wind.

The basis of explanation of the entire phenomenon is the fact that there

can be no uniform oscillation in the area of the narrows of Khalkis. Both

canals leading up to Khalkis from the north and the south oscillate indi-

vidually, and the ensuing differences in level north and south of the narrows

are compensated by currents between them. It is easy to understand that

the great frictional influences in the shallow and narrow straits prevent free

oscillations, and that there can only be an aperiodical adjustment of the dif-

ferences in level,

(c) Oscillations of the "Haffe"

Most interesting are the standing waves in "Haffe" which are mostly

outstretched water-masses of small depth, which are connected with the

open sea by one or several openings. In the Baltic the most typical examples

are the Frisches Haff and the Kurisches Haff, which are connected with the

open Baltic by the Pillauer Channel and the Memeler Channel respectively.

In the Frisches Haff (length 90 km, mean depth less than 3 m) there are,

according to the gauge registrations at Piilau and other localities, seiches

with a duration of 8 h, and — although less often — seiches of 5 h. The
first is probably the oscillations of the entire, more or less enclosed water-

mass of the Haff with a nodal line lying approximately at the Passage Mouth,

whereas the latter period might be the two-nodal seiches, (See Lettau, 1932,

p. 229, and Moeller, 1937, p. 262). The oscillations are strongly damped
and show a logarithmic decrement of 0-229.

The gauge placed in the Kurisches Haff in the channel from Memel to the

Baltic shows, as an average of a large number of cases, a period of oscilla-

tion of 9-2 h, which might correspond to that of the uni-nodal seiche, and

besides, a period of oscillation of 4- 12 h, which will be that of the two-nodal

seiche (see Lettau, 1932). Here also the damping is great, considering the

shallowness of the Haff (length 85 km, mean depth 40 m) (according to

Endros, ;. = 0-25).

The impedance method can be used to good advantage for a theoretical

investigation on the period of the free oscillations of incompletely enclosed

lakes. A lake with one side or one end open will loose or receive periodically

at each oscillation a certain amount of water, and this process must in-

fluence the period of the free oscillations of the lake. One is inclined to assume

that such process generally causes an increase of the period of a lake sup-

posedly completely enclosed. However, Neumann (1944, p. 200) was able

to prove that this is not the case. The impedance theory clearly shows that

there is a decrease of the period, according to the position of the opening

with respect to the nodes and antinodes. Lettau (1932) has tried to solve

this problem by starting from the principle of conservation of energy. The

result was an increase in the period of the lake, which does not seem right.
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Possibly an error was made in applying the energy principle, inasmuch as

the energy equation used is not satisfied at all times. We can distinguish three

parts in a Haff as shown in Fig. 82: sections 1 and 2, situated on either side

Zq, b, h, (

L_"-l__

u
Fig. 82. Computation of the free period of a sea partially closed.

of the opening are considered as separate areas of oscillation with the impe-

dances Zx and Z2 , the outlet opening has the impedance Z
q

. During the oscilla-

tions, water from 1 will flow both into 2 and through the lateral outlet. 2 and 3,

therefore, must be regarded as connected "in parallel" to each other and

these two connected "in series" to 1. Consequently, the condition of the

natural frequency is

^-"X ^2
=

With the corresponding expressions for Z, we obtain, assuming Zx and Z2

are basins closed on one side:

•Si 4.
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if a = bh/l (dimensions of the outlet). In case the outlet opening is moved
towards the far end of the lake, we get /2 = and the equation for the period

a
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'
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This relations shows that the period is shortened compared to the period

of the fully closed basin.

In applying this to the Frisches Haff, the section 1 is the narrow south-

western part from the mouth of the Nogat to the deep of Pillau, section 2 the

remaining part of the Haff to the mouth of the Pregel including the Fisch-

hauser Wiek, and section 3 the Pillauer Seetief. The application of Defant's

method gave for 1 and 2 the partial periods 6-63 and 3 11 h and with the

numerical values:

Length

Sect. 3: 204km

The above-mentioned equation gives as the period of the free oscillation

of the entire Haff basin 8 05 h, which is in agremeent with the observed

Average cross-section



194 Long Waves in Canals and Standing Waves in Closed Basins

period of the fundamental oscillation. If the Haff is completely enclosed,

we find 9 7 h. The influence of the opening on the side consists in a decrease

of the period by about 1 -7 h.

In the case of the Kurisches Haff, conditions are more complicated. Me-

rian's formula, assuming this Haff to be closed near Memel, gives for the

period of the fundamental oscillation 7-6 h, Defant's method according to

Lettau only 7 h, which decrease is understandable, because the narrowing

of the lake at one end causes it. The observed period, however, is 9-2 h. The

opening of the Haff near Memel cannot be the cause of this considerable

increase. Only the exact records of oscillatory conditions of the Kurisches

Haff can eliminate this disagreement.

(d) Standing Oscillations in Adjacent Seas

Because of the large horizontal dimensions of the basins, the period of

these free oscillations will be very great, sometimes one day and more. The

superposition of smaller partial oscillations and forced oscillations (e.g. tides)

will often cover up the free oscillations. These are the main reasons why the

free oscillations of the adjacent seas have thus far been so little investigated,

even though such work is indispensable for clearing up all oscillatory pheno-

mena in these seas, including the tides.

Neumann (1941, p. 180) investigated the Baltic seiches-like oscillations

which have already been described for some sections in the Baltic. The variations

of its sea level designated by Meissner (1922, p. 121) as "seiches of the Baltic"

cannot be the free oscillations of the entire Baltic, on account of the shortness

of their periods, but they are merely oscillations of smaller sections of bays

and shores. The free oscillations of the Baltic became very important from

a practical point of view when they were associated with the sometimes

disastrous floods in the inner Gulf of Finland (Leningrad). Stenij (1936)

has shown that the free oscillations of the water-masses of the Baltic are one

of the causal factors for these floods. It was attempted by Dubnow (1936)

to consider the oscillations of the Baltic by means of a basin model,

but there is no good agreement between the results of his experiments and the

actual observations. Neumann was the first to investigate the free oscillations

by analysing accurately the tide gauge observations distributed over the entire

coast, in order to study simultaneously oscillatory processes. The existence of

free oscillations all over the Baltic was in this way satisfactorily proven.

A statistical examination of the variations of the sea surface in Ystad (southern

point of Sweden) and Koivisto (at the head of the Gulf of Finland) for the

years 1935 and 1936 gave the most frequent period, which was for both loca-

lities 26-75-28-25 h, on the average 27-5 h, which is the uni-nodal seiche in

the system Baltic-Gulf of Finland .*

* A shorter period between 25 and 26 h in Koivisto, which is lacking in Ystad, might be the

oscillation of the Gulf of Finland itself.
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The examination of the individual records showed that it is not uncommon

for the oscillations to occur in a row of three or four and more successive

waves and attain in the Gulf of Finland a range of over 1 m. We will give

as an example the record from 10 to 15 December 1932 illustrated in Fig. 83,
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Fig. 83. Level of the Baltic measured by various gauges from 10 December 00h (G.M.T.)

to 15 December 1932, 10h (G.Neumann).

which can be considered as particularly typical of the uni-nodal oscillation

of the system Baltic—Gulf of Finland. In Koivisto the range of the first wave

13*
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exceeds 1 m; towards the entrance of the Gulf of Finland the amplitudes

decrease rapidly, and at Landsort and Libau the oscillations have nearly

vanished. The south-west part of the Baltic, on the contrary, oscillates in

the opposite phase and the amplitudes increase up to Gjedser. From here

on, the amplitudes in the south-western part of the Baltic no longer increase;

they rather decrease. In the Belts, in Korsoer and Frederica, it is impossible

to find a correlation with the oscillatory process of the Baltic except at two
extremes. Here as in Copenhagen, the regular tidal oscillations are prepon-
derant. Figures 84 and 85 give, for the first oscillation of this case, the two

Fig. 84. Co-range lines of the oscillation of 11-12 December, 1932 in the Baltic. The dotted

lines indicate the amount in cm of depression, the full drawn lines the amount of elevation

for the first half period.

extreme positions of the water surface in the entire- area of the Baltic. We
can see how well the amplitudes fall along the line of the oscillation, and

there is no doubt that we have here the uni-nodal free oscillation of the system

Baltic—Gulf of Finland. The observed period is 27-3 h.

The two-nodal wave appears quite often; however, it has always a smaller

amplitude and, in the few cases in which it occurs without the fundamental

oscillation, it does not persist after one or two oscillations. It is less persistent

than the uni-nodal seiche; the Baltic seems to be less suited for its development.

There are also free oscillations in the system Baltic—Gulf of Bothnia with

a period of about 40 h ; however, in this case the oscillating basin is divided

into two unsymmetrical sections by the nodal line, and this is why the oscilla-

tions of this basin seldom occur.
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The closing of the Baltic basin towards the Belts is established morpho-

logically. The first narrowing of the cross-sections is near the Darser sill

(saddle depth only 1 8 m), the second one in the western part of the Fehmarn-

Fig. 85. Co-range lines for the watermass oscillating back to its original position (see Fig. 84).

belt near the sandbank Ojet. In both cases the cross-section is only about

1/30 to 1/40 of the mean cross-section of the Baltic. If we take the western

border line first at the Fehmarnbelt, the second time in the small Belt near

the line Aaro-Assens, Neumann obtains for both oscillating systems accord-

ing to the methods of Defant and Hidaka, the fundamental period of the

Baltic, as listed in Table 26.

The agreement of the periods computed by fundamentally different methods

is very good. Figure 86 shows the theoretical distribution of the vertical

(2?7o) and of the horizontal (2£ ) water displacements of the uni-nodal oscilla-

tion. The position of the nodal line of this oscillation is not symmetrical,

but is somewhat displaced towards the north in the vicinity of the northern

point of Gotland. This is in excellent agreement with the observed position

(see Figs. 84 and 85). From the entrance in the Gulf of Finland (approxi-

mately at cross-section 38) the range increases very rapidly and attains at

the eastern end (Leningrad) values which are nearly twice as large as those

at the western end (Luebecker Bucht). This is also confirmed by observations.

It is remarkable that, for the two-nodal wave, the opposite is true. Due to

the large widening and deepening of the Baltic in the middle sections, the

greatest horizontal water displacements and, hence, also the greatest current
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Table 26. Theoretical free periods of the Baltic
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Darser Sill — Mecklenburg Bay and Kiel Bay, T = 27-70 h by inserting in

(VI. 85) the numerical values provided by the survey of the Baltic. However,

one can also compute from the observations the water-masses transported

back and forth across the Darser sill during one period of oscillation and,

with these values as the western boundary condition, determine the period

after Defant's method. One then obtains as the period of the uni-nodal

oscillation 27-6± 0-7 h, and for the two-nodal oscillation 17-5± 0-6 h. These

values are in good agreement with the observed free periods of the Baltic.

The Adriatic Sea, due to its regular shape, is particularly suited for free

oscillations. As a matter of fact there are indications of such seiches in the

tidal gauge registrations, which often attain a very large amplitude. Because

the range of the tide in this sea is not negligible, these variations in level

should be studied in the following way. The partial tides computed from

the observations are used to construct a tidal curve. The difference between

this theoretical and observed tidal curve is plotted and analysed. In this

manner, von Kesslitz (1910) has found for Pola and Vercelli (1941,

p. 32) for Zara oscillations of the following periods:

(1) About 22 h; it occurs especially at the northern end of the Adria with

regular wave trains of a large amplitude (30 cm and above), particularly

with sirocco and bora weather.

(2) About 11 h; it is less frequent than the former and it seems to occur

only with special weather conditions (bora in the northern section, stormy

sirocco in the southern section of the Adria) with rather irregular amplitudes.

(3) About 8| h.

(4) Finally 3-2|- h which appear more frequently than the two previous

ones, and they are more discernible in the registrations because of their

shorter duration. Figure 87 gives a good example of the 22 h oscillation.

This long oscillation seems to be the uni-nodal seiche of the entire Adria

with a nodal line at the opening Otranto-Valona. For / = 802 km and an

Fig. 87. Record of the tide at Pola from 22 to 24 March 1906. The dotted line is the

theoretical tide curve. The full drawn line is the observed curve. Below; the difference

between both curves. 3 waves with an average period of 22-2 h.
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average depth of 235-7 m. Merian's formula gives a period of 18-39 h and,

with a correction for the mouth of 1 167, a period of 21 4 h. It fits quite well

the observed value of 22 h. The Japanese method, however, gives a negative

correction for both the width and the cross-section, so that the theoretical

value is reduced to 15-62 h. It is questionable whether, in view of the rather

large correction due to the form of this sea, the Japanese method can still

be used. The narrowing of a bay at the opening must lengthen the period

and not shorten it (see Defant, 1911, p. 126). If this oscillation is not the

uni-nodal period of the free oscillation of the Adria, it could not be explained

by its dimensions. Sterneck (1915, p. 44) finds, by integrating step by step

the equations of motion, for the Adria a period of 21- 12 h, which is increased

to 23-34 hours by a correction factor for the opening 1105.

The 1 1 h wave can only be the uni-nodal seiche of the Adria, if the strait

of Otranto is assumed to be closed. Oscillations of this kind are perhaps

not entirely excluded, on account of the great narrowing of the bay at the

opening; the unusual wind conditions which accompany this oscillation

might also be the cause. The 8 A oscillation then is the first harmonic oscill-

ation of the Adria with a node at the opening and a second one inside,

whereas the short, 3 h waves which often occur might be transverse oscill-

ations. The average cross-sections of the Adria give as period of such trans-

verse oscillations approximately 2£ h, which is in agreement with the ob-

served values.

The Black Sea can be considered as a completely closed basin with regard

to its seiches. Both Sterneck (1922) and Kurtschatoff (1925) have only

been able to find short-period oscillations from tide registrations, which are

to be considered as local bay and shore oscillations. A careful analysis of

the tidal curves made by Endros (1932, p. 442) has shown that a small

seiche of a definite duration can be read from the curves after elimination

of the small tides. However, on account of the little development of these

seiches, the Black Sea, despite its large dimension, must be regarded as

a badly tuned oscillating basin. Endros found periods of 74, 6-4 and 5-5 h.

The first period seems to be essentially an oscillation of the north-western

shallow section of the sea (Bay of Odessa). Endros believes that the two

other oscillations are of the entire water-mass of the Black Sea along the

main deep basin towards the southwest (Burgas, 5-5 h), and towards the

middle of the western shore (Constanza, 6-4 h). These two periods are very

similar, and when they occur simultaneously, it is very difficult to separate

them by analysis. The 5-5 h wave must be attributed to the uni-nodal

longitudinal oscillation of the main basin in the direction Poti-Burgas.

Sterneck found for the theoretical period of this longitudinal oscillation,

using the Japanese method, 4-98 h, Defant (1918, p. 78) using the residual

method, 512 h. In both computations the Bay of Odessa was omitted. If the

water-masses oscillate more from the middle of the lake towards the south-
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west, the period increases to 6-4 h, because the sea becomes shallower and

because the "Talweg" becomes longer. Endros reaches a remarkable con-

clusion, that there are in the Black Sea three different main directions of

oscillation, each having a different period, which coincide at the eastern end,

whereas they split up in the western part.

Opposing this interpretation, Defant (1933, p. 56) remarked that, in view of the enormous

extension of the area of the Black Sea, it is perhaps no longer permitted to neglect the deflecting

force of the earth's rotation (see p. 217), and that the periods of 6-4 h and 5-5 h might be oscil-

lations influenced by the rotation of the earth. He supports his objection by comparing the Black

Sea with a circular basin having the same main oscillation. The longest oscillation of such a circular

basin (a nodal line at a diameter), neglecting the earth's rotation, is found from the equation

°ooi y'gh = 1-84, in which a = 27ijT and a the radius of the circular boundary and h the depth

of the basin. If the basin is rotating with an angular velocity to, a simple oscillating motion is no

longer possible (Lamb, 1932), (Goldstein, 1929, p. 213). Instead, two rotating waves develop

having their centre in the middle of the basin. One of these waves moves in the same direction as

the rotation (positive wave), the other one in the opposite direction (negative wave). Their angular

velocity and their period depend on a quantity

Aura-

gh

When (5 = (no rotation), the angular velocities and periods of both waves are equal. Their super

position gives the simple standing wave. With rotation, however, their periods and angular velocity

become different. If the value of fi becomes sufficiently great, the wave period nears the period of

the rotation.

In small lakes /§ is so small, that the influence of the Coriolis force is almost imperceptible.

However, if the lake has dimensions as large as those of the Black Sea, the influence can make

itself felt. If we put T = 6 h, then (3 = 0-391, quite different from zero, and we find for the

periods of the positive and of the negative waves respectively 5-47 and 6-49 h. The influence of the

earth's rotation is very important and, in view of the striking similarity of these periods with those

by Endros, it cannot be denied that perhaps there is actually some influence of the earth's rotation

on the oscillatory system.

The Sea of Azov is one of the shallowest basins with large dimensions

(length 390 km, mean depth about 10 m). It is a region where very strong

winds pile water up to 5 m in the shallow north-eastern Bay of Taganrog.

This causes oscillations of large amplitude. Kurtschatoff found 24-5 h for

the uni-nodal seiche reaching from the south coast to the Bay of Taganrog.

The enormous variation of 2-5 m at the end of the north-eastern bay near

Taganrog can be computed from the largest amplitude of 80 cm observed

in Temrjuk (at the south-eastern angle). The dimensions of the sea fit this

longest oscillation. Furthermore a great number of other seiches have been

observed, among which those with a period of 14-8 and 12 8 h stand out. Endros

regards the former as the binodal seiche of the entire Sea of Azov, and it

is very noticeable at Jeisk. It cannot have, however, the same direction as

the principal oscillation, otherwise Jeisk and Temrjuk could not have the

same phase. Endros considers the 1 -28 h wave as an oscillation in a curved

direction west-north-south-east. Oscillations in this sea are very complicated
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and not yet fully solved; neither is there any certainty yet as to the extent

of the influence exercised by the Strait of Kertsch.

We want to mention the variations of the level of the great North American

lakes, which were investigated by Henry (1902). These investigations were

followed by the extensive work of Hayford (1922) towards determining

the correct mean level of the lakes. Endros (1908) determined the principal

period of Lake Erie from the curves added to the paper by Henry. He found

a main period of 14-3 h, and the harmonic oscillation of 8-8 h to be a two-

nodal, those of 5 7 and 41 h three- and four-nodal seiches respectively. All

periods and phases agree with the theory. Another wave of long duration

which averages 12 65 h is — as shown by Endros (1930) — the semi-diurnal

tide. These results seem to be in contradiction with the findings of Hayford,

who found periods of 12 8, 130 and 13-8 h for the principal oscillation in

Buffalo, and periods of 12 5, 12 9 and 13-9 h in Cleveland, whereas the

harmonic oscillations agree with the values given by Endros. This deviation

from the value of 14-3 h indicated previously can be explained from the fact

that Hayford has not eliminated the tidal waves from the curves, so that

the values found by him represent the superposition of the free oscillations

with the ever present tidal wave. This superposition, however, gives oscil-

lations with a period varying between 12 5 and 13 9 h. Endros found for

Lake Erie a large logarithmic decrement of A = 237 h, which is caused

by the islands located in the western part.

Hayford did not find in Lake Michigan and Lake Huron well-developed

oscillations, because of special conditions in the basins. Endros proved in

both lakes a distinct oscillation with a period of approximately 45 h, which

he explains as a compensating motion between these two great lakes through

the connecting Straits of Mackinac.

A theoretical investigation of the seiches in Lake Michigan was made
by Fr. Defant(1953). He computed the free periods of the uni-nodal and two-

nodal seiches after different methods. In the mean, 9 05 h were found for

uni-nodal seiches and 4-84 h for two-nodal seiches. The simple, swinging

motion of the seiches is changed into weak amphidromies contra solem when
the Coriolis force is taken into account. Then the amplitude of the transverse

oscillations amounts to about one fifth of that of the longitudinal oscillations.

It seems that there are as yet no actual observations.

5. Influence of the Earth's Rotation on Tidal Waves and Seiches

(a) Horizontal Motions in Progressive and Standing Waves

It is customary to observe principally the vertical displacements of the

water-masses rj, whereas little attention is paid to the horizontal displace-

ments f. In the simplest case of progressive and standing waves in a uniform

canal of constant depth /;, we have the following relations for these dis-

placements :



Long Waves in Canals and Standing Waves in Closed Basins 203

Progressive wave

£ = a cos (at— xx)

rj = ahxs'm(at— xx)

u = —aas\n(at— xx)

Standing wave

£ = a cos xx cos at

rj = aim sin xx cos at

u = —aa cos xx sin at

(VI. 99)

The horizontal velocity in the wave results from the equation u = d£/dt.

Equations (VI. 99) show that with progressive waves the greatest velocities

coincide with the greatest rise and fall of the free surface. The free surface

rises and falls because of the convergence and divergence of the horizontal

motion of the water particles. Within a progressive wave the horizontal flow

at the wave crest is in the direction of progress of the wave, and at the trough

it is opposite to the direction of progress. Within a standing wave, on the

contrary, the horizontal velocity is zero at every point, at the time when

the wave reaches its greatest height, and is strongest at the nodes; at the

antinodes (crest and trough) it is constantly zero (p. 6). The vertical

velocity is always zero at the nodes halfway between the trough and the crest.

Because it is possible, for standing waves in seas and bays, to compute

the horizontal and vertical displacements £ and rj for each cross-section,

it is easy to compute the horizontal velocities and to compare them with

the results of current measurements. There are only very few of these meas-

urements, even though they constitute an important indicative feature as

to the oscillatory form of completely or partly closed basins. Neumann
(1942, p. 1) has analysed the currents connected with the seiches in the Baltic.

From £ computed according to the residual method he derived the distribu-

tion of the horizontal current velocities in the direction of the "Talweg",

assuming an amplitude of 50 cm at the head of the Gulf of Finland. These

values are shown in Fig. 88 by the broken line; the dotted curve indicates

Trovemunde Bomholm Gotland Dago FS Tallinn" Petersburg

50

20
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Finland one has to count with velocities of the seiches of 15-20 cm/sec,

whereas in the centre of the Baltic the values are being reduced to the order

of magnitude of 5 cm/sec.

Neumann has used the current observations made on lightships in the

Gulf of Finland, in order to prove the variations in the current which ac-

company the uni-nodal free oscillation. The current observations made by

the lightship "Tallinn" show the same period as the free oscillation (27-5 h)

and a difference in phase with the free oscillation of approximately 7 h, which

corresponds to the theoretical value IT. These periodically varying currents,

which in one instance reached an amplitude of 45 cm/sec, do cause a periodic-

ally varying transversal slope of the sea surface in a line Helsingfors-Reval.

When studying drift and wind currents, attention should be paid to possible

periodic currents resulting from the free oscillations of the water-masses.

(b) Progressive Waves in a Rectangular Canal Considering the Rotation of
the Earth

Like any moving object on the earth, horizontal water displacements are

subjected to the Coriolis force. Fully developed, this force is capable of

modifying the currents considerably. In most cases it should not be neglected,

as it is of the same order of magnitude as the pressure forces. If the amplitude

of the periodical horizontal velocity of the wave is U the Coriolis force will

be 2cosin(pU, and its direction is perpendicular to the direction of propagation

of the wave. Since U changes its sign the Coriolis force during one half of

the wave period is directed to the left, during the other half to the right.

Gravity acts in the vertical direction on the moving water particle. Together

they give a resultant, which is inclined by a small angle y towards the vertical.

Its tangent is given by

2<x>£/sin<p
tany

g

If the surface is always perpendicular to the resulting force, it should also

make an angle y with the horizontal plane. The order of magnitude of

this angle is very small. At y = 45° we have tany = 1027x \0~ 7U and with

U = 20 cm/sec y = 0-4". The slope of the sea surface is, therefore, extra-

ordinarily small. However, considering that the slope of the sea surface is

equally small when long waves pass by, we cannot neglect the transverse

slope caused by the earth's rotation. In a tidal wave of 200 km length

and an amplitude of 25 cm the slope of the waves is on the average

5 x 10
-6

, the transverse slope caused by Coriolis force is approximately

1 x 10~ 6
, thus of the same order of magnitude. In a canal of a width b

the rise and fall of the surface caused by the action of the Coriolis force

is \ b tan y, which can become important, provided that b is sufficiently large.

The horizontal velocity u varies at one point with the period of the wave T
and, therefore, the Coriolis force will cause corresponding variations in the
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level of the surface in the transverse direction (transverse oscillations). If at

one point I = Acos(ati-e), then

u = — oA sin (at+e) = oA cos (<r/+£+ \tz) = aAcos[a(t-\- IT) + e] .

This means that the phase of the transverse oscillations has shifted against

the phase of the longitudinal oscillations by one quarter period. It is here assu-

med that the surface adjusts itself immediately to the resultant between gravity

and Coriolis force, i.e. that there be always equilibrium between all acting

forces. It remains to be seen whether this applies for all cases.

Let us now examine more closely the effect of the earth's rotation on
a wave progressing in a canal of constant, rectangular cross-section. The
equations of motion are the same which we used in the theory of stationary

ocean currents.

du - dr>

fv = —g —L
dt

J *dx

dv

dt

drj

dt

+ fu = ~g
dr\

dy

dhu dhv

dx dy

(f= 2cosin«^). (VI. 100)

Likewise, the equation of continuity. Only the Coriolis force has to be added

to the equations (VI. 16).

If we assume that the periodical disturbance r\ has the form e
iat

, then u

and v become also proportional to e
iat and, eliminating this time factor,

e
iat

,
(VI. 100) becomes

iau-fo = —g
dx

i r dr
lwv+fu= -g~

and iorj

dhu dhv

dx dy
(VI. 101)

In the case of uniform depth where h is constant, the elimination of u and v

leads to the oscillatory equation in a rotating system in the form:

when

dH\_ d2
r] <r

2-f2

dx2 dy2 gh
= or (V2 + k 2)7]=0

a2-f2

(VI. 102)

gh

and V2
is the Laplacian operator. The velocities u and v must obey the same

differential equations.

We can write the equation for wave motion in a rotating canal the (longitu-

dinal axis of the canal is chosen to be the .v-direction) of constant width a
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which has as its boundary condition that all transverse motion v disap-

pears at its walls, with motion in the .v-direction only. One obtains for

the Northern Hemisphere:

u = (g/c)rj , v = and 7) = Ae- lflc)!y cos(ot— xx)
,

(VI. 103)

in which c = \>gh.

The wave velocity is not influenced by the earth's rotation, but the wave

height is not the same everywhere in a cross-section of the canal. The wave-

height increases from the side of the canal preceding the rotation to the

other side in an exponential function. If on one side it is r) , then on the other

side it is

Voe-
iflc)a

Table 27 shows this influence for two cases. The velocity of the water in

the ^-direction of the canal — there are no transverse movements — has

Table 27. Amplitude across a canal for Kelvin waves

(In percent of the amplitude at that side of the canal succeeding rotation)
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the middle of the canal. For the equations (VI. 100) one can select a solution

in the form of the equation (VI. 15). Then (VI. 18) is replaced by

aU-fV = KgZ
,

dZ

and

oV+fU = -g
dr

d LdZ\
,

/<r
2-/2

2
.

,

fx dh\ 7

(VI. 104)

whereas for the boundary conditions at the walls of the canal

*(f +?*)-•
replaces (VI. 19) for y — ±a, if the canal has the width of —a to -\-a.

With the boundary condition for y = —a, we can derive from these

equations
+y

hV = * £-</*/*»
J (^

-gh\Ze-v*l°»dy (VI. 105)

—a

and the boundary condition for y — -\-a takes the form

+a

f H ~gh
)
Ze~ {fKh)ydy = ° • (YL 106 >

As Z is always positive, this equation is equivalent to the condition

t
x~2a
= glh, (VI. 107)

in which hx is a kind of an average value between the largest and the smallest

value of h.

When the profile of the canal slopes up on both sides, there must at least

be two values of y, for which h becomes = hx ; let these be yx and y2 . Then

we see that hVe~ {fHla)y increases from zero at —a to a maximum at y = yl9

then decreases to a minimum at y — y2 , and finally becomes again zero on

the other bank for y = -\-a. Therefore, V must change its sign between

yx and y2 , so that Kis positive for —a < y < yx and negative for yx < y < +a,

i.e. on both sides of the canal the transverse motions are in an opposite

direction.

Although with the above-mentioned equations the problem is solved, we
cannot gain an insight into the entire oscillatory process until we calculate

special cases. If a = +/, which would be applicable to a semi-diurnal wave

at the Pole, or to a diurnal wave at 30° latitude, one obtains from (VI. 104)

g dy
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so that, besides a constant factor,

xZ = e-«y (VI. 108)

(VI. 106) becomes
+a

I 6 -Shje-^dy = . (VI. 109)

There is only one real value of x, which fulfils this equation.

Proudman deals especially with a canal with a parabolic cross-section

(see equation (VI.20) which was explained on p. 148) for a non-rotating

earth. From (VI. 109) we obtain the conditional equation for x in the form

*f2*a= '
(VI.n0)

2xa 1 + 2a2a2/gh
v '

For a = 100 km, h Q = 100 m and a = 1 4x 10
-4

sec
-1

(semi-diurnal tide)

a2a2/gh = 0-2, and one obtains, according to (VI. 110), for the ratio of x2

and the value lo2/gh , which applies in the case of a narrow canal or when
the earth's rotation is neglected (see equations (VI. 24) and (VI. 25)), the

following values:

a2a2/gh : 01 2 03 4 05 6 07 8 09 10

"-:104 109 113 118 1 22 1 27 1-32 1 38 1 43 1 49
§(*W*o)

c and c are the velocities of propagation respectively of a canal at rest

and rotating. It is obvious that if the canal is rotating the velocity of progress

decreases when the width of the canal increases.

Moreover, we can derive values for U and Kin a simple manner from

(VI.108) with the aid of (VI. 106). If we select o2a2/gh = 01, 0-5 and 10,

we obtain the distribution of the velocities in the longitudinal and transverse

direction of the canal as represented in Fig. 89. We see that the transverse

current is distributed very unsymmetrically in respect to the centre of the

canal. This transverse current vanishes the closer to the left side of the canal,

in the direction of the wave propagation, the greater a2a2/gh is. In the narrow

strip to the left, the transverse velocities also are smaller, the greater this

value is. Only on the right side of the canal the transverse velocity is note-

worthy in proportion to the strength of the current in the longitudinal direc-

tion of the canal.

Poincare Waves. Besides the Kelvin waves, there can be in a canal other

waves which are called Poincare waves (1910, p. 126) after the name of their

discoverer. If we assume again a solution of the equations of motion in the

form (VI. 15) and the depth of the rectangular canal to be constant, U, V
and Z must fulfil the equation (VI. 104), of which the last one takes the form

g + l-^C-^z-o
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Fig. 89. Distribution of the transverse velocity (upper) and longitudinal velocity (below)

in the opposite sens of progress of the wave. The numbers along the curves correspond to

the values (a2a2
)l(gh ). (The velocities have been multiplied by the factor (ah)l(gh ) which

becomes zero at the border.)

The boundary conditions at the walls of the canal y = ±a are again v = 0.

If n is an odd integer (n = 1, 3, 5, ...,) and if we put

we obtain a complete solution in the form

la nn ng . nn \ e
.

TIC
2

\

4aYv

(VI. 11 la)

f I tic
2

\ njx

nn no . nn
[

\
C0
*Ta

y+ Wr Sm
2a

y]C0S{at -

(VI. 1116)

The period of the «-nodal free transverse oscillation of the canal is

12 sidereal hours
T = 4a/nc, the period of the inertia oscillation T

i
= Injf =

sin 99

and the period of the longitudinal wave in the canal T — 2n/a. Equation

(VI. Ilia) then becomes

!

y\2 c'x-
(VI. 111c)

14
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This means that these Poincare waves are only possible when T < T
(
and

also T <T
q , i.e. the period of the wave must be shorter than half a pendulum

day and, at the same time, shorter than the natural period of the transverse

oscillations of the canal. This condition greatly reduces the possibility of

the occurrence of such waves. Thus, in narrow canals only Kelvin waves

with tidal periods are possible. However, it is possible that Poincare waves will

play an important part in the development of the tides in ocean sections

comparable to wide canals. If the depth of the canal is not constant in its

cross-sections, the problem becomes much more difficult mathematically.

Proudman (1946, p. 211) gave a thorough discussion of this question.

He assumed a frictionless motion of the water-masses for the middle section

of the canal, but assumed a dissipation of energy on the two sides where

the depth is smaller. This corresponds more to real conditions and permits

a more accurate application.

Another kind of oscillations is still possible in a canal. A solution of the

equation (VI. 102), which is also valid for v, is

v = exp
,
.nn

—SnX+ij-y ,
if £ = &J-k2 (VI. 11 2)

in which nulla > k. As v should vanish for ±a, v can only take the forms:

(VI. 11 3)

, nn jot
v = A„e "

x
sin^~ y-e'° for even integers n (=2,4, ...)

,

v = A„e
s"x cos ^- y • e"" for odd integers n (= 1, 3, ...)

With the aid of these relations and equation (VI. 101), we can compute easily

the corresponding values of r\ and u. These oscillations have the form of

standing transverse waves in the canal, with amplitudes decreasing with

a power of e along the canal from a point x = 0. They are practically limited

to a small section of the canal. This kind of oscillations was introduced by

Taylor (1920), in order to fulfil the condition of total reflection of

a Kelvin wave in a canal closed at one end. If we wish to compute the

oscillations of a rectangular canal closed at both ends (total reflection at

both ends of the canal), Poincare waves should be added to the Kelvin waves,

so as to fulfil the boundary conditions (p. 216).

(c) Reflection of a Kelvin Wave. Free Oscillations in a Rotating, Rectangular

Basin of Uniform Depth

The superposition of two Kelvin waves progressing in a rectangular canal

in an opposite direction does not result at all times at any cross-section of

the canal in a horizontal water-motion zero, where a transverse barrier could

be erected which would close the canal without changing the water-motion.
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Let us add to the wave (VI. 103) travelling in the +.v-direction a wave

progressing in the negative direction in the form

rj = Ae +(flc)y cos(at+xx) (VI. 114)

We then obtain if A = $, x = 1 and a =f/c = 07, the distribution of

amplitudes and phases of the superposed waves as shown in Fig. 90. The

Fig. 90. Superposition of two Kelvin waves travelling in opposite directions in a canal

with a uniform rectangular section. Period: 12 h. Amplitude of each wave: A = \, a = 0-7

(corresponding to a canal width of 400 km, 'depth of 40 m and <p = 44-5°).

assumed values correspond approximately to a canal width of 400 km and

a depth of 40 m at 44£° latitude. The period of the wave is assumed to be 12 h.

The wave picture has completely lost the nature of a standing wave, as it

would be in a system at rest. Instead, the wave is split up in cells which

14 =
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succeed each other. In each cell the wave is rotating and in the centre of each

cell the amplitude is reduced to zero. Such star-shaped distributions of the

lines of equal phase are called amphidromies. The succession of these am-
phidromies in a canal gives the impression that on the left-hand side of the

canal a wave is progressing with varying amplitude in the +x-direction and

on the right-hand side a similar wave in the —x-direction. The amplitudes

are always greatest along the wall of the canal. According to (VI. 103), the

horizontal velocity u in the direction of the canal is proportional to rj, and

the phases of the horizontal water motion are given by the same lines of

equal phase as for r\. Perpendicularly to the canal the velocity is everywhere

zero. When the water moves in one direction in the left section of the canal,

it moves in the opposite direction in the right section.

The distribution of the amplitudes shows that nowhere on a line trans-

verse to the canal, the amplitude is constantly zero, and this cannot be

achieved by selecting another difference of phase for the two waves travelling

in opposite directions. In order to reduce to zero the motion caused by the

superposition of two Kelvin waves, it is necessary to add a definite disturbance

in the canal towards its closed end. This disturbance will depend essentially

upon the period of the wave and the dimensions of the canal, especially

upon its width.

The problem of the reflection of a Kelvin wave on a transverse wall was

solved by Taylor (1920). First of all, he takes the superposition of two

Kelvin waves progressing in opposite direction as a particular solution, as

illustrated in Fig. 90. The transverse motion v is equal to zero everywhere,

and at a specific cross-section x = xt there is in the canal a current in the

longitudinal direction of the canal u = ux . Taylor has succeeded in finding

a second particular solution for the transverse motion v in the canal which,

according to the boundary conditions, vanishes at the longitudinal walls of

the canal, but which at the same time agrees to a current in the direction of

the canal giving for the cross-section x = xx
exactly the same value ux as

the first solution.

The difference between the two solutions is then the complete solution,

because it fulfils the boundary conditions, according to which the transverse

velocity is zero everywhere at the longitudinal walls of the canal and at the

closed end of the canal (x = xa ) the longitudinal velocity always vanishes.

The mathematical difficulties of the problem lie in establishing certain values

fixing the cross-section at which the longitudinal currents of both solutions

must become equal. Taylor's solution says that in a given canal rotating with

a certain angular velocity, a total reflection of a penetrating Kelvin wave at

its closed end occurs only then, when its frequency is smaller than a value

depending on the dimensions of the canal. At some distance from the closed

end, the reflection is practically identical with the superposition of two Kelvin

waves moving in opposite directions (Fig. 90); in the inner section of the
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canal, however, a disturbance has to be added, through which the boundary

condition is fulfilled. Taylor's condition for the total reflection is

°*-P<gh% (VI. 11 5)

in which b represents the width of the canal.

2n r 2n%\x\(b
,

2b
.

As o- == —
, / = — and as —— = Ta the natural period of the

T 12 hours y an

canal in the transverse direction, this relation can also be given the form

'Tq\2 ^ , ,

/ Tq sin $ \
2

T® " +(§££)' <VI| ">

in which the periods are to be taken in hours.

If we take for the wave the semi-diurnal tidal period (12 hours) we

obtain from (VI. 116)

5<-^r, (VI. 117)T cos cf>

'

for 45° of latitude = 1-42, i.e. if total reflection is to occur at the closed

end of the canal (bay), the natural period of the transverse oscillations in

tide waves must not, for average conditions, exceed \\ times the tidal period.

Although Taylor's results apply strictly only for canals with a rectangular

cross-section, they nevertheless can be used to fairly correctly evaluating the

possibility of a reflection of Kelvin waves in the case of a more complicated

configuration of the basin.

The solution by Taylor is mathematically very elegant, but difficult. A simpler one, in connec-

tion with Taylor's solution, has been given by Defant (1925, p. 25). Let the origin of the co-ordi-

nate system be situated in the center of the canal, its width be n and extend along the j-axis from

—\n to +\n. The superposition of two Kelvin waves progressing in opposite directions gives

for the horizontal velocities in the x- and y- direction at the point x = Xx of the canal,

/ axx axt \
w„ = S\ coshajsin -— cosa/+ sinhcrycos— sina/

\ c c
j (VI. 11 8)

0,

where a =//c and c = \/gh. A second solution of the equations of motion (VI. 102) is being

sought, which will give also always v = for y = ± £tt, but for x = xx the value u of the solu-

tion (VI. 118). The difference between the two solutions then always is that at the longitudinal

walls the transverse current is zero, but at the cross-section x = xx the longitudinal current is zero,

so that a barrier-like partition can be erected here, without disturbing the wave motion in the canal.

Taylor derives the second solution from the differential equation in v, (VI. 102), by putting

v = v1cosat+ v2 s'mat ,
(VI. 119)

vx and v2 must then fulfil this equation. A solution satisfying the boundary condition for y = ± \n,

v = and extending practically over a small area in the x- direction, has the form:

vt
= 2j Cn e~ "*sin«y and v2= 2j C'n e

~ "^cos/ry

.

(VI. 120)

even n odd n
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For i\ the sum only refers to the even integer numbers n, for v2 only to the odd numbers.

Furthermore, s% = n~—k2 (see p. 210). In order that the e-power remains real and the disturbance

makes itself felt only on a finite portion of the canal, «2 > k2 and, as the smallest number of n is 1,

kz < 1. This leads to the conditional equations (VI. 115) and (VI. 11 6). To the transverse currents

belong longitudinal currents in the form

Mx = 2j An e
SnX

cosny and w2 = 2j A'n e
s"xtinny. (VI. 121)

The constants A„ and A'n can be expressed by the constants C„ and C'n by means of the differential

equations (VI. 122), which follow from the equations (VI. 101) by the elimination of r\:

dy dx o \dx dy
= , and

du%

Ty

8v2

dx a \8x dy
— hr^+_- =0. (VI. 122)

If we introduce the equations (VI. 120) and (VI. 121) into these equations and if we consider

that the coefficients of sinwy and cosHy must vanish, we obtain for the ratios An : A'n the following

values

A,
for n even

A'

n

V>n

Wn

n

fa
in which v'„ =

s„c2

and for n odd — =
A'

(VI. 123)

8
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In order that, for a definite, but still unknown value x = xx the difference between the longitudinal

currents of both solutions be always zero, we must have for all values — %n =S v ^ +\n,

axx
sin— cosh ay

c
n= i

oo

cos— sinhcry = 7 An si

cosny

,

sxnny .

(VI. 124a)

With equations (VI. 123) and (VI. 124a) we can determine the constants A„, A'n and x%. Since the

rapidly converging series contain an infinite number of coefficients, we may accomplish

every desired accuracy during the fulfilment of these conditions. For instance if we choose

the five points y = 0, = ±n/4 and = ±n/2, at which (VI. 124a) should be satisfied, we obtain

from (VI. 124a) by use of (VI. 123) a number of equations sufficient to determine the unknowns

A x , A2 , A 3 , A x as well as A[, A 2 , A'3 and xx :

Ax+ A 2+A 3+A t

ax
x

(1)

-Ao+ A. = sin— cosha -
, (2)

c 2

A 1-A 3-l-4l5A i
= l-415sin— cosha-, (3)

c 4

, , oxx n
A

t
—A 3

= cos— sinha -
,

c 2

, , ,
oxi n

Ay\- 1-415 A 2+A 3
= l-415cos— sinha -

,

c 4

Ax-yxA'x = 0,

2 ,

,4„_ -A 2
= 0,

A 3- -4 = 0.

(4)

(5)

(6)

(7)

(8)

(VI. 1246)

If we combine these equations in the following way, (1 — 2)+ (2+ 3), then (4+ 5)+ (6, 7) and

(4+ (6 and 8)+ (1 — 2), they will only have as unknowns A x—A 2 and xx . The elimination of A x

and A 2 gives an equation for tang (axjc). This procedure will fix all constants and the place in the

canal where the incoming wave is reflected. If k = 0-5 and a = 0-7 which, with a period of 12 h

(semi-diurnal tidal period), corresponds to a bay with a rectangular cross-section having a width

of 465 km and a uniform depth of 74 m at approximately 53° of latitude, we get, according to the

above method, tanipxjc) = 0-383 against 0-385, as found by Taylor (1920) by another, more

accurate way.

If one wishes to know more about oscillations in such a canal, closed at

one end, he must compute numerically some special cases. Taylor has

done this for a bay having the same dimensions as mentioned in the previous

paragraph and which corresponds to the North Sea and computed the distri-

bution of the amplitudes and the phases, as well as the currents inside the
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canal which are shown in Figs. 91 and 92. Comparing with Fig. 90, we can

see the changes caused by the closing of the canal. The inside amphidromy
in front of this barrier is developed regularly on all sides and it looks as if

the wave penetrates into the canal at the left side and leaves the amphidromy
at the right side of the canal, turning around its centre. The outside amphi-

dromy is identical with the one shown in Fig. 90. The amplitudes are always

largest at the bay shores and attain a maximum in the two corners of the bay.

In the outward sections of the canal, the currents (Fig. 92) run always

parallel to the sides of the canal, and their distribution here is identical with

the currents produced by the superposition of two Kelvin waves. In the inside

section of the canal, the currents are parallel to the wall — as is required —
but in the middle they are not any longer alternating currents, but have

become currents which rotate in the direction of the wave. The current

figures are ellipses, and their eccentricity decreases towards the middle. Just

in front of the closed end of the canal the major axis of the ellipse is parallel

to the transverse barrier, whereas it is parallel to the longitudinal walls

towards the opening. At the same time, the transverse velocity decreases and

vanishes completely in the outer section of the canal. The current distribu-

tion for four phases (t =0, 1 J, 3 and A\ h) can be found in Defant (1923a,

p. 57).

The free oscillations of a rotating basin could be easily computed, in case

the basin has a circular or an elliptical shape (see Goldstein, 1929, p. 213).

Rayleigh (1903, 1909) has given a solution for a rectangular basin of uni-

form depth, for the case where the rotating velocity is relatively small which

does not apply to the rotating earth. Taylor arrived at a general solution

following the same method which he used for the reflection of a Kelvin wave

in a canal closed at one side. An appropriate second solution of the equa-

tions of motion is added to the superposition of two Kelvin waves, in such

a manner that the longitudinal current is always zero at the transverse bar-

riers closing the canal at both ends. This will give the condition for the natural

period of the rotating rectangular basin.

We now assume that the superposition of two Kelvin waves moving in opposite directions

has the form:

ax ax
m = S \ cosh ay cos— cosat— sinhavsin — sin at

) ,

(VI. 125)

The origin of the co-ordinate system is laid in the middle of the basin; let its width be n, ex-

tending from — \n ^ y ^ + \n, its length 2/ and — / ^ x =% + /. The second solution is supposed

to have the form (VI. 119). As it is now required that in two points x the longitudinal current

equals (VI. 125), and when w2 > k2
, we have to put v1 and v2 :

vx — 2j C„sinh

S

nx sin ny and v2 = 2j CncoshSn xcosny . (VI. 126)

even « odd n
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To this transversal current belong longitudinal currents of the form

oo oo

m, = 2l An cos\\Sn xcosny and u2 = 2j A^s'mhSn xs'mny . (VI. 127)

« = i

We obtain for the ratios A n : A'n exactly the same expressions as in (VI. 123). The condition that

for x = ±1 the difference between the two longitudinal currents (VI. 125) and (VI. 127) always

vanishes, requires for all y:

al
cos — cosh cry = y /l„cosh5„/cos/;>'

c

and

al
sin — sinhay = > A n s\n\\Sn l$\nny

(IV. 128)

If we restrict ourselves to a certain number of ^-points, we obtain a sufficient number of equa-

tions (with VI. 123) to compute ajc, which will give the natural period of the basin.

The assumption that the differences between the longitudinal currents vanish for y = and

y == ± kn*
give? already a good first approximation. We obtain the simple relation

al al Is, l+ coshictTi
- tan - = — tan*/ -— . (VI. 129)
c c a sinh&ajr

Taylor has found in another way that for a basin which is twice as long

as it is wide (/ = n) and whose rotation period is equal to the longest free

oscillation of the non-rotating system (which means ffc = a = 1), a/c must

be = 0-429. From (VI. 129) we obtain by repeated tries (as a/c is also hidden

in Sx) a/c = 0-433, which comes very close to Taylor's value.

We find [hat for long, narrow basins (/ a multiple of n) the term on the

right-hand side in (VI. 128) increases rapidly and", therefore, al/c nears \n.

This means that for this kind of basin the period of oscillation differs

slightly from the period of a similar basin at rest (see later the case of the

Baltic, p. 219).

In the example given above a/c = 0-5 for the basin without rotation, and

we find that the period in case of rotation is being increased at the ratio:

0-50:0-429 = 114, i.e. by 14%.

The wider the canal in proportion to its length, the greater the increase

of the period. The standing wave of the free oscillation is changed into an

amphidromy (rotatory wave) with its centre in the middle of the basin.

A special investigation of free tidal oscillations in a rotating square sea

was made by Corkan and Doodson (1952).

(d) Influence of the Earth's Rotation on the Seiches in Closed Basins

The reason for not considering the influence of the earth's rotation on

the seiches of the lakes is that, in view of the small expansion of the oscil-

lating water-masses this influence is hardly noticeable. In dealing with the

free oscillations of large lakes and oceans, this can no longer be neglected.

The disturbance caused by the earth's rotation can be summarized by com-

puting the transverse oscillations caused by the variations in velocity of the
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longitudinal current. The amplitude of these transverse oscillations, according

to the explanations given on p. 204, is given by

A' = ^tany
bf
2g

U,

if U is the amplitude of the periodic variations of the current in the longi-

tudinal direction of the lake; its phase is shifted by one quarter period against

that of the longitudinal oscillation.

Thus, at any point of the lake the vertical displacement of the transverse

oscillation r\ = A' sin at is added to the vertical displacement of the longi-

tudinal oscillation r\ = ,4coso7, so that the superposition takes the form

Z = ^coso-Z+^'sincr/
1 = Mcosa(t— t)

in which M =
)
(A 2 +A'2

) and tan err = A'/A. From the latter relation we
can compute the time of the maximum and minimum height.

There are not many cases in which the influence of the earth's rotation

has thus been determined. Neumann has calculated, according to the above

method, from the computed current velocities of the longitudinal oscillations

(period 27 "5 h), the amplitudes of the transverse oscillations A' for several

localities of the Baltic and found the following values for the Gulf of Finland:
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oscillation thus assumes the nature of a rotatory wave; however, the devia-

tions from a simple standing wave are small.

The increase of the period caused by the earth's rotation will be unim-

portant. An evaluation can be made from the relation (VI. 129). We simplify

the Baltic as a rectangular basin of the length 2/ = 1500 km, a width,

10cm

-
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apparently is of secondary importance. Chrystal (1908, p. 464) arrived

at the same conclusion in his thorough investigations of the seiches of Loch
Earn. The following disturbing forces can generally be regarded as the causes

of oscillatory motions in lakes and bays:

(1) The sudden return to its equilibrium of a surface previously disturbed

by the passage of an atmospheric disturbance over a section of the lake.

(2) The sudden oscillation back to a state of equilibrium of a watermass

previously piled up by wind.

(3) Sudden or rapid receding of an accumulation of water produced by

an extremely rapid influx across a section of the lake (violent rainfalls).

(4) Shocks of rain drops falling on the water surface.

(5) Sudden changes in air pressure, as expressed in microbarograms

(registrations of variographs).

(6) Shock pressures of wind gusts on the lake surface.

(7) Subsiding of the electrical attraction on the surface by thunder clouds.

One should always remember that, in general, these disturbing forces

have little intensity. On the other hand, it should also be borne in mind that,

as shown by Emden (1905), small quantities of energy are capable of

developing seiches. Chrystal emphasizes that for Loch Earn which, as the

Lake of Geneva, must be counted among the deep lakes, the disturbing

forces 1, 5 and 6 cause seiches. He also corroborates Russel's opinion already

expressed in 1890, that slight pressure disturbances across the lake surface

develop standing waves, especially when there is a certain synchronism with

the natural modes of oscillations of the lake. For the influence of seismic

waves, see Oddone (1910, p. 115). Bergsten (1926) has been able to prove

that the seiches in the Lake Vattern are attributable mainly to piling up effect

by wind. This contrast to the theory of Forel and Chrystal is explained by

the fact that the Lake Vattern with its large water surface is a shallow lake,

and the effect of piling up by wind is, therefore, much more apparent than

in deep lakes, where the current in deeper layers can compensate more rapidly

this effect. Figure 94 (above) illustrates the start of a seiche by the influence of the

wind. On 17 January 1920, at 2 p.m., there blew a south-westerly wind of

a force of 8 Beaufort, which at 9 p.m. turned to W 9. The limnogram shows

how with the change of the wind at 9 p.m. the water level receded rapidly

and the potential energy of the wind drift caused a uninodal seiche of 5-6 cm.

In many cases it can be proved that sudden changes in pressure can also cause

seiches. Figure 94 (below) illustrates the case on 31 May 1925 in Bastedalen.

The microbarographic disturbance at about 10 a.m. shows approximately

the same period as the uni-nodal seiche of the lake and thus contributes to

the further development of the oscillation already present.

The action of the separate forces causing seiches was investigated by Okada,

Fujiwhara and Maeda (1913, p. 210) in a special case, in which a thunder-

storm on Lake Biwa in Central Japan caused a seiche of 17 cm amplitude.
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Fig. 94. Seiches in Lake Vattern (Sweden). Records at Bastedalen: above: caused by

wind, below: caused by a sudden variation in pressure.

They were able to determine, on the strength of accurate meteorological

registrations, that in this instance it was essentially the points 1 , 2 and 3 which

were responsible for the seiche.

(b) Action of Wind and Atmospheric Pressure on a Lake Surface

Any force acting on the water surface of a lake or a bay will cause the

water surface to deviate from its normal position of equilibrium. As long

as this force lasts, the water surface will remain in this new position. However,

when this force subsides or ceases completely, the water surface tends to re-

sume its former state of equilibrium. The frictional forces being small, this

does not happen aperiodically, but in oscillations whose period corresponds

to the period of free oscillation of the system. A periodic disturbing force

provokes forced oscillations with a period corresponding to the period of

the disturbing force. The amplitude will increase if the period of the force

approximates the period of one of the natural modes of free oscillation. But

these forced oscillations will not last long in a lake which is exactly tuned

to certain periods. The forced progressive waves developed in the lake are

rapidly dampened by reflection on the shores, and those which correspond

to the dimensions of the lake will be least affected.

It is rather simple to examine theoretically and thoroughly the action of

changes in atmospheric pressure and wind on the oscillatory processes of

water surface in more or less closed basins. One can compute accurately the

oscillations already developed if, besides the dimensions of the oscillating

mass, we have the atmospheric pressure and wind as functions of locality
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and time, as well as the initial state of the surface. The process consists in

oscillations around a state of equilibrium, and it is only in taking into con-

sideration these periodical changes in water level that many phenomena related

to these disturbances of the normal position of the surface can be correctly

understood.

Of the theoretical investigations dealing with the oscillations produced

by variations in atmospheric pressure and wind in finite watermasses, the

following should be particularly mentioned.

Chrystal (1909, p. 455) has given considerable attention to the influence

of different atmospheric pressure disturbances in developing seiches in a lake

with a parabolical normal curve, neglecting friction and the rotation of the

earth. Proudman and Doodson (1924, p. 140) have, on the contrary,

examined the oscillations produced by atmospheric pressure and wind in

a basin of constant rectangular cross-section, taking friction into account but

neglecting the rotation of the earth. Later on, Proudman (1929) dealt with

special cases, neglecting the friction, in which the influence of the earth's

rotation is particularly apparent. We are indebted to Stenij (1932) for an

extensive review, in which the problems are treated on a strictly mathematical

basis. We will only mention the essential features of these papers, especially

stressing the fundamental viewpoints and limiting ourselves to basins of

constant rectangular cross-section.

The problem in its most general form is : the general equations of motion

and continuity have, with depth of the water h constant, and using the usual

symbols, the form

8u r 8 ,
82u

dv 8 82v

e7+> = -gfy<n-v)+ v
a?>

(vi. 130)

in which /= 2cos'm(p, v is the kinematic viscosity coefficient assumed to be

constant and —gQf} the variable part of the atmospheric pressure. If / = the

length of the basin and the origin of the co-ordinate system is taken in the

undisturbed water surface, we have to add as boundary conditions u =
for x = and x = I and for z = —h ; further an assumption for 8u/8z, for z =
to determine the influence of wind on the surface. Solutions are sought

for a given disturbance in the atmospheric pressure and for a given wind.

If the distribution of the atmospheric pressure is stationary the system of

equations is satisfied by the "equilibrium solution"

rj = rj + constant , u = v = . (VI. 131)
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Especially interesting are the conditions in an infinitely long, uniform canal.

If we neglect in (VI. 130) the friction, we find first a solution in the form of

Kelvin waves (VI. 103); if rj = 0, then

iy=0, v = 0, ?= ±- = e*W»F(x±ct), (VI. 132)

in which c = ygh and F is an arbitrary function of the argument (jc=F ct).

Proudman, however, has also given a solution for the case that an atmos-

pheric pressure wave with a velocity V travels in the positive direction of

the canal. In this case, the solution is

! = e-(flv)yF(x-Vt)

and 4 =
1

Vg

c-

WV)y'F{x-Vt)
(VI. 133)

This is a wave disturbance which travels also in the + x- direction; the

factor 1/[1 —(V2/c
2
)] shows, however, that large amplitudes are to be expected,

when the atmospheric pressure disturbance travels with the same velocity

as the free water waves in the canal. The form adopted in (VI. 133) for the

pressure disturbance in the y- direction is somewhat special; it is difficult

to transfer it to arbitrary pressure distributions. But if the canal is not too

wide, the e-power in (VI. 133) can be disregarded, which means neglecting

the earth's rotation. The application is then limited to narrow canals.

Let us now assume that the canal be closed at x = and extends infinitely

in the x- direction. The wave disturbance generated by a travelling pressure

disturbance now must also fulfil the boundary condition u = for x = 0.

This can be done by combining equations (VI. 132) and (VI. 133) (/= (o = 0)

and we obtain:

rj =

rj=F[t

1

v = and

(F2/c2)

V/c

'-3-?'H (VI. 134)

g l-(F2/c2)
Ft F^K

A free wave is added to the forced wave. For x =

1

l+V/c
F(t)

and

'/ 1

rj 1 + V/c
= constant (VI. 135)
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If V is positive, i.e. when the atmospheric pressure disturbance moves

along the canal away from the closed end, the term at the right is always

smaller than 1 ; the amplitude of the forced wave is smaller than the static

pressure disturbance. However, if V is negative, i.e. if the pressure disturbance

travels towards the closed end of the canal, the ratio can become great and

even very great, when the velocity of propagation of the pressure wave nears

the velocity of the free waves in the canal. The values of c for depths less

than 100 m lie below 30 m/sec, and the velocity of propagation of atmos-

pheric pressure disturbances is also of the order of magnitude of 30 m/sec.

Therefore, one can expect a strong impulse to wave disturbances in lakes

and bays, when these pressure disturbances travel towards the interior of

the bay, and the depth is not too great.

In many cases, the tide gauges have registered this remarkable resonance

which is responsible for important variations of the level in lakes and in

shallow bays. These theoretical results explain the fact that in oblong lakes

extending in the west-east direction there are large variations in the level

at the eastern end. The same applies for bays which are shallow and have

an opening in the west. In lakes and bays open to the east, there are no such

variations in level. These variations occur seldom in lakes and bays extending

in a north-south direction. In most cases the pressure disturbances travel

approximately in a west-east direction, that is towards the closed end of the

canal, which is required to raise the water to a considerable amplitude for

the forced oscillations.

Caloi (1938) has been able to prove, for the Bay of Trieste, the correctness of the resonance

condition (VI. 135), on the strength of gauge registrations made in the northern section of the Adria.

Figure 95 can be taken as an example. It shows the deviations from the computed tidal curves and

to
cm

50

-12 October 1953
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variations in level in Trieste exceed by far those to be expected by the change in pressure. The

seiches waves succeeding the large wave are oscillations of the Gulf of Trieste.

An important paper by Proudman and Doodson considers friction but

neglects the earth's rotation. The basic equations are identical with those

in (VI. 40), except that, instead of >/, we have rj—rj, according to (VI. 130).

In accordance with the boundary conditions, r\ must be proportional to

cos xx, and u proportional to sin** and k = (nn)/!, in which n is an integer.

If we put

xrj = —Pcosxx and -j — = Wsinxx
,

(VI. 136)
' gh dz

the effect of a stationary change in atmospheric pressure and wind over the

basin is determined by the constants P and W. To these stationary influences

corresponds, in the basin, a stationary level deformation and a stationary

current, which, as can easily be shown, is given by

xn =-[p+\w}cos*x and ^ W =^ + l)(! + i)^sin*x. (VI.137)

We have to add to the statical action of the atmospheric pressure P on the

surface deformation a piling up effect by wind in the amount of \ W. The

current moves in the upper third part of the water in the direction of the wind,

in the lower two-thirds as a compensating current in the opposite direction.

The strength of the current is inversely proportional to the water depth and,

therefore, the piling up effect of the wind is greater in shallow water than in

deep water.

The condition given by (VI.137) is stationary and starts only when the

acting forces, atmospheric pressure and wind have acted upon the water-

mass steadily for a certain length of time. The final state is attained by oscilla-

tions. The simplest case is as follows: Let an atmospheric disturbance (atmos-

pheric pressure and wind) occur suddenly at the time t = in the form of

(VI. 136). At the start, the equations of motion are only satisfied when at

the right side of the equations (VI.137) we add

_^ Cse
s and 2j Csv(z)e

s

s s

(p. 157) respectively. We get C
s
and the function v(z) from the general solu-

tion of the differential equations, considering the boundary conditions. These

terms have a certain similarity with those on p. 158, which were derived

for the free oscillations of the basin. After a certain length of time, the sta-

tionary state (VI. 137) will set in. We have now free oscillations superimposed

on the stationary state, and these free oscillations are damped by the friction

and in time become imperceptible, so that only the stationary state remains.

A similar treatment can be applied to a sudden or gradual appearance of

15
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an atmospheric disturbance, which disappears after a certain time. It will

create deformations of the level which attain a maximum and return to its

original state of equilibrium by oscillations, when the disturbing forces

20

10
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new state of equilibrium is at 1, in the case of the wind disturbance (W = 1),

it is at 1 -5. In both cases the water level is at the offset higher than the new
state of equilibrium. Then, by decreasing oscillations it returns to its new
equilibrium position. The second figure shows two kinds of action of a gust

of wind on the level at one end of the basin. The gust is followed by a rap-

id piling up of the water at the closed end of the basin, which decreas-

es by oscillations after the wind gust has ceased. According to Proud-

man, we find for different values of the depth h, the length of the basin / and

a coefficient of viscosity v, the unit time in the Figs. 96 and 97:

h (m) 20
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Another solution corresponds to the free oscillations in the transverse direction of the canal,

which can be expressed in the form

rj = Z(x)cosot , u= U(x)s'mat , v= V(x)cosot

By substituting into (VI. 138) we obtain

— ag dZ —fg dZ
U = — and V = —^L_

o2-f2 dx a2-f2 dx

d2Z o--P+ —Z=0, (VI. 140)
dx2 gh

dZ
with the boundary condition — = for x = and 2a.

dx

The general solution of the last differential equation gives

S7l

Z„ = y4 v cos — x,
2a

in which As is a free constant and s is an integer.

For the frequency of the oscillation s we find:

ol=p+—gh. (VI. 141)
Aa2

The result of a sudden pressure disturbance r\ = Zs(x) starting at a time / = 0, can be known

by combining a disturbance of the equilibrium for r\ = Zs(x), a steady solution Z(x) — —
(f

2/a2)Z4(jr)

and a periodical solution with an adequately selected amplitude. It is shown that the level r) in the

transverse direction of the canal executes an oscillating motion varying from zero to2(l—f2ja])Z
s{x)

and high water will occur at a time T = njos .

A general solution of the problems will be found by expanding the pressure disturbance rj into

a Fourier series, according to cos sn
j

'2a. If we assume that the atmospheric disturbance consists

in the appearance of a linear pressure gradient across the canal with intensity 2H valid for entire

width 2a, we get as the principal oscillation on the banks of the canal

t) = — i/(l--|(l-cos(T1 r), (VI. 142)

in which a, is given by (VI. 141) with s = 1.

The period of the s -nodal transverse oscillation of the canal with the

earth at rest is T
r
= 4ajs] gh and T

t
= 2rc//= 12h/sin<?9 = * pendulum day

being the period of the inertia oscillations in the latitude <p; we obtain from

(VI. 141) for the period of the forced transverse oscillations in the canal

T T
(VI. 143)

i [i+(r,/rr)
2
] V[i+{TrlTi)F\

For narrow and deep canals, Tr is generally much smaller than the inertia

period 7), so that in a first approximation T = T
r , i.e. the effect of the earth's

rotation is small and can be neglected in a first approximation. However,

the natural period for extensive water-masses with the earth at rest, Tr , is
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very large, so that with a rotating earth the period of the forced waves nears

rapidly the period of pure inertia oscillations.

It is probable that in narrow, oblong seas (e.g. Adria, Kattegat, etc),

this kind of transverse oscillations is created by atmospheric disturbances,

which are particularly favoured by the dimensions of the canal. In the Kat-

tegat there is frequently an approximately 4-hourly oscillation, and La Cour

(1917) and Thorade (1918, p. 234) have explained this in a similar way.

Following the storm tide of 15 January 1916, were oscillations of a 4-hourly

period with a nodal line in the north-south direction in the southern Kattegat.

Fig. 98 gives the variations in the level of the surface for Aarhus and Horn-

-20

Time.

Fig. 98. Variations in the water level at Aarhus and Hornback during the storm flood of

15 January 1916 (La Cour). The curves indicate the variation of the level from 1 h before

to 1 h after each time moment.

back ; they show clearly the behaviour of the oscillation at both sides of the

canal and its period. It also fits quite well the conditions of width and depth

existing in the southern Kattegat: 2a = 100 km and h = 20 m, which give

T = 3-97 h. In this particular case, the rotation of the earth will only be of

little importance, as T
t
for <p = 55° has the value of 14 7 h. As shown by

Jacobsen, who analysed tidal currents in this area, the M6 tide, which has

a period of 4 h, is particularly pronounced. The Me tide is also quite pre-

dominant at Aarhus.

For the transversal seiches and their generation the reader is referred

also to Servais (1957).

(c) Storm Surges

The earliest methods to study the meteorological disturbances of sea

level are to tabulate the storm effect in terms of barometric pressure, wind
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velocity and direction, all at the place where the effect was observed. Such

methods are largely statistical in kind and require large numbers of observa-

tions to give any kind of precise average effect, and large enough to include all

variations in direction and velocity of wind. Thus, it is possible to find for a coast

the most effective winds for raising sea level. Such investigations of a more

statistical nature have great practical value, as they are the basis for most

storm warnings. These studies were mainly concerned with the relations

between the generating factors, mostly of meteorological nature, and the

changes in water level, without dealing with the actual causes of storm surges.

This method of investigating well-developed, single cases was used by Dood-
son (1929), in the tabulation of storm surges in the North Sea by Corkan
(1948) and in the Summary by Doodson (1947). Two especially strong storm

surges in the North Sea, namely those of 8 January 1949 and 31 January/

1 February 1953, were investigated by Corkan (1950) and Rossiter (1954),

who associated the changes in water level with the passage of atmospheric

disturbances.

As to the theoretical part of the problem, the reader is referred to the

previously treated relations between the water level and currents in more

or less closed water-masses and the atmospheric disturbances at the surface.

These relations form the basis for explaining the occurrence of storm surges.

We wish to call attention to the work of Goldsbrough (1954), treating the

wind effects on the motion of the sea in an infinite channel and in a rectangular

gulf. The basic equations are the equations of motion with the Coriolis force,

vertical and lateral friction and the equation of continuity, which can be

solved by considering the conditions valid at the boundary of the channel,

using infinite series. The results will show only by solving numerical examples.

The case of a channel closed at one end is of special interest, in that the

dimensions used are an approximate representation of the North Sea. The

effect of a transverse and a longitudinal wind, i.e. of a west-east and a north-

south wind in the case of the North Sea, has been investigated. Table 28

gives the surface disturbances at the east and west ends of the southern shore,

the last two columns give the corresponding surface disturbances in the north

where the effects of the southern boundary are evanescent. A transverse wind

is much more effective than a longitudinal wind in producing a surface dis-

placement. It has to be mentioned that the surface disturbance at any point

diminishes in magnitude with increase in depth, for the same wind strength.

Thus, the following is to be expected: near the southern end of the sea

a westerly wind always provides a depression on the English shore and rise

on the Continental shore. But in the north, where the effect of the southerly

boundary on the motion has disappeared, the displacement depends for both

sign and magnitude on the depth. Northerly wind produces a depression on

the English shore near the southern end and a rise farther north when depth

is 20 or 60 fathoms, but gives the reverse effect at 40 fathoms.
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Table 28. Surface disturbances at the east (x = 0) and west (x = a) ends

of the southern shore in a rectangular gulf oriented from North to South

(£, the displacement of free surface from its undisturbed position ;v, the coefficient ofeddy viscosity, T,

the wind stress; a positive Tx will mean a westerly wind and a positive Ty a wind from the south.

According to Goldsbrough, 1954)

I. Transverse wind. Values of $qv/Tx

In the north where the effects of south

Closed end (southern shore) boundary are evanescent
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increase as the range of tide increases, and the effect of friction is to make
the surge decrease as the range of tide increases.

The same problem was tackled by Doodson in a similar manner. He used

for a model a long uniform gulf about 100 miles long and about 21 fathoms

deep. He had also taken account of the non-linear terms in the equations

of motion, which introduces some mathematical difficulties. The numerical

methods have been applied to cases where storm surges have been super-

posed upon the tides, with the maximum of the surge occurring near high

water, or near low water, or near one of the two half-tide levels. All four

cases demonstrate that the character and magnitude of the interaction are

not clear, but it is shown that the apparent surge is dependent upon the coef-

ficient of friction and that the magnitude of this is greatly affected by tides.

The actual apparent surge at the mouth of the gulf is affected by the reflexion

which takes place at the head of the gulf and thus the correlations of apparent

surge with meteorological data are complicated by the reflected oscillation.

In recent times, numerical methods have been used for the solution of

the system comprising the equations of motion and the equation of continuity,

taking full account of lateral and vertical friction as well as of external forces

at the water surface (atmospheric pressure and wind), in order to investigate

surges in marginal and adjacent seas and to find their causes. Hansen
(1956) has given a procedure that is based upon boundary and initial values.

The differential quotients in the direction of the x- and v- co-ordinates ap-

pearing in the equations are approximated by quotients of differences de-

termined according to a grid with a width of mesh /. In this way, a system

of common differential equations of time differential quotients is formed,

which are all linear. This means: the time variation of the velocity compo-
nents and the water levels in the grid-points are known if the function

values are given. Substituting the time derivation by finite values, it is

possible to compute numerically the function values for a subsequent time

from the given function values at the initial time.

