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PREFACE.

IN offering to the public a revised

edition of Vince's Fluxions, the correction of

typographical errors is the only alteration

which the editor has ventured to make : of

these, a considerable number has been detected.

The subjoined annotations were designed to

elucidate the principles of the science, and

therefore relate chiefly to the fundamental pro-

positions ; and although the adept may recog-

nize, in these remarks, some repetition of the

reasoning in the text, yet, to the student who is

just entering upon the subject, it is hoped, they

may prove a useful appendage.
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THE

PRINCIPLES OF FLUXIONS.
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SECTION I.

DEFLYITIOXS.

ARTICLE
1. Every quantity is here considered

as generated by motion ; a line by the motion of
a point ; a surface by the motion of a line ; a solid by
the motion of a surface*.

2. The quantity thus generated is called the fluent^
orflowing quantity.

3. The velocities with which flowing quantities in-

crease or decrease at any point of time, are called the

fluxions of those quantities at that instant.

Cor. 1. As the velocities are in proportion to the

increments or decrements uniformly generated in a

given time, such increments or decrements will repre-
sent the fluxionsf.

* Sir I. Newton, in the introduction to his Quadrature of
Curves, observes, that " these geneses really take place in the na-
ture of things, and are daily seen in the motion of bodies. And
after this manner the ancients, by drawing- moveable right lines

along immoveable right lines, taught the.genesis of rectangles."
f This is agreeable to Sir I. Newton's ideas on the subject.

He says,
"

I sought a method of determining- quantities from the
velocities ofthe motions or increments with which they are gene-
rated ; and calling these velocities of the motions or increment*,
fluxions, and the generated quantities fluents, I fell by degrees
upon the method of fluxions "—Introd. to Quad. Curves.
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& Definitions.

Cor. 2. Hence, as any given time may be assumed,
the fluxion is not an absolute but a relative quantity.
When we have several cotemporarv fluxions, we may
assume one fluxion what we please, and thence deter-

mine the values of the others. Thus, if x and y in-

crease uniformly, and if x increase by p in the time that

y increases by q, then the cotemporary increments of x
and y will be p and q, 2 p and 2

q, 3p and 3 y, &c. hence^
if p be assumed the fluxion of x, the fluxion of y will

be
<jr

; if the former fluxion be 2
/>,

the latter will be

2 y,
&c. &c.

Cor. 3. A constant quantity has no fluxion.

4. The first letters, a, b, c, &c. of the alphabet are

usually put for constant quantities, and the last, v, w.,

x, y, z, for variable ones ; and they are to be thus un-

derstood, unless the contrary be expressed.
5. The fluxion of a simple quantity, as a?$ is express-

ed by placing a point over it, thus x.

VVWWAW,W^%-V

To find the FLUXIONS of QUANTITIES.

Prop. I.

If two quantities increase or decrease uniformly, the

increments or decrements generated in a given time,
will be as their fluxions.

6. This appears from Art. 3. Cor. 1 .

Prop. II.

If one quantity increase uniformly, and another of
the same kind increase with an accelerated or retarded

velocity,andtxvo increments beassumed which aregene-
rated in the same time ; if those increments be diminish-
ed till they vanish, that ratio to which they approach as
their limit, is the ratio of thefluxions ofthose quantities.



Fluxions of Quantities, 3

7. Let the line FK be described With an uniform

velocity, and AZ with an accelerated velocity, and
let the increments Gs, Pwi be generated in the same
time ; let also Pv be the increment that would have

<r vY -K

i ' t- # — wXTV-\~$~r

been generated in the same time, if the velocity at P
had been continued uniform

;
then by Prop. I. the

fluxions cf FK, AZ, at the points G and P. will be

represented by Gs and Pi'. Let V be the velocity at

P, or the velocity with which Pv is described, and
let r be the increase of velocity from P to m ; then

the velocity at m will be V-fr, and i,ra is the incre-

ment which is described in consequence of the increase

t of velocity since the describing point left P. Now
let V-f-w be the uniform velocity with which Vm would
be described in the same time that Pt> and Vm are

described, as- before mentioned ; then it is manifest,
that this uniform velocity must be between the ve-

locities at P and w, that is, V-fxv is greater than V
and less than V-f r or iv is greater than o and less

than r. Also, since the spaces described in the same
time are as the velocities, V: V-fw : : T?v : Pzra*. Now

* If we diminish the times in which these increments are de-

scribed ; .then as the points v and m approach to P, Pv will con*
tinue to be described with the uniform velocity V ; but r will be

diminished, and by diminishing
1 the time till it becomes indefinite-

ly small, r will become indefinitely small ; but vm is described in

consequence of this increase r of velocity; hence, when r become?

indefinitely small in respect to V, the space vm must become in~

definitely small in respect to Fv ; therefore the ratio of Pv : P?n

is, in that state, indefinitely near to a ratio of equality ; but it is

manifest that it never can become accurately a ratio of equality,
because vm will not vanish until Pv and Pm vanish ; consequent::/
the ratio of the actual increments G* ; P??< can never accurately

express the ratio of the fluxions, that ratio being expressed by the
ratio of Gt • Pv. We are therefore to consider, to what ratio



4 Fluxions of Quantities.

in e&ery state of these increments,V:V+w:: Ptr. Pm;
and by continually diminishing the time, and conse-

quently the increments, we diminish r and w, but

V remains constant ; it is manifest therefore that the

ratio of V : V+w, and consequently that of Pu : Pw,
continually approaches towards a ratio of equality,

agreeably to what is shown in the note
; and when

the time, and consequently the increments, become

actually =0, then r=0; consequently zv=0 ; therefore

the limit of the ratio of Pv : Pm becomes that of V :

V,a ratio of equality^. flence, the limit of the ratio

of Gs : Pm is the same as the limit of the ratio of Gs ;

Pv, or it is Gs: Pu, that ratio being constant ; that is,

the limiting ratis of the increments is the ratio of the

fluxions.
The same is manifestly true for the limiting ratio of

the decrements of two quantities ; for, conceiving the

describing points to move backwards, the decrements

5-G, mP in this case become the same as the incre-

ments in the other ; consequently their limiting ratio

will express the ratio of the fluxions at G and P, or

the rate at which FG, AP are, at that instant, de-

creasing.

Hence, the limiting ratio of the increments or de-

crements of two quantities which are both generated

by variable velocities, will be the ratio of their fluxions.

And as the velocities with which these two lines in-

crease or decrease, may be made to agree with the rate

of increase or decrease of any two quantities which

may be compared together, the proposition must be

true for quantities of any kind.

Cor. As the limiting ratio of the increments is the

Pv • Vm approaches as its limit, when we make the time in which
the increments are described, and consequently the increments

themselves, vanish.
*
By keeping the ratio cf the vanishing quantities thus ex-

pressed by finite quantities, it removes the obscurity which may
arise when we consider the quantities themselves ; this is agree-
able to the reasoning of Sir I. Nf.wton in bis Prir.cipia, Lib. I.

Sect ; Li m 7, 8 9



Fluxions of Quantities. 5

ratio of the fluxions, it is manifest that when the incre-

ments are in an increasing or decreasing state, the

fluxions will be increasing or decreasing.
8. It has been said, that when the increments are

actually vanished, it is absurd to talk of any ratio be-

tween them. It is true ;
but we speak not here of

any ratio then existing between the quantities, but of

that ratio to which they have approached as their

limit ; and that ratio still remains. Thus, let the in-

crements of two quantities be denoted by ax2+mx
and bx2

-\-nx ; then the limit of their ratio, when

#=0, is m : n ;
for in every state of these quantities,

ax*+mx : bxz+nx :: ax+m : bx-j-n :: (when #=0)
m : n. As the quantities therefore approach to no-

thing, the ratio approaches to that of m : n as its

limit. Hence, if ?n=w, the limit of this ratio is a

ratio of equality. We must therefore be careful to

distinguish between the ratio of two evanescent quan-

tities, and the limit of their ratio ; the former ratio

never arriving at the latter, as the quantities vanish

at the instant that such a circumstance is about to take

place.

Prop. III.

Ifthe fluxion ofx be denoted by .i*, thefluxion ofax

will be ax.

9. For if x increase uniformly, ax will also increase

uniformly, and a times as fast ; hence, by Prop. I. the

fluxion of the latter will be a times that of the former,
or it will be ax.

Cor. Hence, in taking the fluxion of a variable

quantity multiplied into a constant one, the constant

multiplier is retained.

Prop. IV.

Thefluxion ofxia is x.

10. For a beinc: constant, and only connected to
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x by the signs-f or—
,
it does not affect the increase or

decrease of the quantity ; therefore the fluxion is the

same as the fluxion of x, or it is x.

Cor. Hence, constant quantities connected to vari-

able ones by the signs + or—
, disappear when the

fluxions are taken,

Prop. V,

Given (x) thefluxion qfx, tojind thefluxion ofx
n

*

n being" a whole number.

11. Let x increase uniformly by v and become

x+v, then will x" become x+v~]
n

; but (Algebra,

Art. 232.) x+v~\

n=xn+nxn~lv+ n.—^-x
n-*v% +kc,

and if from this quantity we take xn
,
there remains

n—>1

""•'u-f-w *n-2
z>
2+&c for the cotemporary m-nx

crement of xn ;
but although x increases uniformly by

v y
xn does not increase uniformly ;

for if in the in-

crement of xn we substitute 1, 2, 3, &c. for », and

take the differences of the results, these differences will

not be equal ; hence, to get the ratio of the fluxion of

x to the fluxion of xn we must, according to Prop. 2.

take the limiting ratio of the increments. Now the

increment of x : the increment of x* : i v : nx*~*v

+n.^=ix n
-V-f-&c. :: 1 : nx*~* +n.ii=l s-*o + &c.^2 2

and to get the limiting ratio of these increments, we
must make v=0, in which case the ratio becomes

1 : wxn_1 , which therefore expresses the ratio of the

fluxion of x to the fluxion of xn ;
but x denotes the

fluxion of x, therefore nx***x represents the cotempo-

rary fluxion of a".

If 72=0, x n=l a constant quantity ; therefore by Art.

3. Cor. 3. it has no fluxion.
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Phop. VI.
n

To find thefiuxion of .v
w

,
m and n being any whole

numbers,
n

12. Put y=xm,
then y

m=xn
; hence, by taking

the fluxions, mym
~ly=nx

n~' 1

Xy .*. y= = (by
mif

1"1

substituting for y its value in terms of
x") nm—i

mx—z—

nx^x_
mxn~m m

Cor. Let the root be a compound quantity as

am+x"', to iincl the fluxion of ar+x™']"- Put y=
i

am-fxm"]

n
? then ?/n= am + *"% and ny

n~l

y = m*",-,a; ;

hence, «/= .= _-=_xam+* I
« X

,n—i _fl— i

nixm~*x=— X a"*-f-;c
TO

"|
n~J x mxm~lx.

n

13. Hence it appears, that whether the root be a

simple or a compound quantity, the fluxion ofany pow-
er thereof is found by the following

rule :

Multiply by the index, diminish the index by unity,
and multiply by thefiuxion ofthe root.

EXAMPLES.
Ex. 1. The fluxion of a:

9
is 9x8x.

Ex. 2. The fluxion of 3y
5 is 15y*y.

3 * 12 — 3 6i?
Ex. 3. The fluxion of —y

7
\s —y

r
y=~

z *4
7if
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,
5 7 35 --j

4
T .

S5X
Ex.4. The fluxion ot ^r* is—x ' x=- j-,y "

99*TT

Ex. 5. The fluxion of ~* 7 is—x^i:.
7 63

Ex. 6. What is the fluxion of a2+x2
~\

s
I

Here the root is a2+.x
2
,
and its fluxion 2xx ;

hence , the fluxion required is 3 X a2
-j-x2

^
2 x 2xx—

a2
+x*~\

2 X 6xx. ,

Ex. 7. What is the fluxion ofVtf2-f*
2
,or of ep+x*]* ?

Here the root is a2+x2
, and its fluxion 2xx ;

1 ,—§ XX
hence, the fluxion is

—x «2
-fx

2
j

X2*v»
a2+x2f

Ex. 8. What is the fluxion of x2
+if'Y ?

Here the root is x?+y\ and its fluxion 2xx+2yy ;

i

hence, the fluxion required is£ X x2
+y

2
'\

i
x2xx+2yij

. i 2

=3 X -*
2
-H/

2
]
2
X xx+yy.

Ex. 9. What is the fluxion of x+y"]
2

Here the root is x+y, and its fluxion x+y ; hence,

the fluxion required is 2x x+y xx+y.
Ex. 10. What is the fluxion of a'+a'T ?

Here the root is a5
-f#

5
, and its fluxion S^a';

i

hence, the fluxion required is— X a 5
-\-x

s
J

X5x*x=
5x*x 2

2 X a5+xs
\i 1

Ex. 11. What is the fluxion of * I

_ s

This quantity becomes cF+sF]
7

, and the root is

a2+x2
i
whose fluxion is 2xx ; hence, the fluxion re-

quired K-^xlP^Y^ X2xx=~ 10™. Inlike
9 14
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manner, bring any quantity from the denominator up
to the numerator, by changing the sign of the index,
and then proceed by the rule.

7

Ex. 12. What is the fluxion of axi

+by
3
+cz*'\

3
~

?

Here the root is ax2
-f by

3
-f cz

4
,
and its fluxion

2axx-\.2>by
2
y-\4cz

3
z> ; hence, the fluxion required is

7 4~X ax2
-j-by

3+cz
4
~\

JX xaxx-\-3by
2
y+4cz

3z.

13. What is the fluxion of X^HVa2
-^

2
?

Put z = \ .v
2
-fV a2

+if, then z2 = x2 + %f a2-f#
2

•

now the fluxion of Va2
-f-z/

2
, or of a2

-}-*/
2
"]*,

is - X
2

a2+t/
2
J~2 x 2yy~d

l

+y
2

\
»
X£/# ; hence, 2zi=2.vjt

+^Tfl -*Xyy, therefore fe2**+£±Zti*S?^
22

i

2xx
+£j-fr

2
1

3

Xyy

2 \* *3
»f V az + zy

2

Prop. VII.

To find thefluxion of a product xy.

14. The fluxion of x -f y , by the last rule, is

2x*+*/X x+y = 2a"*' + 2 'v.y+2J/^'+ 2
*/£/ J also

> ^+j/
3

=AT2
+2^-f-j/

2
,
whose fluxion is 2xx-\- the fluxion of

2xy+2yy ;
make these two values of the fluxion of

x -f y
2
equal to each other, omit the first and last

terms which are common to both, and we have the

fluxion of 2xy=2xy-{-2yx ; hence, the fluxion of xy is

xy+yx.
Otherwise thus. If we suppose x constant, the

fluxion of xy is xy by Prop. 3 ; and if we suppose y
constant, the fluxion is ijx ; hence, if neither be con-

stant, the fluxion is xf/4-yx.
Cor. Hence, we may find the fluxion of xyz. For

if v = xyz., and ^u = xy> then v = tcz, and r s= wx+
C
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zw ; but iv — at/, .*. rb = xy -f yx ; substitute thesje

values for w and zi>, and we get v = xyz> + zxy 4- z!/a\

15. In like manner we proceed for any number of

factors ; hence, the fluxion of the product of any num-
ber of quantities is found by the following

rule:

Multiply the fluxion of each quantity into the pro-
duct of all the rest, and the sttm of all the products is

thefluxion required.

EXAMPLES.
Ex. 1. The fluxion of x2

y
3 is x2 X Sy

2
y-\-y

3 x 2xx
ss> 3x9y

2
y^2y

3xx.
IB. 5 7 L Z

Ex. 2. The fluxion of y
2x 3 z is X*ZX—y %lj+y*'Z X

5 1 7
'

£. 7 J. L 5 12. 1 i.—x 3
x+ij

2\x 3z=—x 3
zy

2y+—y 2zx 3
x-l-i/

2x 3 z.

Ex. 3. The fluxion of zvmx"y
rzs is mxn

y
rzswm~hb -f

nxvmy
rzsx n-lx+rxvmx

nzs
yT-

1

y-\.sw
mxny

rz *-1 £.

Ex. 4. To find the fluxion of x2x a4+z/
4

J

2
.

3 3 1

By the last rule, the fluxion of a4
-fif |

2 is-xa4 -f-?/
4 yo

X 4r/
3
*/
= 6 X a4+ y

4
J

2 X */
3

# ; hence, the fluxion re-

quired is x2 X 6 Xa4
-\-y* \

2 X y
3
y + ef+i/

4
|

2x 2xx.

Ex. 5. To find the fluxion ofV dz+x2X\/ b2-\-y
2
.

Find the fluxion of each part by the last rule, and the

fluxion required is V7
a?+x* X ^

-f V b2

-{-y
2 x

x.v \y b
2
-\-y

2

\ 'a*+x*
16. It appears from this Prop, that the fluxion of

xy consists of two parts, xy and yx, the former part

arising from the increase of y by y, and the latter from
the increase of x by a? ; but if x should decrease

whilst y increases, then the fluxion, expressing the

increase of xy upon the whole, will be xy—y.v, be-

ing the increase minus the decrease. Hence, to express
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the rate at which any quantity increases, the fluxion

of the parts which increase must be written with the

sign -f,
and those which decrease with the sign

—*.

Now the increasing quantity is considered as positive ;.

but if a negative quantity increase in magnitude, it

must be considered as a decreasing quantity, and its

fluxion will be negative. In like manner, a negative

quantity decreasing in magnitude must be considered

as an increasing quantity, and its fluxion will be po-
sitive. If therefore the fluxions of increasing quanti-
ties be written with the sign +, and of decreasing with—

,
whenever the fluxion of any quantity is positive,

it shows that quantity to be in an increasing state ;

and, when negative, to be in a decreasing state. In

like manner, if x% + y
2 = a constant quantity, then if

„y decrease and y increase, the fluxion is — 2xdS -f-

2yy = 0.

Prop. VIII.

To find the fluxion ofafraction
—

.

x
1 7. Put 2 = — , then zy=x, and zy+yz =x (Art.

x
.

x xy
N . x—zu y ux— xu , x

1 4.); .'. * = - = = "
=—?. Hence

y y y
.

we find the fluxion of a fraction by the following

rule :

From thefluxion of the numerator multiplied into the

denominator, subtract the fluxion of the denominator

multiplied into the numerator, and divide by the square

of the denominator.

EXAMPLES.

Ex. 1. The fluxion of ~ is
2^xde~ 3yVy _,

2yxx— Sx2^

* Hence it appears, that when a quantity passes through a maxi-

mum or minimum, the fluxion on each side has a different sign.
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•c c -ru a r*+V • z3
X3b-fzv— x-\-yx3z

2z
Ex. 2. The flux, of —~ is —-—-LJL——12. -—

z3 z6

zxx + y— x -f y x 3s

Z4

Ex. 3. The flux, of f? is ^x^yx-xyxZzz
z2 z4

z X xy -f- i)X
— 2xyz

zs

(X .
i .i ddc

Ex. 4. The fluxion of— is—-—
; for a being con-

x Xr

stant, the fluxion of the numerator is nothing, and

therefore the fluxion of the numerator multiplied into

the denominator is nothing ;
in this case, therefore, the

fluxion of the fraction is minus the fluxion of the de-

nominator multiplied into the numerator, divided by
the square of the denominator.

Ex. 5. The fluxion of— is -
x
2n ^n-4-1.r»+i

nx~nr~'lx ; or the fluxion of #~"n=— nx~n~xx ; when
therefore the index of a quantity is negative, the

fluxion is found by the same rule (Art. 13.) as when
the index is positive.

Ex. 6. The fluxion of— is

Vb2 +y2

a2+x2
Y~*XxxxVP+y*— b2+y2

J~
"~

X yyxVa2+ x 2

b2 + y
2

xX \/a2
-\-x

2
Xyt)

Va2+x2X>/b2
+y

2

^y]|
The putting of a quantity into fluxions is called the

direct method of fluxions.
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SCHOLIUM.

18. In questions of a geometrical and philosophical

nature, where we want to get the relation of the fluents

from the fluxions, and in others where we want to

find whether quantities are positive or negative from

the relation of them to their fluxions, it is necessary
to pay regard to the sig?is of the fluxions, as explained
in Art. 16. But in putting equations into fluxions,

as in the problems de Maximis et Minimis, although
one variable quantity may increase at the same time

that another decreases, yet we may write the fluxion

of each positive ; for, by writing it so in each equation,
in order to obtain the same fluxion from the different

equations, the resuk will not be altered. In these,

and such like cases, we may therefore make the fluxion

of each quantity positive. We may further observe,
that when any fluxion becomes negative according to

the above rule, the quantity which expresses its value

becomes negative. For instance, if r = the radius of

a circle, x = the versed sine, y = the right sine of an

arc, then y
2 = 2rx— x2

,
and y = — —

; now, for

the first quadrant, x and y increase, and each fluxion

is positive, and the value of y is positive, x being less

-than r ; but in the second quadrant, 1/ decreases and
its fluxion becomes negative, and its value becomes

negative, x being greater than r. This circumstance

is similar to the case of a quantity passing through
o and changing its sign, for y = o at the end of the

quadrant.
19. When we compare the fluxions of two quan-

tities, by comparing the increments that would be

uniformly generated in a given time, the quantities
have been supposed to be homogeneous, there being
no relation between those which are not homogeneous;
yet if, of two heterogeneous quantities, the numerical

value of one be expressed in terms of the other, it is

%
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maniiest that there will be no impropriety in expressing
the fluxion of one in terms of the fluxion of the other.

If one side of a right-angled parallelogram be repre-
sented by 6 and the other by 9, we say, 6x9 = 54, the

area
;
our numerical operation is perfectly correct, but

no one ever imagined that the units represented by 54
are homogeneous to the units represented by 6 and 9 ;

if 6 and 9 represent inches in length, 54 will represent
so many square inches, or so many square areas, the

side of each of which is 1 inch in length. Or if a and
x represent the two sides, the area of the parallelo-

gram will actually be ax, referring that quantity to its

proper units ; although, therefore, there is no relation

between the area and either of its sides, yet it is ex-

pressed in terms of the sides. And if a be constant

and x variable, the fluxion of the area will be ax by

Prop. 3 ;
if therefore (.v) the fluxion of the abscissa x

be 1 inch in length, the corresponding fluxion of the

area will be a square inches
; if x be 2 inches in

length, the fluxion of the area will be 2a square
inches. And in general, when we consider any two

quantities which are not homogeneous, although their

fluxions, which are expressed by their increments

uniformly generated in a given time, can have no re-

lation to each other, if we carry our ideas no further

than the increments themselves ; yet when we con-

sider the numerical values of these fluxions, the analy-
tical expression for one may be comprised in terms

of the other without any impropriety, and our con-

clusions will be perfectly just and correct, in the sense

in which the units of the respective quantities are un-

derstood, notwithstanding the fluxions themselves may
be heterogeneous. Sir I. Newtox, in his Quadra-
ture of Curves, in finding the area of a curve, describes

a parallelogram on the abscissa (x), the other side (c)

of which is constant ; and then he compares the

fluxion of the area of this parallelogram with the

fluxion of the area of the curve, they being homogene-
ous quantities ;

and the fluxion of the area of the
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parallelogram being ax, he gets the fluxion of the area

of the curve. From what has been said above, when
we reduce these matters to calculation, there appears
to be no absolute necessity for this ; but it is more
scientific to make the comparison between homoge-
neous quantities, than between those which are not

homogeneous, and therefore the former method is al-

ways to be preferred in cases where it can be applied,

notwithstanding the conclusions which are otherwise

deduced are perfectly true and satisfactory.
20. The ingenious and justly celebrated author

of the Analyst has endeavoured to show, that the

principles of fluxions, as delivered by its author, are

not founded upon reasoning strictly logical and con-

clusive. He lays this down as a Lemma :
a If you

make any supposition, and, in virtue thereof, deduce

any consequence ;
if you destroy that supposition,

every consequence before deduced must be destroyed
and rejected, so as from thence forward to be no more

supplied or applied in the demonstration." This, he

thinks, is so plain as to need no proof. It may per-

haps be admitted to be true, when we want to deduce
the absolute value of a quantity which is to be obtained

in virtue of a supposition ;
but it is not true when we

want to obtain the relative values of quantities. He
seems not to have properly attended to the meaning
of the term limiting ratio, but went upon the term
ultimate ratio, assuming equality where it was never

intended, thereby totally misunderstanding the subject;
and this led him to disregard the connection which
there must necessarily be between the two terms x, ?/,

which constitute a ratio, and the two terms m, ?z,

which express the ratio to which x, y approach as

their limit, when you diminish them sine limite, called

the limitoi the ratio ; for every one must see, that ifyou
make x and y vanish, they must approach to some ratio

as their limit ; but we do not say (as writers who do not

understand the subject would make us sav) when x and

y become — 0, that o : o : : m :n : such is the assertk
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of those only who are ignorant of the subject. Now
it is agreed, that, by diminishing the increments you
approach to the ratio of the velocities which the quan-
tities had at the points from whence the increments

began to be generated, and that by making them
become indefinitely small, you arrive at a ratio indefi-

nitely near to that of the velocities at those points.
Let therefore x and y be two increments generated by
two flowing quantities in the same time ; then as

their limit m : n must depend altogether upon x and

y, that limit is obtained upon the supposition of the

existence of the increments ; but the limit is a certain

determinate invariable ratio, totally independent of the

magnitude of the terms of the ratio, or of the incre-

ments, as appears by Art. 8. When we therefore

deduce the limit by making the increments vanish,
the effect

of the prior existence of the terms x, y of

the ratio still remains in the terms wz,ft, which express
the I'nnit of the ratio. If the existence of the terms m,
«, which express the limit of the ratio, depended upon
the existence of the terms themselves x, y of the ratio,

the supposition which makes the latter vanish would

necessarily make the former also vanish, and then no
conclusion could be deduced by making the terms of

the ratio vanish
;
but as that is not the case, the limity

which is obtained by making the terms become equal
to nothing, contains an effect, after the increments are

actually vanished, which depends upon their having
existed. The limiting ratio is (as expressed by Mac-

lauriri)
" the term or limit from which the variable

ratio of the increments proceeds, or sets out, to in-

crease or decrease." The lemma, therefore, of the

author, however true it may be under some' circum-

stances, cannot be applied against the reasoning upon
which the Principles of Fluxions are founded. The
author admits the conclusions to be true. He says,
" I have no controversy about your conclusions, but

only about your logic ;
and it must be remembered,

that I am not concerned about the truth of vour theo-
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rems, but only about the way of coming at them."

The above observations show, not only that our con-

clusions are true, but that they are deduced by steps

which are perfectly satisfactory, and strictly logical.

It was unfortunate for Science, that neither the inge-

nious author of the Analyst, nor his opponents, had

any clear ideas of the subject they disputed upon ; the

controversy however called forth Robins and Maclau-

rin, who showed in the most satisfactory manner, that

the grounds of fluxions, according to the ideas of its

great author, were defensible, and the investigations

founded upon the strictest principles of reasoning*

D



SECTION II.

vwvwvwvwvvx

On the MAXIMA and MINIMA of

QUANTITIES.

Prop. IX.

rF^0 determine the value of a quantity, when it be-
* comes a maximum or minimum.

21. If a quantity first increase and then decrease, at

the end of its increase it becomes a maximum ; and if

it first decrease and then increase, at the end of its de-

crease it becomes a minimum. And as the fluxion of

a quantity is the rate of its increase or decrease (Ait.

3.), when it becomes a maximum or minimum its

fluxion must be = 0, the quantity having, at that point
of time, no further increase or decrease.

22. If any quantity be a maximum or minimum,
any power or root of that quantity must then, evidently,
be a maximum or minimum. For the power or root

of a quantity will increase or decrease as long as the

quantity itself increases or decreases, and no longer.

Any constant multiple, or part of a quantity which
is a maximum or minimum, must also be a maximum
or minimum. For the multiple, or part of a quantity,
will increase or decrease as long as the quantity itself

increases or decreases, and no longer ; therefore when
its fluxion is made = 0, the constant multiplier may be

neglected.
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EXAMPLES.

Ex. 1. To divide a given number a into txvo parts,

x, y, so that xmy
n
may be a maximum*

Since x+y = a, and ^m^
n=max. the fluxion of each

= 0, the former, because it is constant, and the latter,

because it is a maximum ; .*. ifc-f-£/=0, and my
nxm~1x

, . , . , . nxm i/'
1-1

ij
A.nxm vn~l v=0 ; hence, a?=—y. andx= ^T v y v

my
nxm"1

nxii . r nxu ,=—.—-1 • therefore— ij= ; or, my = «#, and
my

J
my

v

•vr wa?
„
nxm:n ::x : v. Now w = —

; .•• x -j
= c, conse-

nt w
. ma , / naA

cuently x= , and */ =— J
:^ y

m+ra
^

V w /

na

m-\-7i \ ml m-\-n

If m = 72, the two parts are equal.

Cor. Hence, to divide a quantity a into three parts,

x, */, z, so that xyz may be a max. the parts must be

equal. For suppose x to remain constant, and y, z to

vary ; the product z/z, and consequently xyz, will be

greatest when z/=z. Or if
z/
remain constant, the pro-

duct *>z, and consequently j/a'Z,
will be greatest when,

x=z. Thus it appears that the parts must be equal.
And in like manner it may be shown, that whatever be
the number of parts, they will be equal.

Ex. 2. Given x-f-y+z=a, and xy
2z3 a maximum, to

find x, y, z.

As x, y, z must have some certain determinate

values to answer these conditions, let us suppose such
a value of y to remain constant, whilst x and z vary
till they answer the conditions, and then x+z>= and

zs
a?+3^z

2ii=0 ; hence, x=— %=.
3xz2

z> 3x

Z3 2 '

.•. z=3x. Now let us suppose the value of z to re-

main constant, and x and y to vary, so as to satisfy
the conditions j then a?-f-i/=0, y

2
x+2xyy=Oi hence,
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2xi/i) 2x0 _
,

.x =— */ = ^-= ^, .. w= 2* ; substitute in

v y
the given equation, these values of y and z in terms
of at, and # + 2a: -f- 3ar = a, or 6x = a ; hence, a: =
—a

; .•. y = —a ; z = —a. In like manner, whatever6^32 '

be the number of unknown quantities, make any one

of them variable with each of the rest, and the values

of each in terms of that one quantity will be obtained ;

and by substituting the values of each in terms of that

one, in the given equation, you will get the value of

that quantity, and thence the values of the others.

Ex. 3. Tofind -when y is a max. in x3
-j-y

3
1
=a4x2

.

Take the fluxions of both sides, and 2 x 3a 2
a.--f3y

2
y

X x3

-\-y
3 z=.2a

4xx
; but when y is a maximum, y = ;

. a*
hence, 6x

2xx x3
+y3 = 2a4

xx, .•. x3+u3 = —
,

and
3x

~x
3

-\-y
3
\
=—-

;
therefore a4x2 =—-

,
and ,x

4=—,or *•=

V/A xJtX if

a a3 a3
. 1

-r=hcnce,y3! -==zd
2x—x3)=——: =a3X—= —

V3 •

J
V/3 ,# V3

— a3 x
W-3,

32 v<> 3 2

\
3

j 2~~

° V3

Otherwise. As y
3=a2

.x—a 3
,.*. 3^

2
i/=a

2
a7—3x2

x=0,

because '/=0, .. 2c=—— .

V3

£#.4. To inscribe the greatestparallelogram DFGI
in a given triangle ABC.

Draw BHJ_AC ; put AC -a, BH = b, BE = x
9

ax
then EH=£—x ; and by sim. A*, b: a : : x : DF=— ;

b

ax
hence, the area DFGI=— X/>—x = max. or x x b>—x

b



Maxima and Minima of Quantities. 21

bx—x2 = max, .. bx—2xx = O ; hence, x = —b ;

H G

therefore EH =—BH.
2

Ex. 5. Let ABC represent a cone, AC the diameter

of the base; to inscribe in it the greatest cylinder DFGI.
Put p = ,78539 &c. then (the same notation re-

gaining) it will appear when we come to treat on the

2 V4i)Ctx
method of finding the areas of curves, that r -—
the area of the end DEF of the cylinder ; hence, the

content of the cylinder = ^j^-xb
—x = max. or x2 x

b—x=zbx2—x3= max. .'. 2bxx—3x2x=0 ; hence, x=
2 1—b

; therefore EH=—BH.
3 3

Ex. 6. To inscribe thegreatestparallelogram DFGI
in a given parabola ABC.

Put BH = a,p= the parameter, x = BE ; then by
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1 L
the property of the parabola, DE2

=/a-, ,\ DE==/>
2^?

,

i i

and DF=2/>***; hence,the area DFGI=2/>V*xa—*
X I 3 J 1

= max. or ;c
3x «—x=.ax*—^¥=max. .*.—ax ^a?—

2

~x?x = ; hence,
— = 3xr

, or a = 3^- .\ x=— a ;

2 1 O

consequently EH = - BH»

£o:. 7". To cut £/te greatest parabola DEF y*r<?m a

given cone ABC.
Let AGC be that diameter of the base which is J_

to DGF ; now EG is parallel to AB
; put AC=a, AB

=&, CG=.r, then AG=a—x ; and by the property of

the circle, DG=Vax—x2
,
.•. DF==2Vax—x*

; also,

by sim. As, a: b :: x : GE= — ; hence, we have the

2 bi
area of the parabola = —x— X 2 V #.r—x2 = max.

3 «
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hence, xVax—x 2 = max. or x2 x ax—x2 z=ax3—x*z=

3
max. .*. 3ax2x— 4x*x = 0, and 3a = 4x, .: x =—a.

4

Ex. 8. To divide a given arc A into two partsl

$uch that the mth
power of the sine of one part, multi-

plied into the nth
power of the sine of the other, may be

a maximum.

Let P and Q be the two parts, x and y their sines.,

radius being unity ;
then xm x y

n = maximum j hence

my
nxm-xX -f nx

m
y
n~1

y— O, and myd; =— nxif. Now

(Art. 46.) P=
X

,Q= ^
? and as P -f QVl— x* Vl— y

%

=A,P+Q = 0,.-. P = -Q,or-^|=- =—=S=;
Vl—y2 Vl— a:

3

multiply this equation by the equation myx=.—nxyt
and

u x— = n X —=
Vl— y

2 Vl—.
,:m : n :: tan. P : tan. Q, and m-\-n : m—n : : tan. P-f-tan.

Q : tan. P—tan. Q :: (Trig. Art. 1 1 3.) sin. (P+Q) : sin.

(P—Q): : sin. A : sin. (P—Q)—-—IL-xsin. A; hence
m -f- n

we know the sine of the difference oi the two parts of
the arc ; therefore we know the difference P—Q. of the

arcs themselves ; and knowing the sum P -{- Q, or A,
we know the two parts P and Q.

Ex. 9. To determine at what angle the wind must
strike against the sails ofa mill, so that the effect to put
it in motion may be the greatest possible.

Put x = the cosine of the angle, then 1 — x2 = the

square of the sine, radius being unity ; hence (by the

Principles of Hydrostatics), the effect is as xx 1 —'• a?
= x—x5

, which is to be maximum ; .:. re—3x2db — -

hence, x — id-*- the cosine of 54° 44'.

m x —-
...
= n x ,

or mxtan. Q= /zxtan. P,
A 2
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Ex. 10. Given two elastic bodies A andC, to find an
intermediate body x, so that the motion communicated

from A to C through x, may be a maximum.

Put a = the given velocity of A, w = the velocity
communicated to x, and 2 the velocity communicated
to C ; then (by Mechanics),

A -f- x : 2A : : a : w
# + C :2xi:w:z

.: comp. Ax + *2 + AC + Cx : 4A* : : a : 2, or,
AC

A-fx-J -f-C : 4A : : a : 2; now. as the two middle

terms are constant, the last term varies inversely as the

first ; and as the last is to be a maximum, the first

ACa?
must be a minimum ; therefore its fluxion x —

x2,

—
; hence, x2 = AC, and A : x : : x : C.

Ex. 11. Given the altitude BC of an inclined plane
AB, tofind its length, so that a xveight P acting upon,
another W zn a line parallel to the plane, may draw it

up through AB in the least time.

Put a=BC, x=AB ; then (by Mechanics) the acce-

«W
lerating force of W down BA is— ; hence the mov?

x

r , .
1 v • r, a\V Px— a\V

mg force o^ the two bodies is P = •

x x
Px — fl'VV

therefore the accelerating force = : and
P + Wx*
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the time of describing AB varies as\

4

AB
ac. for'.

,
«r as

P+W x x2

px—aW
- = min. or

x~

Fx—aW = mm. .»,

2xx x P*—flW —- Pa? Xx2

==
; but when a fraction

vanishes, its numerator = ; hence, 2Px\v—2aWxx
2aW

, T>x2x = 0, or Fx2 — 2aWx, .: x= ——-.
F

Ex. 12. To find the position of the planet Venusj
when it gives the greatest quantity of light to the

Earthy the orbits being supposed to be circles with the

Sun in their common centre.

Let S be the Sun, E the Earth, V Venus, produce

EV, on which let fall the I SB, and with the centre

V describe the circular arc SA. Put a=SEj £=SV=

AV, x = EV, y =BV, then AB = b~ y the versed

sine of the angle SVA ; and (by the
Principles of

Astronomy) the quantity of light received at the Earth

from Venus varies as ——- = —-— if

tt
= max. Now

*2 x2 x*

(Euc. B. II. p. 12.) a2 = b2 + x2 + 2xy, .: y
at—P—x2 m x2

2x
as (ifm3=a2—b2)

—
:
—-

; hence, the quan2x
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r ,. , . b m2—x2 2bx—mz+x2

tity of light varies as — —- = -~
3

»

which is therefore a maximum ; hence
,

its fluxion

2bx -f 2xx x 2x5—bx^x X 2bx—m2
-\-x

2

L —— = 0, or its
4.\

6

numerator 4bx5x+4x4x—12bx*x+Q>m2x2x—§x*x=Q,
or by dividing by 2x2

x, and uniting the like terms, we
have—x2—4,&v+3m

2=0, .. x2+4bx= 3m 2= 3a2—36%

a quadratic, from which x=—2b+Vb2+3a2
. Hence,

we know the three sides of the triangle ESV, to find

the angle E of elongation. Now if a = 1, b = 0,72333

according to Dr. Halley ; hence, #=0,43046, and the

angle SEV=39° 44' the elongation of Venus from the

Sun when she is brightest. Also, the angle ESV =
22° 21' ; but the angle ESV = 43° 40' at the planet's

greatest elongation ; hence, Venus is brightest between

her inferior conjunction and her greatest elongation.

For the planet Mercury, 6=0,3171, and #=1,00058,
and the angle SEV = 22° 19' the elongation of Mer-

cury when brightest. Also, the angle ESV=78° 56' ;

but the angle ESV = 67° 13',5 at the time of the

planet's greatest elongation; hence,.Mercury is bright-

est between its greatest elongation and superior con-

junction.
In questions of a geometrical and philosophical na-

ture, there are frequently restrictions which do not

enter into the analytical expression. In the analytical

expression, considered simply as such, the unknown

quantity may be assumed of any value, and" therefore

it may be taken -without the limits to which it is

confined by the question. When its fluxion is there-

fore made equal to nothing, that equation may con-

tain, besides the roots which are applicable to the

question, others which are not applicable ; and if

none of the roots be applicable, it shows that the

maximum or minimum of the expression does not lie

within the limit of the unknown quantity, as con-

fined by the question ; in which case, the roots de-

duced from making the fluxion of the equation = O,
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can be of no use. In the present instance, the ex-

pression is ————— (A) for the quantity of light ;

and putting its fluxion = 0, we get x = — 2b ±
v7;2+3a2

; but it is only the root x = — 2b -f

V£2+3a2 which is applicable to the question, as this

is a value of x which lies within the limits of the

question ; and it gives the expression (A) a maximum.
The other root #=— 2b—V^-fSa2

being negative,
which x never can be, cannot be applicable to the

question ;
but it nevertheless gives the value of (A)

when a minimum. But although when we make

(A) = 0, the roots of the equation do not give the

points in the orbit where the light is a minimum,
that is, the superior and inferior conjunctions ; yet
if we suppose x to be confined to the limits of the

question, or to represent EV, and V to move round
in the circumference of the circle, in the two con-

junctions x = 0, and we still have (A) = for those

points. The equation therefore (A) =0 is, under the

above restrictions, true for those points, because a'=0,
and not because the roots give those points. Whilst,
in general, a maximum or minimum of (A) lie within

the value of x as restrained by the question, the roots

of (A) = will give those points ; otherwise, not;
and the maximum or minimum in the question must
in the latter case be sought for, by considering, when
the quantity which is to be a maximum or minimum,
ceases to increase or decrease, according to the re-

strictions of the unknown quantity. In the present

instance, it is when x = 0, or in the two conjunctions;
for had (A) decreased and then increased between the

maximum of light and either conjunction, there would

have been a root of (A) = which would have
shown the point where the light was a minimum ;

but as there is no such root, it shows that (A)



28 Maxima and Minima of Quantities.

must decrease till the planet comes into each conjunc-
tion ; and as (A) then increases again by the same

steps by which it decreased, the light at those points
must have been a minimum. These observations

appear to be of some importance, as they tend to

remove difficulties which might otherwise arise in the

maxima and minima of quantities which are under
certain restrictions ; for it might naturally be asked, in

the present question for instance, why do not the equa-

tion (A) = give three roots, one producing a maxi-
mum and the other two the minima of light, there ac-

tually being such points in one synodic revolution of the

planet ?

For a superior planet, the maximum of light is evi-

dently when the planet is in opposition, the whole face

being then illuminated, and the planet is at its nearest

distance. Now to find whether the quantity of light
becomes a minimum in going from opposition to con-

junction, we still have x = — 2b ± Vb2+3a2
. Now

as a is less than b, b2 -f 3a2 is less than Ah2
, and

\/b%+3a2
is less than 2b; hence, -x (

= —• 2b -f

V62
-f3a

2
) is negative ; and the other root is manifestly

negative ; which not being possible for x, it appears
that there is no minimum of light in going from oppo-
sition to conjunction, but that the quantity of light con-

tinually decreases through that part of the orbit. The

expression (A) does not pass through its maximum
and minimum in opposition and conjunction, for the

reason before given, and therefore the roots of (A) =
O, cannot give those points.

If b= a, x = 0, and V coincides with E.

Ex. 13. Let Q be an object placed beyond the princi-

pal focus F ofa convex lens, to find its position, zvhen

its distance Qq from its image q, is the least possible.

Put QF = x, FE = a ; then (by the Principles of



Maxima and Minima of Quantities, 29

Optics) .v : x+a : : x+a : Q? = i—^-=amin.hence,

e

ft, fluxion
2*X*+«X.v-*X* + <-'

=0)^ by
A.

2

assuming the numerator = 0, and dividing^y x+c,
we have 2xx— xx— ax = 0, or x— a = 0, .•. * = a.

£#. 14. Tofind the Surfs place in the ecliptic, when

that part of the equation of time which arisesfrom the

obliquity of the ecliptic,
is a maximum.

Let AV be the equator, AW the ecliptic, S the

B
Sun's place, and SB J_ AV ; then this part of the

equation of time is the difference of the Sun's lon-

gitude AS and right ascension AB, turned into time.

