PHYTOLOGIA

An international journal to expedite plant systematic, phytogeographical and ecological publication

Vol. 75
December 1993
No. 6

CONTENTS

TURNER, B.L., Jaime Hinton: 'Letter from a rabid plant collector in México.
OCHOA, C.M., Karyotaxonomic studies on wild Ecuadorian tuber-bearing Solanum, sect: Retota: .. 422

TURNER, B.L., Texas species of Mirabilis (Nyctaginaceae). 432
NESOM, G.L.;, Taxonomy of Doellingeria (Asteraceae: Astereae). 452
MACROBERTS, M.H. \& B.R. MACROBERTS, Vascular flora of sandstone outcrop communities in western Louisiana, with notes on rare and noteworthy species.463
TURNER, B.L., Arenaria gypsostrata B.L. Turner, a new name for A. hin-toniorum B.L. Turner, not A. hintoniorum B.L. Turner.481
Corrections and additions. 482
Index to authors in volume 75. 483
Index to taxa in volume 75 . LIBRARY 484
MAY - 31994

NEW YORK SOTAHICAL GARDEN

PHYTOLOGIA (ISSN 00319430) is published monthly with two volumes per year by Michael J. Warnock, 185 Westridge Drive, Huntsville, TX 77340. Second Class postage at Huntsville, TX. Copyright © 1991 by PHYTOLOGIA. Annual domestic individual subscription (12 issues): $\$ 36.00$. Annual domestic institutional subscription (12 issues): $\$ 40.00$. Foreign and/or airmail postage extra. Single copy sales: Current issue and back issues volume 67 to present, $\$ 3.50$; Back issues (previous to volume 67), $\$ 3.00$ (add $\$.50$ per copy postage and handling US [$\$ 1.00$ per copy foreign]). Back issue sales by volume: $\$ 17.00$ per volume $42-66$ (not all available as complete volumes); $\$ 21.00$ per volume 67 -present; add $\$ 2.00$ per volume postage US ($\$ 4.00$ per volume foreign). POSTMASTER: Send address changès to Phytologia, 185 Westridge Drive, Huntsville, TX 77340.

JAIME HINTON: LETTER FROM A RABID PLANT COLLECTOR IN MEXICO

Billie L. Turner

Department of Botany, University of Texas, Austin, Texas 78713 U.S.A.

ABSTRACT

Excerpts of a letter from Jaime Hinton to B.L. Turner are reproduced to illustrate some recent plant collecting experiences in México.

KEY WORDS: México, plant collecting, Hinton

The literature is replete with accounts of early plant collectors in North America, especially México, along with their trials and tribulations (e.g., Berlandier 1805-1851; Seemann 1825-1871; Pringle 1838-1911; etc.). Indeed, George B. Hinton (1882-1943), the father of Jaime Hinton whose exploits are touted here, was a renowned collector of Mexican plants; much of the senior Hinton's activity has been chronicled by Hinton \& Rzedowski (1972; J. Arnold Arb. 53:141-181).

These early Mexican collectors were an unusual breed, often risking (and sometimes losing!) their lives in the hope or realization that their discoveries in the field might enrich all of botanical science, to say nothing of the long-time legacy of their exploits, resulting eponymy, or whatever. In those bygone days when practically every plant collection stood at least a fifty-fifty chance of being undescribed, the impetus for collecting in remote, previously unvisited areas, must have been irresistible to many, if not most.

But what about modern collectors? Have they outlived the perils of collecting, the sense adventure and discovery that accompanies the field worker on a sortie to some out-of-the-way site (albeit only $10-50$ kilometers along a dirt road from some paved major highway)? Obviously not, to judge by a recent letter written to me by Jaime Hinton, giving an account of his and his son's attempt to collect in the remote mountainous regions of Nuevo León, México. One might argue that "the hunt" of present day collectors has never been more exciting, simply because what is expected in the way of novelties is drastically reduced. Thus the reward of discovery is vastly enhanced, not to mention the knowledge and sense of intellectual responsibility that the educated, environmentally informed collector must feel as he treads the few remaining wilderness
areas looking for a last survivor of man's pernicious onslaught upon pristine habitats, most of this brought on by the senseless rampant reproduction of mankind and the consumptive consumerism that accompanies such activity, a consumption eating at the well springs of biodiversity everywhere.

George Hinton, his son Jaime and his grandson George represent three generations of plant collectors in Mexico, all avid students of that nation's flora. I never met the deceased member of this trio, but I know personally and correspond erratically with the second and third generations, both zealous collectors like their forefather George. Since this "introduction" is largely meant to accompany excerpts from a letter written by Jaime, I will digress here to attempt some encapsulation of Jaime Hinton's physiognomy, personality, character, and style.

Jaime is a wiry, resilient man about 5 feet 10 inches tall with the gait of a western cowhand, what with his certain, unobtrusive, strides and his ambience of belonging to his particular territory. A Mexican citizen, but of British parents, green-eyed and greying at the temples, he first walked up to me wearing a large Tarascan sombrero and a wisp of smile, extending his hand, "Prof. Turner, I assume," eyeing my newly married quite lovely wife Gayle (25 years or more younger than either of us) as if she might be a remarkable flower to be plucked precariously off some Mexican bluff given the odd discovery, wherever. Good sensible man, I thought, excellent tastes. And, later, settling down as his guest at Rancho Aguililla, I marveled at his conversational abilities about plants, architecture, peoples, commerce, and world affairs. He was a consummate scholar and litterateur, and as to bearing he reminded me right off as a protagonist from one of John Huston's westerns, "Treasure of the Sierra Madre", perhaps. Whatever; I was enthralled. Later my wife said, "An attractive man, Jaime", I knew then that his peripheral glances were properly catalogued.

The day after our first meeting Jaime insisted that the two of us take a short field trip to the mountains east of Cerro Potosí. He took off in his souped-up Ford at 100 plus miles per hour. Truly, the fastest I'd ever traveled in an automobile. When I tactfully complained at the speed ("What's the rush?") he grinned, like Socrates might have, given the same admonition from his friends about sipping too fast his extract of hemlock, and responded "Hell, I can't wait to get in the field, not much time left in the day", or something like that, as if I too were wrapped up in his provocative enthusiasm. Anyway, he slowed down to 95 or so for the rest of the paved road, then down to 50 on dirt, and finally lurched to a stop high up in the hills along an overgrown semitropical gully, taking off upslope like a botanist bewildered, collecting what was in flower or fruit, commenting on environmental degradation, the catholic condition, confessions, confusions, whatever. Ten years older than me, perhaps, he was clearly better shod with a better bridle.

But on to a single long excerpt, from his most recent letter, which I repro-
duce here with his permission. And only over protestations of a sort: he would not wish ostentation or advertisement. I responded, "Me neither, but future generations ought to know the tribulations of plant collectors working in this part of our century, how they knew absolutely that this was their last chance to do something meaningful for mankind's intellectual pursuits, that someone cared about what once was here, please"

He relented and the excerpts follow.

Dear Billie:

June 25, 1993
. ... We're hard at work in El Viejo, where we notice quite a few species that were new when we collected them at other places not so long ago. But we still hope to find some interesting things, especially some of those intriguing little orchids named by Carol Todzia. Once done with El Viejo, then I can sell the four-wheel drive, and buy a delightful smooth-riding turbo. Would you believe it that our roughriding gasguzzling fourwheeldrivingsonofabitch got stuck up at Agua León last week-for a mere eighteen galling hours. Finally, through slipping and skidding, the sob wound up at the edge of an abyss, and I was sorely tempted to pull out the stones we had under the other three wheels, and let the sob go. However, we were out in the middle of no where, and the insurance people had recently paid me for a total-loss on a four-wheel-driving Ramcharger, so we finally got a tackle with three woodsmen, and tied to a treetrunk actually pulled the damn truck sidewise from the abyss, until I could coast down to a niche and turn around. But I think it does an old fart good to have the shit scared out of him now and then, Billie, don't you agree? Afterwards, at least for a time, an ordinary life seems by comparison quite enchanting.

This last trip, from which I returned last night, showed me the colossal difference adequate chains can make on a sob. (Fourwheeldrive $=$ sob). Due to rampaging rainstorms, no lumber trucks had been on the move for eleven days, so the whole range of El Viejo was my preserve. I hate meeting those trucks coming down the mountain, and having to back up a mile or two on the steep scary tracks before they can pass, with thousand-meter drops nudging me. Then, if C's with me, I turn the truck over to him for a while.

Incidentally, before the rains began, while El Viejo was dry as tinder, a forest fire broke out on the summit, burned fifteen days, and consumed the whole top of the mountain (utterly free of grazing) before it was finally put out by a hundred men, including Federal Troops. Supposedly, the fire was started by lightening, which is often blamed for our forest fires. But as you well know, we don't have forests like those of Oregon and British Columbia,
where you have impossible jumbles twenty-feet deep of new and ancient humus. Our forests are open, park-like, and I think they are almost always deliberately set on fire by one Miguelito, who invariably blames "un trueno" for the fire. As you may recall Mathiasella bupleuroides was a dominant species on the heights of El Viejo, which led me to solemnly promise Dr. Constance some seed. But now that it's utterly gone, what'll I do about my solemn promise? As the Jamaicans say-sheeeeeit, man? Maybe you could tell Dr. Constance that I didn't get his seed because I broke my ass, or something. (Kidding aside, though, I've found a few Mathiasella's down below, and hope they'll produce some seed for Dr. Constance-if the peripatetic asshole goat don't beat me to them.)

We've been trying to get a permit to collect and send herbarium specimens abroad, and we seem, strangely enough, to be on the right track. Among other things, I pointed out to the Lords of Inexorable Reason, that there are only about thirty botanical collectors in all Mexico. Assuming that each collector makes twenty trips a year, which is a lot, and assuming that at each trip each collector takes ten kilos of specimens, which is again a lot, (and without dwelling upon the fact that much collecting is a matter of pruning, which increases growth), we have 6,000 kilos of vegetation, a mere six tons of herbarium specimens a year. On the other hand, we have thirty-six million head of cattle, three million horses, and twenty-one million goats, sheep and pigs, for a total of sixty million grazing beasties. Assuming that half of these are properly taken care of in adequate grazing lands, which is a lot, and that the other half are turned out to graze the national territory helterskelter, we have thirty million cows, horses, goats, sheep and pigs eating not forage crops but everything in sight, including a coupe of tourists from Topeka, Kansas. Each of these miserable mangy starving shambling slutty slattern shabby shitty shiftless shameful sore-assed animals consumes at least ten kilos of vegetation per day, or a yearly 3,650 kilos, for a total of a hundred and eighty two million tons a year. Now, I ask you, Billie, with the aid of your trusty computer and other secret methods you no doubt have at your distinguished disposal, if you were a bush, a tree, a terrestrial orchid, or even an untouchable German tourist, what do you think would do more damage to our flora, thirty collectors bringing home, along with a moldy piece of pork crackling they gnawed at but didn't finish for lunch because of three broken teeth, six selected tons of herbarium specimens a year, or having thirty million mangy starving shitty shabby shady screwly sheddy sore-assed cattle chomping their way, just prior to dropping dead
of inanition, blind staggers, aids and Almyer's disease, chomping their way through a hundred and eighty-two million tons of assorted but unsustaining vegetation? I can tell you honestly, Billie, that at this question, rhetorical as it might seem to you and Guy, I could see a blush of shame mingled with a new and corruscating enlightenment dawning upon the faces of our honorably distinguished bureaucrats. Now, before you accuse me of slovenly thinking, by acidly pointing out that I've skipped both the not inconsiderable multitudes of donkeys and mules ravaging our countryside, let me hasten to assure you, Billie, that I'm saving both donkeys and mules as weapons of last resort. In case I ever find myself on the losing end of the argumentative stick, supposing some enlightened bureaucrat were to advance a disquisition to the effect that botanical collectors consume not ten but ten thousand kilos a trip, I could providentially throw the donkeys and mules into the gap, and still come out a winner of the scrap. But where would you place the emphasis? With the six tons of herbarium specimens we discriminating mortals collect each year, or with the hundred and eighty-two million tons devoured by our wretched scurvy scrounging scurrilous shitty cattle? Put a starving cow into a mixed forest, and what chance of survival does anything lower than a tree have? Off some trees, they'll even eat off the bark, girdling the trees as they die of hunger.

Kindest personal regards to you both.
Jaime

KARYOTAXONOMIC STUDIES ON WILD ECUADORIAN TUBER-BEARING SOLANUM, SECT. PETOTA
C.M. Ochoa
Genetic Resources Department, International Potato Center (CIP), P.O. Box 5969, Lima, PERU

ABSTRACT

A taxonomic and distributional summary is presented for the tuberbearing potatoes of Ecuador.

KEY WORDS: Solanum, Solanaceae, Ecuador, karyotaxonomy

After the recent monographic publications on Bolivian potatoes (Hawkes \& Hjerting 1989; Ochoa 1990), the tuber-bearing Solanum from Ecuador are some of the least known in sect. Petota, subsect. Potatoe. In the present paper, the author gives a brief summary of the Ecuadorian wild potato species as a result of his explorations and field works made in Ecuador, as well as his observations of living plants in CIP's experimental plots, and laboratory research. Exceptions, however, are S. baezense Ochoa (series Conicibaccata), S. andreanum Baker, and S. serratoris Ochoa (series Tuberosa), of which I did not have living material. Likewise, although I have made some herbarium collections, I have not included in this treatment and will not include in any of my further work, S. juglandifolium Dun. and S. ochranthum Dun. (series Juglandifolia).

Data given are mainly on the morphology of the species, habitat, geographical distribution, and my determinations on the chromosome number ($2 n$) and the Endosperm Balance Number (EBN).

These studies have also been complemented by examinations of exsiccatae collected in the past by other authors and presently housed in European, and North and South American herbaria.

The wild tuber-bearing species studied here have been taxonomically grouped in series. If identified synonyms are known, these are given for each species.
I. Solanum series Acaulia Juz., Bull. Acad. Sci. U.R.S.S., ser. Biol. 2:316. 1937 (nom. nud.); ex Buk. \& Kameraz, Bases of Potato Breeding. 21. 1959.

Solanum albicans (Ochoa) Ochoa, Phytologia 54(5):392. 1983. BASIONYM: Solanum acaule Bitt. var. albicans Ochoa, Agronomía, Lima 27:363-364. 1960. Solanum acaule Bitt. subsp. albicans (Ochoa) Hawkes, Scott. Pl. Breed. Rec. 117. 1963.

Plant small, rosette, short stem, very hairy, white hairs. Leaves 3-4 pairs of leaflets without or with few interjected leaflets. Corolla rotate, white or violet. Tubers round to elongate, $2-3 \mathrm{~cm}$ long, white.

Distribution: This species was found for the first time in Atocsaico, located in the Jalcas of Porcon at 3450 m alt., Province and Department of Cajamarca, northern Perú. Collections in Ecuador were made in Cerro Quilua, 3600 m alt. in route from Cerro Colorado to Carihuayrazo, Province Chimborazo and in Romerillo, ca. 3900 m alt., Canton Ambato, Province Tungurahua, under the V.n. of Curiquinga. Both collections have, as do the Peruvian Solanum albicans, $2 n=$ 72 chromosomes and $\mathrm{EBN}=4$. This species is highly resistant to frost $\left(-5^{\circ} \mathrm{C}\right)$.
II. Solanum series Conicibaccata Bitt. in DC., Prodr. 13(1):33. 1852.

Solanum albornozii Correll, Wrightia 2:178-179. 1961.
Leaves with numerous interstitial leaflets and (4-)5-6 pairs of folioles shortly petiolulate, glabrous or glabrescent, dark green and subvernicose above, puberulent in the lower surface, margins slightly revoluted. Corolla rotatepentagonal, white above, white with a pale violet strip on the back of each petal. Berry typically long-conical. Chromosome number: $2 n=24, \mathrm{EBN}=2$.

Distribution: So far it is collected only on the route from Loja to Catamayo, $2300-2600 \mathrm{~m}$ alt., Province Loja, Ecuador; mostly in humid thickets or bushes.
Solanum calacalinum Ochoa, Darwiniana 23(1):227-231. 1981.
This rare species is principally characterized by its small branched plant, very long stolons ($1.5-2.0 \mathrm{~m}$); small tubers $2-4 \mathrm{~cm}$), white, oval to round. Leaves glabrous, 3-4 pairs
of leaflets with long petiolules $(15-20 \mathrm{~mm}), 0-1(-2)$ pairs of interjected leaflets. Corolla rotate to rotate-pentagonal, very showy, large (4 cm). Berry long-conical with obtuse apex, 2.5 cm long. It is very susceptible to the attack of Phytophthora infestans and to the potato leafroll virus (PLRV). Chromosome number: $2 n=24$.

Distribution: Very restricted, so far it has been found only on Mount La Sirena, 3000 m alt. and Sillacunga, 2900 m alt., a few km from Calacali, Province Pichincha, on slopes of stony soil, with very poor vegetation.

Solanum colombianum Dun. in DC. Prodr. 13(1):33. 1852.
Solanum colombianum Dun. in DC. var. trianae Bitt., Fedde Repert. Sp. Nov. 11:382-383. 1912.

Solanum dolichocarpum Bitt., Fedde Repert. Sp. Nov. 12:4-5. 1913.

Solanum colombianum Dun. in DC. var. trianae Bitt. f. quindiuense Buk., Suppl. 47, Bull. Appl. Bot., Genet., Pl. Breed. 225-226. 1930.
Solanum colombianum Dun. in DC. f. zipaquiranum Hawkes, Bull. Imp. Bur. Pl. Breed. \& Genet., Cambridge. 112. 1944.
Solanum colombianum Dun. in DC. var. meridionale Hawkes, Bull. Imp. Bur. Pl. Breed. \& Genet., Cambridge. 112-113. 1944.
Solanum filamentum Correll, Wrightia 2:174-175. 1961.
Solanum caquetanum Ochoa, Phytologia 46(7):495-497. 1980.
Although the type locality of Solanum colombianum is Tovar, Estado de Mérida, Venezuela, in the time of Dunal, author of this species, the present territory of Venezuela, Colombia, and Ecuador were integrated under one nation named La Gran Colombia; hence the epithet of colombianum. This species has $3-5$ pairs of leaflets and 2-4 (6) pairs of interjected leaflets. Corolla rotate to rotatepentagonal, white to light bluish or to light purple. Tubers usually long-cylindrical or subcylindtical, up to 8 cm long and 2 cm thick. Berries long-conical to ovoid-conical, 3.5 cm long.

En route from Leito to Río Chico, Cordillera de Los Leones, Province Tungurahua, at 2870 m alt., in the edges of woods and shrubs, I found an abundant colony of Solanum colombianum $(2 n=48)$ locally called Papa de Monte which must have great resistance to the attack of Phytophthora
infestans. Its leaves showed a type of hypersensitive reaction proper for hosts with the major genes of resistance (R) against late-blight. Small areas with cultivated potatoes in the vicinities, on the contrary, were almost destroyed by this fungus. Chromosome number: $2 n=48, \mathrm{EBN}=2$.

Distribution: More in Colombia than in Venezuela or Ecuador, especially in the provinces of Cundinamarca and Boyacá. In Ecuador, the author found this species mostly in Tungurahua Province. Living in cloud forest at 2500 3500 m alt.

Solanum chomatophilum Bitt. f. angustifolium Correll, Wrightia 2:180. 1961.

Leaves 4-5 pairs of folioles and numerous interstitial leaflets. Folioles narrowly elliptic-lanceolate to lanceolate with subacute apex. Calyx asymmetric with longer lobes than the typical form. Berries ovoid. Resistant to Phytophthora infestans. Chromosome number: $2 n=24$, EBN $=2$.

Distribution: Provinces Napo-Pastaza, Azuay, and Carchi, Ecuador, and the highlands of Department La Libertad, Perú, occurs at elevations ranging from $2500-3200 \mathrm{~m}$ alt., usually in cold and wet shrubby areas.

Solanum paucijugum Bitt., Fedde Repert. Sp. Nov. 11:431. 1912.
Plant dwarf and bushy, $20-30(-50) \mathrm{cm}$ tall, sparsely pilose throughout. Tubers white, ovoid, $2-3 \mathrm{~cm}$ long. Leaves $2-3(-4)$ pairs of leaflets with (1-)2-3(-5) pairs of interjected leaflets, terminal leaflet much longer than the lateral. Corolla rotate-pentagonal, $2.5-2.8 \mathrm{~cm}$ in diameter, lilac to purple. Berries long-conical, light green with 2-3 vertical darker stripes, 2 cm long. Although it has some affinities with Solanum flahaultii from Colombia, both species are quite different in plant habit, leaf shape, and dissection and details of flowers. Chromosome number: $2 n=48, \mathrm{EBN}=$ 2.

Distribution: Central Ecuador, mostly in the provinces of Bolívar, Cotopaxi, Tungurahua, and Chimborazo between $3000-4000 \mathrm{~m}$ alt., in cloud forest, wet thickets and grassy slopes of páramos.

Solanum tundalomense Ochoa, Ann. Cient., Univ. Agr., Lima 1(1):106109. 1963.

Plant usually very tall, $3-4 \mathrm{~m}$ high, branched very sparsely pilose. Tubers small, $3-5 \mathrm{~cm}$ long, white, ovoid to long subcylindrical. Leaves (3-)4-5 pairs of leaflets, (0-)2-5(7) pairs of interjected leaflets, leaflets elliptic-lanceolate or narrowly elliptic-lanceolate with acute or acuminate apex. Corolla rotate, white or white with pale violet stripes. Berries long-conical, 3.5 cm long. Although this species has affinities with Solanum colombianum, I consider them to be different species. Besides the ploidy level, they have substantial differences both in the shape of the corolla and calyx morphology. It is resistant to Phytophthora infestans but very susceptible to Synchytrium endobioticum. The chromosome number, cited formerly by the author for Solanum tundalomense (see Ochoa 1972, p. 75) as $2 n=24$, unfortunately was mistyped. Counts made in more than 20 accessions of Solanum tundalomense from Ecuador have given $2 n=72, \mathrm{EBN}=4$.

Distribution: Widely distributed in Ecuador (in 10 of 20 provinces) with the highest concentrations in the provinces of Azuay and Cañar, occurs at elevations between 19003600 m alt. In shrubby and forest vegetation.
III. Solanum series Olmosiana Ochoa, An. Cient. Univ. Agr. 3:33. 1965. Solanum olmosianum Ochoa, An. Cient. Univ. Agr. 3:34-37. 1965.

So far, this is the only representative species of the series. Its main morphological characteristics are the shape and dissection of the leaf, 1-3 pairs of leaflets, the irregular and wide wings of the rachis extended all the way down to the petiole, leaves glabrous, corolla deeply stellate and white-cream, 2.0 cm in diameter, tubers white, oblong, 2-3 cm long, usually smooth. Solanum olmosianum was found for the first time in the margins of Olmos River, near El Sauce at 1640 m alt. in the Province and Department of Lambayeque, Perí. However, I have also found it in Tabla Rumi, at 2500 m alt., in the Province of Loja, Ecuador. The two mentioned collections have $2 n=24$ chromosomes, $\mathrm{EBN}=2$.

Distribution: Ecuador and Perú, in the lower interAndean valleys between $1600-2500 \mathrm{~m}$ alt., in shrubby thickets.
IV. Solanum series Tuberosa Rydberg, Bull. Torrey Bot. Club 51:146-147. 1924. nom. nud.

Tuberosa (Rydberg) Buk. (sensu stricto), ex Buk. \& Kameraz, Bases of Potato Breeding. 18. 1959.
Andigena Buk. ex Buk. \& Kameraz, Bases of Potato Breeding. 24. 1959.

