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PROBLEM 

In general, investigate oceanographic factors pertinent to 

the behavior of underwater sound; in particular, study vertical 

fluctuations in thermocline depth. Specifically, study the thermal 

structure of the upper 750 feet of the ocean utilizing the towed 

thermistor chain and thereby gain a predictive understanding of 

these fluctuations and their distribution in time and space. 

Finally, incorporate the findings in an improved acoustic model 

that can be used in critical areas of the ocean. 

RESULTS 

1. Time-dependent vertical-temperature fluctuations in the 

thermocline were found to exist in all areas of the ocean examined 

with the NEL Thermistor Chain. 

2. Time-dependent horizontal-temperature gradients were com- 

puted from continuous cross sections of the upper 750 feet of the 

ocean in 17 geographical areas of the eastern North Pacific. The 

horizontal-gradient field alternates in sign with a regularity that 

implies a dominant frequency of internal waves or convection 

cells. The corresponding wavelength is 0.72 nautical mile with 

a standard deviation of 0.16 mile. 

3. The vertical-temperature gradient in the thermocline is gen- 

erally of the order 1072 C/ft, but ranges between 1072 and 10-3 

°C/ft. The corresponding horizontal-temperature gradient is 

generally of the order 10°*°C/tt, but ranges between 1073 and 

10> Cftt. The slopes of isothermal surfaces are of the order 

1072, Thus, the vertical and horizontal gradients normally differ 

by two orders of magnitude. The horizontal gradient in the 

thermocline can be predicted within useful limits from the measured 

vertical-temperature gradient by means of the equation 
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4, A predictive model of the horizontal-temperature gradients for 

a selected area of the sea was constructed on the basis of the above 

results and a single bathythermograph lowering. 

RECOMMENDATIONS 

1. Continue development of the thermistor chain to improve its 

accuracy, reliability, and versatility. 

2. Further develop the digital temperature-depth recording 

system. Use the digitized data in conjunction with the UNIVAC 

1218 shipboard computer for detailed statistical analyses and real- 

time computations of the vertical- and horizontal-temperature- 

gradient fields. 

3. Finally, continue the study of the vertical- and horizontal- 

temperature gradients in the sea and compile an atlas of hori- 

zontal time-dependent gradients. 
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INTRODUCTION 

The performance of any system whereby information is 

transmitted from one place to another, using radiated energy as 

a carrier, is limited by the characteristics of the transmitting 

medium. When measurements are made of the intensity of under- 

water sound in the ocean, the results are often highly variable. 

Factors contributing to this variability include divergence or 

partial convergence caused by refraction, destructive and con- 

structive interference associated with multipath propagation 

caused by reflections from the surface and bottom of the sea, and 

diffraction and scattering caused by inhomogeneities of the water 

medium. When there are present additional inhomogeneities such 

as suspended particles, thermal cells, regions of turbulence, or 

temperature variations caused by internal waves, an additional 

variation in intensity occurs. 

Multipath interference arises particularly when a trans- 

mission path passes through a gradient. Refraction of sound rays 

by gradients can produce sonar bearing errors and fluctuations in 

bearing measurements. Although salinity and pressure gradients 

contribute to this effects,temperature changes normally have the 

greatest influence on sound velocity and, hence, are the most 

important source of multipath interference. Therefore, know- 

ledge of temperature gradients is vitally important in the success- 

ful use of sonar by the U. S. Navy. This report covers an in- 

vestigation of a relation existing between the strengths of vertical- 

and horizontal-temperature gradients and a dominant frequency 

of oscillation in the thermocline. 

PREVIOUS STUDIES 

Information on gross physical features of the ocean including 

temperature gradients is readily available in oceanographic 

atlases. These atlases are generally derived in one of two ways: 

first, from an accumulation of data over many years from in- 

dependently conducted studies; and, second, from a concentrated 



study of a specific area ina short time. A good example of re- 

sults of a concentrated effort is the NORPAC Atlas (1955).! The 

North Pacific Expedition represented a concerted effort of Japan 

and the U.S., involving 19 research vessels and 1002 hydrographic 

stations. Most of the data were taken within one month, showing 

the intensity of the effort. Coastal stations were about 30 miles 

apart and oceanic stations were from 50 to 120 miles apart. The 

distance between hydrographic stations is the determining factor 

in computing horizontal gradients. Horizontal-temperature 

gradients derived from such sets of data are termed "'average 

gradients" and represent the average temperature change per 

nautical mile for a given depth. 

Average horizontal-temperature gradients may also be 

determined from two or more space-separated bathythermograph 

stations. During underwater acoustic experiments, it is not 

uncommon to determine the average gradient from the difference 

of two bathythermograph readings — one taken at the transmitting 

ship, the other at the receiving ship. 

Minute physical features, the temperature in particular, 

have not been investigated as widely as large-scale features 

even though horizontal thermal microstructure was observed 

during World War II when Holter (1944) made measurements from 

a submerged submarine using a thermopile.” He detected 0. 02°F 

differences over horizontal distances of about 30 feet. Other 

contributors in this area include Urick (1948) who, near Key West, 

detected gradients similar to those found by Holter and concluded 

also that gradient increased with depth within the mixed layers.” 

From experimental work in deep water, Sheehy (1950) concluded 

that acoustic intensity fluctuations were caused by inhomogeneities 

in the water.4 Lieberman (1951) detected inhomogeneities of 

mean size of about two feet (60 cm) and temperature variations of 

0.05° Celsius (G2 Using Lieberman's results, Mintzer (1953 

and 1954) made theoretical predictions of intensity fluctuations 

produced by temperature microstructure in the sea.° Priimak 

(1961) carried out a statistical analysis during a three-dimensional 

study of the sea, with investigations of the parameters and statis- 

tical characteristics of the fluctuations in temperature and 

1. Superscript numbers denote references in list at end of this report. 



pulsations in current. Sagar (1960) found a diurnal cycle of 

growth and decay of insolation—produced microstructure in the 

surface layer in the summer months and showed a direct relation- 

ship between the existence of microstructure and acoustic 

intensity fluctuations & Helle (1964) measured thermal micro- 

structure from a submarine using fast-response thermistors.” 