In the application of this method to the water level in the North Sea at

the time of the catastrophic surge on 31 January/ 1 February 1953 (Holland

Storm) the North Sea grid, given in Fig. 98a, was used. The meteorological

observations were taken from weather maps prepared at 3-hourly intervals.

The following boundary conditions were chosen: The water level remains

undisturbed at the northern limit of the area, running from Scotland to

Norway. The normal component of velocity vanishes along the coasts. This

holds also for the entrance to the Skagerrak, which is not treated here. The
flow through the Dover Straits is assumed to be proportional to the water level.

We wish to point out that no other observations of water level or of water trans-

port were used in the computation. This computation of water levels and mean
velocities for the entire duration of the surge was done by the electronic com-
puter BESK. Figure 98 a gives the isolines of water level on 31 January 1953
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at 21-00 G. M. T. The numbers at the heavy dots at the coasts also contained

in Fig. 98 a give the water levels as derived from observations by Rossiter

(1954). The differences between the observed and computed values along

the coast are 0-5 m only at some places and will hardly exceed this amount.

Since there are no current observations from the time of the Holland

Storm, it is not possible to check the theoretical current values. The

5<f BBfc . ,J-
J> &̂. i
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Fig. 98(a). Water level in the North Sea caused by the Holland-orkan (according to

Hansen, 1956).

course (progress and intensity) of the surge at the coast of the North

Sea is in a generally good agreement with water-level recordings. Although

the results of this first computation of a heavy surge in a marginal sea are
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not satisfactory in all points, they nevertheless show that the main causes

of the generation and development of a surge were considered as correctly

as possible and that a successful numerical prediction of sea level can be

achieved by further development of the theory and numerical computation

methods.

(d) Oscillations on the Shelf and Meteorological Tsunami

We have already mentioned previously that tidal recordings on straight

coasts include also seiches-like motions of the water surface, which can only

be interpreted as being oscillations of the water-masses on the shelf. It is

probable that they are developed under certain conditions, which cause

a given section of the shelf to behave like an open bay. The period of the

oscillations depends in the first place upon the width of the shelf and, as

according to the records, varies from a few minutes to 2 h and over. Nomitsu
and Habu (1935) and Nomitsu and Nakamiya (1937) have continued

the work started by Honda and his collaborators. These oscillations are

caused by both atmospheric disturbances and submarine earthquakes. The

damping of the waves is considerably smaller when they originate from an

earthquake. Perhaps this is due to the fact that a storm disturbs the waters

to a great extent and, consequently, the coefficient of viscosity is then larger

while an earthquake is more distant and the weather and sea remain

usually calm.

The agreement between the observed and computed periods for oscilla-

tions on the shelf is not bad, even when Merian's formula for bays using the

dimensions of the shelf is applied. In most cases, however, there will

be a more or less wide range within which to fix the outer limit of the

shelf against the open sea, whereas it will not be difficult to take into account

the various depths at the shelf, which so far has not been attempted in single

cases. A theoretical investigation of seiches which can be produced in the

open ocean by a submarine ridge has been made by Hidaka (1935).

Assume for the depth a curve of the form h = h (l + x2/a2)
llz

, then the

bottom configuration characterized by a submarine ridge rising up till the

water depth h at x = 0; at the distance a the water depth is //„) 2. The

possible oscillations are shown in the curves in Fig. 99, in which the longer

wave has a node over the ridge; its period is T\ = 6-95(a/} gh ). The shorter

wave has an anti-node over the ridge and the numerical factor in the period

is 324, instead of 6-95.

Figure 99 contains in its lower part also the possible seiches on a shelf

obeying the same law of depth. Here both seiches represented have, of course,

anti-nodes at the land end of the shelf, where the depth is h ; the period

is T = 3 -21 (a/

\

/gh ); for the shorter wave the numerical factor is 1-925.

The Japanese shores are frequently the scene of devastations caused by

strong, wave like disturbances of the sea surface. Their development is either

of a seismic or of a meteorologic origin. On the east coast of the island Hondo
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they occur so frequently that the people have named these devastating waves

"tsunami". The meteorologic tsunami are nothing but seiches of bays

'

Bottom

Fig. 99. Upper: seiches over a submarine bank, lower: seiches on the shelf (Hidaka).

and of the shelf, but they exceed in intensity the normally smaller ampli-

tudes of the seiches on the shelf. Consequently, we can refer to the pre-

ceding paragraph for their explanation and theory. We have to consider,

however, that the amplitude of the variations in level, particularly in the

case of tsunami, is no longer small in comparison to the depth. Thereby

the equation of continuity has to be adjusted to the change in the surface

level. Nomitsu (1935) showed that the corresponding equations have their

depth h replaced by h+ rj. This has a considerable influence, especially in

computing the rise in water level when the sea bottom slopes up towards

the coast. If tp is the slope of the surface, T is the wind stress and e is

a coefficient smaller than §, we can use for this computation simp = —eT/gQd,

which gives the slope of the surface in relation to the wind (see vol. I,

equation XIII. 45). We replace d or h by h + rj, so that we can consider

greater amplitudes of the waves:

efy T^_
(VI. 144)

Here T is the stress of the wind and £ a numerical factor which, in case of

no bottom friction, is equal to 1. With friction and the water sticking to the
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bottom (no bottom current) this factor becomes
I
and with an intermediate

coefficient of viscosity a value between these two extremes. If the friction

is proportional to the bottom velocity uh , viz. pquh , then we have, as shown
by Nomitsu (1935),

e= 1
PQ{h+ rj)

7.(i
1 + PQJh+ rj)

3/*

If the depth varies irregularly the above-mentioned equation can be used

step by step to determine the variation in the piling-up effect, starting from

the points where -n is negligible up to the beach. If h is a simple function

of x (VI. 144) can be integrated directly.

If h = const, at a point x calculated starting from the open ocean, where

y=0,

r\ = h V l +2e^x]
ggh2

(VI. 145)

With a uniformly sloping sea bottom (see Fig. 100), h = h — xtanyt

= h (l — [x/L]) and with the condition

we obtain

n = »?<>+ Wog

J
rjdx = ,

Vho-(h + r] )

*]ho+(h + ri— xta.ny))
'

(VI. 146)

in which rj means the elevation at x = and rjh0
= e[T/(ggh )]L the elevation

of the water level at the shore with a uniform depth h Q (according to (VI. 144),

Fig. 100. Computation of the effect of piling up by wind on level shores.

neglecting r\)\ 2rj is the elevation of the water piled up according to

(VI. 144) with rising bottom as shown in Fig. 100. If tj be small, we obtain

at the shore:

+ log(^-l) =log(=^-l). (VI. 147)
Who ! Who J
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According to this relation, the following values of r]L :rjh0 respectively r]L :2rjh0

correspond to the values Ii 'Vq- The latter values apply, if r\ at the right in

(VI. 144) is ignored:

K : nho-
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descriptions of such catastrophic dislocation waves. Destruction waves caused

by earthquakes, dislocation waves, or tsunamis are in general associated,

with submarine landslides which directly create transverse waves.

The central and eastern Mediterranean (Aegais) has often been the site

of such catastrophic events, which were invariably associated with heavy

earthquakes. We remember the flood wave that occurred in connection with

the terrible Messina earthquake on 28 December 1908, and which destroyed

Messina, Reggio and a large number of other places in the Strait of Messina.

According to Platania, the height of this wave was at Messina only 2-7 m,

it was 8-4 at Giardino and Ali, 8-5 at Briga marina, whereas it amounted

to hardly 1 m at Faro and Milazzo. These waves were apparently caused

by tectonic changes.

An example from the North Atlantic coast is the disastrous wave in the

wake of the Lissabon earthquake on 1 November 1755. Data on this ca-

tastrophe were collected by v. Hoff. In Lissabon there appeared, after the

second earthquake shock and with simultaneous changes in water depth

off the harbour, a wave measuring 5 m in height. Another three waves

followed this first one. Along the entire Portuguese coast the waves were

much higher. At Cadiz, the wave was still 18 m high and caused heavy

damage. On Madeira the sea rose above the high-water mark by 4-5 m, and

the oscillations returned, with decreasing intensity, five times. The flood

wave spread over the whole Atlantic Ocean, and as far as the Antilles, favoured

by local conditions, considerable amplitudes were reached.

The main site of these catastrophic waves is the Pacific Ocean, where

they originate in the earthquake centres. They occur relatively often on the

Japanese coasts, as a consequence of earthquakes and, as already mentioned,

they are designated there by the name of tsunami. When they are caused

by tectonic changes at the ocean bottom, they can be designated as "seismic"

tsunami, in opposition to the meteorologic tsunami. The damages caused

by them to the shores, especially in the shallow ocean bays, are considerable,

and the loss of human lives is heavy. Recent studies on the origin of these

seismic tsunamis can be found in Ishimoto (1933). Hochstetter (1868,

p. 837, 1869, p. 112, 1870, p. 818) has given a description of the waves

originated by the earthquake of Arica on 13 August 1868, and Gleinitz

(1878) has described one of Iquique on 9 May 1877. Both "tidal" waves

crossed the entire Pacific Ocean. In the immediate vicinity of the origin,

there was first a wave crest and then a wave trough, whereas at a great dis-

tance from the origin the wave trough was the most important feature and

showed itself by a recession of the water on the beach.

In the Indian Ocean we have also such gigantic "tidal" waves. The greatest

destructive waves ever witnessed were the ones following the eruption of the

volcano Krakatoa in the Sunda Strait on 26 and 27 August 1883. There were

several eruptions. The last one on 27 August was the strongest. "Tidal"
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waves developed after each explosion, which caused the greatest devastations

on the shores of the Sunda Strait (see Symons, 1888). The height of the

waves varied, but attained at a great distance from the origin 15 m, and

in some places even 22 m. In the harbour of Batavia the waves were recorded as

a sudden wave crest of 1-8 m height, which was followed by fourteen others

with a long period of 122 min. At nearby localities a wave crest preceded

the wave trough. The waves did not enter the Pacific Ocean but crossed the

Indian Ocean in all directions and also could be traced up the Atlantic Ocean,

where they were observed, e.g. by the German Expedition on South Georgia,

13 h 57 min after the great explosion. They were even observed in the

European waters (Socoa, in the innermost corner of the Gulf of Biscay:

amplitude 8 cm, Rochefort 13 cm, Devonport 15 cm,' and others). These

waves, starting from the Sunda Strait, covered a distance of at least 20,000 km
in 32 h and 35 min.

These dislocation waves are waves with a long period ranging from 10 min

to 2 h, the large values being quite rare. The velocity is of the order of

magnitude of about 180 m/sec and upwards. The wave lengths are, therefore,

exceedingly large, and one can apply the Lagrangian equation c = \ gh.

A condition for this is that the period of the waves should remain constant.

By applying this formula, it was expected to compute the mean depth of

the ocean from the travel speed of the waves obtained at various coastal

localities. Wharton and Evans (1883) did point out that the observed

values of c were always smaller than might have been expected, and Davison

(1897, p. 33) has proved that one obtains systematically too large values

of c, if the mean depth is substituted in \/gh. As the depth is variable along

the path of the wave, the Green-Du Boys equation (VI. 32) should be used

instead of the simple Lagrangian formula ; it is however, questionable whether

it can be used for waves starting from one point. Thorade has pointed out

these waves are circular waves and not canal waves, and that the Greenian

condition, that the depth varies slowly over a distance of a wave length,

is hardly fulfilled. When waves follow each other in a rapid succession, one

should consider the group velocity.

The propagation of the tsunami of 1 April 1946, from its origin in the

Aleutians, south of Unimak island over the eastern Pacific Ocean has been

examined thoroughly. It caused large-spread destructions on the Hawaiian

islands (Macdonald, Shepard and Cox, 1947), and it was recorded by

a great number of gauges along the entire American coast (Green, 1946).

Figure 101 gives the record of the marigraph for Valparaiso, where the

wave arrived after a travel time of 18 h and 7 min, with an average velocity

of 390 nm/h. The observed travel time agrees very well with the theoretical

one, computed from the depth charts after Du Boys's formula. The wave

period of the first wave at the station nearest to the origin was 15 min

and increased gradually to 17-4 min at the more distant stations. At a fixed
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Hours (April 2 ) , G.C.T.

Fig. 101. Tide gauge record at Valparaiso following the earthquake of 1 April 1946.

station, however, the period decreases slowly with time, e.g. in Valparaiso

from 17 to 7-5min. The increase of the wave period with increasing distance

from the origin appears to be a general phenomenon. Munk (1947, p. 198)

has solved the problem from a theoretical viewpoint.

If a wave with a wave length A and a period T travels with a wave

velocity c along the +.r-axis, its wave length X changes according to the

relation

dk _8X 8X

dt ~dt^ C
dx

% (VI. 148)

This change can also be found from the rate at which the wave "stretches'

due to the difference in velocity of two adjoining crests. This gives

dX __ .dc

di~ dx

If we add the identity I = cT,

dt dx

(VI. 149)

(VI. 150)
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can be derived from these relations, in which formula

—MS)-
Here we have assumed c = c(T, h) and h = h{x). For an observer travelling

at a velocity V, the wave period remains constant. It is to be noticed that

the bottom slope h{x) does not enter in this formula. V has not only the

character, but is identical with the group velocity when the depth is constant.

The wave period of any system of waves in which the crests retain their

identity must satisfy the "equation of continuity" (VI. 150). A formal solution

of (VI. 150) is:

X

T=T(t-jydx\, (VI. 151)

'

in which the limits of integration remain undetermined because no provisions

were made to fix the co-ordinate system. It seems convenient to put x =
for / = 0, which designates the time and the position of the initial wave

generation; the period at this point would then be T = T(0).

The application of this solution to the tsunami requires the determination

of its wave velocity. The velocity of propagation for an infinitely long wave

train is

gX Ink
c2 =^-tanh-^-

.

2tc cT

This equation was originally derived for a wave train of constant period,

but is also applicable to a wave system of gradually varying period. When
h < 0-054, namely for very shallow water, this equation is reduced to the

Laplacian equation.

d=gh. (VI. 151a)

As the tsunamis fulfil the condition h < 0-05A, the Laplacian relation has

been successfully applied for computing travel times. This, however, does

not explain the secondary phenomenon of the increase of the period, for

which (VI. 151a) is no longer a satisfactory approximation. The first two

terms in the expansion of a hyperbolic tangent are tanha = a— £a2
, and

to the same degree of approximation (VI. 151a) becomes

c
2 = cl(l-a

2

) with «=^, (VI. 1516)

With (VI. 150) one obtains the interesting relation c— V = 2(c — c), i.e. for

any given wave period the group velocity is smaller than the wave veloc-

ity by twice the amount that the wave velocity is smaller than the

16



242 Long Waves in Canals and Standing Waves in Closed Basins

Lagrange wave velocity. With this V equation (VI. 151) takes the form

J_

dx

T = T\At-

(VI. 152)

in which At = t— t . The two latter values can be computed numerically,

when the bottom profile along the path of travel is given. One particular

form of the solution (VI. 152) is T = l/a(At— J/T2
), where a is an arbitrary

constant. In this case one has a cubic equation in T. The simplest solution is

found by setting a = 0, and T— [/[//(*— f«)].

The application of these theoretical computations to the tsunami of

1, April 1946, gave a qualitatively good agreement between the theory and

observations. Theoretically the wave period must increase with distance of

travel, but decreases with time at each station, as the observations actually

show. The observed periods seem to be somewhat shorter in the northern

Pacific Ocean and somewhat longer in Valparaiso than those computed by

the theory. However, in view of the incorrectness in the determination of

the periods from marigraphs, one can be satisfied with the quantitative

results.

In the development of the "tidal" wave on a shore the configuration of

the coast plays a great part. The waves approaching the coasts from the free

ocean initiate eigen-oscillations of the bays (seiches) and of parts of the

shelf which add to the wave disturbances and confuse in this way the basic

Fig. 102. Area inundated by Tsunami of 3 March 1933 in Bay of Sasu. (Numbers

indicate the height of the flood in meters.)
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phenomenon. Their interference with the tsunami waves permits only an ap-

proximate determination of the time of arrival and of the amplitude of the

individual waves. Matuzawa and his collaborators (1933) have given an

accurate analysis of the water motion in the Bay of Sasu (in the innermost

part of the Great Toni Bay), for the tsunami of 3, March 1933.

Figure 102 shows the section of the Sasu Bay flooded by the tsunami.

This section is almost completely enclosed by the contour line of 10 m depth

and has a pronounced trough form. The sudden end of the flood in the

innermost part is caused by small hills which produce a partly inward barrier.

Figure 103 gives a longitudinal section of the profile close to its right bank

and above it the heights of the flood along this profile. The velocity of the

"tidal" wave can be determined by considering the inner part of the bay
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Cochrane and Arthur (1948) have made a theoretical investigation of

such a reflection. The data examined give good evidence that reflections of

tsunami do occur. A quantitative treatment shows that the observed wave
heights were found to be in good agreement with those calculated on the

basis of theory. The theory indicates that the reflected waves can be expected

to be considerably smaller than the direct waves. This is also in agreement

with observations.



Part II

TIDES AND TIDAL CURRENTS

Chapter VII

Principal Features of Tidal

Phenomena

1. Review of the Phenomena

One of the most regular and important phenomena is the tides. They manifest

themselves by the rhythmic rise and fall of the water, mostly twice a day.

It is evident that these vertical displacements of the surface are accompanied

by horizontal displacements of the water masses, called tidal currents. The

vertical and horizontal displacements are different manifestations of the same

phenomenon. The rhythmic rise and fall of the sea is only occasionally dis-

turbed by atmospheric processes. Sometimes these disturbances are quite

strong (storm surges), but always does the regularity of the phenomenon

return after the meteorological influence has ceased. The perpetuity and

regularity of the tides makes an attentive observer realize that a force con-

stantly present, is the cause of the tidal phenomena and governs their course.

The fact that on all shores of the oceans and adjacent seas these periodical

movements are of the same nature, although different as to their extent,

shows that tides are a worldwide phenomenon and must be governed by

a system of forces which acts everywhere in the same manner and to which

all the water-masses of the earth are similarly subjected. Such a system of

forces can only be of a cosmic nature, i.e. it must be related to the position

occupied by the earth in space.

The basic phenomenon is the periodical rise and fall of the water surface,

which occurs twice in somewhat more than a day. The highest water of a tide

is called high water, the lowest water low water, the rise of the water is

designated as flood, the fall as ebb. The difference in height between low

water and high water is called the range of the tide. As the successive high

waters are as different as the successive low waters, one can distinguish a rise

of the water during the flood and a fall of the water during the ebb. The

arithmetical mean of both is the mean range of the tide.

The average interval between two successive high waters or between two

successive low waters is 12 h and 25 min. Consequently, the high and low

water is retarded from one day to the next by 50 min. This points to re-

lationship with the motion of the moon, because the moon also is retarded

daily by 50 min on its passage through the meridian.
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The average duration of two tides is, therefore, 24 h and 50 min, and
the duration of one tide corresponds on the average exactly to half an

average lunar day. This fact led to relate each meridian passage of the moon
to the subsequent high and low water respectively. The difference in time

between the time of high water and the transit remains constant, and this

is a characteristic value for each locality. It is called the mean high water

lunitidal interval and it measures, in hours, the mean time difference between

the transit of the moon and the occurrence of the next high water. Similarly,

the low water lunitidal interval gives the average number of hours and

minutes between the transit and the time of low water. The establishment

is the (apparent) local time of high water occurring at new or full moon,
or the high water lunitidal interval when the transit (just preceding the tide)

occurs at noon or midnight. At full moon or at new moon (syzygies) the

moon and the sun pass through the meridian simultaneously and, as the

civil time is counted from the passage of the sun through the meridian, the

lunitidal interval indicates at what time, at full or new moon, high water

occurs at a given locality.

An exact comparison of the intervals between the transits and high or

low water shows that, in general, these intervals deviate from the mean
high-water interval by amounts of ±1 h. When the sun's tidal effects shorten

the lunitidal interval, causing the tides to occur earlier than usual, there is

said to be a priming of the tide; when from the same cause, the interval is

larger than usual, there is said to be a lagging. However, these deviations

are not arbitrarily distributed; they return at regular intervals of about half

a month. Therefore, this is called the semi-monthly inequality in the time

of high water, to which corresponds an identical inequality in the time of

low water. It is easy to compare these inequalities with each single transit

of the moon and to establish that both values are correlated. The semi-

monthly inequality is a function of the phase of the moon. The mean semi-

monthly inequality is the average value of the inequalities during one year.

This mean semi-monthly inequality depends on the phase of the moon, and

its period is one-half of a synodic month (29-53 days) = 14-77 days. The
upper part of Fig. 104 shows, for an idealized locality with a mean high

water lunitidal interval (establishment) of 6 h, this fortnightly inequality.

The numbers at the abscissa mean days after new moon (black circle). We
can summarize as follows:

High water and low water follow the upper and lower transit of the moon
in definite average intervals, which can differ according to localities. However,

each interval for a place, has different semi-monthly inequalities and their

main period is a half of a synodic month, which shows that these inequalities

are related to the phase of the moon.
Neither is the range of the tide a constant quantity, and it varies with

the same period of a half of a synodic month. At the times of new and full
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moon the relative positions of sun and moon are such that the high water

produced by one of those bodies occurs at the same time as that produced

by the other; and so also with the low waters; these tides are called spring

tides and have a greater range than any others of the lunar month, and at

| 5

Fig. 104. Semi-monthly inequality in time and in range of high water.

such time we have the highest high tides as well as the lowest low tides, and

the tidal range is at its maximum. The time of occurrence of spring tides

is called spring time. The interval between new or full moon and spring tides

is called the retard and can be regarded constant for any given place. The
minimum range (neap tides) occurs with a similar retard after the first and

last quarter of the moon (quadratures) at neap time. The time difference

between the meridian passage of full or new moon and the occurrence of

the spring tide is called the age of the tide and is given in days. In the lower

part of Fig. 104 the semi-monthly inequality in the range of the tide is

illustrated for an ideal locality, where the age of the tide is 1 day, the ampli-

tude (= one-half of the range of the tide) of a spring tide 3 m, of a neap

tide 1 m. The chart datum coincides for most European countries with the

mean low water of the spring tide. The height of the high water above chart

datum will, therefore, be at spring tide 6 m, neap tide 3£ m, that of low

water at spring tide (according to the definition) m, at neap tide 2\ m.
The mean sea level is in this case 3 m.

The semi-monthly inequality, in height and time is introduced by the sun.

Apart from these two most important inequalities, there are still others which

can be obtained from the residual terms remaining after elimination of the

semi-monthly inequalities or from the harmonic analysis (see p. 299). The
more important inequalities of this kind are:

(a) Monthly inequality. The range of the tide becomes a maximum soon

after the moon is in perigee and a minimum soon after she is in apogee.
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At these times perigean and apogean tides occur. The cause is the oscillations

of the parallax during the period of the lunitidal interval which is an

anomalistic month (27-55 days). This anomalistic month is only about 2 days

shorter than the synodic month. The earth lags more and more behind the

full moon and the tidal curves change accordingly. The extent of the parallax

inequality is generally smaller than that of the semi-monthly inequality;

however, there are localities (e.g. at the east coast of North America) where

both are equally large, or even where the parallax inequality is larger. In

that case, the tides are more governed by the parallax of the moon than by
the phase of the moon.

(b) Declinational inequality is caused when the moon moves from the

celestial equator into the northern and southern hemispheres. The oscillation

of the declination of the moon is completed in a tropical month of 27-32

mean solar days. The declinational inequality is dependent only upon the

absolute amount of the declination, and not upon its sign, so that its period

is only one-half tropical month = 13-66 days. Soon after the moon is upon
the equator, the greatest semi-daily range of tide will occur and, soon after

the moon's greatest declination, the smallest. Besides this declinational

inequality caused by the moon there is also a solar one, which depends

upon the sun's declination; declinational inequality is smallest at the time

of solstices and greatest at the time of the equinoxes. At that time, the full

and new moon are about upon the equator and the range of the spring tide

is extremely large and the range of the neap tide extremely small.

(c) Diurnal inequality in height is the difference in height between two

consecutive high waters or low waters. Diurnal inequality in time or interval

is the difference in length of the consecutive high- or low-water intervals.

These inequalities, which make the tide curves unsymmetrical, have a period

of a half tropical month for the moon and of a half tropical year for the sun.

The largest diurnal inequality occurs with a certain lag after the moon's

extreme north and south declination and disappears with a same lag when
the moon crosses the equator.

The diurnal inequality influences strongly the picture of the tides. Some-

times this influence is so great that the semi-diurnal tides are almost entirely

suppressed. The tides then degenerate into an oscillation with a period of

one day (see p. 307). In the Atlantic waters, especially in the North Sea and

in the English Channel, however, the diurnal inequality is insignificant.

This brief review of the main phenomena of the tides already shows that

the tides are an extraordinarily intricate phenomenon obeying definite laws.

The tides depend mainly upon the moon and the sun and upon their position

relative to each other. A certain position between sun and moon does not

recur until a Saros period (18 years) has elapsed. It would be necessary to

have a series of observations extending over 19 years to compute exactly

the tides for a certain locality. But even a one-year period of observations
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is sufficient to determine the principal components, especially if these ob-

servations can be tied in to those made at main stations with an extensive

record of observations. Figure 105 gives for two successive months (March

and April) the tides for Immingham (North Sea, east coast of England) in

Fig. 105. Tide curves for Immingham (east coast of England) for March and April 1936

(Horn). The O of the left-hand scale corresponds to the chart datum. The phases of the moon

are below the time scale. N and S indicate the time of the greatest northern and southern

declination; Q the time when the moon crosses the equator; A and P, the time of the Apogee

and Perigee.

the form of tidal curves (see Horn, 1943, p. 411). The zero of the height

scale at the left side corresponds to the chart datum. The inequalities in time

are too small on this horizontal scale to be noticeable. But the variation

in height between spring and neap tides is quite clear. The phases of the

moon and its other positions are indicated below the time; the difference

of the tidal curves from one-half month to the next one shows the influence

of the inequalities. The small diurnal inequality is characteristic of the tides

at the North Sea.

The essence of tidal phenomena was in part already known to the an-

cient Greeks and Romans, before the first attempt at a mechanical expla-

nation was successful. In the Mediterranean the tides are not so well

developed. However, from the literature on other sea regions it is apparent

that the ancient scientists had a certain good knowledge of the tides and

were also capable of applying it. The first to write on this subject was Herodo-

tus, who mentioned the tides in the Gulf of Suez. Strabo reports on the

views held by Posidonius (deceased in B.C. 51) and Aristotle on the tides near

Cadiz and by Seleucus on those in the Red Sea. The spring tides and their
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association with the "age" of the moon were also known to Caesar. Plinius

wrote about the sun and the moon being the cause of these phenomena.

In general, however, the grandeur of this natural phenomenon was looked

upon as something sinister and overwhelming by those who had never before

experienced it. An example of this feeling, which has become famous, is the

description by Curtius Rufus of the mighty tides which were encountered

by the fleet of Alexander the Great in the estuary of the Indus River.

It is to be assumed that the sea-faring peoples living on the open coasts

were familiar with the tides ever since. Ancient literature lends some support

to this assumption. Then, many centuries passed by from which there is no

record of any scientific observations of the tides. Only in the sixteenth century

were the first attempts made to explain the tidal phenomenon. These were

based upon the relations between the sun and the moon with their diurnal,

monthly and annual inequalities, which were originally derived to serve the

needs of navigation. Important changes in the views as to the causes of the

tides were brought about in the Renaissance. After preliminary studies by

Kepler, Galileo and others, it was Newton who, in 1687, discovered the

correlation between the movements of the moon and sun and the tides.

In his book Philisophiae naturalis principia mathematica, he published the

laws of gravity which still form the base for the theory of the tides.

2. Tidal Observations, Gauges

The methodical analysis of the tides at a coastal locality requires regular

observations and recordings of variations of the sea level. Observations of

this kind have been gathered for centuries in numerous locations, because it

is so essential for coastal navigation. The rise and fall of the sea surface can

be easily determined on poles and harbour dams, docks and the like by means

of a vertical board (tide staff) divided into feet and tenths of feet. Such

observations are, of course, inaccurate, because the water surface is in continu-

ous motion as a consequence of the ever present ocean waves. If one wishes

to increase the accuracy and obtain perfectly correct measurements, the level

should be determined at a point where the sea has free access, but the canal

connecting the gauge with the open ocean should be made so narrow as to

dampen short disturbances of the sea surface, like waves, etc. For this purpose,

a tape gauge is used (Fig. 106). The rise and fall of the surface due to waves

is then largely eliminated. For its description we quote Sverdrup (1942,

p. 360).

The principle of the tape gauge may be adapted for obtaining a continu-

ous automatic record of the tide level. In the standard automatic gauge used

by the U.S. Coast and Geodetic Survey (Rude, 1928), the float, which is

suspended in a well, is attached to a wire that turns a pulley mounted on the

threaded rod. As the pulley turns, a carriage with a pencil moves back and

forth along the threaded rod that is mounted at right angles to a clockwork-



Principal Features of Tidal Phenomena 251

driven roller carrying a sheet of paper. The paper is driven ahead about one

inch per hour, and the device thus traces the marigram automatically. Suit-

able reduction is obtained by varying the size of the pulley and the pitch of

the threaded rod. An accurate clock makes a special mark every hour, and

a fixed pencil traces a reference line. Short-period waves are largely eliminated

Fig. 106. Construction of a well housing a tide gauge recorder.

because of the damping in the well, but seiches and disturbances of the sea

surface lasting several minutes or more are recorded. From the marigram

the hourly heights and the levels and times of high and low water are easily

read off. The standard gauge carries enough paper for one month, but the

clocks must be wound once a week, and each day the instrument must be

checked against a staff or tape gauge to ascertain whether it is functioning

properly and to make sure that the holes in the float well are free from seaweed

and other detritus. A portable recording unit that can be used by field parties

is operated on the same principle.

The devices so far described can be used only on shore or where some

rigid structure extends above the sea surface. Many types of pressure-record-

ing devices for use on the sea bottom have been designed. In some the pres-

sure element only is placed below the sea surface, with the recording device

on land; in others, such as those to be used far from shore, the recording

device is an integral part of the^ instrument, which may be placed on the sea

floor or anchored and left in position for a week or more.

A very comprehensive description of high-sea tide recorders can be found

in Rauschelbach (1932, pp. 73-129; 1934, p. 177) and Geissler (1939,

p. 12; 1941).

Bartels (1926, pp. 221 and 270) has drawn attention to the fact that

in the tropics, it is possible to derive the semi-diurnal lunar tide M2 of the
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ocean from atmospheric pressure observations made on board of a ship; he

has shown how to compute the M2 component from hourly or 4-hourly ship

observations. First, one has to determine the daily pressure curve with

a period of a solar day. These values are then subtracted from the hourly

observations and the residual values are analysed for a 25 h lunar wave.

The lunar pressure wave obtained in this manner is composed of three parts.

(1) Of the atmospheric tide {dxp), which is known with sufficient accuracy

from the results of the atmospheric pressure analysis made at land stations

and can, therefore, be eliminated.

(2) Of the oscillations of the air-masses generated by the ocean tides, which

cause the rise and fall of the isobaric surfaces (d2p). This influence of the ocean

waves (also of tides) on the atmosphere, which was formerly disregarded, has

been given by Chapman (1919, p. 128) for plane waves in an atmosphere

with a uniform vertical temperature gradient. It appears that, for very slow

waves (velocity of propagation c < c , the velocity of propagation of free

waves in the atmosphere) the disturbances in the atmosphere caused by the

ocean waves become negligible, i.e. the isobaric surfaces remain undisturbed.

On the contrary, for fast waves (c > c ) the atmosphere participates in the

wave motion of the water, the isobaric surfaces rise and fall parallel to the

sea surface. Generally and in most cases, c < c . Then the phase of the

atmospheric wave is opposed to the phase of the water waves, i.e. the isobaric

surfaces lie lower above the crest than above the trough of the wave.

(3) The third part is the variation in pressure (d3p) caused by the rise

and fall of the ship by the tide, according to the barometric altitude formula.

If dxp is eliminated, then only the action of the motion of the sea surface

remains in the observed variation. This action is expressed by Bartels in the

following relation:

Ap = d2p+d3p = xd3p ,

in which

1

x
~\-(c/c y

From the distribution of the co-tidal lines (see charts I and II) one can

derive, for instance, the velocity of propagation of the tidal waves in the

South Atlantic c = 1-80 x 104 cm/sec, whereas with convective equilibrium in

the atmosphere one obtains c = 2-94 x 10 4 cm/sec. Then c : c = 0-61 ; the

increasing factor becomes x = 1-6, with c = 10 4 cm/sec (about 1000 m depth)

it becomes 113, with c = 6-3 x 104 cm/sec (depth 400 m) 105. Hence, the

co-oscillation of the atmosphere with the ocean tides is very important and

should be considered in order to obtain a correct value for d3p. From these

corrected values the amplitude and the phase of the M2 tide can then

easily be derived.
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It has not been attempted thus far to use the enormous amount of observa-

tions consisting of barometer readings which were gathered in the ship jour-

nals kept in the hydrographic offices, for the purpose of computing ocean

tides, despite the fact that the derivation made by Bartels was positively

promising in this respect. In view of the circumstance that so far there seems to

be no other possibility of obtaining actual measured values of the tides of

the free ocean, an attempt of this nature, although requiring a great deal of

computing and patience, would certainly be worth while.



Chapter VIII

The Tide-generating Forces

1. Fundamentals for Determining Tidal Forces

The foundation on which any explanation of the tidal phenomena must be

based is the system of tide-producing forces which is exerted by the moon
and the sun on the earth. It is necessary to make a sharp distinction between

the system of forces producing the tidal phenomena on the earth — not

only in the oceans, but also in the atmosphere and in the solid earth — and

the effects of this system of forces on the mobile masses in these three

layers of the earth. This distinction is of importance for the following

reasons. The nature of the tide-producing forces is well known. It was

even possible to verify the existence of these forces in laboratory experiments.

However, the effects of the tide-producing forces on the oceans, the solid

earth and the atmosphere, i.e. the formation of the tides, are not clear in

all points, although during the past decades an essential progress has been

made (Defant, 1942; see also Proudman, 1927; Thorade, 1928). The

problem of the tide-producing force of a celestial body — sun or moon — is

linked, according to Newton, to the forces of attraction existing between

the masses of two bodies. These forces are proportional to the masses of the

two bodies and inversely proportional to the square of the distance between

them. The forces of attraction regulate in the astronomical system of the

sun, the planets and their satellites the annual and monthly motion of the

centre body and the secondary body around the common centre of gravity.

Considering the system earth-moon, these forces also govern the monthly

movement around its centre of gravity.

The mass of the earth is approximately 81 times that of the moon; there-

fore, the centre of gravity lies about 81 times closer to the centre of the earth

than to the centre of the moon. The distance between the centre of the earth

and the centre of the moon corresponds to 60 earth radii, and the common
centre of gravity lies still inside the earth, viz. at a distance of approximately

three-fourths of the earth's radius, 4600 km from the centre of the earth.

The monthly orbit of the earth around this point is, therefore, very small

compared to that of the moon. If the system earth-moon were only sub-

jected to the forces of attraction, then these would constantly endeavour to

reduce the distance earth-moon. The monthly motion of the two bodies around



The Tide-generating Forces 255

the common centre of gravity generates centrifugal forces, which counter-

balance the centripetal attracting forces giving the system a stable equilibrium.

This equilibrium requires that, for instance, for the system earth-moon the

resultant of all forces of attraction between the earth and the moon is equal

and directly opposite in direction to the resultant of all centrifugal forces.

The origin of this resultant is in the centre of the earth.

How large is the centrifugal force for an element of mass which moves

around common centre of gravity ? The motion in question is a simple transla-

tion without rotation. In the case of a so-called revolution, each particle of

mass of a body travels the same orbit around a central point. Figure 107

Fig. 107. Centrifugal forces when a body M rotates around M*.

explains such a motion. The body with its centre in M accomplishes a revolv-

ing motion around the central point M*, and all points of M, for instance,

A and B, go through the same circle. The centres of these orbits A* and B*

are in the same position to each other as the corresponding points in the

body M. The arrows then indicate the direction of the centrifugal forces.

The magnitude of the force Z is given by V2
/a, if V is the velocity of the

body and a the radius of her orbit. The centrifugal forces of all particles

of mass of a body participating in a revolving motion are equal and have

the same direction. If T is the time of a revolution of the body on its orbit

and a is the radius, then the centrifugal force will be for a unit of mass

Z = 47t2a/Tl and is directed along the radius towards the outside.

If M is the mass of the moon concentrated in its centre, and if an element

of unit mass of the earth is at a distance q from the centre of the moon, this

element ofmass is attracted by the moon with the force x(M/q2
) where x = coef-

ficient of gravitational force distance apart. The stability of the system

earth-moon requires that
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Ln (VIII. 1)

and the summation should extend over all the particles of mass of the earth.

Although this relation is always fulfilled for the earth considered as a whole,

this does not prove that for each point of the earth there is equilibrium

between the attractive forces and the centrifugal forces acting at the point

in question. In fact, this could hardly be expected, because the two forces

obey different physical laws. Comparing these forces at any arbitrary point

of the earth, we find residual forces, and these are the tide-producing forces.

When the moon stands in the zenith, the forces of attraction are greater than

the centrifugal forces in a point Z on the earth closest to the centre of the

moon; both act in the direction of a line joining the centre of the earth with

the centre of the moon. The resultant is the tide-producing force at the

point Z; here it is directed against the moon (see Fig. 108). At the opposite

Fig. 108. Determination of intensity and direction of the tide generating forces resulting

from the difference between attractive and centrifugal forces. >, open arrows: attractive

forces; 2ZZZZ77>, hatched arrows: centrifugal forces; ""^ , black arrows: tide generating forces.

point N, where the moon stands in the nadir, the force of attraction is

smaller than in Z and smaller than the centrifugal force. For this reason,

the tide-producing force is directed away from the moon. Consequently,

in both cases there is a force directed from the centre of the earth towards

the outside. Thus, for any point on the earth's surface, we can compute the

direction and the intensity of the resultant between the forces of attraction

and the centrifugal force. The total sum of all these resultants all over the

earth is zero, but at no point does this tide-generating force become zero,

and it has everywhere a definite direction and force. A schematic drawing

of the distribution of the tide-generating force in a meridional section in

the direction earth-moon is shown in Fig. 108.
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The tide-generating force can easily be computed for the zenith and nadir point. The forces

of attraction and the centrifugal forces act in this case in the same direction and their resultants

can be simply obtained by adding and subtracting their magnitudes respectively. The direction

of the force towards the moon shall be positive. If R is the radius of the earth and a the distance

between the centre of the earth the centre of the moon, M is the mass of the moon, ft an element of

mass of the earth at the point under consideration, we obtain for the points

Centre of



258 The Tide-generating Forces

It is interesting to compare the tide-producing force with a force familiar

to us, e.g. the force of gravity. If E is the mass of the earth, the gravity

for a mass element /u on the earth's surface is in sufficient approximation

xju(E/R2
)

and the ratio

maximum tide-producing force of the moon _ -MR3
_

force of gravity E a3

81-5 603

i.e. the tide-producing force of the moon is approximately a nine-millionth

part of the force of gravity; it reduces gravity by that amount at the points N
and Z and, therefore, this reduction of gravity is extraordinarily small.

One may get an idea of its minuteness considering that, under its action,

the end point of a spiral spring, which is extended one meter by a 1 kg weight

suspended to it, is displaced by the tide-producing force as little as

1 l in-3 lm — n
10" 3 mm = ^.ju .

9 million 9 9

In the considerations put forth thus far on the tide-generating forces, the

rotation of the earth around its axis in 24 h has been disregarded, since it

does in no way influence the derivation of the tide-producing forces. It causes

only relatively small changes in the shape of the earth's surface (revolution

ellipsoid instead of a sphere) and a small change in the apparent weight of

the individual unit of mass. Gravity is now the resultant of the attractive

force and the centrifugal force of the rotation, but there is no modification

in the magnitude and the direction of the tide-generating forces. The derivation

of the tide-producing forces, as done here, was made by considering the

"revolution" of the bodies around their common centre of gravity. This

derivation seems to be the most simple and at the same time the most logical.

Incorrect derivations, which are mainly due to a wrong interpretation of

the influence exerted by the revolution or rotation of the two interacting

bodies and which lead to forces of a different order of magnitude, have ap-

peared in literature but soon disappeared (see Muller, 1916).

On the untenable flood theory by Galileo, developed before Newton, which

regarded the tides as an effect of the relative motion between the solid earth

and the oceans, see Mach (1904).

2. The system of Tide-producing Forces as a Function of the Zenith Distance

The distribution of the tide-generating forces can be derived for any

arbitrary point on the earth, by extending the considerations given above

for the points Z and N. Let B be such a point with the unit mass (/u = 1)

(see Fig. 109), E the centre of the earth and M the centre of the moon. Then
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the force of attraction A = x(M/q2
) acts in the direction BM, the centrifugal

force Z = (4ji2a/Tl) in the direction parallel to EM. According to the third

law of planetary motion by Kepler, which states that the squares of the

• M

Fig. 109. Determination of the potential of the tide generating forces.

periods of revolution of the planets around the sun are in the same ratio

as the cubes of their mean distances from the sun {az\T\ = const. = xM/4n2
)

we can also write for Z : Z = x(M/a2
) and we obtain in the point B with

the zenith distance of the moon & for the horizontal and vertical components

of the forces of attraction:

. M . Q , . M ,

Ah = x—zsmv- Av= h— cos#
;

and of the centrifugal force:

_ M . Q M
Zh = x— sin*? , Zv = x— cos u .

a2
fl-

it can easily be found from the triangle EBM that

cos#'
acos&—R

sin# = a sin &
, Q = fll+-i

R2 2R \l/2

COS??
a J

If, in developing \/g
z into a series, we neglect the term of a higher order,

then we have

— = -i H cos#
q° a°\ a

and we obtain for the two components

„ A 3 Mi? .

AA = A h—

Z

h = ~x^- sin 2^
2 a3

A.^ — A id £<$ -— JX

These forces have a potential

MR I

cr \

cos2#— 1

31'

O = ~«—— (x— cos2# :(^-cos2#

(VIII.3)

(VIII.4)

17*
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m _3MiR
Then, if we take the horizontal component positive in theif

g 2 E \a

,

direction towards the point of the earth's surface lying perpendicular beneath

the moon (against the point Z) then

Kh = R8&
= m sin2# , Kv =

dQ m, _ a .^ = -2(cos2^+|) (VIII. 5)

The quantity m is characteristic of the tide-generating force

m
g 2 E \a

(VIII. 7)

(VIII. 6)

and one obtains:

for the moon m/g = 8-57 x 10~ 8
,

|

for the sun m/g = 3-78 x 10~ 8
. (

If a more correct value for the tide-producing potential Q is required,

we have to keep more terms in the development in series of 1/q, and then

the best way is to develop 1/q according to spherical functions of the zonal

type Pn{&). These P's are functions of & alone and are called zonal harmonics

or Legendre coefficients. We obtain

We then have

q a £j \a

PJP) = 1

"

px(&) = cos^

,

p2(&) = i(3cos2^-

p3(#) = i(5cos3^-3cos^)

,

p4(&) = i(35cos 4^-30cos2^+ 3)

Pn{V)

1)

etc.

(VIII. 8)

Q MP?
P£>) +*P&)+ *P*W) + = Q2 +Q,+Qi+ (VIII. 9)

As both P2 and i>4 are symmetrical to the great circle & = 90°, the same

applies for the parts of Q, which originate from these terms. An asymmetry

between the two hemispheres with the moon above or below the horizon can

only come from the terms Q^,Qb , etc. The term D3 reinforces the i22-part

on the hemisphere where the moon is in the zenith and weakens it on

the hemisphere where the moon is in the nadir. The most important term

by far is 422 , which corresponds to (VIII. 4).

Equation (VIII. 3) describes the distribution of the tide-producing forces

by a body on the surface of the earth. The distribution of the total force

is shown in Fig. 110. The circle represents a cut through the earth and the

moon is at a great distance in the direction M. The arrows indicate the

direction and the strength of the total force which result from the conflicting
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attractive and centrifugal forces. The numbers indicated give the intensity,

with the assumption that m — \. Over the entire hemisphere of the earth

which faces the moon, the forces of attraction are greater than the centrifugal

Fig. 110. Distribution of the total tide generating force of a celestial body in a meridional

section of the earth.

forces; on the other hemisphere, the predominance is reversed. It has been

found easier to consider separately the distribution of the two components

given in equation (VIII. 3).

The radial component has the same direction as gravity and its intensity

is increased and decreased respectively, by very small amounts. It can, there-

fore, be considered as a tidal disturbance of the gravity, and it is then

advisable to count it positively downwards (same as the force of gravity).

From the second part of (VIII. 3) then follows:

bg = —^w(cos2 #+ £)

.

(VIII. 10)

Its largest negative value is found in the zenith and nadir point, the largest

positive value on a great circle 90° distant from the zenith point, and the

ratio of these values is 2:1. The force disappears on the circles which are

at a distance of 54° 43' from the zenith, and the nadir point (nodal lines),

respectively. This vertical component of the tidal force causes also an

extraordinarily small periodical change in the density of the water-masses;

however, this change contributes so little to the motion of the water that

it can generally be completely disregarded.

Whereas the radial component can only influence the magnitude of the

gravity very slightly, the horizontal component causes a slight change in its

direction. Its main significance for the motions of the water-masses on the

earth lies in the fact that its intensity equals the order of magnitude of other

forces acting in the horizontal direction, which are mainly gradient forces.

Its distribution, according to the first term of (VIII. 3), is expressed by

Kh = msinld (VIII. 11)
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It is quite apparent that the horizontal component vanishes in the zenith

and the nadir point, as well as on the great circle 90° distant therefrom and

attains a maximum value on circles 45° distant from these points. On the

hemisphere facing the moon, this horizontal force is directed concentrically

towards the zenith point; on the other hemisphere it is directed towards

the nadir point. This system of forces has a fixed position in regard to the

tide-producing body; if the latter shifts, the system of forces follows this

movement. Figure 1 1 1 shows, at the left, the distribution of the horizontal

Fig. 111. Left: distribution of the horizontal component of the tide generating force when

the moon is in the equator. Right: same when the moon has a positive declination of 28° N.

components when the disturbing body is located in the equatorial plane

of the earth; at the right when it stands 28° above same on the northern

hemisphere.

This system of forces is fixed in relation to the direction of the moon,

meanwhile the earth rotates once a day around its axis, and these cause the en-

tire system of tide-producing forces to become periodical for a given point of the

earth's surface. If, for example, the moon's orbit is in the plane of the equator

(see Fig. 112), it will appear to somebody who looks at the earth from the

outside as if the observer is first in A x . The rotation of the earth moves him

to A 2 . The tide-producing force is directed towards the south just before

reaching A 2 and reaches its maximum value after three lunar hours in

a point A 3 . Then the force decreases to zero at a point A A , where the moon
sets. The force then changes its direction, reaches' a maximum after 3 lunar

hours, etc. The tidal force, therefore, changes its direction and force, with

a period equivalent to a half lunar day. Both components have obviously

the same period, but we can derive from the relations (VIII. 9 and 10) that

the phase of the horizontal component lags one-quarter period (3 h) behind

the vertical component.
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Fig. 112. The system of the horizontal component of the tide generating force at the surface

of the earth. The disturbing body is in the zenith of the point Z.

3. The Harmonic Analysis of the Tidal Potential

As a consequence of the orbital motion of the disturbing body and of

the diurnal rotation of the earth, the system of the tide-producing forces

relative to the earth is changing constantly. The distance of the disturbing

a --w-s

Celestial equator

Fig. 113.

body M from the zenith depends upon its declination d and upon the geo-

graphical co-ordinates cp and A of the point B on the earth. In a spherical

triangle in the sky MPB (M = disturbing body, P = celestial pole, B = ob-

served point; see Fig. 113),

cos d = sin0sinr5 + cos<£cos<!>cos(7+ A— 180°)

if t is the real hour angle of the disturbing body (moon) in Greenwich,

counted from the lower culmination. If we introduce the complementary

angle (polar distances of M and B)

A =90°-d and % = 90°-tf>
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this relation can be written

cos# = cos^cos-J + sin^sinz]cos(/+ A-180°). (VIII.12)

If we introduce this expression in (VIII. 4), we obtain, if \mR = A

Q = ^(cos2Zl-i)(3cos2/-l)-^sin2<5sin20cos(/+ A) +
+y4cos2 (5cos20cos2(?+ A) . (VIII. 13)

Each of these terms can be considered as representing a partial tide (Lamb,

1932, p. 359).

(1) The first term does not contain the hour angle. As the declination varies only very slowly,

it can be regarded for a short time as constant. Tn regard to /, i.e. the geographical latitude <p, it

represents (see P2 (6) in VIII. 8) a zonal harmonic of the second order and gives a tidal spheroid

symmetrical with respect to the earth's axis having as nodal lines the parallels for which cos2
^ = i

or 4>=±35°\6'. The amount of the tidal elevation in any particular latitude varies as

cos*A-l = £(cos2J + i).

The main declinational inequality has, in case of the moon, a period of one-half of the period

of the variation of the declination, i.e. one half tropic month. We have here the origin of the lunar

fortnightly or 'declinationar tide. When the sun is the disturbing body, we have a solar semi-an-

nual tide.

(2) The second term is a spherical harmonic. The corresponding tidal spheroid has as nodal

lines the meridian of which is distant 90° from that of the disturbing body, and the equator (</> = 0).

The disturbance of level is greatest in the meridian of the disturbing body, at distances of 45° N.

and S. of the equator (Tesseral harmonic P'2 ). The oscillation at any one place goes through its

period with the hour angle, i.e. in a lunar or solar day. The amplitude is, however, not constant,

but varies slowly with A, changing sign when the disturbing body crosses the equator. This term

accounts for the lunar and solar 'diurnal' tides.

(3) The third term is a sectorial harmonic i32 and gives a tidal spheroid having as nodal lines

the meridians which are distant 45 E. and W from that of the disturbing body. The oscillation at

any one place goes through its period with 2x, i.e. in half a (lunar or solar) day, and the amplitude

varies as cos2 d, being greatest when the disturbing body is on the equator. We have here the origin

of the lunar and solar 'semi-diurnal' tides.

The expression (VIII. 13) shows the essential properties of the tide potential

which varies with time, but it is not entirely satisfactory. Both the decli-

nation <3 and the amplitude A are variable with time, because also the fluctuations

in the distance between the earth and the disturbing body enter in the value m.

A complete harmonic analysis of the tide potential requires Q to be expanded

in a series of simple cosine or sine-functions, with constant amplitudes and

constant periods. The actual periods (e.g. lunar day and solar day) are not

integer multiples of one fundamental period, but are incommensurable, and

such an expansion is most intricate. The derivation of each expansion requires

long and extensive computations. We will give here the fundamental idea.

Let us assume that a simple term in Q has the form

Q1
= Ucos(at-x), (VIII. 14)
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where U is not constant, but varies around an average value u with the

frequency a', so that

U = u+u'cos(a't-x'); (VIII. 15)

generally a' is much smaller than a (e.g. if U contains the fortnightly variation

of declination, the period in a' is approximately 14 days for the moon, and

6 months for the sun, whereas the period in a is \ day for the moon and

1 day for the sun). Substituting in (VIII. 14), we obtain

Q1 = wcos(otf— *)+£ «' COS [(ff+ #')*—(*+ «')]+
+ Wco&[(o-or)t-(x-x')] . (VIII. 16)

Besides the variation with the frequency a, which is to be considered as the

fundamental one, there are two other oscillations with the amplitude \u'

which depends upon the variations of U, and with frequencies equal to the

sum and difference of the two frequencies. The same can be done with two

or more terms. The variables which determine the true motions of the sun

and the moon, and which follow from such a development in sine and cosine

terms are the following.

If 6 is the sidereal time (hour angle of the vernal equinox), the hour angle

of the sun is 6— h1 , if hx is the real longitude of the sun eastward along the

ecliptic. Whereas increases practically uniformly, hx increases irregularly

in easterly direction. The sun is replaced by a fictitious sun supposed to move
steadily around the ecliptic at a rate which is the average rate of the true

sun and its longitude (h) is said to be the mean longitude of the sun, which

increases also steadily. Then
t = e-h

is the mean solar time.

The same procedure is followed for the moon; if s is the mean longitude

of the moon, then

t = e-s
is the mean lunar time.

From these relations follows:

t = t-rh— s , where D = s— h
,

is the angular difference between the mean moon and the mean sun.

The other quantities appearing in Q, like distance, declination, real hour

angle, etc., can all be expressed by h and s and three other angles increasing

uniformly. These are: p, the mean longitude of the lunar perigee, ps , the mean
longitude of the solar perigee, and N' = —N, in which N is the mean longitude

of the ascending lunar node. These variables increase during a mean solar

day by the following amounts, whereas the length of their period (time of

a full revolution of 360°) is indicated beside:

t 360°-12 91° 24 h 50 47 min (lunar day) p 01114° 8 847 years

s 13176° 27-32 days (sidereal month) N 0529° 18 61 years

h 0-986° 1 year ps
0000047° 20940 years
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Doodson (1922, p. 305) and Rauschelbach (1924) have given a full de-

velopment of the tidal potential of the kind indicated above, whereas the

earlier classical developments of Darwin (1883, p. 49) and Boergen (1884,

p. 305) have only taken into account the influence of the slow motion of

the lunar node by slow variations in the amplitude and phase of the cor-

responding terms. For the rest, the fundamental idea is the same; it emanated

from Kelvin (1872), who was the first to substitute fictitious celestial bodies

for individual terms of the tide potential.

It is not possible to give here in all its details a harmonic analysis, (see

for example Bartels, 1936, p. 309; and, 1957, p. 734). We will only mention

briefly the final result. Each term of the series corresponds to the equation

(VIII. 14) and Q is the sum of all terms of this equation, which have the form:

Partial tide = numerical coefficient x

, ..
ff

. . . (cos)
'

rt
(VIII. 17)

geodetic coefficient { . } (argument)

.

[sin]

The geodetic coefficients are only dependent upon the geographical

latitude 0; the most important are those derived from Q%

G = \mR{\ — 3 sin2
9?)

,

Gx
= imRs'm2(p

,

G3 = %mRcos2
q> .

The argument or the phase {at — x) is an aggregate composed of the above-

mentioned six variables; they determine the frequency of the term and, hence,

its period. Thus, for instance, r represents lunar time, (r+s) sideral time,

(r+ s—h) solar time, 2t the semi-diurnal lunar wave, etc. Abbreviating, the

partial tides are designated according to their argument, and this is given

symbolically by the "argument number". The argument (2r— 3s+ 4h Jrp —
—2N+2p

s) is given by the argument number (229-637): the first figure gives

the factor of r, whereas the following figures are the factors of the other

variables increased by 5. The most important are the first 3 figures, inasmuch

as they give positions which repeat themselves within a year. The last figure

is generally left out. The first figure also gives the main distribution of the

partial tides: long periodical, 1 diurnal, 2 semi-diurnal, 3 the third diurnal

partial tides.

The argument in (VIII. 17) is composed of two parts: the variable part t

(frequency x time) and the phase, which is the non-variable part of the

argument, which is given at the origin of time, usually the 1st of January

of a year at 00 00 h.

The complete list of all components established by Doodson lists approx-

imately 390, of which about 100 are long periodic, 160 diurnal, 115 semi-
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diurnal and 14 one-third diurnal terms. Table 28a contains a selection of

the more important components with their basic values, and it also indicates

the symbol by which they are designated. The numerical coefficient of the

largest component M2 is put equal to 100. The amplitude ratios (refer to

M.2
= \00) listed in Table 28a under column coefficient ratio are the most exact

Table 2Sa. Principal harmonic components

Name
of partial tides
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It is to be noticed that the luni-solar partial tide Kx and K2 are each composed of a lunar and

a solar part. The ratio of these parts is the same as for the ratio of the total tidal forces of moon
and sun (100:46). Hence, for Kx

57-4 = 39-9+18-5, for K2
12-7 = 8-7+4-9.

The combination of the components Kr (lunar part) +0 ± which have almost identical numerical

coefficients (39-9 and 41-5) gives the diurnal lunar tide. Neglecting the slight difference in the nu-

merical coefficient, we have

sin(r— s)— sin(r+5) = — 2sinscosT:

this is a diurnal lunar tide with an amplitude varying monthly. The maxima occur at s = 90°

and 270°, i.e. when the moon is in its greatest northern and southern declination respectively.

The combination of Px and Kx (solar part) with 19-4 and 18-5, will give, because

r+ s— h = t = solar time ,

sin(r+ s— 2h) — sin(r+.s) = sin(/— //)— sin(r+ h) = —Is'mhcost.

This is a diurnal solar tide with yearly variable amplitude; maxima occurs at h = 90° and 270°,

respectively, which is at the time of the solstices and the zero values at the time of the equinoxes.

This presentation, which can be extended to the K2
- values, shows it makes equal sense to inter-

pret Ky and K2 either as seasonal variable solar tides or as monthly variable lunar tides. This is

because r+ s = t+ h.

4. The Experimental Proof of the Tide-generating Forces

If one had in the laboratory an absolutely rigid base, one could measure

the horizontal component of the tide-generating forces by means of the

oscillations of a pendulum, which coincides with the plumb-line when at

absolute rest (variations in the direction of the plumb-line). The vertical

component of this force could be measured by means of the time variations

in the weight of a small body (variations in gravity). These observations

should give the exact amount of the variations of these components, which

were derived theoretically from the system of tide-generating forces. The

variations in the plumb-line and in gravity observed in this manner are denoted

as tidal oscillations and these should fully agree, in case of an entirely rigid

earth, with the theoretical ones.

The maximum value of these variations can easily be derived from the

equations (VIII. 10 and 11), along with the numerical values in (VIII. 7). For

the maximum acceleration in the horizontal and vertical direction relative to

gravity, we obtain

in the horizontal in the vertical

for the moon

:

8-57 x 10~ 8
1 1 -43 x 1(T

8

for the sun: 3-78 x 1(T
8 504 x 10~ 8

The maximum deflection of the plumb-line then becomes Axp = o" times hori-

zontal acceleration, which is 0-0177" for the moon and 0078" for the sun,

whereas the maximum disturbance of the gravity is 1 14 mgal for the moon
and 0050 mgal for the sun.* It is obvious that only extremely sensitive

180° l

* q" is = and 1 gal = 1 cm sec 2
, 1 mgal = 0001 gal.

n sinl"
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instruments are able to determine such extraordinarily small variations and

that first a very advanced measuring technic should be developed, in order

to obtain perfect results.

Horizontal pendulums are used for measuring small periodical disturb-

ances of the plumb-line. Such a pendulum consists in principle of a rod mov-

able in horizontal direction and which can turn around an almost perpendicu-

lar axis (see Fig. 1 14). If this axis were exactly perpendicular, such a pendulum

Fig. 114. Basic idea of Zollner horizontal pendulum.

could be swung by any lateral force, however small, but it would soon be

immobilized in this position after the force ceases to act (indifferent equi-

librium). However, if the axis AA of the pendulum is slightly inclined against

the vertical line VV (by a small angle /), small lateral forces still can move

the pendulum out of its position of rest; however, when the force ceases,

it returns automatically to the initial position of rest by a component of the

force of gravity. The amount of the deviation from the position of rest is

an indication as to the intensity of the force. Bifilar suspension of the rod

and photographic registration strongly reduce frictional influences. As only

forces transverse to the plane of the pendulum cause the latter to rotate, two

horizontal pendulums placed perpendicularly to each other are needed for

measuring the west-east and the north-south component of the tide-generating

force. Great precautions are to be taken in these measurements, because the

apparatus, of course, reacts upon any inclinations of the base supporting it.

Such inclinations can also, by all kinds of external circumstances (e.g. tem-

perature variations of the upper layers of earth, etc.), easily take such propor-

tions as to cause deflections which are greater than those of the tidal forces.

For a review of measurements on gravity, see Schweydar (1921). A long

series of measurements was made by Schweydar (1921) in a mine gallery

(depth 189 m) in Freiburg (Saxony), and by Schaffernicht (1937, p. 349);

(see also Tomaschek and Schaffernicht, 1932, p. 787) in a 25 m deep cave
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in Marburg a. L. The most important features can be found in Fig. 115.

It shows the variation of the direction and force of the tide-generating force

with time for the principal lunar component M2 in Freiburg and Marburg,

derived by harmonic analysis. The results are similar for the other semi-

Fig. 115. Variation in direction and intensity of the horizontal component of the tide

generating force for the principal lunar tide M2 . Th: computed values for a rigid earth;

Mand F: observed values at Marburg a. L. and Freiberg i. S. (Tomaschek and Schaffernicht).

diurnal and diurnal components. There is no doubt that the plumb-line

deviates through the action of the tidal forces. This proves the presence of

the horizontal components of the tidal forces. However, the ellipses are con-

siderably smaller than they should be theoretically, and there also appear

slight deviations in the phase. Mean values from several components give

as ratio of the amplitudes 0-6, but here a difference between semi-diurnal

and diurnal terms cannot be established for sure. There is also a phase shift of

about 1 J h, which may be somewhat smaller for diurnal components. The

decrease of the amplitudes can only be explained if the earth is not completely

rigid, but that it yields somewhat to the tide-generating forces; hence, that

there are tides of the solid earth.

This result has been fully confirmed by measurements of the periodic

variations of gravity caused by the vertical component of the tide-generating

forces.

In recent times Tomaschek and Schaffernicht were successful in construct-

ing an instrument which provides useful results, namely, the Bifilargravimeter.

The discussion of the long series of measurements made in Marburg and

in Berchtesgaden has shown that the observed periodical variations in gravity

are only about two-thirds of the value computed for a rigid earth and that

there are also small phase displacements. Figure 116 gives for the principal

lunar tide M2 the curves from observations made simultaneously at both
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localities during two months. The decrease in amplitude as compared to the

theoretical value is approximately identical at both localities, except that

Marburg lags behind the moon by 1 h, whereas Berchtesgaden precedes it by

O -I



Chapter IX

Theory of the Tides

1. The Equilibrium Theory

In order to visualize the effect of the tide-generating forces on an ocean

covering uniformly the whole earth, we can use the presentation of the hori-

zontal components given in Fig. 111. Under the action of this system of

forces, the water tends to flows towards the points Z and TV and accumula-

tion of water occurs at these convergence points, while at the great circle

with a distance of 90° from these points the sea level lowers. These flood

protuberances originating in the zenith and nadir increase only until there

exists an equilibrium between the tide-generating forces and the horizontal

forces provided by the differences in pressure. Then the flood protuberance

at the surface has a fixed position in the direction of the moon (Fig. 117).

Fig. 117. Flood protuberance caused by the action of the tide generating forces on an

ocean covering the entire earth.

Newton, who developed the equilibrium theory of tide, was conscious of the

fact that treating the tides as a static problem was only a rough approxima-

tion of the phenomenon. The equilibrium theory of the tides was completed

50 years later when the Paris Academy of Science asked for the best ma-
thematical and physical explanation of the tides. Bernoulli, Euler and

MacLaurin (1741) were among the contestants. The work of Bernoulli is

of quite some interest still today.

In the equilibrium theory of the tides, the free surface is assumed to be
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a level surface under the combined action of gravity, and of the disturbing

force. The sum of the potentials of these forces must be constant at this

surface. Then no work will be performed when a particle of water is moved

along the surface. This can also be expressed by saying that the pressure force

and the tide generating force must be in equilibrium at any point. If r\ denotes

the elevation of the water above the undisturbed level, then gravity potential

is grj, and the above condition requires that grj+Q = constant = C, or

tj = --+ C
g

when Q denotes the disturbing potential.

If we put mR/g = H, we obtain with (VIII. 4)

rj = #(cos2#-|)+ C, (IX. la)

in which M = mass of the moon; a = distance moon-centre earth; E = mass

of the earth; R = earth's radius, & = moon's zenith distance.

The equilibrium form of the free ocean surface is a harmonic spheroid

of the second order, of the zonal type, whose axis passes through the dis-

turbing body. If we consider first a disturbing body alone, its equilibrium

flood yj attains a maximum for & = 0° and 180°, i.e. when the disturbing

body is in the zenith or the nadir and V]max = \H and a minimum for 9 = 90°,

which is when the disturbing body is on the horizon and ??min = —\H\ the

amplitude of the oscillation is, therefore H.

If we put R = 6370 km, we have

lunar tides solar tides combined effect of both

0-55 nT 0-24 m~
_

0-79 m

Owing to the diurnal rotation of the earth and to the orbital motion of

the disturbing body, there are periodic variations in rj for a given point of

the earth's surface; their periods are exactly the same as those* of the tide

potential discussed on page 263. We have for rj the same developments as

in (VIII. 13); only we now have to substitute \H for A. Consequently, there

are three kinds of partial tides in the equilibrium theory: long period, diurnal

and semi-diurnal tides, and all that was discussed on the subject that the

harmonic analysis of the tide potential can be applied without restriction

to the partial tides of the equilibrium theory. The different terms constituting

the tide-potential Q can be expressed in the quantity ij, and this is the usual

form in which it is presented.

We will discuss the combined action of the moon and the sun in connec-

tion with the semi-diurnal tides. If we introduce in the equation (VIII. 13)

18
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the amplitude varying with declination, A = lHcos2<pcos2 d then we can

consider this variation for a short time to be constant for a point on the

earth. If, we introduce the sidereal time and the right ascension a instead

of the hour angle of the disturbing body, (see p. 265) we obtain for the com-

bined semi-diurnal lunar and solar tide, the equlibrium tide

^3 = Acos2(d-a)^A'cos2(6-a') (IX.2)

in which the quantities marked with a prime refer to the sun. The super-

position of these two waves can be imagined to give a single wave with variable

amplitude and phase. If we put: d— a = 6— a + (a— a)

% = ^ 3 cos2(0-a + a3) (IX.3)

in which

A s = } {A2jrA'2jr2AA'cos2(a—a')} and tan2a3 = -r^—r, ^—-—77 .A+A cos2(a— a )

The amplitude A^ will have a maximum when a = a and a = a' +180°.

This happens at the conjuction and opposition of moon and sun, e.g. at the

time of the syzygies or at full and new moon. These are the spring tides. At

the same time, a3 = 0, i.e. the spring tides appear at the moment 6 = a

and a+ 180°, which is at the upper and lower culmination of the moon, which

for full and new moon coincides with midnight and noon.

The minimum of A 3 occurs when a— a = 90° and 270°, which is at the

time of the quadratures (first and last quarter of the moon respectively).

;/3 then becomes smallest; these are the neap tides. In this case too a3 = 0,

and ?]3 is reached when 6 = a, i.e. again at the upper and lower culmination

of the moon, which at this time occurs approximately at 6 h and 18 h. At any

other time a3 is different from zero and high water does not occur at the

moon's transit, but this phase displacement is not very large (semi-monthly

inequality in the time of occurrence).

The combined action of the principal lunar and solar tides as seen by an observer at the equator

is illustrated in Fig. 118 drawn by Bidlinghanger (1908). The upper part shows the conditions

at full and new moon. At noon both bodies are in the zenith, the water level is H times as high

as for the luna* tide alone (spring tide). The next figure shows the position for the first and the last

quarter. At 6 a.m., when the sun rises, the moon is at the zenith, lunar and solar tide oppose each

other (neap tide). The following figures show halfway between spring and neap tide, neap and

spring tide respectively. In the first case, the moon is in the 1st and 5th octant and reaches its

highest point at 9h, whereas the sun and its tide are still rising. High water is retarded by about

an hour against the culmination of the moon. In the second case (3rd and 7th octant) the moon

goes through the meridian at 3 a.m., whereas the nadir flood of the sun passed three hours earlier.

Hence, high water appears approximately an hour before culmination of the moon.

The daily inequality in height and time can be easily understood from the illustrations of

Figs. 119 and 120. If the disturbing body is not upon the equator, the axis of rotation of the spheroid

does not coincide any more with the axis of the earth (see Fig. 117). In Fig. 1 19 are shown isohypses

of the spheroid for both hemispheres, when the disturbing body (moon) stands in 28°N. latitude

in the zenith above the centre meridian. The corresponding point then lies on the other hemisphere
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Springtide
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ever, the observed tides are generally much greater than those derived from

the equilibrium theory. On the other hand, the daily inequality of the theory

agrees with the observations insofar as it will disappear when the tide-generat-

ing body is at the equator and will reach a maximum at the times of greatest

northerly and southerly declination. The magnitude of the daily inequality

does not agree with the theory, and in many localities the tide is largest when

it should be the smallest according to the theory and vice versa. Furthermore,

the theory requires that at the syzygies (full and new moon) high water occurs

20
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Fig. 120. Profile for three circles of latitude from Fig. 119.

exactly at noon and at midnight; hence, that the lunar tidal interval is zero

for all localities. According to experience, this interval can have any value

between zero and 6 h, and it is apparent that we have here a downright contra-

diction between the observations and the theory.

The equilibrium theory, therefore, is unfit to explain the actual tides of

the oceans. The main reason is, no doubt, that it attributes certain properties

to the water which it definitely lacks. The theory requires that, at any mo-

ment, there is equilibrium between the tide-producing forces and the gradient

forces of the zonal spheroid. Inasmuch as the tide-producing celestial bodies

change their position to the earth so -rapidly after all, tremendous displace-

ments of water-masses should take place within the ocean with great velocities

which never occur in nature, and the water-masses would go beyond their

position of equilibrium because of its inertia. Hence, the equilibrium theory

requires that the water be deprived of its inertia, whereas its gravitational

properties should be kept. Such an assumption, however, has no basis

and can only give approximate results, if the tidal forces vary very slowly.