Put s = cos. of the angle A = 23° 28', x = the tangent
of AS ; then by Spher. Trig. rad. = 1 : s : : x : tan, of

AB=sx ;. hence,by Plane Trig, the tangent of AS—AB
X—SX X X

= = 1—sX-* = max. or — = max.
1+SX2 1+SX2 1+SX

2

n . x X l+sx
2—2sxx x x , ,

.•. its fluxion —-——
2
- =

; hence, the

1+5X
%

numerator x + sx?x— 2sx2x = 0, .*. 1— sx2 = 0, and

* = V—= 1,04416, the tan. of 46° 14' the Sun's long.

when this part of the equation of time is a maximum.
If we retain l2 in the denominator for the square
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of radius, as the trigonometrical theorem gives it,
then 1—sx2 — becomes l

2—sx2 = O, and sx2 = l 2 =
rad.

"]

2
; that is, tan. AS x tan. AB= rad.")

2
; but tan.

AS X cot. AS = rad. I
2

; therefore tan. AB=cot. AS;
hence, AS+AB = 90°.

Ex. 15. Given the base CB ofan inclinedplane AC,
tofnd its altitude BA, when the time of the descent of
a body down the plane is the least possible.

Put a = CB, x = BA, then Va2+x2 = AC ; and

V/a24-;c3

(by Medhahics) the time down AC varies as —
,V x

which is therefore a minimum, or is a mini-

mum ; hence,
2yi? *

*~f
* a2+X*

= 0, or its nume-
xr

rator 2x2x—a2x—x2
x'=0, therefore x2=a2

,
and x=a.

Ex. 16. Given the base CB, to fnd the perpendicu-
lar BA, such that a body descendingfrom A to B, and

then describing
1 BC with the velocity acquired, the time

through AB and BC may be the least possible.

Put m= 16— feet, a = CB, x = BA ; then (by
12

Mechanics) the time down AB = \j
—

; also, with the

velocity acquired at B continued uniform, the body
would describe 2AB, or 2x> in the same time ; hence,

as the space described with an uniform velocity is as

the time, fix : a : : J— : JL X J - = ~ <*X y—
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the time of describing BC ; hence, the whole time

^ m 2 ^ mx ^ ?n 2 * m
il—4 1—4.1

minimum, or x 2
-\ ax 2 = min. .*. —-x 2 x'——-ax

* 2 2 4

—£ — i 3 1

*i:=0, or* 2=±ax~~~s ; hence, *•=—a.

Ex. 17. Given the base CB ofan inclinedplace AC,
tofind its altitude BA, such that the horizontal veloci-

ty of a body at C after descending doxvn AC, may be

the greatest possible.

Put a = CB, x = BA, then CA = Va2+x2
;
now

{by Mechanics) the velocity at C is as Vx, and bytfie
——~— — Civ X

resolution of motion,Va
2+x2

: a : : V x :
— - >

Va2+x2

which is as the velocity at C in the direction BC,

which is to be a maximum : or —-—- = a maximum ;

a2+x-
x X a2+x2—2xx x x

,

••. : -:;

2
• = O, or the numerator a2x -f-

a2-\-x
2

x2^—2.v
2
X* = 0; hence, x=a.

Ex. 18. Given the solidity ofthe cone, tofind the base

and height, when the time of its vibration shall be a

minimum, supposing the point of suspension to be the

vertex.

Put y = radius of the base, x = the altitude, p —
3,14159 &c. then \ pxy

2 —s; and (Ex. 8. Prop. 30)
A:X

2
•i-'U

2——— = the distance from the point of suspension to

the centre of oscillation = minimum. But v2 —
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=(if_l= 2a)£? ; hence,;
* = *S*Li mio.

\p x 5x 5x*

. 12x2.r x 5x2—10;cx X 4x3
-f- 2a „ ,

and x—
i

=
; hence, x =

i

25x*

_ 2aj^_c7 ; therefore y = ., j^ =v2X^i consequently

* : ?/
: : 1 : V2.

Ex. 19. To /«fi? wfon (A) *3 — 18*2 + 96#— 20
becomes a maximum or minimum.

Assume the fluxion = O, and 3x%x — S&xx -f 96£

= 3x xx2—12* -f- 32 = 0.; hence, # = 4 or 8, Now
to determine which value gives the maximum and
which the minimum, find whether the value of the

fluxion, just before it becomes=0, be positive or nega-
tive; {{positive, the succeeding root gives a maximum;
if negative, a minimum; for whilst a quantity increases

its fluxion is positive ; but when it decreases its fluxion

becomes negative, by Art. 1 6. Now as 3x x x—4? X
x—8 = 3x X x2— 12„v-f32 ; when x is less than 4,

each factor being negative, the value of the fluxion

is positive, therefore the root 4 gives (A) x3— 18X3 -f

96a:— 20, a maximum ; and as, when x increases

from 4 to 8, one factor is positive and the other nega-

tive, the fluxion is negative, therefore the root 8 gives

(A) a minimum. When we say that by making x=4>

it gives (A) a maximum, we mean that (A) first in-

creases till x becomes 4 and then it decreases, and not

that it is then the greatest possible ;
for by increasing #

after it exceeds 8, the value of (A) increases sine iimite.

And in like manner, (Aj decreases whilst x increases

from 4 to 8, and then it increases, and therefore when
x= 8, (A) is said to be a minimum, not that it is then

the least possible, for by decreasing x below 4, (A) will

decrease sine Iimite.
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We have here supposed x to increase ;
if we sup-

pose x to decrease, and first assume it greater than 8,

then as x decreases till it becomes 8, each factor x—4,

x—8 being positive, the product is positive, and there-

fore it might appear that the root 8 ought to give a

maximum ; but as x is a decreasing quantity, its

fluxion (a?) is negative by Art. 16 ; hence, ode x x—4

X x—8 is negative till x becomes 8, and therefore this

root gives (A) a minimum ; and whilst x decreases

from 8 to 4, 3x x x—4 X x—8 is positive, and there-

fore 4 gives (A) a maximum, agreeable to what was
before determined. This instance shows the necessity
of attending to the signs of the fluxions of increasing
and decreasing quantities, without which we might
have determined (A) to have been a maximum when
it is a minimum, and a minimum when it is a maxi-

mum ; for it is merely arbitrary whether we suppose x
to increase or decrease.

When all the roots of the fluxional equation are im-

possible, as no possible value of x can make the equa-
tion = 0, it shows that by increasing x, the given quan-

tity increases or decreases sine limite, therefore it

admits of no maximum or minimum.
It may happen that the fluxion may be = 0, and yet

the quantity (A) may not be a maximum or mini-

mum, which takes place when two of the roots of the

fluxional equation are equal, because in that case, the

sign of the fluxion is the same both before and after the

equation becomes = from the substitution of one of

the equal roots. For let the given quantity be x4—
16X3 + 90x2—

216„y, whose fluxion is 4x3
.:i— 48x2

«t*

4- 180;ca?— 216a? = 4>x X x3— 12x2
-f- 45x—54 = 4a?

X x—3 x x—3 x x—6. Now just before x = 3, this

fluxion is negative, and just after x = 3, it is also ne-

gative ; therefore as the fluxion continues n gative
whilst x passes through 3, that root does not g e (A)
a minimum ; but as the fluxion passes from n ative

to positive whilst x passes from less than 6 to more
F
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than 6, the root 6 gives (A) a minimum, its fluxion

after that time being positive shows that (A) then be-

gins to increase.

Let the fluxional equation have three equal roots,

as in cb x x—a x x—a x x—a x x—6, and let a be less

than b. Then it is manifest, that when x is less than

«, this fluxion is positive, and when x passes through
a and lies between a and b, the fluxion is negative ;

therefore x — a gives (A) a maximum. Hence it is

manifest, that, in general, when the fluxional equation
has an even number of equal roots, one of those roots

gives (A) neither a maximum nor minimum
; but when

it has an odd number, that root gives (A) either a

maximum or minimum. If the reader wish to see

any thing further on this point, he may consult

Lyons's Fluxions, p. 91.

Ex. 20. Tofind the value andposition ofthe greatest
and least ordinates of a curve, whose equation is y=x3

—px
2
-fqx—r, x being the abscissa and y the ordinate.

Take the fluxion, and y = 3x*x— 2pxJc -f- qx ; but

when y becomes a max. or min.
*/
= 0; hence, 3x

2x—
2pxx -f- qx = ; consequently xz=—±yt- i-, the

values of the abscissa corresponding to the required
ordinates ;

and if these values of a* be respectively sub-

stituted into the given equation, the values of the ordi-

nates themselves will be known* Which of the values

of x gives the ordinate a maximum and which a mini-

mum, may be found by Ex. 19. If />=18, ^=60, r

= 10, then x=2 and 10, the two abscissae ; which sub-

stituted for x in the given equation, give 46 and—210
for the two ordinates, the latter of which being nega-
tive, shows that the curve at that point lies below the

abscissa.



Tangents to Curves. 35

To draw TANGENTS to CURVES.

Prop. X.

Let the curve ACZ be described by the extremity of
the ordinate BC, which moves parallel to itselfand va-

ries ?n its length; to draw a tangent to the curve at any

point C.

23. Let TCV be the required tangent ; draw any
other ordinate Dr and produce it to s ; draw also CE
parallel to BD

; join Cr and produce it to t and W
j

produce also CE to any point G, and draw Gmn pa-
rallel to Es. Now let Drs move up to BC, then by
the motion of r, the line WrCt will revolve about C,
and when r coincides with C, it ceases to cut the curve

between C and Z, and it does not cut it between C
and A, for to cut CA, Ct must fall below CT, and

consequently CW must lie above CV, or r must have

passed s, which it cannot have done, as r has been

continually approaching to s and only now coincides

with it ; therefore when r comes to C, the line Wf,

T A B D
ceasing to cut the curve, must become a tangent, and

consequently WCt will then coincide with VCT. Now
whilst the abscissaAB by increasing becomes AD, the

ordinate BC becomes Dr ; hence, the increment of the

ordinate BC is Er ; and, by similar triangles, the

increment CE of the abscissa : the cotemporary in-

crement Er of the ordinate : : CG : Gm. But when r
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arrives at C,WC coincides with VC, and consequently
m must coincide with n ; hence, the limiting ratio of

the increment CE of the abscissa to the increment Er
of the ordinate, is that of the finite lines CG : Gti,

which (by sim. trian.) is the ratio of CE : Es,

taking DEs in anv situation before its coincidence

with BC ; hence, by Proposition 2, if CE represent
the fluxion of the abscissa, Es will represent the

cotemporary fluxion of the ordinate. Put AB=^,
BC=y, then BD=CE=,r, Es=y ; and as BC is pa-
rallel to Es, and TB to CE, the angle TCB = CsE,
and CTB=sCE, consequently the triangles TBC,
CEs are similar ; hence, y (Es) : x (CE) : : y (CB) :

BT=— ;
therefore set off BT=^-, join T and C,and

y lJ
TC will be a tangent to the curve at C. If y decrease

whilst x increases, then y becomes negative by Art. 16.

and consequentlv — ,
or BT, becomes negative, which'

y
shows that T lies on the other side of B. See Algebra,
Art. 474.

Dcf. The line BT is called the subtangenU

EXAMPLES.

Ex. 1. Let the curve AC be a parabola, that is, a

curve xvhose abscissa varies as any direct power of the

ordinate ; to draw a tangent at the point C.

The equation expressing the relation between x and

y is ax=y
n

, for then x : y
n

: : 1 : a, a constant ratio.

Take the iluxion of both sides of the equation, and we
x ny

n~l D T, yx ny
n

have ax—nyn- l

ij ; hence,—= -^—
,
.*• J3l s=—=-—

J J
y a y a

=nx, because -——x,
a

If n=2, it is the common parabola, and BT=2.r.

Ex. 2. To draw a tangent to the ellipse ACPDE, «?

any point C.
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Let AD and PE be the two axes
; put AO=a, PO

^i, AB=^, BC=z/, then BD=2a—x
; and by the

b2

property of the ellipse, a2
: b2 : : 2a—x x x : y

2=— x

2ax—x2
; take the fluxions, and — x 2ax—2xx = 2yy;

a2

a2

multiply both sides by — , divide by 2 which is com-

mon, and also by a—x. and x=—x i •*• —- —
b% a—x y

P

tv*^
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Bisect AD in O
; put AO=a, the semi-axis minor

=£, AB=.r, BC=j/ ;
then by the property of the

b2

hyperbola, a2 : b2 : : 2a -f x X x : y
2=— X 2ax-j-x

z
i

which is the same equation as for the ellipse, except that

D T A
the sign of x2 is here positive ; .. BT= .

Ex. 4. To draw a tangent to the Cissoid o/*Diocles,
x3

tvhose equation is y
2= (Alg. Art. 496).

Take the fluxion, and 2yy=— 2
a—x

"2
3axzx—2x3<v , a? 2wx «—* -m- V^'

.-
; hence,— ==-* —

; .*. B 1 =— =

2^2 ^ £—# 2x3
<7—x 2x X a—x

"Iktifri-Zo?

—
a—x 3a*2—ix5

"

3a—2x~'

Ex. 5. To draw a tangent to the catenary curve.

The equation of this curve is z 2=2ax + x2
(Prop.

118; ; hence, z% = ax 4- ara?, and x = x & ; but

—
; 2

—
;

—
2 „

7jz=z,
2—x2

(Prop. 24)=—^- X x2—x2 « -^
X a;

2 =
, and i = — ; hence, BT = 2L. as -2 =

z2
* * z y a

y x/Zax+ x*

a



Tangents to Curves* 39

Ex. 6. To draw a tangent to the logarithmic curve*

Here the equation is ax — y (Art. 109.) ; and if A
and Y be the hyp. logs, of a and y ; then xA=Y ;

hence, Aa?=Y=X(Art. 45.), therefore BT=^= 1.
y t A

Ex. 7. To draw a tangent to the curve zvhose equa-
tion is xx = y.

If X and Y be the hyp. logs, of x and y, we

have xX = Y, and xX -f Xx = Y ; but (Art. 45.)

X=— andY=^ ; therefore x+Xx=—, or yx+yXx* y y

=.u ; hence, BT=^- =—.

'"' v .
- = - .7

y yx+yXx 1+X
Ex. 8. To draw a tangent to an hyperbola between

the asymptotes.

Here xy = a 2
,
therefore xy + yx = 0* and yx

=— xy ; hence BT=—=— x, which being negative

shows that T lies on the other side of the ordinate in

respect to the abscissa.

24. Draw CN perpendicular to the tangent,
and it is called the normal, and NB the sub-normal.

ux
Now the triangles TBC, NBC are similar ; hence,^-

(TB) : y (BQ ::y: BN=^|the sub-normal. Also
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x2
4-t/

z

CW=y*+Hr=y*Xl- 2̂ =y>xx-
_

xz ; hence,CN

Vx2
+tj* .

=y X ...

'

the normal.x
Ex. Let the curve be a parabola.

Here ax=y
n

; ,'.ax=ny
n~1

y^ndC—=-^-—,.'.BN=^r

a

nij
n-2"

,.-.BN=^
y a x

In the common parabola, where n = 2,

aBN=—-, a being the latus rectum. Also, CN =

J*»+>.
25. If two quantities begin together and increase

uniformly, one by x and the other by mx, m being
constant, then, by the composition of Ratios, the

quantities generated will be in the ratio of x : mx, or

as 1 : w, a constant ratio.

26. If BC move parallel to itself, and AB
and BC increase uniformly, the locus of the point
C is a straight line. For let BC come into the posi-

tion Ds ; then as AB and BC begin together and
increase uniformly, they have always a constant ratio

to each other, by Art. 25; therefore AB : BC ::

AD : Ds, which is the property of similar triangles ;

hence, ACs is a straight line. Also, as BC is parallel

to Ds,AB : AC:: BD : Cs; but AB: AC in a constant
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ratio ; if therefore BD the increment of the base be

constant, the cotemporary increment Qs of the hypo-
thenuse must be constant, or if the former increase

uniformly, the latter will increase uniformly. Hence,
the two uniform motions of C, one in a direction paral-
lel to AB arising from the motion of BC, and the other

in the direction BC, generate an uniform motion in a

right line AC.
27. The fluxion of the curve line AC, cotemporary

with CE, Es (figure to Art. 23) the fluxions of the ab-
scissa and ordinate, is the space that would be describ-

ed by the point C with its motion continued uniform
for the time in which CE, Es are described. Now the
motion of C arises from two motions, one by which it

is carried parallel to AB by the motion of BC, and the

other by which it is carried in the direction BC by the
increase of BC ; and (Art. 26) the uniform motion of
C is determined by making these two motions become
uniform

; but when these two motions become uni-

form, they are represented by CE and Es, by Art. 23,
and these two uniform motions produce a cotemporary
uniform motion, Qs, by Art. 26 ; hence, by Prop. 1, Qs
will represent the cotemporary fluxion of the curve line

at the point C.

<W XVW"».A/\'V»/».-W\

To draw ASYMPTOTES to CURVES.

DEFINITION.

28. If a right line, intersecting the axis of a curve
at a finite distance, continually approach to the curve,
and arrive nearer to it than by any assignable distance,
but indefinitely produced never meets it, it is called an

Asymptote.
G
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Prop. XI.

To draw an asymptote to a curve,

29. Let SDW be an asymptote to the curve AC ;

then, by the definition, we may consider the asymptote
SW as the limit to which the tangent approaches, when
the abscissa AB is increased sine limite. Draw AE
parallel to the ordinate BC produced to D, and let TC
be a tangent to the curve at C.

Put AB = x, BC = y ; then by Art. 23. BT = ¥?;

hence, AT=— x. From the equation of the curve,
y

find the value of this quantity when x and y are infi-

nite, and if it be then finite, the curve admits of an

asymptote SW, and the value of AS is obtained.

Then having computed the value of BT, find the pro-

portion of TB to BC
; and to get their limit, make x

and y infinite, and you get the proportion of SB to BD,
because the limit of TB to BC is SB to BD

; but, by
similar triangles, 'SB : BD : : SA : AE, the ratio

therefore of SA to AE is known, and as AS is known,
AE is known ; therefore the point E is determined ;

draw SE, and produce it indefinitely, and it will be the

asymptote.

EXAMPLES.

Ex. K Let AC be the common hyperbola.
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Here, by Ex. 3. Art. 23. BT = 2ax+x
\ there-

lore AT=-—— x= ,the limit of which, when
a+x a-{-x

CL2C
x is infinite, is—=a= AS; hence, S is the centre of

x

the hyperbola. Now BC=— X V2flw-f:c
2
, and BT=

a

2ax+x2
, nrr, ti/-. 2ax+A.'

2 b
,~—

; hence, BT : BC : : — - _ x V2ax+x*,
a+x a+x a

the limit of which (when x becomes infinite) is as x :

— X a: : : a : b : : BS : BD : : AS : AE ; but AS=a. ..
a
AE=£ ; hence, draw AE parallel to BC, and take it=
/?, join SE, and produce it indefinitely, and it will be
the asymptote.

Ex. 2. Let the equation of the curve be y
3=ax2

-fx
3
,

.n

Here 3ify = 9 r£~ 4. 3x2
i?, and BT = ^i —

v y
3if Sax^+Sx

„ ; also, BCz=u=Vax24-x3
; hence,

2a*-f3;c* 20W+3*2 "7 T •...• .»

BT : BC : : !f^i±! : v£^+P>, the limit of whicb
2o^+3x2

(when # becomes infinite) is x : x :: BS : BD ::

AS:AE;.-.AS = AE. But AT= 2ff±?f! — x =
2ax+3x2

ox2
r— '

2 ,
the limit of which (when x becomes infinite)

is --=:AS; hence, AE=— ; take therefore AS=—,and
3 3 3'

AE = -—, join SE, and produce it indefinitely, and it

will he the asymptote, j
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To draw TANGENTS to SPIRALS.

DEFINITION.

30. If an indefinite right line SM revolve about S,

and a point C move in it continually from S, it will de-

scribe a curve called a spiral; S is called the centre, and

SC its ordinate.

Prop. XII.

To draw a tangent to any point C ofa spiral.

31. Let YCs be a tangent to the spiral at C, and
SY perpendicular to SC ; draw CE perpendicular, and
Es parallel to SM. Now the describing point C has

two motions, one in the direction SM, and the other

perpendicular to it, arising from the motion of SM
about S. The describing point C is therefore under

the very same circumstances as in Art. 23. upon sup-

position that CE is there
perpe-plicular

to the ordinate

CB ; the fluxions therefore mus^f> represented here in

like manner as they were there |C
- the fluxions at the

point C in the directions CE,CM, and C.?, depend (Art.

3.) entirely upon the velocities of the describing point
C in those directions, without any regard to what may
take place afterwards from the further motion of MS
about M ; the fluxions therefore will be just the same

M

as if the ordinate were moving parallel to itself, and the
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describing point C had the same two motions given to

it : hence, by Art. 27. Cs is the fluxion of the curve,
and by Art. 23. Es is the fluxion of the ordinate, and
CE the fluxion in the direction perpendicular to

SC. Put SC=y, then Es=y ; and, by similar trian-

gles, ECs, CSY, Es(y) : CE :: CS (y) : SY=^^5.
Cor. If the point C have no motion in the direction

SM, the curve described will be a circle, and Es be-

coming = 0, the cotemporary fluxion of a circular arc

whose radius SC revolves with the same angular velo-

city, will be CE.
32. With any radius SA describe the circle ABD,

produce SC to B, and SE to v meeting Bv a tangent to

the circle ; and suppose the angle ASC to vary as SCm.

Put AS= r, SC=z/, AB=a;, Bv=x cotemporary
with the fluxions CE, Es ; for the velocity of C perpen-
dicular to SC : velocity of B perpendicular to SB : : SC
: SB ; then as x is the measure of the angle ASC, let

us suppose that when x becomes=r, y becomes t ; then

m *m ril
m

. mrym
-lu

ij

m
: t
m

,
.•. -£_=*, andx : r

tm
--x=Bvi and

by similar triangles SBv,SCE, r : y :

mrij
m~x

y CE

»Wn
y

t
m

t_ t. a axrf */xCE\ mym + l

; hence, by Art. 31. SY( =?—.— )
= *

\ y J
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Cor. If SZ be perpendicular to CY, we have,

by sim. triangles, YSC, SCZ, CY : CS :: CS : CZ=

CY:SY: ; CS:SZ = gI^.
C-g= f^±l_.

Cx vV2m -f-m2 r/
2771

EXAMPLES.

JTa:. 1. Let the curve be the spiral ofArchimedes.

. u*nn» rv=Ji^.Here wi= l, and SY = ^-
; hence, CY=\/ ^-f y

= ^—-
; therefore CZ=—===.. Hence also.

t V ?,
2
-f*

2

sz=-i=.
Vy2+t

2

Ex. 2. Let the curve be the reciprocal spiral.

Here m— — 1, and SY= — t
y
a constant quantity.

.Ear. 3. Let the spiral be the lituus.

2t~
Here m = — 2, and SY=

V

Ex. 4. Ze£ Me curve be the logarithmic spiral.

This curve is generated by the uniform angular
motion of SC about S, whilst C recedes from S with

a velocity proportional to SC ; hence, sE, the fluxion

of SC, varies as SC ; but as the angle CSE is always
the same in the same time, SC will varv as CE ;

CE
hence, CE : Es (*/)

: : a : 1, a constant ratio, .*. —— =a y

and SY= -—
:

—= ay ; consequently SY : SC : : ay.

y :: a :"f, a constant ratio ; hence, the triangle SCY
continues always similar to itself, and therefore the
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angle SCY is constanf^and is known from the ratio of

a : 1.

PROP. XIII.

To draw a tangent to a curve ZPW, the nature of
which is expressed in terms of SP, HP, drawn from
two given points S, H. »

g H W
33. Let PT be the tangent at P, produce SP, and

taking Pm to express the fluxion of the curve, if mr be

drawn perpendicular to PL, and inn to HP, then (Art.

31.) Pr and ¥n express the cotemporary fluxions of

SP, HP. Draw HT perpendicular to HP, meeting
the tangent PT at T, and draw TL perpendicular to

PL ; then the figure PHTL is similar to Pmnr, and
Pr : Pre : : PL : PH

;
if therefore PH represent the

fluxion of PH, PL will represent the cotemporarv
fluxion of SP j putting therefore SP=x, HP=w, we
have the following rule :

Put the equation of the curve into fluxions ; assume

«/=//, and find x ; take PL=i% and perpendicular to

PL draw LT, meeting a perpendicular HT to HP, in

T, and join PT, and it will be a tangent.
Ex. 1. Let ZPW be an ellipse, whose foci are S and

H, and major axis a ; then x+y—a, and x+<v=0, and

assuming y=y (Art. 3. Cor. 2.), we have a'= — y ;

take therefore PL=PH, draw LT perpendicular to

P 1, and HT to HP, and PT is the tangent.
Ex. 2. Let xmy

n=a a constant quantity ;
then

my
nxm'~*x+ nxVi

y
n~1

y=0, and assuming #=*/, we
"•—72X 71X

get x= —'- : take therefore PL =— ,
draw LT per-m m
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pendicular to Pi^ meeting ffiT perpendicular to HP
in T, and PT is the tangent.

Ex. 3. Let xm
-{-y

n=a a constant quantity; then

mx™"1^ -f ny
n~ 1

y—0^ and assuming y—y, we get

x = ^
; take therefore PL =—^—

-, draw LT
mxm—l mxm~*

perpendicular to Pl^ meeting HT perpendicular to

HP in T, and PT is the tangent.
Ex. 4. Let x : y : : a : b a given ratio ; then x =

—
,
and x=-j-

= (by assuming y=y) -— = x
; hence,

VL.=x ; take therefore PL=PS, draw LT perpendi-
cular to PL, meeting HT perpendicular to HP in T,
and PT is the tangent. This curve is a circle.

WW^V»'WWVWV

On the BINOMIAL THEOREM.

Prop. XIV.

To express the value cfa.±x j

n
by a series.

34. The square of 1 -f x is 1 -f- 2x -f- x* ; the cube is

1 +3x -f- 3x
3
-f a:3 , &c. hence it appears, that the coeffi-

cients do not depend upon the value of #, but upon the

index of the power ; therefore if x be diminished and
at last vanish, it will make no alteration in the coeffi-

cients. And as by the continual multiplication of 1-fxt

we manifestly get a quantity with all the powers of x

regularly ascending, let us assume l+x~\
n
=l-}-ax+$x

2

+cx
3
-{-dx*+&c. Now to determine the values of <?, b

y

c, d, &c. take the fluxion of both sides of this equation,

omitting a* as it will be common to every term ; then

take the fluxion of the resulting equation, and so on

continually, and we get the following equations.
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n X l+tf"]"
-1
=a+2bx+3cx

2
+4<dx

3
+kc»

n,n—\.n—2 X 14^]"~
3

=2.3c+2.3.4^c+&c.
&c. &c.

Now make x — O, and from the first equatron,

n=a ; from the second, n.n— 1 = 2b ; from the third,

——_ _— n-—l
n.n— l.ra—2 = 2.3c, &c hence, a = w ; b =n. ;

At

c=in.^——!^—^. See. where the law of continuation
2 3

is manifest. Hence, l+x~\
n = 1 + nx + w.——*2 +

n —x3+&c. Now if » be a whole positive
At O

number, it is manifest that this series will terminate,
7i—— 1 n—n

for we must come to the coefficient n. .... -
2 72+1

=0. But the above investigation holds, whether n be

a whole number or fraction, positive or negative.
If n be a negative whole number, the series will never

terminate, because the numerators rc, fi—1, n—2, &c»

become then —n, —n—1,
—n—2, &c. and there-

fore can never become = O. Also, if n be a fraction

it is manifest that tz, n— 1, n—2, &c. can never

become = 0, because a fraction can never be

destroyed by the subtraction of a whole number
from it. Hence, the series will always run on ad

infinitum, unless n be a whole positive number.

If the binomial be 1—x, then x becoming negative,
the odd powers of x will be negative and the even

powers will be positive ; hence, 1—x f = 1 —nx +
n— 1 n— 1 n—2

Q

2 2 3

35. Hence, we may expand a+x"\
n

. For M
H
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a + x = a X 1 + -
, .\ a^-x\

n—an X 1 +— =(by writ-
a a

I

J

ing
— for x in the series in the last article) an X

X
,

71 1 X*
,

72 1 72 2 X3
<,

*+» f- n. — + n.————-.-3 + &c. = an+
a 2 az 2 3 a3

nan
~lx + w. a"-2*2 + n. . an~3x3 4- &c.T

2
T 2 3

T
For the different cases where the series converges or

diverges, or becomes = 0, see Dr. Waring's Med.
Anal. p. 415.

The principal use of this rule is to extract the roots

of binomials ; for if n be a fraction, the series gives
that root of the binomial which the fraction expresses.

EXAMPLES.

Ex. 1. What is the square root of a
24-z3 ,

or the value

of a2 -j- 7? p in a series P

By the Elements of Algebra, Art. 250. a24-22"|* =
2*11 ^2~|-

a X H—? i ; compare 1 -j
— 2

with l+^"]
n
,and wc

az
I a2

1

z* 1 . zHi
nave—=#,— =n; hence, by substitution axl+— f

=
a2 2 «

I

1 z2 1 i
— 1 z4

,

1 i—1 |—2 z6
'

„

axH— .
——•- •—— • .- .-r+Scc. b« +wt 2a'
T

2 2 a4 2 2 3 a6^ T

33 24 26

f-_ &C
2a 8a3 16a5

Ex. 2. JFAa* is thefourth root of 1—x, or the value

of 1—x~j
4 in a series P

Heren—— , and l—x I

4
* — 1 x-i—.HZH^—

4
'

4 4 2
1 ^—1 ^—2 R

.1 3 3.7 .' -— .- .- .v
3
-focc.= l X -—xz X3- &c.

4 2 3 4 4.8 4.8.12
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Ex, 3. What is the cube root of a—z, or the value of

a—>z~\*
in a series f

i , "^"B
'

z~\\
First,a—z~]

3=a s x 1
[

;
and comparingl

j

with 1—,v"l
B
,we have—=,*•,n=— ; hence,a3Xl 1

=
1 * a 3 a\_

1 1 2 1 4—1 Z2 1 i— • 1—2 Z3
" "

ai xl •—
I
— .- • .- •- — +&c. =X

3 cT 3 2 a 2 3 2 3 a'
T

1 Z Z2 5Z3
„

a? -
2 ; j

— &c.

3a? 9a? 81a?

Ex. 4. What is the value of— • in an infinite
Vaz—z2

series ?

1-1
1

First, , ==•=
/

= XI
j

;Vaz—z2 i i <J H z i i a
a^z 2x>l a*z*

a

z"l . i
n z

and comparing 1
J

with 1—x1 ,we have—=a?,
a I a

1 u 1 ^
2 1«= ; hence, —— X 1 !

2 Li « 1

-4

A*
—1 z

,

— l -4-1 z2 —1 —1—1 -1—2 zs

1
r-a"

+
"2 2~"a2 2 % 3"""*?

+

„ 1
;
z^

,
3z* 5z*

p&c. =_+—+-j+ j-
+ &c.

a 2z 2 2a 2 8a¥ 16a 2

£#. 5. T<? resolve - into an infinite series.
a2-f-2ax

,

+.x
2

This
quantity is „= a-f^"| ; which compared

a+x~\

with a-f*"j", gives n = —2 ; hence, a+x\
2~ «"" —-
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„_9—.1 __9 1 9 9
2a-'x—2.-±-l.a-*x*— 2. \ .or5 #* ,

2 2 3

9 12* 3xz 4x3

&c. = — r+_ r + &c.
ar a3 a* a5

Ex. 6. What is the value of in an infiniteJ
2az+z2 J

series f

This quantity is equal to ~ vn J n
z 2az

2azx 1 +—
2a

-i

2a

i 1 —i

; andby comparing 1 -J
/ with 1 + *

J*i

we have x=—
,
n —— 1 ; hence, x 1 4-—

2g
'

2az 2a

-— X 1 — 1. —— 1. .-——&c.=-
2az 2a 2 4a2 2az 4a2^

• - &Cr
8a3

In like manner we must proceed in the expansion
and division of all binomial quantities.

The value of l-f-x"|" has been assumed = 1 4- ax +
bx2 4- ex3 + &c and applied in all cases, whether n be
a whole number or a fraction

;
if n be a whole num-

ber, it is manifest from the observation in Art. 34,
that this must be the form of the series ; but if n be
a fraction, it is not so obvious that we may assume the
same series ; the legality of the assumption however in

that case may be thus shown. Let n = any fraction

—
,
r and s being whole numbers. Now the value

s

of l+x J
is expressed by 1 4- ax 4- bx2 +cx3

4- &c.
r

but l+^"j
r
is the 5th power of 14oc

"]* ; therefore such
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r

a series must be assumed for l+x"\ *
,that the ^pow-

er thereof may give a series of the form l+ax+bx2+
cx 3+&c. Now any power of the series l+px+qx

2
-{.

rx3+&c. will give a series l+ax+bx2
+cx5+&c. there-

fore we must assume a series of that form, where the

powers of x regularly ascend, to represent the value of
r



SECTION III.
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On the METHOD of FINDING FLUENTS.

36. rT,,HE business of the direct method of fluxions

X is to find the fluxion from the fluent ; to find

the fluent from the fluxion is sometimes called the in-

verse method of fluxions. It is not difficult to put any
quantity into fluxions, there being direct rules for that

purpose ; but there are no direct general rules for find-

ing a fluent from a fluxion ; and very often it is impos-
sible to do it, except by an approximation by an infinite

series, as the fluxion may be such as could not arise

from putting any fluent into fluxions. We cannot
therefore lay down rules for finding the fluents of any
other fluxions than those whose forms show them to

have been derived from some fluent.

Prop. XV.

To find thefluent of any power ofa simple quantity

multiplied by thefluxion of that quantity.

37. The fluxion of x3
is 3x2

x, therefore we know
that the fluent of 3x2x is a 3

, and it is deduced from
the fluxion, by the converse of the rule for putting x

3

into fluxions. In general, the fluxion of xn is

(Art. 12.) nxn
~ l

x-y therefore the fluent of nxn~*x must



Method offinding Fluents. 55

be x°, and this fluent is deduced from the fluxion by
the following

rule:

Add unity to the index, divide by the index so tn-

creased, and also by thefiuxion ofthe root.

examples.

Ex. 1. The fluent of 7x6x is x7
.

Ex. 2. The fluent of x9x is — . ..

10

Ex. 3. The fluent of 5x3x is— .

4
7 s 3 7 8 y «

Ex. 4. The fluent of—x^x is — X — X ^7=—xy .

9 8 9 24

Ex. 5. The fluent of— or 6x~^x is = .

x9 — 8 4a:8

Ex. 6. The fluent of ^ or 3y~iy is — X 3y~~
5
~ =

15 |

38. If n = O, or the index of # be — 1
,
the fluxion is

x—
; but this fluxion cannot be generated by x°, becausex

(by the Principles of Algebra) x° = 1, a constant quan-
el?

tity ; hence, the fluent of— cannot be found by this
x

rule.

Prop. XVI.

Toflnd thefluent ofa binomial quantity (one part of
which is constant and the other part variable') raised to

a power where the term without the vinculum is the

fluxion ofthe variable term under the vinculuni^or in a

given ratio to it.
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39. The fluxion of ar + xr
~\

n
is (Cor. Art. 12) n X

ar
-f x

r
]"
-1
x rxr~ 1

x^ which is found by the same rule

as the fluxion of xn. Every complete fluxion ther< Tore

of this kind must necessarily have the index of the

variable quantity without the vinculum, less by unity
than the index under the vinculum. Hence, every

quantity so circumstanced may have its fluent found

by the above rule.

If r == 1, then r— 1 = "0, and jc° = 1; therefore the

fluxion becomes nx a + x~\
n~l

x X.

EXAMPLES.

Ex. 1. What is thefluent of a. + x"|
6 X x?

Here the fluxion of the root a + x is x ; hence, the

. a+xVxx a-\-x~\
7

fluent is -A = —— .

7x 7
i

Ex. 2. What is thefluent o/V+x
2

1 X xx P

Here the fluxion of the root ar + x2 is 2xx ; hence,

the fluent is ^T^l1 * ** = EEZ3f.
| X 2xx 3

Ex. 3. What is thefluent ofa
4— x4

]^ X Sx3^ ?

Here the fluxion of the root a4— x4 is — 4x3x ;

hence, the fluent is
a"~^I'XS^x = __ 9xa

4— *4
"T.

|X — 4x 3x 32

Ex. 4. What is thefluent of
'—— ?

a9 + 6*9
]
k

This quantity is = a9 + 6x9
~\ x x%x ; and the

fluxion of the root a9
-f 6x

9
is 54xsx ; therefore the

fluent is
<* + W\* X x*x _ oP + 6*»1* .

§ X 54x8x 27

Quantities which at first do not stand under this

form, may frequently be reduced to it.
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ax
Ex. 5. What is the fluent of — P

a2 + x2
']
2

a2

First, a
2 + x2 =—

-f- 1 x x2 = o2x~2
-f- 1x *2

; there-
x2

fore a2
-f a-

2
|

2 = a2*-2 + 1
j

2 X x3
; hence,

ax

ax .—3
a2 +x2

~\*

a2x~2 4-1 p v x3

1 + ll
2 X axr*ab, where the

-fTpx
index of x without is less by unity than that under the

vinculum ; hence the fluent is
a x "*" *

1
Xox x _—

\ X — 2a2*~3o;

1 A?

_z3zrzzni i ~~ ~
i
— •

a2x~2 4-
l~]

J
x a a2

-f *
2
"]

2
X«

40. If both quantities under the vinculum be vari-

able, and the quantity without be the fluxion of the

quantity under the vinculum, or in a constant ratio to

it, the fluent may be found by this rule. Thus, the
_ i _. cy _________ 3

fluent of a2
y

2
-f ij

4
~\

2X2a2

yy + 4-y
3

y is ^-Xa2
y

2
-\-y

4
~\'

2
j

•J

but these cases seldom occur.

Prop. XVII.

Tofind thefluent ofa 4- cz'l

~\

m X dz™-1
^, w/we £fo

index ofz without the vinculum increased by unity^
is

some multiple of the index ofz under the vinculum.

41. Put a4-czw=.v, then z"= ——
,
.. zTrl= x~~a

*

,
C cr

take its fluxion, and rnzTn~x
Zi

. . r x x— ax*as

is™1-1*;'==—-

rXx—a~\
l

X&i hence (putting r— 1=.?),nc

d
i :' .'

"~1
s: =—

j.
X x—afx & = (by expanding x -—.

af")

T
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— X x x xs—saxs~l + s . a2**"-8— &c. substitute
ncr 2

this quantity for dzm~l
z, and xm for a + czn

"]

m
,
and

j

the given fluxion is transformed to— x

s —— 1 d
xmx X xs— sax"-1 + s a2**-2— &c. = — x

2 ncr

xm+'x— saxm+ 3~lJu 4- s . -ZLaV +«-%— &c . the
2

fluent of each of which terms is found by the Rule

in Art. 37. hence, the fluent required is — x

vm-|_,+ i saxm+ < 2
-J KC.

«z -f- ,y -f- 1 m -\-s m -f- *— 1

Now let us consider when the fluent of the given
fluxion can be expressed in finite terms.

1st. If r, and consequently s, be a whole positive

number, the series arising from the expansion of x—ay
will terminate, and the fluent can always be found if

m be a positive whole number, or a positive or negative
fraction.

2dlv. If r be a positive whole number, and m a ne~

gative whole number, greater in magnitude than -s+1,

or /•, the fluent can always be found. But if m be

a negative whole number equal to or less in magnitude
than r, the denominator of one of the terms must be-

come = 0, in which case the fluent of that term fails ;

for in the fluxion it was of this form x~l
Je, which by

Art. 38. admits of no fluent by the rule here given ; it

may, however, be found by logarithms, as will be ex-

plained in Art. 45.

3dlv. The given fluxion, by reduction, becomes

<3z
_n

-f-c~]

m
x dz"'+ r X n-1* ; hence, if m and r be both

fractions, but such that m -f- /* may be a whole negative
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number, the fluent can always be found. This will

appear, by transforming the fluxion as before ; and the

series will always terminate ;
nor can any of the de-

nominators of the terms of the fluent become equal to

nothing, so as to make the fluent of such term fail, as

it is here taken.

WX/vw\%.-vwvvx*v

To find FLUENTS by LOGARITHMS.

42. The property of logarithms, or their relation to

natural numbers, as has been already explained in Al-

gebra, is this, that as the natural numbers increase in

geometric progression, their logarithms increase in

arithmetic progression.
43. Let a increase till it becomes Z»

; c, . . . . m, n, o,

&c. and suppose a : b : : b : c : : &c. : : m : n : : &c. then

a : m : : a—b : m—n ; now a—b is the increment of a,

and m—n is the increment of m
; hence, a : in : : the in-

crement of a : the increment of m
;
and as this is true

in every state of the increments, if we make them van-

ish, we have a : m in the limiting ratio of the incre-

ment of a : the increment of m, that is, as the fluxion of
a : the fluxion of ?«, by Art. 7.

44. Let y be any number, and x its logarithm ; then
if x increase uniformly, or if x be constant, ij

will in-

crease in geometric progression, therefore, by the last

article, y varies as y, and - is constant ; hence,— is con-
y y

QjQQ
stant j put therefore ~- = M, and we have x = M x

y

—
; that is, the fluxion of any logarithm is equal to a

y
constant quantity multiplied into the fluxion of the
number divided by the number. The quantity M is
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called the modulus of the system, and may be assumed
of any value.

If M = 1, the logarithms are called hyperbolic, be-

cause the same logarithms may be deduced from the

hyperbola, as will appear hereafter. In this case

V

Prop. XVIII.

To find thefluent ofafluxion, -which is thefluxion of

any quantity (;/) divided by that quantity (j/),
or in a

given ratio to it.

45. Put x=z the hyperbolic logarithm of y ; then by

Art. 44. — = 07, and the fluent of — * is x. And as

y
,

y

y, although here a simple quantity, may represent any

compound quantity whatever, and' y its fluxion, we
have the following

rule :

When any fluxional expression appears to be the

fluxion of a quantity divided by the quantity itself its

fluent is the hyperbolic logarithm of that quantity.

EXAMPLES.

X
Ex.1. The fluent of—— is the h. 1. (hyperbolic

PC 31 CI

logarithm) of x ± a.

2xx
Ex. 2. The fluent of—-— is the h. 1. a8-f.\

2
.

a2
-\-x

2

. ?ix
n~1x

Ex. 3. The fluent of— - is the h. 1. a"+xn
.

an+xn

These fluents are obvious, the given fluxion being
manifestly the fluxion of the quantity divided by the

quantity, for the numerator is the fluxion of the de-

nominator.
• •

*
Ifx=hyp. log-.-—y, then x=2- ; the fluent therefore of 2L is

y y
h. 1. ±y ; but the negative value belongs to another system.
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x
Ex. 4. The fluent of ——- is the h. 1. of

VV2 ± a?

x + Vx2
±.

:
a2»

For, put x3 ± a2 = t>
2

,
then xx = vv, .*. x : v

. ..... x+v x
T0 : x. and .x-fy : y : : x+v : a?