Transaequatorialia Buk. ex Buk. \& Kameraz, Bases of Potato Breeding. 21. 1959.

Vaviloviana Buk. ex Buk. \& Kameraz, Bases of Potato Breeding. 18. 1959.

Andreana Hawkes, Bull. Imp. Bur. Pl. Breed. \& Genet., Cambridge. 2:50. 1944. nom. nud.

Minutifolia Correll, Texas Res. Found. Contrib. 4:216-218. 1962.

Solanum burtonii Ochoa, American Potato J. 59(6):263-266. 1982.
Plant to near 1 m tall, sparsely pilose throughout. Tubers white, $2-3 \mathrm{~cm}$ long, ovoid. Leaves, $3-4$ pairs of orbicular interstitial leaflets. Leaflets rugose, cordate at base shortly petiolulate, terminal leaflet broad ovate to ellipticlanceolate. Corolla rotate, small, 2 cm in diameter, light purple-lilac outside with central petal streaks from the petal base to tip of acumens. Berry unknown but the ovary is pyriform. This hybridogenic species known with the vernacular name of Papa de Monte or Papa Chavela has $2 n=$ 36 chromosomes.

Distribution: Found only in Montes de Nahuasu, at 3400 m alt., between Monte Negro and Salado, just above and behind the small waterfall in front of the village of Baños. Living in cloud forest associated with trees ($C e-$ drela, Cecropia, Juglans) and shrubs (Chusquea, Lupinus, several species of Melastomataceae, orchids and ferns).
Solanum correlli Ochoa, American Potato J. 58(5):223-225. 1981.
Plant tall, up to 2 m high, suffrutescent. Tubers usually moniliform. Leaves sparsely pilose, 3-4 pairs of leaflets, shortly petiolulate, (1-)2-3(-4) pairs of interjected sessile leaflets. Leaflets ovate to ovate-lanceolate. Calyx 5.5-6.0 mm with linear acumens $1.5-2.0 \mathrm{~mm}$ long. Corolla rather rotate-pentagonal than rotate, lilac, $3.0-3.5 \mathrm{~cm}$ in diameter. Berries ovoid to globose. Chromosome number: $2 n=24$, $\mathrm{EBN}=2$.

Distribution: So far found only near the shores of the Angas River, to an altitude of 2700 m , Chimborazo Province. In margins of humid forests or shrubby thickets.

Solanum minutifoliolum Correll, Wrightia 2:191. 1961.
Plant stout, erect, usually $30-60 \mathrm{~cm}$ tall, densely pilose. Tubers ovate, white. Leaves subcoriaceous, dark green and coarsely pubescent on upper surface, pale green, finely pubescent on lower surface, 1-2(-3) pairs of ellipticlanceolate shortly petiolulate leaflets and numerous to multiple several sizes of interjected leaflets, from (6-9-)11-20 (26) pairs often minute, subimbricated and mostly suborbicular. Terminal leaflet broader and longer than the lateral. Peduncle densely hirsute. Corolla substellate, deep purple, 2.5 cm in diameter. Berries globose to slightly ovoid, 1.5 cm in diameter. It is quite resistant to late blight caused by Phytophthora infestans. Chromosome number: $2 n=$ $24, \mathrm{EBN}=1$.

Distribution: Found in the provinces of Canar, Chimborazo, and Tungurahua, occurs at elevations between 28003100 m alt., mainly in cloud forest, in shrubby thickets or margins of woods associated with ferns, orchids, Fuchsia, Oxalis, Calceolaria, Melastomataceae, and many Compositae.

Solanum regularifolium Correll, Wrightia 2:194. 1961.
Plant ve ${ }^{* y}$ simple, $50-70 \mathrm{~cm}$ tall, sparsely pubescent throughout. Tubers white-yellowish, round to ovate, 3-4 cm . Leaves $3-4(-5)$ pairs of leaflets without interjected leaflets, leaflets sessile to shortly petiolulate, elliptic to elliptic-lanceolate, apex subacute to obtuse, base mostly rounded and oblique. Corolla pentagonal, light blue with white acumens, $2.5-3.0 \mathrm{~cm}$ in diameter. Calyx strongly asymmetric, very pubescent, 7 mm long, linear acumens. Chromosome number: $2 n=24$. Very susceptible to Phytophthora infestans in plant and tubers.

Distribution: Very limited, I found it only near the type locality, south of Guasuntos, Iltus, en route Riobamba towards Cañar, 2400 m alt., Chimborazo Province. The collection Correll \& Smith P827, made near Olmos on road to Jaen, Department Lambayeque, Perú, determined by Correll as Solanum regularifolium, in my opinion, belongs to S.
huancabambense Ochoa. The habitat of S. regularifolium is a narrow and very dry valley, with poor vegetation. I saw there only a few Gramineae and some trees of Schinus molle L .

Solanum suffrutescens Correll, Wrightia 2:183-184. 1961.
Solanum cyanophyllum Correll, Wrightia 2:180. 1961.
Plant shrubby, very branched, slightly pubescent. Stem subterete, slightly woody, strongly pigmented with reddishbrown. Tubers round or long subcylindrical up to 8 cm long and 1.5 cm thick. Leaves with narrow wings on the rachis, $3-4(-5)$ pairs of leaflets and (2-)5-7(-8) pairs of interjected decurrent leaflets, leaflets sessile to shortly petiolulate, elliptic-lanceolate with acute or shortly acuminate apex, base obliquely rounded. Calyx asymmetrical, narrowed lobes, linear acumens. Corolla rotate-pentagonal, $2.5-2.8 \mathrm{~cm}$ in diameter, deep purple to lilac, $2.5-3.0 \mathrm{~cm}$ in diameter. Berries ovoid to subglobose. Chromosome number: $2 n=24$, EBN $=2$.

Distribution: In Ecuador, between Magdalena and Balzapampa, mainly in the hills of Samosurco and Pisco-urco, also in Panjor and Guamote, at $2600-3700 \mathrm{~m}$ alt., Bolívar Province. In wet thickets of valleys and near páramos in edges of woods, frequently associated with Salvia, Calceolaria, Chusquea, Rubus, Compositae, and several species of grasses.
V. Solanum series Piurana Hawkes, Ann. Mag. Nat. Hist., Ser. 12. 7:693. 1954.

Solanum chilliasense Ochoa, Lorentzia 4:9-11. 1981.
Plant about 1 m tall, glabrous or glabrescent throughout. Tubers small, round to ovate, $1.0-2.0 \mathrm{~cm}$ long, white. Leaves dark green and subvernicose above, light green and opaque below, 2-3 pairs of shortly petiolulate leaflets and (1-)2-3 pairs of interjected sessile leaflets; terminal leaflet widely elliptic to elliptic-lanceolate with acuminate apex, much larger than the laterals. Corolla rotate, lilac with white acumens, $1.8-2.5 \mathrm{~cm}$ in diameter. Berries ovoid, 1.52.0 cm long. This species presents a type of hypersensitive
reaction to the attack of Phytophthora infestans, therefore, it is highly valuable for potato breeding programs dealing with major genes of resistance (R). Chromosome number: $2 n=24, \mathrm{EBN}=2$.

Distribution: So far has been found only in the vicinities of Cordillera de Chilla, between Burro Urco and Chilola, at 3450 m alt., El Oro Province. Usually in cold foggy places or cloud forest among shrubby thickets or edges of woods.

Solanum solisii Hawkes, Bull. Imp. Bur. Pl. Breed. \& Genet., Cambridge. 125-156. 1944.

Plant small, $30-40 \mathrm{~cm}$ tall, bushy, branched and rosette near base, glabrescent to sparsely pilose throughout. Tubers small, $1.0-3.0 \mathrm{~cm}$, round and white. Leaves with little shine, $1-2(-3)$ pairs of sessile leaflets, usually without interjected leaflets, terminal leaflet larger than the laterals, elliptic to broadly elliptic-lanceolate, lateral leaflets elliptic. Corolla lilac (2.0-) $2.5-3.5 \mathrm{~cm}$ in diameter, rotate with short and wide acumens with deep interpetalar notches giving an outline of multilobulate aspect. Berries ovoid to long-ovoid, $1.5-2.0 \mathrm{~cm}$ long.

Distribution: From central to south Ecuador, in the provinces of Tungurahua, Cañar, and Azuay, between 3500 4000 m alt., especially in thickets of high altitude páramos and grassy meadows.

Solanum tuquerrense Hawkes, Ann. Mag. Nat. Hist., Ser. 12. 7:693-697. 1954.

Plant robust, $50-60(-80) \mathrm{cm}$ tall, glabrous or glabrescent throughout. Tubers long, cylindrical or subcylindrical up to 8 cm long, whitish. Leaves olive-green vernicose above, pale green and opaque below, (2-)3-5 pairs of slightly revolute leaflets, interjected leaflets few to many (1-2-)4-8(-11) pairs, sessile or decurrent on the narrowly winged rachis. Lateral leaflets broadly elliptic or ovatelanceolate to narrowly elliptic-lanceolate with acute or shortly acuminate apex, subsessile. Terminal leaflet larger than laterals. Corolla rotate to rotate-pentagonal, blue-purple or violet purple, $2.5-3.5 \mathrm{~cm}$ in diameter. Berries long-ovoid to long-conical, 3 cm long and 1.7 cm broad. Chromosome number: $2 n=48$. $\mathrm{EBN}=2$.

Distribution: From Department Nariño, south of Colombia to the provinces of Carchi, Imbabura, Pichincha, Cotopaxi, and Napo in northern Ecuador at elevations between $3000-3450 \mathrm{~m}$. Occurs in cold places, grassy meadows, wet thickets or edges of woods.

LITERATURE REFERENCES

Correll, D.S. 1962. The Potato and its Wild Relatives. Texas Research Foundation, Renner, Texas, 606 pp .

Hawkes, J.G. 1990. The Potato, Evolution, Biodiversity and Genetic Resources. Belhaven Press, London, Great Britain. 259 pp.

Hawkes, J.G. \& J.P. Hjerting. 1989. The Potatoes of Bolivia. Their Breeding Value and Evolutionary Relationships. Clarendon Press, Oxford, Great Britain. 472 pp.

Ochoa, C.M. 1972. El Germoplasma de Papa en Sud América. pp. 68-86 in E.R. French (ed.). Prospects for the Potato in the Developing World. CIP, Lima, Perú.
1983. A new taxon and name changes in Solanum (sect. Petota). Phytologia 54(5):391-392.
1990. The Potatoes of South America: Bolivia. Cambridge University Press, New York, New York. 512 pp.

Spooner, D.M. \& T.R. Castillo. 1993. Synonymy within wild potatoes (Solanum sect. Petota: Solanaceae): The case of Solanum andreanum. Syst. Bot. 18(2):209-217.

Spooner, D.M. \& R.G. van den Berg. 1992. An analysis of recent taxonomic concepts in wild potatoes (Solanum sect. Petota). Genetic Resources \& Crop Evaluation 39:23-37.

TEXAS SPECIES OF MIRABILIS (NYCTAGINACEAE)

Billie L. Turner

Department of Botany, University of Texas, Austin, Texas 78713 U.S.A.

Abstract

A taxonomic treatment of the Texas species of Mirabilis (s.l.) is rendered. Thirteen species are recognized: M. albida, M. austrotexana B.L. Turner, spec. nov., M. comata, M. gigantea, M. glabra, M. hirsuta, M. jalapa, M. linearis, M. longiflora, M. multiflora, M. nyctaginea, M. oxybaphoides, and M. texensis (Coulter) B.L. Turner, comb. et stat. nov. This stands in marked contrast with the most recent accounts of the Texas species rendered by Reed (1969) and Correll \& Johnston (1970), both treatments recognizing 29 species. All of the names used by these authors are appropriately accounted for in the taxonomic treatment, and a key to the Texas species is provided, along with maps showing distributions.

KEY WORDS: Nyctaginaceae, Mirabihis, Oxybaphus, Texas

Mirabilis (sensu lato) is a New World genus of perhaps some 50 or more species, mostly confined to North America (Heimerl 1934). Standley (1909, $1911,1918)$ and others after him, segregated from Mirabilis several natural groupings such as Alıonia L., Hesperonia Standl., Oxybaphus L'Herit., and Quamoclidion Choisy, treating these as genera. But Standley (1931) recanted and reverted to Heimerl's generic concept, and most recent workers have tended to accept Mirabilis in the broad sense (e.g., Pilz 1978; Le Duc 1993).

Mirabilis (s.l.) is well represented in the Texas flora, the most recent treatments recognizing 29 species (Reed 1969; Correll \& Johnston 1970). Attempts to use either of the latter contributions is certain to induce taxonomic consternation of the most severe sort. This is largely due to the very superficial treatment accorded the group by Reed. His treatment placed considerable emphasis upon habit, leaf shape, and vestiture, characters which are very variable both within and between populations. He did little, if any, field work in connection with his study.

Indeed, Reed's treatment of Mirabilis for Texas is essentially unusable; his keys and annotations make little biological sense and, as noted in my comments under M. austrotexana B.L. Turner, one is left with the impression that he was not deeply involved with the taxonomic process in this instance, or else had little interest in providing a meaningful treatment with biological merit. It is unfortunate that Correll \& Johnston chose to follow his treatment; this has caused a generation of workers, both professional and amateur, to throw up their hands in despair, myself included.

After many years of frustration in my attempts to identify Mirabilis species in Texas and northern México, I decided to start from scratch and work up the genus in this region based upon my own field experience, taxonomic concepts, and character analysis. In this I emphasized mainly fruit characters and placed relatively little emphasis upon leaf shape and vestiture. In addition, I attempted to relate morphological characters, whatever their nature, with ecogeographical variables. In short, an effort was made to recognize morphogeographical populational units that represent my best estimates of biological species. I was surprised and pleased by the results obtained. Instead of the 29 species proposed for Texas by Reed, only thirteen species seem deserving of specific status. This number might be increased to fourteen if one opts to recognize Mirabilis dumetorum Shinners, but if the latter is to be accepted it must bear a newly constructed name, M. latifolia (= Allionia latifolia [A. Gray] Standl.). Mirabilis dumetorum appears to be a broad-leafed form of the widespread exceedingly variable M. albida (Walt.) Heimerl, as noted under the latter.

The following key should prove useful in attempts to identify the thirteen species recognized here. In combination with the maps provided, relatively little difficulty should be encountered in understanding my taxonomic views regarding this group in Texas, or elsewhere.

KEY TO TEXAS MIRABILIS

1. Perianths $3-17 \mathrm{~cm}$ long. ..(2)
2. Perianths $1-2 \mathrm{~cm}$ long.
3. Involucres with 3-10 flowers. M. multifora
4. Involucres with 1 flower.
5. Perianths $10-17 \mathrm{~cm}$ long, mostly white. M. longiflora
6. Perianths $3-6 \mathrm{~cm}$ long, variously pink to purple, rarely white. . M. jalapa
7. Anthocarps ovoid, ribless, glabrous and essentially smooth; trans-

8. Anthocarps mostly ellipsoid, variously pubescent, or if glabrous then clearly ornate with ribs or tubercles.
9. Anthocarps glabrous; stems stiffly erect, mostly glabrous and $1-2 \mathrm{~m}$ high; mostly sandy soils of northwestern Texas. M. glabra
10. Anthocarps to some extent pubescent, either pilose or short-glandular, mostly in silty or silty-clay soils (in sandy soils mainly in trans-Pecos, central, and southern Texas).
11. Leaves linear to linear-lanceolate, mostly $2-10 \mathrm{~mm}$ wide; anthocarps conspicuously and rather evenly short-pilose, only a smattering of much shorter glandular hairs present, if at all. M. linearis
12. Leaves lanceolate to cordate, mostly $10-80 \mathrm{~mm}$ wide; anthocarpsvariously pubescent, but if so, the leaves ovate to cordate.
13. Stiffly erect, simple-stemmed, robust herbs mostly $1-2 \mathrm{~m}$ high; mostly deep sandy soils of northcentral and southern Texas. (8)
14. Sprawling to erect herbs mostly $0.3-0.8 \mathrm{~m}$ high; mostly alluvial, silty clay in calcareous soils. (9)
15. Anthocarps conspicuously pubescent with a mosaic of mostly tufted hairs ca. 0.5 mm long; stems strigo-puberulent, hairs strongly up- curved and eglandular; northcentral Texas. M. gigantea
16. Anthocarps faintly pubescent with scattered pilose hairs ca. 0.3 mm long or less; stems pilose, hairs often glandular, or stems glabrous or glabrate; southern Texas. M. austrotexana
17. Anthocarps densely glandular-pubescent throughout with very short hairs; trans-Pecos. M. texensis
18. Anthocarps variously pubescent with well-developed eglandular pilose hairs, any glandular hairs much shorter and of secondary notability. (10)
19. Stem leaves sessile or nearly so, densely hirsute; northwestern Texas. M. hirsuta
20. Stem leaves various but usually to some considerable extent petio- late, glabrous to sparsely or moderately hirsute. (11)
21. Midstem leaves mostly $4-8 \mathrm{~cm}$ wide, the blades broadly obtuse, truncate or cordate at base; flowers mostly arranged in rather congested terminal clusters; northern Texas.
22. Midstem leaves mostly $1-4 \mathrm{~cm}$ wide, the blades gradually tapering upon the petioles, or abruptly truncate to cordate; flowers variously arranged but often in open divaricate corymbose panicles.
23. Leaves mostly cordate; involucres melanic, pubescent with uniseriate multiseptate trichomes, at least the cross-walls purplish or blackish in color; Franklin Mts., El Paso Co., rare. M. comata
24. Leaves mostly lanceolate, broadly ovate to rarely cordate; involucres mostly not melanic, the trichomes with \pm white or tawny crosswalls; widespread and common.
M. albida

Mirabilis albida (Walt.) Heimerl, Ann. Cons. Jard. Geneve 5:182. 1901. BASIONYM: Allionia albida Walt. Mirabilis nyctaginea (Michx.) MacMillan var. albida (Walt.) Heimerl, Oxybaphus albidus (Walt.) Sweet

Allionia coahuilensis Standl. Mirabilis coahuilensis (Standl.) Standl.
Oxybaphus coahuilensis (Standl.) Weatherby Oxybaphus coahuilensis (Standl.) Weatherby
Allionia grayana Standl. Mirabilis grayana (Standl.) Standl.
Allionia latifolia (A. Gray) Standl. Oxybaphus nyctagineus (Michx.) Sweet var. latifolius A. Gray
Allionia oblongifolia (A. Gray) Small. Mirabilis oblongifolia (A. Gray) Heimerl. Oxybaphus nyctagineus (Michx.) Sweet var. oblongifolius A. Gray

Allionia pseudaggregata (Heimerl) Weatherby. Mirabilis pseudaggregata Heimerl. Oxybaphus pseudaggregata (Heimerl) Standl.
Allionia rotata Standl. Mirabilis rotata (Standl.) I.M. Johnst.
Mirabilis albida (Walt.) Heimerl var. lata Shinners
Mirabilis dumetorum Shinners
Mirabilis entricha Shinners
Mirabilis muelleri Standl.
Mirabilis pauciflora (Buckl.) Standl. Oxybaphus pauciflorus Buckl.
As indicated by the above partial synonymy, and many more names not listed (cf. Reed 1969), Mirabilis albida is the most widespread highly variable species of Mirabilis in North America. This is probably due to its phenotypic plasticity and in large measure to its proclivity towards cleistogamic reproduction, presumably compounded by occasional hybridization with the many species with which it is sympatric. In any case, I accept a wide range of habit forms, leaf types, and vestiture in the complex. These various forms have been keyed and recognized as this or that species by Reed and yet others. But if
one examines carefully such plants they are very uniform as regards anthocarp shape. ornamentation, and vestiture. Characteristically, their anthocarps are markedly tuberculate, usually including the $4-5$ ribs; at least to some degree, they are irregularly pubescent with tufted white hairs ca. 0.5 mm long; beneath the latter there is nearly always a minute layer of much shorter glandular hairs. Hairs of the latter type are not normally found in any large numbers on yet other species from Texas (for example, on anthocarps of M. nyctaginea, which has otherwise similar fruits to those of M. albida, nor are they found on fruits of M. linearis (Pursh) Heimerl, M. glabra (S. Wats.) Standl., or M. austrotexana, all of which might be confused with M. albida (given the aberrant individual among these). I am reasonably confident about my judgment with respect to the above treatment. I am, however, not especially sure of my relegation of M. dumetorum to synonymy. In spite of Shinners' certainty about its specific status, I believe what he has done is to select broad-leafed, pubescent-stemmed forms of otherwise typical M. albida, dubbing these M. dumetorum. For example, Travis County contains numerous sheets assignable to both M. dumetorum and M. albida by use of Shinners' (1951) key to species, but these do not appear to form discrete populational units. Indeed, various intermediate conditions in those characters states which purportedly distinguish between the species are found, suggesting that only a single variable taxon is concerned. Nevertheless, I might be wrong in this conjecture and, because of this, I have shown in Figure 1 the distribution of those leaf forms (by closed circles) which seem to conform to Shinners' concept of M. dumetorum. It will be seen that such plants occur over a broad region, but always confined within the broad distribution of M. albida.

In any case, if one accepts the biological reality of Mirabilis dumetorum, its correct name must be M. latifolia, as noted in my introduction to the present paper. The latter is based upon Oxybaphus nyctagineus var. latifolius A. Gray in Torr., U.S. and Mex. Bound. Surv. Bot. 174. 1859. TYPE: USA. Texas: Travis Co., near Austin, May 1849, C. Wright 603 (LECTOTYPE [designated here]: GH!). Several collections were cited or referred to by Gray in his protologue. I have selected as lectotype one of two sheets bearing Wright's collection number 603, both collected in the vicinity of Austin, Texas. The isolectotype is essentially sterile, while the lectotype itself has excellent fruiting material, the anthocarps are almost exactly like those of M. albida, both as to ornamentation and vestiture.

Mirabilis entricha Shinners appears to be a form of M. albida with somewhat longer stem-hairs than is typical for the species. I believe that most of the other names listed in the above synonymy are reasonably certain, although I suspect that names applied to some of the Mexican collections might ultimately prove worthy of at least varietal recognition. Indeed, M. comata is very closely related to M. albida, and might be treated as a regional morphogeographical variety of the latter without much ado; I have retained the former

Figure 1. Distribution of Mirabilis albida and M. comata in Texas and closely adjacent areas: M. albida, leaves lanceolate to ovate (open circles); leaves ovate to cordate (closed circles); M. comata (open triangles).
as a species because it is largely allopatric with M. albida and undeniable intermediates at the periphery of their distributions have not been found so as to suggest varietal status.

Mirabilis austrotexana B.L. Turner, spec. nov. TYPE: U.S.A. Texas: Cameron Co.: Port Isabel, near the coast in sandy soil, 20 Nov 1964, Robert Runyon 5831 (HOLOTYPE: TEX; Isotype: TEX).

Mirabili giganteae (Standl.) Shinners similis sed differt caulibus glabris vel pilosis trichomatibus patentibus saepe glandulosis (vs. rigide strigosis trichomatibus incurvatis nonglandulosisque et anthocarpis costis laevibus, inter costas sparsim pubescentibus trichomatibus minutis non caespitosisque (vs. costis nodosis, inter costas moderate pubescentibus trichomatibus caespitosis).

