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2 Mr Greenhill, Note on Mr Larmor’s [Oct. 29, 

The President in returning thanks for his ré-election referred 
to the work of the Society during the past year. ‘The number and 
importance of the communications made to the Society had 
rendered the year a remarkable one; and he especially noticed the 
papers relating to Botany, a subject which till recently had been 
but rarely brought before the Society. In the year a Committee 
of the Council had prepared a greatly extended list of Foreign 
Institutions to which the Transactions and Proceedings of the 
Society should be sent. The list had been approved by the 
Council, so that the publications of the Society were now widely 
circulated abroad, and the complaint that they were difficult 
to consult on the Continent could not justly be made in the future. 
The Council had also reprinted Vol. 11., part 1, of the Transac- 
tions, so that complete sets of the Transactions could now be 
procured. A Committee of the Council were at present con- 
sidering the question of improving and rendering more useful 
and available the publications of the Society, as, for example, 
by publishing and offering for sale all papers separately, or 
forming separate parts consisting only of papers relating to the 
same group of subjects. He regretted that the Society had lost 
two of their officers, Dr Pearson, and Mr Hicks, who had gone out 
of residence: but he was glad that Mr J. W. Clark had consented, 
in spite of his numerous engagements, to accept the office of 
Treasurer, and that the Society had obtained the services of 
Mr Glazebrook and Mr Vines as secretaries. 

The following papers were communicated to the Society: 

1. On the effect of viscosity on the tides. By the Rev. O. 
Fisuer, M.A. 

2. Note on Mr Larmor’s communication on “ Critical Hqui- 
librium.” By A. G. GREENHILL, M.A. 

Mr Larmor has expressed the results of the integration of his 
differential equations in Legendre’s notation, but a slight modifica- 
tion will exhibit them in Jacobi’s notation for the direct elliptic 
functions. 

Thus for the differential equation 

la 
g dt 

integrating, supposing 8 the amplitude of vibration 

k® (d@\* SUGAR faeces 2 72 1 4 ff (Gg) = Be — P+ am iB 6 
= (8° — ) (¢mP* — 30+ 4m&); 

=c0 — mO’, 



1883.] communication on “Critical Equilibrium.” 3 

and therefore, supposing c small, so that 4m’ — 4c is positive, 

O= Genk, 

ke? 2c 
where ie =]|]— mp3 5 

1 2c 
7 2 

and therefore kb? = m9 oe ane ee : 
_ 26 9 26 

mp? 5 ae 

Keke? 
and 7 = (4mB’ —c) 

Ke g 
or TTP a (mB” — ¢) o 

and then 27’ is the time of a vibration. 
12 

Ifc=0, then _ ee Vice ey a, 

k? (d0\" _ , ate 
and Gi i =tm(6*— 6) 

o— Gente = 

; kK mg” 
where 7 a 

is WRK 

Ba/(mg)’ 
where K = 1-85407. 

Again, in the solution of 

dé 5 
ae 

2 

integrating (=) =1u(B°— 0), 

and Ga in 
1l+y 

ie 1+ onK 7 

(v3 +1)" (v3 1) enk 5, 

1—2 



A Mr Greenhill, Complex Multiplication [Oct. 29, 

3. Complex Multiplication of Elliptic Functions. By A. G. 
GREENHILL, M.A. 

In a previous communication to the Cambridge Philosophical 
Society on Nov. 27, 1882, I had the honour of shewing that it was 
possible to express 

5 y=eng (140%) 

in terms of 15 = GNM, 

by a rational transformation of the p™ order, 

where = =), 

when n is of the form 4p — 1, or 

n= 3-(mod. 4). 

Denoting . by c and oes by w, the transformation is 

of the form 

il 1 ae E o : ie — % cn 2sa 

9 GO ae Ie L 2 
ook 9=il 1+ 

aC L cn 2sa 

Seal aoe | 
an tt = (te) ic } —_ 7 

os Le aeaes > ns Da 

if p is odd: and of the form 

1 | 1 mae a; 7 I, a —2 ac cn 2s 

B= — (ie) x — eek ee ene 
aC aC cn 2s } 

0 12. 

1+y 4 ee EF: ae | 
or a ‘/ (= 1c) II = , 

aw sei |) Il 4 —————__— 
Ke L cn (2s— 1) 

if p is even. 



1883.] of Elliptic Functions. 5 

These transformations shew that it is not possible to express 
snd (1+ %/n) wu in terms of snu, or dni (1 + 7¢,/n)win terms of dnw, 
by a rational transformation, when 2 = 3 (mod. 4). 

For the remaining series of odd values of n, namely where n is 
of the form 4p + 1, or 

n=1 (mod. 4), 

it is not possible to express cn} (1 +2/n)u rationally in terms of 
cnu, although it is possible to express cn (1 + %/n)u rationally in 
terms of cnw by a transformation of the n + 1™ order. 

I have however received a letter from Mr G. H. Stuart, 
formerly Fellow of Emmanuel College, in which he points out that 
when n = 5, that is, when 

K’ 

Hen 
then, if o=4(K-7kK’), 

ee og les a, ae FENG ee PO ERG eS en en} (1+7/5)u V2 NEN ch u cn u’ 
Nl sp ae // Ute 

cn 3@ cn @ 

a transformation, so to speak, of the order 1 + 3. 
This theorem can be immediately generalized ; for if. 

£=nu y=mns(1 +n) u; 

where = = /n, 

and n is of the form 4p +1, or 

n = 1 (mod. 4); 

and, if Gas ke’ 

q LE 
ao wm pre tis 

x x 
I=) oo, l= eee 

al ac cn (2s—1)o 
then y = /(— 7) (- 2) ff See, 

ar me + on @s—le 

a transformation of the order p+ 4, equivalent to 

i-y=(1 +4) -a) W(1- 55) +2. 



6 Mr Greenhill, Complex Multiplication 

One 2 

or 1+4-= =(1-*)( (142) ) T+ oS) <2 

x a ; 
where Da (ie 2) 

leading to the differential relation 

dy _ 40 +n) da 

a/(1-y-1+4) af (1-2-1455) 

For instance, when n = 1, then p=0,c=1, and 

ch u le 

eG Ge) (- cn = 

This can easily be verified ; for if we put 

| el s5o) ao 

then u=(1—-7)», 

and then the above relation gives 

.l-ton’i4+2)u 
Cn * eearen a Gleeaye. 

: .l—7d¢en’v 
or en (1 —2) v= ieee: 

the well-known relation, leading to 

dy  _(1—1)dx 

v(l—y) vb aly’ 

if “=v, y=cen(1—2)». 

Again, when. = = 1/5, 

Qkk = /5 — 2, 

c= /5 424 2/(V5 + 2), 

re a(S) 

[ Oct. 29, 



1883. ] of Elliptic Functions. 

and we have to verify that, if 

e=cenu, y=cen}(1 +2/5)u, 

1-= 1-- 
y = /(— 2%) | 2) — 

le ae 

where a=cni(K—-7K’); also 

1=y'=(1 +912) (1-4) =D, 

14+4=(1-{)a4o)(1+§) +P, 

D= (14+ e)(142), 
aC a 

where B=cn$(Kk-2k), 

and therefore a8=ie. 

Since #=1 when y =1, therefore 

at ali ion) (Sa): 

determining @ or cn 4 (K—7K’). 

Again n=B=—, 

where y=1; 

Soci Ga ONG 
therefore 1l=-2z. nai e = 5 

which should be satisfied by the preceding value of a. 

Differentiating y logarithmically 

ee 
Wyo. oe 8 
y dx au" es 

I+ 1 ze 

a+ et (Spa) EGET NETO 
DN Raph EN 

(1+) (-3) 

“I 



8 Mr Greenhill, Complex Multiplication [Oct. 29, 

therefore 

where M=¥-te(2+5)+,/(2+i-4), 
a ww ; C 

Dremel: 
2 a exe) 

: Cc a 1 
if —_ — SS Ss ae 

B a? i 2 

ane ac” 

or a’ + 21e27 — Qica +? = 0; 

but this is the equation of which one root is 

a=cn3(Kk—7K’): 

ch 3u ch u 
—— _- 3 nes : 2,2 

aC awe /entut+ 2icen’® u— 2cenw+e 
for SSS ee ~ — é : 

cn 3u en w \cn* u— 21¢ cn? w+ 2accnu+e 
1+ 1+—— 

ac 1C 

With the above values of ¢ and a, the value of M should reduce to 

4(1+7475). 

KG Ober eh 
When ==9, 2kk' =(2—/3)?, 

I 

and C=12-P a2) Qa 

1 (eeu 5 (V2 + 4/3). 



1883. | of Elliptic Functions. 9 

Then, if g=cnu, y=oen$(1+7V/9) u, 

x x a (oD (1-2)(1-3) 
aC a 

Pa ©) > |. jp, ieee (1+2)(1+3) 
aC a B 

where a=cni(K—-K’') B=cn2(K—-ik); 

2 a\ 2 

and L—y' =(1+%) (1-2) (1-“) (1-5) 27) 

eee 1—*\a+ay(1+2) feet 
= ( Cc y ( 5) sia as 

; 2 2 

DS (143) (1+2) (1 +3) 
1c a B 

and y=cn2(K—-1tK’), 6=cn4(Kk -7K); 

so that CO — Sy — tc. 

1 Cree ov ee ls Ne If = 18, 2h’ =5 y13 18 =( 5 Is 

and if ex=cnu, y=cnt (1 +7213) u, 

x 2x a x 

(=) 0-3) t-a) (b-5) 
, x @ a\’ 

(1+2)(+4)(1+5) 
where a=cnit(kK-ik’), B=cn3(K-7h’), y=on3(K-1k’); 
and so on. 

The superior regularity of the periods of the cn function, and 
of the positions of the critical points of the corresponding in- 
tegral 

dx 

cf (1 —a2.1+ =) 
c 

render the cn function preferable to the sn and dn function for 
employment in the general formule of transformation and of com- 
plex multiplication. 



10 Mr Greenhill, Complex Multiplication (Oets2o 

For instance in the general transformation of an odd order, if 

u 
’ x=cnu, y=en(5, r) 

x 2 

1=y=(-2) [1-555 | ae 

Lae eee es |e 
ECS + on 2s0 hn 

SRG ON iy oir wa 
: ac € |} aeons! * 

eae is 
1+4-(143)[1+ou pe es 

When n is an even number however, the sn function must be 
employed ; for instance, if 

= V2, then k=/2-1; 

and if x=snu, y=sn(14+2/2)u; 
x? 

; ~ sn? 20 

y= (ht?) oe” 
where o=i(K-ik); 

leading to the equations 
2 

/ x ‘ 

1-y 1l+kz | aerr 
Tee gil ties pe 

sn @ 

l-ky_ 1-—«#/l\+ke« =) 
ltky l+2 eae 

Also sno=,/—%, 

so that sn? 2o = 

and YN) a= ae 

_ (40/2) @ — (W211) ta? 
~TaQM=l Woon es ” 
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These transformations shew that it is not possible to express 
en (1+ 7%/2) w in terms of cn u, or dn (1 +722) u in terms of dn u, 
by a rational transformation. 

eee TG 
Again, if Wag 2; 

then k=3-22; 

and if x=snu, y=sn(1-+ 22)u, 

x Ge 

ss il—ee5) 
then y= (1 +21) © Fen" do) (1 Pa an ho)” 

where o=1i(k-1K’); 

leading to the equations 

ahah Oe bane 2 
1—y l1-ke« : = ED 
yee Wei eee pare : 

sn 30 

ea N? ESS 
Bon: an =): 

l+ky 1+e a ( fT i 
ia enroe,/ tho lariat 

so that cn (1+ 22)u has a factor dn wu, and dn (1+ 22) uw a factor 
cn w. 

Ke 

Also, if Kx = V6, 

_ then k= (3 — /2) (2-1/3); 

and if e=snu, y=sn(1 +776) u, 

then 
a2 2 2 ae aoe ale /6) a sn* 2@ sn* 4@ sn* 6@ 

J (1 — ka" sn* 2) (1 — ka" sn’ 4@) (1 — k’a* sn* 6w)’ 

where wo=1(K-7k’); 
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leading to the equations 

i, MER EC eS 2, 
1l—-y l+ke “ | aa : my 

bay I /hay ees eee ve 

sn w s n dw sn 5@ 

x 2 x 2 x 2 

yr =) pa (=) 
l+ky l+a ae Tee x x D 

Eee lige ne Tee 

and so on. 

If n is a composite number rr’, then the modular equation of 
the nth order is obtained by combining the modular equations of 

the orders r and 7’, and the modulus when K =,/n 1s obtained 

by putting X=’ is the modular equation. 

But another root of the same modular equation will be the 
modulus when 

fe 
HEN pe 

and by properly choosing r and r’ it will be possible 'to represent 

any assigned value of Ke: 

The general problem of the “Complex Multiplication of Elliptic 
Functions” is then to express the sn, cn, or dn of (ak + bik’) v in 

terms of the sn, cn, or dn of Kv, where = = vy) a but it is 

necessary that b should contain a factor 7, so that the complex 
multiplier always reduces to the form 

at bir’. 

For in expressing the elliptic functions of 7 = wu in terms of 

the elliptic functions of u, the first transformation of the order r 
from the modulus & to a smaller modulus X, and then the second 
transformation of the order r’ from X to a larger modulus k’ must 
be employed; so that if WV, V’ are the corresponding multipliers 
of the transformations, 
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and the resultant multiplier 

K ee NN : JN) = ONG oR”? 

so that if w= Kv, then yak. 

: a ae Per 
For instance, if Te J/15 = /53, 

then V (kk') = sin 18°; 

, IEC 5 
but if Wa /3 , 

then V (kk) = sin 54°, 

(Joubert, Comptes Rendus, t. 50); 

ap CESS 
and Zils = 16? 

20 = (2+ 9/3) (5 — V3). 
Then, if ax=cn Ky, y=ont (K+ 3:K')v, 

& 2 
1l-y x - aC Lae / —1¢ 

= ae) l+a a“ ab ta == \Ts 
ac ac / — 2c 

ae x 
1+4+-\' /14+5V7 

1+ ma 1—- _ B 

where a8 =—i¢ 

are consistent equations; and lead to 

dy? M2 dx? 

Taig) aos) 
where M=4(14+7,/15). 
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This has been verified arithmetically by Mr Pilkington, and his 
verification is here appended. 

If c= (7 + 44/3) (4 —/15), 

then J/20= (2+ 3) (/5 — 0/3); 
and if 

1-y el alee pen 

y —it fig l+a ic—a J—t—x 

ind) ic—x+(1—tc)a ic—a’—2x/—ic 

a/c “te —a* —(1—tc) @  ig—a? +2” J—ic 

Tt) (eae )?— 90? — ic (1 — tc) + (tc — 2°) (1 — Jf Dey 

~ ie” (ie— x = = 97 ie A Sie) — Ce = )\ icy 

then 1-y 

_ G14 6400) {(ic — a — 20° J — ic (1 — ic) + (ie —2*)(1 —/ — 16)? 
Sorute Te fib Shee eee ee > ol 

where D = (i—1 +/2c) {(te — 0° — 20° / = te (1 — tc)} 
+ (¢— 1 = 20) (ic —2”) (1 — J — ie) a, 

and l+y= 

(i-142,/2e ~ —ic) { (tc — w?)? — 2a? n/c (1 — ic)} + (i - 1 - 2/26 — e—ic) (ic — 2)(1 — n/= ic)? = 4 

This should be of the form 

P(a+ay(6+2) 

D E 

P {a 6? +208 (a+ 8)a+[(a+ 8)? +228] a°+2 (a+ B)a? +x} 
D ? 

l+y= 

whence, by comparing, we must have the following relations 

P2j—142,/26—0—16...0.......0. ee (1), 

UE wird Bel chs hls) (2), 

ae 2), aie (aac) A... (3), 

218 (a+) = StS ve (1/200), ee (4), 
EON 9G ee 
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9/26 ¢—7¢ —\, s 

ole Tet CSE Pee) 
From (4) and (5) we ee a8 = —vie, which satisfies (2); 
then by (3) and (5) 

(a+ BY =— 2/— te (1 — ic), 

ihe a 2a) 26 — 0 10 

—142/2%¢—c—ic 
ESP) (1 — /= tc)’; 

therefore we must have 

pail So = G70 : — i 
= 1-—ic—2./—1%)=—8/—itce (1-7 

ey ; v ) ESN 

me — 1 2) 26— c= 40); | le = 2) 4 Ze 

=— 4 (1—1) /2¢ (1 — ic) )(@-142/2¢— ic), 

The right-hand side of this equation 

=— 24 8/26 + 32c — 40c ./2¢ — 68ic? 

+ 400? /2¢ + 32ic? — 80? /2¢ — ict, 
and the left-hand side 

= 8 (i+ 1) J/2c — 64ic + 40 (i —1) 0/2 

+40 (+1) &/ 2c — 64ic? + 8 (i — 1) 0° /2e, 

therefore equating we get 

2i + 81 /2c — 9Gic + 40ic / 2c + 68ic? 

+ 40ic? /2c — 96ic° + Sic? /2c + ict = 0, 

or 144,/2¢ — 480 + 20¢ /2c + 34¢? | 

+ 20c? /2¢ — 48c? + 4° /2¢ + 4 = 0. 

Substituting the above values of ¢ and ./2c, the left-hand side of 
this equation becomes 

=1—12-8/34+8/5+4./15 —1344—768 /3 

+576 /5 + 336/15 

c {- 60-40 /3 4 40 /5 + 20/15 + 952 + 544,/3 

— 408 J5 — 238/15} 
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+¢ {—60—40./3 + 40/5 + 20 /15 — 1344 — 768,/3 

+ 576 /5 +336 /15} 

+e (- 128/38 8/54 4/15 + 28+ 16./3— 12/5 am I 

= — 1355 — 766/38 + 5847/5 + 340/15 

+ ¢ {892 + 504,/3 —368,./5 — 218 /15} 

—¢7 {1404 + 808 /3 — 616 /5 — 356 /15} 

PUG Sy =A 53 Sh 

= — 1355 —776 J/3 + 5844/5 +340 /15 

+ ¢ (892 + 504,/3 — 368 5 — 218/15} 

— {17+ 8/3} 

=— 1355 —776 /3 + 584./5 +340./15} 

+¢ {82+ 8/34+4,/5—3,/15} 

= — 1355 — 7760/3 + 584,/5 4+ 340/15 

+1355 +776 ./3 — 584,/5 —340 /15 

= (0) 

Therefore the equations for a and £ are consistent, and therefore 
1+y can be put into the required form. 

2 2 Thus ; py y Sake 

where P=7- ey oN 26 10, 

D= (i-1 40/20) {(ic — a”)? — 2a? /—ic (1 —ic)} 

+ (¢-1—A/ 2c) (ie — 2°) (1 = af Sie), 

and a and # are given by the equations 

a8 = — 10 

jn Ieee 

Morr eee ae 
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Again from the original equation, we have 

I 

: (ic-1) ./2c{ (ic — 22)? — 2a? — ic (1 — ic) — (ic — 2?) (1— ,/ = ie)2x} 
te -y= D 

therefore ic + y= 

(icn/2c - 2c — Lic + ./2c) { (ic—a?)?—Qa®, | — ici 1 — ie)} — (./2c + icn/2e + Qe + Bic) (ic — x2)(1—./— ie)? x 
NS ae aT ee an 2) a a aaa L 

This will be in the form 

sop y = Olena Ba 

where Q = te J 2c — 2c — Bic + / 2c, 

provided we have 

J2c+ics2e+24+2ic_i-1 ONE aH 

N26 tc./2¢ ~ 2c Die 1 GL D4 Wace ae 

/2c + te J2¢_t-1l-c-ie This gives 
Qe Lie Spy ae 

ltie t-1—c—ie 
V+4 5 —2 4 

~2(1 +i) =(1 44) (6-1) 06 +) 

=—2-2ic 
an identity. . 

Therefore 1c + y takes the required form. 

Thus 1+ _P@to?(@+a 
Yom ; D ) 

2 2 ea 

L+y_P@ts)' (8 +2)" therefore Ge OC O=oe 

cn oS t-14+2/2c—c-te 

Q ica 2c — Vic + J 2c 

_ t-14+2/2%—-(1+i)e 
J 2c fic +1 —./2c (1 +7) 

VO; Vi, PIM 2 
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_ ft i-tJ/2e/2i—c 
i eae 

=. 

tree Gan (oa 2), 
wet+y fic (4 -)"(B—ax)?” 

which proves the first part. 

We have then | 

(1 —y) D=- (1—‘ce)(¢-1)(1 —2) (ic +2) (J — te +)’, 

Gind= Perar eta 
(ic— y) D=— (te —1) J 2c (1 +2) (ic — 2) (= to — 2). 

(icty)D= Q(a—2)(B—2)*; 
therefore d-y)(y° +0) Dt 

therefore 

29, 

= PQ (1— 6) Je (1— ie (1— 2°) (a? +6) (a? — 2°)7(8"— 2°) (ie + 2%), 
(So Gc) 
(=n@ue pl ee 

se ( AD) 

Again, since 

pay = te ie -— “PY ee 1- ~ie)-+(ie— a) (1— Jie) 

we have 

dy _i-1te+te 
dx Dp 

x {D [4x (tc— x") + 4p] ic (1 — 2c) —(te—32") (1 —/=ic)"] 

+ [(éc —a)*— 20% te (1 ic) + (to — 2°”) (1—,/=40)?ar] — 

4—1+c+ic 

Troe kh eae 
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x |(ic—" | 4Die+ oe" Pace r,/—tc (1—12) | 2D- ce 

= (1 J=ie)*| (o- 32°) D — o— aya | 

Now D=(i—1+4 J/2c) {(ic — x”)? — 2a ,/— ic (1 — ic)} 

+ (¢-1=—,/2¢) (tc — 2?) (1— f= ae) x, 

1 + /2c){—4 (ce — 2) # — 4a,/ = te (1—ic)} , 

+ (i-1—.J/2¢) (ie — 82°) (1— = 10); 
therefore 

cD. = = Cee: 
4Da + (ic — 2") T= (i—1+ o/ 2c) /— tc (1— te) (—4a) (te + 2”) 

+ (i —1— J2¢) (ic — 2°) (1— / — ie)*(ic + 2”), 

2D — a6” =2 (@ —1+4 /2c) (ic — 2") (ie + a”) 

+ (¢—1—./2¢) (1—J/ =e)? & (ie + 2°), 

(ic — 82") D — (ie — 2°) 2 5” | 

= (4 —1+4+ ,/2c) (ic + a) {(te — a)? + 2a? /— ic (1 —ic)} ; 

dy w—1+c+ie 
iia a aaa 

x {(ic — a) [(2 —1 + 2c) Jf — te (1 — te) (— 4a) 

+ (i—1—,/2¢) (ic —a”) (1 — f =70)] 

+ 2x, /=te (1 — ic) [2 @—-1+./2c) (ic — x”) 

Ae as 
~ (1-0) (1 + 20) [(io — 2)" 
42a°,/— ic (1 —ic)]} 

et (tc + x”) {(te — x”)? (1 — Jf — ic)? (—2,/2c) 

+ 2x /— te (1 bre (oN) 26)! 

Se en — 2,/2c0) {(te — a? 

+ 2 | Die (1—1e)} 

therefore (tc + x”) 

I bo 
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¢—l+ct+ic 
=—2. DE (de +42) (1— J— ie)? /2e {(aB + 27) 

— (a+) a" 

7 Ep ee eye | — 10)? J 2c (a? — 2) (6 — x”) 

= FE Gio + 2°) x) (1— / — ic) J 2c (a? — x”) (0? — 2”) ; 

therefore 

(1—ic) /2c(e—a*)(B?—a)(ie+a) 1 dy 

D* 72 @ 1) d= ieee 

Substituting in (A), we have 

Cleo er sr @)) P? (2) 

ree e Glyde 

(#) Ji sea) __ 4¢-170-—J=%e)' 
dx )(y’? +c) ? 

I 
E a (l1—te — 2V— = 

¢-14 2V2c—c—ic 

2a 1— ie —2V—ie) |’ 

haynes 20 + te J 

2fe-V2% +7 (1 sana) 
ko N26 +4 2 as 

I 
ts 314+18,/3—14,/5 —8,/15+7(4+2,/3 — 2,/5 —./15)} 

449,/3 —2,/5 —J15 +2 (8141 8/3 — aje-aie | 

aes : 

dy _£$(14¢4 15). da 

Ja-¥)yte) 0-2) +e) 
which proves the second part. 

therefore 

/ 

As another example of the case when = =/n, where n is a 

composite number, suppose = 6. 
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; KK’ 
Then, if Tes V6, 

k = (3 — V2) (2-3), 
a case already considered. 

: ‘ i} 
But if = = = 

k = (3+ 2) (2-3); 
and if xc=snKkvy, y=sn(K+37K’)0; 

then 
2 2 2 (~fis) (1a (ai meee 34/6) x sn° 2@ sn° 4@ sn* 6@ 

J (l—h'a"sn'20) (1 — ha sn’ 4a) (1 — ha sno) ’ 
where o=1(K—3ik’). 

In the preceding transformations the factor 4 has been intro- 
duced in the numbers a and b of the complex multipliers a + b¢4/n; 
it is interesting to see how other factors like 4, 1,... may come in. 

For instance, if in the expression of y=cn$(1+72/5)u in 
terms of «=cnw, we put 

$(14+7/5)u=z, 

then uw=1(1-—74/5), 

and the same expression will give x=cn1(1—72,/5)v in terms of 
y=cn v by the solution of a cubic equation. 

Again, if z=cni(1+7/5)», then 

lh ae ee 

y=vicinn/| area a= en} (K— ik’) 
14++/14+-5 

_ ae a 

l+=\ 1-5 
= (te) oe —, a’ =cqn i (Kk ae aK’), 

fees Z 
aw ‘ 

connecting x=cni(l—7i/5)v or x=cn4u, 

and 2=en4(14+i75)v or z=en}(2—7V75)u; 
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and equivalent to the transformation 

1 eel se NE 
(XG a (XG a me 

a ociten 
(TG) a (XG a 

a transformation which is capable of affording an independent 
verification. 

86) 2 pee ae 
For eel z). B=cn2(K—iKk’), 

eee VENTS 1+ ‘a Ta a) 

pettiness 
et (4) , P=n2(K+71K) ; 

ILap = laps 
B 

and therefore 

a Meena 
(: 2). =. ) 

l+a ei) Bees Bj}? 
1+-— 1+ 3 

B B 

L Ww , 
. ten (Hp >). Laer (Gp¥) 

w ON 
1+en (47, 2) 1+ en (57%) 

u Usa 
or, cn ce n) cn Wa Net, 

where w=1(2-7/5) u. 

In the same way, from the expression of y=cn $(14+7,/7) u 
in terms of «=cn u, we can obtain # =cn}(1—7/7)v in terms 
of y=cnv by the solution of a quadratic; and also from the ex- 
pression of y=cn4(1+72/15)u in terms of =cnwu, we can 
obtain « =en}(1 —2/15) v in terms of y=cny, also by the solu- 
tion of a quadratic equation. 
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(4) On some General Equations which include the Equations 
of Hydrodynamics. By M. J. M. Hitu, M.A. 

[ Abstract. ] 

1. If u,u,...u,p be (n+ 1) functions of x,x,...2,¢ which satisfy 

(a) then ae which may be obtained by changing r 
successively into 1, 2, 3... in 

du, du, HOS oe du, a dp 
ra lee eer es Se 

and (@) the equation 

d d Gh 
a (ptt) + ae (ot) +--+ Te (pte) = 05 

it is proved that 
u,dax, +u,dx,+...+u,dx,, 

=dK +fdP,+fidP,+...+f,dP,,, 

where K satisfies the equation 

- {2 Fea. Up +Us +... + U,. 

p 2 

“(ata that se) ® 
and where P,P,...P, are n independent integrals of the equation 

os U, CE he U at bts Fe = 05 

and ff, ---,J4 are pve HOME HOMSLOt wena oe. 

De lt at aE and if &&...& be square roots of the 

coefficients of eles . = in the determinant 

eeeecces cess 

eects eee sees 
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it is shewn that if m be odd - 

dé, dE, ae 0, dé, 
Sip espe de, SS Ot al ghee Te. 

and n equations, of which the following is a type, 

(Gt ae + ae eh ale 
at > ae 7 da, ” de 

at du, & 5 &, du, 

p da, ar p dx, a ee p da,” 

When n is even, these reduce to identities and are replaced by 
the single equation 

(Gt Gaeta te +n a) (E)=0 

3. Adopting the language of Fluid Motion it is shewn that 
the vortex lines 

always contain the same particles. 

4, It is shewn that u,dx,+...+u,dz, (ifn be odd) may always 
be reduced to the form 7 

dK + Pa WP, +PdP,+...+P,_ OP vs 
nts 

- which is Clebsch’s form (see his paper “ Ueber die ina der 
hydrodynamischen Gleichungen.” Crelle, Bd. LV1.); and the mean- 
ing of this form is that the vortex lines are the intersections of the 
(n — 1) loci 

PEP. oP m—1? 
2 

nia ++ Pay) = constant, respectively. 
2 
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November 12, 1883. 

Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society : 

(1) On the Structure of Secretory Cells and on the Changes 
which take place in them during Secretion. By J. N. LANGLEY, 
M.A., F.R.S. 

We have, from different observers, different descriptions of the 
structure of each of the various kinds of gland-cells. Moreover, 
very different accounts are given of the changes which take place 
during secretion, not only in the various kinds of gland-cells, but 
also in gland-cells of the same kind. 

And this is not unnaturally the case, since different observers 
have examined the gland-cells under different conditions; in some 
instances the cells have been examined in the fresh state, in 
others after treatment with osmic acid or with alcohol or with 
chromic acid. 

_ But scarcely any attempt has been made to reconcile these 
various accounts, or to ascertain what are the common points of 
structure, and the common changes which take place during 
secretion. 

This I wish to do here, but to do very briefly, since I trust 
soon to give a more detailed account, accompanied by figures of 
the different glands. For this reason also, I may perhaps be 
allowed to confine myself to a statement of conclusions without 
pointing out how far they coincide or clash with the conclusions of 
previous observers. 

The glands of vertebrates in which I find that the secretory 
cells have fundamentally the same structure are; the serous and 
mucous salivary glands and the similar glands of the mucous 
membrane of the mouth, nose, pharynx, cesophagus, etc.; a few 
exceptions with the chief cells of mammalian gastric glands; the 
gastric glands of such birds, fishes, reptiles and amphibia as I 
have examined ; the cesophageal glands of the frog; the pancreas ; 
the liver. 

It will be seen that this list includes most of the secretory 
glands of vertebrates. The mammary glands and sweat glands of 
mammals, I have not yet sufficiently investigated to be certain 
whether they have the same structure as the preceding. The 
intestinal glands and the kidney, I omit for the present, since they 
have some special points of structure depending upon their special 

- function of absorption and excretion respectively. 
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The border-cells (Belegzellen) of mammalian gastric glands, 
the pyloric gland-cells, and those of the chief cells which are not 
distinctly granular in life—the- exceptions mentioned above—I shall - 
consider separately. 

The secretory cells of all the glands in the list which I have 
given, have the following common “points of structure’. 

The cell substance is composed of (a) a framework of living 
substance or protoplasm, connected at the periphery with a thin 
continuous layer of modified protoplasm; the framework in some 
cases has the form of a network of small threads of equal size as 
described by Klein’; in others of flattened bands. Further the 
threads or bands may vary in size in different parts of the cell, 
and the meshes in different parts of the cell may be of different 
size and shape. Within the meshes of the framework are enclosed 
two chemical substances at least, viz. (b) a hyaline substance in 
contact with the framework, and of (c) spherical granules which 
are embedded in the hyaline substance. 

In the gland-cells which secrete much organic matter the 
_ cell-granules are conspicuous and fairly large. In the gland-cells 
which secrete comparatively little organic matter, the cell-granules 
are generally speaking smaller and less distinct, the lower the mean 
percentage of organic matter is in the fluid secreted. 

The cell-granules are in nearly all cases mesostates, i.e. substances 
stored up in the cell and destined to give rise to the organic substances 
of the secretion. The granularity of a cell in the resting state thus 
depends upon its storage-power. Generally speaking the greater the 
storage-power of a cell, the higher is the percentage of organic substance 
in its secretion, but this is not always the case, since it may happen 
that the rate of secretion of water may increase without any correspond- 
ing increase in the rate of secretion of organic substance, and in conse- 
quence the percentage of organic substance in the secretion may be 
small; further it is possible that under special circumstances a cell. 
with small storage-power might secrete a large quantity of its stored-up 
material and that a cell with large storage-power might secrete a very 
small quantity of its stored-up material, the amount of water secreted 
by the two cells being approximately equal. 

In all these cells, during active secretion, the following changes 
take place. The granules “decrease in number and usually, if not 
always, in size; the hyaline substance increases in amount; the 
network grows. The increase of the network is much less ‘than 
that of the hyaline substance. 

Moreover in the majority of the cells, the details of the changes 
which take place are much the same. The hyaline substance 

1 This I have already described for the liver-cells (Proc. Roy. Soc. No, 220, 
Ap. 1882). 

2 Quart. Journ. Mic. Science, Ap. 1879. 
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increases chiefly in the outer region of the cells, and the granules 
disappear from this region; so that an outer non-granular zone 
and an inner granular zone are formed. The network stretches 
throughout the cell in all cases: in the outer zone its meshes 
are filled with hyaline substance; in the inner zone its meshes 
are filled with granules and a small amount of hyaline substance. 

The glands in which an outer non-granular zone is not formed * 
during secretion are, most of the gastric glands of the frog and 
toad ; the gastric glands of the snake, and the liver of mammals. 

In the gastric glands of the snake, the decrease in the granules, 
and the increase of the hyaline substance, is equal or nearly equal 
in all parts of the cell. In the gastric glands of the frog and 
toad, whilst the same changes are most marked in all parts of the 
cell, they go on most rapidly in a narrow strip next the lumen. 
In the liver cells of mammals, the changes are most active in the 
central part of the cells around the nucleus. 

It is to be remembered that there is reason to believe, that the three 
parts of the cell are continually being formed and changed into other 
substances; the extent of the change which can be observed in a cell 
during secretion depends upon the relative rates at which these processes 
go on. I have previously pointed out* that different gland-cells vary 
considerably with regard to the different relative rates at which the 
formation and breaking down of their constituents take place. 

The differences shown by the different cells after the same 
treatment, depends, partly upon the different chemical characters 
of the framework, hyaline substance, and granules in the different 
cells, and partly upon the different arrangement of these con- 
stituents. With regard to the former of these causes of difference 
a few instances may be given. 

In the rabbit’s sub-maxillary gland, after treatment with osmic 
acid, the granules are indistinguishably mixed with the hyaline 
substance; and the resulting mass differs so little in refractive 
and staming power from the network, that the nodal points only of 
the network are at all distinctly seen. 

In the chief-cells of the cat’s gastric glands, after treatment 
with osmic acid, the granules and hyaline substance are also 
indistinguishable ; but the network is much more distinct than 
the network in the rabbit’s sub-maxillary gland. The network is 
however much less distinct than in a gland that has been treated 
with chromic acid. 

In the chief-cells of the bat’s gastric glands, after treatment 
with osmic acid, the granules are perfectly distinct, but they are 

1 The gastric glands of birds have not as yet been examined for the changes 
occurring in digestion. Cf. however Nussbaum, Arch. f. mic. Anat. xx1. p. 297, 1882. 

2 Trans. Royal. Soc. Part m1. 1881. 
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apparently embedded in a homogeneous mass, which other reagents 
show to be composed of network and hyaline substance. 

The same cells, after treatment with alcohol, show an indistinct 
network, containing an interfibrillar mass in which the granules 
and the hyaline substance cannot be separately seen. 

The cesophageal glands of the frog and the pancreas of all 
animals, after treatment with alcohol, show the shrunken remains 
of the granules, but leave the network and hyaline substance in- 

- distinguishable or nearly so. 
Even chromic acid which in most gland-cells brings out the 

network clearly, does not act in quite the same manner on all 
gland-cells, for it differentiates the network and hyaline substance 
less clearly in the cesophageal glands of the frog, than in the 
salivary and gastric cells; and differentiates them less clearly in the 
pancreas than in the cesophageal glands of the frog. 

It will be noticed that the cells mentioned above form a series 
in which the network and hyaline substance are less and less easily 
distinguished from one another, that is, a series in which the net- 
work and hyaline substance become more and more alike in 
chemical characters. 

In the above general description I have not included the pyloric 
gland-cells, the border cells (Belegzellen) of mammalian gastric 
glands, or the semi-transparent chief-cells which are found m the 
latter part of the greater curvature in some animals. In these 
the changes described above as taking place in digestion have 
not yet been observed. This, I think, is due to their containing 
very small granules, which are not obvious during life, and which 
are not preserved by any reagent; in consequence a change in 
their granularity is very difficult to observe. 

With regard to their structure they certainly have a frame- 
work enclosing hyaline substance, the only difficulty is to show 
that they contain also granules embedded in the hyaline substance. 

These cells in life do not show distinct granules, but when 
they are teased out in salt solution they become very finely 
granular. This is not caused by the cell network, for the network 
has rather large meshes. In those chief-cells which are apparently 
homogeneous in life, the granules are often fairly distinct on teas- 
ing out the cells in salt solution; in the pyloric gland-cells the 
granules are usually so indistinct that I should not feel justified 
on the microscopic appearances alone, in assuming that they are not 
due to a slight alteration in the hyaline interfibrillar substance. 
There are however other grounds which render, I think, this 
assumption justifiable. 

In all cells which contain much pepsinogen, distinct granules 
are present. Further, the quantity of pepsinogen varies directly 

_ with the mass (number and size) of the granules; that is, pepsi- 



1883.] Changes which take place in them during Secretion. 29 

nogen when present in cells in sufficient quantity to be readily 
observed is present in the form of granules, hence it seems 
probable that in cells which contain a small amount only of pep- 
sinogen, the pepsinogen is also present in the form of granules 
which however are not conspicuous on account of their small size. 

And in fact in most cases, the less pepsinogen a cell contains 
the smaller are its granules; this is especially well seen in the 
gastric glands of lower vertebrates, in some of these moreover the 
glands near the pyloric region may be semi-transparent and appa- 
rently homogeneous during life whilst after treatment with osmic 
acid, granules become obvious, which except as regards size are like 
the granules, granules which are of the anterior region of the 
stomach visible in life in the cells. Since the granules are in these 
cases preserved by osmic acid, their detection is easy. 

It is then probable that pepsinogen when present in a cell is 
present in the form of granules, and that when pepsinogen is 
present in small quantity the granules will be too small to be 
easily seen. Now the semi-transparent chief-cells of the posterior 
gastric glands of the rabbit do contain pepsinogen, but they con- 
tain comparatively little; and the still more transparent pyloric 
gland-cells also contain pepsinogen but they contain much less 
than the chief-cells; hence I conclude that the granules which are 
fairly well seen in the one, and indistinctly in the other, in fresh 
teased out specimens, are really pepsinogen granules comparable 
to those easily seen in the majority of the chief-cells of mammalian 
gastric glands. 

With regard to the border cells, there is no satisfactory proof 
that they contain pepsinogen, and the evidence for the presence 
of granules in these rests simply on the granular appearance of 
the fresh teased out cells, evidence which I readily admit to be 
anything but conclusive. 

I may now pass to consider how the statement given above of 
the changes which take place in the cells during digestion har- 
monizes with the description given by Heidenhain* and others. 

The serous cells, the mucous cells and the chief-cells of mam- 
malian gastric glands, after treatment with alcohol, are described 
as being more granular and as staining better, in the active than 
in the resting state; that is, during secretion there is an increase 
of granular substance staining with carmine, and a decrease of 
substance not stainmg with carmine. The granular staining 
substance, Heidenhain considers to be protoplasmic substance ; 
with this I agree, except that I consider the apparent granules of 
alcohol specimens to be parts of the cell network indistinctly seen, 
so that I take the increase of staining substance in the cells 

1 Cf. Handbuch. d. Physiol, (Hermann), Bd. v. 1880. 



30. . Mr Langley, On the Secretory Cells. [Nov. 12, 

to be the expression of a growth and rearrangement of the cell 
network. 

The non-staining substance is considered by Heidenhain, to be 
substance stored up for secretory purposes, and comparable to the 
zymogen granules of the pancreas; with which I agree in part 
only ; I consider the non-staining substance to consist of hyaline 
and of granular interfibrillar substance, the latter only correspond- 
ing to the zymogen granules of the pancreas. In all these cases, 
as in the pancreas, the granules disappear from the outer parts 
of the cells during secretion, but in alcohol specimens this cannot 
be observed. The active pancreatic cells differ in appearance 
in stained alcohol specimens from the serous and other cells men- 
tioned above, chiefly because, in the pancreatic cells, the hyaline 
interfibrillar substance as well as the network takes up the colour- 
ing matter. 

Another change has been described by Griitzner* and by myself* 
as occurring in various cells during secretion. The cells, after they 
have been actively secreting, take a darker and browner tint on 
treatment with osmic acid, than they take on similar treatment 
after a period of rest. Formerly I referred this to the whole of 
the non-granular part of the cell, in which I did not then dis- 
tinguish a network and hyaline substance. The change of staining 
power shown by the cells during secretion is however, I think, due 
to a change in the hyaline substance, and not to a change in the 
network. It is chiefly caused by the increased amount of hyaline 
substance. I say chiefly, since it may be partly due to the fluid, 
which permeates the cell, containing during secretion a greater pro- 
portion of substance capable of reducing osmic acid than it contains 
during rest. 

The question now naturally occurs, What is the nature of the 
hyaline interfibrillar substance? We have seen that as the 
granules diminish, the hyaline substance increases, and that as the 
granules increase, the hyaline substance diminishes; so that an 
obvious hypothesis is that the protoplasmic network forms the 
hyaline substance and then out of this manufactures the granules, 
which are, as we know, converted during secretion into some one 
or more of the organic bodies of the fluid secreted. It is some- 
what in favour of this hypothesis, that in peptic glands there are 
apparently certain intermediate stages in the formation of pepsi- 
nogen ; it may further be noted that in the liver-cells, the hyaline 
substance is often indistinguishably mixed with a substance allied 
to glycogen. 

On the above hypothesis it would I think be most natural to 

1 Arch. f. d. ges. Physiol. xx. § 399, 1879; Proc. Roy. Soc. xx1x. p. 377, 1879; 
Journ, of Physiol. 11. p. 261, 1879; Trans. Roy. Soc. Pt. 111. 1881, p. 663. 
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regard the network, and peripheral layer of the cell, as the only 
living portions, but we have not as yet sufficient facts to allow us 
to come to any definite conclusion; it may be that the hyaline 
interfibrillar substance is protoplasmic (living) like the network, but 
is less differentiated. The network appears to be the result of the 
two-fold tendency of the protoplasm to form fibrillze and to store 
up substances within its grasp; in most cases it is obviously not 
constant in form, but is continuously altering the arrangement of 
its bars and the size of its meshes. This is especially distinct in 
mucous cells in which during secretion numerous fresh connect- 
ing fibrillz are formed. 

j (2) Note on the Fibrin Ferment. By A. S. Lea, M.A, and 
J. R. GREEN. 

The object of this communication was to endeavour to reconcile 
certain statements made by Gamgee’* as to the apparent nature 
and properties of the ferment body obtained from Buchanan’s 
‘washed blood-clot’ with those which are usually made respecting 
the properties of the ferment obtained by Schmidt’s methods. 
From his experiments on ‘ washed blood-clot’ Gamgee came to the 
conclusions that an active fibrin-ferment could be extracted from 
the clot, and that from the reactions of the salt solution used for 
its extraction the ferment “is in reality a proteid body belonging 
to the group of globulins.” If this is so then the ferment body 
prepared by Gamgee must be a very different body to that obtained 
by Schmidt. The authors then gave an account of their own 
experiments which will shortly be published in detail. It will 
suffice here to say that by appropiate methods they were able to 
isolate from the ‘washed blood-clot’ a substance which is readily 
precipitable by excess of alcohol, is soluble in distilled water and 
does not give any reactions (Xanthoproteic) characteristic of a 
proteid. The aqueous solution of this substance added to a diluted 
salt-plasma, leads to the rapid formation of fibrin in this plasma. 
This power is lost if the solution of the ferment is heated for 
a short time to 70°C. The active properties of the solution are 
not very largely diminished by dialysis. From their results the 
authors came to the conclusion that the ferment contained in the 
washed clot is essentially identical with that prepared by Schmidt. 
They observe however that there are still some points in which 
it does not entirely resemble Schmidt’s ferment; thus the solution 
of the ferment as prepared by them does not lose its activity by 
being dialysed (agreeing in this with Hammarsten’s statements), 
whereas Schmidt states that his ferment solutions do largely lose 

1 Jl. Physiol, Vol. 11. 1879, p. 145. 
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their activity by dialysis. Again Schmidt says’ that his ferment 
solutions, although they begin to be less active if heated to 55°C, 
and are materially deteriorated if heated to 70°C., require to be 
boiled for 5—10 minutes in order that their active properties may 
be entirely destroyed ; the ferment body as prepared by the authors 
loses its active properties if heated to 70° C. 

To account for the results obtained by Gamgee the authors 
pointed out that when ‘washed blod-clot’ is treated with 8 per cent. 
solution of sodic chloride, not only does the ferment body go into 
solution, but also a considerable proportion of ordinary globulin. 
This extract was apparently assumed by Gamgee to contain the 
ferment only and hence his results. Some other facts were also 
discussed in the communication, such as the apparent greater 
solubility of the ferment body in solutions of common salt, or as 
the authors prefer to consider it, the greater readiness of its ex- 
traction by such saline solutions from precipitates with which it 
has been carried down. Analogous cases were pointed out, such 
as the extraction of an amylolytic ferment from the alcoholic 
precipitate of liver extracts, and of ‘rennet’ from the mucous 

membrane of the calf’s stomach or from the seeds of a certain 
lant. 

The authors finally showed that ferment solutions of great 
activity can be prepared from ordinary fibrin, not differing so much - 
in this respect from the similar extracts of ‘washed blood-clots’ as 
might have been expected from the statement made by Gamgee 
that they are ‘much weaker.’ 

(3) On the Structure of the Ice Plant (Mesembryanthemum 
Crystallinum L.). By M. C. Porrer, B.A., St Peter's College. 

Mesembryanthemum Crystallinum, known as the Ice Plant, has 
obtained its name from the circumstance that its stem and fleshy 
leaves appear as if covered with minute drops of frozen water. 
This appearance is caused by numerous vesicles on the stem and 
leaves which are tensely filled with a clear colourless cell sap. 

These vesicles, as described by M. Martimet’, are of various 
forms, generally spherical on the upper surface of the leaf, ovoid on 
the lower, and elongated at the apex. ach vesicle arises as the 
outgrowth of a single epidermal cell, and has its apex pointed like 
the neck of a bottle, caused by the epidermal cell growing out- 

wards when the vesicle is first formed, and by this part not be- 
coming rounded off, when the vesicle afterwards increases in size. 

1 Pfliiger’s Arch. Bd. v1. (1872) 8. 463. 
2 J. B. Martinet, “Organes de sécrétion des végétaux.” Ann. des Sci. Nat., 5th 

Series, Vol. x1v. 1871. 
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M. Martinet has not however more fully investigated the nature 
and development of these vesicles. 

The vesicles had been previously described by Mirbel’ and 
Guettard as Glandes utriculaires ow ampulaires, and by Schrank 
as Schlauchdriisen. De Candolle® had described them as Glandes 
utriculaires formed by a swelling of the epidermal cells and con- 
taining a colourless alkaline fluid. They had also been roughly 
figured by Meyen® and Lindley*. 

The vesicles are formed on the surface of the stem and leaves, 
when very young. Each vesicle arises from a single epidermal 
cell, and always remains unicellular. The epidermal cell about to 
form a vesicle grows outwards, as seen in Figures 1. andiv.a. This 
part of the vesicle, which is first formed does not always alter its 
form, but sometimes remains as the drawn out apex of the vesicle 
(Fig. v.). This occurs especially on the leaves. The vesicle, 
when young, has its base about as wide as the cells of the ground 
tissue lying next to the epidermis, and which support it. As these 
cells increase and divide, the vesicle grows uniformly with them, 
and at the same time grows outwardly, forming a bladder-like 
excrescence on the epidermis (Figs. v. and VI.) which is supported 
by numerous cells belonging to the ground tissue and not to the 
epidermis. They are generally elongated in, the direction of the 
growth of the part of the plant on which they are borne, and thus 
have their bases much longer than broad. 

The vesicles formed in the manner above described are situated 
close to each other, are filled with a clear colourless cell sap, and so 
cause the plant to appear covered with ice. They are separated 
from each other by a small but varying number of epidermal cells, 
among which lie scattered numerous stomata. The vesicles are 
formed very early close to the growing point of’ the stem and 
branches and the leaves, whilst still very young: as these parts 
grow and increase in size new vesicles are formed from the young 
cells of the epidermis. 

Thin sections of the stem or leaf-bearing vesicles stained with 
Chlor. Zin. Iod, (Schultz solution) shew that the wall of the vesicle 
is much thickened and composed of cellose, since it is stained 
blue; on the exterior of the vesicle, however, is seen a thin line of 
cuticle stained yellow, and continuous with that covering the 
adjacent epidermal cell. The wall of the vesicle is uniformly 
thickened, except that part which separates the cavity of the 
vesicle from the cavity of the cells supporting it. Here lenticular 
spaces are left unthickened, as seen in Fig. vil, a longitudinal 

1 Hlém. de Physiol. Végét. et de Bot. Paris, 1815. 
2 Organogr. Végét. 1. p. 78. 
3 Ueber die Secretions-organe der Pflanzen. Berlin, 1837. 
4 Introduction to Botany, Vol. 1. fig. 16e, page 159. 

VOks Va Pl. i, 3 
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section through the base of a vesicle situated on the stem, and in 
Fig. vitl. a surface view of cells supporting a vesicle’. 

Throughout their life the vesicles have a well-defined nucleus, 
and contain a large quantity of protoplasm. When young the 
protoplasm entirely fills the vesicle (Fig. Iv.), but as it mereases 
vacuoles are formed in the protoplasm, so that when the vesicle 
has obtained its full size a layer of protoplasm lines the inside of 
the vesicle in close contact with the cell wall, and stands of proto- 
plasm proceed from this parietal layer to the nucleus (Fig. VI.). 
The nucleus is generally found in the protoplasm at the base of 
the vesicle. This protoplasm adheres more firmly to the pitted 
base of the vesicle, as shewn by the fact that, when the water is 
absorbed from the vesicle through the action of alcohol the proto- 
plasm is found generally adhering to the basal wall and in close 
contact with it (Fig. v.). Where, however, the protoplasm has 
broken away from this wall it is found elevated and depresses so 
as accurately to fill the pits. 

As regards the use and function of these vesicles, it would appear 
probable, from the fact that since the Ice Plant lives in dry sandy 
places, and that the exterior of the vesicles is protected by being 
cuticularised, that the vesicles are useful in storing up moisture 
during times of drought. This proves to be the case, for on an Ice 
Plant which had been grown in a flower pot with no water given 
to it, the vesicles became less and less turgid, and finally shrunk 
up as the soil in the pot became dry; but when the pot had been 
copiously watered the vesicles, after a few hours, resumed their 
former turgidity, and were again subjected to internal pressure. 
Again the vesicles are always found to be the largest when the 
plant is well supplied with moisture. If portions of the plant are 
cut off they remain green, and live for a much longer period than 
parts of plants which are not provided with reservoirs of moisture ; 
the vesicles in the meantime become less and less turgid, and 
shrink. If, however, water is forced into the part at its cut 
surface the vesicles soon resume their former turgidity and are 
distended by internal pressure. 

1 Pits at the base of a hair are common, see Sach’s Text book of Botany, 2nd 
English edition, page 43. 
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(4) On the Physiological Significance of Water Glands and 
Nectaries. By WALTER GARDINER, B.A., Clare College. 

Although the fact of the exudation of water and of nectar by 
various specialised parts of plants has been long known, the nume- 
rous observations which extend over a great number of years, deal 
more especially with the structural details of such organs, and, 
speaking generally, have not for their object the consideration of 
the physiological significance of the organs in question. 

In the present paper I propose to briefly consider what, from 
the already existing literature and my own observations, would 
appear to be the physiological bearing of water-glands and nectaries 
in the general economy of the plant. 

Water-glands. 

It is to Unger’, de Bary’, and more recently to Volkens® that 
we are especially indebted, not only for their own valuable obser- 
vations but also for their clear summaries of what has been made 
out by foregoing investigators as to the structure of water-glands, 
and a survey of the literature connected with the subject will be 
sufficient to show that our knowledge of the structural details of 
such organs is at the present time fairly complete. 

Water-glands usually occur on the margins or at the apices of 
leaves though in some cases, e.g. species of Crassula, Ficus and 
Urtica, they may be distributed over the upper leaf surface. In 
structure, what is usually known as a typical gland consists of a 
mass of modified parenchyma cells (to which de Bary* gives the 
name of epithem cells), which abut immediately on the end of a 
vascular bundle; are covered externally by an epidermis; and are 
placed in communication with the exterior by means of one or 
more water-pores or water-stoma. The epithem tissue is usually 
distinguished by the clear hyaline character of its cells; by the 
abundance of protoplasm in them; and by the absence from their 
structure of chlorophyll grains. The vessels of the vascular 
bundles do not, as Volkens® has represented, end blindly at the 
epithem tissue, but between the two forms of tissue are interposed 

~ numerous tracheides, so that there is always a gradual transition 
from the one form to the other, and when studied from a 
developmental point of view® we see quite clearly how this 
transition occurs. 

1 Unger, Beittrége zwr Physiologie der Pflanzen. 
2 De Bary, Vergl. Anatomie, p. 55 et seq. and 390 et seq. 
3 Volkens, Jahrb. K. Bot. Gartens. Berlin, 1883. 
4 De Bary, loc. cit. p. 391. 
5 Volkens, loc. cit., see Figs. of Plates IV. V. and VI. 
6 Gardiner, Quart. Journ. Mic. Sci. Vol. xxt. N.S. 
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Other water-glands vary from this so-called typical structure in 
many ways, but chiefly in the amount of epithem tissue composing 
the gland, and in the relative proportion that the cells of this tissue 
‘bear to those of the tracheides. Thus, as Volkens rightly observes, 
whereas in Dicotyledons there is usually present a well-developed 
gland, possessing several layers of epithem tissue interposed 
between the tracheides and the epidermis, in Monocotyledons the 
tracheides frequently end directly beneath the epidermis, or are at 
most, separated from it by one or two layers of cells, which never 
‘so far as could be observed, show that marked distinction from the 
surrounding tissue, as do the cells of the epithem tissue proper. 

In Dicotyledons also great differences prevail, as for instance 
between the well-developed gland, such as that of Saafraga crus- 
tata, with its very numerous layers of epithem, and its distinct and 
well-defined external sheath (see Fig. 1.), and glands of a simpler 
structure, e.g. that of Soldanella, where the layers are few and 
where they are not sharply defined from the surrounding tissue. - 

The number of water-stoma with which such glands are pro- 
vided varies within somewhat wide limits. Thus, to take one 
genus: Crassula coccinea has from 1—3, while Crassula spathulata 
has from 15—20, but they may be absent altogether, as in the 
glands of Alisma and Sagittaria. As noticed, especially by de 
Bary’, the water-stoma differ markedly in size and appearance 
from the ordinary air-stoma, and as I showed in my paper “ On the 
development of the water-gland of Saxifraga crustata*”, they 
make their appearance long before the ordinary stomata, and 
their mode of formation, by simple division from a mother-cell is 
quite different. 

Under appropriate conditions there exudes from the water- 
stoma, or from the free surface, of such glands as these, drops, 
which apparently consist practically of pure water, e.g. Fuchsia, 
&c. or water containing salts in solution—usually carbonates of 
Calcium and Magnesium,—as in many of the Sa«ifragaceae and 
‘Crassulaceae. 

In the case of water-glands, as indeed in so many of the ques- 
tions which concern vegetable physiology, it is to Sachs* that we 
owe by far the most important part of our knowledge as to the 
physiology of these organs, for he it was who clearly pointed out 
that the exudation of water in water-glands was dependent upon 
root-pressure, and was most strikingly exhibited at the period of 
minimum transpiration. He also found that when the activity of 
the roots was increased by a moderate rise of temperature, there 
was also an increase in the amount of the exudation. In other 

1 De Bary, loc. cit. p. 54 et seq. 
2 Gardiner, loc. cit. . 
3 Sachs, Teat Book of Botany, 1883, pp. 676 and 688. 
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words, whatever increased the root-pressure increased the exudation 
of drops of water. 

More recently there has appeared a paper by Moll? , which also 
deals especially with the physiology of water-exudation by leaves. 
The experiments of this observer principally consisted in substi- 
tuting for the normal root-pressure, that of a column of mercury, 
so that the amount of pressure required to bring about the exuda- 
tion might both be registered and varied at will. As a whole the 
results obtained in this way are satisfactory, although it would 
appear, that this cannot be said of certain of those results, which 
were the outcome of very great and certainly very abnormal pres- 
sure, not only causing excessive injection of the tissue, but even in 
some cases a mechanical exudation of water over the whole surface 
of the leaf. Great interest is however attached to his observation 
that it is especially in young leaves that exudation most readily 
occurs, and that as they increase in age, exudation becomes more 
difficult or even impossible. Thus, with one or two exceptions, 
which I shall deal with later on, Moll’s results confirm those of 
Sachs, that the exudation of water by water-glands is dependent 
upon root-pressure. 

As regard Volkens’’ conclusions, he finds that although in the 
greater number of instances, well-developed water-glands and 
stoma are present in the leaves of all the higher plants, yet that 
in certain orders e.g. Resedaceae, Linaceae and Malvaceae no such 
structures can be detected. In the Papilionaceae lhe makes the 
very interesting observation, that the stomata of the upper side of 
the leaf are larger in size than those of the under surface, and 
suggests that in this instance the exudation of water takes place 
by means of these slightly modified stomata. Like myself he 
believes that a mechanism for permitting of the escape of water is 
present in some form or other in all plants whatsoever, and in the 
light of his own, and of Moll’s researches, there seems some proba- 
bility, that in certain cases this function is even performed by 
ordinary undifferentiated stomata. 

Volkens also draws attention to the difference between the 
glands of typical Monocotyledons and Dicotyledons. He suggests 
that water-glands may be regarded as the safety-valves of the 
plant, and that the epithem tissue acts as a resistance, put in, 
between the end of the vascular bundle and the free surface, so that 
for the expulsion of the water, through the water-stoma, a definite 
pressure should be required, and that the water should not merely 
run out, as out of a pipe. 

Having thus stated, in a very brief manner, the principal con- 
clusions with regard to the function of water-glands, I may now 

1 Moll, Bot. Zeit. xxxvi1r, 1880, p. 25. - 2. Volkens, loc. cit. 
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deal with certain of my own results, which have some bearing on 
the question, 

With regard to the glands of Monocotyledons and Dicotyledons, _ 
Volkens seeks in certain instances to trace a definite epithem 
tissue, e.g. in Calla and Alisma. As he rightly states, there are 
certain layers of cells which are marked off from the rest, both on | 
account of their cell-contents and on account of their small and 
old-looking nuclei, as opposed to the large and well-developed 
nuclei of the neighbouring parenchyma cells, but it would seem 
that too much stress should not be laid upon this distinction, in con- 
sequence of the greater and more striking fact, that, stated gene- 
rally, in the typical Dicotyledonous gland there is always a well- 
developed and very conspicuous epithem, whereas in Monocoty- 
ledons, this epithem is inconspicuous and is only recognised with 
difficulty. Thus in the case of Richardia Africana one is led to 
believe that the whole of the narrow projecting process of the leaf 
apex should be regarded as an organ for the exudation of water, 
and that in this organ, there is not that differentiation as in Dicoty- 
ledons, but only a number of well-developed water-stomata, and a 
vascular bundle which is surrounded by a few layers of practically 
undifferentiated parenchyma cells. 

It seems an important omission on the part of Volkens' to leave 
out of his figures the tracheides, in which in all cases the vascular 
bundles end, * for by so doing, his fioure of Alisma, for instance, gives 
one the idea that the vessels of ‘the vascular bundle end blindly, 
immediately beneath the epidermis, and that in older leaves, owing 
to the rupture of the latter tissue, the vessels open freely towards 
the free surface. In reality however the arrangement is like that 
of Sagittaria, which I have attempted to represent in Fig. I1., and 
on rupture it is the tracheides which are exposed. 

The water-glands and their stomata appear at a very early age 
in the development of the leaf. As I showed in Saaxifraga crus- 
tata, the development of the leaf as a whole and of each leaf 
segment, is first apical and then basal. The differentiation of the 
young tissue into a vascular bundle and an epithem tissue rapidly 
proceeds, and unites the young water-gland to the general vascular- 
bundle system of the stem, and the whole gland is developed and 
in action before the appearance of a single ordinary stoma of the 
leaf. 

As to the physiology I worked with care over Sach’s results, 
and over certain of those of Moll. I say certain, since I preferred 
not to use artificial pressure, but to study the phenomena as in- 
duced by the normal pressure of the root, under varying external 
conditions. 

1 Volkens, loc. cit. 2 Gardiner, loc. cit. 
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My results in every way confirmed Sach’s statement, that the 
exudation in typical water-glands is dependent upon root-pressure, 
and does not take place from the leaves of parts of plants which 
have been cut off, under water, and placed under a bell-jar standing 
over water. Although most careful and most numerous experiments 
were made, I was unable to observe any exudation of water from such 
cut parts of plants. When however, as in many of the Crassulaceae, 
adventitious roots into the water were subsequently formed, there 
was at once a normal exudation. 

Moll, on the other hand, maintains that in certain instances, 
e.g. species of Impatiens and Fuchsia, the exudation of water from 
the teeth does take place independently of root-pressure. In ex- 
perimenting upon this question my results appear to show that this 
is not the case. With regard to Impatiens I find that the leaf- 
tooth is, as in many other instances, e.g. Callicoma sp. and Fra- 
graria vesca, a composite structure; for the cells of the summit 
of the tooth are modified so as to form a nectary, while the 
true water-gland and water-pores are situated at its base’. In 
young leaves there does occur a secretion of drops of nectar, but 
the water-gland, as such, is inactive in the absence of root- 
pressure. 

In the case of Fuchsia globosa some very interesting results 
have been obtained, for I find that if a shoot of this plant be cut off 
under water and placed with the usual precautions under a bell-jar, 
the younger leaves become bedewed with moisture, and that in 
some cases drops are situated at the apices of many of the leaf- 
teeth. The water, however, does not come from the glands but 
from the numerous hairs with which the surface of the leaf is 
freely clothed. That this is actually the case I have proved from 
repeated experiments which were again and again varied, the 
temperature being quite constant and every possible precaution 
being taken.. The water so exuded frequently collects on the 
teeth, being derived from the hairs in their immediate vicinity, and 
gives the appearance of an exudation from the water-gland. I found 
in addition that the hairs of other young leaves will also exude 
water in the same way: the phenomenon being of course simply 
the expression of that very great activity, which is especially the 
attribute of epidermal tissue; in virtue of which the water is sucked 
up on one side and exuded on the other, and I have but little 
doubt that in certain instances this water may contain salts in 
solution. This will at once account for the presence of incrusta- 

1 It seems probable that the cellular bodies described by Francis Darwin on 
the apices of the leaflets of Acacia spherocephala are of the same morphological 
value as these structures. See Linnean Society Journal 1877. See also Reinke 
(fe): 
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tions of ‘calcic carbonate on such hairs as those of Chetranthus 
chert as observed by de Bary’. 

Finally, until some further and convincing proof is brought 
forward, it would appear that Sach’s statement still prevails, viz. 
that the exudation of water from the surface of water-glands is 
dependent upon root-pressure. 

_ While investigating the physiology of water-glands I was struck 
with the fact that the exudation of water appeared to take place 
much more freely in darkness than when exposed to light, and in 
consequence I instituted a number of experiments to ascertain in 
how far this was actually the case. These experiments conclusively 
point to the fact that light retards very considerably the exudation 
of water, both from water-glands and from those secreting epidermal 
structures which are not dependent upon root-pressure, but will, 
like the hairs of Fuchsia, exude water when cut off from the parent 
plant. The experiments in question were made upon the following 
plants. ; 

1. Water-glands: 
Plants of Saxifraga crustata, Saxifraga spathulata, Vitis 

antarctica, and Hordeum vulgare. 

2. Secreting epidermal structures: 
Cut-off pieces of Limoniastrum (Statice) monopetalum, 

Polypodium aureum, and Fuchsia globosa. 

1. Young plants of Hordewm vulgare were grown in a house, 
the temperature of which was about 73°F. Over some of these 
plants pieces of newspaper were spread, while certain of them were 
left uncovered. The former repeatedly exuded large drops of water; 
while, as regards the latter, the amount was much smaller, and in 
some instances there appeared to be no exudation at all. 

Potted plants of Saxifraga and Crassula were covered with a 
bell-jar which fitted to a basin holding water. As long as they 
were exposed to light, the exudation was scanty, and indeed in 
some instances not discernible, but after having been put into a 
dark cupboard—-the temperature remaining constant—they exuded 
large quantities of water, so that the leaves were bathed with the 
copious exudation. On coming again into light the amount 
exuded increased but little, and was soon evidently arrested. 

A shoot of Vitis was placed in a manometer and exposed to a 
moderate mercury pressure, the shoot being under a bell-jar 
standing on a plate with a perforated bottom. While in the light 
there was no perceptible exudation, but after having been exposed 
for some time to darkness, large drops soon appeared on the leaf- 
teeth. 

1 De Bary, loc. cit. p. 63. 
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I have only dwelt very briefly on these observations, but 
I would remark once for all that they were conducted with great 
care. The temperature was as near as possible constant, and 
every precaution was taken to guard against transpiration. 

2. Branches of Limoniastrum, Polypodium, and fuchsia were 
cut off under water and placed in a glass of water in a pan con- 
taining the same liquid—the whole being covered with a bell-jar. 
They were examined during the daytime and at night, and 
careful experiments were also made in the daytime, when the 
branches were exposed to the action of light, and when placed in 
artificial darkness: the temperature remaining constant. The 
difference in the amount exuded in light and in darkness was 
indeed most striking, and especially so with regard to Limonias- 
trum and Polypodium. 

As is well known from the observations of de Bary’ the leaves of 
LInmomastrum in common with so many of the Plumbaginaceae are 
eovered with small masses of chalk. These masses oceupy small 
depressions on the leaf-surface, and at the base of each depression 
is situated a group of some eight epidermal cells, which are quite 
unconnected with the vascular-bundle system, and, as my results: 
show, are capable of excreting by their own activity, water con- 
taining salts in solution. The latter fact seems to me to be of 
some interest, and especially so, since the activity of the glands is 
very pronounced. For example, a piece of the stem of Limoni- 
astrum was cut off and experimented upon. It was then placed 
in a glass of water, exposed to the air. Fourteen days after, it was 
placed a second time under the bell-jar and again exuded water 
from its glands with great vigour. 

In Polypodium and in many of the /ilicineae we know chiefly 
from the researches of Mettenius* that the leaves are also covered 
at certain areas of their surface, with little masses of chalk. 
Mettenius observed that these masses were placed directly over 
the endings of certain of the vascular bundles. The bundle 
apparently came to the surface, and was covered by an epidermis 
from which stomata were absent. Since I am not aware that 
there is a more detailed description than the above, I have thought 
it well to give a figure of the structure in question. See Fig. 11. 
It will be seen that the bundle ends in a mass of tracheides, and is 
covered by some two layers of very small cells, and finally by an 
epidermis, with thin walls, large nuclei, and granular protoplasm. 
Here, as in Limoniastrum, there is but little doubt that it is the 
epidermal cells, which actively excrete the water containing -chalk 
in solution, which, as the water evaporates, is precipitated as a thin, 

1 De Bary, loc. cit. p. 113. 
2 Mettenius, Filices horti Lipsiensis. E 
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but very conspicuous, incrustation over the surface of the epidermal 
cells. 

With Fuchsia the same results were obtained, but in this case 
the activity of the cells appears to be unusually great, since they 
exude some water in the daytime, and when not covered with a 
bell-jar. This may be seen in normal, healthy, potted plants. 

From these experiments there appears to be little doubt that 
the exudation of water, whether dependent on root-pressure or the 
pressure of certain localized cells, is materially influenced by light, 
as such, and that the action of light is unfavourable to the exuda- 
tion and also retards the assumption of turgidity of cells in general. 
But during darkness a very definite pressure is established, which 
must, I think, be regarded as an important factor in determining 
the rapid growth which occurs at that period; at which time 
moreover such pressure reaches its maximum. 

To return to the consideration of water-glands, it must be 
stated that the exudation of water from them is dependent not 
only upon root-pressure, but is also influenced by light. 

I have now to deal in greater detail with certain other points 
in the structure of water-glands. 

There seems but little doubt, that in all the higher plants 
which are provided with an apparatus for permitting the exudation 
of water; whether this apparatus consists of definite water-stomata 
or of thin walled epidermal cells, placed in connection with a 
vascular bundle, and whether epithem cells are present or absent; 
the chief function of such an apparatus is to allow of the escape 
of superfluous water which would otherwise cause injection of the 
intercellular spaces, and even rupture of the plant tissue. The 
presence of this excess of water in the tissue, is in the main de- 
pendent upon suspended transpiration, in consequence of which 
a definite and increasing root-pressure is soon apparent. The 
assumption of the turgid condition of the cells is also materially 
aided by darkness. Thus such structures are rightly to be re- 
garded as the safety-valves of the plant. With this Moll agrees. 
Further, as Volkens suggests, it is extremely probable that in all 
plants whatsoever there exists some means of relieving excessive 
hydrostatic pressure. It also seems that there is little doubt that 
such structures are special provisions for the relieving of pressure 
in young organs, both from Moll’s experiments as to young and 
old leaves, and from my own in the same direction, which cer- 
tainly point to such a conclusion. This view is most remarkably 
confirmed by a study of the development of water-glands, since 
they are shown to be active at an extremely early stage in the 
history of the leaf. 

With regard to the epithem tissue there is some difficulty. 
It would appear probable, as Volkens has pointed out, that in glands 
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where a well-defined epithem tissue is present, such tissue may 
~ serve as a resistance, put in, between the vascular bundle and the 

free surface, so that the water should not mechanically run out, 
but that a definite pressure should be required. In connection 
with this subject one can but draw attention to the fact that the 
difference between the glands of the Dicotyledons and Mono- 
cotyledons is very remarkable, for there are in the comparative 
study of the glands, no gradual stages from the one group to the 
other, and in fact such a study seems to give some support to 
the view which has sometimes been put forward that the Mono- 
cotyledons and Dicotyledons are branches from a common ances- 
tor, and that there is not a gradual ascent from the one family 
to the other. 

I should also like to put forward here a view which has struck 
me, but upon which I would prefer to lay no stress. Comparing 
generally, the Dicotyledons with the Monocotyledons, it seems to 
me that whereas the former are typically land-plants in their 
habit, the latter on the other hand are of essentially an aquatic 
nature. There are, I know, many exceptions to this statement, 
but considering from a broad standpoint the Gramineae, the 
Juncaceae, Butomaceae, Marantaceae, Zingibereaceae, Aroideae, 
Falmae, and Orchidaceae, one finds that they. are either typically 
water-plants or need for their growth a plentiful supply of moisture. 
It is of interest also to note that in most of the Liliaceae we have 
bulbs which are capable of storing up large quantities of water. 
Co-related to this fact we find, that as far as we know at present, 
we have in the Monocotyledons, glands of simple structure, and that 
there is little or no resistance put in, between the vascular bundle 
and the free surface. In Dicotyledons, on the other hand, we find, 
speaking generally, well-developed glands, which are present too, in 
plants where we should suppose that they were not needed, as in 
Callitriche as described by Borodin*. In the glands of Dicotyledons 

- there is a very pronounced resistance to the escape of water, and a 
greater root-pressure is required to bring about exudation. The 
constituent cells of the plant tissue, are also rendered more turgid 
in consequence of the increased pressure, and the water is, so to 
speak, parted with much less freely. In Monocotyledons, where the 
supply of water is fairly constant, these special precautions for 
economizing water-supply are apparently not taken., With regard 
to the liquid exuded, we know that while the majority of these 
glands exude what is apparently only pure water, others exude 
water containing salts in solution, the salts being for the most 
part, carbonates of calcium and magnesium. Such salts must ob- 

1 Borodin, Bot. Zeit. 1869, p. 883, and 1870, p. 841. The organs of which 
Trecul (Ann. de Sc. Nat. 1854) speaks, in Victoria regia, I was unable to observe, 
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viously be described as excreta, for so far as we know these ele- 
ments are to be regarded as waste products, and are in all cases 
got rid of by the plant, and excluded from the general cell-meta- 
bolism, either by being excreted outside, by means of certain 
epidermal cells, such as those of Cheiranthus, Limoniastrum or 
Polypodium, or finally are thrown down in eertain cells set apart 
for the purpose, as in the cells of cystoliths’, or the crystal con- 
taining cells of so many vegetable tissues. 

The glands of such plants as Saxifraga crustata, in their func- 
tion of excretion of salts of calcium and magnesium, may well 
be compared to the animal kidney, and it is a matter of interest 
that we have in the plant as in the animal, distinct excretory 
glands. With regard to other epithem tissues which appear not 
to possess such excretory function, it is a question whether the 
full dignity of glands should be allowed them. For a structure 
to be truly glandular there must be a distinct secretion or ex- 
cretion of some kind. In those cases where the epithem tissue 
merely plays the part of a resistance, or ,.where, as in Mono- 
cotyledons it is scarcely developed at all, the water mechani- 
cally escapes, merely as a result of root-pressure. At present, 
however, it is best not to urge this pomt, because we have 
but few analyses of such exuded water, and we do not know 
whether pure water is exuded in every instance. On the whole, 
when we compare the glands of Dicotyledons with those of their 
Monocotyledonous neighbours, where well-developed gland cells are 
wanting, it would appear that the chief function of the epithem 
tissue is to serve as a resistance, and that in certain instances 
it may act as an excreting tissue. We have no grounds for 
supposing that the general cell metabolism of Monocotyledons 
materially differs from that of a Dicotyledon, in virtue of which 
the latter should require excretory structures which the other did 
not possess. As regards the activity of the cells of epithems which 
do excrete salts, it may be remarked that although their tissues 
are rich in those salts in consequence of a definite excretory 
capacity, yet they cannot of their own activity get rid of such 
salts in solution, but depend upon root-pressure and other favour- 
able conditions for the supply of a force which they cannot of 
themselves exert. 

1 Tt would be of interest to observe, whether in the case of cystolith cells there 
ig any external exudation of water, as in Limoniastrum, only that in this case the 
salts are thrown down in the cell and do not pass through the cell walls. 

2 In those cases where an excretion of chalk takes place, crystals are not 
present in the tissue of the plant; where no excretion takes place, e.g. Fuchsia and 
Urtica, raphides or cystoliths are numerous. In Ficus diversifolia I did not 
observe cystoliths. The water-glands do not excrete salts, but the small gland 
on the under side of the leaf is covered by scales of what appear to be calcic 
carbonate. It is small in amount, however. 
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As to the glands of Limoniastrum and Polypodium, they 
_ should be clearly separated from water-glands. The gland of 
Polypodium certainly resembles to some extent that of a Dicoty- 
ledonous gland, but the important distinction is, that the gland acts 
independently of root-pressure, and as in Limoniastrum, by virtue 
‘of the activity of the epidermal cells. It resembles, rather, a gland 
of Limoniastrum, which is situated immediately over the termi- 
nation of a vascular bundle, and differs materially from a water- 
gland in the tremendous development of the tracheide tissue, as 
well as in its physiological properties. 

One cannot but be struck by the enormous activity of the 
cells of the epidermal tissue, both in plants and animals. In 
both cases it is from the epidermal, or epithelial tissue, that 
well-nigh the entire secretory organs of the individual are derived. 
‘The tissue of the epithem, on the other hand, is developed not 
from the epidermal but from the fundamental tissue, and as far 
as its excretory powers go, in such glands as those of Saaifraga, it 
contrasts wonderfully with a similar structure in the animal, viz. the 
kidney, which is developed not from the hypoblast, but from the 
mesoblast, and the cells of whose urinary ducts have, apart from 
blood-pressure, but little excretory powers. In the plant epithem 
the cells go so far as to store up in their interior, large quantities 
of salts of Calcium and Magnesium, derived from the surrounding 
tissue, but they cannot of their own activity excrete and get rid 
of these salts. They cannot, as far as they are concerned, go so 
far as the excretory cells of the kidney. However, as regards 
the epidermal cells of the plant, attention must be drawn 
a second time to their wonderful activity, not only as demon- 
strated by root-hairs, but also, as I have shown, by the cells of 
the glands of Limoniastrum and Polypodiwm, and by the ordinary 
hairs on the leaves of Huchsia and the like. 

Nectaries’. 

Under the term nectary, which was first employed by Lin- 
nus’, are at the present time classed together a number of organs 
differing greatly from one another, both as regards their structure 
and their morphological value, but which are usually taken toge- 
ther in consequence of the fact that they secrete nectar. When 
we consider the tremendous differences as to morphological dignity 
which exist between these organs, we may well ask, as did Clos %, 
whether it would not be well that the name nectary should perish 

1 The very complete papers of Martinet, Ann. de Sc. Nat. 5th ser. Vol. xiv. 
1872, Bonnier, 6th series, Vol. vi11. 1879; and Behrens, Flora, 1879, give a full 
account of all the literature with regard to this subject, and should be consulted. 

2 Linneus, Syst. Naturae et Phil. Bot. No, 86. 
3 Clos, Ann. de Sc. Nat. 4th ser. Vol. 11. p. 23. 
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from botanical terminology? It is certain that neither from 
their anatomical structure, nor from the appearance presented by 
their cell-contents, can they be distinctly recognised, and they must 
be regarded, as Bonnier’ remarks, solely from their physiological 
point of view. . 

Martinet is inclined to reject a classification based upon their 
physiological meaning, on account of the fact that one cannot 
always determine by tasting, that the liquid secreted actually 
contains sugar; but as Bonnier points out, a delicate chemical test 
can always be employed, and it seems best that at present, at any 
rate, we should accept the suggestion laid down by Schleiden’, to 
renounce all morphological distinction, and simply to regard their 
physiological function as Bravais* so long ago urged. It was a 
very convenient classification adopted by Caspary* to divide 
nectaries into floral and extra-floral, and in the light of this sugges- 
tion it seems better that such classification should be adopted 
rather than that of Mirbel*®, who separated them into vascular and 
non-vascular glands. ; 

Structures capable of secreting nectar are met with on almost 
every part of the stem, leaf and flower. I cannot here detail 
the long list which would include all these various instances, but 
I would draw attention to the fact that they are most fully treated 
of in Bonnier’s® very complete paper. To Caspary, Reinke’, 
Poulsen *, and Bonnier we owe the greater part of our knowledge 
with regard to extra-floral nectaries. As to floral nectaries the 
literature is so enormous and the investigators are so many that 
I cannot attempt to treat of them im the present paper, but would 
only draw attention to the papers of the authors I] have already 
cited where complete and abundant references may be found”. 

The cells secreting nectar may either consist entirely of 
epidermal tissue, e.g. the nectary of the stipule of the Bean, or 
as in the greater number of instances epidermal and fundamental 

1 Bonnier, loc. cit. 
2 Schleiden, Grundz. der wissens. Bot. 1846, Vol. 1. p. 244. 
3 Bravais, ‘‘Sur les nectaires,” Ann. de Sc. Nat. 1842. 
4 Caspary, De Nectariis, Elberfeld, 1848. 
5 Mirbel, Mém. sur Vorganisat. de la fleur. (Mem. de VInstitut, 1808.) 
6 Bonnier, loc. cit. 
? Reinke, Jahresbericht Bot. 1875, p. 483. Gottinger Nachrichten, 1873. N. 

825. 
8 Poulsen, ‘‘Om nogle Trikomer og Nectarien.’”’ (Videns. Med. K. Jober. 1875.) 
® At the apex of the sepal of Bomarea Carderi is a structure which is appa- 

rently a nectary. I have not tested if sugar is present. The vascular bundle 
bends outward at this point, and lies under a mass of parenchyma, which is not 
well differentiated from the rest of the tissue, and. is covered by an epidermis 
richly provided with modified stoma. This was first observed by Lynch. In the 
fruit of Draecena cristallina a nectary is present at the apex of each of the three 
ovular leaves. To Lynch is also due this observation. 
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tissue. The nectary tissue may or may not be supplied with 
vascular bundles, and may or may not be provided with stomata. 

As with water-glands, so with nectaries, the investigations 
extant, deal mainly with histological details; and with the excep- 
tion of the observations of Sachs* and Wilson’, the physiological 
significance of these structures has only been treated of generally, 
and has received but little special attention. 

Sachs pointed out that the secretion of nectar was independent 
of root-pressure, and states that the exudation of this liquid was 
due to the activity of the nectary cells themselves. Wilson, on 
the other hand, maintains that it is due to osmosis, and not to 
internal pressure. 

Dealing first of all with Wilson’s view, it may be stated that 
he comes to his conclusions chiefly from the fact, that a passage of 
fluid from the cells of a tissue to the exterior, may be induced by 
placing on the surface any substance or liquid which causes 
osmosis, e.g. a drop of gum solution on a leaf of Buaus sempervi- 
rens : that the secretion is wholly under the control of external 
manipulation, for it may be stopped by repeatedly washing the 
nectary, and drying with blotting-paper, or induced again by the 
application of sugar or sugar solution: and that much collateral 
evidence is afforded by the consideration of what takes place in 
such structures as the glands of Dionaea which require the 
stimulus of some nitrogenous substance before the secretion of the 
digestive fluid takes place. He also draws attention to the fact 
that in nectaries we find that the most external walls of the 
nectary cells undergo a mucilaginous degeneration, and it is the 
mucilage thus formed, which by its osmotic properties starts the 
flow of nectar in the first instance. Subsequently, the flow is 
maintained by the osmotic activity of the nectar secreted, which is 
materially concentrated in consequence of gradual evaporation. 

One cannot, I think, accept in their entirety Dr Wilson’s views 
for several reasons. .We have to begin with so many instances of 
a well-defined secretion on the part of vegetable cells, that we 
should expect on many grounds that the secretion of nectar was 
due to the activity of the constituent cells; but placing aside such 
considerations, one must turn especially to Dr Wilson’s experiments 
and deductions. 

It isa fact that the external walls of certain nectaries, e@. 9. 
those of Nigella and Cestrum, so well figured by Behrens*, do 
undergo mucilaginous degeneration, but so far as I know, this 
cannot be taken as the universal rule, but as one is inclined to 

1 Sachs, loc. cit. 
2 Wilson, ‘‘The excretion of water from the surface of nectaries.”” Unter. Bot. 

Institut, Tubingen, 1881. 
3 Behrens, loc. cit. See Tab. II. Figs. 5, 6, 9 and 10. 
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believe is rather the exception. Again, one cannot agree with the 
way in which certain of Dr Wilson’s experiments were performed. 
Thus, it does not seem fair to make deductions as to the production 
of nectar flow, when the osmosis was caused by particles of sugar, 
which when dissolved, produced a very strong solution of great 
osmotic activity. We should hardly expect that this would act 
in the same way as a solution of a normal nectar which in some 
cases, e.g. Fritillaria, contains only 1 p.c. of sugar. As regards 
the constitution of nectary cells, one knows that their walls are 
very thin, and it seems quite possible that by the repeated 
washing with water a perceptible amount of sugar is removed 
from the cells, and that some account must be taken of the 
stimulus caused by the action, and the quantity of the water used 
in washing. We can,I think, understand that such treatment 
would be quite capable of seriously interfering with the normal » 
cell equilibrium. Thus there is reason to believe that while 
Dr Wilson has made most valuable observations with regard to 
the secretion of nectar, he has not explained the cause of the 
secretion in the first instance. What does appear to be of special 
value is the great probability that the nectar at first secreted 
may by gradual concentration act by mere osmosis and attract 
more nectar from the tissue long after the cell is secreting in virtue 
of its own activity; and I am led to think that this goes far to 
explain both his own and Darwin’s* observations, that the 
exudation of nectar takes place more rapidly in sunlight, for 
according to my own observations as regards water-glands and 
the like it does not seem probable that the power of secretion as. 
such is accelerated by light. 

One must conclude that the secretion of nectar in the first 
instance can only be explained in the light of Sach’s views. We 
have brought before us again and again so many and so striking 
examples of the fact that the vegetable cell can so easily take 
up water on one side and exude it on the other; a fact which 
from some points of view might well be regarded as a property 
par excellence of living vegetable tissue; a fact moreover which 
in the end may be explained as the effect of a somewhat complex 
physical law, but of which we have at present no explanation. 
Most striking examples of this force are afforded by root- 
hairs, and by the epidermal cells of such glands as those of 
Limonmastrum. In fungi, e.g. the unicellular Mucor in Pilo- 
bolus, in the root-hairs of Marchantia, and finally, as Sach 
has shown, in pieces of the cut stems of young grasses when placed 
in damp earth the same phenomena prevail. 

In fact, there can be but little doubt that in nectaries the first 

1 Darwin, Cross and Self-fertilisation of Plants, p. 403. 
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secretion is due to the fact that the secreting cells “absorb water 
(containing substances in solution) with great force on one side 
and exude it on the other*”, and this solely by their own living 
activity. The grand period of such activity may be and probably 
is of short duration, and the further exudation of nectar may be 
occasioned in the way that Wilson has pointed out, viz. by simple 
osmosis. In such cells as those of Limoniastrum, on the other 
hand, this grand period of activity is, as I have shown, of long 
duration. 

It will be observed that I have spoken of the excretion of salts 
of calcium and the secretion of nectar. I did so on the ground 
that an excretion is a substance which is of no further use to the 
organism, whereas from the fact that the nectar contains sugar, 
and as first remarked by Bravais, and confirmed by Bonnier and 
Wilson, is frequently reabsorbed into the tissue, there seems but 
little doubt that the sugar of nectar can be used up in the vegetable 
metabolism, and must therefore be regarded as a secretion. 

The view as to the use of nectar in the plant economy is, that 
it is for the purpose of protection in the case of certain of the 
extra-floral nectaries, and to insure fertilisation by attracting 
insects, as in the nectaries of flowers, and also in the extra-floral 
structures, such as those of Marcgravia. It must be confessed, 
however, that at present we cannot give an entirely satisfactory 
account of the part played by nectar in the plant economy, and 
this is especially true as regards extra-floral nectaries. 

In concluding, I beg to express my thanks to Mr R. I. Lynch, 
the able curator of the University Botanic Gardens. He. has 
repeatedly made for me valuable observations, and many of the 
experiments with regard to the effect of light upon the exudation 
of water were made for me by him, and always with great success. 
His observations with regard to the occurrence of nectaries in the 
sepal and in the fruit are both new, and of great interest. 

Explanation of figures illustrating Mr Gardiner’s paper ‘‘On the 
Physiological Significance of Water-glands and Nectaries.” 

Fig. I. Longitudinal section through a fully-developed gland of 
Saxifraga crustata (after Gardiner). 

w =water stoma. 
e =epithem tissue. 
é =tracheide tissue. 
v =vascular bundle. 
h=hairs to catch the deposited calcic carbonate and prevent it from 

stopping up the water pore. 

1 Sachs, Text-Book, p. 688. 
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Fig. II. Longitudinal section of the apex of the leaf of Sagittaria 
Monte Vidiensis. 

v = vascular bundle. 
t = tracheide tissue. 
e = cells corresponding to the epithem tissue of Dicotyledons. 

Fig. III. Longitudinal section of a gland of Polypodiwm aurewm. 

v = vascular bundle. 
¢ = tracheide tissue. 
e = excreting epidermis. 

Fig. IV. Longitudinal section of the nectary of the cotyledon of 

Ricinus communis (after Bonnier). 

» = vascular bundle. 
s= surface of nectary. 

Fig. V. Longitudinal section through the spur at the base of the 
petal of Wigella arvensis (after Behrens). 

v = vascular bundle. 
- m=nectary surface. 

November 26, 1883. 

Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

The following were duly balloted for and elected Fellows of 
the Society :— 

Prof. Macalister, M.A., F.R.S., St John’s College. 
Mr J. C. McConnel, B.A., Clare College. 
Mr E. J. C. Love, B.A., St John’s College. 

The following communications were made to the Society: 

(1) On the measurement of electric currents. By Lorp Ray- 
LEIGH, M.A., F.RS. Bere 

Perhaps the simplest way of measuring a current of moderate 
intensity when once the electro-chemical equivalent of silver is 
known, is to determine the quantity of metal thrown down by the 
current in a given time in a silver voltameter. According to 
Kohlrausch the electro-chemical equivalent of silver is in ¢.G.S. 
measure 1136 x 10, and according to Mascart 1124x10% Ex- 
periments conducted in the Cavendish Laboratory during the past 
year by a method of current weighing described in the British 
Association Report for 1882 have led to a lower number, viz. 
1119 x10%. At this rate the silver deposited per ampere per ~ 
hour is 4028 grams, and the method of measurement founded 
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upon this number may be used with good effect when the strength 
of the current ranges from 4, ampere to perhaps 4 amperes. It 
requires however a pretty good balance, and some experience in 
chemical manipulation. 

Another method which gives good results and requires only 
apparatus familiar to the electrician, depends upon the use of a 
standard galvanic cell. The current from this cell is passed 
through a high resistance, such as 10,000 ohms, and a known 
fraction of the electro-motive force is taken by touching this cir- 
cuit at definite points. The carrent to be measured is caused 
to flow along a strip of sheet German silver, from which two 
tongues project. The difference of potential at these tongues is 
the product of the resistance included between them and of the 
current to be measured, and it is balanced by a fraction of the 

SS —> 

known electro-motive force of the standard cell (Fig. 1). With a 
sensitive galvanometer the balance may be adjusted to about =4,. 
The German silver strip must be large enough to avoid heating. 
The resistance between the tongues may be ;4, ohm, and may be 
determined by a method similar to that of Matthiessen and Hockin 
(Maxwell’s Electricity, § 352). The proportions above mentioned 
are suitable for the measurement of such currents as 10 amperes. 

Another method, available with the strong currents which are 
now common, depends upon Faraday’s discovery of the rotation of 
the plane of polarization by magnetic force. Gordon found 15°* 
as the rotation due to the reversal of a current of 4 amperes circu- 
lating about 1000 times round a column of bisulphide of carbon. 
With heavy glass, which is more convenient in ordinary use, the 
rotation is somewhat greater. With a coil of 100 windings we 
should obtain 15° degrees with a current of 40 amperes; and this 
rotation may easily be tripled by causing the light to traverse the 
column three times, or what is desirable with so strong a current, 
the thickness of the wire may be increased and the number of 
windings reduced. With the best optical arrangements the rotation 

1 [Jan. 1884. In a note recently communicated to the Royal Society (Proceedings, 
Nov. 15, 1883) Mr Gordon points out that owing to an error in reduction, the number 
given by him for the value of Verdet’s constant is twice as great as it should be. The 
rotations above mentioned must therefore be halved, a correction which diminishes 
materially the prospect of constructing a useful instrument upon this principle.] 

4—} 
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can be determined to one or two minutes, but in an instrument 
intended for practical use such a degree of delicacy is not available. 
One difticulty arises from the depolarizing properties of most speci- 
mens of heavy glass. Arrangements are in progress for a redeter- 
mination of the rotation in bisulphide of carbon. 

(2) On the measurement of Temperature by Water-vapour 
pressure. By W. N. SHaw, M.A. 

[ ABSTRACT. | 

The method practically adopted for accurately measuring 
temperature is to use a mercury thermometer as a thermoscope 
and express its indications in terms of some accepted standard of 
temperature by direct or indirect comparison. 

The methods of comparison usually employed are by the air- 
thermometer, by calibration and repeated determinations of the 
fixed points and the method of direct comparison adopted at the 
Kew Observatory. The last is the one which is most generally 
applicable, but it necessitates the sending of the instrument to 
Kew, and examples of its application shew that it cannot be relied 
upon to give greater accuracy ihan a tenth of a degree. 