; hence, =—
X+V V

: ; therefore the fluent of a'+% or of
Vx2± fl

2
A?-f» V^2 ± ft

2

is the h. 1. x+v = h. 1. x + Vx2±af,

Ex. 5. The fluent of —_=z== is the h. 1.

Vx2 ± 2ax

x±a+Vx2 ±2ax.

For, put V*2 ± 2r/x =
z/, then x2 ± 2ax -f a2 = y

2
-f

«2
, and at ± a =v^-fa2

; hence, x =— "" —
,
conse-

V
?/
2+a2

quently — = -v
,
whose fluent, by the

V x2 ± 2ax Vy2+a2

last example, is h. 1. y + V z/

2+«2 = h. I.

x ± a + \/*2 ± 2tfx.

Ex. 6. The fluent of ~*L is the h. 1.St£.
a2—x2 a—*•

F°r i :,
= — —

, whose fluent is the h.
a*—xf a-\-x a—x

a-j-x
1. a + x— h, 1. a—x = h. 1. , as shown in the

a—x
Algebra, Art. 388. In like manner the fluent of
2ax .

; , x—a
is h. J.

x*—or \4-o.
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2av

xV a2+x2

Ex. 7. The fluent of ——— is the h. I.

Va2+x2
- -a

Va2+x2+a

For, put S/a2+x2
=y, then a2+xi=y2

y therefore xx

= yy, and ?^=^; that is,
—- = W

,

a."</ jc2 xVu2 + at
2

y
2—a2

whose fluent, by the last example, is h. 1. ^^- = h. 1.

y+a
V«2+ 2— a

. ,—
.,

=

• In like manner, the fluent ofV a- -f- x2
-f- a

2ao? , , a—vV—x2

is n. 1. -

xs/a2—> 2 a+V a2—x2

V62 + x~2
Ex. 8. The fluent of —-———- is — h. 1.

1 _fVl + b2x2

V

X

1

or, put
—=y, then x~2x-=.—y ; hence, the fluxion
x

becomes — ,
whose fluent is (by Example 4)

Vb2+y2

— h. 1. y +Vb2
-\-y

2——h. 1. - -f V^3
H =—h. 1.

x x2

1+v'U b2x2

x

These are the most useful forms of fluxions whose
fluents maybe found by a table of hyperbolic loga-
rithms ; which table may be supplied, by multiplying
the logarithm found from the common tables by
2,30258509, which will give the corresponding hyper-
bolic logarithm.
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Ex. The fluent of is the h. 1. of 1 + x ; if
1 -{-x

x=l, the fluent is the h. 1. of 2 = 0,693147; if*=4,
the fluent is the h. 1. of 5 = 1,6094379.

wvvwwwwwv

To find FLUENTS by CIRCULAR ARCS.

Prop. XIX.

The length of a circular arc for every degree, mi-

nute, and second, to radius = 1, being given, to Jind
from thence certain fluents.

46. Let AD be a circular arc whose centre is C,
AT its tangent, DB its sine ; draw ms parallel to

BD meeting the tangent Ds in s, and Un parallel to

Bm.
Put CD=«, AB= x, BD=j,, AD = z, AT-t, CT

=s ; then by Art. 23. Ds = x, Dn =ac; ns—y. Now
the triangles CBD, snD are similar, for they are right-

angled at B and n, and the angle sD«=CDB, because

wDC is the complement of each. Hence, y : a : : x ; %

B A

=~
; but y = VCD2— Cl5 = Ja2— m— x

|

3 —
y
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axV2ax~x2
;

.-. x = — Also, Va
2—f (BC)

V2ax—;-
2

: a : : y : z= Again by sim. triangles CAT,Va2—
j/

2

CBD, s (CT) : a (CA) : : a (CD) : CB =—
,
.-. AB=

o

a2
. a2s

a
,
whose fluxion B/n or D/z =—

; hence, from
j s2

the sim. trian. Dsn, CAT, vV— a2 (AT) : s

a2s T , . ,-% : ss

a2
.i

. Lastly, Vs
2— az z=t. .•.— '

—f.
Ws2— a2 Vs2— a2

and z [
=—-

)
= —- = — -. Hence, the

fluxion of the arc AD, or %, is expressed under four

different forms in terms of the right sine, versed sine,

tangent, and secant ; consequently the fluent of each of

these fluxions will be expressed by z. Hence

1st Fluent of '

is a cir. arc whose rad. is

a and sine l>.

V a2 —
y
2

2d Fluent of — = is a cir. arc whose rad. is

\/2ax — a 2

a and versed sine x.

a2
i

3d Fluent of is a cir. arc whose rad. is a
a2 + t

2

4th Fluent of — '

is a cir. arc whose rad. is

and tangent t.

of
sy/s%— a2

a and secant s.

Now, by a table exhibiting the length of circular

arcs for all degrees, Sec. of the quadrant to radius
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unity, if these arcs be multiplied by a we shall have

their lengths to the radius «. Hence, for example,

what is the fluent of — ,
when y is the sine of

Va2— f
30°? The length of an arc of 30° to radius 1, is

0,5235987 : hence, the length of the arc to radius a, is

<ZX0,5235987, the fluent required. Thus, the fluents

of all fluxions under any of these forms may be found.

47. A fluent can have but one fluxion, but a

fluxion may have an infinite number of fluents ;

thus, the fluent of x is *, or x ± a, whatever be the

value of the constant part a. By Prop. 4. in taking the

fluxion of a binomial, the constant part goes out, and

therefore, when the fluent is taken back again, that con-

stant part does not appear. Now to determine, in any

particular case, what this constant part is to be, or

whether any such quantity is to be annexed, consider

whether the fluent first taken becomes equal to no-

thing, or of a known value, at the time it ought ;
if it

do, it requires no constant quantity to be added ;
if it

do not, such a quantity must be annexed to it, as will

make it become equal to nothing, or to its proper va-

lue. This is called the correction of a fluent.

48. Although the fluxion of a quantity be relative*,

that is, if x denote the fluxion of x, then will nxn~Ki

be the fluxion of .v", where x may be assumed of any

magnitude, yet the fluents are not at all affected by

varying a?, the fluents of these quantities x and

nxn~1x being x and xn
,
whatever be the value of x.

Hence, of whatever magnitude we assume the fluxion

of any quantity, the fluent will always give the quan-

tity generated. In the following Problems, therefore,

the fluxion of the area, solid, curve line, or surface,

may be assumed of any magnitude, and the fluent,

corrected if necessary, will give the quantity which

has been generated.

K



SECTION IV.
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To find the AREAS of CURVES.

Prop. XX.

^T^Ofind the area ABC ofany curve, whose ordinate
** BC is perpendicular to the abscissa AB.

49. Let ABC be any curvilinear area generated

by the uniform motion of the ordinate BC ;

on AB, BC describe the parallelogram ABCD,
and conceive this to have been generated by

the same uniform motion of a line equal and

parallel to AD ; draw bm parallel to BC, and com-

plete the parallelogram Bb?nn, and produce DC to c.

Then AD being constant whilst BC varies, the next

increment of the parallelogram is BCc£, and the

cotemporary increment of the area ABC is BCmb ;

hence, the ratio of the increment BCcb of the paral-

lelogram to the cotemporary increment BCmb of the

area ABC, is always nearer to a ratio of equality than

HCcb : Bnmb, or nearer than BC : bm ; now, let bm
move up to, and coincide with BC, in order to obtain
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the limiting ratio of the increments, and we get the limit*

ing ratio of BC : bm, a ratio of equality ; hence, a

fortiori, the limiting ratio of the increment BCcb of the

parallelogram, to the cotemporary increment BCmb of

the area ABC, is a ratio of equality ; therefore by

Prop. 2. the fluxion of the parallelogram ABCD
is equal to the fluxion of the area ABC ; but BCcb

being the increment of the parallelogram uniformly

generated, will represent its fluxion, by Prop. 1»

hence, the fluxion of the area of the curve ABC
will be represented by BCc£, the cotemporary fluxion

of the abscissa AB being Bb. If therefore AB=x,
BC =

z/, Bb = a?, and A = the area ABC, then will

A = BCcb — yx ; the fluent of which, corrected if ne-

cessary, gives A.
Cor. Hence, the fluxion of any area generated by

the motion of a straight line in a direction perpendicu-
lar to itself, is as the length of the generating line and

its velocity conjointly. And as a curve line, moving
in a direction perpendicular to itself, must describe the

same area as a straight line of the same length moving
with the same velocity, the fluxion of the surface gene-
rated by a curve line, so moving, must be as its length
and velocity conjointly.

EXAMPLES.

Ex. 1. Let AC be any parabola ;
tofind its area.

tt , i • ntj
n~ l

yHere ax=.tj
n

; hence, axz=ny
n~ l

y, and x = —
,

nunu m nyn ~h l

,\ yx = ALA.—A, whose fluent (Art. 37)A=—2-
« n+l x a

n it
n

4- C (C being the correction if necessary} = X —^ 6 Jt
n+l a

n
X y -f C = x xy 4- C ; now when A = 0, x= 0, .•.

n+l
J

C =
; hence, A — x %"*

??4-i
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If n = 2, it becomes the common parabola, and the
2

area = — xy.

If n=l*, the figure becomes a triangle, and the
area = \xy*
Ex. 2. Tojind the area of a circle, whose radius is

unity.

Let A be the centre of the circle
; draw BC, AP,

1* A R
perpendicular to QR, and join AC. Put AC=1, AB

1

1 x2

=x, BC=z/ ; then x2
-f z/

2=l
,
.*. y= 1—x2

|

?=1

&x. (Art. 34.); .*. h.—iixz=.x
8 16 128

^ J 2

-&c. the fluxion of the area BAPC
8 16 128

whose fluent is A=x &c. -f
6 40 112 1152

C ; now when x=0, A=0, .**. C=0 ; hence, A=x—
Y>3 v>5 v»7 *\X?^

- &c. Now if the arc PC=
6 40 112 1152

. 30°, x=\ ;
and the area ABCP = 0,5—0,0208333—

0,0007812—0,0000698—0,0000085—0,0000012—
&c.=0,4783055. But as x = f, y =_y | ; therefore

the area of the triangle ACB = >XVi= 0,2165063,
which subtracted from 0,4783055 leaves 0,2617992
the area of the sector ACP ;

which multiplied by 12

gives 3,14159 kc. = the area of the whole circle.

* If n=l, ax—y, and x : y : : 1 : a, that is, in a constant ratio,

•which is the case when AC is a straight line, because the trian-

gle ABC continues always similar to itself
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Cor. If r = radius of any circle, a = its area ; then,
since circles vary as the squares of their radii, l 2

: r2

: : 3,14159 &c. : a = 3,14159 &c. X r2
. lfd=z the dia-

d d2

meter, then r = — , and rz =— : hence, a = 3,14159
2 4

d2

&c. X — = 0,78539 &c. X </
3
.

4

.Ejc. 3. Tofind the area ofan hyperbola between the

asymptotes AP, AM, and the curve MP.

Put AB=^, BC=*/ ; then y=— , and the fluxion
A"

a?
of the area APCB=v*=— = ri~*x= A, whose fluent

is A xI—n

1—W +
c.

i—u
Case 1. If n be /m than unity, when A = 0, x= C>,

«^.l
—n

.*. =
; hence, C = ; therefore the area APCB

1—n
vii—n

(infinite in extent) = , a finite quantity when »

is finite.

Case 2. If n be greater than unity, the index 1—n

being negative, x must come into the xlenominator.
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and the fluent will become A == \-
C = -—

1—n x xn~l

-J- C; now when A=0, *=Q, consequently
n— 1 x xn~x

C.= . is infinite, because the denominator
71— \ X X1"1

1

becomes=0 ; therefore the area APCB=
1—n X x"~l

+ C is infinite.
Whenever there is a negative index,

the quantity must always be transferred from the nu-

merator to the denominator, or the contrary, before its

value in any particular case can be found.

Case 3. In respect to the area BCM, as this area

decreases by the same quantity that ABCP increases,
it will have the same fluxion, only with a contrary sign,

by Art. 16. hence, the fluent will be the same with
x1~n

the sign changed, that is BCM = f- C. If n be° n— 1

greater than unity,BCM== J-C; and when
n— 1 . xn~l

x is infinite, BCM=0; hence, 0= f. C, and
n— i . xn~1

therefore C = — i =0, x being: infinite : con-

sequently BCM =
n— 1 . xT

1

n— 1 . a"-*

Case 4. If n be less than unity, and x become infi-

xl-n
nite, C = an infinite quantity ; hence, the area

vl—n
BCM =—-

-f C is infinite*n— 1
'

Case 5. If n = 1, this fluent fails f Article 33.)
and the hyperbola becomes the common hyper-
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bola. Let ABjf=BC^=l, BR=*, RS=z/, then AR
therefore the fluxion of the= 1 + x, and y= —

-f-;c

area BCSR
x

1 + x ,
whose fluent, by Art. 45. is the

h. 1. 1 -f xr
which wants no correction, because when

x = 0, the area BCRS = 0, and the fluent becomes the

h. 1. 1, which = 0. Hence it appears, that any area

BCSR is the h. 1. of the abscissa AR, and that the

whole area BCM is infinite. The modulus is here

unity.

Ex. 4. Let MCD be the logarithmic curve ; tofind
its area.

The property of the logarithmic curve is this, that if

the abscissa AB increase in arithmetical progression,
the ordinate BD will increase in geometrical progres-

M T A
sion ;

.-. if#=AB, j/=BD, a= AC, then (Art. 44.)
HOCM=—r ,

which (by Article 23.) is the subtangent
y

AT; hence, A=z/i?=M//T whose fluent isA=M?/-f-C;
but when y

—
a, A = 0, .*. = Ma + C, and C =—

Ma
; consequently ABDC = My— Ma = AT x

BD — AC. Hence, the whole area DMB = AT X
BD, because at an infinite distance AC = 0.

Ex. 5. To find the area of the catenary curve ACB.
Put CE=x, EF=z/, CF=z ; then z2=2ax + x%

(Prop. 118.), and zz=adc + xsb ; hence, z2z?=a + x

X-*
2
j but z2=2ax + x3=a+x

2— a2
,
and x2—x2— ip



?
k

#.*-fe
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(Prop. 24.); hence a + x2

XjF—a9
.'&=a+x2xz2—y

2
y

or a2£2 = a + x
2
x y

2
, and <?£ = a -f x x y = ay + xy;

hence, xij—az—ay; butfiux. xy=xy+yx; therefore

xy=fiux. xy—yx; hence,Jiux. xy—yx=az—ay, and

K—yx—Jlux. xy—az,+ay ; therefore A=xy—az+ay
4-C; but when #=0, then z/=0, 2=0, and A=0; there-

A B ^

fore C = ; hence, A=xy— az -\-ay=a + xXy— a

V2ax + x2
,
the area CEF.

Ex. 6. Tofind the area ofthe cycloid ABC.
Let BD be the axis, on which describe the circle

B/zDw, draw rnyz J_ BD, and yv a tangent at y ;

and draw yt, vs J_ FB, and vmq parallel to t/r, and

mn to qr, and join Bn. Now, by the property of the

cycloid, the triangles Brn, yzv are similar ; hence,

Br, or ty, : rn : : zv, or rq, : zz/, .*. rn x rq = tyx zy,
or CH nrqm = EH styz, that is (Art. 49.) the fluxion

of the circular area Bnr =the fluxion of the area Bty;
and as these areas begin together at B, and their

cotemporary fluxions are always equal, the quantities

T *? B E

generated are equal ; hence, the area Bty = the cir-

cular area Bnr
; bring therefore yr down to AD, and
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we have the whole area BFA = the semicircle BnD j

hence, BFA + BEC = the whole circle BnDw.
Now the parallelogram AFEC = AC x BD = (from
the nature of the cycloid) circum. BnDzvB x BD —
(by Art. 51. Ex. 3.) four times the area of the whole

circle ; hence, ABC = three times the whole circle.

VWVWl'WVWWV

To find the AREAS of SPIRALS,

Prop. XXI.

Tofind the area SWC ofa spiral.

50. LetSWCK be a spiral, generated by the uniform

angular motion of SC about S ; SC any ordinate ; with

the centre S describe the circular arc XCZ ; draw

any other ordinate Su, and with the centre S describe

the circular arc vzv meeting SC produced in w. Now

conceive the sector SXC to have been generated by the

uniform angular motion of its radius about S, at the

same time that the area SWC of the spiral was generat-
ed by the same uniform angular motion of SC about S.

Then SX being constant whilst SC varies, the in-

crement of the sector SXC is the sector SCn, and the

cotemporary increment of the area SWC of the spiral
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is SCt> ; hence, the ratio of the increment SCw of the

sector SXC to the cotemporary increment SCy of the

area SWC, is always nearer to a ratio of equality than

SOj : Sivv, or nearer than SC2
: Su2*

; now let Sv
move up to and coincide with SC, in order to obtain

the limiting- ratio of the increments, and we get the

limiting- ratio of SC2
: Su2

,
a ratio of equality ; hence,

a fortiori, the limiting ratio of the increment SCtz to

the increment SCu, is a ratio of equality ; therefore

by Prop. 2. the fluxion of the area of the sector

SXC is equal to the fluxion of the area SWC of the

spiral ; but SCn being the increment of the sector

SXC uniformly generated, will represent its fluxion,

by Prop. 1. hence, the fluxion of the area SWC of the

spiral will be represented by SCw.
51. Put SC = y, the length of the curve SWC = z,

XC = xy Cn = a?, A = the area SWC j then the sector

SCn=-—=A, whose fluent is the areaSWC. LetsCY
2

be a tangent at C, and SY perpendicular to CY ;

draw CE _[_ SC, and sE parallel to SC ; and with the

centreS, and any radius SA, describe a circular arc AL.
Put SA=a, Ao=w, 02= xby CY=£, SY= r. Then

by Art. 31. Cs=i>, sE=y, CE= a?; and as the tri-

angles CE*, CSY are similar, t:r:: y : ,i'=— ; hence,
V

* That similar sectors are as the squares of their radii, ap-

pears from Euclid, B. XII. p. 2. and B. VI. p. 33.
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SCrc = -MM. = A. Also, by similar sectors S02, SC«,
2t

'

a : z/ :: ti> : a? = ^—
; therefore SCn=—- = A. These

^ a 2a

different expressions of the fluxion of the area, are to

be used as may be convenient.

EXAMPLES.

Ex. 1. Let SWC be the logarithmic spiral; to find
its area.

Herer : t in a constant ratio, as m : w; hence,A=-~

-= -MM whose fluent is A = —M- -f C ; but when w=0,
2iz 4n

A = 0, .'. C = ; consequently A = —— .

4/z

.£#. 2. ief SWC be the spiral of Archimedes ; to

find its area.

. nu
Here y : w : : w : n, or in a constant ratio j

.*. zv=.—
m

consequently A = ^— = JsLs: whose fluent is A=—^~^ 2a 2??za 6wa

4-C ; but when z/=0, A=0, .. C=0 j hence, A= —2—.
6wa

is*-. 3. Let the spiral be a circle ; to find its area.

Here y is constant, and the fluent of A =— is A

=— the area of the sector whose arc is x ; hence, if
2

'

cy

2

Ex. 4. Zef AC be the involute of the circle AD,

x = the circumference c, the area of the circle = — .

2
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described by the extremity C ofa string unwinding it-

selffrom the circle ; tofind its area.

It is manifest that DC must be perpendicular to

the curve, or to its tangent CY, and as SD is also J_

to CD, and SY to CY, SDCY is a parallelogram,
and

SD = CY = t
; hence, SY = r = V y

2—t* ; .-. A= rM
\i

es
y * yy

, whose fluent, by Art. 39. is A =
2t

' ' J

.3^ 2 I ~2~

V
~'

' + C ; but when y (SC) becomes t (SA),

then A, or SAC, is=0, and y
2—42—0 ; hence, C=0 ;

-,.2 ,2 I 2 DC 3

.».SAC= ^ '
' = -^-

6t 6SD

*W\V*/\'VV\''WVW%

To find the CONTENTS or SOLIDS.

Prop. XXII.

To find the content ofa solidgenerated by the rota-

tion of a curve about its axis, or by the motion of a

plane parallel to itself

52. Let the solid ACD be conceived to be gene-
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rated by the uniform motion of the circle CD, begin-

ning at A and increasing in magnitude, having its

plane always perpendicular to AB, and its centre in

that line. Circumscribe this solid by the cylinder

MLCD, conceived also to be generated at the same

time by the same uniform motion of a circle. Then

AL being constant whilst BC varies, let the circle CD
move on to mp, and the solid CmpD generated, will be

the increment of ACD ; suppose also the circle CD to

move on to cd in the same time without increasing, and

it will generate CD die the cotemporary increment of

the cylinder ; produce CD to n and y, meeting mn and

pq drawn parallel to B£. Then the ratio of the incre-

ment CDdc of the cylinder to the cotemporary incre-

ment CDpm of the solid ACD, is always nearer to a ra-

tio of equalitv, than the cylinder CDclc : the cylinder

-mnqp^ or nearer than BC2
: bm%

. Now let the circle mp
move up to and coincide with CD, in order to obtain

the limiting ratio of the increments, and we get the

limiting ratio of BC3
: 6m2

,
a ratio of equality; hence, a

fortiori, the limiting ratio of the increment CDdc of

the cylinder, to the cotemporary increment CDpm of
the solid ACD, is a ratio of equality ; therefore by-

Prop. 2. the fluxion of the cylinder MLCD is equal
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to the fluxion of the solid ACD
;
but CDdc being

the increment of the cylinder uniformly generated,
will represent its fluxion, by Prop. 1. ; hence, the

fluxion of the solid ACD will be represented by CDdc,
the cotemporary fluxion of AB being Bb. Put there-

fore x = AB, y = BC, x = Bb, S = the solid ACD,
^=3,14159 &c. then (Art. 49. Ex. 2. Cor.) />z/

2=the
area of the circle CBD ; hence, the cylinder CDdc=
py

2x=S ;
therefore S=the fluent of py

2
x, corrected

if necessary.
The same reasoning will manifestly hold, if the

generating plane be any other figure, and continue

always parallel to itself. The fluxion therefore of a

solid thus generated, will be always expressed by the

area of the generating plane and its velocity conjointly.

EXAMPLES.

Ex. 1. Let ACD be a solidgenerated by the revolu-

tion ofany parabola about its axis.

Here ax=y
n

; hence, a?=——2, .«. S = py%x =
a

"Py
n + 1

y
,
whose fluent isS=^±l+C=-!i- xpy

2

a n+2 X a n+2

v Vl + C = -^— X Py
2x + C ;

but when *=0, S=0,*
a
T

n+2

.•. C=0 : hence, S =—— £py*x.

If n=2, the solid becomes the common paraboloid,

and its content=| pyix=\ cylinder LCDM.

If n=l, the curve becomes a straight line, and the

solid a cone, and its content = \py
2x «= \ cylinder

LCDM.
Ex. 2. Let APEQ be a solid generated by the revo-

lution of an ellipse APEQ about its axis AE.

Put AB=x, BC=y, AO=o, PO=£ ; then by the
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b2

property of the ellipse, a2 : b2 : : 2ax— x2
: y

2 = —- x
cr

k^^-P*2ax— x2
i hence, S= pij

23C= /
-jX2ax^—x2

x, whose
cr

fluent is S =
<—^- X ax2— \x

3 + C ; but when x = 0,

S=0, .*. C=0; hence, S=£—xax2—Ix3 . which is the
a2 •*

solid content of ACD ; and to get the whole solid,

we must make AB equal to AE, or make x = 2a ;

hence, the whole solid = ^- x 4a3— fa
3 = —— .

CI o

If the ellipse revolve about PQ instead of AE, then,
as the same property of the curve holds for each

axis, the solid will be —
; hence, the solid gene-

rated about AE : solid about PQ : : £-— : -£—
: : b

: a : : PQ : AE.
If b = a, the ellipse APEQ becomes a circle, and

the solid a sphere, and the content becomes = -—
= 4,18879£

3
. Now the content of a cylinder circum-

scribing the sphere = the area of its end multiplied by
its length = (as the radius of the end = b, and length= 2b) pb

2 x 2b = 2pb
s

; hence, the sphere : cylinder
. . 4 . C\ . , o . ci

it T * « * * 4 • O*
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Ex. 3. To find the content of the solid generated by
the revolution of the cissoid of Diodes about its axis.

(Alg.The equation of this curve is y
2 =

Art. 426.); hence S = py
2x =^L^L = Px " = (by

-x
,3 ;

—x+a

division)—px2x—paxx—pa2
x-\-

J
-

; now the fluent
a—x

of all the terms, except the last, is found by Art. 37.

and the fluent of the last, by Art. 45.; hence, the fluent

is S=—\px
3— \pax

2—pa
2
x-j-pa

3x— h. 1. a—a+C ;

now when #=0, S=0, .'.pa
3X — h. 1. a -f C= 0, and

C=pa3 xh. 1. a
; hence, S=—-Ipx

3— ^pax
2—pa2

x-\-

pa
3 x — h. 1. a—x+pa

3X h. 1. a=— \px
3 — \pax

2—
pa

2
x+pa

3xh. 1. ; because h. 1. a— h.l.o—x=h. I.

a—x
a

, by the nature of logarithms, as explained in the
a -x

Algebra, Art. 388.

Ex. 4. Tofind the content of the solid generated by
the logarithmic curve ABDC revolving about AB.

Hereyx=My,by Art.49. Ex.4. ,:S=py
2

x=Mpyy,
M*w2

whose fluent is S= -
~
l
"

-f- C ; but when y=a, S=0,

H T

™Po- C- -JfiSf, hence, S=M£-
-4-C, and U= — -—'-—

; hence. b=—- x
2
T 2 2

a
2
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If AC=a=0, then S= ™ = the whole solid
2

cor-

responding to the abscissa BM.

Ex. 5. Let the catenary curve revolve about its axis;

tojindthe content ofthe solidgenerated.

By Prop. 118, z2=2ax + ^2
,
and therefore zz>=ax

•\-xx-y and by the same Prop. zy=ax. Now S=py2x-9
m

assume therefore $>=py
2
x-\-xv, and we have S=py 2x+

2pxyy-\-xv, and as S=py2
x, we have x'v=— 2pxyy<=*

(.
ax\

asy=_j.
XX . . . ..

2payX—=
(as xx=zz>— ax)— 2pay

ax
2pay: assumeX*——=—2payx*— y=2payy

xv = pay
2— 2payz -f- v, then zv = 2payy— 2payz—

2pazy -f-
v ; and as xv = 2payy— 2payz,, we have v =

2pazy = 2pa
2
x, therefore v = 2pa

2x ; hence, S =
py

2x -\-pay
2— 2payz -f- 2pa

2x -f C ; but when x =*= 0,
then z/=0, z=0, andS= 0, therefore C= Oj conse-

quently S = py
2x + pay

2—
2payz -f 2pa

2x.

Ex. 6. Let the conchoid DMu/ Nicomedes revolve

about the axis DA
; tofnd the content ofthe solidge-

nerated by DMF.
By the Algebra, Art. 407. if CA = «, AD = EM

ss b
y AP=*, PM=z/, then **= a+y

xb2—y
1

t
-, also,

p ;x*= the area of the circle generated by FM 5 and a*

M
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FD=6—
z/,
FD=— y; hence S=—px

%y=—pyx—
;

—
2

a + y Xb2—
y

2=pXa + y Xy—pa
2b2

y-
%
y—pb

2
y—

pa
2b2

,
therefore S= -£- Xa+y + y

pb
2
y—2pab

z

y
2pab

x
y

V
X h. 1. 2/4-C ;

now when y=b, S=0, and the equation

becomes 0= £-X a + b
3

+pa-b —pb*— 2pab
2 X h. 1.

y

b+C, therefore C= — £-Xa+b —pa2
b+pb

3 + 2pab*

xhA.b; hence, S=^-X^+5
3— £- Xa+b

3+l——
3 3 y

pa
2b—pb*y+pb

3

+2pab
2 xh. 1. — the solid generated by

DMF.
The solid generated by the whole curve is infinite,

as appears by making y = 0.

Ex. 7. Let LAO be a solid called a Groin, gene-
rated by a variable square vwxz moving parallel to it-

self; and let the section FAG through the middle of
the opposite sides be a semicircle.

Put<z=AE, y=AB, y= BC ; then, by the pro-

perty of the circle, y=V2ax— a.
2
, therefore the side

of the square vwxz = 2V2ux— x2
; hence, the area

A

vwxz = 4 x 2ax— a 2
,
which being the generating

plane, it answers to py
2 in the other cases, and there-
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fore S=4 X 2axx—x&sb, whose fluent is S=4a^2—
| *3+C ; but when tf=0, S=0, .-. C=0 ; hence, Ss=
4ax2—%x

3
, the solid Avwxz ; and if we make x=a,

8a3

S= —-, the whole solid ALN.
3

If the section FAG be any other figure ;
or if the

two sections through the two opposite sides be of dif-

ferent figures, the content may be found in like man-
ner. But the solid content of bodies may also be

found by the following proposition.

Prop. XXIII.

Let DMEK be any curve revolving about an axis

xy ; then the solidgenerated is equal to the circumfer-
ence described by the centre of gravity multiplied into

the area of thefigure.
53. Let O be the centre of gravity ; draw MOKA

perpendicular to xy, and BPC, DOE, parallel to xy.
Put AP=#, BC=y, AO=«, />=3,14159 &c. Now

(Art. 58.) - „
' J — a. .\ flu. yxx = flu. yx x a «*K

flu. yx
* v

area DKEM x u. But the surface generated by BC
=2pyx, and therefore the fluxion of the solid=2pyxx-t
and the solid=2/> x flu. yxx=2pa x area DMEK=
the circumference described by the centre of gravity x
area of the figure.
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Ex. 1. Let DMEK be a circle, then the solid will

represent the ring of an anchor ; now in this case, if

r=OM the radius, the area DMEK=/ire
j hence, the

solid=2/?
2ar2

.

Ex. 2. Let MDK be the given area, and let it be the

common parabola, then if G be the centre of gravity it

lies in the axis DO, and therefore a=its distance from

xy ; also the area = §DO xMK; hence, the solid =s

2pa x |DO x MK = *pa x DO x ML
Ex. 3. Let MD, DK be straight lines, or MDK a

triangle ; then the area = |DO X MK ; hence, the

solid = pa x DOx MK.

WX<W^.V%/VWVVW

To find the LENGTHS of CURVES.

Prop. XXIV.

To find the length of a curve line AC, whose ordi-

nate BC is perpendicular to the abscissa AB.

54. Put AB=*, BC=^ AC=z ; then if Cs be a

tangent to the curve, CE J_ BC, and sE _j_ CE, we
have, by Art. 27. CE=a?, sE =

*/, Gs = «; and by
S'

a

Euclid, B. I. p. 47. i? = -r
2 4- y\ .•. % = V *2+y2

,

and z = the fluent of \/x2
-\-y

2
; corrected if necessary.

EXAMPLES.

Ex. 1. Let AC be a semi-cubical parabola, whose

equation is ax2=y 3
; tofind its length.
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3 1

Here x=¥-, .: x—-^—^-. .. x2=JLL j hence, z?=
1 J- 4a

4a 4a 4a
1
3

9«-*-4a 2
,,

whose fluent, by Art. 39. is 2 = —— + C ; now
27a*

when ?/=0, 2=0, in which case, this equation be-

„ 8a „ ~ 8a , 9*/-*4 />
comes 0= 1- C, .*. C= ; hence, z —

27 27 27a*

8a

27'

Ex. 2. Let ByA be a cycloid ; tojina its length.

Put BD=a, Br=x*, Bt/=z, z/o = », U2=ra=a?;
then by the prop, of the circle, Br : Bn : : Bn : BD, .*.

Brc2=BD x Br=ax, and Bn=za*x* ; and by the prop.

¥__s* B E

A D C

of the cycloid, x (Br) : cfix* (Bn) : : x (vz) : % [vy)=

(fix^X -i -~i X A
=a 2# a-; hence, 2=2a 3^ 24-C; but when x

x

=0, 2=0, .*. C=0 ; consequently 2=2a*^=2Bn.
Ex. 3. Let AC be the common parabola ; to jind its-

length.

Here ax=y\ .-. x=^= (if1^1 ; hence, s
2=

a

y*f ±,fi-y
2+b*

v,;2 . ^_?/
3+^2^ x v _

62
+$/

*2
XjT, .*• « = (by mul-
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tiplying numerator and denominator by y x y
2 + £2

"1

?
)

1
x y

3
y+bzyy _ *

x ^y
3y+c^ l

yy ^ 1
x
2y*y+b

2
yy

-f
—t- X -• -— = (by dividing the num. and den. of
2b

4
*

4+*yT
i .—j

the last term by y)
— X y*+b

2
y

2
J X 2y

3
y+b

2
yy+\b

/CO

X ; now the fluent of the first term is —- x

y*+b*~\
2b

x

y*^.0
2
y

2
~\ , by Art. 40. and the fluent of the last term.

is \b X h. 1. y+y
2+b2

~\ , by Art. 45. Ex. 4. hence, z—
- i

• —x

— X y
4jhb

2
y

2
~\'+?b X h - *• y+y2+b2Y+C ;

now when

y = O, z = O, in which case, the equation is = \b

X h. 1. b -f C ; hence, C = — \b. h. Lb; therefore

, = i. xwfe x h. i. y+E3l
2£ b

Ex. 4. To ^W the length CD of any part of the

logarithmic curve. (See Fig. pag. 80.)

Put AC=fl, AB=x, BD=z/, CD=z ; then —"

y_
/lYl 2

£/
2

=x (Art. 49. Ex. 4.), .. z,=V&+f =\j
—~ + </

2

2/

i/V'IVI 24-iy
2

SB : ZZ_ = (by multiplying the numerator and
y

denominator by VM 2
+y2

)
y X M 2+y2 _ yif

yV M2+y2 VJYP-fz/2

M 2
v yy M 2

£"*#

y y/ M 2 + y
2 V M 2 + >f \/ 1 + M 2

y~
3
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hence (by Prop. 16. and Prop. 18 . Ex. 8.), z =

\ZM2 + t/
2—M x h. 1.

M+V/
f

M2+j/2 + C j but whenJ My
2=0, y= b, and we have 0=VM 2

-f £2—M x h. 1.

M-fv/JVl2 + 62

Mb
- + C ; hence, C =—VM2 + 62 +M

X h. 1.
M+V^ + b2

i therefore z =VM 2 + y
2 —>

M +VM 2 + 62VM 2 + £2 +M X h. 1.
^ * ^ — M x h. I.Mo

M+v/M 2
-f-v

2

My
VM 2

+j/
2—VM 2 + 62 -fM x h. 1.

Mz/+?/VM2 + ^'

M^ + ^VM^+l/2
'

-Evr. 5. Tofind the length ofa circular arc.

aH ... . t~i
By Art. 46. % = = (bv division) i—~ f=3

a2 + t
2 v ' '

a2 ^
*
4
/ *

e
£ „

'

J
3

*
5

*7
«,— -+ occ. hence, z = t -] -

fl + &c.
«4 aa T '

3a2 5a4 7a6 T

+C ; but when £=0, z= 0, therefore C= ; hence,
t
3

t
5

t7z—t 1

-——- + &c. Now if ff=l, and
3a2 T 5a4 7a6 '

2 be an arc of 30°, then t = V\ = 0,5773502, which

being substituted for ?, if we take 12 terms of this

series, we get z = 0,5235987, the length of an arc of

30°; which multiplied by 12 gives 6,2831804 for

the length ofthe circumference of a circle whose radius

is unity.
If we take the arc z == 45°, then will t = a

;
henc.f*.

z — ax 1—T+i— -r-f &c -
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To find the LENGTHS of SPIRALS.

Prop. XXV.

Tofind the length ofa spiral SC.

55. Let the ordinate SC = y, the curve SC = Zj
CY= w ; then, by Art. 31. C*= », Es= y j and by

sim. triangles, w : y : : y : z= _, and z=the fluent of
w

2^, corrected if necessary.
XV

EXAMPLES.

Ex. 1. I>e£ SC £<? the logarithmic spiral; to find
its length.

Here xv.ywm : rc, a constant ratio; hence,w=_, .*.»

72

s=^, and 2=_^+C ; but when y=0, 2=0, .-. C=0 ;

m m

consequently z= _^ = ^_; therefore CY : CS : : CS :

m xv

the length of the curve.

Ex. 2. Let it be the spiral of Archimedes ; to find
its length.

ty y\ZZ2jTfz
By Art. 32. Ex. 1.w=—===; hence, *=—2—-—f'

\/y*+t*
'

I
T
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which is the same as the fluxion of the length of the

1 ii

parabolic arc, Art. 54. Ex. 3. .*. z=—xy4
-\-t

z

if \

2
+\t

x h. 1. 1+^t+Jl.
t

Ex. 3. Let AC be the involute of a circle ; to find
its length.

Here xv is constant, by Art. 51. Ex. 4V hence, z =

2~w
— +C: but when 2=0, ij=xu, .•• 0=-—f-C, and C=
2tu "-»•

TU2
, 7/

2——
; hence, z=-

2xv 2xv

xv* SY2

2SA'

VWVWVWVWWV

To find the SURFACES of SOLIDS.

Prop. XXVI.

Tofind the surface of a solidgenerated by the rota-

tion ofa curve about its axis, or by the motion of a

plane parallel to
itself.

56. Conceiving the solid AFH to be generated as

in Art. 52. by the circle CD, the surface may be con-

sidered as generated by the periphery of that circle ;

the fluxion, therefore, of the surface will be the peri-

phery of the circle multiplied by the velocity with

N
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which it flows, by Cor. Art. 49. But the velocity with

which any point C of the periphery flows, is the velo-

city with which AC increases at the point C, or it is

i, putting AC =2. Hence, if we put AB=„y, BC=^,
p = 6,28318, &c. the circumference of a circle whose
radius= 1 (Art. 54. Ex.5.), S=the surface ACD; then

1 : y>: : p : py, the circumference of the circle CD ;

therefore S=pyx>, the fluxion of the surface ; conse-

quently the fluent of pyx, corrected if necessary, will

be the surface.
,

The method of finding the fluxion of the surface of

a solid may be further illustrated thus.

Let ACF be protended into a straight line, and let

an ordinate perpendicular to it, and always equal to

the periphery of the circle CD, move from A to F with

the same velocity as the point C,upon the solid, moves;
then it is manifest, that the area generated by this or-

dinate must always be equal to the area generated by
the periphery of the circle, the generating lines and
their velocities being always equal, and both moving
in directions perpendicular to themselves ; hence, the

fluxion of the surface ACD=the fluxion of the area of

this curve= (by Art. 49.) the ordinate multiplied by
the fluxion of the abscissa=the periphery of the circle

CD multiplied by the fluxion of the curve AC.
EXAMPLES.

Ex. 1. Let ADFC be a sphere whose centre is O;
to find its surface.
Let Cs be a tangent at C, sEw parallel to BC, and

A
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CE to Bm ; then if AB=*, BC=y, AC=z,by Art.

23. Gs=i, CK=x ; and by similar triangles CE,?,

CBO, %:x :: a: y, .: yz=acc ; hence, S=pyi=:paaL'y

the fluxion of the surface DAC, whose fluent S=pax
-fC ; but when x = 0, S= 0, .*. C=0 ; hence, S =pax
the surface DAC. If we make AB equal to AE, or

x = 2«, we have 2pa
2 for the whole surface of the

sphere. Now if we conceive ADFC to be a great
circle of the sphere, its area = \ pa

2
, by Art. 49.

Ex. 2. Cor. Hence, the whole surface of a sphere is

equal to four times the area of a great circle of that

sphere.

Cor. As the surface DAC=pax, it varies as x,

Ex. 2. Let the solid AFH be generated by the com-

mon parabola ; tojind its surface.

Here ax=y2
; hence, dc = -22, and x2 — •

,J a a2
» • •

(Prop. 24.) z2=x2+ y
2= 4

-^-+y
2=%- + i x y

2—

4y24-a2 .„ , . fyt+a
2
]* X y , a . .

-Z XV2
, and %= -Z—!

; hence, S=pyz,=
a2 y a

rJ

p x 4^+«
2> x yy whose fl b ArU 39> is s _

a
' ' '

.3

£ ^-^—L _j_ C ; now when y= 0, S = 0, in which

case, the equation becomes 0='-— -f C ; hence, C=—
3

2

£? ; therefore S = * X
4y»-H»»1»_gg

12 12a 12

Ex. 3. i>£ ALN be a groin, as in Art. 52. Ex. 7.

to find its surface.

Put AB=^,BC=y, AC=z ; and we have (Art. 46.)
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ax—---
; also, vxv == 2BC = 2 V2ax- *K y

V2ax—x2

now vw is the line generating one of the four surfaces;

hence, 8 \/2ax—x2 answers to py in the other cases ;

therefore if S he the surface Avx, S = 8oA', and S =
8ax-{-C ;

hut when^=0, S=0, .*. C=0; consequently S

=8«.x ; and when x—a, S=8<22
.

Ex. 4. To find the surface generated by the revolu-

tion of the cycloidal curve BA about its base DA.
Put Bi/=z, Br=x, rD=j/C=!/, BD=a ; then, by

Art. 54. Ex. 2. x,=cPx~^x; .*. $=pyz=pyd
2x~'2x=z.

p X a—x X a?x vx=pa 2 x~
J
~^x—pa-x

ijx; hence, S:x=
3 1 13

2pa*x
2—

!c/2,x
? 4- C ; but when .t=0, S—0, ••. C=0 ;

•? i

hence, S=2pa*x'2
—

|y;t/
2# 2,the surface generated by

40(72

By ; and when x=a, we have S= -—
,
the whole sur-

face generated by BA.
Ex. 5. To find the surface of the solid generated by

any bart CD of the logarithmic curve revolving about

its axis AB.

By Prop. 24. Ex. 4. » = •

*-, therefore S

-=z pyi> = py VM 2
4- ?/

2
,
which fluxion is the same as

that for the value of % in Prop. 24. Ex. 3. (the
constant multiplier and divisor excepted) ; therefore

to #M 2 ——
3 = i— x Vif+M 2

ir+ X h. 1. y -fVM 2 + y*

?-
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-f- C ; but when y = a, S =
; hence, = 1— x

pW
\/a4+M 2a2 + 1—— X h. 1. a + VM 2 + a* + C, and

At

P pW"
.^ */„a i ,YJ2„2 r *C=— J- x Va4+M 2a2 —'—— X h. 1. a +VM2

-f a
2

;

therefore S = £- X Vy*+M 2
y
2— JL x VcF+Wa2

t& At

2 a -f-VM2+ a2

Ex. 6. Tojind the surface of the solidgenerated by
the catenary curve revolving about its axis.

By Prop. 118. we have z2 = 2ax -f- x2
; hence,

tf
3 + 2«„r -f- x2 = a2

-f- z2
,
and « + x = Va2 + z2

;

zx>
therefore sb = — -.-, and u = Vi2— a,'

2 =

Now S = py% ; assume S = pyz— w,V a2
-f z

2

then S=pyz>+pzy—tl', and as S=
/>7/i, we have rb=.

paz:
pzu = — , whose fluent is w = pa V a2 + z2r

. Va*+z2

_

(Prop. 16.) ; hence, S=pyz—pa Va2
-f z2

-\XL—pyz—
pa

2—pax -f C, but when „y=0, y=0, and S = 0, there-

fore C—/?a
2=0, and C=pa2

; hence, S=pi/z—pax the

surface generated by the curve CF revolving about the

axis CE.