Murphy (1965) used fast-response thermistors mounted on an 

unmanned torpedo-like research vehicle and recorded tempera- 

ture deviations of 0.3 C at 50 meters and 0.02°C at 1500 
meters.!° Horizontal gradients measured near the surface were 

of the order of 0.1°C/nautical mile and 0.001C/nautical mile at 

2000 meters. 

From the above discussion it can be seen miero-horizontal 

thermal gradients describe temperature changes over distances 

from a few inches to a few yards, while average horizontal 

gradients describe temperature changes over distances of several 

miles or even several hundred miles. Here we shall deal with 

distances between these extremes, being concerned with tem- 

perature changes over horizontal distances of about 1 mile. 

Horizontal-temperature gradients in this intermediate 

range (1 nautical mile) were first investigated in July 1964 when 

the NEL Thermistor Chain was used in collaboration with the 

Marine Physical Laboratory who were making convergence-zone 

bearing-accuracy measurements. The thermistor chain recorded 

continuous temperature cross sections parallel and perpendicular 

to the sound path between the two MPL participating ships. The 

temperature profiles were resolved into vertical- and horizontal- 

temperature-gradient fields, which revealed regions of high- 

intensity gradient. The horizontal-temperature gradient alter- 

nated in sign at nearly equal intervais and was consistently two 

orders of magnitude smaller than the corresponding vertical 

gradient (Smith,1965).'! Fisher etal (1965) reported on bearing 

fluctuations observed.'” These results, particularly the period- 

icity of the horizontal-temperature-gradient field, generated 

interest in gradient fields in other areas already surveyed with 

the thermistor chain. The speculation followed that, if other 

areas displayed a similar periodicity in internal temperature 

structure and if the two-orders-of-magnitude ratio between the 

vertical and horizontal gradients held, a predictive acoustic model 

might be constructed. 



OBTAINING THE DATA 

Temperature data were selected for analysis from 17 widely 

separated areas involving several water masses (Sverdrup etal., 

1942) !5 The data were taken during eight cruises with the NEL 

Thermistor Chain and provide the best available representation 

of the geographic and water-mass variety of temperature struc- 

tures (fig. 1). The positions of the sample areas, cruise num- 

bers, and dates are shown in table I. 

The data were obtained solely from the NEL Thermistor 

Chain, a massive oceanographic instrument (fig. 2) which has 

been in operation since 1961. The chain is 900 feet long and 

capable of measuring and continuously recording the temperature 

structure to a depth of 830 feet, although the average towing depth 

is about 750 feet. The chain system consists basically of a hoist, 

links, storage drum, and electronic temperature recording 

180° 160° 140° 120° 100° 
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40° 

Figure 1. Geographic locations of 17 NEL Thermistor Chain temperature-data 

sample areas. 



TABLE 1. TIME AND POSITION OF EACH SAMPLE AREA 

Sample | Time Date Cruise Latitude Longitude 

1 | 0800 46°21. 3.N | 126° 23. 0-W 

2 | 2000 40° 18. 6.N | 124957. 6W 

3 1400 | 27 July 1962 121° 34. S/W 

0830 118° 02. 2W 

5 0830 32° 04. 2/N 98, 3W 

6 1500 | 15 July 1964 120° 56. 7W 

21> 34. 6 N LU! BO. SW 

212 50: ON NODSA OSs IGW. 

16° 04. 2°N 100° 10. OW 

@ 1300 | 30 Mareh 1965 

e 

8 1200 18 March 1965 

1600 10 June 1965 8N 1502 2A 3 W 

11 1300 6 June 1965 

= S 

145° 07. 5 W 

12 1230 | 13 July 1965 56° 39. 176051. TW 

1B 1200 | 31 July 1965 39 | 37°54, 135° 07. 3/W 

4 0100 42°01. ON |) 154209. 5 W 

0100 27 July 1964 28 DSO D5, 4 IN| IBZ? 19), Qaw 

16 1730 | 31 July 1964 Ze 26 o YN Hato il, DAW) 

pt oO 

V7 2000 | 22 August 1964 29 182 125 aN a7? 47. OW 

*Cruise conducted specifically for equipment modification or maintenance. 

equipment. Each link is about a foot iong and is faired for hydro- 

dynamic stability while the chain is under tow. Thirty-four 

thermistors are mounted at 25-foot intervals along the chain. An 

electrical harness passes through the flat, faired links and con- 

ducts the voltage-temperature analog outputs from the thermistor 

beads to the ship's laboratory. A special computer built into the 

data system scans each thermistor output every 12 seconds and 

interpolates between outputs to fix the depths of all whole-degree- 

Celsius isotherms within the towing depth of the thermistor chain. 

Towing depth is maintained by a streamlined, 2300-pound 
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Figure 2. Fantail of USS MARYSVILLE and NEL Thermistor Chain and chain hoist. 

depressing weight attached to the bottom of the chain. One link 

below the deepest temperature sensor and two links above the 

depressing weight is mounted a Bourdon pressure transducer that 

provides a measurement of the maximum depth of observation. 

The interpolated whole-degree-isotherm depths for each 12- 

second scan are printed in analog form on a 19-inch-wide tape. 