This theory, therefore, can be applied at the most to the long-period partial

tides.

Despite this bad agreement, it has frequently been attempted to improve

the noticeable difference between the time of occurrences of high water and

the time of maximum tide potential. The constant C in (IX. \a) is determined
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by the condition, that the volume of the ocean is constant and the integration

must extend over the entire ocean surface S. If the ocean covers the whole

earth, then C = 0, by the general property of spherical surface harmonics.

However, inc ase of a limited ocean C depends on the distribution of land

and water on the globe. If the tide-producing potential according to (VIII. 17)

consists of terms of the form Afi cos (at + sX) where A is the numerical coeffi-

cient and G the Goedetic coefficient and S is an integer and if we abbreviate

P =
I
Gcos(sfydv , Q = | Gs'm(sfydv

s s

we obtain for the partial tide produced by this term

rjs = — P
Gcos{sX)— -= COSoY- Gsin((M)-^ sin at) . (IX. 3b)

The integrals P, Q and also S, the surface of the oceanic area, can be computed

by mechanical quadratures, and certain corrections are added to the previous

values, which also depend upon the relative motion of the disturbing body.

These corrections were primarily derived by Thomson and Tait (1883 para.

808) and, later on, they were examined more closely by Darwin and Turner
(1886), and it was then found that they are quite unimportant with regard to

the actual distribution of land and water. However, it became apparent that,

in this improved equilibrium theory "corrected for the continents", the time

of high water does no longer coincide with the maximum of the tide potential,

i.e. that there is an "establishment
,,

which is different for each locality.

A further improvement consists in considering the mutual attraction of

the water particles. To the tide potential of the disturbing body comes the

gravitation potential of the elevated water-masses in the tidal spheroid. If the

ocean covers the entire earth Q is increased by

3 Q -

~5Vgv

in which q is the density of the water, gm the mean density of the earth

and g/gm =018. Thereby the amplitude H increases in the proportion

1

(Q/Qm)

which factor is 112. The consideration of the gravitation potential of the

elevated water increases the equilibrium tide by 12%. In addition to this,

Poincare (1910, p. 60) has taken into account the distribution of land and sea.

The calculations then became very intricate and the resulting improvement

seems to be so important that the above-mentioned formulae are no longer

accurate, even approximately.
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2. The Dynamical Theory of the Tides

A century after Newton (1774), Laplace substituted for the equilibrium

theory, which considers the tides hydrostatically, a dynamical theory. Accord-

ing to this theory, the tides are considered as waves induced by rhythmical for-

ces and, therefore, have the same periods as the forces. The problem of the tides

thus becomes a problem of the motion of fluids. In the development of these

forced tide waves, various factors other than the periodic forces play a de-

cisive part, like the depth and the configuration of the ocean basin (its mor-

phologic configuration), the Coriolis force and frictional influences of various

kinds. The tide generating forces are known with great accuracy, so that

there is no difficulty in establishing the hydrodynamical equations for the

corresponding motion of the water particles. The first equations of this kind

were derived by Laplace. The general equations of the dynamical theory

have not been solved yet insofar as the tides of the oceans are concerned:

we need simplifications to solve the equations. These simplifications are

based in the first place on the fact that the tide waves belong to the group

of the "long waves", for which reason the latter are also designated as

tidal waves.

The tidal motion belongs, insofar as it is generated and maintained by

external periodical forces, to the forced waves; however, it is obvious that,

especially when fulfilling the boundary conditions, "free waves" will also

appear. The importance of these free waves, which fix the natural periods of

the oscillatory system, becomes particularly evident if one considers that the

amplitude and the phase of the forced oscillation are determined (see p. 8)

by the difference between the free oscillation period of the system and the

period of the force. However, perfect resonance occurs only very seldom and
when it does, a closer consideration of the frictional influences is necessary.

The dynamical theory of the tides is extremely intricate in its details and
requires, even if ideal conditions are assumed for the depths and the contours

of the oceans, considerable mathematical work. Laplace (1775-76, 1799)

succeeded in computing the theoretical tides of a homogenous ocean covering

uniformly the entire earth, but the results are, in general, very poor and
without much importance for the comprehension of the terrestrial tides of

the seas. Only in recent times have they gained importance in connection

with atmospheric tides. It appears that only lately, methods have been de-

veloped which to some extent take into account the complicated contours

of the oceans and which, therefore, promise more success.

(a) The Theory of Laplace

The hydrodynamical equations of motion in polar co-ordinates (R radius

of the earth, & pole distance, I geographical longitude) are:

-£— loovcosft+lcowsind = — -=-— -^(.Q+-
at R+ z d& 1
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% +2,.JKcos9 = - »1(q+^ ,

dt RsmftdX \ qJ

-r + Zvjucosv = —— £+ -
<7/ 3z \ £

The external force X 7, Z has a potential £? if it can be represented by

]_8D _J 0£ _a£?

~R8§> ~ Rsind 8X
'

8z
'

In these equations the frictional terms have been neglected. If we neglect the

vertical acceleration which is small compared to the acceleration of gravity

and neglect also the vertical component of the Coriolis force, which is for

all practical purposes without importance, the third equation of motion is

reduced to the hydrostatic equation. If we put g = 1 and substitute R for

the depth R + z assuming z is small in comparison with the earth's radius

and, further, if we consider that p ~ gij and Vj = —Q/g the two first equa-

tions of motion can be written:

W 2covcosd

i r

R8&
8

Jr 2coucos& = — -

dt R sm&BX
{rj-rj)

(IX. 4)

To this we have to add the equation of continuity for variable water

depth /?,

By] 1
\
8hus'm& . 8hv\

dt
+ Rsmd \ 8&

h
81 ]

If the tide-producing potential is of a periodical nature, u, v and r\ will

be also, and we can assume that all these quantities contain the time factor

exp \i(at+sX+e)}, where s is an integer. These equations become, if the

depth h is only a function of #, and if the boundaries to the sea coincide with

parallels of latitude:

iau— lwv cos& = Z 8 ,

v),

IPS
iav + 2o)ucos& = —^—„ (??— vj)

,

1 {8hus'm& . .
, \

Rsmvy 8& )

(IX. 6)

u and v can be computed as functions of r
t
from the two first equations and

if these values are introduced into the third equation, we obtain a differential

equation for r\ alone, whose solution gives the tide waves generated and
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forced by the tide-producing forces in an ocean covering the entire earth.

According to the selection of s, there are various kinds of these waves.

(1)5=0 gives, according to the designation of Laplace, the "oscillation

of the first species
,

\ These oscillations are independent of the rotary motion

of the earth and depends wholly upon the motion of the disturbing body in

its orbit. The periods of these oscillations are very long and to these belong

particularly the fortnightly lunar tide and the semi-annual solar tide.

(2) 5 = 1 gives the "oscillations of the second species", the most important

of which is the diurnal lunar and solar tides.

(3) 5 = 2 are the "oscillations of the third species": which include the

semi-diurnal lunar and solar tides.

We can only explain here the fundamental solutions for these three types

of oscillations, following the simplified explanations of Kelvin (1875, p. 279);

Airy (1845); Darwin (1886, p. 377); Lamb (1932, p. 330).

If we put

,
a oj

2R
n-r\=n , --=/, — = m

,

(IX. 7)

a 4mR A co
2R2

p = —,— = 4 —j— and a = coso
h gh

a simple computation in the case 5 = gives as the differential equation for r\

£(£$S9+*-°- (IX - 8)

If, in this equation, we assume r\' = r\ we obtain the free oscillations of

the ocean. If there were no rotation (/ = oo and j3f
2 = a2R2/gh), the free

oscillations would be given by a2 = n{n-\-\)ghlR2 (n an integer); the simplest

oscillations have the form of spherical surface harmonic functions. In the

case of rotation, Laplace introduces in (IX. 8) a solution of rj in series of

increasing powers of fi and determines their coefficients from the boundary

conditions. This leads to their determination in the form of infinite continued

fraction. This famous solution of Laplace has led to controversies between

Airy (1842), Ferrel (1874) and Kelvin (1875, p. 227); however, the latter

has given the proof of its correctness and has developed it.

Under natural conditions, these continued fractions, and the series for r),

converge rapidly. For the shortest period of this oscillation, for which the

elevation of the free surface behaves like a zonal spherical harmonic function

of 2nd order P2(cos&) we obtain, e.g. for a depth of 17,700 m and 2210 m
the values 1 1 h 35 min and 32 h 49 min respectively.

The forced oscillations of the first species (s = 0) start with the potential

rj = A x{\— cos2#)cos(ot-M)

.

The determination of the coefficients to solve r\ is made in a similar way as
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for the free oscillations. In the case of the fortnightly lunar tide, / is the ratio

of a sidereal day to a lunar month and is 00365. Thus,/2 becomes = 000133

and we obtain a very good approximation in putting / = 0, which shortens

the computation considerably. The same applies for the other tides with

a long period. The result can be found in the first lines of Table 29 under

Table 29. Ratio of the polar and equatorial tides to 1he ir-

respective equilibrium values

40 20 10 qIqo

Depth (ft).

(m).

7260

(2210)

14,520

(4430)

29,040

(8850)

58,080

(17,700)

Long-period tides

Equator

Pole

Laplace

Hough

Laplace

Hough

0-455

0-426

0154

01 40

0-551

0-266

0-708
i

0-817

0-681 0-796
;
0181

0-470

0-443

0-651

0-628 0181

Semi-diurnal

tides

(uniform

depth)

S2 Equator
\ Laplace

[ Hough
[a — 2a>]

M2 Equator Hough

[ff/2o> = 0-96350]

+ 7-434
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assumption, the equations have a solution and we can calculate the forced

oscillations, if the depth of the ocean follows the law h — /j (1 — ccos2
#),

where c is any given constant. From this follows that, if the water depth is /?„

at the equator, it will be /7 n(l — c) at the pole. We obtain by simple compu-

tation

IchlmR 8c , _ 4/7?R
n = -\ J , , n V = —

t,
—

k~ V when 6 =
.

' \ — IchlmR ' 8-$c ' '

h

This relation shows first of all that the ratio of the tidal ranges is everywhere

constant in relation to those given by the equilibrium tide; further, that

ry = 0, when c = 0, i.e. in the case of uniform water depth, there are no diurnal

tides in the ocean so far as the rise and fall of the surface is concerned. How-
ever, although there is no rise and fall of the surface, there are, nevertheless,

diurnal tidal currents. Laplace derived this remarkable result from his theory,

and considered it very important, in view of the fact that the diurnal partial

tides are almost completely absent in the European waters; in fact, he wanted

to show by this that the dynamic theory is able to do away with the discrepancy

between the observations and the results of the equilibrium theory. However,

the diurnal tides having proved to be large at many points of the ocean, this

conclusion had to be discarded.

With the oscillations of the third species (s = 2), which include^ the lunar

and solar semidiurnal tides, the disturbing potential of the tidal force is

a sectorial harmonic of the second order, hence

r\ = A 3sm2 dcos{ot Jr 2?.+ e)

in which a is nearly equal to 2co. The computation can be considerably sim-

plified, assuming that the orbital motion of the disturbing body is very slow,

so that a = 2(» and therefore /= 1. This approximation is rough for M2 ,

but there is a "luni-solar" semi-diurnal tide whose speed is exactly 2co if we
neglect the changes in the planes of the orbits. If here the depth is assumed to

change according to h = h s'm2
&, (at the equator the water depth // , at the

pole zero) there is a solution

8 _ 2h/mR -
n =

/3-8
l/=

l-ilh/mR)
11 '

In this case too, the ratio of the tidal range to that of the equilibrium tide

is constant, but as /i > 10 for depths existing actually in the ocean, the

tide is everywhere inverted, i.e. there where the equilibrium tide is high, low

water occurs, and vice versa. It should be noted that at the pole the depth

becomes zero (& = 0) and consequently the velocity at the pole becomes

infinite.

Laplace has also derived the semi-diurnal tide (s = 2,f= 1) for a sea of
uniform depth. In this case, there are again continued fractions for the de-
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termination of the coefficient of the series. For these a separate procedure

of computation is given. The result for the equator can be found in Table 29

in the line "semi-diurnal tides, Laplace". It is found at once that the tides

at the poles are direct for all depths. They are also direct at the equator,

when the depth of the ocean is greater than 26,250 ft (8000 m); the range

becomes practically equal to the equilibrium value when the depth becomes

larger. Between 29,000 ft (8850 m) and 14,500 ft (4430 m) there must be

a critical depth, for which the tide at the equator changes from direct to

inverted. Not far below 7250 ft (2210 m) there seems to be soon a second

critical value; with smaller depths the tide is again direct. With inverted tide

at the equator and direct tide at the poles, there must be one or more pairs

of nodal circles y\ = symmetrically situated on both sides of the equator.

With h = 7250 ft (2210 m), this nodal line is at a geographical latitude of

about ±18°.

(b) Hough's Theory

120 years after the theory of Laplace, Hough (1897, p. 201 ; 1898, p. 139;

see also Hillebrand, 1913) has given a further development and an improve-

ment of the Laplace theory. He substituted expansions in spherical harmonics

for the series of powers of cos & and sin#; these expansions offer the advantage

of converging more rapidly, otherwise the computations are similar to those

of Laplace, but he succeeds in considering also the mutual attraction of the

particles of water. In Table 29, the values of Laplace have been compared

with those of Hough, for the long-period tides. The influence of the mutual

attraction consists in a decrease of the amplitude, however this decrease is not

especially large except in the periods of the free oscillations, which for ocean

depths of 58,100 ft (17,700 m) and 7250 ft (2210 m) are reduced to 9h 52min

and 18 h 4min respectively (see previous reference).

The free oscillations of the second and third species (s = 1 and s = 2) have

been especially analysed by Hough. Two waves of equal amplitude travelling

around the earth in opposite directions (with and against the rotation) will

give by their superposition on a non-rotating earth standing oscillations in

a form of spherical harmonic functions. On the rotating earth the waves will

have different velocities of propagation, so that normal standing oscillations

are split up into waves having the character of tesseral (s = 1) and sectorial

(s = 2) spheric harmonics travelling westward and eastward. The waves

travelling westward are more important, as they are faster than those travel-

ling eastward and because they have the same direction as the tidal forces.

Table 30 gives the period in sidereal time for these oscillations "of the first

class" which are of most importance in relation to the diurnal and semi-

diurnal tides, for different depths. At the same time certain steady motions

which are possible without change of level, where there is no rotation are

converted into long-period oscillations with change of level. The correspond-

ing moves are called as "of the second class". The quickest oscillation of the
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Table. 30. Periods of oscillations of "the first class"' on a rotating earth

in sidereal time
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The corresponding critical depths for the solar semi-diurnal tide are about

28,182 and 7375 ft (8894 and 2248 m). For the depths between these two

values the tide is inverted.

Hough has also computed the lunar semi-diurnal tides for which a/2a) =
= 0-96350. The ratios for the same four depths have been entered in Table 29.

One can see that the critical depths are now somewhat displaced; they lie

near 26,050 and 6450 ft (7938 and 1965 m). However, for the mean ocean

depths existing on the earth all semi-diurnal tides are always inversed.

(<:) Tides in Bounded Ocean Basins

Goldsborough (1913, p. 31, discussion by Doodson, 1928, p. 541) has

given a solution for a polar basin of uniform depth bounded by one or two

parallels of latitude. The difficulties, in this case as in all similar cases, are

in the fulfilment of the boundary conditions (transverse velocity zero at the

limiting parallel of latitude). Table 31 gives the amplitude of the tide for

Table 31. Component tides in a polar basin limited at 60° latitude

(Ratio of the amplitudes to the amplitudes given by the equilibrium theory)
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1928, p. 692) has also treated the case of an ocean extending from pole to pole

and bordered by two meridians (bi-angle on the sphere). The mathematical

difficulties become greater and require working with an infinite number of

functions, in order to meet the condition that, for the semi-diurnal tides, the

velocity perpendicular to the equator be zero, same as at the shores of the ocean.

Goldsborough has further given a solution for the case that the depth varies

with the square of the cosine of the latitude and is bordered by two meridians

which are 60° apart. The mean depth has been selected at 15,500 ft (5200 m).

The conditions are roughly like those of the Atlantic Ocean. He had found

previously that large semi-diurnal tides cannot develop in a polar basin for

the given depths, from which he inferred that the Atlantic Ocean cannot get

its large semi-diurnal tides from the Polar Ocean through simple propagation;

they must be increased through resonance. This seems to be confirmed by

the fact that the critical depth in the case under consideration is about

16,880 ft (4800 m), whereas the mean depth of the Atlantic Ocean is about

12,700 ft (3900 m). The condition of resonance would be fulfilled at this

depth by a bi-angle with an opening of 53°.

Proudman and Doodson (1928, p. 32) have contributed important papers

to the problem of tides in bounded oceans. The former has extended Taylor's

method, which he used for the computation of the tides in a rectangular

basin and which was discussed on p. 210, to ocean basins with a different

configuration. He reduced it in a general way to an infinite system of linear

equations, which can be solved according to the method of the infinite de-

terminants. He thus was successful in deriving the tides of a semi-circular

ocean of uniform depth. An application of this solution is given in the dis-

cussion of the tides of the Black Sea, which can be approximately compared

with a sea of this form. Much more difficult is the computation of the tides

of a hemispheric ocean bordered by a complete meridian. Doodson has de-

veloped a numerical method of integration of his own, which, however, has

not yet been applied in practice. Goldsborough (1931, p. 689; 1933,

p. 241) has also dealt with this problem, but his method is rather complicated

and there are no numerical results. Proudman (1916, p. 1 ; 1931, p. 294) has

recently shown that a solution of an infinite series of simultaneous equations

takes care of the problem, but that the solution of a finite number of equations

can already give a quite sufficient approximation. The mathematical de-

velopments are very difficult and the work in connection with the numerical

computation, even for one single depth, is most extensive. Such computations

have been made by Doodson (1936, p. 273; 1938, p. 311) for the partial

tide Kx (a = co) and K2 {a = 2g>) for various depths. The essential results

of these important investigations are given summarily as follows.

In the following figures the tide is represented by lines of equal phase

(co-tidal lines) and by lines of equal amplitude (co-range lines). The numbers

on the co-tidal lines represent the phase in degrees. The zero-value is the phase
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given by the equilibrium theory for the central meridian. The amplitude

for Ki is given in a ratio to the amplitude of the equilibrium theory. For

the semi-diurnal tide K2 , on the contrary, the maximum amplitude has been

taken equal to one and the lines 0-8, 0-6, 0-4, 0-2 have been drawn "solid".

For each case, the amplitude can be computed relative to the maximum value

of the equilibrium theory H with the aid of a coefficient. Only a quadrant

of the entire ocean has been described, as there is always symmetry to the

equator and to the central meridian.

It is shown that, for the diurnal tide Kx , there is resonance for the depths

of 26,510 ft (8080 m) and 9449 ft (2880 m). Figure 121 illustrates the tide

for the cases ft
= 0, 20 and 30 63, which corresponds to the depths oo,

14,520 ft (4420 m), and 9449 ft (2880 m). ft
= gives the equilibrium tide.

Tide ranges at zero occur at the equator and at the pole, and the tide wave

travels from east to west in the shape of co-tidal lines converging towards

the pole. Decreasing depth influences especially the tide at the pole. Whereas

here the amplitude was previously zero, it now reaches there the maximum,
and the co-tidal lines do not converge any longer towards the pole; at the

boundary meridian there is a constant variation of the phase from the equator

to the pole. The changes in the tidal picture beyond the first resonance depth

are not great, but a point where the amplitude is zero, namely, an amphidromy,

can be spotted in the central meridian. This form then appears clearly with

the second resonance depth of 9449 ft (2880 m); this amphidromy governs

the entire picture of the ocean, while, in a most characteristic way, the large

amplitudes remain in the vicinity of the pole. In the equatorial section of

the ocean, the variations in phase are only slight, with very small amplitudes.

With further decreasing depth, the central amphidromy splits up apparently

in two parts; one lies in the western, the other one in the eastern quadrant,

but the amplitudes are very small. Large amplitudes only occur in the polar

regions where the whole phenomenon of the diurnal tide is concentrated.

Figure 122 shows three cases of the semi-diurnal tide K2 . The first case

applies again for
ft
= and gives the equilibrium tide. We notice a star-

shaped distribution of the co-tidal lines around the pole with a regular

propagation of the tide from east to west with maximum amplitudes at the

equator. If the depth becomes smaller, the amphidromic distribution of the

co-tidal lines moves suothward (northern hemisphere) on the central meridian

and at ft
= 2 (depth 44-3 km) a well-developed amphidromy appears at

approximately 52°. With further decreasing depth this amphidromy splits

in two; with ft
= 6 (depth 14-8 km) each quadrant is governed by an am-

phidromy with a positive direction of rotation (counter-clockwise). The

picture becomes more and more complicated with further decreasing depth,

so that with ft
= 18 (depth 4-92 km) each hemisphere has already 3 amphi-

dromies (two in the positive, one in the negative sense of rotation), as shown

by the centre, picture in Fig. 122. With a depth of 14,500 ft (4430 m)
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approaching the real depths of the oceans, there remain in each quadrant two
positively rotating amphidromies. The tidal range is largest at the boundary

with the maximum occurring at the equator at the western and the eastern

points.

These investigations of Proudman and Doodson are undoubtedly of great

importance for the future tidal research. Surveying the theory of the tides,

we recognize how, starting from the simple equilibrium theory and progressing

by way of the Laplacian dynamic theory of the tides in an ocean covering

uniformly the whole earth, it arrives at the study of the tides of bounded seas.

These studies lead to results that are comparable to the tides in the actual

seas bounded by the continents. So far, the most important knowledge is

the occurrence of systems of amphidromies, which sometimes may comprise

the whole or parts of an ocean. When a large number of such theoretical

tidal pictures have been computed for different depths and limits of the

oceans, they will form a good basis for the understanding of the observed

tidal features.

3. Canal Theory of the Tides

The Laplacian theory started from the assumption of an ocean covering

the entire earth and considered only recently the land masses bounding the

seas. Airy (1845) has attempted to solve the phenomena of the tides by

a study of the oscillatory processes in narrow canals covering the whole earth

or parts of it (see Lamb, 1932, p. 267). He thus became the founder of the

"canal theory of the tides"; he has treated this theory exhaustively in his

famous paper "Tides and waves". Although, in many respects, it can hardly

claim today the same significance it had previously, it still offers many
interesting features, especially for the explanation of the tides in narrow

sections of the oceans, in straits and estuaries.

(a) Canal of Uniform Depth Extending all over the Earth

In chapter VI, paragraph 1 we discovered the tide waves in a canal of

constant rectangular cross-section. The pertaining equations of motion (VI. 8)

were expressed in the horizontal and vertical displacements of the water

particles £ and r\. On account of the assumed narrowness of the canal, the

transverse motions and the influence of the Coriolis force are neglected.

For a continuous canal of a uniform depth h coincident with the earth's

equator, it is appropriate to introduce the geographical longitude X (counted

from a fixed meridian eastward) instead of the .r-co-ordinate. The equations

then take the form (c
2 = gh, R the radius of the earth)

:

U~*mP and n = -hffx . (IX. 9)

The free oscillations of such a canal can be easily derived therefrom : one

obtains
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f = (A scossk+Bs smsX)cos{aQ t + e) (IX. 10)

in which s is an integer and a = S{c/R). These normal oscillations are

simple harmonic with the period T = 2nR/sc. The free waves all travel

with the velocity c and travel around the circumference of the earth in

a time T . The most important free wave for the theory of the tides is the

one which needs 24 h to travel around the equator. The necessary velocity

is 900 nm/h or 1670 km/h, and to it corresponds an ocean depth of 72,160 ft

(22 km). For smaller ocean depths the waves travel slow (e.g. for h = 1 6,400 ft

(5000 m), c = 432 nm/h or 800 km/h, and T = 50 h), for greater depths more
rapidly. The free wave can only keep pace with the sun when the depth is

13 nm or 22 km; for the free wave moving with the moon the critical depth

is 12-5 nm or 205 km.

For the oscillations forced by a periodic horizontal tidal force, the force

Kh has to be added to the right term of the first equation in (IX. 9). This force

is Kh
= rasin2#, according to equation (VIII. 11), if ft is the zenith distance

of the tide-producing body.

The simplest case is, when the disturbing body (moon) describes a circular

orbit in the equatorial plane of the earth with the apparent angular velocity

n = co— nx when co = angular velocity of the earth's rotation and n x
= angular

velocity of the moon in her orbit. Then, according to (VIII. 12), d = nt+ X+ e

and the equation of motion can be written

d2
£ c2 d2

i

W = ^2^-wsrn2(n/+A+£)

.

(IX. 11)

For the tides or forced waves we have, if we put

nR

mR1
1 . .,

sm2{nt Jr A+ e)
,

4c2 \-p

V = cos2(nt+ A+ e) = —-cos2(Hf+ A+e). (IX.12)
2 l-p2 2 1— (of/crS)

According to (VIII. 18), we have H = mR/g (for the moon 55 cm, for the

sun 24 cm) and a = 2n is the frequency of the forced oscillation, a = 2c/R
the frequency of the free oscillation (s = 2). \H is the amplitude of the tide

producing force, so that J//cos2(«/+ A+ e) represents the tide according to

the equilibrium theory.

The tide is therefore semi-diurnal (the lunar day being of course under-

stood), and, when/; > 1 or c < nR and a > a it is inverted; on the contrary

when p < 1 or c > nR and a < a it is direct. The second form of the equa-

tion for the amplitude of r\ corresponds to the equation (1.9) and one sees

19*
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that, when the period of the force corresponds to the period of the free

wave, there is resonance. This is the case for the sun, when the depth of the

canal is 22 km or 13 nm, and for the moon when the depth is 205 km or

12 5 nm. In the actual case of the earth we have

ff
° = jl h = in A

a2 n2R R R'

For the oceans hjR is about ',„ at its maximum, and a will always be larger

than a so that the tides of the ocean will be inverted at the equator. The

tides which are caused by the disturbing bodies are not large; their amplitude

for a depth of 1300 ft (4000 m) is only 6 cm. For greater depths the tide

becomes larger, but the tides remain inverted until the critical depth of 22 km
or 13 nm; for depths beyond this limit the tides become direct and approximate

more and more values of the equilibrium theory.

If the canal is not in the equator, but parallel to a circle of latitude <p,

whereas the orbit of the disturbing body remains in the equatorial plane, then

COS & — COS (p cos {nt+ A+ £

)

and we have

Hcos2w 1

2 1— /?
2 cos2

</>

cos2(w*+ A+e). (IX. 13 a)

If c < nR, the tides will be direct or inverted, depending on whether

cos^ ^ c/nR. Therefore, it is possible that in higher latitudes the tides are

opposite to the tides in lower latitudes.

If the moon be not in the plane of the equator, but has the pole dis-

tance A, we have to use for cos# the equation (VIII. 12) in which % = 90°—
</>

1 c2H
V =^ 1 2D2 • 2 sin2/sin2^cos(/2/ + A+ e)

2 c2— fi
2R2sm2

x

+\ 2

C
IT • , sin2 xsin2 Jcos2(Atf+ A+ f) . (\XA3b)

2 c2— n2R2sm2
x

It is then seen that the first term is a diurnal tide of period 2n/n which

is added to the semi-diurnal tide. The diurnal tide vanishes, when the de-

clination of the disturbing body is zero, i.e. when the moon crosses the

equator, i.e. twice a month. The amplitude of the semi-diurnal tide with

a period n/n, however, is smaller than before in the ratio of sinM:l.

In the case of a canal coinciding with a meridian we should consider the fact that the undis-

turbed figure of the free surface is one of relative equilibrium under gravity and centrifugal force,

and is therefore not exactly circular. We will assume by anticipation that in a narrow canal the

disturbances are sensibly the same as if the earth were at rest, and the disturbing body were to

revolve round it with the proper relative motion. If the moon be supposed to move in the plane

of the equator cos# = costf>cos(/z+ /e) if nt+e is the hour angle from the meridian of the canal.
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The fluctuations above and below the disturbed mean level are given by

r] = j i^
7
-" cos20cos2(/tf+e) (IX. 14)

The tide is semi-diurnal and if, as in the actual case of the earth, c < nR,

there will be high water at latitudes above 45°, and low water at latitudes

below 45°, when the moon is in the meridian of the canal and vice versa.

These circumstances would all be reversed if the moon is 90° from that

meridian.

(b) Canals of Limited Extent *

In the case of a canal which does not extend over the entire earth, but

is of limited extent, there is no more exact agreement or exact opposition

between the tidal force and tidal elevation. The boundary condition 1=0
for the ends of the canal X = ±a is added to the equation of motion. In the

case of an equatorial canal, the equation of motion has the same form

as (IX. 11). e can be left out in its cos term if the origin of time is the passage

of the moon through the meridian in the center of the canal (X = 0).

If we neglect the inertia of the water (d2£/dt 2 = 0), we find

rj = ~//{cos2(/7?+ ;0-
S1
^cos2///j . (IX. 15)

This solution is designated as the elevations on the "corrected equilibrium

theory'\ At the centre of the canal (X = 0) we have

rj =lH(l-~a
\cos2nt. (IX. 16)

If a is small, the range is here very small, but there is not a node in the

absolute sense of the term. The time of high water coincides here with the

transit of the moon through the meridian. At the ends of the canal X = ±_a

we have according to Lamb and Swain (1915)

rj = ±HR cos2(}it±aTe ) ;
(IX.17)

* Let us take the case of forced oscillations in a canal of small dimensions closed at both ends

(inland sea) generated by a uniform horizontal force X= mcos((Tt-\-e). The lake which is out-

stretched in a west-east direction has a length /; v = T
t

: TK (ratio of the period of the free oscilla-

tions to the period of the force) and (p the geographical latitude, then the range at the end of the

land-locked sea is then

/?i tan n
2t] = — /cos

<f>
v .

8 arc 2

For the semi-diurnal tide, the phase (referred to the centre meridian of the lake) is at the west

end 9/;, at the east end 3/?, if v < 1 (direct tides); with v > 1 we have the inverted (indirect) tides,

(see Lamb, 1932, p. 226).



294 Theory of the Tides

in which

„ , sin4a . cos4a—

1

A cose = 1 ~
A— and A sin2£ = -

A
.

4a 4a

If a is small, then

R =2a and e = -£*;+ fa (IX. 18)

approximately apply.

High water starts at the eastern end at the time (—a— e )/15°h, with small a,

therefore, at the time (9
h— a°/45°) at the western end, on the contrary, at

the time +(a-e )/15°, with smaller a at the time (3
h+ a°/45°) h. If the canal

is of finite length, these times are reduced to about 9
h

at the eastern end

and 3
h
at the western end, and the tide has the simple character of a standing

wave, which character it loses more and more the longer the canal is.

Taking the inertia of the water into account, it is easy to find that the

tide in the canal will be

H 1

2 p
2 -\ cos 2 (/zf-M)

—

7~— {sin 2 (/?/ + a) cos 2p (A+ a)

— s\n2{nt— a)cos2/>(A— a)} (IX. 19)

If p tends to the limit we obtain (IX. 15) of the equilibrium theory.

In all cases which are at all comparable with oceanic conditions p is con-

siderably greater than unity. At the ends of the canal we find

tj = iHR 1 cos2(nt±a =F ea) ,

where

^ » sin 4a— sin4»a
R 1 cos2e1

= v^—— .

*

and

tflSin2£l = P(cos4/,«-cos4a)

(p
2— l)sin4/?a

When a is small (IX. 18) applies again, as with the corrected equilibrium

theory. The value of R 1 becomes infinite (resonance) in (IX. 20), also when
s'm4pa = 0. This determines the critical lengths of the canal, for which there

is a free period of the canal equal to n/n, i.e. 12 lunar hours or half a lunar

day. In fact, the free oscillation period of a canal of the extension 2a is

4aR/c, and if this should be

ji/n , 4pa = it

.

If the canal is not at the equator, but in the geographical latitude
<f>,

the
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equation (IX. 19) changes only insofar as H is replaced by 7/cos2 and

p = (nR/c)coS(p.

For a series of zonal canals which can be imagined to exist in the oceans

between the continents, Prufer (1936) and Dietrich (1944) have computed

the distribution of heights and phases along these canals for the M2 and

the Kx tide. An example is given in Table 32; it refers to the transverse

oscillation in a zonal canal of the Atlantic Ocean at 10°S. latitude. The forced

Table 32. Forced transverse oscillation of the Atlantic at 10°<S. Lat.,

S5°W-13°E. long, (between South America and Africa)

(Depth = 4-52 km. Phase referred to Greenwich)

x°
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4. Remarks Concerning the Dynamic Theory of Tides

The dynamic theory of the tides of Laplace starts out from the general

dynamic principle of the wave theory, according to which in an oscillating

system the motions forced by an external disturbing force have the same

period as this force, but that the amplitudes and phases of these motions

are also influenced by the possible free oscillations of this system. This in-

fluence is the stronger, the more the periods of the free oscillations approach

those of the disturbing force. For the completeness of such a dynamic theory,

it is necessary to know and to consider all the free oscillations of the system.

According to V. Bjerknes, however, this has not always been done. He has

proven that a kind of possible free oscillations, which he calls "gravoid-

elastoidic" oscillations, have been disregarded, which, if taken into account,

will possibly modify the results. He, therefore, designates the Laplacian

theory as a "semi-dynamic" method, to explain the theory of ocean tides.

However, the complete theory in the exact form has not yet been applied

hitherto.

The elastoidic waves occur in rotating fluids as oscillating motions under

the influence of forces which originates by the variation of the centrifugal

force in the case of radial displacements of the water particles. These are

forces acting like the elastic forces on a solid body, for which reason they

are called "elastoidic". This kind of waves can appear both as standing and

as progressive waves, and it is preferable to start from the elastoidic free

oscillations in a tube bent to return in itself. It can be shown that, in case

of a slightly bent tube of rectangular cross-section, the length of the period

of the free oscillations depends only upon the ratio of the lateral side to the

radial side of the cross-section. Such elastoidic waves must, of course, also

occur, for instance, in a canal along the equator of the rotating earth; only

in this case the action of gravity must be added, which is also directed towards

the vortex axis of the rotating water ring. These gravoid-elastoidic waves have

the same character as those of the purely elastoid oscillations. If the water

ring has a free surface, as in the case of an equatorial canal, and if V is

the period of the orbit of the oscillating motion, L the width of the tube

(canal) and h the thickness of the layer in which the wave disturbance occurs,

the equation h = 4L2/gT'2 applies both for standing and for progressive waves

of a gravoid-elastoidic character.

The wave disturbance appears as an oscillatory motion between the side

walls of the open canal. When all particles move in the same phase, the dis-

turbance has the character of a standing oscillation ; if the phase varies along

the cross-section, the disturbance propagates along the canal .*

* It is noteworthy that the above formula is identical with the simple Merian formula for

oscillations for a rectangular basin of the length L and the depth /;. The oscillations would then

only be gravitational waves between the walls of the canal. Has the "elastoid" of the oscillations

not disappeared by neglecting?
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If we select for V =TQ — \ sidereal day = 86,164 sec, it appears that the

"gravoid-elastoidic" surface waves only occur in an extremely thin surface

layer; if we imagine an ocean of a constant depth of 5 km or divided in tubes

(canals) of 8-5 km width, the top layer influenced by the waves would be

only 4 mm thick. This shows that the inner elastoid oscillations of the sea

are without any importance for the variations of the surface. This changes

however, if we consider the "gravoid-elastoidic" surface disturbances in thicker

layers. The equation gives the following correlated values of the depth h and

the width L of the canal, when V = T , hence for diurnal waves:

h
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longitudinal oscillations which are identical in all longitudes and for which

<r
2 > 4co2

, i.e. the period is smaller than 12 h, he obtains results which do

not show any essential difference with those obtained by Laplace and Hough.

With a2 < 4oj2
, i.e. for periods larger than 12 h, Solberg expects results

differing widely therefrom. A second part of the research in connection here-

with is still lacking. Proudman (1942, p. 261) has recently broached the

question of the validity of the Laplacian theory and, comparing its results

with those of a more accurate theory, discussed thoroughly their discrepancies.

He has been able to show that the cellular oscillations with the semi-diurnal

components can only be of any importance in the vicinity of the poles, whereas

the long period components acquire importance only in the vicinity of the

equator. Diurnal cellular oscillations are only possible if their horizontal

wave length is of the same order of magnitude as the water depth. This,

however, is not the case for the actual oceans. Generally speaking, the

necessary improvements made to the solution of the simpler Laplacian theory

seem to be only very slight for the ocean as a whole.



Chapter X

The Harmonic Analysis of Tidal

Observations

(1) The Preparation of Sea-level Recordings and their Scientific Use

The dynamic theory of the tides teaches that the tide waves caused by the

tide-generating forces must have the period of these forces. However, due

to the complicated bottom configuration of the oceans and of the contours

of the continents, it is not possible to derive theoretically the amplitude and

the phase of these waves for the various points of the oceans with sufficient

accuracy. There is, however, no doubt that the tides obey laws. So, whereas

the periods of the occurring tides are determined theoretically, once for all,

by the harmonic analysis of the tide potential (see p. 263), their amplitudes

and phases remain unknown. They can, however, be computed for a locality

where a series of extended observations of the sea level is available. Inasmuch

as the tidal phenomenon constantly repeats itself within a certain interval,

it is to be expected that the amplitudes and phases of the tide waves derived

from the observations are for each locality constants, which are charac-

teristic for the tidal process in that particular locality. The method used

for this reduction is called the harmonic analysis of the tides, and since it

was introduced by Thomson and Darwin, it has developed into an exceedingly

important method of analysing tidal observations. The most important part

of the very extensive literature on this subject has already been given in

discussing the harmonic analysis of the tide potential. Important contributions

have been made by Borgen, and later by Rauschelbach (1924) and es-

pecially by Doodson (1928, p. 223).

The procedure is based on the principle that any periodic motion or

oscillation can always be resolved into the sum of a series of single harmonic

motions.

To a harmonic term of the tide potential as given in (VII. 17) and which

in general the form Q = Ccos(<rt+V ) corresponds according to the dynamic

theory, a component of the form

7] = Hcos(at+V -x) (X.l)

a is the frequency (angular velocity) of the potential component and equally

of the forced partial tide, V is the argument of the tide for
h of the first day

of the series of observations to be subjected to the harmonic analysis; it can be
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computed from the orbital elements of the tide-generating bodies, which

vary in relation to the mean time, x/a is the lag between the tide and the tide

potential, respectively, the time of the high water interval, x is called the phase

of the partial tide in the locality in question or kappa number. H is the mean
value of the amplitude or semi-range of the component or partial tide. The
epoch x is the difference between the theoretical and actual phase as determined

from the tidal observation. H and x are functions of localities on the earth

and are different for each harbour. It is these constants which must be derived

from the tidal observations. They are called the harmonic tidal constants

of a locality. If they are known, together with the diurnal part of the partial

tide V , the above-mentioned formula permits computation of, for any time t

of the day, the deviation r\ of the surface from mean level and, if the height

of mean level above chart datum is known, the water depth at that time.

The main purpose of the harmonic analysis consists in deriving from the

heights of the observed tides in a locality over a great length of time (sea-

level recordings or hourly observations) the harmonic constants H and x for

each component of the tides. The observations should be considered as the

superposition of a large number of waves of the form (X. 1), each with differ-

ent H , a and x. Each one of these waves repeats itself in the same way in

the time interval T = 2nja. Let us consider such a wave with the period To

and let us divide the tidal curve into equal parts of this length T . For instance

in the case of the M2 tide, in two periods of 12 and 24 lunar h respectively

(counted from the transit of the moon through the meridian in the locality)

high and low water will always occur in each of these equal parts at the same

hour. We read from the tidal curve the height of the sea level for each lunar

hour, and if we take for each particular hour the average height over a very

long series of lunar days, the average variation in the sea level of such a lunar

day will be particularly apparent. At the same time, all other components

which have different periods check and counteract each other; therefore, if the

series of observations extends over a large number of lunar days, these different

components balance each other out. Thus, we can eliminate all other waves,

with the sole exception of the one under consideration, and the mean varia-

tion in sea level obtained in this manner can be regarded as that of the consi-

dered partial tide for one single day of observation. One-half of the range is the

amplitude, whereas the interval between the transit of the fictitious "moon"
through the meridian and the high water gives the phase of the partial tide.

The observations show the sea level rj as a function of time which can be

written in the form
r

tj = H cos(a t—x )+ 2j Hn cos (on t—xn)=

r

= B cos a t+C sin at+ \ Hn cos {on t— xn). (X. 2)
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The partial tide has the index (amplitude H
,
phase «0J period T = 2n/o ),

whereas the other tides are together under the summation sign; H cosx = B
and Hn s'mx = C .

If we multiply (X.2) once by cosr7 /, another time by smn^t, and if we

integrate these expressions from t = to t = pT
{) , where p is a large number,

hence over a large number of periods of the partial tide <r , we obtain

"Jo
cos , B p V H

r) . a tdt = pr ~ T ±
sin ° C;2*

,a-^J *;-<*
"= 1

COS (7„ _ \ + cos
. 2/wr— x„ . x,

sin \<x ^
/
— sin

(X.3)

These relations show that the computation of B and C„, which determine

the amplitude //„ and the phase « of the partial tide (t , become more accurate

when pT increases, i.e. the accuracy increases with the number of full periods

of the partial tide a which are used to compute averages. We then obtain

with a good approximation

u cos 2 T cos *i4 rv a\H
° sin "• = W« J

nM a°""- (X ' 4)

It is also possible to determine the smallest number of complete periods

which are necessary to eliminate a certain partial tide to have the expression

(X.4) become valid. The influence of other partial tides on a selected partial

tide which is to be obtained as clearly as possible, becomes important when

the frequencies approach each other. Thus, for instance, the S2 tide will prove

to be particularly disturbing in computing the M2 tide. However, this influ-

ence will vanish when in (X.3) the term below the summation sign for this

partial tide becomes zero. This happens for the disturbing a
n
component,

when

— 2pjt approximates 2sn

Consequently

-. (X.5)
P

In which both 5 and p should be large integers.

If we take, for instance, the S2 tide, then a
n
= 15°, whereas for the M2 tide

<j = 14-492051°; therefore, in this case,

— = 103505 average solar hours. (X.6)

If observations are available extending over a period of about one year, and

if this complete material is to be used, then pT is approximately 360 days,

and with T = \ day p is aproximately 720. The ratio of two whole
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numbers s and p nearest to this figure which satisfy (X.6) is obtained when

p = 738 and s = 713. This means that pT = 369 days, is the most favour-

able length of time to be selected for the harmonic analysis of the M2 tide.

The periods of the tide being incommensurable, it is possible to analyse to

the fullest extent only one tide at a time, by selecting the proper interval,

and the influence of the other tides will become smaller, the greater the

interval. The time of 369 days proves to be the most favourable interval for

a great number of component tides with a short period, so that this interval

has generally been selected for the reduction of the tides. In case the obser-

vations extend over a shorter period of time, the procedure has to be changed

somewhat; however, this depends essentially upon the form in which the

material is available.

The numerical computation of the average variation in sea level caused

by a partial tide, requires the division of the whole tidal curve into equal

intervals of one period (component days), whose lengths are the periods of

the various diurnal components or twice the periods of the semi-diurnals.

Such component days are divided into twenty-four equal parts called com-

ponent hours. The tidal curve is read at the component hours. Then follows

the averaging of all hourly values, in order to obtain the average variation

during a component day. By repeating this procedure for other periods, it is

possible to separate all partial tides from each other. However, such an analysis

would require extremely extensive, laborious and time-consuming compu-
tations and only the observations made with a self-recording tide gauge could

be used, with the exclusion of observations consisting in hourly readings of

the sea level. Roberts and Darwin have therefore given the following important

simplification of the procedure.

The tidal curve is tabulated in mean solar hours, so that one obtains

24 sums of the water height which will serve all components. Then one distri-

butes the solar hourly heights among the component hours as nearly as possi-

ble. The speed or periods of the components determine where the various

component hours fall upon the solar hours. If sx is the hourly speed of the

mean sun (= 15°) or diurnal solar component, cx the speed for any other

diurnal component, then cjst
= cj\5 represents the portion of any com-

ponent hour corresponding to a solar hour. A half component hour will

be lost or gained accordingly as c is less or greater than s, when \slj{sl^cl)

= 15/(30—^2cx) solar hours shall have elapsed from the beginning. At sub-

sequent regular intervals of sJis^

c

x)
= 15/(15^-'C 1) solar hours, a whole

component hour will be lost or gained, that is, the difference between com-

ponent and solar hours will increase one at such time. If cx < sx as is usually

the case, two adjacent solar hours at one of these times fall upon the same

component hour, i.e. within a half component hour of the time aimed at;

but if ex > sx a component hour will be skipped because no solar hour occurs

within a half component hour of it. If the maximum divergence allowed be
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assumed to be a half solar hour, then all solar hours are not represented by

component hours when c
t
< s; and when cx > sx a solar hour may oc-

casionally be taken to represent each of two consecutive component hours.

For each partial tide printed blanks can be used, in which is indicated at

certain spots by special marks where the hourly heights are to be entered.

These blanks do indicate the places where an hourly height has to be entered

in two successive columns, or where two successive hourly heights have to

be entered in the same column. The labour of writing still remains con-

siderable. Excellent forms for this computation can be found in Hann (1939,

p. 85) and Pollack (1926 or 28). Each variation in mean sea level given by

the mean values for each component hour is then developed into a series

of simple, double, etc., speed of the considered tide. We finally obtain, ac-

cording to the usual procedure of the Fourier Series

rj = p^+p[ cos ((Jl t-x[)+p:,cos(2ol t-x!2)+ ...+P^cos(n<r1 t-x'„)+ ... (X.7)

The hourly values of the spearate component hours of a partial tide obtained by the above-

mentioned method do not give exactly the sea level at the indicated full tidal hour, but the mean

sea level at all times during an interval of a half hour before and a half hour after the full tidal hour.

Therefore, the resulting mean value will be a trifle smaller (numerically) than the true ordinate.

To obtain the true value, we need to introduce an augmenting factor. If the correct presentation of

ij is given by

>]
=- P + PiCOs(f7l t~y. 1 ) + P2 cos(2a1t—y2) + ...-rPn cos(,na 1 t — y.

ll)+... (X.8)

we obtain (X.7) by substituting each value in (X.8) by the average value for the interval from a half

hour before until a half hour after the full hour. As an hour is given by 7724, this means the

integration of (X.8) extends (/— T)/48 to (/+T)/48 and subsequent division by the entire interval

7/24. As we seek P„, we generally obtain

, /CT/24
p = p'

sin(wr/24)

D
o
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the vicinity of the shores and in shallow water, the amplitude of the tides

cannot be regarded any longer as small in comparison with the water depth.

Frictional influences will cause deformations of the purely harmonic form

of the tide curve, in the form of overtides.

Borgen (1894) (see Hessen, 1928, p. 1) extended Darwin's method, where-

by a great deal of computation work is eliminated and which needs less ob-

servations. It is based upon a special way of grouping the material which per-

mits to emphasize each time one of the partial tides, whereas the others remain

completely repressed. The reduction of the tide curve is first made in ordinary

mean solar time, so that for each day we have a horizontal series of 24 values.

If we add up a series of n days, the Sx
and 5"

2-tide which conform to solar

time, will be added, whereas the other components will cancel each other

to a certain extent. A certain period of n days can now be found, in which

the influence of a given tide, for instance of M2 attains a positive maximum

;

then another period of n days in which the influence of this tide M2 has

a negative maximum, whereas Sx and S2 are present in both series in equal

intensity. If we form the difference of the sums of the two series, Sx and S2

will vanish and the effect of M2 appears to be doubled. This procedure is

repeated m times and the result of the m series summarized. If m is selected

correctly, the influence of all other components, with the exception of the

one which is wanted, can be repressed to the greatest possible extent. Ac-

cording to this method, we need 92 selected days to determine M2 accurately,

whereas Darwin's method requires observations over a full year.

This Borgen method is most elegant, but nevertheless it proves very

difficult in practice, because the calculation, etc. cannot be left to untrained

help. This is, in effect, the reason why it is seldom used.

Another reduction factor should be mentioned which should be incorporated into the methods

of Darwin and Borgen in order that the results of the harmonic analysis of different intervals may

be compared with each other. Contrary to the more accurate evaluations of the tide potential by

Doodson, the influence of the regression of the nodes of the moon's orbit is not incorporated in

the earlier classical methods as an independent component tide, but rather as a slow variation

of the amplitude and phase of the other components. The amplitudes Pi,P», ...Pn ... in (X. 8) derived

from observations contain functions: (a) of the angle J between the moon's orbit and the equator,

(b) functions of the obliquity (f ) of the ecliptic; and (c) functions of the inclination /' of the moon's

orbit to the ecliptic. Darwin proposed to reduce P to the average value of these functions. He takes

a certain point of reference of the moon's orbit and then applies to the amplitude a factor/. Then

P = fH and H is the average amplitude of the tide. H and x are the harmonic constants of the

considered tidal constituent. Tables of these factors for l//can be found for different values of J in

Darwin and Borgen, respectively.

The harmonic constants of the most important components can also be

derived with a fair accuracy from shorter periods of observation. For this

purpose, one requires at least 15 or 29 days of observation. Doodson (1938)

has given instructions for working up the observations for such short periods
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(see also Miyahara, and Niimi, 1939). For the complete analysis of

observations extending over one year, see also, the papers written by Harris

(1897) and Schureman (1924) and those of Sterneck (1923, p. 39).

The procedure is somewhat different for deriving the harmonic constants

of the long-period tides. It starts with the daily sums of the hourly heights,

which are freed from the influence of the short-period components by simple

reduction factors. For the rest, one proceeds according to the same principles

as previously; only the execution is simpler and clearer. For more detail-

ed information we refer to the papers of Darwin and Hessen (1920,

p. 441).

2. Characteristics of the Tides as Shown by their Harmonic Constants

The amplitudes and kappa numbers of the harmonic analysis are par-

ticularly well suited to define more clearly a number of properties of the

tides. As stated already, each component or partial tide varies as to its

importance. A few determine the essential features of the tidal process. The

7 most important component tides are: M2 , S2 , N2 , K2 and K1 ,01 ,P1 and,

among these, the two largest semi-diurnal and diurnal tides M2 , S2 and Klt Ox

respectively, stand out as the most important ones. The rvalue of M2 gives,

for semi-diurnal tides, the approximate time of occurrence of the high water

after the transit of the moon through the meridian (high water lunitidal

interval, establishment). At full and new moon the sun and the moon pass

through the meridian simultaneously at noon; however, the two components

have a lag which are given by the ^-values xM and xs . The difference of the

angular velocities or speeds of 30°- 28 -984° = 1 016°/h or 24-384° in a day

which makes the M2 tide lag daily by 84 h = 50 min behind the S2 tide.

At the syzygies both waves have the same phase and their amplitudes are

to be added M2 + S2 ; the time of this spring tide is determined by the K-value

of the ,S2-tide which is *s/30 hours in civil time. The interval between the

spring tide and full moon and new moon is given by xs— xM \
(xs— «Af)/24-384

= 004(*s
— y.M) is then the quantity which is called the "age of the tide".

The difference between the amplitudes M»— S2 gives the amplitude of the

neap tides. The effect of a small diurnal tide on a large semi-diurnal tide

is to increase the heights of alternate high water and decrease the heights

of the intermediate high waters with similar effects in the heights of low water.

Similarly, alternate high waters may be accelerated in time and the inter-

mediate high waters may be retarded with similar effects in the times of low

water. These effects are referred to as the "diurnal inequality". The diurnal

inequality, therefore, is mainly governed by the amplitude of S2 .

For the diurnal tides the phase of the Kx tide, together with the phase

of the O x tide, determines the time of high water. This high water does not

show any relationship any more with the transit of the moon through the

meridian. The phase of the principal tide Kx conforms to sidereal time and

20
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it can, therefore, be said that high water occurs within a constant time interval

from the transit of a certain star through the meridian. Without considering

the Ox tide, the x-number of Kx will give in local time the high water on

21 June; on each following day it occurs 4 min earlier, for each month 2 h

earlier, so that (always in a rough approximation) with such tides the high

water will occur at each hour of the day in the course of a year. For instance,

if high water occurs on 21 June at 2 p.m., it can be expected on 21 December

at 2 a.m. The Ox tide causes a periodical increase and decrease in the am-

plitude of Kx , as does the S2 tide for the M2 tide. The contrast between

spring tides and neap tides occurs with the diurnal tides every 13-66 days,

whereas they do occur every 14-765 days for the semi-diurnal tides. The

relative speed is here xK-x = 15041°-13-943° = 1098°/h, or 26-3528° per

day. The spring tides occur every 360:26-353° = 13-66 days, which is 26-74

times during the course of a year. For the semi-diurnal tides, such spring

tides occur only 24-74 times in a year. The difference xK— xQ which corresponds

to the "age of the tide" gives the delay of the spring tide. xK— x : 26-3528°

= (xK— xo)0038 is the lag in days after the greatest declination of the

moon.

A further complication, in the case of diurnal tides, is caused by the Px

tide, whose high water occurs 4 min later each day; hence, its relative motion

against the Kx tide is 8 min/day, 4 h/month. Kx and Px have the same phase

at the time of the summer solstice; at that time, both tides reinforce each

other. The same is the case for the winter solstice, where the difference in

phase is 6 x 4 = 24 h. At the equinoxes (March and September), the dif-

ference in phase is 12 h; the two components counteract each other. The Px

tide causes the diurnal tides to have a maximum not at the equinoxes but

at the solstices. This is a remarkable feature of this type of tide, distinguishing

it from the semi-diurnal tides.

In order to classify the tides of a locality, P, van der Stok (1897) has

adopted three principal types of tides based on the ratio of the sum of the

amplitudes of the diurnal components Kx+ O x to the sum of the amplitudes

of the semi-diurnal components M2+ S2 . This ratio increases when the diurnal

inequality of the tides increases. It attains a maximum when there is only

K 4- O
one high water a day. Therefore F = — is designated as the "Form-

Ma +£2
zahl" of the tides. Courtier (1938) (see also Dietrich, 1944, p. 69,

who increased the number from 3 to 4) has given the following classifi-

cation.

F: 0—0-25 semi-diurnal type; two high waters and two low waters daily

of approximately the same height. The interval between the transit of the

moon and high water at a locality is nearly constant. The mean range at

spring tide is 2{M2+

S

2).
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F: 0-25—1-5 mixed, mainly semi-diurnal type. There are daily two high

and two low waters which, however, show inequalities in height and time,

which attain their maximum when the declination of the moon has passed

its maximum. The mean spring tide range is 2(M2+ SV).

F: 1-5—3 mixed, mainly diurnal type. Occasionally only one high water

a day, following the maximum declination of the moon. At other times there

are two high waters in the day, which show, however, strong inequalities

in height and time, especially when the moon has passed through the equator.

The mean spring tide range is 2(AT1+01).

F: 3 0— oo diurnal type. Only one high water daily, and the semi-diurnal

almost vanishes. At neap tide, when the moon has passed through the

equatorial plane, there can also be two high waters. The mean spring tide

range is 2(X1+ #1).

Table 33. Harmonic constants of the principal component

tides for four ports.

Characteristic of the different types of tides

Place...
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of the principal tides of these four harbours. Immingham has a semi-diurnal

type of tides with a ratio F = 01 1 ; San Francisco has the mixed type, mainly

semi-diurnal tides with a ratio F = 0-90; Manila shows a mixed, but mainly

diurnal type of tides F = 215, whereas Don Son in the Gulf of Tonkin has

a pronounced diurnal tide with the very high ratio F = 18 9. These four

main tides (M2 , S2 , Kt , Ox) are responsible for the tidal picture because they

account for about 70% of the total amplitude in all four harbours. When
we take into account the other important components N2 , K2 and Px this

percentage is increased to about 83%.

San Franciso mixed,dominant semi diurnal type, ^"=090

Manila mixed, dominant full diurnal type, ^"=2-15

Do-Son full diurnal type, F-189

8 10
OO

16 18 20 22 24 26 28 30
S( O • N l

Fig. 123. Tide curves for March 1936 O ( ® ) >
phases of the moon. N and S are the

largest northern and southern declination of the moon; Q passage of the moon through

the Equator.

3. Variations in the Harmonic Tidal Constants

When tidal records extending over a number of years are available for

a locality the harmonic constants of the main constituants can be computed

for each period of one year. Contrary to what would be expected, they are

not constant, but show small variations from year to year, both in the
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amplitudes and in the phases, even when the above-mentioned reduction to

average conditions is made. As an example. Table 34 gives a summary of

the variations in amplitude and phase of the seven most important compo-

nents M2 , S2 , N2 , K2 and /v
1 ,0 1 ,P1 , for Bombay for the years 1906-15. It

shows that the variations from one year to another are relatively small for am-

Table 34. Variations in tidal constants of Bombay 1906-15
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although much weaker, but here there is a particularly evident period of

approximately 4 years with a large amplitude. Doodson proves that part

of this variation is due to the influence of the N2 on M2 , whereas the period

of 19 years can be eliminated, when the variation in the ascending node of

the moon's orbit is taken into account. If these two reductions are made,

Fig. 124. Harmonic constant M2 for St. John (Bay of Newfoundland). H 1 , original

values; --•--•, reduced values; , average secular variation (Doodson).

there remains in both cases under consideration a secular variation, which

for St. John is a decrease of the amplitude of about 3 cm and increase in

the phase of 1° over a period of 20 years. In Bombay, the decrease of the

amplitude is constantly 0085 cm per year, whereas in the period 1880-1900 the

phase increased from 329-2° to 331-5°, and then decreased again. The harmonic

constants of N2 and S2 show similar variations ; the amplitude of Kx decreases

constantly since 1890. Karachi, on the contrary, shows variations in the

opposite direction (amplitude M2 in 1870, 75-3 cm; in 1920, 79-3 cm), whereas

the phase does not show a steady variation.

The variations of the mean sea level in Bombay, Karachi and Aden show
the following values:

Decade ...

Bombay (cm)

Karachi (cm)

Aden (cm)

Karachi shows the greatest variations with about 3-6 cm within 30 years;

however, the increase seems to be accelerated. These variations in the mean
sea level are not sufficiently important to explain the observed secular

880-90
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variations in M2 . It seems that these can only be explained by variations

in the bottom configuration (sand banks, etc.) in the immediate vicinity of

the harbours.

124

123

122

121

120

331'

330'

329'

328'
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hourly readings. Especially the luni-lidal intervals are taken into account, and

the procedure varies according to whether the different "establishments" are

used. It is, therefore, based principally upon the semi-diurnal components

and can only be used to advantage for harbours in which the diurnal inequality

is small. If this inequality is great, an additional number of corrections is

required to obtain usable results. The method fails completely where diurnal

tides prevail. The method is based on equation (IX. 2), where we have the

superposition of the semi-diurnal lunar tide with the semi-diurnal solar tide

for the equilibrium theory. In reality, each tide lags against the position of

the celestial body in the sky which is considered by introducing x numbers.

The equation (IX. 2) is, therefore, replaced by

r\ = Acos[2(0-a)-x]+A'cos[2{6-a')-x'] . (X.9)

The values with the prime are for the sun. d is the sidereal time, a and a' the

right ascensions of the moon and sun respectively, x = Q— a and x = Q— a

are the hour-angles of the moon and the sun and we have x = x'—y^

if ip = a— a is the difference in hour angles of the moon and sun. We still

wish to mention that 2x = aM t and 2x' = as t in which aM and os are the

frequencies of the semi-diurnal lunar and solar tide respectively. t/15° is the

time expressed in lunar hours, t'/15° are solar hours = t hours.

In this way (X.9) becomes

rj =Acos[2(T'-y>)-x]+A'cos[2i;'-x']. (X.10)

The two terms on the right can be contracted into a cos member with a some-

what variable amplitude and phase and we obtain

in which

rj = Ccos|2{(t'-v0-^+j8}

C = [A 2 +A'2+ 2AA'cos2y'] 1 i2
,

tan2fl = A+A-cos2y ' y
=1'+-2-

(X.ll)

When the moon goes through the local meridian, the angular distance

of the sun is y) and the time t'/15° but the angular distance of the high water

caused by the sun and the moon is y>-hl(x— «')• * and «' are constant, but y>

varies 0-5080°/h and 12192° or 0-81°/h day

w = x'-x = \{gm-gs) = 15°- 14-492° = 0-508°

The variation of 2ip', which makes /S periodical, becomes

2y' = (as— Om)

if £ = 0041 («'— x) represents the age of the tide

,f7
['7] (X.12)

14-77 days
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From (X. 11) we obtain for the time of the high water

l5^ + 2-2 arCta%+^cos2y -

J-
(X ' 13)

The third term in the brackets is a semi-monthly inequality. At the time of

full and new moon a— a' = xp = and the

time of high water =^o «— arc tan
30°[ *""

—

A+A'cos(x-x')\'
(X,14)

This is the approximate true local time of the high water at full and new

moon and is called the "vulgar establishment". To the contrary,

is the "corrected" establishment or the mean high water lunitidal interval.

Determining the vulgar establishment is very simple and, consequently,

it is known for many harbours. On the contrary, the computation of the

corrected establishment requires continuous observations of the sea level

(determination of the ^-number of M2). The corrected establishment still

deviates from individual values of the lunitidal interval by considerable

amounts. Greater accuracy is obtained if, for each day of the lunar period,

one computes the specific lunitidal interval according to (X. 13) or derives

it statistically from lengthy observations.

The expression for C in (X. 11) gives at spring time (time of occurrence

of the spring tide)

C = A+A', 2y' = 0; from which follows that spring time = day

before full and new moon— age of the tide. (X. 16)

If Z is the height of the mean sea level above chart datum, the

height of the high water = Zq+C — approximately

Z + (A+A'cos2y>').

height of the low water = Z —C = approximately

Z —(A J
rA 'cos 2tp').

(X.17)

It can be seen from equations (X. 11) to (X. 17) that if the lunitidal interval

and the true solar time of the transit of the moon through the meridian for

one day are known, one has all the factors necessary to determine the semi-

diurnal tide, insofar as they are dependent on the simple orbital motion

of the disturbing body in the equatorial plane. However in order that the

basic values computed therefrom can be compared with the actual ones,

they must be corrected, for the influence of the declination and the parallax

of moon and sun and then also for the daily inequality; these corrections

themselves vary with the declination of the disturbing bodies. For this reason,

this procedure can only be applied, where the diurnal inequality is small
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(like in the North Atlantic Ocean). Consequently the following rules can

be applied for the computation of time and height of the high water:

Time of the high water = true solar time of the culmination of the moon +
+ lunitidal interval + correction for declination + correction for

parallax + diurnal inequality — equation of time.

Height of the high water = height of the high water above chart datum +
+ correction for declination + correction for parallax -f- diurnal

inequality.

The corrections should only be taken for the moon whereas those for

the sun being small can be neglected. The lunitidal interval is equal to

the mean lunitidal interval + the semi-monthly inequality; likewise the

height of the high water above chart datum = the mean height of the high

water + the semi-monthly inequality. For a certain harbour tables and graphs

are made up in advance, which facilitate considerably the actual computation.

As an example, we refer to the curves of the lunitidal intervals for

Portsmouth and Aden given in Fig. 126. The former harbour is characteristic

14 16 18 20 22 2 4 6 6 10 12
• o ... •

Hours after passage of moon through menoian, hr

Fig. 126. Curves for the lunar tide interval and range for Portsmouth and Aden. (For

Portsmouth 28 h have been deducted (Darwin).)*

for its semi-diurnal tides, in the latter the diurnal inequality is strongly notice-

able, wherefore a difference has to be made between day and night. Let us

try to find time and height of the high water in Aden, for instance, on

17 March 1889. At that particular date, the moon passes through the local

* The curve for Aden, March must bz shifted upwards by 0-3 hours.
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meridian at 11 min after noon, viz. 1211 p.m. The curve gives a lunitidal

interval of 8 h 4 min the correction for the lunar parallax was 2 min so

that the high water will occur at 2017 h. The table gives for the height of

the high water 6-89 ft (210 cm), the correction was 5 cm so that the corrected

height of the high water will be 2 m 15 cm.

Not many tide tables of this kind are being used, although they would

be very practical.

(b) Method of the Reference Stations

Instead of computing extensive tables for the time and height of the high

and low waters for all coastal localities, which may be very numerous and

for which detailed tidal observations are generally not available, this is only

done for a certain number of selected harbours. The tide tables contain only

detailed predictions of all high water and low water times and heights for

such "reference localities'". If synchronous observations of the tide are

available over a certain period of time for two localities lying in the same

tidal area, the average tidal differences in time and height between these

localities can be ascertained, and it will be seen that these differences remain

somewhat constant. The tidal curve at the subordinate station is similar to

that at the reference station, i.e. the differences in time and the difference

between the high and low waters are almost constant between the two stations.

One station can serve as a reference for a great number of more or less neigh-

bouring coastal localities, and the tidal difference of a certain locality is the

difference in time between the establishment of the subordinate station as

compared with the establishment of the reference station corrected by the

difference in longitude expressed in time.

The computation of the tides for the subordinate station is then simply

made by adding the tidal difference to the tidal values of the reference station

valid for that particular day, which can be found in the tables computed in

advance. In practice the tables will give all high waters, low waters and times.

Then there is a table for each subordinate station giving the difference in

amplitude and in time for the high waters and low waters between the sub-

ordinate and reference station. Furthermore, there is a table giving the cor-

rections for amplitude and time to be applied to spring and neap tides. This

method is particularly suited for tides which are of the semi-diurnal and

diurnal type, and less suited for the mixed type, where errors up to several

hours occur; the errors in height are correspondingly large,

(c) The Harmonic Method

The common tide table gives generally only the height of the tide at the

time of high and low water and complicated computations are necessary to

determine with some accuracy this height for other hours. In view of the

increasing need for accurate knowledge of the water depth, they are in-

sufficient to solve correctly a great number of problems. The harmonic method

of computing the tides eliminates this deficiency. The dynamic theory and
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the harmonic analysis of the tides show that the tide, in a given locality,

can be considered as a combination of a great number of constituent tides

with constant amplitude and constant phase. These constants have been

computed by harmonic analysis from good tidal records for coastal localities

for the most important components, and they are characteristic and valid

for the tide in a locality without any changes for a long period of time.

Nothing prevents then the computation of any component tide for a given

day of the year, and the sum of all these partial tides then gives the tidal

process of the whole day under consideration, i.e. for each hour the expected

height of the water above chart datum. If Z is the height of the mean sea

level above chart datum, the height of the water H (above chart datum) at

the time / is given by H = Z + ^,cost/,-. A
i
is the amplitude of the partial

tide i and U
t

= a
t
t+ T

{
+P

{
in which a

t
is the frequency of the partial tide,

T
f
is the angle which the tide i has reached in the locality, on the day con-

cerned at
h (T

t
increases every day by 24a

{) and Pt
is the phase of the tide,

i.e. the negative x number of the component tide (corrected for the local

time); P, + 7i-
is the total angle of the tide in the locality on the day under

20
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offer the great advantage of permitting the comparison of the predicted tide

with the actual tide, and are, therefore, very instructive. These comparisons

make it further possible to examine thoroughly the influence of air pressure

and wind on the sea level in a harbour with strong tides. Figure 127 gives

such a comparison for Pola, on 6 January, 1909; it shows a tidal curve at

full moon with calm weather and a very strongly developed first low water.

One can see how well the prediction corresponds to the tidal process, although

only seven partial tides were used for the prediction (Kesslitz, 1900).

The practical use of the harmonic method has only been carried through

in recent times, although there is no doubt that it is the most accurate method.

Especially for localities where the amplitudes of the diurnal tides are large

it is far superior to all other methods. Of course, it presupposes the know-

ledge of the harmonic constants. However, with time the number of coastal

localities for which these constants are known increases rapidly. The German

tide tables of 1939 contain the harmonic constants of about 1800 localities

for as many as ten tides, the Admiralty tide tables (1938) has these constants

for 2650 reference localities; besides for 3500 subordinate stations the con-

stants for M2 , S2 , Ki and Ox have been derived from the reference stations

by means of differences (Admiralty tide tables, part IT, London, 1938),

A practical procedure of predicting the height of the tide in a locality at any arbitrary time

has been given by the German Tide tables starting in 1940. The following 10 components are used:

Tides M2
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Table 35. Computation of the range of the tide at Casablanca

on 29 March, 1939, at 11 h 30 min G. M. T
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1876 is in the South Kensington Museum in London. Similar machines have

been built later by the Government of the Indies, by France (Michel-Morot,

1908, p. 394), by the USA (1918) and by Germany (Rauschelbach, 1924,

p. 285). The latest machine, which can take care of 62 partial tides, has been

completed in Germany in 1938. The construction of all these machines is

based essentially upon the following features. System of gearing by means

of which shafts representing the different components are made to rotate

(see Figs. 128 and 129) with angular speeds proportional to the actual speeds

of the components; then, a system of cranks and sliding frames for obtaining

harmonic motion. Then, summation chains connecting the individual com-

ponent elements, by means of which the sums of the harmonic terms are

transmitted to the recording device. Furthermore, there is a system of dials

and pointer for indicating in a convenient manner the height of the tide for

successive instants of time and also the time of the high and low waters.

Furthermore, a tide curve of graphic representation of the tide automatically

constructed by the machine. To set the harmonic constants, the registration

of the time and height of about 1400 high and low waters in print for a year

requires approximately 10-15 h according to the complexity of the tides

in the locality concerned (see Shureman, 1924, p. 123).