SECTION V.

VWWWWWVfeW

On the CENTRE of GRAVITY.

I57. JL F there be any number of bodies A, B, C,

7J

X

Q

6A

L

6
6
c

andG be their centre of gravity; and to any plane xy, per-

pendiculars AP, BQ, CR,GL be let fall, then (Mecha-

A.ir^Tr AxAP+BxBQ+CxCR
mcs, Art. 173.) LG= A+B-J-C

*

Prop. XXVII.

Tofind the centre ofgravity ofa body, considered as

an area, solid, surface ofa solid, or curve line.

58. Let ALV be any curve, RL the axis, in which

the centre of gravity must lie ; for as it bisects every
ordinate TF in N, the parts on each side LR will

always balance each other, and therefore the body
will balance itself upon LR ; consequently the centre

of gravity must be somewhere in that line. Put

LN = x, TN= y, TL = z, and draw xy parallel to

TF j then if we conceive this body to be made up
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of an indefinite number of corpuscles, and multiply

R V
each corpuscle by its distance from xy, the sum of all

the produces divided by the sum of all the corpuscles,

or by the whole body, will give LG by Art. 57. Now
to get the sum of all these products, we must first get

the fluxion of the sum, and the fluent will be the sum
itself. Put s for the fluxion of the body at the dis-

tance x from xy, then will xs be the fluxion of the

sum of all the products ; also, s is the fluxion of the

sum of all the corpuscles ; therefore by Art. 57. LG==
flu. xs

flu. s'

1 st
. If the body be an area, then s=2yx by Art. 49 ;

, T _ flu. 2ijxx flu. yxx
hence, Lb=-—£—.r- = ——*—r-.

flu. 2yX flu. yx
2nd. If the body be a solid, then py

2x=s by Art. 52 ;

, , _, flu. filfxX flu. ll
2XX

hence, LG=——j-r— = „
'

2
.

t

.

flu. py x tin. yrx
3rd * Ifthe body be the surface ofa solid, then i—pyz>

,
.

,
_ ^ flu. plfXXf flu. i/xz>

by Art. 56 ; hence, LG=—— ;
- = -^

—:—-.
flu. pyz, flu. yx>

4th. If the body be -a curve line FT,then s=£z>; hence,

T „ flu. 2xZ> fl<>. XX> flu. XZi
JL\T= — — = ———.

flu. 2i flu. x> z

EXAMPLES.

Ex. 1. Let y=ax
n be the equation to any parabola ;

tofind its centre ofgravity.
. axn+ 2

As y=ax
n

,
.'. yxx=zax

n+ x
x, whose fluent is——-;
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axn+ 1

also, yx=ax
n
x, whose fluent is

j hence, ("Art.
72+1 V

zo\ir ™»+* 72+1 72+ 1
08. J LG= — x ——— = X x.' n+2 axn+ 1 n+2

If w=|, then y=ax*, .: y
2=a2

x, which is the com-
mon parabola ; hence, LG=J^.

If n = 1, then
t/
= ax, and the figure is a triangle ;

hence, L,G=%x.

Ex. 2. Let yz=.ax
n
; to find the centre ofgravity of

the solidgenerated by the revolution of this curve about
its axis.

As y
2=a2x2n, .: y

2xx=a2x2n+ 1
x, whose fluent is

a2x2n -I-
2

a2 \
Zn -h 1—

; also, y2x—a2x2nx. whose fluent is — ;
222+2

'J
*

222+ 1
'

a2x2n ~h 2 222+1
hence, by Article 58. LG = —- x —— ==

222+2 a2x2n+ 1

272+1

2^+2**"
If n = |, the solid becomes a paraboloid, and LG

If 72= 1, the solid becomes a cone, and LG=|x.
Ex. 3. Let ALV be a hemispheroid ; tofind its cen-

tre ofgravity. ^ ^
Put LR=o, AU=b ; then a2 : b2 : : 2ax—x2

: y2=
b2 b2— X 2ax—x2

; hence, i/
2xx=— x 2ax2x—x^db. whose

a2 J
a2

£2 1)2
fluent is — x iax3—\xA > also, vflx=— x 2axx—x 2 x\

a*
3 4 y

a2 '

1)2 _
whose fluent is — x ax2—\x

3
: hence, by Art. 58. LG

a2

Lax3 Xx* 2-a4 ~a4 5a= —-——-
; and when x=a, LG=-2 ±—=—for

ax2—^x
3 a3—

\a
3 8

the whole solid. As this is independent of b, if b—a,
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LG remains the same, and the solid becomes a hemu

sphere.

Ex. 4. Let ARV be a semicircle ; tofind its centre

ofgravity.
Put LN=#,TN=*/, TL=r; then x2+y2=r2

; hence,

xx+yy = 0, .. yxx = — y
2
y, whose fluent is — |j/

3+
C, which must vanish when TF coincides with AV, or

y—r ; therefore put r for z/, and—|r
5-fC= 0, .*. C =

jr
3

; hence, the correct fluent of yxx is \r
3—

-£y
3
; also,

the fluent of yx is (Art. 49.) the area ATNL; hence,

by Art. 58. LG=^x V
ATNL

for the semicircle.

j and when j/=0, LG=

3ARL
Ex. 5. Tofind the centre ofgravity of the arc ARV»
Put LN = #, NT z=y, RT = z; then (Art. 46.),

z> : y : : r : #, therefore x% = ryy whose fluent is ry ;

hence, by Art. 58. LG=— ; and when y = r, LG =
r2 z

RA*
Ex. 6. Tofind the centre of gravity of the surface

ARV ofa hemisphere.
Put x = RN, z/=TN, z = RT, and a =TL ; then

(Art. 46.) we have % : x : : a : y, therefore yz>=
ax ; hence, yxi=axx, whose fluent is \ax

2
; alsc, the

fluent of
yi,, or ax, is ax ; hence, by Art. 58. RG =r

=jx; and when „Y=RL=r, then RG=|r for the
\ax

2

ax

hemisphere.
O
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On the CENTRE of GYRATION.

DEFINITION.

59. The centre of gyration is that point of a bod)
revolving about an axis, into which if the whole quan-
tity of matter were collected, the same moving force

would generate the same angular velocity in the body.
60. Let a body/? revolve about C, and let a force

act at D to oppose its motion. Then the momentum
ofp varies as p x its velocity, or as p x />C, which we
may consider as a power acting at p in opposition to

C
p 1— D

the force at D ; but this power acting at the distance

pC from the centre of motion, its effect to oppose a
force at D must (by the property of the lever) be as

pXpC X pC —p x pC2
. This effect of/? to persevere

in its motion, or, which is the same, to prevent any
change in its motion, is called its inertia.

Prop. XXVIII.

Tojindthe centre ofgyration ofa body.

61. Let a body be conceived to be made up of the

particles A, B, C, &c. whose distances from the axis are

a, b, c, &c. and let x be the distance of the centre of

gyration from the axis, then by Art. 59. the inertia
of A, B, C, &c. will be as Axa2

,
Bxi2

, C*c2
,
&c.

and the inertia of all the matter at the distance x will

be as A+B-f-C-f-&c.x*
2

; now, as the moving force is

the same in both cases, the inertia must be the same
when the same angular velocity is generated ; hence,

A+B-fC+ &c.x*2= Axa2 + Bxb2 + Cx ca -f &c.

iU f /Axa2+Bx62+ Cxc2
-f&c.

therefore * = xf a+b+cW'- ' : tbat
«?'
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if s be the fluxion of the body at the distance z from

.. . /flu. z2i
the axis, x = y

EXAMPLES.

Ex. 1. Let the straight line CA revolve about C ;

to find O the centre ofgyration.

Put z=C/>, then s=z, and s=», .•. z2i=z2
», whose

-P

"^Q

fluent is -|z
3 = (when z = CA) 4CA3

; hence, CO =
VjCA5 = CAv^.
Ex.2. Let a circle AB revolve in its own plane

About its centre C ;
tofind O zte centre ofgyration.

Put/>=6,28318, &c. the circumference of a circle

whose radius = 1, z = C/>; then the circumference

pa — pz. and pzz = s ; hence, the fluent of z% or of

p7ri>) is ±pz\
—

{when z == CA = r) i/r
4
. Also, th'
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area of the circle = \pr
2

; hence, CO = V\r
2 = r

Cor. The same must be true for a cylinder revolv-

ing about its axis, it being true for every section paral-

lel to the end.

Ex. 3. Let RADB be a sphere revolving about the

diameter RD ;
tofind O its centre ofgyration.

Draw CA J_ and spr parallel to RD ; put Cr=r, Cp
= 2, thenpr=Vr2— z2

; and if/;=6,28318, Sec. the

surface of the cylinder generated by sr revolving about

RD, is pzx2\
/r2 -—z* ; hence, s = 2pzzVr

2— 22
, and

22,5= 2pz
3zVr2— z2

. Now to find this fluent, put
r2—22 = y

2
,
then 22 = r2—z/*, and 24= r*—2r2

y
2+y

4
,

.*. 23i =— r2

yy -f- y
3
y ; hence, 2pz

3zVr2— z2—2px— r2y
2
'j + y*y> whose fluent is 2px—4 r2^

3
-f-rJ/

s
»
anô

when 2 = 0, this fluent ought to vanish, but y is then

= r, and the fluent becomes 2px— -x-§r
5

; hence, the

correct fluent is 2px 1%r
5—\r

2

y
3

+\y
s
\ and the whole

fluent when z = r (in which case y = 0) will be -^jpr
5
.

Now the content of the sphere = \pr
3

; hence, CO —

VfT
2^ rVf.

VWVWWWVWVW

On the CENTRE of PERCUSSION.

DEFIMTIOjY.

62. The centre of percussion is that point in the

axis * of a vibrating or revolving body, which striking

against an immoveable obstacle, the whole motion,

* The axis is here understood to be aright line drawn through
the centre of gravity of the body, perpendicular to the axis about

-rhich the body revolves
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estimated in the, plane of the body's motion, shall be

destroyed.
Prop. XXIX.

Tofind the centre o/'percussion ofa body.
63. Let ABD be a plane passing through the

centre of gravity G of the body, and perpendicular to

the axis of suspension which passes through C ; and.

conceive the whole body to be projected upon this plane
in lines perpendicular to it, or parallel to the axis ;

then as each particle is thus kept at the same distance

from the axis, the effect, from the rotatory motion about
the axis, will not be altered, nor will the centre of gra-

\'ity be changed. Let O be the centre of percussion,
and draw pnw perpendicular to /*C, and Oiv perpen-
dicular to fiw ; alsd/^t> perpendicular to Cn. As the

velocity of any particle /^oc/^C, the momentum of p in

the direction fiivcc/iXfiC, it being as the velocity and

quantity of matter conjointly ; and by the property of

the lever, the efficacy of this force to turn the body about

O is as pxpCxOrv = (because Ow : Qw : : pC : uC)

pXvCxOn = pxvCxCO— Cn = pxvCxCO—px
vCxCn *=

(as Cn : Cp : : Cp : vC)pxvCxCO—p x
Cp2

. Now that the efficacy of all the particles to turn

the body about O may be = 0, we must make the

sum of all the quantities pXvCx.CO —sum of all the

quantities pxCp2=
; hence, CO =

sum of all the pxCfi
2 sum of all the pxCp2

,

r n *l ;

—
T; — t

—
i t^.——•> these twosum oj all the px vC body xCG

denominators being equal from the property of the

centre of gravity (Art. 57$
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Although the body, by striking at O, may have no

tendency to move in the plane of its previous motion^
and this only is included in the common definition

which we here follow, yet it may have a tendency to

revolve about AO. If therefore we were to define the

centre of percussion, to be that point where the zvhole

motion would be destroyed, we must find the plane

parallel to ABD, such that the sum of all the forces to

turn the body about the line joining the centre of

percussion and the axis of vibration in that plane, is

also = 0. But this is a problem not fit for an elemen-

tary treatise.'—See the Hydrostatics, third edit. Prob.

To find the Centre of Pressure.

As the force acting at Q destroys the motion, let us

suppose a force to act at O and to generate the motion
back again ; then it is manifest, that the body would

begin to return under all the same circumstances iri

which its motion ceased ; that is, it would begin its

motion by revolving about C. In this case, C is called

the centre of spontaneous rotation ; making therefore

the point at which a force acts upon a body that can

move freely, the centre of percussion, the centre of

spontaneous rotation coincides with the centre of rota-

tion corresponding to that centre of percussion.

w*wv"vwwvwv

On the CENTRE of OSCILLATION.

DEFINITION.

64. The centre of oscillation is that point in the axis

of a vibrating body, at which, if a particle were sus-

pended from the axis of motion, it would vibrate in the

same time the body does.

Prop. XXX.

Tofind the centre ^oscillation ofa body.

63. Let ABD be a body projected upon a plane
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perpendicular to the axis of rotation, as in Art. 63. the

axis passing through C and supposed to be parallel tq

the horizon ; and let G be the centre of gravity, O the

centre of oscillation ; draw Cv parallel to the horizon,

Ow, G§*, fir perpendicular to it. Then by the pro-

perty of the lever, the force of gravity to turn the

particle fi about C <*/* X Cr; hence, the force of gra-

vity to turn the whole body about C oc the sum of all

the fi X Cr. Also, the force of gravity to turn a

single particle O at O about C«Ox Cm. Now by
Art. 60. the inertia of fi ccfi x Q*3

, and therefore the

inertia of the whole body oc the sum of all the fixCfi%.

Also, the inertia of OccOxOC2
. Now that the ac-

celeration of the body about C may be equal to that

of the particle O, the moving forces must be in pro-
portion to the inertise ; because, if the powers to pro-
duce motion be as the powers to oppose it, the accele-

ration must be the same. Hence, sum ofallfixCr:Ox
Cm : : sum ofallfi x Cfi

2
: O X OC2

, therefore OC =
sum ofallfixC/i

2xCm _ sum of all fixCfi
3

sum of allfixCrxOC
~*

bodyxCG
' because

(by sim. triangles) Cm : CO : : C§- : CG, and therefore
C 7w C /y

tttt =
jTtt»

and by the property of the centre of gra-

vity, sum of all fixCr = body x Cg. Hence, the
centre of oscillation is the same as the centre of per-
cussion. Or if s be the bpdy, x the distance of s

flu x^s
= axis oi suspension, tnen i^u =from the axis of suspension, then CO -

flu. xs
flu. x2s
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. 66. Join/?G; and draw Po perpendicular to CG; then

Cfi
z = CG2+G/*

2— 2CGxGo, therefore fixCfi
2=fiX

CG 2+fixGfi
2— 2CGx/iXGo, and the sum of all fix

Cji
2=sian of all/-xCG2+ sum of all fixGfi

2— 2CGx
sum of all fixGo ; but the sum of allfixGo—0, from

the property of the centre of gravity; and the sum of all

fixCG 2 = body X CG 2
; hence, sum of all fi x Cfi

2 =
body XCG2

-f sum of all fix Gfi
2

; consequently CO =
body XCG s

+su??i ofallfi x G/
2_rr sum ofallfi x Gfi

2

bodyxCG
~

bodyxCG
, -,_ sum of allfixGfi2 _ T .

tience, GO=—j-^-
—-——— . Now as the numerator

bodyxCG
is constant, GO varies inversely as CG ; hence, if we
find GO for any one value of CG, we shall know every
other value of GO from that of CG. Hence also, if O
be the centre of suspension, C will become the centre

of oscillation ; for as GOxGC is constant, if C be

changed to O, O must be changed to C.

Cor. If x be the distance from C to the centre of

gyration ; then by Art. 61. x2s = sum of all fixCfi
2

;

and by Art. 65. CO x s x CG = sum of all fi x Gfi
2

;

hence, x2=COxCG, and CG : x : : x : CO.

EXAMPLES.

Ex. 1. Let CD be a straight line suspended at C ;

tofind the centre O ofoscillation.
Put x = Cfi ; then the fluent of x2s = flu. x2x—Ix7'

fi

G

O.

D
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= (when *=CD) 4-CD 3
. Also, body X CG = CD x

ACD=|CD 2
; hence, CO= 2 CD.

Ex. 2. Let the line AB vibrate lengthways in a ver-

ticalplane about C, xuhich is equidistantfrom A andB ;

tofind its centre O of oscillation.

Draw CG perpendicular to AB ;
and put CG = a,

Gp—x ; then/>C
2=a2

+:v
2

; and the fluent of C/>
2 X s

=fluent of a2x+x 2x=d2
x+\x

z = (when x = AG) a2

X AG + -|AG
3

; hence, for the whole line AB, it be-

Ar -B

comes 2a2 x AG+fAG^. Also, bodyxCG=axAB
^^ ^ ™ 2a2 *AG+|AG3

= a X 2AG ; hence, CO = . .

A
3

,

—=a+
Q X ~/l.Vjr

AG2

—z—• '

3a
Ex. 3. Let DAE be any parabola vibrating flat-

ways, or about an axis passing through C parallel to
*

PMN ; tofind the centre O of oscillation.

Put AC=4 AM=#, PM=y, then axn
=ij ; hence,

2?^ab = 2a»fl
i? = « ; and the fluent of CM2 x s\ or

D B E
2.</+*

2
Xaxn

«£', or 2d2axn£+4,dax
n
-i'

1x+2axn+ 2x, is

+_ j -_, -which vanishes whet:.

7?+l 77+2 w+3
P
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v=0, and therefore it wants no correction. Also, the
, , , 2daxn ~\' x 2axnmh 2

fluent of CMxs,ord+xx2axnx is— H ——
;

rc-f-1 n-f-2

hence, if the former be divided by the latter, we get

(by reduction) CO=
n+2 . rc-f-3 . d*+n+l . ?i+3 . 2dx+n+ \ n+2 . x~

n+2 . n+3 . d+?i+l • n-j-3 . x

l£d=O
y
and n=l, the figure becomes a triangle, and

AO=|x.
If n=^, it becomes the common parabola, and AO

-•»3T •

is*. 4. Let the parabola vibrate edgeways, and let it

be suspended at A ; tofind the centre of oscillation.

By Ex. 2. the sum of the products of each particle

of the line PN into the square of its distance from A, is

2*2 x y-t-%y
3=2x2 xax»+*a3xs»

; hence, 2axn+ 2x+
|a

3x3nj; is the fluxion of the sum of the products for

. 2ax» + 3
,

2a3x 3n+ i

the whole body ; whose fluent is ——
I

»
7 «+3 3.3n+l

Also* the fluent of AM X * is the same as be-

n -4- 2 • x
fore, <f being now = 0; hence, AO = *— -f

a2 . w+2 . x2"-1

3 . 3w-fl

If n'= |, it is the common parabola, and AO = —
a2

Ifn=l, AO=— H for a triangle j and if a=l
7

4 4
AO=*.
£#. 5. Let CG be perpendicular to the plane of the

circle ABV, and let the circle vibrate about an axis

passing through C andparallel to AB ; tofind the cen-

tre O of oscillation.
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Draw GPV perpendicular to AB, and EF parallel

io AB. Put AG=r, CG=a, GP=.v, then CP2=a?

+ x?, PE = Vr2—x2
y
and EF = 2 Vr2—.*2

; hence?

Je

EF X CP2 = a2+x2X 2Vr2—
x*, which multiplied by

x gives a2x+x2x x 2vV2—x2 for the fluxion of the

sum of the products of each particle of the area

ABFE multiplied into the square of its distance

from the axis of vibration. Now to find the fluent,

we have the fluent of a2 x 2W2—x2 X x =a2 x area

ABFE by Art. 49. and when x = r, the fluent == a?

X AVB ; and as the same is true for the other semi-

circle, the whole fluent is a2x circle AEB. The fluent

of the second part, 2x
2xx/ r2—x\ may be found thus.

Let x Vr2—x2= A, x2x \Zr2—x2 = B, and x X
.3

r2—x*
J

2 = P ; then by taking the fluxion of the last,

we have P=a'Xr2—x2 p -3x2xVr2—x2=xxr2—x2x
V r2—x*-3x2xV'r2—x*=r2xs/r2—x2- 4a?2iVrs—x2

,

that is, P=r2 A—4B, hence, (by taking the fluents) P
r2A P

=r2A—4B, and B === —
; therefore the fluent of

2x2x Vr2—x2 is
,2A—P

; but when a:=r, P=0 ; and

r2 \. 7'
2

the fluent becomes —^-= — x circle AEB, because A
2 8

'

—I of the circle when x—r; and for both semicircles it
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becomes — X circle ; hence, the whole fluent is a2 + ±r2

4
.< circle, which is the sum of the products of each par-

tide of the circle X the square of its distance from the

axis of vibration. Also, a X circle = the denomina-

tor for the value of CO ; hence, by dividing the former

ra

by the latter, we get CO = <z -J
.

J °
4tf

Ex. 6. Let the solid formed by the rotation of any
curve DAE about its axis AB, vibrate about C in BA
produced ; to find the centre O of oscillation.

By Ex. 5. the sum of the products of each par-

ticle of the circle MN into the square of its dis-

tance from the axis == CP2 + APN 2 x circle MN =
CP2 4- 1PN 2 x /jXPN2

(/jbeing=3.14159 kc.)=p X

CF2 \ PN2+iPN4
=/?x^+*~l

2

Xy
2
4--y/

4
; hence,/>£x

J+x
z
X y

2
+iy4

is the fluxion of the sum of all such

products for the whole body ; the fluent ofwhich divid-

ed by CG X body, gives CO.
Ex. 7. Let the solid be a paraboloid ; tofind the cen-

tre of oscillation.

Here ax=y
2

; hence, px X d+x
z

xy2
+\y* is equal to

px x d+x
2
X ax 4- la2^ 2

,
whose fluent is ±pad

2x2 4-

%padx
3 +±pax*+T\pa

2x3
; also, (Art. 5& Ex. l.),the

bodv = \pux*- ; and (Art. 58. Ex. 2.) AG = %x ;
.-.

CGW-f- \x j hence, CG x body = ^padx
2+±pax

3
;
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dividing therefore the above fluent of this quantity, we

h CO §£*+&&+3a*+«#

3x-\-a

6d+4>x

If C coincide with A, d=0, and CO =
Ex. 8. Let the solid be a cone ; to jind the centre of

oscillation.

Put AB=<z, BD=6 ; then a : b : : x : y =— =
a

/ifm=—
J
mx; hence,px x d+x

2 X y
2
+\y

4 — px X

d+x~Xm2x2+±mAx4
, whose fluent is\pd2m^xi

-\-\pdm
2xA

^pm2xs

-\-^^pm
Ax5

\ also, (Art. 52. Ex. 1.) the body=
lpm2x3

; and (Art. 58. Ex.2.) AG=f*,.:CG=d+lx;
rp _ 20d2 + 30dx + 12*2

4- 2m2x2
_6nCe '

==
ZOd+15x

20d2+30da+t2a?+3b2
c , , ,
for the whole cone,when #=rff,

20d+15a
'

and mx=y=b.
If the cone be suspended at the vertex, then </=0,

3nd co=i2!±i
a

.

5a
£^. 9. Zef the body be a sphere ; toJind the centre O

ofoscillation, C being the point ofsuspension.
Let B be the centre ; then if BA=r, z/

2= 2r;e—#*.

Jn this case, it will be most convenient to apply the rule

in Art. 66. that is, to get the value of CO when C
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coincides with A, and thence to deduce its value °m

any other case. Now when C coincides with A, d==0,

and the expression becomes px x x2
y
2

-f- \y* = p x
rtx2

x-\-rx*x-—^x
A
x, whose fluent is ±pr

2x3 + i
prx*— $^px

s
;
and when x = 2r it becomes || pr

5 for the

#hole sphere. Also, the body X CG (G coinciding
with B) =$fir

3 x r=|/?r
4

; therefore AO= l§r ; con-

sequently BO = §r. Hence, (Art. 66.) if c/=CB, d :

2r*
y : : -|r : -r-y = BO when the point of suspension is at

5d

C ; therefore CO = d+
2ra

Id'
Ex, 10. Let the body be a circle, and the axis of vi<

oration pass through C perpendicular to its plane.
Put GA=/-, CG=(/, GO=;v, and/z=6,283 &c. then

px=zthe circumference vwz, and the fluxion of the sum
of all the particles multiplied into the square of their

distances from G=px x x2 X a?, whose fluent, when »
fir

4
fir

2

=r, is -—
;
and the area of the circle x d= -—- X d ;

4 2

hence, (Art. 66.) CO = d +
r
—.

3
If C coincide with A, then CO = — r.

Cor. Hence, the same must be true for a cylinder,

whose axis is parallel to the axis of vibration.
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On the ATTRACTIONS of BODIES.

Prop. XXXI.

r
J^0 determine the attraction ofa corpuscle P towards
•* a right line BA, in the direction P'A perpendicular
to AB, supposing the attraction to each particle of the

line to vary inversely as the square of the distance.

67. Put PA= a, AC = *, then PC 2= a2
-f ,v

3
, and

therefore the attraction of P towards a particle at C is as

1

n2+x'-
; and by the resolution of forces V a2+xz

: a

/-/2 I v2 ,3

A
the attraction in the direction PA;

<7
2+*2

"]-

ax
hence, - -is the fluxion of the whole force, whose

,1
a2

-\-x
2

J

2

v
fluent (Art. 39. Ex. 5.) is

"

, ,
which wantc

>

a2+x2
J

2 x a

no correction, for when x=0, the fluent=0 ; and when
AB

.v=AB, it becomes ==-=:—=-r for the whole attraction
PBxPA

in the direction PA-
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In like manner we find the whole attraction in

1

the direction AB ; for Va2
-\-x

2
: x

a2+x2

,
and the fluxion of the force is

, ,

a2+x2
~\*

a2+x2
~\*

whose fluent (Art. 39.) is— ___——, which wants a

a2+x2
~\*

correction, for when x=0. it becomes—— ; hence, the
a

1 1
correct fluent is —

,
and when x == AB, it

a
a2+x2 J

becomes _ __ =
pBxPA

for the whole attrac-

tion in the direction AB.
Hence, the attraction in the direction PA : the at-

traction in the direction AB : : AB : PB—PA ; take

therefore AC = PB—PA, and join PC, and that will

be the direction in which the corpuscle P will begin to

move.

Prop. XXXII.

Ifthe line PA be perpendicular to the line BA; tofind
the attraction ofPA to BA, upon the same law offorce.

68. Puta=AB,Ar= A/z; then (Art. 67.) the attraction

ofa corpuscle at/* to AB=—
; hence,

x</a2+x2 xVa2+xl

is the fluxion of the attraction required j whose fluent
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\/a2-i-x2 a
(Art. 45. Ex. 7.) is |h. 1.—-== ; now when xz=D,

Va2+x+a

this becomes |h. 1.
a— == ih. 1. — ; hence, the fluent
a+a

2
2a

Va2+x2-

£>rrected is ^h. 1.

Va2
-f-x

2
-f- a

AP) |tu 1. 5£~^?_- lb. 1.

ih. 1. —= (when x=
2a

AB+BP 2AB'
an infinite quan-

tity.

Prop. XXXIII.
Let O be the centre ofa circle ABCD, and a corpus-

cle P be situated in the line OP perpendicular to its

plane ; tofind the attraction qfPto the circle, suppos-

ing- the attractive force of
'

P to every particle of the

circle to vary as the nth poxver of the distance.

69. Put PO = a, Pv = *, fi = 3,14159, &c. then

Ov2= x2— a2 , and by Art. 49. fix*2 — a2 = the area

of the circle vxv
; hence, 2/ixx is the fluxion of the

area at the distance Ov from the centre ;
and by the

resolution of forces, x : a : : xn (the attraction of P to-

ward v) : ax"*1 the attraction of P to a corpuscle at

«? in the direction PO ; hence, the fluxion of the at-

traction of P towards the circle is as 2/ixdb x axn l=
ax11 "J~ 1

2ftax
n
x, or as axnx. whose fluent is — ; but when

n-fl
y=a

y Ox>=0. and consequently the attraction vanishes-
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an+2

72+1
an+2

; therefore the fluent

; and when ^=PA

but in this case, the fluent is

corrected becomes —
72+1 n-j-1

(neglecting the constant denominator) it becomes PO
XPAB-H— POn+ 2

,
which is as the whole attraction

towards the circle.

PO
If n =— 2, it becomes 1 — ——

,
the denominatorPA

neglected being now =— 1.

If n be a negative number greater than 1, and the

radius AO become infinite, so that PA becomes infi-

nite, then PA being in the denominator, the first term
PO X PAn + x = 0, and the attraction is as POn+ 2

.

Hence, if n =— 2, the attraction becomes unity ;

therefore the attraction is the same at all distances

PO.
Prop. XXXIV.

Let the attractive force of a corpuscle at P to each

particle vary inversely as the square of the distance; to

find the attraction of Y to the cone PAC
70. By the last article, the attraction of P to the

circle sr is as 1— -rr=l— tt-t ; the attraction therefore
Ps PA

to every section sr is the same ; hence, the attraction

PO
to the whole cone is as 1— -— x number of sections,PA

PO PO2

or as 1—
|j£ XPO,

or as PO—
^-.
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PO
Hence, for similar cones, =-r- being constant^ the

attraction varies as the length.

Prop. XXXV.

Ifa corpuscle be situated at P in the axis SQ of a

cylinder, tojind its attraction to the cylinder, suppose

ing the attractiveforce to each particle to vary inverse-

ly as the square of the distance.

71. Put RF=a, PR=*, then PF== Va^+x2
; and

by Art. 69. the attraction of P towards the circle EF
x

is as 1 .> . i..u. ; hence, the fluxion of the attrac-

Va2
-f x2

tive force is as x— XX

Va2
-f x2

-, whose fluent is *

Va2 + x2
(Art. 39.) ; now when x= PQ, this fluent

becomes PQ—PB, and when x — PS, it becomes PS
•*—PC; and as we want the attraction of P to the solid

between these two values of x, their difference SQ -f

PB— PC is as the attraction required.
If the length be infinite, then PC = PS ;

therefore

SQ— PC= SQ—PS = —PQ, and the attraction be-

comes as PB—PQ,
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If the diameter AB be infinite, then PC = PB ;

hence, the attraction becomes as SQ.

Prop. XXXVI.
Tofind the attraction of a corpuscle P to a sphere,

-when the attraction to. each particle varies inversely as.

the square of the distance.

72. Let PAC be perpendicular to BD ; put the

radius AO = «,OP = b, AP = b—a=~c, PK=*/, and

let PB = c + jr, then AK= y— c, CK=2a—y+c, .%

IfZc x 2a—y +~= BK2= BP*—PK2 = c~+x
2—

y* ;

. 2ac + 2C2 + .2cx + x2

hence, y = ^+2^
= ^sb = a + c>

j
b<

: ±-
2cy

.±il!
j therefore the attraction of P to th*

2b
2bc -f- 2cx -4- xz

circle BD is (Art. 69.) as 1-— , or as,

2bxc + x

.5 '—
; also^ */= *—i_ ; hence, the fluxion of the

b X c+x °

attraction to the sphere is as -——
,
whose fluent

b*

is —_^L=, the attraction to ABD, for the fluent
b2

wants no correction, as it becomes=0 when ABD=0;
4a3

and when x = 2a. it is —- the attraction to the whole
3b

a3

;jDherej. which therefore varies as —*
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If the density d of the sphere should vary, then the

.„ da3

attraction will vary as -7-.
b2

If the corpuscle be at the surface of the sphere, then

a = b y and the attraction varies as da.

Since the quantity of matter m varies as da2
,
the at-

traction varies as T , Now if the sphere were evanes-
b%

cent in magnitude, with the same quantity of matter^

the attraction would be the same, it being independent
of a. Hence, the attraction of a corpuscle to a sphere
is just the same as if all the matter of the sphere wer&

collected into its centre.
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On SECOND, THIRD, &c. FLUXIONS.

Prop. XXXVII.

*0 explain wider what circumstances a quantitymay
have several orders qfjluxions.

73. The fluxion of a quantity being the uniform
increase or decrease of that quantity in a given time,

every quantity which increases or decreases must have
a fluxion. Hence, if the fluxion of any quantity be

not constant, it must have some certain rate of in-

crease or decrease, which rate of increase or decrease

will therefore be the fluxion of that fluxion, or the

second fluxion of the original flowing quantity. Also,
if this second fluxion be not always the same, it must
have a rate of variation, that rate therefore will be the

fluxion of the second fluxion, or the third fluxion of
the original quantity j and so on*. Thus a quantity
will have a successive order of fluxions till some one

fluxion becomes constant, and then by Art. 3. it will

have no more. Thus, let x increase uniformly ; then

the fluxion of x2 is 2xx ; now x re constant, but x
itself increases, therefore 2xx increases in proportion
to the increase of x ; the fluxion therefore of x* is not

constant. Hence, considering x as the variable part of

2xx
y

its fluxion by Art. 9. is 2xx = 2a*2, which is

* The fluxion of a? is denoted thus, x', the fluxion ofx is de*

noted thus, xi ar*d 60 on.
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the second fluxion of x2
. But if we suppose x not to

increase uniformly, then 2xx will have both x and x
variable ; hence, by Art. 15. the fluxion of 2xx will

be 2xx -f 2xx, or 2x2 4- 2xr, which therefore is the

second fluxion of x2
. But if we should here suppose

neither x nor x to be constant, then this second fluxion

would be variable. Now the fluxion of 2a;2 is found

by Art. 13. considering here x as the root, and there-

fore the fluxion of the root is x ; hence, the fluxion

of 2x2 is 4xx ; also, the fluxion of 2xx is found by
Art. 15. to be 2xx-\-2xx, both x and x being variable;

therefore the fluxion of 2a?2 -f- 2xci\ or the third

fluxion of x3
,

is 4-xx -f 2xx -f- 2xx = 6xx -f- 2xx.
In like manner we may find the successive orders of

fluxions of any quantity.
74. If x increase uniformly, or if x be constant, xn

will have n fluxions, and no more, n being an affirmative

whole number. For the first fluxion is nxn~xx
; and

x only being variable, its fluxion is n . n — 1 . xn~2x2
j

and the fluxion of this is n . n— 1 . n—2 . xn~~sx 3
,
&c.

when therefore we have- taken the fluxion n times, the

index of x becomes =0, and x°=l; hence, the fluxion

then becomes n . n—1 . . . 2.1.a n
, which being a con-

stant quantity, it has no further fluxion.

75. The first fluxion of x^ -f- ay
2

is 3x2
a'-f- 2ayij j

and if aV and y be both variable, its fluxion is 6xx*

jSx^x -f- 2aij
2
-f 2ayy ;

but if x be constant, then
x = ; therefore the second fluxion becomes 6;ca'2 4-

2ay
2
-f 2ayy ; and if y be constant, the second fluxion

is 6^a-2 + 3x2x + 2ay
2
.

76. The first fluxion of xny
M

, by Art. 15. is

ny
mxn~~1x-\-mx

n
y
m~1

y; and if both x and y be variable,
We are to consider each of these quantities as com-

posed of three variable factors, and then the fluxion,

by the same Art. will be n . mxn~1

y
m"1

yx + n.n—l-
y^x

n-2x2
+ny

mxn-lx^.m . nv^i.xny
Tn-2

y
2+mnym~^xrt

^ 1

vy+mx
n
y

nt-~1ih
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On the POINT of CONTRARY FLEXURE
of a CURVE.

DEFINITION.

77, If a curve be concave in one part and convex
in another, the point where the concave part ends
and the convex begins, is the point of contrary
flexure.

Prop. XXXVIIL
Tofind the point ofcontraryflexure ofa curve,

78. Let PQ, BC, Dr, be three equidistant ordi-

nates, and the curve concave to the axis ; and draw
QR, CE parallel to AD, and join QC, and produce
it to meet Dr in t. Then the triangles QRC, CE^
Veing similar, and QR =CE, therefore CR= *E, and

hence CR is greater than Er; therefore if y represent
the ordinate, moving from A, and x the abscissa, and
PB=BD=i? a constant quantity; then corresponding
to the uniform increase of .v, the increment of t/, and

consequently y, decreases; how as y increases, y is po-
sitive by Art. 16. but as y decreases, its fluxion,
or i/, is negative by the same article.

If the curve be convex to the axis, and the ordinate

move from A, then the increment of y y
and therefore

7, increases; and as y increases, y is positive; and as y
increases, its fluxion, or i/, is positive. Therefore when
rhe curve is concave to the axis, y is negative ; whera
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convex*, y is positive, x being constant. Hence, at the
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Here y=3x-i 36p&—6x2
x, and ij=36x

2—\2xx2=
(if x=l) 36—1*1*. Now make 36—12x=0, and^=
3 ; take therefore AB=3, and draw the ordinate BC,
and C is the point of contrary flexure. If x be between

and 3, 36—\2x is positive, therefore the part AC of

the curve is convex to AB; but when x is greater than

3, 36—12x is negative, and therefore the curve is con-

cave towards the axis. -

Ex. 2. Let GCV be a curve qfsuch'a nature, that if
GA (which is perpendicular la AB) bejffoduced to any

point P, and PC be drawn to anypohuof the curve, vC
shall always be equal to AG.

Put AB = x, BC = z/, PA = a, AG = b ; then by

sim. trian. VAv, B C?>, a (PA) : x—Vb*—y2 (AB—
By) y- y (

BC) : Vb2—
y
2

(Bt>) ; hence, xy—a-^-y x
V b2—y

2
; take the fluxion, and yx -f- xy = yVb2—y

%

•"

;'
substitute for x its value, and we get

- X y ; now make y constant, ana wex =
yWb2

-y
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.. 2b*a—b2us—3bW .. , . ,

have x = ' v -v X y
2
,
which put = O, in

b2y
3—

y* xVi
2—y

2

which case the numerator=0 ; hence, y
3+3ay

2=2b2a ;

from whence y may be found, and then „v, which will

give the point of contrary flexure. This curve is the

Conchoid ofNicomedes.

Ex. 3. Let the equation of the curve be y= 1 80#2_
110*3+30x4—3*s

.

Here y = 360*vr— 330a'2i? +'12Q**£r—15x*sb, and

y = 360a?2—660^i?2+36O^£o?2—60^3
o;2 = O, or—x5+

6x2—1 lx+6=0, whose simple factors are 1—x, 2—x,

3—x, and the roots are 1,2, 3, the abscissa? corres-

ponding to the points of contrary flexure, of which
therefore there are three. As —x3

-f- 6x
2—1 Ix + 6 =

1—x X 2—x X 3—x, when x is less than 1, this quan-

tity is positive, and therefore the curve is convex to

the axis ; w=hen #is between 1 and 2, it is negative, and
the curve is concave ; when X is between 2 and 3, it is

positive, and the curve is convex j when x is greater
than 3, it is negative, and the curve will then continue

concave.

79. If by making //= 0, the equation has 2 equal
roots, then y passes through without changing its

sign ; in this case therefore, the point found is not a

point of contrary flexure. And this will always be the

case, when the equation has an even number of equal
roots.

If the Reader wish to see any thing further upon
this subject, he'may consult Mr. Lyons's Fluxions,

page 136.

80. To find the point C of contrary flexure of a Spi-

ral, it is manifest, that as long as the point A ap-

proaches to C, the perpendicular Sz/ upon the tangent
must increase ; and after A has passed through C to

B, the perpendicular will then decrease ; therefore at

the point C it is a maximum ; hence,i£ we make the
,i»



124 Point of Contrary Flexure,

fluxion of the perpendicular = 0, it will give the point

w + 1 X t
2m

of contrary flexure.

Mx. Let the spiral be that in Article 32.

Here Sy = — v —
; hence, 2Sw X Sw =

\/*2m -f m2
£/

2m

a»y-+H>+5»+»x»>-^i>-+'!> but ^ there.

t
2m+m2

y
2m v •>

foo 2mVw+ 1+27?t+2xm2
^2my

2"t -f 1=0; hence, j/
2W=

,andv = — ^—- P"XJ. Assum-
m2

|

ing therefore m a whole number, 1m must be an even

number, and therefore y is impossible, except m be a

negative number greater than 1, in which case the

quantity under the radical sign becomes positive.

For the Lituus, ??i=— 2, and y =— j
Xt= 4

|

J

X f.= V 2 X *.

If m=l, it is the spiral of Archimedes, and
j/

is im-

possible, therefore it has no contrary flexure.

If m =— 1, it is the reciprocal spiral, and y is im-

possible, therefore it has no contrary flexure.
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On the MOTION of BODIES ATTRACTED
to a CENTRE of FORCE.

Prop. XXXIX.

HHOfnd the time and Telocity ofa body descending or
•*

ascending in a non-resisting medium, in a right line

to orfrom a centre offorce; supposing theforce to vary
as any power of the distance from the centre.

81. Let -v be the velocity of the body at any time,
x the corresponding space, either that described, or to

be described, m = 16^ feet, t = the time, F the force

compared with the force of gravity on the earth's surface,
which we will represent by unity ;

then v%)z=±2mFx
7

the sign being -f when v and x increase together, and— when v increases as x decreases. For by Mechanics,

v oc F x i, and i oc — ; hence, i'ocF X —
, and vv oc F x

V V

db, that is, vv is to Fx in some constant ratio ; let vv=
dFx. Now when a body falls upon the earth's sur-

face, v2 = 4>mx by Mechanics, x being the space
described ; hence, vv = 2mx

;
but if x be the space to

be described, and a the whole space, then v2 = 4<m x
a—xt and vv = — 2mx ; hence, vv = ± 2mx ; but
in this case, F= l

;
therefore d= ± 2m ; hence, vv= ±

2mFx. Also, the velocity ofa body moving uniformly
is measured by the space described in 1" ; therefore

to find the time corresponding to the space ± a', we
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X
have v : ±x :: 1" : i = ± —, because v is the velocityv

with which x is described in the time ?, and when the

velocity is uniform, the space is as the time.

Cor. If the force of gravity on the earth's surface be

represented by 2m, then d—\, and vi> = ± Fx,

Prop. XL.

Let a body begin to fall from any point A towards
the centre offorce S

; to find the velocity at any point

C, and the time of describing AC.

82. Put a= SA, x = SC, v — velocity at C, and let

A

the force vary as xn
, and at any distance c from, S, let

erepresent the force compared with the force of gravity
on the earth's surface, or unity j then cn : xn

: : e :

— X xn = ( ifd=— ) dxn
, the force at the distance x ;

cn \ cnl
*

j)2 2md
hence, vv=—2mdxnx, and-=— xxn+ 1+C ; but

Xan+ 1

+C,.-.C=when v= 0.x= a, and 0=
rc-fl

2»«/ „ i , ,
t>s 2md

;Xan+ 1
; consequently- = Xan+ l—xn+ 1,and

7Z+1 2 n+1
!4md

,==V-TT
x

X VV1 + 2—xn+ K Hence, i
—— —=—

n+1 v
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a"

\md
-, whose fluent gives t ; but

w+1
X VaB+ l—xn + 1

this can be found only in particular cases.

EXAMPLES.