A water-steam thermometer, as suggested by Sir W. Thomson, 
(Ency. Brit. Edit. rx., Art. ‘Heat’) may be used to give a standard 
scale of temperature and mercury thermometers compared with it; 
and instead of measuring directly the saturation-pressure e of 
water-vapour, it can be calculated by the formula 

e _l+at f 
(60) ANG a: 

from an observation of the weight of water contained in a known 
volume of air artificially saturated, where f is the quantity of 
moisture per unit volume of the air, d the specific gravity of water- 
vapour referred to air at the same temperature and pressure, A the 
density of air at 0°C. and 760 mm. pressure, and ¢ the temperature 
of the air (which may be measured by an uncorrected thermometer) 
and a the coefficient of expansion. The temperature is then accu- 
rately given by Regnault’s table of tensions of water-vapour at 
different temperatures and thus the indication of the thermometer 
to be tested, placed in the saturating space, can be corrected. 

The quantities A and a of the formula are known constants, 
the value of d was shewn by Regnault’s experiments (Ann. d. 
Chim. [3] xv.) to be very nearly constant and equal to 622. 

The experimental part of the comparison of any thermometer 
with a water-steam thermometer by this method consists in the ~ 
determination of f This requires only the same experimental 
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arrangement as that for the determination of the tension of 
aqueous vapour in the air, by the chemical method of absorption 
of the moisture by desiccating substances, with the addition of an 
apparatus for previously saturating the air. 

The ordinary form of the apparatus is modified by avoiding as 
far as possible india-rubber connections, using glass tubes and 
mercury joints for making communication between the different 
parts. The saturating apparatus is similar to that used by Regnault. 

The desiccating substances must be either sulphuric acid or 
phosphoric anhydride; chloride of calcium does not completely 
dry the air passed over it. 

With such an apparatus, which is easily constructed, corrections 
for a thermometer enclosed in the saturating vessel can be 
determined which, for the thermometers experimented on, agree 
with the Kew corrections to within a tenth of a degree. 

(3) Measurement of the Dark Rings in Quartz. By J. C. 
McConnet, B.A. 

MacCullagh has explained the peculiar optical behaviour of 
quartz, by introducing into the equations of motion of light terms 
involving differential coefficients of the third order. These equa- 
tions contain in addition to the two principal wave velocities only 
one arbitrary constant. So it becomes of interest to see if all the 
facts are really accurately contained in this simple theory. I 
believe the only published observations on the subject are those of 
Jamin in 1850. He made three series of experiments on plates of 
quartz cut perpendicular to the axis, using sodium light. In each 
case he employed parallel rays. In the first series he used a 
Babinet’s compensator to observe the nature of the light originally 
plane polarised, which had passed through a plate of quartz. By this 
means he obtained values of the retardation of one ray in the 
quartz relative to the other, and of the ratio of the axes of the 
ellipses of polarisation of both rays. In the second series he 
inclined a plate of quartz between two crossed Nicols and observed 
the angles when the transmitted light was completely quenched. 
This would happen whenever the relative retardation was an 
exact number of wave lengths. In the third series he examined 
the nature of the transmitted light at those points in the preceding 
experiment where it reached a maximum. He found that his 
observations confirmed the theory within the limits of experimental 
error. But these limits were not very close, as the average differ- 
ences between the observed and the calculated values were about 
goth of the quantities to be determined and there were several 
wide discrepancies ; one or two amounting to +,th. 

I thought that I would try if a more accurate determination of 
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the relative retardations could not be obtained by measuring the 
well-known dark rings seen when a plate of quartz is inserted 
between two crossed Nicols; the light being made to pass through | 
the quartz in a convergent pencil. For this purpose Professor Lewis 
was kind enough to lend me a polariscope and some thick erystals 
of quartz cut perpendicular to the axis. 

It is important that the plate of quartz should be thick ; for 
the peculiarities of quartz are only manifested when the hght 
makes a small angle with the axis, and the thicker the plate the 
more rings will be formed within this small angle. The plate of 
quartz I used was about an inch thick. 

The arrangement of apparatus was as follows. First a sodium 
flame placed behind a screen with a small aperture which was 
closed with ground glass. This was found to give the necessary 
steadiness to the light. Ata distance of about four feet was placed 
a Nicol’s prism. Then came the frame of the polariscope which 
supported the rest of the apparatus. This consisted of a lens A to 
make the light converge; the crystal of quartz; a lens B at whose 

focus the cross wires were put; an eye lens C which rendered the 
rays parallel; and a second Nicol next the eye. The quartz was 
attached to a horizontal circle on the top of the frame, fitted with 
a vernier reading to minutes. This afforded the means of measur- 
ing the diameters of the rings. The lens B was limited by a 
diaphragm with a small aperture; so as to secure that the pencil 
of light should pass through the centre of the lens, and thus errors, 
due to spherical aberration and the cross wires not being accurately 
in the axis of the lens, should be avoided. When the quartz was 
inclined the lateral displacement it produced on the light was so 
great that it was necessary to also incline the frame of the 
polariscope to the incident light; but this had no influence on the 
readings. The cross wires were really thin lines ruled on glass 
and blackened. 
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After some preliminary trials the first careful set of observa- 
tions were taken by turning the quartz till the thin line of light 
between the ring and the cross wire almost disappeared first on 
one side, then on the other, and taking the mean of the two 
readings. I took two series of these, and the two means agreed 
with one another usually within one minute, though in one case 
they differed by about six minutes. To get the radii I found the 
centre of each ring, and then measured the radius of each ring to 
right and to left from the mean centre. The general result was 
that the observed radius of the second ring was 5’ greater than the 
calculated; of the third ring 3’ greater; while the other rings 
agreed within 2’. 

I then took a similar double set of observations of the second 
and third rings, and measured the first ring by placing the cross 
wire over the blackest part. These observations agreed pretty 
well with one another and with the previous ones, the extreme 
differences amounting to 3’. The observed radius of the first ring 
was 10’ greater than the calculated. 

Next I took a double set of observations of the first nine rings ; 
this time placing the cross wire as nearly as possible in the centre 
of each black band. These observations were not quite so good, 
the extreme differences amounting to 4’, and in the case of the 
first ring to 7’. Still the mean results agreed with the previous 
ones within 3’, 

The two methods of reading just described have a tendency to 
give rather too small values of the radii of the rings. This is due 
to the fact that the rings shade off more rapidly on the outside 
than the inside. What we actually measure is the middle of the 
dark band; while the darkest part of the band, which is what we 
want to measure, lies on the outside of the middle. This error 
may be estimated in the above observations to amount to about 5’ 
in the second ring and 2’ in the third ring. So if we take this into 
account we double the discrepancy between the observed and the 
calculated values. 

I thought it possible however that there might be some error, 
due to the difficulty of measuring a curved band with a straight 
cross wire; so I took out the cross wires and substituted for them 
two needle points opposite one another and nearly in contact. I 
put the right hand needle point in contact with the right side of 
the band, and then the left needle point in contact with the other 
side, and took the mean of the two readings for the middle of the 
band. These observations, though not quite so accurate as the 
previous ones, confirm their results and shew that no serious error 
was due to the curvature of the bands. 

Besides these I took some observations with the needle points 
more widely separated, so that I could place the band exactly 
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tion, I have not thought it advisable to apply it or to introduce the 
observations without it. 

The results of my observations are stated in the table opposite. 
The first column gives the number of determinations of which the 
given figures are the mean. I have then taken the mean of the 
observed values giving equal weight to all fourteen observations. 
I have added the probable corrections already mentioned, and then 
taken the difference between these corrected observed values and 
the calculated values. 

These probable corrections are obtained in the following man- 
ner. In the observations with the needle points the difference 
between the readings for the two sides of a band varies from about 
27' for the second ring to about 17’ for the seventh ring, while 
in the observations with the cross wire the difference falls from 36’ 
to 27’. 

It is clear that in one case the distance between the needle 
points has to be added in order to obtain the apparent breadth of 
a band, and in the other case the thickness of the cross wire has to 
be subtracted. The thickness of the cross wire was very consider- 
ably greater than the distance between the needle points; so we 
shall not be far wrong in putting the apparent breadth of the 
second band at 29’. Dividing this in the ratio of the calculated 
distances of the two adjacent bands we get an approximate value 
of the position of the darkest part of the band. Of course the 
apparent breadth of a band varies to some extent with the bright- 
ness of the light, but by taking the mean breadth we get the 
proper correction to apply to the mean observed value. The 
apparent breadth of the third band was similarly found to be about 
24’ and so on to about 20’ for the seventh band. The first band 
was so much fainter and more ill-defined that the above remarks 
do not apply and the proper correction is probably small. 

With regard to the calculation. MacCullach (Trans. Roy. Ir. 
Acad. 1837, p. 463) assumes the equations 

Ue) ORE d°n 

Tee as 
dn es B d'y ot Ges eeeeereeeeeneereeseeeeean ( ); 

de mdz wade 

Thus & and 7 are the displacements parallel to # and y at any 
time ¢. The axis of z is the wave normal. 

Alar 5 ee mn 
where @ and 6 are the principal wave velocities and ¢ is the angle 
between the wave normal and the optic axis. 
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The principal vibrations are given by 

E=p cos" (st—2)| 
S odesiie he ean eee (3), 

5 ae 
n=qsin |" (st —2) 

when p, q, s, / are constants connected by the relations 

s=A-— au C4 | 
EMIS 8 oc. (4). 

Se zig C 
lq P 

From these we get (s*— A) (s?— B) = ant REE ESAS Ae.c 00. (5). 

From the formula (8) it is clear that s is the velocity of a wave 
whose wave length is 7. If the wave length of the same light in 
air is A, then J=sd. But as J only appears in the second term 
of (5) which we shall find is very small, we may put =a. Thus 

Cr (6). 

MBS , Leni 
ee A Age B an 

Let s,,s, be the two values of s. “Then rejecting squares of 
the third term in the above equation 

= 5 Weare 

Soon (A + By 
If L be the length of the crystal traversed, measured normal to 

Solving, 

les : : : 
the wave front, J = — =) is the difference of times of traversing 

Ss re 5 A 3 
the crystal, and is therefore the relative retardation in air, the 
velocity in air being unity. Denoting the relative retardation by 
FR we have approximately 

: 167°C” OT TON paee b*)’ sin* @ + ox (8) 
in qe 

In the above we have made four approximations ; puttting a 
for s in (6); rejecting squares of the third term in (7); tacitly 
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assuming ¢ is the same for both waves; and putting A + B= 2a’ 
in (8). It may be shewn however that no one of these approxima- 
tions can produce an error of as much as half a minute in the 
present case. 

If we put d= 0 we obtain 

BR 27C 

ib) Sey 

and it is not difficult to see that p/180= 4/X where p is the 
rotation measured in degrees. Hence p/180 = 27CL/a‘X. 

The above calculation is taken partly from MacCullagh and 
partly from Verdet. I have thought it better to give it, as 
MacCullagh does not give equation (8) and Verdet’s result is 
affected by a slight numerical error. I have used MacCullagh’s 
notation. 

If in the above formula (8) we put R=nr where n is an integer 
and insert the known values of the constants we get a series of 
values of @ corresponding to the dark rings. Then the formula 
sin d6=a sing’ gives the value of ¢’ which is the angular radius 
of the ring outside the quartz. The first ring is given by n = 3. 

The thickness 7 of the piece of quartz I used was by a 
careful measure found to be 24°00 mm. and Z=T7'secgd. The 
value of C is given on MacCullagh’s theory by the formula 
2arC/a*r’ = p/180 where p is the rotation, measured in degrees, due 
to a plate of quartz of unit thickness. Brock has found the rota- 
tion for a millimetre to be 21°67". He experimented on several 
different pieces of quartz, and found the mean differences to be 
about a tenth of a degree. 
I have used the values of 1/a and 1/6 given by Rudberg 

154418 and 155528. 
In different specimens of quartz they apparently vary about 

0001. Thus a—b might vary about 1/60 of itself which would 
make a difference of about 8’ in the tenth ring. The values I have 
taken are confirmed by the agreement between the observed and 
the calculated radii in the larger rings. 

In the tenth ring the absence of C’ would only make a differ- 
ence of 12’, while it would almost double the first rmg. The 
observed and the calculated values of the radii would be reconciled 
in the case of the second ring by a change in C of 1/10th of its 
value and in the case of the third ring of 1/7th; while a much 
smaller change would suffice in the case of the first ring. 

The final formula from which the values of ¢’ were calculated 
was 

sin’ d’ = ‘00004207 n’ cos’ 6 — ‘0003487.......... (9). 

An approximate value of ¢ is sufficient in the second term. 
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The following table gives the changes in the retardation to 
which the differences recorded in the last line of Table I. cor- 
respond. 
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The second line contains approximate values of the angle 
-between the wave normal and the optic axis; while the last line 
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gives the ratio of the difference between theory and observation to 
the whole relative retardation. Thus the general result I have 
obtained is that MacCullagh’s theory gives values of the relative 
retardation which are slightly too large. The differences in the 
last three or four rings may be fairly put down to errors of 
observation. 

I have said nothing about the surface effects. If the plate had 
been isotropic, the plane of polarisation would have been turned 
a little when the light entered the crystal and again turned a little 
in the same direction when it left it. If @ be the angle between 
the plane of polarisation of the incident light and the plane of in- 
cidence, and 6’ be a similar angle with regard to the emergent 
light, then tan 6’= tan @sec*(¢’— ¢). This gives & —@=12' at 
the most in the case of the 10th ring. Now it requires a rotation 
of either Nicol through two right angles to move a dark band from 
its place as one ring to its place as the next, so this small change 
in 6 would have no appreciable influence. We may assume, I 
think, that the surface effects in quartz are of something the same 
nature and magnitude as in an isotropic substance. 

The experiments were made in the Cavendish laboratory in 
August and October. I am much indebted to Mr Glazebrook for 
his kind assistance and advice throughout. 

(4) On the origin of segmented animals and the relation of the 
mouth and anus to the mouth of the Coelenterata. By ADAM 
SEDGWICK, M.A. 

In the discussion which followed the communication of the 
late Professor Balfour’s notes and drawings of the early embryos of 
Peripatus Capensis to the Royal Society (December, 1882) I drew 
attention to the great resemblance between the embryo of P. 
Capensis with its elongated blastopore and somites, and an adult 
Actinozooid Polyp. I pointed out that the comparison 
of these two structures suggested an explanation which, so far 
as I know, has not before been suggested, of a great morpho- 
logical difficulty, viz. the origin of metameric segmentation (vide 
Nature, Dec. 28, 1883). At the same time I pointed out that by 
following up this comparison some other morphological difficulties 
received an explanation. The hypotheses’ I suggested were 
shortly as follows. 

1 Mr E. B. Wilson who was present when this discussion took place at the Royal 
Society and to whom I subsequently at Cambridge showed the specimens and draw- 
ings of the Peripatus embrvo, informs me that the work (referring to Polyps) which 
he has since done at Naples has enabled him to give some additional evidence in 
favour of my views. As Mr Wilson’s observations are not yet published, I am 
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1. The mouth and anus found in most of the higher groups 
(Vermes, Mollusca, Arthropoda, and in all probability Vertebrata) 
have been derived from the mouth of an ancestor common to them 
and the Ccelenterata, i.e. from an elongated opening such as is 
found at the present day in the Actinozoa. 

2. That the somites of segmented animals are derived from a 
series of pouches of the primitive gut (archenteron) of a Ccelenterate- 
like ancestor, i.e. from pouches generally resembling those found 
at the present day in Actinozooid Polyps and Meduse. 

3. That the excretory organs or nephridia (segmental organs) 
of the higher animals are derived from specialized parts of these 
pouches which were in the supposed ancestor, as indeed they now 
are in many living Meduse and Actinozoid Polyps connected 
peripherally with each other by a longitudinal canal (circular canal 
of Meduse, perforations in mesenteries of Actinozoa) and with the 
exterior by a pore’, one for each pouch: further that in the 
Invertebrata, e.g. Annelida the longitudinal canal has been lost and 
the external pores retained, while in the Vertebrata the longitudinal 
canal has persisted (segmental or pronephric duct) and retained its 
posterior opening into the alimentary canal while the external 
pores have been lost. 

The essence of these three propositions lies in the fact that the 
segmented animals are traced back, not to a triploblastic unseqgmented 
ancestor but to a two-layered Colenterate-like animal with a pouched 
gut, the pouching having arisen as a result of the necessity for an 
increase in the extent of the vegetative surfaces in a rapidly enlarging 
anmal (for circulation and nutrition). 

_ The hypotheses are based upon the embryonic development of 
the respective organs in the Triploblastica, and the structure of the 
living Coelenterata; in other words upon facts precisely of the same 
nature as those which have been used in tracing the evolution 
of the nervous and muscular tissues. 

Before proceeding to summarise the facts upon which the 
hypotheses rest, I may be permitted again to point out that itis no 
part of my view to derive segmented animals direct from the 
Coelenterata, but to derive both Coelenterata and segmented animals 
from a common Ceelenterate-like ancestor whose structure can only 
be elucidated by studying the anatomy and the development of 
the living Celenterates and of the higher segmented animals. 
The main facts are shortly as follows. 

unable to quote them here, but he informs me that his paper is in the press and 
will shortly appear in the Naples ‘‘ Mittheilungen.” 

1 Vide Hertwig, ‘‘Organismus der Medusen,” p. 39; and ‘Die Actinien,” 
Jena. Zeitschrift, Bd. x11. 
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Facts of Celenterate Ana- 
tomy. 

1. 

Elongated mouth of Actinozoa, 
and the differentiation of that 
mouth into two parts’. 

The special aggregation of the 
nerveus system round that mouth 
(Medusa, Actinozooid Polyps). 

Bilateral symmetry of Acti- 
nozoa. 

2. 

The Coelenterata present a serial 
repetition of certain organs similar 
to that found in metamerically 
segmented animals ; and just as in 
the latter the repetition corre- 
sponds in each case to the meso- 
blastic somites, so in the former 
it corresponds with that of the 
alimentary pouches. Thus for each 
mesoblastic somite we find typi- 
cally in segmented animals a nerve 
ganglion, a nephridium, a segment 
of the muscular system, and an 
external appendage; while for each 
pouch in a Medusa we find a sense 
organ or ganglion or both, an ex- 
cretory pore (Hertwig Joe. cit.), a 
segment of the muscular system 
(circular striated muscles of sub- 
umbrella of Medusa broken up 
into segments by each radial 
pouch) and a tentacular organ. 
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Facts from development of 
Triploblastica. 

ile 

The embryonic development of 
Peripatus Capensis *. 

The slit-like form of the blasto- 
pore in several animals (first point- 
ed out by Lankester in Mollusca).: 

The peculiar behaviour of the 
blastopore in several animals re- 
ceives light from this hypothesis. 

The arrangement of the central 
nervous system in the ‘Triplo- 
blastica, 

9 
— 

The development of the body 
cavity from archenteric pouches 
in Lrachiopoda, Sagitta, Balano- 
glossus ; and particularly in Am- 
phioxus in which each somite (at 
least the 14 anterior pairs) is 
derived from a distinct pouch. 

1 Vide Hertwig, ‘‘Die Actinien,” and Hickson, ‘‘On the Ciliatel Groove 
(Siphonoglyphe) in the Stomodeum of Alcyonarians,” Proc. Roy. Soc. no. 226, 1883, 

2 Balfour, “Anatomy and development of Peripatus Capensis,” Quart. J. of 
Mic. Sci. April, 1883. As Dr y. Kennel has chosen to throw some doubt upon the 
correctness of the observations recorded in this paper, I will take this opportunity 
of stating that the facts enumerated on pp. 256, 257 which Professor Mosely and 
myself regarded as established by the investigation of the embryos then at our dis- 
posal, are perfectly correct. I may perhaps be permitted to point out to Dr y. 
Kennel a fact which he has apparently overlooked, viz. that he is working at 
P. Edwardsii, a species differing considerably from P. Capensis. 
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3. 3. 

Marginal pores in Meduse. Development of excretory organs 
Openings in body wall of Ac- in EHlasmobranchs and other Verte- 

tinia. brates’. 
Development of excretory organs 

in Polygordius (Hatschek). 

To sum up in a few words: the Celenterata differ from seg- 
mented animals only in the fact that the alimentary or archenteric 
pouches (mesoblastic somites) and the alimentary canal do not 
become separate, and connected with this absence of a distinct 
celom is the low state of differentiation of such ccelomic structures 
as the excretory organs and the absence of a separate vascular 
system. - 

In conclusion I may say that I do not put forward these 
hypotheses in a dogmatic spirit, and that I fully recognize that 
theories dealing with the complicated facts of Morphology can only 
have in most cases a very temporary value. The hypotheses just 
discussed first occurred to me some years ago when investigating 
the development of the vertebrate excretory organs, and they have 
received such striking confirmation from Hatschek’s work on 
Amphioxus and more recently from the embryo of Peripatus 
Capensis that I have at length decided to publish them, hoping 
that they may at least excite criticism, and so lead to the increase 
of our knowledge and to the greater definition of our ideas. 

A full discussion of the facts bearimg upon the views advocated 
in this paper, illustrated by explanatory diagrams, together with 
some speculations (following the same lines) on the origin of 
tracheze and gill slits, and on the evolution of the vertebrata, will 
I trust appear in the January number of the Quarterly Journal 
of Mic. Science. 

1 Vide Sedgwick, ‘‘Development of Kidney, etc.” Quart. J. Mic. Sci. Vol, xx. 
1880, and ‘“‘Harly development of Wolffian duct, etc,” ibid. Vol. xx1. 1881, 
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The following communications were made to the Society: 

(1) On the Microscopic structure of a Boulder from the Cam- 
bridge Greensand found at Ashwell, Herts. By Prof. T. G. 
Bonney, D.Sc., F.B.S., F.G.S. 

This boulder was found by H. G. Fordham, Esq., F.G.S., by 
whom a fragment was sent to the author for examination, with the 
following remarks. 

“The boulder measures 12 x 94 x 53 inches, and is therefore 
amongst the largest at present known from this bed. It is some- 
what triangular in general form, one surface being nearly flat, and 
it is very much rounded and worn. On the weathered surface 
dark purple wavy lines appear, generally of the thickness of a sheet 
of writing paper, but sometimes a quarter, or even half an inch 
thick, alternating with lighter and thicker bands. Where broken 
the rock is more uniform in colour, the bands varying in shades of 
purple. Occasionally, where much weathered, the lighter bands 
show a tendency to columnar structure, developed perpendicularly 
to the planes of banding. The material is very hard, and not 
easily broken. The surface of the boulder is worn and smoothed, 
and in some parts may almost be said to be polished. Here and 
there the softer material of the light-coloured bands has been worn 
into small cavities or depressions, and in other places the lines of 
banding are brought into strong relief by a more uniform wearing 
away of the softer bands. 

VOL. V. PT. II, 5 
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“ As is usually the case with the boulders and fossil remains of 
the Cambridge Greensand, this specimen has upon its surface a 
number of attached plicatulee and other small shells, and it bears 
also two patches of the phosphatic nodules characteristic of the bed 
from which it has been obtained, and even a fragment of the marl 
itself. 

“While the boulder has clearly been subjected to very great 
wear, and has the external appearance usually attributed to the 
action of ice when found in similar boulders of more recent periods, 
there are upon it no distinct or definite scratches or grooves. 

“Taken alone, no theory as to the prevalence or otherwise of 
floating ice in the sea of the period during which the lower part of 
the chalk was deposited can be founded on this. particular boulder. 
But it at all events supports the already existing theory, based on 
the character of the boulders and pebbles already described from 
the Cambridge Greensand. It has two characteristics of ice-borne 
erratics :—1. It is superficially like boulders recognised as having 
been transported from distant sources by ice, and subjected to the 
peculiar wear and tear incident to ice-action. 2+ Its material is 
derived from a parent rock which can under no probable circum- 
stances have existed, at the period of the chalk, within a very 
considerable distance of its recently discovered resting-place. We 
may therefore fairly, I think, accept it as evidence of the proba- 
bility of the existence of floating ice in the sea of the chalk period’.” 

The rock is a very compact quartzfelsite of a dull purple 
colour. Examined with a hand-lens, small specks of quartz are seen 
to be scattered in the matrix, which exhibits some faint indications 
of a fluidal structure. The rock is singularly well preserved, the 
purple hue predominating up to the exterior surface, and marked 
indications of decomposition not extending inwards for more than 
a quarter of an inch. Considering that the rock has been lying for 
ages in a waterbearing stratum this strikes me as noteworthy. 
The rock reminds me in general aspect of specimens which I have 
seen in the volcanic breccias of the N. W. part of Charnwood 
Forest, especially of a compact purplish felsite (old rhyolite) from 
Timberwood Hill. I fully expected that there would be a close 
microscopic resemblance. This however is not the case. I have 
examined the chief varieties of the Charnwood fragments. They 
generally exhibit a “devitrified” matrix without definitely formed 
crystallites, or spherulites, and with but slight and rare traces of 
fluidal structure; in this matrix are small scattered crystals or 
crystalline grains of quartz and felspar. This generalization is 
founded upon eighteen slides cut from different specimens in my 

1 See a Paper by Messrs Sollas and Jukes-Browne, Quart. Journ. Geol. Soc. 
Vol. xx1x. p. 113, 
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collection. On placing the slide from the Cambridge Greensand 
erratic under the microscope, the difference from the Charnwood 
rhyolites is at once perceptible. Spherulites abound: the smaller 
aggregated in elongated clusters so as to give an irregular banded 
structure to the rock, which, indeed, on inspection with the lens, 
can just be seen on the smooth surface of the original fragment. 
The majority of these spherulites are about 71, inch diameter, but 
they not seldom attain about ;1,inch, and sometimes even 4. 
The structure is radial, but with some irregularity, so the ‘black 
crosses’ are not well defined. One or two darker concentric bands 
(more deeply stained with brown iron oxide) are often visible, and a 
great number are compound in structure, a larger outer ring en- 
closing two or three little spherules, like seeds in a husk. Beyond 
the outer clearer ring is generally an irregular (more darkly 
stained) zone of radiating crystallites, like the rays toa sun. The 
remaining part of the ground mass is occupied by interlacing clear 
acicular crystallites interspersed with an almost black residuum, 
exhibiting some tendency to radial aggregation. Scattered about 
this ground mass are small crystalline grains of rather clear quartz, 
with a few of decomposed felspar, and rather numerous granules 
and trichites of iron oxide—probably magnetite. In one place 
there appears to have been a small cavity partly filled by ‘dirty’ 
chalcedonic quartz. 

Thus the microscopic structure of the rock differs very de- 
cidedly from any specimen which I have examined from Charn- 
wood. It differs also from the old rhyolitic rocks of the Wrekin 
and of North Wales. Although it has a certain family likeness to 
all of these, enough to embolden one to suggest that it may have 
been derived from some volcanic mass, now lost to sight, which 
was ejected in the latest Precambrian epoch, I cannot venture to 
refer it to any locality known to me in Britam. I have however 
no doubt that the pebble described by Mr Watts (Geol. Mag. Dec. 
2, Vol. vitl. p. 95) is from the same locality. Through his kindness 
I have again had the opportunity of examining this, and though 
the structure shewn by it is more distinctly banded and less 
definitely spherulitic than in Mr Fordham’s specimen there are 
so many minute points of agreement, that I feel certain both have 
come from the same volcanic district. 

(2) On Critical or apparently neutral Equilibrium. By J. 
Larmor, M.A. 

In the October Proceedings Mr Greenhill has translated the 
solution of some equations which occur in the analysis appended 
to my Note on Critical Equilibrium into Jacobi’s elliptic function 
notation. I may observe, however, that the general solution of 

5—2 
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those equations was not the object I had in view, so I did not 
consider that I was required to pause in order to state it explicitly 
in the inverse notation. 

On referring to the Note, it will be seen that I was discussing 
the oscillations of a rocking body whose centre of gravity is a very 
short distance on the unstable side of the critical position, and for 
which therefore c is very small: and the result is obtained by con- 
sidering the small change produced in the critical period and the 
critical motion by the small amount of apparent instability. 

But when c becomes at all large the character of the motion is 
quite altered: the flanking stable positions are now some distance 
from the centre of the oscillation, and we can no longer neglect 
higher powers of @. 

Thus Mr Greenhill’s statement of the solution is not applicable 
to the problem when ¢ is not small: and when ¢ is small, it is 
unnecessarily complex. The reduction to a simple approximate 
form corresponding to that which I gave in the Note (in which the 
only modulus that occurs is sin 45°) would involve differentiation 
of the inverse functions with respect to the modulus: and I cannot 
see that such a process would lead to results simpler or more 
calculable than those which I obtained. 

(3) On the small free normal vibrations of a thin homogeneous 
and isotropic elastic shell, bounded by two confocal spheroids. By 
W. J. IpBeTson, B.A. 

[1] 
So far as I am aware no attempt has yet been made to solve 

a problem of this kind by the direct use of curvilinear coordinates, 
other than polars. 

The present paper is limited to the case in which the shell 
vibrates im such a manner that its surfaces always remain spheroids 
confocal with their unstrained forms. This case is interesting 
because it is the only possible form of motion unaccompanied 
by shear in the substance of the shell, and because the results 
admit of numerical calculation. 

It is obvious that throughout the motion the two systems of 
orthogonal surfaces (planes through the axis, and hyperboloids of 
one or two sheets, according as the shell is oblate or prolate) 
always remain the same. 

The corresponding problem in polars is therefore to investigate 
the radial vibrations of a spherical shell of uniform thickness re- 
presented by an harmonic of zero order. 

We shall see that the solution for the sphere can be readily 
deduced from the results obtained for the spheroid. 



1884] of a thin homogeneous and isotropic elastic shell. 69 

Let the shell be bounded by the surfaces 
a+y? 2 

a eT 
v+y? z 4 : =i 
a’ +e he 

where ¢ is a very small quantity compared with a’ and c’. 

Take the orthogonal system of curvilinear coordinates &, n, ¢, 
where + € and —7 are the roots of the quadratic 

Gee ae 
+N +A 

eye) and ¢= tan (*) 

The unstrained surfaces of the shell are then given by 

a0) E=6. 

The limits of 7 are + @ and +c’. 

During the motion of any point of the shell » and ¢ remain 
constant, while € is always a very small (positive or negative) 
quantity, and a function of the time only. 

In the most general case of symmetrical motion 

E= f(t, 7). 
It is easily shewn that 

ps CB: é) e =i) 
=F 

_@+0-0)° 
GG 

Also, if p,, p, be the principal radii of curvature of the strained 
shell at time ¢, the formulae in §§ 242, 181 of Salmon’s Conics 
become 

(SanG) eis. 
IE ib sowcssio (1). 
(+a) +7) 

Same 

Let hy = (5 =e) + i — 3) , and similarly for h,, h,. 
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Then 

i 

be (CaDGe®) | n= 24/ ela : 

h SE 

2 V €4+a)@=7) 
Let square brackets [ ] denote that the quantity enclosed is to 

have the value it assumes when & = 0. 

Then if dS be the element of surface of the unstrained shell at 
either of the two points (, ¢) 

dn . dé 

[,h,] 

Beat an 

=3 ea 
Thus the integral, taken over the whole surface, of any function 

U of 7 only is, if the shell be oblate, 

ea ftu (v0 ve Sr (2), 

and if it be prolate, 

sels Gina Epes (3). 

The perpendicular from the centre on the tangent plane to the 
unstrained shell at (7, €) is $[h,].. Hence if 7 be the thickness at 
that point, 

_e| oh, 
TS CE 

e n(@+c)—-a'c 
2ac- ne 

dS= 

The normal velocity at time t of the point (9, ¢) will be, ap- 
proximately, 

£.. Bian ay-aa 
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Hence if p be the density of the shell, and 7 the kinetic 

energy of the motion, we get by writing U=? na 5-).7T in the ee | 2° dare 
integration formulee (2) and (8) 

mpe(ai+2c*) :, 
ie 12.a°c 6 

whether the shell be oblate or prolate. 

Again, if v be the potential energy of the strain per unit of 
unstrained surface, we know that 

SOO ayanean v=573—=s 1(8—-) +(8—] +2 Ss 5 
24 (1 — pu | Ps Or a 

where q is “ Young’s Modulus,” yw the ratio of lateral contraction to 
chee : Ht 

longitudinal extension, and oe 6 —are the small increments of the 
1 2, 

principal curvatures due to the strain. 

Hence, in our case, 

mca): Lloeed * Lael *? [ae eeeall 
Differentiating (1), and putting €= 0, 

OS 2 Py ARN Ps erp] 
= 96 A - pe’) ac’n 5° {n [n (a c’) ac’ 

+ a*[n (a* +c’) — 8a°c*}? + 2ua*n [a* (n — 2c’)? — c* (n — a’)? J}. 

Hence if W,, W, be the integrals of the potential energy for 
the prolate and oblate shells, we get by putting U=v in (2) and 
(3) successively, 

3 £2 a? 

W. = 5 | *[n (@— Ce) —a'e’}? 
* 384(1-w) ae’ Ja—¢ a Ln ) 

+ a [n (a’ + 0°) — 3a’e*P + 2a*n [at (m — 2c°)* — o* (n — a*)"}} 

fn (a + of) ater 
dno 

We = meg =|. 1 n (a2@—@) — we}? 

2 384 (1— we) ae Jer a UNC eg aa 

+ a4 [9 (a’ +") — 8a7e"}’ + Qua’ [a* (n — 2c’)? — o* (y — @")"]} 

VCs) On = 
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Tt will be convenient at this stage to make the a and ¢ of the 
prolate shell respectively equal to the c and a of the oblate shell. 
These symbols will then denote in all the formule the major (a) 
and minor (¢c) semiaxes of the meridional section common to the 
two shells, 

Thus, interchanging @ and c in the prolate formule, and 
writing 

we have for the oblate shell 

eal pap d ei 2a") 22 

Oke 15° 8 Pies Tie 
ae gh A, & 

1" 12° 16 — aa” 

= ) 2, 
if Ey 12 : a 5 

pode gP°A, 2 

eS a Tes agaast 
where A, and A, are functions of a only, which we may write 
in the form 

A, = elle i = Tee (sin® 6 — a?) + cos’ @ (1 +a’ — 3 cos” 6)? 
V1 — a?Jo 

+ 2u2" cos” @ [cos 20 — (a? — cos? @)"]} (sin? @ + a”)?. cos’ @. dé. 

Al si ‘ Ss ‘feos! 6 (cos’@ + a” sin’ 0)? + a* [(1+ a”) cos" — 3a")? 

+ 2a’ cos” @ [a* (1 + sin’ 0)? — (cos’ 6 — a’)*}} 
: dé 

(cos’@ — a” sin’)? . cost? 8 

These integrations are easily performed, term by term, though 
the calculation of the numerical coefficients is tedious. 

The results may be written 
; cos | a 

A,=h thet... +ha*+ (kh +h +... + ka) Je 

cues log 
A, = 1+ Ma +... Me + (M+ 1,0 +... + 1,0") 

V1 —@ 
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The equations of free vibration of the two shells become 

pac Nie a 
ier pe) (1 + 2a*) aa? s> 

q prA 
+ isda) @rajea ? 9 

and if t,, t, be the periodic times, 

=" ee =H) a a + 2a) 

ae pu) 09 

Thus the times of vibration of similar shells of the same kind 
are in the simple ratio of their linear dimensions. 

As a verification of these results we may deduce from either 
the case of a thin spherical shell of radius a and uniform thickness 
T, performing small radial vibrations so as always to retain the 
spherical form. 

We are to put 

Syne i Pile 

Now A, and 4, are both of the form 

1 cos= “R 0 dd, 

iS = en?) 

and when a=1, this becomes by evaluation F'(1, 0), which 
=2(1+ 4) in both cases. 

Hence our formule reduce to 

4a” /3 p(l—p) 

Pane NES ey Gee: 
Now, with our previous notation, if a+wu be the radius of 

the spherical shell at time ¢, 

T=tp 47a’ .7. Ww, 

ITPA LW and 0= ston 2040) (3 | 

A) 2 qT uP 
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and the equation of motion is 
2 

g ee aes Paar aS 

Hence the periodic time is 

Qa? nf (1 —p) 
T ° q ? 

which is the result already obtained. 

(4) On the curves of constant intensity of homogeneous polarized 
light seen in a uniaxal crystal cut at right angles to the optic axis. 
By C. SpurGeE, B.A. 

Introduction. 

Sir George Airy has shown in his Tract on the Undulatory 
Theory that if a plate of Iceland spar bounded by planes perpen- 
dicular to the axis of the crystal be placed between a polarizing 
and analyzing plate the brightness of any point of the image formed 
after passing the analyzer is given by the formula 

a Joos a — sin (24 — 2a) sin 2p sin” =| 

where I is proportional to the square of the radius vector from 
the centre of the image to the point considered and yf is the other 
polar co-ordinate of the point considered, viz. the angle the radius 
vector makes with a fixed line. a is the angle between the plane 
of polarization at the analyzing plate and the plane of first polariza- 

tion. Ifa=0 or = we have for the intensity 

a” {! — sin’ 2 sin? | 

ners Re eal 5 
and a’ sin* 2a sin a) respectively. 

Thus in either case the curves of equal intensity are given by 
an equation of the form ; 

Constant = sin? 2ip sin? ued ’ 

or K? = sin? Qf sin? 7° 

where &’ is put for the constant 
rT 

opm and r = 
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so that 7 may still be treated as a radius vector the effect of 

putting 7° for es being merely to alter the size of the image 

in a certain ratio. 

The object of the present paper is first to obtain the mathe- 
matical properties of these curves and secondly by means of actual 
calculation to trace with accuracy the curves and thus obtain their 
exact form. 

Some of the properties have been given in a paper by 
Mr R. T. Glazebrook, Proc. Camb. Phil. Soc., Vol. Iv. Part VI. . 

General Properties of the Curve. 

kK? = sin” 20 sin? 7” 

or k=+sin 26sin7”. 

The equation k= + sin 26 sin 7’ is in Polar Co-ordinates. When 
in the investigation which follows Rectangular Co-ordinates are 
mentioned it is to be understood that the origin is the same as for 
Polar Co-ordinates, that the Prime Vector is taken as the axis of « 
and a line perpendicular to it through the origin as the axis of y. 

Proposition I. The curve is symmetrical in the four quadrants. 

This is obvious from the form of the equation. 

Proposition II. The curve (for a gwen value of k) consists of an 
infumte number of closed curves. 

When &=0 the parts of the closed curves combine so that the 
system of curves may be regarded as a number of (double) quadrants 
of circles and (double) straight lmes Ox, Oy. See Glazebrook loc. cit. 

These curves we shall term ovals, and for the sake of distinction 
we shall give them the names first, second,...nth ovals of intensity k. 
Thus the first oval of intensity & is given by 

=p" and 1? =7 —p’. 
The second by 

Y=m+p" and 1° = 2 —p’, 

and the nth oval will be given by 

P=n—Vartp and? = NT — po oesccceeeens (a), 
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when we now take p” to be the least positive value of r? which 
satisfies 

Proposition III. Form of the curve near the origin. 

The form of the curve near the origin is a rectangular 
hyperbola. 

The general equation of the curve is 

k= + sin 20 sin’, 

For points near the origin r is very small so that for sin r? we 
may put 7’ neglecting quantities of the sixth order. Thus the 
equation of the curve near the origin is 

k=+sin20.7" 

or transforming to Cartesian co-ordinates 

k 
BS ee 

- The equation of the rectangular hyperbola referred to the axes 
of x and y as asymptotes. 

Proposition IV. Form of the curve at points remote from the 
origin. 

The ovals become arcs of circles except towards their extremi- 
ties which are rounded off (provided the ovals are not too near the 
point curves). 

The equation to the curve is 
By sy 
eee + on 20) 

_ As in Prop. IT. let p® be the least positive value of 7° which 
satisfies this equation. 

Then by equations a the general value of r’ is 

r=nnr tp 

lh where p’ is less than 5 

pert else ae p Th is _ = Pie us r=Jnartp=Nnwt ais Gree eee (D). 



1884] homogeneous polarized light seen in a wniaxal erystal. 77 

eee: 
Also p* is given by sin p?>=+-——~, an 20° 

Near the middle of the curve, 7.e. when d=—, sin 20 which is 

then at its maximum will vary slowly; thus sinp’ will vary 
slowly. Now ae near the middle of the curve is not nearly a 

multiple of because the curve is not near the point curve. 
2 

Therefore the value of p® also varies lO: Again from the 
formula (D) that part of r’ which contains p” is divided by 2/nz. 

se 
invariable first because p* does not vary much, and secondly 
because its variation is divided by a considerable factor 2,/n7. 
Thus near the middle of the curves at a distance from the origin 
the ovals become circular arcs, 

Hence for ovals of a high order the term will be almost 

for r=/n7 + 
2 i NTT 

is almost invariable. 

The contrary will be the case at the ends of the curve for here 
2 p is equal to a multiple of 5 (odd multiple that is). Thus from 

the slow variation of sin p” we oe infer a correspondingly slow 
-yariation of p* Consequently the ends of the curve will be 
rounded off. 

Proposition V. All ovals of the same intensity touch two straight 
lines passing through the origin, and the ovals are entirely 
comprised between these straight lines. 

See Glazebrook, loc. cit. 

Cor. This proposition may be stated in various ways, e.g. all 
ovals of the same intensity subtend the same angle at the origin. 

Proposition VI. If tangents be drawn from the origin to all n™ 
ovals their points of contact lie on a circle. 

In the preceding proposition we have just shewn that the 
tangents from the origin to the ovals of intensity k are the lines 

d=tsin" k, 

9=47—4sin" , 
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The general equation being 

k Asa 
SS Dae 

we have for the radii of the points of contact the equation 

substituting & for sin 260. 

If the point of contact is on the nth oval we must take the 
solution 

Thus the distance of the point of contact of the tangents to the 
nth oval of intensity & is 

ee, 

Now this radius is independent of & but contains n. Therefore 
the tangents to all nth ovals have their points of contact on a 

: a bee === © 
circle centre the origin and radius A/ 2n—1 2° 

Proposition VII. All ovals of the same intensity have the 
same ared. 

See Glazebrook, loc. cit. 

Proposition VIII. Let the tangents be drawn from the origin to 
ovals of intensity k. The area contained by the tangents and 
the two parts of any two consecutive ovals that they intercept 
will be always the same. 

Consider the area between the parts intercepted by the tangents 
to the nth and n + 1th ovals of intensity hk. 

In Fig. 1, PP’ is the nth oval, QQ’ the n+1th oval and 
PP’QQ is the element bounded by the curves and lines through 
the origin. OFE' OFF’ the common tangents, see Prop. V. Just 
as in the last proposition 

Area EE'F’F =1f (0@ — OP”) dé. 
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But by equation a, Prop. II., 

OQ’? = nr + p° 

OP? = nr — p’. 

. Area HE' QF’ FPE=32p'dé = fp’dé. 

T 

2 
The limits are 0=}sin’*k to 0= = —4sin’ k, and as in last 

proposition p” is independent of n. 

Therefore the area is independent of n. Thus the area between 
the first and second ovals will be the same as between the nth and 
nm + 1th ovals. 

Cor. I. Let T,, denote the area between tangents and ovals of 
k? intensity. 

By the preceding 

a sin-1k& 

T= | odd. 
4sin-1k 

By Prop. VII. if A, denote the area of an oval of intensity & 

> —tsin-1k 
4, = 315 —sin 2 | =f p dé. 
ee L2 2sin-lk 

Therefore T,+A,= = E —sin™ t| : 

Cor. Il. A Prop. similar to Prop. VIII. holds if instead of 
areas between consecutive ovals the areas between ovals whose 
difference of order is constant be taken, 
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Thus for example the areas between tangents and n? and n + 2” 
ovals are the same whatever be the value of n. 

PROPOSITION IX. ach oval of the nth order is bisected by the 
circle which is the locus of the points of contact of tangents 
drawn to them from the origin. (See Prop. VI.) 

The proof of this involves no difficulty. 

Proposition X. Let tangents be drawn from the origin to the 
ovals. The area contained by the tangents and the parts of any 
two consecutiwe ovals they intercept will be bisected by the 
quadrantal arc of intensity k =0 which passes between the two 
consecutive ovals. 

This also admits of a very simple proof. 

Proposition XI. Generally if two consecutie lines be drawn 
through the origin to meet two ovals each of the nth order and 
of lth and mth intensities the area of the element formed by 
the ovals and the parts of the consecutive lines intercepted by 
them 1s independent of n. 

Proposition XII. Jf a vector be drawn in any direction through 
the origin meeting any uth ovals in points R,, R,’, 

OR,” + OR,” = constant. 

Let the line ORR,’ meet an nth oval of intensity &. 
n w 

By Prop. II., equations a, 

OR, =n -—1 7+", 

OM, = nt — p*, 

where p* (only) depends on &. 

Therefore OR? + OR? = 2n—-1 7. 

Since the right hand does not contain & the Prop. holds for 
all ovals of the nth order. 

Also the constant is independent of @ the direction of the 
line, and the proposition holds for all directions of the line. 

Cor. If OR,'R, be produced to meet the x+1th oval of in- 
tensity kin #,,,, we have 

OF, =n +p’. 
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But OR,” =n7 — p’. 

Therefore O#,,?+ OR,” = 2n7 

= a constant independent of the in- 
tensity k. 

ProposiTIon XIII. Jf a vector be drawn through the origin 
meeting any kth intensity ovals in R,, Rx’, 

OR,? — OR,’ = constant. 

This can be proved in a manner similar to Prop. XII. 

Proposition XIV. Jf a circle be described from the origin O as 
centre meeting the nth ovals in points A,, A,...andOA,, OA, ... 
be produced to meet the uth ovals again in A,’A, ... AA, ... 
will le on another circle. 

For by Prop. XII., 

0A?7+0A,? = 2n —1 2. 

But OA,’ =a constant = a say ; 

64S coe 
Thus A,'A,'... lie on an nth oval, 

OA,, OA, ... &. are all constant. 

Therefore A,’, A,’... lie on a circle-centre the origin and of 
radius /(2n — 1 3 — a”). 

Cor. I. If OA,’, OA,’... be produced to meet the next set of 
n+1th ovals in A,”, A,” ... A,’A,” lie on a circle. 

Cor. II, If production be continued the radius of the next 
circle is 

JQn+1 7-7-2), 

or V2nm7 — a. 

Thus we see the squares of the radii of alternate circles increase 
in Arithmetical Progression. 

PROPOSITION XV. The moments of inertia of the ovals of 
same intensity considered of uniform density form a series 
of terms in Arithmetical Progression, the moments of wmertia 
being supposed taken about an axis through the origin perpen- 
dicular to the plane of the curves. 

This follows by the aid of Prop, XITI. 

WOU, Ve PT. LU, 6 
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’ Proposition XVI. The curvature of the ovals at points where 
tangents from the origin touch them varies directly as the cube 
of the distance of the points from the origin. 

Let OQ (Fig. 2) be the tangent to the nth oval, OP a vector 
consecutive to OA. 

Let I2POO aye 

We have sin20=k for the line OQ, 

7 

OW =r? =2n-15- 

Q 
M 

O a 
Ini, By 

Now at the outset we may observe that it follows from the 
geometry (i.e. since OY is a tangent) that if dr the mcerement 
of O@ be of the first order of infinitesimals d@ will be of the 
second order of infinitesimals. Hence we may expect the relation’ 
between d0, dr to assume the form 

dr? = Ado. 
Consequently in the expansion that follows we keep the terms 
dr up to the second order, the terms d@ to the first order of 
infinitesimals only. 

The general equation of the curve is 

sin 77 = + at 
~ sin 20 

To find the relation between dr and dé of point Q we sub- 
stitute for r° (r+ dr)’, for 0 0+ dé. 

Thus we obtain : 
a 

sin(r+dry=+ sm2(@4d0)’ 
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or sin 7’ cos (2rdr+...)+ cosr*sin (...) 

ht k - 2k cos 20 dé 
~ sin 20 sin? 200” 

expanding this side by simple differentiation. 

Now since r= In 1 5» 

5 ee k ; 
cosr*=0 and sinr?=+———, ; sin 20=k 

sin 20 

soa k k_ _ 2k V1 = — dé. 
£ (1 2 sin 20 # sin20 * ie 

Whence cancelling terms we have as the relation between 
dr and dé@ 

ae Mine dé ; 

Oe NUT Ie 

GAOL Wik Bees 

But if in figure PM be perpendicular to OQ 

Viole, 

MQ = dr, 
2 

and p the radius of curvature = Ordo 

Thus jpn tae 

Therefore the curvature varies directly as the cube of the 
distance r of the points of contact from the origin. 

Also we see if k=0, p=, this gives us the flattened parts of 
curves for s = 0, and serves to verify the formula. 

If k=1, p=0 gives the point circles to which the ovals di- 
minish when k= 1. 

Proposition XVII. If tangents be drawn from the origin to all 
ovals of intensity k the centres of circles of curvature at points 
of contact lie on the unicursal quartic 

»_v1-h 
7A ae 

yx 
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when the axis of x ts the tangent to all the ovals and the origin 
is at the usual place. 

This follows from the value of p found in Prop. XVI. 

Proposition XVIII. If a straight line be drawn through the 
origin to meet ovals of intensity k, the area of the triangle 
formed by the vectors to points of section and corresponding 
subnormals is constant. 

The equation to the curve is 

Therefore i 

n being an integer. 

Therefore by differentiation 

rdr . 
See" function of 0, k. 

Fig, 3. 

Let OP (fig. 3) be the line through origin meeting the oval of 
intensity & in P, and PS the normal, OS the polar subnormal. 

Then, if OP=r, Pox =80, 

cot OPS = roe 
dr 

a a =r" tan OPS 

em, US. 
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But nde 

85 

dé 
= function of 0, k, and is the same for all points on the 

line OP and on an oval of intensity 4. 

r. OS = constant. 

Hence the area of triangle OSP is constant. 

Therefore we have 

Proposition XIX. All normals to ovals of intensity k drawn at 

hyperbola. 
points on a straight line through the origin touch a rectangular 

Cor. The tendency of normals at a distance is to become co- 
incident with OP, for the hyperbolic curve has its asymptote 
along OP. 

Thus again we see the curves are circular at distance from 
origin. 

Proposition XX. The form of the curves near the point curves is 
elliptic, and the centre of such ellipses is very nearly at the 
pot curve. 

This follows from the equation without difficulty. 

of intensity k = 0. 

PROPOSITION XXI. Ovals of the second and higher orders have 
points of inflexion if the ovals are sufficiently near to the circle 

Consider an oval of the second order which is near to a circle 
of intensity k = 0. 

x 
\ 
- 
- 

See eee 

The portion of the curve near A being very nearly of a circular 
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form, for its form can only slightly differ from that of an oval of 
intensity k = 0. 

Thus the curve near A has its concavity inwards. 

In order that the curve may turn so as to become closed it is 
clear that the concavity of the end BD must be outwards. 

Thus a point of inflexion must exist at B somewhere between 
A and D. 

Similarly there is by the symmetry of the curves a point of 
inflexion at C. 

Thus on a curve near to an oval of intensity 0 there are two 
points of inflexion. 

The equation for finding these points is not difficult to obtain. 
But it will be found to be so exceedingly complex that it is prac- 
tically useless, and on this account it is not given. 

(5) Tables of the number of numbers not greater than a given number 
and prime to it, and of the number and sum of the divisors 
of a number, with the corresponding inverse tables, up to 3000. 
By J. W. Ll. GuaisHer, M.A., F.R.S. 

[ Abstract. ] 

Denoting by ¢(n) the number of numbers not greater than n 
and prime to it, by v(m) the number of divisors of n, and by o (n) 
the sum of the divisors of n, unity and n itself being included, 
the tables contained in the present paper are as follows : 

Table I. The complete resolution of m into factors and the 
values of ¢ (n), v (n), and o (n) for all values of n up to n = 3000. 

Table II. The values of n corresponding to $(n) as argu- 
ment. 

Table III. The values of n corresponding to »(n) as argu- 
ment. 

Table IV. The values of n corresponding to a(n) as argu- 
ment. 

Tables I-IV. are inverse to Table I. and extend also to 
n = 3000. 

An introduction containing a collection of formulz relating 
to the functions ¢$(n), v(m) and « (n) is prefixed to the paper. 

The paper is in course of publication in the Transactions of 
the Society. 
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February 11, 1884. 

Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

The following communications were made: 

(1) On the constitution of the Cell-wall and Middle Lamella. 
By Walter GARDINER, B.A. 

IF we accept the view of Schmitz’ and Strasburger’ as to the 
first formation of the cell-wall, we must regard the cell-plate which 
appears as a delicate septum between the two dividing nuclei, and 
at the equator of the achromatin spindle, as consisting of a number 
of microsomes imbedded in a protoplasmic matrix’. 

The cell-wall which is subsequently formed, is the expression 
of a chemical change having taken place in the structure, in con- 
sequence of which cellulose appears as one of the principal bye- 
products: that is to say: that from the breaking down of a complex 
proteid, a carbohydrate has been produced. 

The succeeding thickening of this primitive cellulose mem- 
brane*, is brought about in a manner quite similar to that which 
attended its first formation, viz. by the repeated apposition upon 
it, of fresh sheets of microsome-laden protoplasm, which are suc- 
cessively deposited and converted into layers of cellulose, except 
that in the case of the secondary thickening, the microsomes are 
deposited by the general parietal protoplasm, and are not conveyed 
in the special fibrils of the achromatin spindle, which disappear 
with the formation of the primary wall. 

Simultaneously with this thickening other phenomena usually 
occur. In the first place owing both to chemical alteration, and 
to pressure and tension, a distinct median layer becomes differen- 
tiated in the hitherto homogeneous wall which separates the contents 
of adjacent cells, so that the wall appears to be no longer common, 
but on the contrary, each cell-wall appears to be surrounded with 
its own cell-membrane, and, at the junction of the two is the well 
defined layer in question, which is usually known as the middle 
lamella. 

1 Schmitz, Sitzber. niederrhein. Ges. in Bonn, Dec. 6th, 1880. 
2 Strasburger, Baw und Wachsthum, p. 173. 
3 Were the idea borne out by observed facts, it would be simpler for the cell- 

wall to consist simply of aggregated microsomes, which gradually coalesce into a 
firm membrane, the microsomes being regarded as formed proteid substance, and 
hence midway between protoplasm on the one hand and cellulose on the other. 

4 In certain instances it would appear that the primitive membrane may not 
consist solely of cellulose, e.g. the seed of Ardisia where starch is present. The 
statement here refers only to typical walls. 
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In the substance of the walls themselves also, changes both 
of a chemical and physical nature supervene, in consequence of 
which, the typically cellulose membrane becomes lignified, cuti- 
cularised, corky or mucilaginous as the case may be. 

As we follow the history of the development of botanical 
histology and microchemistry, we find that in each of the above- 
mentioned kinds of cell-walls, certain substances were discovered, 
to the properties of which, the peculiar characteristics of the wall 
were due. Thus from the cuticle first described by Brogniart’, 
Frémy” isolated a substance, to which he appropriated the name 
Cutin, and for which he gave the percentage composition, C. 73°66, 
H. 11°37, O. 1497. In the same way lignified walls are usually 
allowed to owe their properties to the presence of lignin’. In 
corky walls, Chevreul* found a substance, which he called Suberin, 
which according to Doepping® gave ceric acid (impure suberic acid) 
after treatment with nitric acid, and was expelled from a corky 
tissue in yellow drops on treatment with boiling potash®. As to 
mucilaginous walls, the presence in them of mucilage or gum 
was long known. Kiitzing’ (by boiling) isolated from the cells of 
certain algae, e.g. Sphaerococcus crispus, a mucilage to which he 
gave the name Phytogelin, and also recognized that gum-traga- 
ganth consisted of a mass of swollen cell-walls, the cells of which 
often contained starch grains’. More recently also Frémy’ described 
as pectose, a body allied to mucilage which is found in many 
unripe fruits and Berg” in investigating Cetraria islandica separated 
from it Lichen-starch and Lichenin. 

At a very early period” it was recognized that in cells which 
had become lignified, cuticularised, mucilaginous or corky, an 
unaltered cellulose portion still remained, and the foreign matters — 
(lignin, cutin, &c.) which prevented the visible occurrence of the 
cellulose reactions, were regarded as infiltrated substances. Thus 
Von Mohl found that in the case of epidermal and corky cells, 
a lengthy treatment with potash, dissolved out the foreign matter, 
and the remaining cell-wall now gave a blue coloured with iodine. 

1 Brogniart, Ann. de Sct. Nat. Ser. 1. t. xxi. p. 427 (1830). 
2 Frémy, Ann. de Sci. Nat. Ser. rv. t. xii. (1859). 
3 Payen, Mém. sur les développements des végétaux (1844). 
4 Chevreul, Sur le moyen 4 analyser plusieurs matiéres végétales, &c. Ann. 

de Chemie, t. 96 (1815). 
2 Doepping, Ann. Chem. u. Pharm. von Liebeg u. Wohler, Bd. 45, p. 286 (1843). 
6 Von Héhnel, Ueber Kork, &c. Sitzber. d. k. Akad. in Wien, uxxvi. (1877). 
7 Kiuitzing, Phycologia generalis. 
8 Kiitzing, Grund. d. phil. Bot. 208, 204. 
® Frémy, Ann. de Sci. Nat. Ser. 6, t. x11. (1882). 
10 Berg, Zur Kenntniss des in Cetraria islandica &c. Diss. Dorpat, 1872. 
1! Scharcht, The Microscope, English translation, p. 69. Von Mohl, Vegetable 

Cell, Hnglish translation, p. 28. 



1884] of the cell-wall and middle lamella. 89 

Woody and sclerenchymatous tissue also, after being treated with 
nitric acid and potash, reacted in the usual manner towards cellu- 
lose tests. Similarly as regards the cuticle, Hofmeister’ found 
that after three weeks maceration in potash, the insoluble remain- 
ing skeleton became distinctly blue with a solution of iodine. 
Thus in every instance a cellulose framework apparently remains. 
The lignin, cutin, suberin and the like, must however be regarded, 
not as infiltrated substances, to be placed in the same category 
with such bodies as silica’, or iron’, but rather as portions of the 
cellulose which have experienced chemical change. In the present 
state of the science we know but little as to how these changes 
occur, but it is a matter of interest to observe that they can take 
place only in the living plant, although as it appears, in the 
conifers at least, the cells may have lost their cell-contents*. 

Besides these fairly well defined modifications of cellulose 
which accompany lignification, cuticularisation, or the formation of 
cork, we have yet to consider other forms of cell-wall, which may 
be conveniently separated from the foregoing. Sometime after 
Payen’s’ discovery that cell-walls turned blue when treated with 
iodine and sulphuric acid, Scharcht® showed that the walls of 
certain fungi, even after treatment with potash, did not give the 
reactions of cellulose, but with iodime and sulphuric acid were 
merely stained yellow. In consequence of this observation, the 
walls were regarded as consisting of a definite form of cellulose, 
which was known as the fungin of Braconnot’, or the fungus 
cellulose of de Bary*®. Richter? however is of opinion that a 
definite fungus cellulose does not exist, but that the walls in 
reality consist of ordinary cellulose together with a body, which 
in certain fungi, e.g. Daedalea, he makes out to be suberin”®. He 
found that when fungus-tissue was treated for some time—in 
certain cases, several weeks—with solution of potash, washed 
with weak acid, and mounted in chlor. zine, iod., the customary 
blue colouration was obtained. However, as Dragendorft” points 
out, one cannot with certainty make deductions with regard to 
results produced after such lengthy action of potash, and conse- 
quently, one must not regard them as quite decisive. Dragendorff” 

1 Hofmeister, Pflanzenzelle, p. 257. 2 Von Mohl, Bot. Zeit. 1861. 
3 Weiss u. Wiesner, Sitzber, d. k. Akad. in Wien, xu. 1860. 
+ Strasburger, Der Zellhaiite, p. 199. > Payen, loc. cit. 1844. 
6 Scharcht, Die Pflanzenzelle, 1852. 7 Braconnot, See Fremy, l. c. 
8’ De Bary, Morphologie der Pilze, Flechten u. Myxomyceten. (Hofmeister, 

Handb, d. phys. Bot, 1. p. 7 u. ff.) 
9 Richter, Sitzber. d. k. Akad. in Wien, uxxxim. 1881. 
0 In the mushrooms he believes that a substance of a proteid nature is present 

together with the cellulose, 
U Dragendorff, Plant Analysis, English translation, 1884, p. 257. 
2 Dragendorff, loc. cit. p. 255. 
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however is himself inclined to believe, that the hardening sub- 
stances of many of the fungi of a woody character is identical 
with suberin. Frémy’s* experiments, as I shall state later on, 
point to the occurrence of a substance which he calls metacel- 
lulose, in the tissue of lichens and fungi. Lastly, as before men- 
tioned, Berg’ succeeded in isolating lichenin and lichen starch, 
the latter being thus designated since it turns blue with iodine. 
We thus have evidence that in fungi as well as in woody and 
corky tissue the cell-walls consist of a framework of cellulose, 
and that other substances such as suberin, metacellulose, ichenin 
and the so-called lichen-starch may also be present. 

Returning now to the consideration of ordinary vegetable cells 
we find that Von Mohl*® made the observation that certain cell- 
walls existed, e.g. endosperm of Cyclamen, which gave a blue 
colouration with iodine alone, and Schleiden* who discovered a 
similar phenomenon in the horny cells of the cotyledons of Schotia, 
Hymenaea, Mucuna, and Tamarindus, appropriated to the substance 
which produced the reaction the name Amyloid. Other instances 
of cells which turn blue, are afforded by the phloem cells of Lyco- 
podium’, and of the root of Ruscus aculeatus®, the endosperm 
cells of Paeonia’, Ardisia and Primula’, and certain forms of muci- 
lage, e.g. the mucilage cells of Linseed and Quince seed, and of 
the parenchyma cells of the peticle of Aucuba Japonica’. 

In some of the foregoing instances as in the case of certain 
young cells observed by Scharcht”, a peculiar hydratic condition of 
the substance of the cell-wall is required, before the production of 
the blue coloured with iodine and sulphuric acid. To Scharcht 
also is due the observation which I have myself repeatedly con- 
firmed with regard to endosperm cells, that very dry tissue will 
not turn blue until a certain amount of hydration has taken place. 
Finally Solla” noticed that in the young cells of the growing points 
of Zea, Phaseolus, and Vicia, the cell-walls do not turn blue, but 
simply remain yellow or brown, when treated with the usual Se litlose 
reagent. 

Of gums and mucilages one can say but little. There seems some 

1 Frémy, Ann. de Sci. Nat. Ser. 6, x11. 1882, 
2 Berg, Zur Kenntniss des in Cetraria islandica vork. Lichenins und iodblauen- 

den Stoffes. Diss. Dorpat, 1872. 
3 Von Mohl, Vermischte Schriften, p. 335. 
4 Schleiden, Grundz. der wiss. Botanik. 3rd edition, 1. p. 172, &e. 
> De Bary, Vergl. Anatomie, p. 364. 
6 Gardiner. Resembles in reaction the phloem of Lycopodium. 
7 Vines (unpublished observation). Mentioned as such in my paper in the Phil. 

Trans. 1883. The phenomenon is also referred to in Trelease’s English translation 
of Poulsen’s Microchemie, p. 174, 1884. 

8 Gardiner, Phil. Trans. Part 111. 1883. 
9 Gardiner. See present paper. 10 Scharcht, loc. cit. p. 72. 

11 Solla, Oster. Bot. Zeitschrift, 1879, p. 351. 
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probability that gums may be regarded as altered mucilages, ie. 
as mucilages which have under gone some change in their properties, 
both im consequence of free exposure to the atmosphere, and of 
forming certain definite chemical combinations such as occur in 
gum arabic, which may be regarded as consisting of the arabates 
of calcium and potassium. Moreover, speaking generally, muci- 
lages are connected with living, and gums. with dead cells. One 
cannot however, I think, attempt to separate sharply the one 
class of bodies from the other. Between the typical gum and the 
typical mucilage, most distinct differences may exist, but there are, 
connecting the two extremes, many transition forms, which com- 
pletely and insensibly bridge over the space and prevent us from 
placing with any degree of definiteness, a strict le of demarkation 
between the two. In any case, the bodies in question are to be 
regarded as mainly the result of a degeneration of the cell-wall. 
In gum-tragaganth the remains of the latter may be detected 
which moreover gives a blue with iodine and chlor. zine. iod., 
but Cherry gum, on the other hand, displays no structure, and with 
the same reagent, simply stains yellow. With the mucilages which 
turn blue with iodine we shall deal later on. 

In most cases we have certain microchemical tests, which afford 
a means of distinguishing the various modifications of cell-wall 
from one another, and since I may subsequently have occasion to 
refer to them it would be well that I should give them here. 

Cellulose. Payen', as I have already mentioned, first demonstrated 
that walls containing cellulose gave a blue colour with iodine and 
sulphuric acid, and subsequently it was shown that the same reaction 
took place with iodine and zine chloride (chlor. zine. iod.)’ soluble in 
sulphuric acid, ammoniacal oxide of copper, or Schweitzer’s reagent? 
(copper, ammonio-sulphate), it is insoluble in Schultze’s mixture 
(potassic chlorate and nitric acid), and indeed in oxidizing agents in 
general. Lastly, as I have pointed out*, it is especially stained by 
dilute alcoholic solutions of methylene blue’. 

Lignin. In contradistinction to. cellulose, this substance is soluble 
in oxidizing agents, such as Schultze’s mixture, nitric acid, chlorine 
water, potassic permanganate or chromic acid. Such reagents convert 
it into resinous acid bodies which are soluble in alkalies. In sulphuric 

1 Payen, loc. cit. 
2 With Russow’s mixture of iodine and chlor. zine. iod. cellulose walls do not 

turn blue but simply remain brown. See Sitzber. der Dorpat. Naturf. Gesell. 
September, 1883. 

3 Schweitzer, Vierteljahrsschrift. Naturf. Ges. Ziirich, Bd. 1. 1857. 
4 Gardiner, Phil. Trans. Part 11. 1883. 
5 With regard to the manipulation of this dye, it is important, that a dilute solu- 

tion be made in 50°/, alcohol; that the staining be quickly accomplished, and that 
the section be well washed in water before mounting in Glycerine. This treatment 
also applies to Hofmann’s blue. 
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acid or Schweitzer’s reagent it is quite insoluble. It is deeply stained 
by most aniline dyes as Russow’ showed for instance in the case of 
fuchsin. The two reagents discovered by Wiesner, viz. a solution of 
phloroglucin’ or anilin chloride* in hydrochloric acid afford very valuable 
tests for lignified tissue, the former colouring it red or violet, and the 
latter staining it gold-yellow. With Von Héhnel’s reagent*—xylophylin 
and hydrochloric acid—it also goes violet. 

Mucilage. The reactions as regards mucilage are mostly of a 
negative character. With Hofmann’s blue, (as I shall point out later 
on,) and with methylene blue® it readily assumes a blue colouration. 
With Hanstein’s reagent® it stains red, and when well developed 
Roussin’s test’ (a white precipitate with ferrous sulphate, soluble in 
acetic acid) may be applied. 

Cutin. The cutin of cuticle, like cellulose is insoluble in sulphuric 
acid, but soluble in caustic potash. With Hanstein’s reagent it is 
coloured blue, and with chlor, zinc. iod. yellow. 

Cork is dissolved by boiling potash, and during the process yellow 
oily drops (suberin of Von Héhnel”’) escape. Subjected to the action of 
nitric acid, suberic acid is produced. With Schultze’s mixture it is de- 
composed, yielding an oily, resinous mass, which may be dissolved by 
subsequent treatment with potash. According to Olivier® cork is 
readily stained by dilute solutions of fuchsin, which persistently colour 
it, even after prolonged action of absolute alcohol. With iodine and 
chlor. zinc. iod. it merely becomes yellow. When treated for some time 
with chromic acid it is dissolved. 

An examination of the foregoing list will make it quite ap- 
parent that with regard to certain of the substances met with in 
the cell-wall, e.g. cellulose and cutin, there are well-defined 
chemical tests, which, on the whole, render it probable that the 
reactions to which they give rise, point to the presence of definite 
bodies, and are not merely the result of a histological differen- 
tiation. But as to many other reactions, which have also been 
regarded as evidences of the existence of other bodies, whose 
characters are not nearly so well defined, one must, for the present 

1 Russow, Sitzber. d. Dorpater. Naturf. Gesell. 1880, p. 419. 
2 Wiesner, Sitzber. d. k. Akad. in Wien, uxxvit. 1878. 
3 Wiesner, Sitzber. d. k. Akad. in Wien, uxx. 1874. 
4 Von Hohnel, Sitzber. d. k. Akad. in Wien, 1877. Wiesner believes that 

xylophylin is practically the same body as phloroglucin, According to Max Singer, 
Sitzber. d. k. Akad. in Wien, uxxxv. 1882, both Wiesner’s and Von Hohnel’s 
reactions are due to the presence of vanillin in lignified tissue. Thus they do not 
point to the presence of lignin, but rather of lignified tissue. The same is true of 
the indol advocated by Niggl. See Singer (J. c.). Wiesner’s (J. c.) Phenol-Hydro- 
chloric acid reaction is due to the presence of coniferin. 

5 Gardiner, loc. cit. 
6 Hanstein, Bot. Zeit. 1868. No. 43 et seq. 
7 See Bonnier. Ann. des Sci. Nat. 6th series, vi11. 1879, p. 87. 
8 Von Hohnel, loc. cit. 
9 Olivier, Bull. Soc. bot. de France, 1880, t. xxvi1. pp. 234, 235. 
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at any rate, regard them with suspicion, recognizing as we do the 
great difficulties connected with the isolation of pure substances, 
and consequently the little that is absolutely known of their 
chemical properties and constitution. This is perhaps especially - 
true of the various bodies produced by the mucilaginous degenera- 
tion of cellulose. 

It may be very justly observed that great light has been thrown 
on the constitution of the cell-wall, m consequence of two com- 
munications which have recently appeared in the “Annales de 
Sciences Naturelles,’ the one by Frémy*, and the other by Frémy 
and Terreil”. By a careful and patient study of the chemistry of 
tissues, the well-known investigator who had so long ago isolated 
cutin®, has now succeeded, not only in confirming his previous 
researches, but also in extending them, in such a manner, as to 
make a very decided and important advance in the field of 
Botanical Microchemistry. 

The following is the classification adopted by the authors, 
Having it must be premised (though not definitely stated in their 
paper) separated the foreign substances occurring as cell-con- 
tents, &c. by some such method as successive treatment with 
petroleum spirit, alcohol, ether, and water, they arrange the 
various constituents of vegetable tissue under seven heads, e.g. 
(1) Cellulose substances, (2) Vasculose (Lignin), (3) Cutose, 
(4) Pectose, (5) Calcium Pectate, (6) Nitrogenous substances, 
(7) Mineral substances. 

The cellulose substances include all those bodies which dissolve 
without colouration in bihydrated sulphuric acid (H,SO,, 2H,O) 
producing dextrin and sugar, and which resist the action of alkalies 
and oxidising agents. By means of Schweitzer’s reagent (am- 
monio-sulphate of copper) three well-defined varieties may be 
separated. 

1. Cellulose proper. Tasily soluble in Schweitzer’s reagent. 
2 Paracellulose. Soluble only after the action of acids. 

3.  Metacellulose. Insoluble even after preliminary action of acids. 

Vasculose (Lignin)*. Insoluble in bihydrated sulphuric acid or 

1 Frémy, Ann. des Sci. Nat. 6th ser. x11. 1882. 
2 Frémy et Terreil, reference as before. 
3 Frémy, Ann. des Sci. Nat. 4 ser. x11. p. 331. 
4 Max Singer (Sitzb. d. k. Akad. in Wien, txxxy. 1882) finds that after very 

lengthy treatment (e.g. 6 weeks) with water which was allowed to boil for 10 hours 
a day, the following substances may be extracted from lignified tissue, viz. (1) 
Vanillin, (2) Coniferin, (3) a certain quantity of gum, (4) the wood gum of Thom- 
sen, (5) a substance coloured yellow by hydrochloric acid. From these results he 
is inclined to believe that the so-called lignin is in reality a mixture of many 
substances. It is not however apparent that by his methods he has actually 
extracted the lignin from the tissue. One would rather imagine the substances 
dissolved by boiling water were bodies which occur in lignified tissue. Thus on 
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Schweitzer’s reagent, but soluble in alkalies when subjected to increased 
pressure, and also dissolved by oxidizing agents as already mentioned, 
forming resinous acids which saponify with caustic potash. 

Cutose (Cutin). Insoluble in bihydrated sulphuric acid or Schweitzer’s 
reagent, but soluble in alkalies at ordinary pressure. Is converted by 
nitric acid into suberic acid. 

By taking advantage of these properties, the various substances 
may be separated from one another. Thus cellulose may be sepa- 
rated from vasculose by acting upon the tissue either with bihy- 
drated acid or with Schweitzer’s reagent, while vasculose may be 
removed by the action of cold nitric acid diluted with an equal 
bulk of water, and subsequent treatment with alkali. Cutose in 
the same way is soluble in alkali at ordinary pressure. 

Pectose. Insoluble in water, but converted into soluble pectin by 
the action of acids. 

Calcic pectate. Decomposed by acids, e.g. dilute cold hydrochloric 
acid. The pectic acid which remains gives with potash a pectate soluble 
in water. 

Nitrogenous substances. Soluble in potash. 

Inorganic substances. Present in ash. 

As to the occurrence of these substances the authors state that 

Paracellulose is found in epidermal cells in the layers next the 
cuticle, and in certain cells of roots and other tissues. 

Metacellulose occurs in the tissue of lichens and fungi. The fungin 
of Braconnot’ consists largely of this form of cellulose. 

Vasculose. In all lignified tissue. 

Calcic pectate forms the chief constituent of the middle lamella ind 
adjacent layers of many pith cells. In such tissue, a treatment with 
cold dilute hydrochloric acid causes separation from one another, of the 
constituent cells. 

Nitrogenous substances embrace probably the remains of the proto- 
plasm, and in the «organic salts are included such substances as silica 
and the like. 

the whole, one would suppose that the gums are derived from the cellulose frame- 
work, and that the coniferin, which as a glucoside exists probably as a cell- 
content of wood cells, escapes upon the death of the cell—either naturally or 
artificially induced—into the cell-wall; and thus causes a staining of that struc- 
ture, just as in the case of cells containing tannin. The vanillin one would sup- 
pose is produced by the subsequent oxidation of the coniferin. It is therefore 
perhaps, to be regretted that in his translation of Poulsen’s Michrochemie (Boston, 
1884), Prof. Trelease has taken no account of the opinions of Dragendortt and Frémy, 
but has stated that ‘lignin probably consists of (1) vanillin, &.” If we are to 
regard lignin as the whole collection of the substances, other than cellulose, 
present in lignified tissues, then Frémy’s new name of vasculose—which was other- 
wise unnecessary—is of value to distinguish the substance par excellence, which at 
the present time we usually admit to be present in woody tissue, 

1 Braconnot (loc. cit.). 
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* Among other valuable points we may notice that there is some 
definite evidence that the walls of fungi consist of a framework 
of cellulose and a large remaining portion of metacellulose. Again 
the suberin of Chevreul’ is shown not to be a definite body, but 
a mixture of cutose and vasculose, and the suberic acid of Doep- 
ping’ is derived from the cutose: the vasculose giving rise to the 
resinous acids. Thus cork consists of a cellulose framework and 
a remaining portion of cutose and vasculose, and we at once 
understand how that by the action of such a powerful oxidizing 
agent as Schultze’s mixture, all but the cellulose framework is 
rendered soluble. It is of interest also to note that when heated 
with potash, cellulose gives rise to acetic and oxalic, and vas- 
culose to ulmic acid. 

But although one must be struck by the great value of the 
researches of Frémy and Terreil, one cannot I think admit with 
the former of these investigators, either that by their method a 
complete analysis of vegetable tissues can be made, or that their 
various subdivisions include all the substances met with in plant 
cells. One must regard the research rather in the light of an 
advance; very definite and very valuable, but still far from com- 
plete. For instance, it does not appear under what head that 
peculiar form of cellulose giving a blue with iodine, is to be 
classed, and especially with regard to the gums and mucilages, 
it is a question whether they can all be collected under the head 
of Pectose. As for lignin indeed, there seems to be great pro- 
bability that, like cellulose, it is a definite substance, but concern- 
ing gums and mucilages there is every evidence that we have to 
deal with a class of bodies, the members of which although not 
very distinct, possess nevertheless many well-marked properties, 
of sufficient value to admit of their being clearly separated, and 
in fact, almost every well conducted analysis brings to light fresh 
forms of mucilage, which differ markedly in some well-defined 
reaction from the already existing varieties. It now remains for 
me to dwell shortly on some other points with regard to cellulose, 
lignin, cutin, and mucilages. 

With the properties of what one may speak of as cellulose 
proper we are already acquainted. This body exists in an espe- 
cially pure form, in many palm endosperms, e.g. Bentinchia, 

~ Phoemx, &c., and as I have already remarked, usually constitutes 
the substance of new and unaltered cell-walls. As to how para- 
cellulose and metacellulose differ from the cellulose par excellence 
‘we do not as yet know, and whether the difference consists in 
oxidation, hydration, or any other change, must for the present 
be left an open question. Apparently, as far as one can judge 

1 Chevreul (loc. cit.). 2 Doepping (loc. cit.). 
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from Frémy’s paper, the paracellulose forms in great part thé 
substance of the cuticularised layers of the epidermis, and since, 
as we saw, it is also met with in other tissues, one must conclude 
that this form of cellulose is of more general occurrence than has 
hitherto been imagined. Some interest also is attached to that 
particular form which turns blue with iodine alone. It has been 
long known that after the action of such acids as sulphuric, phos- 
phoric, or iodic acids, cellulose walls will give a blue instead of a 
yellow, with iodine. In enquiring into the meaning of this phe- 
nomenon, we receive great assistance from the many investigations 
made under the directions of Prof. Dragendorff, which have special 
reference to the constitution of pure cellulose. 

Although the formula of cellulose is usually regarded as C,H.,,0., 
Stackmann* found that an analysis of the cellulose of conifer-wood 
gave for the formula 5(C,H,,0O,) + H,O. These results agreed with 
those of Koroll’ on the constitution of the cellulose of sclerenchy- 
matous and bast tissue. Similarly the cellulose of parenchyma 
cells gave 5 (C,H,,O,) + 2H,O, while that from the wood of most 
Dicotyledons gave 5 (C,H,,O,) +3H,O. In all these analyses sul- 
phuric acid was used in the purification. Schuppe® on the other 
hand, working his purification in the absence of sulphuric acid, 
found that the body thus separated was in all cases simply repre- 
sented by C,H,,O,. As a result of these experiments it would 
then appear, that the use of sulphuric acid occasions a definite 
hydration of the cellulose, in the same way as we know it does in 
other chemical reactions*. 

Leaving for a moment the subject under immediate considera- 
tion, we find that Nageli’ and Sachsse’®, in their analysis of starch, 
found that the body should not be represented by C,H,,O,, but 
that the constitution expressed by the formula 6 C,H,,O, + H,O 
was much more exact. Then comparing together, the facts with 
regard to the composition of starch, and of cellulose, it appears 
in the light of Schuppe’s results, that the action of sulphuric acid 
and the like, brings about a definite hydration, in consequence of 
which a hydrated cellulose is produced, which, though it is most 
probably not identical with starch, yet approaches it in its con- 
stitution and, what is more, gives a blue colour with iodine. The 
cellulose met with in the asci of Lichens—(the so called Lichen- 

1 Stackmann, Studien tiber die Zusammensetzung d. Holzes. Diss. Dorpat, 

2 Koroll, Quant. chem. Unters. u. d. Zusammensetz. d. Kork-Bast, &e. Diss. 
Dorpat, 1880. 

3 Schuppe, Beitraige z. Chemie d. Holzgewebes. Diss. Dorpat, 1882. 
4 The production of ethyl alcohol by the action of sulphuric acid on ethylene 

is a case in point. i 
5 Nageli, Annal. d. Chem. u. Pharm. cuxxit. 218, 1874. 
6 Sachsse, Zetischr. f. anal. Chem. xv. 231, 1878. 
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starch), the mucilare of Linseed, and the phloem cells of Lyco- 
podium, and of the root of Ruscws aculeatus must, probably, be 
regarded as consisting of an hydrated cellulose naturally pro- 
duced, whereas with regard to the cells which turn blue only after 
the action of acid, such hydration is induced artificially. 

There are some definite grounds also for believing that the 
so-called fungus cellulose (metacellulose of Frémy) consists of a 
form of hydrated cellulose, since Masing* showed that in the con- 
version of cellulose into glucose, the cellulose of fungi underwent 
the change much more rapidly than that of flax fibre. We know 
of course that this conversion is simply a process of hydration. 

Just as cellulose walls consist mainly of a definite body— 
cellulose—so it seems probable from the researches of Frémy, 
and in the opinion of such a well qualified chemist as Dragendorft?, 
that in lignified tissue a definite substance—lignin, occurs. At 
present however we have but few facts to go upon. The difficulties 
attending its isolation are so great, that it appears somewhat 
questionable whether the real body has as yet been obtained pure, 
and unacted upon by reagents, and knowing as we do -the difficul- 
ties attending the separation from it, of foreign substances, we 
must as yet regard with some doubt, researches such as those of 
Erdmann* and Bente* on pine wood, which would tend; either to 
show that in lignified cell-walls the cellulose and lignin are chemi- 
cally combined as glycolignose; or that lignin, as such, actually 
yields pyrocatechin as a product of its decomposition ; thus point- 
ing to its relations with the benzol series. In fact although certain 
of its reactions may, and probably do, point to the existence of a 
definite body yet that body has most probably not yet been 
isolated. 

Of cutin one has but little to say. As has been already remarked 
the suberin of Von Hohnel has been shown by Frémy to consist of 
a mixture of cutin and lignin, and that it is from the cutin that 
the suberic acid is derived. In corky as in lignified cells a frame- 
work of cellulose is always present which although it may or may 
not be directly obvious, can always be shown to exist after the 
action of Schultze’s mixture in which both the lignin and cutin 
are soluble’. 

Dealing now with mucilages one must confess at the outset 
that the chemistry of these substances is still in a most un- 
satisfactory state. Nor is this to be wondered at. Leaving out of 

Masing, Pharm. Zeitschr. f. Russland, 1x. 385, 1870. 
Dragendorff, loc. cit. p. 253. 

3 Erdmann, Annal. d. Chem. u. Pharm. cxxxyut. 1, 1866. 
4 Bente, Ber. d. d. chem. Ges. x111. 476, 1875. 
> Lemaire, Ann. Sci. Nat. xv. (1883), p. 297, finds that in certain cases, e.g. 

the Cycadeae, the epidermis itself has undergone lignification. 
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the question the difficulties connected with the mere analysis of 
these organic compounds; any one at all acquainted with chemical 
methods, will at once understand how hard it is to deal with even 
the ordinary manipulative details of such colloidal bodies as 
mucilages, where even the washing, and filtration, offer almost 
insuperable obstacles to the obtaining of a pure product. 

We will first consider the gums and the pectous substances. 
Chemists have taught us that the gums, as represented for 
instance by gum-arabic, usually consist of the potassium and 
calcium salts of a weak acid: arabic acid or arabin. By the action 
of dilute acids upon the body; metarabic acid, and finally a 
glucose (arabinose) is formed*. Another variety was described by 
Reichardt’ which is distinguished in that it does not give arabinose 
as a result of the acid of an acid. 

From the mucilage occurring in the pulp of fruit, a substance— 
pectose—has been extracted, which by the action of acids gives 
soluble pectin, and further by the action of the peculiar pectose 
ferment described by Frémy, or simply by a regulated treatment 
with dilute alkalies and acids, gives rise to pectic, parapectic and 
finally metapectic acid. 

The remarkable similarity between the properties of Arabic 
acid on the one hand, and Pectic on the other, appear to point to 
the probability, that the two bodies are identical, and in the 
opinion of Reichardt and Dragendorff and (since he puts all the 
gums and mucilages under the head of Pectose) of Frémy, the 
pectin substances may in fact be regarded simply as varieties of 
the mucilages and gums. Of the mucilages in particular, the 
varieties appear to be very numerous, for in addition to Berg’s 
discovery of Lichenin which I have already mentioned, Kirchner?’ 
believes he has obtained a pure mucilage from Quince seeds, and 
Thomsen* from ligneous tissue has extracted a wood-gum. Gelose® 
which is related to Lichenin, has been found to occur in many 
algae, and more recently from Fucus Amylaceus has been separated 
a substance which though allied to Gelose and Lichenin differs 
markedly from them both*®. 

From a priori considerations, it does not seem improbable that 
certain kinds of mucilage may be regarded as formed from the 
cellulose in consequence of excessive hydration; but since, as 

1 According to Scheibler, Ber. d. d. chem. Ges. v1. 620, two sugars (one erystal- 
lisable and the other uncrystallisable) and an acid whose barium salt is insoluble 
in alcohol, are produced. 

2 Reichardt, Ber. d. d. chem. Ges. vi1t. 807, 1875. 
3 Kirchner, Ueber Pflanzenschleim. Diss. Inaug. Gottingen, 1874. 
4 Thomsen, Journ. Pract. Chem. (2) x1x. 146, 1879. 
5 Morin and Porumbaru, Comptes rendus, xc. 924, 1081, 1810, 
& Sitzber. Naturfors. Ges. Dorpat, v1. p. 39, 1881, 
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Wigand* showed, mucilage may also be produced by the dis- 
organisation of starch-grains and, as Trecul’ and Prillieux® found, 
even from the protoplasm itself, we must not carry this assumption 
too far. It was an interesting observation made by Prillieux that 
in the gum-producing cells of the cherry-tree, the substance in 
question first appeared between the middle lamella and the last 
layer of cell-wall, thus resembling the similar phenomenon which 
occurs in connection with the appearance of oil, &c. beneath the 
cuticle in glandular hairs and the like as described by Personne* 
in the hop, by Cohn’ in Siphocampylus, by Batalin® in Sarracenia, 
and more recently in the extended observations of Martinet’, 
Bonnier® and Behrens’. ? 

Gums and mucilages occur in all parts of the plant. In many 
of the Leguminoseae, the gum, e.g. gum-tragaganth, is produced 
by the disorganisation of the cell-walls of the pith and medullary- 
rays”, and in the Rosaceae, e.g. the cherry, it is formed both in 
the cortex, the medullary rays, and even from certain of the 
parenchyma-cells of the vascular tissue”. The mucilage of seeds 
is usually derived from the middle layers of the thickened 
epidermal cells, but it also occurs in cells containing raphides ; in 
definite passages as in the Marattias”, from rows of cells as in the 
Marchantias”; or according to the interesting observation of de 
Bary™ is secreted by certain hairs at the base of the petiole of 
Osmunda. The mucilaginous degeneration undergone by the 
outer layers of the walls of so many algae has long been known, 
but has recently been prominently brought into notice in con- 
sequence of the observations of Schmitz” upon the surface growth 
of cells. Itis alsoa matter of some interest that in the parenchyma 
cells of many ordinary vegetable tissues the same phenomenon 

aie Wigand, Ueber die Desorganisation der Pflanzenzelle, &c. Pring’s Jahrb. 11. 
, 1863. 

i es Trecul, Procés Verbal des Séances de la Société philomatique pendant Vannée, 
862. 

3 Prillieux, Ann. des Sci. Nat. ser. 6, 1. 1875. 
4 Personne, Ann. des Sci. Nat. ser. 4, 1. 1842. 
5 Cohn, De cuticula, Wratislavixe, 1850. 

G 6 Batalin, Ueber die Function der Epidermis von Sarracenia, &c. St Petersburg, 
80. 
7 Martinet, Ann. des Sci. Nat. ser. 5, xtv. 1871. 
8 Bonnier, Ann. des Sci. Nat. ser. 6, vit. 1879. 
® Behrens, Flora, 1878, 1879. 
10 ‘Von Mohl, Bot. Zeit. 1857. 
ll Prillieux, loc. cit. 
12 Harting et de Vriese, Monogr. des Maratt. 
13 Prescher, Die Schleimorgane der Marchantieen. Sitzber. d. k. Akad. in 

Wien, uxxxvi. 1882. 
14 De Bary, Vergl. Anatomie, p. 105. First mentioned by Milde, Monogr. 

Generis Osmundae. 
16 Schmitz, Sitzber. niederrhein. Ges. in Bonn, Dec. 6th, 1880. See also 

Sitzber. Versammlung deutscher Naturf, u. Aerzte in Hisenach, Sept. 19th, 1882. 
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occurs. The conversion of a portion of the cellulose substance into 
mucilage may take place in such a manner, that the degeneration 
is almost entirely limited to the middle lamella, or it may extend 
to several layers of the wall, or finally, mucilage may be detected 
throughout the entire substance of the cell-membrane. 

The phenomenon of mucilaginous degeneration was strikingly 
brought to my notice during my research upon the continuity of 
the protoplasm through the walls of vegetable cells. As I have 
already stated in my papers upon that subject, I found that 
Hofmann’s aniline blue was an especially good stain for the 
protoplasm, and I have in consequence used it for staining the fine 
protoplasmic threads which traverse the cell-wall. In the course 
of the investigation I repeatedly observed, that in many, cases a 
very marked colouration took place, not only of the protoplasmic 
threads, but also of the most external layers of the cell-walls, and 
in certain instances, e.g. Chara foetida and the endosperm cells of 
Tamus communis, the whole of the walls were distinctly blue. The 
colouration was usually not well defined, but was darkest next the 
middle lamella and gradually faded off towards the cell-lumen, as 
for example, in most collenchymatous hypodermal cells, and the 
cortical cells of the petiole of Ilex aquifolium, Aesculus hippocas- 
tanum, &c. In some exceptional instances however, e.g. Aucuba 
Japonica, a very definite staining did occur, of what one might 
speak of, as a well-defined intercellular substance, which could 
hardly be distinguished from the almost similarly stained proto- 
plasm. I had intended to investigate the subject further, and on 
that account did not treat of it im my paper in Sachs’ Arbeiten?, 
since my observations were still incomplete. Quite recently 
however the matter was again brought very forcibly to my notice, 
on account of certain passages which appear in a preliminary 
communication I received from Prof. Russow® on “the connection 
of the protoplasmic bodies of neighbouring cells,” in which he 
announces the discovery of an intercellular protoplasm, between 
the cortical parenchyma cells of Acer and Fraainus and in the 
same cells of the rhizome of Iris, &c. 

In consequence of this I again renewed my investigations, and 
as a result, I find, that both Hofmann’s blue and water blue (one 
or the other of which Russow most probably used*) stains not only 

1 Gardiner, Arbeiten des botanischen Instituts in Wtirzburg, Bd. ut. Heft. 1. 
2 Gardiner (loc. cit.). 
3 Russow, Sitzber. der Dorpat: Naturfors. Gesell. September, 1883. In this paper 

Russow confirms in a most striking manner, the results I have already obtained as 
to the communication of the protoplasmic contents of adjacent cells by means of 
the sieve-like perforation of the pit-closing-¢membranes. I have only in rare 
instances, e.g. parenchyma cells of Aucuba Japonica, seen the nodular swellings of 
the connecting protoplasmic threads, of which he speaks, 

4 See Gardiner, Phil. Trans. p. 829. 
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the protoplasm; but also mucilage, and that in the case of my own 
and Russow’s observations, the staining was simply due to the 
mucilage in question. The whole phenomenon of mucilaginous 
degeneration leading to the production of the intercellular mucilage, 
may perhaps be most easily followed in longitudinal sections of 
the petiole of Aucuba Japonica. In the cells with large intercellular 
Spaces, numerous drops of mucilage, in the form of small papillae 
may be observed on the outer or free surface of the cell-walls, 
which are not only distinguished by their microscopical appearance 
before they aggregate to form a layer, but will like the similar 
substance in Quince seeds, go blue with iodine, owing to the 
presence in their structure of a definite hydrated cellulose. 

It may be imagined that in consequence of the facts in connec- 
tion with the staining of Hofmann’s blue that the observations 
based upon the reactions of this substance lose much of their 
value, and that from a priort considerations the so-called 
protoplasmic threads may as well be mucilage as protoplasm. 
Such however is not the case. For the results as to the proto- 
plasmic character of the threads do not depend upon the reactions 
of Hofmann’s blue alone, but iodine and chlor. zine. iod., and the 
sulphuric and molybolic acid mixture were also employed. More- 
over it is quite possible to experiment upon walls which both 
consist entirely of pure cellulose, free from mucilaginous degenera- 
tion, and in which the middle lamella is not conspicuously 
developed. Thus in the endosperm cells of Bentinckia Conda- 
panna and Latania Loddigeswi which fulfil both of these conditions, 
the only staining which occurs, is sharply limited to the protoplasm 
and to the threads, and the results are entirely confirmed by 
chlor. zinc iod., the reactions of which, towards protoplasm and 
mucilage, admit of being clearly distinguished. Lastly, all doubt 
upon the subject is put an end to by the use of methylene blue. 
This substance, as I have pointed out, stains markedly the cell- 
walls and all the substances produced by the degeneration of the 
same, such as mucilage, &c. On the other hand methylene blue does 
not (unless the staining be forced) colour the protoplasm. So that 
whereas Hofmann’s blue stains protoplasm and mucilage, but not 
cell-wall; methylene blue stains cell-wall and mucilage but not 
protoplasm, and in this way the two may be clearly separated. 