On more recent cruises the temperature data have been simul- 

taneously punched on paper tape and recorded on magnetic tape 

in digital form. A single scan of the temperature-depth record- 

ings of the chain is equivalent to one bathythermograph (BT) 

every 12 seconds, or every 120 feet for the normal towing speed 

of 6 knots. 
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GENERAL CHARACTER OF THE DATA 

Figure 3 is an example of raw chain data taken off the 

southern tip of Baja California during the USNEL Boundary Ex- 

pedition. The thermal structure shown is typical of that region 

of the ocean and is from Sample Area 8. The record is a two- 

dimensional picture or cross section of the temperature structure 

in the upper 750 feet of the ocean. The depth scale is not linear 

because the catenary-like configuration of the chain under tow 

results in the thermistors being closer together at the top than at 

the bottom of the chain. In the analog output record the vertical 

scale is magnified about 100 times (97 times at normal towing 

depth of 750 feet) over the horizontal. 

Three points need to be made with respect to the validity of 

these temperature structure data. First, if the vertical fluctua- 

tions in isotherm depth are related to internal waves (a periodic 

phenomenon), a Doppler frequency shift may be introduced into 

the data measured by moving sensors. The extent of this shift is 

SURFACE 
SAMPLE AREA 

20°C 
— 

————6 IME S =} 

Figure 3. NEL Thermistor Chain data from Sample Area 8, off the southern tip of 

Baja California. Section set off by vertical lines selected for detailed analysis. 
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unknown because the direction and velocity of propagation of the 

internal waves are unknown. However, the shift has no effect on 

the amplitudes of the vertical variations in isotherm depths. 

Second, small oscillations of the deep end of the chain are re- 

flected in the depth changes of the isotherms. However, these 

chain depth changes are very small compared to the vertical- 

temperature-structure fluctuations which are retained through a 

low-pass filtering process (discussed later). Third, the isotherm 

depths for the entire record are not recorded simultaneously, and 

some change in the thermal structure occurs in the beginning of 

the data section by the time the end is being recorded. However, 

the vertical changes in depth of a particular isotherm will be 

nearly correct in any case. 

A broad frequency spectrum exists in the vertical variations 

of the temperature structure with high frequencies superposed on 

the lower ones, which is indicative of the complexities of oceanic 

thermal structure. The sample section selected for analysis is 

set off by vertical lines in figure 3. To the right of the selected 

sample area and at a depth of about 200 feet, the 17°C and 14°C 

isotherms display weak 1°C temperature inversions. Inversions 

of this nature are not unusual in this area and have been dis- 

cussed at length in studies of thermal fronts found off the southern 

end of Baja California (LaFond and LaFond, 1966; Griffiths, 

1962) 14.15 Such inversions were purposely omitted from the 

selected sample section. The effects of temperature inversions 

on vertical- and horizontal-temperature gradients are shown in 

a more descriptive example of the summer temperature structure 

of the deep Bering Sea, Sample Area 12 (see appendices to this 

report). 

In the thermistor chain data, the vertical excursions of a 

particular isoltherm increase with depth as the vertical- 

temperature gradient decreases. In areas where the vertical- 

temperature gradient increases sharply, the amplitude of the 

vertical displacement of the isotherms decreases. This inverse 

relation of the amplitude of vertical displacement to the slope of 

the vertical-temperature gradient is probably caused by the dif- 

erence in the vertical stability between the more stable water in 

the main pycnocline and the less stable water below it. 

T. Hesselberg (1918) defined vertical stability by the expression” 

1 dp 
= 28 

pimnide (1) 



where p is density and zis depth. According to this equation, the 

stability is greatest in the pycnocline where dp dz has the highest 

value. More energy is required to displace a unit volume of 

water vertically in an area of high vertical stability than to dis- 

place it an equal amount in an area of low vertical stability. Ver- 

tical displacements are therefore smaller in the main pycnocline 

than at other depths for an equal amount of imparted energy. 

Normally the thermocline and pycnocline are at the same depth, 

and this same line of reasoning also applies to vertical variations 

in the thermocline. 

The inverse relationship of amplitude of the vertical varia- 

tions to the vertical-temperature-gradient strength is not unique 

to this particular sample area but appears to be general through- 

out the oceans within the penetration depth of the thermistor chain. 

Most vertical variations of isothermal surfaces (fig. 3) are 

highly phase-coherent through the entire recorded cross section; 

this is probably due to single-mode internal waves or a series of 

convection cells. Other variations are less coherent and probably 

represent multimode internal waves or turbulence. Periodic, 

exponential, or random motion may cause these features. The 

intent here, however, is not to discuss at length the mechanisms 

by which variations are generated, but to call attention to the 

magnitudes of the horizontal gradients resulting from them. Re- 

peated tows over the same track in various areas, and in different 

directions as well, indicate that vertical motions in the tempera- 

ture structure are always present and that they change with time. 

The horizontal-temperature gradients (discussed in a later section) 

are therefore time-dependent. 

Close inspection of the record revealed changes of 1 to 4 

feet in isotherm depth for each 12-second scan. To eliminate any 

aliasing of the data by spurious high-frequency components, the 

data were low-pass-filtered. The section between the heavy ver- 

tical lines in figure 3 will be used for describing the filtering 

process and the data reduction methods. 

13 
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SMOOTHED TEMPERATURE STRUCTURES 

The simplification of the data by low-pass filtering assumes 

that the vertical variations of the higher frequencies have con- 

siderably lower amplitude than those of lower frequencies, and 

therefore should have less effect on the refraction of underwater 

sound. 

The low-pass filtering was accomplished by running weighted 

averages of the depth of each isotherm over 2-minute intervals 

using half-minute increments. The high-frequency cutoff of the 

filter is 7 radians per minute or 107 radians per nautical mile. 

The band pass is 0 to 0.5 cycle per minute. 

The depths of the frequency-smoothed isotherms were 

replotted on an expanded horizontal scale, and 0. 2°C isotherms 

were added by linear interpolation between the whole-degree 

isotherms. 