Stiffly erect robust perennial herbs mostly $0.8-1.5 \mathrm{~m}$ high. Stems mostly reddish brown, sparsely to densely pilose with spreading, often glandular, trichomes, rarely glabrous throughout. Midstem or lower leaves succulent, broadly lanceolate to ovate, sparsely pubescent to glabrous, mostly $6-12 \mathrm{~cm}$ long, $2-5 \mathrm{~cm}$ wide; petioles $0.3-2.0 \mathrm{~cm}$ long. Flowers arranged in terminal corymbose panicles $10-30 \mathrm{~cm}$ long, $10-15 \mathrm{~cm}$ wide. Fruiting involucres $8-12 \mathrm{~cm}$ across, 5 -lobed, the lobes united for $1 / 2$ their length or more. Flowers mostly 3 per involucre. Corollas rotate, mostly described as pink. Anthocarps mostly 4.55 .5 mm long, $2.0-2.5 \mathrm{~mm}$ wide, about equally tapering at both ends, the 5 ribs mostly smooth and glabrous to sparsely short-pilose, between these the surface variously tuberculate, but nearly always bearing a collection of thin short-pilose hairs readily observable at $30-40 \times$.

REPRESENTATIVE SPECIMENS (from among $40+$ collections): U.S.A. Texas. Aransas Co.: dunes, ca. 300 yards back from Gulf, 31 Apr 1965, Turner 5164 (NY,TEX). Atascosa Co.: ca. 10 mi N of Pleasanton in deep Carrizo sand, 6 Oct 1985, Nesom 5203 (TEX); 4 mi NE of Pleasanton, 19 May 1980, Turner 80-56M (TEX). Bexar Co.: Essar Ranch, W of San Antonio, 2 Jan 1948, Burr 227 (NY). Brooks Co.: 10 mi N of Encino, 16 Apr 1954, Johnston 54500 (TEX); between Encino and United Carbon Black Plant, 16 Apr 1954, Johnston 54500 (TEX); Falfurrias, 30 Nov 1951, Tharp 52-561 (TEX). Cameron Co.: South Padre Isle, 3 Jun 1966, Burlage s.n. (TEX); dunes at mouth of Rio Grande, 10 Feb 1969, Correll 36778 (LL); 5 mi W of Boca Chica, 2 May 1940, Lundell \& Lundell (LL); Brazos Island State Park, 27 Aug 1977, Richardson 2545 (TEX); same locality, 26 Nov 1977, Richardson 2606 (TEX); clay dunes along Boca Chica Road near coast, 16 Jul 1935, Runyon 3507 (TEX); Point Isabel, 29 Apr 1959, Runyon 4669 (TEX). Jim Wells Co.: 2 mi S of Premont, 1-5 Aug 1921, Ferris \& Duncan 3249 (MO).

Kennedy Co.: near Rudolph, S of Norias, 3 Jan 1963, Correll 26919 (TEX). Lavaca Co.: ca. 18 mi SE of Yoakum, 16 Jul 1949, Tharp 49211 (TEX). Medina Co.: ca. 3 mi S of Devine, 28 Oct 1952, Correll 15709 (LL). Willacy Co.: Yturria Station, 8 May 1949, Runyon 4321 (TEX).

Reed (1969), both by citation and annotation, inexplicably treated this very natural populational complex from southern Texas (Figure 2) as belonging to six disparate species: M. albida, M. dumetorum, M. exaltata (Standl). Standl., M. gigantea, M. nyctaginea, and M. oblongifolia. As already noted, this was largely due to his emphasis upon habit, leaf shape, and vestiture. In short, he keyed and recognized states of these characters as representing species irrespective of their morphogeographical correlation with other characters.

Mirabilis comata (Small) Standl., Publ. Field Mus. Bot 8:306. 1931. BASIONYM: Allionia comata Small. Oxybaphus comatus (Small) Weatherby.

Reed (1969) positioned this taxon in synonymy under his concept of Mirabilis oblongifolia. I treat the latter as synonymous with the widespread, highly variable, M. albida. The type of M. comata is from southwestern New Mexico and is part of a populational complex largely confined to Arizona, New Mexico and closely adjacent states, including México (Figure 1). The taxon is closely related to M. albida but is seemingly readily distinguished by its usually cordate, long-petiolate leaves, sprawling habit and involucral vestiture of mostly darkened trichomes, as noted in the key to species. Only a single collection has been examined from Texas (Franklin Mountains, El Paso Co., Worthington 8472 [TEX]).

Mirabilis gigantea (Standl.) Shinners, Field \& Lab. 19:177. 1951. BASIONYM: Allionia gigantea Standl. Oxybaphus giganteus (Standl.) Weatherby.

As noted by Shinners (1951) this is a well-marked taxon largely confined to loose sandy soils of north-central Texas (Figure 2). It was also retained by Reed (1969) who confounded its distribution by citation of specimens of yet other taxa. Mirabilis gigantea has the habit of M. austrotexana but the latter is readily distinguished by its vestiture and anthocarps, as noted in the key to species.

Mirabilis glabra (S. Wats.) Standl., Publ. Field Mus. Bot. 8:304. 1931. BASIONYM: Oxybaphus glaber S. Wats. Allionia glabra (S. Wats.) Kuntze

Figure 2. Distribution of Mirabilis austrotexana (open circles); M. gigantea (closed circles); and M. glabra (open triangles).

Allionia carletonii Standl.

Allionia ciliata Standl. Mirabilis ciliata (Standl.) Shinners.
Allionia exaltata Standl. Mirabilis exaltata (Standl.) Standl. Oxybaphus exaltatus (Standl.) Weatherby.

I cannot distinguish Mirabilis exaltata from M. glabra, although Reed (1969) and Correll \& Johnston (1970) maintained both of these, distinguishing among them by relatively trivial features (mainly leaf shape and vestiture). Shinners (1951) also maintained M. carletonii and M. exaltata but notes that some of the former may "have pubescent fruits instead of glabrous ones". I presume that this observation was due to his misidentification of robust forms of M. linearis with M. carletonii (= M. glabra). In the Flora of the Great Plains (1986) it is noted that "Some specimens [of M. glabra] are difficult to distinguish from M. exaltata and we suspect intergradation." As already noted, I believe the two are indistinguishable. Its distribution in Texas and closely adjacent areas is shown in Figure 4.

Mirabilis hirsuta (Pursh) MacMillan, Metasp. Minn. Valley 217. 1892. BASIONYM: Allionia hirsuta Pursh. Mirabilis nyctaginea (Michx.) MacMillan var. hirsuta (Pursh) Heimerl. Oxybaphus hirsutus (Pursh) Sweet.

This taxon is recognized as a species with some reservation. Heimerl, as noted in the above (only partial) synonymy, treated it as a variety of Mirabilis nyctaginea, but I suspect that as treated by most American workers, it is a hodge-podge of hirsute specimens belonging to several species, mainly M. albida and M. nyctaginea. For example, Steyermark (1963), in his Flora of Missouri retained the species, but it seems clear from his key and distribution maps that it might be better treated as a leaf form of M. albida.

In the treatment of Mirabilis for the Flora of the Great Plains (Great Plains Flora Association 1986) M. hirsuta is said to be rare in Kansas and Missouri, and unreported from Oklahoma, but from my own map (Figure 4), it can be seen that forms referable to this taxon, as identifiable by their key, occur as far south as northern Texas and adjacent Oklahoma. In truth, I take such plants to be hirsute forms of M. albida but have mapped these as M. hirsuta. It should be noted that the specimens of M. hirsuta cited by Reed from Jeff Davis County, Texas are almost certainly hirsute forms of M. albida, both taxa occurring at the same site and apparently "intergrading" (Hanson 506ab [LL,TEX]).

In short, Mirabilis hirsuta, if accepted as a biological entity, might best be treated within the M. albida complex, but its regional distribution, interpopulational variability, and typification needs additional study.

Figure 3. Distribution of Mirabilis glabrifolia (open circles) and the closely related M. texensis (closed circles).

Figure 4. Distribution of Mirabilis hirsuta (open circles) and M. jalapa (closed circles) in Texas and closely adjacent areas.

Mirabilis jalapa L., Sp. Pl. 177. 1753.
Mirabilis jalapa L. var. lindheimeri (Standl.) Cory. BASIONYM: Mirabilis jalapa L. subsp. lindheimeri Standl. Mirabilis lindheimeri (Standl.) Shinners.

Shinners (1951), Reed (1969), and Correll \& Johnston (1970) recognized both Mirabilis jalapa and M. lindheimeri as distinct species. Le Duc (1993), who monographed the subgenus Mirabilis, did not recognize infraspecific taxa under this widespread (Figure 4) highly variable, commonly cultivated species, many clones of which escape cultivation and persist.

Mirabilis linearis (Pursh) Heimerl, Ann. Cons. Jard. Bot. Geneve 5:186. 1900. BASIONYM: Allionia linearis Pursh. Oxybaphus linearis (Pursh) B.L. Robins.

Allionia decumbens (Nutt.) Spreng. Calymenia decumbens Nutt. Mirabilis decumbens (Nutt.) Daniels.
Allionia diffusa Heller. Mirabilis diffusa (Heller) Reed.
Allionia gausapoides Standl. Mirabilis gausapoides (Standl.) Standl.
Allionia vaseyi Standl.
As conceived here, this is a widespread highly variable taxon occurring over a broad region (Figure 5). It is sympatric with a number of other taxa and possibly forms the occasional hybrid with them. Reed (1969) and Correll \& Johnston (1970) maintained Mirabilis decumbens, M. gausapoides, and M. exaltata; the first two appear to be decumbent and erect forms of M. linearis respectively, while M. exaltata (the type from Kansas) appears to be an unusually broad-leaved, pubescent-stemmed form with achenes essentially the same as found in typical M. linearis. It is likely that M. exaltata is of hybrid origin between M. linearis and M. hirsuta, the two taxa presumably occurring in close proximity upon occasion. Regardless, the anthocarps of all of these reputed species are seemingly identical, and are distinguished from those of M. albida (with which it might be confused in habit) by their relatively uniform short pilosity, and few, if any, much shorter glandular hairs beneath the pilose vestiture.

[^0]Texas material of this species belongs to the widespread Mirabilis longiflora var. wrightiana (A. Gray) Kearney \& Peebles. The var. longiflora is largely

Figure 5. Distribution of Mirabilis linearis (open circles) and the superficially similar M. nesomii (closed circles).
restricted to southern México (Figure 6). Various workers have treated these two varieties as good species, but Le Duc (1993) maintained their varietal status.

Mirabilis multiflora (Torr.) A. Gray., Bot. Mex. Bound. Surv. 173. 1859. BASIONYM: Oxybaphus multiflorus Torr. Quamoclidion multiflorum (Torr.) Torr. \& A. Gray.

Standley (1911) recognized this taxon, along with three others, as belonging to the genus Quamoclidion. In 1931, however, Standley repositioned the taxon in Mirabilis, following the treatment of Heimerl (1889). Heimerl (1934), in a definitive monograph, retained Quamoclidion in Mirabilis, as did Reed (1969).

Pilz (1978) has provided the most recent account of Quamoclidion, treating this as a subgenus of Mirabilis with six species, only one of which occurs in Texas, M. multiflora. Three more or less regional allopatric varieties of the latter were recognized by Pilz, ours belonging to the var. multiflora, which is confined to the trans-Pecos regions (Figure 7).

Mirabilis nyctaginea (Michx.) MacMillan, Vetasp. Minn. Valley 217. 1892. BASIONYM: Allionia nyctaginea Michx. Oxybaphus nyctagineus (Michx.) Sweet.

Mirabilis collina Shinners.
This widespread highly variable species, with its large somewhat sprawling habit, very large broadly ovate to subcordate leaves. and subfasciculate terminal inflorescence is rather easily recognized. In floral and fruit characters, however, it is very similar to Mirabilis albida, with which it is partially sympatric ($c f$. Figures 1 and 8).

Shinners (1951) thought Mirabilis collina to be "A very restricted endemic of the northwestern limits of the East Texas Pine Belt, suggesting a more delicate, more showy, and finely pubescent equivalent of M. nyctaginea; flowering rather early in the spring." Reed (1969) and Correll \& Johnston (1970) retained the species. Shinners distinguished (in key form) M. collina from M. nyctaginea by vestiture (upper internodes pubescent or glabrous, lower internodes glabrous in M. nyctaginea vs. all internodes pubescent in M. collina), while Reed (1969) attempted to distinguish between these by mainly fruit characters (4 ribs in M. collina vs. 5 ribs in M. nyctaginea) and root-branching. In view of the considerable variation found in these characters, both within and between populations of M. nyctaginea, I have little hesitancy in treating M. collina as but a populational variant of the latter.

Figure 6. Distribution of Mirabilis longiflora: var. longiflora (open circles); var. wrightii (closed circles).

Figure 7. Distribution of Mirabilis multiflora.

Mirabilis oxybaphoides (A. Gray) A. Gray, Bot. Mex. Bound. Surv. 173. 1859. BASIONYM: Quamoclidion oxybaphoides A. Gray. Allioniella oxybaphoides (A. Gray) Rydb.

Oxybaphus wrightii Hemsl.
This taxon in Texas occurs only in the trans-Pecos (Figure 8). Early workers positioned it in the monotypic genus Allioniella, but most subsequent workers have positioned the species in Mirabilis (Heimerl 1934; Reed 1969; Correll \& Johnston 1970).

Mirabilis oxybaphoides, in vegetative features, superficially resembles several species of Mirabilis in Texas, but is readily distinguished from all such by its smooth, glabrous ovoid achenes.

Mirabilis texensis (Coulter) B.L. Turner, comb. et stat. nov. BASIONYM: Allionia corymbosa Cav. var. texensis Coulter, Contr. U.S. Natl. Herb. 2:351. 1894. Allionia texensis (Coulter) Small, Fl. Se. U.S. 406. 1903. TYPE: U.S.A. Texas. Hudspeth Co.: north base of Eagle Mountains, 3 Sep 1849, C. Wright 605 (HOLOTYPE: US!; Isotype: GH!).

Reed (1969) placed this taxon in synonymy with his concept of M. glabrifolia (G. Ortega) I.M. Johnst., to which it is closely related. Except for the type, all of the specimens cited by him belong to yet other taxa. Mirabilis glabrifolia is relatively widespread in México but does not occur in Texas. Mirabilis texensis is readily distinguished from the latter by its thicker, more uniformly cordate leaves. It is restricted to the Chihuahuan desert regions of western Texas and closely adjacent Coahuila, México, as shown in Figure 3.

ADDITIONAL NAMES RECOGNIZED BY REED FOR TEXAS AND NOT ACCOUNTED FOR IN THE ABOVE ACCOUNT

Mirabilis aggregata (Ort.) Cav.
This name was originally applied to Mexican material which I treat as synonymous with Mirabilis glabriflora Ort. The latter does not occur in Texas.

Mirabilis coccinea (Torr.) Benth. \& Hook.
Reed listed this plant for Texas, but saw no specimens, nor have I. It is native to more western areas, mainly Arizona and closely adjacent states.

Figure 8. Distribution of Mirabilis nyctaginea (open circles) and M. oxybaphoides (closed circles) in Texas and closely adjacent regions.

ACKNOWLEDGMENTS

This study is based upon the study of approximately 1,000 specimens, mostly on file at LL, TEX. It was supplemented by the examination of critical collections and type specimens from GH and US. I am grateful to the latter institutions for the loan of these materials. Guy Nesom kindly provided the Latin diagnosis, and both he and Mark Mayfield reviewed the manuscript. Jackie Poole also read the paper and made helpful suggestions.

LITERATURE CITED

Correll, D.S. \& M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas.

Great Plains Flora Association. 1986. Flora of the Great Plains. Univ. Press of Kansas, Lawrence, Kansas.

Heimerl, A. 1934. Nyctaginaceae, in Engler \& Prantl, Die Natürlichen Pflanzen. 2, 16C:86-134.

Le Duc, F.A. 1993. Systematic study of Mirabilis section Mirabilis (Nyctaginaceae). Doctoral Dissertation, Univ. of Texas, Austin, Texas.

Pilz, G.E. 1978. Systematics of Mirabilis subgenus Quamoclidion (Nyctaginaceae). Madroño 25:113-132.

Reed, C.F. 1969. Mirabilis, in Flora of Texas. 2:160-188.
Shinners, L.H. 1951. The North Texas species of Mirabilis (Nyctaginaceae). Field \& Lab. 19:173-182.

Standley, P.C. 1909. The Allioniaceae of the United States with notes on Mexican species. Contr. U.S. Natl. Herb. 13:372-430.
1911. The Allioniaceae of Mexico and Central America. Contr. U.S. Natl. Herb. 13:377-430.
1918. Allioniaceae, in N. Amer. Fl. 21:171-254.
931. Studies of American plants V. Field Mus. Nat. Hist., Bot. Ser. 8:293-298.

Steyermark, J. 1963. Flora of Missouri. Iowa State Univ. Press, Ames, Iowa.

TAXONOMY OF DOELLINGERIA (ASTERACEAE: ASTEREAE)

Guy L. Nesom
Department of Botany, University of Texas, Austin, Texas 78713 U.S.A.

ABSTRACT

Doellingeria has most recently been treated within Aster, but it is here regarded as a distinct genus comprising eleven species. The five species of sect. Doellingeria are divided between eastern Asia (two species) and eastern North America (three species), while the six species of sect. Cordifolium are restricted to eastern Asia. The genus is hypothesized to be as closely related to Solidago and its relatives as to Aster.

KEY WORDS: Doellingeria, Aster, Astereae, Asteraceae

The genus Doellingeria was established by Nees (1832) and recognized by him as a group divided between North America and Asia. DeCandolle (1836) accepted Doellingeria as a distinct genus but restricted it to Asian species, inexplicably relegating the type (D. umbellata [Mill.] Nees) and other North American species to the genus Diplostephium Kunth. Doellingeria was accepted for a period during the 19th century, until Bentham (in Bentham \& Hooker 1873) included it within a greatly expanded, heterogeneous Aster. Asa Gray maintained Doellingeria as a distinct genus in various treatments but finally submerged it within Aster in his Synoptical Flora (1884), deciding to adopt Bentham's view. Most North American botanists subsequently have subscribed in some degree to the concept of a conglomerated Aster advocated by Bentham and Gray, but some have continued to recognize Doellingeria as distinct (e.g., Greene 1896; Rydberg 1917; Small 1933; Correll \& Johnston 1970). Two recent studies of Aster in a relatively broad perspective (Jones 1980; Semple \& Brouillet 1980) retained Doellingeria within Aster, although their justification for including it was not explicit.

The revisional study of Aster subg. Doellingeria (Semple et al. 1991) clarified the variation patterns of the North American taxa and their corresponding taxonomy, but the Old World taxa were not considered. Following an early judgment by Asa Gray (1884), recent treatments by Jones (1980), Semple \&

Brouillet (1980), and Semple et al. (1983) have included A. reticulatus Pursh in subg. Doellingeria, but that species is here considered to lie outside the bounds of Doellingeria (see comments below).

Some Asian taxonomists have recently recognized the distinctiveness of Doellingeria (e.g., Ling et al. 1985), but a number of "doellingerioid" Asian species have been retained within Aster. Tamamschyan (1959), apparently following DeCandolle, regarded the genus as monotypic, comprising only the Old World D. scabra (Thunb.) Nees. In China and Japan, where the greatest number of Doellingeria species occur, they have been treated either as Aster or Kalimeris Cass. (Kitamura 1936, 1937; Ohwi 1965; and literature citations below). Thus, Doellingeria as a genus has never been consolidated. The nature of the relationship between the Asian and American species of the genus apparently has only been considered by Bentham (in Bentham \& Hooker 1873), who observed a strong relationship between the Asian D. scabra and the American D. infirma (Michx.) E. Greene.

As interpreted here, the boundaries of Aster do not encompass Doellingeria, which has ancestry closer to Solidago and related genera (comments below). Doellingeria comprises eleven species in two main groups: those of sect. Doellingeria have lanceolate, entire to serrulate, essentially epetiolate leaves, while those of sect. Cordifolium have ovate, coarsely toothed leaves with a distinct, narrowly winged petiole. There is a named hybrid (see below) between species of the two sections. Three species of sect. Corúifolium ser. Cordifolium have strongly foreshortened pappus and have been treated within the genus Kalimeris. Gu (1987, in press) excluded these species from Kalimeris but has not suggested an alternate placement for the group.

The five species of sect. Doellingeria are divided between eastern Asia and eastern North America, while the six of sect. Cordifolium are restricted to eastern Asia. Doellingeria scabra (sect. Cordifolium) occurs widely in eastern China, Japan, Korea, and northward into the Manchurian region of China and Russia; D. marchandii (Levl.) Ling and D. longipetiolata (Chang) Nesom (sect. Cordifolium) are endemic to southeastern China; and all of the other Old World species are restricted to Japan.

TAXONOMY OF DOELLINGERIA

Complete synonymy for the New World species is found in Semple et al. (1991); also see comments on nomenclature and typification in Jones (1980) and Reveal (1991).

Doellingeria Nees, Gen. Sp. Aster. 177. 1832. (TYPE: Doellingeria umbellata [Mill.] Nees).

Perennial, rhizomatous herbs, glabrous to sparsely strigose, eglandular. Leaves elliptic-oblanceolate or oblong-oblanceolate without an evident petiole to ovate-cordate with a long petiole, margins entire to coarsely toothed. Heads solitary on leafy peduncles, borne in a corymboid capitulescence; phyllaries in $2-4$ weakly to strongly graduated series, broadly elliptic-oblong to ovate with a blunt or rounded apex, without a distinctly differentiated herbaceous tip, the midvein commonly slightly raised and resinous, often with conspicuous lateral nerves. Disc corollas abruptly broadened at the tube-throat junction, with long, reflexing-coiling lobes. Ray flowers few, the ligules white, not coiling with maturity. Achenes eglandular, otherwise sparsely strigose to glabrous, obovoid with $5-9$, raised, broad, sometimes orange-resinous, equally spaced nerves or ribs, the achenes elongating at maturity to $3-4 \mathrm{~mm}$ long, nearly the length of the involucral bracts, raising the pappus almost completely above the involucre. Pappus 2-3-seriate, an outer series of setae or slender bristles much shorter than the inner, and much longer bristles in one or two inner series, all elements highly reduced in length in the three species of ser. Cordifolium; inner bristles with dilated apices. Chromosome number in all reported species of Doellingeria, $n=9$; secondary constriction of NOR chromosome in the middle of the short arm, the "primitive" type among various groups of Aster sensu lato according to Semple et al. (1983).

Key to the sections of Doellingeria
Pappus 3 -seriate or 2(-3)-seriate; leaves entire, lanceolate, epetiolate or nearly so; eastern North America and eastern Asia.sect. Doellingeria

Pappus 2(-3)-seriate, sometimes prominently reduced in length; leaves coarsely toothed, ovate with relatively long, winged petioles; eastern Asia.
sect. Cordifolium
A. Doellingeria sect. Doellingeria

Aster subg. Doellingeria (Nees) A. Gray, Synopt. Fl. N. Amer. 1(2):196. 1884. Aster sect. Doellingeria (Nees) Kitamura, J. Jap. Bot. 12:721. 1936.

Diplopappus sect. Triplopappus Torr. \& Gray, Fl. N. Amer. 2:182. 1841. (TYPE: Aster umbellatus Mill.). Aster subg. Doellingeria sect. Triplopappus (Torr. \& Gray) A.G. Jones, Brittonia 32:237. 1980.
Aster ser. Sohayakienses Kitamura, J. Jap. Bot. 12:722. 1936. (TYPE: Aster sohayakiensis Koidzumi).
a. Doellingeria ser. Doellingeria

1. Doellingeria infirma (Michx.) E. Greene, Pittonia 3:52. 1896. BASIONYM: Aster infirmus Michx., Fl. Bor.-Amer. 2:109. 1803.