If this be so, it will then be of interest to observe the staining 
effects of these two reagents upon the callus of sieve-tubes. As 
regards this substance Janczewski’ maintains that it is pre- 
eminently of a mucilaginous nature, while Russow” and myself® on 

1 Janezewski, MWém. de la Soc. des Sciences Naturelles et Mathematiques de Cher- 
bourg, t. xxi11. p. 209. 2 

2 Russow, Sitzber. der Dorpater Naturfors. Gesell. Feb. 17th, 1882, 
> Gardiner (loc. cit.). See also Phil. Trans. Part 111, 1883, 
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the other hand, believe that it is rather allied to protoplasm. As 
we know from Russow’s results, the callus is stained by anilin blue 
(either Hofmann’s blue or water blue). This fact may as I have 
showed point either to its protoplasmic or its mucilaginous 
character. But with methylene blue no staining whatever occurs, 
which not only absolutely negatives the probabilities of its 
mucilaginous character, but also gives a most valuable confirmation 
to the results which I have already set forth. The very deep 
staining of the callus with dilute Kleinenberg’s haematoxylin 
also points to its protoplasmic nature’. 

As regards its delicacy, and its power of clearly defining the 
callus, Russow’s? mixture of iodine in potassium iodide and 
chlor. zinc. iod. undoubtedly occupies the first place. Then 
comes Hofmann’s blue and haematoxylin, and lastly the rosolic 
acid test of Szyszylowicz’, the staining characters of which are 
not nearly so distinct, and its properties, so far as I am aware, 
can only be observed when the section is mounted in a solution 
of the reagent; disappearing entirely when the section is washed 
in order to mount in water, or what not, so as to obtain the greatest 
amount of differentiated staining. 

Returning now to the main subject under consideration, we 
see that the mucilaginous degeneration of the cell-wall is of very 
frequent occurrence, and that the relative proportion existing 
between the unaltered cellulose and the mucilage may be very 
variable. In almost all cases however, as Kirchner* showed for 
example in the mucilage of Quince seeds, a definite residuum 
of cellulose occurs, which may, as in Tragaganth gum, make itself 
evident by its reactions with chlor. zinc. iod., or as in cherry 
gum, cannot (michrochemically at least) be detected. 

We are now in a position to deal with the constitution of the 
middle lamella. To the earlier botanists this structure was known 
as the intercellular substance, which appeared to be excreted by 
the cells, and thus formed the common matrix in which the 
cells were imbedded; but at the present time we regard it as 
consisting of the first formed cell-wall together with one or more 

1 Besides the callus, haematoxylin also stains the refringent granules. The 
dense protoplasm (slime) of sieve tubes is especially coloured by eosin which how- 
ever does not stain the callus. From what occurs in Vitis when examined in the 
winter and summer condition—the sections being stained with eosin—there seems 
to be some definite grounds for believing that the callus is formed from the dense 
protoplasm. Whether the latter is formed by the coalescence of the refringent 
granules, must for the present be left an open question. 

2 Russow, loc. cit., Feb. 17th, 1882. 
3 Szyszylowicz, Osobne. odbicie z Rospran Akad. Umiej. w Krakowie, x. (1882). 

See Bot. Central. x11. (1882), p. 138. 
4 Kirchner, loc. cit. 
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layers, as the case may be, which during the subsequent thickening, 
have become physically and chemically altered’. 

In the light of Schmitz’ and Strasburger’s’ researches, it 
will be readily understood that the formation of such a differ- 
entiated portion in the thickening cell-wall, is naturally ne- 
cessitated, on account of the amount of tension and pressure 
produced during the process of surface growth, which although 
it may be small in the last or most internal layer deposited, 
in the region of the middle lamella reaches its maximum, and 
becomes very appreciable. As regards the chemical phenomena, 
we know that it is admitted on all hands that the various changes 
accompanying lignification, cuticularisation, &c. are most marked 
in the more external layers of the cell-wall, and in consequence 
we find that the substance of the middle lamella has usually 
undergone the maximum amount of alteration from its primitive 
cellulose character, so that both chemically and physically it may 
be truly regarded as the most modified portion. 

From the standard text-books generally in use, one is ap- 
parently led to infer that the middle lamella consists of a certain 
definite substance—the substance of the middle lamella—which is 
distinguished by the fact that it is msoluble in sulphuric acid, 
but soluble in Schultze’s mixture. From these properties such a 
substance might consist either of lignin or cutin or finally of cork 
which we regarded as a mixture of both, for all these substances 
would be soluble in Schultze’s mixture. There is therefore great 
want of definiteness in the statements with regard to this sub- 
stance, which has been thus separated in botanical terminology, 
and I shall therefore endeavour by means of the evidence afforded 
by direct observation, and by recent research, to state the matter 
somewhat more clearly. 

In certain cells, e.g. bast prosenchyma cells of the pulvini 
of Mimosa and many palm endosperms, the cell-walls consist of 
pure cellulose, and the middle lamella is but little developed. 
In such cases one finds that the middle lamella although more 
resistant than the rest of the cell-wall in consequence apparently 
of its greater density is distinctly soluble in sulphuric acid, and 
as far as one can observe consists simply of cellulose. in other 
instances, e.g. lignified prosenchyma cells of the cortex of Ly- 
copodium, the well-defined middle lamella equally with the layers 
of the cell-wall assumes a gold-yellow colour when treated with 
aniline chloride and hydrochloric acid, and with any other test 

1 This latter fact was insisted upon by Solla, ‘‘Beitrage zur niiheren Kenntniss 
der chemischen und physikalischen Beschaffenheit der intercellular Substanz. 
(Gsterreichische bot. Zeitschrift, November, 1879.) 

2 Schmitz, loc. cit. 
3 Strasburger, Zellhdute, pp. 1—146 and 175—200, 
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for lignified tissue they both stain in a similar manner. ‘There 
can in fact be little doubt that here the middle lamella has under- 
gone lignification, In the same way in suberised or mucilaginous 
membranes, the middle lamella undergoes the same changes as 
the cell-walls. With regard to the mucilaginous change, it may 
be noticed that the middle lamella may be at once converted into 
mucilage as in the parenchyma cells of the petiole of Aucuba’; 
or as Prillieux® remarked in the formation of gum in the cherry, 
the lamella may be at first dense and resistant, in which case the 
mucilage appears between it and the last layer of cell-wall. 
Consequently it only subsequently becomes mucilaginous. 

The great point with regard to middle lamellas other than cel- 
lulose is that in their substance the maximum amount of change 
appears to have taken place—that is to say—almost the whole of 
the cellulose has been converted into lignin, cutin, or mucilage, as 
the case may be, and thus but little of the cellulose framework 
remains. ‘This will of course explain the fact that after treatment 
with Schultze’s mixture or other oxidizing agents, the various cells 
readily separate from one another, for now practically the whole 
of the middle lamella has suffered solution, and, of the cells, it 
is only the cellulose framework which remains. 

It would thus appear that in unaltered cellulose walls the 
middle lamella consists of dense cellulose; while in lignified cuti- 
cularised corky or mucilaginous cells, the changes which occur in 
the middle lamella are of the same character as those of the rest 
of the membranes, and have moreover reached their maximum. 

Additional Note. 

I should like to add here a few remarks with regard to the 
continuity of the protoplasm through the walls of vegetable cells. 
Since my last publication upon that subject, a paper has appeared 
in the February number of the Journal of Botany* in which the 
writer states that m the Florideae there is a communication 
between the contents of adjacent cells, which so far as one can 
judge from the text, is typically brought about by means of open 
pits, although in certain instances, e.g. the older cells of Polysi- 
phonia fastigiata, a delicate diaphragm may be present. 

1 Tn such instances the cells separate by mere treatment with hot water. The 
well known case of the separation from one another of the cells of Potato tubers 
when boiled is another example. When on the other hand the mucilage or gum 
is combined with bases, e.g. in case of Calcium Pectate, an acid is required to 

bring about the isolation of the cells. 
2 Prillieux, loc. cit. 
3 Hick, Protoplasmic Continuity in the Florideae. Since I find (March 17th) 

that in the remaining part of his paper, which appears in the March number of the 
same Journal, he has in no way altered his opinion, I have nothing to add to 
my former remarks, 
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This being the case, it will be noticed that the author has 
simply repeated anew, the observations made in 1878 by Perceval 
Wright* and Thuret’, and is apparently unacquainted with the 
researches of Schmitz®, who has showed that except perhaps in the 
Corallines a pit-closing-membrane is present in each cell, which is 
usually perforated im a sieve-like manner. I have myself investi- 
gated several of the Florideae, and I find, that in all the cases 
which have come under my observation a distinct pit-closing- 
membrane can always be made out after proper treatment. 

Of the existence of a continuity of the protoplasm between 
neighbouring cells there seems but little doubt, and indeed, so 
tenaciously do the protoplasmic processes of the pits adhere to the 
closing membranes that it is a matter of difficulty to demonstrate 
that such a membrane exists; the protoplasm refusing to separate 
even after the action of very strong plasmolysing agents. Thus in 
the Polysiphonias which may be taken as typical representatives, 
e.g. P. nigrescens, a treatment with strong sulphuric acid (as 
observed by Thuret*) or with strong salt solution, does not separate 
the protoplasmic processes of the pits from one another, but on the 
contrary every appearance of what one might conveniently speak 
of as a direct, unbroken continuity exists. When on the other 
hand, the fresh tissue is treated for some time with solutions of 
calcium chloride or chlor. zinc. iod., previous to preservation in 
alcohol a different appearance is produced. In the first case the 
protoplasmic processes of the pits contract to the main protoplas- 
mic mass of the cell, and in so doing leave a distinct pit-closing- 
membrane which is swollen on both sides, giving to the whole 
structure a lenticular form and recalling the torus which occurs 
on the pit-closmg membranes of certain bordered pits. After 
treatment with chlor. zinc. iod. this lenticular doubly convex body 
may also be left as a pit-closing-membrane, but in certain cases one 
can detect that the membrane im question is further resolved into a 
thin pit-closing-membrane, having on either side of it a small mass 
which now possesses a plano-convex form. 

To explain these phenomena I have adopted the following 
view, which however I do not consider as final, since I have not 
investigated the subject as thoroughly as I could wish. The pits 
of the Florideae and consequently the protoplasmic processes which 
enter them rapidly narrow, from the pit-closmg-membrane towards 
the cell-lumen, so as to present a trumpet-like shape. Of the 
processes themselves; that portion which abuts immediately on the 
closmg membrane, both adheres with great tenacity to that struc- 

See Perceval Wright’s two papers, Trans. Roy. Irish. Acad, xxv. 1879. 
Thuret, Htudes Phycologiques, p. 100, 1878. 
Schmitz, Sitzber. Ahad. Wiss. Berlin, pp. 215—58, Feb. 22nd, 1883. 
Thuret, loc. cit, PB OD 
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ture, and also, on account of the rapid constriction of the pits, tends 
to be held firmly in position. When by plasmolysis, &c., one 
attempts to contract the pit processes to the main protoplasmic cell- 
mass, the particular portion next the pit-closmg-membrane usually 
remains behind, and on account of its subsequent rounding off, 
presents the appearance of a lenticular body as induced for instance 
by the action of calcium chloride. But in other cases when, owing 
to the particular combination of forces, the whole of the pit-proto- 
plasm endeavours to separate, then the delicate closing membrane 
becomes clearly apparent. 

The portion of the pit-protoplasm next the pit-closing-mem- 
brane is usually well differentiated, and on that account, and on 
account of its peculiar form, has been distinguished both by 
Schmitz* and also by Perceval Wright’, the latter of whom 
appropriates to it the name “stopper”, and states that in every cell, 
at least two of these stoppers are present. 

Thus so far as I have been able to observe, a pit-closing-mem- 
brane is always present, both in the cortical, and the central cells, 
which may be extremely difficult to bring into view, as in the 
Polysiphonias, but in certain other cases may be seen with com- 
parative ease. There is little doubt that the closing membrane 
consists of cellulose, and that it is perforated im a sieve-like manner 
as Schmitz has already described for many of the Florideae. I 
also believe from my somewhat scant experiments with preserved 
material, that in the Corallines the same structure occurs as in the 
rest of the Florideae. 

Passing to other matters I find that Wille® has observed a con- 
tinuity of the protoplasm in Stigonema compactum, and I also, 
before I was acquainted with Wille’s researches, found the same 
to occur in the case of Nostoc. In Volvox globator, so far as I 
have been able to investigate it, I believe that a similar continuity 
exists. 

1 Schmitz, loc. cit. 
2 Perceval Wright, loc. cit. The name was first employed by Archer. See his 

paper ‘On the minute structure and mode of growth of Ballia callitricha,” Trans. 
Linn. Soc. ser. 2, 1. p. 211. 

3 Wille, Ber. Deutsch. Bot. Gesell. 1. 1883. Wille also finds a nucleus in the 
cells of Tolypothrix lanata, thus confirming Schmitz’s discovery of the presence 
of a nucleus in the Phycochromaceae. If Guignard’s statement with regard to the 
nucleus of the sieve-tubes of Vitis be confirmed (Bull. Soc. Bot. France, XXvIitt. 
pp. 332—333, 1881) it can hardly be doubted that a nucleus is present in every 
living cell whatsoever. 
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(2) On the Head Kidney of Bdellostoma. By W. WELDON, 
B.A. 

The structure known as the “head kidney” was stated to con- 
sist of a bunch of branched tubules, opening on the one hand into 
the pericardium, and on the other into a central duct, which had 
lost its primitive connection with the segmental duct. At its 
posterior extremity blood was stated to enter the duct by means of 
vessels passing from a glomerulus. 

The whole organ was compared to the suprarenal bodies of 
higher vertebrates, and it was suggested that the evidence at 
present obtaimed as to the embryonic development of the supra- 
renals rather confirmed than disproved the view that they were 
derived from parts of the primitive kidney. 

Functionally, an attempt was made to compare the suprarenals 
of vertebrates with the glands always found, in one form or another, 
in connection with the circulatory system of invertebrata. 

(3) On the early stages in the development of Balanoglossus 
Aurantiacus. By W. BATEson, B.A. 

The author stated that through the great kindness of Dr W. K. 
Brooks and the Council of Johns Hopkins University he had been 
permitted to work during the past summer at the Chesapeake 
Zoological Laboratory. He had thus been able to observe some 
larval stages of Balanoglossus Aurantiacus (?sp.). The develop- 
ment of this form from the egg was stated to be a direct one, no 
form at all comparable to Tornaria being passed through. The 
gastrula was anal, and the mesoblast arose as five archenteric diver- 
ticula, while the central nervous system was described ‘as being 
formed by the delamination of an epiblastic plate in the median 
dorsal line.’ A brief comparison was made between the structure 
of this larva and that of Tornaria and the Echinoderm larve on 
the one hand and with the early development of Amphioxus on 
the other. 
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February 25, 1884. 

Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society: 

A. R. Forsyth, B.A., Trinity College. 
W. J. Ibbetson, B.A., Clare College. 

The following communications were made to the Society: 

(1) On the sum oy the dwisors of a number. By J. W. UL. 
GLAISHER, M.A., F.RS 

§1. Denoting by ¢ (n) the sum of the divisors of n, it was 
proved by Euler that 

a(n)—o (n—1)—c(n—2)4+0 (n—5)4+0(n—7)—... =0, 

where 1, 2, 5, 7,... are the pentagonal numbers given by the 
formula 4r (8r+1). The series is to be continued until the 
arguments become negative and the term o (n—2n) or o@ (0), when 
it occurs, is to be replaced by n. 

The term o(n—n) occurs only when n is itself a pentagonal 
number, and if we make no convention with regard to the meaning 
to be assigned to o (0), but suppose it to have its proper value 
zero, the theorem becomes 

a(n) — a(n —1)—o(n—2)+0(n—5) +o(m—-7) -... 

=0 or (-1)"n 

according as 7 is not, or is, a pentagonal number 4r (3r + 1). 

This is the form in which the equation arises as the result 
of the process by which Euler obtained it. In the second case 
when n=9r(3r+1) the mare on the left-hand side of the 
equation contains the term (—1)"a(0), and by conventionally 
defining o(n—m), when it occurs, to denote n, we obtain the 
theorem in the first form, which is that in which Euler preferred 
to enunciate it. This theorem was the first one of its kind 
discovered, and it appeared to Euler to be of the very highest 
interest, as it afforded a method of calculating the sum of the 
divisors of a number (and thus also a means of deciding whether 
it was prime or not) by the sole aid of operations which have no 
relation whatever to the divisors themselves*. 

§ 2. Kuler deduced his formula from the equation 

(1 —#)(1—a#’) 1-2’)... =1l-w#-a +a 4a" -—a"—2* + &e. 

* ¢¢Observatio de summis divisorum,” Opera Minora Collecta, Vol. 1. pp. 146— 
154. 
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and, by applying his process to Jacobi’s equation, 

{(1 —a#) (1— 2’) (1—a*) ...}P=1— 324 52° — 7a’ + 92” — &e., 

in which the exponents are the triangular numbers given by 
the formula $r (r +1), we find that 

o (n) — 380 (n—1) + 5a (n—3) —To (n— 6) + 9o (n —10)-... 

=0 or (-1)4r(r4+]1) (2r+1), 

according as n is not a triangular number, or is a triangular 
number 4r (r +1). 

Thus, for example, if n =9, which is not a triangular number, 
the formula gives 

o (9) — 3a (8) + 5a (6) — To (3) =0, 

that is, 13-—8x154+5x12-7x4=0; 

and if n=10=4x4x5 so that r=4, 

it gives 

o (10) —80 (9) +. 5a (7) —To (4) =(—1)P 4 x 4x5 x 9, 

that is, 18—3x138+5x8-—7x7=-— 30. 

The quantity 17(r+1)(2r+1) is the well-known expression 
for the sum of the first 7 square numbers; and, if n=4r(r+1), 
the number of terms on the left-hand side of the equation is r. 
In general therefore when n is a triangular number, the series 
is numerically equal to 

De OF EO! eck Ts 

where 7 denotes the number of terms it contains, and the sign 
is the same as the sign of the last term. Thus, for example, 

o (10) — 30 (9) + 5a (7) — To (4) =— (1° 4+ 2? 4-38? + 4°), 

This is however a merely curious form in which the result 
admits of being exhibited, but by adopting a convention of a 
similar kind to Kuler’s with respect to the meaning to be assigned 
to o (0) we may enunciate the theorem in a form which is very 
convenient in use and in which the right-hand member is always 
zero. For when the right-hand member of the equation is 
(—1)"* tr (r +1) (2r+1), the expression on the left-hand side 
contains the term (—1)’(2r+1)c0(n—n). If then instead of 
putting o(n—n)=a (0) =0 we replace it by 47 (r +1), the right- 
hand member of the equation becomes zero. Now in this case 
n=4tr(r+1), so that in fact we replace o (0) by gn. Thus we 
have, for all values of n, 

o (n) —80 (n—1) + 50 (n— 3)—To (n—6) +... =0, 
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where o (0), when it arises, is defined to denote in. For ex- 
ample, 

o (10) — 3c (9) + 5a (7) — To (4) +9 x 19 =0. 

§ 3. The following formula, which is of the same kind as 
Euler’s but in which is restricted to be of a particular form, 
was obtained by means of Elliptic Functions*. 

If n be of the form 8m +7, then 

o (n) — 2a (n — 4) + 2c (n— 16) — 2c (n— 36) +... =0. 

For example, let n = 55, the formula gives 

o (55) — 2o (51) + 20 (89) — 20 (19) = 0, 

that is, 72 —2.x 724256 —2 x 20=0. 

In this formula o (0) cannot occur. 

§ 4. The formule given in the preceding sections are in- 
teresting, if only for the reason mentioned by Euler; but for the 
actual calculation of a table it is preferable to employ the 
equation 

a (n) =a (m,) o(n,) 7 (n,) «5 
where ,, ”,, ”,..are prime to one another and n=n,n,n,.... 
They would be useful in verifying a table of a(n), but, as the 
intervals between the terms are unequal, the verification afforded 
is not systematic, and it is not obvious how to apply them in order 
to verify by their means all the numbers in a table. 

In seeking for formule which would afford a more complete 
verification of a table of a(n) I obtained also the following four 
formulee : 

(i) 
If n be even, then | 

o (1)o(n—1) + cB) o(n — 3) +0 (5) o (n—5) to (n—-1)o(1) 

= ix sum of the cubes of those divisors of n which have uneven 

conjugates. 

For example, putting n = 6, 

o (1) a (5) +0 (3) o (3) +o (5) o (1) = 5 (6 + 2°), 
that is, 64+16+6=4x 224, 

* Quarterly Journal of Mathematics, Vol. xx. p. 121. 
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(ii) 

If m=2n+1, n being unrestricted, then 

no (m) + (n— 5) o (m—2) + (n—15) o (m—6) 
+(n — 30) o (m—12)+...=0; 

the differences between the arguments in the successive terms 
being the even numbers 2, 4, 6,8... and the differences between 
the successive multipliers being the multiples of five, viz. 5, 
10,15.... The series is to be continued until the arguments 
become negative, and there is no convention with regard to oa (0), 
which, when it occurs, is to have its proper value zero. 

For example, let n =7 so that m=15; the formula gives 

To (15) + 20 (13) — 80 (9) — 230 (3) = 0, 

that is, 7x 244+2x14-8 x 13-23 x 4=0. 

(111) 

If m=2n+1 and p=4n +1, n being unrestricted, then 

We (p) +h (p —8) + Wh (p — 24) + Ww (p—48) +... 

= af (m) + 2yp (mm — 2) + Bap (0 — 8) + 2p (ma — 18) + 
the numbers 8, 24, 48... being of the form 4r(r DE a 2, 
8, 18... being the doubles of the squares. 

As an example, let n=2; then m=5, p =9, and the formula 
gives 

v (9) + (1) = (5) + 2 (8), 
that is, 1341 = 6 + 8. 

(iv) 

If m=2n+1 and r=4n+3, n being unrestricted, then 

A {ap (m) + he (m — 4) + (mm — 12) +h (im — 24) +... } 

= (r) + 2p (vr —4) + 2 (r — 16) + 2h (7 — 36) + 

the numbers 4, 12, 24... being of the form 2r(r+1) and 4, 
16, 36... being the even squares. 

Taking, as in (ii), n=2, we have m=5, r=11 and the 
formula gives 

4 ie (5) + (L)} =v(Ld) + 2p); 
that is, 4{6 +1} = 12+416., 
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The formula (i) affords a verification of all values of o(n) with 
uneven arguments up to any limit and is very complete; but the 
multiplications required in the calculation of the terms are labori- 
ous. I used this formula to verify the portion from n=1 to n= 500 
of the table of o(m) communicated to the Society on January 28. 
The other three formul* are in no respect preferable to Euler's 
formula. 

§ 5. Since the Meeting in January I have obtained the fol- 
lowing curious formula which serves to express a(n) in terms of the 
o’s of all the numbers inferior to n, and thus affords a perfect 
and easy verification of a table of a(n). 

If x be any number, then 

a(n) 

— Qo (n —1) — 20 (n—2) 

+ 30 (n—3) +30 (n — 4) + 30 (n— 5) 

— 4c (n — 6) — 40 (n— 7) — 40 (n—8) — 40 (n—9) 

+B. (1; = TO VAP a. tenn nandesslmsen els sateen ae eee 
@eceeesec ore oo see ose eoFeeeooLesesoeeoFoTEF OTF OSLO E EFCC OHO OB HOE TORO Ee OO 

=(-1)'46°-9, 
where s denotes what the coefficient of o(0) would be if the series 
were continued one term further. Thus s=r unless the term 
(—1)"*re (1) 1s the last of the group for which the coefficient is 7, 
and when this is the case, s=r-+1. 

The expression on the right-hand side of the equation 

=(—I'g—-Ds@t)) 
and is thus obviously an integer. It will be noticed that the 
value of the series is the same for r consecutive positions of the 
last term, ¢.e. the value of the series is the same if the term in- 
volving o(1) is the last of the group having r — | as coefficient or 
is any one except the last of the terms having , as coefficient. 

For example, putting n = 5, 6 and 7, we have 

o(5) 
— 2{o(4) +0(3)! 

+3 {o(2)+o(1)} SG) = 2) 

* The formule (i) and (ii) were published in the Quarterly Journal of Mathe- 
matics, Vol. x1x. pp. 216, 222 (June, 1883). Since this paper was read the proofs of 
(iii) and (iv) have been published in the Quarterly Journal, Vol. xx. p. 118. 
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a (6) 

— 2 {a(5) +o (4)} 

+3 {o(3)+0(2)+o(1)} =(— 1g —4), 

o(7) 

—2 {o (6) + 2(5)} 
+3 {o (4) +¢(38)+¢(2)} 

— 4c (1) =(-1)°4 (4-4) 
that is, 6-2{ 7+4443 {341} = —4, 

12—2{ 64+7}4+3{44+341} =10, 

8-2 {124+ 6}+3(74+44 3} —4=10. 

The expression 1(s°—s) is equal to the sum of the first s—1 
triangular numbers so that the series is always numerically equal 
to the sum of the triangular numbers which do not exceed n. 

If the series were continued one term further the next term 
would be (—1)**sc(0), and if we put o(0)=4(s°—1) this term 
becomes (—1)™*1(s°—s). We may therefore, by employing a 
convention of the same kind as Euler’s, enunciate the theorem in 
the convenient form 

o (n) 

— 20 (n—1) — 20 (n— 2) 

+3o (n—3) +30 (n —4) +80 (n—5) 

weer eee eee ese eee eos esse ee esse eoseeneeoreseneseeeoeesseeroseses 

where o (0) is defined to denote 1(s’—1); s being the coefficient 
of o (0). 

The table of o(n) up to n= 3000, which was referred to at the 
end of the last section, will be verified by this formula during its 

_ passage through the press. 

§ 6. I have obtained also the following formula which is of 
the same class. It does not however afford so complete a verifica- 
tion of a table as that given in the preceding section, as certain 
terms are omitted; and, further, as all the coefficients are +1 
there is more chance of a compensation of errors. 

VOL, V. PL IL 8 
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If P denote the expression 

o (n) 

—a(n—2)—o(n— 3) —a(n—4) 

+a(n—7)+o0(n—8) +o(n—9)+o(n—10)+e(n—-11) 

= G (= 15) — a rack tetnnewsias wetnase tac ck dase eee eee EEE 

where between the groups of one, three, five, seven,... terms 
having alternate signs there are gaps of one, two, three, ... terms, 
and the series is to be continued as long as the arguments remain 
positive, the term o (0) being included when it occurs but having 
the value zero; then, if o (0) occurs as a term, 

P=(-1)"3r(r+1); 

where rv denotes the number of terms omitted in the gap preced- 
ing the group of terms in which o (0) occurs, and, if o (0) does 
not occur as a term, 

Hi) (@ei)); 
where v denotes the number of terms omitted in the last gap in 
the series. : 

For example, putting » =7, we have 

o(7) 

—o(5) —a(4) — (8) 
+ (0) =—3x2x3, 

that is, 8-—6-7-44+0=-9. 

In this case r, the number of terms omitted between o (3) and 
a(0), —2: 

Putting n = 8, we have 
a (8) 

— a(6)—a(5)—o(A) 

+o(1)+¢(0) =—3x2x3, 

that is, 15—-12-—6-7+1=-—9, 

yr being equal to 2 as before. 

Putting n = 6, we have 

o (6) 
BE) SO GE) SG) == 4, 

that is, 12—7-—4-—3=- 2, 

for here, r, the number of terms omitted between o (6) and o (4),=1, 
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Similarly, : 
o (12) 

—o (10) —o (9) —a (8) 

+a(5)+o (4) +¢(3) +¢(2) +o (1) =3, 

thatis, 28—-18—13—15+6+7+4+3+1=3, 
the number of terms omitted between oa (8) and o (5), being 2. 

Thus, when o (0) occurs, P= (—1)"'2 r (r +1), and when (0) 
falls in a gap and does not occur, P= (— 1)’(r+1). In both cases 
r denotes the number of terms omitted in the last gap. 

If we define «(0) to denote $(r+1)(3r+2) where r is 
the number of terms omitted in the last gap we have, for all 
values of n, : 

P=(-y(r +0), 
and this is perhaps the most convenient form in which to enunciate 
the theorem. 

We may also express the theorem otherwise in the following 
forms : 

(i) If «(0) occurs, and if s be the number of terms in the 
complete group to which it belongs, then P =(—1)#6*) 3(s’—1): 
if « (0) does not occur, and if ¢ be the number of terms forming 
the gap in which it falls, then P = (—1)*"t. 

(ii) If we define o (0) to denote n, and if A and B denote the 
numbers of positive and negative terms in the series, not counting 
a (0) as a term, then P= A — B. 

Taking the same examples as before, we have, from (11), 

o (7) —o (5) —o (4) —0 (3) +. ¢(0) = 1-3, 
that is, 8-—6-7-44+7=-2; 

o (8)—a (6) —0 (5) —o (4) +001) +0 (0) = 2-83, 

that is, 15-—12—6-74+1+4+8=-1; 

ao (6)—o0 (4) —c (38)—o¢ (2) = 1-38, 
that is, 12—7-—4-3=-2. 

§ 7. I may also notice the following formula: 
If n be any uneven number, then 

no (n) 

+2 {(n—2)o (n—2)+(n—4) o (n—4)} 

+3 {(n — 6) o (n—6) + (n—8) o (n— 8) + (n—10) o (n —10)} 

fe IP) OM (e124) Se OO ede } 
Se ee eet eset esrsseesereeese see see ete ese eee eeoeeestseseseeeseeeeseSESEeEDESESES SES EERE 
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o (n) 
+ (1? + 3°) {6 (n —2) +o (n—4)} 

+ 1? + 3 + 5”) {o (n— 6) + (~ —8) + (n—10)} 

+ (174+ 8°94 5?+ 7) (6 (n— 12) + sods ie ne och EE eee } 
@eeesteerosesceeseee es oevreetevoeseeseeostoeoeseeteeresEeoFeSosoeeeseesoeseseg 

Both series are to be continued as far as the terms remain 
positive. As an example, putting n=9, we have 

9a (9) 

+ 2 {To (7) + 5a (5)} 

+3 (80 (3) +0 (L)}. 

o (9) 

+10 {co (7) +o (5)} 

+35 {a (8)+o¢(1)}; 

that is, . 

9 x 13+ 2 {56 +30} +3 {12 +1} =13 + 10 {8+ 6} 4+ 35 {441}. 

§ 8. Ifwe denote by €(n) the excess of the sum of the uneven 
divisors of » over the sum of the even divisors, it is evident that, 
if n be uneven, €(n) =o (n); and it can be shewn that if n be even, 
and = 2’r, where 7 is uneven, then 

C(n) = — (2" — 8) a (7). 
This formula is true also when p=0O and includes the case of 

n uneven. It is evident that when is even €(n) is negative. 

The function € satisfies a relation of the same kind as Euler’s 
formula, viz. if nm be any number, we have 

G(m) + (mn — 1) + §(n—3) + (mn — 6) + (mn — 10) +...=0, or m, 
according as 7 is not, or is, a triangular number. 

If therefore we define €(n—n) = €(0) to denote —n, we have, 
for all values of n, 

E(n) + €(n—1) + €(n— 3) + €(n — 6) + €(n—-10) 4+...=0. 

§ 9. The function €(n) may be expressed in terms of the &s 
of all the numbers inferior to n by means of the following formula, 
which differs from the o-formula in § 5 only in the signs of the 
terms, which are all positive, 
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If n be any number, then 

¢(n) 
+ 2€(n—1) + 2¢(n— 2) 

+ 3¢(n—3) +36 (n—4) + 36 (n —5) 

fe AG (AO) ete agetonatae neater ss nates ning ais ontdiat ti 
Peete ee seeses sees sees eeeseseseser2Feeseseseoseseee essere seseD 

ra (s° ay s), 

where, as in § 5, s=r, unless ra (1) is the last term of a group, in 
which case s=r+1. 

As examples of the formula we find, putting n= 5 and 6, 

§ (9) 
+2 {8(4) + £(3)} 

+ 3 {5(2) + = 5 (3°— 3), 
¢ (6) 

+ 276 (5) + (4)} 
+316 (3) + €(2) + o(1)} = 3 (4°—4); 

that is, 64+2{-5+4}4+3{ -14+l}= 4 

—44+2{ 6—514+3 {4-141} =10. 

If the series be continued one term further so as to include 
the term sf(0), and if we define € (0) to denote —4(s?—1), we 
may replace the right-hand member of the equation by zero. 

§ 10. If we denote by A (mn) the sum of the uneven divisors 
of n and by D(n) the sum of the even divisors (so that D (n) is 
zero when n is uneven), then 

o (n) = A(n) + D(n), 

€(n) = A(n) —D(n), 

and, by addition and subtraction from the formule in §§ 5 and 9, 
we find that, n being unrestricted, 

A (n) 

— 2D (n—1) — 2D (n—2) 

+ 3A (n—3) + 3A (n—4) + 3A (nr —5) 

= AD) CeO ae alate autuin }< 2h yds caiieleeinwe site toy 

Poe OFGtasereF OF SSFOBEFSeFOETFTHT OHHH eet eeseeoerorsosevroeveHeeeaESS 
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D (n) 

— 2A (n—1) + 2A (n— 2) 

+ 3D (n—3)+3D(n—4)+3D(n—5) 

COHRFHE ROLE HLHO LFF LEFF OOF LOOoE TOE EHO ETFETOOOOO EH HOO HES EOE O OE OEE EEO CE 

The argument 0 is to be included in both formule, and we define 
A (0) to denote 0 and_sD (0) to denote s. 4 (s’—1) =} (s*—s). 

For example, putting n=5 and 6, we have 

A(5) 
— 2D (4) — 2D (8) 

+ 3A (2) + 8A (1) + 8A (0) =0, 

that is, 6—12-—04+3+4+3+0=0; 

D (5) 

— 2A (4) — 2A (8) 

+ 3D (2) + 3D (1) + 3D (0) =0, 

that is, 0-2-—8+6+0+4(3?—3)=0; 

A (6) 

— 2D (5) —2D (A) 

+ 3A (3) + 3A (2) + 8A (1) 

~4D (0) =i 
that is, 4—-0—12412+4+34+3-43(4-4=0; 

D (6) 

— 2A (5) — 2A (4) 

+ 3D (3) + 3D (2) + 3D (1) 

— 4A (0) i; 
that is, 8—12—24+0+4+6+0-0=0. 

§ 11. The function which expresses the excess of the number 
of divisors of » which have the form 4m-+ 1 over the number of 
divisors which have the form 4m +3 satisfies a relation so similar 
to the o-formula of § 5 and the ¢-formula of §9 as to be deserving 
of notice in connection with these two formule. 

Denoting this function by H(n), we find that, m being un- 
restricted, 
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Ei (n) 

— 2H (n—1)+2H(n—2) 

— 3H (n—3)+3H (n— 4) -—38EH (n—5) 

eo W041) —(9))) cS 7 SOR ROUOGAODENS Ope ann Or nC OOrROO: 

=(0 or (-1)"" 4s, 

according as s is uneven or even, s having the same meaning as in 
§$ 5 and 9, 

§ 12. Corresponding to the ¢formula in §8 we have the 
formula 

E(n)—E(n—1)+ FE (n—8)-—E(n—6)+H(n—10)-... 

=0 or (—1)" x ${(— IBV 89-48 x /(8n + 1) -— 1}, 

according as n is not, or is, a triangular number*. 

§ 13. The three corresponding formule of §§ 5, 9 and 11 may 
be enunciated in a uniform manner as follows: 

If n be any number, then 

(1) 
a (n) 

— 2a (n— 1) — 20 (n — 2) 

+ 3c (n— 3) +30 (n —4) +30 (n — 5) 

Ss Ateg (C20 yO) sooo )ofols oioars sieynis sniseinir nese seme ots = So'= 

where a (0) denotes 4(s*— 1). 

(1) 
§ (n) 

+ 2¢(n—1) + 26 (n—2) 

+ 36 (n—3) + 36 (n — 4) + 3¢(n — 5) 

where o (0) denotes — 4 (s’ — 1). 

* The formule in §§ 11 and 12 are proved in a paper on the function E (n) 
communicated to the London Mathematical Society on February 14, 1884. 
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(111) 

Ei(n) 

— 2H (n—1)+2E(n— 2) 

— 3H (n—3)+ 3H (n—4) — 3H (n—5) 

Sep EN as O)) earn serch seca ccas eres Secereteee ofasrseene 

wfc Sane etyaee ne ek OR apenieretae vals i +(—)"sH(0) =0, 

where £ (0) denotes $ or 0 according as s is even or uneven. 
In the c-formula the groups of terms have alternately positive 

and negative signs, in the €-formula all the terms are positive, in 
the H-formula the signs of the terms are alternately positive and 
negative. 

(2) On primitive roots of prime numbers and their residues. 
By A. R. Forsytu, B.A. 

(3) A comparison of Maxwell's equations of the electro- 
magnetic field with those of Helmholtz and Lorentz. By RK. T. 
GLAZEBROOK, M.A., F.R.S. 

The equations of the Electromagnetic Field have been de- 
veloped by Maxwell (Electricity and Magnetism, 11.) on the one 
hand and by Helmholtz (Borchardt’s Journal, Bd. Lxxit. Ueber 
die Bewegtingsgleichungen der EHlectricitdt) and H. A. Lorentz 
(Schlémilch Zeitschrift, XX11.) on the other, starting from somewhat 
different standpoints. The object of the present communication 
is to give a comparative account of the two theories in the 
endeavour to discover the fundamental differences which lead 
to the different results actually arrived at. 

According to Maxwell, when electromotive force acts on a 
medium, electric displacement is produced through it, the medium 
being polarized, and if P be the total electromotive force in the 
direction of the axis of x, the medium being isotropic, f the 
electric displacement and A the inductive capacity, we have 
f= KPlAr. 

Suppose we take any section of the medium normal to the 
axis of «; then we know we can distribute electricity over that 
section so as to produce at any point of it the actual resultant 
electromotive force normal to the section, 7, the electric displace- 
ment, will be the surface density of the electricity so distributed 
and to quote Maxwell (Klectricity and Magnetism, Vol. 1. § 62) 
“Whatever electricity be, and whatever we may understand by a 
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movement of electricity, the phenomenon which we have called 
electric displacement is a movement of electricity in the same 
sense as the transference of a quantity of electricity through a 
wire is a movement of electricity.” 

Helmholtz considers the electric polarization set up in the 
medium by the electric force. 

Each element of the medium becomes polarized, opposite elec- 
tricities shewing themselves at the opposite ends. 

Let us suppose that in the element of volume dv there are 
two quantities 4% and — # of electricity at a distance s apart, 
these two quantities having each been moved the distance $s by 
the action of the force. Then, according to Helmholtz, we may 
call Hs the electric moment of the element, and the ratio of the 
electric moment to the volume of the element is the intensity of 
the electric polarization in the element in the direction of the 
resultant force. This intensity of the polarization can be resolved, 
and if &, », € be its components then Helmholtz puts =eP. 
P as before being the electromotive force and ¢ the dielectric 
constant of the medium. 

To compare the two theories it becomes necessary then to 
determine the relation between f and & The quantity & like f 
is a surface density, being the surface density of the electricity 
induced by the action of the electromotive force on the face of 
the element normal to Ox, while 7 as we have seen is the surface 
density of a distribution which will produce over the same surface 
the actual force. 

Now according te Maxwell, if V be the potential at any point 
in the dielectric and p the density of the free electricity, then 

Ky’ V +47p=0, 
h =(2) + £) + al 

where Vice ae Gr = , 

According to Helmholtz, 

(1 + 47re) VV + 4arp = 0. 

The potential due to a quantity of electricity H placed at a 
point in the medium at distance r is on the two theories, 

E/Kr and Ej(1 + 47) r. 

Thus we see that K=1 + Are, 

76 1+ 47re 

and ies dre” Are S 

We may compare these equations with those in Poisson’s theory of 
induced magnetization (Maxwell, Vol. 11. § 426, etc.). 
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Calling « the coefficient of induced magnetization, A, B, O 
the components of magnetization, a, 8, y components of magnetic 
force and a, b, c of magnetic induction, we have 

A=ka, etc., 

a=at 4nd =a(1+ dre) =a +20) ; 

Thus &, 9, € correspond to A, 6, C; 4af, 47g, and 47h to a, b, ¢ 
respectively, so that if we call 47f, etc. the components of the 
electric induction, we may say that Maxwell’s equations deal with 
the electric induction, Helmholtz’s with the electric polarization 
produced by the given electromotive force. Moreover w the mag- 
netic inductive capacity of the substance is related to « the 
coefficient of induced magnetization in the same way that K the 
electric inductive capacity is related to e the coefficient of induced 
electric polarization, for we have 

wm=1+ 4k, 

and K=1 +4 4rre. 

With this understood then it is clear that the two equations 

are perfectly consistent. 
The value of P depends in part on the electromagnetic action 

of the medium. Now Helmholtz uses electrostatic units through- 
out and therefore has to multiply the terms in P which arise from 
the electromagnetic action by a constant A® such that A expresses 
the number of electromagnetic units in one electrostatic unit of 
current. If we suppose throughout that our quantities are 
measured in electromagnetic units we may put A=unity; we 
shall do this throughout. t 

We have now to consider the electromagnetic effects produced 
by the currents and magnets in the field. 

Helmholtz treats the two separately; according to him the 
effects of the currents depend on three quantities U, V, W satisfy- 
ing certain equations which will be referred to again shortly, while 
the effects of the permanent magnets depend on three other 
quantities Z, M, N to be further defined in the sequel. 

According to Maxwell, on the other hand, the electromagnetic 
effects at any point depend on the electro-kinetic momentum at 
this point, and this we may write 

dx dy dz 
PatGa +e. 

We may, in order to compare this with Helmholtz, also divide 
F, G, H into two parts F, and F,, etc., where /,, etc. arise from 
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the action of currents, F,, etc. from the direct action of magnetic 
bodies. If we adopt Ampére’s hypothesis that magnetism is due 
to molecular electric currents, the terms in J, etc. disappear. 

The electromotive force at the point parallel to the axis of a 

ay at, According to Helmholtz 
di dt- eure 

the part of the electromotive force which arises from the action of 

be so that 

1s -- = which is equal to — 

the currents is — 

Again, let F, arise from magnetism distributed throughout 
space in such a way that its components at w’, y’, 2’ are A, B,C, 
let p be the reciprocal of the distance between two points whose 
co-ordinates are #, y, z and a’, y’, 2’. Then (Maxwell, 1. § 405) 

d, HONE ares: R= |[|(BB-o gf) eeay ee, etc. 

Hence if we put L=fffApdwdy'dz’, M =etc., N =ete., 

dM dN 
we have Ferman 

ma ~ = Gn | 
at Sidi lay YZ) 

This agrees with Helmholtz’s expression just referred to for the 
part of the E. M. F. which depends on magnets. 

Again, to find the magnetic force due to this let a, 8, y be the 
components of the magnetic force, a, b, c of the magnetic induction 
and y the magnetic potential. 

Then, we have 

xo (ie dz dy ° dz 

and pre OR dG 

: ie dy dz 
mea dG dH dG. 
Gh TGR hy Be 
o Wal WE, d/diL dM dN 

~ dy teas ay ae) VE 
dH, dG, dy 
Wagers ae 0. 
dH, dG yee mieten SG tan ame ce hatncisy s actesarala (3), 
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if a, denote the magnetic force due to the magnetization. Ac- 
cording to Helmholtz the magnetic force is expressed by 

av aw, 
dz dy 

a, being as above the part due to magnetization and U, V, W the 
quantities already referred to, and these are consistent with the 
equations J’, = wU, ete. derived from (2) by integrating and omitting 

2? 

a function of the form oe where ) is independent of the time. 
da 

Moreover a,, etc. being derivable from a potential function, — 
we have 

dy G8\ _d (dl, @G, dH) _—. Hay ae PG dy z) ve ae = i _ ye (4), 

if pe ees 

But according to Maxwell, Electricity and Magnetism, It. 616, 

dy d dd u(- Dav We. ..... (5), 

with two similar equations if 

_aF dG dG dH 
~ da dy * dz 

Also from the values of Ff, G,, H, it follows that 

dF, dG ah 
de dy dz ‘ 

0 Pee MPR Go conb no so500 (6) 

Hence from (4), (5) and (6) we have 
Vet i Viel Se PRA ERP CROSS OSG o0%00020 (7). 

Thus on either theory we have satisfied the three equations of 
which the type is 

(Z- a dd, va 
FRE e 

or introducing the U, V, W of Helmholtz’s notation 

dy d8_ d/dU, dV Sie 3 

dy dz oer Taina de) al 
PeceoveteccecssGevsasHoHGseansrcsseseseaeccosoaseeoooosend 
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Moreover the expression for the electromotive force which arises 
from electromagnetic induction is the same on the two theories, 
being according to Maxwell given by equations of the type 

a aaa 3 aM. = ta ae fess silint ae es (8), 

and according to Helmholtz in a magnetizable medium 

dU d/dN dM P=- 0+ 5 (ay ae) Pie liat alee (9). 

The two equations are identical and may be written 

dF 
P=- Fe 

Before however we can solve the problem completely we must 
know the relation which exists between the values of / G, and H, 
or U, V, Wand the current at any distant point. 

Let u, v, w be the components of the total electric current at 
any point. Then since /, G, depend on the action of the distant 
current it is clear that there must be some relation between them 
and the values of wu, v, w. If we are considering the whole 
electro-kinetic momentum round a closed curve we know the form 
of the equation which expresses the connexion—for if 7 be the 
current at any point distant r from the point considered and e the 
angle between do an element in the direction of 7 and that of an 
element ds of this closed curve, then 

[Rae + G,dy + Hd = pfs dsdo 

Helmholtz starts from this and by means of some transformations 
arrives at the equations 

a’ 
2 — —_— —_——_—_ — 7 OE k) a ATU... 

(or in our notation) ete. 
a? 

vf, =h(1--) aaa ATG MUU tenet wa san nes rae (10), 

etc., 

k being a certain constant and ap defined by the equation 
dt 

du dv dw_ 1 _,d® 
da’ dy' dz 4a’ dé 
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From (10) and (11) we have by differentiation 

dF, dG, , dA, _ ad 
J=J,= arate Schad - pk aa erred) 

an equation which can also be obtained directly from the values of 
fF, G,, H, found by Helmholtz; and since 

Jest, Willa iit. 

Helmholtz’s fundamental equations may be written 

aii a5 7h Gis = Amr pu see eter eer eeees (13), 

ete. 

ee a ldJ 
Vv F- = =—Arpu kdg (14) 

ete, 

ete. 

Also differentiating these with reference to a, y, z and adding 

du 4. dv _ dw m 1 
da dy dz Aapk 

Maxwell’s equations differ from these. According to him we have 
instead of (15) 

Vy = 0s eee (16). 

dy dp _ 
Dy Se Arey. ios vice ee (17) 

a’? 
oe 7 Fh 0, etc., 

and therefore a = ((), 

Hence either J=0 or k=~—. 

If J is not to be zero then to make Helmholtz’s theory coincide 

with Maxwell’s we must put =o and o = =(. According to 

Helmholtz the two agree ifk=0. We shall have to return to this 
point again. 

Tn order to proceed further we require to evaluate P, Q, & the 
components of the electric force in terms of the other quantities, 
and here a further difference between the two occurs. The value 
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of P will depend partly on electromagnetic, partly on electro- 
static forces, and partly on the polarization of the dielectric pro- 

duced by these. In hoth theories we write — F fox the first part. 

Helmholtz and Lorentz denote the electrostatic part by X, the 

part depending on polarization by — = . Maxwell, assuming that 

the electrostatic forces have a potential, combines the two into one 

term == In cases in which the assumption is true the two 

methods should lead to the same result. 

We shall however for the sake of convenience in the future 
work put © and not ©@ for the potential of the forces produced by 
the polarization and write 

remembering that according to Helmholtz Q =, while Maxwell 
treating only the case in which X, Y, Z are derivable from a 
potential puts generally, 

Then we may state that the values of P, Q, & in the right-hand 
sides of the two sets of equations 

&= ef, ete., 

K 
Wie Ps etc., 

are the same in form though the equations which connect F, G, H 
with the components of the current are different. 

And this brings us to another distinct point of difference. 
According to Maxwell the components of the current in a di- 
electric are f, g, h, according to Helmholtz they are &, %, & 

Hence taking Helmholtz’s supposition first, we have from 
(15), (1) and (18), 

dy df Do _ ay dP 

op Ge dae fo ae 
d/l dO 

=—4me 5 (Ge + ae ~X) seve cee cereeesncee ig) 

CLCic draenei ewe es 

and two similar equations. 
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From these we obtain by some simple well-known transfor- 
mations, 

da 1 F 
dé = Ar pe VG alee cles viciniesieie oleleleisialelefate (20). 

ete. 

Thus the magnetic force is propagated as a wave with velocity 

ve Arr we’ 

and it can be shewn that the direction of the force is in tine plane 
of the wave. 

This is Helmholtz’s result. 

According to Maxwell we have /, g, h as the components of 
the current, so that instead of (19) we obtain 

dy dp d@ 
0B ee 

dP ~a (dF dQ® ; =KG=--KGlata-*) eat (21), 

and equations (20) become 

Ti Clos a i 
dé = wkY Cis odccn0dDGDODOaDUADOUODOODO (22), 

so that the velocity of propagation of the disturbance is af = 

instead of A 207 
Arr we 

This is the result which follows from Helmholtz’s theory on 
Maxwell’s supposition as to the value of the current. 

The different expressions obtained on the two theories for the 
velocity arise solely from the different assumptions made as to 
what is a current in a dielectric, and are independent of the 
value of the unknown constant &. Again, keeping to Helmholtz’s 
elas as to the current, we have 

vt a o — Ampé eid 

4 OF COP GWA 

=r piae eo dadt dt 

Differentiate with reference to x, y, and z and add, then 

3 d Jot a (2s aNd YGF, 
Vd = 4arpke Ea A \v QO - ee + i te dt yeh (24). 
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Now it is from this equation modified by the suppositions that 

QO = ®, and that a (= + ae =) =0, that Helmholtz obtains 
di \da dy dz 

his normal wave. 

For the equation expressed in terms of J then becomes 
2 

Arr puke c= (1 + 47re) WS... (25). 

Hence J and therefore ®, since J = — wk = , travel with a velocity 

(1 + 4:re) 

Anke © 

This agrees with Helmholtz if we remember that in a magnetic 
medium of magnetic inductive capacity mw he replaces & by k/u. 
Thus the existence of a longitudinal wave travelling with this 
velocity depends on the fact that Helmholtz assumes that ® is the 
potential arising in the dielectric from the polarization; if we do 
not make this supposition then equation (24) gives us, omitting as 
before, the terms in X, Y and Z, 

Doe elie ys aaa 
RARE ae atovakevcyevavalejeve ostecctevehavatere (26), 

ime) 1 
or vy O=pk a oy Tea US ee re aie (27). 

If we adopt Maxwell’s view as to the current we must distin- 
guish thus between ® and ©, for ® is then the potential due to 

roatter of density — (e + up + ol while © is that due to matter 
dz “dy dz 

dé dn , at of density — a ae 

‘We arrive at Maxwell’s case by putting 

d® 
® = 0 and — ph =i, 

and then the relation between © and J becomes 

Gee adel: 
dt V Oo =>_— dE miovalohovolelarcteveletotetelonevereverctorey (28). 

This corresponds to Maxwell’s equation 8 (Hlectricity and Magnet- 

asm, I. 783), for since a, son SO 

V7 = WF Ste Os (29). 
* In Maxwell y? has the opposite sign to that with which it is used here. 

MOI Ve PANT: 9 
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Now Maxwell concludes that y’V is proportional to the volume 
density of free electricity. This is of course the case if there is no 
electromagnetic induction, but when it exists we have (p being the 
volume density) on his theory 

Cath Sale da.) Kf, an et ee ie oe dg) cc (30). 

and if we suppose with Maxwell that, the medium being an in- 

sulator, = =0 we get 

dN eld) 
di oawne\ de 

exactly the same equation as that which flows from Helmholtz’s 

theory by putting D=0 and — pk = =, 

We have already noticed that Helmholtz states that his theory 
reduces to Maxwell’s by putting &=0. He arrives at this result 
by considering the normal wave which does not exist on Maxwell’s 
theory, and states that according to Maxwell its velocity is infinite. 

The comparison between the two theories shews us that they will 

be reconciled if we put ome 0 everywhere. If it be a part of 
dt 

: ® 
Maxwell’s theory that J should not be zero, then since J = — pk ee 

dt 
we must have & infinite and not zero, and we obtain Maxwell’s 
relation between J and 0; while the normal wave of Helmholtz’ 
theory disappears, its velocity becoming zero. 

If however we assume that J=0 is an essential condition of 
Maxwell’s theory the two are reconciled independently of the 

value of k by the supposition that = =0 and the normal wave 

depending on ® disappears. 

[Note added August, 1884.] 

Since the above was in type Mr J. J. Thomson has pointed 
out to me that the supposition k= will make the action, on 
Helmholtz’ theory, of one element of current on another infinite. 
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For this action depends on the value of 

= [cos (ds, do) + cos (r, ds) cos (r, do) 

+ k {cos (ds, do) — cos (r, ds) cos (r, do)}], 

ds, do being the elements of current and r the distance between 
them, and if & is infinite this expression is infinite also, though by 
integrating throughout a space whose boundaries are infinitely 
distant from the point considered it leads us to 

1-—k a’ il ' , / 

which on putting 2 = (0 and — pk = = J gives 

TegiGeee thei R=-_ |[[ Fo awayaz 

+ pb i | = da‘ dy'dz’, 

so that F’, is finite. 
Since however we cannot adopt an infinite value for the action 

of one element on another we are forced to conclude that to 
reconcile Maxwell’s theory with that of Helmholtz we must have 
J =0, and this condition will be satisfied, for any value of k which 
is not infinite, whenever ®=0; thus the assumption P=0 is 
sufficient for our purpose independently of the value of & provided 
at least it be not infinite. 

In this case from (26) we have £ (vO) =(, and comparing 

this with (30) we get ah =(), so that no free electricity 1s produced 

in the medium by the electromagnetic induction ; there will be no 
normal wave, and the quantity k disappears from our equations. 

From a physical point of view this condition ® =0, at least in 
a dielectric, seems the reasonable one. For ®, according to 
Helmholtz, is the potential of the electrification produced through- 
out the dielectric by the given electromotive forces. So far as we 
know it is not possible to generate electricity by induction in the 
interior of a dielectric; the distribution produced will, like that in 
the similar magnetic problem, be solenoidal, and the density of the 
electricity which gives rise to the potential ® will therefore be 
zero everywhere, and ® will be zero. 

9—2 
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March 10, 1884, 

Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

D’Arcy W. Thompson, B.A., Trinity College, was elected a 
Fellow. 

The following communications were made: 

(1) Continuation of Observations on the state of an Eye affected 
with Astigmatism. By Sir GeorGE BrpDELL Airy, K.C.B., M.A., 
LL.D., D.C.L., Honorary Fellow of Trinity College, Cambridge; 
formerly Lucasian Professor and Plumian Professor in the Univer- 
sity of Cambridge; late Astronomer Royal. 

In making and treating the observations now presented to the 
Cambridge Philosophical Society, I have used exactly the same 
simple method which I have employed on four previous occasions, 
and of which the details are preserved in the Transactions of the 
Society. ~Without entering into further particulars, I now present 
the immediate results of these observations, combined with those of 
preceding examinations, in the same form as those which are 
printed in Volume xu. Part 1. of the Transactions. I have however 
added the column of personal age, as bearing in some measure on 
the explanation of the changes. 

I. Distance from the cornea of the left eye, at which a lumi- 
nous point presents the appearance of a nearly horizontal line. 

In 1825, age 24, distance 3°5 inches; Reciprocal = -286. 
Difference —073 

Gael ovA(G. a Ne Mies foie AD cs owies Pee tte Tesi i All 
«aie te RCEE — 028 

Jin KRG, So4 CO) Sehowvahes 1 ame a SHEE LN bt 185 
eee —006 

Tiny ahs Aliens VOM Aeetee ee DoO acts. SRL Pe heN ERE P “179 
Mr Sas — O11 

TNA GSA lee Ooh etna. SOB soosee at ee aI 168 

II. Distance from the cornea of the left eye, at which a lumi- 
nous point presents the appearance of a nearly vertical line. 

In 1825, age 24, distance 6:0 inches; Reciprocal -166 
Difference —054 

Tn 1846, seg bone voce tie ro ee RE ME "112 

IGM NOR coo OD, sobanccs NOG yee Si ccna aeaenee 094 
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In 1871, age 70, distance 10:0 inches; Reciprocal 100 
Difference —029 

in a ee aT RS See ‘071 

III. Measures of the astigmatic power of the left eye at 
different epochs, estimated in each case by the differences of the 
reciprocals of the same date in the two preceding tables. 

In 1825, age 24, astigmatism = *120. 
Difference = — 019 

MES AG). 2... AD) .25sle setae em OL 
BSG ae —°010 

MMSGO (15 GO, kde. tks: ‘091 
SE Tier is fo5 fis PEAR SNT ty Wh deaeewe VUsaked — ‘012 
Mince revs iF. do. wisi ‘079 

edateti. teat +018 
MBAS SAG 5. Oy ose nice sinies ae ‘097% 

It appears probable that the measures in the second table are 
somewhat erroneous, perhaps more particularly that for 1871. It 
is not easy to make the observations at the greater distance. 

I am unable to give measures for the right eye corresponding 
to those of preceding years. A defect, which has now existed for 
many months, totally destroys vision in the centre of the field of 
view. 

(2). On the measurement of the electrical resistance between two 
neighbouring points on a conductor. By Lord Raywertau, M.A. 
(With an account of experiments by R. W. SHACKLE, M.A., and A. 
W. Warp, B.A.) 

As an alternative to the method of Matthiessen and Hockin, 
the following process may be used with good effect for the above 
purpose. It is founded upon the combination of resistances de- 
scribed in a paper upon the determination of the ohm by Lorenz’s 
method (Phil. Trans. 1883), by which a small effective resistance 
is obtained from elements of moderate and accurately measurable 
value. 

The main current y passes principally through a shunt of 
resistance a, but partly through a small resistance b and a large 
resistance c arranged in series. The terminals of a galvanometer 
of resistance g are connected to the extremities of 6. If g were 
infinite, the difference of potentials at its electrodes would be 

ab 

afb 
so that ab/(a+6+c) is the effective resistance of the combination. 
For example, if a=1, b=1, c=98, the effective resistance is ;4,, 
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and notwithstanding its smallness is susceptible of accurate deter- 
mination. Suppose now that the main current traverses also a 
German silver strip (Proc., Nov. 26, 1883) provided with tongues 
between which we require to know the resistance. It is evident 
that by adjustment of ¢ the combination may be made to give the 
same effect upon the galvanometer as the German silver strip, so 
that the required result would be readily obtained from the above 
formula. If c is taken from a resistance-box, we may find the 
effects, one greater and one less than that of the strip, corresponding 
to resistances c, and c,+1, whence the value that would give 
exactly the same effect is deduced by interpolation. In order to 
guard against disturbance from thermo-electricity the readings 
should be taken by reversal of the battery, and to eliminate the 
effects of varying current the combination and the strip should be 
interchanged as rapidly as possible. 

In practice the resistance of the galvanometer could not usually 
be treated as infinite, and the interpretation of the results is a 
little more complicated. In the case of the combination it may be 
shewn that the current through the galvanometer 1s 

aby 

g(a+b+c)+b(a+c) 
By putting a infinite, or otherwise, we see that the corresponding 
current for the strip is wy(g +4), if « be the required resistance 
between the tongues. Equating these, we find 

abg 
g(a+b+ec)+be 

This method has recently been tested in the Cavendish Laboratory 
by Messrs Shackle and Ward (see below), and the results appear 
to shew that even with so moderate a main current as ‘2 ampere, 
the sensitiveness is sufficient, the mean of a few readings being 
probably correct to zo55 1000° 

Details of the experiment by Messrs Shackle and Ward. 

The arrangement of the apparatus is given in the subjoined 
diagram. 

The battery used was a Daniell’s, an extra resistance of 2 ohms 
being inserted in the circuit. The battery terminals were con- 
nected by a reversing key as shewn in the diagram. A, B, C, D 
are mercury cups with the terminals of the standard ohms a and 
b firmly pressed into them: B and C are connected by a thick 
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copper wire. c is a resistance box of 1—200 ohms. The switch 
keys connected with the galvanometer terminals enable us to 
change the galvanometer circuit from ABG to PQG with as little 
delay as possible. 

The readings which were taken are given in the following 
table. The 1st column gives the resistance in the box ¢: the 2nd 
column gives the deflection of galvanometer to the left when the 
circuit P, Q, G is completed, and the 3rd column the corresponding 
deflection to the right when the current is reversed. The 5th and 
6th columns give the readings in similar order when the circuit 
ABG is completed. To eliminate the slight variations in the 
electromotive force of the battery the order of observations adopted 
in any row was that recorded in 2nd, 5th, 3rd, 6th columns, or 5th, 
2nd, 3rd, 6th columns: this made the total deflections correspond 
as nearly as possible to the same instant of time. 
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Current through PQG. Current through A BG. 

Defl. | Defi. 
C- | toleft. |toright. 

Defi. | Defi. 
to left. |toright. 

182 | 1805 | 221-4 |401-9 |182:5| 221-7 | 404-2 
», |181°5| 222-4) 403-9 | 183-5 | 223-4 | 406-9 
, |182 | 224 |406 184 | 224-7 | 408-7 

Total. Total. | Differences. 

Mean 403-93 406°6 2°67 

183|182 | 223 |405 183 | 223 | 406 
» |183 | 223°3)406°3 |182°5| 224°5 | 407 
» |183 | 224°7|407:7 |183-°5| 224-5 | 408 

Mean 406:33 407 67 

184 | 183-5 | 225-3|408°8 |183 | 225 | 408 
», |183°2|228 [411-2 |182°5} 227-7 | 410-2 

Mean 410 4091 |}- 9 

185/183 | 226-7|409-7 |181-3| 225-5 | 406-8 
| 182°7| 226-5 | 409-2 |181-3)225 | 406-3 

» |183°7| 226-7|410-4 |181-5)225 | 406-5 

Mean 409-6 406°53 | — 3:23 

If we interpolate between c=182 and c=185 we get for the 
true value of ¢ 183'36, and using the values c=183, and 184, we 
get for true value c=183°43. Substituting these values of c in 
the value of x, and putting a=1,b=1, G=65°6 as determined by 
direct measurement, we get 

2 ='005314 for c= 183°36 

and = 005313 for c= 183°43. 

The temperature was 14°C. 

To find limits of error. 

abG 
Me Rave ~ G(ct+atb) +be’ 

and to a first approximation, a=1, b=1, G=65, c=183, « 
Hence 

da 

w 

o}— S| 

= da (1-2) +db(1- 2 

dc ie 

200 + 700° 

c+G@ G+1. d@(—ex) *y ane 

=da+db— 
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In the present case da and db are known to be Jess than 0005, 
and dG is less than:l. The errors of c are due to inaccuracy in 
resistance box and to errors.in reading. the galvanometer deflections. 
The first we may dismiss as less than ‘01, the second we proceed 
to find. 

Let us call the differences ue in last column of table, 
h (= ‘67 app.) when c= 183, and k(=°9) when c=184, By inter- 
polation the true value of ¢ is 

ols 

id _ hdh —hdk 
cn CTecthEE ye : 

Since dh and dk are certainly not greater than 3 the greatest 

2 od Thi Fg ee l 
aie Ro S900 1000" 

We may then conclude that the accuracy of the determination 
is 1 in 1000. 

This result has been verified by using Matthiessen and Hockin’s 
method, when more than six independent experiments have given 
the same result as above to the 3rd significant figure. 

The experiment just described was not made in the best way 
possible. Having once found the limits 183 and 184 between 
which ¢ lay, it would have been best to have restricted the observa- 
tions entirely to those limits, and by carefully adjusting the galvano- 
meter and scale, the errors dh and dk might no doubt be reduced. 
It would not be too much to say that the necessary accuracy 
could have been carried to the 4th significant figure, though this 
would involve some careful attention to changes of temperature. 

possible value of dc is 

(8) On dimensional equations and change of units. By W.N. 
SHaw, M.A. 

Since the introduction of methods of measuring electrical and 
magnetic quantities in absolute measure considerable attention has 
necessarily been turned to the question of the dimensions of units 
and dimensional equations. Maxwell, as is well known, has in 
various places discussed such questions, and they naturally form 
an important part of Everett’s ‘Units and Physical Constants.’ 
But I do not recollect having anywhere seen any precise statement 
of the manner in which dimensional equations arise and what their 
actual significance is. I therefore venture to suggest the following 
exposition of the method of deducing dimensional equations, and I 
do so with more confidence as there seems a general tendency to 
attribute to the well-known symbol in square brackets more of the 
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attributes of an actual concrete quantity than it is justly entitled 
to. 

We may accept in the first place, as usual, that the complete 
expression of a physical quantity consists of two parts and may be 
represented by the symbol q [Q], where q represents the nume- 
rical part of the expression and [Q] the concrete unit of its own 
kind which has been selected for the measurement of the quantity. 

The unit [Q] is initially arbitrary for every kind of quantity. 
There exist however certain quantitative physical laws which 
really express by means of variation equations relations between 
the numerical measures of quantities. We may take for instance 
the following to be the expression of Ohm’s law: “The numerical 
measure of the current in an elongated conductor varies directly 
as the electromotive force between the ends of the conductor.” Or 
Oersted’s discovery may be summed up as follows: “The numerical 
value of the force upon a magnetic pole placed at the centre of a 
circular arc of wire conveying a current, varies directly as the 
strength of the pole, as the length of the wire, as the strength of 
the current, and inversely as the square of the radius of the arc.” 
A very large number of similar instances might be given. 

We may thus take as the expression of a physical law the 
general form 

Gre ay 2... 

where q, 2, y, 2... are the numerical measures of the different quan- 
tities concerned in the relation. 

We may of course express the variation equation in the form 

where & is some constant whose value in general alters, if we alter 
the units in which the different quantities are measured, for by so 
doing we alter in the inverse ratio the numerical values a, y, Z... 

We may adopt one of two courses with respect to the quantity &. 

(1) If all the possible variables have not been accounted for 
we may regard k as a fresh variable. ‘This has been done in the 
instance first quoted, viz. in that of Ohm’s Law, where & depends on 
the nature of the conductor. Thus the reciprocal of & in that 
instance is now generally known as the ‘resistance’ of the conduc- 
tor, and we re-state the law thus: “The current in the elongated 
conductor varies directly as the electromotive force between the 
ends and inversely as the resistance of the conductor,” and the 
expression of the law becomes . 

G=/h =. 

So that we are still left with an equation of similar form, and 



1884. ] and change of units. 139 

hence may regard the equation (1) in the final general form of 
the expression of any physical law. 

(2) We have already mentioned that the numerical value of 
k depends upon the units [Q], [X], [¥], [4]... employed to measure 
the different quantities. We may therefore assign to & any value 
we please by a suitable choice of any one of the units [Q], [<1 [V1]... 

For many reasons it is convenient that k should be unity, 
and therefore the most usual assumption is that the unit of [ Q| 
should be so chosen that & shall be unity. 

In the same manner 2, y and z can generally be connected by 
physical laws with the three units of mass, space and time, and 
we may thus obtain & = 1 for a large number of physical equations, 
provided the whole series of units are chosen on the principle here 
indicated. We thus see that systems of units can be formed based 
on three fundamental units, such that a whole series of physical 
laws, expressing relations between the quantities measured, can be 
represented by ordinary equations with constant unity, mstead of 
by variation equations. We thus arrive at systems of units founded 
on this principle, and a unit belonging to such a system is called 
an absolute unit. For such a unit the right of arbitrary choice has 
been given up, and it is agreed that the choice shall be directed by 
a consideration that the quantity / in certain equations shall be 
made equal to unity. 

It follows from this that when the three fundamental units are 
selected the rest of the units belonging to the system are thereby 
defined, and that if the fundamental units are altered, correspond- 
ing alterations must take place in the whole system based upon 
the three fundamental units, in order that the f’s may be still 
maintained equal to unity. 

Let us consider the change from one system of absolute units 
to another, both founded upon the same principle, that is to 
say, both agreeing that the same k’s shall be unity. 

The equation between the numerical measures of q, x, y, 2 
thus becomes for both systems 

Ge BE ZIAN ao 

Let the unit of w be changed from [X] to [X’], 

MAEERAT ST, OAS PRS Se ee AY! SSS, 

Bes Sek cae tnt, eet Richa ey, HP RZ 

and in consequence 
Cicase Shige dads tin seach RON eaOae 

Then if q’, a’, y’, 2’ be the new numerical measures of the same 
actual quantities measured, we have 
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od 
y(Yjsy (ey --@ 
2(Z]= 2 (2) | 

And: since the equation. between the numerical measures is 
by agreement the same. as before, since both systems of units 
are absolute,. 

q = 4 y8 OMe ss 

Lo) OY Com 
tal~ (ard) (tra) (eq) ~ 

‘Thus if the fundamental units X, Y, Z be changed in the 
ratlos 

Grd gee laeGacw ls 

and the derived wnit in the ratio p : 1, then. 

and hence’ 

aie Sit 
This statement may be evidently expressed by the relation 

(QF xs e VP TZ es. 2 oeee ee eee (3),. 

where, now, [Q], [X], [VY], [7] no longer represent concrete units 
but the ratios in which the derived unit [Q] and the fundamental 
units X, Y, Z respectively are to be changed, it being understood 
that the same method of defining the absolute system is to be 
adopted throughout. 

The equation (8) giving the ratio in which a derived unit 
is changed when the fundamental units are changed in any given 
ratios is called a dimensional equation, and is very convenient 
for determining the factor of conversion for any unit, from one 
absolute system to another governed by the same principles. 

The following rule for calculating the factor of conversion 
when the dimensional equation is given is easily remembered. 
If in the dimensional equation we substitute for the symbols of 
the fundamental units the value of each old unit in terms of the 
corresponding new one, the result gives the factor for converting the 
numerical measure of a quantity from the old system to the new. 
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And if, on the other hand, for the symbols of the fundamental 
units there be substituted the new units in terms of the old, the 
result gives the factor by which the old derived unit must be 
multiplied to give the new derived unit. 

We may under certain circumstances work backwards from 
the dimensional equation to the physical law, in case we know 
the dimensional equations from other sources. The problem in 
this case is practically knowing the dimensional equation for q 
to determine a, £, ¥. 

This may be applied for instance to prove the equation for the 

velocity of sound, viz. vx L But, as others have already re- 
d 

marked, we make the assumption that the velocity depends upon 
no other quantities but p and d, and thus get no indication of 
the dependence of the velocity upon either temperature or the 
ratio of the specific heats beeause neither of these quantities is 
measured in units which vary when the fundamental units of 
length, mass, and time vary. 

The method of proving a physical law by means of a di- 
mensional equation may thus be sometimes misleading. Any 
dimensional equation may be expressed as the product of two 
others, one of which may be a dimensional equation of recognizable 
form, but it does not necessarily follow that there is any physical 
interpretation corresponding to it. 

The dimensional equations for electrical quantities on the 
electromagnetic system may be deduced from those on the elec- 
trostatic system by multiplying or dividing by a dimensional 
equation representing some power of a velocity. 

It happens in this case that a physical meaning can be 
assigned to this velocity, namely, that of propagation of an 
electrical disturbance. But this need not always be the case; 
the form of the dimensional equation may be due to some hitherto 
unrecognized physical fact, but it may sometimes represent a 
relation between the ratios in which units are changed and 
nothing more. 
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April 28, 1884. 

Mr GULAISHER, PRESIDENT, IN THE CHAIR. 

J. C. Bose, B.A., Christ’s College, was elected a fellow. 

The following communications were made: 

(1) On the general equations of the electromagnetic field. By 
R. T, GuazEBprook, M.A., F.R.S. 

In a paper read before this Society on February 25, 1884, I 
compared the general equations of the electromagnetic field as 
obtained by Maxwell and Helmholtz. The object of the present 
communication is to obtain the more general equations of Helm- 
holtz in a manner analogous to that employed by Maxwell. We 
shall use the notation of the latter freed however from the restric- 
tion that 

du dv , dw. 
a a + 7, 1s zero. 

We shall further assume with Maxwell that the current in a 
dielectric is represented by f not by & as in Helmholtz’ work. 

The electromagnetic effects depend on the values of F, G, and 
HT the components of the electrokinetic momentum, and we have 
if we integrate completely round a closed curve with the usual 
notation 

[Pax + Gdy + Hdz =p | OOS ¢ ede. 

Let ds coincide with the axes in turn, then we obtain 

x being any single-valued function of a, y, 2 and ¢. 
Let y be given by the equation 

1 r ' ae x= 7 | fl Gia dy dd esos OM 

so that y is the potential of matter of density 2 distributed 
throughout the space. Then 

ie a [| raver oe 4 —3— da'dy'dz, 
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and aa, this by She integration, we get 

gal See ; ox -;-| ie eC in ea ae (3), 

and as in the former paper let @ satisfy the equation 

du dunn due ta 
aut ay bide Hin © dpc (4). 

Then we have 

F= lll de dyde! valli sees ie (5), 

dxr 
‘ 2 —— ee ae so that Vv F=-— 4rpu + 7 (6). 

GUC ee es 

; aH dG edit 
Hence if J= Ale -+ dy + Ge © ccs elec 5 pe 0) sels see ceseiee @: 

Sap du dv dw 4 

Therefore vu thev’ = AW/g NER ee ona Mek neee roa (8). 

The solution of this is 

d® 
ee J+p ae SH Eee a ae ee (), 

where vy’ V =0 always. 

Thus V is not a function of the time and we may neglect it 
for our present purposes. 

J a’ 
2 S == SS ees Hence Vir B Ar wu + bb Jodie (10), 

and substituting in the usual equations connecting a, B, y and 
10 Ge Jah 

dy df d’® 
dy _— cE = Aru — Apa: ehenerereielsleiefatelsfaiateleleaxeiels @lath): 

D 
If we remember that, according to Helmholtz, ph =—J, 

these equations are identical with (10) and (15) of my former 
paper, which may be written 

2 Pd LB 
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dy de d’® 
and dj Le Te pak 

They become identical with Maxwell’s equations on putting 
dD _ | a 

We will consider further this case in which ® ig not zero. 
Let W be the potential at any point arising from electrostatic 
forces O that which arises from the polarization of the dielectric. 
Then the equations in addition to (10) and (11) which we have 
to consider are 

U =f ete. 

dv dQ dF bags IE (— oe =) Ree)... (12). 
GUSs coos 

Differentiate (12) with reference to 2, y, 2 in order, and add. 
Then differentiating with respect to ¢, ° 

CE Os a Gv) = 40 ae 

=k Ege gins Y) =-Ko (v Ve Ot | nceereessensteoen IB) 

From (10) and (12) we find 

d’d R ad _ ad (dv dO ar 
hae V8 tae a ae fae toe go0006 (14), 

iGoodaocssor00 

and by the usual transformation 

hers 
pk dé SS Vale noon poonddgdooUCo00000 (15), 

and from hence by aid of the equations, 

dy dp _ d’d 
dy dz CTE a dadt’ 

EiGooosasece 
we obtain 

dig (geld 2\ ieee =) : 
HL ae (- = ) =V (¢- Tie Alin wsteavene ease UG): 

Thus the magnetic force a, 8, y, and the vector whose components 

are f = = ete., both travel with velocity 1//(uK). 
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Again substituting in (5) the value of \ which we have found 
in (9), we obtain as the value of F, if we omit the terms in JV, 

=p | If = dav'dy'de! 

-e (NG Ap = ga (OZ Ncsitannsca (17). 

Let us ae a plane wave of magnetic force travelling 
through the medium in a direction whose direction cosines are 
l,m,n. Let L, #1, N be the direction cosines of the magnetic 
force, then we may put 

a= AL sin = (lac + my + nz — Vt) .....+.....(18). 

Since 

the lines whose direction cosines are 1, m,n, L, #1, N respectively, 
are at right angles, that is, the magnetic force is in the plane of 
the wave. 

Now let LZ, M, N be the direction cosines of any line normal 
to L, ft, N, and’ e be the angle Peboeco lL m, n and L, MV, N, 
and put 

= 7 (la + my +nz— Vi) =5. 

Then =, ate 
sin € 

_ 4 NAAM) gy 5 1 lll _ 46) and ee si no rf ( Af Pre ee (19). 

euiGsooococoes 
These are satisfied by 

_ pAIN dO 
= oeamiace ota Melicecwoahoniep aces (20), 

EWGoscooaoce 

® being any function of «, y, z and t 

ee dy dB _ d’® 
Again, since a ee 4nru — FEE. 

d’® 2 dr — 7, = Ax oe fm (LM — mL) —1 (nL — LN)} cos 8 

a Oar A 

Xr sin € 
{L(P +m? +n’) —1(Ll+ mM +nN)} cos 6...(21). 

WOln Ve, ED, 1 10 
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A 
Now let “== ON SRS COS'O sic: cesnde eee (22), 

Cues 

and . — yee ne ds sD oheteleert eee (23). 
at sin € 

These values of u,, v,, w, and ®, satisfy 

du, du, du,_ 1 .d®, 
de dy’ de 40% dt’ 

we may therefore put 
uU =U, +4,, a (24) 
Slb4 of ee ; 

du, dv, , dw, 1 _.d®, 
pruiere da dy de 4a” dt” 

Substituting in (21) we have 

1 d®, 
"= Ge dedt’ 

Thus the magnetic force gives rise to an electric current whose 
components are w,, U,, w, and direction cosines L, WM, N, while there 
may at the same time exist an additional current Uy, Vp, W, inde- 
pendent of the magnetic force. Hence if we are given a wave 
of magnetic force defined by 

C= AD (sinw0 0.50) 2 use eee (25), 
where 6 is written for 

2 
= (la + my + nz — Vt), 

we obtain the waves defined by 

i Sg peal d®, ) 
Jeger | 

pAnr i 
F=- on eae Lcos8 + hd H (26). 

ees Dene 
Qa V sin e 2 

The quantity ®, disappears from the equations which connect the 
displacement and the magnetic force and is independent therefore 
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of the given wave of magnetic force. For the present we will 
omit it and put 

Anr (Ll + Mm + Nn) 
(ap 008 8 DP = — Ao V ST OS Otte teteetees (27), 

and then we have 
d® 5 

Thus from (9) 
ZC) = Nr, eae ae eg RR (28), V 

1 Xu / p} fae and = -[|[*aayd =x, 

This quantity y disappears from the expressions for the displace- 
ment, and according to Maxwell (Electricity and Magnetism, 11.) 
is not connected with any known Physical Phenomenon. He 
therefore neglects it. More strictly, according to Helmholtz, it 
may be needed to express completely the action of an element of 
current at a distant point, and he shews reason for putting 

dd 
Alf i pk Pe 5 

k being an indeterminate constant, and then we have 

3 dd 
VX =PAL— bh), ) 

ay (1—k) ieee in fen, 
and hence X op | dade ey 

ae d 
We can easily in the case before us evaluate x ; 

and we find 

dx _ BARA 

dx 2msine 
(1—k) UZ +mM + nN) cos 6, 

and hence for the complete value of / 

PAN (7 _ 10 —B UL + mM + nN} cos 6. 
2er sin € 

Bae 

Thus on this theory F is a vector travelling at the same rate as 
a, 8, y, but its direction depends on the value of k. 

In the general case in which the unknown quantity x is re- 
tained F' may be divided into two parts, the one travels with the 
velocity V, and has for direction cosines L, VM, N, that is it lies ina 
plane through the wave normal and at right angles to the magnetic 
force, the other is normal to the surface y = constant, but its rate 
of motion is unknown. The direction cosines of f, g, h are also 

10—2 
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L, M,N, the same as that of the first part of F, G, H. There may 
however be additional terms in the values of f, g, h depending on 
®,, that part of © which does not arise from the given wave of 
magnetic force. 

According to Maxwell ® is necessarily zero everywhere. More- 
over (§ 616) he neglects the terms in yx, le. puts J=O also. As 
was shewn in the previous paper Helmholtz’ theory becomes 
Maxwell’s by putting ® =0, while at the same time J is zero and 
k may have any finite value, for in that case the terms in & all dis- 
appear from the equations. 

One other point may here be noticed, the values given for 
u, v, w and ® agree with those found by Lorentz, equations 37, 39 
of the paper referred to. According to him if 

Qa 5 ar ' lx + my + nz 
TS Gee op TAvcae Mapaalats sie Le 5 

ge 

®=—27V (pl +qmt+rn) asin 

UU = 

Hit la + my + nz ) 

T Vea 
To consider the case of a crystalline medium we have, following 

the methods and notation of my paper on “Some equations 
connected with the electromagnetic theory of light” (Camb. Phal. 
Proc. tv. Pt. ii.). 

4n(1dg 1 dh)_ da ale e-z 75 ae i (29), 
af du 1d(@® dy dB 

selene: T= 9 7 Ge ai dedi a 

a? (3 af) <n b? ag =2 ah eae) lane C dn (30), 

; EWiChoseno00se 

These give us the equations satisfied by f, g, h. 

Also 

@a 4r(1 dv 1 dw 

dp ik, dz K, i 
whale 8K LU es 
pK, dz\dz dx/ pK,dy\dz dy 

ao 1 1 = OH ae ORG! 

: Taya pK,” ak ae t © ay 
b? d'y =2 a’B LO 

dzdx  ° dedy * Coe) didyaz i Ce 
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We have seen that in an isotropic medium a wave of electric 
displacement is propagated with a velocity 1//uK. Let us suppose 
that in the crystal there can also be a wave of electric displace- 
ment given by 

jf SISIY SUNG eran eee eer reece Sane (32), 

etc. 

where o— = (In + my + nz — Vt). 

Then GI ONBICOSE COSO Seeds vaissce vende anes (33), 

and we require to find the relations between the quantities 

Viel MIEENS Sika re 

Substituting in the equations for f, g, h we have 

L (m? +n?) (V? — @) — Mim (V? — 6°) 

—Nin(V’—¢)=0 ......... (34), 

and two similar equations. On multiplying by J, m, n and adding 
the sum is zero, there are therefore only two independent equations 
and these are insufficient to determine V, Z, Mand N. Thus the 
problem as it stands is indeterminate, another equation is required 
for its solution. 

Let @L1 +b’ Mm + Nn =¢ cos & 

q being a quantity to be further defined shortly. Then we find 

_ Le (m? + n*)- Mbln—Ne'nl Le — g cos € 
Le (mn? +n?) — Min—Nnl ~~ L —Teose 

The other two equations can be treated similarly; and we find 
finally 

La’ —lqcos § M B— mq cos Ne? — ng’ cos £ 

L—leos8 ~~ M—mecos& N-—ncosd — 

On eliminating q’ cos € from the first and second and first and 
third respectively, we get 

(LZ — cos 8) {IMN (0 — c) + mNL (2 — a?) 

V? oce@B) 

sil (G? 3D) = (0) Mate scciansaees Ga 

Hence we find 
ahs LOY m4 

CO A ra SCS 
l FOE MARE —)=0 (0 
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Now the equations L=1, M=m, N=n, when substituted in 
(34) lead to 

(m? + n?) (V2 — a?) — m?(V? — Bb”) — n°? (V? — 0) =0, 

or Oe eee ie Wes Uist Gp tenesedodcobcbccco. 0 (39), 

and two similar equations. This is Be thus we must have 

ba = q2 

pO-8) +E -@) + (@ =P) =0, 
and this is the only relation between J, m,n and L, M, N. 

The fundamental equations may as we have seen, be written 

IEG G2. aKOL oll Pole J. ae (40). 
Wenepoos 

Hence 
Take lL hop Lola A ay Cll Ar le a (viv + v'O+ +i a) = 0,..(AN): 

Lorentz in the paper referred to, following Helmholtz in mea- 
d® 
dt ° 

v'W is zero for the electrostatic forces arise by hypothesis from 
electricity outside the space considered, and the equation thus 
modified becomes his fourth equation. We have in the former 
paper seen reasons against putting = ® when we adopt Maxwell’s 
definition of the current. 

suring the current by &, 9, ¢, puts Q=®, and J=— ph 

Again, from the assumed values for f g, h, we have, as in the 
paper in the Camb. Phil. Proc. Iv. 

dx Oe dg _ 2 ooh, 
dt dz © dy’ 

a = ar a {0° Mn — Nm} cos 6, 

and =— —_ {°?Mn — Nm} sin 8 .......004+. (42), 

also ba + m8 + ny = 0... ..sneeecones Shee ee ee (43), 

thus a, 8, y is in the wave front. 

Again La+ M8 + Ny =0 in virtue of (38). Hence a, B, y is 
at right angles to LZ, M, N. Also multiplying by @L, 6°M and 
e’N and adding the sum is zero. Hence a, @, y is at right angles 
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to the line whose direction cosines are proportional to a, b°M 
and NV. 

From this it follows easily that if we construct the ellipsoid 
Wx + hy? +c2*=1, and take any radius vector length r as the 
direction of Z, M, N then this direction and the direction of the 
magnetic force are axes of the section of the ellipsoid which is 
formed by the plane passing through them; while any line in the 
plane through L, M, N at right angles to this plane section may be 
the wave normal. Thus so far as the equations hitherto considered 
are concerned, there may be for any given possible direction of 
electric displacement L, M, N an infinite number of possible wave 
normals all lying in the plane 

ag Y (72 x2 SP 0 GID + G@-2)+ 1 (@-@) +7 (@-B) =0, 

or for any given wave normal an infinite number of possible direc- 
tions of electric displacement lying on the cone 

l TT) od Mm 2-9 UM ae) eel as TO 

The value of V is given in equations (35), a simpler form is 
obtained as follows. We have seen above, that if f= BL sin 6, etc., 

then a=4rVB(mN — nM) sin 6..........c.0e00 12. (44), 

ete. 

® =—2nrB cose cos 6. 

Comparing this value of a with that given in (42), we have 

_BMn-cNm _ 2 m2 
8 oe | a ae GliGnsty ea. ace eae (45). 

Now, if p is the length of the perpendicular on the tangent 
plane, at the extremity of a radius vector of length 7 in direction 
L, M, N, then the direction cosines of p are pra’L, etc., and 

¢ = 1/pr. 
The direction of the magnetic force is, we have seen, at right 

angles to this perpendicular, to the line J, m, n, and to the line 
LI, M, N; ¢ is the angle between J, m, n and ZL, M, N, ¢ that 
between J, m, n and the perpendicular. Thus we have, expressing 
the direction cosines of a, 8, y in the three possible ways, 

Mn—-—Nm_ pr(b?Mn—CNm) _ prMN (?—2@) 
sine) sin € nAlsmiG— Gy) <7 

Also TE CONG IG ato se asses oe aor nceo neelene's (47). 
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Hence, from (45) we obtain 

y= sing od sin 

prsine 71 sinecos (e—f) sass SD: 

We have also a third expression for a, viz. 

a=—4rV. B. MN (b? — Cc) r’sin e cot (e— £) 

_ 4dr BMN (0? — @) sin € 
r=  Vsin@sey ~ seeeeceeeee sce ec eseve (49). 

This is as far as we can carry the theory with the equations 
at present considered. But a, @, y have to satisfy equations (31). 
We must therefore investigate the conditions which this gives rise 
to. 

Now it is clear that the value of a already found, will satisfy 
(31), for the value in (42) is obtained from 

oe Anr (@ ae e =) ; ao dp oe dew a 
while the values in (44) come from 

2 

Aqry = cece, tc., 
de du di dy’ i 

and these are the equations used in forming (81). 

Thus the values found satisfy (81) without any fresh conditions. 
So that without some other condition the problem of the propagation 
of an electromagnetic disturbance in a crystal is indeterminate. 

For a given direction of displacement we have a definite velocity 
and a definite magnetic force, but an infinite number of plane 
wave fronts, all of which pass through the direction of the magnetic 
force; for a given direction of wave propagation we have an in- 
finite number of directions of electric displacement lying on a 
certain cone, and to each of these there corresponds a definite 
velocity and a definite direction for the magnetic force. 

Now experiments shew that the velocity of a plane wave of 
light in a crystal has one of two definite values, and that these 
values agree very closely with those given by Fresnel’s theory. 

Let us assume that these conditions hold for the electro- 
magnetic displacement ; then since we are to have two values each 
for L, M, N, when 1, m, n are given L, M, N lies on a cone of the 
second degree with its vertex at the origin the additional relation 
between L, M and N must be of the form 

PL+QM+RN =0, 
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where P, Q and # are any constants; Fresnel’s construction will 
be satisfied if 

Ll+ Mn + Nn= 0, 

that is if the displacement is in the wave front. This condition is 
equivalent to 

df dg , dh 
dx " dy dz mw 

which of course is Maxwell’s fundamental assumption. 

Thus in order to deduce Fresnel’s construction from the electro- 
magnetic theory of light the condition 

df le dh 
dx dy * dz 

is necessary and sufficient. Maxwell himself had of course shewn 
the sufficiency of the condition, but I am not aware that the 
problem has been treated previously quite so generally as in the 
present paper. 

=0 

(2) On. the pulsations of Spheres in an Elastic Medium. 
By A. H. Leany, B.A. 

[ Abstract. ] 

The problem of two pulsating spheres in an incompressible 
fluid has been discussed by several writers. The author considers 
the analogous problem in the case in which the medium surround- 
ing the spheres has the properties of an elastic solid. He finds 
that the most important term in the expression of the law of force 
between the two spheres varies inversely as the square of the 
distance between them. This force will be an attraction if the 
spheres be in unlike phases, a repulsion if they be in like phases 
at any instant. The next term in the expression varies inversely 
as the cube of the distance between the two spheres and is always 
a repulsion. 

The paper is being published in full in the Transactions of the 
Society. 
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May 12, 1884. 

Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

The following were elected honorary members of the Society : 

A. Baeyer, Professor of Chemistry at Munich. 
Anton Dohrn, Director of the Zoological Station at Naples. 
Carl Gegenbaur, Professor of Comparative Anatomy in the 

University of Heidelberg. 
G. Mittag-Leffler, Professor of Mathematics in Stockholm. 
E. F. W. Pfliiger, Professor of Physiology in the University of 

Bonn. 
Gustav Quincke, Professor of Physics in the University of 

Heidelberg. 
H. A. Rowland, Professor of Physics in the Johns-Hopkins 

University, Baltimore, U.S.A. 
Julius Sachs, Professor of Botany in the University of Wiirtz- 

burg. 
H. G. Zeuthen, Professor of Mathematics in Copenhagen. 
R. Stawell Ball, Astronomer Royal for Ireland. 
W. T. Thiselton Dyer, Assistant Director of the Royal Gardens, 

Kew. 
J. Whitaker Hulke, Ex-President of the Geological Society. 

The following communication was made: 

(1) On a Continuous Succession in part of the Guernsey 
Gneiss. By Rev. E. Hinz, M.A. 

In the discussion which followed a paper ‘on the Rocks of 
Guernsey’ read by me before the Geological Society it was sug- 
gested by one of the speakers that appearances in Archaean rocks of 
conformable succession and enormous thickness are often deceptive, 
and result from repeated plications of a moderately thick series. 
I have no doubt that this remark is correct, and it is perfectly 
possible that such plications may have happened in Guernsey, and 
may hereafter by careful examination be detected. But notwith- 
standing there cannot be any doubt that the Guernsey rocks do 
disclose a series of very great thickness. 

While making a specially careful examination of a locality in 
Guernsey in search of evidence for or against the faulted position 
of certain unusual rocks, I began to notice that particular varie- 
ties of the gneiss could be recognized at various localities as 
agreeing together. In some of the outcrops a distinct strike of 
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the foliation was visible, and the positions of the outcrops which 
resembled each other harmonized with this strike. Pursuing the 
investigation I found that there was evidence of a complete and 
conformable succession over a considerable distance. I think that 
it may be interesting to briefly note this, and to remark upon one 
or two conclusions which follow from it. 