Figure 4 displays the smoothed, low-pass-filtered tem- 

perature structure from Sample Area 8. The horizontal scale is 

shown as time but may be interpreted as distance with 10 minutes 

equivalent to 1 nautical mile at the normal towing speed of 6 knots. 

The vertical scale is 60 times that of the horizontal. These scale 

factors also hold for the smoothed structures of the other 16 

sample areas, shown in Appendix A. 

Three isotherms, the 15°, 16°, and 17°C, converge to 

form an area of relatively steep temperature gradients at about 

200 feet. 

This will be designated Area A. The addition of 0.2°C 

isotherms between 12°C and15°C made the phase coherence of the 

vertical variations more obvious. The 20°C isotherm comes to 

the surface at about time 1236, and the temperature structure 

between 12°C and 15°C diverges about this same time. Even in 
a simplified form the temperature structure remains complex. 
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Figure 4. Examples of low-pass-filtered NEL Thermistor Chain data; 0.2°C 

isotherms added by linear interpolation between whole-degree isotherms. 

GRADIENT FIELDS 

The following graphic method of differentiation was used to 

find the vertical- and horizontal-temperature gradient fields. 

First, the graph of the smoothed temperature structure was over- 

laid with an exact copy, but the copy was displaced vertically by 

15 
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20 (Az) feet. (Several depth intervals were tried but 20 feet 

yielded the greatest detail for the minimum interval.) This dis- 

placement of one smoothed temperature chart over the other 

caused isotherms of one to intersect isotherms of the other. 

Next, at points of isotherm intersection the temperature values 

of one chart were subtracted from the values of the other. This 

yielded the change in temperature (\T) at particular depths and 

times for Az. Finally, the resulting vertical-temperature- 

gradient field of computed values of AT’ Az was contoured at 

selected gradient-strength intervals. 

Figure 5 shows the contoured vertical-temperature- 

gradient field obtained by this differentiation process from the 

smoothed structure of Sample Area 8 (fig. 4). The vertical and 

horizontal scales for the gradient field correspond in both depth 

and time to the smoothed structure from which it was derived. 

The contoured values in figure 5 have been multiplied by 100 for 

convenience of presentation. The vertical-temperature-gradient 

field is all negative, because temperature decreases with respect 

to depth for the entire field. The vertical-temperature-gradient 

fields for the other 16 sample areas are contained in Appendix B. 

The same method of differentiation was used to obtain the 

horizontal-gradient field. Here the horizontal differential incre- 

ment, Ax, was 1000 feet. (Several values were tried, but 1000 

feet provided the greatest detail for the smallest interval.) This 

provided the change in temperature (AT) for the horizontal distance 

increment (Ax). The resulting horizontal-temperature-gradient 

field of computed values of AT/Ax was contoured at selected 

gradient-strength intervals. The contoured horizontal- 

temperature-gradient field obtained by differentiation from the 

smoothed structure of Sample Area 8 is shown in figure 6. The 

vertical and horizontal scales for the gradient field correspond in 

both depth and time to the smoothed structure from which it was 

derived. The contoured gradient strengths in figure 6 have been 

multiplied by 10°* for convenience of presentation. The actual 

values of the gradient strengths are in degrees Celsius per foot 

times 10 4 

Assuming wave motion, the zero-horizontal-gradient con- 

tours that are vertical denote phase multiples of Nz/2 (for \ odd) 

in a lateral direction. The zero contours that are horizontal de- 

note the location of nodes in the modal distribution in the vertical 
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Figure 5. Example of vertical-temperature-gradient field in °C/ft x 10~=: 

Entire field is negative gradient. 

direction. For this reason, the horizontal portions of zero con- 

tours are dashed. 

The horizontal-gradient field alternates in sign. The 

gradient values in shaded areas are negative and those in the 

unshaded areas are positive (fig. 6). The gradient sign is affixed 

on the basis of encounter, as experienced in time and distance 

through the temperature structure at a given depth. The 

horizontal-temperature-gradient fields for the other 16 sample 

areas are contained in Appendix C. 
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Figure 6. Example of horizontal-temperature-gradient field in °C/ft x 10mmes 

Shaded areas denote negative gradient. 



GRADIENT-STRENGTH MAGNITUDES 

The vertical-temperature-gradient field for Sample Area 8 

(fig. 5) displays a gradient-strength range of three orders of 

magnitude in degrees Celsius per foot. The gradient strength for 

the field, in general, is 10 7°C/ft. In Area A' the vertical gradi- 

ent increases one order of magnitude to 10 a Cy ita Anea At 

corresponds to the previously mentioned Area A of figure 4. It 

was described as an area of converging isotherms and, hence, 

of relatively-high-intensity vertical-temperature gradient. At 

depths greater than 410 feet, the vertical gradient decreases one 

order of magnitude to 10 °°C/ft. 
The horizontal-temperature-gradient field for Sample Area 

8 (fig. 6) also displays a gradient-strength range of several 

orders of magnitude. The contoured gradient strength for the 

field, in general, is 10°4°C/ft, and gradient-sign changes occur 

at zero contours. In area A" the horizontal gradient increases 

one order of magnitude to 10 °°C/ft, Area A" corresponds to 

Areas A and A' of figures 4 and 5, respectively. Below 420 feet 

the horizontal gradient decreases one order of magnitude to 

10 °°C/ft. The horizontal-temperature gradient is zero in the 

region of gradient-sign changes. The horizontal-gradient 

strengths referred to are the maximum obtained at a specific 

depth. 

Comparing the vertical and horizontal gradients shows that 

they differ in strength by two orders of magnitude. When the 

vertical and horizontal gradients change orders of magnitude, 

they appear to do so simultaneously. 