Doellingeria humilis (Willd.) Britt., Britt. \& Br. Illus. Fl. 3:392. 1898.
Aster cornifolius Muhl. ex Willd., Sp. Pl. 3:2039. 1803.
Appalachian Mountains in eastern United States, northern Florida to New York and Massachusetts (see Semple et al. 1991, Fig. 16).
2. Doellingeria sericocarpoides Small, Bull. Torrey Bot. Club 25:620. 1898. Aster sericocarpoides (Small) K. Schum., Just. Bot. Jahresb. 26(1):375. 1900.

Southeastern to south-central United States, North Carolina to Arkansas, southeastern Oklahoma, and east Texas (see Semple et al. 1991, Fig. 15).
3. Doellingeria umbellata (Miller) Nees, Gen. Sp. Aster. 178. 1832. BASIONYM: Aster umbellatus Miller, Gard. Dict., ed. 8, no. 22. 1768.
Aster amygdalinus Lam., Encycl. Meth. 1:305. 1783. Doellingeria amygdalina (Lam.) Nees, Gen. Sp. Aster. 179. 1832.
Doellingeria umbellata (Miller) Nees var. umbellata
Northeastern to east-central United States and immediately adjacent Canada (see Semple et al. 1991, Fig. 13).

Doellingeria umbellata (Miller) Nees var. pubens (A. Gray) Britt., Britt. 68 Br. Illus. Fl. 3:392. 1898. BASIONYM: Aster umbellatus Miller var. pubens A. Gray, Synopt. Fl. N. Amer. 1(2):197. 1884. Doellingeria pubens (A. Gray) Rydb., Bull. Torrey Bot. Club 37:147. 1910. Doellingeria umbellata (Miller) Nees subsp. pubens (A. Gray) Löve \& Löve, Taxon 31:357. 1982.

Aster pubentior Cronq., Bull. Torrey Bot. Club 74:147. 1947.

Northeast-central United States and immediately adjacent Canada, completely sympatric with var. umbellata (see Semple et al. 1991, Figs. 13 and 14).
4. Doellingeria sohayakiensis (Koidzumi) Nesom, comb. nov. BASIONYM: Aster sohayakiensis Koidzumi, Tokyo Bot. Mag. 37:56. 1923.

Japan.
5. Doellingeria rugulosa (Maxim.) Nesom, comb. nov. BASIONYM: Aster rugulosus Maxim., Mel. Biol. 7:333. 1870.

Japan.
B. Doellingeria sect. Cordifolium (Kitamura) Nesom, comb. nov. BASIONYM: Kalimeris sect. Cordifolium Kitamura, Mem. Coll. Sci. Kyoto Univ., ser. B. 8:312. 1937. (LECTOTYPE, designated here: Biotia japonica Miq.).

Aster sect. Teretiachaenium Kitamura, Mem. Coll. Sci. Kyoto Univ., ser. B. 8:357. 1937. (LECTOTYPE, designated here: Aster scaber Thunb.).
b. Doellingeria ser. Cordifolium (Kitamura) Nesom, comb. et stat. nov. BASIONYM: Kalimeris sect. Cordifolium Kitamura, Mem. Coll. Sci. Kyoto Univ., ser. B. 8:312. 1937. LECTOTYPE: Doellingeria japonica (Miq.) Nesom.
6. Doellingeria japonica (Miq.) Nesom, comb. nov. BASIONYM: Biotia japonica Miq., Ann. Mus. Bot. LugdunoBatavum 2:170. 1866. Boltonia japonica (Miq.) Franch. \& Sav., Enum. Pl. Japon. 1:226. 1875. Asteromoea japonica (Miq.) Matsum., Shokub. Mei-i ed. 2:41. 1895. Aster japonicus (Miq.) Franch. \& Sav., Enum. Pl. Japon. 2:398. 1876. Not Less. ex Nees 1832. Aster miquelianus Hara [nom. nov.], J. Jap. Bot. 12:338. 1936. Kalimeris miqueliana (Hara) Kitamura, Mem. Coll. Sci. Kyoto Univ., ser. B. 8:312. 1937.

Japan.
7. Doellingeria marchandii (Levl.) Ling, Icon. Cormorph. Sin. 4:423. 1975. BASIONYM: Aster marchandii Levl., Fedde Repert. Sp. Nov. 11:306. 1912. Kalimeris marchandii (Levl.) Kitamura, Acta Phytotax. Geobot. 33:195. 1982.

Widespread in southeastern China.
8. Doellingeria longipetiolata (Chang) Nesom, comb. nov. BASIONYM: Aster longipetiolatus Chang, Sunyatsenia 6:22. 1941. Kalimeris longipetiolata (Chang) Ling, Fl. Reipubl. Pop. Sin. 74:108. 1985.
Aster trichanthus Hand.-Mazz., Oesterr. Bot. Zeit. 90:125. 1941.

China, Szechuan province.
c. Doellingeria ser. Papposae Nesom, ser. nov.

Setae pappi longitudine corollas disci aequantes. TYPE: Doellingeria scabra (Thunb.) Nees.
9. Doellingeria scabra (Thunb.) Nees, Gen. Sp. Aster. 183. 1832. BASIONYM: Aster scaber Thunb., Fl. Jap. 316. 1784. Eucephalus scaber (Thunb.) Gandoger, Bull. Soc. Bot. France 65:40. 1918.
Biotia discolor Maxim., Prim. Fl. Amur. 146. 1859.
Widespread in eastern China, to Japan, Korea, and the Manchurian region of China and Russia.
10. Doellingeria komonoensis (Makino) Nesom, comb. nov. BASIONYM: Aster komonoensis Makino, Tokyo Bot. Mag. 12:65. 1898.

Japan.
11. Doellingeria dimorphophylla (Franch. \& Sav.) Nesom, comb. nov. BASION YM: Aster dimorphophyllus Franch. \& Sav., Enum. Pl. Japon. 1:224. 1875.

Japan.

HYBRIDS:
Doellingeria sekimotoi (Makino) Nesom, comb. nov. BASIONYM: Aster sekimotoi Makino, J. Jap. Bot. 7:10. 1931. Aster hashimotoi Kitamura, Acta Phytotax. Geobot. 3:130. 1934. [D. rugulosa (Maxim.) Nesom \times D. scabra (Thunb.) Nees; see Kitamura 1937, Ohwi 1965]

Japan.

EXCLUDED SPECIES:

1. Doellingeria reticulata (Pursh) E. Greene $=$ Aster reticulatus Pursh.
2. Doellingeria obovata (Nutt.) Nees $=$ Aster reticulatus Pursh.

The alliance of Aster reticulatus with Doellingeria apparently has been on the basis of its corymboid capitulescence and other habital similarity and its tendency to produce a triseriate pappus. In A. reticulatus, however, the peduncles, phyllaries, and sometimes the leaves are glandular, the disc corolla lobes are erect and relatively more shallow, the achenes are fusiform and densely glandular, and the pappus bristles are apically acute. The species is an integral member of the group that includes A. acuminatus Michx. and A. nemoralis Sol. (Nesom in prep.).
3. Doellingeria trichocarpa DC., Prodr. 5:263. 1836. =? Aster striatus Champ. ex Benth. [Fl. Hongkong.], Hooker's J. Bot. Kew Gard. Misc. 4:233. 1852.

Doellingeria trichocarpa was noted in Index Kewensis to be a synonym of Aster striatus Benth. The rationale for this is not clear, because Bentham (in Bentham \& Hooker 1873) apparently accepted both species within the Doellingeria group of Aster. Judging from their descriptions, however, neither species can be interpreted as Doellingeria in the present view. Neither name has been included in Aster in relatively recent bibliographic and taxonomic accounts of the Chinese Compositae, but specimens at US originally identified as A. striatus have been annotated as A. panduratus Walp.
4. Doellingeria ptarmicoides Nees $=$ Oligoneuron album (Nutt.) Nesom (Nesom 1993).

DEFINITION OF DOELLINGERIA

Doellingeria is recognized by its (1) corymboid capitulescence, (2) strongly graduated phyllaries with a blunt or rounded apex, without a distinctly differentiated herbaceous tip, with the midvein commonly raised and resinous, and often with conspicuous lateral nerves, (3) few ray flowers, the ligules not coiling with maturity, or at least coiling very little, (4) large, terete achenes with broad, often resinous ribs, and (5) a 2 - or 3 -seriate pappus of bristles with
dilated apices. The pappus in Doellingeria comprises one or two inner series of long bristles and an outer series of setae or slender bristles much shorter than the inner. The North American species have a consistently triseriate pappus, but within sect. Doellingeria, the pappus of the Asian D. rugulosa and D. sohayakiensis tends to be biseriate. The pappus in sect. Cordifolium also is mostly biseriate but the inner series tends to be congested or biseriate; the pappus is strongly reduced in length in ser. Cordifolium. The pappus bristles of the inner series in all species of both sections have dilated apices.

Doellingeria dimorphophylla and D. japonica differ between themselves primarily in relatively technical features of vestiture and the nature of their pappus. The pappus of the former (ser. Papposae) is composed of slender, apically dilated bristles $4-5 \mathrm{~mm}$ long in $2(-3)$ series; the pappus of D. japonica (ser. Cordifolium) is reduced to broad, flat, barbellate bristles $0.5-1.0 \mathrm{~mm}$ long, mostly lanceolate but sometimes with a distinctly clavellate apex. Doellingeria marchandii and D. longipetiolata have similarly reduced pappus, but the similarity between D. japonica and D. dimorphophylla in their particularly long stylar collecting appendages, which form $1 / 2-3 / 4$ the length of the style branches, suggests that reduction of pappus may not be a reliable indicator of relationship among these species.

SUBTRIBAL PI,ACEMENT OF DOELLINGERIA

The phyletic position of Doellingeria is here hypothesized to lie near the base of the Solidagininae, near its point of divergence both from an Old World ancestor similar to Aster sensu stricto and from one group of New World Aster apparently closely related to the Solidagininae (i.e., the "Biotian lineage", Nesom in prep.). The white rays and multiseriate pappus of Doellingeria are similar to true Aster, but the small number of ray flowers and eglandular, multinerved and more or less terete achenes are characteristic of the Solidagininae. White rays occur in other genera unequivocally placed among yellowrayed Solidagininae (Nesom 1993) and they are invariably characteristic of the Biotian lineage. Disc corollas with deeply cut, reflexing-coiling lobes and pappus bristles with dilated apices occur in basal, yellow-rayed elements of the Solidagininae as well as the Biotian lineage. Correspondingly, the distinctive phyllaries of Doellingeria markedly resemble those of Solidago L., Oligoneuron Small, and the small group of species that has been treated as Aster sect. Biotia (DC.) Torr. \& Gray (e.g., Jones 1980).

Doellingeria was not included in the overview of the subtribe Solidagininae (Nesorn 1993), but its morphology as well as its occurrence in eastern North America, with other primitive members of that subtribe, also suggest that the phyletic position of Doellingeria is in the same area. Although the radiation of the Solidagininae was primarily in North America, one of its most primitive
members (Solidago) has a distribution disjunct between North America and Asia. An analogous disjunction is hypothesized to occur between the southeast Asian endemic genus Nannoglottis Maxim., which also appears to be a primitive member of the Solidagininae, and the closely related, monotypic genus Oreochrysum Nutt. of the western United States (Nesom in prep.).

Jones \& Young (1983, Figs. 4 and 5) placed Doellingeria as the sister group to the Eurasian genera Galatella DC. and Crinitaria Cass. (=Linosyris Cass.), but the latter two have glandular, flattened, primarily 2 -ribbed, and obovate achenes and are more closely related to typical Aster. Plants of Galatella and Crinitaria also have a strong tendency to produce glandular-punctate leaves.

ACKNOWLEDGMENTS

I thank Mark Mayfield, Marshall Johnston, and Billie Turner for their review and comments on the manuscript, Lindsay Woodruff (MO) for help in securing critical literature, Zai-ming Zhao (TEX) for translations of Chinese literature, the staffs of MO and US for their help during recent visits, and the staff of GH for a loan of specimens.

LITERATURE CITED

Bentham, G. \& J.D. Hooker. 1873. Genera Plantarum. Reeve \& Co., London, Great Britain.

Correll, D.S. \& M.C. Johnston. 1970. Manual of the Vascular Plants of Texas. Texas Research Foundation, Renner, Texas.

DeCandolle, A.P. 1836. Doellingeria. Prodr. 5:263.
Gray, A. 1884. Synoptical Flora of North America. Ivison, Blakeman, Taylor \& Co., New York, New York.

Greene, E.L. 1896. Studies in the Compositae. -III. Pittonia 3:43-63.
Gu, H.-y. 1987. A biosystematic study of the genus Kalimeris. Ph.D. dissertation, Washington Univ., St. Louis, Missouri.

In press. Systematics of Kalimeris (Astereae, Asteraceae). Ann. Missouri Bot. Gard.

Jones, A.G. 1980. A classification of the New World species of Aster (Asteraceae). Brittonia 32:230-239.

Jones, A.G. \& D.A. Young. 1983. Generic concepts of Aster (Asteraceae): A comparison of cladistic, phenetic, and cytological approaches. Syst. Bot. 8:71-84.

Kitamura, S. 1936. Les Aster du Japon; Leur classification et leur distribution (I). J. Jap. Bot. 12:529-536; (II), 640-652; (III), 12:721-729.
1937. Compositae Japonicae [Astereae]. Mem. Coll. Sci. Kyoto Univ., ser. B. 8:299-399.

Ling, Y., Y.-l. Chen, \& Z. Shi. 1985. Compositae (1), [Astereae]. Flora Reipublicae Popularis Sinicae 74:73-353.

Nees, von Esenbeck, C.G. [1832] 1833. Genera et Species Asterearum. Leonard Schrag., Nuremberg, Germany.

Nesom, G.L. 1993. Taxonomic infrastructure of Solidago and Oligoneuron' (Asteraceae: Astereae) with a hypothesis of their phylogenetic position. Phytologia 75:1-44.

Ohwi, J. 1965. Flora of Japan (J.G. Meyer \& E.H. Walker, eds.). Smithsonian Institution, Washington, D.C.

Raven, P.H. \& D.I. Axelrod. 1974. Angiosperm biogeography and past continental movement. Ann. Missouri Bot. Gard. 61:539-673.

Reveal, J.L. 1991. On the lectotypification of Aster infirmus Michx. (Asteraceae). Phytologia 70:234-235.

Rydberg, P.A. 1917. Flora of the Rocky Mountains and Adjacent Plains. Published by the author, New York, New York.

Semple, J.C. \& L. Brouillet. 1980. A synopsis of North American Asters: the subgenera, sections and subsections of Aster and Lasallea. Amer. J. Bot. 67:1010-1026.

Semple, J.C., J.G. Chmielewski, \& C.C. Chinnappa. 1983. Chromosome number determinations in Aster L. (Compositae) with comments on cytogeography, phylogeny and chromosome morphology. Amer. J. Bot. 70:1432-1443.

Semple, J.C., J.G. Chmielewski, \& C. Leeder. 1991. A multivariate morphometric study and revision of Aster subg. Doellingeria sect. Triplopappus (Compositae: Astereae): the Aster umbellatus complex. Canad. J. Bot. 69:256-276.

Small, J.K. 1933. Manual of the Southeastern Flora. Univ. North Carolina Press, Chapel Hill, North Carolina.

Tamamschyan, S.G. 1959. Doellingeria. Fl. U.R.S.S. (ed. V.L. Komarov) 25:126-128.

VASCULAR FLORA OF SANDSTONE OUTCROP COMMUNITIES IN WESTERN LOUISIANA, WITH NOTES ON RARE AND NOTEWORTHY SPECIES

M.H. MacRoberts \& B.R. MacRoberts
Bog Research, 740 Columbia, Shreveport, Louisiana 71104 U.S.A.

ABSTRACT

The floristics and edaphic factors of west Louisiana sandstone outcrop communities are described. The soils of this open xeric community are moderately rich in calcium and support a number of calciphiles. Lichens and mosses are common, especially on the open rock pavement that characterizes this community. A number of rare species occur: Talinum parviflorum, Schoenolirion wrightii, Carex meadii, and Selaginella arenicola var. riddellii.

KEY WORDS: Sandstone outcrop, sandstone glade, calcareous prairie, cedar glade, calciphile, Kisatchie National Forest, floristics, Louisiana

INTRODUCTION

The eastern and southeastern United States is - or at least until recently was - heavily forested. Nonetheless, there were natural openings, usually of small size, scattered throughout. The more xeric of these openings - variously referred to as prairies, glades, and barrens - have long attracted the attention of naturalists, ecologists, and botanists, and there is a fairly large literature dealing with them (e.g., Ebinger 1979; Perkins 1981; DeSelm 1986, 1990; Greller 1988; Baskin \& Baskin 1989; Bartgis 1993).

In two previous papers, we have described sandstone glades in western Louisiana (MacRoberts \& MacRoberts 1992, 1993). As our studies of open xeric communities in this area have expanded, we have become aware that there are at least two different types of sandstone related communities (MacRoberts \& MacRoberts 1993). The type studied previously - referred to
as glade or sandstone glade - is an open area, often mesa-like, with acidic low-nutrient soils strewn with boulders and scattered with old, slow growing, stunted trees. The sandstone community described in this paper - referred to as sandstone outcrop or simply outcrop - while superficially similar to glades, is floristically and edaphically quite distinct. Among other things, these communities have a rock pavement or ledge, not boulders, upslope from which is open calcareous prairie-like habitat. An examination of the literature suggests that these openings most resemble cedar glades of Tennessee and Kentucky, and barrens in southeastern Texas (Baskin \& Baskin 1975, 1985; Marietta \& Nixon 1984; Bridges \& Orzell 1989; Mohlenbrock 1993).

In this paper we describe outcrop communities in the Kisatchie National Forest in western Louisiana, an area for which such communities have not yet been described. We also compare these communities with the sandstone glades that we have studied previously, and briefly discuss calcareous prairies and forests in this part of Louisiana.

STUDY SITES AND METHODS

Three outcrops were selected for detailed study. All occur within 1 km of each other in T6N R8W, about 5 km north of Kisatchie, Louisiana, in the Kisatchie Ranger District of the Kisatchie National Forest (Caldwell 1991; Martin \& Smith 1991). Two of these (KG30-3 and KG30-8) have large expanses of sandstone pavement. The third (KG30-2) does not, and while underlain by sandstone bedrock, has not eroded down to it except in a few small areas. Consequently, KG30-2 represents what can be considered an earlier stage in the evolution of this community. KG30-8 is about 0.4 ha, KG30-2 about 0.6 ha, and KG30-3 about 1.2 ha. All occur at approximately 75 meters above sea level.

Following Perkins (1981) we divide outcrops into life zones (Figure 1). These are 1) eroded area below the lip of the sandstone bedrock, 2) bare rock pavement, 3) pockets of shallow soil on rock pavement, 4) sloping prairie above pavement with soils of varying depth depending on distance from exposed rock and degree of slope, and 5) tree/shrub zone uphill.

Not all outcrop communities have all zones. In the three we studied, KG303 and KG30-8 had all zones; KG30-2 consisted almost exclusively of zones 4 and 5 , with only small areas of 2 and 3 . Also, zone 1 at $\mathrm{KG} 30-2$ was heavily treed and shaded the very narrow zones 2 and 3 . Other outcrop sites in the Kisatchie District consisted of only zones 1,2 , and 3 ; zones 4 and 5 had been eroded away (Figure 1). Zone 1 is perhaps the most variable, as we attempt to depict in Figure 1. Almost all of these communities are on hillsides, not on hilltops. The few we encountered on hilltops were entirely eroded to bedrock, as indicated in Figure 1.

METERS

Figure 1. Profiles of typical outcrops with floristic zones indicated.

Table 1. Taxa of three sandstone outcrops.
AGAVACEAE - Manfreda virginica (L.) Rose.
AMARYLLIDACEAE - Hypoxis hirsuta (L.) Cov.
CYPERACEAE - Carex caroliniana Schwein., C. flaccosperma Dewey (2), C. meadii Dewey (2,3), Fimbristylis puberula (Michx.) Vahl., Rhynchospora. inexpansa (Michx.) Vahl., R. globularis (Chapm.) Small, Scleria ciliata Michx., S. oligantha Michx.

IRIDACEAE - Sisyrinchium sagttiferum Bickn. (2, 3).
JUNCACEAE - Juncus marginatus Rostk. (8).
LILIACEAE - Aletris aurea Walt., Allium canadense L., Nothoscordum bivalve (L.) Britt., Schoenolirion wrightii Sherman (3, 8), Smilax sp.

ORCHIDACEAE - Platanthera nivea (Nutt.) Luer (3), Spiranthes lacera (Raf.) Raf., S. praecox (Walt.) S. Wats.

POACEAE - Agrostis elliottiana Schultes (3, 8), Andropogon tenarius Michx., Aristida longespica Poir., Aristida oligantha Michx., Aristida purpurascens Poir. (2, 3), Axonopus affinis Chase (8), Chasmanthium sessiliflorum (Poir.) Yates (3), Dicanthelium aciculare (Desv. ex Poir.) Gould \& Clark, D. acuminatum (Sw.) Gould \& Clark (3), D. sphaerocarpon (Ell.) Gould, Eragrostis elliottii S. Wats. (8), E. spectabilis (Pursh) Steud. (2), Muhlenbergia capillaris (Lam.) Trin. (3), Panicum anceps Michx. (2,8), Paspalum notatum Flugge (3), Schizachyrium scoparium (Michx.) Nash, Schizachyrium tenerum Nees, Setaria geniculata (Lam.) Beauv. (3), Sporobolus junceus (Michx.) Kunth (2, 3), Vulpia octoflora (Walt.) Rydb. $(2,3)$.

CUPRESSACEAE - Juniperus virginiana L.
PINACEAE - Pinus echinata P. Mill., P. palustris P. Mill., P. taeda L.
SELAGINELLACEAE - Selaginella arenicola Underw. var. riddellii (Eselt.) Waterfall (3).

ACANTHACEAE - Ruellia humilis Nutt.
APIACEAE - Eryngium yuccifolium Michx. (2).
AQUIFOLIACEAE - Ilex decidua Walt. (8), I. vomitoria Ait.
ASCLEPIADACEAE - Asclepias longifolia Michx., A. viridiflora Raf. (2, $3)$.

Table 1 (continued).
ASTERACEAE - Aster dumosus L., A. linariifolius L., A. oolentangiensis Ridd. (3), A. paludosus Dryand. ex Ait. ssp. hemisphericus (Alex.) Cronq., A. patens Ait. (2, 3), A. sericeus Vent., Bigelowia nuttallii Anderson, Cirsium carolinianum (Walt.) Fern. \& Schub. (2, 3), Coreopsis lanceolata L., Erigeron strigosus Muhl. ex Willd. (2, 3), Gnaphalium purpureum L. (2,3), Helianthus angustifolius L., Heterotheca graminifolia (Michx.) Shinners, Krigia virginica (L.) Willd. (3, 8), Liatris aspera Michx. (2), L. earlei (E. Greene) Schum. (2), L. squarrosa (L.) Michx., Pyrrhopappus carolinianus (Walt.) DC. (2), Silphium laciniatum L., Solidago nitida Torr. \& Gray (2, 3), Vernonia texana (A. Gray) Small (2).

BIGNONIACEAE - Campsis radicans (L.) Seem. ex Bureau (3).
CAMPANULACEAE - Lobelia appendiculata A.DC., Triodanis perfoliata (L.) Nieuwl. (2).

CISTACEAE - Lechea tenuifolia Michx. (3).
CLUSIACEAE - Hypericum gentianoides (L.) B.S.P. (3, 8), H. hypericoides (L.) Crantz.

