

1

PROCEEDINGS

(1) '1HF*

Indiana Academy of Science.
1892.

BROOKVILLE, IND.

PROCEEDINGS

WFTHF

Indiana Academy of Science,

1892.

J. M. COILTER,)

1. W. BLTLER,
(\because H. EIGENMANN,
V. F. MARSTERS,

IV A. NOYES,
Assistant liditors.

1. M. INDERWOOD,
F. M. WEBSTER,

TEFRE, HA1TE, IND.

1-9:

TABLE OF CONTENTS．

1いいま。いficers 18：20：i
Committees 1－：．，
＇omplete List of＇thicer－
＇onstitution i
By－LawList of Members4
Spring Meeting 1：
Procecding of the Winter Weeting，1s92 1.
ILLUSTRATIONS．
Two－bern bils ：
The Auxanometer 17
Insect Fanna Map\because

OFFICERS，1892－93．

Preminext，
J．C．ARTHIR．
Vire－Prishent，
IV．1．NOVES．
Serretimis，

Ansintint serdetari，
－TANLEV COULTFR．
＋W．W．NORMAN．

Thedstrem，
（．A．W．ALDo．

J．C．Antinl：	IV．A．Notes．	Amon W．Butar，
W．W．Soruas．	C．A．W．unt．	Joms M．Contame，
J．P．I．Jоハ，		（1．P．Has），
D．	J．L．Cumplem．	J．C．Brociek．

（11RATOR゙。

Resigned．
† To fill vacancy．

COMMITTEES，1892－9ふ。

IROMARAMME．
 W．1．Noどに，

MEABEREHHI．

（．II．Eh，mumい，	P．S．Baker，	1）．T．Mh How a，M．
	NOMIN．JTIONS．	
O．P．Hu．	II．A．Hismon，	W．I．Shancon．
	AUDITIN゙i．	
P．S．Buker，		W．Norus．

PLAN FOR PIBLICATION．

ATMAES Corlter，	L．M．I＇sderwoum，	A．W．Buther．
	STATE LIBRAR ${ }^{\text {c }}$	
（ ${ }^{\text {a }}$ A．W．1．1m．	J．M．Collter，	IV．A．Noyes．
LELISLATION	FOR THE RESTRICTION OF	WEEDS
J．C．Author，	J．M．Cuclipme，	W．H．Evans．
	EIITORS．	
O．P．Has，	C．A．Wrame，	J．M．Col leter．

PRESERVATION OF ABORIAINAL EARTHWORK゙ NEAR ANDERSON．

J．M．Con iter，
J．I＇．I）．Joms，
（I．J．Crimit，
I）．W．I ENNIL， F．A．Winker． BIOLOGICAJ．ACRVEV．

L．M．I YDERWGOD，	A．W．Butleh，	J．M．Coliter．
	2s BIOLOMiC．tl．	
L．M．Cxomenomp，	（＇．H．Ehimuans，	V．F．Marateras．

RELATIONS OF THE ACADEMY TO THE NTATE．
C．A．Wation，
J．M．Coctiter，
A．W．Butler．
OFFICERS OF THE: INHANA ACAINEMY OF SCHENCE.
Thenct hemi.
O. I'. Jenkins.
O. P. Jenkins.
O. I. Jenkins.
O. P. Jenkins.
(I. I'. Jenkins.
(I. P. Jenkins.
(. A. Waldo.
(. A. Waldo.
|-at. Secternil)
Stanley Coulter
iv. W. Norman.
Amos W. Butler.
Imus W. Butler.
sermerams.
Phembext.
-

185.9-6;	David s. Jordan.
1asti-:	John M. Conlter.
1857-8	J. I'. II. John.
1858:9	John (\%. Branner.
1859-90	T. C. Mendenhail.
1s:0-1	O. I'. Hay.
1s.91-	.J. L. Campbell.
$1 s .92$	J. ('. Arthur.

Satmos 1. This Assoriation shall be called the Indiana Arademy of science.
sm.: \because. The objects of this Academy shall be scientific research and the diffusion of knowledge concerning the various departments of science.

Sec. 3. Members of this Academy shall consist of three classes, active, non-resident and honorary. Any person engaged in any department of scientific work, or in original research in any department of science. shall be eligible to active membership. Active members may lee annual or life members. Annual members may be elected at any meeting of the Academy; they shall sign the constitution, pay an admission fee of two dollars, and thereafter, an annual fee of one dollar. Any person who shall at one time contribute fifty ,lollars to the funds of this Icarlemy, may be elected a life member of the Academy, free of assessment. Non-resident members may be elected from those who have been active members but who have removed from the state. Honorary members may be elected on arrount of special prominence in science, on the written recommendation of two members of the Academy. In any case, a three fourths vote of the members present shall elect to membership. Applications for member. ship in any of the foregoing classes shall be referred to a committee on applications for membership, who shall consider such application and report to the Academy before the election.

Sec. 4. The officers of this Academy shall be chosen by ballot at the annual meeting, and shall hold office one year. They shall consist oi a president, a vice president, secretary, assistant secretary, and treasurer, who shall perform the duties usually pertaining to their respective offices, and in addition, with the ex-presidents of the Academy, shall constitute an executive committee. The president shall, at each annual meeting, appoint two members to be a committee which shall prepare the programmes and have charge of the arrangements for all meetings for one year.
sive. i. The annual meeting of this Academy shall be held in the city of Indianapolis, within the week following Christmas of each year, unless otherwise ordered by the executive rommittee. There shall also be a summer meeting at such time and place as may be decided upon by the
exerutive committee. Other meetings may be ralled at the discretion of the executive committee.
ser. 6. This constitution may be altered or amenderl at any annual meeting by a three-fourths majority of attending members of at least one year's standing. No question of amendment shall be decided on the day of its presentation.
BY-I.AWS.

1. On motion, any special lepartment of science shall be assigned to a curator, whose duty it shall be, with the assistance of the other members interested in the same department, to endeavor to arlvance a knowledse in that particular department. Each curator shall report at such time and place as the Academy shall direct. These reports shall include a brief summary of the progress of the department durine the year preceding the presentation of the report.
\therefore The president shall deliver a public address on the evening of one of the days of the meeting at the expiration of his term of otfice.
:3. No special meeting of the Acarlemy shall be hell without a notice of the same having been sent to the address of each memlier at least fifteen days betore such meetinu.
2. No bill against the Acarlemy shall be paid without an order signed by the president and countersisned by the secretary.
\therefore. Members who hall allow their dues to remain unpaid for two years, havin! been annually notitied of their arrearase ly the treasurer, shall have their names stricken from the roll.
(6. Ten members shall constitute a fuorum for the transaction of business.

MEMBFR
 HoNoli.1RY MEMBER

Haniel Kirkwoor Riversirle, Cai.

A'TME MEMIERS.
J. Alex. Adair Hanover.
J. C. Arthur Lafayette.

Harry F. Bain Iowa City, Iowa.
Philip S. Baker (ireencastle.
Timothy H. Ball
Crown Point.
rieorge W. Benton
Indianaןюlis.
Alexander Black
rireencastle.
Willis S. Blatchley
Terre llaute.
Henry L. Bolley
Fargo, N. I.
I. A. Brannon

Ft. Wayne.
W. V. Brown
(ircencastle.
II. L. Bruner

Irvinuton.
J. B. Burris
' loverdale.
Amos W. Butler
Brookville.
Noble ('. Butler
Indianapolis.
J. L. C'ampbell

Crawforlsville.

SPRING MEETIN(i.

The spring meeting of the Academy was held at Terre Haute, Ind., May 17,18 and $19,1893$.

The meeting was called to order by Vice President Noyes, at : $:$ o'clock p. m., May 17, in the chemical lecture room of Rose Polytechnic Institute.
J. M. Coulter, W. W. Norman and J. T. Scovell were appointed Membership Committee.
L. M. Underwood presented a report from the committee on State Biological survey, of which he is chairman. The chairman was instructerl to appoint two other members to serve on the committee with him and to present plans at this meeting for carrying on the work.

Acting president Noyes announced an excursion for the next day, leaving the Terre Haute House early in the morning, crossing the river, thence to Durkee's Ferry, returning to Terre Haute in time for supper.

In the evening the Academy met in the Normal school. President Arthur presided.

Ir. T. C.. Mendenhall spoke of "The Nummit of the Continent." Irr. J. M. Coulter spoke on "Forestry."

Later in the evening another meeting was held at the Terre Haute House. Prof. C'nderwood announced he had requested to serve with him on the committee on Biolosical Survey, J. M. Coulter and A. W. Butler.

The members then discussed the question of the relation the Academy should sustain to the state.
C. A. Waldo, J. M. Coulter and A. W. Butler were appointed a conımittee to consider this.

The resignation of Prof. Stanley Conlter, as assistant secretary, wa: accepterl.

A meeting of the Academy was held on the evening of May 18th, at the same place.

The committee on Biological survey announced that for the present
three directors, one representing Botany, one Zoology and one Palantology be appointed. The recommendation was approved. L. I. Inderwood, C.H. Eigenmann and V. F. Marsters were appointed such committee.

Instructions were wiven the Programme (ommittee reqarding arrangements for the winter meeting.
W. W. Norman was elected assistant secretary.

The day "as spent along the west side of the Wabash river, above Terre Haute. and was greatly enjoyed. some of the members continued their investigations the following day.

WINTER MEETINE:

PRESIDENT'S AIMRESS.
 J. L. Camplell, Chawfomstimle.

The crowning group in stone for the new library building in Indianapolis, by Richard W. Bock, of Chicago, is composed of three figures, representing Literature, Science and Art.

The central figure, sixteen feet in height, represents science, holding in his right hand stretched upward the torch of enlightenment, and in his left a palm, the reward of victory.

In a sitting posture to the right a female figure represents Literature. she holds a book in the left hand resting on the knee, and with uplifted pen in the right hand she is presented at the inspired moment-write.

The third figure, representing Art, is also a woman. She holds a drawing board upon which she is about to produce a design.

This group suggests the topic for discussion, and the subject may be entitled the Interdependence of the Liberal Pursuits, or in the spirit of the times, the need of an intellectual trust, whereby the interests of science, literature and art may be better cared for, and under its fostering care there may be developed higher. art, purer literature and nobler science.

The group in stone is a unit, and my plea will be for the unity of these liberal pursuits.

The distinguishing characteristic of our day is devotion to specialties, and this devotion has made us strangers to each other.

A critical examination of the productions in the various departments of literature and science will disclose many defects, which may be traced chiefly to the want of interchange of thought.

The scientific treatises often are defective in style and expression, and the literary works frequently are laughably absurd in their scientific byplays.

The scientific man waves aside with contempt the latest novel, and the novelist returns the compliment by pitying the devotion of the discoverer of an unclassified bug or a fresh compound.

A more generous fellowship is needed for mutual benefit.

This criticism is not intended to be censorious nor unjust: neither is it lirected against earnest work in specialties. There can be no valuable results except liy loving and exclusive efforts along chosen lines.

It is not asked that the chemist by his compounds should seek for poetry in his crucible : nor that the biologist with his dissecting tools create the life which his search destroys, much less reproduce the higher life of thought, of passion, and of hope, which breathe in the works of the dramatist and in the pages of the writer of fiction.

But outside of our laboratories of books and blowpipes. in our hours of ease, if you please, may not profitable relaxation be found in a better ac' uaintance with our neighbors.

The poet takes his walks alone that his communion with nature may not be disturbed, but it is possible that he might find valuable assistance in his translation of the "books in brooks" in the "drawing rooms" of the hydraulic engineer.

The geologist no less than the poet may find "sermons in stones," and each may be benefited by contact with the other.

Is it not possible to secure better results by the union of science and literature than are now gotten by their separation and their too narrow circle of fellowship?

Listen to this wail from the Editor's Study in Harper's Magazine for september, 18.2 and tell us what does it portend?
" Books are being replaced by newspapers and periodicals. A book shop used to be an intelligent center where readers met not only to keep the run of the thought of the world, but to exchange ideas about it. Few are so now. Book stalls have become shops of notions, of stationery, of newspapers, of artists` materials, of various bric a brac, with an only occasional real book that has attained exceptional notoriety.
"It is no longer profitable to keep a stock of general literature, and many of the briohtest and best trained minds now are giving their entire time and energy to the daily and weekly press.
"In its swelling bulk the daily newspaper has become a magazine, and the magazine in a generation that must run as it reads takes the place of the book."

From the scientific side of book making also comes remarkable confessions of weakness. From the testimony of the writers themselves the books of yesterday already have been consigned to the top shelf, where indeed moth and dust do corrupt, but where thieves do not break through
to steal. while the kooks of to-day will be in the waste basket to-morrow. True. the language used is somewhat different from the above, but the meaning is essentially the same.
The claim is that so rapid are the advances in science that the text book of yesterday is antiquated, or in their illiterate lingo, "not up to the times," and so the butterfly products sport only their brief day and die.
Is it a necessity that books shall have this ephemeral existence? Is this a love that must so soon grow cold; a youth that without years must be old: a life that almost begins with death?
"I paint for immortality" was the inspired utterance of the greatest of artists, and is there to be no second Shakespeare whose writings will be immortal. Is there not an unentered field of research where we may discover the hidden qualities of the few books which endure?

With the confession of weakness and partial failure comes the question of possible increase of strength and more complete success. If there is a balm in Gilead let us seek for it, and if there is a physician anywhere who can cure let us search for him.

And for this purpose let us call a congress of all parties interested for mutual counsel, and, if found practicable, for mutual aid.
If the weakness is real in all departments of thought, and is discovered in all varieties of thought products, let the invitation to this congress of thinkers be general; let the workmen come from every separate shop to the great council chamber; the representatives of art, literature and science of every kind to the symposium of mind.

In this assembly let the historian and the physicist sit together; the biologist and the biographer; the poet and the chemist ; the botanist and the linguist. Let the mathematician take counsel with the song writer. and the astronomer and the wanderer in the shoreless realms of fiction discuss the things common to both.
Then the new companionship would beget new inspiration; a better fellowship would lead to a broader culture; "know thyself" would yield to the more generous "know each other," and a fullゃr answer would be given to the greatest question, "how can men best fulfill their allotted destiny?"

With this liberal view of lntellectual fellowship necessarily would come more liberal methods in the preparatory as well as in the wage earning period of life.

It is not the purpose of this lecture to enter upon the much discussed and never to be settled questions relating to the studies to be selected and
the methods to be pursued in the undergraduate part of preparatory training.

Without dispute broad general culture is the point and the essential requirement.

The deep foundations must be of stone, whatever is to be the superstructure.

My earnest plea is for more room in the elementary period for training in the branches which are extra, or rather pre-professional, and which must be mastered before any one can lay claim to a litmal education.

If we were permitted to interpret shakespeare's seven stages of life, his third would conclude with the undergraduate course, while the fourth. who enters as the " lover sighing like furnace with a woful ballad made to his mistress' eyebrow,' would mean that devotion to professional study which is more than that of the lover and an attention more exacting than that of the most jealous mistress.

In the preparation for professional life no exclusiveness can be too exclusive, no labor or painstaking within the severest limits can be too exacting.

All that the most ardent advocate for specialties is accepted, and if presented to our great congress of thinkers would be unanimously adopted.
This is the time in life when the student should be lost to the world, *. when the claims of social life may be ignored, when culture even may be suspended in the eager search for facts.

* If the chosen profession be science, the laboratory should be alike shop and parlor: if literature, to quote again from the Editor's Study, books only, "those unfailing faithful companions which stand mute and waiting on the shelves, in whose hearts are preserved the thought, the aspiration. the despair, the love, the heroism, the emotion, the tragedy, the immortal beauty, the bewitching loveliness of the ages.'

So oblivious to outer things should be the professional student, that a casual glance at the daily newspaper could scarcely be allowed to keep him informed whether or not he himself has not died.

The usual commencement benediction welcomes the graduate to the great world of letters, but this welcome should be to the retirement and not to the activities of this realm of thought, and the interpretation should be that he has studied to be somebody, now let him learn to do something. A Paul even found it necessary to retire three years into Arabia
for this preparation for the work of directing religious thought ior all after ages.

The generous, or rather general qualities of mind and heart, whith neressarily have been but little called into activity during the years of professional study, are likely never to be revived, and so the years of active professional life usually are passed within the narrow limits of single professions. Lawyers prefer lawyers, and chemists, chemists. Hoctors care only to talk with doctors, and preachers prefer to confine their attentioms to the cloth. In the literary professions there is even more exclusiveness. for nothing is so dull and unattractive to writers of this class as the fields of science. Ilynamite is greatly preferred by them for the intrnder who would try to discuss a dynamo.

The cure for all this is better fellowship.
The Academy of science purposes at the present session to rultivate this liberalizing of different pursuits within the range of the general purpose of the association. Instead of carrying out our programme by sections as heretofore, our desire is that the members may become interested in the work of others than those in the same specialty. The biologist must listen to the physicist, the chemist to the geologist, the arr harologist to the botanist, each for the time being esteeming the work of another better than his own. Thus within the limits of the sciences we are trying the interchange of thought for the better developing of thinking.

If this experiment proves successful may we not hope for a wider association of thinkers in some new organization, which will include all liberal pursuits.

The pleasant duty remains to me to extend fratemal greetings to the nembers of the Indiana Academy of science.

This Academy is yet young in years, but the success already attained and the recognition secured among associations of kindred character are most gratifying to those of us who have been active members from the beginning. The new names added to our list year by year give cheering assurance of a prosperous future.

We meet this year in the closing days of an epoch of iour hundred years of the world's history, dating from the birth of a hemisphere, and from this holiday ending of the old extend our happy new era greeting to the centuries to come.

Next year we will celebrate this fourth century date at the marble city
by the lake．The international exposition of 1 s！：$:$ will e eitomize in ma－ terial form the progress of the world for the centuries，and to no Mecra can the devotee of science turn with more reverent steps．
The interdependence of the liberal pursuits there will have practical illustrations of the most instructive character．The best thought of the centuries will be realized on canvass，in marble，in bron\％e．in exquisite fabrics，in jewels and ornaments of silver and goll，in the whirr of ma－ chinery and the flarhes of electricity．

There may we study things．and there may we in profitable intercourse meet men．This will be the acarlemy of science of the world．
PAPERS READ.

 By A．\＆ll T1Iいい。

> I八Tにい以!THN.

The object of the paper is to show the wreater simplicity of quaternions over analytics．For the purpose of comparison，the most condensed analytical treatment possible is adopted．This turns out to be precisely analagous to the quaternion treatment．Three equations，such as $m a-a^{\prime}$ ． $\mathrm{mb}=\mathrm{b}^{\prime}, \mathrm{m} \mathrm{c}=\mathrm{c}^{\prime}$ are written $\mathrm{m}\left(\mathrm{a} . \mathrm{b}, \mathrm{c}=\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime} \mid\right.$ ．By multiplying these equations by $(x, y, \%)$ is understood the result of multiplying the first by x ，the second by y ，the third by z ，and adding，giving $\mathrm{m}\left(\mathrm{ax}+\mathrm{b} \mathrm{y}+\mathrm{c} \mathrm{z}=\mathrm{a}^{\prime} \mathrm{x}-\mathrm{b}^{\prime} \mathrm{y}-\mathrm{u}^{\prime} z\right)$ ．This corresponds to scalar multi－ plication in quaternions．By forming corresponding determinants with
$x, y \%$ is understood the set of equations $m \begin{array}{ll}a b c \\ x y \% & a^{\prime} \\ x & b^{\prime} e^{\prime} \\ x & y\end{array}$ or, in full $\mathrm{m}\left(\mathrm{b} \%-\mathrm{c} y \mathrm{c} \mathrm{x}-\mathrm{a} \%\right.$, $\mathrm{a} y^{-} \mathrm{b} x=\left(\mathrm{b}^{\prime} \%-\mathrm{c}^{\prime} y, \mathrm{c}^{\prime} \mathrm{x} \mathrm{a}^{\prime} \%, \mathrm{a}^{\prime} \mathrm{y}-\mathrm{b}^{\prime} \mathrm{x}\right)$. Thicorresponds to vector multiplication in quaternions.

The analytical methods thus perfected are, in fact, a sort of degraded and cumbersome quaternion notation in which (a, b, c) stand for ai $b j-\cdots c k$, etc. It involves the necessity of thinking by steps parallel to the axes, and when rewults are obtained it involves the fittins together of the various steps in order to see what is the actual state of affairs in space. To do this requires considerable practice and grasp of technique, all of which is avoided in quaternions. For example, equations (κ) were unnecessary in quaternions, the results tesired being sufficiently eviclent from 7 : while even after $(心)$ is derived the technique of equations of the first degree must be at command before the results stated can be seen in the analytical method. The letters $\mathrm{m}_{1}, \mathrm{~m}_{2} \mathrm{in}(9)$ and on are not the masses of 11.......

$$
\begin{aligned}
& \text { where (x.y, z) (} \left.x_{1}-x_{1} \cdot y_{1}-y_{1}, z_{2}-z_{1}\right) \quad \text { where } \\
& \text { and } \left.\mathrm{r} \quad \mathrm{x}^{2} \quad y^{2} \quad z^{\prime 2}\right)^{\prime}
\end{aligned}
$$

Adding (1,2), also dividing out common m 's and subtracting, putting $M=-m_{1} \not m_{2}$, we have:
(3) $\left.\mathrm{m}_{1} \frac{\mathrm{~d}^{2} \mathrm{x}_{1}}{\mathrm{dt}^{2}}+\mathrm{m}_{2} \frac{\mathrm{~d}^{2} \mathrm{x}_{2}}{\mathrm{dt}^{2}} \ldots \ldots.\right)$ (0.0.0) $\mathrm{m}_{1} \frac{\mathrm{~d}^{2} \mathrm{H}_{1}}{\mathrm{dt}^{2}} \mathrm{~m}_{2} \frac{\mathrm{~d}^{2}}{\mathrm{dt}^{2}}=0$

tigtation - OF MOTHN INTERRATEH.
Integrating (3) twice, we have:

$$
\text { (5) } \begin{aligned}
& \left(m_{1} x_{1}-m_{2} x_{2}, \ldots \ldots\right)= \\
& \\
& \left(a t b, a^{\prime} t+b^{\prime}, a^{\prime \prime} t b^{\prime \prime}\right)
\end{aligned}
$$

Hence, the center of gravity move in a straight line with uniform speed. viz:

In the direction a: $a^{\prime}: a^{\prime \prime}$ with speed: \quad ($\left.a^{\prime}-a^{\prime \prime} a^{\prime \prime \prime}\right):\left(m_{1}-m_{2}\right)$.

Form corresponding products of (4) and $\left\{\begin{array}{l}d x d y d z \\ d t \\ d t\end{array} d\right.$ dtand integrate.

In the direction", with sueed: T \%: M.

This is the equation of energy. It shows that the speed of a planct increases when it- distance from the sun decreases, and rice rerst. Also, since $\mathrm{M}=\mathrm{m}_{1}-\mathrm{m}_{\text {, }}$ is sensibly the same for all planets, therefore the speed of a planet depends only on its distance from the sun and a constant. \because a. of its orbit (later shown to be its major axis .

Forming corrsponding determinants of (4) with $x, y, \%$ and integrating:
, 7) $\frac{d x}{d t} \cdot \frac{d^{y} y}{d t} \cdot \frac{d \%}{d t} \quad(\cdot 1,1,1,1,1$
where $l^{2} \quad 1$ and c is positive.
Multiplying corresponding torms by (x, y, z), and adding, we find:

Multiplying (t) by \therefore and integrating the vector part:
$V=\frac{d}{d t} \quad c$ where $1 \cdot i=$.

Taking thescalar product by ; we find
Si, 0: similarly
$\therefore i \frac{d}{d t}=0$.

Equation (7) shows the rate of description of double areas by the radius vector from sun to planet to be constant (c) and that its motion is in a plane perpendicular to ($\left.1: 1_{1}: 1_{2}\right)$ - . The direction of this axis is such that an ordinary screw, when made to advance along it. will rotate in the direction of the dercription of areas.

Taking the second member of 17 , with the first member of (t) and rier virst, and forming corresponding determinants and integrating, we have

$$
\begin{aligned}
& 1 \quad I_{1} \quad 1 \\
& \text { 9) (c dx dy dz } \\
& \mathrm{dt} \text { dt dt } \\
& -\underset{r}{\mathrm{r}}(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{f}\left(\mathrm{~m}, \mathrm{~m}_{1}, \mathrm{~m}_{2}\right)
\end{aligned}
$$

where $m^{2-} m_{i}^{\prime} m^{\prime-} 1$ and f is positive.
Multiplying (!) by ($, l_{1}, 1$,) and adding, we have $1 m+l_{1} m_{1}+m_{2}$) or (m, m_{1}, m_{2}) is in the plane of motion.

Take ($\mathrm{n} . \mathrm{n}_{1} . \mathrm{n}_{2}$) $=\left\|\begin{array}{ccc}\left\lvert\, \begin{array}{lll}1 & l_{1} & l_{2} \\ \mathrm{~m} & \mathrm{~m}_{1} & m_{2}\end{array}\right. \|\end{array}\right\|$ forming the direction cosines of a third axis perpendicular to the two already found.

Form with ($1, l_{1}, l_{1}$) and (9) corresponding determinants, and we have:

$$
\begin{aligned}
& \text { 10) } e\left|\frac{d x}{d t}, \frac{d y}{d t}, \frac{d \%}{d t}\right|
\end{aligned}
$$

Multiplying the recand member of ($\overline{\text { a }}$ into the first member of 't, and rior reeser and integrating, we have:
c. $\frac{\mathrm{d}}{\mathrm{dt}}-\mathrm{M}=-\mathrm{f}=$ where - f!-f.
Taking the scalar product by $<$, we find Si $\because=0$, or \because is in the plane of motion.

Take $=\therefore$ " forming the rectangular unit vectors i., ", ".

Multiply (?) by $/$ and we have:
$e^{\frac{d}{d}} \frac{M}{i}=\frac{M}{i}=$

This is the hodograph. It is a circle [remembering (N)] of radius $\frac{M}{c}$ and center $\frac{f}{c}\left(n, n_{1}, n_{2}\right) \ldots \frac{f}{c} \quad$. The radius of this hodograph is one right angle in advance of the radius vector of the planet to which it corresponds.

Transposing the f terms of (!) to the first member, squaring, and using (6), we have:

$$
\text { 11) } \frac{\mathrm{e}^{2} \mathrm{M}}{\mathrm{a}} \mathrm{f}^{2}=\mathrm{I}^{2} \text { or } \mathrm{a}=\mathrm{c}^{2} \mathrm{M} \mid\left(\mathrm{I}^{2}-\mathrm{f}^{2}\right) .
$$

Multiplying (!) into (x, y, z) we have, by adding:

Multiplying (3) into (12) $\mathrm{c}^{2}-$ Mr $\mathrm{f}\left(\mathrm{mx} \mathrm{m}_{1} \mathrm{y}-\mathrm{m} \%\right.$. \Rightarrow and taking scalars: c^{2} - МТに

This, remembering (s), is the equation of the orbit. It is a conic whose focus is the sun, and axis is $\left(\mathrm{m}, \mathrm{m}_{1}, \mathrm{~m}_{2}\right)=\because$. The eccentricity is e $\quad \underset{I}{ }$. the semi-parameter, $p=\frac{c^{2}}{M}$. Hence, the semi-major axis is $\left.e^{2} M^{\prime}-f^{2}\right)$, or "by 11). The center is - a e ($\mathrm{m}, \mathrm{m}_{1}, \mathrm{~m}_{2}$) - ace We may put the orbit, therefore. in the form:

$$
\begin{aligned}
& \because=-\mathrm{a} \text { e } \because \because \mathrm{a} \cos \mathrm{E}-\mathrm{b} \sin \mathrm{E} . \mathrm{e} 1 \text {. } \\
& =-\mathrm{a} \mathrm{e} \because+\because \mathrm{a} \cosh \mathrm{E} \because \mathrm{~b} \sinh \mathrm{E} \text {. e } 1 \text {. }
\end{aligned}
$$

This substituted in (7) and integrated gives Kepler's equation

$$
\text { (13) } \begin{aligned}
& \mathrm{E}-\mathrm{e} \sin \mathrm{E}=\mathrm{ab}^{\left(\mathrm{t}-\mathrm{t}_{\ldots}\right)} \quad \text { e } 1 . \\
& \mathrm{E}-\mathrm{e} \sinh \mathrm{E} \mathrm{c}_{\mathrm{a} b^{\prime\left(t-t_{n}\right)}} \quad \text { c } 1 .
\end{aligned}
$$

For analytical treatment see Dr. I zisbekः Theories of Planetary Motion, pp. 1-13.
 Wм. F. M. (ins.
The Purdue experimental Locomotive Plant was installed early in the present year. It has been fully described in a paper read before the American Society of Merhanical Engineers at its San Francisco meeting, and a brief reference to the plan of mounting must serve the present purpose.

The driving wheels of the locomotive rest upon other wheels which are carried by shafts rumning in fixed bearings. When, as in the process of running, the drivers turn, their supporting wheels are driven by rolling contart. The locomotive as a whole instearl of moving forward, remains at rest while the track, that is, the periphery of the supporting wheels, moves rearward. The locomotive draw-bar is connected with a series of -cale beams which constitute a traction dynamometer. Friction brakes on the shafts of the supporting wheels, interpose a resistance to the turning of the latter ancl, by so doing, supply a load for the locomotive. The whole arrancement is such that while the locomotive is fired in the usual way, it may be run uniler any load and at any speed, the conditions being similar to those of the track.

In the sprins and early summer of the present year nearly a tozen runs were made. All were of a preliminary nature, the whole apparatus being entirely new, and the attendents unskilled in the management oi the complicated mounting marhinery.

It the beginnins of the present schoul year the work was taken up anew. The object of the present work is, in seneral, to determine the performance of the engine under conditions varying, first, as to cut-off' anı, seconilly, as to speed. To this end, five series of six tests each have been arranged, all to be run under a constant pulling load of 2.500 pounds. This constancy of load makes the mean effective pressure practically constant for all tests, and the power developed dependent upon the speed. The load lacks but little of being equivalent to 10 horse-power for each mile per hour of speed.

All of the tests of the same series are run at the same speerl, but each test varies from the others of the series by a change in cut-off. The second series differs irom the first, and the third from the second, and so on, only in a change of speed. The first series at 15 miles per hour, and the second at 25 miles per hour, have already been run, and, in carrying them on, all conditions were as perfectly maintained as could be resired. The remaining series will be at 35,45 , and 5.5 miles per hour respectively. Every test is complete in it self. The observed clata include speed, drawbar stress, coal and water consumption, calorimeter determination, drait and temperature in smoke-box, and eylinder performance as obtained hy the use of four indicators. All tests are of three hours duration and are run without intermediate stops or change of speerl. A comparison of results, tirst of the tests of each series, and secondly, of tests of the same cut-off in the different series. cannot fail to furnish an analysis of the performance of the locomotive which will be far more complete than anything hitherto attempted.
 By Rearis the A. Feschomen.

Take a depth of our bed rock at this place of, say fifty feet, along the river channel. The variations in the lithological character oi the numerous sharply detined layers is very marked and very many times repeated: not more so, however, than in hundreds of other localities throughout the country at the same or at other horizons. Here the well solidified portions are thick-belded (the layers say a foot thick) while not far below or above they are thin, say one or two inches. These consolidated layers vary in texture and composition, some of them being nearly pure limestone and sufficiently crystalline to take a fair polish. Wthers are masses mainly of brachiopods, often well preserved and matted together with clay or with lime and iron from a state of solution. Others still are shoals of commingled sand, clay and lime and almost destitute of fossils. Then there are the intercalated beds of clay with sufficient calcium carbonate to effervesce with acids for a little while, but leaving their principal bulk when the solvent has done what it can. These beds of finest grained clay vary in thickness from a very few feet to a few inches and even to the thickness of ordinary paper. Often these clay deposits are entirely destitute of fossils and again they are the hope of the hunter of trilobites and a few other form that may be found therein. All these features are familiar to the observer in various localities.

But the commonness of the phenomena does not make their causes the less desirable to seek. It can hardly be supposed that the ocean raried in
depth so many huntred times as would he necessary to produce all the variations to be read in a thickness of five hundred feet. Pure limestones are made in the deeper waters and fine argillaceous sediments may settle in the deeper or the shallower places.

But there appears to be ample reasons for believing that the sea in which the Hudson River rocks of Indiana and Ohio were deposited had its shore line far away, or in other words, said localities were near the middle of a continental ocean.

How then can we account for such well detined successions of mechanical deposits for so long a period of time". How could these sediments get so far from shore and how could they recur so sharply bounded as they are from the purer limestone and other consolidated ledges: How came it about that there were such numerous alternations of life and death epochs.in the same fifty, or five hundred feet? The answer to these questions may be very easy to some geologists. We have not, however, seen them satisfactorily answered. Their solution, whatever it is. will be the opening of a door to other secrets.

> The than of Remiemi, N. B. By V. F. Mabteha.
 BERLS.
 Monre:.
lichmond is on Drift, underlaid by upper layers of Lower Nilurian known as rocks of the IIudson River Group. These rocks being of the earlier time have been above the sea for ages. Consequently there was plenty of time for them to be much eroded. I shall not in this brief paper specify all the well-marked features of erosion but will allude to a few special examples. There is a buried river channel a few rods west of the present channel of Whitewater. This was reported nearly fifty years ago by Dr. Plummer, of Richmond, but it was not then so well known in its extent and direction as it has since become by means of wells, tile layers and ditches for water and gas mains. Said buried channel is about seventy feet wide where crossed by the national road and its walls are very
nearly vertical. In general direction it lies nearly north and south, approximately parallel to the present channel and is of manown repth. It is fillerl with sand, gravel, clay and bowlders, with remains of leaves and sticks here and there. It is believed to have been rather a new channel when filled since the upper edges of its vertical walls were not worn down and rounderl. It may have been, and probably this part of it was, eroded during an interglacial period. There is a much narrower channel at a shorter distance on the east side of the present river channel as exposed by the leepening of Main street learling westward from town.

A feature little, if at all, reported in Indiana, so far as the writer has observed, is that of great "pot holes" or "wlacial jugs" or "wiant kettles."

I few years since Mr. Starr, the proprietor of the gas works, called me over to see one of these where he was exravating in the solid rock for a very large , istern.

In one of the walls was a section of the "jug." It was some ten feet in diameter and about the same depth was exposed, though it extemled deeper than the cistern. It was filled with clean sand and ravel beautifully assorted and stratified and near the fowest part exposed were bowhlers two feet in diameter finely smootherl and rouncled. The walls of this pot hole. which was much the shape of a great jug. were as smooth and polished inside as if the sand and gravel, with the pouring in of a torrent, had been on the whirl for a century. A few years later and about twelve rorls from the same place, the city, while cuttin: into the south wall of Main street near the present river channel in order to willen and straighten the street, struck another jug. This last one was more funnel shaped, but had its sand worn bowlders and smooth siles as in the first.

Though not at the southern limit of slaciers in Indiana we are in the line of a terminal morain as indicated by bowlders and till. These potholes may be the result of the glacier having been stationary or nearly so for a length of time.

As a further phenomenon, lately the matter brought to light by a recent railroarl cut, and somewhat in the same connection, may be mentioned a line of masses of Clinton limestone which some have supposerl to be outliers in situ. These are about two miles southwest from the central part of Richmond and within five minutes walk of Earlham college.

Recent facts seem to indicate that these masses, jutting out here and there for more than three hundrel yarls, instead of being outliers and in their original place, are really masses of rock movel on for miles by the
slacier. (It is but a few miles north to where Hulson liver rock lips under uper silurian.) Evillences that they are masses of Drift are found in the irregular way in which the rocks lie at all angles, and in the fact that where the lower rock is exposed in the cut the under side is glaciated as if by moving over other rockr.
 My V. F. Marstera.

An account was qiven of the ascent of "The Glacier" in the Selkirks in British Columbia. A number of photorraphs were shown of the foot of the glacier.

Two-ocean pion. By Barton W. Evermann.
[AbThact.」
It was probably in Pliocene times that the great lava-flow occurred in the region now known as the Yellowstone National Park, which covered hundreds of square miles of a large mountain valley with a vast sheet of rhyolite hundreds, perhaps in places, thousands of feet thick. It is certain that such streams and lakes as may have exis'ed there were wiped out of existence, and all terrestrial and aquatic life destroyed. It must have been many long years before this lava became sufficiently cooled to permit the formation of new streams; but a time finally came when the rains,

falling upon the uradually woling rock, were no longer amperted into steam and thrown back into the air, only to condense and fall again. but being able to remain in liyuid form upon the rock, sought lower levels, and thus new streams began to flow. The rhyolite, olsidian, and trachyte were very hard and eroded slowly, but when the streams reached the edge of the lava-field they encountered rock which was comparatively soit and which wore away rapidly. The result is that every stream leaving the Yellowstone Park has one or more great waterialls in its course where it leares the lava-sheet. Notably among these streams are Lewis River, the outlet of Lewis and shoshone lakes, Yellowstone River, the outlet of Yellowstone Lake, (iardiner, (iibbon, and Firehole rivers, and Lava, Lupin. Glen, Crawfish, Tower and Cascarle creeks, all leaving the lavasheet in beautiful falls, varying from 30 feet to over 300 feet in vertical descent. With scarcely an exception, all these streams and lakes are of the best of pure. clear, cold water, well supplied with insect larvar, the smaller crustacea, and various other kinds of the smaller animal and plant forms sufficient in amount to support an immense fish-life. But it is a strange and interesting fact that, with the exception of Yellowstone Lake and River, these waters were wholly barren of fish-life. The river and lake just named are well filled with the Rocky Mountain trout (Salmo $m!k i s s)$, and this fact is the more remarkable when it is remembered that the falls in the lower Yellowstone River are 109 and :308 feet. respectively, hy far the greatest found in the Park.

The total absence of fish in Lewis and Shoshone lakes and the numerous other small lakes and streams of the Park is certainly due to the various falls in their lower courses which have proved impassable barriers to the ascent of fishes from below; for in every one of these streams just below the falls trout and, in some cases, other species are found in abundance. But to account for the presence of tront in Yellowstone Lake was a matter of no little difticulty. If a fall of 30 to .50 feet in Lewis River has prevented trout from ascending to Lewis and Shoshone lakes, why have not the much greater falls in the Yellowstone proved a barrier to the ascent of trout to Yellowstone Lake? Certainly, no fish can ascend these falls and we must look elsewhere for the explanation.

Many years ago the famous old guide, Jim Bridger, told his incredulous friends that he had found on the divide west of the Upper Yellowstone a creek which flowed in both directions one end flowing east into the Yellowstone, the other west into Snake River. But as he also told them
about many other strange, and to them impossible things which he had seen, among which were a glass mountain, and a river which ran down hill so fast that the water was made boiling hot, they were not disposed to acknowledge the existence of his "Two-Ocean Creek." Subsequent events. however, showed that the strange stories of Jim liridger were not without some elements of truth.

Two-Ocean l'ass was visited by ('apt. Jones in 1sis, by Dr. F. V. Hayden in 1sis. and by Mr. Arnold Hague in 1sist. The observations made by these varions explorers seemel to indicate that Two-lcean Pass is a nearly level meadow, near the center of which is a marsh which, in times of wet weather, becomes a small lake. anll that " a portion of the waters from the surromding mountains accumulate in the marshy meadows and gradually gravitate from either side into two small streams, one of which Hows to the northeast, the other to the southwest." (Haydem.)

From these reports it began to be suspected that trout, ascending Pacific Creek from snake River, might in time of high water, lass through the lake in Two- Icean I'ass and descend Atlantic Creek and the Upper Yetlowstone to Yellowstone Lake, and thus would the origin of the trout of that lake be explained. Ir. Jordan, who spent some time in the Park in 1ss , was impressed with the probable correctness of this explanation, but did not visit Two-Ocean Pass.

In 18:1, while carrying on certain investigation, in Montana and the Yellowstone Park under the direction of the United States Commissioner of Fish and Fisheries. Colonel Marshall McDonald, I was instructed to visit Two-dcean l'ass and determine definitely the conditions which obtain there.
(On August 7 . accompanied liy Dr. '). J. Jenkins and Mr. Burnside Clapham, we starterl out irom Mammoth lłot Springs with a pack-train of ten pack-horses and eight satdle-horses. (Wur route led us through all the lieyser Basins of the Park and we rearherl Two-Ocean Pass August 17, where we remained long enough to make a careful examination. This pass is a high mountain meadow, about 8,200 feet above the sea and situated just south of the Park. in long. $110^{\circ} 10^{\prime}$, lat. $44^{\circ} 3^{\prime}$. It is surrounded on all siles by rather high mountains except where the narrow valleys of Atlantic and Pacific creeks open out from it.

Rumning back among the mountains to the northward are two small cañons, down which come two small streams. On the opposite side is another cañon, down which comes another small stream. The extreme
length of the mealow from east to west is about a mile while the width from north to south is not much less. The larger of the streams coming in from the north is Pacific Creek, and, after wincling along the western side of the meadow, turns abruptly westward, leaving through a narrow gorge. Receiving numerous small aftluents, Pacific Creek soon becomes a good-sized stream, which finally unites with Buffalo Creek a few miles above where the latter stream flows into snake liver.

Atlantic Creek was found to have two forks entering the Pass. At the north end of the meadow is a small wooded cañon down which flows the North Fork. This stream hugs the border of the flat very closely. The South Fork comes down the cañon on the south side, skirting the brow of the nill a little less closely than does the North Fork. The two coming together near the middle of the eastern border of the meadow form Atlantic Creek which, after a course of a few miles, flows into the Upper Yellowstone. But the remarkable phenomena exhibited here remain to be described.

Each fork of Atlantic Creek, just after entering the mearlow, divides as if to flow around an island, but the stream toward the meadow, instead of returning to the portion from which it had parted, continues its westerly course across the meadow. Just before reaching the western border the two streams unite and then pour their combined waters into Pacific Creek; thus are Atlantic and Pacific Creeks united and a continuous water way from the mouth of the Columbia via Two-Ocean Pass to the Gulf of Mexico is established. Two-()cean Creek is not a myth but a verity, and Jim Bridger is vindicated.

Pacific Creek is a stream of good size long before it enters the pass, and its course through the meadow is in a definite channel, but not so with Atlantic Creek. The west bank of each fork is low and the water is liable to break through anywhere and thus send a part of its water across to Pa cific Creek. It is probably true that one or two branches always connect the two creeks under ordinary conditions, and that following heavy rains or when the snows are melting a much greater portion of the water of Atlantic Creek finds its way across the meadow to the other.

Besides the channels already mentioned, there are several more or less distinct ones that were dry at the time of our visit. As already stated, the pass is a nearly level meadow, covered with a heavy growth of grass and many small willows 1 to 3 feet high. While it is somewhat marshy in places it has nothing of the nature of a lake about it. Of course during
wet weather, the small sprins at the borders of the meadow would be stronger, but the important facts are that there is no lake or even marsh there and that neither Atlantic nor Pacific Creek has its rise in the meadow. Atlantic Creek, in fact, comes into the pass as two good sized streams from opposite directions and leaves it by at least four channels, thus making an island of a considerable portion of the mearlow. And it is certain that there is, under ordinary circumstances, a contimuous waterway through Two-Ocean Cass of such a character as to permit tishes to pass easily and readily from snake River over to the lellowstone, or in the opposite direction. Indeed, it is possible, barring certain falls in Snake River, for a fish so inclined to start at the month of the Columbia, travel up that great river to its principal tributary, the snake, thence on throngh the long, tortuous course of that stream. and, under the sharlows of the Grand Tetons, enter the cold waters of Pacific ('reek. by which it conld journey on up to the very crest of the (ireat Continental Divide, to Tro-Octan Pass; through this pass it may have a choice of two routes to Atlantic (reek in which the down-stream journey is begun. Soon it reaches the lellowstone down which it continnes to lellowstone Lake. then through the Lower lellowstone out into the turbid waters of the Missouri ; for many hundred miles it may continue down this mighty river lefore reaching the Father of Waters which will finally carry it to the Gulf of Mexico-a wonderiul journey of nearly $1 ; 000$ miles, by far the longest possible fresh-water journey in the world.

We found trout in Pacific Creek at every point where we examined it. In Two-Ocean Pass we found trout in each of the streams ancl in such positions as would have permitted them to pass easily from one side of the livide to the other. We also found trout in Itlantic Creek lelow the pass and in the Upper Yellowstone where they were abundant.

Thus it is certain that there is no olstruction even in dry weather to prevent the passage of trout from the Snake liver to Yellowstone Lake: it is quite evident that trout do pass over in this way; and it is almost absolutely certain that lellowstone Lake was stocked with trout from the west via Two-Ocean Pass.

Gmaxeldit marlGand. By M. A. Mbindon.
(irinnellia Americana is one of the most interesting and beautiful marine plants found along our Atlantic coast. so far as known, it ranges
"nly trom Cape cod to New Jersey, abounding chietly in the shore water: of Long I Fland sound and New York harbor.

This alga attains a length of 50 cm . and a breadth of 10 cm. . but this is an unusual size. The ordinary specimen would not exceed 20 cm . in length ants cm. in breadth.

This plant attaches itself to the piles of wharves, pieces of derayed wood, and rarely grows on stomes and shells. It qrows most abmotantly if to 10 feet below low tide mark. It is a diucions plant, and also has a non sexual method of reprorluction. The antheridia are s mall. nearly transparent dots promiscuonsly distributed in the tissue of the thallus. Whon liberated, in salt water, the antherooids are quite artive, and while they were not observed fertilizing the female organ. it is safe to aftirm that they accomplish a union with the female portion of the plant in the way common to algir.

The female organ-the cystocarp is jug shape, with a prominent orifice. The cystocarps are found equally distributed on the suriaces of the thatlus which is one cell thick. The interior of the cystocarp is very complicated. It develops from an apical cell. This further testifies that Dr. schmitz's theory of the origin of the reproductive organs of the red alsar is true-namely, they are terminal growths, or branches of the frond.

Experiments in germinating spores were quite successful. Carpophores were cultivated for several days in salt water. ('ell division was rapid and there were young filaments developed containing 16 to 20 cells. The study of spore germination and the development of the youn! plant is to be continued.

Buthichat field work in wemers Ihamo. By D. T. Maclotcia.
As may be seen by reference to the map, a large proportion of the state of Idaho consists of a triangular mountain mass, with its greatest length from north to south, reaching in places an elevation of 14,000 to 15.000 feet, and including on its eastern border the Bitter Root, Coeur il Alene and Rocky Mountain ranges.

Botanical explorations have been carried on in the valley of Clark': Fork of the Columbia to the eastward in Montana, in the basin of the
snake River in southeastern and southern Idaho, to the westward in the Columbian plain in Washington, and in the northern part of Idaho, where the Clark's Fork of the Columbia cuts its way westward through the mountains. but this great central labyrinth is as yet an unknown land to the botanist, nor is he behind his brother zoologist in this matter.

With the purpose of beginning a systematic survey that should finally in -lude this whole region, Messrs. J. II. Sandberg, A. A. Heller and myself, acting under the direction of the Botanical Division of the Department of Agriculture, undertook at the beginning of the last season the exploration of a portion of this territory along the western border of the mountain ranges.

In accordance with this plan, we took the field with a camp outfitted at lewiston, at the head of navigation of snake river, in the latter part of April, and worked southward till we struck the Craig Mountains, then swinging around northward, followed the line where the foot hills run down to meet the plain, across the basins of the Clearwater and Palouse rivers, Lake Coeur d' Alene, and Clark's Fork of the Columbia river at its expension into Lake Pend doreille.

This route was chosen because it oflered easy access to widely differing areas. To the westward lay the basaltic Columbian plains, with an elevation of 700 to,- 500 feet, with its vegetation made up of plants peculiar to the Pacific coast flora; to the eastward, rising in successive tiers, were the secondary ranges, composed of trachyte, limestone, quartz and granite, reaching an elevation of 7,000 feet, with its wide range of plants comprised in the R ceky Mountain flora.

The difference between these two areas is still further heightened by the peculiarities of the climate. The basaltic plain, during the rainy season, which ends in the latter part of May, supports a dense growth of succulent, broad leaved, rapid growing plants, which mature very early. With the close of the rainy season, the soil dries into dust in a very few days, the earlier growth dies, and is replaced by hardy, coarse, narrowleaved forms which are capable of enduring the extreme heats of the summer. In the mountains, however, the water supply coming from melting snows and springs is more equable, and we have a greater number of plants which endure throughout the season.

The flora of both regions is characterized by extreme localization. The limits within which a large percentage of the species were collected often comprised no more than a few square yards or a few acres. As examples
may be given Mimulus cardinalis, Castalia Leibergii, Corydalis anrea, Polygonum Kelloggii.

Although the mountain region is very rich in Alga Lichens Mosses and Hepatics, the conditions for work and character of our outfit marle it necessary to confine our attention almost wholly to the Phanerogams and Pteridophytes, although a few lower forms were collerted.

In all, ample material of about 1,000 species was brousht in, which is fairly representative of the region explored.

The tenclency in the sciences is toward reducing results and conclusions to exactness, as far as possible, and this is as true for botany as for any of the so-called exact sciences. The tendency being toward precision. naturally the use of mathematics is becoming more seneral in all the sciences, in the solution of problems and the expression of results.

In physiological botany, especially, the use of mathematics is very applicable, for a great many of the principles of physiological phenomena are reducible to the principles of physics and chemistry, which are represented by mathematical formular, and when so represented, the concertion of the phenomena is simplified, and is divested of much of the my :teriousness that attaches to it, as fundamental principles are often easier of comprehension when reduced to mathema ical formulas. Forinstance, in studying the absorption of gases by plants, there are so many factor: that enter the solution of the problem that the subject is comples to a great degree, but when it is known that the amount of gas dissolved from a mixture is proportional to the relative volume of it in the mixture multiplied by its coetticient of solubility, the quantities of gases that can be dissolved by the cell-sap are known, and a definite basis is obtained from which to start, and to take into consideration other conditions.

To show the estimate that Francis Galton* places on the laws governiner the life of plants, in his work on "Natural Inheritance," in trying to arrive at some measurable characteristic by which to letermine the reason for the statistical similarity shown in successive generations, he used sweet peas with which to experiment, separating them into groups ac-

[^0]cording to size. The experiments were satisfactory, as they gave him the data which he sought, thus enabling him to solve the problem.

That the tendency of botanical work is in the direction of mathematical preciseness is seen in the works of Sachs, Nïgeli, Wiesner and many others. sachs has worked out cell division in a masterly manner. By means of periclined and anticlined planes he has demonstrated the direction of the cell-divisions in a growing organ, the outline of the organ taking the form of a parabola, a hyperbola, or an ellipse. By this means he has proven that the mode of cell-tivision clepends entirely upon the increase in volume and the ronfiguration of the growing organ, and not upon its physiological or morphological significance. From his work he has formulated two important laws, (1) that the danghter-cells are usually equal to one another in volume, and (\because) that the new cell-walls are situated at right angles to those already present.
l'revious to Nachs' work it was supposed that it was possible to characterize the true morphological or phylogenetic nature of an organ by the way in which cell-division took plare.
sachs has also studied the growing apex of stem: and roots so as to determine the zone of greatest growth. From the tables compiled by him there are certain iacts deduced which, when the successive zones are represented by $A, N, N-x$. the apical zone bein $\leq A$, the \%one of greatest growth N, and the last \%one of the growing resion $\mathrm{N}-\mathrm{x}$, are clearly expressed by the formula:

The formula indicating the relation of their respective increments.
The following weneral expression is uvel by Sarhs to express the relative lensths of the different tissues after isolation, where $\mathrm{E}, \mathrm{C}, \mathrm{V}, \mathrm{I}$, stand respertively for epidermis, cortex, vascular tissue and pith :

$$
\mathrm{E} \cdot \mathrm{C} \quad V \cdot \mathrm{P} \quad V \quad \mathrm{C} \quad \mathrm{E} .
$$

The expression also states the relation artive tension of the layers, for the \underline{q} reater the compression, the greater will be the length upon isolation.

Nigeli ${ }^{\dagger}$ has demonstraterl the movements of bacteria in air and water. He classifies them into groups and applying the general formula for velocity $v=12 g h$, he has deduced the formular $v=\frac{12 g h r_{i}}{r}$ in which h is

[^1]the middle vertical diameter of the body, r_{i} is the suerific gravity of the borly, and r the specific sravity of the fluid for the movement in air $r=1 \cong \underline{h} \frac{\left(r_{1}-r\right)}{r}$ for the movement in any liquid.

Wiesner has done a great deal of work in determining the application of the laws for different gases to epidermis with and without openings, at the atmospheric pressure, and pressures above and below that of the atmosphere, and with dead and living, dry and moist membranes. He has made sufficient experiments so that his conclusions, which are expressed by mathematical formula' in many 'ases, are general, that is, his formula

A
l d of the gas is general for the epilermis, free from stomata, of any plant.

An application of mathematics that one does not often see outside of the statistician's work was made by Dr. Arthur ${ }^{\dagger}$ in his work on pear blight. In this there was a set of determinations made as to the succulency of the fruit of the Buflum pear, so as to note the relation between the amount of moisture and the extent of the llight. After the determinations were made, calculations of the probable error in the results were also marle, finding the variation in the determinations, and the extreme variation from the mean: using the figures and applying the formula, $=.164.)^{\prime} \frac{s}{n-1}$ in which s is the sum of the squares of the differences between each separate observation and the average of all, and $"$ is the number of observations. This work was done to prove its correctness, as the accuracy of such work had been questioned.

The most eneral application of graphic mathematics is the rectilinear system of coürdinates. This is so simple in the construction of diagrams and so readily understood that a great many people make use of it. Besides, one diagram will show the relation among different sets of data. Take, for example, one of 'achs' diagrams showing plant growth. The absciss: represents increments of time, the division of the ordinates, the inrements in length, the axis of abscissar represents a certain temperature, and a certain number of the divisions of the ordinates represent a degree a temperature. Then spaces of the diagram are shaded for night. The

[^2]-urves of growth and temperature are represented on the same dia. \quad ram, so that one can easily tell the increment of growth for a given time along with the factors of heat and light. This kind oi diagram is especially valuable if the experiment be written in a language that one does not read readily. for the wist of the work can be gotten from the diagram with but little help, from the text.

A sreat deal of mathematical work has been dome in phyllotaxy. This work consisted in the first place in imagining a line proceeding from one of the older lateral members, traversing the stem to right or left, so as to lnclude the points of insertion of all the successive lateral members in the wrder of their age. This line, when projected, horizontally, was called the wenetic spiral, but as the line is a helix, its horizontal projection conld not be a spiral.

Then in working out the law of the phyllotaxis, a series of fractions were formed, the numerator expressine the number of complete revolutions round the stem, starting from the point of insertion of a lateral organ and extending to the organ directly above it: the denominator expressing the number of joints of insertion of lateral organs passed through. It was discovered that the series of fractions expressing the most common diversences were successive convergents of the continued fraction.
 and anything relating to pant life the method has but little valne, except from the mnemonic point of view. Work on this subject was very popular about twenty years ago, as it qave people an opportunity of proving that they knew their mathematics, it beinc somewhat qenerally supposed at the time that anyone who rould do his mathematics could easilydo his wther work.

In the latest bulletin* issued from the \ln d. Exp. Sta., the subject of which is the relation of number of eyes on the seed tuber to the product. it was found that a relation existed between the eye of the seed tuber and the number of stalks, that is. when the eyes formed an arithmetical series, the number of stalks. per unit of weight, derived from them formed an approximate hyperbolic series. To a scientific person this result means

[^3]much, for the results are definite and given in the briefert and yet the most comprehensive manner.

When engineers publish results of experiments, they express the conditions for, and the results of, their experiments by means of mathematical formula as much as possible, and the tendency among botanists is to the same practice, for with the great amount of literature that is published annually, the putting the gist of the matter into the most concise and comprehensive form is beroming indispensable.
 By J. M. Mottrek.

 By L. M. I xaenwonl.

 (intitef.

This report is based upon about two weeks of field work done during the latter part of Neptember, 189%, in the extreme southwestern part of the state, by D. T. MacDougal and J. s. Wrisht. This region is known as the "pocket" and owing to its peculiar peninsular position has an overlap of a northern and a southern flora.

Notes were made upon the distribution and condition of nearly 200 forms.

Report was made upon a depauperate form of Bidi".s ciruna L., found on the Wabash banks.

Among the forest trees special notes were made upon tlistribution, size, de., of Celtis mississippirnsis Bosc.: Corya oliarformis Nutt; Guerrols lyrata Walt.; Diosp!ros rirginiana L., and Tasortium distichmm Richard.

Before entering upon the revision of Cactace: now in preparation under President Coulter's direction at Indiana Thiversity, a series of investigations on the minute structure of such material as was then available was made during the winter and spring terms of 1 sm 2 . It was our purpose not only to learn of the general morphological nature of the family, but also to discover. if possible, any new diagnostic characters that might be of service in the revision. I have therefore selected for presentation only such peculiarities of structure as may prove of most use in specific determination.

Though nearly a year had passed since the collection of the material, it was still green and in good condition, with tissues fresh and distended as in growing specimens thus making it highly favorable for study. Sixtyfive species were examined, represented generically in the following proportions: †amillaria. 17: Echinocactus, 16: ('ereus, $\because 1$: opuntia, 11.

The most striking feature at tirst sight is the entire absence of true foliage. Naturally, my first inquiry was for some speciali\%el organ or region which should represent, and perform the functions of the missing foliage. The even distribution of stomata and chlorophyll over the entire surface declares the plant itself to be one gigantic and curious leaf so far as function is concerned. However. regarding leaves as devices for increasing surface exposure expansion of surface formed by the ultimate branching of the fibro-vascular system, I was led to look to the wart-like mamillic of the genus Mamillaria, and to the tubercles and ribs of Cereus. Echinocactus and certain species of Opuntia as the homolognes of leaves. Transverse sections of the tubercles of Mamillaria mucrometis show fibrovascular branching similar to that of the leaf,- the chief difference lying in the cylindrical nature of the one as distinct from the flat surface of the other. This conclusion is verified by the position of the flowers and branches, which in nearly all cases proceed from the axils of the tubercles and mamilla. The genus opuntia alone is described as having leaves.

The minute, subulate, early deciduous leaves of this genus fornish the nearest approach to true leaves found among our native species.

In all the specimens examined, true epidermal and hypodermal regions occur in sharply defined outline. The cuticular layer is senerally thickenerl and is clearly distinguished from the true epidermal walls. It becomes thinner as it nears the stoma, and is easily traced into the air chamber (?) It completely lines this respiratory cavity, and, as Von Mohl shows, it even sends out open tubes into the adjoining inter-cellular spaces. The range in thicknes passes from the very thin, almost imperceptible form seen in Mamillaria morom, ris to the astonishing thickness of that seen in Mamillaria (Anhalonium) prismatica, where the cuticle is fully ten times the thickness of the true epidermal layer underneath. The stoma in this species rommunicates with the outer air by a chimney-like canal extending upwarl and outward throngh the ruticle. This canal or chimney is beset at three different clevations by sets of four tlap like projections which extend out from the wall in such manner as to almost entirely close the orifice. I have failed to find anywhere any mention of these projecting appendages, but conclude that their function is undoubtedly that of accessory guard cells of the stomu. They rearlily expand on application of moisture, which fact in itself is suttirient evidence of their purpose. The outer wall of the true epidermis in this species barely reaches an average development; while the hypodermal rewion consists of but one layer of moderately thick-walled narrow cells. The only remaining feature of the cuticle worthy of note as a dianostic chararter is the undulation of surface, which is displayed in certain speries. Prominent elevations oceur in Cerfus Gret!ii. Cerous horizonthatonius, var. centrospinus, and in Echinormetns pelycephalus.

Definitive characters in the true epidermis are not abundant: but, when they do occur, they are listinct and ummistakable. Three species of Opuntia show tangential $\left({ }^{\circ}\right)$ partitions in the epilermis, breaking it up into two or more rows. Opmutia phractutha has its epidermis thus thrown into eight rows of exceedingly thin-walled cells. A new species of cereus (as yet unpublished) has as high as nine rows of this thin-walled epidermis. Species having two layers are Echin. polycrphalus, three unnamed species of Cereus from San Louis Potosi, Mex., and a new species of Cereus from Casa Grande, Ari\%. The most curious epidermis in the entire collection is that of Echin longihamatus. Since there is nothing like it in the entire number observed, it is well deserving of more than passing at-
tention. In other specimens, the epidermal cells when elongated lie in a parallel direction with the line of outer surface. In this case, they are elongated at right angles to the outer surface. Their thread-like walls are contiguous with the cuticle on the outside: while, on the inside, they are bounded by a single hypodermal row. Their only apparent outer wall is the thickened cuticle.

The hypodermal regions seen may be at once divided into two classes. Those of the first and larger class may be characterized as follows: cells irregular, in several layers: walls thick, pitted, collenchymatons. The second class, on the other hand, are thin-walled, regular, and disposed in one layer. Six Mamillarit and five Cerei will fall under this latter class. The highest number of collenchyma layers is nine, found in Cerets granditont. The number of rows, shape of cells and relative thickness of walls appear to be constant within the limits of speries, and may be of service as determinative characters.

It remains only to mention the calcinm oxalate crystals, which are of ten distributed as constituents of the cell-contents, both in the epidermal and in the hypodermal tissue. These occur in the form of simple, solitary, klino-rhombir crystals, or more frequently in angular, stellate groups. In size, form and position they vary exceedingly, but appear uniform within the limits of the same species. (rystals occurred in every 'Huntia and in every Lchinocactus examined. In Mamillaria they were frequent, while in Cereus, they were with one exception entirely wanting.

The minute structure of the spines is exasperatingly uniform. The outer, or epidermal cells are usually large and thin-walled. while in the body of the spine the walls are so thick as to entirely close the cell cavities, as is the cate in all dense woody tissues. Oiten there is a gradual transition from one to the other. The important characters are in the outer row of cells. Roush projections partaking of the nature of trichomes, and extending toward the spine tip are common in Cereus and Echinocartus. In Mamillaria the spines are smooth or rarely pubescent, as in M. pmsillce. 'ratumi and allied forms. Those of the cylindrical and clavate groups of opuntia are without exception clothed with a semitransparent, glistening sheath; while those of the flat-jointed Opuntias are naked. Characteristic of Opuntia spines is the conical arrangement of tibers, distinctly seen with the low power objective. Apine fibers of other genera are usually parallel from base to tip, whereas here they are conically arranged with the summits of the cones at the extreme tips and
their bases communicating with the sheath to the rear of the tip and adjacent to it. When the sheath separates from the spine (which happens rery early), these ends of the fibers at the base of the cones are slightly lifted from the surface of the spine, formins sharp barbs extending backward on the surface near the tip. This conical barbed structure is likewise common to the sheathless, tlat-joint Opuntias, and extends even to the minute and much-dreaded bristles of the same genus. It is this property of conical arrangement that makes the prickly pear group the terror of all who have marle its acquaintance.

While many of the characters brought to light in these investigations are artificial as must naturally result in tissues so responsive to environment as epidermal structures, the constancy of character within the same species, together with the requisite variation in features presented by different species, can not but be of service to those engaged in a critical study of the family.

> The devis cattio. By E. M. Fisher.

The genus Cuctus, as it stands at present, consists of about 350 species and varieties from North America, of which only twenty-five species and seven varieties have been reported from the United States. All these forms are small, ranging from one half to three inches in diameter, and are distinguished by their disconnected tubercles.

In this paper it is proposed to consider briefly the history of the genus, and the classification of its species. To give an accurate and satisfactory history of this genus or any of the genera of Cactacere is a very difficult thing, because of the meager descriptions and the scarcity of early literature. Taking 1753 (the date of the first edition of Linneus' "Species Plantarum" \rangle as our datum-line, and tracing both backwards and forwards, we reach the following results: In this first edition of the "Species Plantarum,' Linnæus published all the Cactacear with which he was acquainted under one genus, Cactus, which he subdivided into four groups called Echinomelocactus (subrotund), Cerii (erect, angular), Cerii (creeping with lateral roots), and Opmentia (jointed, compressed, proliferous). Previous to this (1737), in the first edition of the Genera Plantarum, Linnaus published Cactus as embracing the genus Cereus of Jussieu's Acta Gallorum (1719), and Opuntia and Melocactıs of Tournefort's Institutiones (1719). Melocartıs
of Tournefort, in which we are interested at present, is equal to Ficminles or Ficus of Commelinus' Hortus Amistel (1697), equal to F'imides or Ficns of I'lukinet Almag. Botanica 1696, erpal to Erlhim-melorartms of llemannus Hortus Lagdbt. 1 16sis.

Commencing again with Limmus 17.3), we tind that he first lescriber the species Cartus mamillarins, which thus seems to stand as the type of the genus. This senus of 2 species was not disturbed until 1812, when llaworth. in his syopsis Plantarum sheculentarum, separated it into five senera, Mamillaria, Ectrinnotws, Melowctus, ('erows, and "fmentiu, discarding
 simplex Hawworth, which was the only speries of Linntus that would fall in the new genus Momillaria. It this time 1siol Mamillaria consisted of tive species. In 1×0 eight species were recogni\%ed. This state of affairs was mot molested until last year, when lr. (1). Kinnt\%e published his Revisio tienera l'lantarum and re-established the Limnan genus 'arthis, which thus equals Momillari, Haworth, chansing over $3 n 0$ species of Momillaria to the genus Cimper. In smmmary, we have Cuctu: L., re-established by (1). Euntze (1s:1). Mamillaria Haworth (1s12). Catm: L. 175:) , Melocuctus Tourn. 171:1) in part, Fiouites or Firus Commelinus (16:97), Fi-

The revision of the genus Getris, like the wther genera of Cactacear, is made under great difficulties, because of the lack of types, and insufficient tlowering material. Fince this is true, and berause a specimen is almost useless without flowers, according to the present system of keys, we have attempted with the types at command to revise the genus without using Hower characters but by using those parts of the plant which are always present, the tubercles and spines.

[^4] sers. By Kitherine E. (inlnex.
The main feature of this auxanometer for measuring growth in thickness is a balanced glass arm, supported near one end. The longend has a bristle fastened to it that comes in contact with a blackened glass rod carried round on a brass spool, the spool being revolved by a clock.

The glass arm is supported in a short glass tube that is held between two hardened steel points, the points being aljustable through the arms of a brass y. Close behind the steel points is a small fork; this fork, with the glass arm embraces the stem of the plant, the fork permitting an adjustment for large or small stems. These pieces of mechanism are supported by a long wooden beam, that has a beveling near the end supporting the arm. This adjustment is to accommodate plants of varying height.

It the long end of the glass arm. and supported by the beam, is a small wooden platform that in turn supports the revolving spool. The axis of the spool is extended at one end beyond its supports, and carries a grooved pulley, which is connected with a similar grooved pulley attached to the hour hand spindle of the clock by means of a small rubber band. The friction between the rubber and the grooved pulless, and the uniform tension obtained, precludes slipping.

The way the instrument is used is to place the stem of the plant between the fixed fork and short arm of the glass rod. The distance between the point of contact of the plant and the pivot is $\frac{1}{40}$ of the distance from the blackened glass rod to the pirot, so that any growth of the plant is magnitied 40 times on the blackened rod. Thus a growth of $\frac{1}{10}$. will be represented by 2_{5}^{1} of an inch on the blackenel rod.

One of the features of the blackened glass rod is that a permanent record can be obtained by making a print of it on sensitized paper, from which direct measurements can be made.

 Tiel.

 ｜Abがいいい．

sperimens of Perliastrum were kept under cover glass，in moist cham－ ber，for 12 days．In this preparation was observed，in a number of cases， the breaking up and swarming of the contents of a single rell to form new colonies．From a sixteen celled specimen three cells＂swarmed，＂each giving rise to colonies of 32 cells．Inner limella of mother cell escapes as the enclosing membrane of swarming spores．This membrane increases in size，as did also the spores，while swarming．Spores swarmed with jerky movement about thirty minutes，gradually assuming the symmetri－ cal and permanent position characteristic of the colony，when motion ceased．Protuberances（spines）began to appear on outer circle of cells of new colony in 12 to 20 hours．In one or two cases the enclosing mem－ brane remained 24 hours．

Individual cells of mother colony remained undivided for twelve days， becoming several times the size of their fellows which had swarmed，very turgid and rouncled as if growing inclependently．From another collection one case was observed where contents of a cell broke up into male swarm spores．Not able to be sufficiently observed for more definite statements．

Noten on the（iexte moth．By W．P．shavion．

The gent－comallorim\％．By M．B．Thomas．

Note－on the flora of the Chilmowee ind Gike stomi motetains．By Stanley Coulter．
 DIANA：WHAT THE COLLEGEN ARE DOLN：TO ALPDLY THE DEFICIENCY．Hy L．M．ITNDerwoon）．

By J. C. Artint.

The herbarinm, though connecterl with a pharmacentical laboratory, does not differ in essential features irom that of any collewe. where the purpose is to do work in systematic botany. While medicinal forms are especially sought for, it is the poliry of its supporters to build up a large general plant rollertion, and to this end collections of plants have been serured from many parts of the world, irrespective of medicinal forms which they might contain. The botanical laboratory maintained in connection with the herlarium is arranged for work in structural botany. with ample equipment for histological work, in the way of microtomes. micros opes and arressories. The laboratory and herbarium have been organi\%ed to detect adulterations and substitutions in drugs of botanic origin, and to do resear h work in botany as it pertains to pharmary.

 (') ITEER.

Near Anderson, Mardison county. Indiana, there is a system of earth works consisting of one large and six smaller ones, the small ones lying south and west of the large one. It is on the south half of Section 16; Township 19 north, Range s east, and three miles east southeast of the courthouse.

The principal work is a circular embankment with a ditch on the inside next to the embankment, with an encloserl area, and a small mound in the center of the enclosure. A gateway opens to the sonth 10 degrees 30 minutes west of the center of the mound, 80 feet in width, as the ditch terminates on each side of $i t$. The work is a true circle 360 feet $i 1$. diameter and $1.1: 31$ feet in circumference, with an area of 2.3 .5 acres. The enclosed part within the ditch is 140 feet in liameter, with an area of . 35 of an acre.

The ditch is 60 feet wide, and the embankment at its base .0 feet wille. The entire central area has been filled a depth of 3.2 feet, and the central mound, which is i5 feet in diameter, is 3.75 feet above the central area.

The embankment has an average height of s.t feet, with a variance of :3.; feet, the same not being of uniform height, the highest point being 9.5 feet.

The average depth of the ditch is 1.42 feet, the depth not being uniform, it also varying 3.3 feet. and as compared with the central area is $10.1 \geq$ fect, with a maximum depth of 11.5 feet. The average distance from the top of the embankment to the bottom of the ditch is 14.96 feet.

Of the smaller works, three are northwest. two southwest and one southeast of the large one. The principal one of these is 19.7 feet north 70 de-
grees : 30 minutes west oi the center of the large one. It is oblong and irregnlar in sliape, the center constricterl, and has an extreme length irom outside to outsile of 20 feet, the long diameter being at a bearing oi nort! in degrees west.

There is an embankment of irregular height, not to exceed $: 3$ feet, and a ditch within from 1 to : $:$ feet deep, and a small mound at the west end of the central area. It is 1 thi fect in diameter from outside to outside at each end of the work. and the constricted part is $1 t^{2}$ feet in diameter. The rentral area is $i \cdot$ feet at the east end, s.) feet at the west end, and the constricted part only til feet in diamster.

Northwest of this work, and \therefore in feet north 7.5 degrees 50 minutes west of the center of the large work is a circular mound, withont ditch on embankment. 60 fect in dianeter and about $1 s$ inches high.

The other monnd in this group of three is $6 t$ degrees and $: 30$ minutes west of the center of the large one. irregular in shape and outline and is hard to trane. It is almo-t contignons to the embanknent of the large work, and there now remains but a faint trace of the ditch and embankment.

It a point south it degrees tis minutes west distant $4 f 6$ feet from the center of the large work is a small one 100 feet in diameter. It is a true circle, with an embankment and ditch within, and a central area of 47 feet in diameter. There is a gateway south tif degrees 30 minutes east. and from the top of the embankment to the bottom of the ditch it $\mathrm{is} ?$ feet. This mound is very regnlar and ilearly definert.

South of this one 710 feet sonth if ilesrees'30 minutes west oi the center of the main work is another small work, also 100 feet in diameter. The public road runs through this and has destroyed all but the north embankment, which is about 1s inches from the top of the embankment to the bottom of the ditch within.

Two hundred twenty fise feet south in degrees east of the center of the main work is another figure : $: 3$ feet in diameter, with gateways at the opposite ends. There is another embankment with a ditch within, and it is about is inches from the top of the embankment to the bottom of the ditch.

This group, known throunout the adjoining country as "The Mounds," is on the south bank of White River, on a bluff $\overline{75}$ feet in height. The point of location is the highest in this vicinity, and commands a view of the surrounding country. There is a deep ravine on the west, and one
also east of the works which is about half way between them, the ravines being one quarter of a mile apart. The large work is about \because on fert south of the brink of the river bluff, and one arm of a small ravine north of it comes up (lose to the west side of the princjpal work in the group of three. It the base of the bluff and in the east and smaller ravine there are a number of laree, bold, running sprines of chalybeate water. The bluff is composed of clay, sand and gravel, the sand and gravel heing at the base, and out of this the water flows.
"The Mounds," as they are asually called, are in a forest of wak, beech, walnnt and ash timber. Some very large trees - rew on the embankments ; among others, several walnut, which have been cut off. Jne, four feet in diameter, the stump of which is now gone. grew on the work first described, lying northwest of the large one.

The works still remain covered with a growth of timber in no respects differing from the adjoining forest.

In the bottom of the ditch on the east side of the large work there lies a granite boulder about three feet in diameter, apparently where left when the litch was being dug.

The river and the ravines on each side afford excellent drainage, and the thick layer of leaves protect the embankment from erosion. The embankments being so heavy, the water that gathers within is not able to force its way through, and no gullies or washes have occurred ; in fact, the whole system, especially the large work, is in an excellent state of preservation and seemingly as perfect as when abandoned by the Builders.

About ten years ago, the writer, in company with Dr. Joseph Tingley, then of Isbury Iniversity, made an exaration in the center of the mound in the main works. It a depth of abont four feet we fonnd a bed of ashes, charcoal, and burned bones, the bones crumbling on exposure to the atmosphere. Hr. Tingley claimed they were not human bones, but of some small animal. We found no stone or any arrangement of the earth in the form of an altar, and the fire seemed to have been there before the mound was built above it. The earth was baked and reddened by the action of the intense heat of the same. Wver this the mound was then built as indicated. We dug down about two feet below this stratum, but found no further evidence of tire or any unusual arrangement of earth. nor any evidence that the same had been disturbed, further than in the ronstruction of the central area, which hall been tilled as hefore mentioned.

Wirectly north of the main work on the side of the blutf, about ten feet above low water mark, is an outcropping of hard pan, under which one can enter for a short distance through an opening.

In the neighborhood of the Mounds there is a tradition that there is a cave underneath this harl pan. connected with the works. The writer has not been able to find any one who has any detinite knowledge about it, and upon examination of the same himself, this opening seemed to be nothing more than a fox hole in the gravel underneath this outcropping.

These earth works hare an excellent location as a pleasure resort. They are located in a forest of about 100 acres. On the north side of this forest flows White liver, and on the south is the roal leading from Anderson to Muncie. The Big + liailroad runs about a quarter of a mile south of the forest, and in the summer time there are frequently excursions from Anterson, Muncie and points along the Big 4.

The real estate on which these works are lucated lielongs to parties who have no knowledge of their worth as pre-historic remains, and who value them solely from a commercial standpoint.

The city of Anderson has extended in this direction abont one and onehalf miles, and the purchase of this real estate has been in contemplation by parties who proposed converting the same into a pleasure resort, and there is a possibility, as it is located so near the city. of the grounds passing into other hands. the forest being cleared away and changes made in the original ontlines, and the value of these works, as pre-historic remains, lestroyed.
it is not the object to adrance any therry or to speculate upon the purpose of the builders of this system of earth works, but to give data and facts as to their form, size and location, so that should anything oreur by which they would be changed or destroyed, these facts might he preserved.

In addition to the measurements ahove given, drawings. maps and cross sections have been made and photouraphs taken.

The writer, with Ir. J. M. Coulter and W. S. Ellis, visited these works, and while there. Dr. Conlter suggested that such action be taken, and it was done at his suggestion.

There is a further purpose in this paper that fact: may be presented to this body and an interest createrl, and if these works are found of sufficient importance, steps be taken, looking to their preservation. In their locality, they are looked upon simply as a curiosity, with little thought of
their real worth. A few, however, ate manifesting an interest, and are ready to co-operate with this body in anything that may be done, either in the way of securing further facts or preventing their destruction.

Decrbpton and elefation of Morstorizait. By J. T. sionfla.
 scoveli.

Remarkible premistohe helf: By E. Phem.

\qquad
 M. ※оぃ心.

Ab-tiant.]
An aecount was given of explorations undertaken under the auspices of the British llnseum from Winnipeg to the Pacific coast, and from Portland, Ore., eastward. The hearlwaters of the following rivers were crossed ant their fish faunas compared: The Red River of the North, the saskatchewan, the Columbia, the Fraser, the Missouri. About twenty per rent. of the species collected were new to science. The most interestins of these was a new qenus of Perconsidit, Colnmbia from Oregon. Soveral species not before taken on the Western slope were obtained. It was noticed that the number of fin rays of Pacific slope fishes was increased over their Atlantic slope relatives. ur else some of the rays were modified into spines, as in the case of (olmmbia and Meda.

[^5]

Last winter a treaty was entered into between the governments of the Inite! I States and freat linitain, in which it was agreed to leave the various questions in dispute regarding the fur-seal fisheries to a board of arbitration, which will meet at laris next March.

Very soon after the signing of this treaty, the state lepartment requested the Commissioner of Fish and Fisheries to undertake the collecting of information regarding the fur-seal of the North lacific and Pering rea.

It was very soon arranged that the Fish Commission should undertake the work, the I^{+}. S. Fish Commission steamer, Allutiooss, then as now. on the Pacific coast, was retailed for the purpose, and it fell to my lot to be sent out as Nenior Naturalist of the scientific staff of the Alhatmss to have immediate charge of the proposed investigations.

It was within the scope of the inrestigations to study the movements
of the seals luring their return in the spring to their breeding grounds, to note the position of the herds from day to day, whether the two sexes and the younger seals all traveled together or in separate herds: we were also to determine experimentally the relative eflectiveness of the different methods of killing the seal at sea, the perrentage of seals lost by each method, the percentage of males, females, or young killed in indis. criminate hunting; a study was also to be made of their food and foodhabits: in short, attention was to be paid to everything which would throw any light upon the natural history of this valuable animal.

I joined the Allutioss at Port Townsend, Washington, March $2-$, and four days later we steamed through the Straits of Fuca and began our inrestigations in the North Pacific. It this time it is not proper that the details or results of the work should be given. suffice it to say that the investigations and studies of seal-life were continued until september. and that during that time the Albatioss was pretty well over the North Pacific and Bering Sea, and made special visits to a number of points on the mainland of Alaska as well as to numerons islands. Among the places visited may be mentioned sitka, l'rince William sound, Cook's Inlet. Kadiak, varions islanls of the Alentian chain, the Commander Islands, only eighty miles off the Asiatic coast, and the I'ribilof Islands, where are situated all the breeding grounds of our fur-seal, and where I spent two weeks studying the seals upon the rookeries.

The report upon the entire summer's work of the Allutrow concerning the seal is now in the hands of the State Department, and cannot now be made public: but while carrying on this work opportunities occurred for making collections in other lines of natural history, and I was, of course, not slow in availing myself of them.

The collection of fishes is quite large, and contains a number of interesting species from Sitka, Unalaska, Atka, Attu* and Beriny Island.

Among these is a very fine series of the Atka mackerel, Plonrogranm, monopt!rigens, an important food-fish, hitherto but poorly represented in museums.

An important collection of birds was also made, a part of which collec-tion-the ptarmisan-is treated in another paper.

Several hundred plants were collected, chietly at Unalaska, the Pribiloi Islands. and Sitka.

All these collections are now being studied, and will be reported upon in due time.
 Mass.
The investigation of which this is an abstract has been conducted with various intermissions since lecember 188s. I present here simply the result. The proof for any one of the propositions would take up more than the time allotted for all of them. The details with all necessary figures will be published during the year by the I'. S. Fish Commission.

A large per cent. of the California fishes bring forth their young alive. The member: of one family of these fishes, the Siorponidar, bring forth many thousands of young in a very immature conclition. The members of the other family, the Embiotocida, bring forth comparatively few young, $3-80$, but these are sometimes an inch or two in length and resemble the parent as much as the new born mammal resembles its parent. It is this family which is of great interest and to which I devoted most of my time. Ifter examining many of the species just hefore and during gestation I selected C!matogastir for a special study, becanse the peculiarities have hecome most marked in this speries. The results are as follows:

1. Copulation takes place in July. This statement is based on the fact that the testes of the male are very much enlarged at this time and on the fact that the oraries from now on are filled with spermato\%oons. The act of copulation has not been observed.
\therefore The secondary sexual differences are considerable-among them may be mentioned a small gland or bag on either side of the anal of the male. From it extends a papilla forward to beyond the anterior margin of the fin.
2. The spermato\%oa have a long rod-shaped hearl in place of the globular one usual in fishes.
3. The spermato\%na remain dormant in the ovary till December when they become exceedingly active.
4. The eggs mature and are fertilizell between November 1st and February 1st, the largest fishes maturing the eggs earliest, the next in size a little later and the smallest individuals last.
5. Those spermato\%oa not utili\%ed in fertilization remain in the ovary for several weeks longer. They are finally eaten by the larva when the digestive tract of the latter has been sufficiently developed.
6. I uring the early states of gestation the females remain in shallow

[^6]water; males are then rarely seen. Later they become scarce but near the time the young are freed and shortly afterwards they are again found in shallow water.
\therefore The largest ovarian eggs measure about \therefore m m. in diameter. Huring the process of maturation the egg contents shrink to a diameter of $\because \because$ mm . or to less than one-third of its maximum size.
!. The egg of this tish, Cumatogastr, "ggregatms, is 1:30 times smaller than the normal tish cgg which has an average diameter of 1 mm .
10. This small size is largely if not entirely due to the non-formation of dentoplasm.
11. The egg is fertilized while still in the follicle. some sections show the extrusion of the second polar globule and the presence of themate pronucleus in an egg still surrounded by the cells of the follicle. The latter have begun to degenerate.
$1 \because$. The development begins after the egg has been freed from the follicle. Egrs with one, two, four, eight and sisteen cells as well as many later stages were found free in the ovary.

1:3. Neither the developing eggs nor the young are in later stages at any time connerted with the parent nor is the position of these in relation to the ovarian structures a fixed one.
14. The duration of gestation is probably five months and the number of young from three to twenty accordine to the si\%e of the parent. In lesthan a year after birth the young are with young.
1.5. The food of the young is supplied by the epithelium of the ovary. The cells enlarge and liecome clear, when they collapse, their contents are emptied into the lumen of the ovary and the framework of the cell: soon follows. When the intestine begins its work the spermatozoa serve as part of the food. The ovary at no time was observed to contain more fluids than the peritoneal cavity. (In other species considerable fluid is sometimes present.) Before the development of the alimentary tract the ovariarn fluid is probably appropriated by a process of intercellular digestion on the part of the epidermal cells.
16. The yolk is a waning structure and can scarcely be taken into consideration in accounting for the growth of early stages.
17. Huring the whole of gestation respiration is carried on by the osmotic action between the general surface and the closely applied ovarian structures. When the alimentiry tract is opened a current is kept flowing through it and aeration is, in all probability, effected by the ali-
mentary tract. In later stages the fins become highly vascular and doubtless serve both for purposes of aeration and food absorption.

1s. There is present in the entodermic pole of the developing egg a body the like of which has not been observed in any other eqg It con--ists of a mas of protoplasm imbedded in the yolk. It i- dissolved near the time of the closing of the blastopore. Mr. J. W. Hnbbard, one of my students, has connected its history with that of the yolk nucleus which is a conspicuous structure in the ovaries of adult tisher in egg from 20μ up to maturity. It is a general extrusion from the nucleus of the young ovum and probahly represents the histogenetic or somatic portion of the nucleus and this in part at least corresponds to the macronucleus of ciliate infusoria.

1:4. Before segmentation begins the whole of the gem is separated from the deutoplasin. The first cleavage plane extends entirely through the serm to the yolk betore the second cleavage begins.
2). A segmentation ravity is not formed during segmentation but appears later by a separation of the ectoderm and entoderm.
21. The third cleavage plane is not parallel with the first as is usual in fishes, but is semi-equatorial. This has nothing to do with the horizontal cleavage claimed to have been seen by Ioffman and by Brook. It is taken to be a pseudoreversion to primitive methorls of segmentation with the reservation that this condition is not perfectly homologous with the third segmentation of the irog or Bromehisthmu. and would wot be had the yotk entirely disappeared.
$\therefore 2$. The periblast is formed from a few of the marginal cells. Like the yolk it is a waning structure. Only about 12 cells are ever formed. They take no part whatever in the formation of the embryo. Ill of them persist as long as a trace of the yolk is leit. It, with the final part of the yolk, is absorbed by the blood of the sinus renosus. The liver has nothing to do with its tinal absorption as Wilson has claimed but simply mechanically encloses the nuclei above and behind.
23. Luring an early stage of segmentation some of the marginal cells of the blastoderm creep over the yolk till they nearly if not entirely cover it.
24. Before gastrulation the yolk sinks into the mass of the hlastoderm the cells of which re-arrange themselves about it and nearly enclose it.
\therefore. The sastrula is tinally formed by a proces. of delamination of en-
toderm from ectoderm and is completely diplastic and symmetrical, the blastofore closing at the entodermic pole of the eys.
$\because 6$. Before any other organs become evident the sex cells become ronspicuous. Their fate I have discussed elsewhere.
2_{2}. The earliest stages of the formation of the embryo have not been clearly made out with the material at hand. It is, however, certain that in one of the tigures published by me in the ". Journal of Morphologv," I mistook the tail for the head. The conditions are extremely similar to those found in the mammalian embryos, except that the central cavity is fillerl with yolk instead of fluid.
24. The mesoderm is formed ly a process of delamination from the entoderm. It is formed as two sheets and over the whole of the entoderm exclusive of the axial line.

29 . The young fish is freed from its membrane in a very immature condition. It completely encircles the yolk; in fact the head and the tail overlap. It is incapable of motion at this time and indeed the cells which will form the muscles have scarcely become differentiated. The hatching process is due to the growth of the embryo and not to its activity as is usually the case. The fin folds do not appear till much later.
:30. Kupffer's vesicle appears very early and is very large. It consists when fully formed of a dome-shaped roof over a large cavity surrounded on the sides by entorlerm. It at first rests on the yolk but soon the yolk is forced down and presents a deep impression just beneath the vesicle. Later the vesicle is divided into three distinct cavities. The upper domeshaped portion persists for some time and probably represents part of the neurenteric canal. The middle portion remains for some time as an enlarged part of the intestine. The lowest portion is the cavity formed in the yolk. It has acyuired a roof by the ingrowth of the entoderm cells to form the floor of the intestine. This cavity usually remains for a considerable time.
31. The entoderm at first extends over the entire yolk. It later becomes restricted to a comparatively narrow strip along the axial line.

3:. The floor of the alimentary canal is formed by the ingrowth below of the marginal cells of the entoderm. The ingrowth progresses from in front back. A lumen is not formed at once. The lumen is formed in the hind gut and in the gill region at the same time and gives abundant evidence that the alimentary tract is bilateral. The middle anterior part remains a solid mass of cells after the lumen has appeared both in front and bebind this tract.
33. The anterior opening of the alimentary canal to the exterior is through the gill slit in larvia 1 mm . in length, i. e. long before the mouth is formed. The first food enters through this will slit. The food current betore the fish can swallow is kept up liy a very highly ciliated gullet which extends from bebind the gill region to near the hind sut.
34. The mouth does not appear till the larva has increased $: ; \mathrm{mm} .$, i. t. to a length of about 4 mm ., and during all this time the hyobranchial gill slit functions as mouth. There is here found a condition similar to the one supposed by Dohrn to explain the replacement of the annelid mouth by a gill mouth.
:35. Just in front of the notochord and near the region of the hyobranchial slit a strand of hypoblast cells extends up from the median portion of the alimentary tract to above the notochord. This strand of hypoblast cells lies in the region where I ohrn supposes the annelid:rsophagus to have disappeared.
36. The hind gut soon beromes enormously enlarged and later a large number of long villi are developed.
3.. The larvar retain an ancestral trait a large yolk sack, the yolk being quite minute. The sack is largely taken up by the large pericarilium through which the long tubular heart extends from helow and behind. upward and forward.
35. In conclusion: The tish in almost all itw stages has become highly specialized. Many stages resemble very closely primitive conditions but the conditions can probally in but few cases be looked upon as a simple reversion. Its development has, on the other hand, become extremely lehthyized and its eg.g stands at the end of the chain of eges in which the Brumbiostoma exg, the Elasmubrambly egg and the normal fish egy form links.

[^7] (incinnati Lancet 'linic, Aus. 4, ? 3

The vork witael s. By J. W. Habmat.

In 1838 Dr. Kirtland had not met with the American Crossbill (Lorit ("rrirostra minor) in Ohio and Indiana. 1)r. Haymond omitted it from his "Birds of Southeastern Indiana" in 15.50 . Hr. Wheaton reported it from Ohio in the winter of 1859-i0. Evidently it was quite well known to Ir. Haymond in 1869. The winter of $186-9$ they were very abundant in the vicinity of Cincinnati. (Charles lury.) This was doubtless the case at other places also. The range of the species at this time was supposed to be northern North America, south in the Appalachian mountains into Pennsylvania, extending in winter, irreqularly over much of the C nited States. A letter from Mr. C. E. Aikin, of Salt Lake City, Ltah, informs me that this species became very abundant in the city of Chicago in Iuly and August 1869, and remained until late in the fall. They ferl greedily upon seeds of sunflowers and were so slugrish that one could approarh within a few feet of them so that they fell an easy prey to boys with catapults. In the latter part of August of the same year, he found them common in Lake county, Indiana. He also notes that they were not rare the surceeding year in the vicinity of Chicauo. Dr. F. W. Langdon notes the capture of a single specimen from a Hock of six or eisht at Marlisonville, near Cincinnati, (O., Nov. 30, 1s74. In the winter of $1874-5$ Mr. Eusene I'.

Bicknell noted these birds were present in the lower Hudson valley, and in April oi the latter year found their nest. In the same article is noticed the occurrnce of the speries about New York City in late spring and early summer : on Lon! Island in midsummer, and on the Bermudas from March to May. Bull. Nutt. Orn. Club. Vol. V., pp. 7-11.) Mr. E. W. Nelson in his paper on "Birds ci Northeastern Illinois," read before the Essex Institute, Hecember t, 1576, says it was "formerly a common winter resilent: now rare." Messrs. Iury and Freeman (Journ. Cin. Noc. Nat. 1 ist., 1599 p. +1 , note it occurrence at Westwood, 19 , in 1879. Dr. J. M. Wheaton (Pull. Nutt. Orn. Club, $15: 9$, p. 6:) gives the following ac• count of the occurrence of the species in Ghio: "On the 18th oi June last, Mr. (harles Hinman killed one of these birds ont of a tlock of eight or ten which risited the coniferous trees in his $\underline{2}$ arden in this city (Columbus. The specimen. which came into my possession by the kindnesof Mr. Oliver lavie. was a male not in full plumage. I have since learned that the Red rosshill has remained during the season in the vicinity of (leveland in consilerable numbers, and is reported to have nested there." In commentins on this note "hio (reol. survey, Vol. IN., Zoolouy and Botany, $\mathrm{p}^{\prime:}: 37$, Ir. Wheaton says: " 1 was unable to learn whether its. nest had been a.tually discovered," and alds: "It has been known to nest in Indian: within a few years." I rewret very much that I have been unable to wet any clue whatever to the authority upon which this statement is made. Proi. A. J. ('ook in writing of the Birds of Michigan says of the American Crossbill: "Occasional in summer. Dr. H. A. At. kins took nests of this speries at Locke, July 1:', 1850." It had previonsly been reporter as breedin! in Minnesota. In July and Ausust, 1s80, they were noted at Rugbry, Tenn. (The Oologist, Vol. V'. pp. $78-9$; Bull. Nutt. (orn. Club, Vol. MI., pp. iti-i.) Hr. C. Hart Merriam notes it as an "abundant revident" in the Allirondack rewion. He says it is "rather scarce and irresular in summer, but the commonest bird in winter and early spring. Breeds in Felruary and March while the snow is still four or five feet deep on the level and the temperature below zero (Fahr.). Have taken full fledeed youns in April." Bull. Nutt. Orn. Club, Vol. VI., p. 229.)

Mr. C. W. Beckham Birds of Nelson County, Kentucky : Ky. Geol. Surv., p. 24), says: ". 1 flock of six or eigit of these birds appeared here on November $1 \mathrm{~s}, 1 \times \mathrm{N}$ on some pine trees, the first time I had ever observed them. They remained only a day or two, and none were seen until the 1ith of March iollowin』, when I shot eight out of a flock of about twenty,
in the same place where they had previously been seen. Several flocks were observell about the same time near Bloomfield and Glenville in this county, and excited considerable comment on account of their queer bills. The weather at the time was quite mild, so that their appearance here was probably due to some other cause."
The winter of 188--3 they were unusually abundant in many localities between the great lakes and the Ohio river. P'rof. B. W. Evermann first olserved them at Bloomington. Indiana, February 10, 1893. This was the second record for the state. For some time atter they were common in Monroe county. March 15, 188:3, Mr. E. R. Quick reported having seen a single specimen near Brookville, Indiana. April 2, my attention was attracted to a peculiar crackling sound which came from among the pine trees in my yard at Brookville. Close investigation revealed the fact that the cause was a lot of Crossbills. They were shelling the seeds out of the pine rones and the breaking of the cone scales made the sound which attracted my attention. I observed others were upon the ground feeding upon the seets of the fallen cones. April 3 I saw six more in my yard. April + I saw one in a flock of line Finches. April 5 Mr. 12uick noterl one. Of those observed but one was in the red plnmage. Prof. B. W. Evermann saw a few at Delphi, Carroll County, Indiana, the middle of March, 1883. At the same place about twelve were seen December 26,1884 . Mr. J. W. Byrkit informs me that they were very abundant at Michigan City, Ind.. in the winter of 1883-4. Miss 1I. E. Colfax, in her report of the bird noterl at the light house, at the same place, gives it January 16,1884 . In the winter of 1883-4 Prof. Evermann reported them very common in Monroe County, Incl. The Ornithologist and Oologist, Vol. VIII., p. 68, contains an account by A. H. Helme of their breeding A pril 10, 1883, near Miller's Point, L. I. Mr. Robert Ridgway (The Auk. Vol. I., p. 292), notes the probable breeding of the Red Crossbill in central Maryland in May, 188t. Mr. F. C. Brown reported their breeding in Eastern Massachusetts in the summer of 1884 (The Auk., Vol. II., p. 105). In the winter of 1884-5 they were tolerably common in Monroe county, Incl. (W.S. Blatchley, Hoosier Naturalist, 1886, p. 170). The late Mr. C. H. Bollman noted them "quite common," in the same county through March, April and early May 1885. He saw them first March 2, and last observed them May 12. Mr. J. W. Byrkit informed me that he saw the first Crossbills for the year March 24,1885 . He adds: "I am not quite positive but think the Crossbill breeds here (Michigan City), as they make their appearance about this
time and leave for the north about the middle of May." Mr. Charles lury informed me they were abundant at Michigan City, Ind., one winter, which he thinks was 188.). He also reported line Finches and Redpolls from the same locality the same year. Prof. B. W. Evermann reported it from ('arroll County, Ind., March 27.185 .5 . I am indebterl to Mr. E. M. Kindle for the information that Mr. Sam Hunter reported a pair of American Crossbills to have bred at Bloominston. Ind. in 1885. Mr. Hunter informed him they nested in a pine tree and that the nest was madle exclusively of pine burrs. Mr. R. R. Moffitt informs me that lied Crossbills were taken in Tippecanoe County, Ind., in 1ssi. He says they nested there. Prof. IB. W. Fvermann noterl them at Camden, Ind.. March $\xlongequal[-]{-}$ and Ipril 13, 1ss5, also a large flock at Burlington, Inct., April 23 , 18s.

Mr. Wm. Brester reported its owurrence in the momotains of Western North Carolina in the summer of 1885 (The Ink., Vol. Ill., p. 107) and says: "Keen only on the Black Mountains where it was numerous in small flocks throughont the balsam forests above 5.0\%O feet. At Highlands I was told that it regularly appeared in winter about the outskirts of the town." Mr. Charles W. Richmonıl The Auk., Vol. V.. p. 22), gives upon the anthority of Mr. Hunh M. smith, the information that an adult male American Crossbill, arrompanied by a young birl, was seen May 1_{1}, 1885, within the District of Columbia. I'roi. L. L. Dyche reports the occurrence in the winter of 18 s.i-6 of the Westem Led Crossbill, Loria currirostru stricllandi, at Lawrence, Emporia, Manhattan and Wakarusa. Kan. They were first observel November 1, 1sim, and were last seen
 1 was fortunate in securing, throngh the kindness of Mr. A. O. Garrett, a series of specimens of Lowia 'urrirostra min, from Lawrence, Kan. Marrh 13 and $14,1 \times 87$. he obtained four which he sent me, and later he sent me nine others which were taken March 24 and 2. . The meeting of the range of these two forms is of considerable interest. Prof. B. W. Evermann report- a crosshill, species not determined, from Bloomington, Ind.. February 23,1886 , and another Mareh 8 , 1 ssit. The same authority states the late Mr. C. II. Bollman found a few specimens of the Red Crossbill near Blowmington, Ind.. July 10, 13 and 14, 18sti. Mr. Arthur P. Chadbourn says, in the summer of 1886 it was found in the White Mountains, N. H. (The Ank., Vol. IV., p. 105). Mr. (ieorge B. Sennett, in the same volume, p. 242 , wives an account of finding this species in
the mountains on the Jorders of North ('arolina and Tennessee in July and August 1886. Mr. Arthur T. Wayne, in the same volume, pp. 28.289 , notes their abundance near l"emassee, s. ('., in November and Jecember, 1886, and in January and February, 18.7. He noted them asain in the same vieinity November : 0 , 1887 (The Ink., Vol. V., p. 11.), also turing January, 1888 (lbid, p. 20S). Mr. Frank Ml. Chapman also reports them from Jiken, s. C., November 12, 1ssi, (Ibid, p. 32t). Mr. (i. G. Williamson observed them in Monroe County, Ind., January is ansl February ti, 18s6. Mr. J. (i. Parker reports them from Lake County, lnd., in May. 185\%. In the fall of 1ssi, I again observert them at Brookville, Ind. They rame to feed among the pines in my yarl. October ${ }^{29}$ several were seen and they last appeared November 19. Prof. Walter Faxon and Ir. J. . . Allen give it as common in the White Mountains, N. H., in July 18it, June 1885 ancl June 1886 (The Auk., Vol. V., p. 152.) Dr. J. A. Allen on the next page of the same number of "The Auk," speaks of a pair of American Crossbills taken at Mantleville, La., March ${ }_{-7} 7,1888$. Prof. B. W. Evermann found them in Vigo County, Indiana in the spring of 1s.58. They were first seen February 6 and disappeared May (i. Mr. J. O. Snyder found them at Waterloo, Ind., March 13 and 17, 18ss. Mr. II. N. McCoy informs me they were quite common in Wayne county, Ind., in the early part of 18ss. They were last seen April 5. Mr. (i. (i. Williamson saw six or eight individuals near Muncie, Ind., April 17, 148s. May 4 he saw three others. Mr. Otho C. Poling notes their occurrence in Adams county, IIl. He gives no account of their orcurrence in summer (The Auk., Vol. VII., p. 239). Mr. John A. Balmer, informs me these Crossbills were found in the vicinity of Vincennes, Ind. in the winter of 1885-9. Mr. J. F. Clearwaters told me of the capture of two of these birds in Putnam county, Ind., in the winter of 1 sss . A flock of American Crossbills was seen by Mr. J. O. Snyder at Waterloo, Incl., April 2^{-}, 1889. Mr. Stewart E. White informs me he found them common on Mackinack Island, Mich., August 3 to August 9, 1889. Mr. H. W. McBrite wrote me of taking three specimens at Waterloo, Ind., A pril 2 , 1890. February If, 1891. Mr. Stewart E. White saw six at Grand Rapids, Mich. He next noted the species March 16. He says it is quite rare in that vicinity. Mr. J. F. Clearwaters qave me the following account of their occurrence in Putnam county, Ind.: "On July $27,1 * 91$, Jesse Earll was down besirle the olll mill pond, where we collect all our water birds, and noticed five birds on the ground, apparently probing in the mud with their bills. As they
rose he shot one which proved to be a male Red Crossbill in breeding plumage. He preserved the skin and still has it. The others were females or young, as he says none of them had any red on them."

Mr. Jonathan Dwight reported the American Crossbill on North Mountain, Penn., in June, 1891. (The Auk. Vol. IX., p. 137.) Dr. B. H. Warren, in his admirable "Report on the Birds of Pennsylvania," p. 22s, gives it as breeding in the counties of Clinton, Clearfield, Luzerne, Ḷroming and Cameron in that state.

March 1, 1892, Messrs. A. B. Ulrey and E. M. Kindle report seeings six in Monroe county, Incl. Mr. (i. (i. Williamson noted six near Muncie, Ind., A pril 16, 1892, antl another April 24 . Messrs. Charles D. and Lewis A. Test have kindly sent me the following interesting notes from the observations of the spring of 1842 . The notes were taken near Lafayette, Ind. March s, 1892, they saw the first American Crossbill. They were seen on the following succeeding dates: March 11 ; April 15, 19,23 and 30 ; May $1,: 3,6,4,18,20,21,27$ and $30 ;$ June $2,6,22,23,27$ and $: 30$. The birds were seen in pine trees and also in yards and along the road. Search was made for nests but none were found. I am inclebted to Mr. Otto Widmann for some valuable notes relating to the American Crossbill in Missouri last winter and spring and summer (1891-2). He says: "I never suspected these cone loving nomads to descend into a country so tlat and uninteresting as it. I.ouis county, Mo., where nature never rears a cone without the belp of the gardener. Thousands of young evergreens, especially Norway Spruces, have been planted during the past decarle, but old cone-bearing conifers are few and far between. There are on my place, besides a iew Norway Spruces, eighteen pine trees about thirty years old. IIalf of them are Austrian pines, the rest White and scotch pines. Coniferous trees do not bear fruit every year, but last winter the Austrian pines were full of cones, wetting ready to drop the seeds in early spring. Besides the maturing pine seeds our section had another attraction for erratic fruit eaters in the orchards. The apple trees had yielded an enormous crop and the demand not being sufficiently great to gather them in time, thousands of apples were still hanging in the trees when the Crossbills appeared on the scene. It was in the orchard that they made their appearance on November 13-the day after the first 'blizzard' had visiterl the upper Missouri valley. From this day on, the Crossbills remained in the neighborhood until the end of the month but none were here in December and January-at least I did not notice any until they began to
visit my pine trees in February. They were daily visitors all through March and until the 17 th of April. From that day until May 8 th none were seen, but from the sth to the 14 th they were again daily caller:After this date they were noticed twice; a party of six on June 5th, and two birds a male and female, in one of my pines on July 21 st. I looked for their nest in the tree but, unfortunately it was not there! I think now that I have met with the species on several occasions in former years but did not know them. Frequenters of private gardens they were only seen when on wing or distant tree tops, and evaded illentification. With us it is a shy and restless bird, easily alarmed and flying a great distance. Before taking wing and while in the air they are quite noisy with a note closely resembling the parent call of Progn' ; but when feeding in a pine tree the whole troop keeps perfectly silent, and nothing is hearl but the noise made by breaking the cone scales. When present in May they are also feeding in elms." Mr. W. S. Blatchley gives me the following notes: " While sitting on the porch of a farm honse in Putnam county, Indiana, July 11, 1892 , I saw a single Crossbill, Loxia currirostra miror, alight in the top of a pine tree in the yard and begin searching the cones for seeds. I watcherl it for almost ten minutes and then, that there might be no possibility of mistake in the iclentification, procured a gun and shot it. It proverl to be a young male. On July 15 another young male, i. f. a male presumably of the previous year's hatching, was secured from the same tree and kept in confinement for several days, but was finally allowed its liberty."

The American Crossbills have, as has been shown, been noted within the rexion between the great lakes and the ohio river in the following winters: $1 \times 68-9$; $1869-70$; $1874-5$; $1880-3$; 1883-4; 1884-5; 1885-4;: 1887-8; 188S-9; 1889-90; 1890-91; 1891-2. From 1882 to 1892 they were only absent one year; $1886-\overline{7}$. In the winters of $188 \%-3,1884-5,1887-5$ the area of dispersal was wide ancl the birls seem to have been generally distributed. Other years as 186s-9, 1869-70, 1883-4, they appeared, or at least were observerl, in but few localities but where noted they were abundant.

The results of the inquiries concerning its summer ranse, particularly with relation to the Ohio valley and the territory adjacent thereto, have been wholly unexpected. Summing up the occurrence in summer and the evidence of its breeding in the region last referred to we note as follows: In the summer of 1869 they were abunclant in the vicinity of

C'hicago, both in Illinois and Incliana. In the summer of 1578 they were founcl at Columbus, O., and abundantly at Cleveland, where it was reported to have bred. Ir. Wheaton refers to their havines nested in Indiana as a fact well known to him. Dr. H. A. Itkins is said to have taken nests of this species near Locke, Michigan, in 1sso. The spring of 1885) they were common at Michigan (ity, Ind., and Mr. Byrkit thought they might have nested. In the summer of 1 sis they were reportel to have nested in Tippecanoe rounty, Ind. The same summer they are reported to have nested at Bluomington. Incl. They were reported from Monroe county, Ind., three different clates in July 188i. They were reported from Putnam county, Ind., in the summers of 1591 and $189 \cdot$. They remained throughout a part of the summer of 1892 at lafayette, Ind. They remained even later at Olll Orchard, Mo., in 1592.

These notes but serve to bring more clearly to mind the peculiar, erratic character of the birl, of which we have known, to some desree, before. The notes would also seem to indicate that much of our lack of data is Ine to the scarcity of observers in years past. A few years ago the collection of data regareling almost any species of bird from Indiana, or almost any other state, "ould have been impossible. It is not improbable, coald we bewin with the abundance of Crossbills at Cincinnati in 1868-9, with a number of intelligent ohservers equal to that available now, we could have a collection of observations covering its whole range between the Whio river and the lakes and perhaps including its movements for almost every year. Those blank years to not necessarily signify that it was wanting in the territory studied, but that for some one of a great many reasons, it was not observed. The erratic distribution of the species applies as well to its summer rance as to that in winter. It seems very probable that the speries breeds to some extent throushont the ohio Valley It is true that no specimens representing either the nest or eggs have heen, so far as I know, preserverl. Yet the evidence presenterl indicates that the lireeding range of the species in the I nited tates is not confinerl to the coniferous forests of the mountain ranges.

Loci, lencoptera, White-wncied Cromsilla. This species is not met with in the Ohio valley so often as the last mentioned form. Its range lies farther to the northwarl. Its distribution within the I nited States, both in winter and summer, is much less extensive than is that of the Ameriran Crossbill. Audubon mentions its breerling in Pennsylvania in summer, but this is probably an exceptional case. Ir. J. M. Wheaton gave
it in his catalowue of Birds of thio, in 1861. Mr. Charles loury found them abundant in the vicinity of Cincinnati, 1 ., in the winter of 1stis-9. in company with the last mentioned species. He says, "they were in large flocks containing both species in the proportion of two of the former to one of the latter" (the present) " speries." Mr. C. E. Aiken informs me that this species was in company with the American C'rossbill when they were so common in the vicinity of (hicago in the summer of 1869. IIe alsu noted them in Lake rounty, Ind., the latter part of A ugust of that year. IIe says they displayed the same habits as the preceding species. His recollection is that the White winged form was less abunlant, a little later in their arrival, and more wary. They remained through the winter. Prof. A. J. Cook informs me that one was killerl by lr. H. A. Atkins, at Locke, Mich., Aug. 9, 1875. A pair of White-winged Crossbills were taken at Fort Wayne, Ind., about 1878 . The female is now in the collection of Mr. C. A. Stockbridge of that city. Mr. W. L. Scott notes the occurrence of a flock of White-winged Crossbills near Ottawa, Canada, towards the latter part of June 18s: (The Auk., Vol. I., p. 159). Mr. Fletcher M. Noe notes the occurrence of this species near Indianapolis, Ind., in the early part of 1 sis 3 . February ti, 1ss:3, Prof. B. W. Evermann shot two males from a flock of fifteen of these birds in a yard at Bloomington, Ind. February 10 he secured a female, ant a few days later, two other specimens near the same place. Miss H. F. Colfax reports it from Michigan City, Iml., June 26, 1ss.4. Mr. J. W. Byrkit found both species together in large flocks near Michigan City. Ind., the winter of 1883-4. Mr. Charles Dury reports it from Michigan City, Incl., he thinks in 1855. Faxon and Allen report seeing a few in the White Mountains. N. Il., June 1856. (The Luk., Vol. V'.. p. 152.) Hon. R. Wes Mc.Bride has noted it as a winter visitor in DeKalb county, Ind. Dr. C. Hart Merriam gives it as a resident in the Adirondack region but adds, comparing it with the American Crossbill, " not nearly so common as the last." (Bull. Nutt. Orn. Club, Vol. VI., p. :3). Proi. B. W. Evermann informs me that he saw one in his brother's yard at Burlington, Incl. He says, " after watching it for a while I struck it with a stick, killing it." March 16 he saw another specimen of this species at Camden, Ind.

The only instance I know of its occurring in the Obio valley in summer is that given by the late Mr. C. H. Bollman. He wrote me that he saw eleven on a fir tree in Bloomington, Ind., June $-4 t h, 1886$. A few days later he several times noted specimens of the other species.

Everywhere in the ohio valley this species seems to be quite rare and exceerlingly irregular in its occurrence. Mr. E. W. Nelson and Mr. Otto Poling note it as much less common in Illincis than formerly. With the exception of the winter of $1868-9$ and the succeeding summer I do not know of its having appeared in any considerable numbers in any of the tier of states just north of the Ohio river.
 Hiv.

| ABーTにAT.
Nome years ago, the late Charles Frederick Hartt made a collection of fishes in South America, which he gave to Cornell University. This collection had never been studied until last spring, when it was sent to Dr . Eigenmann. The cat fishes in it were turned over to me to identify. In the identification of these I have used Ir. :and Mrs. Eigenmann's "Revision of the Nouth American Nematognathi." I have also had the use of Dr. Eigenmann's private library, which contains nearly all of the publisherl literature on south American fishes. In the iclentification of cloubtful species I have had the asvistance of Ir. Eigemmann.

The collection contains nineteen wenera and twenty-seven species, distributed among the three families, Loricariid: ${ }^{*}$, siluridir. and Callichthyid ${ }^{\prime}$, and their sub-families.

Two new species have been found in the collection. One of these belongs to the wenus IIassar. The name witheri is proposed for it in honor of Prof. Wilder, of Cornell Cniversity. It is represented by four specimens from the Tocontins river. The other new speries belongs to the genus Hemiancistrus, all of whose species are apparently rare. It has been named longipinnis in reference to the long dorsal.

The collection is mainly from the Amazon and the LaPlata, and their tributaries. The waters of the Amazon, the Lallata, and the Orinoeo are united through their tributaries, and so far as their fish famna is concerned form but one river system. The fish fauna of any one of these rivers is therefore very similar to that of the others. The only genus which was considered peculiar to the Lallata fauna is Corlliodon. This genus I tind represented in the collection by four specimens from Marajo, near the mouth of the Amazon; so there is now no wenus from the Lallata which is not also found in the Amazon's system. These specimens, which belong to the speries Cochliodon crchliodon, are of further interest inasmuch as the genus and species has heretofore been known only from the types in the Museum of Vienna.

From the Rio San Francisco there are but four specimens, all of a species common to the months of the east coast rivers of Brazil. The rivers of southeast Brazil, which Dr. Eigenmann has shown to have a fish fauna distinct from that of the Amazon to the north and the LaPlata to the south, are not represented in the collection. Lake Titicaca is representerl by a single specimen, $P_{y g i d i u m ~ r i m u l a t u . . ~ T h i s ~ s p e c i e s, ~ w i t h ~ R h a m d i c ~}^{\text {, }}$ quelen, are the only cat fishes found in Lake Titicaca. Both of these are alpine forms characteristic of the mountain streams of the Peruvian Anrles.
 scbiectr. By W. W. Sorman.
 MAN:.

> | Abqtist.

Last September I was directed by the L.. Sommissioner of Fish and Fisheries to make certain investications in Iowa, Nebraska, south Dakota and Wyoming for the purpose of determining the advisability of establishing one or more fish-cultural stations in those states, and if it should be found desirable to establish stations in that region, to determine the most suitable places for their location.

Investigations of this kind require a more or less careful study of the

[^8]physical, chemical and biological features of the streams ant lakes of the region under consideration, for these in their various phases are the forces or conditions which constitute the fishemviromment, and which determine the abundance, condition and distribution of the fish life of each hydrographic basin.

While carrying on these investigations, I spent the greater part of the month of October in and about the Black Hills, and it is to some of the biologic characteristics of that region that I desire to call your attention.

The Black Hills are, as you are aware, an isolated mountain group lying in southwestern South Dakota and eastern Wyoming. These Hills lie wholly within the basin of the Cheyenne liver, which is formerl by the union of the North and South Forks. The North Fork of the Cheyenne, or the Belle Fourche, as it is usually called, has its rise west of the Hills. flows around them on the north side, and to the eastward joins the South Fork which also rises west of the lills and sweeps around them to the southward in a wide curve very much like that of the Belle Fourche on the north.

The immerliate drainage of the Hills is by means of numerous smaller streams, nearly all of which flow eastward in approximately parallel courses to one or the other of the two Forks, those flowing into the Belle Fourche doing so from the right bank, while those reaching the south Fork flow into it from the left bank. During our stay in this region we made collections of fishes in the following streams: Middle, sand, Redwater, Crow, Chicken, Spearfish. Whitewoorl, Beaver, Rapid, Elk. Fall. Warm. Cold, Minnekahta, and Cottonwood ereeks, the Belle Fourche and the South Fork of the Cheyenne, and in Montana and Cox's lakes, nearly all of which are well supplied with certain species of fishes. The study of these collections has opened up a number of interesting questions in geographic distribution.

The fish fauna of that portion of the Missouri system lying in and about the Black Hills is peculiarly restricted in its character. The fifteen species contained in this collection,-and no other species has ever been reported from any definite locality of this region.-represent but four families, viz.: two catfishes, four suckers, eight minnows, and one member of the codfish family. Eight of the fifteen species belong to one family, the Cyprimilit. Not a single species of spiny-rayed fish has been found in the streams about the Hills, and it is not likely that any will be found there. Many of the streams in or near the Hills would apparently furn-
ish congeniai homes for suntishes, bass, and even several species of darters. That these are not there must be due to the nature of the lower courses of the streams draining the hills, and that of the Cheyenne, to which they are all tributary. The Cheyonne is ordinarily a shallow stream whose waters are always more or less alkaline and filled with solid matter in suspension from the extremely easily erorled country through which it flows. The lower courses of the streams flowing from the Hills are through the same Cretaceous beds and partake of the same character. Only those species with which the struggle has become most severe will be driven to seek protection and food in the muddy, alkaline streams, and they alone would eventually find their way into the purer, clearer waters above. This of course, means the soft-rayed, non-rapacious fishes, the suckers and minnows and other mud-loving forms.

The spiny-rayed species are aggressive, extending their attacks to all weaker forms about them, while the soft rayed species are defensive, and seek protection in retreat. A spiny rayed fish has no occasion to ascend into the muddy, alkaline and uncongenial portions of these streams; the only thing which wonld cause him to rlo so would be a quest for fool, but he fincls it easier and more agreeable to get food of sufficient quantity and quality where he is. Not so with the soft-rayed fish ; he must not only search for suitable food, but he must also see that his enemy, the spinyrayed fish, dues not catch him. The attacks of his enemies were probably the first cause impelling him to take refuge in the turbid water. Fincling suitable and sufficient food in this new environment, and total relief from the persecutions of his old enemies, he tinds the struggle for existence easy, the surroundings in time become bearable and perhaps agreeable, he moves about at will through all parts of the muddy stream and even into the headwaters where, still finding an abundant food supply and none of his old enemies, he is content to make his home.

Before mining began in the Hills in 1575 and 1576 , nearly every stream possessel all the natural conditions necessary to make it an excellent trout stream. The waters were clear and cold, not subject to contamination from any source, and suitable food, such as insects and insect larvi, and the smaller crustacea and mollusca, was undoubtedly found then, as now, in abundance. With the exception of a few streams which are now ruined by mining operations, the creeks of this region are yet excellent for trout.

The explanation for their absence is practically the same as that which
account for the absence of spiny-rayed fishes. Land barriers have evidently proved competent to prevent trout getting in from the headwaters of the trout streams to the westward, and the mud and alkali which they encountered in the lower portion of the Yellowstone, the Missouri and the Big Cheyenne have as certainly proved an impassable barrier from that direction. Among the many regions of the Inited States which possess the necessary natural conditions for trout, the Black Hills district is the only one of any considerable area, if we except portions of the Yellowstone National Park, in which one or more species of Salmonide are not or have not been indigenous. The absence of trout and all other species of fish from the various lakes and streams of the lellowstone National Park (e.g. Lewis and Shoshone lakes, (iibbon, Firehole and Little Firehole rivers, and Indian, Glen, Nez Percé and sentinel creeks) is undoubtedly accounted for by the presence of impassable falls where these waters leave the great rhyolite sheet which covers the lark, as shown by the investigations made by Hr. Jordan in 1589. The presence of trout in Yellowstone Lake and tributary streams, notwithstanding the fact that the outlet of Yellowstone lake (Yellowstone River) has two enormous falls which wholly prevent the ascent of fish, is quite evidently due to the most interesting and curious fact that there is a continuous waterway furnishing easy passage for trout from the upper tributaries of snake River, by way of Two-ncean Pass, into the upper Yellowstone River. That Yellowstone Lake could have been, and almost certainly was, stocked in this way from the Columbia basin, was demonstrated by the investigations which I made during my visit to Two-lcean Pass in August, 1891.
The presence of trout in the upper tributaries of the Colorado, Rio (irande, Arkansas, and Platte, whose lower courses are, in some cases at least, not unlike those of the Cheyenne and Missouri, is a matter whose explanation is not without some difficulties. The relationships of the various species or sub-species of salmo found in these different basins are very close and indicate a common origin at no remote date. Whether they are all descended from a form which came up from the Pacific coast or one from the Atlantic cannot be certainly known, though the bulk of the evidence points to the former view. But whatever may have been the fact, it is certain that the headwaters of the Columbia, ('olorado, Rio Grande, Arkansas, and Platte have been connected in some way at some time or other, thus permitting the trout to spread into these various basins. That there are no trout in the Cheyenne basin would seem to indicate that
the streams of this system became separated and differentiated as a distinct drainage system earlier than did those of the Platte, Arkansas, Rio (irande, Colorado, or Columbia, or else that they are streams of more recent origin and have never been connected at any time with any of the streams containing trout. Such a history as this for the Cheyenne, together with the shallow, muddy, alkaline character of its lower portion, seems to be a reasonable explanation of the absence of trout from the Black Hills.*

The effect of the peculiar alkali water of the Cheyenne and the lower course of the streams flowing from the Black Hills has been to reduce the fishes to a nearly uniform pale, faded or bleached appearance. Except those found above the alkali water, they are almost wholly without pigment cells of any kind. Perhaps the most extreme case of bleaching is that of the flat-headed minnow, Platygobio gracilis, which, of all American fishes, seems to be the one most perfectly adapted to these alkali streams.

The following is a list of the species of fishes obtained in the Black Hills and vicinity :

> SHAIHDE, OR (DTFLNHES.

1. Noturus flarus Rafinesque. Vellow Cat. South Fork of Cheyenne River at Cheyenne Falls, and Belle Fourche River at Belle Fourche.
2. Ictalurus punctutus (Rat.) Channel Cat. Middle Creek at Belle Fourche.

Catontomide on scekers.
8. Carpindes carpio (Raf.) Carp Sucker. Found by us only in the Belle Fourche.
4. Pantostrus jorlani Evermann. This species recently described by me as new (Bull. U. S. Fish Com., XII., Art. 2, 51-56, January 27, 1893, was found by us in most of the streams of the Black Hills, viz: Whitewood, Spearfish, Crow, Rapid and Hat creeks, and in the Pelle Fourche. For full description, see the Bulletin mentioned above.
5. Catostomus teres sucklii Girard. Common Western Sucker. Found in Middle, Crow, Chicken, Rapid, Cottonwood and Hat creeks, and in the Belle Fourche.
6. Moxostoma macrolepilotum duquesnii (Le Sueur.) The Belle Fourche and South Fork of the Cheyenne, and in Redwater Creek.

[^9]
7. Inyboynuthns muchulis placita (ird. Western Silvery Minnow. Cottonwood, Ilat, and Middle creek:, and South Fork of Cheyenne and Belle Fourche rivers.
s. Pimephalcs firumelas Raf. Black-headed Minnow. Middle, Rapid, Cottonwood, and Hat creeks.
9. Notrouis delicions (Cird.) Middle. Rapid, Cottonwood, and Hat creeks, and Belle Fourche liver.
10. Rhinichthys Ilulcis ((ird.) Western J)ace. Whitewood, Chicken, ('row, Rapid, Cottonwood, and Hat Creeks, Cook's Pond, near Spearfish, and Fall River.
11. 'oursins dissimilis (fird.) Found only in Rapid Creek.

1丷. Plat!gobio gracilis (Rich.) Flat-headed Minnow. Middle, Cottonwood, and Ilat creeks, and Belle Fourche and South Fork of Cheyenne rivers, in all of which it is abundant.

1:3. S'motilus utromaculatus (Mitch.) Chub. Found only in Chicken, Crow, anll hapid Creeks. These are the most western localities from which this fish has been reported.
14. Lencischs neogitus (Cope.) Found by us only in Cox's Lake and Chicken Creek, near Ciammon's ranch, 心. D.
(i.M1DIE, OR (OH-FlSHES.
1.5. Lota lota maculosa (Le sueur. One specimen obtained at Cheyenne Falls. This is the only fresh water representative of the codfish family.

These fifteen species are, so far as known, the ouly fishes found native to the Black Hills. It is the intention to continue the investigations in that region during a portion of the coming summer, when it is expected that the exact limits in the range of at least come of these species may be made out. It is especially desirable to determine in what streams the spiny-rayed fisher make their nearest approach to this region.
[AB-TRMT.]

It was $m y$ good fortune to spend the six months from March to September, 1s92, on board the U. S. Fish Commission steamer Albatross, which was engaged during that time investigating the habits, abundance and distribution of the fur-seal in the North Pacific and Bering sea. While
carrying on these investigations we touched at a number of places on the mainland of Alaska, and while cruising along the Aleutian chain of islands we visited most of those which are inhabited.

While the study of the birds of these regions was only an incidental part of my work, nevertheless I had opportunity to make considerable collections at Alexandrovsks and Saldovoi in Cook's Inlet, at Nuchek in Prince William Found, on Kadiak Island, Cnalaska, Amaknak, Atka and Attu islands, also upon Bering Island of the Commander group. Among these is a series of ptarmigan that is of much intertst.

The species represented are the following: Willow Ptarmigan (Lagop,"s lagop"s) and Rock Ptarmigan (L. r" $\mu^{\prime \prime \prime s t r i x)}$ from Kadiak Island, Nelson's Ptarmigan (L. rupestris nelsoni) from Amaknak and Cnalaska islands, Turner's Ptarmigan (L. ripestris athensis) from Atka Island, and an undescribed species from the island of $A t t u$, the most westerly of the Aleutian chain.

The two species from Kadiak Island were collected A pril 1:3 and 14, and are interesting as showing the plumage at that season. The Willow Ptarmigan ranges near the bases of the mountains and amon \leq the sparse willow growth of the lower portions of the jsland. At the time of our visit the snow had melted from considerable areas frequented by this species, while higher up the mountains, where we found the Rock Ptarmigan, and where there is little or no woorly vegetation, the snow covering everything completely.

The principle of adaptation to environment was clearly illustrated by these two species. The one whose range was in the region still covered entirely with snow had not yet begun to change from winter to summer plumage, not one of the sixty odd specimens collected showing a single brown feather; the plumage of every one was a solicl white. Not so, however, with the Willow Ptarmigan. Their plumage had alreatly begun to change gradually with the slowly melting snow, and in most cases the head and neck had almost completely changed to the summer brown, while brown feathers were scattered here and there through the rest of the plumage.

It is easy to see that it is greatly to the advantage of each of these species to change from winter to summer plumage synchronously with the melting snows; too rapid or premature change as well as change too long delayed would deftat the object of protective coloration.

Specimens of Nelson's Ptarmigan were obtained May 19 and 20 , and
others in June. Those obtained in May had changed considerably toward the summer dress, while those taken in June were in complete breeding plumage. On May 24 I spent the day on Atka Island, and secured a dozen good specimen: of Turner's Ptarmigan. They were usually found low down, either in the lowest heather or among the tall dead grass of the lowest hills. They were always seen in pairs, and were evidently mated. When flushed the male utters a coarse, gutteral note, not distinguishable by me from that of Nelson's. Most of their crops were empty, but some were filled with leaves of Emptrum nigrum. While the higher parts of the island were still covered with snow, the portions where we found the ptarmigan were almost wholly free of snow, and these birds were, as might be expected, in almost complete summer plumage.

The various species of ptarmigan are, as you know, non-migratory, in this respect resembling our native quail of Indiana; and the individuals found upon any particular island are, of course, practically limited to that one island. That ptarmigan are found upon several islands of the Aleutian chain is due either to the fact that the different islands were at one time connected, thus permitting the ptarmigan to spread over the entire area, or else that individual birds now and then found their way to other islands by being carried across by strong winds. Individuals thus carried to a new island remained there, of course, and, adapting themselves to the new conditions, became well established. In time, the new conditions, liffering h wever slightly from those upon the island from which they came, reacted upon these birds and modified them more or less, until finally they became sufficiently differentiated to be easily distinguished from the ptarmigan of any other island. That differentiation of this character does take place is a well known fact to every student of insular faunas, and the ptarmigan of the Alaskan islands afford excellent illustrations of this important principle. The investigations made by Dr. Stejneger and Irof. Ridgway, some years ago, showed that the ptarmigan of Unalaska Island, of Atka Island, and of Bering Island must be regarded as three distinct species, or sub species.

Unalaska is about 500 miles from Kadiak; Atka is nearly 400 miles further west; Attu is 500 miles west of Atka, and about 300 miles sontheast of Nikolski on Bering Island. It will thus be seen that the island of Attu is quite as much isolated as are the others named, and I was therefore very anxious to secure specimens of ptarmigan from that island
if possible. That ptarmigan were to be found upon Attu Island I knew from the report of Mr. L. M. Turner, who visitel the island in 1880-81. but who appears not to have collected any specimens.

The Allatross anchored in Chichagof harbor, Attu Island, on the evening of May 2s, and I spent the next day on shore climbing over the snowy mountain slopes in search of the ptarmigan; and the search was rewarded by our securing five fine specimens, four males and one female. A comparison of these with the specimens which I had from Unalaska and Atka indicated that there are some well marked differences, and that the Attu Itarmigan is worthy of at least sub-specific rank. Epon returning to Washington I turned the specimens over to the U. S. National Museum, where they have been examined by Doctors Ridgway, stejneger, and Merriam, all of whom pronounce it a new and well-marked variety.

Local vimations. By C. H. Eigmmann.
|. AB flict.
A detailed comparison of about 400 specimens of Lenciscus from the Columbia basin and the Fraser basin showed that each locality has a variety which in the aggregate was different from the varieties of every other locality. The fin rays were found to decrease with the altitude, and in a general way it was noticed that the variation between the specimens of the same species also decreased with the altitude. These facts were demonstrated by diagrams.
 Webster.
He who studies geographical distribution is, at the very beginning, brought to understand that the area of any one state, or, indeed, any single country, is far too limited in which to work out his problem, as in the majority of cases the influences which make the presence of a species possible lie, largely, outside the boundaries of such state. The entomology of Indiana is only a fragment of the world's entomology and must be studied in connection with its closely related factors. You will therefore, 1 hope, pardon me for beginning my subject at a long distance from home and with elements seeming at first to have little to do with Indiana insects.

There are currents of air in the heavens and currents of water in both the oceans and inland streams, and all these have their influence on insect distribution. The influences of the Gulf stream of the Atlantic are far reaching in their effects, as will be further explained, while the corresponding current, sweeping northward along the coast of eastern Asia and south along the west coast of North America, is at present less important in its effects, owing largely, perhaps, to the Rocky Mountains and the Great American Lesert. There also seem to be currents of insect migration. These, three in number, may be designater as follows: The

Map intha ing, approxmately, the natural hivide between the northern and southern insect faunas, east of the Kocky Mountains.

Pacific coast, Northwestern and southwestern. With the first we at present have little to do, as owing, possibly, to the combined influences of the mountains and desert intervening between us and the area directly inHuenced by it, we see little of the insect famm of the Pacific coast. To the influence of the Rocky Mountains I attribute the extension of Alaskan forms sonthward to New Mexico. Whether, with the barriers withdrawn, these trans Pacific and sub-arctic species would drift eastward, is a problem which will likely only be solved when some gigantic system of irrigation
shall cause these desert wastes to cover themselves with regetation. The other two have an influence on the insect fanna of Inrliana which we can as yet but vaguely understand. In a paper on "some Insect Immigrants in Ohio," read before the Ohio Academy of science, antl, later, published in "Science," Vol. XX'II., pp. 57-5!), and from which notice the map is extracted, we indicated the dividing line between these two currents of insect migrations in the following terms:
"There are, seemingly, two what we may term gateways through which the majority of species that have come to us from the east, have made entrance into the state of Ohio, and, later, spread ont over the northwest. The first, and apparently the most important one of these, being at the extreme northeastern part, adjoining Lake Erie, and which we might term the north gate, and, second, the valley of the ohio river, from a point where it begins to form the eastern boundary of the state, south-ward--perhaps to Wheeling, W. Ya. Now, there also appear to be two great national avenues or ligh ways which insect migrations follow; progressing more rapidly along either one or the other, but not equally so along both, and often fullowing only one: the more sub-tropical species, whether American or introduced, taking the southern or what I would call the Great southwestern route, while the sub arctic, including, besides Amtrican, such species as have come to us from England or Lurope north of latitude 45° north, take what I would term the Great Northwestern ronte. The division between these two great thoroughfares will be indicated, approximately, by a line drawn from New lork City, latitude $40^{\circ} 43^{\prime}$ north, to St. Louis, Missouri, latitude $38^{\circ} 38^{\prime}$ north, thence to Pueblo, Colorado, latitude $38^{\circ} 17^{\prime}$ north (about), the line of separation trending northward, east of St. Louis, under the influence of the Gulf stream and the Great Lakes, chietly the iormer. Of course it is not to be understood that this line is direct, as it is donbtless more or less irregular, and, from its very nature, to some extent unstable, nor is it to be supposed to form a radical boundary, as some northern forms gradually work their way south of it, and rire rersa. Yet it will, I think, be found approximately correct.'"

From the foregoing it will be clearly observed that Indiana is itself but a single factor in the determination of the nature of its insect fauna, and, while the extent of its area covered by a species may be largely a matter of local influences, these are not by any means important factors in determining the exact locality where such species shall first appear within its
borders. This is quite aptly illustrated by Phytomm"s pmetatus, Fab., and Hylesinus trifolii Muel.* These entered Ohio first at the extreme northeast corner of the state, and there seems to have been a later introduction by the southeast gateway, the current of the Ohio river carrying them down and landing a colony of each in southeast Indiana and southwest Ohio, thus completely disarranging what had previously seemerl very probable, viz: that both of these species would cross northern Ohio and make their first entrance into the state from the northeast. As it is, they will probably not do so, but work to the north and west, the two invasions (a second will probably occur in the northeast | meeting somewhere north of the center, west or southwest of Ft . Wayne. Strange as it may appear, an invasion of foreign or American species starting from Quebec, New England or New York, makes its way westward to the south of the Great Lakes instead of to the north. Therefore, species entering Indiana from Michigan are of rare occurrence. Indeed, I do not know of a single one whose advance can be with certainty traced to such a course. Aphodius fossor, Linn., may perhaps be an exception, as it is known to have workerl southward to Massachusetts from Canada. It was next found at Detroit, Michigan, and I have seen specimens collected abont Chicago, while Prof. Wickham reports it from Iowa, he having found it in 1887. There are, however, at present no good collectors in northern Ohio, and it might have followed the usual route along to the south of Lake Erie.

Invasions have also swept over the state from the west, though not many of these are recorded. Dorimhora 10-lineata, Say, an American species, will amply illustrate the fact of there being a current of insect migration from west to east, as well as one taking the reverse course.

For anything we can now see, this system of currents and counter currents may have thus been going on for ages, and it is fruitless to attempt

[^10]to show how many of our now thoroughly established species may have been brought to the state in this manner. This much for the insect current of migration that has passed over our great north western route.

In regard to the southwestern route, while it may be said to cover a smaller area of the State, it has, probably, brousht a less number of specie: of foreign origin, while of Imerican species, it may have supplied the state fauna with nearly an equal number. Any one who will take the pains to look into the matter will be surprised at the number of sonthern species that are hovering about in the vicinity of our dividing line, which marks either their approximate northern limit of occurrence, or else their northern limit of normal abundance. Among the Lepidoptera, Agranlis; vanilla, Linn., is a good illustration, as it covers almost exactly the southern area and is found in Indiana only in one of the extreme southern counties. Arg!mnis diana, Cram., is probably another example. On the other hand, Papilio ajas, linn., and P. cresphontes, Cram., both southern species, have pushed over and far beyond our line of demarkation. Indeed, it seems probable that the former has reached farther north in western New York than it has along the Atlantic. The same might be said of one of the Orthoptera, Acridinm americanmm, scudıl. I have observed this rarely in southern WeKalb county, northern Illinois, and quite abundantly in southern Illinois, and know it to occur sometimes in ex'eedingly great numbers in southeast Indiana. It pushes far north of our dividing line, but is abundant only near or to the south of it. The following from "Field and Forest," Vol. II., p. 14., Feb., 1877, will prove interesting in this connection:
"Acridium americanum.- Two correspondents, of the Department of Agriculture, writing from Vevay, Indiana, about the middle of last November, reported the visitation in that place of an immense cloud of grasshoppers that literally covered the streets of the town. One of the gentlemen observed, about 5. P. M., dense cumulo stratus clouds in the southwest, gradually overspreading the sky ; at 6 o'clock the wind had risen to moderate gusts, and within half an hour a rattling noise was heard against the windows, like that of light hail. Un opening the doors, grasshoppers entered in immense numbers, covering the floors, furniture, clothing, \&c. The shower continued till s o'clock P. M., when the ground was thickly covered, and the boys began to burn them, shoveling them into bonfires. The specimen sent shows the insect to have been the Acritimm remericantm, one of our largest A merican grasshoppers."

Staymumantis carolinu, Burm., is an inhabitant of southern Indiana, and breeds in the extreme southern portion, and, at least, as far north as Jefferson county. I learn that a female was captured in Indianapolis last year. The line given, however, marks its northern limit of usual occurrence. In Coleoptera, I!!nastis tit! $\quad 1$, Linn., is a good example. It is a southern species, occurring from Central America northeast to southern New York. Its northern limit in Indiana is near the line given on the accompanying map. It breeds in the vicinity of Bloomington, and I have seen a specimen taken at Columbus. Tetrachu rirginica, Linn., whose distribution Schaupp' wives as "Texas, Louisiana, Florida, Mebraska and Pennsylvania," I have taken at LaFayette.

In IIemiptera, Murfantia histrionica, Hahan, whose southern home is (iautemala and Mexico, began its northward march from Texas about 1866, and has now reached northern New Jersey on the east, occurring in southern ohio, where it appearel about 1889 . It has for quite a number of years been observed in southern Illinois, but seems not to have appeared in Indiana until 1 s 90 , when it was observed in Perry county. It also occurs commonly over the southern half of Missouri, and, in fact, covering the whole area south of our lividing line, and, as shown, crowding closely up to it in Ohio, Indiana and Illinois, though it is not likely to extend far beyond this in either of these states. Its slow progress and scanty numbers show it to have nearly reached its northern limit. There are two other members of this order of whose local distribution I wish to speak, the origin of both being enveloped in an obscurity altogether too dense to offer any hope of onr ever being able to solve the mysteries of their diffusion. I refer to the Chinch bug, Blissus: lumptirus, say, and Cicada septendecim, Linn.
The Chinch bug was described by say from a specimen from the east shore of Virginia, though it is now known to have at that time occurred in destructive numbers in Illinois, and at no great distance from New Harmony, Indiana. In fact, Illinois seems to have been the central point of its greatest abundance-the storm center, so to speak. In Indiana, its destructive area may be approximately included by a line drawn from the northwest corner, near Chicago, to New Albany, and its area of occurrence in noticeable numbers by a line drawn from the same point to Ft . Wayne and the eastern border of Ohio. North of this line, especially in the northern row of counties, the insect can only be found by close collecting. I myself spent a half a day in Lafirange county during a season of great
abundance elsewhere, and found but a single specimen, and this of the short-winged form, which occurs also in New York, being variety (f) of Fitch. I have spent a great deal of time and investigation in trying to unravel the mystery of this distribution, but can now give no reason for the almost total absence of the species in the northeastern portion of the state, while they are overabundant in the opposite direction.

While located in Indiana, an opportunity was offered me to study the distribution of three broods of Cirala septendecim, Liun., very carefully. These were Brood XXII., 1885; Brood V., 188s; Brood VIII., 1889. The first of these covered the whole area of the state except a narrow strip of country around the southern extremity of Lake Michigan, the outlines being approximately described by a line commencing at the northern boundary of the state, nearly or quite due north of the city of LaPorte, and extending nearly south-south west, running a short distance east of Westville, on the L., N. A. © C. R. R., and crossing this railway near Wanatah; then sweeping southwest to the western boundary of the state. This brood probably occupied the territory along the Kankakee river, and extending a short distance northwarl into Lake and Porter counties.

Brood V., 1888, so far as I have been able to learn, covered almost exactly the area not visited by Brood XXII., and was not observed elsewhere in the state.

Brood VIII., I have definitely recorded from the counties of Brown, Clark, Crawford, Daviess, Dearborn, Floyd, Gibson, Harrison, Johnson, Knox, Lawrence, Monroe, Morgan, Orange, Scott, Tippecanoe, Warwick and Washington. In Harrison county, only, were the insects abundant, and in Tippecanoe county the invasion was only known from a single female captured by the young sons of Dr. E. Test. Broods NXII. and V. are both strong ones, while Brood VIII. is apparently very weak, and. owing to the clearing up of the forests and the attacks of the English sparrow, it will not be surprising if it becomes nearly or quite extinct in Indiana during the next century.

Of the Diptera very little is really known. I am quite sure the two species of Simulium, S. pecmarir", Liley, and S. merertiomate, Riley, both inhabit the southwestern portion of the state. How far northward they may occur I am not able to say. The species found in Franklin county I am sure is different, but it may not be a northern form.

I have thus gone over the subject in a general way, without going into a detailed account of a greater number of species than necessary to illus-
trate my points. To have done so would have requirel a greater knowledge of local distribution of species than we now possess. What is at present especially neerled is intelligent, continuous, persistent local collecting, such as is being clone by Mr. Evans, of Evansville, Prois. Blatchley, of Terre Haute, and W. P. 'hannon, of cireensburg, and Judge McBride and sons, of Elkhart. It is only by long acquaintance with a locality that we become familiar with its fluctuating insect fama-species that do not occur every year, and when they do appear are present only in scant numbers and over a limited area.

A careful sturly of species, other than those here given, may throw much light on the problem of general seographical distribution, and our dividing line is supposed to be correct in a general way, as, of course, there can be no such thing as an exact or continuous line of demarkation. This will of necessity be more or less irreqular. Aqain, a species spreads over an area particularly arlapted for its occupancy. But, no sooner is this done than the individuals along the frontier begin to arlapt themselves to an environment but slightly unfavorable, and, as their adaptation changes. so do they slowly advance outward from the territory originally occupied. A series of to them favorable seasons might occasion the occupation of a wide margin of adjoining country, while a series of unfavorable seasons might sweep this tide of advance back nearly or quite to the place of its origin. But, as the receding tide of the ocean leaves many pools of water in the depressions of rock, so will there be left, in esperially favorable nooks, a few of the insects which will retain their hold and form small, local colonies, of perhaps not more than a few individuals, and the offspring of these will meet the investinator long distances from the real habitat of the species. There is scarcely a collector who does not know of one or more small, secluded areas, in his neighborhoorl, that are rich in varieties, and which he seldom visits without satisfaction, and freruently he is astonished at his success. How long this ebb and flow has been going on, and how many species have been brought to us in this way, are problems we are yet unable to solve. Therefore, these facts have been brought together, and are here presented, not as a finished, or, incleed, as an advanced study, but rather as a primary outline, to be revised and morlified as our knowledge of the georaphical distribution of our species shall be enlarged by additional study and research.
 ican Naturalist.
 Indiana. By. F. M. Webster.
In the f, llowing list it is my intention to include only such species as were undescribed at the time they were reared by myself during an eight years residence in the state. These have nearly all been since described and, with but few exceptions, from types furnished by my rearings. The object in presenting this matter is to place it in a form convenient for reference by the future investigator, reference in all cases being given to the original description. I have not as yet been able to complete the list of those now described, and still others remain to be described, but I hope to include all or nearly all of them in a future paper:

1. Bracon agrili Ashm. From larvar of Agri'us julyens Lec., burrowing in trunks of maple. La Fayette, April and May. (Proc. L. S. Nat. Mus., 18s8, p. 612.1
2. Bracon diastutir Ashm. From Dipterous leaf miner, IViastata n. sp. in corn. La Fayette, June 28, 1886. (I'roc. U. S. Nat. Mus., 1sis8, p. 617.)
3. Bracom phefcilis Riley, M心. From Phycis intliginella Zell. (Ixford, July $9,188+$.
t. Bracon n. sp. From Trypeta gibba Loew, in galls on Ambrosia aitemisivefolia. La Fayette, May 3, 1889.
4. Bracon n. sp. From larvit of Rhyssematns lineaticollis say, in seed pods of Asclepius corymbosa. La Fayette, March 29, 1ss 9 .

Mr. Frederick Blanch:urd, of Lowell, Mass., in a letter to me, says he has reared R. lincaticollis from Asclepius in Massachusetts, and that it is there attacked by a Hymenopterous parasite.
(i. Dimeris rufipes Ashm. Host unknown. La Fayette.
7. Rhyssalus lorotenia Ashm. From Lototenia demensiana Fern. La Fayette. (Proc. C.s. Nat. Mus., 1888, p. 629.)
S. Aphidius obecuripes Ashm. Host unknown. La Fayette. (Iroc. C. S. Nat. Mus., 1888, p. 660.)
9. Aphiclins pallidus Ashm. Host not known. La Fayette. (Proc. U. \therefore Nat. Mus., 1888, p. 661.)
10. Lysiphle bus multiarticulatus Ashm. Host some species of Aphides. La Fayette. (Proc. I. s. Nat. Mus., 188.', p. 66t)
11. Lysiphebus rihaphidis Ashm. From Ahhis ribes on currant. La Grange county. July 12, 18s6. (I'roc. I. S: Nat. Mus., 1sss, p. 664.)
1.. L!!siphlebus cucurbitaphidis Ashm. From Siphonophora cucurbita Middleton. La Fayette. (Proc. C. S. Nat. Mus., 188s, p. 665.)
13. Lu/si, hlebus eragrostu, hidis Ashm. Swept from Eruyrostis. La Fayette. October 4 , $18 s i$. The host is probably Gilyphina cra!rostidis Middleton. (I'roc. C. S. Nat. Mus., 1siss. p. 66:\%.
14. Lu!siphl bus mysi Ashm. From Mysus ribis L. La Fayette, see Insect Life, Vol. 3, p. 6. (Proc. V. S. Nat. Mus.. 18sא, p. 666.)
15. Lysiphlebus tritici Ashm. Host Aphis mali Fab. La Fayette. Octoler 14, lisis. See Insect Lafe, Vol.:3, p. 61. (Iror. U'. S. Nat. Mus.. 18ss, p. 668.
16. Dis? ably Southern Indiana. (Proc. U. S. Nat. Mus., 18ss, p. 6i69.1
17. Ini, retus brunnirentris Ashm. From Siphonophora aren: . southern Indiana. (I'ror. U. \& Nat. Mus.. 185s, p. 670.)

1s. Diartus websteri Ashm. From Niphonophora arena. southern Indiana. (Proc. C. S. Nat. Mus., 1sss, p. 6it!.)
19. Pach!meuron micıns Howard. From siphonophora aven: Fab. Goshen. Have also reared it at Wooster. Ohio, from Aphis or grass, probably Aphis mali Fab. (Insect Life, 8, p. 246.)
20. Megaspites niger Howard. From Niphonophora arenit Fab. La Fayette. (Insect Life, :3, p. -4 т.)
21. Enryitu: websteri Howard. From Niphumphora aren: Fab. La Fayette. (Insect Life, : : p. $: 347$.)
22. Enc!!rt"s clisiowam, Ashm. From eggs of Clisiocampa disstri Hub. Franklin, Ind. Ohio Agr'l. Exp. Sta. Bull. 3, Vol. I., Technical Series.)
29. Herpestom"s phutelli' Ashm. From Plutilla cruciferarım. La Fayette : also at Columbus, Ohio. (Proc. C. S. Nat. Mus., 1889, p. 396.)
24. Orthopelma himaculatum Ashm. Host not known. La Fayette. (Proc. L. ㄷ. Nat. Mus., 1889, p. 416.)
2.5. Limnira flavicincta Ashm. Host not known. La Fayette. (Proc. U. S. Nat. Mus., 1889, p. 436.)
26. Zela nigrireps Riley, Ms. From Crambus zerllus Fern. Cass, sullivan county, July 11, 1856.
27. Acoloides saitidis Howard. From eggs of spider, saitis puler. The types were reared in Nebraska ly Prof. Lawrence Bruner, but specimens
were several years previously reared by me at Oxford, October, 1ssit. see Insect Life, Vol. -, p. 359. (Insect Life, 2, p. 269.)
28. Meraporus bruchivorus Ashm. From Brochus exigmus Horn. La Fayette. (Ohio Agr'l. Exp. Sta. Bull. :3, Vol. I., Technical Series.)
29. Catolaccus tylodermar Ashm. From Tylonterma foreolatım Nay. La Fayette. (Ohio Agr'l. Exp. Sta. Bull. :3, Vol. I., Technical Neries.)
30. Glupte sp.? From cocoon on red cedar. La Fayette. See Insect Life, Vol. 3, p. 464.
31. Wesmuelia Riliyi Ashmead. Although the specimens, six in number, from which the description was drawn, were in the Riley collection and the species named in honor of the possessor, they were reared by me at Oxford, Ind., July $2 t$-August 1, 188t, and sent to the U. S. Department of Agriculture, in whose employ I was at that time. These appeared in a breeding cage in which I was rearing Toroptiry graminum, and as there was no other inhabitant of this cage, that species must have been the host. This was the first time the species had been observed. It is not, however, a true Wesmaelid, and represents a rare family not as yet included in our lists. (Proc. I. S. Nat. Mus., 1888, p. 641.)
:32. Pygostotus americanus A shmead. (MS.) Reared at LaFayette, Incl., Aug., 18s9, from wheat stubble. As this stubble was infested by the Hessian fly and its various parasites, including Eupelmus allynii Frencb, and as I also reared from the same lot of stubble, Acoloides howarlii Ashmead, a spider parasite, Labes hyphlocyhar Ashmead, Encyrtus tarsalis Ashmead. an undetermined species of Batomus and a Homoporus sp., it is useless to theorize in regard to which of these might have been the host.

3:3. Enc!rtus tareatis Ashmeal. (Ms.) This was reared with the preceding, and also at Lal'orte, Ind.
34. Encyrtıs brunniprnnis Ashmead. (MS.) lieared from wheat stubble from LaPorte, Ind., August, 1ss9.
35. Ateleopterus tarsalis Ashmead. Reared at LaFayette, Ind., from Silranus surinamensis, infesting stored grain. This hat previously been reared at Washington, 1). (., by Mr. Ashmearl, from the same insect infesting raisins. (Bull. U. S. Nat. Mus., No. 4.), p. 45, 1s93.)
36. Cacus wcanthi Riley, Nov. Gen., et. sp. Reared from the eggs of Ecanthus nireus at LaFayette, Ind. This species is the type of the genus, and the only one whose parasitism is known. (Bull. 1. S. Nat. Mus., No. 45., pp. $\because 2: 3-4,1893$.)

Platygrester error Fitch. Reared June 14, 1s8t, at Oxford. Ind., from
larve of Iliplosis tritici. The original describer was in doubt as to whether this was really a parasite of this species, the wheat midge, or not. Redescribed by Mr. Ashmead from specimens reared by myself as above. (Bull. T. S. Nat. Mus., No. 45, p. 291, 1893.)

> A mite, probably hypoderas colimbe, parisitif in the phemen. By W. W. Norvin.

The Loustide of Inmixi. By W.s. Biatumer, Terre Haute, Indiana.
The order of insects known as the Orthoptera comprises seven families, three of which are alike in having the posterior femora more or less enlarged for leaping; the three being therefore classed together in a suborder called the Saltatoria, or jumpers.

In the present paper we have to deal with that family of this sub-order known as the Locustidit, which romprises those insects commonly called katydids, green grasshoppers, and stone or camel crickets.

The distinguishing characters of the members of the family Locustidit are the long, slender, tapering, many-jointed antenne; the almost universal absence of ocelli or simple eyes; the four jointed tarsi or feet; and the ensiform or falcate ovipositor of the females which is made of four flattened plates; the males having, in many instances, abdominal appendages corresponding to the parts of the ovipositor, which are used as clasping organs. The tegmina or wing covers, when present, slope obliquely downwards, instead of being bent abruptly, as in the (iryllidit: and in most cases the wings are longer than the tegmina.

The stridulating or musical organ of the males is quite similar in structure to that of the male cricket, being found at the base of the overlapping dorsal surface of the tegmina and usually consisting of a transparent membrane, of a more or less ruunded form, which is crossed by a prominent curved vein, which on the under side bears a single row of minute file like teeth. In stridulating the wing covers are moved apart and then shuffled together again when these teeth are rubbed over a vein on the

[^11]upper surface of the other wing cover, producing the familiar, so called "katydid" sound. Wach of the different species makes a distinct call or note of its own, and many of them have two calls, one which they use by night and the other by day. Any one who will pay closelattention to these different calls can soon learn to distinguish each species by its note as readily as the ornithologist can recognize different species of birds in the same manner. The ear of these insects, when present, is also similar in structure and position to that of the cricket's, being an oblong or oval cavity covered with a transparent or whitish membrane, and situated near the basal end of the front tibie.

The young of Locustidit, like those of the other families of the order, when hatched from the egg resemble the adults in form but are wholly wingless. As they increase in size they moult or shed the skin five times, the wings ea $:$ h time becoming more apparent, until after the fifth moult when they appear fully developed, and the insect is mature, or cull grown, never increasing in size thereafter. Throughout their entire lives they are active, greedy feeders, mostly herbivorous in habit; and where present in numbers necessarily do much harm to growing vegetation.

Among the families of Orthoptera the Locustide take a rank second only to the Gryllidix. The high specialization of the ovipositor of the female and the perfection of structure of the stridulating organ of the male place these two families above all others in the scale of Orthopteron life. That the two are very closely related can be readily seen by any one who will carefully compare them, organ with organ. The Gryllidix are placed first, however, by most entomologists, as the great variety of form of almost any given organ among them, when compared with its relative uniformity of structure among the Locustictr, seems to indicate the higher rank of the former.*

In the number of species in any given locality the Locustidx far outrank the Gryllider, being excelled in this respect among the other Orthopteron families only by the Acrididx or locusts. In Indiana thirty-nine species of Locustide are known to occur and are listed in the present paper, specimens of all being in my private collection. This is eleven more than are known in any other state from which lists have been published; McNeill having listed twenty-seven from Illinois; Smith, twenty eight from New Jersey; Osborne, twenty four from Iowa, and Fernald sixteen from all New England.

[^12]Thdoubtedly other species occur in Indiana, especially in the southern half of the state, but having had to rely almost wholly upon my own collecting, which has been done in Putnam, Vigo, Montgomery, Wabash, Marshall and Fulton counties, the eastern and southern parts of the state are wholly unrepresented in the list. Three persons, Prof. E. E. Slick, of Michigan City ; Prof. W. P. Hay, formerly of Irvington, and Mr. W. A. Riley, of Greencastle, have sent me small collections from their respective localities which have aided me much in recorting the distribution of certain speries.

To Mr. S. II. Scudder, of Cambridge, Mass., I am indebted for the loan of typical specimens of the genus Couthophilus for comparison; and to Prof. Lawrence Bruner, of Lincoln, Nebraska, for aid in identifying and verifying certain species. Prof. Bruner also furnished me some valuable notes concerning the general distribution of a number of the species, which are incorporated under their respective species in the list below.

The descriptions of such species of Locustida as occur in the eastern I nited states are scattered through many scientific books and papers which are for the most part inaccessible to beginners in entomology. I have thought it best, therefore, to prepare a synopsis of the sub-iamilies and of the genera under each sub-family, which are represented in the state. A short description of each species, with such notes concerning its distribution, food, habits, and comparative abundance, as have been gathered during my collectins, is also given, together with a eynonymy of the species, as far as obtainable from the works at hantl.

The following is a bibliography of authors and works to which reference is made in this synonymy:

Bruner, Lawrence.-First ('ontribution to a Knowledge of the Orthoptera of Kansas. (Bulletin of the Washburne College Laboratory of Natural History, Volume I., No. 4., 1885.) Second Contribution to a Knowledge of the Orthoptera of Kansas. (Loc. rit., Vol. I., No. 7, 1ssti.) Ten New Species of Orthoptera from Nebraska. (Canadian Entomologist, NXIII., 1s91.)

Brunner, C. von Wattenwyl.-Monographie der Phaneropteriden. (Verhandlungen der K. K. Zoologisch-botanischen Gestllschaft in Wien, 1878.) Monographie rler Stenopelmatiden und Gryllacriden. (Loc. cit., 18ss.)

Burmeister. Hermann.-Handbuch der Entomologie, II., 18:38.
Comstock. J. H.-Report of U. S. Entomologist. (U. S. Agricultural Report, 1880.) An Introduction to Entomology, I., 1858.

Davis, W. T.- The Rong of Thy reonotus. Canadian Entomologist. NXV., 1893.)

Fernald, C. H. The Orthoptera of New England, 1 sss.
IIarris, Ir. T. W.- A Treatise on Nome Insects Injurious to Vegetation. Third edition, 1862.

McNeilI, Jerome.-A List of the Orthoptera of Illinois. (I'syche, VI., 1891.)
Osborn, Herbert.-On the Orthopterous Fauna of lowa. (Proceerlings of the Iowa Academy of science, I., Part II., 1892.)

Packard, A. S., Jun.- (iuide to the Sturly of Insects. Eighth edition, 1883.

Rathvon, S. S.- In the C. S. Agricnltural Report, 1862.
Redtenbacher, Josef.-Monographie der Conocephaliden. (Verhandlungen der. K. K. Zoologisch-botanischen Gestllschaft in Wien, 1891.)

Riley, Dr. C. V.-Katydids. (Sixth Annual Report on the Noxious, Beneficial, and other Insects of the State of Missouri, 1874.) Orthoptera. (Standard Natural IIistory, II., 18s.4.)

Scudder, Samuel II.-()n the Genus Raphidophora, Serville. (Proceedings Boston Society Natural History, VIII., 1861.) Materials for a Monograph of the North American Orthoptera. (Boston Journal of Natural History, VII., 186..) Notes on the Stridulation of some New England Orthoptera. (Proceedings Boston Luciety, Natural History, NI., 1868.) The Songs of the Grasshoppers. (American Naturalist, II., 1868.) Descriptions of New Species of Orthoptera in the Collections of the American Entomological society. (Transactions of the American Entomological Society, II., 1869.) The Distribution of Insec s in New Hampshire. (First Volume of the Final Rrport upon the Geology of New Hampshire, 1874.) Entomological Notes, IV., (Proc. Bost. Noc. Nat. Hist., XVII., 1874-5.) Entomological Notes, VI., (Loc. rit., NIX., 1878). I Century of Orthoptera, 1879. Locustidie. (American Encyclopædia, Edition 1881). The Songs of Our Grasshoppers and Crickets. (Twenty-third Annual Leport of the Entomological Society of Ontario, 1892.)

Surville, M. Audinet.-Histoire Naturelle des Insectes. Orthopteres, 1839.

Smith, Nidney I.-On the Orthoptera of the State of Maine. (Proceedings of the Portland Society of Natural History, 1868.)

Smith, John B.-A Catalogue of the Insects Fuund in New Jersey. (Final Report of the State (ieologist, II., 1890.) Girasshoppers, Locusts and

Crickets. (Bulletin 90, New Jersey Agricultural College Experiment Stations, 1892.)

Thomas, Cyrus H.-Insect Injurious to Vegetation in Illinois. (Transactions of the Illinois State Agricultural Society, V.. 1865.) A List of "rthoptera collected by J. Duncan Putnam oi Davenport, Iowa, in Colorado, Ltah, and Wyoming Territories. (Proceedings of the Davenport Academy of Natural Sciences, I., 1876.)

Uhler, Philip R.-In Harris' Report on Insects Injurious to Vegetation, third edition, 186\%.

Walsh, B. I).-On Certain Entomological Speculations of the New England school of Naturalists. (Proceedings of the Entomological Society of Philadelphia, III., 1864.)

Wheeler, Wm. M.-Notes on the Oviposition and Embryonic Development of Niphidium msiferum, Scud. (Insect Life, II., 1890.)

Blatchley, W. S.-Nome New Locustida from Indiana. (Canadian Entomologist, $\mathcal{X} \times V^{\circ}, 184: 1$

*. Tegmina and wings present.
b. Prosternal spines absent; vertex rounded or deflexed without spine, tubercle or cone: tegmina always shorter than the wings Phanerorterinc. p. 97
h, Prosternal spines present; vertex either terminating in a sharp flat spine or produced upwards and forwards in a rounded tubercle or prominent cone.
c. Wing covers leaf like, broadly expanded in the middle, concave within, longer than the wings; vertex terminating in a sharp Hat spine . . . Pardormylunes. p. 109
ir. Wing covers narrow, not expanded in the middle, of en shorter than the wings; vertex terminating in a rounded tubercle or prominent cone. Conocernalin.E. p. 111
saa. Tegmina and wings absent, or the former rudimentary.
d. Pronotum short, not covering the whole top of the thorax ; prosternal spines absent . Stenopelamtine. p. 140
d.d. Pronotum extending back to the abdomen; prosternal spines present Decticidin.e. p. 149

Loncetionis.
 Paneropterini:

The species of this sub-family are among the largest of our Locustida', and, with those of the next, are commonly known as "katydids," The apex of the head is obtuse or rounded, without cone or spine, and the prosternum is unarmed. The wing covers are shorter than the wings, usually expanded in the middle, and of a bright, uniform green color. The wings are folded like a fan and are long and strong, the inserts being flyers rather than leapers. The hind limbs, being seldom used except to give themselves an upward impetus at the beginning of Hight, while longr and slender, are proportionally much smaller in diameter than in the sub-family Conocephalinit, whose members leap rather than fly.

The "Katydids" are the most arboreal of all the Locustid:", the great majority of them passing their entire lives on shrubs and trees where they feed upon the leaves and tender twigs, and when present in numbers often do excessive injury. The color and form of their wings serve arlmirably to protect them against their worst foes, the birds; and as they live a solitary life, i.e., do not flock together in numbers as do the green grasshoppers, they are but seldom noticed by man. Their love calls, or songs, however, make the welkin ring at night from mid- Iugust until after heavy frost, and though but one or two of the eight species found in the state make a note in any way resembling the syllables "Katy did, she did," yet all are accredited with this sound by the casual observer, and hence the common name usually given to the members of this subfamily. Their call is seldom made by day for the obvious reason that it might attract the attention of the birds and so lead to the destruction of the songster. As twilight approaches, however, the male of each species begins his peculiar note which is kept up with little or no intermission until the approach of day warns him that his feathered enemies will soon be on the alert, and that silence will be, for a time, the best policy to pursue.

From the other Locustid ${ }^{*}$, the Katydids differ widely in their habits of oviposition, the eggs not being deposited in the earth or in twigs, but are usually glued fast in double rows to the outer surface of slender twigs or on the edges of leaves. The eggs of the most common species appear like small flattened hemp seeds, and usually overlap one another in the row in which they are placed. On account of this method of oviposition, the ovipositors of the "Katydids" are broader, more curved, and more obtuse
at the end than in the other sub-families whose members oviposit in the earth or in stems of grass. This sub-family is represented in Indiana, so far as known, by three genera and eight species.

Key to (ienera of Phaneloptrinis:

". Wing covers of equal brealth throughout: supra-anal plate oi male with a long derurved spine which is notched at the emd I. Sitdderia.

$$
\begin{aligned}
& \text { ur. Wing covers widest in the middle; supra-anal plate } \\
& \text { of male not as above. } \\
& \text { b. Hind femora but little if any shorter than wing } \\
& \text { covers ; ovipositor well developed, curvedsrad- } \\
& \text { ually upwarls A. Amiconsinh. }
\end{aligned}
$$ 4.3. Hind femora much shorter than wing covers:

ovipositor very short, turned abruptly upwards III. Mir Ron Evthim.

This genus inelurles Katydids of medium size, with the wing covers long, narrow, of nearly equal width throughont, and rounded at the ends. The rertex is deflexed, compressed, and hollowed ont on either side for the better accomortation of the eyes, which are nearly hemispherical. The hind femora are long and slender, almost equalling the length of the wing covers in some of the species. The ovipositor is short, broad, curved sharply upwards, and has the apical thire finely wenate on both margins. The males are readily distinguished from those of other genera by having both anal plates projected into long curved processes; the one from the supra-anal plate curving lownwards and notched or forken at the end, that from the sub-anal curving upwards, and likewise notched. The form of these processes, tugether with that of the notches serve as valuable characters in distinguishing the species. six species have been described from the I'nited states, four of which occur in Indiana.
a. Length of posterior femora $2 S$ or more mm.
b. Notch of supra-anal spine of male square with a slight merlian tooth, almost as wide as the middle of the upturned sub-anal spine: the lateral processes slender and compressed.

[^13]

Phamropture curvicuma, Burmeister, Handhonch der Ent., II., 1s:3s, 6:00. kcudder, Bost. Journ. Nat. IIist., VII., 1sti=, 4ti. (In part.)
I'hler, in LIarris' Ins. Inj. to Veg., 1sice, 161. (Note.- In part.)
Sonderia curricamda, Branner, Monowr. der Phanerop., 1sis.
Riley, Stanl. Nat. Hist., II., ISSt, 191.
Comstock, Int. to Ent., I., 1s8s, 118.
Fernald, ()rth. N. Eng., $1 \mathrm{ss心}, 2$. . (In part.)
MrNeill, Psyche. VI., 1s: 1 . (Song of.)
scudder, liep. Ent. Sor. Ont., XXIIf., 1s! (Song of.)
Smith, Bull. Ag. Exp. Stat. of N. .., No. 90, 1心! $\because 4$.
Phaneroptera septentrionalis, Serville, Hist. Nat. des Orth., 1839., 416.
Tegmina, wings and legs bright grass green; budy and face somewhat paler, approaching a whitish in dried specimens. Lateral carinar of the pronotum with a yellowish line. Posterior femora very slender, armed beneath on inner carina with three or fonr minute spines.

Measurements: Male-Length of body, $\because \mathbf{2} \mathrm{mm}$.; of tegmina, 37.5 mm .; of wings beyond the tegmina, if mm ; of posterior femora, 30 mm .; of pronotnm, 6.5 mm . Female-Length of body 25 mm .; of posterior femora, 32 mm .; of ovipositor, 7 mm . Width of tegmina, 6.5 mm .

Curvicauda is a common insect in the central and southern half of Indiana, but northward seems to be replaced by S. furculutu. The former is probably less arboreal than any other species of Katyidid, as it is often found clinging to the tall, coarse grasses and sedges which grow near the borders of ponds and in damp ravines, and to the roarse weeds along the margins of prairies and meadows. When approacherl it flies readily in a zigzag, noiseless manner for a long distance to another clump of grass or weeds, or to the lower branches of an oak, a tree in which it delights to dwell.

The eggs are laid in the margins of leaves between the upper and lower epidermis, and are so thin that they are not noticeable except when the leaf is held between one's self and the light. Of the song or note made by the male of curricaula McNeill (loc. cit.) says: "The note cannot be

[^14]supposed to represent more than the first two syllables of the 'Katy did' or 'Katy didn't' of its congeners. It is made but once, and the rasping, jerky sound has been very well represented as barwi."

Curvicumla is a species of wide distribution, occurring throughout the eastern United States, and as far west as the Rocky Mountains. In Central Indiana it reaches maturity about the 25 th of July.
$h b$. Notch of supra-anal spine of male acute and much narrower than the mildle of the upcurvell sub-anal spine: the lateral processes (at side of notch) broadly rounded with the lower margin thinner.
2. Focdderin furthata, Brunner.

Sculderia furculata, Brunner, Monog. der Phanerop., 15% s.
Smith, Cat., Insects found in N. J., 1s:90, 410.
Id., Bull. Agr. Exp. Stat. of N. J., No. 90, 24, pl. II., Fig. t.

Somewhat larger than curvicantu and closely resembling that species in general appearance, the females of the two being difficult to distinguish except by the measurements; the males realily scparated by the lifferent form of the notch of the supra-anal spine. The general color is the same, but the yellow carinal line of the pronotum is less distinct or wholly wanting in furculutu, and the apical third of wings is usually a transparent reddish brown. The wing covers of the latter are broaller and the posterior femora proportionally a little shorter.
Measurements: Male Length of body, 23 mm .; of tegminat, 37.5 mm .. of posterior femora, 30 mm .; of pronotum, 6 mm . Wiilth of tegmina 8 mm . Female-Length of body, 25 mm .: of tegmina, 38 mm ; of posterior femora, 33 mm .; of ovipositor, 7 mm . Width of tegmina, 8.5 mm .

According to Bruner furculata is usually more southern in its distribution than curricauda, but in Indiana this distribution seems reversed, as the latter is much the more common in Vigo and Putnam counties, while in Marshall and Fulton counties, 1.0 miles further north, it is very scarce and juremlata very common. A single male was taken from an oak grove on the border of Lake Maxinkuckee in Marshall comnty, on August 1st, and on the 26 th of the same month it was found in numbers at the same place, and also about the borders of a large tamarack swamp in Fulton county. Its habits of flight and song, as far as noted, are essentially the same as those of curcicauda, noted above.

[^15]In New Jersey, according to smith (lec. cit.), furculata is very common on cranberry bogs, and destroys many of the berries. It will probably be found to occur throughout Indiana near the borilers of the larger ponds, lakes and marshes.
aa. Length of posterior femora 29 or $2: 3 \mathrm{~mm}$.
3. Sthmema forcita, Brunner. The Fork-tailed Katydid.
scudderic furcatu, Brunner, Monog. der Phanerop., 1 sis.
Bruner, Bull. Washb. Coll. Lab. Nat. Hist., I., 185\%, 127.
McNeill, Psyche, V'I., 18!1, 21.
Smith, Bull. Igr. Exp. Stat. of N. J., No. 90, 1892, 31.

Phemeroptera curvicanda, Riley, Sixth Rej. St. Ent. Mo., 1sit, 16it, fig. 51. (Text in part. Not fig. 50.)

This is one of the smallest, and at the same time, our most common species of the genus. The general color is a dark leaf green, the head and pronotum paler; the latter without trace of yellow on its carina. The anterior margin of the pronotum is but slightly narrower than the posterior, whereas in the two preceding species the difference in width is plainly perceptible. The notch of the supra-anal spine of the male is deep and rounded, forming a curious fork-like appendage, the lateral processes of which are much swollen.

Measurements: Male Length of body, 16 mm .; of tegmina, 31 mm .; of posteria femora, 23 mm .: of pronotum, 5 mm . Width of tegmina, 6 mm . Female - Length of body, 20 mm ., of tegmina, 30 mm .; of posterior femora, 22 mm .; of ovipositor, 5 mm .

In Central and Southern Indiana the Fork-tailed Katydid is most frequently seen on the low bushes and trees about the margin of thickets and along fence rows, but in the prairie country north it frequents coarse grasses and weeds in company with the preceding species. Its flight is noisless and seemingly without direction, and is not so prolonged as that of S. curvicuuda. Dr. C. V. Riley (loc. cit.) gives the following account of the egg laying habits of furcuta: "The female stations herself firmly by the middle and hind legs on twigs or leaves contiguous to the one selected to receive the eggs. This leaf is then grasped by the front feet and held in a vertical position, while the edge is slightly gnawed or pared off by the jaws to facilitate the entrance of the point of the ovipositor. When thi
is done the abdomen is curved under and brought forward, and the ovipositor is seized on its convex edge by the mandibles and maxillir, which, with the aid of the palpi, guide the point to that portion of the leaf prepared to receive it. After gentle, but repeated efforts, the point of the instrument is finally inserted between the tissues of the leaf, and gradually pushed in to more than half its length. As soon as the cavity is formed, the egg is extrurled, and passed slowly between the semi-transparent blades of the ovipositor. As the egg leaves the ovipositor the latter is gradually withdrawn, while the eqg remains in the leaf, retained in its place, probably, by a viscid thuid that is exuded with it. As many as five of the eggs are sometimes leposited in one row in the same leaf but more often they are single."

This is the most common species of the genus, in the United states, and is quite widely distributed over the country from the Itlantic to the Pacific. In Indiana it has been found in numbers in every county in which collections have been marle. The tirst mature specimens appear about Angust ith but it does not become plentiful hefore the middle of the month.
"un. Lensth of posterior femora less than 20 mm .
4. AThDerif ivairmolit llarris). The Narrow-winged Katydid.

Semderiul angustimbio. Prunner, Monog. der Phanerop. 1sis.
Smith, ('at. Ins. N. J., Is: 0,410 .
Soudder, Rep. Ent. Soc. Ont. NXIII., 1892. (Note of set to music.
Phmornptera cmricomed Thler in Harris' Ins. Inj. to Veg., 1s6; 161. (Note. In part.)
 In part.)
1d., Am. Nat. II., 1868, 117, (Mong of.)
Itl., Distrib. Ins. N. IAimp., 1sit, Bifi. (Nong of set to music.)
Hiley, Sixth Rep. St. Ent. Mo. 1sit, 16t, fig. 50. (Not text nor fig. 51.)
Smulderiucuricuend Fernald, Orth. N. Eng., 1sis, 20. (In part.)
(Not Scmideriu rmricanta), (DeGieer.)

This Katydid orrurs in abundance in New England and the Middle Atlantic states, and in the past has been confonded by many writers both
 structure of anal spines of male it is very similar to furreta, but may readily be known by its shorter posturior femora. and by its narower wing covers.

Measurements: Male-Length of body, 14 mm ., of tegmina, eh mm.: of posterior femora, 19 mm .; of pronotum, 4 mm . Wirlth of termina, is mm . Female-Lenoth of body, 19 mm .; of tegmina, e. mm .; of ovipositor, 5.5 mm .

The male of angustifolia is our smallest member of the genus. In Indiana it is known only from Fulton county, several specimens of both sexes having been taken on (october 7 th, from the borders of a peat bos in a tamarack swamp, near Kewanna. This, as far as known, is its iirst recorl west of New Jersey. It will probably be iound to occur only about the bogs and swamps of the northern half of the State.

Mr. S. H. scudder, who has studied carefully the songs of many speries of Orthoptera and has even set a number of them, including that of angustifolia, to music, has given a pleasing account of its song from which I give the following extract: "It is more noisy by night than by day; and the songs differ considerably at these two times. The day song is given only during sunshine, the other by night and in cloudy weather. I first noticed this while watching one of the little creatures close beside me: as a cloud passed over the sun he sudilenly rhanged his mute to one with which I was alreally iamiliar, but without knowing to what insect it belonged. At the same time all the individuals around me, whose similar day song I harl heard, began to respond with the night cry: the cloud passed away, and the original note was resumed on all sides. Judgingr that they preferred the night song to that of the day, from their increased stridulation during the former period, I imitated the night song during sunshine, and obtained an immediate response in the same language. The experiment proved that the insects could hear as well as sing.
The note by day is $b: r w i$ and lasts for one-third of a second. The night song consists of a repetition, ordinarily eight times, of a note which sounds like $t c h \not r$. It is repeated at the rate of five times in three fuarters of a second, making each note half the length of the day note."

[^16]

size medium : wing covers slightly expanded in the middle, regularly rounded at the ends, a little shorter than, or but slightly exceeding, the posterior femora; vertex broad, deflexed but not compressed, without spines: eyes elliptical: stridulating organ of male, brownish, opaque, traversed by a strong green cross vein; ovipositor broad, of medium length, curved gratually upwards from the milldle, obtuse or rounded at the end, and with the apical half sharply and strongly serrate on both edges; anal plates of male not prolongerl.

Seven species of this genus, which is confined to North America, have been lescribed from the United States. Of these, three have been found in Indiana.
". Tegmina about 37 mm . in length : exceeding the tip of posterior femora.
 Katy-did.
Locustr ollmgiolia, DeGeer, " Mem., III., 1s7:?, 445. pl. 38, fig. 2."
Plylloptera ollongifolia, Burmeister, Handbuch der Ent., II., 1838, 693. Harris, Ins. Inj. to Veg., 1862 , 159. (Text only.) scudler, Bost. Journ. Nat. Hist., VII., 186i2, 444. Id., I istb. Ins. in N. Hamp., 1sit, 366.
Id., Am. Encyc. Ed., 1ssi, \'III., 170.(Text only.)
Kathron, I. S. Agr. Rep., 1stis, :38.
Thomas, Trans. Ill. st. Agr. soc., V., 186\%.) 445.
Amh!!\%or!ph", whongifolia, Riley, Stand. Nat. Hist., II., 1884, 1 ss .
Bruner, Bull. Washb. Coll. Lab. Nat. Hist.. I., $1886,195$.

Comstock, Int. to Entom., I., 188S, 116.
Fernald, Orth. N. ling., 1888, $\because 1$.
McNeill, Psyche. VI., 1891, 21 .
scudder, Rep. Ent. Soc. Ont., XXIII., 18:2, 68. (Song of.)

The larsest of the three species occurring in the state, measuring about 45 mm . to the end of the wing covers, which are 3.3 times as long as wide. Wings exceeding the wing covers by 6.5 mm . Interior margin of pronotum much narrower than the posterior, the lateral carinar sharply defined. Inner, lower carina of posterior femora armed with ten or more rather
strong teeth. General color a bright pea-green, the shrilling organ of male brownish with a heary green cross rein. The abrlomen yellowish or brownish green.

Measurements: Male-Length of body, 21 mm .; of tegmina, 38 mm .; of losterior femora, $: 30 \mathrm{~mm}$.; of pronotum 6.5 mm . Female-Length of borly, $2: 3 \mathrm{~mm}$.; of termina, 36 mm ., of posterior femora, : $: 31 \mathrm{~mm}$.; of ovipositor. 11.5 mm . Width of tegmina of male, 11.5 mm .

This species is rather common throughout the state from August 1st to October, frequenting the shrubbery along fence rows and the edges of thickets and woods, especially in damp localities; and when flushed, flies with a kind of whirring noise, alighting on fence or the lower branch of tree. I have not distinguished the note made by the male, but McNeill (lor. rit.), says that it is a "quick, shuffings sound which resembles "Katy " or "Katydid" very slightly."
ar. Tegmina less than 30 mm . in length; sometimes reaching but not exceeding the tip of posterior femora.
b. Greatest brearlth of tegmina contained less than three times in their length; ovipositor strongly curved.
6. Ambiyompla rotexdmolis, (scudder.) The Round-winged Katydid. Phylloptera rotındifolic, Ncudder, Bost. Jour. Nat. Hist., VII., 1sie?, 45 . Amblycorypha rotundifolia, Brunner, Monogr. der Phanerop., 1878.

Scudder, Proc. Bost. Soc. Nat. Hist., NIN., 1877, 83.
Id., Am. Encyc., VIII., Ed. 18s1, 170. (Fig. only.)
Id., Rep. Ent. Sor. Ont., XXII., 1s9:2, 18. (Song of.)
Riley, Stand. Nat. Hist., II., 18st, 1ss, fig. 265.
Comstock, Int. Ent., I., 18.88, 116.
Fernald, ()rth., N. Eng., 1888, 21.
McNeill, Psyche, VI., 1891, 29.
I'hylloptera oblongifolia, Harris, Ins. Inj. to Veg, 18i2, tig. 75. (Not text.) Riley, Sixth Rep. St. Ent. Mo., 1874 , 169, fig, 5.5 (Text in part.)
Length about 32 mm . to end of tegmina, which are proportionally much broader than those of ollongifolia. Posterior femora reaching tip of tegmina in male, a little longer in the female; armed on the lower, inner carina with four or five minute teeth. Anterior margin of pronotum, es-
pecially in the female, but little narrower than posterior; the lateral carint somewhat rounded. The oripositor is more curved and more strongly serrate than in either the preceding or the following speries. The color is essentially the same as that of chlongitolia.

Measurements: Male-Length of hody, 19 mm .; of tegmina, 27 mm .: of posterior femora, 2. mm .: of pronotum, 5 mm .: width of tegmina. 10 mm . Female-Length of body, 20 mm .: of tegmina. $2^{-} \mathrm{mm}$.; of pronotum, 6 mm .: of ovipositor, 10 mm .: width of tegmina, 11 mm .

Is iar as my observation goes, rotmetimia is, by far, the most common member of Amblycurypha found in Indiana. It is more of a terrestrial species than the preceding, being often seen on the gromed, or on the clumps of tall grass and weeds, which grow in damp ravines. Its flight is comparatively noiseless and less proloneed than that of whomifolio: In Central Indiana it makes its first appearance about the tifth of Ausust. oi its note, Mr. scudder say-: "This insect stridulates both by day and by night. and without variation. The song comsists of from two to four notes sounding like chic-arhw, repeated rapilly so as to be almost confounded, and when three requiring just one third of a second; the song is repeated at will, generally once in about five seconds, for an intefinite length of time."
H. (ireatest breadth of wing covers contained from :if to :3mes in their lensth: ovipositor but moderately curved.
7. I mamonima 'mata. Brumer. Vhler's Katyedid.

Comstock, Int. to Jit., I., 1siss, 114.
smith, Cat. Ins. of N. Jer., 1sto, tose.
Our smallest speries of the genus measming but about 27 mm . to end of tegmina. Posterior femora armed as in rotuntionia, slightly exceeding the tegmina in both sexes. Pronotum narrower in tront, the anterior half of lateral carin: rommled, the posterior, rather sharp. The mate with longer wings and narrower termina than the female. Ovipositor less curved than in either of the other species, the apical half with comparatively strong serrations on both margins. (ieneral color, alight, grass green.

Measurements: Male-Length of body, 14 mm ; of tesmina, 23.5 mm ; of hind femora, 20 mm .; of wings beyond tegmina, 5 mm . Female-Length of body, 17.5 mm .; of termina 20.5 mm ; of hind femora, $\because 1.5 \mathrm{~mm}$.; of wings beyonl tegmina, $: 3 \mathrm{~mm}$.: of ovipositor, 8.5 mm .

Much less common than either of the preceding, having been noted, as far as known, ouly in Vigo county, where it frequents the tall sedges and willows bordering the large ponds in the Wabash River bottoms. The young feed upon the leaves of the scarlet oak, Quercus mcrinen, Wans., and the perfect insect is often found on or beneath this tree. It has been recorded before from New Jersey, Maryland, and the District of Columbia. August 1% and 27 th.
III. Mifrocentrim, scindler (1-ntie.)

Size large. Wing covers moderately expanded in the middle, much longer than the posterior femor:1, and with the outer border sloping oft quite sharply, thus causing the tip to be more pointed than in Amblyror!pha Vertex much as in that genus, slightly furrowed. Eyes broarlly oval, very prominent. Hind legs slender and very short, the femora but little more than half as long as the tegmina. Ovipositor very short, bent abruptly upwards, bluntly pointed, and with the apical third finely serrate above. Anal plates of male not prolonged.
"This genus differs from Amblyrory, ${ }^{\prime}$ h, to which it is most nearly allied, especially by the cut of the wing covers and the shortness of the hind legs. and ovipositor."-s.udder.

But one species is known to occur in Indiana.
8. Meroreatrim hiumfolidm, (L.) The Larger Angular-winged Katydid. The Oblique-winged Katydicl.
"Giyllus laurifolius: L., Syst. Nat. II., 1767, 695, No. 17.,"
Phylloptera laurifolia, Burmeister, Handb. d. Ent., 11., 183s, 693.
Serville, Hist. Nat. des Orth., 18:39, 404.
Microcentrum laurifolium, Bruner, Bull. Washb. Coll. Nat. IIist., I., 18s5, 127 .
Fernald, Orth. N. Eng., 1888, 21.
MeNeill, Psyche, VI., 1891, 22.
Smith, Cat. Ins. N. J., 1890, 409.
Microcentrum ufiliatum, scudler. Bost. Jour. Nat. Hist., VII., 1862, 47, tig 5.
Riley, Stand. Nat. Hist., II., 1sst, 191.
Comstock, Int. to Ent., I., 1858, 116.
Microcentr"s retinertis, Riley, Sixth Rep. Stat. Ent. Mo., 187t, 155, tigs. $43-47$.

[^17]Mierocentrum intinoris, Id., Stand. Nat. Hist., II., 1884, 1ss. fig. 2biti, (Not Microcentrum retimuris, Burm.)
This is the largest species of "Katydid" found in the State, both sexes measuring two inches and more to the end of the wings. The general color is light, grass green, the body yellowish green, lighter beneath. The vertex is quite broad, with its center hollowed out so as to form a shallow pit, which is more prominent in the male. The pronotum is about as broad as long, its anterior margin a little concave and usually possessing a slight median tooth, though this is sometimes obsolete, or is replaced with a shallow notch. The overlapping dorsal surface of the wing covers form a sharp and prominent angle with the lateral portions, whence the common name.

Measurements: Male-Length of body, 25 mm .: of tegmina, 42 mm ; of posterior femora, 2.5 mm .; of pronotum, 6 mm .; width of tegmina, 13 mm . Female Length of body, 30 mm .; of tegmina 46 mm .; of posterior femora, 24 mm .; of ovipositor, .5 mm .; width of tegmina, 14 mm .

In the country it is this insect which is most commonly called "the Katydid," and the note of Cyrtophyllus cmerrus is usually attributed to it but its true note may be represented " by the syllable 'tic,' repeated from eight to twenty times at the rate of about four to the second." It is evidently attracted by light, being often found in the gutters beneath the electric lights in the larger cities and towns. It occurs, probably, throughout the State, but is more common southward and is nowhere found in sufticient numbers to be injurious. The eggs are usually glued in double rows on the sides of slender twigs, which have been previously roughened with the jaws and otherwise prepared for a place of deposit. The two rows are contiguous and the eggs of one alternate with those of the other. Those of the same row cyerlap about one-fourth of their length. They are of a grayish brown color, long oval in shape, very flat, and measure $5.5 \times 3 \mathrm{~mm}$. They are usually deposited in September, hatch the following May, and the young, in Central Inliana, reach maturity during the first half of August.

The insect whose life history was so well written up by Dr. C. V. Riley, in his sixth Missouri Report, under the name of Microcentr": retineris, is, in my opinion, the present species, since the measurements of the figures there given correspond exactly with those given above of lanrifolinm. The true M. retinerris of Burmeister is found in the eastern [nited states and

[^18]probably occurs in Indi:na, but has not, as yet, been noted. It is considerably smaller* than laurifilium, and with the general color more of a yellowish green.

Paefomphidine.

This sub-fimily is represented in Indiana by the single genus Cyrtoply/lus the leading characters of which are given below.

The members of this genus are at once distinguished from all other Locustide by the broad leaf-like form of the tegmina which are longer than the wings, obtuse and rounded at the end, and concave or hollowed within. The vertex extends forward between the eyes in the form of a small flat spine and the prosternum is armel with two sharp spines. Fyes small, globose. The "shrilling" organ of the male is brown in color, with the central portion as transparent as slass, and is set in a strong half oval frame. Uvipositor broad, with the apical half up-curved and denticulate below; apex rather sharply pointed. Sub-anal plate of male produced into a long paddle shaped appendage which is grooved on the upper side.
But two species occur in the Inited states only one of which is rather common in Indiana.
9. Cybtomilles concavts, (Harris.) The True Katydid. The Broadwinged Katydisl.
Pterophylla concara, Harris, Encyclopsedia Americana. V'III., 1831. 42. Platyphyllum concorwom, Harris, Ins. Inj. to Veg., 1862, 15ヶ, fig. 7t.

Walsh, Proc. Ent. Soc. Phil., III., 1s64, 233.
Thomas, Trans. Ill. St. Ag. Soc., V., 18tī5, 445.
Riley, Sixth Rep. St. Ent. Mo., 1874, 167, figs. 52-54.
Cyrtophyllus concarus, Scudder, Bost. Jour. Nat. Hist., VII., 1862, 444.
Id., Encyc. Americ. Ed., 1881, IN., 772, fig.
Id., Rep. Ent. Soc. Ont., XNiII., 1892, 70, fig. 46.
(Note of set to music).
Thomas, Trans. Dav. Acad. Nat. Sci., I., 1876, 267 .
Packard, Guide to stud. Ins., 1883, 566, fig. 563.
Riley, Stand. Nat. Hist., II., 1884, 187, fig. 264.

[^19]> Comstock, Int. to Ent., I., 1sss, 115.
> Fernald, orth., N. Eng., 1sis. 20, tig. 10.
> McNeill, Psyche, VI., 1891, $\because t$.
> smith, Ins. N. J. 1s!o, 40:.
> Platyphyllum perspicillatum, Whler, in IIarris Ins. Inj. to Veg., 18t.?, 15s. (Note.)
> Rathvon, U. S. Ag. Rep., 1s62, 382, tigs. 19, 20. (Not Cyrtophyllus perspicillatus, Fab.)

The true Katydid is readily known by the characters of this genus. The wing covers and wings of living specimens are dark green; the body. pronotum and head lighter, with a tenclency to turn yellowish when dried Harris says the pronotum is "rough like shagreen, and has somewhat the form of a saddle, beins curved downward on each side, and rounded and slightly elevated behincl and is marked by two slight transverse furrows." The main veins of the wing cover are very prominent with many reticulating branches, siving that organ much the appearance of a leaf. Posterior femora short, slemler, and armed on apical half of lower outer carina with about six small spines. The ovipositor is almost as long as the abdomen, cimeter-shaped, sharp-pointed, and with but slight serrations on the lower edge of apical third. Below the curved anal cerci of the male is a spine, resembling in appearance the cerci, which curves beneath the projecting sub-anal plate.

Measurements: Male-Length of body, $: 30 \mathrm{~mm}$. ; of tegmina, $: 37 \mathrm{~mm}$.; of posterior femora, 21 mm . ; of sub-anal spine, 11 mm . Width of tegmina, 1 smm . Female Length of body, 29 mm : of tegmina, 36 mm . of posterior femora, 2 mm . of ovipositor, 14 mm . Wilth of tegmina, 16 mm .

The Broad-winged Katylid is found in consilerable numbers throughout the state but is much more commonly heard than seen, as it dwells singly or in pairs in the densest foliage which it can find such as the tops of sharle trees and the entwining vines of the grape arbor. It is more domestic in its habits than any other species of the "Katydid" group, frequenting, for the most part, the shrubbery of yarils and orcharils and the trees along fence rows, being seldom, if ever, heard in extensive wooded tracts. Its note is the londest made by any nember of the family, the male having the musical organ larger and better developed than in any other. The call is almost always begun soon after dusk with a single note uttered at intervals of about five seconds for a half dozen or
more times. This preliminary note gives the listener the impression that the musician is tuning his instrument, preparatory to the well known double call which is soon begun and kept up almost continuously from dark till dawn.

Of this call Mr. sudder, says: "The note, which sounds like .rr, has a shocking lack of melody: the poets who have sung its praises must have heard it at the distance that lends enchantment. In close proximity the sound is excessively rasping and gratiny, louder and hoarser than I have heard from any other of the Locustarians in America or in Europe, and the Locustarians are the noisiest of all Orthoptera. Since these creatures are abunlant wherever they occur, the noise produced by them, on an evening specially favorable to their song, is most discordant. Usually the notes are two in number, rapidly repeated at short intervals. Perhaps nine out of ten will ordinarily give this number; but occasionally a stubborn insect persists in sounding the triple note-('Katy-she-dil') ; and as Katydids appear desirous of defiantly answering their neighbors in the same measure, the proximity of a treble-voicel songster demoralizes a whole neighborhood, and a curious medley results; notes from some individuals may then be heard all the while, scarcely a moment's time intervening between their stridulations, some nearer, others at a greater distance ; so that the air is filled by these noisy troubadours with an indescribably confused and grating clatter."
According to Riley the eggs are thrust, by means of the sharp ovipositor, into crevices and soft substances, and probably, in a state of nature, into the crevices of loose bark, or into the soft stems of woody plants. They are of a dark slate color, about 6.5x: mm. in size, very flat, pointed at each encl, and with the edges beveled off or emarginate. The song has been heard in Putnam county as early as Angust 5th, and a single female was captured in Lake county on October 1.5 th, so that the species probably exists more than two months in the mature state.

It was to this speries that Oliver Wendell Holmes addressed the well known lines:

> "I love to hear thine carnest voice
> Wherever thou art hid. Thou testy little dogmatist.
> Thou pretty Katydid."
> CoNocEPIALIN.E.

Vertex projecting forward and upward in the form of a tubercle or cone, sometimes blunt, sometimes much prolonged. Prosternum toothed
or with two slender spines. Front coxa (in our genera) with a spine on the outside. Wing covers seldom expanded in the middle, often shorter than the abdomen, and in color either green or brown. Shrilling organ of male well developed, the cross vein prominent, the color light brown, with the central portion transparent (except in the genus Conocephalus). The hind leg: are usually stout and much thickenel at the base as the insects seldom tly, but are artive leapers, and very difficult to capture.

The eggs are leposited within the stems or root leaves of grass, the pith of twigs, or sometimes in the turnip-shaped galls so common on certain species of willow. The ovipositor being thus used as a piercer, has in time developed into a slender and sharp pointed instrument which is but little curved and is frequently of excessive lensth, in some species being over twice as long as the remainder of the borly.

To this sub-family belons those slender-bodied green grasshoppers, with long, tapering antenna which are so common in summer and early autumn in damp mearlows and prairies and along the margins of streams, ditches and ponds. They are mostly terrestrial in their habits, but one or two of the larger ones ever being found in trees.

The color of their bodies corresponcls closely to that of the stems and leaves of the sedges and grasses among which they dwell, and so protects them from the sight of the few hirds which frequent a like locality. Their songs, produced in the same manner as those of their larger cousins, the katydids, are as frequent by day as by night, but are usually soft and low in comparison with those of the former. Their day songs differs from that of the night, and, says scudder, " It is curious to observe these little creatures suddenly changing from the day to the night song at the mere passing of a cloud and returning to the old note when the sky is clear. By imitating the two songs in the daytime the grasshoppers can be made to represent either at will ; at night they have but one note."

Twenty-one species of this sub-family, representing tliree genera, are known to occur in the state.

> Key to (ievert of Conocempiline.
a. Vertex produced forwards into a long sharp cone; stridulating organ of male green and opaque . . V. Coxocrpinur. aa. Vertex terminating in a rounded tubercle which is hollowed out on the sides; stridulating organ of male light brown and partly transparent.

[^20]b. Prosternal spines very short ; ovipositor slenter,
straight, or very nearly so ; insect small . . . VI. Xirimint.
l.h. Prosternal spines long and slender; ovipositor
stout, usually upourved; insect large . . VIl. (): Henimum.
V. Cosoremanic>, Thunbergh (1s1\%.)

The Cone headed Grasshoppers.
The members of this genus are readily known by having the vertex prolonged forward and upward into a cone which much exceeds in length the first segment of the antennir. Face very oblique. Eyes subrotund, rather prominent. Spines of pronotum long and slender. Wing covers long, narrow, rounded at the ent, much exceeding the abdomen and slightly exceeding the wings in all our species. The stridulating organ of the male is opaque and of a coarse texture in the left wing cover, but transparent at the center of the right. Hind femora of moderate length, rather slender, the insects often using the wings as locomotors. Ovipositor rather narrow, nearly straight. oftentimes of excessive length; the eggs of those species in which the oviposition has been noted, being deposited between the stem and the root leaves of plants. Anal plates of male not produced; the cerci much swollen, recurved and toothed.

Although these insects are said to be rather common by those writers who have prepared lists of Orthoptera from other States, yet in Central and Western Indiana they are the least abuntant of all the Lomstidit, five years' collecting having yielded less than twenty specimens. In the northern part of the State, however, they appear to be much more common. Of the habits of the species found in Illinois, Mc. Neill has written : "All the species of Conocephalus seem to possess more intelligence than is usual in Orthoptera, and they are about the most difficult of the order to approach. In escaping they usually slip or fall into the grass instead of jumping or flying; but they seem to fully understand that they are very well protected by their color and form. If approached very cautiously they often remain quite still upon the stem of grass upon which you have surprised them with the usually well founded expectation that you will not be able to distinguish them from the green herbage around. If they think it worth while to make some active movement to escape they will frequently slip around on the other side of the stem and walk down the stem to the ground or off upon another plant. Unlike most Orthoptera they do not use their front legs in holding to the mouth
the thins upon which they feed．Instead of biting they seem to wrench or tear away pieces from the stems or leaves．＂：

The genus is a large one． 10 is secies being inchuded by liedtenbacher in his monograph．thout one dozen are known to oceur in the Eastern Inited states，and four have，up to the present，lecen taken in Indiana．
＂．Cone of rertex slender，about ：3．5 mm．in length，and with either the margin or lower face black．
b．A black line on each margin of cone extending from the apex half way or more to hase；inner，lower carina of posterior femora with four or tive minnte spines．

scudder，lost．jour．Nat．Hist．，VII．，1ムiO，t49．
Itl．，Dist．Ins．in New Ilamp．，1nit，：36＂．Note of to music．）
1，h．，Am．Ency．，Eil．1ssi，V＇lli．，170，tig．．
 of to music．

smith，orthop of Maine，Intis， 14.
Riley，stand．Nat．Hist．，II．，MS4，1si，tig．2li弓．
Comstock．Int．to Ent．，I．，1ヶ心く，115．
Fernald，（Heth．N．Eing．，Isis，$\because .2$ ．
Wheeler，Insert Life，IJ．，1s：\％，$\because \because 4$ ．
Mo Meill，Peyche，VI．，1s：1，，：
Cmith，Ins．of N．Jersey，18：\％． 410 ．
It．，Bull．Ag．Coll．Ex．Stat．N．Jer．，Co．！ 10,1892 ， ：31，1，II．
Liedtenbacher，Monogr．der Conoceph．，1s：1， 177 ，s $\%$ ．
Osborne．Proc．Ia．Acad．N‘i．，I．，18：2， 119.
A slender－bodied species，the general color of which is grass sreen，the body and face paler：the posterior tibitr and tip of owipositor infuscated． Lateral carinic of pronotum sometines with a saint yellow line，more plainly visible in the dried specimens．Tegmina very long and slender． Cone of rertex with a small tooth projecting downward from the front of its base．Ovipositor of excessive length，straight，the apex pointed．

Measurements: Male-Length of boty, 26 mm .: of tegmina, $4 \because \mathrm{~mm}$.; of posterior femora, 21 mm . Female-Length of body, 2心 mm.; of tegmina 47 mm .; of posterior femora,, 23 mm .; of cone of vertex 3.2 .5 mm .; of pronotum, $\bar{i} .5 \mathrm{~mm}$.; of ovipositor, 31 mm .
This is probably the most widely distributed species occurring in the Eastern L'nited states, having been recorded from Maine to Nehraska. It is the most common one occurring in Northern Indiana, where it frequents the tall rank grasses along ditches and the borters of damp prairies. In Vigo and Putnam counties it is scarce, being replaced by C. nebrascensis, Bruner.
The female has been recorded as depositing her eggs between the stem and root leaves of Andropogon, a genus of tall, coarse grasses which grow in dry, sandy localities. The young, hatched in May, reach maturity about the 5th of August. Mr. Scudder, who has set the note of the male to music, says of the song: "This insect has but a single song and stridulates only by night, or during cloudy weather. It bewins its song as soon as the sky is obscured or the sun is near the horizon. It commences with a note like $b r n$, then panses an instant and immediately emits a rapid succession of sounds like $c h \dddot{\prime} i$ at the rate of about five per seconcl, and continues them for an unlimited time. Another writer likens its note to the syllable ' $i k \cdot i k \cdot i k$,' as if sharpening a saw, enlivening low bushes, and particularly the corn patch, as it seems to especially delight in perching near the top of a cornstalk and there giving forth its rather impulsive song."
bb. Cone of the vertex entirely black beneath; posterior femora armed on both of the lower carinac with a number of plainly visible spines.
11. Coxocepiall's nebriscerme, Bruner.

Conocephulus uebrascensis, Bruner, Canadian Ent., XXIII., 1891, 7 İ.
McNeill, I'syche, VI., 1891, 23. -
Osborne, Proc. Ia. Acad. Sci., I., 1892, 119.
Scudder, Rep. Ent. Soc. Ont., NXIII., 1s: 12, , $\because 2$.
A heavier bodied and shorter winged species than the preceding. The cone of the vertex projecting upward more strongly and with the apical half more tapering than in ensiger; the basal tooth quite prominent. "Anal cerci of male stout, with strong internal hooks. Ovipositor long and slender, lanceolate, a little curved upwards and extending about one-fourth of an inch beyond the closed tegmina."
" General colour bright grass green (rarely a yellowish brown or tan) with narrow, yellowish lines along the lateral carin: of the pronotum. Posterior tibia together with all the feet more or less infuscated."-Bruner.

Measurements: Male-Length of borly, 2 s mm.; of tegmina, 37 mm ; o_{f} pronotum, $s \mathrm{~mm}$.; of cone of vertex, 3.5 mm .: of posterior femora, 21 mm . Female-Length of body, $3: 3 \mathrm{~mm}$.; of tegmina, f: mm.; of posterior femora, 23 mm .; of ovipositor, 24 mm .

The above measurements are very nearly the same as those given by Mr. Bruner in the original description oi the species, and are the average of a half dozen specimens in my collection. I have one female, however, which is so much larger that at first I was inclined to think it a different species, but the color and structure, except the measurements, agree in every particular with those given above of mbascmsis. The following are the measurements of the sperimen in question :

Length of body, 36 mm .; of cone. 4.5 mm .: of tegmina, 49 mm .: of posterior femora, 30 mm .: of ovipositor, 39 mm .

This species has not before been recorded east of Hinois, but in Central Indiana it is the most common of the three species occurring there. A number of sperimens have been taken in Putnam county by Mr. Riley and in Vigo and Fulton comnties by myself. When approached it often attempts to escape by burrowing beneath the fallen urass. It frequents the same localities as C. ensig, r and is very liable to be mistaken for that species by the casual olserver, but may at once be distinguished by the characters given above.
aa. Cone of vertex rather stout, less than : mm . in length, devoid of black markings.
c. Lateral carina of pronotum with a yellow line; wing covers with irregularly distributed black dots; ovipositor exceeding 2.) mon. in length.
12. Conocerlimar moberrs, sudder.

Conucr,hulus robustus, scudder, Bost. Journ. Nat. Hist., VII., 1sise, 449. Id., Proc. Bost. Soc. Nat. Mist., NI., 1Nis, 7. (Song of.)
Id., Am. Naturalist, II., 18ts, 117. (Song of.)
Id., Distb. Ins. in N. Hamp., 1874, 367. (Kong of.)
Id., Rep. Ent. Soc. Ont., XCIIII., 1892, 7?. (Song of.)

> Riley, Stand. Nat. History., I1.. 18si. 1s7. Comstock, Int. to Ent., I., 1ssis, 115.
> Fernald, orth. N. Eng., 1Nsis, e:
> McNeill, I'syche, V1., 1s91, $2: \%$
> Smith, Ins. N. Jer., 1s: $0,410$.
> Liedtenbacher, Monog. der Conoceph., 1s: s! s. Pl. III., fig. 36.

A larger and thicker borlied species than either of the preceding; and the wing covers broader. Cone of the vertex more like that of C. msigr but shorter, with the apex more obtuse; the frontal basal spine distinct but blunt. Posterior femora armed beneath on both carind with a number of rather weak spines. Wings of male equalling the tegmina in length, in the female a little shorter. Ovipositor shorter than in either of the above species. General color either pea-wreen or dirty brown or a mixture of both. The cone rarely with a black spot at apex, its sides often with a narrow yellowish line.

Measurements: Male-Length of body, 30 mm .; of tegmina, $4+\mathrm{mm}$; of hind femora, $2: ; \mathrm{mm}$.; of pronotum, $s \mathrm{~mm}$.; of cone, 2 mm . FemaleLength of body, 31 mm .; of tegmina, 45 mm .; of hind femora, 26 mm .; of ovipositor, 26 mm .

This species seems to be an inhabitant of sandy districts and occurs only along the Atlantic sea coast and the shores of the (ireat Lakes. In Indiana it has been noted only in Lake county, where Prof. E. E. Slick found it quite frequently along the shore of Lake Michigan during September and October. Of the specimens sent to me-a half dozen maleshe wrote: They were caught off of trees, in the dusk of the evening, as they were singing. They sang ("whetted") continuously for ten minutes or longer while I watched them.

Mr. Scudder thus describes the note as heard in New England: "Robustus is exceedingly noisy and sings equally, and I believe similarly, by day and night. The song resembles that of the harvest Hy, Cicada canicularis. It often lasts for many minutes, and seems, at a distance, to be quite uniiorm ; on a nearer approach one can bear it swelling and decreasing in volume $\%=\%$ and it is accompanied by a buzring sound, quite audible near at hand, which resembles the humming of a bee or the droning of a bagpipe."

[^21]c. Lateral carinar of pronotum without trace of yellow ; wing covers a bright, grass green, immaculate: ovipositor less than $\geqslant 0$ mm. in length.

Comocphahs pulustris, Blatchley, Canad. Ent. XXV., 1su?, s!.
A small but comparatively heary-hodied species, lating the cone of the vertex devoid of black markings and without a basal tooth; ovipositor very short and broad; posterior femora armed beneath on both carina.

Cone of the vertex short and stont, the tip round, the dellexed front with a dull median carina. Pronotum short, broad, the posterior margin rewnarly rounded, the lateral carina well detined, the entire surface thickly and rather deeply punctate. Temmina long and rather narrow, regularly rounded to the apex: of a more delicate texture than in either C. msigh, Harris, or C. motustus. scudder. Fore and middle femora with two short spines on the apical third of the loweronter carina. Hind legs short, the tibiat but little more than half as lones as the closed tegmina; the femora with plainly visible spines on both of the inferior carina, eight on the onter and six on the inner. Oripositor a little shorter than the hind tibia, broadest at a point about two-thiris the distance from the base, thence tapering regulanly to a sharp apex.

General color a very bright grass qreen. Fastigium tipped with dull yellow, which extends half way down the sides. habrum and apical sesments of all the palpi a rose red tinged with violet. Tarsi somewhat infuscated. Antemar and apical third of ovipositor reddish-brown.

Measurements: Female - Length wi body, $\xlongequal[-]{-}$ mm.: of fastigium in front of eye, $\because . \quad$.. mm .: of pronotum, $\overline{7} \mathrm{~mm}$.; of tegmina, $: \overline{7} \mathrm{~mm}$.; of hind femora, $\because 1 \mathrm{~mm}$.; of hind tibiex, $19 . \overline{\mathrm{n}} \mathrm{nm}$.: of ovipositor, 19 mm .

This handsome species of Comenphalus belongs to the same group as ${ }^{\prime}$. robustus and C.rrpitons. scudiler, but is smaller and of a more uniform and brighter green than either of those species, besides having shorter less, ovipositor, etc. It is described from a single female taken October $\because 4$, from the fallen grasses on the margins of a large low-land pond in Vigo county. This pond is surrounded on all sides by heavy timber, and its margins have yielded a number of interesting orthoptera found nowhere
 atlantica, Scudder, Anariphus pulidarins, Sauss., Phylloscirtes pulchellus. Uhler, and Miphidimm nigroplem,m, Bruner. The first four mentioned are insects of a southern range, and perhaps C.palustris will in time be fonnd to be more common southward.

V1. Nommon m, Ferville (1s:31).

This genus includes our smallest winged Locnstida. The vertex projects forward and slightly upward in the form of a rounded tubercle which is hollowed out on the sites for the reception oi the basal joint of the antennie. Face rounded, somewhat oblique. Wyes rather large, sub-globose. 'pines of prosternum very short and weak; often mere cone-shaped protuberances. Wing covers narrow, straight, rounded at the end, of en varying much in length in the same species, but for the most part shorter than the abdomen. Wings usually a little shorter than the wing covers. Stritulating organ of male well developed, the veins prominent, light brown in color, and with the middle transparent. Hind femora of medium length, stout at hase. Ovipositor narrow, straight, or but slightiy curved, oftentimes of excessive length. Inal plates of male not prolonged; the rerci usually much swollen, and toothed at base on the inner margin. Eight species are known to occur in the state.

These insects are more variable in color and in the length of wings than those of any other genus of Orthoptera known to me. The variations, however, seem to be abrupt with no intervening forms. There are lonswinged and short-winged forms of the same species but none with the wings of medium length ; and when a brown form is tinged with green, or rice rerse, the amount of the different color varies but little. Five of our eight species are thus dimorphic as regarts the length of wings, the short-winged individuals, as far as my observation goes, far outnumbering those with the wings fully developed; and at least three of the eirht are varialle with respect to color.
". Ovipositor shorter than the body.
b. Ovipositor straight.
c. Wings a little longer than the wing covers; the latter always fully developed.
 Locrsta fasciata HeGeer, " Mem., III., 177s. tis, l’l. NL., tig. 4."
Niphidium fasfiatum, Burmeister, Hanılb. der Ent., II., 18:39, ins. sculder, Boston Jour. Nat. Hist., VII., 1Ni?. 4.51. Id., Jistr. of Ins. in N. Hamp., 1sit, :ifs. Id., Rep. U.s. Ent. Com., II., Appen. II., 18s0, $\because \because \cdot \prime$.
 smith, Orthop of Maine, 1Nis, 145.

> Packarl, Guide, Stud. Ins., 1心ぶ:, 5пт.1ン-

Whe of the most slender bodied speries belonging to our fauna，and the only one whose wings are never shorter than the body．Posterior femora reaching to or slightly berom the tip of tegmina in the female，distinctly shorter in the male．Face．sides of pronotum and abilomen，and basal portion of ovipositor green ：tegmina and apical third oi ovipositor light reddish brown ；upper side of ablomen，and stripe on occiput and disk of pronotum darker brown：legs wreen，brownish on the knees and tarsi．

Measurements：Male Length of borly， 13.5 mm ；of tegmina， 17.5 mm ．；of hind femor：， 11.5 mm ．；of pronotum， 3.5 mm ．Female－Length of body， 14 mm ．：of termina， 16 mm ；of hinl femora， $1: 3 \mathrm{~mm}$ ；of ovi－ positor，s mm．

Abundant everywhere in timothy and clover mearlows and especially so about small streams in low ground，blue－grass pastures．One of the first of the Locustida to reach maturity，specimens having been taken in Vigo county as early as July 万th．The note of the male is very faint－a kind of $2 r r-r$ long drawn out．

Fasciutum has，perhaps，the widest distribution of any of our American Locustillit，its range，according to Redtenbacher，being from British America to Buenos Ayres，A．A．

The Orchelimum gracil of Ilarris，usually quoted as a synonym of I．fas－ ciatm，has been shown by Bruner（Ent．News，lor．cit．）to be a distinct and valid species．
rc．Wings shorter than the wing covers；the latter variable in length．
15. Niphidum hrevimexe, sudder.

Niphidium brevipennis, scudder, Boston Jour. Nat. Hist., V'lI., 186; , 451. Viphitirm lneripeme, Id., Dist. Ins. in N. Hamp., 1sit, : 36 s .

Id., Sec. Rep. I. S. Ent. Comm., 1 Nivo Appen., II. 23 .
smith, Orth. of Maine, 1s6s, 145.
Riley, Stand. Nat. Ilist., II., 1sist, 186.
Bruner, Bull. Washb. Coll. Lab. Nat. IIist., 188.7, 1., $1 \underset{\sim}{2}$ s.

Comstock, Int. Ent., I., 1ss8, 114.
Fernald, Orth. N. Eng., 18is, 24 .
Smith, Ins. of N. Jer., 1s90, 411 .
Id., Bull. !o, Ag. Coll. Fxp. Stat. N. Jer., 18!2, 31, pl. II.
MrNeill, Psyche, VI., $1 \$ 91,24$.
Redtenbacher, Monog. der Conoceph., 1591, 206 , pl. IV.. fig. 91.
Osborne, Proc. Ia. Acad. Sci., I., 1892, 119.
Blatchley, Can. Ent., XXIV., 1892, 26.
A little shorter and thicker bodied species than M.fasciatum. Posterior femora rather short and stout, unarmed beneath, or rarely with one to four minute spines. Cerci of male swollen, the apex strongly compressed and obtuse, armed below the middle with a rather flat, sharp-pointed tooth.

General color light reddish brown; the face and sides of pronotum usually green ; stripe on occiput and disk of pronotum a very dark brown, margined on each side with a narrow yellow line; ovipositor reddish brown throughout.

Measurements: Male-Length of borly, 12 mm .; of tegmina, 8 mm .; of posterior femora, 11.5 mm . ; of pronotum, 3.5 mm . Female-Length of body, 13 mm . ; of tegmina, 7.5 mm . ; of posterior femora, 11 mm . ; of pronotum, 3 mm . ; of ovipositor, $9-10 \mathrm{~mm}$.

This is also an abundant species throughout the State, frequenting the same localities as fasciatum and reaching maturity about a fortnight later. Long-winged forms of it occasionally occur, but in Indiana they are very scarce, but one or two having come under my notice. Of the variations in the length of the wing covers of it and allied species Prof. Bruner has well said: "That in the genera Tiphichum and Orchelimum wing length is
al character not to be relied upon as specitic or even varietal difference ；＂ yet Redtenbacher in his Monographie der Conocephaliden has separated a number of his species by this character alone，and I can find no men－ tion in his work of the fact that such a variation exists．
bb．Ovipositor a little curved；tegmina constant in length，covering about two－thirls of the abdomen in the male；shorter in the female．

31．Xiphlon vemohille，seudder．
Siphidium nemorult，Scudder，Proc．Bost．Soc．Nat．Hist．，XVII．，1sis， HiO．
Id．，Entom．Notes，IV．．．1s．in，（in．
Il．，Cent．Orth．，1～T！，1ヶ．

Mcざeill，Psyche．VI．，is！ $1,:!$ ．

Siphidimm rmitinn．．Rerltenbacher，Monograph der Conoceph．，1s：1， 20 O.
A rather robust species with the general color a dark，greenish brown ； tegmina light reddish brown with the iront or lower area fuscous．Dor－ sal stripe of occiput and pronotum not contrasting so strongly with the general color as in the precerling species．margined with a narrow yellow line on each side．All the femora punctate with reddish dots，the tarsi and tip oi hind femora dusky．Tenmina with the reins and cross veins unusually prominent giving them a roarse and sabrous look；the tympa－ num of male stout ancleleraterl．Cerci coniral，the apex obtuse，but lit－ the compressed．Ovipositor as long as the ablomen，the apical half with a gentle but evident upward curve．

Measurements：Male－Length of body， 14 mm ：of tegmina， 8 mm ．； of hind femora， 12 mm ．：of ponotum，：3．5 m．Female－Length of body， $15 \mathrm{~m} . \mathrm{m}$. ：of termina， 5.5 mm ．；of hind femora， $1: 3 \mathrm{~mm}$ ．；of ovipositor，？ mm ．

Redtenbarher，in his Monosraphie，haveridently described this species as now under the name of artipenm．His specimens were from Missouri．

Nemoral is a very rommon insect in Vigo and Putnam counties but has not as yet，been taken in the northern part of the State．It reaches ma－ turity about August 1 ，th and from then until after heavy frosts may be found in numbers along the borders of dry，upland woods，fence rows，and

[^22]roadsides where it delights to rest on the low shrubs, blackberry bushes, or coarse weeds usually growing in such localities. On the sumy aiternoons of mid-autumn it is especially abundant on the lower parts of the rail and board fences, the male uttering his faint and monotonous love call-a sort of cheree-c-ch-r-r-1, continuously repeated - the female but a short distance away, a motionless, patient, and apparently attentive listener. When in coit" the male does not mount the bark of the female, but, with his body reversed, is dragged about by her, this being the common practice of all the species of Jiphidium and Orchelimum. Nomerale has been recorded only from Nebraska, Iowa, and Illinois and seems to he confined to the northern hali of the midule I'nited states.
(I't. Ovipositor $\in q u a l$ to or longer than the body
d. Length of posterior femora almost equal to that of ovipositor.
\therefore Borly rather stout; the tegmina always covering more than hali the abrlomen.
f. Abdomen with the dorsal surface light brown, the sides green, or greenish yellow.
17. Niphimicm exshert m, sudder.

Niphidium ensifer, Scudder, Bost. Jour. Nat. Hist., V LI., 1sie, 4n.
Siphidium ensiforme, Id., Bull. U. S. (ieol. and Geog. Surv. Terr., 1sin, II., 2(61.

Siphidimm ensifermm, Id., Ser. Rep. U. S. Ent. Comm., 1880, Appen II., 2:? Riley, stand. Nat. Hist., II., 1sst, 186. Comstock, Int. to Ent., 1., 1sss, 114.
Wheeler, Insect Life, II., 1s90, 2:2. (Oviposition of.)
McNeill, Psyche, VI., 1891, 24 .
Redtenbacher, Monog. der Conoceph., 1s91, $\because(09$.
Very similar in general appearance to I. breripenne, scudder, and may be only a variety of that species. Typical examples are larger with a much longer ovipositor. The general color is also more of a green than in breripenne; the face, sides of pronotum and abdomen, and the four anterior femora being of that hue. The tegmina and wings are light, reddish brown, as are also the tibia and ovipositor; the latter becoming a deeper brown towards the apex. Cerci of male rather stout, with the apical hali curved slightly outward and depressed. Ovipositor slender, straight.

Measurements: Male-Length of body, 13.5 mm.; of tegmina, 9 mm .; of hind femora, 13 mm .; of pronotum, 3.5 mm . Female-Length of body, 14.5 mm .; of tegmina. 8.5 mm .; of hind femora, 14 mm .; of ovipositor, 1.5 mm .

Although found in Indiana wherever collections have been made, this species appears to be less common than either fasciatu", or brecipeme. It differs from them also in the manner of oviposition, as, instead of depositing its eggs in the stems of grasses, it seeks the turnip-shaped galls so common on certain species of Salir (willow) and oviposits between their scales. The gall is not formed ly the Locustid, but hy a Ilipterous insect belonging to the family of Cecidomyidit. Although l have never seen the eggs deposited I have on a number of occasions, found them within the galls, but did not know to what insect they belonged until Mr. Wheeler published (loc. rit.) his excellent account of the oviposition of this species. From that 1 fuote as follows: "On September Sth I observed a female in the act of ovipositon. She was perched with her heal turned toward the apex of the gall. -lowly and sedately she thrust her sword-shaped ovipositor down between the leaves, and, after depositing an eqg, as slowly withdrew the organ in order to recommence the same operation, after taking a few steps to one side of where she had been at work. She soon observed me and sipped away without completing her task. The number of eggs found in a gall varies considerally. sometimes but two or three will he found, more frequently from fifty to one hundred. In one small gall I counterl one hundred and seventy." The egg is cream colored, very thin. elongate oval in outline, and measures $4 \times 1 \mathrm{~mm}$. The young emerge about the middle of May and reach maturity about August 10th. Long-winged forms of this species are occasionally met with.
()n ()ctober 21 a pupa was taken which hada white hair worm (Gordius) s!2 inches long in its abromen.

Ensifirm, was first described from Illinois, and, as yet, has not been recorded east of the Alleghany Mountains.
> $f f$. Abdomen with the dorsal surface a fuscous brown, the sides shining black.

[^23]18. Xhmom Numopermi, Bruner. The Black-sided (irasshopper. Siphilium nigroplrumm, Bruner, Canad. Entom., NXIII., 1891, 5s. Osborne, Proc. Ia. Acull. Sci., I., $1 \mathrm{~s} 6 \mathrm{C}_{2}^{\prime}, 11 \mathrm{~s}$. Blatchley, Canad. Ent., CXV., 1s93, 90.
A medinm sized, rather robust species, easily distinguished from all others of the genus by its peculiar coloration. In Indiana dimorphic forms occur; one having the pronotum, tegmina and legs bright grass green, the other with these parts brownish yellow, the green wholly absent. Both forms have the stripe on the occiput and the sides of the abdomen shining black; the former narrowing in front to the width of the tubercle, and bordered on each side with yellowish white. In the green forms the usual brown stripe on the disk of pronotum is but faintly defined, in the other it is very evident.
"The tegmina are usually abbreviated, reaching only four-fifths of the length of the abdomen, but an occasional specimen is to be found in which the wings are fully developed and then reach to the extremity of the ovipositor in the female. Ovipositor straight, quite broad and heavy. Male cerci of medium length, rather stout, tapering gently toward the apex, and with a strong sub-basal tooth."-Bruner, (lor. cit.)

Measurements: Male-Length of borly, 14 mm ; of tegmina, 9 mm .; of hind femora, 13.5 mm .; of pronotum, :3.) mm. Female-Length of body, 15 mm .; of tegmina, $8.5 \mathrm{~mm} .:$ of hind femora, 14 mm ; of ovipositor, 16 mm .

In Indiana this handsome insect is known to occur in the two widely separated counties of Fulton and Vigo, but in restricted localities and small numbers, as far as noted, in each. In Fulton county it was found only in a broad, shallow ditch by the side of a railway and near the border of a large tamarack swamp, where it inhabited a space not more than twenty feet square, which contained several dead willow branches, surrounded by a dense growth of sedge and Polygonum. Here, on August 26 th, four females were taken and on September 24 th two males and two females. These were all that were seen, although a careful search was made over a wide area in every direction for others. The most of those secured were taken by clasping the hand about the slender willow branches which were raised a few inches above the ground, on the under side of which the insects took refuge when pursued. A single male taken from the margin of the large pond mentioned under Conocephalus palustris, is the only specimen as yet seen in Vigo county. The species has been
noted before only in Iowa and Nebraska, but probably occurs in suitable localities throughout northern Illinois and northwestern Indiana. (if its haloits in Nelraska, Bruner has written as follows: "It is quite plentiful among the rank vegetation on low moist ground, and is especially common in wet places where the "cut grass" (Lefsin oryzoides, swartz) grows. The supposition is that this grass offers a better place than usual for the deposition of its egrs, which are deposited between the leaves and stems of srass. (irape vines and other creeping plants which form matted clusters that afford shelter from the noonday sun and the bright light of day are favorite haunts of this and other species of our nocturnal grasshoppers and a few of the arboreal crickets."
since writing the above I have received a pair of this species from Mr. A. P. Morse, Wellesly, Mass., which-were labelled "lthaca, N. Y.," thus extending eastward its known habitat ly more than fow miles.
th. Boly very slender; the tegmina exceedingly short, pad-like, covering only one-third of abdomen.

This is the smallest and most slender-borlied Locustid found in the state. It is a dull, redtish brown in color, except the stripe on the occiput and lisk of pronotum, which is a dark, choolate-brown, the two colors being separated !ey ather wille yellowish line which in living specimens is very distinct.

The cone of vertex is short and rather narrow. Tegmina, especially those of the female, very short and obtusely rounderl. Cerci of male elongate, tapering, a little curved outwarl and armed with a rather long sub-basal tooth. Owipositor eqnalling the borly in lensth, very slender and tapering, with its apical half slightly uperrved.

Measurements: Male-Length of body. 10 mm .; of tegmina, $: 3 \mathrm{~mm}$.; of hind femora, : 1 mm .: of pronotum, 3 mm . Female-Length of body, 11 mm.: of tegmina, .5 mm .; of hind femora, 9.5 mm .; of ovipositor, 11 mm .

As yet noted only at one point in the state, namely, the border of a raw prairie near Heckland, Vigo county, where it was found in small numbers on October, $\because 1$ st. It appears to be less active than any other Niphidium, leaping a shorter distance when disturbed, and frecuenting the surface of the ground rather than the stems of the tall prairie grasses among which it makes it home. It will probably be found throughout the prai-
rie region of the state, but has not before been recorded east of the Mississippi river, although it is said by Bruner to be very plentiful in Nebraska, Iowa and Kansas.
dd. Posterior femora much shorter than the ovipositor: the latter of excessive length.
\%. The common form with the tegmina very short, leas than half the length of the abdomen; the sides of the body green.
20. Nuphinh strution, écudder.

Jiphilin, strictum, Scudder, Proc. Bost. Soc. Nat. Hist., NVII., 1sin, f60. Id., Entom. Notes, IV., 187), 6\%. Id., Cent. of Orthop., 1s: 13.
Bruner, Bull. Washb. Coll. Lab. Nat. Hist., I., 1心is, 12 s .
MeNeill, Psyche, VI., 1s91, :-4.
Redtenbacher, Monog. der Conoceph., 1ی91, $2(0)$.
This is a species with the body rather slender, of more than average length; constant in color but dimorphic as respects the length of wings, the long winged forms, however, being very scarce. Siles of head and body together with all the femora green. The usual reddish brown stripes on occiput and pronotum narrowiy edged with whitish, especially on the fastigium of the vertex. Tegmina reldish brown; in the females exceedingly short and pad like, or well developed and reaching almost to knees : when the former, a little longer than the wings; when the latter, i mm . shorter than the wings. In the brachypterous males (the only ones I have seen) the tegmina are somewhat less than half the length of the abdomen. I reddish brown band on dorsal surface of abdomen, darker where it meets the green on sides. "vipositor pale red, straight, one and a half times the length of the posterior femora. Cerci of male, long, the apical half acuminate, curved slightly inward near the tip.

Measurements: Male-Length of body, 14 mm .; of tegmina, $\overline{5} . \overline{\mathrm{m}} \mathrm{mm}$.; of pronotum, 3.5 mm .; of hind femora, 13.5 mm . Female-Length of body, 17 mm .; of tegmina, short winged form, 3.5 mm .; long winged form, 16 mm .; of hind femora, 15.5 mm .; of ovipositor, 23 mm .

A common species in the prairie country of the western and northern parts of the state, where it frequents, for the most part, dry upland meadows and prairies and reaches maturity about August 5th. An active leaper and tumbler and, like the next species, often striving to escape de-
tertion by burrowing beneath fallen weeds and grasses. Its general range is to the west and southwest, it having first been described from Texas, and it has not heretofore been recorled east of Illinois.
$g g$. The common form with the tegmina covering three-fourths or more of abdomen; sides of body dull, reddish brown.
21. Sifminn Ampextation, sudder. The Lance-tailed Crasshopper.

Wiphidimm attematmm, Scudder, Trans. Am. Ent. Soc., H., 1sis!, 30.s, Long winged form.
Bruner, Canad. Entom., XXIII., 1s:n, it.
 Redtenbacher, Monog. der Conoceph., $15: 1,1!1$. (Long winged form.)
 winged form.)

A medium sized grasshopper with the sides of head and body dull reddish brown. Vertex, disk of pronotum, and tegmina greenish brown in life, the former with the usual dark brown median stripe. Femora greenish brown. very rarely bright green, the tibia and tarsi darker. Tegmina and wings either abbreviated or fully developed when the former, covering about three-forths of the abdomen, when the latter considerably surpassing its tip in both sexes. Antemm with the basal third reddish, the remainder fuscous, longer than in any other member of the genus belonging to our fauma, measuring 73 mm . in whe specimen at hand. owipositor also lonser than in any other ; slender and nearly straight, the apex very acuminate: cerci of male lons, broat, with the apical third gently tapering, the basal tooch minute, slender.

Measurements: Male-Length of body, 14 mm ; of pronotum, : mm ; of tegmina, short form, 10 mm ; of hind femora, 14.5 mm . Female-Length of body, 16 mm ; of tegmina, 9.5 mm .; of hind femora, 15 mm .; of ovipositor, $27-30 \mathrm{~mm}$.

In Incliana the "Lance-tailed (irasshopper" has, up to the present, been recorded only in Vigo county where it is common abont the margins of two large ponds in the Wabash river bottoms, but is found nowhere else. The distance between these two ponds is 15 miles and the one to the south is surrounded on all sides with heavy timber. About its margins on September 5 th, 18%, mature specimens of I . attenuatum were very plentiful
but no young were seen. On the next day the young in all stages were found at the north poncl, which lies in an open prairie region, while but one imago was noted. Ten days later the north pond was again visited and many imagoes secured, although the young were still plentiful.

The difference in time of development at the two ponds is probably due to the surrounding forest which shelters the one to the south warl, as about its margins occur the four southern species of Orthoptera mentionerl above in the notes on Comocephalus palustris, not one of which has been found at the north pond.

The males of attenuatum are, as far as my experience woes, the most active leapers among the winged Locustida, jumping a half a dozen or more times without pause when flushed, and in the net leaping so rapidly from side to side as to prevent capture with the fingers. The females are evidently handicapped in their leaping powers by the excessive length of the ovipositor, and so more often encleavor to escape by burrowing beneath the dense masses of fallen grass and reed stems which are always found in their accustomed haunts.

I find that the length of the ovipositor among the different species of Tiphidium is not at all dependent upon the age of the insect. In attenurinm it is almost as long after the third, and fully as long aiter the fourth moult as it is in the imago; while on August 11th a female of strictrm was taken with no vestige of tegmina in which the ovipositor measured 18 mm . The eggs of attemuatmm, as the length of the ovipositor indicates, are laid between the stems and leaves of tall, rank grasses.

Only the short winged form of this species has been noted in Indiana, but Prof. Bruner has taken the long winged form in Nebraska, and Mr. scudder described it from the latter taken in Illinois; thongh McNeill makes no mention of the species in his list of Orthoptera from that state. Redtenbacher, in his Monographie, has copied Scudder's description and has separated the species from all others of those from America to which it is closely allied, placing it next to fresciutnm, with which it has little affinity, by virtue of the wing characters alone.

Vh. Onchenmon, serville (1831).

Locustide of medium size, but with a short and stout body. Vertex, face and eyes much as in Xiphidium. Spines of the prosternum well developed, cylindrical and slender. Antenner slender and tapering, usually of excessive length. Wing covers narrow, the apical half often much less in wilth than the basal, exceeding the abdomen in all of our species;
almost always shorter than the wings. Stridulating organ of the male as in Xiphidium, but proportionally larger. Ovipositor stout, broad, with the apical half usually upcurved; when straight the apical third tapers rather abruptly on the under side to a fine point. Inal plates and cerci of males as in Niphidim.

Very close to Xizhidimm, and by some writers united with that genus. Liedtenbacher places it as a sub-genus of Jiphidinm, separating its members from those of liphidium proper by the same characters as did Serville. As scientists differ in opinion with respect to what characters are necessary to constitute a genus, and as, at the best, it is but an artificial and arbitrary grouping of species for the sake of convenience, I follow Serville, Scudiler and Bruner in separating the two, believing that the prime idea of convenience can thus be better subserved.

As seen above, the larger, heavier body, longer prosternal spines, and shorter and broader falcate ovipositor are the chief distinguishing characters of orchelimum. The wing covers are more uniform in length, and the color, while of slightly different shades of brown or green in the same suecies according to season and habitat, does not run to the extremes of variation as in Xiphilium.

The seneric name, Otchelimum, the literal meaning of which is "I dance in the meadows," is a most appropriate one, for low, moist meadows everywhere swarm with these insects from July to November; and though waltzes and quadrilles are probably not indulged in, yet the music and song, the wooing and love-making which are the natural accompaniments of those amusements, are ever present, and make the short season of mature life of the participants a seemingly happy one.

Nine species of the genus have been taken by the writer within the state, and probably several others occur which have not as yet been discovered.
a. Oripositor with a very evident curve; its length less than 10 mm .
b. Face without a median brown stripe.
c. Posterior femora unarmed beneath.
d. Tegmina broadest at base; the apical third narrower ; body robust.
e. Tegmina and wings sub-equal in length ; size, medium.
22. Orchehmimytugare, Harris. The Common Meadow Grasshopper. Orchelimum rulgare, Harris, Ins. Inj. to Veg., 1862, 16:2, fig. 77.

Scudder, Bost. Jour. Nat. Hist., VII., 1N($\overbrace{2}^{2}, 45^{2}$
Id., Proc. Bost. Noc. Nat. Hist., MI., Istis. (Note of set to music.)
III., Am. Naturalist, II., 18is, 117. (Note of set to music.)
Id., Distrib. Ins. in N. Hamp., 1sit, :3s. (Note of set to music.)
Id., Rep. Ent. Noc. Ont., NXIII., 1s, 2-, 7:). (Note of set to music.)

Rathoon, U. S. Agr. Rep., 181シ, $3 \times$
Smith, Orthop. Maine, $156 \mathrm{~s}, 14$.
Thomas, (ieol. surv. Wyoming, $1870,269$.
Packard, Guide to Stud. Ins., 18s:3, 24.
Riley, Stand. Nat. Hist., II., 18s4, 187.
Bruner, Bull. Washb., Coll. Lab. Nat. Hist., I., 1885, 129.

Comstock, Int. Entom., I., 18ss, 114.
Smith, Ins. of N. Jersey, 18:0, 411.
Id., Bull. Ag. Coll. Exp. Stat. N. Jer., No. 90 , 1892, $5,22,31$, fig. 13, pl. II.
McNeill, Psyche, VI., 1891, 2.).
Osborne, Proc. Ia. Acad. Sci., 189:2, 118.
Niphidium rulgare, Fernald, Orth. N. Eng., 1884, $2+$.
Jïphidium fasciatum, Thomas, Trans. Ill. St. Agl. Soc., V., 1S65, 44. (Not M. fasciatum, DeGeer.)

Xip,hidium agile, Redtenbacher, Monog. der Conoceph., 1891, 186. (In part.)
A medium sized, robust species, with the general color green or light reddish brown. Face light green or light brown without fuscous marks. The occiput and disk of pronotum with a reddish brown band, widening on the latter, where it is often, especially in the male, bordered on each side with a darker line. The male (as in most of our species) with two short, black dashes on each wing cover, the four forming the angles of an assumed square, enclosing the tympanum. The legs usually pale brown, the tarsi dusky. Pronotum long, its posterior lobe but slightly, if at all, upturned above the plane of the anterior, its hind margin broadly rounded. Tegmina reaching to or very slightly beyond the apex of hind femora, and equalling or very little shorter than the wings. Cerci of male rather
long, the apex bluntly rounded, a little depressed; sub-basal tooth somewhat flattened, with the tip sharp and decurved.

Measurements: Male-Length of body. 18 mm .; of pronotum, 6 mm ; of tegmina, 21 mm .; of hind femora, 18 mm . Female-Length of body, 19 mm .; of pronotum 6.2 mm .; of tegmina, 21 mm .; of hind femora, 18.5 mm .; of ovipositor, 7.5 mm .

Redtenbacher places rulgare as a synonym of DeGeer's Liphidium agile, stating as his reason for so doing that Harris and Scudder have separated the two " on account of small differences in the color and size of the wing covers, as well as in the length of the ovipositor." He may be right in thus combining them, but his relative measurements of $\bar{\lambda}$. agile, as given, do not agree with specimens of undoubted culgare in my possession. Scudder, who has had ample opportunity to compare the two, says (Bost. Journ. Nat. Hist.) that the pronotum is shorter in agile than in vulgare. Redtenbacher's measurements of this organ, as well as those of the hind femora, are much less than the average measurements given above. Harris, as well as Burmeister, states that the tegmina of agile are 2.5 mm . shorter than the wings, while McNeill, in his description of O. silraticm, ${ }^{*}$ says that agile has the hind femora armed beneath. Taking all these facts into consideration, though having no typical example of ayile for comparison, I have concluded not to follow Redtenbacher but to retain for the species at hand the name rulgare, by which it is best known to the entomologists of the United States.

This is probably the most abundant member of the family Locustide found in Indiana. It begins to reach maturity in the central part of the State about July 20 th, and more frequently than any other of our species of Orchelimum it is found in upland localities, along fence rows, and in clover and timothy meadows. In early autumn it seems to lee very fond of resting on the leaves and stems of the ironweed, Vernonia fasciculata, Michx., so common in many blue grass pastures. linlyar seems to be somewhat carnivorous in habit, as on two occasions I have discovered it feeding upon the bodies of small moths which in some way it had managed to capture. The note of the male has been well represented by McNeill as "the familiar zip-zip-zip-zip-ze-e-e-e-the staccato first part being repeated about four times, usually about twice a second; the ze-e.e-e continuing from two or three to twenty or more seconds."

[^24]e. Tegmina distinctly shorter than wings: size large.

Siphidiam glaberimum, Burmeister, Handb. der Ent., II., 1s:心, 707.
Fernald, Orth. N. Eng., 1scs, :-5.
Redtenbacher, Monog. der Conoceph., 1s $91,1 \mathrm{si}$.
Orchelim!m glaberrimmm Scudder, Bost. Journ. Nat. Hist., V II., 1N62, 4.3.
Walsh, Proc. Ent. Soc. Phil., III., 1sift, $2: 3$.
Riley, Stand. Nat. Hist., Il., 1sst, 1 st.
Bruner, Bull. Washb. Coll. Lab. Nat. Hist.. I., 188.5, 12s.

Comstock, Int. to Entom., I., 1siss, 114.
'mith, Ins. N. Jer., 1890, 410.
McNeil, J'syche, VI., 1891, 2-.
Very close to and perhaps only a larger form of O. culgar. The general color is the same, but the brown line on the disk of pronotum is, in the female, more plainly margined with black, while in the male the black dashes at ends of tympanum are larger and more completely enclose that organ. The tegmina of the male exceed the hind femora by about 4 mm ., and are exceeded by the wings about the same distance; those of the female are proportionally a little shorter.

Measurements: Male-Length of body, 2.5 mm .; of pronotum, 6 mm .; of tegmina, $25 \mathrm{~mm} .:$ of hind femora, $1: 1 \mathrm{~mm}$. Female-Length of body, 23 mm .; of pronotum, 6.5 mm .; of tegmina, 24 mm .: of hind femora, 19 mm .; of ovipositor, 5.5 mm .

Burmeister's original description of this species is very short and not distinctive. It is as follows: "Verticis et pronoti medio fulvo, nigromarginato; elytris ab alis dimidia linea superatis. Long. corp., $11^{\prime \prime \prime}$." Burmeister knew but two species from the United states, and this short description was sufficient for him to distinguish these, but of the twenty or more species now known it is difficult to say just which one he had in mind when he wrote the above. Of the specimens referrel to this species I have but three examples. One is from Fulton county, the other two from Vigo. They were taken from tall grass growing near the margin of ponds. Nothing distinctive of their habits is known.
$d d$. Tegmina of equal width throughout; body slender.
24. Orchelinicm camipetre, Blatchley.

Orchelimum campestre, Blatchley, Canad. Entom., XXV., I89:;, 91.

I species of less than merlium size, with the wing covers narrow and of almost equal width throughout, the posterior femora unarmed beneath, and the ovipositor short and narrow.
Cone of the vertex prominent, narrow, rounded at the apex; the sides of the frontal deflexel portion rapidly converging to form a very acute wedge. Wing-covers long, slender, not narrowed in the middle as in 0 . r.mlgare, glabrrimum, etc., tapering slightly on the apical third to a rounded end; their length equalling that of the wings in the male, a little shorter in the female. Posterior femora with the basal half quite stout, the length less than that of the tegmina. Cerci of male slender, cylindrical, somewhat pointed, the apical half curved sliglitly outwarls, the basal tooth short and weak. Ovipositor short, narrow, moderately upcurved, and tapering to a delicate point.
Color--Termina and wings almost uniform transparent olivaceous brown. The usual dark reddish-brown band upon the occiput and disk of pronotum is margined on the latter with two very narrow and darker brown stripes, which extend back to the middle of the posterior lobe of the pronotum. Face, and usually the hind femora, a dirty olive brown; the latter, when dry, with a hlackish longitudinal band on the exterior face. In the female the only green on the borly is on the lower part of the sides of the pronotum and on the anterior femora. The only male at hand has the posterior femoral green, but otherwise is colored like the females. Ovipositor light reddish-brown.
Measurements.-Length of boly, male, 17.5 mm .; iemale, 19 mm .; of pronotum, male, 4.5 mm .; female, 5 mm .; of tegmina, male, 20.5 mm .; female, 24.5 mm .; of antenn: \cdot, male, 46 mm .; of posterior femora, male, 17 mm .; female, 17.5 mm .; of ovipositor, 7 mm .
This dull colorel grasshopper has been found in small numbers in both Vigo and Fulton counties, in upland prairie meadows, where it frequents the tall grasses, usually in company with . Wiphirlium strictmon, Scudder.

It is a smaller and more slender bodied insect than the common 0 . rulgare, Harris, and has a shorter and narrower pronotum and a much smaller ovipositor than that species.
(r. Apical half of posterior femora armed beneath with several small spines.
f. All the tibiac and tarsi black or dark brown.

Orchlimum nigripes, Scudder, Iroc. Bost. Soc. Nat. Hist., XVII., 1s\%, 459.

$$
\begin{aligned}
& \text { It., Entom. Notes, I V., 187., 62. } \\
& \text { Id., Cent. Orthop., } 1 \mathrm{~s}:!, 1 \because \text {. } \\
& \text { It., Rep. Ent. Soc. Ont., XXIII., 1sie, }: 3 . \\
& \text { liruner, Bull, Washb., Coll. Lab. Nat. Hist., I., } \\
& \text { 1s8.5, 12s. } \\
& \text { McNeill, Psyche, VI., 1s91, 2.). } \\
& \text { Kedtenbacher, Monog. der Conoceph., 1S91, 18s. } \\
& \text { Osborne, P'roc. Ia. Acall. Sci., 1., } 1 \text { s } 12 \text {, } 118 . \\
& \text { Blatchley, Canad. Ent., XXV'., } 1 \times 93,93 .
\end{aligned}
$$

Somewhat smaller than O. rmlgare; the body moderately robust. Pronotum short, the posterior lobe, especially in the male, rather strongly upturned. Tegmina a little shorter than the wings, surpassing slightly the hind femora. The shrilling organ of the male is unusually large and prominent with strong cross veins, and behind it the tegmina taper rapidly on both margins; their shape and the size of the tympanum causing the male to appear somewhat peculiar and much more robust than it really is. Hind femora armed on apical half of lower onter carina with from one to four small spines. Cerci of male slender, tapering, the apex a little obtuse; the sub-basal tooth long, slender and a little curved. Ovipositor rather long, broadest in the middle, tapering to a delicate point. The males vary much in size. General color green or reddish-brown, the former prevailing in the male, the latter in the female. Occiput and disk of pronotum with the usual brown markings. Front and sides of head, and four front femora, reddish yellow. All the tibier and tarsi, together with the apical third of hind femora, black or dark brown; in one specimen at hand the whole body, except the wing-covers and femora, black.

Measurements: Male-Length of body, 18 mm .; of pronotum, 5 mm .; of tegmina, 21 mm .; of hind femora, 16 mm . Female-Length of body, 19 mm .; of tegmina, 22 mm .; of hind femora, 17 mm .; of ovipositor, 9 mm .

A lowland species, which, in Vigo county, is excessively common from August 1st to October 15th, abont the river bottom ponds mentioned above, where it frequents the stems and leaves of the different species of Polygonum, or smart weed, growing in the shallow water. A few specimens have been taken in Putnam county, and a single male from the margin of a tamarack swamp at Kewanna, Fulton county, so that it probably occurs
in suitable localities throughout the state. It was first described from Texas and has not before been recorded east of Illinois, though it has been taken by myself at Celina, Ohio. It song is much more faint than that of (). mingare, and the $=-\cdots \cdot \theta$ is much less prolonged.
if. The tibiar and tarsi green or reddish-brown.
$\because 6$. Orchelinitalivaticta, MeNeill.
Orchelimum silruticnm, McNeill, Psyche, VI.. February, 1s91, 26.
Scudder. Rep. Ent. soc. Ont., NXIII., 1892, $7: 3$.
. Niphictium sininulusmm, Redtenbacher, Monog. der Conoceph., April, 1891, 18%.

A somewhat smaller and less robust species than O. culyair, though the proportional measurements of the two are almost the same. The pronotum is shorter, the tegmina more narrow, and in the female the latter are slightly exceeded by the wings: equalling them or a little shorter in the male. The hind femora reach to or slightly beyond the apex of tegmina and are armed on the lower outer carina with three or four minute spines. The general color is the same as that of rilgare, but the blackish stripes on the margin of the brown discal stripe of pronotum are more distinct than in that species.

Measurements: Male-Length of body, 17.5 mm .; of pronotum, 4.5 mm ; of tegmina, 16.5 mm .: of hind femora, 1.5 mm . Female-Length of body, 17.5 mm .; of tegmina. 17 mm .; of hind femora, 1.5 mm .; of ovipositor, 8 mm .

I am inclined to believe that Redtenbacher's Niphidimm spinulosum is this species. The measurements as given by him are somewhat greater, but otherwise the description agrees. McNeill's name, however, has the priority.

In Indiana this species has, up to the present, been taken only in Vigo county, where it frequents the borders of cultivated fields and open woods, reaching maturity about August 20 th. "Its stridulation," says McNeill, " is quite distinct from that of rilyure. It consists of the same two elements. but the sip, is repeated many times very rapidly so as to make almost a continuous sound and the $z \cdot e \cdot \rho \cdot \rho \cdot e$ is comparatively short and very constant, lasting about eight seconds. The first part of the song lasts from three to five seconds."
bl. Face with a dark reddish-brown stripe down the center.
g. Stripe broadly expanded on the lower half of face. Size medium.

Orchelimum concinnum, sculder, Bost. Journ. Nat. IIist., VII., 1sin, 4.52. Riley, Stand. Nat. IIist., II., 1sist, 1 si .
Comstock, Int. to Entom., I., 1siss, 11 m .
Smith, Ins. N. Jer., $18: 10,+10$.
McNeill, I'syche, VI., 1s?9, 2-9.
Bruner, C'anad. Entom., XXIII., $1 \times!1,71$.
Niphidium concimmu, Fernald, Orth. N. Eng., 18ss, :-5.
Redtenbacher, Monog. der Conoceph., 1891, 18s.
A species of medium size with a body less robust than that of O. migati. (ieneral color brownish-green; the female darker. The reddish-brown dorsal stripe of pronotum and occiput passes over the fastigium and down the face broadening above the labrum to cover the whole lower half of face. The tegmina of male brownish-green, a little shorter than the wings; of the female darker and equal to or a little longer than the wings. Pronotum short. Hind femora rather slender, unarmed beneath. Cerci of male with the apex obtuse, a little compressed, the sub-basal tooth rather slender. Ovipositor less curved than that of O. culgare and with a very sharp point.

Measurements: Male-Length of body, 18 mm .; of pronotum, 5.5 mm .; of tegmina, 21 mm .; of hind femora, 16 mm . Female-length of body, 19 mm .; of tegmina, 20 mm ; of hind femora, 17 mm .; of ovipositor, 8 mm .

A rare species in Vigo and Putnam counties, and as yet not noted in the northern part of the state. It frequents the weedy and grassy margins of marshes and lowland ponds and reaches maturity about August 1.sth.
gg. Facial stripe of equal width throughont. Size small.
2s. Orchelincil indinense, Blatchley.
Orchelimum intianense, Blatchley, Canad. Entom., XXV., 1893, 90.
A slender-bodied insect, with a dark median streak down the face, and having the posterior femora unarmed beneath. The cone of the vertex is short, rather narrow, with a rounded apex. The tegmina, narrow, tapering, a little shorter than the wings, and of a delicate, almost gauze-like texture. Posterior femora slender, shorter than the closed tegmina. Anal cerci of male of medium size, longer than the subgenital plate, tapering to a dull point; the basal tooth short, with a broad base and a very sharp point. The ovipositor of female of less than average width and length, the apical half with a gentle upward curve.

Color of dried specimens: Tegmina and wings a transparent whitish, tinged with green on the front or lower longitudinal nerves; the cross nervules of the latter darker. Sides of pronotum and alodomen, and all the femora, light green; the tibiæ and tarsi of a brownish hue. Face yellowish white, with a dark reddish brown stripe the width of the labrum, starting with the mouth and passing upward to the vertex, where it narrows to the width of that organ ; then, broadening on the occiput, it passes back to the frontborder of the pronotum, where it divides into two narrow streaks, which enclose a whitish area and extend a little beyond the posterior transverse suture, where they taper to an end. Subgenital plate of male yellow. Basal third of ovipositor dark brown, the remainder light reddish-brown.

Measurements: Length of body, male, 17 mm .; female, 17.5 mm .; of pronotum, male and female, 4 mm .; of tegmina, male, 21 mm .; female, 19 mm .; of hind femora, male, 14 mm .; female, 15.5 mm .; of ovipositor, 7.5 mm.

This graceful and prettily marked species was found to be quite common amons the rank grasses and sedges growing about the margins of a tamarack swamp near Kewanna, Fulton county. It was first taken on A ugust 2 th and again on September 24 th, when it appeared more plentiful than before. It is the smallest and most slender of the nine species of the genus so far known to occur in the state, and its markings are very distinct from those of any of the others.
au. Ovipositor straight or nearly so, the under side of apical third tapering rather abruptly to a fine point ; its length 10 or more mm .
h. Posterior femora smooth beneath.

2!. Oh helivitu gladidtor, Bruner.
(Hechlimum giadiator', Bruner, Canad. Entom., XXIII., 1891, 71.
"In its general structure this species resembles the more robust forms like O. glaturimum and O. concinnum. It differs from these however in having shorter legs and antennæ. The posterior femora are rather slender; the cone of the vertex is short and obtuse, with the extreme tip shallowly sulcate; the hind wings are little if any longer than the tegmina, which do not quite reach the tip of the ovipositor.
"Color, pale transparent grass-green throughout, save the usual markings upon the occiput and disk of pronotum, which are dark brown, on the latter composed of two well defined, narrow, slightly diverging lines.

Antenna rufous, feet and extreme tip of the ovipositor tinged with rufous.
"Measurements: Female-Length of body, 18 mm .; of antennat, 35 mm .; of pronotum, 4.75 mm .; of tegninat, 19 mm .; of hind femora, 15.5 mm .; of ovipositor, 10 mm .'-Bruner.

A single female of this species was taken in Fulton county, August 26 th, 1892 , from the borders of the tamarack swamp previously noted. It agrees exactly with Mr. Bruner's description, and therefore I have copied the latter rerbatim. He described the species from two females taken from the flowers of a prairie golden rod, Solidago rigida, L., at West Point, Neb. The male is not as yet known. The species probably occurs in small numbers in low, damp prairies, but as, aside from the long, straight ovipositor, it bears a somewhat general resemblance to O. rulgare, it has heretofore been overlooked, or confounded with that common insect.

> hh. Posterior femora armed on the lower outer carina with several small slines.
30. ()rchelimum maciert, Platchley.

Orchelimum bruneri, Blatchley, Canad. Entom., XXV., 1s!:3, 92.
A species of medium size and rather slender body with the posterior femora armed beneath, and the ovipositor very broad, nearly straight and of more than average length.

Cone of the vertex narrow, moderately elevated, rounded at apex. Tegmina long and narrow, a little shorter than the wings. Posterior femora rather stoul, the apex, when appressed, not quite reaching the tip of ovipositor; armed beneath on the apical half with three or four small spines. Cerci of male stout, acuminate, with the internal tooth prominent.

Ovipositor very similar to that of O. glatiator, Bruner, being very long and stout, nearly straight above, and with the under side of apical third sloping rapidly to the acute apex.

Color of dried specimens.-With the exception of the ovipositor, which is a light reddish-brown, and the usual stripe on occiput and disk of pronotum, the whole body is a pale, transparent brownish-green, the green showing plainly only on the lower half of the side of pronotum and on the meso and metapleura. The reddish-brown dorsal stripe of occiput and pronotum is bordered laterally throughout its entire length with a very narrow one of much darker brown. When immersed in alcohol the
reddish-brown stripe fades to a yellowish white, leaving the two lateral ones as prominent dark streaks, widest on the central portion of the frontal lisk.

Measurements: Length of borly, male, 18 mm .; female, 20.5 mm .; of tegmina, male, 21 mm .; female, $2 . \mathrm{mm}$.; of pronotum, male and female, 4.75 mm .: of hind femora, male, 16 mm .; female, 17 mm ; of ovipositor, 10 mm . Described from two males and four females.

This species, the female of which is at once conspicuous by reason of the shape and size of its ovipositor; has been taken in small numbers only in Vigo county, where it is found during August and september on the leaves and stems of a tall, broad-leaved knot weed, Polygonum amphilium, L., which grows luxuriantly in the shallow waters about the margins of two or three large ponds in the Wabash River bottoms. Several other "green grasshoppers," notably among which are Jiphidium uttenuutum, scudder, and Orchlimum nigripes, Scudder, frequent this plant in immense numbers. Keeping company with them an occasional specimen of O. $m, m m i$ is seen, but, being an active leaper, it often escapes amidst the dense foliage of the knot weed before its capture can be effected. Its less rohust body and longer, armed posterior femora will readily distinguish this species from O. gladiator, the only other one which, to my knowledge, has an ovipositor shaped like that of braneri. The latter is named in honor of Prof. Lawrence Bruner, of Lincoln, Neb., one of the leading authorities on N. A. Orthoptera.

Stenohelm ttin.f.

The Indiana members of this subfamily comprise those insects which are commonly called "stone" or "camel crickets," and, so far as known. belong to the single genus Ceuthophilis, which is characterized below.
VIII. Ceuthophile's, scudder (18io).

Wingless Locustide of medium or large size with a thick body and arched back. Head large and oval, bent downwards and backwards between the front legs. Antennઃ* long, slender, cylindrical and tapering to a fine point. Eyes sub-pyriform, the narrow end downwards, placed close to the basal joint of the antenner. Maxillary palpi long and slender; the apical joint longest, somewhat curved, split on the under side three-fourths of its length, which is nearly equal to that of the two preceding taken together. Pronotum short, not extending over the meso and meta-notum. Prostern.

[^25]um unarmed. Hind femora thick and heavy, turned inwards at the base, channelled beneath, with the margins of the channels either serrate or spined in the males. sellom armed in the females. ()vipositor well developed, nearly straight, a little upturned at the tip, the inner valves usually strongly serrate on the under side of the apical fourth. Cerci of males long, slender, usually very hairy.

These insects are seldom seen except by the professional collector. They are nocturnal in their habits, and during the day licle beneath stones along the mareins of small woodland streams, or beneath logs and chunks in damp woods, in which places veldom less than two, nor more than three or four, are found associated together. Being wingless they make no noise, and, like most other silent creatures, are supposed to be deaf, as no trace of an ear drum is visible.

That they are wellnigh omnivorous in their choice of food, I have determined by keeping them in confinement, when they fed upon meat as well as upon pieces of fruit and vegetables, seemingly preferring the latter. The majority of the species evidently reach maturity and deposit their eggs in the late summer or early autumn, as the full grown insects are more common then, but have been taken as late as December 1st. The eggs, which are supposed to be laid in the earth, usually hatch in April, but some are hatched in autumn and the young live over winter (an anom. aly among the Locustidie ?) as I have taken them in January and February, and at this writing, December 24 th, have one in confinement which has just passed the second moult.

Several of the species inhabit caves and are usually of much larger size, with longer antenne and smaller compound eyes than those found above ground.

The males of these insects are quite readily separated by the size, number and relative positions of the spines on the uncler side of the hind femora, as well as by the degree of curvature of the corresponding tiliat. The females, having neither the spined posterior femora nor the curved tibie, are less readily distinguished by the color and the relative measurements of the different organs. As the two sexes are colored alike and are usually found in close proximity there will be little difficulty in placing the female after determining the male by the keys given below, which mainly pertain to that sex alone.

Seven species have, up to the present, been taken by the writer in Indiana.
(1. Hind tibier of male with the basal half very distinctly undulated or waved; the hind femora with about 16 small sub-equal spines on each of the lower carina.
31. (ectuophils mathatis, (Lay). The Spotted Wingless Grasshopper.

Rhaphislophora maculıte, Scudder, Proc. Bost. Noc. Nat. Hist., VIII., 1861, 7, 11, 14.
Id., Encyc. Amer. 1ss1, VIII., 170.
halangopsis maculata, IIarris, Ins. Inj. to Veg. 1s6: 15.5, fig. 73.
Cuhthophilns maculatus, sculder, Bost. Journ. Nat. Hist., VII., 186: 4ist.
Id., Distb. Ins. of N. Hamp., 1874, 366.
Smith, Orth. of Maine, 1868,145 .
Packard, Guide Stud. Ins., 1ss:; 56\%.
Riley, Stand. Nat. Hist., II., 1sst, 184, tig. 259.
Bruner, Bull. Washb. Col. Lab. Nat. Hist., I., 1885,126.

Fernald, orth. N. Ens.., 1 s $8 s, 19$.
Brunner, Monog. der Stenop. und Gryll., 18ss, 307.

Smith, Ins. N. Jers., 1890, 409.
McNeill, Psyche, VI., 1891, 27.
Orborne, Proc. Ia. Acad. Sci., I., 1892, 119.
Raphidophora lapinlicolr, Scudder, Pror. Bost. Soc. Nat. Hist., VII., 1861, 7. (In part.)

Thomas, Trans. Ill. St. Ag. Soc., V., 1sis5, 444. (Not Ceuthophilus lupidicolus, Burmeister.)
(ieneral color: Above, sootv brown with the anterior half of each segment dotted with a number of rather large, more or less confluent, pale spots; below pale brown, unspotted. Antenn: and legs light, reddish brown ; the hind femora barred on the outer surface with numerous short lines of darker brown arranged in parallel rows. Anterior femora short, a little longer than pronotum with one or two spines on the, lower, front carina. Hind femora moderately swollen, the inferior sulcus narrow, with each margin armed, in the male, with about 16 rather small, subequal spines; in the female, each margin bears a row of numerous minute teeth. IIind tibite of male distinctly undulate or waved at base; a little longer than the femora.

Measurements: Male-Length of body, 14 mm .; of pronotum, 4.5 mm ;
of front femora, 6 mm .; of hind femora, 15 mm .; of hind tibia, 16 mm .; Female Length of body, 18 mm .; of pronotum, 6 mm .; of front femora, $t ;$ mm .; of hind femora, 17 mm ., of ovipositor, 10 mm .

This insect has a wile range, having been recorded from New England to the Rocky Mountains. In Indiana it is, as far as my observation goes, much less common than some of the other species of the genus, having so far been taken only in I utnam county where, on August 1st, I took several specimens from beneath a \log in adeep and damp ravine. It probably occurs sparingly in like situations throughout the state.
at. Hind tibier of male not undulated at base; sometimes with a single, slight curve.
b. Hind femora but little, if any, shorter than the corresponding tibia; species living above ground.
c. Upper sides of borly each with a broad, dark reddish-brown stripe.
32. Ceuthormins litens, Scudder. The Black-sided Camel Cricket.

Ceuthophilus latens, scudder, Bost. Journ. Nat. Hist., VII., 1 siie, 437.
McNeill, Psyche, VI., 1891, 27.
(ieneral color, light, reddish brown "with darker streaks upon the hind femora and two broad bands of dark, reddish brown along the whole dorsum, extending half way down the sides, dotted irregularly with brownish yellow spots, most profusely on the abdomen, and separated from one another by a narrow, irregular band of the same color; below yellowish brown; tips of the hind femora dark."

Anterior tibiæ one-third longer than the pronotum, with two spines on the outer lower carina. Middle femora bispined on each carina beneath. IIind femora thick and stout, the inferior sulcus wide and deep, the margins unarmed in the female; in the male with three or four minute spines on the apical third of each carina. Hind tibie straight, a little longer than the femora.

Measurements: Male-Length of body, 18 mm .; of pronotum, 5 mm .; of front femora, 6.5 mm . ; of hind femora, 14 mm ; of hind tibia, 14.5 mm . Female-Length of body, 19 mm .; of hind femora, 14.5 mm .; of hind tibix, 15 mm . ; of ovipositor, 10 mm .

The above description applies to the species as usually found in the State. I have, however, a pair of specimens taken in Putnam county, which, while agreeing fully with the peculiar coloration and relative measurements of latens, differ so markedly in size and in the spination
of the femora that I have more than once been inclined to think them a distinct and undescribed species. They have the middle femora armed beneath with 3 spines on each carina; the hind femora of male with 9 spines on the outer carina, the 4 or 5 middle ones of which are very strong and prominent, the inner carina with 11 small and sub-equal spines. The hind tibir with an evident downward curve at base. The hind femora of the female have is small spines on the outer and 11 on the inner carina.

Measurements: Male-Length of body, 2. mm.; of pronotum, 6.5 mm . ; of front femora, 9 mm . ; hind femora, 19 mm . of hind tibire, 21 mm . Female-Length of body, 2.5 mm . of pronotum, 7 mm . of front temora, 9 mm . ; of hind femora, 19.5 mm . : of hind tibia, 20.5 mm . of ovipositor, $1: 3 \mathrm{~mm}$.

If, as is most likely, these are only greatly developed forms of latens, the spining of the femora of these insects varies sreatly with the age, and, unless one bas adult specimens, it is not therefore a rharacter of as much specific worth as is usually attributed to it.
\dot{C}. leterns is not an uncommon species in Vigo and Putnam counties. It is most commonly found beneath tlat stones near the margins of small streams in upland, hilly localities. It reaches maturity in June or July, probably from specimens hatched in spring, though I have taken the young on two diflerent occasions in February. It has been recorded heretofore only from Illinois and the male is herewith described fir the first time, Mr. sudder`s description having been based upon a single female.
c. sides of body withont a dark, reddish brown stripe.
d. Hind femora of male with the inferior sulcus very deep: the outer carina with about spines of unequal length and not equi-distant.

Centhophilns mhleri, Scudder, Bost. Jour. Nat. IIist., VII., 1sis, 4:35.
Riley, Ntand. Nat. Hist., II., INst, 184.
smith, Ins. N. Jer., Is!ot, 40!.
Ceuthophilmslapidicola, Brunner, Monog. der. Stenopel. und (iryllac, 188s, 307. (Not C. lapidicolus Burm.)

General color light reddish brown, the meso and meta-notum usually darker. The pronotum rather thickly and irregularly mottled with paler spots; the other segments with the pale spots for the most part in a
transverse row near the hind margin. The legs yellowish brown, the hind femora with the apex a little dusky above and with three longitudinal, and numerous obliquely transverse, dusky bars on the outer face.
The anterior femora but little longer than the pronotum ; the lower, front margin armell with from one to four spines. Hinl femora of the male of average wilth but very stout, the lower, outer carina prominent, the inferior sulcus rather narrow and very deep, the sides meeting at an angle above. The spines of the outer carina are arranged in three sets, the basal set containing t equi-distant graduated spines the apical one largest ; the middle set contains but a single strong spine equal in size to the one before it and separatel from it as well as from the first one of the apical set, by a space almost twice as great as between the members of the basal set ; the apical set of 4 small sub-equal spines. The inner carina is armed with about 16 small sub-erfual spines. The female has the inner carina also armed in like manner with still smaller spines. Hind tibia of male straight, a little longer than the femora.
Measurements: Male-Length of body, 14 mm .; of pronotum, 5.2 mm .; of front femora, 6.2 mm . ; of hind femora, 16.5 mm ; of hind tibia', 17 mm .
C. Brunner, in his Monographie, has evilently described this species under the name of C. lapidicola Burm. At the close of his description he says of lapidicola: "Neither the diagnosis of Burmeister nor the description of Scudder are sufficiently exact to recognize the species; for which reason I have designated by this name any new species whatever at hand." In another place he describes under the name C. uhleri Scudder, a species having the spines on the outer carina of the hind femora equal in length; whereas Mr. Scudder, in his description of uhleri distinctly states that they are " of unequal length, and irregularly arranged."
Specimens of the insect described above were sent to Mr. Scudder, who pronounced my identification correct. In central Indiana uhleri is the most common species of Ceuthophilus. It is found from July to November beneath rails and logs in rather dry situations. The young have been taken from similar places in December and February, but evidently the larger number of eggs do not hatch until spring.
d. Hind femora of male with the inferior sulcus shallow ; the spines of the outer lower carina sub-equal in size and equi-distant from one another.

1. The sulcus very broad; the spines of the outer carina much larger than those of the inner.

\therefore Couthophilux. whleri. Brumner, Monog. der Stenopel. und (iryll., 18ss. :30s. pl. VII., fig. 3:3 b.
fieneral color, light brownish or clay yellow, irregularly mottled with fuscous, especially on the pronotum ant abdomen ; the female somewhat darker. The anterior femora much longer than the pronotum with two sub-equal spines near the apex of the lower front carina. The intermediate femora with three spines on each of the lower carina. The hind femora not so broad as in the preceding, the outer lower carina much less prominent; the upper half of the exterior face very scabrous, with small projections. The inferior sulcus very broad and shallow, about twice the breadth and one-half the depth of that of O . uhleri; the sides not meeting in an angle as there, but the upper surface of the sulcus Hat. The outer carina with is sub-equal spines borne at equal distances apart on the apical half; the middle two slightly the larger but much less strong than the corresponding one of C. "hleri. The inner carina armed with 20 or more very small teeth. The hind tibi:" with a very slight curve just below the base; a little longer than the corresponding femora.

Measurements: Male-Length of hody, 15 mm .; of pronotum, 5. 1 $\mathrm{m} . \mathrm{m}$. ; of front femora, 7 mm .; of hind femora, 17.5 mm . ; of hind tibies. 15.5 mm .

From C. "lleri, which it most resembles, this species may at once be known by the longer anterior femora, the much broader and shallower sulcus of the hind femora, as well as by the difference in size and arrangement of the tecth upon the latter. The adult male is larger with longer hind limbs than that of uhleri, though the males of both these species are much more robust when mature than those of maculatus and lapidicolus which have come under my notice.
C. Brunner, in his Monographie, has described a species of Ceuthophlus under the name of uhleri, Scudder, which may be the same insect as latisulcus. As shown above, however, the name of ulleri belongs to the preceding species. Brunner's measurement of his so-called uhleri, as well as the number of spines on the femora, differ from those given above.

Latisulcus is described from two males and a female taken in Vigo coun$\mathrm{t} \boldsymbol{y}$, August 25 , from beneath a \log on a sandy hillside.
$e \ell$. The sulcus of average width and depth; the spines of both carinee small and sub-equal in size.
f. (ieneral color clear reddish brown, mottled with paler; each of the carinar of the hind femora with about 28 crowded minute spines.
:35. Cevthopllide labidiolvs, (Burmeister.)
Phalangopsis lapidicola, Burmeister, IIandb. der Entom. II., 1438, $72:$. Raphidophora lapidicole, scudder, Proc. Bost. Soc. Nat. Hist., VIlI., 1861, 7. (In part.)
Ceuthophitus lapidicolus, Id., Bost. Journ. Nat. Hist., VII., 1s62, 435. Riley, Stand. Nat. Hist., II., 1sst, 1st.
Smith, Ins. N. Jer., 1890, 409. Osborne, Proc. Ia. Acad. Sci., I., 1ث92, 119.
Clear reddish-brown, mottled with small pale spots, erpecially on the abdomen, where the spots have a tendency to arrange themselves in longitudinal rows. The legs paler, the exterior face of the hind femora with the usual darker bars, but not so prominent as in C. maculatus. Anterior femora a little longer than pronotum, unarmed beneath. Intermediate femora also unarmed or with a single apical spine on front margin. Hind femora of medium thickness, the inferior sulcus of average width, rather deep; the spines of both carinet more like the fine teeth of a saw, about 25 in number and crowded on the apical two-thirds of the segment. Hind tibie straight, a little shorter than the femora.

Measurements: Male-Length of body, 18 mm .; of pronotum, 5 mm .; of front femora, 6.5 mm .; of hind femora, 18.5 mm .; of hind tibiæ, 16 mm . Female-Length of body, 18.5 mm .; of hind femora, 18 mm .; of ovipositor, 9 mm .

As Brunner has well said it is impossible to distinguish C. lapidicolus from Burmeister's description, which was founded upon two female specimens from South Carolina, and undoubtedly many references to it are wrong. If any person is competent to judge as to what lapidicolus really is, that person is Mr. Scudder, and I have determined the form described above from specimens bearing that name kindly loaned me by him.

In Indiana, lapidicolus is not a common insect, its range probably being more southern. Several specimens have been taken in Putnam county from beneath logs in damp woods.
ff. General color dull yellowish brown, with very numerous paler spots; each of the carina of the hind femora with about seven very small and distinct teeth.
36. Ceuthophiles brevipes, Scudder.

Ceuthophilus birripes, Scudder, Bost. Jour. Nat. Hist., VII., 1s62, 434.
Smith, Orth. of Maine, 1, 68,14 .
Fernald, Orth. N. Eng., 1sis8, 19.
Dull yellowish brown, a little darker on the dorsum of the thorax where there is a narrow median line of clay yellow. Very profusely spotted with dirty white spots, especially on the abdomen, and near the apex of hind femora, where they nearly form an annulation.

Front femora a little longer than the pronotum, with a single spine on lower front carina. Hind femora short and stont; the inferior sulcus of average width and depth; each carina armed with about seven very small teeth. Hind tibia' straight, of the same length as the femora.

Measurements: Male-Length of body, 14 mm .; of pronotum, 4.5 mm .; of front femora, 5.5 mm .; of hind femora, 12 mm .; of hind tibise, 12 mm .

A single male from Vigo county agrees in every respect, except slight differences in measurements, with typical examples from Mr. Scudder's collection. Not before recorded west of New England.
bb. Hind femora distinctly shorter than the corresponding tibia; cave inhabiting species.
37. Celthophile's styoics (scudder.)

Raphidophora stygius, Scurler, Proc. Bost. Soc. Nat. Hist., VIII., 1861, 9.
Ceuthophilus st!gius, Id., Bost. Jour. Nat. Hist., VII., 186?, 43 s.
Riley, Stand. Nat. Hist., II., 1884, 184.
Brunner, Monog. der Stenop. und Gryll., 1888, 309.
Pale, reddish-brown, the hind border of each segment with a dark brown band, the pronotum with a similar band on the front margin, and an indistinct, dark median band connecting the two. Face pale with a black dash below each eye, and a shorter median one. Antennæ brownish yellow, paler towards the tip, of excessive length. Front femora, in the specimens at hand, double the length of the pronotum, with three spines on the lower front carina. Middle femora shorter than the anterior with both of the lower carine armed with three or four distinct spines. Hind femora rather slender, the lower outer carina prominent; the inferior sulcus narrow and of average depth; both margins armed with num-
erous small spines, those on the outer carina double the size of those on the inner. Hind tibix straight, much longer than the corresponding femora.

Measurements: Male-Length of borly, 26 mm .; of pronotum, 6 mm ; of front femora, 12 mm .; of antennie, 100 mm .; of hind femora, 23 mm .; of hind tibie, 27 mm . Female-length of body, $2: 3 \mathrm{~mm}$.; of pronotum, 5.5 mm .; of front femora, 11 mm .; of hind femora, 21 mm .; of hind tibiex, 24 mm .; of ovipositor, 14 mm .

These measurements are much greater than those given by Mr. scudder, but otherwise the specimens agree with his description in every respect.

Two males and one female of this large and handsome Cfuthophitus were taken by Mr. W. P. Hay from a small cave in Crawford county and kindly presented to me. It evidently inhabits only the smaller caves as Mr. Hay saw no specimens in Wyandotte, and Mr. Scudder, in the Proc. Bost. Soc., says of the original types taken in Kentucky: "Though careful search was made in the larger cave, a mile or more in extent, no Raphidophorir were found, but in the remotest comer of the small cave, a few hundred feet only in extent, in a sort of hollow in the rock, not particularly moist, but having only a sort of cave dampness, the stygia was found plentifully these were also found exclusively upon the walls. Even the remotest part of the cave is not so gloomy but that some sunlight penetrates it."

Decticidines.

In the western states this sub family is represented by several genera and a large number of species, but east of the Mississippi liver there are but two species of a single genus belonging to it, both of which are found in Indiana.

> IN. Thyneonotre, serville (18;39).

These are Locustide of large size with the pronotum extending back over the first joint of the abdomen, thus forming a buckler or shield for the back. Face broad, rounded, but slightly oblique. Eyes small, subglobose. Vertex with a blunt decurved projection between the antenn:r which is slightly excavated on the sides. Pronotum truncate in front, rounded behind, flattened above, bent abruptly downwards on the sides. Prosternum armed with two short, blunt spines. Tegmina of the females rudimentary, wholly covered by the pronotum; those of the males fairly well developed, extending in our most common species 5 mm . back of the pronotum. The shrilling organ, which is covered by the pronotum, is
circular, and rather large for the size of the tegmina. Wings very rudimentary or wanting. Hind femora long and rather slenter, extending, in our species, beyond the abdomen in both sexes, notably so in the males. Otipositor as long as the body, very stout at the base, straight.

The "Shield-back Grasshoppers." so called on account of the large protertive pronotum, are often quite numerons from April 1st to Neptember in dry upland woods and on sloping hillsides with a southern exposure, but are seldom if ever found in lamp localities.

On the first warm days of early spring the young begin to emerge and in suitable places for a month or more are among the most common Orthopterons seen. They are much more active during early life than in the mature state when they crawl rather than leap. In captivity they feed as readily upon animal as upon vegetable food, and in the natural state probably feed upon the deal bodies of such small animals as they can find. The earliest hatched reach maturity in Central Indiana about the middle of July, and may then often be found resting on the leaves and stems of low shrubs and weeds, but seldom climb over two or three feet from the ground. The alults are far less numerous than the young, the vast majority of the latter probably falling a prey to the many grouncl frequenting sparrows and other birds, as they do not hide by day as do the members of the preceding senns.
". Front margin of pronotum much narrowed, but little more than half as wide as hind margin ; the latter broadly rounded.

3s. Thyreonotis pachmeris, (Burmeister.)
Duticns $1^{\prime \prime \prime}$ hymerns, Burmeister. Hantlb. Ier Entom., II., 183s, 712.
Thurromotns puch! $1 / m$ ris, Scudder, Bost. Jour. Nat. Hist., VII., 1s62, 4.33.
Comstock, Int. Ent., I., 18ss, 11s, fig. 106.
Fernald, Orth. N. Eng., 18s8, 26 .
smith, Ins. N. Jer., 1s90, 411.
McNeill, I'syche, VI., 1s:91, 2t.
Osborne. Proc. Ia. Acad. Sici., 1s92, 119.
Davis, Canad. Fntom., M.V., 108 (Song. of).
Color: Male-irayish or fuscous brown; the sides of pronotum and tegmina black, the former often shining; a narrow, curved yellow line above the posterior lateral angle of pronotum ; the exposed dorsal field of tegmina light brown; the femora with numerous minute pale spots. Female-Usually reddish-brown throughout except the yellow line on side of pronotum which is bordered above with a dash of black.

The lateral carina of pronotum are much sharper in this species than in the next; the pronotum itself is a little longer, and appears more so than it really is on account of the broadly rounded posterior lobe. The latter has in the female a faint median carina which is absent in dorsalis. The hind femora, as well as the ovipositor, are a little shorter than in that species, and the apex of the ovipositor is more bluntly rounded from above.

Measurements: Male-Len of hody, 20 mm ; of pronotum, 10 mm .; of hind femora, 16 mm . Female-Length of body, $\underset{2}{ } \mathrm{~mm}$. of pronotum, 9 mm .; of hind femora, 18 mm .; of ovipositor 17 mm .

Pachymerus is, in Indiana, by far the more common of the two species known to occur. So far it has been noted only in I'utnam and Vigo counties, but undoubtedly is to be fount throughout the State, frequenting the localities mentioned above under the generic description. In a pleasing account of the note and habits of the species, Mr. W. T. Tavis says as follows: "Its song much resembles that of Orchelimum rulyane, with the preliminary $z i p$, $z i p$, omitted. It is a continuous $z-e-i \cdot+$, with an occasional short $i k$, eaused by the insert getting its wing covers ready for action after a period of silence. ${ }^{*} * * *$ starting with raspberries, one kept in captivity had the rest of the fruits in their season, including watermelon, of which he showed marked appreciation. If I offered him a raspberry and then gradually drew it away he would follow in the direction of the departing fruit, and would finally eat it from my hand."
ra. Front margin of pronotum but little narrowed, about three fourths the width of the hind margin, the latter almost square.
39. Thymbovotce domsils, (Burmeister.)

Decticus dorsalis, Burmeister, Handb. der Entom., II., 1s3s, $71: 3$.
Thyreonotus donsalis, Scudder, Bost. Journ. Nat. Hist., VII., 186í, 4ist.

$$
\begin{aligned}
& \text { Id., Distb. Ins. N. Hamp., } 1874,370 . \\
& \text { Id., Proc. Bost. Soc. Nat. Hist., NIN., } 187 / \text {, s:3. } \\
& \text { Id., Ent. Notes, VI., } 1878,24 . \\
& \text { Comstock, Int. Ent., I., } 1888,118 . \\
& \text { Fernald, Orth. N. Eng., } 1888,26 . \\
& \text { Smith, Ins. N. Jer., } 1 \$ 90,411 \text {. }
\end{aligned}
$$

Color: Female-Dull, yellowish brown; the posterior lobe of pronotum, dorsum of abdomen and ovipositor dark brown. A blackish spot on the face below each eye; the sides of the pronotum with obsolete fuscous markings. The chief structural distinctions between this insect and Pachymerus are given above under the latter species.

Measurements: Female-Lenyth of body, $2+\mathrm{mm}$.; of pronotum, 8.) 1 mm .; of hind femora, 21 mm .; of ovipositor, 22 mm .
This suecies is represented in my collection by two females taken in ligo comnty, in August, 1891. It has not heretofore been recorded west of the Allewhany Mountains.

The above thirty-nine species comprise all the Locustid:" which, to the present knowledge of the writer, inhabit Indiana. Others undoulbtedly occur, especially in the southern half, and throughout the prairie region oi the northwestern part, where no collecting has been done. The present paper will, perhaps, aid in the identification of the more common kinds of this much neglected group of insects; but collectors throughout the state should be on the lookout especially ior the following twelve species whose known range implies that they are probably inhabitants of Indiana; and when the careful and systematic biological survey of the state, now instituted, has been completed, a number of them' will no doubt have been added to our known insect-fauna:

1. simdileria pistillata, Brunner.

Chould be looked for in the northern hali of the state. Resembles furcat", but has much wider tegmina. langes from New Jersey to \ebraska.
\because Amblycurypho scudderi, Bruner.
Resembles oblou,yifolin, but is smaller, with comparatively shorter hind legs, and with apex oi ovipositor more strongly serrate. Common in Eastern Nebraska.
3. Microcentrum retinerris, (Burmeister./
(See under M. lantiolinm.) Should be iound in Southern Indiana.
4. Cirtophullus persinicillatus, (Fabricius.)

Has shorter and broader tegmina, more robust legs, and musical organ of male broader than cimcarus. I southern form.
S. Tiphirlin! sultans, Ficudder.
-hould le found in the prairie region northwest. Resembles strictum, but is smaller, with longer tegmina. and shorter ovipositor. Common in Kansas and Melraska.
15. Orchelimum deli'atım, Bruner.

A more slender and smaller insect than rulgare, with a much
shorter ($t \mathrm{~mm}$.) pronotum, and a much longer (11.5 mm .) and straighter ovipositor. To be looked for northward. Nebraska.
\therefore Orchelimum mantum, McNeill.
Described from Henry county, Illinois. Larger than rulgare, with much longer tegmina. Posterior femora armed beneath.
s. Ceuthophil"s «nsifer, Packarl.

A cave form described from Kentucky.
9. Ceuthophilis niger, Scudder.

Allied to latins, but wholly black with a reddish tinge. Hind femora short and unusually slender. Described from Illinois.
10. Ctuthophilus diveryens, Scudder.

Color of lapidicolus, but with five, long spines on each side of hind tibier, which turn outward at right angles to tibia. Nebraska, Iowa.
11. Hadenuc"s cavernarım, Saussure.

A stone cricket, said by Prof. E. I). Cope to inhabit Wyandotte Cave, ${ }^{*}$ but not included in the list proper, as I have seen no specimens.
12. Undeopsylla niyra, Scudder.

A stone cricket, recorled from Iowa, Nebraska and Illinois, and therefore to be looked for in Indiana.

Biological Lambatory, Terre Hinte Huil Schoob, May 10, 1 smb.

The Blatthere of Indiaia By W. M. Blatchley, Terre Haute, Ind.
The members of the family Blattidit, commonly known as cockroaches, are classed among the Orthoptera by reason of their biting mouth parts, and direct or incomplete metamorphosis. From the other families of that order the Blattida may be known by their depressed, oval form; their nearly horizontal head, which is bent under and almost concealed by the broad prothorax; their slender legs of equal length and size; their five jointed tarsi ; and by the absence of either ovipositor or forcipate appendages at the end of the abdomen.

[^26]The rings of the abdomen overlap each other and are capable of great extension and depression so that these insects seem to be pre-eminently fitted for living in the narrow crevices and cracks which they inhabit. The legs are of peculiar structure in that they are long and more or less flattened. thus enabling the cockroaches to run with surprising swiftness, so that the family has been placed by some writers in a separate sub-order, the Cursmia, or rumners. The wing covers, or tegmina, are leathery, translucent, and, when well developed, overlap when at rest: while the wings never exceed the tegmina in length, and in some cases are rudimentary or even wanting.

From the other Orthoptera the Blattidit differ widely in the manner of oviposition, as the eqgs are not laid one at a time, but all at once in a peculiar capsule or egg case called an oütheca. These capsule- vary in the lifferent species as regards the size, shape, and the number of eggs they contain, but they are all similar in structure. Each one is divided lengthwise by a membraneus partition into two cells. Within each of these cells is a single row of cylindrical ponches, somewhat similar in appearance to those of a cartridge belt, and within each pouch is an eg... The female cockroach often runs about for several days with an oötheca protruling from the abdomen, but finally drops it in a suitable place and from it the young, in time, emerge. While this method of oviposition is the one practiced by all the species of common occurrence in the United states, there seem to be exceptions to it, as I)r. C. V. liley has recently recorded the fact " of an introrluced tropical species, Panchloru ciridis, Burm., being riviparous, the young emerging alive from the bolly of the parent, and a careful dissection of the latter showing no trace of either eggs or oütheca.

All young cockroaches resemble the parents in form but are wholly wingless, the wings not appearing until after the fifth or last moult. The young are often mistaken for mature individuals by persons who have not made a careful study of the life history of the insects; and those of one or two well known and common forms, have, in the past, even been described or figured as distinct, wingless species by some of the leading entomologists of the country.

To the paleontologist. interested in tracing back the ancestry of insects, the Blattidir become at once a group of surpassing interest, for the oldest known insect, Palicoblattina douvillei, Brong., is a cockroach recently devinsect Life, Iit., August. 1891, 44\%.
scribed from the Mirldle Nilurian of France. Detween seventy and eighty. fossil species of the family are known, principally from the Mesozoic formations, but some from all above the Middle silurian. Mr.s. H. Sudler, of Cambridge, Mass., an eminent authority on insect paleontology, says of the cockroach: "Of no other type of insects can it be said that it occurs at every horizon where insects have been found in any numbers; in no group whatever can the changes wrought by time be so carefully and completely studied as here; none other las furnished more important evidence concerning the phylogeny of insects."

Although abundantly represented in individuals, the number of speries of Blattidir inhabiting the Eastern Cniterl states is comparatively few, but twelve or thirteen having been recorded. Of these, seven, representing five different genera, are known by the writer to occur in Indiana. of the seven, five are indigenous or native species, the other two having been introduced from the Old World.

In the present paper is given a synopsis of the genera occurring in the state, together with the accessible synonymy and a brief popular description of each of the species. such notes as have come to hand during several years of observation, concerning the life history, distribution, and habits of each species, are also added.
 u. Sub-anal stylets present in the males.
b. Last abdominal sternite of the female divided; length of borly more than 22 nm .
c. Supra anal plate either truncate or pointed, and notelsed or cleit at the end I. Periplaneta.
cr. Supra-anal plate rounded, entire at the ent . . II. Indinopters.
h, Last abdominal sternite of the female entire; length of body less than 15 mm .
III. Temnoprerix.
act. Sub-anal stylets absent in the males; last abrlominal sternite of the female entire.
d. Body broad, the greatest breadth more than one-half the length; tegmina not reaching the tip of abdomen . IV. Ectobı.
dd. Body narrow, the greatest breadth about one third the length; tegmina reaching to or beyond the tip of the abdomen V. Pifyi.1.obromin.

[^27]
I. Periplaneta, Burmeister (18:38.)

In this genus the sub-anal stylets of the male are well developed; the last abdominal sternite of the female is divided ; the supra-anal plate is either truncate, or pointed and notched at the end, and extends farther back than the sub-genital plate: while the abdomen is wider than the front part of the body. All the femora are armed beneath, on each of the carina, with a single row of slender, curved spines. while the tibi:e bear a double row of much longer ones on each of their margins. Two of the largest species occurring in the state belong in this genus.

1. Pehillaneta mentais, (L.) The Oriental Cockroach. The "Black Beetle."
Periplanete orientalis, Burmeister, Handhuch der Entom., II., 183s, 504.
Riley, Stand. Nat. Hist., II., 1sst, 17:丷, fig. èts.
Id., Insect Life, II., March, 1s90, $26 i$.
Comstock, Intr. to Ent., I., 1sss, !3.
Fernald, Orth. of N. Eng., 188s, 52, fig. 21. m.
Hyatt \& Arms, Insecta, 1890, 102, pl. t. tigs. it, 55.
Kalierlar orimtali., Serville, Hist. Nat. (les Orthopteres, 1s39, $\because 2$.
Blatta oripntalis, Harris, Ins. Inj. Veg., 1862, 145, fig. 66. m.
Rathvon, I. A. Ag. Rep., 1síz, :3it, firs. 4, i.
st!lop!!ga orientalis, scudder, Bost. Journ. Nat. Mist., VII., $186 i 2,416$. Glover, I. S. Ag. Rep., 1sit, 132, fig. 4.
Female with rudimentary tegmina which do not exceed 5 mm . in length. Male with the tegmina and wings well developed, the former covering three-fourthr of the abdomen, the latter almost as long. Cieneral color, dark, mahogany brown, the limbs lighter, the pronotum without a yellow margin. The supra-anal plate of the male is truncate ; that of the female is rounded with a shallow notch at the end.
Measurements: Male-Length of body, 22.5 mm .; of tegmina, 14 mm .; of pronotum, 6 mm .; width of pronotum, 8 mm . Female-Length of body, 27.5 mm .; greatest width of body, 13 mm .

The eggs of the Griental cockroach are sixteen in number, and the large horny capsule or oütheca in which they are packed is carried about by the mother for a week or longer when she drops it in a warm and sheltered place. Along one side of the capsule, which resembles in form and color a diminutive seed of the pawpaw, Asimina triloba, Duval, is a seam where the two edges are cemented closely together. When the young are hatched they excrete a liquill which dissolves the cement and
enables them to escape without assistance, leaving their infantile receptacle as entire as it was before they quitted it.
The Griental cockroach, as its name indicates, is a native of Asia, but has been carried irom one country to another by shipping. It delights in filth and darkness, and hence in the holds of vessels, the cellars and bavements of tenement houses, and in all damp, dirty places it swarms hy thousands, undoubtedly doing much good as a scavenser, but infinitely more harm on account of its omnivorous and insatiable appetite. Like most other members of the family it feeds mainly at night, appearing to detest and avoid the light, as one can readily prove by taking a lighted lamp suddenly into its haunts, when a hurried scrambling will take place towards its daylight retreats, and but a few moments will elapse beiore the last of the busy marauders will have disappeared.
This is probably the most carnivorous of all our Blattider, though, like most others, it is fond of starchy food. It is known to feed upon meat, cheese, woolen clothes, and even old leather, and is said to be especially fond of the festive "bed bug," Actenthia lectularia L., which soon disappears from a house infested with the Oriental roach.

In Indiana this species is found in all the larger towns and cities, and is one of the most noisome and disagreeable insects with which certain classes of their inhabitants have to contend.* It seldom occurs in houves in thinly settled localities, and never, as far as my observation goes, beneath the bark of logs and stumps.
2. Periplaneti americina, (L.) The American Cockroach.

Periplaneta americana, Burmeister, Handb. der Entom., II , 1835, 50:3. Scudder, Boston Jour. Nat. Hist., VII., 1862, 416. Riley, Stand. Nat. Hist., II., 1ss $4,172$. Id., Insect Life, I., 1s98, 68; II., 1890. 266. Fernald. Orth. N. Eng., 1888, .71. Kukerlue americana, Serville, Hist. Nat. des Orthop, 1839, 68. Blatta americinc, Rathvon, U. S. Ag. Rep., 1862, 375: (In part.)

Packard, Third Rep. U. ‥ Ent. Comm., 1883, 309, pls. NXV.-लXXV.
From the Oriental roach this species may be readily known by its larger size and its longer tegmina and wings, which, in both sexes, reach beyond the tip of the abdomen. The supra-anal plate is more pointed and the

[^28]notch at the end is narrower and much deeper. The general color is also lighter, being a reddish instead of a mahogany brown, while the pronotum is broadly margined on the sides, and narrowly in front, with yellow which encloses a large bi-lobed brown spot.

Measurements: Male-Length of body 27 mm .; to tip of wings, 45 mm . : of tegmina, 27.5 mm . Female-Length of body, 30 mm .; greatest width of borly, 14 mm .

The American cockroach is, as its specific name indicates, a native of this country; but like P. orientalis, it has spread to the four corners of the earth. It is by far the largest species found in the state, but seems to be of rather limited distribution as I know of its occurrence in but two counties, lutnam and Marion. It occurs in numbers in some of the leading hotels of Inclianapolis, but usually confines itself to the basement and first floor, and appears to be much more cleanly in its choice of an abiding place than does the closely allied Oriental roach.
II. In hinobteri, Burmeister (183s.)

Nales, with the sub-anal stylets present but minute, and often bent abruptly downward; last abdominal sternite of the female divided; supraanal plate in both sexes rounded, not notched at the end nor extending as far backwards as the sub-genital. Body narrower and more elongate than in Periplanet, the abdomen not wider than the thorax: in the males, tapering gradually to a rounded point. Legs spined as in Periplaneta but the spines not so long and strong as there. Two species occur in Indiana. 8. Inheopteri bencivivinici, Defieer.) The Pennsylvania Cockroach.

Platamodis perms!licunica, Scudiler, Bost. Jour. Nat. Hist., VII., 1862, 417.
Riley, Stand. Nat. Hist., II., 18s4, $1 / 2$.
Comstock, Intro. Ent., I., 1888, 93.
Blatta penusylranica, Thomas, Trans. Ill. St. Agl. Soc., V'., 186i5, 440.
Ischopterut penusylvanica, Packard, (iuide, Stud. Ins., 1883, 576.

$$
\text { McNeill, Psyche, VI., 1891, } 7 \mathrm{~s} .
$$

Ectobia lith'philı, Scudder, Bost. Jour. Nat. Hist., VII., 186: 418.-(juvenile.)
Blatta americana, Rathvon, U. S. Ag. Rep., 1Siㄹ, :37.. (Note and fig. 5 a.) Tegmina, long and narrow, extending, in both sexes, much beyond the tip of abdomen. Wings as long as tegmina. Disk of pronotum dark brown, margined on sides, and sometimes narrowly in front, with pale

[^29]yellow. Tegmina reddish brown, with the outer basal third rather broadly margined with transparent whitish. Antenna dusky, reaching back but little beyond the tip of tegmina. Measurements: Male-Length of borly, 21 mm .; to tip of tegmina, 27 mm .; of tegmina, 22 mm .; of antennir, 28 mm .; of pronotum, 5 mm .; width of pronotum, 6 mm . FemaleVery nearly the same, the body being a little wider.

This is a native species and is the most common cockroach in the State, being found everywhere beneath the loose bark of logs and old stumps. It is usually seen in the wingless stages, the mature individuals being common only from May to October. The half grown young, described by scudder, as Ectobia lithophila, are of a shining, dark brown color, the dorsal surface of thoracic segments often lighter. As mature specimens are attracted by light, country houses are often badly infested with them; and where food is scarce, the wall paper is sometimes much injured for the sake of the paste beneath. What the hordes of young which dwell under the bark of logs live upon is a question as yet unsettled, but the larvie of other insects undoubtedly form a portion of their food, as in two instances I have found them feeding upon the dead grubs of a Tentrio.' beetle; while living, as well as decaying vegetable matter probably forms the other portion. The mating of the imagoes mostly occurs in late summer and early autumn, the newly hatched young being most abundant from mid September until December. The young in various stages of growth survive the winter in the places mentioned, they being the most common insects noted in the woods at that season. Cold has seemingly but little effect upon them, as they scramble away almost as hurriedly when their protective shelter of bark is removed on a day in mid January with the mercury at zero, as they do in June when it registers a hundred in the shade.

The empty oütheca of this species are very common objects beneath the loose bark of logs and especially beneath the long flakes of the shell bark hickory. They are chestnut brown in color, from 7.5 to 10 mm . in length by 4 mm . in breadth, and are much less flattened than those of Plyllodromia germanica, or "Croton bug," described below; while the dorsal or entire edge is slightly curved or bent inwards, after the fashion of a small bean. The young, after hatching, evidently escape in the same manner, as do those of the Oriental cockroach, as no break is visible in the empty capsule.
4. Inchapteri tivolor, (Scudder.)

> Platamorles unicolor, Ncudder, Bost. Jour. Nat. Hist., VII., 186:2, 417. Fernald, Orth. New Eng., 18ss, 53.
> Ischoptera unimbir, Scudder, Proc. Bost. Foc. Nat. Hist., NIX̌., 1877, 92. McNeill, Psyche. VI., 1s91, iS .

A much smaller species than the preceding but, like it, having both wings and wing rovers exceeding the abdomen. General color a pale shining reddish brown. Head and posterior margin of pronotum darker as is also the apical third of the abdomen beneath. Antennee slender, tapering, reaching backwards to the end of the wing covers. Length of body, 12 mm . ; to tip of tegmina 19 mm .; of tegmina 16 mm .; of pronotum, 3 mm .

A single male of this species was taken from beneath an electric light in Terre Haute, Indiana, on the evening of June 12, 1892. On May 28, 1893, a number of others were secured in low ground from beneath the bark of a red oak stump. They had evidently just reached maturity and were in company with the imagoes and young of I. penusylianica. On being exposed to view a number of them tlew about 50 feet to a clump of May apple stems, down which they ran and endeavored to hide beneath some dead leaves. Nothing farther of its habits is known by the writer but they are presumably the same as those of I. pennsylcanica. It has been noted at no other point in Indiana and heretofore has been recorded only from the New England States, Illinois, and Iowa. III. Temiohterix, Brunner (1865).

The males of this genus have the sub-anal stylets present, but minute; the last abdominal sternite of the female is broadly rounded and entire; supra-anal plate of both sexes with the apex rounded, entire, equal in length to the sub-genital. Pronotum with its lateral edges roundly deflexed as in Periplanta, rather than flaring outwards as in Ischnoptera; much broader in the female than in the male. Body of male rather slender; that of female stouter with the abdomen broader than the thorax.
5. Teminpterix neropeltiformis, Brunner.

Temnopterys deropeltiformis, Brunner, Nouv. Syst. des Blattaires, 1865, 87.
Tegmina of females rudimentary covering only about onethird of abdomen; those of the males fully developed, surpassing the abdomen by 5 mm . Color a uniform dark mahogany brown except the tibixe and tarsi of all the legs which are a light reddish brown, the contrast between the two colors in living specimens being very striking.

Measurements: Male-Length of body, 14 mm ; of tegmina, 1.5 .5 mm .; of pronotum, 3.5 mm .; width of pronotum, 4.5 mm . Female-Length of borly, 13 mm .; of tegmina, 4 mm .; of pronotum, 4.5 mm ; wilth of pronotum, is mm.

In Indiana this handsome rockroach has been noted only in Vigo county, and there in but one locality, the border of a marsh in a low, sandy woods three miles east of Terre Hante.

A single pair were taken on May 2 Sth, and on June 1sth probably a dozen specimens were secured. They were hiding beneath small logs and sticks, and the males when deprived of their shelter flew actively away while the females could but crawl, and that rather sluggishly for a Blattid, towards a new hiding place.

Brınner (lor. cit.) recorded it from "Amerique du Nord," and I can find no other note of its occurrence in the United States.
IV. Entoma, Westwood (1s:3:

Sub-anal stylets of males wanting; last abdominal sternite of females entire. Supra-anal plates rounded, entire, somewhat carinated above. Abdomen much broader than front portion of body, its greatest breadth contained less than twice in its total length. Tegmina, in both sexes, not reaching tip of abdomen.
(i. Eftoma flayocmita, scudder. The Short-winged Cockroach.

Ectobin flaro-cincta, Scudder, Bost. Journ. Nat. Hist., VII., 1stie, 418. Comstock, Intr. to Ent., I., 18sw, $9: 3$
Blatta? flaro-cincta, Fernald, Orth. N. Eng., 1sss, is.
This is a short, broad-bodied, native species, in which the tegmina cover only about two-thirds of the abdomen, while the wings are much shorter. The disk of pronotum and dorsal surface of abdomen are dark brown, the tegmina reddish brown. A rather broad yellowish stripe extends from the head along the leflexed lateral border of pronotum and the basal third of tegmina. The sides of the lower half of the face are white, and all the limbs are pale yellow. Antennce dark brown, a little longer than the body.

Measurements: Length of body, 16 mm . ; of tegmina, 9 mm .; of wings, 6.5 mm . ; of antennie, 18 mm .; of pronotum, 5 mm . ; width of pronotum, 6.5 mm . ; width of abdomen, 9.5 mm .

Mature individuals of this species are not uncommon beneath bark and logs from June to October. Specimens of such are in my collection from Marshall, Putnam, and Vigo counties. I have not, as yet, been able
to distinguish the young from those of Ischmoptera permsylianica, found in the same localities. A single female with oütheca protruding was taken on Neptember 3, 1892. The oütheca is dark brown and smaller than that of any other species known to me, measuring only 5x 4 mm .

Flarociuctu is a species of northern range, having hitherto been recorded only from New England and the Lake Superior region.
V. I'myllonnoma, Serville (18:39).
sub-anal stylets and last abdominal sternites, as in Ectubia. Supra-anal plate truncate in the males, suddenly pointed and slightly notched in the females. Borly narrow, the greatest breadth contained from two and onehalf to three times in the total length. The abdomen not broader than the thorax in either sex, the sides almost parallel in the females; in the male tapering sensibly from the base. The tegmina as long as, or longer than, the alsdomen.
7. Phillandiomin meminici, (L.) The ('roton Bug. The Water Bug. The (ierman Cockroach.
Blatta germanice, Burmeister. Handbuch der Ent., I1., 18:3s, 4:7.
Comstock, Int. Ent., I., 1scis, !!?, fig. si.
Fernald, Orth. N. Eng., inss, 5o, tig. $\because 0$.
Ectobia germanira, scudder, Bost. Jour. Nat. Hist., VII., 1862, 41 s.
Glover, U. S. Agl. Rep., $1 \mathrm{sin}^{2}, 182$, fig. 3.
Riley, Stand. Nat. Hist., II., 171, fig. $\because \stackrel{2}{ }{ }^{7}$.
Id. Insect Life, I., 1sss, 6 is, 191.
Blatta (I'hyllorliomia) germemica, Serville, Hist. Nat. des Ortho., 183!, 107.
Phyllıertomí germumict, Packard, Cuide Stud. Ins., 1883, 576; tig. i69.
Riley, Insect Life, II., 1s90, 266, tig. if (All stages.)
Ischmopteru bivittata. Thomas, Proc. Davenport Acad. Nat. Sci., I., 1s76,

This is the smallest of the seven species of Hlattide which are known to occur in the state. The general color is a light brownish yellow, the females often darker; all the limbs much lighter than the body; the pronotum with two dark brown, longitudinal bands enclosing a yellowish stripe. The tegmina and wings of the male extend to the end of abdomen, those of the female are a little longer. Antenne dark brown, exceedingr slightly the tips of the closed tegmina. The body of the male is longer and narrower than that of the female.

Measurements: Male-Length of body, 13 mm .; of tegmina, 10 mm .;
width of body, 4 mm . Female Length of body, 10 mm ; of tegmina, 11 mm . ; of antennar, $1: 8 \mathrm{~mm}$.

The outheca of the Croton bug is very light brown, a little over twice as long as broad, $7.5 \times 3.5 \mathrm{~mm}$., with the sides somewhat llattenerl and the edges parallel. Within it the eggs, thirty-six in number, are arranged in the usual two rows. It is carried about by the mother roach for several days with from half to three-fourths of its length protruding from the abdomen, and when dropped in a favorable place the young, evidently very soon, emerge from it; for in a bottle in which a female with protuding oütheca was placed at eleven o'clock P. M. the young were found to have emerged on the following morning at eight. They were then wholly white, except the lateral edges of the abdomen, where a blackish tinge was evident. By five o'lock in the afternoon of the same tlay, having meanwhile eaten their till of moistened wheaten bread, they had become too large for their skins, and had monlted for the first time. They then measnred $: 3 \mathrm{~mm}$. in length, and the hearl, pronotum, abdomen, and apical half of antenner were black, while the other two thoracic rings and the basal half of antennic were a grayish white. The half-grown young are very dark brown, with the first four or five segments bordered with yellow, and with traces of a lighter median stripe.

The "Croton bug," so called because it made its appearance in New York City in numbers about the time the Croton Aqueduct was completed, is a native of Central Europe, but like the Oriental roach, has become cosmopolitan.

It seldom if ever occurs in numbers in the country, but is one of the worst insect pests with which the inhabitants of the larger cities of the United States have to deal. It is the most fecund of all the roaches, and the seasons of mating and hatching of the young are, perhaps, more irregular than in any other species. Adult forms are evidently to be found at all seasons of the year, as I have taken them in December, April and October. It is not so much a lover of filthy surroundings as is the Oriental roach, and hence frequents more often than that species the dwellings of the better class of people. It delights in warm, moist places, and is especially abundant and destructive in buildings which are heated by steam.

As an evidence of its abundance under favorable conditions, Iwill mention that a single person captured for me over thirty adult specimens and fully half that number of young, in less than ten minutes in the kitchen
of the leading hotel of the city of Terre Haute. Where it once obtains a. foothold and the surroundings of temperature and food supply are favorable it is almost impossible to eradicate, as its small flattened form enables it to hide and breed in cracks and crevices which none of the other roaches can enter.

Like many other omnivorous animals, Croton bugs find in wheaten flour a food substance which is rich in nutrition and easily digested, and so they prefer wheat breads and starchy materials to all other foods. ()n arcount of this liking they often do much harm to cloth-bound books by gnawing their covers in search of the paste beneath. They also seem to have a peculiar liking for paints of various kinds, and in the office of the U.S. Coast and Geodetic Survey, at Washington, have done much damage by eating off the blue and red paints from the drawings of important maps." Townend (ilover, in the I. S. Ag. Rep. for 1574, states that in his office "They made a raid on a box of water colors where they devoured the cakes of paint, vermilion, cobalt and umber alike; and the only vestiges leit were the excrements in the form of small pellets of various colors in the bottom of the box."

In giving a remedy for this, and other species of Blattida which frequent houses, I cannot do better than quote from Dr. Riley's excellent article in "Insect Life." He says: "Without condemning other useful measures or remedies like borax, I would repeat that in the free and persistent use of California Buhach, or some other fresh and reliable brand of Pyrethrum or Persian Insect Powder, we have the most satisfactory means of dealing with these roaches.
"Just before nightfall go into the infested rooms and puff into all crevices, under base-boards, into the drawers and cracks of old furniture -in fact wherever there is a crack-and in the morning the floor will be covered with dead and dying or demoralized and paralyzed roaches, which may easily be swept up or otherwise collected and burned.
"With cleanliness, and persistency in these methods, the pest may be substantially driven out of a house, and should never be allowed to get full possession by immigrants from without."

For no other insects have so many quack remedies been urged and are

[^30]so many newspaper remedies published. Many of them have their good points, but the majority are worthless. In fact, rather than put faith in half of those which have been published, it were better to rely on the recipe which T. A. Janvier gives (in his charming article on "Mexican Superstitions and Folk-lore," published in a recent number of Scribner's Magazine) as current among the Mexicans:
"To Get Rid of Corkroaches.- Catch three and put them in a bottle, and so carry them to where two roads cross. Here hold the bottle upside down, and as they fall out repeat aloud three creclos. Then all the cockroarhes in the house from which those three came will go away."

A mote on lovid ctrorastia. By W. S. Bhatchles.

 By W. A. Noyen.

```
Abstiact.
```

The thermometer consists of a bulb of hard glass having a capacity of about 20 cc . and connected with a gas measuring tube by means of a long capillary tube. This tube is protected by means of a double walled iron tube cooled by a stream of running water. The capacity of the bulb having been determined, the amount of air expelled from it when it is introduced into the furnace furnishes the data necessary for calculating, approximately, the temperature. The apparatus was used successiully at $650^{\circ} \mathrm{C}$. but for higher temperatures a porcelain bulb would be required.

The electrical oxidation of glycerin. By W. E. Stone and H. N. McCoy .
[ABSTIACT.]
The oxidation products of glycerine vary according to the means employed. We have made use of the electric current acting upon dilute solutions of glycerine in the hopes of obtaining glyceric aldehyde. The conditions of dilution, strength of current, temperature and conducting mediums have been varied.

The oxidation is less destructive in nentral or alkaline solutions.
A current of .2 to ..) ampere causes a rise in temperature and the appearance of a yellow color if the solution be alkaline.

Acids and sometimes acroleine are formed.
The oxidized solutions reduce Fehling's solution strongly in the rold and give the fuchsin-sulfurous acid reaction for allehydes.

To a solution which gave strong reactions for glyceric aldehyde was alded enough caustic soda to make a 2 per cent. solution in order to induce polymerisation. After standing some days, a pherylhydrazin compound was obtained, which melted at 200°. This indicated the production of glyceric alilehyde and its polymerisation to glucose.

The product of a second oxidation was polymersed and underwent alcoholic fermentation with yeast.

The electric current, therefore, produces some slyceric aldehyde from glyeerine, although the amount is small.
 By H. A. Hi~ton avid W. F. Mr Brine.
The paper discusses the numerous methorls proposed and used for determining the total carbon in the soil and for determining the organic matter and shows that none of these methods are entitled to consideration excepting the process of Grandeau. This method, which consists essentially of removing the bases combined with the humic acid by means of hydrochloric acid, subsequent washing with water and extracting on a filter with ammonia water, is compared with a modification of the methorl in which the preliminary washing with acid and water is the same but, instead of leaching the soil upon the filter with ammonia water, the soil is transferred to a 500 cc . cylinder, treated with 500 cc . of t\% ammonia, allowed to remain in contact with the ammonia for thirty-six hours, with frequent shaking. During the earlier part of the digestion the cylinder is left upon its side, thus exposing a large amount of surface to the solvent; during the last twelve hours of the digestion the cylinder is placed upright,
thus allowing the soil to settle before an aliquot part is removed for the determination of the humus.

The aliquot part is evaporated to dryness, dried at 100° ('., weigherl, ig- $^{\prime}$ nited, weighed again and the loss reckoned as humus. The following points were uncler discussion:

1st. Comparison of Grancleau's methorl with this modified methorl.
-d. Influence of varying the strength of the ammonia used.
3 l . Influence of varying the time of digestion.
4 th. Is it possible to complete the extraction by 'irandeau's method in a reasonable time.

5th. Comparison of differences in duplicates by each methorl.
6th. Are the amounts of phosphoric acid, potash, etc., founll in the ash necessarily associaterl with the humus, as claimed, or are they to be ascriberl to the solvent action of the ammonia and to changes rlue to the absorptive property of the soils.

Ňumerous determinations are given upon seven lifferent soils, showing that the morlified methorl gives much higher results than the ordinary process of irandean.

Seconl, In the Grandean method marked irregularities follow the changes in strength of the ammonia solution. These differences in results bear no relation to the strength of the solution used; they seem to be errors due to the ditticulty of securing a complete washing of the soil by the ammonia solution. In the morlified method the changes in the strength of the ammonia solution make practically no lifference in the amount of the humus extracterl, excepting in the case of the peat soil, where 2 ammonia failerl to extract all the humus. The results show no considerable increase where the strength is increased above 4%. The ammonia solutions containerl $2,4,7.3$ and $s ;$

Thirl, The increase of time has not been fully investigated but the results so far obtained inclicate that the time exerts less influence in the modified than in the Grandeau methorl.

Fourth, With peat, when the Grandean method is userl, considerable material is passing into solution at the end of ten days; with ordinary soils this is not the case, but in the case of the black soil (not peat) the extraction was not complete in a week. (in the peat soil the modified method extracted from 10 to $50 c_{c}^{\prime}$ more than the Grandeau and on orlinary soil from two to three times as much humus.

Fifth, In comparing a large number of duplicates the modified method
was found to give much more concordant results upon soils high in humus, and upon those low in humus there was a slight improvement over the (iranıleau method.

Sixth, The authors see no reason for assuming that the phosphoric acill extracted by the ammonia is in any way associated with the humus, for Mr. Huston has alreaty shown that the phosphoric acid is readily dissolved by ammonia from phosphate of alumina and iron. It is generally consitlered that there are bases with which the available phosphoric acid in the soil is combined. In the same way we may account for the presence of potash and lime in solution by the ordinary laws which govern the absorption of bases by zeolitic minerals in the soil.

While humates also take part in soil absorption, it is not necessary or even altogether reasonable to consider all the bases removed by ammonia were associated with the humus. In fact, the theory of the process is that the bases associated with the humus had already been removed by means of the hydrochloric acid used in the preliminary washing of the soil.

The paper is in the nature of a preliminary report and the work is still in progress. A complete report of the work will be published later.
 By W. E. stone and W. 11. Teat.

The extraction of substances from straw which on inversion, yield a pentose sugar, has been established. In the process of making straw paper the straw is boiled with a strong solution of quick lime. This liquor, when acidulated and treated with an excess of alcohol throws down a precipitate of pentosans. It seemed, therefore, a good" material for the preparation of xylose.

The liquor is yellowish brown in color and alkaline. Specific gravity, 1.25 ; alkaline equivalent, 2 to 2.5 per cent. calcium oxide. Total residue on evaporation, 3.9 per cent., of which 30.7 per cent. was mineral and 6!.2:; per cent. organic in nature. Thirty-two liters of the liquor yielded on precipitation with alcohol, 300 grams of xylan. This, on distillation with hydrochloric acid, yielded 45.5 to 47.1 per cent. furfurol. This could not be inverted by methods similar to those practiced by Wohl on inuline. The ordinary method of boiling with \because per cent.
sulfuric acid was resorted to. Thirty-five grams of crystallized sugar were obtained, which were identified as xylose.
The multirotation of xylose, as observed by Tollens, was contirmed. The initial rotation, five minutes after solution, was 71.65 . which became constant at 18.40° after ten hours.

On the detehminition of chlohne in satthal watelo. By W. A. Noyen. [AB-тind.]

American waters, apparently, contain much smaller amounts of chlorine than most natural waters in England. The methods of direct titration with silver nitrate and potassium chromate as advised by Wauklyn and Frankland give too high results, and sometimes two or three times as much chlorine as is actually present, in the case of waters low in chlorine. When 250 cc . of the water were concentrated to about 2.5 cc . and filtered, the titration with $\frac{1}{1} \frac{1}{0}$ normal silver nitrate, using potassium chromate as an indicator, gave results agreeing with the gravimetric determination within $\frac{1}{10}$ part per million in the case of a water containing but four parts per million of chlorine.

Thofleffrol and its condenshtion plodicts. By W. E. Stone anis Chinton Dickson.

> [AB-TRAMT.]

Thiofurfurol is made by the action of hydrogen sulphide on an alcoholie solution of furfuramid. It is characterized by its disagreeable odor. It is a white powder, melting at 117° and containing about 29 per cent. of sulphur, corresponding to the formula $\mathrm{C}_{3} \mathrm{H}_{4}$ O.. On heating strongly vapors are given off which, on condensation, leare beautiful fibrous crystals, which are not easily acted upon, probably a condensation product. If the thiofurfurol be heated with an excess of fine copper at a temperature below the boiling point of water decomposition takes place. On extracting the mass with ether and evaporating, there remains a tarry mass which yields compact crystals which melt at 149°, contain no sulphur and are probably also a condensation product. The subject will be investigated further.

Determination of valexces. By P. S. Baker. Published in DePauw Bulletin.

gENERAL INDEX.

INDEX.

ACANTHIA LECTCLARI.A. 157.
Acoloides howardsi, !1. saitidis, 90.
Acridium amerieanum, sio.
Agraulis vanillir, 85.
Agrilus fulgens, 89 .
Air thermometer for high temperatures, 165. Amblyeorypha, 98, 104, 106, 107.
oblongifolia, 104.
rotunclifolia, 105.
seudrleri, 15 .
uhleri, 106.
Aualytical and quaternion treatments, 20 . Anaxiphus puliearius, 118.
Anderson, Indiana, ancient earthworks near, 11 .
Aphidius obseuripes, s9. pallidus, 89.
Aphis mali, 90.
ribes, (M.
Aphodius fossor, 84.
Areh*ologieal map making, 5\%.
Argynnis diana, si.
Arthirr, J. C., 25, 46, 50.
Ateleopterus tarsalis, 91.
Auxanometer, 16 .
BAKER, P. S., determination of valences, 169.

Bibliography of Locustidie, 94.
Biological survey of Incliana, 48.
Birds of western Texas and southern New Mexico, ';1.
Blatchley, W. S., 92, 153, 165.
Blatta americana, 157.
flavocincta, 161.
germanica, 162 .
orientalis, 156 .
pennsylvanica, 158.
Blattidie of Indiana, 153.
Synopsis of genera of, 15 J.
Blissus leucopterus, 86 .
Bcetomus sp., 91.

Bolley, H. L., 5
Botanical field work in ldaho, 3.).
Braron sp., 89.
agrili, s?. diastatie, 89. phycidis, 89.
Brannon, M. A., in.
Bray, W. L., 48.
British Columbia glaeiers, 29.
Bruehus exiguus, 91.
Butler, A. W., 50, 35, 62 .
By-Laws, s.
CACTACE.E, epidermis aud spines of, +2.
Cactus, the genus, 45 .
Cacus weaththi, 91 .
Camphell, J. L., President's address, 1\%.
Catolaceus tylodermie, 91.
Cecidomyidie, 124.
Ceuthophilus, 140 .
brevipes, 145 .
divergens, 153 .
ensifer, 15:
lapidicolus, $142,14.14$.
latens, 143 .
latisulcus, 146 .
maculatus, $1+2,147$.
niger, 15\%.
stygius, 148.
uhleri, 144.
Chlorine, determination of in natural waters, 169.
Cicada canicularis, 117 .
septendecim, 86, 87
Clinton limestone, 28 .
Clisiocampa disstri, 90.
Cockroaches of Indiana, 15\%.
Cockroach, American, 157.
German, 162.
Oriental, 156.
Pennsylvania, 158 .
Short-winged, 161.

Crommittecs, s .
Conocephaliner, $(\sqrt{3})$, III.
Key to genera of, 112.
tonocephaius, 113.
crepitans, 11 s .
ensiger, 111, 117, 11s.
nebrascensis, 115.
palustris, 11s, 125, 129.
robuctus, 116, 11s.
Constitution, 7.
Coulter, J. M.. 11.
Coulter, Staniey, 41, 4!, 80.
'raig, O. J., sin.
(rambus zecllus, ! !
(rickets, camel, 92, 1 11.
hateksiderl, 1:\%,
(roswhil, ranse of in ohio valley, 62.
American, 62. white winged, 69.
('ruton loug, 162.
('ubberly, E. P., 27 .
Cursoria, fil.
-rmatomaster, eariy stage in, is.
Cyrtophyllus, 145.
concarus, 1 iss, 109. perspicillatus, $110,152$.

D AIIIIN].
Hecticidinar, $96,149$.
Dectieus dorsalis, 151. 1'arhymerus, 150 .
Wiastata n. sp., se.
bieretus americanus, 90. branniventris, 90. wehsteri, 90.
bickson, Clinton, see W. E. stone.
bimeris rufiper. s 9.
Wiphosis tritiri,
boryphora, 1"-imeata, s4.
Iynastes tityus, sit.
E.ARTHWORKS, inciont, near Anderson, Ind. : :\%.
Eetohia, 1in, 161.
flavocincta, Itil.
germanical. 16:
lithophilia. 15s.

Electrical oxidation of glycerine, 165 .
Encyrtus brunnipennis, 91 .
ciisiocamIre, ! !
tarsalis, 91.
welsteri, ! $\%$.
Eupeimus allynii, 9 .
Evermann, B. W., $29,56,73,78$.
Evidences of man's early existence in Indiana, 49.

Explorations in Western Canarla.
Extraction of xylan from straw, 1 ts.
FECSENDEN, R. A., 25. 26 .
Fisher, E. M., 45.
Forestry, exhibit of Indiana at Columbian Exhibition, 41.
(AALVANOMETER, eonstruetion of, 20.
Glacial erosion, Richmond, 27 .
(H acial jugs, 2 s .
filycerine, electrical oxidation of, 16%.
Glyphina cragrostidis, !
(ilypta sp., 91.
folden, Katherine E., :it, Hi.
(iordius, 12.
(ioss, W. F. M., थ1.
cirandeau's methorl, modifieation of, 166.
(irassbopper*, cone-headed, 113. green. $\boldsymbol{y}_{2}, 112$. shield-hackerl, 150.
haek-legged, 1:5.
black-sided. 105.
common meadow, 130.
lance-tailed. 12s.
slendur meadow, 114 .
spotted wingless, 1.2.
(iray. Thos. 20. 26.
Cirinnellia Americana, 8\%.
II. 1 DEN゙ECtS CAVERNARTM, 153.

Hathaway, A. S., 20.
Hay, 1). P.. 促, 72.
Hay, W. l', ! 4 , 114.
Herpestomus plutell:4, !
Itessler, Robert, As.
Homoporus sp, ! 1 .
IInbbard, J. WF., 6;:
1Indion river deposits, 2 .
11 umus in soils, 166 .
II uston, II A. and W. F. MiPBride, 16iti.
II ylesinus trifolii. 4.
liymenopterous parasites reared in Indi-
ana, list of, s?
Itypoderus eolumber, 92.
ICIITH SOLOMICAL FEATIRES OF TELE BLACK HILLS. 73.
Imlian camping site near brookville, it.
Ischnoptera, 155, 15s.
bivittata, 16 .
pennsylvanica, 15 .
unicolor, 16%.
FONES, WALTER. Suiphon-phthaleins, 166 ,
KAKERLAC AMERICANA, 157.
orientalis, 156.
Katydids, $92,97$.

Katyditl hroad winged．109． fork－tailed． 101.
larger angular－winged， 107 ． narmow－winged，102． obligue－winged， 107 ． oblong leaf－wingerl， 104. round－winged，10\％． true， 109. Uhler＇s．10t．
Kimlle，E．M．． $\boldsymbol{7}$ ．
1．ABES HITHLOClB．E，！ 1.
Leersia oryzoide－，126．
Leptysma marginitoollis，11s．
Lilly herbarinm， 0.
Limnera flavicincta，9\％．
Locusta curvicauta， 99.
fasciatat， 119.
oblongifolia，104．
Locustide of Jndiana，92，97．
hibliography of，！4．
synopsis of sub－families of，\nrightarrow ．
Loxia eurvirostra minor， 62.
leuroptera，6？．
Loxotena clemensiana，S！
Lysiphlebus rucurbitaphialis， 90.
eragrostaphidis， 90.
multiarticulatus，89．
mysi，！$\%$ ．
ribaphidis， 90.
tritici， 90.
MrBRIDE，W．F．Se H．A．Huston．
M．Coy，H．N．see W．E．Stone．
MacDolíAL，D．T．，：5，41．
Map illustrating dividing line between insect famnas，$s=$ ．
Marchantia polymorpha， 41.
Darsters，V．F．， $2_{7}, 2!$ ．
Martin，（\＆．W．， 49.
Mathematics in botany，is．
Megaspilus niger， 90 ．
Members， 9.
Meraporus bruchivorus， 91.
Microcentrum，9s， 107. affiliatum， 107. laurifolium， 107. retinervis， $107,15 \div$ ．
Modern geographical distribution of in－ serets of Indiana， 81.
Moore，Joseph，26， 27 ．
Murse，A．l＇．， 126.
Mottier，D．M．，41， 48.
Mount Orizaba， 29.
Murgantia histrionica， 86 ．
Mysus ribis，！${ }^{\text {M．}}$

NORMAN，W，W．，－サー，
Noyes，W．1．．－
（1Et INTH4＇S N1V1IR，：
oflicers，4， 6 ．
orehelimum，113，121，12：, 129 ．
bruneri， $13!$ ．
（oncinnum， $1: 7$ ．
delicatum，1is．
glaberrimum，lim．
gladiator，1：s．
gratile．120．
indianense，1：\％． nigripes， $1: 5,140$. silvatirum， $102,1 \%$ ， volantum，1\％． vulgare， $1: 30,12 \%$ ．
oriole，peculiar death of， 62.
orthopelna bimaculatum， 90.
PACHINELRON micans， 90.
Panchlora viridis，1il．
Papilio ajax，
resphontes，m．
Sarasitic Mymenoptera reared in lndiana， partial list of，st．
Paroxya athantica，11s．
l＇ediastrum，notes on， 49.
Periplaneta， 1% ， 156 ．
americana， 157.
orientalis， 1 15t．
Phalangopsis lapidicola，147．． maculata，14：．
Phaneroptera angustifolia， 102.
curvicauda，99，101，102．
septentrionalis，！ 9 ．
Phaneropterintr， 9% ， 97 ．
key to genera of，！ 1 ．
Phyeis indiginella， 89.
Phytonomus punctatus，is，
Phyllodromia，155， 162.
germanica，159，16．
Phylloptera laurifolia， 107.
oblongifolia，104， 1155.
rotundifolia， 117.
Phylloscirtes pulchellus．11s．
Platamodes pennsylvanica， $1: 8$ ．
unicolor， 1 tit．
Platygaster error， 91.
Pleas，Elwood，5\％．
Plutella eruciferarum， 90 ．
Polygonum amphibium， $1: 5,140$ ．
Potter，Theodore，6：3．
Preglacial erosion near lichmond， 27.
President＇s address，15．
1＇seudophyllina＇， $\boldsymbol{H}^{6}, 10!$ ．
Prarmigan of the Alleutian islands，is．

Pterophylla voncatva， 109.
l＇urdue experimental loromotive． 24.
Irgostotus americanus， 91.
ฯじARTZELSPENSHONS， 25.
＇？naternion and inalytical treatments， 20 ．
R．APHIDOPHOR．LAPIDICOLA，I42， 147.
maculata， 142.
stygius． 14 ．
－ubterranca， 153.
Redding，T．B．， $\mathrm{i}_{2}, 71$.
Rhỵssalus loxuteníe，s9．
Rhysematus，lineatirollis，s！
Rotary blowers， 26.
－AITIS PI LEN， 90.
salix corlata， 124.
saltitoria，
S．ovell，J．T．，29，50． 55.
－rudderia，！s．
angustifolia， 10 ．
curvieanta，4．16月，102．
fureata，111，152．
furculata，49，Ito．
pistillata， 152.
shanmon．W．P．，t！
silvauus surinamensis， 9 ．
simulium mererlionale，si．
pecuarium，
－ijhonophora arewar，（90．
cucurbitaphidis．（n）．
Sirk，E．E．，44． 117.
snow，Benj．W．，20，25，2t．
soils，humus in．liti，
Solidago rigida，i：3．
somers．A，N．．29．35， 11.
south American cat fishes，it．
spring meetins，13．
Stagmomantis carolina，xti．
stenopelmatinar，96．140．
Stone，W．E．and Clinton Dickson． 169.
sturue．W．E．and H．N．NeCoy．I65．
stone．W．E．and W．H．Test，Extraction of xylan from straw．lif．
－toops．H．M．，31， 5.
styiophyga orientalis，1．w．
Sulphon－phthaleins，1tit．
TEMNOPTERYX，155，lto．
deropeltiformi～， 160 ．
Test，F．C．，St．
Test，W．H．，see W．E．Stone．
Tests of torsional strength， 20 ．

Tetracha virginica， 86.
Thiofurfurol， 16 ．
Thomas，M．B．，48， 49.
Thyreonotus， 49.
dor－alis， 151.
parhymerus， 150 ．
Toxoptera graminum， 91.
Trypeta gibba，s！．
Tyloderma foreolatum， 91 ．
Two－ocean pass，29．
1 DEOPSYLLA NHRA． 1% ．
Cline，E．B．， 42.
t＇lrey，A．B．， 63.
Inderwood，L．M．，41，th，49．
United states finh commission steamer Al－ batross．ini．

V．ILENCES，determination of， 169.
Van der Waal＇s equation，2：．
Vegetable and mineral matter from a snow storm， 2 ．
Vernonia faciculata，ima．
WALKER，FRANCIS A．，B．
Webster，F．M．．s．
Wesm：clia rileyi， 91 ．
Wilkin，John．24，
Wright，，Tohn S．，41．\％）．
XIPHIHITM，11：3，119，I21，12： $1: 100$ ． agile， $1: 1,132$.
attenuatum，12s， 140 ．
brevipenne，121，123．
concinnum， $1: \%$ ．
curtipenne， I 2.
ensiferum，123．
fasciatum，119，121， 123.
glaberrimum，1：\％．
modestum，126．
nemorale， 122.
nigropleurum，118，125．
saltans， 152.
seudderi， 12 ．
－pinulosum，isb．
strictum，127，129， 134.
variations in species of，114， 121， 129.
vulgare．1：1．
Nylan，extraction of，from straw， 168.
Xylose，multirotatiou of，169．
ZELA nigriceps， 90.
-
-

笑䜌 2n 1
地 2f cig v in

hr
N N N（

[^0]: Francis Galton. Natural Inheritance, 18*9, 11. 74.

[^1]: I. Sachs. Arbeiten des bot. Inst. in Würzburg. 187. On the Physiology of Plants. 1487, pp. 4:1-45!.
 t(. v. Nägeli. Intersuchungen ibber niedere Pilze ans dem Pflanzenphysiologischen Institut in München. 1心?

[^2]: J. Wiesncr. Versuche \#ber den Ausgleich des tiasdruckes in den (ieweben der Pflanzen, 1879. J. Weisner und H. Molisch. Intervachungen iiber dis Gasbewegung in der Pflanze, 185:

[^3]: J. C. Asthur. Purdue Exp. -ta. Ind.. No. +2, 14n2.

[^4]: -TTAE. liy J. ('. \r'thtr.

[^5]:

[^6]: I have hithertorefered to this fish as Miromutros. A re-examination wi the literathre bearing on the subject proves that this name is not available.

[^7]:

[^8]: *Published by permission oi Hon. Marshall Mr•Donald, U. S. Commissioner of Fish and Fisheries.

[^9]: *In his paper on "The North American Species of Salmon and Trout." printed in the U. S. Fish Commission Report for $1872-1873$, Dr. Suckley, in giving the habitat of Solm", lewisi (S. mykiss), credits it to the "Black Hills, Nebraska, Dr. Hayden." I have been nnable to verify this reference, and I believe it to be an error.

[^10]: : Note-Since the above was written, I learn that this species has leen reported from northeast Jowa hy Mr. Wallace, of Des Moines. luvestigation, however. develops the fact that this report is based on an injury to clover, supposed to have been done by this beetle. There is no evidence showing that it has been olserved in Iowt. Mr. E. A. Schwarz, of Washington, reports it from D+troit. Mrhigan, and the report is doubtless correct; therefore, it may now oceur in extreme northeast Indiana, in accordance with our previous anticipations. I wish also to eall attention to the fact that this iosect, in European catalogues, is placed in the genus Hylastes, and, so far as known to the writer. has never been considered as helonging elsewhere. If it belongs to this geuus in Europe. it should in the United States, since no striking anatomical ehanges would follow its transportati•n from that country to this. If our genera are not in conformity with those of the same name in other countries, then why use a preoceupied name? The idea that this species shall be a Hyldsinus in America and a Hylustes in Europe. is sheer nonsense and should the corrected, either in one country or the other.

[^11]: * The members of the genus Daihinia, no one of which occurs in Indiana. have the fore and hind tarsi three-jointed.

[^12]: Scudder, Proc. Bost. Soc. Nat. Hist., XII , 1N6世, 2:3.

[^13]: Note.-The measurements in this paper are qiven in millimeters, an inch being equal to very nearly twenty-five millimeters. The measurements given are, when possible. the average of a ummber of specimens, and the "length of body" does not inclute the exual appendage of male nor the ovipositor of lemale.

[^14]: When the author of a species referred it to a different genus from that in which it is now included, his name is put in parenthesis.

[^15]: Mss. Notes.

[^16]: Distribution of Insects in New Hamphire, 1sit, कht.

[^17]: 2 Culess otherwise stated, the dates given in this paper are those on which the first mature inserts have been taken in Coutral Indiana.

[^18]: MrNeill. (fos', (cit.)

[^19]: The measurements given by Burmeister are: length of body, i-f of an in.: of tegminat, $1^{\prime} \mathrm{in}$.

[^20]: *American Naturalist, 11., 1.isis, 111.

[^21]: *C. ensiger is said also to be thus dimorphic in coloration, but all that I have seen from this state are of the green variety.

[^22]: Canadian Ent．．N．．．III．

[^23]: Mr. B. D. Walsh, in the Proc. Ent. Soc. Phıl., JII., J864, $2: \%$, recorded the finding, on numerous occasions, of the eggs of an troklimum in the turnip-shaped galls of Sulix rordutto. Their shape and proportional dimensions, as given by him, differ much from those of X ensifirmin. as they were eylindrical, . 1 t to .17 of an inch long, and seven times a- long as wirle.

[^24]: *Psyche, VI., : 2.

[^25]: Since the above was written this insect has been found to be very plentiful about the margin of Lost Lake. Marshall county, Ind.

[^26]: Cope, in Reps. Ind. Geol. Surv., IV., 1572. 161, and X., 1sis, 493, mentions this species under the name of Rophidophora subtrrouco, Scudder-a synonym oi H. corcrnurum.

[^27]: Sculder, Bulletin 「..s. (ieog. Survey, No. 31, page 10 .

[^28]: For remedies see remarks under Phyllodromia gcrmanict or "Croton bug."

[^29]: * In this respect it is quite similar to Ischnoptera pennsyltomict DeGeer, from which it may be readily distinguished by its much broader body and fissured supra-aual plate.

[^30]: Riley, "Insect Life."