On the basis of results obtained with the Russian thermistor 

chain, Lyamin (1965) “ wrote: 'When the temperature fluctuations 

are compared with the magnitudes of the vertical temperature 

gradient, they are seen to be proportional to each other. This 

relationship is noted in all cases without exception and indicates 

that the temperature fluctuations recorded by horizontally dis- 

placed transducers are the result of the vertical displacement of 

the water layers."' 

The interrelationship of the magnitudes of horizontal- and 

vertical-temperature-gradient strengths holds throughout all 17 

sample areas with but a single exception. In Sample Area 9 it was 

found that, in regions of very sharp thermocline (high vertical- 

gradient values) where the vertical variations in the temperature 

19 
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structure are small, the magnitude of the horizontal gradient is 

nearly zero. The smoothed temperature structure of Sample 

Area 9 exhibits some localized areas essentially free from 

vertical fluctuations of the isothermal surfaces. Examination of 

the vertical- and horizontal-gradient fields for Sample Area 9 

shows that, when the vertical-temperature gradient is about 

2 x 10 !°C/ft, the corresponding horizontal-temperature gradient 

is of the order 10° °C/ft and decreases to zero. Therefore in 

regions of strong vertical-temperature gradient (high vertical 

stability), vertical fluctuations in the temperature structure are 

small and time-dependent horizontal-temperature gradients 

nearly disappear. 

The regularity with which the horizontal-temperature 

gradient differs from the vertical-temperature gradient suggests 

that the slope of the isothermal surfaces is the regulating factor. 

The vertical- and horizontal-gradient interrelationship may be 

written as the identity 

dT/dx = (6T/6z) (dz/dx) (2) 

where 5T/5x is the horizontal-temperature gradient in °C/ft, 

dT/5z is the vertical-temperature gradient in °C/ft, and dz/dx 

is the slope of the isothermal surface. The ratio of 6T/6x to 

5T/5z taken over the samples shows that the mean value of dz/dx 

islet pol Olean 
In an independent investigation (also using thermistor chain 

data) of the thermal structure around the tip of Baja California 

(LaFond and LaFond, 1966),!* two isotherms were selected for 
analysis, one in the main thermocline and one below it. The 

location of the data sections is shown in figure 7. The depth 

differences from point to point along the isotherms were deter- 

mined from the equation 

Vie eel (3) 

where 1<k<N; X;and X;,,, are depths in feet of a given isotherm 

at the beginning and end of the ith distance interval along the 

track; and Y, is the computed depth difference in feet for the kth 

interval. The ship's speed was 6 knots and the sampling interval 

was 30 seconds, corresponding to a distance interval of 304 feet. 



110° 105° 
Nl 

Figure 7. Track of USS MARYSVILLE showing where temperature data were 

colleeted off the southern tip of Baja California during NEL Thermistor Chain 

Cruise 8. 

Dividing Y, by 304 gave the isotherm slope in the direction of the 

ship's motion. 

Using more than 65,000 data samplings, LaFond and 

LaFond found the median of the absolute slope values to be 0°25! 

and the 70th percentile of the absolute values to be 0°51' south of 

Baja California. On the Pacific side of the peninsula, LaFond 

found the mean slope to be 0°16! and the 70th percentile to be 

0°30'. 
The 70th percentile value for the Pacific slopes is 0.9 x 10~, 

and south of Baja California the 70th percentile value is 

1.5 x10~. These values agree with the previously given mean 

value for dz/dx. Therefore it is concluded that slopes of isother- 

mal surfaces are of the order 107”. 
For a closer examination of the horizontal- and vertical- 

gradient proportionality, the logarithm of the horizontal gradient 

was plotted as the ordinate and the logarithm of the corresponding 

vertical gradient was plotted as the abscissa (fig. 8). The method 
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NUMBER OF 
DATA POINTS 

© 1 

fa) 2 

In dT /dz 

Figure 8. Least-squares fit of a straight line to the logarithms of 

the vertical- and horizontal-temperature gradients from 17 sample 

areas (black line) and the envelope of the standard error of estimate. 

of least-squares fit to a straight line was applied, and the equation 

of the fitted straight line, standard deviation of the slope, and 

standard deviation of the intercept were determined. From the 

logarithmic relationship it was found 

dT/dx = 0.0047 (dT/dz)°-71 (4) 

Written in a more common form, equation 4 becomes 

In (dT/dx) = -5.37 + 0.71 In (dT/dz) (5) 

where, on a linear plot of the logarithms, -5.37 is the intercept 

with a standard deviation of 0.35 and the slope is 0.71 witha 



standard deviation of 0.04. The black line in figure 8 is the 

fitted straight line and the envelope shows the standard error of 

estimate. 

Although equation 5 displays a proportionality constant 

between the vertical and horizontal gradients, the use of this 

constant is not felt justified at this time because of the necessary 

averaging of the analog temperature data. We are presently study- 

ing this interrelationship further, using the digital temperature 

data, and we hope to be able to substantiate the proportionality 

constant. However, from the results here it is clear that (1) the 

vertical-temperature gradient is generally of the order 1072 but 

can range between 107! and 10° °C/ft; (2) the horizontal- 
temperature gradient is generally of the order 10 * but can range 

between 10° and 10° °C/ft; and (3) the two gradients normally 
differ by two orders of magnitude. 

WAVELENGTHS 

Inspection of the contoured horizontal-temperature-gradient 

fields reveals a regularity with which the gradient changes sign, 

strongly suggesting a periodic motion indicative of internal waves 

or convection cells. Although all information indicates the 

presence of a broad spectrum of frequencies in the ocean, the 

simplified interpretation of these data implies that there is a 

dominant oscillation at an intermediate frequency. 

The power spectrum is a statistical method for gaining 

spectral information from a data sample of finite length and 

fluctuating values. The power spectrum U(h) can be shown to be 

the Fourier transform of the autocorrelation R(\), and is propor- 

tional to the energy per unit band width. Consequently, any 

dominant frequency will appear as a peak in the spectrum. 