CONVOLVULACEAE - Evolvulus sericeus Sw.
CORNACEAE - Cornus florida L. (3).
DROSERACEAE - Drosera brevifolia Pursh (8).
ERICACEAE - Vaccinium arboreum Marsh., V. corymbosum L. $(3,8)$.
EUPHORBIACEAE - Croton capitatus Michx. (2), Crotonopsis elliptica Willd., Euphorbia corollata L., Tragia urticifolia Michx. (3).

FABACEAE - Baptisia leucophaea Nutt., Crotalaria sagittalis L. (2), Dalea candida (Michx.) Willd. (3), D. purpurea Vent. (3), Galactia volubilis (L.) Britt. (2, 3), Medicago lupulina L. (2), Schrankia microphylla (Dry.) J.F. Macbr. (2, 8), Stylosanthes biflora (L.) B.S.P., Tephrosia virginiana (L.) Pers.

FAGACEAE - Quercus falcata Michx. (2), Q. marilandica Muenchh., Q. stellata Wang.

GENTIANACEAE - Sabatia campestris Nutt.
HAMAMELIDACEAE - Liquidambar styraciflua L.

Table 1 (continued).
JUGLANDACEAE - Carya sp. (3).
LAMIACEAE - Hedeoma hispidum Pursh $(2,3)$, Prunella vulgaris L., Salvia lyrata L., Scutellaria integrifolia L. (2, 8), Scutellaria parvula Michx. (3).

LENTIBULARIACEAE - Pinguicula pumila Michx. (8).
LINACEAE - Linum medium (Planch.) Britt.
LOGANIACEAE - Gelsemium sempervirens (L.) St. Hil.
MYRICACEAE - Myrica cerifera L.
ONAGRACEAE - Gaura sp. (2), Oenothera linifolia Nutt. (3, 8).
OXALIDACEAE - Oxalis stricta L.
PLANTAGINACEAE - Plantago aristata Michx. (3), P. virginica L. (2, 3). POLEMONIACEAE - Phlox pilosa L.

POLYGALACEAE - Polygala nana (Michx.) DC., P. verticillata L. (2, 3).
PORTULACACEAE - Talinum parviflorum Nutt. ex Torr. \& Gray (3, 8).
RANUNCULACEAE - Delphinium carolinianum Walt. (3).
RHAMNACEAE - Berchemia scandens (Hill) K. Koch.
ROSACEAE - Crataegus marshallii Eggleston, C. spathulata Michx., Prunus sp. (3), Rubus sp. (2).

RUBIACEAE - Diodia teres Walt., Hedyotis crassifolia Raf., H. nigricans (Lam.) Fosberg $(2,3)$.

SCROPHULARIACEAE - Agalinis fasciculata (Ell.) Raf. (8), Agalinis plukenettii (Ell.) Raf. (3, 8), Agalinis skinneriana (Wood.) Britt. (2, 3), Aureolaria pectinata (Nutt.) Penn. $(2,3)$.

VERBENACEAE - Callicarpa americana L. (2), Verbena halei Small (2). VIOLACEAE - Viola pedata L.

Table 1 is a list of the vascular plants found in zones 2, 3, and 4 of KG30-2, 3 , and 8 . The number " 2 " following the species indicates presence at KG30-2, " 3 " presence at KG30-3, and " 8 " presence at KG30-8. Absence of a letter indicates presence at all three sites.

We recorded a total of 136 taxa, representing 102 genera and 48 families for the three outcrops. KG30-3 had 110 species and 84 genera, KG30-2 had 101 species and 78 genera, and $K G 30-8$ had 82 species and 65 genera, which makes these communities as rich in species as bogs (MacRoberts \& MacRoberts 1992). Plant families with the greatest representation are Asteraceae, Fabaceae, and Poaceae, which account for 37% of the total. However, lichens and mosses, important components of the outcrop communities especially in zones 2 and 3 , are not included here.

The three outcrops are similar. Among them, Sorensen's Index of Similarity ranges from 74 to 78 . Combining all plants from sandstone glades (MacRoberts \& MacRoberts 1992, 1993) and from sandstone outcrops, and comparing these lists, shows that glades and outcrops are not the same community. Sorensen's Index of Similarity between them is 49.

We visited all three study sites every two weeks from March to midNovember 1993 to collect and identify plants. Although these communities are rich in lichens and mosses, we did not attempt to identify them. We follow MacRoberts (1984, 1989), Gandhi \& Thomas (1989), and Allen (1992) in most instances for botanical nomenclature. Voucher specimens of many of the species collected are deposited in the Vanderbilt University Herbarium (VDB). While the specific fire history of outcrop communities is uncertain, they are embedded in the pyrogenic longleaf pine community and thus probably burned with regularity in the past (Martin \& Smith 1991; Smith 1991). The study sites had not burned in several years. Soil samples were taken from all zones at each study site and from all zones of a number of other outcrop communities from several calcareous prairies, and from one calcareous forest. The samples were analyzed by A \& L Analytical Laboratories, Memphis, Tennessee.

To compare the spatial distribution and size of trees in outcrops with those in other communities, we ran transects through the middle of KG30-2, 3, and 8. This totaled an area 195 meters long and 3 meters wide (585 square meters). Within this area we mapped all trees over 1.5 meters tall and measured their diameter at breast height (dbh).

We cut at ground level four small pines (3 loblolly and 1 shortleaf) from zone 4 of KG30-3 to examine growth rings and thus growth rate.

We randomly selected ten temporary one meter square plots each in KG302,3 , and 8 . Ten plots were in the thin soils on the pavement area (zone 3) and twenty in the deeper soils upslope (zone 4). In each we counted pine seedlings (first and second year trees) to see if pine establishment differed between glades and outcrops, and to determine why these communities remain open (see MacRoberts \& MacRoberts 1993).

Using aerial photographs, we located 33 additional outcrop communities and surveyed each of these at least once, noting extent of sandstone pavement, erosion, flora, condition, typical and rare species, size, and other features. These surveys extended from February 1992 until December 1993.

Climatic data are given in Martin et al. (1990). Annual precipitation averages about 125 cm and is fairly evenly distributed throughout the year. In summer, temperatures rise to $35^{\circ} \mathrm{C}$, which, combined with short droughts, translates into very hot and dry conditions, especially in open areas.

RESULTS

No vascular plant grew entirely on bare rock (zone 2); these areas were either bare or lichen covered. Lichens, mosses, and vascular plants occurred in zone 3. Depending on soil depth, there might also be a few very stunted pines or oaks. Lichens and mosses were found almost entirely in zones 2 and 3, and in the shallow soils between 3 and 4 . When soil depth increased, lichens dropped out and were replaced by forbs and grasses, and by an occasional shrub. The few trees and shrubs growing in zone 4 usually occurred in scattered clumps. Zone 5 typically began abruptly as dense woods with heavy mid- and understory.

Table 2 gives soil characteristics of the various zones. We collected soil samples from nine outcrops. These represent all zones, but especially 3 and 4, notably near rare species such as Schoenolirion and Talinum (both occur in zone 3). In Table 2 we have combined and averaged also, soils from several outcrops. Soils for zone 4 are divided into two groups: 4 a is the upper 15 cm ; 4 b is 0.5 m deep or deeper. The upper layer of zone 4 is dark grey to black, but changes to light grey or buff between 0.25 and 0.5 m .

It was abundantly clear prior to soil analysis that the vegetation in the outcrop openings was usually calciphilous, and that almost always in the immediate vicinity of outcrops there was calcareous forest and very occasionally remnant calcareous prairie. Species characterizing calcareous forest and prairie are Aesculus pavia L., Andropogon spp., Apocynum cannabinum L., Aristida spp., Berchemia scandens, Bumelia lycioides (L.) Pers., Crataegus spp., Dalea spp., Gleditsia triacanthos L., Helianthus hirsutus Raf., Juniperus virginiana, Neptunia lutea (Leavenw.) Benth., Prunus spp., Ratibida pinnata (Vent.) Barnhart, Salvia azurea Lam., Schizachyrium spp., Schrankia microphylla (Sm.) Macbr., and Viburnum dentatum L .

To have a standard by which to judge their soil properties and those of associated communities, we collected and analyzed soils from two well studied calcareous prairies (Carpenter Road Prairie and Coldwater Road Prairie, Smith et al. 1989) in the Winn Ranger District of the Kisatchie National Forest about 65 km northeast of our study sites. We also had soils analyzed from

Table 2. Soil characteristics.

Exchangeable ions (ppm)						
Sample	pH	P	K	Ca	Mg	OM\%
All Outcrops (Kisatchie District)						
Zone 1 (3)	5.5	5	91	2223	285	1.0
Zone 3 (15)	5.3	15	83	1193	250	1.6
Zone 4a (11)	5.4	6	102	2535	281	3.2
Zone 4b (2)	7.8	1	117	4780	346	1.0
Zone 5 (2)	5.3	14	134	3590	376	9.1
Specific Outcrops (Kisatchie District)						
KG30-2						
Zone 4 (2)	5.4	4	198	4290	459	3.8
KG30-3						
Zone 4 (1)	5.9	3	151	3910	326	3.3
Zone 5 (2)	5.3	14	134	3590	376	9.1
KG30-8						
Zone 4 (1)	4.8	7	87	720	272	2.3
Prairies (Winn District)						
Carpenter (3)	7.8	3	137	3667	51	7.4
Coldwater (2)	7.7	1	183	5145	73	7.0
Prairies (Kisatchie District)						
Ratibida (3)	7.7	3	182	7330	90	6.7
K50H (2)	7.8	1	174	6485	60	4.6
Calcareous Forest (Kisatchie District)						
K50C (1)	5.9	3	234	6530	308	8.7

Table 3. Tree species number and size on outcrops.

Species	No. on outcrops	Average dbh (cm) (range)	
Pinus palustris	7	14.9	$(5.1-22.9)$
P. taeda	12	6.2	$(2.5-12.7)$
P. echinata	2	17.1	$(3.8-30.5)$
Quercus marilandica	3	4.2	$(2.5-7.6)$

Table 4. Tree size.

Diameter class dbh (cm)	No. of trees
$1-5$	9
$5-10$	5
$10-15$	4
$15-20$	2
$20-25$	3
$25-30$	0
$30-35$	1

two calcareous prairie remnants (Ratibida Prairie and K50H Prairie) and one calcareous forest located near outcrops on the Kisatchie Ranger District. The number of samples collected and analyzed from each area, zone, and site is shown in parentheses in the table. The average is given where there is more than one sample.

The area in which we located outcrops during our survey is a band several miles wide that runs east-west across the entire Kisatchie District (a distance of about 30 km). This band appears to correspond with the Lena Member of the Fleming Formation, the chief characteristic of which is its "calcareous clays" (Gorat \& Roland 1984).

It was not surprising therefore to find that the soil samples confirmed what the vegetation already told us. The soils were calcareous. In some places, we found narrow strata consisting of nothing but calcareous concretions frequently there were small calcium aggregations scattered on the surface and mixed throughout the soils. This admixture may account for the low pH and high calcium in the samples.

The Natchitoches Parish soil survey classifies the areas in which the outcrops occur as Kisatchie soils; that is, "fine, montmorillonitic, thermic Typic Hapludalfs" (Martin et al. 1990). With the exception of high calcium, they are identical in acidity and mineral contents to the soils of the sandstone glades we studied earlier (MacRoberts \& MacRoberts 1992, 1993).

As the data in the table show, the soils in KG30-2 and KG30-3 are as calcareous as the soils in the calcareous prairies. While some differences exist between the outcrop soils and those described from the prairies, notably surface pH and magnesium, the calcium content is approximately the same.

Tables 3 and 4 give information on tree distribution in transects in outcrop communities.

A comparison of the data given in our previous papers (MacRoberts \& MacRoberts 1990,1993) shows that outcrops and glades are very similar in
the distribution and abundance of trees, and that they differ in a number of ways from bogs and pinewoods. In pinewoods there was one tree per 11 square m , in glades there was one tree per 23.5 square m , and in bogs one tree per 35 square m . We found that in outcrops there was one tree per 24 square m . In bogs, glades, and outcrops the trees are stunted and old growth. However, bogs lack oaks, which are common in both glades and outcrops. In outcrops, trees are almost entirely confined to zones 1,4 , and 5 . Zones 2 and 3 lack sufficient soil for trees to survive.

In our previous study, we found that the growth rate of pines differed significantly among glades, bogs, and pinewoods. Trees in glades grew at the slowest rate, averaging 11.5 rings per cm ; bogs came next with 8.6 rings per cm ; and trees in upland pinewoods had 3.7 rings per cm . The growth rate of pines from KG30-3 zone 4 was intermediate between bogs and glades, with 10.75 rings per cm (the four trees had $11,11,11$, and 10 rings per cm). While this sample is small, it is unlikely that a larger sample would significantly alter the results since the trees in outcrops - as in bogs and glades - are clearly under stress (stunted, gnarled, and with scanty foliage).

In the outcrop communities, pine seedlings were absent in zone 2 and scarce in zone 3. In the ten one m square plots we examined in zone 3 , there were only two seedlings. In the 20 plots from zone 4 , there were 13 seedlings. In glades, pine seedlings fared better: 50 plots had 169 seedlings (MacRoberts \& MacRoberts 1993). But the end result is the same in these two habitats. Irrespective of the number of pines that sprout and survive for a year or two, the vast majority eventually die. By the end of summer, after a few July and August droughts, very few pine seedlings remain.

Why do outcrop communities remain open? Several factors seem important (MacRoberts \& MacRoberts 1990, 1993). First, edaphic conditions may be unfavorable. The soil itself appears to be nonabsorbant. We have excavated post holes in outcrops after two days of rain only to find that the soil is dry $10-15 \mathrm{~cm}$ below the surface. Also in outcrops, as in glades, there is an impermeable layer of rock. Further, even where soils are deep, the soil characteristics themselves impede woody plant establishment. The soil is high in calcium, which is known to deter growth in many plants including pines, and is stiff and seasonally droughty with high shrink-swell properties (Martin \& Smith 1991: 64). Open areas are subject to very high summer temperatures and short droughts put severe stress on pine seedlings. But the fact that trees and midstory vegetation begin abruptly in zone 5 would indicate that there is something different between the soils in zones 4 and 5 . The soil samples did not reveal what that might be.

During the course of this study we surveyed 36 outcrop communities in the Kisatchie District. These ranged in size from 0.1-2.0 ha (average 0.8 ha). Most contained all zones, but several consisted entirely or almost entirely of zone 4 (i.e., were prairie-like) but were on slopes, not hilltops. That we were dealing

Table 5. Statistics on Schoenolirion wrightii populations.

Outcrop	Size (ha)	No. plants	Plant coverage (ha)	Cattle grazing
KG30-3	1.2	250	0.01	yes
KG30-5	1.2	150	0.01	yes
KG30-8	0.4	75	0.005	yes
KG36-1	0.4	1000	0.2	no
Sheard I	1.2	450	0.3	no

with an outcrop community at such sites was usually evident by the flora and also by the presence, discovered with minimal searching, of a rock ledge down slope, hidden by shrubby vegetation, that had not eroded out to pavement dimensions. Since all of these outcrops occurred at approximately 75 m above sea level, and since the rock layer was similar throughout, we assume that the same geological strata are repeated wherever outcrops occur.

NOTEWORTHY SPECIES

During the course of this study we found a number of species that deserve additional comment.

Schoenolirion wrightii. (MacRoberts \& MacRoberts 1901 [VDB]). This species is globally, federally, and state listed as rare (G3, C2, S1 Louisiana, S2 Texas) (see Nixon \& Ward 1981; Orzell 1990; Grace 1993; for literature and recent reviews).

Between April 17, 1993, when we first discovered Schoenolirion wrightii on the Kisatchie National Forest and May 7, 1993, when it had ceased blooming and was becoming difficult to locate, we surveyed 19 outcrops in the western part of the Kisatchie Ranger District and found it at five sites (26%), often in large numbers (Table 5). The five populations are all located in T6N R8W a few miles north of Kisatchie, Louisiana. Within this area, the closest two populations are about 1 km apart; the most distant are 5 km apart.

In three outcrops Schoenolirion wrightii was confined to a small area. In the other two, it was much more widespread. In these latter two sites, cattle had been excluded for several years. In one of the outcrops where grazing occurred, the small population of S. wrightii was entirely grazed down just after it had set seed.

In an outcrop bisected by a road, a recent non-growing season prescribed burn (February 13, 1993) had burned the southern half. Although Schoeno-
lirion wrightır bloomed and set seed in both burned and unburned portions, plants appeared to be more prolific and larger in the unburned area.

We examined soils in the five outcrops in which Schoenolirion wrightii occurred. These soils are the same as those reported for zone 3 in Table 2 and can be as shallow as a few inches only.

Carex meadii. (MacRoberts \& MacRoberts 1889 [VDB]). Prior to the present study, this western species had been reported only once from Louisiana (Williams 1977; MacRoberts 1989), and specimens from three other parishes have recently been found in herbaria (Julia Larke, pers. comm.). It is currently ranked as rare (S1) in Louisiana. Although we made no special attempt to search for this species, we located three outcrops where it occurred in zone 4. Two of these are within 1 km of each other; the other is about 6 km distant.

Selaginella arenicola ssp. riddellii. (MacRoberts \& MacRoberts 1809 [VDB]). Riddell's spikemoss is rare (S 1) in Louisiana. It occurs in zone 3 and is often associated with moss or lichens. We surveyed 36 outcrops in the Kisatchie Ranger District and found it, often in large mats, in five. The plants are easily dislodged by cattle trampling.

Talinum parviflorum. (MacRoberts \&f MacRoberts 1759, 1780 [VDB]). This plant is rare in Louisiana (S1). At the beginning of this study, it was only known from three closely adjacent outcrops on the Kisatchie Ranger District. We found it in 24 of the 36 outcrops we surveyed, often in large numbers (more than 1000 plants). It grows almost exclusively in thin soils in slight depressions on the rock pavements in full sun (zone 3). It blooms in late afternoon. We collected soils in which Talinum grew from eight outcrops. All appear to be soils typical of zone 3 .

Habranthus tubispathus (L'Herit.) Traub. (MacRoberts \& MacRoberts 2093 [VDB]). While not considered rare, we found this West Gulf Coastal Plain endemic at one outcrop, where it was abundant. It did not occur at KG30-2, 3 , or 8 .

It is found in barrens/glade/prairie habitat in southeast Texas (Orzell 1990).

DISCUSSION

During the course of this work, it became evident that we were sealing with a community that consisted of a sandstone outcrop and upslope a calcareous opening that would best fit the definition of prairie. But we have chosen not to call these upslope openings prairies after examining "true" calcareous prairies, which appear to be floristically somewhat different, are located on hilltops, not side slopes, and which are alkaline and usually more calcareous. Nonetheless, the upslope openings (zone 4) should be looked at as a type of calcareous prairie since their soils are calcareous and their flora is calciphilous.

The outcrop communities occurring in the Kisatchie National Forest appear to be very similar to the open ("prairie-like" or "barrens") communities described by Marietta \& Nixon (1984), Bridges \& Orzell (1989), Orzell (1990), and Mohlenbrock (1993) for east Texas. They are similar also to a number of barrens, glades, and prairies described for Arkansas and Missouri eastward. Notably similar appear to be the various cedar glades of Tennessee and Kentucky (Baskin \& Baskin 1975, 1985, 1989; DeSelm 1986) and the "Black Belt" flora of Alabama (Robert Kral, pers. comm.).

We did not divide out floristic surveys according to zones. But clearly if we had done so, the different zones would have shown significant differences. Many plants that grow on the thin soils overlaying rock outcrops do not grow in the upslope zones, and vice versa. For example, Talinum and Selaginella are found only on or near rock pavements (zone 3); whereas the many composites, peas, and grasses typically occur in zone 4 . It should be remembered, however, that what does grow on these outcrops is in part determined by the soils that erode down onto them from above and that, in the present case, these are usually calcareous. Since we have not had the opportunity to study outcrops with other soils upslope, we are not in a position to say how different they might be.

KG30-2, 3, and 8 were grazed. While this was not an ideal condition under which to make a floristic study, it did provide us with information on the effect of cattle on these communities. In a word, cattle have a disastrous effect. Not only do they crop the plants (they ate all the newly seeded Schoenolirion wrightii from one outcrop), but they crush and dislodge lichens and other plants, especially in zones 2 and 3 . Trampling also initiates erosion in zones 1 and 4, where soils are so unstable (Martin et al. 1990) that massive erosion results, which not only sweeps away the soil above the rock shelf, but undermines the rock itself. The devastation caused by cattle shows that these communities require a good stable ground cover to keep them intact. Many of the outcrops on the Kisatchie National Forest that were once grazed are now free of cattle, and we are happy to report that the Forest Service has fenced the outcrops where this study took place.

One thing that did surprise us was that, although the three outcrops were grazed, we found no noticable difference in our floristic lists between them and outcrops that had not been grazed for some years. The only difference was that grasses in grazed areas were difficult to find and in short supply. Undoubtedly, a study using plots would reveal many differences in composition and number of species present between grazed and ungrazed sites.

Our work on open xeric rocky communities in the Kisatchie National Forest has convinced us that there are at least two distinct types (MacRoberts \& MacRoberts 1993). This year's field work establishes that sandstone outcrops are clearly distinct from sandstone glades.

This finding clarifies some confusion that currently exists in the Louisiana
botanical literature. The community initially described by Smith (1988) was a sandstone outcrop, but when Martin \& Smith (1991) described the major community types of the Kisatchie District of the Kisatchie National Forest, they reiterated Smith's 1988 description of the outcrop community, but exemplified it with a glade community. Hart \& Lester (1993), without additional research or reference to the growing literature, have perpetuated the confusion by synonymizing glade and outcrop. Future community classifications should distinguish between sandstone outcrops and sandstone glades.

ACKNOWLEDGMENTS

The continuing cooperation and assistance of the staff of the Kisatchie National Forest have been instrumental in making this study, as in all our botanical research, possible. Especially to be thanked are Tom Fair, Susan Carr, and Viola Ritchie. Allan Tiarks, Southern Forest Experiment Station, answered some questions we had about the soil data. Financial support was provided, in part, by a Challenge Cost-Share Agreement with the Kisatchie National Forest. Robert Kral vetted a number of the plants, notably our Carex specimens. Julia Larke, Louisiana Natural Heritage Program, provided information on Carex meadii and other rare plant species. Jerry Baskin and Robert Kral made helpful comments on the paper.

LITERATURE CITED

Allen, C.A. 1992. Grasses of Louisiana. Cajun Prairie Habitat Preservation Society, Eunice, Louisiana.

Bartgis, R.L. 1993. The limestone glades and barrens of West Virginia. Castanea 58:69-89.

Baskin, C.C. \& J.M. Baskin. 1975. The cedar glade flora of Bullitt County, Kentucky. Castanea 40:184-190.

Baskin, J.M. \& C.C. Baskin. 1985. A floristic study of a cedar glade in Blue Licks Battlefield State Park, Kentucky. Castanea 50:19-25.

Baskin, J.M. \& C.C. Baskin. 1989. Cedar glade endemics in Tennessee, and a review of autecology. J. Tenn. Acad. Sci. 64:63-74.

Bridges, E.L. \& S.L. Orzell. 1989. Longleaf pine communities of the West Gulf Coastal plain. Natural Areas Journal 9:246-263.

Caldwell, J. 1991. Kisatchie National Forest: Part of a 100 -year heritage. Forests \& People 41(1):35-46.