The nature of the succession and the evidence for it need not 
be given very fully. All the beds are gneiss of the very oldest 
type. The strike of the foliation can usually be detected, and is 
always in the region dealt with N. and 8. The dip is sometimes 
nearly vertical, but generally more or less steeply inclined, invari- 
ably to the W. Five successive distinct series can be clearly 
recognized, the first along Vazon Bay and at several points to the 
S., the second along Perelle Bay, the third around the L’Erée 
Hotel, the fourth on the L’Erée peninsula and across the sound of 
Lihou, the fifth in the island of Lihou. I have not seen any 
passage of the first into the second, but the second can be traced 
continuously in the shore at low water, and seen to change into the 
third along the ridge extending out into the sea to the islet called 
Chapelle Domhue. The third can be seen passing into the fourth 
on the L’Erée shore, and also in the outermost rocks of the islet 
just mentioned. The fourth is seen within 10 feet of the fifth on 
the shore of Lihou, separated only by one of the greenstone dykes 
which are so numerous. 

Now were the beds of this series of rocks repeated either by 
faults or by plications and over-fold, then as we made traverses in 
directions across their strike we should from time to time often 
find repetitions of particular beds. But in the succession above 
described nothing of the kind is seen. Each division of the series 
is perfectly distinct from the rest, lasts for a certain space, is suc- 
ceeded by another, and does not, in the area described at least, reap- 
pear. It would be possible that any one of these divisions separately 
might owe its thickness to plication, but I cannot conceive this 
process going on in more than one without an obvious repetition 
of alternating divisions. We may conclude that the thickness of 
the series as estimated by this area is a real thickness free from 
the errors introduced by plications. There may perhaps be an 
error due to irregular thickness or lenticular arrangement, but I 
am not now considering these. Moreover I have identified series 
IT. and III. for more than two miles along their strikes, and I. at 
extreme points separated by three miles. 

The breadth of this succession measured across the strikes is 
over two and a half miles. Allowing for the inclination of the 
beds this must represent a thickness of nearly two miles. 

Another conclusion I should draw is that the nature of gneiss 
must depend not so much on metamorphosing agents as on the 
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materials constituting the original beds. For II. and IV. are in 
parts so highly crystalline that they begin to resemble an igneous 
rock, while III. has no such resemblance, nor yet I.; while V. is very 
markedly sedimentary. Thus we have two extremely crystalline 
series intercalated between others far less so. The difference in 
character cannot be due therefore to any such cause as one series 
having been subjected to a greater central heat than another, or to 
contact metamorphism, or to heat developed in compression. The 
dykes, which are numerous, penetrate all alike. The neighbouring — 
granite is equally remote from all. The compression must have 
operated equally on all. Thus the only explanation for the dis- 
tinctness of these several series seems original difference of 
constitution. 

In a paper recently published by Mr Marr he suggests the 
subaérial and volcanic origin of Archaean rocks. The facts which 
I have noticed agree pretty well with subaérial origin. The 
general arrangement of the constituents rather into lenticular 
masses than laminae, the occasional larger lenticular masses or 
short seams, and the frequent appearances of false-bedding, where 
the bedding is sufficiently distinct, all point in that direction. So 
perhaps may the frequent and well-marked nodes or patches, which 
abound in the highly crystalline Series IJ. and exactly resemble 
those so common in granites. 

But in favour of the volcanic origin I have no facts to adduce. 
I have seen no indications of agglomeratic constitution nor of 
included fragments. And I think some such might be expected. 
I am more inclined to go back to the older hypothesis, and imagine 
that the Archaean rocks took their origin when the surface of the 
earth was in some respects exposed to different conditions than 
those which we now experience. 

May 26, 1884. 
Mr GLAISHER, PRESIDENT, IN THE CHAIR. 

Prof. E. Ray Lankester was elected an honorary member. 
S. L. Hart, M.A., St John’s College, was elected a Fellow. 

The following communications were made: 

(1) On some Irregularities in the Values of the Mean Density 
of the Earth, as determined by Baily. By W. M. Hicks. 

I HAVE recently been examining Baily’s observations on the 
mean density of the earth in order to see if they showed any traces 
of a dependence of the attraction between two masses on their 
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temperature. I was astonished to find in his numbers most decided 
signs of some temperature effect, and although I have not been 
able to discover the cause of this effect, yet it may be important to 
put the facts on record. The description of the apparatus, calcula- 
tions, and observations form Vol. xIv. of the Memoirs of the Royal 
Astronomical Society, which also contains the mathematical theory 
as developed by Mr (now Sir George) Airy. His observations 
extended over sixteen months from January 24, 1841, to May 8, 
1842, and amounted in all to about 2000 separate sets of observa- 
tions. They were therefore made at all temperatures, varying from 
a winter temperature of 30° F. to a summer temperature of 69° F. 
They were made by employing balls of various materials for the 
torsion balance—lead, platinum, zinc, brass, hollow brass, glass and 
ivory—of different sizes, and suspended in different ways,—bifilar 
lines of silk and metal at different distances, and single wires of 
different metals and diameters. These were all arranged in sixty- 
two different sets. To discover any temperature effects, it would 
have been better had the experiments been carried out on one 
uniform system; but as it is, those averages will give the most 
reliability for comparison, which are based on the largest number 
of different series, as thereby we eliminate effects due to particular 
series. 

The method adopted in forming the table below has been first 
to go through Baily’s Table I. and make lists of those days when 
the temperature lay within certain limits, thus for instance two 
degrees above or below 50°. On any particular day the tempera- 
ture in the case, which surrounded the box in which the torsion 
rod was suspended, remained remarkably constant, only as a rule 
varying a fraction of a degree. Within the torsion box it would 
therefore be almost rigorously uniform. By means of the preliminary 
lists, the deduced daily means for those chosen days were then ex- 
tracted from his Table II. and entered in lists by themselves. 
Then the means of the daily means in each series were taken, and 
finally the means of these last taken. In this way, irregularities 
due. to special days and to different series were successively 
smoothed down as far as possible. The results are given in the 
table below. JI have not discussed the whole of the observations, 
but only those near the temperatures marked. For the lowest 
temperatures of all, from 30° to 37° I have not taken account of 
his second series of experiments. My reason for this is that the 
method by which the observations were made was different from 
all the others, and a bad one. Also that out of 12 means for these 
temperatures, 5 would be from this series, which happened to be 
made in cold weather. The consequence of admitting them would 
therefore be to mask effects due to temperature by the errors of 
observation of this particular series. The densities obtained by it 
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vary from 5:2886 to 5°8717, Baily himself says they are “not 
reliable,” and says,—“I made only 23 experiments in this way, for 
although the principle may be correct, yet the difficulty of seizing 
the precise moment at which the masses ought to be put in motion 
occasionally introduced disturbances which affected the accuracy of 
the results ;” and later, “it may become a question whether these 
experiments are entitled to that confidence which the subject 
requires.” If we had a large number of series from which to take 
our means it might be well to retain them, but naturally at so low 
a temperature only a few observations were to be expected. The 
results of the discussion so far as it has been carried, are given in 
the following table. The first column gives the temperature, the 
second the number of series on which the mean given is based, the 
third the number of daily means, and the fourth the number of 
separate means employed. The means for the different tempera- 
tures are given in the fifth column. 

Tempersture FB. | ee OF | nly meaon, lobeorvationa,| Mean density. 

ie 
36° (mean) 4 7 46 7296 

4() + 2 12 22, | 128 ‘7341 
45 +2 20 43 AT 6823 
50 +2 18 38 302 6799 
55 +2 12 23 187 6594 
60 +2 13 31 333 6495 
65 +2 Ti 17 140 -5935 

68 (mean) 4 ll | 96 5828 

The gradual fall of mean density with rise of temperature is 
most marked, the only exception being in the case of the lowest 
temperature (36°) which is slightly smaller than for the tempera- 
ture of 40°. However, this 1s based on only four series, but 
is nevertheless higher than for any temperatures above 40”. 
It is easily seen from the irregularity at which the means 
decrease that all disturbances have not been eliminated; still 
the numbers suffice to shew that some cause depending on tem- 
perature has been at work to produce disturbances. Although 
I undertook the discussion for the very purpose of seeing whether 
such an effect was present, I must confess I was astonished to find 
it so marked. It certainly seems too large to be explained by 
supposing the gravitation between two bodies to be a function 
of their temperatures, although it is in the direction which we 
should expect to find, if the gravitation increased with the tempera- 
ture. For if so, we should suppose from our experiments at a high 
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temperature that matter attracted itself more strongly than if we 
made experiments at a low temperature; consequently the mass of 
the earth would not require to be so large in the first case as in 
the second, to produce the same force on a gramme at its surface, 
or its mean density would be less. 

In searching for some possible explanation of this temperature 
effect, I have been led to notice a point in the theory of the experi- 
ments which the then Astronomer Royal, Sir G. Airy, had not taken 
notice of. The correction for this is more important than some 
others which have been taken account of, introducing an alteration 
in the third place of decimals, while the calculations are carried to 
the fourth. In calculating the attraction of the masses, he has 
neglected to consider that of the air displaced by the masses 
attracting. The effect of this is to decrease the apparent attract- 
ing masses by the masses of the air displaced. The correction to 
be applied is easily determined. Let p be the density of the air, 
ao of the large masses (lead in all the experiments), o’ of the 
balls on the torsion rod, A the mean density of the earth as given 
in the tables, and A, the corrected value of A. Then for this term 
we may neglect roughly the effect of the support of the lead 
masses, and the torsion rods. In this case 

an(i-)i-d)axfi-eled)a 
at zero temperature, p= "00129, o =11'4, whence 

eyes - (000118 + ae) x 5-67, 

=-( 00064 + Oe). 

From this, the corrections to be applied in the case of the 
different balls are found to be 

Pt, —:0010, Pb, —:0013, Zn, —:0017, Brass, — 0015, 
Glass, — ‘0031, Ivory, — ‘0045. 

In addition to this another correction ought to be applied, due 
to the inertia of the air in which the balls move. For the balls 
alone this would be determined, if there were no boundaries, by 
supposing their masses increased by half that of the air displaced. 
The effect of this would also be to make the true densities less 
than those given by ‘0036/0’, on the supposition that the effect on 
the rod itself would be much smaller in comparison. The effect of 
the friction of the air would be eliminated by the method of ob- 
serving the time of vibration. These corrections tend to explain 
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why the mean density calculated from ivory and glass balls is 
higher than the mean. 

All these effects would vary with the temperature, but the cor- 
rections due to those variations although in the proper direction are 
so small that they produce no effect to the fourth place of decimals. 
It is difficult to conceive that the temperature-effects shown by the 
table are due to convection currents in the torsion box, for the 
closed box is itself within a case, within which the temperature was 
found to vary extremely slightly during a day’s experiments. It 
is natural to look to changes in the geometrical dispositions of the 
parts due to changes of temperature, as a source of the effects. 
The expansion of the wood work would be so small as scarcely to 
produce any perceptible change. The only metallic expansions 
that occur to me as likely to produce alterations, are (a) in the 
length of the suspension wires, (8) the brass scale from which the 
deviations were read, (y) the brass rod on which the microscopes 
were mounted to measure the distance of the centres of the masses 
and balls, (6) and the error introduced in measuring this distance 
due to taking the differences between the surfaces and allowing for 
the radii, which would vary with the temperature. It may be well 
to notice each of these in order. 

(a) ‘The centres of the attracting masses are on a level with the 
centres of the balls ; consequently if these last be raised or lowered 
slightly by a contraction or extension of the suspension, the effect 
would be vanishingly small. The alteration in the attraction of 
the supports would also be a negligeable part of the whole. 

(8) With a rise of temperature the scale expands; conse- 
quently the reading for the deviation of the torsion rod in the two 
positions of the masses will be too small. We therefore suppose 
that the gravitational unit of force is smaller than it is, and thus 
make the mean density of the earth larger. For this case therefore 
the deduced mean densities would increase with the temperature— 
in the opposite direction to what is actually the case. The cor- 
rection to be applied for a temperature ¢° F. above the mean would 
be — 5°67 x :0000104¢ = — -000059 t. 

(y) The distances between the masses and balls were measured 
by microscopes fixed to a brass bar, at a distance of 5 inches from 
one another, which was roughly about the distance of the surface 
of the attracting mass from the centre of a ball. The difference 
from 5 in. of the actual distance was then measured by means of a 
small pearl scale in the microscope. Hence a correction must be 
introduced for the expansion of the brass bar. The reading will 
make the distance too small by 5at where a is the coefficient of 
linear expansion for brass, and t is the difference between the 
temperature of observation, and the temperature at which the 
distance of the microscopes is exactly 5 inches. 
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(6) The Expansion of the lead mass will produce a similar 
effect. Its radius was 6 in., consequently the reading will be 
too small by 68t,, where @ is the coefficient of expansion for lead, 
and ¢, is the excess of temperature over that at which the radius is 
6 inches. Now allowance is made for the variation of distance from 
llinches. If the temperatures are measured from the temperature 
at which the radii were measured, the whole apparent diminution 
of distance due to causes (vy) and (6) will be (51+ 68)t, that is, the 
distance instead of being 6 as in Baily’s formula, will be 

6 — (54+ 68) t. 

Baily calculates the mean density for a distance of 11 inches, and 
corrects by multiplying the result by (6/11). The correction to 
this multiplier will be therefore — 26 (5x + 68) ¢/11’, or since 6 =11 
very nearly = —2 (5a4+ 68) t/11. Substituting numbers and tak- 
ing the mean density to be 5°67, the correction is 

A, —A=— 000063 t. 
The difference between two of the mean densities obtained, 
without taking account of corrections B, y, 6, at temperatures 
whose difference is ¢, is therefore — 000122 ¢, that at the higher 
temperature being the greater. These corrections would make the 
table above show still more striking results; e.g. increasing the 
difference at 68° over that at 36° by about -0036. No other 
possible cause to produce temperature effects occurs to me. Is it 
possible that Baily’s personal equation was a function of the 
temperature? If his judgment became more bountiful as the air 
became warmer, the error in the mean densities would be in the 
direction indicated by the table given above. 

(2) On Possible Systems of Jointed Wickerwork, and their 
Degrees of Internal Freedom. By J. Larmor, M.A. 

IF the two sets of generating lines of a hyperboloid of one 
sheet be constructed by rods jointed where they cross one another, 
the system so formed will not be stiff. This statement is verified 
by the simplest examination of an ordinary paper-basket, or— 
much better—of one of the jointed frameworks of wooden rods 
that are sometimes placed round flower-pots. 

Mr A. G. Greenhill has remarked (Math. Tripos, 1879) that the 
forms assumed by the framework on deformation are those of a 
confocal system of hyperboloids. This result may be proved syn- 
thetically as follows. Consider such a confocal system in position ; 
to the poimts which lie on a straight line on one of them there 
correspond (in Ivory’s manner) points on any other, which also lie 

VOL. V. PT. I: 1 
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on a straight line, since the correspondence is of the first order or 
linear. Thus to a generator corresponds a generator, and the points 
of intersection of pairs of generators also correspond. Again, all 
points corresponding to a given point lie on a curve which cuts the 
system of surfaces normally, being in fact the curve of intersection 
of two confocals of the other kinds. So that if we consider any 
generator and the corresponding one on a consecutive surface, the 
lines joining their extremities (where they meet generators of the 
other system) are normal to the surface, and therefore to the 
generators, and the generators are therefore of equal length*. The 
condition necessary for deformation is thus satisfied, and the sur- 
face, supposed made up of jointed rods, may be deformed without 
straining into the consecutive confocal surface, and therefore by 
successive steps, into any other confocal surface. 

We propose to investigate directly the cause of this want of 
stiffness, and to determine the number of degrees of internal free- 
dom possessed by other systems (which we shall prove to exist) 
composed of three sets of rods connected by ball-joints, there being 
three rods at each joint. 

In discussing the first problem, we may confine our attention 
to three rods crossing three other rods: for we shall prove that 

1,MsNg 

iy <= =| 

1,m,n, 

Nyt, Noflave AsM3¥3 

every other rod that crosses one set of them meets each rod that 
crosses the other set, at a point im the rod which is unaltered 
by the deformation. ‘And for similar reasons, we shall only have 
to consider in the second case the quasi- -cubical framework formed 

1 Cf. H. J. 8. Smith, Proc. Lond. Math. Soc. 11. p. 244. 
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by three such sets of six placed one above the other, and tied 
together by nine rods passing through them, making twenty-seven 
rods in all. 

Consider then a system of six, represented on the flat by the 
annexed scheme, in which their direction cosines to fixed axes 
Ltn.) +++, A,fyY,,--. are indicated, and also the lengths of the three 
segments of each a,, b,, ¢, (=a, +9,), --. 4, 8,, %, (=a, +8,),--. By 
expressing that the projections of each independent circuit on the 
axes of co-ordinates are zero, we exhaust all the independent 
relations of the system. We thus obtain four sets of three equa- 
tions each, of which the following is one: 

al, —a,l, =4,r,— 4A, 

IL SLI (OO a elo ar) 
an, = an, = Gay, = ay, 

and we have in addition six equations of the type 

Praipp sey =i. 

Thus we have 18 equations between 18 variables. But these 
variables involve 3 indeterminates, depending on the directions of 
the axes: and as we know that the system is not rigid, there is a 
fourth indeterminate. Therefore the 18 equations are equivalent 
to only 14 independent equations, and that can only be by reason 
of the existence of 4 relations between the coefficients, 1.e. between 
the lengths of the segments of the rods. And, conversely, if we 
obtain these four relations independently, we can infer that the 
jointed system is not rigid. 

: A 
We can readily obtain them as follows:—Let a,z, denote the 

angle between the lines a,, a,: then by equating two expressions 
for the square of the diagonal of the reticulation a@,2,a,1, we obtain 

A A 
2g? 9 See sy Pi a, +4, — 2a,a, cosa2, = a,’ + a,” — 20,2, cos a,%,, 

iS is 1 2 2 2 2 or @,%, COS 0,4, — a, 4, COS a,4,=4 (a, +4,"— a, —4,"), 

and similarly 

b,8, cos b,8, — b,8, cos by8, = i (b, + B2—b2— B., 

C,Y, COS on — €,Y, COS 0, mae (c, a Ys a Cx Ey Ys )» 

three equations between the cosines of the angles ie, bB., on 
But we know that these angles are not determinate, therefore the 

ec Ne \ 
result of eliminating cos b,8, between the two first equations must 
be equivalent to the third. That result is 
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a,a,. 6,8, cos on —a,%, . 6,8, Cos Bee 

ahi 3 Ay (0," + B,. i. b,” i, B;) v: >) b,B, (a,° alg at,” er) a,” 7 a"), 

and we therefore have 
COM SONS MNCL, OLB UML ahr 

Cy, GY, Sus 

therefore GROSCHN GUSH —CADIC AON IOLaE 

And in the same way we can obtain three other similar relations, 
thus making up the four relations required. 

Having now obtained these relations between the segments of 
two triads of mutually intersecting lines in space, we may easily 
verify their truth in other ways. We notice that they are projec- 
tive for the same reason that anharmonic ratios are projective. 
Projecting therefore on the principal plane of the hyperboloid to 
which they belong, we have two triads of tangent lines to a plane 
ellipse. We can now project the ellipse into a parabola. But 
three fixed tangents to a parabola cut all variable tangents simi- 
larly, since they with the tangent line at infinity cut them in 
a constant anharmonic ratio: hence now 

Dxg8 8 NOs 8 Ds BOR VOI, Ald 
1 2 3: 7 ¢ 3 

a, 1 Byiy=%, By? Ye= 4, 3/6n2 Ys» 

and the relations are obviously true. 

[We may express this argument differently by changing the 
hyperboloid into a hyperbolic paraboloid by a linear transforma- 
‘tion (which we may call a projection in space of four dimensions), 
and noticing that the theorems are true for the paraboloid because 
the generators of one systenr divide all those of the other system 
similarly. | 

It is to be noticed that they are not true in general for two 
triads in a plane: also, inasmuch as there is only one condition 
necessary that six lines should touch a conic, that three other 
relations do hold in a plane. 

When three lines cross three other lines in a plane the three 
relations between the segments formed are however still true for 
lines crossing in space, and are moreover clearly of a projective 
character. We may obtain one of them as follows. From the 
equations between the cosines already given, we find 

A Nn’ 

3) 

where 
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= a,b,c, .4,8,y, — a,0,C, - 48,7,; 

A’ = b,c, yy, (a, + 4,’ — a,” — a,”) 

+ 6,0,75%, (b,’ + B,” — b,’ — B,’) 

+ a,5,4,0 (Cs + Ys — ¢; — 1, )- 

Proceeding in a similar manner we ao a like expression for 

COs b, Therefore, since cos ba, =—cos a,a, we obtain a relation 
of the twelfth degree between the 12 segments: and we may find 
two other similar ones in the same way. It is to be noticed that 
the diagram is not really symmetrical, so that we cannot proceed 
from one expression to another by simple permutation of the 
symbols. 

Having thus independently established the existence of these 
four relations, we establish at the same time the flexibility of the 
system of six rods. Now every line that crosses three of the rods 
meets every line that crosses the other three. For, if we denote 
the two systems of rods for an instant by 123... 1'23’... the planes 
through 1’ and 1234 cut all lmes in a constant anharmonic ratio, 
therefore 123 are each divided in the same anharmonic ratio by 
1'2'3'4’, Now consider 4, which is drawn across 1’2’3’: the plane 
14’ with the lines 1’2’3’ divides it in the same anharmonic ratio as 
1, 2 or 3 is divided by them: so does the plane 24’ with the lines 
1'2'3’: therefore the planes 14’, 24’ are met by 4 in a common 
point, or, in other words, 4 meets 4°. Further, the point in which 
each of these lines crosses another is unaltered by deformation : 
for the relations. already established are sufficient to determine 
definitely the segments of these lines in terms of the segments of 
the six rods: we can therefore replace the lines by jointed rods. 

In the case of the paraboloidal system, in which all the rods of 
the same series are divided similarly, we have relations of remark- 
able simplicity. For the orthogonal projection on any plane 
consists of two series of parallel lines, and the segments of each set 
of rods are proportional to their projections. By considering the 
projections on two different planes, the above results follow 
immediately. 

Let us consider now the quasi-cubical system of jointed rods. 
In the first place, such a system is abundantly possible; for 
assuming the 9 rods connecting the three layers which lie the same 
way, and denoting them by the 9 digits, from any point on 1 draw 
the line which intersects 2 and 3, from the point in which it meets 
3 draw the line which intersects 6 and 9, from the point in which 
it meets 9 draw the line which intersects 8 and 7, and from the 
point in which it meets 7 draw the line which intersects 4 and 1, 
as In the diagram. The last line must meet 1 in the point from 
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which we started, which gives one condition, and the three other 
independent circuits in the same layer give three more. Thus the 
three layers give twelve conditions, which can easily be satisfied by 

3 

the nine lines we started with, especially as three of them may be 
removed by properly choosing the positions of the layers. 

Having thus proved the possibility of the arrangement, we 
proceed as before to count all the independent relations of the 
system, and find whether they are sufficient to fix it absolutely,— 
or, if not, to find how many modes of deformation it possesses. 
We project all the mdependent circuits on the axes, just as 
before in the case of the binary system. There are 9 binary systems 
contained in the ternary, 3 sets of 3 each; but it will be clear on 
consideration that the existence of 2 of these sets determines the 
third set, which crosses them both. The independent circuits of 
the ternary system are therefore those of these two sets of binaries, 
and give equations 6.4.3in number; while the metrical relations 
of the binaries give 6.4 conditions among the lengths of the seg- 
ments, which are necessarily included in the former: so that there 
are 6.4.2 or 48 independent equations. There are also 27 rela- 
tions between the direction cosines of the 27 lines, which are the 
variables. Thus there are 75 equations in all between these 81 
variable direction cosines. But the arbitrary axes introduce into 
them 3 degrees of indeterminateness. There :are therefore still 
3 degrees remaining: that is, the jointed system possesses three 
degrees of internal freedom. 

And now the same considerations that we employed in the case 
of a binary system show that we may introduce any additional 
number of rods in each set, so that three rods shall meet at each 
joint, when the system will still possess its three degrees of internal 
freedom. 

This remarkable general result is in agreement with what we 
can see to be true in particular cases. The simplest case of all 
is that of a parallelepipedal system formed of three sets of parallel 
jointed rods: here we can alter all the three angles between the 
directions of the rods. Another simple case is that of a series of 
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equal and similar binary systems (forming paraboloids or hyper- 
boloids) placed one over the other with corresponding joints con- 
nected by a third system of parallel rods, whose segments between 
two of the binary systems are therefore all equal: here the parallel 
rods have two degrees of freedom, and the binary systems have 
the third. 

The fact that in a binary system 4 segments are determi- 
nable in terms of the others shows that such a system is itself 
determined by two rods crossing three others and jointed to 
them :—in other words, that a system of confocal hyperboloids is so 
determined. So also a ternary system is determined by four rods 
jointed together at different parts of their lengths by three sets of 
four rods each. 

(5) On some Physiological Experiments. By W. H. GASKELL, 
M.D., E.R.S. 

(4) On a method of comparing the concentrations of two 
solutions of the same substance, but of different strengths. By 
A.S. Lea, M.A. 

(5) On the many layered Epidermis of Clivia Nobilis. By 
WALTER GARDINER, B.A. 
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PROCEEDINGS 

OF THE 

Cambridge Philosophical Society. 

October 27, 1884. 

ANNUAL GENERAL MEETING. 

THE following were elected officers and new members of the 
Council for the ensuing year :— 

President : 

Prof, Foster. 

Vice-Presidents : 

Prof. Stokes, Lord Rayleigh, Prof. Liveing. 

Treasurer : 

Mr J. W. Clark. 

Secretaries : 

Mr Trotter, Mr Glazebrook, Mr Vines. 

New Members of Council : 

Prof. Cayley, Prof. Macalister, Mr Glaisher. 

The following communications were made to the Society : 

(1) On the effect of moisture in modifying the refraction of 
plane polarised light by glass. By R. T. GLAZEBROOK, M.A. 

When plane polarised light is allowed to pass through a 
wedge or plate of an isotropic transparent medium the relation 
between the positions of the planes of polarisation in the incident 
reflected and refracted beams are given by various theories. 
Brewster, Seebeck, Jamin, Quincke, and others have attempted 
the verification of these formulae by experiment and the two 

VOL; Vi. PL. It. 12 
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latter have shewn that with most substances between certain 
values of the angle of incidence the reflected beam is elliptically 
polarised. 

In all such experiments one great difficulty meets us. The 
effects we are looking for do not seem exactly the same from day 
to day. Modifications of some nature appear to go on at the 
surface and the means from results of observations made on 
different occasions differ by quantities which are large compared 
with the differences between anyone of the means and the in- 
dividual observations of the set from which it is deduced. 

Thus the following readings represent observations on the 
position of the plane of polarisation after plane polarised light 
polarised at an angle of 45° to the plane of incidence has been 
allowed to pass through a wedge of glass of small angle. These 
observations were made on six occasions during August last 
year. 

\ ——— —— 

| 4ge 4! 48° 1! 
| 48° 1°10 47° 56! 
| 47° 58! 47° 58'.20 

Each is the mean of five or six observations no two of which 
probably differed by more than 3’. 

The object of the experiments described in the present paper 
was to determine some of the conditions which produce this 
variation. 

Numerous obsérvations seemed to indicate some connexion 
between the effect and temperature. Thus readings of the 
analyser, a Laurent’s plate and a Nicol’s prism, were found 
generally to be higher on warm days than on cold. 

The following set of observations shew the change on July 19 
as the temperature of a thermometer placed almost in contact 
with the glass rose from 20° to 22”. 

Reading. Temperature. Time. 

h. m. 

Spe OY 20: eae oO 
24’ 15” OP, UD. 5p 3 35 

95 De S 4 5 
24’ 45” Pas em Be 4 35 
yey IY” 22° 5 6 40 

Now it is improbable that the change is due to inequalities 
of temperature tm the glass which is thin and carefully shaded 
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from direct radiation, but still it is difficult to see how change 
of temperature of the whole, which does not alter the refractive 
index of the glass, should produce the effect. Moreover the 
change was not always observed as the temperature varied and 
some other cause must be sought. The effect of varying the 
amount of moisture in the air round the glass was then tried. 

Dry air was blown from a bellows through a flask filled with 
Calcium chloride and then through a second with dry cotton- 
wool on to the surface and damp air was blown through a bottle 
and then through a second empty bottle to catch the spray. 

Observations were made by means of a wet and dry bulb 
thermometer placed near the glass on the normal hygrometric 
condition of the air and of the variations produced by the draughts 
of dry and damp air respectively. 

The quantity determined directly is the reading of the analyser 
circle corresponding to the position of the plane of polarisation 
of the incident light. As the reading increases the angle between 
the planes of polarisation of the incident and refracted light is 
increased and vice versa. 

A large number of observations were made at various angles 
of incidence with the following results. 

Dry air lowers the reading, i.e. brings the planes of polarisation 
of the incident and refracted waves more nearly into coincidence. 
Rubbing the surface with dry wash leather lowers the reading 
which usually comes back after a time to its normal value. ‘ The 
effect of damp air depends on the previous treatment of the 
surface. If this has not been carefully cleaned with dry leather 
shortly before the air is blown the damp air lowers the reading, 
but immediately after the blowing is stopped, or in some cases 

(1) Condition. | (2) Readings. 

JI@EETTORA) 3/35 20 erratic BOWE HEE Neo ace 32° 45’ 
Day grep PS fac oc eyatdere niet poston ne es 32° 41’ 
JOLT Ear erie eae creer nee ee 32° 45’ 
ID Yay: SIPC RAPER Ree. See Renee eer aw GOs) 
INIGTAGAAN", 3 ec Banas en ee 32° 44':30 

Damp Air. 
Observation in act of blowing ...... 32° 38’ 

| s immediately after...... 32° 48’ 
| i in act of blowing ...... | 32° 377 30” 

a immediately after... .. | ae Aly! a)" 
. in act of blowing ...... uo 
” immediately after...... 32° 48’ 



172 Mr Glazebrook, On the effect of moisture in — [Oct. 27, 

after it has been continued for some time the reading rises to 
above its normal value falling back to it in time. 

This is shewn in the observations for July 28, the glass 
having not been rubbed since July 22. These are given in the 
Table column (1) shewing the conditions under which the readings 
were taken, and (2) the actual reading. The normal condition 
means without blowing either dry or damp air on the surface. 
The angle of incidence was about 45°. 

After an interval of an hour the normal reading was 32° 44’. 
The temperature changed during the observations from 19° to 

20°. 
Thus in this case damp air produces, while being blown, an 

effect of the same sign as the dry but of greater magnitude, while 
the effect observed just after the blowing has ceased is opposite 
to that due to dry air. 

If however the surface has been rubbed with a dry leather 
immediately before the damp air is blown the reading is raised at 
once without the previous lowering. 

A very full set of observations taken on August 6 shew the 
two effects. 

Time, Conditions. Reading, 

lal ra 

| oe Maine ote 0a) Wes RA eh As oe aE LAUR aia 35) 8! 
Dry cai, blown ease ee eeoe ee 35° 4! 30” 

lealoiey reNornaalitcs stern ake ae By ey 1" 
(Damiprate waters tieesereeee ease 34° 59’ 

[doo bene hehe tet eee oan eeeee 5 ae i 
ewiiG! 1ihMpMlllh7A% 6608000 5200060940000 35° 9° 30” 

iL Zoho ns IN Oicmvallyy.. 2 crtaaaee acco ems aye BBY Bho!" 
3} 1S). 9 | INGE! goobesododnocdoeos 6 Sr eeeeise ae GS ao” 

| Desi erie, eth GEST ccoaasossocuseeues 35° 3! 
PME TD con tare eRe Ee EOE au gy 

|  andimmediately after stopping Si” 113) 

4PM. Glass rubbed. 
Norn a Vos sok ea eats i (ey a0)” 

| LBeneny erie loons casocus cacsoacooene | 35° 15’ 
immediately after stopping... 35° 15’ 

Ih CEG lis Ge NOR Na REED ho eg Sy 1 

425 | Glass rubbed. 
o° O37 Normale... 2). 0) eee eeaeeres BO Sy 

| Damp air blown ............ eee 35° 10’ 30” 
D 30" OINOTmalR ea is.. cltoaee eeeenre 30, ioe 

Diary air Molowaat iisc0s eden ene me eee 35° 5! 
DBD | WOM occa cnsaedansosasszenoceaae 35° 9! 
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The angle of incidence here was about 60°, the temperature 
varied from 23° C. to 24°C. and the. tension of aqueous vapour 
from 113mm. to 142mm. the saturating tension changing from 
19°7 mm. to 21°7 mm. 

During the first eleven observations the glass had not been 
cleaned since the previous day, and the effects are the same as 
previously. After the glass was cleaned the damp air raises the 
reading without previously lowering it. 

Other sets of observations at different angles of incidence gave 
the same results. 

Thus on August 20 we find just after the glass has been 
cleaned at angle of incidence of 45° the following readings. 

Time. Condition. Reading. 

h, m, 

3, Al INGA sosadsuoswcades Bae bsyey BOY 
Ba Ile Dry air blown....... oe OO. 

iNionina gee ay eee Bye layey Bt }e 
3 25 Damp air blown..... 32° 59 
3) a) Dry air blown ....... 32° 55’ 30” 

There seems too a tendency for the normal readings to rise 
with e the saturating tension, this is shewn below. 

Date. | Value e. Temperature. Reading. 

. ), oP. M. 11:4 mm. 22° 35° 6’ 30” 
3.09 Ae ise 24° 30. 97 30” 

mon Lf fa beh yates 23°'D 35° 8! 
1.21 WH | 24° 35° 8' 30” 
9.25 IARI | 25° 5D°.9! 

The connexion however is not very marked. 
It remains then to account, if possible, for the anomaly in the 

behaviour of the glass with damp air; but before attempting this 
it is well to mention that the effects produced by blowing other 
gases Oxygen, Hydrogen, and Carbonic acid on the surface, were 
tried and found to be practically inappreciable, while additional 
experiments made in October, 1884 confirm the results already 
arrived at as to the effects of dry and damp air. 

Observations also were made on the amount of saturation 
produced ; damp and dry air being blown on to the wet bulb. 
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‘The values of e observed on one occasion were: 

IMors IDeyan|® ats .ossecuswosas 19°45 mm. 
For Normal! state........... TOK) 
Hor aD rayeanneereeer eaocsne S44 ,, 

the saturating tension being 20°66 mm.; thus the air was nearly 
saturated by the draught of damp air. 
~The anomalous behaviour of the glass under a draught of 

moist air may, I think, be explained by some experiments of 
Magnus, Pogg Annalen, vol. cxxt. Phil. Mag. Ser. Iv., vol. 27. 

Magnus found that blowing damp air on to the surface raises 
its temperature while blowing dry air cools it; the change of 
temperature being due presumably to slight condensation of 
moisture on or evaporation from the surface, respectively. I 

repeated his experiments both with a thermometer and thermopile, 
and observed the effects. With the thermometer as at first fitted 
up the effect was very small. Thus there was as the mean of 
several observations a cooling effect of 0°03 C., due to dry air, a 
heating effect of 0°05 C. due to damp air, while the galvanometer 
needle was affected about equally in opposite directions owing to 
the draught. I then cleaned one thermometer bulb B carefully 
and slightly soiled that of another A. The two were enclosed in 
the same glass bulb, and a draught of air blown on to them both. 

_ The readings were as follows: 

Dry 25° 24°9 24°°8 24°'8, 
hoe 254 = 25°83 25°°2 25°2. 

ih 25° in all cases. 
Damp 

Thus the draughts of air produce no effect on the clean bulb, 
while damp air heats the soiled one, and dry air cools it. 

I then supposed that the draught of damp air might slightly 
heat the surface on which it was blown, and investigated what 
the effect of this would be. For this purpose a small spiral of 
platinum wire was placed near the point of the surface on which 
the light was incident, and an electric current passed through it. 
The wire thus being heated raised the temperature of the glass 
locally, thus straining it and it was found that the analyser 
readings were lowered at once; and in a very short time the light 
became so strongly elliptically polarised that it could not be 
quenched. Thus local heating produces a lowering in the reading ; 
so that if we suppose that when damp air is blown on to a glass 
surface which has not been recently cleaned that surface is slightly 
heated the apparently anomalous optical phenomena observed 
when the draughts of dry air are blown would be accounted for; 
the glass is heated and the reading lowered. 
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We may perhaps account for the slight heating of the soiled 
surface from the fact that the coating of small dust particles 
which covers it may form a series of nuclei round which the 
moisture of the air readily condenses. On the freshly cleaned 
surfaces there are no such nuclei, the moisture is not condensed 
and the heating effects are not produced. 

The bearing of the results of the experiments on the theory of 
reflexion must be left for discussion in a future paper. 

Postscript. Nov. 1884. The experimental results have been 
confirmed by further experiments made during the present 
month, 

(2) On some experiments on the measurement of the capacity of 
a condenser. By L. R. WILBERFORCE, B.A. 

The method employed in the following experimental determi- 
nation was the same as that used by J. J. Thomson in his measure- 
ment of “v”, (Phil. Trans. iti. 1883), and may be thus briefly 
described. 

For the resistance in one arm of a Wheatstone’s bridge there is 
substituted a broken circuit, a condenser and a commutator which 
connects the electrodes of the condenser alternately with the 
broken ends of the circuit and with each other. 

The commutator is worked at such a rate that its periodic 
time is small compared with the time of swing of the galvanometer 
needle. A key is introduced into the galvanometer circuit, and 
the resistances are adjusted so that the position of equilibrium of 
the needle is the same when the circuit is open and when it 
is closed. 

If this is the case, a relation will exist between the periodic 

D 
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time of the commutator, the resistances of the bridge, and the 
capacity of the condenser. 

The arrangement may be represented by a slight modification 
of the ordinary Wheatstone bridge diagram. The commutator 
consists of the spring PN which is fixed at P, and which strikes R 
and S alternately, making (mn) double vibrations a second. The 
vibrations are regulated and maintained by a current rendered 
intermittent by passing through a fork interrupter. 

If we neglect all the coefficients of self- and mutual-induction 
of the resistance coils, and the resistances DR, SB, the relation 
between C, the capacity, n, and the resistances has been investi- 
gated by Thomson, and is 

Demereexia| ne (a+ce+g) (a+b+d) 

cd 1a ab 1 ag | 

c(atb+d)| | * d@+te+g) 
The experiments were all made at the Cavendish Laboratory 
during July and August, 1884. 

The condenser used was divided into four parts whose reputed 
capacities were ‘1, ‘2, ‘3, ‘4, of a microfarad respectively. 

The galvanometer used was a reflecting one with a resistance 
of 11,000 B.A. units. A vertical slit was placed in front of the 
lamp used so that a narrow band of light with very well defined 
edges was reflected on to the scale. The readings were taken for 
the left-hand edge and were correct to one scale division, the 
divisions being a millimetre apart. 

The fork-interrupters used had frequencies (WV,, and .V,,) of 
about 32 and 64 double vibrations per second respectively. ‘They 
will be referred to as the “32” and “64” forks. A battery of 
three pint Groves was used for driving them, while in the bridge 
three Léclanché cells were used. 

The resistances (a) and (d) were coils of 10 and 1000 B.A. units, 
while (c) was a resistance box by means of which we could 
proceed by single units up to 1000. 

Every precaution was taken to make the resistances of con- 
nection extremely small. The key used for opening and closing 
the galvanometer circuit consisted of two wires whose ends dipped 
into four mercury cups. It was arranged that when the galvano- 
meter was not in circuit the ends of its coil should be connected. 

Various precautions instantly suggest themselves, which must 
be taken in order that: 

(i) the conditions assumed in the investigation of our 
formula should be the conditions of the experiment ; 

(ii) the calculated value of C should be correct within as 
small a fraction of itself as possible ; 
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(111) the observation can be most conveniently made ; 
(iv) the calculations can be most conveniently effected. 

Under the first head we notice that (n) must not be so great 
that the time of contact between P, and either S or R is too small 
to allow of the condenser being fully charged or discharged. 

Again we must be careful that the resistances BSP when P 
and S are in contact and DRP when P and R are in contact are 
negligible. 

That this should be the case it is necessary that the contact 
resistances between P and & and between P and S should be very 
small. If Pstrikes R and S hard a better contact will be made 
than if it strikes gently, and thus we will get better results, the 
stiffer our spring and the greater the power of our driving battery, 
both for the above reason, and because in that case we diminish 
the time during which P is in contact with neither S nor R, and 
thus we might increase (n) and still have our condenser fully 
charged and discharged at each contact. 

Again we must be careful that (n) is not so small as to allow 
the phenomena of electric absorption and residual discharge to be 
produced, for in that case we should get too large a value for C. 

Under the second head we notice that the greater the electro- 
motive force of our battery, the more sensitive our galvanometer, 
and the greater the value of (n), the more delicate the adjustment 
necessary to produce a balance, and consequently the more accurate 
the method. 

Under the third head we notice that, since the observations can 
only be conveniently taken when the needle is at rest, it should be 
made as steady as possible. We must particularly guard against 
its hanging in too weak a field of force, for the effect of the 
transient currents through the galvanometer is to diminish the 
stability of the needle, as has been proved by Lord Rayleigh. 

Under the fourth head we notice that, our formula being : 

ere, |e a 

v=) le | 

ocean Peete |- 
and g being large and a and b being small compared with the other 
resistances, it becomes 

n0 = — (1 - 4) 
cd d 

Hence we see that it is more convenient that (c) should be the 

adjustable resistance, for then the factor (1 — 4) is a constant one. 
d 

The advantages of this method have been exhaustively discussed 
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by Glazebrook (Phil. Mag., Aug. 1884). He has also mentioned 
some of its uncertainties. One of its principal disadvantages 
appears to me to be the fact that though it is a null method 
inasmuch as the equilibrium position of the needle is not to be 
disturbed by the passage of the transient currents through the 
galvanometer coils, yet it is not so inasmuch as the needle imstead 
of never moving from this position is always jerked aside when the 
currents either begin or cease to pass, and hence, instead of 
observing an absence of effect we have to measure the positions of 
a spot of light at two times, and determine whether they are the 
same. This initial jerk is due to the fact that the transient and 
constant current do not balance at every moment. and that their 
average effect requires some time to show itself. Thus this 
disadvantage is inherent to the method. 

The observations are thus not only rendered more difficult, but 
a considerable element of uncertainty is introduced as to whether 
the zero point of the needle may not have changed between the 
measurements. 

We may take for our zero point the mean of the points at 
which the needle rests before and after the currents pass, but this 
will not be satisfactory if the change of zero is at all rapid, as it 
sometimes was. 

I had attempted three months previously to make some deter- 
minations by this method but rejected them as the results obtained 
were untrustworthy owing to the unsteadiness of the galvanometer 
needle, and also hopelessly inconsistent among themselves. 

The unsteadiness was partly due to the effects of draughts 
which were afterwards excluded by enclosing the galvanometer in 
a wooden box with a glass shutter, partly to the weakness of the 
field of force in which the needle hung, which was also remedied, 
while the inconsistency and a great deal of the unsteadiness was 
caused by leakage due to imperfect insulation. After this was 
discovered, the greatest precautions were taken to secure good in- 
sulation, wires covered with gutta-percha being used for all the 
connections, and all the apparatus used being supported by pieces 
of glass coated with paraffin. 

For our calculations of the capacities it was still necessary to 
know as accurately as possible the rates of the forks used. 

The “32” and “64” forks were compared directly. It was 
then discovered that the “32” fork was wrongly weighted, so as 
to vibrate about 324 times a second. As this would prove trouble- 
some when it was compared with the standard, it was reweighted 
and compared afresh with the “64” fork. The fork as reweighted, 
which we shall call the (32) fork, was then made to drive a fork 

of about four times its frequency, and this latter was compared 
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with the standard fork (whose frequency was determined by Lord 
Rayleigh) by counting the beats between the two. A resonator 
being used, this could be very conveniently and accurately done. 

To compare the “32” or the |32| and the “64” forks both were 
set vibrating, and the dipper carried by the latter was viewed over 
the top of the former. A screen was brought down in front of 
the prong of the fork over which we looked so that we could only 
see the dipper between the screen and the prong when the latter 
was very near its lowest position. 

A narrow horizontal slit ruled on a plate of smoked glass was 
sometimes used instead of a screen. The dipper was thus seen 
in a state of slow vibration, and by placing behind it a piece of 
paper with a line ruled on it, which was just reached by the dipper 
in its highest position, the vibrations could be very accurately 
counted even when extremely slow. ; 

The following is a specimen of the electromagnetic observa- 
tions. The extreme columns give the resistance (¢c) in B.A. units, 
and the equilibrium position of the left edge of the band of light 
on the scale when the currents are passing through the galvano- 
meter. We write c, for the capacity of the condenser marked ‘1. 

August 13th. 

= IN, (Oy FP Os se Gap 

Resistance (c). Zero point. Equilibrium position. 

56 . 
510 31 

56 
55 

520 oil! 
5) 
55 

530 GL 
54 
55 

522 55 
55h 
554 

522, 554 
54 
55 

522 57 
57 
58 
55 

522 56 
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Resistance (c). Zero point. Equilibrium position. 

56 
57 
584 
59 

Da 60 

59 
57 

521 53 
54 
54 

521 544 
56 
56 

521 DT 
58 

59 
521 58 

59 
58 

oe 61 

60 
D2 61 

60 

From this series of observations we take 521°5 for our value 
of ¢ 

We notice that a difference of one unit in (c) makes a differ- 
ence of two scale divisions in the equilibrium position, and this 
is about the degree of sensitiveness that we found throughout. 

The following is a specimen of the observations taken in com- 
paring the forks. 

August 18th. 

“32” and “64” compared. 
Roughly we see 49 or 50 double vibrations of the dipper per 

minute. 
Counting with the chronometer, we get 

49 vibs. in 60 secs. 
49 vibs. in 61 secs. 

“32” weighted, 49 vibs. in 714 secs. 

{i vibs. in 60% secs. 

‘©32” more weighted, 
25 vibs. in 67% secs. 

“32” as at first, 49 vibs. in 604 secs, 
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Mean time of a vibration = = sec. 

Thus Za. aE + = Vs 

The lower sign is the one to be taken. 

Putting JN, for the frequency of the standard fork, we get in 
the same way the equations : 

1 
2N ia) + jog = NE, 

AV) — a = N, (temperature = 20° C.). 

Now (Rayleigh, Phil. Trans. 1. 1883) 
N, =128:140 {1 —(¢—16) x :00011}. 

s 

Hence NV = 1230836; 

Nis = 32°10005, 

N,, = 642083, 

N,, = 325091. 
82 

Substituting our resistances in Thomson’s formula, we have 
1 cl 

n= oF ae + ia) , nearly, 

ee 
~ 100 cd’ 

the resistances being in C.G.S. units. 
Now the B.A. unit is, as determined by Lord Rayleigh, 

“OiSi7/ Se IOP 

Hence, if our resistances are in B.A. units, we have 

1 99 if a 

x 100 “987 x 10° cd’ 
The results obtained are given in the following table: 

Condenser used. (n) (c) Capacity. 

eceteet 32509) | o2t> § 5918) 100 

Ceeie es 2509)) | 52165) 5918 x 10m 

Ca + Cy 64208 526 2969 x 10”, 

Cc 64°208 526 BONG) XO, 

Os 64208 789°5 G7 x UO, 

CH 64°:208 395°5 3949 x 10”, 

Ci+¢, 64208 395 3955 x 10™. 
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If we examine these results we see that from the last five we 
can deduce ¢, in two ways, and that we shall get for our results: 

70990 x 10°”, 

and 0986 x 10. 

Again, from them we get, 

C4 + Cy + Cy = 5938 x 10™, 
C+ 6, = "5928 x 10™, 

Cy + Cg + Cy = 5934 x 10™. 

Thus we see that all our results agree fairly well among them- 
selves. 

November 10, 1884. 

ProFr. FostER, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows: 

T. C. T. Reeve, B.A., Caius College. 
H. M. Elder, B.A., Trinity College. 

The following communications were made to the Society: 

(1) On some experiments on the Liver ferment. By Miss F. 
EVES, communicated by Mr A. 8S. LEA. 

The experiments on which this communication are based, were 
made with the object of obtainmg some more definite information 
as to the existence and action of the ferment which in the liver is 
usually supposed to be the chief factor in the conversion of gly- 
cogen into sugar. 

From general consideration it appears probable that the con- 
version of glycogen into sugar in the liver may be regarded as due 
rather to the special activity of the hepatic protoplasm than to 
the action of any specific ferment. An examination of the litera- 
ture on the nature of the ferment shews that an amylolitic ferment 
can be obtained from the liver; but it shews also some uncertainty 
as to its preparation by several observers, and that it is not so 
characteristically present in this organ as the importance of the 
part it plays would seem to imply. No statements exist as to the 
nature of the product which can be obtained by the action of this 
ferment on starch and glycogen, since it does not seem to have 
been isolated in a sufficiently pure state to allow of such observa- 
tions being made. 

An effort was made in these experiments to obtain the sup- 
posed ferment in a fairly pure state and this was successfully done 
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as far as it is possible to consider that such bodies can be isolated. 
It appears that an amylolytic ferment can be prepared from the 
liver by the method adopted, but that the quantity, as judged by 
its activity, is less than might be expected if it plays any very 
specific part in this organ, and is in fact not greater than the 
amount which can be obtained from nearly every tissue and fluid 
of the body. 

The action of the ferment in as concentrated an extract as 
could be prepared was tested on starch, and it was found that 
though the sugar formed could not be proved to be definitely 
maltose, it was very certainly not dextrose. This is important 
since the sugar found in the liver itself post mortem is stated by 
all observers to be dextrose. It is hence still more probable that 
the ferment extracted is only the ordinary amylolytic ferment met 
with generally throughout the tissues. 

(2) On the supra renal bodies. By Mr W. F. R. WELDon. 

(3) On the supposed presence of protoplasm in the intercellular 
spaces. By Mr W. GARDINER. 

Russow’s discovery of the existence of a so-called “ intercellular 
protoplasm” having been confirmed by several other investigators, 
the author was led to examine the whole matter with the greatest 
possible detail from a comparative and developmental point of 
view, since the results were directly opposed to the views which 
he had previously stated in his paper “ On the constitution of the 
cell-wall and middle-lamella.” He finds that all his experiments 
unanimously point to the fact that the substance present is not 
protoplasm, but mucilage, and that the mucilaginous degeneration 
of the external layers of the cell-wall is a phenomenon of almost 
universal occurrence. 

(4) Ona proteid occurring in plants. By Mr J. R. GREEN. 

The proteid which was the subject of the paper was described 
as possessing properties similar in some respects to those of the 
peptones and in others to those of the globulins. It is allied to the 
former group by being soluble in distilled water, the reaction of 
the solution being neutral; in not being coagulated on boiling; 
and in being capable of dialysis. It resembles the globulins in 
being precipitated by saturation of its solution by neutral salts 
such as magnesium sulphate, or by the passage through it of a 
stream of carbonic acid gas. It has been found to occur in Manihot 
glaziovu, Mimusops globosa and a few other plants. 
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(5) On the secretory hairs on the stem of Thunbergia laurifolia. 
By Messrs. W. GARDINER and R. I. Lyncu. 

In this investigation Mr Lynch made the observations as to 
the external morphology of the hairs, and Mr Gardiner examined 
their microscopic structure and development. The authors stated 
that the hairs exhibited many points of interest. They occurred 
on the stem only at the base of each leaf insertion, and were thus 
localised in a very exceptional manner. They were of a most 
perfect cup form, and the watery and slightly acid secretion ap- 
peared on the free surface and did not cause the raising of the 
cuticle as so usually occurs in most secretory structures. They are 
apparently unique as to their distribution, since they neither occur 
in Thunbergia alata nor in such closely related genera as Meyenia 
and Hexacentris. They are essentially transitory in nature and 
are developed from a single epidermal cell. 

November 24, 1884. 

ProF. Foster, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society : 

(1) On the developments of K’, E’, J',G’ in powers of the modulus. 
By J. W. L. GuaisHeEr, M.A. 

The quantities HE, J, G, § 1. 

§1. Besides the quantities K and H of Legendre and Jacobi 
and the quantity J=K—Z of Weierstrass I have found it de- 
sirable to treat also #—k°K as a fundamental quantity, form- 
ing one of a triad of which # and J are the other two members*. 
Denoting H—k"K by G it is found that not only #, J, & but also 
J—G,H+G, H—J enter into the formule of Elliptic Functions 
in such a manner that these six functions form a special group by 
themselves. 

Using accented letters to denote the same functions of k’ that 
the unaccented letters are of k we are thus concerned with the 
following fourteen functions: 

* See a paper “On the Quantities K, H, J, G, K’, E’, J’, G’ in Elliptic 
Functions,” Quarterly Journal of Mathematics, Vol. xx., pp. 313—361. 



1884.] KK’, LE’, J’, Gin powers of the modulus. 185 

K, He, 

fash & op Kaas 
C= eK CLAN. 

TAC = (eae J = = | HP) eee 
E+G@=228~ kK, BeaG =k 
mi Oe Ke TF as ON We 

Formule for E, J, G, &e. in terms of k, § 2. 

a 
§ 2. The following formule give the expansions of ——, —, &e. 

ie ae 
in ascending powers of k’: 

2K ne 2 gl ae Cee 
= =1+553 k? 52 42 Ki + pga gi + &e., 

is Se a ae 

a a : Pee ce kf + &e., 

SS Fh age, Pa ame, 

Cee = oa +o = ke, 

ee) ee ee oh Te es = 5: Pe” toe ee 
DPT SE EE 

7 oe a a apg Oe 
= 

The formule for and = may be deduced from those for — and 

ee either by means of the algebraical formule 

J=K-—-E, G=EH—(1-F’) Kk, 

or by means of the differential formule 

Bh ee dK Jako, G=kI-k)S. 

VOL. V. PT. III. i133 
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Formule for K’, E’, &c. in terms of k, § 3. 

§ 3. The formule to which the present paper principally 
relates are those giving the expansions of K’, H’, &c. in ascending 
powers of X’. 

I have found that these developments may be written in the 
following form : 



1884] 

CG 

K’, E', J’, & in powers of the modulus. 
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§ 4. The coefficient of k” in each of these seven expressions is 
of the form 

+r (log 7 - R), 

where r is a fraction whose numerator and denominator are 
products of factors, and f is a numerical quantity, the connexion 
of which with r is best exhibited by assigning to n a particular 
value. Taking, for example, n= 3, the values of r are 

a 

@ Bo Bae 
Gm) lf’, ae 

Oe ee 

0) JH-@ ge 
@ Pee, =e 

wi) Baw, Fat 
and the corresponding values of & are 

(ep ee ep 
(i) 2—34+2-24+14-4 

(Os ae et tis 

Ouest a dime: 
Ce sia aa. 

(i) a= oa 6 = ape: 

GM) f= FAS ee bese 

Tn all cases the quantities 7 and A are so connected that to every 

factor m“ in r there corresponds a term + = in #, the sign being 

positive or negative according as m“ occurs in a numerator or 
denominator. 
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The law of the coefficients, § 5, 6. 

§ 5. With respect to this curious law the following theorems 
may be noticed : 

(i) if the law holds good in the case of two series in which the 

factors multiplying &”” lye = are r and ra respectively, it will hola 

good in the case of the sum and difference of the two series, for 

1 1 
ra(R42) +rR=0 (441) Ppa 

and 

ra(R42) —rR=r (= 1) (R+ : I. 
a= ll 

The case in which the corresponding multipliers are r and r : 

is obviously identical with that just considered, but the inde- 
pendent proof is worth noticing, viz. 

rR+5(R-3)=r 25" (B+ : 3) B B fe} B+1 £6 

rR 5(R-g)=r2 gt (R+ gry): 
(ii) if the law holds good for two series in which the cor- 

= it will hold good for their differ- responding factors are r and r 

ence, if 8B=a+ 1, for 

ooh (nota fiorEgt(n-3) 
(iii) if the law holds good for two series in which the cor- 

responding factors are r and ee it will hold good also 

for their difference, for 

me—r Ga DEtD (Ry 1 i 1 *) 

It is obvious that in this theorem we may suppose the cor- 
ae 

; dine & : responding factors to be r and r Ge tia@41) 
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(iv) If the law holds good in the case of any series, it will 
hold good also for its derivative, for 

ker (low; —R) =r. 2n (log ¢ — R) i 2 

feds 
ois 

§ 6. If we start with the series for K’ and Z’ in both of 
which the law holds good, we may deduce the series for J’ and G’ 
by means of the formulz, 

aft = K’ alk vie 

CE ae 

respectively. The series for J’ and G’, derived from those for K’ 
and &" by these equations, afford examples of the application of 
theorem (ii). The series for J’—G’, derived from those for J’ 
and G’, affords an example of (ii), and the series for H’+ G’ and 
4’—J', derived from those for H’, J’, G’, afford examples of (i). 

The series for A’ and EZ” may be derived from those for G’ 
and J” by means of the equations 

1 dG i eaige 
Nin aie 

the series so derived afford examples of (iv). 
The series for J’ and G’ may be derived from those for Z’ and 

kK" by means of the equations 

1 dE a Stk eae @=-k-k) 

the series for J’ and G’ so derived afford examples of (iii) and (iv) 
combined. 

The theorems (i), (11), (111), (iv) serve to explain the occurrence 
of the law in certain of the series, as derived from others; but 
it is none the less remarkable on this account that the law 
should hold good im all the seven series, as certain restricted 
conditions with respect to the coefficients have to be satisfied 
in order that the theorems may admit of application. 

=, Vip (10 a x) eee 
2n 

a 

The Notation, § 7. 

§7. The meanings assigned to J and J’ by Weierstrass* were 
J=K—KH, J’=k’. Thus Weierstrass used J’ in place of L. 
As however it is convenient always to denote by accented letters 
the same functions of kh’ that the unaccented letters are of k, 
I have retained Z’ and used J’ to denote A’— EZ”. 

* Crelle’s Journal, Vol. ut. p. 361. 
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I found it advantageous in working with the quantities L, J, G 
to use, instead of J, the quantity —J. Putting therefore J=—J 
the three quantities considered are Z, J, G. 

It was found to be convenient also to denote by separate letters 
the three quantities $([+G@), $(G@+£), $(H+J). Denoting 
them by U, V, W we consider therefore the six quantities 
EL, I, G, U, V, W, defined by the equations 

I=E-K, 
G=H_ kK, 
U=4(I+ @), 
V=4(G+2), 
W=3(E+ 2D). 

The six quantities EL, I, G, U, V, W, § 8. 

§ 8. Expressing the six quantities in terms of # and K, and 
of J and K, we have 

H=k =I+K, 
I=E-K =I, 
G=E_-k’K =I+9K, 

U-B-3(1 +k) K=1+35hK, 
VB a GLEE I 
W=H-t}K = EE KS 

the six quantities Z’, I’, G’, U’, V’, W’ denoting the same func- 
tions of k' that E, ZT, G, U, V, W are of k. 

Systems of formule for K, L, I, G, &c. and k', E’, I, G’, &ce., 
§§ 9—11. 

§9. The systems of formule given in § 2 and 3 may be 
expressed uniformly in the following manner. 

9) a 

Let eee 
T 

>) 

pee. (pee 
7 T 

paZt ya 20 
Tv 7 

2G 2 
G. = ’ W. pray 
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then, by § 2, 

ale Wes i areas ee Oo sel 

FOU ok + on geo ae gi + oe ag gt ee 

pat he Ede Ble PET yg 
I= -5 a ce ee ete, 

G,= et Sate eo 

oe ei 4 ae ha las = JF aes 

a a : oe oF es sire oes ee ea 
U8 eel 8 OP ele OE On ik 

OE or oe ae Yon ag ares 

connected with the coefficients in the above series for K,, H,, I, 
G,, 2U,, 2V,, 2W, by the law explained in § 4. 

: LP ; 12.3? ; 
K,= op (f — 3) & + ope GF g+3—2) kh + &e, 

1 : 1.3 
#L,=1-3G—§)k 2 4A i ot ae aates 

1 1S 
1,=1-56- ) ke — org (F-F+3— 4) M—&e, 

C211 6-2 ee eee 2 2 1 9? 4 1 2 4 ’ 

712 

2U,=2—48 oq (f-4- DM ke, 
1 A L 

2V,= 2453 (¢— §%) & tor gt 3-4) h— &., 

1.3 15365 

In all the seven series, the law noticed in § 4 is followed 
in the formation of the coefficients of &* and higher powers of 
k*. It is followed also by the coefficients of k*, except in the 
case of 2U,, and, with reference to this case of exception, it is to 
be observed that the series for 2U,, from which that for 2U, is 
derived, begins with the term in k*, and that the law of the 
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factors in 2U, is such that they cannot be continued backwards 
one term. 

The quantities U,, V,, W, are such that 

(Of, = 4, ate G,), 

Vi=3(G,+ #,), 
= 3 (L,+ I). 

§ 10. Denoting by K,, L,, 1, &c. and K,, E,, I,... the series 
to which they are equated in the preceding section, the expansions 
of K’, £’, I’, &c. in powers of k* are given by the equations: 

aes alee re 
1 ok 2) 

‘ 4 
H=-TI, log7 +1,, 

Il =- Blog 7+, 

W’ =— V, log > + Ves 

V=— U, log = + Ue 

W' =—W,log> + W,. 
§ 11. The values of K’, H’, I’, &. in terms of K, E, I, &e. 

and the series K,, H,, [,, &c. are given by the equations : ng Lp 

Pan Slew sal, 

Va- 2 og t+ &,, 

@'=— 7 tog 4G, 

y= ==" hog F + V3 

Y= 20 tog h + Ue 

Wee es Wee 
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The formule in the case when k is small, §§ 12—15. 
§ 12. When £ is small, 

= fogs 2h, 

af =H =1- 3H, 
aT 
ee = eS 

2U 
gat Ua a 8 

Va 
aes Via=atgh, 

2W 

Goh wep es 
and 

eo UP, 
kh, =1 —Tesk, 
I, =1-42 
Cie 
U,=1-4%, 
V, = 1-40, 
W,=1-18. 

§ 13. Thus, if we neglect terms of the order k* in the series 
K,, E,, &c., we have 

Kis igs 

BP = Neg 

P= tog +1, 

G === tog +1, 

U' == 2 loge +1, 

pe eet 

W’ = 2 tog e+ 1 
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§ 14. Substituting for AK, L, &c. and for K,, £,, &c. their 
approximate values given in § 12, we have 

K'= (1+di)log > — 1, 

I'= — (1-H) log $+ 1— Sch’ 

G = — 3k log i+ 1—iF’, 

U' ==} + Be) log F441 

Vix hbtlog $41 — Be, 
W'=—1 (1 — 3h’) log + 1-4. 

Writing the terms in order of magnitude and retaining them as 
far as those involving k’, we obtain the formule : 

K’=—logk+2log2 — fk logk+4h (2 log 2-1), 

i 1 — 4th logk+ ik’ (4log 2 —1), 

I’= logk+1-2log2—ih log k + 4k’ log 2, 

G' = it + 4h’ log k — th? (4 log 2 + 1), 

Y=tlogk+1— log2+ th log k— th’ (2 log 2 +41), 

W= 1 ah 

W=tlogk+1— log 2—- 3h logk + th’ (6 log 2 — 1). 

§ 15. Neglecting terms of the order hk’ log k, 

[= log - 

HI, 
L=1— logi, 

@=1, 
U"=1—$log 7, 

V=1, 

W' = — blog. >. 
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Differential equations satisfied by K and K', E and I’, &e., 
§§ 16—18. 

§ 16. It is well known that HK and K’ satisfy the same differ- 
ential equation of the second order, viz. 

du du 

and it was in fact by means of this differential equation that 
Legendre obtained the series for K’ in terms of & It is well 
known also that the quantities / and K’—£’ satisfy the same 
differential equation; whence also L’ and K — £ satisfy the same 
differential equation. It can be shewn that the same differential 
equations are satisfied by G and G’, by U and V’, by V and U’, 
and by Wand W’. These seven differential equations and their 
complete integrals are as follows: 

(i) 
2 

k (1—-k’) + (1—- a) —ku=0, 

u=cK+¢.K; 

(ii) 
kL W) Sh + 1 — Be) OY + hu = 0, 

u=c,f+e,1'; 

(iii) 

kd) S44) + eu =0, 

u=cl+c,k'; 

(iv) 
k (1 Pee 1) 20, 

u=¢,G+ 6G; 

(v) 

ka = @= k*) ot ku =0, 

w=cU+c¢V; 



1884.] K’, E’, J’, @ in powers of the modulus. 197 

(vi) 
; oy OU my a 
k1-k) at (+h) a — ku =0, 

u=ce,V+e, U’; 

(vil) 

iu CHD 
k (1 — k*) at (L— 3k!) 7 + 8ku=0, 

u=c,W+c,W’, 

where c, and ¢, are arbitrary constants. 

§ 17. These differential equations assume a more elegant form 
when the independent variable is taken to be k? instead of hk. 

Putting Dele, i 

so that h-+-h =1, 

the differential equations are: 

(i) 
au ‘ du = 

Ahh diet A(h hl) —u=0, 

= GAM IE GEC s 

(11) 
au , du Ma 

Ahh diet Ah dh +u=0, 

“u=cH+eSl; 

(iii) 

au du hs 
Ahh dhe = Ah aT +yu= 0, 

u=cl+c,E’; 

(iv) 
au i 

Ahh The —u=0. 

u=c,G +E’; 
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(v) 
(aU 4c 

Ahh de 47, —u=0, 

u=c,U+e,V'; 

(vi) 
, au du ig 

Ahh Wet ah w=, 

u=c,V+e,U'; 

(vil) 

Ahh’ PEA h’—h 3u = 0, » ge TTA ait ay 
u=c,W+e,W. 
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§18. The differential equations may be very easily obtained in 
the form given in the last section by means of the differential 
formule : 

dG , ak 
K=27—, G = 2hh ae 

/adl dH 
K=—2h Aah? I= 2h a 

Pe do Ne Nave G 
Veen ap Ae dh 4h’ 

aqW_ hI-hE 

dh —s 4hh 

Definitions of K, E, I, &c. as integrals, $$ 19, 20. 

§ 19. Denoting by X the expression 

V{7. — 2) (1 — ka"), 
the definitions of K, H, I, &c. as integrals are 

: 1 1 2 pe ene) 

(1) pos x, 
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nb yey Pye 

(iv) g=[* lots dx, 
0 Xx 
aye pee 

(v) =| ee ay, 
0 

1a ne) __ 72,2 
(vi) v=| ee 

0 

Xx 

the track of integration in each case being real. 

Nite Tee 
(vii) w={# ine 

J 0 

§ 20. If the track be not real, but be the same for all 
the integrals, the corresponding simultaneous values of the inte- 
grals are 

(i) (2m+1)K+ 2k’, 

(ii) (2m +1) H-2niI’, 

(iii) (Qm4+1)J—2nik’, 

(iv) (2m+1) G— 2niG@’, 

(v) (2m+1)U—2nV", 

(vi) (2m+1)V—2nU’, 

(vii) (2m +1)W— 2m W". 

Note on the Differential Equations, § 21. 

§ 21. Defining K, ZL, £ &c. as in § 19 by means of the inte- 
erals, we may shew, by differentiation and transformation of these 
integrals, that they satisfy the differential equations (i), ... (vii). 
The validity of the processes is in no way dependent upon the 
reality of the track of integration, though it must be the same in 
the case of each of the integrals used in verifying the same 
differential equation. The seven differential equations are there- 
fore satisfied respectively by the seven values of the integrals 
given in the last section. Thus the differential equation satisfied 
by K is satisfied by K’ also, that satisfied by £ is satisfied by I’ 
also, and so on. This explanation of the fact that K and K’, # 
and J’, &c. satisfy the same differential equations is well known: 
it is only referred to here in order to notice that the same ex- 
planation applies in the case of each of the seven differential 
equations. 
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Solution of differential equations by series, § 22. 

§ 22. In the solution of differential equations by series it is 
well known that, supposing the equation to be linear and of the 
second order, if we obtain as particular integrals two series R and 
S, then the general integral of the equation is 

u=ch+c,8; 

but that if in the formation of the series S the coefficient of a 
term becomes infinite, the general integral is of the form 

u =a log ba + T, 

T being a new series, and a and Db being the arbitrary constants. 
The seven differential equations afford examples of this principle. 
Taking, for example, the fourth equation of § 17, viz. 

du 
4h (1 —h) ae —u=0, 

and, following the usual process, let 
u= > Ah”, 

the summation extending to all positive integral values of 7; 
then, substituting in the differential equation, we have 

A(m+r)(m+r—1)A,— (Qm+ 2r —3) A_,=0, 

whence, putting r=0, we find 

m=0 or 1. 

The equations giving A,, A,, A,... are 

2m (2m + 2) A,— (2m —1) A, =0, 

(2m + 2) (2m + 4) A, — (2m + 1) A, =0, 

(2m +4) (2m + 6) A, —(2m + 3)’ A, = 0, 

SAC se: 

Taking the root m= 1, 
lie 

A= 2.4 Al. 

32 

A, A640 

52 

A Gun 
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We thus obtain as a particular integral 
: 2 2 2 2 2 

Lag (it og J ph ee i + &e.), 
+2 #6 2. 4°. 67.8 

that is, in the notation of § 9, 

u=A,.2G,. 

If we take the root m=O we obtain infinite values for A,, 
A,, &c. and we conclude therefore that the general integral of the 
equation is of the form 

u=alr, log bh + T, 

the coefficients in the series 7’ being determined by substituting 
this expression for u in the differential equation and equating co- 
efficients. 

Since G" satisfies the differential equation it must be of this 
form, and comparing its value, viz. 

3G, log J.h+ G,, 
3 16 

with aG, log bh + T, 

we see that it is included as the particular case a= 4, b= 44, the 
series T' being equal to (,. 

In the solution of each of the seven equations we obtain 
directly by the ordinary process of integration one series proceed- 
ing by ascending powers of h. These are the series Gee Da al 
&c. The series K,, H,, I,, &c. are the values of 7’ in the different 
cases. . 

Series for K, G, W, involving sines of multiples of the modular 
angle, § 23 

§ 23. In Vol. x1x. (pp. 51, 52) of Crelle’s Journal, Guder- 
mann has given the following remarkable formula in which @ 
denotes the modular angle: 

= ok 1? Boi) 
K=r (sind + 5. += sin (psp sin 96 + ——,, sin 130 + &e. ), 

2? 42 2? 4?. 6? 

_ The chief interest of this formula consists in its elegance, as 
it is of course not so suitable for the calculation of K as the series 
proceeding by powers of k*. The method by which Gudermann 
obtained the above series for K is in effect as follows: 

1—k 
+k ] 

MO Ve PT Lt 14 

K’ is changed into $(1+ 4%) 4’, By the change of k’ into 5 
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and by the change of k into - , K’ is changed into k'(K’—iK). 

Thus, by the double transformation, 

k’ is changed into = 7 = = e210, 

and Ky, gS h(i +1k)(K'—-7tK) = be(K’—iK). 

Replacing & by k’ in the first formula in § 2, we have 

? 2 ae Fo 3 
Tv 

gs ay oe. 

tog + og gh + he, 
whence, changing k’ into e—?", 

Dili7o is a 
eO(K’—iK) a4 

T 

123) ane see OO + &e, 

- that is, 

K’-ik 1? eee :; = ue en + oa e—58 of Fae e918 + &e. 

= cos + 55 008 50 +55" pr 008 90 + Be, 

— i (sin O45 >sin 50+ 5 winsin 96-+&e.), 

giving 

ore pp os 00+ Ke, 

and = = sin 0 io z sin 58 ns ae sin 90 + &c. 

We may obtain corresponding formule for G and W by a 
similar method, as follows. 

§ 24. The change of k’ into = I corresponds to the change 

of q into q?, and the change of & into S corresponds to the change 

of g into —q. The double transformation therefore corresponds 
to the change of q into 7q*. 
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By the change of g into q?s 

k’ becomes 

V’ 

bets 
14+k’ 

E(1+k)K’, 

CADig 
Pee: 

ie 

12k 

and, by the change of qg into — q, 

k becomes ui k’ be 

Tae ki (K'-ik), 

Cain a ee 
k 

, G’ + 4G 
E ”» k' 

Thus, by the change of q into ig?, 

k’ becomes e-%, 

HG” aie de® ChE = ake); 

Nin oe. CW, 22 WY ), 

Vi een (G -enG)s 

§ 25. Starting with the formule, 

Ge le eye dn ns: sal SO ig 
Pamataes aah orm Gam orearage gaat 

2I' We lO A ae no soe: 
Gti eee POR eae oF ae 

4V’ EA | OS ee ee oes ee 
Te a oreae eid. pram. Be 

we find, by replacing kh’ by e~*, and equating the real and 
imaginary parts of the expressions asin § 23, 
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Sloe 32.0, 
= =sin 0 +5, sin 50+ ors qe sin 90+ ee sin 1380+ &c., 

= = 008 0+ 5,005 go Ba cos 98 + oe 2 cos 134+ &e., 

2V = 5 sin30-+5;s sin 70+ 23> sin ld + ée, 

ae = cos 80— 5,7 cos 70 — mot —- cos 116 — &e., 

" = pias Mae sin 70 — ooo sin 110 — &e., 

a = cos 045 ene ae & Re 08 70+ se cos 110 + &e. 

The series for K and W assume the form 0 x « when 0=0. 
When 0=47, they are infinite m value, as they should be. 
Except in these critical cases, and the corresponding cases for 
K’ and W’, the series are convergent for all values of @. 

Similar series for E and I,§ 26. 

§ 26. Since 
H=W+34K, 

and I=W-4 

we may at once deduce from the series for = and av in the 

2. 
last section, the following series for and ae 

2H _ sin +5 sin 30-+ 5, ;sin 50-45" 7 sin'70 
T 

2 2 

La = sin 90-455" a > sin net ace es, psn 8048 

2r : 17 
2 _ — sin @-+ }sin 30 — 5 sin 50 + 5 i 2 naa 

17,3? 1P ee 1737.5 
— oF ae 4 904 oe ary re “g sin 110 — Fg aE ge gz Sin 130 + ke. 
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Legendre’s formule for K' and E’, §§ 27, 28. 

§ 27. The series for AK’ and Z”’ in terms of k are due to 

Legendre. Changing only his 4, F’, E" into k, K', E’, the follow- 
ing is the form in which they were given by him*: 

oh 4 
Ks log; 

712 

2.37007, 4 2 
+o gp (log, 1-34) 
(age bee 4 Dy NS 
ag gh (8 g-1—-g 45g 

+ &e. 

i= ij 

ds, 4 i 

+5 (logy 1-9) 
(oe ae) See 
tap gh (logg~ 4’ 3) 

TE PRI a fgg _ 
+ 52 Bp Gh (log; A Fe 

+ &e., 

where eal 

meee s 
ae ae 

WAL ee Oo 

TO aaa 
&e &e. 

28. Legendre remarks that the coefficients in the series for 
EE’ agree with those which he had given under another form in 
the Mémoires del Académie for 1786. 

* Traité des Fonctions Elliptiques, Vol. 1. pp. 67, 68. 
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Changing Legendre’s notation as in the last section, the formula 
in the Mémoires* becomes — 

iy = 

ea Bae) Wes) Sama SS 3) oF 2 +(P45 5k + THLE 

i 
— ia 

a 

a Lace : ) 
4°20 \12 2.3.4 

_ 3.8 I. 3° 1 1 ) 
ANG OWA N20 SRSA ASG 

_382ont 1. eres 1 1 1 
4.6.8°2.4.6 \28 2.3.4 4.5.6 Gta 

— &e. 

In this series the general term is 

5 (201) | = oe ee a 

4.6... 2n .. (2n — ee By 
where 

6n — 5 1 il 1 

Sy ena oh 3.4 4.5.6°° (Qn—2)(2n—1) In 

To identify this term with the corresponding term in the series 
for H’ in § 10, we notice that 

SOP ee ie 
221-1) ~ 2 2-1’ 

d Salt 2iS ea Cee 

ae r(rtl)(r+2) 7 r+l rt 

Thus 2S,= 

9 1 ele Sonal ete) -(s=p-aa ta) 

= -s9- 5 3°74 G By AGy Et (eae Qn—1 * Qn 

De ee 2 fal ee 
Tae h 3g) Ono S Ineo 

and the coefficient of k” is evidently the same as in J, § (9). 

* Mémoire sur les Intégrations par arcs d’ellipse, p. 630. 
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Gudermann’s form of the series for K’ and E’, § 29. 

§ 29. In Vol. xIx. pp. 55—58 of Crelle’s Journal, Gudermann 
gave the series for K' and EZ" in Legendre’s form and also in the 
following slightly different form : 

Let 

eee gt ya st es 
G=1+ pb +o, ph + or ge gk + ke. 

and 
It) re iy eR eela nC aeab) 
at 99 Aa Gime (On)? 

(so that St, denotes the first n +1 terms of &), then 

K’ = Glog > (@—-1) - 5-4 @-&,) — = (@-@,) — be 

1? 

G,=1lt ak + ite 

Similarly, let 

eas . 1°, 3".5 5 _1,, 4 6 

and 

ops aa a ea A 1’. 3... (2n — 3)? (2n —1) 

=o tom 4 ee i a 2? 4? 2. (Qn — 2)? Qn ae 

(so that ¢, denotes the first » terms of ¢, the last term being 
halved), then 

2 2 E’ = tlog ¢+1-(¢-1) 57) ¢-#) = “4 (0-4) — de. 

It does not seem worth while to give the corresponding forms 
of the series for I’, G’, &c.; they may be derived at once from the 
formule in § 3. 

Weerstrass’s J and J', § 30. 

§ 30. In Weierstrass’s notation, in which K —£ is denoted 
by J and KE” by J” (see § 7), we have, as noticed by Weierstrass 
himself *, the corresponding Peat formule : 

2K, 4 
K’= — 1oSz; 

eal + og * 

* Crelle’s Journal, Vol. un. p. 364. 
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This second equation in the notation of this paper is 

: 21, 4 
E FT pees 7 ths 

and is the second of the system of six formule in § 13. 

(2) On a@ simplified form of Apparatus for determining the 
density of Ozone. By C. T. Heycock, M.A., and F. H. NEvILLE, 

In 1868, M. Soret published. in the Ann. Chim. Phys. t. 157 
his researches on the density of ozone based upon its rate of 
diffusion. 

The corrosive action and the instability of ozone led him to 
devise a very complicated apparatus. The following is an account 
of a much simplified form, for the same purpose, as used by the 
authors. | 

Their apparatus was made of two gas cylinders of thick glass 
each containing about 300 cc., the mouths of the cylinders being 
carefully ground. The closed ends of the cylinders were pierced 
with a hole and each was fitted by an accurately ground tube and 
stopcock. 

Care must be taken to grind the tubes to fit accurately the 
holes in the cylinders as all lutes are unadvisable in the presence 
of ozone. The mouth of each jar is closed by a thick sheet of 
plate glass, which we call dampers, rather wider than the jar and 
about twice thisin length. Hach damper was perforated by a 
round hole, the diameter of the smaller hole being about 4 mm. 
and the other about 10 mm. 

The experiments were performed as follows:—one jar was 
clamped with its mouth upwards, and on it were laid the two 
dampers, and upon them the other jar mouth downwards. By 
sliding the dampers it is easy to bring the jars into communication 
either with each other or with the air. The jars having been 
brought into communication and the stopcocks opened oxygen gas 
was blown through until the air was displaced. . 

The taps were then shut and communication between the jars 
interrupted by sliding the dampers. The lower jar by the same 
means was brought into communication with the air and an 
approximately known quantity, either chlorine or ozone, blown into 
it. The lower jar was then closed and the apparatus left to rest 
for some hours to get rid of convection and other currents. The 
taps were then opened for a moment to equalize the pressure and 
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the jars brought into communication by sliding the dampers until 
the holes were concentric. 

The diffusion thus established was allowed in all our ex- 
periments to proceed for 45 minutes, after which the dampers were 
closed. 

The quantity of chlorine or ozone present in each jar was 
then determined by absorption with KI, and subsequent titration 
by a solution of Na,S,O,. Whatever be the chemical reactions, 
the amount of Iodine liberated, and therefore the number of 
ce. of Na,S,O, used is in every case proportional to the amount 
of chlorine or ozone present in the upper and lower jar. (For 
convenience, we used a standard solution of Na,S,O, to obtain an 
idea of the quantity of gas used in each experiment.) 

Let v and V be the number of cc.’s of Na,S,O, required for 
the upper and lower jars respectively when chlorine was the gas 

: v 
diffused, then Tae 

whole amount of chlorine taken. 
This ratio is independent of the quantity of diffusing gas 

originally placed in the lower jar but is a function of the time, 
the temperature, the size of the smaller hole, and the density of 
the gases. If the time of diffusion were long enough this ratio 
would become 4, but when the time is comparatively short the 

ratio =s may be taken to be proportional to the velocity of 

1 
diffusion of the particular gas, that is to —— where D = density. 

AUD 

The mean of six determinations with chlorine gave 

= ratio of amount of chlorine diffused to the 

Vv 
VEtet OanZe 

The mean of fourteen determinations with ozone gave 

Uy 
V+u 

(117) _ density of ozone 
(147)? density of chlorine 

= 0147. 

Hence 

Assuming the density of chlorine to be 35°5 we get from this 
equation the density of ozone to be 22°5, a result which sufficiently 
justifies the formula O, for the molecule of ozone. 

The following table gives the actual numbers recorded in our 
experiments. 
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CHLORINE. 

Top Jar v. 

Chlorine diffused in 45 einen oh 
min. estimated in cc.’s | Chlorine in ee oe at Ratio = 

; commencement of exp. v 
cf Nas 0s penned ioe Stated in cc.’s of Na,8,0,. 

We) 15°6 0-112 
56 48-7 0-115 
5°85 49°95 Oni 

13°88 118-6 0-117 
17:1 144:7 0-118 
27°45 228°6 0-120 

Meant uco/ cee 0-117 

lec. of NaS.O, =0°208. cc. of Cl at 0°C. and 760mm. 

Hence the largest quantity of Cl diffused in one experiment 
was 5°71 ce. 

OZONE. 

Top Jar v. Total V+v. 

Diffused Ozone stated in| Ozone in lower jar at Bate ps5 ( 
ce. of Na,S,0, required | commencement stated in V+V 
for liberated Iodine. cc.’s of Na,S,0,. 

0:95 6°45 0:1473 
1:43 Sg)! 0:1436 
2°03 15:00 0°1350 
2:27 15:75 01444 
2-73 18°85 0:1446 

3°28 22°08 0:1483 
3°50 22°9 0:1530 
4°83 32:05 0:1505 
6:43 43-03 0°1530 
6:60 42°93 0:1538 
6:7 43°7 0°1533 
8:05 53°60 01498 
8:38 54:05 071514 
9°63 63°68 0:1510 

Mean 22h aden 0:1470 

lee. Na,S8,0,=0°208. cc. of Ozone at 0°C. and 760 mm. 

if we accept the usual reaction for this gas. 
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Hence largest quantity of ozone diffused was about 2 cc. 
We hope shortly to apply this method to other gases and 

vapours; the chief difficulty however will be to find methods 
sufficiently delicate for the estimation of small quantities. 

If the gas experimented upon, and the gas into which it is 
diffused be of very different densities, a considerable source of error 
will be introduced through mass motion. 

If we follow the motion of the chlorine molecules in the lower 
jar and of an equal number of oxygen molecules in the upper 
jar, we see that when diffusion has commenced the more rapidly 
moving oxygen molecules will enter the lower jar by diffusion 
in greater number than the chlorine molecules can enter the 
upper jar. There will therefore be a tendency for molecules to 
accumulate in the lower jar, in other words for the pressure to 
rise, as is the case when a porous septum is used, and there- 
fore there will be a continuous efflux of mixed gases from the 
lower jar not due to diffusion proper. This will tend to make 
v and therefore the ratio too great. 

Trial proved that the apparatus was gas tight for considerable 
differences of pressure; however, to gain additional security we 
frequently lubricated our dampers with concentrated H,SO,,. 

The absorption of the chlorine at the end of the diffusion 
was effected by placing each jar closed by its damper mouth 
downwards in a solution of KI, and the solution allowed to come 
in contact with the gas. 

The oxygen in the jar was then finally washed from the last 
traces of chlorine by blowing up.a fine jet of KI solution from a 
curved pipette. The jars containing the ozone were treated in 
the same way. When the ozone came in contact with the KI 
the jars became filled with a dense white nearly opaque fog, the 
autozone of Schonbein. 

In these experiments the time allowed for each diffusion was 
that adopted by Soret, and the size of the diffusion hole was rather 
less than his. 

We think it will be worth while to enlarge the diffusion hole 
considerably so as to be able to shorten the time. 

(3) On the effects of self-induction of the galvanometer in the 
determination of the capacity of a condenser. By J. C. M‘ConneEL, 
B.A. 

In the calculation which Mr Thomson gives with reference to 
the method of determining the capacity of a condenser, to which 
your attention has been so lately drawn by Mr Wilberforce, there 
is a point of some importance which he passes by without notice. 
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He neglects the self-induction of all the resistances. Now one of 
these resistances is the galvanometer, and the coefficient of self- 
induction of a galvanometer of 11,000 ohms resistance is by no 
means small. My first impression was that the total quantity of 
electricity, that passed through the galvanometer in the transient 
current which charges the condenser, would be considerably 
diminished by the self-induction. Although this proved to be not 
the case, the results I obtained seemed to me to be of sufficient 
interest to be worthy of your notice. 

To prevent the physical peculiarities of the motion from being 
obscured by the length of the algebra, let us first consider a simple 

_ case which has very similar characteristics. 
A charged condenser is permitted to discharge itself through 

two resistances placed in parallel arc, only one of which has 
appreciable self-induction. 

Let g be the resistance which has self-induction L, 
F the other resistance, 

# the current through g, 

y the current from the condenser of capacity C. 
£ the potential to which the condenser is initially charged. 

We have the equations 

Li + gi — Rh (y —%) =0 

(y—@) R= E-*Y’ 
or Te (g-- Ride — ig 0), ..0... eee (1), 

Ri—-Ry—-21+ F=0 
C 

At first sight I thought that since the self-induction delayed 
the current through the branch g, the greater part of the discharge 
would pass through the branch #& and thus the whole current 
through g would be diminished. 

But the investigation below shews that though the self-induc- 
tion prevents the current from attaining its full magnitude at 
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once, and diminishes the magnitude to which it does attain, it is 
yet so effective in maintaining the current that the deficiency is 
exactly neutralised. 

It appears further that in certain cases the self-induction instead 
of delaying the transient currents actually accelerates their dis- 
appearance. 

Integrating equation (1) we get 

Lé+(g+h) « — Ry = constant. 

Now when G0) z= 0, j=, 

Peo, § Geli) y= CE. 

Thus when t=0, = ae CE and is independent of L, 
gt+h 

Though Z has no effect on the magnitude of the total currents 
it has an important effect on their duration. 

? 

Eliminating y between our two equations, we get 

CRL&+ (L+ CRg)¢+(g+R) «= CER. 

The solution takes different forms according as the roots of the 
equation 

CRLE + (L+ CRg) €+ (9+ R)=0.......00.. (3) 

are real or imaginary. 

When the roots are real 

ay — i —rt t —pt 

eye OO le 

where 7a tCRo 2 (b+ CRg)—4CRL (9g + RB) 
POG OURS AC RL 

When the roots are imaginary | 

Sue gt Noe c= aL Chie Simipe, 

» 4CRL(g+ R)— (L+CRg)’ 
where era AACE TER ASIO F: 

Thus when ZL is small « never changes sign. It rises to a 
certain value and then falls again to zero. 

When L is increased till it is greater than a certain value a,, 
the motion becomes oscillatory, the condenser is discharged and 
charged again with a less charge of electricity of opposite sign 
discharged again and so on. 

? 
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When Z is increased still further till it exceeds a certain value 
a,, the motion ceases to be oscillatory and assumes its former 
character. 

Here a, and a, are the roots of the equation 

a’ — 20 Ra (g + 2K) + CR g?=0............... (4) 

and are always real. 

The practical question is usually to decide how soon the 
transient currents will die away. Let us then consider how L 
affects the magnitude of the time constants. 

When Z is very small 

X + » Is very large and is equal to = approximately, 

g+R 
Chg 

The larger depends mainly on the self-induction, the smaller 
mainly on the capacity. 

 — m 1s equal to approximately. 

As LI increases, \.— p increases till Z =a,. 

_ Thus a moderate amount of self-induction has the effect of 
diminishing the duration of the transient currents. 

While the motion is oscillatory ) diminishes as Z increases. _ 

When I >a,, \— diminishes as Z increases and continually 

approximates to the value J J +m continually approximates 

to the value me Thus the smaller time constant is governed by 
CR’ : 

the self-induction, the larger by the capacity. 

When L is very large the behaviour of the currents is suf- 
ficiently curious to merit a fuller statement. The condenser first 
almost entirely discharges itself through the arm R. Then the 
current from the condenser becomes indefinitely small in compari- 
son with the current through g, and the current in R changes 
sign. The current through g reaches its maximum value, which 
is small, before the condenser is nearly discharged, and when‘ once 
started takes a long time to die away. Thus the only appreciable 
current, that survives after a short time, is the one flowing through 
g and back through Z. 

We may now pass to the more complicated arrangement which 
is actually employed in determining the capacity of a condenser. 

The first figure is a sketch of the arrangement, of which 
Mr Wilberforce has given a full description. 
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What we are at present considering is the whole current 
through the galvanometer due to the charging of the condenser. 

Let us therefore make abstraction of the electromotive force of 
the battery and the whole system of steady currents due to it. 

This system of currents entails a difference of potentials between 
Band D which we may call £,. 

When therefore the condenser is really discharged, it 1s on our 
present supposition charged to a potential —£,; and when it is 
really charged, it is on our present supposition discharged. 

Hence we have to investigate the whole current through G in- 
the arrangement represented in the second figure when the con- 
denser, which is initially charged to a potential — H,, discharges 
itself. 

If a be infinite the arrangement becomes identical with that 
already considered. 

We have the equations 

Beta (G9 — 2) 0 (=) 05.0. cass eee (5), 

—a(¢—-y —4) +0(y+4)-d(@-9) + > ian “habs 

—~a(@¢—y—2) 4+ce(y+2)4+944+L2=0...........(7). 

Eliminating 4 between (5) and (7), we get an equation of the 

form Ay+ Bz+ Lz=0, 

where A and Bare independent of L. 
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Integrating Ay + Bz+ Lz=0, 

for when t=0, y=0, z=0 and z=0. 

Now when t=o, y=—-CEH, z=0, 

. Bz=—ACE, 

Thus the whole current through the galvanometer is indepen- 
dent of Z. It is clear that this result depends on the following 
conditions : 

(1) The self-induction is in one branch only. 

_ (2) The currents in all the branches can be expressed as 
linear functions of the current in that branch, of the difference 
of potentials at its ends, and of certain other currents whose 
integral value is fixed. 

Thus it would hold good if the galvanometer were linked with 
any system of conductors, and condensers charged initially to any 
potential, provided there were no electromotive forces in the 
system and no appreciable self-induction except in the galvanome- 
ter itself. 

The equation for the time constants is the quadratic in &. 

atb+d —(a+d) —4a =, 

—(a+d) atord +55 ate 

—a ate atce+g+EL 

or 2 CL {bc+ (b+c)(a+d)} +E{L(a+b+d)+C (b+ c) (ad +ag +dq) 

+ Che (d+g)}+{(atet+g) (0+d) +a (c+ 9)} =0....(8). 
What is practically required is to know that the smaller time 

constant is so large that it may be safely treated as infinite; so it 
is convenient to have an inferior limit in a simple form. | 

If we write equation (8) in the form Pé’+ QE + R=0, then if 
the roots be real it may be easily shewn that the smaller time 
constant is greater than R/Q; if the roots be imaginary the real 
time constant is Q/2P. | 

But it is not likely that much error will arise in practice 
through neglecting the self-induction in calculating the time con- 
stant. For when L is large enough to govern the smaller time 
constant, the latter approximates to the value (g+ &) L, where & 
is a positive constant depending on the resistances. Now the self- 
induction of a galvanometer coil of given shape and size varies 
approximately as the square of the number of turns, as does also 
the resistance. Thus g/Z will have much the same value in all 
similar galvanometers. A short time ago I determined the self- 
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induction of a ‘sensitive mirror galvanometer’ experimentally. L 
was 54 earth quadrants, while g was 13,000 ohms. So g/Z was 
about 2400 in this case. ven if the time of charging were only 
z4pth of a second, the error in the value of the capacity produced 
by treating the time constant as 2» instead of 2,400, would be less 
than one part in a thousand. 