Chapter XI

Tides and Tidal Currents

in the Proximity of Land

1. Preliminary Remarks

The following paragraphs are part of the more recent developments in the

tidal theory. It is not so much intended to consider the tides of the oceans

as a whole, but rather to explain the actual tides in certain adjacent seas.

Starting out from the dynamical theory, the phenomena are treated from

a geophysical viewpoint. Above all, the important relations between the

vertical tide and the tidal currents are studied in detail.

In studying the tides synthetically, it was found best to proceed from the

elementary to the more complicated questions and to study separately the

modifying effects of single factors, amongst which the most important are

the influences of the configuration of shore and bottom, the change caused

by the earth's rotation and the distortion caused by friction. The results

were applied first to the tidal phenomena of shallow parts of the ocean com-

municating with the vast expansions of the open oceans by straits and chan-

nels. The tides of these adjacent seas seem often to be independent and,

apparently, their relationship with the tides of the open oceans is often very

limited. These shallow waters are located without exception on the wide con-

tinental shelf; shallow water and complicated orographical coastal contours

can strongly influence the tides. The friction caused by the sea bottoms is

so powerful here that it is able to influence the motions of the entire water

layer up to the surface. In this sense we then speak of tides "in the proximity

of land".

2. General Considerations on the Influence of the Earth's Rotation and of the

Friction on Tides and Tidal Currents

(a) Influences Due to the Earth's Rotation

In Chapter VI, 1/a (p. 142) is explained the form of the progressive tide

waves in a non-rotating canal of uniform depth, if friction is neglected.

The vertical tide and the tidal currents are given by the equations (VI. 3 and 6);

they have the form
t) = rj sm((7t—xx)

,
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u = Vh* sin(o7— xx)
,

with

c = - = \gh . (XI. 1)

The tidal current, in the direction of propagation of the wave, is purely

alternating and attains its maximum velocity at high and low water. The

motion is uniform from the surface to the bottom. The velocity of pro-

pagation is c =
|
gh.

If the canal has a rotating motion, these tide waves are changed into Kelvin

waves (p. 206, equation VI. 103). The only difference with conditions in

a non-rotating canal is that the amplitude of the vertical tide, and also that

of the alternating tidal currents varies across a section of the canal. The

amplitude decreases from right to left, referred to the direction in which the

wave progresses if the rotation is counter clockwise (contra solem) and from

left to right if clockwise (cum sole). These conditions are clearly illustrated

in Fig. 130, according to Sverdrup (1926).

s--o

'=§'
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r\ = r) sm(ot— xx)
,

/k / 1

U = V hV F-T2 foSmOrf-**)

,

*=yVi
52—3 ^ cos(<T/— *x)

, (XI. 2)

In contrast to the Kelvin waves, the amplitude of the wave is constant along

the wave-front. To the motion in the direction of progress, which may be

called the longitudinal, is now added a motion along the wave-front which

may be called transversal, and there is a phase difference of quarter period

length between the longitudinal and the transversal motion. If the velocities

of the fluid particles are represented by a central vector diagram, the end-

points of the vectors lie on an ellipse, or we can say with Sverdrup that the

configuration of the motion is an ellipse. The direction in which the velocities

rotate is negative or cum sole, if the rotation of the disk is positive (contra

solem) or vice versa. The direction of the maximum velocity of the current

(major axis of the current ellipse) coincides with the direction of progress of

the waves and is reached when the wave reaches its maximum height. The
ratio between the axes of the ellipse, i.e. the ratio between the minimum
and maximum velocity, is s =f/cr. The current ellipse is the same for all

depths and maximum velocity occurs at the time of high or low water as was

mentioned before. The velocity of propagation is c = \/gh\/\j{\ — s2), which is

greater compared with the velocity of a wave of the same period length on

a non-rotating disk. One can see that, when s = 1 or a = /, the velocities

become infinite, i.e. the wave degenerates into a simple circular motion

at r\ = (inertia motion ; see vol. 1/2, Chapter VI/6). Consequently, tide

waves are only possible in this case if s < 1 or a > f. This means that the

period of the tide wave must be larger than the period of the inertia wave.

Figure 131 shows conditions when s = 0-6.

In a very wide rotating canal a tide wave might perhaps be expected to be characterized by

a rotary motion of the fluid particles in the middle of the canal and alternating motion along

the walls. A wave of this kind, however, could not exist in an infinitely long canal, because the

velocity of progress would vary with the distance from the walls but it seems possible that such

a wave could exist on a short stretch. A solution of the fundamental equation which satisfies the

boundary conditions in this case seems impossible, but a formal solution which does not agree

with any fixed boundary conditions may be of value in future applications, because it represents

a wave of an intermediate character compared with the two kinds of waves treated previously.

According to Sverdrup, this wave has the form:

i i \
f—m

rj = r) e (mlc 'ysm(ot—xx), r = a
fm
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/e / 1 / 1-r2

u = l/-l/ - - i^oe'^^sinCff/- jcc) with c = \/gh'\/ - -

,

(XI. 3)
f hi \-rl

} (l — srf

v = y- 1/-I—rj e-(mlc)ycos(ot-xx) .

These equations have for it and v the same form as (XI. 2), except that 5 is replaced by r. According

to (XI. 3) the configuration of the motion is an ellipse with the ratio r between the axes. When r = 0,

we have m = /and c = ygh and this corresponds to a tide wave of the Kelvin type (narrow canal);

if, on the contrary, m = 0, r = fja = s, we obtain the conditions prevailing on the rotating disk

S--06
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The forces which cause the tidal motions are, on the one hand, the tide-gene-

rating forces, and on the other hand, the gradient forces; their components
along the axes of the co-ordinates are given by

+*|S and + g|,
drj

,
dri-g 8x

and -*&>
(XI. 4)

to which correspond the frictionless tides and frictionless tidal currents of

the form

u = u^cosat -\- u 2 s\nat = Ucos(at—a)
,

v = v^osat +v2 sinat = Vs'm(at—(?)
,

r\ = r)1 cos at -{-r]2 smat = rj cos(at—e) .

The two forces (XI. 4) can be combined into one single force of the form

Gx = Gjc.iCOSoY+G^sina?
,

|

Gy = Gy,icos at+Gy,2smat

.

(XI. 5)

(XI. 6)

Since the tide-generating forces in small seas are small compared to the

gradient force, Gxl Gx2 and, similarly, G
y

are represented by —giptjjdx)

and —g(dr)2/dx), respectively and similarly by —gidrjjdy), —g(dr}2/8y) respec-

tively. The end-point of the vectors representing the frictionless tidal current

(u, v) and the total force (Gx , Gy)
lie on an ellipse (current ellipse and diagram

of forces). According to the theory, frictionless tidal current and tidal force

are in a mutual adjustment to each other: To the force (XI. 6) belongs a fric-

tionless tidal current (XL 5) and vice versa.

The Coriolis force is directed perpendicularly to the direction of the motion.

If all other forces, acting upon a body that was moving with a horizontal

velocity c, referred to the rotating co-ordinate system, suddenly ceased to

act, the body, under the influence of this force of inertia, would continue

in an orbit which in the rotating co-ordinate system would be a circle with the

radius of r = elf. If the rotation is positive (contra solem), the direction of

revolution in the circle of inertia is negative (cum sole) and vice versa.

Consequently, rotations cum sole are favoured on the rotating earth. If

a water particle completes a circle with the radius / and the angular velo-

city a, its orbital velocity is s = al and, when the rotation is cum sole, u =
= s cosat and v = s s'mat. The current diagram is then a circle. The cor-

responding centrifugal force is a2
l = as , the Coriolis force acting inward

is fs . If these forces are in equilibrium (a =/), the water particle moves

on the circle of inertia. For tide waves 2oosin0 =f<a (the most impor-

tant case), so that a tidal force S must be present to compensate for the

difference (a—f)s = S. Relative to the motion of the particle, the com-

ponents of the force will then be: Gx
— —Ss'mat Gy

= — Scosat and it is



Tides and Tidal Currents in the Proximity of Land 325

apparent that to a current diagram which is a circle and whose sense of ro-

tation is cum sole belongs a circular diagram of forces cum sole, whose phase

is 90° "ahead of" the phase of the velocity, here we have s = Sj{a—f).

It can also be proven that a circular current diagram contra solem

u = r cos at, v = r s'mat requires a tidal force contra solem with

Gx = —Rsinat , Gv = Rcosat and rn =

A comparison of the two cases shows that equal tidal forces (R = S)

produce very different tidal current velocities, depending on whether they

rotate cum sole or contra solem; at 54° N. lat. (southern North Sea) we have

for M2 a-f = 0-229 x 10
-4 and o+f= 2-58 x 10

-4
, so that on the Northern

Hemisphere a frictionless tidal current rotating to the right subject to the

action of the Coriolis force is eleven times stronger than a current rotating

to the left, all other conditions being alike.

If two of these circular motions are superimposed, we can derive the general

case of a force rotating in an ellipse. To a tidal force

Gx = -{R+S)s\nat, Gy = (R-S)cosat

,

(XI.7)

to which corresponds a diagram of forces which has the form of an ellipse

with the semi-axes (R-\-S) and (R—S), belongs a tidal current

/ &
,

S \
u = ——j. H 7 cos at = A cos at

\o+f a-fJ

l R S \ .

v = —— 7 sine? = Bsmat

.

\a+f a-f)

The current diagram is an ellipse with the semi-axes

R S

(XI. 8)

a+f^a-f
The discussion of the equations (XI. 7 and 8) leads to very important con-

clusions. If R and S are equal, then the cum sole current is definitely pre-

ponderant among the frictionless tidal currents, because a—f < a-\-f Further

we have

if S > R: B always negative; with a diagram of forces cum sole, friction-

less tidal current always cum sole;

if S = R: Gy = : with alternating force, frictionless tidal current cum sole,

axis ratio of the current ellipse/: a;

if S < R: with a diagram of forces contra solem, frictionless tidal current

cum sole, as long as R/S < (<y+f)/(p—f);

if -= = 4- or--—7^ = -: force contra solem, frictionless tidal current
S a—J R+S a

alternating;
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if n ,
„ > -

: force contra solem (small axis of the ellipse of force more
R-\-S a ^

than /: a times the large axis), frictionless tidal current contra solem,

with very weak velocities.

This compilation shows the extreme preponderance of the frictionless tidal

currents cum sole on the rotating earth. Thorade has compiled in Fig. 132

a few cases of diagrams of forces with corresponding current diagrams. The

force 6

Current

Fig. 132. Three examples of diagrams of tidal forces and corresponding current diagrams.

The vectors of the force originate at the centre of the dotted ellipse and go to the points

indicated by the hours of the tide. The corresponding vectors of the 'frictionless' cur-

rent connect the centre of the full drawn ellipse and the corresponding hours of the tide

(Thorade).

results are in full agreement with those found by Sverdrup in the analytical

way. Their importance and utilization are limited by the fact that in shallow

seas, where current measurements are easier, the frictional influences extend

from the bottom to the surface layers,

(c) Influence of the Friction

The influence of the friction on tidal currents has been the subject of papers

by Sverdrup and Thorade, and also by Fjeldstad (1929), after Lamb had

already treated the subject in a very elementary form in his Textbook of

Hydrodynamics (1932). It is important to ascertain the influence of the friction

caused by the bottom which, through turbulence will make itself felt in

a more or less extensive bottom layer. The conditions, in this case, are similar

to those for stationary ocean currents, except that here the tide waves are of

a periodic nature. The assumptions regarding the friction are the same in both

cases. Sverdrup and Fjeldstad have found integrals for the equations of wave

motion, whereas Thorade treats the problem in a more synthetical way,

which is more elementary, very clear and it gives a good insight in the way
friction works. We will follow essentially Thorade's method (1931 p. 152).
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As shown previously, a circular tidal force S rotating cum sole commands
a circular frictionless current cum sole with the radius s = S/(o—f). It is to

be expected that frictional influences will decrease the radius of this current

diagram (ellipse) with increasing depth until it becomes zero at the sea bottom.

The water particles of thin individual layers describe circles with the radius sjo,

which decrease with depth, until the motion vanishes at the bottom, whereby
at the same time a retardation of the phase occurs increasing with depth.

For deriving the laws governing this decrease of the radius and increase of the

retardation of phase, Thorade uses the same idea which has been used by
Ekman for his elementary derivation of the stationary gradient current, which

is explained in vol. 1/2, Chapter V. Let us give the entire water layer and
the sea bottom an additional circular motion s , with a phase difference of 180°

(— u = — s cosot, —v = -i-SoSinat). If the water is sufficiently deep, both

movements will equalise each other at the surface, which will be at rest,

whereas at the bottom (z = 0) we will have the velocity components — u and
— v . This circular motion of the bottom is transmitted by friction to the super-

imposed water layers decreasing gradually in intensity until it vanishes at

great height (z = oo). Thorade calls this system of motion the "differential

current" ("Differenzstrom") ; u, o at the bottom it is— u ,
— v , at a large

height above the bottom (z = oo) it is zero. It must satisfy the equations of

motion (v = ft/g, the kinematic coefficient of viscosity) (see vol. 1/2).

du . a2u

a, , ^ <XL9>

with the boundary conditions u = — w , d = — v for z = and u = o =
for z = co.

If the constant frictionless current (w , v ) is then added again to this

solution, we obtain the tidal current with friction, which satisfied its boundary
conditions

for z = 0, u — uQ = 0, o— v Q=0 and for z = oo, u+ w = Wo, v + v =0.

The integration of (XI. 9) gives

u = —s e-<"IDl)z cos lot— ^-z\
,

v = +s e- {n,Dl)z sin lot— -jrz\ ,

If the original motion was contra solem: —u = r cosot, —v = —r s'mot,

the "differential current" has the form

(XI.10)
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u = — r e~^,D^z cos lot— -jrA ,

d = — r e- (nlD *)z sin lot—^-z)
, (XI.11)

The quantities Dx and D2 have a meaning similar to that of Ekman's depth

of factional resistant D = 7i]/(2v/f) (see vol. 1/2, equation XIII. 24). However,

in (XI. 21) they are also dependent on the frequency a of the tide wave, and
for currents rotating to the right (Northern Hemisphere) Dx is considerably

larger than D2 for currents which rotate to the left. At 54° N. lat. (southern

North Sea), for instance, Dx
= 3-36 D2 . Both "differential currents" (XL 20

and 21) s and r are represented vectorially by a logarithmic spiral; in Fig. 133

Fig. 133. Behaviour of the differential current in the presence of tidal currents (Thorade).

AC = s and AD = r, for a height z, are two vectors of the rotary motion

and AB = — s and — r respectively. In order to obtain the actual tidal

current, the frictionless current s and r is added geometrically to s and r

respectively. CE = BA = s is added geometrically to AC; in the height z

above the bottom, this will give a current with the vector

AE = BC = s = s V(l + e-^'D^ - 2e~^D^ cos(ti/D1)z (XI. 12)

for the current rotating to the right,

BD = r = r }/(\+e-(2*lD^ -2e-^D^ cos(n/D2)z (XL 12)

for the current rotating to the left. Figure 134 gives for <£ = 54° and for

the main lunar tide M2 , s and r as a function of z/j/v; the curves are similar

to those of the stationary gradient current (vol. 1/2, equation XIII.4c).

Through adequate superposition of ^ and r , we can obtain all kinds of

frictionless current at the sea surface and equations (XL 9 to 12) give the current

diagrams with friction. For the Northern Hemisphere, the following cases are

possible

:

(a) Alternating frictionless current: then s = r and in the case illustrated by Fig. 134 the

current above the height of approximately z = 460/ i/v is very weakly rotating to the right, almost

alternating; below this height we have r > s, the current figures become an ellipse rotating to the

left and this the stronger, the closer to the bottom.
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(b) Frictionless current rotating to the right: r < s . In Fig. 134 the solid curve s must be moved

to the right according to s . In most cases there will then still be a point of intersection with the

dotted curve r. Above it the current rotates elliptically to the right, downwards elliptically to the

.
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as upon the coefficient of friction v. The vector diagram of the current is an

ellipse, the ratio of the small axis to the large axis is smaller than in the case

of an infinite ocean, where the ratio is exactly equal to s. The effect of the

Coriolis force is partly compensated by the slope of the wave crest transversely

to the direction of propagation. Under these circumstances, such a wave
cannot travel without changing its form; however, the solution will remain

valid for a relatively long distance. The velocity of propagation is no longer

as it was in (XI. 2), but will be

c =n\ gh
X \-s2 '

in which the factor n depends in a complicated way upon the depth h, the

frequency a and/. The factor n is the ratio of c/c , when c = \/gh \/\j(\ — s2
)

or the velocity of the wave in absence of turbulence. Sverdrup has given

the following Table 36 for n.

Table 36. The ratio c/c as function

of h \/a/2v and s

-V-V 2v
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(3) % = the angle of orientation which the major axis of the ellipse forms

with the positive axis; it is positive, when the maximum velocity (cor-

responding to the maximum wave height) is to the left of the + x-axis.

(4) The angle r (in time r/a) which gives the phase difference expressed

in degrees between the time of the maximum velocity and the time

of maximum wave height.

2JMP+NQ)
{M2-Q2

) + {N2-P2Y
2(MP+NQ)

(XI. 14)

Fig. 135.

All these quantities can be computed in a simple way with (XL 24) from

the values M, N, P, Q, as shown by Werenskiold (1916, p. 360)

2V = j/| ^\V{(M+Qf+ (N-Pf}+\{(M-Qf+ (N+Pf}\ ,

2aV =
|/| jW{(M+Qr+ (N-Py}-V{(M-Qf+ (N+Pf}}

tan 2%

tan2T =
(M2-Q2)-(N 2-P 2

)

Table 37 contains two cases computed according to the equations (XI. 23)

;

both are for the M2 tide (a = 1 -4052 x 10
-4

). In both cases the current diagram

is an ellipse cum sole, with the greatest velocities at the surface. The minimum
velocity decreases more rapidly with depth than the maximum velocity. This

causes the ellipse to become narrower in approaching the bottom. The

maximum velocity occurs before the high water, the difference increases with

depth. The conditions in cases of friction can be represented schematically

in Fig. 136, according to Figs. 130 and 131. A discussion of the equation

(XI. 23) by Fjeldstad gives the same conclusions and results as found by

Thorade and Sverdrup in a different way.

Sverdrup and Fjeldstad deal also with the case which is important for

the polar regions, when a sea is covered by a layer of ice (pack-ice) which

dampens the movement of the water through friction. In that case the boundary
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Table 37. Current data for tide waves, taking the friction into account

(a= 1 -4052 x 10-")

Case 1: Polar Sea, </> = 72°N., /= l-387x 10"4
, s = 0-987, depth

50 m, coefficient of eddy viscosity v = 182.

Depth (m)...
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speaking, comparisons have shown that the principal phenomena are cor-

rectly represented by the theory. Sverdrup and Fjeldstad tested mainly the

current observations obtained during the "Maud" expedition, from 1918

S--0%j2h--40

Fig. 136. Tide wave in a rotating, (s = 0-6) unlimited canal (Sverdrup). In upper figure

of B, current diagram at the surface; lower figure current diagram in 3/4 depth; otherwise

the same as in Fig. 130.

to 1925, on the North Siberian shelf, which were made mostly in the presence

of a more or less thick layer of pack-ice. Figure 137 reproduces graphically

the observations of St. 8 (18 July, 1924, 76-5° N., 141-5° E., depth 22 m).

40-20 20 40 cnrVsec
NE Om

NW

MW

Fig. 137. Tide currents on the Siberian shelf. Station 8 (18 July, 1924) (Sverdrup).

The vertical section A has been placed in the direction of propagation of

the wave (NW. to SE.), the component of the current in the direction of

progress is represented for every Greenwich lunar hour. B gives the vector

diagram for the currents for and 12 m depth. There are three circumstances
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pointing to great resistance: The maximum velocity is not at the surface,

but below it and is reached 2 h before high water; the velocity of propagation

of the wave is only 10 m/sec, whereas ygh gives 14-7 m/sec. Since the

currents are practically alternating, we can assume s = and fx = vq

= 690 cm-1
g sec

-1
, but then the agreement with the observations is not good.

The observed currents in the upper layers change more slowly with depth

than those computed, but more rapidly close to the bottom. The computed

currents reach a maximum velocity about IT h before high water, but the

observed difference is 2 h. Fjeldstad has also taken into account the re-

sistance offered by the ice and has thus obtained a better agreement. For

the entire layer 0— 12 m the observations give in the vector diagram for

the currents V — 38 cm/sec, aV = — 5 cm/sec and a priming of the phase

of t = — 2 h, whereas the theory gives V = 38 cm/sec, aV — —T56 and

/ = -l-2h.

The discussion made by Thorade of the current and tide observations in the

Deutsche Bucht shows that the agreement with the theory is only partially

satisfactory. Figure 138 gives a comparison and it shows that the observed

Oeptn

*- 3tm

50 lOO ^
cm /sec

Fig. 138. Tide currents in the Deutsche Bucht of the North Sea. <p = 54°. 0'N., I = 7°30'

18-21 June, 1924, (Thorade). Left: according to theory; right: according to the observations.

current ellipses are not in bad agreement with the theory. It is quite apparent

that, with an alternating tidal current at the surface (frictionless current),

there will be a rotation to the left approaching the bottom, and the ellipses

will grow wider and wider. Observations made at the Wester Sill show also that,

with a surface current rotating to the right, there is an alternating current
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in the layers above the bottom and then a rotation of the current to the left

at the bottom as required by the theory. However, when going into details,

deviations become noticeable which render the interpretation difficult. Figure

139 shows a section through stream filament according to the observations

Lunar hours (Greenwich)

Fig. 139. Section through stream filament in tide current in the Deutsche Bucht, 18 21 June,

1924, (Thorade). and — , observed; , computed.

on which Fig. 138 is based. In the bottom layers, the increase in velocity is much
less than required by the theoretical curve. The reason for this might be

found in the presence of a thin boundary layer at the bottom, over which the

upper watermasses glide. Disturbances appear also at the surface; the max-

imum velocity is found at 5 m depth, below this there is a rapid decrease down
to 10 m, although there were no singularities in the disturbance of the density.

Thorade has endeavoured to compute also the coefficient of friction for single

cases ; however, the results were unsatisfactory. Acceleration, pressure force,

Coriolis force and friction, being connected to each other in the equations of

motion, he tries, for a case with particularly good observations to determine

the friction, when the first three quantities are given. Apparently, the frictional

resistance is not proportional to the momentary differences in velocity, but,

depending upon depth, to those velocity differences which prevailed more or

less long before. Such an inertia of the turbulence would not be improbable,

but the differences in phase which were found were indeed too great as compared

with the differences in velocity. It is possible to gain an idea of the order of

magnitude of the coefficients of friction by forming mean values over an

entire tidal period. Thorade finds the following values:
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Depth (m) 1 5 10 20 30

v in g cm
-1

sec" 1 1140 1720 1250 952 75

The order of magnitude agrees with the values found by Sverdrup.

The current observations published by Defant and Schubert (1934) made
during 7 tidal periods by four ships of the Kattegat expedition in August 1931

were used for the study of the vertical distribution of the tidal currents. One

-3 -2

(a)

Mean current ellipses

semi diurnal tide

for

-5 m a. 2 5 -30 m

(b)

Theoretical distribution

for Om a. 25m

Fig. 140. Current diagrams in the southern Kattegat, August 1931.

obtains a better picture by computing mean values for all periods and all ships.

The current ellipses, in all depths, rotate cum sole. Neglecting the ellipse

at 17 m depth, they become narrower with increasing depth; at 5 m the ratio

of the axis was 51, at 25-30 m about 0-24. There is also the priming of

the phase with increasing depth, which conforms with the theory. The main

results are given in Table 38, whereas in Fig. 140 are reproduced the two

middle diagrams. Below is the theoretical distribution of the current com-

puted for a coefficient of friction v = 100. The similarity of these two fig-

ures is apparent; the size of the current diagrams in the lower layer is, ac-

cording to the observations, approximately twice the size of the computed

one. The cause of this might be the discontinuity layer between 13 and 17 m.

Grace (1929, p. 150) has investigated the influence of the friction by other
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Table 38. Tidal currents in the Kattegat, August 1931

337

Layers
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7) = 0. If we put: v = 7}: T„ = alien in which 7} == 2l/\/gh is the period

of the basin if it would be completely closed and TM
= 2n\o the period of

the force, we obtain for this independent tide:

1 =

rj =

2m
a2 cos vjt

mT^gh

sm\vnys\\\vji{\ — Iy) cos (ot+ e)

2ng cos vji
smv7t(y— l)cos(o7+ e)

(XI. 15)

It has the character of a standing wave. If v becomes \, §, §-, etc., I and rj

become infinite. This means resonance, which, in the absence of friction,

means that the amplitude of the motion increases so rapidly that the solution

becomes unapplicable. If vn is very small, i.e. if the period of the generating

force is large compared with the period of the slowest free oscillation of the

basin, we obtain for tj in first approximation:

m
rj = —l(y— l)cos(o7 + £) .

This is a simple oscillation with a nodal line at the opening, as if the water

were without inertia.

Closed eno Opening

#?•* °°Sed Cnd

03

Fig. 141. Distribution of the amplitude in a longitudinal section of a rectangular basin

of uniform depth for the independent tide (left) and the co-oscillating tide (right).

The left part of Fig. 141 gives the distribution of the amplitude in a basin,

for different values of v, assuming that the factor mT^c^ng = 1 cm. The
amplitudes of the independent tides increase, when the basin becomes deeper.

According to (VIII. 7) mjg = l-235xl0-7 for the combined lunar and solar

tides at the equator, so that the factor becomes 0-0273]/ A in cm. In the

latitude we must multiply mjg by cos<p.
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h = 36
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and of continuity are the same as there: (VI. 5 and 47). The solution for

certain simple cases, in which both the width and the depth of the canal vary

proportionally to the distance from the closed end, has already been given

in Lamb's Hydrodynamics (2nd edition, 1931, para. 186). Defant has made
other applications, using the Chrystal theory of seiches. Other theories of

seiches can also be used ; however, the simplest one seems to be the method of

the step-wise numerical integration of the hydrodynamical equations (p. 165).

It can be applied also, when the cross-sections along the valley vary very

irregularly and gives at once the entire form of oscillation of the basin (po-

sition of the nodal lines, amplitude of the horizontal and vertical displacements

and the tidal currents respectively).

To compute the co-oscillating tide one uses the equations (VI. 54 and 55)

and starts the computation at the closed end of the basin where must be

£ = and selects for r\ an arbitrary value, for instance 100. The period of

the co-oscillating tide is given by the selection of the component tide. There-

fore, £ and r\ can be computed step-wise from cross-section to cross-section.

Finally, one obtains at the end of the basin which opens into the ocean

(x = /) a certain value rj =v\
l

. However, according to the boundary con-

dition indicated above, the amplitude of the tide for this point in the open

ocean is Z. In order to obtain the correct distribution of the amplitude of

this tide, it will suffice to multiply each value by the ratio Z/r]
l

. The equations

remain satisfied, inasmuch as the proportionality factor in £ and rj eliminates

itself from them.

For the independent tide, which is generated directly by the tidal for-

ces, it is necessary to add to the equations a term for a periodic force

X = mcos{ot-\-e). The equations for the step-wise computation of £2 and r\%

from the values £x r}1} of the preceding cross-section will then be

l2 = S2 [l + (av2)l(4S2)]
(XI. 17)

fi+ f.

<?2 = fc+^y^i

in which AH = (m/g)Ax. The boundary conditions to be fulfilled are: at th

closed end (x = 0) £ = and at the open end (x = I) rj = 0. ?/ at the crosse

section (closed end) must be selected in such a way that the second con-

dition is fulfilled at the end of the computation. One varies the values of n-

which necessitate a repetition of the computation, until the correct value is

sufficiently narrowed down between two limits. This tedious calculation can

be considerably shortened by the following artifice. One selects for rj a value

resulting from the equation (XI. 15) for y = for a canal of equal length
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and constant cross-section (corresponding to the mean depth of the basin).

Then one proceeds with the computation according to (XI. 17) until the last

cross-section (opening). One obtains here a definite value for //, which, if

it were correct, would be zero. If this is not the case, one adds to the com-

puted distribution of amplitude another one, corresponding to a co-oscillating

tide, which at the last cross-section (opening) gives an amplitude — ?/. The

total sum of the two satisfies the differential equations of the independent

tide and also the boundary condition at the opening. In this way, one can

compute the independent tide nearly as rapidly as the co-oscillating tide.

A condition for these methods is that the tide-generating force in the

considered region of the ocean is synchronous everywhere along the "Talweg".

If this is not the case, for instance, for long and curved canals, one must

divide the tide-generating force into two periodic components with prescribed

phase, and make the computation for each component separately. Such

a division is always possible. The results added again with their respective

phases will give the longitudinal oscillation of the ocean basin, whereby all

orographic factors are taken into consideration.

(b) Effects of the Rotation of the Earth

As regards the influence of the Coriolis force on standing waves of the in-

dependent tide and the co-oscillating tide in adjacent and boundary seas, see par-

ticularly the explanations given in Chapter VI, 5th para. (p. 204), which can also

be applied in this instance. To consider in first approximation the Coriolis

force, it is sufficient to compute the horizontal tidal currents of both kinds of

tides from the corresponding values of I and, as explained en pp. 143, 154, to

determine the transverse oscillations caused by the deflecting force of the earth's

rotation. The superposition of the longitudinal oscillation and the transverse

oscillations transforms the nodal lines into amphidromies, which rotate contra

solem. The alternating tidal currents change into rotary currents and their

vector diagrams are ellipses, in this case there is not a complete equilibrium

between the transversal gradient and the Coriolis force (same as for the

Kelvin waves).

Taylor has given an accurate solution of the kind of co-oscillation which

can be expected of a rectangular bay of uniform depth with the external

tide before its opening into the open ocean. The result is explained on p. 210.

At some distance from the inner end, the co-oscillating tide has the simple

form of the superposition of the incoming and the reflected Kelvin wave

with alternating currents. In the part of the bay closest to the end, however,

there appear transverse oscillations which make it possible that the boundary

condition £ = at the closed end is fulfilled. Figures 91 and 92 show

the distribution of the co-tidal lines and co-range lines and the current dia-

grams of the tidal currents for a bay whose length is twice its width. The

case discussed corresponds approximately to the North Sea 53° N. lat., width

465 km, depth 74 m. The northern amphidromy shows the superposition of
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the incoming and the outgoing Kelvin wave; the southern amphidromy is

somewhat disturbed compared to the northern. The co-oscillating tide takes

the aspect of a tide wave travelling anti-clockwise (contra solem) along the

shore ; the tidal ranges are always largest at the shore and drop to zero towards

the centres of the amphidromies.

These investigations give valuable indications as to the extent to which

the earth's rotation influences the tidal phenomena. There where the influence

of the Coriolis force is small (narrow basins, small velocities and low geo-

graphical latitudes) both the independent and the co-oscillating tide have the

character of standing waves with very pronounced nodal lines; there where

the Coriolis force can develop more fully, both tides rather have the character

of waves travelling along the coast contra solem, with rotary currents in the

inner part of the bay.

(c) Influence of Friction

The influence of friction on the tidal motions in adjacent seas can be

explained by referring to the influence of friction on seiches (see Chap-

ter VI, para. 2/b, p. 155). In the case of these periodical motions, the wave

energy is reduced primarily by the eddy viscosity, which is caused by the ir-

regularities of the ocean bottom and of the coasts. The simplest way of con-

sidering this viscosity is, as was already pointed out in the afore mentioned

chapter, to introduce into the differential equations for the horizontal water

displacements a term of the form Pidg/dt). It means that, if /? is constant,

the friction is proportional to the velocity of the motion. This assumption

does not quite correspond to our knowledge as to how the friction is related

to the velocities in case of a turbulent state of motion; however, it has the

advantage that the calculations can be completed until the end, thus per-

mitting one to survey better the frictional influence. The quantity (3 is not a con-

stant, as we know already from the damping curves of the seiches, but depends

upon the depth and the nature of the bottom. In the theory /S generally ap-

pears in the relation (3/o = fiT/ln, and it was shown that its order of magni-

tude, in relation to the mean depth, is given approximately by the following

quantities:

h = 100 50 30 10 m and below

b= 0-1-0-2 0-5 0-5-1-0 1-0-2-0 sec"
1

With this assumption for the friction, the differential equations of the ho-

rizontal and vertical displacements of the water particles for independent and

co-oscillating tides can be integrated for a rectangular basin and uniform

depth, see Defant (1919). The changes in amplitudes and phases around

the bay shores, become larger when the friction increases. The horizontal

velocities are greatest in the vicinity of the nodal lines, and consequently

the friction is particularly noticeable there. The friction causes the abrupt

change of phase of half a period to be replaced by a gradual change. The
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standing wave of the independent and of the co-oscillating tide takes the

character of a progressive wave, which travels apparently from the opening

of the bay to its closed end. If friction does not become too great, the

position of the nodal lines continues to be clearly perceptible by the crowding

of the co-tidal lines. The node where the amplitude of the tide is zero dis-

appears and instead we find a region with minimal range. This minimum

is smaller if the friction is greater. The Figs. 142 and 143 show clearly the
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(XI. 18)
I = ^cosoY+ ^sincr/

,
|

f) = rjicosot+rjismat
j

and replacing the differential quotients by difference quotients, one obtains the system of

equations

Arjy = a(t!-^2),

Arj2 = a(£2 +6f2)

,

(XI. 19)
1 r

fi = — — |
nMx

ji
"

|2
= i]% bdx

Si J

By means of this system we can compute step wise the quantities li,!*, and >h> ??2, and their

combination in (XI. 18) gives the tidal motion within the bay. The equation for Arj1} is similar to

the one without friction, except that another term is added which contains the coefficient for

friction. Generally, it is small and acquires some importance only there, where f2 is large, i.e. at

the nodal lines.

An example is given in Table 39. It concerns the co-oscillating tide of the Gulf of Bristol with

the external tide in the Irish Channel, as given by Defant (1920, p. 253). The computation was

started at the cross-section with the boundary values & = £2 = and the arbitrary values 2% =
+ 100 and 2??2 = +20 cm. The table gives the correlated values of 2t]i, and 2/;2 for all eight cross-

sections. According to the observations, the range at the open end is 7-6 m, the phase 5-5 h. We
then have for y = 1 the equation

3416cos —(/-<?)- 46-01 sin — (t-e)
T T

In
pcos — (t— 5-5 h)

This gives e = 7- 3h and l//> = 0174, and the co-oscillating tide at the various cross-sections;

in the next column are the observed values of establishment and range at coastal localities. The

agreement is very good.

Table 39. Co-oscillating tide in gulf of Bristol

Cross-

section
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the superposition of the two gives a progressive wave, which differs the more

from a standing wave, the greater the amount of tidal energy is lost inside

the bay. Many bays and adjacent seas become very shallow in their inner

regions, where a considerable portion of the tidal energy is absorbed and

thus lost for reflection (see Defant 1928, p. 274). In such adjacent seas the

co-oscillating tide loses its character of a standing wave, even when the depth

is very large elsewhere. The case of a rectangular bay of constant depth,

at whose inner end tidal energy gets lost, can be computed mathematically.

Let the bay at y = 1 open into a sea where the tide is

r\ = Z cos at

.

The time is counted from the time of high water at the open end. The am-

plitude of the incoming wave (in the negative A-direction) is a. The reflected

wave, however, has the amplitude b, so that the quantity of energy (a2—b2)/a2

has been lost by the reflection at the inner end of the canal, b = a, means

total reflection. The horizontal and vertical displacements of the water

particles along the bay (yn = al/c) can the be written

£ = a sin (at— e-\- vny)— bs\n(at—e— vny)
,

ha
tj = [acos(at— e-\- vny) -\-b cos (at— e— vny)].

(XI. 20)

ajb is given by the loss of energy; the amplitude a and the phase e must

be given by the only boundary condition at the opening. We obtain

cost' sine
cos vny cos(at — s) : sinvnysm(at— e)>1

cos jot smv7i

in which [(a— b)/(a+ b)] tan vn = tane

cZ sin(v7r+ e)

(XI.21)

and a = —
ha sin 2vn

For a = b the equation (XI.21) changes into a standing wave as given by

(XI. 16) for a total reflection. In the case alb the co-oscillating tide is the

superposition of two orthogonal waves (phase difference = one-quarter

period). Along the bay the phase retards gradually against the phase at

the opening by increasing amounts, until it reaches the full amount e at the

inner end. For one nodal line the phase difference then is no longer 180°

but, according to the value of V, 180°±£.

When an adjacent sea has in itself an orographical configuration such that

its tides are only little disturbed by the friction, its co-oscillating tide with

the open sea will no longer have the form of a simple standing wave, when

in its inner end a portion of the wave energy is lost. This is also the case,

when for instance the inner end of a more or less closed sea becomes a very

shallow one, where the dissipation of tidal energy is large. The co-oscillating
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tide in the main section will then seem to be the superposition of two ortho-

gonal standing waves. This simple case, which can also be computed, is

important in dealing with an actual sea (see p. 368).

It is far better to assume that the friction is proportional to the square of

the average velocity of the tidal current (see vol. 1/2, p. 499). Taylor's as-

sumption for the frictional force has the form

F = kQii\ (XI.22)

if u is the mean velocity, g the density of the water and k a constant between

0002 and 0016, based on values observed in natural channels. If the bottom

configuration is irregular, this constant can have far higher values. The work
done by the frictional force is then

In
xQifi = kgU3 cos3— t .

The mean value of cos3 (2n/T)t for a full period is fjt, so that the amount

for the dissipation of the energy is

in

Taylor (1919) was the first to compute, using this relation, the loss of

energy of the tidal motion in the Irish Channel. According to observations,

the average U = 2\ knots = 114 cm/sec, and we obtain as the mean loss of

energy for this sea 1300 erg per cm2/sec. Taylor has also applied another

method to determine the loss of energy for the same sea. He computes the

quantity of energy which this section of the sea receives on one hand through

its southern entrance (Arklow-Bardsey Island) and, on the other hand,

through its northern entrance (Red Bay-Mull of Cantire). To this quantity

of energy Ea has to be added to the quantity of energy E
l
which the tide

generating force transmits to the water-masses of the Irish Sea. The only loss

of energy R is caused by friction. As the tidal energy during a full period

neither increases nor decreases, R = Ea
JrE

i
. The numerical computation,

in the case of the Irish Sea, gives a loss of energy through friction of

1530 erg cm-2
sec

-1
which agrees with the above-mentioned value as to the

order of magnitude.

The principle of the conservation of energy teaches that, in every physical process, the trans-

formation of kinetic and potential energy of a system T and V always equals the work Q done by

the external force and to the loss of energy through friction E. If the first three quantities are known,

the fourth quantity can be computed. The kinetic and potential energy are given by the equations

and

V= hogrf,

whereas Q = qhX{d^dt), when X represents the external force. The above-mentioned relation
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allows, through comparison with the corresponding differential equation for £, the computation

of the dissipation of the energy E per unit time and unit surface. We have

E = — oh bir

.

T

For a full period of 12 lunar hours, the mean value of m2 = \U2 and if we assume again

U = H4 cm/sec, q = 103 and for the Irish Sea h = 68 m, and if we take b = 0-2 and according to

the previous table (p. 342) then E is nearly exactly 1300 erg per cm2/sec in good agreement with

Taylor's value.

Another way of evaluating the friction of tides in adjacent seas has been used

by Grace (1931, 1936, 1937). If we assume that, in an oblong-shaped ocean,

the tidal motion is completely longitudinal, we can compute from the equa-

tion of continuity the mean velocity u at each cross-section for the M2 tide,

and the equation of motion gives then, the only unknown factor, the fric-

tional force F. The action of the tide-generating force can be neglected, being

very small. The corresponding equations are

du _ en

8t~~ g 8x~ '

8tj

f"= -g 8y->

dSu _ ,dt)

~8x~~~ ~ 8t'

(XI.23)

if S is the area of the cross-section and b the width at the surface of a cross-

section at the point x of the "Talweg". The second equation is used to reduce

the values r\ observed on the shores to the "Talweg". If we put

r\ — Acos(at—y) = r\x cos at + r)2 sin at ,
|

,„_ _..

u = u cos (at— a) = UxCOsat + u2 s'mat I

we can compute from the third equation ASuJa and ASu2/a for the intervals

between each cross-section. If we know u at one cross-section (light-ship),

the values ux and u2 can be determined for all cross-sections. Now everything

is given in the first equation except

F =Fcos(at— /?) = fx cos at+f2 sin at

.

This method has been applied by Grace to the tides of the Gulf of Bristol

and of the English Channel between Le Havre — Brighton and Ramsgate —
east of Calais, and he obtained for F and /? the values shown in Tables 40

and 41. The result is that the phase of friction is in first approximation

the same as that of the tidal current, but we see that the frictional constant

varies in an irregular way. The mean value for the Bristol Channel is 2-6 x 10
-3

,

which is in good agreement with the value 2-4 x 10~ 3 found by Taylor. This

value of k corresponds to a b = 1-3, which is also in good agreement with

the value assumed by Defant. In the English Channel the phase of the
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Table 40. Tides in Bristol Channel

Table 41. Tides in the English Channel

Cross-

section
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friction corresponds also roughly to the phase of the current, but here the

variations are larger; the average is 9-3 x 10~ 3
, corresponding to a value

b = 1. A strict correlation apparently exists between the difference between

the phase of the current and the phase of the friction, and the values of k;

the latter increases with the former values. Grace uses a similar method to

determine the friction in the shallow Gulf of Suez. He finds k = 3-6 x 10
-3

or

b =011; this latter value is smaller than would be expected for a mean depth

of 44 m. On the other hand, the frictional influences prove to be very great,

so that they cannot originate from the ordinary bottom friction alone; it is

probable that they are increased by the existence of numerous cliffs and banks.

All investigations show that Taylor's assumptions of the friction are capable

of giving its most essential effects on the tides, but as long as the friction-

produced changes in the tidal current are not more exactly considered, only

a rough approximation can be obtained.

Investigations of this kind have been made in more recent times by Bow-

den (1947), Bowden and Proudman (1949) and Bowden and Fairbairn

(1952 a, b). Records of fluctuations in the speed of the tidal current (in the Mersey

estuary) near the bottom were obtained and compared with other records taken

with the current meter suspended freely at various depths. The fluctuations

covered a wide range of periods but could be separated into two main types

:

"short period", having periods of the order of a few seconds, and "long period",

with periods from 30 sec to several minutes. The short-period fluctuations

correspond approximately in period to the waves, and their amplitudes are

of the same order of magnitude as the calculated wave-particle velocities.

From an exact analysis of the fluctuations it is concluded that the fluctuations

observed near the bottom are evidence of the turbulence associated with bot-

tom friction. It is believed to be the first time that the presence of turbulent

velocity fluctuations of this time-scale in the sea has been established ex-

perimentally. The long-period fluctuations show amplitudes, which increase

with the basic current and with depth and sometimes attain 04 of the basic

current; their features are consistent with their being turbulent in origin also,

although turbulence of the time-scale involved in this case would probably

be mainly horizontal.

Later the component of turbulent velocity in the direction of the basic

current and across has been studied by means of several current meters placed

in the direction of the mean flow and across. The periods of the turbulent

fluctuations recorded varied from a few seconds up to several minutes, and

it appears that, as in other types of turbulence, a continuous spectrum of

fluctuations is present. It was found that the integral scale of the turbulence

in the direction of flow is of the order of 7 m, compared with 14 m, the mean

depth of water, whereas scales in the vertical and lateral directions are of

the same order of magnitude and of the order of one-third of the scale in

the direction of the mean flow.
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In order to study the internal structure of a tidal current in relatively

shallow water, where frictional effects, originating at the sea bed and com-

municated through the water by internal stresses, will occur, measurements

were made of all factors in tidal currents a few miles from the coast (off Red
Wharf Bay, Anglesey). The results shall be briefly outlined as follows: Ex-

pressing the amplitude of the frictional force at the bottom in the form

F = kgU2
, where U is the amplitude of the mean current from surface to

bottom, and q is the density of the water (see XI. 22), the results give the

coefficient k an average value of 1-8 x 10~ 3
, which agrees with the value

given on p. 346. The internal frictional stress in the water was found to

increase approximately linearly with depth from the surface to the bottom,

and the corresponding values of the mean eddy viscosity covered a wide

range of values (from 130 to 500 cm2 sec
-1

). Previous estimates of the eddy

viscosity in tidal currents give a similar range.

4. The Tidal Phenomena in Narrow Embayments

The tides of coastal embayments derive their energy from the ocean tides

and are considered to be part of co-oscillating systems in which the period

is determined by the tide in the outer sea, while the detailed character of

the motion depends on the size and form of the enclosed water-masses. In

these small embayments the influence of the earth rotation is insignificant,

while the influence of friction cannot be neglected. Redfield (1950) has

recently given a method to analyse the tidal phenomena in these small em-

bayments. This method starts from the theory of free waves, which are

subjected to damping as they advance towards a coast on which they are

reflected, which theory was developed by Fjeldstad (1929; see also Sverdrup

et ah, 1946). The actual tide in the narrow embayment may be considered to

be due to two progressive waves of the same period travelling in opposite direc-

tions. The tide is treated a single cos-wave. One of these is the primary wave

originating in the open sea; the other is the reflected wave originating at the

closed end of the embayments, which can be considered as a barrier. At the

barrier the two waves are equal in elevation and are in phase. In a uniform

channel the elevation of the primary wave is given by

r\x = Acos(at~ ,nx)e~ tix
,

that of the reflected wave by

rj2 = A cos (at+ xx) e1**
,

(XI. 25)

A is the amplitude of the waves at the barrier, a the change of the phase per

unit of time and t will be measured from the time of high water (H.W.) at

the barrier, when / = 0. k is the change in phase per unit of distance and x

is the distance measured from the barrier, where x = 0, /n is the damping

coefficient.

The elevation of the water r\ at any time and place along the channel is
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given by t] = >h+ ^2 and H.W. occurs when dr\\dt = 0. Letting tH denote

the local time for H.W. this equation gives

atH = tan_1 (— tanxA-tanh//.v)

.

(XI. 26)

This function gives the time of H.W. at any position along the channel for

any chosen coefficient of damping.

Equation (XI.26) can be used to find the relative height of H.W. at any

point — the ratio of height of H.W. at the point under consideration to the

-80° -100°

TIME OF HIGH WATER

Fig. 144. Relations between the ratio of height of high water at any point to the height

of high water at the barrier r\\r\^, the time angle of high water otH , the phase difference of

a primary wave at that point relative to the barrier xx, and the coefficient of damping /z.

Reflection occurs where ?;/t? =1-0 and atfj = 0.

height at the reflecting barrier — along the channel. Restricting rj and r) to

the elevations at H.W. the ratio rj/rj can be written

vho = |/{Kcosh2/^.v+cos2%x)} (XI.27)

This function relates the height of H.W. at any position along the channel

to the height at the barrier for any chosen coefficient of damping. Redfield

derives in the same way the time of slack water or maximum current at any

point. Letting ts denote the local time of slack water, ats is given by
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ats = tan
_j tanh^.v

tamo-
tan _iA*

(XI. 28)

This function relates the time of slack water to any position along the channel

for any chosen coefficient of damping. The time of maximum current will

precede or follow the time of slack water by one-quarter period or 90°.

Tidal data are available in the form of records of the time of H.W., the

elevation at H.W. and the time of slack water or maximum current at various

positions along the channel. We have now the posibility to test these equations

on the tidal data. This will give us indications to the effect of a given channel

on the primary or reflected wave; information on the distribution of phase

differences along the channel and on the damping which is required. These

applications are to be tested with the same restrictions as discussed previously

in this chapter. By combining these relations defined by equations (XI. 26

and 27) Fig. 144 was constructed in which the observed variables (the

20° -140° -160° -180°

PHASE DIFFERENCE RELATIVE TO POINT Of REELECTION Ki

Fig. 145. Relations of the time angle between high water atH , and slack water atH at any

point along a channel, the phase difference of a primary wave at that point relative to the

barrier y.x and the coefficient of damping //, when reflection occurs at a barrier where xx = 0.

ratio of the H.W. elevations y\\-y\q on a logarithmic scale and the local time

of H.W. atH) are represented by the rectangular co-ordinates and the desired

properties of incoming wave (the phase relations and the coefficients of

damping) are represented each by a series of curves. This nomogram is
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completely general being independent of the actual dimensions of the basin

or of the period of the wave. It is consequently a simple matter to plot a series

of tidal data giving the elevations and time of H.W. in Greenwich time on

a similar semi-logarithmic co-ordinate system and by superposing the curves

on Fig. 144 to determine whether a satisfactory fit can be obtained. If this

is the case, the properties of the primary wave as determined by the position

120° 1
00° SO" 60° 40° 20° 0° 340° G

-20" -40° -60° -80° -100° -120°

TIME OF HIGH WATER . <7I„

Fig. 146. Upper part: chart of Long Island Sound showing stations and co-phase lines.

Lower part: analysis of Long Island Sound system.

of the points on the nomogram may be transferred to charts or diagrams

in which the geographical position of the points are indicated, and these

may be used to determine the distribution of phase differences of the primary

and reflected wave in the channel.

In an entirely similar way the relations of equations (XI.26 and 28) may
be combined to construct a graph in which the local time of H.W. atH is

related to that of slack water ots , as in Fig. 145. This figure may be used

to check the adequacy of the theoretical treatment and to predict the ex-

pected time of slack water from data of the time of H.W.

23
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Redfield has tested this very practicable method of analysis on three

embayments: Long Island Sound, the Bay of Fundy and the system formed

by the Strait of Juan de Fuca and the Strait of Georgia. In all these cases

Redfield proves that the assumptions underlying the equations are valid.

He obtains a detailed description of these systems in terms of the distribution

of phase differences for the primary and reflected waves along the channel,

the velocity of their propagation and the coefficient of damping. An excellent

example of the application of this method is found in Redfield's analysis

of the Long Island Sound illustrated in Fig. 146 in which the data of mean
range of tides and time of H.W. are plotted on the co-ordinate system of

Fig. 144. The best fit of the data to the co-ordinate system is obtained by

assuming that the reflection occurs from stations 30 to 32 where the mean

tidal range is maximal at 7-2—7-4 ft. The observations made within Long

Island Sound proper, along the south side of Block Island Sound and in-

cluding Station 1 on the outer coast of Long Island fall closely along the

co-ordinate for a damping coefficient fi = 10. The phase difference of the

primary wave at each station relative to the point of reflection may be de-

termined from this diagram and the "co-phase" lines representing the advance

of the primary wave into Long Island Sound have been drawn in the upper

part of Fig. 146. The velocity of the primary wave is about 27 knots. In

Fig. 146 a number of stations appear where the range is greater than would

be expected if the value of fi is 1 0. These stations are all on the right-hand

side of the direction of propagation of primary waves and is an effect which

may be attributed to the rotation of the earth. The Bay of Fundy and the

system formed by the Strait of Juan de Fuca and the Strait of Georgia have

been analysed in a similar way. This simple method has proven its ad-

vantages (see also Redfield, 1953).

5. Relations Between Tidal Current and Co-tidal and Co-range Lines

The differential equations of motion give the most important relations

between the tides and tidal currents. From these relations we can deduct

the influence of islands and coastlines on the tides. Proudman (1914, p. 89;

1925, p. 243) has investigated these relations; however, he did not treat the

structure of the tidal current.

The tide in a locality can be represented by

r\ = Hcos((Jt—e) = ^1 cosct/ + ^sino-r

in which ?;x and rj2 are independent of time and high water occurs at the

time t = e/a.

Here

?/i + >?2 = H 1

and

- = tane.
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If e = or >]2
= 0, the tide wave is a progressive wave; the maximum of

the flood occurs simultaneously with high water. If £ = 90° or rjx
= 0, the

tide wave is a standing wave; the maximum flood occurs at half tide. Let

us designate the angles formed by the co-tidal lines (tan£ = const) and the

co-range lines (H = const) with the x-axis by ip and y'

.

We find that

Vi

tany
8x

y*

>n

ill,

<y
'I:

< >h

8x

8y

and tan^'

Vl
8x +% dx

8in drjt

Vl
8y

+f}2
8y

(XI. 29)

The general equations of motion are

8u r
7, TV = —2
8t

J b
"1

dx

8v

8t
+fu =

F
h'

G8r
1 _g

8y h

(XI. 30)

in which F and G are the components of the frictional force for the unit

surface of the ocean bottom. If at a locality the x-axis is put in the direction

of the maximal flood current and the time is counted from its start, then

eja is the time of high water relative to this time, and we can substitute

(XI. 31)

From the equations (XI. 39) results

u = U cos at
,
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If there is no friction (F = 0, G = 0), these equations are reduced to

gH~ = UoU-VfV) ,
gH~- - miaV+fU) ,

gH*~=>h(aU+fV) , sw% = n^v+fu) ,

ox (

)

aU+fV
tan;/' = 77—^rr cotaiif

tany/

oV+fU
cU+fV

tane

(XI. 34)

oV+fU

from the latter equation it follows that ip' = \n-\-y\ in the absence of friction,

the co-tidal lines and co-range lines are always perpendicular to each other.

(a) (b).

Mean-
level

High,

water!

High water Mean level High water after

peak of current

High wafer before

peak of current

Fjg. 147. , co-tidal lines; , co-range lines, (a) for a progressive tide wave (e = 0°),

(b) for a standing tide wave (e = 90°), (c) when high water occurs -]- period after current

maximum < e < \n, (d) when high water occurs i period before current maximum
— \ti < e < 0.

If we take a progressive tide wave, then e »?2 0, i.e. dH/dx = and

dejdy = 0. Conditions will be as illustrated in Fig. 147a. The co-tidal lines

have the direction of the current at half tide, the co-range lines the direction

of the current at high and low water respectively.

For a standing wave, s = 90° and n x
= 0, i.e. dHjdy = and csjdx = 0,

and conditions are as in Fig. 1476. For this case also we find that the co-

tidal lines follow the direction of the current at half tide, the co-range lines

the direction of the current at high and low water respectively, so that this

rule applies in general.

For an example, Proudman cites the distribution of the co-tidal and co-

range lines in the northern part of the Irish Sea (see p. 384). The minimum
velocity here is practically zero (V = 0) and high water occurs with slack

water. The co-tidal lines must follow the stream-lines, the co-range lines

must be perpendicular to these. This is, in fact, largely the case.

For general conditions, we have mostly a > / and U > V, so that

(oU JrfV)/(oVJi-fU) is positive. If high water occurs within one quarter

period after the maximum in the current, we have < e < hn and \n <ip < tt,

< ip' < \n, i.e. the co-tidal lines make an obtuse angle, the co-range lines
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an acute angle with the direction of the current maximum (Fig. 147c). If on

the contrary, H.W. precedes by one quarter period the maximum current

we have \ti < e < and < y> < \n and \n< y/ < \n, the position of the

isolines is exactly the reverse of the previous one (Fig. 147c/).

If there is friction, the systems of curves are no longer perpendicular to

each other, and the essential point is whether or not frictional terms are

predominant in the equations for tany> and tany' in (XI. 33). Both for the

progressive and the standing tide wave we get tan y. tan y' = —FIG. When
the friction is small, F will not be very different from G; and F.G will not

deviate considerably from 1 ; the angle enclosed by the two systems of curves

will not deviate much from 90°; with other conditions, there can be strong

deviations from 90°.

6. Conditions Along Shores and Disturbances on Account of Bays and Islands

If the current runs parallel to a shore (jc-direction) we have in its proximity

V = 0, and we obtain from (XI. 34)

tany

tany

/
COtf

7
tane

(XI. 35)

If we consider a short stretch of shore, the variations in the time of the

maximal current and in the occurrence of the high water will be small, although

the variations in the magnitude and in the direction of the currents are large.

ziyMwwv,.

Fig. 148. Co-tidal lines in the vicinity of a Cape and in a Bay.

In (XI. 35) £ is to be considered as nearly constant, i.e. the slope of the co-

tidal and co-range lines towards the shore line will be almost constant.

Although this seems to be the case, great variations show up in the direction

of the slope. Figure 148 illustrates the course of the co-tidal lines in the im-

mediate vicinity of a cape and of a small bay. Both the time of high water

and the range vary much more rapidly around the cape and much slower

in front of the bay than farther outside, where they have a more uniform

course.
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An example of this can be found in the western part of the North Sea, off the coast between

Forth and Humber. Here high water occurs at the time of the maximum of the current, which

runs parallel to the coast, so that the co-tidal lines are perpendicular, the co-range lines parallel

to the coast. It shows clearly that where the coast is convex to the sea, s of M2 tide varies rapidly,

whereas this value varies slowly if the coast is concave to the sea. This can be observed particu-

larly well at Flamborough Head between Whitby and Brindlington. Further examples can be found

at the south-east coast of Ireland (described by Taylor, 1919, p. 32). At Wicklow Head there is

a considerable retardation in the progress of the tide wave. In Wicklow, a few miles north of the

cape, high water occurs at 10 h 53 m, which is 2 h 30 m later than in Arklow, 1 1 miles south of

the cape. There is another example at Greenore Point (south-east corner of Ireland). The time

of high water at Saltees, about 10 miles south-west of Carnsore Point, is 6 h 6 m, at Carnsore

Point (4 miles south of Greenore Point) at 6 h 25 m, however at Tuskar Rock (4 miles off Greenore

Point) at 6 h 10 m, and in Wexford South Bay, on the northern side of the cape, at 6 h 5 m.

The disturbance north of the cape in the Wexford Bay is apparently so great that here the co-tidal

lines run for a short distance in the opposite direction.

Fig. 149. Tide wave travelling from the right to the left, diffracting on a small island.

, co-tidal lines , co-range lines.

Proudman has also studied how different coastal configurations influence

the tide waves. In this case one deals with diffraction of the waves at these

irregularities of the coast, whereby the ocean depth is supposed to be constant

(vertical shores). Although in nature these conditions apply only approxi-

mately, yet one gets an idea as to how the co-tidal and co-range lines are

changed by such orographical coast disturbances. The corresponding mathe-
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matical developments are not simple, for which reason we will only discuss

here the most important results. Figure 149 illustrates the case of a wave

with a straight wave crest progressing from right to left, which is confronted

with a small island, whose dimensions are small compared to the wave length.

The current ellipses rotating to the right are indicated on the right side of

the picture by the two semi-axes of the ellipse. We see that the tide wave

travels slower on both sides around the island than farther outside (in the

manner of Fig. 148), whereby the ranges on the left side are increased, those

on the right side reduced. This can be so strong that a curved nodal line is

formed, within which the tide proceeds inversely.

Fig. 150. Disturbance of co-tidal lines by an island elliptically shaped (Proudman).

Figure 150 shows the co-tidal lines in the immediate vicinity of an elliptic

island, whereas Fig. 151 indicates how the co-tidal lines are changed when

the tide wave passes from right to left in front of the opening of a bay. This

disturbance corresponds exactly to the conditions in Fig. 148, where the

co-tidal lines diverge within the bay and converge at the corners. Proudman

has also dealt with the case of a straight coast where another sea is connected

through an opening. In the undisturbed state there is an antinode at a straight

coast. According to whether a ^ /, the passing of the tide wave through this

opening is different.

7. Computation of the Tide from Tidal Current Measurements

The equations of motion and of continuity form a link between the tidal

currents and the vertical displacement caused by the tide. Therefore, it must
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be possible to determine the extent of the vertical tide if we have a sufficient

number of tidal current measurements. The adjacent and boundary seas

extend mostly on to the shelf, and their depth seldom exceeds 200 m; therefore,

current measurements can be made without any difficulty. This enables us

to determine the distribution of the tide over the entire area of the adjacent

30 -20 -10

Fig. 151. Disturbance of co-tidal lines by a Bay.

sea. There exist nowadays for many adjacent seas and canals representations of

the currents, which give for every hour of the tide a picture of the actual

currents. Although these tidal current charts serve only practical purposes,

and their basic data cannot always be too accurate, they can, nevertheless,

be used in drawing conclusions as to the vertical tide within these seas. It can

be expected that the increasing number of current measurements and the

improvement of their accuracy will make such current charts a reliable aid

also in purely scientific questions in the near future.

Two different methods have been used for determining the tide from tidal

current measurements. One of these is based on a study of the tides in the

North Sea by Defant (1923); it is mainly based on the equation of continuity

and constitutes principally a differentiation process. The other method was

used by Proudman and Doodson (1924, p. 185) in their study of the tides

of the North Sea, and it uses only the equations of motion; therefore it is
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essentially a process of integration along certain lines from coast to coast,

right across the North Sea.

(a) Defanfs Method

Defant uses the simple equation of continuity in the form (VI. 100). If we

introduce therein

n =--
>/ 1 coso'^+ >/2 sino7 ,

u = UiCOsat + UoSinot , (XI. 36)

v = Vicosot + Visincrt ,

it is split up into the two equations:

1 IdiUo (hr,\

1 uhih dhvA

a\ dx oy J

If the area of an adjacent sea is divided into a great number of equal area

squares by means of orthogonal lines and if the length of the sides of these

squares is taken so small that, in first approximation, all quantities along it

can be considered to vary linearly then the two values r}x and rj2 can be com-

puted for the centre of each square, when the velocities of the current ux , u>

and v1} v2 are known at all corner points. Within such a small area the depth

can be taken as constant. The determination of these quantities which,

combined, give the range and the phase of the tide at this point, is independent

of the values in the vinicity and likewise independent of the coastal values.

Thorade (1924, p. 63) has given a generalization of this method, in case the currents at the

surface and also in greater depths are sufficiently well known. The usual assumptions of a simple

harmonic function for the currents and for the tide, as well as for the friction must not be con-

sidered. One has only to compute for each hour the water-masses going in and out of each layer

in a prismatic space. From these values it is then possible to calculate the rise and fall of the surface.

In this way one can obtain, by a somewhat laborious but not difficult calculation, step by step

the tidal curve at a certain point. However, at the present time, our knowledge of the currents is

limited to only a few stations, so that, for the time being, an application of this refined procedure

cannot be considered.

(b) The Method of Proudman— Doodson

We introduce in the equations of motion (XI. 30) the values of (XI. 36)

for //, //, and r; for the frictional forces F and G we take Taylor's assumption

that both are proportional to the square of the velocity

ku\ (u2+v2
) and kr\ (//- /•-)

respectively. If ut . u.2 , i\. r, are known, these equations can then be subjected

to a harmonic analysis.

F F, cos ot—F* sin at , I

G = GiCOsat -—Go sin or/ . |
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If, furthermore, we put

a = 107 - = 1-432,
g

b = \07^ = 1-487 sin</>,

c = 10' g _ 1019

A
~~

h : 104 '

(XI. 39)

in which the numerical values apply for the M2
— tide, the equations (XI. 30)

take the form

10* Jb = -aut +.ht>l-cFl ,ox

(XI. 40)

10^ = -av.2-bu1-cG1 ,

10' |^-2 = aUl+ bv2-cF2 ,dx

\07^ = av1-bu2-cG2 .

If good and reliable tidal current measurements are available for a certain

stretch, we can compute the gradients of % and r\2 for the single intervals

of this stretch. If these gradients are connected to known values of rjx and %
at the coastal points where the section starts or where it ends, then we have

the tide along the entire curve. The accuracy of the method depends upon

the number of the current measurements used and when these become in-

sufficient to make reliable interpolations, or if the current values vary too

strongly, interpolations should not be attempted.

Both methods have given good results in determining the tides of the North

Sea and at present they are the only methods which permit the computation

of the tides of an adjacent <e\ based on shore values.

Hansen (1940, p. 41; 1942, p. 65; 1943, p. 135; 1948, p. 157) has shown

recently that, when the tides and tidal currents are given for any arbitrary

line of demarcation of an area, the tide in the whole region can be clearly

defined by solving a system of linear equations. If we introduce in the equa-

tions (XI. 30) for the frictional forces /iw resp. /to and eliminate the time by

introducing e~iat we get with io + fi
= X and using the equation of continuity

the following equations (the derivation with respect to x and y is indicated

by their indices)

to—fv-\-gr}x = ,

fu+to+grjy = 0,

iari+ (hu)x +(ko), = 0.

(XI.41)
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By eliminating u and v, we obtain the differential equation for //

It can be mathematically proven that this equation has a solution for an

entire area, when the vertical displacement rj or the normal components of

the velocity are given for an arbitrary line of demarcation. This is also correct,

when this line demarcation separates an ocean from an adjacent sea. In order

to solve the problem, the equation (XI. 42) is transformed into an equation

of differences, the area under consideration is divided up in small squares

and for the centre of each square we establish an equation of differences.

The resulting system of equations must then be solved. The numerical com-

putation is, however, very laborious.



Chapter XII

Tides in the Mediterranean

and Adjacent Seas. Observations

and Discussion

We intend to give, in this chapter, a survey of the tidal phenomena of several

Mediterranean and adjacent seas, based on observations. We will only deal

with the principal, most important and characteristic features of the respective

seas. Furthermore, the attempts made to interpret these features will be

briefly outlined. For complete descriptions, we refer to the literature quoted.

1. The Tides of the North Sea

The first attempts to represent the tides of the North Sea in charts started

in the beginning of the last century. On these charts the tide wave penetrates

through the Strait of Dover and, from the north, through the wide opening

between Scotland and Norway. These were the first trials at all, after the

theory of the tides had been founded, to approach the tidal phenomenon
by means of geographical representations. Ever since, the tides of the North

Sea have remained a test for the various tidal theories (see Thorade, 1930.

p. 195). We can distinguish three periods in the development of the theory

of the North Sea tides. The first period includes Young, Whewell and Airy.

Young recognized that the tides of smaller ocean basins can hardly be a direct

effect of the tide-generating forces, but that the tide penetrates into these

basins from the open ocean. By drawing co-tidal lines (referred to the transit

of the moon) for the areas off the British Island, he was able to show the

penetration of the tidal wave into the North Sea from the north, as well as

from the English Channel. Whewell (1836, p. 289) has given a detailed map
with co-tidal lines for the North Sea (Fig. 152) in which he indicated the

presence of an amphidromic point in the Hoofden and suggested also a second

one in the Deutsche Bucht. Although he considered his first attempt at a co-

tidal chart as tentative, he recognized already that the tide wave progresses

at the English coast from north to south, at the Belgian and the Dutch coast

from south to north and at the German coast from west to east. He explained

these conditions as being the result of interferences of standing oscillations.



Titles in the Mediterranean and Adjacent Seas 365

The comparison of this chart with later ones based on far more extensive

observations shows how good WhewelTs picture of the North Sea tides was
already at such an early period.

i, , .1 150

Fig. 152. -tidal lines of the North Sea according to Whewell. (The numbers indicate

approximately the corrected establishments in lunar hours.)

This accurate conception was, however, forgotten later on, when Airy,

in his book Tides and Waves (1845) denied the existence of amphidromies

and rotary tides and expressed the opinion that the distribution of the tides

in the North Sea is mainly determined by progressive waves, whose pro-

pagation was influenced above all by the depth (see p. 148). The chart given

by Airy, compared to that of Whewell, must be considered as a step back,
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although for a long time it was regarded as the best presentation of the North

Sea tides. The rejection of WhewelPs chart was principally based upon the

opinion first expressed that the co-tidal lines are similar to the crest-line of

the tide wave. This erroneous view was retracted later on by himself and

corrected in so far as these co-tidal lines connect only the geometrical lo-

calities, where high water occurs simultaneously. This difference has been

well described by Thorade (1924, p. 27) and Schumacher (1924, p. 35).

The conception that several systems of waves coming from different di-

rections were responsible for the tides of the North Sea was prevalent during

the second period. Borgen (1898, p. 414) considered for the first time the

observations on tidal currents, but arrived at the same conclusion that all

essential tidal phenomena could be explained by two systems of progressive

waves. A similar opinion was expressed by Krummel (1911, p. 350). He
however, considers as a given feature an amphidromy in the Hoofden, which

had already been proven hydrodynamically by Harris (1904). Krummel tries

to explain the tidal picture by several progressive waves that are influenced

by the bottom configuration and interfere with the direct waves. The co-tidal

lines are very much curved and this curvature was based upon the supposition

that the tide will be earlier in deep water than in shallow water, as the rate

of travel of a progressive wave increases with the square root of the depth.

It is obvious that no satisfactory results can be obtained by such purely

qualitative discussions.

During the third period, research is based on the hydrodynamical theory

of the tides. The great width of ihe North Sea does not permit a more exact

direct application of the methods described in the previous chapters, which

apply mainly to narrow, channel-like adjacent seas. However in a first ap-

proximation, we can consider the North Sea z$> a wide channel, open against

the open ocean at its northern end and which receives from this side strong

impulses to co-oscillate with the external tide. The opening at the southern

end is not of great importance. The tidal energy entering the North Sea

through the Strait of Dover is small, and as Kelvin (1891, p. 201) pointed

out already in 1878, its influence does not go beyond the island of Texel.

One can consider, as far as the tides are concerned, the region south of

53° N. lat. as belonging to the English Channel.

If we consider the North Sea as a bay open on one end, the character

of its semi-diurnal co-oscillating tide is defined by the value of v. The average

depth of a great number of west-east cross-section show in rough approxi-

mation that the depth increases linearly from the south towards the north.

The period of the free oscillation of such a basin gives v = 1-47 and the

co-oscillating tide with the external tide in the north has, according to Defant

(1923, p. 57), two nodal lines, one located not far from the northern opening,

the other one a little less than one-third of the total length from the inner end.