DeSelm, H.R. 1986. Natural forest openings on uplands of the eastern United States. Pp. 366-375. In D.L. Kulhavy \& R.N. Conner (eds.), Wilderness and Natural Areas in the Eastern United States: A Management Challenge. Center for Applied Studies, School of Forestry, Stephen F. Austin State University, Nacogdoches, Texas.

DeSelm, H.R. 1990. Flora and vegetation of some barrens of the eastern highland rim of Tennessee. Castanea 55:186-206.

Ebinger, J.E. 1979. Vascular flora of sandstone outcrops in Clark County, Illinois. Castanea 44:38-44.

Gandhi, K.N. \& R.D. Thomas. 1989. Asteraceae of Louisiana. Sida Bot. Misc., No. 4:1-202.

Grace, S.L. 1993. Element stewardship abstract: Schoenolirion wrightii. Unpublished report, The Nature Conservancy of Texas, Silsbee, Texas.

Greller, A.M. 1988. Deciduous forest. Pp. 287-316 In M.G. Barbour \& W.D. Billings (eds.). North American Terrestrial Vegetation. Cambridge University Press, New York, New York.

Groat, C.G. \& H.L. Roland. 1984. Louisiana Geological Survey, Geologic Map of Louisiana. Louisiana Department of Natural Resources, Baton Rouge, Louisiana.

Hart, B.L. \& G.D. Lester. 1993. Natural community and sensitive species assessment on Fort Polk Military Reservation, Louisiana. Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana. Unpublished report.

MacRoberts, D.T. 1984. The Vascular Plants of Louisiana. Bull. Museum of Life Sciences, Louisiana State University, Shreveport, Louisiana.

MacRoberts, D.T. 1989. A Documented Checklist and Atlas of the Vascular Flora of Louisiana. Bull. Museum of Life Sciences, Louisiana State University, Shreveport, Louisiana.

MacRoberts, B.R. \& M.H. MacRoberts. 1992. Floristics of four small bogs in western Louisiana with observations on species/area relationships. Phytologia 73:49-56.

MacRoberts, M.H. \& B.R. MacRoberts. 1990. Size distribution of trees in bogs and pine woodlands in west central Louisiana. Phytologia 68:428434.

MacRoberts, M.H. \& B.R. MacRoberts. 1992. Floristics of a sandstone glade in western Louisiana. Phytologia 72:130-138.

MacRoberts, M.H. \& B.R. MacRoberts. 1993a. Why don't west Louisiana bogs and glades grow up into forests? Phytologia 74:26-34.

MacRoberts, M.H. \& B.R. MacRoberts. 1993b. Floristics of two Louisiana sandstone glades. Phytologia 74:431-437.

Marietta, K.L. \& E.S. Nixon. 1984. Vegetation of an open, prairie-like community in eastern Texas. Texas J. Sci. 36:25-32.

Martin, D.L. \& L.M. Smith. 1991. A survey and description of the natural plant communities of the Kisatchie National Forest: Winn and Kisatchie Districts. Unpublished report. Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana.

Martin, P.G., C.L. Butler, E. Scott, J.E. Lyles, M. Mariano, J. Ragus, P. Mason, \& L. Schoelerman. 1990. Soil Survey of Natchitoches Parish, Louisiana. United States Department of Agriculture, Soil Conservation Service. Baton Rouge, Louisiana.

Mohlenbrock, R.H. 1993. Black Branch Barrens, Texas. Natural History (March):30-32.

Nixon, E.S. \& J.R. Ward. 1981. Distribution of Schoenolirion wrightii (Liliaceae) and Bartonia texana (Gentianaceae). Sida 9:64-69.

Orzell, S.L. 1990. Texas Natural Heritage Program Inventory of National Forests and National Grasslands in Texas. Unpublished report. Texas Parks and Wildlife Department, Austin, Texas, and U.S. Forest Service, Lufkin, Texas.

Perkins, B.E. 1981. Vegetation of sandstone outcrops of the Cumberland plateau. M.S. thesis. University of Tennessee, Knoxville, Tennessee. 140 pp.

Smith, L.M. 1988. The natural communities of Louisiana. Louisiana Natural Heritage Program, Baton Rouge, Louisiana. Unpublished report.

Smith, L.M. 1991. Louisiana longleaf: An endangered legacy. Louisiana Conservationist (May/June):24-27.

Smith, L.M., N.M. Gilmore, R.P. Martin, \& G.D. Lester. 1989. Keiffer calcareous prairie/forest complex: A research report and preliminary management plan. Unpublished report. Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana.

Williams, J.R. 1977. Food plants of seven selected monocot families for Louisiana wildlife. M.S. thesis, Louisiana Tech University, Ruston, Louisiana.

ARENARIA GYPSOSTRATA B.L. TURNER, A NEW NAME FOR A. HINTONIORUM B.L. TURNER, NOT A. HINTONIORUM B.L. TURNER

Billie L. Turner
Department of Botany, University of Texas, Austin, Texas 78713 U.S.A.

ABSTRACT

A new name (Arenaria gypsostrata) is required to substitute for A. hintoniorum which is a later homonym of a previous A. hintoniorum.

KEY WORDS: Caryophyllaceae, Arenaria, México, gypsophile

Arenaria gypsostrata B.L. Turner, nom. nov. Based upon Arenaria hintoniorum B.L. Turner, Phytologia 75:406. 1993 [Feb 1994]. Not Arenaria hintoniorum B.L. Turner, Phytologia 7259. 1992.

In my overzealous effort to eponymise the remarkable Hinton family, a lapse permitted the nomenclatural mistake corrected here, for which my apologies to the Hinton family and the broader systematic community.

CORRECTIONS AND ADDITIONS

Volume 74 , issue 3, page 178 , line 4 of abstract, "Fabanae" should not have a hyphen.

Volume 75 , issue 2 , inside front cover, D.M. Sutherland was omitted as an author of the paper entitled " Chromosome numbers for Dalea species (

FabaceaeFabaceae) from southwestern New Mexico and southeastern Arizona.

Volume 75, issue 3, inside front cover, the paper by MacRoberts \& MacRoberts begins on page 247, not page 248.

Volume 75 , issue 4 , the running heads on all even numbered pages should read "P H Y T O L O G I A 74(5):xxx-xxx October 1993" rather than "P H Y T O L O G I A $74(4): x x x-x x x \quad$ October 1993".

Volume 75 , issue 4 , page 277 , line 1 should read "Phytologia (October 1993) 75(4):277-280." rather than "Phytologia (October 1993) 74(4):277-280."

Volume 75, issue 4, page 277, line 1 should read "Phytologia (October 1993) 75(4):281-324." rather than "Phytologia (October 1993) 74(4):281-324."

Volume 75 , issue 4 , page 277, line 1 should read "Phytologia (October 1993) 75(4):325-329." ravher than "Phytologia (October 1993) 74(4):325-329."

Volume 75, issue 4, page 277, line 1 should read "Phytologia (October 1993) 75(4):330-332." rather than "Phytologia (October 1993) 74(4):330-332."

Volume 75, issue 4, page 277, line 1 should read "Phytologia (October 1993) 75(4):333-335." rather than "Phytologia (October 1993) 74(4):333-335."

Volume 75, issue 4, page 277, line 1 should read "Phytologia (October 1993) 75(4):336-338." rather than "Phytologia (October 1993) 74(4):336-338."

Volume 75 , issue 4 , page 277 , line 1 should read "Phytologia (October 1993) 75(4):339-340." rather than "Phytologia (October 1993) 74(4):339-340."

INDEX TO AUTHORS, VOLUME 75

Allen, C.M. 336
Baird, G.I. 74
Brouillet, L. 224
Cereno, J.C. 192
Chrelashvili, L.G. 124
Cowan, C.C. 281
Cuatrecasas, J. 235
García, A., A. 243
Grant, J.R. 170
Klackenberg, J. 199
Laferrière, J.E. 399
Lemke, D.E. 330
MacRoberts, B.R. 247, 463
MacRoberts, M.R. 247, 463
Mayfield, M.H. 178
McInnis, N.C. 159
McIntosh, L. 224
Miller, H.A. 185
Montes, L. 192
Nelson, C. 190
Nesom, G.L. 1, 45, 55, 74, 94, 113, $118,163,218,341,347,358$, $366,369,377,382,385,391$, 452
Nuciari, M.C. 192
Ochoa, C.M. 422
Pittman, A.B. 159
Rayner, T.G.J. 100, 149
Roberts, R. 330
Simpson, B.B. 341
Smith, L.M. 159
Spellenberg, R. 166, 224
Suh, Y. 341
Sutherland, D.M. 166
Thomas, R.D. 336

Turner, B.L. 121, 134, 136, 140, 143, 147, 176, 204, 221, 231, 239, 259, 277, 281, 325, 333, 400, $402,404,406,409,411,417$, 432, 481
Ward, D.E. 166

Phytologia (December 1993) 75(6):484-512.

INDEX TO TAXA, VOLUME 75

New taxa described in this volume are indicated in bold face type.

Acacia 228
constricta 228
greggii 228
Acamptopappus 20, 24, 40
Acanthaceae 466
Acer 251
rubrum 251
Aceraceae 251
Acourtia 404, 405
hintoniorum 404, 405
tomentosa 404, 405
Actipsis 4
Adenosma 282
Adiantaceae 382
Aeginetia 399
saccharicola 399
Aesculus 470
pavia 470
Agalinis 252, 468
fasciculata 468
plukenettii 468
skinneriana 468
Agaloma 178
Agavaceae 466
Agave 233, 234, 326, 374, 386
lechugilla 233, 234, 326
Ageratina 147, 148, 402, 403
acevedoana 402, 403
subg. Ageratina 147, 148, 402, 403
cardiophylla 148
gentryana 403
subg. Neogreenella 147, 148
parryana 402, 403
perezii 147, 148

Ageratina (cont.)
viejoana 147
warnockii 403
Agrostis 161, 466
elliotiana 161, 466
Aletris 250, 466
aurea 250, 466
Allardtia 171
Allieae 146
Allioniaceae 451
Allioniella 449
oxybaphoides 449
Allionia 432, 433, 435, 439, 441, 444, 446, 449
albida 435
carletonii 441
ciliata 441
coahuilensis 435
comata 439
corymbosa 449
var. texensis 449
decumbens 444
diffusa 444
exaltata 441
gausapoides 444
gigantea 439
glabra 439
grayana 435
hirsuta 441
latifolia 433, 435
linearis 444
nyctaginea 446
oblongifolia 435
pseudaggregata 435
rotata 435

Allionia (cont.)
texensis 449
vaseyi 444
Allium 333-335, 466
canadense 466
glandulosum 333, 334
hintoniorum 333
Plummerae 334
stoloniferum 333
Alnus 251
serrulata 251
Aloysia 386
Amaryllidaceae 146, 250, 466
Amellus 61
Ammocodon 242
Amphiachyris 20, 24, 40
Amphipappus 17, 20, 21, 24, 25
Amphirhapis 4
Anacardiaceae 251
Anactis 5
Andigena 427
Andreana 427
Andropogon 466, 470
tenarius 466
Anemone 161
caroliniana 161
Anisophyllum 182
velleriflorum 182
Anoplophytum 171
Anthaenantia 250
rufa 250
Apiaceae 251, 466
Aplactis 3
Aplopappus 69
sect. Diplostephioides 69
Apocynum 470
cannabinum 470
Apodocephala 62
Apostates 61, 71
Aquifoliaceae 251, 466
Archibaccharis 55, 57, 62, 63, 71
Arenaria 400, 401, 481
hintoniorum 400, 401, 481

Arenaria (cont.)
gypsostrata 481
lanuginosa 400, 401
Aristida 161, 228, 250, 466, 470
longespica 466
oligantha 466
purpurascens 250, 466
var. virgata 250
Aronia 252
arbutifolia 252
Artemisia 69, 71, 91, 92, 386
Asclepiadaceae 199, 203, 251, 466
Asclepias 251, 253, 466
lanceolata 253
longifolia 251, 466
rubra 251
viridiflora 466
Aster 17-19, 22-24, 27-31, 36 -
39, 43, 45-48, 50-54, 61, 94-
99, 113-115, 117, 163-165, 251, 345, 452-461, 467
acuminatus 458
alpinus 114
ageratoides 52
albus 28
amygdalinus 455
andohahelensis 98
subg. Aster 46, 47
subsect. Aster 47
asteroides 50
baccharoides 52
bakeranus 95
baronii 98
bifoliatus 51, 54
sect. Biotia 47, 459
subg. Biotia 45
brickellioides 52
ciliatus 345
collinsii 51
conyzoides 48,50
cornifolius 455
curtus 51, 53
dimorphophyllus 457

```
Aster (cont.)
    sect. Doellingeria 454
    subg. Doellingeria 452-454, 461
    dumosus 251, 467
    dumosus 467
    ericoides }1
    gracilis 46
    grisebachii 163, 164
    forma angustissima }16
    harveyanus 95
    hashimotoi }45
    hemisphericus }1
    infirmus 455,461
    sect. Integrifolii 47
    japonicus 456
    kingii 53
    komonoensis 457
    lateriflorus 18
    leucanthemus 50
    sect. Leucoma }4
    linariifolius 467
    linifolius 51
    longipetiolatus 457
    lutescens 29
    madagascariensis 98
    mandrarensis }9
    marchandii }45
    marginatus }16
    marilandicus 50
    miquelianus }45
    nemoralis 47,458
    oolentangiensis 467
    oregonensis 51
    paludosus 18,467
        subsp. hemisphericus 467
    panduratus }45
    patens }46
    paternus }5
    plantaginifolius 50
    sect. Ptarmicoidei 27, 28
    ptarmicoides 27, 28, 30,31
    pubentior 455
    sect. Radulini 47
```

Aster (cont.)
reticulatus 47, 453, 458
rigidus 51
rugulosus 456
saboureaui 98
scaber 456, 457
sekimotoi 457
senecionoides 98
sericeus 467
sericocarpoides 251,455
sect. Sericocarpus 48
subg. Sericocarpus 48
sect. Serratifolii 48
sohayakiensis 454,456
series Sohayakienses 454
solidagineus 50
subsect. Spectabiles 46,47
spectabilis 46
striatus 458
subg. Symphyotrichum 17
sect. Teretiachaenium 456
tortifolius 48, 51, 54
trichanthus 457
sect. Triplopappus 454,461
umbellatus 454, 455, 461
var. pubens 455
vialis 52
Asteraceae 1, 36, 37, 39-41, 43-45, $53,55,64,69-73,74,79,81$, $91-94,99,113,116,118,121$, $123,134-136,140,143,146$, $147,163,165,176,192,204$, 216-218, 220, 221, 224, 251, $257,325,341,344,345-347$, $355,357,358,365,366,368$, $402,404,452,460,461,467$, 469, 478
\times Asterago 30
Astereae 1, 7, 18, 19, 22, 25, 37, 39, $40,42-45,52-55,57-59,61$, $62,64,70-74,90,92-95,97-$ $99,113,117,118,120,163-$ $165,218,220,341-347,348$,

Astereae (cont.) $357,358,361,364-$ 368
Asterinae 61, 62, 366
Astereae 452, 460, 461
Asteromoea 456
japonica 456
Atriplex 71, 92
Aureolaria 468
pectinata 468
Aylacophora 59, 66, 358, 361, 362
deserticola 358, 362
Axonopus 466
affinis 466
Azorella 366
Aztecaster 41, 55, 60, 63, 64-68, $83,93,99,347,357,360$, 363, 365, 367, 368
matudae $55,65,68$
pyramidatus $55,64,65,68$
Baccharidastrum 62
Baccharidinae 22, 41, 55, 57, 62-64, 73, 93, 95, 97, 99, 348, 357, 365, 368
Baccharidopsis 62
Baccharis 55-58, 62-64, 68, 71, 72, $348,350,351,353,359,362$
acaulis 348
sect. Discolores 56, 57
sect. Glandulocarpae 56
lucida 350
matudae 56-58, 64, 68
phillipii 362
phyliciformis 350
pteronioides 56
pyramidata 56-58, 64, 68
quadrangularis 351, 353
spartioides 359
Baptisia 467
leucophaea 467
Bartonia 251, 479
paniculata 251
texana 479

Bellidinae 366
Berchemia 468, 470
scandens 468,470
Betulaceae 251
Bidens 100, 101, 104-107, 109, 111, 149-152, 155-158, 192-198, 251
acuticaulis 151, 152
aristosa 251
aurea 192-198
borianiana 100, 106, 109, 111
camporum 100, 101, 106, 107
cochlearis 150, 155
diversa 149-152, 155
subsp. diversa $149,151,155$
var. diversa 150
subsp. filiformis $149,151,156$
var. megaglossa $150,151,155$
var. quilembana 150,155
var. typica 155
filiformis 149, 151, 156
gledhillii 100, 104-107, 109, 111
laevis 192, 193
lineariloba 150
pilosa 192, 193, 196
steppia 156
subalternans 192
Bigelovia 20, 47, 56-58, 68, 76, 84, 86-88
sect. Chrysothamnopsis 76
glareosa 86
graveolens 86
var. glabrata 86
var. hololeuca 86
var. latisquameus 86
howardii 88
var. attenuata 88
juncea 86
leiosperma 86
mohavensis 87
paniculata 84
pyramidata 56-58, 68
turbinata 88

Bigelowia 161, 467
nuttallii 161, 467
Bignoniaceae 467
Biophytum 190
dendroides 191
zunigae 190
Biotia 45, 456, 457
discolor 457
japonica 456
Blakiella 59, 367
Blechnaceae 250
Boltonia 251, 456
diffusa 251
japonica 456
Boraginaceae 226
Brachychaeta 1, 10, 39,44
Brachystegia 157
Brassicaceae 227, 231
Brickellia 140-142, 224, 225
amplexicaulis 224
aramberrana 140-142
coulteri 225
grandiflora 140, 142
Brintonia 1, 5, 39
Bromeliaceae 170, 175
Bromus 228
rubens 228
Bumelia 470
lycioides 470
Burmannia 250
capitata 250
Burmanniaceae 250
Cacalia 251
ovata 251
Calceolaria 428, 429
Callicarpa 468
americana 468
Callisia 277-280
sect. Cuthbertia 277, 279
graminea 277
hintoniorum 277-279
ornata 277

Callisia (cont.)
rosea 277
Callitriche 161
nuttallii 161
Calopogon 250, 253, 254
barbatus 253, 254
tuberosus 250
Calymenia 444
decumbens 444
Campanulaceae 251, 467
Campsis 467
radicans 467
Capraria 287, 321
durantifolia 287
humilis 321
oppositifolia 287
Caprifoliaceae 251
Carex 250, 336-338, 463, 466, 475, 477
caroliniana 466
flaccosperma 466
glaucescens 250
hyalina 336-338
meadii $463,466,475,477$
Carya 468
Caryophyllaceae 159, 227, 400, 481
Castilleja 228
exserta 228
subsp. exserta 228
Castillejinae 229
Catopsis 171
Caulanthus 227
lasiophyllus 227
Cecropia 427
Cedrela 427
Celmisia 61, 66, 70, 96-99
Centaurium 259-275
arizonicum 259, 260, 262, 263, $266,267,269-27^{`}, 273$
arizonicum \times texense 263
beyrichii 259-261, 263, 265, 268, 271, 273
var. beyrichii 260

Centaurium beyrichii (cont.)
var. glanduliferum 260, 265
breviflorum 259, 261, 263, 274
calycosum 259, 260, 262-266, 270, 271, 273, 274
var. arizonicum 262-264, 271
var. calycosum $260,263-265$, 273
var. breviflorum $260,263,265$
var. nanum $260,263-265,271$, 273, 274
glanduliferum 259, 261, 265
maryannum $259,260,262,265$, 268, 269-271, 273
multicaule 259-261, 271-273
nudicaule 259-261, 271-273
parviflorum 268, 272
pulchellum 259-261, 272-274
texense 259-261, 263-265, 272274
var. glanduliferum 260
var. breviflorum 260
Centella 251
asiatica 251
Centunculus 161
minima 161
Chaenactidinae 143
Chaetopappa 61, 113, 114, 344
Chamaesyce 178-182, 276
acuta 181
albomarginata 181
ammannioides 181
angusta 181
arizonica 181
astyla 181
berteriana 180, 181
capitellata 181
carunculata 181
chaetocalyx 179, 181
var. triligulata 179, 181
cinerascens 181
cordifolia 181
crepitata 179,181

Chamaesyce crepitata (cont.)
var. longa 179, 181
cumbrae 181
fendleri 179, 181
var. triligulata 179
fruticulosa 179, 181
var. hirtella 179, 181
fruticosa 179
geyeri 179, 181
var. wheeleriana 179, 181
glyptosperma 181
golondrina 181
hirta 181
humistrata 181
hypericifolia 181
hyssopifolia 181
indivisa 181
jejuna 181
johnstonii 179, 180
laredana 181
lasiocarpa 180
lata 181
maculata 182
micromera 182
missurica 182
nutans 182
parryí 182
perennans 182
prostrata 182
revoluta 182
scopulorum 182
var. inornata 182
var. nuda 182
serpens 182
serpyllifolia 182
serrula 182
setiloba 182
simulans 179, 182
stictospora 182
var. sublaevis 182
theriaca 180,182
var. spurca 180, 182
velleriflora 180,182

Chamaesyce (cont.)
villifera 182
Chaptalia 251
tomentosa 251
Chasmanthium 466
sessiliflorum 466
Chiliophyllum 60, 66, 83, 95, 363
Chiliotrichopsis 66, 363
Chiliotrichum 19, 55, 59, 61, 63, 66, 95, 347, 363
Chloris 336, 337
subdolichostachya 336, 337
Chodaphyton 282, 291, 292
ericifolium 291
Chorizanthe 228
brevicornu 228
Chrysoma 2, 3, 20-22, 39, 46, 84
nauseosa 84
Chrysopsis 22, 28, 113-117
alba 28
gossypina 114
villosa 115
Chrysothamnus 17, 20, 22, 24, 25, $35,41,55-58,68,69,71,72$, 74-93, 363, 365
affinis 88
albidus 77-79, 82
sect. Asiris 74
asper 88
bolanderi 90, 91
sect. Chrysothamnus 75, 76
consimilis 85
depressus 80
eremobius 75, 76, 91
sect. Graminei 75, 76
gramineus 75, 76
greenei 80
linifolius 79, 80
sect. Macronema 74
monocephalus 89
sect. Nauseosi $56,58,75,76,80-$ 83
nauseosus 74-81, 84-88, 90-93,

Chrysothamnus nauseosus (cont.) 363
subsp. albicaulis 79, 87
subsp. arenarius 85
subsp. bernardinus 85
var. bernardinus 85
subsp. bigelovii 85
subsp. consimilis 85
subsp. ceruminosus 85,86
subsp. graveolens 86
subsp. glareosa 86
subsp. hololeucus 77-79, 86
subsp. iridis 86
subsp. junceus 86
subsp. latisquameus 86
subsp. leiospermus 87
subsp. mohavensis 78,87
subsp. nanus 87
var. nanus 87
subsp. nauseosus 87
subsp. nitidus 87
subsp. psilocarpus 87
var. psilocarpus 87
subsp. salicifolius 87
subsp. texensis 88
subsp. turbinatus 88
subsp. uintahensis 90, 91
subsp. viscosus 90
subsp. washoensis 88
oreophilus 85
var. artus 85
paniculatus 74-76, 81, 84
parryi 56, 74-77, 79-81, 88-90
subsp. affinis 88
subsp. asper 88
subsp. attenuatus 88
subsp. bolanderi 89
var. bolanderi 90
subsp. howardii 88
subsp. imulus 89
subsp. latior 89
subsp. monocephalus 89
subsp. montanus 89
subsp. nevadensis 89