(4) On the future of naval warfare, with an exhibition and 
account of a submarine boat. By H. MIDDLETON. 

Abstract. 

It is not proposed in my paper—of which the following is a 
very short abstract—to repeat the same comments and considera- 
tions, on the subject of the present condition of the British navy, 
with which the press has lately teemed. 

However, I have treated briefly of those general principles of 
naval warfare which govern the design and construction of all 
ships of war whatever. Because, on the knowledge of those prin- 
ciples the utility of all inventions and innovations from established 
forms and models entirely depends. 

In my paper I pointed out that in consequence of the applica- 
tion of steam to fleets, together with the fact that each ironclad 
can now carry so short store of coal that the operation of refilling 
its bunkers has to be repeated every four or five days, while large 
“bases” for the supply of the fleet’s motive power have to be main- 
tained, require the study of a set of conditions of a character 
similar to those which give birth to what is known as “strategy” 
when applied to the maintenance and conduct of armies on land. 

While the large fleet of coal ships which must now-a-days 
always accompany ironclads operating on the “high seas” neces- 
sitate the invention of a kind of naval tactics which differs 
considerably from those applicable to the wooden ships with which 
England maintained her sovereignty of the sea in her wars with 
the. great Napoleon. 

Now a knowledge, and a sound knowledge, of these matters 
forms the only ouide an inventor has in determining the channels 
of thought into which he should direct his ingenuity. And this 
knowledge teaches him the conditions of the problem he must 
strive to solve; however, the recapitulation of them must be left 
out of this abstract, and I but state briefly because of the difficulty— 
if not impossibility—of fulfilling them by ships which move over 
the surface of the sea. I propose to make them move under the 
surface, and have thus carried out the problem I proposed to myself 
for solution. 

Three different kinds of submarine boats have been designed, 
which kinds I shall call Class (a), (6) and (c) gael 

VOL. V. PT. ITI. i Wait ie 
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Class (a). The boats of this form are intended for speed, they 
are of a shape which somewhat resembles a cigar and may be called 
“fish” boats. Moreover these boats are furnished with two lateral 
fins, two—or one—screw propellers, at the stern, and a dorsal and 
ventral fin for guiding them, &c. &. These boats are intended to 
remain a more or less period under water; but even those capable 
of being submerged for a very considerable time are yet supposed 
to come to the surface and be used as super-marine boats when 
cruising. When submerged, the boats simply ‘fly’ in the sur- 
rounding fluid: just as the Guillemot can, and does fly in water, or 
a bird in the air. The boats of Class (a) are armed with guns 
capable of being fired against an object under water: or the guns 
can be fired when the boat is above water, as when attacking a 
fort. on land. However, such form of attack would rarely be 
adopted as the boat has only to be submerged, when it can be 
quietly run past the shore batteries without their being able to 
fire a shot in the defence of the channel which they were intended 
to guard. All the boats of Class (a) are fitted with apparatus for 
removing submarine mines, torpedoes, &c. &c.; but such operations 
are better performed by the boats of Class (b), of which a few 
words shall be said later. When the boats of Class (a) are in- 
tended to attack fleets of ironclads (as at present constructed), a 
large part of their time is taken up in cruising, which they do with 
their funnels and a small portion of their hull [hardly more than 
the “conning tower”] above water. When ironclads are sighted 
and the boat is to be taken “into action,’ it is submerged some 
ten, or more, feet. And (its funnels having been previously with- 
drawn into the ‘hull’ of the vessel,) its submarine engines are set 
going. 

Because there is no “exhaust” thrown outside of the boat, 
there is no increase of “back pressure” on the pistons owing to 
depth; and indeed the boat can be worked at any depth less than 
that at which its hull would be crushed by hydrostatic pressure. 
The time that the boat can remain under water is several hours: 
but the time that she can run at full speed under water is much 
less than the period she can remain submerged with her crew, if 
her engines are not working. In all the boats, however, the time 
of submersion when running at full speed is sufficient to enable 
them to get out of gunshot of a stationary foe. [And the chances 
of an enemy steaming exactly parallel to the line of the submarine 
boat's motion under water, so as to be along side of it when it is 
forced to come to the surface—I say the chances are not very great: 
so the ironclad, if it does move, is just as likely to move away 
from the submarine boat as towards it, this consideration of the 
time to get out of gunshot of a stationary foe has determined the 
construction, &c. &c. of the submarine engines.] Usually, on 
account of the extremely small surface which the boat exposes 
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_ (even when above water in cruising), a distance of 24 miles from 
an ironclad can easily be approached without the smallest danger. 
The boat then being submerged and a “full head” of steam “put 
on,” the ironclad can be reached in some 15 minutes; and when 
within some few yards, a percussion shell is fired against the 
bottom of the utterly helpless and harmless ship. Now it is 
known that the most powerful pumps in the navy cannot keep the 
water down when it pours through a 20-inch (diameter) hole: hence 
the possibility of preventing a vessel from sinking which has an 
aperture of several square yards torn in her bottom by the explo- 
sion of a shell does not exist. Men, guns, stores, all—must sink. 

* * * ¥ * 3% 

Such in brief, are the functions of the boat one kind of which 
was exhibited; and in leaving the subject I have only to add that 
the boat exhibited was not furnished with guns and armour, but 
both of which it was my design to have furnished it with (could I 
have managed to do so) before it was exhibited. 

Class (b). Boats of this class are in lke manner intended to 
transport men and the material of war beneath the sea. They are 
not intended for speed: but for carrying troops under water for 
short distances, as across the British Channel, which thus becomes 
one of the most dangerous frontiers to defend that a state can well 
possess. However, as no boats of this kind were exhibited, 
nothing more will be said of them here. 

Class (c). As this class was only represented by a very poor 
model, half made [and badly constructed], I will only say that the 
motor here is electricity, and the boats are to be fitted with 
torpedoes and used in connection with fast cruisers. 

With this I finish this brief abstract of my paper. 

(5) Note on a peculiar sense organ in Scutigera coleoptrata, one of 
the Myriapoda. By F. G. Heatucore, B.A., Trin. Coll., Cambridge. 

The organ is situated on the ventral surface of the head at a 
short distance from the mouth, near the base of the mandibles. 
A slit-like opening in the ventral median line, between the maxille 
and the base of the mandibles, leads into a sac lined with chitin. 
This sac is of elongated pear-like form, its longest diameter being 
parallel to the ventral surface of the head. Two longitudinal folds 
in its dorsal roof project close together into the body of the sac, 
partially dividing it into two pouches with a deep narrow median 
recess between them. In the anterior region of the sac a lateral 
fold on each side of the sac projects parailel to the ventral surface 
of the head, thus forming a deep lateral recess on each side. 

The effect of these lateral and median recesses is to form a free 
lip on the dorsal median and lateral ventral aspects of the pouches. 

The surface of the sac, except at the folds and in the recesses 
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formed by the folds, is closely lined by a number of chitinous hairs. 
Each hair consists of a short and thick elliptical basal portion, one 
end of which is prolonged into a long fine hair which projects into 
the sac while the other end terminates in a short stump-like point 
which projects internally through the chitinous lining of the sac. 
The chitin of the sac is not of uniform thickness. In the recesses 
and on the folds which bound them it is smooth, but in the 
pouches, where the hairs exist, it is thrown into a series of ridges 
and depressions which give it a reticulated appearance. The base 
of a hair projects into each depression. 

_ Internally the hypodermic cells which form the ordinary matrix 
of the exoskeleton line the chitin as far as the folds bounding the 
lateral recesses. Here they change their character and gradually 
become continuous with a thick layer of sensory epithelium which 
lines the internal surface of the pouches. At the folds which bound 
the median dorsal recess the sensory epithelium becomes continuous 
with hypodermic cells which line the folds, but at the top of the 
median recess there is a mass of ganglionic cells which differ from 
those composing the sensory epithelium. The hypodermic cells 
are large, rather columnar, and have a well-defined nucleus. The 
cells of the sensory epithelium are elongated and at the end next 
the chitin are prelonged into a thin projection of less diameter 
than the rest of the cell. The prolongation of each cell is just 
beneath the base of a chitinous hair, and I believe that the extreme 
point of each cell prolongation fits into a cavity in the base of a 
hair. The cells at the top of the median recess are elongated and 
in some cases have their internal end bifurcated. They are larger 
than the sense cells. The nerve supply is furnished by two short 
thick nerves which arise from the front part of the sub-cesophageal 
ganglion and pass to the posterior region of the organ, where they 
break up into fibres which supply the two divisions of the organ. 
This double nerve supply and the partially divided shape of the 
sac, already mentioned, prove in my opinion conclusively that the 
organ is a double one. 

I believe this organ to be homologous with the tympanic organ 
of Insects. I regard the chitinous lining of each pouch as equiva- 
lent to the tympanic membrane of the insect auditory organ. In 
both cases we find a nerve breaking up into fibres which are con- 
nected with terminal structures which terminate in depressions in 
the chitm. V. Hensen regards the terminal structures or auditory 
rods (Horstifte) in the insect organ as homologous with the hairs 
in the crustacean auditory sac. If his arguments hold good I think 
the chitinous hairs of the organ I have just described may be 
compared to both the structures just mentioned. From all that I 
have said it follows that I regard the organ of Scutigera as belong- 
ing to the class of organs usually described as auditory. 
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Prof. C. 8. Roy, M.A., was elected a Fellow. 

The following communications were made to the Society :— 

(1) On the zeta-function in elliptic functions. By J. W. L. 
GLAISHER, M.A., F.R.S. 

The author considered three functions ez, iz, eza, defined 
by the equations 
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and Z(a#) has the meaning assigned to it by Jacobi. Denoting 
by accented letters the same functions of k’ that the unaccented 
letters are of k&, it can be shewn that 

EHK'+IK=34r7, 

IK’ + HK=hthn, 

GK'+ GK =r, 
and 

ez (27+ 2mKk + 2mtk’) =ez a+ 2mH — 2m’, 

iz (© + 2mK + 2m'iK') = izax +2mI —2M ik’, 

ez (a+ 2mKk + 2m7K') = ez a + 2mG — 2m VG". 

The function ez is the same as Jacobi’s (a), and iza is the 

same as Weierstrass’s function oe The functions eza# and iz# 

form a pair of corresponding functions in which # and J, and E’ 
and I’, are interchanged, but gz stands by itself and is such that 
corresponding to an increase of argument 2K the increase of the 
function is 2G, and corresponding to an increase of 27K’ the 
increase of the function is — 2iG’. 

Three other functions uz, vz, wz, defined by the equations 

wex pat Za), 

van = 7 0+ Z(a), 

wae = 0+ Z (2), 

where 

O=H-1L1+k") K=lI+4iRK, 

V=E-Lik°R =/+i0+PF)K, 

W=H-iK =I+iK, 

were also considered. These functions correspond exactly to ez, 
iz, gza, the quantities L, J, G, E’, I’, G’ being replaced by U, 
V, W, U', V', W’ respectively. There is thus a reciprocity between 
uza and vz#; but wza, like gz, is complete in itself. The 
general form of Zeta-function, and the systems of Theta-functions 
derived from these six Zeta-functions (corresponding to Weier- 
strass’s Alz, derived from iz), were also referred to. Those derived 
from gz a and wz are the most complete and symmetrical. 
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(2) On a certain atomic hypothesis. By Prof. K. PEarson, 
communicated by H..T. Stearn, M.A. 

[ Abstract. | 

THE paper deals with the motion of a number of spherical 
portions differentiated off from a continuous medium and pulsating 
uniformly over their surfaces. Each of these spheres, called in 
the paper an atom, has a natural period of free pulsation, depending 
on its mass and the potential energy it is supposed to possess. 
This natural period is modified by the presence of other atoms of 
the same or different period, and a form of expression is found 
for the resulting period of a system of a number of atoms exerting 
mutual influence on each other. Such a system is called a mole- 
cule; the atoms of one molecule are supposed not to affect the 
period of vibration of another molecule, the average distance 
between two molecules being great compared with that between 
two atoms. 

Expressions are found for the forces arisimg from the motion: 
(a) between two atoms in the same molecule, called chemical 

forces ; 

(8) between two molecules, containing the same or different 
atoms, in proximity to each other—molecular forces ; 

(y) between groups of molecules at some distances apart. 

The results of the mathematical investigation are applied to 
some of the phenomena of spectrum analysis, e.g. the relation 
between the spectra of some of the metalloids and their atomic 
weights, the effect of pressure in modifying the spectrum of a gas, 
and the relation between the spectrum of a compound and those 
of its constituents. 

The paper is being published in full in the Transactions of 
the Society. 

(3) On a Young’s Eriometer. By R. T. GuAazeBrooK, M.A., 
F.RS. 

The author exhibited and described an “eriometer,’ an in- 
strument for measuring the diameter of fine fibres, and so testing 
the value of different qualities of wool, which belonged to Thomas 
Young, and on which there was a description in his handwriting. 

bo WG? 
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February 16, 1885. 

Prof. Foster, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows: 

J. H. Randell, B.A. 

W. Gardiner, B.A. 

R. Threlfall, B.A. 

The following communications were made to the Society :— 

(1) Some remarks on the Urea-ferment. By A. S. Lea, M.A. 

The object of this communication was to demonstrate more 
definitely than has hitherto been done, the isolability of an 
amorphous, unorganised ferment, capable of rapidly effecting the 
ammonic conversion of urea from the Torula ureae. 

Experiments were shewn demonstrating the isolation of the 
ferment and its dependence upon the Torula to which the fer- 
mentation was initially due. 

(2) On the occurrence of reproductive organs on the root of 
Laminaria bulbosa. By W. GARDINER, B.A. 

Having briefly dwelt upon Sach’s idea of “root” and “shoot,” 
the author stated that one of the fundamental ideas connected 
with root structures was that they did not bear reproductive 
organs. In Laminaria bulbosa however he found that sporangia 
are produced on the root and even at the very apex of the rootlets. 
In his opinion this occurrence was an example of “adaptation to 
environment,” and did not therefore overthrow the usually received 
notions as expressed by Sachs. So far as he had observed, it was 
only when the frond had been broken off from the root by the 
violence of the waves or other causes, that the sporangia made 
their appearance. 

(3) On a new form of sporangium in Alaria esculenta, with 
suggestions as to the eaistence of sexual reproduction in the Lami- 
naria. By W. GARDINER, B.A. 

So far the form of sporangium observed in Alaria was one 
containing four spores, usually known as tetraspores, and therefore 
asexual. The author has discovered another form which contained 
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numerous small spores, each provided with cilia. On this account, 
and recalling the similarity of the Laminarias to the Fucaceae 
rather than to the Florideae, it appears to him probable that the 
so-called tetrasporangium containing four tetraspores is really a 
four-oosphered oogenium similar to “the like structures occurring 
in certain of the Fucaceae, and that the sporangium discovered by 
himself is an antheridium containing antheroyoids. Thus here a 
sexual process is present which he ‘believes also occurs generally 
in the Laminarias. A strikmg confirmation of this theory has 
been afforded by the phenomena occurring in the life-history of 
D Urvillea utilis. 

(4) On the types of excretory system found in the Entero- 
pneusta. By W. Bateson, B.A. 

The author described the development of the so-called “heart” 
of the Enteropneusta as a segregation of cells from the posterior 
wall of the anterior mesoblastic pouch, dorsal to the notochord. 
Between this structure and the notochord the true heart arises as 
a mesoblastic split. It gives off a plexus of vessels which are 
covered by conical cells, attached by their apices, in which the 
nuclei occur. These cells are similar in character to those lining 
the so-called “heart.” The vascular plexus is differently arranged in 
different species. In Balanoglossus Kowalevski the capillaries are 
irregular and anastomosing, while in B. salmoneus they are parallel 
and do not anastomose. In the plexus in B. Brooksii (new species) 
the condition is intermediate. An epiblastic ciliated sac is then 
formed in the skin on the left side of the proboscis stalk. After 
a time this sac communicates with the exterior and with the 
anterior body-cavity. It was suggested that this pore is excretory; 
and that certain yellowish-brown bodies found in and around the 
glandular cells are conveyed to the exterior by it. 

A similar suggestion was offered as to the function of the two 
ciliated pores which open from the second body-cavity to the 
atrium. These pores arise as perforations through the outer wall 
of the atrium. In the second body-cavity brown bodies are found, 
similar to those in the proboscis-cavity, which are possibly carried 
out by these pores. 

No evidence could be obtained of any currents flowing inwards 
at any of these pores. 
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March 2, 1885. 

Prof. FosTER, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society :— 

(1) On some theorems in Tides and Long-waves. By Rey. E. 
Hii, M.A. 

Elementary considerations were given from which it might be 
inferred that when a disturbing body produces a semi-diurnal tide 
in an equatorial canal, the pomt nearest to the disturbing body 
will be a point of low tide or high tide according to the depth of 
the canal. 

A general explanation was given of the influence of the depth 
of a canal on the speed of a long-wave traversing it. 

It was shewn that the ordinary formula for this speed might 
be deduced from the ordinary differential equation of motion 
without integration. 

(2) On the electrical resistance of Platinum at high temperatures. 
By W. N. Suaw, M.A. 

(3) On an automatic mechanical arrangement for maintaining 
a constant high potential. By R. THRELFALL, B.A. 

In connection with certain experiments which I wished to 
undertake some time ago it became desirable to obtain an appara- 
tus capable of maintaining a condenser at a high potential for 
a considerable period. Although further consideration led me to 
abandon the experiments referred to, pending an enquiry into 
certain preliminary questions, I am of opinion that the arrange- 
inent I devised at the time for maintaining a high potential, may 

be of some independent interest, and this the more since I believe 

that there are many experiments which would be greatly facilitated 
if there was a ready method of maintaining condensers at a 

constant mean potential during considerable periods. Where the 
leakage is very small, as in Sir William Thomson’s electrometers, 

much satisfaction may doubtless be obtained by the hand use of 
the replenishing guage at short intervals of time. There are cases 

however in which the fall of potential may be very much more 

rapid than in these instruments; and it is such cases that the 

arrangement to be described has been arranged to meet. 
In the Proceedings of the R. Society for 1881 Lord Rayleigh 

has shewn how a water motor of the Thirlmere type may be 

arranged to run at an approximately constant speed; viz. by 
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making the work which the motor has to do proportional to a 
high power of the speed. This is most easily obtained by setting 
the motor to drive a fan. If then we arrange a motor with a con- 
stant head of water in connection with a fan, we can by adjusting 
the water supply, and the dimensions of the fan, obtain a tolerably 
wide range over which the speed can be made constant at any 
desired point. Jet a motor and fan therefore be fitted up: and 
thus governed let it drive the arrangement shewn in the diagram- 
matic drawing. 

A copper disc is placed between the poles of an electro- 
magnet, this disc is made to rotate with a tolerably high velocity 
by means of the governed motor. As long as no current is flowing 
round the magnet the energy spent in rotating the disc is very 
small. 

In the circuit there is mica or glass condenser of considerable 
capacity ; its actual dimensions and construction depend on the 
potential at which the apparatus is desired to be maintained, and 
on its capacity. If the capacity of the apparatus is itself large 
then no condenser will be necessary. There is a pully which 
is driven by a much smaller one on the same shaft as the copper 
disc, and is connected with a replenishing guage of a type to be 
determined by the special conditions of the experimental apparatus. 
For instance, the value of the desired potential will determine what 
precautions must be taken in insulating and this will determine 
the size of the replenisher. The electrical output required to 
compensate the fall of potential which it is desired to guard 
against will determine the further construction of the replenisher. 

A fixed dise is in connection with that pole of the apparatus 
which it is desired to maintain at a constant high potential, 
another disc is suspended by a long and fine spiral spring which 
in its turn is hung to a wire the ‘other end of which goes to a 
Weber suspension mounted on the top of the guard tube, and not 
shewn in the diagram. The usual method of levelling the 
suspended plate is adopted. Since there is no need for any parti- 
cular accuracy of levelling this may be easily accomplished. The 
suspended plate carries a wire whose ends are bent down vertically 
and tipped with aluminium. Below the ends of these wires are 
placed two mercury cups on adjustable stands. The object of 
using aluminium joints is to avoid the capillary effects so noticeable 
in the case of platinum or any amalgamated contact breakers. 
Mercury is generally stated to wet aluminium without amalgam- 
ating with it, but from some experiments which I made on the point 
I have concluded that it can only be with certain specimens of 
aluminium that this takes place; with ordinary foil and wire 
I invariably found that the mercury is always on the point of 
wetting the aluminium but never quite succeeds. The advantage 
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of this is that the mercury will not cling to the points while they 
are rising from it; and that therefore the beat will be much 
sharper than in the case of platinum where an increase of resistance 
must precede the break of contact. For many purposes this is an 
advantage as it diminishes the intensity of the self induction. 
spark. Since however in this apparatus the efficiency of the 
regulator depends on the definiteness of the point of contact, any- 
thing tending to diminish this must be more or less injurious. 
Since this was written I have discovered that the aluminium burns 
away so rapidly that, balancing disadvantages, platinum is on the 
whole to be preferred. 

The action of the regulator will now be easily understood. A 
battery continually maintains a current round the electro-magnet : 
and through a high resistance inserted in circuit between the 
battery and the magnet. 

When the potential rises above the desired point, the attracted 
disc by means of its contact makes short-circuits the high resist- 
ance and allows an increased current to flow round the electro- 
magnet. This will tend to put an increased brake on the copper 
disc and the rotating parts of the apparatus will instantly slow 
down. I say instantly, because if india-rubber bands be used to 
transmit the motion between the various pullies we shall only 
have to take into account the momentum of the copper dise and 
replenisher and not that of the motor: at least during short inter- 
vals of time. Now the copper disc may be made pretty thin and the 
other parts are not very large, so that a practically instantaneous 
change of velocity may be obtained: it is only a question of having 
a large enough battery—say two Groves’, a fairly high resistance 
to be short-circuited, and long india-rubber bands. 

For a given change of potential the attracted disc will be more 
sensitive the nearer it is to the fixed disc. The method of using 
the regulating arrangement is therefore as follows. ‘The apparatus 
to be maintained at the constant high potential is charged up to 
this potential as indicated say by a portable electrometer; and by 
means of the Weber suspension and the adjustable support of the 
mercury cups the attracted plate is lowered so as to make contact 
when the potential is slightly increased. The limit of the sensi- 
tiveness of the apparatus depends on the critical distance of the 
plates, and this depends on the law of stretching of the sprig. As 
a general rule in a long spring the extension will not be far from 
proportional to the stretching force. Sir William Thomson is in 
the habit of using the torsion of a wire in some of his instruments 
instead of a spring. In this case however we wish to make the in- 
strument.as sensitive as possible always, and not as in electrometers 
so as to have a constant relative sensitiveness: we must therefore 
have an adjustment for working at different distances between the 
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plates, and this, I take it, is most easily accomplished by a spring 
hung from a Weber suspension ina tube which will protect it from 
atmospheric disturbances. 

When everything is properly adjusted the plate ought to settle 
down into a state of pretty rapid vibration, so that the mean 
potential difference say during each minute is constant. I had at 
one time intended to make the movable disc insert or remove a 
varying resistance ; as for instance by making the contact points 
conical. There were however many mechanical difficulties: and 
worse than that the constancy of the battery would have required 
attention in any continuous regulator. Moreover unless a spring 
of peculiar construction was used the upper plate would be un- 
stable, and this would be fatal. The only way of guarding against 
it would be by arranging the ratios of the resistances taken in and 
out; but this would have been impossible even supposing the 
current was not strong enough to heat the wires sc as to pro- 
duce a continuous change. For all practical purposes however a 
constant integral value of the potential is all that is required, 
and this may be obtained from a discontinuous governor. The 
drawings are not to scale, because the scale as already pointed out 
will depend on the purpose for which the governor is to be used. 

March 16, 1885. 

Prof. FoSTER, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows: 

Prof. J. J. Thomson, M.A. 

J. M. Dodds, M.A. 

Rev. A. H. Cooke, M.A. 

A. E. Shipley, B.A. 

The following communications were made to the Society : 

(1) Further remarks on the Urea-ferment. By A. S. Lea, M.A. 

In the previous communication made to the Society it was 
stated that although the Torula ureae contains a ferment which 
is soluble in water, this ferment is not to be found in the fluid 
surrounding the cells either during or after an active alkaline 
fermentation. It appears therefore that the cells do not carry on 
the fermentation by excreting the ferment with the surrounding 
fluid, but that its activity is localised in the substance of the cells. 
The absence of the ferment in the fluid during an active ferment- 
ation appeared at first sight somewhat unexpected, in view of 
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the fact that it is soluble, and it was hence a matter of interest to 
see whether, in the case of other ferment actions produced by 
similar organisms, also containing a soluble ferment, this ferment 
is similarly retained within the cell protoplasm. Working with 
ordinary yeast (Torula cerevisiae) the author finds that at no 
time during an active fermentation is any invertin to be found in 
the fluid surrounding the cells. In this case as in the former the 
ferment is retained by the cells. Experiments were described in 
proof of the above statement. The invertin is not used up during 
the change which it produces, neither do the yeast-cells destroy it 
during their growth and activity. This is shewn by the facts that 
if cane-sugar be inverted by a solution of invertin, this same 
solution is again capable of inverting a further portion of cane- 
sugar, and that if some invertin be added to yeast, and an active 
fermentation then carried on with this yeast, then the invertin 
can be recovered from the fluid surrounding the cells. 

It was suggested that the retention of the ferment by the cells 
in the above cases is due to the fact that, unlike animal cells, the 
Torulae are inclosed by a complete cellulose envelope which is not 
broken up at the death of the cell, and that since all known 
ferments though soluble are not diffusible, therefore even after 
the death of the cell the ferment is retained in the dead cell- 
substance. If the cells are treated in such a way as to break up 
the cellulose envelope then the soluble ferments are capable of 
being extracted with water. 

The outcome of the experiments shews that the ferment action 
of these organisms is carried on in their protoplasm and not in the 
fluid surrounding them by the excretion of every soluble ferment. 

(2) On some points in the anatomy of Nebalia. By G. WELDON, 
M.A. 

(3) Observations on the constitution of Callus. By WALTER 
GARDINER, B.A. 

The author remarked that perhaps no structure had given rise 
to so many differences of opinion as the callus of sieve-tubes. So 
far as the question of its derivation was concerned there could be 
little doubt that the views of Russow and Strasburger, who 
regarded it as being derived from the protoplasm, were right, and 
that Wilhelm and Janczewski’s view (as to its derivation from the 
mucilagmous degeneration of the cell-wall) could not be main- 
tained. While from its high organisation it seemed almost im- 
perative to regard it as being formed in connection with, and 
through the agency of, living protoplasm, yet the very early dis- 
appearance of the nucleus and the scant quantity of the dying 
protoplasmic contents threw some doubt upon this assumption. 



1885.] Mr J. R. Green, Observations on Vegetable Proteids. 231 

The microchemical characteristics were so peculiar as to be quite 
unique. Taking into consideration, however, some of these re- 
actions (especially in the light of the results obtained with 
Hofmann’s blue and Szyszylowicz’s corallin-soda): the presence 
of, and the gradual breaking down of, the sieve-tube starch grains 
and the mucilaginous degeneration of the protoplasmic contents : 
there seemed to be little doubt that the callus is in reality of the 
nature of a starchy mucilage. Such a body would give all the 
reactions of callus. The author then drew attention to the wide 
occurrence of the callus in connection with living cells, and re- 
marked that from his observations he was led to believe that a 
eallus may also occur on the pits of young tracheids, e.g. the root 
of Sambucus and the stem of Phaseolus. 

(4) Observations on Vegetable Proteids. By J. R. GREEN, B.A. 

The investigation of which the paper was a summary was 
undertaken first to determine the proteid constituents of the calx 
of the Cow-tree of South America (Brosimum galactodendron). 

To this calx the name of vegetable milk has been given; it is 
described as closely resembling cow’s milk in appearance, but 
having a slightly resinous odour. It contains two proteids, one 
being of the nature of a true albumin, the other belonging to the 
group of peptones. 

The former is soluble in water, coagulates at a temperature of 
68°C., and gives a well-marked xanthoproteic reaction. 

The latter of the two is the body which formed the subject of a 
communication to the Society at the end of the October Term, 1884. 

In the calx of the Balata tree (Mimusops globosa) a globulin 
body occurs which is absent from Brosimum. It is marked by 
the usual reactions of globulins, but presents some features of 
interest in connection with the effect of heat upon it. Its coagu- 
lating point varies with the reaction of the liquid in which it is 
dissolved. In an acid liquid opalescence sets in at 75°—80°C., 
and as it cools a precipitate settles out. This is insoluble in nitric 
acid, but dissolves to a large extent in ammonia. 

In an alkaline solution the coagulating point is 79°—85° C., and 
the resulting precipitate is soluble in nitric acid but not in alkalis. 

The proteid bodies m both these fluids were found to be partly 
destroyed by the spirit which was mixed with the calx for pur- 
poses of preservation. Hence it seemed well to examine some 
fresh plants. Those selected were Manihot glaziovit, the common 
lettuce, and the cabbage; these being representatives of three 
natural orders not closely allied to each other. 

In the manihot a globulin exists with well-marked characters. 
It is precipitated from solution by a current of CO, or by satu- 
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ration with solid MgSO,. It gives well-marked xanthoproteic 
reaction, and coagulates at a temperature of 74°—80°C. . 

In the lettuce is a body closely resembling the Hemialbumose 
described by Dr Vines as occurring in many seeds. 

It is precipitated from its solutions by nitric or acetic acids, 
and the solution of the precipitate in water does not coagulate on 
boiling. It is precipitated also by potassic ferrocyanide and acetic 
acid. 

In all the plants above mentioned and in the calx of the 
gutta-percha tree of the Hast Indies the peculiar proteid alluded 
to above appears to be present. 

In the vegetable kingdom thus representatives of the three 
great classes of proteids, albumins, globulins, and peptones are 
present. 

(5) On the developments of K’, E’, J’, G' in ascending powers of 
the Modulus. Part II. By J. W. L. GuatsHer, M.A. 

The present paper is a continuation of one bearing the same 
title which was read to the Society on November 24, 1884, and 
was published on pp. 184—208 of this volume. The sections are 
numbered consecutively with those of the former paper. 

Forms of the equation EK’ + E’K— KK’ = 47, §§ 31, 82. 

§ 31. ‘The expression . | 
EK'+HK-KEK' 

may evidently be written in the forms 

@) LU Se Uy = LO IK, 
(ii) (H-K) K'+ E’K, 

Gu) (HF —k°K) K+ (£" -RK')K, 
Gv) {H-4(.1.+k")K} Kk'+ (h’-iPK) kK, 
(v) (H-$k°R) K’+ {FH —3(11 4+) KY K, 
(vi) (H-$K)K'+ (H'-4K)K; 

that is, in the forms 

Gi) Kk’+ I'K, 

(i) Ik’ + E'K, 
(il) GK'+ G’K, 
(iv) UK'+V’K, 
Op ae ONS 
(vi) Wk'+ WK. 

We thus deduce from the well-known formula 

PL oe TI — RI 4h ar, oes) @) 
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the six equations 

(1) 
(11) 
(111) 

(iv) 
(v) 
(vi) 

EK’ +I1'K =} 
IK'+E'K=h0 
GK + @K=40 
UK' + V'K =1r, 
VK’ + UK =42, 
WK'+W'K = Ar. 
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Each of these equations is thus a form of (1), the three terms 
The last three equations are immediately 

deducible from the first three by addition, since 

U=3(1+@, V=h(G+E), W=4(E+D). 
Equations (iii) and (vi), which involve G and W, are perfectly 

being reduced to two. 

symmetrical. The other four formule exhibit the correspondence 

between # and J, and between U and V, which is observable in so 
many other results. 

Dividing by KK’, the six equations become 

(v1) 

§ 32. 

Ji dae T 

KR ORK” 
IL JE T 

Fa ah ah KGRCA 

Gee tre 

Waal 1G) Ke” 
Dal Ne 
Tan RR 
V Wie 1 

et Ge © ae 
NE és TT 

Ge ORTON 

If we express the relation (1) in terms of AK and one 
other letter, the expression equated to 4a contains three terms 
except when the second letter is G or W. 

The group of four formule to which (1) belongs is 

(1) 
(2 
(3) 
(4) 

EK'+ E'K — KK’ =}, 

Ik’ + K+ KK' =n, 

UK'+UK+3KK = jr, 

VE(+V Ky $KK = tr. 
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The additional term arises from the fact that it is not # and 
Ei’, I and I’, U and U’, and V and V’ that correspond to each 
other, but H and LE and HH’, U and V7, and V and U] ihe 
quantities G and @’ correspond to each other, as also do Wi 
and W’. 

Similar formule in which K and K’ are not involved. 
§$ 33, 34. 

§ 33. The following fifteen equations in which K and K’ are 
not involved are also forms of the relation (i) 

Qu) #E i 

(vi) VV’—UU’=4nr, 

(ix) GW’-G'W= i( —k’)q, 

(x) E’G — IG’ =tk' x, 

(xi) HG’ —IG’ =tk'n, 

(x) VW —-— UW=tk'n, 

(xii) VW-— UW'=tk?n, 

(xiv) HW'—I'’W=}47, 

(xv) HM W-IW'=47, 

(xvi) VG' —-UG=i1hkh?9r 

(xvu) V’G — UG’ =4)'q, 

(xvii) HU" — I’V =1k? nr, 

(xix) #'U — IV’ =}4i’n, 

(xx) HV’ —-I’U=i(1+k")q, 

(xxi) BV — (WU =40 +F)c. 

? 

The first three equations remain unaltered when k* is changed 
into &”, but the other twelve equations form six pairs, the equations 
in each pair being convertible into each other by this change. 

These fifteen equations may be readily verified by expressing 
all the quantities in terms of K and K’ and any other two quantities 
which correspond to each other. Taking for example # and J’ as 
the two corresponding quantities all the equations reduce to (i) of 
§ 31, viz. to 

EK' + IK =4n, 
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if we substitute for the quantities involved the values assigned to 
them by the equations : 

E=8 ere re 
rai Ke 122 
ee ey COT EE. 
See Mee UST. 2K, 
He ag Via +h(t kK, 
Wa tie 7 ae 

Thus, for example, equation (xx) becomes 

BAL + 304k) KD (B44) K= AL) oy, 
that is 

£4(1+h’) (ZK 4+ IK) =104+h")z, 

which is equivalent to (i). 

The systems of formulze which express £, I, G, U, V, W in 
terms of any one of them and K are given in § 45, 

§ 34. It will be noticed that in the 21 formule (i)...(xxi) 
each letter occurs in combination with every other letter except 
the one to which it corresponds. Taking, for example, H we find 
the combinations 

IGN, 150, SHER aU. Jia TENTS 

but not HJ’. Similarly we find 

CoG GEE AG le Gale mG, Varee GAWe 

but not GG’. 

Relations involving K,, K', E,, EL’, &., § 35. 

35. Using K., £., I, &e. as in § 9 (p. 191), to denote 
2k 2D rer z 
== &e., the 21 equations may be written : 
7 T 

Gp, Ee PRK = 
(ye Lk 2EK SI, 
(ii) G,K’ + GK, =, 
Gye Ue eek 2 
Gyan eA UK, = 1, 
(vi) WK’ +W’K,=1, 
Ga? ee” hr? =1, 
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(cil) Ve) Oe DE) 
(2 GW SGA (=e) 
(ene eG. re 
(x1) HG, — 

(x11) VW —~UW Shh 

Gan) VW Wa 

(xiv) E,W’ — 

(xv) Veale Ves 

Com) IGP = OGL = 

(xvi) V'G, —U,G@ 

Gani) JO Ss s0 

Le 

IW, 

= ff, 

ny k 

| 

de Ne Me we Ne 

2) 

v 

V 

(Gt) PE TU i Vc 

Gx) EV = Te: 

(exci) me AV _1U’ =4(1+%’). 

Relations involving K,, K,, E,, 

§ 36. By § 10 (p. 193) we have 

Iss IK, log *— K,, 

h'=—-T, logy +I, 

IE 5 II, log 7+ 4, 

7 =—G, log | + G, 

U'=—V, log + VA; 

VY s= Uf, log + Us 

W’=—- W, Tae + W,. 
aie 

=4(14+%%), 

E,, &c., §§ 86—88. 

[ Mar. 16, 
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Substituting these values of A’, L’, &c. in the equations given 
in the last section we find that in every case the terms mul- 

tiplied by log 7 
21 equations involving K,, K,, H,, E,, &c.: 

(1) EKG Ie he — I 

(11) TERE = TK = 

(iii) GK, — GK =1 

(iv) IEG OIG eal 

(v) WK = Vie I. 

(vi) WKS Vie ae 
2 

cancel each other, and we obtain the following 

(Quit) WOE Loh. em ale 

iti) VU, -UY, =3 
(ix) G,W,- GW, =4 (kh —-k”), 

(x) IE. SIC, Ie 

(x1) EG, ~ LG, =, 

(xil) ie We am Ue Wa = sh’, 

(xiii) U,W, —U,W, =k, 
(Gan dae MW Ja NE ee 

Gy) WS 24, 
Gy) “VG. 2V.@ 24K, 
Gui UG, Gk 
(xviii) ELV, —EV, = ah”, 
(Gos) OE IL Ses 

(xx) 15,0, cr EL, U, a z(1 ar k”), 

(Xx) LY, =i, = (1+ 4"). 

§ 37. It will be seen that by the substitution for K’, L’, Ke. of 
their values in terms of K, and K,, J, and J,, &c. all the 21 
equations have been rendered uniform and symmetrical, viz. the 
sign of the second term is negative in the equations involving K, 
and K, as wellas in the others, and each expression is symmetrical, 

WOOL, V. PMalv. iby 
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ae. the first term being of the form A,B,, the second is of the 
form A,B.. 

In the following list the equations are written in a uniform 
manner and so arranged in groups as to exhibit the correspondence 
between # and V, J and U, and G and W. 

QO) mi, ake =i, 

(2) OIL iL Sl, 

(@) TOG, Sugg. =, 

(EN IROL Sik UL 11, 

(6) KV, =K OV, =1, 

(6) KW, —K,W,=1, 
@) Bi or S1, 
@) me. ne Se 
(9) LU, = 5 U), =i(1+&”"), 

(0) Ee 

(il) #£,V, —#V, =4k?, 

(12) Valle ex Age, = (1 oF k’), 

(3) VG, =VzG4, =sk, 

(14) VAG: in LAW, 5 

(15) Valls ny VA az ah’, 

(16) Ge oe Gor ay ke, 

(17) G, U, a G, U, a ok’, 

(18) G,W, —- G.W,=4(-k”), 

(19) Wale - Wh = 4 

(20) WU, — W,U, =k”, 

Ci) UR Ue i ieee 

§ 38. The system of equations is perhaps best written in the 
following form, mm which the left-hand members of the equations 
are expressed as determinants and the equations are so grouped as 
to exhibit more clearly than in the last section the correspondence 
between Hand V, J and U, and G and W. 
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K., B,\=1, K, V,|=1, 
i, H K., 7, | 
ie Als iS is 
TE ie Ue 

K,, @,|=1, K, W,|=1 
EGS Ge 1 OE 

Hy, fi =l, Peers 

#,, I, V,, U, 
| £,, G, = k”, Ue We =F, 

| B,, G, Vi, W, 

i, U, =4(1+k”), be dl =7(1+/), 

H., U, VY A, 
E,, fle oo Gr ak”, 

E,, W, | Vi» Gy, | 

B,, V, |=3e 
#,, V, 
he ee 
EO 

Ge hie U, Are 
Gaye ie 

Ge U, =k’, - é =a 

Gages Was Le 

G., W,|=h(-#) 
G,, W, | 

There are seven letters involved, viz. 

Ge Bde Gre Uh Ve WW 

and in these 21 equations, each letter is combined with every 
letter except itself; so that every possible combination occurs. 

Thus, writing for brevity the determinant 

a | las (AB), 
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and taking any letter, say for example G‘, the equations give the 
values of 

(GK), (GE), (GL), (GU), (GV), (GW). 

Definition of the Adjunct, § 39. 

§ 39. The seriestor kK, #,;,..,2V,,2W, and ke) keane 
in ascending powers of k* were given on p. 192 (§ 9). 

The coefficient of kh" in any series A, is connected with the 
corresponding term in the series A, by the curious law explained 
in § 4 (p. 188). Thus, taking for example the letter ZH, the coeffi- 
cient of k° in H, is 

eae & 
ee ea 

and the coefficient of k° in Z, is 

Peed fe 2, 2 2 — 
2? 4? 6 (j 27 3°45 76 

The quantity in brackets may be conveniently termed the 
2 2 

adjunct to the coefficient ae and the above expression may 

be written 

The series for K,, E,, &c., and K,, E,, &c., § 40. 

§ 40. The series for K,, £,,...2V,, 2W, are derivable from 
those for K,, E,,...2V,, 2W, by appending to each term after the 
first its adjunct. The first or constant term is either 0, 1 or 2 
and follows no regular law. The coefficients of k? in 2U, and 2U, 
are anomalous, being 0 and —4. With these exceptions, all the 
series with suffix 2 differ from the corresponding series with 
suffix 1 only by the addition of the adjunct to each coefficient. 

Using the notation explained in the last section the fourteen 
series given on p. 192 may be written 

ee et aS 4 eS: Gao em ‘ 

ss i? ese PB eae 
K, = oe (ad) Kk + 9 Ae (ad) ket + 2 4 6 (ad) ke + &e., 
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5 Be 112 Se ~ 

B,=1-5 k? — — baa Pa 
2 an C int ae i= F 

B,=1— = (ad) ke — — (ad) k*- = =, ~ (ad) h° — &e., 

he =. ie ot — if — &e., 
2 2 2 a 

cr eee Oy Gaya s 2! 2° ape we : 2 4 2 #6 

1° cr * 3? ; 
G= 5 Bi eqg K+ gpg Mth, 

0 VY’ F 1232 A 

Ga (ad) k D2 4 (ad) k + 2 6 (ad) i: + &e., 

L 1.3? 
2U,= — oy — rane KS — &e., 

2 2 2 

M2 ke faa (ad) — or Gay Ge, 

ne 1/2 12 Oe 
5) = rae, 2 4 ‘ aS 6 & ZV, 1+ 3 ke + Pare Ke + ER @ Ke + &e., 

ne 14 1? 2 

2V,=2+ ap (ad) P+ awe (ad) k* + 2 ae (ad) k° + &e., 

I name SOE oe TRO! yee a 
ae) 2 oe Siesta ORT Sage 

17, 3? 
2W,= 2— +" (ad) = — 2 ay n= a ee — &e. 

The 21 relations connecting the 14 series, § 41. 

§ 41. The equations in § 38 form a very remarkable series of 
relations to which these 14 series are subject, viz. denoting, as 
in that section, A,Bb,— A,B, by (AB), the 14 series are connected 
by the 21 equations : 

(K, E)=1, (K, 2V) =2, 
(K, I) =1, (K, 2U)=2, 
Ge ENS (K, 2W)=2, 
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Gs, Pst (2V, 2U) =2, 
FG) 1 (2V, 2W)= 2%, 

(H, 2U)=2-F, (AVG I) a sb, 
(E, 2W)=1, CO, Oy sii 

(E, 2V) =1-#, 
(2U, T) =F, 

(G, T)=KB, (2W, 2U)=2- 2% 
ECWM=se, Cle) Si, 

(G, 2W) = 2k? —1. 
Thus, if A, and B, denote any two different series of the 

seven series 
Aes OE SG Oe RO eae 

then A,B,— A,B, is always of the form a + bk’, where a and b have 
only the values 0, 1, 2. 

For example, the first equation K,H,— K,H,=1, is equivalent 
to the identity : 

2 5 133? i | eee aa F 
ut ee k oe k + &e} 

2 Re echo 6 
oils Hy 92 3 (ad) ii o oF 4e > (a d) i= 2? 42. 6? = (ad) le &o} 

aeons poled a V3.5 5 \ 
Sp one Peg 

cumeigsine: ; i 
at 5 (ad) M+ 5 Fre (a) B+ eae (ad) b+ &e.} = 1. 

Arithmetical formule derived from the 21 relations, §§ 42—45. 

§ 42. The general form of the 21 relations is 

(a +P, P+P, B+P, +P, b+ &c) 

x (Bo + Q,9,0° + Q.qsk* + Q.9,h + Q.a,F + &e.) 
—(8 +Q, P40, h+Q, M+ Q, K+ &e.) 
x (a, + Pip + Pip +P,p,k° + Pp, + &e.) 

5 SG hor’, 

where p, and g,, denote the adjuncts of P,, and Q, respectively. 
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By equating the coefficients of 4°” in this identity we find that, 
ee le 

a Q.Un ar Boe, ps [IEDs a0), 

am sis One Go tan Oe) 

17 dG Oda (De a Oe) 

ap TEP (D5 = q,): 

If we define P x Q (adq) to denote Px Q (p—q), i.e. the con- 
tinued product of P and @ and the adjunct of the quotient of P 
divided by @, we may write the last equation in the form 

Q,, (24, — %) — 2, (Pn — Bo) 
= P,_, x @, (adq) + P,, x Q, (adq) + P,_. x @, (adq) ... 

+P xQ,_, (adq). 

The left-hand member of this equation 

=a {Q, (ad)} — BP, (ad)} — 4,0, + AoP,,. 
When 8 =1, the equation may be written 

a {Q, (ad)} —2,0, + BP, 
=P, (ad) + P,, x Q, (adq) + P., x Q, (adq) ... + P, x Q,., (ada), 

and, when a = 1, it may be written 

B{P,(ad)} -8,P,+ 4,2, 
= Q, (ad) + Q,_, x P, (adq) + ,,_, x P, (adq) ... +Q, x P,_, (adq). 

§ 43. Taking for example the first relation K,H,— K,E,=1, 
which was written out at full length, in terms of the series, at the 
end of the last section, and putting for simplicity n = 4 (the law of 
the formation of the terms being as clearly seen in this particular 
case as in the general formula) we obtain the arithmetical theorem: 

12, 37.57.72 12.3?.5.7? 12. 3?.52.7 
Fe GS ow. 67g OD) = a ae Ge ge OY) 

2.325 27 
+ om. gz, 62 * ge (ada) 

V.3 1.3 
+ oF ge * on gp (ada) 
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The left-hand member may evidently be written also in the 
form 

AS Sa yi 

=~ oF a 6g Ad). 

Writing the adjuncts at full length, the equation is therefore 

Bic shee 2,2 2 2052 a 
Seca DO Pad hd oe Oa 

_ VST eee 
Sorina OT SAS Gn 7 ame 

aA NG? malls 4°5 6 

_b3 ae: =) 
pe S| 3 

I e852 Ht -gnt- it, 
nal Thee Dae ae es 

§ 44. Similarly from the second relation, viz. K,Z,— Kf, =1, 
we find 

tO eon Ie el Nope 
pa T Gr OF Leah - 

IPSS, oN 
+3 EG v= : (ad) 

153) es 
ow A OF OF Ae (adq) 

ome: 
2 Soy: Ae 9? 42. G? (adq), 

that is, writing the adjuncts at full length, 

oe eases CN: 2 
of at 61S 9.4568 \12°3 4°5 6 7 a8 

place 2 at - 
to 4,6 x (S- AB 
ay Es en 
+ ong * OF, pla aT 4 
pies L122 
+ 9X oF A, eae (n 1°23 40 5 ee 
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In the same way the third relation, viz. K,G, — K,G, =1, gives 

TS Ga sae 
— 9 42 G2 8! 47 G28 24) 

Io ae 

+ oF ag * a AW) 
1? 12 2 

+ oF g * oF gp 4d) 

1. a Ee 

2 oF ge ge Ad. 

These three equations suffice to exemplify the curious kind of 
arithmetical formule to which the 21 relations give rise. I have 
not examined in detail the complete system of results. 

§ 45. It may be remarked that if the first term of the right- 
hand member of the first two of the three equations be trans- 
posed to the other side of the equation, the left-hand member 
vecomes the same in each case, and, supposing n= 4 as before, we 
find 

orm (ya le aor ons C 
DAS 61S" | 246248 

1G 3k. Oe. Se 
(ad) = 9204F G2 OE (adq) 

(leas oe AS 

+ oe ge % oe, ge (dg) 

1 ee eae 

+ 38 on ae, ge OAD 

325 2 
= 97 2G X gp (ada) 

on miler oe 

Toe 4 Xo gp OAD 
itt 2° ©2 2 

Ipnox : 

re Sorry al 
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“Expressions for the quantities H, I, G, U, V, W in terms of 
any one of them, § 46. 

§ 46. In § 8 (p. 191) the six quantities H, Z, G, U, V, W were 
expressed in terms of H and of J. It seems worth while to give 
the expressions of these quantities also in terms of G, U, V, W. 
The complete system of formule is as follows: 

J = IG; =I+K, 

Tf =H-K = 
G =H-k?K =I+hK, 

UO =EF-1(1+2k") K=I+39RK, 

Vi ee =[+40+#))K, 

W=EH-iK =I+1K, 

E=U+h (+h?) K=V4hh°R, 

IT =U-1K =V-11+R)K, 
G =U+4hK = V—1kh?K, 

eal = V—-1ik, 

V =U4+1iKk = VV, 

W=U+4kh°K =V—-ilk, 

H=G4+khK = W+iK, 

I =G-KhK = W_-1ik, 

= = W+i(k’—-k?) Kk, 

U =G—1ikhK = Wa Br 
V =G+th*K =W+49'K, 

W=G+4(k°-B)K= W. 

Change of q into —q, g° and q’, § 47. 

§ 47. The following table shows the transformations into each 
other of the quantities k, k’, K, K’, E, LE’, &. produced by the 
change of g into —q, q° or q’. 
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JUMETGIoR AI 

(aa E ci 
q =) Vm q 

7 ik 1—k he 
Ht 1+h 1+k 

fi 1 PY eae 
a 1+k’ 1+k 

K WK A(1+k)K | (1+k)K 
He || Gre to) (yada sey nace 

EB QV 
2 i 1+k 

G' +iG av! 
7! z 

# i 1+# 
G U 

B k 1k’ 
Z I'+iE U! 

kK 1l+k 

I 
G i 

; E' +i 
G a 

U oT 
ye # Ith 

W'+iw QI 
' — — 

es K 1+hk’ 

W B 
A # th 
y’ V'+iU 15} 

kK’ 1+k 
= 

W a 

U'+iV , W = 

The gaps in the last two columns of this table correspond 
to results which involve kK, k'K, kK’ or k'K' as well as E, FE’, 
I, I’, &c., as appears from the following two tables, which give the 
complete transformations of #, J, &c. and of EH’, I’, &c. 
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pia al. 

q ~4 af G 

‘a E E+hK 27 
k' 1+k’ 1+k 

7 G wo 2 (I- kK) 
i’ 14% | 1+k 

G L E-WK 2(L+hK) 
ki 1+ ik! | 1+k 

- iy  V+W-KK | 2 
ki 2 pea 5 me 1+k 

Vv W #\ W+U+hK 
K Tf K isk ih 

fe Vv ,VAW+hK W+U-kK 
k/ Z Pe! 1+k 

TABLE III. 

q ~4 ? g 

se G' +iG av" E'+kK' 
i 14k 1+k 

- V'+ik 2(I'- WK’) oe 
Kk 1+ 1+k 

es E’+il 2 (I' +h'K’) EB! -kK' 
i! Dk’ 1k 

- W'+iw a2) V+ W' kK! 
ki’ 14% > 1+k 

a V'+iU W'+U'+ HR’ BP 
ki nei 1+k 

at U'+iV W'+U'-WEK’ | , V+ W'+ kK’ 
ik 1K 2 14k 

In connexion with the forms of some of the expressions in 
Tables II. and III. it may be remarked that 

V+W=£H+U, 

a Oe ne 

U+V =G-+ W. 
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Change of q into ig’, § 48. 

§ 48. The change of ¢ into 7q’ is equivalent to the change of 
q into gq’ followed by the change of q into —q. As shown in § 23 
(p. 203), the change of q into ig’ converts k’ into e~2 and K’ into 
Se®(K’—7K), where @ denotes the modular augle, given by the 
equation k = sin 0. 

Transforming the results in the last column of Table III. by 

changing q into — q we find that, by the change of q into iq?, 

E’ becomes e-?{G +k K+1(G+4kk'K’)}, 

£ % e-®(W’'+iW), 

G # e- 8G —kk Kh +1(G—-kk’K'y}, 

Uo, he IG + W kK +i(G+ W-kNR’}, 
V’ i e~®(G +7), 

Wy he OH EW 4h K 4+1(G4+ W4 kK}. 

Since, by this change 

k’ becomes e7?, 

and TE By UR 

it follows that EOEGS, Ee, de® (K’—-7K). 

The transformations of K’, I’, V' were given in § 24 (p. 203), 
and by their means the series for 

K K' 2W 2W’ 4@ 4@ 
5) ? ) ? ? ? 

T ais T ts a 7 

in terms of sines and cosines of multiples of the modular angle 
were found in § 25 (p. 204). 

The transformations of Z’, G’, U', W’ give no fresh results, 
except the series 

Ahk K = 2G ceceted al 
—— = cos 0— swe 008 70 — foe £ Gg 098 110 — &e., 

AiG = a ee L a een 9 ee 
——— =sin = 4 sin 76 + 2 a ge 1a Tg) se a 
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These formule may however be derived at once from the series 
for G by simple differentiation, since 

Hee is : Th = WUE, | 

or, even more simply, by multiplying the series for = by 2sin 20 

and using the formula 

2 sin 20 sin (4n +1)0= cos (4m — 1) 0 — cos (4n + 8) 0. 

April 20, 1885. 

Prof. FOSTER, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society :— 

(1) Note on the rotation of the plane of polarization of light 
by a moving medium. By Prof. J. J. THomson, M.A. 

In a paper in the Philosophical Magazine for April 1880, I 
considered, assuming the Electromagnetic Theory of Light, some 
of the effects produced by the motion of the medium which is the 
seat of the electrostatic action. The motion was then supposed 
to be translational. In this note I shall consider the case when 
the motion of the medium is of the most general character which 
a rigid body can possess. 

The notation is as follows: 
Fg, h are the components of the electric displacements paraliel 

to the axes of a, y, z respectively. 
a, b, c the components of magnetic induction. 
F, G, H the components of the vector potential. 
P,Q, & the components of the electromotive force. 

p,q, 7 the components of the velocity of the medium; if as we 
shall suppose the medium moves like a rigid body, we may look 
on the velocity as made up of a motion of translation whose 
components are uw, v, w and a rotatory motion the components of 
whose angular velocity are w,, w,, @,. 

p is the magnetic permeability and K the specific inductive 
capacity of the medium. 
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Then the equations, which give p, qg, r in terms of w, 2, w, 
®,, @,, @, are 

DUAR), 2 MOLY Ne vais ts oa'e oetelnciein nen es (1), 
7) = 0) 42 (OEE OY app peonenooc danance score (2), 

UIE OU fs Df tees - 1a eins cis erro (3). 

The equations of the electromagnetic field are 

a pe a 15m CC Sea ae pc Bedig 5 3: baer er (4), 

ig dG dw ‘ 
Ore MD serge ae, (5), 

dq dw 
f= bp — aq ——7 — A tetaik Mn ce eae (6) 

dH dG 
a dy — ae oc noavIadh doohon oOo COD DoaDDDevONN (); 

ae aE 
b We dag (8), 

aG af 
a die diag soak (®), 

and if the only currents which exist in the medium are displace- 
ment currents, we have 

dorus of ay al ee Nae Meh eae (10), 

trp d= = = Aimee Ree (11), 

4 mG = _- z Le Nae eet (12). 

Stage Bo, fay, Beas! 

we get if we differentiate (4) with respect to y, (5) with respect 
to z and subtract 

4a (df dg d cin de 

AS aot tay? A G1 i, — Doo, + dt" Mey, 

Similarly 

4m (dh df _ { pds we OO aay 
K \dx dz =P ant Sper aay Bok die gee 
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differentiating (13) with regard to y, (14) with regard to 2 and 
subtracting we get, since is 

ap. aha Glos, 
Exes © a 

Acc (dif ae yee a ad d)df 
ae s+ et ge} =m [Pag taa, ae 

d ad d ad af 
— Gy 10@1 + bo, + cw,} + Ogg 1 agg Uw onan Ob + a 

or as it 1s more convenient to write it 

1 (df of @f\ ( dod. didf, dyes 
oat gat gets (Past lag taal et gem egg ae 
with similar equations for g and h. 

We may easily prove that a, b, c satisfy equations of an exactly 
similar type. 

We shall apply these equations to a very simple case, let us 
suppose that the light is propagated along the axis of z and that 
the medium is rotating round this axis with an angular velocity o. 

In this case f and g are functions of z only so that our equations 
become, writing 2” for 1/uK, 

odif dg af 
pe POR aie 
es toe Sa 
le & i eG ae. 

Suppose a circularly polarized ray goes along the axis of 2, 
for which f= asin (nt — lz), 

g =—«acos (nt — Iz). 

Substitutmg we get 
vP+on—n = 0. 

If the ray had been circularly polarized in the opposite sense we 
should have 

v? —o,n—n = 0. 

If w, be small compared with n, then in the first case 

vl=n(1—4 aoe 

And if in the second J, be written for / 

vl =n (14499), 
Ty) oe 
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so that the ray polarized in the opposite sense to that of the 
rotation of the medium travels more slowly than the one polarized 
in the same sense. 

The ray for which the displacements are nearly parallel to x is 
given by 

f=asin (nt —lz) + asin (nt ~— 1,2), 

or say f= 2a sin (nt — Iz) 

g = 4 cos (nt — 1,z) —acos (nt — lz), 

g = 2asin (“ 5 
e 
od 

) 3 cos (nt — Iz) 

== Oe C > ! zcos(nt—lz) approximately 

=4.—#zsin (nt — Iz); 

or the plane of polarization is twisted in the same direction as the 
rotation of the body through an angle o,/v per unit length. We 
may state this result rather more neatly by saying that the 
rotation of the plane of polarization after the light has travelled 
any distance is equal to the angle turned through by the me- 
dium in the time taken by light to traverse that distance. To 
twist the plane of polarization through a third of a minute after 
traversing 10 metres, the medium would have to make about 500 
revolutions per second. This seems just to bring it within the 
limit of experimental verification, as the light might be reflected 
backwards and forwards. We must however remember that o, is 
the angular velocity of the ether and not of the moving piece of 
glass or whatever we may use for the experiment. 

The amount of the rotation of the plane of polarization is 
independent of the wave-length, so that the theory in this form 
would not account for the magnetic rotation of the plane of 
polarization where the magnitude of the rotation varies inversely as 
the square of the wave-length. An application of this result seems 
worth noticing; according to some theories there is a rotation of 
the ether around the lines of magnetic force, now this will produce 
a rotation of the plane of polarization whatever the medium may 
be. Now experiments with negative results have been made to 
detect the rotation of the plane of polarization in air and we may 
conclude that if the rotation had been as much as 1’ per 
metre it could not have escaped detection, so that even in very 
powerful magnetic fields the ether cannot be rotating more than 
15000 times per second. 

If we go to second powers of w/n we see that the velocity of 
VOI is Eien 18 
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propagation is v/(1 —4°/n’), so that in a rotating medium there 
would be dispersion but the blue rays would move more slowly 

than the red. 

(2) On the theory of some experiments of Frohlich on the position 

of the plane of polarization of light diffracted at reflemon from 
a grating. By R. T. Guazesrook, M.A., FBS. 

In Wiedemann’s Annalen Vol. I., Frohlich gives an account of 
some experiments on the polarization of light diffracted by re- 
flection from two glass gratings, one of which was ruled with lines 
at a distance of ‘0506 mm. apart, the other with lines at a distance 
of 00617 mm. 

The incident light was polarised in a plane at 45° to the plane 
of diffraction and the plane of polarization observed for a series of 
angles of diffraction and for angles of incidence of 85°, 55" and 25”. 

The position of the plane of polarization of the light reflected 
directly at angles varying by 5° between 85° and 25° was also 
observed. 

It was found that for the diffracted light the direction of 
vibration depends on the angle of incidence, the angle of dif- 
fraction and the nature of the reflecting face, but is completely in- 
dependent of the distance between the lines of the grating and of 
the overlapping of spectra of different orders at the same point in 
the field of the observing telescope; while the position of the 
plane of polarization of the light regularly reflected agreed fairly 
with that given by Fresnel’s theory, except near the polarising 
angle where Jamin’s effect, which however in glass of refractive 
index about 1°5 is not very marked, came in. 

The only other experiments which I know of on polarization 
by diffraction at reflexion are some alluded to in Prof. Stokes’ 
paper in the Zransactions of the Camb. Phil. Soc. Vol. 1X. on the 
dynamical theory of diffraction, but not published on account of 
the difficulties arising from the overlapping of the images formed 
by light reflected from the second surface of the grating. These 
were avoided to some extent by Frohlich by using a wedge-shaped 
piece of glass for his grating. 

Frohlich states in his paper that his results confirm the suppo- 
sition that the direction of vibration is normal to the plane of 
polarization, but does not give any theory. 

This has been partly supplied by Réthy (Wiedemann, Vol. XI, 
On the polarization of diffracted light), who has shewn that 
Frohlich’s experiments may be represented by the formula 

tan ¢ = tan ¢, cos 6 + sec f, Sin 6 Cot py ......+++. (a 

g and ¢, being the azimuths of the planes of polarization of the 
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diffracted and regularly reflected light measured from the plane of 
diffraction, 6 the angle between them, and p, a constant for any 
given angle of incidence. 

Réthy obtains this result by taking as the solution of the equa- 
tions of motion in the medium due to the disturbance at one 
point of the grating, the values for the displacement of any point 
given by 

fo ee 
A ip AG 

where =~ cos 2m {r+ 8. 

r being the distance between the two points in question. Now 
this solution corresponds to the motion which would ensue if each 
element of the grating, considered as a small sphere, were made to 
twist backwards and forwards in periodic time 7 about an axis, the 
axis of z, the same for all elements, and it is difficult to see how 
this motion could arise. 

Réthy also considers another possible motion given by 

d’d ad’ rd dd 
u=—=—; ——— i 

dz dx dydz’ Che dP 

which would arise from the action of a periodic force acting paral- 
lel to the axis of z at each point of the grating, but according to 
him this solution does not lead to the equations given above. It is 
difficult to imagine how the state of things over the grating can be 
that required for the first solution, and in any case the effects pro- 
duced by a train of waves passing over a given element of space 
differ from those produced by causing the particles of the element 
to perform small vibrations under the action of a periodic force. 
In the second case the motion is symmetrical round the direction 
of motion of the particles, in the first case it is not. The two are 
dealt with in Prof. Stokes’ paper on diffraction, sections 31 and 27. 

My object in the present paper is to show how the formula 
(1) employed by Réthy may be deduced on a certain simple as- 
sumption from Prof. Stokes’ results. 

The assumption is that each particle of the bounding surface is 
performing small oscillations parallel to some fixed direction de- 
pending on the polarization of the incident light and the angle of 
incidence. 

Consider any point O on the bounding surface and let a line 
drawn through this point parallel to the direction of vibration meet 
a unit sphere in Z(Fig. 1). Let a ray regularly reflected from O 
meet the sphere in A, and a diffracted ray in &. Then according 
to Prof. Stokes the directions of vibration in the rays &,, R, so far 

18—2 
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as they depend on the motion at O, lie in the planes OZR,, OZR 
and are perpendicular to OR, and OR respectively. 

Join ZR,, ZR by great circles and take Q,R,. QR each equal 
to 47, the directions of vibration meet the sphere in Q, and Q. 

Let P,, P be the poles of the great circles Q,R,, QA respec- 
tively. Then QP, Q,P,, meeting in B suppose, are the traces of 
the wave fronts, and PBP,=6, the angle of diffraction. Also B is 
the pole of the plane of diffraction AR,, and on Fresnel’s hypo- 
thesis the azimuths of the planes of polarization of the two waves 
are BQ, and BQ respectively, while on the other hypothesis the 
azimuths are BP, and BP. Now let ZR,=p, so that p, is the 
angle between the direction of motion over the surface and the 
direction of the ray directly reflected. Then 

4Q, = Py — 90° = ZF, 

and since Z is the pole of PP, ZP,P=90° and PP,Q, = po: 

Hence the triangle PBP, gives 

sin BP, cot BP =sin PBP, cot PP,B + cos PBP, cos BP,. 

Or on Fresnel’s hypothesis 

tan d= cos 6 tan d, + sin 6 sec g, cot py. 

While if we take the other hypothesis we have to put == ¢@ and 

-= ¢, for ¢ and ¢, and get 

cot d =cos 6 cot d, + sin 6 cosec ¢, cot py. 

If we are considering diffraction by transmission, the incidence 
being direct, this gives Prof. Stokes’ well-known law, for then, 
taking as the ray corresponding to p,, ¢, the ray transmitted 
directly, it is clear that the disturbance over the diffracting sur- 
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face will be in that surface since the incident vibrations are 
parallel to the surface, and thus p, = 90. 

Réthy has made his comparison with Frohlich’s experiments 
by putting the equation into the form 

tan ¢ =a cos6+ bsind=csin (6 +6), 
and then calculating ¢ and e by the method of least squares. In 
each series there are some sixteen or eighteen observations which 
are sufficient for comparison with a formula containing two arbi- 
trary constants. 

For the angles of incidence 25° and 85° the same values of ¢ 
and e were obtained from the two gratings, for the angle 55° the 
values for the two were slightly different, but 55° is near the 
polarizing angle for the glass used and the effects of elliptic polari- 
zation observed by Jamin, Quincke and others come in. 

From Réthy’s values of c and e I have calculated the values of 
p, and ¢,, the latter of which was independently observed for the 
different cases by Frohlich. 

suuglb Gs Maange. Po ey eed 

Bona (22 OSS Sie 84 a) ee Be I! 
eee ao) 50° 48’ 2 Ag Swoon 

fo) (s5° 58° We 39° ey 389° BOY 

Wariow D5 LEO ase — 37° 34 — 37° 18’ 
Cones 55° 52° 23 — 2 8 = 0256) 

Ss |Sor 58° 7 Bo. 83) 39° 37 

Thus the values of ¢, calculated on the assumption that Froh- 
lich’s experiments can be represented by the equation (1) and 
determined directly from experiment do not differ very greatly, 
and the differences throughout Réthy’s Tables are quantities of 
the same order as those shewn above. 

This close agreement would seem to indicate that we may 
treat the motion of the ether particles on the interface, to the 
degree of accuracy required for these experiments, as rectilinear, 
while the results, as Réthy has shewn, are decisively against the 
hypothesis that the vibrations lie in the plane of polarization. 

The calculated values of ¢, given above are also given by 
Réthy in the course of his tables. 
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May 11, 1885. 
Pror. Foster, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society :— 
(1) On the formation of lactic acid, creatine and urea in 

muscular tissue. By Prof. Laruam, M.D. 
THE variety of lactic acid which is obtained by the disintegra- - 

tion of albuminous compounds and is formed during the contraction 
or tetanus of muscular fibres, and hence called sarco-lactic acid, 
though agreeing in some respects with fermentation or ethidene 
lactic acid, differs from it in being optically active, turning the 
plane of polarization to the left, whereas the other is optically 
inactive. The difference too between their calcium and zine salts 
is very marked. In rheumatic fever, again, it is formed in large 
quantities in the system, and differmg as above stated, from fer- 
mentation lactic acid, the inference is obvious that it cannot be 
directly formed from the glycogen in the tissues, or from saccharine 
or starchy matters introduced into the digestive tract. In fact, in 
the disorder referred to, one of the most important aids in cutting 
short the malady, and putting a stop to the excessive formation of 
lactic acid, is to place the patient entirely on a diet of farinaceous 
food and milk. 

Where then does it come from? The question possesses much 
more than a physiological interest, for if rightly answered a con- 
siderable insight will be gained into the pathology of the disorder 
to which I have referred. : 

Sarco-lactic acid may be regarded as a mixture of two kinds of 
lactic acid* the more abundant being paralactic acid or ethi- 

dene lactic acid CH,. CH toch 
COOH?’ 

Olal,. Olal, loge Now these two acids may be obtained, 

(i) by oxidising ethylic alcohol, treating the aldehyde so ob- 
tained with hydrocyanic acid to form a cyanhydrin, and acting 
upon this with acids or alkalis— 

C,H,. HO+0=CH,. CHO +H,0 

the other ethene lactic acid 

ethy! alcohol aldehyde 

OH, . CHO + CNH =CH,. CH (one 
aldehyde eyanhydrin 

OH OH 2H,0 = CH,. CH lon +2H,0 = NH, +CH,. CH (coon 
ethidene lactic acid 

* Watts, Dictionary of Chemistry, Vol. vit. p. 1160. 
+ Fownes, Manual of Chemistry, 1877, p. 625. 
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Gi) By converting Aon alcohol or glycol into a cyanhydrin 
and boiling with acids or alkalis— 

CH= OH , 
| + HCl=H,0 + CH, i es 
Che Or 
glycol chlorhydrin 

Ciel 7 Oil ae CH,OH 
CH. er + KCN = KO1+ CH, Gy 

eyanhydrin 

CHO: ‘ CH,OH x CH, | Gy 2H Om CH, ome 4NH, 
ethene lactic acid 

In a paper printed in the Cambridge Philosophical Proceedings, 
in 1882, I endeavoured to show that albumen might be regarded as 
a compound of cyanhydrins or cyan-alcohols, bodies having the 

composition generally of R...CH Pe ; and I showed how by com- 

bining these cyan-alcohols together in certain proportions a com- 
pound might be obtained having very nearly the same composition 
as that given by Schiitzenberger for albumen. The combination of 

molecules of the form R...CH ae 

H,SO, the compound 

(coil) (Cetialen), (Bho), (oH), (ot | on) (cf!) 80, 
= C,H .aN,,0,,8 

133° 21 25 

three molecules of this undergoing condensation giving as the com- 
position of albumen 

which I suggested gave with 

Cee Ne Ors 
399 Ry BB) 

“ailoacnem 

which differs from Schiitzenberger’s formula, C,,,H,,,N,.O.,5,}, only 
in the small amounts of hydrogen and nitrogen. 

Now I did not suggest that this was anything more than an 
approximation to the constitution of albumen, in fact I would 
modify it materially now, as I shall show directly ; but the more 
the subject is considered the more evident does it become that the 
fundamental point with which I started (viz. that the cyan-alcohols 
are the bodies from which this complex molecule is built up)—is 
the key, not only to the constitution of that body but to the 
changes which it undergoes both in the system and after death. 

* Fownes, Manual of Chemistry, 1877, p. 319. 
+ Annales de Chimie, 1879, p. 384. 
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The chief objection to the formula which I have suggested for 
albumen is “that it consists of a large number of molecules in 
molecular as distinguished from atomic combination; and on the 
whole, organic molecules seem to have extremely little tendency 
to enter into this kind of combination.” This objection is fatal to 
my formula, but stimulated by the kind expressions of the writer of 
this criticism I did not relinquish the subject, and I hope to show 
now that a further step has been gained towards the solution of 
the problem. 

When proteid substances are decomposed or when they are 
introduced into the alimentary canal and digested, certain amido- 

acids, or glycines, such as glycocine CH, | 

NH OH 
C,H, tc 0 OH? tyrosine O,H, a (NH,) COOH &e., are pro- 

duced, these substances are absorbed into the system and thereby 
the waste of the tissues is repaired. Now these glycines are capable 
of uniting with each other (Hofmeister) and it is probable that 
their molecular weights are at least double as great as their 
formulze would indicate*. They may be represented by the 
formula 

He eee 
COOH naam 

CH, .NH,.0.CO 
| | 
CO. O-= NHC, 

To obtain these substances from albuminous tissues the tissue 
must be hydrated, i.e. a certain amount of H,O must enter into 
chemical combination with the tissue. On the other hand, we 
know that glycogen in the liver is obtained by the dehydration of 
glucose in the alimentary canal, and the question therefore suggests 
itself ;—what compound would result from the dehydration of these 
other bodies with which we are now concerned, the glycines? From 
two molecules of glycocine dehydrated we should have 

NH, NH 

2H AcodH = wi +10 
glycocine CO. NH -CH, —- COOH 

NH, 
cn, | 

2 CO.NH +H,O 
OH, 
eee 

* Miller’s Chemistry, 1880, Part 111. p. 866. 
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Similarly 
NH, 

CH, 
CO.NH + 2H,0 

30H, { NE Grr, { ; 
COOH. cO.NH 

glycocine CH, f 

| COOH 
Similarly 

(NH, 
Oa 

CON 
30H tone Z 0H, | +2H,0 

* *(COOH CO.NH 
alanine ChE f 

{COOH 
NH, 

OF 

CO.NH 
and 3C.H a H, = CH, | +2H,0 

38 (COOH CO. NH 

leucine CEL, 

COOH 

and in the same way these compound molecules may be connected 
together by combining the COOH in one with the NH, in the 
other, with elimination of H,O. 

If these are the changes which take place on the dehydration 
of these bodies in their progress to the formation of albumen, a 
very interesting point attracts attention, viz. that the quantiva- 
lence of the atoms in the above molecules of CO. NH is not 
satisfied = C=O.=N —H, there is a break between the oxygen 
and nitrogen; there must therefore be an interchange of atoms 
and the molecule becomes=C=N—O—H or CN.OH. Sucha 
change coincides with the view expressed by Pfliiger* that ammo- 

NH, 
NH, 

of dead nitrogen, and the conversion of the former into the latter is 
an image of the essential change which takes place when a proteid 
dies. 

By dehydration of the glycines then we should have generally : 
H 

nium cyanate CNO. NH, is a type of living, and urea CO 

N 2 

CH. 

(NH, CN.OH 
50 15. 4 HELO 

nm me 0H, { \coo ON. OH 
Coe 

n Zn we 

* Archiv, Bd. x. s. 337. 
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Similarly Caria ) 
NH, .OH 

6C_H,, = (4) C_H,, { oP 5H O 

COOH CN .OH 

ele 

COOH 

writing it so for shortness, the number in the bracket indicating 

the number of molecules of C,H,, i ; and in this way we arrive 

at an atomic combination of the cyanhydrins or cyan-alcohols 
; NH : OH 

united to a cyanamide C,H,, ca and an acid C_H,, COOH: 

If now we dehydrate six molecules of glycocine and three of 
each of the other glycines in the series up to leucine and attach 
them to a benzene nucleus, we shall I think have a compound the 
constitution of which will give us some insight into that of al- 
bumen. 

OH 
Tyrosine C,H, | CH, (NH,) COOH 

propionic acid, which is obtained from proteid substances, may be 
thus represented 

or para-oxyphenyl-amido 

HO 

Hs-C —H, 

nD Saeea 
C 
| E 

O,H, (NH, 
{cool 

The C,H NE being derived according to my view from 
28 (COOlaL 
NH : OH eee: 

C,H, GN. that is from C,H, ee . This indicates the point of 

attachment to the benzene nucleus of the C,H, series. If then 
we replace H, by the CH, series, Hp by the C,H, and C,H, series, 

and H, by the C,H,, series, we have Hs left to be replaced by some 

sulphur compound and the composition of Taurine C,H, an H 
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suggests SO,H. The compound would then be (OH being re- 
placed by H); 

SO,H - ¢ C yan 
\CNOH 

eee rae 

7% ‘CNGEL 
NH. 

r Zl ae ae 
a (8 Fi, Z CNOH 

(3) OH, NH. G NH. Sg ee 
oH] LO,H,| oe MOH, 

ONOH  ‘CN.OH COOH 
(4) CH, C,H 

CNOH CNOH 
cH, af 

COOH COOH 
or if we combine the series together, the molecule COOH in the 
one combining with the NH, of the other with elimination of 
H,0O, the compound may be represented by the formula: 

H 

| 
C 

ee i NH, 

— NR ee bey SO,H i C——C.H, | oxon 

| (2) CAE CNOH 

C C—O JEL, CNOH 
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the numbers in the brackets representing the number of times 
that cyanhydrin is repeated in that group, and the composition of 
the compound would be C,,H,,,N,,0,,5; which is almost identical 
with the formula given by Lieberkiihn viz. C,,H,,,.N,,0,,9- 

I offer this then as showing how by combining the cyan- 
alcohols with a benzene nucleus a body having the same compo- 
sition as albumen may be built up:—not as asserting that it is the 
actual composition, though strongly impressed that this is the 
case. For by simply dehydrating six molecules each of glycocine, 
alanine and leucine and combining them in a similar fashion with 
a benzene nucleus, we should arrive at a formula C,,H,,.N,,0,,8; 
but as I shall show presently there are reasons for believing that 

the molecules C,H, a C,H, ag are constituents of albumen. 

Having arrived at the constitution of albuminous matter, we 
are now prepared to consider the changes which result from its 
disintegration. 

From the various cyan-alcohols when treated with acids or 
alkalis the various acids of the lactic series can be obtained 

OH OH 
Cares ren a 2H,O = CALS (eooH ay NH, 

lactic, oxybutyric &c. are examples. 
The various glycines or amido-acids can also be obtained from 

them by the following methods. By digesting the cyan-alcohols 
with ammonia the cyanamides are obtained* 

(OH NH, 
2 (ON ON 

* Berichte der deutsch. chem. Gesell. xtv. 8. 1985. ‘‘The amido acids of the 
fatty series are easily obtained by the familiar reactions which take place on 
treating aldehyde ammonia with hydrochloric and hydrocyanic acids, and which 
led Strecker to the discovery of alanine..... The reactions indicated by Strecker 
take place unquestionably according to the following general formule : 

CH +NH,=H,0+6,H,,| 

NH, NH, 
R...CJH +HCN=R...C)H +H,0, 

OH | ON 
NH 

and aon © iB "4 2H,0 + HCI=R ... CH (NH,) ... COOH +H,NCL. 
CN 

The question arises, whether the cyanamide 

NH, 
R...C iH 

CN 

could not be obtained more readily from the cyanhydrides of the aldehydes 

CN 
R...C 4H 

OH 
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which acted upon by acids or alkalis produce the glycines or 
amido-acids, glycocine, alanine, leucine, &c. 

NH NH, OH,, { on + 2H,0= CH, | Oca 

If now muscular tissue is such a compound as I have suggested, 
the molecules being held together by some force, vital or other- 
wise, it is not difficult to imagine that in the normal disinte- 
gration of the tissue some such changes as the following may take 
place. 

OH 
First the molecule CH, | COOH 

oxidised would be converted into methyl-aldehyde, CO, and water, 

would be detached and when 

‘OH | CH, | coon t =H: CHO +00, + H,0 
glycollic acid methyl aldehyde 

the aldehyde being then either combined with a fresh molecule of 
HON to form a cyan-alcohol, or further oxidised into CO, and 
H,O. We should then have attached to the benzene nucleus 
a compound of cyan-alcohols by the hydration or decomposition 
of one molecule of which we should have the corresponding acid 
formed and ammonia liberated; the nascent ammonia may how- 
ever combine to form a cyanamide with the next molecule in the 
chain, which hydrated would form the amido-acid, ammonia being 
again liberated and forming a cyanamide with the next molecule 
higher up; and so on all through the different series. The changes 
then may be thus represented 

OH. OH 

OH. | 24 | 

CN.OH CN .OH OH 

2 CH, | CH; { COOH CN.OH+H,O= CN.NH, leans Aes 
| CH glycollic acid. 

2 2 
CN.OH CN on{ 
CN 

by digesting them with ammonia, expecting the ultimate change to be as follows: 

CN CN 
B.C} +NH,=R...C{H +H,0 

OH N 2 

The truth of this supposition has been confirmed by experiment.’’— Berichte, xt. 
s. 382. 
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Three different conditions now present themselves; (i) the 

molecule CH, ice * may become detached, or (11) the molecule 

OH a! 
CN .NH, or (ii) the larger molecule CN . NH, may be 

on 
separated from the chain. Let us consider the results in cases (4) 
and (ii) taking the consideration of (ai) further on. In case (1) 
we should have by hydration 

OH OH 
C,H, OH, | 

ON. OH ON. NH, 
CH,} SEO OH | 

ON. NH, ON 
CH NH 

* lon boos \cOOH 

and so on, the remaining two molecules by hydration being con- 
: NH, : NH, ; 

verted into CH, oer glycocine, C,H, an alanine, and 

NH,, which last passes on to form another cyanamide in the 
chain. 

If on the other hand the molecule CN . NH, is detached we 
have 

OH 

CAJEL, | wally ON. OH ON. OH 
CH, | = | Oi | 

CN. NH +ON.NH, 
CH, | OH, | 

ON ON 

and there is formed the next cyan-alcohol in the series 

OH 

CN 

OH. CH,.CH, { a or CH, | 

and cyanamide; the latter with water forming urea* 

NH, 
NH, 
urea. 

ON. NH, +H,0=Co} 

* Fownes’ Chemistry, p. 406. 
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In this way we pass from the lower cyan-alcohols to the higher 
with the formation of urea, the two molecules of CH, combining 
to form O,H,. Similarly 

OH | 
| (CN. NHL= CH, CH, ie ero NH, 
CH, lon 

CN 
OH 

= C,H +CN.NH, 
CN 

and OH 
OWE, } (OH 

CN.NH,=C,H,)  +CN.NH 
Cae ON 

(CON 

Here we have not only an explanation of the formation of urea in 
the tissues but the reason why the amido-bodies obtained from 
the tissues possess different properties from those made in the 
laboratory. It may easily be shown that the above cyan-alcohol 

(Oulebe CN? from which leucine may be prepared, will contain 

six different forms of C,H,, | GN: 

Going back now; if urea and the next higher cyan-alcohol in 
the series are formed, this latter by hydration may be converted 
into the corresponding acid and ammonia, 

OH OH 
CH, . CH, + 2H,0=CH,. CH, ! + NH, 

COOH 
Lactic acid 

which last again passes on to form a cyanamide with another 
molecule in the chain. 

We may conceive that under the control of nervous force, 
varying in intensity, these changes may take place and that 
glycocine, alanine, amido-butyric and amido-valeric acids and 
leucine result, bodies which we know can be obtained from mus- 
cular tissue. Further, that the cyan-alcohols of one series may 
be as I have shown transformed into those of a higher series, 
and that that particular cyan-alcohol may be converted into the 
corresponding acid; lactic acid, for example, being formed from 

CN 

glycocine by its dehydration and conversion into CH, 
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By oxidation, lactic acid and the others belonging to the series 
may be converted into the corresponding aldehyde, carbonic acid 
and water. 

OH 
CE} +0O=CH,.CHO+CO,+H,0 

COOH 
lactic acid aldehyde 

or generally 
OH 

plat. + O=C or. CHO CO rER® 
\cooH ! 

acid aldehyde 

The aldehyde may then be further oxidised in the yee into 
carbonic acid and water 

CH 
n—1 2n-1° 

CHO +0,, =nCO, + nH,0, 
or combining with newly formed HON may produce a fresh eyan- 
alcohol and so again take its place in the tissue. 

Or the aldehyde from lactic acid may combine with the SO,H 

disengaged from the benzene nucleus forming C,H CH which 
4 (SORE 

combining with ammonia produces C,H, i O,NH,’ and this in 

the laboratory may be transformed into Taurine C,H Aen iq: A 

comparison of the graphic formula of Tyrosine vel that of 
albumen already given shows how this body is derived. 

Suppose now the bond connecting the benzene nucleus was 
OH lon 

and separated from the CH, series; the latter would then undergo 
the changes already described, whereas the former would be con- 
verted into lactic acid and ammonia, the latter combining with 

the next molecule of C,H ee to form a cyanamide. In this 

broken at the point connecting it with the cyan-alcohol C,H 

Fe (CORN 
way lactic acid would be formed at two different points, and being 
derived from ethene and ethidene cyanhydrins would possess the 
characters of sarco-lactic acid. 

Let us go back and consider case (iii) where the molecule 
OH a 
CN .NH, is detached from the chain; if after its separation 

CH, | 
CN 
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NH 
CN.NH, is detached, and takes the form o€ we should 

NH 
have 

CH NH ise OH 

los Nish = o( 
oH, § NH du. CON 

wet NH. CH, - CH, - CN. OH 

ll ey (3 

HN=Cly on —oH,-CN.OH 
But as I have previously pointed out CN.OH represents living, 
CO.NH dead nitrogen; the formula therefore becomes 

HN=C ly oy —on,-0o.NH- 
NH - CO 

= I= | 
N.CH,-CH, 

The ordinary formula for creatinine*. 

The change is perhaps more intelligible if we consider the 
formation of creatine. If before the separation of the molecule 
CN.NH, we hydrate the compound, we have 

OH NH, 
cH, on, 

CN.NH,+H,O= ~‘CN.NH, 
CH, cH, | 

oN COOH 
CH, - NH, 

=CN.NH, + | 
CH, — COOH 

HN CH,-NH, 
= o¢ + | 

HN CH,-COOH 
NH, 

NH. CH, — CH, - COOH 
/ NH, 

= NW 1El = 
Ni CH, - CH, - COOH 

* Fownes, p. 614. 

MOVs PEL, 19 
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The ordinary formula for creatine—and according to this we ought 
to obtain creatine artificially from ethene alanine. 

I have thus endeavoured to show that albumen is a compound 
of cyan-alcohols united to a benzene nucleus, these being derived, 
as I have pointed out in my previous paper, from the various 
aldehydes, glycols and ketones; that lactic acid is obtained in 

two ways, either from C,H, ae , or from changes and condensation 

in CH, lone from which latter creatine and creatinine are also 

derived ; and that urea may be obtained from one series of cyan- 
alcohols with the production of a cyan-alcohol higher in the series. 

There are still one or two other points that I do not wish 
to leave unnoticed. According to Tieman, the cyanamides 

R CoWare very unstable bodies and with the elimination of 
CN 

NH, very easily condense into Imido-nitriles*. 

-R-CH-ON 

2 {R — CH (NH,)...CN}= NH +NH, 

R-CH-CN 

R-CH-ON 

and DN + {RCH (NH, - ON} 

R-CH-ON 

R-CH—-CN.R 

= NH,+ x= cH 
\CN 

R-—-CH-—CN 

If then the force holding the cyan-alcohols composing living 
proteid together were suddenly withdrawn, changes would quickly 
take place in these unstable bodies; there would be the formation 
of some acid and the different cyanamides, which latter would 
undergo the condensation above described. Does this not offer 
some clue to the phenomena of rigor mortis and the coagulation of 
the blood ? 

* Berichte, xtv, s. 1958. 
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Again, by combining two molecules of CH, ee ® we should 

have by Tieman’s formula 

which when hydrated with weak acids would give 

COOH 
COOH 

a body having the same composition as aspartic acid, but differing 
in that it is an emido instead of an amido body. Similarly 

C,H, (NH) \ 

C,H, — ON 
NH NH CH, {on * GH. (on *= NH 4NH, 

CH, — CN 

which hydrated would give C,H, (NH) teaeie a body having the 

same composition as glutamic acid, differme only in structure. 
But by strong HCl and high temperature these ‘imido-nitriles’ 
seem always to give aldehyde, HCN and an amido acid. It is not 
improbable therefore that under certain conditions we may have 

converted into CH,. CH (NH,) eee 

aspartic acid 

NH 
9 2 

20H, On 

NH 

CN 

NH 

CN 
? converted into C,H,. (NH,) (eave 

glutamic acid, 

and CH, | “OH | 

Lastly, a few words as to the formation of glucose. In plants 
CO, entering by the leaves combines with H,O sent up from the 
roots, and from these starch is said to be formed, a volume of 
oxygen equal to that of the CO, absorbed being exhaled by the 
lant. 

; MM. Loew and Bokorny, and Pringsheim have shown that 
there is a substance in living plasma which has the property of 
reducing silver salts and for this reason is regarded as an aldehyde. 
The aldehyde resulting from the combination in the plant of CO, 
and H,O. Pringsheim gives the following as the reaction; the 
volume of CO, absorbed and of O given out, being the same; 

’ CO,+H,O=H .CHO+0, 
methyl 

- aldehyde 

19—2 
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By condensation of the aldehyde glucose is formed 

6H.CHO=C,H_.O 
127° 6 

aldehyde glucose 

which by dehydration is converted into starch 

C H,,O,—C,H,0, + H,0 
12° 6 

glucose star ch 

In muscular tissue now, by hydration of CH, i we form 

glycollic acid, which when oxidised in the tissue is converted into 
methyl aldehyde, and this by condensation produces glucose, which 
by dehydration gives rise to glycogen ; 

OH OH. 
CH, he + 2H,0=CH, COOH > NH, 

methene glycollic acid 
cyan-alcohol 

CH, oGop + O=H. CHO +00, + 1,0 2 (COOH +UHSHf. a aor oaks, 

glycollic acid methyl 
aldehyde 

6H. CHO=C,H,,O, 
aldehyde glucose 

and CA OF | CAE Or AEn® 
glucose ‘glycogen. 

From what I have said as to the formation of urea in muscular 
tissue it is easy to understand why, when leucine or glycocine are 
introduced into the alimentary canal, a proportionate quantity of 
urea appears in the urine*. Taking glycocine for example, two 
molecules in passing from the alimentary canal to the liver are 
dehydrated 

at OH, (les 
20H, {A -'2 CN.OH 2|COOH — 

2|COOH 
This now is attached to the last molecule in the albuminous 

chain which is undergoing change CH, en and we have 

NH, 
Ee { &e. { 

OI, OH: + ON. OH 
CH, { CH, { 

COOH ON 
* Foster’s Physiology, 4th ed., p. 439. 
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&e. { 
ON.OH 

CH, { 
= ON.NH,, 

cH,{ 
ON. OH 

CH, { 
COOH 

The CN . NH, is now liberated to form urea and we have 

remaining, the CH, being converted into glycollic acid, 
(OH 
(COOH 

being either converted into lactic acid, 
OH 

and the CH,. CH, | CN 

and undergoing the other changes previously referred to, or being 
combined with NH, to form a cyanamide and then an amido body. 

The application of the theory I have here advanced to the 
pathology of diabetes, of gout and of rheumatism is, I think, very 
evident. But this, and the conditions which lead to the defective 
metabolism associated with these disorders, will form the subjects 
of discourse in another place next month. 

POSTSCRIPT. 

The question may reasonably be asked;— What becomes of the 
glucose in the system, if lactic acid is not formed from it? The 
most natural answer seems to be,—that one change at least is 
into alcohol and carbonic acid— 

C.H,,0, = 2CO, + 2C,H, . HO 
glucose alcohol. 

Startling as this view at first sight appears, the following points 
nevertheless indicate that such a change is possible. 

Oxidised in the tissues alcohol, may be converted into aldehyde 
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and this combining with HCN would form ethidene cyanhydrin, a 
constituent, as I have tried to show, of albumen 

C.H,. HO+ O=CH,.CHO+ H,0 
alcohol aldehyde 

CH,. CHO + HON = cH,.cH {0 
aldehyde ethidene cyanhydrin 

this may then be decomposed into lactic acid or undergo the other 
changes in the tissues which I have referred to. 

But there is a further purpose it may serve. On looking at 
the formula I have given for albumen, we see that there is still 
another way in which the molecules can separate in this unstable 
compound ;—the molecules of CNOH may become detached, and, 
by the combination of the C,H,, portion, a cyanhydrin higher in 
the series will be formed. Now when CNOH is passed into 
alcohol the following changes take place 

CNOH+0,H,.H0=00 {07 
2 5 

cyanic acid alcohol urethane 

urethane or ethylic carbamate is formed, and this combined with 
NH, will give urea*. 

NH, NH, 
CO + NH,=CO + C,H,. HO 

OC,H, NH 
urethane urea _ alcohol. 

But another substance is also formed—allophanic ether 

NH, is! 
2CNOH+C,H,.HO= ‘NH 

co | 
Oc,H, 

_ allophanic ether. 

This by alkalis may be transformed into a salt of the base and 
alcohol. 