The power spectrum method of analysis was first applied 

to NEL Thermistor Chain data of Cruise 4, which took place 

between San Diego and Hawaii in 1961. Cross sections (data 

strips) of 8-1/2- and 12-hour durations of depths of an isotherm 

were subjected to spectral analysis. Figure 9 shows the location 

of the analyzed data sections (LaFond and Moore, 1964).!° The 
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_160°W 150° 140° 130° 120° 110° 

Figure 9. Track of USS MARYSVILLE showing locations where temperature 

data were collected between San Diego and Honolulu during NEL Thermistor 

Chain Cruise 4. 

smoothed spectral ordinates for two isotherms, one in the main 

thermocline and one below, for each of the 16 data sections A 

through P, were obtained as follows: 

X= n=1 

uth) = 1 | RW) + > RO) (1 + cos = cos TAR 
n n mw (6) 

A=1 

where h= 0, 1, 2, 3... n,index number of frequency 

(actual frequencies are given by 

h/ (2At) eycles/minute, 

At = 1/2 minute), 

and i= 0, 1, 2, 3... n,lag number. 

The individual spectrum for the 32 computations showed no 

single dominant frequency but, instead, showed many peaks in the 

spectral curves within the range of 0 to 0.35 cycle per minute. 

The resolution into narrow frequency bands was prevented by the 

short duration of the sample sections. The frequency band re- 

solved was 0.007 cycle per minute for 144 lags. However, 



POWER SPECTRUM, Ft? CYCLES PER MINUTE 

dividing each of the 32 spectra into bandwidths (Af) of 0.025 cycle 

per minute and then averaging the energy per bandwidth does re- 

veal some dominance in the spectrum. Figure 10 shows the 

average power spectrum for the two isotherms of the 16 data 

sections between San Diego and Hawaii. If no frequency band in 

the spectrum is dominant then the ensemble average would not 

show any peak. This is not the case, as shown by the two peaks 

clearly retained in the ensemble average spectrum (fig. 10). One 

peak is at 0.15 cycle per minute (A = 0.67 mile) and the second at 

0.25 cycle per minute (A = 0.4 mile). 

The thermistor chain data of Cruise 8, from around the tip 

of Baja California, were also synthesized into spectral ordinates 

(LaFond and LaFond, 1966) !8 Cross sections of up to 12-hour 

duration of depths of isotherms were analyzed in the same manner 

as described for the Cruise 4 data. Figure 7 shows the location 

FREQUENCY, CYCLES PER MINUTE 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

1,000 

Figure 10. Ensemble average spectrum for NEL Thermistor Chain Cruise 4. 
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of the data sections. The smoothed power spectrum values for 

two isotherms, one in the main thermocline and one below, for 

each of the 27 data sections A through Z plus & were computed. 

In this case (as in Cruise 4) no single frequency or frequency 

bandwidth appeared to be dominant within the range of 0 to 0.35 

cycle per minute in the individual spectra. 

Averaging the energy per bandwidth ( Af = 0.025 cycle per 

minute) for the 54 computed spectra of Cruise 8 in the same 

manner as for Cruise 4 again revealed a peak in the emsemble 

average (fig. 11) at 0.15 cycle per minute (= 0.67 mile). 

Reexamination of the spectra, individually, shows peaks at 

many wavelengths but also shows a peak at \ = 0.67 mile for 28 

out of 32 cases and 48 out of 54 cases for Cruises 4 and 8, re- 

spectively. Hence, 88 percent of the spectra thus far computed 

show a peak at a wavelength of 0.67 mile. 
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Figure 11. Ensemble average spectrum for NEL Thermistor Chain Cruise 8. 
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Further analysis of the 17 horizontal-temperature-gradient 

fields (obtained from the smoothed temperature structures) pro- 

vides added support for the existence of a dominant frequency of 

oscillation. More than 600 wavelength measurements at two 

depths throughout the 17 horizontal gradient fields were made and 

the mean wavelength was found to be 0.72 mile (f= 0.14 cycle 

per minute) with a standard deviation of 0.07 mile. The horizon- 

tal bars in the histogram of figure 12 display the mean wavelength 

for each of the 17 sample areas, and the vertical lines show the 

mean wavelength and the standard deviation as derived from the 

ensemble averages. It should be observed that the mean wave- 

length (0.72 mile) for all the sample areas is in good agreement 

with the results of the spectral analysis (0.67 mile) for Cruises 4 

and 8. However, the histogram gives no indication of the shorter 

wavelengths (0.4 and 0.3 mile) as shown in the average spectral 

curves for Cruises 4 and 8. 

These results indicate that there is a dominant frequency 

of oscillation in the thermal structure of the ocean with a wave- 

length of about 0.7 mile. The frequency spectrum under investi- 

gation here indicates that this result combined with the relation 

of the magnitudes of the vertical and horizontal gradients could 

be utilized as the foundation for a simplified predictive model of 

the horizontal-temperature gradients of the sea. The consistency 

of these results over widely separated geographic areas leads to 

the speculation that they are characteristic of the world ocean. 
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SAMPLE AREA 

A, NAUTICAL MILES 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Obe opt lie depths? 

Figure 12. Wavelength histogram for 17 sample areas. Horizontal bars are 

mean wavelength for each sample area. Vertical lines are the mean 

wavelength, and standard deviation as derived from the ensemble averages. 



PREDICTIVE MODEL OF HORIZONTAL-TEMPERATURE 
GRADIENTS 

A predictive horizontal-temperature-gradient model can be 

constructed in two steps: first, use half the mean wavelength, 

0.35 mile, as the distance for the periodic sign changes of the 

horizontal-gradient field;* Second, from the results of a single 

bathythermograph lowering, compute the vertical-gradient 

strengths in °C/ft for selected depth ranges and assign the 

horizontal-gradient field with strength two orders of magnitude 

smaller than that of the vertical field for corresponding depth 

ranges. 