Ex. 1. If n = 0, then xn = 1, and the force is

constant, and v = V 4<md X Va— x. Also, i =
—oc 1 . 1—h . ,-= = -___-. x'a—x J

X — x, whose
'S/^mdx Va—# V^ia* *

o ,i
fluent (Art. 39.) is *= x><£—x\ + C j but when

V4ma*
2 \h

t=0
y x=a, .: C=0 ; hence, tz= X a—x

J
.

Ex. 2. If ?2 = 1, then v = v/2ma' X Va2—#2 =
V2ma' x CD, if upon SA a quadrant be described,

and the ordinate CD be erected J_ to AS. Also,

; but if 2 = AD, then

(Art. 46.) £ :— x : : a : Va2—x2
,

.•.

-x

Va2—x2 a

r i *
hence, i = \J X — whose fluent Cwhich wants no~

2md a K

correction, because when fc=0, 2=0) is t= \j x^ 2md
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—
,
the time through AC ; hence, iffl=l,57079 (which

a

js— of the circumference of a circle whose radius=l ),
4

we have \J X fi for the whole time through AS,^ 2md
because here z=AV=fia. Hence, from whatever dis-

tance the body falls, the whole time of descent will be

the same, it being independent of AS.

Ex. 3. If n = — 2, v = V4md X V *_1—«-1 «=

la—x
V4md XV -• Also, /=— a z x^x

ax V4?rd V<7—x

cfi ^ —xsb a^ \ax—xx \ax

s/^md V ax—x 2 V4md Vax—x2 Vax—x2

a*
whose fluent (Art. 40. and 46.) is t = x

V4md

(\/ax—x2—acir.arc, whose rad. = — a and versed sine

„v) _l C = (ifupon AS we describe a semicircle)
—=

' v
V4>md

X (CE—SE) + C ;
but when *=0, this becomes 0=

• X — arc SEA + C, .-. C=-= X arc SEA ;

\Z^md V4md
a$

consequently *=-^=X (CE+arcAE). Hence, the

a*
whole time to S= —= X arc AES.

\/4>md

Ex. 4. If n = — 3, v = V2md x V*',-2 „—2a-* =
. Vfl2-^ .. 1 —axx

V2md X • Also, t = X —===,
ax V 2md V a2—x2

1

and therefore t= -=^ x a Va2—x2 = —= X AS
V2md V2md
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X CD, which wants no correction, because when

?=0, CD=0, and both sides vanish together. Hence,

the whole time of descent to S = —-—- X AS 2
.

V2?nd

Ex. 5. If e=l, c=r, the radius of the Earth, ?2=
— 2, and a be taken any distance from the Earth's

centre greater than r, then d = r2
,
and v = s/4mr2 X

<U = rV 4m x \j the velocity acquired in~
ax ^ ax

falling from any distance a from the centre through

a—x ;
and when x = r, v = r V 4m

J

"3
— \a—r4m r x V =

' ar

V4mr x \ the velocity acquired in falling

through the space a—r to the Earth's surface. If a

be infinite, v = V 4mr the velocity which a body
would acquire in falling from an infinite distance.

Ex.6. If ra=l, and a=r, then d=— ; hence, v =
r

O Ml - .

\j-— x r2—xz
; and when x~0, v== V2mr

y
which~

r

is the velocity a body acquires in falling from the

surface of the Earth to the centre, because within the

Earth's surface the force varies directly as the distance.

Also, by Ex. 2. t=p X \!——t—P V — • Hence,J r ^ -Zmd ^ 2m

by Sir I. Newton's Principia, Lib. 1. p- 38. Cor. 1.

the time in which a body would revolve about the

Earth at its surface = 4p x \f = /"v— • This isr ^ 2m r ^m
the time in seconds ; also, 4pr is the circumference of

the Earth; hence, p y — : l" •: 4pr \ V 2rm th*
m
S
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velocity of a bod}* revolving about the Earth in a circle

at its surface, the velocity being always measured by
the space described uniformly in l". We must take r

in feet,m being in feet. Hence it appears, that the velo-

city of a body falling from the surface of the Earth to

its centre, is equal to the velocity of a body revolving
at the Earth's surface.

Cor. 1. From hence we may find how far a body
must fall above the Earth's surface to acquire the ve-

locity in a circle at the surface, supposing n=—2 ;
for

—— §Q f*

then, by the two last examples, V4>mr X V =

\/2mr •

hence, a = 2r, and a— r = r the space fallen

through.

Cor. 2, Let s be the space a body must fall through

by the constant force of gravity at the Earth's surface

to acquire the velocity \/ 2rm in a circle ; then, by Me-
chanics, v2=Aims=2rm •

hence, s=±r ; and the same
is true for any circle.

Ex. 7. If instead of supposing the body to fall from

a state of rest at A, it be projected with a velocity b,

b2

then when x = #, v = b
;
therefore (Art. 82.)

— ==

X«n + - +C;hence,C= Xan+ l

;con-
rc+1 I

* '2 n+\

sequently x/=W £2-f-— x an+ 1—xn + K Now to

find to what height the body will ascend if it be pro-

jected upwards, we must put v=0, and then b2 +—Xa" + 1—x n + 1
=0;hence,^=^t-:X b2+a" + 1 "T7

n+1
'

4-md
\ ,

the greatest distance from the centre of force to which
the body ascends. If we assume vv= ± Fa, we get

I 2
'

v = Jb*+—~ X «"+ »—*•+ *» Here, when i-=0,
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2
x= ——- X b2 -\-a

n+ 1 1"
1

the greatest distance from the

centre to which the body can rise ; and this never can

become infinite as long as the index is positive,
/z-f-1

or as long as n is greater than— 1 . But when n is less

than— 1, the index becomes negative, and therefore x

1_ri_

which will be finite or infinite according as x b2 -f

an+ x
is positive, or nothing; and ifthat quantity becomes

negative, x becomes negative or impossible, which,
as that can never happen, it shows that the supposition
of u=0 was impossible ; that is, the velocity will not be

all destroyed when x becomes infinite. If x = 0, v=
"~~2

1

b24 x an -\-
1

\
the velocity at the centre of force

rc-fl I

when the body is projected downwards. If £=0, or

the body fall from a state of rest, v= \j x an+ l
,J ^

n-f-1

If w=0, v=V2a. If n=l,v=a. If n be a greater

negative quantity than— 1
, v comes out impossible,

the meaning of which is, that the velocity is greater
than can be expressed, even by an infinite quantity.

Ex. 8. If n = — 1, this fluent fails (Art. 38.) for

4

x „ . t>
2

then vv= —2md x —
,
whose fluent is —=—2/w^xh.l.

x 2

x-f-C, and when v s= by x = «r,
and the fluent becomes

b2 b2_==— 2md x h. 1. tf+C, and C=— + 2md x h. 1. a ;
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1)2 $2
therefore— = \-2mdx (h.l. a

—
h.l.tf), and v2= b2

+4mdx h. 1. —
; hence, v=z\f b2

-f- 4imd x h. 1. — '.

X T #

WVWVWVW^'W^'

On the MOTION of BODIES in

RESISTING MEDIUMS.

83. Let a cylinder move in a fluid in the direction

of its axis, with the velocity d, and suppose the resist-

ance to be equal to the weight of a column of fluid

whose base is equal to the end of the cylinder, and al-

titude k
; and let the resistance of a globe of the same

diameter as the cylinder, and moving with same velo-

city, be to the resistance of the cylinder, cts b to 1 ; and

put p = 0,78539 &c. h = the diameter of the globe,m= 16yj feet, and let the density of the globe : the

density of the fluid :: n : 1. Now the magnitude of

the globe is
2
ph

3
,
and the magnitude of a column of

fluid equal to the resistance of the cylinder is ph
2k ;

therefore the magnitude of a column of fluid equiva-
lent to the resistance of the globe is pbh

2k. Hence,
the magnitude of the globe : magnitude of a column
of fluid whose weight = the resistance of the globe

3bk
:: | ph

3
: pbh

2k :: 1 : —-; therefore their quantities of

3bk , 3bk
matter are as n • —

, or as 1 : —-.
2A 2nh

Hence, if the weight of the globe, or its gravity, be

3bk
denoted by unity,— will represent its resistance mov-

"* 2nh r

ing with the velocity d. Hence, the resistance of the

.. , .3k
cylinder is—

,
.J

2nh

*
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Prop. XLI.

Let a globe be projected in a resisting medium, as in

the last article, and let the resistance be as the cth power

of the velocity; tofind the velocity v, time t, and space
x described, any one in terms of the other.

84. Lett/ be the velocity of projection, and r the

resistance corresponding to the velocity d, compared
with the force of gravity represented by unity ; then

3bk r
r= by the last. Art. Hence, dc

: vc
: : r : — X ve

2nh ' dc

the resistance corresponding to the velocity v ; there-

in / a „-. \ 2mr r- lr 1 ?mr\
fore (Art. 81.) w -a — x v cx —

(
if — = ——

)v dc \ e d c /

— vcx ; hence, 3c=-—ev
l~cv

1 consequently x = —
e

Xt;3-c+C; but when „y=0, v=d, and the equa-
2— c

tion becomes 0= x^2~c+C; hence C==
2— c 2— c

e

t

X d2
-*; therefore x= x d2~c— ^2_c.

2— c

Hence, when v = 0, and c is less than 2, x=

X d2"
, the whole space described before the velocity

is all destroyed.

ev
If c= 2, the fluent fails ;

for then x= , and
V

, , d I, nhd* \ nhd* , . dx=e X n. 1. —=
( because e = — — X h. 1. —.

u \ 3mbk 1 2>mbk X'

Hence, when v=0, x becomes infinite, therefore the

velocity will never be destroyed.
If c be greater than 2, 2— c is negative, and by
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making v = O^ x becomes infinite, which shows thai

the velocity will never be all destroyed.

Also (Art. 81.), /=— =—
£»-*£>, and t=

v
' 1—c

e
X v 1"*

-f C ;
but when t = 0, v = d ; hence, C = 1—c

e
X d1-

; therefore t= x d x~c— v x~*.
1—c

Hence, when v = 0, and c is less than 1, t =
1 — c

X ^1_c
j
the time of describing the whole space.

If c = 1, the fluent fails ; for then i =
,
whose

v

fluent corrected is t = ex h. 1. — . Hence, when i>=0,
v

t becomes infinite. But it appears from above, that,

in this case, the space is finite ; hence, the body is an

infinite time in describing a finite space, and which

space is ed.

If c be greater than 1
, then 1 —• c is negative, and

when v = 0, t becomes infinite; but the space will still

be finite whilst c is less than 2. When c is equal to,

or greater than 2, both the space and time will be

infinite.

iT-^c
—

"I—
As v = d2~° X xl 2 ~ c

, substitute this

quantity for v
y
and it gives t = X

* —
-\l-c

d1-"— d2~c X x 3_c
, showing the relation be-

e I

tween t and x, except in the cases where the fluents

fail.
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Prop. XLII.

Let a body be projected in a resisting medium direct-

ly to or from a centre offorce, and be attracted by a

constantforce towards that centre ; to find the space,

time, and velocity.

85. Let F be the force compared with gravity
which is represented by unity, and retain the notation

in Art. 84. Now when the body descends, the whole
accelerative force = F— the resistance ; and when it

ascends, the retarding force = F + the resistance ; that

is, in the former case the force = F x i'c
',
and inJ dc

the latter, it= F -^ X ^c
. Hence (Art. 81.), vv=

dc

•

r±2m x F :f— x ~v
c X x, the upper signs being used

dc

when the bodv descends, and the lower when it ascends;

hence, (it -— = e) x =— x ^ •
' v dc ' 2m F =f evc

1 iw
If c = 2, x =— X -^ •„-,

whose fluent (Art. 45.)
2m ¥--fev

2

is x = — x — X — h. 1. F=f ev2 + C ; but when
2m 2e

x = 0,v = d, and the fluent becomes = x —
4?ne

h. 1. Ft ttaP + C ; hence, C= X h. 1. F^ed2
;

4me

consequently x =. x h. 1. -r— • Hence, we
4me F -^ ev2

may find v in terms of x : for Amex= h. 1. =
r =F ev

therefore put xv — the number whose h. 1. is
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F 3z ed2
4mex. and then w = —

; hence, v =
F ? fu8

sj
F :r^2— XVF

86. If the body ascend, and -y = 0, x = x h. L
4me

... . the distance to which it ascends.
F

87. Let the body descend. Now when F =—
d2 "*

the resistance becomes equal to the accelerating force •

F * rf2

-^=*Jl,hence, v2 = —
,
and v = d^— ,

the greatest velo-

city the body can acquire ; for when the resistance

becomes equal to the attractive force, there can be n»
further acceleration.

1 F
88. If d— 0, x — -— x h. 1.

—
:.

4me t ^fev
2

89. Also (Art. 81.), i = — =— x T,
~

a ; hence,
v 2?n t ^ev2

1 v
when the body descends. i= X— , whose fluent3 2me

_t __ s

'

e

(Art. 45.), (putting
— = a2

)
is t = x h. 1.

eL±l>

e 4mae a—v

-f- C ;
but when t = 0, v = d, and we get = X

4»*ae

, , a + d „ . _, 1 , . a-\-d
h. 1. —i—,-fC; hence, C= Xh. 1. —!—* conse-

a—a 4mae a—d

. 1
,

. a +-u i i
° + ^ tt -r

quently £= xh. 1 h. 1. . Hence, it wc
4?nae a—v a—d

substitute the value of v in terms of x
>
we shall get t in
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terms of x. If the body fall from a state of rest, t =
1 . . a-\-v

Xh. 1.

Amae a—v

. « 1 — v
90. When the body ascends, t=— X ^——^

=
J 2m r + ev*

J— x
"""^

, whose fluent (Art. 46.) is t = -—~

2me a2 + v2 K
?mea

X M+C, M being a circular arc whose radius is

1, and tangent
—

;
but when t = 0, v = d; put there-

fore N = the arc whose tangent is — , and we get t=

X N— M. For the whole ascent, v = 0, .*. M
2mea

=
; hence, t = X N.

2mea

91. If we apply these expressions to the descent of

a globe in resisting mediums upon the earth's surface,

then as unity represents the force of gravity, that is,

the force when a body falls in vacuo, we must find

the value of F when a body descends in the medium.
Let the density of the body : the density of the me-
dium : : n : 1 ; then if w = the weight of the body
in vacuo, we have, by Hydrostatics, w : weight lost

when in the fluid : : n : 1; hence, w : w— weight lost,

or weight in the fluid, : : n : n—1, therefore the weight
7Z—1

in the fluid =wx =(ifw=l the force of gravity)
n

which is the gravity of the body in the fluid, or
n

the force with which it endeavours to descend ; this

therefore is the value of F. Also, c = 2.

92. By Art. 83. rz=^-—; hence (Art. 87.) v(=d



138 Motion ofBodies

^=*)W2-^-A
,, the greatest velocity the

bocty can acquire by falling in the fluid. Also, t •=

X (h. 1. ——.— h. 1. —— .) ; and when v = a, t

4mae \ a— v a—a I

becomes infinite
; therefore the body never can acquire

its greatest velocity.
93. The greatest height to which a body can as-

cend when projected upwards, is (Art. 86.)
—— X h. 1.

F-f ed2 _nd*h
F ~6mbk X h. 1. ( 1 H

—
1 .

V 2.n—\.h'

Prop. XLIII.

To determine the resistance ofa medium, by -which a

body may describe any curve about a centre offorce,
theforce to the centre being given.

94. Let ABC be the given curve, S the centre of

force, and F the force of the body at B towards it,

the force of gravity being unity ; draw DE perpendi-
cular to BS, meeting the tangent BE ; and Dv per-

pendicular to BE. Put AB = z, BS=w, BD=—w,

BE = #, v =. the velocity in the curve at B, and * =
BQ=|the chord of the circle of curvature at B passing
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through S, m = 16^ feet. Now it is well known, that

a body, whether it moves in a resisting medium, or

not, must fall down \s by the constant force F to

acquire the velocity in the curve ; for the resistance

causes no deviation from the tangent, but only retards

the motion of the body, so that it may preserve
its proper proportion corresponding to the force ;

hence, by Mechanics, v2 = 4mF X is — 2mFs ; there-

F.9 -4- sF
fore i> = m x — the whole fluxion of velocity in

\S2mFs

the direction BE. But, by Mechanics, the velocity V
which the force F continuing constant for any time t

y

would generate in the direction BS, is 2mFt, .*. V=

(BE % \ 2F«
because i = = —

)
m X the

* v i V2mFs
fluxion of the velocity in the direction BS, arising from
the force F ; hence, BD : Bv (: : BE=i : BD=— rv)

2Fi —— 2Fib
: : m x — .

'• w X — the fluxion of velocity
V2mFs V2mFs

in the direction BE arising from the force F ;

from which if we take the whole fluxion m X
Fs + sF , .„ . F* + *F + 2Fw

,
there will remain — m x

V2mFs V2mFs
which is the fluxion of velocity arising from the

resistance, in the time that the force F would generate

2F«
the fluxion of velocity m X — ; but the fluxion

s/2mFs
of velocity generated or destroyed in the same time

is as the force ; hence, the resistance : force F : :

Fi-MF+2Frb 2F« Fi+.sF+ 2F?o
m X —T —-L- : m X - : : ~^wiV2mFs V2mFs z* x'

: 1, omitting the sign
— before the first term, as it on-

ly signifies the force to be retarding.
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95. When the centre S is at an infinite distance,
and the force F becomes constant, and acts in parallel

lines, then F=0, and the resistance : force F : : —!

: 1. But if we draw AP parallel to BS, and PB per-

pendicular to it, and put AP=^, then ti>=—X; hence,
s —— 2x

the resistance : force F : : — : 1. Or to obtain this

proportion in terms of the abscissa and curve, put
t/=PB; then by Art. 54. %2=x2+f; and by Art. 97.

Z2 X2
I l'l

2

s=— = -—7T— ; therefore if we suppose y constant, we

. ... . 2XX2 X2
4-i/

2XX 2xx2 %2X ,

shall have s = -2- = —
; hence,x2 x2

:
— ss— ^—'

y therefore the resistance : force F : :

2* 2x2 '

%x .

2x2

EXAMPLES.

Ex. 1. Let the curve be a parabola, and theforce be

constant^ and act in lines parallel to AP.

Put ^=AP, t/=PB, then ax = y
n
,
.: ax = ny

n"1

yJ

and (y being constant) ax=n.n— 1 . y
v̂ ~z

y
2
; also, Xz=

n.n—l.n—2 „ , .. , . ?i
2
y
2n~24-a2YX y .

Xyn~s
y ,

and %——Z ! !—£; hence,
a a

xx n— 2 n2
y
2n-2 + « 2

] ,—= x — ; —t the resistance.
2a;

2 2 . n . n— 1 y
n~l

If n = 2, the resistance becomes = 0.

If n be less than 2, but greater than 1, the resistance

becomes negative ;
the medium therefore must propel

the body, not retard it.

If n = 1, the medium becomes an infinite propelling
one, and the body moves in a right line.
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Ex. 2. Let ABC be a quadrant of a circle, and the

force be constant and act parallel to AO.

Put AO = a, AP = x, AB = z, then BQ=s=a-x,
s—2x 3x 3PB -.

and5=—X; hence, — =—— =-——=: the resist-

ance, gravity being unity. Hence, at A the resistance

=0. When 3PB=2BO, or radius : sine of AB : : 3 : 2,

the resistance = gravity ; and at C, the resistance :

gravity : : 3 : 2. Also, the velocity is as VBQ.
Hence, also, the resistance at BocPB. Now if we sup-

pose the resistance to vary as the density of the me-

A t_ T
P

o r a c
dium X the square of the velocity, then the density
varies as the resistance directly and square of the velo-

PB PB AT
city inversely, or as —r = —— = —— ; hence, the den-

sity at B varies as the tangent of AB. All this agrees
with what Sir I. Newton has proved in his Principia,
Lib. 2. Sec. 2. Pr. 10.

Ex. 3. Let CAV be a cycloid, and theforce be con-

stant and act perpendicular to the base CV.

Here BQ = |s, and if AO = a, \s=a—„y, therefore

A
tf
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s 2x i 2x
hence, :

— =—-j— == (because x : An : : An : AO' 2* a*
9 A«

=a) the resistance, gravity being unity. Also, theAO
velocity varies as v^BQ.

.E.r. 4. Let the force tend to a centre S, and vary as

ivn
,
and the curve be the logarithmic spiral.

As F=u>n
,
Fz=nwn~lw; also, s=rv, .'. s'=z'v; hence,

, . wnzb + nwnrb + 2wnib n+3 w
the resistance = !

' = —— x — =
2xvnz 2 %

(as zv : % in some constant ratio c : d )
-—— X -

, the' 2 d
force tending to S being unity.

If n =— 3, the resistance = 0.

If n-j-3 be negative, the medium must propel the

body.
«+J

Also, v =\/2m¥s = V2m x w 2
• Now the resist-

ance being to the force F, as —— X — to 1, if F be
2 d

represented by its true value wn
,
the resistance will

become —
T
— x —: X ivn ; and since the density of the

medium varies as the resistance directly and the square

of the velocity inversely, the density varies as — -
,

-

j ,
or

as — . Hence, if the density of the medium vary in-

versely as the distance, the body may describe the lo-

garithmic spiral, whatever be the value of n
; agreeable

to what Sir I. Newton has proved in his Principia,

Lib. 2. Sec. 4. Prop. 16. If n = — 2, F =~ , or F va-
ry2

ries as the square of the density, as he has also proved
in Prop. 15.
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On the RADIUS of CURVATURE.

Prop. XLIV.

Tofind the secondfiuxion ofthe ordinate ofa curve.

96. Let PQ, BC, Dr be three equidistant ordinates,

draw QR, CE parallel to AB, and let vCs be a tan-

gent at C, meeting PQ, Dr in v and s ; join QC, and

B D

produce it to meet Ds in t. Now as PB = BD, the

increment of the abscissa is constant, therefore (Art. 3.

Cor. 1.) PB or BD will represent the fluxion of the

abscissa, which is also constant. Now the cotemporary
increments of the ordinates are RC, Er; but the trian-

gles QRC, CE* are similar, and QR = CE, therefore

RC=E£; consequently the cotemporary increments of

the ordinates are E?, Er, and their difference is rt ;

but as the limit of the increment or decrement of the

ordinate is the fluxion of the ordinate (Art. 7.), there-

fore the limit of r£, the difference between two succes-

sive increments of the ordinate, or the limit of the in-

crement of the increment, will be the fluxion of the

fluxion of the ordinate, or the second fluxion of the

ordinate. Now as the triangles Cz;Q, Cst are similar,

and QC=C?, therefore Qv=st ; and as Qv, sr depend
upon the curvature of CQ. Cr, ifQ and r be brought up
to C, so as to get the measure of the curvature at C from

each side, it is manifest that the limit of Qi> to sr must



144 Radius of Curvature.

be a ratio of equality ; hence, the limiting ratio of rs

: st is that of equality ; consequently the limiting ratio

of rt : 2rs is a ratio of equality. Hence, if we take 2rs

in two different parts of the curve and make them van-

ish, their limiting ratio expresses the ratio of the se-

cond fluxions of the ordinates. Moreover, rt expresses
the difference between the two successive increments
of the ordinates, cotemporary with Er which expresses
the difference of the two ordinates themselves

;
there-

fore by taking the limit, so that the latter increment

may become the fluxion of the ordinate, the former
becomes the fluxion of the fluxion of the ordinate, or

the second fluxion of the ordinate ; hence, whilst the

limit of rt, or 2rs, expresses the second fluxion of the

ordinate, the limit of Er will express itsJirst fluxion ;

but (Art. 23.) the limit of Er is Es the fluxion of the

ordinate, CE and Cs expressing the cotemporary flux-

ions of the abscissa and curve (Art. 27.) ; therefore the

limits of 2rs, Cs and CE, express the cotemporary se-

cond fluxion of the ordinate, the fluxion of the curve

AC, and the fluxion of the abscissa AB. In like man-
ner it appears, if the curve be a spiral.

Prop. XLV.
Tofind the radius ofa circle in terms ofthefluxions

of its abscissa, ordinate, and curve.

97. Let ACrDV be a circle, O the centre, CBV
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perpendicular to AD, brs parallel to CB, Cs a tangent
at C, and join rC, rV. Put AB = x, BC = 7/, AC =
^, and OC = a, then Cs = z>, CE = a.', Rs=y. Now
the triangles Crs, CVr are similar, for the angle srC=
alter, ang. rCV, and the angle sCr= angle CVr in the

alternate segment ; hence, sr : rC : : rC : CV=2CB ;

but by Art. 23. it appears that the limiting' ratio of rC
: sC is a ratio of equality ; therefore the limiting' ratio

of sr : rC is sr : sC, or (Art. 96.)
— ±y : «, the sign—

being prefixed, for the reason in Art. 78. the curve

being concave to the axis ; hence, — \y' : x> : : z> :

2BC, .*. BC=-^—
; and by similar triangles CEs,CBO,—y

vc : % : : — : CO = -
^

. -, £C being constant. If A6— y
—x

'y

be perpendicular to AO, and bC to A£ ; then con-

sidering Ab as the abscissa and bC the ordinate, we
«3

have, for the same reason, CO = —-, i/ being constant,

and x positive (Art. 78.), the curve being convex to

the axis. Lastly, by similar triangles OBC, CEs, x :

% : : y : r = ^-, and if we make z constant, we have

—-—
:
—-— = O ; hence, y — -^- ; and by the same
x2 J x J

(xCi\ v* tu
proportion, x": % : : y I ~-\ : r= —• -I nus we get

the radius under three circumstances, when x is con-

stant, when y is constant, and when £ is constant.

definition:

98. Let ACW be any curve, AB the abscissa, BC
the ordinate, Cs a tangent at C, and let O be the centre
of a circle touching the curve in C, and draw OB'
parallel to AB, and DbErts parallel to BC, cutting
the curve in / and the circle in r ; then if, bv bringing

U
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Ds up to BC, the limiting ratio of sr : st be a ratio of

equality, the circle is said to be a circle ofcurvature to

the curve.

Prop. XLVI.

Tofind the radiu&OC of the circle of curvature to

the curve AC at the point C.

99. Whether we regard the curve AC or the circle,

CE, Es, Qs will be the first fluxions of the abscissa,

ordinate, and curve ; for (Art. 23.) these fluxions de-

pend entirely upon the position of the tangent, which

is common to both; and by the Def. (Art. 98.) the limit-

ing ratio of sr : st being a ratio of equality, the second

fluxions of the ordinates are equal (Art. 96.) ; hence,
the second fluxion of the ordinate is the same, whether

we regard the curve or circle. Now in the circle, if x,t/,

and z represent the abscissa, ordinate, and curve, CO

= (Art. 97.), x being constant ; hence, in the— xy
curve AW if x, t/, and z represent the abscissa AB,
ordinate BC, and curve AC, the radius of curvature

z3 a3

CO = — . For the same reason, CO =— , when—
xij yx

is constant ;
and CO = ^r, when % is constant.y x
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When we make a', y y
or » constant, it will simplify

the operation, if we substitute unity for them.

EXAMPLES.

Ex. 1. Let AC be the common parabola ; tofind the

radius ofcurvature.

Here ax=y2
,.<.y = sXs

,
and y= \a?x ,

do being
I _3 ai

constant, and=l; hence, y =—\a
2x f ss r ; also,

Aix*

%= ViF+J2 = \] 1+— = *y
_^tf

; therefore CO=

"I1
£3 4,* -f « J

2
%

When x = 0, CO = |#, the radius of curvature at

the vertex.

Ex. 2. Let it be the logarithmic curve ; to find the

radius ofcurvature.

By Art, 44. */=—= (if x be supposed constant and
m

=1)— ,
.*. y=— , and — a?i/= ^. = ^_; also, x=mm mm2

VW+¥=Ji+yl =^±yLL; hence, CO=~-
1
3

——
, which being negative, shows that the centre

O lies on the other side of the curve, the curve being
concave the other way.
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To find the RADIUS of CURVATURE to
SPIRALS.

100. Let CO be the radius of the circle of curva-
ture to the spiral SCZ at C, and draw Strs meeting
the tangent YC in s; then by the Definition (Art. 98.),
the limiting- ratio of sr : st is a ratio of equality; con-

sequently rt ultimately vanishes in respect to sr or st.

Hence, the tangents ry, ty' will ultimately form with

each other an angle which becomes evanescent in re-

spect to the angle formed by the tangents ry and sCY;

therefore, ultimatelv, the difference zy' of the perpen-
diculars upon the tangents at r and t becomes evanes-

cent in respect to the difference between SY and Sy ;

consequently the limit of the ratios of Sy and Sy' to

SY, must be the same ;
but the difference between SY

and Si/', SY and Sy, or the increment of SY in each

case, is ultimately the fluxion of SY in each case ;

hence, the fluxion of the perpendicular to a tangent to

the curve, and to the circle of curvature, is the same.
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Prop. XLVII.
To find the radius OC of the circle of curvature to

the spiral at point C.

101. Put SC=z/, draw SK perpendicular to CO, and
let SY=CK=t>, CO= r ; and considering the point C
as describing the circle, the points S and O being
fixed, SO is constant ; now OS2 = OC3 + CS2—20C
X CK = r2 -f- y

2—2ru, whose fluxion therefore is == 0,

or 2yy— 2rv = O, r being constant ; hence, r — ^4- •

v
Now if we consider y and v in reference to the spiral
instead of the circle, */,

or sE, will be the same for

each, by Art. 31. because -sE depends only upon the

position of the tangent; and (Art. 100.) v is the same
for the circle and spiral ; hence, if we consider the point

C as describing the spiral, we shall still have r = —-.
v

Cor. By similar triangles, y : v :: -4^- (CL) :

CV=^.
v

EXAMPLES.

Ex. 1. Let it be the logarithmic spiral; to find the

radius of curvature.

• u nV
Here y : v : : m : n, a constant ratio ; hence, v = —

,

and * =% therefore CO =!0X i = =2.

Hence the chord CV of the circle of curvature
Or., ty

passing through S, = -t— = 2?/ = 2SC.

is*. 2. Xetf if te fA* spiral of Archimedes ; to find

She radius ofcurvature.

y2 ~~i
—^

Bv Art. 32. v = - -7
; hence, v=2yyXy

2+t2
J

v/

z/
2+«2
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~yy y
3
y

TTT2V F~+T^
'—yyxy2 + t2

']

2
xtf =

1

y

2uyXy*+t
2—ys

y tfij+2t
2yy . ^'- y

-r-"1 = —
; therefore CO = j/f/X

y*+t
2
~\? y

2 + t^
y

2
-f ?"]* _ if + t2 ~\*

y
3
y+*t

2

yy
~

y
2 + *t2

'

102. *The same expression for the radius of curva-

ture will do for all curves, where the relation between
SY and SC is known.

For example, let the curve be a parabola, S the fo-

cus, and a = £ of the principal latus rectum ; then y =
v2

, «.
v4

. 2v3v , __ yif 2v3

—
, and w =—,.•. inj = ; hence, CO = ~ = — .

a
y «2 J

a2 ' u a2

Also, CV =^= 4y = 4CS.
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On LOGARITHMS.

Prop. XLVIII.

«

\jrIVEN a number ,
to find its logarithm.

103. Let 1 + x be the number, y its logarithm,
Ttl 'V'

and m the modulus : then (Art. 44.) i)
= —-— =

v
1 + x

m X x— xx + x2x— x3x -f. &c. hence, by talcing the

fluents, y z=zm X x— -*-x
2
-f \x

3— \x
A

-f- &c. which
wants no correction, because when x = 0, y vanishes

as it ought, for then the number becomes 1, whose

log. = O. Now this series will converge quicker the

smaller x is. If x= 1, y = m X 1—\ + \
—

\ + &c.=
the log. of 2. If m — 1, y = 1—£ -f |

—&c. the h. 1.

of 2. Hence, as we are at liberty to assume m what
we please, we may, to the same number, have as many
different systems of logarithms as we please.

104. But to find a series which shall converge
1 4" x

quicker, let the given -number be ;
then (Art. 44.)

x
y
— 2mx —— = 2tfi X x -f- x-x -f x\v -f &c. whose

1—x2

fluent is y = 1m x x 4- \x
3

4-fx* + &c. If #z=l, we

get y = 2r x x -f- %x
s
-f -|a?

s
-{- &c for the hyp. log. of

1 4- x——.. Let x = i, and then the number incomes 2 -
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%

hence,
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indices therefore of such means must be the logarithms
of these numbers ;

for instance, if 10rn=2, then rn—
log. of 2 ;

if 10in=7, then stt=log. of 7 j and so for any
other namber.

DEFINITION.

loy. The measure ofa ratio 1 : N is the number of

times which any other assumed ratio 1 : A must be

taken to make that ratio. Thus, if N=A2
,
the mea-

sure of the ratio of 1 : A2 is 2, that ratio containing 2
ratios of 1 : A.

108. The ratio of 1 : A2
,
1 : A3

,
1 : A4

, &c contain

2, 3, 4, &c. ratios of 1 : A ; hence, the indices of A ex-

press the number of ratios of 1 : A which that ratio

contains ; for instance, 1 : A4 contains 4 ratios of 1 :

A ; hence, 4 is the measure of the ratio 1 : A4
; also,

the measure of the ratio of 1 : Am
is »z, that ratio con-

taining m ratios of 1 : A. Now if we put A=10, then

the measure of the ratio of 1 : 10m is m ; but by article

106, m is the logarithm of 10w ; hence, the logarithm
of any number is the measure of the ratio of that num-
ber to unity. In this sense, logarithms are called the

measures of ratios, the logarithm of any number N
showing how many ratios of 1 : 10 are necessary to

make the ratio of 1 : N.

Hence, every ratio 1 : N has some certain measure
in every system ; now that ratio whose measure is tn,

the modulus of the system, is called the Modular Ratio

by Mr. Cotes.
109. Ifx—yn , then by taking the logarithms of both

sides {Trig". Art. 6), log. x=?i x log. y ; hence, if we
have any equation of this form, log. x = n X log. e/,

then will x—yn
. If y be constant and n variable, the

curve denoted by this equation is called the loga-
rithmic curve.

X
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LEMMA.

110< "
\a + bx +cx2 +dx3

+&c. f
~0i °rA+"

fB+6 X y+C+c X a:2 -fD-H/x *3
-f &c. = 0, what-

ever be the value of x
; then must A-f-a=0, 6+6=0,

C-f-c=0, &c. For as we may take x of any value, let

#=0, and then A-fa=0 ; hence, the remaining part,

B+b x * -f-C-f-c X y2
-fD-fof x x3+ &c.=0, and divid-

ing by *•, B^+3-fC+c X^-f-D+^X ;e
2-f&c.=0 ; let x

=0, and then B+6=0 ; and thus we may proceed for

all the coefficients. Or we may consider it thus : The

equation cannot become = 0, but when its roots are

substituted for x ; the equation therefore cannot vanish

for every value of x you may assume, unless you make
each term vanish, independent of x, by making each

coefficient = 0.

Prop. XLIX.

Given a logarithm, to fnd its number.

111. Let l-f#be any number and y its logarithm,

thenz/= ; hence, y-\-xy=mx, and y+xy—mx=zO.
l-\-X

Assume x=ay-\- by
2 + cy

3
-f &c. then x=ay+ 2byy-\-

3cy
2
y-j- &c» substitute these values of x and x into */-f

xy—wa?=0, and we have,

$+ ayy+ by
2
y + hc.l ==0 , hence rA

—may—2mbyy—3mcy
2y— &c. J

110.) 1—ma=0, a—2mb=0,b—3;hc=0, &c. there-

r 1
, a 1 b 1 c

fore a = —•

; 6 =— = —-
: c =— = :; «c.

w 2;» 2i»* 3wz 2.3ttcj

zy zy
2

z/^

hence, x=— -f -2- -I 2—. j_ &c . consequentlv 1+' m 2m2 2 . 3m3 T ^

3?ssl4JL. -f -^— -j
^—- 4. &c. the number whose

m 2w2 2 . 3m3 T

logarithm is y.
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If m=l, then 1+*=1 + y + !L+ ]L- + hc. is the

number whose h. 1. is y.

Prop. L.

To jind the modular ratio,

112. By Art. 108. every logarithm is the measure of

the ratio of its corresponding number to 1 ; hence, y
if ifl tfi

is the measure of the ratio of 1 -f-
— + —~ + ~—r—tm 2m2 2 . 3tn?

-f &c. to 1 ;
now (Art. 108.) the modular ratio is that

ratio of which the modulus is the measure ; hence,

if we make m = z/,
m will become the measure of the

above ratio, and the ratio will become the modular

ratio ; making therefore m = ?/,
the ratio becomes

1^.14^^ j- &c. to 1 for the modular ratio, which

is therefore the same for every system, it being inde-

pendent both of m and y»



SECTION X.

vwww»/vwwt/v

On the FLUXIONS of EXPONENTIALS.

DEFINITION.

113. \ QUANTITY is called an exponential,
XJL when its index is variable.

Prop. LI.

To Jind the fluxion of xy .

114. Put xy = z, and let X = h. 1. x, Z = h. 1. z ;

then by the nature of logarithms, z/X=Z, therefore yX
* • 'i?

#
z>

+Xy = Z ; but by Art. 45. X=— , and Z=— ; hence,

•^-f Xy= — , consequently « = -^- + zX*/= yxv~*db
x z x

+Xx*y.
If x be constant, then a*=0, and Zn=XxPy.

\ly be constant, </=0, and i=yx^1
x,as in Art. 11.

Prop. LII.

To find the fluxion of xyz.

115. Put x v
* = w, and let ^ = x>, then vx = w,

hence, if V = h. 1. t, we have (Art. 1 14.) w= zvz-li>

-f Vv'Xi ; but t = xv, and r = yxv-
lx- + Xat^ ; hence,

by substitution, w = ztf'-^X^v-M? + Xxyy+Yxy%
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= zyx^~
x

x &-lx + zXxv
x~l

X xvij + Vx^x. If any
one of the quantities x, y, z become constant, its

fluxion = 0, and the term vanishes where that fluxion

enters. In like manner, we may find the fluxion,

whatever be the number of quantities. The meaning
of this notation is, the z power of xv, not the y

z
power

of x. If this latter had been the meaning of the nota-

tion, we must have put y* = x», instead of x* = v.

<w\\w\wvu\w

On the FLUENTS of QUANTITIES.

Prop. LIU.

To find the fluent of = F.
I J J an+zn

n
116. Put an = b2

, zn = x3, then ztn z=. xy
.•. — X

2 2 x
zfr-iji—dc, and zln

~x%——x&'i hence, F=—X , 2 ,
»

=
nT** ¥+7*

; consecluentIy (Art - 46 F =
p»

*

cir. arc, whose rad. = &, tan. = x.

Prop. LIV.

To find thefluent of— n
= F.

Cv <0

* 2 x 1

117. By the same substitution, F=— x -m ;'==—rJ n b2—x2 no

x J^_ ; hence (Art. 45.), F= \ X h. 1. i±£
b2—x~ nb b~-x
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Prop. LV.

Let F = ^
, te>rf F.

V a" -f z"
• 2 «i?

118. By the same substitution, F=— x
» VAa

4-x
a

hence (Art. 45.), F =— X h. 1. x+ V6* -f X
s
.

Prop. LVI.

Z^ F = -4=^=, to//u* F.
Van— zn

2 ds

119. By the same substitution, F =— X
n \/b* —- x2

=£ x -
*X

-—
; hence (Art. 46.), F=— X cir.

nb s/p— x* nb

arc, rad. = 3, sine = x.

Prop. LVII.

Zet¥= —=£==» ta/rcc? F.
Vfl2a

-f £z -f- c

120. F = i=rx *—= ; put z +— = xy

Va Vz2
+*xz-f-i. *a

a a

then z2
H z+-r-9 =*2

i hence, z2+—z^—=#*— —-_
a 4a2 a a 4a8

c c IP
f—= (by putting g

=rf2 ) a
2 + d>; also, «»#;

hence, F = —= x —
; and (Art. 45.) F ~ _

Va x/sfi + cP. vJ
x h. L x +V*» +A
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Prop. LVIII.

Let F = tofind F.
Va*8" + bx11

-f c

121. Put *n=z, then Ar
n-1a,=—xi ; also, *

2,»=22
;

n
1 23

hence, F=— X —
: » whose fluent is given

" Vaz2 + te + c

in the last article.

Prop. LIX.

Let F = ,
to find F.

Vaz2 + bz+c
'h be

122. Let x=—+z, then z2+-zH—=(by Prop. 57.)
2a a a

7—lr+l
J

—
If

xs+d*; also,z
p +*=s* ! ,

and zT%-x—— Xa;
2a I Sal

TT_v i xa
1 2a I

hence F=—= X =r- ; expand the numerator,
Va W2 + d*

and taking the terms separately, the fluents of those

terms where the index of x in the numerator is odd

are found by Art. 41. ; and where they are even by
Art. 127.

Prop. LX.

Let F = —
t
tofind F.

Vax2n + bxn + c

123. Put xn =y, then xrn=y
r
,
and #™-*a?= 2—? ;

n
•

| S^y
hence, F = — x --

"
- -

, whose fluent is found
n y/ay

2
J^by+ c

by Prop, 59.
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Prop. LXI.

Let F = , to find F.

124. Assume v =
,
then (Art. 45.) »=h. 1.

Va2
+x>

x -f- Va2+ ar
2

j put xo = V a2x2
-f x4

,
then 7b =

d*xx+2xzx azx 2x2x . .
•

,=— . „ -}
= a?v + 2b ; hence,

Va3
3c*+x* Va2+xa Var+x2

F=iti>_ia2
r, and F=±w—^a2

v. Call this P.

Prop. LXII.

Let F = r, to £n^ F.
vV-*2

125. Assume £=— —
,
then (Art. 46.) v =

Vdz—x2

cir. arc, rad. = c, sin. = x ; put xv= VcPx3—x4
,
then

. aaxx—2x3x a2x 2x2x . „j,
tw=— =— —arc— 2b ;V a2*2— x4 V a2—x2 VcP—x2

hence, F=|ar—\xv, and F =£ox>
—

\xv. Call this Q.

Prop. LXIII.

Let F =
,
to find F.

Va2+x2

126. Assume v = Va2x6
-\-x

8
y then v =

3a2xsx + 4-x7x _ 3a2x2x 4x4x ,*
124-^

V a2x6 + ~x* Va2+x2 Vtf+x*
* * • 3a2 *

3a2 P + 4F ; hence, F= %v
~- P, and F = \v—

4
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Prop. LXIV.

Let F= — —
, to find F.

127. Assumeu=v/
<3
2^6—a-8

,
then t>=— —-

3a2x2x 4x4x , . „ .
• •

= (Art. 125.) 3a2Q— 4F
j

hence, F=—Q— ±r, and F=—Q —hn
'

, 4 4
4

In this manner you may continue the fluents when
the numerators are .v6.i*, x8x, xxox, &c. by assuming
v= */a2xw ± x12

,
v^a2^ 14 ± x16

, Sa2xu ± x20
, &c. re-

spectively, and by taking the fluxion, you will, in like

manner, get t> in terms of the given fluxion and of the

next inferior fluxion.

Prop. LXV.

Let F == xnxS/a2
-x. x2

,
n being- an even number

, te

find F.