NH, NH, 
CO | CO | 

NH +NaHO=C,H,.HO+ NH 

CO soda alcohol CO ' 
OCAEF ONa. 

allophanic sodium 

ether allophanate 

* Fownes, Organic Chemistry, 1877, p. 390. 
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which is readily decomposed by weak acids into carbonic acid and 
urea* 

NH, 
co | | NH, 

NH +H,0=Na,CO, + CO, + 2C0 
NH 

2 co J 
lONa 

If the allophanic ether however were combined with g'ycocine 
we should have 

NH, pH, 
co | NH CO} 
NEEL = CHO, | ENE 

Co | \. Co 
OCH, NH - CH, - COOH 

and this compound united with urea may, as I have elsewhere 
shewn*+, form ammonium urate and water. 

NH, 
CO 1 : INfec 

NH +CO | = OU Ose inlel de 71a) 
CO 1 NH, ammonium urate. 

NH — CH, —- COOH urea 

From what I have stated it is easy to see how alcohol may act 
as a food, and that after its administration the amount of CO, or 
of urea eliminated from the system may not exceed the normal 
quantity; if anything this theory would show that the CO, should 
be lessened. It is not more difficult to conceive, a@ priori, that 
glucose should in the system be transformed into carbonic acid 
and alcohol, than that it should be converted into lactic acid ; both 
changes are simply the result, out of the body, of different forms of 
so-called fermentation. 

A second question may be asked. Whence is the HCN derived, 
that is to form the cyan-alcohols entering into the composition of 
albumen ? 

It is from the oxidation of the amido-bodies. 
By oxidising glycocine for instance, we get} 

NH, 
CH, +0, = HCN + CO, + 2H,O 

COOH 

Leucine gives§ 

COOH. 

* Watts’ Dict. of Chem., Vol. 1. p. 133. 
+ On the Formation of Uric Acid in Animals, 1884. 
+ Watts’ Dict., Vol. 11. p. 903. § Ib. Vol. ur. p. 582. 

NH, 
C.H,, | +0,-CH,.CN + C0, + 2H,0 
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By oxidising asparagin, we get* 

CONH, 
C,H, (NH,) + 0O,= HCN + CHO,.NH, + 2C0, + H,O 

aspargin ammonium 
formate. 

Taking this view then of the constitution of albumen, the 
following may be given as a summary of the nutritive changes. 

The amido-acids glycocine, leucine, &c. in passing from the 
alimentary canal to the liver are dehydrated, forming a series of 
cyanhydrins or cyan-alcohols grouped around a benzene nucleus, 
and then pass into the circulation. In the circulation there is 
constant change going on, and the cyan-alecohols hydrated are 
converted into the glycines or amido-acids, which as they pass 
into the tissues are again transformed into the cyan-alcohols and 
there partly hydrated and then oxidised give rise to the various 
effete products which are eliminated from the system chiefly in the 
form of carbonic acid and urea. ° 

(2) On the molecular theory of viscous solids. By Rey. C. 
TROTTER, M.A. 

THE following paper is an attempt to give somewhat greater 
definiteness to our ideas of what may be called the molecular 
architecture of a viscous body. 

I assume with most modern physicists that the structure of 
all bodies is molecular, i.e. that all bodies are built up of separate 
molecules, such molecules being either systems of vortex rings or 
groups of atoms of some other kind. 

It is supposed that these molecules are in a state of constant 
motion, the mean velocity being dependent upon the temperature, 
and that the state of things may vary pretty continuously from 
the ultra-gaseous condition of Crookes, in which the mean free 
paths of the molecules are not only large compared with the 
dimensions of the molecules but may extend to a considerable 
number of millimetres, to the solid condition in which the mole- 
cules are not only always subject to the influence of neighbouring 
molecules but oscillate about positions of equilibrium. 

We are in entire ignorance of the nature of the actions be- 
tween the molecules of a solid. The fact that a solid may be 
converted into a liquid with a very slight change of volume, or 
even, as in the case of ice, with a diminution of volume, proves 
that the distinction between a liquid and a solid cannot depend 
solely upon the mean distance of the molecules. The production 

* Fownes, Organic Chemistry, p. 417. 
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or the disappearance of heat which accompanies a change of state 
would seem to indicate that the distinction does not depend 
solely on the mean velocity. The phenomena of diffusion shew 
that in a liquid which, apart from molecular motions, is at rest 
the molecules pass, though very slowly, from one part of the mass 
to another. In the case of a solid there is no evidence of what, 
when we compare its duration with the time taken by the mole- 
cule of a gas to describe its mean free path, we may call the 
secular motion of the molecules; we assume that they oscillate 
about positions of equilibrium, but of the forces which bind them 
together we know nothing. 

The question then arises, what are the relations to one another 
of the molecules of a viscous body ? 

We may say generally that the viscous condition is one of 
transition between the liquid and solid states. A substance is 
sensibly viscous only through a certain range of temperature; if 
it is sufficiently cooled it becomes sensibly solid, if it is sufficiently 
heated it becomes a more or less limpid liquid. The range of 
temperature through which a body is sensibly viscous may be 
considerable, as in the case of pitch or shellac, or it may be very 
small, as seems to be the case with ice. 

If we consider a portion of a viscous solid, however small, 
which is nevertheless large enough to be practically examined, 
it appears to be homogeneous; it does not follow however that 
if we were able to magnify it sufficiently to come within a “mea- 
sureable distance” of being able to see the individual molecules 
it would still appear to be sensibly homogeneous. If it be allow- 
able to apply the term “element” to a small parallelepiped whose 
dimensions are large compared with the dimensions of molecules 
but small compared with ordinary magnitudes, and which may 
contain (say) a few hundreds or thousands of molecules, we may 
say that it is quite conceivable that contiguous “elements” may 
be very different in their molecular architecture. 

The hypothesis which I wish to suggest is that there is really 
such a distinction between different small portions of a viscous 
solid, and that we may describe the whole as consisting of a 
comparatively solid framework the interstices of which are filled 
by a more or less liquid mass. We may illustrate this conception 
by a sponge with its cavities filled with liquid, or better by a 
mass of gelatine which has imbibed water and passed into the 
ordinary condition of a jelly; the essential difference being that 
in these cases the solid framework and the liquid contents are of 
different chemical composition while in the supposed case of the 
viscous mass the “solid” and “liquid” parts consist of the same 
substance in different states of aggregation. 

Of course any such picture of the molecular architecture of a 
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viscous solid must be, so to speak, more or less “ diagrammatic.” 
In the present state of our ignorance as to the nature of the 
action between the molecules of a solid it would appear to be 
premature either to affirm or to deny that there is a distinct line 
of demarcation between what I have called the “solid” and what 
I have called the “liquid” parts of the mass. It might be more 
accurate to speak of the “more solid” and “less solid” portions ; 
all that is involved in my supposition is that while some “elements” 
of the mass are in a state of aggregation which is essentially that 
of a solid others are in a state which more nearly resembles that 
of a liquid, and that we may pass from one extreme condition to 
the other in so small a space that the whole appears sensibly 
homogeneous when examined in any ordinary way. When I 
speak hereafter of the “solid” and “liquid” portions of the mass 
I must be understood to make use of the words subject to the 
foregoing qualifying remarks. 

Now whenever we have a portion of any substance in contact 
with another portion of the same substance in a different state of 
ageregation we usually assume that there is at the common sur- 
face a condition of “mobile equilibrium;” that an interchange of 
molecules is going on between the portion in one state and the 
portion in the other state. The most familiar instance of this 
1s when a volatile liquid is in contact with its own vapour in a 
confined space and at a constant temperature, but there is no 
reason to doubt that a similar state of things exist when a 
volatile solid is in contact with its own vapour or a fusible solid 
is In contact with its own liquid under analogous conditions. 

In our supposed viscous body the relations between the “solid” 
portions and the contiguous “liquid” portions throughout the 
whole mass will be similar to. those which obtain at the common 
surface of an ordinary fusible solid and its own liquid, and the 
most natural assumption seems to be that at each common sur- 
face throughout the mass there is a condition of “mobile equi- 
librium,” so that an individual molecule which at one time formed 
part of a “liquid” portion of the mass may become attached to 
and form part of a “solid” portion and wice versd. Subject to 
the same reservation as applies to the use of the words “solid” 
and “liquid” we may call those molecules which at any time form 
part of a “solid” element “attached” molecules and those which 
form part of a “liquid” element “ unattached.” 

The peculiar characteristic of a viscous solid, viz. its gradual 
change of shape under the influence of external forces which are 
insufficient to produce a sensible change of shape in a very short 
time, follows as a natural consequence from the preceding sup- 
position as to its molecular structure. 

The first effect of an external force is to produce a slight and 
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probably insensible deformation of the “solid” framework con- 
sidered as an elastic solid. This will go on until the system of 
molecular stresses corresponding to the system of strains is in 
equilibrium with the external forces. 

So far the case is parallel to what happens when external 
forces act upon a piece of jelly; but in the case of the jelly the 
position of equilibrium is permanent, the strained framework 
remains strained. In the case of the viscous body an interchange 
of molecules is constantly going on between the “solid” and the 
“liquid” portions of the mass; “attached” molecules are becoming 
“unattached” and “unattached” molecules are becoming “at- 
tached.” This involves the replacement of strained “ solid” ele- 
ments by unstrained ones. 

But with the complete or partial breaking up of a strained 
element a corresponding stress disappears simultaneously ; there 
is no longer equilibrium between the external forces and the 
system of stresses; a further deformation of the mass will take 
place till equilibrium is restored; and so on continually. The 
successive deformations are cumulative while the stresses are not, 
The final change of form is the sum of the partial changes, but 
the sum of the molecular strains has a constant average value. 

The rapidity with which the viscous body changes its form 
under the influence of given external forces will depend (1) upon 
the proportion of “liquid” to “solid” elements, which will aftect 
the strength of the “framework” and therefore the amount of 
strain necessary to produce equilibrium, and (2) upon the rapidity 
with which the interchange of molecules between the “solid” 
and “liquid” portions of the mass takes place; and this again 
will depend partly upon the proportion of “unattached” to “at- 
tached” molecules and partly upon the mean average velocity of 
the molecules. On both these grounds the rapidity of the change 
of form will increase with the temperature. 

(8) Some applications of generalized space coordinates to 
differential analysis. By Prof. J. Larmor, M.A. 

This paper is being printed in full in the Transactions of the 
Society. 
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May 25, 1885. 

Pror. Foster, PRESIDENT, IN THE CHAIR. 

Prof. K. Pearson was elected a fellow of the Society. 

The following communications were made to the Society:— 

(1) On the solution of the equations of vibrations of the ether 
and the stresses and strains in a light wave. By R. F. GWYTHER, 
M.A. Communicated by Prof. J. J. THomson, M.A. 

In the first part of this paper I develop a solution of the equa- 
tions relating to a light disturbance in a series of periodic terms 
with coefficients expressed in a manner comparable with the 

2 

geometric series ae , etc., and am thus able to get a simple ap- 

proximate form of solution suitable for distances from the source of 
light large compared with a wave length. 

From this it follows that 

dé/da = x/ra,. dE/dt, etc., 

so that the elements of the strain are proportional to the velocity 
of the displacement, and that at any particular place and time the 
kinetic and potential energies are equal, and their sum is variable. 
In this particular the disturbance is not analogous to a pendulum 
vibration. | 

At the same time, I find to what degree of accuracy the equa- 
tion of continuity demands that the vibration shall be in the wave 
front. 

In the next part of the paper I calculate the stresses of a 
second order in the medium due to the disturbance (the stresses 
of the first order being of a circular harmonic type do not con- 
tribute at all to the mean stresses). From this consideration 
I prove that, except near the point source, the mean stresses are 
such that Pz,= Py, et cetera. I find the expressions for the actual 
stresses and they turn out to be those required by Maxwell’s 
Theory of the Electro-magnetic nature of light, that is they are 
of the same form as the stresses in the Hlectro-magnetic field. I 
also obtain Maxwell’s Equations of Electro-magnetic force. Finally 
it would follow from this investigation that in a wave of plane 
polarised light the displacement is in the direction of the magnetic 
force. 

I also discuss in the last part certain analogies which are of 
interest but do not satisfy the conditions developed in this paper. 
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1, The equations of which the solution is required are 

on OGLE wsekissusnaae Becdosectatas CL) 

and similar equations for n and £, where vy’ stands for the Cartesian 

operator io ae ay s+ =). 

After solution I shall add the condition that 

dé cams deo 
dx Goa dz 

I shall suppose that the time enters the solution only through 
trigonometrical terms, and (in the first instance) that the disturbance 
arises from a single source at the origin. In this case the solution 
takes the form 

E=% {A, sin p (r —at) + B, cos p(r—at)}, 

where p= aD ® being the wave length, and generally our unit 

for comparison of magnitudes. 

I shall shew how A and B are to be expanded in series of 
terms descending in magnitude comparably with those of the 

2 : ; Xr ee te : 
geometrical series 1 pa .... For on substituting this value of & 

in the differential equation, we get these equations of condition: 

= d d d ae N 
vid,— 2 fo 2 ie 4 dy 2 gt} B=0 

vB, a oy G+ee +1} 4 ie ae "dx ' dy" d oe 

Write now A and B in a series, in descending order, of 
homogeneous terms, beginning with one of degree — ih to ensure 
convergency, and use Kuler’s ‘'heorem. Thus 

A, =u_,t+uU,+u,+ &e. 

B,=v_,+v,+47,+ &e. 

“WV {ui ttt &e.} + = {v., + 2v., + &e.} =0, 

0, Vv’ {v,+v.+ &.} - = {u_,+2u_,+ &c.} 



282 Mr R. F. Gwyther, On the solution of the [May 25, 

Hence u_, and v_, may be any homogeneous functions of x, y and 
z of degree 22 and the terms of other degrees are to be derived 
by the law 

2 Re ect, : 
= Ot, =; + v,+Vu,=9, , 

OUGR tenicdce (3). 

- ut ,— Vv, =0, . Oh V2 = 9, - J 

By this means we may obtain a complete formal solution 
suitable for values of 7 greater than A, for on examination: the 
orders of magnitude of the consecutive terms are to be compared 

: : : hw : 
with those of the geometric series 1 . - aaa etc. Hence the series 

in the case of light may be ee to be limited to the first 
term, and would ‘actually terminate provided Y*u_, = 0. 

In the general case we notice that if w_, atl v_, are divided 
into any number of parts to suit any linear algebraic or linear 
differential condition; and if each of these parts is expanded by 
the law above, the sum of the separate expansions will be the 
original expansion. 

Thus if we write€=& +k (e- a), ete., we should find that 

for any value of & this division can be always made, and in one way 
only. 

If, moreover, we want two similar expansions for 7 and ¢, where 
& UE ¢ are to satisfy the relation 

dé dn at _ 
fs an ae” 

we may obtain them without loss of generality, thus 

_ dg, an dé, dé, dn, dé, 
= ay de? de de? | > da aly’ 

where £,, ,, & are unconditional solutions — 

> {A, sin p (r —at) + B, cos p (r — at)}, = {4, } 
> {A, sin p (r— at) + B, cos p (r— at)}, 

2 {A } 
and a > {C, sin p (r — at) + D, cos p (r — at)}. 

I have shewn how to deduce A and B from the first terms (say 
aand b). I will shew how to obtain the corresponding first terms 
in Cand D (say cand d). The following terms will be found by 
the same rule as before. 

sin p (r—at) + B,cos p(r—at)}, 
3 
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The first terms will evidently be obtained by differentiating 
only the trigonometrical parts. Thus 

C, = -- (,y % b.Z), d, = (ay ac a,Z), 

and similarly we may deduce the other terms. 

For example, 

E (a! a, 2) = — db, 
4 a dy dz’ 

where a’, 0’, c’, d’ stand a the second terms in A, B, C, D. 

If we proceed to operate upon & 7, € we may obtain a second 
derived vector &,, 7,, €, which will have the form 

f= — 32 p*|(a,—2 sin p (r—at) 

+ (0,02 toy te) cos p (r — ab) P 

where >> relates to the summation for different values of p and 
also for the completion of the coefficients of the several terms. 

This will become £, =— =p’&,, provided 

a,0 + ay + 4,2 = 0 
Z 

ba +d,y + bz =0 ARO CORE COO NAOCOOCRDE CH \, 

which form the conditions that —° de 4 ae dg, =0. Operate upon 
da + dy dz 

the first of these with vy’; write a’ and 0’ for the second terms in A 
and B, and observe the equations (3) by which these are to be 
found. 

. Ce da, da, da, 
. ab,’ + yb,’ + 2b, (este 2): 

Now this is of the order X/r compared with a and b, and there- 
fore to this degree of approximation we may say that 

nE+ yn + 2o= 0, 
or that the displacement lies in the wave front (Stokes’ papers, 
Vol. 11, On the Dynamical Theory of Diffraction, Art. 27, p. 275 

A proof that w&+yn+2€ is approximately zero, on the con- 
ne dE dn 

dition that = + a dL Ae 

V (2& + yn + 26) = ave t yy'n + 2S 

= (0 may be given in this way, 
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BA he Cl iGIS, oe 
(on the condition that at ayes = 0) 

lar 
= fn gp (ee + yn + 26). 

Hence x&+ yn + 2€ satisfies the fundamental equation of this 
paper and can be expanded in the same form as &, 7, € are them- 
selves expanded, but the terms of order —1 in &, y, € will appear 
as of order 0 in 2& + yn 4+ 26, and therefore the sum of such terms 
will vanish. We may use a convenient notation by writing this 

LW, YW ~+teus= 4 

© 0+ Yd, + 2g0_,=0) 
That w& + yn + z€ may vanish absolutely will require only that the 
terms of order — 2 should vanish, or that ; 

DUT Y¥ yt 2 u, = 0 

LV ,+YV,+2_,=90 

These conditions reduce to 

ad ad d 7 
aE eu_,+ dy" + apo = () 

d d do = (ceetserteleaaeee (5). 

dai Ty" a bean = 0 

In ordinary cases of the propagation of light waves, we may 
neglect all parts of & 7, € except the greatest, and in finding the 
differential coefficients we need only to differentiate the trigono- 
metrical function. 

In this case we have 

dé_ad& d&_yd& dt z2d& dé _1dé 
dp enandta | oy Mananat dz ra dt’ dr a RO 
and the variation of the displacement in directions perpendicular 
to the wave normal, or in the wave front, i.e. the elongation in lines 
in the wave front,is zero. This indicates that the components 
of the strain are greatest when the velocity is greatest, and that 
at any point the kinetic and potential energies have their zero and 
maximum values simultaneously. 

By the relations already established, simple proofs can be 
given that the kinetic energy and the intensity (measured by 
£°+ 7° + ¢°) of the disturbance are propagated by the same law as 
the disturbance itself except near the origin of light. That is that 

fac evt Etat +e =0 
and [fan av E+ i+ <0. 
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It will be sufficient to prove the first, 

D yo _ 9 (UE ae 
dé ra 2( =) ate DE ae da ? 

using this and the analogous relations 

2 2 é =) dé 2 } ay (E+ 9 + 02) = 20 ze ) + (3 Hl oF) + Evie + ete 

aa \(G) i (B) +(G) ne qt atest 
=" (B+ + e), 

By the consideration of the dimensions it is plain that this 
equation is not accurate, since in that case the intensity would be 
expanded in a series similar to that for &, &c., in a manner cor- 
responding to that used for 2& + yn + 26. 

2. The order of magnitudes which we are considering com- 
pared with the amplitude of the disturbance, which we shall call 
simply d, is represented by 

pS: a Ban: a Uns ee aiatctltes (7), 

and therefore 

Oe GhEN Wade rls Tay a: (Gaon * (Ee) es Se 8). 

Hence, in neglecting terms in the equations of motion of an elastic 
solid which contain squares and products of the differential co- 
efficients, we assume that &/X may be neglected while our only 
declared rule has been to neglect X/r; which is really treating 
them as comparable quantities. (With regard to this ratio &/A, see 
Sir W. Thomson’s paper quoted above, where it may be taken as 
not greater than 1: 300.) In what follows I shall suppose that 
we may retain &/X but neglect the square. 

We have thus to extend our equations by including terms 
such as appear in the hydrodynamical equations and in the 
general theory of elasticity. If, in fact, a theory of molecular 
vortices, such as is touched upon by Maxwell (Electricity and 
Magnetism, Vol. 11. Art. 823), is to be considered at all, the terms 
of the second degree upon which the theorems about vortices 
depend must be retained in the equations. I shall prove that the 
expressions already found for &, y, ¢ identically satisfy the complete 
ditferential equation, a result which would be necessary if we are 
not to introduce terms affecting waves of half the length or say 
octaves of the original wave length. 

VOLe Ve PT LV, 20 _ 
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3. As we are to retain the squares and products of the 
differential coefficients of & 7, ¢ we must extend the expression 
for the work (w) required to produce the change of state of strain 
per unit volume. We therefore treat w as a cubic function of 
the roots of 

KG Are AC, @ =O, 

IR, | 

Br psa 
(Thomson and Tait, Vol. 1. part 2. App. C. K.) 

where A = 1 + 2e, etc., with the usual notation. 

| 

We will therefore write (in order to obtain all the terms of the 
second order) 

where 
20, =—n {4fg + 4ge+ def F a® FD’ — ch, 

20, =/ |4efg + abe — ave —b*f — c’g}, 

20, =m(e+f+4 9) o,, 

neglecting higher powers of the components of the strains. 

From these we find the P’s by the usual formule. I shall write 
down these formule for P.,, P.,,, and P,,, omitting the part of the 
first degree, which has been already employed in forming the 
equations and which being of the circular harmonic type con- 
tributes nothing to the mean pressure. 

Then 

Pa Gt Bet ae dy £(o,+04), 

Ba ay Ta Get des de tgp et 

Paya Ge E+ eS See +S (ot oy) 

and similar equations. 

Before simplifying these, I shall limit the cases to those im 
which P,,=P,,, to which the special case I am considering 
belongs. The general condition for this is that the complementary 

d (&,  §) 
d (&, Y,. 2) 

which it follows that the leading minors vanish also. 

minors of the determinant may separately vanish, from 
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For Poy — Pye 

= (E_%) (HE 1 BL IED de 0_ 
dy da/\da dy dz na (x,y) d(z, a) — 

d(& &) a(n, $) Hence CMG Ga eae (10). 

And these minors must be each 0, for otherwise the Jacobian 
bove could be proved symmetrical, and therefore the disturbance 
would be without rotation, contrary to our hypothesis 

As a consequence of these conditions we have 

dé dé d&_dy dn dy _ UE UG he 
Peaalis Sr dy dends dy den 
We use these relations in simplifying Pz», Py, Px, etc 

Thus 

Ee =n {2c oo ine Tt tly — a!) + me, 

wo (= 6) +} "CEB v0 ot. (12), 

Pry =n (2f +a ag tbe + U(ab 20g) 

Mee an dean deg He GAG oe 
ane eo = - 1 {oe 7} (oe 503): 

with similar quantities which can now be written down 

Before proceeding we will evaluate w,, w,, and , 

First, 

2, =n {a + b? +c + Qe? + 2f? + 29° 

2 ($) 42h, €4) + 2h! (3) 

+(i gt bg) + (bgeta:) + G+ Aa) 
mafia dten 1da 2 dix 

See i) ae) 
i (3) if = i e } 

= | A () x () sagt ES a a (14). 

20—2 
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We may obtain another expression for this by comparing with (12), 
thus 

20, =n {a — 4fg + 0° — 4ge +c — def} 

dg =) d& do\* (dn _ dé 
=n | - a +(F-S) +(- Zt been eel LODE 

The first of these forms simplifies in the case we are specially 
treating, for by (6) 

(a) dt (BY + (B+ @y- 
- nh) FQ 

and DSO 

As we have been treating the unit of volume as being the unit mass 
we may say that w, is equal to the kinetic energy per unit of 
volume, and that actually and not on an average. The energy 
is not oscillatory between the wholly kinetic ‘and the wholly 
potential as in the case of a pendulum, but when the kinetic 
energy is zero then @, is zero. If it were not so we might expect 
that there would be a luminous trace of the path of light owing to 
the dying away of the oscillations, whereas this expression shews 
that the light passes and leaves the medium at rest without trace 
of its passage. 

We have also the formula 

Sere ay oral 
=1{(@) +) + Gi) fee 

Secondly, to evaluate o, , write it as a determinant and border 
it thus, using the relations a i) 

which I shall refer to later. 

2a. le 0, 0, 0, 

oe a tg Bae 
| eee 

= Coe pete on, & 
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=i|/1, =1,  -&k —k 
1? 74 

dé d& dh a 
dx’ dx’ da’ da 

dn dé dy dg 

da’ ig dx’ bse da’ Ie da 

dg 4 dn aes 
dx’? “da? “®da’ “da 

which is easily seen to be zero, and a, 1s also evidently zero. 
Thus the parts of the stress due to @, and w, do not themselves 

vanish under the conditions 

dé dn oe 
dx dy * dz ! 

and Py, = Py,, etc., but no work is required to produce the cor- 
responding strains. 

We may however find a valid reason for omitting these terms 
of a third order, from the consideration that if we suppose the ex- 
pressions for &, 7, € such that our equations if written in full are 
applicable in the immediate neighbourhood of the source itself, the 
terms contained in w, would be the ruling terms and would as they 
are of an odd order be liable to a change of sign, and hence would 
be incompatible with stability of the medium. I shall therefore 
consider that these terms may be omitted from our equations. 

4. I shall now proceed to analyze these stresses, and as a 
preliminary I shall shew that the vectors, 

dé dn at 
Gig GHB he 

and Gs ay GS Ie ey As 
dy dz dz Nada a da Way. 

are at right angles, for 

ca ts Cae @ Slee 6) 
dt \dy dz/' dt\dz dx dt \da dy 

evidently vanishes by (6). 
Take first the part of the P’s due to ,, and for simplicity 

take a point in the axis of « distant r from the origin as the 
point considered, and the axis of y’ parallel to the momentary 

dE dn dé ‘resultant of ae? ae ae 

Pe medan deand a ida wae 

that of z parallel to the resultant of 

dy dz’ dz dx’ dz dy’ 
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nem JE n.= 0), Pep, Jeep 0 

dn’)? Ounce eee (17). 
Pyy = {Ef Py zg =9, Pg =0 

This indicates a tension in the wave front in the direction of the 

resultant of 

dé dn dt 
di di de 

Next, the part of the P’s due to a,’ is 

[Figs =O; Pry = 9, £7 =0, 

ss a ee icine P= 0, P= On Pe a= io 

or a pressure (?) also in the wave front in the direction of the 
resultant of 

dg _ dm d& ado dy _ dé 
dy dz’ dz dx’ dx dy 

Whereas the part due to w, is a tension (hydrostatic) equal in 
all directions and of magnitude 

a (a 
BR Whe) 

If now we complete the equations of motion by adding the terms 
of the second order formed as in the case of Hydrodynamics and 
Elasticity, supposing the terms of the first order satisfied, we have 

dé @E dy ee dt E 
dt dadt dt dydt dt dzdt 

d d d = Gg Pact gy Peat ig Pas crie (18), 

with two similar equations. 

It is plain that the expression on the left will vanish identically, 
and the terms on the right vanish identically so far as they depend 
upon », and w,, but the terms depending upon , will remain 
and cannot be made to vanish by any further condition respecting 
E, n, € already sufficiently restricted. The existence of such terms 
would require a corresponding force in the medium. 

Having investigated the stresses corresponding to , and a,, 
I shall now neglect them, supposing that m and / are absolutely 
zero in accordance with reasons already given. 
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If we take into account the expressions we have found (12) 
and (13) for the parts of the stresses depending on w,, we may 
put dé/dx = x/ra. dé/dt, etc. and n=a’, thence we get 

_ (48, ee Ms owls 

ay Cia dyn dé aay 

It will be noticed that P,, = P,,, etc., only when the terms of 
order /r are neglected, so that in the neighbourhood of the source 
the stresses are not of this particular nature, and some natural 
phenomena (possibly magnetization) may be expected to shew 
itself as an accompaniment. 

5. Tocompare this with Maxwell’s Electro-magnetic Theory of 
Light, let us suppose 

dE dn ag Dp Ms peel) Dara) cocoon. (19); 

dé dH dG 
therefore wy a TRE ce (20), 

ete. 

In the first part of this paper I shewed that F, G, H can be 
found from linear equations. Knowing this we may find them 
more simply thus, 

d (dé == ae ld Et 
Bape) ee a a 

OE | pat 1) therefore ip = Ye ( eee 

4qr . 
Tin IF Ff (by Maxwell’s theory); 

also von —ole 

a2 (dS | Sin Hot) therefore 2arf=v ( Fup aE and 27u =v ( ap Oe) 

etc., etc. 

On this theory then the magnetic force is proportional to the 
time variation of the actual displacement, and the electric dis- 
placement to the molecular rotations, and these two vectors have 
been shewn to be always at right angles. In an ordinary light 
wave the actual disturbance would be coincident neither with the 
magnetic force nor the electric displacement, but in a plane 
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polarised wave the disturbance would be in the direction of 
the magnetic force. To make this agree with Maxwell’s expres- 
sions for the energies we must give a special value to v, thus 

kinetic energy = o (ere SP seg, 

® = ate {fr+g 24 A}; 

ie putting Toe get 

kinetic energy = = Gooey”) 
seo“) 

27) pa a 98 
sae Uh seg ae) 

which agree with Maxwell’s expressions for the Electro-kinetic and 
Electro-static energies. 

And these have been shewn to be equal. 

From the formule: from which this was proved it is seen that 
the name potential energy is not quite applicable to the electro- 
static energy, and that the whole energy must consist of the sum 
of the two energies. 

Lastly, from the equations 

ae Che ty Ge ds os 
dt‘ dadt ° dt “dydt dt” dedt 

d d d 
ge ay Gee 

eter 

omitting, on the ground that ours is one of the simpler cases 
of electro-magnetic action, the fact that each side vanishes in- 
dependently, we get 

gas ae) dy (a a 

Pry + 

GE de ude) cle adele 
~ @ dé faN- fOus d 

ey dat Gi) e a F, (Gi) laze dy wt qie 
etc., 

or 4a (uy — wf) 

= GPE @4 B+ +H (8) + 5 on), 
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which equations agree with those of Maxwell (Vol. 11, Art. 643), 
and lead me to suggest that the true stress due to strain is 
the tension along the lines of magnetic force and that the hydro- 
static pressure is due to the velocities. The stress being made up 
of two parts just as the energy is made up of two parts. 

6. I have taken above the variations of the actual displace- 
ment as proportional to the magnetic force, so that the electro- 
magnetic energy 1s proportional to the kinetic. But as this is an 
open question, I will work out some other analogies. 

(1) Put vé =F, on = G, v=H, that is &, n, € proportional to 
the components of the vector potential 

2 

Hence kinetic energy = = {fr+g +h}, 
Vv 

: a 

potential energy Sige ja? + BP +47}. 

Put _ = and 

nee ds A Oe ee 
kinetic energy Se (f? +g +h’), 

2 27, 

potential energy = = i (a? + B? + ¥°) 

Be? ae ae 2 =o. (a + OB? +1"). 

The result of this analogy is to interchange the kinetic and 
potential energies, but the stresses in the medium would be along 
the lines of the electric displacement instead of magnetic force. 
The form of the vector here representing a might, at first sight, 
appear the more suitable, but the vector whose components are 

= — ~ , etc., has in our case no more rotational property than has 

(&, 7, 6) or (& 7, &). 
In neither case do (a, B, y) or (f, g, h) appear to have the 

proper dimensions, but the relative dimensions are of course correct 
on either supposition. In order to make the dimensions correct, 
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put m for the density of the medium, but still the dimensions will 
differ from those of the electro-magnetic system. Thus if 

a=v Fie 5 

and ais of dimensions [M? Z7? 7], 

then v is of dimensions [M2 L*}. 
Then as before the kinetic energy 
_m ay) °2 er) eS mM 2 2 2 sd Rolle 2 2 

= Ae eS oo GE Y= oe (Oia 

and potential energy 
8 2 2 

= Sn (Pag tit) = 2 (Pte +h) 
eS a with a rae 

but pw is of [0] dimensions, therefore v is of [J/?], which is contrary 
to our requirements. 

(2) Mr Glazebrook has worked out another analogy in which 
vdé/dt = F, etc., founded on equations into which the electro- 
motive force at a point is introduced as an impressed force but 
not apparently related to the strain of the medium. So long as 
linear equations only are used it is probable that other analogies 
could be similarly worked out. Put 

vé = F, etc, ] 

eC | therefore VE ee nie es scoe (2). 

5(S- = ES ee 
Lars dy dz iam dy dz = bo, J 

We might by starting with the vector (E, ”, ¢) have proved the 
equality of the quantities 

nina all: dt zy, 2 2 2 9 WPA Moy : (+ 7°+ 6") and a (a - + etc.} ; 

that is, 
1677” 

Kk 

2ar 2 2 2 bb 2 
EO, Tg TPL apes (Cle a 

(f? +97 +h) = pa’ {e+ 8 +97, 

but these expressions would no longer be the kinetic and potential 
energies of any actual motion. 
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The stress would in this case be along the lines of the electro- 
magnetic momentum. All that can be said in favour of this 
analogy is, that it shews such agreement as is proved in Mr Glaze- 
brook’s paper (Phil. Mag., June, 1881). 

(3) I shall work out one other case, because, though not at 
first sight a desirable one, it appears to find some support from 
Maxwell. 

pu Dome fia otc A hae (25), 
therefore ve =u 

. a a ae 8g 
‘i dy dz/ dy dz’ 

which plays no part in the electro-magnetic theory 

e ee 
"\dy dz) dy dz’ 

which is also without importance. 

Let (£7, &) and (&,, 7,, &) be the velocities of two separate 
disturbances in the medium, then the term which will appear in 
the kinetic energy in which these velocities are connected is 

(EE, + 77. + 56,)- 
Putting v& =u, etc., taking the triple integral over all space 

and transforming, neglecting the surface integrals, we get 

> [i En + 0+ boo) dedyde 

= ffs. 2) 8B) 
_4n dé Z) dé ue Ho 
ae, [he oe +8 (7 dx +9 (a dy dady des 

Comparing this with Maxwell’s provisional theory of the mag- 
netic action on light (Electricity and Magnetism, Vol. 11. §§ 824, 
825), we see that the latent analogy underlying his hypothesis is 
that which is given above. 

On this analogy the electric displacement would be propor- 
tional to the actual displacement. The electro-magnetic momentum 
and magnetic induction would become mere mathematical ex- 
pressions. The electro-magnetic and electro-static energies could 
still be proved equal, the electro-static energy being now pro- 
portional to the intensity of the light. The only merit of this 
ts appears to be that it is the basis of Maxwell’s specu- 
ations, 
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(2) Note on Prof. ROwLAND’s paper on spherical waves of light 
and the dynamical theory of diffraction (Phil. Mag. Vol. XVUL, 
June, 1884). By R. T. GwytHer, M.A. Communicated by Prof. 
J. J. THOMSON. 

(3) On plane waves of the third order in an isotropic elastic 
medium, with special reference to certain optical phenomena. By 
Prof. K. PEARSON. 

1. The object of the present paper is to consider a simple 
case of wave motion in an isotropic elastic medium, when the 
displacements are not considered so small that the cubes of the 
space variations may be neglected. In general the three body- 
equations for an isotropic solid each contain upwards of 80 terms 
when we do not neglect the squares of small quantities and over 
200 when we retain the cubes, so that they appear to be ex- 
tremely unmanageable. In the simple case we are about to con- 
sider we shall find that it is necessary to retain cubes in order to 
introduce any change into the equations for wave motion. 

2. Let u,v, w be the displacements of the point wyz of the 
solid parallel to the axes. 

Then the strain on a very small element of the solid at (xyz) 
is fully determined by the quantities s,, s,, s,, a, 8, y, where if PQ 
be any elementary line drawn from «yz, and having projections 
da, dy, 6z on the axis which becomes PQ’ after distortion, 

PQ? = PY + 2s,6x" + 2s,dy + 28,62” 
+ 2adydz + 2 Bdzda + 2ydxdy. 

It is easily shewn that 

6, =U, + hu? +02 + ur), 
8, = +4(u/ +0,’ + wy), 

8,=W,+3(u, +%, +); 
A=W, +Y, + Uj, + UV, + Wy 

B= U, + Wy + Uy + Uz + WW, 

Yy =0, + U, FU,U,+ UV, + WW,- 

Further, W the work will be a function of the variables 

Fo Shy Sys Oh [Sn 07 = F'(s,, 8, 55, 4, B, ¥), Say. 

3. Let us consider the case of a plane wave in which the 
vibrations are in the face, and suppose this face parallel to the 
plane of zy. Furthermore let us assume the same vibrations are 
taking place at every point of the face and that there is no 
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compressional wave; then w, v will be functions of z only, and w 
will equal zero. Hence it follows that 

s,=s,=y=9, s,=4(u? + v), 

a=, [= th. 

= Ff (a, 6, s,). 

Lagrange’s method gives us at once: 

= [[[o 1 acayde +p [ff(Gp dur Gee v) dodyde 

to determine the vibrations. < — 

a [Ge + vy 1+ 7 88) dady dz 
d’v 

+p If} (= du + a) dady dz. 

The first integral may be written 

aW( déu dov) adWdédv dW déu 
[Ge \™ Get ult ded 7 ap a a )dedyde, 

Integrating by ea and neglecting the surface terms, we find 

~[|f] & (Ge u,+ oa) t ov — z we (as, * v,+ or) | dady dz, 

or the body Te take the form: 

d (a e du | 
dz - dB ~ OOF | (i) 
daw ar). al BES RAR ie ERE PI ; 

en =" da) dt } 

4. We must now determine the form of W. So far as terms 
of the second order are concerned W must be of the form 

2W=NXs,’ +p (a + 6’ + 2s,”). 
It is needful however to consider possible cubic and certain quartic 
terms. The only terms of the 3rd and 4th order in the expression 
for the work which would not give rise to terms higher than the 
te, in the differential equations are of the form 

8, (a° + 8’) + ds,28 + ¢ (2° + 6°) + fap (a + B) 
+ (a + B*) +ha’B? +7 (a+ B") a8. 

If we turn the axes through any small angle 60, s, remains un- 
changed, a becomes a— 00, and 8, 8+ 4060. Hence, since this 
cannot change the form of W it easily follows that d, e, f are all 
zero and h = 29. 
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Thus W is of the form: 

2W=As,’ + w (a + B’ + 2s,”) + 2es, (a? + 6") + 9 (+ BY. 

We acccordingly find 

Te OF BS, +c(a’+8’), 

OM = a+ osu + 299 (a? + 8°), 

dw 
ie pS + 2cs,8 + 298 (a? + 8’). 

Hence, pe ee in (i) we have 

du du } 
Wee) One 5) 

i vive ete gtr il), 
dv dv ( 
dz dé 

y_ At+2w+4(c+g) 
3 2p : 

5. We proceed to draw some inferences from these equations. 

(a) A ‘plane polarised’ wave or one of the type 

2 © [us +o, *) U,| + 

See +v2)uJte 

where «’=— and 

2 
w= A cos (2 — xi), v= Bos ~" (e— el) 

is not an accurate representation of a possible wave motion in an 
elastic medium unless v = 0. 

This involves A+2u+4 (c+ 9)=0. 

It seems to me possible that c may equal zero, and in this case 
N+ 2 
Ae 

or the coefficient of the terms of the fourth order is negatiwe. If 
we do not look upon c as zero, we have in our particular case, 
since s,= 4 (a”+ "), for the terms of the fourth order 

=(¢+ 9) @ +B, 
and we again find the coefficient of the terms of the fourth order 
negative. We are thus led to a certain relation between the 
elastic coefficients of the square and quartic terms of the work, which 
must be satisfied, if a plane polarised wave is to be propagated 
through the medium. It is not impossible that such relation holds 
or very nearly holds for the ether, 1t would denote that the expres- 
sion usually taken after Green for the work is too great. There 

we have g=- 
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appears to be no ground for supposing that the above relation 
however would hold for every medium through which transverse 
waves might be propagated, and the retention of the above cubic 
terms leads to interesting results, which we shall now consider. 

(b) It is possible for a plane wave, given by equations (11), to 
remain in a certain sense polarised in one plane. For it is only 
needful to put v=0, which is a possible solution of the second 
equation, and the first then involving only w becomes 

Pele Un ae 
ahaa ata de 

du ae ye ae 
: (ee dz dz dé’ 

As a first approximation let us take a single term of the type 

or, 

A cos = (z — Kt). 

Then 
2 2 

4 ; 
9 

(5 aS w=— A? os py sin? = (2 — Kt) cos == (z— Kt) 

4 

A oe Vy COS ue — xt) 

167% or 
G3 3 FU ne 

+A aA» COs’ (z — xt) 

4 4 

=— A’ = v cos =" (=n) + eo y 00s 9 (2 Kt) 

2ar sli Dk vee Gp 
Hence u= A cos (2—«t) +A xe, PSD @ - He) 

These results are of a rather remarkable character, the ad- 
ditional terms introduced contain ¢ as a factor of the amplitude, 
and although these may only be the first terms of a series of powers 
of ¢ which may not necessarily become infinite with the time, yet it 
would seem that a wave of velocity « could not be propagated in 
the medium as a stable motion. There would arise superposed 
waves of increasing amplitudes of (i) the same wave length but 
retarded by a quarter of a wave length, (ii) of one-third the wave 
length. 

Has anything of this kind been observed? It would suggest 
that if a chemical ray were selected and passed through a proper 
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medium, it might after transition be found to be accompanied by a 
strong heat ray. Further, we might be led to question whether 
the heat of a very hot body be not due to its giving off at the 
same time a mass of chemical or even violet rays; whether with 
Mr Langley the ‘real colour of the sun be not blue’? 

On the other hand the occurrence of terms with an amplitude 
containing ¢ might suggest the breaking up of the wave, or the 
impossibility of transmitting a wave of a velocity « which is inde- 
pendent of the intensity and of the wave length. 

6. (c) Let us look at the matter from a somewhat different 
standpoint, and assume 

i= Al cos =" (2 — hi), 

where & is not equal to x. 

We find 

GRU OR Aa Qer A*4ar* 67 
Ap Se Nee v cos ~~ (2 — kt) + wy (2 — kt), 

67 
eae te ae vcos > (2 — kt). 
du ( by aa ») du A*4a* 

Xr 

Hence approximately 

ee 20 aie DP, o Car 
u=Acos5-(¢—kt)— A x3 3, /sin = (2 — Mt), 

A’n* 
where =k + a 

From this we can again draw curious deductions. Ifa wave be 
transmitted into a medium for which vp is not zero, its velocity will 
depend upon its wave length and its intensity. Its velocity 
increases with its intensity as seems natural. Let k be the 

velocity of a wave in a second medium, and suppose = pe, the 

coefficient of refraction, then 
/ 

S 

Ss 

where 7, s,s’, etc. are certain constants, of which s,s’... depend partly 
on the intensity of the wave*. It will be observed that this result 

parts+ =F GUC, 

* ‘Tt has, however, long been the opinion of some philosophers that there are — 
rays of different colours which have the same degree of refrangibility, and that 
there are rays of the same colour with different degrees of refrangibility.’ Airy, 
Undulatory Theory, p. 157. Will the refrangibility being a function of the intensity 
elucidate this? 
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is deduced from the ordinary theory of elasticity and without any 
assumption as to the ratio of wave length to molecular distance. 
We remark in the second place that the wave of length A will 
be accompanied by a wave of one-third that length, which has the 
intensity a function of the time. Here again we have only the 
first term of a series which does not obviousli y become infinitely 
great ast increases. If w represented a wave of light (not a chemi- 
cal ray from beyond the violet) for example, the wave of one-third 

. its length would not fall within the sensible spectrum, and hence 
there might be some difficulty in ascertaining whether the above 
anomalous term had a real existence. It can hardly be doubted 
however that if it does exist it ought to manifest itself in some 
manner, for it would seem to correspond to the breaking up in 
some fashion of a ray of light of a single wave length transmitted 
through an isotropic medium. An isotropic medium would seem 
in a certain sense to possess ‘double refraction’ for a selected ray, 
it divides the ray into two parts, one of which has one-third of the 
previous wave length. 

7. If we take w of the most general form 
=2A_cosn (z—k t), 

the anomalous terms do not necessarily appear unless one of the 
k,’s=«. The treatment of this general form involves considerable 
difficulties, which I postpone for “the present, as it requires careful 
examination, being not unsuggestive for the problems of absorp- 
tion. 

8. (a) Let us return to equations (ii) and suppose v is not 
zero, but that to begin with 

2a 2a nee c= = — (z — xt). U cos (2 — xt), v = Boos = (z — xt) 

We find to the second approximation 

bis 2ar A ar D3 Bee 
u=A cos. (z—«t)+A(A eG ee y an 

—A(A’+ B’) ene — ™ (2 — xt), 

9 3 

v= B cos (¢— xt) + B(A?+ BY)” tsin = bea 

—B(A4+ BS yf sin 27 (e = wt) 

which corresponds of course to what we have de above, 1.e. 
a plane wave of vibrations all parallel to a fixed direction, in this 

ee: 
case tan™ Fi and of intensity A*+ B® 

VOL, V. PT. IV. 21 



302 Prof. K. Pearson, On plane waves of the [May 25, 

(b) Next let us suppose 

2Qar a a 
u= Acos (2 —xt), v= Bsin (@ — xt), 

which would correspond to elliptic vibrations. 

We find | 

fi Qar A (34° + B’) wv 2ar 
u = A cos >- (2 —«t) + 3 3 ~tsin (2 — xt) 

A (A’— B’) wv 
= 3 a tsin 7 (2 — ab) 

es ee B(A? + 3B’) 7 v Qar 
v= Bsin > (2 — xt) — 3 G Ze cos .- (2 — Kt) 

a B oe A’) op 
3 x3 ” e089 (z— xt). 

Thus it seems that in an elastic medium be as we are 
considering a wave of elliptic vibrations is not a stable form of 
wave motion. 

If we neglect the third terms 2a uw and v (which in the case of 
light would correspond to a ray outside the visible spectrum), we 

2Qwy 
fnd 414+) 455(0—P) + 1+ P= 0s POY 

BAT+ Bay , 
where IPs 3 eau 

8B +A’ wp 

Us 3 NK a 

Hence, neglecting for a first approximation the coefficients of 
t’, we may say that if a wave of elliptic vibrations be started in an 
isotropic elastic medium the vibrational ellipse will retain the 

AB 
same shape but rotate with constant angular velocity : acre z a 

about its centre in direction opposite to that of the vibrational dis- 
placement. Further, the rate of rotation is obviously a function of 
the wave length. 

If we consider terms of the order (amplitude)’, we find that the 
axes of the ellipse themselves vary with the time and the rate of 
rotation is no longer constant. 

If the wave be one of circular vibration A = B, P =@Q and we 
find that to the fourth power of the amplitude this form of wave 
motion is stable. In this case the anomalous terms of one-third 
the wave length disappear. Even when we consider terms of the 
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order (amplitude)’ the vibration remains circular although the 
radius then alters with the time. It must be noted however that 
there would be in this case superposed anomalous waves, for we 
should have to find w and y to a third approximation. 

These results seem noteworthy, for it would appear that a 
wave of circular vibration is more stable than a wave of linear 
vibration, and that whereas a wave of linear vibration is accom- 
panied by anomalous waves which rapidly rise into importance, 
these disappear in the case of a wave of circular vibration to a 
much higher degree of approximation. Further it would seem 
that, disregarding the anomalous wave, elliptic vibration with a 
slow uniform rotation of the ellipse may for a very considerable 
time be a stable form of wave motion in an isotropic elastic medium. 
These remarks again have interest for the undulatory theory of 
hight. 

9. Let us assume more generally that 

u= A cos (mz — nt), v= Bcos(mz—nt +a), 

Then we find: 

a AD my es aoe 
ee a A (5m*A* + 4p°B?) cos (mz — nt) 

4 

+ = A’ cos 3 (mz — nt) 

me (m + 2p) p*v BR 
A cos (m+ 2pz2—n+ 2qt + 2a) 

12 

Me oe ie BA cos (m — 2pz-— n—2qt — 2a), 

whence it follows that 

u= A cos (mz — nt) — unas tsin 3 (mz — nt) 

Be ke eae tsin (m+ 2pz—n + 2qt + 22) 

_ m(m— 2p) pv BA 
24 (n — 2q) 

me i mp Be 
5) 
D) 

tsin (m— 2p z—n—2qt —22), 

where nv — Km? = 
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Similarly: 
3 4 ‘ 

v= Boos (pe— qt-+a) t sin 3( pz — qt+a) 

_ p(p+2m) mivA*B 
24 (gq + 2m) 

_ p(p— 2m) mvA*B 
24 (q — 2n) 

tsin (p+2mz—q+2nt+a) 

tsin(p—2mz—q—2nt+ a), 

where qg—-Kp = 

j 2ar 2 
Let us write TRESS n=— k, 

therefore KP? =? + 4A? Ge 

In our solution above we have endeavoured to find waves 
which might be propagated through an isotropic elastic medium in 
such fashion that although anomalous waves might arise there 
should not be any such waves of the same arguments as the 
principal waves. Let us see at what results we have arrived. 

If two waves consisting of vibrations in planes at right angles 
be propagated through an isotropic elastic medium, then 

(1) These waves will interfere with each other, that is to say, 
either will produce anomalous waves in the plane of the other. 
This production of anomalous waves exists whatever may be the 
relation between the wave lengths, or between the velocities of 
propagation of the principal waves. 

(ii) The velocities of propagation of the principal waves are 
altered by their coexistence, and in a manner which depends not 
only on the wave lengths but on the intensities. 

(iii) If the two principal waves have the same velocities of 
propagation then it is necessary that 

A_8 
Xr Sat De ? 

or the amplitudes must be in the ratio of the wave lengths. If 
this condition be not fulfilled, there must be anomalous waves of 
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the same wave lengths as the principal waves introduced into 
their respective vibratory planes. 

(iv) If the two principal waves have equal wave lengths, they 
will as a rule have different velocities of propagation, depending 
not only on their own, but on each others’ intensities. The 
velocity of a wave in one plane is accelerated by the existence 
of a wave in a plane at right angles. 

(v) Equal wave lengths and equal velocities of propagation 
necessitate equal amplitudes, but in this case there will be ano- 
malous waves of the same wave length and velocity arising from 
the terms with the phases 

rea 

p—2mz—q—2nt+ i 

The above results might all be translated into theorems con- 
cerning plane polarised light, but it seems idle to restate in the 
language of optics theorems which may after all have no bearing 
upon that subject. 

10. We have in the course of our work (Art. 3) supposed 
that w= 0, or that there is no wave of normal vibration. It may 
be as well to inquire a little more fully into the legitimacy of this 
supposition. If w be not zero we must take 

s,=h (+B) tothe", 
where o =w, and the other strains remain unchanged (Art. 2). 

Now the expression we obtained for the work in Art. 4 may 
be written 

2W =p (a? + BY + +B"), 

A+ 24+ 4(c+Q) 
V = 

4p 
if we substitute for s, in that expression $(a? + A”). 

where ? 

If c be not zero we must take for W, 

2W =e (+ B) +70 (E+ BY + (N+ 2) 0° + 00° + fo® 
+ (V+ 2y + 2c) o (a? + 6’) + ho’ (a? + B?), 

where c is the same constant as before. We may write 

N+ 2 + 2c = 2e, 

dW 
Ps (X + 2u)o + Seo" + 2fo* + €(a’ + B’) + ha (a? +6’), 
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and the equation for normal vibrations may written 

d’w dw\ dw d’w 

(A+ 2) Ge +3 (¢ oa le a ru +0) 
dw d d’w 

+ hw, ae Ma (u, oe 10) ) pee 

The coefficient therefore of the term 7. (ud +4,)iseth Be 

and unless this vanishes there will be ee asbeaione There are 
two important cases however in which it can be made to vanish. 

First, if o = =" a constant quantity. The expression for W will 

then be of the form p’ (a?+ 8”) + ac +’), where however the 

constants mw’ and v’ will not be equal to the previous p and ». 
This result seems noteworthy. It would appear that: af once a 
certain definite strain be given to the medium parallel to some 
straight line, then rt is possible to send a wave of pure transverse 
vibrations in the direction of this strain. 

For in this case the equation for w is satisfied and we have 
similar equations to those of Art. 5 (b) for wu and v. 

This result suggests various inquiries: (a) as to whether a 
wave motion could be started which would produce or be accom- 
panied by such a strain; (6) as to whether such states of strain 
permitting of transverse waves unaccompanied by normal waves 
may not exist for one or more directions in certain bodies. 

The other case in which there would be no normal wave what- 
ever is in a medium for which e=0. This involves 

r+ Qu + 2c =0. 
Hence we see that if the expression for the work contains no 
terms of the third order («=0 and e = 0)—a by no means impro- 
bable supposition—then there will be to a high degree of approxi- 
mation no normal wave. 

A+ 2 
Should «¢=0, our expression for v reduces to J — “58 aE and 

thus involves only the hitherto unconsidered elastic constant g. 
If g might be neglected as small in any case, we have for v the 
following physical meaning—it is + of the squared velocity of 
propagation of waves of normal displacement in the medium. 

The above equation for w would doubtless give not uninterest- 
ing results for the normal wave which must accompany one of 
transverse vibration. 
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11. Another more general form of integral may be obtained 
for the equation 

Cw. du\*|_ du 
dz E +o(Z) |=e 

A first integral is 

as follows. 

ie d 
+f/vp? + dp=q+ C, where p=Si, q=a° 

Hence 

u=Bze+ flop +e dB .t+ >, (8)) 
where z+ Jp +e t+! (B)= of’ 

and ¢,(8) is an arbitrary function of 8. Another solution is 
obtained by changing the sign of the root and introducing a second 
arbitrary function, thus : 

u=ye—JJvy't «dy.t +, (8), 

where hn) oy Ee Kc t+, (y) = 0. 

These solutions correspond respectively to waves propagated in 
opposite directions, and it will accordingly be sufficient to consider 
one—say the first—of them. We must however note that they 
cannot be superposed since the equation is not linear, or waves 
cannot be propagated in opposite directions without affecting each 
other. Integrating by parts— 

[VvB + «° de 
=p Jos +e +} Ee log (n8 + Jue) — BoB | + C 

= 8 J/vp* + «+ function of v8? + higher powers, 

= 8 / vB? + x? + y (8). 

Thus v= e+ @VoP ret+x(B)t+ o(8) 
= $ (8B) — Bd’ (8B) + x (B)t, 

where y (8) shall by a proper choice of C be taken to vanish if we 
; aus 

put vy =0, which amounts to neglecting (S| . In this latter case 
dz 

we find gd (8) + z2+xt=0, 

and u= (z+ xt). 

Thus in the case of a single term representing a wave motion 

wu =A cosn (z + xt) = d (8) — Bd (8). 
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12. Let us suppose this form of solution retained when p is 
not considered zero and endeavour to discover what changes are 
introduced. We take 

A cos n (2+ e+e j= $ (8) — Bd’ (8), 

". A cos n ¢’ (8) = $ (8) — Bd’ (8) 
1S an equation to Onna the form of ® 

Oy 
Say Ue a BX, 

dp —nA sinnX = oes B- X aX 

2 B=nA sin 7X, 

This gives 8 in terms of ¢’ (8)*. 

Hence we may write 

u= A cosn (e+ Jo eet) + x (8) .t, 

where B=—nA sinn (z+ JB? +e “8 

The complete value of the term x (@) is 

a Jo 98 08+ eB FR) LP ee | +6 
vp* 

=>— ap + etc., 

by a proper choice of C. 

Now let us see what happens to 8 when ¢ is indefinitely 1 in- 
creased. Obviously sin n (2+ J ve? + « *t) will not increase in- 
definitely. Hence as ¢ grows large 6 remains finite. 

vB°t 

5) 
3. does become infinite with ¢. Thus it follows that y (8) t=— 

Or: 
The terms which ge rise to the anomalous wave grow larger 

and larger as the time increases indefinitely and the motion departs 
more and more from the simple wave form 

u=A cosn (z+ xt). 

The velocity of wave propagation & is given by 

R= 4 1B? =k’ + vn’A’ sin’ n (2 + vB? + Kt). 

* More generally we might have taken 

¢ (8) -— BY (8) =F { -¢' (6)}. 

B=—F'(X) 

and w= F(X)+x(8)t, where X=2+,/vB?+x2t and x (8) has the value in text. 

We should have found 



1885. ] third order in an isotropic elastic medium. 309 

_ This result is not quite in accordance with Art. 6, and might 
suggest that the method of approximation there adopted is not 
entirely satisfactory. 

It will be observed that the present article answers the doubt 
raised as to the nature of the ¢ which appeared as a factor of the 
amplitude in Arts. 5 and 6; it really marks a breaking up of the 
wave motion. 

13. The above remarks do not pretend to be a complete dis- 
cussion of the higher terms in the equations for plane wave 
motion in an elastic medium; they are merely intended to point 
out that interesting results closely bearing on the undulatory 
theory of light may possibly be deducible from these terms. That 
these terms would lead to some formula resembling Cauchy’s has 
been suggested, but it does not appear that any investigation of 
these higher terms has hitherto been published. If these higher 
terms really explain the dispersion of light in a transparent 
medium, then the refractive index ought to vary with the intensity. 
This result seems so contrary to all previous experience that it is 
perhaps sufficient to justify our rejecting such an explanation 
of dispersion. 

(3) Preliminary note on the theory of explosions. By R. 'THREL- 
FALL, B.A. 

AN attempt was made to account for some of the anomalous 
effects observed in explosions by Sir Frederick Abel. 

In the well-known experiments with detonators composed of 
various explosives, Abel was led to imagine that the apparent 
selective efficiency of chosen substances when applied to explode 
one another might be accounted for on a hypothesis of “synchro- 
nous vibrations.” It was pointed out that this hypothesis can 
have no possible physical meaning, unless the vibrations be sup- 
posed to take place in the ether; and an explanation was sought 
in the behaviour of the products of explosion as regards their 
motion in air, and-in water. For this purpose the explosives 
were treated in groups arranged with respect to their supposed 
time of decomposition, and it was shewn that much would depend 
on the method of “break up” of the volume of gas set free by 
the explosion. The various ways in which the energy of an 
explosion might be transmitted through fluids were enumerated, 
and some stress was laid on the effects to be expected if the 
conditions of explosion were such as to lead to the production of 
vortex rings. 

The necessity of clearly defining the meaning of the phrase 
“violence of explosion” was pointed out, and it was shewn that 
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increase of volume _ 
-—— would not repre- 

time of explosion 
sent the relative destructive effects of explosions in free air. 

Various experimental methods of treating the question of 
“break up” were described, and further communication was re- 
served pending the result of experiments still in progress. 

the “violence” as defined by 

(4) Observations and statistics. By F. Y. EDGEworTH. Com- 
municated by J. W. L. GLAIsHER, M.A. 

| Abstract. | 

THE paper begins with a classification of the different cases 
which the (two) chief problems denoted by the title present: eight 
different principles of division are laid down. For example one 
division is between the cases where the weights of facility-curves 
are given beforehand, and where they are to be inferred from the 
observations (cp. Glaisher, Mem. Astron. Soc. XL. p. 103). Under 
this head it is remarked that many writers seem unduly to assume 
the modulus as known in cases like the statistics of male : female 
births; when they treat the m+n events as so many independent 
black and white balls drawn from an urn. The fluctuation of the 
ratio, as inferred from the facts, the returns, is often very different 
from that assigned by such a simple hypothesis. 

Another distinction is between facility-curves (other than pro- 
bability-curves) which are, or are not, finite. The writer offers a 
simple proof of the law of error in the former case, disproof in the 
latter case. 

Another distinction is between (a) observations so numerous 
as to present by simple induction or inspection the law of their 
genesis (the method of Quetelet, Mr Galton with his quartiles, 
deciles, &c., Mr Airy in his determination of modulus, &c.), and 
(8) the case where the data are viewed as samples, from which 
we are to ascend by way of inverse probability to the genesis of the 
observations (the method pursued by, e.g., Merriman in finding 
modulus and mean). 

Under the first heading, Mr Galton’s method (Phil. Mag., 1878) 
of finding the number of elements in a “ binomial ” is criticised. 

Under the heading of inverse probability, it is attempted to 
examine its foundations: whether, e.g., in determining inversely 
the modulus we are to assume as having @ priori equal proba- 
bility the different values of ¢ (the modulus), or of c’, or of h 

: (= *), or of #?—all plausible and inconsistent. There is reached 

a conclusion agreeing with Laplace’s first principle (Introduction, 
Theorre Anal.). 
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In the case of facility-curves which may be regarded as pro- 
bability-curves whose modulus is not given, nor known to be 
identical (cp. Glaisher, loc. cit.), the writer recommends a limiting 
(derived) function of the equation of (n —1) degree, 

1 if i 1 =i) 

G8 ¢—a @£— 2, 

where z,, x,, &c. are the observations. 
In the general case of facility-curves not probability-curves, 

it is argued that, though a perfect solution of the problem: What 
is the best Mean is unattainable (the writer retracting his hasty 
statement to the contrary in Phil. Mag., Feb. 1884), yet an 
approximate solution in the form of a weighted arithmetical mean 
is very generally afforded, if the facility-curves can be regarded 
as of the form 

A p — Ma?+-Px!... ae 

by taking the (7 —1)™ differential of 
— {UM («@—«,) + M, (a —2,)+ &e} 

+ P,(«#-«,)+ P,(e@—2,)* + &e. 

+ Ri(«a—2,)/+R,(e—-2,) + &e. 
a ‘limiting’ function of the equation whose solution is required. 

This method, imperfect as it is, preferred to the method of 
least squares, which is criticised at length. It is shewn that its 
fundamental principle is identical with what Mr Todbunter calls 
“assumed inversion” (Todhunter, Prob., p. 566): namely, that we 
can test a Mean, or method of reduction, say @(a,, ,...), by putting 
ourselves as it were at the source of error, taking every set of 
values such as 

(1) Xi X55 2 

/ >] 
° / y 

(2) VM, av, ? vs 

which as it were emanate from the source according to the (sup- 
posed known) facility-curves of the observations, forming for each 
set the mean @, e.g. 

QO) Ge Ge tavern) 
(2) HER Gan Hesoee))Ipe2 

and then observing the divergence of the facility-curve presented 
by the values of 6. This principle, it is argued, is theoretically 
Incorrect and practically leads to wrong conclusions, e.g. if it were 
proposed to find the best value of m in the function 

1 1 1 

ig. 2," + &e. e ao)" 

S é 
considered as a method of reduction. 



312 Mr Ibbetson, On an elastic shell. _ [May 25, 

Another distinction is between real and fictitious or subjective 
means (the latter belonging to statistics in so far as distinguished 
from observations), There is a real mean in the ordinary case of 
a physical quantity elicited from observations. A subjective mean 
is of this nature. In the case of fluctuating phenomena, e.g. prices, 
we may select a certain value (not as that of a real thing, but) as 
the best representative of the whole set; which, if we must put 
one for many, minimizes the detriment incidental to that neces- 
sity. The subjective mean is found by a mathematical process 
analogous to Laplace’s reasoning at p. 333, Theor. Anal. 3rd ed. 
(p. 365, Nat. ed.). In the case of a simple facility-curve this mean 
is the central point, other in other cases. 

Laplace’s theory in the passage cited is defended as the most 
philosophical view of the problem of observations. In fact, though 
we begin with the search of a real point—namely that from which 
observations have emanated—we have to take as a proximate end 
a certain subjective mean. When we have found by inverse pro- 
babilities the relative frequency with which different points 
originate the given observations z,, #,, 7,..., we seek the subjec- 
tive mean of the set of values found. 

The nature of a subjective mean explains Laplace’s conception 
of the “ most advantageous” as distinguished from the “most pro- 
bable” value. 

It is attempted to elucidate many other vexed passages in 
Theorie Analytique, e.g. the method of situation, the proof offered 
in the second supplement of the accuracy of the method of least 
squares, the assumption of mean error as test of advantage, &c. 

The paper is being printed in full in the Transactions of the 
Society. 

Note on Mr IBBETSON’s paper “On the free small normal 
vibrations of a thin homogeneous and isotropic elastic shell, bounded 
by two confocal spheroids. Communicated Jan. 28, 1884. Cor- 
rection by the author. 

The expression assumed on p. 70, line 19, for the thickness + 
of the shell at (m, ¢), supposes the tangent planes at the points 
on the outer and imner surfaces of the shell having these co- 
ordinates to be parallel. It is in fact the formula appropriate to 
a shell bounded by semilar spheroids. 

The correct expression for 7 for confocals is 

€ € : 

5 tals Ona 
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For obvious reasons this error has no effect on the apparent 
verification of the former results, by reduction to the case of con- 
centric spheres. 

The correction greatly simplifies the expressions for the 
potential energy, and they may now be integrated with com- 
parative ease. 

With our former notation we have, for the oblate shell 

T ab’ (3+ 4a°+ 8a*) 2,1 ea = net 
> 

wee ay qB°A, ge 

Wie 192 “(1— p’) Aaa 

, 

y 

and for the prolate shell 

mT pap (8-40 434) 3) | 
ite = 60 . a ee 

Tee qB°A, 2 | : 
W.= To9 ; Gere | 

cos-la 

where A,= || {9 cos* @ — 6 [1 + (1—p) 2°] cos’ @ 
ieSrelo 

+1+4+2(1—4p)a°+2 (1+ 2) a! 

+ 2a? (1 — a”) [w — (1 — p) 2"] sec’ 0 

+a‘ (1 —a’)’ sec* 0} dé ; 

costa 

Ae =| {9a sec’ 0 — 6a° (1 — w+ a”) sec’ 0 
CEC 

+ af [2 (14+ 2m) +2 (1 — 4p) a + a] sec 0 

+ 24° (1 — a?) (1 —— pa") cos 0 

iE (1 — a’)? cos’ 0} dé. 

Thus, on integration, 

A, = (GE + 2p) a Cf —Bu) ab + (1-2) oF +8! 
cos | a 

J1l—o 
+ [gO +5e) +2 (14 2m.) a!) ; 
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A,=3+(1—2n) 2 — (gt — 38y) f+ GE + Qua’ 

log “+ a 11 
a Grae [2 +24) a= (1+ 5p) aba Be’). 

The times of vibration are 

87a /pA—p) & (3 + 40° + 82°) | ‘=e . | 5q Ale Re 

i ey? (l—p*) a (84+ 42+ 34) 

; B 5g Al J 

To the first power of the ellipticity e (=1—) of the meridional 
section, 

-= : Ser 
; 

aa | 
9 

= 3 Ae ES 
L= 8 w= : a Gl 2e) | 

whence it appears that, in a series of shells of the same material, 
whose inner and outer surfaces have the same major axes (@ and 
aJ/1+°), the sphere is the form of maximum period for the 
class of vibrations considered. 



PROCEEDINGS 

OF THE 

Cambridge Philosophical Society. 

October 26, 1885. 

ANNUAL GENERAL MEETING. 

THE following were elected officers and new members of the 
Council for the ensuing year :— 

President : 

Prof. Foster. 

Vice-Presidents : 

Prof. Liveing, Prof. Babington, Prof. Adams. 

Treasurer : 

Mr J. W. Clark. 

Secretaries : 

Mr Trotter, Mr Glazebrook, Mr Vines. 

New Members of Council : 

Prof. Stokes, Prof. Lewis, Prof. J. J. Thomson, Mr Larmor. 

The list of names of Benefactors of the Society was read by 
the Secretary. 

VOL. V. PT. V. 22, 
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The following were elected Associates : 

Mr Robt. Bowes. Mr W. Marshall. 
Mr J. Carter. Mr H. Middleton. 
Mr A. Deck. Mr W. E. Pain. 
Capt. P. Going. Mr W. W. Smith. 
Mr W. Heape. Mr R. H. Solly. 
Mr R. T. Lynch. 

The following communications were made to the Society : 

On the measurement of kinetic molecular energy on an absolute 
scale. By G. D. Liverne, M.A., F.RS. 

In treatises on thermo-dynamics no definition is usually given 
of the particular molecular motions which are to be regarded as 
heat. At least two very different kinds of motion are included 
under the name heat by all writers on the subject, namely the 
motion in a gas which produces pressure and the motion which 
produces radiation. Most writers now-a-day distinguish between 
heat and the motions of liquefaction, vaporization, and that of 
decomposition of molecules, and such expressions as “latent heat 
of evaporation” are used under protest, or changes of state are 
reckoned as internal work. When heat is employed to do ex- 
ternal work it is almost exclusively the motion of translation 
of the molecules of gases which is directly employed, but the 
energy is supplied to the working substance by conduction in the 
form of heat, and all the other forms of energy that I have men- 
tioned may be drawn upon, even the energy of dissociated chemical 
elements if there are such in the supply. For the sake of dis- 
tinctness in what follows I shall use the word “heat” to mean 
only those forms of energy which consist in the vibratory motions 
producing radiation and those which pass in conduction. I do 
not pretend to say that these two kinds of motion are identical, 
but merely that for the present I class them together as one form 
of energy which all, so far as I know, call “heat.” The motions 
of liquefaction, vaporization, and of the breaking up of molecules 
into simpler parts I shall distinguish from heat as_ separate 
forms of kinetic molecular energy. Nevertheless when the supply 
from which heat is drawn to work an engine consists of any 
ordinary materials in a state of thermal equilibrium at. first, then 
when heat is withdrawn from them an adjustment takes place 
between all the forms of kinetic molecular energy in the supply 
in accordance with the law of dissipation whereby, in general, 
they all ultimately contribute their quotas to make good in part 
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the loss of heat, and in this way they may all be said to take 
part in the work done by the engine supplied by them. They 
all have their effect on the temperature of the supply on which 
the availability of its energy essentially depends, and it may be 
observed that in the category of forms of energy which thus con- 
tribute to maintain the temperature of the supply must be in- 
cluded the energy of dissociation, whether the dissociation consist 
in the breaking up of the molecules into parts which are homo- 
geneous, as happens with sulphur vapour and many other vapours 
at high temperatures, or whether it is dissociation of chemically 
diverse kinds of material. 

Now considering that all these several forms of energy con- 
tribute to the temperature of a body it seems hardly possible to 
avoid the conclusion that they are all subject to the thermo- 
dynamic laws and that the conclusions drawn from those laws are 
all applicable, mutatis mutandis, to them as well as to heat. Many 
authors appear to me to have made tacitly some such assumption, 
and I have myself done so avowedly in considering the influence 
of dissipation of energy in regard to Chemical Equilibrium*. It 
is possible however to follow out the reasoning with regard to 
each form of kinetic molecular energy in lines parallel to those 
employed by writers on. thermo-dynamics. 

The second law of thermo-dynamics is a particular case of 
the more general law of dissipation of energy. ‘That law may be 
stated as follows: 

Every change which takes place spontaneously in the form 
or distribution of energy in any given portion of matter without 
accession of energy from without reduces the availability of the 
energy of that matter to do mechanical work. 

No machine self-acting can then convert energy from a form 
in which it is less available into one in which it is more 
available. 

It follows then on Carnot’s principle that if we have a re- 
versible engine working between a supply of energy at one degree 
of availability and a sink at some very slightly lower degree of 
availability, the fraction of each unit of energy derived from the 
supply which can be converted by the engine into mechanical 
work will depend only on the degree of availability of the supply 
and on the difference of degrees of availability between the supply 
and sink. 

The expression degree of availability is an awkward one and 
not always appropriate so that I prefer to use “potential” instead 
of it. The fundamental notion connected with equality of potential 

1 Chemical Equilibrium the result of the dissipation of Energy. Cambridge, 
1885. Deighton, Bell and Co. 

e 
bo 2—2 
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being that when two forms of energy are at the same poten- 
tial in the same substance there is no tendency for either to 
be increased at the expense of the other; but that if they are 
at unequal potentials there is a tendency to an equalization ; also 
that when two bodies have their energies at equal potentials there 
is no tendency for the energy of one to increase at the expense 
of the other, while if they are at unequal potentials there is a 
tendency to equalization by the passage of energy from one body 
to the other. 

It remains to construct a scale of measurement which shall 
be applicable to all kinds of kinetic molecular energy. 

Let S and S, be two systems each homogeneous in regard to 
both matter and energy, and let L, #, be their respective energies 
in such forms e,, e,, e¢, &c. as are from the nature of the systems 
capable of being freely transformed into each other, and freely 
transmitted from S to S, or vice versa when S and S, are placed in 
communication ; e, for instance may be heat, e, the energy of motion 
of translation of the molecules of a gas, e, the energy of chemical 
separation and soon. will be the sum of ¢,+e,+¢,+ &e. for S; 
and &, the corresponding sum for S,. S and 8, may have besides 
EK and #, other energies which are not freely transformable into 
any of the forms included in # and £,. If Sand 8S, are each in 
equilibrium, @,, é,, &, &c. in S will all be at the same potential V, 
and ¢@,, @,,@, &c. in S, will also all be at one potential V;. Also 
if when S and S, are put in communication there is no tendency 
for any part of / to transfer itself to S,, or for any part of £, to 
transfer itself to S, then V=V,; but if part of L, passes to S, 
V, is greater than V, and if part of H passes to S,, V is greater 
than V,. 

Suppose V greater than V, and the difference to be 6V, then 
it follows, on Carnot’s principle, that no more work can be got out 
of # in consequence of the equalization of the potentials of # 
and #, when S and S, are put into communication by any means 
than can be obtained by means of a perfect reversible engine 
working between S and S,; and hence the greatest amount of 
work which can be got out of # by such means will depend only 
on V and 6V when 6V is very small. 

Let us suppose S, to be maintained by external agency in a 
constant state, so that the potential of H, is always V, during the 
operation of transferring part of H to S, and converting the rest 
into mechanical work by help of the reversible engine. Then 
if }W be the greatest amount of work which can be got out of # 
by this means, we shall have 

. OW: B=OV 2. FV) ccc roses 

when F'(V) is some function of V. 
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Now suppose the engine to be worked backwards so as to 
restore S to its original state, taking as much energy as possible 
from S,; then dW is the least amount of work which must be 
done upon S to restore to it its original energy # at potential V, 
and therefore H—6W is the amount of energy which must be 
supplied to S in addition to the work 6W done upon it. H-8W 
must therefore be the energy of S when at the potential V,, 
because no energy could pass spontaneously from S, to S at a 
higher potential, and 6W is the minimum amount of energy which 
must be derived from without to raise the potential from V, 
to V. 

Next let us measure V on such a scale that 6V bears a constant 
ratio to 6W when # is increased or diminished; and let S, be so 
changed in its state by external agency that the potential of JZ, 
is reduced to V, — dV; then by means of a perfect engine working 
between S which has energy H—6W at potential V,, and S, 
maintained with its energy H, at potential V,—6V, a second 
quantum of work, equal to the former quantity 6W since éV is 
the same and is always proportional to dW, can be got out of 
E—6W, and we shall have 

OW: H-SW=6V : F(V,) 

=6V : F(V—SY), 
but by equation (1) 

oW: E-SW=sSD : F(V)—-SV, 

whence F(V-—6V)=F(V)-6V, 

and JE) = 1%. 

and equation (1) becomes 

(A onl EA) | ORC ZS RENE SRC nn RCE Md (2). 

Since the work that can be got out of each unit of energy 
in Fis the same fraction of 6W, that one unit of energy is of # 

- we may write in the above equation dW : dH, the rate of work 
obtainable per unit of #, instead of 6W : H, and make 6V always in 
a constant ratio to dW/d#. 6H, where o£ is an arbitrary increment 
of H which may be the unit of energy. SV, the increment of JV, 
is then wholly independent of the nature of S and of the amount 
of energy H, and we have a method of measurement of V ap- 
plicable to all forms of kinetic molecular energy, and we can 
make the magnitude of our degrees of potential the same for all. 
When the energy in question is heat, and V is temperature, the 
equation (2) becomes that which is usually given in text-books for 
the relation between the amount of work which can be got out 
of a supply of heat # at temperature V on the absolute dynamic 
scale when the refrigerator is at temperature V —6V. 
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If S, be some independent system with energy H,, or if the 
nature or circumstances of S be such that it may have energy in 
some form L,, which cannot freely be transformed into any of the 
forms of H, the potential of #, will be mdependent of that of # 
but may be measured on the same scale if 6V is always in the 
same ratio to dW/dL,. 

If the scales of measurement of any two forms of energy # 
and #, coincide at one point they must coincide at all points. 
Coincidence at one point may be determined by the consideration 
that when # and LH, exist in a system or in two communicating 
systems in such circumstances that the one can be transformed 
into the other, there will be no tendency to any such transforma- 
tion when both are at the same degree of potential, for no work 
could be got out of any such transformation. 

The zero point may be taken arbitrarily, and as a zero point 
has already been assigned to the dynamic scale of temperature 
the same point may be retained in all cases. It is plain that 
and V will vanish together whenever # can be directly trans- 
formed into heat, and this appears to be the case whenever the 
energy is strictly speaking the energy of the molecules. 

Molar energy does not exhibit differences of potential. 
When the energy is what is called energy of position, that is 

when the energy is that of the field, it is only when there is 
some difference in the energy of the field in different parts 
occupied by the system that any dissipation of the energy of the 
field can occur within the system. The potential of the energy 
of the field.at that point within the system where it is least will 
therefore coincide with the zero of our scale when the energy 
of the field has to be brought into comparison with the other forms 
of energy in the’ system. 

When the energy of the field is gravitation we can hardly 
include in the field of any experiment a sufficient difference 
of gravitational potential to bring the energy of the field into 
comparison in a measurable way with the molecular energies of 
the materials of our experiments. Nevertheless in the large field 
of nature differences of gravitational potential must, I should 
think, be capable of producing such effects as chemical decom- 
position. For example, the stable arrangement of a mass of 
mixed hydrogen and oxygen under gravity is not one in 
which the proportions of the two gases are constant at all 
levels, and if we have a large mass of aqueous vapour extend- 
ing to a considerable height above the earth, there must be 
a tendency on account of gravitation towards a separation of 
hydrogen and oxygen and an accumulation of hydrogen in the 
upper part of the mass, and of oxygen in the lower part. Unless 
the potential of the energy of chemical separation passes per 
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saltum from zero to some amount greater than the difference of 

potential which can be established by the combined effect of 
gravitation and the other energies of the system within the space 

occupied by the molecule, one would suppose that dissociation 

must occur and by the action of gravitation be rendered permanent 
at least in part. 

(2) On the transit of Venus, Dec. 6, 1882. By J. B. PEARSon, 
D1). 

The paper contains an account of the reduction of observations 
made by Dr Pearson, with a calculation of the value of the Solar 
Parallax, found by comparing these with the French observations. 

November 9, 1885. 

PROFESSOR FOSTER, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society :— 

(1) On Weissmann’s New Theory of Heredity. By A. Sepc- 
wick, M.A. 

(2) Suggestions with regard to the nervous system of the Chor- 
data. By W. Bateson, B.A., St John’s. 

Having in view the facts of the anatomy and development of 
the Enteropneusta, and especially the condition of the delaminated 
portion of nervous system which is connected with the skin by 
median-dorsal chords, the author argued that 

(1) The nervous system of the chordata must have been from 
the first an unpaired and “unsegmented” structure. 

(2) That its present origin by invagination must be secondary 
to a primitive process of delamination. 

(3) That the difference of function between the dorsal and 
ventral roots must have been primitive, the result of the physical 
necessities of the case. 

If these suggestions be accepted, the nervous systems of the 
lower chordata form a regular and progressive series. 

(3) On the nature of the Heart-Sounds. By ¥. J. ALLEN, M.A., 
St John’s. 

The difference between the two sounds of the heart may 
be one of degree rather than of nature. Certain circumstances 
render the sounds more alike, and certain others increase their 
difference. 
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There is no real similarity between the systolic sound and the 
susurrus of muscles in tetanic contractions: the former is quite 
smooth, the latter rough. A prevailing fundamental note may be 
heard in each: but this is also heard in the second sound; and is 
therefore independent of muscle, and may be the fundamental note 
of the observer’s auditory mechanism. 

In the author’s more delicate experiments a stethoscope of new 
form was used. This was an ordinary binaural flexible stetho- 
scope, fitted with a peculiar receiver which consisted of a small 
drum with heads of thin caoutchouc membrane. This instru- 
ment, called (in default of a better name) the tympanoid stetho- 
scope, is very sensitive; since the vibrations of a body can be 
communicated to it by a very light contact with the outer drum- 
membrane. 

Various kinds of muscle were examined both within and outside 
the body. It was found. that skeletal muscle, both of the frog 
and of mammals, gave rise to an audible concussion or thud, when 
contracting under the stimulus of single induction shocks. This 
thud is louder when the muscle pulls on a weight ; but nevertheless 
it appears to be independent of resistance: for it is still produced 
when the muscle lies loose upon the membrane of the stethoscope, 
and is even audible when a scrap of muscle no bigger than a pea 
is used. Little or no sound is produced, however, when the 
muscle is exhausted, even though its contraction remains visible 
to the eye. 

The heart-muscle of warm-blooded animals, stimulated in the 
same way, produces @ similar concussion or thud; which, however, 
is much duller and weaker than that of the skeletal muscles. The 
heart muscle-sound has not the character of a susurrus, but appears 
to be merely the expression of a single contraction less sudden and 
of longer duration than that of the skeletal muscle. 

The heart-muscle of cold-blooded animals (frog and crocodile) 
gives rise to no sound audible with the tympanoid stethoscope. 
This is apparently because the contraction, although of much 
longer duration than those before mentioned, is not sudden enough 
to produce an audible concussion. 

It appears that in the following kinds of muscles there is an 
ascending scale of suddenness in contraction:—(1) Unstriped 
muscle, (2) cold-blooded heart-muscle, (3) warm-blooded heart- 

muscle, (4) cold-blooded skeletal muscle, (5) warm-blooded skeletal 
muscle. The first two contract too slowly to give rise to an 
audible concussion, and the last produces a very sharp concussion. 

Making experiments with the tension sounds produced by 

suddenly stretching or jerking membranous substances, such as 
tape and leather, I find that a sudden and weak jerk gives rise 

to a short flapping sound, whilst a slower jerk with sustained 

“ 
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tension produces a long musical sound. The relation between the 
two kinds of sound is very suggestive of the relation between the 
second and first heart-sounds. 

Since the cardiac muscle can produce a contraction sound, it 
is evident that it must contribute a share to the first’ heart-sound, 
although it may not be an important factor. If it were important, 
the sound of a hypertrophied heart should be loud, whereas ex- 
perience shews the opposite to be the case. The sound of the 
muscle is probably not a prolonged one, but simply a dull thud: 
and, since the muscle must contract before any other systolic event 
can take place, the muscular thud must come at the beginning of 
the systolic sound, not prolonging it towards the end as usually 
supposed. The booming prolongation of the sound is most likely 
due to the vibration of the valves and chordae tendimeae under 
the sustained tension to whieh they are subjected; as simulated 
in the experiments on stretching membranes. 

The systolic sound in small animals (cat, rat, mouse) is not 
prolonged as in man and other larger animals. The two sounds 
in small animals are nearly alike. The conditions which give the 
special characters to the systolic sound in the human and other 
large hearts, appear to be (1) the long systole with sustained 
tension, (2) the large size and consequent free vibratility of the 
valves and chordae tendineae, and (3) the thickness of the ventricle- 
wall, which is not favourable to sharp vibration in itself, and which 
acts as a partial non-conductor to the valvular sound. ‘The simi- 
larity between the two sounds in small hearts should therefore be 
owing to the absence of these special conditions. 

(4) On the travelling of the Transpiration Current in the 
Crassulacee. By F. W. OLIVER, Trinity College. 

In this communication the author drew attention to some 
experiments carried out by him on certain members of the order, 
which would point to the importance of the living cells of the 
wood in the.ascent of the sap. The cooperation of the living 
elements has been already shewn to be logically necessary by the 
physiologists Godlewski and Westermaier; and from the experi- 
ments described some support for their general theories was 
attempted to be drawn fora special case. ~ 

(5) On the constitution of the walls of vegetable cells and the 
degeneration changes occurring in them. By WALTER GARDINER, 
M.A., Clare College. 

The author stated that although a wall consisting entirely of 

unaltered cellulose may conveniently be regarded as the typical 

cell-wall, yet practically such a structure is seldom met with in 
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vegetable tissue. Even from the very first the wall may be for the 
most part mucilaginous, or may consist of some form of hydrated 
cellulose; but perhaps the more normal phenomenon that occurs 
is, that in a thickening cell-wall the innermost layers consist of 
cellulose, while the outer portion tends to degenerate into mucilage. 

The structure known as the middle-lamella is composed, in the 
pure cellulose cell-wall, simply of cellulose layers, which have 
become peculiarly dense and resistant owing to pressure and 
tension, but more generally these layers undergo a hydrated or 
mucilaginous change, and even incipient lignification and cuticu- 
larisation. 

The occurrence of mucilaginous degeneration is one of the 
deepest physiological interest, since by this means the separation 
of cells in the formation of stomata, intercellular spaces, and the 
like is made possible. During the separation from one another of 
contiguous cells the external mucilaginous portions of the wall 
frequently present a very rugged outline, and the two walls may 
even be connected by strands of mucilage which traverse the mter- 
cellular space. 

The external portion of the walls lining intercellular spaces 
often degenerates into mucilage over their whole surface, but in 
many cases this degeneration is confined to certain definite areas, 
leading to the formation of mucilage rods and drops. 

The process of partial or entire mucilaginous degeneration 
appears to be one of hydration, since (among other things) it can 
be shewn that by employing suitable hydrating reagents, the area 
of mucilaginous change can be increased at will. The author 
believes that the phenomenon of swelling as exhibited by cell-walls 
is made possible by, and is in the main dependent on, the forma- 
tion of definite hydrates of cellulose, such hydrated forms being 
very unstable and probably consisting of a large number of mole- 
cules. 

In addition to the mucilaginous degeneration occurring in the 
walls of normal cells, mucilage may be derived directly from the 
protoplasm or from walls which are undergoing a pathological 
change. 

Cuticularisation occurs in the outermost layers of the walls of 
living cells, when the walls in question are freely exposed to the 
external medium, but in the opinion of the author, lignification and 
suberisation is in some way dependent on changes taking place in 
consequence of the slow and gradual death of the cell, which must 
however be situated in the vicinity of living tissue. In certain in- 
stances a suberous degeneration may occur in the most external 
layers of certain cellulose walls, in which normally a mucilagmous 
change would have supervened, but this is apparently dependent 
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on some pathological change. Instances occur also in which cell- 
walls of a cellulose nature when living give a definite lignin 
reaction when dead. In lignified and suberised walls the maximum 
change occurs in the neighbourhood of the middle lamella, and 
here too the change is associated, although to a less degree, with 
mucilaginous degeneration. 

In conclusion the author stated that he had undertaken the 
above investigation mainly for the purpose of ascertaining whether 
intercellular protoplasm was ever present, in plant tissue. All his 
frequently repeated observations most emphatically negatived the 
occurrence of any such substance. 

November 23, 1885. 

PROFESSOR FOSTER, PRESIDENT, IN THE CHAIR. 

Mr F. J. Allen, M.A., St John’s College, was elected a Fellow. 

The following communications were made to the Society :— 

(1) Ona new method of producing the fringes of interference. 
By L. R. WitBEeRFoRCE, B.A., Trinity College. 

[ Abstract. ] 
The author stated that in the course of an inquiry into the 

suitability of various forms of interference-fringes for certain in- 
vestigations on the velocity of light upon which he had been 
engaged, he had been led to adopt the mode of production which 
was the subject of his paper. 

He briefly described the method, indicated the elements of its 
theory, and, by a comparison of his results with those of former 
experimenters, shewed the great increase of accuracy attainable 
by means of it. 

The paper is being printed in the Transactions of the Society. 

(2) Some experiments on the dielectric strength of mixtures 
of gases. By Dr CO. OLEARSKI. Communicated by Prof. J. J. 
THOMSON. 

G. Wiedemann and Riihlmann in their investigations on the 
passage of electricity through gases’ compared the electric strength 
of oxygen, nitrogen and air free from carbonic acid and aqueous 

1 Pogg. Ann, Vol. 145, S. 235, or Wiedemann Elektricitdt, Vol. 1v. p. 460. 
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vapour. They determined the quantity of electricity passing at 
each discharge, and, although it 1s perhaps not quite evident, it is 
at least very probable that the quantity of electricity carried at a 
discharge is proportional to the potential necessary to introduce 
the discharge. Based on this supposition we should conclude from 
the diagram’ given by Wiedemann and Riihlmann that there is an 
anomaly as regards the strength of air, which according to them 
would be intermediate between its constituent gases for pressures 
larger than 30 mm. of mercury, but weaker than either nitrogen 
or oxygen for pressures lower than that. This would not be what 
we could easily explain, and would suggest that for these-low pres- 
sures only the weaker constituent of the mixture is carrying the 
discharge. 

But as this result does not seem to be conclusively proved 
by the experiments quoted above, and is not even announced 
by the investigators, and it was of some interest to make ex- 
periments on the strength of mixtures of gases, Prof. J. Thomson 
suggested to me during my stay in Cambridge to investigate the 
question by the method of Faraday*. Accordingly a current given 
by a Ruhmkorff coil was sent through a multiple conductor, in one 
branch of which was a glass tube (whose internal diameter was 
2cm.), closed air-tight by india-rubber stoppers, having two spheri- 
cal platinum electrodes at a distance of about 15 cm., while in 
the other branch there was the usual apparatus for measuring 
the length of sparks, consisting of two movable brass. balls in 
open air. : 

When the distance of movable electrodes is large enough, 
sparks pass only in the glass tube, when it diminishes they appear 
between the movable spheres as. well. The limit distance measures 
the strength of the gas enclosed in the tube. There is however 
a difficulty in making an exact measurement, for, when the distance 
of electrodes is reached at which the first spark passes across 
them, the discharge does not always choose the same way. In this 
manner there is an interval which is larger for higher pressures 
than for lower ones, in which it is impossible to decide whether 
the gas enclosed in the tube or the air between the movable 
electrodes is stronger. But when we only compare the strengths 
of different gases, faults coming from this incertitude may be 
possibly eliminated by keeping always the same mode of proceed- 
ing. For every determination therefore the distance of the movable 
electrodes was at first made so small that all discharges passed 
through them. Then the gas was pumped out by means of a 
Sprengel pump and the pressure was noted at which the first dis- 

1 1. c. tab. rv. fig. 2, or Wied. Elektr. Vol. 1v. p. 462, fig. 193. 
2 Experim. Research. Vol. 1. 
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charge passed in the tube. This mode of investigation was used 
in all the experiments, whose results are given below. 

There is another point which may be noticed. Faraday 
originally observed that after a discharge is passed across a gas it 
becomes electrically weaker than it was before. It may be easily 
shewn that this alteration in the electric strength of the gas lasts 
for some time. For instance I made the distance between the 
movable electrodes 052 mm., and having filled the tube with 
nitrogen I found that until it was pumped out to 10 mm. of 
mercury no discharge appeared in the tube. After having intro- 
duced a little more nitrogen, I passed the discharges from a 
Ruhmkorff coil through the tube for 10 minutes; after waiting 
for 2 minutes, I found the corresponding pressure of nitrogen 
125 mm., which shews that nitrogen is weakened by the passage 
of discharges, and does not acquire its previous properties after 
a rest of 2 minutes. To avoid errors arising from this cause, after 
every determination some new gas was introduced into the tube 
(when the gas was very rarefied sufficient to increase its pressure 
about 30—40mm.). In this manner the gas enclosed in the tube 
was never sensibly changed by previous discharges. 

Experiments made at different times have not given exactly 
concordant results in absolute numbers for the same gases, never- 
theless the order of gases as regards their electric strength was 
always the same and the ratio of numbers found for several gases 
was nearly equal. Even for absolute numbers the accordance was 
much better at low pressures when the discharge had the form of 
a glow, than at higher ones when the passage of electricity is 
accompanied by a spark. These differences are doubtless princi- 
pally caused by the different states of free atmospheric air, by the 
varying quantity of dust in it, and perhaps by some differences in 
the working of the Ruhmkorff coil. On the contrary, measure- 
ments made some hours one after another gave numbers which 
never disagreed 10°/, even for pressures larger than 100 mm. of 
mercury. ‘Therefore finally I made experiments with gases, whose 
electric strength I compared, on the same day, and [ shall give 
below only such measurements or means of such measurements 
which were executed with this caution. 

The following is an example of measurements executed one 
after another with oxygen, a mixture containing 61°/, vol. oxygen 
and 39°/, vol. nitrogen, air and nitrogen under low pressures. 
Oxygen which was prepared from chlorate of potash was led 
through water and a solution of caustic potash. The carbonic acid 
contained in the air was also removed by means of caustic 
potash. Finally the gases were dried by passing through two 
tubes with CaCl, and the third with phosphoric anhydride, each 
of which contained a plug of wool to retain the dust. 
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Pressure in mm. of mercury. 