As an example of the construction of such a model, consider 

the bathythermograph of figure 13. The change in the order of 

magnitude of the vertical-temperature-gradient strength deter- 

mines the depth range interval as shown in table 2. The 

horizontal-temperature-gradient strengths for the corresponding 

depth ranges are also entered in the table. 

The resulting horizontal-temperature-gradient field model 

is shown in figure 14. The gradient field changes sign each one- 

half wavelength as shown by the alternating shaded and unshaded 

areas. The orders of magnitude of the horizontal-gradient 

strength in °C/ft are contoured at the depths specified by the 

matching vertical gradients computed from the bathythermograph. 

In the construction of such a model, obviously the larger 

the number of bathythermographs taken, the more reliable the 

depth ranges will be for establishing the order-of-magnitude con- 

tours in the model. The bathythermograph used here was made 

0815, 7 August 1962, during Cruise 14 with the NEL Thermistor 

Chain. The simplified model results (fig. 14) may be compared 

with the more detailed computed horizontal-gradient field for 

Sample Area 1 in figure 15. The model is in reasonably good 

agreement with the more detailed horizontal-gradient field for 

the same time, place, anddepth. There is a slight disagreement 

* When a single BT is used, the initial gradient sign of the model has to be arbi- 

trarily assigned. However, when two closely spaced BT’s are used, the actual 

gradient sign can be determined. 
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Figure 13. Bathythermograph taken 0815, 7 August 1962, during 

Cruise 14 of the NEL Thermistor Chain. 

TABLE 2. TEMPERATURE-GRADIENT MAGNITUDES FOR SPECIFIC 
DEPTH RANGES FROM A SINGLE BATHYTHERMOGRAM 

Magnitude of 
Vertical Gradient 

dT/dz (°C/ft) 

Magnitude of 
Horizontal Gradient 

dT /dx (°C/ft) 
Depth Range (ft) 

100 - 110 10m 

110 - 275 



DEPTH, FEET 

WAVELENGTHS (A = 0.7 MILE) 

0) ] 2 3 n-3 n—2 n—1 n 

100 

200 

300 

400 

500 

600 

Figure 14. Predicted horizontal-temperature-gradient field model. Horizontal-temperature-gradient 

contour values are in °C/ft. Horizontal-temperature-gradient contours repeat every A/2 from zero to 

n wavelengths throughout the model. 

in the wavelength, probably because of the modal distribution of 

the internal waves. In general, the simplified model provides a 

valid description of the horizontal-temperature gradients. 

Although the simplified model offers only the order of 

magnitude of the temperature gradients and the wavelength is 

restricted to a specified frequency spectrum, it must be noted 

that this is the first presentation of a formulated horizontal model 

accounting for first-order changes in the temperature structure 

in the sea. With further refinement in data-gathering-and- 

reduction processes, this model should reveal more detail and, 

possibly, a constant numerical relationship between vertical- and 

horizontal-temperature gradients in the sea. 
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SUMMARY AND CONCLUSIONS 

Time-dependent horizontal-temperature gradients were 

computed from low-pass-filtered, continuous, temperature cross 

sections of the upper 750 feet of the ocean in 17 widely separated 

geographic areas. The selected areas range north to the Bering 

Sea, south to the coastal waters of the Mexican mainland includ- 

ing the Gulf of California, and west to the Hawaiian Islands. 

The horizontal-gradient fields, computed from smoothed 

temperature structures, alternate in sign with a regularity that 

implies a dominant frequency of internal waves or convection 

cells. The wavelength is 0.72 nautical mile with a standard 

deviation of 0.16 mile. 

The vertical- and horizontal-temperature-gradient fields 

contain zones of diverse intensity gradient. The vertical- 

temperature gradient in the thermocline is generally of the order 

10 2°C/ft, but ranges between 107! and 10° °C/ft. The corre- 

sponding horizontal-temperature gradient is generally of the 

order 10 *°C/ft, but ranges between 10° and 10° °C/ft. The 
slopes of isothermal surfaces are of the order 10 2 AN Stemtig= 

tical analysis of the ratio of the horizontal to the vertical 

temperature gradient shows that the horizontal gradient in the 

thermocline can be predicted within useful limits from the meas- 

ured vertical-temperature gradient by means of the equation 

dT/dx = 0.0047 (dT/dz) 9.71 

The combined interrelationship of the vertical- and 

horizontal-temperature gradients and the wavelength of the 

dominant frequency of oscillation of the temperature structure 

were used as the foundation for a simplified predictive model of 

the horizontal-temperature gradients of the sea. The consistency 

of the results over widely separated geographic areas leads to 

the speculation that they are characteristic of the world ocean. 
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APPENDIX A: SMOOTHED TEMPERATURE STRUCTURES 
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APPENDIX B: VERTICAL - TEMPERATURE- GRADIENT FIELDS 
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COMMANDER, NAVAL SHIP SYSTEMS COMMAND 
SHIPS 1610 
SHIPS 1631 
SHIPS 2021 (2) 
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COMMANDER, NAVAL AIR SYSTEMS COMMAND 
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AIR 5401 
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COMMANDER, NAVAL ORDNANCE SYSTEMS COMMAND 
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ORD 0322 
ORD 9132 

COMMANDER, NAVAL FACILITIES ENGINEERING 
COMMAND 
FAC 42310 

COMMANDER, NAVAL ELECTRONIC SYSTEMS COMMANC 
TECHNICAL LIBRARY 

COMMANDER, NAVAL SHIP ENGINEERING CENTER 
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CODE 6360 

CHIEF OF NAVAL PERSONNEL 
PERS 118 

CHIEF OF NAVAL OPERATIONS 
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OP-312F 
OP-322C 
OP-07T 
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OP-09B5 
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CHIEF OF NAVAL RESEARCH 
CODE 416 
CODE 418 
CODE 427 
CODE 466 
CODE 468 

COMMANDER IN CHIEF 
US PACIFIC FLEET 
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US ATLANTIC FLEET 

COMMANDER OPERATIONAL TEST AND EVALUATION 
FORCE 

KEY WEST TEST AND EVALUATION DETACHMENT 
DEPUTY COMMANDER OPERATIONAL TEST AND 

EVALUATION FORCE, PACIFIC 
COMMANDER SUBMARINE FORCE 

US PACIFIC FLEET 
CODE 21 

US ATLANTIC FLEET 
COMMANDER ANTISUBMARINE WARFARE FORCE 

US PACIFIC FLEET 
COMMANDER FIRST FLEET 
COMMANDER SECOND FLEET 
COMMANDER TRAINING COMMAND 

US ATLANTIC FLEET 
OFFICE OF THE OCEANOGRAPHER OF THE NAVY 
COMMANDER OCEANOGRAPHIC SYSTEM PACIFIC 
COMMANDER SUBMARINE DEVELOPMENT GROUP TWO 
COMMANDER, DESTROYER DEVELOPMENT GROUP, 

PACIFIC 
COMMANDER FLEET AIR WINGS, ATLANTIC FLEET 
NAVAL AIR DEVELOPMENT CENTER 

LIBRARY 
NAVAL MISSILE CENTER 

TECHNICAL LIBRARY 
PACIFIC MISSILE RANGE 

CODE 3250 
NAVAL ORDNANCE TEST STATION 

CHINA LAKE 
CODE 753 

PASADENA ANNEX 
LIBRARY 

NAVAL WEAPONS LABORATORY 
KXL 
LIBRARY 

PEARL HARBOR NAVAL SHIPYARD 
CODE 246P 

PORTSMOUTH NAVAL SHIPYARD 
CODE 242L 

PUGET SOUND NAVAL SHIPYARD 
CODE 246 

SAN FRANCISCO NAVAL SHIPYARD 
HUNTERS POINT DIVISION 

NAVAL RADIOLOGICAL DEFENSE LABORATORY 
CODE 222A 

OCEANOGRAPHIC OFFICE PACIFIC SUPPORT GROUP, 
SAN DIEGO 

NAVAL SHIP RESEARCH & DEVELOPMENT CENTER 
CARDEROCK DIVISION 

LIBRARY 
ANAPOLIS DIVISION 

CODE 257 

INITIAL DISTRIBUTION LIST 

NAVY MINE DEFENSE LABORATORY 
CODE 716 

NAVAL TRAINING DEVICE CENTER 
TECHNICAL LIBRARY 

NAVY UNDERWATER SOUND LABORATORY 
LIBRARY 
CODE 905 

ATLANTIC FLEET ASW TACTICAL SCHOOL 
LIBRARY 

NAVAL CIVIL ENGINEERING LABORATORY 
u54 

NAVAL RESEARCH LABORATORY 
CODE 2027 
CODE 4320 
CODE 5440 

NAVAL ORDNANCE LABORATORY 
CORONA 

TECHNICAL LIBRARY 
SILVER SPRING, MD. 

DIVISION 221 
DIVISION 730 

NAVY UNDERWATER SOUND REFERENCE LABRATORY 
LIBRARY 

FLEET ASW SCHOOL 
TACTICAL LIBRARY 

FLEET SONAR SCHOOL 
NAVAL UNDERWATER WEAPONS RESEARCH AND 

ENGINEERING STATION 
LIBRARY 

OFFICE OF NAVAL RESEARCH BRANCH OFFICE 
PASADENA 

CHIEF SCIENTIST 
BOSTON 
CHICAGO 
SAN FRANCISCO 
LONDON 

NAVAL SHIP MISSILE SYSTEMS ENGINEERING 
STATION 
CODE 903 

CHIEF OF NAVAL AIR TRAINING 
TRAINING RESEARCH DEPARTMENT 

NAVY WEATHER RESEARCH FACILITY 
NAVAL OCEANOGRAPHIC OFFICE 

CODE 1640 
SUPERVISOR OF SHIPBUILDING, US NAVY 

GROTON, CONN. 
CODE 249 

NAVAL POSTGRADUATE SCHOOL 
DEPT. OF ENVIRONMENTAL SCIENCES 
LIBRARY 

FLEET NUMERICAL WEATHER FACILITY 
NAVAL APPLIED SCIENCE LABORATORY 

CODE 9200 
CODE 9832 

NAVAL ACADEMY 
ASSISTANT SECRETARY OF THE NAVY 

CRESEARCH AND DEVELOPMENT) 
NAVAL SECURITY GROUP 

G43 
AIR DEVELOPMENT SQUADRON ONE 

VxX=1 
SUBMARINE FLOTILLA ONE, US PACIFIC FLEET 
DEFENSE DOCUMENTATION CENTER (20) 
DEPARTMENT OF DEFENSE RESEARCH AND 

ENGINEERING 
WEAPONS SYSTEMS EVALUATION GROUP 

DEFENSE ATOMIC SUPPORT AGENCY 
DOCUMENT LIBRARY SECTION 

NATIONAL OCEANOGRAPHIC DATA CENTER 
CODE 2400 

COAST GUARD OCEANOGRAPHIC UNIT 
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NATIONAL RESEARCH COUNCIL 
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ARCTIC RESEARCH LABORATORY 
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ENVIRONMENTAL SCIENCE SERVICE ADM. 
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WASHINGTON SCIENCE CENTER — 23 
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US WEATHER BUREAU 
DIRECTOR, METEOROLOGICAL RESEARCH 
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UNIVERSITY OF HAWAII 
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