128. Multiply and divide the fluxion by vV ± xs
f

] ~m~^ CI iA *X/ 1L. DC ' fJL
|

m mm n
and r = —

; hence, as the indices ot
v a2 ± x2

x in the numerator are even numbers, the fluents of

a2xnx . xn + 2x
, , r j i i—

, and —
, may each be round by the

Va2 ± x2 v a2 ± x2

method directed in the last article.

If n be an odd number, F may be found by Art. 41

Prop. LXVI.

Let F=x*/2ax—"x2, tofind F.

129. Let the radius AO=«, AP=;c, then the sine

PM =3 >/%ax — r2
,

therefore F = x^2ax— x3 as
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(Art. 49.) the fluxion of the area AMP ; hence, F =

the area APM.
Prop. LXVII.

Let F=xxV2ax—x2
, tofind F.

130. Assume xv=\x2ax—x2
j

3
, then r'v=ax—xx

X V2ax— x2 = axS/2ax — x2 — F ; hence, F =s

ax\/2ax— x2—
ti', and F=a*area APM— w.

Prop. LXVIII.

Let F= ,
tofind F.

\/2ax— x2

131. Assume rv= ^2ax—x2
,
then w=

ax—xx

"*/2ax—x2

ax xx ax •

,— r ; hence,
y/2ax—x2 */2ax—x2 ^2ax—x2

ax — w, and (Art. 46.) F = z— w, z
>/2ax—x2

being a cir. arc, rad. = a, versed sine = x.

Prop. LXIX.
xmx

Let F= —
, to find F.

x— a J

132. Divide the num. by the den. till the index of x
in the remainder = 0, and the remainder will then be

a"'x ; hence, F= xm-1
x-\-ax

m-2
x-j-a

2xm~*x + &c. +am

X —
; therefore (Art. 37. and 45.) F= f-x — a v

vi

axm~x a2xm~2

-f — f- lkc.-f-a'"xh. 1. x— a, Here m must
vi— 1 vi— 2
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be a whole positive number, otherwise the index of x
cannot become = 0. If the denominator be :c-f-«, the

terms will be alternately + and— .

Prop. LXX.

Let¥ =
,rm—l Z>

a+bz'
;,

toJind F.
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continue this division till the index of z in the re-

mainder becomes m— l,and the remainder will be

ar~l
, t4 1 , . a

± x 2m_1i ; hence, F = — x z™-™-** — — X
b'-1 b b%

ar—\ zm~1

Z>

zrm-2m-i~t&c , ± x ; now the last term =
br
~l

a-+oz'
n

,,J—1 w/,~m—1 y. 1

±
"

x — -
; hence (Art. 37. and 4>5.\ F =—

mbr a+bzm
K J b

n-rm—m ^rm—2m fl
r~*

X- ~-X- +&c.±-7-xh. \.a+bzm.

rm-—m b2 rm—r-zm mbT

Here, r must be a whole positive number, otherwise

the index of z can never become w—1.

LEMMA.

Let — = + t + + &c,
xn—px

n x -f-&c. x—a x—b x—c

to find K, L, M, &c. where a, b, c, &c» are the roots of

x«—px
n-1+hc.=0.

1 34. Reduce the fractions to a common denomina-

tor, and it will be the same as the denominator on the

left, and consequently the sum of the numerators = 1 ;

hence, K X x—b x x—c x &c. -f- L X x—a x x—c

X &c.-j- M X x—a x x—b X &c.-f&c.=l ; now as this

is true let x be what it will, make x=a, and then K x

a—b x a—c x &c. = 1 .. K =
a—b x a—c X &c*

Make x=b, and then L X b—a X b—c X &c. = 1, ..

L= :
—- —

, In like manner we get the
b—a x b—c X &c.

Other numerators.

if !
K

i

L
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r
then in the same manner it apppears, that K—

J'g—he

and L = --.
he—-fg

Prop. LXXI.

Let F= -;
—

5
—

, to find F, m being a whole
xn—/ww—1-f-&c.

positive number.

135. Let— *
,

- --— + r + &c-
a;"—/;x"

1
+occ. a—a at—o

then K, L, &c. are known by the last article ; hence,
xmx Kxm,v Lxm.v . __ . .

r—r— = 1 r + &c. Now (Art.
ar
n—

/AV
n_1

-f-&c. *—a x—o

132.) the fluent of is
1

U &c. -fx—a m m— 1

Kam x h. 1. x—a ;
in like manner, the fluents of all the

other quantities are found, the sum of all which is F.

Now the sum of all these quantities = k-fJL-f-ikc. x
x,m—l

\- Ka-t-Lb+bic. X f- &c. + Kam X h. 1. x—am in— 1

+ Lbm xh. 1. x—b + hc. But by Dr. Waring's
Med. Alg. last edit, in the Addenda, K + L -f &c.=0 ;

Ka-fLZ>-|-&c.=0 ; &c. through all those terms, when
m is less than n ; in this case therefore F=Kam x h. 1.

x—a -f L.bm X h. 1. x—b + &c. If m be equal to or

greater than n, the coefficients of the first n—1 terms
will become=0.

136. Ifm be less than n, the quantity
- —

i)x
n-l

+tx.c.
' ' '

may be resolved into -i
J f-&c. for in

x—a x—b x—c

this case K x x—bx x—cx&c.-f-L x x—a x x— ic x
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&c.-f-&c. = xm
; hence, if x=a, K==

a—b X a—cx&c.
' bm

if x=b, L= :—===== ; &c. The reason why
b—a x b—c X &c.

;;z must be less than n is this : The quantity K X

x—b x x—c x &c.-fL X x—a X x—c X &c.-f-6cc.
—

.v"'=0 ; and that this may be always true, the coeffi-

cientsof the like powersofx must be assumed=0 (Art.

110.), and by such an assumption you would deduce

the same values of K, L, &c. as above. Now the pro-

duct of each of the quantities into which K, L, &c. are

multiplied, is of n— 1 dimensions in terms of x, there

being n— 1 factors
; hence, if m be greater than n— 1,

there is only one term in which x is of m dimensions,
therefore this term can never be made to vanish, gene-

rally with the rest. But if m be equal to or less than

n—1, then this term xm will come in with others hav-

ing the same power, and the whole coefficient may be

made=0.
But the denominators may be otherwise expressed ;

for as x—a x x—b x &c.=.v"—pxn~x
-f &c. by taking

the fluxion we have x x x—b X x—c X &c. + x X
x—a X x—c X &c.+ &c. =nxn~1 x—n— 1 .px

n~2x+
&c. hence, if x=a, we have a—b X a—c X hc.=na"~l

—n—l.pa
n~2+ hc. If x=b, then b—a X b—c X&c.

—nb"-1— n— 1 .pb
n~2

-f &c. and so on for the rest;

hence, take the fluxion of the given equation, omitting

ri?,
and write a, b, c, 6cc. for x, and we get the denomi-

nators.

Hence, when m is less than n, the fluent of

xmx * ^—^— *—— is Kxh. 1. a—(7+Lxh. 1. x—b -f- &c.v"_/w''-
1

+&c.
Avhich agrees with the conclusion in Art. 135. because

K= Kfl'»,L=L£"', &c.



Fluen ts of Quan titles, 167

137. If two roots a, b, be equal, one of the quantities

must have a quadratic divisor x— a . For example :

1 Lx + M N ,

Let — = '

3 H : then redu-
xs-r.px*-\.qx—rr x—a *— c

cing the two quantities on the right to the same

denominator, and making the numerators equal, we

get L*2 —i Lex + Mx - Mc + Na 2 — 2Nax +
Na2— 1=0; hence (Art. 1 10.), making L + N = O,

M — Lc— 2Na= 0, —Mc + Na2—1= 0, we have,
._ __ N«2— l . N«2— 1

L =— N, M =
; consequently (-

Nc—2N«=0; therefore N= . ; L=— -; M
a—cf —c—ci\

2

= ==r. Hence, the fluent of , or
a—c\ * 3—px%

-\-qx—r
Lxv + Mi?

,

Ni? . , e , „ .— ! -
( may be thus round, rut x— a

x_ aJ *~c
. , L>i? + Mi?= z, then at = 2 -f «, and a? == % j hence, 12x- «T

= Lzi + LaS + Mi = L = Ls te

22 v 2 2-

whose fluent (Art. 45. and 37.) is L X h. 1. z— — ==
2

L X h. 1. x—a
; and the fluent of—— is Nx

x—a x—c

h. 1. x— c.

138. If two of the roots be impossible, those two

binomial fractions must beincorporatedintoone. Thus,
1 L M N ,

let
3

= + 7 + 1
and SUP"x3—pxl

-\-qx
—r x—a x—b x—a

L M
pose a and b to be impossible ; then 4 —

,-

==
r x— a x— /'
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L + Mx^-U + Ma ...==
,
and the impossible quantities

x2— a -\-b X x -f ab

vanish, as will appear by substituting m-\-nV— 1 for a,

and m—nV—1 for b.

Prop. LXXII.

Let F=
2?—%-, tofind V.
cxx+dx
x2—

px-\-q

139. Put x— \p = z, then x= z + \p, and x= % j

hence, dx = dz, and cxx = czz -f \pczi, .*. cxx -f- dx
= cz%+ iy&c-fdxz>= (if \pc + d = e) cz% + ex> ; also,

x2—
px-\±p

2=z2
; hence, x

2—
px-\-q=z

2
-\-q
—\p

2 =
(if q
— ±pz=a

2
) z

2 ± a2 , according as a2
is positive or

negative, or according as the two values of x are im-

possible or possible. Hence, F =—j—
—— = -——-

-J
£f_. Now (Art. 45.) the fluent of

z% ± a2 z2 ± a2
is

ex> e

\c X h. 1. 22 ± a2
. Also, taking + a2

,
- = — X3 22

-f- a
2 a2

-, whose fluent (Art. 46.) is — X cir. arc, rad.
22 +a2 ' v a2

6Xi 6= a, tan. = z. But taking — a2 ,
— . = — x
z1— ar 2a

-, whose fluent (Art. 45.) is — x h. 1.

22— a2
'

2a 2 -f a
*

call the fluent of this second part B, and F = \c x h. 1»

z2 ± a2 + B. Call this fluent Q.

Prop. LXX1IL

Zej F=
,
tofind F.

Jf
2—/w + a

340. If the roots of x2—-px+q=>Q be both possible r
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1 K L
then (Art. 134.) resolve — into -\ T ;

v x2—
px-\-q x—a x—b

• 'K.xmv LiX,wl 'V
and F= -\ -., whose fluents are found byx— a x— b

Art". 135. But if the roots be impossible, divide xmx
by x%—px -\-q until the remainder becomes cxx-\-dx,

c and d being put for the coefficients which arise from

the division, and let the quotient be xm~2x + axm~3x

-f bx
m-4x+kc. where a=p, b=*p

2—qhc; hence, F=
xm-ix _j. ax

m-3x ^ bxm-4X.

_j_ &-c# ^_ j_—
?
conse-

a:
2—

px-\-q
xm—\ axm~~2 bxm~3

quently (Art. 37. and 139.) F=— -r--^-2 + --«

+ &c. -f Q.
Ifw = 2, then F = g + Q.
If m = 3, then F = |.v

2 + ax + Q.
If m = 4, then F = \x

3 + |a#
2 + bx -f Q.

Prop. LXXIV.

Ze£ F=—-
, tofind F.

Z2—pZ+q
141. Put x=—=2_1, then*

m-I=z-fn+ 1
,
and *w-*a;

2

== — 2~mi: j hence, F =
-A:
m-2a? xmx

L—LjLa 1—PXHX2

x2 x~
q

1 xmx
-=(it± = q',t=p>)-± X

1 -„
which is the same as the last form,

X2—
p'x+q

Prop. LXXV.

Let F=— , to find F>
Wa -f cz

n

Z
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142. First, F=ix—- (putting^ =— );
Vc 2W2

-fz
r

x \nz~*
n~lz>

put zt*= r, and then z*= x2
; also, J- = £!! =

x zin

- » 2 x % . ^.2 fib

\nx— , .'.—X— = —
; hence, F=—^x—- -

z n x z Vc xVd2+x*
1 2dx ... -. .- 1= = X—=r ; and (Art. 45.) F = =.

ndVc *W2 + x2 ndVc
s/d2 -I- x2 d 2

X h. 1 ——— . If d2 be negative, F =W2 + x2 + d nx/ c

x 2 d2x= = X—
, and (Art. 46.)

x\/X2— d2 ndW c xVx2— d2

F = = X cir. arc, rad. = d
y secant = x.

nd2Vc

Prop. LXXVI.

Let F = .---'
-

, to find F.
zWa2 + z2

a2 . a2x> l
143. Put x=—, then x= ; hence,—— xa'=

z , z2 a2

— : therefore F= X —= x
z2 a2

t*2

hence (Art. 39.), F= T xVx2
-f a

3
.

Prop. LXXVII.

z£v7>2 -I- ?2

Let F= +±
,
to find F.

Vc2— z2

144. Putx=V
~
2— z 2

,
then z2=c2— x2

y therefore

zz=— xx, and V62
-f z2—*/b2 +c2— x2=(\£ a2=b2

+c*) */a2 •— x2
\ hence, F*=— x^a?—,v

2
. Now let
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AN be a circular arc whose centre is O, (See Fig. p.

162.) and PM be perpendicular to AO, and put a=

OA, *=OP, then PM«=Va2—x2
; hence, F = —the

fluxion of the area OPMN (Art. 49.), consequently F
=.— areaOPMN.

Prop. LXXVIII.

Let F= 2
-!l!g

,
tofind F.

(g+hz
n
) Ve+fz

n

145. Put Ve+fz
11 —

x, then zn = ^-j—
and g -f

u~n .
n fsr—eh h „ t.rfg—en

h*n — g +j X x^—e =JS - + y *2=
l
lf

f

=a,— =:
bja -f bx2

; also, nz
n~1i=2bxx±

i
and z"""1:*

2^ ~ •
i. ^ %bx= ~ X xx

j hence, F = ,
whose fluent is

71 n X a-f-ke
2

found by Art. 45 or 46, according as a and 6 have dif-

ferent or the same signs.

Prop. LXXIX.

Let F =W£±£! xz"-1
*, to £/w/ F.^ g+hzn J

146. Put V^-f/zz" == x
t
then zn = - .

~""ff
,
and *> +

/z^+Zx1^5=^ + ^X^=(if ^=& =£ s h h \ h

f \ 26
«j -r"* )«+^v2

; also, z r,~1«=— X #£
; hence, F=n I n

i.b .— X Va+bx2 x x. whose fluent is found by Art: 46.

when b is negative and a positive; but by Art. 45. when
b is positive and a either positive or negative.
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Prop. LXXX.

* znn
~1i

Let F = 7
—

; 7 -,

—
;, to find F, r and m

(e+/
2?n

)
x (g+hzm)

being whole positive numbers.

2rm_1» Kzrm~l
z>

147. By Art. 134.——-——
k)

-—^
4. z^. _

, where K and L are known ; and theT
g+hz

m

fluents are found by Prop. 70.

Prop. LXXXI.

Let F =1T]^T X g+hz»Y x z*""^, tojW F,

•where s is a -whole positive number, and r half any
whole positive

number.

148. Put v=e+fz
n
,
then zn= -^ ; hz

1l

=-jXv—e ;

A ^£
,

h l. c ,

£-+Az»=$-+ y
X v—e=g—J+J

x *=
\
lf ^=^

_5f;)rf
+

*
x * ; z-= JL x «? ; *n2—'%=

*

x ^Z^T"
1 * ; 2sn~1i= -7- x v—e\~

Kc ; hence, by
nf*

substitution we get F=vmxd+ v .' xrTjX^—e")*"
1

©;

and by expanding d-\—~p and v—^T
_1

, and actual-

ly multiplying each term into v™v, then when r

is the half of an odd number (as
t+£),d+-jp\

=

</+—v XV<^+—^, expand tf-f-^-'f , and the fluent
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can be found by Art. 39 or 41. But when r is

the half of an even number expand d +— v
j

, and then

the fluent of each term may be found by Art. 37. ex-

cept m be negative, such that one of the terms be of the

form —
,
in which case the fluent of that term is found

v

by Art. 45.

If r = —
-|,

and m a positive whole number, the

fluent may be found by Art. 41. And if m = — 1,

then the fluent may be found by Art. 41. except for one

term in the series thence arising, whose fluent is found

by Prop. 75. it being of the form

v\Jd+-7V
it

T

Prop. LXXXII.

Let t = —— X x, to fnd F.

c+dx2

149. Multiply the num. and den. by V a+bx2
,
and

• a+bx2 X x ax
we get r = ^_. ..

= === +
c-fix

2 X Va+bx2
c+dx2 x v a+bx

2

bx2x
-.. But the Jirst of these terms =

c+dx* X >/ a+bx2

l

; and in the second term, by
d2

-\-cx~
2 X vb-\-ax~

2

,. . . bx2x b . be x . .

division -- = — X x x r-s— J hence, the se-

c+dx
2 d d dx2

+c
, b x be x

cond term=— x — X -
1

d >/a+bx2 d c+dx2 X 'Sa+bx2

he x~^*Xs
and the last term of this= X:

d d2+cx-2X y/b~i-ax-2
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hence, F=_ x . + (a ) x
d Va+bx* \ d'

.-, . -===- ; and the fluent of the first of
d2+cxr* X ^b+ax~2 J

these terms is found by Art. 45. or 46, according to the

signs of a and £, and of the second by Prop. 81.

LEMMA.

To resolve—:
,

—
-, into _

-—
f-

"x+a"\
m
Xx+b\

n

x+a~\
m x+aY1'1

L 6 P Q R
4- , f-&c.-f f- ===? V f-T
7+a^

m~2
x+bj x+b\

n~l

x+b\
n~%

&c. continued to m and n quantities respectively.

150. Reduce the fractions to a common denomi-

nator, and make the numerators on each side equal,

and (A) H X x+f+K X x+b" x x+a+Lxx+b\
x+a + &C.+P X x+a

m
+Q X x+cT X x+b + R X

x+a X x+b +&c.= l. Make*-f-a=0, or x=—a,

and every term where x+a enters, becomes=0; hence,

1

H X x+b=\, or H x b—a =1, .-. H= -. Take
b—a

the fluxion of the equation(A),and omittinga
1

,we have

(B) nH x ~x~+b
n~l

+nK x x~+b
n~l

x x~+a~+K x T+T
n—i

+&c.=0 ; make x= —
cr, and we have wH X b—a

+K X b—a
n=0 , hence, K= =

; thusb—a b—a
n+ l

by continuing to take the fluxion of the last equation,
and then making x =— a, we shall get the values of

L, &c. In like manner, if we make x+b = 0, or

,y=—by we find P = m ;
then by taking the fluxion

a—b
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of the last equation, and making x —— £, we get Q=
—--; and by proceeding as before, we get R, &c.
T 1

-m

i

Prop. LXXXIII.

xrx
Let F= —- -

, tofind F, r being a wholepo-
x+a xx+b

skive number.

151. By the last article, fr= -\ :4-&c.
x -f- a x+a

4- - + — ;+&c. Put x+a=z, then x-=z—a.

x -f- 6 x-f-b

therefore xr^~ 1

z=z—a "*~
, and xrx=z—aX** hence,

xrx z— a
r x & ^_m • r_„_i •

,

r— 1

.v -f- a z *

a2zr~m~2z— &c. where the number of the terms =
r +1, and the fluent of every term is found by Art. 37*

except that term where the index of 2 is — 1, whose

fluent is found by Art. 45. and the sum of all these

multiplied by H, is the fluent of the first term. In

like manner, the fluents of the other terms are found.

Prop. JLXXXIV.

Given A thefluent of e +fx
n
~\

m
X xPx, tofind B the

fluentofe+fx
nYxxP+nx>a?idCthefluentofe+fxn']

m+ l

XxPx.

152. Assume Q= e +fx
nY+ 1 X xP+ \ then Q =

p^Xe+fx
n
l(

m+ 1
XxPx+77i+\xnfxe+fx

nYxxP+nx
— p + lxC -f- m + 1 X nfx B ; hence, by taking the

fluents, Q.=p+ixC+m+lxnfxB. Also, e+fxn
~\

m+1

XxPx=ze+fx
nxe +fx

n
'\

mXxPx= eXe -\-fx
n
^
m
XxPx4-
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fX e +fx
n
']

m
x xp+ n

x, that is, C=eA+/B, therefore

C = eA +/B. Now from the first fluent, B =

Q—P+}*£l, and from the second, B= j~ '
hence

'

m+lxnf
J

Q—p+ixC _ C~eA . J c_Q+w+ lxngA -

cQn_

w+1 Xn/ / p+l+m + lxn
'

,
_ C—eA C eA Q+ro+lxneA

sequently Jo= ^— = —, -= --

f J f p+\-\-m+\xnXf

— e—r . Hence, we may continue the fluent as far as

we please, increasing m by 1, and/? by n.

Let e= «2
,/=l, m=— -|-, />=(), n— 2

;
then A =

r,
and A = h. 1. x -f vV + a2

(Art. 45.) ;

v/a2 + x2

hence, B the fluent of /
X

=|*Xfl
2+*2

1

2—j«
2A,

as in Art. 124. also, C the fluent of c2
-fx

2
J xa;=|tfx

Prop. LXXXV.

Let ¥=vxnx, where v=h. /.—— ,
tofind F.

153. Assume —f-?—F, then rtfM'H r7"+r=:
?z-fl ^+1

• ,

' aM- 1* /, * \
¥=:vxnX', hence r= —- =( because %— r—A

n + 1 X 1 — a."

+:

(by division)
~ X

xn+ *x „ ,. . ... N 1

« + l

30 1

, xn^_ A-n-i^_ &c . 4. -—j therefore r s— X
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xn-\-I x n VXn+ l 1

h -—h &c.—v ; hence, F = ——h ——- X
tz+1 n n+1 n+1
vn -j-

1 -\ n——— + — + &C. V.
n+1 n

Prop. LXXXVI.

Let F=vxn
x, where v is a circular arc xvhose radius

is 1 and tangent x, tofind F.

vxn+ i xn+ l^i

154. Assume \-r—V; thenr*"aM ——+ r
n+1 n+1

• •

=F= vxnab. Let n be an odd number, and then r =

xn+ 1v , A . AR> xn+ *x 1

(Art. 46.)—
n+1 n+1 X l+*2

72+ 1

&c. ± r (

'

-] , where the sign ofm— I -»> vn—3
tT Xn~3X +

\l-f-x-f

.„ . v n+1 .

v will be + or —
, according as —-— is even or

1 xn xn~

odd ; hence, r = X + — &c. =F v ;

n+1 n n—2

/n vn—27 , vn_l_l 1 xn X
therefore F=—±-+ —— X + -—&c?t.

72+1 72+1 72 72—2

If 72 be an even number, the last term of the division

:x
will be ± , whose fluent is ± \ h, 1. 1+x2 =

1 +x2 2

7>.V«+ 1
,

1

± h. 1. <Sl + x2
; hence, F =

\
— X

72+1 72+1

r- &c. ± h. 1. v^i + x2
,
where the sign.

72 n—2

of the last term is + or —
, according as | ?2 is odd or

even.

2 A
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Prop. LXXXVII.

Let F=zm.x"-1

i?, where z—h. I. x, to find F.

155. Assume Y=azm +bz"'-*+czm-2+ &c. a, b, c,

&c. being variable coefficients in terms of x ; hence, by

taking the fluxion we have,

c> + fc-*-+ C2—2+ &c ? =2*,^,4.j but
maxz 1"-1^ m—1.6izm_2-f&c. 3

bv Art. 45. 85= — ; hence, by transposition,J x

-m+ b-m
~ l ++
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ma*

axX npx
n-lx+>,— i.<p

n-2
.i'+&c. 3

divide hoth sides bxaxx, and transpose ;c*,and we have

mpx
n
-\-mq,\

n-1+ mrxn**+ &c. ")
__Q %—xn+ npx

n-1
-\-n
— 1 .qx

n~%+ &c. J

hence (Art. 1 10.), Wp-r- 1= 0, my + n/>
= 0, wr +

1 _
—

rc/>_
rc

w_l . y=0, &c. .•./>
= —

; 7
= = -; r—

1 mm m2

n— \.q n—IX—n n.n— 1 c , f _,
1 = =

, &c. therefore r
W WS

1 W W . ?2 1 „ , o 1 1

=axx xn xn~ l

H :
—x — &c. where the

m m 2 m3

law of continuation is manifest, and the series will ter-

minate when n is a whole number.

Prop. LXXXIX.

Tofind thefluent of , given thefluent of-^—fA 21— <0

«Zr
*f"

1

157. Assume + Q for the fluent ; then, by
1 ± zn

, n . , r+1 xazrixl±zn^nazr+ nZ
taking the fluxion, we have

i±znT

+ Q = _,
, or

zr
z;

1 ± i»"|
21

1 ± 2«T
n«z + B« a ,

?zaz
r+ n

i.

Xr+lXazr£q:-ix „
- + Q; but q:

1±^ A T T 1±2»
' 1±2"

nazri . 1

= — nazrx + ; hence,
1±2n' l±z""l

2

«flz»* . X -r^ . nsX
r-f-lx«z

r
;s— 7wrz

ri -f--^ + Q = ''+ * X a—
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+ r: +H; assume wa=l, or a——
,
so that

1 ±zn
T±z^f

'

n
&% , naz*-*

the terms and
"*

may destroy each other,
1± z"]

2

i±-"]
2 '

ii A r-J-1 zr
i,

and we have H = 1 — x— ; hence, if P be
n l±zn '

the fluent of-
, we have Q= 1 — xP: con-

1 ± z" rc

sequentlv the fluent required is — X 1-1— ^t_
1 J ^ n 1 ± z«

^
7j

xP.

Prop. XC.

Tofindfluents where"'there are txvo variable quan-
tities in the givenfluxion.

158. It frequently happens, that a fluxional equation
contains two variable quantities, in which case, they
must either be separated, or reduced to the fluxion of
some known fluent ; but no general rules can be given
for this purpose, and the reductions must be left to

trial and the skill of the Analyst ; the following Rules,
however, may be of some use.

rule 1.

Multiply or divide the given equation by some June-
tion of the unknoxvn quantities, so as to bring them to a

form whosefluents may be found by some of the rules

already given, or to thefluxion ofa known fluent.

EXAMPLES.

*v it axmx
Ex. 1. Let f-— = . Multiply both sides

x y y
n

bv nxn
y
n

,
and it becomes ny

nxn~1x -j- ?ix
1l

y
n~l

y =
7iaxm -\-"iV ;

now the fluent of the first part is known
from Prop. 7. to be xn

y
n

, and the fluent of the other
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naxm 4" n -j-
1

part is found (Art. 37.) to be : hence, the
m+n + \

naxm + n+ 1

equation of the fluents is xn i/
n = .*

,

J m + n + \

Ex.2. Let a?— xi? =fz2
. As % does not enter

into this equation, conceiving it to be deduced from a

fluent, <Z> must have been supposed constant. Multi-

ply by a% and xx—xxz2
=.fxz?, and as x> is constant,

the fluent is \x* — ^x*i? = fxz? ; hence, x> =
x—

, whose fluent (Art. 45.) is z = h. 1.

V2fx + x*.

f+ x + V'2fx + x?-

RULE 2.

Sometimes thefluent may befound by the addition of
a new variable quantity.

EXAMPLE.

Let ai = zx— xx. Assume z = a + x -f- v ,
then

~= db-yb ; hence, by substitution, ax -f- orr = aa? + xx

-f »#— xx, therefore av = va% or x = —
;

hence

(Art. 45.), .r = a X h. 1. v ; consequently z= a -f- v -f-

fl X h. 1. t% and by substituting for i> its value z— a

—
X, we get x = 3xh.l.z— a— x.

rule 3.

Thefluent may sometimes be found by first putting
the equation into fluxions, making one of the fluxions
constant.

EXAMPLE.

T ax -f yx xt'i , » ,

.Let ^—. = # + w fi. Make u constant, and
y

J x J
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put the equation into fluxions, and *
f- x =

#j/a?— xii i aA-uxx xux .

& 4 U +——T3
—-

; hence, —2 = _4_ and a+ */r u X* y x2 »

X a?2 = -vi/
2
, consequently ^~~^«r= q -*•

?/ | $ hence,

(Art. 37. and 39.) we have 2^=2xa+y~$.

rule 4.

J/" only one of the variable quantities (x or y) enter,
substitutefor thefluxion of one of them, the fluxion of
the other multiplied into a new variable quantity.

EXAMPLE.

Let yy
sx=ax4+ 2ax2

y
2 4 ay

4
,
where x is wanting,

Assume zy = a?, and we get yzy* = «- 4
t/
4
4- 2az2

y*

4 af/
4
, or yz = az4 4 2az2

-f a ; hence, «/
= az3 + 2ar

-f ,
therefore y = 2>az

2% -f 2ai> -, consequently

az>x= zy= 3az3z + 2azx
,
whose fluent is x = %az

4

4 az2— a X h. 1. z
; and if in this equation we substi-

tute the value of z»in terms of*/, found from the equa-

tion z/=a~
3
4- 2az -] ,

we shall get x in terms of y.

Prop. XCI.

In anyfiuxional equation ofthe second order, where
thefluxion f one of the variable quantities (i) is con-

stant, to transform it into one in which y is constant.

159. Suppose the value of y to be expressed by
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a + bx + ex2 + dx3 + &c then ^-=6 -j- lex + 3dx2 +

&c. Make a? constant, and take the fluxion, and — =
x

2cr + fiakvr 4- &c. Now make */ constant, and —?L-

=2cr +6<:/^a? + &c when therefore i? is constant, the

value of 4- is the same as ——— when w is constant.x x2 3

Hence, we have the following

rule 5.

If in any fuxional equation of the second order, hi

which x is constant, we substitute for U the quantityx

.
-

,
orfor y the quantity

—r—, we shall transform

the equation into one in which y is constant, and thus

thefluent may be oftenfound.

EXAMPLE.

xifl
Let xy—xij

—ay j—=0, which being supposed to

have arisen from some fluent, x is constant, as x does

not enter. Substitute —¥— for y (in which case y be-

1/tTC //'¥*

comes constant), and we get xy-\-x x — -f- a x —X so

Xlj
2

XXi'f

-£-=0,
or x2+xx+ax

-^- =0, whose fluent is xdb

x2u
-rax— —

j-,
which, as the fluxion is = O, must be
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equal to some constant quantity ; let it be cy*, and then

2bxx 2abx , _ /. .

u= —, 4
; ,

whose fluents (Art. 45. and
2bc+x? 2bc+x2

46.) are y=b X L-fa x \— X A, where A is a circu-

lar arc whose radius is 1 and tangent
—=, and L=h. 1.

V2bc

2bc+x 2
.

RULE 6.

Sometimes the fluent may be found bij assumhig an

equation with unknown coefficients, which put into

fuxions shall give a fluxion of the same form as the

given fluxion, and by equating the coefficients, the as-

sumed coefficients may be found.

-rin r ax+bxx . . , »

Let the fluent or —— be required. Assume
cx -j-x-t

d x hyp. log. cxr+xr+ 1 for the fluent, then the fluxion

. rcxr- 1
x-\-r+ \ x \

rx _drcx-\-d x r+1 x xx
1S X

cxr+*r+ 1

: =
ex +x*

"

. . ax+bxx , .

which we assume = —
; hence, drc=a, rixr+l

cx-\-x
2

=ib, therefore r= and d= ; and the requir-
bc—a c ^

ed fluent is -£—- x h. 1. (cx^° + x^-").

If the fluent cannot be obtained by these means,

* The given fluxion being- supposed to have arisen from some
fluent, it is easy to conceive that this constant quantity must be

such as cy ; because the equation, after taking- the fluent the

first time, arose from taking- the fluxion of the fluential equation,

and therefore x or y must necessarily enter into every term.
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or any other artifices, it may be necessary to have re-

course to infinite series (see Art. 1 1 1.) in order to ex-

press the fluent, in which case it will be very useful to

attend to the following

rule 7.

Let the quantity whose value is required be assumed

equal to some unknown power, n, of the other quantity',

and let that power with itsfluxion orfluxions be substi-

tutedfor their supposed equals in the given equation.

Let the least exponentsfor an ascending, or greatest

for a descending series, ofthe quantity thus substituted,
be made equal to each other\ and thence n -will befound.
Or ifthere happen to be only one or more terms having
the least or greatest index, make the coefficient of that

term or terms=Q, and you get n.

Substitute this value of n for n, and take the differ-
ence between one of the equal exponents, and every
other exponent of the same variable quantity.

To these differences, -write down all the least num-
bers which can be composed out ofthem by continual ad-

dition, either to themselves, or to one another, till you get
as many terms as the required scries is to be continued

to.

Let each of these terms be increased by n for an as-

cending series, and decreased by n for a descending
series, and you have the required exponents.

Ln equations where the higher order offluxions are

concerned, the series must be assumed in terms of that

quantity which flows uniformly, and that is knoxvn by

observing which quantity has no second, &effluxions.

Ex. 1. Let the equation be a2Jo2 + x2i?— a2
i.
2 = 0,

when z is a circular arc whose radius is a and sine x.

Assume zn for x, then nzn~1i=x, and by substitu-

tion, the equation becomes a2 ?i
2z2n

~2i2 + z2"i2— a2tfj

= 0, and the indices of z are 2n—2, In, and 0, for we
2 B
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conceive the last term a2x2 to be a2z°x2
; and putting

the two least indices 2n—2 and equal, we get n=l ;

which substituted for ;z, the indices become O, 2, 0, and
the differences are 0, 2, and by adding 2 continually, we
get the series 0, 2, 4, 6, &c. to which add rc, or 1, and
we get 1, 3, 5, 7, &c. for the indices. Assume there-

fore x = pz + qz
3

-f- rz
5

-f- sz
7

-j- he. and putting % = 1

to shorten the operation, x — p -f- 3^2
2

~f- 5rz
4

-j- 7s2
6

-f- &c. and this squared and substituted into the given

equation, we get

a2

p* + 6a 2

pqz
2 + 10a2

prz* + 14a2
psz

6 +
fcc."")

9a2
«jr

224 4- 30a2
$rr2

6 4-&c.
J.

+ />
222 + 2/>?2

4 4- 2prz
6 4- &c. f

: = '

—a2
-f q

2z6 + &c.j

hence, (Art. 1 10.) a2
/>

2— a2 = 0, 6a2
/><7 4-/;

2 = 0, 10a2

pr + 9a2f 4- 2pq=0, 14a2
ps + 30a2ar -f 2/>r 4- a2= ;

See. and from the first,/?
= 1 ; therefore 6a2

q -f 1 = 0,

and q - — —= = — ——
2 ; hence, 10a2r = —

2 6a2 2.3.a2

9a2
q
2—2q=— qX 9a2

q+2 =— a X —|4-2=— 1-
=

-, therefore r = — ; also, 14a2
ps— — 30

2.3.2a2 2.3.4.5a4

aW—26r—q
2=— 3a2 X — — X :

— 2 X 7' r H 6a2 120a4 120a41111 1

36a4 24a4 60a4 36«4 360a4

1 1

-
,
therefore*

14 X 360a6
"
2.3.4.5.6.7a6 ' hence, x = z—

23 25

-i 1- &c.
2.3a2 2.3.4.5a4 2.3.4.5.6.7a6

Ex. 2. Let 2axy
2 —

ay
2x 4- 2x2

y
2 —

2z/
2
o;2 = 0.

Assume x=z/
n

,
and a1 = ny

n~x

y, and Q/ being constant)

at = ;z . h—1 . y
n~2

y
%

; therefore the equation becomes
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(omitting y
2
) 2ay

n— n . n— 1 . ay
n
+2y

2n—2«y=0j
here there is only one power of y having the least

index, therefore we must assume 2a—n.n— i.«=0, or

n . n—1=2, and n= 2, and this is for an ascending
series. Substitute this for n, and the indices become
2, 2, 4, 4 ; now the difference between one of the

least indices 2, and the other indices is O, 2, and by
adding 2 continually, we get the series 0, 2, 4, 6, &c
and increasing these by w, or 2, we get 2, 4, 6, 8, &c.
for the required coefficients, Assume, therefore, x=
Py

2

+9y*+ ry* + sy
s + &c « then dp = 2py-\-4qy

%
+6ry*

-^Ssy
7

-f- &c. (assuming <y=l), and oc= 2p -f 12qy
2 +

30ry
4 + 56sy

6 + &c. also i?*= 4p
i
y
2
+l6q

2
y
6
+l6pqy

i

-f &c. hence, by substitution, we get

2apy
2 + 2aqy* + 2«r2/

6 + 2a«/
8+&c.~—2apy

2—
\2aqy

A—30an-/
6—56asy

s+kc.
+ 2/>V + 4,pqy«+ 2q

2
y*

+ 4pry
s+kc. f

~~
'

—
8p

2y*—32pqy
6
—32q2

y*—
48/&n/

8-f&c.J

hence, 2«/>
— 2a/>= ; 2tf?

—
12«y+2/>

2—
8/>

2=0 j

2«r— ZOar + 4pq— 32pq = ; 2as— 56as + 2q
2 +

4pr
—

32q
2— 48pr = ;

irom the first equation it

appears that p may be assumed at pleasure ; from the

second equation, q=—— ;
from the third, r= -—

;1 5a 5a2

3164

from the fourth, s = ——
3 »

&c » hence, x = py
2 —

3p
2

t , 3p
3

, 31// g R

5a * ^5a2^ 45asy

For a descending series, we make the coefficients of

the highest powers of f/=0, or 2—2n2=0, and n=l;
and the indices become 1, 1, 2, 2, and taking one of

the greatest, 2, from all the rest, the remainders are— 1 and 0, and by adding— 1 continually, we get 0,
—
=1,
—

2, —3,—4, &c. and these increased by «, or 1,
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give 1,0, — 1
,
—

2, —3, &c. ; hence, assume x=py+
q

j

\-ry~
1
-j-sy~

2+ &c. and we get, as before,

2apy+2aq-\-2ary~~
1+ &c.~"l—

2ary~
x—&c. I

2p2y
2
+4pqy+2f +4>qry-

1+ &c.
j>
=

j

—2p
2
y
2

+4.pr+ipsy-i+ &c.J
hence,' 2/>

2— 2p
2=0; 2ap 4- 4/^ = ; 2cr^ -f 2?

2 4-

8/>r
=

; 4jr +\2ps= ; we may therefore assume
£7 /7 ^7

* at pleasure, and then g= ; r= ; s = ;r V Y
2' 16/ 96/>

2

&c. therefore #= *v 1 1
— 4- &c.1 v

2 16py 96/V
Although this rule may become sometimes imprac-

ticable, yet when it can be applied, it never takes in

any unnecessary terms.



SECTION XL

wvwwwwvwv

On the SUMMATION of SERIES.

Prop. XCII.

lOjindthe sumofl
nx+2nx*+3

nx3+hc. . . . snx*.

160. Assume x+x24-x3+ &c. . . . x*= =
x—1

a ; take the fluxion of both sides, divide by a?, and

multiply by x; repeat this operation, and you will raise

the powers of the natural numbers an unit every time;

hence,

1 x+2 x2+3 ^3+&c. . . . s x*= — = t>ix
•

OCu
l 2x+2V+3V+&c. . . . szx*=—= c i

•

occ
l 3
;c+2

3*3-f3
s*s+&c. . . . s3x'= — =d;x

Thus we may continue the operation to any power.
-

Prop. XCIII.

To find the sum ofl.2.3x+2.3Ax
2+3A.5x3+&c. .

s—2 . «—1 . sx*~2.

161. Assume as before, take the fluxion, and divide

by a% repeat this operation till you have gotten the

number of factors, and then multiply by x ; hence,

l+2x+3#2
-t-4*

3
-f&c ***"' ;= -r-= h jX
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1.2-f2.3#+3.4x
2
+&c. . . . s—1.8X-* = ~z=zc:

as

1.2.3x-r2.3Ax
2
+kc.s—2.s~-l.sxt-2=— = d.

as

Prop. XCIV.

Given oxn + bx2 "- + cx3n+ &c. +mxvn = A ; tofind

p+nxg+nxaxn -fp + 2n x q + 2n X bx2n + &c

p-j-vnxq+vn . mxvn
.

162. Multiply the given equation by xi>, and axP+ n

-f bxP + 2"+£c. z= A^ = B
; take the fluxion and di-

vide by £, <mt\p+nXaxP+
n-1+p+2nxbxP+ 2n-i+kc.

ft

=— ; divide by j^-1
,
and p-\-nxax

n
-\-p-\-27ixbx

2n+
Ob

it

Sec. = ; = C. Now multiply this equation by %?,

take the fluxion, and divide by x^~1as
1 and we get

p-hnXg + nxaxn + p + 2nx q ~h 2n X bx2" + Sec. =

In this manner, any factors may be introduced, by
multiplying by such powers of x as shall produce the

factors required.

Prop. XCV.

Let the sum of (
&?c. ad infinitum

1 «> D

be required.

1 63. By Art. 54. Ex. 5.——— -f &c.=A, AJ 13 5

being an arc of a circle whose radius=l, tangent = x.

x2 x4 x6

Multiply by x, and f- Scc.=A^; hence,
1 O O
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x2x 4X3
,
6xs

Q Aa?+,rA ,, ;
H -—&.C.—

: =(because A:_13 5 X 1-f*
2

by Art. 46.) A +
Jj-r

If*=l,thenf — £ + | — &c. = A + 1.

Prop. XCVI.

To sum series by means of thefluent ofvx
n
x, v being

— h. I, .

1—x

164. By Art. 153. the fluent of vxnx is f-J n+1
1 ^n+l xn xn-l

' ^n+l
~

-X——+—~\ 7+&c—v=vx—— r-rr: +
?i+l ra+ 1 n n— 1 w+1 n+1

a»+i *« xn_1
+ +—- -+&c. Butt;=

72+lXrc+l n+lxn n+l.n—1

hyp. log.
=*+ \*

2+ \x
* + I*

4 + &c - ad infinit.

hence, w»tea"+ 1
a?+|^

fl+zx+%xn+s
db+ixtt+ 4

*-f
. x»+ 2 x"+ 3 ^n

-f
4

a:
n+ 5

&c. whose fluent is ——- 4—== H H —-

w+2 2.n+ 3 3.^4-4 4.rc+ 5

-J- &c. Make these two fluents equal, and we have

v xn+ l xn x>1-*

y rt»4-l 1-|-
—

-^
-

(
— . _

7Z+1 Ti+lxw+l w+1 Xn n+lxn-- 1

4-&c. to rc+1 terms = —-— -\ = +
'

+
n+2 2.n+3 3.ra+4

&c. ad infinitum.

165. If rc=0, then
( +—- + &c. ad infinit,

'

2 2.3 3.4

=-y X x—1 4- .v ; hence, it x = 1,
— + —- + — +

&C. = 1.
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166. Since
Jj£

+£'+j£ .+ &c . =.*-* + ,,

multiply by a?, and— 4- —— -f-
__ 4. &c . = vxx

•— -yi? + .ra?; now by Art. 153. the fluent of vxx
is \ va 2—

\ v 4* \ x* + £ x ; also, the fluent of i>a? is

•pot—v -f # ; hence, the fluent of vxx—vx -J- xx is i

v^3—^ 4- \v— %x + i^
2

> consequently (B)2 n J
i.2.3

Assume ^f^r
— vx -\- \v = 0, or :r2 — 2r-fl = ;

hence, .r = 1 ; make .r = 1, and H J- &c.
1.2.3 2.3 4

1— %•

Let x = X. then v = h. 1. i : hence, 1- f.7
-. 1-2.3 43

JL x l + &c. = -xh.i.l-i..
2.3.4 44 32 3 64

Let x=± then i>=h. 1. 2
; hence, X 1

1.2.3 8 2-3.4

X f- &c. =— X h 1. 2 —. —
. Thus by assuming

x and determining v from it, we may find the sum of
the corresponding series.