Distance Mixture of Oxygen 
of movable Oxygen. and Nitrogen Air. Nitrogen, 
electrodes. 61 °/, vol. 39 °/, vol. 

27°7 mm. 135 140 133 

18 5 101 100 98 

N26 7s, 87 90 84 

ae) ee 13 71 72 74 

NG Ae. 52 53 53 55 

In each horizontal line the distance between the movable 
electrodes is given and the corresponding pressures of different 
gases at which the first discharge appeared in the tube. 

From these experiments air would seem to be intermediate 
between its constituent gases; while the mixture of oxygen and 
nitrogen in the ratio of 61°/, vol. to 39°/,, is stronger even than 
oxygen. The difference is however not larger than the possible 
errors of the experiment. Another experiment has given for the 
same mixture and for oxygen numbers almost exactly equal. 

The following are the means of three measurements every 
one of which included oxygen, air and nitrogen : 

There is a very small difference in the electric strength of 
oxygen, nitrogen and air. Oxygen is a little stronger than nitrogen 
for low pressures just as Wiedemann and Riihlmann found, 
whereas Faraday has shewn that under the pressure of an atmo- 
sphere nitrogen is the stronger. Generally the curves given on 
the diagram of Wiedemann and Riihlmann agree with numbers 
found here as measuring the electric strength, which shews that 
quantities of electricity carried at a discharge measured by Wiede- 
mann and Rihlmann are proportional to the potential which is 
necessary to introduce the discharge. Air appears however to be 
intermediate between oxygen and nitrogen even under the pressure 
of 6mm. of mercury. 
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Pressure in mm. of mercury. 
Distance 

of movable | Nitrogen. Air. Oxygen. 
electrodes. 

Tiea Lea |) tee 

ie 102 108 105 

eee mn Bao 95 94 

ae 73 68 68 

1:92 ,, 50 44 46 

ice 30 24 25 

7, 15 13:5 13 

0-52 ;, rl 9-5 9-5 

0-35 ,, 6-5 55 5-7 

Hydrogen is very much weaker than nitrogen, and therefore I 
compared it with a mixture containing 70°/, vol. hydrogen and 
30°/, vol. nitrogen. 

Pressure in mm. of mercury. 
Distance 

bdotes rs = eee Pca 

eman) || 240 140 166 199 

ee 210 113 135 170 

ioe, |, 180 99 122 147 

on ae OL Tag eee 

fego) 76 Aho tee cue. © 66 

fe Bawa We Lasse ty) sio1 adavae 42 

07 ,, 31 1Gat siotdiose cr 24 

0-52 ,, Te tee te. 17 

0-35. ,, 9 6-5 7 8 

In the last column are given pressures calculated when it is 
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supposed that the strength of a mixture is equal to the sum 
of strengths of its constituents, ice. according to the formula 

M= one ses , where M is the pressure of the mixture, H and 

N pressures of hydrogen and nitrogen. It seems that calculated 
and observed pressures disagree more than it could be explained 
by the imperfection of the proportionality of strength and pressure 
of gases and by errors of experiments. 

(3) On the mutual action of oscillatory twists in a vibrating 
medium. By A. H. Leany, M.A. 

This paper is being printed in the Transactions of the Society. 

(4) On the transpiration-stream in cut branches. By FRANCIS 
Darwin, M.A., Trinity College, and Rrersatp W. PAHILLIPs, 
B.A., St John’s College. 

(777) (77) 02 U7 (777) 
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§1. Object of the Experiments. 

The series of experiments here recorded was commenced in 
the spring of 1884, and was in large part completed in that 
year. We have been forestalled in some of our results since the 
work was begun, nevertheless we think it best to publish them, 
since the amount of evidence available on the subject is by no 
means large. 

It is not necessary to refer in detail to the views held by different 
botanists as to the way in which the transpiration-stream passes 
through wood. The subject has been recently discussed m an 
admirable paper by Elfving+, and more recently in Godlewski’st 
paper on the same subject. 

* i.e. Branches sawn half through on opposite sides at points near each other. 
+ Ueber den Transpirationstrom in den Pflanzen. Acta Soc. Scient. Fennice. 

Tom. xiv, 1884. 
+ Pringsheim’s Jahrbuch. 1884. Bd. xv, Heft 4. 
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It will suffice to say that the two chief theories are 

1. That the chief and essential path of the stream is in the 
walls of the elements of the wood ; that the stream is 
in fact the movement of the water of imbibition con- 
tained in the walls of the elements. 

This view we shall refer to as the “imbibition theory”. 

i. That the chief and essential path for the passage of 
the stream is 2 the cavities of the elements of the 
wood, 

The chief object of our experiments has been to help to decide 
the question which of these theories is the right one. 

In the present paper we have not attempted to do more than 
to test the validity of the two theories as applied to cut branches, 
without considermg whether or no the conclusions arrived at are 
applicable to rooted plants. The method employed may, it is be- 
lieved, be used with plants grown in water. 

§ 2. Method. 

The experiments here recorded were chiefly made with the 
potometer already briefly described by one of us*. The instrument 
is intended to measure the amount of water absorbed by a tran- 
spiring plant in a given time, and has been called the potometer 
in imitation of the name suggested by Moll} for a different instru- 
ment. 

There is nothing new in the principle of our potometer, the 
chief merit that we may claim for it is its convenience for working 
purposes. 

Fig. 1 shows the potometer in action. It consists of a T tube, 
of which the limb a is bent so as to be parallel to the remaining 
two limbs, and into which a cut branch of a plant is fixed by an 
india-rubber tube. The two other limbs of the tube are closed by 
india-rubber corks, through one of which passes a thermometer tube 
b. The T tube and the thermometer tube being filled with water 
the apparatus is fixed so that the end of b dips into a small vessel 
of water, c. It is obvious that all the water which the branch 
absorbs must be obtained from the vessel c. To take a reading 
with the instrument all that is necessary is to remove the block of 
wood d so that the vessel ¢ can be lowered ; when this is done air 
instead of water will be sucked in at the end of b. When a 

* Francis Darwin in Nature, May 1, 1884. 
+ Archives Neerlandaises xviil. 1884. 

NOTE. te Dom Ve Im ae 
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column of air a few millimeters in length has entered the tube 8, 
the vessel c is replaced; by this means a bubble of air is enclosed 
in b; the bubble travels up the tube and serves to indicate the 
rapidity of the current of water in the tube b. The time which 
the bubble takes to traverse a measured length of tube is read by 
means of a stop-watch. Then by taking the reciprocals of these 
readings a series of figures proportional to the amounts of water 
absorbed by the branch in a given time are obtained. Thus if 
10” is the reading, the reciprocal being 0:1, the rate of absorption 
is put down as 100; five seconds being entered as 200; 20” as 50, 
and soon. The actual quantities of water corresponding to these 
figures vary according to the size of the tube used. A rate of 100 
in our experiments means that some quantity between 4 and 8 
gramms of water are absorbed per hour. 

Details. It will be seen that at each reading a small bubble 
enters the potometer, these bubbles collect at e, and can be got rid 
of at intervals by taking out the cork e and filling up the vacant 
space with water. In some rare cases bubbles have been found to 
collect in the limb a underneath the cut end of the branch, this is 
of course a serious error, and to avoid the possibility of its oc- 
currence, a different form of instrument was occasionally used, in 
which any bubbles entering from the end of the branch could be 
collected with the bubbles used as indices of the rate of absorption. 
Practically however it was found that the form given in fig. 1 did 
not lead to errors from this cause. 

There is naturally some resistance to the drawing of the bubble 
of air into the end of b (fig. 1); thus it follows that the bubble 
enters with a jerk, and does not settle down to a steady pace until 
it has travelled some way up the tube. It is therefore necessary 
that the mark on the tube forming the lower limit of the fixed 
distance to be traversed by the travelling air-bubble should be at 
some little distance from the free end of the tube; in our experi- 
ments the length of be was usually about 10 c.m. It was found 
convenient to employ the upper end (/) of the thermometer tube 
as the upper limit of the measured space. 

In using the apparatus it is of importance that the length 
of the bubble employed as an index should be constant, since 
it was found that by using long and short bubbles alternately the 
readings could be made to vary ; the longer bubbles giving slightly 
quicker rates than the shorter ones. This point was carefully 
attended to, each bubble bemg regulated to a measured length as 
it entered. With these precautions fairly uniform readings can be 
taken. The following series is not specially selected, but shows the 
kind of uniformity easily attaimed to—and greater uniformity was 
often reached : 

23—2 
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5°6 seconds 

5'8 
60m, 
58 
GO as 
5'8 
ES 

In our experiments we usually employed Cambridge water- 
supply water, which is fairly free from impurities, in some cases 
however distilled water was used. The success of the method 
depends on there being no leaks in the apparatus; it is therefore 
essential that the india-rubber corks should be good, and the liga- 
tures where the india-rubber tube is attached either to the glass or 
the branch should be carefully made. For this purpose either 
copper wire or (what is better) india-rubber thread was em- 
ployed. 

Advantages and disadvantages of the method. 

The apparatus is rapidly put together so that readings can be 
taken within one minute after the branch has been cut. It is so 
simple that it is not likely to get out of order, and the places of 
possible leaks are reduced to the lowest possible number. Each 
reading takes only a few seconds, so that a number of observations 
may be made in a short space of time. It is easy to take obser- 
vations without in any way disturbing the plant, and this is of 
importance since it has been shown that the shaking caused by 
such a disturbance as is involved in weighing a transpiring plant 
influences the transpiration ™. 

Owing to the sinking of the level in the vessels ¢ and e, as the 
branch absorbs water, the conditions do not remain absolutely 
identical from hour to hour, but since these sources of error are 
extremely small, and their effect is spread over a considerable 
interval, they may be considered as of no moment. 

Changes in the temperature of the water, or in the pressure of 
the surrounding air, must theoretically disturb the reading of the 
instrument. If the water in the Y tube is increasing in bulk 
owing to increase in temperature the passage of water up the tube 
b must be delayed. 

If it be remembered how slowly the temperature of the 17 ce. 
contained in the potometer would be changed in the course of 
experiments conducted in ordinary rooms, and when it is further 
considered that the bubble serving as index often moves at the 
rate of 12 mm. per second, it will be seen that no serious error 

* Baranetzky. Bot. Zeitung, 1872. 
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will be introduced. The same considerations mutatis mutandis 
apply to barometric changes. 

It must further be remembered that the use to which we have 
put the potometer is especially to test the effect of sudden changes 
in the conditions; and that where we record changes in rate of 
absorption, which are observable from minute to minute, errors of 
this sort need not be considered. 

Tests applied to the apparatus. 

We were not able to discover any serious sources of error in 
the apparatus, but we were anxious to prove that the readings 
of the stop-watch do represent the flow through the potometer. 
We therefore substituted a siphon at @ in place of the plant, and 
proceeded to compare the different rates of flow of water through 
the siphon with the corresponding readings of the potometer. It 
was found that low pressures of the siphon corresponded to what we 
were accustomed to consider high readings of the potometer. And 
as we further found that the lability to error is greater with 
rapidly moving bubbles, we may assume that our experimental 
readings are more and not less trustworthy than those obtained in 
the testing experiments. 

The siphon was so arranged that the free end could be raised 
and lowered, and the experiment here given begins with a pressure 
of 100 mm. of water :—that is to say, the efficient column of water 
was 100 mm. in height; as the column was increased by regular 
increments to 200 mm., the reading of the stop-watch decreased 
from 7'3" to 3°5”. 

In the following table A gives the reading of the stop-watch ; 
B gives a series of figures proportional to the reciprocals of the 
figures in A; C gives figures proportional to the pressure of the 
siphon,—figures which therefore approximately represent the 
outflow from the siphon : 

A 19 ia G 

73” | 100 | 100 
ao alton 120 
50 | 146 | 140 
45 | 162 | 160 
4:0 | 183 | 180 
35 | 209 | 200 

It will be seen that the difference between B and C never 
reaches 5°/.. 

With still higher pressures and with a correspondingly rapid 
rate in the passage of the bubble the error increases from 15 to 
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20°/., so that we are not inclined to trust observations where the 
reading of the stop-watch is less than 3”. 

A second method of testing the apparatus was that of weighing 
the quantity of water flowing from the siphon in given times; the 
siphon was allowed to run for 15 minutes, the potometer being 
read at intervals of about a minute. The current was then 
quickened and the amount of water yielded in 15 m. again weighed, 
the potometer readings having been again taken. 

In the following table, column A gives numbers proportional to 
reciprocals of the mean of the reading of the stop-watch taken 
during the flow of the siphon at one pressure. Those in B are 
proportional to the weights of water flowing from the siphon in a 
quarter of an hour at three different pressures. (The actual 
pressures are not given.) 

A B error 

100 | 100 * 
146 | 150 | 2°7°/, 
408 | 430 | 4-4°/- 

If we call B the actual outflow from the siphon, and A the 
outflow estimated by the potometer, we shall see that the error 
does not reach 5°/,. The reading of the stop-watch corresponding 
to the amount 408 m column A was 5:2”. If the calculated flow 
had been equal to the observed flow the reading would have been 
4-9”, and since in our experiments we should not base any conclu- 
sions on a difference of 0°3”, it is clear that the amount of dis- 
crepancy between the observed and the calculated outflow is not of 
an amount to influence the trustworthiness of our conclusions. 

But the best proof of the trustworthiness of the apparatus was 
obtained by comparing the readings of the potometer, obtained 
from a transpiring branch placed under varying conditions of 
atmospheric humidity, with the readings of a psychrometer. 
It is known that the amount of water absorbed by a cut branch 
varies inversely with the variations in the relative humidity. of 
the atmosphere when the temperature remains constant*. It is 
clear therefore that the readings of the potometer should bear 
a certain ratio to those of the wet and dry bulb thermometer. 
The plant used was a branch of Portugal laurel, the twigs being 
somewhat altered in position by tying so as to give the whole 
a convenient form for being placed under a bell-jar. The branch 
was passed through a cork fitting into a horizontal plate of glass 
on which the bell-glass could be placed so that the plant and the 
thermometer could be exposed to a moist atmosphere, the humidity 

* ©. Eder, ‘‘ Untersuchungen iiber die Ausscheidung von Wasserdampf bei den 
Pflanzen.” Sitz. der k. Akad. der Wiss. 3. Wien, Bd. 72, Oct. 1875. 
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of which could be varied by raising one edge of the jar. When 
the results calculated from the potometer and psychrometer read- 
ings, under these circumstances, were represented graphically, it 
was found that the two curves were strikingly similar. 

Precautions. 

Sachs* has pointed out that the amount of water absorbed by 
cut branches suffers a gradual diminution so that long-continued 
observations are not trustworthy. But since our results chiefly 
depend on sudden changes in the rates of absorption, changes 
which are made evident in a few minutes, we are not inclined 
to believe that this diminution introduces any serious error into 
our results. For similar reasons we have not thought it necessary 
to give the readings of the psychrometer which were noted in 
nearly all cases. 

Another phenomenon which occurs when a cut branch is placed 
in the potometer must be noticed, since, unless regard is had to it 
in experimenting, serious errors must arise. When a branch (e.g. 
of Portugal laurel) is cut, and fitted into the potometer, the 
readings are at first very high but rapidly sink, until after an hour 
or so they reach approximate constancy. The following is an 
example : 

Sept. 16,1884. Portugal laurel (Prunus lusitanica) cut under 
water and at once fixed in the potometer: 

p-m. rate 

Sales 2Os 
43...|...208 
DORE low 
OV. emeeed 05)) 

ler Bape laned les 
ORM sel avs 87 
SNe are 76 
oo Gearael ae 80 

During this experiment the air was becoming somewhat 
damper, which would slightly increase the fall in the rate of 
absorption. 

§ 3. On Dufour’s experiments. 

The rival theories of water transport, i.e. the imbibition and 
the “intracavital” theory, have been tested by Dufour in a paper 
published in Sach’s Arbedten, 1884. If Dufour is right, the intra- 

* Flora, 1856. 
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cavital theory of water-transmission must be condemned. It is 
therefore of importance to test the validity of his results. The 
Essay consists of several sections—we shall first deal experimen- 
tally with one of these. 

Dufour made a series of experiments in which two incisions 
were made on two opposite sides of a branch and at a short 
distance apart, as shown in fig. 2 or 7. If the incisions reach the 
centre of the branch the continuity of all vessels must be broken. 
Branches thus treated were tested as regards their power of trans- 
mitting the water of transpiration, and also as to their power of 

transmitting a current of water forced in under pressure. 
He was able to show that a transpiring branch which had been 

“doubly sawn*” can transmit a sufficient amount of water to 
prevent the withering of the leaves; but that when the branch is 
cut off above and below the double saw-cuts and it is attempted to 
force water through the branch it is found that the current cannot 
pass the double cuts. 

From this it is argued that the transpiration-stream which can 
pass the double cuts must be of a different nature to the filtration- 
stream (the stream travelling in the cavities of the elements 
under pressure) which cannot pass this part of the branch. That 
is to say, that the argument leads up to the belief that the stream 
of water travelling in a transpiring branch does not travel in the 
cavities of the wood elements. That it travels as water of imbibi- 
tion in the cell-walls seems the only other theory which suggests 
itself. 

We believe that Dufour is wrong in two points: 
(i) He has not realised how great is the obstruction to the 

transpiration-current produced by double-sawing. 
(ii) He has exaggerated the difficulty of forcing water through 

a doubly-sawn branch. We believe when the transpiration-stream 
and the filtration-stream are properly estimated, that they will be 
seen to be equally transmissible through a doubly-sawn branch. 

We proceed to the experimental proof of these statements. 

$4. I. Estimation of the transpiration-stream in doubly-sawn 
branches. 

In the paper already referred to+ it has been shown that in 
the case of Portugal laurel, double-sawing may produce a great 
effect. The fall in the rate of absorption was from 100 to 3:2}. 

* i.e. sawn as shown in figs 2 and 7. 
+ Francis Darwin in Nature, May 1, 1884. 
+ The cuts were 4 inch apart. 
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Kohl has afterwards made a similar experiment with Pinus*. The 
following series.are of the same character : 

Exp. 1. July 23, 1884. Portugal laurel (Prunus lusitanica). 

Time | Rate 
a.m. 

11-40 | 81 
Less 

6 | 83 
IIL) te . 

(i) 13 | Sawed half through 7 
14 | 68 
S| 749) 
LOR 6 
25 | 76 

(1i) 27 | Sawed opposite to (i) and 2 em. above it 
39 | 7 

LEO EG 
3°23 | 27 

This experiment shows two points. 

(i) A single cut produces no very great diminution in the 
rate of absorption, whereas the second cut produces a great fall. 

(ii) After the first cut the diminished rate of absorption 
begins at once to rise. The great diminution due to the second 
saw is also temporary, and a slow recovery takes place. 

Exp. 2. August 1, 1884, Portugal laurel. 

Time | Rate 
p-m. 

4°25 | 53 
4°31 | 53 

(i) Sawed half through 
4°33 | 47 

39 | 48 
(ii) 40  Sawed opposite to (i) and 2 em. above it 

AN ail 
57 | 13 

5°20 | 16 
6-9 | 22 

* Bot. Zeitung, 1885. 
+ The sawings were in all cases made at a fair distance, i.e. 10 to 15 cm. from 

the cut end of the branch. 
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It will be seen that the amount of effect in Exp. 2 is not so 
great as in Exp. 1. The variability is due as we believe chiefly 
to the difficulty of making the two saw-incisions exactly opposite. 
In the following experiment the incisions were carefully made, 
and we believed at the time that the whole of the vessels in the 
cross section were severed. 

Exp, 3. July 27, 1885. 

p-m. | Rate 

5:26 | 84-7 
(i) 29 Sawed half through 

31 | 80:0 
48 | 78:1 | 

(ii) 52 Sawed half through opposite to (1) 
54 | 29-4 

It was found afterwards upon careful examination that the 
saw-cuts were not however exactly opposite, and that therefore 
a very small strip of tissue remained unsevered. This no doubt 
accounted for the somewhat slight effect produced by double 
sawing. 

We therefore determined to make the incisions so deep as to 
preclude this kind of error. The following experiment shows the 
great effect of slightly deepening the saw-cuts. 

Exp. 4. July 31,1885. Portugal laurel. : 

Time | Rate 

a.m. 

Oras | Byeil 

(i) Sawed half through 

115k | 78-1 
7 86-9 

(i1) 10. Sawed half through opposite to (1) 
13 56:2 
IG |) B88 

The incisions* seemed only just to include the whoie section 
and certainly did not overlap. They were therefore both deepened 
to 5mm. (the branch being 8mm. in diameter). The rate of 
absorption immediately fell enormously. 

a.m. | Rate 

11:22 | 64 

* Incisions 5°5 cm. and 7:5 cm. respectively from the cut surface. 
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The following experiment giv 

BXe. 5. 

Time 

12-29 
43 
1-4 

Aug. 12. 

On the transpiration-stream in cut branches. 

es similar results: 

Portugal laurel cut August 11, 1885. 

Rate 

82-0 
83°3 
82:0 

B41 

(i) Sawed through {5 

the cut end: 
Weis} 

15 

of diameter (13 mm.) at 13 em. from 

oes) 
76°9 

(ii) Sawed 4 mm. deep opposite to, and 2 cm. above (i): 

A Sei GS:5 
20 | 72°5 

(iii) Deepened (ii) to 6 mm.,, i.e. 7% of diameter : 

Wena |) ake) 
ZOm el oO 

(iv) Deepened both (i) and (1) to 8 mm., 58; diameter : 

1:33 | 14-0 

The following examples show that when the two incisions un- 
doubtedly overlap, the fall in rate after the second incision is great: 

Portugal laurel cut from the tree on July 28, 1885. 

Exp. 6. July 31. 
am. | Rate 

Sie GO 
59 | 156-3 

Weg) I Was ier/ 

(i) Sawed through ;3, of diameter” : 

a.m. | Rate 

yeilay |) Beg) 
NB) Oa. 

(i1) Sawed through 5°, of diameter opposite (i) : 

12:23 | 6°9 
Si ose 

Exe. 7. Portugal laurel cut from the tree August 11, 1885. 

August 12. Rate 

90°9 

p-m. 

12:48 

* Incisions at 8 and 10 cm. from the cut surface. 
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(i) Cut through 4 of diameter : 

12°54 | 90-9 
55 | 90:9 

(ii) Increased the cut to +2 diameter : 

IWBNK | Hes 
LP So) 

(iii) Cut through 58 diameter*, opposite (ii) : 

Ll | 537 
30 | 59 

Other examples will be given later, when the sources of error 
in the experiments are discussed. 

Exp. 8. Beech (Fagus sylvatica). Aug. 13, 1884. 
p-m. Rate 

4:28 | 91 
36 | 91 

(i) 38  Sawed through half 
39 | 85 
46 | 86 

(ii) 48 Sawed half through, opposite and 2 cm. 
above (i) 

50 | 26 
5:3 | 37 
15 | 43 

The experiment shows: the small effect of the first cut; the 
larger effect of the second; slow and partial recovery after the 
second cut. 

Exe. 9. Ivy (Hedera helix). Aug. 16, 1884 Here the cuts 
were made at 22 and 24 cm. from the base of the branch, and 
26 and 28 em. from the first side branch. 

p-m. | Rate 

|| (333 
Helly 

(i) be Sawed nearly half (,) through . 

23 | 43 
38 | 56 

(11) 39 | Sawed 2 cm. higher up, and opposite 
(i); more than half (,2-) through 

45 | 10 
6:53 | 10 

In this case there was partial recovery after the first cut, but 
no signs of it after the second. 

* Diameter of branch 15 mm. Incisions at 14 and 16 cm. from the cut end. 
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Exp. 10. <A branch of Sycamore (Acer Pseudo-platanus) (cut 
under water) was mounted in the potometer and gave the 
following readings : 

August 7, 1885. p-m. 

419 
28 

(i) 35 

36 
42 

(ii) 44 

48 

Sawed through 55, of diameter at 13 cm. 
from the base 

Tl 
54. 
Sawed through 5% 

cm. above it 

opposite (i) and 2 

7 

In another observation upon this plant the depression caused 
by the double sawing was not so great; the rate after the operation 
being + of the original rate. 

Exe. 11. Elder (Sambucus nigra) cut under water, Aug. 17,1885. 

p.m. 

(ii) 46 

48 

Exp. 12. 
water, Aug. 13, 1884, 

Horse-chestnut 

Rate 

Sawed through ;® of diameter at 13 em. 
from the base 

94 
96 
Sawed through 5% diameter opposite 

to (i) and 2 cm, above it 
54 

(disculus hippocastanum*) cut under 

Rate 

il 
Sawed half through 

Second saw opposite and about 2 cm. 
from (i) 

9 

* Other experiments with Horse-chestnut do not give the same amount of falling 
off in rate of absorption. Thus in one instance the fall was from 71, before the first 
saw-cut, to 27 after the second saw-cut. 
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Here the first cut diminished the rate by about 30°/,; the 
immediate effect of the second cut being a diminution of 77°/.. 
Partial recovery occurred after the first sawing, but no signs of 
recovery were seen after the second. 

In a plant such as the Jerusalem Artichoke (Helianthus 
tuberosus) where the vessels take a larger share in the vascular 
bundle than they do in woody plants, the effect of the two cuts is 
greater still, that of the second cut being very strongly marked. 

Exp. 13. Aug. 15, 1884. Jerusalem Artichokes (cut under 
water). 

p.m. | Rate 

5-49 | 143 
Don ab28 
58 | 128 
6-1 | Cut half through 
Salo 
7 | 58 
S) i) xs 

10 | Cut half through opposite, 2 cm. above 
6:30 | 2 (about) 

The reading after the second cut was difficult to take, the 
bubble took about 10 minutes instead of 17:2”. But whether 
or not it is accurately represented in the column of reciprocals 
by the figure 2, there is no doubt that the effect of the second cut 
was enormous as compared with the first. 

The same thing is shown in the following experiment : 

Exp. 14. Aug. 15, 1884. Jerusalem Artichoke (cut under 
water). 

p.m. | Rate 

4-55 | 116 
De a | IOUS 

4 Cut half through 
Hoh 
6 | 98 
9 | 104 

17 | 104 
18 | Cut opposite, 2 em. above 

about 30 | 2 (about) 

The effect of the first cut is small, and is followed by partial 
recovery, while the second cut produces a comparatively enormous 
effect. 
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It is interesting to compare the results in the last two experi- 
ments with the effect of double cuts on gymnosperms. 

Exp. 15. Aug. 14, 1884. Scotch fir (Pinus sylvestris), (cut 
under water). 

a.m. | Rate 

DOF a3 
| 
9 | 50 

17 | 49 
22 | 48 
De AN Mi 
29 | 47 

(1) 32 | Sawed half through 
34 | 45 
35 | 48 
39 | 47 
45 | 47 
54 | 47 
m. | 

es 88) 
(ii) 2 | Sawed opposite to (i) and 2 cm. higher 

5 | 45 
7 | 45 

12 | 46 
19 | 46 

Here neither the effect of first nor second cuts is at all marked, 
but in another experiment the effect was greater. 

Exp. 16. Pinus sylvestris, cut under water. 

Time | Rate 

3°3 | 64 
(i) 5 | Sawed through ,;°,, of diameter* 

7 | 60 
OM Gik 

(11) 21 | Sawed through ,°,, opposite to and 2em. 

above (i) 

28 | 34 
H 

In two other experiments the effect of doubling sawing was 
to cause a depression represented by 100 to 50, and 100 to 33. 

With Yew (Taxus baccata) the effect is also somewhat variable. 

* Diameter of branch 16 mm., incisions 13 and 15 em. from cut end. 
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Aug. 11, 1884: 

Rate 

177 

195 
Sawed more than half through 

190 
189 
195 
197 
204 
209 
Sawed opposite to (i) 1} cm. above it 
oy 
167 
153 
172 
187 

Here the first cut produces a small effect, the second cut a 
greater one. The experiment is somewhat injured by the fact of the 
amount of absorption being on the increase during the experiment. 

Exp. 18. Yew. 

Aug. 18. p-m. 

(i) 48 

(ii) 58 

7 

Cut from the tree Aug. 17, 1885. 
Rate 

21:0 
21:0 
Cut through ;°, of diameter 
21:0 
21°6 
Cut through ;°, of diameter* opposite 

(i) and 2 cm. higher 
20°6 
21°3 

Here (in Exp. 18) the double sawing produced practically no 
diminution in the rate of absorption. 

Exp. 19. 

Aug. 18,1885. p.m. 
12°37 

(ii) 5 

27 

Rate 

40:0 
36°5 
Cut through $ of diameter 
SOn0e) a 
35:2 
Cut through 4 the diameter opposite 

(i) and 2 em. higher up 
33°3 
30°9 

* Diameter of branch 16 mm., incisions 13 and 15 cm. from cut end. 
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If the result be graphically represented, it will be seen that 
the incisions make practically no difference in the gradual fall per- 
ceptible in the rate of absorption. 

In another experiment the results were as follows: 
The first cut produced no slowing, but a slight quickening of 

the rate. The second cut produced a slowing represented by 100 
to 91°5. 

Lastly, in another experiment the amount of slowing was 
100 to 96. 

The following is an abstract of the above potometer experi- 
ments. The figures given represent the amount of slowing 
produced by double sawing. The rate before sawing being taken 
as 100*. 

Hortugal laurel ......... 100 to 8-2 Pinus sylvestris...... 100 to 96 

20°8 50°'8 
6-2 50 

13-4 33 

4-4. Taxus baccata ............ 72°8 
6:6 | 95:5 

Regeln’ 3 eee eee 28:6 | 89:2 
IW ovcecebale Nomen ace eee 159 91°5 
‘S\/CRITNO) ees ee een iil e7 96:0 

33-0 

TRIGA near eae eee 5:0 

ISL (CHGS A tht ie 38-0 
18:3 

Helianthus tuberosus . 1:6 
Tee 

PAV OTAGO) oo eta siveceees 100 to 14:2 Average 100 to 74:9 

Average of trees ex- ; 
cluding Helianthus’ 100 to 16-1 

The different results obtained, in most cases, with Gymnosperms 
as compared with Angiosperms will be discussed later on. 

Effects of double sawing estimated by weights of water 
- absorbed. 

The following experiments were made with the view of con- 
firming by another method the experiments made with the poto- 
meter. The branches were fixed with their cut ends in water, and 
the amounts of water absorbed in a given time were estimated by 
weighing the vessels at regular intervals. The branches were then 

* Where the rate increased after the first cut owing to the air becoming drier, 
&e. &e., the rate after the first cut is taken as 100. 

WO, We EM we 24 
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sawn half through, first at one place, then at a second opposite 
point 2 cm. above the first, and the amounts of water absorbed 
by them (1) after one cut, (11) after being “doubly sawn” were 
estimated. 

The experiments were made on branches cf Portugal laurel of 
various sizes. 

Exp. 20. 

| Branch | Branch | Branch | Branch 
| DAA: C. 102 

Diameter of branch in mm. 1S aa iL ih 14 

Distance of lower, first sawn cut from 13 13-5. aie 13 
the end, in cm. 

Distance between lower and upper 9 9 9 9 
cuts in cm. 

Depth of lower cut in mm. 9 8 6 8 

Depth of upper cut in mm. 8 a) 6 85 

Weight of water in gramms absorbed 
during the first half-hour after) 2°38 | 1-62 | 0-97 |. 2:3 
fixing 

Weight of water absorbed during 
second half-hour after fixing 

Weight of water absorbed during 
half-hour interval between first | 2°23 | 1:23 | 0-83 | 1:93 
and second eutting 

Weight of water absorbed during 
half-hour after second cutting 0°35 | 0-45 | 0:26 | 0-45 

Weight of water absorbed per half- 
hour during second and third half-| 0:43 | 0°60 | 0:32 | 0:59 
hours after second cutting — 

It will be seen in all four cases that the first cut produced 
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little effect, while the second cut produced a great depression 
followed by slight amount of recovery. 

In the second series of experiments, also made on Portugal 
laurel, both the sawings were made at one time. It will be seen 
that here again a considerable diminution in the absorption of 
water occurred, followed by a certain amount of recovery. 

The case of branch H is instructive; the two saw cuts were 
not made either quite parallel or quite deep enough, so that they 
did not completely overlap, consequently the effect of the double 
sawing was much less than in the other cases. 

Axe, 21. 

| 
| Branch | Branch | Branch | Branch 

EK. F. G. 181. 

| | | | 
— i — | | 

Diameter of branch in mm. Pe Mise ellee) 15 Ui 

Distance of lower from the end in cm. 19 15) 3) ohh Seay 

Distance between lower and upper cuts 
: 2 2 2 2 
in em. 

| 

Depth of lower cut in mm. 9 SH, 9) 8 

Depth of upper cut in mm. i) 8 Ob (je 

Weight of water in gramms absorbed | 
during one hour after fixing 

Weight of water absorbed during 0-91 | 
1 hour after double sawing | | 

Weight of water absorbed per hour | | 
during next 17 hours, chiefly at | 1:12 | 0-68 | 1-12 | 2°16 
night | | 

| 

Before discussing the experiments, a possible source of error 
connected with them must be pointed out. It is clear that the 
action of the potometer depends on the apparatus being air- 

«Not parallel and therefore not across. 

24-9 
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tight. Ifa flaw were to exist in the india-rubber tubing it is 
evident that the air would be drawn in through it instead of water 
being drawn up through the thermometer tube. It may be sup- 
posed therefore that if an incision is made into the vessels of the 
plant the result would be the same, and no readings would be 
obtainable since the apparatus would no longer be air-tight. The 
following experiment shows that this result may actually occur. 
A branch of Acacia (Robinia) was cut under water and fitted into 
the potometer. The branch was cut half through, and after a 
minute or two a chain of bubbles was seen rushing into the poto- 
meter from the cut end of the branch, and no reading could be 
taken since no water was being drawn through the thermometer 
tube. On another occasion the same thing was observed, as shown 
in the following table: 

LOGE, IE, 
p.m. | Rate 

1G | eA 
1S lcs 

(i) A nick was cut down the pith: 

18) | © 

The cut was rubbed with lard: 

ale | zee 

Branch sawed 4 through opposite (i) and 2 cm. lower 
down ; the place being covered with lard : 

30 | 49 
Exp. 22 also shows that a great depression follows the second 

incision, even when leakage of air is prevented by using lard. 

Robinia was the only plant met with in which a single cut 
reduced the rate of absorption to zero. And it is certain that in 
the other plants experimented on, the great diminution observable 
after the second cut was not due to leakage of air into the appa- 
ratus. If this had been the case it is clear that the great fall in 
rate of absorption would have occurred when the first mcision was 
made; or at any rate the falls in rate caused by the first and 
second cuts would have been equal. But this was not the case. 
The fact that recovery, i.e. an increase in the rate of absorption, 
usually follows the depression caused by double sawing, is a further 
proof that leakage is not the cause of the depression. In the case 
of Portugal laurel the following results show clearly that the kind 
of leakage which occurs in Robinia has no share in depressing the 
rate of absorption; and this might have been inferred from the 
fact that the wood consists chiefly of tracheids. 
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Exp. 23. Portugal laurel cut from tree, Aug. 13, 1885. 

a.m. | Rate 

2939-0 
43 | 38°8 

(i) Sawed half through*: 

48 | 36:2 
5d | 36:4 

12. 8 | 36-2 

(ii) Sawed half through at right angles to (i), leaving quarter 
of original transverse section intact : 

m. 
LO | 338 

25 | 36:0 

(ii1) Sawed so as to leave ith intact : 

p-m. | Rate 

UDO) |) Oar 
AS ool 

(iv) Sawed so as to leave ;),th: 

1247 28-6 
I Oo) BO 

(v) Made a tangential cut so as to reduce the bridge of wood 
through which the current passes to a piece measuring 
2 mm. tangentially by 1 mm. radially : 

Ue 4) PALS 
12 | 22°8 

Thus the sectional area of the wood was reduced from 91 
square mm. to 2 square mm., while the current was only reduced 
from a velocity of 39 to 22°8,1.e. from 100 to 58°5. It is clear 
therefore that if the leakage of air could depress the rate of ab- 
sorption, that so deep a section must have produced serious 
depression. But it will be seen from the rest of the experiment 
here given that a serious depression only occurred when a small 
incision 2 mm. in depth was made on the opposite side to the above 
described deep cut. 

EXP. 23 (continued). 
Rate 

22°8 

Time 

1.12 

(vi) Made a cut 16 cm. above and opposite to (v), to the 
depth of 2 mm. 

16 
19 

* At 14 cm. from the cut end of the branch. The branch was 13°5 mm. in 
diameter. Saw (i) was 7 mm. deep. 

2 
2 

1g) 
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(vii) Cut 2mm. deep, 8 em. above and opposite to (v) : 

ed | U)SS) 
Zhe? 

(viii) Cut 2 mm. deep, 4 em. above and opposite to (v) : 

30 | 14:3 
(ix) Cut 2 mm. deep, 1 cm. above and opposite to (v) : 

35 | 7:9 
Thus the large incision described in the first part of Exp. 23 

only reduced the rate from 39 to 22:8, while by sawing to the 
depth of 2mm. at several places on the opposite side the rate of 
absorption was reduced from 22°8 to 79. 

Finally it may be pointed out that by a simple experiment 
it can be shown that the leakage in question does not take place 
even insuch vascular plants as the Jerusalem artichoke (Helianthus 
tuberosus). 

Exp. 24. A Portugal laurel was placed in the potometer and 
gave the readings: 

Time | Rate 

4,44 | 49-0 

52 | 49°3 

The india-rubber cork (e, fig. 1) was removed and a piece of 
Helianthus stem, cut square at both ends, fixed with india-rubber 
tubing so as to act asacork. If it were to act as a leaking cork 
the rate ought to fall. But the following readings show practically 
no fall: 

Time | Rate 

5.0 | O18 
24 | 40:3 

The india-rubber cork was then replaced with the result : 

Time | Rate 

5.35 | 40-0 
43 | 38:0 

The laurel was then removed and the piece of Helianthus fixed 
in the potometer, not as a cork but as the transpiring plant, to 
ascertain what rate of absorption could be produced by the evapo- 
ration of its free cut end: 

Time | Rate 

5.09 | 1:4 

* At first 26 cm. in length then after a few minutes reduced to 13°5 cm. 
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so that it is evident that when it was acting as a cork it was not 
adding materially to the water absorbed, and therefore did not 
interfere with the reading given by the Portugal laurel. 

Conclusions as to Dufour’s Experiments. 

We may safely conclude from the result of the above experiments 
that the effect of double sawing on the transpiration-stream of 
angiosperms is great. And we can by no means agree with 
Dufour’s statement, that the difference in absorbing power between 
normal and doubly-sawn branches is “at first only slight *”. 
Dufour only gives three experiments in which the amounts ab- 
sorbed by sawn and not sawn branches are compared. In two of 
these the difference is certainly slight (126: 124, and 52: 41) 
at first; but even in these the difference mounts up so that on 
the last day of the experiment the intact branch absorbed 97 ce. 
while the sawn one absorbed 2 cc. 

§ 5. Estimation of the effect of “double sawing” on branches 
through which a current of water is drawn by means of a 
pump, &c. 

The method employed was as follows : 
A branch is fixed by its upper end to a thick india-rubber pipe 

(a fig. 2) connecting it to a water air-pump, the other end of the 
branch being fixed to the potometer b. A slight suction of 
the pump causes a rapid current of water through the branch, 
the rate being read by the potometer. The branch is then sawed 
at c and d and the effect on the reading of the potometer 
noted. 

Exp. 25. Aug. 13,1884. A branch of Portugal laurel 658 mm. 
in length was cut between 9 and 10 in the morning, was kept 
damp until it could be immersed in water in the laboratory, 
ie. about half an hour after it had been cut from the tree. It 
was fitted to the Sprengel pump (at 11.13 A.M.) in such a way 
that the current of water was drawn through in a_ natural 
direction, i.e. from the basal to the apical end. The sucking power 
was about 10 cm. of mercury. 

Time | Rate 

12.0% | 125-0 
Sawed half through at 27 cm. from the base. 

2 | 83:3 
33 | 78:1 
37 Sawed half through on the opposite side at 

25 cm. from the base. 
42 | 34-7 

* Sach’s Arbeiten, p. 50. 
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Exp. 26. Aug. 14, 1884. A similar experiment was made 
with a branch of Yew 55 cm. in length. The branch was con- 
nected to the potometer and to the Sprengel pump at 10.7 A.M. 
The sucking force being kept at about 6 to 6°5 cm. of mercury*. 

Time Rate 

10.44 79°3 
10.49-50 | Sawed half through 21 cm. from the base. 
11,26 78:1 

4] 15°2 
43 Sawed opposite half at 184 cm. from base. 
AT 5:7 

12.8 36°4 
46 374 

In the above experiments, the cut end of the branch which 
was not fixed to the potometer was exposed to a rarefied at- 
mosphere in the air-pump tube, and therefore the evaporation of 
this end would cause a slight transpiration current in the wood. 
It was therefore determined to immerse both ends of the branch 
in water; thus the negative pressure from the pump was trans- 
mitted to the wood through a small column of water. 

In some cases a siphon was used instead of a Sprengel pump ; 
this was the case in the following experiment. 

Exp. 27. Aug. 19, 1885. <A branch of Portugal laurel 68 em. 
in length was fixed by its basal end to a potometer, at the other 
end was applied a siphon with a fall of 118 cm. of water. 

Time | Rate 

WAY | petet 
I | 725) 
PAO) NDE 

(i) 21 | Sawed through 5% of diameter, at 
21 cm. from lower end 

DYN Aue 
32 | 46°5 
May We Ae) 

(ii); 37 | Sawed through 5% of diameter oppo- 
site to and 2 cm. from (i) 

42 | 4:5 

Exp. 28. Aug. 20,1885. A Portugal laurel branch 62cm. 
in length was fixed into the potometer, the upper end being 
attached to a siphon haying a fall of 135 cm. of water. 

Time | Rate 

Hole) AGF 
TON A%-6 

* We purposely employed far lower pressures than Dufour used, as they afforded 
readings more comparable with those observed in transpiring branches. 
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(i) Sawed through 5%, of diameter, at 24 em. from base 

18 | 39-2 
29 | 35-1 
40 | 35-1 
43 | 33-9 

(ii) 47 | Sawed through 5% of diameter, oppo- 
site to and 2 em. from (i) 

54 | 5-6 
6515) 9:0 

In both these cases it is clear that the second cuts produce 
great depression in the rates of absorption, though the effect 
produced by the first cut is different in the two cases; in the second 
may be seen the absence of the recovery which occurs in the 
transpiration-stream after incisions have been made. 

In the following experiments, the suction was applied by a 
Sprengel pump to the upper end of the branch, which was 
covered by a few centimeters of water. 

Exp. 29. August 21, 1885. A branch of Sycamore (cut 
under water) about 30 cm. in length was used. The current of 
water was estimated by weighing the amounts of water sucked 
up by the branch in given intervals of time. 

Gramms. 
Intact branch transmitted in half an hour (Suction 

== JETS) HO) WSS) aah. ChE MAROTTA) Gos nee eceace cto ducane 2°14 
After two incisions ;% and 5§,* of diameter, it 

transmitted in half an hour (Suction=18-5 to 
Remit Ol MSL CUI YA nm ee niger ses Rosas neo verntse 0-63 

Exp. 30. Lilac (Syringa). August 21, 1885. <A branch 
59cm. in length, cut under water. 

Gramms. 
Intact branch transmitted in } hr. under a sucking 

force Of lGvemMotemencuiygn ie janes oe eee 2°75 
After two incisions had been made, it transmitted 

ory inte anes elmer as Mrs cease dee eeu iecees (0:28 
The incisions (2 cm. apart) were each 54, of diameter, 

and were at 23 cm. and 25 cm. from the base. 

Exp. 31. Sycamore, cut under water, Aug. 24, 1885. 

Gramms. 
Intact branch transmitted per half hour under a 

sucking force of 17 cm. of mercury ............... 6°59 
After two incisions had been made it transmitted, 

Per Mali hourmestovteen sce Seiad. des aeons 0:23 

* 13:5 em. and 15 cm. from the base. 
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The incisions were sawn at 17 cm. and 19 cm. from the base on 
opposite sides, and to the depth of over half the diameter. 

It will be seen that there is a general resemblance between 
the effects obtained with the pump and those obtained when the 

- transpiring branch supplies the force, though the effect would 
seem to be greater in the pump-experiments. Thus in both-we 
get a depression in rate when the first cut is made and a much 
greater depression following the second incision. 

§ 6. Discussion on a point of difference between the pump and 
transpiration-results. 

In the pump—or siphon—experiments no recovery takes place 
after the depression. ‘This is exactly what we should expect—the 
force exercised by a pump is constant; whereas the force exercised 
by the transpiring plant can increase when anything occurs to block 
the passage of the stream. As soon as the current of water is 
diminished, the transpiration of the leaves will begin to empty 
the xylem elements of water, and this will necessarily increase the 
sucking power and will increase the current through the blocked 
place. This effect may be clearly seen in cases such as Sachs has 
described where the absorbing power of a cut branch has been 
lessened by lengthened immersion in water. If a fresh surface 
is cut and the branch quickly fitted into the potometer the current 
will be found to be extremely rapid. It is found that this quick 
rate of absorption is not permanent but is rapidly falling. 

Exp. 32. A branch of Portugal laurel which had become 
very dirty at the cut end, and which was absorbing water slowly, 
gave the following readings: 

July 24, 1884. Time | Rate 

4.27 | 28-6 
HW | Brees 

A clear surface was cut and the branch refitted to the apparatus : 

5.18 333 
184 | 333 
UB) 223 
32, 161 

The same result may be obtained if a branch is cut off above 
the place where two opposite incisions have been made, and this 
shows once more that the double sawing of a branch acts as a 
serious block to the transpiration-stream. 
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Exp. 33. Aug. 25,1885. Portugal laurel. 

Time | Rate 

1.5 | 61 
BY, (09) 

2.40 Sawn more than half through on 

opposite sides, at 2 em. apart 
2.50 | 16 
Sail | 19 
5.16 | 27 

Branches severed above the double saw-incisions, and remounted: 

5.20 | 137 
24 | 143 
30 | 93 
40 | 67 
47 | 69 

Exp. 34. Another experiment on Portugal laurel may be 
quoted, which confirms the last. 

Aug. 25, 1885. Time | Rate 

2.42 | 83 
45 | Branch sawn more than half through 

at 2 cm, apart on opposite sides 
2 als) 

Se! lize) 
5.29 | 32 

35 | Cut off 14:5 em. above the upper 
incision, and remounted 

38 | 182 
48 | 116 
ONE a6 

Gsm leis 

Lastly the same thing was proved by weighing the amounts 
of water absorbed in given times. 

Exp. 35. Two branches of Portugal laurel which had been 
doubly sawn on the previous day, and had remained in this con- 
dition all night, were severed above the double saw-cuts, and were 
again allowed to absorb water by this new surface. 
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Plant 1. Plant ii. 
Gramms. | Gramms. 

Weight of water absorbed during one hour before “31 2°85 
the branches were doubly sawn 

Weight of water absorbed during one hour after 
sawing 

0-91 0°83 

Weight of water absorbed during one hour after 
the branch had been cut off above the | 6-86 4-9] 
saw cuts 

It will be seen that the difference pointed out between the 
transpiration- and filtration-streams is quite in accordance with 
the intracellular theory of water transport, though it may also 
perhaps be consistent with what we know of imbibition. 

§ 7. Experiments with solution of eosin and with water containing 
coloured particles im suspension. 

The adherents of the inbibition theory naturally look with 
suspicion on experiments made with coloured fluids, but to others 
they are not without interest. 

If a transpiring branch be placed in a solution of eosin, the 
colour as is well known gradually spreads over the whole speci- 
men, so that the leaves become discoloured and the wood of the 
smallest twigs shows a bright pink colour. But if the branch 
has been doubly sawn before it is placed in the eosin a very 
characteristic appearance is produced. Fig. 3 is a diagram re- 
presenting the appearance of such a branch. Above the “double 
saws” the colour shows in two narrow strips running close behind 
the uppermost saw-cuts, that on the side nearer to the observer 
being shown at a. Below the two saw-cuts is a strip of tissue b 
corresponding to a; this spreads out until lower down at a point not 
shown in the diagram the whole branch has become coloured. 
Between the saw-cuts is a belt of colour marked by a horizontal 
arrow which unites the streams a and b. 

The more usual appearance is shown in fig. 4 where the colour 
is fairly spread over the whole surface of the branch below the 
lower cut, but where above the upper saw-cut the two strips a, a, 
are seen. In a transverse section these two streams may be seen 
as two wedge-shaped areas of colour. 

The course of the stream may also be shown in another way. 
If the cut end of a transpiring branch be immersed in water 
containing coloured particles in suspension, the cut surface rapidly 
assumes a bright tint of the colour employed. 
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If the branch has been previously “double-sawn” it will not 
(at least at first) be uniformly coloured, but will show two some- 
what wedge-shaped patches of colour each of which corresponding 
in position to one of the lines of colour in figs. 3 and 4. These are 
shown in fig. 5. It will be seen that one side of the wedge verti- 
cally below the inner edge of the lower saw-cut is sharply defined, 
while the other edge is feathered. This shows that the suction 
is strongest where the stream passes by the edge of the saw- 
cut, and gets weaker along radii further removed from this point. 

The chief point of interest connected with this subject is that 
similar appearances can be produced by forcing eosin solution 
through doubly sawn-branches; it is impossible to distinguish 
such a specimen from a transpiring branch which has been doubly 
sawn and placed in eosin. The wedge-shaped patches of colour, 
with one feathery edge, as seen in fig. 5, may also be produced 
by attaching a double sawn branch to a pump while the other end 
is in a mixture of carmine and water. 

§ 8. Conclusion on Dufour’s Experiments. 

We have not enough data to criticise Dufour’s paper. Elfving* 
and Scheit- have pointed out a possible source of error from the 
effect of air on the cut ends of the branch. We have shown the 
importance of great care in making the saw-cuts; it is easy (even 
without carelessness) to leave a small region of transverse section 
unsevered, and we have shown how readily a current may be 
conveyed over a very narrow bridge of wood. Both these sources 
of error may have contributed, in different. ways, to leading Dufour 
to an untenable result. That it is untenable the following re- 
capitulation of our results seem to prove. 

I. Double sawing does produce a great depression in the rate 
of absorption. No one who will make a single careful potometer 
experiment (with an Angiosperm) will be able to doubt it for a 
moment. 

II. Double sawing does not absolutely interrupt the filtration 
currentt. 

[Absolute stoppage of the current is required for Dufour’s 
argument, since the withering experiments which are coordinated 
with the pressure experiments in the argument give no quantitative 
record of the amounts of water passing by the saw-cuts. | 

III. Double sawing produces a depression in the filtration 
current similar to, though possibly greater than, the depression 
caused in the transpiration current. 

* Bot. Zeitung, 1884, No. 13. + Acta Soc. Fennice, t. xtv. 1884. 
+ Scheit has shown this fact, loe. cit. 
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IV. The experiments with coloured fluids tend to confirm our 
belief in the similarity between the transpiration and filtration 
streams, 

We have hitherto considered our results chiefly with reference 
to Dufour’s experiments. We will now discuss them in a more 
general manner. 

An imbibitionist might argue that since the normal direction 
of the stream in wood is longitudinal, it naturally cannot be 
transmitted by imbibition so easily in a transverse direction. We 
have too little experimental knowledge of the nature of imbi- 
bition to enable us to criticise this argument on general grounds. 
But our experiments do yield an argument against the view in 
question, though not one of great value. 

We have shown that on the average the depression in the rate 
of absorption is considerably greater in Angiosperms than in 
Gymnosperms. This at least seems to be true for Taxus as com- 
pared with Angiosperms: the results obtained with Pinus being 
possibly too discordant to be trusted. If on general principles it 
is to be assumed that water of imbibition cannot travel easily in 
the transverse direction we must assume it to be true for all kinds 
of wood. There is no reason why it should be applicable to 
Angiosperms and not to Gymnosperms. ‘Therefore “double saw- 
ing” ought according to the imbibitionists to produce the same 
effect on Gymnosperms as on other trees—and this is not the 
case. But it must be added that we are not able quite clearly 
to explain the difference in question by any theory of water- 
transport. 

It is clear, since double sawing destroys the vessels as 
carriers of water, that therefore the operation in vascular plants 
is equivalent to destruction of a large part of the water-channels. 
And these channels are of large bore and without transverse 
divisions, in other words the destroyed channels are those best 
fitted for longitudinal transmission. But in wood made up of 
tracheids as is that of Gymnosperms, this destruction of part of 
the water-course does not take place. 

But it may be said that our experiments in which a single 
deep cut was made, show that the destruction of a very great 
part of the water-channel does not seriously depress the rate. 
Hence it may be argued that the chief cause of the depression 
in the double sawing experiments, is rather to be sought in the 
fact that the current has to travel transversely than in the fact 
that it has a diminished amount of tissue to travel in. 

But the above-mentioned remarkable fact (Exp. 23) that a 
deep single cut does not seriously depress the rate shows that 
transverse transmission is easily effected if there is given a suf- 
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ficient length of branch in which transverse diffusion of the 
current may be effected. In other words the current can flow 
across the branch if the obliquity of flow imposed on it is slight. 

The following experiments bear on this point: 

Exp. 36. Portugal laurel. Aug. 14, 1885. 

The first incision I. was at 1l cm. from the cut end. Incisions 
Nos. IL, III, IV., V., VI. were then made successively at distances 
or 10; 8, 6, A, Blom from I., as shown in the diagram, Fig. 6. The 
incisions were 7 mm. deep, the branch being 1 314mm. in diameter. 

Time | Rate 

11.50 | 26 
yak) Ar 
Die ek 

Sawed at I, 

FI. Be 
6 | 25 

Iya) | 245) 

Sawed at 11, 

PAL | Me) 
310) aI Wey 
BD). | Le 

Sawed at Iit, 

SE gy 
3) thts) 

Sawed at Iv, 

Sie pla 
1S OM ells 

setihats) ap ALS) 

Sawed at v, 

Aenea ell 
Om eled 

Sawed at VI, 

4.45 | about 55 

We see that when the branch was sawn on the side opposite to 
the first cut, even though at 10cm. distance, a considerable depres- 
sion occurred. That is to say,a considerable depression was caused 
by the current being forced to travel obliquely. The depression was 
not markedly increased until the obliquity of transmission was 
greatly increased by sawing at 2m. from the first cut. 
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Exp. 37. The following experiments, also on Portugal laurel, 
confirms the above result. The first cut (1.) was at 10cm. from 
the base, IT., III., [V., V. were on the opposite side at distances of 
10, 7, 4, 2 cm. from I. 

Sept. 1, 1885 Time | Rate 

a.m. 
U5 |) Bs 
12.6 34 

Sawed (1), 

Le. | BB 
YO | ase} 

12.25 Sawed (11), 

98 | 15 
51 | 20 
54 | Sawed (111) 
SOM alts, 

1.30 | 16 
32 | Sawed (Iv) 

Sinaia 
AG lle 
49 | Sawed (v) 

56" | 5 

In the following table the amount of diminution in the rate 
of absorption produced by the cuts is expressed as a percentage 
of the rate recorded before each cut was made. 

Number of Incision (See Diagram) TUT 9] 0 veg eave ae 

| Depression produced (Ist Experiment)) 11 | 48 | 0; 5 | 16 | 68 

| Depression produced(2ndExperiment) 6 | 54 | 35 | 31 | 38 

The point in which the experiments confirm each other is that 
the big effects are produced by the second cut, and by the last cut. 
That is to say (i) when the current is thrown across the line of the 
branch, and (ii) when the obliquity reaches the amount produced 
by a distance of two centimeters between the cuts. 

Elfving* has explained the difficulty experienced in forcing 
water under pressure through coniferous wood in a tangential 
direction. The same explanation is applicable to the double 
sawing experiments. Fig. 7 represents a “doubly sawn” branch. 

* Bot. Zeitung, 1882. 
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The current is supposed to flow upwards, and in passing from 
the line ab to cd has to traverse a large number of partitions, 
formed by the longitudinal walls of the elements in which the 
current flows. The longer ac is, i.e. the more the saw-cuts over- 
lap, the greater is the number of such walls and the greater the 
block in the current. Again, the shorter ab is, the fewer will be 
the pits through which the current can find its way; and this 
may account for the facts given in Experiment No. 35, where 
the amount of diminution of the current is shown to be much 
greater when ab is 2 cm. than when it is 10 cm. 

It may be urged that all these arguments apply to wood such 
as that of the Yew, consisting entirely of tracheids, as well as to 
angiosperm wood, and that therefore we ought to have the same 
effect in gymnosperms as 1n angiosperms. 

The tracheids of the Yew are at least 70 or 80 times as long 
as they are broad, so that in travelling transversely the length of 
a single tracheid the water current has to traverse 70 cell walls 
instead of one. So that it is difficult to see why double sawing 
produces so slight an effect in the Yew. It must however be 
remembered that in the case of wood consisting altogether of 
tracheids, a transverse current flows through the same elements 
as a longitudinal current. It still travels from tracheid to tracheid. 
But in angiosperm wood the current when forced to travel trans- 
versely no longer travels in its former elements, since the vessels 
are destroyed as channels, but must travel chiefly in the thick- 
walled (what is more important) scantily pitted wood-cells. So 
that it is unable to travel laterally with any ease unless it has 
a long space to move transversely in. 

On the whole we think that the difference which probably 
exists between angiosperms and the Yew or Scotch Fir is to be 
explained by the fact that after the operation of double sawing the 
only tissues left are badly fitted for transmission, while in the case 
of the Yew or Fir no tissue is rendered incapable of transmission. 
Further experiments would be needed to clear up the point satis- 
factorily. | 

§ 9. Kaxperiments on bending and compressing the tissues of 
transpiring branches. 

Dufour showed that twigs bent sharply on themselves, so that 
the apical and basal halves are parallel, do not wither, nevertheless 
he found that such branches are highly impervious to a stream of 
water under pressure. Hence, as before, he argues that the tran- 
spiration-stream does not flow in the cavities of the elements, for . 
if it did so, it would be hindered in the same way as the filtration- 
stream is blocked by the process of bending. We proceed to show 
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that the transpiration-stream can be hindered by treatment such 
as bending or compressing the branch. 

Exp. 38. Sept. 18, 1884. Bramble (Rubus sp.), cut under 
water. ; 

Time Rate 

1.0 40°8 

bent to an angle of 20° 

3 34°8 
unbent 

4 58°9 

4.6 | 37-0 

bent nearly parallel 

3 29-4 
unbent 

15 50:2 
26 300 Of 

These experiments show that (i) bending does depress the rate 
of absorption ; (ii) when the stem is straightened again, the rate is 
temporarily quickened by the removal of the blocking caused by 
the bend. 

Exp. 38. Continued Sept. 18, 1884. 

Time | Rate 

4.44 | 34-7 

Stem bent twice and tied closely in this position 
52 | 18:5 

unbent 
54 | 57-1 (2) 
56 | 44:6 

5.25 | 32:8 

The bending and straightening were again repeated with 
precisely similar results, viz. :— 

Rate 

32°8 straight 

18:°5 bent 

56°8 straight. 

These results confirm what was stated above. They are plainly 
explicable on the theory that the transpiration-stream travels in the 
cavities of the wood. 

They also confirm Russow’s statements that bending does not 
absolutely stop up the lumen of the vessels. 
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Since bending (even twice) obviously did not seriously diminish 
the lumen of the vessels we tried squeezing the branch with a 
vice *—half the branch being cut away in order that the vice might 
be used more conveniently. 

Exe. 39. Sept. 17, 1884. Bramble. 

Time | Rate 

5.52 | 291 

Vice screwed up tight 

ay) ibell 

Vice slackened 

59 | 35-9 

Vice screwed up 

6.6 | 16-7 

Vice slackened 

6.7 | 43-9 

Exp. 40. Sept. 20, 1884. Helianthus tuberosus. Conditions 
of experiment similar in all respects to those of the last. 

Time | Rate 

5.28 | 45:7 

Vice tightened 

32 | 12-0 

Vice loosened 

30 | 74:6 
Be || Daze 

Here again we get a considerable depression; followed by a 
temporary increase when the block is removed. 

It may be argued by an imbibitionist that the severe pressure 
exercised by the vice may have injured the cell-walls by crushing 
them and thus interfered with their transmitting qualities. 

The fact that the rate recovers when the vice is loosened shows 
that the path of transmission, whatever it may be—cell-wall or 
cavity—is not permanently injured, and it is easier to believe that 
the lumen of a tube might recover its previous size, when the 
pressure is removed, than that a crushed cell-wall should recover 
its original properties. It may be added that the doctrine of im- 
bibition seems to exclude the possibility of pressure affecting the 

* Vesque found that a willow branch could be made to wither by squeezing it in 
a vice (Ann. Sc. Nat. 1884), Kohl has published experiments similar to ours. Bot. 
Zeitung, 1885. 
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water of imbibition. Thus Dufour says: “Als Grundsatz gilt: 
das in Zellwandern imbibirte Wasser ist durch gewohnliche Druck- 
krafte tiberhaupt nicht verschiebbar.” 

It seems to us that the above results of experiments on bending 
and squeezing are only explicable on the theory that the chief 
stream of transpiration is in the cavities and not in the cell-walls. 

We cannot understand the great difficulty found by Dufour in 
forcing water under pressure through bent twigs. In the only 
experiments which we made on this point the difficulty was not 
found to be so great. 

A bramble 213 ¢.m. in length, was cut under water, and was 
fitted to the potometer by its basal end, while the apical end was 
attached to the water air-pump. It was subjected to a suck of 
60 to 65 cm. of mercury and the readings of the potometer taken 
at various pressures. Then the branch was bent in two places, the 
bends being tied as closely as possible. The result was that witha 
pressure of 60 cm. mercury the potometer rate for the unbent 
branch was 45:4; for the bent branch 19°0; or as 

Straight 100 

Bent 41:9 

In another similar experiment the result was greater. The 
branch was 76 c.m. in length: the pressure varied between 29°5 
and 30°5 cm. of mercury. 

Rate 

Before bending 60-9 or 100 
Doubly bent 13°6 22°3 
Straightened 61:3 100°7 

These experiments show the similarity that exists between the 
transpiration and filtration currents, and they can only be explained 
on the supposition that the water of transpiration travels in the 
cavities of the wood-elements. 
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PROCEEDINGS 

OF THE 

Cambridge Philosophical Society. 

February 1, 1886. 

ProFr. Foster, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society : 

M. M. Pattison Muir, M.A., Caius College. 
A. B. Basset, M.A., Trinity College. 
A. H. Evans, M.A., Clare College. 
T. Brill, M.A., St John’s College. 
F.. G. Heathcote, M.A., Trinity College. 
Dr C. Olearski was elected an associate. 

The following communications were made to the Society : 

(1) Ona fall of temperature resulting from an increase in the 
supply of heat. By G. D, Livetne, M.A. 

In the course of some experiments on the formation of ethyl 
iso-cyanide by the action of potassium cyanide on oxalic ether my 
assistant, Mr Robinson, observed that when the gas flame employed 
to heat the oil-bath in which the mixture was digesting was 
turned out the temperature of the mixture rose while that of the 
bath fell. On again heating up the bath the temperature of the 
mixture fell to rise again when the bath cooled. 

The apparatus used was simple. The mixture was placed in a 
flask to the mouth of which was fitted, by means of a cork, a 
reversed condenser, so that any distillate could flow back into the 
flask. Through the cork two thermometers were passed, one dipping 
into the mixture in the flask, the other giving the temperature of 
the vapour above the mixture. The flask was placed in a bath of 
oil, or in later experiments of paraffin, and was held in such a 
position that the level of the oil, or paraffin, outside was the same 
as that of the mixture inside the flask. A third thermometer was 

Vole Vv. PE VI. 26 
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dipped into the oil or paraffin and gave the temperature of the 
bath. The bath was heated by a Bunsen burner beneath it. 

The oxalic ether and the potassium cyanide were mixed in 
proportions intended to correspond to two molecules of the latter to 
one of the former, so as to react according to the following identity, 

(C?H®)C20! + 2K ON = 2C*EEN + K20?04, 
Commercial cyanide was employed, which was afterwards found to 
contain a great deal of carbonate. The effect of this was equivalent 
to having an excess of oxalic ether. 

As the bath was heated all the three thermometers rose gradu- 
ally until that in the paraffin indicated 150°, when the thermo- 
meter in the mixture stood at about 108° and that in the vapour 
at about the same degree. The mixture at this temperature boiled 
rapidly, and the thermometer immersed in it shewed rapid fluctua- 
tions between 90° and 110°, which were no doubt due to convection 
currents, and to the return of the condensed distillate to the flask. 
We seemed to have a substance evaporating which had a boiling 
point not far from 100°. The boiling point of ethyl-cyanide or 
propio-nitrile, one of the two isomers which have the composition 
C*H®N, has been given by different observers at various degrees 
between 82° and 98"5, and it seems probable that the higher 
figure is the more correct. Gautier, using a carefully purified 
sample, found its boiling point to be 96"7 (Bull. de la Soc. Chem. t. 
IX. p. 4). Oxalic ether does not boil below 180°. It is therefore 
most likely that the vapours evolved at this stage consisted prin- 
cipally of propio-nitrile. 

When the heating was continued and the paraffin reached 168° 
the temperature both of the mixture and of the vapour above it 
fell suddenly to 85°, and that of the vapour soon dropped to about 
74°. As long as the temperature of the bath was kept at about 
170° the mixture remained at a temperature between 85° and 90° 
and the vapour at about 74°. 

When the lamp under the bath was now turned out, the 
paraffin of course gradually cooled, and when it had reached 150° 
the mixture had risen to 101° and the vapour to 90°. On again 
heating up the bath the fall in temperature of the mixture and 
vapour was observed to occur as before when the paraffin reached 
168°; and the same phenomena recurred several times when the 
bath was alternately cooled and heated. 

It seems, at first sight, strange that the rise of temperature of 
the bath, and consequent increase in the supply of heat, should 
cause a fall in the temperature of the mixture. But I have no 
doubt that it is due to a difference in the chemical changes which 
occur in the mixture at the different temperatures. When the 
bath is at about 170° we seem to have a substance formed which 
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has a boiling point somewhere between 74° and 85°. This sub- 
stance I take to be chiefly ethyl iso-cyanide which boils at 78°. At 
any rate the distillate smells strongly of that substance. The mix- 
ture does not give the liquid with the lower boiling point, at least 
in any quantity, until the bath reaches 168°. We may suppose 
that the flask and the layer of the mixture next the bottom and 
sides reach about the same temperature as the bath, and that this 
layer is then resolved into the iso-cyanide and potassium oxalate. 
This may possibly be accompanied by a storage of some of the 
energy supplied, but whether that be so or not, the evaporation of 
the volatile compound would depress the temperature of the bulk 
of the liquid. When the bath falls below 168° only the less volatile 
liquid is formed in quantity, and the mixture rises to the boiling 
point of the latter. In both cases the temperature of the mixture 
is kept down by the evaporation of a volatile compound formed by 
the action of heat upon it, but at the higher temperature the com- 
pound formed has the lower boiling point. 

Although I have no doubt that the compounds formed are 
propio-nitrile and the iso-cyanide, this has not been proved yet. 
The distillates are by no means pure single substances, or easy of 
purification, so that the interesting chemical question as to the 
formation of propio-nitrile at one temperature and of its isomer at 
a higher is not yet fully solved. We know from Thomsen’s 
researches that the heat of formation of propio-nitrile is negative, 
that is to say it is formed with a storage of energy; but I have not 
been able to meet with any determination of the heat of formation 
of the iso-cyanide. Considering the large storage of energy in the 
formation of hydro-cyanic acid it is probable that the storage in 
the iso-cyanide exceeds that in propio-nitrile. 

It occurred to me that, if the explanation I have given of the 
changes of temperature were correct, similar phenomena must 
present themselves in other cases where chemical reactions pro- 
ducing compounds more volatile than the reagents are determined 
by particular high temperatures. For example common ether is 
produced by the reaction of alcohol on ethyl-sulphuric acid at a 
temperature which is given at about 145°. At temperatures below 
that the distillate is chiefly alcohol. This case is not so simple as 
the former because when ether is formed water is also formed at 
the same time. Nevertheless until the bath gets hot enough to 
determine the formation of ether the temperature of the mixture 
and its vapour will be dependent on the boiling point of alcohol, 
while when the bath gets hot enough ether and water will be 
formed, and the lower boiling point of ether will determine a lower 
temperature of the parts of the mixture not near the sides of the 
flask and as well as of the vapour. To test this I asked Mr Robinson 
to make an experiment with alcohol and sulphuric acid in the 

26—2 
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same apparatus which had been used for the cyanide. The result 
corresponded with anticipation. The thermometers in the bath 
and in the flask all rose together until the bath was at 147°, the 
mixture at 110° and the vapour at 75°. When the bath reached 154° 
the mixture fluctuated from 108° to 115° and the vapour was at 
77°, but on raising the temperature of the bath to 155° the ther- 
mometer in the mixture fell suddenly to 90° and that in the vapour 
to 65°. It has long been recognised that in the continuous process, 
whereby a small quantity of sulphuric acid gradually converts a 
large quantity of alcohol into ether and water, the continuity of 
the reaction must be due to differences of temperature in different 
parts of the liquid. The directions for making ether given in 
handbooks of chemistry direct that the mixture is to be maintained 
at about 140°. This will certainly imply a much higher temperature 
for the retort and for the layer of liquid in contact with it. Our 
experiment seems to indicate that the reaction between alcohol 
and ethyl-sulphuric acid by which ether is produced begins at 155”, 
or at least begins to occur quickly at that temperature. With the 
bath at 154° the temperature of the vapour was nearly that of 
boiling alcohol, and it dropped when the ether began to come; 
but of course it would never drop to the boiling point of ether 
because as much water as ether is formed in the reaction and both 
are vapourised together. Moreover Thomsen’s observations shew 
that this reaction is attended with a sensible evolution of heat. 

(2) On the functions inverse to the second elliptic integral. By 
J. W. L. GuAISHER, M.A. 

Consider the function inverse to ez x, where ez a is the Jacobian 
form of the second elliptic integral given by the equation 

x 

eZ & =| dn’ xdx. 
0 

Let this function be denoted by ea, so that, if 
ue 

| dn’ ada=u, then «=ez*u= eau, 
0 

the letter “a” in the functional sign ea suggesting the word 
amplitude. 

It follows that, if 

6 
i A(¢)dp=u, then d= am ea u, 

0 
and if 

® /(1 — k’a’) 
——_——— dx = u, then ¢ =sinam ea wu. 

0 V(1—2"*) 
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It is convenient to denote am eau by ame u and to use sne u 
to denote sin ame w=sn eau = sin am eau, cne to denote cos ame u, 
&c. Denoting £' — K' by I’, the function ea « is such that 

ea(a#+2H)=eax+2K, 

ea (w+ 211’) =eax— Wk’, 

ea (@+2H + 21’) =eax+ 2K — 2K’. 

Taking the am of these equations we find 

ame (v+2H)=amev+a, 

ame (#+ 21/') =—amea+zq, 

ame («+ 2H + 2:7’) =— ame z. 

The function ame is therefore periodic with respect to 4H + 4c’ 
and quasi-periodic with respect to 44 or 47’. 

Taking the sn, cn, dn of these equations we find that snea, 
ene x, dne w are doubly periodic, the periods being 4H and 4:J’. 

Corresponding to the formulae in Elliptic Functions in which 
the argument is increased by a quarter-period we have the equa- 
tions: 

ea (24+ BB) meant, 
dne x 

’ snewdnez . 
ea Bh ee) = can iK 

cne & 

on (x4 B+ ir 4 eee) = ene BAe 
sne zw 

so that, for example, corresponding to 

cn & 
so (a@+K)= ae 

we have 

sne (e+ B—k 
2 She £ cne *) _ cne x 

dne a dne a” 

In general, in results in Elliptic Functions in which the argu- 
ments are wu, v, u+v we may replace sn, cn, dn’s by sne, cne, dne’s 
if we replace the argument u+v by ut+tv—Z#, , (leaving the argu- 
ments uw, v unaltered), where /, , is a certain function of the sne, 
cne, dne’s of wu and v. 

The author had considered not only the functions ea #, ame a, 
sne w, &c. but also the complete system of functions ia a, gaa, ea a, 
ami #,amgaz, amez, sniz, snga, snex, &c. obtained by inverting 
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the integrals 

1Z& = (— k’ sn’x) da, 
0 
x 

22 =| k? cn’ x da, 
0 
x 

enn | dn’ dz ; 
0 

of these the functions depending upon gz are more regular and 
symmetrical than those depending upon iz# and ezx. The two 
periods of the doubly-periodic functions sng x, eng, dng # are 
4@ and 4¢G’ (where G = EH —k’K, G'= EK’ — k’K’’), corresponding 
exactly to 4K and 47K’ in the case of the elliptic functions. 

(3) On the movement of solids through ether. By Mr A. H. 
LEAHY. 

(4) On Mr Galton’s anthropometric apparatus at present in 
use in the Philosophical Library. By H. Darwin, M.A., and R. 
THRELFALL, B.A. 

The authors exhibited and described some of the apparatus 
used by Mr Galton for his anthropometric measurements, and then 
gave an account of improvements and modifications which they 
had suggested in some of the instruments. 

March 1, 1886. 

PROF. FOSTER, PRESIDENT, IN THE CHAIR. 

The President explained that the meeting on February 15 had 
not been held in consequence of the funeral of Mr Bradshaw, and 
referred to the loss the University had sustained by his death. 

The following communications were made to the Society : 

(1) On the Development of the Nervous System in Petromyzon 
fluviatilis. By A. E. SHIPLEY. 

The author commenced his communication by describing the 
formation of the neural cord from a solid keel of epiblast. He 
pointed out that the central canal arose by the separation of the 
cells in the middle line, and that the canal is not lmed by cells 
involuted from the epidermic epiblast, as previous observers have 
stated. The formation of the primary vesicles of the brain was 
then described ; and the origin of the 2nd, 5th, 7th, 9th and 10th 
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nerves was considered. The ganglia on the 5th and 7th nerve 
fuse with the skin, and the latter nerve branches round a gill slit 
which subsequently disappears. The next gill slit is the most 
anterior in the adult. Hence the most anterior gill slit of the 
Lampreys corresponds with the first branchial gill of higher forms. 
The Spiracle is thus not represented in Petromyzon. 

(2) On the changes undergone by the proteid substances of seeds 
during germination. By J. R. GREEN. 

The writer, after alluding to the work of Vines and others, 
whereby the nature of the proteid reserve materials in seeds had 
been satisfactorily ascertained, and to the undoubted presence of 
proteid matter in the growing parts of the young plant, derived 
from such reserve store, touched upon the theory held by many 
botanists that the changes wrought in the reserve proteids to 
enable them to be transported through the plant are brought 
about by ferment action. He described investigations made by 
himself upon the germinating seeds of Lupinus hirsutus which 
resulted in demonstrating there the presence of such a ferment. 
This body was able to break up fibrin in the same way as the 
‘digestive juices do in the animal body, though its action was much 
less energetic. 

March 15, 1886. 

Pror. Foster, PRESIDENT, IN THE CHAIR. 

The following were elected Fellows of the Society : 

J. J. H. Teall, M.A., St John’s College. 
S. F. Harmer, B.A., King’s College. 

The following communications were made to the Society: 

(1) On the Cerebral Circulation. By Prof. Roy, M.A., and 
C. S. SHERRINGTON, B.A. 

(2) On a new method of Detecting Bromides ; a case of so-called 
Catalytic Action. By H. J. H. Fenton, M.A. 

In former papers* it has been shewn that sodium hypochlorite 
is without action on sodium carbamate in presence of sodium 
hydroxide, whereas sodium hypobromite at once decomposes it with 
evolution of nitrogen. 

2CONH,ONa+ 3NaBrO +2Na0H 
= 2C0(ONa), + 3NaBr + 30H, + N,, 

* Chem. Soc. Journ. xxxv. 12. Royal Society, Dec. 1885. 
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Carbamates differ in this respect from all other substances yet 
studied, and the actions serve to detect and estimate them in 
presence of ammonia, urea, &e. 

It appeared probable therefore, that if a soluble bromide were 
added to a mixture of sodium carbamate and hypochlorite, nitrogen 
should be evolved, by reason of the hypobromite formed in solu- 
tion* potentially or actually. This is found to be the case. 

A solution of sodium carbamate may be prepared 
Ist. By dissolving ammonium carbamate in a strong solution 

of sodium hydroxide, and allowing the mixture to stand for one or 
two days over strong sulphuric acid under a bell-jar. 

CONH,ONH, + NaOH = CONH,ONa + OH, + NH, 
2nd. By dissolving ammonium carbamate in solution of sodium 

hydroxide and adding a slight excess of sodium hypochlorite. 
2CONH,ONH,+ 3NaClO + 2NaOH 

= 2CONH,ONa+ 3NaCl + 50H, + N,,. 
3rd. By Drechsel’s method, namely by adding an alcoholic 

solution of sodium ethylate to ammonium carbamate dissolved in 
aqueous ammonia. 

If to a solution of sodium carbamate, prepared by any of these 
methods, an excess of sodium hypochlorite (and, if necessary, 
sodium hydroxide) be added, and the liquid shaken until bubbles 
of gas (due to traces of ammonia) cease to be evolved, the mixture 
may be kept for hours with hardly appreciable decomposition ; but 
the addition of a soluble bromide will cause a copious evolution of 
nitrogen—immediately if the quantity of bromide is considerable, 
and more slowly with small quantities. 

This reaction, then, serves to detect bromides in presence of 
unlimited quantities of chlorides, hypochlorites &c. Iodides appear 
to give a slight action, but so slowly in comparison with bromides 
that it seems not improbably due to contamination with bromide. 
I have not succeeded, however, in obtaining a specimen of iodide 
which gives no action at all. 

Where traces of bromide have to be looked for, it is advisable 
to make a blank comparative test, since there is usually a very 
slight decomposition of the carbamate solution, which might be 
misleading. Equal volumes of a solution of sodium carbamate, 
sodium hypochlorite in excess, and sodium hydroxide, are placed 
in two long tubes. The suspected liquid added to one, and an 
equal volume of distilled water to the other. The tubes are 
shaken and allowed to stand for some time (10 minutes to 1 
hour according to quantity). On again shaking, a few bubbles 
only will appear in the tube containing the blank test, whilst if 
bromide is present there will be a considerable effervescence in 
the other tube, due to evolution of nitrogen. 

* Lyons, Pharmaceutical Record, May, 1885. 



1886.] of Detecting Bromides. 377 

In this way it is quite easy to detect one part of bromine in 
6000 parts of water. Probably a much smaller quantity would be 
apparent. 

If the decomposition is due to the formation of hypobromite, it 
is evident that bromide will be again produced by its action on the 
carbamate, and provided that there is always excess of hypochlorite 
present the action should be continuous. 

The total amount of decomposition does, in fact, appear to be 
independent of the mass of bromide present, at any rate within 
very wide limits—i.e. any appreciable quantity of bromide would 
be able to cause the decomposition of an almost unlimited amount 
of carbamate in presence of hypochlorite. 

Thus 3854 grams of potassium bromide readily caused the 
evolution of 340 c.c. of nitrogen from the above mixture, and the 
resulting solution was still strongly “active ””— Le. at once caused 
an evolution of nitrogen from fresh portions of the mixture. This 
quantity of bromide in the form of hypobromite alone, could only 
have caused the evolution of 24:07 c.c. 

The initial rate of decomposition however is evidently a func- 
tion of the mass of bromide present (at any rate within certain 
limits). A rough preliminary experiment, in this direction, was 
made as follows: 

A mixture was prepared of sodium carbamate with excess of 
sodium hypochlorite and hydroxide. Three equal volumes of this 
solution were placed in separate vessels provided with stoppers 
and delivery tubes*. 

5 cc. (A), 10 c.c. (B), and 20 «ec. (C) of an arbitrary solution of 
potassium bromide were introduced into small tubes, the first and 

Masses of Bromide. 

Al 15) BY oe al 6 pce tt 

second being diluted with 15¢.c. and 10c.c. of water respectively so 
as to make the total volumes equal. These small tubes were then 

* Chem. Soc. Journ., July, 1878. 



378 Mr H. Darwin, On a Self-recording Barometer. [Mar. 15, 

placed in the larger vessels containing the carbamate &e., and the 
operation conducted in the usual manner. 

After 3 minutes A gave 10 c.c. Nitrogen 
B 
C — 55 = 

After 6 minutes A — 40 — 
B — 5l — 

C — 59 mes 
After 10 minutes A — 51 = 

1B == 57 = 
CO = 62 = 

After about 30 minutes A — 67 —- 
1 = SS — 

G =< 6& — 

The action is therefore much more rapid in the first instance 
with the greater mass of bromide, but as the action proceeds the 
weaker solution gains on it, and eventually all yield the same final 
result. 

It appears therefore that this action of bromides belongs to the 
type of certain so-called Catalytic actions in which the ‘activity’ of 
the agent is explained by an intermediate stage of little stability. 
We have in this instance perhaps stronger evidence of such a stage 
than is often the case in many actions which are similarly ex- 
plained. 

(3) Ona Self-recording Barometer. By Horace Darwin, M.A. 

In all self-recording apparatus there must be some means 
always at hand ready to perform the work required to keep the 
record. In the case of a barometer a clock is used in conjunction 
with some other motive power; this may be the electric current 
from a battery ; the radiation from a lamp acting on photographic 
paper; or the work obtained from the change of the atmospheric 
pressure itself. The chief interest in the instrument shown in the 
figure is the unusual source of energy employed; the pressure of 
the ordinary gas supply being made to do the necessary work. 
This is undoubtedly an extravagant motor, but in cases like the 
one before us the work required to move the mechanism is 
extremely small, and the cost of the gas used is quite insignificant. 
The ease with which the energy can be applied and the handiness 
of the source makes this method most useful for a great number 
of cases where governing and automatic regulating mechanism is 
required, 

The gas from the main passes into the pipe A through a stop- 
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cock not shown in the figure. The stop-cock is regulated so as to 
allow a very small quantity of gas to pass. The pipe branches, 

\ <x 

é i 

= ane 
fae 

and the gas can either pass into the indiarubber bag B or else 
along the tube C. If this tube is closed, the gas will enter and 
expand the bag and compel the board D to turn about the hinges 
E. The pressure of the gas is more than sufficient to counter- 
balance the weight at #; consequently a certain amount of work 
can be done during the upward movement; this gives the requisite 
power to move the pen P. If more gas could pass along the tube 
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C than had entered by A, the gas bag would empty and the pen 
would fall. Thus by opening and closing the tube C, the board 
can be made to rise and fall, and to move the pen with it. The 
barometer performs this function in such a manner, that the 
vertical movement of the pen is three inches upwards for every 
fall of atmospheric pressure corresponding to a head of one inch 
of mercury. The barometer is in the form of an inverted 
siphon, G, H. The tube C is connected with a small glass tube 
passing down the open limb of the barometer at G; it is sup- 
ported by a bracket K fixed to the pressure board D at one-sixth 
the distance of the pen from the hinges &. Now suppose the 
end of the glass tube almost touches the surface of the mercury 
in the open limb of the barometer, and that the flow of gas 
through this small opening equals the flow entering by the tube 
A from the main; then no gas will enter or leave the bag and the 
pressure board D will remain at rest. When the mercury in the 
open limb of the barometer rises the leak will be diminished : 
gas will enter the bag and will raise the pressure board, together 
with the pen and the glass tube passing down the open end of 
the barometer; this will at once increase the leak and will 
shortly again establish equilibrium. The converse will take place 
when the mercury falls, and the end of the glass tube will 
accurately follow the movement of the surface of the mercury. 
If the atmospheric pressure increases by a head of one inch of 
mercury the surface of the mercury falls half an inch in the open 
limb of the barometer: the pen falls six times that amount, that 
is, three inches. The instrument has only been constructed in an 
experimental form, and it was not thought worth while to com- 
plicate the instrument by putting an arrangement to prevent the 
gas escaping into the room. But the leak is so small that with a 
similar instrument working day and night for some weeks the 
smell was not perceptible. 

I am indebted to Mr Deacon for the design of the pen. It is 
used by him in his Waste Water Meter and in other self-recording 
apparatus. These instruments are left for long periods without 
being touched, the pen drawing the curves in a most satisfactory 
manner, 

In the apparatus exhibited the tracing is made on paper cover- 
ing a drum rotating about a vertical axis. An American clock 
movement is fixed to the top of the drum, and the point of 
rotation of the hands is on its axis. The hour hand projects 
beyond the side of the drum, and rests against a fixed pin Q, 
and is thus prevented from rotating. Consequently the body of 
the clock and the drum with it are compelled to turn; the usual 
condition where the hands rotate and the body remains at rest is 
reversed. 
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(4) <A Verification of a transformation in Elliptic Functions. 
By J. CHEVALLIER, B.A. 

The author contributed the details of a verification, by direct 
algebraical methods, of the following theorem: 

M?X 
If 4 hae? 

where X =X — 2Ax*+ Bo? — C2’? + Da — E, 

V=e—Aot+ A, =3(-1+4iJi09), 

A=-4(J/19 +2), A’=7, (11 +7,/19), 

B=}(25+5i/19), C=—4(J19 + 6%), 
D=}(214+ 92/19), H=—4(J19 +111), 

2 

then Ay" — 9.9 — 9g= MM" (Aa’ — 9,0 — 9,) (e) 
where g, = 8, g,=19. 

(5) On some Caves in Portugal. By H. GApow, M.A. 

In the spring of 1884 I made a zoological excursion through 
the Algarve, my chief object being to explore the fauna of certain 
large subterranean caves. According to Murray’s Handbook for 
Portugal, and von Maltzan’s Reise nach Algarve, these caves are 
situated somewhere near the little village of Alte, nearly in the 
centre of the Algarve. Whilst travelling northwards from Faro to 
Loulé I was told of the existence of some other caves in the 
neighbourhood. 

Leaving the high road from Loulé towards Salir, I followed a 
mountain path leading eastwards over densely wooded very 
picturesque hills for about two miles, and came to a wild ravine 
through which dashed the Rio Secco, one of the eastern tributaries 
of the poisonous Rio Quarteira. According to the geological maps 
published by the Portuguese Government, the Rio Secco runs 
through Jurassic and Keuper formations. Its banks are steep, 
with an incline of 60°, about 200 feet high near the caves, and 
strewn over with innumerable large and small, but extremely 
rough boulders, between which grow plenty of locust trees, olives, 
a few oaks (Q. suber and robur) and shrubs. Alongside, and in 
the bed of the river a dense and luxurious vegetation of oleander, 
olives, vines, cork trees and sarsaparilla delights the eye. On the 
eastern side there is a plateau, nearly flat, with a few olive trees 
and dwarf palms (Chamaerops humilis). Cultivation of corn has 
been attempted, but yields very little, because the plateau is 
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covered with small rocks, which, although partly cleared away and 
heaped up here and there, leave only small irregular patches of a 
few inches of red clay, baked during the rainless summer into the 
hardness of bricks. 

The entrance to the caves, which are two in number, is just 
below the north-eastern brink of the valley; access to them is 
easiest from the plateau. The bearings of the caves are as 
follows : 

26° to westward is the village of Salir, distant about 4 miles. 
140° to south-east, distant 3 miles, Querenca, where the 

owner lives, a poor peasant of 73 years of age, called Manoel da 
Silva. ay 

25° to east a small village, called Serra da Corte. 
On the western side of the river, opposite the caves, are seen 

at a distance of one mile several hamlets, distinguished as Corte 
do Neto and Corte Ximica. 

During my visit in April, 1884, the caves did not yield anything 
but the following bats: Muiniopterus schreibersi, Rhinolophus 
hipposideros, Rh. hippocrepis, Vespertilio murinus; there were no 
invertebrates visible, nor was there any water in the caves. 

The fragment of a recent goat’s skull and a few bones of birds 
made me wish to excavate the caverns, but that was then im- 
possible. It rained in torrents during nearly the whole of April, 
and there is no inn in the villages, the nearest accommodation 
being at Loulé, and that is four or five hours off. In short, to 
explore the caves properly would have required long preparation. 

I then (likewise in 1884) visited the Pogo or Buraco dos 
Mouros (almost every cavern, ruin, well and castle in the south of 
Portugal is connected with the Moors by the peasants) near 
Benafim and Alte. The entrance to the cave lies nearly on the 
top of an abruptly ending plateau of the Jurassic Rocha da Pena, 
a mountain nearly 1500 feet above the sea level. We had to 
lower ourselves for about 15 feet, and reached a funnel about 
6 feet high; the floor, covered with blocks, slopes down towards 
the left for perhaps 50 yards, then comes a sudden turn to the 
right, which can now—on account of the fallen blocks—be passed 
only by crawling flat on one’s belly, head downwards, because the 
incline is steep; after having veered round two or three times at 
right angles towards the right, we suddenly entered an enormous 
vault with stalagmitic roof and many pillars. The dripping of 
water is heard in several nooks; except a small pool, holding 
perhaps a dozen buckets of water, there was no water whatever in 
this cavern, and that little contained no visible living creatures. 

The height of the vault may be from 20 to 25 feet, its diameter 
60 feet. There is no outlet or large recess leading anywhere out 
of this round the dome, except that by which we entered. The 
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floor is partly covered with stalagmites, but chiefly by bats’ dung, 
many feet deep, the bats themselves clinging in great numbers to 
the ceiling. We were a large party, about a dozen, led by our 
host, the Mayor of Salir, and half a dozen peasants, whom we 
had at last persuaded to undertake this superstitiously feared 
exploration. From the church we had provided ourselves with 
some big wax candles, which gave no light to speak of, and 
torches made of unravelled grass ropes. These primitive torches 
could be kept burning only by being rapidly swung round one’s 
head, whereupon they gave a sudden glare of light, smouldered 
away for a minute, produced a dense mass of smoke, and then went 
out. 

The dome of this cave had never been visited within memory 
of living men. Von Maltzan could not squeeze his big frame 
through the narrow passage; but they still tell the story of a 
priest, who proceeded from the dome into still another chamber, 
till he reached the source of a large river, when he thought it 
prudent to return. We all felt rather disappointed; the passage, 
the chamber, and the large river have all disappeared, and the 
priest has died long since. 

Not far from this large and deep cave there is said to exist 
another, called Igreja dos Soudos, compared to a church because of 
its many stalactitic columns. 

This year I visited the caves near Querenca in July. A kind 
letter of recommendation from His Excellency the Minister of the 
Colonies, Barboza du Bocage, to the Governador Civil of the 
Algarve, Joaquim Bivar, in Faro, caused the latter gentleman to 
request the Administrador do Conselho de Loulé, Joaquim Manoel 
Adelino Perreira, to facilitate the purpose of my exploration. Six 
excellent miners, who had recently returned from Spain, were 
requested to place themselves at my disposal for 18d. a day each ; 
moreover, I was allowed the use of the municipal crowbars, pick- 
axes, hammers and other necessary tools. I had also secured the 
written permission of Manoel da Silva, the owner of the caves, for 
exploring the latter, and last not least, Messrs Mason, Bary and 
Co., the owners of the rich copper mines of Sao Domingos near 
Pomordo on the Guadiana, had kindly consented that my friend, 
Thomas Warden, civil engineer, should accompany me for a time 
not to exceed a fortnight. My friend being thoroughly master of 
the Portuguese language, and knowing the ways of the workmen, 
his practical experience made matters easy and cheerful. 

There being no other accommodation, we established ourselves 
in the antechamber of the south-eastern cave, and, considering 
that we never left the caves for longer than an hour, to take a bath 
down below in the Rio Secco, and that we lived there for 7 days 
and 7 nights, we may well be said to have played the Troglodytes. 
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Our provisions consisted of some tinned sardines and tunny fish 
in oil, and a daily supply from our cave-lord of wine, bread, eggs, 
pig-butter, i.e. dripping, cucumbers, onions, and once for a treat 
twenty small potatoes. Our water supply was fetched from a 
powerful spring in the bed of the river; although apparently 
good, we deemed it advisable always to run it through one of 
Lipscombe’s small military filters. 