As the phase at the northern end is approximately 95 h, the centre section
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of the North Sea between the nodal lines should have a phase of 35 h and

the innermost part again the phase of 95 h. These nodal lines are transformed

into amphidromies by the rotation of the earth. If we keep these conditions

in view, the agreement between the observations and these assumptions is

not bad. The schematic presentation of the co-tidal lines of the North Sea

9°E

Fig. 153. Co-tidal lines (in degrees) and co-range lines (amplitudes in cm) of the M2 tide

in the North Sea (Proudman and Doodson).

given by Sterneck (1920, p. 131), in his paper on the tides of the oceans based

on the "vulgar establishment", shows also these two amphidromies; one in

the northern part at approximately 56° N. lat., the second in the southern

part, and which is slightly moved in the direction of the Deutsche Bucht.
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It is possible to explain the distribution of the co-tidal lines by using

Taylor's theory on oscillations in a rectangular basin, open at one end. It can

be shown that the two amphidromies and the changes in the tidal currents

during a full tidal period are caused by the superposition of an incoming

Kelvin wave and its reflection on the southern end. Fundamentally, the

North Sea tides can be considered as tides co-oscillating with the external

tide at its wide northern opening.

Defant (1923, p. 177) and Proudman and Doodson (1924, p. 185) pub-

lished almost simultaneously their theories in which they attempted to derive

the distribution of the vertical tide over the entire area of the North Sea from

the numerous observations on tidal currents. Defant used as basis the charts

of the tidal currents published by the Deutsche Seewarte (1905) and, by

means of the equation of continuity, derives the periodic variations of the

vertical displacements of the sea level during the tide; Proudman and Doodson,

on the contrary, start out from the equations of motion and, with the aid Of

reliable current measurements taken on profiles across the North Sea, they

compute the variations of the vertical displacements of the sea surface.

Defant's and Proudman-Doodsorfs distribution of the co-tidal and co-

range lines are very similar and correspond to the distribution found by

Sterneck. Figure 153 gives an example of Proudman and Doodson's map.

Both tidal presentations were based on the relation between the vertical tides

and the tidal currents and are, therefore, not a result of a theory.

Another set of co-tidal lines was given by Merz (1923, p. 30; 1921, p. 393),

based on coastal data and the numerous tide curves obtained at sea. It con-

tains only the amphidromy in the southern part of the North Sea; the northern

amphidromy is lacking and is replaced by a dense crowding of co-tidal lines.

Sterneck (1925, p. 147) has proven that, according to recent Norwegian

observations, the tide wave progresses southward along the Norwegian coast,

which is incompatible with a rotary tide. The apparent lack of this second

amphidromy must perhaps be attributed to the effect of friction. The Kelvin

wave penetrating from the north is not totally reflected on the shallow coast

of Germany, a large part of its energy is lost because of the small depths

off the southern coast and complicated configuration (islands, sand banks

and wadden). The reflected wave, although still sufficient to cause the forma-

tion of the amphidromy in the Deutsche Bucht, is perhaps too weak to pro-

duce a second one at a greater distance. It should also be considered that

part of the incoming tidal energy makes its way through the Kattegat, is

used up for the greater part in the Belt and then in the Baltic, and does not

return any more into the North Sea. The superposition with the incoming

wave gives only a narrow and dense crowding of co-tidal lines and in the

wide area of the North Sea the impression of a progressive wave travelling

southward. Figure 154 gives the best and most recent picture of the tides of

the North Sea taken from the German Tide Tables. There is no doubt that
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the explanation just given of the tides of the North Sea, which is based prin-

cipally on the M2 tide, is correct and it seems that the criticism by Sterneck

against this mode of interpretation is unjustified (see Defant 1925 p. 231).

There still are, of course, many questions which need explanation, which will

become possible when we have more and better tide observations, especially

by means of gauges in the open ocean.

A problem still waiting for a solution is the interpretation of the spring

Fig. 154. (a) Lines of the same time interval between upper culmination of the moon in

Greenwich (solar hours) and high water.

24
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Fig. 154. (b) Lines connecting the same average spring tide range in the North Sea.

retardation and of the ratio of the neap range to the spring range for which

Merz has published the map shown in Fig. 155. It can be seen that both

distributions are determined by geographical factors. The spring retardation

increases in the corner of the Deutsche Bucht up to nearly 3 days, whereas

in the Kattegat there is an extraordinarily rapid change from a lag of about

30 h to a priming of about 40 h. The ratio of the neap tide and the spring

tide ranges, which should be theoretically 36 %, increases regularly from north

to southeast up to 89% in Hamburg. It is not possible to establish the real
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cause of this discrepancy; it will presumably be due to the fact that the North

Sea basin responds differently to each partial tide frequency, and thus the

(a)

(b)

Fig. 155. Properties of the tides in the North Sea (Merz). (a) Lines of equal retardment

at spring tide in hours, (b) lines of equal ratio of the range at neap tide to spring tide in

per cent.

24*
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individual waves can be shifted with respect to each other. Hansen (1938,

p. 429) has given detailed explanations regarding the ratio of the amplitude

and the difference in phase of the harmonic components in the North Sea.

For details of the tides in the Deutsche Bucht see also the paper of Moller
(1933). Table 42 gives a compilation of the harmonic constants for a series

of coastal localities of the North Sea (north of 53° N. lat.).

In all following tables, unless indicated otherwise, the amplitudes are expressed in cm, the

phases x in degrees. The origin of time is local time of the maximum value of the corresponding

term of the tide-generating potential (referred to the upper transit of the tide generating "Active"

moon through the meridian).

A comparison between the phases and a presentation of the tides by co-tidal lines, require

a reduction of the phases to a reference meridian. It is useful to give the equations necessary for

this reduction, because often in the literature we find that incorrect equations have been applied. Let

in a locality (geographical longitude X, positive towards the east) the considered partial tides have

the form Hcos(ot —x), t is the local time in hours, x the phase referred to local time. According

to equation (VIII. 13), this same partial tide, in Greenwich time, has the form H cos(otQR+pA.— x),

in which Iqr is the Greenwich time in hours and p is 1 or 2, according to whether the tides are

diurnal or semidiurnal. If we designate the phase referred to the meridian of Greenwich by g ,

then we have gn
= x—pX (A positive towards the east).

If we select as reference meridian the meridian of S°, Greenwich time must still be changed into

ts time. As tQR = ts—S°l\5 (S positive towards the east), then H cos(ots +pX — o(S°ll5) — x)

and the phase of the tide referred to the meridian of S° will be #5 = x—pA+ oS°ll5 (A and S
positive towards the east). The last equation is particularly used to reduce x values of a small

area of an ocean to a central meridian; like, for instance, the x values of the Mediterranean to the

meridian of 15°E., which divides this sea nearly in half.

A reduction of the phase to mean solar hours is obtained by dividing the phase values by the

angular velocities (per hour) of the respective tide (for instance, M2 = 28-984°, S2
= 30°, Kx

=
= 15-041°, O x

= 13-943°, for further partial tides see Table 28a, p. 267).

2. The Tides of the Kattegat and the Baltic Sea

The narrow and shallow communication between the North Sea and the

Baltic through the Kattegat and the Sound does not allow a good trans-

mission of tidal energy into the Baltic, the more so as the tides in the Ska-

gerrak are not very developed. The Kattegat has the form of a narrow, shallow

canal opening at its northern end into the Skagerrak and the North Sea, and

at its southern end there are three openings (Lillebelt, Storebelt and Oresund)

into the Baltic. The tide wave penetrates into this channel from the north,

is reflected partly in the south, and a part of the tidal energy penetrates into

the Baltic. Thus the tide wave in the Kattegat takes the form of a progressive

wave travelling southwards with somewhat larger amplitudes at the east coast

of Jutland (12-30 cm) and smaller amplitudes at the Swedish coast (4 cm).

Defant (1934) has given an accurate analysis of the M2 wave, using the obser-

vations gained during the international Kattegat expedition of 1931. He was

able to show that the observations (tides and corresponding currents) can be

represented, according to the theory previously developed (p. 345), as the

superposition of two standing waves which are shifted against each other. The
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Table 42. Harmonic constants for the North Sea
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tides can be considered essentially as co-oscillating tides of a channel where

the incoming tidal energy is reflected partly at the inner, not completely

closed end; a part is lost directly in the channel. Gustafson and Otterstedt

(1930), and Jacobsen (1913) have analysed the current measurements for sev-

eral depths for the Kattegat and the Danish waters, respectively.

Witting (1911) has tried a synthesis of the tides of the Baltic, on the basis

of the harmonic constants of a great number of localities which are summar-
ized in Table 43 (for Danish localities see Crone, 1906). It shows that the

Table 43. Harmonic constants
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tides are definitely semi-diurnal, they are of a mixed type in the Belts and

become diurnal in the entire Baltic. This is most pronounced in the central

Baltic (Libau, Karlskrona) and in the Gulf of Finland. An attempt to re-

present the co-tidal lines has been made in Figs. 156 and 157. The semi-

Fig. 156. Co-tidal lines of the M2 tide for the Kattegat and Baltic. (Phase in degrees and

amplitude in cm.)

diurnal tide shows three amphidromies, namely, one in the south-western

Baltic, one in the Gulf of Finland and the third one in the Gulf of Bothnia

(all contra solem). The central basin shows a transition from the south-west-

ern amphidromy to the others; there is no reason to consider it as a separate

amphidromy, as Witting did. The amplitudes show a decrease in the Danish

waters and then remain below 1 cm everywhere, except in the south-western
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part where they reach 3-4 cm. The diurnal tide (Fig. 157) has a large

amphidromy contra solem in the central basin; it includes the two gulfs in

the north and the north-east. The amplitudes of this wave are of the same

order of magnitude, mostly even greater than in the Kattegat and in the

Danish waters. This points to the fact that the diurnal tides are generated

in the Baltic itself, whereas it can be assumed that the semi-diurnal tides are

Fig. 157. Co-tidal lines of the Kt tide (0°, 90°, 180° and 270° correspond to Oh, 6 h, 12 h

and 18 h sidereal time; amplitude in cm) (Witting).

influenced through the Belts and the Sund. According to the considerations

on page 194, the period 7} of the principal free oscillating system Kieler

Bucht-Mecklenburger Bucht, Darsersill, Baltic, Gulf of Finland, is 276 h.

From this follows that for the semi-diurnal tides v = Tf\TK = 2-2 and for

the diurnal tides around IT 5. This means that:

(1) if the Baltic is imagined to be closed in the south-west (the Baltic being

considered as a lake), the semi-diurnal tides, having very small amplitudes,

must have three nodal lines, the diurnal tides, with somewhat larger ampli-

tudes, one nodal line;

(2) for the tides co-oscillating with the tides in the Danish waters, the

semi-diurnal tides must have two, the diurnal tides one nodal lines.

Witting has computed the tides generated directly by the tide-generating

forces as listed under (1), as well as the transverse oscillations of this type

(periods of the free oscillation at about 2-5-5-5 h). The amplitudes of the

M% tide came to 0-6-0-9 cm, those of the Kx tide to 3-4 cm. When the ratio

of the natural period to the period of the force is favourable, the amplitude
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of the transverse oscillations may reach 0-5 cm, but generally they are smaller.

Longitudinal and transverse oscillations produce corresponding amphidromies

contra solem. Comparing with the observations, we can conclude that the

diurnal tides must be generated directly in the Baltic; the semi-diurnal tides,

on the contrary, should be considered as the superposition of the directly

generated and co-oscillating tides, the latter predominating by far. For the

tides of the Finnish and Bothnian bay, see Lisitzin (1943, 1944).

3. The Tides of the English Channel and the South-western North Sea

These two regions represent interconnecting channels between two tide-

carrying oceans; the boundaries in the west are a line from Isle d'Ouessant to

the Scilly Islands; in the east, a line connecting the Wash (south of Grimsby)

to the Island of Ameland off the Dutch coast. Hence, this includes the entire

English Channel and the Hoofden and connects the Atlantic Ocean with the

North Sea.

Ranges and establishments for a great number of coastal localities are

given in Table 44. In the English Channel the establishment increases on

both the French and English coast from 4-5 h at the opening in the Atlantic

Ocean to 1 1 h in the Strait of Dover. However, the co-tidal lines do not

advance uniformly over the entire Channel. In the western part there are

rather great distances between the individual co-tidal lines, whereas they are

crowded in the narrow section of the Channel at the Cotentin Peninsula.

East of this region there are only very small differences in establishments

over a large area. This distribution of the co-tidal lines has no correlation

with the existing water depths. The ranges of the tides at the French coast

are considerably larger than at the English coast, which can be attributed

to the rotation of the earth (see p. 206). Disregarding the enormous range

at the inner end of the gulf of St. Malo (which are of a different origin) the

range decreases on both coasts until Cape De la Hague and St. Albans Head,

where the co-tidal lines are crowded as mentioned before. Then it increases

to a maximum off the Strait of Dover, where at spring tide, Hastings has

a range of 7-3 m, Treport in the south a range of 9-3 m. The minimum range

and the crowding of the co-tidal lines in the central narrow section of the

Channel would indicate the presence of a pseudo-nodal line of a standing

wave, especially since the difference in establishment between the western part

and the Strait of Dover is about 6 h. The distribution of the establishment

and of the range in the area east of the Strait of Dover (Hoofden) points

to a well-developed amphidromy contra solem, which was already assumed

by Harris (1904).

The extraordinarily high tides occurring in the Gulf of St. Malo are due to the effect of reso-

nance between co-oscillating water-masses of the Bay of Normandy and the tide in the Channel.

This was proven by a simple computation of the co-oscillating tides of this bay, which gives an

increase in the range from about 5-8 m at the channel islands to about 12 m inside the Gulf.
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Table 44. Harmonic constant for English Channel and south-west

part of the North Sea

Position
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Position
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According to coastal observations, we have in the Channel between the

Atlantic Ocean and the North Sea a tide wave with two pseudo-nodal lines,

one north of the Cotentin Peninsula and one in the Hoofden. The rotation

of the earth causes the tidal range to be greater on the French coast and to

transform the nodal line in the Hoofden into an amphidromy.

The tidal currents in the English Channel have been described extensively

by Stok, 1905; Dalhuisen, 1907 and in a publication by the Deutsche
Seewarte (1905). Borgen (1898) has discussed these currents. The lines of

convergence and divergence which shift during a tidal period are especially

well suited to characterize the current. Borgen distinguishes three boundary

lines: the "Atlantic", which is west of the Greenwich meridian, the "Channel

line" east thereof and south of 52t° N. lat., and the "North Sea line" which

Table 45. Position of lines of convergence and divergence

in the English Channel

Time

Lines of convergence and divergence

Con.
|

Div. I

Atlantic
Con.

|

Div.
J

Channel
Con.

\

Div. I

North Sea

1 h after

5 h before

2 h after

4h before

3 h after

3 h before )

4h after

2h before J

5 h after

1 h before )

Low water

High water

High water

at

Dover

High water

at

Dover

High water

at

Dover

High water

at

Dover

High water

at

Dover

} at Dover

Lands End

to

Isle of Bas

Falmouth, Plymouth

Entrance to

Bay of Normandy

Start Point

to

Casquets

Lyme Regis

to

Cap de la Hague

Large area with no

currents south of

Isle of Wight

Hastings, Eastbourne

to

Fecamp, Dieppe

Hastings

to

Treport, Cayeux

Ryebay

to

Estuary of Somme

Dungeness

to

Authie Bay

Margate

to

Gravelines

Thames Estuary

to

Ostende

Hoek van Holland

Ijmuiden toward

NNW.

Ijmuiden, Helder and

Cromer, Washbucht

to NNE.

Washbucht to NE.

and Terschelling

to WNW.

Outside eastern

outlet

belongs already more to the system of the North Sea currents. Table 45

gives information concerning the position of these boundaries for all tidal

hours. One can see how each of them apparently travels from west to east

through the entire channel. The "Atlantic" and the "North Sea" boundaries
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are lines of convergence for all phases after high water near Dover (including

low water at that point), and lines of divergence for the phases at or before

high water near Dover. The opposite holds for the channel boundary. In the

vicinity of the boundary lines there is, of course, no current. The velocities

of the current are in the vicinity of the pseudo-nodal lines between St. Albans

Head and Cape de la Hague, always greater than east and west thereof

(3-5 knots in the centre of the channel up to 5 knots at the French coast).

A second place where the current velocities are greater is located in the Strait

of Dover, where at times velocities of 5-6 knots are attained. (For flow of

water through the Strait of Dover related to wind and differences in sea

level, see Bowden, 1956). The French coast of the English Channel has

higher current velocities than the English side; east of the Strait of Dover

(Hoofden) conditions are reversed, but the velocity here is reduced to

l|-3 knots.

Most tidal charts of the Channel are based upon the assumption that

the tide wave travels faster in the central part of the Channel because of the

greater depths, so that the co-tidal lines across the channel seem to be curved.

According to whether the bottom influence was given more or less importance,

the co-tidal lines are more or less convex towards the east. As explained

previously (p. 148), this assumption, however, is absolutely false and, there-

fore, such charts should be discarded. Modern methods in Hydrodynamics

did not substantiate such curvature in the co-tidal lines and as a matter of

fact the curvature, if any, would be in the opposite direction. Hydrodynamical

investigations were made by Doodson and Corkan (1932), who used the

Proudman method which has already given satisfactory results for the North

Sea. The small number of current observations and of stations with harmonic

constants in the Channel required the use also of somewhat less accurate

coastal tidal constants which were previously reduced. The computations

refer to the M2 tide. The result for the English Channel is given in Fig.

158. The course of the main partial tide along the entire Channel is readily

seen from this figure, and it is shown that the previously given results,

based on coastal observations only, apply also to the central parts of the

Channel.

Borgen (1898) has tried to explain the tidal phenomena in the English

Channel. He assumed that two progressive waves, one coming from the

Atlantic Ocean, the other one from the North Sea, cross each other after

repeated reflections in the Channel. According to recent views on the be-

haviour of tide waves in the vicinity of land, it is obvious that a hydro-

dynamical theory of the tides of the Channel must start with the fact that

the water-masses co-oscillate with the tides of the oceans in front of the two

openings. Airy had already assumed this, but did not explore it further.

Borgen denies this explanation, probably because in his time there were no

methods to verify it by means of computations. Defant (1919, see also
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Thorade, 1921, p. 105) has developed this method to compute the tidal

phenomena, and it agrees very well with the observations.

The period of the free oscillation of the Channel supposed to be closed

at both ends is 29-5 h and, therefore, the independent tides are absolutely

unimportant in respect to the co-oscillating tides. The latter can be assumed

to be composed of (a) the co-oscillation of the water-masses of the Channel

with the Atlantic Ocean if the North Sea is supposed to leave no tides, and (b)

co-oscillation with the North Sea if the Atlantic Ocean is supposed to be free

of tides at the western opening of the Channel. Both parts can be computed

step-wise, according to the methods already explained. If at first the friction

is neglected, both are standing waves which, v being = 2-4, have two nodal

lines inside the Channel. Of course, they do not coincide; besides, these

standing waves have a phase difference of llh, so that their superposition
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north of the Cotentin peninsula but only increases the crowding on the

northern side whereas on the southern side they are more spaced. However,

in the Hoofden we have the picture of a well-developed amphidromy.

The combination of the longitudinal and transverse oscillations gives

finally the theoretical tides, and it must be admitted that they agree very well

with the observations, especially if one considers that the theory bases itself

only on the tidal observations at the ends of the connecting channel. Figure 159

gives a comparison between the observations and the theory for the northern

coast of the channel. Figure 160 shows a comparison for four hours of the tidal

Sections

n

Fjg. 160. Tidal currents in the English Channel and Hoofden (nm/h). +, direction

North Sea; — , direction Atlantic Ocean; , computed;
~~
'—|_l

-
' observed.

period; the same conditions prevail for the other hours. There is no doubt

that the tides of the English Channel and of the south-western North Sea

result from the impulse which their water-masses receive from the Atlantic

Ocean and from the North Sea. It can also be shown that the diurnal tides

in the Channel are small because the diurnal tides in the ocean off the open-

ings are also small.

4. The Tides of the Irish Sea

In the Irish Sea, the oscillating area is situated between the line Cape

Clear — Scilly Islands in the south and the line Tory Island — Hynish Point

in the north; consequently, it comprises the St. George Channel, the Irish

Sea and the North Channel.

The Irish Sea can be treated in exactly the same way as the English Channel.
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The computation made by Doodson and Corkan(1932, see alsoPROUDMAN
and Doodson, 1923) of the tides of the Irish Sea is shown in Fig. 161. Airy

had already found that the tides in the central part of the Channel, the actual

Irish Sea, have almost the character of a standing wave. The tidal current

changes nearly everywhere simultaneously, and the currents are strongest

Fig. 161. Co-tidal and co-range lines of the M2 tide in the Irish Sea. — , phase in degrees

referred to upper culmination of the moon in Greenwich; , amplitude in cm.

where the range is smallest (in the St. George Channel and in the North

Channel), whereas the currents are smallest, even almost imperceptible, where

the range is largest (Isle of Man). This points unmistakably to standing

waves. The distribution of the co-tidal lines shows in the south an incoming

wave from the Atlantic Ocean, then a crowding of these lines, particularly

in the northern part of the St. George Channel; in the Irish Sea a large area

with nearly uniform time of high water (homochromy), which still persists

25
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Table 46. Harmonic constants for the Irish Sea

Position
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in the southern part of the North Channel. The opening in the north has

an amphidromy, as a transition to the oceanic tides.

The extensive bays and sounds on the east coast of the Irish Sea have

a great influence on the development of the tides. The tides of the Bristol

Channel have been discussed by Taylor (1921, p. 320). The water-masses

in the area off Liverpool and in the Solway Firth, as well as in the Firth

of Clyde, co-oscillate with those of the Channel outside the opening and

a considerable part of the penetrating tidal energy is used up through friction.

Borgen (1894, p. 395) has also in this case tried to explain the Irish tides

by assuming two progressive waves travelling in opposite directions; this expla-

nation, however, agrees only partly with the observations. The later used

hydrodynamical methods as applied by Defant have permitted the numerical

computation of the tides and tidal currents. On the basis of eighteen cross-

700
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Fig. 162. Semi-diurnal tide in the Irish Sea (spring tide values of the tide tables).

sections, Defant (1919) computed the co-oscillating tides of the water-masses

of the entire channel with the tides at the north and south openings, taking

into account all adjacent bays. As the difference in phase at these openings is

less than one hour and, as the amplitudes there are almost the same, the

superposition of the two co-oscillations does not essentially change the charac-

ter of a standing wave, and there are two places where the range is small and

the variation in the phase is rapid. Here again, as in the English Channel, the

rotation of the earth is not able to transform the nodal line into an amphi-

dromy; the crowding of the co-tidal lines, especially on the Irish side in the

25"
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St. George canal, subsists. In the northern part of the North Channel, there is

an amphidromy (exactly as in the Hoofden). Figure 162 gives a comparison

between the observations and the theoretical computations. The Irish tides can

be explained by the impulses received by their water-masses from the Atlantic

Ocean. There is also very good agreement between theory and observations

on the tidal currents. For the tidal currents in the North Channel see also

Proudman (1939).

Doodson, Rossiter and Corkan (1954) have made a rather interesting

investigation of the tides of the Irish Sea, in which they used methods similar

to the so-called "relaxation methods", using finite differences in all variables

and attempting to satisfy all the conditions of motion within the sea, proceed-

ing by successive approximations. Only coastal observations of tidal ele-

vations are supposed to be known. There are many difficulties, peculiar to

the tidal problem, in the application of these methods, due to the very ir-

regular coast lines and depths, gaps in the coasts, shallow water near the

coasts, frictional forces, and the very serious complication due to the fact

that the tides are oscillating and thus require two phases to be investigated

simultaneously owing to their reactions one upon the other.

The resulting chart is shown to be very closely the same as the existing

chart, thus proving the validity of the method.

5. The Tides of the Mediterranean

The tides of the Mediterranean, including the adjacent seas, have been

investigated exhaustively in more recent times, although they are com-
paratively weak. A satisfactory explanation was found, but it took numerous

new observations to arrive at a basic theory of these tides.

A compilation has been made of all the available coastal observations

on establishments and tidal ranges of the western and eastern basin, and

of the Strait of Gibraltar and the Strait of Tunis (where the 1
5° E. meridian,

which divides the Mediterranean in two, has been taken as a reference). In

Fig. 163, drawn by Sterneck (1915, p. 905) (see also Defant, 1916, p. 462)

is shown schematically the distribution of the establishments; not considering

the Straits of Messina and of Tunis. The majority of the establishments fall in

two groups, namely, 3-3 and 9 3 h. At the ends of the various basins we have

entered the average establishment of the stations located there. The lines of

demarcation between the areas with the establishments 3 and 9 h are to be

considered as nodal lines of standing oscillations. This indicates that the

tides in the Mediterranean can be represented by two standing waves, one

covering the western, the other the eastern basin. The arrows in the figure

indicate the direction of the tidal currents from 3 to 9 h at the time of the

syzygies. In the Straits of Messina and Tunis, the rotation of the earth causes

strong transverse oscillations which, according to the observations, transform

the nodal lines into amphidromies contra solem. The other nodal lines are
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likewise according to observations transformed into amphidromies; this is

particularly the case for the one in the eastern basin. The Mediterranean can

be considered to be divided by these three nodal lines of the longitudinal

oscillations in six sections, each of which extends from an antinode to a node

and vice versa.

Fig. 163. Oscillating areas of the Mediterranean (numbers indicate average establishments

in central European time, those in the Black Sea in Eastern European time) (Sterneck).

The interpretation of these basic facts, which were found rather early

(see Grablovitz, 1909, p. 191) goes back to two different fundamental ideas

(see Merz, 1914). One is based on an assumption expressed by Darwin that

the Mediterranean is so completely closed by the Strait of Gibraltar that

only independent tides can develop in this sea, like in a large lake, so that

in each basin only forced oscillations are possible. Sterneck (1912, p. 1245),

who at first accepted this conception, has explained the equal establishments

in the large basins of the western Mediterranean (between the Balearic Islands,

Corsica and Sardinia, on the one hand, and in the Thyrrhenian Sea on the

other hand) by assuming forced oscillations, such that in the coastal regions

of these basins high water occurs simultaneously, while at the same time

the central parts of the basins have low water, and vice versa. For such

oscillations the nodal lines would be closed in themselves. De Marchi (1908,

p. 12) has proven, however, that such oscillations caused by the vertical

component of the tide-generating forces can only be very small and that

they cannot deserve any consideration; unless the period of the impulses

coincide with the period of the basin, which is not the case. Later on, Sterneck

has found that these oscillations, which would require a constant water volume

in the individual basins, do not exist. A great amount of tidal energy pene-

trates through the Strait of Gibraltar into the western Mediterranean and

influences conditions in the western basin.

A second mode of interpretation of the observations denies in advance
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the possibility of independent tides and attempts to explain the existing ones

by an Atlantic wave penetrating through the Strait of Gibraltar into the

Mediterranean. Wegemann (1913, p. 555) has developed this theory and

tries to make it agree with the observed data through interferences between

the penetrating wave and the reflected wave on the Italian coasts and which

leads partly to standing waves. In the eastern Mediterranean basin he

assumes, like Harris (1904), an amphidromy contra solem around Crete,

which he thinks results from the superposition of the Atlantic wave penetrat-

ing through the Strait of Tunis with its reflection on the coasts of Syria.

Sterneck (1913-15, see also, Defant, 1913, p. 361; 1916, p. 462; 1922)

attempted in several papers to explain the tidal phenomena of the Mediter-

ranean by computation based on hydrodynamics. He developed this theory

further and it agrees with the harmonic constants observed at coastal lo-

calities. He examines first the direct effect of the tide-generating forces for

each of the two Mediterranean basins, assuming that these basins are com-

pletely closed on all sides. The natural period is 5-96 h for the western basin

and 8-54 h for the eastern basin, and he finds in each basin a nodal line

placed almost exactly in the middle of the Mediterranean with establishments

of 3 h in the western and 9 h in the eastern part.

The eastern basin has no other tidal components than this independent

tide. This seems astonishing, as it is connected with the other basins of the

Mediterranean (the Adriatic and Aegean Sea, and the Straits of Messina

and Tunis). However, Sterneck pointed out that, at the time of the syzygies

from 3 to 9h, the eastern basin receives from the Adriatic 131 km3
, from

the Aegean Sea 35 1 km3 of water, in all 48-2 km3
, whereas during the same

time it loses 110 km3 through the Strait of Messina, 41-9 km3 through the

Strait of Tunis, totalling 52-9 km3
, so that but for the small quantity of

4-7 km3 the total water-mass of the eastern basin remains constant during

one tidal period. In first approximation the co-oscillating tides with the

other basins will be negligible compared to the independent tidal component.

Sterneck gives an exceptional position to the Syrtis Minor, which features

small water depths and in its central part a considerable increase in tidal

ranges. He treats this region as a closed one, separating it from the water

masses in the eastern section of the Strait of Tunis, which is a rather arbi-

trary decision. It would seem more simple to regard the Syrtis Minor as

a bay extending from the estuary of Ras Kapudia (tidal range 22 cm) in the

north to a point a little west of Tripoli (tidal range 20 cm) in the south. The

free period of this region is about 6 h, so that v will be about | . This points

to a co-oscillation of the water-masses in this bay with the outer tides magni-

fied by resonance. It is for this reason that there are the great tidal ranges

of nearly 200 cm at Gabes and Skhirra.

The western basin has, beside its independent tide, co-oscillating tides

with the Atlantic Ocean through the Strait of Gibraltar and, with the eastern
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basin through the Straits of Tunis and Messina. These co-oscillating tides

can be accurately determined by the method of the step-wise integration of

the hydrodynamical equations (p. 339), because we know the water-masses

which pass through the straits within a half-tidal period. According to the

current observations of Captain N. S. Nares there is from 3 to 9 h an inflow

of 69-8 km3 into the western basin, which enables one to compute the co-

oscillating tide for all cross-sections. The co-oscillating tide is larger than

the independent tide (a little east of Gibraltar about at the ratio 5:3) and

it is evident that the influence of the tides of the Atlantic Ocean on those

of the Mediterranean is considerable. The nodal line of the oscillation in the

western section of the basin is between Cape de la Nao (between Valencia

and Alicante) and a point of the Algerian coast between Alger and Oran.

Fig. 164. Longitudinal oscillations of the semi-diurnal tides in the western and eastern

basins of the Mediterranean. , theoretical distribution of the springtide ranges; •••••,

observed values; positive values: phase around 3 h; negative values: phase around 9h Central

European Time.

For the co-oscillation of the western basin with the eastern basin, we can

consider first the Strait of Messina. One can use the same cross-sections

as for the co-oscillation with the Atlantic Ocean and obtain at the western

end of the basin a range of only 3 cm; the nodal lines he in the centre of

the Tyrrhenian Sea. Somewhat greater is the influence of the co-oscillation

through the Strait of Tunis. On account of the position of this opening,

it was necessary to select another arrangement of the cross-sections. One
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obtains a range of about 1\ cm for the western end near Gibraltar, where

it nearly conies to a periodical parallel displacement of the entire surface

without a nodal line.

All these separate parts of the tides can simply be added together to obtain

the theoretical tide of the western Mediterranean basins, since all are almost

synchronous: namely, the independent and the co-oscillating tide with the

Atlantic Ocean in the west with the phase 3h; the independent and co-

oscillating tide with the eastern basin with the phase of 9 h. Figure 164

shows the good agreement between the theory and the observations, both

for the western and the eastern basin. This is remarkable, when one bears

in mind that the theory is solely based on the fact that the tides at the western

Table 47.
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reduced to the 15° E. meridian proved to be nearly constant and this applies

in part to the amplitude, so that we can group the separate localities and

obtain average values for the Tyrrhenian, Ligurian and Ionian Sea. The

result is tabulated in Table 48.*

Table 48. Harmonic constants for separate

oscillating areas in the Mediterranean

(x referred to 15°E.)
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is the independent diurnal tide of the entire Mediterranean. If we assume

for the latter at an arbitrary locality a range rjx = a^osiat— *[), for the

co-oscillating tide r\2
= a2 cos(<rt— x'

2), then -n — r\x+ r\2
= Hcos(at— x) in

which

//
sin (V— x2)

sin(%i— x2)

and a* = H sin(V— x[)

sin(i<2—xi)

Table 48 gives us H and x and with x[ which for the independent tide (re-

duced to the central meridian of 15° E.) is approximately 90°, and x2 which
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explained by the position of the nodal line of the semi-diurnal tides in the

western part of the western basin, where at the same time the diurnal tides

have an antinode. The Ligurian Sea, which is not close to a nodal line

neither of the semi-diurnal nor of the diurnal tides, has an ratio of 56,

which does not deviate essentially from the normal value of 49. In the

Ug.
seo

Tyrrh. Ionian

seo seo

Fig. 166. Distribution of the amplitude of the diurnal partial tides in the Mediterranean

(Sterneck). , co-oscillation with Atlantic ocean, independent tide.

Tyrrhenian Sea with an antinode of the semi-diurnal tides there is a decrease

of the ratio to 0-30, which continues in the Ionian Sea to 0-24, because here

lies the nodal line of the diurnal tides. In Alexandria the ratio is also not

much greater, as the amplitudes of the semi-diurnal tides increase towards

the east.

6. The Tides in the Strait of Messina

There are in the Strait of Messina strong currents which have the rhythm

of the tides and which are known since antiquity by the Homeric description

of Scylla and Charybdis. It was already known to Aristotle that these currents

are associated with the tides in neighbouring seas. The first compilation of

the basic facts (1824) is due to the French Vice-Consul in Messina, Ribaud.

A detailed description of the current conditions throughout the whole strait

was given by Marini in 1917. Later on, these phenomena were investigated

from a biological viewpoint without dealing with the geophysical process as

such. A first extensive oceanographical survey of the entire phenomenon was

made by Vercelli (1925) aboard the research ship "Marsigli" in 1922-23.

These observations were the basis of a geophysical explanation given by

Defant (1940, p. 145). An extensive description of the eddies and currents

within the strait has been given recently by Mazzarelli (1938). The stationary

currents at the narrowest point of the strait flow in a southward direction,
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down till 30 depth and from this depth to the bottom at about 106 m in

a northward direction corresponding to the vertical density distribution of

the Tyrrhenian Sea in the north and of the Ionian Sea in the south (see

vol. 1/2). Their velocities in both layers are of the order of magnitude of

10 cm/sec, but can increase to considerably greater values, through wind

and piling up effects. Superposed on these stationary currents are the tidal

currents originating from the co-oscillation of the water-masses of the strait

with the tides of the adjacent seas. As we have seen, these tides have a nearly

opposite phase with equal amplitudes, i.e. when the Ionian Sea off the strait

has high water, then the Tyrrhenian Sea has low water and inversely. If the

tides at the opening of the strait in the north and the south are known, the

tides and the tidal currents within the strait can be computed according to

the method of the step-wise integration of the equations of motion (p. 339),

taking into consideration the morphologic conditions of the connecting canal.

If at first, the frictional influences are neglected we obtain the picture as

represented in Fig. 167. The tides of the area of the strait south of the nar-

Fig. 167. Phase and amplitude of the tide in the Messina Straits. --«--, intensity of the

tidal current (friction neglected).

rowest cross-section (Punta Pezzo-Ganzirri) behave essentially like the Ionian

Sea, except that the amplitude of the tide gradually decreases to zero ap-

proaching the first location. The same applies for the section north of this

cross-section, which is governed by the tides of the Tyrrhenian Sea. Within

a very short distance of a little more than 3 km, the phase of the tide varies

by nearly 6 h. At this point occur the greatest slopes of the sea surface.

At 3 h the difference in elevation of the sea surface over this short distance

is 1-7 cm/km from south to north At 9 h it is reversed from north to south

and at h and 6 h the surface is nearly level. The velocities of the current

related with the maximum gradients are shown in the figure: between 3h
and 9h the current is directed northward; this is the so-called "rema mon-
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tante" ; at the narrowest point it attains at 6 h its maximum of nearly

200 cm/sec. Between 9 h and 3 h the current is directed southward, which

is called the "rema scendente" ; at h it has the same maximum value of

200 cm/sec. These currents computed theoretically can be compared with

observations made by Vercelli on an anchor station of 15 days in the cross-

section Punta Pezzo-Ganzirri, and which were submitted to the harmonic

analysis. He found the following surface values.

Table 49. Harmonic constants of the tidal current

in the Strait of Messina

{H in cm/sec, reduced to the transit of moon through the meridian in central European time.)

M2
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can acquire large dimensions. The circumstance that in this part of the strait

the upper water layer in its steady position travels southwards, whereas the

lower layer moves northwards, plus the tidal currents, contributes to the

development of dynamical instabilities, which dissolve into eddies. This is

substantiated by the observations. Around 3 h, when the "rema montante"

- 1
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eddies with a vertical axis. There are three points where they develop: (1) in

front of C. Peloro, i.e. the Charybdis; (2) in front of Scilla, i.e. the Scilla

eddies; and (3) near the Punta San Ranieri in front of the harbour entrance

of Messina. The eddies off Charybdis and in front of Messina are the most

important and they develop through the rotational movement in the eddies,

whereby the heavier water sinks under the lighter water; the direction of

rotation is mostly cyclonic. There are, however, also anticyclonic eddies, in

which the water rises in the centre. They are visible by a smooth, apparently

oily area in the centre of the eddy (macchie d'oglio). The eddies off Scilla

are nowadays insignificant. In earlier days their intensity and extension must

possibly have been greater. This decrease in intensity might be connected

with morphological modifications of the bottom relief off Scilla.

7. The Tides of the Adriatic

The Adriatic Sea has the form of a canal about 500 miles (820 km) long

penetrating far into the continent and ending in the Ionian Sea, through

the Strait of Otranto. The mean width is 100 miles (166-5 km), the opening

is about half this width and its cross-section has a surface of around 37 km2
.

The depth chart shows two different kinds of basins ; the bottom in the north-

ern basin slopes down regularly towards the south, up to a cross barrier

which separates it from the southern basin. The latter has the shape of

a kettle with maximum depths of a little over 3900 ft (1200 m) in the centre.

The mean depth of the cross-section of the opening is only 1457 ft (444 m),

whereas at the cross-section the maximum depth is nearly twice this figure,

2516 ft (767 m). Table 50 contains a compilation of the amplitudes and

phases of the principal components (referred to 15°E.). [Kesslitz (1919),

Tenani (1929)].

The distribution of the harmonic constants of the semi-diurnal tides along

the coasts indicates the presence of a well-developed amphidromy. It results

from the superposition of a longitudinal oscillation with a nodal line south

of Punta Bianche (Dugi) and the transverse oscillations caused by the rotation

of the earth. The ratio of the amplitudes of M2 and S2 is smaller than 2 for

all the adriatic stations, and, consequently, reaches nowhere the theoretical

value of 2-3. There is practically no difference between the phases, so that

in the Adria there is no "age of the tide".

The diurnal tides show a quite different picture. Their amplitude de-

creases uniformly to the south-east and seems to become nearly zero near

the Strait of Otranto. The differences in phase are small and form the north-

ern part of a weak amphidromy, whose centre is in the vicinity of the Strait

of Otranto. The amplitude of the Kx component exceeds that of the other

diurnal tides very strikingly.

As the phases of the semi-diurnal tides vary very much in the different

sections of this sea and those of the diurnal tides differ only slightly, there
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must be a great variety in the tide-form in the Adria. Particularly charac-

teristic is the distribution of the ratio (Kl
Jr 1)/(M2 -\-S2). In the southern

section up till the line Vieste-Dubrovnik, it has the value 0-47, the semi-

diurnal tides dominating slightly. The northern section has values near 0-6,

Table 50. Harmonic constants for the Adriatic Sea *

(H in cm; g in degrees referred to the 15°EL meridian)

Place
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but in the central section the ratio increases to more than 1-5, and in the

immediate vicinity of the nodal line of the semi-diurnal tides it exceeds 2,

so that the tides are almost of the diurnal type. This distribution is fully

explained by the behaviour of the Adria in regard to the semi-diurnal and

diurnal impulses from the Ionian Sea.

20

Cross-sections

40

Fig. 169. Distribution of the amplitudes of the M2 and KL tides of the longitudinal co-oscilla-

tion of the Adria with Ionian Sea. , observed; , theoretical distribution of co-osci-

llation with Ionian Sea, , considering the independent tide.

For the purpose of explaining the tides, the Adria was first considered

as a canal open at one end, co-oscillating with the tidal motion of the Ionian

Sea, [Defant (1914, p. 270), Sterneck (1914) and Defant (1914, p. 556;

26
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1915, p. 147)]. The agreement thus reached between the theory and the

observations was already very good. But Sterneck (1919) has tried to have

theory and observations agree even better. He used forty cross-sections

and, according to the usual method, he calculated the co-oscillating tides and

the distribution of the amplitudes of the longitudinal oscillation for all the

semi-diurnal and diurnal components. He took into account the influence

of the tide-generating forces and he attempted to fulfil the boundary con-

ditions by assuming the coincidence with the amplitudes on certain stations

in the centre of the Adria. Figure 169 gives the distribution of amplitudes

for the M2 and Kx tide along the Adria. The full line represents the observed

values, the dashed line the theoretical values if only the co-oscillation tides,

the dot-dashed line the theoretical values when the co-oscillating and the

independent tides are considered. The latter distribution corresponds a little

better to the observed one; however, it is obvious that the co-oscillating tide

is the major influence. The theory places the nodal line exactly at the same

point as observed. The good agreement in phases and amplitudes leads to

the assumption that the frictional forces are negligible, which should be at-

tributed to the great depths of the central and southern sections of the Adria.

The diurnal tides do not show a nodal line; the tide consists in a rise and

fall coinciding with the external tide, whereas the amplitude increases slightly

towards the inner closed end of the canal, corresponding to the natural period

and the reduction of the cross-section.

I
,
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and northern section. This is explained by the fact that in this southern

section, the amplitude of the longitudinal oscillations reaches a maximum
towards the open end in the south, and then decreases which requires a change

in the sign of the horizontal displacement of these oscillations.

Fig. 171. M2 tide in the Adria. Numbers at stations are the g values according to Sterneck.

Transverse lines correspond to the sections used for the theoretical computation.

The combined longitudinal and transverse oscillations give the tidal picture

of the Adria represented in Fig. 171. The agreement with the tidal con-

stants of the coastal localities is excellent for both the semi-diurnal and the

diurnal tides.

8. The Tides of the Aegean Sea

This sea, which has a very intricate configuration, can be considered as

a bay of the eastern Mediterranean basin and is connected with the latter

by means of the two straits west and east of Crete. The areas of the cross-

sections are respectively 25 and 55 km2
, so that the eastern strait is to be

considered as the more important opening. The entire bay, on account of

its bottom relief is divided in two basins which are fairly well separated

from each other: (1) the Cretan basin, which is bordered in the north

by the Cyclade Islands and in the south by Crete, and which has a good

26*
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communication with the Ionian Sea through the strait between the Pelopon-

nesus and Crete; and (2) the actual Aegean basin, which east thereof commu-

nicates directly with the eastern Mediterranean basin. It seems that these two

basins have different tidal forms.

The Aegean basin seems to co-oscillate with the eastern Mediterranean.

The natural period, according to Sterneck (1915, p. 936), with a length of

403 miles (651 km) and a mean depth of 1188 ft (362 m) and with a cor-

rection for the shape and the opening (considered as a bay) is 1 1 -42 h. We
have for M2 v — 0-44. This value is very close to the condition for resonance

and, therefore, according to Fig. 141, one can expect a nodal line near the

opening. This results also from the computation of the co-oscillating tides,

if the Aegean is considered in its entirety. With amplitudes of about 1 1 cm

at the opening between Rhodes and Crete, we obtain at Salonika 15 cm.

But at Rhodes the establishment is 10 6 h (eastern European time, 30° E.),

against 40 h for Salonika, so that a nodal line somewhere north of Rhodes

may be assumed. Table 51 gives for various localities the harmonic constants

for M2 and S2 . Complete analyses by Tenani (1930) are now available for

Table 51. Harmonic constants for the Aegean Sea

(H in cm; g3Q°E. in degrees.)

Tide
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as caused directly by the tide-generating forces. Any influence from the

Bosphorus is hardly to be expected. Under these circumstances, its tides

will be very small, the more so as its natural period of around 5 h (see p. 200)

differs considerably from that of the tidal forces. Sterneck (1912, 1915, 1926)

determined for four localities the phase and amplitude for the principal

components listed in Table 52. The observations reveal for the semi-diurnal

Table 52. Harmonic constants for the Black Sea

(//in cm; x in degrees).

Place
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substitutes for the entire sea a rectangular basin of a length of 600 miles

(1000 km), a width of 310 miles (500 km), and a constant depth of 4130 ft

(1259 m), so that its natural period becomes exactly equal to that of the

Black Sea (see Fig. 172). It would then be easy to reproduce the tides by

superposition of the following four oscillations which can be determined

theoretically: (1) the east-west oscillation forced by the west-east component

of the tidal forces; (2) the north-south oscillation forced by the north-south

component of these forces; (3) and (4) north-south and west-east oscillations

which are caused by the action of the Coriolis force on the oscillations

under (1) and (2) respectively. This theory was first applied to the com-

bined M2 and S2 tides at the time of the syzygies and gave at the west and

east coast the amplitude 4-6 cm, in the centre of the north and south coast

11 cm and a distribution of the co-tidal lines as shown in Fig. 172. The

establishments of Constanta, Odessa, Sevastopol, Feodosiya and Poti are also

entered in the figure; one can see that both the amplitudes and the establish-

ments fit very well the theoretical picture. Even the approximate establish-

ments and amplitudes of Novorossisk and Tuapse as given by Endros (1932,

p. 442) fit well. The distribution of the tidal forces for such a basin is such

that the action in the north-south direction always lags in its phase by one-

quarter period to the action in the east-west direction, so that the superpo-

sition must produce an amphidromy rotating to the right (cum sole). The

oscillations caused by the Coriolis force are negligible and are only able to

weaken slightly the amphidromy, but not to suppress it.

Later on, Sterneck has replaced his schematic theory by an "exact" theory,

in which he took fully into account the morphological conditions for the

computation of each separate oscillations. The assumption of synchronous

action of the tide-generating forces was dropped and he took into account

the small differences in phase of the force in the various sections of the sea.

For the computation of the four components of the oscillation he used the

method of step-wise integration. He obtained the amplitude and the phase

of the tide (Ma+Sa) for the northern and southern points and the centres

of the fourteen cross-sections. The result does not deviate considerably from

his schematic theory.*

A hydrodynamical theory of the tides of the Black Sea which in a more

exact way takes into account the effect of the deflecting force of the rotation of

the earth should be based on Taylor's theory of the oscillations in a rotating

basin (p. 216). Grace (1931) has computed accurately for a basin of uniform

depth of similar dimensions as the Black Sea, the oscillations forced by the

tide-generating forces and compared his results to those of Sterneck. He finds

first of all that for a rectangular basin having approximately the dimensions of

* The diurnal Kt tide, on the contrary, has a counter-clockwise amphidromy; however, its

amplitudes are very small (1-6-01 cm). The harmonic constants confirm this result.
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the Black Sea, both the accurate dynamical solution and the one found by

Sterneck differ very little from the solution according to the equilibrium

theory, where the Coriolis force is neglected, so that the deviations therefrom

should be considered as small corrections. Sterneck's solution, however,

shows in certain parts greater deviations than Grace's solution. Anyway,

the good agreement with the observations is to be attributed exclusively to

the circumstance that the equilibrium theory is by far preponderant. In so

far the "exact" computations of Sterneck are useless. This is also shown

clearly by the compilation given by Grace in Table 53. The differences between

Table 53. Comparison between observed and computed

values of the tides of the Black Sea

Place
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attempt an explanation of the tides of the Red Sea; he regarded them as the

superposition of a standing wave produced in this sea by the tide-generating

forces and a progressive wave penetrating through the Strait of Bab el Mandeb.

Blondel (1912), following a suggestion of Poincare (1910), has used a special

method of the calculus of variations for the computation of the tides of this

sea; however, due to an error, he did not obtain a good agreement between

the theory and the observations. This mistake was corrected by Chandon
(1930), with the result that the agreement was improved. Defant (1919, p. 1 10)

has given a theoretical discussion of the spring tides by applying the step-wise

integration of the equations of motion. The tides were considered as the

superposition of a tide co-oscillating with the Gulf of Aden and an inde-

pendent tide. The observations available at that time consisted only of the

establishments and mean heights of the spring tides 2{M.2
JrS^ given by the

Admiralty Tides Tables which were not very accurate. The agreement was

quite good and it showed that the tidal motion is due in equal parts to the

independent tide and to the co-oscillating tide.

One result of the cruise of the "Ammiraglio Magnaghi" was the harmonic

constants of eleven coastal localities in the Gulf of Suez and in the Red Sea

computed by Vercelli (1925). He also analysed a 15 days' anchor station

in the Strait of Bab el Mandeb and got the harmonic constants of the tidal

current at the open end in front of the Gulf of Aden. Table 54 gives a com-

pilation of these values, on which are based all further theoretical investi-

gations of the tides of this sea.

From the distribution of the amplitudes and phases along the longitudinal

axis of the sea it can be concluded that the semi-diurnal tides have three

nodal lines: one south of Assab, a second one near Port Sudan and a third

one in the Gulf of Suez between Tor and Ashrafi Island. Generally the tide

has the nature of a standing wave with a rapid transition of the phase in

the vicinity of the nodal lines. The Gulf of Agaba oscillates, according to

the rough values of the tide tables, with the tides of the main basin without

a nodal line (v < 0-5). The diurnal tides, on the contrary, show only one

nodal line, namely, for Kx between Kamaran Island and Massaua, for Ox

somewhat more south of the former locality; here also it is essentially a stand-

ing wave.

The character of the tides is given by the ratio (K1
Jr01)/(A42

JrS2) (see

Table 54). In the areas outside the nodal lines it is definitely semi-diurnal;

however, the nodal lines of the semi-diurnal tide stand out as areas with

an extreme diurnal type; this is especially the case in the Red Sea. It is also

remarkable that the elliptic tide N2 is remarkably great in the entire sea,

which also applies to the Gulf of Aden.

The tidal currents in the Strait of Bab el Mandeb are very strongly de-

veloped and, essentially, of the same nature over the entire cross-section of

the strait. The type of the current can be designated (see p. 307), as "mixed,
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Table 54. Harmonic constants of the Red Sea
(H in cm; x in degrees).

Place
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preponderantly semi-diurnal", but it comes already close to the diurnal type. *

The tidal current, with rapidly decreasing amplitude and gradual shifting in

the phase maintains the same form till about 16°N. ; south of the Dahalach

Archipelago there seems to be a "nodal line".

Defant (1926, p. 185) has made a new computation of the tides of the

Red Sea for M2 and Kx which can be expected theoretically on the basis of

the more accurate data obtained from the harmonic analysis. The agreement

with the observations was again very good. The difference with the first

computation was, however, that now the co-oscillating tides dominated,

whereas the tide generating forces should only cause slight modifications.

Sterneck (1927, p. 129) has been induced by this contradiction with the first

attempt to make a mathematical segregation between the co-oscillating tide

and the independent tide according to his "Zeriegungs" method. He con-

cluded that, for the larger part of the Red Sea, the ratio of the two tides is

for M2 1:3, for S2 1:4. In the Gulf of Suez this ratio becomes considerably

larger. For Kx the amplitude of the two tides is approximately equal.

As we will explain later on (see p. 508) Proudman has expressed the thought

that the co-oscillation with the water-masses of the Gulf of Aden and the

independent tides, the tides of the Red Sea are influenced by the tides of

the solid earth. He has shown how the tides of the solid earth influence those

Table 55. Comparison between observed and theoretical

values of M2 tide in Red Sea

Place
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of small bodies of water like canals, and he has also given methods to com-

pute numerically this influence. We will discuss this problem of the ocean and

earth tides later on more thoroughly (p. 506). Here we will mention only the

results obtained by Grace (1930, p. 274) who was the first to apply Proudman

methods to the A/2 tide of the Red Sea. For this purpose, it is necessary to

have tidal data as accurate as possible along the central axis of the sea, for

which reason a reduction of the harmonic constants of the coastal localities

to the centre line of the Red Sea should be made. Under certain conditions,

such a reduction is feasible and Grace obtained for certain points on the centre

line the constants of the M, tide listed in Table 55 (see "corrected" values).

With these values one obtains, by numerical integration of the hydrodynamical

equations, provided appropriate factors are selected to satisfy the boundary

conditions, the theoretical M2 tide. Then, from the factors one obtains also the

proportionality factor of the motion of the earth to the tide generating force

(seep. 508). The comparison between the theoretical tides and the observations

shows that in the Gulf of Suez the agreement is not good, perhaps for the rea-

son that transverse motions and friction are more disturbing here. In the Red
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should not be neglected, especially in the Gulf of Suez, which influences react

on the tides in the Red Sea. This can cause a shift in the phases which, al-

though small, should not be ignored for such computation as pointed out by

Defant (1928, p. 274).

11. The Tides of the Persian Gulf

In considering the tides in this area, we should consider the Persian Gulf,

the Strait of Hormuz and the Gulf of Oman as a unity. Their orographical

conditions are quite intricate, because the longitudinal axis of the area of

Table 56. Tidal data at spring tide in the Persian Gulf

and Narrows of Hormuz and in the Gulf of Oman



414 Tides in the Mediterranean and Adjacent Seas

a rough picture of the semi-diurnal tide. For a series of localities these values

are compiled in Table 56; Table 57 gives the harmonic constants of the two

afore-mentioned localities, together with those of Karachi, on the Indian

Ocean. The tidal picture resulting from these observations is briefly the

following (Fig. 175).

Table 57. Harmonic constants
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is 22-6 h according to the Japanese method, 21 -7 h according to the

Chrystal method. The ratio v for the semi-diurnal tides is, therefore,

about 2-3, which for both tidal components causes the development of two

nodal lines. The step-wise computation gives these two nodal lines for the

co-oscillating tide, the first off Qais, the second a little south of Bushire.

In the Gulf of Oman, the tidal range is about 6-6 ft (200 cm), it increases

in the Strait of Hormuz to 8 2 ft (250 cm), and at the antinodes of the stand-

Fig. 175. Phases (lunar hours) and amplitude (cm) of the spring tides in the Persian Gulf

derived from observations.

ing wave it attains values of about 5-6 ft (170 cm) at the southern end and
8-2 ft (250 cm), at the northern end of the gulf.

The computation of the independent tide is somewhat complicated, due

to the bend of the longitudinal axis of the area of oscillation. According

to Fig. 176 the entire area can be schematized in three canal sections: (I).

The actual Persian Gulf with its main direction NW.-SE. (II). The south-

eastern shallow section of the Gulf, together with the Strait of Hormuz,
the main direction being SW.- NE. (III). The Gulf of Oman, whose longi-

tudinal direction is essentially similar to that of the first section. The tide

generating forces for (M^+ S^) can then be computed for each of the different

sections and we obtain:

section I Kx
= 7-875 x 10- 7 cos?|(?- 10 h);
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section II Kv 10103 l0- 7 cos^(/-8-6h)

In
/:1+ 6-82xl0- 7cosj2^-7h);

In
section III Km = 7-875 x 10~ 7 cos =^ (7- lOh)

2jt In
= ^ + 6-82 x 10~ 7 cos j, (t- 7h)- 6-82 x 10~ 7 cos ^ (f- IK)

.

For the component of the independent tide "of the first kind" the same

force K
x
acts along all three sections; it can be computed numerically ac-

cording to the methods previously described (p. 339). For the first part of

the component of the independent tide "of the second kind", the force

48°E

Fig. 176. Division of the oscillating areas of the Persian Gulf in three canals.

6-82 x 10^ 7
cos(27r/12)(7— 7 h) acts in the canal sections II and III; it has

a nodal line at the opening into the free ocean and its form must be such

that the section I can co-oscillate freely. For the second part of the com-

ponent "of the second kind" of the independent tide, the force — 682 x

x 10
_t

cos(2:t/12)(?— 7 h) only acts in the canal section III; it has again the

amplitude zero at the opening into the Indian Ocean and the canal sections I

and II must co-oscillate with it at the end.

All these components can be computed by a numerical integration. It ap-

pears that the component of the independent tide of the first kind, as well

as the first part of that of the second kind have such small amplitudes that

their contribution to the tides of the Persian Gulf is insignificant. The second
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part of the component of the second kind, on the contrary, has a substantial

range, i.e. the water-masses co-oscillate vigorously with the independent tide

in the Gulf of Oman. The nodal lines of this pseudo co-oscillating tide co-

incide with those of the real co-oscillating tide; however both standing waves

have a phase difference of 3' h.

The superposition of all these components gives the tides of the entire

area of oscillation. To this has to be added the effect of the deflecting force

of the rotation of the earth, which transforms the nodal lines into amphi-

dromies contra solem; these, however, are very well developed, because large

amplitudes over small depths command great velocities in the horizontal

displacements. The theoretical picture resulting from the superposition of

the longitudinal and transverse oscillations, does not deviate very much from

that of Fig. 175 neither as to phases nor as to ranges, so that the theory in

question can be considered to give a satisfactory explanation of the tides

of this adjacent sea. A more detailed investigation must be postponed until

such time when we have a sufficient number of harmonic constants of coastal

localities. It should be mentioned that frictional influences have not been

taken into account by this theory. In view of the small depths this omission

might perhaps not be justified.

As the natural period of the Gulf lies close to 24 h, it is to be expected

that the diurnal tides are well developed. For these diurnal tides v is about

0-95, and the co-oscillating tide of the diurnal tides will have a nodal line

somewhere in the centre of the. Persian Gulf and will show in the antinodes

amplitudes which might be quite large. This explains that, in the Persian

Gulf, and particularly in the vicinity of the nodal lines of semi-diurnal tides,

the tides become almost of the diurnal type. In this case more and newer

values of the harmonic constants for adequately situated localities will give

a better insight.

12. The Tides of the East Indian Archipelago

The only description of the tidal phenomena in this entangled system of

straits in the East Indian Archipelago has been given by van der Stok (1897,

1910, 1911, p. 354). Thanks to him, the harmonic constants of a very great

number of coastal localities in the Indonesian Archipelago are known, so that

there is a good basis for explaining the tidal phenomena. However, it has

hitherto not been attempted to make an accurate hydrodynamical investiga-

tion based on modern methods. A description of the tidal picture has been

given by Krummel (1911, vol. II, p. 384), in which he makes reference to

charts of the co-tidal lines of the M2 and Kx tide designed by him. He bases

himself entirely on the viewpoint that the tides penetrate as progressive waves

from the open ocean into the various basins, and that they travel according

to the depths and that by mutual interferences they create the actual tidal

picture. We wish to direct the attention to the more recent charts of Van

27
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der Stok, in which he has only drawn short fragments of the co-tidal lines

protruding from the coast into the ocean, without trying (except in very few

cases) to connect these co-tidal lines from coast to coast. He too is firmly

convinced that progressive waves alone are responsible for the picture of the

phenomena. Dietrich (1944, p. 69) has recently given a presentation of the

95° 100" 105° NO 25° 130° 135° 140°

Fig. 177. Co-tidal lines of the M2 tide in the Indonesian Archipelago (referred to the upper

culmination of the moon in Greenwich), according to Dietrich.

co-tidal lines for the M2 and Kx tide which is part of his presentation of the

tides of the oceans without, however, accompanying it by any further dis-

cussion. His two charts (the scale of which has been slightly enlarged) are

reproduced in the Figs. 177 and 178, but we cannot agree on all points with

his drawing of the co-tidal lines, nor with his interpretation of the observed

values. Table 58 gives a summary of the most important harmonic constants

of this area.

The semi-diurnal M2 tide penetrates from all sides into the Basins of

Indonesia; there seem, however, to be three points which are particularly

important for the development of the tides, (a) The wide strait to the north

between Formosa and Luzon, leading into the South China Sea. (b) The

areas between Mindanao and Halmahera, leading to the Celebes and Molukkes

Sea. (c) In the south, the straits between Timor and the Aroe Islands, con-

necting the Timor and Arafura Sea with the Banda Sea. The other entrances

between the group of Islands in the south and through the Strait of Malacca

seem to be only of minor importance.

These three large straits who function as entrances are connected with

each other by three complicated "canals".



Table 58. Harmonic constants in the Indonesian Archipelago
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(1) a with c through the South China Sea, the area between Sumatra

and Western Borneo, the Java— Flores Sea and the Banda Sea.

(2) b and c through the Celebes Sea, the Strait Makassar, the Flores Sea

to the Banda Sea.

(3) b and c also through the Molukkes Sea direct to the Banda Sea.

The water-masses of these three canals with their intricate widths and

depths co-oscillate, on one hand, with the tides of the open ocean at their

openings a, b and c. On the other hand, certain basins with great depths

Fig. 178. Co-tidal lines of the Kt tide in the Indonesian Archipelago (referred to Greenwich)

(according to Dietrich).

can have large independent tides. An accurate computation of these tidal

components is not yet available but, nevertheless, we are able to describe

roughly the aspect of the tidal picture of the semi-diurnal and diurnal tides.

Canal 1 has a natural period of about 33 h ; for the semi-diurnal tides v

is about 2-7, and it is to be expected that each co-oscillating tide will have

three nodal lines. They can be supposed to lie: (1) in the northern section

of the South China Sea; (2) near the Natoena islands at the southern end

of this adjacent sea; and (3) in the Java Sea. Inasmuch as the co-oscillation

at the two openings occurs almost exactly with opposite phases (in the north

g = 130°, in the south g = 340°, .referred to the meridian of Batavia), there

will be no strong shifting of the standing waves, so that the nodal lines should

be well developed. In fact, we find in the co-tidal lines of Fig. 177 near the

northern outlet of the South China Sea, on one hand, and between southern

Indo China and north-west of Borneo, on the other hand, a great crowding

of the co-tidal lines, which can be interpreted as a pseudo-nodal line ac-

companied by a decrease in amplitude; in between there is a large area with
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a phase of about 310°. There is a second area with a nearly uniform phase

of about 150° between Western Borneo and Sumatra. At the end of the

Strait of Malacca there might be a small amphidromy rotating to the left,

with its center north of the Lingga Islands. It would seem that its area on

the Dietrich chart has been assumed too large. It is probably caused by the

interference of the tide wave progressing south-eastward through the Strait

of Malacca.

Along the main canal, the phases and amplitudes show a pronounced,

outstretched amphidromy rotating to the left in the Java Sea with its center

near Bawean Island. From this centre to Southern Celebes (Macassar) many

co-tidal lines are crowded together in a small space, so that they form almost

a nodal line with a change of phase from 320° to 140°. The amphidromy

is particularly well indicated by the decrease of the amplitudes to 5 cm and

below, which in this area results in an almost diurnal tide. The canal section

of the Flores and Banda Sea has nearly uniform phases between 330° and 350°.

Canal section 2 has again the phases at its opening of about 130° in the

north and 340° in the south, consequently again almost opposite phases, so

that with a natural period of about 12 h and v = 1, one nodal line should

occur in the middle, i.e. at the southern entrance into Strait Macassar. This

is exactly the point where there is a nodal line extending, from the amphidromy

in the Java Sea to Southern Celebes. In accordance with this interpretation,

the observations made in the Celebes Sea and in the entire Strait of Macassar

show phases near 130°.

Canal section 3 also has the same phases at its openings. With an ap-

proximate natural period of 71 h and v = about 0-6, one nodal line can be

expected and, in fact, a dense crowding of the co-tidal lines is noticeable

near the group of islands extending from Celebes to Halmahera.

On going over these rough outlines of a theory of the M2 tide, in which

the independent tides have been neglected, one must admit that the charac-

teristic features of the theoretical tidal picture are in good agreement with

the observed facts. But only an accurate computation by the theory can show

how much the independent tides can change the picture. The influence of

the deflecting force of the rotation of the earth is probably small, inasmuch

as we have to deal with regions near the Equator.

In the case of the diurnal tides, which appear to be very well developed

in this entire area, conditions are more complicated, although here the picture

of the co-tidal lines is simpler. The direct influence of the tide-generating

forces might be far more apparent with these partial tides, as the v values

for the two first canals come very close to the corresponding resonance values.

Thus, the superposition of the two components creates a picture of the co-

tidal lines which is not easy to disentangle. In the South China Sea the phase

over a large area (referred to Batavia) is 310°, then the co-tidal lines crowd

in the south-western section, and in the western section of the Java Sea there
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appears to exist an amphidromy, and towards the Banda Sea the phase

remains almost constant at 290°.

In the second and third canal, the distribution of the co-tidal lines look

as if the main influence comes from the Pacific Ocean, whereas the Banda

Sea would only co-oscillate with the Indian Ocean. In neither of the two

cases is there any indication of a nodal line which, as a matter of fact, could

not be expected in view of the value of v.

The high values of the ratio indicating the character of the tides in the

entire Indonesian Archipelago indicate the part which the diurnal tides play

int here. Figure 179 gives a presentation of this ratio. Particularly apparent

Fig. 179. Ratios indicating the character of the tides in the Indonesian Archipelago.

are the nodal lines of the M2 and S2 tides, where this ratio exceeds everywhere

the high value of 3. The entire area of the central Java Sea belongs to it,

equally the area between Indo China and North-west Borneo. An area of

a relatively low value of this ratio extends east of 120°E., where it does not

reach 1.

The ratio of the M2 tide to the other semi-diurnal tides like S2 and vV2 is

abnormal and points to the fact that the tides of the entire Indonesian Ar-

chipelago are dependent upon the natural periods of the various basins.

Especially the age of the semi-diurnal spring tides is very irregular. Localities

situated close to each other show very great differences; thus, the Thousand

Islands have a lag of 4 3 days, the Edam Island (Bay of Batania) a priming

of —0-9 days; near Samarang it increases to —50 days. On the contrary,

Karimon Endjawa has again a lag of 4 days which eastwards increases to
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5 days. All over the north and the west, phase lags of 2 days are common.

Also in the ratio of Kx to O t , there are frequent irregularities.

13. The Tides of the Eastern China Sea

The Eastern China Sea consists of three parts: the Eastern China Sea

(Tung Hai), with which the Yellow Sea (Hwang Hai) is connected, which,

in its turn, communicates through the Strait of Chili, with the Po Hai (Gulf

of Chili) and the Gulf of Liaotung. The East China Sea is bordered in the

Fig. 180. Co-tidal lines of the Af2 tide and range of the semi-diurnal tide in the Eastern

China Sea. (Phases referred to the 135°E. L. meridian and co-range 2(A/2+52) in m.)

east, by the Ryu-Kyu-Retto (Nansei Islands), in the north it is connected by

the Strait of Tsushima with the Sea of Japan and in the south by the Formosa

Strait with the South China Sea. From the Ryu-Kyu Islands, the ocean bot-

tom rises rapidly from 6560 ft (2000 m) to 656 ft (200 m) and the depths of

the entire north-western sections of the boundary sea are less than 328 ft

(100 m).

The number of tidal stations is very large on the coasts of Japan, Korea

and the Peninsula of Liaotung, but small at the Chinese coast. A compilation
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of the harmonic constants can be found in Ogura (1933), who made a thorough

research of the tides and the tidal currents of this boundary sea. Table 59

gives a summary for a series of selected localities. The distribution of the

stations on the coasts is so good that it is possible to draw for the entire

boundary sea co-tidal and co-range lines for the semi-diurnal and diurnal tides.

Furthermore, a great number of tidal stations have been made by the Japa-

nese Navy in the Po Hai (Gulf of Chili) and in Hwang Hai far from the

coast, for which the tidal constants could be determined by wire soundings,

FlG. 181. Co-tidal lines of the Kx tide and co-range lines 2(#1
-|-0

1 ) in cm.

and recently also by means of high-sea gauges. The observations of the ver-

tical tide in the open ocean are complemented by a large number of current

measurements as given by Ogura (1933, pp. 47, 89, 91, 133, 137, 179 and 1934,

pp. 431, 471). On the basis of the complete available observations and using

the method of Proudman and Doodson (see p. 361), Ogura (1936, pp. 147-81)

has drawn charts of the M2 and Kx tide which seem to be very reliable. Es-

pecially for the northern section of the Hwang Hai, for the Po Hai and for

the Gulf of Liaotung there is a sufficient number of observations and tidal
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stations in the open ocean to guarantee the course of the co-tidal and co-range

lines. This is not true for the southern section of the Hwang Hai and the

Tung Hai. In Figs. 180 and 181 the most recent results have been compiled

in a chart covering the entire South China Sea.

The crest of the semi-diurnal wave, coming from the Pacific Ocean, reaches

the chain of islands of the Ryu-Kyu almost simultaneously at about 7 h

(referred to the meridian of 135 E.). The range at spring tide 2(M2+S2)

is about 180 cm near the north-eastern islands, and about 125 cm near the

south-western islands. The tide wave penetrates with a wide front into the

East China Sea and till the opening into the Yellow Sea (from Shanghai

to the southern tip of Korea) it has apparently the nature of a progressive

wave. It reaches this line with the phase h, while the amplitude increases

to nearly 8 2 ft (250 cm). The interior sea, up to the central section of the

Gulf of Liaotung, can then be regarded as a canal with many curves, with

a length of about 1600 km and a mean depth of about 50 m. The natural

period with an opening correction will be of the order of magnitude of

about 46 h, so that for the semi-diurnal tides the v =3-7 and for the diurnal

tides v = 18. We can, therefore, expect for the semi-diurnal tides four nodal

lines for the diurnal tides two nodal lines. The rotation of the earth will

transform them into amphidromies. This is, in fact, the tidal picture shown

in Figs. 180 and 181. For the M2 tide, the southern section of the Yellow

Sea oscillates with the phase h at the opening in such a way that at the

south coast of the Shantung Peninsula the phase is 6 h. The northern section

of the Yellow Sea and the Strait of Chilli co-oscillate with the co-tidal line 3| h

(south-east coast of the Liaotung Peninsula 9\ h). The Po Hai (Gulf of Chili)

then oscillates with the phase 1 1 i h and, finally, the Gulf of Liaotung, with

the co-tidal line h, so that in the central section there is again the phase 6 h.