Chrysothamnus parryi (cont.)
subsp. parryi 89
subsp. salmonensis 89
subsp. vulcanicus 89
sect. Pulchelli 75, 76, 81
pulchellus 75, 82
sect. Punctati 75-77, 79, 81-83, 83
pyramidatus 56, 57, 68
salicifolius 87
speciosus 87
var. albicaulis 87
var. gnaphalodes 86
var. speciosus 87
teretifolius 74-76, 80, 81, 84
viscidiflorus 75, 78, 80, 91, 92
vulcanicus 89
Chusquea 427, 429
Cirsium 467
carolinianum 467
Cistaceae 467
Clusiaceae 251, 467
Cladonia 161
Colubrina 377
greggii 377
Columbiadoria 17, 20, 26, 41, 92
Columnea 318
trifoliata 318
violacea 318
Commelina 336, 338
benghalensis 336
Commelinaceae 277, 280, 336, 338, 406
Compositae 36, 38-40, 42-44, 52-54, 69-72, 90, 92, 93, 98-100, 111, $116,117,120,139,146,149$, $158,165,197,198,220,230$, $345,346,355,357,364,365$, $367,368,428,429,458,460$, 461
Connellia 171
Conobea 287
verticillaris 287

Convolvulaceae 467
Conyza 50, 51, 62, 164
asteroides 50
bifoliatus 51
linifolia 50, 51
Conyzinae 62
Cordium 282
Coreopsis 100, 158, 161, 225, 230 , 251, 467
californica 225 var. newberryi 225
camporum 100
sect. Euleptosyne 230
lanceolata 467
linifolia 251
sect. Pugiopappus 230
tinctoria 161
tripteris 251
sect. Tuckermannia 230
Cornaceae 467
Cornus 467
florida 467
Coronopus 227
didymus 227
Corethrogyne 22, 114
Crataegus 468, 470
marshallii 468
spathulata 468
Crinitaria 460
Crotalaria 467
sagittalis 467
Croton 467
capitatus 467
Crotonopsis 467
elliptica 467
Cruciferae 234
Cryptantha 226
nevadensis 226
Ctenium 106, 250
aromaticum 250
newtonii 106
Cupressaceae 466
Cuthbertia 277, 280

Cyanotis 106
longiflora 106
Cynoctonum 252
sessilifolium 252
Cyperaceae 250, 336, 338, 466
Dalea 166-168, 467, 470, 482
albiflora 166
alopecuroides 167
brachystachys 167
candida 467
filiformis 167
grayi 166, 167
lachnostachys 167
leporina 167
nana 167
var. carnescens 167
neomexicana 168
var. neomexicana 168
ordiae 167
pogonathera 168
var. pogonathera 168
polygonoides 166, 168
purpurea 467
versicolor 168
var. sessilis 168
Damnamenia 66, 70, 99
Darcya 323
mutisiz 323
Dasiorima 12
Dasylirion 386
Delphinium 468
carolinianum 468
Dendropogon 171
Desmodium 385-390
aparines 387
caripense 387
glutinosum 388
grahamii 388
hartwegianum 388
var. amans 388
lindheimeri 388
lineatum 388

Desmodium (cont.)
molliculum 389
macrostachyum 389
neomexicanum 386, 389
paniculatum 387
procumbens 390
psilophyllum 389
retinens 389, 390
rosei 385,386
subrosum 385-387, 390
tortuosum 389, 391
Diaphoranthema 171
Dicanthelium 250, 466
aciculare 466
acuminatum 250, 466
dichotomum 250
ensifolium 250
sphaerocarpon 466
Dicerandra 185, 186
christmanii 185
cornutissima 185
frutescens 185
immaculata 185
thinicola 185, 186
Diodia 468
teres 468
Dioon 136
Diplopappus 28, 29, 113-116, 454
albus 28, 29
var. lutescens 29
delphinifolius 114
dubius 114
intermedius 114
lanatus 114, 116
lutescens 29
sect. Triplopappus 454
villosus 114-116
Diplostephioides 60
Diplostephium 55, 59-61, 63, 64, 66, $69,94-98,114,452$
madagascariense 95,98
schultzii 64
Dissotis 104

Dissotis (cont.)
fruticosa 104
Doellingeria $28,45,113,452-462$
amygdalina 455
sect. Cordifolium 452-454, 456, 459
series Cordifolium 453, 454, 456, 459
dimorphophylla 457, 459
sect. Doellingeria 452-454, 459
series Doellingeria 455
humilis 455
infirma 453, 455
japonica 456, 459
komonoensis 457
longipetiolata 453, 457, 459
marchandii 453, 456, 459
obovata 458
series Papposae 457, 459
ptarmicoides 28, 458
pubens 455
reticulata 458
rugulosa 456, 457, 459
scabra 453, 457
sekimotoi 457
sohayakiensis 456, 459
sericocarpoides 455
trichocarpa 458
umbellata 452, 453, 455
subsp. pubens 455
var. pubens 455
var. umbellata 455
Dolichogyne 349-351, 353
glabra 351
lepidophylla 349, 353
rigida 350, 351
rupestris 350,351
sect. Tola 349
Donia 341, 344
ciliata 344
Drosera 251, 467
brevifolia 251, 467
capillaris 251

Droseraceae 251, 467
Dubautia 158
Eastwoodia 20, 24
Egeria 331
densa 331
Elaeophorbia 178
Eleocharis 250
tuberculosa 250
Engleria 22, 61
Eragrostis 250, 466
e!liottii 466
spectabilis 250,466
Erianthus 250
giganteus 250
Ericaceae 251, 467
Ericameria 22, 24, 41, 55-60, 63, 64, 66, 71, 72, 74-92, 361, 363, 365
sect. Asiris $58,74,75,79,80$
bloomeri 80
\times bolanderi 89
cooperi 80
cuneata 79, 90
discoidea 76, 79, 80, 90
sect. Ericameria 58, 74, 75, 79-
82, 363
ericoides 75,79
linearifolia 75, 82
sect. Macronema 58, 74-76, 7981, 363
nana 75
nauseosa $78,84-88,90$
var. arenaria 85
var. arta 85
var. bernardina 85
var. bigelovii 85
subsp. consimilis 85
subsp. nauseosa 85
var. ceruminosa 85
var. glabrata 85,86
var. glareosa 85,86
var. hololeuca $85, \mathbf{8 6}, 90$

Ericameria nauseosa (cont.)
var. iridis 85,86
var. juncea 85,86
var. latisquamea 85,86
var. leiosperma 85,86
var. mohavensis 85,87
var. nana 85,87
var. nauseosa 85,87
var. nitida 85,87
var. psilocarpa 85, 87
var. salicifolia 85,87
var. speciosa $85,87,90$
var. texensis 85,88
var. turbinata 85,88
var. washoensis 85,88
pachylepis 80
paniculata 84
parryi 88-90
var. affinis 88
var. aspra 88
var. attenuata $\mathbf{8 8}, 90$
var. howardii 88
var. imula 89
var. latior 89
var. monocephala 89
var. montana 89
var. nevadensis 89
var. parryi 88
var. salmonensis 89
var. vulcanica 89
sect. Stenotopsis 74, 75, 79
suffriticosa 75
teretifolia 84
\times uintahensis 90
\times viscosa 90
Erigeron 22, 40, 97, 113, 114, 117 -$120,164,165,218-220,251$, 253, 344, 467
annuactis 120
annuus 114
delphinifolius 114, 118-120
griseus 218-220
inoptatus 119

Erigeron (cont.)
jenkinsii 118-120, 220
mayoensis 218-220
neomexicanus 120
oreophilus 120
pappochroma 97
sect. Polyactis $117,119,120,218$, 220
strigosus 467
vernus 251,253
wislizeni 218-220
Erinus 282, 321
verticillatus 321
Eriocaulaceae 250, 257
Eriocaulon 250, 253, 254
decangulare 250
texense 250, 253, 254
Eriogonum 228, 229, 254
capillare 228
maculatum 228
vernus 254
wrightii 228
Eryngium 251, 466
integrifolium 251
yuccifolium 466
Erythraea 262-264, 273, 274
arizonica 262
beyrichii 263
calycosa 262,264
var. arizonica 262
var. nana 264
nudicaulis 273
texensis 274
trichantha 263
var. angustifolia 263
Eucephalus 28, 45, 457
albus 28
scaber 457
Eupatorieae 140, 147, 402
Eupatorium 251
leucolepis 251
rotundifolium 251
Euphorbia 106, 178-180, 182, 183,

Euphorbia (cont.) 467
subsect. Acutae 183
chaetocalyx 179
var. triligulata 179
corollata 467
crepitata 179
var. longa 179
depauperata 106
fendleri 179
var. triligulata 179
fruticulosa 179
var. hirtella 179
geyeri 179
var. wheeleriana 179
johnstonii 179, 183
lasiocarpa 180
polycarpa 179
var. simulans 179
simulans 179
theriaca 180
var. spurca 180
velleriflora 180
Euphorbiaceae 138, 178-180, 183, 467
Euphorbieae 178, 179, 183
Euphorbiinae 178
Eurybia 98
Euthamia 2, 20, 23, 31-33, 39, 41$43,47,72,93,346$
graminifolia 1, 31-33
Evolvulus 467
sericeus 467
Fabaceae 166, 251, 385, 409, 467, 469
Fabanae 482
Fagaceae 467
Felicia 22, 61, 113, 116
Fimbristylis 466
puberula 466
Floscaldasia 360, 365-367
hypsophila 366
Flosmutisia 59, 360, 366
Fouquieria 386

Fuchsia 428
Fuirena 250
squarrosa 250
Gaillardiinae 143
Galactia 467
volubilis 467
Galatella 47, 51, 460
obtusifolia 51
platylepis 51
Gaura 468
Gelsemium 468
sempervirens 468
Genianthus 199-203
bicoronatus 200, 202
crassifolius 199
hastatus 201-203
laurifolius 199-203
siamicus 202, 203
Gentiana 274
pulchella 274
Gentianaceae 251, 259, 275, 467, 479
Geocarpon 159-162
minimum 159-162
Gibasis 406-408
consobrina 408
gypsophila 406, 407
hintoniorum 406, 407, 408
karwinskyana 407, 408
pellucida 406, 407
Gladiolus 106
psittacinus 106
Gleditsia 470
triacanthos 470
Gnaphalium 467
purpureum 467
Gramineae 429
Grangeinae 22, 366, 367
Gratiola 252, 302, 304
hookeri 304
pilosa 252
tetragona 302, 304
Greenella 40

Grindelia 22, 341-346
adenodonta 344
buphthalmoides 343
ciliata 344
lanceolata 344
microcephala 344,346
nuda 344
papposa $341,344,345$
squarrosa 342
Guizotia 158
Gundlachia 20, 46, 47
Gutierrezia 17-23, 25, 40, 41, 43, 45, $46,47,53,71,226$
texana 18
Gymnosperma 20, 23, 40
Habranthus 475
tubispathus 475
Haloragidaceae 251
Hamamelidaceae 467
Haplopappus 22, 34, 35, 39, 52, 56, $57,60,68,71,74,76,77,81$, $83,91-94,96,97,99,113$, $163,164,341-343,345,365$
sect. Asiris 71, 92, 365
ciliatus 345
sect. Ericameria 76
linearifolius 93
sect. Macronema 71, 92, 365
marginatus 163,164
parryi 34
phyllocephalus 345
sect. Prionopsis 341
pyramidatus 68
Hazardia 343
Hedeoma 161, 468
hispidum 161, 468
Hedyotis 161, 252, 468
australis 161
boscii 252
crassifolia 161, 468
nigricans 468
rosea 161

Heleastrum 17, 28
album 28
Helenieae 143, 176
Helenium 251
drummondii 251
Heliantheae 121, 123, 134-136, 139, 146, 192, 198, 204, 216, 217, 230, 257, 342
Helianthus 251, 467, 470
angustifolius 251, 467
hirsutus 470
Herpestris 321
diffusa 321
Hesperodoria 24, 41, 83, 92
Hesperonia 432
Heterothalamus 55, 57, 62, 359
spartioides 359
Heterotheca 23, 113-117, 467
graminifolia 467
sect. Phyllotheca 115
villosa 114,115
Hinterhubera 55, 58-63, 66, 70, 347, 358-361, 363, 365, 367
columbica 360
scoparia 360,361
Hinterhuberinae 22, 41, 55, 58-64, $66,72,83,93,94,96,97$, 99, 347, 348, 357, 363, 365368
Humiriaceae 235, 238
Humiriastrum 235-237
colombianum 236
cuspidatum 237
dentatum 237
excelsum 237
glaziovii 236, 237
mussunungense 235, 237
piraparanense 237
spiritu-sancti 237
villosum 237
Hydrilla 330-332
verticillata 330, 331
Hydrocharitaceae 330, 331

Hyparrhenıa 106
chrysargyrea 106
diplandra 106
Hypericum 251, 467
brachyphyllum 251
crux-andreae 251
gentianoides 467
hypericoides 467
setosum 251
Hypochaeris 225
radicata 225
Hypoxidaceae 377
Hypoxis 250, 377-381, 466
decumbens 377-381
var. decumbens 379,380
var. dolichocarpa 377, 378381
var. major 380,381
hirsuta 377, 378, 466
mexicana 381
pulchella 377-379, 381
rigida 250
Hyptis 251
alata 251
Hysterionica 115, 163-165
dianthifolia 163, 164
filiformis 163, 164
marginata 163, 164
pinifolia 163, 164
pulvinata 164
villosa 164
Ilex 251, 466
coriacea 251
decidua 466
vomitoria 466
Inula 28
alba 28
Ionactis 113-115
sect. Chrysopsis 115
Iridaceae 250, 466
Isocoma 7, 41, 52, 56, 342, 344
pluriflora 52

Iva 161
angustifolia 161
Jaimehintonia 146, 279
gypsophila 279
Jalapa 444
longiflora 444
Juglandaceae 468
Juglans 427
Juncaceae 250, 466
Juncus 250, 466
debilis 250
marginatus 250,466
scirpoides 250
trigonocarpus 250
Juniperus 228, 466, 470
monosperma 228
virginiana 466, 470
Kalimeris 453, 456, 460
sect. Cordifolium 456
longipetiolata 457
marchandii 456
miqueliana 456
Kotschya 104
ochreata 104
Krigia 161, 467
occidentalis 161
virginica 467
Labiatae 158, 414
Lachnocaulon 250, 254, 257
anceps 250
digynum 250, 254
Laestadia 360, 366, 367
Lagenifera 97
Lamiaceae $185,251,411,414,468$
Lasallea 54, 165, 461
Lauraceae 252, 378
Lechea 467
tenuifolia 467
Leguminosae $168,169,390$
Leioligo 6, 7
subg. Breviligula 6

Leioligo (cont.)
subg. Doria 7
subg. Lininque 7
Lendneria 282, 285, 321, 323
ageratifolia 285
humilis 321
verticillata 321
Lentibulariaceae 252, 468
Leocus 106
lyratus 106
Lepiactis 12
Lepidophyllum 59, 63, 66, 70, 347-
351, 353, 355, 363
abietinum 350
cupressiforme 347
cupressinum 353
lucidum 350
meyenii 353
phyliciforme 350
var. resinosum 350
quadrangulare 351
rigidum 350
teretiusculum 355
tola 353
sect. Tola 349
Leucospora 282, 295
multifida 295
Liatris 251, 467
acidota 251
aspera 467
earlei 467
pycnostachya 251
squarrosa 467
Liliaceae 250, 333, 335, 466, 479
Linaceae 252, 468
Linosyris 47, 84, 85, 88, 89, 460
bigelovii 85
bolanderi 89
ceruminosus 85
howardii 88, 89
var. nevadensis 89
parryi 88
teretifolius 84

Linum 252, 468
medium 252, 468
Llerasia 59, 60, 63, 66, 70, 81
Lobelia 251, 467
appendiculata 467
reverchonii 251
Loganiaceae 252, 468
Liquidambar 467
styraciflua 467
Lotus 409, 410
hintoniorum 409
sect. Hosackia 409, 410
oroboides 410
Loudetia 106
kagerensis 106
Ludwigia 252
hirtella 252
Lupinus 427
Luzula 161
bulbosa 161
Lycopodiaceae 250
Lycopodium 250, 254, 283
alopecuroides 250
appressum 250
carolinianum 250
cernuum 254
Lyonia 253
ligustrina 253
Machaeranthera 22, 40, 71, 92, 114, 342, 343, 345, 346
sect. Psilactis 71, 92
Macronema 90
bolanderi 90
Madagaster 61, 66, 72, 94, 97, 98
andohahelensis 98
madagascariensis 98
mandrarensis 97,98
saboureaui 98
senecionoides 98
Magnolia 248, 252
virginica 248, 252
Magnoliaceae 252

Manfreda 466
virginica 466
Marshallia 251 graminifolia 251 ssp. tenuifolia 251
Mathiasella 420 bupleuroides 420
Matourea 282, 309, 311
pratensis 309, 311
Medicago 467
lupulina 467
Melampodium 136-139, 225, 230
americanum 136, 138
linearilobum 138
mayfieldii 136-138
strigosum 225
Melanthium 250
virginicum 250
Melastomataceae 252, 427, 428
Mezobromelia 171
Microglossa 55, 62, 95
Microlecane 158
Mildella 382-384
fallax $382, \mathbf{3 8 4}$
intramarginalis 382-384
var. serratifolia 382-384
var. intramarginalis 382,383
leonardii 382-384
Mimosa 228, 386
biuncifera 228
Minutifolia 427
Mirabilis 432-451
aggregata 449
albida 432, 433, 435-439, 441, 444, 446
var. lata 435
austrotexana 432-434, 436, 438440
carletonii 441
ciliata 441
coahuilensis 435
coccinea 449
collina 446

Mirabilis (cont.)
comata 432, 434, 436, 437, 439
decumbens 444
diffusa 444
dumetorum 433, 435, 436, 439
entricha 435,436
exaltata 439, 441, 444
gausapoides 444
gigantea 432, 434, 438-440
glabra 432, 434, 436, 439-441
glabriflora 449
glabrifolia 442, 449
grayana 435
hirsuta 432, 434, 441, 443, 444
jalapa 432, 433, 443, 444
subsp. lindheimeri 444
var. lindheimeri 444
lindheimeri 444
linearis $432,434,436,441,444$, 445
longiflora 432, 433, 444, 447
var. longiflora 444, 447
var. wrightiana 444,447
section Mirabilis 451
muelleri 435
multiflora 432, 433, 446, 448
var. multiflora 446
nesomii 445
nyctaginea 432, 434-436, 439, 441, 446, 450
var. albida 435
var. hirsuta 441
oblongifolia 435, 439
oxybaphoides $432,433,449,450$
pauciflora 435
pseudaggregata 435
subgenus Quamoclidion 451
rotata 435
texensis 432, 434, 442, 449
Monadenium 178
Monocotyledonae 332
Monoptilon 61
Morgania 282

Muhlenbergia 250, 466
capillaris 466
expansa 250
Mutisieae 404
Myrica 252, 468
cerifera 252,468
heterophylla 252
Myricaceae 252, 468
Myriophyllum 251
aquaticum 251
Nannoglottis 460
Nardophyllum 59, 61, 66, 70, 355, 358-364
armatum 359, 361, 362
bracteolatum 359, 362
bryoides 359, 362
chiliotrichoides 359-362
deserticola 358, 362
genistoides 360,362
lanatum 359, 362
obtusifolium 359, 362
paniculatum 362
patagonicum 358, 362
scoparium 358-361, 362
Neptunia 470
lutea 470
Nerisyrenia 231-234, 326, 329
baconiana 231, 232, 234, 326
linearifolia 231, 233, 234
var. linearifolia 231, 233, 234
var. mexicana $231,233,234$
mexicana 234
Nostoc 161
Nothoscordum 161, 198, 466
bivalve 161, 466
inodorum 198
Nyctaginaceae 239, 242, 432, 451
Nyssa 252
sylvatica 252
Nyssaceae 252
Oenothera 161, 468

Oenothera (cont.)
linifolia 161, 468
Olearia 55, 59-61, 66, 70, 94-98
argophylla 96
dentata 96
pannosa 96
tomentosa 96
Oligactis 48
Oligoneuron 1, 2, 7, 18, 20, 23-34, $39,47,53,72,93,458,459$, 461
album 1, 25, 27, 28-34, 458
\times bernardii 30
houghtonii $1,25,27-29$
\times krotkovii 30
\times lutescens 29
\times maheuxii 30
nitidum 25, 28
ohioense 27, 29, 30
sect. Oligoneuron 26
sect. Ptarmicoidei 27
ser. Ptarmicoidei 28
riddellii 28-30
rigidum $1,25,27,30,31$
var. glabratum 1, 27
var. humilis 1,27
var. rigidum 27
ser. Xanthactis 28
Olivaea 342-344
Onagraceae 252, 468
Opuntia 386
Orchidaceae 250, 258, 466
Oreochrysum 1, 2, 18, 20, 24, 25, 26, 34, 35, 460
parryi 34, 35
Oreostemma 60, 72
Oritrophium 59-61, 66, 72, 99, 361, 367
orizabense 72, 99
Orobanchaceae 399
Orthocarpus 229
purpurascens 229
Osmunda 250

Osmunda (cont.)
cinnamomea 250
regalis 250
Osmundaceae 250
Oxalidaceae 190, 468
Oxalis 428, 468
stricta 468
Oxybaphus 432, 435, 439, 441, 444, 446, 449
albidus 435
coahuilensis 435
comatus 439
exaltatus 441
giganteus 439
glaber 439
hirsutus 441
linearis 444
multiflorus 446
nyctagineus 435, 436, 446
var. latifolius 435, 436
var. oblongifolius 435
pauciflorus 435
pseudaggregata 435
wrightii 449
Oxypolis 251
filiformis 251
rigidior 251
Oyedaea 204
ovalifolia 204
Pachystegia 66
Paleaepappus 59, 66, 358, 361, 362
patagonicus 358, 362
Panicum 106, 250, 466
anceps 466
congoense 106
rigidulum 250
tenerum 250
virgatum 250
Papaver 227
rhoeas 227
Papaveraceae 227
Parastrephia 59, 63, 66, 347-354, 356,

Parastrephia (cont.) 360, 363, 365
ericoides 349-351
lepidophylla 347, 353
lucida 347-353
phyliciformis 347, 350, 351
quadrangularis 347-351, 353, 354
teretiuscula 347, 349, 354, 356
Paspalum 250, 466
notatum 466
plicatulum 250
setaceum 250
Pediculareae 229
Pedilanthus 178
Pellaea 384
intramarginalis 384
var. serratifolia 384
Pentachaeta 61
Pentzia 226, 229
incana 226
Perityle 176, 177
feddemae 176
glaucescens 176
sect. Laphamia 176, 177
sect. Perityle 177
Persea 252
borbonia 252
Perymeniopsis 204
Perymenium 121-123, 204-217
bishopii 205-207, 209
buphthalmoides 217
celendianum 204, 206-208
colombianum 204, 205, 209, 211
ecuadoricum 204, 214, 215
featherstonei 206, 208-211, 213, 216
grande 205
hintonii 123
hintoniorum 121, 123, 217
huascaranum 204, 205, 210, 211, 213
huentitanum 121-123
jelskii 204-206, 209, 210,