With this fare we kept remarkably healthy, not a moment's 
illness having been felt by any of us. The heat during the daytime 
was great. From 104M. to 5p.M. generally from 95° to 101° in 
the shade and 128° in the sun, but this otherwise intolerable heat 
was greatly mitigated by a southern breeze, which with great 
precision set in daily about 10 A.M. and continued with increasing 
force until 5 P.M. when it left off, sometimes rather suddenly. This 
refreshing sea-breeze is, I think, caused by the over-heated plains of 
the Alemtejo. I encountered it likewise on the Serra de Caldeirao, 
which divides the Algarve from the Alemtejo, but not inside the 
latter province itself. There, on the treeless and shrubless plains, 
it was still hotter for us, one day 135° without any wind and all 
day long on mules’ back. During the heat of the day no life is 
visible; the very insects sit still below the plants and stones or 
are hidden in the cracks of the bark of the trees. The lizards and 
geckos have likewise vanished, and the only sound is now and 
then the shrill noise made by the “Cigarra” (Cicada) in the dense 
foliage of the locust tree, the only plant which seems really to 
enjoy the Algravian summer, finding ways and means in the 
baked hard soil of the hills to keep up the dark green colour of its 
pretty leaves and to grow its numerous pendant beans. All the 
other vegetation was shrivelled up or wore the dusky greenish- 
grey garb of the olive tree. Only along the banks of the river 
and in the stagnant pools taking its place during the hot season, 
is there life and rich luxurious vegetation. The pools abound 
with snakes, fishes, frogs and small tortoises. The river itself 
was partly dry, but here and there were springs and pools, the 
water being dammed up by dykes and carefully saved for irrigating 
the rich groves of vines, melons and Indian corn. 

In the antechamber of our cave the temperature ranged from 
72° to 80°, at night outside the cave never below 72°. Far inside 
the cave the thermometer stood permanently at 64°, which agrees 
very well with the mean annual temperature of the country. Rain 
does not fall from June to October. During my four weeks’ 
travelling through the Algarve and southern Alemtejo I never 
saw a cloud, except one morning, when it was hazy and rather 
close for a few hours. There was likewise not the smallest trace 
of dew on the hills, which circumstance enabled us to sleep outside 
the cave, i.e. away from the gnats, mosquitos and fleas, under the 
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bright stars, in the calm balmy air, sung to sleep by the frogs 
down the ravine and by the melancholy call-note of the little scops- 
owl and the frog-toad Pelodytes. Bats flitted in and out, not 
much disturbed after all by our work in the daytime. 

The formation of the hill, in which the caverns are, seems to 
be Keuper. As said before, there are two of them; their entrances 
open ‘below the edge of the valley. They are called Gruta de 
Solestreira (called by the country folk Sol e Estrella, sun and 
star); the south-eastern cave of the two, although actually by far 
the smaller, is distinguished as the Gruta major, because of its 
wide entrance. The accompanying plan will explain the shape of 
this cave. 

About 25 feet from the entrance is a huge pillar, A. The floor 
from the entrance onwards to B is nearly horizontal, even -and 
firm, consisting chiefly of red clay, trampled down by the men and 
goats, who collect there sometimes during the winter for shelter. 
The long axis of the cave is about 120 ft. long and runs, roughly 
speaking, from south to north; the width varies from 12 to 20 ft., 
the height from 5 to 15. At B the cave turns and narrows 
suddenly ; then comes an irregular chamber, in the recess of which 
are the only stalactites and stalagmites worthy of notice, except 
those at G. In the eastern wall at C there is, about 3 ft. above 
the general level, a roundish entrance 3 ft. high, 2 broad; the 
sides were not rough like all the rest of the cave walls, but 
peculiarly smooth, looking as if they bad been worn off and 
polished by frequently being crept through. This circumstance 
made me explore this side-chamber first. The hole leads to a 
roundish chamber, D, 6 to 7 ft. wide and 5 ft. high; sloping 
upwards stretches a passage 7 ft. long, 3 ft. high, 2 wide, covered 
with rubbish and a layer of stalagmite, 2 to 3 inches thick. At E 
is a sudden turn, gently slopmg down towards F'; this passage was 
likewise 7 ft. long, perhaps 3 ft. high and 2 ft. wide, the floor 
covered with dry, loose, reddish clay. At F is another turn, the 
passage sloping down sharply and ending in a roundish chamber, 
5 ft. wide and 4 ft. high. Its ceiling is formed by a layer one foot 
thick, with a hole in it, just large enough to squeeze one’s head 
and shoulders through, while standing in the chamber G in an 
erect position. Your head is then in another chamber, somewhat 
smaller than that of G, but the greater part filled with beautiful 

_ stalactites. We began to dig at D with the following result : 

I. One foot of clayish soil and crumbled pieces fallen from the 
ceiling. 

II. Hard stalagmitic shell, 2 to 4 inches thick. 

III. Half a foot of dense red clay. 
IV. Several teeth of Deer, well preserved, and a considerable 

VOL. V. PT. VL. 2 
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number of fragments of bones of Deer, Roe-deer and Rabbit, in 
much damaged condition. 

V. 38 feet of red, very dense, somewhat moist clay, without 
any bones. 

VI. Upon this followed the live rock itself. 

The end chamber, G: 

I. 3 to 4 inches of loose soil, with bats’ skeletons, jaw of rabbit, 
and a few bones of recent birds, mixed up with 

II. Pieces of a cracked and partly broken stalagmitic layer. 
After removal of this layer: 

If. Human teeth in good preservation, a small piece of the 
cranium, some phalanges of fingers and toes, fragments of three 
radi, of an ulna and of a metacarpal, but everything much 
damaged. The teeth, several phalanges, and the fragment of one 
radius belonged to a full-grown person; the other phalanges and 
radii belonged to a much younger and smaller individual, as is indi- 
cated by the size of the bones and by the still separate epiphysis 
of the distal end of the radu. It was not possible to arrive at a 
conclusion regarding the original position of the skeletons. Below 
these bones an instrument made of the cannon-bone of a deer, 
8 inches long, 1 broad, the lower end being left untouched 
so as to form a convenient handle, the other end carefully 
sharpened off on one side into a cutting broad-bladed dagger’. 
There were also about a dozen small rings, of not more 
than 0°2 in. diameter, with a round hole in the middle, some- 
times 2 or 3 clinging together with their flat sides. They 
were decidedly not of metal, of greenish or bluish white colour; 
very brittle, some of them falling to pieces before I could clean 
these little peculiar objects; some were broken by the workmen, 

1 Baron A. von Huegel has sent me the following remarks on this bone: 

This fine specimen, with some celts, flakes, &c. from Portuguese kitchen mid- 
dens, was presented by Mr Hans Gadow to the Cambridge Museum of Archaeology. 

The Solestreira specimen (similar worked bones have been found in various 
caves both at home and abroad) consists of the metatarsus of a large deer, shaped 
into an implement, which, to judge from the Cassowary bone ‘‘daggers” now made 
by the Fly River natives of New Guinea, was used not only as a weapon but also for 
various other purposes, such, for instance, as the digging up of edible roots. Con- 
siderable care has been bestowed on the manufacture of this implement which 
though rough is quite symmetrical. The lower half of the bone has been kept in its 
natural condition, so as to form the hilt, which would be held in the closed hand, 
the condyles fitting very comfortably into the palm of the hand. From the remain- 
ing portion of the bone the posterior surface, only, has been cut away so as to 
leave a gradually tapering wedge with a neatly trimmed point, the inner margin of 
which has been cut and ground into a smooth edge. 

Near this specimen were found, as Mr Gadow describes, stone beads and some 
fragments of human bones. It would be strange indeed were this the entire yield 
of so large a cave as the Solestreira, and it is but reasonable to suppose that a com- 
plete and systematic excavation will bring to light many other objects of prehistoric 
interest. A. v. H 
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who discovered them and wanted to know what they were. I 
saved four of them, packed them carefully in wadding and in a 
small bottle, but this unfortunately was lost together with other 
things during an accident to the pack mule. There were certainly 
many of these rings, but we did not discover these tiny things 
before the excavated soil containing them had been carried from 
G to D, where there was a little more room for sifting and exami- 
ning the soil. I have little doubt but that these rings originally 
formed a necklace and consisted most probably of the mineral 
described by Dr M. A. Ben-Saude as Ribeirite (nouvelle varieté de 
la Calaite) ; 
tional @anthropologie et darchéologie préhistorique, 1880, Lisbon, 
pp. 693—696. I have seen such a “grains de colliers,” but much 
larger, found in various caves of Alemtejo and Estremadura, now in 
the museum of the Academia das Sciencias, in Lisbon. 

Together with these human remains were found a few shells of 
cardium. 

IV. Below this layer the soil consisted of compact red clay ; 
we dug out a hole 4 feet deep and then sounded to a depth of 24 
feet more, with the same result. We had thus arrived at a depth 
of at least 7 feet below the floor of the chamber as we found it. 
Considering that, as far as we could make out, the stalagmitic 
shell of the floor of the chamber G was on the same level with 
that of the principal cave from A to B, our instruments reached 
about 6 ft. below level AB. It is therefore possible that the true 
rock-bottom of chamber G is still deeper and may contain other 
remains. 

We then drove a shaft at the furthest end of the principal cave, 
at A, 5 ft. long, 3 broad: one foot below the surface were a few 
brittle scraps of bones, but nothing else. We dug 6ft. deep 
through red clay and sounded 2 ft. more clay. 

Lastly we drove a large shaft at B, 4 ft. deep, and sounded 24 
ft. more, but found the same red clay. Two feet below the surface 
was charcoal and some broken pottery, which however undoubtedly 
belonged to an old water-jug as now used in the country. The 
workmen recognised that sort of pottery at once, and the owner of 
the cave explained that that portion of the ground had once been 
levelled to enable him to remove the bats’ dung from the inner 
chamber. Between the stones in the antechamber ‘was discovered 
a flat and nearly round stone of great hardness, 10 inches in dia- 
meter and perhaps 4 inches in thickness, its one surface was hol- 
lowed out so as to form a slight depression. The stone looked 
exactly like those in the Lisbon Museum, which are supposed to 
have served for grinding corn by hand. 

cf. Compte Rendw de la 9° session du congrés interna- p 
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Gruta pequena. 

The north-western cave, called, as I have already stated, Gruta 
pequena, because of its narrow entrance, is by far the larger of the 
two. Its long axis runs from south to north and is, measured in 
the curve, about 250 ft. long. At its northern extremity it leads 
out to the slope of the plateau through an opening just large 
enough to admit a small boy. The base or floor of the whole cave 
is more or less horizontal, but enormous boulders have fallen down 
from various parts of the ceiling and have rendered many parts 
very uneven. It isa characteristic feature of this cave that there 
are several large ledges of stalagmite and of harder and more solid 
strata projecting horizontally out from the walls. There seems to 
have been such a stalagmitic layer, at least one foot in thickness, 
which once covered the whole of the space between C, D, EH, G, H. 
It is highly improbable that this mighty shell had been broken 
through by man; it must have been destroyed by masses of water; 
the broken pieces have then been removed by men to enable them 
to get at the soil below to be used for their fields. The action of 
the water is plainly visible on the side-walls and on the roof of the 
large dome, M, all the stalactites having fallen down and the stone 
having a smooth water-worn appearance. 

At B is a narrow entrance, originally only 4ft. wide and 1 ft. 
high, closed with a stone slab which about 10 to 15 years ago was 
removed by the owner and is now used at Querencga to serve as a 
door to his hen-house. At that time, as he told me, “thousands of 
cartloads of bats’ dung, together with the rich clay soil, were re- 
moved by the owner as manure for his fields.” Between G, E and 
D the original height of the soil is still visible on the walls, about 
5 to 7 ft. above the present level. Whilst digging under the protrud- 
ing stalagmitic ledge near E he found 3 sepultwras, made as he 
said of cortica (bark of the cork-oak), containing three skeletons, 
the skulls perfect, even with traces of hair on them, the rest of the 
bones soft and badly preserved. Although taken to the houses of 
various peasants, they are now lost. At least I could not ascertain 
anything definite about their fate, the people being very reluctant 
to speak on this pot. The same applies to “some peculiarly 
shaped earthenware pots,’ likewise found there. I do not doubt 
these accounts, because I heard them independently from various 
people, and it was only after I had been told about all this by 
some other peasants that I was able to force some more information 
out of the owner of the cave. 

We dug near H, following the advice of the owner, but found 
nothing. On the eastern side, under a similar ledge of stalagmite, at 
D and C we found several much broken bones of man but certainly 
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not in their original position, all that ground having been dug 
previously. 

Between F and M is a gigantic vault, about 35 ft. wide and 
17 ft. high. All the roof and side-walls of this dome consist of 
white, water-worn and rather smooth stone, with only a few indi- 
cations of newly-formed stalactite. Above F, in the ceiling, isa large 
hole which leads obliquely up towards G. The owner told me, 
that before the removal of the soil his boy was lifted up there on 
the shoulders of several men, and that he saw there another slab 
door like that at B. This of course aroused my curiosity. We 
tried to climb up on a long pole, but could not get over the edge. 
Then the six workmen were ordered to build a wall, 12 ft. long 
and 6 ft. broad at base. After 8 hours’ work this wall was about 
10 ft. high. We constructed a sort of ladder and succeeded, after 

- removing a large quantity of slippery bats’ dung, to enter the upper 
passage. It is about 4 ft. high, 3 to 2 broad, and ends at G, a very 
narrow chamber.. The ceiling of the latter leads into a vertical funnel, 
about 18 inches in diameter, and was crammed full of bats. The 
floor of the chamber G was covered with reddish, soft, but dry 
soil; digging revealed nothing; there was no outlet whatever, and 
no slab door. This chamber cannot be far from the surface of the 
plateau, because several roots of trees had crept through the small 
cracks in the walls. 

On the western side of the dome is a large mass sloping up 
from H, with several side niches; they contained only red clay. 
However we did not explore the bottom of the end chamber. 

There are plenty of deep and dry recesses in this enormous 
cavern which have never been disturbed, for instance the passage 
of P, the space and chamber near K and L. To excavate the floor 
between M and N would be very difficult owing to the masses of 
fallen boulders. 

Igrejinha dos Mouros. 

An hour to the south of these caves, between them and Querenga, 
is a third cave on the plateau, called the “little church of the 
Moors.” The entrance is narrow, rather steep for 10 ft., the bottom 
horizontal, the passage of the whole cavern only from 2 to 6 ft. wide 
and 8 to 10 ft. high. Ceiling, walls and floors formed by the most 
beautiful and large stalactites, which give this cavern the appear- 
ance of a small over-ornamented chapel. The people told me that 
there was there the petrified erect figure of a decapitated Moorish 
lady. It was a half-transparent stalagmitic pillar 5 ft. high, stand- 
ing on a bridge of stalagmite in the middle of the cave and bear- 
ing indeed a striking resemblance to a woman’s figure, and in a 
yellowish white garment with long and exquisitely arranged folds. 
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The general belief of the people is that the Moors, when pressed 
hard during their expulsion from the country, took refuge in these 
caves.—Tisis whole cave is about 30 ft. long. Near the further 
end I found the almost complete half-fossilized skeleton of a 
goat. 

May 10, 1886. 

Pror. Foster, PRESIDENT, IN THE CHAIR. 

The following communications were made to the Society : 

(1) Some experiments on the electric discharge in a uniform 
electric field, with some theoretical considerations about the passage 
of electricity through gases. By Professor J. J. THOMSON. 

As the experiments which have hitherto been made on the 
discharge of electricity through gases have in general been ar- 
ranged in such a way that it is difficult to calculate what was the 
state of the electric field before discharge took place, I have 
thought it might be interesting to make some experiments when 
the state of the field was accurately known. For this reason I 
made the discharge take place between two parallel plates sepa- 
rated by a distance which was but small in comparison with their 
diameters. 

Fig. 1. 

UI 

The arrangement used is represented in fig. 1. ABCD, EFGH 
are two cast-iron plates, the flat portions of which are about 
6 centimetres in diameter, and 14 centimetres apart. They are 
shaped as in the figure, special care being taken to make the 
curved parts of the plate smooth and free from places of large 
curvature; the object of this as well as the peculiar shape of the 
electrodes is to make the electric field much less intense in those 
places where it is not uniform than in those places where it is, 
so that the discharge will take place in the uniform field and not 
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in those places where the field is not uniform and difficult to 
calculate. The surfaces of the plates were worked very true, and 
some small holes that were left in from the casting were filled up 
with putty and then coated with gold leaf. The surfaces were so 
true that though the electrodes were of considerable weight, yet 
if they were placed in contact they adhered sufficiently to cause 
the under one to be lifted when the upper one was raised. The 
plates were maintained at the same distance apart by means of 
three glass distance-pieces, two of which are shewn at AH and 
DH, carefully made of the same length and their ends accurately 
ground ; these were connected together by pieces of glass rod: 
these distance-pieces were placed in the hollow part of the plates 
so as to be out of the way of the discharge; the plates were 
placed in a box, LMWNP, the side of which was a cylindrical piece 
of glass and the ends of it brass discs, fastened to the glass with 
marine glue; into the upper one of these plates a piece of brass 
tubing, R, was soldered in order to permit of the exhaustion of the 
gas in the vessel ; between the top of the box and the upper plate 
there was a spring, Q, which put the two into electrical connection. 
The spark was produced by means of an induction coil. 

The following are the phenomena which occur as the air is 
gradually exhausted from the box. At the pressure of the atmo- 
sphere the spark passes between two points, being evidently de- 
termined by some accident which makes the force a little greater 
at one place than another; at this stage the discharge is very 
unsteady and skips about from one point of the plates to another: 
as the pressure diminishes the discharge gradually settles down 
and remains at one place, and begins to present peculiar features 
which are represented in the accompanying figures, in all of which 
the negative electrode is supposed to be at the top. Fig. 2 re- 

Fig, 2. Fig. 3. Fig. 4. 

presents the discharge when the pressure is that due to about 
90 mm. of mercury; it is shaped something like an Indian club 
with the handle at the negative electrode. As the pressure 
diminishes, the neck of the club lengthens, the lower part 
broadens out, and a disc appears at the negative electrode; the 
appearance at a pressure of about 40 mm. of mercury is repre- 
sented in fig. 3; the discharge being bluish near the negative 
electrode, but reddish towards the positive. As the pressure 
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falls the disc near the negative electrode broadens out, and the 
handle of the Indian club lengthens, until the appearance is that 
represented in fig. 4, which represents the discharge at about 
18 mm. of mercury, the difference in colour between the discharge 
at the positive and negative electrodes being now very marked. 
As the pressure diminishes the disc at the negative electrode 
increases in size, until at about 4 mm. this disc appears to con- 
stitute the whole of the discharge; it is clearly separated from 
the negative electrode. JI have not been able to detect with any 
certainty any discharge at the positive electrode, or any glow 
throughout the tube, and if they exist at this stage they are certainly 
exceedingly faint. There is a much greater contrast between 
the bright disc near the negative electrode and the rest of the 
discharge than between the glow and dark space in a vacuum 
tube of the ordinary kind. As the pressure diminishes still further, 
the dise gradually moves further away from the negative electrode, 
and a decided glow spreads through the vessel; the colour of the 
discharge keeps changing, and when the pressure sinks below a 
millimetre it is a pale Cambridge blue. Bright specks also appear 
over the negative electrode. If an air-break be put in the circuit 
a curious phenomenon is observed. A glow is distinctly visible 
between the top of the vessel containing the electrodes and the 
upper electrode, though these are in metallic connection, and if 
they acquired the same potential simultaneously, could have no 
electric field between them. This was only observed when the 
upper electrode was negative, not when it was positive. The 
lowest pressure reached with this apparatus was about + of a 
millimetre. At this pressure the disc near the negative, though 
still observable, was not much brighter than the surrounding 
glow. 
= These experiments were repeated, using coal-gas instead of air: 
very similar results were obtained, except that at high pressures 
the discharge jumped about more than it did in air. Coal-gas 
was used because stratifications are usually produced in it with 
great facility. I never observed any tendency however in the 
discharge to become striated where the field was uniform, though 
some small discharges which started from the edges of the positive 
plates were beautifully striated; on one occasion too a spot of 
dust had got on the positive electrode in the middle of the 
uniform discharge, a secondary discharge started from this point, 
which was very plainly striated, though the main discharge 
shewed no trace of stratification. 

Some experiments were tried with gases which are electrically 
very weak, such as the vapours of turpentine and alcohol; with 
these gases J never was able to limit the discharge to a disc near 
the negative electrode, as was the case when air or coal-gas was 
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used. With these vapours there was always at low pressures a 
glow stretching across the space between the electrodes, and 
though the disc near the negative electrode was distinctly brighter 
than the rest, I was never able as in air to get the discharge 
practically confined to the disc. The brightness of the glow was 
always comparable with that of the disc. 

The stratifications of the discharge followed the same law as 
in coal-gas; in the parts of the discharge where the field was 
uniform no tendency to stratification could be detected, but any 
secondary discharge started by some accidental inequality was 
always distinctly striated. 

With the arrangement described above, the pressure could not 

Fig. 5. 

+ 

M 
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be reduced below that due to about 4 of a millimetre of mercury, 
and it was with great difficulty that it was reduced as low as this, 
so in order to investigate the phenomena at higher exhaustions 
the parallel plates were put in the apparatus represented in 
section in fig. 5. : 

ABCDEF is a brass bed plate with a groove of the shape 
CDEFG cut in it; into this groove the glass vessel S which 
terminates in the tube 7’ fits, and is fastened against the side BC 
of the groove by marine glue; mercury is poured into the groove, 
and the space outside the glass vessel between the mercury and 
the brass is kept exhausted by a Sprengel pump, which is con- 
nected with this space by means of the tube PQ. Thus since the 
pressure in this space can easily be kept by the Sprengel lower 
than the pressure due to 5 millimetres of mercury, if the depth 
of the mercury in the groove be greater than 5 millimetres, no 
air can pass into the vessel, however low the pressure inside may 
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be. The glass tube 7’ was fused on to a Topler pump. With this 
arrangement the only joints between the inside of the vessel S 
and the outside air are mercury ones, and the vessel can readily 
be exhausted. 

The discharge presents the following appearance as the vessel 
is gradually exhausted. After the pressure gets below the value 
reached with the first arrangement the glow between the plates 
gets more and more uniform, until no difference can be perceived 
in the intensity of the ght between the plates; as the pressure 
diminishes a glow appears above the upper plate, of the kind to be 
described below, and the intensity of the glow between the plates 
diminishes; as the pressure falls still lower the glow above the plates 
increases In intensity while that between the plates diminishes, until 
at a pressure which I estimated at about =, of a millimetre there 
was no glow at all between the plates which were separated by 
a dark space, while there was a strong glow above the upper 
late. 

- This glow is represented in section in fig. 6. ABCD, EFGH 
represent the glow, which is separated from the plate LIV by 

dark spaces, which are left blank in the figure. The distance of 
the glow from the plates, that is the width of the dark space, 
depends upon the intensity of the discharge; by altering the screw 
of the commutator of the coil the glow could be made to rise and 
fall ina very striking fashion. The stronger the discharge the 
smaller seemed the dark space. 

From one edge of the glow a bright thread of striated glow, 
AP, extends, forming apparently the positive part of the discharge, 
the glow being the negative; this positive part looked like a con- 
tinuation of the negative, there being no interval that I could see 
between the glow and the striated discharge. This striated discharge 
started from the place where the negative glow was farthest from 
the glass of the bell-jar. It was extremely sensitive to the action of 
a magnet, the point from which the discharge started being altered 
by the magnet. The direction in which the discharge moved was 
along the circumference of the glow, and the direction was de- 
termined by the component of the magnetic force along the radius 
from the centre of the glow to the point where the discharge took 
place; if the direction of this component was reversed the 
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direction of displacement of the glow was reversed. When this 
component was in one direction the striated discharge was not 
only deflected but split up into several discharges, there being 
in this case often 7 or 8 striated discharges proceeding from 
the negative glow; when the direction of the magnetic force was 
reversed, the discharge was deflected in the opposite direction, 
and instead of being split up seemed to be more concentrated 
than before. This part of the effect seemed to be due to the 
action of the magnet on the glow; the place where the striated 
discharge starts is where the glow is furthest from the glass; if 
the magnetic force by its action on the glow reduces the in- 
equalities in the distance of the edge of the glow from the glass 
the discharge may start from several places at once, while if it 
tends to increase the inequalities the glow will be more rigorously 
confined to one place. 

Theoretical considerations about the electric discharges in gases. 

In a paper published in the Philosophical Magazine for June, 
1883, page 427, I gave a theory of the electric discharge in gases, 
in which the discharge was regarded as the splitting up of some 
of the molecules of the gas through which the discharge takes 
place; the energy of the electric field being spent in decomposing 
these molecules, and finally by the heat given out on the recom- 
bination of the dissociated atoms appearing as heat, except in the 
numerous cases where the gas is permanently decomposed by the 
spark, when part of the energy of the field remains as potential 
energy of dissociated gas. . 

In that paper I did not discuss the difference between the 
effects observed at the positive and negative electrodes. I think 
however that the theory is capable of explaining these differences. 
For we may imagine a molecule of such a kind that the atoms in 
it would tend to separate when the molecule was moving in one 
direction in an electric field, say that of the lines of force, but 
would be pushed nearer together when the molecule was moving 
in the opposite direction. A molecule of the following kind would 
possess this property. 

Fig. 7. Fig. 8. 
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Suppose we have two vortex rings AB and CD of equal 
strength, whose planes are parallel and whose cores are nearly 
coincident, they will rotate round each other, the cores remaining 
at an approximately constant distance apart. Let us suppose 
that these rings are moving in a fluid which is in motion but in 
which the distribution of velocity is not uniform; then we know 
(see a Treatise on the ‘ Motion of Vortex Rings’ by J. J. Thomson, 
p- 65) that the radii of the rings will alter, and that the alteration 
will not be affected by reversing the direction of motion of the 
rings. . 

“Now let us suppose that the radius of AB in consequence 
of the distribution of velocity in the surrounding fluid increases 
faster than that of CD, then since the velocity of a ring diminishes 
as its radius increases the diminution in the velocity of AB will 
be greater than in that of CD, so that CD will now move faster 
than AB, the distance between the rings will therefore increase, 
and if the difference between the velocities is great enough they 
will ultimately separate. Next let us suppose that the rings are 
turned round so as to be moving in the opposite direction, as in 
fig. 8. Then, since the alteration in the radius of either ring is 
the same after the direction of motion has been reversed ; under 
the same circumstances as before, the radius of the ring AB, which 
is now in front, will still increase faster than that of the ring CD, 
which is now in the rear; that is, the diminution in the velocity 
of the ring in front will be greater than that of the one in the 
rear, that is, the front ring will move more slowly than the one 
behind, so that the distance between the rings will diminish and 
the connection between the atoms in the molecule be made firmer, 
while in the other case the molecules tended to separate. The 
only difference between the cases, however, is the direction in 
which the molecules are moving, so that a molecule of this kind 
may tend to be decomposed when it is moving in one direction 
and not when it is moving in the opposite one. 

It would, I have no doubt, be possible to give an illustration 
of this property by taking an ordinary mechanical system and 
supposing it to be acted on by a proper distribution of forces: the 
above illustration, however, is sufficient for my purpose, which is 
to shew that the properties of molecules may be such that they 
are decomposed when moving in one direction in an electric field 
but not when moving in the opposite. 

Let us trace some of the consequences of supposing that the 
molecules are decomposed when moving in the direction of the 
lines of force and not when moving in the opposite direction. 
If we consider the electric field near the electrodes, this means 
that at the negative electrode those molecules which are moving 
towards it are the only ones which have any tendency to be 
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decomposed, while at the positive electrode it is only those mole- 
cules which are moving away from it which are in this condition. 

The consequence of this will be that the molecules will be 
more easily decomposed at the negative than at the positive 
electrode. For consider first of all the case of a non-uniform 
field, when the intensity of the field diminishes as we recede from 
the electrodes. At the negative electrode those molecules which 
are approaching the electrode are the ones which tend to get 
decomposed, and these are going from weak to strong parts of the 
field, so that the tendency to dissociate gets stronger and stronger, 
while it keeps getting a better leverage, as it were, for the atoms 
in the molecule get further and further apart as the molecule 
moves, and thus the difference in the alteration in their radii 
would increase even if the field were uniform, but when the field 
increases in intensity, as the molecule moves on, the effect is still 
more increased. On the other hand, those molecules at the positive 
electrode which are likely to be decomposed are those which are 
moving away from the electrode, and in this case when the inten- - 
sity of the field is greatest the atoms are nearest together, so that 
the separating tendency which is the difference in the effects on 
the atoms is minimized as much as possible; while in the case of 
the negative electrode, when the tendency to produce a difference 
was greatest the distance between the molecules was greatest too, 
so that we see in this case the molecules will dissociate more 
easily at the negative than at the positive electrode. Again, we 
must remember that those molecules which are near to the 
positive electrode and moving away from it, must previously have 
been approaching the electrode, and that during this time the 
action of the electric field was to make the atoms come closer 
together. When the direction of motion of the molecule is reversed 
by reflection at the positive electrode, the action of the electric 
field in separating the atoms in the molecule is reversed, so that 
unless the course of the molecule is extraordinarily unsymmetrical 
it will be in the same state when it gets away from the electrode 
as it was before it approached it, and as it was not dissociated in 
the one case it will not be in the other. 

Next let us suppose that the electric field is uniform, as in the 
experiments described above; then as there is no evidence for any 
considerable condensation of gas about the electrodes, we shall 
suppose that the density of the gas is approximately uniform. 
Since everything is uniform the molecules will dissociate most easily 
when they are moving for the longest time in the direction of the 
lines of force. Now according to the vortex atom theory of gases 
the vortex rings as they approach the planes which form the elec- 
trode will expand, and as they expand they move more and more 
slowly, so that the molecules will be moving for the longest time 
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in the same direction in the neighbourhood of the electrodes. And 
_ just as in the non-uniform field the molecules will be more likely 

to dissociate at the negative electrode than at the positive, for at 
the positive electrode those molecules which are likely to be dis- 
sociated are those which are moving away from the electrode, but 
they must previously have been approaching it, during which time 
they were being pushed nearer and nearer together, so that at 
this electrode the molecules which have any tendency to be dis- 
sociated are those which have been specially prepared to resist this 
tendency, and as this is not the case at the negative electrodes the 
molecules will be dissociated most easily at this electrode. 

Hence the conclusion we arrive at is, that whether the field be 
uniform or variable, dissociation is more likely to take place at 
the negative electrode than at the positive, and that the dis- 
sociation is more likely to take place close to the negative elec- 
trode than in the body of the gas; though if the field be very 
strong or the gas very weak the molecules in the body of the gas 
may get decomposed. Thus in the experiments described above, 
though in gases which are electrically strong, such as air and 
coal-gas, the discharge under certain circumstances could be con- 
fined to the neighbourhood of the negative electrode, yet in 
electrically weak gases, such as the vapours of turpentine and 
alcohol, the gas was under all circumstances (when the pressure 
was low) decomposed throughout the field, though the greater 
brightness of the layer near the negative electrode shewed that 
more gas was decomposed there than in other parts of the field. 

There seems too in the case of the discharge through ordinary 
vacuum tubes considerable direct evidence that there is a con- 
siderable amount of decomposition going on near the negative 
pole, more so than in the rest of the field, for in the first place, 

- the spectrum of the glowing gas surrounding the negative elec- 
trode generally shews lines, while the spectrum in the rest of 
the field is a band spectrum, and line spectra are believed to 
denote a simpler molecular constitution than band spectra: and 
secondly, the gas near the negative electrode is hotter than that 
in other parts of the field. 

Let us trace some of the consequences of the gas being 
decomposed more easily at the negative than at the positive 
electrode. Since, according to our view, decomposition of the 
molecules means a spark, it follows that according to this theory 
a spark ought to pass more easily from a negative than from a 
positive pole, a result which was long since observed by Faraday 
(Haperimental Researches, § 1501). 

Again, decomposition, and therefore discharge, takes place the 
more easily the longer the molecules move continuously in the 
direction of the lines of force; thus the longer the average time 
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the molecule takes to have its velocity reversed, the more likely 
is it to be decomposed by the electric field. Now this time will 
depend on the average time between two collisions and the in- 
tensity of the force between the molecules: thus, for example, 
if the molecules acted on each other like two perfectly elastic 
spheres, that is, if when they collided they interchanged the 
velocities parallel to the line joining their centres, the mean time 
taken to reverse the motion of a molecule would be a little less 
than twice the mean time between two collisions, for the motion 
of the molecule will be reversed when it meets a molecule moving 
in the opposite direction, and it is rather more likely to meet one 
moving in the opposite direction than one moving in the same 
direction as itself. Again, it will take longer to reverse the direc- 
tion of motion when the changes brought about by a collision are 
small than when they are large; so that taking the ordinary view 
of a collision as due to forces between the molecules, the greater 
the forces between the molecules the smaller the time taken to 
reverse the direction of motion. Other things however being the 
same, it is evident that this time will vary inversely as the 
number of collisions per unit time. The particles will be moving 
very much longer in one direction when the gas is rare than when 
it is dense; so that the rarer the gas the more easily will the 
molecules be dissociated: this explains why a rare gas is electrically 
weaker than a dense one. There must however be a certain 
density, such that if the rarefaction be carried beyond it the 
electric strength of the gas will increase as the rarefaction in- 
creases; for, according to our view, if there were no molecules 
there would be nothing to discharge the energy: so that when the 
density is zero the gas has infinite electric strength. This point 
will depend, among other things, upon the energy required to 
dissociate a molecule of the gas into atoms, other things being the 
same; the greater this energy the lower the critical pressure. It 
will also depend upon the time during which the molecules are 
moving in the same direction; if we were to shorten this time 
without altering the density of the gas or the energy required to 
dissociate a molecule we should raise the critical pressure, for we 
should hamper the efforts of the rarefaction to diminish the 
electric strength, while we should not affect the causes which tend 
to increase the strength. De la Rue and Miiller, Proceedings of the 
Royal Society, 1882, have found that the size of the vessel con- 
taining the gas has an effect upon the critical pressure. This is 
just what we should expect if the above view were true, for the 
size and shape of the tube will, when the pressure gets so low 
that the distance traversed by the molecule while it is moving 
continuously in one direction is comparable with the dimensions 
of the tube, affect the time during which the molecules are 
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moving in the direction of the lines of force, and we should expect 
that any change in the shape of the vessel which diminished 
the average time the molecules were moving in the direction of 
the lines of force would raise the critical pressure. 

We must remember that the quantity we are comparing the 
dimensions of the vessel with is not the mean free path of the 
molecules, which no doubt at the critical pressure is very small 
compared with the dimensions of the vessel, but the average 
space taken to reverse the direction of motion, which may be very 
much greater. For if the force between the molecules be very 
small, it will require a great many collisions to reverse the 
direction of motion of the molecules. 

The well-known phenomenon that a thin layer of air is 
relatively electrically stronger than a thick one, might be explained 
in the same way as we explained the dependence of the critical 
pressure upon the shape and size of the containing vessel. For 
consider the case of two parallel planes, when the distance between 
the planes is comparable with the average space through which 
the molecules move continuously in one direction, the constraint 
caused by the planes will have the effect of diminishing this 
distance, and therefore of diminishing the chance of the molecule 
being decomposed by the electric field, it will therefore make the 
layer stronger than an equally thick layer of gas at the same 
pressure placed in open space. 

The same explanation will also apply to an experiment of 
Hittorf (Wiedemann Lehre von der LHlectricitit bd. iv. § 417); 
in this a sealed glass flask is furnished with two electrodes 
made of straight pieces of wire, one being put in the neck, the 
other in the bulb of the flask. When the one in the bulb is 
negative it glows all over, but when the one in the neck was 
negative it only glowed over the tip. In this case the electrode 
is near the glass sides of the flask, so that the average distance 
the molecule is moving in the direction of the lines of force is 
diminished by the glass in those parts of the gas away from the 
tip more than it is in those near the tip, so that the gas away 
from the tip is electrically stronger than that close to it. We 
should therefore expect the discharge to take place at the tip, 
which is exactly what happens; on the other hand, when the 
electrode is in the bulb the glass is a great distance from the 
electrode, it can not therefore affect the distance a molecule 
travels before its direction is reversed: the gas is therefore equally 
strong all over the electrode, and we should therefore expect, as is 
the case, the electrode to be covered with glow. 

These considerations would seem to have an important ap- 
plication to the case when there is a contraction in the cross 
section of the discharge tube at some point. If the tube is 
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narrowed so that its dimensions in one direction are comparable 
with the space it takes to reverse the direction of motion of a 
molecule, then the gas will be electrically stronger in that direction 
than in one at right angles to it. This will have the effect of 
confining the discharge to one direction, and so making it more 
intense in that direction than it would have been if it had been 
free to spread out equally in all directions: this perhaps will 
explain Goldstein’s result that the narrowing of the tube produces 
much the same effect as would be produced if there were a 
secondary negative electrode at the contraction. 

If this theory of the effect of the limitation of the space 
taken to reverse the direction of motion of a molecule be true, 
we should expect the following results, which as far as I know 
have not been investigated. 

The ratio of the electric strength of a thin layer to a thick one 
should be greater at low pressures than at high ones, because the 
ratio of the average distance the molecules travel along the lines 
of force before their direction of motion is reversed to the dis- 
tance between the plates is greater at low pressures than at high 
ones. 

The difference between the electric strength of a thin anda 
thick layer will depend upon the intensity of the force between 
the molecules, because the greater the intensity of the force the 
less the space required by a molecule to reverse its direction ; 
but the smaller the force between the molecules, the greater the 
coefficient of viscosity, so that the difference between a thick and 
a thin layer ought to depend upon the coefficient of viscosity of 
the gas. 

The motion of the gas itself produced by the electric discharge 
must produce important effects on the discharge. When the 
electric discharge passes through a gas, the pressure of the gas 
increases, this increase however only lasts as long as the spark 
passes. This was originally observed by De la Rive, it was after- 
wards re-discovered by De la Rue and Miiller, when investigating 
the discharge produced by their large chloride of silver battery ; 
by keeping the current on they were able to get an increase cf 
pressure in a large bell-jar of about 30 per cent. of the original 
pressure (Phil. Trans. 1880, p. 86). This increase has been at- 
tributed by Dr Schuster (Proceedings of the Royal Society, 1884), 
to the decomposition of the molecules of the gas by the discharge, 
but though I believe some of the increase to have been due to 
this cause, yet the effect seems to be too large to be altogether 
explained in this way, for if the molecules were split in two it 
would require about 50 per cent. of the molecules to be dissociated, 
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and as the discharge took place in a large bell-jar between pointed 
electrodes, it is hardly possible, I think, to imagine that anything 
like so large a number of molecules were dissociated by the spark. 
In addition to this, in some experiments on the subject which 
Prof. Threlfall and myself have been making during the past year, 
we got effects which were too large to be explained even by sup- 
posing that all the molecules were dissociated, and in these ex- 
periments only a small fraction of them became luminous. These 
results seem to point to a kind of explosion taking place at the 
place where the spark passes, which projects the surrounding 
gas away from the place of explosion. We should expect from 
Faraday and Maxwell’s theory of stress in a medium that some- 
thing of this kind should take place. For according to this theory 
there is a tension along the lines of force and a pressure at right 
angles to them; this distribution of stress producing when the field 
is steady equilibrium at a place where there is no electrification. 
When however the electric field disappears at one place and not 
at another the stresses will no longer be in equilibrium, and since 
the original state was that of tensions along the lines of force, 
the effect produced by the disappearance of this stress from some 
part of the field will be much the same as if there was an 
explosion at the place of discharge, at least as far as the motion 
of the gas parallel to the line of force is concerned. This effect 
too will be increased by the decomposition of the molecules which 
takes place when the spark passes, because this decomposition 
produces a sudden increase of pressure. For these reasons we 
conclude that there is a violent projection of the molecules paral- 
lel to the lines of force from the neighbourhood of the place 
where the electric field is discharged. 

Let us now consider what takes place when a spark passes 
through a gas at a moderately high pressure. The electric strength 
of the gas will break down in the neighbourhood of the negative 
electrode through some of the molecules there being decomposed. 
Some of these dissociated atoms will get projected away from 
the negative electrode, parallel to the lines of force; after going 
for a short distance, the length of which depends on the density 
of the gas, they will recombine, giving out heat in so doing; this 
warms the neighbouring molecules, they are then more easily 
dissociated, that is they are electrically weaker; the spark passes 
through them, and the same process is repeated until the spark 
reaches the positive electrode. . 

The explosion which takes place when the electric field gets 
discharged is perhaps one of the reasons why polarization is not 
produced by the passage of an electric spark through a gas, as 
it is when an electric current passes through an electrolyte, though 
according to our view, the process in both cases is very much the 

28—2 



A 4 Prof. Thomson, On some experiments on the [May 10, 

same. The polarization in an electrolyte is due to the presence 
of the products of decomposition on the electrodes; if we had any 
mechanical appliance to wipe them off as fast as they were formed, 
or if we could prevent them from settling on the electrodes, we 
should get rid of polarization. Now this is just what is done 
by the violent explosion which takes place when the spark passes, 
the explosion drives the products of the decomposition violently 
about, and prevents them from settling on the electrodes, so that 
in this case we should not expect any polarization. 

The only assumption we have made about the electric field is, 
that in it there is polarisation of the motion of the ether. 
Now the motion of the ether must depend to a certain ex- 
tent upon the motion of the molecules moving about in it. 
This is very clearly seen in the case of the vortex ring theory 
of matter, and would seem to be a necessary consequence of 
any conceivable theory of the relation of matter and the sur- 
rounding ether. Thus whenever we have a polarization of the 
molecules we should expect a polarization of this motion of 
the ether. Now though it does not follow that the polarization 
of the ether is always accompanied by electrostatic effects ;—the 
existence of permanent magnets with presumably a polarized 
arrangement of molecules, and therefore a polarized arrangement 
of the ether surrounding them, without any corresponding electro- 
static phenomenon, seems to shew that it is not—yet if we consider 
the system of polarized molecules with which we are acquainted, 
we shall find that in nearly every case they are accompanied by 
electric phenomena. The property of exhibiting pyro-electric 
phenomena which all crystals seem to possess, shews, according to 
Sir WilliamThomson’s view of the phenomenon, that in crystals the 
polarized state of the molecules is accompanied by electric polari- 
zation. 

Again, the Thomson effect in thermo-electricity ie. the pro- 
duction of electric effects by the polarized motion of the molecules 
of a body consequent upon differences of temperature in the body, 
shews that in this case the polarization of the molecules 1s accom- 
panied by electrical phenomena. The production of currents in a 
solution of varying strength, the phenomenon of galvanic polariza- 
tion, the electrification of bodies by strain, the effects produced 
in thermo-electric circuits by inequalities in the strain or state of 
magnetisation, are only some among many of the instances when 
a polarization of the molecules is ‘accompanied by an electrical 
effect. 

These considerations would seem to have an application to 
the electric discharge at low pressures. Let us suppose that the 
electrodes are plates, as in the experiments described above, and 
suppose the pressure is so low that the discharge spreads to a 
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considerable extent over the surface. Then in the gas between 
the electrodes we have, when the discharge has just commenced 
next to the negative electrode, a region where the electric field 
has been discharged, and beyond this a region where the molecules 
have not been dissociated but into which a few atoms from the 
dissociated molecules have been projected by the explosion con- 
sequent upon the electrical discharge. Now in the region next 
to the negative electrode the molecules are in a polarized state, 
since those molecules which were moving in a definite direction 
have been dissociated. We may expect this polarization of the 
molecules to produce an electric field, the effect of which on the 
field, away from the negative electrode, is of an opposite character 
to that of the original tield which produced the electric discharge ; 
if it produced a field of the same kind in this region there would 
be instability. 

Thus the field outside this layer will be less intense than 
the original field inside it, or than it was outside before the layer 
of gas next the negative electrode broke down, so that if it did 
not break down at first, it is not likely to do so afterwards. This 
would evidently have a tendency to confine the discharge to the 
neighbourhood of the negative electrode, which was a prominent 
feature In our experiments with air and coal gas. 

Actual measurements by Hittorf and others of the electric 
force in a discharge tube of the ordinary kind have shewn that 
this force is very much less outside the first luminous patch which 
we meet with as we travel from the negative electrode, than it is 
between this bright patch and that electrode, and this being so it 
is easy to understand why the discharge should be greatest near 
the negative electrode. 

We shall now go on to apply the views we have been dis- 
cussing to the case of the electrical discharge through a gas at a 
low pressure, say less than 2mm. of mercury. Before doing so 
however it may be convenient to describe the phenomena, observed 
when the discharge passes through a tube filled with such a gas. 
Suppose we start from the negative electrode; in contact with 
this we have a bright glow whose spectrum does not bear much 
relation to the gas in the tube, it is presumably due to gas 
absorbed by the electrode or by glowing matter from the elec- 
trode itself. Next to this we have a dark space whose dimensions 
depend upon the density of the gas, getting larger as the density 
diminishes ; next to this we have a luminous mass of gas whose 
spectrum shews bright lines and whose dimensions depend upon 
the shape and size of the electrodes and the density of the gas; 
next to this we have a non-luminous space, for which the name 
dark interval has been proposed by Dr Schuster; after this we 
have a glow often striated, reaching up to and touching the positive 
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electrode. At very low pressures there are luminous rays which 
start from the negative electrode in a direction nearly at right 
angles to it, and travel on in this direction until they meet the 
glass tube which fluoresces brilliantly at the places where the 
rays strike the glass. 

Let us now consider from our point of view what happens in 
the tube. The gas near the negative electrode gets decomposed, 
and the explosion which occurs when the decomposition takes 
place drives the dissociated atoms about, these after going for 
some <listance recombine, giving out as is usual when gases 
combine light and heat. The dark space corresponds to the 
region when the dissociated atoms are moving about, the lumi- 
nous glow to the space within which they are recombining. The 
distance through which the molecules must travel before they 
recombine must evidently depend upon the density of the gas, 
for the smaller the density the fewer atoms will a given atom 
meet with in a given distance, and so the fewer chances it has of 
entering again into combination. Again, the number of collisions 
which on an average an atom must make before it recombines will 
depend on the nature of the gas—if the atoms of the gas have 
a strong affinity for each other fewer collisions will be needed 
than if the affinity is weak, so that the dimensions of the dark 
space will be a smaller multiple of the free path in the first case 
than in the second. Crookes found that the dimensions of the 
dark space in carbonic acid gas was a smaller multiple of the free 
path than that in hydrogen. We must however remember that 
the free path we are considering is not the free path of the 
molecules but that of the dissociated atoms, and about this we 
have no direct evidence ; again, the disturbance produced by the 
discharge will no doubt influence the free paths, so that we cannot 
expect to be able to calculate with any accuracy the dimensions of 
the dark space from the length of the free path. 

The electromotive intensity outside the negative glow is much 
smaller than that inside, and the molecules are not so easily 

decomposed as they are near the negative electrode, so that in 
a region outside the negative glow we have no decomposition of 
the molecules at all; this region would correspond to the dark 
interval. 

Let us now consider what takes place at the positive electrode: 
the molecules there are according to our view not so easily de- 
composed by the electric field as those near the negative electrode, 
and it may be that, as in our experiments with the parallel plates, 
we can arrange matters so that practically all the discharge takes 
place at the negative electrode ; in general however the conditions 
will not be such that the phenomena at the two electrodes are 
contrasted so much, there will be more molecules decomposed at 
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the negative electrode than at the positive, but there will still 
however be some decomposed at the positive. The molecules 
which are decomposed at the positive electrode are those moving 
away from it, for the molecules which are dissociated are those 
which are moving along the lines of force, and the lines of force 
point away from the positive electrode. Since the molecules will 
have to move some distance before they are decomposed, the 
decomposition will take place some little way from the positive 
electrode ; the explosion produced by the discharge will drive the 
dissociated molecules in both directions, so that some will be 
driven towards the positive electrode and will recombine them, 
so that if the distance which a molecule has to travel before it 
is decomposed be not too great, the luminous glow will extend 
right up to the positive electrode. If the field be uniform this 
glow will stretch away from the positive electrode, and we shall 
have the glow which we observed in the experiments with parallel 
plates when we used electrically weak gases. 

The very interesting experiments of Dr Schuster on the electric 
discharge through mercury vapour which is monatomic, and there- 
fore cannot be dissociated, shews that though in this case the 
electric discharge presents quite different characteristics yet it 
still exists. The electric field is still discharged, though with great 
difficulty, so that there must be other means of electric discharge 
besides that of the decomposition of the molecules. 

What is essential for the electric discharge is that there should 
be some means of dissipating the energy of the electric field; 
the decomposition of the molecules is one way, and we have seen 
that there is considerable evidence that part at least of the energy 
in the electric field is dissipated through this channel, the fact 
that the discharge takes place through mercury vapour shews 
that there must be other means of dissipating the energy. The 
one that seems most obviously suggested by what is perhaps the 
most striking feature in the discharge, the luminosity, is that the 
energy is dissipated by radiation. We shall consider some of the 
consequences of supposing that this is the case. When a system 
of molecules is acted on by any system of forces, the kinetic theory 
of gases tells us that the distribution of kinetic energy among the 
molecules is exactly the same as if no forces acted upon the 
molecules provided the temperature is the same. So that the 
only effect which could be produced by the application of a system 
of forces to a collection of molecules is one that would shew itself 
as a rise in temperature, the distribution of kinetic energy being 
a function merely of the temperature and not of the applied forces. 
Now the radiation presumably depends upon the distribution of 
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kinetic energy, so that the radiation of a system of molecules 
is not altered by the application of a system of forces, provided 
the temperature be not altered; but the temperature of the mole- 
cules in the electric field is only altered slightly, if at all, before 
discharge takes place, so that the radiation from the molecules 
ean only be slightly atfected by the electric field, and there 
will only be very little if any additional loss from radiation. 

The above results however are only true when the applied 
forces are not intense enough to produce in the intervals between 
two or at most a small number of collisions a velocity in a co- 
ordinate of any type, which is large compared with the average 
value of that velocity at the temperature of the gas. 

When the forces are intense enough to do this in a coordinate 
of any type it is obvious that the energy of this type will be 
radiated away enormously more quickly than it would have been 
if the same amount of energy had been acquired by the molecule 
so slowly that it had had time to get distributed by collisions 
among other molecules. Let us apply these considerations to the 
electric field. 

When the intensity of the field is small, the increase in tem- 
perature produced by it must be very small, otherwise it would 
have been observed, hence the energy lost by radiation will be 
very small, and the gas will insulate almost perfectly. When, 
however, the field gets so strong that in a space comparable with 
the free path of a molecule it is able to generate in some co- 
ordinate a velocity which is large compared with the average 
for that temperature ; then since the molecule will have to make 
many collisions before this coordinate is reduced to its average 
value, and since it is losmg energy by radiation all this time, 
there will be a considerable dissipation of energy, and therefore 
an electrical discharge. A numerical calculation will shew that 
enough energy to discharge the electric field might easily be lost 
by radiation. 

In air, at the atmospheric pressure, the maximum electrostatic 
energy which can exist without there being an electric discharge, 
is about 500 ergs per c.c., now the energy required to raise the 
temperature of 1 c.c. of air at the atmospheric pressure 1 degree 
is about 15000 ergs, and the temperature of the gas would not 
have to be raised very much for it to lose its heat at the rate of 
1 degree per minute; so that if in the electric field the mole- 
cules on the average radiated 4, as much as the gas at this 
temperature the electric energy in the field would be dissipated 
in one minute. At lower pressures the radiation would not have 
to be nearly so much, for until we get near to the critical pres- 
sure, the electro-motive intensity which the dielectric can stand 
decreases almost as fast as the pressure, and as the energy in the 
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field varies as the square of the electro-motive intensity, the ratio 
of the greatest possible electro-static energy to the amount of 
energy required to raise the temperature of the gas 1 per cent. will 
diminish very rapidly with the density, so that the capacity of 
radiation to dissipate the electrical energy will increase as the 
pressure diminishes. 

The discharge would also take place more readily at low 
pressures than at high ones, for at low pressures the free path 
is greater, and therefore the electric forces have a better chance 
of producing that abnormally great velocity which is necessary for 
radiation, and in addition, the collisions are not so frequent; so 
that when it has got it, it does not run so great a chance of losing 
it by collision with other molecules. 

The discharge by radiation will be much more continuous than 
that by the decomposition of the molecules, and probably a much 
larger number of molecules will participate in it. 

The decay in the energy in the medium will destroy the 
equilibrium of the stresses, which according to Faraday and 
Maxwell, exist in the medium, but as the decay is much slower 
than if the energy were dissipated by the decomposition of the 
molecules, the motion of the dielectric which the disappearance of 
the stress produces will be much less violent. 

Whether the discharge of the electric energy takes place by 
radiation or by the decomposition of the molecules will evidently 
depend very much upon the nature of the gas; if the gas is one 
whose particles are easily dissociated, then we should expect the 
discharge to take place chiefly by the decomposition of the mole- 
cules ; if, however, the molecules are dissociated with great difficulty 
then we shall expect the discharge to take place chiefly by radiation. 
From what we have said, it will be seen that the discharge is more 
likely to take place by decomposition at the negative than at the 
positive electrode; so that we may have a case where the discharge 
is by one means at one electrode and by the other at the other elec- 
trode. This I think may be the reason why stratifications are pro- 
duced more easily in the electrically weak gases, such as the vapours 
of turpentine and alcohol, than in those which are electrically 
stronger, for according to our view of striae, their formation depends 
upon the decomposition of the molecule, and at the positive elec- 
trode the discharge does not take place so easily by this means as 
it does at the negative; so there would be a greater tendency for 
the discharge to take place in the other way, whatever that way 
may be, and the formation of the striae would be much facilitated 
if the molecules of the gas were easily decomposed, as gases of 
complicated chemical constitution usually are. 
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(2) On an experiment in Ventilation. By W. N. SHaw, M.A. 

This paper results from an attempt to improve the ventilation 
of the Biological Lecture-Room of the New Museums in order 
to make the room serviceable for lectures to large classes for 
consecutive hours. 

The room is of the ordinary lecture-room shape, a rectangular 
room partly filled by raised seats so that the longitudinal section 
would be somewhat as represented in Fig. 1; A, B, C, D being the 

Fig. 1. 

A 

rc 
‘ 
1 
1 
1 
1 
1 
1 

! 
1 
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rectangular outline and Z, F the slope of the line of seats. There 
are two doors in the North wall near the corners B, C, that near C 
opening into a passage under the higher seats, represented by 
HGK. There is another door in the East wall near the corner 

diagonally opposite to the door C. The room is heated by a row 

of hot-water pipes cased in wood running along the floor on the 

South side, immediately under the row of windows in the same 
wall by which the room is lighted. 

The means of ventilation hitherto provided consisted of two 
Tobin inlets 7, 7’ in opposite corners, and two exhaust ventilators 
Veo 

The Tobin 7’ in the corner B of the North and East walls 
is one square foot in area and is supplied by air from the space 

underneath the floor of the room, communicating with the out- 
side by a number of open grids. In this space there are numerous 
hot-water pipe connections so that the air delivered by the 
Tobin is warmed, and enters the room at a temperature of about 
80°F. 

The other Tobin, in the opposite corner where the passage 
turns to enter the room, is about 12” x 13” in area and coni- 
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municates directly with the outside air, and consequently delivers 
cold air. 

The ventilators V, V’ are not far from the middle of the two 
end walls and close to the ceiling. 

The accepted theory of ventilation upon which this arrange- 
ment is based is that a source of heat in the room warms the 
air, which rises to the ceiling and passes out by the flues of the 
ventilators V, V’. The sources of heat in the room in question 
may be taken to be the lecture class. The air which they have 
used will according to this theory rise to the ceiling and be drawn 
out by the ventilators as desired, its place being supplied by fresh 
air delivered by the Tobins. 

Other sources of heat which should produce a like effect 
are the hot-water pipes; these, by the simple application of the 
theory, should cause the air near them to rise and pass out by the 
ventilators in like manner. That this is not the case is clearly 
shewn by the fact that the room is rather more than comfortably 
warm; but the row of windows above them would produce an 
opposing downward current and may very easily account for the 
diffusion of the hot air produced by these pipes. 

The general theory of ventilation has been illustrated by 
various lecture-room experiments and I found some additional 
ones in endeavouring to trace the course of the air which 
the Tobins 7, 7” supplied to the room. For this purpose I 
used a gold-beater’s skin balloon filled with gas only to such 
an extent as to make it as nearly as possible of the same density 
as the air of the room. On placing this over the Tobin 7, 
which delivered warm air, it rose at once to the ceiling and very 
slowly made its way along there, so that we may conclude that this 
air passed at once to the ceiling and there formed a warm layer. 
The cold air from the Tobin Z” on the other hand carried the 
balloon downwards to the floor at once and it then passed along 
the passage towards the door at C. If placed close in the corner 
over the Tobin, the current of incoming air raised it about 3 feet 
and then carried it over, but the impression conveyed was that 
the air behaved very much like water flowing over the top of the 
Tobin. 

I did not find it possible by means of the balloon to trace the 
course of the air far along the ceiling or floor respectively. The 
only other additional current was one from the passage up the 
stairs leading into the room. At the ceiling over the seats the 
air seemed almost motionless but the fact that the ventilators 
were active was amply evidenced by the balloon being firmly 
held against them when brought near to them. 

It would appear therefore that, whatever happens to the 
vitiated air, in actual practice and in accordance with the usual 
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theory, the warm air supplied by the Tobin 7’ does pass to the 
ceiling and that the ventilator V derived a large part of its 
supply directly from that source, and that this Tobin was practically 
useless as a means for renewing the air of the room. 

The theory of ventilation is no doubt applicable in cases like 
the one mentioned, in which the source of heat heats sufficient air 
to form a steady convection current, such as would be generated by 
the hot air in the shaft of the Tobin 7, or by means of a gas 
flame, but with some hesitation I offer the following reasons for 
regarding the diffusion of air surrounding persons in a room as a 
much more complex phenomenon; which in a case like the one we 
are considering would result not in a transference of the bad air 
to form a layer along the ceiling leaving fresh air beneath, but in 
a local circulation 1.e. passing upwards for some short distance and 
then sinking again over the space not occupied by the audience. 

The air which is respired does not rise upwards without mixing 
with the surrounding. We may form some idea of the rate at 
which mixing goes on from the fact, that, in breathing into a 
cold room a cloud is formed which disappears almost instantly, 
shewing that the air has become sufficiently mixed to take it 
above the saturation point by the time the expiration is completed. 
Assuming that 30 cubic inches are expired and that these contain 
4 p.c. of carbonic acid and are saturated with moisture at the 
temperature of 35°C. and breathed into an atmosphere of 15°C. 
I find that in order to reduce it to air which is just saturated 
its volume must have increased to nearly twice its origimal value. 
Its temperature would then be 28°C. and its density -96 of that 
of the surrounding atmosphere, thus giving a lifting force on each 
gramme of air of about 3 centigrammes; this would be very 
rapidly diminished by further mixing. Moreover the moist air 
would rapidly radiate heat through the drier surrounding air 
and approach very nearly to its temperature, so that before it 
had been raised any considerable distance its lifting force, due 
to difference of temperature, would have become inappreciable. 
It would have become generally diffused at some small height 
above the people at the same. temperature as the surrounding air 
and would be loaded with carbonic acid, which would render it 
heavier, and thus unless mechanically removed it would tend to 
sink and replace the colder air taken from below to supply its 
place when it originally rose. 

In the Biological lecture-room the mechanical effects of the 
ventilators and the cold Tobin 7” would interfere to some extent 
with the establishment of the circulation in question, and the 
effect may not be so readily perceived as in some other instances, 
such as the lecture-room of the Cavendish Laboratory, which 
furnishes a very good example. In that lecture-room a dozen 
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persons sitting on the raised seats under which are hot-water pipes 
are sufficient to make the atmosphere behind the lecture-table 
quite appreciably foul. I have in contemplation some experiments 
to shew the existence of this circulation but I have not yet had 
time to complete them. 

That hot air projected into cold does not rise with any 
great rapidity is further illustrated by the steam which issues 
from locomotives, which, although very much heated when ejected, 
lies on a still day very little above the train level, and 
contrasts remarkably in its behaviour with the vortex ring of 
steam that is sometimes seen and which penetrates the air with 
much greater rapidity. 

These considerations tend to shew that the circulation of air in 
a room cannot be regarded as « simple case of convection current; 
probably in many cases the result depends more upon diffusion 
than convection. 

The ventilation of the lecture-room might be considered to 
have been faulty in these respects :— 

(1) The hot-air Tobin 7’ delivered its air direct to the 
ceiling and there formed a layer; a large part of it probably 
escaped directly by the ventilator V. 

(2) The row of hot pipes also produced an upward current, 
warming some of the air supplied by the cold Tobin 7” and 
sending it direct to the ceiling. This as stated would be to a 
certain extent remedied by local circulation produced by the 
windows. 

(3) The foul air immediately over the audience probably 
formed a circulation of its own; part indeed escaping by the 
ventilator V’, and the rest falling upon the lecturer. 

There are two acknowledged principles of efficient ventilation, 
the first to supply fresh air in such a way that the position it will 
take up is known, and in such quantity that it must extend 
rapidly enough over the whole room, and then to let the foul air 
find its way out; the second to remove the foul air by means of 
exhaust pipes drawing air from where it is known to be foul 
and leaving the fresh air to find its way in. In altering the 
ventilation of the room in question I have endeavoured to secure 
the advantages of both these methods in the following manner. 

The Tobin 7' forms a layer of hot air at the ceiling. I have 
prevented this escaping by covering the ventilator V by a 
wooden shaft attached to the wall which has an opening 24” x 14” 
inclined at an angle of 45° to the wall about 6 feet above the 
floor. The layer of hot fresh air must therefore gradually thicken 
and in time fill the room (neglecting that part of it which will 
escape unused by the ventilator V’), This is the application of 
the first method. 
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To secure the advantages of the second method I have laid 
an open tube 24” x 12”, one opening of which is horizontal and is on 
the level of the rail of the partition between the lecturer and 
the audience and just behind that partition, the other opening 
is in the boiler room where are the two furnaces of the hot-water 
apparatus of that part of the building. By closing the door of 
that room and measuring the amount of air which went through 
the window to supply the fires I had calculated that I could 
by means of this tube extract 18,000 cubic feet of air per hour 
from a part of the lecture-room where the air was certainly 
impure. I had intended to increase the hot air inlets by adding a 
Tobin between two windows on the south side connected with 
one part of the case of the hot-water pipes, providing the opening 
to the outside air in another part of the same case, but this has 
not yet been done. 

The present arrangement of exhaust and supply Tobins may 
therefore now be represented by Fig. 2. 

T and T’ are the old Tobins, V the new position of the ventilator 
in the east wall, V’ the ventilator in the west wall as before. 
W the new tube connected with the furnace room. 

I have made some measurements of the amount of air which 
passes through the various openings, first with the new shaft open 
and secondly when it is closed. The results are given in the 
following table. The cubical content of the room is about 36000 
cubic feet. . 

The measurements were taken by means of a Casella wind- 
gauge. They are of course very rough and especially so in the. 
case of the inlets, the rate for which varied very considerably with 
the wind. It will be seen that the new shaft does very much what 
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it was expected to do in the way of extracting air, and that 
without interfering with the action of the ventilators, which still 
behave as exhausts. 

Inlets. Outlets. 
/ 7 a 7? fi 

12” x 12”) 12” x 13’| Total. || 18” x 12”) 24” x 14”) 22” 10"| Total. 

Air passing 

me ft.) 5480 | 13200 |18680| 18960 | 13080 | 9000 | 41040 
per br. W. 
open. 
Airpassing 

in eu. ft.) 4999 | 11580 | 16500 0 14520 | 8280 | 22800 
per hr. W. 
shut. 

Besides the Tobin inlets I have found that when the shaft W 
is open, there is a supply of air from both the doors at B and C, 
but an outlet to the door in the corner opposite to C. When the 
shaft is closed there seems to be a reversal of the currents, under 
the doors at B and C, so that in the one case the staircase outside 
is fed by the lecture-room and in the other the reverse is the case. 
This may account for some of the very large difference between the 
exhaust and the inlet measurements. 

The effect upon the atmosphere of the room is of course not to 
be expressed by measurement; the reports however of some of 
those who use it seem to shew that the experiment has to a 
certain extent succeeded. 

In the report of the Parliamentary Commission on warming and 
ventilation of dwellings (1857), Roscoe gives the amount of air 
required per person for continuous occupation of a room as from 
15 to 20 cubic feet per minute. This would require for a lecture- 
room, occupied by a class of 100 persons, from 90,000 to 120,000 
cubic feet per hour, so that the exhaust at present operative of 
41,000 cubic feet is still deficient. 

(3) On the series for e*, log, (1 +x), (1 +x)". By M. J. M. 
Hitt, M.A. 

The object of this paper is to give a proof of the series for 
log,(1 +), which does not employ the method of indeterminate 
coefficients nor the method of limits. 

The necessary work nearly completes a proof of the Binomial 
Theorem which does not involve the principle of permanence of 
equivalent forms. 
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The whole investigation being based on the Exponential 
Theorem, the writer has developed a proof of this theorem dis- 
tinctly indicated, but not fully set forth, by Sir W. R. Hamilton in 
his Theory of Conjugate Functions or Algebraic Couples in the 
Transactions of the Royal Irish Academy for 1837 (pp. 411—412). 
As the writer has not seen this proof in any text-book, the Cam- 
bridge Philosophical Society may consider it worth printing. 

The Binomial and Multinomial Theorems for positive integral 
indices will be assumed to be known. 

Art. 1. The proof of the Exponential Theorem proceeds very 
nearly after the manner of Kuler’s proof of the Binomial Theorem, 
except that here the equation 

Fm) xf (n) =f (m+n) 
2 

where f(m)=ltmt ot. to y ob ee 
T: 

is directly proved. 

Art. 2. The identity of the series 

retro mG 2 an +o (G+ o45+ y+ tet} +5; pitt Foe ane 

n 2. 

a + 
(lige 

1 

"(F4545 )+ 
1: 2253. it) 

and the series 

n(n+1) prints n(n +1) es 1) eas 

2! fs 

is established. 

Art. 3. Putting in the identity of the last article, n =1; using. 
the Exponential Theorem, and the known expression for the sum 
of a Geometrical Progression, it is shewn that 

1l+ne+ 

2 8 
witste)_ 1 

l-«a 

GBA dB) ae ‘si 1 7 
whence its Sieg ot eel an og, (1-2), 

which is the logarithmic expansion. 

Art. 4. Making use of the Exponential Theorem and the 
result of the last article, the first series in Art. 2 may be written 

2 43 

7 BGAat ate) 2 ome Cy ay, 
n(n+1) . 

ee 9a 
Wes (@see— ll) , ras Y) (n ) as 

. (l-a#)"=14 ne+ 2) FR sou 

which gives the Binomial Theorem. 
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Art. 1. The Exponential Theorem. 
2 rete 

(a) Let f(m) denote the series. 1 + m+ a AEE ret a 

It is required to show that whatever m and n may be 

Ff (ef) = FF te 0) ae es ae aoe (A). 

Let the coefficient of mn‘ be calculated on both sides. 

+... 

On the left hand it is = ; =. 

On the right hand the term m’n* can only occur in the term 
rts va ! 

Oe . Its coefficient is therefore ; Tighas ; 
r+s! r+s! ris! 

The coefficient of any term m’n’ being the same on both sides, 
the equation is demonstrated. 

(8) Now suppose # a positive integer, then 

[7 () =f (1) xf) x fC) x ... until there are # factors 

=f (x), by repeated use of the equation (A). 

(y) Next let « be a positive fraction a where p and q are 

positive integers ; 

But f iF (5) Seay (£) x... until there are q factors, 

=f (p), by repeated use of the equation (A), 

=[/(1)]’, by the previous case since p is a positive integer ; 

|r) /-vrwr, 
DN ye a *Q) =U. 

 f@) =[f Or. 
(6) Lastly, let « be negative and = —n, so that n is positive. 

Then f (— n) x f(n) =f (0), by equation (A), 

VOL. Via. PT. Vi. 29 
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; ieee : e previous case iat | = AO), meal) app? by th previous 

=[f(1)]”, by the definition of a negative index 

=Lf (QF 
Hence whatever 2 may be 

But 7) : aitait: which is usually denoted by 

the symbol e, 

.f @=6, 
xy? r x x 

.@=l+e+ 545 +- ar Gay ar os 

whatever x may be. 

The series is convergent so long as « is finite. 

Art. 2. It is required to ees the identity of the series 

1+ (7 a +5 4..), 
Ss 

n(n+1)...(n+r—1) ee 
p) and 1+ 2 

r=1 Tah 

the summations being effected for all positive integral values of r. 
2 r 

The first series is Lal gat se +24...) 
Th os 

+3, (G4+5+ po Te ) 
ZAI 

ate us issa e:dlets Binyeqelidales oer here ole Ree anes 

iy (a x” y 
ba Gi as. Title ) 

AES A Met, cab otnaee Rees a bee crs cenitie 

Let it be written for brevity c,+¢0+0¢,4°+...4+¢4"+... 

Then bea ee 
r 

1 1 la, +24,+...+74,=7 
2 1 2 i Z 

PA | Gp Meee , where {084 a+..+ a4.=2 

il 1 la, +2¢,+...+74,=9 
8 1 2 cP ’ 

a Ue ere Sie Oe where | a+ oe 

F PessosGnd SodbOndadcolwodapocenonoageos 

i: 1 la, +22,4+...+74,=7, 
Saree Sa eoe where | a 
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The & in each case denotes summation for all possible solutions 
of the corresponding equations in a,, 4... a,, in which each of 
these quantities have any positive integral values between 0 and 7 
inclusive. 

Remembering that r=la,+ 2a,+...4+-72,, 

multiplying both sides of the equation for c, by 

fe NG SR PEP os enon, 
? n n 

ne = 

la,+2a,+...+7ra (‘lo,+2a,+...+79,=7, 1 > 1 2 r 1 2 r > 

ae Qiao! ven eas gene where } Q+ a,+...+ a4=2 

la,t+2a,+...+7ra la +2%a4+...474,=7r, 2 1 2 r h 1 2 ’ 

a CoWare Gel, Wer Zea sie | it G@+...+ 4=3 

Btametedeteole(atn)osere foie /alorsie/slsts aysieisvclcrsfeiaiseie cies 

4nd ta, + 20, + ...+ 14, apes la, +2a,+...+7¢,=7 

Glee careers Nelle Ds ere Char hae Acoae hie 

Now the coefficient of n’~*' is 

> Ia ae ABR ae one Seer. 

Ce COR EO a 

lo, + 2¢,-- ...- 7a,.—7, 
tei osetcnctetsiate Aig ius 

the summation extending to terms uae to all possible 
solutions of the equations in a,, a, ... 4, where these quantities have 
any positive integral values ice 0 and r inclusive. 

, where | 

Suppose that in one set of values of the quantities a,, 5 Oa 
which satisfy the equations, the value of a, is not zero the value 
of any or of all the remaining quantities a, ... @,_,,%,, ++. @, may be 
zero), then the corresponding term is 

la, +...+(¢—1)a,,+ta,+ (§+1)¢,,+...4+7¢, 

Zi Eos Cant Guides Wess tuum ees ANNs (Gae aL ae Aa 

t-1) “t+1 ° 

This breaks up into the sum of terms, of which 

ta, 

Bil doe Cha Gh Gin bog CEN TINE ON (6 Re ie (GE earicos 7 

is a type; and this may be expressed thus 

if 
BiG a 1 a mae Let ee (GN )eesien 1 (CA Leet ae 

Now putting 

= Bio | — Bis a,-1=£,, « Oss4 = Shiney 000 ee a, = B, 

29—2 
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this becomes 

1 

Bi!.--Bea! Bu! Bag! «By! 1D... (6— Pad (E4 LP... oP’ 
which is of similar form to the terms in the coefficients of the 
powers of m in the expression for c,, but here 

18,+...+ (¢—1) 8, +48,+ (+1) 6,,,4+-.. + rf, 

=la,+...4 (6-1) a,, +¢(4.-1)+(€4+1) a,,+...+74, =7—-t, 

and B,+...+8,,+8,+8.,+--- +8, 

=a,+...¢4,, +(a,-1) +4,,+...+¢4,=r—s—l1. 

In these equations ¢ must be >1, and also since none of the 

@’s are negative and one at least must be positive 

[BGR oso ae [Shae a6 ae << VEAP cco ae UE co TEE, 

ba. Poo=l<poy, 

a t<s+l. 

Hence <p <Sep Il, 

Hence on breaking up all the terms included in 

la,+20,+...+7a la,+2a,+...+7a,=7, 
> r here 1 2 r 

CLM Soo Che Ney Ae oie 4 Oo. 1 Oe is 

there is obtained the sum 

1 
Ss 
[ETE AVE EADIE ae @ 

18,+268,+...+78.=r-t, 

B,+ B,+...+ B.=r—-—s-—l, 

a <t<stl. 

where | 

And in this last cio terms corresponding to all possible 
solutions of the equations 

18,4+28,+...4+78,=r-—t, 

B,+ B,+...+ B,=r—s—1, 

1<it<s+l, 

are included. gaa 

For take the solution B,=¥,, 8,=%,) --- B:=% +++ Bp = Vp 
then 

Ty, + 2y,+...+%,+...+7y,=7"—-8, 

Yt Yt tHE + ¥,=7—s—1, 
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which can be re-written in one way only in the form 

ly, +2y, +... +6 (y+1) +...47y,=7, 

Yt tee +t YFEIH...4 Y=7-8; 

showing that the term corresponding to the solution 

BL=%1» Be= Yer +++ Be= Yer ++ B= Yp3 
can be derived by breaking up that term in 

S la,+2a,+...+ra, vwliers ee ee 

cecal! Nar Dese sya a+ a,t+...4 %=r—S, 

for which a,=y¥,, @,=¥,,---%=%+1,...4,=¥,; and from that 
term only. 

5 Maar ON 
Sn) == 8 

n 
Hence the coefficient of »”~ 

S 1 

[Sip /S Mba Sik REROEESyree 

for all possible solutions of the pairs of equations 

B,+8,+...+8,=r—s-1 

and " 18,4 28,+...+78.=r—-1; 

or 8,+8,+...+8.=r—s—-1 

and 18,+28,+...+78,=r—-2; 

or 8,+8,+..-+6,=r—s-1 

and 18,+28,+...+78,=r—-t; 

or 8,+8,+...+8.=r—s—-1 

and 18,+28,+...+7r8.=r—s—1. 

Now consider the coefficient of n”™** in 

CO, +6, +-.- +6. 

It consists of parts contained in 

Go GS SG am ye Oe aaa 

Therefore 

remembering that the coefficient of n” in ¢, is 

if aie (ee : 
Siete ae 

Ce he Viele Og luce) 8 ga CeCe et A, — p 
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the coefficient of n™-*" 
e 

*. 
1 

: mM Gragei us > a, ! Soooo0 Q,.-5-1° Is Secs (eS Sa Dre 

ah Meh ie coe eS) ath S= I where at li il aie =r—s—]’ 

° 
il 

E BE ary 2 z Gees eating: aa eee (Cis Oe 
((llgh te ous P26) eh =o : where | Obie + Og =r—s—]’ 

. 

1 
2 Ble BA 2 ape mn Se 

Latter t where 
| CE a 00012 Chae, =r—s—l?’ 

1 1 ; : 3 1 Gay US Sern ¢ Galas plgiee oe (@ ll) 
Nem la,+...¢(r—1)4,,=r—1 

Gh AP 05 AP Gina = Ta Sieh 
Now consider the equations 

IB, +28, + ...+ 78. =r—t 

B,+ B,+-.+ B.=r-s-l, 
which written more fully are 

18,+268,+...+(7-t) B,,+(7—-t41) B+... +78, =r—-t 

B+ Bot. +B.4 {Peron +..4¢ B=r—-s-l. 

In these it is impossible that 

Bra» Brae + B, 
can be different from zero, for if any one of them were, the left- 
hand side of the first of these equations would be greater than the 
right, because none of the #’s are negative. 

Hence these equations have the same solutions as the equations 

18,4+26,+...+¢-t)8,,=r—t 

[SpRgE  /Gy. 4B ne oer =r—s—] 

(leaving out of account the zero values of 8,_.41, B,-142 --- 8,» which 
in no way affect the terms following the symbol > in the previous 
part of the investigation). 
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Hence the equations 

18,+268,+...4+78,=r—t 

B,+ B,+..-+ B,=r—-s-1 

have the same solutions as the equations 

1a,+2¢,+...+(r—t)a,,=r—t 

OL SE he noo Se Ch =r—s-l, 

where f<t<s+l. 

) ROCF: : 
Hence coefficient of n”** in = is the same as in 

? 

Cot C6, +6, +... +C,-1 

TC 
" and 

n 
Hence coefficients of all powers of n are the same in 

Cy 6, FO, + coe G13 

re, 
Fy Go wae 300 SP Grane 

-1 
whence ie DICE Cot, $6,420. +693 

nN 

re, =(n+r—1) ¢,_,; 

n+r—1 n+r—-1 n+r—2 
CF amc ca erent gral BP aC ee De r Tr r—1 

_harFal Mara zZ i 
= eae 

But c=1; 

x _n(n+1)...(v+r—1) 

ies Cee wi nee 

This demonstrates the identity of the two series in question. 

Art. 3. The Logarithmic Series. 
2 3 

a Ga We is convergent if 1 14 ons Ras vergent if «<1. 

Hence by the Exponential Theorem - 

The series = + 
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Putting now n=1 on both sides of the identity of Art. 2, it 
follows that 

2 3 2! 

== ll chap sh bg ek oo, 

which is a Geometrical Progression to an infinite number of terms. 

14(fee +e \ag Day Tele )+ : eh (| tg te) tes 

Since 2 <1, its value is : : 
l—x’: 

AC iy 
La 

DG es 
poe a he ee les 

UD 6b ae? ‘ 
log, (I+ a)=7-gta7--- if «<1. 

Art. 4. The Binomial Theorem. 

Taking x <1, 
(1 ms gy = = e— loge (ee) 

xo 

oe nie +t 3) ibera x<1 by Art. 3 

=1+ Gre4e4 ) esl Gee 

n? wv a xu 2 

bagi bat eh 1) bee by Art. 1, 

n(n+1), 

2! 
= na Gg SS 

foe By eee! 

Changing the sign of , and putting n=—™m, 

7 AN 
Ee 

(l+a)"=1+ma«e+ 

., when «<1, 

which is the Binomial hearer. 
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(4) Ona method of finding the Potentials of Circular Discs by 
means of Bessel’s Functions. By A. B. Basset, M.A. 

1. THE present paper was commenced last summer, with the 
object of developing a method for finding the potential of an elec- 
trified circular disc by means of definite integrals involving Bessel’s 
functions, when the disc is placed in a field of force whose potential 
is given. The same problem has been recently dealt with in a 
similar manner by Mr Gallop in the Quarterly Journal*, but as my 
own method is somewhat more general than his, it may be worth 
while to lay this paper before the Society. 

Let us take the normal through the centre of the disc as the 
axis of z, and employ cylindrical co-ordinates z, p and ¢. The 
potential of the field of force may be expanded in a series of terms 
of the type 

Tes GyiP) COS Ds svrccesintesiisstsec sce (1). 

If V be the potential of the induced charge, V will consist of a 
series of which the term corresponding to (1) may be written 

Ven Eu(N) emt Zlien(a)(COSMI. ae a aeeee (2). 

There is nothing to determine the value of \ excepting that it 
must be positive on the positive side of the disc, and we must 
therefore suppose » to have all values from o to 0,and replace the 
sum by a definite integral, whence 

V,= cos mp i ME COS) CE ACNO)OMS casoncroncooce (3). 

At the surface of the disc f(z, p) will be a given function of p 
only, say —¢@ (p), hence if ¢ be the radius of the disc, we 
must have 

te [F COU OMA a cae (4), 
when p <c. 

The density which is proportional to —dV/dz must vanish 
when p >, hence we must have 

Ne Ie LEGS) dhol OY) CR ae apenbenbodsetos: (5), 

when p>c; and the solution of the problem consists in deter- 
mining £’(N) so as to satisfy (4) and (5) when ¢ (p) is given. 

I have only succeeded in obtaining the solution of this general 
problem in the two cases in which m=0 or 1. The first case can 
be deduced by means of the theorem of Art. 2 and a theorem of 
Mr Gallop’s; the second case is dealt with in Art. 5. 

ee VOlexxiew 1 2205 

\ 
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2. The first step is to establish a theorem analogous to Fourier’s 
theorem, for expressing any function in the form of a definite 
integral involving Bessel’s functions. The theorem is as follows: 

If p and q be any positive real quantities, and ¢ (p) 1s a function 
which is finite and continuous for all values of p which he between 
the limits p and q, but which is not necessarily finite at the limits, 
then the definite integral 

i dn | ne (ay, Oa) Onde 
0 q 

is equal to  (p) when p lies between the limits p and q, and ts equal 
to zero when p hes beyond these limits *. 

In order to prove the theorem, consider a thin plane conductor 
bounded by two concentric circles of radii p and q, which is 
electrified in such a manner that the density on either side is 
equal to 

3 $ (p) cos md. 
The potential will be 

Te [ ‘p i art ud (w) cos m¢‘dud¢’ 

q/¢ {22+ p® + uw? — 2owcos ($’—$)}? 
Let ¢—d=7 

R? = p’ + u? — 2pu cos . 

/ 27 uc (w) (cos mp cos myn — sin m* sin mn) dudn 
0 (2+ RB)? se 

The second integral vanishes, and the first is equal to 

2 cos mh | dn i * du i "enh ud (w) cos mn J, (AR) dy F. 
0 qa 0 

Now J,(AR)=J, (Ap) J, (Au) + 22rd, (Ap) J, (Aw) cos mm, 

whence V = 2acosmd | dn | “oud (w) J, (Au) JS, (Ap) du. 
0 q 

1 dV 
Aor dz’ 

hence this quantity must be equal to $¢ (p) cos md when p>p>q, 
and must be zero when p lies beyond the limits p and g, whence 

Then va 
q 

The density = 

[af nud (u) JS, (Au) J, (Ap) du = h(p) P > P> Qeereerereeee (6) 

p>p = ae A sijs-s ab siee!nie gioco ee eee (6A) 

* The particular case of n=0, g=0, p= is given in Heine, Kugelfunctionen, 
Vol. 11., p. 299. 

+ Since , eT, (AR) d\= (24+ R2)-3 : 
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3. If a charged conductor of the form which we are consider- 
ing be placed in a field of force, the density will usually be 
infinite at the edges, but dV/dz will always be finite except at the 
edges; whence although it is necessary that ¢ (p) should be finite 
and continuous between the limits p and gq, it is not in general 
necessary that it should be finite at the limits. There are however 
two special cases, viz. (1) g=0, p finite; and (1) p=, q finite, 
which require separate consideration. 

The first case is that of a circular disc of radius p; and if 
¢ (p) became infinite when p =0, there would be a singular point 
at the origin. 

The second case is that of an infinite plane screen having a 
circular aperture, and if ¢(p) became infinite when p=, the 
density would be infinite at an infinite distance from the aperture, 
which seems to be physically impossible. 

If therefore in the first case ¢ (p) = 2 when g=0; and in the 
second case ¢(p)=2 when p=, the theorem could not be 
safely employed. 

It must also be borne in mind that although the reduction of 
the integral in the form given may not always be easy to effect, 
yet as a matter of fact, the integral is really the limit of 

| | " —rud (u) J, Au) Jn (Ap) du, 
O/g 

when z=0, and we may therefore reduce this latter integral to 
a simpler form, whenever it is possible to do so, and then put 
z=0. 

4. If d(p) is finite and continuous for all values of p between 
0 and o inclusive, we may put p=x, g=0, and the theorem 
becomes 

bp) =| ar] rug (w) J, Qn) Jo, Op) de 
for all positive values of p. In order to solve the problem of find- 
ing the potential of an electrified circular disc which is placed in 
a field of force, we must determine a potential function U,, cosm@ 
which satisfies the conditions that when z = 0, 

On =I m (Ap) P<G 

- p>c, 

and the potential of the disc will be 

> cos mh [ dr [ Uru (u) J, (Au) J, (Ap) du ....(7). 
Dig 200 
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The case of m =0 has been solved by Mr Gallop, who finds that 

ie : i dy.| ee cos Av cos wud, (up) dv ......... (8). 
0 0 T 

If therefore we put m= 0 in (7) and substitute the above value 
of U,, we find that the integral 

2 io.a) lee) ic 0) 

== [ ml af a 
Ve T i, e 0 0 ‘ 

[oem Aud (w) cos Aw cos wos, (Au) J, (wp) dv........(9) 
0 

satisfies the conditions that 

Vi=¢(p), p<c, 2=0) 
ave BW AP sci 3 (10). ae a 0, o> G. Zi) 

5. In order to find U,, consider the integral 

= Z . i dys | e-m sin Xv sin pod, (up) dv. 
T ) 0 

Now 
une ? ™ €sin’ Odd 

$ 3 =p, a2 ee i [ e~"$ cos (up cos 8) sin® @dédu eaneetenets 

vin 

=a +p') - 5. 
Differentiating with respect to ¢, we obtain 

e-H8J, (up) dye = = a aaa \ i 1 (Hp) pl 49) 

Let £=z—w where .=,/—1, then 

l | e~= sin pod, (up) du = imaginary part of 
0 

dud. Z-wW 

Pp (@-ay tp 
Transform the left-hand side into polar co-ordinates, and put 

Rf cos 2y = 17" — v*, 

R sin 2y =2 rv cos 8, 

so that R= (7? + v* + 2r°v? cos 20)?, 

and we shall obtain 

i, e—#* sin pod, (up) = Fs y(R+r— yy—z (R- 7? +0"). 
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When z=0 and v>p, then 
Rew 0’, 

and the integral vanishes. 

When z=0 and p>, then 

R=p’-, 

and the integral = ee, 
(er oh) 

Hence when p < ¢, the limiting value when z= 0 of the integral, 

_ 2 [e vsin Avdy 
a 
2 T1o p(p?—2") 

2h fe) ee 
7 ap a) n/p? — v? cos Avdv 

= J, (rp). 

1 

Again, 

Pp 

{(2—)? +p}! 
l | pe”? sin wud, (up) dw =imaginary part of 

0 

Baa a sin dy 

= 0 when z=0 and p>», 

*, when z=0, p>, 

dW, _ 
i 

whence U5—W,,: 

Hence, if 
9 ioe) ico) co 

V==.[ dul af au 

[oem AU (uw) sin Av sin wud, (Aw) J, (up) dv ......... (11), 
0 

then V.=$¢(p), p<¢ 2=0 
cia eee (12). 
Fe = 0, p-?¢, a) 

6. If the conductor consists of an infinite plane screen having 
a circular aperture of radius c, the solution can be obtained when 
the potential is symmetrical with respect to the axis of the circular 
aperture. In this case the problem may be stated as follows. 
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If ¢ (p) be any given function of p which is finite and con- 
tinuous for all values of p between the limits infinity and ¢, it is 
required to find a function of F(A), such that 

p= F (n) Jn (ap) dd, p> 

d= Tes ) J, (Ap) dA, p<c| 

Lyf 

7. In the case of m=0, consider the integral, 

Qi es ia A potas 
Wi =| du | e~7 sin Aw sin ped, (wp) dv. 

7 J0 c 

By a known formula 

1 
SES [ (Cy aa 

i (67+ p’)? 

Let €=z—w, where .=/ —1, then 

{@—)+ py?” 
and if we transform to polar co-ordinates, and put 

U i e "2 sin wvJ, (up) du = imaginary part of 
0 

R cos 2y = r°—v’, 

Rsin 2y = 2rv cos 6, 

as in Art. (5), we obtain 
a (R240? —7°)2 

[« “sin pod, (up) du Re 

when z=0 and p>v the integral vanishes; but when z=0 and 
1 

Jv? S p” a 

Hence when p >, the limiting value of the integral W is 

2 i * sin Avdv 
: Jv = 

Dial 
=— | sin (Ap cosh @) dd 

7 J0 

p <2, the integral = 

= J, (Xp) 
by a known formula. 
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Also 

z—w 

{(2— w)* + p’}? 

=a? sin 3y — v cos By) 

b | pe" sin pod, (up) du = imaginary part of 
0 

/ = 0 when z= 0 and p <1, 

“. when z= 0 and p<c 

dW 

Hence, if V = ={. arf du | dv 

| eM Mb (ulisin Avsin pu (Nw) J, (up) de... (14), 
0 

then V=¢(p) when z=0 and p>c 
Ue canes 115) 

Ee EO iien z=(0 and p<e ee) 
dz 

8. In the last article we have quoted the known formula 

FOSS : | fin 0, cn) GUE! 
0 

This result may be easily established by comparing the results 
obtained by integrating the definite integral 

ice) oO 

i du | cosx cosu® (a — dr’) da 
0 0 

with regard to # and w respectively. If we first perform the 
integration with respect to w, the result 

in A i Vea cosadx +5a/5 i, cosmda (16). 

2), @—x (A? = 2°)? 
The second integral on the right-hand side is equal to 7 J, (A)/2; 

and if in the first integral we “put z=) coshd, and afterwards 
make e? successively equal to 2du* and 1/2du* and add the results, 
we shall find that 

| COSEe =) cos (nw +a ais seeneeeee (17). 1 Gage io Any? 
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In the same way we can show that 

” sinada me 
I oe sin (A SO 

ous du bs iy sin (x w+ Aya ots sues (18). 

Whence, the right-hand side of (16), 

=5/5 i Cos (net +3 rs) + EE (19), 

Now if we integrate the a definite integral, with respect . 
to x, the result 

du 2,2 2,2 =54/ 5 ie cos( (rw tele tts 4/ 5 i sin ( (xu +a)o ; 

whence by (18) and (19), 

Co) =| sin (wes Z he ia) 
0 

du 

uU 

Dela. 
== | sin(X cosh) dd. 

TJ0 

9. As an example of the formule of Art. (4), consider the 
case of an uninfluenced disc which is electrified to unit potential : 
then 

v=-| ar | du | dw | e “= ur cosAv cospmud, (Aw) J, (uv) dy. 
7 J0 0 0 0 

Now i ue Bu SJ (Aw) du = can) 5 
0 (? + 8")? 

Therefore 

| du i unr cosrvJ, (Au) dA = lim of | Ee | 
0 0 0 (8? +2’) 

Put »=8y, and the integral 

= lim of | | coed 
Ose gy) 

=1, when B=0. 

H Ve owe er Ging Hence =e i fa eee 0 (Mp) de, 
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which is Weber's result*. This integral can be easily evaluated 
in the form 

y= 2 sin” a ; 
wo ptq 

when p=r+e+2rc sind, 

g=r'+c'— 2re sin8, 

which is the well-known expression for V. 

15th April, 1886. 

May 24, 1886. 

PrRoFESSOR FOSTER, PRESIDENT, IN THE CHAIR. 

Mr H. F. Newatt, M.A., Trinity College, was duly elected a 
Fellow of the Society, and Mr Percy Groom, of Trinity College, 
an Associate. 

The following communications were made to the Society :— 

(1) Ona New Species of Dinophilus. By W. F. R. WELDON, 
M.A. 

(2) On the life-history of Pedicellina. By S. F. HARMER, B.A. 

(3) On the organ of attachment of Laminaria bulbosa. By 
WALTER GARDINER, M.A. 

The author stated that correlated with the flattened stem and 
enormous leaf of this plant there were especial mechanical arrange- 
ments to enable the organism to withstand the force of the wave- 
beats to which it was continually exposed. The additional stability 
was chiefly attained in two ways. First, the flattened stem twisted 
upon itself at its basal portion ; and secondly, there was developed 
just above the root a meristematic ring of tissue which rapidly 
grew out on all sides, until finally in its adult state it formed the 
well-known irregular bulbous structure so characteristic of the 
species. The true root persists for some time, but gradually atro- 
phies and disappears. From the bulbous portion, adventitious 
roots arise which function in every way as root organs, and hold 
the plant firmly to the substratum. 

* Borchardt’s Journal, Vol, uxxv., p. 77. See also Heine, Vol. 11., p. 192. 
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EXPLANATION OF FIGURES. 

Prats II. 

Figs. I and IV a. First indication of a vesicle shown by the pro- 

tuberance of a single epidermal cell. 

Figs. II, III, and IV, Successive stages in the development of the 

vesicle. 

Fig. V, Mature vesicle from a leaf showing the drawn out apex of 

vesicle ; seen in transverse section. 

Fig. VI, Mature vesicle from stem. 

Fig. VII, Longitudinal section through the base of a vesicle on stem, 

showing the pits at its base. 

Fig. VIII, Pits on the base of a vesicle, seen from above. 
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