In like manner, by multiplying B by i' and taking
the fluent, we shall get four factors in the denomina-

tor, 1.2- 3.4, 2.3.4.5, &c. or if we multiply by xx and
take the fluent, we shall get the factors 1.2.3.5, 2.3.4.6,
&c. And, in like manner, we mav add what factors we
please, by multiplying by such a power of x as will pro-
duce that factor. If the Reader wish to see more in-

stances, he may consult A. de Moivre's Miscel. Anal.

Lib. VI.
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Prop. XCV1I.

To sum series from thefluent of?x
n
x, xvhere v is a

circular arc, xvhose radius is unity and tangent x.

167. By Art. 154. the fluent of vxnx is l
n+1

1 xn xn~2

X — 1 ;
— &c. =p v-> where the sign of v is

n-fl n n—2 °

-f- or—, according as ——- is odd or even, when n is

an odd number. But (Art. 46.) v=.x u —— &c»' 3^5
hence,vx

rta?=x,n -r 1^ —etc.whose fluent
1

3 5

^n_f_2 xn-^-* ^n-f-fl
is f

— — &c. Make these fluents
w+2 3.ra+4 5.W+6

equal, and we have X W+ 3
q: »

f

t» »,n—2

tt+1 ?z n—2

yfiJ.2 ^,n-J_4 ^n-j-6
gtc. = -

-\
— --— &c. ad infinitum.

n + 2
3.n-f4 5.?i+6

Let -—- be an even number, and assume vxn+ 1—
2

v=0, and then x=zl ; hence, x }
—-&c.

n+ 1 n n—2

n-f-1 . 1 1,1
to —!— terms, is equal to +

2 w+2 3.w+4 5.n+6

&c. ad infinitum.

If n=3, then —
1

&c. ad infinitum
1.5 3.7 5.9

r

Let -i_ be an o<£/ number, and assume »= 1,
2

2C
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x = 1 ; then v becomes an arc of 45° ; and we get
——•

^ — &c. ad infinitum = arc 45°— J.
3.5 5.7

If n be an even number, then (Art. 154.) we get, in

like manner,
v*» 2C

n~'%

X vxn+ 1
f- &c. =f h. 1. V 14-*2=

n+l n w—2 T

^n-|_2 A.7j-j-4 ^n.1.6—— ^ =— &c. ad infinitum, where
n+2 S.w+4 5.rc+6

the number of terms to be taken in the first series is

in, the first and last terms excepted, and the sign of

the last term is + or—
, according as \n is odd or

even.

If n = 2, and x= 1, then v becomes an arc of 45° ;

and we get 1 &c. ad infinitum =&
1.4 3.6 5.8

•I x arc 45°— \ + h. 1. V2. For more upon this sub-

ject, see A. de Moivre's MisceL Anal. Lib. VI.



SECTION XII.

'VWVWWVWV
#
—

On the MAXIMA and MINIMA of CURVES.

Prop. XCVIII.

nnOfind the nature of curves, in which some quanti-
•*

ties remaining invariable, others are the greatest
or least possible.

168. Let ABC be any curvilinear area, PD, RF
two fixed ordinates indefinitely near to each other, and

the ordinate QE an arithmetic mean between them, so

P CLR —^B

that En = Fm, D», Em being parallel to AB. Now
it is manifest, that the nature of the curve DEF must

depend upon the position of the point E, as by varying
the position of that point, you must necessarily vary the

curve ; upon the situation therefore of this intermediate

ordinate, the determination of the equation to the curve,

from the data, will depend. Hence, PQ, QR, are the

only variable quantities.
169. Let any given quantity M be made up of A,

B,tl,D, E,&c.orletA+B+ C-f D-f E-f &c. = M,
and at the same time let some other quantity m be
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required to be a maximum or minimum, and let the

corresponding parts of mbefl,i,c, </, e, &c. and then

will a-fb+c+d+e+k.c. = ;n, M and m being expressed
in terms of the same variable quantities. Now let us

suppose all the quantities in each to remain constant,

except two which correspond, th^fc is, let C and D, c

and d be alone variable ;
then C-fD is constant, and to

satisfy the other condition, c+d must be a maximum
J

• • • •

or minimum ; hence, (Art. 21.), C+D = 0, c+d— 0,

and from these two equations we may get the relation

of the variable quantities which compose them, which

will be found sufficient to determine the nature of the

curve.

Prop. XCIX.

Given the points A and C, tofind the curve in which

a body zvill descendfrom A to C, in the least time pos-
sible.

170. Put PD = m, QE = n, En= Fm — a, the con-

stant quantities,
v == PQ = D», zv = QR = Em ; then

DE = vV+x>2
,
and EF= Va2+zv

2
. Now AB being

parallel to the horizon, the velocities at D and E
are as Vm and Vrc, by Mechanics ; also, the times

being as the spaces directly and velocities inversely ,
the

V a2+v2

times, through DE, EF will be as =— and
Vm

V a2 -i-zu2=—
; hence, as AB is given, x>,

w are two parts
Vn

of this given quantity , whose sum v -fw is constant ;

als0)
_r_ and ==r— are the two correspond-

v'/n vy n

Va2+v2

ing parts of the minimum, whose sum — -f-

VV/2
4-7lf

2

as* = minimum (Art. 169.) ; hence, v + ib =s O,

V n
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VV WW
and -*

-f-
—== - ' =

;

VmxVaz + v2 V n X Va2 + w2

w =— v ; consequently —=^ =====—
Vm X Va2

-f v
2

wv _ ,
^ _= 0, and

Vn X Va2 +w2 Vm X Va2 + v2

w —
; now these are two similar quantities,

Vn X Va2 +w2

which express (in their ultimate state) the fluxion of

the abscissa divided by the square root of the ordinate

X fluxion of the curve ; two successive values of this

quantity therefore being equal to each other, shows the

quantity itself to be constant ; hence, put AP=at, PD
dc

=z/, AD=z, and we have —= = —— a constant
*' Vyx* Vr

quantity, which is the property of a cycloid, the dia-

meter of whose generating semicircle is r.

Prop. C.

To determine the nature oj the curve AC, whose

length is given, when its area is a maximum.

171. The same notation remaining, we have DE
_j.
EF= Va2 + v2

-f- Va2 + w2 a constant quantity, the

sum of two parts of the given curve line AC ; also,

mv + nw is the sum of the two corresponding parts

of the maximum ; hence (Art. 169.), mv + mv =
. VV wi'v

max. .•. mv + mv=0, and • H ^ =
;

Va2
-f- v2 Va2

-f w2

mv . , r VV mxvv
hence,—=—w

,
thereiore —=====— -— =0,

n Va2+v2 nVa2
-f- w2

consequently = ; which being
™Va2 + v2 «\/a2 + w2
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similar quantities, we have "— =— a constant quanti-1

yx> r

ty, or rx=y% the equation of a circle by Art. 46.

Prop. CI.

Let the surface of the solidgenerated by the revolu-

tion ofthe curve AC about AB be given ; to find the

nature of the curve, when the solid is a maximum.

172. Put p — 3,14159 ,
&c. then (Art. 56.) 2pm X

VVv2
-f-r

2 + 2/mVa2 + w2 = the sum of the two parts of

the given surface generated by DE + EF, a constant

quantity; also, pm
2v+pn

2w = the sum of the two cor-

responding parts of the maximum, generated by

PQED, QRFE ; hence, pmH^+pn^w = max. .-.

(neglecting the constant multiplier p) m2v + n2w = O,

mvb nww
'

, . ni^v
and — + =

; hence, rv =— -—
,

Va2 + v2 Va2 + zv2 n

which substituted for xv in the second equation, we get

r 7V
-, which are the same quanti-

m^/a2 + v? n^/a% + u,2

ties as in the last case
; hence, the curve is a circle.

Prop. CII.

To find the nature of the curve which generates a

aolidofthe least resistance, -when moving in afluid in

the direction of its axis, its greatest diameter BL and

length AC being given.

1 73. By the Principles of Hydrostatics, the resistance

ma3
, . rT. Tta

z

against DE is as -—--, and against E* as
a2+w2

;

hence, the sum of the two parts of the quantity which is

. . nia3 no3
, A r •

to be a minimum = — + -———„ ; also, as At is

a2
-f v2 a2 + w2

given, t -f w, the sum of the two corresponding parts
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of the given quantity, is constant; therefore
2?na3vv

a- -f- v

2na3rmb

ma3v

= 0, and v + xv =
; hence, i> =

a2+w2'

— xv ; consequently, by substitution,
a2 -f d3 ''

72G. 71)

,
which being similar quantities, we have

a2
-f-7x>

2

^ *" = r, a given quantity, which is the fluxional

equation of the curve.

That the curve does not meet the axis at A, an-

pears from hence ; y=rX— =r X -^—
——

, where

the numerator must evidently be greater than the de-

nominator, and therefore y must be greater than r.

174. If the greatest diameter BL, and area BMNL
be given, then mr+nxv will be given, consequently nvb

-f. nxv = 0, which gives ^- == r, the equation of the

curve.

If the greatest diameter and bulk be given, then in-

stead of v -\-xv being given,pm2v -\-pn
2xv will be given

(Art. 169.); hence, m2v + ?i
2xb=O

y which gives
^

**, the equation of the curve.

v.
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Although PDEQ, QEFR are here taken as incre-

ments, yet we reason upon them as fluxions, conceiv-

ing their limiting ratio to be taken, and consequently
the conclusions are mathematically true.

Prop. CIII.

Tofind the nature of the curve AC, so that a body

may movefrom A to C in the least time possible, the ve-

locity at any point D being as DSr
,
S being anyfixed

point.
175. Let DS, FS, be two given distances including

a given angle DSF, draw SE, and Dn perpendicular

to SE, and Em to SF, and let En = mF. Put SD =.

m, SE = w, En = Fm = a, the constant quantities, D»
= i/, Em = w, the variable quantities ;

then DE =
Vrt3 + v2 and EF = Va2

-f w2
; and the time of

u- t^u VV + v2 s/a% + zv2

describing DE = , and ot Et =mr nT

\/a2 -f- v
2 \/a2 + w2

hence, ;
— A = max. and its fluxionmr rf

+
rmh — =Q: but the ZDSE is

mrVa2+ -o2 nrVa%
-f zv2

measured by —, and A ESF by — ; therefore fJ m J n m n
• •

= /. DSF, and
1

=
; hence, w»

"

m n m
nwv

mWa2 + v* mnfVa2 + zv2
therefore — — = 0, and
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v w
m "VflS + V* n""Vfl8 +w2

; that is, if SD = #,

AD = 2, Dn = y, then —^-. =-7rj» a constant quan-
*v Si1 C

tity.

If r = 0, AC is a straight line.

If r = 1, then -?- is constant, and the curve is the

log. spiral.

If r — 2, then cy = ;?«, and the curve is a circle.

2D



SECTION XIII.

V%*VWA/%-WVWWV

MISCELLANEOUS PROPOSITIONS.

Prop. CIV.

/>TVEN the sine EB of an arc AB of a circle; to
*-^

find the nine of n times AB.

176. Let AB= z, and AK= nz ; put OB=l,z/ =
OE the cosine of AB, v = the sine BE = Vl 2— y

2
>

tf=i=the cosineOG of AK, then Vi 2—^2=the sine GK

of AK. Now (Art. 46.) % : —y : : 1 : vV—#
2
, .«. £=

——'—
; for the same reason, the fluxion of nz, or

vV- -r

71Z=
x/i 2

-

x ,
x

; hence,
n i)

x* -y/p— x2 */l 2
-

; mul-

tiply both denominators by >/—
1, and

x
Vx2
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n
-
f

,
whose fluent (Art. 45.) is h. 1. x -f V*2—l

3

vy-i 2

= n X h. 1. y + \/y
2—i 2

; hence, (Art. 109.) a? +

VV—l
2 =

*/ -f- Vi/
2— 1

21 = (Art. 34.) y
n + ny

n—i

n—1 „ „ -r*—r . n— 1 n—2

vy_ 1 +n.—. #"-
2 x */

2— 1 + w.—
j-

*T* X

v'?/
2— l x ?/

2—1 -f- &c « Now as this equation con-

sists of quantities, partly possible and partly impossible,

>/ x2— 1 and V
'

y*
— 1 being impossible, it is manifest,

that the possible and impossible parts must be respec-

tively equal. Hence, assuming the impossible parts

n i

equal, we have, */**—1 = «y
B,-,^a— 1 +n.-

2

n—2
yn-3X \/y2

— i xy2—l-f&c Multiply both sides

n—1

by \/—1, and Vi—x2 = ny
11'1 Vl—

z/

2 + n.

w—2

3
5/
"-'x^i—y

2Xy
2— 1 + &c. — (because v

, . n—1 n—2
v 1—y\ and — v2 = y

2—
l) ny

n~l v—n. —^-——
z/

n~V+&c the sine of AK.

Prop. CV.

Given as before, to find the cosine s/AK.

177. Assume the possible parts of the above equa-

n—\
tion equal, and we have x = y

n + «• -5— */ X
J/

2—1

n 1

*f&c.=y"—-n. i/"-
2y2-f&:c. the cosine of AK,
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Prop. CVI.

Given as before, to find the tangent of AK.

178. Put t = tangent of AB, then by Plane Trig.

t=— ,
radius being unity ; hence, the tangent of AK=

V

sin. AK 2 3 ,.

cos. AK _ n— I „ _ »

y
n—n . y

n 2v2
-f. &c.

dividing the numerator and denominator by y
n
)

wo n—1 n—2 r iS w—1 n—2 „

y 2 3 y* 2 3

n— 1 v2
, *

n— 1 .
c

l_ra. — +&c. 1—n—— .*
2
+&c.

2 z/
2 2

Prop. CVII.

To resolve vZn—2#vn+l=0, mta zte quadratic divi-

sors, the limits ofx being + 1 and— 1.

179. Retaining the notation in Art. 176, we have

x -f Vx2—l 2=y+V y
2—l 2

J . Put T;=Z/+V
/
?y
2_l 2

;

transpose y and square both sides, and we get v2—2yv
— _

!», ... v2—2yv+l
2 -=0. Also, vn=x+<Sx2—

12;

hence, by transposing x, and proceeding as before, we

get v2n — 2xvn + 1=0, the given equation, of which
we have one quadratic divisor v2— 2yv -f l

2 = 0, v

being the same in both equations. Now if to the arc

AK, we add 360°, 2 x 360°, kc. we shall come again
to the same point K, and consequently we shall have

the same cosine, or x ; hence, x is the cosine of

AK, 360° + AK, 2 x 360° + AK, &c. But y is the

cosine of an nth
part of that arc whose cosine is x;

. . . rAK360°+AK2*360°+AK
hence, wis the cosine ot

, , ,,J n ' n n
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&c. which cosines call a, b, c, &c. substitute therefore

these values for y in the equation v2— 2yv 4. l 2 = 0,

and we get v2—2av + 12 = 0, v
2—2bv + l

2 = 0, v
2—

2cv -f- l 2 = 0, &c. for the quadratic divisors required ;

hence, v2—2a~v+l
2 X v2—2bv 4- 1

2 x &c = v2n—2xvn

4- l
2
", retaining the power of the radius in the last

term. Although there are an infinite number of arcs

whose cosines are x, and consequently an infinite num-
ber of corresponding values of z/, yet there are only n

AK
different values of y ; because, after taking n arcs, ,

n

360+AK c , -mi
! &c. the same cosines will return again.
n

If x = ± 1, or if AK be taken equal to the whole

circumference, or half the circumference, the equation
becomes v2n

3: 2v
n 4- 1 = 0, whose square root is vn q:

1=0; now as every equation which is a square, must
have to every root another equal to it, the equation vn

?1 =0 must contain the same roots as v2n ^ 2vn 4. 1

=
; the roots therefore of %>

n
q: 1 =0 are found in

like manner.

180. Hence, we may find the quadratic divisors of
v <zn—2,XTnx>

n+r2n=0, which is the equation W'—2xvn

-f- 1 =0, having its roots multiplied by r (Alg. Art.

282.) ; multiplying the roots therefore of the above

quadratics by r, we have v2—
2arv-\-r

2—0, V2—2i>rv-{-

r2=0, &c. for the quadratics required. If AK=90C
,

thenx=0, and the equation becomes t;
2"4-r2"=0.

Prop. CVIII.

^ ;
1

>
P—Qx-

10 resolve into 4.
1 — 2xvn

-f-
v2n 1 — 2av -f v2 T

4- &c. x being the same as in the last pro-
1—2bv+v2

position.



206 Miscellaneous Propositions.

181. Let the roots of 1—2xvn + -v
in = O, be— -L

1—
, &c. then as this is a recurring equation (Alg. Art,

289), the corresponding roots will be m,p, ^,&c. Assume
1 A B _C_

1 — 2a- "
-h i'

2"
~~

1 — w» 1—/w
"*"

1— qv
+

then reducing these to a common denominator, we

have A X 1—pv X i—yv*&c.-fB X 1—»«> X 1—qv

X &c. -f &c. = 1 ; let 1—mv = 0, then v ——
; hence,m

Axi-A X l-Ix&c.=l,orA^ x !!=?mm mm
&c= l

; or if rv=m—ji X m—q X &c. then A X
w

m2"~l

m 2n~l

= 1
; hence, A = • In like manner we find B,

XV

C, &c. by making 1—hi) = 0, 1—qv = o, &c Now
as 1—2x - n+v2n =t v—m X~v—ft Xv—q X &c. take the

fluxion, omitting f, and 5.m> 2n~1 — 2nxv"~ l = v—ft

X v—q X &c. + v—m x v—q x &c. -f- &c. now let

v = w, and it becomes 2nm 2n~x— 2?ix'nn
~I = ,n p ^

to—jxac, =ty ; hence,A I = J = ;-
V xv I 2nm2n-1~2nxm'1

-1

4,n

-. For the same reason, B=
2nmn—2/ix ^n;

n—-ax*

Q XT A B A-fB—/A-f mBxv
&c. JNow =—— '-—

j
1— v 1 v i—2a i>4-v

2

and as 1—2ai+v2=\—mv x 1—fn
— 1 — m -f- ft X z>

-f-m/n
2
,
we have m+ ft == 2a, and mft

—
1. Also, A =

,
B = £-

j hence, A + B =
2/i«z

n—2nx 2np"
—2nx
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4nmn
ft
n—2xn x mn

4-ft
n _

- - -
. Butt;2"— 2xvn 4-l

4n2mn
p
n—4<n

2xx mn
+p

n + 4n2x2

=0, therefore vn A =2x; now for v substitute m. and

mn A =2x ; but w/2=l, and /?= — ; hence, ?n
n
-\-/i

n —

2x ; consequently A 4- B = — =H 3 T
4/z2— 8;/ 2.v

2
4- 4«a#*

*"= i, Also,M+-B =
4n2 x j x2 n 2nmn— 2nx

mfi
n

2n/i
n— 2nx

~

2nm x mn
fi
n
4- 2rc/z x ™n

fi
n— 2nxfi X mn— 2nxm x A"

4n* xi — at
2

(the common denominator being the same as in the

value of A 4- B) = (as ftm = l, m 4. ft = 2a)

2rc X 2a— 2nxftm x mn~l— 2nxftm \ fi
n~l

4?i2 x 1 — tf
2

4na— 2n.v x ™n_1 4- /"-1 , _== . Now ?nn-\-p
n = 2„v, where

4rc
2 x 1 — x2

x is the cosine of an arc which is to the arc whose

cosine is a, as n : 1
; for the same reason ?n

n~1 4-

pn~1 = 2e, if ? be the cosine of an arc which is to the

arc whose cosine is a, as n— 1 : 1
;
therefore ftA 4-

„ 4na— 2;w > 2e a— ex TT Amo = .. = . Hence.
f-

4rc2xi—x2 n— nx2
1 — mv

1 a—ex
XK ~*V

~/W
- —=— . Consequently
1— -zav+v

2 ^ J
1— 2xvn+v2n
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1 a—ex 1 b—fx— + -xv — + —J—-xv
n n—nx2 n n—nxr c , _.= ~;
—

o
—

7~l V
—

;
—

oA ,
o h&c. where /is

1—2av+v2 1—2bv-\-v
2 J

found from b, in the same manner that e is found

from a
; and so on,

182. If x be negative, the given quantity becomes

l+2xvn+v2n

183. In like manner, . will be found equal to
l±vn ^

-J f-&c. where A=—
,
B=—

,
&c. and if

mv 1—jvo n n '

B
1—mv x 1— fiv = 1— 2av+v2

,
then —-

-f

Xt;

1— mv l—'fiv

2 2a

n n —
: and soon; n being an even number.

If n be an oddnumber, then of the equation 1 +vn=0;

one root =— 1 ; hence, 1 -f v=0 is one of the simple

equations ;
and as the other part is made up of quadra-

2 2a 1

n n tt

tics, we have ——
;
= -—

2 + &c. +—— .

If n be an odd number, the equation 1 — vn =
n— 1

contains one simple equation, and quadratics.

Now the equation 1— vn = 0, has one root =1, con-

sequently the simple equation is 1 — v = 0. Hence,
2 2a 1

1 n n n
= = + &c. + z •

1—vn 1—2av+v2 ^1—v

If n be an even number, 1 — vn = has two roots,
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—1, -fl; therefore two of the simple equations will be
2 2a

XV
1 n n

1 — v = 0, l-fx> = 0; hence, = -~j' 1— vn 1— 2av+v*
1 1

„ n n
-f &C. + - - +

1— v '

1 +t>

Prop. CIX,

Z^ F=
^ ^ ;

—
^t tofind F, x being constant,

v

1 — 2xvn + v 2

#«</ the same as in the last proposition.

184. Retaining every thing as in Art. 181. we have
1. a— ex . 1. b— fx .—V VV —V ' —vv

• n n—nx% n n—nx2 .

F= f- t
— +&c.theflu-

1 -f- 2av + v* T
l — 26-y + -y

2 T
ent of each of which quantities is found as in Art. 139.

Prop. CX.

• v
Let F= ,

n being an even number
,
tofind F.

2 . 2a . 2 . 2b .

T0——W0 —T> VV

185. By Art. 183. F = — + -—
2

4- &c. whose fluents are found by Art. 1 39.

2 . 2a .— x>— —yy

If n be an odd number, then F = —
%,

1— 2av-\-v
z

1 .—v
n

+ &c. + , whose fluents are found by Art. 139>

and 45.

2E
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Prop. CXI.

Let F= ,
n being an even number, tofind F.

2 . 2a . 1 .—V— —VV —V
• n n n

186. By Art. 183. F=- - r
-
^ + &c * + i 73 1— 2av+v2 1— v

1 .—v

a. , whose fluents are found by Art. 139. and 45.

If n be an odd number, we have F =
2 . 2a . .

1 .—v— —vv —v

f- &c. -f > whose fluents are found bv

Art. 139. and 45.

Prop. CXII.

To demonstrate Cotes's properties of the circle,

187. Retaining every thing as in Art. 179. we
have x>

3n— 2x-yn+l 2n = 0, of which v2— 2yv + l 2 =
is a quadratic divisor. Assume any point P, and draw

PB, and put x;= PO; then BO 2

=_BP
2

_+ PO+2PO
X PE ; that is, l

2 = BF2+v2
+2vxt/— v = BP3— v3

+2yv i hence, BP2= ^2—2^-fl
2
. Also, z/ is the co-

. AK 360°+AK 2X360°+AK
sine of ,

—
» >

«*£• wnose co-
n n n

sines are a, 6, c, &c. and v2 —2av + 12 x x*—2dt>+l
!
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X&c.=r2w—2xvn+l 2n
. Now let AK be the whole cir-

cumference C, then the above arcs are — ,
—

,
—

,
&c,

n n n

or the —,
—

,
—

,
&c. parts of C j that is, if the whole

n n n
circumference C be divided from A into n = parts at

B, C, D,&c. then the'cosines of the arcs AB, AC, AD,
&c. are a, 6, c, &c. and x=l

; hence, from what we
have already proved, PB2 = v2—2av+l 2

,
PC 2= -&—

2bv + l
2
,
PD 2 = r2— 2cv -f l

2
,
&c. consequently PB2

xPC2xPD 2X&c. — x2n— 2vn+\ 2n
; hence, by taking

the square root, we get PB x PC x PD X &c. = vn

—l
n
,
or ln—vn=VOn—AO", or AO"~POn

, accord-

ing as PO or AO is the greater, or according as P is

without or within the circle, for every thing holds the

same whether P be within or without. This is one of

the properties of the circle.

188. Let these divisions be again divided into two

equal parts at b
y c, */, &c. then the whole circumfe-

rence will be divided into 2n equal parts, and there-

fore from what is already proved, Pb X PB x Pc

xPCxP^xPDx&c. = AO2"— PO2
", taking P with-

in, for instance ; divide this by the above equation,

P^xPBxPcxPCx P^XPD X&c.
and we set' PBxPCxPDxTcT— ^
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A02n P02n

AO"— PQ" 5 that iS
' VbxVcX P^X &c.«AO«+

POn
,
which is the other property.

Prop. CXIII.

Let AP be the abscissa ofany curve, PMNQ an or-

dinate revolving about any fixedpoint P, and cutting the

curve in as many points as it has dimensions; anddraw

the tangents M?/, Nx, Qzu, &?c. then will ——f-
——

\-

=5 f- fc^c. (the sum of the reciprocal subtangents) be a

constant quantity.

189. Let the equation of the curve be y
n—a'+b'xX

yti—1_|_
§cc# +pxn—^rx

n—1+&c.=0 ; and corresponding
to AP the abscissa

(;c), let a, b, c, &c. be the values

of y ; then, by the Elements of Algebra, Art. 267.

ax b X c x &c. =pxn— qx
n~x

-f &c. take the fluxion

• m a

of each side, and abc &c. -f- bac &c. -f- cab &c. +
hc.=npx

n~1x— n—lxqx
n~2

x-{-1kc. divide this latter
*

• • •

equation by the former, and we have h t -fabc
npx

n~xx— n— 1 X qx
n~2x + &c. , a

+ &c « = ZZZ w-i i g
"

J hence, —:

px
n— qx

n x
-f &c. ' '

ax

JL- L
C

I. fee-
n^n~1 "~7I=~ 1 X<tXn

~2 + hC'
hnt+Jx+cx + ^C

px»— qx»-* + kc.
''
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• • •

Art. 23.")
—r, r-r,

—
r, Sec are the reciprocals of the

' ax bx ex

subtangents Pz/, P„v, Pw, &c. ; hence, (dividing the

numerator and denominator on the right hand side of
the equation by p, which will not alter its value)

nxn~*—n—1 x -^- *n~2
-f-&c.

9 „«-a

P 1 1 1

, ? „.,:. Py Px Ptv

p
But by the Algebra, Art. 525, the roots of the equa-

tion *n—1 ^n~1
-f-&c.=0 are AB, AC, AD, &c. what-

P
ever be the angle at P; hence, {Algebra, Art. 267.), the

coefficients of xn ¥-xn
~

l

+&ic. are constant ;
and if P

P
be assumed a fixed point, x is invariable ; hence, xn—
— xn~x + &c. is constant, and nxn~1— n— 1 . -Z-x

n~2

P P
-f&c. is constant ; therefore the sum of the reciprocal

subtangents is a constant quantity.

Prop. CXIV.

Given the arc ofa circle ; tofind its sine and cosine.

190. Put the radius OA = r, the arcAB = z, its

sine BE = x, cosine OE = y, and produce BE to D j

then (Art. 46.) % : —y : : r : x==—~. Now corres-

ponding to the same value OE of z/, z may be either

AB or AD
; but the arc beginning at A, if we con-

sider AB as positive, AD will be negative, therefore

every positive value of z* has a negative value equal

* If every positive value of 2 have a negative value equal to it,

the equation whose roots are those values ofz, will have only the
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to it
; hence, by the note, if we assume y in a series of

the powers of 2, only the even powers of z will enter.

Assume therefore y= r-f-<z2
2 4-#24

-f c2
6
-f&c. the first

term being r, because when 2 = 0, y=-r; hence, y =
2az% + 4>bzzz -f- 6cz

5z -f &c. therefore x ( = —r!-
J

—— 2raz— 4rZ>23— 6rcz5— &c. and a==— 2rax>—
3Arbz2z— 5.6rcz4z— &c. But (Art. 46.) z:x: :

r : y ; hence, yz = ra", and y%>
— rx =

;
now in this

equation, instead of y and x substitute their values

above found and we have

rz+ az*x+ 624x4-&c. 1 .

2r2ai4-3.4r2fe 2
2-f5.6r

2C24i4-&c. J
'

hence, (Art. 110.) 2r2a+r = 0, 3.4r2£ + a = 0, 5.6r2c

1
. A = j^ .

"

3.4r2
"

; &c. hence, y =

4. b = 0, &c. consequently a = -

2.3.4rs
c = —b >— 1

5.6r8 2.3.4.5.6r5

2r 2.3.4r3 2.3.4.5.6rs

1

+&c. Also,—2ra=l ;

-irb= : — 6rc =
2.3r2 2.3.4.5r4 ; &c. hence, x = z—

+
2.3r2 2.3.4.5r4

&c.

even powers of 2 ; for if z=a, z=— a, then z—c=0, z-\-a=0,
and consequently the quadratic from these two will be z2—/&=

; and as every such pair of roots will form a similar quadratic,
it is manifest, that the equation formed by the multiplication of

these quadratics, will contain only the even power of z.
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Prop. CXV.

Tofind the sum of the series —
-\ \ + &c.

ad infinitum.

191. Put the radius AO = 1, EB = x, AB = z ;

then (Art. 190.) x=z |
&c. Letv J 2.3 2.3.4.5

x=*0. and then z— —
| &c.=0, or 1 —

2.3
r
2.3.4.5

1 &c. = 0, the former equation con-
2.3 2.3.4.5

'

taining one root = 0, it being divisible by z,orz— 0,

{Elem. Alg. Art. 266.), which is taken away by divid-

ing by z. But if c = the semi-circumference of the

circle, the other values of 2, corresponding to x = O,
will be lc, 2c, 3c, &c ad infinitum, and by tak-

ing the arcs in a contrary direction, they will be—
lc,
—

2c, — 3c, &c. ad infinitum {Elem. Alg.
473.) ; hence, these values of 2 are the roots of the

22 24 1

equation 1
1 &c.=0. Put 2=—, and

2.3 2.3.4.5 y

the equation becomes 1 —.
1

&c.
2.3.i/

2
2.3A.5.y

4

=
j multiply it by z/

n
, and it becomes y

n —- ——

2/J-4

-f
— — &c. = 0, which equation contains n roots

=0, the other roots remaining the same. But as y——,

the values ofy are — ,
—

,
—

, &c.and , , ,*
lc 2c 3c' lc 2c' 3c'

&c. ad inf. Now {Alg. Art. 349.) the sum of the

squares of the roots of the last equation is
•£ ; and the



216 Miscellaneous Propositions.

squares of the positive values of y being the same as

the square of the negative values, we have
j

l 2c2 22c2

2 , . - 1 ,111
•4- ——f- ad int. = —

, consequently 1
1 uT

32
c
2 3

^ J
l
2 22 3 2 ^

&c. ad inf.=— .

6

Cor. 1. In like manner we may find the sum of any
of the even powers of the reciprocals of the natural

numbers, by assuming the sum equal to its value

given by the same Art. in the Algebra. For instance,
the sum of the fourth powers of the roots of the equa-

1 2 2 2 1
tion is — ; hence, —-

-f
—- -J l&c.=— con-

45 l
4c4

T
24c4 - 34c4

T
45'

,
1 1 1

fi
C4

sequently 1
1 f- &c.=— .4 ;

l
4 24 34 90

The sum of the reciprocals of the odd powers cannot
be found by this method, because the odd powers of the

negative roots destroy those of the positive...Ill c2

Cor. 2. By transposition,
— + —- +— -f. &c.=—

22 42
C *

6 22
l2 22 6

1 c2 c2— x — =— . And in like manner, we may find the
22 6 8

:

sum of the reciprocals of all the even powers of 1,3,
5, &c.

Prop. CXVI.

Supposing the force of gravity to vary as the nth

power of the distancefrom the centre of the earth, and
the compressiveforce of the air to vary as its density ;

to find the density of the air at any altitude above the

surface of the earth.
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192. Let the radius of the earth = 1, x = the dis-

tance of any point above the earth's surface from the

centre,,v = the density of the air at that point, the

density at the surface being unity ; h = the altitude

of an homogeneous atmosphere. Now it appears by
experiment, that the compressive force of the air varies

as its density j consequently the fluxion of the com-

pressive force must be to the fluxion of the density, as

the compressive force is to the density, and this ratio

is the same at all altitudes. Now at any distance x
from the earth's centre, the fluxion of the compres-
sive force must be in proportion to the force of gra-

vity, the density, and the fluxion of the altitude ;

hence, xnvx has a constant ratio to— r, writing the

latter fluxion with the sign
— (Art. 16.), because v

decreases as x increases; and according to this represen-
tation of the compressive force, h will represent the

compressive force at the surface
; hence, h : 1 : : xnvx :

£ xn -j_
l

•—
vf, therefore xnx =— hx — and [=—Axh. I.

x> n + 1

xi-fC; but when x==l
9
v=l

y
and this equation be-

1 . xn + :

comes = C ; hence, the correct fluent is =
n+1 ii -\- 1

1 1 -vw-f-
1— Zixh. 1. v + , consequently =Axh. 1.

tt-fl'
^ J n + l

z>, an equation expressing the relation between the al-

titude and density.

Cor. 1. If we suppose the force to vary inversely as

the square of the distance, n becomes— 2 ; hence, —x
— 1 = h x h. 1. v

;
if therefore x increase in musical

progression,
— will decrease in arithmetic progression,x

and consequently the h. 1. v will decrease in arithme-

tic progression.

Cor. 2. If the force of gravity be supposed con»

2F
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stant, n = ; hence, 1— x=hxh. 1. v ; and if X in-

crease in arithmetic progression, then 1 — x will de-

crease in arithmetic progression, consequently fhe h. 1.

v will decrease in arithmetic progression.

Prop. CXVII.

Tofind the time in -which a vesselABCD filledwith

ajluid, will empty itself through a very small orificem
at the bottom.

193. Put a = 32£ feet = 3§6 inches, x = mn the

depth of the fluid at any point of time, z=the area

of the surface PQ of the fluid, m = the area of the

orifice, t = the time in which the surface of the

fluid descends from PQ to BC. Now it appears

by experiment, that the velocity of the fluid at the ori-

fice is that which a body acquires in falling down |x,

supposing the orifice to be very small compared with

the surface of the fluid ; hence, by Mechanics, Via

: >/\x : : a : Vale = the velocity (per second) at the

orifice ;
and by the Principles of Hydrostatics, z : m
yn

: : Vax :
— xVax the velocity with which the surface

descends ; hence (Art. 81.), / = x zx

m .—- m\/ax— X Vox
z

the fluent of which, corrected when necessary, gives t»
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EXAMPLES.

Ex. 1. Let the vessel be a cylinder or prism.

Put h = Em its altitude. In this case z is constant^

and i= —=. == = x x~%x, whose fluent is t =
ms/'ax mV a

2ZX* 2z i X
--*-'-=- = — X v— ,

which wants no correction ; and
»Va m ~

a

2z Yh
when x= h,t=

— X V—,
the time of emptying.

Ex. 2. Let ABCD be thefrustrum ofa cone.

Put Fm = c, mB = </, Em=e,/i=3,14159 &c. then

F?z ==c:fc,a;, the sign -f- or— being taken according
as the less or greater end is downwards ; and (FA,
FD being now right lines) by similar triangles, c : d

d u Pd
*

9.

: : c ± x : Pn = — X c ± x ; hence, z = —— X c ± x* j

c c

consequently ? =—-—=Xx ?xc±x X sc=
mcW a mcWa

X c
2
.*"
-^ ± 2cx^.r + „r

2
a?, and £ = —-—= x

mc2Va
i 5 1

2c2x* ± ^cx
2
+|-x

2
,
which requires no correction;

i>d2 *
I

*~"

and when x= e, t = -1—p X 2c2e*~ ±^ + fe
2

,
the

;nc
2v'a

whole time of emptying.

If the orifice be a circle whose radius = r, then m =

j&r
2

; consequently t= = x2c2
e ± |ce

2
-f-f~

2
*

Cor. If the base be downwards, and we take the
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//2 i
p. 5

whole cone, then c = e ; hence, t = x —c* =
r2c2Va 15

1 6d2V c
<=, the whole time of emptying.

15r2Va
If the vertex be downwards, and the orifice be so

small that we may consider Em as equal to EF, then

c=0, d—O ; but because c is always to d as FE : EA,
=•. when c and d vanish, we may consider — = —rr- ;J

e2 PE 2

.
f

EA2 f 2EA2xVFE , , ,

hence, t— x\e = =— the whole
FE 2xrWa 5rWa

time of emptying.

Ex. 3. Let BFC be a hemisphere standing on its base.

Put the radius wB = mE = r
; then P/?2 = r2— x\

and z^X^-^j hence, f =^ * '"'~ *' * X -
mVax

- ? ^ X r2
.v
—

^a--— ,v
2
«r, whose fluent is £ = ^_ x

my/a mVa
T 5

2r2x 2—
ftf

2
, which wants no correction j and when

x = r, t = =. X i"*, the whole time of emptying.
5my/ a

If the orifice be a circle whose radius is w, then m=.

8f 2

/jtu
2

; hence, t =
Jt^V a

If the hemisphere stand on its vertex, En2 = 2rx

—x2
; hence, z=px2rx— x2

, consequently / =—1—=^
m>/ a

I |~ f) 1 5

X2rx2x—tf\r, whose fluent is t— ^
__x?rx

2—fx
2
\

my/ a
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which requires no correction ;
and when x = r, t =

5 5

14#r2" 14r2—— = =, the whole time of emptying.
15m Va 15w2 Vr

Ex. 4. Let BCF be a paraboloid standing on its base.

Put its parameter = r, its altitude Fm = e, then

r x e—x = Pn2
, and />r X e—x — z ; hence, i =

— X ex~^x—x$3b, whose fluent is t = _ x
m Va m Va

,2 lv22ex^—f#*, which requires no correction ; and when x

=e. t=. == =, the whole time or emptvine.
3m Va 3wVa b

If the paraboloid stand on its vertex, Fn2 =. rx j

.
,

. prx*x
hence, z = prx ; consequently t = =,

and t =
w Va

3

-i
==., which wants no correction ; and when x = e,

3mVa
3 „ 4

2/?rf2 2/-ea .

j= —- = = =•, the whole time or emptying.
3m Va 3zv2Va

In like manner, whatever be the form of the vessel,
we may find the time of emptying, substituting into

the value of £, the quantity z expressed in terms of x,
and then taking the fluent.

Prop. CXVIII.

Ifa perfectlyflexible chain ACB, ofuniform density
and thickness, be hung' upon two pins at A and B

; to

find the curve into xvhich it willform itself

194. Let C be the lowest point, draw the axis CD
perpendicular to the horizon ; draw also E F, Gn per-

pendicular to CD ; Fn a tangent at F, and Fm perpen-
dicular to FE. Now assuming any part CF of the

chain, we may consider it as if it were perfectly rigid ;
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for conceive CF to become perfectly rigid, and it is

manifest that no alteration whatever can take place ;

for the gravity of the chain gives CF a certain situa-

tion
; and if we make that part to become inflexible, we

add no new force ; we only suppose a cohesion to take

place between the constituent particles whilst they are

so disposed. Considering therefore CF as a perfectly
inflexible body, it is kept at rest by three forces ; at

C by the action of the part BC of the chain in the

direction Cz of the tangent at C
;

at F by the action

of the part FA of the chain in the direction Fn of

the tangent at F ; and by its gravity in a direction

parallel to EC ; but * Cz is parallel to mn, and CE to

mF ; hence, these three forces act parallel to the three

sides of the triangle F?nn, and consequently will be re-

spectively proportional to them, the body FC being at

rest. Put CE=*, EF=j/, CF=z, then (Art. 23. and

27.) F?7z=i?, 7nn-=y, F/z=». Now the chain being
of uniform density and thickness, the gravity of any

part CF will be in proportion to its length z ; also, let

a= the tension of the chain BC at C acting in the di-

rection Cz, a constant quantity, it not varying by
changing the point F. Hence, a : z : :

tf
:
*fc,

•*• ax=zzy ;

c?x%

but £2 = *2 + y
2 = *• H ,

therefore z3»2 = z2
a?2 -f

z 2

* As by Mechanics, these three forces must be directed to one

point, if the two tangents «F, zC be produced to meet, the inter-

section must be in the line of direction passing- through the centre

ofgravity of FC,
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a2x2
, consequentlyx=— ,

whose fluent (Art. 39.)
Va 2

-fz
2

is x = V a2+z 2 + C ; but when x = 0, then z = ;

hence, the equation becomes 0= a -f C, and C=— a ;

therefore the correct fluent is x = V a2
-f-z

2—
tf, and by

transposing a and squaring both sides, x
2 + 2ax = zs,

the equation of the curve. This curve is called the

Catenary.

Prop. CXIX.

If the chain ACB be of uniform thickness ; to find
the law of weight and density, so that it may form it-

self into any given curve.

195. Letw = the weight of any part CF, d — the

density at F; then by the last proposition, a : w : : y : x
y

therefore w = a x —• Now w == dx> ; hence, d= —.

y *

But w=a X — ,
and if y be made constant, rb=a X — ;

# y

hence, d = — , which gives the law of density.
9*

EXAMPLES.

Ex. 1. Let the curve be a circle whose radius is r.

Here, x:y::y: r—x ; therefore w I = a X — )
=

a X - ^ = a X tan. of CF; the weight therefore of any
r—x

partCF varies as the tangent of CF. Now, y
2=2rx—x2

,

and yy=rx— xx, and (making y constant) y
2=rx—

i)
2

1 x2
*

z2

xx—a?2, therefore x=- = = (because r : y
r—x r—x J

r2x2
. r—x xx , . rx

% : x) ; also, y = ,
and a =—

;

y
2 X r—x y y
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, ,/ ax\ ar2dc2 y y ar
hence, d[ — —- J= X ===— X -^ = .

\ y%J y^xr—x r—xxx rX r—x
The density therefore varies inversely as the square of
the cosine of CF. If therefore the arc be a semi-

circumference, the density at the highest point is in-

finite.

Ex. 2. Let the curve be a parabola.

Here, px = y-; therefore, X = -^
; hence, w

P
( = a x —

)
= —-

; therefore the weight of any part

CF varies as the ordinate FE. Also, (if y be constant)

°i/
2

i/
2
-f-c

2
"l^ x y

2b=z—Z- ; but (Art. 54. Ex. 3.) Z = - !