Perymenium jelskii (cont.) 212-215
klattii 216
lineare 205, 212, 215
matthewsii 204, 213
oaxacanum 217
rosmarinifolium 215
serratum 204, 213
tamaulipense 121, 123
tehuacanum 217
Petradoria 2, 19, 24, 25, 35, 39, 74, $76,79,83$
discoidea 76
pumila 79
Phaelypea 282, 287
erecta 287
Phlox 468
pilosa 468
Phytophthora 424-426, 428, 430
infestans 424-426, 428, 430
Phytarrhiza 171
Pinaceae 243, 250, 466
Pinguicula 252, 466
pumila 252
Pinus 219, 243-246, 250, 377, 466, 471
echinata 466, 471
herrare 219
maximinoi 244
oocarpa 243,244
var. microphylla 243, 244
palustris 250, 466, 471
praetermissa 243-246
pseudostrobus 244
taeda 466, 471
Pitcairnia 171
Pityopsis 114
Plagiocheilus 368
Plantaginaceae 468
Plantago 161, 468
aristata 468
elongata 161
virginica 468
Plasmopara 124, 130

Plasmopara (cont.)
viticola 124, 132
Platanthera 250, 253, 254, 256, 258, 466
blephariglottis 253, 254, 256
ciliaris 250, 254
cristata 253
integra 253, 254, 258
nivea 253, 466
Platanus 377
rzedowskii 377
Pleurophyllum 66, 70, 98
Pluchea 251, 253
foetida 251
rosea 253
Poa 161
annua 161
Poaceae 250, 336, 466, 469
Poarium 321
veronicoides 321
Podocarpus 136
Pogonia 250
ophioglossoides 250
Poinsettia 138, 178
Polemoniaceae 468
Polygala 252, 468
cruciata 252
mariana 252
nana 468
ramosa 252
verticillata 468
Poliomintha 413
Polyclados 349, 350, 353
abietinus 350
cupressinus 349, 353
Polygalaceae 252, 468
Polygonaceae 228, 229
Populus 377
tremuloides 377
Portea 171
Portulacaceae 468
Prionopsis 341-345
ciliata 341, 343, 345

Prunella 468
vulgaris 468
Prunus 468, 470
Psathyrotes 143, 146
Psathyrotopsis 143-145
hintoniorum 143-145
purpusii 143, 145
Pseudocatopsis 171
Psiadia 55, 62, 95
Psiadiella 55, 62, 95
Pteris 382, 384
fallax 382, 384
intramarginalis 384
Pteronia 22, 55, 61, 66, 83, 96, 97, 99, 363
Ptilimnium 251
capillaceum 251
Puya 171
Pyrrhopappus 467
carolinianus 467
Quamoclidion 432, 446, 449
multiflorum 446
oxybaphoides 449
Quercus 219, 228, 244, 377, 378, 467, 471
arizonica 219
coccolobifolia 219
falcata 467
magnolifolia 244
marilandica 467, 471
pumila 468
rysophylla 378
stellata 467
turbinella 228
Racinaea 171, 175
Ranunculaceae 391, 468
Ranunculus 391-397
carolinianus 397
cymbalaria 391, 392
fascicularis 395
fasciculatus 391, 393, 395, 396

Ranunculus (cont.)
geoides 395
hispidus 392, 395-397
var. caricetorum 396
var. hispidus 396, 397
var. nitidus 396, 397
macranthus 395
peruvianus 391-393
petiolaris 391, 392, 394-396
var. arsenei $391,392,394,395$
var. petiolaris 391, 392, 394, 395
var. sierrae-orientalis 391,392 , 394, 395
var. trahens 391, 394-396
pilosus 395
pringlei 395
septentrionalis 397
var. pterocarpus 397
sierrae-orientalis $391,393,394$, 396
trahens 391, 396
Ratibida 470
pinnata 470
Remya 61, 73
Rhamnaceae 369, 376, 468
Rhexia 252, 253
alifanus 253
lutea 252
mariana 252
petiolata 252
Rhododendron 253
canescens 253
oblongifolium 253
Rhus 374
Rhynchospora 250, 254, 256, 466
chalarocephala 250, 254
elliottii 250
globularis 250, 466
glomerata 250
gracilenta 250
inexpansa 250,466
latifolia 250

Rhynchospora (cont.)
macra 250, 254, 256
oligantha 250
plumosa 250
rariflora 250
Rhytachne 106
rottboellioides 106
Rigiopappus 61
Rochonia 55, 61, 64, 66, 94-98
senecionoides 98
Rosaceae 252, 468
Rubiaceae 252, 468
Rubus 429, 468
Rudbeckia 253, 254, 256, 257
scabrifolia $253,254,256$
Ruellia 466
humilis 466
Sabatia 251, 253, 254, 256, 467
campestris 467
gentianoides 251
macrophylla 251, 253, 254, 256
Sageretia 369-376
elegans 369, 371-375
mexicana 369-373, 375
minutiflora 369, 372-375
thea 375
wrightii 369, 371-375
Salvia 386, 429, 468, 470
azurea 470
lyrata 468
Sarcanthemum 55, 62
Sarracenia 247, 252
alata 252
Sarraceniaceae 252
Satureja 411-414
sect. Gardoquia 411, 413, 414
hintoniorum 411-413
maderensis 411, 413
mexicana 413
seleriana 413
Schinus 429
molle 429

Schizachyrium 250, 466, 470
scoparium 250,466
tenerum 250,466
Schoenolirion 250, 253, 463, 466, 470, 474-476, 478, 479
croceum 250, 253
wrightii 463, 466, 474-476, 478, 479
Scirpus 161
koilolepis 161
Scleria 250, 253, 466
ciliata 466
georgiana 253
oligantha 466
reticularis 250
Scrophularia 287
subhastata 287
Scrophulariaceae 228, 229, 252, 281, 324, 468
Schrankia 467, 470
microphylla 467, 470
Scutellaria 251, 468
integrifolia 251, 468
parvula 468
Secamone 199, 203
Secamoneae 199
Selaginella 463, 466, 475, 476
arenicola 463, 466, 475
var. riddellii $463,466,475$
Selaginellaceae 466
Selinocarpus 239-242
lanceolatus 239-242
var. lanceolatus 241
var. megaphyllus 239,242
maloneanus 239-242
megaphyllus 239-242
Senecio 221-223, 325-329
aureus 221
var. Balsamitae 221
var. borealis 221
claryae 325-328
douglasii 329
fendleri 221

Senecio (cont.)
flaccidus 325-329
var. douglasii 327
var. flaccidus 327
var. monoensis 327,328
multilobatus 221
neomexicanus 221, 222
var. metcalfei 222
var. mutabilis 222
var. neomexicanus 222
var. toumeyi 222
pattersonii 326
pinacatensis 327
plattensis 221
powellii 325, 326-328
Suffruticosa species-complex 325
Suffruticosi 328
thurberi 221, 222
tridenticulatus 222
Senecioneae 146
Sericocarpus 19, 20, 22-24, 41, 4552, 54
acutisquamosus 52
asteroides 46, 48-50
f. albopapposus 50
f. roseus 50
bifoliatus 51, 52
var. acutisquamosus 52
var. collinsii 51
californicus 51
collinsii 51
conyzoides 46, 50
linifolius 48-50
oregonensis 45, 49-51
subsp. californicus 51
var. californicus $45,50,51$
var. oregonensis 50,51
rigidus $48,49,51$
var. californicus 51
var. laevicaulis 51
sipei 52
solidagineus 48, 51
tomentellus 52

Sericocarpus (cont.)
tortifolius 48, 49, 51
var. collinsii 51
woodhousei 52
Setaria 466
geniculata 466
Silphium 467
laciniatum 467
Sisyrinchium 250, 466
atlanticum 250
sagttiferum 466
Smilax 250, 466
laurifolia 250
Solanaceae 422, 431
Solanum 422-431
acaule 423
subsp. albicans 423
var. albicans 423
series Acaulia 423
albicans 423
albornozii 423
andreanum 422
baezense 422
burtonii 427
calacalinum 423
caquetanum 424
chilliasense 429
chomatophilum 425
f. angustifolium 425
colombianum 424, 426
var. meridionale 424
f. quindiuense 424
var. trianae 424
f. zipaquiranum 424
series Conicibaccata 422, 423
correlli 427
cyanophyllum 429
dolichocarpum 424
filamentum 424
flahaultii 425
huancabambense 428, 429
series Juglandifolia 422
juglandifolium 422

Solanum (cont.)
minutifoliolum 428
ochranthum 422
series Olmosiana 426
olmosianum 426
paucijugum 425
sect. Petota 422, 431
series Piurana 429
subsect. Potatoe 422
regularifolium 428, 429
serratoris 422
solisii 430
suffrutescens 429
series Tuberosa 422, 427
tundalomense 425, 426
tuquerrense 430
Solenstemnon 106
monostachyus 106
Solidagininae $1,2,10,18-24,26,35$, $45-48,59,61,83,348,459$, 460
Solidago 1-20, 22-32, 34-47, 53, 72, $79,82,93,251,253,452$, 453, 459-461, 467
aestivalis 9
alba 28
subg. Albigula 5
subsect. Albigula 5, 6
albopilosa 6, 36
alpestris 14
altiplanites 8
altissima 8
amplexicaulis 29
arguta 9, 10, 31, 40
ser. Argutae 10
sp.-group Argutae 9, 10
subsect. Argutae 9
arizonica 8
aspera 9
auriculata 10
austrina 12
bellidifolia 4
\times bernardii 30

Solidago (cont.)
bicolor 5, 6, 34
boottii 10
subg. Brachyactis 8
ser. Brachychaetae 10
brachyphylla 10
buckleyi 7
caesia 6, 31, 32
calcicola 4, 14, 15
californica 9, 43
canadensis 7, 8, 29, 31, 32, 34, $36,37,40,41$
celtidifolia 9
chapmanii 10, 11, 25
chlorolepis 4
sect. Chrysastrum 5
subg. Chrysastrum 5
chrysolepis 12
compacta 15
confinis 11, 12
curtisii 6
sect. Corymbosae 26
cutleri 4,13
deamii 4
decemflora 8
decumbens 4
delicatula 9
discoidea 5, 6
drummondii 9
durangensis 8,41
edisoniana 9
elliottii 9
elongata 8, 31
erecta 4-6
sect. Erectae 4
ser. Erectae 4
ericamerioides 11,12
fistulosa 9
flaccidifolia 6
flavovirens 12
flexicaulis 6, 31, 32, 36, 37
gattingeri 11
gigantea $8,31,36,40$

Solidago (cont.)
gillmanu \ddagger
glomerata 4
sect. Glomeruliflorae 6
subsect. Glomeruliflorae 6, 31
glutinosa $4,14,15,41,42$
var. monticola 14
gracillima 12
graminifolia 31
guiradonis 12
gypsophila 8
harperi 7
harrisii 10
hintoniorum 7
hispida 5, 6, 32, 34
houghtonii 29,40
humilis 42
ser. Integrifoliae 5
jejunifolia 7
juliae 8
juncea $11,12,32,34,40$
ser. Junceae 11, 12
sp.-group Junceae 11
subsect. Junceae 11-13, 18
klughii 13
\times krotkovii 30
lancifolia 6
latissimifolia 9
leavenworthii 8
lepida $8,19,31,32$
ludoviciana 9, 10
\times lutescens 29
macrophylla 5, 6, 14-16, 35
macvaughii 8
\times maheuxii 30
sect. Maritimae 12
subsect. Maritimae 12, 13, 19
mexicana 12
microglossa 2, 8
microphylla 9
mirabilis 9
missouriensis $11,12,19,36,42$
mollis 8, 19

Solidago (cont.)
muelleri 11
multiradiata $4,13,15,34$
var. arctica 13,15
ser. Multiradiatae 4
nana 4, 8
neglecta 12
sp.-group Nemorales 8
subsect. Nemorales 8, 9
nemoralis 8, 9, 11, 43
neomexicana 4
nitida 28,467
odora $10,11,25$
sp.-group Odorae 10
subsect. Odorae 10
ohioensis 27
subg. Oligoneuron 26
oreophila 4
orientalis 7
ouachitensis 6
paniculata 8
sect. Paniculatae 8
parryi 34
patula 10, 251
ser. Pauciradiatae 4
perlonga 12
petiolaris 7, 41
pinetorum 11
subg. Pleiactila 6
plumosa 4
porteri 5
pringlei 11, 12
ptarmicoides 28, 31, 32, 36
puberula 5
pulchra 12
purshii 12
racemosa 4
radula 9
randii 4
riddellii 28
rigida $26,27,31,39$
var. glabrata 27
var. humilis 27

Solidago (cont.)
roanensis 5
rugosa $9,36,253$
rupestris 8,36
salicina 10
sciaphila 4
sect. Secundiflorae 9
sempervirens 12,13
ser. Serratae 4
shortii 8
simplex $4,13,15,16,41,42$
subsp. simplex 15
subsp. randii 15
simulans 12
sect. Solidago 1-3, 5, 16, 17, 19, 25, 26, 35
subsect. Solidago 4-6, 18, 25, 31, 34
sparsiflora 9, 43
spathulata $4,13,15,42$
speciosa 7
ser. Spectabiles 11, 12, 13
spectabilis 12,19
sphacelata 9, 10
spithamaea 4
squarrosa 4-6
sect. Squarrosae 5
subg. Stenactila 12
stricta 12,13
strigosa 10
tarda 10
sect. Thyrsiflorae 4, 7
ser. Thyrsiflorae 7
subsect. Thyrsiflorae 7, 18, 25, 35
tortifolia 11
subg. Triactis 11
ser. Trinerves 8
sect. Triplinerviae 8
subsect. Triplinerviae 8
uliginosa 12, 37
ulmifolia 9
subsect. Unicostatae 12

Solidago (cont.)
sect. Unilaterales $1,2,7,8,19$, 24-26, 31
ser. Unilaterales 7
uniligulata 12
velutina 8,41
ser. Venosae 9
subsect. Venosae 9
verna 10
victorinii 4
virgata 12
sect. Virgatae 12
virgaurea 3-6, 13-17, 31, 32, 39, 43
var. $\beta 13$
var. $\gamma 13$
var. alpestris 13,14
var. alpina 13
subsp. asiatica 16
var. calcicola 14
var. Cambrica 13
var. ericetum 13
subsp. gigantea 16
subsp. leiocarpa 16
subsp. minuta 16
subsp. virgaurea 16
sect. Virgaurea 3, 4
subg. Virgaurea 3
wrightii 7
yadkinensis 10
\times Solidaster 1, 26, 30-32, 37, 44
\times hybridus 37
\times luteus 30,37
Sopubia 106
mannii 106
Spergularia 161
echinosperma 161
Sphagnum 248
Spiranthes 250, 466
lacera 466
longilabris 250
praecox 466
vernalis 250

Sporobolus 466
junceus 466
Steiractinia 216
klattii 216
Stellaria 227, 229
nitens 227
Stemodia 281-324
ageratifolia 285
angulata 281, 283-286
subsp. ageratifolia 285
arenaria 321
arizonica 288
berteroana 287
bissei 288
chilensis 290
chodatii 316
cruciflora 318
damaziana 294, 302, 312
durantifolia 281, 284, 285, 287-
291, 296, 314
var. angustifolia 287
β angustifolia 288
var. chilensis $281,285,288$ 290
var. durantifolia 281, 287, 289
ehrenbergiana 287
erecta 287,288
ericifolia 281, 283, 291-293
subsp. ericifolia 292
subsp. vera 291, 292
foliosa 293, 311
fruticulosa 305, 307
gratiolifolia 308
harleyi 281, 283, 292, 293
hassleriana 281, 283, 293, 294
humilis 321
hyptoides 281, 284, 291, 295-297, 299, 304, 313, 314
var. auriculata 295
var. platensis 295
var. stricta 313
jorullensis 285
subsp. reptans 285

Stemodia (cont.)
lanceolata 281, 284, 296, 298300, 304, 314
forma angustifolia 298
var. angustifolia 298
forma latifolia 298
var. latifolia 298
forma laxiflora 298
latifolia 281, 301
linearifolia 308
var. acutifolia 308
lobata 281, 283, 301-303
lobelioides 281, 284, 296, 299, 302-304, 309, 314
macrotricha 321
maritima 281, 282, 284, 305, 306 var. rigida 305
microphylla 281, 284, 303, 307, 319
mutisii 323
orbiculata 296
palustris $281,284,308,310,314$
forma salicifolia 308
var. simplex 308
parviflora 321
pilcomayensis 295, 296
piurensis 305
pratensis 281, 283, 309-311
scoparioides 298, 299
stellata 281, 283, 310, 312
stricta 281, 284, 291, 299, 304, 313, 314, 317
subsp. glabriuscula 313
forma minor 313
var. multidentata 313
var. paucidentata 313
subhastata 287
suffruticosa $281,283,311,315-$ 317
forma dentata 315,316
var. villosa 315,316
surinamenses 323
tetragona 302, 304

Stemodia (cont.)
trifoliata 281, 283, 318, 320
veronicoides 281, 284, 294, 319, 320
verticillaris 287
verticillata $281,283,321,322$
Stemodiacra 282, 284, 287, 290, 291, $295,298,305,308,311,313$, 315, 318, 321
angulata 284
berteroana 287
chilensis 290
durantifolia 287
ericifolia 291
foliosa 311
gratiolifolia 308
hyptoides 295
lanceolata 298
linearifolia 308
maritima 305
palustris 308
stricta 313
subhastata 287
suffruticosa 315
trifoliata 318
verticillata 321
Stenotus 20, 24, 83
Stephanodoria 342
Steyerbromelia 171
Stylisma 253
aquatica 253
Stylosanthes 467
biflora 467
Styrax 136
Synadenium 178
Synchytrium 426
endobioticum 426
Syzygium 106
guineense 106
Talinum 161, 463, 468, 470, 475, 476
parviflorum 161, 463, 468, 475

Tephrosia 251, 467
onobrychoides 251
virginiana 467
Thesium 106
tenuissimum 106
Thurovia 18, 20, 40, 47
Tillaea 161
aquatica 161
Tillandsia 170-175, 276
andreettae 170,171
arpocalyx 171
barclayana 172
boeghii 170, 172
castaneo-bulbosa 172
cereicola 172
curvispica 170,172
cylindrica 170, 174
drewii 170, 172
harmsiana 172
hitchcockiana 172
incurva 172
koideae 170, 174
limonensis 170, 173
olmosana 170,173
var. pachamamae 170,173
patula 173
pereziana 173
petraea 173
penduliscapa 170,173
peruviana 170,173
porphyrocraspeda 170, 174
subg. Pseudalcantarea 170,171
rauhii 170, 174
robusta 174
sagasteguii 170, 173
strobelii 170, 174
tequendamae 174
subg. Tillandsia 170, 171
tillandsioides 170, 174
werneriana 170,174
yaconorensis 170,174
Tillandsioideae 170,175
Tithymalus 178

Tonestus $17,20,24,35,47,53,346$
Townsendia 344
Toxicodendron 251
vernix 251
Toxocarpus 199
Tracyina 61
Tradescantia 161, 279, 407
occidentalis 161
Tragia 467
urticifolia 467
Transaequatorialia 427
Tridens 250
ambiguus 250
Triodanis 467
perfoliata 467
Tristachya 106
fulva 106
Tuberosa 427
Tubuliflorae 71, 357
Unamia 27, 28, 30
alba 28
lutescens 30
ptarmicoides 28
Unanvea 315
dentata 315
febrifuga 315
Ungnadia 378
Utricularia 252
cornuta 252
juncea 252
subulata 252
Vaccinium 251, 467
arboreum 467
corymbosum 251, 467
Valeria 282, 318, 319
trifoliata 318
Vanclevea 24, 83
Vaviloviana 427
Verbena 468
halei 468
Verbenaceae 468

Verbesina 134, 135
aramberrana 134, 135
hintoniorum 134, 135
zaragozana 134, 135
Verena 282, 294, 295
hassleriana 294
Vernonia 106, 350, 467
jaegeri 106
phyliciformis 350
var. resinosa 350
texana 467
Vernoniopsis 55, 62, 81
Viburnum 251, 470
dentatum 470
nudum 251
Viola 252, 253, 468
lanceolata 253
pedata 468
primulifolia 252
Violaceae 252, 468
Vriesea 170-174, 276
andreettae 171
arpocalyx 172
barclayana 172
boeghii 172
castaneo-bulbosa 172
cereicola 172
curvispica 172
cylindrica 170, 174
drewii 172
harmsiana 172
hitchcockiana 172
incurva 173
koideae 170, 174
limonensis 173
olmosana 173
var. pachamamae 173
patula 173
penduliscapa 173
pereziana 173
petraea 173
rauhii 170
sagasteguii 170,173

Viresea (cont.)
rauhii 174
robusta 174
strobelii 174
tequendamae 174
tillandsioides 174
Vulpia 466
octoflora 466
Wedelia 213
jelskii 213
Westoniella 59, 360, 363, 366-368
Woodwardia 250
virginica 250
Xanthisma 342
Xanthocephalum 22, 40, 342-344, 346
gymnospermoides 343, 344
Xylorhiza 343
Xylothamia 20, 41, 72, 93, 346
Xyridaceae 251
Xyris 251, 254, 256
ambigua 251
baldwiniana 251
caroliniana 251
difformis 251
var. curtissii 251
drummondii 251, 254, 256
louisianica 251
scabrifolia $251,254,256$
torta 251
Yucca 326, 374, 386
Zigadenus 250, 254, 256
densus $250,254,256$

New York Botanical Garden Library

35185002884714

Information for Authors

Articles from botanical systematics and ecology, including biographical sketches, critical reviews, and summaries of literature will be considered for publication in PHYTOLOGIA. Manuscripts may be submitted either on computer diskette, or as typescript. Diskettes will be returned to authors after action has been taken on the manuscript. Diskettes may be 5.25 inches or 3.5 inches and may be written in any IBM or MacIntosh compatible format. Typescript manuscripts should be single spaced and will be read into the computer using a page scanner. The scanner will read standard typewriter fonts but will not read dot matrix print. Manuscripts submitted in dot matrix print cannot be accepted. Use underscore (not italics) for scientific names. Corrections made on typescript manuscripts must be complete and neat as the scanner will not read them otherwise. Language of manuscripts may be either English or Spanish. Figures will be reduced to fit within limits of text pages and therefore, should be submitted with an internal scale and have dimensions proportional to those for text pages. Legends for figures should be included in figures whenever possible. Each manuscript should have an abstract and key word list. Specimen citations should be consistent throughout the manuscript. Serial titles should be cited with abbreviations used in Botanico Periodicum Huntianum. References cited only as part of nomenclatural summaries should not appear in Literature Cited. Nomenclatural work should include one paragraph per basionym and must provide proper (as defined by the current International Code of Botanical Nomenclature) citation of sources of epithets and combinations.

Authors should arrange for two workers in the appropriate field to review the manuscript before submission. Copies of reviews should be forwarded to the editor with the manuscript. Manuscripts will not be published without review.

Cost of publication is currently $\$ 13.00$ US per page for publication without reprints. Publication with 100 reprints is provided for $\$ 18.00$ US per page, 200 reprints for $\$ 21.50$ US per page. Page charges are due with manuscript and no paper will be published before payment is received in full. Reprints must be ordered and paid for in advance. Page charges will be determined on the basis of a typescript page (single spaced, 10 points, blank line between paragraphs) with all type inside a rectangle 143 mm (horizontal) by 219 mm (vertical), not including running head and page number. Title page should include title, author(s) name(s), and address(es). Two blank lines should appear above and below section headings (Abstract, Discussion, Literature Cited, etc.) in the manuscript. No extra charge is made for line drawings provided they conform to limitations of size and proportion for normal text. Halftones require an extra charge of $\$ 10.00$ US per page.

[^0]: Mirabilis longiflora L., Köngl. Svenska Vetenska Acad. Handl. 176. t.6, 1755. Jalapa longiflora (L.) Moench