The Kx tide behaves similarly. Here the entire East China Sea has the

phase 14| h with ranges 2{Kx +Ox) of 70-80 cm. The entire Yellow Sea is

then covered by a large amphidromy, the northern section oscillating with

the phase 22 h. The second amphidromy lies at the western end of the Strait

of Chili and covers the entire Po Hai and the Gulf of Liaotung.

An accurate hydrodynamical theory of the tides of the entire East China

Sea has not yet been given. Analyses of separate parts can be found in

Ogura (1926, p. 167; 1933, p. 269), who has studied the oscillations of the

Gulf of Liaotung, considering the Coriolis force and friction, and who
was able to obtain a very good agreement with the observations. The tidal

phenomenon of the entire East China Sea is almost exclusively conditioned

by those water-masses which penetrate through the canals between the Ryu-

Kyu islands within a ha'f-tidal period and then flow out again within the

following half tidal period. The straits between Formosa and the Continent,

and also the Strait of Tsushima, are less important, as is shown by the follow-

ing table.
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Water transport during 6 h of the M2 tide through

:

the canals of the Ryu-Kyu islands 350 km3

the northern entrance of the Formosa Strait 1 30 km3

the south-western entrance into the Strait of Tsushima 20 km3

This proves that the tides of the boundary sea are essentially of Pacific origin.

Concerning the tidal currents in the different sections, see Ogura (p. 424).

Table 59 gives the ratio of the diurnal to the semi-diurnal tides. The ratio

indicating the character of the tide is generally smaller than 05; the tides,

therefore, are mixed, preponderantly semi-diurnal, increasingly so with a fur-

ther penetration into the boundary sea, where they become almost exclusively

semi-diurnal. Excepted are only the areas in the vicinity of the centres of the

amphidromies, where of course, the diurnal tides are predominant.

Fig. 182. Co-tidal lines of the A/2 tide (referred to the 135°E. L. meridian) and range

2(M2 + 52 ) in m for the Sea of Japan (Ogura).

14. The Tides of the Sea of Japan and the Sea of Okhotsk

The Sea of Japan is connected with other seas by four straits, the most

important of which is the Strait of Korea or of Tsushima, whereas the Strait

of Tsugaru between Honshu and Hokkaido and the Strait of Soya (La Perouse

Strait) are of lesser importance, and still less so is the Gulf of Tatary between
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Sakhalin and the continent. This deep adjacent sea will, therefore, receive

its principal impulse for the tidal motion through the Strait of Tsushima.

Table 60 contains a compilation of the tidal constants of the most important

coastal localities, for numerous other localities they can be found in the

above mentioned paper of Ogura. Figures 182 and 183 represent the co-tidal

and co-range lines, according to the latter.

Fig. 183. Co-tidal lines of the K± tide and range 2(^ + 0^ in m for the Sea of Japan

(Ogura).

The semi-diurnal tidal wave penetrating from the south shows a well-

developed amphidromy at the northern outlet of the Strait of Tsushima,

which has already been assumed at this point Harris (1900, 1904). The length

of the entire strait is estimated to be 280 miles (450 km), its mean depth around

328 ft (100 m) this gives a natural period of 8 1 h and v =0-65. As the

difference in phase at both ends of the strait is exactly 1 80°, the distribution

of the amplitudes along the same is according toDEFANT(1919, p. 105) given by

Y] =
1

sin vn
[a sin vti ( 1 — v)— b sin vny\ cos (at + e)

,

a and b are the amplitudes at the southern end (y = 0), and at the northern
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end (y = 1) respectively. As a is roughly 60 and b = 6 cm, it appears that

there is a nodal line near y = 095, which is very close to the northern outlet

of the Strait of Tsushima into the Sea of Japan. The rotation of the earth

transforms it into an amphidromy which will be well developed, inasmuch

as the tidal currents are rather strong (see Table 61 and Nisida(1927, 1928,

1930)). This has also been observed. In the entire Sea of Japan, up to

Table 61. Currents in the western and eastern canal

of the Tsushima Strait

Depth Average current Semi-diurnal current Diurnal current

Velocity

(cm/sec)

Direction Velocity Direction

(°) (cm/sec) I

(")

Phase

(h)

Velocity
|

Direction
j

Phase

(cm/sec) (°) (h)

Western canal: 25-26 April 1928; (age of moon, 5-6 days; declination 25-7-24-4° N.).

5m

100m

Max
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at about h. The Gulf of Tartary co-oscillates with the diurnal tides with

the Sea of Japan without a nodal line, and the phase lags somewhat because

of frictional influences.

Whereas the character of the tide in the Strait of Tsushima is still semi-

diurnal, it becomes in the entire Sea of Japan of a diurnal type with a value

of the ratio between 1-00 and 1 50 and then it resumes its semi-diurnal cha-

racter in the Gulf of Tartary. This phenomenon is not a consequence of

a greater prominence of the diurnal tides, but rather of the decrease of the

semi-diurnal tides in the large and deep interior sea.

Muramoto (1932, p. 227) has made a survey of the ocean currents in the

Strait of Tsugaru on the basis of the current observations on two stations,

and has also tested the results on models.

A hydrodynamical theory of the tides of the entire Sea of Japan including

the Strait of Tsushima and the Gulf of Tartary has been given by Ogura

on the basis of the canal theory. The computations by means of sixty six

cross-sections perpendicular to the "•Talweg" resulted for the semi-diurnal

tides in almost complete agreement with observations; the amphidromies

result of the co-oscillation of the water-masses of the Sea of Japan with the

tide in front of the Strait of Tsushima; the other communications with the

adjacent seas are unimportant. The diurnal tides do not agree as well and

Ogura is of the opinion that this is due mainly because we cannot neglect

the transport of 16 5 km3 of water through the Strait of Tsugaru in 12 h

whereas the transport through the Strait of Tsushima is 32 km3
. However,

it is not impossible that the independent tidal component of the diurnal tides

makes itself felt even though the amplitudes are small. Ogura (1932, p. 1)

has treated the tides of the Strait of Tsugaru theoretically and has obtained

a good agreement with the observations made by Muramoto.

The Sea of Okhotsk communicates with the Pacific Ocean by the numerous

passages between the various Kuril islands; it also communicates with the

Sea of Japan by the Soya Strait (La Perouse Strait) between Sakhalin and

Hokkaido, and by the Gulf of Amur through the Gulf of Tartary, on the

other hand. The two latter communications, however, are of far less im-

portance than the former. Inside the chain of the Kuril Islands there is

a basin more than 3000 m (9800 ft) deep, but then the ocean bottom rises

rapidly up to 200 m (600 ft) towards the centre of the sea. The north-eastern

section of the Sea of Okhotsak is the Gulf of Penhinskaya which ends in

a narrow arm.

The number of tidal stations on the Kuril Islands and along the coast

of Sakhalin is sufficiently large to give an outline of the tides. At the north

and north-west coast there are only few values available; at the west coast

of Kamchatka there are none. Table 62 gives the harmonic constants for

a series of localities and Fig. 184 shows, according to Ogura, for the M2 tide

the co-tidal lines and the ranges 2(M2 -\-S2).
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Fig. 184. Co-tidal lines of the M2 tide and range 2(M2+ 52 ) in m for the Sea of Okhotsk.

(Phase referred to the 135E. L. Meridian) (Ogura).

This presentation is not very reliable, but they contain all that can be derived

from the coastal observations.

The semi-diurnal tide wave progresses from the Pacific Ocean through the

Kuril Islands; along the islands the phase retards H h going from the south-

west to the north-east, the amplitude increases in the same direction from 50

to 80 cm. Consequently, the co-oscillation of the water-masses of the adjacent

sea does not have the same phase, which complicates conditions somewhat.

The rectangular shape of the whole sea reminds one of North Sea, but its

dimensions are far larger. With a length of about 1600 km (1000 miles) an

opening around 700 km (440 miles) wide, and an average depth of 200 m
(660 ft), the period of the free oscillations is approximately 24 h, so that v

has the value of about 2. This means that the semi-diurnal tides have two

nodal lines which the rotation of the earth transforms into amphidromies.

In fact, the map of Ogura shows two amphidromies, both displaced to the

west, one with its centre in front of Sakhalin, the other one in the shallow

north-western bay. Sterneck (1922, p. 145) has assumed only one amphi-

dromy in the central part of the sea. The decrease in range in the vicinity

of the amphidromies shows that their presence is real. Only new observations

on the coast of Kamchatka will decide whether the center of the outer am-
phidromy is not located farther out at sea.
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Tidal observations in the Gulf of Penzhinskaya are very scarce. With

/ = 600 km and a mean depth of about 50 m, v will be about 1-5, which is

close to the resonance value. Therefore, if the amplitudes are large there will

be two nodal lines (amphidromies) for the semi-diurnal tide; one near the

opening, the other one near the closed end. The former is indicated in Ogura's

map, whereas he has transformed the latter in the narrow arm into a pro-

gressive wave. Whether this corresponds to the reality can only be decided by

observations. The range 2(M2 -\-S2), which is 64 cm at the opening, increases

at the first antinode to a little above 200 cm, at the closed end to 318 cm,

which shows how strongly these water-masses co-oscillate with the external tide.

The diurnal tide wave has a phase of about 10 h at the northern end of

the Kuril Islands and of 14A h at the north coast of the adjacent sea. Ac-

cording to the v value, one should expect an amphidromy; but according

to the available observations, there seems to be none. The range 2(A^+ 0!)

is very great and increases from the outside to the inside. The value of the

ratio determining the character of the tides in the vicinity of the semi-

diurnal amphidromies is quite high. Chaivo on Sakhalin has a ratio of over 6.

The diurnal tides in the Gulf of Penzkinskaya are excessively large. They

are considerably intensified by resonance; at the closed end, Cap Astro-

nomicheski 2(#1+ 0i) attains the value of 826 cm, which is the largest value

ever known for diurnal tides. Point Matugin has still 612 cm. However,

the ratio decreases from the opening into the Gulf of Penzhinskaya towards

the closed end from 6-4 to 2-6; this shows that the semi-diurnal tides, become

stronger relatively to the diurnal tides, which can also be concluded from

the v value.

The tidal picture of the Sea of Okhotsk is still very uncertain. Moreover,

throughout a great part of the year, the central part of this sea is covered

with a thick layer of ice and the pack- and drift-ice masses do influence the

tide wave through friction (see vol. I). Whether this causes seasonal variations

in the harmonic constants and how this effects also the ranges on the coasts,

is still completely unknown.

15. The Tides of the Bering Sea

Harris (1904) part IV, p. 394 has made a first attempt to represent the

tides of this sea, basing himself on a very small number of observations.

Since then only few new tidal values have been added (see Table 63). The

establishments permit the following conclusion; the Pacific tide wave pro-

gresses westward, past the Alaskan Peninsula; then it penetrates north-west-

ward through the wider and deeper passages between the Aleutians, especially

between 170° and 175° west of Greenwich into the deep [3000 m (9840 ft)

to 4000 m (13,100 ft)] area of the Bering Sea and reaches the coast of Asia

almost simultaneously with an establishment of 4 h. The wave is retarded

against the shallower shelf area towards the north-east, and it seems as if

28
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Table 63. Harmonic constants in the Bering Sea

Place
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This value is sufficiently close to the period of the semi-diurnal tides for

explaining the strong increase of the ranges at the closed end of the gulf.

However, the very shallow depth of this area is also partly responsible for

this increase.

17. The Tides of the Gulf of Mexico

In the entire American Mediterranean Sea the tides are weakly developed.

This is not only true for the Caribbian itself, but also for the entire Gulf of

Mexico, in which the tidal ranges nowhere exceed 0-7 m (2-3 ft). A particularly

characteristic feature is the conspicuous weakening of the semi-diurnal tides,

so that in this adjacent sea the establishment becomes practically unusable.

The tide is governed by the extreme lunar declinations instead of by the

semi-monthly variation of the spring and neap tides. In most localities the

tides are diurnal and the amplitudes and phases of the semi-diurnal wave

show up only in the results of the harmonic analysis. However, their am-

plitudes are small compared to those of Kx and O x , so that the ratio de-

termining the character mostly exceeds 1 and will even attain, at the northern

side of the gulf, a maximum of > 9. In the Caribbean the diurnal tides are

still predominant and the contrast in amplitudes between the Atlantic side

and the Caribbean side of the islands which separate these seas is sharp

(e.g. on Puerto Rico, Ponce has 8-40, San Juan 0-91).

Table 64. Harmonic constants for the Gulf of Mexico

Place
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Ferrel (1874, p. 245) mentioned the diurnal nature of the Mexican tides.

Harris (1900, Part IV A, p. 661) has expressed the opinion that, for the

diurnal tide, the Gulf of Mexico and the Caribbean form one single oscillat-

ing system with a nodal line extending from Western Haiti to Nicaragua.

The consequence of this would be that the tides of the Gulf are essentially

simultaneous. Endros (1908, p. 86) has shown that, with a nearly convex

parabolic normal curve the period of the free oscillation of the system comes

close to 24 h, which would explain the prominence of the diurnal components.

Wegemann (1908, p. 532) has also assumed a resonance effect of the diurnal

components in the Gulf of Mexico. He computed as period of the free

oscillation 24-8 h for a west-east oscillation of the Gulf (Cuba-Vera Cruz

/ = 1650 km = (1000 land miles) mean depth 875 m (2625 ft) with an open-

ing correction of \\. v = 0-4 and when the water-masses of the Gulf co-

oscillate with the diurnal tides of the Atlantic Ocean, there will be a simul-

taneous rise and fall of the water surface in the Gulf which conforms to

the observations. For the semi-diurnal tides, v = 8, i.e. the semi-diurnal

tides co-oscillating with the Atlantic Ocean will have one nodal line ap-

proximately on a line Mississippi River delta — Yucatan peninsula which, is

transformed into a weak amphidromy rotating to the right by the rotation

of the earth. Sterneck (1920, p. 131; 1921, p. 363) has assumed for the semi-

diurnal an amphidromy rotating to the left having its centre in the middle

of the Gulf, and for the diurnal tides a co-oscillation with the Atlantic Ocean

but with an opposite phase (see also Defant, 1925).

Grace (1932, p. 70; 1933, p. 156) has developed an entirely new method

to investigate the tides in deep adjacent and boundary seas, which he tested

for the first time for the Gulf of Mexico. It consists essentially in dividing

the sea under consideration into a number of rectangular basins of ap-

proximately uniform depth ; some of these are closed at one or more of their

sides, whereas the other sides are open. Grace then applies his solutions of

the tidal motion in a deep rectangular basin (Grace, 1931, p. 385) to this

system of regularly shaped basins. For such a basin open on one side, he

assumes a tidal current of the tidal period under consideration entering

through this side and computes theoretically the average range on each side

of the basin; that is the part directly generated by the tide-producing forces

(independent tide) in a basin imagined to be closed, as well as the part gener-

ated by the assumed tidal current at the open end (opening). After all the

computations have been made for all partial basins, we obtain the theoretical

tide at each coastal point as the total sum of all the influences of all adjoining

partial basins, and a comparison with the observed values makes it possible to

compute the unknown tidal currents at the opening. The totality then should

give the tidal picture for this sea as it is formed by the independent and co-

oscillating tides. Figure 185 shows how the Gulf of Mexico is schematized

by a succession of lines A , B, C, ... , K, the sides CD, DE, FG being considered
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as "open". The tidal motion of the entire basin was computed in four steps,

viz.: (a) the independent tides with basins imagined to be completely closed;

(b) the co-oscillating tide with only one side open FG, at which there is

a uniform tidal current U; (c) the co-oscillating tide at the opening DE with

Fig. 185. Schema of the division of the Gulf of Mexico for the theoretical computation

of the tides. Position of the tide stations around the Gulf.

a tidal current V; and finally (d) the co-oscillating tide at the opening CD
with the tidal current W. The tides of the entire Gulf are regarded as the

superposition of these 4 partial tides, and the comparison with the obser-

vations gives the tidal currents U, V, W at the openings.

Table 65. Comparison between theory and observations in Gulf of Mexico
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The theoretical fundaments can be found in the paper of Grace already men-

tioned and its practical application causes no further difficulties. The compar-

ison between the results of the theory and the observations for the two partial

tides K± and M2 is given in Table 65. For the Kx tide the agreement is better;

the average error, without considering the sign, amounts to 10° for the phase

and 3-3 cm (23%) for the amplitudes. The tidal currents computed for the

cross-sections at the openings are of the same order of magnitude as the

observed ones, which date from 1887 and probably are very inaccurate, but

in the phases there are considerable differences. In making such a comparison,

it should be borne in mind that the theory gives an average current for the

entire cross-section, but that the observations are values at a certain point,

which were obtained intentionally at the point where the current is strongest.

Besides, they are based on measurements extending only over a few days

and can be considerably disturbed by wind and stowing. Figure 186 gives

Fig. 186. Co-tidal lines and amplitudes of the Kt tide in the Gulf of Mexico. —
referred to the centre meridian 89-9° W.; , amplitude in cm (Grace).

-, phases

the co-tidal and co-range lines of the Kx tide constructed from the theoretical

values. With the exception of the areas in the vicinity of the opening, this

tide occurs almost simultaneously in the entire Gulf. The amplitude increases

from 10 cm in the east in a counter-clockwise revolution, to about 20 cm
in the south. The wave apparently penetrates through the Strait of Florida

and circulates around the Gulf in the positive sense, leaving it in the Strait

of Yucatan. It can be concluded from the tides of the single components

that the diurnal tides are almost exclusively co-oscillating tides, whereas the

independent tide becomes of less importance.

The computations for the M2 tide are more difficult. It was necessary to

reject the observations at the north-east coast, which has high amplitudes of

more than 30 cm (1 ft) because these stations are apparently disturbed by

local influences (extensive, shallow areas off the coast). There was an average
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error in the phase of 4° and in the amplitude of 3 cm. Here also there was
agreement between the computed currents at the opening of the cross-sections

and the observed currents only as to the order of magnitude, but the phases

do not agree. Figure 187 gives the picture for the M2 tide. The co-tidal lines

FlG. 187. Co-tidal lines and amplitudes of the M2 tide in the Gulf of Mexico (see Fig. 186).

show a positive amphidromic point in the north-western section of the Gulf

with a strong crowding of the co-tidal lines in the north-south direction, so

that the tide comes close to a simple oscillation. Here also the co-oscillation

with the tide in front of the Strait of Florida seems to be the most important.

The independent tides by themselves would give a negative amphidromy, and

this might be the reason why the amphidromy of the co-oscillating tide appears

to be so little developed.

18. The Tides of the Gulf of St. Lawrence

The tidal picture of this adjacent sea has been given by Dawson (1920).

Current observations are available in sufficient quantity (Dawson 1907, 1913,

1920), so that nothing would prevent a complete hydrodynamical theory of

these tides. However, its orographical configuration is very intricate. In the

south-east it has a good communication with the ocean through the 56 nm
wide Cabot Strait ; in the north-east the narrow Strait of Belle Isle leads into

the Labrador Sea. In the north-west the Gulf is separated by Anticosti Island

from the St. Lawrence River estuary, and in the south-west Prince Edward
Island shields Northumberland Strait. These irregularities of the coastal con-

figuration on three sides make it difficult to compute accurately the conditions

of oscillation.

Already Harris found that the essentially semi-diurnal tides of the Gulf can

be represented by an amphidromy rotating to the right which he assumes to

be formed by the effect of the rotation of the earth on the co-oscillating

tides coming through the Cabot Strait. Basing on the observations of
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Table 66. Tidal data for the Gulf of St. Lawrence

(according to KrUmmel)

Place 4>° N A° W. Lat.
Establishment*

(h min)

Cabot Strait

West coast

Newfoundland

Belle Isle Strait

North coast

of the Gulf

St. Lawrence River

Anticosti

West coast

Magdalen Island

Prince Edward Island

north coast

Northumberland

Strait

I

Cape North

St. Paul's Island

Port-au-Basques (N. F.)

ICodroy
Cow Head

St. Genevieve Bay

(Pistolet Bay

(Red Bay

Bonne Esperance

Cape Mecatina

Wapitaqun

Natashkwan

Betchewun

Mingan

Seven Island

Egg Island

Pointe des Monts

Cape Chat

Bersimis Pt.

Father Pt.

Green Island

Grosse Island

Quebec

West Pt.

South-west Pt.

East Pt.

Bear Bay

Cape Magdalen

Cape Gaspe

Miscou

Escouminac Pt.

Amherst

Cascumpequc

Richmond

St. Peter's

East Pt.

(Egmont Bay

Crapaud

I
Bay Verte

Charlottetown

Pictou

Port Hood

47-1
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Dawson (see Table 66) Krummel (1911, vol. II, p. 328) has given a new

presentation of the co-tidal lines, which are essentially the same as the chart

of Harris. Springstubbe (1934) has given a hydrodynamical analysis of the

entire tidal phenomena of this adjacent sea based on revised observations.

Figure 188 shows the co-tidal lines (referred to 60° W.) and co-range lines

70°W

Fig.

70° W 65° 60°

188. Co-tidal lines ( referred to 60° W.) and co-range lines for spring tide in m.

of the spring tide (in m). They are intended to give only an approximate

picture of the tidal process in the intern part of the Gulf; especially the

distribution of the range remains very hypothetical. The chart shows the centre

of the amphidromy near 61°W. and 48i°N., north-west of the Magdalen

Islands. The vast areas of the narrow north-east canal have almost syn-

chronous tides with establishments between 10 h and 11 h. This entire north-

eastern section probably co-oscillates with the tides of the middle of the Gulf.

The same is the case for the funnel formed by the river estuary. After the

junction with the Saguenay River, the tide wave is changed into a progressive

wave moving up the St. Lawrence River. Near Grosse Isle the wave attains

its largest amplitude 58 m ( 19 ft) at spring tide; it travels up to 67 nm (135 km)

beyond Quebec in 4| h with retarding phase and even farther till Lake

St. Peter. In Trois Rivieres, at the lower outlet of the lake, there is still 30 cm
spring tide range (according to Krummel).

In the south-western section of the Gulf, the co-tidal lines are very much

crowded and this part of the amphidromy is probably of the character of

a standing wave. The Northumberland Strait behaves like a canal open at

both ends, whose water-masses can be made to oscillate from both sides.

The entire south-eastern section of the Gulf behind the Cabot Strait has

an establishment of approximately 8| h. At this point the influence of the
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external ocean tides on the Gulf tides is greatest. It is remarkable that the

range of the spring tides along all the coasts is rather uniform between 1 m
(3 ft) and Hm (5 ft). The Magdalen Islands have 0-9 m (3 ft) which in-

dicates a decrease towards the centre of the amphidromy.

In the Strait of Belle Isle there is a transition of the establishment from

about 10 h at the Gulf opening to about 7 h in front of the opening into the

open ocean, whereas the range decreases slightly.

200

160

120

80

E 40

<u*
CP

I 40

80

120

160

Belle-Isle Str

Sections of Belle Isle wove-

Fig. 189. Tides of the Gulf of St. Lawrence co-oscillating with the tides of Cabot Strait

and the Strait of Belle Isle.

The analysis of the Gulf tides given by Springstubbe shows that they are

almost pure co-oscillating tides. Figure 189 shows the distribution of the

ranges of these tidal components along the main axis when co-oscillating

at the Cabot Strait and at the Strait of Belle Isle. The nearly complete dis-

appearance of the latter component, which formerly was only assumed or

even used in the explanation of the amphidromy, is thus proved clearly.

The superposition of these two parts of the co-oscillating tides will give an

amphidromy rotating to the left and not one rotating to the right, as the

observations show. Springstubbe proves mathematically that the latter is an
effect solely due to the deflecting force of the rotation of the earth on the

tides co-oscillating through the Cabot Strait. The observations on tidal

currents agree well with the theoretically computed ones; especially the tidal

currents in the Strait of Belle Isle are fully explained.

For the Gulf of St. Lawrence there are very few harmonic constants

available. The few data of Table 67 show that the ratio for the character

of the tides is 0-44 near St. Paul in the Cabot Strait and steadily decreases

going towards the centre of the Gulf; Quebec has a genuine semi-diurnal type.

In accordance with the period of the free oscillation of the basin (Cabot

Strait — north coast) of approximately 7 h and the small amplitudes of the
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diurnal lidal components in front of the Cabot Strait, the diurnal tides will

only be very little developed. As v = 03, we will only be very little developed.

As v = 0-3, we will have a simultaneous rise and fall of the water surface

of the entire Gulf. The harmonic values seem to confirm this. According to

Dawson, the daily inequality in the Northumberland Strait increases from

Table 67. Harmonic constants for the Gulf of St. Lawrence

Place
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Table 68. Tidal data at spring tide for the Bay of Fundy

Tidal hours given in difference with the establishment at St. John, N. B.

:

3 h 42 m Greenwich time

Place

(outer part of the bay)
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alternating current with velocities averaging 18 knots. The average time of

the reversal of the current is at the opening 35 min after high water at St. John.

This speaks also in favour of a standing wave as co-oscillating tide. Towards

the end of the bay the velocity increases somewhat with narrowing cross-

sections; in the Minas Basin velocities of 9 knots have been measured; this,

however, can only occur in a very limited region.

In the Petit Coudiac (in the centre of the Chignecto Basin) a bore follows

the larger tidal ranges existing there, which impedes the practical use of the

waterway and requires very expensive constructions on the banks and at the

landing points (p. 469). Furthermore, with storms from the south-west water-

masses in the canal pile up so that storm tides can still increase the tidal

range by 2 m (6 ft) and more. Famous is the "Saxy" tide of 5 October, 1869,

when the water level in the Coudiac River was as high as 8 9m (29 ft) above

and 7-2 m (236 ft) below the normal sea level; so the range was 161 m
(52-5 ft) (see Dawson 1902, p. 85). Older reports mention tidal ranges of

21 3 m (70 ft) in the Coudiac River, according to Herschel (1875, p. 756),

even as high as 36-5 (120 ft). Dawson is of the opinion that these figures

are very much exaggerated.

20. The Tides of the White Sea and of the Gorlo

The orographical configuration of the White Sea seems very intricate;

it can be divided into three sections: The main basin with its greatest depths

of 350 m (1180 ft) extending from the north-west (Kandalakshskaya Bay) to

the south-east divided into the Dvinskaya Bay and the Bay of Onezhskaya,

20m (65 ft)-40 m (1 30 ft) deep. This main basin communicates with the Barents

Sea by way of the bow-form Gorlo and later through the Woronka funnel.

There are a large number of tidal observations, with establishments and ranges,

for a number of localities. At the outer opening of the Gorlo the establishments

are about 7 h (Greenwich time), the tidal ranges at spring tide vary between

2-3 m. The tide wave retards little at first and then rapidly, to 8 and 9 h,

and attains about 1 h at the inner opening while the range decreases. The

entire north and north-west coast of the main basin has a phase of 1 h. At the

south coast the establishment becomes 3i h up to the opening into the Bay

of Onezhskaya. The same phase applies to the Bay of Arkhangelsk, whereas

in the Bay of Onezhskaya we find 6 h 40 min.

Shoulejkin (1926, p. 321) has tried a hydrodynamical explanation of these

tides based on Airy's canal theory. He based his chart of co-tidal lines on

Airy's viewpoint that the crest of the tide wave has a different velocity of

propagation perpendicularly to the cross-section, which viewpoint, however,

proved to be erroneous (p. 148). Therefore, his presentation cannot be ex-

pected to agree with actual conditions. In interpreting the tides in the White

Sea, it should be borne in mind that the period of the free oscillation of the

entire basin is about 10 h or v =08 (see Defant, 1925, p. 71). This means
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that with a phase of 7 h at the opening, the inner basin will have a phase

of 1 h. There will be a nodal line in the Gorlo, i.e. the channel which leads

to the Barents Sea; owing to the increased friction at small depths and the

great current velocities, the standing wave phenomenon ends and changes

into a progressive wave. This seems to be confirmed by the observations.

In the principal inner basin, there are beside the co-oscillating tides, still

independent tides, which, according to the main direction of the basin, should

have a phase of around 7-5 h. With v = 05 the independent tide of a closed

basin becomes indirect, the northern basin will have the phase of 1 -5 h, the

southern basin a phase of 75 h. The superposition with the co-oscillating

tide in the northern section of the basin will then give a phase between 1 h

and 15 h. In the southern section the phase will be either 3| h in the Bay

of Arkhangelsk or 6-7 h in the Bay of Onezhskaya depending on the am-

plitudes of the components. The amplitudes will be small. This is also in

agreement with the observations; however, only an accurate computation of

each component and its superposition will tell whether this provides a found-

ation sufficient for the explanation of the tidal picture.

21. The Tides of the North Polar Basin or Arctic Ocean

The tides of this deep sea, which has a wide shelf extending in front of

its coasts — especially in nothern Siberia — with depths below 200 m and

mostly even below 50 m have aroused interest since early days. Already

Whewell (1833, p. 147) assumed that the tide wave enters the Arctic Ocean

between Greenland and Norway, travels as a progressive wave to the coasts

in the vicinity of the Bering Strait. Harris (1904-11) basing himself on the

very scarce observations available at that time, drew a chart of co-tidal lines

for the Arctic Ocean, which he completed and partly changed in 1911 in his

paper "Arctic Tides". This later chart of Harris shows the tide wave travell-

ing from the European North Sea between Spitzbergen and Greenland towards

the north-east keeping to the right side of the entire Arctic Ocean as a pro-

gressive wave up till the Bering Strait and then farther on to the Beaufort

Sea. It needs 20 h to cover the whole distance. A second weaker off-shoot

turns north of Greenland westwards, interferes with the wave coming from

the Davis Strait and Baffin Bay and forms, just in front of the northern coast

of Greenland, a small amphidromy rotating to the right. A vast area, how-

ever, remains uncharted; it may be the area where there was supposed to

be land.

Fjeldstad (1923), using partly the observations gathered during the "Maud"
Expedition in the area of the north Siberian shelf, has made a new map of

the co-tidal lines. He too assumes a progressive wave coming from the

Atlantic Ocean between Greenland and Spitzbergen, and travelling to the

east coast of Siberia, thereby maintaining its direction. He leaves open a strip

immediately north of Canada for lack of usable observations. In the eastern
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section his chart looks like Harris's, in the western section it shows less crowded

co-tidal lines, in accordance with a deep central polar basin, which was as-

sumed by Nansen. The crossing of the entire polar basin takes about 12 h,

against 18 h assumed by Harris.

Defant (1924, pp. 153, 177) includes the Arctic Ocean in his first picture

of the tides of the Atlantic Ocean, considering the former a bay with one

closed end and part of the Atlantic Ocean. The tides of the Arctic Ocean

are considered partly as co-osciliating tides with those of the Atlantic Ocean

through the opening Greenland-Spitzbergen, and partly as independent

tides. Both components are computed following the method of the step-wise

integration of the equations of motion. The influence of the rotation of the

earth is taken care of through superposition of transverse oscillations. Tn

this way one obtains for semi-diurnal tides two positive amphidromies, one

with its centre in the vicinity of Spitzbergen, the other one somewhat beyond

the Pole. On the whole, the agreement with the observations is not bad.

For the diurnal tides, there is an amphidromy south of Spitzbergen, and

the largest part of the polar basin is covered by a progressive wave which

covers the distance Greenland-Bering Strait in 12 h.

The small tidal amplitudes at the north coast of Alaska and East Siberia

induced Sterneck (1928, p. 81) to abandon his assumption of a single oscillat-

ing area in the entire Arctic Basin. He divides this area into a very deep cen-

tral basin and a shallow shelf zone. He then assumes that the tides of the

central basin are developed independently of the shelf and are composed of

the independent and co-oscillating tides. He found that the M2 tide is es-

sentially a co-oscillating tide with an amphidromy rotating to the right with

its centre in the vicinity of the pole, whereas the Kx tide seems to be almost

a pure independent tide, with an amphidromy rotating to the left and with

very small amplitudes. The co-tidal lines of the M2 tide are extended from

the central basin into the shelf zone in the form of a progressive wave and

brought into agreement with the observations on the coast. He assumes also

that this dissipates tidal energy, but the effect of this dissipation upon the

main wave in the central basin is not considered.

Sterneck's conception of a different tidal behaviour for the two separate

areas of the Polar Basin is no doubt justified and logical. But his com-

putations are not representative of the actual conditions. The energy lost

by friction on the shelf is lost for good and is also a loss for the central basin

and, therefore, it is not possible for the co-oscillating tide in this basin to be

a standing wave. Beside this loss of energy of the principal wave, Sterneck
does not consider the fact that the Arctic Ocean is almost constantly and

completely covered by a layer of ice and that, the incoming tide wave suffers

another important loss of energy by friction against this layer of ice. It is,

therefore, to be expected that the co-oscillating tide of the Arctic Ocean will

rather appear as a progressive wave coming from the European North Sea
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and travelling towards the Bering Strait. The independent tide is insignificant,

because the semi-diurnal tide-generating forces are very small in the vicinity

of the pole. One then approaches the presentation given by Fjeldstad of the

co-tidal lines, which reproduces the observations correctly. However, the

lack of observations precludes an actual tidal picture of the central basin.

See Defant (1928, p. 274) and Tenant (1931, p. 879).

The case is different for the shelf areas, and for its North Siberian section

we have the excellent work by Sverdrup (1926) on the observations made prin-

cipally during the "Maud" Expedition in 1924-25. The area comprises the

largest continental shelf of the earth, extending from Point Barrow (Alaska)

to Cape Chelyuskin (Taimyr Peninsula). The co-tidal lines of the entire area

are based on the observations of the tides on coastal stations, and on current

observations made on a large number of anchor stations of the "Maud".

Sverdrup's presentation has been reproduced in Fig. 190, which shows how
the tide wave enters this area from the north (see Table 69). We see that

105° E Gr 120° 135° 150° 165° 180

ering Seo

Fig. 190. Co-tidal lines and range at spring tide for the North Siberian Shelf. — , curves

indicate the depth contours for 25, 50, 75 and 100 m; the roman numbers indicate the time

of the co-tidal lines and the time of high water at each station (Sverdrup).

the co-tidal lines have a tendency to be parallel to the bottom contour lines

and to run directly towards the coast. The progressive character of the wave

becomes thus apparent. Sverdrup draws special attention to the following

points, which result from the discussion of the observations:

(1) The tidal currents are not alternating in the direction of progress of

the wave, but throughout the area the currents rotate cum sole (see Table 70).

The large and small axes of the current ellipses are about the same for all
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Table 69. Tidal data at spring tide for points at the North Siberian Shelf

(according to Sverdrup)

Location
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we refer to Fig. 136, which contains a schematic presentation of all impor-

tant points.

Of particular interest is the vertical distribution of the tidal currents at the various stations. The

conditions at a normal station were discussed on p. 333 (Fig. 137). If there is an uninterrupted layer of

ice on a station, the distribution of the current becomes very much complicated. Fig. 191 illustrates

the typical case of Station No. 3 (see Table 70). A, shows the graphical presentation of the component

of the tidal current in the direction of progress of the wave in the form of a vertical section. The

•15 10

Fig. 191. Upper. A: Graphical presentation of the observed component of tidal currents

in the direction of progress of the wave in the form of a vertical section, for Station 3 on

the North Siberian Shelf. B: Current diagrams in 42 and 50 m depth. Lower: theoretical

computation of these tidal currents (according to Sverdrup).

29"
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ice does not participate in the tidal motion and down to a depth of 35 m the velocity of the current

is too weak to be measured. Below this depth there is a rapid increase of the velocity of the

current; the maximum occurs in the discontinuity layer of the density at 42 m (see the vertical

distribution of the density a
t); then the velocity decreases towards the bottom. The current figures

to the right under B show a rotation cum sole in all depths, but towards the bottom the ellipse be-

comes narrower and is turned to the right in comparison with the upper layers and maximum

current occurs earlier.

The lower presentation of Fig. 191 refers to a theoretical computation of these currents,

assuming that the upper and bottom layer had a constant eddy viscosity separated by a layer of

no-eddy viscosity, which coincided with the discontinuity layer, which has great stability. The

computed currents deviate, of course, from the observed ones, because the discontinuity layer is

replaced in nature by a gradual density increase. But there is agreement as to the main features,

so that there is no doubt that the rotation of the earth and the turbulence varying in the vertical

direction determine the character of the currents at the observed station.

22. The Tides in Inland Seas

In order to determine the order of magnitude of the tides in inland seas

of various dimensions, let us refer to the equations in Chapter IX, para. 3, (b);

(p. 293). Table 71 shows that in small, shallow seas the tidal ranges can be

expected at spring tides to be of the order of magnitude of 2-3 mm, which can

increase to 10 cm and more for large seas with a long period of free oscillation.

Table 71. Range of the tides in lakes

High water
|
western end

I
eastern end

3h|

9h



Tides in the Mediterranean and Adjacent Seas 453

The oldest observations of tides in inland seas are those of the large North

American lakes. Harris (1908, p. 483) has published the results of the har-

monic analysis of observations for four localities at Lake Michigan and Lake

Superior and has compared them with the results of the improved equilibrium

theory. The complete agreement shows that we have to do with actual as-

tronomical tides. Later on, Endros (1930, p. 305) has analysed the curves

of Lake Erie published in a paper of Henry. He found, besides the free

oscillations, both the M2 and the S2 tide in the observations at Buffalo at

the eastern end and in Amsterburg at the western end. High water occurred

in Buffalo at 3 h, in Amsterburg at 9 h, so that we have here indirect tides.

This had to be this way, because v is for M2 and S», 115 and 119 respectively.

Table 72. Tidal data observed in lakes and inland seas

(1) Harmonic constants for the Great Lakes (Harris. 1907).
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The amplitudes resulting from the analysis of the various components are

given in Table 72; underneath these are the theoretically computed values,

and one can see the complete agreement between the observations and the

theory. In Hayford's paper (1922) which deals with the variations in the sea

level of Lake Erie there are also definite indications of the presence of the

tide wave, which is, however, concealed by the strong free oscillations of

the lake.

Endros has also proven the semi-diurnal tide wave for Lake Balaton

(Hungary) from the limnographic registrations of Cholnoky (1897) for the

period 1892-96. He showed that the western end has high water at 3 h, the

eastern end at 9 h. The tidal ranges at the time of the syzygies were between

10 and 13 mm. The uninodal period of the free oscillation of the lake has

a duration of 9-4-10 h, so that v lies between 075 and 085. The theory gives

tidal ranges of 13-15 mm for the semi-diurnal tide wave, which come very

close to the observations.

Endros has proven that in smaller seas there are occasionally tide waves

contrary to the opinion expressed by Forel. The Lake of Geneva has semi-

diurnal waves which were observed at its western end (Secheron) with a high

water between 2 and 3 h and a low water between 8 and 9 h. The tidal range

is only 1 9 mm. Superimposed to these semi-diurnal waves is a stronger

diurnal wave with a 2-8 mm tidal range and which is probably of meteoro-

logical origin. These tide waves can only be found with any certainty from

the limnograms on days when seiches are non-existent, but the comparison

with the expected tides from the theory proves beyond doubt that we have

to do with pure tides. As, in such cases v is very small one can apply the

simple equilibrium theory. We find for the semi-diurnal tides a tidal range

of 51 mm and, considering also the north-south oscillation at the western

end, an establishment of 2 h. This agrees very well with the observations;

the observed tidal range is only one-third of the theoretical value. Frictional

influences can hardly cause such a strong decrease of the tidal ranges, but

perhaps we attribute this decrease to the tides of the solid earth (see Chap-

ter XV).

The question as to whether tide waves can be detected in every lake by

means of properly made observations must be answered affirmatively.

The deep Baikal Lake (about 615 km (380 miles) long) has been thoroughly

investigated. Jerimov and Krawetz (1926, p. 54) have computed the first

reliable tidal constants of the main lunar tide of the lake from two year's

registrations made in the Penrtschannja Bay (cp = 5215°N. I = 105-43°E.).

Later on, Sterneck (1926, p. 316; 1928, pp. 147, 221) has made a more com-

plete analysis of these observations, whose results agree with those obtained

by the Russian scientists. Sterneck computed for the two components M2

and Kx as principal representatives of the semi-diurnal and diurnal tides

respectively, the distribution of the tidal ranges and phases for sixteen cross-
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sections along the lake, according to the canal theory. Figure 192 shows

a clockwise rotation of the M2 high water around Lake Baikal, but with

extraordinarily rapid transitions in the centre of the lake. Therefore, the tide

wave corresponds almost exactly to a standing wave with the phase 21 h

at the south-west end and a phase of 7 h at the north-east end. A com-
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Fig. 192. Theoretical M2 tide wave in Lake Baikal. At each end of each cross-section

is indicated the time of high water in lunar hours referred to the centre meridian of

the lake; and the numbers below indicate the amplitude in mm. O is the position of

Penrtschannja Bay.

parison of the theoretical amplitude with the amplitude derived from the

harmonic analysis shows (see Table 72) that the former is nearly twice as

large, whereas the phases are almost exactly the same. The difference between

the times of high water for M2 at both ends of the lake is not 6 but 5 lunar

hours, which can be considered as a consequence of the bend in the lake.

Similar conditions exist for the Kt tide; only the amplitudes here are in better

agreement with the observed values. The fact that the observed amplitudes
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are smaller than those computed theoretically should be attributed, according
to Sterneck, to frictional influences which might perhaps be stronger between
cross-sections 4 and 6 (see Fig. 192), where the lake is relatively shallow.

Grace (1931, p. 301) has, however, expressed the opinion that the effect of
the tides of the solid earth might manifest themselves, and he has been able

to prove that this assumption can explain perfectly the decrease of the am-
plitudes (see Chapter XV, p. 508).



Chapter XIII

rides in Estuaries

1. Observations

The tides of the open ocean cause oscillations in estuaries which make the

water level rise and fall with the tides. The place up to where the effect of

the tides is noticeable is called the tide mark.

That part of the river which is subject to the tides of the oceans and which

stretches from the estuary to the tide mark is here called the river tide zone

or briefly tide zone. The Amazon River seems to have the longest tide zone.

According to La Condamine, the tidal mark lies near Obidos, i.e. 850 km
from the opening; however, Bates (1863, p. 133; see also Schichtel, 1893,

p. ICO) still found tidal effects in the Cupari, a minor tributary of the Tapajoz

ending near Santarem, which is at a distance of 870 km from the ocean.

In the case of the Congo River the tide mark is only 170 km from the Atlantic

Ocean, because the rapids near the estuary prevent a further extension of the

tide zone. In the Yangtse Wuhu River the length of the tidal zone is 500 km;
in summer, the tidal effects are completely suppressed by the high current

velocities in the swollen river (Hofmeier, 1901).

The tidal wave penetrating into the river is subjected to some characteristic

modifications especially by the decrease in depth and the ensuing increased

friction and by the river flow itself. These influences must be considered chiefly

as being of a hydraulical nature and are much more subjected to the external

conditions than the purely hydrodynamical occurrences.

Systematic investigations of the tide zone were made for a few European

rivers only, and not all observational data have the reliability one would

desire. The most important feature is the shape of the tidal curve. Whereas

it is still entirely symmetrical in the open ocean in front of the estuary, the

curve becomes asymmetrical in the river. The water-level shows a quicker

rise and a slower fall, so that the duration of the flood is shorter than that

of the ebb. Table 73 gives a series of data for the Elbe and the Weser, ac-

cording to Franzius (1880, p. 299); for the Gironde and Garonne according

to Comoy (1881); for the St. Lawrence River according to Bell Dawson
(1824, p. 141). Figure 193 gives as examples tidal curves of the Elbe for three

periods of 12 lunar hours, whereas Fig. 194 shows tidal curves for Father

Point and Quebec at the St. Lawrence River for the period from 6 to 9 Oc-

tober, 1896, which illustrated clearly the asymmetry.
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This increasing asymmetry can only occur when the velocity with which

the peak of the tide wave (high water) travels differs from the velocity of the

foot of the wave (low water). Table 74 gives for the same rivers these velocities

o Where current reverses

Cuxhaven

Gluckstadt

Brunshousen

Schulou

Nienstedten

Hamburg

6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6

Time, hr

Fig. 193. Tide curves in the "River tide zone" of the Elbe; o indicates slack water. Height

scale about 1 : 170.

according to the same sources. In fact, they are different according to the

depth of the rivers, but the high-water values are everywhere considerably

Table 73. Asymmetry of the flood wave in estuaries
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greater than the low-water values. According to Comoy, the velocity of the

foot of the wave in the French rivers seems to correspond to the formula

v =
|
(gh)— U, in which h is the depth at low water and U the velocity of

the river water (head water) downstream.

Table 74. Velocity of the crest (high water) and of the

trough (low water) of the flood wave in rivers
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for the spring tide of 19 September, 1876. The high water line rises slowly

but continuously from the mouth to the tide mark by somewhat more than

2 m, i.e. there is a rise of 2 m over a distance of 150 km, which must probably

18

R
Ti<
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tide than at neap tide. This is an essential difference between the river tides

and the ocean tides, whose low waters are, always and everywhere, lower

at spring tide. A graphic presentation of the values of Table 75 shows that

Table 75. Tides in the Gironde and Garonne Rivers *
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holds only when the head water is equally large at spring and neap tides.

When the head water increases at spring tide, this point of intersection moves

downstream ; if the head water decreases, the point moves upstream. In case

of great drought and correspondingly little head water, the surface level lines

for neap and spring tide do not intersect at all.

Table 11. Tides in Elbe and Weser *
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order of magnitude in the French rivers (Charente near Taillebourg 30 min,

12 km upstream near Saintes 40 min, Ardour near Urt 25 min, 13 4 km up-

stream near Lannes 30 min). It seems that upstream the head water feeds

the ebb current for a longer period of time than could be expected from the

wave motion alone, probably because of its gradient.

Fig. 195. Tide curve and tidal current at Cuxhaven.

The flood current, on the contrary, alternates more close to high water

the more we get upstream; thus, near Cuxhaven it is 1 h 30 min after high

water, near Brunshausen and Nienstedten 30 min, near Hamburg 12 min

after high water. Table 78, gives the velocities of the tidal current of the

Elbe and Weser. The flood current, near the entrance, is generally stronger

than the ebb current. In the Elbe the slope of the upper stream starts to

make itself felt close to Hamburg; in the Weser no flood stream is noticeable

above Vegesack, only a stowing of the water by the tidal wave from 1 to 2 min

;

to the contrary, the ebb current has a velocity up to 0-7 m/sec.

The velocity of propagation of the high water (crest of the flood wave) upstream is for the lower

Elbe, according to Table 73 of the order of magnitude of 6 m/sec; the velocity of the flood current,

according to Table 78 does not quite reach one-tenth thereof. If c is the mean velocity of the

flood current, V the mean velocity with which slack water at the end of the flood current progresses

up stream (average velocity of propagation of the flood wave) and T the duration of the flood,

then T V is the length of the wave crest. According to Comoy, the water travels upstream during

time (T V)l(V-c), so that the distance covered during that time is S = (TVc)l(V-c). This equa-

tion has been used to compute how far saline sea water will penetrate up the river. For the Gironde

we have T — 22,200 sec, V= 12 and c = 1-9 m/sec, so that S = 50-2 km. The observations showed

that sea-water was still present near Pouillac, 51 km from the mouth. For the Elbe near Cuxhaven
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we have T= 5h 30 min = 19,800 sec, V = 7-45 and c = 108 m/sec, which gives S= 25 km,

a point still below Brunsbiittel. According to the observations, with normal head water and tidal

range, the Elbe water has no seawater at low water at Brunsbiittel, at high water near Gluckstadt.

This equation should, however, be used cautiously, for it ignores the stratification of fresh water

and sea water within the river current. In reality, the tide causes a mixing of the two kinds of

water, through which fresh water is transported more rapidly downstream, and sea water further

upstream than if the streamlines of the separate layers were completely parallel.

Table 78. Tidal currents in the Rivers Elbe and Weser
(According to Franzius)

Elbe
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estuary. According to Franzius (1901, p. 229), this happens on the Elbe

and the Weser, where there are at the same time two tide waves; on the

Amazon River, whose tide zone is nearly 1000 km long, there are sometimes

even seven or eight tide waves present at the same time. Assuming that the

tidal curve at the mouth is represented by a simple sinus curve, we have in

, , . 2n « a—h
,
b . 2n ,wttt ,\

h + r] = a+ bsm— t or t = ~r ^h^Y 1, (XIII. 1)

which h is the height of the undisturbed water-level of the river, y\ the eleva-

tion above this level and a can only be slightly different from /?. The water

surface behaves like a "bore" and according to (VI. 13) and (V. 12) respect-

ively its water volume travels upstream with velocity: c =
j
(gh)(l + f r)/h).

T

During a full period T, the amount of water \ cr\dt penetrates into the
6

river. If we neglect the small term (a—h)2
, the integral gives

ha = l{&Ia). (XIII. 3)

This means that the mean water level does not correspond to the sea level

at the mouth of the estuary, but is lower by %(b2
/a). This difference is notice-

able ; for a = 6 m below the mean sea level and an elevation of 3 m above it,

this difference in level is 0-25 m. This is, in fact, what the observations show

(see Levy, 1898).

h+;

—r

Fig. 196. Relationship between velocity of progress V, velocity of current c and height ?/

of a bore.

The retarding influence of the friction appears particularly, according to

M. Moller (1896, p. 479), in the correlation between thevelocity of propaga-

tion V of the flood wave, the velocity of the current c and the tidal range r\.

If there is a "bore" out at sea with a velocity of propagation V which travels

upstream (see Fig. 196), and the velocity of the current is cx out at sea and c2

in the river, the relative velocities compared to the bore are V— cx and F— c2 .

Moller now imagines the bore to be fixed and applies Bernoulli theorem to

the current; then

(V- c2f- (V- o)
2 = 2gi\

,
(XIII. 4)

and the equation of continuity gives

h (V- c2) = Qi + ri) (V- cx) ,
(XIII. 5)

30
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if h is the water depth in front of the bore. From these two equations we
obtain

2
f(V-cJ and ag+^(K-tf = %, (XIII.6)

respectively, and substituted into (XIII. 4) when the height of the bore is small,

V- d = \/(gh) and ( K- c2) = }/[g(h + »?)]

respectively, which is in excellent agreement with the equation found by Scott

Russell for the propagation of wave disturbances with an elevation r\ above

the undisturbed water level over a depth h (see (V. 14) on p. 118). With the

small current velocities in the river in front of the bore (XIII. 4) becomes

cx= V-\'{V*-2g<n). (XIII. 7)

The changes in the form of the waves when they pass from deeper into

shallower water have been discussed in more detail in the chapter concerning

shallow water waves (see p. 109). With a gradual change of the width b and

the depth h of a canal in which a flood wave travels, the amplitude of the

wave varies according to Green (1837) according to b~ ll
'2h~ lU

. When a flood

wave approaches the coast, there is no variation in b, but h does vary and,

for this reason, the wave amplitude increases approaching the shore. In

a river in which b varies also, there is another increase of the amplitude.

Besides the decrease of the water depth causes the waves not to travel any

more with the same constant velocity of propagation, but with each rise and

fall of the surface the wave will travel with a velocity depending on the exist-

ing depth. If h is the depth before the wave has arrived and r\ the actual water

depth when the wave is there, then this special velocity is c = g
1/2

(3^
1/2— 2/i

1/2
).

Fig. 197. Progressive changes of wave profile in shallow water.

For waves with small amplitude r\ is approximately equal to /?, and the ve-

locity of propagation is equal to that of the long waves:
j

(gh). However,

if the amplitude becomes comparable with h, parts of the wave crest move
faster than those of the wave trough. The flood waves then cannot propagate

without changing their profile. With decreasing water depth, the slope of the

waves becomes steeper and steeper on the front side and gentler on the rear

side, until finally a state develops in which the wave breaks and surges.

Equation (V. 21 (p. 122)), which was developed by Airy, gives the curve of Fig.

197. It shows a succession of profiles of a single flood wave which travels up

a river. The steepening of the front side of the progressing wave adopts

finally the form of a bore, as shown in Fig. 196. Fjeldstadt (1941) has
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given a mathematical solution for the change in profile of a breaking flood

wave, which reproduces exactly all the stages a wave goes through.

The changes in shape which the waves undergo in a river are also influenced

by the fact that the river water flowing downstream forces the sea water

back, which increases the steepness of the wave.

Poincare (1910, p. 409), following computations by Saint -Venant, has

given a mathematical most extensive theory of the river tides, taking into

account all important factors. Furthermore, Krey (1926) has given a survey

of the tide waves in estuaries with applications of a hydraulic nature. The

tide in channel-like bays and estuaries are characterized by the same basic

equations, as apply to the co-oscillating tides in adjacent seas (p. 143). As for

small channels and estuaries the Coriolis force is of no importance, the general

equations reduce to the one-dimensional case. Taking account of the friction

at the bottom and designating by w, v\ and r the mean values of velocity,

vertical motion and bottom stress, respectively, over the entire cross-section S
of the width b, we obtain the equations of motion and the continuity equation

in the following form:

cu _du
,

dr\ b

dt b dx

(XIII. la)

The bottom stress (friction at the bottom) t can be considered proportional

to the square of the mean current velocity:

t = ku\u\ ,

where k = 2-6 < 10 3 (see p. 346, XI. 32). Hansen (1956) has used these equat-

ions to compute for the estuary of the Ems River the total tide distribution up

to about 100 km upstream (Herbrum) from the boundary values at the mouth

into the North Sea (near the Island of Borkum; heights of the water level on

(25 June 1949) and from the freshwater transport of the Ems near Herbrum.

The method of boundary values was applied, which was also developed by

Hansen (pp. 372 and 362) to compute the tides of the North Sea. The section

of the Ems between Borkum and Herbrum, measuring 102 km in length, was

subdivided into intervals of 2 km each; the variations of the water levels were

numerically determined for points 4, 8, 12, ..., 100 km from the mouth and

the current velocity for points 2, 6, 10, ..., 98 km. In Fig. \91a, the estuary

of the Ems is shown on the left-hand side, while to the right there are given

the observed and computed water levels and current velocities in this river

(25 June 1949) for some points of the estuary as shown to the left. The agree-

ment between the observed and computed water levels and between the cur-

rent velocities is quite remarkable and even shows details of the curve shape.

Much earlier, hydraulic specialists have developed several methods to compute

30*
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tides estuaries and have also obtained good results; Hansen's method is a

purely numerical one and is a special case of the common two-dimensional case

given on page 362. It goes without saying that these methods are of great

practical importance.

3. Bores

In a large number of rivers the wave profile of the tide wave travelling

up the river changes into what is called a "bore" (in French: mascaret).

A wall of water with a steep front over the entire width of the river gushes

upstream. This phenomenon is characteristic of most funnel-shaped estuaries

with shallow depths at low water. In the larger German rivers there is no

bore; it is said that there was one in the Ems before its regulation. It is

Fig. 198. Bore on the Chien-tang-kiang.

generally found in the French river estuaries and it is particularly well de-

veloped in the Seine, where Partiot (1861, p. 71) has made the most thorough

study of it, farther in the Orne near Caen, in the Couesnon (designated as

Barre, Bay of St. Malo), in the Vilaine and Charente, in the Gironde, but

not in the Loire and in the Adour. Of the English rivers which have a bore

we will mention the Severn, which was described by Airy and, subsequently

by Cornish (1900, p. 44); (1934, p. 101). Furthermore, for the bore of the

Trent, Champion and Corkan. (1936, p. 158) have published an exhaustive

survey; the bore occurs regularly when the River Trent flows into the Humber,

past Torksey and appears in the peculiar form of numerous short waves

up to 2 m high, it is called here the eager. In U.S.A. the bore is known to

exist in the Petitcodiac River at the northern end of the Bay of Fundy, and

Bell Dawson (1899, p. 22) has given an excellent description of it; further,

on the mouth of the Colorado River into the Gulf of California. In South
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America the phenomenon in the estuary of the Amazon River has gained

great fame; it is called there Pororoca. This Pororoca originates in the mouth

of river and in many of the numerous tributaries and canals, where it makes

the Canal do Norte sometimes absolutely unnavigable. For a good descrip-

tion of a Pororoca see Krummel (1911, vol. II, p. 301). Large bores occur

in the estuary of the Narbada River into the Gulf of Barygaza (Cambay),

in the Hugli near Calcutta, in the Menga, in numerous rivers of the East

Indian Islands. Particularly famous is the bore in the Chien-tang-kiang, which

was studied by Admiral Moore (1888, 1893). The bore in the Amazon
River is perhaps the greatest one, and it frequently attains heights of

25 ft (8 m). Seen from the high dykes, it has the appearance of a several-

mile long waterfall which travels upstream with velocities of 12-13 knots

(6-5 m/sec) and produces a roar which is audible at a distance of 22 km
Figure 198 gives a picture of a bore on the Chien-tang-kiang which we owe

to Prof. G. Schott.

The principal characteristic of a bore is the quick rise in level. This wall

of water, sometimes a straight wall, sometimes curved concave, rushes up-

stream; the water in the back overtakes the water at the front side of the

wave. The height of the bore varies a great deal: we have already mentioned

that it attains 8 m (25 ft) in the Chien-tang-kiang, in the Amazonas and the

Ganges it attains 5-6 m, in the Trent 1 \-2 m, in the French rivers it remains

Arrival of Bore

I2
h 29m50s

Rapid rise

29 31 33 35
m 40 r

Neap tide

45 r

Fig. 199. Longitudinal profile of a bore in the vicinity of Moneton on the Petit-codiac

River. 6 August 1898 (5th tide after spring tide).

normally below 1 m. The bore occurs at the time of the syzygies (spring

tides), but there are also cases in which it occurs at every tide (as for instance

in the Chien-tang-kiang). According to Comoy, the formation of a bore

seems to be dependent on the fact that the capacity of the channel is too

small to take care of the extra influx of water. If a bank is located at the

mouth of the river (as for the Seine), the tide enters only slowly, the banks,

which were dry at ebb, become covered with water and a large water-mass
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gets into the river. As the foot of the wave progresses only slowly and the

water in front of it rises very rapidly, the bore soon develops. Head winds

can increase the stowing of the water in front of the foot of the wave. If the

bank is located in front of the entrance, then, according to Comoy, the

opening is narrow and the cross-section of the river increases upstream.

In this case, no bore appears, as for instance like in the Loire.

Figure 199 gives an example of a longitudinal profile of a bore, which

has been taken from a survey made by Bell Dawson, on the Petit-codiac

River in Moneton. It shows the bore of 6 August 1898 (fifth tide after spring

tide, full moon on 2 August). The wave travelled with a velocity of 14 4 km/h
upstream and the picture shows how the water level changed until 23 min
after the passage of the bore. If we change the succession in time into a suc-

cession of places, the picture represents from the start of the bore on the

left to the right edge a distance of 5i km. The heights are indicated at the

right in feet. Champion has obtained interesting automatic registrations of

the bore in Flixborough on the River Trent. Figure 200 gives these regis-

I 4
o° 3
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of the wave becomes almost vertical and the passage of this wall manifests

itself by an almost sudden variation of the water level. The raised water-

masses move rapidly onward, overtake and flood constantly the shallow

water-masses in front of this wall. The wave has adopted the form of the

breakers and, henceforth, is more like a travelling eddy with a horizontal

Fig. 201. Profile of the water surface in Humber and in the River Trent during a complete

tidal period at springtide. Low water 1 at Grimsby, 2 at Hull, 3 at Bowes Staith, 4 at

Burton Stather, 5 at Flixborough, 6 at Keadby Bridge, 7 at Butterwick, 8 at East Ferry,

9 at Walkerith, 10 at Torskey, 11 at Dunham.

axis than like a periodical variation of the water surface. The bore thus

becomes similar to the phenomenon which occurs when a water-mass is piled

up in a canal and suddenly freed and then moves down through the canal

in the form of a translation wave. Bazin (1865, p. 495) has been able, in

this way, to create experimentally a bore in a wave tank. It showed there

that those secondary waves which develop frequently behind the actual bore

in deeper water (les "eteules" in the Seine, the "whelpes" in the Trent) occur

also in the experiments and are, therefore, characteristic in the development

of this phenomenon.

From a mathematical view, the bore can be treated as a discontinuity

wave. If there is a transition from one uniform level to another where the

heights of the water surface above the bottom at the deep and shallow side

of the wave are /zx and h2 , and if the low water is at rest, we have for the

velocity of propagation of this discontinuity (bore) against the low water

*-!/(**£? (XIII. 8)

If hx is not very different from h2 , this velocity is reduced to the velocity

of propagation of long waves \/(gh). If the process takes place in a river

with a velocity U directed downstream, them we have to add — U to the

right.
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According to Raylcigh (1914) (see also Lamb, 1932 para. 187 or Forchheimer, 1924, p. 182) equa-

tion (XIII. 8) can be derived in the easiest way by means of the artifice of steady motion. If Q denotes

the volume per unit width which crosses each section in unit time we have for reasons of continuity

Uihi = uz hi = Q. (XIII. 9). If we consider the mass of fluid which is at a given instant contained

2 hr 3

Fig. 202. Bore-like rise of the surface in sea-shore rills (Prielen) of German North Sea

coast (Watten meer). Coast (Thorade-Schumacher).

between two cross-sections, one on each side of the transition wave (bore) we see that in unit time it

gains momentum to the amount qQ(u2
— Wi), the second section being supposed to lie to the right

of the first. Since the mean pressure over the two cross-sections are Igoh^ and %goh2 , we have

and from (XIII. 9) we obtain

0(«2-«i) = igUh-hl).

G2 = ^/z1 /72 (1+ /?2).

(XIII. 10)

(XIII. 11)

If we impress on the entire system a velocity

with the velocity of propagation

-Hi, we get the case of a bore invading still water

«i gfh
h+ hA

2lh J

in the negative direction; the particle velocity in the advancing wave is u x—u2 in the direction of

propagation of the bore. Rayleigh proves also that a positive discontinuity wave (wave above the

mean water level) can only continue to progress unchanged if there is a dissipation of energy with

the transition from one level to another. To the contrary, a negative discontinuity wave (depression

below the mean water level) can progress unchanged when additional energy is supplied. It follows

that a negative bore of finite height cannot in any case travel unchanged.

As pointed out by Jeffreys (1934, p. 157), there does not seem to be an

essential difference between a tidal bore in a river and the normal beach surf.

Both depend, in the first place, upon the increase of the wave height due to

reduction of the cross-section (decrease in depth, reduction of width), secondly

upon the circumstance that, when the wave height becomes of the same size

as the undisturbed water depth, the wave crests travel more rapidly than the

wave troughs, overtake these troughs and break and, in the third place, upon
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the possibility of the progress of a wall of water on the water surface. All

these circumstances are of the same nature for both phenomena, only the

dimensions differ correspondingly.

Phenomena like that of the bore are not limited to estuaries and rivers.

Schumacher and Thorade (1923, p. 48) have shown that bore-like rises

of the water level occur at low tide in the Prielen (sea shore-rills) of the shallow

seashore waters of the German North coasts (Watten meere) (see Fig. 202).

Bores appear also in shallow straits, when different types of tides at the mouths

can cause similar phenomena, as for instance the remarkable currents and

eddies in the Strait of Messina (see p. 395).



Chapter XIV

Tides of the Oceans

1. First Co-tidal Chart of the Oceans

One could get a better picture of the tidal processes in the oceans if the

distribution of the phase and amplitude of the tidal wave would be given

for all points of the oceans. We would then have maps with co-tidal lines,

and maps with co-range lines places for the various parts of the oceans.

We have seen that from a pure mathematical standpoint, this problem cannot

be solved now. The theory can only tell us how various factors affect the

development of the tidal wave in the oceans and how they try to force certain

forms on the co-tidal lines and on the distribution of the amplitudes. At the

present time it seems fit to look at the observations from a geophysical view-

point, based on the harmonic constants of the principal tides which are avail-

able for coastal localities and islands, and to connect these constants into

an oscillating system extending all over the oceans. The main problem is then

to select from the large number of possible oscillating systems, the system

which is geophysically the most probable one on the basis of the theory of

the tides. The degree of reliability of such a picture depends, of course, upon

the number of available observations from coastal localities and islands far

away from the coast. It is very important to obtain reliable tidal constants

of islands if we want to further our knowledge of the ocean tides.

Up to 1911 only two attempts had been made to present the tides of the

oceans in a map. Whewell (1833, 1836) has made a map for the Atlantic

Ocean, which he based on new data collected by himself for this purpose.

Whewell realised that his map could only be considered as rough approxima-

tion to the real conditions. It was limited to the semi-diurnal tides, as he could

only base it on the establishments. Berghaus (1845, 1892) incorporated this

map in an extended form in his atlas, thus giving it wider distribution though

Whewell (1848), had retracted his presentation of the ocean tides because

of the many criticism. Nowadays Whewell's map retains only an historical

interest.

Whewell's map of the co-tidal lines indicates that the tidal wave in the

ocean is mostly a progressive wave and since that time this viewpoint was

adopted by the geographers. This is also the viewpoint taken by KrUmmel
in his textbook of oceanography. He was not very successful in trying to
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make the velocity of propagation of the waves computed from the establish-

ments agree with the known depths. In order to explain many discrepancies

KrUmmel assumed interferences of waves travelling in opposite directions

which are very improbable.

Harris (1904, Part IV B, p. 315) in his general treatment of the oceanic

tides started from a different viewpoint. He used for the first time the harmonic

constants of a large number of coastal stations. He followed a thought expres-

sed by Ferrel that the ocean tides are not progressive waves, but standing waves.

These theoretical assumptions were, in many instances, based on not sufficiently

secured fundamentals, so very soon the reliability of his results was questioned.

Harris divides arbitrarily the oceans into areas of oscillation, adapting their

dimensions to the period of oscillation and the depth of the area. Each area

oscillates then independently. Darwin (1902, p. 145) has rejected these

assumptions, pointing out that the complicated co-tidal maps of Harris is

inducive to find a simpler solution which will be representative of all the facts.

Harris should be given credit for having been the first to include the diurnal

tides in his considerations. Sterneck (1920, 1921, 1922) has given a different

presentation of the co-tidal lines of the oceans. He had at his disposal a greater

number of harmonic constants; furthermore, he referred his maps of the

semi-diurnal tides to the high water at spring and he used numerous data

of the establishments found in the tide tables of the various countries His

method is based upon the simple principle of splitting the tidal motion ob-

served in each locality into two orthogonal oscillations, whose phases thus

differ by a quarter period. Each of the oscillations is a standing wave in itself.

For the semi-diurnal tides he chose as basic phases and 3 h in such a way that

i] = Hcosa(t—E) = //1 cos(7/+i/2COSo'(f— 3h) ,

Hx = Hcosae , H2 = Hcoso(e—3h) .

The first term of the decomposition with the amplitude Hx represents a system

of synchronous oscillations covering the entire ocean and which is nothing

else than a standing wave with the phase and 6 h respectively. The points

Hx
= will fall on certain lines which are to be considered as nodal lines

of this standing oscillation. Along these lines we will observe exclusively

establishments of 3 or 9 h because only the second term of the equation will

then be instrumental in determining the establishments in these points.

Similarly, the second term represents a system of synchronous oscillations

covering also the entire ocean and whose phase is 3 and 9 h respectively.

At points where H2
= we will have the nodal lines of this system and here

the establishments will be and 6 h. Establishing these nodal lines is most

important, because these nodal lines form the frame of the whole system

of co-tidal lines. The establishments of the coastal localities give the position

of the nodal points on the coasts, and their connection across the oceans

from coast to coast gives the position of the nodal lines on the open ocean.
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The fact that the depths of the oceans are not considered, that is, their effect

on the shape of the co-tidal lines, produces a certain simplification. The

procedure in itself is very simple, but requires an intimate knowledge of

the tides.

According to this method Sterneck (1920, p. 131; 1921, p. 363; 1922,

p. 145) has drawn co-tidal lines for all three oceans for the semi-diurnal and

the diurnal tide waves.* These maps are the first attempt at cartographical

presentation based on a uniform principle. Progressive tide waves have not

been considered and, wherever they appear, they are to be regarded as an

interference of two standing wave systems. In theoretical support of Sterneck's

method, it should be noted that this splitting up into two orthogonal oscillat-

ing systems is in itself of a purely formal nature. According to the basic

phase selected, it can be solved in an infinite number of ways. Physically

the method means that although he considers the tides of the oceans as

oscillations of a closed basin, they do not appear as a simple standing wave;

but can always be considered as the superposition of two systems of ortho-

gonal standing waves (see Defant, 1928, p. 274; 1929, p. 209). This is

important because the tides of the different oceans act upon each other and

dissipate a great amount of energy on the shelf and on the ice in the polar

regions.

2. Methods used to Incorporate the Observations Presently Available in Maps

of the Tides of the Oceans

The number of coastal localities for which harmonic constants have been

computed has increased lately to such an extent that is has become possible

to map the oceanic tides, based on many reliable data.

The International Hydrographic Bureau in Monaco has published, from

1930 to 1940 for 2650 localities a list of their harmonic constants, the location

of the tide gauges, duration of the observations, highest high water and lowest

low water and mean sea level during the period of observation. The British

tide tables (1938, Part II) supplement these data by giving for 3500 other

localities the constants of the

M, , S2 , KL and 1

tides. However, these constants are not as accurate because they have not

been computed from the harmonic analysis but are obtained by applying

tidal differences between these stations and the reference stations (see p. 311).

The German tide table published in 1940 contain the harmonic constants

of the ten principal tides for a large number of coastal stations as they are

* The first term of this split-up equation for the diurnal tide has a phase h and the co-tidal

lines for 6 h and 18 h are nodal lines of this oscillating system. The second term has the phase 6h

and high water occurs along the nodal lines at and 12 h.
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used for the prediction of the tides (p. 317, see also Shureman, 1924).

Dietrich (1944, p. 69; 1943, p. 123) used all these data to map the tides

of the ocean, which is much more reliable than previous attempts. The map
was limited to the oceans, omitting the adjacent and boundary seas, which

require a different approach. Table 79 shows the increase in the number

of constants used by Dietrich compared to those used by Harris in 1904

and Sterneck in 1920. The distribution of the data over the different oceans

Table 79. Number of localities used for the study of the

tides of the oceans
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of the behaviour of the tides on the open oceans. Therefore, the maps will

always remain quite subjective and will give at their best the probable system

of oscillation of the partial tide under consideration.

Still more difficult than the presentation of the distribution of the phase

is the cartographical presentation of the distribution of the amplitudes. It is

very difficult to bridge the vast expanses of the oceans by interpolation be-

tween the amplitudes given along the coasts, due to the disturbing influence

of the varying slope of the continental shelf.

Dietrich restricted himself to give a distribution of the amplitude along

the coasts in the form of a diagram, or to enter its value for a large number

of coastal localities. It is true that, in this way, no picture of the distribution

of the amplitudes over the entire ocean is given but in using the map of the

phase one can roughly visualize the principal features of the distribution of

the tidal ranges; this is perhaps preferable to lines, which simulate only an

accuracy not existing in reality.

3. The Charts of the Tides in the Various Oceans

Charts I and II are, according to Dietrich (1944), the presentation of the

co-tidal lines of the semi-diurnal and diurnal tides of the ocean. TheM2 tide has

been chosen as representation for the semi-diurnal tide and the tide Kx for the diur-

nal tide. Another kind of representation of the amplitudes of the semi-diurnal

and diurnal tides along the coast of all oceans has been chosen here. It is presen-

ted in the charts III and IV. The average tidal range of the ocean surface is

indicated by straight lines in these diagrams for the west and east coast of each

ocean (ordinates) and with the latitude along the coast as abscissa. Chart III

contains the range of the semi-diurnal tide 2(M2+ So) and chart IV that of the

diurnal tide 2(A'1+ 1). An immediate and excellent impression of the distribu-

tion of the tidal amplitude along the ocean coast is obtained in this way. This

allows a much better insight into the distribution of the amplitudes than any

plot of the amplitude values at corresponding coastal places on an ocean chart.

The distribution of the characteristic number F = (Kx+ 0^1(1^0+

S

2) along

individual coasts has been indicated in the diagram III by different forms

of the vertical lines (full, dashed, dashed-dotted or dotted, see text to chart III).

The principal features of the tides in the total ocean are well explained by

these four charts I-IV can be found in the previously mentioned paper of

Dietrich. Moreover the co-tidal lines of the two next important tides S2 and O x

have in general the same aspects -as the co-tidal lines of the M2 and AT2 tides.

This is evidenced by the fact that for vast areas the differences in phase be-

tween S2—M2 and Kx—O x remain constant. Large discrepancies in this dif-

ference in phases for the diurnal tides K1
—0

1 occur only occasionally (for

instance on the European and South African coasts); however, this happens

generally when the amplitude is very small and therefore it can probably be

attributed to uncertainty in the constants.
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The main pictures of the M2
- and Kx

- co-tidal lines are, with a few ex-

ceptions, that of rotary waves (amphidromies contra solem), in both hemi-

spheres. In most cases, their development is unsymmetrical; often there is

a more or less pronounced crowding of the co-tidal lines and, in extreme

cases they degenerate into real nodal lines with opposite phases on both sides.

Mostly there is no discontinuity, but we have narrow bands in which the

phase changes rapidly from one locality to another. For instance, the am-

phidromies of the semi-diurnal and diurnal tides of the North Atlantic Ocean

are symmetrical, nearly pure nodal lines are found for the semi-diurnal tides

in front of the Gulf of Bengal and between Japan and New Guinea. Some-

times a compact group of co-tidal lines starts out from the centre of the

amphidromy running into only one direction; then it is difficult to judge

in how far it is better to represent the observations by a nodal line or by

an amphidromy.

Theoretically the amplitude becomes zero in every centre of an amphidromy

and on every nodal line. In practice one finds a minimum of the amplitudes

in the vicinity of the amphidromy and the range increases with the distance

from the centre of the amphidromy and the same holds true for the nodal

line. The maximum values of the tidal ranges are found on the coasts, even

if one allows for the increase in amplitude caused by the shelf. But this is

not the case on the coasts of islands, inasmuch as these are usually closer

to the centre of the amphidromy. Thus, according to Dietrich, in the im-

mediate viscinicy of the pseudo-nodal line between Japan and New Guinea

the smallest mean spring tide range of the semi-diurnal tide is only 16 cm;

west of this point it reaches with increasing distance from the nodal line

to 44, 100, 120 and 150 cm. Towards the east there is an increase from 16

to 60, 89, 116, 136, 152, and up to 176 cm. The distribution of the amplitudes

is also quite characteristic for amphidromies if there are sufficient data of

localities available. Thus, in the centre Solomon Islands the amphidromy

of M2 lies near Nusosonga (8°25'S., 157°14'E. lat.) which has an amplitude

of cm. The small spring tide range of 12 cm must be attributed to the S2

tide. The tidal ranges increase rapidly with the distance from this centre.

The spring tide range of the eastern Solomon Islands is 121 cm; to the south-

west in the Louisiade Archipelago it is 75 cm, on the border of the Great

Barrier Reef of Australia it is 172 cm and on the Australian continent in

Queensland, under the influence of the shallow coral coast, it increases to

476 cm. There is always a close correlation between the co-tidal lines and the

amplitudes; one-sided crowding of the co-tidal lines extending to the coast

is reflected there in a decrease in the range of the tide, so that such minima

in range can always be regarded as a characteristic sign of a rapid variation

in the phase.

In judging the amplitudes along the coast one should consider the increase

in the amplitude through the co-oscillation of the shelf sea with the tides
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of the open ocean. A sufficient number of cases illustrating this fact, can be

found in the maps. An accurate analysis of the entire phenomenon is still

lacking. The research on the tides of shelf regions along selected lines will

be facilitated after high-sea gauges will have been constructed and tried.

The distribution of characteristic number of tide F = (A 1̂ + (91)/(M2+S
,

2)

along the ocean coast is given in Chart III. Contrary to other oceans, the

coasts and islands of the Atlantic Ocean show a marked predominance in the

semi-diurnal tidal form, nearly everywhere the ratio determining the type of

the tide remains below the theoretical value of

M^S2
= ° 68

'

along the European and African coasts it seldom exceeds 010. This special

position the Atlantic Ocean is not the result of high amplitudes of the semi-

diurnal tides, but rather of the smallness of the diurnal tides, for the spring

tide range of the diurnal tide remains below 40 cm generally disregarding

local exceptions.

In other oceans the diurnal tides are much stronger; in the Pacific Ocean

the mixed type is predominant; in the Indian Ocean we find in equal quan-

tities both semi-diurnal and mixed, predominantly semi-diurnal type. The

purely diurnal type of tides are restricted to locally, very limited areas, con-

sidering the wide expanses of the ocean. They can of course be found in the

centre of the semi-diurnal amphidromies and along the nodal lines, where

the amplitudes of the semi-diurnal tides decrease very much. The remarkable

occurrence of high characteristic tide numbers (Formzahl) is thus explained

very easily.

We will now discuss as briefly as possible in some detail, the main phe-

nomena of the tides of the three oceans. In Tables 80, 81 and 82 can be

found a compilation of the harmonic constants of selected coastal localities

and islands. They were selected according to their importance for the

character of the tides.

4. The Mo Tide as the Typical Tide Wave of the Semi-Diurnal Tides

(a) Atlantic Ocean (Table 80

J

In the Southern Atlantic Ocean the tide wave travels from south to north

over the entire width of this ocean. Large disturbances appear on the Pata-

gonian Shelf. From a line running from the Falkland Islands to the north-

eastern tip of Tierra del Fuego then north of the Gulfo San Jorge the phase

increases by a full 360° and then there is a further increase by the same amount

up to east of Bahai Banca. This is due to two amphidromies caused by the

co-oscillation of the wide shelf extending out of the southern part of the South

American with the open ocean. North of these areas there is over a relatively

short distance an increase in the phase of more than 150° which, coinciding

31
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Position
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with a minimum of amplitude (Rio Grande do Sul only 5 cm), indicates

a pseudo-nodal line. North thereof the variations in phase are small with

large tidal ranges up to Cape Sao Rogue and even farther along the entire

north-east coast of South America (disregarding the wide shelf of this coast).

This distribution along the coast becomes less definite towards the open

South Atlantic Ocean, so that the distinct nodal line on the coast (according

to the observations on the islands) changes into a gradual variation of the

phase, which becomes more pronounced in a north-eastern direction towards

the African coast. While the increase in the phase is gradual, the amplitudes

remain constant between 40 and 50 cm; only in the inner part of the Gulf of

Guinea they increase to 75 cm after crossing a wide shelf.

North of the equator there seems to exist an antinode which extends

over the entire width of the ocean from Pernambuco to West Africa. This

anti-node is joined northward by a well-developed pseudo-nodal line. The

increase in phase in the western part between Martinique and Puerto Rico

is 165° and the phase in the eastern part between Cape Verde and the Tropic

of Cancer vary by the same amount. In the west the crowding of co-tidal

lines seems to originate from an amphidromy, whose centre is located in

the eastern part of the Caribbean (Ponce on Puerto Rico where amplitude

of M2
= 1 cm). In the western part of the Atlantic, north of this nodal line

up to the south coast of New Foundland the phase varies but little and de-

creases slightly. At the coast of the eastern N. Atlantic, on the contrary,

the phases increase continuously from N.W. Africa, to the Canary Islands,

Madeira, the Azores and farther along the European coast, so that this entire

northern section of the North Atlantic Ocean is occupied by a very well-

developed amphidromy.

The transition to the European North Sea takes place by a well-developed

nodal line in the Denmark Strait and by a narrow amphidromy with a sudden

change in phase of 150° over a short distance between the Hebrides and the

Shetland Islands in the east and a corresponding decrease in the phase on

the east coast of Iceland. The centre should lie north-west of the Faeroe

Islands where the amplitude is only 10 cm against a minimum of 33-5 cm
on the east coast of Iceland and 395 cm on the Shetland Islands.

The tidal picture of the Atlantic Ocean is clearly shown by the co-tidal

lines on Chart I, and will not be changed essentially by new observations.

This is proven by the fact that the presentation of the Atlantic Tides (see

Fig. 203) given by Sterneck (1920) does not deviate essentially from Dietrich's

newer map. The divergence from Harris's map is, however very great. Harris

assumed a very remarkable pattern of the co-tidal lines, particularly in the

region of the Northern Atlantic Ocean; but he had already found the am-

phidromy in the North Atlantic.

(b) Indian Ocean (Table 81

J

Dietrich points out as a particular feature in the Indian Ocean the very

31*
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small variation in phase in the following five vast regions when again the

disturbances caused by the shelf are neglected:

(1) Western Region: the entire African coast from the Southern Atlantic

Ocean via Cape of Good Hope up till north of Ras Hafun in Italian East

\fj»r 60° 30° 0° 30° £

W 60° 30° 0" 3u° E

Fig. 203. Co-tidal lines for the Atlantic Ocean for the semi-diurnal tides (M2 and S2 are

together; referred to Greenwich) (Sterneck, 1920).

Africa, including ihe west coast of Madagascar, the Comoro Islands, Amirante

Island, and Seychelles. The phases all lie near 0°.

(2) Eastern Region : the west coast of Australia north of Freemantle across

the entrance of the Timor sea to the centre of Java; the phases are about 45°.

(3) Between the western and eastern regions in the middle of the ocean

there seems to be a wide band, in the north-south direction along which the

phase remains constant at about 240°. It starts in the north near the southern

Maldive Island and runs across the Chagos Arch, Rodriquez, St. Paiil,
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Table 81. Harmonic constants of the Indian Ocean
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Kerguelen Island to the Antarctic (Gauss Station, phase 229°). With high

amplitudes everywhere it seems to be an oscillation opposite in phase to the

western and eastern sections of this ocean.

(4) From the Gulf of Aden to the coast of Baluchistan and then to the

12°N. parallel on the coast of southern India there is a very small change

in phase.

(5) The entire inner part of the Bay of Bengal, including the Andaman
Sea, is characterized by a nearly constant phase of 75°.

The transitions between these regions are clearly defined by the coastal

values, but the drawing of the co-tidal lines is, however, only possible in a few

cases and is left to subjective interpretation. The best defined conditions are at

the entrance of the Bay of Bengal. From the east coast of Ceylon a crowded

bunch of co-tidal lines to the northern point of Sumatra with a sudden trans-

ition in the phase of 180°, while the amplitudes are reduced to small values

for M2 (in the western section 13 cm, in the eastern section 4 cm). This points

clearly to a well-developed nodal line and a uniform oscillation of the entire

bay with a phase opposite to that of the open Indian Ocean, in the south.

The other transitions have the forms of amphidromies of which the one

in front of the Arabian sea is rotating to the right and is supported by the

amplitude distribution in the west and the east. The two other amphidromies

are located at about 30° S. the western one, with its centre south of the

Mascarenes (amplitude here only 13 cm) rotating to the left; the one in the

eastern part, with its centre west of south-west Australia (amplitude only

5 cm) rotating to the right.

The co-tidal lines given by Dietrich for this southern section of the Indian

Ocean are not as reliable and accurate as those in the northern region, but

they fit in with the available observations and permit an interpretation. They
agree with the map of Sterneck, whereas Prufer (1939) in working up almost

the same observations, had a different conception. Prufer completely omits

the western amphidromy in the southern Indian Ocean and draws the co-

tidal lines down to the Antarctic Continent and moves the eastern amphi-

dromy much farther to the north. The more recent observations rather seem

to confirm Dietrich's conception. Harris's map does not indicate any am-
phidromy at all in the south whereas in the northern Indian Ocean there

is good agreement with Dietrich's map.

An excellent representation, also on a theoretical basis, of the diurnal

tides along the equator in the Indian Ocean was given by Fairbairn (1954).

The distribution of the semi-diurnal tidal constituent K2 along the equator

has been calculated with the aid of known harmonic constants at approxi-

mately fifty coastal stations in the northern part of the Indian Ocean. This

has been achieved by use of a theorem in tidal dynamics, which connects

integrals involving the tidal elevations and currents along the boundaries

of an oceanic region and the equilibrium elevation over its surface (see p. 362).
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In the equatorial distribution the variations of phase give supporting evi-

dence for recent co-tidal charts of the ocean. In addition, however, an estimate

for the amplitude of the constituent is given for any point on the equator.

The tidal chart for the region studied by Fairbairn is given in Fig. 203a.

Fig. 203o. Co-tidal and co-range lines for constituent K2 . The numbers on the full lines

give the time of high water in hours which are one-twelfth of the period, the time origin

being on the standard meridian where A = 32° (x — being at 43°E., where the equator

strikes the coast of Africa). The numbers on the broken lines give the amplitude H in cm.

(c) Pacific Ocean (Table 82J

Condition in this vast ocean are more complicated than in the Atlantic

and Indian Ocean. The expanse of the Pacific Ocean and the unsatisfactory

distribution of the observations are cause for uncertainties. Harmonic con-

stants in sufficient number are available for the north-western and northern

regions. In the other areas, except the western part of the South Sea, har-

monic constants are scarce. One can, therefore quite well understand that

Dietrich looks at his distribution of the phases in the central and southern

part of the Pacific as an attempt and he does not consider it definite.

In the western region there is a pseudo-nodal line extending from Japan

to New Guinea. The line is quite narrow, amplitudes are at a minimum.

The transition of the phase is about 180° between the territory west of this

line, Western Carolina Islands Palau (Moluccas, Phillipines, Formosa, Rui-

Kju and Japan) and east of this line (east coast of New Guinea to Southern

Kamchatka). Ogura (1933) already assumed such a line at this place.

Another phenomena well established is that the phase completes a full

360° circle with a rotation to the left around New Zealand. It could be taken

for an amphidromy, but the sense of rotation is unusual for the southern
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Table 82. Harmonic constants of the Pacific Ocean
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hemisphere and the high amplitudes do not support this interpretation. The
phases from the Tasman Sea and Coral Sea to New Guinea and New Ca-

ledonia remain constant at about 300
3

. The transition to the previously

mentioned large area of nearly constant phase of 120-150° takes place in the

western part by a well-developed amphidromy in the vicinity of the Solomon
Islands with its centre located at Nusosonga which has an amplitude of cm.

In the north-east Pacific Ocean, the coast of the Gulf of Alaska, between

the eastern Aleutians up to Vancouver Islands, is a region with a relatively

constant phase of 240-270°, there is a crowding of co-tidal lines in the north

near the central Aleutians, and again north of Lower California. This dis-

tribution of the phase would fit an amphidromy with its centre south of the

Gulf of Alaska. The 60° lacking for a full revolution can be distributed be-

tween Lower California and the Hawaian Islands. For a further portion of

the eastern boundary of the Pacific Ocean Dietrich assumes two other am-
phidromies: one in front of the Gulf of Panama and another one in front

of Chile with its centre south of Easter Island. Both amphidromies are

indicated by phases and amplitudes observed at coastal localities, but their

position and form is uncertain in the open oceans due to lack of observations.

The few harmonic constants at present available for the central Pacific are

insufficient for an accurate drawing of co-tidal lines. The few constant of

places bordering this region seem to point to a rotation of the phase of 360°

to the left. The phase of several islands in this region would fit very well

in this picture. Dietrich assumes, therefore, a large amphidromy in the Central

Pacific with its centre north of the Samoa, Tahiti and Gambier Island. The
decrease in the amplitude of the semi-diurnal tides in the centre of the am-
phidromy would explain why the establishment and the differences in time

of the occurrence of high water in the Tahiti region (approximately between
140° and 160°W. and between 25° S. and the equator) show such an inextricable

confusion.

Including another amphidromy in the Southern Pacific Ocean at about

50° S. which actually belongs to the belt girding the Antarctic between 70°

and 50° S. lat. Dietrich's map shows for the entire Pacific Ocean six amphi-

dromies and two pseudo-nodal lines. A comparison with v. Sterneck's pre-

sentation shows considerable differences both in the northern and in the

southern sections. The differences with Harris's map are still greater. Even

though the increased number of observations has eliminated many uncertain-

ties, Dietrich's map should still be regarded as provisional, and only more
observations will prove its reliability.

5. The Kx Tide as the Typical Tide Wave of the Diurnal Tides. (See Chart II)

It is to be expected that the diurnal tides will show a simpler picture than

the semi-diurnal tides because of their longer period. This circumstance will

compensate for the disadvantage that there are fewer harmonic constants for
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the diurnal tides. Comparing Chart II with Chart I there is quite a simplification

characterized by the smaller number of amphidromies.

In the Atlantic Ocean there are two large amphidromies. One covering

the entire Northern Atlantic Ocean has its centre at approximately 30° N. lat.,

and is symmetrical towards all sides, whereas the second one covers the

Southern Atlantic Ocean and seems to have a definite crowding of the co-

tidal lines in its western part. The distribution of the amplitudes of the Kx

tide is very uniform in the entire Atlantic Ocean, except that in the extensive

shelves and in large bays it remains mostly below 10 cm.

In the Indian Ocean we find an amphidromy in the form of two bundles

of crowded co-tidal lines, supported by the constants on the coast and Islands.

It's centre is located east of the Chagos Archipelago. The distribution of

the amplitudes support well the drawing of the co-tidal lines with a minimum
of 5-10 cm along a line extending from north-west Sumatra to southern

Ceylon, the Chagos Archipelago, the Mascarenes, and to South Madagascar.

In the antinode in the north-western part the tidal ranges exceed 20 cm on
the Seychelles and Laccedives, and more than 40 cm on the south coast

of Arabia.

According to Dietrich there seems to be a small amphidromy rotating

to the right at the southern opening of the Mozambique channel.

In the Pacific there are, similar to the Atlantic, two distinct regions with

regard to the distribution of the phase which lie opposite one another. In the

east the coasts of Peru and northern Chile have a minimum of about 30°;

from there on the phase increases to the north and to the south. In the west

there is a maximum with approximately 90° in the region of the Philippines

and Formosa and from this point the values decrease rapidly to the north

and to the south. Judging by the values in between, both regions lie on

a wide anti-node which extends across the entire Pacific Ocean. The values

north and north-west of this zone can be grouped into a large, unsymmetrical

amphidromy; its centre seems to be located between the South Sea Islands

in the south, the Hawaian Islands in the north and the Marshall Islands

in the west. According to the Kx phases its location is probably south of

Fanning Island.

In the Southern Pacific Ocean we have the remarkable case of an island

appearing as the centre of an amphidromy. All constants on New Zealand

point a complete rotation of 360° to the right around both islands, and at

the same time the Kx amplitude decreases to below 3 cm. The observations

on distant islands and on the coast of Australia do support this amphidromy.

The amplitudes of the Kx wave are relatively small in the Pacific Region,

but they exceed 10 cm, at the coasts of this ocean (except in a small strip

along Equador). Around the Antarctic these amplitudes reach 30 cm and

more, while in the Gulf of Alaska they amount to 40 cm and above. In

general the diurnal tide in the Pacific, as well as in the Indian Ocean, is greater
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than in the Atlantic Ocean, where they sporadically exceed 10 cm. The tidal

picture of the antarctic belt remains questionable until new observations are

available. Dietrich's presentation can only be considered as provisional.

6. Tidal Currents in the Atlantic Ocean

The Atlantic Ocean is at present the only ocean for which we have current

measurements obtained at a fair number of anchor stations; they permit the

formation of an approximate picture of the distribution of these currents in

the centre of this ocean, but of course, this can only be considered as an attempt.

Current measurements from an anchored ship present some difficulties, and

their results contain errors which are difficult to eliminate. In view of their

limited number, the few existing stations do not permit one to give a detailed

picture of the distribution of the currents. But in conjunction with the co-tidal

lines of the vertical tide we can get a good general idea. Most of these anchor

stations have been made by the "Meteor" Expedition and their results have

been published by Defant (1932) (see also Thorade, 1934, p. 1). Further-

more, there are three stations of the Pillsbury worked up in a modern way by

Schubert (1932, p. 378) and three stations of the "Michael Sars" and the

"Armauer Hansen" Expedition (Helland-Hansen, 1930; Ekman and

Helland-Hansen, 1931) and finally two stations of the second cruise of

the North Atlantic expedition of the "Meteor" in 1938 (published by Schu-

bert, 1944). In all, eighteen stations are available. Table 83 gives a com-

pilation of the main results of the analysis, for the semi-diurnal tide. The
measurements were made in various depths. In the table each quantity re-

presents an average value computed from the observations in different depths

which are often rather different from each other. This method eliminates, for

a large part, possible errors. The principal direction and phase of the current

for the individual stations have been entered in Fig. 204 and an attempt made
to draw co-tidal lines for tide currents. It is to be seen that the phases are

fairly uniform across the width of the entire ocean and supports the old pres-

entation of a tide wave progressing from south to north, whose tidal currents

have the form of a rotary current cum sole as required by Sverdrup's theory.

Figure 204 shows, of course, only approximately the distribution of the tidal

currents. It is quite possible that the uniform advance of the co-tidal lines

which were interpolated from the few available values, should be replaced by

co-tidal lines which are crowded over a short distance. The direction of the

tidal current off the American coast is southward, which is opposite to the

direction prevailing at the same time off the African coast which is in agree-

ment with a large amphidromy of the semi-diurnal tide in the North Atlantic.

If we omit "Meteor" station 229, which is disturbed by the proximity of

the coast, 66 out of 77 current ellipses have a direction of rotation cum sole,

i.e., 86% of all cases agree with the direction required by the theory. The

ratio of the small to the large axis of the current ellipse should be theoretically
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5= [(2wsin0)/2.-r]r= 1 033 sin <p. Table 84 shows that in the whole, this relation

is satisfied. From the ratio of the minor to the major axis of the current

ellipse V/U and from the difference in time e between the current maximum
and that of the occurrence of high water, Proudman and Doodson derived

(see p. 565 (equation XI. 38)), two equations for the computation of the

70° 60° 50° 40° 30° 20" 10" 0° 10° 20°y • ^

Fig. 204. Direction, phase and intensity of the semi-diurnal tidal current in the Atlantic.

->, upper layer; <->, deeper layers.

angle ip enclosed by the co-tidal line and the direction of the current maximum
for a certain locality. Thorade (1935, p. 93) has used these equations to com-

pute this angle for the stations in Table 83 by using time of high water as given

by Sterneck's map of co-tidal lines (1922) and compared this angle with those

given in the map. Table 83 gives in its columns the necessary data and it is

to be noted that the observations for different depths have been averaged

for the indicated ranges listed in the column denoted by depth. If we exclude

station 176, in which the values are too scattered, we find that, for ten out of

seventeen stations the difference is less than 30°, for five between 30° and 60°

and that only for two it exceeds 60°. This result is not bad considering all the

errors inherent in the different values. The two stations with the two greatest

discrepancies are close to the coast on the edge of the shelf, and must be re-

garded as disturbed. If one were to use the new presentation by Dietrich

instead of the one by Sterneck, there would be only minor changes because the

two presentations are very similar. This result shows that the map of the

co-tidal lines of the Atlantic Ocean and the results of the current measurements

are in satisfactory agreement and form an oscillatory system closed in itself.
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7. Theoretical Considerations on the Semi-diurnal Tides in the Oceans Especially

on Those of the Atlantic Oceans

It would be interesting to compare maps of the co-tidal lines of the oceans

based on the observations with theoretical maps of the tides. However, it

has not been possible hitherto to derive for the oceans tide maps based on

an exclusively theoretical mathematical consideration. The complicated con-

figuration of the oceans, the co-oscillation of the water-masses with adjacent

seas, the Coriolis force and friction are a few of many factors influencing

the tides. We refer to Chapter XI. 2-7 for methods which have been developed

Table 84. Ratio of minor to major axis of tidal current ellipses

of semi-diurnal tide as a function of the latitude

Mean latitude ...
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east, except at 30° N., where the ocean reaches its greatest width. The same

applies for the Kx tide. The free period of the Atlantic Ocean in its merid-

ional axis from about 40° S. lat. up to Iceland is 37-7 h, so that for the M2 tide

v = 304 and for the Kx tide v = 1-58. Consequently, the co-oscillating tides for

these components will have three and two nodes respectively. If we superpose

these two oscillating systems in zonal and meridional direction we obtain

a picture of the tides which resembles very closely the co-tidal lines derived

from the observations.

Conditions are similar in the Indian Ocean. Zonal oceans bounded at 10°

and 30° S. give for the M2 tide two nodes, and for the Kx tide one node; the co-

oscillating tide for which 7} = 20 h would -have two nodes for the M2 tide and

one node for the Kx tide. This is mainly what the co-tidal maps show.

In the Pacific Ocean, which widens from the north towards the equator,

the number of nodal lines increases. For zonal oscillations we have in 40°

and 30° N. two nodes for the semi-diurnal tides, from 20° N. to the equator

there are three nodes. Omitting the Tasman Sea and the Coral Sea, there

are two nodes in the South Pacific. A meridional co-oscillating tide should

have two nodes. The number of amphidromies actually existing corresponds

approximately to the points of intersection of these oscillating systems. These

considerations are acceptable for the Atlantic and the Indian Ocean, but they

seem too risky for an ocean which has the expansion of the Pacific. All that

can be said is that the canal theory supports reasonably well the number

of amphidromies and nodal lines respectively of the empirically derived

oscillating system.

The tides of the Atlantic Ocean have been subjected to a more thorough

theoretical treatment. Whewell (1833) expressed the opinion when his first

map of co-tidal lines was published, that the tide wave of the Atlantic Ocean

did not develop in this ocean itself, but penetrated from the south-east.

We should observe in the Atlantic Ocean only the effect of a wave which

had developed already in the Pacific Ocean or in the Antarctic belt. Later,

Warburg (1922, p. 12) has pointed out that a tidal wave, as required by

the theory, can only develop in a belt girding the whole earth and that the

tides in the Atlantic Ocean could originate only in this belt.

This conception concerning the origin of the tides in the Atlantic was

already contradicted by Airy (1842), who emphasized that the Atlantic Ocean

is sufficiently vast to develop its own tides. Whewell noted later that the

Atlantic tides were to be considered as standing oscillations with a nodal line

extending from Brazil to Guinea. Ferrel (1874, p. 239) has even expressed

the opinion that a barrier between South Africa and South America would not

alter the tidal wave of the Atlantic Ocean. Harris (1904, part IV B, p. 366)

explained the co-tidal lines in the Atlantic Ocean by interferences of two

oscillations developed in the ocean itself. Darwin (1910) has taken the

position that the wave entering from the south should be of more importance

32
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for the European coasts than the wave developed in the ocean itself. Krummel
(1911, vol. II, p. 250) has discussed all these more qualitative viewpoints,

without however attempting to give a more quantitative explanation of the

tides in the Atlantic (see Thorade (1931, p. 136)).

Sterneck's (1922) new presentation of the co-tidal lines has revised the

question of explaining the Atlantic tides. Defant simplifying considerably

the assumptions (1924, pp. 153, 177 and 1926, p. 133) was the first to explain

by longitudinal and transverse oscillations the tidal picture as shown by recent

maps of co-tidal lines. He assumes that the Atlantic Ocean, including the

Arctic Sea, can be represented by a large canal closed at one end, in which the

tides result from the superposition of independent tides developed in the ocean

itself with tides co-oscillating with those of the large Antarctic belt. These

longitudinal oscillations are accompanied by two kinds of transverse oscil-

lations: (1) those caused by the effect of the rotation of the earth on the

periodical water displacements resulting from the longitudal oscillations; and

(2) independent transverse oscillations between Europe— Africa and America.

The orographical configuration of the ocean was fully taken into account by

Defant. All these possible oscillations were calculated numerically by step-

wise computation of the different variables. The superposition of all these

oscillations gave a tidal picture which in its most essential points, was quite

similar to the observed one. There was never any doubt that for tides of the

Atlantic Ocean the co-oscillating tide with the periodical water displacements

in the Antarctic belt are much more important than the independent tides

and that the basic thought of such a hydrodynamical theory is correct.

Sterneck (1926, p. 1) has rejected this simple theory, and he criticizes

especially Defant's assumption of transverse oscillations. He published an-

other theory in which he limits his explanations to the centre axis of the ocean.

He splits the longitudinal oscillation derived from observations on islands

into two oscillations; one with a phase of 1 h and the other one with the

phase 4 h. The first one agrees very well, the second one very badly with

the values derived from the theory. This is a point which still needs explana-

tion. He disagrees in general with the possibility of splitting the oscillation

into longitudinal and transverse oscillations. He tries to make his theory fit

the observations made in the N. Atlantic by assuming oscillations in triangle-

form which seems rather artificial. However, the introduction of these trian-

gular oscillations means nothing else than splitting the oscillations into separate

waves, although he does not use any longer rectangular coordinates, which

complicates the question.

Defant (1928) has elaborated on his theory of the Atlantic tides in the

volume of the "Meteor" Expedition dealing also with the anchor stations.

Taking into consideration the more recent theory of the tides in adjacent seas

and canals, Defant assumed that a part of the tidal energy penetrating into the

Atlantic ocean from the south in the form of a progressive wave, was dissi-
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pated partly in the north on the vast shelf of the Arctic Sea and by its ice

cover, and has not returned in the form of a reflected wave into the Atlantic

Ocean. As mentioned in Ch. XI. 3c, p. 345 the form of the co-oscillaiing tide

in such an ocean is no longer a standing wave, but must be represented as

a superposition of waves which are displaced with reference to each other.

This explains why in the south Atlantic, the tide wave is almost a pure

progressive wave. We would then have in the Atlantic Ocean a similar case

as in the North Sea, where the wave coming in from the north loses so much
energy in the south by friction that although the reflected wave is sufficient

to develop an amphidromy in the Deutsche Bucht superposition in the north-

ern North Sea produces only a progressive wave (see p. 368). The co-oscil-

lating tide in the Atlantic has the phase 1 h in the south (see Chart I), the

corresponding orthogonal oscillation the phase 4 h, and these can be com-

puted numerically for the centre axis of the ocean, taking into account the

effect of the tide generating forces. The boundary conditions are for the wave

with the phase 1 h that at the cross-section zero in the north (Iceland) ^ =
and r\ x is given an arbitrary value ; for the wave with a phase of 4 h, r) 4 =

Table 85. Semi-diurnal tidal constants at islands in the Atlantic
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Figures 205 and 206 show that the agreement between theory and observations

for amplitude and for the phase is very good. The Atlantic Ocean, therefore,

behaves, at least on its centre axis, like a narrow canal.
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tides in the Atlantic thus become a mixture of independent and co-oscillating

tides, in which the latter predominate. We find that the average height of

both waves are in a ratio of 2:3.

The diurnal tides of the Atlantic Ocean could also be explained by this

theory. The procedure is the same. We can compute theoretically the am-

plitude and phase for the centre axis. However, for the diurnal tides we have

the added difficulty that the current observations have been made in different

seasons, and this diurnal tide is very severely subjected to the semi-annual

periodical variation. But, fundamentally it seems also possible to explain the

picture of the diurnal tides.
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solute values for the four waves. The following points were selected: two
at the west and east coast at 32°5'S. and two at 7-5° S., i.e. south of the gulf

of Guinea and of Cape San Rogue, where the greatest irregularities in the

basin occur. The most important waves seem to be the Kelvin wave travell-

ing northwards and the Poincare wave travelling southwards. The super-

position of all these waves gave, both as to phases and amplitudes, a tidal

Fig. 207a. Theoretical tides of Atlantic Ocean. Full lines: co-tidal lines referred to moon-

transition through meridian of Grw., dashed lines: co-range lines of the semi-diurnal tide

M2 in m (according to Hansen).

picture which from 10°N. to 35° S. agrees very well with the values observed

at the coasts. If one goes from 10° N. into the N. Atlantic, the agreement

ceases. Perhaps it is possible to make the values agree by increasing the num-

ber of waves. This paper of Proudman is an attempt to compute co-tidal

lines and co-range lines which satisfy in all respects hydrodynamical principles

for an extensive ocean area from coast to coast. However, it is only an attempt

to derive the geographical distribution of the tides over the entire expanse
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of an ocean from the boundary conditions of the problem. Properly speak-

ing, it is not a theory of the tides of the ocean because this would also have

to include the proof as to why each tide wave occurs with its phase and

amplitude in the given form.

Hansen (1949) has used his method, given in Chap. XI, p. 368 to compute

the semi-diurnal tides of the Atlantic Ocean. By means of this method iso-

lines of water level are obtained for the North Atlantic. It is shown that

there is a fairly good agreement in magnitude between the observations on
North Atlantic islands and the corresponding values derived theoretically

from coastal observations. Figure 201a contains these theoretical tides of

the Atlantic, giving isolines of high-water difference referred to the upper

transit of the moon through the Greenwich meridian as well as co-tidal lines

of the semi-diurnal tide M.,.



Chapter XV

The Tides in Relation to Geophysical

and Cosmic Problems

In this chapter we will discuss a few problems which are related only in-

directly to the tides of the ocean and rather deal with the effect of these tides

on the solid earth and its movements. We have treated this matter very

summarily, only touching upon the most essential points, because we thought

that these questions should be briefly mentioned in a textbook on oceano-

graphy. For details we refer to the textbooks on geophysics.

1. The Detection of the Tides of the Solid Earth from Tidal Observations in

Shallow Adjacent Seas

In the theory of the tides, as well in the discussion of tidal observations,

it is mostly tacitly assumed that the earth is completely rigid and, therefore,

not yielding to the tide generating forces. According to observations in

geophysics, this assumption is incorrect. In Fig. 208 it is shown how the

tides of the oceans are influenced by the tide of the solid earth if the tides

obey completely the equilibrium theory (see Thorade, 1933, p. 49). Assume
that the ocean bottom BB is rigid and a gauge PP is established at the

point P. High water will occur at that point and the water surface will have

risen from mean sea level MM to H'H , when the tide generating body is in the

prolongation PP (in the zenith); the gauge will register a height of water

AN = r\ above mean sea level at A. At A the surface will be horizontal

(maximum) and according to the direction of the tide generating forces (indi-

cated schematically on top of the figure), the surface will slope down on both

sides ; if this slope is a, the horizontal component of the tide generating force,

which must balance the pressure force, will be gtana or, a being very small, ga.

This simple picture changes:

(1) When one considers the variation in the height of the tide caused by

the tidal protuberance (see p. 284); and

(2) If we assume a certain elasticity in the solid earth which yields to the

tide generating forces. The addition of the potential of the protuberance

causes a rise of the water level to HH and an increase in the range at the
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tide gauge of AA = rj . The order of magnitude of this increase in the ocean

is about one-eighth of the original range.

Let the tide generating forces deform the earth from BBn to B'B' and let

us assume that the surface will rise an amount ?? from P to P'. The tide gauge

in P will register the same rise, so that PQ becomes P' and the point N on the

tide gauge will be at N' , and we have P P' = NN^ = rj .

I

B'^

Ffg. 208. Tides of the solid earth and oceans.

However, the surface HH does not rise, because its distance from the

centre of the earth is governed by the balance between the tide generating

force and gravity (equilibrium between tidal forces and pressure forces).

The protuberance of the earth could cause to the utmost a slight change,

inasmuch as the lower part of the protuberance of the water is now occupied

by solid matter instead of water, which changes to some extent the potential

of the attraction of the water protuberance. Figure 208 shows that

NoA =rj = r}+r] -?] (XV. 1)

Likewise, if a is the gradient of HH against H'H' and a the gradient of

B'B against BB , a — a + a —a and the horizontal acceleration will be

go. =g(a + a -ot ) (XVI. 2)
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In investigating the tides of the solid earth, rj and >? are usually assumed

to be proportional to rj, as it is for the equilibrium tides, so that if

rh = hrj , and r} = krj

7] = (1 — h-\- k)rj .

y = (1 — h+ k) then represents the ratio between the observed tidal range

forced by the tidal generating forces and the tidal range which would be

observed if the earth were completely rigid.

It is not possible, in the case of semi-diurnal and diurnal tides to compute

the quantity y for a locality from a comparison between the amplitude of

a partial tide derived from the harmonic analysis and the amplitude derived

theoretically from the equilibrium theory assuming an absolutely rigid earth,

because these waves do not have a tidal development which corresponds

approximately to the equilibrium theory. For the long period tides, however

(especially the fortnightly and monthly partial tides) there is a probability

that they would have their full equilibrium values if the earth were absolutely

rigid. It is easy to compute these values; the difficulty is rather in obtaining

reliable observations for the semi-monthly and monthly partial tides. The

first comparisons of this kind which actually gave a proof of the tides of the

earth, were made by Thomson (Lord Kelvin, 1867) and Darwin (1883,

1911). Darwin used the harmonic constants of the semi-monthly lunar tide

observed on 33 stations and found y = 0-675, i.e. the observed tidal range is

approximately one-third smaller than the value computed from the equilib-

rium theory. Schweydar (1907) has analysed, using the same method, 194

annual observations, and he obtained essentially the same result: for the

semi-monthly lunar tides y = 0-6614, for the monthly lunar tide y = 0-6422.

The tides conformed to the theoretical times of high water, so that the as-

sumption of equilibrium tides appears to be justified. Later on it was possible

to produce a direct proof of the tides of the solid earth with a horizontal

pendulum. See for details Gutenberg (1929), Schmehl and Jung (1931)

and Hopfner (1936). However, there is a great spread in the derived values

for y, which has probably its origin in secondary phenomena mainly caused

by the pressure of the oceanic tides against the continents and by the at-

traction of the moving water-masses. According to Schweydar (1929), the

most plausible value for y = 0-841, whereas Prey (1929) holds that 0-74 is

the most probable value. Jeffreys (1929) gives 66 as the most reliable

value. It appears therefore that there is not yet sufficient certainty as to

the actual value of y.

Proudman (1928) has proven that the hydrodynamical theory of the

tides, at least for narrow waters, like canals, is sufficiently developed to

permit the calculation of the tides of the solid earth. The restriction to narrow



The Tides in Relation to Geophysical and Cosmic Problems 507

waters, whose bottom configuration must be known exactly, means that

transverse currents may be neglected. On the other hand, the partial tides

with a short period can also be considered, which is of great advantage.

Proudman has developed two methods for the computation of y, which will

be explained summarily.

If x is taken in the direction of the longitudinal axis of the narrow sea

in the form of a canal, and u represents the average value of the tidal current

on a cross-section perpendicular to .v, while there is no transverse current,

then u will only be a function of x and t. The differential equations of the

water motion can be written into the form

(XV. 3)

du c _

dt" -gtoto+i*-*-^>

„ . d , - -x

whereas the equation of continuity takes the form

lx (Su) + b^ = (XV. 4)

in which S represents the area and h the width of the cross-section at the

point x. If u is known the second equation of (XV. 3) helps to reduce the

tidal ranges, observed along the coasts to the central axis of the canal.

The first method determines the difference between the tides computed

without assuming a tide of the solid earth and the observed tides. If we put,

as usual,

?] = Hcos(at—x) = fjxCOsat+ rj.iSinot
,

u — Ucos(at—e) = w1 cosc?+ u2 s'mat ,

we obtain from (XV. 4)

ASux
= —a//sin x- bAx and ASu2

= -\-aHcosx- bAx .

If the tidal range along the entire canal is known, one can compute from

these relations u^ and u2 , i.e. the velocity of the current for each cross-section.

With these values we have for all sections the variation of the current velocity

during a unit time; because

o P P

Tr-tn-V) or Mrix-ih) and ^-(%-^)
OX s C'A OX

are known from the observations, and the theory of the tides' generating

forces, in equation (XV. 3) only

^:0?o-^o)i and ^-(^-^0)2

are still unknown and can be computed in this way. The method gives,
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through numerical integration, the tidal range t] — r) except for one unknown
constant; it therefore only gives a relative tide of the solid earth, i.e. the

difference between the elevation of the crust r\ related to the elevation caused

by the attraction of the protuberance.

The second method is less dependent upon the accuracy of the observations.

If we replace u and r\ by ueiat and Feiat and if we take

V — yVi+ ^2 and u = yuj_+ lu2

then equations (XV. 3) and (XV. 4) become

toh+g'to
(XV. 5)

The two expressions between brackets, put equal to zero, give with the

boundary conditions rjx
= and Sux

= for x = 0, a forced oscillation

caused by the force grj. The two expressions between parentheses with the

boundary condition r)2 = 1 cm, Su2
= for x = give a free oscillation

with boundary conditions which are at first arbitrary. A general solution

of the equations is then

u = {{\-h + k)ux +lu2)e^\
K

"
'

A comparison with the observations on at least one station (section) allows

one to compute both the unknown y = 1— h+ k and /, while it is also possible

to determine differences in phase (4 unknown).

Grace (1930, p. 273; 1931, p. 301) has applied this method to Lake Baikal

and the Red Sea. He used the second method for Lake Baikal. Neglecting

the tides of the solid earth, he repeated, first, the computation of Sterneck

(see p. 454), and he obtained the same results. The amplitudes at the ends

of the lake were 15-7 and 12-3 mm (see Fig. 192). Taking into consideration

the tides of the solid earth, and basing himself on the observations made in

the Petschannoja Bay, he found y = l — h + k = 0-54 for M2 and 0-73 for Kx

and at the same time a reduction of the amplitudes to the observed values.

The average of the two y values happens to agree with Jeffreys's value. It can

be taken for granted that the tides of the solid earth eliminate the contra-

diction which existed between the observations, and the results of the theory

which, owing to the smallness, narrowness, and great depth of the oscilla-

ting water-masses, had to follow the simple equilibrium theory. It is not

necessary to attribute these differences to the friction as Sterneck did.

Proudman proposed the Red Sea as especially suitable for the computation

of the tides of the solid earth, Grace has made such survey for the M2 tide

for this sea, using both methods. In following the second method there he
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eliminated the less reliable harmonic constants of certain localities and there

were a still sufficient number of data left to allow the determination of the

four unknown quantities.

The result was that, y = \ — h + k = —042. This value is entirely at

variance with the other values and no explanation can be found for it. How-

ever, it is certain that in considering the tides of the solid earth we can re-

present much better the observations.

The application of the first method shows perhaps the reasons why the

second method gives such a different result for y (see also Thorade, 1933;

see p. 411 and Fig. 173). If according to the second method, the assumption

that the tides of the solid earth are proportional to the equilibrium tide is

correct, then the relative tide of the earth (the excess of the tide of the earth

over the rise caused by mutual attraction of water spheroids) should have

the same form as the equilibrium tide itself. In reality this is not the case:

the curves are very much disturbed, which must probably be attributed to

inaccuracies in the observations. If one compares very roughly the difference

between the two curves, one gets, according to Grace, a ratio 1 : 4, from which

it follows that

h-k =0-25 or y = l-h + k = 0:75 .

The agreement with the value of Prey would be very good. However, this

estimation is very inaccurate and all one can tell for sure is that the tides

of the Red Sea can hardly be explained with sufficient accuracy without

considering the tides of the solid earth, and that the accelerations produced

by these latter tides will be approximately of the same order of magnitude

as that of the tide generating forces.

2. Deformations of the Solid Earth by Tidal Load

The tides of the solid earth are disturbed and cause the values of y to vary.

The disturbing effect is caused above all by the oceanic tides exercising varying

pressures on the shores, which cause deformations of the earth's crust.

These deformations show the same period as the oceanic tides and super-

impose themselves on the tides of the solid earth. According to the amplitude

of these deformations, the tides of the solid earth may be hardly noticeable.

Thus, a coastal gauge will record also oscillations, which besides the general

tides can be explained by the attraction exercised by the water-masses which

are being periodically moved towards the coast by the tides and by the

varying loads exercised by the tides. It can be shown that, when the rocks

have the same degree of rigidity as glass, the direct attraction by the water-

masses is only one-sixth of the disturbance of the plumb line caused by the

loads of the tides. The effects of the variations of the slope are, therefore, by

far the more important.

In order to make the effect of the tidal load clearer, Darwin (1882; 1910,
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p. 131) has calculated an ideal, simplified case, which comes as close as poss-

ible to conditions existing in nature. The simplifications consist, in the first

place, in the fact that the earth is assumed to be level, which assumption can

be made without hesitation, inasmuch as the tidal load affects only the upper

layers close to the surface; secondly, the ocean is assumed to consist of an inde-

finite number of wide canals separated from each other by wide strips of land

of the same width. It is further assumed that in these seas the water oscillates

in the form of simple oscillations (seiches) around a central line, so that when
there is high water on one side there is low water on the other side and vice

versa. The problem is to find out how the tides change the configuration of

the ocean bottom and the strips of land. The result of the computation is

OCEAN CONTINENT OCEAN CONTINENT

Fig. 209. Deformation of land and ocean bottom by the tidal load (Darwin).

shown in Fig. 209, in which the resulting bottom slope is exaggerated for the

sake of clearness. Through the pressure of the water the surface of the land

and of the sea, which were level prior to the tidal disturbance, takes the form

of the curved line when there is low water to the left of the strip of land and

high water to its right. It we interchange N.W. with L.W.,the figure is reversed

like a mirror-image. One notices that both the solid earth and the ocean bottom

oscillate around a central position, which shows that the strip of land appears

to be nearly level, the ocean bottom somewhat curved. The sharp bend in the

coast line is due to the assumption of a discontinuous form of the solid earth

along the shore line ; it vanishes if one assumes that the depth of the ocean in

front of the coast does not increase suddenly, but gradually. If one assumes

that the range of the tide on the coast is 160 cm, the width of the oceans and

continents 6280 km each (which corresponds to the average width of the

Atlantic Ocean) and that the rigidity of the rocks of the earth is twice that

of the most flexible glass and a quarter that of the hardest glass, then the

slopes of the land caused by the tidal load at high water are given in Table 86.

At low water, the inclinations occur in the opposite direction, so that the

variation in inclination during an entire tidal period is double the amount

listed in the table. To make the order of magnitude of these inclinations

clearer, we will state that two-hundredths of arc second corresponds to an

inclination of 1 cm on 103 km; a pendulum at the coast would participate

to the fullest extent in this change in inclination of its base.
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However, the attraction of the water piled up at the coast at high water

causes a further deviation of the pendulum which, with the adopted degree

of rigidity of the rocks is computed to be one quarter of the above amount.

The total amplitude of the deviation from the plumb line for various distances

from the coast is also given in Table 86. In the centre of the continent

Table 86. Deformation of the surface of the earth by tidal load

Distance from shore line (high-

water line)
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3. Frictional effects of tidal currents and their relation to cosmic problems

In a number of interesting cosmic problems, the frictional effects of the

tidal currents play an important role. At the time the masses of the earth and

of the moon were still fluid, this part was a very important one ; when the moon
was nearer to the earth, the tide produced by the attraction of the earth was

very large. Every flood protuberance exercises, however, a frictional effect

^
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If ft
= 0, we have again equation (IX. 12) for the case without friction.

As nt+ l+ e measures the hour-angle of the moon past the meridian of

any arbitrary point A on the canal it appears that high water will follow the

moon's transit at an interval tx given by ntl = %
If/?2 > 1 we should in the case of very small friction, according to (XV. 8),

have x = 90°, i.e. the tides would be inverted. If the frictional influence

becomes noticeable the values of % wiU De between 90° and 45°, and the time

of high water is accelerated by the time equivalent of the angle 90°— %. On
the other hand, when p

2 < 1 the tides would be direct, and the value of % lies

between 0° and 45°, the time of high water is retarded by the time equivalent

of this angle. These two cases are illustrated in Fig. 212. In the direc-

tion M, the moon is supposed to be in the plane of the equator. It is

*~M

*~M

Fig. 212. Tidal friction acting on a tide wave in an equatorial canal (above p > 1; below

when p < 1 :). The curved arrows indicate the sens of rotation of the earth; in the direction

M is the moon generating the tide.

evident that in each case the attraction of the disturbing system on the

elevated water is equivalent to a couple tending to decrease the angular

momentum of the rotating system composed of the earth and sea.

The retarding effect of the moon upon the rotation of the earth exists, of

course, still today, although it will have been much stronger in ancient times.

This retarding effect makes the day grow longer; the amount is still an open

question, 1 sec in 100,000 years is regarded as a maximum value (Delaunay).

In the same manner the frictional effect could be used to explain the secular

33
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acceleration of the moon's mean motion, which is about 5 to 12 arc sec in a

century. This acceleration would then be a direct consequence of the increase

of the time of earth's rotation. A value of 9 arc sec per century, for the

secular acceleration of the moon's mean motion will require according to

Jeffreys (1924, p. 216) a dissipation of energy of 1-39 x 1019 erg/sec, which

would have to be supplied by the frictional effects of tidal currents. According

to Adams and Delaunay, the value of 12 arc sec corresponds to an increase

of about 1 sec in the time of rotation of the earth.

The fact that the water height can precede or follow the moon's transit by several hours (establish-

ment) was attributed byAiry (1842) to the influence of tidal friction. More recent theories have shown

that this is a consequence from dynamical principles which will also occur in the absence of any

friction. The differences in phase, which can be explained by equation (XV. 8) remains very small,

even in the case of an equatorial canal of 3510 m (1 1 ,250 ft) depth which corresponds to the average

depth of the Ocean. From (XV. 8), and using the numerical values of page 292,

1 1 In
tan2y = = -0191 —

,

1-311 hjR tn m

in which t = 2/fi is the modulus of decay of the free oscillations. It seems rational to suppose that

this modulus of decay in the present case would be a considerable multiple of the lunar day ln\n, in

which event the change produced by friction in the time of high water would be comparable with

(2jiIht) x 22 min. Hence we cannot account in this way for phase changes of more than a few

minutes. Consequently, the observed differences in phase cannot be explained this way.

As the required dissipation of energy could not possibly be supplied by

a tidal friction in the solid body of the earth, the tides of the ocean should

supply it. However, as stated above, it appears that the effect of ordinary

friction is insufficient to explain either these shifts in phases, or the secular

acceleration of the mean sun and moon's motion. It is easy to evaluate the

quantities of energy which are available. The components of the tidal current

wand a (except the bottom layers) must satisfy the equations of motion (IX. 4).

As resonance hardly comes into question for the vast expanses of the open

oceans, the amplitude of the tide will be of the same order of magnitude

as that of the equilibrium tide r\. In the open ocean u and v will then have

the order of magnitude of 1 cm/sec. The frictional force is k()(u2+ v2
) and

is directed against the resultant of the tidal current (see equation (XI. 32)

and p. 346). The dissipation of energy per unit area is then

kQ(u2+ v2yi*. (XV. 9)

The factor k has a value between 002 and 0001 6. The dissipation of energy

per cm2
will, therefore, be of the order of magnitude 004 erg/sec. The

surface of all the oceans is nearly 3-62 x 1018 cm2
, so that the total dissipation

of energy in the entire ocean will be of the order of magnitude 1016 erg/sec.

This is only a .small fraction of the dissipation of energy which would be

required to explain the secular acceleration of the mean sun and moon.
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Therefore the ordinary friction of the tidal currents is not sufficient to account

for this secular acceleration.

Taylor (1919, p. 1) showed that the loss of energy for the tides of the

Irish Sea (see p. 346) is largely of the order of 6x 1017 erg/sec, which is in

itself alone already about 60 times larger than the value found from the open

ocean. Jeffreys (1920, p. 239) assumed therefore that the tidal friction in the

adjacent and boundary seas and on the vast coastal shelf could account for the

dissipation of energy required by the astronomers. In these shallow seas there

is mostly a considerable increase of the tidal ranges, to such an extent that

the tidal currents exceed by far 1 cm/sec. As a matter of fact, the area of

these seas is small in comparison to those of the ocean, but the dissipation

of energy per unit area is proportional to the third power of the velocity.

The fact that the small Irish Sea already furnishes one twentieth of the re-

quired amount suggests that the friction caused by tides in the adjacent seas

is the decisive factor in explaining this secular acceleration.

Jeffreys has applied Taylor's method of evaluation of the dissipation of

energy to a large number of adjacent seas and straits in so far as the ob-

servations were available in order to obtain an estimate of the total value.

His computations refer to spring tides and thus give maximum values listed

in Table 87.

Table 87. Average dissipation of frictional energy for the semi-diurnal tide

(Unit 1018 erg/sec)

European waters
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The amplitude of the current at spring tide is A(I+ v). The dissipation of energy is proportional

to the third power of the amplitude so that the ratio between the average dissipation of energy

and that at spring tide will be average value of (l+v2+ 2i'Cosro/)3/2 : (1+v)3 during an entire tidal

/ 9 9
\

period. If we neglect v6 , the numerator of it will be 1 + - v2 -\ v*
J. The mean ratio of the tidal

\ 4 64 /

ranges of the lunar and solar tide for coastal localities is approximately v = 1:2-73 and, if we as-

sume that the mean ratio of the current velocities is about as large, we have for the above ratio 0-51.

This reduction gives for the average dissipation of energy 11 x 1019 erg/sec,

i.e. 80% of the required amount. It seems that this dissipation of energy-

is sufficient to explain the observed secular acceleration of the moon. This

is the more true, as certainly quite a number of adjacent seas and shelf areas

have still been neglected. The Patagonian Shelf, the North American Archi-

pelago, Barents Sea, the vast North Siberian Shelf, the numerous fjords of

Norway, Greenland and other coastal regions will certainly be able to make
up for the 20% still lacking.

Furthermore we have to consider the frictional losses suffered by the tidal

energy on the vast ice covered areas of the Arctic and Antarctic. Sverdrup's

(1926 B) investigations showed how large they can be. Thus there is hardly

any doubt that the tidal friction could account for the dissipation of energy

required by the astronomers for explaining the secular acceleration of the sun

and moon if the eddy viscosity of the tides on the vast shelf areas of the seas

is taken into account. However, the frictional effects of the tidal currents

in the open oceans are unimportant.

[A rough estimate can be made in the following manner. The total shelf

area of all the oceans (depth up till 200 m) is about 27-5 x 106 km2 = 27-5 x

x 1016 cm2
. The average velocity of the tidal current during a period can

be estimated for the shelf as a whole, at about | knot, i.e. around 30 cm/sec.

Equation (XV. 9) then gives as the dissipation of energy on the shelf 1-53 x

x 1019 erg/sec, which comes very close to the amount required.]



Chapter XVI

Internal Waves

1. Basic Facts and Theory of the Internal Waves

In stratified water and in water in which the density varies with depth, waves

may occur which are of different type from those appearing on the free sur-

face and which have been discussed in chapters II to V. Because the waves

occur inside the water-masses they are called boundary or internal waves.

Their principal characteristic is that the largest vertical displacements of the

water particles are to be found at the boundary surface between different

strata or at some intermediate depth below the free surface. The amplitude

of these internal waves is usually considerably larger than that of the ordinary

waves at the free surface. The appearance of waves at the boundary surface

between two water layers has for a long time escaped the attention of ob-

servers, because even when the amplitude of the oscillation at the boundary

surface is large, the free surface of the upper layer is only slightly disturbed

and remains practically at rest. Only recently, thanks to more numerous

and accurate observations, has it become possible to study these internal

waves more thoroughly and to prove their importance in oceanography.

(a) Internal Waves at Boundary Surfaces

Stokes (1847) was the first to develop the theory of internal waves at the

boundary surface in a fluid consisting of two layers of infinite thickness.

An excellent treatment of the problem can be found in Lamb (1932, p. 370).

If we put the origin of the co-ordinates in the undisturbed boundary surface,

we can write for the velocity potentials in the superposed layers the expressions

<p = Ce*z cosxxeia
<

, \
t

y = C'e-*zcosxxeia'
. J

The accents relate to the upper fluid, and the z-axis is taken positive up-

wards. These expressions satisfy the equations of continuity (II. 1) for both

layers. The motions represented by them decrease rapidly with increasing

distance from the boundary surface and practically vanish at a great distance.

The equation of the boundary surface disturbed by the internal wave can

be written

rj = acosxxeiat
. (XVI. 2)
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Hence, according to equation (IT. 3), we must have

-xC = xC' = iaa. (XVI. 3)

The equations of motion (II. 2) are replaced by the equations

p = d(p_

q dt
gZ

'

p' d(p'

7
=
~dT~

gZ

(XVI. 4)

The condition for continuity of pressure at the boundary surface (p = p'

for z = 0) gives

q{iaC-ga) = q\iaC-ga) . (XVI. 5)

Substituting the value of C and C from (XVI. 3) we have

2 Q~ Q

or with

a = c ,

(XVI. 6)

the velocity of propagation of progressive internal waves of the wave length

X = 2ti/h is given by

cZ= g*e^£ (XVI7)
In q-\- q

The presence of the upper fluid has therefore the effect of reducing the

velocity of propagation of the internal waves in the ratio (q—q')I(q + q'). This

decrease in the velocity, has a twofold cause; the potential energy of a given

deformation of the common surface is decreased in the ratio 1 — q'/q, whilst

the interia is increased in the ratio 1 -f q'/q.

In practice p— q' is of the order of magnitude 10~ 3 so that the decrease

of velocity of the internal waves c against the surface waves is about 45 times,

which is quite considerable.

The waves discussed hitherto have the character of surface or "short waves"

because their wave length is small compared with the infinite thickness of the

two superposed layers.*

Figure 213 shows, according to V. Bjerknes, the stream lines and orbits in

the two superposed layers for an internal wave travelling from left to right.

It should be noticed that there is a discontinuity of motion at the common
surface. The normal velocity —dcp/dz is of course continuous, but the tangential

velocity —d<pjdx changes a sign as we cross the surface; in other words, we
have a vortex-sheet.

* Concerning the application of the equation (XVI. 7) to the air-water system see Chapter IV. p. 76.
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In nature we deal with cases in which the surface of the upper layer must

be considered as a free surface. In this case we can give the velocity potentials

of the two superposed layers the form

(XVI. 8)
<p = Ccosh(z + h)cosxxe'at

,
|

cp' = (Acoshxz^ Bsinhxz)cosxxe'al
, J

in which // and /;' are the thickness of the lower and upper layers respectively.

Where we deal with internal waves occurring at the boundary surface be-

tween two homogeneous layers of different density, the velocity components

Fig. 213. Streamlines and orbits in a progressive internal wave travelling from left to right

at the boundary of two fluids.

must satisfy the kinematic and dynamic boundary conditions both at the

free surface and at the internal boundary surface, and also the equation of

continuity for both layers. This leads to a quadratic equation for the velocity

of propagation c of waves with a wave length X — 2n/x.

c4(QCOthxhcothxh' + Q')-c2Q(coth>ch' +cothxh)^ +(q—q')^ = Q. (XVI. 9)

It is shown by this equation that for each wave length two different types

of wave may exist. If the difference in density at the discontinuity surface

is small, the two following equations are the approximate roots:
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c\ =^tanhx(/j + /z'),
X

2 g Q-Q
x QCO\h.xh Jr q' coih.xh'

(XVI. 10)

The first type of wave is identical with the ordinary surface waves which travel

with a velocity cl5 on a layer of water of the thickness {h + ti). With this type

of wave the vertical component of the displacements of the water particles

decreases gradually with increasing depth from the surface. The surface has

the largest amplitude, the boundary surface a smaller one and the phase of

the wave motion at the surface is the same as at the boundary surface. This

"external" wave, therefore, is in no way different from the ordinary wave

at the surface of homogeneous water-masses.

The second type of wave progressing with a velocity of c2 has its largest

amplitude at the boundary surface and it decreases rapidly upwards and

downwards. Consequently, this is an internal wave. In the upper layer close

to the free surface there is a certain depth where the vertical motions vanish.

Consequently, the internal boundary surface and the free surface oscillate

with opposite phases, but the amplitude at the free surface is so small that

for all practical purposes it can be disregarded. The ratio between the am-

plitude at the free surface and that at the boundary surface is given by

(XVI. 11)
cosh xh'—(g/c2x2

) sin xli

In practice, the depth of the lower layer is large compared to the wave

length. Then we can put tanhx/z = 1 and the roots of (XVI. 9), and (XVI. 10)

become

and

c\= S-
X

cl = i g
, £; (XVI. 12)

Qcothxh +@ x

the ratio between the amplitudes at the free surface and at the boundary

surface becomes

-i^-e-*. (XVI. 13>
Q

When q differs slightly from q' this is always a small quantity.

If, on the contrary, the thickness of the upper layer is small compared

to the wave length, one can replace coth^/i' by \/xh' and one gets in first

approximation

:

A=£ and ct = ?—Q-gh', (XVI. 14).
X Q
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and the ratio becomes

-^X. (XVI. 15)
Q

Greenhill (1887) has treated the case of several superposed strata of dif-

ferent densities. Particularly important is perhaps the result that, for instance,

if there are three layers, the discontinuity surfaces can oscillate with opposite

phases, so that wave crests (-troughs) at one boundary surface correspond

to the wave troughs (-crests) at the other boundary surface. For further

theoretical problems see also Solberg's paper (1928) in which are also treated

the conditions in case of wedge-shaped layers.

Internal waves can also be generated in a wave tank in which two layers

of different densities, each with a different colour, are superposed. Sandstrom
(1908, p. 6) has made such tests in stratified water. In his paper are also in-

dicated the precautions to be taken in order to obtain sharp discontinuity

surfaces (see also Defant, 1923, p. 83).

(b) Internal Waves Having the Character of Surface or "Short" Waves

The equations (XVI. 10) to (XVI. 15) apply to "short" waves, whose wave-

length is small compared to the water depth. As the potential energy necessary

for the development of these internal waves at boundary surfaces is very

small, any slight pressure disturbances or tangential stresses at the surface

of a stratified water-mass will suffice to develop respectively to maintain

internal waves at an internal boundary surface. Consequently, these short

internal waves must be a frequent phenomenon, not easily recognized because

it is not a simple matter to detect them.

The phenomenon of "dead water" is related to these short internal waves.

Where rivers flow into the fjords or where ice melts (drift-ice in polar areas)

there is frequently a relatively thin layer of fresh or nearly fresh water spread-

ing over the lower layer of higher salinity (heavier water). When the weather is

calm and the tides recede so that the layers in the superposed water-masses

are maintained, it happens that slow moving vessels are "stuck" in the water

and make very little headway. It has been found that frequently an increase

in the force of the wind, or the passing-by of another ship at full speed, can

make the "dead water" vanish.

This phenomenon was especially observed by Fridjof Nansen during his

polar cruise. His vessel "Fram", with its heavy construction and its weak engine

and little speed, proved to be Very sensitive to the "dead water". The phe-

nomenon has been observed also in the Baltic and in the Kattegat; there is,

however, no doubt that it always occurs where a thin layer of light

water is superposed on heavier water and when the vessels have a relatively

slow speed. Interesting cases have been described by Meyer (1904, p. 20).

A slight increase in the speed of the vessels already seems to be sufficient

to overcome the effect of the "dead water" on the vessels.



522 Internal Waves

According to the theoretical and experimental studies by Ekman (in

F. Nansen, North Polar Exped. 1893-1896, vol. 5; 1904, p. 562) this

"dead water" is due to the fact that a slow moving vessel may create

internal waves at the lower boundary of a thin freshwater layer, the thick-

ness of which is not much less nor greater than the draft of the vessel. The
motion of the ship creates in the layered system two kinds of waves, external

and internal waves. Their velocities of propagation are given by the equa-

tions (XVI. 12). The external waves are very short, and the wave resistance

for the ship will be a normal one. With a given speed of the ship, however,

there is also the possibility of generation of internal waves. With the

second equation of (XVI. 12) it is easy to prove that the quantity x = 2tt/A

is only real if

cl < gh' (XVI. 16)

This means that there is "dead water" when the speed of the ship remains

below this critical value. If the speed exceeds this value, then only the ex-

ternal waves are generated, and the wave resistance is practically the same

as if there were only one single water-mass. This is confirmed by the ob-

servation. Table 88 gives the critical values of c, at which there can be "dead

water", for different thicknesses of the top layer, whose density is determined

by its salinity (at 0°C). The lower layer is assumed to have a normal salinity

content of 35°/oo (see V. Bjerknes, 1933, p. 390).

Table 88. Critical velocities (mlsec) for the generation

of "dead water''
1

waves

(Lower layer: temp. 0°C, salinity 35°/ o)

Thickness of upper

layer (m)
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The tests made by Ekman in a wave tank have confirmed in every way
the theoretical explanation of the "dead water". Figure 214 by Ekman shows

how at a and b "dead water" waves are created by the towed vessel; at c,

with increased speed, the ship has freed itself from the "dead water". There

is only a slight denting in the discontinuity surface below the ship, but no

internal wave system.

Fig. 214. Ekman's experiments on "dead water" waves, a and b, "dead water" waves

created by a vessel; c, the ship is free from "dead water" waves.

When a ship is anchored and a series of observations is taken within

short intervals one observes variations in temperature and salinity of short

duration; especially if the discontinuity in the vertical distribution of the

density is well developed. These variations may be caused by internal waves,

but mostly the interval in which the series is made is not sufficient to prove

the wavelike nature of the disturbances. One needs continuous registrations

of temperature and salinity and such measurements have been made only

recently and sporadically. However, there is no doubt that the boundary

surfaces are constantly in a wave motion and a state of complete rest is ex-

ceptional. We will refer to this later on (p. 531).

(c) Internal Waves Having the Character of Long Waves

If the wave length of the internal waves is long in comparision with the

total depth (h + h') of the two layers, one can write \/xh and \/xh' instead

of the cotangents in (XVI. 9) and one gets with sufficient accuracy:

c4- c%h' + h)g + 1 1 - ^\ g*hh' =
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Its two roots are

cx =V[g(h + h')],

(XVI. 17)
Jq-

q
§
h + h''

For the first of these waves the velocity of progress cx is identical with that

of ordinary long waves at the surface of a water-mass having the total depth

of the two layers. This is the external wave, which will not be discussed heie.

The value of c2 is the velocity of progress of the internal wave. If the thickness

of the bottom layer h is large compared to h', this equation is reduced to the

second equation of (XVI. 14). The amplitude of the internal wave has its

maximum at the boundary surface and decreases upwards and downwards.

At the free surface it is, according to (XVI. 16),

y =-Z^-, (XVI. 18)
Q

if Z is the amplitude at the boundary surface. The negative sign indicates

that at the surface the phase is opposite to the phase at the boundary surface.

If one assumes q—q' = 10~3
, which is already a large value corresponding

to a
t
= 24-5 and a'

t
= 23-5, then if Z = 10 m, r) Q becomes of the order of

magnitude of 1 cm. It is so small that it can be neglected. At the bottom

there is no vertical displacement of the water particles, so that here the in-

ternal wave must also vanish. We can assume as it is allowed in a first ap-

proximation — that the amplitude of the internal wave increases linearly from

the free surface to the boundary surface and decreases linearly from the

boundary surface to the bottom. The variation per unit length in the upper

layer is then Z/h', in the bottom layer —Zjh. We can compute the amplitude of

the horizontal velocities of the water particles from the vertical amplitudes

with the equation

(XVI. 19)

and one obtains for the two layers

U' = c2^ and U = -c2
? (XVI. 20)

n n

The amplitudes of the horizontal velocities are constant within each layer;

however, they change their sign at the boundary surface; consequently, the

velocities have opposite directions on the two sides of the boundary surface.

As we have already stated above (p. 518), with internal waves there is always

a vortex-sheet at the boundary surface. As, for reasons of continuity, U'h' must

equal Uh, these amplitudes of the velocity are inversely proportional to the

thickness of the two layers and one obtains
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and

U'

U

(XVI. 21)

The order of magnitude of these velocities can be found by calculating

a numerical example: If q = 1025, q— q' = 10-3
, g = 981 cm sec

-2
, h' = 50 m,

h = 200 m and Z = 15 m. Then U' = 18 6 cm/sec and U = 4-7 cm/sec. This

shows that, already with; internal waves of a moderate amplitude, the hori-

zontal particle velocities are relatively large, which can be observed without
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Fig. 215. Vertical distribution of temperature, salinity and density <7< at the "Meteor'

Anchor Station 254.

any difficulties by current measurements. The corresponding velocity of

progress of the internal wave is here 63 cm/sec, that of the ordinary long

wave at the free surface 4953 cm/sec. Following is an example of these in-
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ternal waves of long wave length. On anchor station 254 of the "Meteor"

expedition (31 January to 2 February 1927, <p = 2°26-7'S., I = 34°57-4'W.,

average depth h = 3910 m) 23 series were lowered down to a depth of 200 m
with an interval of approximately 2 h (see Defant, 1932, p. 164). These

observations give the average vertical distribution of temperature, salinity

and the density a
t
as shown in Fig. 215. It shows that in an average depth

of 100 m there was a pronounced discontinuity in the vertical density dis-

tribution, which almost had the nature of a discontinuity surface. The nearly
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Figure 216 shows the variation of the temperature in several depths, as

observed in the serial observations. Neglecting a disturbance which occurred

at midnight, 31 January— 1 February one finds that in the vicinity of the

discontinuity layer there is a wave with a period of 12-3 h (semi-diurnal lunar

period), with a maximum amplitude in 100 m. In 125 m the wave is still

noticeable, but in the top layer and downward from 150 m, it is hardly de-

tectable. The variations in salinity are quite similar. The analysis of all the

observations reveals that at the boundary surface there was an internal tide

wave, with an amplitude of 3-6 m and a phase of 4 3 lunar h (referred to

the transit of the moon through the meridian at Greenwich). Current meas-

urements at 0, 25, and 50 m were taken simultaneously with the hydrographic

casts. The average velocity for the entire layer was 61 cm/sec with a phase

of 10-4 lunar h for currents flowing to the north. The difference in phase

between the vertical and horizontal motion is therefore 6 1 h, exactly a half

period.

The amplitude of the velocity of the current has to be very small in the

lower layer because of its great depth; equation (XVI. 20) gives for Z = 36 m
and ti = 100 m, U' = 615 cm/sec in complete agreement with the observed

value. The influence of the internal tide wave on temperature and salinity

is limited to the immediate vicinity of the discontinuity layer of the density.

Fig. 217. Streamlines of the lower layers at midnight from 31 January to 1 February at

Anchor Station 254.

Vertical displacements of water-masses above and below the discontinuity

layer must remain ineffective on the distribution of temperature and salinity

because of the nearly homogenous compositions of the layers. For this reason

no changes were observed in these properties at 50 and 150 m when the

internal wave passed.
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The disturbance between 31 January and 1 February, with great changes

in temperature and salinity, is of particular interest. The depth from which

these water masses originate, can be easily ascertained by means of the vertical

distribution of the temperature and salinity at the station — after elimination

of the regular semi-diurnal wave. Figure 217 shows the streamlines of this

disturbance which was caused by a powerful downward push of nearly 60 m
of the upper water masses. Its maximum is located in the region of the dis-

continuity layer and the disturbance decreases in intensity upward and down-
ward. This disturbance has also the characteristics of an internal wave. Its

shape reminds one of the disturbance which Sandstrom( 1908, p. 9) created by

his experiments in stratified water, when a gust of wind blew upon the water

surface and which is illustrated in Fig. 218. It cannot be doubted that at

Fig. 218. Sandstrom's experiment creating an internal wave in stratified water by a gust

of wind on the surface.

anchor station 254 a similar process was observed by chance. Some external

disturbance can create such an "internal" wave. It travels along the boundary

surface with the velocity of internal waves. But observations at one station

alone are not sufficient to determine the direction of the wave. The period

was about 6-4 h. The length was therefore roughly 40 km, if c2
= 172 cm/sec,

which makes it quite plausible that a gust of wind was the cause.

(d) Internal Waves When the Density is a Continuous Function of the Depth

(a) Cellular waves and stability waves. Until now we have dealt with

internal waves at a discontinuity surface of density within a vast water mass.

These internal waves have their greatest amplitude at the boundary surface.

If there are several discontinuity layers in the vertical distribution of the

density, several internal waves can occur simultaneously. Therefore there

exists a greater variety of oscillations in such a water mass than in a homo-

geneous one. It is to be expected, that with an increasing number of dis-

continuity surfaces, the number of possible internal waves increases ac-

cordingly. This leads to the case of a continuous variation of the density

with depth and then we can expect an unlimited number of possible internal

waves. A water-mass with such continuous variation of the density with

depth behaves entirely different from homogenous liquids.

Only the most elementary forms of such wave motions in a stable stratified

medium have been studied, as far as "short" waves are concerned. They

are the so-called cellulary waves, where the entire oscillating space is sub-

divided into "cells" of definite dimensions. In each cell the oscillation occurs
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as if between fixed walls and the period is the same for all cells. This is the

most elementary case of standing cellular oscillations.

The theory of such cellular waves was developed by Love (1891, p. 307,

see also Haurwitz, 1931; Brunside, 1889, p. 392; Lamb, 1932, p. 379;

or Prandtl, 1942, p. 331). We can find the equation for the frequency only

after introducing an assumption for the vertical stratification. The simplest

assumption is a water-mass of infinite thickness, in which at rest the density

decreases with z (when z is counted positive upwards starting from the

bottom) according to an e power, so that

Qo = QBe~^ =QBe~z!H
, (XVI.22)

where H is the height, where the density has decreased to the et\\ part of the

density at the bottom.

Let us discuss a two-dimensional case where the horizontal and the vertical displacement of

the water particles are represented by I and >] respectively. Both are functions of x, z, and of the

time t. They must satisfy the equations of motion as well as the equation of continuity. The con-

dition of invariability of density has to be added: .'

dq dg dg dg— = \-u \-w— =0,
dt dt dx dz

(XVI.23)

where u and w signify the horizontal and vertical velocities of the particles. The density g and
the pressure p contain the components at rest g and p the components of the disturbance gt and p t .

The latter are like u and w quantities of second order, so that products and squares can be neglected.

(XVI.23) then becomes

8qi

dt

dQo

dz
w or Oj = — rj

dz
(XVI.24)

This equation signifies that a particle now at the time / at a location x, z was originally at the

level z—rj. With this density structure (XVI. 22) becomes

Qi = —y •H

The linearized equations of the problem are in this case

S2| 8Pl
Qo
—
~ H

dt 2 dx

Qo

d2
r] 8px

dt* dz
+ -- +g(Q + Qi) = 0, \

(XVI.25)

e>£ dri— + — = 0.
dx dz

Then, with the given density distribution, a possible wave solution of

cellular type will have the following form:

Aezl2H cosxx
1 e .

^-fT~ cosez sine:
Ltix x

cos at
,

rj = Aezl2H sin xxcosez cos at

(XVI. 26)

34
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It represents an internal standing cellular wave, where the horizontal wave

length is lx
= 2n/x, the vertical one X

z
= 2n/e. Figure 219 shows schematically

such an internal oscillation. One recognizes the division of the entire space

into "cells" of equal shape. The period of oscillation T = 2nja becomes

2tz

vlft
1 +

£
2
+l/4//' = 2ti

= 2n

+
r2

A

\671~Qq

\(Exxy
\6tf

(XVI. 27)

If the vertical density gradient is denoted r where r = —dg /dz = q /H, and

if we remember that r/g = E is the stability of the stratification (see vol. I)

Fig. 219. Presentation of a cellular standing internal wave when the density increases

continuously.

we can derive the two other equations in (XVI. 27). It will be seen that

the period of the cellular oscillations is dependent upon the stability of

the stratification and upon the horizontal and vertical dimensions of the

cells of oscillation.

Of particular interest is the case where e = 0, which is identical to l
z
= oo.

This means that in all z the phase of the oscillation is the same. Then equa-

tion (XVI. 27) gives a nearly constant period of oscillation for horizontal wave

lengths lx , which are small compared to AnH

T = 2n 0o

Vfr
(XVI. 28)

thus independent of Xx . For regular surface waves on a homogeneous water

layer T = y2nljg and is thus dependent of the wave length (see 11.11).

Therefore, there is a considerable difference in the behaviour of internal

waves.

If we superpose on a wave (XVI. 26), another one of the same type but
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with a shift of the phase in x of a quarter of the wave length and a quarter

of the period in /. we get internal horizontal progressive waves. Their

velocity is

g

V

1 +
1 67l"Q

(XVI. 29)

The velocity of such internal waves therefore depends upon the wave length

as well as upon the vertical density distribution. It can be seen that with

the same phase of oscillation for all values of z (A = 00) this velocity of

internal waves is proportional to the wave length, and not to the root of the

wave length as for ordinary surface waves.

Their physical nature becomes understandable only if it is considered

that in unstable stratified water masses according to more recent ideas the

convection mostly does not take place between individual layers in form of

irregular up- and downwards movements of water bodies of arbitrary size,

but rather stationary circulations of quite definite form ("cells" of definite

extent and shape) occur, in the outer portions of which the medium sinks

and rises in their central parts. (Benard-cells, see Vol. 1/1, Chap. 5, Fig. 92.)

Also in case of stable stratified water masses oscillatory processes develop

during forced displacements in vertical direction of water bodies (i.e. during

dynamic convection), which are of cellular nature. The movement initiated

by a single impulse after surpassing the equilibrium position by a certain

rate will reverse its direction and the disturbed mass distribution tends

2mm

FlG. 220. Stability oscillations (cellular waves) in the Baltic with a period of 45 sec. Taken

from temperature registrations in a depth of 7-5 m on 31 July 1944.
<f>
= 54°34-5'N.

X = 12°18-8'E.

towards its previously occupied equilibrium position. In this way a cellular

oscillation of definite form develops, which will depend upon the stability

of stratification. Such cellular gravitational waves are thus denoted as sta-

bility oscillations.

Ever since the first continuous recorded temperature observations in strati-

fied water masses in lakes and in the ocean, short temperature oscillations

34*
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were observed beside wave-like variations with a long period (see Kalle,

1942, p. 383; 1953, p. 145). At first they were believed to be caused by the

turbulence of the currents. But there exist frequently cases where the oscil-

lations are entirely of a regular wave-like nature. These are doubtless stability

oscillations. Figures 220 and 221 present two cases of such regular oscil-

FlG. 221. Stability oscillations in Arkona basin (Baltic) with a period of 2-3 min. Simul-

taneous temperature registrations at three different places around the ship, 30 July 1944.

lations on two different stations in the Baltic. Neumann (1946, p. 282)

on the basis of the Baltic observations, tested thoroughly the theoretical

results concerning the cellular waves in stratified media with reference to the

shape and period of the waves as a function of the stability of the stratification.

Figure 222 shows a fairly good agreement between the observed and the

theoretically computed periods. The form of the cell is generally rectangular

and its horizontal dimension amounts to about 2\ the vertical one. More

research will uncover further details about these interesting phenomena, which

are certainly connected with turbulence.

(j8) Progressive internal waves of longer periods. An exhaustive theory of

internal progressive waves in water masses, in which the density is a con-

tinuous function of depth, was developed by Fjelstad (1935). He also gave

a practical method to compute all possible internal waves for any given dis-

tribution of density.

The mathematical basis of the theory is the same as for the cellular waves.

Particularly, the same equations (XVI. 24), (XVI. 25) are valid. In the case

of a progressive harmonical wave with a period T = 2nja and with a velocity

c = afx £ and v\ can be assumed to be proportional to e
i{at~ kx) and finally

the differential equation for the vertical displacement will be

dz

dr]

Qo^z)--*\g —
1 dg

-7- +o2
Qo)v

dz! a1
\ g dz )

The following boundary conditions have to be added:

For the bottom z = ,

For the free surface Z = h
,

V =0,
dr)

dz
-zgV =0-

(XVI. 30)

(XVI. 31)
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A closer investigation of this differential equation shows an infinite number

of solutions, corresponding to an infinite number of internal waves of the

same period, but with different velocities and different vertical distribution

of rj. These waves are designated as waves of first, second etc., order, where

the wave of zero order is the regular tide wave at the surface. In the wave

of first order the vertical displacement in the entire water mass from the

surface to the bottom has the same direction with a maximum amplitude
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to the direction of progress of the wave. The other equations remain un-

changed. The solutions become more complicated, because there exists now

also a variation in the amplitude of the wave cross to the direction of progress.

Three different types of waves are to be considered:

(a) In a narrow channel Kelvin waves are possible (see p. 206):

r\ = ?](z)e- {2oixla)y cos (at— xx)

,

-H e -(,^xlo)y Cos(at—xx), and v = ,u =
dz

(XVI. 32)

with the phase velocity c = ajx. This solution is the same as the one in the

case without rotation of the earth, but the factor e"®""1** is being added to

the amplitude in each expression. This factor has here a greater significance

than in the case of the regular tide waves, as the values of x become larger

for internal waves. With ajx = 200 and 2w = 1-3 x 10~ 4 the amplitude per-

pendicular to the direction of progress of the wave decreases at a distance

of 15-3 km to j/e part of its value. Internal waves of this type can gain im-

portance in comparatively narrow channels only.

(b) If the lateral boundaries are neglected one obtains:

rj = rj (z) cos (at— xx) ,

a drj , v

u =—f- cos(at— xx)
,

x dz

2co dn . , „ v

v = r- sm(at— xx)
,

x dz

(XVI.33)

where

c =
>/(l-4coV)

when c represents the velocity in the case of a non-rotating earth.

(c) In a wide channel a wave of the following form is possible : if we assume

x2+
mc

ii2tt2

e6 =
!-4w2

Then

. mn
sm-r-y-

amn mn
zcoxb b

a . mn 1 mn mn
-sm-yy- -y

7] (z) cos (at— xx) ,

dr\

£2 2cob dz
cos(at—xx) ,

4eoV+ oa

9 9-TT-

V =
2(ox I x2+

b2
. mn dr\ . , ^ .

sin —j- y -/ sin (at— xx) ,

m*n*\ b dz

(XVI. 34)
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where the wave velocity is

1 a
c =-

e

I'V-
4™2-'^)

A necessary condition for the existence of this wave is

m~ir2

that is at least a'
2 > 4co2

. The wave velocity without rotation is in this case

c = 1/e, therefore we can write

For c = 200, as before, m = 1 and 2co = 1-3 x 10
-4

(60° latitude), it follows

b > 102 km. Consequently internal waves of such a form may probably

occur also in the open ocean. They correspond to the Poincare-waves at

the ocean surface mentioned above (p. 208).

The vertical distribution of t], which characterizes the internal wave, will

result from integration of the differential equation (XVI. 30). rj{z) can be

ascertained by a comparatively simple numerical integration, when the vertical

density distribution is given, as shown by Fjelstad. With sufficient accuracy

we can write

Q dz dz

and as a2
/g (magnitude in the case of tide waves 10

-n
) is always very small

compared with 0, the equation (XVI. 30) will be simplified to

U. 77 %
^r--2 s<M = o. (XVI. 36)

Furthermore, the boundary condition for the free surface can be replaced

by the more simple one r\ = 0. Thereby the wave of zero order is being lost,

whose velocity is c = a/x = \(gli) and which is the regular tide wave. But

we want to disregard this "external" wave. The boundary conditions are

therefore w = r\ = for z = and z = h. Stormer's (1907) method of

integration can be applied in simplified form to this differential equation.

It gives the vertical distribution of r\ with a relatively small amount of com-
putational work, if approximate values of the parameter x2/a2 are known
as Fjeldstad has shown. For more details reference is made to the original

publication. As an example we can take station 115 of the "Michael Sars"

where the depth to the bottom is 580 m (Helland-Hansen, 1930).

Figure 223 shows its density distribution a
t
as well as Fjeldstad's computed

vertical displacements n and horizontal velocities u for the internal waves
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of first to fourth order. The computation gives the amplitudes of the vertical

displacements and horizontal velocities as relative values, which are plotted

on an arbitrary scale. The observations give us absolute values. Further-

more, the theory gives the velocities of progress of these waves of different
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Groen (1948) has presented an extension of Fjeldstad's theory, in which

he also considers the short waves. For a special density increase with depth

(two essentially homogeneous layers separated by a transition layer) the

computations are carried out until their end analitically. The width of the

transition layer which can be chosen arbitrarily, enters the computation as

a free parameter. It is rather remarkable that there exist for a given

density distribution a lower limit for the period of internal waves. This

minimum period seems to be the period of "eigen" or free oscillations of

the disturbed stable density distribution about its equilibrium position. This

eigen-period is rather small and is for a density increase of Aq = 10
-4

per

metre of an order of magnitude of some minutes. This should be those

stability oscillations already mentioned and discussed above (see p. 531).

2. Observations of Internal Waves in the Oceans; Testing of the Theory

(a) Internal Tide Waves in the Open Ocean

The magnitude of the vertical displacement of the water-masses can be

computed from variations of a conservative property of water as temperature,

salinity, oxygen content, etc. This can be done without too much effort, if

the horizontal gradient of this property is very small. If this property is S,

then the condition, that S remains unchanged, will be:

dS „ 8S dS 8S n
-^- = or — +U— + W— = 0.
dt ot ox oz

If 5 = S (z)-\-S1(x, z, t), and if es/dx is small and w = drj/dt, then

*—„|? or l— a^j. (XVI.37)

The vertical displacement /; can be obtained best where the vertical grad-

ient of the property can be determined readily and exactly. This is the

usual method whereby the vertical amplitudes of internal waves have been

computed from observations of temperature and salinity repeated at short

time intervals from an anchored ship.

Not all the variations in oceanographic properties, which are being ob-

served in the various depths, can be attributed to internal waves, even if

these changes occur more or less periodically. At the boundaries of neigh-

bouring water-masses oceanographic properties change rapidly within a short

distance (fronts). Advances of one water-mass against the other cause oscil-

lations of these properties. The boundary layers between such water bodies

are rarely in equilibrium with the existing currents. The disturbances mani-

fest themselves in unperiodical or periodical oscillations of the isolines of

the various properties. They then simulate internal waves, and have little

to do with true internal waves. In stratified water-masses there occur also

periodical oscillations in the slope of the isosteres. They resemble internal
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waves only superficially. Let us assume for simplicity only two superposed

water bodies. If the water-masses are in stationary equilibrium then the system

and currents must satisfy the Margules relation (see vol. I). For instance, the

lower water-mass is at rest u = 0, h = the height of the boundary surface

at the distance L from its intersection with the horizontal, a and a the specific

volume of the lower and upper water-mass, and /= 2cosin cp, then, accord-

ing to Margules' relation,

h = -

;
u .

g a —a

If the current changes, h changes also, if the steady state is to be maintained and

dh =
;

du .

g a -a
When

/ = 10- 4
,
-?— = 103 and du' = 20 cm/sec

,

a —a '

dh = 2 x 10-3L or at a distance of L = 10 km, dh = 20 m. The boundary

surface will be 20 m higher or lower than before. For a point in the vicinity

of the boundary surface, this variation will cause considerable changes in

the oceanographic properties. The periodic variations of the tidal currents

for example will cause periodic changes in the slope of the isosteric surfaces

(normal to the current direction). But such variations are not internal waves

in the strict sense of the word, even if they occur periodically.

The first hydrographic observations repeated at short intervals over a long

period made by Helland-Hansen and Nansen (1909) proved the existence

of true internal waves. The main waves have often besides meteorological

influences also tidal periods. They appear especially where there is a well-

developed discontinuity layer of density (see Defant, 1938, p. 9). Otto Petterson

pioneered in these observations by studying the waters in the Great Belt between

the Baltic and the Kattegat; while working from an anchored ship he found

such waves with semi-diurnal period. The problem of internal waves at discon-

tinuity surfaces of the density in the free ocean was first investigated on the

"Michael Sars" Expedition in the Atlantic Ocean. Later it was studied on the

anchor stations of the "Meteor" Expedition 1925-27 in the tropical and sub

tropical regions of the Atlantic Ocean, on the anchor stations of the "Snel-

lius" Expedition 1929-30 in the Indonesian waters, and on the anchor stations

of the later cruises of the "Meteor" 1937-8. In addition to the temperature

and salinity observations in short intervals, also current measurements were

taken in various depths. Thus there exist already from many points in the

free ocean homogeneous observations on internal waves. The analysis of

this material has demonstrated that internal waves exist everywhere and are

not limited to discontinuity surfaces. They appear also when the density
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increases continuously in the upper layers. It was to be expected that there

existed a close connection between vertical displacement of the water-masses

and corresponding variations of the velocity, perhaps also in the direction

of the current. In most cases it could be verified by current observations.

The combined analysis of current and serial observations provides the foun-

dations for the testing of the theory of the internal waves.

First of all reference is made to the observations which Fjelstad (1938,

p. 49) carried out in Herdlefjord, Norway, to prove his theory. The waves

can be expected to be of the simple Kelvin type, because of the narrowness

of the fjord. The simultaneous hourly observations of temperature, salinity

and currents lasted 88 h. The amplitudes and phases of the vertical dis-

placement as well as amplitudes, phase and direction of the current were

computed by harmonical analysis (see Table 89). There u represents the

velocity of the current in the direction of progress of the wave, v the com-

ponent normal to it, and t the direction of the major axis of the current

ellipse relative to the east direction. The smallness of v proves that the internal

wave corresponded actually approximately to the Kelvin type. The first four

internal waves were computed from the mean vertical density distribution

to test the theory. Their velocities of propagation are 62-7, 33-4, 23-4 and

174 cm/sec. The amplitudes and phases of these four waves can be computed

Table 89. Internal waves in Herdlefjord (Norway), summer 1934

Station 1 : 88 h observations (according to J. E. Fjeldstad)

Depth

(m)

Vertical displacement
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was hardly to be expected. Consequently, the current here must be caused

essentially by the internal waves.

Fjelstad published also the observations on another station, no. 3, about

12-3 km distant from station no. 1. The vertical displacements show quite

similar values for both stations. The velocity of propagation of the waves

on station 1 is known; consequently, the expected waves for station 3 can

be computed. A comparison of computed and observed waves is only possible

if the observations are simultaneous, which was not the case. Therefore, only

relative values can be compared, i.e. the variation of the amplitudes with

depth and the phase angles. Table 90 presents such a comparison, which

shows nearly complete agreement of the computed and the observed ampli-

tudes. The current measurements on station 3 are not as complete as would

be desired; moreover, the current velocities are only small. Nevertheless,

observations and theory agree quite well.

The first more exhaustive analysis of periodic variations of oceanographic

properties on two stations fairly close to each other in the open ocean was
carried out by Helland-Hansen (1930). He worked up the observations

of the "Michael Sars" station 115 and the simultaneous observations of the

Scotch research vessel "Goldseeker" in the Faero-Shetland Channel. The

Table 90. Internal waves in Herdlefjord (Norway),

summer 1934

Station 3 : 33 h observations
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Table 91. Internal waves in the Faero-Shetland Channel. 13-14 August 1910.

"Michael Sars" station 1 1 5 f61°0W., 2°4\'W., 530 w <fep//ij, Scottish station Sc

(Goldseeker) (6l°32'N., A WW., 725m depth)

(According to Helland-Hansen)

Depth

(m)

Vertical Displacement

Semi-diurnal

Michael Sars 1 15

17 (m)
Phase

lunar h

Goldseeker Sc

?/(m)
Phase

lunar h

Diurnal

Michael Sars 1 1

5

?;(m)
Phase

lunar h

Goldseeker Sc

tj (m)
Phase

lunar h

100

200

300

400

500

600

15
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with true internal waves or only with displacements of the system, forced by

external causes.

Seiwell (1937) analysed the extensive observations of the "Atlantis"

cruises in a region with very small horizontal gradients, north-north-west of

Bermuda. He showed that the frequently large oscillations of the oceano-

graphic properties can be presented essentially by waves of 24, 1 2, and 8 h
period, where generally the 8 h wave had the smallest amplitude. Conse-

quently, we are dealing here certainly with true internal waves.

Serial observations repeated in short intervals and extending over several

days were made on the anchor stations of the "Meteor" in the Atlantic Ocean

and of the "Snellius" Expedition in the Indonesian waters. They formed the

basis for exhaustive investigations about internal waves by Defant (1932)

and Lek (1938). Simultaneous current observation at the various depths

were made at these stations. Therefore, the observations are quite complete.

The internal waves on the anchor station 385 of the "Meteor" can be

(hr4 68I0 02468I0 02468I0 02468I002468I00
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and of the iso-halines from 35 65 to 37 00°/oo- Lunar period has also been

entered; the correlation between the two is clearly recognizable.*

Table 92 shows the mean vertical oscillation (difference between the extreme

positions) for individual isothermes and iso-halines. The amplitude of the

vertical displacement is greatest at about 100 m, i.e. where the density

gradient reaches its maximum. Upwards and downwards the amplitude is

dampened. The lowest position occurs at the time of the upper culmination of

the moon in Greenwich. The correct harmonical analysis of the semi-diurnal

lunar tide of the 24° isotherm gives as its amplitude 121m and the phase

0-24 h lunar time in Greenwich. A glance at Figs. 224 and 225 shows that

only the semi-diurnal waves have here any significance.

The results of the analysis of the current measurements are given in Table 93.

The conditions are fairly simple in the case of the semi-diurnal tide. The

Table 92. Anchor Station "Meteor" 385 (\6°4S-3'N.,

46°\7VW., depth 2900 m). Mean vertical variation of iso-

thermes and iso,halines (Five semi-diurnal lunarperiods)

Isotherm
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Table 93. Currents at Anchor Station "Meteor" 385 (\6°48-3'N., 46°\1\W.,

depth 2900 m)
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explain the phase distribution of Table 93. The average phase for the whole

layer from surface to 800 m is 10 9 h.

In the case of the diurnal wave the distribution is more irregular in the

phase as well as in the amplitude. Here, too, however, the smallest amplitude

will be found at the depth of 100 m. The elliptic shape of the current diagrams

proves the influences of the Coriolis force in the formation of all internal

waves in the open ocean. But the current diagrams are very flat, especially in

the case of the semi-diurnal tide. With few exceptions they rotate cum sole,

as the theory requires.

Lek (1938, p. 69), in his discussion of the observations of the "Snellius"

Expedition, investigates station 253>a particularly thoroughly. The obser-

vations for this station (1°47-5'S., 126°59-4'E., 23 and 24 June 1930) are very

complete. Table 94 presents the data which were deducted from the ob-

servations. A discussion of the table is hardly necessary. Figure 226 shows
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Their superposition shall give for the various depths of observations the

observed values of amplitude and phase of the vertical displacement. This

enables us to determine the amplitude and the phase of each of the four

waves. It has to be emphasized that this is only possible if the number of

internal waves under consideration is smaller than the number of depths of

observarion. Figure 227 (left) shows the vertical distribution of r\ for the

four waves, as well as the related phases. On the right the figure shows the

combination of these four waves and a comparison with the observations.

A similar, good agreement will be obtained in the case of waves with a diurnal

period. But this agreement signifies only that the observations can be re-

produced sufficiently exactly by superposing a small number of internal waves.

But that will be always possible if one takes as many internal waves as possible

in successive order. A better proof of the theory is a comparison between

the theoretically computed and observed currents. Table 95 presents such

a comparison for the diurnal tide wave. The semi-diurnal wave could not

Table 95. Currents of diurnal tidal period at "Snellius" Station 253a
(According to observations and computations based on vertical displacements)

Depth
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during 1930 in the Atlantic Ocean, quite a number of periods were found

other than the tidal periods (see Ekman, 1942). Their existence seems to be

established, but cannot be explained. But they show the difficulties in the

interpretation of the phenomenon. They prove, furthermore, that a break-

down of the variations into single component waves is only possible when
the observations are very complete.

It is of particular importance that the normal tidal current be eliminated.

This current ought to have the same direction and the same velocity in all

depths, according to the theory. This elimination is important for the in-

vestigation of internal waves as well as for the determination of the tidal

currents which are correlated to the surface tides. The customary method is,

to compute a mean current for the entire layer from the surface to the bot-

tom (see Defant, 1932, p. 164). This, of course, is only possible if the current

distribution for the entire depth of the ocean is known. But in genera] this

applies only for the upper layers. However, the formation of mean values

for the upper layer of the ocean ought to yield somewhat correct values,

-lOm

350

Fig. 227. Left: vertical distribution of the amplitudes of the vertical displacements r\ of

the internal waves of the l-4th order. The corresponding phases have been entered on the

curves. Right: combination of the four waves and comparison with the observations (• for

amplitudes ??, + for phases) (Lek and Fjeldstad).

because just here the internal waves are particularly well developed on ac-

count of the greater density gradient. Sverdrup (1942, p. 595) showed the

theoretical foundation for this method. According to (XVI. 19)

Un cn
8z

'

where un presents the horizontal current velocity, cn the velocity of progress and
r\n the vertical displacement of the wave of /?th order. As the values of r\ of every

internal wave disappear at the surface and the bottom of the sea, it has to be
h

fuadz = 0. (XVI. 38)

For waves at the boundary surface between two media this relation will be

35<
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reduced to U'h'— Uh = (see p. 524). The averaging thus eliminates all

currents associated with internal waves and leaves only the tidal current,

which belongs to the "external" wave.

(b) Recording Internal Waves and Interpretation of Such Records

It has always been difficult to make extensive observations of internal

waves by repeated oceanographic series. O. Pettersson tried in 1909 to record

internal waves in not too deep waters by a suitable apparatus. He used for

his experiments at the oceanographic station of Borno (Gullmarfjord) a large

submarine float. By carefully balancing of the flout it was brought in equilibrium

with the discontinuity layer (layer of the maximum density gradient) and par-

ticipated in its vertical movement (Fig. 228, left). These vertical displacements

of the float, which correspond to the vertical displacements of the internal

waves, move along a guiding wire, which hangs from a submarine anchored

buoy (see Fig. 228, right). A pressure gauge is attached to the float and

Fig.' 228. Left: float of the recording boundary gauge (Kullenberg and Pettersson). Right:

way of anchoring it to the bottom (Pettersson).

registers vertical displacements. The technical difficulties of the installation

of the apparatus are considerable. Kullenberg was successful in making

a "recording boundary gauge" that could be used in the open ocean (see

H. Pettersson, 1938, p. 77). In 1932 extensive recordings of internal waves

were carried out simultaneously at several places in the central "Kattegat"

in the vicinity of the "Fladenbank" shoal (57°10'N., 11°45'E.) in order to

obtain a series of observations as long as possible. Only such observations

make it possible to ascertain if the waves are of the progressive or standing

type and also their direction, velocity and origin. Kullenberg (1935), and

Pettersson and Kullenberg (1933) subjected the observations which ex-

tended over 15 days to the harmonic analysis and discussed the results

thoroughly. Table 96 gives the data for two stations. For the M2 tide, the

amplitude of the first station, which was located closer to the shoal, is con-
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Table 96. Records of Internal Tide Waves

Kattegat 6-21 November 1932 (According to Kullcnberg)
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such an internal wave with such an inertia period corresponds to the natural

period of free oscillation of the Kattegat if the effect of the rotation of the

earth is taken into consideration (see later). For internal waves in the Baltic

Sea see also Lisitzin (1953).

By hourly bathythermograph records off the coast of California (40 nm
offshore) over 6 days of anchor station on the thermocline in depths of

100-350 ft, well-developed internal waves were measured and analysed

(Reid, 1956). Waves of semi-diurnal period with amplitudes greater than

30 ft were found at the nearshore station (40 miles offshore in 1080 fm),

but little evidence of these waves or any other periodic phenomena was

found at the stations farther offshore though there was considerable

vertical fluctuation of isotherms. It is suggested that the waves found origi-

nate near the coast in the action of the surface tides and that, since the length

of such waves, if free, is short, they either dissipate before proceeding far

offshore or, more likely, are so distorted by the varying density structure

and water velocity that they are no longer recognized.

(c) Free Internal Oscillations of Large Regions; Internal Inertia Waves

When a certain thermo-haline distribution of an oceanic region is balanced

by existing currents, and when this system is disturbed by some external

causes it will try to return to its former state of equilibrium. This always

takes place in the way of periodical oscillations around its state of equilibrium.

These oscillations will have the period of the free oscillation of the system.

The amplitude will depend upon the magnitude of the original disturbance

and will gradually decrease because of the influence of friction. The essential

data for such a case can be determined from a simple model, like a two-layer

ocean. The boundary surface between the upper layer (density q', thickness //')

and the lower layer (density q, thickness h) will be in equilibrium with the

existent currents, according to the Marguless condition for boundary layers.

Following Defant's (1940) theory, the frequency of the free oscillation

of the boundary surface (an = 2njTn = frequency of the free internal

waves) can be expressed in first approximation by the quite accurate relation

c„ =v
/-» • v, trn-g Q—Q
(2rosinr/))2

' (XVI. 39)

where / is the length of the area of the oscillation, and where the Coriolis

force is taken into consideration. If the earth would not rotate (co = 0),

the frequency would be reduced to the equation for standing internal waves

in a basin of length / at the boundary surface between two liquids of different

density (see Chapter XVI/lc, p. 523). Then the period of the free oscillation is

rr =w 1

(? + ? (XVI. 40)
g(Q-Q')\h h'j

Let us assume that for a non-rotating earth the period T
r

is great, which

is in general the case, considering that the dimensions of the oscillating
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system are great. Then the term (2wsin</>)2 in the equation (XVI. 39) becomes

large compared with the second term and the period of the free oscillation

of the system on the rotating earth becomes

Ti =^— = ¥- = h pendulum day . (XVI.41)
2(osm(p sinr/>

'

On a rotating earth the period of a free oscillation of a stationary boundary

surface and their related periodical currents approaches the periods of the

inertia oscillation provided the dimensions of the oscillating system are

great (see vol. I). But in general the period T of the free oscillation of the

system is

T=
/r

Te

^ . (XVI. 42)
l iA 1 + ..

1 r

The larger T
r

is compared to 7), the more T approaches the period of the

inertia oscillations T
:

. Two numerical examples shall illustrate these con-

ditions:

(1) The values in the Baltic (Kattegat) (latitude 57°): q-q' = 2xl0" 3
,

h' = 25 m and h = 35 m give as result for the longest oscillation T
r
= 3-75/

(/ in metres). Assuming T
i
:T

r
= 01, one obtains / = 136 km. In a basin

of these dimensions the difference between the periods of the free oscillations

and the inertia oscillations would be less than 1 %. A disturbance developing

motion in the inertia circle would probably start oscillations of the boundary

surface.

(2) As a numerical example for the open ocean (latitude 45°): q—q'
= 1 x 10~3

, q = 10273, h = 1000 m, g' = 10263, h' = 100m and / = 150 km,

and we obtain for T = 1664 h, and for the inertia period T
(
= 16-97 h. The

period of the free oscillations in the case of a non-rotating earth would be

Tr
= 89-5 h.

In the case of deeper basins or basins in lower latitudes the dimensions

of the basins must be quite large if the period of the free oscillation is to

approach the period of the inertia oscillations. It must be expected that we will

find frequently the inertia period in the variations of the oceanographic

properties and currents in the open ocean, because this inertia period is so

close to the period of the free oscillation of the system. The foregoing de-

duction deals only with a two-layer system, but Defant's general result is

undoubtedly valid for water-masses where the density increase is continuous.

A typical example is offered by the oceanographic conditions prevailing

at the anchor station of the "Altair" on the northern edge of the main axis of

the Gulf Stream north of the Azores (44°33'N., 38°58'W., from 16 to 20 June

1938, depth 1110-2390 m), which lasted for 90 h. The current measurements

up to 800 m depth showed that the entire water-mass was influenced by the
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tide-generating forces in essentially the same way, with the exception of small

deviations in the upper layers. The direction of the major axis of the semi-

diurnal current ellipse was N. 40° E. the maximum velocity 8-3 cm/sec and
the phase 0-5 lunar hours (Gr.). The ratio of the minor to the major axis

was 043, its direction was cum sole. But besides this uniform tide wave
there appeared also a 17-hourly wave, which was very much in evidence in the

curves of the tidal current through beats. The analysis of the curves gave the

values shown in Table 97. These fluctuations leave no doubt that it represents

Table 97. Anchor Station "Altair" (16-20 June 1938, 44°33'7V., 38°58'^J.
Analysis of the current observations for a 17 h Wave

Depth

(m)
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atmospheric disturbances (passage of a storm region). After the disturbance

subsided the system gradually approached a new equilibrium by its free

oscillations.

The internal waves which were observed in the Kattegat with a period

of 14-5 h are surely oscillations with the free period of the entire basin. Ac-

cording to computations one needs a width of 136 m to obtain a period of

the free oscillation which differs only by 1 % from the period of the inertia

oscillation which is 14 5 h. The width of the Kattegat is of this order of

magnitude. Concerning inertia oscillations in the Baltic, see p. 554.

3. Internal Waves in Lakes and in Basins

The reflection of progressive internal waves at the boundary surfaces of

enclosed water-masses, changes these waves into standing internal waves.

In a basin with an irregular shape, where the density increase is continuous,

one can expect an unlimited number of free standing oscillations, because

an infinite number of internal waves of different orders may be present and

in a horizontal direction the number of nodes may lie between one and

infinity. Every internal wave of any order can cause by reflection a standing

internal wave. This circumstance makes it likely that there will be always

a free-standing internal wave which reacts somehow to an external intermittent

disturbance of arbitrary period. Because of the small amount of energy which

is necessary to create such internal waves they will occur quite frequently in

nature.

In basins of constant depth and of rectangular cross-section (lake), the

periods of oscillation of free-standing waves in the presence of two layers

are expressed by (see also Schmidt, 1908, p. 91)

where h and q are the thickness and density of the lower heavier water-mass,

h' and q the corresponding values of the upper lighter layer, / is the length

of the basin, and n — 1,2, 3, ... If the basin is not closed in on all sides,

but open on one side (bay), then 2/ in (XVI. 43) has to be replaced by 41.

During a large part of the year many lakes and bays have well-developed

discontinuity layers of density (thermodine) and internal standing oscillations

ought to be a frequent phenomenon. Wedderburn (1905, 1907, 1909)

proved the existence of such standing internal waves in Scottish lakes and

Exner (1908) did the same for Lake Wolfgang in Austria. They found a very

satisfactory agreement between the observed and the theoretically computed

values of the periods. According to the corresponding conditions in the

case of the surface seiches, it is evident that the shape of the basin exercises

a great influence upon the period of oscillation. Since the period of the longer

standing internal oscillations in somewhat more extended water-masses is fairly
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large, the influence of Coriolis force can be expected to increase. Conse-

quently, equation (XVI. 43) should be used with caution.

A particularly beautiful example of temperature seiches in Lake Madii

in Pommern, were analysed by Helbfass and Wedderburn (1911) from

25 July to 14 August, 1909. The discontinuity layer of the density was located

at a depth of 15 m, and the internal oscillations in this layer were very dis-

tinct at that time. Figure 230 shows the course of the isotherms in the layer

between 10 and 20 m depth. Solid curves represent the isothermes for a station

at the northern end, the dashed curves for a station at the southern end of

the lake. The complete inverted course of the two groups of curves shows

clearly, that one is dealing with an internal seiche with one node and with

16 20 4
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16 20 4
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4 8
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Fig. 230. Internal temperature seiches in Lake Madii (Pommern) from 9th August at 8 h

to 11th August, 20 h, 1909; , isothermes at northern end of the lake; ,
isothermes

at southern end of the lake.

an amplitude of roughly 6 m. The period was found to be practically ex-

actly 25 h. The entire discontinuity layer participates in the vertical movement

of the water-masses. The dimensions of the oscillating system, substituting

for Lake Madii a rectangular trough, are / = 13-75 km, h' = 23 m, t' = 17°,

h = 15 m, t = 8°, in which h' and t' and h and t represent thickness and

temperature of the upper and lower layer respectively. Thus one obtains for

the period of the internal seiche with 1 node T = 91,000 sec = roughly 25 h;

in complete agreement with the observed value.

It can be assumed that standing internal oscillations occur also in larger

or smaller adjacent seas. But because of the great expansion of the water-

masses, the period of the standing internal waves will become very long.

Conditions will develop similar to those explained on page 550. The effect
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of the Coriolis force has to be considered and the period of the free internal

oscillation will approach the period of the inertia oscillation when the size

of the oscillating basin increases. Such conditions certainly occur in the

Baltic, where variations in the currents showed a period of the inertia oscil-

lation when the water masses are stratified (see Gustafson and Kullenberg,

1936; Kullenberg and Hela, 1936). These oscillations in the currents are

associated with internal waves of the entire stratified water-mass, and are

subjected to the period of the inertia oscillation. Because the oscillations

with the inertia period are in general caused by wind disturbances, they

persist for some time with a striking constancy and are dampened only slowly.

Approaching the coast the amplitude decreases and there they die off.

O. Pettersson (1909) found very long periods of internal waves from once-

time-daily observations of the stratification of the water-masses of the Gulmar-

fjord at Borno. The main period of the internal vertical oscillations was

roughly 14 days, with amplitudes up to 25 m. Pettersson believed that these

oscillations were caused by the effect of the tide generating forces of the moon
(declination tide). But Wedderbljrn (1909, p. 602) could prove, by use of

equation (XVI. 43) for bays, that in this case one is dealing in all probability

with standing internal oscillations of the entire Skagerrak basin. If the en-

trance of the bay is assumed to be the line connecting Hanstholm (Denmark)

and Mandal (Norway) the width of the opening will be 50 km. With

/ = 200 km, q-q' = 410-3
, h = 100 or 200 m, h' = 20 m and with a cor-

rection for the width of the mouth (see equation (VI. 75), Table 22) one obtains

for the period T = 13-9 and 14 2 days respectively. This period derived by

theory is in good agreement with the observed one. But it is questionable, if the

effect of Coriolis force may be neglected in the case of such long periods.

When the density varies continuously with depth and when the shape of

the bay is irregular, an infinite number of internal waves becomes probable.

But the waves of high order or of many nodes cannot be expected to last

very long because great velocity gradients generate friction which dissipates

their energy very fast. An exhaustive investigation on internal waves of the

Gulf of California, including this aspect was carried out by Sverdrup (1939,

1940, p. 170) and Munk (1941). The hydrographic survey of the Gulf of

California from 13 February to 19 March 1939 showed a wave-like pattern

in the dynamic topography of the sea surface and of the isobaric surfaces

(referred to the 1500 decibar surface). The phenomenon can be explained

only by the existence of standing internal waves of a period of roughly 7 days.

This wave is of the first order in a vertical direction, and the vertical dis-

placement vanishes at the bottom and at the surface. It is of the fourth order

in a horizontal direction with three nodal lines in the Gulf. A nodal line at

the entrance of the Gulf indicates that we have to do with a free oscillation.

Figure 231 shows the distribution of the water-masses and the position of the

various isobaric surfaces within the Gulf, as resulting from the oceanographic
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survey. The internal standing wave originates near the entrance of the Gulf

as a superposition of two progressive waves of 1000 km wave length and

a velocity of progress of 175 cm/sec. The velocity decreases considerably to-

wards the interior of the Gulf. It is interesting to note that this standing wave

reflects itself clearly in the sediments of the Gulf. The coarser sediments

are deposited along the three nodal lines, where the velocities are great

(up to 20 cm/sec), while the finer sediments are collected at the anti-nodes

of the oscillations. This difference in the size of the grains of the sediments

in a horizontal direction suggests that the standing wave within the Gulf

might be a phenomenon which occurs frequently (Revelle, 1939, p. 1929).

[ ri
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boundary conditions have to be satisfied, so that W = for z = as well

as for x = 0. This leads to a determinant D, which has to be a minimum
for the period T = (In/a) of the free oscillation of the system.

The orographic configuration, of the Gulf of California can be compared

with a canal. Its depth of 1800 m remains roughly constant to' about 700 km
from the mouth, then it decreases quickly to zero, towards the inner end

(near the islands of San Estobal and San Lorenzo). For the outer part, where

the depth remains fairly constant, Fjelstad's theory gives a velocity of progress

of the wave of first order of 167 cm/sec, and for the depth of the greatest

vertical displacement 675 m; which is in good agreement with the observa-

tions of 175 cm/sec and 500-600 m depth. For that part of the Gulf of Ca-

lifornia where the depth decreases to zero the computation of the above-

mentioned determinant shows that for waves of the first order, a minimum
occurs for a period of 7 days; for waves of the second order for a period

of 14-8 days, which corresponds to the observations. It is likely that the

more important period of 7 days rather than the period of 14-8 days is caused

by the tide generating force of the lunar tide of 13 6 days, since 2x 7 = 14

is closer to 13 6 than the period of the standing wave of the second order.

Therefore the 7-day oscillation will dominate, which is in agreement with

the observed arrangements of the sediments in the Gulf.

4. Causes of Internal Waves, Particularly of Those with a Tidal Character

In order to investigate closer the causes of the formation of internal waves,

it has to be kept in mind that even small amounts of energy are sufficient,

to cause oscillations of boundary surfaces between liquids of different density,

or vertical displacements in a water-mass where the density increases con-

tinuously with depth. Even small pressure disturbances at the surface are al-

ready sufficient to cause large vertical displacements within a stratified medium.

In the case of the disturbance on the "Meteor" Anchor Station 254 we en-

countered (p. 527) a condition where in all probability a powerful internal

wave was caused by a small gust of wind, started by comparatively small

forces; such disturbances of the internal equilibrium of a stratified water-mass,

may, under favourable conditions like resonance, increase to an enormous

amplitude. Thus it can be expected, that in the case of disturbances of the

internal equilibrium in a stratified sea, the return to a new state of equilibrium

will be accompanied by internal waves, which are gradually dampened be-

cause of the frictional influences.

Since the internal waves observed in the ocean have frequently a decidedly

tidal character the question arises, whether internal tide waves in the ocean

might be caused by the horizontal and vertical tide generating forces of the

sun and the moon. This would explain the tidal character right away.

O. Pettersson (1909, 1930, 1933, 1934, 1935) thought that especially the vert-

ical component of the tide generating force was the cause of the internal tide
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waves. But Defant (1932, p. 295; 1934, p. 310) proved theoretically, that tide

waves at inner boundary surfaces cannot be caused by such forces. The neces-

sary conditions are never fulfilled under the given circumstances within the

ocean, and it has to be stated that the occurrence of inner tide waves can

hardly be caused by forces of such kind.

The importance of meteorological influences on the formation of internal

waves was discussed by Wedderburn in his work on Scottish lakes. M.Pet-

tersson (1920, p. 32) used similarly the daily variations in the vertical dis-

tribution of the water-masses at the oceanographic station Borno (Gullmar-

fjord), to find possible relations with simultaneous meteorological conditions.

The comparison of the variations in the depth of the isohalines with the

corresponding force of the winds in the direction of the fjord (NE.-SW.)

shows immediately that the curves for most of the cases run parallel (see

Fig. 232). A more exhaustive investigation of the correlation between the

NE
9

sec
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internal waves. The bottom configuration at this point shows a submarine

barrier. Therefore, only the upper water-masses of the fjord are connected

with the free ocean. This submarine sill or barrier, which rises nearly to the

level of the discontinuity surface, is an obstacle for the development of the

horizontal currents of the seiches and these currents cause a disturbance at

the boundary surface, which now travels as an internal wave with the period

of the seiche along the discontinuity surface into the fjord. Zeilon (1934)

could support this explanation by very convincing experiments in the wave

tank. He also demonstrated that in an oscillating stratified water-mass a dis-

turbance in the bottom configuration could generate internal waves which

then travel along the discontinuity surface of density. Zeilon found in other

experiments that internal waves can be formed when a tidal current is ad-

vancing toward a wide shelf. If the discontinuity surface is in about the same

depth as the outer limit of the shelf, an internal wave is formed on the edge

of the shelf and it travels toward the coast in shallow water and also toward

the open ocean in deeper water. The two illustrations in Fig. 233 demonstrate

Fig. 233. Tidal current producing internal waves at the edge of the shelf. At b the internal

wave hreaks at the shelf (Zeilon).

Zeilon's experiments. The greatest amplitudes will be found near the shelf

in shallow water. Submarine breakers occur during the propagation on the

shelf, which can be clearly recognized in the illustration "b".

Further causes for generation of internal waves are the more or less sudden

appearance of a strong surface current, which can be caused by a gust of

wind (similar to Sandstrom's experiments, see p. 528), or by the occurrence

of a bottom current. The place where the outside disturbance acts upon the

water-mass is in both cases the source of the internal waves, which proceed

along the boundary surface in the direction of the disturbing current.
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These experiments show that in shallow ocean regions (shelf regions)

internal periodical displacements might be generated with the same period

as the disturbance that caused them. They can occur because of topographi-

cal irregularities at the bottom of the ocean or on the edge of the shelf, if

ihe boundary layer is at the right depth. The most frequent disturbance will

probably be the periodically returning tidal currents, which ought to cause

the generation of internal tide waves in shallow waters. But the influence

of such internal tide waves ought to be limited as they are dampened very

rapidly, so that their amplitudes decrease quickly when the waves spread

out in all directions, as was emphasized by Ekman (1931).

In the open ocean, topographical bottom influences can hardly be ex-

pected to be the cause for the generation of internal waves. External in-

fluences from the atmosphere are rather the cause; but these will not have

a tidal period. The cause for the internal tide waves, which occur frequently

over great depths in the free ocean, far from the continents, cannot yet be

stated with certainty. One might think of inhomogeneities in the vertical

structure of the main currents, on which the regular tidal current is super-

posed, which is of the same kind in all depths. But the superposition with

the main current causes periodically varying water transport in the super-

imposed water layers, which ought to be related to the vertical displacements

with tidal periods of the boundary layers. The vertical heterogeneity of the

main currents is in general dependent upon the vertical distribution of the

thermo-haline properties and the discontinuity layers of density are also in

most cases discontinuity layers of the field of motion. This heterogeneity

in connection with the periodical tidal currents, might well be one of the

causes of the so frequently observed internal waves of tidal period.

So far, the effect of the earth's rotation on the internal waves was not

considered. Because of the earth's rotation the periods of long internal waves

are much shorter and their velocities much larger than without taking into

account the Coriolis force; therefore, it is to be expected that the resonance

conditions for oscillations at internal surfaces of discontinuity are much more

favourable than was supposed previously. This was confirmed by investiga-

tions by Defant (1950) and Hatjrwitz (1950). The main features may be

illustrated by the following model. Let the upper water-mass move with

the constant velocity Ul , the lower with the constant velocity U2 , both parallel

to the undisturbed discontinuity layer. A tide generating force,

acting in a horizontal direction on the whole system, will produce tide waves

at the surface and on the discontinuity layer.

The equations of motion and the continuity equation for both water waves

give for the water surface and for the discontinuity layer one wave solution

with waves of the frequency a and the wave numbers x. The velocity of pro-
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pagation c = a/x is determined by the force. In the equations for the am-
plitudes of the surface and of the boundary layer, the expression

c(c- DiX(c- Ujfaat+lc- U0*qM-[(c- Vtfw, + (c- U^w2Qi/q2

+ c(c-Ux)<»x \Q]-g/*+4Qg2/x2 = A (XVI.43a)

always appears as denominator, wherein cox
= cothxhx and co2 = cothx/i2 .

But this expression, when set equal to zero, is the equation which determines

the velocity of the free waves of the system. For Ux
= U2 = this equation

becomes the equation of the velocity of free waves with the wave number x:

c\cox co, + qJqJ- c2
((ox + co2)g/x +Agg2/x2 = D2

= . (XVI. 436)

The two solutions of this equation for long waves are

Ci~- [g(h x + hj\ and
j |^

' hxh2l{hx+ h2)i/f*
(XVI. 43c)

The velocity ex is valid for waves at the surface, which are associated with

displacements of the boundary layer of smaller amplitudes than those at the

surface. c2 is the velocity of free internal waves. In the case of forced waves

the case of resonance corresponds to D2
= 0. Theoretically in this case the

amplitude of forced waves will be infinitely large. Note that the internal waves

will be infinitely large if the condition c = c2 is exactly fulfilled. But this never

occurs, since the magnitude of e for tidal waves in the oceans is about

200 m/sec and that of c2 only 2 m/sec.

Taking into account the] Coriolis force, one obtains in the place of the

former (XVI. 436) denominator the expression:

e4- (/?! + h,)ge 2 +zJ gg%/h2 = Dz (XVI. 43d)
where: a2—f2/x2 = e2 .

It has the same form as the relation (XVI. 436), transformed for tidal

waves, for the velocity of forced waves c, the influence of the earth's rotation

is entered through the quantity e . Whereas c has the magnitude of 200 m/sec

and the quantity D2 is a large number, under certain conditions e can be

small or nearly equal to the velocity of free internal waves. With these values,

however, D3 will be zero. If T
t

is the period of internal waves (equal to 12

pendulum hours), then

£2 = c2[\- (T/Ti)2
] . (XVI. 43?)

For the diurnal tide wave, T = 24 h and £ will be zero at 30° latitude, but

for the semi-diurnal lunar wave, T = 12 43 h and e will be zero at about
74° latitude. For small e equations (XVI. 43d) has, in the first approximation

,

the form:

DA =A gg
2hxho-g(ht+ h2)e

2
.

Di will be zero for

e2 = {A QlQ)hxh2l(hx+ h2) . (XVI. 43/)

36
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When s = c2 = the velocity of free internal waves, then resonance exists

for forced internal waves. In other words, the amplitude of internal tide

waves will be very large. This is not the case for the normal tides at the sur-

face, for which

D^e^-gQi^+ h)].

Db remains a large number when e = c2 .

Therefore, the rotation of the earth provides a factor which is able to

increase the amplitudes of internal waves, and internal waves will thus be

a larger wave motion than the tide at the surface (see also the paper by

B. Haurwitz, The occurrence of internal tides in the ocean (1954)).

From (XVI. 43/) is obtained as resonance wave length of internal waves

AthJhgyid-P) Q2(h1+h2)

and, if the frequency of the semi-diurnal or diurnal tides is taken for a, XR

as a function of latitude. With wave lengths of this magnitude, internal tidal

waves with great amplitudes can always be expected (see Krauss, 1957).

5. The Stability of Internal Tide Waves Internal Breakers

The vertical displacements with a tidal period of the discontinuity layer

of density occur in most cases in symmetrical form, according to the ob-

servations. Examples are the anchor stations "Meteor" 254 (see Fig. 216)

and "Meteor" 385 (see Figs. 224 and 225). These tide waves do not show

any decay. Their wave profiles are symmetrical, but there are cases where

this does not occur, like internal tide waves on the continental shelf or in

shallow straits. A typical example are the internal tide waves in the Straits

of Gibraltar at springtide. At neap tide, when the discontinuity layer is well-

developed between the Atlantic upper current flowing eastward and the

Mediteranean under-current flowing westward, these internal waves proceed

entirely in a normal fashion and the wave profile is symmetrical. The Danish

research vessel "Dana" carried out repeated hydrographic casts on Station

1 138 (8-10 October, 1921, 35°59'N., 5°30'W.). Working up this station, Jacob-

sen and Thomson (1934) showed for this period a regular internal tide wave

with a range of 43 m and of a phase of 07 lunar hours after high water in

Gibraltar. The connection between this internal wave and the surface tide

within the Strait can be easily explained in this case. The increase of the

velocity of the current (main current plus tidal current) in the upper layer,

which occurs simultaneously with a decrease in the velocity of the lower

current, causes a sinking of the discontinuity layer. A decrease in the velocity

of the upper current, together with an increase in the velocity of the lower

current, on the other hand, causes a lifting of the discontinuity layer. At

neap tide and under normal weather conditions, this internal tide wave occurs
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regularly in agreement with theoretical principles and without considerable

disturbance. This does not seem to be the case at springtide when the tidal

currents are stronger. The repeated serial observations of the "Dana" from

14 to 15 July 1928, which were carefully analysed by Jacobsen and Thomson,

show that the internal wave, which was linked with the surface tide, had

decayed completely. In the layer between 70 and 150 m the wave is almost

turning over. Several values show an instability in the stratification. The

wave profile is very asymmetrical and the internal wave assumes the form

of an internal bore. It probably traverses the entire strait in the region of

the strong tidal currents at springtide. Then it vanishes in the adjoining sea

where the depth is so much greater and where the discontinuity in the density

is entirely missing, whereas it was well developed in the strait. Figure 234

Solor hours

LAW. Codix HWCodix LW. Codix KW. Codix

-2 2 4 9 8 10 I2| 14 16

•4

Codix

2 +2 +4 ±6 -4 -2 +2
HWCodix LW. Codix HWCodix

LuP° r hours

Fig. 234. "Dana"' Anchor Station in the Strait of Gibraltar <£ = 35°57-5'N. I = 5°21'W.

14-15 July 1928. Isopycnals (kg/m3
). Below is given the tide curve for Cadix. The arrows

indicate the direction and velocity of the total current (which is the sum of the basis and

tidal current) in the upper layers in the centre of the Strait at springtide.

presents the course of the isopycnals (kg/m3
) for the entire duration of the

observations up to a depth of 300m and the unstable internal tide wave within

the strait. Also entered in Fig. 234 are the tide curves of Cadix and the curves

for the total surface current (main current plus tidal current) for the middle

of the Straits.

A number of additional cases of obvious instability of internal tide waves

were shown by Defant (1948, p. 52) in the observations of the "Meteor"

anchor stations on the West African Shelf between the Canary and the Cape

Verde Islands. A particularly interesting case was the anchor Station 366

36"
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(13-16 April 1937, 10°16'N., 16°38'W.; 60 repeated casts in 1 hourly intervals).

In Fig. 235 the principal isothermes have been averaged from five periods

of the semi-diurnal to one period. This figure demonstrates clearly the asym-

metrical profile of the internal tide wave in the vertical displacement of the

isotherms. The extreme values are shifting with increasing depth, the internal

wave is retarded more and more, especially the maximum in the deeper layers

lags several hours after the maximum in smaller depths.

Ancor Stat. 366

Fig. 235. Isotherms at "Meteor" Anchor Station 366. Average from five periods.

All these facts indicate that the wave profile of internal waves can decay

under certain conditions, which can lead finally to internal breakers (surf).

One should not think that these internal breakers should have the same

energy and have the same speed as the surf of the regular surface waves.

This internal surf takes place very slowly, because of the small velocity of

the internal waves. Such internal breakers can be produced in a wave tank

in a two-layer system. There the phenomenon can be followed closely be-

cause of the slowness of the occurrence. A photograph of experiments of

such kind will be found in DEFANTj(19r3, p. 83; 1929, p. 51). Similar phe-

nomena will occur with internal waves in nature.

The question arises as to what causes an internal tide wave to such a turbu-

lent process of degeneration and finally to break down internally. When the

amplitude of internal waves becomes great and cannot be considered as small

compared to the depth of the water, then the wave changes its profile during

its travel. The slope at the front of the wave becomes steeper, and flattens

out at the rear of the wave; the wave profile becomes asymmetrical. The

increase of this asymmetry leads to the breakers and the surf. Under similar

conditions, internal waves will behave the same way as surface waves where

the amplitudes were great at shallow depth. Both circumstances are doubtless

contributing factors in forcing an asymmetry of the wave profile.



Internal Waves 565

But there are also cases, where these conditions are not sufficient for the

explanation of the internal breakers. The circumstances under which internal

waves occur, permit the development of dynamic instability. The discussion

of the following simple case will be sufficient. Two layers of great thickness

are superposed. Let u be the velocity of the upper, lighter water-mass,

u the velocity of the lower, heavier one. The theory shows (see Lamb, 1932,

p. 373; V. Bjerknes, 1933. p. 381; Hoiland, 1943), that in this case the

velocity of internal waves at the discontinuity surface is given by the ex-

pression

qu+q'u ..

c = -—rV ±1 g p— P , lu —u
QQ (XVI. 44)

* 6+ Q \Q+ 9 I .

The first term on the right-hand side represents the convective velocity

and may be called the mean velocity of the two currents. Relatively to this

the velocity of waves of the length A = (2tz/x) is represented by the term

on the right-hand side under the square root. The first term under the root

represents the velocity of progress of the internal waves in the system at

rest (p. 518 (XVI. 7)), i.e. the velocity of progress of pure gravity waves.

The second term under the root with the negative sign is the velocity of pure

inertia waves. The term for the gravity waves is always positive, if q > q',

which is of course always the case. Pure gravity waves are always stable.

The inertia term, on the other hand, is always negative. Thus it has always

an unstable effect and therefore weakens the static stability of the gravity

waves. This weakening may become so effective as to produce dynamic

instability. This happens if

(u'~ uf > £ tn^l
, (XVI.45)

X QQ

i.e. if for a given wave length and discontinuity of density, the difference

in velocities on the discontinuity surfaces become great enough.

In the cases under consideration the thickness of the two superposed water

layers are small. This causes a further decrease of the term at the right side

of the inequality (XVI.45). Let h and h' be the thickness of the two layers.

Then we obtain as inequalities

(u'-uf >-{q-q)
1

+ ' (XVI. 46)
x iQCOiYixh cothx/?'

If we simplify the case by assuming h = h\ and if we consider, that xh is

small, we can write with sufficient accuracy

1

coth^/z

Then the inequality becomes

tanhx/j = xh

«>y(«* £
qq'
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Table 98 was computed with this inequality. For the various values of

the discontinuity in density q—q' and for the thickness of the layer h the

table presents the difference of velocity, which has to be exceeded, to cause

dynamic instability of the internal tide waves.

Table 98. Dynamic unstable internal waves will be generated when

the difference in velocity u'— u in cm/sec between layers exceeds

Q-Q
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In the upper wave the direction of the basic currents is the same in both

water-masses; in the lower wave the direction of the basic currents is opposite.

In both cases the velocity of the upper water-mass is the greater one, as it

is always the case in nature. It will be immediately recognized that the asym-

metry of the wave profile reminds one of the slopes of internal tide waves.

When the asymmetry of the wave increases it will cause finally powerful inter-

nal processes of turbulence. In the case of dynamic instability, the boundary

surface curls up into vortices of the same direction, which insert themselves

between the two layers which have different motions. Figure 237 shows,

Fig. 237. Transformation of a dynamic unstable internal wave (Rosenhead).

according to Rosenhead (1932, p. 170), the transformation of an unstable

wave. The final result will be the formation of a mixing layer, caused by

the continued vortex motion. There will be then a more or less continuous

transition of the density and of the velocities from the lower to the upper layer.

The discontinuity of temperature and of salinity decreases rapidly on con-

tinental shelves by approaching the shore and then mostly disappears inside

a stripe off the coast completely. This is due to the circumstance that the

decreasing depth of the ocean causes the internal tide waves to become so un-

stable that the discontinuity layer disappears. This process is the basic pre-

requisite for the process of upwelling of cold water along the coasts.

6. Stationary Internal Wave-like Displacements

The oceanographic survey of various regions of shallow depth (on the

continental shelf or straits) as well as in the open ocean of not too large

a depth, showed frequently vertical cross-sections with striking wave-like dis-

tributions of the isotherms and isohalines and of course of the isOpycnals.

They were apparently of a stationary character. Merz (1935), for instance,

found in the western part of a temperature cross-section through the South

Atlantic Ocean in 35° S., large vertical variations of the isotherms, which
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extended over several hundred metres. Similar variations but not as large

were found in some cross-sections of the "Meteor" Expedition. The oc-

currence of such stationary wave-like variations of oceanographic properties

in straits was demonstrated by several longitudinal sections through these

straits. It was pointed out earlier and it can be proven that they are caused by
topographical features of the bottom.

Let us assume two superposed water-masses of different density q'
, h' and

q, h (density and thickness of the upper and lower layer respectively), where

both water-masses have the same velocity c. It can easily be shown theor-

etically that a disturbance of the bottom causes stationary wave-like dis-

placements, both at the surface of the upper water-mass (the free surface)

and at the boundary surface between the two water-masses. Under certain

circumstances the displacement of the boundary surface may become very

great, many times greater than those of the free surface. If one assumes

a simple wave-like profile with the wave length I = Injx it becomes evident

that the stream lines in both water-masses follow the same contour as the

bottom configuration and the boundary surface also takes part in these

stationary displacements. In the denominator of the equation for the am-
plitude of these wavy stream lines appears a value TV of the form:

N ^^Icothxhcothxh' ^^\-c2(ianhxh-\-coihxh')^ + (l - -)-
9 . (XVI. 48)

Q I X
\ Q J X

This expression N = is identical with equation (XVI. 9) and gives the

velocity c of free waves of the wave length X = 2n\x at the surface or at the

boundary surface in a system at rest (p. 519). Equation (XVI. 48) means

that the stationary displacements, caused by the bottom configuration can

become very large, if the velocity of the currents of the two water-masses

equals the wave velocity of the free waves at the surface or of the waves at

the boundary surface. Small irregularities in the bottom configuration are

thus, under certain conditions, accompanied by great, wave-like, stationary

displacements at the boundary surface. In the case that the length of the

bottom irregularity becomes great, equation (XVI. 48), N — gives the two

velocities for which this occurs. These velocities are identical with equa-

tions (XVI. 17). The first value c± gives always very great values and cannot

be accepted as the velocity of a basic current. The second current velocity c2

on the other hand has relatively small values. Here the stationary displace-

ments are greatest at the boundary surface, while the free surface remains

practically undisturbed. Thus for q— q' = 1 xlO-3 and if h' = 50 m and

h = 100 m. c2 becomes 58 cm/sec. This is a reasonable value for basic currents.

The current velocities of the two superposed water-masses are generally

different (in the upper water-mass c', in the lower one c). In that case par-

ticularly large stationary wave-like displacements of the boundary surface

will occur if the condition
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(*h'+ c'*h = I
1 " -) Shh' (XVI. 49)

is satisfied.

It thus appears as if the frequently observed bulges in the sharp

discontinuity layer between the compensating superposed currents, flowing

in opposite directions in straits (for instance Bosporus, Dardanelles, Strait

of Gibraltar and others), can be explained in this way as a result of the bot-

tom configuration (see Defant, 1929, p. 51).

In the case of currents in a water-mass where the density increase is con-

tinuous, stationary wave-like displacements of the isopycnals are also possible.

The stream lines will follow then the isopycnals. If a system of progressive

internal cellular waves (as discussed on p. 528) with a velocity of progress c

(equation (XVI. 29)) is superposed by a current with a velocity U = —c, the

waves become stationary. This is the case of a stratified water-mass flowing

with wavy stream lines. For a certain ratio e/x = XJXZ
the wave length A of the

stationary waves can be computed, if U is known. Since the velocities in

the ocean are small, one obtains with sufficient accuracy

L = In
2nUV

//
2nUAk('*i (XVI. 50)

With e/x = 102 and g/r = 106 one obtains for U = 2 m/sec, a horizontal

wave length of 40 km, where the height of the stationary waves will be 400 m
(compare Fig. 238). These are conditions which may occur in nature. These

Fig. 238. Stationary waves in a stratified water mass.

waves are of course free waves, which may appear because of a single impulse

and then they vanish because of frictional influences. The case is different when
external conditions (pressure disturbances on the surface, irregularities of the

bottom configuration) cause internal waves of cellular type. The phenomenon
of the so-called lee-waves belongs to this type. They occur behind a long out-

stretched bottom irregularity over which a horizontal current is flowing in

a transverse direction. Lord Kelvin (Lamb, 1932, § 246, p. 409) developed

the theory of these stationary lee-waves for an incompressible and homo-
genous heavy fluid. The examination of the lee-wave disturbances in a
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compressible stratified medium was carried out mainly to explain stationary

air waves, which occur in the lee of mountains. When lee waves are present

in the air they become visible when water vapour is condensed in the form

of one or several banks of clouds which have the shape of waves and which

are parallel to the chain of mountains (Moazagotl clouds). Such stationary

wave-like displacements of the isopycnals may also occur in the ocean, when

a current crosses a submarine ridge. Because of the stratification, which

takes place in the ocean, these wave-like displacements may take a somehow
different shape than similar displacements of pure discontinuity surfaces.

An exact computation of such cases should not be too difficult after the more

complicated sample cases were discussed. Figure 239 presents, according to

; " '"^"'""V^'
2v

TrnM^m//////////////^//^//////////////^ ~x

Fig. 239. Stationary internal wave in a stratified medium (streamlines) in the back of rectan-

gular shaped obstacle (Lyra).

Lyra (1940/43) the stream lines of the current, crossing a long extended

ridge (see also Praedt, 1940, p. 331). The piling up of the current immediately

before the obstacle is clearly discernible; above it the stationary lee-waves

extend to great heights. These can still be recognized at a great horizontal

distance from the obstacle. There is every reason to assume that the wave-

like stationary form of the oceanographic properties, which is frequently

observed in the ocean, can also be explained in this way.
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Chart III. Average range at springtide of semi-diurnal tides 2(M2 + S2) in centimetres.

The character of tide F — -

1
\——--- is designated by : < F < 0-25 semi-

(M2 + S2)

diurnal tides; : 0-25 < F < 1-5 mixed, mainly semi-diurnal tides; :

1-5 < F < 30 mixed, mainly diurnal tides; : 30 < F<x> diurnal tides.

{See : Vol. II, Pt. II, p. 480.)
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Chart I. Semi-diurnal tides in the Oceans.

Co-lidal lines of the semi-diurnal tide M. referred to the upper culmination of the moon in Greenwich (DirTRlcn l')44).

(Sec: Vol II. Pt II. p. 479)
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Chart II. Diurnal tides in the oceans.

Co-tidal lines of the A', tide referred to Greenwich (DirTRlcn 1944).

{.See: Vol [I, Pi [I, p. 47').)
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