£, put-

ting c=$p ; hence, dl= — ) = - The den-
V y

2+c2

sity therefore varies inversely as \/y
2+c2

,
or inversely

as the normal (Art. 24. Ex.).

Prop. CXX.

Let CAD be a plane figure, or a solidgenerated by
its revolution about its axis, moving in afluid in the di-

rection of its axis BA ; to find the resistance of the

curve line CAD, or of the surface of the solid, to the

resistance on the base CD.

196. Draw FQsv and wr parallel to AB, rst,

QP<7 perpendicular to AB ; then if AP = x, PQ = ?/,
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QA = z, it appears from Art. 23. and 27. that ulti-

mately, by bringing r up to Q, Qs = a?, sr =
*/, Qr

= z. Draw the tangent QG, and let fall the perpen-
dicular FG upon it, and also GH upon FQ. Now let

FQ represent the force of one particle of the fluid,

then if that particle struck the base at v, its whole
force would act to oppose the motion, because it acts

perpendicularly to the base, and therefore no part of its

force is lost ; but striking the curve at Q obliquely,
if the force FQ be resolved into GQ and FG, then GQ
is here supposed to be lost by the obliquity of the

stroke, and FG to be the only effective part ; but this

not being opposite to the motion of the body, we
must resolve it into FH and HG, and then FH is that

part which opposes the motion of the bod}", and HG
is destroyed by an equal and opposite force of a par-
ticle acting at q. Hence, the force of a particle at v :

force at Q:: FQ : FH ::
(because FQ: FG :: FG : FH)

FQ2
: FG2

: : (by sim. trian.) z
2

:
i)

2
. Now the quantity

of fluid striking Qr and vru is the same, and in pro-

portion to sr or
ij. Hence, if we consider it as a

plane figure, as the whole force is as the number of

particles X force of each, we have the force against
U t'j u

vzv : force against Qr : : y :
— =^ = •

;

1 + t
y

hence, the whole resistance on the base : that on the

curve : : the fluent of */, or z/, : fluent (F) of—^-r-.

y
For a solid, the number of particles striking the area

generated by vw will be as vzv X circum. described by
v, or as vxu X y or as yy ; hence, for the same reason,
the resistance on the base : that on the surface : : the

flu. of 20, or i;/
2
,

: flu. (F) of m'

:i
.

y
2 G



226 Miscellaneous Propositions.

EXAMPLES.

Ex. 1. Let ACD be an isosceles triangle.

Here the plane is a triangle, and x : y : : x : y : : a
x% a2

(AB) : b (BC), .*.— = —
; hence, the resistances are

as y : flu.
-v

: : w : —2L_ : : b2 +a2
: b2 : : AC2

:

BC2
. The same is true for the cone, or for any pris-

matic solid.

isa?. 2. Ze£ CAD fo « semicircle.

Put AB=r, then y
2=2rx—x2

; hence, x= -zM- =s

^ and
d'2- ?' • • F- V __ r

2y—y2
y

r2—
z,
2r2-

and F=w——„; hence, the resistances are as v : it—^L.
J

3r2 v y
3r*'

which, when y = r, is as 3 : 2.

ii.v. 5. Ze£ CAD fcc hemisphere.

Here F=_*2_ =^~t±, and F=^2-

—
; hence, the resistances are as |ty

2
: ?V2, -

«, » which,
4r2 2:7 2y

4r*

when
?/
= r, is as 2 : 1.

.Ex. 4. Let the solidCAD be generated by a cycloid
AC revolving about AB, BC being the axis of the cy-
cloid.

z2
If «=BC, then y=z by the nature of the curve;

4a
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hence, y= «_ 5, ... F= 2£*j£ _ ^^ 2a~ z _
__ 2a z2 4a2

=
y^/
— —

,
and F = \y

2——
; hence,

the resistances are as \y
2

: ^z/
2— 2—, which, when z/

=
3a

a, is as 3 : 1.

197. Considering the body as a solid, and the force
of a particle on the base as constant, the force of a par-

ty
2

tide on the surface oc L_, and the area generated by
%2

rs being as yy, the resistance against QR OC ~_^L.

vwwwvwvwvw

On MERCATOR's PROJECTION.

Prop. CXXI.

JfP be the pole of the earth, EQ the equator, PE,
PR, two meridians, mn a small circle parallel to ER ;

then the length ofa degree oflatitude : the length of a

degree oflongitude atm:: radius : the cosine ofthe la°

titude ofm, supposing the earth to be a sphere.

198. For let PC be the radius of the earth ; draw

mr, nr perpendicular to it, and join EC, RC. Then mrt

nr being parallel to EC, RC respectively, the angle
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mm = ECR ; hence, by similar sectors, ER : mn : :

EC : mr the cosine of mE. But when the angle is given,

the length of an arc of a degree is in proportion to the

radius ; also, the length of a degree of the great circle

ER is a degree of latitude ;
and the length of a degree

of mn is a degree of longitude at m ; hence, a degree of

latitude : a degree of longitude : : radius : the cosine

of latitude.

In Mercator's Projection, the sphere is projected

upon a plane, and the meridians EP, RP are straight

lines parallel to each other ; consequently P must be

at an infinite distance from the equator EQ. In this

case, the arc mn being the same at all latitudes, the

length of a degree of longitude is everywhere the same;

to preserve, therefore, the proper proportion between

the degrees of latitude and longitude, the degrees of

latitude must increase as you go from the equator, so

that they may always be to the degrees of longitude in

the proportion of radius to the cosine of latitude.

Prop. CXXII.

In this projection,
it is required tofind the length of

an arc of the meridian, corresponding to any given la-

titude.

199. Let P be the pole, E the equator, PCQ a

diameter of the earth, C the centre
;
m any place on

the surface ;
draw mr perpendicular to PQ, and join

;„C, ?»Q. Put 0=r, Etn=x, Cr (the sine of Em the

latitude of ;»)=?/, and the length ofEm on the projection
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e= z, called the meridionalparts. Then by Prop. 121.

Vr2—u2
(cos. of lat.) : r : : x : i; = : but ("Art.

46.) x= -7 -
; hence, « = — = - x

s/

y/r2—y 2 r2—
y» 2 r2—

z/
2 '

z=-xh. 1. -^ 4- C (Art. 45. Ex. 6.) = r X h. I.

2 r—y
——

-f-C, by the nature of logarithms. But by Plane

Trig. Vr2—
y
2
(mr) : r+y (*"Q) : : r (rad.) : —— r U

Vr2—
y
z

=r V —^ the tangent of the angle rmQ = cotan-^ r—y
gent of rCm = cotan. of ^rQ(?n

= cotan. | the com-

plement of lat. ; hence, y/lgL
C°tan -

^
COmP' lat '

;

, . , cotan. A comp. lat. _, ,

consequently z=r x h. 1.
2
- *-

f- C ; but

when 2=0, cotan. A comp. lat. =r ; hence, 0=r x h. I.

r

r
—|-C=r x h. 1. 1 + C=0+C, .•• C=0; consequently
r

, , cotan. A comp. lat. .
,z=r x h. 1. - —-=rxh. 1. cotan. A comp.

lat.— r x h. 1. r, the length of the meridian E?n in the

projection.

Prop. CXXIII.

Given the radii BC, AC ofa wheel and axle, and the

weightp zvhich draws
zip
w ; tojindw, so that the mo-

mentum communicated to it in a given time mat/ be a

maximum, the -wheel and axle being supposed of no

weight.

200. Put BC=£,AC=a; then, by Mechanics, the

'forces with which w andp endeavour to descend, are aw
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and bp j hence, the moving force is as bp—aiv ', also,

the inertia of each weight is (Art. 60.) as a2 X zv, and
b2 x p i hence, the accelerative force of the lever is as

—l-
; and as the acceleration of any point of a

b 2
p -f- a

2zv
J v

lever must (besides the accelerating force with which
the lever itself is made to revolve) be in proportion
to the distance of that point from the fulcrum, the

accelerative force of the point A, or of w, will be

abp—a2zv , . . . , , . ,
.—-

,
which is as the velocity generated in zv inas

b2

p+a zv

a given time ; consequently the momentum of zv will

abp—a2zv abpzv—a2zv2

be as tt-—:
— X zv — = a maximum, or

b2
p-j-a

2zv b2
p-\-a

2zv

bpzv—azv2 . , .. „. . . a— — = a maximum; hence, [Art. 21. ) its fluxion
b2p-\-a

2zv

bpzv—laxvxv x b2p + a2zv—a2zv X bpzv
—azv2

__

b2p+a2
zvY

bp—2azv x b 2

p-\-a
2w—a2 X bpzv

—azv'
2= 0; hence, zv=

7
b* te b2

a* a i a2

If a==b
7
zv = V2— 1 Xp>
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Prop. CXXIV.

Given two weights xu and p, and the radius CA of'

the axle, to find the radius CB of the wheel, so that p
may draw up w through a given space, in the least

time possible.

201. When the space is given, the time varies in-

versely as the square root of the acceierative force ;

hence (by the last Art.), the square of the time varies

as
i "*"

a minimum, where b is variable ; put its

abp
—aHv ^^^^^

„ . , , aw Va2xv24-a
2pw

fluxion = 0, and we get b = y
p p

If p=xu, b—a X 1 +y/2»

Prop. CXXV.

If theforce ofgravity upon the earth's surface be re-

presented by 32$feet, and r represent the radius ofany
circle, about the centre of which a body revolves with

the velocity v, and F represent the centripetal, and con~

sequently the centrifugalforce; then F= —.

202. For let V= the velocity of a body revolving in

a circle at the earth's surface, about its centre, R = the

V2

radius of the earth ; then —=^ = the sagitta of the arc

described in l
y/

==16^ feet ;
and as the forces of bodies

revolving in different circles vary as the squares of the

velocities directly and the radii inversely (Nirwtorfs
V2 v2

Prin. Lib. 1. Prop. iv. Cor. 1.), 32| : F : :
—-

: -
;K r

V2 v2

but 32i = -n- ; hence, F = —-.

K r
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Cor. If r = radius of curvature of any curve ; then

the force being the same in the curve and the circle,

the same is true for the curve, r being the radius of

curvature.

Prop. CXXVL
Let Am be a slender rod in the form of a parabola

whose axis AP is perpendicular to the horizon ; and
let a ring xuhich can freely move upon the rod be put

upon it at any point m; then if the parabola revolve

about AP with such a velocity that the ring may re-

main at rest, it -would remain at rest at every other

point of the rod.

203. Put/? = 32£ feet, and let it represent the force

of gravity ; t;=the velocity of the point ?n, ^=AP, y=
v2

P?n ; then — = the centrifugal force of the ring (Art.
y

V
202.) ; produce Vm to a, and let ma= — j resolve the

.
y

force mainto two, one mc in the direction of the tangent
to the curve, and the other me perpendicular to it, and

produce it to T. Draw md perpendicular to the ho-

rizon, and let it represent p the force of gravity, and

resolve it into two other forces, one mv in the direction
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«f the tangent, and the other vd perpendicular to it.

Now when the ring remains at rest, mc must be

equal to mv. As the triangles acm, dvm are similar to

?nPT, we have

am (— 1 : mc, or mo, : : mT : PT.

mv : dm{p) : : mT? ; mT.

.% — :/>:: mP : PT.
y

But d varies as y ; let, therefore, v = ay ; and we
have a%

y '.p'.-.mY (y) : PT, ora2
:p::l: PT, which

proportion, consisting only ofconstant quantities, must
be true for every point of the curve ; therefore at every
point mc= mv, and the ring would remain at rest.

Cor. 1 . If the parabola be given, PT is given, it being

half the latus rectum
-, hence, we know a =

\J?f, %

assuming therefore any ordinate P?n (y), we know ay,
or v ; thus we get the velocity of the point m. Put
c=6,28319 &c. then cy = the circumference described

by m ; hence, cy : v, or ay, : : 360° : the angular velo-

city = 360° X —.

c

Cor. 2. Hence, if a vessel of water revolve about
its axis, the water will rise up in the curve of a para-
bola ; for the water cannot remain at rest till the two
forces mc, mv destroy each other. The forces ca, vd

acting perpendicularly to the surface of the fluid, can~
not disturb it.

Prop. CXXVII.

Let a ring be put upon a slender rod AC, and let the

rod revolve about AB which is perpendicular to the ho-

rizon ; it is required tojind how long the ring will be

in descendingfrom A to C, the velocity of the rod, its

kngth, and the angle CAB being given,
204. DrawCB perpendicular to AB; putAB=a,BC

2H
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=£, AC=c, d=zthe velocity of the point C, tf=Am, v=

C B
the velocity of the ring at w, m= 32

j-
feet the force of

gravity, and t = the time of the ring's descent. Draw
wP perpendicular to AB, and produce it to a, and let

ma represent the centrifugal force of the point m ;

resolve ma into two forces, one md perpendicular to

AC, and the other me in the direction AC. By simi-

lar triangles, c : b : : x : — = Pw, and b : — : : d : —
c c c

= the velocity of the point m ; hence (Art. 202.), the

d^x2 c d*x

~b7
centrifugal force ma =s

^-£- x ~- = ~-
; and by similar

C UX

d*x *x
triangles, c : b : :—- : me = ; also, c : a : : m (the

ma
force of gravity) : — = the accelerative force of the

ring from the action of gravity ; hence (Art. 81. Cor.),

d2xx max . . fd2x2 Umax L c mac—-r- H =vv; andv = \/—-H =("-jr

)</
c— \ZX*

_f_ 2nx. Hence (Art. 81.), i ——x

—
,
and (Art. 45. Ex. 5.) < = -xh. I*

Vx2 + 2nx «
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n 4. x +Vx2
+2?ix+C ; but when x = 0, t = 0, and we

c c
have 0=—xh. 1. ?z+C; hence, the correct fluent t=—X

d "

h. 1. —I-—— — = (when x = c)
— X n. 1,

;Z _}. C + Vc2
4- 2/ZC

, , ,
. c ,

'.JL—Z J- the whole time of descent.
n

d2x
Cor. 1. The accelerative force —r- of the ring in the

cr

direction of the rod, arising from the centrifugal force,

is always the same whatever be the inclination of the

rod, the length of the rod, and the velocity of its

lowest point being given.
flX%

Cor. 2. By similar triangles, c : a : : — : md=

ax
.- and bv Mechanics, c : b : : m :—= the pressure

c2b
' J

c

of the ring on the rod ; hence, when ——- = —
, the

c2b c

pressure of the ring on the rod = 0, which therefore

, ,
b2cm

happens when x =-—— .

Cor. 3. If AC become horizontal, then a = 0, and

d 2xx
rrb = . Now as in this case the ring will not

c2

begin to move from A, we must at first put it at some

d2x2

distance r from A. Hence, v2 = —— + C, and when
cz

d2r2

v= 0, xz= r\ therefore the equation becomes =—
5-

d2r2 , d
+C=0,and C= f-j hence, i;=-x^-r2

. Also,17 c2 c
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i= -—X — ,
whose fluent (Art. 45. Ex. 4.) is fc=-^-

d \Z#2 r
2 a

Xh. 1. x -f- \/x
2—r2

-f-C ; but when £=0, .v=r, and the

c r c

equation becomes 0=— xh. 1. r-fC; therefore C=
d d

, ,
c

i , *4-V*2— r2

X h. 1. r ; hence, «= -rxn.l. .

o r

Cor. 4. If A be the lower point of the rod and C
d2x

the higher j then the force —— acts upwards, and the

d X 7YICI

accelerating force of the ring = —— v- — . Let the

ring at first be at any distance from A ; then if — be

greater than —— ,
the ring descends by the force -— -—

c c

d2x , . „ d*x , , ma , . ,

; but if— be greater than — ,
the ring ascends by

the force ;
and the velocity and time mav

c2 c

be found in each case as before.

Cor. 5. Taking the position of the rod as in the last

d^OC TflCL

Corol., and the case when — is greater than —
,

let the ring at the distance r from A be projected
downwards on the rod with the velocity e ;

then r£=:

d2xx max , r2 d2 x2 max
, n , ,— •

, and — =— x r-Cj but when
c2 c

'
2 c2 2 c

e2 d2 r2

v= e, x= r, and the equation becomes —- =— x
m C -4

7/1CIV €^ d T TftCLY'

\- C, therefore C =——-X- + — j hence,
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d2 —- r . 2ma
v*=P-1 X x2—r* -j x r—x. Make v=0. and

c2 c

mca Jt^c^a
2

.

"

c2e2 2?nacr , ,.we getx=— + Nf-^_ +r*__-- __,thedis-

tance from A, to which the ring descends when it has

lost all its velocity. If the value of x be impossible,
the ring will come to A without losing all its velocity.

If the quantity under the radical sign = 0, x =—
;

d2x TflQ,

which is the value of x when the force —— =
;

c2 c

in this case therefore the ring will remain at rest when
it has lost all its velocity. If the quantity under the

radical sign be positive, then when v = 0, the force

acting upwards, the ring will return, and

piCd C2C2

continue to ascend. Put n =
-^-,p= -75-+ 2rn—r2 ;

and we have i——X = ; let x—n=j/, and
d Vx2—2nx+p

a*—2nx=y
2—-n2+p=y2 + q

%
(putting—n

2+p =q2
) ;

also,a?=*/; hence, f=-~ X ,
and f=— x— h. L

d Vy2
+q*

d

y +V y*+q
2 + C j but when t = 0, x— r, .•• y=r—n ;

and the fluentbecomes0=—X— h. l.r—rc-f\ r—n+q2

-fC,and C=—-x h. 1. r—n+\r—n+q2
; hence, t= •—

d d

r—.n+*] :—n+q2 c , r—n+*Jr—n+g2

y+X/ y2+q* d X-jn+^xZ~?+f
the time of descent.
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On the same principle we may find the motion of a

ring on a curve line revolving in like manner.

Prop. CXXVIII.

To show when the series _ + _ + _ + &?c. ad in-

finitum isfinite,
and when infinite*

205. Let QR be an hyperbolic curve between the

asymptotes AB, AC, which are perpendicular to each

other; take AP=ordinate PM=1, and let P?, ffr^&c.

be each =1, and draw the ordinates qa, rb, sc, &c. and

complete the circumscribing parallelograms, yM, ra
t

sb, &c. and the inscribed Pa, qb, re, &c. and let the

ordinate be equal to the inverse nth
power of the ab-

scissa ;
then will PM=_, qa =— ,

rb = —,
sc = -,

he. and as the bases of these parallelograms are each

= 1, the area of the parallelogram qM = — ,
of ra=

J_ f s f, = __, &c. therefore the sum of all the cir*

2*
* 3n

cumscribed parallelograms
= — -f

— + — + &c.

ad infinitum ; but it is manifest that the sum of all the
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inscribed parallelograms is less than the sum of all the

circumscribed parallelograms, by the first parallelogram

yM, that parallelogram being the sum of all the paral-

lelograms, Ma, ab, be, &c. each of which expresses the

difference between its respective inscribed and circum-

scribed parallelogram. But the whole curvilinear area

PMRC (being between the sum of the inscribed and
circumscribed parallelograms) is less than the sum of

all the circumscribed parallelograms, by a quantity
which is less than the parallelogram ^M ; these two
therefore differing by a finite quantity, when one is

finite the other is finite, and when one is infinite the

other is infinite. But by Prop. 20. Ex. 3. when n is

equal to or less than unity, the area of the curve is in-

finite, and when n is greater than unity, the area is finite.

Hence, the sum of the given series is infinite when n is

equal to or less than unity, andfinite when n is greater
than unity.

Prop. CXX1X.

To determine the law ofcentripetal jorce tending to

S, so that a body may describe any given curve AP.

206. Let SY be perpendicular to the tangent PY,
and P the place of the body. Put a=SP, w=SY, F=
force in the direction PS, /== that part of F which acts

in the direction PY, v= the velocity at P, and z—AP.
Now (Art. 81. Cor.) vv =fz ; but F : / : : SP ;

PY : : (Art. 32.) % : a% therefore fz> = Fa?
; hence,

v&=Fx, or rather tt>=— Fx because (Art. 16.) when—vv
v increases x decreases ; therefore F =—:

—. But
me
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{Newtorts Prin. L. 1. Pr. 1. Cor. 1.) z>cc— ; therefore

• •

vioc~r" >' hence, Fa-rr.
u3 u?x

207. Cor. Hence
v whatever be the angle SPY, if v

remain the same, then if v be given, x will be given ;

and if we suppose the angle SPY to vanish, then it

follows, that if the velocity (y) of a body in the curve

at P be equal to the velocity of a body in the right line

SP at P, they will be equal at all other equal distances

from S.

Ex. 1. Let AP be the logarithmic spiral, S its centre.

a,
•

Then x : u : : a : b some constant ratio, .*. x = — u ;

hence, t oc— X
a u°

1

Ex. 2. Let AP be the hyperbolic spiral. Draw SW
perpendicular to SP, meeting the tangent atW ; then

by the property of the curve, SW=a, a constant quan-

tity ; andWP=V cP+x
2

; hence, by similar triangles,

/~3 % ox 111
va2 + xz

: x : : axu— ——
,
and •—• =— + -r-

V a*+x*

therefore -- = ~
; hence, F cc

U3 X3
"
u3x

1

Xs

X" a*

Ex. 3. Let APB be an ellipse whose focus is S ;
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let H be the other focus, C the centre, CD the semi-

axis minor, and HZ perpendicular to PY. Put a =
AC, 6=CD ;

then 2a—x=PH, then by sim. tri. x : u

:: 2a—x : HZ = °
,
and {Con. Sect. p. 6.)x

2a—x X u2 ,» , 1 2a 1 ,u ax
"= b ; hence ' u^Wx

~
W>

md
!f
=V& >

X

therefore F oc— oc -—- oc --.
urx trx2 x2

For an hyperbola, 2a + x=. PH, and the same con-

clusion follows.

For aparabola, xccu* {Con. Sect.
-p.

8. Cor. 2.), there-

fore — oc __, and — a~ ; hence, F oc -— oc __.

u2 x us x2 u3x x2

Hence, a force tending to the focus of any of the

conic sections, varies in the inverse duplicate ratio of

the distance.

Ex. 4. Let the force tend to the centre C of the

ellipse. Let CK be the semi-conjugate to CP, and Cy
perpendicular to Vy ; CP=x, Cy=u ; then {Con. Sect.

p. 13.) a3 + b% = *2 + CK2
, and CK = Va2+ b2- x̂2

'

;

also, {Con. Sect. p. 11.) ab = u X Va2
-f b2—*2

,
and

a2b2
, r 1 11 x2 ,u

u ="5Tm 5'
therefore —=—-f__ _ and—=

a2+b2—x2 u2 b2 a2 aro2 w*

XX , t, u x
: hence, 1* oc -r-r oc—— oc x.

a2b2
'

u3x - a2b2 .

For an hyperbola, F oc— x, which shows the force

to be repulsive.

Ex. 5. Let it be the spiral in Article 82. Here, SY2

m2x2m+2 1 ! t
2m t- ^+^^and

SY^°
r^=^i^:r+^'

"

2 I
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JJ- m2^m+ 3 + ^3
' neilCe

'
r ^^^ 7n2^m+ 3

t

*3

2£2

If m=l, it is the spiral of Archimedes, and Foe —
1

If m =— 1, it is the reciprocal spiral, and F oc—
PC

x 1
If m = — 2, it is the Lituus, and F OC— —- -f —j

•

When the negative part is greater than the positive,
the force is repulsive, and the curve is convex to the

centre ; when it is less, the force is attractive, and the

curve is concave to the centre ; but at the point of

X 1 —,

contrary flexure F=0, or —— -\
—- = O, and x =W 2,

as found in Art. 80. And like circumstances must
take place in all cases where m-fl is negative.

Prop. CXXX.

The velocity of a body revolving in any curve about

a centre offorce : velocity ofa body revolving in a cir-

cle at the same distance, in the subduplicate ratio of the

chord of curvature : twice the distance, or in the sub-

duplicate ratio of
— : —.

208. For (Art. 97.) let sr be a sagitta of a circle ol

curvature to any curve, parallel to the chord CV which

passes through the centre of force ; then by sim. tri.

sr : Cr : : Cr : CV, but Cr : the arc Cr ultimately in a

ratio of equality ; therefore ultimately, sr : arc Cr : :

arc Cr : CV ; hence, arc Cr == Vsr x CV; but sr,

dato tempore, is as the force, and Cr is as the velocity ;
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therefore the velocity oc v/force x chord curvature") ;

but at the same distance, the force is the same in the

circle and in the curve, and the chord of curvature of the

circle is its diameter, or twice the distance ; therefore

the velocity in the curve : velocity in the circle : :

V ch. curv. of the curve : V twice dist."}. But the

2ux
chord of curvature (Art. 101.) is —7- ; hence, the

u

/ ~ux
velocity in the curve : velocity in the circle : : vf .

u

UJc fu
^ x ^ u

Ex. 1. Let the curve be the logarithmic spiral.

Here, the velocities are equal, because the chord of

curvature = twice the distance j or, as u oc x, therefore

x u

X u
*

Ex. 2. Let the curve be an ellipse with the force

u
tending to the Jbcus. Here, (Art. 207. Ex. 3.) -5=

ax . x u la / 1 2a—^\
-— : hence, — : — : : — : 7-— : : f as —=——— J
b2x2 x u u2 b2x \ u2 b2x J

2a — x : a ; therefore the velocity in the ellipse :

velocity in the circle : : V 2a—x : V a : : V PH :

Ex. 3. Let the force tend to the centre of the

ellipse. Here, (Art. 207. Ex. 4.)
— = --rr ; hence,
U Orb*

— : 1L:: 2. : -*L : : (as aW=u2 X CK2
) CK2

: x2
;

x u u2 a2b2

therefore the velocity in the ellipse : velocity in the

circle : : CK : x, or CP.
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Ex. 4. Let the curve be the hyperbolic spiral. Here,

u 1 1

(Art. 207. Ex. 2.)
—=—

; hence,
xJ if X u U2 X2

: : x2
: u? ; therefore the velocity in the curve : velocity

in the circle : : x : u.

LEMMA.

If a body revolve in any curve, the velocity (V) at

any point is equal to the velocity which a body would

acquire in falling down one fourth of the chord of the

circle ofcurvature passing through the centre offorcey

supposing theforce to remain constant.

209. By Prop. 45. in the limiting state of the arc

PQ, RQ : QP : : QP : PV=§£ Now whilst PQ is

described by the velocity V, the body is drawn by the

force through RQ, and acquires a velocity (y) which,

in the same time, would, if continued uniform, make
it pass over 2RQ ;

and let PL be the space fallen

through with the constant force at P, to acquire the

velocity V. Then
Vs

: v2
: : PQ2

: 4RQ2

v2
: V2

: : RQ : PL, by Mechanics,

.-. 1:1:: PQ2
: 4RQ X PL ;

henCe
' PL =4^ = ^ PV-
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210. Cor. Hence, if the curve be a circle, and the

centre of force in the centre, a body must fall down
half the radius.

Prop. CXXXI.

Ifa body revolve in a circle about the centre, to fnd
its velocity.

211. Let the force of gravity on the earth's surface

be denoted by unity, the radius of the earth by unity,
and the velocity of a body revolving about the earth

at its surface by unity ; and in proportion to these, let

r = the radius of any circle, v= the velocity of a body
revolving in that circle, and the force = xn

; then as a

body must fall down i of the radius to acquire the ve-

locity in the circle, the force remaining constant, and by
Mechanics, the velocity varies as the square root of the

force and space conjointly, we have 1 : Vl X § : : v :

«-H
Vxn x \x i hence, v = x a .

212. Cor. As the periodic time (P) varies as the

circumference of the circle directly and velocity (z>)

inversely, and therefore as the radius (x) directly and
x i—»

v inversely we have P oc ~
n

- oc x 2 .

x~T~
1

If n = 0, Pax'. If n = l, Poca; =1, or P is con-
3.

stant. If n =— 2, Pa x?.

Prop. CXXXII.

Given the law offorce as any power of the distance^
tofind the curve which the body describes.

213. Let S be the centre of force, and let the body
be projected in the direction AD, and describe the

curve APW; describe the circular arc AZ with the

centre S ; draw the tangent PE, on which let fall the

perpendicular SY, and SH on AD ; also draw Sn
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indefinitely near to SP, and nm perpendicular to SP,
and produce SP, Sn, to r and s. Put SA=a, SH=/r,

Af= 2, SP= ^, b= the velocity at A, v= the velocity
at P, Pot = a?, r-s = x. Now the velocity being

pb
inversely as the perpendicular, v : b : : p : SY =— j

/

—
~~iFb~2 '] S/x2v2 ~62£2

therefore P?/ = <fa
3—r - = £—

; and by

Vx 2v2—p*b* pb . Pb*
aim. tnan. s-— : <— : : x : mn — —-

;

v v vrj)2—p2b?

i pbx . pabx
hence, x : a : : — r

: «= — ex-
Vx2v 2—p

2b2 xVx2v2—p
2b2

pressing the fluxional equation of the curve in terms of

the angle described and distance. But (Art. 82. Ex. 7.)

fc2=£2_j xan+ 1—xn+ 1
; or if b (the vel. of proj.) :

w+1 v

vel. \a 2 J in a circle at the same distance (Art. 211.)

2
: :m : 1, then b2 =zm2am+ 1

i hence, v2 = m2 H — X' n+ 1

2
^« +i _ x xn+ 1

; therefore « =
rc-f2
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pabx

xy
2 2

m2
-{ X an+ 1Xx2 x xn+ 3—p

2m2am+ >

the fluent of which can only be found in particular
cases.

214. At the apsides, SP = SY, or x =¥- =
v

pb

4
therefore

m2 A Xan+ 1 X xn+ 1

n + 1 n-f 1

2 2
H x an+ l x^H" 1

I —pb=0. the

equation to the apsides. Now to find the number of

2
apsides, by squaring the first equation, we get mP-\

2
X an+ 1 Xx2 x*n+3— P2b2 = 0, which equation

n-fl

{Algebra, Art. 358.) may have 4 possible roots when
n is an even number, and 3 when n is an odd number ;

but this being the square of the original equation,
some of the roots are introduced by that operation, and
the equation to the apsides can never have more than

2 possible roots, so that no orbit can have more than

2 apsides, that is, there are only two different distances

of the apsides ; but there is no limit to the number
of repetitions of these, without their falling upon the

same points. If n be — 3, or a greater negative num-
ber, the equation can have only 1 possible root, and the

orbit can have but one apside.



ANNOTATIONS.

wvvwwvvwvw

On the LIMITING RATIO of VARIABLE
QUANTITIES.

WHEN any quantity increasing or decreasing

continually according to a certain law, ap-

proaches to a determinate value, and arrives nearer

to it than by any assignable difference, but never ab-

solutely equals it, that value is called its limit. Thus
when a polygon is inscribed in a circle, and the num-
ber of its sides is continually increased, its area and

perimeter approach to the area and circumference of

the circle, as their limit (Prop. 4. and 6. book 1. Sup.
to Playfair's Geometry). Hence, if AD be always to

the given line AB either as the area of the polygon to

D
A 1 B

that of the circle, or as the perimeter of the former to

the circumference of the latter, then while the polygon,

by having the number of its sides increased, approaches
to its limit, the point D must move toward B, or AD
approach to AB as its limit. The limiting ratio of

the polygon to the circle, whether the areas or perime-
ters be compared, is therefore said to be a ratio of

equality.
And here it may be proper to observe, that as the

limiting value of a perpetually varying quantity, is not



On the Limiting Ratio, &fc. 249

an actual value, which it ever absolutely attains, so the;

limiting ratio of two variable quantities, is not a ratio

which they bear in any actual state of those quantities,,

Thus, if we take AD : AB : : polygon inscribed in a
circle : the similar polygon described about it, it is

manifest that the point D never arrives at B, yet no

point can be assigned between A and B which it does

not pass.
When variable quantities become infinitely great, or

indefinitely small, their limiting ratio may frequently
be determined, though the quantities themselves, in

such state, elude our comprehension.
If AC touch the circle ABD in A, and on the chord

AB a right-angled triangle ABC be constructed, thesi

while B moves along the arc until it arrives at A, let

the limiting ratio of AC to AB be required.
Produce CB till it meets the circle in D, and join

AD ; then since ABD is a right angle, AD is a dia-

meter ; also, the angle ADB == BAC ; whence AC
: AB : : AD : DB ; but when B arrives at A, BD —

2K
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DA ; hence, the limiting ratio of AC : AB is a ratio

of equality.
But if the point B move along the given line AB,

and BC, or be continue at right angles to AB, then,

although the difference of AC and A.B becomes less

than any that can be assigned ; yet (since Ac : Kb : :

AC : AB) their ratio is a constant ratio of inequality.
Let two points m, n, set out from A, B, and move

Q
P

1
R

A m B n Z

ad infinitum along the right line AZ with velocities

which are always in the given ratio : PQ : PR, and let

the limiting ratio of An : Am be required.

Through A, B draw the parallels AE, BD making
any angle with AZ ; make AE = BD = always to

Am, join n, D ; n, E ; and draw BF, BG, respectively

parallel to nD, nE.
Since AB : AF : : Bn : BD (Am) : : PR : PQ, a

constant ratio, the angle BnD = ABF is invariable

(5. 6. El.), and AF constant ;
also ED=AB, is con-

stant ;
but En, Dn increase without limit ; hence, the

angle EnD (=GBF) is indefinitely diminished (21. 1.

El.) ; consequently the difference of AF and AG be-

comes less than any assignable ; and since An : AE
(Aw) : : AB : AG ; the limiting ratio of An : Am is

that of AB : AF : : Bn : BD (Am) : : PR : PQ.
Prop. II—Assuming the data of the proposition^

let Pn be the increment, which would be uniformh
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generated with the velocity at ?n, in the time Vm is de*

scribed with the accelerated velocity; then Pn is evi-

dently greater than Pm. Take any line GL, and make
Gl.Px i: Gs : Pn, Gl:Pt : : Gs i Pm, and G/ :

G s IF— 1— I "I
—K

P v mn r t x
A ! 1—1-| 1 1 1—I— Z
Pr : : G.? : Pv ; then G/, Pr may denote the fluxions

of FK, AZ at the points G and P (Art. 3. Cor.
1.).

Now Pr : Px : : velocity at P : velocity at m ; hence,
Pr : rx :: vel. at P : vel. gained while P?tz is described;

whence, ifwe diminish the time of description, and con-

sequently the acceleration, rx will decrease, while Pr
remains constant : and if the increments be decreased
till they vanish, the difference of velocities at P and m
will vanish, consequently rx will vanish, or P* become
= Pr. But t lies between r and x, therefore Pt= Pr ;

and since, in all states of the increments, G/ : Ft : : Gs :

P?«, the limiting ratio of Gs : Pm is the ratio of G/ : Pr
the ratio of the fluxions.

If P?n be described with a decreasing velocity, take

Pn the increment cotemporary with Gs, which would
have been generated with the velocity at P; Pv that

uniformly described with the velocity at m, then G/, Pa?

may denote the fluxions at G and P, and it may be de-

monstrated as above that the limiting ratio of Gs : Pm,
is the ratio of G/ : Px.

Prop. V. The binomial theorem being investigated,
in Art. 34. by means of the rule derived from this and
the following proposition, a solution of this problem,

independent of that theorem, may be as follows.

Given (a?) thefluxion qfx, toflnd thefluxion ofx*.

Let x increase uniformly by v, and become succes-

sively equal to x+ v, x+ 2v, &c; tht-n x2 will become
x2 + 2xv -f x;

2
,
x2

-f 4>xv +4x>
2
, &c; hence, the succes-

sive increments of x2 will be 2*v -f f*, 2xv +*3u2
, &c;
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consequently while x increases uniformly, x2 does not

increase uniformly ;
therefore to find the ratio of the

fluxion of x to that of x2
, we must determine the li-

miting ratio of the increments. Now the increment of

x : increment of x2
: : v : 2xv -f -v

%
: : 1 : 2x -f- f : •

(when v = 0) 1 : 2x ; therefore by prop. 2. the fluxion

of x : fluxion of x2
: : 1 : 2x : : x : 2xx= fluxion of x2

-.

Cor. Hence, the fluxion of x+y~\
% = 2.x+y X x+y.

For put z2
=x+y~\

2

, \htnz=x-\-y and z—x+y, .*. 2zz>

Hence, prop. 7- as solved in the text, easily follows.

To prop. 7. we may subjoin the following
Cor. 2. The fluxion of a product^ divided by that

product, is equal to the sum of the fluxions of the se-

veral factors, divided by the factors themselves :

flux, xyz _ yzx xzy
}

xyz_x y %_ . ^
xyz xyz xyz xyz x y z

the same may be shown for any number of factors

whatever.
From this corollary the solution of prop. 5. is thus

derived.—Sirtce xn=x . x . x, &c.
(a.* being repeated n

N flux, of Xn X X X e

times) =
1 f- ,

&c. to n terms s=
Xn X X X

nx B c _ nxnx _ 1 .—
, .. flux, or xn = - = nxn^1x,

X X
Art. 33. Ex. 4. " This curve is a circle." One of

the points S, H will be within, and the other without

the circle. (See prop. F, book 6. Play/air's Geome-

try, for a demonstration of this property.)
Art. 42. Let the points /?, P, set out at the same

time, from &, B, and move along the lines fs, RS, and

m n be d e f g h i

r—. 1—I—|— l j_|_i_l_l— . 5

R _,_,_|_|_|_. _j_|__J-|_|_|_ SAMNBC DEFGHI
while/; uniformly describes the equal parts be^cd, de,
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&c. let P describe the spaces BC, CD, DE, such that

AB, AC, AD, AE, &c. may be in continued propor-
tion.

Now the ratio ofAB : AD is compounded of the

two equal ratios AB : AC, and AC : AD ;
also bd—

%bc; the ratio of AB : AE is compounded of three ra-

tios, each equal to that of AB : AC ; also be= 3bc ;

in like manner, if any cotemporary values of AP, bp^
be assumed as AH, bh, then whatever number of ra-

tios of AB : AC is contained in the ratio of AB : AH
the same multiple is bh of be ; hence, if be be assumed
as the measure of the ratio of AB : AC*, bh will mea-
sure the ratio of AB : AH.

Ratios compounded of the same number of equal
ratios being equal to each other (F. 5. Elem.), we have
AB : AE : : AF : AI ; and bi (the measure of the

ratio of AB : AI)= be -f ^(the sum of the measures
of the ratios of AB : AE, and of AB : AF) In like

manner it appears, that of any four proportional terms,,

the first of which is AB, the measure of the ratio of

AB to the last is the sum of the measures of the ratios

of AB to the second and third. Hence, AB being
taken to represent an unit, AC, AD, &c. numbers

forming with unity a series of geometrical proportion-

als, be, cd, &c. any equal numbers, then be, bd, &c. will

be the logarithms of AC, AD, &c. whose property, as

appears from above, is that the logarithm of the pro-
duct of any two natural numbers is equal to the sum
of the logarithms of the factors. For the product is a

fourth proportional to the two factors and unity. And
hence the principal properties of logarithms are easily
inferred.

Again, since AB : AC : : AE : AF ; by alterna-

tion and division AB : AE : : BC : EF, which ratio

of the increments in its limiting state, when the time

of description is indefinitely diminished, is the ratio of

the velocity of P at B to its velocity at E. Let the

velocity of P at B be to the uniform velocity of p as

1 : M ; whence, by compounding this with the propor=.
* See Art. 107.
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tion above,MxAB : AE : : velocity of/> ; velocity ofP
at B ; that is, AB being = 1, M : AE : : fluxion of

be : flux, of AE, or assuming, as in the text, y = any
number, and x = its logarithm, M ; y ; : dc :. ^, .*. a?=

Mxi.
y

If the points p, P be supposed to move back from

'by B toward r, R, still making bn, nm, 6cc. equal to bc
y

and AN, AM, &c the cotemporary values of AP,
such that AC, AB, AN, AM, &c shall be in conti-

nued proportion ; then bn, b?n, &c. are the logarithms
of AN, AM, &c; but be, bd, &c. the measures of the

ratios of unity to greater numbers, being considered as

positive, bn, bm, &c. the measures of the ratios of unity
to less parts, must be reckoned as negative. More-

over, since the velocity of P varies as AP, or the de-

crements of AN, AM, &o are as the quantities them-

selves, it is manifest that the number of terms in the

series AB, AN, AM, &c. before P can arrive at A,
must be infinite, but the velocity of p is uniform

;

therefore the log. of is an infinite negative quantity.
From this elucidation the generation of the loga-

rithmic curve and logarithmic spiral, are very easily
shown. For if AS be placed at right angles to &y,

with the point A on b, P being at B, and AS be car-

ried along bsy so that A may describe the equal parts

be, cd, &c. while P passes over BC, CD, &c. as before
;

then the point P will trace the curve called the loga-
rithmic curve. Hence, any abscissa of this curve

measured from the point where the ordinate is unity,
is the logarithm of its corresponding ordinate. See

Art. 49. Ex. 4.

But if the point A be fixed, and AS carried uni-

formly round, so that a fixed point in it may describe

arcs of a circle equal to be, cd, &c. while P describes

BC, CD, &c. as before, then the point P will generate
the logarithmic spiral. See Art. 32. Ex. 4.

Art. 67.—" The direction in which the particle will

begin to move." This conclusion is correct when
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AB = AP. In other cases, make PD = AB ; and

P

B C A
DE (parallel to AB) = PB— PA ; join PE

;
then

PD : DE : : force in the direction PA : force in the

direction DE
; hence, PE is the direction in which

the particle will begin to move.
Art. 69.—The case of this problem, wherein the

attraction varies inversely as the square of the distance,
is article 836 of our author's Complete System of As-

tronomy, in which 2pax is made the fluxion of the

force ; hence, the corrected fluent is found 2pax—
2/;v 2pa

2/>a
3
,

instead of -£- 1— . The former of these
x

a
expressions varies as x— a, the latter as 1 , of

a
which x— a is increased, and 1 is diminished by

x

increasing the value of x; the author, however, asserts,

a
that 2pax —- 2pa2 varies as 1 ; hence, one error

x
is counterbalanced by another.

Art. 82. Ex. 6 .« By Sir I. Newton's Pr'mcipia"
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This conclusion mav be thus obtained. Let ABE b5
a circle uniformly described by a revolving body, by

A

means of a force tending to the centre ;
AF an indefi=

nitely small arc described in the time 1 ; draw FD at

right angles to the diameter AE ; then in the time 1,

the body falls through AD, by the action of the cen-

tripetal force ; but AF2 in its nascent state =EA . AD;
now if the time be increased in the ratio of 1 : a, the

square of the arc will be increased in the ratio of 1 : a2
;

also the distance through which the body would fall by
the constant central force, will be increased in the same
ratio Of 1 : a2 ; therefore the arc described in any time

is a mean proportional between the diameter of the

circle and the distance fallen through in the same time,

by the constant action of the centripetal force.

Now the distance which a body falls in l" by the

force of gravity at the surface of the earth = m ; there-

fore l"2
:
p—

(*"*) : : m : tl the distance fallen in *"

by the force at the earth's surface ; hence, the arc

described in £" =
/>r
= i

part of the circumference;
whence the time of describing the whole circumference

r \/2m
Art. 94.—" Now it is well known," See Art. 209,



:








