

PROCEEDINGS $\quad 5.06(4 / 5)$,

OF 'THE

ROYAL IRISH ACADEMY

VoldME XXVIII

DUBLIN: HODGES, FIGGIS, \& C(O., LTD.
london: Whlllamis \& Norgate
1909-1910
.15.684310. 57

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

VOLUME XXVIII

SECTION A.-MATHEMA'IICAL, AS'RONOMICAL, ANL PHYSICAL SCIENCE.

DUBLIN: HODGES, FIGGIS, \& CO., Ltd. LONDON: WILLIAMS \& NORGATE

1910

The Academy desire it to be muderstood that they are not ansucrable for any opinion, representation of facts, or train of reasoning that may appear in any of the following Papers. The Authors of the seceral Essays are alone responsible for their contents.

CONTENTS

SBOTION A.-MATHEMATIGAL, ASTRONOMLOAL, AND PIIYSIOAL SOIENCR.

Ball (Sir Robert Stawell), LL.D., F.R.S.:- Contributions to the Theory of Screws, 16
Conway (Arthur W.), M.A., D.Sc. :-
On the Motion of an Electrified Sphere, 1
Roberts (Rev. W. R. Westropp), M.A.:-
The Symbolical Expression of Eliminants, 69

ERRATA.

SECTIOS A.
Page 16, line 14_{1} for $\frac{\partial}{\partial p_{1}}+\frac{\partial}{\partial p_{1}}+\ldots+\frac{\partial}{p_{n}}$ rand $\frac{\partial}{\partial p_{1}}+\frac{\partial}{\partial p_{j}}+\ldots \frac{\partial}{i p_{n}}$
Page 19, line i from botom, for morement read moment
Page 20, line 15, for $\left(a^{1} p_{a^{3}}\right)$ read $\left(a^{3} p_{a^{2}}\right)$

PROCEEDINGS

OF

THE ROYAL IRISH ACADEMY
PAPERS READ BEFORE THE ACADEMY

I.

ON THE MOTION OF AN ELECTRIFIED SPHEIE.

By arthur W. CONWAY, M. A. (Oxon. and R. U.I.), D. Sc., Professor of Mathematical Physics, University College, Dublin.

Read December 13, 1909. Ordered for Publication January 12. Published February 24, 1910.
CONTEN'TS.

I.-Introduction and Summary.

In this Paper the following problem is dealt with:-A sphere perfectly conducting and supposed not to be subject to a Lorentz-Fitzgerald shrinkage is charged and moved in any field: required the distribution of electricity on its surface. It was shown long ago by Searle that, if its velocity was uniform, the surface-density remained uniform ; and an important paper by Walker,* dealing with several cases of initial motions, was sufficient to show the complexity of the problem. In any field of force, and for any state of motion, there is an infinite number of solutions, namely, the simplest solution and the solution due to the free oscillations of the sphere. In all cases the current on the sphere can be divided (in a hydrodynamical sense) into an irrotational and a rotational current. These give rise to two classes of functions which we term harmonicoid functions of the first and second type respectively. These functions are generalized forms of similar functions employed by Lamb, Love, and others in the problem of the fixed sphere.

[^0]They consist of infinite series the first term of which is in each case the corresponding term for the fixed sphere. The solution oblained here consists of a method of approximating to as many terms as we please to the surface-density arranged in descending porrers of c, the velocity of radiation. Qnaternion notation and electromagnetic or electrostatic units are employed. The latter units are much more conveuient for this problem and generally in electronic investigations than the "rational" units employed by Lorentz and Hearisile. The mest remarkalle results motained are as follows:-If a Fhere tre phaced in a uniturn fieh of foree, and if it possesses no Newtonian मases. it will nure so as to have a mifum surface-density. If, however, it l"weses the mass an exces of nerative electricity is formed on the side "hnsite in :he acceletation, anl excess of positive on the opposite side, foblwins the simple cusine law in addition to the uniform layer. As the mase in lease the cusine layers approach the electrostatic value for a fixed
 some ralues as for a sphere having a uniform fired surface-density. It is also in:a that the tainann is the same in hoth cases. Now the rigit electron of Ahrahan in ide chatern which arees most closely with the now classic
 an-an the elecran thave the properties of a perfect conductor, or, if the

 woull! perhaps strengthen this supposition.

II.-The Electronhinetic Eniations and the Botindary Conditions.

In free aether the electric force ε and the magnetic force η are derived

$$
\begin{align*}
& r^{-2} \varepsilon=-\Gamma P-\dot{\bar{w}}, \tag{1}\\
& r^{-2} \eta=\nabla^{\prime} \Gamma, \tag{2}
\end{align*}
$$

 ngruement with reant exprimental tesults.
are connected by the relation $c^{-2} \dot{P}=S \nabla \pi$, and are solutions of the equation

$$
\nabla^{2}+c^{-2} \partial^{2} / \partial t^{2}=0
$$

The vectors ε and η satisfy

$$
\begin{align*}
& r-2 \dot{\varepsilon}=\Gamma_{\eta} \tag{3}\\
& -\dot{\eta}=\nabla_{\varepsilon} \tag{4}
\end{align*}
$$

If, however, there exists a current i, these latter equations become

$$
\begin{align*}
c^{-2 \dot{\varepsilon}}+4 \pi \iota & =\nabla \eta \tag{5}\\
-\dot{\eta} & =\nabla \varepsilon_{0} \tag{6}
\end{align*}
$$

If the origin is moving with velocity $\dot{\sigma}$, we may write them

$$
\begin{aligned}
c^{-2 \dot{2}} \varepsilon+c^{-2} S \dot{\sigma} \nabla \cdot \varepsilon+4 \pi \iota & =V \nabla_{\imath} \\
-\dot{\eta}-S_{\dot{\sigma}}^{\prime} \nabla \cdot \eta & =V \nabla_{\varepsilon}
\end{aligned}
$$

Suppose that the current becomes confined to an infinitely thin sheet, the unit normal to which is U_{ν}, and that the sheet moves with velocity $\dot{\sigma}$ as if rigidly attached to the origin, and let ε, η be the values of the vectors on the positive side of the surface (i.e. containing ν) and infinitely close to it, and let $\varepsilon^{\prime}, \eta^{\prime}$ be the corresponding values on the negative side; then by integration we obtain the following boundary conditions* :-

$$
\begin{align*}
c^{-2}\left(\varepsilon-\varepsilon^{\prime}\right) S_{\sigma} U_{\nu}+4 \pi \iota & =V \cdot U_{\nu}\left(\eta-\eta^{\prime}\right), \tag{7}\\
-\left(\eta-\eta^{\prime}\right) S_{\sigma} U_{\nu} & =V \cdot U_{\nu}\left(\varepsilon-\varepsilon^{\prime}\right), \tag{8}
\end{align*}
$$

where ℓ is now the surface current density. In fact, since it is only the normal component of ∇ which canses the discontinuity, we can replace Γ by $-U_{\nu} S U_{\nu} \nabla$ and integrate. The above then represent the boundary conditions at any moving current sheet where

$$
-S_{\dot{\sigma}} U_{v}
$$

is the velocity at the point of the sheet normal to itself. If su lenote the relative current density, and e the electrical surface-density, we have

$$
\iota=\iota_{0}+\dot{e} \dot{\sigma} \quad \text { where } \quad S_{\iota_{0}} v=0
$$

[^1]From equation (8) we get $S U_{v}\left(\eta-\eta^{\prime}\right)=0$, so that
and

$$
\eta-\eta^{\prime}=-V U_{v} V U_{v}\left(\eta-\eta^{\prime}\right)
$$

$$
V U_{\nu} V U_{\nu}\left(\eta-\eta^{\prime}\right) S_{\sigma} U_{\nu}=-V_{\cdot} U_{\nu} V_{\sigma}\left(\eta-\eta^{\prime}\right)
$$

Hence

$$
V \cdot U_{\nu}\left[\varepsilon-\varepsilon^{\prime}+V \sigma\left(\eta-\eta^{\prime}\right)\right]=0 .
$$

If the negative side of the surface is a perfect conductor,

$$
\varepsilon^{\prime}+V \sigma \eta^{\prime}=0
$$

and we thus get the surface condition to be, that the vector

$$
\varepsilon+V \dot{\sigma} \dot{\eta}
$$

imnst be normal.
 ne the -ntuentunity, in terms of ε and ε^{\prime}, whilst the relative current t_{0} is given by $\ell-c \dot{\sigma}$.

In ther core of a combluctur moving in a general manner as a rigid body the electromotive intensity at each point inside is zero, 80 that

$$
\varepsilon^{\prime}+V(\sigma+V \omega \rho) \eta^{\prime}=0,
$$

when σ in the whity of the origin, and w is the angular rotation, ρ being th.. di-t th....ithe luint irom the wrigin. "perating on this with $V \nabla()$, we tind, by the aid of (3) and (4),

$$
\frac{d \eta^{\prime}}{d t}-S\left(\sigma+V_{\omega p}\right) \nabla \cdot \eta=0
$$

 © initally midway aftomh-mill. The internal electric force will then

 which satisfy this condition, and then the equations

$$
\begin{align*}
c^{-2} t S_{\sigma} U_{\nu}^{+} v+4 \pi t & =V U_{\nu \eta} \tag{9}\\
4 \pi \iota & =-c^{-3} S_{t} U_{\nu}, \tag{10}\\
\imath & =\iota_{0}+e \sigma \tag{11}
\end{align*}
$$

give us the electrical condition of the surface.

III.-The Harmonicoid Functions of the First and Second Kinis.

If the position of a moving point be denoted by σ, it is necessary to assume that the function σ has a differential coefficient $\dot{\sigma}$. Let us denote the values of σ at the times t^{\prime} and t_{1} respectively by σ^{\prime} and σ_{1}; then the function

$$
c^{2}\left(t-t^{\prime}\right)^{2}+\left(\rho-\sigma^{\prime}\right)^{2}
$$

has a real positive zero t_{1} between O and t if $c^{2} t^{2}+\rho^{2}>0$ and $T \cdot \sigma<c$.* These conditions express the facts that ρ is to be taken inside the sphere of radius $c t$, and having the centre as origin, and that the speed $T \dot{\sigma}$ of the point is less than c. If t^{\prime} is complex, and if we take a contour integral enclosing only the zero t, the function

$$
\frac{c i}{\pi} \int \frac{f\left(t^{\prime}\right) d t^{\prime}}{c^{2}\left(t-t^{\prime}\right)^{2}+\left(\rho-\sigma^{\prime}\right)^{2}}
$$

possesses a pole in real space at the point $\rho=\sigma_{\mathrm{t}}$, and satisfies

$$
\nabla^{2}+c^{2} \frac{\partial^{2}}{\partial t^{2}}=0
$$

The integral may be written

$$
\frac{c i}{2 \pi} \int \frac{f\left(t^{\prime}\right) d t^{\prime}}{T\left(\rho-\sigma^{\prime}\right)\left[c\left(t-t^{\prime}\right)-T\left(\rho-\sigma^{\prime}\right)\right]} .
$$

If now it is possible to draw a contour enclosing t_{1} and no other zero and the point t, and such that on the boundary $c\left|t-t^{\prime}\right|>\left|T\left(\rho-\sigma^{\prime}\right)\right|$, then it is possible to expand the integral in inverse powers of c, and we obtain

$$
\frac{c i}{2 \pi} \sum_{0}^{\infty} \int \frac{\left(t^{\prime}\right) \tau\left(\rho-\sigma^{\prime}\right)^{n-1} d t^{\prime}}{c^{n+1}\left(t-t^{\prime}\right)^{n+1}}=\sum_{0}^{\infty} \frac{(-) c^{n-n}}{n!}\left(\frac{\partial}{\partial t}\right)^{n}\left[(f) t T(\rho-\sigma)^{n-1}\right] \cdot \dagger
$$

If we change the notation so that ρ is now the distance of any point from σ, and put $T_{\rho}=r$, we have for the scalar potential P_{0} of a pointcharge \boldsymbol{E} the series +

$$
P_{0}=E \sum_{n}^{\infty} \frac{(-)^{n} c^{\urcorner n}}{n!}\left(\frac{\partial}{\partial t}\right)^{n} n^{n-1}
$$

[^2]$$
P_{0}=E \operatorname{Exp}(\partial / \partial t, r),
$$
where after expansion the operator is placed at the beginning of each term.
and for the vector potential
$$
\varpi_{0}=c^{-2} E \sum_{0}^{\infty} \frac{(-)^{n} c^{-1}}{n!}\left(\frac{\partial}{\partial t}\right)^{n} \sigma r^{n-1},
$$
more generally if $f_{m}(\Sigma)$ in any scalar harmonic function of ∇ homogeneous and of m dimensions, and if $\Gamma_{f} f_{m}(\rho)=f^{\prime}{ }_{m}(\rho)$, so that $\quad S \rho f^{\prime}{ }_{m}(\rho)=-m f_{m}(\rho)$, then scalar and vector potentials are given by the equations (u being any arbitrary function of t):
\[

$$
\begin{align*}
& P_{m}=\sum_{0}^{\infty} \frac{(-)^{n} c^{-n}}{n!}\left(\frac{\partial}{\partial t}\right)^{n}\left(f_{m}(\nabla) \imath^{n-1} u\right) \tag{A}\\
& \Pi_{m}=-\frac{c^{-2}}{m} \sum_{0}^{\infty} \frac{(-) c^{-n}}{n!}\left(\frac{\partial}{\partial t}\right)^{n+1}\left(f_{m}^{\prime}(\nabla) r^{n-1} u\right) \tag{B}
\end{align*}
$$
\]

The corresponding electrical force

$$
\begin{equation*}
\varepsilon_{m}=-\frac{c^{2}}{m} \sum_{0}^{\infty} \frac{(-)^{n} c^{-n}}{n!}\left(\frac{\partial}{\partial t}\right)^{n}\left(V \nabla V \nabla f_{m}^{\prime} \nabla r^{n-1} u\right) \tag{C}
\end{equation*}
$$

and the magnetic force

$$
\begin{equation*}
\eta_{m}=-\frac{1}{m} \sum_{n}^{\infty} \frac{(-)^{n} c^{-n}}{n!}\binom{\partial}{\partial!}^{n+1}\left(V \nabla f^{\prime}{ }_{n} \nabla f^{n-1} u\right) \tag{D}
\end{equation*}
$$

In these expmesinns the coeflicients of the "perational function $f_{m}(\nabla)$ may In funtims of the time. If these coeflicients, or ", are such that the dithentiations with respet tri hring in powers of C, we can arrange the series differently; for example, if $u=c^{k e t}$, we find, on collecting,

$$
\begin{align*}
& P_{m}=e^{k c \ell} \sum_{0}^{\infty} \frac{(-)^{n}}{n} \frac{c^{-n}}{n!}\left(\frac{\partial}{\partial l}\right)^{n}\left(f_{m}(\nabla) r^{n-1} c^{-k r}\right) \tag{E}\\
& H_{m}=-\frac{\partial}{i}\left(c^{-1} \frac{c^{k c l}}{1} \sum_{0}^{\infty} \frac{(-)^{n}}{n} \frac{c^{-n}}{n}\left(\frac{\partial}{r i}\right)^{n}\left(f_{m}^{n}(\nabla) r^{n-1} r^{-k r}\right)!\right. \tag{F}
\end{align*}
$$

We shatl call the whutions ($\left.\mathrm{A},{ }^{\prime} \mathrm{F}\right),(\mathrm{C})$, (I) , (E), and (F , hermonicoid, solutions of the first Find.

We have alow a serome chas of solutions of a conjugate type, in which the electrie and matnetie forcen ε_{m}^{\prime} amd η_{m}^{\prime} are comected by the equations

$$
\varepsilon_{m}^{\prime}=-\eta_{m} ; \quad \eta_{m}^{\prime}=c^{-2} \varepsilon_{m} .
$$

We shall call these harmonicoid solutions of the scond kind.
If the centre of the sphere is at rest, these solutions assume well-known forms. We may first notice that if $F(r)$ is any function of r

$$
f_{m}(\nabla) F(r)=f_{m}(\rho)\left(\frac{\partial}{r \partial r^{\prime}}\right)^{m} F(r)
$$

[^3]If, for instance, $u=1$, in (A),

$$
P_{m}=f_{m}^{\prime}(\nabla) \frac{1}{r}=f_{m}(\rho)\left(\frac{\partial}{r \partial r}\right)^{m} \frac{1}{r}
$$

whilst (E) gives

$$
P_{m}=e^{k k t} f_{m}(\nabla) \frac{e^{-k r}}{r}=e^{k c^{t}} f_{m}(\rho)\left(\frac{\partial}{r \partial r}\right)^{m} \frac{e^{-k r}}{r} .
$$

Hence we see that if the centre of the sphere is at rest, the harmonicoid solutions degenerate into the known solutions of harmonic or Besselharmonic type which are employed in fixed sphere problem. We shall speak of a harmonicoid solution as a continuation of the corresponding solution for the fixed sphere.

IV.-Method of General Solution and Examples.

The sphere being placed in any field of force, solve the problem as if the centre of the sphere were at rest. We thus get an electric force \boldsymbol{a}_{0} and a magnetic force $c^{-2} \beta_{0}$ expressed as sums of functions of harmonic type. Continue this function, and we get an electric force

$$
\varepsilon=\boldsymbol{a}_{0}+c^{-1} \boldsymbol{a}_{1}+c^{-2} \boldsymbol{a}_{2}+c^{-3} \boldsymbol{a}_{3}+\ldots
$$

and a magnetic force

$$
\eta=c^{-2} \beta_{0}+c^{-3} \beta_{1}+c^{-4} \beta_{2}+\ldots
$$

The electromotive intensity

$$
a_{0}+c^{-1} \boldsymbol{a}_{1}+c^{-2}\left(a_{2}+V \sigma \beta_{1}\right) \ldots
$$

(where $\dot{\sigma}$ is the velocity of a point on the boundary) is, however, not normal to the sphere, with the exception of the first term a_{0}. Suppose again that the centre of the sphere is at rest, and find an electric force $c^{-1} \gamma_{0}$, such that

$$
c^{-1}\left(a_{1}+\gamma_{0}\right)
$$

is normal, and let $e^{-3} \delta_{0}$ be the magnetic force. On forming the continuation and adding, we have

$$
\begin{aligned}
& \varepsilon^{\prime}=a_{0}+c^{-1}\left(a_{1}+\gamma_{0}\right)+c^{-2}\left(a_{2}+\gamma_{1}\right)+\ldots \\
& \eta^{\prime}=\quad c^{-2} \beta_{0}+c^{-s}\left(\beta_{1}+\delta_{0}\right)+\ldots
\end{aligned}
$$

The electromotive intensity is now normal for the first two terms, but the third term $c^{-2}\left(\boldsymbol{a}_{2}+\gamma_{1}+V_{\dot{\sigma}} \beta_{0}\right)$ is not normal ; we can, however, determine
an electric force $c^{-2} \lambda_{0}$ and magnetic force $c^{-4} \mu_{0}$, such that

$$
c^{-2}\left(a_{2}+\gamma_{\mathrm{t}}+V \dot{\sigma} \beta_{0}+\lambda_{0}\right)
$$

is normal; and we thus get

$$
\begin{aligned}
& \varepsilon^{\prime \prime}=a_{0}+c^{-1}\left(a_{1}+\gamma_{0}\right)+c^{-2}\left(a_{2}+\gamma_{1}+\lambda_{0}\right)+c^{-9}\left(a_{3}+\gamma_{2}+\lambda_{1}\right) \\
& \eta^{\prime \prime}=\quad c^{-2} \beta_{0}+c^{-3}\left(\beta_{1}+\delta_{0}\right)+c^{-2}\left(\beta_{2}+\delta_{1}+\delta_{0}\right) .
\end{aligned}
$$

The electromotive intensity is normal as for the first, second, and third terms; and we can thus carry the solution to any degree of approximation. The case in which the external field can be expanded in powers of c can be solved by treating separately each term.

As a first example consider the case of a sphere moving without rotation under the actinn of no external electromagnetic field, the charge on the sphere heing E in electrostatic units. The equilibrium state comes from a potential $E r^{-1}$; and its continuation gives

$$
\begin{aligned}
P_{0}= & \frac{E^{\prime}}{r}
\end{aligned}+\frac{E c^{-3}}{2!} \frac{\partial^{3}}{\partial t^{2}} r-\frac{E c^{-3}}{3!} \frac{\partial^{3}}{\partial b^{3}} r^{2}+\cdots .
$$

and the vector potential

$$
\varpi_{0}=E c^{-3} \dot{\sigma} r^{-1}-E c^{-s} \sigma+\ldots
$$

To the first approximation the electric force ε which is $-\nabla P_{0}-\varpi_{0}$

$$
=E \gamma^{\prime-3} \rho+E c^{\prime-2}\left\{\rho\left[\frac{1}{2} r^{-3}\left(-\dot{\sigma}^{2}+S \ddot{\circ} \dot{\sigma}\right)-\frac{3}{2} r^{-s}(S \rho \dot{\sigma})^{2}\right]-\frac{1}{2} \boldsymbol{\sigma} \gamma^{-1}\right\} .
$$

To get electromotive intensity we add

$$
V_{\sigma} V \Gamma \varpi_{0} \text { or } E c^{-8} r^{-9}\left(\rho \dot{\sigma}^{2}-\dot{\sigma} S \rho \dot{\sigma}\right)
$$

Wo have now the following term:

$$
E c^{-2}\left[-\frac{1}{2} \ddot{\sigma} r^{-1}+r^{-3} \dot{\sigma} S_{\rho} \dot{\sigma}\right],
$$

which is not normal to the sphere.
 terms are annullad. Assume a scalar potential

$$
P_{1}=A S_{\sigma}^{\prime \cdot} \nabla \cdot \frac{1}{r}+B\left(S_{\dot{\sigma}} \nabla\right)^{2} \frac{1}{r}
$$

and wo find by taking

$$
A=-\frac{a^{2}}{2} E C^{-2} \text { and } B=\frac{a^{2} E c^{-2}}{6}
$$

What the comblims are satisfied. We thus get for the complete scalar potential as far as c^{-2}

$$
\frac{E^{2}}{r}+E c^{-3}\left\{\frac{1}{2}\left(\frac{\partial}{\partial l}\right)^{2} r-\frac{l^{2}}{2} S \sigma \cdot \nabla \cdot \frac{1}{r}+\frac{a^{2}}{6}(S \sigma \nabla) \frac{1}{r}\right\} .
$$

In the same manner we proceed to terms involving c^{-3}; and we determin. an additional torm

$$
E c^{-3}\left\{-\frac{1}{3!}\left(\frac{\partial}{\partial t}\right)^{3} r^{2}+\frac{2}{3} S_{\sigma}^{\prime \pi} \nabla \cdot \frac{1}{\gamma^{2}}\right\} ;
$$

and we find for the vector potential

$$
E c^{-2} \dot{\sigma} r^{-1}-E c^{-3} \ddot{\sigma}+E c^{-1}\left(\frac{1}{6} \frac{\partial^{2}}{\partial t^{2}}(2 \dot{\sigma})-\frac{a^{2}}{2} \frac{\partial}{\partial t} \frac{\ddot{\sigma}}{r}+\frac{a^{2}}{6} \frac{\partial}{\partial t} \sigma S_{\dot{\sigma}} \dot{\sigma} \frac{1}{r}\right)+\ldots
$$

The electrical force ε at the surface of the sphere is

$$
\frac{E}{a^{3}}\left\{\rho+c^{-2}\left(2 \rho S \rho \ddot{\sigma}-a^{-2} \rho V \rho \sigma S \rho \dot{\sigma}\right)+c^{-3}(-2 \rho(t S \rho \ddot{\sigma})+\ldots\}\right.
$$

and the magnetic force at the surface is

$$
E c^{-2} a^{-3} V_{\sigma \rho}
$$

If the internal magnetic force is initially and afterwards zero, the surface-density is simply obtained from the normal component of the electric force, and this forms at each step a check on our calculations; for the total charge on the sphere must be constant. In this case we find for the surface-density

$$
\frac{E}{4 \pi a^{2}}\left\{1+2 a c^{-2} S U_{\rho} \ddot{\sigma}-2 a^{2} c^{-3} S U_{\rho} \ddot{\sigma}+\ldots\right\}
$$

We find from the boundary conditions the current i_{0} to be

$$
\frac{E}{4 \pi \overline{\alpha^{2}}}\left\{c^{-2} V_{\rho} V_{\rho} \ddot{\sigma}-\alpha c^{-s} V_{\rho} V \rho \bar{\sigma}+\ldots \cdot\right\}
$$

Other examples easily solved by this method would be the case of constant electric and magnetic force, plane waves, etc.

V.-On Oscillatory Distributions.

For a sphere at rest there is not only the simple distribution, but also an infinite number of possible oscillatory distributions, and these can be continued in the usual manner. The method can best be explained by an example. For the fundamental mode take

$$
\begin{aligned}
& P_{1}=e^{k c t} S \boldsymbol{a} \nabla\left(\frac{e^{-k r}}{r}-c^{-1} \frac{\partial}{\partial t}\left(e^{-k r}\right)+\frac{c^{-2}}{2!} \frac{\partial^{2}}{\partial t^{2}}\left(r e^{-k r}\right)+\ldots\right), \\
& \boldsymbol{\Pi}_{1}=\frac{\partial}{\partial t} e^{k c t} e^{-2} \alpha\left(\frac{e^{-k r}}{r}-e^{-1} \frac{\partial}{\partial t} e^{-k i r}+\ldots\right)
\end{aligned}
$$

where a is a fixed direction in space, and we shall suppose that the sphere
H. I. A. PROC., VOL. XXVHI., SECT. A.
moves without rotation. We find, on the surface $r=a$,

$$
\begin{aligned}
-\varepsilon=a^{r-k a} & \left(\frac{1}{a^{3}}+\frac{k}{a^{2}}+\frac{k^{2}}{{ }^{2}}\right)+\rho S a \rho c^{-k a}\left(\frac{3}{a^{3}}+\frac{3 k}{a^{4}}+\frac{k^{2}}{a^{3}}\right) \\
& +k c^{-1}\left\{-a S \rho \sigma\left(\frac{1}{a^{3}}+\frac{k}{a^{2}}-\frac{k^{2}}{a}\right)+\sigma \operatorname{Sa\rho }\left(\frac{1}{a^{3}}+\frac{k}{a^{2}}\right)\right. \\
& \left.+\rho S a \rho S \sigma \rho\left(\frac{3}{r^{3}}+\frac{3 k}{a^{4}}+\frac{k^{3}}{a^{3}}\right)+\rho \operatorname{Sa\sigma }\left(\frac{1}{a^{3}}+\frac{k}{a^{2}}\right)\right\}^{c^{-}} \\
& +\frac{c^{-2}}{2!} \frac{\partial^{2}}{\partial r^{2}}\left(\nabla S a \nabla-a \nabla^{2}\right) r c^{-k r}+\ldots ;
\end{aligned}
$$

and for the magnetic force we find

$$
-\Gamma_{\sigma \|}=l_{i^{-1}}^{-1}\left[\Gamma_{\sigma} \Gamma_{\rho n}\left(\frac{1}{n}, \frac{k}{n^{2}}\right)+k a\right]+e^{-2} \frac{\partial}{a^{\prime}}\left(\frac{1}{r^{3}}+\frac{k}{n^{2}}-\frac{k}{n}\right) e^{-k a}+\ldots
$$

Tu a first alpuximation we fint that the non-normal terms vanish if $k_{i}^{2} a^{2}+l_{i}+1=0$. If $h_{\text {w }}$ dennte this value of k, we may assume that the complete value is of the form $k_{0}+c^{-1} k_{1}+c^{-2} k_{2}+\ldots$ There is, however, no term contwing a multiphed by a constant coefficient in the term multiplying c^{-1} in $\varepsilon-V i n$. and nu term will arise, as shall be seen, in cumpensating there the nom-nomal force, su that $k_{1}=0$. The nonnormal term will be found to be

$$
\operatorname{lir}^{-1} J^{r} \rho V \sigma \frac{l^{3}=1}{a}
$$

Which can be annulled by a "harmonicoid" of second kind

It will be form in invertion that the only term containing a in the coefficient of c^{-3} arises from

$$
c^{-8} \frac{\partial^{2}}{2:}\left(\Gamma c^{2}\left(\Gamma a \nabla-a \nabla^{2}\right) r^{-k r}\right.
$$

On arrangement of terms we find

$$
\ln =-\frac{1+\sqrt{3} i}{2}+\frac{r^{2}}{c^{2}}\left(\frac{5}{4}-\frac{7 \sqrt{3} i}{12}\right)+\ldots
$$

where x is the velocity, and $i=\sqrt{-1}$.
 lonsthen the find from which we may intor that the charge is less stable than before.

From a knowledge of the normal component of the electric force we find that the surface-density is proportional to

$$
S a \rho+\frac{k}{c}\left(\frac{3}{2} S a \rho S \dot{\sigma} \rho+\frac{1}{2} \omega^{2} S a \dot{\sigma}\right)+\ldots
$$

Thus the harmonic distribution of first order involves also one of the second, so that the principal modes of oscillation are different from those of a fixed sphere.

We can now deal with the case of discontinuous motions, i.e. when any differential coefficient becomes discontinuous. For example, suppose that the sphere is moving with an acceleration $\ddot{\sigma}^{\prime}$, and that when $t=t_{0}$ the acceleration is $\ddot{\boldsymbol{\sigma}}$. Before the time t_{0} the surface-density is

$$
\frac{E}{4 \pi u^{2}}\left\{1+2 e^{-2} S \rho \ddot{\sigma}^{\prime}+\cdots\right\}
$$

then after $t=t_{0}$ the surface-density is

$$
\frac{E}{4 \pi a^{2}}\left\{1+2 c^{-2} S \rho \ddot{\sigma}+\ldots\right\}+S a \rho+\ldots
$$

where a is a solution of

$$
\ddot{\boldsymbol{a}} \epsilon^{2}+\dot{\boldsymbol{a}} u c+\boldsymbol{a} c^{2}=0
$$

such that when $t=t_{0}$ the densities and the currents (which depend on the differential coefficients of the density) are equal. In this case we find

$$
\begin{aligned}
\boldsymbol{a}= & \frac{E c^{-2}}{2 \pi a^{2}}\left(\ddot{\sigma_{0}^{\prime}}-\ddot{\sigma}_{0}\right) e^{-\frac{k e}{2 a}\left(t-t_{0}\right)} \sin \left[\frac{\sqrt{3}}{2 a}\left(t-t_{0}\right)+\frac{\pi}{3}\right] / \sin \frac{\pi}{3} \\
& -\frac{E e^{-3}}{2 \pi a}\left({ }^{\left(\sigma_{0}^{\prime}\right.}-\dddot{\sigma}_{0}\right) e^{-\frac{k c}{2 a}\left(t-t_{0}\right)} \sin \frac{\sqrt{3}}{2 a}\left(t-t_{0}\right) / \sin \frac{2 \pi}{3} .
\end{aligned}
$$

VI.-Quasi-Stationary Motion.

A particular class of motion called quasi-stationary motion has received much attention in modern dynamics of an electron. In this motion the acceleration is supposed to be so small that its differential coeflicients and its square and higher power can be neglected. Our formula become in this case somewhat simpler; but another method (which can be applied to any other case of motion) seems more direct in this case.

The harmonicoid functions used alnowe have no simple physical meaning, but, by the aid of a theorem which can lee easily verified, we can construct harmonicoid functions which represent potential of spherical shells having a given assigned surface charge represented in spherical harmonics. This theorem is as fullows:-If dP le the potential due to an element of unit density accorting to any law of force which depends only on the time and the relative position of element aml attracted point, and if $f_{n}(\rho)$ be a solid spherical scalar hammic in which, for smplicity, we may regard the coefficients as constants in time, then

$$
\frac{(-)^{n}}{n^{n-1}} f_{n}(\nabla) \int_{0}^{a} a_{n-1} d a_{n-1} \int_{0}^{a}{ }_{n-1} a_{n-2} d a_{n-2} \cdots \int_{0}^{a} d P
$$

(where $\int_{0}^{a_{1}} d P$ means the potential of a sphere of radius a_{1}) is the potential of a surace-dianibution of amount $f_{n}\left(C_{\rho}^{\top}\right)$ orer a sphere of radius u, and this holds both for external and internal points.

We have alse the fart that the potentials P and Π, and a unform spherical shell of charge E, are given by

$$
\begin{aligned}
& \left.I^{\prime \prime}=\frac{r \cdot E^{\prime}}{2^{\prime \prime}} \Sigma^{x} \cdot \frac{(-)^{n} c^{-n}}{n!} \partial \ell\right)^{n-1} \frac{(r-a)^{n}-(r+u)^{n}}{r}, \quad \text { externally, } \\
& P=\frac{r \cdot b^{\prime}}{\partial n}-\sum_{1}^{x} \frac{(-)^{n}}{n} \frac{c^{-n}}{n}\binom{\partial}{\partial l}^{n-1} \frac{(u-r)^{n}-(n+r)^{n}}{r}, \quad \text { internally, } \\
& \|^{\prime}=\frac{E}{2 n} \Sigma^{x} \frac{(-)^{n} c^{-n}}{n!}\left(\frac{\partial}{i j}\right)^{n-1} \dot{\sigma} \frac{(r-\mu)^{n}-(r+a)^{n}}{r} \text {, externally, } \\
& \text { II }=\frac{E}{2} \sum_{1} \sum_{1}^{\infty} \frac{(-)^{n} e^{-n}}{n!}\left(\frac{\partial}{\partial \bar{l}}\right)^{n-1} \dot{\sigma} \frac{(n-r)^{n}-(n+r)^{n}}{r} \text {, internally. }
\end{aligned}
$$

From these formulae we find for the electric force t inside such a shell
and we find for the magnetic force η the equation

$$
V_{a \eta}^{*}=\frac{2 E}{: E_{1}^{\prime \prime}} \sigma I^{2} \sigma^{-1} \sigma\left(\frac{3}{2} \cdot \frac{1}{3} \frac{u^{3}}{r^{2}}+\frac{3}{2} \cdot \frac{2}{3} \frac{u^{1}}{c^{4}} \cdots\right)
$$

We thus find for the electromotive intensity inside the expression

$$
-\frac{M}{E^{\prime}} \dot{\sigma} \dot{\sigma} \dot{\sigma}^{-1} \ddot{\sigma}-\frac{M^{*}}{E} \dot{\sigma} V \dot{\sigma}^{-1} \ddot{\sigma},
$$

where
and

$$
M^{\prime}=\frac{2 E^{2}}{3 u c^{2}}\left(1+\frac{6}{3.5} \frac{u^{2}}{c^{2}}+\frac{9}{5.7} \frac{u^{4}}{u^{4}} \cdots\right)=\frac{k^{2}}{2 a c^{2}} \frac{1}{h^{2}}\left\{\left(\frac{1+k^{3}}{2 k}\right) \log \frac{1+k}{1-k}-1\right\},
$$

where $u=T_{\sigma}$ and $k=u / c$.
It will be noticed that M and M^{r} are Abraham's expressions for longitudinal and transverse mass.*

If we suppose now a surface-density of amount

$$
p S \rho \dot{\sigma} S_{\dot{\sigma}}^{-1} \ddot{\sigma}+q S \rho \sigma \bar{\sigma} \bar{\sigma}^{-1} \ddot{\sigma},
$$

we find an internal electromotive force of amount

$$
a p_{1} p \dot{\sigma} S \dot{\sigma}^{-1} \ddot{\sigma}+a q_{q} \dot{q} \dot{\sigma} V \sigma^{-1} \sigma
$$

where

$$
\begin{aligned}
& p_{1}=\frac{2 \pi\left(1-k^{2}\right)}{k^{2}}\left\{\frac{1}{k} \log \frac{1+k}{1-k}-2\right\}, \\
& q_{1}=\frac{\pi\left(1-k^{2}\right)^{2}}{k^{2}}\left\{-\frac{1}{k} \log \frac{1+k}{1-k}+\frac{2}{1-k^{2}}\right\} .
\end{aligned}
$$

For example, if we require the distribution of electricity due to a field $\varepsilon_{0}, \eta_{0}$, we find the linear equation:

$$
\left(a p_{1} p-\frac{M}{E}\right) \dot{\sigma} S \sigma^{-1} \sigma+\left(a q_{1} q-\frac{M}{E}\right) \sigma V \dot{\sigma}^{-1} \sigma+\varepsilon_{0}+V \sigma \eta_{0}=0 .
$$

This contains two scalar unknowns p and q, and a vector unknown σ, so that another equation is necessary. In the next section this will be found.

VII.-Dynamical Results.

As a basis for our results we can assume with Lorentz \dagger that the total force on the conductor is that due to the aethereal forces on each element of electricity. If in addition we have Newtonian forces, including reversed effective forces, then the whole system of forces, electrical and non-electrical, must be in equilibrium. The electromotive intensity on the elements gives

[^4]rise to a force $\varepsilon \in+V i \eta$, where e is the surface-density. By the aid of the boundary conditions one form of this is
$$
4 \pi v \frac{e^{2}\left(1-c^{-2}(V \dot{\sigma} \nu)^{2}\right)+c^{-2} \iota^{2}}{1-(S \dot{\sigma} \nu)^{2} c^{-2}}
$$
where $v\left(T_{v}=1\right)$ is the normal to the boundary; and as we are dealing with surface-distributions, we must take one-half of this in computing the total force. It may be noticed that this force is entirely normal, so that for a sphere such forces have no tendency to canse rotation. The current $\imath=\iota_{0}+e \sigma$ can be obtained from the boundary-conditions. Huwever, if harmonicoids of the first type only are present, t_{0} is "irrotational," and can be calculated from c by the differential equations
\[

$$
\begin{aligned}
S_{\rho}^{-1} V \rho \Gamma_{0} & =\dot{e}, \\
V\left(\rho^{-1} V \rho \Gamma t_{0}\right) & =0
\end{aligned}
$$
\]

For example: if $\varepsilon=f_{n}(\rho)$, a solid harmonic of degree n, then

$$
\Gamma^{2} f_{n}(\rho)=0
$$

may be written

$$
\left\{\left(\rho^{-1} V \rho \nabla\right)^{2}+\frac{n(n+1)}{\rho^{2}}\right\} f_{n}(\rho)=0,
$$

so that the current is

$$
\frac{-\rho V \rho \nabla}{n(n+1)} \frac{\partial}{\partial t} f_{n}(\rho)
$$

Consider the case of the isolated sphere. We have

$$
c=\varepsilon_{v}\left(1+2 c^{-3} S \rho \ddot{\sigma}-2 a c^{-3} S \rho \ddot{\sigma} \ldots\right)
$$

where $E=4 \pi()^{2} \varepsilon_{0}$, and the current

$$
t_{0}=c_{0}\left(c^{-2} V \rho T \rho \ddot{\sigma} \ldots\right)
$$

Hence

$$
\begin{aligned}
& e^{2}\left(1-c^{-2}\left(V_{\sigma}^{*}\right)^{2}\right)+c^{-2} d^{2} \\
& 1-(S \dot{\sigma} \nu)^{2} c^{-2} \\
& -c_{0}^{2}\left[\left(1+2 c^{-2} S_{\rho}^{\prime} \ddot{\sigma}-2\left(c c^{-3} S_{\rho}^{\prime} \rho \ddot{\sigma}\right)^{\dot{\theta}}+c^{-2}\left(\sigma+2 c^{-2} \sigma S_{\rho} \rho \sigma+c^{-2} V \rho V \rho \ddot{\sigma}\right)^{2}\right]\right. \\
& {\left[1+\left(S_{\sigma}^{\prime} \nu \nu\right)^{2} c^{-2}+\left(S_{\sigma}^{\prime}{ }^{\prime}\right)^{2} c^{-1}+\ldots\right]} \\
& =r_{n}^{2}\left[1+2 c^{-2}\left(2 S \rho \sigma+\dot{\sigma}^{2}+(S \sigma v)^{2}\right)-4 a c^{-3} S \rho \ddot{\sigma}+\ldots\right] .
\end{aligned}
$$

It i - loas that imly tems of onld dersere will contribute to the final result, so that on multiplying by $2 \pi v$, and integrating, we find

$$
\frac{2 \ddot{E}}{\cdots c_{c}^{2}}\left(-\ddot{\sigma}+a c^{-1} \ddot{\sigma}+\ldots\right)
$$

It will tee noticed that this is the same as if the charge on the sphere was

degree of approximation) in both cases, but if the sphere is suddenly brought to rest, the mode of attaining the final state is different in both cases. In the one case the total kinetic energy is radiated in the form of a thin shell; in the other case the charge assumes the equilibrium position after a number of oscillations.

If the isolated sphere had in addition an oscillatory distribution of surface-density $c^{-2} S a \rho+c^{-3} S \beta \rho$, we find for the opposing force

$$
\frac{2}{3} \frac{E^{2}}{\alpha c^{2}}\left[-\sigma-\frac{1}{2} \frac{a}{e_{0}}+c^{-1}\left(\cdots \sigma-\frac{1}{2} \frac{a \beta}{e_{0}}\right)\right]
$$

where a and β satisfy

$$
\begin{aligned}
& \ddot{\boldsymbol{a}} a^{2}+\boldsymbol{a} a c+\boldsymbol{a} c^{2}=0 \\
& \ddot{\beta} b^{2}+\dot{\beta} a c+\beta c^{2}=0
\end{aligned}
$$

In the case of quasi-stationary motion, employing the notation of the last section, we have, if m denote the Newtonian mass, and ξ the Newtonian force, the equation of motion

$$
-E \alpha\left(p p_{1} \dot{\sigma} S \dot{\sigma}^{-1} \ddot{\sigma}+q q_{1} \dot{\sigma} V \dot{\sigma}^{-1} \sigma\right)-m \sigma+\xi=0
$$

where

$$
p S_{\rho} \sigma S_{\sigma}^{\prime-1} \sigma+q S \rho \sigma V_{\sigma^{-1}} \ddot{\sigma}
$$

is the surface-density. This, taken along with the equation

$$
\left(a p p_{1}-\frac{M}{E}\right) \dot{\sigma} S \sigma^{-1} \ddot{\sigma}+\left(a q q_{1}-\frac{M}{E}\right) \dot{\sigma} V \sigma^{-1} \ddot{\sigma}+\varepsilon_{0}+V \dot{\sigma} \eta_{0}=0
$$

completes the solution. We deduce at once

$$
(M+m) \sigma \dot{S}_{\dot{\sigma}}^{-1} \ddot{\sigma}+\left(M^{\prime}+m\right) \dot{\sigma} V \dot{\sigma}^{-1} \sigma=\zeta \quad \zeta+\left(\varepsilon_{0}+V \sigma \eta_{0}\right) E .
$$

This is the equation of motion of a migidly uniformly electrified sphere; and we notice that if

$$
m \sigma-\xi=0, \quad \text { then } \quad p=0, \text { and } q=0
$$

and the sphere is uniformly electrified.

II

CONTRIBUTIONS TO THE THEORY OF SCREWS.

By SIR ROBERT BALL, LL.D., F.R.S.,

> Lowndean Professor of Astronomy and Greometry in the University of Cambridge.

Rasd Janvary 10. Oriered for Publication January 12. Published April 5, 1910.

coNTENTS.

I. -On the cxpression for the Virtuul Coefficient of two Vector-Screws.

Tire prenntins of the virtual cortlicient of two screws are of fundamental innminna in that hanch of mathematics which is known as the Theory of
 of Sunw in a momoir liy the present writer." It must, howerer, be remem-
 fumhtumtal insatint of two linear complexes, and which is exactly parallel (1) the tithal rantliment in the Theny of serews, had been previously c.mplyent ly Klein in a series of important investigations.

The cemancere of the virtual cateflicient of two screws indicates that the serews stand in that remarkahle relation which we have expressed by designoting then as recipencal. In the earlier investigations of the Theory of surews thrte hat been no weasion for the employment of the virtual co-- thicient wept in connexinn with recignceal serews. liut when in a later
-

- IPhil. 'Trans. Ros. Soc., 1874, p. 16.
 on the Theory of Screws" by the present writer. Cambridge, 1900, pp. 17, 617. In future references 80 this brakk in the present papar, it will hetermed siogyls "Theatise."
memoir* it became necessary to introduce the Theory of Screw co-ordinates, the virtual coefficient as a function of the two screws, and now no longer zero, assumed a significance which it had not previously appeared to possess.

It may perhaps be thought strange that after the lapse of so many years it should now have been found necessary to re-examine the rigour of the original expression for the virtual coefficient. That expression was given in terms of the pitches p_{a}, p_{β} of the two screws a and β, of d the shortest distance between their two axes, and of θ the angle between them, and was stated \dagger to be

$$
\frac{1}{2}\left\{\left(p_{a}+p_{\beta}\right) \cos \theta-d \sin \theta\right\} .
$$

In the course of the Quaternion developments of the Theory of Screws, to which a considerable part of the present paper is devoted, a donbt arose, not indeed as to the formal accuracy of this expression, but as to the rigour of the process by which it was supposed to have been established. It presently appeared that there was a flaw in the proof, owing to the absence of any definite convention as to the way in which the angle between the two screws is to be measured. If the angle $360^{\circ}-\theta$ had been used instead of θ, then the second term in the virtual coefficient would have a positive sign insteat of a negative sign ; and so far as the original deduction of the expression was concerned there was nothing to show which of the two angles was to be used in the expression of the virtual coefficient. The ordinary rule for estimating the angle between two vectors does, no doubt, distinguish between $\boldsymbol{\theta}$ and $180^{\circ}-\boldsymbol{\theta}$. It fails, however, to distinguish between $\boldsymbol{\theta}$ and $360^{\circ}-\boldsymbol{\theta}$. Unless, therefore, some further convention be established, the virtual coefficient must have an ambiguous sign for its second term. Our immediate object is to establish the convention necessary so that in all cases the sign of the second term shall be negative. Fortunately it is possible to establish such a convention in the case of two vector-screws which do not intersect.

I had already attempted $+\dagger$ to remove this uncertainty in the mode of specifying the angle between two screws; but as the result was not completely satisfactory, I have returned to the subject. I am glad to say that the difficulty has now been overcome, and a great inprovement in the foundations of the Theory of Screws is the result. I here set down the method of obtaining the virtual coefficient in the way I would desire it to be obtained if I were commencing to write the Theory of Screws over again.

To the apparatus of the Theory of Screws as it has hitherto existed the important addition of the geometrical conception known as the vector-screr

[^5]has now to be made. By a rector-screm, which is here defined for the first time, I mean a screm in the original sense of the word,* on the axis of which a unit rector is laid. Thus a vector-screm differs from a serew in that the former possesses an indication as to which of the tro directions along the axis is to be regarded as positive, while there is no such indication of the positive direction in the latter. It must not be supposed that the rector by which a particular direction is indicated as positive on a vector-screw stands in any relation to the pitch of the screw. The sign of the pitch may be positive or negative, but is quite irrespective of the sense of direction imparted to the vector-screw when it carries a unit vector. Of course the pitch of a vectur-screw may be zerw, and two duite distinct vectur-serems of zero on any other pitch may lie on the same axis with their unit vectors in opposite directions.

Five data are in genctal sufficient toldeternine at screw: but it would not In pritm corrent th say that tive data sulfine to determine a contorsorio. We have jut sem that every screw will the the seat of two distinct vector-screws aumatins th the direction of the verter. Thus five data, though insutticient to slecify a vector-screw mandete, will yet show that the vectr-screw must be one if a drinite pair of vernt-sctews of the same pite and no the same axis. \dagger

The intimuth butwen arghthanded metationt alwnt a vector and a

 uf the Euth. We aromhaly dintimgui-h the righthamled rotation from the left-handed rotation as follows :-

The Diurual rotation of the Earth is said to be right-handed about a
 its centre to the South Pole.

It is to be understood that when a body is said to have had a righthanded rotation about a vector it is implied not ouly-
(1) That the hody has received a rotation abrut that vector as an axis; but als,

[^6](2) That if we conceived the vector to bo lying upon the Earth's axis, and pointing in the same direction as the vector from the Earth's centre to the North Pole, then a right-handed rotation of the body will turn it in the same direction as that in which the Earth is rotating.
As a convenient method of remembering the relation of a right-handed rotation to the vector about which the rotation has been performed, we may note that the direction in which the numbers increase on the face of a watch is right-handed with regard to a vector from the dial to the back.

The conception due to Chasles, that any movement of a rigid body is a twist about a screw, is, of course, a fundamental principle in the Theory of Screws. The word "twist" was defined with regard to a screw at the beginning of the original memoir* with which the present series commenced. At present we are concerned with vector-screws rather than screws; and it has become necessary to explain how the vector-screw introduced in the present paper for the first time enables an absolutely precise specification of a twist to be made, and thus attention is called to the fact that any specification of a twist with regard to a screw (i.c., not a vector-screw) must be necessarily defective in one detail.

A twist may be completely represented by a vector-screw a (of pitch p_{a}) and a scalar a^{\prime} which is termed the amplitude of the twist. The twist is produced by compounding-(1) a rotation, and (2) a translation.

1. The rotation is right-handed or left-hauded about the vector, according as the given scalar \boldsymbol{a}^{\prime} is positive or negative.

The angular magnitude of the rotation is \boldsymbol{a}^{\prime} radians.
2. The translation is to be in the same direction as the vector, or in the opposite direction according as $\alpha^{\prime} p_{\alpha}$ is positive or negative.

The linear magnitude of the translation is

$$
\left(a^{\prime 2} p_{a}^{2}\right)^{2}
$$

If $p_{\alpha}=0$, the twist is simply a rotation. If $p_{\alpha}=\infty$ and the twist is to be finite, then $\boldsymbol{a}^{\prime}=0$, and the twist is a translation.

In the Theory of Screws, a^{\prime} is always regarded as a small quantity. When this is the case, the result of the composition of any number of twists is independent of the order of their application.

If a rigid body is not at rest, its movement must be at every movement a twisting motion about some instantaneous vector-screw.

An instantaneous twisting motion may be completely represented by a vector-screw a of pitch p_{a}, which may be either positive or negative, and a

* Trans. Roy. Ir. Acad., vol. xxv., p. 159 (1871). See also "Treatuse," p. 7.
scalar a' which may be either positive or negative, and which is termed the twist velocity of the motion.

The instantaneous twisting motion is formed by compounding (1) a motion of rotation, and (2) a motion of translation.
(1) The motion of rotation is right-handed or left-handed about the vector on the vector-screw, according as a^{\prime} is positive or negative. In this we see the adrantage of the rector-screw over the screr. Had it not been for the rector, we should have hall no means of indicating the dircetion of the rotation in the specification of the twist.

The angular velocity of this rotation is a^{\prime} radians per unit of time.
(2) The motion of translation is in the sane direction as the vector, or in the opposite direction according as $\boldsymbol{a}^{\prime} p_{a}$ is positive or negative.

If a be the angular velucity with which a changes, then the numerical value of the velocity of translation is

$$
\left(\dot{a}^{2} p_{a}{ }^{2}\right)
$$

Th show how the employment of the vector-screw enables all possible conditions of the Lwisting motion to be specified, we observe that

If $p_{a}>0$ and $a^{\prime}>0$, the rotation is right-handed, and the translation is with the vector.

If $p_{a}<0$ and $a^{\prime}>0$, the rotation is right-lianded, and the translation is wainst the vector:

If $P_{a}>0$ and $a^{\prime}<0$, the rotation is lefl-handed, and the translation is against the vector.

If $h_{0}<0$ and $a^{\prime}<0$, the rotation is left-handen, and the translation is with the vector:

(1) That the vector is normal to the plane of the couple,
hut alsu
(2) That the couple tends to give a body a right-handed rotation about that vectur.

A wrench may be completely specilied by a vector-serew a (of pitch p_{a}),
 is producerl by the combination of (1) a force, and (2) a couple.
(1) The intmaty of the forre is $a^{\prime \prime}$ muits of force, and its tendency is with the vertor or arainst the wern, anemeng as $a^{\prime \prime}$ is positive or negative.
(2) The (a,mpe in to lie right-hamind on left-handed about the vector, according as $a^{\prime \prime} p_{a}$ is positive or negative.

The numerical value of the moment of the couple is

$$
\left(a^{\prime \prime} \cdot \rho^{\prime} a^{\circ}\right)
$$

If p_{a} is zero, the wrench is merely the force $a^{\prime \prime}$. If p_{a} is infinite, then a finite wrench is possible only when $a^{\prime \prime}$ is zero. In this case the wrench reduces to a couple.

We have now to lay down the rule for discriminating as to which of the two angles θ or $360^{\circ}-\theta$, between a pair of non-intersecting vector-screws shall be designated as the right-handed angle between those vector-screws.

Let P be a point on one vector-screw a, and Q be a point on the other vector-screw β, such that $P Q$ is the common perpendicular to a and β. Inagine a to receive such a right-handed rotation through an angle θ with respect to the vector from P to Q, as shall bring the unit-vector on a to point in the same direction as the unit-vector on β, then θ is said to be the righthanded angle between β and the original position of \boldsymbol{a}.

If the two vector-screws were in the same plane, the vector $P Q$ is evanescent, the construction would break down, and consequently our means of discriminating between the right-handed angle and the left-handed angle have vanished.

A convenient practical rule for finding the right-handed angle between a pair of vector-screws may be obtained by the hands and the dial of a watch, it being observed of course that the hands are not coplanar.

The hands are taken to be the axes of two non-intersecting vector-screws, the vectors of which point outwards from the centre along the hands. The hour indicated by the minute-hand (i.e., the uppermost hand) is subtracted from that indicated by the hour-hand. The difference turned into angle at the rate of 30° per hour is the right-handed angle between the two screws. For example, if the minute-hand was at III, and the hour-hand at V , the difference is two hours, and the right-handed angle is 60°. If the minute hand is at I and the hour hand at X, the difference is 9 hours, and the righthanded angle is 270°. If the minute-hand is at XI and the hour-hand is at II, the difference is XII + II - XI $=3^{\mathrm{h}}$, and the right-handed angle of the two screws is 90°. Finally, if the minute-hand be at XII, the hourhand itself shows the right-handed angle.

In a figure representing a pair of vectorscrews parallel to the plane of the paper, the analogy of the hands of a watch suggests as a useful convention that the longer line $O A$ shall be above $O B$. Of course in this case $O A$ and $O B$ cannot represent the lengths of the vectors on the two vector-screws, for these by hypothesis are both unit-vectors.

Fig. 1

The necessity for a clear understanding as to the distinction hatwen the
right-handed angle and the left-handed angle between two vector-screws will be obvious from the following considerations:-

The angle between two screws (i.e., not vector-screws) is an ambiguous expression ; the angle may mean $\boldsymbol{\theta}$, or $180^{\circ}-\boldsymbol{\theta}$, or $180^{\circ}+\boldsymbol{\theta}$, or $360^{\circ}-\boldsymbol{\theta}$, just as in the case of the angle between two lines.

The angle between two vectors is not ambiguous to the same extent; it can only be θ or $360^{\circ}-\theta$, if we agree that we are to measure the angle between vectors diverging from their point of intersection.

But it is worthy of special note that when the two vectors are not in the same plane, as, for example, when they are the vectors on two nonintersecting rectur-schews, we can distimguish geometrically one of the two
 hefthandent angle. Thas the righthambed angle hetween two vector-screws whinh 小w mon interseet is free from all ambiguity; and it may be any angle between 0° and 360°.
 virtual rantlioment. This lies intered, at the eommencement of our subject: lut the explosion of the vithal coefticient as it has been usel hitherto has,

 henceforth renoved. The two screws involved each receives the aldition of Whe mit-wint. hy whim they are transimmed into vectur-serews; and then

 given.
 . Whtht th his. -r.in it fir-t, it wis hhin that a ditticulty had been removed from the fommana of the Thany wews. I therefore desire that this whemation thall has at fun in thers of memmen which the Acarlemy have so kindly received from me for so many years.
 watk hm. whin a Buly maken a sumll twist of amplitule a' about one

[^7]vector-screw a, while at the same time the body is acted upon by a wrench of intensity $\beta^{\prime \prime}$ on another vector-screw β.

We denote by θ the right-handed angle between a and β. We take P a point on a, and Q a point on β, such that $P Q$ is at right angles both to a and β, and of course $P Q=d$ is the shortest distance between a and β.

The wrench on β is composed
(1) of a force of $\beta^{\prime \prime}$ units acting on Q, and in the direction of the vector on β; and
(2) of a couple of moment $\beta^{\prime \prime} p_{\beta}$ right-handed or left-handed about the vector on β, according as $\beta^{\prime \prime} p_{\beta}$ is positive or negative.
The couple may be represented by the two forces $\beta^{\prime \prime} p_{\beta} l^{-1}$ separated by the distance d. One of these forces acts at P and the other at. Q; and they are normal both to β and $P Q$. We sacrifice no generality by making both $\beta^{\prime \prime}$ and p_{β} positive, so that the couple shall tend to a right-handed rotation about β.

The original wrench on β is thus replaced by three equivalent forces, viz. :-

$$
\begin{array}{rlll}
\beta^{\prime \prime} & \text { acting on } & Q \\
\beta^{\prime \prime} p_{\beta} d^{-1} & \text { acting on } & Q \\
\beta^{\prime \prime} p_{\beta} d^{-1} & \text { acting on } & P
\end{array}
$$

As all the forces forming the wrench are thus brought to bear either at P or at Q, it follows that in the determination of the virtual moment we are only concerned with the displacements of the two points P and Q.

The twist about the vector-screw a gives to P a displacement $a^{\prime} p_{a}$ in the direction of the vector on a. The same twist produces two displacements in Q, to wit, $a^{\prime} p_{a}$, in the direction of the vector on \boldsymbol{a}, and $\boldsymbol{a}^{\prime} d$, which lies in the normal to \boldsymbol{a} and $P Q$, and tends in the direction of a right-handed rotation about $\boldsymbol{\alpha}$.

There is thus one virtual moment at P, but there are four at Q; for each of the two displacements of Q will have a virtual moment with each of the two forces at Q. The algebraic sum of these five quantities expresses the virtual moment of the original twist and the original wrench.

Fig. 2 shows the vector-screw a projected down on the plane of the paper, which is supposed to contain β, and to which $Q P$ is normal. The actual situation of a is above the plane of the paper; and this is suggested in fig. 2 by making a longer than

Fio. 2. β. With this agreement it is obrious from the definition that θ and not $360^{\circ}-\boldsymbol{\theta}$ is the right-handed angle between the two screws a and β.
R. I. A. proc., VOL. xXViII, Segt. A.

Fig. 3 is in the plane drawn through P and normal to $P Q$. Thus fig. 3 represents a plane above the plane of fig. 2.

Fig. 4 is in the plane of fig. 2 ; i.e., it is the plane drawn through Q and normal to $Q P$.

In figs. . 3 and \pm we represent the three forces into which the wrench has been analyzed, and also the one displacement of P and the two displacements of Q. The displacements are shown by the clotted lines and the forces by continuous lines.

As the body is translated throngh the distance ápa; in the direction of a this displacement zust be assigned both to P in fig. $: 3$, and to Q in fig. 4 .

The rotation a about a is withont effect on P, and therefore does not alpear in fig. 3. But this rotation displaces Q, as shown in fig. 4 , through the listance a'd. The direction of this displacement in fig. 4 is determined by remembering that the rotation is right-hambed about a, and that a is above the plane of the paper in fig. 4 .

Fro.

Fin. 4.

The dirmetions wiven the forces $\beta^{\prime \prime} \beta^{\prime} \beta^{\prime-1}$ in liss. is and 4 are such as to make the couple which they form right-handed with regard to β.

The wimblament at P^{\prime} is aremptingly expressed ly the single term

$$
-a^{\prime} \beta^{\prime \prime} \beta_{a} \beta_{\beta^{\prime}} l^{-1} \sin \theta .
$$

The virtual moment at Q, fig. 4 , is the sum of 4 terms.
The virtual moment of $\beta^{\prime \prime}$ and " p_{0} is $+\pi^{\prime} \beta^{\prime \prime} p_{a} \cos \theta$,

$$
\begin{aligned}
& \because \quad " \beta^{\prime \prime} \quad " a^{\prime} d \quad, \quad-a^{\prime} \beta^{\prime \prime} l \sin \theta \text {, } \\
& \left." \quad n \quad \beta^{\prime \prime} p_{\beta^{\prime}} l^{-1} \quad n \quad a^{\prime} p_{a} \quad n+u^{\prime} \beta \beta^{\prime \prime} p_{a}\right]_{\beta}\left(l^{-1} \sin \theta\right. \text {, } \\
& " \quad " \quad \beta^{\prime \prime} p_{\beta^{\prime \prime}}{ }^{-1} \quad, a^{\prime} \lambda_{a} \quad,+a^{\prime} \beta^{\prime \prime} p_{\beta} \cos \theta \text {. }
\end{aligned}
$$

Aromblate the fixe trim-, whin collotively form the virtual moment of the wrench on β and the twist about a, it is seen that the virtual
moment at P is cancelled by the third term in the virtual moment at ℓ, and that the final result is

$$
\begin{equation*}
\left.a^{\prime} \beta^{\prime \prime}\left\{\left(p_{\alpha}+p_{\beta}\right) \cos \theta-d \sin \theta\right\}\right\} . \tag{1}
\end{equation*}
$$

We have next to consider the effect of an interchange which, instead of assigning the wrench to β and the twist to a, makes the twist belong to β and the wrench to a. The problem may be enunciated as follows:-

It is required to find the virtual moment when a body receives a twist of small amplitude β^{\prime} about the vector-screw β; while at the same time it is acted upon by a wrench of intensity $a^{\prime \prime}$ about the vector screw a.

The answer is obtained by the interchange of a and β in the expression just proved for the virtual moment. It is first of all to be noticed that this interchange does not alter the expression

$$
\left(p_{\alpha}+p_{\beta}\right) \cos \theta-\ell \sin \theta
$$

in any way whatever, for $\left(p_{a} \times p_{\beta}\right)$ is of course unchanged, and remembering the definition of the right-handed angle between two screws, it is easily seen that the right-handed angle between a and β is also the right-handed angle between β and a. Thus the interchange of a and β is devoid of effect on θ, nor is d altered, for this is a signless quantity. As the quantity

$$
\left(p_{\alpha}+p_{\beta}\right) \cos \theta-d \sin \theta
$$

is unaltered by the interchange of a and β, the only alteration in the virtual moment caused by the interchange of a and β lies in the factor outside the bracket, which becomes $a^{\prime \prime} \beta^{\prime}$ instead of $a^{\prime} \beta^{\prime \prime}$. Thus the required result is

$$
a^{\prime \prime} \beta^{\prime}\left\{\left(p_{a}+p_{\beta}\right) \cos \theta-d \sin \theta\right\}
$$

The virtual coefficient is the name given to that symmetrical function of two vector-screws which is expressed by

$$
\begin{equation*}
\varpi_{\alpha \beta}=+\frac{1}{2}\left\{\left(p_{\alpha}+p_{\beta}\right) \cos \theta-d \sin \theta\right\} \tag{2}
\end{equation*}
$$

where $\boldsymbol{\theta}$ is the right-handed angle between the two screws.
This has of course been the expression so long used in the Theory of Screws. The particular point now brought out is that to make the virtual coefficient so written universally valid exactly as it stands, it is necessary that the two screws shall be vector-screws, and that θ shall be the right-handed angle between them.

If the vector-screw β coincides with the vector-screw a, then $\mu_{\beta}=\rho_{a}$, $\theta=0, d=0$; and, consequently, the virtual coefficient reduces simply to p_{a}. That this reduction shall take place is the principal reason why the factor $\frac{1}{3}$ has been introduced into the function which defines the virtual cocflicient.

The convenience arising from our adoption of the right-honded angle between two vector-screrss, as one of the elements indicating their relative position, may be illustrated by showing the inconvenience that would arise if we adopterl another angle which may or may not be the right-handed angle, namely, the acute angle between the two screws.

In fig. $\overline{5}$ the acute angle between a and β is θ, whether a be above β or - $\quad \beta$ above a. But, in the former case, the virtual coefficient would be
d

$$
\frac{1}{2}\left\{\left(p_{\alpha}+p_{\beta}\right) \cos \theta-d \sin \theta\right\},
$$

anl, in the latter, it can easily be proved that the virtual coefficient would be
Fic. 5.

$$
\frac{1}{8}\left\{\left(p_{a}+p_{\beta}\right) \cos \theta+d \sin \theta\right\} .
$$

We annal this change of sign in the secmen term ly agreeing that the angle t. ln amplated in the expessinn of the virtual conflicient shall be the righthandel ande. When a is ahose β, this angle is θ : but when a is below β,
 complime is alwise thlo nerative and ambiguity is escaped when the atran 0 i= 1 mberstand tw the righthanded angle letween the two vector-
 lakint the lotthamblangle for 0 . We have prefermel to take the right-
 with which we had alrearly been familiar.

Wwins 6 the symmery of the virtual aofficient as respects the two

 disturb the equilibrium of a boily only free to twist about β.
 It is abmblaty - fanso in the peoceline memoris that the dretrine of reciprocal screws is fundamental in the present theory.

 veturasmot presuming only that in this more general case the right-

 do not now count integral multiples of 360°.)

[^8]Let P, Q be the two points in which any two screws a and β are respectively intersected by their common perpendicular. If we imagine a to be rotated in a right-handed direction about the vector $P Q$ until it becomes parallel to β, the angle θ through which a has been turned is the right-handed angle between β and the original position of α. But if we then continue the rotation of a for another 180° in the same direction, it will, in the alsence of the indicating vectors, resume precisely the same position with regard to β, so that $180^{\circ}+\theta$ has just as much claim as θ to be recyarded as the right-handed angle between the screws α and β. If in the expression already found for the virtual coefficient (2) we increase $\boldsymbol{\theta}$ by 180°, the magnitude is unaltered though the sign is changed.

Thus the virtual coefficient of two screws is definite in magnitude but indefinite in sign. In this respect the virtual coefficient of two screws offers a parallel to the cosine of the angle between two lines.

The virtual coefficient of two vector-screws is definite in magnitude aud not indefinite in sign. This is, of course, parallel to the case of the cosine of the angle between two vectors.

The only indefiniteness in the right-handed angle between two screws which do not intersect is an integral multiple of 180°.

If two vector-screws are reciprocal, they will remain reciprocal if the directions of either or both of the vectors are reversed. In speaking of reciprocal vector-screws we may therefore omit the word 'vector'; for the relation indicated is irrespective of the sense of direction on either screw.

II.-On the Composition of Twists or Wrenches on Vector-Screws.

Let $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ be the amplitudes of the twists on three vector-screws a, β, γ; the relations between the three amplitudes and the three screws being such that the body after the last iwist is restored to the same place which it occupied before the first.

Let $\boldsymbol{\eta}^{\prime \prime}$ be the intensity of a wrench on any fourth vector-screw η. Then the virtual moment of this wrench while the body receives the twist a' is $2 \eta^{\prime \prime} a^{\prime} \varpi_{a n}$. Hence the total work done in the course of the three twists is

$$
\begin{equation*}
2 \eta^{\prime \prime} a^{\prime} \varpi_{\alpha \eta}+2 \eta^{\prime \prime} \beta^{\prime} \varpi_{\beta \eta}+2 \eta^{\prime \prime} \gamma^{\prime} \varpi_{\gamma \eta} \tag{3}
\end{equation*}
$$

As the body is restored to its uriginal position atter the completion of the three twists, the expressimn just written must be zero, whatever be the screw n or whatever be the magnitude $\eta^{\prime \prime}$: we therefore have*

$$
\begin{equation*}
a^{\prime} \varpi_{\alpha \eta}+\beta^{\prime} \varpi_{\beta \eta}+\gamma^{\prime} \sigma_{r n}=0 \ldots \tag{4}
\end{equation*}
$$

From this we can prove the following fundamental theorem:-
If twists of amplitudes $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ about three vector-screws a, β, γ neutralize each other when applied to the same rigid body, then wrenches of intensities $a^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}$ on the same vector-screws a, β, γ will be in equilibrium when applied to a rigid body of

$$
\begin{equation*}
a^{\prime \prime}: \beta^{\prime \prime}: \gamma^{\prime \prime}:: a^{\prime}: \beta^{\prime}: \gamma^{\prime} . \tag{5}
\end{equation*}
$$

This is a consequence of the symmetry of the virtual coefticient of two vector-screws with regard to these vector-screws;* for, from the condition stated (5), the equation (土) may be written

$$
\begin{equation*}
a^{\prime \prime} w_{a \eta}+\beta^{\prime \prime} w_{\beta \eta}+\gamma^{\prime \prime} w_{m}=0 . \tag{6}
\end{equation*}
$$

If η^{\prime} be the amplitule of a small twist about η, then (6) may be expressed thus

$$
\begin{equation*}
2 \eta^{\prime} a^{\prime \prime} w_{a n}+2 n^{\prime} \beta^{\prime \prime \prime} \sigma_{\beta_{n}}+2 n^{\prime} \gamma^{\prime \prime} \sigma_{r m}=0 . \tag{7}
\end{equation*}
$$

This slows that three wrenches of intensities $a^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}$ on the vector-screws a, β, γ do collectively no work when the body receives a twist about any screw whatever. It follows that three wrenches must equilibrate, and the desired theorem bas heen proved.

It thus appears that cwists and wrenches are compounded by laws which can be derived from (4) and (6) by merely attributing to n various positions and pithest Wi may commence hy showing that when wrenches of intensities $a^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}$ respectively on three vector-serews a, β, γ equilibrate, then
 the third perpendicularly.

We olserve that the virtual creflicient of two screws which intersect at right angles is zero; for then brith $d=0$ and $\cos \theta=0$. If therefore we take for η : my srew on the conmm perpmolicular intersecting a and β, we have
and therefore from (6)

$$
w_{a n}=0 \text { and } \varpi_{\beta \eta}=0,
$$

$$
\gamma^{\prime \prime} \omega_{m}=0 .
$$

We cannot satisfy this by making $\gamma^{\prime \prime}=0$; for then the two wrenches on
 identical screws: rejecting this case, we have

$$
\bar{w}_{r m}=0 .
$$

If as ussual θ is the shortest distance between γ and η, and θ the righthanded angle between them, we infer that

$$
\left(p_{\gamma}+p_{\eta}\right) \cos \theta-\lambda \sin \theta=0 .
$$

[^9]But this must be true for all values of p_{η} whence

$$
\cos \theta=0 \quad \text { and } \quad d=0
$$

and accordingly η must also intersect γ at right angles.
We shall now investigate generally the conditions which must be satisfied if a body having received three twists of amplitudes $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ about three vector-screws a, β, γ respectively is to be restored by the third twist to the position it occupied before the first.

It has just been shown that the conditions require a, β, γ to be intersected at right angles by a common axis which we shall suppose to be normal to the plane of the paper at 0 , fig. 6 .

Fig. 6.
We now take a screw η which is subject to no other limitation than that it shall also intersect the same axis at right angles.

In drawing the figure I have made

$$
O_{\eta}>O_{a}>O \beta>O_{\gamma}
$$

as has been already indicated. This is the conventional device for indicating that O_{η} is higher above the plane of the paper than $O a$, that $O a$ is higher than $O \beta$, and that $O \beta$ is higher than $O \gamma$.

By θ_{η} we may understand the angle measured from XII on a watch-dial in the direction of increasing figures to $O \eta$ which is the projection of η on the dial. Similar meanings attach to $\theta_{\alpha}, \theta_{\beta}, \theta_{\gamma}$.

As η is above \boldsymbol{a}, the right-handed angle between η and \boldsymbol{a} is

$$
\eta O a=\theta_{\alpha}-\theta_{\gamma}
$$

The respective distances of η and \boldsymbol{a} above the plane of the paper are z_{η} and \approx_{a}, and as the former of these is the greater, the shortest distance between η and " is $z_{n}-z_{\alpha}$.

We thus obtain the virtual coefficient of η and a by the following equation, which is succeerlet by the two similar equations for η and β, and η and γ :-

$$
\left.\begin{array}{l}
2 \varpi_{\eta a}=\left(p_{a}+p_{\eta}\right) \cos \left(\theta_{\alpha}-\theta_{\eta}\right)-\left(z_{\eta}-z_{\alpha}\right) \sin \left(\theta_{\alpha}-\theta_{\eta}\right. \tag{8}\\
2 \sigma_{\eta \beta}=\left(p_{\beta}+p_{\eta}\right) \cos \left(\theta_{\beta}-\theta_{\eta}\right)-\left(z_{\eta}-z_{\beta}\right) \sin \left(\theta_{\beta}-\theta_{\eta}\right) \\
2 \varpi_{\eta \gamma}=\left(p_{\gamma}+p_{\eta}\right) \cos \left(\theta_{\gamma}-\theta_{\eta}\right)-\left(z_{\eta}-z_{\gamma}\right) \sin \left(\theta_{\gamma}-\theta_{\eta}\right)
\end{array}\right\}
$$

As the three twists are to neutralize, we must have from (4)

$$
a^{\prime} \varpi_{\eta \alpha}+\beta^{\prime} \varpi_{\eta \beta}+\gamma^{\prime} \varpi_{\eta \gamma}=0,
$$

and by substituting in this the values just fouml for
we see that

$$
\bar{\varpi}_{\eta a}, \quad \varpi_{\eta \beta}, \quad \varpi_{\eta \gamma},
$$

$$
\begin{align*}
0= & +a^{\prime}\left(p_{a} \cos \theta_{a}+z_{a} \sin \theta_{a}\right) \cos \theta_{\eta}, \\
& +\beta^{\prime}\left(p_{\beta} \cos \theta_{\beta}+z_{\beta} \sin \theta_{\beta}\right) \cos \theta_{\eta}, \\
& +\gamma^{\prime}\left(p_{\gamma} \cos \theta_{\gamma}+z_{\gamma} \sin \theta_{\gamma}\right) \cos \theta_{\eta}, \tag{9}\\
& +a^{\prime}\left(p_{a} \sin \theta_{a}-z_{\alpha} \cos \theta_{a}\right) \sin \theta_{\eta}, \\
& +\beta^{\prime}\left(p_{\beta} \sin \theta_{\beta}-z_{\beta} \cos \theta_{\beta}\right) \sin \theta_{\eta}, \\
& +\gamma^{\prime}\left(p_{\gamma} \sin \theta_{\gamma}-z_{\gamma} \cos \theta_{\gamma}\right) \sin \theta_{\eta}, \\
& +\left(a^{\prime} \cos \theta_{a}+\beta^{\prime} \cos \theta_{\beta}+\gamma^{\prime} \cos \theta_{\gamma}\right)\left(p_{\eta} \cos \theta_{\eta}+z_{\eta} \sin \theta_{\eta}\right), \\
& +\left(a^{\prime} \sin \theta_{a}+\beta^{\prime} \sin \theta_{\beta}+\gamma^{\prime} \sin \theta_{\gamma}\right)\left(p_{\eta} \sin \theta_{\eta}-z_{\eta} \cos \theta_{\eta}\right),
\end{align*}
$$

This erpation must he satisfied for all values of p_{n}, for all values of θ_{n}, and for all values of z_{n}. These amditions will be fulfilled if, but only if, the following four equations are true:-

$$
\begin{align*}
& \left.\quad+a^{\prime} \mid p_{a} \cos \theta_{\alpha}+z_{\alpha} \sin \theta_{a}\right), \\
& \left.\quad+\beta^{\prime} p_{\beta} \cos \theta_{\beta}+z_{\beta} \sin \theta_{\beta}\right), \\
& +\gamma^{\prime \prime}\left(p_{\gamma} \cos \theta_{\gamma}+z_{\gamma} \sin \theta_{\gamma}\right)=0 . \tag{10}\\
& +a^{\prime}\left(p_{a} \sin \theta_{\alpha}-z_{\alpha} \cos \theta_{\alpha}\right), \\
& +\beta^{\prime}\left(\rho_{\beta}^{\prime} \sin \theta_{\beta}-z_{\beta} \cos \theta_{\beta}\right), \\
& +\gamma^{\prime}\left(p_{\gamma} \sin \gamma_{\gamma}-z_{\gamma} \cos \theta_{\gamma}\right)=0 . \tag{11}\\
& a^{\prime}\left(\cos \theta_{a}+\beta^{\prime} \cos \theta_{\beta}+\gamma^{\prime} \cos \theta_{\gamma}=0 .\right. \tag{12}\\
& a^{\prime} \sin \theta_{a}+\beta^{\prime} \sin \theta_{\beta}+\gamma^{\prime} \sin \theta_{\gamma}=0 . \tag{13}
\end{align*}
$$

 of the amplitule-ratios of the neutralizing twists.

From (12) and (13) we obtain

$$
\begin{equation*}
a^{\prime}: \beta^{\prime}: \gamma^{\prime}:: \sin \left(\theta_{\beta}-\theta_{\gamma}\right): \sin \left(\theta_{\gamma}-\theta_{\alpha}\right): \sin \left(\theta_{\alpha}-\theta_{\beta}\right) \tag{14}
\end{equation*}
$$

Thus we learn that when three twists on three vector-screws neutralize, the amplitude of each twist is proportional to the sine of the angle between the other two.* When the signs of the amplitudes are also requirert, the formula (14), taken in conjunction with fig. 6 , must also be attended to.

It remains to investigate the way in which the three vector-screws are related. It will be convenient for this purpose to suppose that the two screws a and β are given so that $p_{\alpha}, p_{\beta}, \theta_{\alpha}, \theta_{\beta}, z_{\alpha}, z_{\beta}$ are all known; and we shall seek the equations connecting these quantities with $p_{\gamma}, \theta_{\gamma^{\prime}}, z_{\gamma^{*}}$ As γ is now regarded as a current vector-screw, we shall write p, θ, \approx for $p_{\gamma}, \theta_{\gamma}, z_{\gamma}$

We can eliminate z by multiplying (10) by $\cos \theta$ and adding it to (11), after multiplication by $\sin \theta$. If at the same time we substitute for $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ from (14), we obtain

$$
\begin{align*}
p \sin \left(\theta_{\beta}-\theta_{\alpha}\right)= & +p_{\alpha} \cos \left(\theta_{\alpha}-\theta\right) \sin \left(\theta_{\beta}-\theta\right) \\
& +p_{\beta} \cos \left(\theta_{\beta}-\theta\right) \sin \left(\theta-\theta_{\alpha}\right) \\
& +z_{\alpha} \sin \left(\theta_{\alpha}-\theta\right) \sin \left(\theta_{\beta}-\theta\right) \tag{15}\\
& +z_{\beta} \sin \left(\theta_{\beta}-\theta\right) \sin \left(\theta-\theta_{\alpha}\right) .
\end{align*}
$$

If we introduce three new quantities, A, B, C, which are constant so far as p and θ are concerned, and defined by the formulæ

$$
\begin{align*}
A & \equiv-p_{\alpha} \sin \theta_{\alpha} \cos \theta_{\beta}+p_{\beta} \cos \theta_{a} \sin \theta_{\beta}+\left(z_{\alpha}-z_{\beta}\right) \cos \theta_{\alpha} \cos \theta_{\beta}, \tag{16}\\
2 B & \equiv\left(p_{\beta}-p_{a}\right) \cos \left(\theta_{\alpha}+\theta_{\beta}^{i}\right)+\left(z_{\beta}-z_{\alpha}\right) \sin \left(\theta_{\alpha}+\theta_{\beta}\right), \tag{17}\\
C & \equiv+p_{\alpha} \cos \theta_{\alpha} \sin \theta_{\beta}-p_{\beta} \cos \theta_{\beta} \sin \theta_{\alpha}+\left(z_{\alpha}-z_{\beta}\right) \sin \theta_{\alpha} \cos \theta_{\beta}, \tag{18}
\end{align*}
$$

with this substitution we may write equation (15) as follows

$$
\begin{equation*}
p \sin \left(\theta_{\beta}-\theta_{\alpha}\right)=A \sin ^{2} \theta+2 B \sin \theta \cos \theta+C \cos ^{2} \theta \tag{19}
\end{equation*}
$$

If p be a maximum or minimum, then of course

$$
\begin{equation*}
(A-C) \sin 2 \theta+2 B \cos 2 \theta=0 \tag{20}
\end{equation*}
$$

There are thus two values of θ differing by 90°, of which each gives a stationary value of p. We shall take these screws of stationary pitch for a and β, and we shall so adjust the line from which θ is measured that $\theta_{\alpha}=0$ and $\theta_{\beta}=90^{\circ}$. The formula (20) must thus reduce to $\sin 2 \theta=0$, whence $B=0$. If we substitute in the general expression for $2 B,(17)$ we obtain

$$
\begin{equation*}
z_{\beta}-z_{\alpha}=0 \tag{21}
\end{equation*}
$$

from which we learn that the two screws of stationary pitch in the cylindroid, or in what we may also call a two-system of screws, intersect at right angles.

The general expressions also give in this case $A=p_{\beta}$ and $C=p_{a}$,
and thus we have the following remarkable expression for the pitch of the screw corresponding to θ, viz.

$$
\begin{equation*}
p=\cos ^{2} \theta p_{a}+\sin ^{2} \theta p_{\beta} \tag{22}
\end{equation*}
$$

This is of course an elementary result in the Theory of Screws,* but this method of obtaining it from the virtual coeflicient has not been given in the previous papers.

We can introluce much simplitication into the formula (10) and (11) ly taking as migin the $l^{n i n}$ which is so obviously suggested by being the intersection of the two screws of stationary pitch. We then have $z_{\alpha}=z_{\beta}=0$, and as $\theta_{\alpha}=0$ and $\theta_{\beta}=90^{\circ}$, we find (14)

$$
a^{\prime}: \beta^{\prime}: \gamma^{\prime}:: \cos \theta: \sin \theta:-1 .
$$

Thus formulie (10) and (11) become respectively

$$
\begin{aligned}
& p_{a} \cos \theta-p \cos \theta-z \sin \theta=0 \\
& \rho_{\beta} \sin \theta-p \sin \theta+z \cos \theta=0
\end{aligned}
$$

whence

$$
\begin{equation*}
z=\left(\mu_{a}-\mu_{\beta}\right) \sin \theta \cos \theta \tag{23}
\end{equation*}
$$

If the line which all the screws intersect is the axis of z, the surface on Which all the somes. lien, su well known as the cylindminl, \dagger has as its equation

$$
\begin{equation*}
z\left(x^{2}+y^{2}\right)=\left(p_{a}-p_{\beta}\right) x y . \tag{24}
\end{equation*}
$$

This is promaps the must satisfactury method of investigating the equation of the cylimitroid so far as the Theory of screws is concemed. In the deduction of the equation of the surface previonsly given \ddagger I assumed that the two principal serews of the cylimpond intersected at right angles.
 method here followed seetns not open to ohjection.

As a further illustration of the formula connected with the virtual enctlicients, we may prove the following theorem:-

If in a 2 -system p_{1}, p_{2}, p_{3} are the pitches of three vector-screws $1,2,3$,
 screw also perpenticular to the axis of the 2 -system, show that we have the following three equations :-

$$
\left.\begin{array}{l}
p_{1} \sin \left(\theta_{2}-\theta_{2}\right)+\varpi_{12} \sin \left(\theta_{1}-\theta_{3}\right)+w_{13} \sin \left(\theta_{2}-\theta_{1}\right)=0, \tag{25}\\
\varpi_{12} \sin \left(\theta_{2}-\theta_{2}\right)+p_{2} \sin \left(\theta_{1}-\theta_{2}\right)+\varpi_{23} \sin \left(\theta_{2}-\theta_{1}\right)=0, \\
\varpi_{13} \sin \left(\theta_{3}-\theta_{2}\right)+\varpi_{23} \sin \left(\theta_{1}-\theta_{3}\right)+p_{3} \sin \left(\theta_{2}-\theta_{1}\right\}=0,
\end{array}\right\}
$$

[^10]in which
\[

\left.$$
\begin{array}{l}
2 \varpi_{23}=\left(p_{2}+p_{3}\right) \cos \left(\theta_{3}-\theta_{2}\right)-d_{23} \sin \left(\theta_{3}-\theta_{2}\right), \tag{26}\\
2 \varpi_{31}=\left(p_{3}+p_{1}\right) \cos \left(\theta_{3}-\theta_{1}\right)-d_{31} \sin \left(\theta_{3}-\theta_{1}\right), \\
2 \varpi_{12}=\left(p_{1}+p_{2}\right) \cos \left(\theta_{2}-\theta_{1}\right)-d_{12} \sin \left(\theta_{2}-\theta_{1}\right) .
\end{array}
$$\right\}
\]

The three equations (25) are obtained immediately by expressing that three neutralizing twists on $1,2,3$ respectively can do no work against a wrench on 1 , or on 2 , or on 3 .

In the first group of equations (25) the quantities

$$
\sin \left(\boldsymbol{\theta}_{s}-\boldsymbol{\theta}_{2}\right) \quad \sin \left(\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{3}\right), \quad \sin \left(\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{1}\right),
$$

being the amplitudes of the three twists which neutralize, are formed by taking the angles cyclically. For this purpose, the planes in which the different vector-screws lie are not material.

It might hastily be assumed that the quantities

$$
\sin \left(\theta_{3}-\theta_{2}\right), \quad \sin \left(\theta_{3}-\theta_{1}\right), \quad \sin \left(\theta_{2}-\theta_{1}\right),
$$

which occur in the equations (26) as the coefficients of d_{23}, d_{31}, d_{12}, should also be formed by taking the angles $\theta_{1}, \theta_{2}, \theta_{\mathrm{s}}$ cyclically. But to do so would have made the formule erroneous. The angles here involved are in each case the right-handed angles between the corresponding pair of vector-screws. The order of superposition of these vectors-that is to say, the relative positions of the planes in which they lie-have to be carefully attended to. It will, of course, be remembered that in obtaining the expression of the virtual coefficient, it was particularly specified that the angle introduced into the expression must invariably be the right-handed angle between the two vectorscrews.

Right-handed and left-handed Pairs of Lines.

A pair of lines which do not lie in the same plane and are not at right angles may be distinguished as right-handed or left-handed.

A disc $L M$, being supposed to be inserted between the two lines $A B$ and $A^{\prime} B^{\prime}$ in fig. 7, and between $P Q$ and $P^{\prime} Q^{\prime}$ in fig. 8, enables us to represent that $A B$ lies over $A^{\prime} B^{\prime}$, and that $P Q$ lies over $P^{\prime} Q^{\prime}$.

As a convenient mnemonic we may fancy the right arm $A B$ crossel over the left $A^{\prime} B^{\prime}$ to form fig. 7 , and the left arm $Q P$ crossed over the right $\ell^{\prime} P^{\prime}$ to form fig. 8. Thus we may appropriately distinguish the two figures as right-handed and left-handed, so long as the two lines of each pair do not intersect, and so long as the angles $A O A^{\prime}$ or $P O P^{\prime}$ are both acute. Suppose $\angle A O A^{\prime}$ was increased up to 90°, then a critical stage is reached; and the distinction between a right-handed pair and a left-handed pair will at that
moment vanish. If $A O A^{\prime}$ exceeds 90°, then the lines $A B$ and $A^{\prime} B^{\prime}$ (fig. 7), having passed the critical point, have become left-handed instead of righthanded. By reflection from a looking-glass, a right-handed pair of lines will appear as a left-handed pair, or vice versa.

We have now to prove two general properties of a cylindroid, which may be thus stated.

The generator which contains the screw of greatest pitch on the cylindroid makes a left-handed pair with every other generator on the surface.

The generatur which contains the serew of least pitch on the cylindroid makes a right-handed pair with every other generator on the surface.

We have from the formula (23)

$$
\begin{equation*}
z=\left(p_{\alpha}-p_{\beta}\right) \sin \theta \cos \theta . \tag{27}
\end{equation*}
$$

Fio. 7.-Right-handed.

Fio. 8.-Left-handed.

If $\nu_{0}>\nu_{B}$ and $\theta \neq 90^{\circ}$, then z is positive: hence, observing the direction in which θ is measured (fig. 6), and that z is above the plane of the paper, it in whinus that the zeneratw defined ly : and θ is ahove the plane of the parer : and from the pustion of θ this generator is plainly lefthanded with regard to a, for which $\theta=0$.

If, however, $\theta \nless 90^{\circ}$, then the corresponding screw is below the plane of the paper; but it is still left-handed with regard to \boldsymbol{a}.

Thus the generator of the cylindroid which contains a is left-handed
 interoer at migh ansles, thot paticulat pair are hoth right-handerl and lefthander\}.

In like manner it can be shown that the generator of the cylindroid which contains β, the screw of least pitch on the surface, is right-handed with regard to every other generator on the surface.

It is instructive to prove the same theorems geometrically as follows:-
Let $A A^{\prime}, B D^{\prime}, C C^{\prime}, D D^{\prime}$ (fig. 9) be a cube of which O is the centre, and diaw $L A I$ through O and $\| A A^{\prime}, B B^{\prime}$, $C C^{\prime}, D D^{\prime}$. Draw $X Y$ through O and $\| C B^{\prime}$, $C^{\prime} B, A D^{\prime}, A^{\prime} D$. Let $A B$ and $C D$ be the bounding screws of the cylindroid, with centre at O and axis LM. We shall suppose that the cylindroid has been made canonical-i.e., that the pitches of the bounding-screws are both zero, and that the pitches of the two principal screws are equal in magnitude and opposite in sign. Any cylindroid can of course be made canonical without any other alteration than the
 addition of a certain magnitude, positive or negative, to the pitches of all the screws it contains.*

From the fundamental property of the cylindroid we see that a twist about any screw on the canonical cylindroid can be resolved into rotations about $A B$ and $C D$. A rotation about $A B$ does not alter the position of any point on $A B$, and consequently the effect of any twist on the cylindroid upon the point L will be the same as if the twist were produced merely by a rotation about $C D$. But remembering that the amplitude of the twist is a small quantity, this is the same so far as L is concerned as a displacement of L along $A B$. In like manner it is shown that the effect on M produced by a twist about any screw on the canonical cylindroid can never be anything but a displacement of M along $C D$.

Consider now the effect on the point L produced by the combination of a right-handed rotation round the vector $X Y$, with a translation parallel to $X Y$. If a^{\prime} be the amplitude of the twist, and p_{a} be the pitch of the screw on $X Y$, and if m be the semiaxis of the cylindroid and equal to $O L$, then $L L_{2}=m a^{\prime}$ is the distance through which L is moved by the rotation. As, however, the total effect of the twist on L is to move L along $A B$, we see that the movement $L L_{z}$ on one side of $A B$ must be compensated by another displacement to the other side of $A B$. This is of course $L L_{1}=a^{\prime} p_{a}$, and consequently for a twist about the vector-screw a, the translation $L L_{\text {, }}$ must be that of a right-handed screw-i.e., p_{a} is positive.

But $A B$ and $X Y$ form a left-handed pair, as do also $X Y^{*}$ and $C D$, and thus the desired theorem has been proved.

If, hnmever, the two bounding screms of the crlindroid had been $C^{\prime} D^{\prime}$ and $A^{\prime} B^{\prime}$, it is plain that $L L_{:}$and $M K_{1}$ must tend in directions opposite to those given in the figure. In this case the pitch of the screw on $X Y$ must be necative. We thus obtain the general result that has been already otherwise proved on p. 34, viz. :-

The screw of smallest pitch on the cylindroid makes a right-handed pair with every other screw on the surface. The screw of largest pitch on the cylindrid makes a left-handed Iair with evert other sorew on the surface.

Thi: theorem may be generalized in the following way, which will show how any one seneratur on the cylindroid is related as to right-handedness or left-handedness to all the remaining generators.

Let AI'J' $P^{\prime \prime}$ fir. 10 he the circular remesentation of the several screws "n a alimhrif. VI is the axis of pitch and A is the point corresponding
 corresponding to any other screw on the cylindroid.

Fin. 10.

Fig. 11.

 whin in perpmolantan tor . It in phan that I will have a relation as to

 P and P^{\prime} intersect, and P and $P^{\prime \prime}$ are at right angles.

[^11]at first that P lies on the semicircle $H A K$; as already shown, each pair of screws are left-handed which lie in that region of the cylindroid defined by HAK.

Let X be a variable screw on the cylindroid which we shall suppose to move in succession over every generator on the surface; and we shall follow the relations as to right-haudedness or left-handedness with the other screws. So long as X is in $H A K$ then P and X are a left-handed pair, and there will be no breach of continuity in their condition until X, moving in the direction of the arrow from P towards P^{\prime}, reaches P^{\prime}. When X has attained this position, the screw corresponding to P and the relation of right-handelness or left-handedness vanish. Thus P^{\prime} is a critical point, so that when X crosses P^{\prime} and enters $P^{\prime} P^{\prime \prime}, P X$ becomes right-handed. This condition remains till X reaches $P^{\prime \prime}$, which is another critical point; for there the two screws P and X are at right angles. As X passes to the other side of $P^{\prime \prime}$ into the region $P^{\prime \prime} H$, it again forms a left-handed pair with P; and this condition remains while X moves through the semicircle $P^{\prime \prime} H A P$ and returns to P.

Thus we see that in fig. 10 the screw corresponding to P makes a righthanded pair with each of the screws on the cylindroid whose representative points lie between P^{\prime} and $P^{\prime \prime}$, while, with every other generator on the surface, P makes a left-handed pair.

If the circumstances had been those represented in fig. 11, then the screws corresponding to P and X would have formed a right-handed pair. This condition would have continued as X advanced in the direction of the arrowhead until the critical point $P^{\prime \prime}$ was reached; and $P X$ would be a left-handed pair so long as X was moving from $P^{\prime \prime}$ to P^{\prime}. At P^{\prime} another critical stage is passed; and P and X would be a right-hauded pair as X moved round through $P^{\prime} K P$.

Thus we see that as fig. 11 is drawn the generator corresponding to P makes a right-handed pair with every generator on the cylindroid except those represented by the points on the are $P^{\prime \prime} P^{\prime}$.

In both figures we see that P and any screw in the hatched portion of the circumference form a left-handed pair, while P and any screw in the cross-hatched portion form a right-handed pair.

As a particular case, we note that, if P coincides with A (fig. 10), then P^{\prime} coincides with $P^{\prime \prime}$, the cross-hatched portion disappears; and consequently every screw on the cylindroid makes a left-handed pair with P.

On the other hand, if P coincides with B (fig. 11), then $P^{\prime} P^{\prime \prime}$ vanishes; and the circle is completely cross-hatched: hence we see that the screw of least pitch on the cylindroid forms a right-handed pair with erery uther screw on the cylimdroid.

These theorems ought indeed to have been incorporated with the earliest parts of the Theory of Screws; but I never noticed them until 1909.

We can now see how to construct a system of pitches on the cylindroid when the ruled surface merely has been given.

Let $2 m$ be the length of the axis of the cylindroid, and let p_{0} be any linear magnitude, positive or negative.

One generator, but only one, can be found on the surface which is righthanded with regard to every other generator on the surface. To this generator we attribute the pitch $p_{0}-m$.

One generatur, hut only one, can also le found on the surface which is left-handed with regard to every other generator on the surface. To this generator we attribute the pitch $p_{0}+m$.

The two rencraturs thus indicated form the two principal screws on the cylindroid; and the pitch of any wher serew on the surface which makes an angle θ with the screw of maximum pitch will be

$$
\left(p_{0}+m\right) \cos ^{2} \boldsymbol{\theta}+\left(p_{0}-m\right) \sin ^{2} \boldsymbol{\theta}
$$

We may here notice the following extension of the theorems just given to the case of the 3 -system :-

The sorw if smathest pitch in a 3 -system forms a right-handed pair with misect to erery ulno somw of the :-systom, and the serew of greatest pitch in the :3-syatem forms a lufthamed fair with respect to every other serew of the 3-system.

Let (1), (2), (只) hre the thre principal serews of the 3 -system where $p_{1}>p_{3}>p_{3}$.

Let θ lue any wher arew if the $:$-system, and $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}$ its coordinates with respect to the three principal screws.

The two wronehes $\theta_{1}^{\prime \prime}, \theta_{2}^{\prime \prime}$ compunal into a single wrench on a serew ϕ lyine on the cylindrail ! 12), and thatefore (utting (3) at right angles.

It is obviuns that ϕ and (3) are the principal screws on the cylindroid (q, i), aml that θ must lio on this rylimumend. As p_{s} is the smallest pitch
 with resud to crery wew on this rylimhand anmeng which ϕ, and therefore θ, is included.

In like momner, if ψ ln any serew an the cylindroid (z), (名), we have θ a solew wh the 'glimhnill (1), ψ : aml as p^{\prime} is the greatest pitch of the
 Thus the required theorem has been proved.

As an illustration of various principles in this section, we may obtain the
locus of the screws of a 2-system, and the law of distribution of the pitch in the following simple manner:-

Let $O X, O Y$ be vectors along the two rectangular screws intersecting at O with pitches p_{1} and p_{2} respectively $\left(p_{1}>p_{2}\right)$.

Let $O A$ be the projection in the plane of $X Y$ of the vector-screw a, which intersects the axis $O Z$ normal to the plane of the paper. As $O X$ has the greatest pitch p_{1}, it must, as just shown, form a lefthanded pair with a; and consequently a is above the plane of the paper at the distance $\%$.

Let us imagine another screw on $O X$ to which the pitch $-p_{1}$ is attributed. Then this is reciprocal

Fig. 12. to the screw on $O X$ with pitch $+p_{1}$; and it is also reciprocal to the screw on $O Y$, inasmuch as $O X$ intersects $O Y$ at right angles. Thus the screw of pitch $-p_{1}$ on $O X$ must be reciprocal to a; because, whenever a screw is reciprocal to two screws on a cylindroid, it is reciprocal to every screw.

Observing that a is above the plane of the paper, the right-handed angle between $O X$ and a is $360^{\circ}-\theta$; and hence we have, from the condition of reciprocity,

$$
\left(p-p_{1}\right) \cos \left(360^{\circ}-\theta\right)-z \sin \left(360^{\circ}-\theta\right)=0
$$

In like manner, observing that a must be reciprocal to a screw of pitch $-p_{2}$ lying on $O Y$, and that $90^{\circ}-\boldsymbol{\theta}$ is the right-handed angle between a and $O Y$,

$$
\left(p-p_{z}\right) \cos \left(90^{\circ}-\theta\right)-z \sin \left(90^{\circ}-\theta\right)=0
$$

But if x, y, z be the coordinates of a point on a, we have $\tan \theta=y / x$.
Whence

$$
x\left(p-p_{1}\right)+y z=0, \quad y\left(p-p_{2}\right)-x z=0 ;
$$

and, eliminating p,

$$
z\left(x^{2}+y^{2}\right)=\left(p_{1}-p_{2}\right) x y
$$

is the equation of the cylindroid; and

$$
p=p_{1} \cos ^{2} \theta+p_{2} \sin ^{2} \theta
$$

The figure is drawn so as to keep in view the suggestive measurement of θ by the watch dial, $O X$ points to XII, and $O Y$ to III. As $p_{1}>p_{2}$, we see that when x and y have the same signs z is positive. Thus the surface rises above the paper at $O X$ to meet the paper again in $O F$.
R. I. A. Proo., VOL. XXVIII., seot. A.

$$
\text { III-On the Pitch Operator } \frac{\partial}{\partial p_{1}}+\frac{\partial}{\partial p_{2}}+\ldots+\frac{\partial}{\partial p_{n}} \text {. }
$$

Let $\theta_{1}, \theta_{2}, \ldots \theta_{n}$ be n-screws belonging to an ($n-1$)-system. If $\theta_{1}^{\prime}, \theta_{2}^{\prime} \ldots \theta_{n}{ }^{\prime}$ be the corresponding amplitudes of n-trists which neutralize, then the work done by a mrench on any screw η in the course of the application of these n-trists must be zero, and consequently

$$
\begin{equation*}
\theta_{1}^{\prime} w_{\theta_{1 n}}+\theta_{2}^{\prime} w_{\theta 2 \eta}+\ldots+\theta_{n}^{\prime} \bar{w}_{\theta_{n n}}=0 . \tag{28}
\end{equation*}
$$

Indeed the netessary and sutficient condition that the n-screws shall belong ti) an in - 1 -rystem may be expressed by saying that in such a case it must he posible to, timd a system of quantities, $\theta_{2}{ }^{\prime}, \theta_{2}^{\prime}$, . . . $\theta_{n}{ }^{\prime}$. independent of η, which shall make this equation true for all possible screws η.

If (2) is tu he satistied for all serews η, it must of cumse be satisfied: if while η bemans otherwise undrangel. we change f in int $f f^{\prime}+h$, where h is any linear quantity.

A- f^{\prime} wnly enters int. the virtual coetricients arn in the several combinations $\left(p_{1}+p_{n}\right),\left(p_{2}+p_{n}\right) \ldots\left(p_{n}+p_{n}\right)$, it is plain that the effect of changing p_{n} into $p_{n}+h$ is just the same as to leave p_{n} unaltered, but to change $p_{1}, p_{2} \ldots p_{n}$ into $\left(p_{1}+h\right),\left(p_{2}+h\right), \ldots\left(p_{n}+h\right)$ respectively.

Thus we have a result already well known in the theory of screws,* that if $\theta_{1} \ldots \theta_{n}$ be n-scress belonging to an $(n-1)$-system, they will
 hy the same quantity h, where h may have any value whatever.
 cylindruid, we know that

$$
p=r_{1} \cos ^{2} \theta+p_{2} \sin ^{2} \theta
$$

which may of course be written thus

$$
p+h=\left(p_{1}+h\right) \cos ^{2} \theta+\left(p_{z}+h\right) \sin ^{2} \theta
$$

We can now define the pitch-operator

$$
\begin{equation*}
د=\frac{\partial}{\partial p_{1}}+\frac{\partial}{\hat{c} p_{2}} \cdots+\frac{\partial}{\partial p_{n}} ; \tag{29}
\end{equation*}
$$

 equation connecting n-screws, which belong to an ($n-1$)-system, then

$$
\Delta F=0 .
$$

If this operation $د$ is arplied to w_{12}, the virtual coefficient of two serews (1) and (2), it gives

$$
\Delta \pi_{12}=\cos ^{\prime} 12
$$

where (12) is the right-handed angle between the screws 1 and 2. This is obvious from the fact that

$$
\begin{equation*}
\varpi_{12}=\frac{1}{2}\left\{\left(p_{1}+p_{2}\right) \cos (12)-d_{12} \sin (12)\right\} . \tag{30}
\end{equation*}
$$

By the help of the pitch-operator, we are able to obtain many formules; and we proceed to give an illustration. We shall first prove the following theorem :-

Let (1), (2), (3) be any three screws of a 2 -system-i.e., a system of vector-screws about which three twists can neutralize-it is required to show that

$$
\begin{equation*}
p_{1} p_{2} p_{3}-p_{1} \varpi_{23}^{2}-p_{2} \pi^{2}{ }_{s 1}-p_{3} \varpi_{12}^{2}+2 \varpi_{23} \pi_{31} \varpi_{12}=0 . \tag{31}
\end{equation*}
$$

If $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ be the respective amplitudes of the three neutralizing twists, and if η be any other screw whatever, then, as already shown,

$$
a^{\prime} \varpi_{1 \eta}+\beta^{\prime} \varpi_{2 \eta}+\gamma^{\prime} \varpi_{3 \eta}=0 .
$$

If we allow the screw η to come successively into coincidence with (1), (2), (3), we have the three following equations:-

$$
\begin{aligned}
& a^{\prime} p_{1}+\beta^{\prime} \omega_{12}+\gamma^{\prime} \varpi_{13}=0, \\
& a^{\prime} \varpi_{21}+\beta^{\prime} p_{2}+\gamma^{\prime} \varpi_{23}=0, \\
& a^{\prime} \varpi_{31}+\beta^{\prime} \varpi_{32}+\gamma^{\prime} p_{3}=0,
\end{aligned}
$$

whence, on elimination of $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$, we obtain the desired result.
The equation (31) must remain true if operated upon by Δ; and we thus obtain

$$
\begin{align*}
& p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}-\varpi_{23}^{2}-\varpi_{31}^{2}-\varpi_{12}^{2} \\
& \quad-2 p_{1} \cos (23) \varpi_{23}-2 p_{2} \cos (13) \varpi_{31}-2 p_{3} \cos (12) \varpi_{12} \tag{32}\\
& \quad+2 \cos (23) \varpi_{31} \varpi_{12}+2 \cos (31) \varpi_{23} \varpi_{12} 2 \cos (12) \varpi_{31} \varpi_{23}=0 .
\end{align*}
$$

But this must remain true if again operated upon by Δ, whence we get

$$
\begin{align*}
& p_{1} \sin ^{2}(23)+p_{2} \sin ^{2}(31)+p_{3} \sin ^{2}(12)+2 \varpi_{23}(-\cos (23) \\
& \quad+\cos (31) \cos (12))+2 \varpi_{13}(-\cos (13)+\cos (23) \cos (12)) \\
& \quad+2 \varpi_{12}(-\cos (12)+\cos (31) \cos (23))=0 . \tag{33}
\end{align*}
$$

Finally the third operation by Δ gives

$$
\begin{equation*}
1-\cos ^{2}(23)-\cos ^{2}(31)-\cos ^{2}(12)+2 \cos (23) \cos (31) \cos (12)=0 \tag{34}
\end{equation*}
$$

Of course (34) merely proves the well-known law that the screws (1), (2), (3) must be parallel to the same plane; assuming this to be the case, we may make

$$
\angle(12)=\theta_{2}-\theta_{1} ; \angle(31)=\theta_{3}-\theta_{1} ; \angle(23)=\theta_{3}-\theta_{2} ;
$$

and with this substitution (33) becomes after a little reduction

$$
\begin{align*}
& p_{1} \sin ^{2}\left(\theta_{2}-\theta_{3}\right)+p_{2} \sin ^{2}\left(\theta_{3}-\theta_{1}\right)+p_{3} \sin ^{2}\left(\theta_{1}-\theta_{2}\right) \\
& \quad+2 \varpi_{23} \sin \left(\theta_{3}-\theta_{1}\right) \sin \left(\theta_{1}-\theta_{2}\right)+2 \varpi_{13} \sin \left(\theta_{1}-\theta_{2}\right) \sin \left(\theta_{2}-\theta_{3}\right) \\
& \quad+2 \varpi_{12} \sin \left(\theta_{2}-\theta_{3}\right) \sin \left(\theta_{3}-\theta_{1}\right)=0 . \tag{35}
\end{align*}
$$

If we now substitute for the virtual coefficients

$$
\begin{aligned}
& 2_{\pi_{23}}=\left(p_{2}+p_{3}\right) \cos \left(\theta_{3}-\theta_{2}\right)-d_{23} \sin \left(\theta_{3}-\theta_{2}\right), \\
& 2 \pi_{31}=\left(p_{3}+p_{1}\right) \cos \left(\theta_{1}-\theta_{3}\right)-d_{31} \sin \left(\theta_{3}-\theta_{1}\right), \\
& 2 \pi_{12}=\left(p_{1}+p_{2}\right) \cos \left(\theta_{2}-\theta_{1}\right)-d_{12} \sin \left(\theta_{2}-\theta_{1}\right),
\end{aligned}
$$

where attention should be paid to the right measurement of the angles as explained in connexion with fig. 6 ; it will be seen that the terms involving p_{1}, p_{2}, p_{3} disappear; and assuming that no two of the screws coincide, the equation reduces to

$$
\begin{equation*}
d_{12}+d_{23}=d_{13} \tag{36}
\end{equation*}
$$

This of course proves no more than the well-known property of the 2 -system that the common perpendicular to (1) and (3) also intersects (2).

It is instructive to observe how the original formula (31), taken in conjunction with the pitch-operator, gives at once the fundamental characteristics of the cylindroid.

Let (1) and (2) be the two principal serews of the cylindroid, then $\sigma_{12}=0$ ant also $\left.\nu_{1:}=\cos 1 \dot{2}\right)=0$. Thus the formule (31) and (32) become

$$
\begin{array}{r}
p_{1} p_{2} 2 p_{3}-p_{1} \bar{x}_{32}^{2}-p_{3} \bar{x}_{31}^{2}=0, \\
p_{1} p_{2}+p_{1} p_{1}+p_{3} p_{2}-z_{31}^{2}-\bar{x}_{32}^{2}-2 p_{3} p_{31} \cos \theta-2 p_{1} w_{32} \sin \theta=0, \tag{37}
\end{array}
$$

where $360^{\circ}-\theta$ is the right-haniled angle between (1) and (3).
We have

$$
\begin{aligned}
& \underline{z}_{31}=\left(p_{3}+p_{1}\right) \cos \theta+d \sin \theta \\
& \underline{2}_{32}=\left(p_{3}+p_{2}\right) \sin \theta-d \cos \theta ;
\end{aligned}
$$

substituting these values in (37) we obtain

$$
\left(p_{3}-p_{1} \cos ^{2} \theta-p_{3} \sin ^{2} \theta\right)^{2}+\left\{d-\left(p_{1}-p_{2}\right) \sin \theta \cos \theta\right\}^{2}=0,
$$

whence the well-known fundamental equations

$$
\left.\begin{array}{l}
\lambda=\left(p_{1}-p_{z}\right) \sin \theta \cos \theta, \\
p_{3}=p_{1} \cos ^{2} \theta+p_{z} \sin ^{2} \theta . \tag{38}
\end{array}\right\}
$$

In like manner if four screws belong to a 3-system, we must have
as a uenemal mation the satistied hy the pitches and the virtual conefficients.
If a screw helongs in a : -system, it must fulfil three conditions; for pxample. it mat lin wipmal there ocrews of the reciprocal system.

Suppose that (1), (2), (3) be three given screws defining the system, then equation (39) is one of the conditions that (4) shall also belong to the system. The conditions will be expressed by

$$
U=0, \quad \Delta U=0, \quad \Delta^{2} U=0
$$

when Δ is the pitch operator.
If (1), (2), (3) be three coreciprocal screws, then

$$
\widetilde{w}_{12}=0, \quad w_{23}=0, \quad w_{31}=0 ;
$$

and representing (4) by θ, we have the equation $U=0$ in the form

$$
\begin{equation*}
p_{\theta}=\frac{1}{p_{1}} \varpi_{w_{1 \theta}}+\frac{1}{p_{2}} \varpi_{2 \theta}{ }^{2}+\frac{1}{p_{3}} \varpi_{0}^{\prime \prime}{ }_{00} \tag{40}
\end{equation*}
$$

If as usual we denote by $\theta_{1}, \theta_{2}, \theta_{3}$ the three coordinates of θ with respect to the three coreciprocals, then*

$$
p_{1} \theta_{1}=w_{1 \theta}, \quad p_{2} \theta_{2}=w_{2 \theta}, \quad p_{3} \theta_{3}=w_{3}, \quad \text { and } \quad p_{\theta}=p_{1} \theta_{1}^{2}+p_{2} \theta_{2}^{2}+p_{3} \theta_{3}^{2},
$$

which is the well-known expression \dagger for the pitch of a screw of a 3 -system expressed in terms of its coordinates. Similar remarks may be made with respect to freedom of the fourth and fifth orders. If six screws belong to a system of the fifth order, there is then only a single condition to be satisfied, which may be written

$$
U \equiv\left|\begin{array}{llllll}
p_{1} & w_{13} & w_{13} & w_{14} & w_{15} & w_{16} \tag{41}\\
w_{21} & p_{2} & w_{23} & w_{23} & w_{23} & w_{26}
\end{array}\right| \begin{array}{lllll}
w_{31} & w_{32} & \mu_{3} & w_{34} & w_{35} \\
w_{36} \\
w_{41} & w_{42} & w_{43} & p_{4} & w_{45} \\
w_{46} \\
w_{51} & w_{52} & w_{53} & w_{54} & p_{5} \\
w_{56} \\
w_{61} & w_{62} & w_{63} & w_{64} & w_{65}
\end{array} p_{6}, \mid=0 .
$$

In this case, as there is only one condition to be satisfied, the formula $\Delta U=0, \Delta^{2} U=0$, \&c., can be only identities if $U=0$. The determinant here given is already known in a different form as the sexiant + of the six screws, and a quaternion expression of the same function is given further on in the present paper (equation 93).

IV.-Applications of Quaternions to the Theory of Serews.

One of the most useful discoveries of Hamilton, at least in so far as our present subject is concerned, is contained in the following proposition* :-
"Any infinitely small change in the position of a rigid body is equivalent to the alteration of each of its vectors a to snother of the form

$$
\begin{equation*}
a+\delta a=a+\varepsilon+V i a, \tag{42}
\end{equation*}
$$

ε and i being two ciditrory but intinitesimal vectors which do not vary in the passage from one point of the body to another."

This formula is the representation by vector-analysis of the fundamental principles on which the Theory of serews is based. The vector-conception of a twist which is here indicated shows hy its conciseness, elegance, and lucidity that there must le intimate relationship between Quaternions and the Theory of Screws.

The late Prufessin (harles J. July, the extitor of "Hamilton's Elements of (puaternions," has contributed an admirable series of original memoirs on ! !aternion- the Transations of the Royal Irish Academy. \dagger These memoirs belate very larely the Theng of Serews. A concise account of
 Theny if sums has hen riven hy him in the apmelix to vol. If. of his edition ui Hanilton's "Elements of (!uaternions," lu, 390-397 (1901). But the sulged has hen much more fully dealt with in Joly's "Manual of
 indicated, we refer brietly as Joly's "Manual."
 buit syatem must in in all cans what we understand as a twist ahout a

[^12]serew, is at once deduced* from Hamilton's fmatamental thenem, expressed in (42), which can be written in the form
\[

$$
\begin{equation*}
a+\delta a=a+i S_{\varepsilon} i^{-1}+V i\left(a-V_{\varepsilon i^{-1}}\right) \tag{43}
\end{equation*}
$$

\]

This shows that the displacement of a point P (fig. 13) is produced by a rotation of the system through a right-handed angle $T i$, round the line of which the equation is

$$
\rho=V_{\varepsilon i^{-1}}+t i,
$$

(where t is a variable scalar) accompanied by a translation parallel to i and equal to $S_{\varepsilon} i^{-1}$.

The following fundamental principleiswell knowninquaternionst:-

Let β and $-\beta$ be a pair of vectors coincident with the lines of action of the two forces of a couple $P P^{\prime}$ and $Q Q^{\prime}$ respectively. Let $T \beta$ be the magnitude of the force on $P P^{\prime}$ or on $Q Q^{\prime}$. Let a be a vector drawn from any point on $P P^{\prime}$ to any point

Fig. 13, on $Q Q^{\prime}$, then the couple is completely represented by $V \beta a$. For the couple is right-handed about $V \beta a$, and $T V \beta a$ is the moment of the couple. Thus everything about the couple is expressed by $V \beta \alpha$.

Whatever be the forces applied to a rigid body, they may be completely expressed with regard to a given origin O by two vectors λ, μ. The first vector λ represents the resultant of all the forces when transferred in parallel directions to 0 . The second vector μ expresses the resultant of all the couples introduced by transferring the forces to 0 .

If (μ, λ) be the vector-moment and force of a system of forces with respect to a point O, then at a point O^{\prime}, such that $00^{\prime}=\rho$, the vectormoment and force of the same system will be $\mu+V \lambda \rho, \lambda$.

The expressions just obtained lead in the simplest and most direct manner to the conception of the central axis, and from thence to the foundations of the Theory of Screws.

[^13]The plane of the resultant couple will be perpendicular to the resultant force if

$$
\begin{equation*}
\mu+V \lambda \rho=p \lambda, \tag{44}
\end{equation*}
$$

where p is some scalar. In this case the moment of the resulting couple is $p T \lambda$.

The intensity of the resultant force is $T \lambda$; hence p is the ratio of the moment of the couple to the intensity of the force; i.e. p is the pitch of the serew on which the given system of forces forms a wrench.

From the equation (44) we have

$$
\begin{equation*}
\mu \lambda^{-1}+\eta \lambda \rho \cdot \lambda^{-1}=p_{1} \tag{45}
\end{equation*}
$$

whence taking scalars $\quad p=S_{\mu} \lambda^{-1}$;
and we obtain the instructive result thus stated.
If (μ, λ) be the resultant couple and resultant force of any system of forces applied to a rigid benty, then the resultant wrench is on a screw of which the pitch is $S_{\mu} \lambda^{-1}$.

Wes can now express the vector-perpendicular from O on the screw in fuestinn. If ρ be this vectur, then the equation (44) may be written $\mu+V \lambda \rho+S \lambda_{\rho}=p \lambda$, because $S \lambda \rho=0$.

We thus have

$$
\begin{equation*}
\mu+\lambda \rho=p \lambda, \quad \text { or } \quad \lambda^{-1} \mu+\rho=p, \quad \text { or } \quad \rho=-V \lambda^{-1} \mu=V_{\mu} \lambda^{-1} \tag{46}
\end{equation*}
$$

wo thus have another result also of the greatest importance in our present subject, which may be thus stated:-

If μ, λ) the the resultant conule and resultant force of any system of forces applien th a rigid body and with respect to any point, then the vector from the wrigin perpendicular to the screw on which the system of forces forms a wrench is expressed ly $V^{r} \mu \lambda^{-1}$. This result, as well as the corresponding value of the pitch, (45) is due to Joly, though they are essentially deductions from Hamilton's quatermion expression for a system of forces. \dagger

The cumbinates (μ, λ) define not merely a screw, they define a vectorscrew : fin $l \lambda$ will inlicate which of the two vector-screws on the same axis is to be unlerstoml; and $T \lambda$ expresses the intensity of the dyname of which the vector-screw is the site. Thus the completeness of the quaternion representation of the dyname by the two coordinates (μ, λ) leaves nothing more to be desired.

We can now ohtain the quaternion equation of the screw on which the lyname with coordinates (μ, λ) is situated. As the screw is parallel to λ and as $\Gamma^{7} \mu \lambda^{-1}$ is a print on the screw, we must have for the vector ρ to any point on the screw

$$
\begin{equation*}
\rho=\nabla_{\mu} \lambda^{-1}+\lambda \lambda \tag{47}
\end{equation*}
$$

where t is a variable acalar.

$$
\text { - "Manual," p. } 156 . \quad \text { +"Elements," vol. ii., p. } 285 .
$$

We might have obtained this result by immediate solution for ρ from formula (44), which may be written

$$
\begin{equation*}
\mu-\rho \lambda+S_{\rho} \lambda=p \lambda \tag{48}
\end{equation*}
$$

and multiplying into λ^{-1}

$$
\begin{equation*}
\mu \lambda^{-1}-\rho+\lambda^{-1} S \lambda \rho=p ; \tag{49}
\end{equation*}
$$

taking the vector and denoting the scalar $S \rho \lambda^{-1}$ by t we have the desired form.
The equation (42) may be written

$$
\begin{equation*}
\delta \boldsymbol{a}=\boldsymbol{\varepsilon}+V i \eta+V i(a-\eta) . \tag{50}
\end{equation*}
$$

Thus we see that the displacement of the system may be represented by a small right-handed rotation about the vector i drawn through any point η if accompanied by the translation $\varepsilon+$ Vi η.

If μ, λ be each increased in the ratio of a given scalar m so as to become $m \mu$ and $n \lambda$, the pitch $S \mu \lambda^{-1}$ and the vector-perpendicular $V \mu \lambda^{-1}$ from the origin on the screw are alike unaltered. Each different value of m corresponds to one of the singly infinite number of wrenches which may have one and the same screw as their site.

Of course, where μ, λ are both known, not only is the screw determined (which requires 5 data), but also the intensity of the wrench is known. Thus a knowledge of μ and λ gives six data, expressing everything about the force system.

Perhaps the most useful theorem in the application of quaternions to the theory of screws is that which is enunciated as follows* : -

If a rigid system acted upon by a wrench, represented by the pair of vectors (μ_{1}, λ_{1}), receive a small twist, represented by the pair of vectors (μ_{2}, λ_{2}), then the work done is

$$
\begin{equation*}
-S\left(\mu_{1} \lambda_{2}+\mu_{2} \lambda_{1}\right) . \tag{51}
\end{equation*}
$$

The following proof of this important expression of the virtual moment may be given :-

A wrench (μ, λ) can in an infinite number of ways be replaced by two forces β_{1} and β_{2} (fig. 14) acting at points α_{1} and a_{2} respectively; β_{1} may be transferred to the origin with the introduction of the couple represented by the vector $V a_{1} \beta_{1}$. In like manner we can transfer β_{2} to the origin with the introduction of the couple $V a_{2} \beta_{3}$. We thus have

$$
\begin{align*}
\beta_{1}+\beta_{2} & =\lambda_{1}, \tag{52}\\
V a_{1} \beta_{1}+V a_{2} \beta_{2} & =\mu_{1} . \tag{53}
\end{align*}
$$

Fio. 14.

[^14]H. I. A. PROO., VOL. XXVIII., SEOT. A.

The twist will more the point indicated by a_{1} through the vector $\mu_{2} \div V \lambda_{2} a_{1}$, and the virtual moment of this displacement and β_{1} is

$$
\begin{equation*}
-S \beta_{1}\left(\mu_{2}+T \lambda_{2} a_{1}\right)=-S \mu_{2} \beta_{1}-S \lambda_{2} F a_{1} \beta_{1} \tag{54}
\end{equation*}
$$

In like manner the work done br β_{0} is

$$
\begin{equation*}
-s \beta_{s}\left(\mu_{2} \div T \lambda_{3} a_{3}\right)=-S_{\mu} \beta_{2}-S \lambda_{2} T a_{2} \beta_{2} . \tag{55}
\end{equation*}
$$

Hence the: wh whe home the wrench $\mu_{i}, \lambda_{:}$) in the course of the twist $\left(u_{2} \lambda_{2}\right)$ is

$$
\begin{equation*}
\left.-S_{\mu}=\beta_{1}+\beta_{2}\right)-S_{1}\left(T a \beta_{1}+T a_{3} \beta_{2}\right)=-S\left(\mu_{1} \lambda_{2}+\mu_{2} \lambda_{1}\right) . \tag{56}
\end{equation*}
$$

This experan fin the vitual moment of a twist and a wrench mar be iransformed as folloms:-

We hare, in general,

$$
\begin{align*}
\rho & =\mu a^{-1} a \tag{57}\\
& =\left(S_{j}, a^{-1}+I^{-} \mu a^{-1} / a\right. \\
& =a \cdot a^{\prime} \rho a^{-1}+I \rho a^{-1} \cdot a . \tag{58}
\end{align*}
$$

We shall mow make

$$
\begin{align*}
& \mu_{1}=\Sigma_{\mu_{1}} \lambda_{1}{ }^{-1}, \quad \Delta_{1}=\Gamma^{\nu} \mu_{1} \lambda_{1}{ }^{-1}, \tag{59}\\
& \ell_{1}=\delta \mu_{2} \lambda_{2}{ }^{-1}, \quad \omega_{2}=V^{\top} \mu_{2} \lambda_{2}{ }^{-1} \text {; } \tag{60}
\end{align*}
$$

whence

$$
\begin{equation*}
\mu_{1}=\gamma_{1}^{\prime} \lambda_{1}-\omega_{1} \lambda_{2}, \quad \mu_{3}=\mu_{2} \lambda_{2} \div \omega_{2} \lambda_{2}, \tag{61}
\end{equation*}
$$

aind

$$
\begin{align*}
-S\left(\mu, \lambda_{2}+\mu_{2} \lambda_{1}\right) & =-S\left(p_{1} \lambda_{1}+\omega_{1} \lambda_{1}\right) \lambda_{2}-S\left(p_{2} \lambda_{2} 1 \omega_{2} \lambda_{2}\right) \lambda_{1} \\
& =-\left(p_{1}+\mu_{2}\right) S \lambda_{1} \lambda_{2}+S\left(\omega_{2}-\omega_{1}\right) \lambda_{1} \lambda_{2} \\
& =-\left(p_{1}+p_{2}\right) S \lambda_{1} \lambda_{2}+S\left(\omega_{2}-\omega_{1}\right) J_{1} \lambda_{1} \lambda_{2} \tag{62}
\end{align*}
$$

We have now to sulstitute in this expression as follows:-

$$
\begin{align*}
S \lambda_{1} \lambda_{2} & =-T \lambda_{1} T \lambda_{3} \cos \theta \tag{63}\\
S^{\prime}\left(\omega_{2}-\omega_{1}\right) \lambda_{1} \lambda_{2} & =-T \lambda_{1} T \lambda_{2} \cdot \lambda \cdot \sin \theta_{3} \tag{64}
\end{align*}
$$

: ! $11:-\ldots$: distance letween them.

 a unit vector directed from screw 1 to screw 2. If the two screws form a right fair, this vector coinciles in direction with $V^{\prime \prime} \lambda_{1} \lambda_{2}$, and

$$
S\left(\omega_{2}-\omega_{1}\right) \lambda_{1} \lambda_{2}=S\left(\omega_{2}-\omega_{1}\right) V \lambda_{1} \lambda_{2}
$$

 and accurdingly $\sin \theta$ is uegative.

With this substitution,

$$
\begin{equation*}
-S\left(\mu_{1} \lambda_{2}+\lambda_{2} \mu_{1}\right)=T \lambda_{1} T \lambda_{2}\left\{\left(p_{1}+p_{2}\right) \cos \theta-d \sin \theta\right\} \tag{65}
\end{equation*}
$$

Hence we have the quaternion proof that in all cases

$$
\begin{equation*}
\frac{1}{2}\left\{\left(p_{1}+p_{2}\right) \cos \theta-d \sin \theta\right\} \tag{66}
\end{equation*}
$$

is the virtual coefficient of two vector-screws of pitches p_{1}, p_{2}, and distance d, where θ is the right-handed angle between them.*

The condition that two screws $\left(\mu_{1} \lambda_{1}\right),\left(\mu_{2} \lambda_{2}\right)$ shall be reciprocal is now very simply expressed by stating that their virtual coefticient vanishes or

$$
\begin{equation*}
S\left(\mu_{1} \lambda_{2}+\mu_{2} \lambda_{1}\right)=0 \tag{67}
\end{equation*}
$$

We have from this the quaternion proof of the well-known property thus stated.

If a screw $(\mu \lambda)$ be reciprocal to two screws $\left(\mu_{1} \lambda_{1}\right)$ and $\left(\mu_{2} \lambda_{2}\right)$, it is reciprocal to every screw on the cylindroid which passes through $\left(\mu_{1} \lambda_{1}\right)$ and $\left(\mu_{2} \lambda_{2}\right)$.

For, if k_{1} and k_{2} be any two scalars, we may represent the typical screw on the cylindroid by
and if

$$
\left(k_{i} \mu_{1}+k_{2} \mu_{2}\right), \quad\left(k_{1} \lambda_{1}+k_{2} \lambda_{2}\right) ;
$$

then

$$
S\left(\mu \lambda_{1}+\mu_{1} \lambda\right)=0, \quad \text { and } \quad S\left(\mu \lambda_{2}+\mu_{2} \lambda\right)=0
$$

$$
S\left\{\mu\left(k_{1} \lambda_{1}+k_{2} \lambda_{2}\right)+\lambda\left(k_{1} \mu_{1}+k_{2} \mu_{2}\right)\right\}=0 .
$$

More generally, we have the following theorem :-
If a screw (μ, λ) be reciprocal to each of the n screws

$$
\left(\mu_{1}, \lambda_{1}\right) ;\left(\mu_{2}, \lambda_{2}\right) ; \ldots\left(\mu_{n}, \lambda_{n}\right)
$$

it will then be reciprocal to all screws of the group

$$
\left(k_{1} \mu_{1}+k_{2} \mu_{2} \ldots k_{n} \mu_{n}\right), \quad\left(k_{1} \lambda_{1}+k_{2} \lambda_{2} \ldots+k_{n} \lambda_{n}\right),
$$

whatever $k_{1} k_{2}$. . . may be.
We may enunciate the same principle in a still more general manner which includes the whole theory of reciprocal screw systems as follows:-

If each of the m screws

$$
\left(\mu_{1}, \lambda_{1}\right),\left(\mu_{2}, \lambda_{2}\right) \ldots\left(\mu_{m}, \lambda_{m}\right)
$$

is reciprocal to all of the n screws

$$
\left(\mu_{1}^{\prime}, \lambda_{1}{ }^{\prime}\right) ;\left(\mu_{2}{ }^{\prime}, \lambda_{2}{ }^{\prime}\right) ; \ldots\left(\mu_{m}{ }^{\prime}, \lambda_{n}{ }^{\prime}\right),
$$

then all screws of the type

$$
\left(k_{1} \mu_{1}+k_{2} \mu_{2} \ldots+k_{m} \mu_{m}\right),\left(k_{1} \lambda_{1}+k_{2} \lambda_{2} \ldots+k_{m} \lambda_{m}\right)
$$

will be reciprocal to all possible screws of the type

$$
\left(k_{1}^{\prime} \mu_{1}^{\prime}+k_{2}{ }^{\prime} \mu_{2}^{\prime} \ldots+\hbar_{m}{ }^{\prime} \mu_{m}{ }^{\prime}\right),\left(k_{1}^{\prime} \lambda_{1}^{\prime}+k_{2}^{\prime} \lambda_{3}{ }^{\prime} \ldots+k_{m}{ }^{\prime} \lambda_{m}{ }^{\prime}{ }^{\prime},\right.
$$

whatever may be the values of the scalars

$$
k_{1}, k_{2} \ldots k_{m}, k_{1}^{\prime}, k_{2}^{\prime} \ldots k_{m}^{\prime}
$$

A pair of screws (μ_{1}, λ_{1}) and (μ_{2}, λ_{2}) will of course completely determine the cylindroid which passes through them. We now

Fic. ${ }^{15}$. propose to determine ρ the vector from the origin 0 to C, the centre of the cylindroid.

Let i, j be vectors along the two principal screws of the cylindroid through C. Let a, b be the pitches of these screws, and p_{1}, q_{1} the intensities of the two wrenches upon them which are equivalent to λ_{1}, μ_{1}.

We have now to express that the force λ_{1} at O, and the couple μ_{1} are equivalent to wrenches of intensities p_{1} and q_{1} respectively on i and j.

Draw $C L$ (fig. 15) equal, parallel, and in the same direction as $O A$, and draw $C M$ equal and opposite to C'L. Then $)_{A}$ is cyuivalent to ($I L_{0}$, and the couple whose vector is $V \lambda_{1} \rho$. We thus have

$$
\begin{align*}
\mu_{1}+V \lambda_{1} \rho & =p_{1} a i+q_{1} b j . \tag{68}\\
\lambda_{1} & =p_{1} i+q_{1} j . \tag{69}
\end{align*}
$$

If in like mamer wenthes of intensities $p_{2} q_{2}$ on the two principal serews of the cylindroid are equivalent to $\mu_{3} \lambda_{2}$, we must have

$$
\begin{align*}
\mu_{2}+V \lambda_{2} \rho & =p_{z} r i+q_{2} 7 j . \tag{70}\\
\lambda_{3} & =p_{3} i+q_{2} i . \tag{71}
\end{align*}
$$

Fiom (rin) and (ill we see that $i, j, \lambda_{1}, \lambda_{2}$ are coplanar; whence multiplying (68) and (70) by $V \lambda_{1} \lambda_{3}$, and taking the scalars, we have

$$
\begin{align*}
& S \lambda_{1} \lambda_{2} \mu_{1}+S\left(V \lambda_{1} \lambda_{2} \cdot \lambda_{1} \cdot \rho\right)=0 \tag{72}\\
& S \lambda_{1} \lambda_{2} \mu_{2}+S\left(V \lambda_{1} \lambda_{2} \cdot \lambda_{2} \cdot \rho\right)=0 \tag{73}
\end{align*}
$$

A thith edration is ohtaineh thus. liy multiplying (68) and (71)

$$
\lambda_{2} \mu_{1}+\lambda_{2} J^{\top} \lambda_{1} \rho=\left(p_{2} i+q_{2} j\right)\left(p_{1} a i+q_{1} b j\right)
$$

whence taking scalars

$$
\begin{equation*}
S \lambda_{2} \mu_{1}-S \lambda_{1} \lambda_{2} \rho=-a p_{1} \eta_{2}-b q_{1} q_{20} \tag{74}
\end{equation*}
$$

$13 y$ multiplying (69) and (70,

$$
\lambda_{1} \mu_{2}+\lambda_{1} V \lambda_{2 \rho}=\left(p_{1} i+q_{1} j\right)\left(p_{2} a i+q_{2} b_{j}\right)
$$

whence as before

$$
\begin{equation*}
S \lambda_{1 / 1 / 2}+S \lambda_{1} \lambda_{2} \rho=-a p_{1} p_{2}-b q_{1} q_{2} \tag{75}
\end{equation*}
$$

and by subtracting (75 , from (74),

$$
\begin{equation*}
\frac{1}{2}\left(S \lambda_{2} \mu_{1}-S \lambda_{1} \mu_{2}\right)=S \lambda \lambda^{\prime} \rho \tag{76}
\end{equation*}
$$

In the fundamental quaternion formula

$$
\rho S_{a} \beta \beta_{\gamma}=a S_{p \beta} \beta_{\gamma}+\beta S_{a \rho \gamma}+\gamma S_{a} \beta_{\rho}
$$

we now write

$$
a=\lambda_{1}, \quad \beta=\lambda_{2}, \quad \gamma=V \lambda_{1} \lambda_{2}
$$

and

$$
\rho S \lambda_{1} \lambda_{2} V \lambda_{1} \lambda_{2}=\lambda_{1} S\left(\rho \lambda_{2} V \lambda_{1} \lambda_{2}\right)+\lambda_{2} S\left(\lambda_{1} \rho V \lambda_{1} \lambda_{2}\right)+V \lambda_{1} \lambda_{2} S \lambda_{1} \lambda_{2} \rho,
$$

whence from (72), (73), (76) we obtain

$$
\begin{equation*}
\rho\left(V \lambda_{1} \lambda_{2}\right)^{2}=\lambda_{1} S \lambda_{1} \lambda_{2} \mu_{2}-\lambda_{2} S \lambda_{1} \lambda_{2} \mu_{1}+\frac{1}{2}\left(S \lambda_{2} \mu_{1}-S \lambda_{1} \mu_{2}\right) V \lambda_{1} \lambda_{2} \tag{77}
\end{equation*}
$$

and thus ρ, the required vector from the origin to the centre of the cylindroid, has been determined.

In the deduction of the equations (72) and (73) it will be noticed that no use has been made of the fact that the screws on i and j are at right angles. So far as these two equations are concerned, ρ might be the vector to any point of intersection of two screws, i.e. to any point on the axis of the cylindroid.

If, therefore, t be a variable scalar,

$$
\begin{equation*}
\rho\left(V \lambda_{1} \lambda_{2}\right)^{2}=\lambda_{1} S \lambda_{1} \lambda_{2} \mu_{2}-\lambda_{2} S \lambda_{1} \lambda_{2} \mu_{1}+t V \lambda_{1} \lambda_{2} \tag{78}
\end{equation*}
$$

is the equation to the axis of the cylindroid defined by $\left(\mu_{1} \lambda_{1}\right)$ and $\left(\mu_{2} \lambda_{2}\right)$, and the origin will lie on the axis if $S \lambda_{1} \lambda_{2} \mu_{2}=0$ and $S \lambda_{1} \lambda_{2} \mu_{1}=0$.

To complete the account of the cylindroid defined by $\left(\mu_{1} \lambda_{1}\right)$ and $\left(\mu_{2} \lambda_{2}\right)$ it remains to find the values of the pitches of the principal screws. These are obtained as follows:-

If x be a variable scalar, a screw on the cylindroid will be represented by $\left(\mu_{1}+x \mu_{2}\right), \quad\left(\lambda_{1}+x \lambda_{2}\right)$, and its pitch p will be $S\left(\mu_{1}+x \mu_{2}\right)\left(\lambda_{1}+x \lambda_{2}\right)^{-1}$; from which we easily find

$$
\begin{equation*}
p=\frac{S \mu_{1} \lambda_{1}+x\left(S \mu_{2} \lambda_{1}+S \mu_{1} \lambda_{2}\right)+x^{2} S \mu_{2} \lambda_{2}}{\lambda_{1}{ }^{2}+2 x S \lambda_{1} \lambda_{2}+x^{2} \lambda_{2}{ }^{2}} \tag{79}
\end{equation*}
$$

but the pitches of the two principal screws are a maximum and a minimum, and accordingly we find for p the two values $p_{0}+m$ and $p_{0}-m$, where

$$
\left.\left.\left.\begin{array}{rl}
p_{0}= & \frac{1}{2\left(V \lambda_{1} \lambda_{2}\right)^{2}}\left\{S \lambda _ { 1 } \lambda _ { 2 } \left(S \mu_{1} \lambda_{2}\right.\right.
\end{array}\right)=S \mu_{2} \lambda_{1}\right)-\lambda_{1}{ }^{2} S \mu_{2} \lambda_{2}-\lambda_{2}{ }^{2} S \mu_{1} \lambda_{1}\right\}, ~ \begin{aligned}
m^{2}= & \frac{1}{4 \lambda_{1}{ }^{2} \lambda_{2}{ }^{2}\left(V \lambda_{1} \lambda_{2}\right)^{4}}\left\{S \lambda_{1} \lambda_{2}\left(\lambda_{1}{ }^{2} S \mu_{2} \lambda_{2}+\lambda_{2}{ }^{2} S \mu_{1} \lambda_{1}\right)-\lambda_{1}{ }^{2} \lambda_{2}{ }^{2}\left(S \mu_{1} \lambda_{2}+S \mu_{2} \lambda_{1}\right)\right\}^{2} \\
& -\frac{1}{4 \lambda_{1}{ }^{2} \lambda_{2}{ }^{2}\left(V \lambda_{1} \lambda_{2}\right)^{3}}\left(\lambda_{2}{ }^{2} S \mu_{1} \lambda_{1}-\lambda_{2}{ }^{2} S \mu_{2} \lambda_{2}\right)^{2}
\end{aligned}
$$

The length of the axis of the cylindroid is 2 m ; and the condition that the cylindroid shall be canonical, i.e, that the screws of zero-pitch shall be the bounding-screws of the surface, is found by equating the value just found for p_{0} to zero.

If the cylindroid reduce to a plane, then $m=0$. But if this is the case, both of the terms in the expression of m^{2} must be zero; for as $\left(V \lambda_{1} \lambda_{2}\right)^{2}$ is negative, neither of the terms can ever be negative. Hence, we must have

$$
\begin{align*}
S \lambda_{1} \lambda_{2}\left(\lambda_{1}{ }^{2} S_{\mu_{2}} \lambda_{2}+\lambda_{3}{ }^{2} S_{\mu_{1}} \lambda_{1}\right)-\lambda_{1}{ }^{2} \lambda_{2}{ }^{2}\left(S \mu_{1} \lambda_{2}+S_{\left.\mu_{2} \lambda_{1}\right)}\right)=0, \tag{82}\\
\lambda_{2}{ }^{2} S_{\mu_{1} \lambda_{1}-\lambda_{1}{ }^{2} S_{\mu_{2} \lambda_{2}}}=0 . \tag{83}
\end{align*}
$$

The first of these means that $\left(\mu_{2} \lambda_{1}\right)$ and $\left(\mu_{2} \lambda_{2}\right)$ must intersect, and the second means that their pitches are equal.

If $\left(\mu_{1} \lambda_{1}\right.$ ant $\left(\mu_{2} \lambda_{2}\right)$ be a pair of screws which determine a canonical cylinlmid, then from the formula alrealy given it is easy to show that the length of the axis of the cylindroid is

It may le here remarked that in general any two cylindroids can be so placel that all the screws on cither are reciprocal to all the screws on the other.

This condition will he secured if each of the two screws of zero-pitch on now of the cylintroms intersects both of the two screws of zero-pitch on the Wher, in as two intersecting zern-pitch screws are reciprocal, the condition - wated proviles that each cylimitwid shall contain two serews reciprocal to the other.

> V.-Use of (Uunternions in the Theory of Reflected Scrous.

Thn suhject of retlecten strews has heen already discussed in these mem,irs, s I need here unly repeat that if a standard plane be taken, amb if the thethection of any socew from that plane a pitch be assigned equal in mazniturte hat "ppusite in sim the pitch of the original screw, then the serew s. formed in sail tu the the reflection of the original screw.

The methods of quaternions present the vector condinates of a pair of retlented arews with extreme simplicity, as is shown by the following statement:-

If (μ, λ) bu the vertur conrdinates of a sorew, then the reflection of that srew from the $\mathrm{I}^{\text {han }} \mathrm{m}^{\prime} \rho^{\prime}=0$ has $\left(\mu^{\prime}, \lambda^{\prime}\right)$ for its vector coordinates where

$$
\mu^{\prime}=-i \mu i \quad \text { and } \quad \lambda^{\prime}=i \lambda i
$$

We nret inmore that if two lines internect at right angles their reflections will 3l-.. intoreart at risht anoles. for as the distance leetween two points is

[^15]equal to the distance between their retlections, a right-angled triangle will retlect into a right-angled triangle, and accordingly, the right angle has not been altered by reflection.

We may see this otherwise by observing that, as shown in the paper already referred to, any two reciprocal screws reflect into reciprocal screws. But two screws intersecting at right angles are reciprocal whatever be their pitches.

It is hence plain that, if the origin lies in the plane of reflection, the perpendicular from the origin on a screw will reflect into the perpendicular from the origin on the reflected screw.

We know that $V \mu^{\prime} / \lambda^{\prime}, V \mu / \lambda$ are respectively the perpendicular vectors from the origin on the reflected screw and the original screw; and accordingly from the well-known quaternion relation of a vector and its reflection where i is the unit vector

$$
\begin{aligned}
V \frac{\mu^{\prime}}{\lambda^{\prime}} & =i \cdot V \frac{\mu}{\lambda} \cdot i=V i \mu \lambda^{-1} i \\
& =-V i \mu \lambda^{-r} i^{-1}=-V i \mu i i^{-1} \lambda^{-1} i^{-1}=-V \frac{i \mu i}{i \overline{\lambda i}} .
\end{aligned}
$$

As the pitch of a screw is equal and opposite to the pitch of its reflection,

$$
\begin{aligned}
S \frac{\mu^{\prime}}{\lambda^{\prime}} & =-S \frac{\mu}{\lambda}=S i^{2} \mu \lambda^{-1}=\operatorname{Si} \mu \lambda^{-1} i \\
& =-\operatorname{Si} \mu i i \lambda^{-1} i=-S i \mu i i^{-1} \lambda^{-1} i^{-1}=-S \frac{i \mu i}{i \lambda i}
\end{aligned}
$$

whence

$$
\frac{\mu^{\prime}}{\lambda^{\prime}}=V \frac{\mu^{\prime}}{\overline{\lambda^{\prime}}}+S \frac{\mu^{\prime}}{\lambda^{\prime}}=-V \frac{i \mu i}{i \overline{\lambda i}}-S \frac{i \mu i}{i \lambda i}=-\frac{i \mu i}{i \lambda i} ;
$$

but
and consequently

$$
\left.\begin{array}{l}
\lambda^{\prime}=i \lambda i_{2} \\
\mu^{\prime}=-i \mu i_{0} \tag{85}
\end{array}\right\}
$$

It is easy to verify that the virtual coefficient of a pair of screws $\left(\mu_{1}, \lambda_{1}\right)$ and (μ_{2}, λ_{2}) is equal in magnitude but opposite in sign to the virtual coefficient of their reflections.

The virtual coefficient of the two screws is ${ }_{2}^{1} S\left(\mu_{1} \lambda_{2}+\mu_{2} \lambda_{1}\right)$, and the virtual coefficient of their two reflections is

$$
-\frac{1}{2} S\left(i \mu_{1} i i \lambda_{2} i+i \mu_{2} i i \lambda_{1} i\right)=-\frac{1}{2} S\left(\mu_{1} \lambda_{2}+\mu_{2} \lambda_{1}\right) .
$$

I'he screw whose equation is

$$
\rho=V_{\lambda}^{\mu}+x \lambda
$$

pierces the plane $S_{p i} i=0$ at the point whose vector is

$$
\rho=V \frac{\mu}{\bar{\lambda}}-\frac{S \lambda^{-1} i}{S \lambda i} \cdot \lambda
$$

as this vector coincides with its reflection $i \rho i=\rho$, or

$$
\rho=i V \frac{\mu}{\lambda} i-\frac{S \mu \lambda^{-1} i}{S \lambda i} i \lambda i=-V \frac{i \mu i}{i \lambda i}-\frac{S \mu \lambda^{-1} i}{S \lambda i} i \lambda i
$$

thus verifying that the two screws intersect in the plane of reflection at the point whose vector is ρ.

We may note that the reflection of a canonical cylindroid is also a canonical cylindroid.

This is ubvious from the fact that in the canonical cylindroid the bounding screws are the screws of zero pitch, and that the reflection of a screw of zero pitch is also a screw of zero pitch.

But it may he useful to verify this from the expressions previously obtained for the coordinates of a reflected screw. We have already found that, if $\left(\lambda_{1} \mu_{1}\right)$ and $\left(\lambda, \mu_{2}\right.$, be the coordinates of two screws, the cylindroid they define will be canonical if

$$
S \lambda_{1} \lambda_{2}\left(S_{\mu_{1}} \lambda_{2}+S_{\mu_{2}} \lambda_{1}\right)-\lambda_{3}{ }^{2} S_{\mu_{2}} \lambda_{2}-\lambda_{2}{ }^{3} S_{\mu}^{\prime} \lambda_{1} \lambda_{2}=0
$$

As to $S\left(\mu_{1} \lambda_{2}+\mu_{2} \lambda_{1}\right)$, we have already seen that the effect of substituting the coordinates of the retlected screw is merely to change its sign. $S \lambda_{1} \lambda_{2}$ is inalteren, and $-\lambda_{1}{ }^{2} S_{\mu} \mu_{2} \lambda_{2}$ and $-\lambda_{2}{ }^{2} S_{\mu} \lambda_{1} \lambda_{1}$ both change sign, so that the ernation is satisfied ly the reflected cylintroid if satisfied by the original "ylimitoid. The cylindroid detemmed hy the twairs of serews $\left(\mu_{1} \lambda_{1}\right)$ and $\left(1 / \lambda_{2} \lambda_{3}\right)$ will be altered ly reflection irom any plane intor another cylindroid Which will tre intentical with the uriginal cylindroild (though, of course, ditfermly hacels it the pitho of arey some on the reflected cylindroid be augnented by the common quantity

$$
\frac{1}{\left(\Gamma \lambda_{1} \lambda_{2}\right)^{2}}\left\{\dot{s} \lambda_{1} \lambda_{2}\left(S \lambda_{1} \mu_{2}+S \lambda_{2} \mu_{1}\right)-\lambda_{1}^{2} S \lambda_{2} \mu_{2}-\lambda_{2}{ }^{3} S \lambda_{1} \mu_{1}\right\}
$$

 prineipal stens wif the retteremb whindond. The original pitches were $p_{0}+m$ and $p_{u}-m$. The conrerpmating pitches in the reflected screws are $-p_{0}-m$
 the misinal pitches, Note, howeser, that the screw of maximum pitch retherts intu the serew of minimman fitch. With this is commected the fact That thm stow of maximun fiteh is lefthanded with regard to every other serew wh the eylimpond. But reflection changes a left-handed pair into a right-hamber pair, on that the maximum pitch must reflect into the minimum.

If n, λ be: the vectur comdinates of a screw before its reflection from the plane thane he the elnation $\operatorname{si}(\rho-a)=0$, then, after reflection, the coordinates of the scraw become

$$
-\left\{\left(i \mu i+2 S_{n} i . V \lambda i\right), i \lambda i\right\} .
$$

For if O be the origin, and O^{\prime} the point indicated by the vector a, then the coordinates of the screw with respect to the origin O^{\prime} are $\{(\mu+V \lambda a), \lambda\}$. Hence the coordinates of the reflected screw with regard to O^{\prime} are $-i(\mu+V \lambda a) i, i \lambda i$. We have now to transfer these coordinates back to the original origin O; and we have

$$
\begin{aligned}
\mu^{\prime} & =-i(\mu+V \lambda a) i-V i \lambda i a=-i \mu i-i(V \lambda \boldsymbol{a}) i-V i \lambda i a \\
& =-i \mu i-V i \lambda \boldsymbol{a} i-V i \lambda i \boldsymbol{a}=-i \mu i+2 S \boldsymbol{\alpha} i V \lambda i \\
\lambda^{\prime} & =i \lambda i .
\end{aligned}
$$

It is easy to verify this by showing that the reflected screw again reflected reverts to the original screw.

VI.-Quaternion Investigation of the Screw reciprocal to five given Screws.

If $\mu_{1}, \lambda_{1} ; \mu_{2}, \lambda_{2} ; \mu_{3}, \lambda_{3} ; \mu_{4}, \lambda_{4}$ be the coordinates of four screws, and if $x_{1}, x_{2}, x_{3}, x_{4}$ be any four scalars, then the four-system defined by the four screws will consist of all screws with the coordinates

$$
\left(x_{1} \mu_{1}+x_{2} \mu_{2}+x_{3} \mu_{3}+x_{4} \mu_{4}\right) ;\left(x_{1} \lambda_{1}+x_{2} \lambda_{2}+x_{3} \lambda_{3}+x_{4} \lambda_{4}\right),
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ have all possible values.
Let μ, λ be any screw on the cylindroid reciprocal to the four-system; then, since this must be reciprocal to every individual screw, we must have for all scalar values of $x_{1}, x_{2}, x_{3}, x_{4}$ and for every screw (μ, λ) on the reciprocal cylindroid

$$
\begin{equation*}
S\left[\lambda\left(x_{1} \mu_{1}+x_{2} \mu_{2}+x_{3} \mu_{3}+x_{4} \mu_{4}\right)+\mu\left(x_{1} \boldsymbol{\lambda}_{1}+x_{2} \boldsymbol{\lambda}_{2}+x_{3} \boldsymbol{\lambda}_{3}+x_{1} \boldsymbol{\lambda}_{4}\right)\right]=0 . \tag{86}
\end{equation*}
$$

As this is to be true for all values of $x_{1}, x_{2}, x_{3}, x_{4}$, it will be true if

$$
x_{1}=S \lambda_{2} \lambda_{3} \lambda_{4} ; x_{2}=-S \lambda_{3} \lambda_{4} \lambda_{1} ; x_{3}=S \lambda_{4} \lambda_{1} \lambda_{2} ; x_{4}=-S \lambda_{1} \lambda_{2} \lambda_{3}
$$

It is, however, a well-known formula in Quaternions that if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{3}$ be any four vectors, then

$$
\begin{equation*}
\lambda_{1} S \lambda_{2} \lambda_{3} \lambda_{4}-\lambda_{2} S \lambda_{3} \lambda_{3} \lambda_{1}+\lambda_{3} S \lambda_{4} \lambda_{1} \lambda_{2}-\lambda_{4} S \lambda_{1} \lambda_{2} \lambda_{3}=0 . \tag{87}
\end{equation*}
$$

Accordingly the equation (86) becomes

$$
S \lambda\left(\mu_{1} S \lambda_{2} \lambda_{3} \lambda_{4}-\mu_{2} S \lambda_{3} \lambda_{4} \lambda_{1}+\mu_{3} S \lambda_{4} \lambda_{1} \lambda_{2}-\mu_{4} S \lambda_{1} \lambda_{2} \lambda_{3}\right)=0 .
$$

Thus we prove that each generator of the reciprocal cylindroid must be at right angles to the vector

$$
\begin{equation*}
\mu_{1} S \lambda_{2} \lambda_{3} \lambda_{4}-\mu_{2} S \lambda_{3} \lambda_{1} \lambda_{1}+\mu_{3} S \lambda_{4} \lambda_{1} \lambda_{2}-\mu_{3} S \lambda_{1} \lambda_{2} \lambda_{3}, \tag{88}
\end{equation*}
$$

and consequently this vector must be parallel to the axis of the cylindroid reciprocal to the four screws $\left(\mu_{1} \lambda_{1}\right),\left(\mu_{2} \lambda_{2}\right),\left(\mu_{3} \lambda_{3}\right),\left(\mu_{1} \lambda_{1}\right)$.

If (μ, λ) be also reciprocal to a fifth screw μ_{5}, λ_{5}, then it must be at right angles, not only to the vector (88), but also to any similar vector (89) obtained by taking any other combination of four screws out of the five, for example,

$$
\begin{equation*}
\mu_{2} S \lambda_{3} \lambda_{4} \lambda_{3}-\mu_{3} S \lambda_{4} \lambda_{3} \lambda_{2}+\mu_{4} S \lambda_{5} \lambda_{3} \lambda_{3}-\mu_{5} S \lambda_{2} \lambda_{3} \lambda_{4} \tag{89}
\end{equation*}
$$

R. I. A. PROO., VOL. XXVIII., SEOT. A.

Hence，λ must be parallel t．o the rector part of the product of these two rectors X and Γ ，for which we have the expression

$\Gamma_{\text {u：}}^{\text {¢ }}$（234）（345）
$T \mu_{3} u_{3}(341)(452)-(345)(412)$
$T_{\text {uヶ．1．}}(\pm 12)(523)-(123)(452)$
$T u_{4} \mu_{5}(23 \pm)(123)$
$7 \mathrm{Tusen}_{2}(234)$（234）
Tu， $\boldsymbol{u}_{3}(23 \pm)(\pm 25)$
$\Gamma^{+} u_{\leq} u_{s}(23 \pm)(\pm 21)$
$\Gamma^{\prime} u_{2} u_{6}(314)(523)-(123)(354)$
$\mathrm{T}_{\mu} \mathrm{H}_{4} \mu_{1}(234)(532)$

where for brevity（ 234 ）is written instead of $s \lambda_{2} \lambda_{\lambda_{0}}$ ．

 vector manipulation：－

$$
\begin{aligned}
& . E \lambda_{\lambda_{1} \lambda_{1}} . S \lambda_{1} \lambda_{2} \lambda_{2}-S \lambda_{3} \lambda_{1} \lambda_{3} . S \lambda_{4} \lambda_{1} \lambda_{2}=S \lambda_{2} \lambda_{2} \lambda_{1} . S \lambda_{3} \lambda_{1} \lambda_{4}, \\
& N \lambda_{1} \lambda_{1} \lambda_{3} \cdot \delta \lambda_{3} \lambda_{2} \lambda_{2}-S \lambda_{1} \lambda_{2} \lambda_{3} . S \lambda_{1} \lambda_{3} \lambda_{3}=S \lambda_{2} \lambda_{3} \lambda_{1} \cdot S \lambda_{5} \lambda_{1} \lambda_{3}, \\
& \cdot N \lambda_{2} \lambda_{1} \lambda_{1} \cdot \delta \lambda_{2} \lambda_{2} \lambda_{3}-S \lambda_{2} \lambda_{3} \lambda_{6} \cdot S \lambda_{1} \lambda_{3} \lambda_{3}=S \lambda_{2} \lambda_{2} \lambda_{0} \cdot S \lambda_{1} \lambda_{2} \lambda_{3} \text {. }
\end{aligned}
$$

 surws parallel to a plane，we obtain the symmetrical expression

$$
\begin{align*}
& \lambda=+V^{*} \mu_{\mu} \mu_{2}, S \lambda_{2} \lambda_{6} \lambda_{s} \text { ? } \\
& +V_{\mu} \mu_{3} \cdot S \lambda_{1} \lambda_{1} \lambda_{1} \\
& +V_{\mu} \mu_{2} \mu_{4} \cdot S \lambda_{1} \lambda_{1} \lambda_{2} \\
& \text { + V", } \because \text { I } 1, \lambda \\
& +V^{\nu} \mu_{2} \mu_{1} . S \lambda_{i} \lambda_{2} \mu_{0} \\
& \text { - } V_{\mu}^{\mu} \mu_{3} . S \lambda_{3} \lambda_{2} \lambda_{1} \tag{91}\\
& -I^{\sim} \mu_{\mu_{3}} . S \lambda_{2} \lambda_{1} \lambda_{1} \\
& -I_{\mu}^{-} \mu_{3} . S \lambda_{1} \lambda_{3} \lambda_{3} \\
& -V_{\mu_{2} \mu_{4}}^{F} \cdot S \lambda_{1} \lambda_{1} \lambda_{3} \\
& \text { - V } \mu_{\mu} \mu_{2} . S \lambda_{3} \lambda_{2} \lambda_{2} \text { 」 }
\end{align*}
$$

succeed each other simply as written round the circle; e.g, in the third, the suffices are $3,4,5,1,2$. Thus the positive terms can be written down at once.

The terms with negative signs are obtained by omitting every alternate digit on the circumference; e.g., commencing with 3, we omit 4; take 5, omit 1 ; take 2, omit 3; take 4, omit 5; take 1, and obtain 35241, the sequence in the suffices in the seventh term of the expression for λ.

We can find the value of μ in like manner, and obtain (92).

$$
\left.\begin{array}{rl}
\mu= & -V \lambda_{1} \lambda_{2} S \mu_{3} \mu_{1} \mu_{5} \\
& -V \lambda_{2} \lambda_{3} S \mu_{1} \mu_{5} \mu_{1} \\
& -V \lambda_{3} \lambda_{4} S \mu_{5} \mu_{1} \mu_{3} \\
& -V \lambda_{1} \lambda_{5} S \mu_{1} \mu_{2} \mu_{3} \\
& -V \lambda_{5} \lambda_{1} S \mu_{2} \mu_{3} \mu_{4} \\
& +V \lambda_{1} \lambda_{3} S \mu_{5} \mu_{2} \mu_{5} \tag{92}\\
& +V \lambda_{3} \lambda_{5} S \mu_{2} \mu_{4} \mu_{3} \\
& +V \lambda_{5} \lambda_{2} S \mu_{3} \mu_{1} \mu_{3} \\
& +V \lambda_{2} \lambda_{4} S \mu_{1} \mu_{3} \mu_{5} \\
& +V \lambda_{1} \lambda_{1} S \mu_{3} \mu_{5} \mu_{2}
\end{array}\right\}
$$

If, indeed, we could have written down the expressions of λ and μ, the proof that they were the coordinates of the screw reciprocal to the five given screws would have been merely a verification of the condition of reciprocity; for example, using the values of μ and λ in the expression $S\left(\mu_{4} \lambda+\mu \lambda_{4}\right)$, we obtain

$$
\begin{aligned}
& S \mu_{s} \mu_{1} \mu_{2} S \lambda_{3} \lambda_{1} \lambda_{5}+S \mu_{4} \mu_{2} \mu_{3} S \lambda_{4} \lambda_{5} \lambda_{1}+S \mu_{\mu} \mu_{3} \mu_{1} S \lambda_{2} \lambda_{3} \lambda_{4} \\
& -S \mu_{4} \mu_{1} \mu_{3} S \lambda_{6} \lambda_{2} \lambda_{1}-S \mu_{4} \mu_{3} \mu_{5} S \lambda_{2} \lambda_{1} \lambda_{1}-S \mu_{\mu} \mu_{5} \mu_{2} S \lambda_{4} \lambda_{1} \lambda_{3} \\
& -S \lambda_{1} \lambda_{1} \lambda_{2} S \mu_{3} \mu_{4} \mu_{5}-S \lambda_{1} \lambda_{2} \lambda_{3} S \mu_{4} \mu_{5} \mu_{1}-S \lambda_{1} \lambda_{5} \lambda_{1} S \mu_{2} \mu_{3} \mu_{5} \\
& +S \lambda_{1} \lambda_{1} \lambda_{3} S \mu_{5} \mu_{2} \mu_{4}+S \lambda_{1} \lambda_{3} \lambda_{5} S \mu_{2} \mu_{4} \mu_{1}+S \lambda_{1} \lambda_{5} \lambda_{2} S \mu_{5} \mu_{1} \mu_{3}
\end{aligned}
$$

which vanishes identically. In like manner it can be shown that $\mu \lambda$ is reciprocal to each of the fonr other screws. We have thus obtained the quaternion solution of the problem of finding that one screw which is reciprocal to five given screws.*

If the five screws belonged to a system of lower dimensions than five, the screw reciprocal to them would be indeterminate. For instance, if they all belonged to a 4 -system, then any screw on a cylindroid reciprocal to four of the screws would also be reciprocal to the fifth. We thus see that $\lambda=0$, and $\mu=0$ must always be satisfied if

$$
\left(\mu_{1}, \lambda_{1}\right) ;\left(\mu_{2}, \lambda_{2}\right) ;\left(\mu_{3}, \mu_{3}\right) ;\left(\mu_{6}, \lambda_{6}\right) ;\left(\mu_{5}, \lambda_{5}\right)
$$

belong to a system of the fourth or any lower order.

[^16]We can also obtain from (91) and (92) the conditions that must be satisfied if μ, λ be the coordinates of any screw of an n-system. For convenience, we shall take the case of a $\%$-system, and proceed as follows:-

Being given the three screws which determine the 3 -system, we take three screws of the reciprocal system, and let these last be defined by the coordinates $\left(\mu_{1}, \lambda_{1}\right) ;\left(\mu_{4}, \lambda_{3}\right) ;\left(\mu_{s}, \lambda_{3}\right)$. We now take $\mu_{s}, \lambda_{s} ; \mu_{s}, \lambda_{s}$ as any vectors whatever; then, as μ, λ are given ly equations (91) and (92), the screw $\mu \lambda$ must be reciprocal to $\left(\mu_{1}, \lambda_{1}\right):\left(\mu_{2}, \lambda_{2}\right) ;\left(\mu_{1}, \lambda_{3}\right):$ and must therefore belong to the original -3-systen: and, by giving proper values to $\mu_{4}, \lambda_{6} ; \mu_{5}, \lambda_{s}$, we can obtain the coordinates of any one of the screws of the system.

Thus we are alle to ubtain the quatermion condition to he satisfied if six screws helnus tha insystem; in other words, we are to find the condition that must lee satisfied ly six serews sn related that a body with simultaneons twist velocities almut then six screws shall still be at rest. In this case, the six serews must all he reciprocal to one screw. We therefore have merely to writn the comdition that the sixth serew $\left(\mu_{s}, \lambda_{8}\right)$ shall be reciprocal to (μ, λ), which we have already found as the screw reciprocal to

$$
\left(\mu_{1}, \lambda_{3}\right) ;\left(\mu_{2}, \lambda_{2}\right) ;\left(\mu_{3}, \lambda_{3}\right) ;\left(\mu_{4}, \lambda_{1}\right) ;\left(\mu_{3}, \lambda_{3}\right) .
$$

We have therefore merdy (in sulnetitute for μ and λ in the equation

$$
\therefore\left(\mu_{c} \lambda-\mu \lambda_{6}\right)=0 ;
$$

the result is accordingly

$$
\begin{aligned}
& -S \lambda_{1} \lambda_{1} \lambda_{6} \cdot S \mu_{1} \mu_{3} \mu_{0}+S \mu_{4} \mu_{\mu} \mu_{0}, S \lambda_{1} \lambda_{2} \lambda_{3}=0.7 \\
& -S \lambda_{1} \lambda_{d} \lambda_{8} . S \mu_{1} \mu_{2} \mu_{s}+S \mu_{2} \mu_{4} \mu_{6} . S \lambda_{1} \lambda_{2} \lambda_{s} \\
& -S \lambda_{2} \lambda_{2} \lambda_{d} \cdot S \mu_{1} \mu_{\mu} \mu_{s}+S \mu_{2} \mu_{3} \mu_{\mathrm{C}} . S \lambda_{1} \lambda_{1} \lambda_{s}
\end{aligned}
$$

$$
\begin{align*}
& -S \lambda_{2} \lambda_{0} \lambda_{1} \cdot S \mu_{1} \mu_{2} \mu_{0}+S \mu_{2} \mu_{s} \mu_{3} \cdot S \lambda_{1} \lambda_{2} \lambda_{1} \\
& +S \lambda_{1} \lambda_{1} \lambda_{6} \cdot S \mu_{2} \mu_{\mu} \mu_{6}-S \mu_{1} \mu \mu_{6} \cdot S \lambda_{2} \lambda_{2} \lambda_{6} \tag{93}\\
& +S \lambda_{1} \lambda_{2} \lambda_{6} \cdot S \mu_{2} \mu_{\mu} \mu_{3}-S \mu_{1} \mu_{3} \mu_{6} \cdot S \lambda_{2} \lambda_{d} \lambda_{3} \\
& \therefore S \lambda_{2} \lambda_{0} \lambda_{0} . S \mu_{1} \mu_{2} \mu_{4}-S \mu_{2} \mu_{4} \mu_{n} . S \lambda_{1} \lambda_{2} \lambda_{0} \\
& +S \lambda_{2} \lambda_{6} \lambda_{0} \cdot S \mu_{1} \mu_{3} \mu_{b}-S \mu_{2} \mu_{4} \mu_{6} \cdot S \lambda_{1} \lambda_{3} \lambda_{s} \\
& +S \lambda_{2} \lambda_{2} \lambda_{5} \cdot S \mu_{1} \mu_{\mu} \mu_{0}-S \mu_{2} \mu_{\mu} \mu_{5} . S \lambda_{1} \lambda_{0} \lambda_{6} \quad
\end{align*}
$$

Thi, - the armala in therexiant mitained in a different manner by Joly
 (5, mivalent of the formula alreaty given in Equation (41) in one form, and in Trentis, pp. 37, 248 in another.

I: in womth whil, t. note that the vectur comrdinates of five screws satisfy certain other firmult whin are. midoubt. merely properties of five pairs of
 from the thenry of suews: hut we commence by tefining four vector-functions A, B, C, L which are given by the following relations:-

$$
\left.\begin{array}{rl}
A= & +V\left(\lambda_{1} \mu_{2}+\mu_{1} \lambda_{2}\right) S \lambda_{3} \lambda_{4} \lambda_{5}=0 . \\
& +V\left(\lambda_{2} \mu_{3}+\mu_{2} \lambda_{3}\right) S \lambda_{1} \lambda_{3} \lambda_{1} \\
& +V\left(\lambda_{3} \mu_{4}+\mu_{3} \lambda_{4}\right) S \lambda_{3} \lambda_{1} \lambda_{2} \\
& +V\left(\lambda_{4} \mu_{5}+\mu_{4} \lambda_{5}\right) S \lambda_{1} \lambda_{2} \lambda_{3} \\
& +V\left(\lambda_{5} \mu_{1}+\mu_{5} \lambda_{1}\right) S \lambda_{2} \lambda_{3} \lambda_{4} \\
& -V\left(\lambda_{1} \mu_{3}+\mu_{1} \lambda_{3}\right) S \lambda_{5} \lambda_{2} \lambda_{4} \\
& -V\left(\lambda_{3} \mu_{5}+\mu_{3} \lambda_{5}\right) S \lambda_{2} \lambda_{4} \lambda_{1} \\
& -V\left(\lambda_{5} \mu_{2}+\mu_{5} \lambda_{2}\right) S \lambda_{4} \lambda_{1} \lambda_{3} \\
& -V\left(\lambda_{2} \mu_{4}+\mu_{2} \lambda_{4}\right) S \lambda_{1} \lambda_{3} \lambda_{5} \\
& -V\left(\lambda_{4} \mu_{1}+\mu_{4} \lambda_{1}\right) S \lambda_{3} \lambda_{5} \lambda_{2} \\
B= & +V \lambda_{1} \lambda_{2} S \lambda_{3} \lambda_{4} \lambda_{5}=0 . \\
& +V \lambda_{2} \lambda_{3} S \lambda_{1} \lambda_{5} \lambda_{1} \\
& +V \lambda_{3} \lambda_{5} S \lambda_{5} \lambda_{1} \lambda_{2} \\
& +V \lambda_{4} \lambda_{5} S \lambda_{1} \lambda_{2} \lambda_{3} \\
& +V \lambda_{5} \lambda_{1} S \lambda_{2} \lambda_{3} \lambda_{4} \\
& -V \lambda_{1} \lambda_{3} S \lambda_{5} \lambda_{2} \lambda_{4} \tag{95}\\
& -V \lambda_{3} \lambda_{5} S \lambda_{2} \lambda_{4} \lambda_{1} \\
& -V \lambda_{5} \lambda_{2} S \lambda_{1} \lambda_{1} \lambda_{3} \\
& -V \lambda_{2} \lambda_{4} S \lambda_{1} \lambda_{3} \lambda_{5} \\
& -V \lambda_{4} \lambda_{1} S \lambda_{3} \lambda_{5} \lambda_{2}
\end{array}\right\}
$$

The desired relations are proved by making use of the well-known property that the screw θ reciprocal to five screws, $a, \beta, \gamma, \delta, \varepsilon$, will retain the same relation to $a, \beta, \gamma, \delta, \varepsilon$ if, instead of p_{θ}, the pitch of θ, we write $p_{\theta}-k$; while, instead of $l^{\prime}, p_{\beta}, p_{\gamma}, p_{\delta}, p_{\theta}$, we write $p_{a}+k, p_{\beta}+k, p_{\gamma}+k, p_{\delta}+k, p_{\mathrm{E}}+k$ respectively, where k is any scalar; this follows at once from the fact that, if θ is reciprocal to \boldsymbol{a},

$$
\left(p_{\theta}+p_{a}\right) \cos \theta_{a}-d \sin \boldsymbol{\theta}_{a}=0
$$

where θ_{a} is the right-handed angle hetween θ and a; but of course this equation may equally be written thus

$$
\left\{\left(p_{\theta}-k\right)+\left(p_{a}+k\right)\right\} \cos \theta_{a}-d \sin \theta_{a}=0
$$

If the pitch of the screw with vector condinates (μ, λ) be increased by k, but without any wher change, then the corrdinates merely become $\{(\mu+k \lambda), \lambda\}$. This is obvious from the fact that

$$
V(\mu+k \lambda) / \lambda=V_{\mu} / \lambda \quad \text { and } \quad S(\mu+k \lambda) / \lambda=S \mu / \lambda+k
$$

If the pithes of the five screws le increased by k, but no other change is made, then their vector coordinates become

$$
\left\{\left(\mu_{1}+k \lambda_{1}\right), \lambda_{1} \mid ; \ldots\left\{\left(\mu_{3}+k \lambda_{3}\right), \lambda_{3}\right\}\right.
$$

If we sulistitute $\left(\mu_{1}+k \cdot \lambda_{1}\right) \ldots\left(\mu_{s}+k \lambda_{s}\right)$ for $\mu_{1} \ldots \mu_{s}$ in the expression for λ in (91 , and denme ly λ_{κ} the valum whirh λ then assumes, we have, as is easily seen,

$$
\begin{equation*}
\lambda_{k}=\lambda+k A+h^{3} B \tag{98}
\end{equation*}
$$

where A and B are the vectors in (95) and (96).
In like manm when the same substitutions are made in (92) we have for μ_{k} the value which μ then assumes

$$
\begin{equation*}
\mu_{k}=\mu-D k+C k^{3}-B k^{3} \tag{99}
\end{equation*}
$$

 ($1, \lambda$, in that the pitch of the seconn in k less than the pitch of the first. It finlows that : $\left.\mu_{3} \cdot I_{i} \lambda_{\lambda}\right), \lambda_{i}$; is a serew identical with (μ, λ). Thus (μ, λ) and $\left.\left\{1 \mu+k(\lambda-D)+k^{3}(A+C)\right\},\left(\lambda+k A+k^{2} B\right)\right\}$ must be the vector corrlinates of an and the sane srew whatever be the value of k. Hence we must have

$$
A=0, B=0, C=0, D=\lambda
$$

Thun propertien if the sector expressions are of course easily verified by direct calculation.

We see that A - 0 hey writing segrately the terms involving μ_{1}, which are

$$
V_{\mu_{1}}\left(\lambda_{2} S \lambda_{3} \lambda_{6} \lambda_{3}-\lambda_{3} S \lambda_{1} \lambda_{2} \lambda_{6}+\lambda_{6} S \lambda_{2} \lambda_{5} \lambda_{2}-\lambda_{3} S \lambda_{2} \lambda_{3} \lambda_{4}\right) .
$$

Fut from te known quaternion formula the quantity in the bracket is zero. In like manner each of the other groups of terms is zero. Thus A is verified, aud this includes $B=0$ by interchanging μ and λ.

To verify $C=0$ we may take the group of terms involving μ_{s}; they are

$$
\begin{aligned}
& -S \mu_{5} \lambda_{3} \lambda_{4} V \lambda_{1} \lambda_{2}-S \mu_{5} \lambda_{1} \lambda_{4} V \lambda_{2} \lambda_{3}-S_{\mu_{5} \lambda_{1} \lambda_{2} V \lambda_{3} \lambda_{4}} \quad+\quad S \mu_{5} \lambda_{2} \lambda_{4} V \lambda_{1} \lambda_{3}+S \mu_{5} \lambda_{1} \lambda_{3} V \lambda_{2} \lambda_{4}+S \mu_{5} \lambda_{2} \lambda_{3} V \lambda_{4} \lambda_{4}
\end{aligned}
$$

If we substitute for λ_{4} the expression $a \lambda_{1}+b \lambda_{2}+c \lambda_{3}$ where a, b, c are scalars, this expression is seen to vanish identically. In like manner for the terms involving $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{6}$.

The last identity $D=\lambda(97)$ is somewhat remarkable. If we take the terms only involving μ_{5} in λ, we have

The terms involving μ_{5} in D are in number 12 , of which three are

$$
V \lambda_{1} \lambda_{2} S \lambda_{3} \mu_{3} \mu_{3}+V \lambda_{2} \lambda_{3} S \lambda_{1} \mu_{3} \mu_{5}+V \lambda_{3} \lambda_{1} S \lambda_{2} \mu_{4} \mu_{5}
$$

but this is equal to $V_{\mu_{4}} \mu_{5} \delta \lambda_{1} \lambda_{2} \lambda_{3}$, because from a known vector formula

$$
a S \lambda_{1} \lambda_{2} \lambda_{3}=V \lambda_{1} \lambda_{2} . S \lambda_{3} a+V \lambda_{2} \lambda_{3} . S \lambda_{1} a+V \lambda_{3} \lambda_{1} S \lambda_{2} a
$$

Thus we show that each term in λ equals the sum of three terms in D; and the verification is complete.

VII.-Representation of Serew Systems of the third order by Linear Vector Functions.

There is, perhaps, no part of the theory of quaternions of greater interest to the student of mathematical physics than the theory of linear vector functions introduced by Sir William Hamilton.* This beautiful theory exhibits in the most lucid manner the geometrical element common to many investigations in varied branches of mathematical inquiry. It is known that the strain of an elastic body displaces any vector of that body into another vector which is a linear vector function of the original vector. It is also known that the vector expressing the impulsive moment applied to a rigid body free to move about a point generates a twist velocity which is a linear vector function of the original impulsive moment. These are elementary applications; and, as instances of more recondite uses of the linear vector function, we may mention its employment by the late Professor Willard Gibbs, and, more recently, in the important investigations of Professor Conway in molecular mechanics.

Of course, to speak strictly, the theory of linear vector functions does not

[^17]exactly come under the head of quaternions. The notion of a quaternion as the quotient of two vectors is not immediately involved in the theory of linear vector functions; but it will probably be agreed that there is hardly any part of Hamilton's wonderful "Elements of Quaternions " more instructive and more useful than the chapters dealing with the functions of which we are now speaking.

After the lamented Professor Charles J. Joly had acquired that mastery of quaternions which made him so appropriate an editor of Hamilton's book, his attention was turned to the theory of screws, with results to which reference has already been made several times in the present paper. In his many writings, and in his correspondence with the present writer, he has developed with abundant illustrations the intimate connexion between quaternions and the theory of screws. Probably the most important and instructive part of this work has been his exposition of the relations of the serews of a system of the third order to a linear vector function. He has shown how these theories are coextensive, and how every theorem with regard to the scrows of a $:$-system has as its counterpart a theorem with regard to a linear rectur function. The perfection of this analogy lies in the circumstance that in each case the theory is of the most general type. The theory of a system of screws of the third order of the most general type corresponds to the therry of a linear vector function of the most general type. The significance of this circumstance will he appreciated if we remark that in the case of the impulsive vector and the instantaneous vector already referred to, the linear vector function which arises is now of the most general type. It is of that special form which is known as self-conjugate. It seems therefore reasonable (op pint wint that the screw system of the third order is a geometrical emuivalem mentensive under all circunstances with the linear vector function.

In illustration of this statement, we may recall that nine data are required fon the complete specification of a : whaired for the centre of the pitch quadric, three more for the directions of ita axes, and three more for the pitches of its three principal screws. That nime data are also required for the definition of a linear vector function is als", well known. Indeed the name of nemion has been proposed for this function in consequence of the significance of this circumstance.

Let $\left(\lambda_{1}, \mu_{1}\right) ;\left(\lambda_{2}, \mu_{0}\right) ;\left(\lambda_{3}, \mu_{3}\right)$) h_{1} three pairs of vectors defining three screws of a 3 -sy-tem, amt let r_{2}, c_{3} be any three scalars: then μ, λ will represent another screw of the same system if

$$
\begin{aligned}
& \lambda=x_{1} \lambda_{1}+x_{2} \lambda_{2}+x_{3} \lambda_{2} \\
& \mu=x_{1} \mu_{1}+x_{2} \mu_{3}+x_{3} \mu_{1} .
\end{aligned}
$$

Multiplying the first by $V \lambda_{2} \lambda_{3}, V \lambda_{3} \lambda_{1}$, and $V \lambda_{1} \lambda_{2}$ respectively, and taking
the scalar,
$S \lambda \lambda_{2} \lambda_{3}=x_{1} S \lambda_{1} \lambda_{2} \lambda_{3}$,
$S \lambda^{\prime} \lambda_{3} \lambda_{1}=x_{2} S \lambda_{1} \lambda_{2} \lambda_{3}$,
$S \lambda_{1} \lambda_{2}=x_{3} S \lambda_{1} \lambda_{2} \lambda_{3} ;$
whence

$$
\begin{equation*}
\mu=\mu_{1} \frac{S \lambda_{2} \lambda_{3}}{S \lambda_{1} \lambda_{2} \lambda_{3}}+\mu_{2} \frac{S \lambda_{1} \lambda_{3}}{S \lambda_{1} \lambda_{2} \lambda_{3}}+\mu_{3} \frac{S \lambda_{1} \lambda_{3} \lambda}{S \lambda_{1} \lambda_{2} \lambda_{3}} . \tag{100}
\end{equation*}
$$

But the expression on the right hand is a linear vector function of λ of the most general type.* If we denote it by $\phi \lambda$, we have

$$
\begin{equation*}
\mu=\phi \lambda . \tag{101}
\end{equation*}
$$

Another proof of this important theorem may be noted as follows:If $\mu \lambda$ be a screw reciprocal to the three screws $\left(\mu_{1} \lambda_{3}\right),\left(\mu_{2} \lambda_{2}\right),\left(\mu_{3} \lambda_{3}\right)$, we have

$$
S\left(\mu_{1}+\lambda \mu_{1}\right)=0, \quad S\left(\mu_{2}+\lambda \mu_{2}\right)=0, \quad S\left(\mu \lambda_{3}+\lambda \mu_{3}\right)=0 .
$$

But, by a fundamental quaternion formula,

$$
\mu S \lambda_{1} \lambda_{2} \lambda_{3}=V \lambda_{2} \lambda_{3} . S \lambda_{1} \mu+V \lambda_{3} \lambda_{1} \cdot S \lambda_{2} \mu+V \lambda_{1} \lambda_{2} \cdot S \lambda_{3} \mu_{0}
$$

Whence from the three equations of reciprocity just written, we have

$$
\begin{equation*}
\mu S \lambda_{1} \lambda_{2} \lambda_{3}=V \lambda_{3} \lambda_{2} S \mu_{1} \lambda+V \lambda_{1} \lambda_{3} S \mu_{2} \lambda+V \lambda_{2} \lambda_{1} S \mu_{3} \lambda_{2} \tag{102}
\end{equation*}
$$

again showing that μ is a linear vector function of λ.
Being given any linear vector function ϕ, then by taking different vectors λ, the pair of coordinates ($\phi \lambda, \lambda$) will trace out the screws of the 3 -system corresponding to ϕ. This theorem is due to Joly, \dagger and it is a discovery of much importance in the theory, inasmuch as it shows the perfect correspondence between the 3 -system and the linear vector function.

When λ is given, then $\mu=\phi(\lambda)$ is known; and thus we see that in a 3 -system there is always one screw parallel to any given direction. The pitch of the screw is $S \phi \lambda . \lambda^{-1}$, and the perpendicular from the origin on the screw is $V \phi \lambda \cdot \lambda^{-1}$. The equation of any screw of the 3 -system is

$$
\rho=V_{\phi} \lambda \cdot \lambda^{-1}+x \lambda .
$$

Joly ${ }_{+}^{+}$has also shown that if $(\phi \lambda, \lambda)$ represents a 3 -system, then ($-\phi^{\prime} \lambda, \lambda$) represents the reciprocal 3 -system, where as usual $\phi^{\prime} \lambda$ is the function conjugate to $\phi \lambda$. This beautiful theorem shows the intimate connexion between the theory of reciprocal screw systems of the third order and the properties of the linear vector function.

In conclusion I add a few illustrations to show how the Theory of Screws responds to treatment by the methods of Quaternions. I shall assume that

[^18]the reader is acquainted with the principal properties of linear vector functions and also with the geometrical properties of the 3 -system.*

We shall first prove the following general proposition :-
If ϕ be a linear vector function, then

$$
\rho=\frac{1}{2}\left(T \phi \lambda \cdot \lambda^{-1}-V_{\phi^{\prime}} \lambda \cdot \lambda^{-1}\right)+x \lambda
$$

is the equation to a diameter of the pitch-quadric of the 3 -system defined by the function ϕ.
A screw η farallel to λ can of course be found in the 3 -system S and its pitch f^{\prime} is "p $\lambda \cdot \lambda^{-1}$. A srrews Epratlel to λ can also be found in the reciprocal 3 -system S, and its pitch is

$$
-S_{\phi}^{\prime} \lambda \cdot \lambda^{-1}=-S \phi \lambda \cdot \lambda^{-1} .
$$

Hence the pitches if the serews parallel to λ in the 3 -system and its monnal 3 -system lifter merely in siyn. These two screws are therefore parallel sethatore of the hyperninit which expresses the locus of the screws of pish h^{\prime} c.whtain. in the system s. A parallel to these generators drawn thrash the pint milway lotween them must therefore be a diameter of

Pig. 16.

 the parallelagram, we have for the rector $O C$

$$
O C^{\prime}=\frac{1}{2}\left(\Gamma \phi \lambda \cdot \lambda^{-1}-\nabla \phi^{\prime} \lambda \cdot \lambda^{-1}\right),
$$

pitch-quadric which is parallel to λ. Hence p, the vector to any point on the diameter, is given by the equation

$$
\begin{equation*}
\rho=\frac{1}{2}\left(V \phi \lambda \cdot \lambda^{-1}-V \phi^{\prime} \lambda \cdot \lambda^{-1}\right)+x \cdot \lambda, \tag{103}
\end{equation*}
$$

where x is a variable sealar.
It is easy to see that this may be written in the more concise form

$$
\rho=\frac{1}{2} \lambda^{-1}\left(\phi^{\prime} \lambda-\phi \lambda\right)+x \lambda .
$$

Multiplying by λ and taking the scalars, and supposing λ to be a unit vector, we have $x=-S_{\rho} \lambda$.

If therefore i, j, k have their usual signification as any three unit-vectors which are mutually rectangular, and if ρ be the vector to the centre of the pitch-quadric, then

$$
\begin{aligned}
& \rho=\frac{1}{2} i\left(\phi i-\phi^{\prime} i\right)-i S \rho i, \\
& \rho=\frac{1}{2} j\left(\phi j-\phi^{\prime} j\right)-j S \rho j, \\
& \rho=\frac{1}{2} k\left(\phi \pi-\phi^{\prime} k j-k i S \rho k .\right.
\end{aligned}
$$

Adding these three equations, and remembering the well-known quaternion formula

$$
\rho=-i S \rho i-j S \rho j-k S \rho k,
$$

we have

$$
\begin{align*}
2 \rho & =\frac{1}{2}(i \phi i+j \phi j+k \phi k)-\frac{1}{2}\left(i \phi^{\prime} i+j \phi^{\prime} j+k \phi^{\prime} k\right) \\
& =\frac{1}{2} \boldsymbol{V}(i \phi i+j \phi j+k \phi k)-\frac{1}{2} \boldsymbol{V}\left(i \phi^{\prime} i+j \phi^{\prime} j+k \phi^{\prime} k\right) . \tag{104}
\end{align*}
$$

We now make the following characteristic transformation, derived, of course, from the wonderful manipulations of his symbols introduced by Hamilton:-

$$
\begin{aligned}
& -\frac{1}{2} V\left(i^{\prime} \phi i+j \phi^{\prime} j+k \phi^{\prime} k\right) \\
& =\frac{1}{2} \nabla\left(k j \phi^{\prime} i+i k \phi^{\prime} j+j i^{\prime} k\right)=\frac{1}{2} V\left(\phi^{\prime} i \nabla j k+\phi^{\prime} j \nabla k i+\phi^{\prime} k V i j\right) \\
& =\frac{1}{2} k S j \phi^{\prime} i-\frac{1}{2} j S k \phi^{\prime} i+\frac{1}{2} i S k \phi^{\prime} j-\frac{1}{2} k S i \phi^{\prime} j+\frac{1}{2} j S i \phi^{\prime} k-\frac{1}{2} i S j \phi^{\prime} k \\
& =\frac{1}{2} k S i \phi j-\frac{1}{2} j S i \phi k+\frac{1}{2} i S j \phi k-\frac{1}{2} k i S j \phi i+\frac{1}{2} j S k \phi i-\frac{1}{2} i S k \phi j \\
& =\frac{1}{2}(j S k \phi i-k S j \phi i)+\frac{1}{2}(k S i \phi j-i S k \phi i)+\frac{1}{2}(i S j \phi k-j S i \phi k) \\
& =\frac{1}{2} \nabla j k \phi i+\frac{1}{2} \nabla k i \phi j+\frac{1}{2} \nabla i j \phi k=\frac{1}{2} V(i \phi i+j \phi j+k i \phi k) .
\end{aligned}
$$

Hence we obtain from (104) the result*

$$
\begin{equation*}
\rho=\frac{1}{2} V(i \phi i+j \phi j+k \phi k) . \tag{105}
\end{equation*}
$$

This shows how the vector from the origin to the centre of the pitch-quadric, or rather of the system of p-pitch-quadrics, is expressed in terms of the linear vector function.

It is easily seen that if λ, μ, ν be any other set of unit vectors at right angles,

$$
\begin{equation*}
S(i \phi i+j \phi j+k \phi k)=S(\lambda \phi \lambda+\mu \phi \mu+\nu \phi \nu) . \tag{106}
\end{equation*}
$$

This proves that the sum of the pitches of three mutually rectangular screws in a 3 -system is constant. Of course this can be easily shown by the ordinary greometrical theory of the 3-system, as given in "Treatise," p. 170. I would, however, like to state that I had never noticed this theorem until it recenty presented itself as the natural geometrical meaning of the constancy (fi $S(i \phi i+j \phi j+k \phi k)$. In general we may state that $-S(i \phi i+j \phi j+k \phi k)$ is nut only the sum of the pitches of three screws that are at right angles, but it is also the sum of the pitches of three screws which can be drawn through a $1^{\prime \prime}$ int. That this is constant is a well-known property of the 3 -system.*

The fumlamental theorem which expresses the relation of the system of pith-hypertmbints the linear vector function has heen given virtually by July ${ }^{+}+$but the following demonstration may be noted :-

Let ρ the the vectur from the centre of the system to some point on the $f \cdot p$ it h_{1-1} matrix, where f is the variahle sealar expressing the pitch of a serew if the sytum, ant where ϕ is the linear vector function by which the system is clefined.
 .m? we shall surpme them paraltel to vectors λ and μ respectively. The first "i thear with pith forenges the uriginal 3 -system, and the second when it receives the pitch $-p$ is a screw of the reciprocal 3 -system.

The equation of the generator parallel to $\boldsymbol{\lambda}$ is

$$
\rho=\Gamma \phi \lambda \cdot \lambda^{-1}+x \lambda,
$$

where r is a variable scalar:
This may be written

$$
\begin{align*}
\rho & =\phi \lambda \cdot \lambda^{-1}-S_{\phi} \lambda \cdot \lambda^{-1}+n \lambda, \\
& =\phi \lambda \cdot \lambda^{-1}-p+2 \lambda, \\
p \lambda & =\phi \lambda-p \lambda+2 \lambda^{2}, \\
\text { whence } \quad V^{\prime} \rho \lambda & =\left(\phi-p^{p}\right) \lambda .
\end{align*}
$$

This is another form of the equation of the generator parallel to λ.

 the centre, the function ϕ is self-conjugate, and accordingly we have

$$
\begin{align*}
\rho= & -V \phi \mu \cdot \mu^{-1}+y / \mu, \tag{108}\\
= & -\phi \mu \cdot \mu^{-1}+S \phi \mu \cdot \mu^{-1}+y \mu, \\
= & -\phi \mu \cdot \mu^{-1}+p+y \mu ; \\
& -V \rho \mu=(\varphi-p) \mu . \tag{109}
\end{align*}
$$

whence
I. p / i- an "lnator which proluces a self-conjugate linear vector-

$$
\text { - "Tr-atise," p. } 176 . \quad \text { Joly, "Manual," p. } 165
$$

function, we have in general by the known properties of self-conjugate linear vector-functions

$$
\begin{equation*}
(\phi-p)\{V(\phi-p) \lambda(\phi-p) \mu\}=m_{p} \nabla \lambda_{\mu}, \tag{110}
\end{equation*}
$$

where m_{p} is a constant, so far as λ and μ are concerned, depending only on p, and the coefficients of the latent cubic appropriate to ϕ. The actual value of m_{p} is thus found. Multiply (110) by any vector ν and take the scalar. Then the first side of (110) becomes

$$
\begin{aligned}
S(\phi-p)\{V(\phi-p) \lambda(\phi-p) \mu\} \nu & =S(\phi-p) \nu\{V(\phi-p) \lambda(\phi-p) \mu\} \\
& =S(\phi-p) \lambda \cdot(\phi-p) \mu \cdot(\phi-p) \nu .
\end{aligned}
$$

The second side of (110) becomes when the scalar is taken

$$
m_{p} S V \lambda_{\mu}, \nu=m_{p} S \lambda_{\mu \nu} .
$$

Thus we have
$m_{p}=\frac{S(\phi-p) \lambda \cdot(\phi-p) \mu \cdot(\phi-p) \nu}{S \lambda \mu \nu}=\frac{S(\phi-p) i(\phi-p) j(\phi-p) k}{S i j k}$,
because of the very remarkable property of linear vector functions which affirms that m_{p} is unchanged whatever three vectors be chosen as $\lambda \mu \nu$.

Substituting for (107) and (108) in (110) we have
but

$$
\begin{aligned}
(\phi-p) V V \rho \lambda \cdot V \rho \mu & =-m_{p} V \lambda_{\mu} ; \\
V V \rho \lambda . V \rho \mu & =-\rho S \lambda_{\mu \rho}, \\
(\phi-p) \rho S \lambda_{\mu \rho} & =m_{p} V \lambda_{\mu},
\end{aligned}
$$

and consequently
whence multiplying by ρ and taking the scalar

$$
\begin{equation*}
S_{\rho}\left(\phi-p_{i} \rho=m_{p} .\right. \tag{112}
\end{equation*}
$$

It is indeed astonishing to find that so concise a formula as this should contain the theory of the 3 -system of screws.

Much further development no doubt awaits the investigation of the relations of the Theory of Screws to Quaternions.

BIBLIOGRAPHICAL NOTES.

In the Treatise on the Theory of Screws, Cambridge, 1900, I have given an Appendir of Bibliographical Notes on works known to me which bear on the Theory of Screws. I add here a few later references, though I know the list is very incomplete.
(1) "Zur Schraubentheorie von Sir Robert Ball." Von F. Klein in Göttingen. Zeitschrift für Mathematik und Physik, 47 Band, 1902, 1 und 2 Heft, pp. 237-265.
(2, " Sir Robert S. Ball's lineare Schraubengebiete." Von A. Gıünwald in Pray-Bubentsch. Zeitschrift für Mathematik und Physik, 48 Band, 1902, 1 Heft, pp. 49-108.
.3 " 7ur Veranschaulichung des Schraubenbündels." Von Anton Grünwald in Prag-Bubentsch. Zeitschrift für Mathematik und Physik, 49 Band, 1903, 2 Heft, pp. 211-245.
t. "Ilarstellung aller Elementarhewegungen eines starren Körpers von belichigem Freiheitsgrad." Von Anton Crünwald in Bubentsch hei Pragg. Zeitschrift für Mathematik und Physik, 52 Band, 1905, 3 Heft, pp. 229-275.
(i) "Genmetrie der Krafte." Von H. E. Timerding, Professor at the University of Strasshurg. Leipzig, B. G. Teubner. 1908. pp.i-xi and 1-381.
(5) In the Encyklopadie der Mathematischen Wissenschaften (Leipzig) reference may he made to Professor H. E. Timerding's section entitled "Die ersten Sätze der Kinematik des starren Körpers und die Ballschen Schrauben." Band Ir., 1 Teil, pp. 142-158.

$\left[\begin{array}{ll}69\end{array}\right]$

III.

THE SYMBOLICAL EXPRESSION OF ELIMINANTS.

By REV. W. R. WESTROPP ROBERTS, M.A.
Read April 11. Ordered for Publication April 13. Published Octobrr 18, 1010.
The object of this paper is to show how the eliminant of any two binary quantics may be expressed in a symbolical form by the aid of certain operators.

Let u and v be the two quantics whose climinant we desire to express symbolically, and let us suppose that u is of the $m^{\text {th }}$ degree, and v of the $n^{\text {th }}$ in x and y; and further, let the roots of the equation $u=0$, be x_{1} / y_{1}, $x_{2} / y_{2}, \ldots x_{m} / y_{m n}$; and those of $v=0$, be $\xi_{1} / \eta_{1}, \xi_{2} / \eta_{2}, \ldots \xi_{n} / \eta_{n}$ we may then write

$$
\begin{align*}
u(x, y) \equiv A_{0} x^{m}+A_{1} x^{m-1} y & +\ldots+A_{m} y_{m} \tag{1}\\
& \equiv\left(x y_{1}-y x_{1}\right)\left(x y_{2}-y x_{2}\right) \ldots\left(x y_{m}-y x_{m}\right) \\
v(x, y)=B_{0} x^{n}+B_{1} x^{n-1} y & +\ldots+B_{n} y^{n} \tag{2}\\
& =\left(x \eta_{1}-y \xi_{1}\right)\left(x \eta_{2}-y \xi_{2}\right) \ldots\left(x \eta_{n}-y \xi_{n}\right),
\end{align*}
$$

where u and v are written without binomial coefficients.
It is well known that a binary quantic or a covariant quantic can be derived from a certain term called the source of the quantic as well as from the leading term of the quantic by certain operative processes, which we now proceed to discuss.

If we write
(3) $\left\{\begin{array}{l}-\delta \equiv y_{1} \frac{d}{d x_{1}}+y_{2} \frac{d}{d x_{2}}+\ldots+y_{m} \frac{d}{d x_{m}}+\eta_{1} \frac{d}{d \xi_{1}}+\eta_{2} \frac{d}{d \xi_{2}}+\ldots+\eta_{n} \frac{d}{d \xi_{n},} \\ -\Delta=x_{1} \frac{d}{d y_{1}}+x_{2} \frac{d}{d y_{2}}+\ldots+x_{m} \frac{d}{d y_{m}}+\xi_{1} \frac{d}{d \eta_{1}}+\xi_{2} \frac{d}{d \eta_{2}}+\ldots+\xi_{n} \frac{d}{d \eta_{n},}\end{array}\right.$
thus giving to the well-known operative symbols a wider meaning than that usually attaching to them, and consequently a wider application, the reader will readily perceive the truth of the following equations:

$$
\left\{\begin{array}{l}
\partial A_{r}=(m+1-1) A_{r-1}, \quad \partial B_{s}=(n+1-s) B_{s-1}, \quad \partial A_{0}=0, \quad \partial B_{0}=0, \tag{4}\\
\Delta A_{r}=(r+1) A_{r+1}, \quad \Delta B_{s}=(s+1) B_{\varepsilon+1}, \quad \Delta A_{m}=0, \quad \Delta B_{n}=0
\end{array}\right.
$$

It then appears that $u(x, y)$ can be written in the following forms:

$$
\left\{\begin{array}{l}
u(x, y)=y^{m}\left\{A_{m}+\frac{x^{2}}{y} \delta A_{m}+\frac{x^{2}}{y^{2}} \frac{\delta^{2} A_{m}}{1.2}+\ldots+\frac{x^{m}}{y^{m}} \frac{\partial^{m} A_{m}}{m!}\right\}=y^{m}{ }^{m} \delta^{8} A_{m} \tag{5}\\
u(x, y)=x^{m}\left\{A_{0}+\frac{y}{x} \Delta A_{0}+\frac{y^{2}}{x^{2}} \frac{\Delta^{2} A_{0}}{1.2}+\ldots+\frac{y^{m}}{x^{m}} \frac{\Delta^{m} A_{0}}{m!}\right\}=x^{m} x^{m} e^{\frac{y}{4}} A_{0} .
\end{array}\right.
$$

In like manner we may write

The "pranties "and ibeing then completely defined by and derivable from their respective sources, we may denote the eliminant of u and v by the symbol $E\left(A_{n}, B_{n}\right)$, and write

$$
\begin{align*}
& \left(E^{\prime}\left(\Lambda_{n}, B_{n}\right)=u\left(\xi_{1}, \eta_{1}\right) u\left(\xi_{2}, \eta_{2}\right) \ldots u\left(\xi_{n}, \boldsymbol{\eta}_{n}\right),\right. \tag{i}
\end{align*}
$$

Substituting now in the above results for $u\left(\xi_{1}, \eta_{1}\right)$ and $v\left(x_{1}, y\right)$, and their values in terms of $x_{1}, y_{1} ; x_{2}, y_{2} \ldots x_{m}, y_{m} ; \xi_{1}, m_{1} ; \xi_{2}, \eta_{2} ; \ldots \xi_{n}, \mu_{n}$; it is evident, on inspection, that

$$
\begin{equation*}
E^{\prime}\left(A_{m}, B_{n}\right)=(-1)^{m n} E\left(B_{n}, A_{m}\right) . \tag{8}
\end{equation*}
$$

We now write

$$
\begin{aligned}
& E\left(A_{m,} B_{n}\right)=\left\{A_{m, n} \eta_{1}{ }^{m+}+A_{m-1} \eta_{1}^{m-1} \xi_{1}+A_{m-2} \eta_{1}^{m-2} \xi_{1}{ }^{2}+\ldots+A_{0} \xi_{1}{ }^{m}\right\} \\
& =\left\{A_{m} \eta_{2}{ }^{m}+A_{m-1} \eta_{2}^{m-1} \xi_{2}+\Lambda_{m-2} \eta_{2}^{m-2 \xi_{2}}{ }_{2}+\ldots+\Lambda_{1} \xi_{2}{ }^{m}\right\} \\
& \times\left\{A_{m} \eta_{2} m^{m}+A_{m-1} \eta_{3} \eta^{m-1} \xi_{1}+A_{m-2} \eta_{3}^{m-3} \xi_{3}^{2}+\ldots+A_{0} \xi_{3}{ }^{m}\right\}
\end{aligned}
$$

amb if we agree to denote the various symmetric functions as follows:

$$
\begin{align*}
& \text { (} \Sigma_{\Sigma_{1}} \eta_{n} n_{3} \ldots \eta_{n}=\Sigma_{1}, \quad \Sigma_{E_{1}}{ }^{2} \eta_{2}^{2} \eta_{3}^{2} \ldots \eta_{n}{ }^{2}=\mathbf{\Sigma}_{2} \text {, } \tag{9}
\end{align*}
$$

we find reatily, on expanding the above form of $E\left(\Lambda_{m}, B_{n}\right)$,
(10) $E\left(A_{m}, B_{0}\right)=A_{m^{n}}{ }^{n} B_{0}^{m}+A_{m}{ }^{n-1}\left\{B_{0}{ }^{m-1} A_{m-1} \Sigma_{1}+B_{0}{ }^{m-2} A_{m-2} \Sigma_{2}+\ldots+A_{0} \Sigma_{m}\right\}$
$+A_{m}{ }^{m=2}\left\{E_{0}^{m-1} A_{m-1}^{2} \Sigma_{1,2}+E_{0}^{m-2} A_{m-3} A_{m-1} \Sigma_{2,1}+\ldots+A_{0}^{2} \Sigma_{m, m}\right\}$
$+A_{m}^{n-2}\left\{E_{0}^{m-1} A_{m-1}^{2} \Sigma_{1,1,1}+B_{0}^{m-2} A_{m-2} A^{2}{ }_{m-1} \Sigma_{2,1,1}+\ldots A_{0}{ }^{3} \mathbf{\Sigma}_{m, m, m}\right\}$

+ \&c.,

and

$$
\xi_{1}, \xi_{2} \ldots \eta_{n}=(-1)^{n} B_{n} .
$$

 of the $A_{\text {s }}$ of the $n^{\text {th }}$ order, the coefficient of any term $A_{m-r} \cdot A_{m-s} \cdot A_{m-t}$ will
 and the $P s$, we can find the symmetric function $\boldsymbol{\Sigma}_{r, s, t}$.

We have then, in general, on expanding the eliminant in terms of Λ_{m},

$$
\begin{align*}
E\left(A_{m}, B_{n}\right) & =A_{n n}{ }^{n} B_{0}{ }^{n}+A_{m}{ }^{n-1} X_{1}+A_{m}{ }^{n-2} X_{2}+A_{m}{ }^{n-3} X_{3}+\ldots \tag{1i}\\
& +A_{m}{ }^{2} X_{n-2}+A_{n} X_{n-1}+(-1)^{n} B_{n} E\left(A_{m-1}, B_{n}\right),
\end{align*}
$$

where $X_{1}, X_{2}, \ldots \& c$, are functions of the coefficients of both quantics and independent of \boldsymbol{A}_{m}.

We now introduce two new operators, which we denote by Ω and ω, and define as follows:-

If m be equal to or greater than n, we write, where $r=m-n$,

$$
\begin{equation*}
\Omega_{r}=B_{0} \frac{d}{d A_{r}}+B_{1} \frac{d}{d A_{r+1}}+\ldots+B_{n} \frac{d}{d A_{m}} \tag{12}
\end{equation*}
$$

and if n is equal to or exceeds m, we write

$$
\begin{equation*}
\omega_{s}=A_{0} \frac{d}{d B_{s}}+A_{1} \frac{d}{d B_{s+1}} e \ldots+A_{m} \frac{d}{d B_{n}}, \tag{13}
\end{equation*}
$$

where $s=n-m$.
It is clear that if we form the eliminant of $u+k v$ and v the result must be independent of k; hence we must have $E\left(A_{m}+k B_{n}, B_{n}\right)$ independent of $\%$.

Now, the coefficient of k is evidently $\Omega_{r} E\left(A_{m}, B_{n}\right)$, and consequently m being greater or equal to n, we must have

$$
\begin{equation*}
\boldsymbol{\Omega}_{m-n} E\left(A_{m}, B_{n}\right) \equiv 0 \tag{14}
\end{equation*}
$$

If we now operate with Ω_{r} on the form of $E\left(A_{m}, B_{n}\right)$, given in equation (11), we obtain
$\Omega_{r} \boldsymbol{E}\left(A_{m}, B_{n}\right)=n A_{m^{n-1}} B_{n} B_{0}^{m}+(n-1) A_{m^{n-2}} B_{n} X_{1}+(n-2) A_{m}^{n-3} X_{2}$

$$
\begin{align*}
& \quad+\ldots+2 A_{m} B_{n} X_{n-2}+A_{n}^{n-1} \Omega_{r} X_{1}+A_{n 2}^{n-2} \Omega_{r} X_{2}+A_{n}^{n-3} \Omega_{r} X_{3} \tag{15}\\
& \quad+\ldots+A_{m} \Omega_{r} X_{n-1}+B_{n} X_{n-1}+\ldots+(-1)^{n} B_{n} E\left(\mathcal{A}_{m-1}, B_{n}\right) \\
& =\mathcal{A}_{m}^{n-1}\left(n B_{n} B_{0}^{m}+\Omega_{r} \cdot X_{3}\right)+A_{m}^{n-2}\left((n-1) B_{n} X_{1}+\Omega_{r} X_{2}\right) \\
& \quad+A_{m}^{n-3}\left((n-2) B_{n} X_{2}+\Omega_{r} X_{3}\right)+\ldots+A_{n}\left(2 B_{n} X_{n-2}\right. \\
& \left.\quad+\Omega_{r} X_{n-1}\right)+B_{n}\left(X_{n-1}+(-1)^{n} E_{n-2}, B_{n}\right)=0 .
\end{align*}
$$

Now, since $\boldsymbol{\Omega}_{r} \cdot \boldsymbol{E}\left(A_{m}, B_{n}\right)$ is identically zero, we are led to the series of equations

$$
\left\{\begin{align*}
& X_{n-1}+(-1)^{n} \Omega_{r} E\left(A_{m-1}, B_{n}\right)=0 \tag{16}\\
& 2 \mathcal{B}_{n} X_{n-2}+\Omega_{r} X_{n-1}=0 \\
& 3 B_{n} X_{n-3}+\Omega_{r} X_{n-2}=0 \\
& \mathbb{C} \cdot \\
&\left\{e_{0},\right. \\
&(n-1) B_{n} X_{n} X_{1}+\Omega_{n} X_{2}=0 \\
& n B_{n} B_{0}^{m}+\Omega_{r} X_{1}=0
\end{align*}\right.
$$

and from these we easily obtain the following:-
(17)
where $h=(-1)^{n}$ and $E^{\prime}=E\left(A_{m-1}, B_{n}\right)$.
If we $\mathrm{L} w$ intruluce these values into the value of $E\left(A_{m} B_{n}\right)$, as given in (11), we obtain

where $E^{\prime}=E\left(A_{=-1}, B_{n}\right)$ and $h=(-1)^{n}$.
 aperative process given above, and can write, in general,

$$
\begin{equation*}
E\left(A_{m}, B_{\varepsilon}\right)=h B_{\infty}{ }^{-\frac{A_{n}}{b_{n}} \sum_{n}} E\left(A_{m-1} B_{n}\right) . \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
E\left(A_{m, 1}, B_{n}^{\prime}\right)=h B_{n} e^{-\frac{A_{n-1}}{B_{n}} o_{m-n}} E\left(A_{m-2}, B_{n}\right), \tag{20}
\end{equation*}
$$

we can consequently write
 iroun $E^{\prime}\left(A_{0}, E_{0}\right)$.
 show how all other climinants may be derived from it. We write

$$
\begin{equation*}
E\left(A_{2}, L_{2}\right)=\left(A_{3} E_{0}\right)^{2}-\left(A_{1} B_{0}\right)\left(A_{2} B_{1}\right), \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(A_{1} B_{0}\right)=A_{1} B_{0}-A_{i} B_{1} \\
& \left(A_{2} B_{1}\right)=A_{i} B_{1}-A_{2} E_{z} \\
& \left(A_{2} E_{0}\right)=A_{2} B_{0}-A_{0} E_{i}
\end{aligned}
$$

and we proproee to fint $E\left(L_{2}, A\right.$)

Now, if

$$
\omega_{1}=A_{0} \frac{d}{d B_{1}}+A_{1} \frac{d}{d B_{2}}+A_{2} \frac{d}{d B_{3}},
$$

we have, by what precedes,

$$
E\left(B_{3}, A_{2}\right)=A_{2} c^{-\frac{B_{3}}{A_{2}} \omega_{1}} E\left(A_{2}, B_{2}\right) ;
$$

it is therefore necessary to find $\omega_{1} E^{\prime}\left(A_{2}, B_{2}\right)$.

Now,

$$
\left\{\begin{array}{l}
\omega_{1}\left(A_{1} B_{0}\right)=-A_{0}^{2} \\
\omega_{1}\left(A_{2} B_{0}\right)=-A_{0} A_{1} \\
\omega_{1}\left(A_{2} B_{1}\right)=A_{0} A_{2}-A_{1}^{2}
\end{array}\right.
$$

hence,

$$
\omega_{1} E\left(A_{2}, B_{2}\right)=-2\left(A_{2} B_{0}\right) A_{0} A_{1}-\left(A_{1} B_{0}\right)\left(A_{0} A_{2}-A_{1}^{2}\right)+\left(A_{2} B_{1}\right) A_{0} A_{1} ;
$$

and consequently we find

$$
\begin{align*}
E\left(B_{3}, A_{2}\right) & =B_{3}{ }^{2} A_{0}{ }^{3}-B_{3}\left\{-2\left(A_{2} B_{0}\right) A_{0} A_{1}-\left(A_{1} B_{0}\right)\left(A_{0} A_{2}-A_{1}{ }^{2}\right)\right. \tag{23}\\
& +\left(A_{2} B_{1}\right)\left(A_{0} A_{1}\right\}+A_{2}\left\{\left(A_{2} B_{0}\right)^{2}-\left(A_{1} B_{0}\right)\left(A_{2} B_{1}\right)\right\} .
\end{align*}
$$

To find $\boldsymbol{E}\left(\boldsymbol{A}_{3}, B_{3}\right)$ we employ the formula

$$
E\left(A_{3}, B_{3}\right)=-B_{3} C^{-\frac{A_{3}}{B_{3}} \Omega_{0}} E\left(B_{3}, A_{2}\right),
$$

where

$$
\Omega_{0}=B_{0} \stackrel{d}{d A_{0}}+B_{1} \frac{d}{d A_{1}}+B_{2} \frac{d}{d A_{2}}+B_{3} \frac{d}{d A_{3}} ;
$$

and we now proceed to find the value of $B_{3} e^{-\frac{d_{3}}{B_{3}} \Omega_{0}} A_{r}$, where r has any integer value from 0 to 2 .

We have $\quad B_{3} e^{-\frac{A_{3}}{B_{3}} \mathcal{B}_{0}} \mathcal{A}_{r}=B_{3}\left(A_{r}-A_{3} \frac{B_{r}}{B_{3}}\right)=-\left(A_{3} B_{r}\right)$,
also

$$
e^{-\frac{A_{3}}{B_{3}} \Omega_{0}}\left(A_{V} B_{s}\right)=\left(A_{r} B_{s}\right), \quad r \text { and } s \text { being any two integers }
$$

since $\Omega_{0}\left(A_{r} B_{s}\right)$ vanishes identically.
We have consequently

$$
\begin{align*}
& B_{3} e^{-\frac{A_{3}}{B_{3}} \Omega_{0}} A_{2}=-\left(A_{3} B_{2}\right), \\
& B_{3} e^{-\frac{A_{3}}{B_{3}} \Omega_{0}} A_{1}=-\left(A_{3} B_{1}\right), \tag{2+}\\
& B_{3} e^{-\frac{A_{3}}{B_{3}} \Omega_{0}} A_{0}=-\left(A_{3} B_{0}\right), \\
& e^{-\frac{A_{3}}{B_{3}}}\left(A_{1} B_{s}\right)=\left(A_{1} B_{s}\right) .
\end{align*}
$$

74 Proceedings of the Royal Irish Academy.

If we now write

$$
\begin{aligned}
& e^{\rho \Omega_{0}} X=X+\rho \boldsymbol{\Omega}_{0} X+\frac{\rho^{2} \Omega_{0}{ }^{2} X}{1.2}+\frac{\rho^{3} \Omega_{0}{ }^{2} X}{1.2 .3}+\ldots \& c_{0} \\
& e^{\rho \Omega_{0}} Y=Y+\rho \Omega_{0} Y+\frac{\rho^{2} \Omega_{0}{ }^{2} Y}{1.2}+\frac{\rho^{3} \Omega_{0}{ }^{3} Y}{1.2 .3}+\ldots \& c_{c}
\end{aligned}
$$

we have, on multiplying $e^{\rho \Omega_{0}} X$ by $e^{\Omega_{0}} Y$,

$$
\begin{aligned}
\left\{\rho_{0} X\right\}\left\{\Omega_{0} Y\right\} & =X Y+\rho\left(Y \Omega_{0} X+X \Omega_{0} Y\right) \\
& +\frac{\rho}{1.2}\left\{Y \Omega_{0}{ }^{2} X+2 \Omega_{0} X \Omega_{0} Y+X \Omega_{0}{ }^{2} Y\right\}+\& \mathrm{c}, \ldots \& \mathrm{c}, \\
=(X Y) & +\rho \Omega_{0}(X Y)+\frac{\rho}{1.2} \Omega_{0}{ }^{3}(X Y) c, \& \mathrm{c}, \ldots
\end{aligned}
$$

where \mathcal{X} and Y are any two functions whatever; hence we see that

$$
\begin{equation*}
\left(c^{\rho \Omega_{1}} I^{\prime}\right)\left(c^{\rho \Omega_{0}} Y\right)=c^{\rho \Omega_{0}}\left(I^{\top} T\right) \tag{25}
\end{equation*}
$$

And if we now let $\rho=-\frac{A_{3}}{P_{3}^{3}}$, it follows that we have
(26)

We are consequently led tor the following value of $E\left(A_{3}, B_{3}\right)$:-

$$
\begin{align*}
& E^{\prime}\left(A_{3}, B_{3}^{\prime}\right)=\left(A_{1} B_{1}\right)^{2}+\left(A_{3} B_{0}\right)^{2}\left(A_{2} B_{1}\right)+\left(A_{3} B_{1}\right)^{2}\left(A_{1} B_{1}\right) \tag{27}\\
&+\left(A_{2} B_{3}\right)^{2}\left(\Lambda_{3} B_{2}\right)-2\left(A_{3} B_{0}\right)\left(A_{3} B_{1}\right)\left(\Lambda_{2} B_{0}\right) \\
&-\left(A_{1} B_{0}\right)\left(A_{3} B_{2}\right)\left(A_{3} B_{0}\right)-\left(A_{1} B_{0}\right)\left(A_{3} B_{2}\right)\left(A_{2} B_{1}\right) .
\end{align*}
$$

The six functions $\left(A_{3} B_{2}\right)\left(A_{3} B_{1}\right)$, de., are not imdependent, but are connected liy the relations

$$
\begin{equation*}
\left(A_{0} B_{n}^{\prime}\right)\left(A_{2} B_{1}\right)-\left(A_{3} B_{1}\right)\left(A_{2} E_{0}\right)+\left(A_{0} B_{2}\right)\left(A_{1} B_{0}\right)=0 \tag{28}
\end{equation*}
$$

The value of $E^{\prime}\left(\mathcal{A}_{s}, B_{3}^{\prime}\right)$ should be such that when operated upon ly δ or Δ, an ketmen in the conlier pat of this pher, it thoult raninh identically; and this we find to he the case which the reader can easily verify for himself.

We can now make $E\left(\Lambda_{3}, b_{3}\right)$ a starting-point, and from it find all eliminants included in the formula $E\left(A_{m}, B_{s}\right)$ by an operative process as follows:-

$$
\left\{\begin{array}{l}
E\left(A_{4}, B_{3}\right)=-B_{3} e^{-\frac{A_{4}}{B_{3}} \Omega_{1}} E\left(A_{3}, B_{3}\right), \tag{29}\\
E\left(A_{5}, B_{3}\right)=B_{3} e^{-\frac{A_{5}}{B_{3}} \Omega_{2}} e^{-\frac{A_{6}}{B_{3}} \Omega_{1}} E\left(A_{3} B_{3}\right), \\
E\left(A_{6}, B_{3}\right)=-B_{3} e^{-\frac{A_{6}}{B_{3}} \Omega_{3}} e^{-\frac{A_{5}}{B_{3}} \Omega_{2}} e^{-\frac{A_{4}}{B_{3}} \Omega_{1}} E\left(A_{6}, B_{3}\right) ;
\end{array}\right.
$$

and so on by the method above indicated.
In order to find $E\left(A_{4}, B_{4}\right)$, we must first find the value of $E\left(B_{4}, A_{3}\right)$, just in the same way as when seeking the value of $E\left(A_{3}, B_{3}\right)$ we first found the value of $E\left(B_{3}, A_{2}\right)$.

We have then, by a similar process of reasoning,

$$
\left\{\begin{array}{l}
E\left(B_{4}, A_{3}\right)=-A_{3} e^{-\frac{B_{4}}{A_{3}} \omega_{1}} E\left(B_{3}, A_{3}\right), \tag{30}\\
E\left(A_{4}, B_{4}\right)=B_{4} e^{-\frac{A_{4}}{B_{4}} \Omega_{0}} E\left(B_{4}, A_{3}\right)
\end{array}\right.
$$

$E\left(A_{1}, B_{1}\right)$ is then in its turn made a starting-point for the evaluation of all eliminants included in the formula $E\left(A_{m}, B_{4}\right)$.

The generality of the method is now obvious, and the application of it to any two given binary quantics will present no difficulty.

PROCEEDINGS

(1) '1!

ROYAL IRISH ACADEMY

VOLUME XXVIII

SBETLON B.-BIOLOGALGLA, GEOLOGLOAL, AND CHEMCAL SOIENOE.

I)UBLIN: IIODOES, FIC(iLs, \& CO., LTD,
london: Whathals \& Norgate

The Academy desive it to be understood that they are not "nswrable for any opinion, representation of facts, or tain of rasmin! that men! "1pmerer in any of the following Papers. The Authors of the simeral Esserys are wlone responsible for their rontents.

[^19]
CONTENTS

SCIENCE.

Adams (John), M.A.:-
A List of Synonyms of Irish Algae, with some additional Records and Observations, 167
Adams (John), M.A., and George H. Pethybridge, Ph.D., B.Sc., M.R.I.A.:-
A Census Catalogue of Irish Fungi, 120
Cole (Grenville A. J.), F.G.S., M.R.I.A.:-The Picture-Rock or Scribed Rock near Rathmullan in the Countyof Donegal,113
Halbert, J. N.See under King (James J. F. X.).
King (James J. F. X.), F.E.S., and J. N. Halbert, M.R.I.A. :-
A List of the Nemroptera of Ireland, 29
Knowlis (Matilda C.) and R. A. Phlllips:-On the Claim of the Snowflake (Lencojum acstivem) to be natire inIreland. (Plates XX.-XXII.),387
Pethybridge (George H.).Sec muler Adans (Joun).
Phillips (R.A.).See under Inowles (Matilda C.).Scharff (Robert Francts), Ph,D., M.R. I.A.:-On the Evidence of a former Land-bridge between northern Europeand North America,1
Simpsox (Jayes J.), M.A., B.Sc.:-
A Revision of the Gorgonellidae: 1. The Juncellid Group. (Plates I.-XIX.), 247
Southern (Rowland), B.Sc., M.R.I.A.:-
The IIarine Worms (Amnelida) of Dublin Bay and the adjoining District, 21.5

ERRA'TA.

SECTIOX B.

I'age 131, 2nd column, line 14 from bottom, fer Enerthenema read Enerthenema
Page 133, column 1, line 26, delete Sclerotinia parasitica Cav. L 2
P'age 134, column I, line $\&$ from botom, fur Hupombinatacea read Mypodmamaceaf
l'age 157, line 24, for Erysibe read Eryaiphe
1'age 164, column 1, for Csstopus, . . . 141 rend Csatopus, . . . 131

PROCEEDINGS

THE ROYAL IRISH ACADEMY

PAPERS READ BEFORE THE ACADEMY
I.

ON THE EVIDENCES OF A FORMER LAND-BRIDGE BETWEEN NORTHERN EUROPE AND NORTH AMERICA.

By R. F. SCHARFF, Ph.D., M.R.I.A.

Read November 8. Ordered for Publication November 10. Published Novemberi 13, 1900.

When I enunciated the theory some years ago that north-western Europe and north-eastern America had been connected with one another by land within comparatively recent geological times, my views were adversely criticized by a reviewer in Natural Science. What particularly gave rise to these criticisms was my statement that the reindeer had probably utilized this land-connexion in gaining access to Europe from its supposed American centre of dispersion. My reviewer urged that he failed to perceive any evidence for a land-connexion between North America and Europe by way of Greenland at the time when the reindeer flourished in the British Islands-that is to say, during or just previous to the human period.

Another reviewer-Dr. L. Stejneger-disapproved of my suggested landbridge between northern Norway and America by way of Spitsbergen and Greenland, while advocating at least a discontinuous one further south. ${ }^{2}$ He thought that Dr. Nansen's oceanographic results in the Polar basin militated against my views. Dr. Nausen's detailed treatise, since published, shows that in this he was mistaken. Further studies, nevertheless, have led me to the conviction that a second and more southerly land-connexion,

[^20]joining Scotland, Iceland, and Greenland with America, must have existed in later Tertiary times. This does not materially alter the general principle of my original views; and I still adhere to the belief in a North Atlantic land-bridge between Europe and America during the lifetime of the reindeer. (Fig. 1.) In defence of $m y$ opinion I propose to enlarge the scope of my arguments by bringing forward some additional pieces of evidence.

The testimony in farour of $m y$ theory is of a twofold character. It is based on an inrestigation of the sea-Hloor, and on a study of the plants and animals of the countries supposed to have been joined to one another by land.

In 1897, Mr. W. S. (ireen gave us the results of his expedition to the Rockall Bank. Surrounded hy deep water on all sides, this bank is of an average depth of 100 fathoms amd lies far out in the Attantic to the west of Scotland. Dredging on the bank yielded noly such shallow-water species of molluses and other marine invertelrates as could not have lived there under the present conlitions. Morenver, as all the specimens were dead, it was concluded that the lank hal only subsided to its present depth within comparatively recent times: In 1900 the Danish • Ingolf' expelition to Iceland likewise repurted havins met litoral molluses near the island at considerable depths whene these animate couli net possibly have liven. That such cases as these are due tw acikental disperal hy floating icebergs containing shells in the ice-fon on ly thating seaweeds, hal bem surgested; but the view that the nccurrence of shome forms of animal life in deep water implies a depression "i the land seems whee with more peneral favour, especially as no icebergs are known to stray to the Rockall Bank at present.

It has been demmentrated ly Sir Archibald Geikie that a considerahle -ubsidence has taken phan in the area leetween the west of scotland and leeland since the time of thr mbanic eruptions that produced the great basalt plateau of north-western Europe. ${ }^{2}$
 MKenny Husher haw dirmed attention the the evdences indicating a sinking of the land in the -ane regin. But the nulject was also studied from another pint if vinw. It was Mr. Austen. I helieve, who tirst brought
 surrounding the British Isles. ${ }^{2}$

[^21]Scharff-Former Land-Bridye between N. Europe and N. America. 3

More recently, in a series of interesting articles, Professor Hull lays stress on the occurrence of channels in these platforms, and urges that they represent the drowned river-valleys and cañons of an ancient land-surface. By means of the Admiralty charts he succeeded in tracing the course of the River Shamon for a hundred miles leyond its present mouth, right to the edge of the continental platform, while he followed the continuation of the Piver Erne for a distance of eighty miles from the Irish coast. ${ }^{1}$

In America similar researches have been conducted, chiefly by Dr. Spencer. ${ }^{2}$ He maintains that the drowned channel of the Hudson River is clearly traceable across the summane shelf of the continent for over a hundred miles. but that the exact conrse of the ancient Laurentian valley cannot be located with certainty. These submarine valleys, he thinks, were sculptured on the great continental slopes by atmospheric agents, and these features are considered loy him to tre more recent, in point of age, than the remnants of the Diocene accumulations of the coastal plains.

Professor Hull arlrocates an elevation of the land during the early part of the (ilarial perini uf ro00 tw 8000 feet. In. Spencer even suggests an uplift of 12,000 to 15,000 feet.

A mone cautions attitule on these oceamuraphic problems is adopted by Mr. Mmhllestum. He concerles that some sort of a lidilge across the Atlantic may have existed luring purtions of the Trertiary era; but he does not believe in an uplift beyond 2000 or 3000 feet. ${ }^{3}$

The subject of entinmtal shelves has lately recoival renewed attention frem Ir. Nansen, and is lisensed hy him at great length. At several places,
 river-valleys hav hern anpumed after the fommation of the continental shelves. The latter conserpmoty have haen dry lam after their formation. ${ }^{\text {a }}$
 (ieikie toweren about 1 Ninn fert abmse spaterel, the Farös and Iceland,

 chietly in Pre-flawial tines durine the Pliocene and Pleistocene periods (p. 172).

Dr. Thomhlsen's illeas are similar, in so far as he strongly repudiates the suggestion of a Post-Glacial land-connexion. ${ }^{\text {b }}$

[^22]The remarkable circumstance that the submarine fjord-valleys on the European and on the American side, and likewise the submarine ridges connecting the two continents, are situated at about the same depth makes it probable that the whole area had once been raised simultaneously, and had thus become connected by land. This was not Dr. Nansen's opinion only (p.178). Professor Dana long ago urged that the refrigeration of the climate at the close of the Tertiary era was connected with a period of high-latitude elevation. ${ }^{1}$ Dr. Wright and Mr. Upham, two well-known American authorities on glacial phenomena, expressed the view that the northern lanis must have been gradually elevated in Pliocene times, becoming continuous before the Ice Age. ${ }^{2}$ They assume that North Anerica thus became joined to northern Asia across the area of the shallow Bering Sea, while land extended from Norway to the Faröes, Iceland, and Greenland.

Incidentally Dr. Wright warns us that a cautious attitude of agnosticism with respect to the cause of the Clacial period is most scientific and becoming. Nevertheless I venture to think, and cannot refrain from expressing my npinion, that the Glacial period was primarily due to the diversion of oceanic currents produced by changes in the distribution of land and water. This again is no new suggestion. It was put forward, among others, by Dr. Wallace, ${ }^{3}$ and has, I believe, been adopted by many naturalists. With every respect for the views of those who hold different opinions, it seems to me that the peculiar phenomena connected with the Ice Age in western Europe, and especially the apparent survival of southern species of plants and animals in Ireland through the Glacial period, are best explained hy such a theory as that just stated. No doubt astronomical causes, as Sir Robert Ball has so clearly demonstrated, have affected the temperature of the northern hemisphere conjointly. ${ }^{4}$ However, as it is not my intention to engage in the speculative discussion of the causes of the Ice Age, I may as well turn to the biogeographical evidences for the former existence of a North Atlantic land-bridge.

It is especially the teachings of Edward Forbes and A. R. Wallace that led to the recognition of the significance of the present geographical distribution of animals and plants as an indicator of the changes which have taken place in the arrangement of land and water. They believed that many terrestrial animals and plants require a continuous land-surface for their dispersal.

[^23] the oceani- inlanfs, aul the depth of water intervening between them and the mainland, hat to le arcounted for in some other manner. Neither Wallace nor Darmin wa inclined tw admit pxtensise geographical changes within the perient of exi-tine species. The distribution of fants and animals by "ucributal." wh what lamin callen "weasional." means of dispersal seemed to furnish them with a clue to the world-wide dissemination of certain -lwi... With hi- whaten inthmitahb inhtuty ant perseverance, Darwin

 Aloated by matine currents acruss many miles of open sea from one country to another. Ho demonstrated that many kinds of seeds may retain their
 away to a distant island during that period. A pellet of earth adhering to the lerg of a leal-lewsed l'artrilge contained seenls from which eighty-two phants germinatem after haviny hen kept in a dried condition for three years. He proved experimentally that young freshwater molluses are apt to attach thermselves finmly to the foeet of ducks, ame that they might thus easily be transumbed from one print to annther. ${ }^{2}$
lhwin's experiments have found many imitators; and valualle observations temling to show that at any rate some of the more minute animals amt phats are liahbe to be convered by occasional means of dispersal, have Inen mate. Thus the winter-achs of ('ladncera (water-fleas) have been found alloming to the feathers of widd ducks and uther water-fowl. It has been demmostiatod that also are sometimes carried by water-beetles from prol Ch prob, ant that water-huse, during their flights, occasionally transfer larval wator-mito. from one ditch to another. ${ }^{*}$

The morat practical experiments of all are those unintentional transmissions of serels, insects, anl nther terrestrial invertebrates, and even of vertelates such as the mousp aml rat, which we witness every day from one conntry to anmer, from island to islaml, across vast expanses of territory, and irom one climatic extreme to another.

I'eynul these we know very little of what actually happens in nature
 means of accidental transprt. Yet their theories do not afford us any $\therefore \cdot 1$-.............................. animal. and plants are actually

[^24]disseminated. We do not ceven know that the experiments conducted in the workroom are repeated under natural conditions. Mr. Kew, in his wellknown work on the " Dispersal of Shells," has to acknowlerge:-" Unfortunately I do not know that any observation clearly inticating the transportal of Molluscs or their eggs with drift-timber, de., has ever been made. The creatures have never been found, as far as I have ascertained, in the crevices, or under the bark either of trees encounterel upon the sea, or of those stranded on foreign coasts." We possess, moreover, very numerous records of intentional introductions of species by man having either entirely failed to establish themselves, or having become extinct after several years of apparent success. I have already had occasion to quote an example which has come under my notice, and which is of particular interest, as it relates to a species which seemed to Darwin to possess special facilities for dispersal, viz., Cyclostoma clegans. ${ }^{2}$ This snail is provided with a lid or operculum. When, as Mr. Darwin tells us, a dozen of them were immersed for a fortnight in sea-water, eleven specimens survived the treatment. ${ }^{3}$ Being endowed with an exceptional device for resisting the action of sea-water on its delicate organism, and being abundant all over the western parts of Continental Europe, we should expect Cyclostoma clegans to have been conveyed by marine currents to the Canary Islands, Madeira, or even to Treland. None of these islands is at too great a distance from the mainland to be beyond easy reach of a Hoating object; and yet it does not inhabit any of them. This is of particular interest as regards Ireland; because dead shells of this species have been picked up on the Irish coast, indicating that marine currents do carry specimens, and have probably transported living ones to that island for centuries. That C'yclostome clegans has nevertheless failed to establish itself in Ireland seems to justify the belief that other animals or even plants arriving in a similar manner may find it equally difficult to do so.

A more striking fact against the theory of "accidental or occasional" introduction is furnished by the land molluses inhabiting the lacific islands. These are tenanted entirely by the most primitive groups of snails; while the more highly organized genera and even families which oceur on the neighbouring continents of Asia and America are unrepresented. "It is very easy," remarks Dr: l'ilsbry, "to show that smails may have been carried from place to place by a hurricane, a Hoating tree, or Hoating island, or their eggs may find room in the pellet of earth clinging to a bird's feather; but it

[^25]is incumbent upon the theorist whe peoples the Mid-Pacific islands by such means in show why such lominant groups as the Helicidae, Buliminidae, Phytidilae, streptaxidae - in fact, the whole Holopoda and Agnathomorpha with the higher members of Aulacopod families, as well as the higher "perculates--houll have utterly failed to take advantage of these means of transport."

In connexion with the well-known fact that many invertebrate species have acrumed an immensely wide distribution, it is well to recall what larwin alrealy twh ne, that within each great class the lower organisms change at a Alower rate than the higher. Consequently they will have had mure "nnnunty ion Hiswal. while still retaining the same specific character: ${ }^{\text {a }}$
hut even baw hin han c..nception of the remoteness of the date of migin of mon if when when and even if species of land and freshwater shells. Palamonturical discuveries have revealel even in Mesozoic deposits certain species which are still living at the present day. Genera like "lansilia have nuw been tracel to the Cretaceous periol. Their dispersal to

 was vastly diflerent from what it is now.

Am yet the influence of accidental or oceasional means of dispersal upon
 (1) ine of profound importance. C'ntil recently the evidence that could be adtuced in favour of their theny was almust unsupported by any actual demmstration in the fieh, as we might say. At last the longel-for evidence has been iliscovered in the shape of an island whose fauna and flora are allegen to have heen completely destroyed ly a volcanic eruption, and subsequently entiely reintrolucel hy accidental means. Dr. Enst's account of it made quite a sensation. The terrible onthurst of fire and ashes from what
 necurrel not very many years asto-in 1853 . Half the island sank beneath the ocean : the remainler was coveren with a layer of glowing stones and hot sohes, reaching an averare depth of 100 feet. In some parts of the island, linwever as the author tells us, nut more than two months after the eruption, subacrial nlemulation had alrealy carvel ont of the loose strata deep valleys and ginges. "In the virinity of the peak," as he puts it, "where the newly-

'Pilshry, H. A., " (ienesis of Mid-Praific Faunas," p. $5 i{ }^{2}$.
${ }^{2}$ Darwin, C., " Urigin of Species," p. 359.
protruded here and there, exposing the blasted and carbonized remains of tree-stems." ${ }^{\prime \prime}$

Within sixty days after the eruption the ashes had been washed away to such an extent as to expose the original surface in certain parts. I wonder how many stems of the tropical forest alluded to were crowded with insect life, and to what temperature the interior of these tree-trunks rose when the external parts were charred, or to what depth of soil the heat of the hot, ashes penetrated? I should have imagined that multitudes of insects or their larvae, and countless seeds, would have survived the ordeal that Dr. Ernst so vividly describes. At any rate, I can fancy a naturalist, imbued with Darwin's methods of research, eager to root up these dearl tree-stumps in order to examine what seeds and what insects were still living in the soil beneath or in the aljoining rock-crevices. Nothing of the kind was attempted! We are simply informed that all organic life had been destroyed. It is well known that such seeds as can stand desiccation are extremely resistant to heat when dry, and may not be injured by the temperature of boiling water. Would the heat of the hot ashes penetrating into the soil destroy all vitality among the seeds contained therein? I think not. And yet we are led to believe that three years after the volcanic outburst in 1886 the pioneers of the new vegetation which reached the island by accidental dispersal from elsewhere were seen stretching from the shore to the peak of the mountain. Seven years later the whole island was covered with a dense, almost impenetrable thicket, and numerous insects and even lizards were noticed. If dispersal really proceeded on those lines, the study of geographical distribution may be abandoned-at any rate so far as the main principle of Wallace is concerned, that the study of zoogeography enables us to map out the islands and continents of former epochs. That Wallace's maxim has been adopted by Messrs. P. and F. Sarasin during their exploration of Celebes, and carefully applied in their treatise on the geological history of that island, implies that they do not attach much importance to accidental distribution, though their labours were conducted not far from and in about the same latitude as the volcanic island of Krakatar. ${ }^{2}$

It would be idle to deny that the seeds of certain plants are carried to great distances by wind; that many others are undoubtedly transported by ocean currents; that some seeds are even scattered here and theie by birds. My contention is -and I concur in this opinion with many eminent botanists-that only a small percentage of plants are disseminated and actually established

[^26]in that manner. Most of them require for their dispersal a solid and continuous expanse of soil. They will proceed on it slowly, and step by step as it were.

To return to the subject under discussion, Sir Joseph Hooker evidently believed that the flora of Greenland had travelled across from Europe by a land-bridge in Pre-flacial times. He considered the existing plants of the country as certainly older than the Glacial period; for he argued that the severity of the climate destroyed many species, while the remainder took refuge and survived in the southern parts of Greenland. ${ }^{1}$

Professor James Geikie maintains that a land-connexion between (ireenland, Icelaml, the Faries, and scotland must have existed, because the plants could only have migrated from Europe over a land surface. ${ }^{2}$

To Professur (ieikie the ide of a survival of plants during the Ice Age in Greenland is inconceivalle. He therefore arges that the land-bridge could only have existed in Post-cilacial times. Hence the Glacial period and its supposed adserse influence upon the thora of northern Europe has now become the mainspring of most speculations as to the former presence or absence of a northern land-bridge.

Professon Nathust cuncurs with Professor (ieikie in so far as be believes in the extinetion of the (imentand howa huring the Ice Age. He had formerly ahomeated a Post-blacial lambloridge, and now regards it as somewhat
 What the mass of the (ipendand flura survivel the flacial period in the country. The remainder arrived more recently by various modes of
 his " Potumy of the Fames." Profesor Waming argues that the entire Hona of the inlame is due toraceilental dionersal. Yet, in the same volume,

[^27]Soharpp - Former Lamd-Bridge betweon N. Europe and N. America. 11
Scotland are caught up and carried towards the north-east right away from the Faröes.

Since Darwin's classical experiments, birds have always been quoted as very important factors in the transmission of seeds from the mainland in an island. Nevertheless, actual examination of birds during their migratory flights had never been made. Now we know, at any rate, that the migration of birds from Europe in the direction of Iceland is inconsiderable. Secondly, for at least four or five years the alimentary cauals, the beaks, feet, and feathers of all the migratory birds caught at Danish lighthouse stations have been thoroughly investigated, with the result that the birds were found to migrate on an empty stomach, and were almost always clean externally. Dr. Knud Andersen, who conducted these inquiries, is of opinion that migratory birds are hardly of any importance as disseminators of plants.

A summary of the above arguments leads Dr. Ostenfeld to the conclusion that the principal portion of the flora of the Faröes must have travelled from the mainland of Europe on a bridge of continuous land. But assuming that the Ice Age destroyed the flora of the islands, he takes for granted, with Professor James Geikie and Mr. Simmons, that this belt of land was PostGlacial in age, notwithstanding that the disappearance of Glacial conditions in Europe is often synchronized with the submergence of the land-bridge.'

Much the same view is advocated by Professor Drude, except that he places the age of the land-connexion further back-to the Glacial period itself. ${ }^{2}$ 'Ihe theory of the existence of an ancient land-bridge between northern Europe and North America has likewise been adopted by Dr. Schulz, ${ }^{3}$ who argues that an immigration of plants from arctic America to Europe took place by means of two land-connexions. One of these joined Greenland with Iceland, the Faröes, and Scotland; the other with Spitsbergen, Franz Joseph Land, Novaya Zemlya, and northern Russia. He contends that these land-bridges existed during the greater part of late Tertiary times until the beginning of the Pliocene period.

The question of the supposed survival of plants through the Ice Age in Greenland largely depends on the problem whether or no the glaciers of that country had a vastly greater extension formerly than they have at present, and covered the whole of the land now free from ice. That the latter has never been entirely invaded by ice has been clearly demonstrated by the leader of the German Greenland Expedition, Dr. E. von Drygalski. The

[^28]greater extension of ice in former times no doubt can be proved, he remarks; yet glaciers certainly never reachel the cliff's and rock-pinnacles which abound on all parts of the coast-lands of Greenland. ${ }^{1}$ No reason, therefore, cau he adduced why the flora of Greenland should not have survived the Ice Age in that country, particularly as we have some grounds for the supposition that the lanil in the Arctic Rerions then stood higher than it does now. Indeen, I'rofessur Vanhöllen, who describes the plants and auimals observed during the expedition, adopts this attitule. He not only believes in the survival of the flom of Cimenland through the Ice Age, but he argues that the great mass of the fanna is indigenus to the comory. Though he does not deny the frsilitity of argmi-ms heing accidentally carice by hirds, he protents arainst the a-mmptime that the fanal of (ireenland owes its origin to such

 " Hesenery." It is quit" fowithe, he thinks, that migratury hides, currents of
 to a
 14. 111%.

 from the "pmsite direction. Thus in the Faröes we find at least seven

 1-1.nhf and the 1 ontament, ater utilizing the ame lami-bridge. Professor

 1-mamber cithet hat -ime leten found in Asia, of might originally have been matwin...| ly, man fran the: whe continent the other. Ten species may - .own wey the : hat supforing a plant orginated in Europe and subsequently
 -fern'. Hence it man have hal many opportunities for invading the neishimman - A-iatig centinent as well, and woull not therefore come under the tatesuy alluled te. Fhats of Fast American origin would have had a

[^29]
Scharfr-Former Land-Bridge between N. Europe and N. America. 13

of the ten species alluded to are apparently of American origin. One, however, the common European Ling (C'allunu culy(ris), certainly has its home in Europe. It is restricted in North America to a few localities on the coast of Newfoundland and southward. . I shall allude later on to some animals with a similar range. A few of the other plants have rather a confined distribution in Europe. Some, like the Water Lobelia (Lobelia Dortmanna), are widely disseminated over the western parts of our continent. ${ }^{1}$

Fig. 2.-Eriocaulon septangulare, growing in its native habitat in the West of Ireland. R. Welch, Photo.

A small group of plants is of particular interest to Irish botanists, as being almost exclusively confined to the West of Ireland and North America. According to Messis. Colgan and Scully, five species of plants occurring in Ireland belong to this group, viz., Spiranthes Romansoviana, Sisypinchium angustifoliem, Eriocaulon septangulare, Naias Alexilis, and Juncus tenuis. Two of these, the Sisyrinchium and Juncus, may possibly have been introduced. But Messrs. Colgan and Scully express the "pinion that no doubt has ever been raised as to the indigenous stauding of the remaining three. ${ }^{2}$ All of these plants are discontinuously distributed. An interval of more than 200 miles separates the morthern and southern stations in Ireland of the rare orchid Spiranthes Rommentience. The water plants Erivenulon septungulure (tig. ㄹ)

[^30]and Jrims Horitis inhabit not only some of the western Irish lakes, they occur also in Scotland.

If we restard these plants as having been accidentally introduced from America through the agency of wind. waves or birds, they must have been thanswnen repaze lly tw ditterent parts of Ireland. Sir William Thiselton I Yer maly allules to Er,..., ine and seems convincel that it was brought wrus the mean lig Minds. Messrs. Colgan and Scully do not explain the prenee in Ireland of these mats as being due to any such accidental inminnt. They lelieve them thate reachen Europe by means of an ancient
 whtherd te the wint of the American plant group in Ireland. He does mot fonn the theng of what heremsal. A land surface, lung since
 the presence of the American plants. ${ }^{2}$

 contined to these continents. Of thuse which also occur in Asia there are andy. line the whin 1 which rrows only in a few localities

 - E: !.. 'y :

 of these are pessibly motern intrimluctions. On the other hand, we know from l'rofessur Drummond's researches that of seventy species of fossil plants olserved by him in the Mleistocene clays of Toronto in Canada, twenty occur at the present day imth in that country and in Europe. ${ }^{3}$

 the one continent to the other. Altogether our available botanical evidence inforour of a fonner land-connexion between Scotland and Labrador, by way uf (irmendanl amil Iceland, can scarcely be considerel as very weighty; yet, in conjunction with the preceding factors, it acquires greater significance.

The zoolngital testimony in support of this view is of a much more pro-

[^31]
Sciarff-Former Lend-Bridge between N. Europe and N. Amevich. 15

species of freshwater sponges were detecter in various lakes at somm distanco from the sea on the west coast. Only one of these sponges, viz, Tubelle pennsylwanier, has since heen observed in another European locality, in Loch Baa in Scotland, but all of them are identical with American species. ${ }^{1}$ Dr. Hanitsch identified them as Ephyletice crateriformis, Heteromeyenie Ryderi and Tubclla pennsylvanica. Being unaware of the theory arlvancerl by botanists as to the existence of a former direct land-bridge to America, he speculated on the origin of these freshwater sponges by appealing to accidental means of transport, such as winds, ocean-currents, and birds, and argued that any of these modes of conveyance might have carried the gemmules across the Atlantic.

Of all the occasional means of trausmission, only that by birds deserves, to my mind, serious consideration. The two others are clearly out of the question as far as the gemmules of freshwater sponges are concerned. As I shall endeavour to show later on (p. 21), birds probably never fly directly across the Atlantic; nor is there any reason to believe that they set foot on the west coast of Ireland first on reaching Europe. That they imported the gemmules of the freshwater sponges on their feet or feathers, from the mainland of America, is therefore extremely improbable. It is of interest to note that Dr. Stejneger argues in favour of a former discontinuous landconnexion between Scotland and Greenland from the route of migration followed by a bird. Because the large-winged race of the Common Wheatear (Saxicolc enanthe leucorhoa) is known to breed in Greenland and eastern arctic America, migrating in winter to the British Islands and France by way of Iceland, the Faröes, and Shetland Islands, he contends that greater land-masses than at present must have existed formerly along this migration route. He does not suggest a complete land-comnexion such as I now advocate, but merely a series of large islands separated by ocean straits. He believes this incomplete or discontinuous land-bridge to have existed during part of the Glacial period. ${ }^{2}$

In my more recent work on European Animals, I have incidentally dwelt on the past range of the Great Auk (Alca imponnis) as indicating the presence of a former more continuous coast-line between the British Islands, Iceland, Greenland, and Newfoundland, in all of which countries this bird was known to have been abundant. ${ }^{3}$

Yet, after all, the best evidence in favour of a North Atlantic land-bridge

[^32]is furnished by the invertehrates. Our special attention is drawn by Mr. Born to the importance of the "Piuming Beetles" of the genus Carabus. From the fact of their being wingless and usually found under stones or clods of earth, they are not liable to be transported accidentally by any of the means usually supposed to ait animals in their dispersal. Mr. Born clams that at leate two European species of Carabus, viz. C ${ }^{\text {. cutenulatus and }}$ C'. Am mintis, have crnsed the Atlantic hemeans of an ancient land-bridge. A third form-Cerabus, gromlandicus Chamissonis-seems to have originated in America, and to have travelled from there to Greenland and Lapland. ${ }^{1}$

Of anvther group of insects-the Collembola-Prof. Carpenter remarks : "It is of interest to find that the presence of not a few species of these wingless insects in America, in Creenland, in the islands to the north of
 Indief in a lliocene or Plepstncene land-comexion to the north of the Atlantic Whan-a heliod atwemy mphll hy so much evidence, both geological and

The buttertlies and moths do not yieh much evilence in favour of the view of a Nurth Aclantic laml-ommexim. Yet Mr. Petersen cited no

 of a direct lam-brilge between the two continents. ${ }^{3}$ At least three kinds of butterHiss are known to breed in Greenland, and to go through their complex life-history within the confines of that inhospitable country.

Quite a number of naturalists believe that any resemblance between the European and the American fama must have arisen, not from any direct intercourse letween Europe and America, but by a migration across \boldsymbol{A} sia

 aml is preferrel for that reason. Inr. Horvith, for example, who states that no less than 128 species of Hemiptera are common to the two continents, argues that they all must have crossed Asia in reaching the one from the other:"

 totally absent from Asia or western America.

Let us take, for example, our common Perch (Perca fluvintilis), a vaniety
${ }^{1}$ Born, Paur. " ('arabologische Studien," pp. 8, 9.
${ }^{2}$ Carpenter, G. H., " Collembola from Franz Jostph Jand," p. 276.
${ }^{3}$ Petersen, W., "Iepidopterenfaura der arktischen Gebiete," p. 38.

* Horrith, G., "Faunes hémiptérologiques," pp. 4-7.

Scharpr-Former Lamd-Bridye between N. Europe and N. Amorica. 17

of which also inhabits North America fig. 3). It is absent not only from a large part of Asia, but also from western North America. Certainly this lobs like a ase af dime minatinn from America to Europe. Nevertheless, those mha come ablomal methens of dispersal may clam that the feet an ? feathers en har sme share in thi distrihution; for it is assumed
 scarcely be conceded, however, that birds have the power to select the

 whole l'erch family (Percidr) are absent from western North America and
 from land toland acruss the Atlantic, either by wind or waves, seems to me
 of the question, lecause, apart from the Common Perch, we have to deal with senera and species of Percida found in the one continent and not in the oher. These must have evolved from some remote ancestor, common to America and Europe, long anterior to the appearance of Man.

Anwher example that I have had nccasion to quote in my work on Euryman Animals" (1 . 3.1) is the freshwater Pearl-Mussel (Murguritana menymitifor) On nur continent it inhalits the Pritish Islands except cumern Encland, the mountain streams of Scandinavia, and the hill rerion of Central Furupe except the Alps. Far to the east it reappears in as difterent form in the liver Amur in eastern Siberia, in the island of Sakhalin, and in Kabntchatka. Another variety is met with across the Ikering suait in Alaka and in western Nirth America generally. The type form meuns in the Quebec province of Canada, in the Lorrer Saskatchewan Liver, and in New Encland. The typical freshwater Pearl Mussel is only met with in estern North Anerica and in central and north-western Europe. America is undoubtenly its original home. From it the mussel spleall to Enrupe in an eastwarl direction, and not ly way of Asia. As the
 wille dispersal within at least one river-system; but fishes in this case could

 theary.

A western species in Europe, Heliw hortensis, is remarkable for its extensive northern range. It occurs in Scandinavia, all over the Pritish islands, in the Shetlands and Faröes, and even in Iceland (fig. 4). It is altogether absent from Asia. Its occurrence in southern Greenland harl generally been attributed to a recent human introduction; lout it has been taken in several different localities; and we must, I think, look upm it as an indigenous species. Its presence in the state of Maine in North America has frequently been cited as a familiar example of the facility with which European species are introduced by human agency to foreign countries.

Fig. 4.-Map indieating the geographical distribution of the snail Hetix hortensis.
Until the year 1864 no other theory was ever thonght of. During that year, however, Professor E. S. Morse first discovered the shell of this snail among ancient "kitchen-middens" on some of the islands off the coast of Maine. This fact led him to reconsider the generally accepted view of its being a recent introduction. It seemed to him much more likely that the snail had wandered along some ancient coast-line from the Old World acruss the North Atlantic. Dr. Bimney, and more recently Professor Cockerell,
concurred with Professor Morse's opinion, while the Rev. Mr. Winkley even suggested that Holix hortensis arrived in North America before the adrent of the Glacial period. With the latter theory, Mr. Johnson, another conchologist. expressed his agreement; and it is to his paper that I am indebted for the abore-mentioned information. ${ }^{1}$

The only one who adhered to the introluction theory was Dr. Pilsbry. He even argend in farour of artiticial importation by the ancient Vikings during their supposed visit the American cuast in the eleventh century.

All doubts as to the claim of Helix hortensis being au indigenous Amerima species are mow set at rest themoth the discovery hy Dr. Dall of the shell of this snail in mulnultemlly ledestacene deposits in the state of Mane: Moreoser, the species is now known to inhabit a much greater aren than was fomerly sulpmed: for it has been collected in Labrador, Sewfonmanl, l'rince Eshand Islamb, aml many other small islands where it conll mot [nsibly have been bonatht man. It may therefore be
 Plefistnene on llinene times withnt haman intervention. That greater inelites may have existen for the necasional tamspont across the Athantic in Hhae mante time than mhain at pesent misht still lie urged in accounting

 the approval of many zoologists.

 metion, Limnaca Fohli, L. Womskiuldi, Succineu groenlandica, Vitrina myclicue, Prupe Hoppii, and Comulus Fubricii are almost all confined to (ireenland, and no doubt originated there in Pre-Gilacial times.

I ferl am many wher Enronat wrential Invertehrates with a range similar to that of H.fir hurtenis are found in America. I know of such thent the dathwoms ant womilice, hat there is no need to and to the ahove examples.

${ }^{2}$ Dall, W. H., "Land and Freshwater Mollusks," p. 20.
have expressed their agreement with this theory. Mr. Madison Grant ledieves that the distribution of the living fauna points to the existence of continuous land between Greenland, Spitsbergen, and Scandinavia in Pleistocene tines.' Prof. Lobley assumes a land-bridge in l're-Glacial times, extending from Europe to Iceland, Greenland, and Lahrador; whereas Prof. Jacobi advances a similar theory in less definite terms, for he speaks only of a long-continued land-comnexion between the New and the Old World by way of Greenland. ${ }^{3}$ Dr. Arldt considers the land-bridge to have existed since the Oligocene period, and to have been finally destroyed in Pliocene times. ${ }^{*}$

Of all the theories which have been advanced in explanation of the occurrence of identical species on both sides of the Atlantic Ocean, only the following three have met with wide approval:-

1. Migration from Europe across Asia and a Bering Strait land-bridge to America or vice versa.
2. Occasional transport by birds across the Atlantic Ocean.
3. Migration across a direct Atlantic land-connexion.

If we consider the zoological evidence alone, namely, the absence of Helin hortensis from Asia and Western America, the distribution of the Perches and the freshwater Pearl Mussel, and that of the freshwater Sponges, the first of the three hypotheses is scarcely applicable to these instances of distribution, and does not therefore explain the presence of identical species on both sides of the Atlantic in a satisfactory manner.

As regards the supposed conveyance by birds of seeds and invertebrates across the same ocean, the second theory must be applicable to a transport in two directions, both from America to Europe as well as vice versa.

Mr. Eagle Clarke, of the Edinburgh Museum, who has made a special study of bird migration, informs me that in his opinion all the American species of birds that have made their appearance in Europe have travelled by way of Greenland and Iceland. All of them, he says, are birds of high northern summer range in America; and they are mostly birds of the year which, instead of returning southward or westward in their autumnal Hights, have taken an eastward course. All the other accidental visitors from America, he thinks, must have had an assisted passage across the ocean as cage-birds. There is only one point which I venture to think Mr. Clarke may have overlooked, namely, the possibility of some American birds having

[^33]come to Europe without crossing the Atlantic Ocean at all. The circumstance that a few, such as the American Robin, seem to have occurred more frerfuently in eastern Europe than in the west, may imply that they have Hown across Bering Strait to Siberia, thus entering Europe from Asia.

Altogether no less than sixty-eight species of American birds have been recorded from Eurup by Mr. Dalgleish, while only twenty American species are known from Ireland. ${ }^{1}$ The claim of ten of the latter as genuine stragyters from America is considered doultful, in so far as they may possibly he escapel cage-hinds. A large percentage of the sixty-eight species have been observed in England ; but even on the small island of Helgoland, near the mouth of the Elbe, twelse species of American birds have been noticed. ${ }^{2}$

From these obserrations it is evident that the west coast of Ireland is loy mo means the region where the American bird-visitors first set foot in Eurnue. Many apprently alight on the Continent of Europe, after completing their perilous bnase acruss the North Atlantic from Greenland. Whers have anly heen rewnted from scotland or England. Ireland has not vidhen any axcentional number of such records; and they are not all from the west coast.

From Mr. Frokn's ('athene wr can wather some idea as to the frequency of Eurepean limt-bi-itum th Americat that is to saty, of such species as are sulpusen twhar arnand the Athantic in the mpesite direction. Only about whe-math of the munter of Amerian visitors to Europe have made the voyase in the reverse direction, and most of the latter are such species as have leen recorded from (ireenland or arctic America. ${ }^{3}$ Very few have passerl somthward into the United States. Mr. Praeger pointed out to me, and I quite concur with him, that the comparatively small number of birdvisiturs from Europe to America might, to some extent, be due to the fact that the prevailing wimls in the North Athantic from west to east would retard the dlight of hirds in the opposite direction.

 region may appear at first sight in favour of the theory of introduction by livels. Ahnost all the American plants, and all the American freshwater sponges at any rate, occur in the vicinity of the coast. It has been argued,
 alight on the earliest "pportunity; and that it was for this reason that the

[^34]plants and animals common to the two continents were so largely comfinel to the coastal districts. But from what has been mentioned we have no reason to infer that Americin birls slo hahitually alight on the west coast of Ireland on first reaching Europe. It seems highly probable that they cross by way of Greenland. We should therefore expect all the species of the invertebrates and plants common to the two continents to be found in Greenland as well. This is not so. Only comparatively few of them are met with in Greenland. The theory that the resemblance in the fauna and flora of eastern North America and western Europe is due to the action of binds: is, I think, not supported by sufficient evidence.

The third theory, that the identical species on either side of the Atlantic Ocean are the result of a direct land-connexion between Scotland, Iceland, Greenland, and Labrador, such as I have suggested in the illustration (fig. 1), appears to me to be well founded on geological, bathymetrical, and biological evidence. No decisive testimony, however, has as yet been brought forward to show during what geological period this land-bridge was formed and how long it lasted. The assumption that such geographical conditions prevailed during early Tertiary times is very widespread. That this state continued during the Miocene period is likewise maintained by many; though Professor Dawkins and a few others do not admit the existence of the northern land-bridge in Pliocene or more recent times. ${ }^{1}$ Sir Archibald Geikie's researches point to the production of the great basalt plateaux of north-western Europe in early Tertiary times. These plateaux formed a continuous tract of land, as far as the Faröes at any rate. He proves that in many places, such as Iceland, the Faröes, and the West of Scotland, enormous subsidence subsequently took place. Yet he gives us no idea of the approximate geological date of that event. ${ }^{2}$

Once we admit that animals and plants were able to survive the Glacial period in northern latitudes, a land-connexion such as suggested in Pliocene times would readily account for the presence of all the animals and plants common to Europe and America. By many of those best able to julge, an admission to that effect has been made. Pliocene deposits are scanty in the British Islands; yet they yield valuable suggestions as to the geographical conditions of the North Atlantic. An examination of the fossil invertebrates contained in the St. Erth beds in Cornwall, which are of Pliocene age, showed that the fauna possessed a remarkably southern facies, and that there was a total absence of boreal or arctic species. This fact led Professor Kendall and

[^35]Mr. Bell th the conclusim that at the periol during which these deposits were laid hown-that is to say, during the latter part of the Pliocene period -no chamel or direct communication existed between the North Sea and the Atlantic ncean, the Straits of Dover being closed in the south, while in the north the Tertiary wleanic chain formed a barrier across from the north of

Mr. Ir,ift's contention that the ent. Et the hels are older than Messrs. Kendall and Trell e-timated-that they are, in fact, of early Iliocene age-is founded chiofy in the circmatance that the percentage of extinct species is abont the - an as that in the Coralline (rag. The consideration of the supposed climatic conditions dows nut sem to me of any particular value; and, as he mork , the exart ast of the clays is still domltitul.: Even if the St. Erth
 that the in othem hanfer, allown th ly Mesers. Kendall and Bell, had ceased to exist in later Pliocene times.

 (1) pon w... similaly athectent Many oi the facts. indeel, lead to the whan on the the lan wh the Alamic conte oif the British Islands stom

 way to America.

[^36]Scharfe-Former Laml-Britge belween I. E'urope emel N. Americu. 25
interchange between the fama and Hora of north-western Europe and north-eastem America was effected across the northern land-bridges.

Only one other point needs to be commented upon. I have shown that most of the American species occupy the Atlantic coast region in the Jritish Islands. Almost all the southern or Lusitanian species are found in precisely the same area in England, Ireland, and Scotland. This seems to me partly The to the fact that the temperature was consilerably higher there muring the Glacial period than in the more inland localities. Even now the plants are under more favourable climatic conditions on the west coast than further inland, and less exposed there to competition with the stronger eastern rivals. Moreover, almost the whole of Ireland and a large portion of England are thickly swathed in a mantle of Glacial clay. We can only suppose that the forces which controlled the deposition of this clay were less effective on the west coast, which may have extended far to the west of its present boundary, and have thus given rise to the preservation of many species of animals and plants which were destroyed elsewhere.

LIST OF BOOKS AND PAPERS REFERPED TO IN THE TEXT.

Annandale, N.-Notes on some Freshwater Sponges collected in Scotland. Journ. Linnean Society London (Zoology), vol. xxx., 1908.
Arldt, Th.-Die Enwicklung der Kontinente und ihrer Lebewelt. Leipzig, 1907.

Austen, R. A. C.-On the Valley of the English Channel. Quart. Journ. Geological Society London, vol. vi., 1850.
Ball, Sir Robert.-The Cause of an Ice Age. London, 1891.
Blytt, A.-Die Theorie der wechselnden kontinentalen und insularen Klimate. Engler's Botanische Jahrbücher, vol, ii., 1881.
Born, P.-Zoogeographisch-carabologische Studien. EntomologischesWochenblatt, vol. xxv., 1908.
Carpenter, G. H.-Collembola of Franz-O osef Land. Sci. Proccedings Roy. Dublin Society, vol. ix. (N.s.), 1900.
Colgan, N., and R. W. Scully.-Cybele Hibernica (2nd ed.). Dublin, 1898.
Dalgleish, J. J.-List of occurrences of North American Birds in Europe. Bulletin Nuttall Ornithol. Club, vol. v., 1880.
Dall, W. H.-Land and Freshwater Mollusks. Harriman Alaska Expedition, vol. xiii., 1905.
Dana, J. D.-Manual of Geology (3rd ed.). 1880.
Darwin, C.-Origin of Species (6th ed.). London, 1878.
R.I.A. PROO., VOL. XXVIII., SEOT. B.

Dawrivs, W. B.-Early Man in Britain. London, 1880.
Drtde. O.-PHazentenaphische Auhaltspmate rür das Bestehen einer Landbrïcke zwischen Grönland und West-Europe zur Eiszeit. Ausland, 1883.
Dftmmosi, A. T.-Orisin of the Plants common to Emope and America. Nature, vol. Lxx., $190 \pm$.
 Berlin, vol. i., 1897.
Iher. Sir W. T. Thiseltan.-(iengraphical Listribution. Eucyclopadia Eritannica (9th ed.), vol. vii. 1881.
Exifer, A.-Entwichlunserchichte der Fhorensebiete, vol. i. Leipzis, 1879.

Ensist. A. -The new Flas of the island of Krakatau translated by A. ('. Seward) Cambridge, 1908.
 North America. Sci. Proceedings Ruy. Dublin Soco, vol. ii. (N.S.), 1880.

Cibikie, sir A.-The Tertary Ba-alt-phatenx of North-western Eurnue. Quarterly Journal (ieolugical Soc. Lundon, vol. lii., 1896.
Gerare, James. Prehistoric Europe. London, 1881.
 North America. 8th Annual Report, New York Zool. Soc., 1904.
 18.3.
 Academy, vol. xxxi., 1897.
 vol. iv., 1895.
Harver T. W-Wh the Mhame Iequitz if Hollant. Quart. Thmm, Geological Soc. London, vol. lii., 1896.
 Journal of Botany, 1880 .
 Linnean Society London, vol. xxiii., 1860.
 et de l'Amérique du Nord. Annales Historico-naturales, Mus. Nat. Hungarici, vol. vi., 1908.
 Genlogical Mayazine (N.s., dec. int.), vol. x., 189\%.

Scharfe-Former Lumd-Bridge between N. Europe and N. America. 27
Hudnesron, W. H.-On the Eastern Margin of the North Atlantic Basin. Geological Magazine (N.S., dec. Iv.), vol. vi., 1899.
Hughes, T. McK. - On the Evidence of the later Movements of Elevation and Depression in the Pritish Isles. Trans. Victoria Institute. vol. xiv., 1880.
Hull, E.-Submerged Terraces and River-Talleys bordering the British Isles. Trans. Victoria Institute, vol. xxx., 1897.
Jacobr. A.-Lage und Form biogeographischer Gebiete. Zeitschr. cl. Gesellsch. f. Erkunde zu Berlin, vol. xxxy., 1900.

Johnson, C. W. -On the distribution of Helix hortensis in North America. Nautilus, vol. xx., 1906.
Kendall, P. F., and A. Bell.-On the Pliocene Beds of St. Erth. Quart. Journ. Geological Soc. London, vol. xlii., 1886.
Kew, H. W.-The Dispersal of Shells. London, 1893.
Lapparent, A. de.-Traité de Géologie (3° éd.). Paris, 1893.
Lobley, J. L.-The American Fauna and its Origin. Trans. Victoria Institute, vol. xl., 1908.

Nansey, F.-The Bathymetrical Features of the North Polar Seas, with a discussion of the Continental Shelves and previous Oscillations of the Shore-line. Norwegian North Polar Expedition, vol. iv., 1904.
Nathorst, A. G.-Kritische Bemerkungen über die Geschichte der Vegetation Grönlands. Engler's Botanische Jahrbücher, vol. xiv., 1892.
Ostenfeld, C. H.-Phyto-geographical Studies. Botany of the Faröes. London, 1901-1908.
Petersex, W.-Die Lepidopterenfauna der arktischeu Gebiete von Europa. Beiträge z. Kentniss d. Russischen Reiches, vol. iv., 1888.
Pilsbry, H.-The Genesis of Mid-Pacific Faunae. Proc. Acad. Nat. Science, Philadelphia, 1900.
Praeger, R. Ll.-Irish Topographical Botany. Dublin, 1901.
Regan, C. Tate.-Pisces, in Biologia C'entrali-Americana, 1906-1908.
Reid, Clenext. -The Pliocene Deposits of Britain. Memoirs Geol. Survey, United Kingdom. London, 1890.
Sarasin, Paul, und Fritz Sarasin. - Ueber die geologische Geschichte der Insel Celebes auf Grund der Thierverbreitung. Wiesbaden, 1901.
Scharff, R. F.-The History of the Emopean Fauna. London, 1899.
___European Animals, their Geological History and Geographical Distribution. London, 1907.
Schulz. A.-Grundzüge einer Entwicklungsgeschichte der PHanzenwelt. Mittel-Europas. Jena, 1894.

Smonss, H. Gr.-Har en landbryga ofer nortathanten funnits i postglacial tid? Ymer, vol. xxv., 1905.
Spencer, J. W.-Submarine Valleys off the North American Coast and in the North Atlantic. Bull. Geol. Soc. America, vol. xiv., 1903.
Stejegeer, L.-Schartt's History of the European Fauna. American Naturalist, vol. xxxy, 1901.
 Faeröerne set fra et geologisk Synspunkt. Ymer, vol. xxiv., 1904.
Ussher, R. J.-A List of Irish Birds. Dublin, 1908.
Vanhoffes. E.-Fauna uml Flura (irönlands. Cröland Expedition d. Gesellsch f. Erdkunde. Berlin, vol. ii., 1897.
Wallace, A. R.-Island Life (?nd ed.). London, 1892.
IVamman, Euien - Thu History of the Fhan of the Faeröes. Botam it the Faeröes. Lonlom, 1901-1905.
Whigm, G. F., and Wames Upham,-Greenland Icetields. London, 1886.
 $18: 1$.

[29]

II.

A LIST OF THE NEUROPTERA OF IRELAND.

By JAMES J. F. X. KING, F.E.S., and J. N. HALBERT, M.R.I.A.

(BEING THE EIGHTH LEPORT FROM THE FAUNA AND FLORA COMCMTTEE.) (COMMUNICATED BY PROF. G. H. CARPENTER, B.SC.)

Read June 14. Ordered for publication Jénb 16, 1909. Published January 7, 1910.

Introduction.

It is now more than twenty years since one of us issued the first general list of Irish Neuroptera. ${ }^{1}$

This catalogue contained records of some 211 species, comprising Dragonflies, May-flies, Stone-flies, Psocids, Planipennia, and Caddis-flies. It was largely the result of original work, as comparatively little had been previously known concerning the occurrence of these interesting insects in Ireland.

Since then several additional species (see page 31) have been observed which did not find a place in the old list. Many changes of nomenclature and arrangement are necessary in order to bring the Irish records into line with recent work on the Neuroptera. At the same time, our knowledge of the distribution of the great majority of the species has been considerably extended. It is hoped that the present list, including all the previous records, will form a useful standard of reference for future observers of Irish neuropterous insects.

It is to be regretted that the study of the Neuroptera has been greatly neglected in this country. Indeed we have had no resident collectors either in the south or west of Ireland, so that our knowledge of the fauna of those parts which we should expect to be the most interesting is almost entirely due to the excursions carried out from time to time by a few enthusiastic entomologists.

It is therefore not surprising that records of Neuroptera are distributed in a very unequal manner in Ireland. In order to show what has been done, we have prepared a list (page 37), giving the various localities, under the thirty-two Irish counties, where collecting has beeu carried on. In not more

[^37]than six or seven of the comenties is the meuropterons fauma tolerably well known; for it shonld be pointed out that in many places only a few species were collected. It will be seen that extensive tracts of country in all of the four provinces are practically unexplored; while from the counties of Longford, Meath, Leitrim, and especially Cavan, with its extensive chain of lakes, no records are forthcoming.

The late A. H. Haliday formed a collection of local Neuroptera; and a manuscript " Catalogne of Irish Insects," which he compiled, gives a fair idea of what was known of the Irish species in his time. This distinguished entomolncist, however. did mot derote as much attention to the Nemoptera as he did to other "ulers of insects: wtherwise there would certainly have leen a more satisfactory basis to work on when the preparation of an Irish list was mutrotaken more than twenty yars ag. Many of the species in the Haliday catalume are recorded with resorme and rey few exact localities are mentioned: yet it was the means of supplying useful information relatine th the capture of such uncommon insects as Comphes culyatissimus,
 in this "mantry sine Ilalifty': time. This mannseript catalogue is now preservel in the library of the Irish National Museum.

It sumbe herable to wfer hriefly to some of the changes and additions which it has been found necessary to carry out in the present list.

 than is that of Geat lintain. Twenty-fise spectes were included in the Irihh liat of 1 Rest: it winhl alpar, howner, that one of these, Orthetrum

 more likely to have been Sommtonhlora arelira, which is known to oceur in
 on the Pritish list on the strength of a sumposed Irish specimen seen by

 extremply dombtial. Illwine fins these rhanges, there are reliable records
 $f_{1}{ }^{\prime \prime}$, an hi-h mample of whim has revently been hought to light in the collection of the late C . W. Inale.
 are fow changes t. teend. The recent finting of the northern form
 unrecorded species olserved since 1889.

King and Halberx-A List of the Neuroptera of Irelund.
 31

It has been found necessary to thoroughly revise the species of Perlidae (Stone-flies) in the light of the recent researches of Morton, Kempny, and others. We hope the present short list, containing several additional species, will serve as an accurate basis for future work in this country.

In the group Planipennia (Alder-flies, \&c.), eight species have been added to the Irish list. Undoubtedly the most notable discovery is that of Pscctra diptera in County Wexford, an insect of great rarity in the Britannic area, where it is now known to have been found in three localities; and it seems almost equally rare both in Europe and America. The apparent absence from Ireland of certain conspicuous British insects belonging to this group is noteworthy ; we may refer to the genera Rhaphidia (Snake-flies) and Nothochrysa as examples. Of interest, also, is the recent capture in County Cork of one of the Scorpion-flies, Panorpa germanica, the first recorded occurrence of these insects in Ireland.

Eleven species of Trichoptera (Caddis-flies), some of considerable rarity, have been added. There is little doubt that fresh discoveries await the assiduous collector of these interesting insects, especially amongst such small forms as are contained in the family Hydroptilidae.

For convenience of reference, we give here the names of the various species which have been added to, or deleted from, the 1889 list. They are as follows:-

Libellula fulva Mull.
[Orthetrum cancellatum (L.). Deleted.]
[Cordulia aenea (L.). Doubtfully native.]
[Lestes barbara Fab. Doubtfully native.]
Leptophlebia vespertina L.
Perla maxima Scop.
Perla cephalotes Curt.
Dictyopteryx Mortoni Klap.
[Dictyopteryx microcephala Pict. Deleted.]
Dictyopteryx recta Kempny.
Isopteryx tripunctata Scop.
Isopteryx torrentium Pict.
[Isopteryx Bummeisteri Pict. Deleted.]
Capnia atra Morton.
Taeniopteryx Risii Morton.
Nemoura praecox Morton.
Nemoura Meyeri Pict.
[Nemoura lateralis Pict. Deleted.]
[Nemoura humeralis Pict. Deleted.]

Leuctra Klapaleki Kempmy.
[Leuctra fusciventris Steph. Deleted.]
Leuctra hippopus Kempny.
Leuctra inermis Kcmpmy.
[Leuctra nigra Klap. Deleted.]
Amphigerontia fasciata Fob.
Psocus major Kolbe.
Ectopsocus Briggsi McLach.
Hyperetes guestfalicus Kolbe.
Osmylus chrysops L.
Psectra diptera Burm.
Chrysopa tenella Sch.
Chrysopa vulgaris Sch.
Chrysopa prasina Ramb.
Chrysopa ventralis Curt.
Chrysopa abbreviata Curt.
Panorpa germanica L.
Grammotaulius atomarius Fab.
Limnophilus decipiens Kol.
Limnophilus fuscinervis $Z_{\text {ctt }}$.
Linnophilus nigriceps Z att .
Anabolia nervosa (Leach) Curt.
Chaetopteryx villosa $F a b$.
Apatania Wallengreni McLach.
Triaenodes conspersa Ramb.
Adicella reducta McLach.
Tinodes unicolor Pict.
Ithytrichia lamellaris Eaton.
The Irish Trichnptera are if special interest on account of the occurrence of at least four species which have not heen sin far observed in other parts of the Britannic area. These are Limumphins fursimorris, Aprotenia
 that the first-mentionell feries will eventually be found inhabiting parts of nurthern Fritain. The three maminge encies have now been known from Ireland for more than twenty years, yet it would seem that no evidence of their occurrence in Great Britain is forthooming. These species are interesting from a famistic wint if viw. Noms on their distribution will be found in other parts of this paper.

of each of the Irish species. The scarcity of records, however, more especially of the families Ephemeridae and Psocidae, not only in the British Isles, but throughout Europe, has rendered the ascertaining of this information difficult, so that in many cases the distributional notes are very imperfect. The statement that a species ranges from Devonshire to the Shetlands is not meant to imply that it occurs in all parts of Britain; indeed, in few cases are the records sufficient to justify such a conclusion. All that is meant to be conveyed is that the insect in question has been definitely recorded from these localities, and is at least widely distributed in the Britannic area.

In spite of the fact that much work remains to be accomplished, the poverty of the Irish fama, as compared with that of Great Britain, is as manifest amongst the Neuroptera as it is in other groups of insects. It is evident that many conspicuous species and even genera of British Neuroptera are either absent from or of great rarity in this country. In order to show clearly the relative proportions of the two faunas, we have prepared a table giving the number of genera and species found in the two countries, as far as they are known at the present time. It will be seen that we have records of 239 species of Neuroptera in Ireland, or rather less than two-thirds of those recorded from Great Britain.

-		Irbland.		Great Britain.	
		Genera.	Species.	Genera.	Species.
Odonata,	,	15	23	20	42
Ephembridar,	.	11	24	14	39
Prriidae,	-	8	18	9	29
Psocidae,	-	14	30	21	43
Planipennia,	.	9	31	14	56
Thichoitera,	.	48	114	61	175
		103	240	139	384

The deficiency in number of species is especially noticeable in the case of the Dragon-Hies. It has already heen pointed out that we possess only twenty-three of the forty-two species recorded from the Britannic area. It is of interest to note that the great majority of the nineteen British species which do not appear to have reached Irelaud iuhabit the

 and swamps in the highlands of Perth and Inverness

 to be found out concerning their distribution in Europe.

(CATVIS-ELIES.

Common and wilely dis:riluted forms. . . 60
Sinthern and parts of central Eurupe. . . 38
Central and southern Eurnpe. . . 10
couth-western Europe. . . . 4
Alpine 2
114

 $\therefore . . .$. reash their greatest develnqment in coll and temperate countries. Fet

 a. . . .

King and Hatbrri- - L List of the Neuropterie of Ieclemd. 35
Examples are Phrygence obsoletu, Limnophilus fusrinervis, and Molanna pretprete. The central and southern species constitute a much smaller group; we may perhaps refer to Adicella reductu, and Wormaldia mediana. In so far as we can judge by their known range, it seems likely that at least four of our Trish Caddis-flies are south-western in Europe: namely, Setodes argentipunctella, Tinodes maculicomis, Lype fragilis, and Agapetus delicatulus; while Polyerntropus Kingi should probably also be referred here. The scarcity of purely alpine, as opposed to northern and alpine, forms in Ireland is notable, a scarcity which appears to hold good for these insects throughout the entire Britannic area. The two species which would appear to possess such a lange are Drusus annulatus, and Apatania fimbriata.

The following is a short list of some Irish species that are interesting on account either of their geographical distribution or of their general rarity. More detailed notes on their range will be found in the systematic part of this paper:-

> Odonata (Dragon-flies).

Somatochlora arctica 7ett. Northern and alpine Europe; Cancasus; Siberia; Kamtschatka.

Ischnura pumilio (Charp.). Widespread in southern and central Europe; Asia.

> Ephemeridae (May-flies).

Leptophlebia vespertina (L.). Northern and central Europe.
Perlidae (Stone-flies).
Capnia atra Morton. Northern and alpine Europe.
Planipennia (Lacewing flies, \&c.).
Psectra diptera Burm. Rare.
Chrysops abbreviata Curt.
Sisyra Dalii McLach.
Sisyra terminalis Curt.

These are apparently local insects, though little is known of their continental range.

Trichoptera (Caddis-flies).
Phryganea obsoleta Hagen. Northern and arctic Europe.
Limnophilus fuscinervis Zett. Northern and central Europe. Not known to occur in Great Britain.

Limnophilus nigriceps Zett. Northern and central Europe.
Drusus annulatus Steph. Mountains of central Europe.
Apatania Wallengreni McLach. Northern Europe.

Apatania fimbriata (Pict.). Mountains of central Europe; Ireland. Not known to occur in Great Pritain.

Silo nigricornis (Pict.). Central Europe.
Cranoecia irrorata (Curt.). Central Europe.
Molanna palpata McLach. Lapland; Finland; Russia; Siberia; N. Scotland ; Ireland.

Adicella reducta (Steph.). Central and southern Europe.
Setodes argentipunctella McLach. Belgium; Germany: Switzerland; Spain; Britain.

Philopotamos montanus (Donow.) var. scoticus McLach. Perthshire N. Wales; Kerry.

Wormaldia mediana Mc.Lach. Central and southern Europe.
Polycentropus Kingi McLach. Irritain : l'ortugal ; Sardinia; and probably other places.

Setodes maculicornis lict. Ireland: switzerland; France; Portugal. Not known to occur in (ireat laritain.

Lype fragilis (I'it. Inelaml: Nwitarlaml; France ; Spain. Not known to oceur in (ireat Britain.

Agapetus delicatulus Mchach. Ireland: Arran (scotlaml); Pyrenees. Probably overlooked in other localities.
 apminted ly the Ihyal Irinh dratemy, and alsu throng the same Committee

 of many species.

Fin muth kind holp in the indotitentin of ditticult insects we desire to reconl whe that $=$ th the late Mr. Lobert McLachlan, Fis.s. ; the Rev. A. E. Faton, M.A.; Mr. K J. Murton, f.e.s. ; and Mr. H. L. F. Guermonprez.

We are also indebted to the following gentlemen for help rendered in the collecting of specimens of Irish Neuroptera:-Denis R. Packlieresford, Mr.i.A.; Prof. G. H. Carpenter, B.SC., M.R.I.A.; G. P. Farran, B.A.; 1). Freeman, M.A. Rev. W. F. Johnson, 3.A.; W. F. de Vismes Kane, m.A., M.r.i.A. ; S. W. Kemp, B.A. ; C. B. Moflat, M.A. ; R. Ll. Praeger, B.a., M.r.i.A.;
 M. S. Uudley Westropp.

With refal to nomentatur and $\leq y$ stematic arrangement, we have made
 (Harwonl, 190 ${ }^{-}$) as revi-ed aul corrected hy.....s. W. I. Lucas, K. J. Monton, and others.

King and Halberi-A List of the Neuroptera of IVelund.

An asterisk is prefixed to such species as do not figure in the "Neuropterous Fauna of Ireland" (1889), and in this case, also, the captor's names are indicated.

Irish specimens of the great majority of the species recorded in the following list are preserved in the natural history collections of the National Museum of Ireland.

List of Localities in which collecting has been done.

MUNSTER.

Clare.-Lahinch.
Cork.-Adrigole, Ballygriffin woods, Blackwater River, Blarney, Carrigrohane, Castletown Berehaven, Gearagh, Glandore, Glengariff, Hungry Hill, Kinsale, Lismore, Macroom, Mallow, Skibbereen, St. Anne's, Youghal.

Kerry.—Ardagh Lough, Ardtully, Boreen-a-Morave, Caragh Lake, Carrantuohill, Cloghereen, Cloonee, Coppagh Glen, Crincaum Lough, Derrynane, Deenagh River, Deer Park, Dingle, Dinish, Gap of Dunloe, Flesk River, Garagarry Lough, Glena, Glencar, Horses Glen, Kilbrean Lough, Loo Bridge, Mangerton, Muckross, Parknasilla, Ross Castle, Spa Well, Staigue Fort, Torc Cascade, Valentia, Waterville, Windy Gap, Woodlawn.

Limericr.-Near Limerick.
Tipperary.-Cahir, Tipperary.
Waterford.-Cappagh Lough, Cappoquin, Dromana wood, Glendine. Glenshelane, Lismore, Mount Melleray, Salterbridge, Villierstown, Waterford.

CONNAUGHT.

Galway.-Ashford, Ballinasloe, Castlekirk, Clonbrock, Cong, Lough Corrib, Lough Derg, Maam, Maumwee Lough, Oughterard, Recess, Ross Lake, Roundstone, Salthill, Shindillagh Lough, Tuam, Woodford.

Mayo.-Achill, Aille Lough, Ballinlough, Bleachyard, Broad Lough, Carrowbeg River, Castlebar, Clare Island, Cogaula, Croaghpatrick, Croft, Dooghan Lough, Doo Lough, Inishbofin, Kip Lough, Knappa Lough, Knappabeg Lough, Mount Brown Lough, Newport River, Prospect Lough, Westport.

Roscommon.-Athlone, Mote Park, Summerhill, Yew Point.
Sligo.-Ballymote, Keshcorran, Lough Gill, Markree Castle, Rosses Point, Sligo.

LEINSTER.

Carlow.-Fenagh.
Dublin.-Dundrum, Balbriggan, Finglas, Glasnevin, Glencullen, Glendhu, Howth, Harold's Cross, Kingstown, Lucan, Portmarnock, Rathgar, Rathmines, River Tolka, Royal Canal, Sandymount, Santry, Sutton, Tallaght, Templeogue, Terenure, Tibradden.

Kidare-Maynooth, Straffan.
Kukennt.-Inistioge, Johnstown, Thomastown (River Nore).
Kang's Cocsitr. - Edenderry.
Locth.-(inliugiord. Castlebellingham, Drogheda (Borne), Killincoole, Omeath.

Queen's Cotytr. - Portarlington (Piver Barror).
Wearmeath-Athone. Ballykeran. Diog of Allen. Coosan Point,
 Killwan (Lwh I:w... Mate. Mullingar, Shannon side, Twy River, Twy Lough, Waterston demesne, Wine Port.

 Wexford.

 l'omerscourt, Poundwool.

でLSTER.

 Castle Timme.

 L'w.h.

Ihows:-Amalong valley, Belfast, Cove Lake, Holywood, Lagan Canal.
Femanagh, Emni-killen, Portora.
Londonterer.-Near Derry:
Muxaghan: - Emyvale, Glaslough.
Tyrose—Altadiawan, Castlederg, Favour Royal.
 Cawan are alureether absent from this list.

Bibliggraphy.

Balfocr-Browne, F.-Odonata [taken during the Fifth Triennial Conference and Excursion of the Irish Field Club Union, Cork, July, 1907.] Irish Nat., xvi., pp. 300-301. 1907.

Bati, W. Harcourt.-An Illustrated Handbook of British Dragon-flies. London, 1890.
Beaumoxt, A.-Micromus aphidivorus in Co. Wexford. Entom. Monthly Mag., (2) iv., p. 263. 1893.
Carpenter, G. H.-Neuroptera [of the First Triennial Conference and Excursion of the Irish Field Club Union, Galway, July, 1895]. Irish Nat., iv., p. 258. 1895.
_- Neuroptera [in Guide to Belfast, \&c., British Association Meeting, 1902, pp. 215-216]. Belfast, 1902.
Cooke, B. - Phryganect obsoleta in Ireland. Entom. Monthly Mag., xv., p. 19. 1878-79.

Curtis, J.—British Entomology. London, 1823-39.
Eaton, A. E.-An Outline of a Re-arrangement of the Genera of Ephemeridae. Entom. Monthly Mag., v., p. 82. 1868-69.

- A Revisional Monograph of the Recent Ephemeridae or May-flies. Trans. Linn. Soc., Zoology, (2) iii. London, 1888.
- A Concise Generical Synopsis, with annotated list of the species of British Ephemeridae. Entom. Monthly Mag., xrv., p. 29, 1888-89.
Foot, A. W.-List of Dragon-flies obtained in Co. Wicklow. Proc. Dublin Nat. Hist. Soc., vi., p. 31. 1869-71.
Hagen, H. A.-A Synopsis of the British Dragun-flies (Odonata). Entom. Annual, 1857, pp. 39-60.
——Synopsis of the British Planipennes. Entom. Annual, 185s, pp. 17-33
- Synopsis of the British Phryganidae. Entom. Annual. 1860, pp. 6685; 1861, pp. 1-16.
Halbert, J. N.-Insects collected in the Fermoy and Blackwater District. Irish Nat., iv. pp. 45-49. 1895.
——.Neuroptera. Panorpidae [Panorpa germanica taken during the Fifth Triennial Conference and Excursion of the Irish Field Club Union, Cork, July, 1907.] Irish Nat., xvi., pp. 289-290. 1907.
-_ Neuroptera [in Handbook to the City of Dublin, dc. British Association Meeting, 1908, pp. 170-171]. Dublin, 1908.

Halberr. J. N. - [Exhilited Psecton diptero, Burmeister, from County Wexford, Dublin Nicroscopical Club.] Irish Nat., xvii., p. 102. 1908.

- [Exhilited Capmia atra, Morton, from Devil's Punch-bowl, Dublin Nieroscopical Club.] Irish Nat., xvii., p. 124. 1908.
- [Eshivited Perla-nymph from Carrantuohill, Dublin Microscopical Club.] Irish Nat., xviii., p. 119. 1909.
Halidar, A. H.-Entomological Notes. Nat. Hist. Review, iv., pp. 31-36. 1857.
——M~ Catalogue of Irish Insects ; Neuroptera (in the possession of the Irish National Museum).
Johsses. W. F.-Great Swarms of Ephemeridae on Lough Neagh. Entom. Monthly Mag., xxii, p. 165. 1885.
-A Alitions th the Irish List of Neuroptera. Entom. Monthly Mag., (2) iv., p. 287. 1893.
 1894.
- Entwhmparal Notp from the North of Ireland in 1895. Entom. Monthly Mag., (2) xii., p. 157. 1896.
Ken's. W.-Inaru-tie in Co. Kerry. Irish Nat., xviii., p. 55. 1909.
 Monthly Mag., xxiv., p. 214. 1887-88.
- M', p. 93. 1888-8?
 p. 235. 1888-89.
-Twn apmons of Trichuphora new th the British Li". Entom. Monthly Mag., xxv., p. 235. 1888-89.
- Tinat. wanhimmis at Athone. Entum. Monthly Mast, xxv., p. 283. 1858-89.
-- A Contrantion (mwan a Catalune of the Neuropterous Fanna of Ireland. Glaskow. 1889.
 1891.
 p. 120. 1895.
——Portm dytun. Burm... in Ireland. Entw. Monthly Mag., (2, xi.. p. 2S8. 1900.

King and Halbert-A List of the Neuroptera of Ireland. 41
King, J. J. F. X.-Ischnere memilio, C'hp., in Ireland. Entom. Monthly Mag., (2) xiii. (38), p. 112. 1902.

Lucas, W. J.-British Diagonflies (Odonata). London, 1908.

- Lestes dryes Kirb., in Ireland. Entom., xl., p. 66. 1907.
—— Notes on the British Dragontlies of the "Dale Collection." Entom. Monthly Mag., (2) xix., p. 198, 1908; and (2) xx., p. 79. 1909.

Moffat, C. B.-Orthetrum cuerulescens in Co. Wexford. Irish Nat., xviii., p. 24. 1909.

Morton, K. J.-Occurrence of Occetis furva, Ramb., and other Trichoptera in Co. Monaghan, Ireland. Entom. Monthly Mag., xx., p. 142. 1883-84.

- Agrypnia pagetana, Curt., and other Trichoptera in Ireland. Entom. Monthly Mag., xxiii., p. 138. 1886-87.
- Apatania fimbriata, Pict.-A caddis-fly new to the British Isles. Entom. Monthly Mag., xxiv., p. 118. 1887-88.
__ Another Caddis-fly new to the British Isles: Tinodes maculicornis, Pict. Entom. Monthly Mag., xxiv., p. 136. 1887-88.
——Additional Trichoptera from Glaslough, Ireland. Entom. Monthly Mag., xxiv., p. 186. 1887-'88.
——Limnophilus decipicns, Kol., in Ireland. Entom. Monthly Mag., (2) iii., p. 110. 1892.
—— Notes on Trichoptera and Neuroptera from Ireland. Entom, Monthly Mag., (2) iii., p. 301. 1892.
—— Neuroptera and Trichoptera observed in Wigtonshire, \&c. Entom. Monthly Mag., (2) x. (35), pp. 278-281. 1899.
—— Notes on the Scottish Species of the genus Hemerobius. Ann. Scott. Nat. Hist., ix., pp. 30-32. 1900.

McGowan, B.-Psectra diptera, Burm., in Scotland. Entom. Monthly Mag., (2) xiv., (39) p. 14. 1903.

McLachlan, R.-Notes on British Trichoptera, with descriptions of new species, \&c. Entom. Annual, 1862, pp. 21-37.
—— Notes on British Trichoptera. Entom. Annual, 1864, pp. 140-153.
——Occurrence of Cordula arctica in Ireland. Entom. Monthly Mag., i., p. 76. 1864-65.

- Notes on British Trichoptera. Entom. Annual, 1868, pp. 1-7.
- Notes on Aeschna borcalis and other Dragon-flies at Rannoch. Entom. Monthly Mag., ii., p. 117. 1865-66.

McLacmlay, I--1 Munographic Revision and Synopsis of the Trichoptera of the European Fauna. London, 1874-1880.

- A Monograph of the British Neuroptera Planipennia. Trans. Entom. Soc., pp. 145-224. London, 1868.
- Iescription of a ner species of Setoles occurring in the British Isles. Entom. Monthly Mag., xivo, p. 105. 1877-78.
-I'hrempance obsolete in Ireland. Entom. Monthly Mag., xiv., p. 117. 1877-78.
- The Pritish Dragon-flies annotatel. Entom. Monthly Mag., xx., pp. 251-256. 188+85.
— Trichortera from Melfast. Entom. Monthly Mag., xxii., p. 165. 1885-86.
- Aitus on certain Palaearctic species of the genus Hemerobins. Entom. Monthly Mag., (2) x., p. 133. 1899.
 (2) x., p. 234, 1899.
 1900.
- Whmata cullectem hy (in). Yirloury in the south-west of Ireland in 1901. Entom. Monthly Mag. (2), xii., p. 301. 1901.
 South-west Ireland. Entom. Monthly Mag., (2) xiii. (38), p. 112. 1002.
 (2) xiv. (39), p. 14. 1903.

 Ireland. London, 1838.
 Nat. Hist., (1) xviii., pp. 217-227. 1816-47.
 Soc. Iiny. Sc. Liége, vi., pp. i.-xxii., and 1-408. 1850.
Sterhens, J. F.-Illustrations of British Entomology. London.
Tleneer, H. J.-A Week in Co. Kilkenny. Irish Nat., xii., p. 181. I903.

SYSTEMATIC PART.
 ODONATA.
 LIBELLULIDAE.
 Sympetrum striolatum (Charp.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (common in the Killarney and Muckross districts; Waterville; Parknasilla; Kenmare; Caragh Lake; \&c.). Cork (west, mid., and east Cork ; Glengariff; Skilbereen ; Youghal ; \&c.). Waterford (Glenshelane; Cappagh Lough). C.-Toscommon (Yew Point). Mayo (Inishbofin; Westport and Newport districts). Sligo (Markree). L.-Wexford (Ballyhyland; Killurin; Johnstown Castle; \&e.). Wicklow. Dublin (common, Botanic Gardens; Royal Canal; Howth; \&c.). Westmeath (Killucan; Waterstown). U.-Armagh (Poyntzpass; Churchhill ; \&c.). Monaghan (Glaslough and Emyvale). Down (Rostrevor). Donegal (Bundoran; Ardara; Coolmore). Derry. Antrim (Randalstown bog).

Common and widely distributed in Ireland, as it is in the Britannic area generally. Mr. Moffat informs us that it is abundant everywhere in County Wexford, from the fourth week of June to the end of October, and it is occasionally seen in November.

Distribution,-Over the greater part of Europe, except the extreme north. Occurs also in N. Africa; the Canaries; Madeira; northern India (Morton), \&e.

Sympetrum scoticum (Don.).

Munster. Connaught. Leinster. Ulster.
M.-Waterford (W. H. Bath). C.-Galway (Maumwee Lough). Roscommon (Yew Point). Mayo (Mount Brown Lough). L.—Kilkenny (Johnstown, Haliday Ms.). Westmeath (Bog of Allen). U.-Monaghan (Glaslough, swarmed on a bog, Morton). Tyrone (Castlederg). Armagh (Poyntzpass). Down (Belfast, Haliday Ms.).

Distribution.-In Great Britain this species frequents moors and marshes from Devonshire to Inverness, and appears to be more common towards the north. Widely spread in the Palaearctic region, ranging from Lapland to northern Italy, Russia, northern and central Asia, Japan. It also inhabits North America (Colorado, New Hampshire, Ris. Canada).

Libellula depressa L.

Munster.
M.-Waterford (Glendine, July, 18:34, Miss Broll). Ireland (Holiduy Ms. De Selys).

Apparently very rare. It is remarkable that this conspicuous Dragon-fly has not been observed in Ireland during recent years. Both Haliday and De Selys were aware that it had been taken by Miss Ball; but they did not record the locality. Fortunately the place and date of capture are mentioned by Miss Ball in her annotated copy of Stephens' "Catalogue of British Insects" (1829), now in the possession of the Irish National Museum. An Irish specimen, possilly the one recorded by Miss Ball, is preserved in the Trinity Cillege Museum. Mr. Lucas remarks that this species passes a great deal of its time at a distance from water, and, in consequence, probably often escapes observation.

Initribution-(Areat Tritain (north midlands, southwarils). Temperate Eurne ranime the chapian sea; Greece ; the Iberian Peninsula; Syria.

Libellula quadrimaculata L.

Munster. Conjaught. Leinster. T'lster.
M.-Kery (Herspane: Lum Iridge; Ross Castle). Cork (west; Shilhereen; ('astletwn; Mhyolle; \&e.). Clare (Lahinch). C.-Galway (Lecess, abl near lallinashor) Mayo (Carmotheg River). Slign (Markree (astle). L.-Wexpod "hallyhyand, rare, probably mot breeding on our -trams. hat necurs at intervals in the imago state. May be a straggler from the lower ernum? of the slaney valley. I have never seen it tly over water in this moightmarhmel," M, Mitht, in litt.). Carlow (Fenagh). Wicklow (A.W. Fow). lultin (filencullen, de.). Westmeath ('Twy Lough). D.-Monaghan

This is the omly -precies of Litullath fommd commonly in Ireland. We how no monds of the cermmene of mistatory swams of this insect in
 Binam. The variety formenth. Newnan, with a brownish suffusion of the
 Ireland.

 in Nurth America Massachusetts and Colorado).

*Libellula fulva Mill.

Merster.
M. K Kary Irin_le a malm in the erillertion of the late C'. W. Dale, fute W. J. Lucas, Entom. Momthly Magraine, (2) xix., p. 199. 1908).

In the above reference Mr. Lucas draws attention to an aprarently
unrecorded Irish example of Libellulte fulva contained in the Dale Collection of insects, now preserved in the Hope Department of the Oxford University Museum. The specimen is labelled "Ireland, R. W., 1849," in the handwriting of the late J. C. Dale, while a label at the side of the specimen indicates "Dingle" as the locality in which it was found. The initials
R. W." are probably those of Richard Weaver, formerly a well-known collector of British insects. The species is one which may well occur in this country. Mr. Lucas points out that it may easily be overlooked on account of its resemblance to other species, such as L. depresse, and perhaps Orthetrum caerulescens, a not uncommon species in the south-west of Ireland.

Distribution.-This Dragon-fly occurs very locally in the south of England and as far north as Yorkshire or Durham at least. It is widely distributed in Europe, frequenting lakes and slowly flowing waters.

Orthetrum caerulescens (Fab.).

Munster. Connaught. Leinster.
M.-Kerry (Derrynane; Dinish; Gap of Dunloe; Windy Gap; Loo Bridge ; Caragh Lake; Killarney; Ardtully). Cork (Castletown Berehaven; Glengariff). C.-Galway (Recess). L.-Wicklow (taken by A. W. Foot). Wexford (" not at all uncommon in peaty bogs in the north-western part of Co. Wexford, towards the Blackstairs range. In the valley of the small River Urrin, a tributary of the Slaney, it is, in suitable spots, often quite abundant." Mofjat, Irish Not. xviii., 1909, p. 24).

In Ireland, this species seems characteristic of the south; and we have no records further north than Galway and Wicklow. For the latter county we must rely on an old record made by Dr. A. W. Foot (Proc. Dubl. Nat. Hist. Soc., 1870). In Co. Wexford Mr. C. B. Moffat finds this species locally plentiful, from the end of June to the middle of August.

Distribution.-In Great Britain, this insect has a southern range, occurring from Cornwall at least to Cumberland. It is said to have occurred in the south-west of Scotland; but the species does not figure in Mr. Evans' list of the Dragon-flies of the Forth area. Isle of Man. Abroad it is found in the temperate parts of Europe, ranging from southern Scandinavia to Spain; Algeria; Madeira.

[Orthetrum cancellatum (L.).

There is no reason to believe that this Dragon-Hy has ever been found in Ireland. The only evidence of its occurrence is in a list of the British Dragon-flies published by De Selys, "Revue des Odonates" (page 257), where the species is indicated as having occurred in Ireland. No doubt this is an
error, as in the same wonk (page 12) the author remarks, concerning L.
 makes numentin of the insect in his MS. Catalogue. The record in the " Neuropterous Fanna of Treland" must therefore be deleted.

In ? - Acomint to Mr. McLachlan, the British range of this spente is cuamel in the smathern hali of England. On the Continent it
 Africa.]

Somatochlors arctica (Zett.).

Musster.
M-Kerry (Killarnes, McLachlan; Dinish, King).
Tory 1.and. Th foll. wine in the orimal recod of the oceurrence of this

 oceurrence in the south-west of Ireland; but Mr. Birchall remarks that he has found C'wonymphu durus and Hudena rectilincer at the same place,

 Cullection at Oxford; one of these is labelled "Killarney " (Lucas in Entom. Mmethly Mrug., (2, xix., p. 201, 1908).

Ihatritutien.-Frequents becey heaths and swamps in the highlands of

 from Lapland to France (Ardennes). Also reported from the Caucasus and Silneria (Ih © © (ys, 1 ssi). Kameschatha (Ifio).
[Ciondilia nener (L).
"Comlulia arnon-Killarney" (Holy in letter to Haliday in 1838, fude

"Ireland!-Towards the northern lakes (Hnlintoy). I have not seen the sicrimens. There is no doubt that a Corlulia is found there, but the species has nut been detorminell with certainty" (D_{c} Selys, Revision of the British Liletlulidae, Amn. Jug. Mint. Hist., xviii., p. 222, 1846).

These are the only available records of the accurrence of this Dragon-Aly in Treland. The lieality mentioned in De Selys' "Revision" is evidently

King and Halbert-A List of the Neuroplerce of I Ielend. 47
unsatisfactory, as no specimens appear to have been captured in the north. We are inclined to believe that the Killarney insect taken by Mr. Hely may have been the preceding species.

Distribution.- In Great Britain, this species is found chiefly in the south of England; and it has not been observed in Scotland. Jersey. Widespread in northern and temperate Europe, extending from Scandinavia, Finland, \&c., to Spain (Noveis) and eastwards to the Ural mountains and northern Asia].

Gomphus vulgatissimus (L_{o}).
Ireland ("Certainly Irish, Miss Ball," Haliday ns.; De Sclys.)
Found in Ireland many years ago by Miss Ball; but unfortunately the place of capture seems unrecorded. It is not unlikely that the insect was taken in the south-perhaps in the Youghal district, where Miss Ball spent some time collecting Dragon-flies. A specimen of this species marked as Irish, in Trinity College Museum, was in all probability captured by Miss Ball. The rarity of this insect in Ireland is remarkable, as it usually occurs in numbers wherever it is found.

Distribution.-In Great Britain, this species is found in the south. Lucas records several localities ranging from Hants to Worcester (British DragonHlies, 1900). Widespread in northern and central Europe. Navás says he has not seen it in Spain (1908). Represented by races in the south of Europe and Asia (Ris).

Cordulegaster annulatus (Latr.).

Ulster.
U.-"Northern Lakes, Haliday," De Sclys, Amn. Mag. Nat. Hist., xviii., 1846. Ireland (Haliday ms.).

This conspicuous insect was apparently taken in Ireland both loy Haliday and Tardy (fide Haliday Ms.) The locality quoted above was evidently supplied by Haliday to De Selys during the visit of the latter to this country in the summer of 18 ± 5. Mr. K. J. Morton records that a Dragonfly seen, but not taken, by him at Glaslough in county Monaghan, was probably C. annulatus (Entom. Monthly Mag., 1892, p. 301). One of the Haliday specimens is now in the Irish National Museum.

Distribution.-Widespreal in Great Britain (Cornwall to Inverness). Jersey. Found over the greater part of central and southern Europe, ranging north to Sweden, where it is rave; occurs in northern Africa and Asia Minor. Mr. Morton informs us that in the west of Spain the type form is found, but in the eastern parts it is replaced by the variety immaculifrons, Selys.

Brachytron pratense (Müll.).

Micaster. Comatght. Lenster. Ulster.

M.-Cork (Kinsale). Waterford ("It occurs abundantly near Waterford." Hriment Butth, in "British Dragon-flies," 1890, p. 58; Dromana wood). C.-Gralway: Mayo (at a pool near the conrent at Westport). L.—Wexford (Rosslare). Wichlow (A. IF. Foot). Dublin (a single specimen captured on a hush in a garden near Ballorigran, Wrade). Westmeath (Twy Lough; near Athlonet. Louth (Castlebellingham). U.-Fermanagh (Portora; Enniskillen, Allen).

Thurh syldm met with, this species appears to be widespread in Inther. The Kinsile specimen was captured at the Old Head lighthouse.

IN 4 itwom.-Uceurs in the smuthern hali of England and Wales. Apharently umrensded from Scotland. Widely distributed in Europe fonu contral seandinavia tw France, Italy, and the Caucasus. Asia Minor (De Selys).

Aeschna juncea (L.).

Muxster Conxacgut. Lemster. U'lster.
M-K.rty lhmynam: Kemare: Valentia: Dinish: Muckross; 'wah Lake: Watmille: Staigue Font. Conk (Skihbereen!. Tipperary - im .n' Trmphemere. I.merick. C.-(ialway near Rallinasloe; ShinGha Jomh; 'irtlokirk). Mayn (Kip' Lough). Slign (Markree). L. Wisime ballyhyand liatrict "molerately common, hat less so, I think,
 for my watist and hat dates for seeing it." Mofity, in litt.). Carlow
 Ti.a.an (ibnthr, iv. Wratheath 'Waterstawn; near Athlone). U.-

 phl collection:
 . : anc. . in the noth on in the sumth of Irelant. This fine species has fo.. i....n rup an. in the winity of tir-whenls, especially in hoggy upland

 that wepre apparently attracted hy a captured female specimen.

Distribution.-lireat 1rritain (south of England to Inverness and the
 wannat thendant the northern pant of the lalaearctic region, ranging

King and Halbert-A List of the Neuroptera of Iveland.
from Finland to Kamischatka. Occurs also in North America. Alaska (Harriman Expedition).

Aeschna grandis (L.).

Connaught. Leinster. Ulster,
C.-Galway (Woodford). L.—Carlow (Fenagh). Wicklow (taken by A. W. Foot). Westmeath (Waterstown). U.-Monaghan (Emyvale and Glaslough, commoner than A. juncea at the latter place, Morton). Armagh (Derrynoose). Antrim (Derrymore).

We have few records of the occurrence of this Dragon-fly, and none from the province of Munster; no doubt its Irish range is much wider than is here indicated. Mr. Morton remarks that at Glaslough "this fine insect was commoner than A.juncea; and many examples of it were under notice during the hours of bright sunshine, when it might be seen chasing and capturing such large game as Charceas graminis and Hydroccia nictitans; it also followed its well-known crepuscular habit; and one dull, warm evening I watched some examples carrying on their feeding operations along the shores of the lake until it was nearly dark" (Entom. Monthly Mag., 1892).

Distribution.-Although the continental range of this species is very similar to that of A. juncec, the distribution of the two in Great Britain is very different, as A. grandis is found in the south (Devonshire to Yorkshire at least). It has been recorded from the extreme south of Scotland. Northern and central Europe. Asia.

AGRIONIDAE.

Calopteryx virgo (L.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Derrynane; Glencar; Killarney). Cork (St. Anne's, Hatiday ms.; Castletown Berehaven; Hungry Hill ; Glengariff). Waterford (Lismore; Glenshelane). C.—Galway (Lough Corrib at Oughterard ; Recess). L.-Wexford (Ballyhyland, very common; Rosslare; Johnstown Castle grounds; Edenvale; Ferns). Queen's County (river Barrow near Portarlington). King's County (Frankford). Wicklow (taken by A. W. Foot). U.-Antrim (Belfast, De Selys).

The records of this beautiful species are comparatively few, yet they are sufficient to show that it is as widespread as the following species in Ireland. All the Irish specimens that we have seen belong to the northern form with paler bases and tips to the wings. The variety of the male with uniformly smoke-coloured wings and evidently finer venation (anceps Steph.) occurs at

Glenshelane and Lismure in the Blackwater district. This form is, however, considered to be a mere condition of the species.

Distribution.-Ranges further north in Great Britain than C. splendens. Cornwall to Sutherland; while the continental distribution is equally wide. Europe, northern Asia to Amur and Japan (Ris). In the south of Europe (Iberian Peninsula, \&c.) it is represented by the form meridionalis De Selys.

Calopteryx splendens (Harr.).

Munster Connauchit. Leinster. Ulster.
M.-Kerry (Deenagh River). Cork (Glengariff; Skibbereen; common in the marshy ground at The (rearagh: Macroom; 13lackwater at Fermoy; St. Anne's). Waterford (Glenshelane). Tipperary (Cahir). Clare. C.-(balway (lombreck). Mayn (Carrowherf River). Slign (Markree (astle). L.-Wexpord (Elenvale: Ballyhyland). Kilkemuy (Thhmetown, Itw Thley ms.; banks of the Nore near Thomastown). Carlow (River Barrow). Queen's Combty (liser Barrow near Portarlington, Patterson). King's C'omty (Eilenderry). Kildare (Strafian). Wicklow (taken by A. W. Foot; Fowerscourt, Dule collection). Dublin (River Liffey near Lucan). Westmeath (Athtone; Twy River). Lonth (Killincoole; Castlebellingham).
 M(1) $\%, 1903$).

Lanally (ommon, frequonting womled river-lanks, espectally in the someth of Imeland. It Ballyhylan Mr. Molfat ways it is totally unkown in most
 Crim, where for the time being it quite outmumber the common C. riego. It hatel fin alont a month, ami has not heen seen in the ristride since that year.

Distribution. - In Great Britain the species dnes not seem to have been observed north of Vorkshire (Luras, 1900). Widely distributed in the
 Asia Minor, Turkestan, anl Siberia. Replaced in the extreme south of Europe by the race arnihnstoma (Charp.).

Lestes dryas Kirby:

Munster. Leinster.

M. - Kerry (Caragh Lake, taken by H. M. Edolsten carly in September, 1906, Lucns, Entum., xl., p. 66, 1907). L.-Westmeath (an immature specimen taken in Jnne nu the River Shannon near Athlone, King, Entom. Monthly Mrig., (2) vi., p. 120, 1895).

Until the recent discovery of this species its oceurence in Ireland was
regarded as doubtful. The records of Haliday and De Sclys were based on a specimen supposed to have been taken in Ireland by Mr. Tardy. Dr. A. W. Foot includes Leskes mymphen in his list of Wicklow Dragon-flies; lut as no authority name is quoted, this record had better be referred to the following species.

Distribution.-This widely spread European insect is apparently very local in the Pritannic area, having been observed chietly in the fen districts of Cambridge, Essex, and Lincolnshire. Europe and northern Asia to Amurland (Ris)

Lestes sponsa (Hansem.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Killarney, Dale collection; Kenmare ; Waterville; Parknasilla; Kilbrean Lough). Cork (Ballygriffin woods; East and West Cork, Bulfour Brounc). Waterford (Cappagh Lough). C.-Galway (Ross Lake near Galway). L.—Wexford (banks of Slaney). Wicklow (Lestes nymphee, Foot). Westmeath (near Athlone). U.-Monaghan (Emyvale and Glaslough, exceedingly common on hoth bogs and lakes, Morton). Donegal (Coolmore).

Widespread, though apparently less common in the east than in the south of Ireland.

Distribution.-Great Britain (in suitable places from Kent to Inverness at least). Common in northern (Finland, \&c.) and central Europe, ranging to Amurland and Japan (Ris).

[Lestes barbara, Fab.

"Ireland? A male in the Dublin Museum under the name of nympluce" (De Sclys, Ann. May. Nat. Hist., 1846). "Un mâle du Museum de Dublin est indiqué comme ayant été pris en Irlande" (De Selys, "Revue des Odonates," 1850).

Extremely doubtful. The only evidence of the occurrence of this Dragonfly in the Britamic area is furnished by De Selys, who saw a reputed Irish specimen in Trinity College Museum more than fifty years ago. No trace of this specimen is now to be found. According to a note in Mr. Haliday's MS. "Catalogue of Irish Insects," the specimen in question was taken by J. Tardy, but its Irish origin was evidently doubted by Haliday. Under the circumstances it seems best to relegate this species to the list of reputed British insects-a course which has alrealy heen adopted by Mr. Lucas in his work on British Dragon-flies (1900).

Distribution.-Lestes barbara is Mediterranean in its habitat, ranging from Portugal and Algeria to Asia Minor, becoming more local and sporatic in its occurrence towards central Europe. Kashmir, Persia, and Turkestan.

As it occurs in Belgium and in the Channel Islands (Alderney), it may yet be found living in this country.]

Erythromma najas (Hansem.).

Ulister.
U.-Down ("Covelake, June," Haliday MS.; "près de Belfast, Haliday," De Selys, Revue des Odonates, 1850).

Apparently a very rare species in this country; and it has not been met with in recent years. The locality "Covelake," noted in Haliday's MS. Catalogue, is rather indistinctly written; but there can scarcely be any doubt that it is meant for Cove Lough, sume 1500 feet up on the Mourne Mountains, near Slieve Donard, a district often visited by Haliday. At the same time it should le puinted out that Ergthromme najus is not an upland species in (ireat Britain. We are indebted to Mr. li. Ll. Praeger for indicating the position of this little-known lake.

Distritution-Mr. Lucas reports E. nujus as a very local insect in Englaml, ranging from Linculnshire to Durset. Alroad it is found from Scanlinavia and Finland (Nurmijarvi-See) to the extreme sonth-west of Europe, penetrating eastwards into Siberia.

Pyrrhosoma aymphula (Sulz.)
Musster. Consalght. Leinster. Ulster.
M-Kery (llerynane; Waterville; Deenagh River; Muckross). Cork (liknzariff: Adrishle; Castletown; Macroom; \&c.). C.-Galway (Ross). May" (1armwlerg liver). L. Wexfurd (banks of Slaney; New lioss; Johnstown C'astle erounds; "Ballyhyland, the commonest of our small Inambellies and always the first to appear and the last to linger. May 3rd .mil (Octurer lat are iny extreme lates for it," Moffut, in litt.). Wicklow. Kihdare (Maynowth). Dublin (Tallaght, \&c.). Westmeath (Killucan ; Twy Londh). Luuth (Costlelellingham). U.-Monaghan (Enyvale). Armagh ("nmmen). Innestal (Ardara and Foyle district). Down (Slieve Donard and Annalong valley). Antrim (Ballinderry). Derry.

C'ommon in suitable localities.
Distribution.-Occurs throughout Great Britain. Europe; Asia Minor.

Ischnura pumilio (Charp.).

Connatoht. Leinster Uister.

C.-(ialway near Lionalstune, 1908 , Prueger, Mayo (Carrowbeg River). L.—W゙exmal (limatare). J.-Down or Antrim (near Belfast, De Selys, "Revision," 1850;

Liare. An Irish sperimen, probably taken near Lelfast, is in Mr. Haliday's Collection, now preserved in the National Museum in Dublin.

Distribution.-Local in Great Britain. Mr. Lucas vouches for a comparatively few localities in the south and east of England. Occurs in southern and central Europe, inhabiting also Algeria; Madeira; Asia Minor; extending, according to Ris, into northern and eastern Asia.

Ischnura elegans (Van Lind).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Derrynane; Ross Castle ; Dinish; Deenagh River; Cloonee; Waterville). Cork (Glengariff; Castletown; Glandore). C.-Galway (Maumwee Lough). Mayo (Inishbofin; Carrowbeg River ; Knappagh ; Kip Lough; Doolough; Westport). Sligo (Rosses Point; Markree). L.—Wexford (Ballyhyland; New Ross; Rosslare; Killurin; Johnstown Castle; \&c.) Wicklow. Dublin (Royal Canal, where the variety rufescens was common in 1887, Moffat ; Glasnevin; Sutton ; \&c.). Westmeath (Shannon side; Coosan Point). U.-Monaghan (Emyvale and Glaslough, in great abundance, Morton). Armagh (Lowry's Lough; Mullinure ; Lough Gall ; \&c.). Donegal (Coolmore; Ardara; Foyle district). Down (Holywood, and Lagan Canal). Antrim (Island Magee and Randalstown).

Common and widely distributed. The variety rufescens, Leach, occurs in many localities.

Distribution.-This species is found in most parts of the Britannic area, from the Scilly Isles to the Hebrides. It is widely distributed in northern and central Europe. Asia.

Agrion pulchellum Van Lind.

Munster. Connaught. Leinster. Ulster.
M.—Kerry (Parknasilla; Muckross). C.—Mayo (Westport). L.—Louth (Castlebellingham). Wicklow (Newcastle). U.-Armagh (Johnson). Monaghan (Emyvale, Morton). Donegal (Belleek; Foyle district). Antrim (Belfast and Ballinderry).

The few available records of this Dragon-fly show that it is widely spread in Ireland, though it may prove to be less common than the following species.

Distribution.-Ranges from the northern counties of England southwards. Recorded from Argyleshire, but not recently observed in Scotland. Abroad it is found from Scandinavia to Italy and Spain (Navis); Algeria; Asia.

Agrion puella (L.).
Munster. Connaught. Leinster.
M.-Kerry (Muckross; Ross Castle; Parknasilla). Cork (Glandore; Macroom). Waterford (Cappoquin). C.-Mayo (Westport ; Carrowbeg R. I. A. PROC., VOL. XXVIII, SECT. B.

River; Kuappagh Lough). L.—Wexford (Ballyhyland, very common, Mooffat; New Ross; Elenvale; Juhnstown Castle woods). Wicklow (taken by A. W. Foot). Dublin (Tioyal Canal). Westueath (Killucan; Moate).

Common where it occurs.
Distribution-Agrim puella is a common species in England, becoming rarer towarls the north, and there are extremely ferw records from Scotland Midlothian, E(chas). Wilespreal in the western ports of the Palaearctic region from Lapland (very rare) and Finland to Algiers and Rassia.

Enallagma cyathigerum Charp.

Muxster. Comajcgit. Lensiter. Uliter.
M-Kerry (Derrynane: Pws Castle; Deenagh River; Ardagh Lough; Watwille: 'lowne : I'arknasilla). Cork (St. Ame's; Ballygritfin wood; (ilowzint). Waterford (Cappach Lake; Cappoquin). C.-Galway (Maumw... L.ush. May" (Ini-hhwin: Carrowbest River; Kip and Knappagh

 (Ardara; Coolmore; Bundoran). Derry. Autrim (Belfast).

Cimmon and wilely distributed.
I^{\prime} : . . Finm thringhit the Pritish Isles. Abroan it ranges from scandinavia and spain eastwards to Turkestan.

PLECTOPTERA.

EPHEMERIDAE.

Ephemera vulgata L.

Connaloht. Leinster. U'liter.

 U.-A:math (hmmhhilh. Homeral Mimbmere). Antrim (Lough Neagh, IITrimuy Ms.).
(1) - (ibed Iritain (Millamls, east, and south of England,

 (Z.ller); aud a Nwarf furm in central Spain, near Madrid and Cuença (Iorntur and Chapman).

Ephemera danica Müll.

Munster. Connaught. Leinster.

M.-Kerry (Ross Castle). C.-Roscommon. Sligo (near Sligo). Mayo (Mount Brown Lough). L.-Westmeath (Athlone). Louth (Castlebellingham).

Probably overlooked in many localities. The male and female subimago stages are known to anglers as the "Green Drake" and the "Bastard Drake"; and the fully matured insect is the well-known May-fly. It is the Ephemera of the English Lakes and the High Peak district, and of Interlaken, and the Doubs near Pontarler abroad (Eaton in litt.).

Distribution.-Great Britain (in the south of England this species ranges westwards to Somerset and Devon, and as far north at least as Perthshire in North Britain). In western Europe it is as widely distributed as the preceding species.

Leptophlebia marginata (L.).

Munster. Leinster.
M.-Kerry (Deenagh River; Woodlawn; Torc Cascade). L.-Westmeath (Twy Lough).

Distribution.-Great Britain (London district to Inverness). Temperate andarctic Europe. Occurring also in Asia, Turkestan, and in North America.

Leptophlebia cincta (Retz).

Connaught. Leinster.
C.-Mayo (Westport; Mount Brown Lough; Carrowbeg River). Roscommon (Summerhill). L.-Dublin (Lucan). Westmeath (Twy River; Shannon; Bog of Allen; Killinure; Glasson).

Distribution.- Great Britain (not ascertained; Rannoch, \&c.). Northern (Finmark, Schoyen : fide Petersen, 1908) and temperate Europe. Not recorded from Spain. ${ }^{1}$

Ephemerella ignita Poda.

Munster. Connaught. Leinster.
M.-Kerry (Ross Castle; Deenagh River; Woodlawn; Cloghereen; Horse's Glen; Cappagh Glen; Spa Well; Gap of Dunloe). C.-Roscommon (Summerhill ; Yew Point). L.-Dublin (Lucau). Westmeath (Hare Island; Shannon; Coosan Point; Twy River; Glasson).

[^38]Distrinution.-Great Eritain (common, south of England to Invernessshire). Central and southern Europe. Denmark (Horsens; Srejbaek, Petersen).

Caenis dimidiata Steph.

Lelister.
L.-Westmeath (Shannon; Coosan Point; Killinure).

Distrilution.-Great Britain. Widespread throughout Europe (Finland, fide Aro; Denmark, fide Petersen).

Caenis halterata (Fab.) (C. macmera Steph.)

Consalgut Lenster.
C. - Mayn (Westhort Mall). L. Dublin (Glasnevin, eommon, Hatiday Ms.). Westmeath (Coosan Point; Killinure).
lownded in Halday's Ms. list unler the name of Comis macrura Steph.
IM, imatione-(ireat Pritain (not ascertainel). On the Continent this swone rantus from Lapland tw Algeria (Biskra and neighbourhood, fide Eutun, in lith.).

Baëtis binoculatus (L.).

Munster. Conyacomt. Leinster. Ulster.
M-Kngy (lan Catle: Deenash liver: Wonllawn; Tore Cascade; (i,y if lmaln. C.-May (Clam I-laml). L.WWicklow (Enniskerry). U. - Armagh (Mullinure).
J. '. 'mon-Grat Bhtain (mat asertainmi). Widespead in Europe
 (Hudson's lay Territory, E'ufon).

Baëtis scambus Eton.
Lemster.
L. -Imblin (Lucan).

Distritution.-Great Britain (occurs as far north as Inverness). Range
 fick I'torsen). (iermany (Ris).

Baëtis vernus Curt.

Munster. Lemater. U'lster.
 (rap of I)unloe. L.-Dublin (Thathfarmam). U.-Antrim (Cave Hill, Inatirmy collection).

Distribution.-Great Britain (uncertain). Finland (Aro). Arctic Norway (Hatfjelddalen, fode Strond). Germany (Ris).

Baëtis rhodani (Pict.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Gap of Dunloc). C.-Roscommon (Summer Hill). L.Wicklow (Enniskerry, in October). Westmeath (Shannon at Athlone). U.Armagh (Armagh).

Distribution.-Great Britain (Devonshire to Inverness). Widely spread in western Europe, ranging from Norway (Lardalsoren and Aal, fide Strend) to Algeria; Madeira, and the Canaries.

Baëtis pumilus (Burm.).
Munster. Connaught. Leinster.
M.-Kerry (Deenagh River; Woodlawn ; Spa Well; Gap of Dunloc; Farranfore). C.-Mayo (Clare Island). Roscommon (Summerhill). L.Dublin (Lucan). Westmeath (Killinure and Glasson).

Distribution.-Great Britain (uncertain, occurs as far north as Perthshire). Widely distributed, ranging from Scandinavia to Corsica, \&c.

Centroptilum luteolum Müll.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Woodlawn; Deenagh River; Glena; Torc Cascade). C.-Roscommon (Summerhill and Yew Point). L.-Dublin (Tolka at Glasnevin ; Lucan). Westmeath (Shannon; Coosan Point; Twy River; Glasson ; Bog of Allen). U.-Donegal (Lough Fern ; Gorteen Lough).

Distribution.-Great Britain (common, ranging to North Shetlands). Ranges from Finmark to Portugal, northern Italy, and Algeria (at the foot of Mount Edough, Bône, fide Eaton). Found also in North America (Hudson's Bay Territory, Eaton).

Cloëon dipterum (L.).
Munster.
M.-Kerry (Ross Castle and Deenagh River).

Distribution.-Great Britain (range unknown). Abroad this species is found from Scandinavia to Algeria (Ain Sefra, Province of Oran, fide Eaton); Egypt; Japan ; and the Atlantic islands (Madeira, Teneriffe, \&c., Eaton).

Cloëon simile Eaton.
Munster. Connaught. Leinster.
M.-Kerry (Ross Castle; Deenarg River; Glena; Horse's Glen; Gap of Dunloe). C.-Mayo (Knappabeg; Prospect; Aille and Doogan Loughs; Newport River; Castlekirk; Achill). L.-Westmeath (Shamnon; Coosan Point; Killinure; Waterstown).

Distribution. - Great Britain (ranges from the south of England to North Shetlands). Central and southern Europe. Jersey. Also in Denmark (Silkeborg and Randers, fide Petersen).

Cloëon rufalum (Müll.).
Muxster. Connacght. Lenster.
M.-Kerry (Deenagh Piver ; Gap of Dunloe). C.-Mayo (Knappagh and Mount Brown Loughs). L.-Westmeath (Coosan Point).

Distribution.—Great Britain (south of England to Inverness). Widely distributed, Scandinavia to Algeria.

Siphlurus armatus Eaton.

Murster.
M.--Kerry (Killarney).

Distribution.-Not ascertained. England (Eaton).

Siphlurus lacastris Eaton.

Messter Conxaugit. Leinster.
M.-Kerry (Gap of Dumloc). C.--Galway (Castlekirk: Maumwe L. Wugh). Finsemmon (Yew Point). Mayo (Kip Lough). L.—Westmeath (Shannon at Athlune; Coosan Point).
Di.trimutum,--Greal liritain (Snowdn, lamoch, \&e.). Norway (Tysfineden, fik stront). Savoy; Italy; Ienmark; and Steiermark (Ris, Die Susswasserfauna Deutschlands, 1909).

Rithrogena semicolorata (C'urt.).
Muster. Leinster.
M.-Kerry (1)eenagh River and C'ppagh Glen). L.-Dublin, (Dodiler at Tallaght).

Inatribution.-Great Irritain (Devon; Dorset: Cumberland; Lake I istrict; l'eth; Inverness. Western Eurne, ranging irmu Scandinavia to the Alps and Pyrences.

Heptagenia solphurea (Müll.).
Musster. Consalght. Leinster. C'lister.
M.-Kerry (W'sullawn; Itinish; Horse's (ilen; (iap of Duntrec). Watenford Listmere). C.-Galway (Lowh Corrib near Galway). Roscommon (Yow L'oint. Slité (mar slitro; Markree Castle). L-Dublin (Lucan). Weethuath (Bus uf Allen; Shanum; Corsan I'oint; Ballykeeran; Killinure; Wauritwwn, Louth (Castlelwollingham). U.-Donegal (Gorteen; Fern and Keel Loughs; Glen Beagh; Clonkillybeg; Armagh (Coney Island in Lough Neagh).

Distribution.-Great Britain (London district to Inverness). Europe. Eastern Amur (McLachlan).

Ecdyurus venosus (Fab.).

Munster. Connaught. Leinster. Ulister.
M.--Kerry (Deenagh River; Torc C'ascade, McLachlan). C.-Roscommon (Yew Point), L. - Dublin (Lucan). Westmeath (Hare Island and Coosan Point). U.-Donegal (Keel and Irvine's Loughs),

Distribution.-Great Britain (South of England to Inverness). Generally distributed from Scandinavia to the Mediterranean region. In Switzerland, near the Traubach (4,000 feet alt.) in the neighbourhood of Habkern, Interlaken, water 60° F. (Eaton). Lower down in Habkern Thal the Eedyurus is \boldsymbol{E}. helveticers (Eaton in litt.).

Eedyurus insignis Eaton.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Woodlawn; Deenagh River). C.-Mayo (Mount Brown Lough). L.-Westmeath (Glasson). U.—Donegal (Gorteen and Keel Loughs (Lennan Bridge).

Distribution.-Not ascertained.
Ecdyurus lateralis (Curt.).
Munster. Connaught. Leinster.
M.-Kerry (Gap of Dunloe). C.-Mayo (Clare Island). L.-Wicklow (Enniskerry).

Distribution.-Great Britain (common in the north and west. Extending from Inverness-shire to Dorset, Eaton). Widespread in Europe.

PLECOPTERA.
 perlidae.

*Perla maxima Scop.
Munster. Lentster.
M.-Waterford (Blackwater near Lismore, Halbort; Youghal, Miss Ball). L.—Dublin (River Dodder at Terenure and Tallaght, Hallert). Wicklow (Bray, Huliday Ms.).

Owing to its lurking habits, this fine insect has probably been overlooked in many Irish comnties. Haliday includes "Perla margineta" in his as. Catalogue; in all probability this record should refer to the present species.

Distrilution.- (rreat Britain (widespreal from Devonshire to Perthshire
and Aran, Morton). Abroad it inhabits Scandinavia and central Europe; Lower Alps; Carinthia; Croatia to Bosnia; Herzegovina; \&c. Not recorded in Navás's Spanish list (1908).
*Perla cephalotes Curt.
Munster.
M.-Kerry (nymph taken in a stream flowing out of Lough Eighter at an elevation of about 1500 feet on Carrantuohill, June, Halbert).

A Perla-nymph found under stones in the above-mentioned locality is apparently referable to the present species, as it agrees exactly with cephalotes nymphs taken loy Mr. K. J. Morton in the south of Scotland. An adult male taken in Ireland by I'rof. (1. H. C'arpenter is in the Dublin Museum. Tnfortumately the place of capture of this specimen is uncertain, though it is possibly from the shore of Lough Gill in County Sligo.

Diatritution.-Found in Great Britain, from Devonshire to the Clyde and Forth districts of scotland (Myiton); northern and central Europe, and as far east as the Carpathians; Spain (Navais).

Dictyopteryx Mortoni Klap.

Munster. Leinster.
M.-Kerry (Deenagh Iiver, King). L.-Louth (Castlebellingham! Thomhill).

Prubably widespread in Ireland. Mr. Morton points out that the insect tigurins in British conlections as Dutyontorgs microcephate must in future Ine recorted as the present species (Entom. Monthly May., 1907).

Inxtimuten. - In (ireat Britain this insect has been reported from many hishland lakes aml lowlanl sivers, ransing south to the rivers Severn, Kennet, and Test (Morton). Continental range uncertain.

Dictyopteryz (Dictyopterygella) recta Kempny.

Connacght. Lenster. U'lster.
C.-Hascomman (Mnte l'ark, Mullorif). Slign (near Sligo! Julnson). L-Wicklow (strams from (ilemdahnesh Lake and Glemualur valley, Hulbert). U.-Armagh (Coney Island in Lough Neagh! Johnson).
(hwore maler stomes on the margins of strems and lakes, appearing at almut the miman of Apil. This species has been naned in British callections for many years as Isogonus nubecula.
 insect at many highland lakes, from the Forth district northwards).
 lakes in the liesengebirge; Carpathians; Siberia.

King and Halbert-A List of the Neuroptera of Irelend. 61

Chloroperla grammatica Poda.
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Deenagh River; Kenmare; Glencar). C.—Mayo (Carrowbeg River). L.-Wicklow (Enniskerry). U.-Armagh (Tanderagee).

Distribution.-Great Britain (common, Devonshire to Inverness). Wirlely spread in Europe, ranging from Scandinavia to Spain.

*Isopteryx tripunctata Scop.

Ulster.
U.-Donegal (Ardara, Johnson).

Found in moss from this locality (Mc'Lachlan, Entom. Monthly Mag., xxix., 1893).

Distribution.-Great Britain (widespread, Devonshire to Inverness). Scandinavia (Kempmy); central Europe (Tümpel). Not recorded from Spain.

Isopteryx torrentium Pict.

Munster. Connaught. Leinster.
M.-Kerry (Deenagh River; Tore; Woodlawn; Ross Castle; Ardagh Lough; Devil's Punch-bowl; Gap of Dunloe; \&c.). C.—Galway (Castlekirk). Mayo (Carrowbeg River). L.-Westmeath (Coosan Point).

Distribution.-Great Britain (common, ranges as far north as the Hebrides and Inverness). Mountain districts of northern and central Europe, extending to Spain.

Capnia nigra Pict.

Leinster. Ulster.
L.-Dublin (River Dodder at Tallaght). U.-Down (Holywood, Haliday ms.).

Common in the bed of the river Dodder, appearing towards the end of March.

Distribution.-Great Britain (uncertain, ranges north at least to Perthshire). On the Continent it is found in most parts of northern and central Europe, and Navás reports it from Spain.

*Capnia atra Morton.

Munster.
M.-Kerry (Devil's Punch-bowl on Mangerton, June, Halbere; July, King).

Occurs in great abundance under stones on the margins of the subalpine lake in this locality (Irish Mut., 1908). Mr. Morton has verified the identification of the Irish specimens, and remarks that they belong brif. prod., Vol. xytili, sect. b,
to an interesting form of this insect. "The genitalia of the व are identical with a preparation of mine typical) from Loch Ard, Perthshire. The form is slightly brachypterous, and therein lies the interesting point. I saw in the McLachlan collection, some of it from Braemar which were also somewhat short-wingel. Klapalek has described from of it a species which he calls C. citilu, and he suggests that the Braemar specimens may be his viduc. In the absence of the δ, however, it is somewhat difficult to decide on the value of the species at all " (Morton, in litt.).

Distribution.-In Great Britain this insect has been found on the shores of lighliand lakes in Inverness, l'erth, and Aberdeenshire. On the Continent it has heen reconded imul Scamlinaria, ranging north to Fimish Lapland (Sahllbery); Switzerland (Ris); Spaiu (Sierra Nevada, Klapálck).
*Taeniopteryx Risii Morton.
I finster.
L. Wicklow (Glendalough and Laragh, Hulbert).
(inmmon where it mecurs on the hanks of rapid streams, appearing about the midille of April.
 W.an torerthehite. Wially di-tributal in Europe, having been recorded from Norway ; Switzerland; Allania; France; Pyrenees, and Spain.
 so that further evidence of its occurrence in Ireland is required.]
${ }^{\circ}$ Nemoura praecor Morton (λ^{*}. marginata Kempny).
LelNster.
L. Wricklow ((ilencree, C'arpenter).

A female specimen taken at this locality in April is in the Dublin Museum (fide Muteme).

Distribution.-Great Britain (not rare; Perthshire; Clyde; Forth; and Manchester districts, Morton), Continental range unknown; has been zecorded from (Jermany (Ris), Switzerland, and Lower Austria.

${ }^{\circ}$ Nemoara Meyeri Pict.

Leinster. T"isteh.
 (ilom? homah. (ilmblath. Latagh, Lansh Bray, and Powerscourt, Halbert). U.-Antrim (Cave Hill, Foliday collection).

Appathly ammon in smatale localities. Appears on the Wicklow streams at about the midille of April.

Dnstrint on.-Therange of this insert in (ineat Britain is not known.

King and Halberip-A List of the Neuroptera of Trelund. \quad (is

Morton says it is rather common at streams in North britain (as far north as Perthshire). Briggs reports it from Devonshire. Abroad it has been recorded from Germany (Ris); Switzerland (Ris); Carinthia; Lower Austria; and Portugal (Navas).

Nemoura cinerea Oliv.

Munster. Connaught. Lennster. Ulster.
M.-Kerry (Glencar; Muckross; Kenmare demesne ; Deenagh River). Mayo (Westport). L.-Wicklow (stream from Lough Bray). Dublin (Lucan demesne). U.-Donegal (Gorteen Lough near Kilmacrennan) Antrim (Lough Neagh, Haliday collection).

Distribution.-Great Britain (uncertain, occurs as far north as Invernessshire). Abroad this species has been recorded from various countries, ranging from Scandinavia to Spain and Portugal.

Nemoura variegata Oliv.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Glencar; Muckross). C.-Mayo (Westport; Carrowbeg River). Roscommon (Yew Point). L.-Westmeath (Athlone ; Killinure Lough ; Coosan Point; 'I'wy Lough; Bog of Allen). U.-Armagh (Mullinure). Antrim (Portmore Lough). Donegal (Ardara).

Distribution.-Great Britain (common, ranging north to Inverness and the Outer Hebrides). On the Continent it is found from Finmark to Spain and eastwards to Turkestan. Frequents standing and slowly flowing water on the Alps, ascending to 2000 métres (Ris).

Nemoura inconspicua (Pict.). Morton.
Munster. Leinster. Ulster.
M.-Kerry (Glencar and Kenmare). L.—Wexford (Edenvale). Westmeath (Athlone). U.-Armagh (Lowry's Lough and Mullinure). Mouaghan (Emyvale).

Distribution.-Great Britain (uncertain; Morton finds it sparingly at small streams and springs in Scotland). Norway; Switzerland; Bohemia; \&e.
[Nemoura lateralis Pict., and N. humeralis Pict., have been recorded in the "Neuropterous Fauna of Ireland" (1889); but on account of the recent revision of the nomenclature of the Perlidae. these names must be removed from the Irish list.]
*Leuctra Klapáleki Kempny.
Mixister. Convaught. Leinster. Ulster.
M.-Kerry (Glencar, Halbert). C.—Mayo (Westport, King). L. Wicklow (Glendalough, Hulbert), Dublin (Lucan, King: Glendhu, Hulbert). U.-Monaghan (Emyvale, Morton). Donegal (Ardara ! Johnson).

Distribution.-Great Britain (common in Scotland and ranges southrards to I eronshire). Continental range uncertain. Norway; Germayy; Switzerland; \&c.

*Leuctra hippopas Kempny.

Museter. Lelvster.
M.-Kerry (Devil's Punch-bowl and Muckross, Halbert). L.-Wicklow -tmanc at Lenth Diay ami Enniskery, Hollow). Dublin (River Dodder at Tallaght, and mountain streams, Hulbert).

Abundant where it occurs, frequenting streams in hilly districts.
 Germany; Austria; \&c.
"Leuctra inermis Kempny.
Misater. Leinster.
M. Kerry (Tpper Lake of Killarney, Halbert). Wicklow (streams at (Flemdalongh, (ilendasan, and Laragh, Helbert).

Distribution-Great Britain (common in Scotland; Wales, Morton). Continental range unknown.
[Louctra nigra Oliv., was insertel in the 1889 list by error.]

COPEOGNATHA.

PSOCIDAE.

Amphigerontia variegata (Latr.)
MuNstel. Leinster.
M.-Kerry (Deenayh Hiver and Cloghereen). L.--Dublin (Lucan and Howth). Ireland (Holulay coll.).

Distrilution.--Great Britain (no doubt common, Guermonprez, in litt.). Northern and central Eurnpe. Spain (Navás).
-Amphigerontia fasciata (Fab.).

Leinster.

L.—Wexford (Edenvale, \boldsymbol{K} ing).

Distribution.-Great Britain (common, extending to Inverness-shire at
 to the l'yrenees.

King and Halbert-A List of the Neuropterie of Trelumd. 65
Amphigerontia bifasciata (Latr.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Deenagh River; Cloghereen; Tore Cascade). Waterford (Mount Melleray; Cappoquin). C.-Galway (Salthill and Castlekirk). Mayo (Carrowbeg River; Cogaula and Kip Loughs). L.Dublin (Lucan and Howth). Wexford (Arcandrisk). U.-Donegal (Foyle district).

Distribution.-Great Britain (common, ranging north to the Shetlands). Northern and central Europe (Router). Spain (Navás).

Psocus sexpunctatus L.

Leinster.
L. -Dublin (Lucan).

Distribution.-Common in Great Britain, ranging north as far as Inverness-shire. Northern and central Europe (Reuter). Spain (Naru(s).
*Psocus major Kolbe.
Leinster.
L. -Wexford (Enniscorthy).

Taken by Mr. Beaumont at Enniscorthy in September (McLachlan, Entom. Monthly Mag., (2) i., p. 234).

Distribution.-Great Britain (recorded from the southern half of England). Abroad it is reported from Finland and Germany.

Psocus nebulosus Steph.
Munster. Connaught. Lelnster. Ulster.
M.-Kerry (Deenagh River; Tore; Dinish; Deer Part; Ross Castle). Waterford (Dromana wood). C.-Roscommon (Yew Point). Mayo (Carrowbeg River and Mount Brown). L.-Dublin (Lucan). Westmeath (Wineport; Waterstown). U.-Monaghan (Glaslough).

Distribution.-Great Britain (common, McLachlan). Northern and central Europe (Reuter). Spain (Navás).

Psocus longicornis (Fab.).
Munster. Connaught. Leinstrr. Uister.
M.-Kerry (Deenagh River; Tore Cascade; Cloghereen; Dinish). C'ork (Ballygriffin woods). Waterford (Dromana and Villierstown). C.-Roscommon (Yew Point). L.—Dublin (Lucan and Santry). Westmeath (Twy River and Hare Island). U.-Monaghan (Glaslough). Antrim (Portmore).

Distribution.-Great Britain (widely and generally distributed, Gucomonpere: in (itt.). Northern and central Europe (Reuter). Eastern Pyrenees (McLachlan).

Stenopsocus immacalatus (Steph.).
Menster. Comiatght. Lensieg. Ulster.
M.-Kerry Puss Ca-tie: Deenagh River: Ardagh Lough: Torc Cascade; Inish: Boneen-averave Cork 'Ballrgrittin moods, Waterford 1 Dramana. C.--Poeommon Tew Peint. Maro (Carrowbeg Piver). L.-Wexitul Tohntown Castle grounds; Edenvale:. Wicklow Enniskerry). Dublin Roral Canal bank). U.--Donegal Largy River).

Ihstit. - Gyeat Brisain (widespreal. securring as far north as

Graphopsocus cruciatus (L).
Mexster. Conmatght. Leinster. Tlistr.
M.-hiry Fis- (ater Ihath Fiver: Tore Lascade: Kenmare).
 :wn Carl waw. Laid. Howth and Phonix Park. Westmeath
 Bridge : Largy River ; Cuttian; Foyle district). Down (Neweastle).

 Spain (Narás). Portugal (McLachlan).

MESOPSOCIDAE

Mesopsocus unipunctatus (Mull).
Mexiter. Conmacont. Lenster.

 marnock). Westmeath Coossn; Killinure; Twy Lough).
 and central Europe, ranging to North Cape. Spain :Nrrás).

Philotarsus fisviceps (Steph.).

Muster. Consatght. Leinster.

 Cogaula Loughs). L-Wicklow ,Lough Dan). Dublin (Lucan and Howth). Westmeath (Waterstown, and shannon at Athlone).

C'ommon whete it uccurs amongst coniferous trees.

$$
\text { King and Halbeit-A List of the Neuroptere of Ierlemi. } 07
$$

Distribution_-Great Britain (occurs as far north as Inverness). Widespread in Europe, ranging from Finland to Spain.

Elipsocus hyalinus (Steph.).
Munster. Leinster.
M.-Kerry (Ross Castle and Cloghereen). L.-Dublin (Lucan and Howth). Westmeath (Hare Island).

Distribution-Great Britain (recorded from numerous lucalities from Sussex to Inverness). Widely spread in western Europe, ranging from Scandinavia to Spain.

Elipsocus Westwoodi McLach.

Munster. Connaught. Leinster.
M.-Kerry (Ross C'astle ; Deenagh River; Boreen-a-Morave ; Cloghereen ; Ardagh Lough). Cork (Ballygriffin woods. Waterford (Lismore; Dromana and Mount Melleray,. C.—Galway (Salthill). Toscommon (Iew Point). Mayo (Westport; Carrowbeg River; Mount Brown; \&c.). L.-Wexford (near Wexford; Killurin; Rosslare: Dublin Lucan and Howth). Westmeath (Coosan; Athlone; Moate).

Distribution.-Widely distributed in Great Britain, ranging into the Shetlands. Abroad it has been found in Scandinavia (Finland southwards) ; Germany ; Holland.

Elipsocus abietis Kolbe.

Connaught. Leinster.

C.-Galway (Salthill). Mayo (Carrowbeg River; Mount Brown Lough). L.-Wicklow (Roundwood). Dublin (Lucan and Howth). Westmeath (Twy River; Waterstown; Moate).

Distribution.-Great Britain (probably general). Europe, frequent in pine forests (Enderlein).

Elipsocus cyanops Rostock.

Munster.
M.-Kerry (Ross Castle ; Deenagh River; Cloghereen ; Dinish; Boreen-a-Morave; Spa Well).

Distribution.-Great Britain (recorded from various localities ranging from Sussex to Inverness). Abroad it is reported from Finland, Germany; and the Pyrenees.

Pterodela pedicularia (L.).
Munster. Lelnster.
M.-Kerry (Ross Castle ; Boreen-a-Morave). L.-Wexforl (Edenvale and Rosslare). Wicklow (Roundrood). Dublin (Lucau and Howth). Westmeath (Athlone).

Distribution.-Great Britain common in houses, from the Isle of Wight, London district, \&c., to the north of Scotland). Widely spread on the Continent, ranging from Finland and Spain to Turkestan.

CAECILIIDAE.

Peripsocus alboguttatus Dalm.
Leinster.
L.-Dublin (Lucan).

Distribution.-Northern and central Europe (Reuter'). Madeira.

Peripsocus subpupillatus McLach.

Musiter. Lelister.
M.-Kerry (Ross Castle ; Deenagh River; Muckross; Booreen-aMonan. Watmind (Inmanamed (ilenshelane). L. -Wexford Elenvale; Killurin; Rosslare). Dublin Lucan).

Distodntion.-Referring to Peripsocys alboguttatus and P. subpupillatus, Mr. Guermonprez remarks (in litt.) that they are very likely generally distributed in Great Britain. W゙est of England, \&cc.

Peripsocus phæopterus (Steph.).
Mrester. Consalghp. Leinster.
 Arhath lan_h: Kimmate. W゙aterforl lismore; (ilenshelane and Mount Melleray). C.Mayo (('arrowheg River and Cogaula). L.-Wexford Killurin; Ellenvale and Rosslare). Dullin (Lucan; Howth, off Larch). Westmenth (Waterstown; (ilassan; Athlone; Moate).

Instribution.-(ireat Britain (probably general). Widely spread in western Europe, ranging from Finland (Reuter, to Spain (Nurais).

*Ectopsocus Briggsi McLach.

Musiter. Leinster.
M.-Cork (Ballygrifthin wools, beaten out of trees, King). Waterford (Lismore, King). L.-Wicklow (Roundwood, Hallert). Dublin (Howth and Phoenix Park, Halbert).

It linaldwini. and in thr Ihmenix Park, this interesting species occurred commonly in plantations of Conifers during the month of October.

Distrobution.-The distribution of this species seems little known. In
 daging flou Leronshise (b) Kemt. Abroad it has been repurted from

occurred on a plateau at about 5000 feet elevation. Enderlein suggests that the insect may have been brought from Australia to Britain. According to McLachlan, however, both Australia and Africa may have received it from England, where to all appearances it is native, occurring chiefly anongst fallen leaves during the autumn and winter months. (Lintom. Monthly May., 1903, p. 296).

Caecilius fuscopterus (Latr.).

Munster. Connaught. Leinster.
M.-Kerry (Deenagh River; Boreen-a-Morave; Tore; Ross Castle). Waterford (Glenshelane). C.-Roscommon (Yew Point). Mayo (Carrowbeg River). L.-Wexford (Edenvale ; Killurin). Westmeath (Bellevue; Waterstown).

Distribution.-Great Britain (common, ranging as far north as Inverness). Northern and central Europe (Reuter). Spain (Navás).

Caecilius flavidus (Steph.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Cloghereen; Muckross Abbey; Glena; Horse's Glen; Deenagh River; Kenmare ; \&c.). Cork (Ballygriffin woods). Waterford (Dromana). C.-Galway (near Maam). Mayo (Carrowbeg River). L.-Wexford (Killurin and Johustown Castle). Wicklow (Lough Dan) Dublin (Lucan). Westmeath (Waterstown). U.--Donegal (Cottian ; Largy River; Lough Madourchin; Sproule's Lough).

Distribution.--Great Britain (occurs as far north as Inverness). Europe, Lapland to Spain.

Caecilius obsoletus (Steph.).

Munster. Connaught. Leinster.
M.-Kerry (Deenagh River; Boreen~a-Morave; Ross Castle: Dinish). Waterford (Lismore ; Glenshelane). C.-Galway (Salthill; Maam). L.Wexford (Edenvale; Arcandrisk; Johnstown Castle woods). Dublin (Lucan; Howth; Tolka at Glasnevin). Westmeath (Waterstown).

Distribution.-Great Britain (South of England to Inverness). Northern and central Europe from Finland to France.

Caecilius Burmeisteri Brauer.

Munster. Connaught. Leinster.
M.—Kerry (Dinish; Ross Castle; Boreen-a-Murave). C.-Galway (Maam). Mayo (Carrowbeg River). L.-Wicklow (Roundwood). Dublin (Howth ; Lucan; Phoenix Park). Westmeath (Waterstown).

Distribution.-Great Britain (probably generally distributed-Surrey, B. I. A. PROO., VOL. XXVMI., SECT. B.
[L]

Sussex. Invemess: ommon amonset Junipers'. Northern and central Europe.

Caecilius perlatos Kolbe.

Menster Consatght. Lenster.
M.-Kerry (Dinish; Ross Castle ; Deenagh; Boreen-a-Morare). C.Galmay near Maam; Salthill: Mayo (Carrowbeg River;. L.-Wexford (Arcandrisk and Edenvale). Dublin (Tolka at Glasnerin; Lucan). Westmeath Killinure; Waterstown).

Distribution.-Great Britain (probably general. Northern and central Europe, ranging into Finland.

Trichopsocus Dalei (Ms Lach.).
Mrysten
M.-Kerry (Cloghereen).

Distribution.-Probably generally distributed-Devon; Dorset; Sussex

 M. Lachlan recorls it from Madeira and the Canaries.

ATROPIDAE.

Atropos pulsatoria L.

M. Korry (Killarney and Kenmare). C.-Mayo (Westport). L.Intlin. Wresmeath Athlone.

Finnd in old hmoss, and in collections of insects and plants.
Iniv, rimpinh.—(ireat Britain (widely spreal). Europe. North America.

- Hyperetes gaestfalicus Kolbe.

L - Wicklw (Roundwoml aml Lough Dan, on Conifers, Hollorl). Dublin (Hineth; Phomix I'ark; (rrand Canal lank, on elns, Halbert).

Sut uncommun in the Wullin district, hiling in the crevices of roughlarken trees. At Howth it alsn occurs amongst shingle and refuse on the eres-hure, just ahme high-water mark.

Undritution. - This insect is no doubt generally distributed in the Iiritannic area (Mr Larht en, Entem. Monthly Mong., 1898; and is probally often werlonked on account of its retired habits. Mr. Guermonprez, who has "vaminet some of the Irish specimens, remarks (in litt.) that he has found it commonly in Susser and clsewhere in England. Continental range not ascertained. Germany.

King and Halbert- A List of the Neuropteril of Ireland. 11

Lepinotus inquilinus Heyd. (P. picea Mots.).
Connaught. Leinster.
C.-Mayo (in a house at Westport). L.-Dublin. (Howth, \&e., in houses). Westmeath (in a house at Athlone). Ireland (Haliduy Ms.).

Found occasionally in natural history collections. Haliday records it in his ms. catalogue as occurring among corks, hay, \&c.

Distribution.-This insect used to be considered rare in Britain. It has recently been found in great abundance in London granaries (Entom. Record, 1905) ; also at Hastings in a neglected collection of plants; Sussex; Surrey, \&c. Mr. McLachlan says it is "found living in boxes of exotic (in one case Egyptian) insects. If it be not indigenous in England, it is at any rate naturalized here" (Entom. Monthly Meg., iii., 1867). Abroad it has been reported from Finland; Russia; central Europe; Spain; Egypt; and North America.

TROCTIDAE.

Troctes divinatorius (Müll.).
Munster. Connaught. Leinster. Ulster.
M.—Kerry (Killarney). C.—Mayo (Westport). Sligo. L.—Dublin. U.-Donegal (Kilmacrennan).

In houses, and collections of insects and plants.
Distribution.-Found throughout Great Britain. Probably cosmopolitan, occurring in Europe; North America; Greenland; \&c.

PLANIPENNIA.

SIALIDAE.

Sialis lutaria (L.).

Munster. Connaught, Leinster. Ulster.
M.-Waterford (Glenshelane valley). C.-Mayo (Carrowbeg River). Sligo (Markree Castle). L.—Dublin (Haliday ms.; River Tolka near Finglas). Westmeath (Athlone). U.-Armagh (Lowry's Lough and Churchhill). Antrim (Lough Neagh near Toome).

This insect, the "Alder Fly" of anglers, probably occurs in suitable localities throughout the country.

Distribution.-It is common in Great Britain, having been observed as far north as Inverness and the Outer Hebrides. Widely sprear in the Palaearctic region, ranging from Lapland and Finland to Spain, and eastwards to Siberia (Lake Baikal). Occurs in the Alps at an elevation of nerer ©000 feet (Zschokke).

OSMYLIDAE.

*Osmylus chrysops (L.) (O. maculatus Fab.).
Musater. Comatght. Lenster.
M. Kenr A Avitally near Kenmare: Julr. 1898. Kine: Killarner. Hilitay 31s) Cork (hanks of the Shournagh River, Holiday ms.). C.-
 (Inistinge, Haliday Ms.). Dublin (Lucan, Freeman).
 the southem half of Ireland. The records noted in Mr. Haliday's as. catalogue have not been previously published.

Lhistifution.-In Great Britain it is recorded as not uncommon about
 nut heen olserver in Scotland.
 the Caucasus.

HEMEROBIIDAE.

Sisyra fuscata (Fab.).
minster. Conmaucht. Leinater. Ulster.
M.-Kerry (Rus Castle; Gap of Dunloe). C.-Mayo (Carrowbeg

 "Ireland" MFwlatay Ms.।

Prohahly common. Halitay was of opinion that the curious larva descritend by Westwond under the name of Branchimoma spongillae, found living in fresh-water spronges, is in reality the larva of Sisyra fuscata (Trans. Entom. Sice Imadon, v..pp. 31, 32, 184i). The larve of Sisyra are now known
 species of Eurspompilla amd E_{l} humentin.

DiA ithumb.--Great 13ritain common, ranging into Inverness;. Northern and central Eurape.

Sisyra Dalii McLach.
Mtraster. I.emsinek.
 (Tolka at Glasnevin).

Institusim. - (rreat Irritain (local, has been found in Yorkshire, at Amblesile. in sinth Whas, Surrer, Lorset, and the Scilly Isles). The continental ranse has not leen ascertained: but it is known to occur in Germany (Trestpháia and Suxuyy; Denmark (Burnholm); and Portugal

Sisyra terminalis Curt.
Munster. Leinster.
M.-Kerry (Lakes of Killarney, Haliduy ms.; Hagen in Lintom. Annuerl, 1858; Ross Castle; Deenagh; Cloghereen). L.-Dublin (Lucan).

The first British specimens of this rare species were discovered at Killarney by A. H. Haliday.

Distribution.-Great Britain (the range of this species is little known; it has been recorded from Worcestershire and Surrey). Sweden; Germany (Saxony); and the Carpathians (Wallengren).

Hemerobius micans Oliv.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Cloghereen; Torc Cascade; Deenagh River; Deer Park; Boreen-a-Morave). C.-Galway (Cong; Salthill). Mayo (Carrowbeg River; Mount Brown; Westport). L.-Wicklow (Dargle; Greystones). Dublin (Lucan). Westmeath (Coosan Point; Waterstown; Bog of Allen). U.—Armagh (Mullinure; Loughgilly). Donegal (Coxtown; Kilmacrennan; Glenbeagh).

Distribution. - Ranges from Devon to Perthshire in Great Britain. Isle of Man. Probably spread all over Europe (McLachlan). Swedish Lapland (Wallengren).

Hemerobius nitidulus Fab.

Munster.
M.-Kerry (Ross Castle ; Torc Cascade).

Apparently rare. Occurs on Pinus sylvestris.
Distribution.--Great Britain (south of England eto Inverness). Widespread in Europe, occurring in arctic Norway; Turkestan.

Hemerobius humuli L.

Connaught. Leinster. Ulster.
C.—Mayo (Carrowbeg River). L.—Wicklow (Enniskerry). U.—Donegal (Coolmore). "Ireland" (Haliday Ms.).

Distribution.-Great Britain (Devon to Perthshire). Isle of Man. Widespread in Europe, arctic Norway, \&c. Siberia. North America.

Hemerobius lutescens Fab.

Munster. Connaught. Leinster.
M.--Kerry (Cloghereen; Torc Cascade; Boreen-a-Morave). Cork (Ballygriffin woods). C.-Galway (Salthill). Mayo (Carrowheg River; Mount Brown). Sligo (near Sligo). L.-Wexford (Rosslare), Dublin

Lacan. Mestmeath Consan Puint: Shannon side: Wineport; Watersiorn: Attlone. U.--Armagh Mrullinure. Donegal (Cottian; Largy River).

Distribution.-Great Britain (Devon to Inverness). Recorded by Moliaian as praber aicandant over Europe, occurring amongst deciduous trees, and more rarely amongst Conifers.

Hemerobius marginatus Steph.

Musater. Conjaught. Lenster. Clater.
M.-Kerry (Ross Castle; Tore Road). C.-Mayo (Carrowbeg River). I. - Wicklow woods at Lough Dan). U.- Donegal (Glenbeagh; Kilmacrennan: Cottian Lough.
 widely spread in Europe (3 -Larhlan).

Hemerobius orotypus Wall.

Mrester. Leinster. Cusier.
M. Kerry Ture Cascade; Boreen-a-Morave). L. - Westmeath
 Inmeral (oxtown). "Ireland" ("rariogutus Z." of Haliday Ms. probably).

The H.monsins "sy. nor." of the "Neuropterous Fauna of Ireland" 18 s 0 is to le referred to the present species.

Distribution.-(ireat Iritain Devon northwards to Sutherland). The wninental range of this species has not been ascertained, though it is known to occur in Scandinavia (to Lapland, Wrallengren) and in the Pyrenees, extending as far east as the Carpathians: Styria (Morton).

Hemerobius nervosus Fab.

Lemater Ullaten.
L-I)ublin (Lucan: Tolka. Westmeath (Waterstown,
M.-Antrim Lough Neagh at Toome aud Portmore). Armagh. "Ireland"

Ih aimetion--Great Britain (lucally common: Mr. Morton records it as accurting in Scotland wherever there is natural birch, Abroad it is widely spread, extending into the Arctic Circle, and probably less common south of the Alps (W. Luritan).

Hemerobias srbnebalosus Steph.
Conatioht. Lemeter. U'later.
C.-Alizn near Slizo). I-Killare (Maynooth). Dutlin Dundrum). Weatmeath Coman Point. U.-Armagh (Mullinure: Armagh in garden). Down (Hulywor).

King and Halbert-A List of the Neuroptera of Tielund. 75
Local in woods. In England this species is especially common in gardens ; and, as McLachlan points out, it is consequently liable to artificial dispersal with plants and shrubs.

Distribution. -Great Britain (Devonshire to Shetlands). Isle of Man. Widespread in Europe, ranging from Lapland to Spain ; Atlantic Islants; Siberia; Turkestan.

Hemerobius stigma Steph.

Munster. Connaught. Leinster.
M.-Kerry (Ross Castle; Deenagh River; Tore Road). C.-Galway (Castlekirk). L.—Wexford (Killurin). Dublin (Howth). Westmeath (Wineport; Waterstown; Bog of Allen; Bellevue).

Distribution.-Great Britain (occurs in coniferous woods from Devonshire to the extreme north of Scotland). Widely distributed in Europe, ranging from Lapland to Corsica; Portugal, \&c. ; it also inhabits the Canaries.

Hemerobius atrifrons McLach.

Connaught. Leinster.
C.-Galway (Castlekirk). L.-Westmeath (Waterstown).

Apparently rare. Occurs on Conifers.
Distribution- - Great Britain (Devonshire to Inverness). Northern and central Europe ; eastern Siberia.

Micromus paganus (L.).

Munster. Connaught, Leinster. Ulster.
M.—Kerry (Ross Castle). C.—Sligo (Lough Gill, and near Sligo). L.Wicklow (Enniskerry). Kildare (Maynooth). U.-Tyrone (Altadiawan). Armagh (Mullinure, \&c.).

Distribution.-Great Britain (Devonshire to the Clyde area). Northern and central Europe; Lapland.

Micromus variegatus (Fab.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Tore Cascade). Waterford (Lismore and Cappagh Lake). C.-Galway (Maam River). Mayo (Westport demesne ; Carrowbeg River). L.-Wexford (Slaney bank near Wexford). Dublin (Howth). U.-Armagh (Mullinure, \&c.).

Distribution.-Generally distributed in England (Worcester; Hereford: Devon; \&c.).

Northern and central Europe, extending to Italy ; Austria ; and Corsica.

Micromus angulatus (Steph.) (M. aphidicorus Schr. ?).

Mcsster. Lensster.
M.-Kerry (Deenagh River). Texford (Courtomn, Enniscorthr, Bumemont, Entom. Monthly Mag., xxix., p. 263).
L.... : - (inmat Beitain rare thowgh wilely distributed, exten ling into the south of Scotland, Kircudbright.

Eanne atan= thatio Sorway: Siberia; Madeira; Noth America (Colorado; Canada).

*Psectra diptera Burm.

Leinste:
L. - Wexford (banks of the River Slaney near Wexford, July, 1900, HuThert).

In the summer of 1900 one of us had the good fortune to find two

 mure exact details of its occurrence noted. It is certain, however, that the

 Ewwn of Wexfurt, during the month of July. Psetre diptera is remarkable for its suall size, the rulimentary condition of the second pair of wings in the male, and also for its extreme rarity. Nuthing appears to be known concerning its life-history.

The first recorded Pritish specimen was found on a hazel bush in Breagh Wual, sumersetshire, by J. C. Vale, as lung ago as 1843 , and apparently there have been no subsequent captures of the species in England. The insect has, huwever, been recently discovered by Mr. B. McGowan, on the Wank of the Nith in Lumiriesshire (Entum. Monthly Mag., (2) xir., (39), p.14, 15(0))

Distioution. - Puctra diytera seems to be generally rare, yet it is widely -rteat in the I'ulaearctic rerion, occurring in Finland; Sweden; Russia, (Fetmany; Hollad; Italy; and in Sileria (Irkutzk). It has also been foum in North America New lork; Michigan; New Hampshire; N. Illinois, where according to Banks (1905), it is apparently of more common occurrence than in Europe.

CHRYSOPIDAE.

Chrysopa vittata Wesm.
Comalight. Leinster. Ülster.
C. -Roscommon Iew Point) I-Wicklow (Altidore). Westmeath
(Killucan). Louth (Castlehellingham). U.-Tyrone (Altadiawan). Donegral (near Kilmacrennan). "Ireland, common " (Huliday ms.).

Distribution.-Widely spread in Great Britain. Northern and central Europe ; Styria; Siberia.

Chrysopa flava (Scop.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Deenagh River; Tore road; Boreen-a-Morave). Cork (Glandore). Waterford (Cappoquin). C.—Mayo (Carrowbeg River). Sligo (near Sligo). L.-Wexford (Rosslare). Wicklow (Altidore; Enniskerry). Dublin (Kingstown). Westmeath (Coosan ; Waterstown). Louth (Castlebellingham). U.-Monaghan (Emyvale). Armagh.

Distribution.-Common in Great Britain from Devoushire to Inverness, and in western Europe generally.

Chrysopa alba (L.).

Munster. Connajght. Leinster. Ulster.
M.-Kerry (Tore road; Boreen-a-Morave. C.-Galway (Cong). Mayo (Carrowbeg River). Roscommon (Yew Point). Sligo (near Sligo). L.Wexford (Edenvale; Killurin; Johnstown Castle grounds). Wicklow (Enniskerry and Powerscourt demesne). U.-Tyrone (Favour Royal;. Donegal (Cottian ; Largy River ; near Kilmacrennan).

Distribution.-Great Britain (Devonshire to Inverness at least). Northern and central Europe.

Chrysopa flavifrons Brauer.

Connaught.
C.-Mayo (Carrowbeg River).

Distribution.-Great Britain (south of England; Wales; not recorded from Scotland). Sweden to Dalmatia (Brauer).

Chrysopa tenella Sch.
Leinster. Ulster.
L.-Dublin (Rathgar, coll. Corpenter). U.—Armagh (near Armagh, coll. Johnson).

A Chrysopa from the first-mentioned locality in the Irish National Museum is apparently referable to the present species. It is somewhat larger than the average size of British specimens; but it has two characters which are of C. tenella, a broad paler line on the thorax, and a black spot on the cheeks (fide Morton).

Leinster.
*Chrysopa vulgaris Schneider.
L.-Wexford (near Wexford, Kiny). Dublin (Howth, King). Westmeath (Athlone, King). "Ireland" (Haliday collection).

This common British species has not been previously recorded from Ireland.

Distrimetion.-Europe and the Atlantic Islands; Asia Minor; Turkestan; \&r. Refering to the occurrence of Chrysopa vulgoris in Madeira, the Canaries, aml St. Helema. Mr. MeLachlan points out that it is rather liable to intronluction into new localities during the larval stage. In Great Britain it is foumt from the south of England to the Shetlands, though possibly introduced in the latter place.
*Chrysopa prasina Ramb. (C. aspersa Wesmael).
Munster. Leinster.
M. - Cork (Glandore, Hulbert). L.-Wexford (Rosslare, King). Westmeath (Athlone, $\boldsymbol{K}^{\boldsymbol{F}} \mathrm{ing}$).
 Suth Wales. Sin rewnded from scotland). Widespread in Europe.
-Chrysopa ventralis Curtis.
Leinster. Ulster.
L. Wivimil Killuin. King) U.-Monaghan (Emyvale, Morton).

Wh'ras +an.-lireat lbritain (sumth of England to Yorkshire at least). Northern and cential Europe. Siberia.
${ }^{2}$ Chrysopa abbreviata Curtis (C. immaculata Steph.).

Leinster.

L. - Dublin ("Chrysopne abbreriala $=$ immaculatus, St. Portmarnock," mulita! ms.)

Thin- -
 In 1-2. wio nul the following nere:"On the sand-hills (Portmarnock)
 fonml it: and hlonf with it, the ireckled, sandy-coloured, stout larva, which Aminturs iomi him! y on the Aphites that abound on the sea-reeds"

 correct by Mr. K. J. Morton.
I) *imetion - Grat Britain (little is known of the range of this species; it contaran andhill- in the Liserperel listrict. Curtis records that it was
taken on the sand-hills at Appledore and Ravenglass, and on the Marrams near Yarmouth. British Entomology, ii., pl. 520, 1834). According to Reuter it is widely spread in Europe (Finland to Caucasus), but has not occurred in France, Spain, or Italy. Asia Minor.
[Chrysopa perla (L.).
Doubtfully Irish. The only indication of its occurrence is in Haliduy's ms. catalogue. The entry is as follows:-" Chrysopa perla (Ste?) = reticulata ?, cancellata, certainly Irish, Hely!"

The synonyms mentioned by Haliday admittedly refer to Chrysope perla (L.), fide McLachlan, "Monograph of the British Neuroptera-Planipennia." However, as some doubt is implied in this record, we think it best to include the species with reserve, until more satisfactory evidence of its occurrence is forthcoming.]

CONIOPTERYGIDAE.

Coniopteryx psociformis (Halid.) Curtis.
Munster. Leisster. Ulster.
M.-Kerry (Ross Castle; Deenagh River; Muckross Abbey; Tore Cascade ; Boreen-a-Morave). Waterford (Lismore; Glenshelane). L.Dublin (Lucan; Dundrum). U.-Down (Tollymore, Hulliday collection).

Distribution.-Great Britain (Devonshire to Perthshire). Northern and central Europe (Enderlein).

Coniopteryx lactea Wesm. (C. tineiformis Curt.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Deenagh River; Boreen-a-Morave; Kenmare; Muckross). C.-Galway (Salthill). Mayo (Carrowbeg River; Mount Brown Lough. Westport demesne). Roscommon (Yew Point). L.-Westmeath (Coosan Point; Shannon; Waterstown). U.-Donegal (Cottian; Largy River; (ilenbeagh).

Widely spread and probably common in suitable localities.
Mr. Haliday remarks that this species "occurs in groves (especially on Coniferae) in summer:-When captured they feign death, with their antennae bent in under the thorax, as in Hemerobius and Chrysopa." He also records a Coniopteryx larva which he believed to be referable to the present species. "This larva is found wandering in groves from the end of August to October; it is probably Aphidivorons, though this I have not proved, nor have I bred it, but I can entertain no doubt that it is in the larva of C. tinciformis. The general character is closely allied to the larva of

Hemerolius. to which genus it is related." Curtis figures this larra, and remarks that it is rose, with a large black patch on the back, and large white spats down each side. (See Curtis, British Entomologr, xi, plate 528. 1834).
D.:-Owars in Great Britain from Devonshire to Inverness at loas: A. Andiaz to En lerlein it is widely distributed in Europe, ranging north into Finland.

PANORPIDAE. *Panorpa germanica L.

Meseter.
 299. 1907).

Very local, and probably confined to the south.

 contrary, in a female specimen found at Blarner, the spots are well
 Pomorpat communis.
 Devonshire to Sutherland. Forthern and central Europe.

TRICHOPTERA. PHRYGANEIDAE.
 Neuronia raficras (Scop.).

Comisti.fit. Lemster.

C.-Roscommon (Mote Park). L.—Westmeath (Pog of Allen).
 Northern and central Europe.

Phryganea grandis L

Murater Convatght. Lenster. Ülster.
M-Kのrty iRnss Castle). C.-Galway (Ashford and Cong). Sligo (Markree ('astle). L-King's County (Elenderry). Dublin (River Dodder near Templengue). Westmeath (Shamon near Athlone). U.-Donegal Lungh Fern neal Kiamacrennan). Autrina (Lough Neagh).

King and Halbert-A List of the Neuroptera of Ireland. 81

Distribution.-In Great Britain this species is found from Devonshire to the south of Scotland. Widely spread in Europe.

Phryganea striata L.

Connaught. Leinster. Ulster.
C.-Roscommon (Yew Point). Mayo (Knappagh and Kip Loughs). L.Louth (Castlebellingham). U.-Monaghan (Glaslough). Armagh (Loughgall, Keady, \&c.). Donegal (Fern, Sproule's and Reelan Loughs).

Distribution.-Somewhat similar to that of the last species. Extends further north, into Finland and Lapland; Spain; Siberia.

Phryganea obsoleta (Hagen) McLach.

Munster. Leinster. Ulster.
M.-Kerry (Killarney, Cooke, Entom. Monthly Mag., xv., 1878). Limerick (August 16th, Eaton, Entom. Monthly Mag., 1877). L.—Westmeath (Shannon, King). U.-Monaghan (Glaslough, Morton). Armagh (Kellystewart Lough! Johnson). Donegal (Ardara sandhills, Johnson).

Distribution.-Inhabits the northern parts of Great Britain (north of England and Wales, extending to Inverness-shire at least). Abroad it is found in Lapland; Finland; Norway; Sweden; North Russia; Germany (East Prussia, Bavaria, Lorraine, \&c.); Switzerland, \&c. Apparently not recorded from the southern parts of Europe. North-western Siberia (McLachlan).

Phryganea varia (Hagen). Fab.
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle). C.—Galway (Castlekirk and Maumwee Loughs). Roscommon (Yew Point). Mayo (Cushinsheen and Prospect Loughs; Carrowbeg River). L.—King's County (Edenderry). Westmeath (Waterstown and Coosan). U.-Monaghan (Glaslough). Donegal (Gorteen; Sproule's; Keel ; Akiboon; Muethin; and Askerry Loughs; Clonkillybeg; Glenbeagh).

Distribution.-Great Britain (Devonshire to North Shetlands). Almost all over Europe.

Agrypnia pagetana Curt.

Ulster.
U.-Monaghan (Glaslough). Donegal (Ardara).

Distribution.-Great Britain (not uncommon in the fen districts of the eastern counties of England, Me Lachlan; near Glasgow, King). Northern and central Europe; Spain (Navás) ; North-western Siberia; Turkestan.

LIMNOPHILIDAE.

Colpotaalius incisus (Curt.).

Contaught. Lenster. Ulster.
C.-Galway Mastlekirk. Mayo(Clare Island; Castlebar; Broad Lough; Sewtort River: Inishbotins, L.—Westmeath (Shannon. U.-Monaghan 'Enyvale). Armagh (Armagh, in garilen, Johensun). Donegal (Fern and Keel Lourhs: Lars? Liver Antrim (Portmore near Lough Neagh).

 eastern Siberia McLachunn).

-Grammotaulias atomarius (Fab.).

Comatght. Leinster. Ulster.

 Iceland.

Glyphotaelius pellacidus (Retz.).

Musimer. Connatght. Leinster. Ulester.
M.—Watorfall (mar 'appunuin). Limerick. C.-Mayo (Croft Lough;
 armands. Duthin (Lucan: W゚estmeath (Waterstown). U.-Monaghan (ilaslough). Armagh (Loughgall).
 except Lapland and Spain (McTachlan).

Limnophilus rhombicas (L.).

Connatght. Leinster L'lster.

Dixtribution.-Great Britain common, ranging to the Shetlands). Nearly the whole of Europe (Lapland to central Spain), except extreme south, extending into Eastern Silmia, and Turkestan (Mctarhlan).

Limnophilus flavicornis (Fab.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle ; Dinish ; Flesk and Deenagh Rivers). C.-Mayo (Carrowbeg River, Westport). Sligo (near Sligo). L.-Wexford (Johnstown Castle grounds). Wicklow (Altidore). Dublin (Lucan; Santry; \&c.). Westmeath (Moate; Bog of Allen). U.-Monaghan (Glaslongh and Emyvale). Armagh (Acton Glebe; Lough Gilly ; \&c.).

Distribution.-Great Britain (common and widely spread). Northern and central Europe.
*Limnophilus decipiens (Kol.).
Ulster.
U.--Monaghan (Glaslough, Entom. Monthly Mag., 1892).

This species was found fairly commonly by Mr. K. J. Morton, at Kelvey Lough, a small, deep lake near the above-mentioned locality.

Distribution.-England (rare, London district, Haslemere, Norwieh). Not recorded from Scotland. Widely distributed in Europe, ranging from Finland to the Balkans. Siberia (McLachlan).

Limnophilus marmoratus Curt.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Loo Bridge; Ross Castle; Cloghereen ; Coppagh Glen; Gap of Dunloe; Kilbrean Lough; Dinish). Waterford (between Cappoquin and Lismore; Cappagh Lough). C.-Galway (Salthill; Castlekirk; Cong). Roscommon (Yew Point). Mayo (common in the Westport and Newport districts). Sligo (Rosses Point). L.—Wexford (Edenvale ; Killurin : Johnstown Castle grounds). King's County (Edenderry). Dublin (Tolka at Glasnevin). Westmeath (Shannon ; Killinure; Waterstown). U.-Monaghan (Glaslough and Emyvale). Armagh (Churchhill ; Mullinure, \&c.). Antrim (gas lamps at Belfast). Donegal (Coxtown; Coolmore; common on lakes in the Kilmacrennan district).

Common.
Distribution.-Great Britain (common, Devonshire to Shetlands). Lapland to France ; Spain ; and central Italy.

Limnophilus stigma Curt.

Munster. Leinster. Ulster.
M.-Kerry (Killarney, McLachlan, 1862). L.-Westmeath (Waterstown and River Shannon). U.—Armagh (Birches).

Distribution.-Widely spread in Great Britain, ranging from Kent to

Inverness-shire. Northern and central Europe, excepting the boreal parts (McLachlan).

Limnophilus zanthodes McLach. (L. borealis Kol. nec Zett.).
Munster. Ulster.
M.-Kerry (L. bormlis, taken by Birchall, McLachlan in Entom. Annual, 1864. Monaghan Glaslough, not common, Morton). Fermanagh (L. borcalis, near Euniskillew, MrLrehlan, Entum. Annual, 1862). Armagh (Lowry's Lough and Camlough, Johnson).

Distritution.-Great Britain (lucal and not uncommon in the fens of the cast, McLrflun: extending northwards to Dumfries, Morton). Northern and central Europe. Finlaud; Sweden; Russia; Germany; Austria; Hungary: \&c.

Limnophilus lunatus Curt.

Munster. Connaught. Leinster. Ulster.
M. - Kerry (cluhureen: Glena : Horse's Glen: Deenagh River). Water-
 Ihwan, Small amt Ihallin Lumhs: Newpurt and Carrowbeg Rivers). Galway (Cathekirk: mat Matan ('lomberk). L.—Wicklow (Roundwood). Dublin (Tulks at (ilsmevin: Lucan . Wostmeath Shamon; Consan; Twy River; Lonerh lime). U.-Mmarhan (sila-lomg and Enyvale). Armagh Churchhill,
 Ardara) Common.

1) Wa....... - In (iveat liritain this species is fonm from Devonshire to
 Finland; North Persia; Asia Minor.

Limnophilus politus McLach.

Mixster.
 Apparently rare, and has not been recently met with in Ireland.
Distribution.-Great Britain (very local, extending as far north as the ('lyde thatrict) Werms wrr as great part of Europe (except Spain), and northern Asia.

${ }^{\circ}$ Limnophilus fascinervis Zett.

Comsacght.
C. Mayo (Castlebar Lough, June 17th, 1909, coll. Halbert, see Morton in Entom. Monthly Mag. (2) xx., p. 233, 1909).

The firat British -fuctimen of this interesting species was captured at ' inthinar Lough ont a recent expedition, oneanized by Mr. R. Ll. Praeger, t." investigat. the fauna and flora of Clare Island and the surrounding

King and Halbert-A List of the Neuroptera of Ireland.

district. It was found on the south shore of the lake, which is also called Lough Lamough, at its eastern extremity, not far from the town of C'astiebar.

Distribution.-Great Britain (range unknown).
As pointed out by Mr. K. J. Morton, the distribution of L. fuscinervis is northern and south-eastern. It has been recorded by Mr. McLachlan from Lapland, Finland, Sweden, Lithuania (Minsk), Germany (where it is evidently widely spread), Sarepta. A variety solutus, McLach., is recorded from Sarepta and Persia ("Trichoptera of the European Fauna"). Denmark (Petersen).

Limnophilus ignavus (Hagen) McLach.

Munster. Connaught. Leinster.
M.-Waterford (Cappoquin). C.-Mayo (Ballin and Mount Brown Loughs; Carrowbeg Piver). L.-Wexford (Edenvale and Rosslare). Westmeath (Waterstown and Shannon near Athlone).

Distribution.-Great Britain ("very rare in the north," McLachlan; ranges from north Shetland as far south as Hereford at least). Northern and central Europe, from Finland to Switzerland.

*Limnophilus nigriceps (Zett.).

ULSTER.
U.-Armagh (Lowry's Lough, Johuson).

Several specimens of this rare species were collected during the month of September at Lowry's Lough (McLachlan, Entom. Monthly Mag., xxix., 1893, p. 287).

Distribution.-Great Britain (local ; north of England, Edinburgh, and Glasgow districts to Perthshire). Northern and central Europe. Lapland; Vienna; \&e; Turkestan. According to Morton, this is a Jocal species both in Great Britain and on the Continent.

Limnophilus centralis Curt.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Killarney; Ross Castle; Gap of Dunloe; (Ilencar). Cork (Glandore). Waterford (Glenshelane). C.-Galway (near Maam). Mayo (Mount Brown Lough and C'urowbeg River). L.-Kilkenny. Wexford (Edenvale ; banks of Slaney near Wexford). Dublin (Howth). U.Armagh (Mullinure). Donegal (Clonkillybeg; Loughs Akiboon, Fern, and Keel)

Distribution.-Great Britain (common, Devonshire to Inverness). Isle of Man. Probably generally distributed in Europe (McLachlan). Not included by Navás in the Spanish fauna (1908).
R.I.A. PROC, VOL, XXVHH., SECT. B,

Limnophilus vittatus (Fab.).
Muyster. Connaugit. Leinster. Ulster.
M.-Kerry (Foss Castle: Ardagh Lough; Deenagh River). Waterford (Cappopuin aul (ilenshelane). C.-Galway (Castlekirk; Ballinasloe; Tuam; (Ams. Rosemmon (Yew Point). Nayn (Mount Brown and Kip Loughs). L.-Wexford (Johnstown Castle grounds). Wicklow (Roundwood and Enniskmy Dullin liush; Tolka at (ilasnerin). Westmeath (Shamon ; Pog of Allen: Mrate). U.-Monaghan (Emyvale). Armagh (Mullinure). Donegal (Lough Fern).

Distritution.-Great Britain (Devonshire to North Shetland). Common throughont Envern, extemting from Nicily and Spain to Lapland. Asia Miner.

Limnophilus affinis Curt.

Munster. Consinght. Lemeter. Uister.
M. Kerry (loss Castle; Boreen-a-Morave; Deenagh River). Waterfont Dromanat. C.-(ialway (Dallinaslue). Poscommon (Yew Point). Mayo Pallin Lugh). L.-Wexford (Ellenvale; Rosslare; Johnstown Castle grounds; Slaney near Killurin). Westmeath (Shannon; Coosan; Ham Inlaml in Lomeh lien). U. Mmathan (Glaslough and Emyvale).
 Targy River; Conlmore).

Ihitritution.-(Gmmon in Thitain from I)evonshire to North Shetland.
 Europe; Amur Latul; north lprsia; Madeira; de.
 of the Palaearctic Caddis-llies.

Limnophilus auricula Curt.
Moster. Concaloht. Leinster. Ulster.
M. Kerry (common in the Killarney district). Waterford (I)romana atul near (appoquin). C.-(ialway (Salthill; Maam; Cong; Ballinasloe; (astlekirk). Mayo (Mount Tirnwn, Kip, and Cogaula Loughs; Carrowbeg liver). Slign (Markree ('astle). L.-W'exford (Rosslare; Johnstown Castle grounds). Wicklow (Iough I)an and Enniskerry). Dublin (Donabate). Westmeath (common in the Athlone district). Louth (Dundalk). U.-
 Lough (iall ; dec.). Donegal (Coxtown).

Distributions. - Ranges in Great Britain from Devonshire to the Shetlands. Occurs also in the Isle of Mon. ('nmmon in northern and central Europe Spain (Amois.

King and Halbibi--A List of the Neuroptere of Irelant. 87

Limnophilus griseus (L.).

Connaught. Leinster. Ulster.
C.-Galway (near Maam; Ballinasloe). Mayo (Kip Lough and Carrowbeg River). Sligo (Markree Castle). L.-Westmeath (Coosan; Bog of Allen). U.-Donegal (Cloghan ; Cottian ; Gorteen, Muethin, and Keel Loughs).

Distribution.-Great Britain (Devon to north Shetlands). Isle of Man. Jersey. Probably occurs in most parts of Europe from Lapland to the Caucasus (not recorded from Spaiu) ; Iceland; Füröes ; \&c. Also in Siberia (McLachlan).

Limnophilus extricatus McLach.

Connaught. Leinster. Ulster.
C.-Roscommon (Summerhill). L.—Westmeath (Bog of Allen). U.Donegal (Lough Akiboon).

Distribution.-Great Britain (ranges from the south of England to Inverness). Northern and central Europe.

Limnophilus hirsutus (Pict.).

Connaught. Leinster. Ulisteli.
C.-Mayo (Knappagh Lough and Carrowbeg River). L.-Dublin. Westmeath (Shannon and Coosan Point). U.-Monaghan (Glaslough and Emyvale). Donegal (Coxtown; Lough Keel ; near Kilmacrennan).

Distribution.-Great Britain (south of England to Inverness). Guernsey; Holland; Switzerland; Germany; France; Spain.

Limnophilus luridus Curt.

Connaught. Leinster. Ulster.
C.-Sligo (Markree Castle). L.—Westmeath (Shannon; Coosan). U.-Donegal (Lough Keel ; River Lemnan; Cottian ; Clonkillybeg).

Distribution.-Great Britain (local ; Hampshire to Perthshire at least). Finland; Holland; Belgium; Germany (Hamburg, Ulmer).

Limnophilus sparsus Curt.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (common in the Killarney district; Kenmare). Cork (Ballygriffin woods; Glandore). Waterford (Dromana; Cappagh Lough). C.-Galway (Salthill ; Cong ; Ballinasloe). Mayo (common in the Westport and Newport districts). Sligo (Markree). L.-Wexford (Johnstown Castle grounds). Wicklow (Roundwood and Enniskery). Duhlin (Donabate; River Dodder near Tallaght; Harold's Cross; brackish pond at Sutton).

Westmeath (Shannon; Killinure; Twy River; Waterstown). U.-Monaghan (Emyvale). Armagh (Lough Cilly; Acton). Donegal (Coolmore; Bruckless).

Distribution.-Abundant in Great Britain, ranging from Devonshire to the Shetlands and Hebrides. Isle of Man. Northern and central Europe; Spain; Füröes.

*Anabolia nervosa (Leach) Curt.

Leinster. Ulster.
L.-Wicklow (Foundwood, IFallait. Dublin (River Tolka near Dublin, Holliert: Haroli's Cross, ('urpunfir). Louth (Castlebellingham, Thornhill). O.-Armagh (near Armagh : Lawry's Lough; Tynan; and Maghery, Johenson).

Distributim. Widely spreal in Great lritain (New Forest, Strathglass, \&c.). Recorded as generally abundant in western Europe.

Stenophyllax stellatus (Curt.).

Munster. Consalght. Leinster. Ulster.
M.-Kerry (Cloghereen: The (ilen in Deer lark). Tipperary (Cahir). C.-Mign (near slign). L.-Dmbin (Lucan). U.-Donegal (Coomore; Dunleury; Gweedore ; Lough Keel).

Disfotution.-(ireat bivitain Demonshire, Inverness, ixe.). Widely spread
 extending from Lapland to north-western Siberia (Me Lachlan).

Stenophylax latipennis (C'urt.) (S. radiatus lamb.).

Leinster.

L.-Louth (Carlingford).

 Spain.

Stenophylaz permistus MeLach, (心. ...ncrentrions MeLach, ner Zett.).
Muster. Connaưoht. Lfinster. Ullster,

 U.-Armagh Armagh). Antrim (gas lamps at Belfast).

Micropterna sequax McLach. (M, strinta Pict. nec Linn.).
Letister. Ǔlster.
L.-Dublin Dodder banks between Templeogue and Tallaght). U.-Tyrone (Favour Royal;. Armagh. Dunegal (Coolmore).

King and Halbert-A List of the Neuroptera of Iieland. 89

Distribution.-Great Britain (not common, but ranging from Devon to Inverness). Jersey; Finland; Sweden; France; Germany; Switzerland (Ris) ; Austria; south Russia; Corsica.

Micropterna lateralis (Steph.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Torc Cascade). C.-Roscommon (Mote Park). Sligo (near Sligo and Keshcorran). L.—Kilkenny (Johnstown, Haliday ms.). Dublin (Howth). Westmeath (Shannon). U.-Tyrone (Favour Royal and Altadiawan). Armagh (Mullinure and Scarva). Donegal (near Kilmacreman ; Coolmore).

Distribution.-Great Britain (widely distributed, New Forest to Unst). Northern and central Europe.

Halesus radiatus (Curt.).
Munster. Connaught. Leinster.
M.-Kerry (Cloghereen ; Horse's Glen). C.-Galway (Maam River). L.-Wicklow (Roundwood and Lough Dan). Dublin (Howth). Louth (Drogheda).

Distribution.—Great Britain (Devonshire to Shetlands). Jersey; northern and central Europe ; Spain.

Drusus annulatus Steph.

Connaught.
C.-Galway (Castlekirk).

Distribution.-According to McLachlan, this is an alpine species inhabiting clear torrents in rocky and mountainous districts. It is widely spread in Britain, having been found in Devonshire and in the Shetlands. Abroad it would appear to be local, occurring in Germany (Schwarzwald, Harz, Riesengebirge, \&c. Ulmer); Belgium; France.
*Chaetopteryx villosa (Fab.) (C. luberculosa Pict.).
Munster. Leinster. Ulster.
M.-Cork (Carrigrohane! Standen). L.—Kilkenny ("Dec. 1, Johnstown," Haliday ms.). Wicklow (Roundwood and Lough Dan, October, Halbert). U.-Antrim (lakes at Fair Head, September, Halbert).

A late autumn species, which has probably been overlooked in many localities.

Distribution.-Great Britain (south of England to Perthshire and Inverness) ; Russian Lapland; Finlaud ; Scandinavia; western Russia; Germany ; Austria; Belgium; Switzerland; France.
＊Apatania Wallengreni McLach．（A．restita Kol．）．
TLster．
U．－Duesal Coric．femates probaly referable to this species，Ring：
Íッソ ．－Grea：Lritain Engish Lake Listrict to Perthshire at least）． Lapm：Findan C＂hmer dues mot include this species amongst the German Trichoptera（Die Süsswasserfauna Deutschlands，1909）．

Apatania fimbriata（Pict．）．
Musster．
 Coppagh（ilen ；（iaragarry Lough）．

 of rock，and we took it at rest on or flying amongst the rocks，and by

 Monelhy Mig，xxiv．，1：87，p．118）．

Inalritution．－This species is unknown in Great Britain．Abroad it inhabits the mountain regions of central Europe M．Lachlan）；Germany Harz，Thüringen，\＆e．）：France（Chamounix；Savoy；Haute Loire）； Austria suletic Chain；Carinthia；\＆c．）；and probably other localities．

SERICOSTOMATIDAE．

Sericostoma personatum（spence）．

Mussten．Comsilviht．Lemster．Colster．
 uf Dunlue；Parknasilla）．W＇aterford（Capmenuin）．C．－Chalway（Cong）． Mayn Mount Brown：C＇ugaula and Knaprayh Linghs；Carrowbeg River）． L－Wexford Forth Mountains）．Wicklow Enniskerry）．Dublin（River
 U．－Munazhan（iilaslough，Donesal Ctixtown；Keel，Sproule＇s，and Fern Lumghs；（ilenbeagh）．Armach＇Coney Island in Lough Neaģh：

Dizrribution．－（ireat Britain＇common，Devon to Inverness）．Isle of Man．Nurthern and central Eurupe．

Goërs pilosa（Fab．）F．Hnripas Curt．）．
Mraster．Cussutuht．Lelviter．Ǔlster．
M．K゙erry（Fwss Castle；Hiver Flesk．Cork Mallow！．Watenford （Lismore），C．－（ialsay（lizstlekirk），Luscommon lew Point）．Mayo（Doo，

King and Halbert-A List of the Neuroptera of Ireland. 91

Cushinsheeaun, Mount Brown and Kip Loughs; Carrowbeg River). Sligo (near Sligo). L.-Wexford (Eilenvale). Wicklow (Calary). Westmeath (Coosan Point; Shannon; near Athlone; \&e.). U.-Monaghan (Glaslough and Emyvale). Donegal (Coolmore; Fern and Irvine's Loughs; Clonkillybeg). Armagh (Coney Island in Lough Neagh).

Distribution.-Great Britain (Devonshire, to the south of Scotland). Northern and central Europe.

Silo pallipes (Fab.).

Munster. Leinster. Ulster.
M.-Kerry (Devil's Punch-bowl ; Muckross; Deenagh and Flesk Rivers ; Tore; Kenmare; Loo Bridge). Cork (Glandore). Waterford (Glenshelane and Dromana). L.-Wexford (Edenvale). Wicklow (Enniskerry and Fassaroe). Dublin (River Dodder at Templeogue). U.-Armagh (near Armagh). Donegal (Ardara; Loughs Salt and Reelan; Lenuan Bridge). Antrim (Colin Glen).

Distribution.-Great Britain (common; Devon and Kent to Inverness). Generally distributed in Europe from Lapland to western Russia, and France. Not recorded from Spain or Portugal.

Silo nigricornis (Pict.) (S. fumipennis McLach.).

Munster. Connaught. Leinster.
M.-Kerry (Deenagh and Flesk Rivers; Dinish). C.—Mayo (Mount Brown Lough and Carrowbeg River). L.-Dublin (River Dodder at Templeogue). Westmeath (Ballykeeran and Killinure).

Distribution.-Britain (local in the south, McLachlan). Germany; Austria; Switzerland; Holland; Belgium; France (Basses Pyrénées, \&c.).

Crunoecia irrorata (Curt.).
Munster. Lenster. Ulster.
M.-Kerry (Tore Cascade). Waterford (Dromana and Cappoquin). L.—Wexford (Edenvale). U.—Donegal (Sproule's Lough). Antrim (Colin Glen).

Distribution.-Great Britain (Devon to Inverness). Germany; Switzerland ; France (Pyrenees, 如.) Transylvania, to the Carpathians.

Lepidostoma hirtum (Fab.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Dinish; Cloghereen; Deenagh River, \&e.). Waterford (Lismore; Salterbridge; and Cappoquin). C.-Galway (Maumwee Lough and Castlekirk). Roscommon (Yew Point; Summerhill).

Mayo (Carrowberg River). Sliso (near Slisn). L.-Westmeath (Shannon; Cuosan: Wineport: Waterstown). U. - Donegal (Dunleury Lough; Lennan Brilge: Cottian: Gweedore). Antrim (Cave Hill near Belfast; Shane's Castle, Lough Neagh).

Distrimetion.-Great Iritain Devon to Shetlands). Probably all over Europe as far morth as Lapland; Spain (Torcis).

LEPTOCERIDAE.

Beraea pullata (Curt.).

Condalgit. Lemster Uister.

 Estmbale) Duldin (mardiy places un Lamiay Island). O.-Armagh (Lough Cilly and Mullinure).

Mistrihution.-Great Britain (Devonshire; Forkshire; North Wales; Gla-sw histidt: ©o. I-le wi Man. Willely spreal in western Eurnpe (Norway to Purtugal).

Beraea maurns (Curt.).

Munster. Consaugitt. Leinster. Ulster.

 Lapland) to Spain and northern Italy.

Molanna palpata McLach.

Lenister. Úlster.

 Armayh, in June, Julinsimb).

The occurrence of this species on the River Shannon is worthy of note. In scotland it fremuents peaty lakes.

Distrimution.-(ireat Pritain (P'erthshire; Inverness; W'est Hebrites). Nurthern Lapland; Finland (Salllwry); Russia; Siberia (district of the Ienisei, suhlloryl. Sot included by L'lmer in the German fauna (1909).

Odontocerom albicorne (Scop.).

Menster. Consaught. Leinoter. Ulster.

Loughs). L.-Wexforl (Edenvale). U.-Donegal (Clonkillyheg; Loughs Reelan and Gorteen; River Lennan; Glenbeagh; Cottian).

Distribution.-Great Britain (locally common, Devon to Inverness). Isle of Man. Recorded from many localities in central and southern Europe.

Leptocerus nigro-nervosus (Retz).
Munster. Ulster.
M.-Kerry (Ross Castle and Garagarry Lough). U.-Donegal (Salt and Gorteen Loughs).

Distribution,-Great Britain (widely spread; Thames; Rannoch; Outer Hebrides ; \&c.). Northern and central Europe, reaching Lapland.

Leptocerus fulvus (Ramb.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Cloghereen; Deenagh River; Gap of Dunloe; Garagarry Lough). C.-Galway (Castlekirk and Maumwee). Roscommon (Vew Point). Mayo (Prospect Lough and Carrowbeg River). L.-Westmeath (Shannon; Coosan; Hare Island). U.-Monaghan (Glaslough and Emyvale). Donegal (Loughs Fern and Sproule).

Distribution.-Great Britain (south of England to the Shetlands). Russian Lapland to central Europe ; Siberia.

Leptocerus senilis (Burm.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Deenagh River; Coppagh Glen). Cork (Glandore). C.-Galway (Castlekirk). Mayo (Knappagh and Prospect Loughs; Newport River). L.-Westmeath (Shamnon; Coosan; Twy River). U.-Donegal (Coolmore; Longhs Fern and Sproule; Clonkillybeg).

Distribution.-Great Britain (south of England to Wigtownshire). Finland; Russia; Germany; Belgium; Holland; France; Siberia.

Leptocerus albo-guttatus Hagen.

Connaught. Leinster. Ulster.
C.-Mayo (Knappabeg Lough). L.-Kilkenny. Westmeath (on the Shannon below Athlone). U.-Monaghan (Emyvale). Donegal (Lennan Bridge; Lough Fern; Cottian).

Distribution.-Great Britain (Hants to Inverness, at least). Germany : Holland; Belgium; France; Portugal.

Leptocerus annulicornis Steph.

Munster. Connaught. Lenster. Ulster.
M.-Kerry (Ross Castle ; Deenagh River ; Windy Gap). C.-Roscommon (Shannon near Athlone). L.-Westmeath (Shannon near Athlone). U.-Donegal (Gorteen and Fern Loughs; Lennan River).

Distributhon.-Great Britain (south of England to Perthshive at leasi). Finland; Germany ; Saxony ; Holland; Bohemia).

Leptocerus aterrimus Steph.
Mlinster. Congaught, Leinster. Ulster.
M. - Kerry (H wss Castle: Coppagh Glen ; Ardagh Lough; Muckross). Waterfund ('appagh Lungh. C.-Roscommon (Yew Point and Summerhill). Mayo common in the Westpurt and Newport districts). L.-Wexford (Rosiare: Eilenvale: Johnstnwn Castle grounds). Westmeath (Shannon; (Cusan: Wincport: Twy Lough). U.-Momaghan Chaslongh and Emyvale). Amayh (Lowry's Lough near Amagh). Ionegal (common in the Kilmacrennan district).

Mistrumtmon--direat liritain (somth of England to Inverness). Widely

Leptocerus cinereus Curt.

Monster. Connalght. Leinster. Ulater.
M.-Kerry (common in the Killarney and Muckross districts; Devil's lomeh-lnal: liap of lmulue, dr.. Cink Mallow. Waterford (Lismore;
 Lough). Roscommon (Tew Point). Mayo (common on various loughs in the Westport and Newpert districts). U.-Monaghan (Glaslough and Emyvale). Armayh (Milforl; Lowry's Iomgh; Coney Island, \&c.). I)nezal (Conlmore; common in the Kihmacrenam district; Loughs Keel, (intteen, sec.).

Distribution.-Great Britain (Cornwall to north Shetlands). Finland to Portural, and eastwards to Russia.

Leptocerus albifrons (L.).
Mcastek. Connalgut. Leisster. C'lster.
M. - Kerry (Kiss Castle; Deer Park; Deenagh River; Coppagh Glen ; Gap of Dunloe; Dinish). Cork (Mallow). Waterford (Uromana and ('appopuin) C. - Galway (Vastlekirk: Lough Corril; Maam. Roscommon

King and Halbler-A List of the Neuroptera of Tieland. 95
Newport River). L.-Dublin (Lucan demesne). Westmeath Waterstown : Coosan Point; Hare Island; Ballykeeran). U.-Monaghan (Glaslough). Donegal (Lennan Bridge).

Distribution.-Great Britain (Devon to Inverness). Northern and central Europe.

Leptocerus commutatus (Rostock) McLach.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (common in the Killarney district; near Kenmare; Loo Bridge). C.—Galway (Castlekirk). I.-Dublin (Lucan demesne). Westmeath (Glasson and Coosan Point). U.-Monaghan (Emyvale). Donegal (Ardara; Lennan Bridge; Lough Fern; Cottian).

Distribution.-Great Britain (Devonshire to Perthshire). Finland; Germany; Saxony; Belgium; France.

Leptocerus bilineatus (L.).

Leinster.
L.-Dublin (Lucan). Westmeath (Shannon).

Distribution.-Great Britain (local; Devon to Inverness). Lapland; Germany; France; Austria; Switzerland; Russia; Turkestan.

Leptocerus dissimilis Steph.

Munster. Connaught. Leinster. Ulister.
M.-Kerry (Ross Castle; Devil's Punch-bowl; Deenagh River; Glena; \&c.). C.-Galway (Castlekirk). Roscommon (Yew Point). Mayo (Carrowbeg River). L.-Dublin (Lucan). Westmeath (Shannon side; Coosan Point; Waterstown demesne; Wineport). U.-Monaghan (Glaslough and Emyvale). Donegal (Gorteen, Reelan, and Fern Loughs; Glenbeagh; Lennan River; Cottian).

Distribution.-Great Britain (Devon to Inverness). Finland; Sweden; Russia; Germany; France.

Mystacides nigra (L.).
Ulster.
U.-Monaghan (Glaslough). Down (River Lagan).

Distribution.-ureat Britain (south of England to Inverness). Probably all over Europe, ranging from Lapland to Spain.

Mystacides azurea (L.).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (common in the Killarney district; Loo Bridge, de.). Cork

Glandore and Mallow. C.-Galmar (Castlekirk and Maummee Lough). Maro (common in the Westport and Newport districts). L.-Wexford (Johnstown Castle grounds; Edenvale). Dublin Lucan demesne; Tolla at Glasnevin). Westureath (Coosan Point. U.- Wonaghan (Glaslough). Armagh 'Coney Island and Mayherr. Lough Neagh). Donegal (Ardara ; Kilmacrennan district, common).

Ehistriontion-G-Great Fritain (Devonshire to the Shetlands'. Widely distributed in western Europe; Lapland to Spain.

Mystacides longicornis (L).

Muster. Convalght. Leinster. Ülater.
M-Kerry Rown (astle) Cork (ilamme). Watermod Cappagh Loush, C.-Imsemmen (Summerhill). Mayo (Westmort and Newport districts. L.-Weotheath (ihamom: Comean Point: Twy Lough; Pog of Allen: Deravarash (U. Mandehan (thantursh and Enyvale). Donegal (Loughs Fern and Kewl. Armach. Antrim (I'ormore Lumgh. Howlithy Ms.).

Ih, \% ? Europe.
${ }^{*}$ Triaenodes conspersa (Ramb.).
I.einster.

L - Wexforl Rosslare, Kinin).

 France; Spain; Sicily.

Triaenodes bicolor (Curt.).

Merster. Comatght. Lenster Uliter.

 (near Armayh; Coney Island in Lough Neagh).

Distrikution.-Great Britain (Devon to Inverness). General over northern and central Europe.

- Adicella reducta 'Steph.) McLach.

Mrester.
M.-Kerty (Killarney, Euton: Cork (Glandore, Halbert). Waterford (Blackwater near Lismore, ITHlum):

King and Halbert-A List of the Neuroptera of Irelund.

Collected by Rev. A. E. Eaton in the Killarney district, June 12, 1902, and recorded by Mr. McLachlan (E'ntom. Monthty May., 1903, p. 14).

Distribution,-Great Britain (small rivers and streams, especially in the south, MeLachlan; Cornwall to Kent; North Wales and Perthshire, \&e.). Abroad it is found in Germany (Ulmer); Saxony; Switzerland; France ; Spain; Portugal. Ranges eastwards to the Carpathians (Morton).

Oecetis ochracea (Curt.).
Munster. Connatght. Lenster. Ulster.
M.-Kerry (Ross Castle; Ardagh Lough; Deenagh River). Cork (Glandore). C.-Galway (Cong). Roscommon (Tew Point, Mayo (Knappagh, Ballin and Kip Loughs). L.-Westmeath (Shannon; Coosan Point; Wineport; Waterstown ; Bog of Allen!. U.-Monaghan (Glaslough and Emyvale). Armagh (Lowry's Lough, \&c.). Donegal (Loughs Fern, Gorteen, and Reelan; Clonkillybeg).

Distribution.-Great Britain (south of England to the Shetlands). Northern and central Europe.

0ecetis furva (Ramb.).

Munster. Connatght. Leinster. Ulster.
M.-Kerry (Ross Castle; Deenagh River; Dinish; Ardagh Lough; Gap of Dunloe). C.-Galway (Castlekirk and Maumwee Lough). Mayo (Doogan, Broad, Knappagh, and Prospect Loughs; Bleachyard). L.-Westmeath (Coosan; Killinure; Waterstown demesne). U.-Monaghan (Glaslough and Emyvale). Donegal (Sproule's Lough).

Distribution.-Great Britain (south of England to Wigtownshire at least). Finland; Germany; Holland: Switzerland (Ris); France.

Oecetis lacustris (Pict.).
Munster. Connaught. Leinster, Ulster.
M.-Kerry (Ross Castle ; Deenagh River; Torc Cascade; Ardagh Lough ; Horse's Glen). C.—Galway (Castlekirk). Roscommon (Yew Point). Mayo (Doogan, Prospect, and Knappagh Loughs). L.-Wexford (Johnstown Castle grounds). Westport (Shannon ; Coosan Point; Wineport ; Hare Island).

Distribution.-Great Britain (occurs as far north as Strathglass). Probably over most of Europe (not in Spain). Extending into N.-W. Siberia.

Oecetis notata (Ramb.).
Munster. Leinster.
M.-Waterford (near Lismore). L.-Dublin (Lucan demesne).

Distribution.--Creat Britain (Surrey to Inverness). Finland to Germany Schlesien and Saxony) ; France; and Austria.

Oecetis testacea (Curt.).
Myster. Convaught. Leinster, Ulster,
M.-Kerry (Ross Castle; Flesk and Deenagh Rivers; Muckross; Dinish; Tore; Cloghereen). C.-Mayo (Mount Brown Lough). L.-Wexford (Elenvale and Killurin). Wicklow (Enniskery). Westmeath (Shannon; Killimure: Twy Louch: Waterstown). U.-Donegal (Keel, Gorteen, and Akilmon Longh: Contian: (ilenheagh: ('lonkillyegr: Lemuan Bridge).

Distritution.-Great Britain (south of England to Inverness). Finland (rave); Sweden; Hulland; Germany; Saxony; Switzerland; France (l'yrences) ; Portugal.

Setodes argentipunctella McLach.
Muserer.
M. - Kerry (Muckross Abbey and Ross Castle).

This local species was captured by the Rev. A. E. Eaton, on the 18th of

 occurs in great profusion at Ross Castle.

Inistribution.-Great Britain (occurs in the English Lake District and in

 it from Fuencaliente in southern spain (1908).

HYDROPSYCHIDAE.

Hyảropsyche pellucidula (Curt.).
Menster. Connaucht. Ieenster. Ulester.
M.-Kerry ($($ loghereen and Weenagh IRiver). C.-Galway (Salthill), L. Wintmath (whatioh). U - Lhamed (Iteelan, Gorteen, Sproule's, and Irvinc's Loughs ; Lennan and Largy Rivers; Cottian).

Distribution.-(ireat l3ritain (Devonshire to Rannoch at least). Found all over Europe, Laplaud to the Melliterrancan Islands; Asia Minor.

Hydropsyche instabilis (Curt.).

Mexster. Cosvatght. Lelnstel. Ǔlster.
 Gap of Duntue: we. C.-Galway Lough Corrib near Galway; Cong; Maam River) Mayo (Mount Brown, Croft, Carrowleg, Brocka, and Cogaula

Loughs; Carrowbeg River). L.-Kilkenny. King's County (Edendeny). Wicklow (Enniskerxy). Dublin (Lucan ; River Dodder between Templengue and Tallaght). Westmeath (Shannon and Ballykeeran). Louth (Carlingford). U.-Monayhan (Emyvale). Donegal (Bundoran; Ardara; Cottian; Lennan Bridge; Lough Reelan; \&c.).

Distribution.-Great Britain (Devonshire to Strathglass;. Isle of Man. Widespread, ranging from Finland to the Pyrenees, Portugal, and central Italy.

Hydropsyche angustipennis (Curt.).

Munster. Connaught. Lensster.
M.-Kerry (near Kenmare). Waterford (near Lismore). C.—Mayo (Mount Brown and Knappagh Loughs). L.-Westmeath (Twy River).

Distribution.-Great Britain (Devonshire to the Clyde district). Found in Finland and over most of Europe, but not recorded from Spain.

Hydropsyche guttata (Pict.).

Munster. Lenvster.
M.-Cork (Mallow), L.-Westmeath (Shannon).

Distribution.-Great Britain (Devonshire to Perthshire). Widespread in Europe.

Hydropsyche lepida (Pict.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (common in the Killarney and Muckross districts). Cork (Mallow). Waterford (Lismore and Cappoquin). C.-Galway Cong; Lough Corrib near Galmay). L.-Wexford (Edenvale). Dublin (Lucan). Westmeath (Shannon). U.-Donegal (Lennan Bridge).

Distribution.-Great Britain (Devonshire to Lanarkshire at least). Probably in most of Europe, except the south of Italy, Greece, and the Mediterranean Islands (McLachlan).

Diplectrona felix (McLach).
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Tore ; Horse's Glen; Coppagh Glen; Gap of Dunloe). C.Galway (Maam River). L.Wicklow (Enniskerry). U.-Antrim (Cave Hill). Donegal (Lough Reelan).

Distribution.-Great Britain (Cornwall to Inverness). Grermany; Saxony; Guernsey; France; Iberian Peninsula; ceniral Italy.

Philopotamus montanus (Donor.).
Mchster. Comatght. Lenster. Ulater.
M.-Kerry Leril's Punch-buwl: Ture Cascade; Horses Glen; the Glen in Deer Tark: Gap of Dunloe: Kenmare'. Wateriond Salterbridge near Capo ain: Glenshelane). C.-Galway (Castlekirk; Maam River; Clon-
 Inish'ntin) L-Wextmal. Wicklow (Enniskeny). Dublin Howth and Timaden). J.-Dunegal Andara: Loughs Peelan and Salt). Antrim 'Colin Glen'.
 Me:lanis: St Eiha. Ifle of Man. Lapland to Spain, and northern Italy.

> Var. scoticus Mc.Lach.

Musiter.
M.-Kerry (Killarney, Hiori!! : stream at Cloghereen, King).

Ooturs in large numbers along the banks of a swiftly-flowing stream and a stmall spring in this locality, the waters of both being very cold even during August. No examyle of the type form could be found in this locality, althongh it was common on almust every stream in the district.

Disfitmiem.-This well-marked variety has occurred at Rannoch in scotland, and in morth Wales, as well as at Killarney.

Wormaldia occipitalis (Pict.).
Mrester. Conmitthit. Tolstel.
M.-Kerry (Tore Cascade; Chuhereen; Hurse's Glen; Gap of Dunloe; Dinish). Cork (Cilandore). C.-Mayo Clare Island; Carrowbeg River in Westpurt demesne). U.—Donegal (Clonkillybeg ; Coxtown).

Lhationtion-Great Britain (ranges from Cornwall to Inverness; not mncommon, especially in the north and west of England, McLachlanj. Germany (East Prussia; Black Forest; ©c., C7mer; Saxony). Austria; Switzerland; Guernsey; France; Spain; and Greece.

Wormaldia mediana McLach.

> Letyster.
> L. Wicklow Enniskerry, King.
> Thistributim.-In Great Britain this species has been found at Pitlochry
cedtral aud suuthern Europe-Hungary; central Italy; Portugal; and
Sicily. U"mer does nut include it in the (ierman fauna (1909).

Wormaldia subnigra McLach.

Munster. Connaucilit. Leinster. Uister.
M.-Kerry (Cloghereen; Tore Cascade; Gap of Dunloe). Waterford (Glenshelane; Salterbridge near Cappoquin). C.-Galway (Maam liver). Mayo (Croft Lough ; Carrowbeg River). L.—Wexford (Edenvale). Iublin (Lucan demesne). U.—Donegal (Clonkillybeg).

Distribution.-Great Britain (Devonshire and Surrey to Inverness). Isle of Man. Abroad it is found in Finland; Sweden; Denmark (Petersen) ; Germany (Ulmer); Switzerland; Saxony; Austria; and Holland.

Chimarrha marginata (L.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Flesk River; Gap of Dunloe; Dinish). Waterford (River Blackwater near Lismore). C.-Galway (Hatiday Ms.; Lough Corrib, near Galway). Mayo (Carrowbeg and Newport Rivers). L.-Wexford (Edenvale). Dublin (Lucan demesne). U.-Donegal (Bundoran ; Ardara; River Leman; Cottian). "Treland, amongst waterfalls" (Hagca, Entom. Annual, 1860).

Common in suitable localities.
Distribution.-Great Britain (Devonshire to Inverness at least). Northern and central Europe, extending from Finland to Portugal.

Neureclipsis bimaculata (L.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Killarney; Horse's Gleu; Dinish; Gap of Dunloe). Cork (lakes near Glandore). C.-Galway (Lough Corrib at Galway; Shannon near Athlone). Mayo (Knappagh and Mount Brown Loughs). L.-Dublin (abundant, Mc Lachlen). Westmeath (Coosan Point and Twy Lough). U.Donegal (Gorteen Lough).

Distribution.-Great Britain (McLachlan reports this as a common species, but there are few records. It ranges north at least to Perthshire). Widely distributed in Europe, extending to Lapland. Also occurs in western Siberia and North America (Hudson's Bay, Slave Lake). Only the one species of Neureclipsis has been described up to the present time.

Plectrocnemia conspersa Curt.
Munster. Connaught. Leinster. Ulster.
M.-Kerry (Cloghereen ; Devil's Punch-bowl). C.-Mayo (Clare Island : Carrowbeg River). Sligo (near Sligo; Lough Gill). L.-Westmeath R. I. A. PROC., YOL. XXVIII., SECT. B.

Ballrheeran: Shanna near Athlone; Waterstorn). U. - Donegal Coolmere: Lou_h Feelan: Glenbeagh: Armagh (Armagh district; Poyntzpass).

Din. : A -Gva: Pritain (Dewon to north Shetlands). Isle of Man.
 Corsica: ite.

Plectrocnemis geniculata McLach.

Museter. Ťliter.

 of Man. Guernser; Switzerland; Felcium; Germany; France; Austria; Spain; Nurthem Italy; Corsica.

Polycentropus flavomaculatus (Pict.).

Mtaster Consatgut. Lemster TLlster.
M-Kerty (common in the Killarney and Muckross districts; Devil's Punch-buwl: Kenmare: \&u.) Waterford (Cappoquin). C.-Galway (Castlekirk, Maumwee Louzhs). Roscommon (Tew Puint). Mayo (Clare Island;
 Island). L-Wexporl (Edenvale; Tohnstown Castle grounds). Dublin (Ioucan demesne: Tulka at (ilasnevin). Westmeath (Coosan Point; Ballykeeran; Waterston: Shaunon at Athlone; Killinure; Hare Island; Twy Lemeh). U.-Momaghan Glashugh). Inomeal (Kilmacreman district; 1.nug Fern; \&c.). Armazh (Coney Jiland in Lough Neagh, \&c.). Antrim (Ciolin Cilen).

This ritution.-'ireat Pritain (Comwall to Shetlanils, and Outer Hebrides). I-le of Man. Prohahly distributel user most of Europe from Lapland to

Polycentropas maltigattatus Curt.

M"Nater Cosshutint. Iemster. T゙luter.
\mathbf{M}-Kerry (common in the Killarney district: Gap of Dunloe; Tore; \&e.). Wharfonl (iflenshelane near ('aphwain). C.-Galway (near Mam, Roscommon (Enmmerhill: Mayo Knaptayh, Prospect, and Mount Brown Leughs: Cartowney River) L-Iublin (Lucan). Westmeath (Shamon and Ballykeerau). U.-Mondghan (Glaslough). Donegal (lakes and streams in the Kilmacrennan district).

Whatrimpint-Great Britain (common. extending to Perthshire). Widely distiluted in Eurno.

King and Halbert-A List of the Neuroptere of Telend. 103

Polycentropus Kingi McLach.

Munster. Connaught. Ulster.
M.-Kerry (Torc Cascade; Glena; Horse's Glen; Gap of Dunloe). C.-Mayo (Carrowbeg River). U.-Antrim (Colin Glen).

Distribution.-Great Britain (North Wales and Lake District to Inverness). Isle of Man (Morton); Switzerland (Feclere); Portugal and Sardinia (McLachlan).

Holocentropus dubius (Ramb.).
Munster. Connaught. Ulster.
M.-Kerry (Lough Crincaum), Cork (lakes near Glandore), C.-Mayo (Knappagh and Cushinsheeaun Loughs). U.-Monaghan (Glaslough).

Distribution.-Great Britain (local ; Dorset to Inverness.). Northern and central Europe.

Holocentropus stagnalis (Albarda).
Connaught. Ulster.
C.-Mayo (Doogan Lough, King). U.—Armagh (Lowry's Lough, Johnson, fide McLachlan).

A Holocentropus, evidently of this species, was taken at Doogan Lough.
Distribution.-Great Britain (range not ascertained; occurs in Suffolk and Worcestershire). Holland and Germany.

Holocentropus picicornis (Steph.).

Munster. Connaught. Leinster. Ulster.
M. - Kerry (Ross Castle ; Horse's Glen ; Tore ; Gap of Dunloe ; Kilbreau Lough; Glena; Parknasilla; near Kenmare). C.-Galway (Maumwee Lough). Mayo (Clare Island; Cushinsheeaun, Prospect, Knappabeg, and Doogan Loughs). Roscommon (Summerhill). L-—Dublin (River Dodder near Dublin; Santry demesne). Westmeath (Shamnon; Cuosan). U.Monaghan (Glaslough and Emyvale). Donegal (Loughs Keel, Askerry, Mnafin, and Gorteen). Armagh (Lowry's Lough, \&c.).

Mr MeLachlan records a variety of this species taken by Col. Yerbury at Parknasilla in July, 1901. At first sight it resembled a small silo or large Beraen; but examination proved it to be a Holocentropes, with no structural characters to distinguish it from H. picicomis. The wings are totally black, with the pubescence of the anterior slightly rusty; and the antennae are withont annulations (Entom, Monthly M(1y), (2) xiii., p. 112).

Distribution.-Great Britain (Devon to Perthshire). Abroad it is found from Lapland to Hungary.

Cyrnus trimaculatus (Curt.).

Munster. Connaugift. Leinster. Ulster.

M.-Kerry (Killarney and Muckross districts; Devil's Tunch-bowl; Gap of Dunlue, \&e.!. C.-Galway (Castlekink; Maumwee Lough). Roscommon (Nummerhill amt lew loint). Mayo (Achill; lakes and streams in the Westpurt and Newport districts). L. - Wexford (Johnstown Castle grounds). Dullin (Lucan). Westmeath (Consan; Wineport: Bog of Allen). U.Monaghan (Glaslough amd Emyvale). Armagh (Maghery, Lough Neagh). Donegal (Ardara; common in the Kilmacrennan district). Down (River Lagan).

Distribution. Great Britain (widespread, extending to the Shetlands). Gencrally distributed oner mast of Eurque. Not recoded from spain.

Cyrnus flavidns McLach.

Muxster. Concaloght. Leinster. Ulstel.
M.-Kerry (Gap of lounloe. C.-Galway (Mammer Lough). Mayo (Knapparh and Prospert Lamphs), L - Westput (Consan Point). U.Amarh (Lowrys Lomah Innowal (Lomghs Fern, Sproule, Mnatin, \&e., in the Kilmacrennan district; Ardara).

Mistribution.-Great 13ritain (local; Kent to Strathylass). Finland; Norway; Russia; Holland; lleumark; Switzerland; Germany.

Ecnomus tenellus (Ramb.).

Mexated. Connalght. Leinstrr. Ulester.
M.-Kery (luss Casth aml Ardach Lomgh) C.-Mayn (Doogan,
 Waterstown). U.-Monaghan (Glaslough and Emyvale).

Distribution.-Great Britain (local, MeLuchlan; has not been found in Scotland). Widely spread in Europe; Asia Minor; Turkestan.

Tinodes Waeneri (L.).

Myoster. Connauoht. Leinster. C'lster.
M.-Keny inembent in the Killarney distriet; (Gap of bunke ; Ee.; near Kenmare ; Loo Brilge). Cork (lakes near Glandore). C.—Galway (Manmwee Lough: Maan liver; ('astlekirk). Mayo (lakes and streams in the Westport and Newport districts; L.-Wexford (Johnstown Castle grounds). Wicklow (Lough Dan). Dublin (Lucan; mountain streams).

(Glaslough). Armagh (Camlough). Donegal (Loughs Keel, Salt, Fern, and Reelan; Glenbeagh; Largy River; Clonkillybeg).

Distribution.-Great Britain (Cornwall to North Shetlands). Common all over Europe.

Tinodes aureola (Kett.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Gap of Dunloe; Tore; The Glen in Deer Park; Spa Well; Flesk River). C.—Galway (Maam River). Mayo (Prospect Lough). L.Dublin (Howth). Westmeath (Shannon). U.—Monaghan (Emyvale).

Distribution.-Great Britain (local, though widespread; Kent, Yorkshire, Glasgow, St. Kilda, \&e.). I.apland; Germany (Schlesien, Uliner); Austria (Silesia); Switzerland (Ris); Italy; Sicily; Corsica; and probally overlooked in other localities.

Tinodes maculicornis (Pict.).

Lelnster. Ulster.
L. - Westmeath (Coosan Point; Wineport; Glassan; Twy River). U.-Monaghan (Glaslough). Donegal (Lough Reelan).

Probably more widely spread than these records indicate. Mr. Morton found this species at Glaslough along with Tinodes Wacneri, which swarmed, by beating the bushes surrounding the lake.

Distribution.-Has not been observed in Great Britain. The continental rrange has not been ascertained, but it is known to occur in Switzerland (Geneva) ; France (Montpellier; Seine below Rouen) ; and Portugal (Cintra, McLachlan). Apparently not recorded from Germany.
*Tinodes unicolor Pict.
Ulster.
U.-Donegal (Coolmore, fide Mc Lachlan).

T'aken by the Rev. W. F. Johnson on the banks of a small stream at Coolmore amongst Iris, Epilobium, \&c., in company with Agapetus fuscipes (Entom. Monthly Mag.; (2), v., p. 236, 1894).

Distribution.-Great Britain (Folkestone and Miller's Dale, Derbyshire, IfcLachlen). Germany (Black Forest, Ulmorj. Switzerland (Geneva, Pietet). France, and probably Austria (McLachlan).

Lype phaeopa (Steph.).

Munster. Connaught. Ulster.
M.-Kerry (Ross Castle). C.—Mayo (Prospect Lough). U. - Monaghan (Glaslough).

Distrinutim.-Great Britain Deronshire to the south of Scotland). Generally distributed over Europe.

Lype fragilis (Pict.).

Cosyatght. Lenvster.
C.-(ralway (Lough Corrib near (ralway). Roscommon, Iew Point and Summerhill. L-Wertmeath (imsan Point; Shamon side: Hare Island.

All of the avalalde records of this species are from central Ireland.
 in any lunt ui (imat britain. It is apmanenty a local species on the Continent. Mr Ladhan mentims th. followins localities:-switzerland Geneva,

Psychomyia pusilla (Fab.).

Musster. Connalght. Ienenster. Ullster.

 L_Weximh Elmamh. Wiaklw Emni-kemy. Dullin Lucan). West-

 Armagh (Coney Island in Lough Neagh).

Distribution.-Great Britain (Devonshire to Inverness). Common in Europe, ranging from Spain northwards to Finland.

RHYACOPHILIDAE.

Rhyacophila dorsalis ('urt.).
Musiter. Consacoht. Leinster. U゙lister.
 Horse's (ilen). Cork (13lamery). Waterford (ilenshelane). C.-Galway (Mam liver ; Lumgh Corrib near Galway). Mayo (Camowbeg River). L.Wexford (Elenvale). Wicklow Enniskerry). Dublin (Lucan demesne). Westmeath (Iallykeeran). Louth (Umeath). J.-Tyrone (Altadiawan).
 Lemnan Prilge ; \&c.). Antrim Colin Glen’,

Initritution, - (ireat Britain (Cornwall to North Shetlands); Isle of Man.
 Belgium; Fiance: Apain。

King and Halbirit - A List of the Neuroptera of Treland. 107

Glossosoma vernale (l'ict.).

Munster. Leinster.
M.-Kerry (Ross Castle ; Flesk and Deenagh Rivers; Tore Cascade ; the Glen in Deer Park; near Kenmare). Waterford (Capporquin and Glenshelane).

Distribution.-Great Britain (not uncommon in hilly districts, Mc Lurchlun; Devon to Inverness). Widely spread in Europe, ranging from Finland to Spain.

Agapetus fuscipes Curt.

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Flesk and Deenagh Rivers; Muckross; Tore Cascade; Horse's Glen; Spa Well; Gap of Dunloe). C.-Galway (Maam River). Mayo (Carrowbeg River). Sligo (near Sligo). L.-Wexford (Johnstown Castle grounds). Dublin (Howth). U.—Donegal (Loughs Keel and Salt; Clonkillybeg; Coolmore). Antrim (Cave Hill).

Distribution.-Great Britain (Cornwall to North Shetlands). Demmark; Germany ; Belgium ; Guernsey; Switzerland ; France; Spain; Corsica.

Agapetus comatus (Pict.).
Munster. Leinster. Uister.
M.-Kerry (Ross Castle; Deenagh River; Ardagh Lough; Valentia? Mo Lachlan). Waterford (Glenshelane). L.-Wexford (Elenvale). Wicklow (Euniskerry). Dublin (Lucan demesne). Westmeath (Ballykeeran and Coosan Point). U.-Donegal (Largy and Lennan Rivers). Antrim(" ciliatus Lough Neagh," Haliday ms.).

Distribution.-Great Britain (local ; Devonshire to Perthshire, Morton). Finland; Russian Lapland; Demmark; Switzerland; Belgium; Germany; Austria. Not recorded from Spain.

Agapetus delicatulus McLach.

Muxster. Leinster.
M.-Kerry (Deenagh River; Tore Cascade; Horse's Glen). L.-Wexford (Johnstown Castle grounds).

Distribution.-Great Britain (very local; recorded from Arran, off the west coast of Scotland, though it probably awaits discovery in other places). The species seems equally rare on the Continent ; the only locality mentioned by McLachlan is in the Pyrenees.

HYDROPTILIDAE.

Agraylea moltipunctata Curt.

Mtaster. Lenster. Ulater.
M.-Kerry (Ross Castle and Dinish). Waterford (Cappagh Lough). L. - Westmeath (Coosan Point). U.-Monaghan (Glaslough).

Dist rationn-Great Britain 'common; Devonshire to the Clyde district. Northern and central Europe.

Hydroptila sparsa Curt.

Muster. Coneacght. Lenster.
M-Kerry Tws Castle: Deenagh River: Cloghereen: Horse's Glen: Gay ,if Dunlore). C.-Mayo (Garrowheg River: Mount Brown Longh;

Irite i.nton-lireat Pritain (wuth of Fogland th the shetlands). Finland to Italy and Algeria.

Hydroptila femoralis Eaton.
Musater. Convachut. Ifeiseter. U'lster.

 Loughs; (Gweedore; River Lennan).

 (Lago di Como, Eaton).

Hydroptila forcipata Eaton.
Muster. Concatcht. Leinster. Ulister.

 Donegral (Landy River).

 C7mar) ; Switzerland (F)/ber); Italy (Turin!.

${ }^{\circ}$ Ithytrichia lamellaris Eaton.

T"Liter.
 1892).

Occurrel on the Blackwater River at Glaslough.

King and Halbert-A List of the Neuropterel of Ireland. 109
Distribution.-Great Britain (Hants, Derbyshire, north Wales, Strathglass, \&c.). Finland (Sahlbery). Germany (many localities, Ulmor). Hungary (MeLachlan). Switzerland (Eaton). Basses Pyrénées (if q possibly this species, Eaton).

0xyethira costalis (Curt.).

Munster. Connaught. Leinster. Ulster.
M.-Kerry (Ross Castle; Deenagh River; Cloghereen; Horse's Cilen: Coppagh Glen; Gap of Dunloe). C.-Galway; (Castlekirk; Maumwee Lough). Roscommon (Summerhill; Yew Point). Mayo (Mount Brown, Cushinsheamn, Kuappagh, Prospect, and Ballin Loughs). L.-Dublin (Lacan; Tolka). Westmeath (Glassan ; Twy River; Shannon Side). U.Donegal (Loughs Keel and Fern).

Distribution.-Great Britain (south of England to north Shetlands. Northern and central Europe.

NOTE ADUED IN PRESS.

Adnitional Notes on the European Distribution of Trichoptera.
The alditional European stations subjoined are taken from Petersen's paper "Trichoptera Daniae," (Entom. Meddelelser, (2) ini, 1907; and Felher's "Die Trichopteren von Basel . . ," Archiv fur Naturgeschichte, 74 Jahrg., 1908. These papers have only come into our hands since the foregoing pages were in type.

Phryganea obsoleta (Hagen) McLach.-Denmark (Petersen).
Limnophilus xanthodes McLach.-Denmark (Petersen); Switzerland (Felber).

Limnophilus fuscinervis Zett.-Denmark (Petersen).

Limnophilus hirsutus Curt.—Denmark (Petersen) ; Switzerland (Fellur).
Limnophilus luridus Curt.-Denmark (Petersen).
Micropterna sequax McLach.-Deumark (Petersen).
Chaetopteryx villosa (Fab.).—Denmark (Petersen).
Apatania fimbriata (Pict.).-Switzerlaud (Alps, Felber).
Silo nigricornis (Pict.).-Denmark (Petersen).
Crunoecia irrorata (Curt.).-Demmark (Petersen).

110 Proccedings of the Royal Irish Academy.
Leptocerus senilis (Burm.).-Denmark (Petersen); Switzerland (Zürich, Fe(ber).

Leptocerus albo-guttatus Hagen.-Denmark (Petersin; ; Switzerland (Rheinau, Felber).

Leptocerus annalicornis Steph.-Denmark (Petcisete) ; Switzerland (Feller).
Leptocerus dissimilis Steph.-Denmark (I'tessh): Switzerland (Zürich, dec., Filber).

Triaenodes conspersa (Ramb.).-Switzerland (Bern. ice., Felleer).
Adicella reducta 'Steph.).-Denmark (Petcisen).
Oecetis furva (Ramb.).-Denmark (Petersen).
Oecetis notata (Ramb.).-Switzerland (Rheinau, Fellorr).
Oecetis testacea (C'urt.).-Denmark (Peterson).

(111

IN D E X.

					Page.								PAGB
Nemolra,	-	-	.		62		Psychomyia,		.	.	.	-	106
Neureclipsis,	101		Pterodela,	-	-	-	.	.	- 67
Newronia,	.	-	-		80		Pyrrhosoma,	-				.	- 52
Odonata,	.	-	-	.	43		Rhithhogena,			.		.	- 58
Odontocerum, .	.			.	92		Rhyacophila, .	-				-	. 106
Oecetis,		.	.	.	97.110		Sebicostoma,		90
Orthetrum,	.	.	.		45		Setodes,					.	. 98
Osmylus,	-	-	.		2		Sialis,						. 71
Oxyethira	-	-			: 113		Silo,			.			91, 109
							Siphlurus,					.	- 58
Panorpa,	-	-			3		Sişra,					.	72
Peripsocus,	.				4.		Sumatochlora.					.	46
Perla,	.				*"		Stenophylur,					.	S8
Philopotamus,	-	.			1111		Stenopsocus,					.	66
Philotarsus.	.				- 66		Sympetrum,					.	43
Phryganea,	.				W. 109								
Planiperania,	.				7		Taeniopthicx,			.	.	-	- 62
Plectomemia,	.				. 101		Cindes,						- 104
Plecoptera,					;		Triuenodes,				.		96, 110
Pectoptera,	.				i)		Trichopsocus,					.	\%0
Polycentupus,	.				-		Trichoptera,						80
Psectra,					\therefore		'Tructes,						:1
P ¢ncus.					;		Whimathas.						. 100

THE PICTURE-ROCK OR SCRIPED ROCK NEAR RATHMULLAN, IN THE COUNTY OF DONEGAL.

By GRENVILLE A.J. COLE, M.R.I.A., F.G.S., Director of the Geological Survey of Ireland.

Read Decemper 13. Ordered for Publication December 15, 1909. Published January 22, 1910.
Mr. G. H. Kinahan, in the Memoir of the Geological Survey of Ireland on North-west and Central Donegal, ${ }^{1}$ mentions the peculiar surface of a sheet of epidiorite, known as the "Scribed Rock," which lies in the extreme south of the townland of Oughterlin, some 2! miles north-west of Rathmullan. He describes it as "blistered, pitted, and irregularly jointed or cracked, like the surface of a sheet of slag that has been poured out from an iron furnace"; and this analogy, which is hardly a correct one, leads him to regard the mass in this case as not intrusive, but as a lava-flow. The marks on the Scribed Rock, he tells us, were "commonly supposed to be due to the impressions of the feet of men, horses, cattle, sheep, and dogs, to which they have some resemblance."

It appears that this rock-face, though lying in a somewhat remote part of the hills, has attracted attention for many years, and is now locally known as the "Picture-Rock." In 1908, Captain Boyle Somerville, R.N., then engaged in surveying the coast in and near Lough Swilly, addressed an inquiry respecting it to the Director of the National Museum in Dublin, and furnished several outline drawings, produced, after the manner of rubbings, from the rock itself. He pointed out precisely the unusual form of the excavated portions, and the curions resemblance of some of the upstanding hosses to the footprints of animals, seen as casts in relief. In the summer of 1909, Dr. B. Windle, F.R.S., also visited the spot, and wrote to me at the office of the Geological Survey as to its puzaling features. His

[^39]sketches and descriptions, aided by tron small specimens, made it fairly clear that snme form of sthermilal weathering had taken place on a jointed surface of igneous ruck: lnut it seemed well worth while that the mass should be examined serlowically. It appeared, indeed, quite possille that human agency misht in time be invoked to account for the singular nature of the markings.

Thaing a visit to morthern Ireland on lehalf of the Geological Survey in Octher, 1909. I was sin fontunate as to find the Almiralty surveying vesel atill in Imgh swilly, off Rathmullan. Captain lioyle Somerville rery kindly suiked the across the hills to the licture-linck, which lies one mile noth-edit if (ilemalla Homse, and one-third of a mile north-east of Lough liogan on the sumth-westem spurs of thaghan Hill. It is formed ley one of the stempty thenl intu:in shects in the I ralradian shales and sandstones: and its dip-slope faces approximately south-east. The dip is about 50°.

A large part, but liy no means the whole, of the exposed face shows the

 Githe spher nis: and ide wallo of the compartments into which the rock
 jointe crossigat right angles. The spheroils lepend on the characteristic nnion-like jusatho of hasi, rorki, which han arisen within each box-like compartment, just as it arises within the drums of basaltic colunms.

The division of an intrusive sheet into rectangular rather than hexagonal columns has been noted by Mr. J. Volney Lewis' in the ophitic dolerites of the Palisades along the Hudson River. Mr. Lewis also describes a spheroidal system of joints occurring within the rectangular colmmes. The main joints in the Picture-Rock might have been attributed to torsion, were it not that they are clearly contemporaneons with the onim-like structure. The intrusive rhyolite of Tardree Mountain, in the county of Antrim, is similarly divided into sheet-like masses, rather than into columms, by a system of predominant joints, the cross-jointing being at right angles to these, and giving the effect of square columns in places. Prohally such rectangular jointing may be more common than is generally recognised in intrusive sheets and sills, the edges of which appear columnar when exposed.

Where spheroidal jointing has also taken place, decay usually goes on inwards from the main rectilinear joints; and the spheroidal features become more and more manifest, as limonitic crusts are formed over the successive curving surfaces. In time a crumbling clayey material, full of detached crystals, separates the spheroids, and the residual cores of the latter ultimately lie loosely in a sort of loam. The abrupt contrast between the decayed outer layers and the maltered central core has led in some cases to the suggestion that such spheroids are volcanic bombs thrown out into a bed of ash. ${ }^{2}$

We must bear this contrast in mind when we attempt to explain the features of the Picture-Rock. The upstanding spheroids, connected with the main mass by their back surfaces only, are of various sizes, and of somewhat irregular form. Some are distinctly flattened from one side to another; and the shape of each one depends on the proportions of the compartment in which it has arisen. A large spheroid measures 20 cm . in its longest diameter. The hollow round the spheroids may extend 6 cm . deep into the rock. In several cases a spheroid has fallen out altogether, leaving a mere empty box-like compartment. It is clear that the soft loam resulting from the decay of the outer shells has been completely washed away. The growth of lichens over the residual cores seems to show, on the other hand, that decay is now slow, if not arrested. I should regard this as due in some cases to the absence of further curving joint-surfaces. The unjointed core has been reached by the remoral of all the onter layers, except at the back of the spheroid, where rain penetrates with ditticulty. Such spheroids will now

[^40]only weather lack like the general surface of the igneous sheet. Some of the spheroils however. show a distinct tendency to tlaking and omion-structure, eren mnler their lichen-corered suriace. When cut across ber the rockslicing wachine. a zone of soft lecomposed rock a millimetre or so thick is seen, and shows that alteration is still operating from the surface.

The int that wifinal jointe determine such mion-like weathering is dealy seen neal ('aribk-a-mbe. in the county of Antrim, where the fresh habat can he haten ubintu halls of various sizes sume of which are ouly two centimetres or so in ilameter. The structure, in fact, is a coarse repre\therefore ant tive of the abater perlitic structure of glasey ignenus rocks. Even in
 structure may appear on a conarse scale. Scrope describes the pitchstone of the Chiaja di Luna as having "a tenlency to the columnar division, the
 These balls, when they have been exposed a short time to the weather,
 ront, inclosing a compract nuclens, of which the laminie have not been
 how will produce a still furthe exfoliation. The globes vary from a few inches to three feet in liameter. . . These varieties of natural division are
 in diselraing an original contiguration."

 during quartying operations.

Weathering action from the exposed surface, aided by the battering of

 of the rutting of rock-mases to proluce katin, the coses of the spheroids Woulh have lecome entirely iletached.

The walls that stand up ruind each compartment of the rock are evidently due to some stronghoming of the groundmass by material infiltered from the inint-surfaces. The resisting milges are sometimes worn away to a knifeedge, Lut are sometimes 3 cm . or mure in width. Each is marked near the centre by a plane of weakness, along which it divides when struck with the

[^41]hammer. This plane formed one side or wher of the original joint-crack, and the crack itself has been filled by crystalline material. During the infilling of the cracks, chemical changes must have taken place in the rock to varying distances on either side. This action may be judged, from fieldinspection, to be hydrothermal, and to have gone on when the mass lay huried deeply underground. Such infiltrations, however, wherely original planes of weakness become strengthened, may take place even in calcareous shales. Several interesting examples were dug up some ten years ago near Harold's Cross, Dublin. The shale had crumbled away, except where cemented by calcium carbonate on either side of the joints, which formed two series crossing approximately at right angles. The layers of rock thus presented an open lattice-structure or meshwork of remarkable regularity, and detached pieces formed perfect crosses of stone.

On examination in the laboratory, the igneous sheet of the Picture-Rock proves to be a fine-grained dolerite, almost andesitic on its surface, where it originally contained some glassy matter.

It has been subjected to extensive alteration. In its present condition, rich in chlorite, it is a typical diabase, in Hausmann's sense of the term. ${ }^{1}$ The specific gravity of two spheroids is 3.05 and 3.07 respectively, giving an average of 3.06 . That of one of the strengthened layers along the jointsurfaces is 2.91 . This difference in density is not one on which stress can be laid, as a greater degree of hydration probably now prevails among the minerals near the joint-surfaces than among those near the centre of the spheroids. When the rock is broken along a joint-surface, abundant limonite is seen. Pyrite is a common constituent of the infilling of the joints, and has been introduced freely in specks into the rock on either side.

In microscopic section, the veins now occupying the joints are seen to consist of fibrous green amphibole (hornblende or actinolite) granular quartz, pyrite altering into limonite, and occasional small rounded granules with high refractive index, which are very probably sphene. The aspect is that of a mineral vein on a small scale; and it is clear that the agents which brought up the infilling materials exerted considerable influence upon the bounding walls. I have elsewhere ${ }^{2}$ referred to the mineralizing effect of a granite magma on its surroundings, and to the production of considerable crystals of amphibole. The hydrothermal action that led to the filling of the narrow veins throughout the licture-Rock seems, however, to have actually imported

[^42]amphibolic material into the diabase. On either side of the vein, prisms of green amphibole have shot ont at right angles to its walls. These have now become chloritic, like the groundmass. The adjacent rock has become partially foliated, and has assumed the shimmer of a fine-grained hormblendeschist; but it is difficult to suggest pressure as the cause of so local a phenmenn. The felspathic constituent of the diabase has disappeared; and the rock is a dense mass of grambes of proxene, abondant tufts of chlorite, brown mica, and a trace of colouless matter; here and there a crystal of amphbole passes across it like a blate. The rock has been darkened on either side of the vein hy an exceptional development of brown mica.

 penetrathog the disture on either side. Hoture-livelk, Co. Donegall. $\times 11$.
sections of the spheroils show how, even here, the felspar crystals have been entirely changed. They can be seen as small white rolls with the naked cye, but are now compused of minute prisms of zoisite, lying in all directions, an occasional granule of eqpidute, and chlorite. This chlorite must be an importation fiom the grommanss, in which it is aloudant, together with brown

 notes on the petrography of Donegal, ${ }^{1}$ states that the felspars in the epidiorites of the region rarely retain traces of twin-structure, and have

[^43]commonly been converted into zoisite, calcite, and other minerals. In the Picture-Rock, they are now, through the introduction of chlorite, pseudomorphs rather than reconstructions.

The epidiorite condition does not seem reached in this particular intrusive sheet, except in the neighbourhood of the rectilinear joints. There, however, as we have seen, material has been added to the rock, and the bars of amphiole have led to a local toughening. They have thus enabled it to resist decay; and it is satisfactory to have this microscopic evidence to explain the outstanding walls of the"compartments, which are so conspicuous a feature of the Picture-Rock.

IV.
 A CENSUS CATALOGUE OF IRISH FUNGI.

By J. ADAMS, M.A., and G. H. PETHYBRIDGE, Ph.D., B.Sc.

Read Febrcary 28. Ordered for Publication March 2. Published June 8, 1910.

CONTENTS.

Ih whtatal Intiontution.-While an enumeration of the species of all ntherempis of phats foum in Ireland has at some time or other been made, this has were heen ontomptel in the case of Fungi and yet the group Pubrame by iot the latront aretion of the Flona as regards number of species,

 heen harlented. A wimmot the liblingrapy at the end will show that a sery moniluabla anmat if attention has heen devotel the group.

 will ultimately be found to be natives of this country.

Thwelkelt, in his "sympi- sirpimn Hibernicarum," published in 1726, mentions the matue of sixtern anmes of Fungi foumd in Ireland ; but no 4tan riptime or latition are given. In the Appendix to the above work three additional species are mentioned.

The nust reforem... In Ith Fungi ricours in "The Antient and Iresent
 described as having been found in that county.

Rutty's "Natural History of County Dublin," published in 1772, mentions tiwn -luate of Fingri, whe of these heing the 'Truftle in County Meath.

But the credit of being the first serious investigator of the group belongs to Templeton, who collected and named 232 species prior to the year 1800. No account of this collection, however, was given to the world until the year 1840, when Dr. Taylor re-examined 'Templeton's specimens, and published an account of them in the "Annals of Natural History" under the title "Catalogue of the species of Fungi obtained in the North of Ireland by John Templeton, Esq., of Cranmore, Belfast.

Much earlier, however, as regards the date of publication, was a list of fifty-four species, chiefly from County Dublin, published by Wade, in his "Plantae Rariores," in 1804.

The next advance was made in the south, when a list of 218 species for the County of Cork was prepared by Mr. Denis Murray, and published, in 1845, in the "Fauna and Flora of County Cork."

A few years later, in 1852, W. 'T. Alexander published a list of 256 species found in the neighbourhood of Cloyne in the same county. ${ }^{1}$

The next extension of our knowledge was made by the late Mr. Greenwood Pim, in connexion with the visit of the British Association to Dublin in 1878, when a list of 470 species found in Dublin and Wicklow was prepared for the "Handbook" issued in that year.

In the North of Ireland a still further advance was made by Lett, in his "Fungi of the North of Ireland," published a few years later, in which 580 species are recorded; while, about the same time, Pim published an important paper on the "Fungi of Glengariff and Killarney."

Extensive additions to the Fungal Flora of Counties Dublin and Wicklow were made subsequently by Pim and McWeeney, in a series of papers from 1883 to 1898 ; while McWeeney added many new species in connexion with the excursions of the Dublin Naturalists' Field Club to different parts of the country.

An important list by Carleton Rea of 160 species additional to those already known for Dublin and Wicklow was the outcome of the British Mycological Society's visit to Dublin in 1898.

Since that date Johnson and Pethybridge have been working chiefly at the parasitic species attacking cultivated plants; while a few other investigators have added new species from time to time. Special mention must be made of an important paper by Father Torrend, in 1908, containing 70 species not previously recorded for the Counties of Dublin and Wicklow.

The foregoing are the most important sources of our information relating to the distribution of Fungi in Ireland. Other shorter contributions to the subject will be found in the Bibliography

[^44]Distribution in Irelund.-To indicate the distribution of each species in Ireland the subdirisions of the country and the symbols proposed by Adams in the "Irish Naturalist" for August, 1908, and January, 1909, have been adopted. Each of the four prorinces of Ireland is divided into three sections, which are numbered from 1 to 3 , that numbered 1 extending furthest south, that numbered 3 extending furthest north, while number 2 is intermediate in position. The first letter of each province is used as an abbreviation for the name of that prorince. The twelve sub-prorinces are as follows, and are shown on the accompanying map:-

Adams and Perifybridge - A Census Catulogue of Trish Funge.

Munstere.
M 1 Kerry and West Cork.
M 2 Mid-Cork, East Cork, Waterford, South Tipperary.
M 3 North Tipperary, Limerick, Clare.
Connaught.
C 1 Galway.
C 2 Mayo.
C 3 Sligo, Leitrim, Roscommon.
Leinster.
Li Wexford, Carlow, Kilkenny.
L 2 Wicklow, Dublin, Kildare, Queen's County, King's County.
L 3 Louth, Meath, Westmeath, Longford.
Ulster.
U i Down, Armagh, Monaghan, Cavan.
U 2 Antrim, Derry, Tyrone.
U_{3} Fermanagh, Donegal.
In a few cases the exact locality where the species occurred is not known; and in consequence it cannot be referred to any of the sub-provinces. All that it is possible to do in such cases is to indicate the province, using the symbol \times, as, for example, $\mathrm{M} \times$. In some cases the province is not known, and it is only possible to indicate the distribution by the word "Ireland."

Census of Species.-In the following tables will be found the number of species belonging to the different groups of Fungi recorded in each of the twelve sub-provinces, in the four provinces, and in the whole of Ireland:-

Table I.
Number of Species recorded in each Sub-Province.

Group.			Mi	M2	M		Ci	C_{2}		C_{3}	Lr		L2	L3	Or	U_{2}	U_{3}
Myxomycetes,			5	14			10			0	0		51	j	8	16	1
Phyconuycetes,		.	3	6			1			0	0		34	3	5		0
Hemiascomycetes,		.	0	0			0	0		0	0		1	0	0		0
Euascomycetes,			27	90			24	0		1	4		234	24	72	82	4
Hemibasidii,			0	3			2			0	0			3	3	2	1
Protobasidiomycetes,			15	40			27	0		0	0		86	28	46	32	0
Autobasidiomyeetes,	-	-	166	174			23	0		0	1		50	66	243	182	1
Fungi Imperfecti,		.	6	16			7	0		1	3		140	8	14	9	2
Totals,	-		222	343			94	3		2	8		104		391	'328	9

Table II.

Number of Species recorded in each Province and in the whole of Ireland.

It will be evilent from Table I. that hardly anything is known of the Fungi wecurring in hali the sub-prowinces of Ireland; while Table II. shows that the sme thing is true of the Province of Comnanght. The total species sufar fomil in Irelam, namely 1404 , probably represent less than half the finceal them oit the country, as nearly 6,000 species have been found in Great Britain.

 distributent than is indicated hy the actual records of their occurrence. Many ui than are. withut doult, universally distributed over Ireland, but actual records of their occurrence are still wanting.

PIHLIOGRAPHY.

All smures of infumation un the distribution oi lrish Fungi are, so far a known inmontil in the following list. The arrangement adopted is an
 arrane: 1 hamon_sintly, Any suatterel information on Irish Fungi, such

 indicaterl, -uch an "Iri-h Naturali-t," "Quarterly Journal of Microscopical Science," E. The Fihli,ngraphy of Irish Fungi in the National Museum, Dublin, has also been consulted.

Adams and Pefhybridge-A Census Catalogue of Irish Fungi. 125

Adams, J.-Note on some Northern Fungi. Irish Nat., vol. xv, 1906.
Irish Parasitic Fungi. Irish Nat., vol. xvi, 1907.
Occurrence of Jew's Ear Fungus on Horse Chestnut. Irish Nat., vol. xvi, 190\%.
Puccinia uliginosa Juel. in Ireland. Irish Nat., vol. xvi, 1907.
Cluster Cups on Barberry. Irish Nat., vol. xviii, 1909.
Fusicladium dendriticum on Wild Crab. Irish Nat., vol. xviii, 1909.
Alexander, W. T.-A List of the Fungi detected in Cloyne and its Vicinity in 1852. The Phytologist, vol. iv, 1856.
Andrews, W.-Remarks on the Fungi of the South-west of Ireland. Nat. Hist. Rev., vol. iii, 1856.
Annals and Magazine of Natural History, 1881-6.
Archer, W.-On Iwo New Species in Saprolegnieae referable respectively to the Genus Saprolegnia (Nees v. Esen.) and Achlya (Nees v. Esen.). Quart. Journ. Micr. Sć., vol. vii, New Series, 1867.
Belfast Naturalists' Field Club Reports, 1883-8.
Belfast Naturalists' Field Club.-Guide to Belfast. 2nd Ed., 1902.
Berkeley, M. J., and C. E. Broome.-Notices of British Fungi. Ann. Mag. Nat. Hist., vol. i, 1st Ser.-vol. xv, 5th Ser., 1838-85.
Brenan, S. A.-Sphaerotheca Mors-Uvae Berkl. and Curtis in Ireland. Journ. of Bot., vol. xxxviii, 1900 ; and Irish Nat., vol. x, 1901.
Carpenter, G. H.-The Mingling of the North and the South. Irish Nat., vol. v, 1896.
Cooke, M. C.-New British Fungi. Grevillea, vols. i-xxi, 1872-93.
British Hyphomycetes. Grevillea, vols. xvi-xvii, 1887-9.
Crombie, J. M.-Lichenes Britannici. 1870.
Cusack, M. F.-A History of the City and County of Cork. 1875.
Frazer, W.-On the Disease in Gold Fish, in connexion with the Development of Saprolegnia ferax. Nat. Hist. Rev., vol. iii, 1856.
Remarks upon Specimens of Fungi obtained adhering to Old Trees under a Bog near Tralee. Nat. Hist. Rev., vol. iv, 1857.
Friend, H.-Trichia chrysosperma DC. Irish Nat., vol. ii, 1893.
Gardener's Chronicle. 22nd Sept., 1883; 25th August, 1900.
Grove, W. B.-Pimina, Novum Hyphomycetum Genus. Journ. of Bot., vol. xxvi, 1888.
Hammond, E.-Truffles in Co. Kildare. Irish Nat., vol. xviii, 1909.
[Harmis, W.]-The Antient and Present State of the County of Down, 1744.
Harvey, Humphries, and Power.-Contributions towards a Fauna and Flora of the County of Cork. 1845.
Imish Naturalist. Vols, i-xviii, 1892-1909.

Jonnson, T.-The Flora of Treland. [In " Ireland, Industrial and Agricultural," 1902.]
Diseases of the Potato and Other Plants in Ireland. Journ. Dept. Agr. and Tech. Instr. for Ireland, vol. iii, No. 1, 1902.
Some Root-Crop Diseases in Ireland. Journ. Dept. Agr. and Tech. Instr. for Ireland, vol. iv, No. 2, 1903.
Phellomyces sclerotiophorus Fronk: A Cause of Potato Scab and Dry Rot. Econ. Proc. Roy. Dub. Soc., vol. i, part 4, 1903.
Willow Canker: Physalospora gregaria Succ, Sc. Proc. Roy. Dub. Soc. vol. x (N. S.), Part 2, 1904.
Swede Leaf.Spot. Journ. Dept. Agr. and Tech. Instr. for Ireland, vol. v, No. 3, 1905.
The (innsehery American Milkew. Irish Gardening, vol. i, No. 3, 1906.
Some Injurinus Fungi found in Ireland. Econ. Proc. Roy. Dub. Soc., vol. i, Part 9, 1907.
Sumengura sulani birumeh (Corky Scall.) Econ. Proc. Roy. Dub. Soc., vol. i, Part 12, 1908.
(hrysumpotis emhnintica shith. (Potato Wart (n Black Scab) and other Chytridiaceae, Sc. Proc. Roy. Dub. Soc., vol, xii (N. S.), No. 14, 1909.
Further Mnervation on Powdery Potato Scal, Spongnspora subterranea (W'allr.) Sc. Proc., Roy. Dub. Soc., vol, xii. (N. S.), No. 16, 1909.
 1899.

Lett, H. W.-Fungus Foray in Ireland. Grevillea, vol. xii, 1883-4.
The Fungi of the North of Ireland. Proc. Belfast Nat. Field Club, Appendix, 188 ± -5.
 i, 1908; ii, 1908-9.
Lister, A.-A Monograph of the Mycetozoa. 1894.
Notes on Mycetozoa. Journ. of Bot., vol. xxxix. 1901.
 Handbook for Travellers in Ireland, 4th ed., 1854].
 1s×9-91.
British Fungi, Phycomycetes and Ustilagineae, 1491.
A Monograph of the Myxogastres. 1892.
New or Critical British Fungi. Grevillea, vols, xxi-xxii. 1892-4.
Matisell, E. L.-Truffles in Co. Limerick. Irish Nat., vol. xv., 1906.

Adams and Periypridge-A Census C'atalogue of Irish Funyi. 127
McArdle, D.-A Morel new to Ireland. Trish Nat., vol. xv, 1906.
Fungi [of Lambay], Irish Nat., vol. xvi, 1907.
Lentinus lepideus Fr. var. hibernicus nov. var. Journ. of Bot., vol. xlvii, 1909.

McWeeney, E. J.-Fungi from Central Ireland. Irish Nat., vol. i, 1892.
Fungi from Lucan and Bray districts. Irish Nat., vol. i, 1892.
Fungi from the south-west. Irish Nat., vol. ii, 1893.
Fungi from Altadore, Co. Wicklow. Irish Nat., vol. ii, 1893.
Fungi from Woodenbridge, Co. Wicklow. Irish Nat., vol. ii, 1893.
Fungi [of Galway Excursion]. Irish Nat., vol. iv, 1895.
A New Irish Fungus. Irish Nat., vol. iv, 1895.
The Utility of noting Fungus Localities. Irish Nat., vol. iv, 1895.
A Curious Coincidence. Irish Nat., vol. iv, 1895.
Observations on Phoma Betae Firentr, a fungus that injures Mangel. Journ. Roy. Agr. Soc. Eng., 3 ser., vi., Part iii, 1895.
Fungi from Brackenstown, Có. Dublin. Irish Nat., vol. v, 1896.
Fungi [from Clonbrock]. Irish Nat., vol. v, 1896.
New Irish Fungi. Irish Nat., vol. v, 1896.
Fungi from Brittas Bay Excursion, D.N.F.C. Irish Nat., vol. v, 1896.
Two Sclerotia Diseases of Potatoes. Trans. Brit. Mycol. Soc., vol. i, 1897-1901.

Moore, D. - Experiments on preserving Potatoes conducted in the Glasnevin Botanic Garden, with Remarks on Parasitical Fungi in general. The Phytologist, vol. ii, 1846.

More, F. M.-Truffles in Treland. Trish Nat., vol. x, 1901.
Pethybridge, G. H.-American Gooseberry Mildew in Ireland. Irish Gardening, vol. ii, No. 14, 1907.
American Gooseberry Mildew. Irish Gardening, vol. iii, No. 26, 1908.
Fungi [of Dublin and Wicklow]. Brit. Assoc. Handbook to Dublin, 1908.

Pethybridge, G. H., and E. H. Bowers.-Dry Rot of the Potato 'Iuber. Econ. Proc. Roy. Dub. Soc., vol. i, Part 14, 1908.
Pethybridge, G. H., and R. Ll. Praeger. - The Vegetation of the District. lying south of Dublin. Proc. Roy. Ir. Acad., vol, xxv, sect. B, No. 6, 1905.
Philips, W.-A Manual of the British Discomycetes. 1887.
Philips, W., and C. Plowright-New and Rare British Fungi. Grevillea, vols. ii-xiii, 1873-1885.

Pin, G.-Irish Fungi. Quart. Journ. Micr. Sc. 1877.
The Fungi of the Comnties Duhlin and Wicklow. Sc. Proc. Roy. Dub. Soc., vol. i, Part 3, 1878; and Brit. Assoc. Guide to County Dublin, 1878.
Ramularia Cryptostegiae Pinı. Grevillea, vol. viii, 1879-1880.
A Mould on Ensilage, Gard. Chron. (N. S.), xx, 1883.
On Alliospora, a supposed new genus of Dematiei. Journ. of Bot., xxi, 1883.
Recent Alditions to the Fungi of Counties Dublin and Wicklow. Proc. Roy. Ir. Acad. Ser. ii, vol. iv, No. 1. 188 t.
The Sclerotium Disease of Potatoes. Gard. Chron. xxiii, 1885.
l'reliminary Report on the Fungi of Glengarrift and Killarney. Proc. Roy. Ir. Acad. Ser. ii, vol. iv, Part 4. 1885.
Cladotrichum Passillorae, n. sp. Gard. Chron. xxiv, 1885.
Periwinkle Disease, Puccinia Vincae Berk. Gard. Chron, 3 ser. ii., 1887.

P'ythium in Impatiens Sultani. Gard. Chron. 3 ser. iii, 1888.
Two Notalle Morels. Irish Nat., vol, iii, 1894.
New Fungal Disease of Rape. Journ. of Bot., vol. xxxv, 1897.
Some C'urions Moulds. Trans, Irit. Mycol. Soc., vol, i, 1897-1901.
The Fungi of the Counties of Dublin and Wicklow. Irish Nat, vol, vii, 1898.
 Irish Nat., vol. ii, 189:3.
 1~89.
lraeger, Ir. Llu-A Bird's Nest Fungus new to Ireland. Irish Nat., vol. v, 1496.

Earth stars in Co. Tipperary. Irish Nat., vol. v, 1896.
A Pig Boletus. Itish Nat., vol. vi, 1897.
The Flora of Clare Island. Irish Nat., vol. xii, 1903.
1'rocebiligs of the Dublin Microscopical Cllub, vols. i-iv, 1864-1885.
Qearterly Jocrexal of Microscortcal Sciexce, 1867-1879.
 19th-2tth September, 1898. Trans. Brit. Mycol. Soc., vol. i, 1897-1901.
Additions to Mr. (Areenwond Pim's "Fungi of the Counties of Dublin and Wicklow." Iri-h Nat., vol. vii, 1898.
Licrry, J.-Natual Histury of Co. Dublin, 17i2.

Adams and Pethybridga- Λ Census Cafalogue of Irish Funyi.

Smitir, A. L.-British Mycology. Trans. Brit. Myeol. Soc., vol. i, 1897-1901. Fungi New to Britain. Trans. Brit. Mycol. Soc., vol. i, 1897-1901.
Saitir, A. La, and C. Rea.-Fungi New to Pritain. Trans. Brit. Myeol. Soc., vol. ii, 1904.
New and Rare British Fungi. Trans. Brit. Mycol. Soc., vol, iii, 1908.
Smith, W. G.-Outhnes of British Fungology. Supplement, 1891.
Stevenson, J.-British Fungi (Hymenomycetes). 1886.
Stracian, J.-Occurrence of the Fungus Peziza Adae in Ireland. Irish Nat., vol. xiv, 1905.
Peziza Adae in Co. Antrim, Irish Nat., vol. xvii, 1908.
Swan, A. P.-On the Genus Leptolegnia of the Saprolegniaceae. Irish Nat., vol. vii, 1898.
Taylor, T.-Catalogue of the Species of Fungi obtained in the North of Ireland by John Templeton, Esq., of Cranmore, Belfast. Ann. of Nat. Hist., vol. v, 1840.
Threlkeld, C.-Synopsis Stirpium Hibernicarum. 1726.
Tighe, W.-Statistical Survey of the County of Kilkenny. 1802.
Torrend, C.-Additions to the Fungi of the Counties of Dublin and Wicklow. Irish Nat., vol. xvii, 1908.
Trevelyan, H.-Hygrophorus intermedius in Ireland. Irish Nat., vol. xviii, 1909.

Urquhart, J. T.-The Gooseberry American Mildew. Irish Gardening, vol. 1, 1906.
Waddell, C. H.-Pleospora herbarum on Clover. Irish Nat., vol. xi, 1902.
Wade, W.-Plantae Rariores in Hibernia Inventae. Sc. Trans. Roy. Dub. Soc., vol. iv, 1804.
Whight, E. P.-On a Species of Rhizophydium Parasitic on Species of Ectocarpus, with Notes on the Fructification of the Ectocarpi. Trans. Roy. Ir. Acad., vol. xxvi, 1877.

LIST OF FAMILIES, GENERA, AND SPECIES

All species of Fungi hitherto published as occurring in Ireland up to the end of 1909 are, so far as known to us, included in the subjoined list. In addition to these, however, some records of species are now putlished for the first time. One of the copies of the "Fauna and Flora of Cork," in the National Library at Dublin, contains marginal notes of a number of species found at various places in County Cork, and these have been incorporated in the present list.

The classification adopted is that of Engler and Prantl, as given in the latest edition (1907) of their "Syllabus der PHanzenfamilien." In the case of the Agaricaceae, howerer, the species are arranged in the order given in Worthington G. Smith's "British Basidiomycetes" (1908). To facilitate reference, the species under each genus are arranged in alphabetical order. An alphabetical index of Genera is given at the end of this paper.

We have to acknowledge with grateful thanks considerable assistance in elucilating synonyms and obscure species from Miss A. Lorrain Smith, of the British Museum (Natural History), South Kensington.

MYXOMICETES.

Phytomminae.

Plasmodiophora Alni Mill. L 2
Brassicae Wror. Ircland
Spongospora subterranea Johnson Mr $\mathrm{C}_{12} \mathrm{~L}_{2} \mathrm{U}_{3}$

Cematiomyraceae.
Ceratiomysa mucila Schroct. C i Lz
Licfaceaf.
Licea flexuosa Pers. Lz 2.
Tubulina fragiformis Pers. $\mathrm{L}_{2} \mathrm{U}_{2}$
Alwisia Bombarda Berk. et Br, L 3
Clatroptichiacraf.
Enteridium oliraccum Ehr. L 2
Cabrabiaceae.
Dictsdium umbilicatum Schrad. L_{2} U 2

Cribraria argillacen Pers. K_{2}
aurantiaca Schrad. L 2
rufescens Pers. L 2
Thiculaceae.
Perichuena depressa Lib. Le
populina Fr. $\mathrm{L}_{2} \mathrm{U}_{2}$
Arcyria albida Pers. M $2 \mathrm{~L}_{2}$
flara Pers. L 2
incarnata Pers. $\mathrm{M}_{1} \mathrm{C}_{8} \mathrm{~L}_{2} \mathrm{U}_{12}$
punicea Pers. $\mathrm{M}_{2} \mathrm{C} \equiv \mathrm{L} 23$
Ljcogala miniatum Pers. M1a C_{1} $\mathrm{L}_{2} \mathrm{U}_{1} 2$
Trichia affinis de Bary. L 2

Trichia Botrstis Per8。 C I fallax Pers. L 2
favoginea Pers. M12 L2 \mathbf{U}_{2} persimilis Karst. L_{2} varia Pers. $\mathrm{L}_{2} \mathrm{U}_{2}$
Hemitrichia clavata Rost. L_{2} Karstenii List. Li 2 Serpula Rost. UI
Prototrichia Alagellifera Rost。 L 2
Retictlariaceae.
Reticularia Lycoperdon [Bull.] M2 L 2

Amaurochacte atra Rost. L 2
Dictsdiaethalium plumbeum Rost. \mathbf{L}_{2} U_{2}

Stemonitaceae,
Enerthcrema clegans Bowm. L 2
Lamproderma cchinulatum Rost. Ci
Comatricha laxa Rost. L 2
obtusata Preuss. $\mathrm{M}_{2} \mathrm{~L}_{2} 3 \mathrm{U}_{2}$ Persoonii Rost. L_{2} tsphoides Rost. L $2 \mathrm{U}_{2}$ Stemonitis ferruginea Ehr. L 2 fusca Roth. $\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{~L}_{2} \mathrm{U}_{1} 2$ splendens Rost. M1 Ci L 2 spemabiaceae.

Spumaria alba $D C$. $\quad \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$ Didrmiaceae.
Didymium difforme Duby. L 2 effusum Link. L 2

Didymium farinaceum Sehrad. U : nigripes Fr. M $2 \mathrm{~L}_{2}$
Chondrioderma globosum Rost. M2 L 2
lucidum Cooke L_{2}
niveum Rost. L 2
spumarioides Rost。 L2

Pifysaracear.

Leocarpus vernicosus Link. Me Li 2

Craterium leucocephalum [nitm .] Mr_{2} pedunculatum Trent. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
Physarum bivalve [Pers.] U 2
cinereum Pers. Cis U,
nutans Pers. $\mathrm{I}_{2} \mathrm{U}_{2}$
penetrale Rex. L 2
psittacinum Ditm. L 2
viride Pers. L 2
Badhamia utricularis Berk. L 2
Fuligo septica Gmel. $\mathrm{L}_{2} \mathrm{U}_{2}$

EUMYCETES.

I. PHYCOMYCETES.

1. Zygomycetes.

Mucoraceae.
Mucor amethysteus Berk. U,
caninus Pers. $\mathrm{Nl}_{2} \mathrm{U}_{2}$
clavatus [Link.] L 2
mucedo Linn. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
stercoreus Link. $\mathrm{M}_{2} \mathrm{~L}_{2}$
Sporodinia Aspergillus Schroet. $\mathrm{L}_{2} 3$
Thamnidium elegans Link. L 2
Rhizopus nigricans Ehrenb. $\mathrm{H}_{2} \mathrm{~L}_{2}$
Pilaira anomala Schroet. L 2
Pilobolus crystallinus Tode. M $\mathrm{L}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$ longipes van Tiegh. Li

Chaetocladiaceae.
Chaetocladium Brefeldii van Tiegh. et Lemon. L 2

Entomophthoracese.
Empusa muscae Cohn. L 2

2. Oomycetes.

A lbuginaceae.
Cystopus candidus Lev. M12 $\mathrm{L}_{2} \mathrm{U}_{12}$
Lepigoni de Bary. L 2
Tragopogonis Schroet. L 2
Peronosporacear.
Phytophthora infestans de Bary. La 2 U I
Peronospora affinis Rossm。 C $2 \mathrm{I}_{2}$ arborescens do Bary. L 2

Peronospora calotheca de Bary. L 2 candida Fuck. L 2 U I
effusa Rabenh. L 2
Lamii de Bary. L 2
parasitica de Bary. C I Lı
Schachtii Fuck. L 2
Schleideni Ung. Li
Trifoliorum de Bary. L 2
Urticae de Bary. L 2
Plasmopara densa Schroet. L_{3}
nivea Schroet. L 2
pygmaea Schroet. L 2
Saprolegniaceae.
Saprolegnia androgyna Arch. Ireland ferax Nees. L 2
monoica Pringsh. Ireland
Achlya cornuta Arch. Ireland
Leptolegnia caudata de Bary. MI Aphanomyces stellatus de Bary. Ireland

Olpidiaceae.
Olpidium sphacellum Kny. Ireland tumefaciens Berl. et de Ton. L 2
Asterocystis radicis de Wild. U 2
Chrysophlyctis endobiotica Schilb. U :
Synchitriaceaf.
Synchytrium Taraxaci de Rary et Wor. L2 3
I. Peyconycetes-continued.

Rhizidiaceae.
Eurschasma Dicksonii Magnus. L 2
Cladochitriaceae.
Physoderma menyanthis de Bary. Li

Oochytriaceae.
Diplophysa Saprolegniae Schroet. M I

Pythiaceae.

Psthium de Baryanum Hesse. L 2

II. HEMIASCOMYCETES.

Saccharomycetaceae.
Saccharomyees cererisiae Meych. Ireland

III. EUASCOMYCETES

Esonscacpar.
Exoascus deformans Fuck. L 2
Pruni Fuck. L 2
Taphrina aurea Fr . Mz
Johansonii Sad. प̌ 2

Stictidacear.

Stegia ilicis Fr. M:2 I/ 3 U 12
Propolis faginca Karst. Cif L_{2}
Melittosporium lichenicolum Mass. Ireland.
Stictis radiata [Pers.] M2
Tryblidiaceae.
Heterosphacria Patella Gree. L $2 \mathrm{CL}_{12}$

Piacidiaceae.

Phacidium multivalve héze at Schum. $^{\text {and }}$ U 1
Trochila buxi Capron. U'i
craterium Fr . U1
ilicis C'roman. L_{2}
Lauro-cerasi Fr. L $2 \mathrm{~L}_{12}$
Schizothyrium Ptarmicae Dism. L 2
Coccomyces coronatus $[$ de Nil.$] . 1.2$ U_{2}
Rhytisma acerinum F_{1}. M12 M_{2} U: 2
Andromedae Fr . L_{2}
salicinum Fr. $\mathrm{M}_{1} \mathrm{~L}_{2}$

Pezizacear.
Sphaerospora asperior Sacc. L_{2} binominata Mass. U 3 brunnea Mass. U_{2} hinnulea Mass. L 2 trechispora Sacc. L 23 U I
Plicariella Crouani Retm. L_{2}
Lachnea bulbocrinita Phil. L 2 dalmeniensis Phil. L 2 hemisphaerica Gill. Ci L_{2} hirta [Gill.] M_{2} hybrida Phit. L2 scutellata Gill. M1 L2 $\mathrm{I}_{3} \mathrm{U}_{2}$ stercorea Gill. M12 (1) Li2 U12 umbrorum Gill. L 2
Humaria carbonigena Sacc. L 2 congrex härst. L_{2} domestica Mars. L z exidiiformis Sacc. $\mathrm{M}_{2} \mathrm{~L}_{2}$ granulata Sacc. M12 Cis L_{2} U82
humosa Sacc. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
rutilans Sacc. $\mathrm{M}_{2} \mathrm{~L}_{2}$
violacea Sacc. L_{2}
Peziza Allae Sadler. U 2
ammophila D. ̣. If. L 2
badia Pers. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
cerea [Sow.] L 2
coccinea Jacq. LI $2 \mathrm{U}_{12}$

III. Edabconyceres-continued.

Pcziza cupularis Limn. Is 2
reticulata Grev. I_{2}
saniosa Schrad. L 2
subumbrina Boud. L 3
venosa Pers. LL $2 \mathrm{U}_{\mathrm{I}}$
vesiculosa Bull. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
Otidea aurantia Mass. M12 $\mathrm{l}_{2} \mathrm{U}_{2}$ cochleata Fuck. M $2 \mathrm{~L}_{1} 2 \mathrm{U}_{2}$ leporina Fuck. $\mathrm{L}_{2} \mathrm{U}_{2}$ onotica Fuck. L 2

Ascobolaceae.

Ascophanus argenteus Boud. L_{2} carneus Boud. L_{2} equinus Mass. L 2
Saccobolus violascens Boud. L 2
Ascobolus atrofuscus Phil. et Plow. L 2 furfuraceus Pers. $\mathrm{N}_{2} \mathrm{~L}_{2} 3 \mathrm{U}_{12}$ glaber Pers. L_{2} vinosus Berk. L 2

Helotiaceae.

Chlorosplenium aeruginosum de Not. $\mathrm{MI}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
Ciboria caucus Fuck. L_{2} ochroleuca Mass. L_{2} pseudotuberosa Sacc. L 2
Sclerotinia parasitica Cav, L_{2} sclerotiorum Mass. $\mathrm{Ci}_{1} \mathrm{~L}_{2} \mathrm{U}_{3}$
Arachnopeziza aurelia $F u c k . \quad \mathrm{L}_{2}$
Lachnella cerina Phill. L 2
corticalis Fr. CI
echinulata Phill. L 2
nivea Phill. $\mathrm{L}_{3} \mathrm{U}_{2}$
Schumacherí Phill, L 2
Dasyscypha aspidiicola Sacc. L 2 bicolor Fuck. $\mathrm{M}_{2} \mathrm{~L}_{2}$ calycina Fuck. $\mathrm{M}_{2} \mathrm{~L}_{12} \mathrm{U}_{12}$ calyculaeformis Rehm. L_{2}
canescens Mass. L 2 ciliaris Sace. L 2 clandestina Ficck. L 2 hyalina Mass. L_{2}

Dasyscypha nivea Mas8. L2
papillaris Mass. $\mathrm{M}_{2} \mathrm{U}_{2}$
sulfurea Mass. L 2
virginea Fuck, $\mathrm{M}_{2} \quad \mathrm{C}_{1} \mathrm{~L}_{2} 3 \quad \mathrm{U}_{12}$
Trichopeziza plano-umbilicata Succ。M 2
Erinella apala Mass. L 2
juncicola Sace. L 2
Hymenoscypha calyculus Phill. U 2
cyathoidea Phill. $\mathrm{M}_{2} \mathrm{~L}_{2}$
Cyathicula coronata de Not. U 2
Helotium aciculare [Perso] $\quad \mathrm{M}_{2} \mathrm{U}_{2}$
bolare Mass. L_{2}
citrinum Fr. $\mathrm{MI}_{1} \mathrm{~L}_{2}{ }_{3} \mathrm{U}_{2}$
claro-flavum Berk. M2 L2
conigenum Fr. L 2
cyathoideum Karst. L 2
epiphyllum Fr. L_{2}
fagineum $\operatorname{Fr} . \mathrm{M}_{2} \mathrm{~L}_{2}$
imberbe Fr . L_{2}
lenticulare $F r_{0} \mathrm{U}_{2}$
lutescens Fi: L_{2}
renisporum Ellis. L 2
rhizophilum Cooke. U_{1}
scutula Karst. L 2
tuba [$\left.F r_{\text {. }}\right] \mathrm{L}_{2}$
virgultorum Karst. $\mathrm{M}_{2} \mathrm{~L}_{2}$
Ombrophila brunnea Phil. L 2
clavis Cooke. L 2
Coryne atrovirens Sace. L 2
sarcoides Tul. M $1 \mathrm{~L}_{2} 3 \mathrm{U} \mathrm{H}_{2}$

Mollistaceae.

Mollisia arundinacea Phil. L_{2}
atrata Karst. M I Le
atrocinerea Phil. L 2
chrysostigma Mass. L 2
cinerea Karst. $\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{~L}_{2} \mathrm{U}_{2}$
discolor Phill. L 2
fallax Gill. L_{2}
filicum Phill. L 2
flaveola Phill. L 2
melaleuca Saco. Ci

III．Etascoyycetes－contimued．

Pseudopiziza Ranunculi Fuck．Lz
Trifolii Fuck．L 2
Orbilia auricolor Sacc．L 2
leucostigma Fr． L_{2}
rubella Farst．L 2
vinosa Farst．L2
xanthostigma Fr ．L 2
Calloria diaphana Phill．Mz
fusarioides Fr． $\mathrm{L}_{2} \mathrm{C}_{2}$

> Patelfarmiceqe,

Durella carestiae Sach L 2
Patellaria atrata Fr．U I_{2}
lecideola $\mathrm{K}_{\text {arst．}} \mathrm{U}_{2}$
Cemanobachaf．
Cenangium abietis Rehm．MI
Bulgaria polymorpha Wells． $\mathrm{L}_{2} \mathrm{U}_{12}$ Grorlosmackae．
Mitrula cucullista Fr ． $\mathrm{M}_{2} \mathrm{~L}_{2}$
olivarea sace． L_{2}
phalloides Chee． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
virillis harsf． L_{2}
Gcoglossum difforme Fr． L_{2}
glabirum Pers． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
glutinosum Pers． H_{1}
hirsutum Pere． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
Leotia lubrica Pers． $\mathrm{M}_{1} 2 \mathrm{~L}_{2} 3 \mathrm{C} 2$
Spathularia clavata Sacc．L 2
Vibrissea Guemisaci Crouan， L_{2}
truncorum Fir．M，L2
Helvellaceae．
Morchella conica Pers．L 2
crassipes［Pers．］L 2
clata Fr．C＇ $1 L_{2}$
esculenta Pers． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
gigas Pers．L 2
semilibera $D C . \mathrm{C}$ ，
Helvella crispa Fr．Mr2 L23 C1
lacunosa Afzel． $\mathrm{L}=\mathrm{U} 2$ Hipodermaticfa．
Hepolerma commune Lurby．L 2
hederae de Not．L $2 \mathrm{U}_{1}$
virgultorum $D C: \mathrm{M}_{2} \mathrm{U}_{2}$

Lophodermium arundinaceum Chev．L2
hysterioides Sacc．M 2
juniperinum de Not． U_{2}
pinastri Chev， $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
Dicharmacfae．
Dichaena faginea Fr ． M_{2}
strobilina Fr． $\mathrm{H}_{2} \mathrm{UI}_{\mathrm{I}}$
Hystebiaceae．
Glonium lineare do Not．M 2
Hysterium angustatum［A．\＆S．］ M_{2} conigenum Moug．et Nestl． $\mathrm{M}_{2} \mathrm{U}_{2}$ pulicare Pers． $\mathrm{M}_{2} \mathrm{O}_{2}$
Hysterographium fraxini［ $\left.\begin{array}{ll}d \theta & \text { Not．}\end{array}\right]$ $\begin{array}{ll}\mathrm{M}_{2} & \mathrm{U}_{2}\end{array}$
Lophium elatum［Grev．］Mz mytilinum［Fr．］M2

Acrospermaceae．
Acrospermum compressum Tode．M L 2
graminum Lib．L 2
Euturerachae．
Hylnotrya Tulasnei $B . \& B r$ ．L 2
Tuber acstirum Fitt． $\mathrm{M}_{2} \mathrm{Ci}_{2} \mathrm{~L}_{3}$ dryophilum Tul．M 3

Gymnoascaceae．
Gymonoscus Reesii Baran．L2
Myxotrichum chartarum 下unze。 L_{2} Aspergillaceae．
Aspergillus candidus Link．Liz Ui
glaucus Link． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
Penicillium bicolor Fr 。 L_{2}
candidum Link． L_{2}
glaucum Link． $\mathrm{M}_{2} \mathrm{~L}_{2}$
sparsum［Grev．］M2
Ontgenaceae．
Onsgena equina Pers． U_{2}
Elapmomycetaceae．
Elaphomyces cervinus Schrot．U 2 variegatus Fitt． $\mathrm{M}_{2} \mathrm{U}_{1}$

III. Euascomycerbs-continued.

Myriangiaceae.
Myriangium Duriaci Mont. \&Berk. M i 2 Erysiphaceae.
Sphaerotheca castagnei Lív. M1 Liz mors-uvae Berk. Mi2 CI LI 23 U123
pannosa Lév. L 2
Podosphaera Oxyacanthae de Bary. L 2
Erysiphe cichoracearum $D C$. $\mathrm{M}_{2} \mathrm{~L}_{2}$
galeopsidis $D C$. L_{2}
graminis $D C . \mathrm{M}_{2} \mathrm{~L}_{2}$
polygoni $D C$. Mi Lz Ui
tortilis Fr. L 2
umbelliferarum Lív. L 2
Microsphaera Berberidis Lév. LI 2 U i evonymi Sacc. L_{3}
grossulariae Lév. MI Li U_{1}
Phyllactinia corylea Karst. L 2
Uncinula Aceris DC. $\mathrm{L}_{2} 3$
necator Burr. L 2
Prunastri Sacc. L_{2}
Salicis Wint. L 2
Microthymiaceae.
Asterina veronicae Coolie. L 2 Hypocreaceafe.
Hypomyces aurantius Tul。 $\mathrm{L}_{2} 3 \mathrm{U}_{2}$ cervinus Tul. L 2 rosellus Tut. L 2
Melanospora leucotricha Cordo. UI
Nectria Aquifolii Berk. Lz UI
aurantium Kickx. L 2
bicolor $B \& B r . \mathrm{L}_{2}$
cinnabarina $F r$. $\mathrm{MI}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
coccinea $F r, \quad \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{Ul}_{2}$
cucurbitula Fr . U 1
dacrymella Nyl. L 2
ditissima [Tul. \rceil La
ochracea Fr. M_{2}
Pandani Tul. L_{2}
Peziza Fr. M2 L2
sanguinea $F r, \quad \mathrm{~L}_{2}$
sinopica Fr. L $2 \mathrm{U}_{\mathrm{I}}$
r. t. A. Proc., Vol. xyitil., SECT. b.

Calonectria luteola Sacc. L_{2}
Gibberella pulicaris Sacc. Li 2
Sphaerostilbe flavo-viridis [Fuck]. L_{2}
Polystigma rubrum $D C$. $\mathrm{M}_{3} \mathrm{CI} \mathrm{L}_{2}$
Hypocrea farinosa B. \& Br, U2
rufa Fr . $\mathrm{L}_{2} 3$
splendens [Phil. et Plow.] L 2
Epichloe typhina Tul. M2 C1 L2 U 12
Cordyceps capitata Link. M_{2}
entomorhiza [Fi:] L 2
militaris Link. $\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{~L}_{2} \mathrm{U}_{12}$
ophioglossoides Lint. M 2
Claviceps Junci Adams. L 2
microcephala Tul. MI Liz
purpurea Tul. Ci Liz Dothidesceae.
Rhopographus filicinus Fuck. L 2 U i
Phyllachora graminis Fuck. L 2
Podagrariae Rarst. C I
ulmi Fuck. U I
Dothidella ulmi Fr. L 2 Sordariaceae.
Hypocopra fimicola Sace. CI
stercoraria Sace. M 2
Chaetomiceae.
Chaetomium chartarum Ehrb。 M I
comatum Fr, $\mathrm{H}_{2} \mathrm{~L} 2$
Sphaertaceae.
Trichosphaeria pilosa Fuck. L 2
Lasiosphaeria canescens Karst. L 2 hirsuta Ces. et Not. $\mathrm{M}_{2} \mathrm{~L}_{2}$ orina Ces. et Not. L 2 spermioides Ce8. et Not. $\mathrm{M}_{2} \mathrm{U}_{2}$
Herpotrichia Keitii [Sace.]. L 2 macrotricha Sacc. L2
Chaetospheria tristis Schröt. U ।
Bertia moriformis Ces. ot Not. $\mathrm{L}_{2} \mathrm{U}_{2}$
Rosellinia aquila do Noto L $2 \mathrm{U}_{2}$ mammacformis Ces. et Not. C $1 \mathrm{I}_{2}$ UI
thelena Rub. L_{2}

111. Edasconycetes-continued.

Zignoëlla pulviscula Sacc. L 2
Melanomma pulvis-pyrius Fuck. M_{2} $\mathrm{L}_{2} \mathrm{U}_{2}$

Cuccrbitarlaceae.
Nitschkia tristis Fuck. L 2
Gibbera raccinii $\mathrm{Fr} . \quad \mathrm{U}_{2}$
Cucurbitaria Berberidis Gray. L_{2}
elongata Grev. $\mathrm{M}_{2} \mathrm{U}_{2}$
Laburni Ces. ot Not. L 2 Ul
Mycosphafrellacfaf.
Mycosphaerella Brassicae Johnson。 C_{3}
latebrosa Cooke. UI
maculacfurmis Cooke. U ,
ustruthii Fr. U 1
pinodes Niess?. U :
punctiformis Rabenh. M2 U_{2}
tabificas Prill. el Del. Ireland
taxi Cooke. $\mathrm{L}_{2} 3$
stigmatea Nicholsoni Cooke. H_{2}
ostruthii Oudem. L2
Robertiani Fr. L 2
Tivothecium calearicolum Arnold. Ireo land
gemmiferum Kürb. Ircland
leucomelarium Berl. of Vogl. M2
perpusillum Arnold. C A
pygmaeum Kurb, U I
rimosicolum Arnold. M। ('1
Sphaerulina taxi Cooke. $\mathrm{L}_{2} 3$
Patomphachae.
Physalospora gregaria Sacc. C I
Venturia brgophila Sacc. M1
Geranii Wint. U2
ilicifolia Cooke. L_{2}
inaequalis $\mathrm{H}^{\mathrm{Fin} \ell}$. L 2
Leptosphacria acuta Karst. M2 L2 U_{2}
arundinacea Sacc. L2
culmifraga Ces. et Not. L 2
Doliolum de Not. L 2
Prrenophora phaeocomes sacc. M_{2}

Pleospora herbarum Rabenh. M 2
scirpicola Karst. U I
trichospora Diedick. $\mathbf{M I}_{2} \mathrm{LI}$
Olui Wallr. M_{2}
Massarlaclae.
Massaria pupula Tul. UI
Gromoniaceals.
Gnomonia erythrostoma Auerse. H_{2}
Gnomon Schrot. U 2
setacea Ces. et Vot. L_{2}
Valsacear.
Valsa eunomia Nilsch. M_{2}
Eutypa Wint. L 2
Glarovirescens Wint. $\mathrm{M}_{2} \mathrm{U}_{2}$
luta Nitsch. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
leiphemia Wint. UI
leucostoma Fr . UI
Prunastri Wint. Ireland
salicina Fr. U_{2}
stellulata $F r^{2}$ U
Mrlanconidacerae.
Talsuria Tiliae do Not. U 2
Melanconis lanciformis Tul. U 2
Ditheypaceae.
Diatrype bullata Fr. UI 2
corniculata $\mathrm{B} . \& \mathrm{Br} . \mathrm{M}_{2}$
disciformis $F r_{0} \quad \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
stigma Fr . $\mathrm{M}_{2} \mathrm{U}_{2}$
Diatrypella nucleata Sacc. U i
pulrinata Nits. U:2
strumella Fuck. UI
verrucaeformis Fuck. UI 2
Mflogrammataceae.
Sillia ferruginea Karst. Us
Xylariaceae.
Nummularia Bulliardi Tul. L 2
Hypoxylon atropurpurcum $F r$ 。 U I
coctineum Bull. M2 U1 3
colucrens Fr. U I
fuscum $\operatorname{Fr} . \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{H}_{12}$

Adams and Perthtbridie－A rimsus Culaloyue of trixh Fumiji．1：17
III．Euascomycetes－contimued．

Hypoxylon multiforme Fr ．Ci Is 2
rubiginosum Fr 。 $\mathrm{N}_{\times} \mathrm{L}_{2} 2_{3} \mathrm{U}$ I
serpens $F \% \mathrm{U}_{2}$
udum Fr． L_{2}
Ustulina pulgaris $T u l_{0} \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1} 2$ Duldinia concentrica Ces．et Not．M1 L 2

Xylaria carpophila F r． $\mathrm{L}_{2} \mathrm{U}_{2}$
corniformis $F r$ ． $\mathrm{L}_{2} \mathrm{U}_{1}$
hypoglossa Girev．L 2
Hypoxylon Grev．M12 L_{2} Ur 2 polymorpha Grev．Li 2 rhopaloides Mont．L 2

IV．BASIDIOMYCETES．

1．Hemibasidii．
Ustilaginaceaf．
Ustilago Arenae Jens．C \times
Caricis Fuck． L_{3}
longissima Tul． $\mathrm{C}_{2} \mathrm{~L}_{3} \mathrm{U}_{3}$
Scabiosa Wint．M 2
segetum Dittm．M 2 Ci Li Uiz
Tragopogi Schroet． $\mathrm{MI}_{2} \mathrm{~L}_{2}$
Vaillantii $T_{u} u$ ．$L_{2} \mathrm{U}_{\mathrm{I}}$
Thletiaceae．
Tilletia Rauwenhofii F．de IF aldh．L $_{3}$
striiformis Magnus． L_{2}
Tritici Wint． $\mathrm{L}_{2} \mathrm{U}_{2}$
Entyloma Ranunculi Schroet．L 2
Urocystis Anemones Schroet．Li UI Violae Fisch．C $\mathrm{I}_{\mathrm{L}} \mathrm{L}_{2}$

2．Eubasidii．

（1）Protobasidiomycetes．
Endophyllaceae．
Endophyllum Euphorbiae DC．MI U_{I} Melampsoraceaf．
Melampsora betulina Tul．Miz Li U_{1}
circaeae Schum．L 2
epitea Thum。 L 2
farinosa Sihroet．M2 CI L2 $\mathrm{I}_{2} \mathrm{UI}_{1}$
Helioscopiae Cast． $\mathrm{Mr}_{2} \mathrm{~L} 2 \mathrm{~T}_{1}$ Hypericorum Schroet．CI $\mathrm{L}_{2} \mathrm{U}_{\mathrm{U}} \mathrm{I}$ lini Tul． $\mathrm{M}_{2} \mathrm{CI}_{1} \mathrm{~L}_{2} 3 \quad \mathrm{U} \mathrm{I}_{2}$
populina Lév． $\mathrm{M}_{2} \mathrm{~L} 2$
Vacciniorum Schroet．L 2
Vitellinae Thum．M 2

Coleosporium Campanulac Lét．M I_{2}
Euphrasiae Wint。 $\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{~L}_{2}{ }_{3} \mathrm{U}_{1}$ Senecionis Fr．M $2 \mathrm{C}_{1} \mathrm{~L}_{2} 3$ Sonchi Lév．Miz Ci Li 3 U：
Calsptospora Goeppertiana［Kühn．］U 2 Pccointaceae．
Gymnosporangium clavariiforme Rees． $\begin{array}{lll}\mathrm{M} & \mathrm{L}_{2} & \mathrm{U} \mathrm{I}_{2}\end{array}$
juniperinum $F r, \mathrm{M}_{2} \mathrm{CI}_{\mathrm{I}} \mathrm{L}_{2}$
Sabinae Tint． $\mathrm{M}_{2} \mathrm{~L}_{2}$
Uromyces Alchemillae Fuck． $\mathrm{L}_{2} \mathrm{U}_{2}$ Anthyllidis Schroet．CI Liz
Betae Rüinn．L 2
Dactylidis Otth。 $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{\mathrm{I}} 2$
Dianthi Niessl．Lz
Fabae de Bary．MI2 Li U_{1}
Ficariae Lév．L $2 \mathrm{U}_{1}$
Geranii Otth．L 23
Parnassiae DC．L 2
Rumicis Wint． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{UI}_{2}$
Scillarum Wint．U12
Trifolii Lév．C i
Valerianae Fick． $\mathrm{C}_{1} \mathrm{~L}_{3}$
Puccinia aegra Grove．U I
Aegopodii Link．UI 2
Agrostidis Plow．U I
Angelicae Fuck： \mathbf{L}_{3}
annularis Tint． L_{2}
Barsi Fint．L 2
bullata Schroot．L 23 U 1
Bunii Wint．L 2
Buxi $D C$ ．Lisu U12
Calthae Link．L 2 U ，

1V. Basidionycetes-continued.

Puccinia Caricis Rebent. $\mathrm{C}_{1} \mathrm{~L}_{2}$ Circaeae Pers. $\mathrm{M}_{2} \mathrm{~L}_{2}{ }_{3} \quad \mathrm{U}_{2}$ coronata Corda. $\mathrm{L}_{2} 3 \mathrm{U}_{2}$
Epilobii DC. $\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{~L}_{2} \quad \mathrm{U}_{2}$ Fergussoni $B . 母 B r, L_{2}$
fusca Relh. Li 2 I
Galii Scheoin. Lz
Glechomatis DC. $\mathrm{L}_{2} 3 \mathrm{U} 1$
glomerata Grev. L $2 \mathrm{U}_{1} 2$
graminis Pers. $\mathrm{M}_{12} \mathrm{~L}_{2} \mathrm{U}_{12}$
Hieracii Mart. $\mathrm{M}_{2} \mathrm{C}_{1} \mathrm{~L}_{2} 3_{1} \mathrm{U}_{1}$
Hydrocotyles Cooke. I, z
Lapsanac Fuck. L 2
Mulracearum Mont. Lis 3 U
Menthae Pers. M2 L23 U12
Moliniae Tul. $\mathrm{C}_{1} \mathrm{~L}_{2}$
oblongata [Tint.] M2 L/2
obscura íchroet. L_{2}
Phalaridis Plow. Li Uir
Phragmitis Kurn. $\mathrm{L}_{2} \mathrm{U}_{12}$
Pimpinellac Link. $\mathrm{M}_{2} \mathrm{C} 1 \mathrm{~L}_{2} 3$
Poarum Niels. $\mathrm{M}_{2} \mathrm{~L}_{2} 3 \mathrm{U} 1$
Polygoni Wint. $\mathrm{M}_{2} \mathrm{~L}_{3}$
Irenanthis Fuck. C' 2
Primulac Duby. $\mathrm{M}_{2} \mathrm{C}_{8} \mathrm{~L}_{2} 3 \mathrm{U}_{2}$
pringaheimiana Klebahn. $\mathrm{M}_{2} \mathrm{~L}_{2}$ U 12
Pruni Pers. LI
Rubigo-vera Wint. L2
sanimalac Giren. $\mathrm{C}_{1} \mathrm{~L}_{2} \mathrm{U}_{1}$
Saxifragae Schlecht. M I Lz
sessilis Schneid. L 2 Uै
silenes Schroet. Lz
silvatica Schroet. U 12
simyrnii Cordn. L 2 U 1
suareolens Rostr. $\mathrm{M}_{2} \mathrm{~L}_{23} \mathrm{U}_{82}$
Taraxaci Ploor. C $1 \mathrm{~L}_{2} 3$
uliginosa Juet. L 2
Umbilici Guep. $\mathrm{I}_{2} \mathrm{U}_{2}$
Teronicae Wint. L_{23}
Vincae DC. $\mathrm{M}_{1} \mathrm{~L}_{2}$
Violae DC. $\mathrm{M}_{1} \quad \mathrm{C}_{1} \quad \mathrm{~L}_{2} 3 \quad \mathrm{U}_{2}$

Phragmidium Fragariastri Schroet. C I L 2
Potentillae Farst. M2 Li U12
Rubi Wint. $\mathrm{M}_{2} \mathrm{~L}_{2}$
Rubi-idaei Karst. Mi Li UI2
Sanguisorbae Schroet. C I
subcorticatum Wint. C $1 \mathrm{~L}_{2}$
Tormentillac Fuck. L 2
riolaceum Wint. Ci L_{2}
Triphragmium Ulmariae Link. $\mathrm{M}_{1} \mathrm{C}_{1}$ L 23

Adrictlarlaceae.
Auricularia mesenterica Fr 。 $\mathrm{M}_{2} \mathrm{~L}_{2}$
Hirneola Auriculat-Judae Berk. M 2
$\mathrm{L}_{2} \mathrm{U}_{1} 2$
Pilacraceae.
Stilbum vulgare Tode, $\mathrm{L}_{2} \mathrm{U}_{2}$
Trfarllacfae.
Exidia altida Bref. M12 Li $2 \mathrm{Ur}_{2}$
glandulosa $\mathrm{Fr} . \mathrm{M}_{1} \mathrm{C}_{1} \mathrm{~L}_{2}$
recisa Fr . M 1
Llocolla foliacea Bref. Li Ui2
Tremella fimbriata Pers. $\mathrm{M}_{2} \mathrm{U}$ I
indecorata Sommf. M1 CI L2
intumescens Sow. M12 Ui
mesenterica Retz. M12 $\mathrm{C}_{1} \mathrm{~L}_{2}$ U 12
riscosa Berk. L 2
Nacmatilia encephala Fr. UI
(2) Autobasidiomyctes.

Dacbomycetaceae.
Dacromyces deliquescens Duby. L 2
macrosporus B. \& Br . L 2
stillatus Nees. $\mathrm{M}_{2} \mathrm{C} 8 \mathrm{~L}_{2} \mathrm{U}_{12}$
Guepinia merulina Quel. L 2
Calocera cornea Wint. $\mathrm{L}_{2} \mathrm{U}_{2}$
viscosa Fr . L_{2}
Exobasidiacrae.
1:xobasidium Vaccinii Wor. $\mathrm{L}_{2} 3$
Hypichsachae.
Tomentella ferrugivea Pers. L 2

IV. Basidiomycetes-continued.

Thelerhoraceae.
Corticium arachnoideum Ber\%. U 12
calceum Fr. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
cinereum Pers. M_{2}
coeruleum Pers. L $2 U_{2}$
comedens Fr. U I
confluens Fr . $\mathrm{II}_{2} \mathrm{U}_{2}$
evolvens $F r$. U I
ferrugineum Pers. L 2
lacteum Fr . U_{2}
laeve Fr. Li $2 \mathrm{U}_{2}$
nudum $F r . \mathrm{U}_{\mathrm{I}}$
ochraceum Fr. M_{2}
Sambuci Fr . L 2 vagum $B . \& C$. Ireland
Coniophora byssoidea Karst. M 2 puteana Mass. Li 2 sulphurea Mass. L 2
Stereum ferrugineum Fr. Ireland hirsutum Fr. M12 L2 $2 \mathrm{Ul}_{2}$ purpurcum Pers. M $2 \mathrm{~L}_{2} \mathrm{U}_{1} 2$ rugosum Pers. M_{2} sanguinolentum Fr . M $2 \mathrm{U}_{\mathrm{I}}$
Thelephora anthocephala Fr. L 2
caesia Pers. L $2 \mathrm{U}_{1}$
caryophyllea Pers. M 2
cristata Fr. L $2 \mathrm{U}_{1}$
intybacea [Pers.]. M 2
laciniata Pers. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
mollissima Pers. U I
setacea Berk. L 2
terrestris Ehr. L 2
undulata Fr . M. 2
Craterellus clavatus Fr. L 2
cornucopioides Fr. $\mathrm{L}_{2} \mathrm{U}_{1}$
lutescens Fr . M_{2}
sinuosus Fr. L 2 UI
Cyphella capula Fr. L 2
dochmiospora B. \& Br. L 2
Goldbachii Weinm. L 2
Pimii Phill. L 2
villosa Farst. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$

Solenia anomala Fr. L 2
Peniophora cinerea Cooke. L 2
quercina Cooke. Mis $\mathrm{L}_{2} \mathrm{U}_{1}$
rosea Mas8. L_{2}
velutina Cooke. U 12
Hymenochaete avellana Lév。M 2 corrugata Lév. L 2
rubiginosa Lév. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1} 2$
Clavariaceae.
Typhula erythropus Fr. M I_{2}
gyrans [$F_{r} \cdot$]. $\mathrm{M}_{2} \mathrm{~L}_{2}$
tenuis Sow. M 2
Clavaria abietina Schum. $\mathrm{N}_{2} \mathrm{~L}_{2}$
acuta Sow. M 2
argillacea Fr . M_{2}
cinerea Bull. $\mathrm{M} \mathrm{I}_{2} \mathrm{U}_{2}$
contorta Holmsk. L 2
coralloides Limn. M i $2 \mathrm{~L}_{2} \mathrm{U}_{1} 2$
cristata Holmsk. M $\mathrm{I}_{2} \mathrm{~L}_{2}$
fastigiata Linn. MI2 $\mathrm{L}_{2} \mathrm{U}_{12}$
fragilis Holmsk. M1 $2 \mathrm{~L}_{2} \mathrm{U}_{1}$
fusiformis Sow. Mir $\mathrm{L}_{2} \mathrm{U}_{\mathrm{I}}$
inaequalis $F l$. Dan. $\mathrm{MI}_{1} \mathrm{~L}_{2} \mathrm{U}_{2}$
juncea Fr. MI L 2
pistillaris Linn. U_{2}
purpurea Milll. L 2
rugosa Bull. M $2 \mathrm{~L}_{2} \mathrm{U}_{12}$
stricta Pers. MI_{I}
tuberosa Sow. U 2
uncialis Grev. $\mathrm{M}_{2} \mathrm{~L}_{2}$
vermicularis Scop. $\mathrm{H}_{2} \mathrm{~L}_{2}$
Pistillaria culmigena $\mathrm{Fr}, \mathrm{L}_{2}$
micans $F r$. UI
puberula Berk. U 2
quisquiliaris $\mathrm{Fr} . \mathrm{M}_{2} \mathrm{~L}_{2}$
Sparassis laminosa [Fr .] U U_{2}
Hydnaceae.
Phlebia contorta Fr , L 2
Grandinia granulosa $F r . \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
Olontia barba-Joris Fr . $\mathrm{M}_{2} \mathrm{~L}_{2}$
fimbriata Pers. L 2

IV．Basidiomyceres－continued．

Radulum laetum Fr ．L 2 orbiculare $F r$ ．L $2 \mathrm{U}_{1}$ quercinum Fr． L_{2}
Hydnum alutaceum Fr． L_{2} auriscalpium Linn．M $2 \mathrm{~L}, 2$ cinereum Bull．L 2 cyathiforme［Schaeffl］Mz denticulatum Pers．L 2 farinaceum Pers．M1 ferrugineum $\mathrm{Fr} . \mathrm{L}_{2}$ graveolens Del．Ui imbricatum Linn．3I niveum Pers．L_{2}
ochraceum Pers． $\mathrm{N}_{2} \mathrm{~L}_{2}$
plumosum Duby．I． 2 pudorinum Fr．L． 2 Tepandum Linn．M12 L $2_{3} \mathrm{U}_{1} 2$ rufescens Pers．L 2 udum Fr．M $2 \mathrm{~L}=$ zonatum Batach． M_{2}
Irpex fusco－riolaceus Fir I， 2 heterodon Sace． 1.2 obliquus $\operatorname{Fr} . \mathrm{L}_{2} \mathrm{U}$ 8 Polypghacfae．

Merulius corium Fr． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$ lachrymans Fr ． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
Poria bombycina Fr． L_{2}
ferruginosa Mas8．M12 I． $2 \quad \mathrm{U}_{2}$
hibernica If．ọ Br．I，z
medulla－panis Cooke U12
mollusca Pers． M_{2}
obducens Pers．L 2
purpurea Cooke．U 1
ralula Fr ． L_{2}
sanguinolenta $[$ A．s．S．$] \quad \mathrm{L} z$
raporaria Fir．M，$L_{2} 3 \mathrm{U}$ ，
violacea Cooke．CB
vitrea Pers．L 2
vulgaris $\operatorname{Fr} . \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{CO}_{2}$
Fomes annosus Fr ， $\mathrm{L}_{2} \mathrm{C}_{1}{ }_{2}$
applanatus Frallr．L 2

Fomes cytisinus Berk．Li 2
fomentarius Fr ．Mr Liz JIm_{2}
fraxinens $F r$ ． $\mathrm{L}_{2} \mathrm{U}_{2}$
fulcus Fr． L_{2}
igniarius Fr ． $\mathrm{M}_{12} \mathrm{~T}_{2} \mathrm{U}_{1}$
Ribis Fr ． L_{2}
salicinus $F \% \mathrm{M}_{2} \mathrm{~L}_{2}$
ulmarius Fr ． L_{2}
variegatus Secr．Ci
Polyporus adustus Fr．M2 $\mathrm{I}_{2} \mathrm{U}_{1}$
amorphus $F r$ ． L_{2}
armeniacus Berk． $\mathrm{M}_{2} \mathrm{~L}_{2}$
betulinus Fr ．MI I $\mathrm{I}_{2} \mathrm{U}$
brumalis Fr ． $\mathrm{L}_{2} \mathrm{U}_{1}$
chioneus Fr ． $\mathrm{L}_{2} \mathrm{U}_{2}$
dryadeus $F r$ M $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{UI}_{2}$
elegans $F r$ ．L 2
frondosus $\operatorname{Fr}, \mathrm{M}_{2}$
fumosus $F r$ ． L_{2} U
giganteus Fr 。 $\mathrm{M}_{2} \mathrm{~T}_{2} 2_{3} \mathrm{U} 1_{2}$
hispilus $\operatorname{Fr} . \mathrm{L}_{2}$
lentus Berk． $\mathrm{L}_{2} \mathrm{U}_{2}$
melanopus Fr ． L_{2}
nidulans $\mathrm{Fr} . \mathrm{M}_{2}$
pallescens $F r, \mathrm{U}_{2}$
perconis Fr．M12 L2 U12
picipes Fr．La 2
pinicola W int． M_{2}
rufescens $F r$ ． L_{2}
salignus Fr。U12
spumeus Fr ． U_{12}
squamosus Fr ．Mif $\mathrm{L}_{2} 3 \mathrm{U} \mathrm{I}_{2}$
sulphureus Fr 。 L_{2}
varius $\operatorname{Fr}, \mathrm{L}_{2} \mathrm{U}_{1}$
I＇olystictus abictinus Fr，M2 $\mathrm{L}_{2} \mathrm{U}:$
fibula Fr 。 U＇z
radiatus $F r$ ． $\mathrm{L}_{2} \mathrm{U}_{12}$
velutinus P r． $\mathrm{L}_{2} \mathrm{U}_{1}$
versicolor Fr ． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1} 2$
Wynnei B3．\＆Mr．L 2
Trarntes mollis Fr．Le
Daedalea quercina Pora． $\mathrm{L}_{2} \mathrm{U}_{2}$

IV. Basidiomycetes-continued.

Dnedalea unicolor Fr. MI2 L2
Lonzites betulina Fr. L 2
Fistulina hepatica Fr. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
Boletus aestivalis Fr. UI
aurautiporus Fr . L_{2}
badius Linn. Li
bovinus Linn. M2 Li $\mathrm{U}_{1} 2$
calopus Fr. MI
castaneus Bull. Ui
chrysenteron $F r$. L 23 U 1
crassus Mass. L 2
cyanescens Bull. L 2
edulis Bull. M2 L2 U12
elegans Schum. M ${ }_{1} \mathrm{~L}_{2} \mathrm{U}_{1}$
flavus With. Mif $\mathrm{Cl}_{1} \mathrm{~L}_{2} \mathrm{UI}_{2}$
fragrans Vitt. U1
granulatus Linn. $\mathrm{L}_{2} \mathrm{U}_{1}$
impolitus Fr . U I 2
laricinus Berlo. MI CI L2 3 UI
luridus Schaeff. Min $\mathrm{L}_{2} \mathrm{UI}_{2}$
luteus Linn. M12 Ci L23 U12
Mac Weeneyi W. G. Sim. L 2
olivaceus Schaeff. L 2
pachypus Fr. Mı Li Uır
parasiticus Bull. L 2
piperatus Bull. M I L $2 \mathrm{U}_{2}$
porphyrosporus Fr . L 2
satanas Lenz, M1 Li UI2
scaber Fr. MI L2 U_{1}
subtomentosus Linn. M2 Li

Uil 2

sulphureus [Fr .] L 2
variecolor $B . \& B r$ U I
Ceriomyces albus Sacc. L 2
Agaricaceae.
Amanita aspera [$F r$.] M_{2}
excelsa $F r$. L 2
lenticularis [W. $G . S m.] \quad \mathrm{L}_{2}$
mappa Fr . $\mathrm{L}_{2} \mathrm{U}_{\mathrm{I}}$
muscaria Fr. $\mathrm{MI}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$

Amanita pantherina Fr 。 $\mathrm{L}_{2} \mathrm{U}_{1}$
phalloides Fr . $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
porphyria F r. L_{2}
rubescens Fr . MI Li Uil
spissa Fr. M1 Li
strobiliformis Fitt. L 2
Amanitopsis adnata W. G. Sm. U I
strangulata $R_{o z e} \mathrm{~L}_{2} \mathrm{U}_{1}$
vaginata Rose。 $\mathrm{L}_{2} \mathrm{U}_{1} 2$
Lepiota acutesquamosa Weinm. L 2
amianthina Scop. L 2
Badhami Berk. M I
cepaestipes Sow. $\mathrm{M}_{2} \mathrm{~L}_{2}$
clypeolaria Bull. $\mathrm{M}_{2} \mathrm{U}_{2}$
cristata A. \& S. MI L $23 \mathrm{U}_{2}$
delicata Fr . L 2
excoriata Schaeff. L 2
felina Pers. C I_{2}
gracilenta Kromb. U I
granulosa Batsch. L 2 U I
holosericea $\mathrm{Fr} . \mathrm{L} 2$
mesomorpha Bull. L 2
procera Scop. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{UI}_{2}$
rachodes Vitt. U 1
sistrata Fr. L 2
Armillaria mellea Vahl. M12 L2 U 12
mucida Schrad. $\mathrm{L}_{2} \mathrm{U}_{1} 2$
ramentacea Bulll. L 2
Tricholoma albellum Fr, if I
albobrunneum [Pers.] U_{I}
album Schaeff. L 2 U 1
atrosquamosum Chev. MI
brevipes Bull. Lz
caelatum Fr. L 2
cincrascens Bull. L 2
colossum Fr. U1
columbetta Fr. $\mathrm{MI}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
cuneifolium F. MI_{I}
flavobrunueum F r. MI $\mathrm{L}_{2} \quad \mathrm{U}_{8}$
fulvellum $F r$. L_{2}
gambosum $F \%$. $\mathrm{L}_{2} \mathrm{U}_{1} 2$

IV. Basidiomycetes-continued.

Tricholoma grammopodium Bull. M_{2} L2 UI
humile Pers. $\mathrm{MI}_{1} \mathrm{~L} 2$
imbricatum $F r$. $\mathrm{MI}_{2} \mathrm{~L}_{2} \mathrm{UI}_{1}$
immundum Berk. Lz
inamoenum Fr . L 2
lascirum Fr. L_{2}
luridum $F r$. L_{2}
melaleucum Pers. L 2
militare Lasch. U I
murinaceum Bull. Lz
nictitans F r. $\mathrm{M}_{1} \mathrm{~L}_{2}$
nudunt Bull. $\mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{U}_{1}$
panacolum Fr. M1 Lz
personatum Fr. Mi Ls 2 U12
pes-caprac Fr . M_{2}
resplendens Fr . L_{2}
rutilans Scheeff. $\mathrm{N}_{2} \mathrm{~L}_{2} 3 \mathrm{U}_{1} 2$
saponaceum Fr . L_{2}
sealpturatum Fr. LL 2
Schumacheri Fr. $\mathrm{L}_{2} 3$
sordidum Fr. M
spermaticum Fr. M
subpulverulentum Pers. MI Lz
sulphureum Fr . M 1_{2}
terreum Schaeff. M12 L2 $3 \mathrm{U}_{2}$
ustale Fr . M :
vaccinum $\mathrm{Fr} . \mathrm{L}_{2}$
rirgatum $\operatorname{Fr} . \mathrm{L}_{2}$
Clitorsbe bella Pers. $\mathrm{L}_{2} \mathrm{U}_{1}$
brumalis Fr . $\mathrm{L}=\mathrm{U}$,
candicans Pers. M1 L 2
cerussata Fr . M12 L 2 U I
cyathiformis Bull. MI $\mathrm{L}_{2} \mathrm{U}_{12}$
dealbata Sow $\mathrm{L}_{2} \mathrm{U}_{2}$
ectypa Fr. $\mathrm{L}_{2} \mathrm{U}_{1}$
elixa Sato. $\overline{1}$
flaccida Sne M. U i
fragrans Solo. $\mathrm{H}_{12} \mathrm{~L}_{2} \mathrm{C}_{1} 2$
fumosa Pers. Mi Lez U゙1
gallinacea Scop. $\mathrm{NI}_{1} \mathrm{~L}_{2}$
geotropa Bull. MI Lz U1

Clitocybe gilva Pers。 M I U r infundibuliformis Schaeff. $\mathrm{NI}_{\mathrm{I}} \mathrm{L}_{2}$ inornata Sow. L 2
inversa Scop. $\mathrm{L}_{2} \mathrm{U}$ I
laccata Scop. M12 L2 $2 \mathrm{U}_{12}$
maxima F_{i}. U I
nebularis Batsch. $\mathrm{L}_{2} \mathrm{U}_{1} 2$
odora Soto. Li UI
tumulosa Falch. M,
Collybia acerrata $F \% \mathrm{~L}_{2}$
atrata $F i$. L 2
butgracea Bull. L $2 \mathrm{U}_{12}$
caulicinalis Bull. U 12
clarus Linn. $\mathrm{L}_{2} \mathrm{U}_{2}$
collina Scop. L 2
confluens Pers. L 2 U I 2
conigena Pers. M $2 \mathrm{~L}_{2}$
dryophila Bull. M1 L2 I_{1}
fusipes Bull. M2 L2
inolens Fr . M,
longipes Bull. L 2
maculata A \& $^{*} S . \mathrm{L}_{2} 3 \mathrm{U}$
nitellina Fr . L_{2}
platyphylla Fr. L 2
plexipes Fr . L_{2}
protracta Fr . L_{2}
radicata Relh. M12 L2 3 Us
tenacella Pers. L 2
tuberosa Bull. М $2 \mathrm{~L}_{2}$
velutipes $F 7$. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
Mrcena acicula Schaeffi. L 2
alkalina Fr . $\mathrm{H}_{1} \mathrm{~L}_{2} \mathrm{U}$,
amicta Fr . L 2
ammoniaca Fr . L_{2}
capillaris Fr. L_{2}
cohacrens Fr . U_{2}
cortirola Fr . $\mathrm{L}_{2} \mathrm{U}_{12}$
cruenta Fr . L $2 \mathrm{C}_{2}$
dissilicns Fr . M_{1}
clegans Pers. $\mathrm{L}_{2} \mathrm{U}_{2}$
cpiptersgia Siop. $\mathrm{H}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
Glopes Bull. C1 L 2

IV．Basidiomyentes－continued．

Mycena galericulata Scop，Miz Li U 12
galopus Fr ． $\mathrm{MI}_{2} \mathrm{~L}_{2}$
haematopus Pers．L 2
hiemalis Osbeck． L_{2}
iris Berk．L 2
juncicola $F r$ ， C_{I}
lactea Pers．L 2 U I
leucogala Conke．Li 2
pelianthina Fr．M I U 2
pelliculosa Fr ．UI
polygramma Bull．MI2 L2
prolifera Sow．M 1
pterigena Fr． L_{2}
pullata Berk．\＆f Cooke，L 2
pura Pers．Mi2 Li Uiz
rorida $F r$ ．UI
rugosa $\mathrm{Fr}, \mathrm{L}_{3}$
sanguinolenta A ． \mathfrak{y} S．M $2 \mathrm{~L}_{2}$
speirea $F r$ ．L 2
stylobates Pers．Ci Li U_{1}
tenella $F r$ ．U i
tenerrima Berk．MI Ci L 23
tintinnabulum Fr ． L_{2}
vitilis Fr ．MI L 2
vulgaris Pers．M I L 2
Omphalia fibula Bull．M12 Ci L 2 UI
grisea Fr．UI
integrella Pers．L 2
muralis Sow．M I L 2
pysidata Bull．Mi L $2 \mathrm{U}_{2}$
rustica Fr． L_{2}
stellata Fr． U_{2}
telmatiaea Berk．\＆Cooke。 L 2
umbellifera Linn．M1 Li U12
Pleurotus acerosus $F r$ 。 $\mathrm{C}_{1} \mathrm{~L}_{2} \mathrm{U}_{2}$
applicatus Batsch． $\mathrm{M}_{2} \mathrm{U}_{2}$
corticatus Fr 。 $\mathrm{L}_{2} \mathrm{U}_{3}$
craspedius Fr． L_{2}
dryinus Pers． $\mathrm{L}_{2} \mathrm{UI}$
lignatilis $F r$ ．M I
r．f．A．PROC．，VOL．XXVIII．，SECT．B．

Pleurotus mitis Pers．MI L 2
salignus Pers．U I
septicus $\mathrm{Fr} . \mathrm{L}_{2}$
subpalmatue Fr． L_{2}
ulmerius Bull ．L $2 \mathrm{U}_{1}$
Volvaria bombscina Fr．U 2
parvula Fr． L_{2}
speciosa $\operatorname{Fr} . \mathrm{L}_{2} \mathrm{U}_{2}$
Pluteus cervinus Schaeff．$L_{2} 3$ UI
Entoloma ameides B．\＆Br．UI
clypeatum Linn．U 2
costatum Fr ． L_{3}
helodes Fr 。 MI CI UI
jubatum Fr ． $\mathrm{L}_{2} \mathrm{UI}_{\mathrm{I}}$
nidorosum $\mathrm{Fr} . \mathrm{L}_{2} \mathrm{U}_{1}$
rhodopolium Fr． $\mathrm{L}_{3} \mathrm{U}_{1}$
sericellum Fr ．L 2
sericeum Fr． $\mathrm{L}_{2} \mathrm{U}_{1}$
sinuatum Fr ． U_{2}
Clitopilus carneoalbus $W_{i t h}$ ．L 2
cretatus $B . \S B r . L_{2}$
prunulus Scop． $\mathrm{L}_{2} \mathrm{U}_{2}$
Leptonia aethiops Fr．M 1 L 2
chalybaea Pers． $\mathrm{M}_{2} \mathrm{U}_{2}$
incana Fr ．L 2
lampropus Fr． L_{2}
solstitialis Fr．M I
Nolanea pascua Pers． $\mathrm{H}_{1} \mathrm{~L}_{2} \mathrm{U}_{2}$
pisciodora Cesati L 2
rufo－carnea Berk．U I
Eccilia griseorubella Lasch． L_{2}
Claudopus depluens Batsch．C i L 2
variabilis Pers，M2 Li Ui 2
Pholiota adiposa Fr，L 2
aurea Matt． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}$ ：
aurivella Batsch．L 2
caperata Pers．U 2
capistrata Cooke．L 2
dura Bolion．L 2
evebia［ Fr ．］ L_{2}
Junonia Fr 。 U 1
marginata Batsch．L 2

IV．Basidionycetes－continued．

Pholiota mutabilis Schaeff．L $2 \mathrm{U}_{2}$
praecox Pers．L 2
spectabilis $F r$ ．L $2 \mathrm{U}_{1} 2$
squarrosa Ifüll。 MI2 L2 U！2
Inocybe asterospora Quél．L 2
calamistrata Fr ．L 2 UI
cincinnata Fr ．L 2
Curresi Berk．L z
destricta Fr ．L 2
eutheles $B . \& B r$ ．MI LIz
fastigiata Schaeff．MI L 2
fibrosa Sow． $\mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{U}_{1}$
floceulosa Berk．M ：
geophylla．Fr．MI2 L2 Uiz
hiulca Fr ．MI
lanuginosa Bull．M1 L゙ I
perlata Cooke．L 2
plumosa Bollon．M\＆EI
pyriodora Pers．M I Lz
rimosa Bull． $\mathrm{H}_{1} \mathrm{~L}_{2} \mathrm{~L}_{2}$
scabra Fr． $\mathrm{L}_{2} \mathrm{C}_{2}$
Hebeloma crustulinitorme Bull．Ma L2 じ
fustibile Fr． $\mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{C}_{12}$
longicautum Pers．M I L_{2}
mesophaeum Fr．MI
sinapizans Fr．CV12
testaceum Batsch．L 2
Flammula flavidu Sohneff．Ita C_{2}
inopus Fr． $\mathrm{M}_{2} \mathrm{~L}_{2}$
lenta Pers． $\mathrm{KI}_{\mathrm{I}} \mathrm{L}_{2}$
sapinea Fr．で।
Naucoria balipes Fr．L 2
conspersa Pers．MI L 2
crinarea Fr ．L 2
escharoides Fr 。 $\mathrm{L}_{2} \mathrm{U}_{1} 12$
melinoides Fr ． L_{2}
pediates Fr． $\mathrm{M}_{1} \mathrm{~L}_{2}$
scolecina Fr．L 2
semiorbicularis Bull．L 2
sideroiles Bull．L 2

Galera hypnorum Batsch．Miz Ci
$\mathrm{L}_{2} 3 \mathrm{U}$ I
mniophila Lasch．L 2
oralis Fr ．L 2
rubiginosa Pers．L 2
tenera Schaeff． $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{UI}_{2}$
Tubaria furfuracea Pers．L 2
paludosa Fr ． L_{2}
pellucida Bull．M 2
Crepidotus alreolus Lasch． L_{2}
chimonophilus $B . \S B r . \mathrm{L}_{3}$
mollis Fr ．L 2 U I
Psalliota arrensis Schaeff．L2 23 UI 2 campestris Linn．Mi2 Ci Lil 23 UI 2
haemorrhoidaria Ifagnes．J 2
silratica Quèl．MI L 2
xanthoderma Genev．L 2
Stropharia acruginosa Curt． $\mathrm{M}_{2} \mathrm{~L}_{2}$ U12
albocyanea Desm．L 2
inuncta Fr ． L_{2}
semiglobata Batsch．MI2 CI L2 U 12
stercoraria Fr ． L_{2}
Hspholoma appendiculatum Bull．La 2 U ！
dispersum Fr ． L_{2}
egenulum $B . \mathcal{F}^{-} \mathrm{Br} . \mathrm{L}_{2}$
epixanthum Fr． $\mathrm{L}_{2} 3$
fasciculare \boldsymbol{H} uds．M12 $\mathrm{M}_{2} 3 \mathrm{U}_{12}$
bydrophilum Bull． L_{2}
lacrymabundum Fr．U：
sublateritum Schaeff． $\mathrm{L}_{2} 3 \mathrm{U}_{2}$
velutinum Pers．L 2
Psilocybe areolata Klotsch． $\mathrm{L}_{2} 3$
cernua Mull．Mi
clivensis $B . \S B r . \mathrm{L}_{2}$
ericacea Pers． $\mathrm{M}_{2} \mathrm{~L}_{2}$
foenisecii Pers．Li U
semilanceata Fr ． $\mathrm{MI} \mathrm{L}_{2}$
spadicea Fr ．L 2

> IV. Basidiomycetes-continued.

Psilocybe sublateritius Fr. II_{2}
Psathyra corrugis Pers. L_{2} spadiceogrisea Schaeff. L 2
Anellaria fimiputris Karst. M i C $1 \mathrm{~L}_{2}$ U12
separata Karst. $\mathrm{L}_{2} \mathrm{U}_{12}$
Panaeolus campanulatus Linn. \mathbf{L}_{2} papilionaceus $F r$. L 2
phalaenarum Fr. Cl I_{2}
Psathyrella atomata $\mathrm{Fr} . \mathrm{L}_{2}$
disseminata Pers. $\mathrm{M}_{2} \mathrm{~L}_{2} 3 \quad \mathrm{U}_{12}$
gracilis $F r, \mathrm{~L}_{2}$
hiascens Fr. U 1
Coprinus atramentarius Fir. M1 L L_{2} UI 2
comatus Fr. M $2 \mathrm{~L}_{2} 3 \mathrm{UI}_{2}$
congregatus Fr. M 2
deliquescens Fr. L_{2}
domesticus Fr. L_{2}
ephemerus Fr. $\mathrm{CI}_{3} \mathrm{~L}_{3}$
extinctorius $\operatorname{Fr} \mathrm{L}_{2}$
fuscescens $F r$. UI
hemerobius $F r$. $\mathrm{L}_{2} \mathrm{U}_{1}$
lagopus Fr. L_{2}
micaceus $F r . \quad \mathbf{M}_{2} \quad \mathrm{~L}_{2} 3 \mathrm{UI}_{2}$
niveus $F r . \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
ovatus $F r$. U_{2}
picaceus $F r$. U I
plicatilis Fr. $\mathbf{M}_{2} \mathrm{~L}_{2} \quad \mathrm{U}_{12}$
radiatus $F r$. $\mathrm{M}_{2} \mathrm{~L}_{2}$
tomentosus Fr. L_{2}
Bolbitius Boltonii Fr. U_{2}
fragilis Fr. $\mathrm{L}_{2} \quad \mathrm{U}_{2}$
tener Berk. L 23 UI
Cortinarius (Pblegmacium) claricolor Fr. M I
fulgens $F r$. L 2
glaucopus $F r_{0} \mathrm{~L}_{2}$
infractus $F r$. L_{2}
largus Fr. \mathbf{L}_{2}
purpurascens $F r$. $\mathrm{L}_{2} \mathrm{U}_{\mathrm{I}}$
scaurus $F r$. U 2

Cortinarius talus $\mathrm{Fr}_{\mathrm{r}} \quad \mathrm{L}_{2}$
testaceus Cooke. M 2
turbinatus Fr. L_{2}
varius Fr. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{1}$
(Myxacium) collinitus $\mathrm{Fr} . \mathrm{L}_{2} \mathrm{U}_{2}$ elatior Fr. L_{2}
(Inoloma) alboviolaceus Fr. L_{2}
Bulliardii Fr . U_{2}
callisteus Fr. U I
camphoratus Fr. MI
cyanites Fr . U I
pholideus Fr. M I
sublanatus Fr. $\mathrm{L}_{2} \mathrm{U}_{2}$
violaceus Linn. $\mathbf{M}_{2} \mathrm{~L}_{2}$
(Dermocybe) anomalus Fr. $\mathrm{L}_{2} \mathrm{U}_{1}$ caninus Fr. L_{2}
cinnamomeus $F r$. $\mathrm{M}_{1} 2 \mathrm{~L}_{2}$ U_{12}
militinus $\operatorname{Fr}, \mathrm{L}_{2}$
sanguineus $F r$. $\mathrm{M}_{2} \mathrm{~L}_{2}$
uliginosus Berk. L_{2}
(Telamonia) evernius Fr. U_{2}
gentilis $F r . \mathrm{U}_{2}$
helvolus Fr . M2
hemitrichus $F F_{0} . \mathrm{L}_{2}$
hinnuleus $F r$. L_{2}
iliopodius Fr. M_{2}
paleaceus Fr. I 2
torvus Fi . L_{2}
(Hydrocybe) acutus $\mathrm{Fr}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
armeniacus $F r$, MI \mathbf{L}_{2}
castaneus $F r \cdot \mathrm{~L}_{2}$
dilutus $F r$. U_{2}
leucopus Fr. L_{2}
(Gomphidius) slutinosus $F r, \mathrm{~L}_{2} \mathrm{U}_{1}$
gracilis Berk. L_{2}
riscidus Fr. $\mathrm{L}_{2} 3 \mathrm{U}_{12}$
(Paxillus) giganteus $\mathrm{Fr} . \mathrm{M}_{2} \mathrm{U}_{2}$
incolutus Fr . $\mathrm{M}_{\mathrm{I}_{2}} \mathrm{~L}_{2} \mathrm{U}_{12}$
panaeolus $F r, \mathrm{~L}_{2}$
pannoides $F r^{\circ}$. L 2
$\left\lceil X^{*}\right]$

IV. Basidiomycetes-continued.

Hygrophorus (Limacium) eburneus Bull. L2 U12
hypothejus Fr . M2 (Camarophyllus) nemoreus $\mathrm{Fr}, \mathrm{I}_{3}$
niveus Fr. $\mathrm{L}_{2}{ }_{3} \quad \mathrm{U}_{1}$
orinus Bull. $\mathrm{H}_{1} 2 \mathrm{~L}_{2} \mathrm{O}_{2}$
pratensis Fr. M1 Liz U1
russocoriaceus B. \& Br 。 L 3
virgineus $W_{u l f}$. M12 L2 U1
(Hygrocsbe) calpstraeformis Berk.
$\begin{array}{ll}\mathrm{M} & \mathrm{L} \\ 2\end{array}$
ceraceus $W_{\text {ulf. }} \mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{U}_{1}$
chlorophanus Fr. $\mathrm{L}_{2} \mathrm{Cl}_{2}$
coccineus Schaeff. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{12}$
conicus Fr. MI L2 $\mathrm{I}_{3} \mathrm{U}_{1}$
Houghtunii Fr. Ms
intermedius Pass. U 3
lactus Fr. M $1 \mathrm{~L}_{2}$
miniatus Fr. M1 L 2 C d
nitratus Pers. L 2
obrusseus Fr. UII
psittacinus Schaeff. MI2 L_{2} С $1 \approx$
puniceus for. M2 L2 U゙2
unguinosus $\mathrm{Fr} . \mathrm{L}_{2}$
Lactarius acer Fr . M_{2}
blennius fir. $\mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{C}_{\mathrm{B}} \mathrm{C}$
camphoratus Fr . L 2
chrssurchens Fr. LIz
cilicioides $\mathrm{Fr} \mathrm{r} . \mathrm{U}_{2}$
circellatus Fr . J. 2
controveraus Pers. Mz ľa
deliciosus Fr. M12 1 \& $2 \mathrm{U}_{12}$
fuliginusus Fr . L_{2}
glyciosmus Fr . $\mathrm{S}_{1} \mathrm{~L}_{2}$.

insulsus Fr . $\mathrm{M}_{1} \mathrm{~L}_{2}$
mitissimus Fr. M 1 ए
pallidus Fr. Ms L2 U_{12}
pergamenus Fr . C!
piperatus Fr . L $\mathrm{I}_{1} \mathrm{I}_{1}$
Pyrozalus Fr . M I L. 2

Lactarius quietus Fr . $\mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{U}_{12}$
rufus Scop. Li $2 \mathrm{U}_{2}$
scrobiculatus Fr. M $2 \mathrm{~L}_{2}$
serifluus Fr. M1 L $2 \mathrm{U}_{1} 2$
subdulcis Fr. Mr Liz U12
subumbonatus Lindgr. L_{2}
theiogalus Fr . $\mathrm{M}_{2} \mathrm{UI}_{\mathrm{I}}$
torminosus Schaeff. MI Li UIz
turpis Fr . MI Li UI
vellereus $F r$. $\mathrm{Mr}_{\mathrm{I}} \mathrm{L}_{2} \mathrm{Ur}$
rolemus Fr. Ul : Li UI
zonarius $F r$. $\mathrm{L}_{2} \mathrm{U}_{12}$
Russula adusta F r. Ma Le UI
alutacea Fr. M1 L2 U2
armeniaca Cooke, L_{2}
consobrina Fr. L 2
cyanoxantha Schaeff. L2
decolorans $\mathrm{Fr}, \mathrm{L}_{2}$
delica Fr. $\mathrm{L}_{2} 3$
depallens Fr. L_{2}
drimeia Cooke $\mathrm{L}_{2} \mathrm{U} 1$
emetica Fr. M12 L2 U12
fellea Fr. L_{2}
foetens $\mathrm{Fr} . \mathrm{L}_{2}$
fragilis Fr. M8 L2 UI
furcata $\mathrm{Fr} \% \mathrm{M}_{1} \mathrm{~L}_{2}$
galochroa Fr. L_{2}
granulosa Cooke. L 2
heterophylla Fr. Mi Le U2
integra Fr. $\mathrm{L}_{2} \mathrm{U} 1$
lepida Fr. L 2
lutea Fr . M2 Lz
nigricans Fr. $\mathrm{M}_{1} \mathrm{~L}_{2} \mathrm{Ui}_{2}$
ochroleuca Fr. M1 L 2
puellaris Fr . L_{2}
Queletii Fr . L_{2}
rosacea Fr . M,
rubra Fr. L2 U12
sardonia Fr. M I L 2
subfoetens $\boldsymbol{W} \cdot G \cdot S m . \mathbf{L}_{2}$
resca Fr. Lz

Adams and Pethybridge-A Census Catalogue of Irish Fungi. 147
IV. Bastimomyetrs-continued.

Russula virescens Fr. $\mathrm{N}_{1} \mathrm{~L}_{2} \mathrm{U}_{1}$
Cantharellus albidus Fr. C I
aurantiacus Fr . $\mathrm{L}_{2} \mathrm{U} 1$
cibarius $F r$. $\mathrm{MI}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
cinereus $F r$ 。 L_{2}
lobatus $\mathrm{Fr} . \mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
muscigenus Fr . L_{2}
retirugus Fr. L_{2}
tubaeformis Fr . L_{2}
Nyctalis asterophora Fr. L_{2}
parasitica $F r . \mathrm{L}_{2}$
Marasmius androsaceus Fr. M2 CI
$\mathrm{L}_{2} \mathrm{U}_{2}$
caulicinalis $F r$. L_{2}
epiphyllus $F r$. L_{2}
erythropus $F r$. U_{I}
graminum Berk. L_{2}
Hudsonii Pers. L 2
impudicus Fr. L_{2}
institius [Fr .] L_{2}
oreades Fr. $\mathrm{M}_{2} \mathrm{~L}_{2} 3 \mathrm{U}$ I
perforans Fr . M_{2}
peronatus Fr. $\mathrm{L}_{2} \mathrm{UI}_{\mathrm{I}}$
ramealis Fr. M2 Cı Lz
rotula Fr. $\mathrm{MI}_{2} \mathrm{~L}_{2} 3 \mathrm{U}_{1} 2$
terginus Fr . L_{2}
urens $F r$. Mr Li $2 \mathrm{UI}_{1}$
Vaillantii Fr. L_{2}
Lentinus cochleatus Fr . M 2
flabelliformis Fr . U 2
lepideus Fr. M2 I: 2
tigrinus Fr . U_{2}
Panus stypticus Fr. L 2
torulosus Fr . L_{2}
Schizophyllum commune Fr. M 2

Clathracrae.

Clathrus cancellatus Tournef. $\mathrm{M} \times$

Peallaceae.
Mutinus caninus Fr . L 2
Ithyphallus impudicus Fisch. M: 2
$\mathrm{L}_{2} 3 \mathrm{U}_{12}$
Hymenogastraceae.
Hymenogaster vulgaris Tul. L 2
Octaviania asterosperma Vitt. L 2
Lycoperdactae.
Lycoperdon Bovista Linn. $\mathrm{M}_{2} \mathrm{~L}_{2} 3$ Ul2
caelatum Bull. Mi Li Uiz
excipuliforme [Pers.] M 2
gemmatum Batsch. $\mathrm{MI}_{2} \mathrm{~L}_{2} 3 \mathrm{U}_{12}$
pyriforme Schaeff. $\mathrm{M}_{2} \mathrm{~L}_{2}{ }_{3} \mathrm{UI}_{2}$
saccatum Fahl. MI Li UI_{1}
Bovista nigrescens Pers. MI 2 L 2 U 12
plumbea Pers. M2 Li Ui
pusilla Pers. $\mathrm{M}_{2} \mathrm{U}_{2}$
Geaster fimbriatus Fr 。 M 23 L 2
Michelianus W. G. Sm. L_{2}
rufescens Pers. $\mathrm{M}_{2} \mathrm{~L}_{2}$
Nidolariackae.
Nidularia pisiformis Tul, L_{2}
Crucibulum vulgare $T_{\mathrm{iul}} \mathrm{l}_{1} \mathrm{M}_{2} \mathrm{~L}_{2} \quad \mathrm{U}_{2}$
Cyathus striatus Hoffin. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$
vernicosus $D C$. $\mathrm{M}_{2} \mathrm{~L}_{2} \mathrm{U}_{2}$ Sclerodermataceae.
Scleroderma Bovista Fr. Mi LI U_{2}
cepa [Pers.] M.
Geaster [Fr.] L_{2}
verrucosum $P_{\text {ers. }} \mathrm{M}_{2} \mathrm{~L}_{2}$
vulgare Fi. M12 $\mathrm{L}_{2} 3 \mathrm{U}_{2}$
Spiaierobolaceae.
Sphaerobolus stellatus Tode. $\mathrm{M}_{2} \mathrm{~L}_{2}$ U_{2}

V．FUNGI IMPERFECTI．

1．－Sphaeropsidales．

Sphareriotdaceae．
Phyllosticta atro－zonata Voss．L 2
Phoma asteriscus Bull．L 2
concentricum Desm．U I
Grossulariae Schuls et Succ．Ireland solanicola Pril．et Det．L 2
Cicinnobolus Ulicis Adtmes．L 2
Asteroma reticulatum Berk．U＇I
rosae $D C$ ．M \＆ Lz
Vermicularia Dematium Fr ． L_{2}
Cstospora carphosperma Fr．M 2
leucosperma Pers．M2
Ceuthospora lauri Grev． C_{2}
Ascochyta dianthi Berk．U＇ı graminicola Suctce．L_{2}
Diplodina Salicis Teal．M3
Diplodia herbarum Ler．L 2
Ilicis Fr ．Ü 2
Tuxi de Vul．L゙z
Dichomera Saubinetii Corke．L 2
Septoria aceris R．\＆Br．L 2 Castanicula Deam．U＇ 1 Petroselini Desm．Irelamd Veronivae Desm．Lz

Lehtostrimaticyak．
Piggottia astroilea B．y．Br Le La gladioli Pim．Le 2
Actinothrrium praminis Kimze．Mz Excipciacraz．
Dinemasporium graminum［Ler．］．L． 2 Discella carbonacea B．© ${ }^{\text {d }} \mathrm{Pr}$ ．U＇

> 2.-Melanconiales.

Melacomhcraf．
Giveosporimm ficariac Berk． L_{2} fructigenum Berk．L 2 Orchidearum Farat．et Ilirr．Lz
Melanconium bicolor Mees．C＇ 1 Pandani Lío．L 2
Coryneum Beijerinckii Oudem．L2 disciforme Ěunze．Г I

3．－Hyphomycetes．

Mucedinaceae．
Oospora crustacea Sacc．L 2 fasciculata S．\＆．V．L 2 lactis Sacc．Ireland microsperma S．§．F．L 2
Monilia aurea Gmel． $\mathrm{C}_{1} \mathrm{~L}_{2}$ racemosa Purt．U 2
Oidium chrysanthemi Rabenh．La farinosum Cooke。 L 2 fasciculatum Berk．M 2 monilioides Link．L 2
Fusidium griseum Link．L 2
Cylinitrium flavovirens Bon． L_{2} heteronemum Sacc．L 2
Geotrichum candidum Link．L 2
Rhopalomyces candidus $B . \& B r$ ．L 2 pallidus $\mathrm{B} . \& \mathrm{Br}$ ．L2
Cephalosporium Acremonium Corda． L_{2}
Papulospora sepedonioides Preuss．Li 2
Trichoderma viride Pers．M 2
Botryosporium diffusum Corda． $\mathrm{C}_{1} \mathrm{~L}_{2}$ pulchrum Corda．L 2_{3}
Alliaspora Sapuçaya Pim．L 2
Haplaria grisea Link．L 2
Acremonium verticillatum Link． L_{2}
Rhinotrichum repens Preuss．C $: \mathrm{L}_{2}$
Sporotrichum flavissimum Link．L 2 laxum Link．M 2
Botrytis cana K．\＆Schm。 L2 U1 dichotoma Corda．L 2 efusa Grev．M 2 parasitica Cav．Ireland Tilletii De8m．L 2 vera Berk．U 2 vulgaris Fr ． L_{2}
Sepedonium chrssospermum Fr．M2 L 2
roseum Fr ．MI
Verticillium alboatrum Rke ot Berth． L． 2 aspergilius $B \cdot \& B r, L_{2}$

V. Fungi Imperfecti-continued.

Verticillium lateritium Berk. L 2 nanum $B . \& B r . \mathrm{L}_{2}$
Rexianum Sacc. L 2
Clonostachys Araucaria Corda. L 2
Trichothecium obovatum Sacc. L 2 piriferum Saco. L 2
roseum Link. MI L2 3
Arthrobotrys rosea Mass. L 2
Diplocladium macrosporium Mass. L 2 minus Bon. L 2
Mycogone rosea Link. L 2
Macrosporium cheiranthi Fr. L 2
Ramularia calcea Ces. L 2 cryptostegiae Pim. L_{2} rapae Pim. L 2 urticae Ces. L 2
Septocylindrium Bonordenii Sacc. L 2 elongatisporium Sacc. La
Helicomyces roseus Link. L 2
Dumatiaceae.
Torula expansa Pers. L 2
herbarum Link. L_{2}
ovalispora Berk. L 2
parasitica Pim. L 2
pinophila Chev. L 2
pulveracea Corda. L 2
pulvillus $B . \& B r$. L 2
sporendonema $B . \& B r, \mathrm{~L}_{2}$
Echinobotryum atrum Corda. L 2
Stachybotrys atra Corda. M I L 2 lobulata Berk. L 2
Periconia byssoides Pers. L 2 U calicoides Berk. L 2
Zygodesmus fuscus Corda. L 2
Glenospora Curtisii Berk. L 2
Monotospora sphaerocephala $B . \& B r$. L 2
Acremoniella fusca Sacc. L_{2}
Haplographium delicatulum B. $\oint B r$. L_{2}
Myxotrichella deflexum Sace. L 2

Menispora ciliata Corda. $\mathrm{L}_{2} 3$
lucida Corda. L_{2}
Pimina parasitica Grove, L_{2}
Stachylidium bicolor Link. M 2
cyclosporum Grove。 $\mathrm{C}_{1} \mathrm{~L}_{2}$
diffusum Fr. $\mathrm{M}_{2} \mathrm{Ul}_{2}$
Cladotrichum Passiflorae Pim. Irelanl.
Bispora monilioides Corda. L_{2}
Passalora bacilligera Mont. et Fr. L 2
Polythrincium Trifolii Kunse. L 2
Cladosporium compactum Sacc. U I
epiphyllum Nees. L2 3
fasciculare $\mathrm{Fr} . \quad \mathrm{M}_{2}$
fulvum Cooke. M 2
herbarum Link. M $2 \mathrm{C}_{1} \mathrm{~L}_{2} \mathrm{U}_{1} 2$
nodulosum Corda. L 2
Clasterosporium opacum Sacc. L 2
Septonema irregulare $B . \& B r$ 。 L 2
Napicladium Brunaudii Sacc. U 3
Helminthosporium echinulatum Berk. L_{2}
gymnostachyii Pim. L 2
molle B. \& C. L_{2}
simplex Kunse. L 2
tiliae Fr. $\mathrm{M}_{2} \mathrm{~L}_{2}$
velutinum Link. L_{2}
Heterosporium echinulatum Cooke. L 2
exasperatum Berk. L 2
Spondylocladium atrovirens Harz. CI_{I}
Dendryphium comosum Wallr. L 2
Sporoschisma mirabile B. \&Br, L 2
Coniothecium effusum Corda. L2
Sporidesmium Solani Veñha. Ireland.
Speira toruloides Corda. L 2
Tetraploa aristata $B . \& B r, \quad \mathrm{~L}_{2}$
Mystrosporium Stemphylium Cordn. U I
Septosporium bulbotrichum Corda. L 2
Alternaria teuuis Nees. LI
Cercospora Bloxamii B. $\& B r$. M 1 $\begin{array}{ll}\mathrm{C}_{1} & \mathrm{~L}_{2} \mathrm{U}_{3}\end{array}$

V. Ftngi Imperfecti-continued.

Cercospora resedae Fckl. Ireland. Fumago ragans Pers. L 2

Stilbacfaf.

Stilbella bicolor Lind。 U_{2}
erytbrocephalum Lind. $\mathrm{L}_{2} 3$
fimetarium Lind. L 2
tomentosums Lind. L 23
Lasioderma flavo-virens Dur. et Mont. L 2
Ceratium hydnoides A. \& S. M I L 2 U_{2}
Isaria farinosa Fr . II_{2}
fuciformis Berk. L 2
Graphium Grovei Sacc. $\mathrm{L}_{2} 3$
Sporucsbe byssoiles Bon. L 2
Stysanus putredinis Corda. L 2
Stcmonitic Corda. $\mathrm{L}_{2} \mathbb{U}$ \&
ulmariae $\mathbf{M C W}_{C} 1.23$

I'uberculariaceae.
Tuberculina persicina Sacc. L 2 rinosa Sacc. L 2
Aegerita candida Pers. L 2
Tubercularia Aesculi Opis. L_{2} confluens Pers. M 2
Dendrodochium rubellum [Sacc.] L 2
Volutella ciliata Fr . L 2
hracinthorum Berk. L2
phaii Pin. L 2
roseola Cooke. L 2
setosa Berk. L 2
Bactridium flarum Fiunze \&- Schum. L 2
Fusarium solani Sacc. L I
Pionnotes Betae Sace. Li
Epicoccum neglectum Desm. L 2 purpurascens Ehr. L 2
Myrothecium cincreum Cooke. L_{2} inundatum Tode. L 2

APIENDIX I.

 Species whose Classification is Dolbtfll.

Many of the species in this list were recorded with no authors' names; hence it is impossible to be certain what species they really represent. Mony mbor-aro phimbly remetel with incurrect athors' names, and in Whe it inn can- the atwies themselves are douhtul. Both genera and species are arranged in alphabetical order.

Agaricus campropus Fr. L 3
castaueus Bolton. L_{2}
cinereus Ireland.
comatus 3 full. M1 2
corticola Bull. M 2
crassipes Sow. L_{2}
cretaceus Sow. L 2
cristatus Fr. L_{3}
eburneus Sow. L 2
epiphyllus Pers. M2

Agaricus floccosus MI
Georgii With. M 2
granulosus Scop. Mz L 2
integer With. L_{2}
macrophorus M_{2}
Mariae Klotssch. M 2
nebulosus U_{2}
nimophilus Lasch. Li 2
papyraceus M_{2}
pluteus Batsch. M_{2}
ruber M_{2}
rubescens $P_{\text {en }}$. M $2 \mathrm{~L}_{2}$
scaber Bull. M 2
scaber Sow. L 2
semiovatus M_{2}
stercorarius Butll. M 2
strobiliformis Fr, $\mathrm{L}_{2} 3$
tortilis Bolton, Ireland
trilobus Bolton. I 2
vulgaris \mathbf{M}_{2}
zonarius With. MI 2
Amanita aspera (Fr .) MI_{2}
ceciliae $B . \$ B r . \mathrm{L}_{2} \mathrm{U}_{\mathrm{I}}$
lenticularis (W. G. Sm.) L_{2}
vaginata (Bulll.) $\mathrm{L}_{2} \mathrm{U}_{1} 2$
Anthina flammea [Fr.] M 2
Areyria nutans Bull. $\mathrm{M}_{2} \mathrm{U}_{2}$
Boletus esculentus M_{2}
igniarius L_{2}
squamosus L_{2}
suberosus L_{2}
versicolor (Rosth.) Ireland
Briarea orbiculata Bon. L 2
Capnodium citri 〈Penz.] Ireland
Chalara sp. L 2
Chytridium barkerianum Arch. Liz
Clavaria corniculata M_{2}
vermiculata Scop. U 12
Clitocybe ovina. M_{2}
Clitopilus phlebophorus M 2
Coprinus congregatus ($F r$.) $\quad \mathrm{M}_{2}$
R.I.A. PROC., VOL. XKVLI,, SECT. B.

Cryptosphaeria acuminata M_{2}
acuta M_{2}
aegopodii M_{2}
arundinacea MI_{2}
bifrons M_{2}
duplex Ma
hederae M_{2}
Lauri M 2
Lonicerae MI
semi-immersa M_{2}
subconfluens M_{2}
taxi MI
Cylindrosporium concentricum M_{2}
Daedalea biennis M_{1}
Didymium album Nees. M 2
cinereum Batsch. M 2
farinaceum Fr . $\mathrm{M}_{2} \mathrm{~L}_{2}$
hemisphaericum Buil. M 2
nutans Pers. M 2
physaroides Pers. Nl_{2} U2
Elaphomyces granulatus Alb. et Schw.
M 2
Foenaria sanguinea Pim. L 2
Gymnoascus fraxini de Not L 2
Hebeloma scabrum Mull. U 2
Helvella mitra L_{2}
Heterosphacria sclerodermis Mass. Lz
Himantia candida Pers. M 2
Humaria auriflava Cooke. I 2
H_{y} dnum cyathiforme (Schacf.) M2 imbricatum (Linn.) M
stenodon Pers. L 2
uber L2
Hymenochacte ferruginea Bres. L 2
Hypholoma fasciculatum L_{2}
Hysterium gramineum Mz.
Irpex pachyodon Bres. L 2
Laestadia Rabenhorstii Sacc. UI
Leptolegnia bandoniensis Such. MI
Leptomitus pisidicola Lz
Lycoperdon excipuliforme $\left\lfloor\right.$ Pers.] M_{2} [Y]

Uncertain or Doubtful Species-continuod.

Ljcoperdon Proteus With. Ireland
Macrosporium Solani Ireland
Merulius androsaceus Soio. L 2
cantharellus Sow. L 2
squamula Sow. L 2
umbelliferus Bolton. L_{2}
Morticrella sp. L 2
Mycena spinipes Mz
Myxotrichum deflexum Berk. L 2
Nectria lagenae Mass. L 2
Nodularia harveyana L 2
Olontia crinalis Fr. L_{2} uda $\mathrm{Fr}_{\mathrm{r}} \mathrm{L} 2$
Ompladia cricetorum M2
Peronosparu nivea Ëng. $\mathrm{L}_{2} \mathrm{U}$ 1 schleideninna de Bury. I. 2
l'eziza atrobrunnea Phill. CI
Phallus esculentus LII
Lhiulea chrysocoma MI
cinerea M_{2}
claro-fara Mz
conigena M_{2}
herbarum Mz
pedicellata M_{2}
vulgaris car. β. dliaphana M 2
Phlehin livila Broa. L_{2}
mesenterion Dicka. M 2
Phragmidium bulbosum Link. M : l 12
mucronatum Link. U'1 2
Piloholus roridus Schum. $\mathrm{I}_{2} \mathrm{~L}_{2}$
I'ulyporus calopus Mz
lucidus (EV.) M I
luridus MI_{2}
luteus NI_{2}
suareolens Limn. MI 2
l'olysticta carmichaclianus \#2
Poriu sanguinolenta (A. S. S.) Le 2
Psilocybe bullata Bull. L_{3}
Purcinia rircacae Perr. $\mathrm{M}_{2} \mathrm{~L}_{2}{ }_{3} \mathrm{U}_{2}$

Puccinia compositarum Schlecht. U 12
fallens Cooke. U 12
glomerata Link. UI
graveolens Pers. L3
lychnidearum Link, $\mathrm{C}_{1} \mathrm{~L}_{3} \mathrm{U}_{1}$
silenes Sov. L 2
tumida [Grev.] MI_{2}
umbelliferum M2
Reticularia hydnoides Ireland
Rhacodium cellulare [Pers.] L_{2}
Khizomorpha divergens Grev. M 2
subcorticalis Pers. M2
Rhytisma corrugatum M2
Russula lepias I_{2}
Saprolegnia philomukes $I F$. Sm. L 2
Scleroderma geaster (F_{r}.) L2
Sclerotium durum [Pers.] M_{2}
pteridis M2
varium Pers. MI_{2}
Sparassis laminosu (Fr.) U2
Sphaeria botryosa $\mathrm{Fr} . \mathrm{L} 2$
ocellata B. \& Br. U_{2}
profusa Sow. M2
Sphacronuma subulatum M2
Sporotrichum sulphureum [Giver.] M2
tenuissimum Mz
Stagnospora pini U I
Stemonitis fasciculata M2
Thelephora calcea MI
corium M2
fraxinca M_{2}
incrastans MI_{2}
intybacea (Pers.) M2
Tremella ferruginea M
intestina Ircland
tremella Fr. M1
Trichia nuda L_{2}
Typhula gerans (Fr.) M2
U'redo frumenti L.
Verticillium epimyees $\mathrm{B} . \& \mathrm{Fr}$. I. 2

APIPENDIX 11.

List of Synonyms.
These are arranged in alphabetical order. The name given first is that under which the species was originally recorded, while the second is the one under which the species is recorled in the foregoing list. Authors' names in square brackets denote that these authors' names were not quoted in the original record; but there is every reason to believe that they are correct.

```
Acrosporium fasciculatum Grev. = Oospora fasciculata S. \& \(\Gamma_{\text {. }}\)
Aecidium Allii Grev. = Puccinia sessilis Schneid.
    Aquilegize [Pers.] = Puccinia Agrostidis Plow.
    Ari Berk. = Puccinia Phalaridis Plow.
    Berberidis Pers. = Puccinia graminis Pers.
    Calthae Grev. = Puccinia Calthae Link.
    cancellatum Pers. \(=\) Gymnosporangium Sabinae Wint.
    compositarum var. Tussilaginis \(P_{0}=\) Puccinia poarum Nielsen.
        " "Jacobaeae Grev. = Puccinia sylvatica Schröt.
    cornutum [Gmel.] = Gymnosporangium juniperinum Fr.
    crassum Pers. \(=\) Puccinia coronata Corda.
    Epilobii \(D C_{0}=\) Puccinia Epilobii \(D C\).
    Euphorbiae Pers. = Endophyllum Euphorbiae \(D C\).
    Grossulariae Schum. = Puccinia pringsheimiana Klebahn.
    laceratum \(S_{0}{ }_{0}=\) Gymnosporangium clavariiforme Rees,
    leucospermum \(\left[D C^{\circ}\right]=\) Puccinia fusca Relh.
    Menthae \(D C\). = Puccinia Menthae Pers.
    Pini [Pers.] = Coleosporium Senecionis Fr .
    Primulae \(D C\). \(=\) Puccinia Primulae \(D u b y\).
    Ranunculacearum DC. \(=\) Uromyces Dactylidis Otth.
    Sonchi \(W_{e s t}=\) Coleosporium Sonchi Lev.
    Taraxaci K. et Schm. = Puccinia Prenanthis Fuck.
    Tussilaginis [Gmel.] = Puccinia poarum Nielsens.
    Urticae \(D C=\) Puccinia Caricis Reb.
    Violae Schum = Puccinia Violae DC.
    Aethalium septicum \(F r_{0}=\) Fuligo septica Gmel.
    Agaricus lateritius Schaeff. = Psilocybe sublateritius Fr.
    tortilis Bolt.\(=\) Clitocybe tortilis Bolt.
Aleuria granulata Bull. = Humaria granulata Sacc.
    humosa Fr. = Humaria humosa Sacc.
Amanita adnata \(S m .=\) Amanitopsis adnata \(W . G . S m\).
```


List of Sinonyrs-continued.

Amanita ceciliae $B . g_{6} B r_{0}=$ Amanitopsis strangulata $R o s l$. cristata Fr . $=$ Lepiota cristata A. \& \mathcal{S}.
raginata Bull. = Amanitopsis raginata Bu7l.
Arcyria cinerea $S_{c h u m .}=$ A. albida Pers.
Aregma bulbosum Fr. = Phragmidium Rubi Pers. gracile Grev. = Phragmidium Rubi-idaei Pers.
Ascomjees deformans Berk. = Exoascus deformans Fuck.
Ascophora Mucedo Tode $=$ Rhizopus nigricans Ehrenb.
Asterophora agaricola Corda $=$ Nyctalis asterophora Fr .
Auricularia ferruginea [Bull] = Stereum ferrugincum Fr.
Barlaea Crounni Mass, = Plicariella Crouani Rehm.
Boletus Grevillei $\overline{\mathrm{K}} \mathrm{l}=\mathrm{B}$. Alarus With. suberosus [Soce.] = Fomes crtisinus Berk.
Bulgaria inquinans Fr. $=$ B. polymorpha Fett.
Calloria chrysostigma $[$ Phill,] $=$ Pezizella chrysostigma Sacc. rinosa A. s. s'. = Orbilia rinosa Eurst. xanthostigma Fr. = Orbilia xanthostigma Fr.
Cuntharellus lutescens [Fr.] Craterellus lutescens Fr. undulatus \lfloor Fr. $\rceil=$ Thelephora undulata Fr.
Cenangium ferruginosum \lfloor Fr. $]=$ C. abietis Rehm.
Chactomium clatum Kanze $=\mathrm{C}$. comatum Fr.
Chaetosphaeria phaeostroma Fuck. = C. tristis Schröt.
Clararia comea Fr. = Calocera cornea Wint.
crictorum [Pers.b.] = C. argillacea Fr.
hypoxylon [Linn.] = Xylaria hypoxylon Greo.
pratensis Pero. = C. fastigiata Berk.
Clitorsbe gigantea Fr. = Paxillus giganteus Fr .
Coleosporium petasitea Lir. $(\mathbb{N}, D C$. $)=$ C. Sonchi Pers. rhinanthacearum Lic. = C. Euphrasiae Schm. esuchi-artensis Lir. = C. Sonchi Pers. tussilaginis Lér. = C. Sonchi Pers.
Comatricha Friesiana de Bary $=$ C. obtusata Preuss.
Corticium quercinum Pers. $=$ Peniophora quercina Cooko.
roseum Pero $=$ Peniophora rosea Mass.
relutinum Fr. $=$ Peniophora velutina Cooke
Cortinarius raperatua Fr . $=$ Pholiota caperata P ers.
Craterium minutum Fr. = C. pedunculatum Trent.
Cribraria micropus $[$ Schrad. $]=$ C. argillacea Pers.
Cryptosphaeria faginea [Grev.] = Dichaena faginea Fr. berbarum = Pleospora herbarum Rabh.

List of Synonyms-continued.

Cryptosphaeria millepunctata [Grev.] = Valsa cunomia Vitse\%. punctiformis [Pers.] = Mycosphaerella punctiformis Rabh. strobilina $=$ Dichaena strobilina Fr .
Cucurbitaria coccinea [Grev.] = Nectria coccinca Fr.
Dactylium dendroides Fr. = Hypomyees rosellus Tub.
Dematium articulatum [Pers.] = Cladosporium fasciculare Fr.
Diatrype ferruginea Fr . = Sillia ferruginea K urst. nucleata Curr. = Diatrypella nucleata Sacc. quercina Tul. = Diatrypella pulvinata Nits. strumella $F r$. = Diatrypella strumella Fuck verrucaeformis $F r .=$ Diatrypella verrucaeformis Fuck.
Diderma globosum \lfloor Pers. $\rceil=$ Chondriodermi globosum Rost. vernicosum Pers. $=$ Leocarpus vernicosus Link.
Dillymium furfuraceum Fr. = Physarum nutans Pers. melanopus Fr, = Didymium farinaceum Schrad.
Dothidea filicina $F r$. = Rhopographus filicinus $F_{u c c}$. typhina Pers. $=$ Epichloe typhina Tul. ulmi $\mathrm{Fr} .=$ Phyllachora Ulmi Fuck.
Eccilia variabilis Pers. $=$ Claudopus variabilis Pers.
Elaphomyces granulatus $\mathrm{Fr} .=$ E. cervinus Schröt. muricatus Fr. = E. variegatus Fitt.
Erineum aureum [Pers.] = Taphrina aurea Fr.
Erysiphe communis $S c h l_{0}=$ E. cichoracearum $D C$.
lamprocarpaLévo = E. Galeopsidis DC.
Martii Link. = E. Polygoni DC.
Montagnei $L e ́ v=\mathrm{E}$. cichoracearum $D C$.
Eurotium herbariorum Linh. = Aspergillus glaucus Link.
Eutypa Acharii Tul. = Valsa eutypa Wint.
flavovirescens $T u l .=$ Valsa flavovirescens Wint. lata Tul, = Valsa lata Nitsch.
 stellulata Sace. = Valsa stellulata Fr.

Fusicladium dendriticum $\mathbb{W a l l r}$. = Venturia inaequalis $A d e r h$.
Galera sphagnorum Pers. $=$ G. hypnorum Batsch.
Ganoderma applanatum Fr. = Fomes applanatus $W_{\text {a }}$ alr .
Geopyxis ammophila Sacc. = Peziza ammophila D. \& JIf.
coccinea Mass. $=$ Peziza coccinea Jacq.
cupularis Sacc. = Peziza cupularis Lim.
Gnomoniella vulgaris Sacc. $=$ G. Gnomon Schröt.
Gyrodon rubellus $M C T$. = Boletus McWeenyi W. G. Sm.

List of Sinonys-continued.

Hebeloma calamistrata $F r$. = Inocybe calamistrata Gill.
euthela $B . \& B r . \equiv$ Inocybe eutheles Quél.
fastigata Fr . = Inocsbe fastigata Quél.
fibrosa Soir. = Inocybe fibrosa Gill.
flocculenta Bull. = Inocsbe lanuginosa Qúl.
flocculosa Berk. = Inocybe Glocculosa Sacc.
geophylla Sou. = Inocrbe geophylla Quet.
hiulca Fr . = Inocsbe hiulca Gill.
plumosa Bolt. $=$ Inocrbe plumosa Quél.
pyriodora Pers. = Inocybe pyriodora Quél.
rimosa Bull. = Inocybe rimosa Quél.
Helminthosporium gramineum Rabh. $=$ Pleospora trichostoma Dicd.
Helotium aeruginosum Fr . = Chlorosplenium aeruginosum de Not.
calyculus Fr. = Hymenosespha calyculus Phill.
Helvella mitra [Schaeff.] = Helvella lacunosa $A f_{z}$.
Humaria hinnulea B. \& Br. = sphaerospora himulea Mass.
Hymenoscypha tuba Bolt. = Helotium tuba For
Hypochnus ferrugincus Pers. = Corticium ferrugincum Pers.
Hypoxylon concentricum Greo. $=$ Daldinia concentrica Ces, et Not.
H ysterium arundinaceum [Schrad.] = Lophodermium arundinaceum Cher.
foliicolum \lfloor Fr. \rfloor = Lophodermium bysterioides Sacc.
fraxini Pers. $=$ Hysterographium fraxinum do Not.
juniperinum D.N. = Lophodermium juniperinum de Not.
lincare $[$ Fr. $]=$ Glonium lineare de Not.
pinastri Schrad. = Lophodermium pinastri Chee.
ruli, $[$ Pers. $]=$ Hypoderma virgultorum DC:
virgultorum $D C_{0}=$ Hspoderma virgultorum $D C$.
Lacarin bella Pers - Clitocybe bella Fr.
laceata Scop. = Clitocybe laccata Scop.
Lachnea bicolor [Bull.] = Dasyscypha bicolor Fuck.
coccinea Jacq. $=$ Geopyxis coccinea 3 ars.
hinnulea B. \& Br. = Sphacrospora hinnulea Mass.
papillaris [Phill.] = Da"yecypha papillaris Mass.
plano-umbilicata [Grev.] = Trichopeziza plano-umbilica Sace.
trechispora B. \&r $B r$. Sphaerospora trechispora Sacc.
umbrosa [r.] = L. umbrorum Gill.
rirginea [Batsch.] = Dasyserpha rirginea Fuck.
Lactarius exsucrus Otto = Russula delica Fr .
Leesthea lini Lér. $=$ Melampsora Lini Pers.
Lepista nuda Bull. = Tricholoma nudum Quél.
personata Fr. = Tricholoma personatum Quel.

List of Synonyms-continued.

Licea cylindrica Fr: = Dictydiapethatium plumbeum Rost.
fragiformis F^{3} : = Tubulina fragiformis Pers.
Lycogala epidendrum $F r:=$ L. miniatum Pers.
Lscoperdon giganteum Batsch. = L. Borista Lina,
globosum Bolton $=$ Borista nigrescens Pers.
nigrescens Vitt $=$ Bovista nigrescens Pers.
plumbeum Pers. $=$ Bovista plumbea Pers.
pratense Pers. = L. gemmatum Batsch.
pusillum Batsch $=$ Bovista pusilla Perr.
Melampsora euphorbiae Cust. $=$ M. Helioscopine Pers.
salicina Lév. $=$ M. farinosa Pers.
Microsphaera comata Lév. = M. Evonymi Sacc.
Mitrophora gigas Lévo $=$ Morchella gigas Pers.
semilibera Lév. = Morchella semilibera $D C$.
Mitrula abietis $[\mathrm{Fr}]=$. M. cucullata Fr .
paludosa $\mathrm{Fr} .=\mathrm{M}$. phalloides Chev .
Mucor stolonifer Ehr. = Rhizopus nigricaus Ehr.
Nemaspora crocea Pers. $=$ Sphaeria profusa Sow .
Nidularia campanulata With = Cyathus rernicosus $D C$.
crucibulum [Fr r.] = Crucibulum vulgare Tul.
striata Bull. = Cyathus striatus Mofm.
Nolanea aethiops Fr. = Leptonia aethiops Fr.
Oidium balsamii $B . \& B r .=$ Erysibe Polygoni $D C$.
lactis [Fves.] = Oospora lactis Sacc.
Tuckeri Berk. = Uncinula necator Bur.
Olpidiopsis Saprolegniae Cormu. = Diplophysa Saprolegnjae Schroet.
Panaeolus fimiputris Bull. $=$ Anellaria fimiputris Karst. separatus Linn. = Anellaria separata Karst.
Putcllaria Carestiae de Not. $=$ Durella Carestiae Sacc.
Penicillium crustaceum $F r$. $=$ P. glaucum Link. oliraceum Corda. = Briarea orbicula Bon .
Peronospora gangliformis Berk, = Bremia Lactucae Regol.
pygmaea Ung. = Plasmopara pygmaca Schroet.
Peziza acicularis Bull. $=$ Helotium aciculare Pers.
atrata Pers. $=$ Mollisia atrata Karst.
aurantia Fr . = Otidea auruntia Mass.
bicolor Bull. = Dasyscspha bicolor Fuck.
brunnea $\mathcal{A} . \& S=$ Sphaerospora brunuea $\mathcal{M}(188 \%$ calycina Schum. = Dasyscrpha calycina. Fuck

List of Sywonyys-continued.
Peziza cinerea Batsch. = Mollisia cinerea Karst. clarollara Grev. = Helotium claroflarum Berk coccinea Jacq. = Geopyxis coccinea Mass. cochleata Limn. = Otidea cochleata Fuck. cyathoidea $B u$ ull. $=$ Hymenoscypha cyathoidea Phell. exidiiformis B. \& Br. Humaria exidiiformis Sacc. faginea Pers. $=$ Helotium fagineum Fr . fructigena Bull. $=$ Helotium virgultorum Karst. fusarioides Berk. = Calloria fusarioides Fr . granulata Fr. = Humaria granulata Bullb. hinnulea B. \& $B r$. = Sphaerospora hinnulea Mass.
humosa Fr. = Humaria humosa Sacc.
intlesa Bolt. = Cyathicula coronata De Not.
leporina Balsch. = Otidea leporina Fuck.
nivea $F r$, = Lachnella nivea Phill.
papillaris Bull. = Dasyscypha papillaris Mass.
postuma Berk. \& Wilson = Sclerotinia selerotiorum Mass
rutilans Fr. = Humaria rutilans Sacc.
selerotiorum [Lib.] = Sclerotinia sclerotiorum Mass.
scutellata Linn. = Lachnea scutcllata Gill.
stercorea Pars. (s- Fr.) = Lachnea stercorea Gill. trechispora B. \&-Br. = Sphaerospora trechispora Sace. villosa Pers. $=$ Cyphella rillosa Fiarst.
violacea Pers. = Humaria violacea Sacc.
virginea Babsch. = Dasyscypha virginea Fusk.
Wilkommii Martig. = Dasyscypha calycina Fick.
l'czizella chrysostigma Sacc. $=$ Mollisia flaveola Phill.
Whacidium coronatum Fr. = Coccomyces coronatus De Not.
ilicis Fr. = P. multivalve Kiunz. of Schum.
trifolii Boud. = Pseudopeztza 'Trifolii Fuck.
Phallus esculentus Sow $=$ Morchella esculenta Sow.
impudicus Limn. = Ithyphallus impudicus Fisch.
Whoma Betae Frank: = Mycosphaerella tabitica Prill. et Del.
Phragmidium gracile Greo $=\mathbb{P}$. Rubi-idaei Pers.
obtusatum Fr. = P. Tormentillae Finck.
obtusum Link. = P. Potentillae Kargt.
Phyllachora aegopodii Fuck. = P. Podagrariac Karst.
Phyllactinia guttata Léc. = P. corylea Karst.
Physarum bultiforme Schum. = P. nutans Pers.
sinuosum [Bull. $]=\mathrm{P}$. bivalve Pers.
Pleospora herbarum Pers. = Laestadia Rabenhorsti Sacc.
Plutens niluronas $F F^{2}$, = Entoloma midorosum $F r$.

List of Sinonyms-continued.
Podisoma juniperi $F r$. = Gymoosporangium elavariacforme Rees.
juniperi-sabinae $F \%$ = Gymnosporangium clavariacforme Rees.
Podosphaera clandestina Lév. $=\mathrm{P}$. oxyacanthae de Bary.
myrtillina Kunze. $=$ P. oxyacanthae de Bary.
Polyporus abietinus [Fr.$]=$ Polystictus abictinus Cooke .
annosus Fr . = Fomes annosus Cooke.
ferrugineus F r. = Poria ferruginosa Karst.
fibula $F r$. = Polystictus fibula $F r$.
fomentarius $F r$. = Fomes fomentarius Kurst.
fraxineus $F r$, Fomes fraxineus Cooke .
hibernicus $B . \& B r .=$ Poria hibernica Cooke .
igniarius Lirn. $=$ Fomes igniarius Fi.
molluscus Pers. = Poria mollusca Cooke.
obducens Fr . $=$ Poria obducens Cooke .
purpureus Fr . = Poria purpurea Cooke
radiatus Fr. $=$ Polsstictus radiatus Cooke.
salicinus Grev. $=$ Fomes salicinus Rerrst.
vaporarius Fr. = Poria vaporaria Cooke.
velutinus Fr: $=$ Polystictus velutinus Cooke
versicolor Linn. $=$ Polystictus versicolor Fr .
violaceus Fr. = Poria violacea Cooke .
vitreus [Pers.] = Poria ritrea Pers.
vulgaris Pers. = Poria vulgaris Cooke
Wynnei $[B . \& B r \cdot]=$ Polystictus Wynnei Cooke
Polystictus hibernica $B . \& B r,=$ Poria hibernica Cooke.
perennis $F r,=$ Polyporus perennis $F r$.
Protomyces menyanthis de Bary. = Physoderma menyanthis de Bary.
Psathyra disseminata Fr. = Psathyrella disseminata Quél.
hiascens $F r .=$ Psathyrella hiascens Quél.
Ptychogaster albus Corda. $=$ Ceriomyces albus Savc.
Puccinia anemones [Pers.] $=\mathrm{P}$. fusca Relh.
apii Corda. $=$ P. bullata Schroet.
arundinacea Hedro. = P. phragmitis Sctum.
centaureae Hart. = P. Hieracii Schum.
fabae Link. = Uromyces fabae Pers.
globosa [Grev.] = Uromyces fabae Pers.
gracilis [Grev.] = Phragmidium Rubi-ilaei Earst.
luzulae [Lib.] = P. oblongata Link.
Potentillae [Pers.] = Phragmidium Potentillac Karst.
pulverulenta Grev. = P. Epilobii $D C$.
rubi $[$ Sow. $]=$ Phragmidium Rubi Pers.
striola Link. $=$ P. Caricis Schum.

List of Srvontras-contimued.

Puccinia rariabilis Grev. = P. Hieracii Schum.
reronicarum $D C=\mathrm{P}$. Veronicae Tint.
violarum Link. $=\mathbf{P}$. violae Schum.
Reticularia umbrina Fr. = R. Lycoperdon Bull.
Rhizophydium Dicksonii E. P. Wright. = Eurychasma Dicksonii Magnus.
Roestelia lacerata Tul. = Gsmnosporangium clarariiforme Rees.
Rosellinia mastoidea Fr . - R. mammaeformis Ces. et Not.
Schinzia Alni ${ }_{\text {Wor. }}$ = Plasmodiophora Alni Möll.
Septoria Ulmi [Fr.] = Pleospora Ulmi Wallr,
Soppittiella caesia Mass. = Thelephora cnesia Pers.
cristata Mrass. = Thelephora cristata Fr.
sebacea Wruss. $=$ Thelephora sebacea Berk.
Sortaria fimicola Cer, et de Not. = Hypocopra fimicola Sace
Gphacria acuta IIuff. (\&. Moug.) $=$ Leptosphaeria acuta Karst.
aquila Fro = Rosellinia aquila de Not.
canescuns Pers. = Lasiosphaeria canescens Karst.
capitata ITulmsk. = Corisceps capitata Link.
cinnalarina Tode $=$ Nectriu ciunabarina Fr.
cucrinea Pers. $=$ Nectria soccinea Fr .
deu-ta $/ I_{\text {ufl }}=$ U'stulina vulgaris Tu\%.
discifurmis $/ H_{n} f_{0}$, = Diatrype disciformis Fr.
fragifurmis Pers. = Hypoxylon coccineum Bull.
ganmon Tude. $=$ (inomoniella vulgaris Sacc.
hirsuta $[\mathrm{Fr}$.] = Lasiosphacria hirsuta C'es. et de Nol.
hypoxylon Limn. Xylaria Hypuxylon Girec.
Keitii $\sqrt[B]{\alpha}$ \& $B r=$ Herpotrichin Keitii Sacc.
lata Pers. = Futypa lata Tul.
mactotricha B. S. Br. = Herpotrichia macrotricha succ.
mammiformis Pers = Ruserlinia manmiformis C'es, of de Not.
militaris Limn = ('ordyceps militaris Link.
moriformis Tod = Bertia morifornuis do Not.
"chracea riree. $=$ Nuctria orhracea Pr.
"phinglo-suides Elhr. $=$ Corlyceps ophioglossoides Link. P'eziza \mid Tode $]=$ Nectria Peziza Fr.
phanoemen Reb. = Pyrenophora phaeocomes Sacc.
phaes-troma Mont. = ('hactosphacria phacostroma Fuck.
pinole B. \&o Blor. = Sphaerella pinodes Niessl.
pulvinus-pyriue $P_{\text {ors }}=$ Melanoma Pulvis-pyrius Fuck.
ssirpicola DC: = Pleospora scirpirola Frarst.
sperminides IIoffin. = Lasiosphaeria spermioides C'es el de Nol.
stercoraria ['sors.] = Hspocopra stercoraria Sacc.

List of Synonymb-contimued.

Sphaeria stigma \boldsymbol{B} off. $=$ Diatrype stigma $F r$.
taxi $[$ Sow. $]=$ Diplodia Taxi de Not.
tiliae Pers. = Hercospora 'lilize Tul.
tuberculosa [Sow.] = Hypoxylon fuscum Fr.
Spongospora solani Brunch = S. subterranea Johns.
Stemonitis obtusata Fr. = Comatricha obtusata Preuss.
ovata Pers. $=$ Comatricha obtusata Preuss.
typhoides [Auct.] = Comatricha typhoides Rost.
Stictis lichenicola Mont. = Melittosporium lichenicolum Mass.
Stigmatea geranii $F r,=$ Venturia Geranii Wint.
ranunculi Fr. = Pseudopeziza Ranunculi Fuck.
Stilbum bicolor Pers. = Stilbella bicolor Lind.
erythrocephalum [Ditm.] = Stilbella erythrocephala Lind .
fimetarium $B . \& B r .=$ Stilbella fimetaria Lind.
tomentosum Schr. = Stilbella tomentosa Lind.
Stromatosphaeria corniculata [Grev.] = Diatrype corniculata B. Br.
decorticata [Grve.] = Diatrype stigma Fr .
deusta [Grev.] = Ustulina vulgaris Tul.
disciformis [Grev.] = Diatrype disciformis Fr.
elliptica [Grev.] = Hypoxylon rubiginosum Fr .
fusca [Grev.] = Hypoxylon fuscum Fr.
lata [Grev.] = Valsa lata Nitsch.
multiceps [Grev.] = Valsa flavovirescens Wint.
Thelephora avellana Boiss. $=$ Hymenochaete Avelluna Lév.
byssoides Pers. = Coniophora byssoidea Karst.
calcea [Eng. $F l$.] = Corticium calceum $F r$.
cinerea Pers. $=$ Corticium cinereum Pers.
epidermea Pers. $=$ Corticium confluens Fr.
granulosa Pers, = Grandinia granulosa Fr .
hirsuta Willd. = Stereum hirsutum Fr .
ochracea Fr, = Corticium ochraceum Fr.
purpurea Pers. $=$ Stereum purpureum Pers.
quercina Pers. $=$ Peniophora quercina Cooke.
rubiginosa Schrad. = Hymenochaete rubiginosa Lév.
rugosa Pers. = Stereum rugosum Pers.
sanguinolenta A. \& $S .=$ Stereum sanguinolentum F.
Tilletia caries $7 \mathrm{iul} .=\mathrm{T}$. tritici W int.
'logaria aurea Bull. = Pholiota aurea Matt.
Torrubia militaris $F r$. = Cordyceps militaris Link.
Tremella albida Huds. = Exidia albida Bref.
arborea [Huds.] = Exidia glandulosa Fr.

List of Strontys－continued．

Tremella foliacea Pers．＝Clocolla foliacea Bref． indecorata Sommf．＝Exidia indecorata Karst． sarcoides With．$=$ Ombrophila sp．
Trichia chrysosperma $D C=$ T．faroginea Pers． serotina Schrad．$=$ Almisia Bombarda B．\＆Br． serpula Pers．＝Hemitrichia Serpula Rost． turbinata With．$=$ T．faroginea Pers．
Trichobasis petroselini Berk．$=$ Puccinia bullata Pers． rumicum $D C^{\prime}=$ Uromyces Rumicis S_{c} hum ． suareolens Lic．$=$ Puccinia suaveolens Pers．
Tuher cibarium［Sor．］＝T．aestirum Fitt．
T＇ubetcularia rulgaris Tode $=$ Nectria cinnabarina Fr ．
Tubulina crlindrica Rost．$=$ T．fragif， rmis Pers．
Uncinula alunca Liro $=$ C．Salicis Tint．
bicornis Ler．$=$ で．Aceris Succ．
spiralis Berk．et C＇urt．＝C．necator Burr． Wallrothii Let．＝U．Pruastri Sacc．
［rulo lifrons Gror．＝【＇romsees Rumicis Tint．
empanulac $[$ Pers．$]=$ Coleospurium Campanulae Léc．
candids Pers．＝Cystopus candilus Lér．
（ichuracearum＂DC．］＝Puccinia Hicracii Schum．
cuphorbiac Reb $=\mathbf{M c l a m p o r a ~ H e l i o s c o p i a e ~ C a s t . ~}$
farinosa［Perd．］＝Melampsura farinosa Schroet．
Aliseulorum $[J C]=$. Ustilago Scabiosa Fint．
gyrusu Reb＝Ihragmidium Rubi－idaci Karst．
H．lioscupiat Pers．］＝Melampsora Helioscopiae Cast．
Heraclei－Grec．$]=$ Pucrinia Pimpinellae Strauss．
hyperionum $D C=$ Melampsora bypericorum $D C$ ．
Labiatarum＇$D C C^{\prime}$ ．$]=\mathbb{I}^{p}$ uccinia Menthae Pers．
linearis［Lér．］＝Puccinia graminis Pers．
Lini ${ }^{-}$DC ：${ }_{j}=$ Melampsora Lini Tul．
oblongata－Grec．］＝Puccinia oblongata Link．
orata［Grec． $7=$ Melumpsora betulina Tul．
Populina Gree．］＝Melampsora populina Sacq．
potentillarum $D C^{\circ}:=$ Phragmilium Potentillak Larst．
primulae $D C$＝Pucrinia Primulac Duby．
Rhinantharearum［ DC．］＝Coleoaporium Euphrasiae Wint．
rosae $D C^{\prime}=$ Phragmidium subcorticatum \boldsymbol{W} int．
Ituborum $\left.{ }^{[} D C_{.}\right]=$Phragmidium Ruli Tint．
Rumicura DC．］＝Cromsees Rumi is Trint．2
segetum Per．＝Cstilago segetum Ditm．

List of Synonyms-contimued.
Uredo senecionis $S c h_{o}=$ Coleosporium Senecionis $F r$.
suaveolens [Pers.] = Puccinia suaveolens Rostr.
Tussilaginis [Schum.] = Coleosporium Sonchi Lív.
violarum $D C=$ Puccinia Violae $D C$.
vitellinae $[D C]=$. Melampsora Vitellinae T Küm.
Urocystis pompholygodes Schlecht. $=\mathrm{U}$. Anemones Wint.
Uromyces apiculosa Lév. $=$ U. Rumicis Wint.
appendiculata Lév. $=$ U. Fabae Pers.
concentrica Lév. $=$ U. Scillarum Wint.
intrusa $I_{\text {êv }}=\mathrm{U}$. Alchemillae Pers.
poae Rabh. = U. Dactylidis Otth .
Ustilago carbo Tul. = U. segetum W int.
flosculorum $D C=$ U. Scabiosa Wint.
receptaculorum $F r=$ U. Tragopogi Schroet.
Vibrissea margarita W hite $=\mathrm{V}$. truncorum $F r$.
Xyloma concavum [Grev.] = Stegia Ilicis Fr.

INDEX OF GENERA.

Index of Generd-contimued.

Adams and Pethybridge-A Census C'utulogue of Irish Fumi.

Index of Genera-continued.

			page				rage				lagie
Lycogala,			130	Omphalia,			143	Polythrincium,		.	143
Lycoperdon, .			147	Onygena,			134	Poria, .			41
				Oospora,			148	Propolis,			132
Macrosporium,			149	Orbilia,			134	Protomyces, .			132
Marasmius,			147	Otidea,			133	Prototrichia,			130
Massaria,			136					Psalliota,			144
Melampsora,			137	Panaeolus,			145	Psathyra,		.	145
Melaiconis,			136	Panus,			147	Psathyrella,			145
Melanconium,			148	Papulospora,			148	Pseudupeziza,			134
Melanomma,			136	Passalora,		.	149	Psilocsbe,			144
Melanospora,			135	Patellaria,		.	134	Puccinia,			137
Mellittosporium,			132	Paxillus,		-	145	Prrenophora,			136
Menispora,			149	Penicillium,			134	Pythium,			132
Merulius,			140	Peniophora, .			139				
Microsphaera,			135	Perichaena, .			130	Radulum,		.	140
Mitrula,			134	Periconia,			149	Ramularia,		.	149
Mollisia,			133	Peronospora,		-	131	Reticularia, .		.	130
Monilia,			148	Peziza,	-		132	Rhinotrichum,		.	148
Monotospora,			149	Phacidium,		.	132	Rhizopus,		.	131
Morchella,			134	Phlebia,	-		139	Rhopalomyces,		.	148
Mucor,			131	Phlegmacium,			145	Rhopographus,		.	135
Mutinus,			147	Pholiota,			143	Rhytisma,		-	132
Mycena,		-	142	Phoma,			148	Rosellinia,		.	135
Mycogone,		.	149	Phragmidium,	.	-	138	Russula,		-	146
Mycosphaerella,		.	136	Phyllachora,	.		13.5				
Myriangium,		.	135	Phyllactinia,			135	Sacharomyces,	.	.	132
Myrothecium,			150	Phyllosticta,	-		148	Saccobolus,		.	133
Mystrosporium,		.	149	Physalospora,	-		136	Saprolegnia,		.	131
Myxacium,		-	145	Physarum,	-		131	Schizophyllum,		.	117
Mysotrichella,			149	Physoderma,	.		132	Schizothyrium,		.	132
Myxotrichum,			134	Phytophthor:,	.		131	Scleroderma,		.	147
				I'iggottia,	-		148	Sclerotinia,		.	133
Naematilia,		-	138	Pilaira,			131	Stpedonium,		.	148
Napicladium,			149	Pilobolus,	.		131	Septocylindrium,		,	149
Naucoria,			144	Pimina,	.		149	Septonema,			149
Nectria,		.	135	Pionnotes,	.		150	Septoria,			148
Nidularia,			147	Pistillaria,			139	Septosporium,	.	.	149
Nitschkia,			136	Plasmodiophora,	.		1311	Sillia,			136
Nolanea,			143	Plasmopara, .			131	Solenia,		.	139
Nummularia,			136	Pleospora,			136	Sparassis,		.	139
Nyctalis,			147	Pleurotus,			143	Spathularia,			134
				Plicariella,	.		132	Speira, .			149
Octaviania,			147	Pluteus,			143	Sphaerobolus,			147
Odontia,			139	Podosphaera,			135	Sphaerospora,			132
Oidium,			148	Polyporus,			140	Sptraerostilbe,			135
Olpidium,			131	Polystictus,			140	Sphaerotheca,			13.7
Ombrophila,			133	Polystigma, .			13.)	Sphaerulina,			136

Index of Ginera-contimued.									
	yAge			fage					page
Spondylocladium,	149	Tetraploa,	. .	149	Clocolla,	-	.	-	138
Spongospora,	130	Thamnidium,	. .	131	Cacinula,	-	-	-	135
Snoridesmium,	149	Thelephora, .	. .	139	Urucrstis, .	-	.	-	137
Sporocrbe.	150	Ticothecium,	. .	136	Tromyces,	-	.	-	137
Sporodinia,	131	Tilletia,	- .	137	Ustilago,		-	.	137
Sporoschisma,	149	Tomentella,	. .	138	Ustulina,	-	-	-	137
Sporotrichum,	148	Torula,	- .	149					
Spumaris,	1:0	Trametes,	- .	140					
Stachybotrys,	149	Tremella,		138	Valsa, .		.	-	136
Stachyiidium.	$14:$	Trichia,	. -	130	Falsaria,		.	.	136
Sterin,	132	Tiuchoderma,	- .	1:S	Fenturia,			.	136
Stemonitis,	130	Tricholoma,	- .	141	Vermicularia,		.	.	148
Stwrum,	139	Trichopeziza,	- .	133	Verticilliun,		-	-	148
Stictis.	132	Trichosphaeria,	.	135	Tibrissea,				134
Stignatra,	106	Trichothucium,	. .	149	Volutella,		.	.	150
Stilbeila,	150	Triphragmium,		138	Tolvaria,	-	.	.	143
Stillum,	135	Truhila,	. .	132					
Sumpharia,	144	Tubaria,	. .	141					
Stymanu=,	151	Tuber,	. .	134	Sylaria,	-	-	-	137
stmehyerium,	131	Tubercularia,	- .	150					
		Tuberculina,	- .	150					
Taphrins,	132	Tubulina,		130	Zignoélla,	-	.	.	136
Telamina,	14%	Trphula,	- .	139	Z.godesmus,		-	.	149

[167]

V.

A LIST OF SYNONYMS OF IRISH ALGAE, WITH SOME ADDITIONAL RECORDS AND OBSERVATIONS.

By J. ADAMS, M.A.

Read Febuvary 28. Ordered for Publication March 2. Published Juay 8, 1910.

Introduction.

About two years ago I published a "Synopsis of Irish Algae," giving a list of the species observed in this country during a period of rather more than a hundred years. As the old name under which the species was first mentioned is in many cases quite different from that in use at the present time, a list of these names, with their modern equivalents, will obviously be of much service to future investigators of the group. Such a list is now available, the names of the genera and species in each group being arranged in alphabetical order, and the fresh-water species being given in a separate list from the marine species.

Great difference of opinion prevails among botanists as to the actual limits of a species. In the "Synopsis" I followed De Toni's "Sylloge Algarum " for the most part; but it is now more than twenty years since the first volume of that work was pullished. In 1908 the third volume of West's "Monograph of the British Desmidiaceae" appeared; and as that publication is likely to remain for a long time the standard work on the Desmids of the British Isles, it seems advisable to follow the views expressed therein on the limits of species and varieties. As several volumes, however, have still to appear, Professor West, of Birmingham, has kindly revised for me not only the Desmids, but the whole of the fresh-water species. As a result, a considerable number of names which were cousidered as species by De Toni, but which Professor West regards as only varieties, will disappear from the list. Furthermore, in a list containing over two thonsand names,
R. I. A. PROC., VOL. XXVIII., SECT. B.
errors were bound to creep in. Some ferr species mere included twice under a different name, and in several cases a marine species was put among the fresh-water species. These and some other errors are indicated in a separate section. Since the "Srnopsis" was publishell a few additional sources of information on the distribution of Algae in Ireland have been discorered, of which the most important is Groush Paper on the "Plankton collecter at Irish Light Stations" Altosether nem species to the number of 102 have been added, and these are niven in a separate section. In aldition to new species, a onsibulde munter of now loalitis have heen foud for species already listed in the "Synopsis." In some other cases the records of

 to give a list ui beese now a lelet. llanobion in the fresent Paper. There

 wheh, it is hope make the stetime combte the the of the year 1909.

LIST OF SINONTMS.

The name in the first column is that under which the species was
 in use at the present time. The symbul = means that the specimen is inentical with or is included unler the name which follows.
A.-FLESH-WATEI: SIECIEN.

1. Peridinieae.

Peridinium
alatum Garbini $=\mathbb{P}$. Willei Huitjoldt-Kaas.

II.-Diatomaceae.

Achnanthes
Hexella Bréb. = Achnanthidium flexellum Bréb.
Acbnanthidium
coarctatum Brib. = Achnanthes coarctata Grun.
lanceolatum Brcib. = Acbnanthes lanceolata Grun.
lineare $\mathrm{IF}^{\circ} . S n_{6}=$ A Achnanthes linearis Grun.
microcephalum 太utz. = Achnanthes microcephala Grun. Amphora
aftinis Kutz. = A. oralis Eutz.
minutissima H. $_{\text {m }}$. $m_{0}=\mathrm{A}$. ovalis Eütz.
II.-Diatomaceae-continued.

Campylodiscus
costatus W. Sm. = C. hibernicus Ehr,
spiralis W.Sm. = Surirella spiralis Kütz.
Ceratoneis
Amphioxys Rabh. = C. Arcus Kitz.
Cocconeis
Thwaitesii $\mathrm{W} . S m .=$ Achnanthidium flexellum Bréb.
Cocconema
cistula Ehr. = Cymbella cistula Kirchn.
cymbiforme Ehr. = Cymbella cymbiformis Ehr.
cornutum Ehr. = Cymbella lanceolata Kirchn.
lanceolatum Ehr. = Cymbella lanceolata Kirchn.
parvum $W . S m_{0}=$ Cymbella cymbiformis $E h r$.
Colletonema
neglectum Thw. = Navicula gracilis Kiutz.
vulgare Thw. = Vanheurckia vulgaris H. Tan. Heurck.
Coscinodiscus
Smithii W. Sm. = Melosira distans Kütz.
Cyclotella
punctata W. Sm. = Coscinodiscus lacustris Grun.
Rotula Kiitz $=$ Stephanodiscus Astraea Grun.
Cymatopleura
apiculata $W . S m .=$ C. Solea W. Sm.
parallela W. Sm. = C. Regula Ralfs.
Cymbella
turgida Greg. = Encyonema turgidum Grun.
ventricosa $A g \circ=$ Encyonema ventricosum Grun.
zebra Hass. $=$ Epithemia Zebra Kütz.
Denticula
crassula Näg. = D. tenuis Kütz.
mutabilis W.Sm. = Odontidium mutabile Π. Sn .
obtusa Kütz. = Nitzschia Denticula Grun.
ocellata W. Sm. = D. elegans Kiutz.
sinuata Sm. = Nitzschia sinuata Gmun.
Diatoma
flocculosum $A_{0}=$ D. vulgare Bory.
grande W. Sm. = D. vulgare Bory.
tenue Kiutz。 = D. elongatum Ag.

Encyonema

caespitosum Kiuitz. $^{=}$Cocconema caespitosum G.S. West.
II.-Dia tomaceae-continued.

Epithemia
granulata Kütz．＝E．turgida Kütz． longicornis Ehr。＝E．Argus Kiltz． rupestris W．Sm．＝E．gibberula Kütz．
Eunotia incisa Greg．＝E．Veneris Kïtz．
Exilaris
fasciculata Grev．＝Synedra pulchella Kiitz．
Fragilaria
aequalis Heib．＝F．virescens Ralfs．
hiemalis Lyngb．$=$ Diatoma hiemale Heib． mesolepta Rabh．$=$ F．capucina Desmaz．
pectinalis Lyngb．＝F．capucina Desmaz． rhabdosoma Ehr．＝F．capucina Desmaz． undata $T W . S m .=$ F．virescens Ralfs．
Frustulia
fasciata Ag．＝Synedra Ulna Ehr． neglecta De Toni $=$ Navicula gracilis Kiutz． saxonica Rabh．＝Navicula rhomboides Ehr． Ulna Kütz．＝Syneda Ulna Ehr． viridis Kiütz．＝Navicula viridis Kütz． vulgaris De Toni＝Vanheurckia vulgaris H．Van Heurck．
Gomphonema
Clarus Brêb．＝G．acuminatum Ehr． curvatum Kiutz．$=$ Rhoicosphenis curvata Grun．
hebridense Greg．＝G．Vibrio Ehr． minutissimum Grev．$=$ G．exigumen Kitz． minutum $A g,=$ G．dichotomum Kiitz。 rostratum $W . S m .=$ G．parvulum Kütz．
Grammatophora
balfouriana W．Sm．＝Diatomella balfouxiana Grev．
Himantidium
arcus W．Sm。＝Eunotia Arcus Ehr．
bidens Ehr．＝Eonotia praerupta Ehr．
gracile Ehr．$=$ Eunotis gracilis Rabh．
majus W．Sm．＝Eunotia major Rabh．
pectinale K゙ultz．＝Eanotia pectinalis Rabh．
Soleirolii Kuitz。＝Eunotia Soleirolii Rabh．
undulatum W．Sm．＝Eunotia pectinalis Rabh．
Navicula
anglica Ralfs．$=\mathbf{N}$ ．Placentnla Kiutz．

> II.-Diatonaceae-contimued.

Navicula

arenaria Donk. $=$ N. lanceolata Kiutz.
crassinervia Bréb. = Vanheurckia rhomboides Bréb.
dirhynchus ETr. = rhynchocephala Kietz.
dubia Ehr. = N. Iridis Elhr.
gracilis Ehr. $=$ N. viridula Kütz.
gracillima Greg. $=$ N. mesolepta Ehr.
Hebes Ralfs. = N. obtusa W. Sm.
Heufleri Grun. = N. cincta Kiltz.
humilis Donk. $=$ N. hungarica Grun.
isocephala $E l$ rr $=$ N. mesolepta Ehr.
Kotschyi Grun. $=$ N. Kotschyana Grun.
lacustris Greg. = Stauroneis scandinavica Lagerst.
minor Greg。 = Synedra Vaucheriae Kiitz.
nodosa $E h r .=\mathrm{N}$. mesolepta $E h r$.
oblongella Nüg. = N. elliptica Kütz.
ovalis W. Sm. = N. elliptica Kiltz.
pachyptera Ehrr. = N. lata Bréb.
patula W. Sm. = N. latiuscula Kiutz.
subsalina Ehr. = N. Amphisbaena Bory.
tumens $W . S m .=$ N. rostrata $E h r$.
tumida W. Sm. = N. Placentula Kitzz.
veneta Kilitz. = N. cryptocephala Kiutz.
Nitzschia
tenuis $W . S m .=$ N. linearis W. Sm.
Nitzschiella
acicularis Rabh. = Nitzschia acicularis W. Sm.
Odontidium
anomalum W. Sm. = Diatoma anceps Grun.
hiemale Lyngb. = Diatoma hiemale Hieb.
inflatum W. Sm. = Denticula tenuis Kiitz.
mesodon Ehr. = Diatoma hiemale Heib.
parasiticum W. Sm. = Fragilaria construens Grun.
sinuatum W.Sm. = Nitzschia sinuata Grun.
Tabellaria $W . S m .=$ Fragilaria construens Grun.
Orthosira
arenaria D. Moore $=$ Melosira arenaria Moore .
Dickiei Thuo. $=$ Melosira Dickiei Kitz.
orichalcea W. Sm = Melosira crenulata Kiiltz.
punctata W. Sm. = Melosira granulata Ralfs.
Roeseana Rabh. = Melosira Roeseana Rabh.

II.-Diatomacear-continued.

Pinnularia

acuminata W. Sm. = Navicula acuminata W. Sm. acuta W. Sm. = Navicula radiosa Kïtz. alpina $W . S m . \equiv$ Navicula alpina Ralfs. borealis Ehr. = Navicula borealis Kütz. Brebissonii Rabh. = Naricula Brebissonii Kütz. cardinalis Ehr. = Navicula cardinalis Ehr. divergens $W . S m .=$ Naricula divergens Ralfs. gibba Ehr. = Navicula gibba Kïtz. hemiptera Rabh. = Navicula hemiptera Kïtz. interrupta W. Sm. = Naricula mesolepta Ehr. latestriata Greg. = Navicula borealis Kiitz. major Rabh. = Navicula major Kïtz. mesolepta IW. Smo = Navicula mesolepta Ehr. nobilis Ehr. = Navicula nobilis Kït:. nodosa IT^{r}. Sm. = Navicula Legumen Ehr. oblonga Rabh. = Navicula oblonga Kïtz. Rabenhorstii Ralfs. = Navicula Rabenhorstii Ralfs. radiosa Rabho = Navicula radiosa Kutz. stauroneiformis W. Sm. = Navicula Brebissonii Kiütz. Tabellaria Ehr. = Navicula Tabellaria Kïtz. viridis W.Sm. = Navicula viridis Kïtz.
Pleurosigma
attenuatum W. $. s m .=$ Gyrosigma attenuatum Rabh.
Spencerii $\mathrm{W} . \mathrm{Sm}_{0}=$ Gyrosigma Spencerii O. K.
Pleurosigma
Legrumen Rabh. = Stauroneis Legumen Ehr.
Raphoneis
Harrisonii IW. Sm。 = Odontidium Harrisonii W. Sm.
Stauroneis
amphicephala Kiüzo = S. anceps Elhr.
linearis Ehr. = S. anceps Ehr.
punctata Kiutz. $=$ Navicula Tuscula Ehr.
Surirella
angusta, Kintz. = S. oralis Bréb.
Brightwellii W. $S_{m}=$ S. ovalis Bréb.
Craticula Ehro = Navicula sp.
crumena Bréb. $=\mathrm{S}$. oralis Bréb.
nobilis IW. $S m_{0}=$ S. robusta Ehr.
orata Kıız. = S. oralis Bréb.
panduriformis W. $\mathrm{Sm} .=8$. ovalis Brêb.
II.-Diatomaceae-continued.

Surirella
pinnata W. $S m_{0}=\mathrm{S}$. ovalis Breb.
salina W. Sm. = S. ovalis Bréb.
Synedra
acuta Kïtz. $=$ S. Ulna Fhr.
debilis Kütz, = Nitzschia Palea W. Sm.
delicatissima W. Sm $\quad=$ S. Acus Kiutz.
longissima W. Sm. = S. Ulna Ehr .
lunaris Ehr. = Eunotia lunaris Grun.
obtusa W. Sm. = S. Ulna Ehr.
salina W. Sm。 = S. Ulna Ehr.
splendens Kütz. = S. Ulna Ehr.
Tryblionella
angustata W. Sin. = Nitzschia angustata Grun.
debilis Am. = Nitzschia debilis Grun.
gracilis W. Sm. $=$ Nitzschia Tryblionella Hantzsch. Hantzschiana Grun. = Nitzschia Tryblionella Bantzsch. laevidensis W. Sm. = Nitzschia Tryblionella Hantzsch. victoriae Grun. = Nitzschia Tryblionella Hantzsch.

III.-Cyanophyceae.

Anabaena
impalpebralis Bory. $=$ Sphaerozyga flexuosa Ag.
intricata Kütz. $=$ Nostoc Linckia Born.
licheniformis Bory. = Cylindrospermum licheniforme Kütz.
spiralis Thompson =A. circinalis Rabh.
Anacystis
marginata Menegh $=$ Microcystis marginata Kiutz. Aphanizomenon
recurvum Morren = A. Flos-aquae Ralfs.
Aphanocapsa
parietina Näg. $=A$. virescens $R a b k$.
Aphanothece
nidulans Richter. $=$ A. clathrata $W . \& G \cdot S$. West.
Arthrosiphon
alatus Grev. = Scytonema alatum Borzi.
Byssus
purpurea Lamarck. = Porphyridium cruentum Näg.
Calothrix
Dillwynii Cooke $=$ Desmonema Wrangelii Born . et Flah . distorta Ag. = Tolypothrix distorta Kiitz.

Calothrix

interrupta Carm. = a Lichen.
mirabilis Kütz. $=$ Tolypothris lanata Wartm.
rhizomatoidea Reinsch = Hapalosiphon fontinalis Born.
Chroococcus
minor Näg. $=$ C. minimus Lemm.
Chthonoblastus
lyngbyaceus Thur. = Hydrocoleus lyngbyaceus Kiitz. repens hirtz. = Microcoleus vaginatus Gon.
Clathrocystis
aeruginosa Henfrey $=$ Microcystis aeruginosa G. S. West.

Coccochloris

mooreana Haro $=$ Aphanothece prasina $A B r$.

Conferva

Myochrous Dillwo = Scytonema, Myochrous Ag. vaginata Dillw. = Miorocoleus vaginatus Gom.
Cylindrospermum
flexuosum Rabh. = Auabaena oscillarioides Bory.
macrospermum Kiitzo = C. stagnale Born et Flah. majus Kïtz. = C. stagnale Born. et Flah.
Didymohelix
ferruginea Griffith = Lyngbya ochracea Thur.
Gloeothece
devia Nag。 = G. rupestris Born.
Glocotrichis
Pisum Thur. $=$ G. echinulata P. Richter.
Haematococcus
lividus Llass. = Gloeocapsa livida Kütz.
rupestris Hass. = Gloeocapsa polydermatica Kutz.
Hapalosiphon
Braunii Nug. = H. fontinalis Born.
Hassallia
ocellata Hass = Stigonema ocellatum Thur.
Hypheothrix
montana $K_{n \prime \prime} z_{0}=A$. Bacterium.
Inactis
Kiitzingii Rabho = I. vaginata Nag.
Leptotbrix
ocbracea hiutzo = Lyngbya ochraces Thur.
III.-Cyanophyceae-comtimuct.

Limnactis
minutula Kïtz $=$ Rivularia minutula Bom. et Flah.
Schnidimanni $A, B r,=$ Rivularia minutula Born. et Flah.
Mastigothrix
aeruginea Kïtz. $=$ Calothrix fusca Bom. et Flah.
Microcoleus
repens Harv. $=$ M. vaginatus Gom.
Monormia
intricata Berk. = Nostoc Linckia Born.
Nostoc
foliaceum $A g .=$ N. commune Fauch .
lichenoides $A g .=$ N. sphaericum T^{\top} auch .
rupestre Kütz $=$ N. microscopicum Cam.
variegatum Moore $=\mathrm{N}$. carneum Ag.
Oscillatoria
aerugescens Hass. $=0$. tenuis Ag .
aerugineo-coerulea Kittz. = Lyngbya aerugineo-coerulea Gom.
anguina Kuitz. = O. chalybea Gom.
antliaria Jurgens.$=$ Phormidium autumnale Gom.
autumnalis $A g_{0}=$ Phormidium autumnale Gom.
Corium Ag. $=$ Phormidium Corium Gom.
decorticans Grev. $=$ Phormidium autumnale Gom.
Friesii Ag. = Schizothrix Friesii Gom.
gracillima Kïtz $=0$. splendida Grev.
Grateloupii Bory $=0$. princeps Vauch.
leptotricha Kütz. = O. splendida Grev.
natans Kütz. = O. tenuis Ag.
ochracea Grev. = Lyngbya ochracea Thur.
spadicea Carm. $=$ Phormidium subfuscum Kiutz.
subfusca Vauch. $=$ Phormidium subfuscum Fiitz.
tenerrima Kütz. $=$ O. amphibia $A g$.
Palmella
cruenta $A g .=$ Porphyridium cruentum Nïg.
hyalina Lyngb. = Aphanocapsa hyalina Hansg.
montana Ag $=$ Gloecapsa Magma Kuitz.
mooreana Harv. = Aphanothece prasina $\mathrm{A} . \mathrm{Br}$.
Petalonema
alatum Berk. $=$ Scytonema alatum Borzi.
Phormidium
inundatum Fïts. = P , autumnale Gom.
membranaceum Kiitz. = P. subluscum Kiitz。

Phormidium

rupestre Kiutz. $=$ P. uncinatum Gom.
spadiceum Kiutz. = P. subfuscum Kütz. vulgare Kütz. $=$ P. autumnale Gom.

Polycoccus

punctiformis Kiutz. $=$ Nostoc punctiforme Har .
Polycystis
aeruginosa Kütz $=$ Microcystis aeruginosa G. S. West. elongata W. \& G.S. West = Microcystis elongata W. \& G. S. West.
incerta Lemm. $=$ Microcystis incerta Lemm.
prasina Wittr. = Microcystis prasina Lemm.
Raphidia
angulosa Hass. = Gloeotrichia natans Rabh.
Rivularia
angulosa $A g$. = Gloeotrichia natans Rabk.
calcarea $S m .=$ R. Haematites $A g$.
durissima Kiutzo $=$ Gloeotrichia echinulata P. Richter .
echinata Cooke $=$ Gloootrichia echinulata P. Richter .
echinulata Born. et Flah. = Gloootrichia natans Rabh.
minor Kutz。= Glocotrichia natans Fabh.
natans Welw. = Gloeotrichia natans Rabh .
Pisum $A g_{0}=$ Gloeotrichia echinulata P. Richter.
Schizosiphon
decoloratus Nidg. = Calothrix parietina Thur.
Schizothrix
delicatissima W. © G.s. W'est $=$ Hypheothrix delicatissima Forti.
funalis IV. de G.S. West = Inactis funalis Forti.
Scytonema
ambigurm Kïtz. = Fischerella ambigua Gom.
calotrichoides Kutz. $=$ S. mirabile Thur.
clavatum Kivit = S. crustaceum Ag .
contextum C'arm. = S. mirabile Born.
dictyonema $A g .=A$ Licben.
fasciculatum Kiutz. $=$ S. ocellatum Lyngb.
gracillimum Kutz. $=$ S. mirabile Born.
Hibernicum Hass. $=\mathrm{S}$. Myochrous Ag .
Julianum Menejh. = S. Hoffmanni Ag.
minutum $A g 0=$ Stigonema minutum Hass.
tomentosum Kuitz. $=$ S. Myochrous Ag.
Sirosiphon
alpinus Kutz. $=$ Stigonema panniforme Kirchn.
III.-Cyanophyoeae-continued.

Sirosphon
compactus $A g,=$ Stigonema hormoides Born. et Flah.
coralloides Kiutz. = Stigonema informe Kittz.
hormoides Kiitz. $=$ Stigonema hormoides Born. et Flah.
ocellatus Dillw. = Stigonema ocellatum Thur.
pulvinatus Bréb. $=$ Stigonema sp.
Sorospora
grumosa Hass. = Gloeocapsa paroliniana Bréb.
Sphaerozyga
Hassallii Kïts. = Anabaena circinalis Rabh .
polysperma Kuitz. $=$ Anabaena variabilis Kiutz.
Ralfsii Thw. = Anabaena oscillarioides Bory. variabilis Kïtz. = Anabaena variabilis Kütz.
Spirillum
minutissimum Hass. = Spirulina major Kiutz.
Thompsoni Hass. = Anabaena circinalis Rabh.
Spirulina
Jenneri Kütz, = Arthrospira Jenneri Stiz.
oscillarioides Turp. = S. major Kütz.
Thuretii Crouan. = S. subsalsa Oersted.
Stigonema
atrovirens $A g .=A$ Lichen.
interruptum Hass. $=\mathrm{A}$ Lichen.
mammiferum Kitts. $=$ S. mammillosum Ag.
Symploca
Ralfsiana Kütz. $=$ Schizothrix Friesii Gom.
Symplocastrum
Friesii Kirchn. = Schizothris Friesii Gom.
Synechococcus
crassus Arch. = S. major Schroet.
elongatus Näg. = S. aeruginosus Näg.
parvulus Näg. $=$ S. aeruginosus Näg.
Tolypothrix
aegagropila Küts. = T. lanata Wartm.
Dillwynii Hass. = Desmonema Wrangelii Born. et Flah.
punctata Hass. = T. lanata Wartm.
pygmaea Kiutz. = T. tenuis Kiutz.
Tremella
Nostoc Linn. $=$ Nostoc commune V auecher.
Trichormus
Flos-aquae Ralfs. = Anabaena Flos-aquae Bréb.

Trichormus

incurrus Allman $=$ Anabaena Flos-aquae Bréb.
spiralis Ralfs. = Anabaena circinalis Rabh.
Zonotrichia
alpina Kütz. = Rirularia Haematites Ay.
rivularis Näg. = Rivularia Haematites Ig .

IV.-Desmidiaceae.

Anisopleura
constricta Arch. $=$ Cosmocladium constrictum Jush .
Arthrodesmus
longicornis Roy. $=$ Staurastrum jaculiferum West.
Ralfsii Hest. = A. Incus Hass.
bambusina
Borreri Ralfs. = Gymnozyga moniliformis Ehr.
Closterium
directum Arch. = C. U'lna Focke.
linea I'erty. $=$ C. acutum $\operatorname{Br} \delta b$.
obrusum Bréb. = Roya obtusa W. \& G. S. Wiest.
Coccochloris
protuberans Spreng. = Mesotaenium macrococcum Roy. \& Biss. Conferva
dissiliens Dithu. = Hyalotheca dissiliens Bréb.
mucosa Mert $=$ Hyalotheca mucosa Ehr.
Cosmarium
angustatum Norl. = C. pokornyanum W. \&f 'f. S. W'cst.
ansatum Kiutz. = Euastrum ansatum Ralfs.
bipapillatum W'est. = C. Boeckii W'ille.
concinnum Reinsch. = C. angulosum Bréb.
confusum Cooke. = C. margaritiferum Mcnegh.
crenatum Falfs. = C. undulatum Corda
crenulatum Ningo C. Meneghinii Brèb.
curtum lialjs $=$ Penium curtum Bréb.
cylindricum Lialfs. = C. Ralfsii Bréb.
dissimile Nordst $=$ Euastrum sublobatum Brich.
elegans Mardst. $=$ C. annulatum De Bary.
Elfvingii Iacib. $=\mathrm{C}$. rectangulare Grun.
emarginulum Perty. $=$ C. Hammeri Finsch .
gemmiferum L'reb. = C. Botrytis Menegh
gotlandicum Wittr. = C. rectangulare Grun.
Klebsii Gutuc. $=C$ C. subeumilum Vordst.

> IV.-Desmidiaceae-continucd.

Cosmarium
malinvernianum Schmidle $=$ C. margaritiferum Mencgh.
Nuttallii West. = C. subundulatum Wille.
odontopleurum Arch. = C. repandum Nordst.
Scenedesmus Delp. = C. depressum Lund.
schliephackeanum Grun. = C. pygmaeum Arch. sendtnerianum Reinsch. = Euastrum sendtnerianum Reinsch. sinuosum Lrund. = C. decedens Racib.
sublobatum Arch. = Euastrum sublobatum Bréb. subpunctulatum Nordst. = C. punctulatum Bréb.
Subreinschii Schmidle. $=$ Euastrum montanum W.\& G. S. West. succisum West. $=$ C. tinctum Ralfs.
Desmidium
Borreri Ralfs, = Gymnozyga moniliformis Ehr. mucosum Bréb. = Hyalotheca dissiliens Bréb.
Didymocladon
furcigerus $B r e ́ b .=$ Staurastrum furcigerum Brêb.
longispinum Bail. $=$ Staurastrum longispinum Arch.
Didymoprium
Borreri Ralfs. = Gymnozyga moniliformis Ehr.
Grevillei Kuitz. = Desmidium cylindricum Grev.
Docidium
asperum Bréb. = Gonatozygon asperum Cleve.
clavatum Kiitz. = Pleurotrenium Trabecula Näg.
coronatum Bréb. = Pleurotaenium coronatum Rabh.
dilatatum Lund. = D. undulatum Bail.
Ehrenbergii Ralfs. = Pleurotaenium Trabecula Näg.
minutum Ralfs. $=$ Penium minutum Cleve.
nobile Lund. = D. undulatum Bail.
nodosum Bail. = Pleurotaenium nodosum Land.
nodulosum Brèb. = Pleurotaenium coronatum Rabh.
truncatum $B r e ̂ b .=$ Pleurotaenium truncatum Näg.
Euastrum
anceps $L u n d .=$ Cosmarium anceps Lund.
angustatum Wittr. = E. binale Ehr.
armstrongianum Arch. $=$ E. pingue Elfv.
circulare Hass. $=$ E. ansatum Ralfs.
declive Reinsch. = E. elegans Kütz.
lobulatum Bréb. = E. binale Ralfs.
pyramidatum West. $=$ E. crispulum W. \& G. S. West.
Rota $E h r_{0}=$ Micrasterias truncata Bréb.

IV.-Desmblaceae-continued.

Enastrum

scitum Test. = Cosmarium nasutum Nordst.
spinosum Ralfs. = E. elegans Kütz.
Gloeoprium
dissiliens Berk $_{0}=$ Hyalotheca dissiliens Breb.
mucosum Bèrk. = Hyalotheca mucosa Ehr.
Gonatozygon
Brebissonii De Bary. = G. asperum Clere.
laeve Bilse. = G. asperum Cleve.
minutum Trest. = G. asperum Cleve.
Ralfsii $D e$ Bary. = G. monotaenium De Bary.
Leptocrstinema
asperum Arch. = Gonatozygon asperum Cleve.
Kinahani sirch. = Gonatozygon Kinahani Rabh.
Portii Arch. = Gonstozygon asperum Cleve.
Mesotaenium
Braunii De Bary. = M. macrococcum Roy. \& Biss.
micrococcum Kirchn. = M. macrococcum Roy. \& Biss.
Micrasterias
angulosa Hantesch. = M. denticulata Ralfs.
brachsptera Lund. = M. apiculata Menegh .
fimbriata Ralfs. $=\mathbf{M}$. apiculata Menegh .
furcata Ago = M. rotata Rulfs.
mucronata Rabh. $=\mathbf{M}$. oscitans Rulfs.
radiosa Raljs. = M. Sol. Eiltz.
Onschonema
filiforme Roy. $\mathbb{\mathbb { E }}$ Biss $=0$. nordstedtiana Turn.
Palmella
protuberans $d y .=$ Mesotaenium macrococum Roy. \& Biss.
Penium
Berginii Arch. $=$ P. Naricula Bréb.
Brebissonii Menajh $=$ Cylindrocystis Brebissonii Meneyh.
closterioides Rialfs $=$ P. Libellula Vordst.
Digitus Brèb. = Netrium Digitus Itzins. \& Rothe.
intersuptum $B r e ́ b .=$ Netrium interruptum Luitkem.
lamellosum Brib. = Netrium Digitus Itsigs \& Fothe.
Naegelii Brib. = Netrium Naegelii IV. \& G. S. West.
oblongum De Bary. = Netrium oblongum Lutkem.
rufopellitum Royo $=\mathbf{P}$. rufescens Clevc.
Pleurotaenium
clavatum De Bary $=\mathbf{P}$. Trabecula. Vä J.
IV.-Desmidiageae-continued.

Pleurotaenium
minutum Delp. $=$ Penium minutum Cleve .
nobile Richter. $=$ Docidium undulatum Bail.
nodulosum De Bary. = P. coronatum Rabh.
rectum Delp. $=$ P. Trabecula Näg.
Sceptrum W. \& G. S. West. = P. tridentulum West.
Sphaerozosma
filiforme Ehr. = Onychonema nordstedtiana Turn. secedens De Bary. $=$ Spondylosium secedens Arch.
Spirotaenia
endospira Arch. = S. bryophila Rabh.
muscicola De Bary. $=\mathrm{S}$. bryophila Rabh.
Spondylosium
pulchellum Arch. = Sphaerozosma pulchellum Rabh.
Staurastrum
brachycerum Bréb. = S. polymorphum Bréb. convergens Ehr. = Arthrodesmus convergens Ehr. depressum Näg. = S. muticum Breb. eustephanum Ralfs. $=$ S. furcigerum Bréb. Incus $B r e ́ b .=$ Arthrodesmus Incus Hass. octocorne Ehr. = Arthrodesmus octocornis Ehr. Pringsheimii Reinsch. = S. polytrichum Perty. pseudofurcigerum Reinsch $=$ S. furcatum Bréb. Sancti-Sebaldi Reinsch. \equiv S. Sebaldi Reinsch. stellatum Reinsch. = S. sexangulare Rabh. subulatum Kïts. $=$ Arthrodesmus subulatus Eütz. tenuissimum Arch. = Arthrodesmus tenuissimus Arch. terebrans Nordst. $=$ S. elongatum Barker. trachynotum West. $=$ S. aculeatum Menegh. tricorne Menegh. = S. hexacerum Wittr.
Tetrachastrum
mucronatum Arch. $=$ Micrasterias oscitans Ralfs. oscitans Dixon $=$ Micrasterias oscitans Ralfs. pinnatifidum Divon $=$ Micrasterias oscitans Ralfs.
Xanthidium
bisenarium Ehr. = X. cristatum Breb. furcatum $E h r .=\mathbf{X}$. armatum Brêb.
octocorne Ehr. = Arthrodesmus octocornis Ehr.

Y.-Other Conjugatae.

Conferra

ericetorum Roth. $=$ Zggnema ericetorum Hansg. genuflesa Dillu: $=$ Mougeotia genoflesa Ag . parpurascens Carm. $=$ Zsgnema ericetorum Hansg.
Mesocarpus
nummuloides Hass. $=$ Mougeotia nummuloides Hass.
parrulus Hass. = Mougeotia parvula Hass.
robustus D_{e} Bary. $=$ Mougeotia robusta Wittr. scalaris Hass $=$ Mougeotia scalaris Hass.
Sirogonium
sticticum Eutz. = Choaspis stictica O. Euntze.
Spirogyra
orthospira N"ïg. = S. majuscula Kütz.
princeps Touch. = S. nitida Link.
Staurocarpus
coerulescens Hass. = Mongeotia capucina Ag.
Staurospermum
gracillimum Hass. $=$ Mougeotia gracillima Tittr .
quadratum Bass. $=$ Mongeotia quadrata Hass.
riride Kuts. = Mougeotia viridis TFittr.
Tyadaridea
crucista Harr. = Zygnema cruciatum Ag.
pectinata Harc. = Zygnema pectinatum Ag.
Zygnema
deciminum Ag. = Spirogyra decimina Entz.
nitidum Ag $=$ Spirogyra nitida Link.
quininum $A g$. = Spirogyra porticalis Cleve.
Zygogonium
didsmum Rabh. = Zsgnema ericetorum Bans! .
ericetorum Kints. 2 Zsgnema ericetorum Hansy.

VI.-Chlorophyceae.

Acanthococcus
aciculifer Lagerh. = Trochiscia aciculifera Hansg.
Aphanochaete
globosa Wolle $=$ Chaetosphaeridiam globosum Klcbahn.
repens A. Bro = Herposteiron confervicola Ning.
Bulbochatte
pringsheimiana Arch. = B, insignis Prinysh .

$$
\begin{aligned}
& \text { Adams-A List of Synomyms of Trish Algue. } \\
& \text { Chaetophora } \\
& \text { endiviaefolia } A g_{0}=\text { C. Cornu-Damae } A g \text {. } \\
& \text { Chlamydococcus } \\
& \text { pluvialis } A . B r,=\text { Spheerella lacustris Wittr. } \\
& \text { Cblorococcum } \\
& \text { botryoides Kütz. }=\text { Protococous botryoides Kirchn. } \\
& \text { gigas Grun. = Gloeocystis gigas Lagerh. } \\
& \text { humicola Rabr. = Pleurococcus vulgaris Menegh. } \\
& \text { humicolum Niag. = Pleurococcus vulgaris Menegh. } \\
& \text { Chroococcus } \\
& \text { macrococcus Rabh. = Urococcus insignis Kiutz. } \\
& \text { rufescens Näg. = Pleurococcus rufescens Brêb. } \\
& \text { Chroolepus } \\
& \text { Arnottii Harv. = A Fungus. } \\
& \text { aureus Kütz. = Trentepohlia aurea Mart. } \\
& \text { ebeneum Ag. = A Fungus or Lichen. } \\
& \text { Jolithus Ag. }=\text { Trentepohlia Jolithus Wallr. } \\
& \text { lichenicolus } A g .=\text { Trentepohlia lichenicola } A g \text {. } \\
& \text { umbrinum Kütz. = Trentepohlia umbrina Born. } \\
& \text { Cladophora } \\
& \text { aegagropila Ces. = C. Sauteri Kütz。 } \\
& \text { Closterium } \\
& \text { subtile } B r e ́ b .=\text { Ankistrodesmus falcatus Ralfs. } \\
& \text { Conferva } \\
& \text { abbreviata Wille. = Microspora abbreviata Lagerh. } \\
& \text { aegagropila Linn. = Cladophora Linnaei Kiitz. } \\
& \text { aurea } \text { Dillwo }_{0}=\text { Trentepohlia aurea Mart. } \\
& \text { bombycina Ago = Tribonema bombycinum Derb. et Sol. } \\
& \text { Brownii Dillw. = Cladophora Brownii Harv. } \\
& \text { capillaris Linn. }=\text { Oedogonium capillare Kütz. } \\
& \text { cryptarum Bory. = A Moss Protonema. } \\
& \text { flavescens Roth } .=\text { Cladophora penicillata Kiutz. } \\
& \text { floccosa } A g .=\text { Microspora floccosa Thur. } \\
& \text { fontinalis Berk. = Rhizoclonium hieroglyphicum Kïts } \\
& \text { glomerata Limu. = Cladophora glomerata Kuitz. } \\
& \text { lichenicola Dillw. = Trentepohlia lichenicola Ag. } \\
& \text { nana Dillw. = Myxonema nanum (Dillw.). } \\
& \text { ochracea Kïtz. = Microspora abbreviata Lagerh. } \\
& \text { pachyderma Wille }=\text { Microspora pachyderma Layerth } \\
& \text { stagnorum Kütz. }=\text { Ulothrix subtilis Kütz. } \\
& \text { zonata Web. et Mohr. = Ulothrix zonata Kiutz. }
\end{aligned}
$$

Proceedings of the Royal Irish Academy.

VI.-Chlorophyceae-continued.

Cosmarium

platyisthmum Arch. $=$ Tetraëdron platyisthmum G. S. West.
Draparnaldia
tenuis $A g .=$ Myxonema tenue $R a b h$.
Gloeococcus
mucosus A. Br. = Sphaerocystis Schroeteri Chodat.
Gloeocystis
ampla Kïtz. = G. gigas Lagerh.
regularis $W . \mathfrak{d} G . S$. West $=$ Chlorobotrys regularis Bohlin.
Hariotina
reticulata Dang. = Coelastrum reticulatum Senn.
Herposteiron
globosum Nordst. $=$ Chaetosphaeridium globosum Klebahn. repens IFittr. $^{\text {= H. H. confervicola }}$ Nüg.
Hormiscis
bicolor Cooke $=$ Cllothrix zonata Cooke
moniliformis Rabh. = C'lothrix moniliformis Kütz.
subtilis Ǩutz。 = Clothrix subtilis Kitts.
tenuis De Toni = U'lothrix tenuis Kitz.
zonata Arescho = C゙lothrix zonata Kutz.
Hormospora
transversalis Breb. = Schizogonium thermale Kütz.
Hydrianum
heteromorphum Rinsch. = Cbaracium beteromorphum Reinseh.
Inefigigiata
neglecta IV. © G.S. Trest = Botryococcus Braunii Kutz.
Limnodictyon
roemerianum Kintz. = Gloeocystis infusionum W. \& G. S. West.
Lyngbya
muralis $A g$. $=$ Prasiola crispa Menegh.
Microspora
vulgaris Rabh. = M. floccosa Thur.
Nordstedtia
globosa Borzi $=$ Chaetosphaeridium globosum Klebahn.
Oedogonium
apophysatum $A . B r .=0$. borisianum Wittr. echinospermum Pringsh. $=$ O. cleveanum Tittr. gemelliparum Pringsh. = O. Landsboroughii Ǩuts. rostellatum Pringsho $=0$. crispum Wittr. setigerum V'aup. $=0$. borisianum Wittr.
VI.-Chlorophyoeae-continued.

Oocystis
crassa Wittr: = O. Marssonii Lemm.
setigera Arch. = Chodatella amphitricha Chod.
Palmella
botryoides Kilts. $=$ Gloeocystis botryoides Näg.
Pediastrum
angulosum Ehr. = P. Tetras Ralfs.
Ehrenbergii $A . B r .=\mathrm{P}$. Tetras Ralfs.
ellipticum Ralfs. = P. constrictum Hass.
granulatum Küts. = P. boryanum Menegh .
Leptactis Ehr. = P. Tetras Ralfs.
pertusum Kits ${ }_{0}=$ P. duplex Meyen.
rotula $A, B r,=P$. biradiatum Meyen.
Polyedrium
caudatum Lagerh. $=$ Tetraëdron caudatum Hansg.
enorme De Bary = Tetraëdron enorme Hansg.
gigas Wittr. = Tetraëdron gigas Hansg.
lobulatum Näg. = Tetraëdron lobulatum Hansg.
longispinum Rabh. $=$ Cerasterias longispina Reinsch .
minimum $A . B r .=$ Tetraëdron minimum Hansg.
tetraëdricum Näg. = Tetraëdron regulare Kütz.
tetragonum Näg. = Tetraëdron tetragonum Hansg.
trigonum Näg. = Tetraëdron trigonum Hansg.

Prolifera

rivularis Vauch $=$ Cladophora insignis Kiitz.
Protococcus
angulosus Corda=Pleurococcus angulosus Menegh.
coccoma Kïtr. $=$ Botrydium granulatum Grev.
infusionum Kirchn. $=$ Gloeocystis infusionum W. \& G. S. West.
minor Kütz. $=$ Pleurococcus vulgaris Menegh.
nivalis $A g .=$ Sphaerella lacustris Wittr.
tectorum Rüts. $=$ Pleurococcus tectorum Trevis.
viridis $A g .=$ Pleurococcus vulgaris Menegh.
vulgaris Menegh. = Pleurococcus vulgaris Meneyh. Rhaphidium
aciculare $A . B r .=$ Ankistrodesmus falcatus Ralfs.
contortum Thur. = Ankistrodesmus falcatus Ralfs.
convolutum Rabh. = Ankistrodesmus convolutus G. S. West.
falcatum Corda $=$ Ankistrodesmus falcatus Ralfs.
fusiforme Corda $=$ Ankistrodesmus falcatus Ralfs.
longissimum Schroder $=$ Closteriopsis longissima Lemm.
polymorphum Fresen. $=$ Ankistrodesmus falcatus Ralfs.
$\left[2 C^{*}\right]$
VI.-Chlorophyoeae-continued.

Richteriella

quadriseta Lemm．$=$ R．botryoides Lemm．
Scenedesmus
acutus Meyen．＝S．obliquus Kütz．
alternans Reinsch．＝S．bijugatus Kietz．
dimorphus Kutz．＝S．obliquus Kütz。
obtusus Meyen．＝S．bijugatus Kïtz．
Schizogonium
murale Kütz．＝Prasiola parietina Wille．
Sciadium
Arbuscula A．Bro＝Ophiocytium Arbuscula Rabh
cochleare A．Br．＝Ophiocytium cochleare A．Br．
Sphaeroplea
crispa Berk．＝Ulothrix zonata Kïtz．
Staurastrum
enorme Ralfs．＝Tetraëdron enorme Hansy．
Staurogenia
heteracantha Nordst．＝Crucigenia heteracantha（Nordst．）．
rectangularis $A . B r$ ．$=$ Crucigenia rectangularis W ．\＆G ．S．West．
Stigeoclonium
amoenum $K_{u} u z_{0}=$ Myxonema amoena Hazen．
fastigiatum Kitzo＝Myxonema fastigiatum（Kiitz．）．
protensum Kut：＝Myxonema protensum Dillw．
subsecundum Kuts．＝Myxonems subsecundum Hazen．
tenue Rabho＝Myxonema tenue Rabh．
Tetraedron
longispinum $\left(\right.$ Rablu．$\left.^{\prime}\right)=$ Cerasterias longispina Reinsch．

Trentepoblis

pulchella $A g$ ．＝Myxonema nanum（Dillw．）
Tribonema
abbreviatum（Wille．）＝Microspora abbreviata Rabh ．
pachydermum $($ Willc．$)=$ Microspora pachyderma Lagerh ．
Raciborskii（ Glutw．）＝Microspora amoena $A g$ ．
Ulothrix
bicolor Raljs．＝U．zonata Kritz．
compacta Kutz．$^{\prime}=\mathbf{U}$ ．subtilis Kutz．
radicans $K_{u \prime \prime} z_{0}=$ Prasiola crispa Mencyh ．
stagnorum Kutz。＝U．subtilis Kutz．
variabilis \bar{K} utzo＝U．subtilis Kutz。
Ulva
bullosa Rotho $=$ Tetraspora bullosa $A g$ ．
calopby lla sprongo＝L＇rasiola calophylla Mencyh．
VI.-Chlorophyoeae-continued.

Ulva
crispa Lightf. = Prasiola crispa Menegh.
furfuracea Horn. = Prasiola furfuracea Menegh.
incrassata Huds. $=$ Chaetophora Cornu-Damae Ag.
Vaucheria
crespitosa $A g .=\mathrm{V}$. geminata $D . C$.
racemosa Walz. = V. geminata $D . C$.
sericea Lyngb. $=\mathrm{V}$. ornithocephala $A g$.
Volvox
globator $E h r_{0}=V$. aureus $E h r$.

VII.-Rhodophyceae.

Batrachospermum
atrum Roth. = B. Dillenii Bory.
Conferva
atra Dillw. $=$ Batrachospermum Dillenii Bory.
Lemanea
fluviatilis Bory. $=$ Sacheria fluviatilis Sirod.

B. MARINE SPECIES.

I.-Diatomaceae.

Actinocyclus
undulatus Bail. $=$ Actinoptychus undulatus Ralfs.
Actinoptychus
senarius $E h r$. = A. undulatus Ralfs.
Amphipleura
sigmoidea W. Sm. = Nitzschia Sigma W. Sm.
Amphiprora
constricta Ehr. = Navicula simulans Donk.
didyma $W . S m .=$ Donkinia sp.
elegans W. Sm. = Plagiotropis elegans Grun.
pusilla Greg. = A. lepidoptera Greg.
vitrea W. Sm. = Plagiotropis vitrea Grun.
Amphitetras
antediluviana $E h r_{0}=$ Biddulphia antedilaviana $H . V . H$.
Amphora
dubia Greg. = A. arenaría Donk.
granulata Greg. = A. lineata Greg.
lyrata Greg. = A. angularis Greg.
nana Greg. = A. elliptica Eütz.
proboscidea Greg. = A. commutata Grun.

I.-Dhtomaceaz-continued.

Amphora

quadrata Greg. = A. Gregoryi Pritch. sulcata Roper $=$ A. crassa Greg. rentricosa Greg. $=\mathbf{A}$. turgida Greg.
Bacillaria
paradosa Grun. = Nitzschia paradosa Gmel.
Biddulphia
mobiliensis Bail. = B. Baileyii $\mathrm{W} . \operatorname{Sm}$.
radiata W. $S m_{0}=$ B. Smithii H. Van. Heurck.
Campylodiscus
cribrosus TV. Sm. = C. Echeneis Ehr.
parrulus IF. Smo = C. Thuretii Breb.
simulans Greg. = C. Thuretii Breb.
Cocconeis
binotaia Grun. = Orthoneis binotata Grun.
coronata Briyhtw. = Orthoneis coronata Grun.
excentrica Donk: = Anorthoneis excentrica Grun.
fimbriata Brightw. = Orthoneis fimbriata Grun.
pinnata Greg. = C. brundusiaca Rabh.
punctatissima Grevo $=$ Orthoneis punctatissíma Lagerst .
Colletonems
eximium Kütz. = Pleurosigma eximium Grun.
Coscinodiscus
Ehrenbergii O'Meara $=\mathbf{C}$. lineatus Ehr. omphalanthus Ehr. = C. Asteromphalus Ehr. radiolatus Ehr. = C. fimbriatus Ehr.
Creswellia
turris Grev. = Stephanopyzis turris Ralfs.
Cyclotella
dallasiana W. Sm. = C. striata Grun.
scotica Eutz. $=$ Hyalodiscus scoticus Grun.
Denticula
nana Greg. = Dimeregramma nanum Ralfs.
Diadesmis
Williamsonii TV. Sm. = Glyphodesmis Williamsonii Grun.
Diatoma
auritum Lyıug. = Biddulphia aurita Breb.
fasciculatum Ag. = Sypedra affinis Kïtz.
hyalinum Kïtz. = Fragilaria hyalina Srun. marinum Lyngb. = Grammatophora marina Eoulz. obliquatum L ynyb. $=\operatorname{Lsthmiasp}$.

> I.-Diatomageae-continued.

Diatoma
striatulum $A g_{0}=$ Rhabdonema areuatum Kiutz. truncatum Grcv. $=$ Synedra affinis Kitz.
Dickieia
pinnata Ralfs. $=$ Schizonema mesogloeoides Kütz. ulvoides Bert. = Navicula ulvacea H. Van Heurck.
Dimeregramma
distans Greg. $=$ Glyphodesmis distans Grun. nanum Greg. $=\mathbf{D}$. minus Ralfs.
Donkinia
compacta Ralfs. $=$ Rhoicosigma compactum Grun.
Epithemia
constricta W. Sm. = E. Musculus Kiitz.
marina Donk. = Hantzschia marina Grun.
Eupleuria
pulchella Arnott. = Entopyla pulchella Grun.
Eupodiscus
sculptus W. Sm. = Auliscus sculptus Ralfs.
Exilaria
truncata Grev. = Synedra affinis Kiutz.
Fragilaria
aequalis Heib. = F. virescens Ralfs.
aurea Carm. = F. striatula Lyngb.
diatomoides Grev. = F. striatula Lyngb.
Gomphonema
marinum W. Sm. = Rhoicosphenia marina W. Sm. paradoxum $A g .=$ Licmophora paradoxa $A g$.
Grammatophora
macilenta W. Sm. = G. oceanica Ehr.
Grammonema
Jurgensii $A g .=$ Fragilaria striatula $L y n g b$.
Homoeocladia
filiformis $W . S m$. = Nitzschia filiformis W. Sm. Martiana Ago = Nitzschia Martiana H. Van Heurct. sigmoidea W. Sm. = Nitzschia fasciculata Grun.
Lysigonium
nummuloides W. Sm. = Melosira nummuloides Ag . Westii W. Sm. = Melosira Westii W. Sm. Wrightii O'Meara = Melosira Wrightii O'Meara.
Melosira globifera Harv. = Podosira Montagnei Kiutz.

I.-Diatonaceae-continued.

Melosira
lineata $A g_{0}=$ Lysigonium moniliforme Link. marina Jan. et Rabh. = M. sulcata Kiutz. subflexilis Kiitz. = Lysigonium moniliforme Link.
Navicula
angulosa Greg. = N. palpebralis Brê. apis $E h r .=$ N. didyma Ehr. arraniensis O^{\prime} Meara $_{\circ}=\mathrm{N}$. nitescens Ralfs. bicuneata Grun. = N. maxima Greg. clavata Greg. = N. Hennedyi W. Smo convexa W. Sm. = Scoliopleura latestriata Crun. cyprinus Ehr. = N. digito-radiata Ralfs. donkiniana O'Meara $=$ N. musca Greg. Jonnerii W. Sm. = Scoliopleura tumida Rabh. meniscus Schum。 $=$ N. peregrina Kïtz. minutula IV. $S m$ = N. pygmaea Kilz. punctulata W. Smo $=$ N. marina Ralfs. rostellifera Grego = N. cancellata Donk. Schmidtii O'Mcara. = N. Eugenia A. Schm. scutellum O'Meara $=$ N. Smitbii Breb . Westii W. Sm. = Scoliopleura Westii Grun. Nitzschia
birostrata ID. Sm. $=$ N. longissima Ralfs.
closterium W. $S m .=$ N. curvirostris Cleve.
byalina Greg. = N. spathulata Breb.
virgata Roper. $=$ Hantzschia virgata Grun.
Odontella
aurita $A g o=$ Biddulphis aurita Bréb.
Odontodiscus
anglicus Donk. = Thalassiosira Nordenskioldii Cleve.
excentricus Ehr. = Coscinodiscus excentricus Ehr.
Omphalopelta
areolata Ehr. = Actinoptychus undulatus Ralfs.
Orthosira
angulata Greg. = Coscinodiscus decipiens Girun.
marina W. Sm. = Melosira sulcata Kutz.
sulcata Ehr. = Melosira sulcata Kílz.
Paralia
sulcata Cleve. $=$ Melosira sulcata Kïtz .
Pinnularia
distans W. Sm. = Navicula distans Kalfs.
I.-Dintomacean-comtimuted.

Pinnularia
divaricata O'Meara. = Navicula latissima Crecg.
marginata O^{\prime} Meara. = Navicula marginata O'Mcara
peregrina Ehr. = Navicula peregrina Kiutz.
scutellum O^{\prime} Meara $=$ Navicula Smithii Breb .
Vickersii O^{\prime} Meara = Navicula Vickersii O'Meara. $^{\prime}$
Pleurosigma
aestuarii $W . S m .=P$. angulatum W. Sm.
delicatulum W. Sm. = P. angulatum W. Sm.
giganteum Grun. = P. validum Shadb.
mirabile O'Meara. = P. pulchrum Grun.
quadratum W. Sm. = P. angulatum W. Sm.
strigosum W. Sm. = P. angulatum W. Sm.
transversale $W . S m$. $=$ P. naviculaceum Bréb.
Podosira
maculata W. Sm. = Hyalodiscus stelliger Bail.
Podosphenia
Ehrenbergii Kiutz. = Licmophora Ehrenbergii Grun.
Juergensii Kiutz. = Licmophora Juergensii Ag.
Lyngbyei Kiutz. = Licmophora Lyngbyei Grun.
Ralfsia
hyalina Kittz: = Fragilaria hyalina Grun.
minima Ralfs $=$ Fragilaria hyalina Grun .
Tabellaria O^{\prime} Meara $=$ Fragilaria Tabellaria O^{\prime} Meara.
Raphoneis
Jonesii O'Meara = Cocconeis Scutellum Ehr.
Moorei O'Meara = Cocconeis Scutellum Ehr.
suborbicularis O^{\prime} Meara $=$ Campyloneis Grevillei Grun. et Eul.
Rhipidophora
elongata Kiutz. = Licmophora gracilis Grun.
paradoxa Kittz. = Licmophora paradoxa Ag.
Schizonema
crucigerum $W . S m .=$ Navicula crucigera $W . S m$.
Dillwynii Ag. = Berkelega rutilans Gmun.
gracillimum IV. Sm. = Berkeleya parasitica Gmen.
Grevillei $A g 0=$ Navicula Grevillei Ag .
obtusum Grev. = Berkeleya obtusa Grun.
parasiticum Harv. = Berkeleya parasitica Grun.
quadripunctatum $A g .=$ Berkeleya rutilans Gruun.
ramosissimum $A g_{0}=$ Navicula ramosissima $A g$.
virescens Harv. = Berkeleya rutilans Grun.

I．－Diatomaceae－continued．

Scoliopleura
convesa $\mathrm{W} . \mathrm{Sm} .=\mathrm{S}$ ．latestriata Grun． Jennerii IV．Snı．＝S．tumida Rabh．
Stauroneis
amphioxus Greg．＝Stauroneis Gregoryi Ralfs． crucicula W．Sm．＝Navicula crucicula Donk．
pulchella IW．Sm。＝Navicula aspera Ehr．
Striatella
arcuata $A g .=$ Rhabdonema arcuatum Kiitz．
Surirella
constricta $\mathbb{W} . S_{m}=$ S．Smithii Ralfs．
craticula Ehr．＝Navicula sp．
Synedra
Frauenfeldii Crme＝Thalassiothrix Frauenfeldii（Trm．
gracilis Kü̈tz．＝S．aftinis K゙ütz．
tabulata Ag．＝S．affinis Ǩütz．
Tessella
catena Ehr．＝Rhabdonema arcuatum Külz．
interrupta Ehr．＝Striatella interrupta Heib．
Thalassiothrix
curvata Castr．$=$ Synedra nitzschioides Grun．
Triccratium
alternans Bail．＝Biddulphia alternans H．Van Heurck．
favus Ehr．＝Biddulphin favus H ．Van Heurch：
Tryblionella
acuminata W．Smo＝Nitzschia acuminata Grun．
apiculata Greg．＝Nitzschia apiculata Grun．
constricta Greg．＝Nitzschia constricta Grun．
marginata WF．Smo＝Nitzschia navicularis（rrun． Neptuni Schum．＝Nitzschia punctata Grum． punctata IV．Sme＝Nitzschia punctata Grun． scutellum II＇．Sine＝Nitzschia circumsuta Girun．

II．－Cyanophyceae．

Calothris
caespitula Harv．$=$ Hydrocoleus comoides（iom．
byduoides Harv．＝C．pulvinata Ay．
luteola Grev．＝Lyngbya luteola Crouan．
pannosa Al．$=$ Lyngbya aestuarii J．icbm。
semiplena Harc．＝Symploca bydnoides Kuitz．
II.-Cyanophyoeae-continued.

Conferva
confervicola Roth.$=$ Calothrix confervicola $A g$.
majuscula Dillw。 = Lyngbya majuscula Harv.
Hyella
nitida Batt. $=$ H. caespitosa Born. et Flah.
Lyngbya
ferruginea $A g .=$ L. aestuarii Licbm.
Microcoleus
lyngbyaceus Thur. = Hydrocoleus lyngbyaceus Kittz.
Oscillatoria
chthonoplastes Hoffim. $=$ Microcoleus chthonoplastes Thur.
Rivularia
Biasolettiana Menegh. = R. coadunata Fosl.
plana Harv. = Isactis plana Harv.
plicata Carm。 $=$ R. nitida Ag .
Sphaerozyga
Carmichaeli Harv. = Anabaena torulosa Lagerh.
Thwaitesii Harv. = Anabaena variabilis Kuitz.
Tremella
hemispherica Linn. = Rivularia atra Roth.

III.-Chlorophyceae.

Bangia
laeterirens Harv. = Urospora isogona Batt.
Cladophora
diffusa Harv. = C. Hutchinsiae Harv.
nuda Harv. = C. rupestris Kiutz.
Conferva
aerea Dillw. = Chaetomorpha aerea Kiutz.
albida Huls. = Cladophora albida Kittz.
arcta Dillw. = Cladophora arcta Kiutz.
arenosa Carm. = Rhizoclonium arenosum Kütz.
bangioides Harv. = Urospora bangioides Holm. \& Batt.
bullosa Wade. = Cladophora fracta Kiutz.
crassa Ag. = Chaetomorpha crassa Kütz.
diffusa Roth: = Cladophora Hutchinsiae Kitz .
fracta $F l$. Dans. = Cladophora fracta Kietz.
glaucescens ciriff. = Cladophora glaucescens Harv.
gracilis Griff. = Cladophora gracilis Kïtz.
Hutchinsiae Dillwo = Cladophora Hutchinsiae Kuitz. implexa Dilluo = Rhizoclonium implexum Batt.

III.-Cblorophyceae-continued.

Conferva
intricata Grev. = Chaetomorpha tortuosa Kütz.
Kaneana McCalla. = Cladophora rudolphiana Harv.
laetevirens Dillw. = Cladophora laetevirens Kiitz.
lanosa Roth. = Cladophora lanosa Kiitz.
Linum Harc. = Cladophora crassa Kuitz.
Melagonium Web. et Mohr. = Chaetomorpha Melagonium Kiitz.
nuda Harv. = Cladophora rupestris Kiitz.
pellucida Huds. = Cladophora pellucida Kuitz.
rectangularis Griff. $=$ Cladophora rectangularis Hare.
refracta Iryatt. = Cladophora albida Kütz.
riparia Roth. = Rhizoclonium riparium Hare.
rupestris Limno = Cladophora rupestris Kiilz.
sericea Lynyb. = Cladophora sericea Kütz.
tortuosa Dillw. = Chaotomorpha tortuosa Kutz.
Enteromorpha
erecta Harvo = E. paradoxa Kiulz.
Hopkirkii McCalla = E. paradoxa Liulz.
percursa Harvo = Percursaria percursa Roscrv.
Epicladia
Flustrae Reinke = Endoderma Flustrae Bat .
Lyngbya
Carmichaelii Harv. = Urospora isogona Batt. speciosa Carm. = Urospora isogona Batt.
Monostroma
Blyttii Wittr. = M. fuscum Wittr.
lactuca $J . A g .=$ M. Grevillei Wittr.
Tremella
adnata LIuls $=$ Gloeocystis adnata Schm.
Clothrix
flacea Thur = C Crospora isogona Batt.
speciosa Kiltz. = Urospora isogona Batl.
UTMa
bullosa Eiultz. = Monostroma bullosum Wittr.
clathrata $A y_{0}=$ Enteromorpha clathrata $J . ~ d y$.
compressa Limn. = Enteromorpha compressa Ǵrev.
Grevillei Le Jol. = Monostroma Grevillei Wittr.
intestinalis Linn. = Enteromorpha intestinalis Link.
latissima J. Ag. = U. Lactuca Limn.
Linza, Linn. = Enteromorpha Linza J. Ag.
plumosa IIuls. $=$ Bryopsis plumosa $A g$.
III.-Chlorophyceae-continued.

Urospora
penicilliformis Aresch. $=\mathrm{U}$. isogona Batt.
Vaucheria
marina Lyngb. = Derbesia marina Kjelln.
velutina $A g{ }_{0}=\mathrm{V}$. Thuretii Woron.

IV.-Phaeophyceae.

Aglaozonia
parvula Grev. = Cutleria multifida Grev.
reptans Cm. = Cutleria multifida Grev.
Ascocyclus
Leclancherii Magn。 = Chilionema Nathaliae Sauv。
Asperococcus
echinatus Grev. = A. fistulosus Hook.
pusillus Hook. = Litosiphon pusillus Harv.
Turneri Lamour. $=\mathrm{A}$. bullosus Lamour.
Bangia
Laminariae Lyagb. = Litosiphon Laminariae Harv.
Carpomitra
Cabreras Kiutz. = C. costata Batt.
Chorda
lomentaria Lyngb. = Scytosiphon lomentarius J. Ag.
Cladostephus
plumosus Holnes. $=$ Chaetopteris plumosa Kiutz.
Conferva
curta Dillw. = Elachistea flaccida Aresch.
flaccida Dillw. = Elachistea flaccida Aresch.
fucicola Velley = Elachistea fucicola Fries.
fusca Huds. = Sphacelaria cirrhosa Δg.
littoralis Lim. = Pylaiella littoralis Kjellm.
Mertensii Dillu. = Tilopteris Mertensii Kittz.
paradoxa Roth. = Spermatochnus paradoxus Kütz.
pennata Eng. Bot. = Chaetopteris plumosa Kiitz.
radicans Dillw. = Sphacelaria radicans $A g$.
scoparia Linn. = Stypocaulon scoparium Kïtz.
scutulata Sm. = Elachistea scutulata Duby.
tomentosa Huds. = Ectocarpus tomentosus Iyngbb.
verticillata Lightf. $=$ Cladostephus verticillatus $A g$.
Corynephora
marina $A g .=$ Leathesin difformis stresch.

Cystoseira

foeniculacea Grov. = C. discors $A g$.
Desmotrichum
balticum Kiitz. = Punctaria baltica Batt.
undulatum Rise. $=$ Punctaria undulata J. Ag.
Dichloria
riridis Grev. = Desmarestia riridis Lamour.
Dictyopteris
polypodioides Lamour. = D. membranacea Batt.
Dictyota
atomaria Grev. = Taonia atomaria J. Ag.
implexa $J . A g \cdot=$ D. dichotoma Lamour.
Ectocarpus
brachiatus Harv. = Phloeospora brachiata Born.
crinitus Carm. $=$ Achinetospora pusilla Born .
firmus J. Ag. = Pylaiella littoralis Kjcllm .
Griftitbsianus Lc Jol. = Phloeospora brachiata Born .
littoralis Wyatt $=$ Pylaiella litroralis Kijclm.
Mertensii Harv. = Tilopteris Mertensii Kiütz.
pusillus Griffo = Achinetospora pusilla Born.
spbaerophorus Carm. = Isthmoplea sphaerophora Kjellm.
Elachistea
Areschougii Crn. = Myriactis Areschougii Batt.

Elajonema

villosum Berk. $=$ Arthrocladia rillosa Duby.
Fucus
aculeatus Linn. = Desmarestia aculeata Lamour.
balticus $A g$. $=\mathbf{F}$. vesiculosus Linn.
bifurcatus Mith. = Bifurcaria tuberculata Stackh.
canaliculatus Linn. $=$ Pelvetia canaliculata Dene ct Thur.
digitatus Linn. = Laminaria digitata Lamour.
distichus Linn. $=$ F anceps Hart. and Ward.
Fascia Miill. = Phyllitis Fascia Ǩütz.
Filum Linn. = Chorda Filum Stackh.
loreus Linn = Bimanthalia lorea Lynyb.
Mackaii Turn. $=$ Ascophyllum Mackaii Eolm. di Batt.
nodosus Linno = Ascophyllum nodosum Le Jol.
Pbyllitis Stackh. = Laminaria saccbarina Lamour.
polyschides Lightfo = Saccorhiza polyschides Bath.
saccharinus Linno = Laminaria saccharina Lamour.
siliquosus Linno = Halidrys siliquosa Lymgb.
IV.-Peaeophyoeae-continucd.

Fucus
teres Good. \& Woodw. = Alaria esculenta Grev. tuberculatus Huds. = Bifurcaria tuberculata Stackh.
Giffordia
secunda Butt. $=$ Ectocarpus secundus Kiitz.
Haligenia
bulbosa Huds. = Saccorhiza polyschides Batt. Haliseris
polypodioides $A g .=$ Dictyopteris membranacea Batt.
Helminthocladia
Griffithsiana Harv. = Mesogloia Griffithsiana Grev.
vermicularis Sm. = Mesogloia vermiculata Le Jol. virescens Grev. = Castagnea virescens Thur.
Laminaria
bulbosa Lamour. = Saccorhiza polyschides Batt.
Cloustoni Le Jol. = L. hyperborea Fosl.
Fascia Harv. = Phyllitis Fascia Kiitz.
flexicaulis Le Jol. = L. digitata Lamour.
Phyllitis Lamour. = L. saccharina Lamour.
Leathesia
Berkeleyi Harv. = Petrospongium Berkeleyi Näg. tuberformis S. F. Gray. = L. difformis Aresch.
Mesogloia
vermicularis $A g .=$ M. vermiculata Le Jol.
virescens Cam. = Castagnea virescens Thur.
Myrionema
Leclancherii Harv. = Chilionema Nathaliae Sauv.
punctiforme Harv. $=\mathrm{M}$. strangulans Grev.
Padina
deusta Grev. = Ralfsia verrucosa J. Ag.
parvula Grev. = Cutleria multifida Grev.
Phloeospora
subarticulata Aresch.$=$ Stictyosiphon subarticulatus Rke.
Pogotrichum
filiforme Rke. = Litosiphon filiformis Batt.
hibernicum T. Johns. = Litosiphon hibernicus Batt.
Pycnophycus
tuberculatus Kiutz. $=$ Bifurcaria tuberculata Stacki.
Ralfsia
deusta Berk. = R. verrucosa J. A! .

IV.- Phaeophyceae-continued.

Saccorhiza

bulbosa De La Pylo = S. polyschides Batt.
Sphacelaria
filicina $A g .=$ Halopteris filicina Kuitz.
plumosa Lyngb. = Chaetopteris plumosa Kütz.
scoparia Ag. = Stypocaulou scoparium Kütz.
sertularia Bonnem. = Halopteris Glicina Kïtz.
velutina Grev. $=$ Ectocarpus velutinus 太iutz.
Sporochnus
Cabrerae Ag. = Carpomitra costata Batt.
rhizodes $A g .=$ Stilophora rhizodes $J . A g$.
villosus $A g_{0}=$ Arthrocladia villosa $D u b y$.
Stilophora
Lyngbyei J. Ag. = Spermatochnus paradoxus Eiutz.
streblonema
Areschougii Batt. $=$ Myriactis Areschougii Batt.
luteolum $D c$ Toni $=$ Ectocarpus luteolus Sawv.
minimum Saur. = E'ctocarpus minimus Näg.
reptans Farl. = Ectocarpus repens Rice.
simplex Holm. \& Batt. = Ectocarpus simplex Cm. solitarium $D e$ Toni $=$ Ectocarpus solitarius Sawv. velutinum Thur. = Ectocarpus velutinus Kïutz.
Trichocladin
Griffithsiann Harvo = Mesogloia Griffithsiana Grev.
vermicularis Marvo = Mesogloia vermiculata Le Jol.
virescens IIarv. = Castagnea virescens Thur.
Clu
dichotoma Huls. = Dictyota dichotoma Lamour. fistulosa I Iuls. = Asperococcus fistulosus Hook. Payonia Limn. = Padina Pavonia Gaillon.
Zonaria
paryula Grev. = Cutleria multifida Grev.

V.-Rhodophyceae.

Acrochaetium
chylocladiae Batt. = Chantransia chylocladiae (Batt.). corymbiferum Batt. = Chantrans1a corymbifera Thur. Daviesii Noü. = Chantransia Daviesii Thur. endozoicum Batt. = Chantransia endozoica Darbish. secundatum Väg. = Chantransia secundata Thur. sparsum l'att. = Chantransia sparsa (('arm.) . virgatulum $J_{0} A g_{0}=$ Chantransia virgatula Thur.

> V.-Rhodophyceae-continued.

Bangia
ciliaris Carm. $=$ Erythrotrichia ciliaris Batt. elegans Chauv. $=$ Goniotrichum elegans Le Jol .
Calliblepharis
jubata Good. \& Woodw. = C. lanceolata Batt. Callithamnion

Borreri Harv. = Pleonosporium Borreri Nëg.
brachiatum Harvo = C. tetragonum Ag 。
byssoideum Buffh. = Seirospora interrupta Schm.
cruciatum Ag. = Antithamnion cruciatum Näg.
Daviesii Harv. = Chantransia Daviesii Thur.
floridulum $A g 。=$ Rhodochorton floridulum Näg. gracillimum Ag. = Compsothamnion gracillimum Schm.
Grevillei Harv. = C. polyspermum Ag.
lenosum Harv. = C. Hookeri Ag.
pedicellatum Ag. = Monospora pedicellata Sol.
Pluma Ag. = Ptilothamnion Pluma Thur.
Plumula Lyngb. = Antithamnion Plumula Thur.
pumilum Harv. $=$ Antithamnion cruciatum Näg.
purpureum Harv. = Rhodochorton purpureum Rosenv.
repens Lyngb. $=$ Spermothamnion Turneri Aresch .
Rothii Lyngb, = Rhodochorton Rothii Näg. secundatum $A g .=$ Chantransia secundata Thur.
seirospermum Griff. = Seixospora Griffthsiana Harv. sparsum Carm. = Chantransia sparsa (Carm.).
spongiosum Harv. = C. granulatum Ag.
thuyoideum Harv. = Compsothamnion thuyoides Schm.
Turneri $A g .=$ Spermothamnion Turneri Aresch.
versicolor $A g .=$ C. corymbosum Lyngb.
virgatulum Harv. = Chantransia virgatula Thur.
Catenella
Opuntia Grev. = C. repens Batt.
Ceramium
agardhianum Griff. = C. Deslongchampii Chauv.
nodosum Harv. $=$ C. tenuissimum $J . A g$.
Chaetophora
pellita Lyngb. = Cruoria pellita Fries.
Chaetospora
Wigghii $A g \circ$ = Naccaria Wigghii Endl.
Chondrus
Brodiaei Grev. $=$ Phyllophora Brodiaei J. Ag.

Chondrus
mammillosus Grev. $=$ Gigartina stellata Batt. membranifolius Grev. = Phyllophora membranifolia J. Ag. norvegicus Lamour. = Gymnogongrus norvegicus J. Ag.
Chrysymenia
clavellosa Harv, = Lomentaria clavellosa Gaill.
Chylocladia
articulata irrev $=$ Lomentaria articulata Lyngb.
clavellosa Hook. = Lomentaria clavellosa Gaill.
ovalis Hook. = C. ovata Batt.
parvula Hook. = Cbampia parvula Harv.
Conferva
ciliata Ellis = Ceramium ciliatum Ducluz.
coccinea Huds. = Heterosiphonia plumosa Batt.
Dariesii Dillw. = Chantransia Daviesii Thur. diaphana Lightf. = Ceramium diaphanum Roth.
elongata Huds. = Polysiphonia elongata Grev.
fibrillosa Dillw. = Polysiphonia fibrillosa Girev.
floridula Dillu: = Rbodochorton floridulum Nüg.
interrupta Dillu. = Seirospora interrupta Schm.
lanuginoss Dillw. = Callithamnion lanuginosum Lyngb.
multifida Dilhr. = Sphondylothamnion multifidum Näg.
nodulosa Lightf. $=$ Ceramium rubrum $A g$ 。
parasitica Iudls. = Pterosiphonia parasitica Falkenb.
patens Dillu $=$ Polysiphonia urceolata Grev.
pluma Dillwo = Ptilothamnion pluma Thur.
plumosa Ellis = Heterosipbonia plumosa Batl.
polymorpha Fl. Dan. = Polysiphonia fastigiata Grev.
purpurascens H uds. = Callithamnion Brodiaei Harv.
Rothii Dillu $=$ Rhodochorton Rothii Naig.
rubra Iluls. = Ceramium rubrum Ag.
setacea Ifuds. = Griffithsia flosculosa Batt.
stricta Dillw. $=$ Polysiphonia urceolata Grev.
tenella Dillw. = Spermothamnion Turneri Aresch.
tetrica Dillw. $=$ Callithamnion tetricum Ag .
Corallina
mediterranea Aresch. = C. elongata Johnst.
Cystoclonium
purpurascens Kï̈tz. $=$ C. purpureum Batt.
Dasya
coccinea Huds. = Heterosiphonia plumosa Batt.
V.-Rhodophyceae-continued.

Dasya
Hutchinsize Harv. = D. arbuscula Ag.
Delesseria
sinuosa Lamour. = D. rubens (Huds.).
Diploderma
amplissimum Kjellm. = Porphyra miniata Ag.
Dudresnaya
coccinea Cm $=\mathrm{D}$. verticillata Le Jol .
divaricata Harv $=$ Helminthora divaricata J. Ag.
Dumontia
filiformis Lyngb. $=$ D. incrassata Lamour.
Fastigiaria
furcellata Linn. = Furcellaria fastigiata Lamour.
Fucus
alatus Gmel. $=$ Delesseria alata Lamour.
albidus Esper. = Gracilaria compressa Grev.
amphibius Huds. = Bostrychia scorpioides Mont. articulatus Lightf. $=$ Lomentaria articulata Lyngb. ciliatus Huds. = Calliblepharis ciliata Kiutz. coccineus Huds. = Plocamium coccineum Lyngb. confervoides Limn. = Gracilaria confervoides Grev. corneus Huds. = Gelidium corneum Lamour. crispus Linn. = Chondrus crispus Lyngb.
dasyphyllus Woodw. = Chondria dasyphylla Ag .
dentatus Linn. $=$ Odonthalia dentata Lyngb.
edulis Stackh. = Dilsea edulis Stackh.
fastigiatus Huds. = Furcellaria fastigiata Lamour.
Hypoglossum Woodzo. = Delesseria Hypoglossum Lamour.
kaliformis Good. \& Woodw. = Chylocladia kaliformis Hook.
laceratus Gmel. = Nitophyllum ramosum Batt.
laciniatus Huds = Callophyllis laciniata Kiitz
lumbricalis Gmel. $=$ Fuxcellaria fastigiata Lamour. mammillosus Good. \& Woodzo. = Gigartina stellata Batt.
palmatus Linn. = Rhodymenia palmata Grev.
pinastroides Ginel. = Halopithys incurvus Batt.
pinnatifidus Gmel. = Laurencia pinnatifida Lamour.
plicatus Huds $=$ Ahnfeltia plicata Fries.
plumosus Linn. = Ptilota plumosa Ag.
purpurascens Huds. = Cystoclonium purpureum Batt.
repens Lightf. = Catenella repens Batt.
rubens Huds. = Delesseria rubens (Huds.).

Proceedings of the Royal Irish Academy.

V.-Rhodopayceae-continued.

Fucus
sanguineus Linn. = Delesseria sangninea Lamour. sedoides Good. \& Woodw。 = Chylocladia ovata Batt. subfuscus Woodw. = Rhodomela subfusca $A g$. variabilis Good. \& Woodw. = Rhodomela subfusca Ag .
Gigartina
confervoides Lamour. = Gracilaria confervoides Grev.
erecta Hook. = Cordylecladia erecta J. Ag.
Grifithsiae Grev. = Gymnogongrus Grifithsiae Mart.
mammillosa J. Ago = G. stellata Batt.
plicata Lamour. = Ahnfeltia plicata Fries.
purpurascens Lamour. $=$ Cystoclonium purpureum Batt.
Ginnania
furcellata Mont. = Scinaia furcellata Birona.
Gracilaria
erecta Grev. $=$ Cordylecladia erecta $J . A g$.
Grifithsia
corallina $A g_{0}=G$. corallinoides Batt.
equisetifolia Ago = Halurus equisetifolius Kiutz.
mulcitida $A g_{0}=$ Sphondylothamnion multifidum Näg.
setacea $A y=$ G. dosculosa Batt.
simplicifilum $A g .=$ Halurus equisetifolius Kiulz.
Gymnogongrus
plicatus Ľülz. = Ahufeltia plicata Frics
Halymenia
furcellata $\mathrm{Ag} .=$ Scinaia furcellata Birona.
ligulata $A g 0=$ Halarachnion ligulatum Kutz.
IIapalidimm
phyllactidium Kiutz. = Melobesia confervicola Fosl.
Hildeabrandtia
rubra Harvo = H. prototypus Vardo.
Hydrolapathum
sanguineum Linn. = Delesseria sanguinea Lamour.
Hyppea
purpurascens Harv. $=$ Cystoclonium purpurenm Batt.
Iridaea
edulis Hurc. = Dilsea edulis Stackh.
Jania
rubeus tell. ef Sol. = Corallina rubens Linn.
V.-Rhodophyoeae-continued.

Kallymenia
Dubyi Harvo = Schizymenia Dubyi J. Ag.
Laurencia
dasyphylla Grev. = Chondria dasyphylla Ag.
tenuissima Grev. = Chondria tenuissima Ag.
Lithocystis
Allmanni Harv. $=$ Melobesia confervicola Fosl.
Lithophyllum
calcareum Fosl. = L. fasciculatum Fosl.
Lithothamnion
agariciforme Aresch. $=$ Lithothamnion lichenoides Heydr.
circumscriptum Strömf. $=$ Clathromorphum circumscriptum Fosl.
Crouani $=$ Lithophyllum Crouani Fosl.
dentatum Kiitz, = Lithophyllum dentatum Fosh.
fasciculatum Harv. = Lithophyllum fasciculatum Fosl.
Hauckii Fosl. = Goniolithon mammillosum Fosl.
incrustans Fosl. = Lithophyllum incrustans Fosl.
laevigatum Fosl. = Phymatolithon laevigatum Fosl.
polymorphum Aresch. = Phymatolithon polymorphum Fosl.
Lomentaria
kaliformis Gaill. = Chylocladia kaliformis Hook. reflexa Chawv. = Chylocladia reflexa Harv.
Melobesia
agariciformis Harv. = Lithothamnion lichenoides Fosl.
confervoides $=$ M, confervicola Fosl.
confinis Crn. = Dermatolithon hapalidioides Fosl.
corticiformis Kuitz. = Lithothamnion corticiforme Fosl.
fasciculata Harv. = Lithophyllum fasciculatum Fosl.
Laminariae Cm. = Dermatolithon macrocarpum Fosl.
lichenoides Harv. = Lithothamnion lichenoides Heydr.
macrocarpa Rosan. = Dermatolithon macrocarpum Fosl.
membranacea Lamour. = Lithothamnion membranaceum Fosl.
pustulata Lamour. $=$ Dermatolithon pustulatum Fosl.
Mesogloia
coccinea Ag. = Dudresnaya verticillata Le Jol.
Hudsoni $A g .=$ Helminthocladia Hudsoni J. Ag.
multifida $A g .=$ Nemalion multifidum $J . A g$.
purpurea Harv. = Helminthocladia purpurea J. Ag.
Nemalion
purpureum Chauv. $=$ Helminthocladia purpurea $J . A g$.

> V.-Reodopaycear-continued.

Nitophyllum
laceratum Grev. $=$ N. ramosum Batt.
ocellatum Grev. = N. punctatum Grev.
ulroideum Hook. = N. Hilliae Grev.
Peyssonnelia
Dubyi Cmo = Cruoriella Dubyi Schm.
Phycodrys
rubens Batt. = Delesseria rubens ((u uds.).
Phyllophora
rubens Good. \& Woodwo = P. epiphylla Batt.
Phyllotylus
Brodiaei M'C'alla $=$ Phyllophora Brodiaei J. Ag. luembranifolius Guoci. \& Wrodu:- - 'hyllophora membranifolia J. Ag.
Polysiphonis
aftinis Moore. $=$ P. nigrescens Grev.
atropurpurea Moore. $=$ P. nigrescens Girev.
atrorubescens I illw, $=\mathbf{P}$. nigra Batt.
byssoides Grev. = Brongniartella byssoides Bory.
cristata Harv. = Pterosiphonia complanata Schm.
formosa Suhr $=$ P. urceolata Grev.
Lyugbei Harv. $=$ P. elongata Harv.
parasitica Huds. = Pterosiphonia parasitica Schm.
patens Grev. = P. urceolata Grev.
pulvinata Roth. = P. macrocarpa Harv.
stricta Grev. = P. urceolata Grev.
thuyoides Harvo $=$ Pterosiphonis thuyoides Schnn.
I'orphyra
ciliaris Crno. = Erythrotrichia Boryana Berth. vulgaris $d y_{0}=$ P. umbilicalis Kutz.
Ptilota
clegans Bonncm. = Plumaria elegans Schm.
sericea Hart. $=$ Plumaria elegans Schm.
Rhododermis
Drummondii Harv. $=$ Hildenbrandtia prototypus Nardo.
Rhodomela
pinastroides $A g$. $=$ Halopithys incurvus Batt.
scorpioides $\Delta y .=$ Bostrychia scorpioides Mont.
RLodowenia $=$ Khodymenia.
V.-Rhodophyoeae-continued.

Rhodymenia
bifida Grev. = Rhodophyllis bifida Kütz.
ciliata Grev. = Calliblepharis ciliata Kïtz.
jubata Grev. = Calliblepharis lanceolata Batt.
laciniata Grev. = Callophyllis laciniata Kiutz.
reniformis Hook. = Kallymenia reniformis J. Ag.
sobolifera Grev. = R. palmata Grev.
Rytiphloea
complanata Harv. = Pterosiphonia complanata Schm.
fruticulosa Harv. = Polysiphonia fruticulosa Spreng. thuyoides Harv. = Pterosiphonia thuyoides Schm.
Schizymenia
edulis Stackh. = Dilsea edulis Stackh .
Thamnidium
floridulum Dillw. $=$ Rhodochorton floridulum Näg. Rothii Lyngb. = Rhodochorton Rothii Näg.
Trentepohlia
Daviesii Harv. = Chantransia Daviesii (Dillw.). floridulum Harv. $=$ Rhodochorton floridulum Näg. lanuginosa Harv. = Callithamnion lanuginosum Lyngb. Rothii Harv. = Rhodochorton Rothii Näg. secundata Harv. = Chantransia secundata (Ag.). sparsa Harv. = Chantransia sparsa (Carm.).
Ulva
elminthoides With.$=$ Nemalion elminthoides Batt.
filiformis Huds. = Dumontia incrassata Lamour.
palmata Lyngb. = Rhodymenia palmata Grev. purpurascens Huds. = Dumontia incrassata Lamour. rubens Huds. = Helminthora divaricata J. Ag. umbilicalis Lightf. $=$ Porphyra umbilicalis Kuitz.
Wildemannia
amplissima Kjellm. = Porphyra amplissima (Kjellm.).
miniata Fosl. $=$ Porphyra miniata Ag.
Wrangelia
multifida Huds. = Sphbndylothamnion multifidum Näg.

ADDITIONAL SPECIES.

The species enclosed in square brackets are not, strictly speaking, additional, as they appeared in the "Synopsis" under a different name.

> A.-Freshwater Species.

I.-Flagellatae.

Bicoeca
lacustris $J . C l$. M.
Cryptomonas
erosa Ehr. U.
Diplosigopsis
frequentissima Lemm. M C.
Euglena
viridis Ehr. U.
Lepocinclis
ovum Lemm. U.
Mallomonas
acaroides Perty. M C.
caudata Iuanoff. M.
producta Ivanoff. C.

11.-Diatomaceae.

Navicula
Legumen Ehr. U.
Rhopalodis
gibba O. Mull. U.

III.-Cyanophyceae.

[Cbroococcus
minimus Lemm. LU. ${ }^{\text {.] }}$
[Gloeotrichia
echinulata P. Richecr. MLCU.
natans Rabh. L U.]
[Schizothrix
Friesii ciom. ML.]

Duebtert.

Calothris
caespitula Harv. M.
Polycystis
persicinus Gutw. U.
IV.-Desmidiaceae.

Cosmarium
corriense Biss. M.
cymatonotophorum West. C.
[decedens Racib. M CL U.]
didymoprotupsum W.\& G.S. Hest. C.
etchachanense Roy \& Biss. M.
furcatospermum W. d G.S. West. U.
nasutum Nordst. M.
obcuneatum IV'est M.
[repandum Nordst. L.]
retusum Rabh。 C.
sexnotatum Gutw. CU.
subturgidum Schmille. C.
Turneri Roy. U.
Staurastrum
arachnoides IVest. C.
bifidum Breb. L.
Doubtful.
Cosmarium
minutissimum Arch. Ireland.
substriatum Nordst. MC.
Staurastrum
armigerum Brêb. L.
spinosum Brêb. L.

V.-Chlorophyceae.

[Ankistrodesmus
convolutus G. S. West. L U.]
¿Chodatella
amphitricha Chod. C.]
Crucigenia
heteracantha (Nordst.) C.
Microspora
pachyderma Lagerh. M C.]

Doubtrul.
Allogonium
tergestinum Kiitz. L.
Chlorococcum
coccoma Menegh. L.

Conferva
alternatr Dillw. M U.
Raciborskii Gutw. U.
Spondylomorum
quaternatum Ehr. L.

I.-Flagellatae.

Dinobryon
pellucidum Lev. MLU.

II.-Silicoflagellatae.

Dictyocha
fibula $E h r$. M L U.
Distephanus
speculum Haeckel. M U.
III.-Coccosphaerales.

Coccosphaera
atlantica Ostenf. L.

IV.-Peridinieae.

Ceratium
furca Clap. et Lachm. MLU
horridum Cleve. MLU.
longipes Cleve. MLU.
macroceras Ehr. M.
Dinophysis
rotundata Clap. et Lachm. L U.
Diplopsalis
lenticula Bergh. MLU.
Glenodinium
acuminatum Ehr. ML.
Gonyaulax
polygramma Stein. ML.
Peridinium
conicum Gran. MLU.
decipiens Jörg. L.
depressum Bail. MLU.
globulus Stein. LU.
R.I.A. PROC., VOL. XXVIII, SECT. B.

Peridinium
oceanicum Jöry. ML. ovatum Schititt. MLU.
pallidum Ostenf. MLU. pentagonum Gran. MLU.
Steini Jörg. L.

Y.-Diatomaceae.

Amphiprora
complexa Greg. L.
Amphora
commutata Grun. L.
Gregoryi Pritch. L.
Asterionella
glacialis Castr. MLU.
Bellerochea
malleus H. V. H. LU.
Biddulphia
granulata Roper. L.
Cerataulina
Bergonii Perag. LU.
Chaetoceras
boreale Bail. ML.
constrictum Gran. ML U
contortum Schiett. U.
convolutum Castr. U.
crinitum Schütt. L U.
curvisetum Cleve. MLU. danicum Cleve. MLU. debile cleve. LU. decipiens Cleve. MLU. densum Cleve. ML. diadema Gran. U.

Chaetoceras
didsmum Cleve．$M \mathrm{~L} \mathbb{U}$ ．
laciniosum Schitit．MLU゙．
perarianum Brightuc．M．
Schütti ciere．L C．
scolopendra Clerc．MIV．
Core：Lron
bystrix Henser．L．
Coscinodiscus
Grani Gowh
Coscinosira
polycharis ciran．L L゙．
Dinieregramma
nanam Raljs．L．
Ditrlam
Brightwellii West．M L l゙．
Eucampia
zodiacus Eir．U．
Guinardis
Haccida Peraj．MLU゙．
Lauderia
boreslis（iran．MLU．
Leprocylindrus
danicus Cleve．L゙．
Lithodesmium
undulatum E ir．L．
Navicula
membranacea Cleve．MLU．
Nitzechia
Eiliformis Tr．sm．L．j
－paralora riniel．MLU．
serista Cièe．MLU．
Ebizosolenia
alata Brightu．M LC゙．
delics：ula Ciece．C＂．
semispina Hensen．MLU．
Sirrubablei Ciere．MLCD．
Stolterfothii Pirul。 IILC゙．
RLoicosphenis
marina $\pi^{\circ} . S m . \quad$ ．
Sceletoneria
cosiatamile：e．MLU．

Schizonema
mucosum Füitz．C L．
Streptotheca
tamesis Clere．LTV．
Thalassiosira
condensata Clere．M．
gelatinosa Hensen．L．
grarida Clere．MLU．
Thalassiorhrix
Frauenfeldii Grun．MLU．

Amphiprora
costata O＇Meara．M．
Isthmia
obliquata ag．MLU．
Saricula
Williamsonii TT．Sm。 C．
Pinnularia
Csprinus Ehr．LU．

VI．－Cyanophyceae．

Bydrocoleas
＇comoides fiom．M．］
lynghaceus Kitz．L．

YII．－Chlorophyceae．

Hexasterias
problematica Clere．L C．
Trochiscia
brachiolata Lemm．L．
Clerei Lemm．MLU゙．
paucispinosa Lemm．LC゙．

Docbifte．
Conferra
perreptans Carm．M．
subimmersa Berk．L．
UTospors
penicillstum． \mathbb{C} ．

VIII．－Phaeophyceae．
Punctaria
baltica Butt．C U．

Doubteul．

Streblonema
pseudosolitarium．Johnson． Ireland．

IX．－Rhodophyoeae．

Gracilaria
compressa Grev．L． Porphyra
amplissima（Kjellm．）．L U．
laciniata $A g$ ．MLU．
Rhodochorton
purpureum Rosenv．MU．

CORRECTIONS AND ERRATA．

The different groups are reviewed in the order in which they appear in the＂Synopsis，＂the Freshwater Species being taken first．

Freshwater Peridinieae．

The following species should be deleted：－Peridinium alatum Gorbini．

Freshwater Diatomaceae．

（a）The following species should be deleted：－Achnanthes subsessilis Kütz．，Amphora membranacea W．Sm．，Campylodiscus Echeneis Ehr．，Denti－ cula crassula Näg．，Encyonema caespitosum Kütr．，Eunotia robusta Rulfs， Navicula peregrina Küt．，Nitzschia constricta Pritch．，N．filiformis W．Sm． N．navicularis Grun．，N．paradoxa Grun．，N．Sigma W．Sm．，Pleurosigma attenuatum W．Sm．，P．Spencerii W．Sm．，P．strigile W．Sm．，Surirella Suithii Ralfs．，Synedra Iunaris Ehr．，S．splendens Kütz．
（b）Cymbella Cistula Kirchu．should be C．Cistula Kirchn．，C．lanceolata Kirchu，should be C．lanceolata Kichn．，Epithemia globifera Heib．should be E．globigera Heib．，Navicula serians Bréb．should be N．serians Kiut：．， N．spaerophora Kütz．should be N．sphaerophora Kütz．，Synedra Acus Küt．． should be S．Acus Grun．，Cyclotella accuminata W ．Sm．should be C． acuminata W ．Sm．

Freshwater Cyanophyceae．

（a）The following species should be deleted：－Anabaena variabilis Kut：．， Calothrix Dillwyni Cooke，Chroococcus minor Näy．，Clathrocystis aeruginosa Henfrey，Gloeocapsa crepidinum Thur．，G．Paroliniana Liét．，Hapalosiphon Braunii Näg．，Hydrocoleus Lyngbyaceus Kütz，Oscillatoria aerugescens Hass．， Phormidium inundatum Kütッ，P．spadiceum Ǩüャ．，Rivularia calcarea s゙m．，
 Scytonema ambigum Born．et Flaho，S．calotrichoiles Kütг，Symplocastrum
 aegagropila，Ǩüta．
(b) The following should be grouped as doubtful species:-Anabaena polysperma Kütə., Oscillatoria percursa Kütг, O. subtilissima Kütz, O. violacea Hriss., Phormidium Boryaum Futt:., P. leptodermum Küt.., Rivularia granuliiera C'u'm., Sphaerozyga Hexuosa Ay., S. Mooreana Rulf., Symploca Flotowiana Kütz.
(') Mierocystis aeruginosa G. S. West shouhl be M. aeruginosa Kut\%, scytonema mirabile Born, should be S. mirabile Thur.

Desmidiaceae.

(11) The following -fecties should be deleted:-Arthredesmus longicornis
 twice, amd both shmuld he deleted), ('. Luxm Wist (occurs twice, and one of the reconds should be veleted, (insmarum angustatum Yoid., C. ansatum
 lich, 1: cylimlicum louli.. (\therefore Elivingii lomib. (‥ gemmiferum Breb.,

 Arch. Docidium hirsutum Bail.

 should be X armatum Biél.

Other Conjugatae.
 dilymum Rabh.

Freshwater Chlorophyceak.

 G. S. Whist, Glneocnecus mucosus Bi., Chloencystis ampla Rublh. Gr. hunicola
(Robh.), G. regularis W. \& G. S. West, Ineffigiata neglecta W. \& G. S. Wost, Microsporab vulgaris Rimh., Nordstedtia globosa Bor"i, Uocystis setigera Aich., P'almella botryoides Küt.., P'ediastrun angulusum Ehr., P'. pertusum Kut.., P'leurococcus rufescens Liefh, Protococens infusionum Kirchu., P'. viridis A $\%$, Rhaphidium convolutum Rinbh., R. polymorphum Ficsen., Scenedesmus acutus. Meyen, S. alternans Ririnseh, Sphaerella nivalis Sommof., Spondylomorum quaternatum Ehri, Tetrastrum heteracanthum C'hol., Tribonema abbreviatum (Rabh.), T. pachydermum (Wille), T. Raciborskii (Gutw.), T. stagnorum Küt̃, Ulothrix bicolor Ralfs., U. radicans Kütz.
(b) The following should be regarded as doubtful species:-Conferva polita Harv., Microspora punctalis Rabh.
(c) Microspora abbreviata Rabh. should be M. abbreviata Laycih.

Marine Diatomaceae.

(a) The following species should be deleted:-Amphiprora paludosa IV. Sm., A. ovalis Küt., Campylosira cymbelliformis Grun., Coscinodiscus subtilis Girun., Dimeregramma fulvum Ralfs., Fragilaria virescens Ralfs,, Hyalodiscus subtilis Buil., Mastogloia Grevillei W. Sm., M. Smithii Thw., Navicula abrupta Greg., N. amphisbaena Bory, N. constricta Grun., N. cryptocephala Kütz, N. elliptica W. Sm., N. forcipata Grer., N. lanceolata Küt:., N. rostrata Ehr., Nitzschia aftinis Kütz, N. Trybliouella Huntsich, Orthotropis lepidoptera Cleve, O. maxima Gicg., Plagiogramma Gregorianum Gior., Surirella craticula E'hr., S. ovalis Bréb., Synedra frauenfeldii Grun., S. Ulna Ehir.
(b) Navicula distans H. van Heurck should be N. distans Ralfs., N. ramosissimum Ay. should be N. ramosissima Ay., Pleurosigma strigilis W. Sm. should be P. strigile W. Sin., Surirella striatula Tucpin should be S. striatulia Turpin.

Marine Cyajophyceae.
The following species should be deleted:-Calothrix aerugimea Thur., Microcoleus Chthonoplastes Thur.

Marine C Chlorophyceae.

The following species should be leleted:-Chaetomorpha Linum Küza, Ulothrix flacca Thur., U. speciosa Kutz.

Marine Rhodophyceae.

Ceramium Derbesii Solier should be regarded as a doubtful species.

Distribution.

Ptiluta plumosa Aly. occurs all round the Irish coasts; Odonthalia dentata Lyngb。 is contined to Ulster, though it has been found washel up as far south as Co. Dublin.

Dickie's statement referring to the occurrence of Red Algae at a depth of 80 fathons must evilently refer to chifted specimens. There are no records of the maximum depth at which Algae are found actually growing on the coast of Ireland, hut it is extremely improbable that any oceur below a depth of 25 fathoms.

REVISED CENSUS OF SPECIES.
A.-Freshwater Species.

	M	C	L	U	Ireland
Flagellatac,	8	6	0	6	15
l'cridinicae,	4	5	1	5	10
Diatomaceuc,	150	147	208	196	281
Cyanophyceac,	61	55	98	86	163
Desmidiacene,	293	360	282	323	499
Other Conjugatac.	13	6	26	9	35
Chlurophyreme.	88	96	146	118	249
Rhodophy cerac,	1	3	10	6	11
Totul,	621	1078	769	749	1263

B.-Malinge Sperifs.

		M	C	L	U	Ireland
Flagellatac,	-	1	0	1	1	1
Silicuflagellatar,	-	2	0	1	2	2
Coccosphatrales,		0	0	1	0	1
Peridinieae,		16	0	23	15	24
Dintomacese,	-	178	131	275	133	401
Cranophycear,	-	18	7	29	10	31
(hlorophyctac.		19	26	55	4	80
Phacopliscene,		85	47	74	65	121
Rhorlophyceras.	-	16:	111.:	14i3	144	232
T \cap fal,		511	314	822	414	89:

Additional Bibliography.

Adams, J.-Distribution of Vancheria in Ireland. Ir. Nat. xii., 190\%.
Catenella repens at Ballygally Head. Ir. Nat. xiii., 1904.
Note on some Seaweeds occurring on the Antrim Coast. Ir. Nat. xiii, 1904.

Algae [of Dublin and Wicklow]. Handbook to the City of Dublin and the Surrounding District. British Association Meeting, 1908.
Alladan, G. J.-Observations on Aphanizomenon Flos-Aquae and a species of Peridinea. Quart. Journ. Micr. Science, iii., 1855.
Anonymous.-The Parliamentary Gazetteer of Ireland. 1846.
Botanical Notes from the Jommal of an Irish Lady. Phytologist, 2nd Ser., i., 1855-6.
Archer, W.-Notice of some cases of abnormal growth in the Desmidiaceae. Nat. Hist. Rev., vi., 1859, and Quart. Journ. Micr. Science, viii,, 1860.
Description of two new species of Cosmarium ($\operatorname{Cor} d \alpha)$, of Penium (Bréb.), and of Arthrodesmus (Ehr.). Quart. Journ. Micr. Science, iv., New Series, 1864.

Note of the Occurrence in Ireland of the minute Alga Cylindrocapsa involuta. Grevillea, iii., 1874-5.
Baily, W. H.-Rambles on the 1rish Coast. 1886.
Cotton, A. D.-Leathesia cripsa. Harv. Journ. of Bot., 1908.
Marine Algae of the West of Ireland. Kew Bulletin of Miscellaneous Information, No. 7, xlii., 1909.
Cusack, M. F.-A History of the Kingdom of Kerry. 1871.
Gough, L. H.—Plankton collected at Irish Light Stations in 1904. Report on the Sea and Inland Fisheries of Ireland for 1904, Part ii., Appendix No. vi, 1906.
Gray, S. O.-British Seaweeds; an introduction to the study of the Marine Algae of Gt. Britain, Ireland, and the Channel Islands. 1867.
Hanna, H.-Chaetomorpha crassa at Achill. Ir. Nat., viii. 1899.
Harris, W.-The Antient and Present State of the County of Down. 1744. Harvey, W. H.-Synopsis of British Seaweeds. 1857.

Short Descriptions of some new British Algae, with two Plates. Nat. Hist. Rev., iv. 1857.
Hind, W. M.-Dingle and its Flora. Phytologist, 2nd Ser., ii., 1857-S.
Johnson, T.—Seaweeds from the West Coast of Ireland. Ix. Nat. i., 1892.
Some Shell-boring Algae. Natural Science v., 1894.
The Flora of Ireland [in Ireland, Iudustrial and Agricultural. 1902]

Lavdsbororgh. D.-A Popular History of British Seaweeds. 1st ed. 1849, 2nd ed. 1851, 3rd ed. 1857.
Monre, D.-Observations on some plants considered by M. De Candolle to be Alien and introduced into Britain. Also notices of some new species to the Irish Flora, with additional habitats of others hitherto supposed to be rare. Nat. Hist. Rev., vi., 1859.
OMeara. E.-Notes on the encysted condition of Diatoma rulgare. Nat. Hist. Rev., vi., 1859.
McParlas. J. Statistical survey of the Countr of Sligo. 1802 .
satrers, W.-On the Decurrence of Desmarestia Dresnayi on the Coast of Ireland. Phytologist, v., 1854.
Syith, C-The Ancient and Present State of the County and City of Waterford. 1746.
The Antient and Present State of the County and City of Cork. 1750.
Warimitus. J.. J. Whitelaw, and R. Walsh.-History of the City of lublin. 1818.
Went. W. and (i. ․ West. - Mnograph of the British Desmidiaceae, vol. iii., 1908.
The Iritioh Frehwater Phytoplankton, with special reference to the Ilesmid-Plankton and the Distribution of Pritish Desmids. Proc. Toy. Soc., Series B, 81, No. B 5 $47,1909$.

Exsiccatae.

McCalla, W. - Algae Hibernicae, vol. i., 1845 ; vol. ii, 1848.

VI.
 THE MARINE WORMS (ANNELTDA) OF DUPLIN BAY ANT) THE ADJOINING DISTRIC'T.

By ROWLAND SOUTHERN, B.Sc., M.R.I.A.

Read May 23. Ordered for Publication May 25. Published June 20, 1910.

Trum material on which this paper is based has heen collected in Dutlin Bay and the adjoining coast, roughly corresponding to the county of Dublin. The opportunity has been taken to collect all the previous records of this group falling within the district; and some material collected by the Scientific Staft of the Fisheries Branch of the Department of Agriculture and Technical Instruction is also included. The greater part of the material was collected on dredging trips under the auspices of the Dublin Marine Biological Committee, ${ }^{1}$ during the years 1907 and 1908, with the aid of grants from the Fauna and Flora Committee of the Royal Irish Academy. On several occasions a small sailing trawler was used for dredging, usually between Dalkey Island and the Burford Bank. A great deal of dredging was also done from a rowing-boat in Malahide Inlet, Dalkey Sound, \&c.; and much the greater part of the material was taken inside the three-mile limit. The greatest depth from which specimens were obtained was Lambay Deep, where several hauls were taken by the Fisheries' cruiser in $40-60$ fathoms. There is considerable variety of habitat in the littoral region, from the muddy flats near the mouth of the Liffey to the rocky shores of Howth. Most of the shore-collecting was done at Sandymount and Howth.

In this paper the division Annelida is muderstood as including the Archiannelida, or primitive segmented worms - the Polychaeta, Oligochaeta Gephyrea, and Hirudinea. The study of these groups in this district has a short and modern history. In the "Guide to the County of Dublin," published for the 1878 meeting of the British Association in Dublin, not a single worm is included in the faunistic lists. In his "Preliminary Report on the Fauna of Dublin Bay,"3 Professor Haddon stated that he had collected arer two dozen species of Ammelids in the Lay, and that he was engaged in working them out; but unfortmately nothing more has been published concerning them.

[^45]In the last fifteen years a number of scattered records have been publishel, and these are collected and inchuled in this paper. A list of these records and their place of publication is given under each group.

The total number of species of Amelids found in the district is 115, made up of \because :peries of Archiannelida, $9 \pm$ species of Polychaeta, 14 species of Oligncharta, 1 Leech, and 4 species of (iephyrea. Of these species 6 are new to the fanna of the British Isles. These are:-Piotodritus flavocantatus (Uljamin); Croubere pusillu (Dujardin); Autolytues megodon, de St.-Joseph; Autolytus Eflurardsi, de St.-Joseph ; Spio martinensis, Mesnil; Prionospio Stomstrapii, Malmgren. Altogether 37 species are added to the Irish fama. These are marked with an asterisk in the following list of all the species foume in the district.

LIST OF SPIECIES.

```
Areminampitos
    Dinuphilus faeniatus, Ihamer.
    Proturbilus flavomapitatus (Uljanin).*
Pofyciakta
    Verilla untunnata, O. Schmidl:*
    Exogone qemmifera, Pogenalecher.
    Sphacrosyllis hystrix, Claparide.
    liunosyllis hyalina (Grube).
    Eusyllis tuhifex, Gonse.*
    nomentosyllis ctenostoma, claparide.*
    0. gilis, Claparide.
    Crrubea clavata Claparide).*
    (i. pusilla (Dujardim)**
    Syllis armillaris (3fuller)."
    S. gramilis, Grube *
    Autolytus pictus (Fihers).
    A. prolifer Mäller). *
    A. Filwarkai, de Sp...Joreph.*
    A. megonlon, de Sl...Toreph.*
    A. longuferiena, de st...Jorchh.*
    A. chbiensis, de St.-.Joreph.*
    Myrianila pinnigera (Montagu).
    Castalia punctata (Mäller).
    C. fusea (Johmaton).
    Magalia perarmata Mfor. el Bobr:*
    Aphroilite aculeata, Le.
```



```
    L. clava, Mon/ayu
Archinaxetiona
Diuwhilus taeniatus, Iharmer. Protulrilus flavomatatus (Uljanin).*
```


Poncinabta

```
Verilla antennata, O. Schmidl:*
Exugone gemmifera, Pagenslecher.
Sphacrosyllis hystrix, Chaparide.
Piomosyllis hyalina (Grube).
Eucyllis tuhifex, Gonse.*
Diluntosyllis clemostorma, Claparède.*
O. gilis, Claparide.
Crubea rlavata (Claparide).*
(i. pusilla (Dujardim)**
Syllis armillaris (3huller)."
S. mramilis, Grube.*
Autolytue pirtus (Fhlers).
A. prolifer Miller).*
A. Milwariai, de SY...Joreph.*
A. megman, de St.--Joreph.*
A. longuferiena, de st...Jorch h.*
A. chbiensis, de St,-Joseph.*
Myrianila pinnigera (Mfontagu).
Castalia punctata (Miller).
C. fusea (Johmaton).
Magalia perarmata Mfor. el Bobr.*
Aphrorite aculeata, \(L\).
Lepilonnetus spuarmatum ( \(L\).) .
L. clava, Mon/ayu
```

Gattrana cirrosa (Pallas).
Lagisea floccosa (Sarigny).
L. Elizahcthae, Mc Intorh.*

Harmathoe imbricata (L.).
H. sctosissima (Sacigny).*
H. antilopis, Mc/mosh.*
liwarne impar (Johaton).
Halosyima gelatinosn (M. Sars).
Polynoe acelopendrina, sisuigmy.
Sthenclais boa (Johnston).
S. limicola, Ehlers.

Phloe minuta (Fubricius).
Eulalia viridis (O. F. Mhüller).
E. bilincata (Jolnston)**

Eumida sanguinea (Oersted).
Phyllodore maculata (\boldsymbol{L}.).
P. groenlaudica, Ocrated.

Tomopteris helgolandica, Greeff.
Nereis cultrifern, Grube.
N. Dumerilii, Aud. ot Educ.
N. zonata, Malmgren.*
N. pelagica, L.

Nercilcpas furata, Sarigny.
Nephthys caeca (O. F. Mïller).
N. Hombergii, Lamarck.
N. hystricis, Mclnlosh.
N. (iliata (O. F. Miller).*
()phryotrocha purrilis, (Inp. et Mecz.

Glycera alba, Rathke.
Gonisda maculata, Oersted. Svoloplos Mülleri (Rathke). Naidonereis quadricuspidi, Fabricius.*
Nerine cirratulus (D, Chiaje).
Scolecolepis rulgaris (Juhuston). *
Spio martinensis, Mesnil.*
Aonides oxycephala (Sars).*
Polydora ciliata (Johnston).
P. flava, Claparede.*

Pygospio elegans, Claparède. *
Prionospio Steenstrupii, Malmgren.*
Cirratulus cirratus (Mïller).
C. tentaculatus (Montagu).

Dodecaceria concharum, Oersted.*
Lanice conchilega (Pallas).
Nicolea venustula (Montagu).*
Thelepus setosus (Quatr.).*
T. cincinnatus (Fabr.).

Capitella capitata (Fabr.).
Ampharete Grubei, Malmgren.*
Pectinaria belgica (Pallas).*
P. auricoma (Muller).

Ophelia limacina (Rathle).*
Arenicola marina, L.
A. ecaudata, Johnston.

Scalibregma inflatum, Rathke.
Stylaroides plumosus (Müller).
S. glaucus (Mfalmgren.*

Flabelligera affinis, M. Sars.
Sabella paronina, Suvigny.
Dasychone bombyx (Dalye7l).
labricia sal, clles, S'lurby, \%
Chone infundibuliformis (Kroyer).*
Haplobranchus aestuarinus, Bourme.
Jasmineira clegans, de St.-Joseph.
Pomatoceros triqueter (L.) .
Hydroides norvegica (Gunnerus).*
Spirorbis borealis, Daudin.
S. spirillum, L.

Sabellaria alveolata (L.).
S. spinulosa, Leuckurt.

Oligochaeta.
Clitellio arenarius (Mïller).
Tubifex Benedeni (Udekem).
T. costatus (Claparede).
T. Thompsoni, Southern.

Marionina semifusca (Claparède).
Lumbricillus litoreus (ILesse).
L. verrucosus (Claparède).
L. fossorum (Tauber).
L. Pagenstecheri (Ratz.).
L. niger, Southern.
L. Evansi, Southern.

Enchytraeus albidus, Henle.
E. sabulosus, Southern.
E. lobatus Southern.

Hirodinea

Pontobdella muricata, L.
Gephyrea.
Petalostoma minutum (Teferstein).
Phascolosoma vulgare (Blainville).
Phascolion strombi (Mont.).
Priapulus caudatus, Lamare\%.

It is interesting to compare this list with that of the similar list recently published for Plymouth, ${ }^{1}$ a district where the Anmelids have been very well worked. The same five groups of Annelids have a total number of 153 species, including 144 Polychaetes, as against a total of 115 species, including 93 Polychaetes from Dublin Bay. The deficit in the Dublin Bay list is largely accounted for by the almost complete absence of the southem or Lusitanian group, which is very prominent at Plymouth. For instance, in

[^46]the family Eunicidae, the British species of which have mostly a southern distribution, there are $1 t$ species recorded from Plymouth, and only one species from Duldin Bay. The Amelid fauna of Dublin Bay differs markedly from that of the west conast of Treland, which in its turn closely resembles that of Plymonth.

The chicf sempaphical feature of the Annelid fauna of Dublin Bay is its generalizel character. Most of the species have a wide distribution, and are (t) lee fomm in many parts of the lritish Isles and the adjacent coasts of Eurane. One of its must interesting components is a group of species which have a distinctly morthem or Arctic distribution. Of these the species

 occurs on the west coast of Scotland. Elsewhere it is found in Norway,

 ant which seddum extends so far south as Dublin. 'Ihere is also a small
 donetus when, Mont., may be taken as a type. It is found on the west coast 1.f

 of I teldul, ame not romul the south.

Th:- -

 species which are common in the adjacent seas. Its arrival has probably firm sur recent that the processes of variation, selection, and extinction have
 dintriets.

In onder tu put these thenries on a sound basis, a much more complete knowlodge of the distribution of the littoral and shallow-water fauna of the
 [rolaml, alnut which we know practically nothing. Another factor in the

 whmed trom phace to place. Many slecies have a very restricted local range;
and the conditions which determine this are quite unknown. At present there appears to lee some doult as to whether the main current in the lrish Sea runs north or south. The position of the last land-comexion with Great Britain must have also been an important factor, as the faunas to the north and south of it would arrive by different routes.

No attempt has been made to give the full synonymy of the various species. Instead, a single reference is given to some standard monograph where the species is fully described and figured.

Where a person's name follows a locality, it refers to the investigator who made the record.

After records of species collected by the Scientific Staff of the Trish Fisheries Branch, the station number and other particulars are given in brackets. For fuller iuformation reference must be made to the "List of Stations" published by the Fisheries Branch.

Class ARCHIANNELIDA.
Dinophilus taeniatus, Harmer.

1889-90. Harmer, Journ. Mar. Biol. Assoc., N.S., vol. i., p. 119.
Sandycove. 28, iii, '09. In rock-pools amougst sea-weeds.
This species is easily recognized, especially in its young stages. It has five body-segments, each with two rings of cilia, and the ovaries are bilobed. The epidermis is full of clear glands, and the colour is bright red. As usual, the species could ouly be found in the spring months. It has only been recorded from the British Isles.

General Distribution.-British Isles (Plymouth, Valencia, Galway Bay).

Protodrilus flavocapitatus (Uljanin).

1908. Pierantoni. Fauna u. flora des Golfes von Neapel, vol. xxxi, Protodrilus, p. 167.

This species, which is the first of its genus to be recorded from Ireland, was found in rock-pools at Malahide in February, 1908. The specimens were all immature, and had been preserved and mounted in balsam some months before I tried to determine the species; so I sent them to Professor Pierantoni, who has recently published an claborate monograph on the group (tom. cit.). He informed me that they belonged to the species Protodrilus flavoropitutws (Uljanin), a species only previously found at Sebastopol and Naples. They agree with this species in having rings of cilia segmentally arranged, in having two ventral eyes in the adult stage, and in having two caudal lobes. They were $4-6 \mathrm{~mm}$. long. At the tip of the prostomium there was a couspicuous bunch of cilia. Cilia are scattered all over the body, as well as in
segmentally arranged rings. The woms anc ilesh-colomed. The hood is colourless, and the blind stomach is bight red. The dorsal vessel rises from a smus or plexus round the anterior end of the intestine, as in the Enchytraeidae.

General Distribution.-Sebastopol; Gulf of Naples.

Order POLYCHAETA.

Bibliograpity.
1849. Dald, R.-Report, British Association. Records the capture of Bryerea scoloproblore (Tomopteris helyolamatice, Greeti) in Dublin Bay by Dr. Corrigan. This is the first record of a Polychacte in the Dublin District.
18.3. Thompsox, W. -The Natural History of Treland, vol. iv. The following l'ulychacta are recorded from this district:-Cirratulus modusu, Johnston ($=C$. cirmetus, Muller). Spirorbis granulatus, L. (sp. ?). Sirpulet ermiculuris, Mont. (sp. ? recorded in Capt. Brown's Hrish Testacea). Sorpule confortus (spo? Brown's mss. Illus, P1. 2, Dublin Coust). "Hairy hail," Dalkey (Nercilepers fuccele, Savigny).
1ヶis. IBourse, G.- Guart. Journ. Micr. Suc., xxiii., p. 169. Records Il"plubromblus arsturimus, n. sp., from the mud at the mouth of the River Lilley.
1sSt. Mackintosh, H. W.-hepurt un Irish Zoophytes, de., Iroc. Roy. Irish Academy, vol. iv., p. 57. Records following species from off Bray Head:-Aphrorite uculoatu. Polynoc squmatn (=Lipidonotus squamentus). Nophehys marym ritecera (sp.?). Terdella maduse (sp.?).

1894. Deerdes; J. E.-Nintes on the Marine Invertebrates of lush. Trish Naturalist, vol. iii., p. 232. Records Phyllodoce viridis, L. (=Eulatice virilis).
1:06. Mistosh, W. C.-Nutes on the Irish Aunelids in the Museum of Scieuce and Art, Dublin. No. 1. Sci. Proce Roy. Dublin Soce, vol. viii. (N...), P’t. v., No. 50, p. 399. Records the following species:Aphromiter aceloaln, L. Lepidmolus ssqumatus, L. Nyphice cirrosa, I'all (=Gultynna rirrosn). Lrenisen propinquen, Malm, (=L. floccosn). Hormuthee imbricula, L. Eerorne imporer, Johnston. Pulynoc scolopudrinn, sav. Ňtho wolnis herr, Johnstenn.
1907. Wirson, Greari-DPlychacta of Lamiay: Irish Naturalist, vol. xvi., p. 67. Records the following speries:-Nomis cultrifore, (ir. Homothoe imbricuta, L. Lppidmotus squemulus, L. Sthonstois. bere, J (hnston.

Sourtieren-The Marine Worms (Amelida) of Dublin Bay. 221
1908. Mctntosh, W. C.-Notes from the Gatty Marine Laboratory. No. xxix. Ann. Mag. Nat. Hist. (8), vol. i., p. 383. Records a post-larval stage of Arenicole cemudrte from Salthill.
1908. Southern, R.-Section "Polychaeta " in the "Handhow to the City of Dublin," prepared for the meeting of the British Association in Dublin, 1908, p. 196. Following species recorded:-Lepidonotus squamatus, L. Nychict cirrose, Pallas (=Gettyana cirrosa). Harmothoë imbricato (L.). Evarne impar (Johnston). Layisca floccosa, Pallas. Polynoe seolopendrina (Sav.). Sthenclais boa (Johnston). Phyllodoce viridis (L.) = Eulalia vividis (L.). Nereilcpas fucata (Sav.). Tomopteris helgolandica, Greeff. Seoloplos armiger (Müll.) = S. Müllevi (Rathke). Nerine coniocrphala, Johnst. $=N$. cirratulus (D. Chiaje). Thelepus cincinnatus (Fabr.). Lanice conchilega (Pallas). Capitella capitata (Fabr.). Pectinaria auricoma (Müller). Desychone bombyx (Dalyell). Haplobranchus acstuarinus, Bourne.
1909. Ashworth, J. H.-"Arenicolidae and Scalibregmidae," "Fisheries, Ireland, Sci. Invest., 1908, ii. [1909], records Arenicole marina (L.).
1910. McIntosh, W. C. - Note on Irish Annelids in the National Museum, Dublin. No. II. Irish Naturalist, vol. xix., p. 95. Records the following species from Dublin district:-Nephthys cacea (O.F. Müller). N. hystricis, McI. Eutalia viridis, O. F. Müllex. Eumida sanguinca, Oersted. Odontosyllis gibbr, Claparède. Scoloplos armiger, O. F. Müller (= S. Müllevi).
1908-9. Soutiern, R.-Dublin Microscopical Club. Following species, found in the Dublin district, exhibited :-Dasychone bombyx (Dal.), Irish Naturalist, xvii., p. 40. Pectinaria auricoma (Müll.), iliid., xvii., p. 63; Exogone gemmifcru, Pag., ibid., xviii., p. 45. Lanice conchilegu (Pall.), ibicl., xviii., p. 252.
1909. Colgan, N.-Dublin Marine Biological Committee Report for 1908. Irish Naturalist, xviii, p. 167. Records Pectinnvia anvicoma (Müll.).

Incertae Sedis.

Nerilla antennata, O. Schmidt.
1863. Claparède. Beobachtungen, \&c, p. 48.

Sandycove shore, 28, iii, '09.
I'he systematic position of this curious little Polychacte has not yet been satisfactorily determined. It is sometimes placed with the Syllidae, and sometimes a special family, the Nerillidae, is created for it.

General Distribution.-Plymouth; Faroë; Heligoland; Kiel; France.

Family SYLIIDAE.

Exogone gemmifera, Pagenstecher.
 page 151.
 surface.

10 miles east of Failey Light (S. $553-16$, viii, ${ }^{\prime} 07$. Trawl, 41-52 fathoms).

Malahide Intet. 11, xi, "08. IIrerlge, 2 fms.

 Iambay Deep in 41-52 fathoms.
 France; Alqiers; Maleira.

Sphaerosyllis hystria. Claparide.

1908. MeIntosh. Tom cit., p. 156.

Shemaick's Island, skenies, 22, vii, '07.
Malabile Inlet. 2', vii. '08; also 11, xi. '08. Dredge, 2 fms.
This species occurs plentifully in 2 fathoms at Malahide. A young

 sergment.

Gonvol Disfitulion.-Mritish Islea; France; North Sea; Meliterranean; Atlantic.

Grubea clavata (Clap..
18sh. de Saint-Toserll. Annales rles Sc. Nat. Zonl. (i), tom. i, p. 200.
Malahile Inlet, 11. xi, 0 x . I)renlge, 2 fims.

[^47]Southran- The Mwine Worms (Amulidu) of Dublin Buy. 2:3
not seem to have been observel by previous investigators. The skin has: dorsally a large number of small shining glimes.

General Distribution.-Gouth of England ('Iorquay); France; Athantire; Mediterranean ; Madeira.

Grubea pusilla (Dujardin).
1886. de Saint-Joseph. Tom. cit., p. 203.

Malahide Inlet, 11, xi, '08. Dredge, 2 fms.
This species was taken with the previous one. It has not been recorded hitherto from the British Isles. It is characterized by the truncated dorsal cirri, which are swollen in the middle.

General Distribution.-France; Merliterranean ; Madeira.

Eusyllis tubifex, Gosse.

1908. McIntosh. Tom. cit., p. 173.

Dredged off the Bailey Light, 7, ix, ' 07 .
Malahide Inlet, 17, vi, '08; also 11, xi, '08. Dredge, 2 fms.
This species emits a brilliant green phosphorescence when irritated.
McIntosh separates this species from E. Blomstrandi, Mgn.; but I am unable to detect any differences, either in the published descriptions and figures or in specimens of the two species mamed by him. Moreorer, although E. tubifer has been found on the English side of the Chamel, all the records on the north coast of France have been referred to E. Blomstrandi.

General Distribution.-Great Britain; Madeira; Canada.
Odontosyllis gibba, Claparètle.
1908. McIntosh. Tom. cit., p. 183.

Kingstown Harbour (McIntosh, tom. cit.).
Dalkey Sound, April, 1907. Dredge, 6-8 fms.
Malahide Inlet, 11, xi, '0s. Dredge, 2 fms.
Gencral Distribution.-British Isles; France; Metiterrancan; Madeira.
Odontosyllis ctenostoma, Claparède.
1908. McIntosh. Tom. cit., p. 182.

Salthill, 21, viii, 1883.
Malahide Inlet, 11, xi, '08. Dredge, 2 fms ,
Bullock Harbour, Dalkey, 2, ii, '09.
General Distribution.-This appears to be a southern form. It has only been recorled from the English Channel, Mediterranean, and Malcina.
R.I.A. PROC., VOL. XXVIII., SECT. B.

Pionosyllis hyalina (Grube).
1908. MeIntosh. Tom. cit., p. 166.

Howth. south shore. 6, x, 09.
On. Tunr specimen of this species, with seventeen setigerous seqments, was oltained.

Gencial Distimution-Plymouth; Mediterranean; Madeira.
Syllis armillaris (Müller).
1909. McIntosh. Tom. cit., p. 188.

Two miles southeeast of Bailey Light. 13, vii, '07. Drelge, 13-18 fms. Hwwth, south shore, 6, x, '09. In crevices of the schist.
Gr, aral Dixtibution-British Isles; France; Maleira: Farme: Noway; Sweden; (ireenland: Dehrings Sea

Syllis gracilis, Grulse.
190s. M.Intosh. Tom. cit., p. 203.
Lamkay, 1900; Seapuint shore, 26. v, '07; Howth. south shore, 6, x, '09.
several buls of the "Ioida" type were found at Howth.
ronmonl Didritutimn.-Great Britain; France: Maleira; Mediterrancan; 1月hack Sea: Imal Sea: Viryinia; Ceylon; West Indies.

Autolytas pictus (Ehlers).

190s M Intash. Tum. cit. p. 211.
Malahile Inlet. 27 , vii. 08 . Dredge, 2 fms.
 Dublin Microscopical (lub) ${ }^{2}$
frineral Distibufion.-Great IBritain; France; Mediterranean; White Sea: Maleira
(?) Autolytus prolifer (O. F. Müller).
190s. MeIntoish. Tum. cit., p. 215.
Malahide Inlet, 17, vi, '08. Dredge, 2 fms.
One specimen, a female bud, was found, which agreed exactly in colouring with that figured by McIntosh (tom. cit., pl. xlix, fig. 7). Its
 to think that it belongs to the latter species.

Freneral Distinufim-British Isles; North Sea; Greenland; Norway; Allantic: Meliterranean; Maleira; South Africa.

[^48]Autolytus megodon, de Saint-Joseph.
1886. de Saint-Joseph. Tom. cit., p. 240.

A single specimen was taken in the dredge, at Malahide Inlet, in $\check{\sim}$ fms. of water in August, 1907. It agrees closely with the brief description given by de Saint-Joseph.

Starting just behind the head, in the median line, are two eonspicuous brown bands which curve outwards and run along the body just above the parapodia. The proboscis is terminated by a crown of nine large teeth (de Saint-Joseph says ten). The proventiculus is three times as long as broad, and has fifty-five rows of glands. The dorsal cirri are short. Behind the setae there is a broad lobe. The setae are rather short and thick, and the end of the shaft is conspicuously swollen and hispid. The dorsal finely pointed seta is just as de Saint-Joseph figures it. This species has apparently not been recorded since it was originally described.

General Distribution.-Dinard, north of France.

Autolytus Edwardsi, de Saint-Joseph.

1886. de Saint-Joseph. Tom. cit., p. 237.

Malahide Inlet. 11, xi, '08; also 3', vii, '09. Dredge, 2 fms.
This species is characterized by the presence of twenty-four equal teeth on the proboscis.

General Distribution.-North of France.

Autolytus ehbiensis, de Saint-Joseph.

1886. de Saint-Joseph. Tom. cit., p. 228.

Dredged off the Bailey Light, 7, ix, '07.
This species is distinguished by the presence of thirty small equal teeth at the entrance of the proboscis.

General Distribution.-Torquay; Fiance.

Autolytus longeferiens, de Saint-Joseph.

1886. de Saint-Joseph. Tom, cit,, p. 217.

Dalkey Sound. April, 1907. Dredge, 6 fms.
This species is characterized by the structure of the proboscis, which is extremely long, and is thrown into numerous folds. It has a crown of teeth, ten of which are large, and are separated from each other by two or three smaller ones. The dorsal cirri are alternately long and short. De Saint-Joseph states that in his specimens the anterior end is marked by three longitudinal red lines. These are absent in the Inlilia

Lay specimens. There are, huwever, in each segment two transverse huwn hands, which the micruscope shows to lee formed by small brown papillae on the epidermis.

This species is very close to the A. brachycephala described by Marnezeller, ${ }^{1}$ which has, however, only a short proboscis.

Generel Distribution.-Torquay; Coast of France.
Myrianida pinnigera (Montagu).
1908. McIutosh. Tom. cit., p. 229.

Malahide Inlet, 11, xi, '08. Dredge, 2 fms.
A-inate -forimen of thi- will-marked specier was found on an ohd oystershell.

Greneral Distribution.-British Isles; France; Madeira.

Family HESIONIDAE.

Castalia punctata (O. F. Müller).
1908. MeIntosh. Tom. cit., p. 121.

(om morth of Huwth, $7, \mathrm{ix},{ }^{\prime} 07$. Dredge, 15 fms .
Giveral Distribulion.-British Isles; Norway; Iceland; North Sea.

Castalia fusca (Johnston).
190s. MuInush. 'Tom. cit., p. 127.
İmtay, April. 1906.
Howth, north shore, in rock-pools, 14 , vi, '08.
Malahide Inlet. 27 , vii, '08. Uredge, 2 fms.
 with the last sipecies, this appears to be a southern form.

Magalia perarmata. Marion anel Pobretzsky.
1sme. Mulutu-h. Tom. cit., P. 1::6.
Malahite Intet, $30, \mathrm{v},{ }^{\circ} 08$. Urelge, 2 fms .
l'i, moral Diatrimuion-I'lymouth; Torpuay; Marseilles; North of France; Mrbleira. Jultiur from the scarcity of records, this species appears to be mare. This is tho first Irish record, though I have found it at several places (17) the west tomat.
 T. in

Southern-The Marine Worms (Avnelide) of Dublin Bay. 227
Family APHRODITIDAE.
Aphrodite aculeata, L.
1900. MeIntosh. A Monograph of the British Annelids, vol. i, Part ii, p. 247.

Off Howth (McIntosh).
On the Burford Bank, 13, vii, '07. Dredge, 13 fms.
Off Dalkey Island.
Lambay Deep (S. 224. 22, vi, '0t. Trawl, 44 fms.).
Gcheral Distribution.-British Isles; Atlantic; Mediterranean; Iceland; Red Sea; North America.

Lepidonotus squamatus (L.).

1900. Mackintosh. Tom, cit., p. 274.

This species is very common, extending from the littoral zone to 60 fathoms in Lambay Deep.

General Distribution.-British Isles; Greenland; Iceland; Atlantic.
Lepidonotus clava, Montagu.
1900. McIntosh. Tom. cit., p. 280.

Lambay, April, 1906.
This species has a southern and western distribution. It is common on the west coast of Ireland and south coast of England, and goes as far north as the west coast of Scotland. It was somewhat surprising therefore to find it in this district. Only a single specimen was found.

General Distribution.-West coasts of Ireland and Scotland; English Channel; Mediterranean; Canaries.

Gattyana cirrosa (Pallas).
1900. McIntosh. Tom. cit., p. 285.

Dalkey Sound, 1892 (McIntosh).
Two miles south-east of Bailey Light, 13, vii, '07. Dredge, $13-18 \mathrm{fms}$.
Kingstown-Dalkey, 20, vii, '07. Dredge, 8-12 fms.
General Distribution.-A northern species living on the shores of the British Isles, Northern Europe, Spitzbergen, Iceland, Greenland, and Eastern North America.

Lagisca floccosa (Savigny).

1900. McIntosh. Tom. cito, p. 298.

Malahide, 1886 (McI.).
3 miles south of Nose of Lambay (S. 533, 9, viii, '07. Trawl, 101-20 fms.). $\pm \frac{1}{2}$ miles east of Kingstown (S. 55t, 16, viii, '07. Trawl, 14-19 fms. In

Buccinium shells, together with Jimilepes fucentu and Enpugurus Bernhardi).

Malahide Inlet, 24, viii, '07. Dredge, 2 fms .
Generc! Distribution.--British Isles; Northern Europe; Greenland; Eastern Canada; Madeira.

Lagisca Elizabethae, McIntosh.

1900. McIntosh. Tom. cit., p. 303.

Lambay, April, 1906 ; Seapoint, May, 1907.
Malahide Inlet, 30, v, '08. Drelge, 2 fms.
General Distribution.-McIntosh described this species from a siugle specimen found at St. Audrews: and it has not since been recorded. It arpears th be fairly commm on the Irish conats. cspectially on the west.

Harmothoe imbricata (L.).

1900. McIntosh. Tome cit., p. 314.

One of the commonest littoral Polychactes in Ireland.
 Noth Amerioa: sinneria: Tapan; (ireenlant: Ieclam; Spitzbergen; Siberia.

Harmothoe setosissima (Savigny).

1900. McIntosh. Tom. cit., p. 345.

10 miles east of Bailey Light ($5.553,16$, viii, '07. Trawl, 41-52 fms.
Kingstawn-Dalkey, 20, vii, '07. Dredge, 8-12 fins.
This species has not previously been recorded from Irish waters.
Gencral Distrimution_-Great Iritain; Scanlinavia; Eastern Atlantic; Mediterranean.

Harmothoe antilopis, MeIntosh.

1900. MeIntosh. Tom. cit., p. 334 .
$1: 3$ miles E.S.E. of Lambay (S. $2: 36,29$, vi, 04 . Trawl, $39-52$ fms.).
This species has not previously been recorded from Irish waters.
General Distribution.-Scotland: Atlantic; Mediterraueau.
Evarne impar (Juhnston).
1901. MeIntosh. Trm. cit., p. 35%.

Salthill and Dalkey MeI.).
Dalkey Sumad, April, 1907. 1)redge, 7-9 fms.
2 miles south-east of Bailey Light, 1:', vii, '07. Drempe, 1: $3-1$ is fıns.
Kingstown-Dalkey, 20, vii, '07. IDrelye, $8-12$ frus.
North Bull; thrown up during a gale.
Gonoral Distriturion. - British Isles; Ireland; European and American shores of Atlantio.

Soutmern-The Murine Whoms (Annelitu) of Dublin Buy. 229
Halosydna gelatinosa (M. Sars).
1900. McIntosh. Tom. cit., p. 384.

2 miles south-east of Bailey Light, 13, vii, '07. Dredge, 13 - 18 fms.
Gencral Distritution.—British Isles; European shores; Madeira.
Polynoe scolopendrina, Savigny.
1900. McIntosh. Tom. cit., p. 389.

Dalkey (McI.).
Dalkey Sound, April, 1907. Dredge, 6 fms.
Malahide Inlet, 17, vi, '08. Dredge, 2 fms.
2 miles south-east of Bailey Light, 13, vii, ' 07 . Dredge, 13 - 18 fms.
$4 \frac{1}{2}$ miles east of Kingstown (S. 554,16 , viii, ' 07 . Trawl, 14-19 fms.).
Howth; south shore letween tide-marks. Commensual with Terebellial worm Thelepus setosus (Quat.).

Gcnecul Distribution.-British Isles ; Scandinavia; France; Mediterranean.
Sthenelais boa (Johnston).
1900. McIntosh. Tom, cit., p. 408.

Bray Head, 23 fms., 1892, and Malahide, 1886 (McI.). Lambay (Wilson).
2 miles south-east of Bailey Light, 13 , vii, ' ${ }^{2}$. Dredge, $13-18 \mathrm{fms}$.
Kingstown-Dalkey, 20, vii, '07. Dredge, 8-12 fms.
Howth, south shore, 6, x, '09.
Generel Distribution,—British Isles; Eastern Atlantic ; Iceland; Madeira; Mediterranean.

Sthenelais limicola, Ehlers.

1900. McIntosh. Tom. cit., p. 417.

Off the Bailey Light. 7, ix, '07. Dredge, 7 fms.
General Distribution.—British Isles; Norway; Mediterranean; North America.

Phloe minuta (Fabricius).
1900. McIntosh. Tom, cit., p. 437.

Malahide Inlet, 11, xi, '08. Dredge, 2 fms.
Howth; south shore, 6, x, '09; north shore, 10, x, '09.
Gincral Distribution.-British Isles; eastern and western shores of the Atlantic.

Family PHYLLODOCIDAE.
Eulalia bilineata (Johnston).
1908. McIntosh. Tom. cit,, p. 50.

Dalkey Sound, April, 1907; also 14, xii, '07. Dredge, 6-8 fms.
Malahide Inlet, 11, xi, '08. Dredge, 2 fms.
Gencral Distribution.-Scotlaud; Guernsey ; Finmark; Canaries.

190s. McIntosh. Tom. cit., p. 55.
Push (Duerdon).
Salthill (McI.).
Shennick's Island, Skerries, 22, vii, '07.
Malahide Inlet, 17, vi, '0S. Dredge, 2 fms.
Horrth, south shore, 6, x, '09.
Malahide, February, 1910.
V'ar. ornata de St.-Joseph.
2 miles south-east of Bailey Light, 1\%, vii, '0\%. Drelge, $13-18$ fms.

Far. aurea, Gravier.
Dalkey Sound, 14, xii, '07. Drelge, 8 fms.

ly M Intosh, with good reason, as only colour varieties of E. viridis.
 have been found in Duhlin Bay.

Grueral Distrimtimn.-Common round the British Isles. Greenland; Ireland: Faroë: Atlantic; Moditerranean; South Africa: Behrings Sea.

Eumida sangainea (Mersterl).

1908. MeIntosh. Tom. cit., p. 66.

Salthill (Mc.I.).
 frus.).

Malahide Inlet, 1\%, vi, '08, alsn 11, xi, '08. Dredge, 2 fms.
fromoul Diatrimution.-British Isles: Icepland; Norway; Baltic: North Sara; France: Mediterranean.

Phyllodoce groenlandica, Oersteml.
1908. MeIntosh. Tom. cit., p. 86.

18, miles E.S.E. of Lamlay (8. 236, 29, vi, '04. Townet on Trawl, 39-52 fnis.).

2 miles south-east of Prailey Light, 13, vii, '07. Dredge, 13-18 fins.
Cencionl Distrimion.-A nothern form. British Isles; North Sea: Greculand; Spitzherten: Nova Zembla: Scanlinavia; Sileria; Behrings Sea: North Ammrica.

Phyllodoce maculata (I_{L}).
1908. McIntosh. Tom. cit., p. 89.

Salthill, 20 , viii, ' 81 ; also 21, viii, '8s'.
2 miles S.E. of Bailey Light, 1?, vii, '07. Dredge, 2 fms.
Off north of Howth, 7, ix, '07. Dredge, 15 fms .
Malahide Inlet, 17 , vi, ' 08 . Dredge, 2 fms .
Sandymount Strand, in sand.
General Distribution.-British Isles; North Sea; Iceland; Norway.

Family TOMOPTERIDAE.
Tomopteris helgolandica, Greeff.
1900. Apstein. Die Alciopiden und Tomopteriden der PlanktonExpedition, Kiel, p. 38.

First recorded by R. Ball, in Dullin Bay (vide Bibliography). In the last few years this species has been frequently taken in various parts of the district by the Scientific Staff of the Irish Fisheries Branch. For further particulars reference must be made to their 'List of Stations.' (S. 96, 15 specimens. S. 126,1 sp. S. $196,1 \mathrm{sp}$. S. $204,2 \mathrm{sp}$. S. $235,10 \mathrm{sp}$. S. $252,1 \mathrm{sp} . \quad$ S. $287,9 \mathrm{sp} . \quad$ S. $337,3 \mathrm{sp} . \quad$ S. R. $460,28 \mathrm{sp}$.)

The seasonal distribution of this species in Irish waters has recently been investigated, and an account will shortly be puhlished in the "Scientifie Investigations " of the Fisheries Branch.

General Distribution.-Atlantic ; Mediterranean.

Family NEREIDAE.

Nereis cultrifera, Grube.
1868. Ehlers. Die Borstenwürmer, p. 461.

Malahide and Bray (McI.).
Lambay (Wilson).
Howth. South shore, 6, x, '09. North shore, 10, $\mathrm{x},{ }^{\prime} 09$.
General Distribution.-British Isles; Emopean shores; Mediterranean ; Madeira.

Nereis Dumerilii, Aud, et Edwards.
1868. Ehlers. Tom. cit., p. 535.

Common in all parts of the district, ranging from between tide-marks to 20 fathoms.

General Distribution.-British Isles; Eurone ; Mediterranean; Madeira : Eastern North America; Japan.
R.I.A. PROC., VOL. XXVHH., SECT. B.

Nereis pelagica, L.

1868. Ehlers. Tom. cit., p. 511.

Common in all parts of the district, ranging from betreen tide-marks to $\because 0$ fathoms.

Generel Distribution-British Isles; shores of North Atlantic; Japan; Spitzbergen: Nova Zembla.

Nereis zonata, Malmgren.

1867. Malmgren, Annulata Polychaeta, p. 46.

Portmarnock Strand, 27, i, '07.
10 miles east of Bailey Light (S. 553,16 , viii, '07. Trawl, 41-52 fms.).
This species has not been previonsly recurled from the shores of the Irritish Isles. It was, however, taken by the German Deep Sea Expedition some miles ofl the north-east coast of Scotland. ${ }^{1}$
 Zembla; (ireenlam; Eastern North America.

Nereilepas fucata, savigny.

1s6s. Ehlers. Tom. cit., p. 546.
This species is common in a few fathoms (in Lambay Deep, at is fathoms) in all parts of the district, and is oceasionally foum between tide-marks. Almost every linceinium shell that is inhahted by a hermit-cral) also contains this worm, critant in the upper whorls of the shell. According to Thompson '1site, 1 . $4: 33$, the llalkery tishermen foum this worm, which they call " Hairy Pate," a most attractive hat for fishins.
la, woul /Divithutim.—liritish Isles; North sea; France; North America.

Family NEPETHYDIDAE.

Nephthys caeca (1). F. Müller).
190\%. MeIntosh. Tom, cit., p. 8.
Solthill and Malahive (McIntosh).
(rifural Dis rilutimn.—Common in Irritish Isles; Europe; Iceland; Greenland ; cast and west coasts of North America.
Vor. ciliata.
1908. Mackintosh. Tom. cit., p. 13.

Malahile, 7, iii, '10. A single specimen, between tide-marks. This specimen closely resembles the variety found by McIutosh in May and Tune at St. Anlrews and Montrose.

[^49]Southrax - The Marine Worms (Amelita) of Dublin Biay. 2:3:3
Nephthys Hombergii, Lamarck.
1908. McIntosh. Tom. cit., p. 17.

Salthill (McIntosh).
Sandymount Strand, common at all seasons.
2 miles south-east of Bailey Light, 13, vii, '07. Dredge, 13-18 fms.
This is the commonest species of Nephthys in the district. It is extensively used by line-fishermen as bait, and is known by them as the "herringbone worm."

Gencral Distribution-British Isles; Europe; Nova Zembla; Baltic sca; Mediterranean; Madeira.

Nephthys ciliata (O. F. Müller).
1908. McIntosh. Tom, cit., p. 23.

Kingstown-Dalkey, 20, vii, '07. Dredge, 8-12 fms.
Off the Bailey Light, 7, ix, '07. Dredge, 7 fms.
This species has not been previously recorded from Ireland.
General Distribution.-Scotland; widely distributed over the shores of the North Atlantic and Arctic Seas.

Nephthys hystricis, McIntosh.
1908. McIntosh. Tom. cit., p. 27.

Malahide, 1885 (McIntosh).
General Distribution.-Atlantic, usually at considerable depths; Mediterranean.

Family EUNICIDAE.

Ophryotrocha puerilis, Clap. et Mecz.
1888. de Saint-Joseph. Ann. des Sc. Nat. Zool. (7), tom. v., p. 240.

Seapoint shore, 26, v, '07.
Sandycove shore, 28, iii, '09.
General Distribution.-British Isles; English Channel; Mediterrancan.

Family GLYCERIDAE.

Glycera alba, Rathke.
1867. Malmgren. Tom. cit., p. 71.

Dalkey (McI.).
Malahide shore, 7, iii, '10.
General Distribution.-British Isles; North Sea; Atlantic; Mediterranean ; Eastern North America.

Goniada maculata, Oersted.
1868. Ehlers. Tom. cit., p. 704.

2 miles south-east of Bailey Light, 13, vii, '07. Dredge, 13-18 fms.
A single specimen of this worm was taken in the dredge.
Girnuril Distritmpun.-British Isles; Scandinavia; Spain; Portugal; North Sea; Eastern North America.

Family ARICIIDAE.

Scoloplos Mülleri (Tathke).
1898. de Saint-Joseph. Ann. Sci. Nat. Zool. (8), T. v., p. 356.

Malahide (McI.).
Samlymount Strand.
This worm is very abundant in the sand at Sandymount. During the breeding season its egus, enclused in a gelatinous mass which is anchored to the samil by a chread, are quite a conspacuous feature.

Fonecal Dhistriturion-DBritish Istes; Europe; Siberia; Eastern North America. This species has been frepuently confused with the Aretic Dealnplus armiger (O. F. Mïller).

Naidonereis quadricuspida, Fabr.

1sti, (hersted. Grönlanl's Ammlata Inmsilıanchiata, p. 200.

This speries is alparently a member of the northem gromp. In the : Peecimens I whatimet the head was considerably broader than is shown in Melntush's limures, and the liranchiae legin on the fifth parapodiun, not on the sixth, as he states. The anal semment bears four cirri, equal in length (") the witth of the pasterion part of the borly. In all these points the
 from Eastport, Maine.
(rinoul Distitution-LAnchmaddy, North List; lceland; Greenland; Eastem Nouth Anerica.

Family Spionidae.
Nerine cirratulus (Del, Chiaje).
1896. Mesnil. Bull. Sci. France et Bely, xxix, p. 152.

Foollog lereakwater ; common under stones and in sand.
Malahite, 2:3, ii, "08.
 I:

[^50]
Scolecolepis vulgaris (Juhuston).

1896. Mesuil. Tom. cit., p. 138.

Howth, south shore, $6, \mathrm{x}$, '09; north shore, $10, \mathrm{x},{ }^{\prime} 09$.
Common in the sandy patches round Howth Head.
General Distribution.-Great Britain; North Sea; France; Mediterxanean; Eastern North America.

Spio martinensis, Mesnil.

1896. Mesnil. Tom. cit., p. 122.

Several fragments of a Spio found between tide-marks on Sandymount Strand differ from any recorded British species, aud may be provisionally referred to S. martinensis, which Mesnil found on the coasts of France. Mesnil's species differs from the widespread S. filicornis, Fabricius, in having a rounded prostomium, no occipital tentacle, and in several other points which are more apparent than real. In the structure of the head the Sandymount specimens agree with S. martincnsis. There are four distinct eyes, the anterior pair being reniform, and further apart than the posterior pair, which are circular. Between each lateral pair there is a patch of pigment formed of small and black grains, which under low magnification has the appearance of a third pair of eyes. Another character which distinguishes these specimens from S. martinensis is the structure of the ventral hooks, the upper fang of which is minutely bifid at the tip. The setae are frequently coated with red deposit, and when this deposit is only present in a small quantity, the setare have the punctuated appearance which shows in Mesnil's figures (tom. cit., Pll vii., figs. 11, 12, \&c.), and which McIntosh ${ }^{1}$ regards as an important distinction from S. filicomis.

Aonides oxycephala (Sars).

1896. Mesnil. Tom, cit., p. 242.

Balscaddon Bay, Howth. October, 1909.
This species has not previously been recorded from Ireland.
General Distribution.--Plymouth; Norway; France.
Pygospio elegans, Claparède.
1863. Claparède. Beobachtungen, \&c., p. 37.

Howth, south shore, $6, x,{ }^{\prime} 09$. In slender sandy tubes, massed in fissures of the schist.

Sandymount Strand, November, 1909. In sandy tubes in the sand.
Gencral Distribution.-Great Britain; France ; Eastern North America.

[^51]Prionospio Steenstrupi, Malmgren.
1867. Malmgren, Annulata Polychaeta, p. 93.

5 miles N.N.E. of Balbriggan (S. 2522. 20, ii, '05. Townet on trawl, 11-13 fms.).

A single small and immature specimen of P rionuspio was taken in the townet off Balbriggan. I refer it to the above specics on account of the structure of the branchiae, which have two rows of branches. The branchiae are small, ank the branches few in number. Eyes are absent. The bifid hooks appear in the 12 th setigerous segment, and the upper fang is minutely litil. The peraliar curved "haymet" seta is present in the ventral branch of the parapodium.

This spece helome the suall grounof species with a northerly distribution, which is found in the northern part of the Irish Sea.

The genus P'ommin., has wot previnusly been recorded from the British Isles.

General Distributiun.-Norway; Iceland; Greenlaud; Eastern North America.

Polydora ciliata (Johnston).

1s96. Mesnil. Tom. cit., p. 210.
Malahide, 1887 (McI.).
Howth, south shore, $6, x,{ }^{\prime} 09$; north shore, $10, x, 09$, in erevices of the rock.
salthill.
Crimerel Diadrimetim.-British Isles; shores of Atlantic; Mediterrancan; Baltic ; Pacific.

Polydora flava, Claparede.

1896. Mesnil. Tum. cit., p. 182.

Howth, south side, $6, \mathrm{x},{ }^{\prime} 09$.
Not previously recorded from Irelant.
Goneral Distribution-Great Britain; France; Mediterrancan.

Family CIRRATULIDAE.

Cirratulus cirratus (Müller).
1843. Rathke. Jeitrage zur Fauna Norwegens, 1. 180,

Dalkey Sound (Thompson, 1856, P. 42N').
Salthill. 1881 (McI.).
Poolbeg breakwater, 11, iii, '07.
16 miles east of Nose of Lambay ($5,5.53 .16$, viii, '0'. Trawl, $41-5{ }^{2} \mathrm{f}$ fus. $)$.

Soulmern - The Marine Worms (Amelidla) of Dublim Ba!. 237
North Bull, 21, x, '07. In old pile, washed ashore.
Sandycove, 28, iii, '09.
Howth, south shore, 6, x, '09; north shore, 10, $x,{ }^{\prime} 09$.
This species is very common under stones and in muddy sand, at various points along the cuast.

General Distribution.-British Isles; east, north, and west shores of Atlantic.

Cirratulus tentaculatus (Montagu).

1894. de Saint-Joseph, Ann. Sci. Nat. Zool., t. xvii, p. 49.

Shennick's Island, Skerries, 22, vii, '07.
This species is much less common in this district than the previous one.
Cracral Distribution.-British Isles; North Sea; France; Mediterranean.

Dodecaceria concharum, Oersted.
1896. de Saint-Joseph, Ann. Sci. Nat. Zool., t. v., p. 346.

Howth, south side, $6, x$, '09. In crevices of the schist, and in cavities in coralline seaweeds.

Gencral Distribution.-England; Norway; North Sea; Madeira; Eastern North America.

Family TEREBELLIDAE.

Lanice conchilega (Pallas).
1894. de Saint-Joseph. Tom. cit., p. 211.

Howth, north shore, 10, x, '09.
Malahide, 7, iii, '10.
The tubes of this worm are common all round the coast.
Gencral Distribution.-British Isles; Europe; Mediterranean; Madeira.

Nicolea venustula (Montagu).

$=N$. zostericola (Oersted).
1865. Malmgren, Nord. Hafs.-Annulater, p. 381.

Kingstown-Dalkey, 20, vii, '07. Dredge, $8-12$ fms.
10 miles east of Bailey Light (S. 553. 16, viii, '07. Trawl, $41-52 \mathrm{fms}$.).
Malahide Inlet, 11, xi, '08. Dredge, 2 fims.
Genercl Distribution.-Great Britain; North Lea; North Atlantic; Mediterranean.

Thelepus cincinnatus (Fabr.).

1865. Malmgren. Tom. cit., p. 387.

2 miles south-east of Bailey Light, 13 , vii, '07. Dredge, $13-18 \mathrm{fms}$.
Kingstown-Dalkey, 20, vii, '07. Dredge, $8-12$ fms.
Gencral Distmbution.-Great Britain; Siberia; shores of Atlantic; Mediterranean.

Thelepus setosus (Quatr.).

1894. de Saint-Joseph. Tom. cit., p. 230.

2 miles south-east of Pailey Light, 13, vii, '07. Dredge, $13-18$ fms.
Kingstown-Dalkey, 20, vii, '07. Dredge, 8-12 fms.
Howth, north side, 7, ix, ' 07 . Irenge, 15 fms .
Howth, sonth shore, 6, x, '09. In crevices of the schist. One specimen hat Pulynoe senlumendrine in its tube.

Gromeral Distribution.-llymonth; France.

Family AMPHICTENIDAE.

Pectinaria auricoma (Müller),
196., Malmgren. Tom. cit., p. 3:7.

OIf sherries, 9, vii, '07. Dredge, is fms., on mudly ground.
This specimen was exhibited at the Intbin Microscopical Club. ${ }^{1}$
Off Ibalkey Islaml, $2 \cdot 2$, iv, '0s. Dredge, 15 fms. One large specimen.
Genorml Distribution.-British Isles; Norway; North Sea; Moditerranean.

Pectinaria belgica (Pallas).

1865. Malngren. Tome cit., 1, 356.

41 miles moth-east of Ňuse of Lanhlay' ($\$$. 445. 21, vii,' 06 . 'T'ownet. 26 fms. Grimerm Distribution.-Great Britain; Norway; Nuth Sea; Belgium.

Family MALDANIDAE.

The matorial belonging to this fanily has recently heen sent to Herx I var Arwilssm, the cminent anthmity on this group. His repmet, which promises to he uf great interest, will shmetly he pullished in the "Scientific Investigations" of the Irish Finheries Imanch. The collection contains two sprecies from Douldin Pay.

[^52]Family AMPHARETIDAE.
Ampharete Grubei, Malmgron.
1897. Fauvel. Bulletin Sci. France et Belg., tom. xxx, p. 13.

13 miles E.S.E. of Lambay (S. 236, 29, vi, '04. 'Townet on 'Trawl, 39-52 fms. 2 sp.).

General Distribution.-Irish Sea (Hornell) ; Spitzbergen; Iceland; Greenland; Scandinavia; Siberia; Nova Zembla; North France.

Family CAPITELLIDAE.

Capitella capitata (Fabricius).
1887. Eisig. Die Capitelliden des Golfes von Neapel, p. 849.

Salthill (McI.).
Howth, North shore, 10, x, '09.
Sandymount Strand, common.
General Distribution.-British Isles; shores of Atlantic ; Mediterrancan; Black Sea.

Family ARENICOLIDAE.

Arenicola marina, L.

1900. Gamble and Ashworth. Quart. Journ. Micr. Sc., xliii, p. 419.

Common in sandy flats all round the district. It is used very largely as bait by line-fishermen.

A post-larval stage, $7 \frac{1}{4} \mathrm{~mm}$. long, with 19 setigerous segments, and no gills, was dredged in 2 fms . at Malahide Inlet, on the 24th of August, 1907. A later stage, with eleven pairs of gills, was found in sand on Sandymount Strand.

Gencral Distribution.-British Isles ; east, north, south, and west coasts of Atlantic; Mediterranean; Pacific.

Arenicola ecaudata, Johnston.
1900. Gamble and Ashworth. 'Tom. cit., p. 419.

Salthill (McI.).
McIntosh ${ }^{1}$ records a post-larval stage of this species from Salthill, Co. Dublin. No adult specimen has apparently yet been found in the district.

Gcneral Distribution.-British Isles; Norway; English Channel.

[^53]
Family 0PHELIIDAE.

Ophelia limacina (Rathke.).
184\%. Oersted. Grönlands Ammlata Dorsibranchiata, p. 204. (As O. Dicomis, Sav.).

Killiney Pay, 31, vii, '08. Dredge, 5 fms.
Poolbeg breakwater, 18, x, '08. One specimen under a stone between tide-1narks.
'This species helongs to the northern group.
fourral Dhistribution.-Great Rritain; Scandinavia; Siheria; North Sea; Nova \%embar; Spitanergen; Iceland; Greenland; eastern North Anerica.

Farnily SCALIBREGMIDAE.

Scalibregma inflatum, Rathke.
1901-02. Ashworth. Quart, Journ. Micr. Sc., dlv, p. 237.
Matahite, 1 s86 (McI.).
This species has not hitherto been found on the cast coast of Ireland, and this is apmaently its most sontherly European station.

Gurme Ihistitution.-Dhritish Isles; North Atlantic; Aretic; South Amima: Now \%asamu

Family CHLORHAEMIDAE.

Stylaroides plomosus (Müller).
1894. de Saint-Juseph. Tom. cit., p. 101.

2 miles south-east of Pailey Light, $1: 3$, vii, '07. Drerlge, $12-18$ fms.
fivmoul Mistritution.-Thitish Tsles; Scandinavia; Nova Zembla; Spitalnergen ; Crempand: France; Nonth America.

Stylaroides glaucus (Malmgren).
1:96. Malmgren. Tom. cit., p. 82.
. miles N.N.E. of Palbriggan (S.252, 20, ii, ${ }^{\prime} 05$. Townet on trawl, $11-1:$ ims.).
$4 \frac{1}{2}$ miles north-east of Nose of Lambay ($S .445,27$, vii, '06. Townet on trawl, 26 fons.).

Gínoral Instributim.-N゙orway; Serotland.

Southern-The Marine Worms (Annelike) of Dublin Bay. 241
Flabelligera affinis, M. Su's.
1900. Newhigin. Amn. Mag. Nat. Hist (7), vol, v, p. 190.

Dalkey Sound (McI.).
Malahide Inlet, $30, \mathrm{v}$, ' 08 . Dredge, $2 \mathrm{fms}$. Common in the sponge Halicondria panicea.

Generel Distribution.-British Isles; Spitzbergen; Greenland; Iceland; Scandinavia; Mediterranean; France ; North America.

Family SABELLIDAE.

Sabella pavonina (Savigny).
1894. de Saint-Joseph. Tom. cit., p. 267.

2 miles south-east of Bailey Light, 13, vii, '07. Dredge, 13-18 fms.
Kingstown-Dalkey, 20, vii, '07. Dredge, 12 fms.
10 miles east of Bailey Light (S. 553, 16, viii, '07. Trawl, 41-52 fms.).
Malahide Inlet, 24, viii, '07. Dredge, 2 fms.
General Distribution.-British Isles; Greenland; Norway; English Channel ; North America.

Dasychone bombyx (Dalyell).
1894. de Saint-Joseph. 'I'om. cit., p. 309.

Dalkey Sound, April, 1907. Dredge, 6-8 fms.
2 miles south-east of Bailey Light, 13, vii, '07. Dredge, $13-18$ fms.
Kingstown-Dalkey, 20, vii, '07. Dredge, 8-12 fms.
Malahide Inlet, 17 , vi, '08. Dredge, 2 fms .
'This species is very common in Dublin Bay. It was exhibited at the Dublin Microscopical Club, December 11th, 1907. ${ }^{\text {B }}$

General Distribution-Great Britain; Scandinavia; France; North Sea.

> Chone infundibuliformis (Kroyer).
1865. Malmgren. Tom. cit., p. 40 t.

Kingstown-Dalkey, 20, vii, '07. Dredge, 8-12 fms.
Gcneral Distribution.-Great Bxitain; Norway; Faroë; Spitzbergen; Nova Zembla; Greenland; Iceland; North America.

[^54]
Jasmineira elegans, de Saint-Joseph.

1894. de Saint-Joseph. Tom. cit., p. 316.

2 miles south-east of Bailey Light, 13, vii, '07. Dredge, $13-18$ fms.
A single specimen of this Sabellid was found in Dublin Bay. It has not gevimaty lecn memmen from Ireland, thongh it apmars to be fairly common on the wort cont. A single opecimen was also dredged in the Clyde area by M. I. Newhigin. ${ }^{1}$

Grenerel Distribution.-Clyde; north coast of France.

Fabricia sabella, Ehrlog.

1894. de saint-Joseph. Tom. cit., p. 319.

Litmlay shore, 1906.
Huwth, north shore. Common amongst weels in rock-pools.
(in nem! Lis ritmlion.-Great lbritain; Mediterranean ; and east, morth, and west shores of North Atlantic.

Haplobranchus aestuarinus, Bourne.
188?. Bumme. (Uuart. Jour. Mier. Sce, xxiiio, p. 169 .
Bomme states that Mr. Thomas Bultun fomud this species in mud from the wath of the Littey.
remeral Listribution.-Isle of Shemney:

Family SERPULIDAE.

Pomatoceros triqueter (L.).

Very common in all parts of the arm. It is found between tille-marks, amei enwon tu Gio fathmes in Iamhay Deep. Almost every stone and shell is

 M-lizemanean.

Hydroides norvegica ((iummervs).

19mi-s. he Eaint-Junh. Amb. dee Sc. Naturelles (8), T. v., p. 440.
2 miles anth-enat of Bailey Light, $1: 3$, vii, '07. Drelge, 13-18 fms.

 1) 1....

Spirorbis borealis, Daudin.
1894. de Saint-Joseph. Tom. cit., 345.

Howth, south shore, 6, x, '09. On Fucus.
Gencral Distribution.—British Isles; Iceland; Aretic Ocean; Atlantic; Mediterranean.

Spirorbis spirillum, L.

1882. Levinsen. Systematisk-geografisk Oversigt, etc., ii, p. 208.

Dalkey Sound, April, 1907. Dredge, 6 fms. On Polyzod.
Gencral Distribution.—British Isles; Scandinavia; North Sea; Faroë ; Nova Zembla; Iceland; Greenland; North America.

Family HERMELLIDAE.
 Sabellaria alveolata (L.).

1867. Malmgren. Tom. cit., p. 102.

Lambay, 1906.
Portmarnock Strand.
Howth, south shore, $6, \mathrm{x},{ }^{\prime} 07$.
This species, which usually lives between tide-marks, forms tubes of sand-grains, which are massed together like honey-comb. On the strand between Portmarnock and Malahide they can be seen in great masses, covering the rocks, and forming quite a conspicuous feature in the landscape.

General Distribution.-British Isles; English Channel ; Mediterranean.
Sabellaria spinulosa, Leuckart.
1867. Malmgren. Tom. cit., p. 102.

2 miles south-east of Bailey Light, 13, vii, '07. Dredge, $13-18$ fms.
Shennick's Island, Skerries. At low-water.
This species usually frequents the deeper waters near the coast. It is howerer, occasionally found hetween tide-marks, as at Skerries. It was dredged in large quantities in the Bay. The interlacing tubes form masses on stones and old shells; but their arrangement is not so regular as those of S. alceolata.

General Distribution.-British Isles; North Sea; English Channel.

Order oligochaeta.

The Oliguchaeta occurving between tile-marks in Co. Dublin have recently been recorded at some length in the following papers :-

Southerx, R. Notes on the Genus Enchytraens. Irish Naturalist, 1906, vol. xv, p. 179.

Oligochaeta of Lambay. Irish Naturalist, 1907, vol. xvi., p. 68.
Contributions towards a Monograph of the British and Irish Oligochaeta. Proc. Roy. Irish Acad., 1909, vol. xxvii., p. 119.
I shall therefore content myself with enumerating a list of the known species.

Family TUBIFICIDAE.

Clitellio arenarius (Müller).
Tulifex Benedeni (Uddekem).
T. costatus (Claparède).
T. Thompsoni, Southern.

Family ENCHYTRAEIDAE.

Marionina semilusea (Clajarè̀le).
Lumbricillus litoreus (Hesse).
L. verrucosus (Claparede).
L. fossorman (Tauher).
L. Pagenstecheri (Ratz.).
L. niser, Suntherm.
L. Evansi, Sonthern.

Enchytraeus allididus, Henle.
E. sabulusus, Southern.
E. lobatus, Sonthern.

The last-named species has only treen found in moss and sea-weed on a cliff at Huwth, over which fresh water tricklenl. It is undoultedly covered with sea-water at certuin times; but it is difficult to say whether this species is really a littoral form, as it has not been foum elsewhere; and it was
 water.

Class hirudinea.

Only one speries of marine leech has feem foum in this district. It was recorded in the "Hamithonk to the Dublin District," 190s, p. 199.

Pontobdella muricata, L.
1894. Blanchard. Boll. Mus. Tmino, vol. is, No. 192, p. 20.

In the National Musemm there are two specimens of this leech, taken in

Souturern--The Marime Worms (Annelida) of Dublin Bay. 245
the trawl off Howth in 1891, ly W. F. de Vismes Kane and the late Dr. Ball. This leech is parasitic on various species of ray and shark.

General Distribution.-British Isles; Atlantic; Mediterranean.

Class GEPHYREA.

1856. Thompson, W.-The Natural History of Ireland, vol, iv, p. 444. Records Priametus candatus, Lam., from Dublin Bay.
1857. Kinailan, J. R.-Report of the British Association, p. 31. Records from Dublin Bay:-Syinx Haveir (Forbes) = Phuscolosoma vulgare. S. granulosus $=$ Phescolosoma vulgare. (?) Sipunculus Bernhardus $=$ Phascolion strombi. Priapulus caulatus.
1858. Nicmols, A. R.-Handbook to the City of Dublin. Section Gephyrea, p. 200. Records Phascolion strombi from Dublin Bay.
1859. Souteern, R.-A new Irish Gephyrean. Irish Naturalist, vol. xvii, p. 171. Record and description of Petalostome minutum, Kef.
1860. Colgav, N.-Dublin Microscopical Club. Irish Naturalist, vol. xix, p. 6. Mr. Colgan exhibited Phascolion strombi from Dublin Bay.

Petalostoma minutum, Keferstein.
1908. Southern, R.—Irish Naturalist, vol, xvii, p. 171.

Dalkey Sound, April, 1907. Dredge, 6 fms.
Sandycove, under stones between tide-marks, 7, vi, '08.
Howth, south shore, $7, x$, '09.
General Distribution.-Plymouth; north coast of France.

Phascolosoma vulgare (Blainville).

1904. Théel, Hj. Kungl. Svenska Vet.-Akad. Hand. Bd. 39, No. 1, p. 60 .

Dublin Bay (Kinahan).
10 miles east of Bailey Light (S. 553. 16, viii, '07. 'Trawl, 41-52 fms.).
Gencral Distribution.-British Isles; Greenland; Europe; Atlantic; Mediterranean ; Red Sea.

Phascolion strombi (Montagu).
1904. Théel, Hj. Tom. cit., p. 86.

Dublin Bay (Kinahan ; Nichols ; Colgan).
Dalkey Sound, 27, iv, '09. Dredge, 7 fms.
Dalkey, November, 1909. In Dentalium shell.
10 miles east of Bailey Light (S. 553. 16, viii, '07, Trawl, 41-52 fms.).
General Distribution.-British Isles; Aretic Seas; east, north, and west coasts of North Atlantic; Mediterranem,

Priapulus caudatus, Lamarck.
1906. Théel. Hj. Kıngl. Srenska Vet.-Akad. Hand. Bd. 40, No. 4, p. 15.

Dublin Bay (Dr. Coulter ; Kinahan).
In stomach of a plaice taken ofy' Ireland's Eye (S. 56. 15, iv, '02. Beam trawl, 18 fms.).

Gencral Distrilution.-Pritish Isles; Arctic and Antarctic Seas; east, north, and west cuasts of the North Atlantic.

This species is remarkable in having a hipolar distribution.
VII.

A REVISION OF THE GORGONELLIDAE: 1. THE JUNCELLID GROUP.

By James J. SLMPson, M.A., B.Sc., Carnegie Research Fellow, Zoological Department, University of Aberdeen. Plates I-XIX.

[Read February 28. Ordered for Publication March 2. Published Auoust 19, 1910.]
CONTENTS.

I.-Intronlection.

Systematic description of Alcyonarians is beset with many difliculties. sometimes due to our ignmane of intimate structure-as in the case of the R.I.A. PROC., VOL. XXVIHI, SKUR, B,
genus Telesto, which Prof. Bourne '1, p. 29) refers to the Steleckotokea, but which I'rof. Hickson (NII A, p. P48) considers should be placed in the Alcymacea-and sometimes to the large number of forms separated by minute and rery variable characters, as in the case of Dendronephthya. These diftioulties are sometimes increased by the inadequacy of the didrnstic lescriptions siven in previous records. This may be illustrated, 1"心ihly with whe useful result, lyy a considetation of the Gorgonellid genera Jumeth, Ellisella, Sirpertia, Scirpearella, Ctmocellia, and Nicella. These may be briefly includel in the term "the Juncellid-group" of the Gorgonellidae.

My attention was first drawn to this group in 1905 , while assisting broi. I. Athm Thamon in hasityms shme Inlian Ocean Alcyonaria. Tho Inlim Musemu fonplestandection contained a large number of these fonlu- an alon did the collewtion madn hy Prol. Hertman in the Ceylon -...s. Wwing th the masti-n.wery nathe of the classification of the gronp,
 in difterent colonies, but even in different parts of the same colony,
 - Amon: if the -lwiment, lout reitamen from naming any but undoubted

 promente is probalily preferable to that of some other students of

 borneath the surface, are sulject to great varialility."

 .Junvella :-
 form and in spicules of the specimens here referred to this genus, and

 wot Tuncolln juncou and . Tuncollu frugilis been simple, while the present speci-

 some slight lifference; while the total difterences of spiculation in these speries are slight and thus arlmit of little specific distinction. Then again . Tuncelle gemmucou, though commonly branched, may be simple. Colour,
too, appears to afford little help in the determination of species. The form, size, and distribution of the zooil-venucae, and the proportions of the corallum as a whole, seem to be the best points to rely upon. Jimerlle clongata, however, seems to be distinct in spiculation."

In reporting on the Littoral Alcyonaria of the Indian Occan (Thomson and Simpson, 1909), we drew up a comparative table of all the specimens in this group which could not with certainty be referved to unguestionalile species.

These specimens, along with those of other collections on which Prof. Thomson has reported, have been kindly handed to me as a basis fur this memoir.

Since 1905, however, it has been my privilege to do some biological work on board the Royal Indian Marine Survey ship, "Investigator "; and during that time I had an opportunity of collecting and observing a very large number of specimens belonging to this grouj) in the waters around the Mergui Archipelago-a happy hunting-ground for Juncellids. By this means an extended study of variability was rendered practicable in a way which would otherwise have been impossible; and this has been of immense value in generic and specific determination.

The writer has also been fortunate in visiting a number of museums in which old specimens are deposited, and there examining these forms; while others, more inaccessible, have been kindly lent for examination.

The following list gives the more important collections in which specimens of this group occur, all of which have been systematically examined in the preparation of this report.

II.-Material examined for this Memoir.

1. The Hunterian Collection of Gorgonellids in the Museum of the loyal College of Surgeons, London. This is a very old collection, and contains many interesting specimens which were of great use in determining the nature of the spiculation in some of the older species whose descriptions dealt entirely with macroscopical characters.
2. The Gorgonellid specimens in the collection of the Natural History Section of the British Museum, which include (1) most of the specimens on which the voluminous work of Cray was based, (2) the specimens of the "Alert" collections, and (3) the type-specimens of the "Challenger" expedition.
3. The collection made by Professor Hexdman in the Ceylon seas (1902), described in the Ceylon Pearl Oyster Repmet (liny. soc.), and now depmited in the British Museum.
 prisession of the Care Museum. These were reported upon in the "Marine Investigations in S. Africa."
\therefore T! alncion made lyr J. stanley Gardiner in the Maldive Seas S 1 din an I Arsen 1 in the Fauna and Geography of the Maldive and Laccadive Archipelagnes."
4. The iepp-sea chlection, leposited in the Indian Musemm. Calcutta

Inverise " in the Indian Oean, and repoted an in a Memoir published by the trustees of the Indiau Museum.

 \because and an an that rew rt in: they are fully dealt with in this memoir.

 " Hirondelle," during 1900-1902.
 Muscuma at Monacin.

 Linnesn Sxciety (1910).

11 d:aty \because : and in the paceession of the Cape Museum.
 me for identification. These are dealt with in this memoir, and are reposited in Alverdeen T"niversity.

 Musenm of Aherleen C"niversity.

London, for an excellent sketch of a colony in that museum (iig. 46); in Professor Sydney J. Hickson, Manchester, for kindly sending me portions of the specimens and also the preparations of spicules on which the descriptions given in his memoirs are based; hut most of all to Professor .J. Arthur Thomson, who has entrusted the greater part of the new material to me for identification, including the collection of the Indian Museum, Calcutta, the Monaco collection, and the Cape collection referred to above. I cannot sufficiently express my thanks to him for placing his splendid series of Alcyonarian literature at my disposal, for the persmal interest he has laken in the work, and for much kindly criticism and advice.

I must also thank the Trustees of the Carnegie Trust for a grant towards defraying the cost of illustration, and also the two artists, Mr. George Davidson and Mr. William Smith, for the trouble they have taken in preparing the drawings.

III. Biological Note.

The Juncellid-group of Gorgonellids are typically shallow-water forms, and occur both in tropical and temperate seas, chietly, however, in tropical waters, but have not so far been found in Arctic or Antarctic seas. They are usually found within the hundred-fathom line, and exist in very shallow water. On the coral reefs of the Mergui Archipelago, numerous colonies may be seen swaying to and fro in the air when uncovered by the water at low tide. This power to survive the heat of the sun in the tropics for as much as two hours daily is proof of great vitality in the group.

The colonies may be simple or branched, and when simple may attain to great lengths; specimens of over six feet long are not infrequent. This great length is all the more remarkable when it is remembered that there is no jointing of any sort, as is seen in Isis, Melitodes, and the like. They are extremely flexible, sway to and fro in the ocean, and when living may be bent into the form of a figure 8 without the least chance of fracture. This is of great morphological significance, and is paralleled in the animal kingdom only by (1) Pemnatulids (e.g. Umbellula), (2) Antipatharians, and (3) Nemerteans.

Nemerteans, however, live a free existence; Umbellula is also free, ancl lives embedded in mud at great depths. The analogy, therefore, restricts itself to Juncellids and Antipatharians. In the former the axis contains lime; in the latter it is composed entirely of a horny substance.

The proportion of coenenchyma to axis is very different, however, in the two cases. In the former the coenenchyma preponderates over the axis, hut in the latter the reverse holds true.

The extrandinary power of regeneration as seen in this group is of great physiongical interest. Nomally they are attached to rocks or corals; but even shells-e.g., Mrign itiferr mingaritifern-may form a basis of support. Widley recorls the case af a conny in the "Alert" Collection which had been hwhen from its attachment. and in which the coenenchyma had quite overnown the fractured fart, which had continued its existence as a free chny, fhating in the ocean. A similar case has beeu recorded by the writer for I as hipmitis (Journ. Linn. Soc. Zool., vol. xxxrii., pp. 421-433, pl. 43).

These lare Tuncellid colnies also form hases of attachment for numerous Kimin of amimals. Gphimoils and crimoils are constantly found attached to thetu, Hut emally commonad mone permanent are acom-shells and bivalves. The fonmer sethe down in the larval stase, bore their way through the (.andmeman and reman attached for life the axis. The Alcyonarian Whny molnot th the stmulus ant continues to tevelop enenenchymat

Uf mure econumic interest, however, is the case of Ptcria macroptera,

 prechuled the pussilility of the Alcyonarian keeping pace with it.

Lirpmometion. - A large propurtion of the colonies examined contained

 by him. These brulies consisted of two kinds:-
 with the higures given ly von Kuch.
(2) Spermathecae or sperm sacs in which it was possible to trace spermatugenesis almost up to the stage of fully formed spermatozoa.

No trace of segmentation of ova was discernible; and it is more than problule that this dees ont take place within the parent body.

It is also worthy of note that the ova and spermathecae occurred in
different specimens, so that it is almost certain that in this group the colonies are dioecious.

IV.-Historical Summary of the Group.
 Family GORGONELLIDAE.

The family Gorgonellidae is here regarded, on the whole, in the sense of Wright and Studer (L, p. lxiv), who, accepting Köliker's diagnosis, define it in the following terms:-
"In the species of this family the coenenchyma is thin, smooth on the surface, with small spicules in the form of warty double-clubs and stellate forms. The polyps have more or less well-developed verrucae and are usually biradially disposed. The axis is lamellar and calcareous, but retains its shape after the extraction of the calcareous matter."

The colonies in the Gorgonellidae form simple or branched masses whose calcareons axis gives to the whole a rigid appearance. The branches and twigs are frequently flattened; and the polyps are either distributed in two rows on the edges thereof, or are so disposed in lateral bands that a free space is left in the middle, in which are to be found one or more longitudinal furrows. The longitudinal canals are partly of small diameter, partly large. Two usually occur on the surfaces of the stem which are destitute of polyps. On the surface of the coenenchyma in cried specimens their position is marked by longitudinal grooves.

It includes the following genera:-

The two genera Phenilia and Heliania are only imperfectly known; and the diagnoses, as given by Gray, leave much to be desired. Studer consilers Phenilia as synonymous with Gorgonella; and it is more than likely that Heliania cannot now be considered as a distinct genus. The spicules of

[^55]these two genera have never been investigated; and I have been unable to obtain an authentic specimen of either of these, so that, for the present, they must remain as problematical genera.

It is pxtremely doubtful whether Verrucella and Gorgonella can be regarded as distinct; lut, in the present memoir, it is not proposed to deal with the rarious species which have, from time to time, been referred to them. It the same time it must he noted that a very fruitful study might be marle with regard to these forms.

Excluling. then, Phenilia, Heliania, Gorgonella, and Verrucella, it might

 have fomm time th time heen ahlupen in regatel to the six genera under consideration.

Ther whes wif the senmera muler consideration is Scirpearia, which was
 however, as to the exact identity of Cuvier's species.

 the "Challemger" Repout.

 Ctenocella. Ho defined them thus:-

 side of the principal stem.
 J. surculus, J. rimen, J. clungata, J. calyculatre, and J. hystrixc.

In the latter $(C$. pectinater.

 diescribed spreies:-

Ellisella.-Coral simple or fureately branched; branches subcylindrical, with a more or less distinct lateral groove, especially at the base. Axis continuous, opayue, solid, calcareons, hard at the base and softer above. Bark when dry, granular, thin, with numerous series of sunken or slightly prominent polypiferous cells on each edge of the stem and branches.
(1.) E. junce, coral simple, sub-compressed beneath; Juncella Val.
(2) E. clongate, coral furcately branched, branches sub-cylindrical.
(3) E. coccinen, furcately branched, branches sulb-cylindrical, very long, virgate.
(4) E. pectinute, coral branched fan-like, branches with a series of virgate branches on the upper side only. (Ctenocella.)

He also revived the genus Scirpearia in the following terms:-C'oral slender (simple or sub-simple), rod-like. Axis slender, cylindrical, hair-like, solid, white, calcareous, attached by a broad base. Bark (when dry) thin, smooth, granular, with a series of sub-cylindrical polypiferous cells placed alternately on each side of the stem.
S. mirabilis.—Two years later (P. Z. S., 1859, pp. 479-486) he established the family Elliselladao, and gave the following diagnosis:-" The axis solic, calcareous, not jointed. Bark granular, cells on the sides of the stem and branches separated by a lateral groove." (a) Cell more or less elongate.
(1) Ellisella.

Coral tree-like, sub-cylindrical; branches free; cells numerons, small, crowded. E. juncea, E. elongata, E. coccinea, E. pectinuta.
(2) Scirpearia.

Coral simple or forked; cells sub-cylindrical in two alternate series.
S. mirabilis, coral simple.
S. dichotoma, coral branched, forked.

From this résumé it will be seen that, up to this time, identification was based on external characters alone; but in 1864 a great advance was made when Kölliker investigated the spicules, and defined Juncella as having "clubs, double-clubs, and double-stars. The spicules of the polyps are small spindles." He recognized the following three species :-
(a) With clubs: Juncella juncea, J. gemmacea.
(b) Without clubs: J. elongate.

Gray, however, seems to have been macymainted with Kölliker's contribution, for in 1870 (Cat. Lith., B. M.), he, without taking into account the nature of the spiculation, overturned his previous classitication; and in the
family Elliselladae placed Juncella, Ellisella, along with many others which do not concern us here: at the same time he re-established the genus C'tencicella, and formed a ners one, viz., Viminella, in the same family.

The trmus Scirpearia he relegated to a heterogeneous group, which he callon the Calithrgialae, in which he established the genus Nicella, to
 general plan in this classification:-

Family Elliselladae.

Jux plat-Cinal simple sul-compressen near the lase; branches sub-

 A.m.: limk, whon lry, granlat, thin, with numeroms series of sunken or
 r. juncer.

 Juncella: E. clenymtu; \boldsymbol{E}. coccinata \boldsymbol{E}. genmacaca; \boldsymbol{E}. colyoulata.

 marked, but narrows: C. pectinutut
 squce lorond, with a sunken line lolyps-cells, cylindrical, prominent, in three or fuur series on each elge of the stem. Axis grey, calcareous:-

$r . j$ juncere	$=$ J. rimen.
V. flatillum	$=$ J. calme and \cdot. faycllum.
IV. hysioix	$=$ J. hysidic.
f l luerris	= J. larris.

Family Caligorgiadae.

Sctrieakia. - Coral slenter (simple or sub-simple), rod-like. Axis \therefore an, yhath sl. hair-lik., whil, whitw, calramone, attached by a broal

 indistinct. S. mivatritis, S. fumiculine, S. brebondonsis, S. monilliformis.

 white, solid. N. manritiona.

In 1878 , Studer still further advanced Kölliker's contribution, and noted that when one investigated the spicules of the varions species in the fanily, one found two definite groups:-
(1) Those with an outer layer of clubs and an imner layer of Nouble-mble; and
(2) Those with only double-clubs and spinalles.

The latter group he again sub-livided on the basis of the nature of the verrucae. His classification would appear thus:-
(1) Spicules, clubs, and double-clubs, Juncella.
(2) Spicules, double-clubs, and spindles-
A. Calyces not prominent, Ellisella.
B. Calyces markedly projecting, Scirpearia.

Juncella.-Colony simple or forked; verrucae club-shaped, prominent or otherwise. In the coenenchyma, an outer layer of clubs and an inner layer of double-clubs. J. juncea, J. gemmacea, J. flexilis nov.

Ellisella.-Colony simple or forked. Verrucae hardly projecting, in two rows on the sides of the stem and branches. In the coenenchyma only double-clubs and spindles. E. maculata nov., E. calamus nov.

Scirpearla (including Nicella, Raynerella, and Timinella).-Colony simple or branched. Axis cylindrical, calcareous, and horny. Coenenchyma thin, with prominent polyps, which are disposed in two rows on the sides of the stem and branches. Spicules, double-clubs, and spindles. S. mirctitis, S. flagellum ($=$ J. extans and V. flagellum).

Note.-Studer includes in Scirpearia Nicella mouritiune, and says that the only type of spicule in this species is "spindles thickly covered with warts." Ridley, however, doubts whether the specimen examined by studer was really N.marritiana. This is extremely probable in view of the fact that N.dichotoma (which is a synonym of N. mauritiance) contains both double-clubs and spindles. (See subsequent discussion of this species.)

Wright and Studer (L.) united all these genera under the family Gorgonellidae, which they placed in the Holaxonia, near the Gorgonidae and Plexauridae. At the same time, they, while recognizing Juncella, Nicella, Ctenocella, Scirpearia, and Ellisella, establishel a new genus under the nane of Scirpearella, which they defined thus:-"Colony simple or very feelly branched. Axis calcareous, brittle, smooth, or grooved. Polyps arranged in rows or spirals, retractile, with more or less prominent verrucae. The coenenchyma is moterately thick and finely granular. The spicules are spiny spindles and double-clubs."

The following species are described:-S. monilliforme nov., S. profunde nov., S. gracilis nov., So mbice nov.

Hickson (xT, p. 819) in disunssing this group, says that the four genera Tuncella. Ellisella, ficirpearia and Seippearella are undoubtedly related. He Lake- exceptim, however, to the distinction hetween Juncella and Ellisella based on spicular characters, and proposes to unite them under the name Juncella. At the same time he refers the genera to two groups-
(1) those with club-shaped spicules, and
(2) those without club-shaped spicules.

On this system he gives the following arrangement of the species:With clubs:-

```
J. juncea Pallas.
J. gemmacea (Milne-Erlwarls).
J. flxilis (Studer).
J. fruyilis (Hitlley).
J. Eromudensis (Wright and Studer).
```

Without clubs:-

```
J. clongale (Valencienmes).
J. colomus (Studer).
J. maculeten (Studer).
J. spicalis Hickson.
```

He also makes the following note:-" J. homiticn (Klz.) may not be diatinct; and J. funicutinu (M. ant D.) and J. lucris V'errill are not sufliciently well known to be classified in this system."

The genera Scirpearia and scirpearella he, however, retains as being cagable of identitication as follows:-

Sicirearia-prominent verrucae in two rows.
Sitpearella-prominent verrucae arranged in a spiral manner.
Iefire consilering to what extent any or all of these systems of classification may be regarded as an aid to the determination of natural aftinities, it will be well to review all the characters, macrensenpic and microscopic, upon
 the relatiunships existing in this group.

V.-Macroscoric and Microscopic Characters as a Basis of Classification.

(1) Coenenchyma.
(() Surface-The surface of the coenenchyma is generally smooth to the naked eye, but presents a glistening, arenaccons appearance when viewed with a lens. This is due to the small spicules, which project slightly, either singly or in small clusters.

Thickness.-The thickness varies in different species; e.g., in Juncella juncect, ${ }^{1}$ Juncella gemmacea, and Scirpearic furcete it is usually thick; but in Jencella racemose, Scirpearie albe, and Scirpearia fleycllem it is generally thin.

On the other hand, however, extremes may be found in different specimens of the same species. No better example of this can be cited than Juncella juncea (see later). For this reason the thickness of the coenenchyma cannot be regarded as a specific criterion. It does, however, affect the general appearance of the colony, inasmuch as the verrucae are capable of greater retraction in those specimens in which the coenenchyma is above the average thickness. (See figs. 9 and $10(u, b$, and $c)$ of Juncelle juncon, fig. 100 of Seirpearice andamanensis, and figs. 83 and 88 of Scirpearia furcotr.) As a contrast to these, figs. 49 and 56 of Scirpectic fluyellum may be taken as typical. One very important feature in regard to the thickness of the coenenchyma is the fact that this is almost a constant in any one specimen; the difference in the thickness of the colony is really due to the axis.

It, therefore, follows that, although the thickness of the coenenchyma varies very little in any individual specimen, it may vary considerably in diflerent specimens of the same species, and is therefore of little if any taxonomic value.

Consistency.-The coenenchyma is densely packed with minute spicules, and is consequently very granular and brittle, especially when dry. It presents a gritty, uneven surface when cut with a knife.
(b) Histology.-The coenenchyma is divided into an outer non-canalbearing part in which the polyps are embedded, and an imer part in which small canals ramify in all directions (igs. 10 and 19). These are separated by a series of longitudinal canals, which are arranged peripherally. The proportionate thickness of these two parts varies greatly in different specimens, and is of no taxonomic value.

[^56]in) Colun:-The colour of the colonies is due almost entirely to the pigment in the calcareous spicules, so that there is very little change after long preservation in spirit. The fleshy part of the coeneuchyma is generally pinkish; but the loss of this, due to immersion in alcohol, is hardly perceptible in the final tint. It is worthy of note, however, that in white colonies the wenenchyma is almust transparent; and immersion in alcohol results unly in rendering the colony more opaque. When dried, the colonies acture a very dull opaque colour: but the warm tones, which are so characteristic of the group, may lie restured on immersion in alcohol.

The chlour of a colony is of m. taxomomic importance, as this may vary in different aperimens of the same species. Two very good examples of this
 slucies may be of interest; but it is worthy of note that, without some detinite ant recognizel colour-scheme, precise description of colour is impwsind The following culours are, however, given by the different anhen- The exact sperimens will be better recognized if given under the names by which they were originally described.

Sirpearia furcata (emend.).
$\therefore \because \quad$ Thanan and Hombern: * The general colvar of the colony is redlish orange; but the verrucae are distinctly red."
 shaped verrucae."
s. fieratat rar. Hickson: "The colour is not so much a pure red, but tinged with orange."
 the cocuenchyma is white; but the tips of the verrucae are red. In another the verrucae are white throughout; but there are streaks of pink along the coenenchyma, running irregularly and uniting at the base to give a general pale-red colour."
 pink; but the verrucae are white, and streaks of the same colour permeate the coenenchyma."
.T. otmpmen Hickson: "The colour is pale pink, and the verrucae are white."
Mroqui sperimen: The colour is orange, but the anthocodiae are white.
Ty/r specimen (sens. emend.): "The colony is of a pale yellow colour, with red verrucae. Near the base long streaks of red extend longitudinally from the verrucae and interlock, giving a peculiar tessellated pattern."

In the Cape and Mergui Collections are a number of colonies: (1) creany white, (2) pale orange, (3) bright orange, (4) dull orange red, (3) brick-red, (6) pale orange yellow, with reddish tips to the verncae.

Seirpearia fagellum.
Monaco specimens: Dull white, creamy-white, pale yellow, orange yellow.

Naples specimen : The general colour of the colony is reddish orange, but the tips of the verrucae are distinctly more reddish.

On the whole, the colour schemes of Juncellids are defined by the coenenchyma proper and the verrucae, but in a few cases the colour of the verrucae extends in streaks along the coenenchyma, and gives rery pretty tessellated patterns. Good examples of this are seen in some forms of Seirpearia furcata (sens. emend.) (see fig. 77).

(2) Canal System.

'This is a feature to which little or no attention has so far been paid, but which is of great taxonomic importance, and which also exerts a great intuence on certain superficial appearances which have been used for specific diagnosis.

Description.-In all Juncellids it is essentially of the same type, and consists of (1) an inner longitudinal series separating the inner canal-bearing part of the coenenchyma from the axis, (2) an outer longitudinal series separating the two divisions of the coenenchyma (see above), and (3) a transverse series ramifying in all directions through the inner part of the coenenchyma and uniting the two longitudinal series.

This is common to all Juncellids (see figs. 10 and 13 of Juncelle juncee, fig. 19 of Juncella gemmacee, fig. 25 of J. trilineata, fig. 114 of Juncella quadvilineata, and fig. 43 of Seirpearia pectinata).

As has been already remarked, the thickness of the coenenchyma is almost a constant, and consequent upon this the thickness of the canalbearing parts separating these two series of canals is also a constant (see figs. $10, a, b$, and c).

With regard to the longitudinal series, it is essential to note that the number varies in the different parts of the colony, or, in other words, diminishes from the base upwards.

We have made an extended study upon a large number of specimens, and the following observations may prove useful :-

1. The outer series of canals communicates directly with the polyps, and, by means of the transverse canals, commmicates with the imer series.
2. The cause for the diminution in number is not far to seek. The number of luly is smaller in the commer parts amb comsequently the number of canals communicating trith these is smaller.
3. The numlner of canals in the outer series bears no proportion to the nuntes in the inner series in the lifterent parts although the number dinins:hes in hath caso from the lase urwatls. It diminishes more rapilly in the inner series.

Let usonsilw tha liffernt -eries and see to what extent these mar be consilered of taxonomic value.

1. T....... This wies as has imen pointed out, serves on connect
 be expected, is of no sprecific importance.
2. Duter lompitulimal series.- The canals of this series communicate

 taken into account in specific determination.
3. Innor lumpitulinal series.-We have here to deal with a series which has the following characteristics:-
(1i) The canals are not all of equal value.
b) They exert an influence on the external form of the colony.
(c) They promluce an eflect on the surface of the axis.

The superticial results proluced by this series of canals have been nased by difterent anthurs as a hasis of classification; but no systematic
 lean miven, so that it may serve some useful purpose to study the actual influence exertend and the constancy of the reanlts.

Stular (xxxvint in 1901 makes the following note:-"A transverse sereinn of a culany of Scirpurin fluyrllum (IPl. IX, fig. 11) shows that the
 in the phame perpendicular to that of the prolyps."

Thomsun and Henlerson (xxxix, p. 315, in describing Juncella trilineata say:-" Polyps arise in three different banls, leaving three narrow bare strips, each of which has in its centre a slight rib or keel. U'nler each bare strip lies a laryo lugitulinal canal. The axis shows longitudinal groves."

These are practically the only two references to the phenomena under investigation.

Lat us consider each in letail:-
(1,) Thir crmuls are mat all of equal mine.-A transrerse section of any Juncollich culnay reveals the fact that there is a certain number of the
canals much larger than the others, and, no matter at what level the section be taken, this number is constant for the specimen (see figs. $80,13,19,2 \pm$, and 111). There is only one exception to this rule, namely, Scirpecriu pectinutu (fig. 43 (a); but in this case the conditions which occasion it are themselves exceptional, and will loe described later. In the polyp-bearing branches the rule, however, holds good (fig. $4.3 b$ and c).

In the great majority of cases the typical number is tero-e.g. J. juncern, J. grminuera; but in two colonies examined, viz, Juncorle trilinout" (Thomson and Henderson), and Seirpoersie! quadrilincatn n. sp., there is a departure. In the former there are three and in the latter four (see figs. 25 and 111). These large main longitudinal canals are always symmetrically arranged, either
(1) diametrically opposite (two) (fig. 10), or
(2) at the ends of radii enclosing equal angles (three) (fig. 25), or
(3) at the ends of two diameters at right angles to one another (four) (fig. 111).
(b) They exert an influence on the external form of the colony:-(1) A very characteristic feature of Juncellids is the fact that in nearly every colony examined there is a certain number of longitudinal tracts devoid of polyps. This may be very marked, as in the case of Seirpeariut flagellum, Séciperria, ceylonensis, and Jencella ramosa, or less marked in, e.g., Scirpeeriu verucosa. In all these the number is always two.

In Juncella trilineata, however, the number is three, and in Scirpeceria quadirincata the number is four.
(2) These longitudinal bare tracts are symmetrically disposed, and correspond in position to the internal large main canals. The presence therefore of a certain number of bare tracts, and the consequent grouping of the verrucae into a corresponding number of longitudinal series, are thus the outward manifestation of the internal structure as expressel in the inner series of longitudinal canals. These bare tracts are sometimes marked by a longitudinal ridge or depression; but this is ilue to the large canal being either distended or in a collapsed state.

Since this phenomenon is a constant for any individual specimen, it seems to us that it may with safety be consilered of taxonomic importance.
(c) They produce an effect on the surfuce of the axis.一"The surface is marked by longitudinal striae"; "Rikges and furrows occur on the surface of the axis"; such statements enter into the description of a great number of specimens given by various authors. A close examination of a transverse
section reveals the fact that the furrows correspond in position to the canals of the inner longitudinal series.

Comsequently, since the number of these canals diminishes from the hase upwarls, the number of ridges and furrows also diminishes, so that the autual number of furrows seen at any one level is not characteristic of the colony as a whole (see fig. $11 a, b$, and c). It is unfortunate, howerer, that several authors have used the number of furrows as a character on which to separate different forms; for it is at once evident that such diagnosis must be negatived.

In some cares-perhaps in all-althongh it is not very markel, two of the furnws are deeper than the others, and these correspond to the two large canals.

Thus, then, we see that the inner longitudiual series of canals has s.rind well-defined chararteristics, two, at any rate, of which may with safety be regarded as specific, namely :
11. A menin mumher, constant for the specimen, are decidedly larger than the others.
2) Thwar later main canals determine the distribution of the verrucae, amil manifest themselves externally by longitudinal bare tracts.

For these reasons we have decided to use this character as a basis for specilic diagmosis.

(3) Polyps.

 (S.ee also fig it of S. furcula.) It consists of (1) the verruca, and (2) the : whementis. Thmo is mu listimet puint of demareation between the two, but
 A-Anguid hetwen the luwer on-like furtion, which may be termed the verruce, anl the upper tentacle-bearing portion, the anthocodia.

The sonnos ation inm thenenelal wenenchyma, but is supported he aition of a dinmont type an will the explained further on; these have m, Ioninit. whemont. Near the ammit there are usually eight triangular

 and bear short, simple pinnules about six to ten in number.

The cuthemilis. ate nemally white, men moter what may be the colour of An. .wheng, and the tentaches leat a number of shall, Hat, scale-like spicules

and in fact they are so similar in all species as to be of no specific importance, so that their inclusion in each individual description is hardly necessary.
(b) Motility.-To define the shape of the verrucae would be to describe the various phases through which it passes from complete expansion to extreme retraction. It may be well, however, to consider some of the phases presented in the same and different specimens, and note to what extent motility occurs. Fig. 32 of the Cape specimen of Scirpatio flagollum and fig. 64 of the type specimen of Scirpervite alba show the verrucac as low cones. Fig. $9 \times$ of Juncelle juncea, and fig. $90 c, b$, and c of Scirpeevir furcufo show them as level with the coenenchyma, or even depressed beneath it.

On the other hand, however, the great majority of the figs.-e.g., 36, 44, 85 , and 98 -depict them as directed upwards, and adpressed to the coenenchyma.

When we examine these carefully, we find that the upper surface of the polyp is considerably wrinkled, while the lower is decidedly stretched. (See fig. 49 of the Naples specimen, and fig. 36 of the Cape specimen of S. flegellum.)

Another phase, however, presents itself. Fig. 2, from a specimen in the Monaco Collection, has been added to show a very peculiar disposition not uncommon in Scirpectia flagellum. This species is remarkable for the length of its verrucae, the thinness of the coenenchyma, and the consequent slight retraction of the former into the latter. In this figure the verrucae on one side of the stem are all directed upwards, while on the other they are all directed downwards. In other specimens some are directed upwards, some horizontally, and some downwards, while a very peculiar arrangement is seen in the Naples specimen described in this report. The colony has been broken in two and preserved in this state. In the upper part of the colony the polyps are nearly all directed upwards, while in the lower part they are nearly all directed downwards.

Now it is highly improbable that this state of affairs could have existerl while the colony was living in the sea; so that it is not pushing a speculation too far to conclude that the position in which the colony was immersed in alcohol, for killing and preservation, has determined to some extent the direction in which the polyps have retracted. In fact, the probability is that the polyps naturally grow horizontally, but have a power of rotation through 180° both horizontally and vertically, or, in other words, the oral aperture can take up any position on the surface of a hemisphere whose radius is the length of the verruca. The mole in which these colonies obtain their food, and the different positions which they must assume when swayed by currents, are strongly in favour of such an argument.
[2パ2]
R. \quad-That the wills are caralle of great retraction is a fact which is of the utmost impretance in specific determination. The manner in which this is accmplishe? is very simple. The tentacles are first implis. the eight lotes if the verruca close over them, and then the whole is withdrawn into the crenenchrma. The longitudinal section (fig. 5is) of \therefore, \quad, fack shows the attachment of the string retractor muscles which arcomplish this: an! fige 10 of Jownt , inmen shws the polyps completely embedded in the coenenchyma.

I: woud the difticult th inasime that such extreme differences as that
 \therefore A ior the fas: that as great diferences actually wecur in one individual colony, e.g. figs. $77,78,79$, and 80 of Scirpearia furcota.

The has leen disctasen in letall umber the ditherent ryecies. so that it is remesary here to reier only the watal existence of such a phenomenon.
 in semiondangis. that it is eseatial to stuly this character in detail and ee tw what extent the varion disthection can he wail to ohtain. Wright
 in wint -idement:-"The pulys are andat in mws or spirals, retractile

 on each side of the stem."

 identification."
 group as a whole with regard to this character.

 $\therefore \ldots, \ldots$ Tl.............. at in ilat unkes the distinction
 a. .a.nat. :...

 of innir longitudinal canals-has already been discussed.

type of "Juncella juncect." The position of these specimens is discussed later on, so that it is unnecessary to enter into it here.

A short discussion on the distribution of the verrucae in a number of specimens which have come under our observation may prove useful in arriving at some general conclusion. It is umecessary to take these in any definite order; but a division into three groups may serve to emphasize some of the more salient characteristics.

1. Soirpearia profunda.-The polyps are disposed in two longitudinal series; this arrangement may be obsenred in the older parts, and then the disposition may simulate a spiral. Near the base four rows may occur in each series; but this number diminishes in the younger parts, so that near the tip there is only a single row alternating on opposite sides.

Scirpearia pectinata.-In no case do the polyps occur on the main stem. On the primary branches they are restricted to the outer aspect, i.e., the sile diametrically opposite the one from which the secondary branches arise. On the secondary branches they are disposed on the two inner surfaces. In the upper half of the secondary branches the polyps may encroach on the bare spaces and appear as if distributed all over the coenenchyma.

Scirpectria anomala.-The polyps are confined to two longitudinal lateral tracts separated by two bare spaces. Near the base of the colony and also in the younger parts near the tip there is a single row of polyps in each series; but in the intermediate portion there are tro irregular rows owing to crowding and the interposition of young polyps.

Seirpcaria verrucosa. - The distribution of the polyps is as follows:-The lower part bears no polyps; this is followed by two bare tracts which diminish in size to two distinct lines from which the polyps diverge at acute angles.

Scirpearia fagellum.-The lower part of the stem is devoid of polyps; this is surmounted by two opposite longitudinal bare tracts which persist to the tip of the colony. On the other two sides the polyps are disposed in a single row in each series. This gives the colony a markedly bilateral appearance. The verrucae stand sometimes in opposite pairs, but the more common arrangement is alternate.

Scirpecria thomsoni.-The polyps are disposed in two longitudinal series on opposite faces, each of which consists of from two to four irregularly alternating rows.

Scirpearia furata.-The polyps are arranged in two longitudinal series separated by two narrow bare strips which become more indistinct, but still visible towards the tip. In each series the polyps appear in rows diverging
from the bare tracts. Transversely, four or five is a common number in each series.
2. Juncellin tritincath.-The polyps are arranged in transverse rows of three to four, but many smaller polyps oceur which break this regularity. For a short distance from the ends of the branches the polyps occur in three single miss ; but passing duwnwards two, three, four, or more are to be seen, and. scatherel amongst these, are immature forms, so that all that may be sail with regard th the dispusition of the verrucae is that they occur in three Insitulinal armp. The exact number in a transwerse row depends on the position in the colony and on the stage of development. The three longitudinal series are separated by three distinct bare tracts.
3. Srimpeariu quadrilincata.-The polyps are grouped in four definite l-msitminal serion siparated the four hare spaces which correspond in position th the fomm main canals. Each serims consists of a single row; but near the

 1"小y

From these descriptions the following conclusions will be at once evilent:-
 series which are definite for the species.
(2) This number is dependent on and is the same as the number of lomeitulinal main canals.

 arecitic.
(t) 'The mumber of rows generally increases in the older parts.
(A) This is due to the interperlation of young polyps.
(b) Near the hase of a colony the different series may so approximate, "wing t" overcrowiling, as to almost obliterate the bare tracts.
(i) This may result in a spiral appearance which is not inherent, but swomdarily protuced.
 whele colony:

We have nuw reached a point when it is necessary to ascertain to what
 importance.
 the numher of transverse rows in any series; so that to us it seems that the
only character which may with certainty be used as a basis of classitication is the number of longitudinal series as defined ly the number of large main canals.
(4) Axis.

The axis consists of a horny sulstance whose chemical composition has never been thoroughly investigated, and which is insoluhle in the more common organic solvents.

This is impregnated with carbonate of lime.
The axis is deposited in the form of thin concentric laminae, so that a cross-section (fig. 3) shows annular markings. These are more densely calcareous towards the centre and appear whiter, so that the axis has often been described as having a calcareous core. This is not actually the case, however, as the homy material exists even in the very innermost layers. In the younger parts of the colony there is very little lime deposited, so that it is softer and more flexible.

It is noteworthy, however, that even in colonies attaining a height of 6 feet or more the axis is flexible almost to the very base. Near the base, however, it is very hard, and is cut with a knife only with difficulty. The actual hardness varies in different specimens of the same length.

There are small ridges and furrows on the surface (fig. B) which give the cross-section a serrated outline. These, as has been already explained, correspond to the canals of the inner longitudinal series and diminish in number from the base upwards (fig. $11, a, b$, and c).

The colour varies in the different colonies; but, as a rule, it is olive-green towards the base, passing to pale yellow near the tip. In some specimens, however, it is almost white throughout, due in great part to a larger deposition of lime, and consequently, in these, the axis is less flexible and more brittle.

The increase in the thickness of the older part of a colony is due, not to an increase in the thickness of the coenenchyma, but almost entirely to an increase in the thickness of the axis (see figs. $10,13,19$, and 43).

(5) Spicules.

The spicules of this group are characterized by their extreme smallness; in fact, in no other group of Alcyonaria do we find the predominant spicule so minute. Measurements of these with any precision are only possible with a high magnification.

The largest measurements for the group, viz, those in Nicillu dichotomu, are only $0.25 \mathrm{~mm} . \times 0.06 \mathrm{~mm}$. but in the genus Juncella the largest are those in Juncella trilincatu, which are over $0.076 \mathrm{~mm} . \times 0.0: 8 \mathrm{~mm}$. ; while in

Scirpearia the largest are those of S. anomala, viz., $0.15 \mathrm{~mm} . \times 0.034 \mathrm{~mm}$; while in S. pertinata the largest are only $0.061 \mathrm{~mm}, \times 023 \mathrm{~mm}$.

It is not necessary here to enter into the details of all the different kinds of spicules and their sariations which occur throughout the group, as this is mom fully dealt with under the various species, and the figures given there will, morever, sive a much letter idea of these than a lengthy description. It the same time it might he well to clefine in a gencral way the various t!/1)
(r) Clulls,-Fig. $\pm($ (1-y) gives some idea of the variations of this type. 'The' emberal shan' apponches that of the well-known Imtian-club; and the man imputant charateristic is the fact that the warts or spines on the clubfnentinn and all biented away from the shaft, the central part of which is smooth. The spines do nut arise perpendicularly (see also figs. 14, 23, and 26).
(11) Durllectuls.-Fig. $\overline{5}(a-l)$ shows two variations of this type. They hate the shap wi what are usually known as clumb-hells. There is a distinct
 in lan_th a woll ac in herth (see figs. $27,6,5,75$, and 113). The warts

(r) (Dumblrowheds or capstens,-Fing. 7 ($(1$ and 2). This type consists of a
 Shaft (the hubs) may be either almost smooth or markedly warty.
(17) Elmuguten dmillicoluhs.-This type may be derived from the typical

 constriction (see figs. 6.3 and (65).
(c) Simplo spinalles.-In certain species, e.sp. Nicolle dichotoma (see fig. 114),

 fig. 118 of Dicille menilifiome.)

The different variations which occur in these types will be considered in detail in describing the different species ; but certain generalizations must he briefly referred to here.

It is very important when deseribing spicules from any colony to state precisely from what part of the colony the preparation has been made. New species have been established on slight differences in the size and shape of spicules, and also on the preponderance of one type of spicule over another.

With a view to testing the degree of certainty with which this procedure might be justified, we have made different preparations under different conditions from the same colony; and we now give the results derived from over 500 preparations.
(1) The different types of spicules retain their own distinct characteristics, no matter from what level of the colony they may be taken.
(2) Spicules from different levels of the same colony or from colonies of different ages show marked deviations in absolute size, but not in proportionate sizc.
(3) Spicules in the coenenchyma alone differ from those in the verrucae alone, e.g. in Scirpearia furcata, the donble-club type, with hemispherical ends, is confined to the coenenchyma, whereas the elongated double-club is restricted to the verrucae. This obtains in all specimens examined.

It therefore follows that when examining spicules for specific determination the factor of primary importance is the choracter of the spicules. Next comes the average size of these spicules; while of no importance whatever is the proportionate numbers of each type, as this clepends on the proportion of coenenchyma and verrucae taken for the preparation.

If, then, a single preparation be made from a certain part of a colony, and no criterion be given as to the exact age of this portion, subsequent workers will experience great difficulty in making preparations from a similar part. To obviate this difficulty auother method may be employed, namely, to take conenchyma and verrucae from different levels for the single preparation, and so obtain a representative sample of the spicules of the specimen. This method has been found to be of great service in identification, and is the one employed in the preparation of this memoir.

Now it has been seen that the disposition of the verrucae is not Ω constant even in a single specimen, and that its inchusion as a generic character is untenable. If therefore the separation of the specimens of this Juncellid-group of the Crorgonellidac into genera is to be accomplishet, it must be based on the character of the spiculation.

If a preparation of spicules be made in the manner described, there shonld lee no difticulty in at once deciding whether or not the type described and figured, as a "club," is present or not. (See figs. 4, 14, 23, and 26.) On the other hand, figs. $114,115,116$, and 118 give a good idea of the "longslimulle type" and its proportion to the small double-club. Any of the figures given of the various species of Scirpearia-e.g. figs. 27,31, or 65-will at once mark these off as quite distinct from the other two types.

VI--Possible Affinities of the Gorgonellidae.

In the "('hallenger" lieport on the Alcyonaria (vol. xxxi.), Wright and Studer divide the Gorgonacea into two large sections:-
I. Scleraxonia, and
i1. Holaxonia.
In the sideraxomat they aecognize the selerogorgidae as a distinet family, with the following thatacters:-"In the representatives of this family a distint axis is formed of a tissue comsisting of numeroms closely intercalated Wheatole spiculas, with dense homy shields, The axis is surrounded by lomsitulinal canals, into which there uren the retionlated coenenchymatous canals uniting the polyps."

In the Helaxomia theme occurs the fanily (iomgomellidae, in which "the ais is latullat and calcarems, hat retains its shape after the extraction of the caleareous matter."

The matme of the "calcarens matter" is, howerer, not specified, so that it is vely dith uht (") interpet exactly what may have been the opinion of these authors.

In ". I Treatise on \%ombey," part n, lamme divided the Alcyonaria into five large orders as follows:-
(1) Stolonifera.
(2) Alcyonacea.
(3) Pscudaxonia.
(1) Axifera.
(5) Stelechntokea.

The Sthmiford, Alronared, and Stelochotokea are sufficiently distinct,
 fimther reference to them would be superfluous.
 lranched colonies. The zooid cavities short; the zooids embedded in a

coenenchyma differentiated into a cortical and medullary portion, the latter containing spicules different from those of the cortex, densely crowded together, and sometimes cemented together to form a supporting axis."

One of the families of this order-namely, the Sclerogorgidae-is thus ılefined :-"The medullary mass forms a distinct axis, consisting of closely packed, elongate spicules, with dense homy sheaths. The axis does not contain solenia, but is surrounded by longitudinal canals-i.e., by large solenia-which are connected with the zooid cavities by ramifying solenia." Of the genus Suberogorgia, Gray, in his original description (Proc. Zool. Soc., 1857, p. 159), says :-"Axis pale-brown, formed of rather loosely concentric fibrous laminae, containing a large quantity of calcareous matter."

From the Pseudaxonia the Axifera are thus differentiated:-"Synalcyonacea forming colonies consisting of a coenenchymatous rind, investing a horny or calcified axis. The axis may be horny or composed of a calcified horny substance. . . . It never contains solenia, and is never formed of fused spicules. The coenenchyma completely invests the axis, and contains solenia, and calcareous spicules embedded in the mesogloea."

Bourne does not include the Gorgonellidae in his scheme of classificatiou; and as the nature of the calcareous constituent in this family has never been investigated, or even commented upon, it is impossible to say whether they are Pseudaxonia or Axifera.

The time at our disposal has not permitted of a detailed investigation of this very important problem; but as a contribution to this study the following observations may be useful :-

Suberogorgic.-An examination of the axis of a specimen of this genus reveals the following features :-
(1) It consists of a horny matrix, in which large irregular spicules are embedded longitudinally. These spicules are easily seen with a strong lens, and appear to be deposited concentrically.
(2) The axis after decalcification retains its original shape.
(3) Prolonged boiling in caustic potash causes a slight disintegration; and the individual spicules may thus be separated.
(4) The spicules of the axis are quite different from those of the coenenchyma.
(5) A thin horny layer may be detached from the axis, in which the spicules may be seen embedded.

Juncella clongatet var. capensis.-Hickson (xini.) described an Alcyonarian from Cape Colony under this name, but at that time the spicules of this species were unknown. Subsequent study, and a consequent resuscitation of
that oh but imperfectly known species, have necessilated the removal of the C'ape specimen from this genus.

In many respects this colony is unique; and the writer has described it sequarately as Dendroyoryia (n. g.) rrpmersis, Proc. Roy. Phys. Soc., Ediu., vol. xviii. (1910), p. 62. The following notes on the axis are of great importance in this connexion:-
(1) The axis consists of concentric laminae.
-) These laminae are composed of a horny matrix, in which long irregular spicules are embedded horizontally.
(:i) The horny sulstance prepmerates in anount over the calcareous matter, so that even with a lens the spicules are not very evident.
(t The spicules differ greatly in size and shape from those of the coenenchyma.
(.). Prolonged boiling in strong canstic potash results in a partial separation of these spicules.
(6) When the cocnendymma is ditached from the axis, a thin, white, transpurvent fitm is gencrally foumd artherent to it. If this be pecled off and placed unter a microscope with a one-sicth objective, spicules identical with those of the wris are seen embedded in it.

From these facts it is at once evident that the axis in the case of this
 the... in the ownem:hy. "mbundent in a herny matrix, the indivitual com-
 fowhte the -rmate the mume layer, which is ustally detacher with the coenenchyma.
fr....", ar may li.. taken as a type if gergonellid axis, and the followiag are the chief points observed:-
(1) The axis consists of a hurny substance impregnated with lime.
(2) The horny material greatly preponderates over the calcareous.
(3) The axis is very hard, and is cut with difficulty.
(t It in impmaila t.. en imdivitual spicules either in a cross-section or a longitudinal section; but
(a) The axis is deposited in the form of concentric laminae.
if A thin lay is masally fomm whem th the detachen crenenchyma,
(c. This layer may be separated from the coenenchyma.
(i) It comenins anall apienle not very unlike those of the enenenchyma, hut different from them.

With regard to the comenchyma in these thee groups, the following notes are interesting:-
(1) In all of them there is a circle of large canals separating the coenenchyma from the axis.
(2) Near the periphery of the coenenchyma there is also a circle of longitudinal canals which communicate directly with the polyps.
(3) These two series are united by numerous interlacing transverse solenia.

The polyps are very similar in all three groups. There is no definite distinction into verruca and anthocodia. There is a pseudo-operculum formed of small spicules on the aboral surface of the tentacles in all three groups. The polyps are in all cases capable of complete retraction into the coenenchyma.

A further point of similarity may be pointed out in the case of Suberogorgia and Juncellids, namely, the possession of a definite number of longitudinal canals in the inner series larger than the others, which determine the distribution of the polyps.

It would be premature to draw any hard and fast conclusions from these few observations; but it may be considered a question whether the three groups taken in the following order, (1) Suberogorgia, (2) Dendrogoritu copensis, and (3) the Juncellids proper, may not represent a line of evolution. In the first of these the spicules of the axis are large, and there is only a small amount of horny matrix; in the second the spicules are smaller, and there is a larger proportion of horny material; while in the last the spicules (if such is the nature of the calcareous matter) are extremely small, and the proportion of horny substance to the calcareons is enormously increased.

For the present, and until the exact nature of the limy deposition in the axis of the Gorgonellidae is investigated, it is therefore inadvisable to rank them with the Axifera, and it is more than probable that their aftinities are closer to the Pseudaxonia.

VII.-Division of the Gorgonellidae into Geiera.

Before proceeding to formulate a scheme of classification which may approximate to a natural classification, and which will be based on the foregoing cousiderations, it may be well here to recapitulate the most recent diagnosis of the genera under consideration, and see to what extent each of these may be considered valid.

Juncello.-The colony is simple or branched, the polyps are sometimes small, disposed in two lateral rows, sometimes with well developed and
elongated verrucae. The coenenchyma is thick, with an external layer which contains simple and double clubs.

Srimporiu.-The colony is simple, with a cylindrical calcified axis and thin erenenchyma. The polyps are seated in two longitudinal rows on each side of the stem. The spicules are double-clubs and spindles.

Scimenecln. - The colony is simple or very feebly branched. The axis is calcarems, mitule, swow on grouven. The polyps are arranged in rows or - firals, retractile, with more or less prominent verrucae. The coenenchyma is minlentely thick and fincly granular. The spicules are spiny spindles and double-clubs.

 on the axis. The coenenchyma contains both double-clubs and spindles.
(\%onocelln.-The colnny is branched in one plane, and so that all the
 The verrucae are short on two siles of the twirgs. There are distinct median furrows. The spicules are mustly doulle-clubs; those of the polyp-calyces are, according to lidley, somewhat different from those of the coenenchyma, beines longer ant proviled with two, often three whorls of tubercles. The
 zone, which is characteristic of the spicules of the coenenchyma, is here absent.

Ni.sllu.-The colony is unight, hanched, with a thin coenenchyma, and protruling verruces, which arise perpendicularly, and appear to be terminally cruncaterl. The polyps arise from cither sile of the steur and branches, leaving a midtle space free. The spicules form a cortical layer of small Anuble-cluln, and an internal layer of long densely warty spindles.

An examination of these diagnuses reveals the fact that we have here to deal with three distinct grouls. The first of these is represented by the rarions species of the genus Juncella, and is characterized by the fact that its spicules iachude simple clubs. The second is restricted to the genus Nieella. and is distinctly separated ly the character of its spicules, which inclute stuall douthe-clubs and long, densely warted spindles.

The thint comprises Ellisella, Scirpeatia, Scirpearella, and C'tenocella, which ugree in having neither clubs nor long spindles, but whose spicules all include diouldeoclulis. These distinctions may be tabulated thus:-
A. spicules include clube (Juncella.

1. Spicules don montain clubs-
(1) Spicules include extremely elongated spindles (Nicella).
(2) Sipiules du not contain elongated spindles (C'tenocella, Ellisella, Scirpearia, Écirpearella).

In view of our previous discussion on the various characters which may be considered of taxonomic importance, wo may now take each of these genera in rotation.
(1) Ctenocella.-Only one species of this genus has so for been described, so that the generic diagnosis given alove is a recapitulation of its specific characters. In spiculation it is essentially of the Scirpearia-type; and the partipular kind of spicules clescribed above is quite characteristic of the group. It corresponds to the elongated double-clulb, which may approximate to the double-spindle, and eventually to the simple spindle which has been already described. It has been my privilege to examine a large number of colonies of this species (pcctinata), and the only character in which it differs essentially from other genera is its peculiar mode of branching. The secondary and tertiary branches (see figs. 36-41), however, are long, simple, and flagelliform; and if one of these detached branches be taken for identification, it will at once be referred to the genus Scirpearia. The disposition of the verrucae and the types of spicules correspond in every detail with the diagnosis of Scirpearia. Is it justifiable, then, to continue recognizing a genus on the basis of its branching alone, when a part of the same colony may be indisputably referred to another genus? We prefer to answer this question in the negative, and consequently abolish the gemus Ctenocella, and rank the only known species under the name Scirpearia pectinata.
(2) Ellisella.-It will be remembered that Kölliker in 1864 first drew attention to the spicules of this family, and, with the small amount of material at his disposal, separated the genus Juncella into two groups.
(1) Those with clubs (J. juncea and J. gemmacea), and (2) those without clubs (J. elongata).

Studer (1878) in revising the family limited the generic diagnosis thus :-
(1) Spicules: clubs, and double-clubs (Juncella).
(2) Spicules: double-clubs, and spindles-
A. Calyces not prominent (Ellisella).
B. Calyces markedly projecting (Scirpearia).

In discussing the question of the nature of the verrucae we pointed out that this character could not be relied upon for even specific determination, so that Studer's groups A and B, or, in other words, the genera Ellisella and Scirpearia, cannot on this basis be regarded as distinct.

In the descriptions of the varions species of Ellisella which have since been established no further character of generic importance has heen added, and an examination of the generic diagnosis of Ellisella and scippearia, given by Wright and Studer, shows them to be identical. We have examined the
type specimens of Ellisella, and compared them with authentic species of Scirpearia, and could find no reason for separating them.

Hickson ($\mathrm{xv}, 1 \mathrm{p}, 818-819$), in his valuable contribution to the study of this gronp, has surfested the almlition of the genus Ellisella and has united the species inclurled under that name to those of the genns Juncella. He, honerer. liviles the eneciessumeluted into two groups-(1) those with clubs and (2) those without clubs, the former of which, as will be evident, conrespmats to Juncellat ami the latter, with the exception of J. spiratis, whith will he disenssed later. to Ellisella as detined by their spieulation.

Ther result of this is that the erenus Juncella, which was distinguished by the prespmee of the cluts amonsat its spicules, now includes forms whose spiculation is illentical with that of Scipearia and Seirpearella.

The question now resolves itself into, "How are we to distinguish between (1) those species of Juncella whose spicules contain no clubs,
 generic characters and separate Ellisella, Scirpearia, and Scirpearella.

As the result of an examination of all the type species of Ellisella,
 however, we have seen numerous anthentic specimens in the Monaco

 is in umbent un"m u- t.e examine in wetail the other features which have been used as diagnostic.

 Provilence Island, all of which are incluted in this report. The very fact,
 occurs shows the futility of relying upon this feature.

Siature of the Trmucaf.-The question of prominent or non-prominent

 the abotition of the genus Ellisella,

We would, therefore, in view of these considerations, put forward the following emencled classification, and proceed to define the various genera in terms of such characters as seem to warrant attention.

Family GORGONELLIDAE..

Juncellid Group.

Division 1. Spicules include clubs (Juncella).
Division 2. Spicules do not include clubs-
A. Spicules include long warty spindles and small double-clubs (Nicella).
B. Spicules include double-clubs and elongated double-clubs (Scirpearia).

VIII.-Emended Diagnoses of the Family and Genera.

Family G0Rgonellidae.

Specimens belonging to this iamily may be either simple or branched. When simple, they frequently attain a length of three feet, though colonies of five or six feet long are not uncommon. When branched, the branching may be (1) very sparse, (2) more frequent and dendriform, or (3) flabellate. The branches are usually long and flagelliform. The coenenchyma is usually thin, arenaceous on the surface, and very granular throughout; it is densely packed with small spicules, and is separated into an outer non-canal-bearing part and an inner canal-bearing part.

The canal system consists of two longitudinal series, situated circumferentially; the inner series separates the coenenchyma from the axis, and the outer separates the two parts of the coenenchyma mentioned above. Between these two series, solenia ramify in all directions and unite them. The canals of the outer series are all equal in size; but in the inner series there is a certain number, definite for the specimens, larger than the others. These are known as the main longitudinal canals. The most frequent number is two, but three and fore also occur.

The polyps are disposed in a certain number of longitudinal series, which are defined by and correspond to the number of main longitudinal canals; these are separated by longitudinal bare tracts, which occupy the region of the main canals. The verrucae vary greatly in shape, not only in different specimens, but in different parts of the same colony. They may project considerably or may be depressed below the surface of the cuenenchyma. In each series there may loe one or more longitudinal rows; hut the number is
not constant at the varims levels in any one colony. The anthocoliae are rery simple; the tentacles are short and cunical, and bear a single row of short. simple pinnules on each side. There are scale-like spicules on the aboral surface of the tentacles.

The axis is composed of a horny substance impregnated with carbonate of lime. It consists of concentic laminae, which are deposited on the periphery; and it retains its shape on decalcification.

The spicules are extremely minute, and contain the following types:(1) In liau clut-shaped forms known as c! ths: (2) dumb-bell forms known
 Intu: sith as elongated luble-clubs and double-spindes may also occur.

Genus Juncella emend.

(dony simple or branched; the conenchyma is usually thick; the polyps are distributed (1) irregularly over the whole coenenchyma or (2) in definite Insithilinal series, detinet ly the fosition of a number of main canals, -..otant fin the species. The verucae (1) may he sunk within pit-like Apmosions. (2 may be low and dome-like, of (3) may he sub-conical and "1ph+anel the stem; all these conditions may appear in one colony. The . \therefore - i- fumed uf concentric layers of a homy substance impregnated with lime ; there is usually a more densely calcareous core.

The: wemehtura moist of two layers- (1 an outer, containing no
 1. ih "ammally dal intermally hy a cirche if small canals, and which is fenetrated by a network of small solenia uniting these two series.
li.. Witer series of canals commanicate directly with the polyps. A
 \therefore anje i are latom than the whers, and are known as the main canals.

 the family.

Genus Scirpearia emend.

 typical of the group; so far only species with two or four large main

 canals. As in Juncella the number of transverse rows in each series varies
in the different parts of the colony. The verrucae themselves vary in shape and size according to the stage of retraction and also according to their position in the colony. They may be elongated and conical, wart-like, or even depressed below the surface of the coenenchyma. The axis is composel of concentric laminae impregnated with lime; the surface is marked ly longitudinal ridges and furrows; but the number of these diminishes towarls: the tip of the colony. The spicules contain "double-clubs," but neither "clubs" nor extremely long "double-spindles" or "spindles."

Genus Nicella emend.

The colony may be simple, slightly branched, dichotomously branched or variously branched, with frequent anastomoses in one plane. The coenenchyma is thin and finely granular ; the surface presents an arenaceons appearance. The polyps are disposed in longitudinal series which alteruate with, and correspond in number with, the main longitudinal canals. In the species so far known there are two main longitudinal canals. The number of rows in any series varies according to the position in the colony; and in the older parts the polyps may encroach on the bare tracts so as to almost obliterate them. The verrucae vary in shape and size according to the stage of retraction; when expanded they stand usually at right angles to the stem and are terminally truncated; when fully retracted they are low and conical or dome-like ; intermediate stages always occur. The axis is composed of concentric laminae, and is densely calcareous; it is typically Gorgonellid in character. The spicules consist of small double-clubs and slightly elongated double-clubs, but characteristic are elongated double-spindles and spindles. These latter types are quite distinct, and there are no intermediate forms linking the two sets-i.e. double-clubs and spindles-together. They are also usually large in most species.

IX.-Genus Juncella emend.

A historical review of this genus has already been given, and also an emended diagnosis. In the restricted emended sense-i.e. those Gorgonellids whose spicules include "clubs"-the following species must be taken into consideration :-

1. Juncella juncea Pallas.
2. Juncella fragilis Ridley.
3. Juncella Alexilis Studer.
4. Juncella barbadensis ${ }^{1}$ Wright and Studer.

[^57]5. Juncella gemmacea Valenciennes.
6. Juncella racemasa Wright and Studer.
7. Juncella miniacea Thomson and Henderson.
S. Jiencella trilineata Thomson and Henderson.

But in addition to these the following species hare been also referred to this genus:-

> 9. Juncella santae-arucis Duch. and Mich.
> 10. Juncella funiculina Duch. and Mich.
> 11. Jucella barbadensist Duch. and Mich.
> 12. Juncella vinen Ellis and Solander.
> 13. Juncella calyoulata Ellis and Solander.
> 14. Junaella hystrix Valenciennes.
> 15. Juncella surculus Johnson.
> 16. Juncella laeris Verrill.
> 17. Juncella extans Verrill.

Fpeces 9-17 are, huwever, so imperfectly known that it is absolutely imprsible twinclude them in any scheme of classification. In several cases iley are names without descriptions : and in the others, the descriptions are extremely vague, and are hasel on characters which are nuw known to be of no -pectic value. In no case have the spicules lneen investigated, so that it is eve: impossible tw sy whether they actually belong to this genus or not; in inet, it is more than probable that they are nut all referable to Juncolla.

I hase carefully searchel through several ohd collections for authentic sformena of any uf these; hut the result has been negative, so that in the whence of typorpecimens, hut int the sake of completeness, it has been Ablend thplace them in a grnup-"incertae selis "-by themselves, and give such references and descriptions as are available.

 ficatin sureesed later. ... that it is necesary here only to consider the characters on which the classification is founded.

The first and wast impritant of these is "the nember of moin longitudinal r.. int.". and this at unce serarates , itf Juncill, tritinata from the others.

An examination of the spicules marks Jonollo, fomose as distinct (see $\mathrm{f}_{2}=14$ ant $2:$. In allition on this, however, the general nature of the \therefore ay and the mole of branching are distinctive for this species, which un ier the present system includes Jincollo mitucu. There, therefore, remain caly spreice 1-\% to the consilered. Joncell, Hostis, J. jimgitis, and J. Waiba-
densis have proved to be but young stages of J. juricca, and must therefore lee included under the older name; so that the number of species is now restricted to two, viz, Juncella juncen and Juncella yemmacera. There can he no doubt that these two names have been very loosely used in the identification of specimens, and with great justification; for after an examination of the macroscopic and microscopic characters of a very large number of each of these, it must be confessed that it is almost impossible to distinguish between a branch of Juncella gemmacea and a portion of a colony of Juncella juncea of about the same size.

Large specimens of J. juncea and complete colonies of J. gemnnacea are unmistakable on account of the great difference in the nature of the colonies.

In the former the colonies are always simple or sub-simple, while in the latter they are very much branched and markedly dendriform. Solely for this reason has it been considered justifiable to maintain these as distinct species.

The spicules are identical both in type and measurements; but the extreme nature of the branching, which commences almost at the very base of the colony in the case of J. gemmucea, and the normally simple character of J. juncea, and the great length and size to which colonies of the latter species may attain, seem to justify their recognition as distinct species. It must be noted, however, that it would be extremely inadrisable to attempt to distinguish between one of the long terminal twigs of J. germmecea and the tip of a colony of about the same thickness as J. juncea. For this reason it is difficult to decide exactly to what species certain records refer when these have been based on fragments.

In J. juncea there are two externally different types, but morphologically these are the same. In one of these the lateral bare tracts which correspond to the two main longitudinal canals are evident throughout, but in the other there is no trace of these.

The importance of this has been discussed under the species; and it has been considered highly inadvisable to separate them, unless as varieties. This step has been taken only to obviate any future misapprehension.

I would therefore suggest the following classification:-

Species of Juncella.

A. Longitudinal main canals tuo in number.
(1) Colony simple, Hagelliform-J. juncea Valenciennes, emend.
(2) Colony much branched and somewhat bushy; branches flagelliform - J. gemmacea Valenciennes, emend.
S) Colone delicate, branched in one plane; branches teuding to arise from one side—J. raccmosa Wright and Stader.
B. Longitudinal main canals three in number.
\pm Cubny leanchet as in J. is mecee-J. trilineta Thomson and Henderson.

X.Juncella juncea.

Junci lapidei Pliny, Hist. Nat., p. 13, c. 25.
Palmijuncus albus, Rumph, Amb. vi, p. 126.
Kemlopheyton simplex Seba, Thes. 111, t. 105, fig. 1a.
Goryonia juncer Pallas, xxviii, p. 180.
I'allas, xivii, p. 226.
Esper, vii, ii, p. 26, Pl. LIr.
Lamark, xxiv, ii, p. 15, n. 34.
Lamouroux, xxp, p. 419.
Dana, iii, p. 664.
Helicella , Giray, xi, p. 481.
Juncelle ", Vale, xvi, p. 14.
Tal., xlv, p. 182.
Milne-Edwards and Haime, nxvi, p. 186.
Verrill, alvii, p. 3\%.
Gray, sii, p. 204.
K.lliker, xxiii, p. 140, t. 18, 1. 45, 46 .

Thomson and Henderson, xxix, p. 314.
T! an- n : ! ! Hen !ernn xxxix. p. 313, H1. Ir, fige. 4 andi 5.
$\therefore \therefore 8$ Ridley, xuxiii, p. 34 \%.
Gray, xii, p. 25.
Hickson, sv, p. 820.
Studer, xxxiv, p. 6.59.
Studer, xxrvii, p. 116.
 $\therefore \div \because$
Kent Saville, rxi, p. 92.
Studer.
Germanos, siii.
Hickson, xv, p. 821.
$\dot{\prime} \because$: Ridley, xuxiii, p. 347, Pl. xtxI, fig. D.
var., xxiii.
Thorusin and Henlerson, xysis, p. 314.

Juncella frugitis var. rubra Thomson and Henderson, xxxis, p. 314.
 " barbadensis Duch. and Mich., v, p. 22, Pl. v, fig. 5.
 Wright and Studer, 1, p. 159, Pl, xxiv, fig. 14.

Juncella juncea.
This is a very old species, as may be seen from the Bibliography. l'allas referred it to the genus Gorgonia; but Valenciennes, in 1841, rightly considered it as a Juncellid, and placed it in the genus Juncella; and in this genus it has remained, and has been so regarded by most authors; but, in 1859, Gray, for no apparent reason, established the genus Helicella to include it. No one has, however, confirmed his opinion, so that it is unnecessary to discuss its position there. The species is a fairly distinctive one; but very little positive content has ever been given to it. Ridley, in his Report on the Alcyonaria collected by H.M.S. "Alert," says :-"Neither Milne-Edwards and Haime nor Valenciennes give details full enough to enable the student to identify their species satisfactorily with that of Pallas and Esper. In the 'Alert' specimens and that figured by Esper the verrucae are closely packed over the cortex. In our specimen, which is about 46 inches ($11 \check{0 \mathrm{~mm}}$.) long by 6 mm . thick at the present broken base and 3.5 mm . thick at the tip, the basal end is almost smooth, the verrucae being either level with the surface or depressed below it; towards the middle of the length they become projecting until they reach a height of about 1.25 mm ; they are then adpressed against the surface of the cortex. A distinct median groove is to be traced along most of the stem."

This was a most important contribution, and was the first description of the variation in the size of the verrucae, which is such a marked feature in this species, and which has led to several mistakes in identification.

Kölliker, in 1865, first introduced the question of spicules into this species, and gives two figures of these (Tab. xvin, figs. to and 46). One of these represents a thick single-club, and the second a double-club. In the many records and short descriptions which occur scattered throughout Alcyonarian literature very little further was added, so that the following short description sums up the chief points upon which the species was identified. The colony is simple and elongated; the cortex is thick; the spicules contain clubs and double-clubs; the verrucae vary in size in the various parts of the colony (Ridley) ; the axis is hard and calcareous; there are usually two bare streaks in the coenenchyma.

Practically no attention was paid to the extraordinary fertility of variation which occurs with regard to all these characters, not only in different specimens, but also in different parts of the same specimen; nor
was there any allowance made for different stages of development. As a result of this, three species-viz., J. fragilis, J. flexilis, and J. barbadensiswere established on what must now be regarded as young colonies of this species. The large number of specimens, which undoubtedly belong to this species which we have been able to examine in detail with respect to the diflerences on which these three species were based, confirm beyond doubt the opinion of several authors-notably Rilley, Studer, Hickson, and Thomson, that these cannot be regarded as distinct.

I give here a short description of these three species, followed by a systematic study of a large number of specimens which may help to give a true estimate of the variability of certain characters and the constancy of uthers, and so form a basis fur a definite specific diagnosis.

J. fragilis Ridley.

In 1884 lidley established the species fromilis for two specimens from Gucenslanl with the following characteristics:-Stem long, unbranched, diminishing very slowly th the tip, which may lee either clavate or sharppminted, thexible, and easily lowken. The diameter at the base is 5 mm ., at the alu: :i-t mm, except when the arex consists of a fine point. The cortex in thick and remu-whte when dry: there is no trace of a lateral line in the urpme there-finuthe. The verncas are small, about 1 mum in height, hanue. dhely adpressen against the cortex, crowded over all parts; axis wis lember, about 1 mm. in dianeter at the base and hair-like at the apex; war the hase it is mive-hown, hard, and lieset with longitudinal striae. The contiral spindles are the same as in J. yrmment. He points out the following difierences between this species and J. ycmmaca:-
(1) The verrucae are small and crowded.
(2) There are no lateral lines in the upper three-fourths.
(3) The colour is pale creamy-white.
(t) Thi heals of the double stellate spicules are more abundantly tuberculated.
 thi- -forion is a varime. One of these was white or cream-ectoured, the Whor was pht inick-red. He notes that these specimens approach J. juncra, whinh, he says, in listingui-heel irnu J. fingilis hy its greater size, its red coldm, it harer and more distant phlyperveat, the presence of a space lare ni verrucu alnse the base amd liy the prosession of equal-ended donhestars. These -quecinens, he says, otand midway between jnncen and formilis.

In 1905 Thomson and Henderson referrel several fragments from Ceylon to this species. The axis was marked by longitudinal striae. In some the verncae were nearly 2 mm . in height, and the diameter of the axis was 1 mm . ; in others the verrucae were much smaller, and the diameter of the axis was 2 mm . The spicules showed some variation from those in Ridley's specimens.

Juncella fragilis var. rubra.

In the same paper Thomson and Henderson established a new variety, namely, rubra, to include a long, flexible, complete colony, which tapered gradually throughout its entire length. There was no trace of a lateral line or groove. The verrucae were numerous and closely adpressed, measuring about 1 mm . in height.

From the above descriptions it is evident that this species has no definite specific character. Ridley himself had doubts as to its distinctiveness; but its " simple" character at once separates it from J. genmacea. The specimens from Mergui are undoubtedly J. juncea; but Ridley practically acknowledges this. I have examined the specimens described by Thomson and Henderson, and although these undoubtedly coincide with the description of J. fragilis, they also agree with young forms of J. juncea. A comparison of these specimens and Ridley's descriptions, with the numerous colonies of various ages which I was fortunate in obtaining at Mergui, proves beyond doubt that this species was based on young stages of J. juncea, so that I would suggest the merging of this species into J. juncea. At the same time the variations in the different characters, as seen in these specimens, are of great interest, and show how difficult it is to be certain of any species on a single or even_a few specimens, especially if they are young. The question of the size of the verrucae and the presence or absence of bare spaces in this species is discussed further on, so that it is necessary here to note only its relative position in classification.

Juncella flexilis Studer.
This species was established by Studer for a small specimen (probably young) with the following characters:-
"The stem is simple, rising from a flat base. The colony is only 20 cms. in height. The axis is thin and flexible, but contains lime The polyps first arise at a level of 2 cms. from the base; they occur at first in two lateral rows, soon increasing in number, and occupying in the upper part the whole surface of the stem. The verucae are 2 mus. long, are club-shaped, and are curved towards the stem. The coenenchyma
is than an : ontains an extemal larer of clubs, and below this a layer of double-clubs. The colour is dark red.

Grmane (rit) identified a small specimen from Ternate with this ane. It hal itw hranches ${ }^{1}$ (the trpe specimen is simple). He makes the following observations:-

The colnur is orange-red. The stem is crlindrical. with a rigid axis \therefore nserins i several concentric and hony larers. The branches are much amperst, and have a texible axis. The spicules of the coenenchyma are
 tway: the stom; they contain club-shaped spicules; the anthocodiae are white, entirely retractile, and have small spindles.

Haksonyprovionally referm some specimens to this species, but

The: buak whinh we have mate with regarl to J. formilis apply equally wh: the speres anl we whil contim Hicksons opinion and merge this species into the older J. juncen.
I. ...-lewween Flat I.han and Mauritus studer). Ternate (Hermanos). S. Nilandu, Maldives, 25-30 fms. (Hickson),

Juncella barbadensis.

 . \therefore. at the ame time note that certain

 might be marle.
 ….. : in : : : - - i ilo J. ... Tl.yen-ist if unsmmetrical clubs, - $\therefore . . .$. -T. juncer.
 -T. ferilis studer.
 aud I have no hesitation in referring it to J. juncen.

Luntity-Off Sumbrero Island. 450 fathoms.

[^58]
Juncella juncea.

In the Mergui Collection there are numerous specimens of this species; and a study of these has enabled me to define this species with some precision. A superficial examination of these reveals two distinct types which, for the present, may be regarded as varieties with the following distinction:-

Var. a-with slightly protruding verrucae and with the polyps all over the coenenchyma.
Var. b-with markedly protruding verrucae and with two bare longitudinal spaces.

I would emphasize the fact that these are but superficial differences, and that no taxonomic importance can be attached to them-consequently I refrain from naming them. I shall first examine them macroscopically with regard to their superficial differences.

Var. a.-Fig. $9(a, b$, and $c)$ gives a very good impression of the external appearance of this variety. The polyps are distributed irregularly over the whole coenenchyma, so that, at any one level, the arrangement is the same from any aspect. In the younger part of the colony-that is towards the tip-the verrucae are slightly club-shaped, and are adpressed to the axis, and are sunk in very shallow pits. About seven or eight may be seen on one transverse line (fig. $9 c$).

Towards the middle of the colony the number increases to nine or ten, the verrucae project less, appear smaller, and are sunk in deeper pits. They are not so closely packed as in the younger part (fig. 98).

Near the base of the colony the appearance is quite different. The polyps are separated by intervals two, three, or more times the diameter of the verrucae. They are much smaller than in the upper parts, and the verrucae are now almost surrounded or engulfed by the coenenchyma (fig. 9b).

Var. b.-(See corresponding figures, $12 a, b$, and c.)
In this variety the polyps are restricted to two definite longitudinal series, separated by two bare spaces, whose position is marked by a more ur less distinct groove. Throughout the whole colony the polyps are mure protruded than in the previous variety. The colony is more slender and tapering, and the coenenchyma is thinner.

Near the tip of the colony there are usually two or three polyps in each series (fig. 12c).

Towards the middle of the colony four or five is a common number in a corresponding position. (Fig. 126 gives a view of the pit-like depression in the area devoid of polyps.)

$$
\left[\begin{array}{lll}
2 & (1) & 2
\end{array}\right]
$$

Near the base the number increases to seven or eight (fig. 12a). The verrucae throughout are sub-conical and are adpressed to the stem, although in some cases they are slightly dome-like.

The following tables give a few measurements from several colonies of buth of these varieties:-

Table A.

Specimen.		Diameter of Colony in Millimetres.			Diameter of axis at base.		
		Base.	Midway.	Nearapex.			
1	89	7	7	5	4	1.5	$2 \cdot 5$
2	$82+$	6	$5 \cdot 5$	5	$3 \cdot 5(\cdot 5)$	1-25	$2 \cdot 5$
3	76	8	75	$5 \cdot 5$	5	1.5	2.75
4	if	$8 \cdot 5$	$7 \cdot 5$	5	6	1.75	$2 \cdot 5$
B	\%	7	7	6.5	$3 \cdot 5$	$1 \cdot 75$	$3 \cdot 25$
6	71	7	7	6.5	3.6	$1 \cdot 75$	$3 \cdot 25$
7	68	5	$4 \cdot 5$	4	$2 \cdot 5$	1.25	2
8	65	$5 \cdot 5$	$5 \cdot 5$	$4 \cdot 5$	3.6	1	$2 \cdot 25$
9	63	5	5	4.5	3	1	$2 \cdot 25$
10	57	6	6	$4 \cdot 5$	3	$1 \cdot 5$	$2 \cdot 25$
11	$52+$	7.6	7	5	$4 \cdot 3(\cdot 6)$	1.5	$2 \cdot 6$
12	16	6	5. 5	5.6	3	1.6	2.75

Table B．

Specimen．	Height．	Diameter of Colony．			Dinmeter 1．f axis at base．		
		Base．	Midway．	Apex．			
1	156	7.5	$6 \cdot 5$	5	5	1.25	2.5
2	115	5	7	6.5	4	0.5	$3 \cdot 25$
3	114	$5 \cdot 5$	5	4.5	3	$1 \cdot 25$	2.25
4	110	$5 \cdot 5$	7.5	5	4	0.75	2.5
5	110	8	8	4	$4 \cdot 5$	1.75	2
6	105	5.5	7.5	6	3.5	1	3
7	101	6.5	5	4	4	1.25	2
8	$100+$	7	8.5	6	4.5 （0．5）	$1 \cdot 25$	3
9	100	6	5	$4 \cdot 5$	3.5	$1 \cdot 25$	$2 \cdot 25$
10	91	7	7	5	4	1.5	2.5
11	90	7	7	$6 \cdot 5$	4	1.5	3.25
12	86	6	6	5	3	1.5	$2 \cdot 5$
13	$83+$	8.5	9	6	$5.5(0.5)$	1.5	3
14	82	6	6	4	2	2	2
15	76	6.5	7	5	3	1.75	2×5
16	72	5	5	4	2	1.5	2
17	66	7	7	5.5	4	1.5	2.75
18	64	5	$5 \cdot 5$	$3 \cdot 5$	$2 \cdot 5$	1.25	1.75
19	61	$5 \cdot 5$	6	$4 \cdot 5$	3	$1 \cdot 25$	$2 \cdot 25$
20	61	$4 \cdot 5$	4	3.5	2	1.25	1．75
21	60	$4 \cdot 5$	4.5	4	3	$0 \cdot 75$	2
22	67	$5 \cdot 5$	6	6	$3 \cdot 5$	1	3
23	53	$4 \cdot 5$	$4 \cdot 5$	$3 \cdot 5$	1.5	1.5	1.75
24	52	$4 \cdot 5$	4.5	4	2	$1 \cdot 25$	2
25	49	7.5	6	6	2.5	$2 \cdot 5$	$2 \cdot 5$
26	45	3.5	6	$5 \cdot 5$	3	0.25	$2 \cdot 75$
27	41	$3 \cdot 5$	3	$2 \cdot 5$	1.5	1	1.25

The superficial differences between the two varieties having been noted， we may consider the general morphology of the species，and see to what． extent the varieties are worthy of distinction．

Coenenchyma.-Figs. $10(a, b$, and $c)$ and $13(a, b$, and $c)$ are given to show the structure of the coenenchyma at the same levels as the corresponding figs. $9(a, b$, and c) and $12(a, b$, and $c)$ respectively. The coenenchyma may be differentiated into two distinct regions-(1) an outer superficial layer, in which the polyps are embelded, and which contains no canals; and (2) an inner layer, which is intersected by a meshwork of transverse canals.

In var. "the superficial layer is much thinner than the inner layer; but in var. 7 , the superficial layer is the thicker of the two. At the tip of the colony there is a conical growing point devoid of polyps and having no canals. The thickness of the enenenchyma hardly varies throughout the colony.

Cobul Suptoms.-This consists of (1) a longitudinal system and (2) a transwere system. The lomsitudinal system is composed of two series of longitudinal canals-(") an outer, sitnated letween the two layers of the conemehyma, and with which the polyps comnect directly; and (b) an inner, situated hetween the innor layer of the coenenchyma and the axis. These twonstems are united by the transverse canals which penetrate the inner layer of the coenenchyma.

The mamer of canals in each of the two longitudinal series diminishes in mumbre fom the hase of the colony upwards. This, of course, is natural, since the number of polyps also decreases.

In the inner serins of longitulinal canals there are two, situated diametriwhy "Mmente onn anther, which are much lager than the others. They ancor in lwh sarietio : lat in the case of var. 1 , they correspond to the position of the longitudinal bare spaces.

The grater thinke-s of the comenchyma in var. "may explain the alisence of this phenomenon in the latter variety.

An-The ain in marken ly lompitulinal rimges and furrows. The

 axis in bery well mon in this eperim. It is composed of concentric laminae of hom, immenatol with -mall limy sclerites. To the inside of the canals ,it the inmerngitulinal smins a laym may be detached showing the sclerites $i^{\prime \prime} \vartheta^{\prime}$ Thu innernmot layers are much more densely spiculose than the unter. The diametor if the axis (malike the coenenchyma) gradually diminishes twarts the tip uf the chlny, where it becomes almost hair-like, and contains very little lime.

The characteristic spicule is the simple-club, which has been describert already. A few typical variations are also shown in fig. 14. These are also double-stellate forms and double wheels or capstans. The following are some of the measurements, length by breadth, in millimetres:-
(1) Clubs $-0.11 \times 0.04 ; 0.1 \times 0.035 ; 0.09 \times 0.034 ; 0.085 \times 0.032$; $0.08 \times 0.03 ; 0.08 \times 0.02$.
(2) Double Star's. $0.01 \times 0.05 ; 0.09 \times 0.045 ; 0.08 \times 0.04 ; 0.08 \times 0.03$.

Distribution of \mathcal{J}. juncea.

(1) Australic.-Port Denison, Queensland, 4 fathoms (as J. juncece and J. fragilis); Dirk Hartog, W. Australia, 45 fathoms; Mermaid Straits, N.W. Australia, 50 fathoms; Torres Straits, 7-11 fathoms.
(2) Off Sombrero Island, West Indies (as J. barbadensis).
(3) King Island Bay and elsewhere (Mergui).
(4) Ceylon Seas (as $J . j u n c e a$), Gulf of Manaar (as J. frogilis).
(5) Bourbon, and between Flat Island and Mauritius (as J. flexilis).
(6) Ternate (as J. flexilis).
(7) Maldives (as J. flexilis).
(8) Off Table Island, Cocos Group, Andamans, 15-35 fathoms.

Specific Diagnosis of J. juncea.

Colony simple or sub-simple, elongate, sometimes filiform, sometimes very thick: the coenenchyma varies greatly in thickness in the different specimens, but is constant in each; this affects the external appearance of the colony. The canal system is of the typical Gorgonellid structure, and there are two main longitudinal canals. These may or may not produce an external impression; in colonies with a thin coenenchyma their position is denoted externally by two longitudinal bare tracts; but in those with a very thick coenenchyma, no trace of this is to be seen. 'The polyps are distributed differently in these two types; in the former they are disposed in two longitudinal series, in which there is a varying number of rows, which diminish from the base upwards; in the latter they are crowded all over the coenenchyma. The verrucae vary greatly in shape in the different parts of the colony; near the base they are low and dome-like, or may even be depressed beneath the surface of the coenenchyma; they gradually increase in size until near the top they are usually sub-couical, directed upwards, and adpressed to the coenenchyma. The axis is hard and Hexible; it is composel
of concentric laminae, which consist of a horny substance impreguated with some form of calcareons matter. The surface is marked by longitudinal grooves, which correspond in number to the inner series of longitudinal canals, and therefore diminish from the base upwards. Sometimes two larger than the others are to be seen, and these represent the position of the two main canals. The spicules consist of the usual Juncella types, and include clubs, double-wheels, and double-stars. The colour varies from pure white, through orange, to dark red.

XI.—Juncella gemmacea. Figs. 15-19.

		Valenciennes, Mss. dans la Coll, du Mus. Paris.
		Milue-Edwards and Haime, xxvi., p. 185, в 2, f. 7.
Juncella	"	Kölliker, xxiii., p. 140, t, 14, f. 4.
,	"	Wright and Studer 1., p. 158, Pl. xxxiv, fig. 13. var. Ridley, xxxii., p. $2 \not 11$.
	"	Studer xxxrii., p. 117.
"		Thomson and Russell, sliii., p. 162.
Evicula	"	Gray, xii., p. 26.
Ellisolla marulata		(pars) Wright and Studer, 1.
Juncella elo		var. Fidley xxxiii, p. 346.

Valentimues in 18.5 estahlishel this species to include a specimen in the Xatural Histury Museum in Paris, under the name of Gorgonia gemmucern (Mss. dans la collect. du Museum Paris).
 Verrucella, and defined it as follows:-

Polypirmidn dont les branthes, assez nombreuses et cylindriques, se did.atmonemt de loin en hin. ot sticartent beancoup entre elles; les rammentox terminaux allongés. Genenchyme tris-friable, d'un jaune iormsinomi is la surface of Wancháter puis de l'axe. Verrues calicifères tréssaillantes, arrondées et dressées contre la tige."

They give a wry toml hgure showing the morle of branching. In 186.5 Kinliker remosed the apeces. from the qenus Verrucella to Juncella, and notal ion the liret time that "clute" recurred anongst the spicules just as in I. He gives twinfigure-(1) a dhbs-shaped spicule (worlcut 19, 1); (2) a cross-section of the axis (PL. xrr, fig. 4).
bray in 1 , 00 referred this species to the genus Ellisella with no apparent
 rewergized by any subsequent authrs, in that Iidley in 1884 identified some specimens from Qucensland, under the name of J. gemmacen, and
remarked that the spicules are almost indistinguishable from those of J. juncect, while at the same time he expressed the opinion that J. Alexilis Studer might not be a distinct species. The position of this species has already been discussed.

It would be useless to go in detail into all the records of this species; and in fact, it is very difficult to say whether the records of J. juncea and J. gemmuteed are all correct in identification, as several authors do not mention whether their colonies were simple or branched. Another complication, however, creeps in. When fragments of colonies were esamined, is it not possible that a branch of J. gemmaceer might be referred to J. juncer, especially when we remember that the question of branching is the chief distinction between the two species?

Before going on to discuss the various characters of this species in detail, I would give the following quotation, as it is not only of great interest, but has apparently been overlooked by several authors in their identification of this species.

Ridley (1884) referred a colony from the N.-E. coast of Australia to the species elongata; but in 1887 (xxxii., p. 241) he replaced it in the species gemmaced, noting that he had overlooked the fact that J. elongutte had no "clubs." He says:-" It will be seen that we probably have a very variable species before us, colour, form, and size being alike not to be depended on by themselves. The spiculation is fairly constant, but differs so little from that of the allied forms (J. juncelld and frugilis) as to be scareely a sufficient guide per se to the recognition of the species."

From the fact that the specimen referred to was dichotomously branched, I feel justified in recognizing it as J. gemmacea. An interesting feature about this specimen is the fact that when found it had been broken off at the base, and the broken part had been overgrown with coenenchyma, so that it had been living free in the water. An analogous state was observed in the case of a specimen of Isis hippuris Linn. in the Littoral Collection from the Indian Ocean.

In the Mergui Collection there is a large number of specimens of this species, and these are augmented by several from the Indian Ocean Collection from the Indian Museum, Calcutta. By means of these it has been possible to study and compare several characters which are very variable in a manner which would have been impossible with only a single or even a few specimens.

Branching.-The mode of branching is of the nature of a false dichotomy. The large main branches of the colony are again branched almost in one plane, but the general appearance of the colony is bushy.

R,I,A. PROC., VOL. XXVIII., SECT, B.

The distance betreen branchings though not constant, seems to increase from the lase uprards so that the longest unbranched parts are the terminal twigs. This is mure marked in the taller colonies. In roung dwarf specimens the relative distances between the origin of the several branches in ascending witer is less pronounced, and the branches themselves are propurtionately thicker. These latter specimens therefore have a different aphearance from the older and more elongated colonies, but must be ranked in this species when we take into cinsideration the monde of growth, which will be discuseed later.
before duing so, however, it will be well to tabulate corresponding meinarements in indivilual culonies and see how far these give us a clue to the burnle of growth. Fortunately we have in our possession intermediate - inges which show the ditferent developments during growth from the shortest to the tallest.

The following tables may serve to form a basis for such a study. In Ta' ! - I the nedwerments are all given in centimetres. The symbol + indiwies that the exart lengeh is not known, owing to the lasis of attachment having leen broken off.

tarle A.

Siminers.	Height.	Letrgit of muin tems.	Lasiance buiwern bramiles.	Length of twigs.
1.	90	6	$2-18$	26
11.	so	$12+$	2-10	28
111.	75	14	2-10	22
11.	70	$4+$	2-12	22
V.	65	$5+$	2-12	16
V1.	62	5	2-11	15
vir.	35	1	1 2-9	16
V11\%.	55	2.	2-14	14
11.	54	3 +	\| 2-10	13
I.	53	8 +	3-10	14
ET.	44	7	2-10	12
SII.	42	$3+$	2-7.5	13

another. The large specimen is from the Mergui drchipelago and the smaller is from the Andamans.

The former is 400 mm . in height; the latter is 230 mm . in height: the longest twig in the former is 220 mm ., that in the latter 70 mm . The greatest distance between branchings in the former is 120 mm .; in the latter it is only 27.5 mm . So far, then, the measurements are proportionate; Lut when we take into consideration the corresponding diameters in the various parts, the difference is at once very marked. In the smaller colony the total diameter of the several branches and twigs is greater than in the larger; so that, at first, it is difficult to conceive that the dwarf colony could develop into a colony similar to the larger.

Table B.

230	25		440	70	5	700	70	9	, 220
	20			20	5.5		70	9	
	27.3			20	5%		65	8	
	15	6.5		40	5ヶ弓		110	7	
	25	6 70		45	\%๐o. . 120		100	6	
	22.5	6		40	$5 \cdot 5$		55	5	
	22.0	6		40	5		95	4.5	
	17.5	$5 \cdot 5$		50	5		65	4	
	12	$5 \cdot 5$		Twig	$4 \cdot 5$		120	3.5	
	Twig	5					Twig	3	

Table B gives several measurements from three colonies of different sizes. One large branch has been selected and followed to the tip of the colony. The rarious lengths represent the consecutive distances at which branches arise from it. The first feature which may be seen from this Table is the fact that the distances at which the different branches arise do not increase proportionately from the base upwards. (2) Such increase as exists is more marked in the taller specimens. (3) In the very dwarf colony, the distances actually diminish in the upper half.

Let us now eritically examine the measurements given in the same Talle
of the diameters at the curresponding parts. (1) The diameters of the branches in the young colony are equal to, and, in some cases, greater than, corresponding measurements in the older colonies. The series of measurements of twelve specimens given in Table C shows that (1) the length of the main stem varies very little; (2) there is a distinct tendency towards an increase of length in the younger branches and twigs in the older specimens.

In 'lable C we have sought to amalyse the nature of the coustitution of the diameter-in other worls, to find the actual proportion of axis and
 t, light.
 a constant: in reality it is slightly thicker in the smaller specimeus. It is noteworthy that the diameter of the axis at this part is nopligitle, heing of a hair-like fineness.
(2) Although the total diameter of branches lower down is greater than in the twigs, the actual thickness of the coenenchyma is never greater, and, in some cases, is actually less.
(3) The thickness of the coenenclymat in the main stem is seldom as great as in the branches or twigs, and is usually from 0.75 to 0.5 times its thickness.
Bearing these facts in mind, let us sec if any inference may be made as to the mode of growth, and also as to the possibility of these apparently diverse forms being referable to a single species.
(1) We find that what obtains with regard to the various measurements in different parts of the same colony also holds good in the corresponding parts of colonies of different sizes.
${ }^{(2)}$ It is also obvious that increase in thickness in the older parts of a colony is due, not to increase of thickness in the coenenchyma, but to increase in the diameter of the axis.
(3) Increase in length in the younger branches and twigs is not proportional to increase in the thickness of the coenenchyma, but tends rather to the reverse of this situation.

We are therefore in a position to conclude that increase in the thickness of the coenenchyma is not proportionate to the age of the colony, but that the coenenchyma attains to its typical thickness at a very early stage, and that further elongation and consequent thickness are caused more by the growth of the axis than the coenenchyma; or, in other words, the earlier period of growth consists chiefly in development of the coenenchyma, while the strengthening of the axis and elongation of the colony come at a later period. Consequently the younger colonies are more bushy and fleshy, and the older colonies have proportionately a greater amount of axis, and are therefore more rigid.

The distribution of the polyps, the nature of the verrucae, and the details of the canal-system are exactly similar to those described for the protruding verrucae variety of Juncella juncee. Figs. 18 and 19 have been added to show the leading characteristics; and these should be compared with the corresponding figures (12 and 13) of J. junceca.

Colour:-The great majority of the specimens examined in this species are of a dark brick-red colour; but the following tints also occur:(1) reddish orange, (2) brownish yellow, (3) orange-yellow, (4) lemon, and (5) creamy-white. There is thus almost a series of gradations from white through orange to red.

Spicales of J. gemmacca.

The spicules of this species, as has already been pointel out, are identicnl both in types and measurements with those of J. juncece, so that the description and measurements given for the latter may be taken as typical.

Distribution of J. gemmacca.

Red Sea.
Providence Island.
Mascarene Island, 19 fms.
Mermaid Straits.
Queensland, N.-E. Australia: Percy Island, $0-5 \mathrm{fms}$; Port Molle, 12-20 fms. and between tile-marks; Port Denison, \pm fms.; Fitzroy Island, 11 fms.
Amirante Island, 32 fms .
Malacca.
Singapore.
King Island Bay, and elsewhere in the Mergui Archipelago, between tidemarks and up to 30 fms.
Torres Straits, 8 fms .
Gulf of Manaar.
Torres Straits (as Ellisella maculuta pars.).
XII.-Juncella racemosa. Figs. 20-23.
J. recemose Wright and studer, l, p. 159, Il. xxxiv, fig. 11.
.I. miniurion Thomson and Henderson, xl, p. 81, Il. r, figs. 7 and 12.
J. racemosa Thumson and Simpson, xli, p. 268.

This species was established hy Wright and studer for several small, deliate, hanched specimens in the "Challenger" Collection, with the following fasures:-The hranches arise all in we plane; in one specimen all the Dranches to the very summit, are given ofl from the right side of the main -t.m, whin is curved. several of these are short and simple, while others are dean hanched. All the hranchlets are given off from one side of the Intueth, aml, when hatached tha thim degree, the same fact holds true. The f"! ! jo ate numerns : and on the stem and branches they show an eight1hyol star; onfurther contraction, they appear as small papillae; when fully
 -Inface of the stem and bunches polys are absent; and on this naked portinn a feety mated grome wims up the stem. The polyps are much none numerns and crowded on the sualler branches, where they are placed in threen thar buss. The colum of the conenchyona and polyps varies trom reddioh yellow todark red. The hases of the polyps and tentacles are if a muth lighter hue. The coenenchyma is thin, and has the characteristic spicules of Juncella.

The figure of the spimales given in the " ('hallenger" Report (Pl. xxxir., Hz. 11) derom, however, give atonl appeciation of their form; and this lerl

Thomson and Henderson to establish a new species (J. miniceca) for a small specimen from the Indian Ocean. The long spindles described for the latter species have since proved to be extrinsic.

An examination of the type specimen, and also of the spicules of J. rucemosa in the British Museum, has proved beyond question that J. miniucea is not distinct from J. rucemose. This has already been pointerl , sut (Thomson and Simpson, xli.) in connexion with another specimel: which occurs in the collection of Littoral Alcyonaria of the Indian Museum, Caleutta (figs. 20, 21, and 22).

In the same collection, but hitherto undescribed, is a small portion of a delicate colony branched in one plane (fig. 21). The base is wanting; and what appears to be the main stem may be only a primary branch which has been broken off at the point of attachment of an acorn shell. It is :30 mm. in length, and is distinctly crescentic in shape. Five thread-like branches arise from the convex side, and one only from the concave. The longest of these is 55 mm . ; and it is noteworthy that the branches are also curved. They in turn give origin to finer branchlets, which, with very few exceptions, arise from the convex side. Two acorn-shells have become attached to the colony; and these are overgrown with polyp-bearing coenenchyma; while one of them has given rise to a proliferation of the axis.

The coenenchyma is very thin; and it is impossible to discover the nature and number of the main canals.

The axis is thread-like, and is impregnated with lime.
The polyps are more seattered than in any of the previously described specimens, and stand almost perpendicularly. The arrangement of these is not easily determined. In the finer twigs they occur in two single rows (fig. 22); but the intrusion of young polyps and consequent development tend to obliterate this symmetry, and give an irregular arrangement.

The verrucae, when expanded, are cylindrical, and higher than broad; in this condition an eight-rayed structure is seen at the top. On contraction they become dome-like, and no trace of the rays is to be seen. The colour of the colony is a pale brick-red throughout.

The spicules are of the types characteristic of this species.
Loculity.—Andamans.

Diagnosis of J. racemosa.

Colony delicate, brauched in one plane; the branches tend to arise from one side of the stem, and the branchlets show a similar tendency; coenenchyma thin ; polyps in the finer twigs and at the tips of the branches are usually disposed in two lateral rows; in the ohler parts of the branches
they occur irregularly over the coenenchyma. The verrucae, when expanded, are crlindrical, and either stand perpendicularly or are inclined upwards to the stem; when contracted they are low and dome-like. The spicules are very minute, and are distinctly prickly in appearance (fig. 23). The following types may be distinguished:-
(" Slu ulo " chl, with a distinct smooth middle portion, surmounted by a spiny head, only slightly thicker than the constriction.
(h, Shurt, atump!y , llow, much broaler in proportion to their length, and with the spines slightly more divaricate.
(c) Double uchecls, with an elongated hub.
(1) Elungated finms, with a distinct smooth constriction, which may be conveniently termed dumble spindles.
(e) Occasional quendriradiates.
(f) Noedles in the anthocoliae.

The fulluwine may he taken as typical measurements in millimetres as they occur in all the specimens so far known :-

(11)	0.076×0.031	constriction	0.008×0.008.
	$0.065 \times 0.0: 31$	"	0.011×0.008.
	0.065×0.023	"	0.008×0.008.
(b)	$0.053 \times 0.0 \% 4$	"	0.008×0.009.
	$0.05 \% \times 0.0 \% 1$	"	0.011×0.008.
	$0.049 \times 0.0 .11$	"	0.008×0.008.
(c)	0.057×0.027	"	0.011×0.008.
	$0.0 .51 \times 0.027$	"	0.011×0.009.
	0.040×0.027	"	0.008×0.008.
(d)	0.076×0.027	"	0.011×0.008.
	0.068×0.027	"	0.011×0.011.
	$0.061 \times 0.0 .31$	"	0.008×0.008.
	0.038×0.034		
	$0.1 \times 0.04,0.0$	6×0.04	

C'oloneschemes-Brown throughout.
Vernilion-red.
Orange-red, with tips of the verrucae yellow. l'ale brick-red.
 Andamans, 120 fms. (Thomson and Henderson).
Andamans, " (Thomson and Simpson). Andamans, " (as stated above).

XIII.—Juncella trilineata. Figs. 24-26.
 Juncelle trilineata Thomson and Henderson, xxxix., p. 315.

In 1905 Thomson and Henderson established this very characteristie species, of which the following notes are of particular interest. The specinon was sparingly branched. "The polyps arise in three different bands, leaving three narrow, bare strips, each of which has in its centre a bare rib or keel. Under each bare strip lies a large longitudinal canal."

Only one specimen of this remarkable form has so far been clescribed; it was obtained at Patani, Siam.

The spicules are of the Juncella type, and are hardly distinguishable from those of J. juncer. Very characteristic, however, is the presence of three main canals situated symmetrically around the axis. The result of this on the external appearance is that there are three longitudinal spaces on the coenenchyma devoid of polyps; the verrucae are therefore disposed in three longitudinal groups, and this arrangement is unique amongst Juncellids.
"The polyps, which measure from 1.1 mm . to 1.5 mm . in height, are arranged in transverse rows of $3-4$; but many smaller polyps occur which break this regularity."

For a short distance from the end of the branches the polyps occur in three single rows (fig. 24); but passing downwards two, three, four, or more are to be seen, and scattered among these are immature forms, so that all that can be said with regard to the disposition of the polyps is that they occur in three longitudinal groups, the exact number in a transverse row depending on the position in the colony and on its stage of development.

The coenenchyma is of the typical Juncellid type ; it consists of an outer non-canal-bearing part and an inner canal-bearing part. These are separated by a concentric series of outer longitudinal canals. In the inner series of longitudinal canals which separato the coenenchyma from the axis there are, however, three much larger than the rest; these correspond to the three longitudinal tracts devoid of polyps and separate off the three polypbearing ridges (fig. 25).

In the Indian Ocean Littoral Collection there occurs a small, simple colony, 55 mm . in height and 25 mm . in maximum diameter. The attachment has been broken off, but has evidently not heen far from the preseut base. For a short distance from the base there is a portion devoid of polyps. Throughout the remainder of the colony the polyps seem to be arranged in three irregular longitudinal series and as a cross-section reveals what are evidently the main canals, we foel justitied in referimes the speriment this
species. The verrucae are ahout 1 mm . in height, but are not so densely packed as in the type-specimen (fig. 24) ; but this may be due to its immature condition.

The colour is orange-yellow, but the verncae are paler.
Locality—Oft Ceylon, 34 fms.

Diagnosis of J. trilincata.

Cobny upright, sparingly branched, the branches long and slender. Very chatarteristic is the presence of thre main longitudinal canals and the consengent dispusition of the pulyps in the longitudinal groups. The vermate may shm the diflerent stares chatacteristic of the genus. The following types of spicules may be distinguished fig. 26.
(") Slemier clubs, with ad distinct central bare protion; the knobs on the homble stand almost perpemdicularly: the projections on the club-portion arise at a slight angle and are directed downwards.

$$
\begin{array}{cccc}
0.068 \times 0.019 & \text { length of constriction } & 0.017 \\
0.068 \times 0.017 & " & " & 0.017 \\
0.068 \times 0.019 & " & " & 0.015
\end{array}
$$

(b) Clubs, similar to (a), but thicker in proportion to their length.

$$
\begin{array}{ccc}
0.072 \times 0.0 .88 & \text { length of constriction } & 0.018 \\
0.068 \times 0.034 & n & 0.017
\end{array}
$$

(c) Douhle-stars, with very few large smooth warts at each end. $0.0-6 \times 0.0: 88$ constriction 0.019×0.015. $0.066 \times 0.042 \quad 0.015 \times 0.015$. $0.061 \times 0.0 .34 \quad 0.015 \times 0.012$.
(d) Ilouble-wheels.

```
(1.065 \times 0.0:4 constriction 0.015 \times 0.014.
```

Coloner.-I ark red.
Lacalitics.-Patani, siam. Off Ceylon, 34 fms .

$$
\begin{gathered}
\text { XIII A.-Appexirx to Ju'scella. } \\
\text { "Incerfae Sedis." }
\end{gathered}
$$

Juncella santae-crucis.

1. Juncella sanue-crucis Duch. and Mich., v., p. 21, t. 2, f. 1.
2. Juncella ciminella (?), santae-crucis Gray, xii., p. 29.

"The polyps are irregularly disposed in a double row on each side of the colony; there is a median bare space on each side of the two flattened faces. The verrucae are unequal in height, and stand at right angles to the colony; they are conical in shape; the summit has a small opening which shows a radiated structure."

Duchassaing and Michelotti had, however, only a fragment devoid of base; the breadth was 5.5 mms ., including the verrucae, the longest of which were two mms. in height.
2. Coral simple, rigid ; axis cylindrical, yellowish, slender; bark cretaceous, white; cells irregularly disposed in a double row on each edge of the stem, unequal; some twice as large as the others, smooth, terminal, small, and radiated ; lateral area flat and naked, with a central groove.

Locality.-Island of St. Croix (West Indies).

Juncella funiculina.

Juncella funiculina Duch. and Mich., v., p. 22, Pl. vii., figs. 9 and 8.
Colony simple, flexible; polyps in a single series on two sides, small, adpressed to the stem, and directed upwards; oval opening small, with a radiate structure; coenenchyma thin, white ; axis yellowish.

Locality.—Guadaloupe.

Juncella barbadensis.

Juncelle barbadensis Duch. and Mich., p. 22, Pl. v., figs. 5 and 6.
Colony attached, simple, filiform, white; polyps elongated with clubshaped spicules; verrucae in a single series on each side; there is a distinct median groove on each bare space. It is larger and more robust than J. funiculina; the verrucae are larger.

Localities.-Barbadoes and Guadaloupe.

Juncella calyculata.

Gorgonia calyoulata Ellis and Solander, vi., p. 95.
Juncella calyculata Valenciennes, xlvi.
Gorgonella calyoulata Kölliker, xxiii., p. 140.
Ellisella calyculata Gray, ii., p. 26.
Ellis and Solander's description is as follows :-
This Gorgon grows in a sub-divided order, having erect, thick branches with truncated papillae. The flesh is ash-coloured without, and purple on the inside, furnished with large, cup-shaped mouths, disposed close together in a quincunx order, and looking upwards, having polyps with eight fringed claws extending themselves from them. The bone is of a dark-brown
colvor and horny nature. This sed-shrub sends forth round white egys, larger than any of the genus.

Locality.-Isle of Bourbon.

Juncella hystrix.

Juncella hystrix: Valenciennes, Comptes Rendus, xli., p. 14.
Juncelle hystrix Milne-Edwards and Haime, Corall., i., p. 186.
Juncelle hystrix Johnson, xix., p. 143.
Juncelle hystriue Johnson, xviii., p. 506.
The mbly destiption of any importance of this species is as follows:stem delicate. Verrucae markedly projecting.
L...nlitn-Dahia.

Juncella vimen.

Juncrlla rimen Valenciennes, Comptes Rendus, xli., p. 14.
Juncilln vimen Milne-Edwards and Haime, Corall., i., p. 186.
Milne-Elwards and Haime describe this species thus:-
Verrucae disposed laterally in such a manner that a large distinct now-polyp-bearing median space is left.

Localify, - Isle of Buurbon.

Juncella surculus.

Jencellh surenlus Johnson, xviii., p. 506.
Juncelle surculus. Johnsun, xix., p. 143.
Localiy, -Senegal.

Juncella laevis.

1*65. Juncollo lacris Verrill, xlviii., 1865, p. 189.
18i0. Juncilla larvis Gray, xii., p. 29.
Verrill's original tlescription is as follows:-
"Corallun tall, simple, sulcylindrical, rather slender, diminishing in size lwth at the stumit and near the base, where the polyps become ,hsolete. Cells allpressed, scarcely prominent, arranged in two broad Lants, Lroving a narrove, median, naked space on each side, along which there is a vell-markod gromer ; they are placed alternately, at a distance of . Whout one-fiith (-2) inch, in about six vertical rows on each side, pro-
 -... an : an an lanitutinal lofes, two of which are larger and correspoul with the lateral grooves ; the others to the rows of polyps. Length of the single specimen, imperfect at each end, 20 inches; greatest "liameter, $\frac{1}{6}(2,2 \overline{5})$ inch. Colour yellowish-brown, in alcohol."

Locality.-Hong-Kong, China.
Gray (xil., p. 29), not having seen the specimen, simply recapitulates the above description.

Juncella extans.

Juncella extans, Verrill, xlvii., p. 37.
"Tall and simple, with the very prominent verrucae curved inwards, and arranged crowdedly in a band on each side of the axis, leaving a wide, naked space on each side. Colour white. Axis greyish-white, stony, and rigid."

Locality.-Fayal, Azores.
XIV.-Scirpearia emend.
(a) Discussion of the Genus.

1830 Scirpearia, Cuvier, i. p. 319.
1878 Scirpearia, Studer, xxxiv., p. 660.
1887 Scirpearia, Studer, xxxv., p. 67.
1901 Scirpearia, Studer, xxxvii., p. 52.
1889 Scirpearia, Wright and Studer, l., p. Ixv.
1889 Scirpearella, Wright and Studer, 1., pp. Lxv and 154.
1855 Ctenocella, Valenciennes, xlvi., p. 14.
1857 Ellisella, Gray, x., p. 287.
This genus was established by Cuvier in 1830 to include Pennatule mirabilis, but the following note may be interesting:-Milne-Edwards and Haime (Hist. Nat. Corall., 1. 0. 214) say: "The Alcyonarian described and figured by Cuvier under the name Pennatula mirabitis seems to be very little connected with Virgularice mirabilis, as some have suggested. It has a slender stem attenuated at the two extremities, and bearing at each side a simple series of widely separated polyps. Cuvier formed of it the genus Scirpearia, which has been adopted by Ehrenberg. Lamarck placed it in his genus Funiculina, near Pavonaria, under the name of Funiculinu cylindrica. Fleming thought that the species was not distinct from Virgularia; and Blainville affirmed that it was nothing but a Gorgonia. None of these opinions seem to me admissible. It is too imperfectly known to have a place assigned to it in a scientific classification of corals."

In 1878 Studer resuscitated the genus, and gave the following diagnosis:"Colony simple or branched; axis cylindrical, horny, and calcareous; coenenchyma thin; calyces projecting; in two longitudinal rows on the sides of the stem and brauches ; spicules double-clubs and spindles."

This, then, must be our starting-point in generic determination.

In 1901 he re-united under the name of Scirpearia all the Gorgonellids with a simple, Hagelliform colont which have large verrucae in the form of clutis and whose spicules are double-clubs and spindles. The coenenchyma is thick and the colony is bilaterally srmmetrical. The polyps are disposed on two sides of the axis.

Wricht and Studer in 1889 give the following diagnosis : - "Colony simple with a cylindrical calcitied axis and thin coenenchyma. The polyps are -atmin two longitulinal rows on each side of the stem. The spicules are Amberclubs and spiniles. The senus may include seipearim mimhitis Cuvier and Diminella flagellum Gray."

It mast he rememberek, however, that in the same memoir they separated
 Axi-abarentus, brittle, smmoth. of arowed. Iolyps arranged in rows or -pinls, retratile, with muse us lew pominent verrucae. Coenenchyma is rumbraty thick and tinely ermular. The spicules are spiny spintles and double-clubs.

 these characters into different species.

 Ellisella:-

> Scirpearin fangellum.
> s-rigmarin furcala.
> s'cirpearalla profunda.
> s'irpearrlla gracilis.
> serimparalla rulbra.
> Sirparalla indica.
> Sripparella auranimen.
> Sirpatalla albm.
> Scirpentello dirisa.
> Elliswla marmlatn.
> Ellicalla calamus.
> Eilizulla aucinara.
> Ellisalln rlomgata.
> E\%morilla pratinula.

Some of these-e.g., flogellum and elongrett-have, at times, appeared under other generic names; but these will be discussed later under the species in question.

(b) Classification of the Species.

In formulating a scheme of classification for these different species, and also the large number of undescribed specimens which I have before me for identification, two courses were available, either (1) to describe every individual specimen, and name it on account of certain differences which may or may not be inherent, or (2) to study the group as a whole, tabulate all the points of difference in the various specimens, eliminate all variations, such as occur in the same colony, reject all environmental modifications, and arrange the specimens around some central type. The latter plan has been aduptel in the present work; and for this reason it has been necessary to abolish several of the previously described species, not on account of their absolute identity with formerly described species, but on account of the differences which obtain in these different forms having proved to be not greater than differences appearing in an individual specimen. A very good example of this is seen in the case of Scirpearia furcata. Such a procedure has been possible in the case under consideration only on account of the large number of specimens which it has been my privilege to examine; and it is more than probable that when a larger mass of material is available, it may still be possible to diminish the number of species in this report.

The characters on which the present classification are based are the following :-
(1) the number of main longitudinal canals,
(2) the nature of the spiculation, and
(3) the nature of the branching.

These, of course, are not all of equal value; but a very rigid separation may be made into two classes based on the number of main longitudinal canals. It has been found that in this group specimens have either turo or four main canals.

The nature of the branching when it comes to be a question of "simple or branched," as we have alrearly pointel out, is of little value except in certain well-defined species. This is very evident in such colonies as those described under Scirpearia furcatu. On the other hand, the very characteristic mode of branching seen in Scirpeterike pectinute would seem to justify its inclusion as a specific character.

Scirpearia andamanensis and Scirpearia ramosa are also worthy of consideration in this respect.

The nature of the spiculation is also a character on which great reliance mar be placel as a specific determinant; and, in the case of Scirpcaria, it has proved to be of great value.

Very good examples of this may be seen in the great contrast between the spicules of Scimmatia prefinctu and Scimpearia albe, or between Scirparia
 thomsoni.

Py means then, of a cumbination of these characters, it has been possible THatane the numernus specimens which have been examined into certain fathly fofinite gromps. It will he seen that in the great majority of cases "ath "nnp is repremated by angle species; but where possible we have -uscound attinities. It sems preferahle, however, to designate these at fromut de crous rather than as speries, although the latter procedure must also be used for reference.

It in unnecessary tw enter into the details of each group here, as that is munh lutter left wer until the varinus specimens are discussed; but we submit the following classification:-

Scirpeama.

I)nisios 1.-Mnin Longitudinal C'anals, two in muber:-
(a) profunila-group, . Scirpcaria profunda emend.

- Scirpecria hicksoni n. sp.

Scirpearia cermucosa n. sp.

- Scirpearia anomala n. sp.
(b) pectinata-group, . . Scimpearia pectinata emend.
(c) elongata-group, . Scirpcaria clongata emend.
(d) Alagellum-group, . . Scirpeariu flagellum emend.
(c) thumsoni-group, . Scirpcaria thomsoni n. sp.
if) alla-group, . Scippearia alba emend.
(g) aurantiaca-group, - Scirpcaria aurantiaca emend.
(h) furcata-group, . . Scirpcaria furcuta emend.
(i) andannanensis-group, - Scirpcaria andamanensis n. sp.
'j) ramosa-group, . . Scirpearia ramosa n. sp.
(i) ceylonensis-group, . Scirpeariu ceylonensis n. sp.
(1) maculata-group, . Scipporia maculata emend.

Divisios 2.- Main Langitudinal C'anals, potre in number:-
(a) quadrilineata-gruup, Scirpearia quadrilineata n. s.p.

Profunda-group.

This group is characterized by the enormons size of the spicules. The two chief types which occur are:-
(1) Double-clubs with almost hemispherical ends, and
(2) Elongated double-clubs, which approach double-spindles and even spindles.
Four species may be recognized:-

1. Scirpearia profunda Wright and Studer emend.
2. Scirpearia hicksoni n. sp.
3. Scirpearia verrucosa n. sp.
4. Seirpearia anomala n. sp.

The following differential diagnosis of the spicules of these four species may be useful :-

Scirpearia profunda (emend.).
In this species the spindle-type predominates over the elongated doubleclub. The spindles are massive, very warty, and irregular in outline (fig. 27). Typical measurements are $0.122 \times 0.057 ; 0.114 \times 0.049$; and a more slender type $0.106 \times 0.034 ; 0.09 \times 0.034$. The double-clubs have almost hemispherical ends, and have practically no constriction, $0.084 \times 0.046 ; 0.08 \times 0.053$.

Scirpearia hicksoni n. sp.
The spicules of this species are very regular in outline; they are covered with slightly papillose warts ; and the elongated clouble-clubs have extremely blunt ends (Fig. 31).
(1) double-clubs : $0.08 \times 0.05 ; 0.075 \times 0.05$.
(2) Elongated double-clubs : $-0.11 \times 0.045 ; 0.085 \times 0.035$.

Scirpearia verrucosa n. sp.
In this species the spicules are very irregular in outline; they are covered with long papillose warts, which are widely separated. The ends of the elongated double-clubs and double-spindles are markedly pointed, and have the form of elongated cones (fig. 33).
(1) Double-clubs : $-0.095 \times 0.05 ; 0.07 \times 0.04$.
(2) Elongated double-clubs: $-0.14 \times 0.04 ; 0.11 \times 0.02$.

Scirpearia anomala n. sp.
The spicules of this species are not densely covered with warts, and the warts themselves are only slightly papillose. The ends of the elongated double-clubs and double-spindles are markedly conical (fig. 3J).
(1) Double-clubs: $0.061 \times 0.042 ; 0.06 \times 0.04$.
(2) Elongated double-clubs: $0.15 \times 0.034 ; 0.095 \times 0.046$,
B. $1 . A$. PROC., VOL. SXVIII, SEOT. B,

IT.-Scirpearia profunda (Wright and Studer). Fig. 27.
Scirpatella profunda Wright and Studer, l, p. 155, Pl. Xxxi., fig. 2; Pl. xxxir., figs. 1 and $1 a$; Pl. xxyir., fig. 7.
 Pl. xxxiv. fig. 6.
Scirpearella rubra Wright and Studer, L, p. 157, Pl. xxxir., fig. 5.
Scirpearella moniliforme Thomson and Henderson, xl., p. 82.
Wis lave examel the type specimens in the British Museum of these

 dillers in that it is branched. When we take into consideration, however,

 as clistinct."

 name, S. prufuma.

$\therefore \quad i$ i. The chany is iendy hrambed. The axis is calcareous,
 several concentric calcareous layers, which easily peel oll.

 When fully retracted they are oblong conical.

The conenchyma is moderately thick and finely granular.
The coluur in spirits is a whitish-brown.
Larlity- - "Challenger" Station 177, off the New Hebrides; depth, 130 fims.; buttom, volcanic sand.
S. giacilis.-Colony is simple, so far as can be julyed.

The axis is calcareous and very brittle; it is grooved. The polyps are

polyps colony. This arrangement is sometimes obscured by the addition of young polyps between the older ones. Towards the apex of the stem the polyps are in three rows, and at the very apex they are opposite. When withdrawn the verrucae are nipple-like.

The coenenchyma is moderately thick.
Locality.—"Challenger" Station 177, off the New Hebrides; depth, 130 fms ; bottom, volcanic sand.
S. mubra.-Colony simple (not complete), but 620 mm . in length. The axis is calcareous, brittle, with two shallow grooves.

The polyps are numerous, arranged in spirals on the stem. Towards the termination of the axis they are disposed in an alternate manner on the opposite sides of the stem.

The coenenchyma is thin, with a compact layer of spindles and warty clubs.

The colour in spirits is light red.
Locality.—"Challenger" Station 232, Hyalonema ground, off Japan ; 345 fms. ; bottom, green mud.
S. moniliforme Thomson and Henderson is also referable to this species.

Locality.-Eight miles west of Interview Island, Audamans; 270-45̌ fms.
From the foregoing it is obvious that, except in the question of branchinga character to which very little importance can be attached, since the specimens are nearly all incomplete-the macroscopic structure shows a range of variation, such as we expect to find in long flagelliform colonies. For this reason it is impossible to consider the question of different species on these characters alone. Preparations of spicules from corresponding parts of the different colonies show no great disparity either in the types themselves or in the characters and measurements of the types, so that we are forced to rank these different specimens as one variable species having a type of spiculation different from others known at present.

Amongst the numerous undescribed specimens which have been examined in the preparation of this memoir none were found to agree with the "Challenger" forms; but this fact may not be considered remarkable when we take into consideration the localities from which they were obtained.

The spicules of this species are large and very characteristic (fig. 27 a-y). They consist of large warty spindles, some of which show a trace of a constriction. Two forms of these may be recognized-(a) slender and very warty, and (b) more massive spindles. In addition to these, the most definite type is the large double-club; these bave very massive warty ends, and practically no constriction, and some have more hemispherical heads than the
whers \therefore These thre tyre way lue rearded as characteristic; but other forms ecur-e.s. irresular forms (${ }^{\prime}$: double-wheels (c), crosses (g).

The irregular forms (, 7) shom variations which might be regarded as Thatiares from donble-clutis or irm the massive spindles, and may be
 in if may be looke upun as annectant furms between types (s) and (g).

The crosses (g) show great variation.
The following measurements in millimetres may be taken as typical:-
1 syinlles. Slenler and very warty: $0.100 \cdot 0.034 ; 0.103 \times 0.30$; 0.03×0.034.
\because Suinlics very warty and massive: $0.120 \cdot 0.057 ; 0.118 \times 0.057$; 0.114×0.049.
Inale-aiss with mas-ive wary ents aml practically no constriction; $0.084 \times 0.046 ; 0.072 \times 0.0 \pm 6 ; 0.08 \times 0.053$.
(i) Irregular forms: $0.095 \times 0.053 ; 0.095 \times 0.046 ; 0.076 \times 0.053$.
(r) Double-wheels, a few: $0.072 \times 0.034 ; 0.057 \times 0.027$.
(f) Crosses: $0.11 \times 0.076 ; 0.034 \times 0.061 ; 0.061 \times 0.034$.

Emendat Spccific Dingnosis.

Th... \therefore ay is smple an! iee If leanhel; in the latter case the branches

 clubs.

NVI. Scirpearia hicksoni, n. sp., figs. 28-31.
I• what must have been a very long, simple culony; they are not continuous, lowever; and judging from the ditterence in the diameter of the axis in the

present basal part, so that the colony when complete must have been of great length.

The lower of the two parts under examination is 18 cm . in length, the upper part, which bears the tip of the colony, is 15 cm . The axis at the present base is 25 mm . in diameter, and tapers after 18 cm . to 2 mm . In the upper portion the axis tapers from 1.5 mm . to a fine point. Thus we see that the part of the colony having an axis varying from 2 mm . to 1.5 mm . is wanting ; and this at the lowest estimate cannot have been less than 18 cm ., so that, without taking into account the basal part, the colony could not have been less than 50 cm . In all probability the total length would have exceeded 70 cm ., so that we are dealing with a very long, simple flagelliform colony.

The surface of the coenenchyma is coarsely granular, and, especially on the verrucae, there are numerous ridges formed by aggregations of spicules (cf. Suberogorgia ornata, Thomson and Simpson). The coenenchyma proper is extremely thin; but the large size of the verrucae renders this feature less evident.

The general colour of the colony is brick-red; but where the anthocodiae are not retracted they appear as white specks on the tips of the verrucae.

The polyps have a very characteristic arrangement; but this cannot be regarded as specific, as it is only superficial, and may have been caused during the process of killing.

In the lower portion of the colony about one-third of the surface is bare; and the verrucae seem to arise in the same plane on either side, and are continuous with it (fig. 28). This, of course, causes a crowding on the other two-thirds. On the side diametrically opposite the above bare space there is also a tract devoid of polyps (fig. 29). In the upper portion this arrangement is still visible; towards the tip of the colony, however, the polyps seem to be distributed all round the coenenchyma; but a trace of the bilateral arrangement is still discernible (fig. 30).

The verrucae are large and have the form of truncated cones; they stand perpendicularly to the coenenchyma. The largest are 4 mm . in height and 2.5 mm . in diameter at the base; but towards the tip of the colony they are only 2.5 mm . in height and 1 mm . in diameter.

The larger of the verrucae are markedly conical ; but the younger forms are very much Hattened owing to the contraction of the thin walls; they are theu less definite in position; and many have their tips either incurved or directed upwards. When partially retracted they have a very marked eightrayed structure at the summit, and show eight to twelve lungitulinal ridges formed by segregations of spicules.

The anthocodiae are very minute; the tentacles are short and white, and bear one row of pinuules. They are first infolded, and then the tip of the verruca is introverted.

The canal system is typical ; and the two main canals are evident in a crosssection, corresponding to the two bare spaces. There is no inequality in their size, so that we are justified in concluding that the apparent arrangement of the polyps is due to contraction while killing.

The axis is cylindrical and very densely calcareous; it is composed of concentric laminae. Near the base it is dark brown in colour; but in the younger part it is of a golden-yellow hue. The surface is marked with irrerular longitudinal striae which correspond to the inner series of canals. There is no surgestion of two depressions larger than the others.

The spicules of this species are very characteristic (fig. 31). They are very regular in outline, and are covered with warts, which are slightly papillose at the summit. The elongated double-clubs are extremely blunt at the ends.

The following are the chief tyles, with measurements, length by breadth, in millimetres:-
(i) Larg double-cluhs with a short hroan constriction. The ends are almost hemispherical; the warts are few in number, large and papillose: $0.08 \times 0.05 ; 0.055 \times 0.055 ; 0.075 \times 0.05$.
(b) Smaller double-clubs very similar to the above: 0.06×0.03; 0.05×0.025.
a) Elongated donhle-rluhe with round ends. In some of these the constriction is very marked, while in others it is hardly visible, so that this tym pases thmog domble-spindles to simple-spindles. They are covered with few, large, papillose warts: 0.11×0.04; $0.11 \times 0.035 ; 0.1 \times 0.04 ; 0.085 \times 0.035 ; 0.07 \times 0.02$.
Locality-Andamans, 36 fathoms.
XVII.-Scirpearia verrucosa n. sp. Figs. 32 and 33.

In than Intian Muspum Litheral ('ollection there nocurs a complete simple

 wry thin, ant the smace is granular; its maximum thickness is about 0.75 mm .
 the tife of the womate. when nnly slightly retracted, are white. The distribution of the pulyps is iflentical with that in Scimperren hichsomin. sp.

The lower 4 cm . bear no polyps; this is followed by two bare tracts which diminish to two distinct lines from which the verrucae diverge at acute angles.

The verrucae have the form of truncated cones; but the walls are very thin, and even near the base they have collapsed, and present the appearance of those near the tip in the previous specimen. Throughout the whole of the colony they are directed slightly upwards (fig. 32), and the tips are incurved; this is more marked towards the apex. Near the growing point they are wart-like. The largest of the verrucae are 2.5 mm . in height and about 1.5 mm . in diameter at the base.

The canal system is identical with that described in the previous specimen.

The axis is cylindriaal, but tapers slightly towards the tip; it is greenish brown near the base, but becomes pale yellow in the younger portion. It is not very calcareous, and the surface has only very indefinite longitudinal striae.

The spicules (fig. 33) of this species are extremely characteristic ; they are covered with long papillose warts, which are for the most part widely separated, and so give a very irregular outline to the spicules. The ends of the elongated double-clubs and double-spindles are markedly pointed, and have the form of elongated cones.

The following are the chief types, with measurements, length by brealth, in millimetres :-
(a) Double-clubs with a short, broad constriction, with almost hemispherical ends and with large, slightly papillose warts: 0.095×0.05; $0.09 \times 0.045 ; 0.08 \times 0.05 ; 0.07 \times 0.04$.
(b) Elongated double-clubs approaching double-spindles and evenspindles; these have markedly conical ends; the constriction may be more or less definite; and they are covered with relatively distant, long, papillose warts: $0.114 \times 0.04 ; 0.13 \times 0.035$; $0.11 \times 0.03 ; 0.11 \times 0.02$.
Locality.-Andamans Sea, 55 fms .
XVIII.—Scirpearia anomala n. sp. Figs. 34 and 35.

This species has been established for a small, complete, simple colony in the Littoral Collection of the Indian Museum. It is 17 cm . in length, attached to a piece of decayed shell which is overgrown with Polyzoa and worm-tubes. The diameter of the colony near the base is 1.75 mm . ; milway it is 2 mm ., while near the apes it is 1.5 mm .; so that there is only a slight gradation,

The coenenchyma is moderately thin and finely granular; the general colour of the colony is orange-yellow; but the verrucae are reddish.

The polyps are confined to two longitudinal, lateral tracts, separated by two bare spaces. Near the base of the colony, and also in the younger part near the tip, there is a single row of polyps in each series; but in the middle part thene are two irregular rows, owing to crowding and the interposition of young polyps.

The verucae, when only partially retracted, are cylindrical, elongated, ant slightly turned towards the conenchyma (fig. 34b). Near the base 'fis. : $3 \pm$ a' anl the tip 'fis. 3.4 " they we almost completely retracted, and then appear as low warts, anl may even be sunk within pits in the coenenchyma. The sreat majority of the bermeae are directed upwards, but some are tumend downamls. When expankel they are about $1 \cdot 25 \mathrm{~mm}$. in height and 1 mm . in cliameter at the base.

The canal system is typial: the two main longitudinal canals are only slightly larger than the others.

The wis is cylindrimal, tapers moly slightly, and is calcareous. The colour varim fom hown to yellow; the surface is marked by faint longitudinal striae.

The spicules of this sperins (fis. ain) are very characteristic. They consist of dmble-eluls, duhbe-spindles, and sme which approach spindles. They ato nut lensely ensond with warts: white the warts themselves are only slightly papillose.

The following are the chief types, with measurements, length by breadth, in millimetres:-


```
    conemel with small papilnse warts and with a short, broad con-
        striction: \(0.061 \times 0.042 ; 0.06 \times 0.04\).
(1) slishly lon_atenhmonerluls very grenly warted and with relatively
        blunt ends : \(0.11 \times 0.06 ; 0.095 \times 0.046 ; 0.099 \times 0.049\).
```



```
    pintles. The mok are makedly conical, and the constriction is
    more or less definite: \(0.015 \times 0.034 ; 0.08 \times 0.03\).
Lucaliey.-Andamans.
```


lectinata Gholp.

 also, and more readily, by its unique type of branching.
XIX.-Scirpearia pectinata emend. Figs. 36-45.

Keratophyton seba Thesaurus, t. 111, p. 193, Pl. cv., fig. 19.
Gorgonia pectinata Pallas, xxvii., p. 224.

$"$	$"$	Pallas, xxviii., p. 179.
$"$	$"$	Lamarck, xxiv., t. 11, p. 320, et 2nd edit., p. 498.
Pterogorgia	$"$	Dana, exi., p. 652.
Ctenocella	$"$	Valenciennes, xlvi., p. 14.
$"$	$"$	Milne-Edwards and Haime, xxvi., t. 1, p. 185.
$"$	$"$	Ridley, xxxiii., p. 348.
$"$	$"$	Studer, xxxvii., p. 119.
Gorgonella	$"$	Kölliker, xxiii., p. 140, Pl. xviII., fig. 41.

This species, as we have already pointed out, is the sole representative of the genus formerly known as Ctenocella; so that the diagnosis of that genus in the early records summarizes the specific characters.

Valeuciennes, in establishing the genus (Comptes Rendus, t. xli., p. 14), gave the following generic diagnosis:-"Le sclérobase s'allongeant en baguettes droites et pectinées d'un seul côté de la tige principale."

Milne-Edwards and Haime in 1857 refer to the genus as follows :-
"Polypiéroide s'allongeant en baguettes droites et pectinées d'un seul côté"; and also: "Polypiéroide dont la tige et les branches sont cylindriques et ressemblent beaucoup aux Juncelles. Sclérenchyme sub-verruqueux. Couleur jaune-rougeâtre.
"Localité.-Mers de l'Inde."
Wright and Studer (l., p. lxvi) gave the following diagnosis:--
"The colony is branched in one plane; and so that all the simple twigs arise in an ascending order from the upper surface of the stem. The verrucae are short on two sides of the twigs. There are distinct median furrows. The spicules are warty double-clubs; those of the polyp-calyces are, according to Ridley, somewhat different from those of the coenenchyma, being longer and provided with two, often three, whorls of tubercles. The inner whorl so approach in the middle of the spicules that the median naked zone which s characteristic of the spicules of the coenenchyma is here absent."

With regard to the "Alert" specimens, Ridley says:-" The front and back of the two main (outer) branches are bare of polyps for from one-third to half their length from their origin. The verrucae are but slightly prominent on the outer branches. The colour is pale salmon."

Locnlities.-Warrior Reefs, Torres Straits, 12 fathoms.

Of the spicules he says:-"The verrucae spicules show a modification of the same type as those of the general cortex, being only more elongated than those, and bearing two or sometimes three distinct whorls of tubercles, besides a few median terminal ones on each half of the spicule; the two imer whorls almost meet in the middle, so as to obliterate the median bare zone, which is characteristic of the cortical spicules."

While working on the coast of Lower Burmah I was fortunate in ultaining a large number of this very interesting species; and these have formed the basis of a somewhat detailed study. The following table gives a few of the measurements of some of these; and notes have been added where it was considered necessary. Taken in conjunction with the various paragraphs which follow, it may serve to elucidate the more important characters of this species.

The follnwing nutes wh some of the aberrant specimens may serve to give an idea of the inherent specific character :-
II. One of the primary luanches has been broken off after a distance of 2. $\mathrm{cm} .:$ but the branch which arises nearest that point has developed twirs on the inner sile, anl has so continued the general development as if primary.
VII. Whe of the primary hranches, along with the first two secondaries whoh arose irm it, has lren hoken otf; but the fourth has taken its flace, and continued the regular hevelomment of tertiaries just as if they were secondaries.

IN. Whe of the mimary branches is mly feebly developed, and has -ix shat -hnter secondaries. The second secmetary has developed tertiaries after the manner of a primary.
X. A similar monte of development (") that described for II. has taken place in this specimen.

I:, it \%-The hamhing of the unigue type is extremely characteristic. Th. main stem io hanally very shmt, and giver rise tor two branches dichoto-mon-ly; then arise ot varying angles in the difterent specimens. In some they lie ahmon homizntally (tize iti): in whers they are inclined at 45°

 A an aste of by fom the main whe the mecondary hanches come off at
 \therefore - : - the ! siot in and cony in the contractel complition, while figs. 36-38 thuw different aggles of origin.

also the majority of the secondary branches may be only feebly developeed, but one may give rise to a large number of tertiaries. Sometimes, for no apparent reason, tertiaries may arise from the secondary branches; but in all cases these arise on the inner side and ascend vertically, thus maintaining the specific type of branches (fig. 41).

Main Canals.-In every tertiary and secondary branch there are two large canals running from end to end; these correspond with the bare portions of the coenenchyma, and are consequently in the plane of branching. In dried specimens their position is ustally denoted by a groove due to the collapse of the canal walls. In young colonies and in the upper part of large colonies these secondary canals mite with the canals in the primary branch, one on either side; but towards the base of older colonies they do not all unite; but the last three to ten may run parallel in the primary branches, and so pass into the main stem, where as many as twenty may be visible (figs. 42 and 43).

Distribution of polyps.-In no case do polyps occur on the main stem. On the primary branches they are restricted to the outer aspect, i.e., the side diametrically opposite the one from which the secondary branches arise. On the secondary branches they are disposed on the two inner surfaces-i.e., the surfaces in the plane of branching are bare (fig. 44). In the upper half of the secondary branches, however, the polyps may encroach on the bare spaces, and appear as if distributed all over the coenenchyma.

Nature of the verrucac.-In the younger parts of the colony the verrucae are low and dome-like; but in the older portions they seem to become smaller, and in the lowest parts may appear as pit-like depressions.

Fig. 1 shows the structure of an expanded polyp.
Spiculcs.-The spicules of this species might be said to consist almost entirely of double-clubs, or, at any rate, of double-clubs and double-spindles (fig. 45). It is possible to group these into several distinct types which muy show an evolution-series. It is noteworthy, however, that all are practically of the same length, so that it is improbable that they are different stages in development. The following groups, with their measurements, length by breadth, in millimetres, may be distinguished:-
(a) Double-clubs with hemispherical ends and a narrow bare constriction definitely marked off : $0.057 \times 0.038 ; 0.053 \times 0.053 ; 0.053 \times 0.034$.
(b) Double-clubs with the "heals" much more open than in ((1), i.c., there is a distinct whorl of warts on either side of the constriction, and the "hub" is very warty: $0.057 \times 0.038 ; 0.057 \times 0.034$; 0.057×0.031.
(c) Doubleclubs with still more open "heads," i.e., one whorl of warts on either side of the constriction, and the "hub" with only about three warts. These approach double-u.thects : $0.057 \times 0.038 ; 0.057 \times 0.034$; 0.053×0.031.
,7) More slender doublecluhs with a proportionately longer constriction, and with no definite arrangement of the warts of the "heads," which might be termed divaricate: $0.053 \times 0.031 ; 0.053 \times 0.027$.
(•) More elongatell doundiombis which approximate to double-spindles. The warts are large, but have no definite arrangement: 0.061×0.023; $0.057 \times 0.023 ; 0.057 \times 0.021$.
i In, mhlospindlis mot markedly warty (in some there is hardly any constriction): $0.057 \times 0.019 ; 0.057 \times 0.017 ; 0.057 \times 0.015$.
(1,) The type figuted as (i) is evidently a developmental form of one of the other types: $0.046 \times 0.023 ; 0.046 \times 0.022$.

A small protion almut 20 cm . lone of a primary branch of what has Nutnoty hema lage colnty weurs in the Littoral Collection of the Indian

The surfae of the conenenchyma is gramular ; the thickness attains a maximum of 1 mm .

The fuly are disumal inesulaty: on the primary branch there is one
 the secondaries it is almost impossible to detect a bare streak.
 when trituted thry are lew and dome-like. They are very small, being annit 1 man whenem at the hate, and varying from 0.5 to 1 mm . in height.

The canal system is typical of the species.
The ani is cslimhical ami yellowish: it is composed of concentric ltmma. and there is a distimet white cone which is more calcareous than the

 species.

Lucality. - Andamans.
$N:$-Thi-aperimm is dersibed in the talle given in the Indian (ocran Litupal Aleynnatia berpot Thomoon and simporn) as specimen M.

```
Distribution:-
    Indian Ocean (Pallas).
    Seas of the Moluccas (Lamarck).
    India and China (Gray).
    Cuba (British Museum Collection of H. Christy).
    Off North-West Cape, West Australia, 3-4 fathoms (Studer!
    Torres Straits (Studer).
    Cuba (Ridley).
    Warrior Reef, Torres Straits, 12 fathoms (Ridley).
    Mergui Archipelago, Burma.
    Andamans (Ind. Mus. Litt. Coll.).
```


Elongata Group.

This group is easily differentiated from the others by means of its spiculation. The spicules are characteristic and very minute.
XX.-Scirpearia elongata (figs. 46-48).

Gorgonia elongata Pallas, xxviii., p. 179.
Gorgonia elongata Esper, vii., t. lv.
Gorgonia elongata Lamarck, xxiv., t. ii., p. 220, 2nd ed., p. 499.
Gorgonia elongata Dana, iii., p. 664 .
Juncella elongata Valenciennes, xlv., p. 182.
Juncella elongata Valenciennes, xlvi., p. 14.
Gorgonice elongata Ellis and Solander, vi., p. 96.
Juncella elongata Milne-Edwards and Haime, xxvi., i., p. 187.
Juncella elongata Kölliker, xxiii., p. 140.
Ellisella elongate Gray, x., p. 287.
Ellisella elongata Gray, xi., p. 481.
Ellisella elongata Gray xii., p. 2כ.
Ellisella coccinea Gray, x., p. 287.
Ellisella coccinca Gray, xi., p. 481.
Ellisella coccinea Gray, xii., p. 26.
Nec. Juncella elongata Hickson, xiii., p. 85.
Nec. Juncelle elongate Thomson aud Henderson, xl., p. 81.
Ihis is a very old species, but one which has caused more trouble to systematists than any other in the group, owing to the fact that the spicules have hitherto never been investigated. The descriptions, based un a few superficial characters, are so vague that on these alone it is pussible to identify almnst any branching Gorgonella with this species.

It is very doubtful if the long list of synonyms given here were in all cases correctly illentified; but in the absence of the specimens themselves, it is better to retain them until definite information on this point is forthcoming.

While examining the Alcyonaria in the Museum of the Royal College of Surgeoms, Lomion, I came across a beautiful specimen labelled Gorgonia
 followin:- leseription occurcel in the catalogue:-"It consists of a short, broad stem. from which seven main lranches arise; these, after proceeding about ©-T inches, sive uft a hranch which proceeds upwards nearly parallel with the main strin, and alnut equal to it in thickness. The crust is of a vermilion colour: ant the proly-eells are vory numerous and arranged in alternate rows, "imerally thwarls the free extrentics of the branches, which are atl mone of loss thatteme The axis is of a light yellow colour, and of a small size in comparison with the crust."

Inbritat - West Indies.
As this in the uhde inthmetic sperimen bearing the specific name elongata, I have combidered it advisable (1) resuscitate this old species, give it some ph-itivernomt, ant went this sucimen as the type. For this purpose, In. lame has supplion me with a beatifnt photograph of the colony ath! alon a skothh hawn with a "camera lucida," on which figg. 46 is lased. Proparations wif the spicules have also been made for the first time, and fig. 48 gives the chief types which occur.

 ath hi-lmen by him in 1x.t. with the following diagnosis:--" Coral
 w.unt." Thu -rimben uithi- suremen are identical both in types and

 Both the specimens are from the "West Indies."

 very base. One of the primary branches is 4.1 mm . in diameter; but the
 4 tum. : akon: the minhe of then mony the smaller elongated branches are 3.5 mm . in diameter, and at 8 cm . from the tip they are 2 mm . in liameter. There is ennsilerable anastmonsis in the lower part.

The branching is distinctly dichotomous, and the branches enclose an acute angle; this is also very marked Ellisella coccinco.

The coenenchyma is very thin, and in the dried state extremely brittle ; it is densely spiculose.

The canal system is not easily recognized, owing to the fact that both the specimens are very old, and have been preserved in a dry condition; but it is still possible to detect two large longitudinal canals. Their position is, however, very marked externally.

The polyps are disposed throughout the whole colony in two very definite longitudinal series, separated by very wide and distinct bare tracts, which, in the lower region, are depressed and furrow-like. In the older branches there are four to six rows of polyps in each series; these are situated in what appears to be diagonal arrangement. In the younger branches and twigs the number diminishes to two, and eventually to a single row situated laterally and irregularly alternating.

The verrucae are slightly elevated, with the oral aperture directed upwards, but they are very much shrivelled, owing to desiccation.

The axis is typically Gorgonellid in structure, and is very hard, especially in the lower portions. I'he fact, however, that the specimens are dry renders the axis harder and more brittle.

The spicules of this species are extremely characteristic and very minute. They consist of (1) small double-clubs with closely set, almost smooth warts; (2) double-clubs with more irregular heads; (3) small, slender, elongated double-clubs; and (4) spindles. (See figs. 48 and 48A.)

The following are some of the measurements, length ly breadth, in mm.:-
(1) $0.068 \times 0.042 ; 0.065 \times 0.042 ; 0.053 \times 0.038$.
(2) $0.061 \times 0.03 ; 0.057 \times 0.025 ; 0.057 \times 0.03$.
(3) $0.061 \times 0.023 ; 0.061 \times 0.019 ; 0.057 \times 0.015$.
(4) $0.06 \times 0.023 ; 0.058 \times 0.015$.

Locality-West Indies.

Flagellum-Group.

This is a very distinct group, and is characterizal chictiy by the nature of the spicules. These are remarkable for the great length of the comstrietion, the open disposition of the warts, and the almost smooth nature of the latter.
XXI.—Scirpearia flagellum emend. Figs. 49-60.
1863. Juncella flagellum Johnson, xviii., p. 505.
1864.
1870. Timinella
1881. Scimpearia,
1891. " ochracea
1901. " flegollum Studer, xxxviii., p. 53, Pl. IX., figs. 1-3; Pl. XI., figs. 10 and 11.
1901. " ochracea Stuler, xxxviii., p. 53, Pl. IX., figs. 4-6.
1909. " flugellum Thomson and Russell, xliii., p. 163, Pl. 8, fig. 2.

This is a very wh furdos aml was mimally referced to the genus Juncella.
 wannat withnt cising any further secific content. He, however, gives at a symbya, of uthe Verrill: Int as this was hased on purely external (hanaters, it is extremely dmbiful whether much stress can be laid on the itentity with the latter surcies. Wre haw for this reason excluded it from

 refermen the species to the genus Scinpearia. He, however, established
 from that under consideration, and which we therefore give as a synonym.
 says:-

- I have ventured to assign this coral to the genus Juncella. Valenciennes, a natmalist for whom I entertain the highest respect, considers it to be the scimperim miralitis of c'usier. There is, however, so much doubt as to What the mat on manm ly the illu-trom Fownhman really is, that I hesitate to ascribe mine to that species-the more especially as it clearly falls within the definition of the genns Juncella (as it appears in the "Histoire Naturelle dea Coraillaires" of Milne-Edwards, vol. 1., p. 186), forming a mminer of the section of Gorgonellaceae, which is made up of
 much carlmate of lime as to effervesce in muriatic acid. From Juncella junceu Esper and J. rimen Val. (species found at the Island of Bourbon) it

[^59]would seem to be distinguished by the large size of the cup-bearing papillae; from J. clongata, a Mediterranean species, by its being simple, not branched."

The original description of the species is as follows:-
"Simple, elongated, slender, flexihle, slightly twisted on its own axis, and tapering upwards. Bark calcarcous, white, smooth, and impuncturate, enveloping a hard, grey axis, which has a somewhat polished surface, marked with straight striae. I'he axis is highly charged with cartonate of lime. The coral is quadrangular in section, and has on each of the two narrower sides two series of closely set papillae, having the eight-lobed orifices of polyp cells at their apices. These papillae are obpyriform or ovate ; and in dried specimens they are turned upwards and adpressed to the stem. Near the base of large specimens the papillae are in three somewhat irregular rows. The other two sides of the stem are free from papillae; but there is a slightly elevated line along the middle. The base spreads out to a moderate extent upon the object to which it is attached. The spicula of which the hark is composed are tuberculated staves, two or three times as long as broad, the tubercles having a tendency to collect at the extremities.
"The longest example of this coral which I have seen measured about 7 feet in length; and it was without its basal portion. The greatest thickness was three-eighths of an inch; the largest papillae were the tenth of an inch in length, and about the same across. In another example, 5 feet in length, the base spread out to the size of a shilling; and the papillae commenced about 3 inches above this basal expansion. The smallest specimen that has occurred was 31 inches long; this is in the British Museum. In the collection of that establishment there is a large stone, with mumerous specimens of this coral ${ }^{1}$ upon it, alongside examples of Caligorgia verticillaris Gray (Primnoa verticillaris Milne-Edwards). These were brought from St. Michael's, one of the Azores, and presented to the Museum by Mr. McAndrew."

Studer (xxxviii.) adds the following note with regarl to the "Monaco" specimens:-

The colonies are long and flexible, and attain a length of 650 mm . The polyps are club-shaped, slightly intumed towards the axis; they are arranged on two sides of the stem; in the lower part in several rows; but towards the tip in a single row, alternating on the wo sides. The spicules are spindles and double-clubs. Their dimensions are $0.067 \times 0.015 \mathrm{~mm}$; $0.061 \times 0.0154 ; 0.056 \times 0.015 ; 0.067 \times 0.025$.

The colour varies from whitish yellow to red.

[^60]Locality.-To the east of Graçiosa, Azores, 454 metres.
To the east of Pico, Azores, 318 metres.
With reference to S. ochocco Studer (xxxviii.) makes the following observations:-

This species is more delicate than S. flrmpllm. The axis is calcareous; white; rigid near the hase, Hexible near the tip. The polyps occur on two sides of the sten ; towards the lase in two irregular rows, but merging into cmly one row on each sile. They have the shape of cylindrical warts or truncated conss, and stand almost perpendicularly to the coenenchyma. They are 2 'mm. in hoight, and atrunt 2 mm. in diameter at the base. The - picules are very like those of s. Armollom; they consist of double-clubs, with laree wats and sines at the two ends: sometimes of a yellowish ochre, sometimes of a white colour. They are slightly larger than those of S. flugellum.

The colour of the colony is yellowish brown to orange.
Taking into consideration what has already been seen with regard to
 specties.

Luraliey-To the cast of Pięo, Azores, 318 metres.
We have examined a beautiful, whip-like colony, 37 cm . in length, from
 hiat ne.ur the: tip, it in only 1 mm. It gradnally tapers upwards, but the terminal 25 cm. are almost uniform in thickness throughout.

 internal canals: then then atm muth teeper than the whers. The general collone of the coluny is reddish orange, but the tips of the verrucae are distinctly wure redlish.

The lower 2.5 cm . of the stem are devond of polyps; this is followed by

 This rive the man a my mondy hitateral aplearance. The verrucae are (ylimbical, tall. and narmw. They averare 2 mm. in height and 1 mm . in diammer. They stanl onnetimes in "pueste pairs: but the more common artatemem is atomath: The laly wh the same side are separated by
 the summit han ony definite "ishtrayed structure. They stand almost
${ }^{\text {' This specimen was given to me for identification by Professor J. Arthur Thornson, who }}$ auggested that it might be incorperated in this memoir.
perpendicularly in many cases; but more frequently they are slightly turned towards the stem (fig. 49). A very noteworthy feature in this connexion is to be observed. The colony has been broken and preserved in two portions. In the longer upper part the polyps are nearly all directed towards the tip; while in the lower part they are almost all turned downwards. Taking these points into consideration, it may be inferred that the verrucae have power of rotation through 180° both longitudinally and vertically, or, in other words, the anthocodiae may take up any position on the surface of a hemisphere whose radius is the length of a polyp.

The canal system is well developed, but there are very few canals, owing to the small number of polyps which occur on the colony. The two main canals are very large; and their position is indicated on the surface of the coenenchyma by two very delicate depressions on the axis; also by two grooves larger than the others.

The axis is hard and densely calcareous; it is yellow in colour; and the surface is marked by longitudinal ridges and furrows.

Attached to the colony is a young bivalve (probably Pteria macroptera).
The spicules of this specimen consist of the following types (fig. 50) :-
(1) Double-clubs with a long, narrow constriction, and with almost hemispherical ends. The warts are irregularly disposed, are few in number, and are almost smooth: $0.07 \times 0.03 ; 0.065 \times 0.03$; 0.065×0.023.
(2) More elongated double-clubs with the same characteristics, and with blunt ends.

A noteworthy feature about this specimen is the fact that there are very few double-spindles or types with conical ends.

Locality.-Naples.
We have also referred to this species a specimen in the Cape Collection. The spiculation is typical; and the only difference is the very close disposition of the verrucae. We have shown, however, that this is a character in which the species shows great variability. It is a very characteristic colony, growing on a piece of branching coral (like Lophohelia) (fig. 51). It is 9 cm . in length, and bears one branch (which has been broken) at a distance of 2 cm . from the base. The coenenchyma is thin and coarsely granular. The general colour of the colony is creamy-white.

The lower 2.5 cm . of the main stem and also the part of the branch which is present (1.5 cm .) are devoid of polyps. On the remainder of the main stem the verrucae are disposed on two sides, and alternate almost regularly. They have the form of flattened domes, and give the sides of the colony a
very undulating appearance (fig. 52). Their bases meet in the middle line. The tips of the verrucae have a very definite eight-rayed structure. Fig. 53 was made from a longitudinal section through the colony to show the attachment of the strong retractor muscles of the anthocodiae.

The canal-system is typical, but the inner portion of the coenenchyma, that is to sily, the purtion between the two longitudinal series of canals, is very minute.

The axis is pale yellow in colour, and very flexible; the surface is marked by indistinct lumitudinal striap. The spicules (fig. 54) of this specimen are typical of the species, but are on the whole larger and broader.

Laculity-Dhaflah liver, East London, N., 15 miles, 310 fathoms. Bottom, coral and mud.

In the C'ape Cilloetion there are also a number of small young colonies, whichare extremely interesting and which are undoubtedly young forms of this species. The longest of these is 7.5 mm . and the smallest 3.5 cm . in boneth. They have all the same general appearance, and maintain the rittive proputtins throughme so that a shot description of one colony will Five the montial characters (ligg 5. . All are attached to pieces of rock, coral, or shell.

The stom io dhant 1 mbs. in diamerer near the base, and only very slightly
 general colour of the colonies is a bright orange-yellow.

The f"lyp are lispusin in two longitulinal series: and although the two montim hase trut we mit well ponounced, the colony has a markedly

 this otherwise regular structure (fig. 56).

The verrucae are elongated and cylindrical ; they are turned towards thr -tem, ant arn deretwi upwarla : their surfare is marked by longitudinal mitus mul tepesions; the apex when partially dusel has a distinct eightrayed chature: in momy thes the infoldel tentacles may be seen projecting around the oval opening.
 mumper the two man manals are late. The axis is cylindrical, hard, and very calarems: the suface is marked ly very indistinct longitudinal striae.

Th. spicules (fin, π) are characterized ly the small number and large size of the almost smorth wart and by the very marked constriction in the
double-clubs. The following are the chief types, with measurements, length y breadth, in millimetres :-
(1) Double-clubs with a very long constriction and with almost hemispherical ends. The warts are almost smooth; they are openly disposed and arranged almost in whorls: 0.068×0.034; $0.061 \times 0.03 ; 0.057 \times 0.027$.
(2) Elongated double-clubs passing to double-spindles. There is a very distinct constriction; and the ends are markedly conical. The warts are not closely set, and are almost smooth : 0.114×0.023; $0.103 \times 0.023 ; 0.095 \times 0.027 ; 0.095 \times 0.023$.

Irregular forms, crosses, and scales from the tentacles also occur.
Locality.—O'Neil Peak, N.W., $\frac{1}{4}$ W. $9 \frac{1}{3}$ miles; 90 fathoms. Bottom, broken shell.

To show the varied appearance of the verrucae, we have included here three figures of specimens of Scirpeariat flegellum in the Monaco Museum. (See figs. 58, 59, and 60.)
XXII. Scirpearia thomsoni, n. sp., figs. 61-63.

Juncella elongata Thomson and Henderson, xl., p. 81, Pl. I., fig. 10; Pl. IX., fig. 17.

We have no hesitation in establishing this new species for a specimen which was originally referred to the species Juncella elongate by Thomson and Henderson, who were compelled to base their diagnosis on the very inadequate description of this species which was available at the time of publication of the Indian Ocean Deep Sea Alcyonaria Report. At that time the spicules of Scirpearia clongata (Juncella elongata) were unknown; but an investigation of the spicules of an old specimen in the Museum of the Royal College of Surgeons, and the consequent resuscitation of that old but imperfectly known species has caused the necessity of removing the present specimen.

The colony shows several very characteristic features: for example, (1) the nature of the branching, (2) the marked rigidity of the colony, (3) the nature of the verrucae; but most of all the distinctive character of the spicules, which mark it off as a very definite and new species.

The specimen is 22 cm . in height, and is branched approximately in one plane. The branching is almost dichotomous; and the silhouette of the axis (fig. 61) gives the essential features. On the whole, the colony is very rigid, owing to the very densely calcareous nature of the axis. The coenenchyma is moderately thin, but densely spiculose; the general colvur of the colony is salmon-pink.
"The axis is calcareous, rigid, and brittle; it is slightly oval in section; but in the younger portions it becomes quite cylindrical, and tapers till it is threal-like. It shows a very white core surrounded by a brownish cortex."

The polyps are disposed in two lougitudinal series on opposite faces, each of which consists of from two to four inregularly alternating rows. The verrucae are low and truncate; when retracted there is a deep depression in the centre which is lirected slightly upwards. This gives a very characteristic appearance (fis. (2). They are abont 0.4 mm . in height and 1.5 mm . in diameter at the base.

The spicules are extremely characteristic, and quite unlike those of any wher spectes (fis. $6: \%$. They cunsist of the following types, with measurements, length by breaith, in mm.
(1) Homlle-cluls with almust hemispherical heads, and with a relatively long constriction. On either side of the constriction the large warts are arranged in a whorl, while beyond this there is a very warty hub which gives the whole head a very irregular outline: $0.08 \times 0.0 \pm ; 0.07 \times 0.035$.
(h) sualler double-cluls in which the whorl is not so pronounced: $0.07 \times 0.46 ; 0.07 \times 0.042$.
(1.) A punlian tym, which apmoximate (1) capstans with terminal warty wajections: $0.08 \times 0.04 ; 0.07 \times 0.021$.
 warts arranged approximately in a whorl, and with more or less elongated and irregularly warted hulus: $0.114 \times 0.053 ; 0.114$ $\times 0.046 ; 0.095 \times 0.05$.
(.) Dumberpiniln (some of (hese approath spimdles). The ends are almust conical, and are variously covered with very irregular warts which pive the whule a very ragged outline: 0.125×0.038, $0.11 \times 0.0: 3 ; 0.1 \times 0.027$.
Lucality. - Bay of Bengal, 88 fathoms.
XXIII. Scirpearia alba (Thmmem aml Hendr-is(m), fins. 64 and 65.

Seirparella ollue Thomson and Henderson, xl., p. 82, P1. Lx., fig. 15.
This species was established for three long, incomplete specimens, of a
 at the lower end of $1 \% 5,2 \cdot 9$, and 1.75 mm .
 of 2.51 mm . from the lower end.

The axis is cylindrical, hard, l,rittle, and very calcareous, but becomes
very flexible and filiform near the tip. It is marked by a number of grooves which run up for a short distance, and also by a number of small protuberances.

The stem is oval in section, with a groove on the two flattened surfaces faintly marked in two of the specimens.

The verrucae occur in a single row on each side of the stem, those of one row alternating with those of the other. They are low and truncater (0.45 mm . in height), laterally compressed, with spreading basis (fig. 64).

The diameter is 1.4 mm . at the base and 0.65 mm . at the apex.
The coenenchyma is moderately thick.
The spicules of this species (fig. 65) are extremely characteristic. They consist essentially of double-clubs, which are almost as broad as long, and have a very short but extremely thick median constriction.

Their ends are almost hemispherical, and are covered with abundant rugose warts. There are also a few elongated narrow double-clubs, with more openly-warted heads, and with a longer constriction. Some of these approximate to spindles. Small, apparently developmental, forms and a few crosses also occur. ${ }^{1}$

The following are typical measurements of the chief types, length by breadth, in mm.:-
(a) Short thick double-clubs: $0.15 \times 0.17 ; 0.15 \times 0.095 ; 0.13 \times 0.11$; 0.13×0.095.
(b) Slender double-clubs: $0.15 \times 0.02 ; 0.13 \times 0.08 ; 0.09 \times 0.03$.
(c) Irregular or developmental forms: 0.057×0.02.

Locality.-Bay of Bengal, 88 fathoms.

Specific Diagnosis.

Colony simple or slightly branched, long and filiform; axis cylindrical, calcareous, and grooved; coenenchyma moderately thick; vermeae in a single row on each side of the stem: spicules consist essentially of short, thick double-clubs almost as long as broad and with a very narrow constriction; the ends are almost hemispherical, and are covered with densely rugose warts.

[^61]XXIV. Scirpearia aurantiaca (Thomson and Henderson), figs. 66-68.

Scirpearellce aurantiaca, Thomson and Henderson, xxxix., p. 311, Pl. IV., fig. $7, \mathrm{Pl} . \mathrm{v}$. , fig. 15.
Scirpearella sp., Thomson and Henderson, xxxix., p. 312.
Seirpearella divisa,
Thomson and Henderson, xxxix., p. 312, Pl. VI., fig. 8.
Secipearelle alruntiaca. Thomson and Russell, xliii., p. 163, Pl. viil., figs. 4,6 , and 9.

This species was established ly Thomson and Henderson for several portions of colonies from Ceylon.

The condoy is slightly branched. The axis is cylindrical in shape, very calnarons, aml matked hy two or three slight winding grooves in the lower portions. The general colour of the branches is yellowish-white

The verruar seme on all sides of the banches. They are conical in shape, trumeated at the tip, 2 mm, in maximum height, and 15 mm . in basal Whanemer. In colnur they resemble the stem in the lower part; but the tip is "omererlow, thus standing out against the general colour of the branches. Ther mbe of the wal end curve inwards, ant all stages, from an opening with
 pletely, hasel tip, may be ween. The pmlys ate all emmplety withdrawn into the coenenchyma.

The enemehtyma is mamular in toxture and only of medium thickness. It is practically composed of spindles and double-clubs.

Ther phentes are small in size, and measure, length ly brearth, in milli-metres:-
(1) Spindles: $0.06 \times 0.0 .3 ; 0.08 \times 0.02 ; 0.085 \times 0.03$.
(2) Douhle-clubs: $0.0 .55 \times 0.03 ; 0.07 \times 0.04 ; 0.06 \times 0.04$.
foculity.-Deep water outside pearl-banks, Gulf of Manaar.
Scirpeurella sp., Thomson and Henderson.
We womblata refer the specimen lescriber in "p, rif, p. 312, to this
 at total bonsth uf tu cha. The hase is present, but the tip of the colony has hern lust. The main stom, after a thistane of 4 cm., gives rise to a branch
 annther 12 c.m. it is 11 cma in longth. The liancter of the main stem is 2.5 mm ; about the middle of the colony it is 1.5 mm .

The momenchyma is finely gramular, and is abrut 0.\% mm. in thirkness throughout the entire length.

The general colour of the colony is brick-red; but the anthocodiae are white.

The base of the colony and the main stem for a short distance are devoid of verncae, but in the polyp-bearing region they appear to occur all round the stem in rows, and so simulate a spiral arrangement. Closer examination, however, reveals two distinct longitudinal sinuous bare tracts. There are about four irregular rows in each of the polyp-bearing regions in the older parts; but in the branch, which is present, there are only two rows; while near the tip there is only one. The verrucae are small and comparatively distant. In the older part of the stem they are cylindrical, stand perpenticularly, and are about 1 mm . in height and 0.5 mm . in diameter ; but in the branch they are more retracted, and almost dome-like. When partially retracted the apex is flattened, and has a distinct eight-rayed structure.

The canal system is typical ; the two main canals are not much larger than the others, but are quite distinct. The axis is cylindrical, and is composed of concentric laminae; it is densely calcareous, hard yet flexible. The surface is deeply grooved, especially in the lower part. This is due to the large size of the canals of the inner longitudinal series.

Locality.-Ceylon Sea,
Scirpearclla divisa. - We have examined the spicules of this species, and can find no reason for separating it from S. aurantiaco. The type-specimen consisted of a fragment of a reddish-orange colony with four branches, 7 cm . in height and about 2 mm . in diameter. The verrucae are very low and gently rounded; towards the end of the highest branch, where they are closely crowded and very distinct, the arrangement appears to be in four rows with a suggestion of a spiral ; in the older parts the verrucae are very inconspicuous, not close together, and somewhat irregularly disposed.

The coenenchyma is finely granular, almost smooth to the naked eye, The axis is very calcareous, light yellow in colour, with ten shallow grooves on the part examined. It is about 1.4 mm . in diameter out of a total branch diameter of 2 mm .

The spicules of this species are very characteristic. They consist of :-
(a) Double-clubs with hemispherical heads in which the warts are arranged concentrically; the constriction is very short: 0.0684×0.049; $0.065 \times 0.038 ; 0.053 \times 0.03$.
(b) Double-clubs, slender with elongated ends, tending to douhle-spindles: $0.084 \times 0.019 ; 0.076 \times 0.029 ; 0.076 \times 0.023$.
(c) Spindles-warty : $0.095 \times 0.027 ; 0.095 \times 0.02 ; 0.087 \times 0.015$.

In addition to these there are often forms which are intermediate between types (a) and (h); but these cannot be regarded as constituting a distinct type.

As we have already pointed out, the branching, as shown in this specimen, is not if a character of sutficient value for specific determination. We would therefore suggest merging it into the older species S. aurantiaca.

Locality.-Ceylon Sea.
In the Littoral Collection of the Indian Museum, Calcutta, there is a very hong, simple, Hagelliform colony which has mfortunately been broken into live pirece. The attachment is horen olf, but very near the base, as is evibut from the ahsence of verrucae at the present basal portion. The total length of the cnlony is orer 112 cm . The diameter near the base (without (onmean is : $:$ mm. ; about milway it is 2 mm., while near the tip it is 1 mm . ; so that the tapering is very slight.

Thr enenenctyma is wy smonth, and is about 0.5 mm . in thickness throughout the entire length of the colony.

The peneal colour is hrick-ment hut the anthocodiac are white. Near the b,tere the colny there are morrucac; hut after a short distance they
 whatmont: a distinct trae of two hare longiturlinal spaces is, however, learly dimemilhe: these tem to disappear towards the tip of the colony,
 Then ate tive tows neat the han in earh pulyp-hering tract; but these gradually diminish to two near the tip. The verrucae are small and whonly litant. Near the hate they have the form of shot cylinders

 bihhu in a mesesetion. The other canals of the inner series are relatively lurge.

The sui- in clindrical, domely alcarems, and very brittle. It tapers in a inw maknilfenter than the collony itself. The colnur of the lower part A. Denwn, mat the c.are is white. There are rleel longitudinal depressions on
 eve, in spite of the small diameter of the axis.

The spicules (fig. 68) are quite typical of the species.
Lomalify.-Laccadives, $30-50 \mathrm{fms}$.
XXV.—Scirpearia furcata. Figs 69-91.

Scirpearia furcata Hickson, xv., p. 822 ; figs. 8 and 9.
Scirpearia furcata
Scirpearella indica
Scirpearia sp. (?)
var. (?) Hickson xv., p. 822.
Hickson, xv., p. 822 ; fig. 10.
Thomson and Henderson, xxxix., p. 313, Pl. iv.
fig. 1; Pl. v., fig. 16.
Scirpearella sp. B. Thomson and Henderson, xxxix., p. 312.
Juncella clonguta (Val.) Hickson, x., p. S21.
Seirpearella aurantiaca Th. \& Russell, p. 163.
Perhaps no species in the whole family shows so great variability or has given so much trouble as the one now under consiteration. Hickson formed two new species on fragments from the Maldives, and referred one to Scirpearia, the other to Scirpearella. At the same time he hesitatingly referred some fragments to the species Juncellit elongete. Thomson and Henderson, in the Ceylon Alcyonaria Report, refrained from naming some fragments which did not seem to agree with any of the formerly described species. They referred one to the genus Scirpearia as Scirpearia sp. (?), the other to Scirpearella as Scirpcerella sp, B., and in so doing give the following note:-
"Our impression is that the elongated forms of Scirpearella, Juncella, and the like, so monotonous in general appearance, so perplexingly different when one gets beneath the surface, are subject to great variability."

Before proceeding to differentiate the reasons upon which I have merged all these species under the earliest name it might be well to give a short description of the different specimens. H'rofessor Hickson has very kindly sent me small portions of his Scirpcarella indica and Juncelle elongata, as well as the type specimen of Scirpeariu fiercata figured in his report. Professor Thomson has also placed pieces of the Ceylon specimens at my disposal. This has been of immense service to me, as only by means of a critical examination of these and other specimens to be described later, could a thorough specitic determination be arrived at.

Scirpearica sp. (?) Thomson and Henderson.

A beautiful colony, 41 cm . in length. The base has been broken off, but probably not far from the present base. The main stem, after a distance of 4 cm ., bifurcates, and gives origin to wo loug, whip-like branches; these are almost equal in length. The diameter of the main stem is 2.5 mm ., that of the branches at their origin 2 mm ., dull wear the tip 1.0 mm. There is thus only a very gradual tapering.

The coenenchyma has a very arenaceous surface, and is moderately thin.
The general colour of the colony is reddish orange ; but the verrucae are distinctly red.

The polyps are disposed in two longitudinal series, each consisting of two or three transverse rows, and separated by two distinct bare tracts (fig. 69). There is no tlattening of the branches, nor is there any sign of a longitudinal depression. The verrucae are low and slightly dome-like.

The axis is slenler, tapering only slightly, and is deeply grooved. It is (0)mposed of concentric laminae, and is densely calcareous; the diameter at the base is 1.5 mm ., but it is hair-like at the tip.

Localities.-C'eylon Seas.

Scirpearia furcata Hickson.
This surectes was established for two fragments from the Maldives. The layer was 90 mum. long. Buthexhibited an orane-red-coloured coenenchyma, with hatk med homeshaped verrucae, chsely crowled, but separated into two 2rup hy hoad, spirally directed, hare trats. The more delicate specimen hue a -inghe hanch which was hifurated at its extremity. (See xv., fig. 8.)

Lacaliliss.-S. Nilandu, 25 fathoms; N., Male, 20 fathoms.
scirpereria furcala var. (?) Hickson.
I sperimen zou man. lang, slightly hanched, and diflering from the type. It in mote didiate in huid, has less prominent verucate, and the colour is not so much a pure red, but is tinged with orange.

Sancality--N. Nilandu (Mahlives), $2 \pm$ fathoms.
sufntichally these litherent specimens are hardly distinguishable. The
 in ondon ant in tho bistritution and nature of the verucae; but the Aran hom in the fomer are shat: while in the latter they are long and
 $\therefore \therefore$...... \quad (') serm. linwerel, form intermediate links. Let us now consider the specimens referred to Scirpardla.

Srirpearella india Hickson.
This -pecies was i-t.3hlished by Hickson for several specimens from the Maldives with the following characteristics:-

All me untranched. The diampter of the specimens varies very litule, and in in all thmit $\because 5$ to 4 mm. ; the apex is blunt. The verrucae vary con-iderally. In wne fiecinen they are pointed and about 1 mm . in height at the hase of the show they are hroaler and less prominent. In places they hawe an appearance like "a shallow ledge that reminds one of the elible nest of (ho swallow (rollocaloa)," similar to that described by
 seven slightly spiral rows.

The colour varies in the different specimens. In one the coenenchyma is white, but the tips of the verrucae are red. In another the verrucae are white throughout; but there are streaks of pink along the coenenchyma rumning irregularly and uniting at the base to give the coenenchyma a general pale red colour. Other specimens are entirely white.

Locality.-S. Nilandu (Maldives), west passage of Atoll, 30 fathoms.
Scirpectrella sp. B. Thomson and Henderson.
A somewhat damaged colony, which has unfortunately been broken in five pieces. The base is complete, but a short piece at the tip has been lost. The total height is 28 cm ; the diameter near the base is 3.5 mm . ; but near the present tip it is 1.5 mm . At a distance of 20 cm . from the base there is a distinct angular bend; it is difficult to say whether this is the origin of a branch or a growth consequent on fracture.

The coenenchyma is extremely thin and finely arenaceous. The general colour is pale-pink or salmon-pink; but the verrucae are white, and streaks of the same colour permeate the coenenchyma.

The polyps are apparently distributed all over the colony; but close examination reveals two indistinct, sinuous longitudinal bare tracts. The verrucae are low domes, and scarcely project beyond the coenenchyma (fig. 70).

Owing to the extreme thinness of the coenenchyma, the canal system is very ill-defined.

The axis is very calcareous, hard, and, in the younger parts, brittle. It is composed of very thick concentric laminae; the surface is faintly and irregularly marked by grooves.

Locality.-Ceylon Seas.
As was the case with the two species already discussed, the two now described are identical on superficial examination. Let us now proceed to investigate in what respects the two groups differ.

furcata-group.

The verrucae are separated into two longitudinal series by two very distinct bare tracts.

There are two or three longitudinal rows in each series.

The verrucae are low and domelike.

indict-group.

The verrucae are separated into two longitudinal series by indistinct bare tracts which may even disappear near the base.

The verrucae appear as if distributed in five to seven slightly spiral rows.

The verrucae may be (1) long and pointed, (2) projecting ledges, (3) low and dome-like, (4), almost lerel with the coenenchyma.

Thus we see that, although superficially they may present very different appearances. when we investigate the various characters nothing of specific moment can he found to ohtain. The question of "five to seven slightly spiral rows" resolves itself into two series of two to four rows in which the bare tracts are hardly distinguishable.

Juncella clongata (Val.) Hickson, xv., p. 821.

Hirk-an refored somm frasments to this species, but expressed doubt as [.] Ihr identitiontim. He garm the following notes:-One specimen (in three
 axis 2 mm . in the miklle region. Nearer the base the coenenchyma is shationy thin wey thin amb narer the apex much thicker. The colour

 seven rows in each series. Other specimens were pale red and orange-red in coluur. In the latter, which was 230 mm . in length, the verrucae were
 coenenchyma near the base (tig. 71).

 in the shape of the spmilles (fig. 72).

The colour, the prominence of the vermeae, and the definiteness of
 shows much variation.

1. Nilamb, … 25 to 30 fathims (Maldives).

Siut-In one specimen Hickson says clubs similar to those in $J_{\text {. }}$ jencon accur: lut this probalily belonged to that species.

In the Littoral Alcyonaria Collection of the Indian Museum there is a
 colony; loth the hasal and terminal parts are wanting.

 white that of the axi- i- 2 2ma. Than what colour of the colony is orangered, but the anthocodiae are white.

The polyps are dispused in two longitulinal series separated by two narrow
bare strips which become more indistinct, lut still visible, towards the tip (fig. 73). These are spirally twisted; but this is, no doubt, due to a general torsion of the colony. In each series the polyps appear in rows diverging from the bare tracts; this gives a very marked spiral arrangement, but this is also due to torsion. Transversely four or five is a common nunber in each series. The verrucae are sub-cylindrical and closely adpressed to the stem; the outer insertion is lower than the inner. They are about 1.5 mm . in height and 0.75 mm . in diameter at the base. When retracted they are sulbconical, and have eight converging lips (fig. 74).

The canal system is very definite and typical ; the two main longitudinal canals are extremely large.

The axis is yellow in colour, and markedly calcareous; the surface is apparently smooth; it tapers only slightly in the portion preserved.

Locality.—Off Table Island, Cocos Group, Andamans, 15-35 fathoms.
When we take into consideration the fact that the great majority of these forms are fragmentary, and also the slight basis on which the genera Juncella, Scirpearia, and Scirpearella were formerly differentiated, there is small cause for wonder that the various specimens were referred to one or other of these genera on account of differences which we hope to show are not specific, but only different manifestations assumed by extremely plastic organisms.

We have made a very exhaustive study of the spicules in all the forms of which descriptions have been given; and although these show certain deviations, nevertheless they may be grouped into a number of more or less definite types.

Fig. 75 gives a very good representation of the different types and deviations therefrom in the case of the spicules in the Indian Musenm specimen. Fig. 72 of the spicules of Hickson's Juncella clongate has also been added, and a comparison of these two groups should at once indicate the affinities of these two apparently different forms. A similar comparison might be made with regard to the others with a like result.

If, then, the character of spiculation can be regarded as specific, we should be compelled to unite all these extremely divergent forms into one very variable species. This procedure may, at first sight, seem rather drastic, as, it may be argued, the different variations occurred not in each specimen but in different specimens.

They distinctly show a range of variation which cannot be easily comprehended within an individual colony.

We are, however, fortunately in the possession of a large colony which has the same characteristic spiculation, and which does actually show a range
R.I.A. PROC., VOL. XXVHI., SECH. B.
of variation as great as, if not greater than, that recorded for the individual portions hitherto described.

Wre therefore propose to give a fairly exhaustive account of this colony, and regard it as the type of the species in its emended form.

A beautiful colony of an orange-red colour 52 cm . in height and about 16 cm. in breadth. It is largely branched, approximately in one plane, and in a manner similar to that in Juncella gemmecce. It is complete to the very base; but some of the branches have been broken off. These are nearly all preservel, however; and it is possible to piece them together so as to get an idea of the nature of the culony as a whole when living (fig. 76).

The main stem has a diameter of 4.5 mm . at the base and 3.5 mm . at a height of 100 mm . where it has been broken off.

The tirst branch arises at a distance of 18 mm . from the base ; it is 3 mm . in diameter at its point of origin, and tapers gradually to a point; it is 14.5 min. in length. The second arises after another $3: 3 \mathrm{~mm}$, and attains a lemgth of 445 mm . ; it is 4 mm . in diameter at its origin, and gives rise to a socondary hanch :30 man. long after a distance of 82 mm . the diameter of the latter is :', mat at its point of origin. A third primary branch comes off at in distance of 9.7 mm . from the base, and is 8 mm . in diameter near its orifin: it is $4: 30 \mathrm{~mm}$. in length, and tapers gradually to a conical point.

The cenenchyma is thin and finely gramular; it is of a pale yellow colour, but the verrucas are rel. Near the lase long streaks of red extend Longitudinally from the verrncae and interlock, wiving a peculiar tessellated lattern (cf. the type specimen of Seirpertirlla sp. fo.). This feature may be scen in other parts of the colony.

The $f^{n l y} \mathrm{y}^{\mathrm{s}}$ are disposed on the branches in two longitudinal series, - parated by two listinct bare tracta, which may be mose irregular or even altogether absent.

Near the base the verrucae are only slightly elevated, and in many cases hardly project beyond the coenenchyma (fig. 77).

New the origin of the second primary banch there are $3-\overline{5}$ longitudinal rows in each series; the verrucae are low and dome-like, or in some cases like huntly truncate cones, having an eight-rajed structure at the summit (fig. 78).

Abut milway on the thirl primary branch there are $4-5$ longitudinal rows in ewh serime ; the vermae are sub-cylindrical and closely adpressed to the stem (fig. 79).

Towards the tips of the branches the number of rows of polyps in each arims dimini-hes to two and eventually to one; the verrucae are suberylindrical or in some cases dome-like (fig. 80).

Thus we see that this specimen exhibits all the variation phases which are represented in the various specimens previously discussed.

The canal system is typical ; the two large main canals corresponding to the two bare tracts are very pronounced.

The axis is cylindrical, calcareous, and marle up of concentric laminae. It tapers gradually from the base upwards, and is fairly flexible. The coenenchyma is thus of an almost uniform thickness throughout. The surface of the axis is marked by longitudinal striae, the number of which varies in the different parts of the colony. The following are the chief types of spicules (fig. 81), with their measurements, length by breadth, in mm :-
(a) Small double-clubs with a narrow constriction, and with openly warted ends : $0.076 \times 0.038 ; 0.068 \times 0.046 ; 0.068 \times 0.034$.
(b) Smaller double-clubs with comparatively few warts on the ends: $0.065 \times 0.034 ; 0.061 \times 0.03 ; 0.057 \times 0.038$.
(c) Smaller double-clubs with the ends more densely covered with smaller warts : $0.046 \times 0.023 ; 0.042 \times 0.019 ; 0.038 \times 0.015$.
(d) Elongated double-clubs with openly warted ends: 0.08×0.023; 0.068×0.031.
(e) Elongated double-clubs with closely warted ends: 0.072×0.03; $0.068 \times 0.027 ; 0.065 \times 0.023$.
(f) Narrower double-clubs, simulating spindles: $0.076 \times 0.019 ; 0.072$ $\times 0.023 ; 0.065 \times 0.019$.
Locality,—Providence Island, 29 fathoms.
In the Cape Collection there is a large number of colonies which are extremely diverse in external appearance, but all of which have essentially the same spiculation. It is absolutely impossible to differentiate these from S. furcatc; so that I have decided to include them in this species and give a few notes on each specimen, with special reference to the variations.

In addition to the more mature colonies, there are a few undoubtedly young forms, the largest of which is only 50 cm ., and the smallest 8.5 cm . in length. All are of a creamy-white colour, and form a striking annectent series, showing the various "types" of verrucae which are undoubtedly only different stages in retraction (fig. 82).

Locality.-Hood Point, N., $5 \frac{1}{2}$ miles, 42 fathoms. Bottom: sand and shells.

We shall commence with those forms in which the verrucae are very small, and gradually pass to those in which they are more expanded, and show that a series exists comecting the most extreme types.

A beautiful, simple colny of a pale orange colour. It is 17 cm . in length. The base is broken off and the tip is dome-like.

The crenenchyma is moderately thick, and is finely granular. The polyps are distributed over the whole of the coenenchyma; in some parts they appear as if in spirals, but they are in reality in longitudinal rows, the members of which irregularly alternate. Four of these rows may be seen from one aspect. The verrucae are extremely small, and are sunk into pits in the enenenchyma, so as to the almost level with it (fig. 83). The members If one longitulinal series are separated by distances about three to four times the length of the verrucae. The verrucae themselves are somewhat (ylindical, and have a distinctly eight-rayed summit. There is not the slightest trace of a bare tract.

The canal system is, however, typical. The two large main canals are ynite prominent in a cruss-section. This reminds one of the type of Juncella jencen with nou-projecting verrucae.

The axis is lamellar, densely calcarenis, and very hard; the surface is indefinitely marked by longitudinal striations.

A homs, imple, tlayellifinm colny, in cm. in length. The diameter near the hase is $\overline{-1}$ mm, ; near the tip it is t mun. 'Lhe coenenchyma is thick, hoinz Aghty wer 1 mm . throughout. The general colour of the colony is a dull orange-red.

The f"lyn are ditributed in two longitudimal series separated by two num, hate trats: there are fone th seven alternating rows in each series. The romuc. are smatl and are closely adpressed th the eoenenchyma, imin_ -num in pit- su an th low almost level with it. They are very much
 they would lee more than double their present length (fig. 84).

The membern of an row itregularly alternate with those of the adjacent row.

The conal syan is well develnom, and is clearly seen in the thick coenenchyma; the two main canals are very large.

The axis is frexille but wery hart and densely calcareous; it is about $2-5$ mun, in diameter near the base. The surface is marked by distinct longitutinal striae.

1. . An -l'mblangakulu Liver mouth, N.W. Wy N., $7 \frac{1}{2}$ miles; 50 fathoms. liottom: sand, shell, and sponge fragments.

An almant anmply andony, 24 am. in length, of which only the base 1- watine. This - merimen is extemely interesting, as it shows to what extent the polyp may be extruled in this species.

The diameter of the stem is 4 mm . near the base, but diminishes gradually to 3 mm . near the tip. The coenenchyma is thick; the general colnur of the colony is pale yellow; but the tips of the verrucac and the anthocodiac are white.

The present specimen agrees in detail with the last, except in the nature of the verrucae (cf. figs. 84 and 85).

Locality.—Off and east of Cape Morgan, 36 fms . Bottom: stones.
A beautiful, complete, simple colony, 22.5 cm . in length; the coenenchyma is moderately thick and densely granular; the general colour is a bright orange-yellow; but the tips of the verrucae and the anthocodiae are white, and there are also white streaks throughout the coenenchyma.

The polyps are distributed in two lateral, longitudinal series; the bare median tracts are fairly well defined. The number of rows in each series varies from two to four. The verrucae are sub-cylindrical, directed upwards, and adpressed to the stem (fig. 86). The members of two adjacent rows alternate with one another so that the tip of one verruca is on a level with the base of the next higher in the adjacent row. The verrucae are about 1.25 mm . in height and 0.75 mm . in diameter. Near the base they are much smaller, more distant, and a few are even sunk into pits in the coenenchyma. The anthocodiae are white; the tentacles are short, but have a dense aboral armature.

The canal system is typical and well developed; the two main canals are easily seen when a piece of the coenenchyma is detached.

The axis is slender, flexible, but very calcareous; the surface is marked by longitudinal striae.

Lucality,-Umhloti River mouth, N. by W. half W., $8 \frac{1}{3}$ miles, 43 fms . Bottom: sand, shells, and hard ground.

A small, complete colony, 15.5 cm . in height; is almost identical with the last specimen.

The following differences may be noted :-
(1) The colour is almost brick-red.
(2) The verrucae are slightly smaller and are more adpressed to the coenenchyma. (Both these differences are probably due to greater retraction and to the fact that the colony itself is smaller.)
Locality.-Umhloti River mouth, N. by W. half W., $8 \frac{1}{3}$ miles, 40 fms. Bottom: sand, shells, and hard ground.

In the Littoral Collection of the Indian Museum there are four filiform colonies which have the characteristic spiculation of S. jurertue, to which species we have therefore assigned them. They differ considerably in
external appearance, so that the following notes and figures (figs. 88 and 90) give some idea of the fertility of variation. Let us commence with those in which the verrucae are most contracted.

A long, simple filiform colony, 82 cm . in length, and having a maximum diameter of 2.5 mm . The cuenenchyma is finely granular, and only 0.25 mm . in thickness near the base. The colour of the colony is a pale orange-yellow; but the tips of the polyps are reddish.

The verrucat are small and wart-like; when retracted they are sunk into the cunbonchyma, and show an octoradiate structure (figs. 88 and $88 b$). The l"lypare disposel in two longitudinal series, with two or three transverse, innentar rows in each series. Nopolypsocur on the lower basal part of the mhny: The pulyphearing areas are separated by two bare tracts, in one of Whith there is a distinct fumbw, causel by the collapse of one the main ramal-: the preition of the wher main canal is clearly visible owing to the extreme thinness of coenenchyma.

The verrucae are about 1 mm . in tiameter.
The comal selem is well marked and is quite typical of the group. The canals themselves are all very large.

 frome.. The surace is marked ly indistinct longitudinal furrows and rilges. Fig. 89 shows the chief types of spicules.

Lewality.-(ofl Malabar Const, 36 fms .
 alsu oceurs in the Indian Museum Lithoral Collection. It is of a creamywhtwonntr, amt in almwt mifnon in thickness throughout; it agrees in Whtal with the last - berimen hom the Malahat Coast, except that each
 a straw colour throughout.

Thu - hiculn ane indentical with thon described for the other specimens.
Lwality.-Andamans.
 verncac. The smalle colony is complete, and is 39 cm . in length; it is
 If the colnny; the basal portion which is present is 47 cm . in length. The diameter at the base is 2.75 mm ., while at the broken end it is 4 mm .

The fomenn hama i- ghamband anderately thin; it is creamy-white in calour.
 they are separated into two longitudinal series by two sinuous depressions
(fig. 906) ; the two series approach so closely tugether as to appear as if merged into one, covering the whole of the coenenchyma, especially towarls: the middle of the colony. The verrucae are low, broad, and mound-like; they are sometimes 2.5 mm . in diameter at the base. Towards the base (fig. $90 a$) they are almost level with the coenenchyma; while new the tip they are often sunk into lepressions in the cuenenchyna (fig. 90e). The opening is circular, sometimes elongated, and has eight lips around it, giving a very definite pattern.

The canal system is typical; the two main canals are large. The axis is brown at the base, but yellow in the younger part; it is composed of concentric laminae, and is markedly calcareous. There are definite longitudinal striae, especially in the older part. Fig. 91 shows the predominant spicular types.

Locality.—Off Malabar Coast, 36 fms .
Amongst the Alcyonaria collected by the writer in the Mergui Archipelago, Burma, there are six specimens which undoubtedly belong to this species. Five of these are long and Hagelliform, and represent a series in development; they are very sleuder, and taper only slightly from base to apex. The following measurements will serve to illustrate the most salient features:-

\begin{tabular}{|c|c|c|c|c|c|}
\hline Specimen. \& Total length of colony. \& Diameter of colony at base. \& Diameter of colony midway. \& Diameter of axis at base. \& Colour.

\hline I. \& 27 cm.
42 cm. \& 1.75 mm.

3 mm. \& 1.5 mm.
2.5 mm. \& 1 mm.
1.25 mm. \& Creame-white, but Jellowish towards base.

\hline III. \& 61 cm . \& 3.75 mm . \& 3 mm . \& 2 mm. \& Pale creamywhite.

\hline IV. \& 86 cm. \& 2.75 mm . \& 2.75 mm . \& 2 mm . \& Creamy-white.

\hline V. \& 117 cm . \& 4.5 mm . \& 3.25 mm . \& 3 mm . \& Dull white.

\hline
\end{tabular}

The coenenchyma is very thin, as may be seen from the above measurements ; it is finely granular and very compact.

The mode of distribution of the polyps is very pronounced. Two of the specimens, (namely, I. and IV.) bear the disk of attachment, sn that in these the arrangement may be studied from the base. The lower portion, for a considerable distance, is devoid of polyps; in the polyp-bearing rearion of the colony the verrucae are distinctly separated into two series by two longitudinal bare spaces, whose position is sometimes indicated by depressions.

This is especially marked towards the tip; but the depressions are continned very visilly almy the non-polyp-bearing basal portion of the coenenchyma.

The numher of verrucae in a transverse row in each of the two series varie- atemedins whe therition in the colony. Tomards the middle of the
 the base and the apex, in each of which two or even one is the common number. Kinns forms wewr scattered thoughut the other verrucae, and the distribution is then very diflicult to determine.

The verrucae are very minute and wart-like; when retracted, they are

The ai- i- …n? the surface varies in colour from black, through brown to pale yellow, according to its age. It tapers only very slightly.

Thu canal system is well developed; even in these slender specimens a crussesectim, when viewed with a hand-lens, reveals the two longitudinal series. The part of the conenenchyma between these two series is w? - whill …mpund with the onter non-canal-trearing part. The two min ano an andy late in prowtim the others; and to this
 learing part.

Lowerlity.- Mergui Archipelago, Burma,

Scirpearia furcata var. robusta. Figs. 92-96.
We have examined two characteristic colonies, one from the Indian
 exhilit certain differences from the other specimens of furcata, but for the present we would consiler them as a variety of furcuta.
 its hasis of attachment; it is 20 cm . in height and 3 cm . in breadth, and condists of a main stem from which a branch of 6.5 cm . in length arises at a distance of 6 cm . from the lase (fig. 92). A second branch arose 1 cm . from the first: lut this has lween liroken at the point of origin. The diameter of the main stem near the lase is $\pm \mathrm{mm}$. ; near the tip it is 35 mm . The two wranches spem to arise in planes perpendicular to one another. The stem :and limant are eylimdrical.

The ennenchyma froter is finely granular and thin, never attaining a
thickness of over 1 mm ., but about 0.5 mm . near the base. Near the tip of the main stem it has been rubbed off.

The general colour of the colony is brick-red.
On superficial examination the polyps appear to be distributed over the whole of the coenenchyma: but a minute inspection reveals a disposition in two longitndinal series separated by a sinuous line in the lower portion: this is more marked in the upper half and in the branch where a distinct depression is visible. No polyps occur on the basal 1.5 cm .

The verrucae are large and dome-like; they are about 2 mm . in diameter and 1.25 mm , in height. There is a trace of an eight-rayed structure at the summit (fig. 93). They vary very little in the different parts of the colony.

The canal system is typical; the two large main canals are very distinct.

The axis is cylindrical, very calcareous, and gives great rigidity to the colony; it is composed of concentric laminae. The colour varies from brown in the lower portion to pale yellow near the tip. The diameter near the base is over 3 mm .; it does not taper very markedly until it approaches the tip. The surface is marked by indistinct longitudinal striae.

The spicules (fig. 9.t) consist of double-clubs and elongated doublespindles, which in some cases approached the spindle type.

The following are the chief types, with measurements, length by breadth, in millimetres :-
(a) Double-clubs with a short constriction and with the warts somewhat regularly disposed: $0.08 \times 0.04 ; 0.073 \times 0.046 ; 0.07 \times 0.04$.
(b) Smaller double-clubs with the warts nearest to the constriction arranged in a whorl: $0.06 \times 0.034 ; 0.045 \times 0.025$.
(c) Elongated double-spindles with irregular disposed warts : 0.1×0.035; $0.095 \times 0.03 ; 0.09 \times 0.03 ; 0.08 \times 0.025$.
(d) Spindles (like type (c), but with no constriction): 0.09×0.025; 0.08×0.02.

Types (c) and (d) are more abundant in the verrucae. Very characteristic is the occurrence of a large number of conically shaped elongated doubleclubs and spindles.

Locality.-Andamans.
Another very characteristic, complete, simple colony, 17 cm . in length. occurs in the Mergui Collection. Externally it recalls the projectingverrucae type of Juncella juncen; but the nature of the spiculation precludes this possibility. The disk of attachment is present. The diameter at the base, without vervucae, is 2 mm . ; it increases in thickness very markedly.
so that near the midale of the colony it is 5.5 mm . (including rerrucae) ; from this pasition to the tip it decreases, so that midway it is only 3.5 mm ., while the aper itself is distinctly pointed (fig. 95).

Thr cmenenchyna is finely gramular, and, except near the base and thwats the tip, it is very thick. About the midalle of the colony, where the diameter of the axis is 0.75 mm ., the coenenchyma is 2 mm . in thickness.

The colour of the colony is creamy-white.
Thre verucae are dome-like: hut the oral opening is directed slightly upwats: they are ahme 1 mm . in height amil 1 mm . in diameter at the las. The colnur is makerly thattenen thronghout its entire length; on ". Wh if the two hattened surfaces there is a very deep growe; these -...nan the prly intw twn longitulinal series. In each series there is . Wayine bumber if pulys: sear the lave there are font transverse rows; :astrhe the mildle of the colnhy there are five: while from this point

 fundamental symmetry.

Tl., . anal fy-ten in well makm: the two man canals corresponding \therefore the two lan_itmital ornows ale very large: in this and other respects it is characteristic of the group.

The axis is very slenter; at the base it is only slightly over 1 mm . in
 the tip. It is hlack in coluur near the base, but passes through pale hrown to yellow near the apex.
 specimen, huth in types and measurements.

Lutality-Mergui Archipelago, Burma.
XXVI. Scirpearia andamanensis n. sp. Figs. 97-101.
 Littoral Collection in the Indian Museum.

 colony is shown complete in fig. 97.)

The $5+m$ ant hranche are eylimhical and taper very slightly. The

throughout the colony, being slightly thimner in the older portions. The surface is finely granular.

The general colour of the colony is ochreons-ychow; but the tips of the verrucae and the anthocodiae are white.

The polyps are distributed in two longitudinal series situated laterallythat is, on the aspects perpendicular to the plane of ramification. In each series there are from three to four irregular rows. The two bare spaces are quite distinct, and only here and there are median depressions to be seen.

The verrucae vary considerably according to the stage of retraction. When expanded they are mammilliform, are directed upwards, and adpressed to the coenenchyma. This is well seen near the tips of some of the smaller branches where the coenenchyma is relatively thicker and where they are depressed into the coenenchyma (fig. 98). When partially retracted they are wart-like or sometimes like short truncated cones standing perpendicular to the coenenchyma (fig. 99). When still further retracted they appear as small rounded projections or may be even sunk beneath the surface of the coenenchyma (fig. 100).

In all stages an eight-rayed figure is discernible. They are about 1 mm . in diameter, and may attain a height of over 1 mm .

Two large main canals corresponding in position to the bare tracts are plainly visible in a cross-section. The small canals are very numerous owing to the large number of the polyps in a transverse row.

The axis is cylindrical and calcareous. It is about 3 mm . in diameter at the base, but gradually tapers to an almost hair-like fineness. It is composed of concentric laminae. The surface is greenish-brown in colour, but towards the centre it is whiter owing to the greater amount of calcareous matter; there are indistinct longitudinal striae.

The spicules (fig. 101) are pale yellow or colourless; they consist of the following types, of which the measurements in millimetres are given :-
(a) Large double-clubs, with almost hemispherical ends, and a very short median constriction: $0.07 \times 0.035 ; 0.07 \times 0.03 ; 0.065 \times 0.04$; 0.06×0.04.
(b) Smaller double-clubs with more openly warted heads and a longer constriction: 0.045×0.03.
(c) Elongated double-clubs with comparatively few irregularly distributed warts: $0.08 \times 0.023 ; 0.08 \times 0.02 ; 0.06 \times 0.015$.
(d) Spindles (these may be modifications of type (c) in which the constriction is not visible) : 0.09×0.02.
Locality.-Andamans.

KIVII. Scirpearia ramosa n. sp. Figs. 102-104.

In the Littoral Collection of the Indian Museum there oceurs a very beantiful and characteristic branched colony for which it has been necessary t. establish a new species. The mode of branching, the nature of the verrucae, and the distinctive character of the spicules, are all features of ereat impurtance. The colony is complete with its basis of attachment; it is 14 gn. in height and about $9 . \pi \mathrm{cm}$. in maximum breadth, and is branched irremblaty in une plane. The majority of the branches arise at nearly right arfors; they are long and may ascend for a consideralle distance without giving ri-e to finer twiss. They vary very little in diameter throughout their cutire lenget (fis lots). They are flattened in the plane of ramification, … that a cras-nection is elliptical. The diameter of the main stem is $\because \because 4 m$, hat sume of the hranches are 3 mm in their longer and about 2 mm . in their shorter diameter.
 awnh the tip of the han h. hat consiteraly les in the wher parts where the axis is thicker.

The colnur of the mony in spirit is yellowish-med: but the verrucae are of a mene heciled redilish timt. and streaks of red pasis indefinitely from them, an ? ardually merge intw the general tone of the conenchyma. When dry the whole colony is almost ochreous yellow.

 are thus two very distinct bare longitudinal zones.

 We : wheir quat contractity. an in exitent irom the shrunken appearance.

 large and chaternint whe thare thact- On several of the branches there \therefore a di-inn : lensitulinal furnw indicating their exact position.

Th...asis i= cylin lrio al, and is comprasel of tefinite concentric laminae; a

of the furrows, larger and deeper than the uthers, comrespond in pusition th the two large main canals.

The spicules consist essentially of double-clubs; but these may be elongated and narrow, and with so short a constriction as to appear like warty spindles. The warts are large and close-set. The spicules are cither pale yollow or colourless. In the coenenchyma there are only double-clubs, with warty, hemispherical heals, and a short constriction. The following measurements, in millimetres, are typical :-

$$
\begin{aligned}
& 0.07 \times 0.05 ; 0.07 \times 0.045 \\
& 0.05 \times 0.03 ; 0.04 \times 0.025
\end{aligned}
$$

The spicules of the polyps are, on the whole, longer and narrower than those of the coenenchyma. They are
(1) Double-clubs, with warty, slightly elongated heads, and with a short constriction: $0.09 \times 0.02 ; 0.08 \times 0.02 ; 0.06 \times 0.025$.
(2) Thicker double-clubs, more like those of the coenenchyma: 0.08×0.035.
(3) Warty spindles (occasionally a constriction is discernible): 0.07×0.02.
Locality.-Andamans, 20 fms .

Specific Diagnosis.

Colony branched in one plane; most of the branches arise almost perpendicularly, but soon turn upwards; they are flattened in the plane of ramification, vary very little in thickness throughout their entire length, and terminate bluntly. The polyps are distributed for the most part on the non-flattened aspects of the branches, and stand perpendicularly; the verrucae, when retracted, have the form of low, truncated cones, and may even appear almost level with the coenenchyma. The oral opening is closed by the inturned tentacles, which thus form a pseudo-operculum. The spicules consist essentially of (1) broad double-clubs, with a short constriction and almost hemispherical euds; (2) elongated, broad doubleclubs, with very rounded ends, and with the same character as the previous type; and (3) longer and narrower double-clubs, which may approximate double-spiudles, and eventually spindles.
XXVIII. Scirpearia ceylonensis n. sp. Figs. 105-107.

Among the Alcyonaria collected by Professor Herdman in Ceylon is a beautiful branched specimen which was not described in the general report. It has been fund necessary to establish a new species to include it.

The total height of the colony is 31 cm. ; it consists of a main stem 30 cm . in height, from which four branches arise, all on one side. The first arises at a point 4 cm . from the base; and the others after 25,3 , and 10 cm . consecutively. The lowest hrauch is broken, and is 13 cm . in length, but was evilently much longer; the others are 55,10 , and 15 cm , respectively (fig. 105).

The main stem after the origin of the first branch and all the branches are markedly flattened in the plane of ramification.

The liameter of the main stem near the base is $2 \mathbf{m m}$., and its greatest lneadth in the flattened portion : mm. The lranches vary considerably in thickness. The colour of the colony is a pale orange-yellow; but the verncate are more redlish. The coenenchyma has a very granular surface; it in nearly 1 mm . in thickness in the branches, but thinner in the older parts, where the axis is proportionately larger.

The pulys aecur on the lranches and also on the main stem, except on the britim lethw the wixin of the first hanch; they are distributed in two lonstminal serien on the sikes of the hanches; the flattened aspect is broad, ath ghite heroid of puly whaling in the internexitin of young forms sometimes obliterates the symmetry (fig. 106).
 bos diatimt wrimkling: they fundet very litte beyond the coenenchyma. Many of the anthembliae ate maly patially withlrawn and the infolded

 sides of the verrucae.

The cemal system is typical and well definelf the two main canals,
 sometimes visible owing to a collapse of the walls.
 1.hatans. It is yollos in ofolur: and the surface is striated, two grooves slightly larger than the others being seen in some places.
 length by hreadth, in millimetres.
 heads, very irregular in outline, covered with few large warts: $0.08 \times 0.042 ; 0.076 \times 0.046 ; 0.076 \times 0.42$.
(i) Elonsutel imble-rluln, with romblen ends, and openly-warted: $0.08 \times 0.038 ; 0.08 \times 0.034$.
(r) More elongated double-cluls, merging into double-spindles. The warts on these are sometimes disposed in whorls: 0.084×0.027; $0.082 \times 0.03 ; 0.082 \times 0.026$.

From these measurements it will be seen that there is very little difference in the lengths of the varions types, lut that the breaths diminish proportionately more than the lengths. Intermediate forms also occur.

Loculity.—Off Galle, Ceylon.
XXIX.-Scirpearia maculata. Figs. 108 and 109.

Ellisella maculata Studer, xxxiv., p. 629, Taf. iv., fig. 27 (a, b, and c).
Ellisella maculata (pars) Wright and Studer, 1., p. 160, Pl. xxxıv., fig. 9.
Ellisella calamus Studer, xxxiv., p. 660, Taf. v., fig. 29 ($(a, b, c, d$, and e).
Elfiselle calamus Ridley, xxxiii., p. 348.
It is with considerable hesitation that we still recognize this species as distinct. It has been impossible, however, to examine the type specimen of the species; but we have seen a Banda specimen in the British Museum, of which Professor Bell has sent me a photograph (fig. 108). The other specimen, from the Torres Straits, deseribed in the "Challenger" Report, has proved, on examination of the spicules, to be Juncella gemmacea.

There can be no doubt, however, that Ellisella calamus is the same as Ellisollu muculutu, since in spiculation they are irlentical, and the macroscopic characters on which they are separated are only variational dilferences. This will be evident from the following description. Studer, in describing E. maculata says:-

The stem is cylindrical, forked, divided into only a few long cylindrical branches. The colony is 5 cm . in height; the diameter of the stem is 5 mm , that of a branch 3 mm . One of the branches is 13 cm . in length.

The stem and branches are covered with verrucae, which hardly project; these occur laterally, on the thicker branches, in several rows, leaving a narrow, shallow median space, which disappears in the twigs. The verrucae have a circular opening. The spicules are (1) double-clubs, 0.095 mm . in length; and (2) a few warty spindles, 0.084 mm . long.

The colour of the coenenchyma is orange-red; the verrucae are dark red.
Locality.-Mermaid Straits, North-West Australia, 50 fms .
In separating E. celemus from E. muculute he gives the following diagnosis of the former:-

Simple, rod-like, cylindrical stem. The length of the largest specimen is 80 cm . The maximum diameter is 2 mm . The axis is horny and
calcarenus, with alternate horny and limy rings, flexible, yellowish. The cortex is fairly thick. The verrucae project as pointed cones only in the upper portim. They accur on the sides of the stem in quincunx, in several rows, leaving a marrow, shallow, smouth space, which gradually becomes narrower till it disappears in the terminal portion.

The sqicules are like those of mutellete, namely, spiny double-clubs and spindles (0.06).

Loculity.-Mermaid Straits, 50 fms .
Tidley (xxxiii., p. 348), in identifying a specimen in the "Alert" Collection with E. culumus, gives the following notes:-

A specimen 9 iuches (225 cm .) long; incomplete. The colour is dark hrick-red. The fusiform sticules were almost twice as long as those of stmber's furimon. He says mathing of the dimensions of the double-clubs.

Locality.-l'ort lenisun, Queensland, 4 fims.
The following mutw irom the "Challenger" specimen in the British

 Thw conmentyma in alomit 1 mm. in thickness throughut: the canal system

 very narrow median groove,"

Then lyper andment in two lungitudinal series: lout a torsion of the

 retracted within the comenchyma.

The axis is of the typical Juncellid structure.
Whath and ander the hertine the -phombe, wif whe the chief types are shown in fig. 109:-
" The spicules consist of (1) salmon-coloured spinulles, $0.12 \times 0.04 \mathrm{~mm}$.; 0.08×0.02 2mm. (2) sherry-coloured druble-cluts: $0.1 \times 0.06 \mathrm{~mm}$; $0.06 \times$ $0.0 \pm \mathrm{mm}$. (3) Needles: 0.06×0.02 min.

Lowaliy,-Lanla Islands.
Dilt:-Fig. 110 of the Torres Straits specimen of Jincello gemmecea, which was orisinally described as Ellisalla muculuta, has been added here to illustrate convergence in the group, and show how futile it is to attempt to separate Juncellids into genera without an examination of the spicules.
$\mathcal{X} \mathcal{X} X$. Scirpearia quadrilineata n. sp. Fiys. 111-11:s.
It has heen fomm necesary in establish this now species to inclute a very distinctive specinen in which the most prednminant feature is the presence
of four main longitudinal canals, and the conserpuent distribution of the verrucae in four longitudinal series.

The colony is complete, simple, and flagelliform ; the basis of attachment is conical, covered with coenenchyma, and spread over a piece of rock. The total height of the colony is 35 cm . ; the diameter at the base is 4.5 mm ; near the tip it is 2 mm .

A very noticeable feature in the general appearance of the colony is the fact that it is markedly square in section.

The coenenchyma is thin; near the base it is 0.75 mm . in thickness; but near the tip it approaches 1 mm . Around the periphery of the axis there is a system of longitudinal canals, of which four are markedly larger than the others; these are arranged symmetrically, equidistant from one another, and thus forming the corners of a square (fig. 111). No outer system of longitudinal canals was visible; but the coenenchyma is so thin that these may be easily overlooked. It is extremely difficult to cut through the coenenchyma without damaging it, so that it is quite possible that these are present.

The polyps are disposed in a very characteristic fashion. They are grouped in four definite longitudinal series, separated by four bare spaces which correspond in position to the four main canals (fig. 112). Each series consists of a single row; but near the middle of the colony they are somewhat crowded, and give an appearance of two rows, due in great part to displacement.

Near the base and towards the tip they are more openly arranged, but always in four series.

The verrucae are low and dome-like, and have a maximum height of 0.5 mm . Towards the tip of the colony and near the base they tend to become almost level with the coenenchyma; while the extreme basal portion is quite destitute of polyps. When partially closed they show a very distinct eight-rayed figure. The anthocodiae are very small, and are all retracted within the verrucae.

The axis is made up of concentric laminae; it is extremely limy and very hard; the colour of the outside is brown, but the core is white; the surface is marked by faint longitudinal striae. Near the base the diameter is 3 mm ; but towards the tip it becomes almost hair-like and less limy.

The spicules are quite distinctive. We have figured six types (fig. 113).
(a) Double-clubs with very densely warted and regular heads; the constriction is very short; and the warts are symmetrically arranged: $0.06 \times 0.05 ; 0.076 \times 0.049 ; 0.076 \times 0.0 \pm 6$ 。

IRI.A. PROC., VOL. XXVIII., SECT. B,
(3) Smaller double-clubs, with a longer constriction, with more open heads, and with the wats less symmetrically arranged: 0.06×0.034; $0.05 \times .031 ; 0.049 \times 0.027$.
(1) Elonsated double-clubs tending towards double-spindles, with rounded blunt ends: $0.091 \times 0.038 ; 0.087 \times 0.034 ; 0.083 \times 0.034$.
(i) Elongated double-spindles, with pointed ends, and with a definite constriction: $0.118 \times 0.034 ; 0.11 \pm \times 0.31 ; 0.114 \times 0.023$; 0.103×0.023.
(e) Long spindles with a hint of constriction: 0.125×0.23; 0.114×0.031.
' 1 Shmer spintles also with a hint of constriction: 0.095×0.019; $0.087 \times 0.015 ; 0.016 \times 0.023$.

We have little hesitation in detimin: (", (h) and (o) as distinct types; Wit is in just pasille that (i) might thevelop into (i) or (d) according as S: :-1. with stuwth watereater in length or in beabth. So many of each k.: \...nar. fonwer, that we feel justified in detining them as separate for S.. forsont, at any rate until nore is known with regarl to their growth.

Thu mhur of the comenchyma is a bright utange-red-but the tips of the verrucse are more redlish.

Licalify.-Laccadives, $30-40$ fathoms.

NXXI. Genas Nicella emend.
(A) Discussion of the Genues.
 in the following terms:-

1. ral fan-like. in whe plane brambonl: lranches forked, rather diverg1.2. liark shmeth, bown. Polyp ells eylimdrical, truncated, diverging it m the =tem at nearly right angle. mouth "pen. Axis calcareous, white solid.

I: Bey mxix, f. 1:O, Dentitel a specimen imm Mantius under the

layer of longer densely tuberculate spindles, having a bare median space more or less clearly indicated."

Wright and Studer, with these facts as a basis, give the following diagnosis:-
"The colony is upright, branched, with a thin coenenchyma and protruding verrucae, which arise perpendicularly, and appear to be terminally truncated. The polyps arise from either side of the stem and branches, leaving a middle space free. The spicules form a cortical layer of small double-clubs and an internal layer of long densely warted spindles."

The following species have been from time to time referred to this genus:-

> N. dichotoma (Gray).
> N. mauritiona (Gray).
> N. laxa Whitelegge.
> N. Alabellata (Whitelegge).
> N. reticulata Thomson and Simpson.
> N. pustulosa Thomson and Simpson.

An examination of the type-specimen of Scirpearella moniliforme Wright and Studer, in the Collection of the British Museum, has revealed the fact that this species should be included in the genus Nicella. Thomson and Henderson also referred Verrucella flubellata Whitelegge to this genus, so that the generic diagnosis has been emended to include these forms.

Thomson and Simpson (xli., p. 267) referred a specimen in the Littoral Collection of the Indian Museum to this genus under the name Nicello pustulosa, with the following reservation :-
"It is with some hesitation that we refer this type to the genus Nicella. It is a matter of no small difficulty to distinguish between Nicella, Gorgonella, and Verrucella. . . .
"Our specimens approach Nicella in several respects, though agreeing with none of the described species; and as the positive characters of the other genera are absent, we feel justified in making a new species to include these forms."

The present study of this genus has, however, convinced me that the presence of the abnormally large spindles is a character which cannot be overlooked; so that, while still acknowledging the specitic rank of the specimens under consideration, I would suggest their withdrawal from the genus Nicella, but until a revision of the species of Terrucella and Gorgonella has been made I would not hazard an opinion on their generic position. With
regard to the spicules of this group, we also made the following olservation:"Distinctions hased on spicules alone are very unsatisfactory in this group (Gorgonella and Verrucella), lecause the spiculation varies at different levels; amb transition forms are so munerons and varied that it is sometimes almost innmsible to distinguish between douhle-spheres, double-stars, and doublecluhs, each in turn passing gradually to double-spindles. In Verrucella . . . there are double-stars ; in Gorgonella . . . double-spheres occur."

As I have elsewhere puinter out. I doubt very much the validity of these two genera, wh the present spicular distinction, but await a revision of the known species for a solution of the difficulty.

(13) Classificution of the sipecies with emended Diagnoses.

In this banis four spectes may he reengmized, and are included in this report. These are:-

> N. dichotoma Gray.
> N. dlethellute (Whitelegge).
> N. reticulata Thomson and Simpson.
> N. montiforme (Wright and studer).

The following short specific diagnoses may prove useful:-

> Vicelle flubelluti.

The ondmy is han hed in whe plane the smaller hauches tend to arise

 A.-! verncac vary in shape and size according to the stage of retraction; when

 surface is marked by longitudinal striae.

 spindles, (5) long, slender simple-spindles. (See fig. 115.)
Ni,illu retirulrule.

[^62]disposed mainly in two longitudinal series; but deviations from this type occur, owing in some cases to overcrowding, in others to the anastomnsis. The verrucae are usually low and dome-like. The spicules consist of (1) small clouble-clubs and elongated double-clubs, and (2) long double-spindles and simple-spindles. These two sets are quite distinct; but the spindles are not so disproportionate in length to the double-clubs as in most other species.

Nicella moniliforme.

Colony simple or feebly branched, slender, filiform, and of almost uniform diameter throughout; polyps disposed in two longitudinal series, near the tip in one row, but in the older parts in two or more indefinite rows in each series. The spicules are very characteristic. They include small doubleclubs and elongated slender double-clubs: also spindles of two kinds (1) long, slender, spiny spindles, and (2) long, thick, denscly warted spindles. The spindles are sometimes more than twice as long as the typical doubleclubs. (See figs. 117 and 118.)

XXXII. Nicella dichotoma Gray. Fig. 114.

Seirpearia dichotoma Gray, xi., p. 481.
Nicella mauritiana (Gray), xii., p. 40, fig. 12. non Nicella mauritiana Studer.
Nicella dichotoma Ridley, xxix., p. 130.
Nicella dichotoma Thomson and Russell, xliii., p. 161, Pl. viI., figs. 1 and 5.
Nicella laxa Whitelegge, slix., p. 319, P1. xvin., figs. 30-33.
This species was established by Gray in 1859 under the name of Scirpenria dichotomr. He defined it thus:-"Coral fan-like, in a single plane, irregularly dichotomous. Cells cylindrical, elongated, truncated, in a row on each side of the branches, sub-alternate." Locality.-Mauritius. In 1870 he formed another species, Nicella mauritiana, while he gave as a synonym Scirparia dichotoma. Since this new species is the same as the older dichotomm, it was unnecessary to give it a new name, although he referred it to a new genus, so that the newer name must give way to the older. The description of Nicella mauritianc is as follows:-
"Coral fan-like, dichotomously branched; stem cylindrical, longitudinally striated; bark thin, pale brown; cells elongate, cylindrical, longer than the diameter of the stem, ascending, truncated at the tip, placed rather irregularly, sub-alternate (rarely sub-opposite) on each side of the stem and branches; axis pale greyish-brown." Locality.-Mauritius.

Ridley in 1882 re-identified the species, and described some specimens
from Mauritius, giving some positive, additional characters. One of his specimens was 340 mm . in height, and 240 mm . in maximum diameter. He says:-"The shape of the verrucae varies considerably according as to whether they are upen or closed ; in the former condition they are rectangular at the apex, while in the latter they appear conical with rounded apices. The hasal diameter may vary from $1 \cdot 25 \mathrm{~mm}$. to $2 \cdot 25 \mathrm{~mm}$, when closed. The spicules consist of a dense cortical layer of small double-heads and a subjacent layer of longer densely tuberculate spindles having a bare median stace more or less strongly indicated. The colour is variable, (1) ochreous yellow to a dull tlesh colour, (2) dirty white."

In 1s:97 Whitelegre estahlished a new species under the name Nicolla A. 1. wh wh the following characters:-The colony is feebly branched; the hranching is lateral and in one plane. The axis is laminate and calcareous. The conenehyma is thin, amt when viewed with a lens presents a series of minute rilges, forming a network of raised lines, which are lighter in colour and consist of dunde-cluln apicules. The polyps are contined to the sides of the stem ant hranches in a sinfle row on each side. The verrucae are large, altornate, and -tand wearly at right angles; they are divided at the summit imtherthe lohers. The spienles consist of (1) short domble-clubs with smooth ir waty tultercles: 0.1×0.0. mm. : $0.07 \times 0.03 \mathrm{~mm}$; $0.05 \times 0.02 \mathrm{~mm}$;

 -i louth kinds are a little Hattemet. The coldur is a light mouse-grey.
 more listant polyps and by its lax method of branching."

Wie have alrealy seen that mother of these (wo characters is of much
 thes.en if verrue as in diflement stages of retraction, we rlo not feel justified in rankine this an a dintinct therics. At the same time Gray gives a very
 w:th that firumal hy Whtelewhe. In (inay's fage alsn the distribution of the felyp bucs in liflerent parts of the colnoy, so, that while in some branches they shene monly pracken, in rethers they are quite as distant as in
 Jialloy amithe netwath of ridges descibed ly Whitplegge, though not given in filuy.- lesurinion are unmistakilly preant in his figure. We therefore see no reason for ranking 1. Inm as a separate species.

Thomson and Finssell, 1909 (xlii.. p. 161, I'late vir, figs. 1 and 5) describe some specimens as follows:-
several colmes of chestmut-bown to umber-hown colour. The largest is

20 cm . in height by 8 cm . in maximum hradth, and consists of a main stem, with lateral branches, which are again repeatedly lranched. For the most part the branching is in one plane; but this is not rigorously adhered to. On the main stem of one of the larger specimens there is a curious gall-hke swelling from which branches arise on all sides.

The stem is 4 mm . in thickness at its base, and gradually tapers to 2 mm . at the ends of the branches. The axis is light brown in colour, and very calcareous. On the surface of the general coenenchyma, and on the verrucae there are irregular wavy longitudinal ridges, producing a characteristic barklike appearance. Under the low-power microscope the texture seems finely arenaceous.

The verrucae are very prominent, rising more or less perpendicularly to a height of 2 mm . They occur on all sides of the stem; but in the upper parts of the branches a bilateral arrangement is well defined. At the apex of the verrucae there is an indication of eight lobes, from which the tentacles here and there project.

Another specimen, the basal part of a large colony, branches in a somewhat irregular fashion, and not rigidly in one plane. The verrucae are much less bilateral, especially near the base of the colony. Examination of the spicules shows that this may be referred to N. dichotoma.

Locality.-Salomon A, 65 fathoms ; Salomon B, 60-120 fathoms.

XXXIII. Nicella flabellata (Whitelegge). Fig. 115.

Vermuella fabellata Whitelegge, xlix., p. 319, Plate xvin., figs. 34-37.
Nicella flabellata Thomson and Henderson, xl., p. 80.
This species was established by Whitelegge for a specimen from Funafuti, but was then included in the genus Verrucella. Thomson and Henderson, in identifying a specimen from the Indian Ocean with this species, concluded that it should really be referred to the genus Nicella; and in this we thoroughly agree. The spiculation is quite distinctively Nicellid in character; and, as these authors point out, the actual shape of the verrucae matters little in a generic diagnosis. As a matter of fact, the nature of the verrucae, as shown in the figure given by Whitelegge, is intermediate between that in N. dichotoma and the Indian Ocean specimen.

The notes following may serve to indicate the chief specific characteristic.
The colony is branched in one plane; the branches show a tendency to arise from one side. The axis is densely calcareous and is striated. A noteworthy feature is the presence of two distinct grooves corresponding in position to the two main canals,

The polyps occur in a sinuous row on each side of the younger branches; on the stem and on the older portions of the branches they are more numerous, and encroach on the two bare, flattened surfaces, always leaving a slight median depression free. Those on opposite sides alternate. The rerrucae may be slightly prominent or may appear as low conical warts. When partially retractel, they show an eight-rayed figure ; but when fully withdrawn, this is not evident. An average height may be taken as 1 mm .

The coenenchyma is if medium thickness, and may have ridges on the surface. The canal system is the typical Juncellid.

The spicules are essentially of two types, viz, small double-chus and long thick double-spimdles. The double-spindles are about four times as long as the small doulle-clubs. There are, however, in addition to these two lypes:-11 shme small doulle-wheels, with elongated warty hubs; (只) elongated double-cluhs: (: $:$) long slember spindles with practically no constrictim. Very small shem roms and spiny spindles occur in the tentacles.

The colnur of the Funafuti specimen was yellowish-white: that of the Imlian Museum specimen was whreons yellow amb brownish-white.
XXXIV.-Nicella reticulata Thomsen and Simpson. Fig. 116.

Nicelle reticulule Thomson and Simpson, xli., p. 266, Plate 1v., fig. 5; I late vini., fig. 12.

This species was e-tablished lyy Thomson and Simpson (xli., p. 266) for - perimens in the Imdian Musemm Littmal 'allertion. We have considered

 At the dian emid of the main sem fom hanches arise, two sub-opposite and
 at ratyine ando. the two lume lome almost horizntal, the other two also in the rame plane of ramitation. Thear ranify irrogularly in one plane
 mass, with very irregular meshes.

The coenenchyma is thin and compact, and presents a glistening aremaron- atponam. The mburing is very peculiar, heing generally
 slaty grey in the upuer part. Fatehms of grey aprear throughout the red in

furrows, which are sinuous, and sometimes almost spirally twisted; one being generally deeper than the others. These extend into the seconlary branches, and even into one side of the twigs, the number diminishing with the size of the branches.

The axis is very calcareous and cylindrical in form. It is composed of concentric laminae, and has an almost olive-green colour at the base, gradually merging into a pale yellow in the smaller branches.

The polyps are disposed essentially in two longitudinal series; but deviations occur in several places, due sometimes to the anastomosis and sometimes to overcrowding. They are chiefly lateral on the main stem or primary branches; in the secondary branches they are arranged almost all round. On the finer branches and twigs they occur for the most part on two sides; but this rule is broken occasionally by the occurrence of polyps on all the four sides. The verrucae are dome-like, but slightly flattened on the twigs. They are separated by intervals of about 1 mm . in the branches; but their bases touch on the branchlets and give an undulating appearance. They measure about 0.5 mm , in height and 1 mm . in cliameter. When the verruca closes over the retracted polyp, an eight-rayed star is formed by the eight lobes of the wall. The anthocodiae are very minute and are completely retractile; the spicules are arranged transversely on the tentacles.

The spicules of the coenenchyma consist of small double-clubs, elongater double-clubs, double-spindles, and simple-spindles. The double-spindles and simple-spindles in this species are not so markedly disproportionate as in most other species; but their distinctive character justifies their inclusion in the genus Nicella.

The following are a few of the more common types, with measurements in millimetres:-
(a) Double-clubs, with smooth warts:
$0.05 \times 0.04 ;$ constriction 0.02 broad $\times 0.008$ long.
$0.048 \times 0.04 \quad, \quad 0.02 \quad \times 0.005$ "
(b) Elongated double-clubs, with fewer and more irregular warts:
$0.06 \times 0.04 ;$ constriction 0.03 broad $\times 0.01$ long. $0.048 \times 0.035 \quad 0 \quad 0.02 \quad \times 0.012 \quad$,
(c) Spindles with round warts, and doulde spindles, having a smouth part in the middle:
$0.09 \times 0.025 ;$ smooth part, 0.02 long.
$0.085 \times 0.028 \quad$ " 0.018 "
(d) Minute crosses, with a very distinct cross, 0.04×0.04.
(c) Minute irregular crosses, elongated along one diagonal, with distinct cross, $0.05 \times 0.0 \%$.
R.I.A. PROC., VOL. XXVIIt., SECT. B,

Those of the tentacles are short. wart rods : $0.05 \times 0.015 ; 0.06 \times 0.015$; 0.6×0.015.

Locclitics.-Persian Gulf, 48-49 fms. Laccadives, $30-50 \mathrm{fms}$.
XXXY,-Nicella moniliforme emencl. Figs. 117 and 118.
Srirporistla moniliforme Wright and Studer, p. 15̄6, Pl. xxxir., fig. 8.
non. G'oryontu moniliforme Lamx., xxv., p. 120 .
nec. Secirperartlu noniliforme Thomson and Henlerson, xl., p. 82.
nec. Scirperaria maniliformis Gray xii., p. 39.
This forione asertaldished ly Wright and stuler in the "Challenger" heport, is a very distinctive one, based chiefly on the character of the spiculation.

 the lase; one of the unbranched forms was 82.5 mm . in length. The
 entire length. The comenchyma is thin and coarsely granular.
"The axis is very deeply grooved; ten grooves can be very easily counted (1) the wher purtion of the axis; but these diminish to two at the apex. These ritges show through the coenenchyma as linear furrows."

The flypere aransel on the atom, the lower pation in four inesular rows; hwards the apex they are atternate and arrangel on either side of the stem; while for the first 60 mm . of the stem, counting from the basal disk, they arr alsiment. They are retractile within the well-marked but -hallow verrucae ; these latter measure at their lase 1 mm . An occasional verruca will le found larger and more elpvated than the rest, measuring 1.5 mm . in cliameter and the aame in height ; these generally are to be found arar the smmmit of the axis."

The dispusition of the vertucae is in two longitulinal series; and the two lare tracts are marked by distinct furrows larger than the others.

 Inuseum (figes 117 (a, b, and c).

The colour in spirit is white.
The nature of the spicules in this species and also their relative

 covered with charse spines or small warts; (b) long, thick spindles, very
densely warted; (c) slender double-chuls, with elongated comical onds, and with the constriction more or less marked; (d) small double-clubs, with almost hemispherical ends and with a detinite smonth constriction: aberrant forms, such as crosses, (e) also occur. There are small needles in the anthocoliae.

The following measurements, length by breadth in millimetres, will give the relative proportions of these different types (see fig. 118) :-
(a) Spindles-long, thin spiny or with small warts: 0.2×0.034; $0.15 \times 0.026 ; 0.13 \times 0.02$.
(b) Spindles-long, thick and densely warted: $0.15 \times 0.046 ; 0.13 \times 0.042$.
(c) Double-clubs-slender, with elongated ends, and with the constriction more or less markedly defined: $0.11 \times 0.045 ; 0.099 \times 0.043$; $0.087 \times 0.03 ; 0.065 \times 0.025$.
(d) Double-clubs-with massive ends, and with a distinct, short, smooth constriction: $0.072 \times 0.042 ; 0.072 \times 0.038 ; 0.057 \times 0.038$.
(c) Crosses- $0.16 \times 0.11 ; 0.12 \times 0.12$.
(f) Needles-small (in anthocodiae) : $0.06 \times 0.011 ; 0.0 \pm \times 0.02$.
Locality-Amboina: 100 fathoms.

XXXVI. Bathymetrical Distribution.

The whole group is essentially littoral in its distribution. The great majority of the specimens hitherto described have been dredged within the hundred-fathom line; in fact, the only records outside this rauge are from (1) "Challenger" Station 232 , known as the Hywloneme-ground oll Japan, B45 fathoms; (2) "Challenger" Station 177 off the New Hebrides, 130 fathoms; (3) a dredging made by the "Investigator," off the Andamans in 124 fathoms; and (4) off the Azores, 150 and 200 fathoms.

At the first of these Junculla racomosa and Scirpearia profunda were obtained, at the second Scirpcaria profunda, at the third only Juncelle recomose, and at the fourth only Scirpectia flagellum.

Consequently these are the only three species which can lay claim to deep-sea forms ; and it is interesting that all the records of these species are from over 100 fathoms, and also that each has been found in distant localities over this depth. At the same time it is not improbable that these specimens occurred in deep water at the edge of an almost vertical reef, and that these were merely "escapes" from the reef.

Such records are not unknown; and the writer has experienced similar occurrences in the deep water off the almost perpenticular retfs un the east coast of Africa.

Tim, 1 menilifurn, is recorded from one hundred fathoms, and the only "ther reconds from over fifty fathoms are scirpeterin thomsoni and Secipection .iln, , whth from is fathoms. The following talle will give at a glance the chief records for each of the species in this report:-

SPECIES.

DEPTHS LL FATHOMS FROM WHICH RECORDED.

- Juncolla juncia,	- $0 \cdot 10 ; 4 ; 7-11 ; 15-35 ; 25-30 ; 45 ; 50$.
Jencelle gemmacea,	- $0-8 ; 4 ; 8 ; 11 ; 19 ; 12-20 ; 32$.
Jemeetle racemosin,	- 120;34.
Juncellu trilineata,	34.
Scirperria profunde.	- $1330 ; 34 . \%$
Scirpariu hicksoni,	- 36.
Stipearia remmeosa,	- 50.
scirpentiat amomala,	?
Stirparier pectimatu,	- 3-4; 12; 30.
seirpmatial clongatr,	.
Starparive floyellum,	. $90 ; 150 ; 200 ; 60-120$.
secirpmaia thomsoni,	- 88.
scirparine culbe,	88.
Scirpurixt enernulinct,	- 30-50; 60-130; 120; 150; 130.
Scioperrive furcuta,	. 15. $20330-40 ; 50-78$.
Scirperrice renurumanensis,	- ?
s-irperriol ramosa,	- 20.
Scirpario coylunensis,	?
S-ipprarive muculata,	?
Seirpuria quarlrilinumbe	- 30-50.
Dioulle dichotumer,	- ? 60-120.
Niallu flelm Hlata,	- 45.
Sialle alirulatm,	- 30-50; $48-49$.
- Vicalla monilifurme.	- 100.

 (n) in tropical seas records will be abundant from water of much less
 which Junalln gemmmen occurs gives "leetween tide-marks," and, as has inere alrealy pointed out in the "Biological Note," it is no uncommon
 d,w spring tile huge colonies of J. y^{\prime} mmanan and J. juncce as well as 14. $/$ tout and other Alcyonaria swaying to and fro in the air.

XXXVII. Geographical Distribution.

The great importance of the (reographical Distribution of even a small group of animals, but especially those whose carly life is pelagic and whose adult life is selentary, is becoming more and more evilent. Such knowledge, combined with systematic oceanographical observations, may eventually help to solve many problems that at present are a source of great perplexity to the biologist.

It is premature to attempt such a distribution of Juncellids; but in view of the fact that in this memoir a general survey of the group, so far as it is known, has been given, and as the references to localities, especially in the case of the older species, are extremely scattered, the following summary may serve as a basis for a more detailed study when further records are forthcoming.

Although doubt may exist as to the specific determination of those species arded as an appendix to the genus Juncella, it may be useful to include them here, inasmuch as they are in all probability Juncellids.

It has been considered inadvisable with the limited records at our disposal to draw any conclusions as to the dispersal of these organisms, as to their origin as a part of a littoral fauna, or as to the probability of their being originally indigenous in certain areas.

Distribution of the Juncellc-group of Gorgonellids.

The Juncella-group of Gorgonellids occurs both in the Atlantic and l'acific waters, but almost entirely within the Tropics of Cancer and Capricorn, and also chiefly in the Pacific Ocean. The extreme records North and South are "Off Japan" and "Off Cape Colony." The following are the chief centres :-(1) Red Sea, (2) Persian Gulf, (3) Laccadives, (4) Maldives, (5) West Coast of India, (6) Ceylon, (7) Andamans, (8) Mergui, (9) Bourbon, (10) Mauritius, (11) Cape Colony, (12) East Indies, (13) Japan, (14) East Coast of Australia, (15) West Coast of Florida and in the Atlantic, (16) East Coast of Central America, (17) N.-E. of South America, (18) Azores, (19) Mediterranean Sea.

Genus Juncella.

This is the most widely distributed genus in the group, and is almost entirely a Pacific Ocean form.

Genus Scirpcaria.
This genus is entirely restricted, with the exception of S. flogellom, so far as the present records show, to the Pacific Ocean.

Gemes Nitellu.

This genus is entirely restricted to the Pacific Ocean.
Let us now illustrate "associations of species" in diflerent localities.
(a) Laccadives, . . S. aurantiaca, S. quadilineata, and N. reticulata.
(h) Maldives, . . . J. juncere, S. furcato.
(c) Ceylon, . . . J. ycmmacca, J. trilineate, S. aurantiaca, S. ciyloninsis, S. furcata.
(d) Audamans, . . J. juncia, J. racemosa. S. hicksomi, S. verrecosa, S. anomaln, S. andamencusis, S. remoser.
(r) Mergui, . . . J. juncce, J. gommaccex, S. fuercate.
(f) N.-E. Anstralia, . . J. junece, J. gememeсес.
(I) Bourbon-Mauritius, . J. juncen, J. yemmecere, N. dichotoma.
(h) Cape of Cood Hope, . S. fluygllom, S. furcula.

R-ferences to rarious larye Collertions of Jumellids.
"Challenger" Collection.
Thi- enfloction was make hy H.M.s, " "hatlengere", during her renise fomel the word, $180: i-i b$. The eluecmens are depsited in the hritish
 of the "Challenger" Collections, vul. xxxi., pp. 153-181.

HESCMDED AS

. Tumarlla jurueen. . . Tvecella juenera, var. athe, p. 158.
. Tvencella juncea, . . . Juncolla barbadensis, p. 159.
. Funcalla gommaron. . . . Tunarlla gommacora, p. 158.

- Temarlla grmmacon, . . Ellisella mnculata (pars), p. 160.
. Tuncolla racemasa, . . . Juncolla racomosm, p. 159.
scripararia maculain, . . Ellisella maculata (pars), p. 160.
Seirparia ponfounda, . . Seirpervella profunda, p. 155.
Seirpoaria profenda, . . Scirparatla gracilis, p. 156.
Scirperarin profundn, . . Scirpervello rubra, p. 157.
Nicrlla moniliforme. . S'cirparalla moniliforme, p. 156.

"Alert" Collection.

This collection was made during the Surveying Voyage of H.M.S. "Alert," during the years 1881-82. The Gorgonellids were reported on by Ridley in "The Zoological Collections" of H.M.S. "Alert," 1884, pp. 345-349.
described as
Suncella juneca, . . Juncella juneca, p. 345.
Juncello juncect, . . Juncella fragilis, p. 347.
Juncella yemmaceet, . . Juncella yemmacer, p. 346.
Juncella yemmacea, . . . Juncella clongata, var., p. 346.
Scirpearia peetinata, . . Otcnocella pectinata, p. 348.
Seirpearia maculata, . . Ellisella calemus, p. 348.

Ceylon Colufction.

This collection was made by Professor Herdman in the Ceylon Seas in 1904 while investigating the Pearl Fisheries of the Gulf of Manaar. The type-specimens are deposited in the British Musemm, and were reported upon by Thomson and Henderson, "Ceylon Pearl Oyster Report," Royal Society, 1905. Supplementary Report, No. xx., Alcyonaria, pp. 311-315.

DESCRIBED AS

Maldive Collection. 1.

This collection was made by Mr. Stanley Gardiner in 1900, and was describel by Hickson in "The Fauna and Geography of the Maldive and Laccadive Archipelagoes," vol. ii., part iv. "The Alcyonaria of the Maldives," part iii., pp. 816-823.

DESCRIBED AS

Malifye Collection. II. (clescribed ly Thomson and Russell, 1910).

described as

Jincella gemmacea, - . Juncella gemmacea.
Secirpertiva flagellum, . . Seirpearia flayellum.
Seimpenvia aurantiaca.. . Scirpocerella autrantiaea.
Niedle dichotoma, . . Nicella dichotoma.

Monaco Collection. I.

The colloctions malle be the lrince of Momaco, during the scientific verage of the yacht "Hiromdelle" in thr Nowth Athantic Ocean, in 1886-88, (antain several comemedils. These have been reperted upen by stomer, in "Ihesultats des Campagnes Scientifiques du Prince de Monaco," 1901, fase, xx., $\mu \mathrm{p}, 52,5 \%$
described as

Indhan Muselm l)efi-Sea Collection.

 "Investigator" in the Indian Ocean. The specimens are deposited in

IDESCHBED AS

Jencollar racemosele. - Juncelle minüucce, p. 81.
Scirpactia profunte, . . Sérpecelle moniliforme, p. 82.
Sciopsaria allue, . . . Secimpearella allue, p. 82.
Seirgneria thomsemi, - Juncella rlongule, p. 81.
Nivelle flubillata, . Niwolle flebrilhete, p. 80.

Inman Mrsely Littoraf, Collection.

 "Investigator" in the Indian Ocean.

 Museum Alcyonaria, 1909: But specific names were given only to a few;
descriptions of the others were tabulated, so that the following list will enable these to be identified.

	described a
Juncella juncea,	E. and F
Juncella gemmacea,	0.
Juncella trilineata,	R.
Scirpearia peetinata,	M.
Scirpearia andamanensis,	N.
Scirpearia anomala,	Q.
Scirpearia curanticen,	B.
Scirpectio furectce,	H, G, D, I.
Scirpectria furcata var. robusta,	
Scirpearia ramosa,	
Scirpearia vernueosa,	C.
Scirpearia hiclsoni,	
Scirpearia quadritineatte,	J.

Wood-Mason Collection.

This Collection was made by W. J. Wood-Mason in the Indian Ocean. A few of the specimens were described by Thomson and Simpson, but the majority of then were left over for incorporation in this paper. The types are deposited in the Indian Museum, Calcutta.

> Juncelle racemosa.
> Juncella genmacere.
> Scirpearia aurantiaca.
> Seippearia furcata.
> Nicella flebellata.

Mergui Collection. I.

This Collection was made by Dr. John Anderson for the trustees of the Indian Musemm, Calcutta, where the specimens are deposited. They were described by Ridley in the Journal of the Limean Society, vol. xxi., pp. 240-243.

DESCRIBED AS
Juncelle juncea, . . . Juncelle freqilis, var., p. 242.
Juncelle gemmacea, . . . Juncella gemmeece, p. 241.
Scirpcaria pectinata, . . Ctenocella pectinuta, p. 243.
R.I.A. PROO., VOL. XXVLI., SEOT. B,

Mergui Collection. II.

This Collection was made by Simpson and Brown in the Mergui Archipelagn, Burma, in the spring of 190\%. The specimens are deposited in the Natural History Museum, Aberdeen University, and are reported on here for the first time.

They include the following species:-

- Tuncella juncea.

Juncella yemmucea.
S'ciopseria pectinatu.
sciopeceriue furcute.
Serirguriue furcutue var. robusta.

Australiax Museum Collections.
This ('odtertion wis mate hy Mr. ': Hedley for the Australian Museum,
 the "Menoirs of the Australian Museum XII.," The Alcyonaria, Part ii. (1897 ?), pp. 318-:320.
described as
Nicella dichotome, . . Nicella lusa, p. 318.
síalle flubellete, . . Vermarella flubelleta, p. 319.

BIBLIOGRAPHY. ${ }^{1}$

i. 1817. Cuvier, Règne Animal.
ii. 1830. Cuvier, Règne Animal. Nouv. Edit., t. iii, Paris.
iii. 1846. Dana, J. D., Zoophytes, United States Exploring Expedition. Philadelphia.
iv. 1861. Duchassaing et Michelotti, Mémoire sur les Coraillaires des Antilles. Mem. R. Acad. Sci. Torino, 2 ser. xix.
v. 1866. Duchassalng et Michelotti, Supplement, ibid., xxviii, pp. 97-206. 11 Plates.
vi. 1786. Elus and Solander, The Natural History of many curious and uncommon Zoophytes. London.
vii. 1797. Esper, E. J., Die Pflanzenthiere in Abbildungen nebst Beschreibungen. Nürnberg, 1791-1797. 4 vols.
viii. 1896. Germanos, N. K., Gorgonaceen von Ternate. Abh. Senck. Nat. Ges., xxiii., Heft. i., ppo, 145-184. 4 Plates.
ix. 1857. Gray, J. E., Description of new Genera of Gorgoniadae. Proc. Zool. Soc., pp. 158, 159.
x. 1857. Gray, J. E., Synopsis of the Families and Genera of Axiferous Zoophytes or Barked Corals. Proc. Zool. Soc.
xi. 1859. Grax, J. E., Description of some new Genera of Lithophytes. Proc. Zool. Soc., xxvii, pp. 479-486.
xii. 1870. Gray, J. E., Catalogue of the Lithophytes or Stony Corals in the Collection of the British Museum, London.
xii.c. Hiceson, S. J., The Cambridge Natural History, vol, i., pp. 329-364.
xiii. 1900. Hickson, S. J., Alcyonaria and Hydrocorallinae of the Cape of Good Hope. Part 1, Marine Investigations in South Africa, i., No. 5, pp. 67-96. 6 Plates.
xiv. 1904. Hickson, S. J., The Aleyonaria of the Cape of Good Hope. Part ii., Marine Investigations in South Africa, vol. iii., pp. 211-239. 3 Plates.
xv. 1903. Hickson, S. Jo, Aleyonaria of the Maldives, Fauna and Geogr. Maldives and Laccadives, ii., pt. 4, pp. 807-826. Plate Lxvii.

[^63]xi. 1- 29. Hifec. Is L. The Gorgonacea collected by Dr. Willey. Willey's Zool Results, pt. 11, pp. 195-206. 2 Plates.
 Mr. J. Stanley Gardiner at Funafuti. Proc. Zool. Soc., London, pp. $46-52.4$ Plates.
xviii. 1nt:3. Johnsos, J. Y., Description of a new species of Juncella. Proc. Zoul. soc., London, pp. 505, 506.
xix. 1at. Johnson, J. Y., Description of a new species of flexible Coral belonging to the genus Juncella obtained at Manleira (J. fluyollum). Ann. Mag. Nat. Hist, 3 ser. xive, p. $14^{\prime 2}$.
xx. 1ヵio. Lext, Saille, Trans. Foy. Micro. Soc., p. 92. Plate xtil, tig. is.
xxi. 1×93. Kent, saville, The Great Barrier Reef of Australia

I'art 1. Die Alcyomarien und Malacodermen, p. 59. 4 plates.
saiii. $1 \times 60^{\circ}$. Kulliker, A. Icones Histiulayicae, pp. 131-142. 8 Plates.
asiv, Imbl Lamaluk, Histoire Naturelle des Animaux sans Vertébres. vol. ii., l'aris
 p. 419
xxvi. Insi. Milue-Enwarns and Hume, Histoire Naturelle des CorailLaires ou P'olypes proprement dits. 3 vols, $1857-\mathbf{1 \times 6 0}$.
xivii. Pallas Charakteristik der Thierpllanzen. pp. 224-6.
xxviii. 1766 . P'allas, Elenchus Zopphytorum.
xxix. Is… Hibley, Stcabt O., Contributions to the knowledge of the Alcynaria I'art I., Ann. Mag. Niat. Hist., 5 ser. ix., pp. 12.5-133. 1 Ilate.
 $1-4-103$
asxi. 1es3. Himbey. Stcant O. The Coral-fauna of Ceylon, with descriptions of new species. Ann. Mag. Nat. Hist., 5 ser. xi., 14. $250-262$.
assii Iss\%. Hinley, stlahit O., Fepprt on the Alcyoniid and Gorgoniid Alcyonaria of the Mergui Archipelago, collected for the Indian Mnseum. Journ. Linn. Soc., London, si, pp. 2232ti. Z I'lates
xxxiii. 1884. Ridley, Stuart O., Zoological collections of H.M.S. "Albert," London.
xxxiv. 1878. Studer, Th., Uebersicht der Anthozoa Alcyonaria welche während der Reise S.M.S. "Gazelle" um die Erde gesammelt wurden. Monatsber., Akad. Wiss., Berlin, pp. 632-688. 5 Plates.
xxxv. 1887. Studer, Th., Versuch eines Systemes der Alcyonaria, Arch. Naturges., liii., pp. 1-74. 1 Plate.
xxxvi. 1891. Studer, Th., "Note Préliminaire sur les Alcyonaires provenant des Campagnes du Yacht l'Hirondelle." 2 Partie Mem. Soc. Zool. de France, vol. iv., Paris.
xxxvii. 1894. Studer, Th., "Alcyonarien aus der Sammlung des Naturhistorischen Museums in Lübeck," Mitteilungen der Geog. Gesell., und des Naturhist. Museums in Lübeck, 2 ser., Heft, 7 und 8, pp. 103-128.
xxxviii. 1901. Studer, Th., "Alcyonaires provenant des Campagnes de l'Hirondelle." Resultats Campagnes scientifiques du Prince de Monaco, Fasc. xx., pp. 64. 11 Plates.
xxxix. 1905. Thomson, J. A., and Henderson, W. D., Alcyonaria; Ceylon Pearl Oyster Fisheries Report. Roy. Soc., London, pp. 271328. 6 Plates.
xl. 1906. Thomson, J. A., and Henderson, W. D., The Alcyonarians collected by the R.I.M.SS. "Investigator" in the Indian Ocean. The Alcyonarians of the Deep Sea. Calcutta, pp. 79-83.
xli. 1909. Thomson, J. A., and Simpson, J. J., The Alcyonarians collected by the R.I.M.SS. "Investigator" in the Indian Ocean. The Littoral Alcyonarians.
xlii. 1909. Thomson, J. A. (unpublished).
xliii. 1909. Thomson, J. A., and Russell, E. S., Alcyonarians of Sladen Trust Expedition. Trans. Linn. Soc. (Zool.) xiii. (1910), pp. 139-164.
xliv. 185̈-. Valenciennes, mss. Coll. du Jardin des Plantes, Paris.
xlv. 1855. Valenciennes, Abstract of a Monograph on the Family Gorgonidae. Ann. Mag. Nat. Hist., vol, 16, ser. 2, pp. 177-183.
xlvi. 1855. Valenciennes, Extrait d’une Monographie de la Famille des Gorgonides de la class des Polypes. Comptes Rendus, xli, pp. 7-15.
xlvii. 1864. Terril. A. E., List of the Polyps and Corals (sent by the Museum of Comparative Zoology to other Institutions in exchange), with annotations Bull. Mus. Comp. Zool, Harvard, i., No. 3, pp. 29-40.
alviii. I-6j. Verrill. A. E., Synopsis of Polyps and Corals of N. Pacific Expedition, Part ii., Alcyonaria Proc. Essex Instit., vol. iv., pp. 148-196. Plates v . and rI .
alix. 1997. Whitelegen. Th. The Alcyonaria of Funafuti, Part ii. Mem. Australian Mus., iii., pt. 5 , pp. 307-320. 2 Plates.

1. L-n. Whaft, E. l'. and situder. Th., Report on the Scientific Results of the Voyage of H.M.S. "Challenger." Zoology, vol. xxxi, Alcyonaria

hescriftion of plates.

Fig

1. Polyp of © worponria pertinnta enlarged $(\times 25)$ to show structure.
 Imlys.
 the "rilges and depressions."
2. n-ף. "Cluhs" of Junolln, ((-7) showing characteristic variations.
3. n and b. Two kinds of double-clubs
4. Variation forms of double-clubs.
5. In mble-wheels or capistans.
 spindle (h) to the simple spindle (r).
 nature of the polyps, (2) near the base of the colony, (b) midway, (f) near the tip.
 levels of (11), (b), and (r) correspond to those of fig. 9 .

Fig.
12. Portions of J. juncea var. b. to show the distribution and nature of the verrucae, (a) near the base, (b) midway (non-polyp-bearing aspect), (c) near the tip.
13. J. juncea var. b. Cross-sections at the three levels given in fig. 12 to show the internal structure.
14. Spicules of $J_{.}$juncea.

15, 16, and 17. Three colonies of Juncella germacea, reduced proportionately, to show the difference in the branching at different ages.
18. Three portions of Juncella gemmacea enlarged $(\times 5)$ to show the nature and distribution of the verrucae at different levels, (a) near the base, (b) midway (non-polyp-bearing aspect), (c) near the tip.
19. Transverse sections of J. gemmacea, at levels corresponding to those in fig. 18 , to show the structure of the coenenchyma $(\times 5)$.
20. Juncella racemosa. Portion of colony described in XLI.
21. Juncella racemosa. Colony enlarged ($\times 1 \frac{1}{2}$).
22. Twig of Juncella racemosa to show disposition and nature of the verrucae.
23. Spicules of Juncella racemosa.
24. Terminal twig of Juncella trilineata to show the nature and disposition of the verrucae.
25. Transverse section of Juncella trilineata to show (1) the structure of the coenenchyma, (2) the three large main canals, and (3) the position of three alternating rows of verrucae.
26. Spicules of Juncella trilineata.
27. Spicules of Scirpearia profunda.
28. Scirpearia hicksoni n. sp. Portion near the base enlarged $(\times 4)$ to show the appearance of the aspect devoid of polyps.
29. Scirpearia hicksoni n. sp. Portion near the base enlarged $(\times 4)$ to show the nature of the verrucae on the "crowded " aspect.
30. Scirpearia hicksoni n. sp. Tip of colony enlarged $(\times 4)$ to show the distribution and nature of the verrucae.
31. Spicules of Scirpearia hicksoni n. sp.
32. Scirpearia verrucosa n. sp. Portion enlarged $(\times 6)$ to show the nature and distribution of the verrucae.
33. Spicules of the Seirpearia verrucosa n. sp.

Fig.
34. Srimariin anomuli, n. sp. Three portions enlarged $(\times 5)$ to show the difference in the nature and distribution of the polyps at different levels, (a) near base, (b) midway, (c) tip.
35. Spicules of Scirpectria anomata n. sp.
:Ab-: Silhouettes of the axis of colonies of pectimeto to show different angles of origin for the branches.
29. S. pectinate. Silhouette of axis of a colony to show the crossing of the hranches due to contraction.
40. S. pectimate. Silhonette of axis of a colony to show how a secondary branch may take the place of a primary.
41. Secondary development in S. pactinate.
12. P'ortion near the hase of a culony of s. prefinutu to show the distribution of the verrucae and the large canals superficially.
4. $\%$. h, and c. Transverse sections of S. pectinate to show the structure of the cuenenchyma and the dispusition of the main longitudinal canals, ((1) main stem with numerous large canals, (b) and (c) serumbary banch, at different levels, with only two main canals.
4. "and \%. Two views from the mon-pulyp-hearing aspect of a secondary branch of x. pertinut" to show the disposition of the polyps and alan thoir apmarance when partially expanted, (1) about midway, (l) tip.

4 - Spicules of x pertimatr.
4ni. Colony of Scrimporin chomutu in the Museum of the Royal College of surgenns, Lombon (from a fhmograph supplied lyy Dr. Burne).
47. Spicules of the lioyal Conlewe of Surpeons specimen of Scirprariu clongata.
A. Spicules of the Iritish Musenm sperimen of Sriperavia clongata.
\&थ. Nirpmerine Mupllum. P'ation of Naples specimen enlarged $(\times 6)$ to Show the nature and listribution of the verrucae.

\because 2. I'nern of collony (fig. 51) to show the nature of the verrucae.
$-\therefore$ Longitudinal section through the partion of Serimaria flagollum shown in tig. In to show the internal structure and the attachment of the strong retractor muscles.

- S. Spicules of S'cirpurnion flomillan (lig. 51 specimen).

Fig.
55. Young colony of Scirpearia flagellum (nat. size) (Cape).
56. Portion of colony (fig. 55) enlarged $(\times 12)$ to show the nature and distribution of the polyps.
57. Spicules of Scirpearia flayellum (fig. 55).
58. Portion of a Monaco specimen to show the distribution of the verrucae - $(\times 4)$.
59. Same as 58)
60. Same as 58)
different specimens.
61. Scirpearia thomsoni n. sp. Silhouette of axis to show the nature of the branching.
62. Scirpetriue thomsoni n. sp. Portion enlarged $(\times 6)$ to show the disposition and nature of the verrucae.
63. Spicules of Scirpearia thomsoni n. sp.
64. Scirpearia alba. Two portions enlarged $(\times 5)$ to show the nature and distribution of the verrucae at different levels, (a) near tip, (b) near the base.
65. Spicules of Scirpearia alba.
66. Scirpearia aurantiaca. Portion enlarged ($\times 5$) near the middle of the colony to show the nature of the verrucae.
67. Scirpearia cutrantiuca. Portion enlarged $(\times 5)$ near the tip of the colony to show the nature of the verrucae.
68. Spicules of Scirpearia aurantiaca.
69. Scirpearia furcata. Two views of the same portion of the type specimen of Scirpearia sp. (?) enlarged $(\times 5)$ to show the nature and distribution of the verrucae.
70. Seirpearice furcata. Part of type specimen of Scirpearella sp. B.
71. Scirpearia furcata. Part of type specimen of Juncella elongata (Hickson).
72. Scirpearia furcata. Spicules of type specimen of Juncella clongata (Hickson).
73. Scirpearia furcata. Two views of the same part of a colony from the Indian Collection $(\times 5)$ to show the nature and distribution of the verrucae.
74. Polyp of Scirpeario furcata.
75. Spicules of Indian Collection specimen of Scirpearia furcata.
R.I.A. PROC., VOL. XXVIII., SECT. B.

Fig.
76. Silhouette of axis of "Providence" specimen of Scipearia funcato ($\frac{2}{3} \mathrm{n}, \mathrm{s}_{\mathrm{o}}$)
7. Scirpenvia furcata. Small portion of main stem of "Providence" specimen to show the rerrucae.
TS. Áturnior furnt". Twu views near the base of the second primary branch of the "Providence" specimen.
 the "Proridence" specimen.
 of the "Providence" specimen.

1. Spicules of the "Providence" specimen of Scimparit furcata.
$\therefore \because$ Scirpenria fircata. Complete colony (nat. size) of a young specimen in the Cape Collection.

ה: Semperie furcuer. Purtion enlarged ' $\times 8$) of a Cape specimen to show the low nature of the verncae.
\therefore 4. Scirgenvin furcutn. Portion enlarged, $x \pm$) of a Cape specimen to show the nature of the verrucas.
\therefore s. sirimarin furmin. Portion enlarged! $\times 5$, of a Cape specimen to show the nature of the verrucae.
wi. Cinpuarin furcinta. Purtion enlarged $(x 5)$ of a Cape specimen to show the distribution and nature of the verrucae.
-- Spicules of a Cape specimen of Scimperion furcotr.
-. Simparin furcufn. Two views of a portinu near the midule of a colony in the Indian Ciblection to show the listrilution of the verrucae, (/" poly-learing aspect. (7, nom-proly-learing aspect.
\therefore Epicmles of Indian Collection specimen Fig. 88 of Scirperma furcata.
ra. Three views from a specimen of Scimperian furcata in the Indian Collectinn to show the distribution and nature of the verrucae at different levels. (r) near hase. (\%, midway, (κ) tip.
9. Spicules of Scimpurin jurcatn. (Sperimen fig. 90.)
4.2. Srimanizin firmitn, var. rownsta. Colony (nat. size) to show the general halit anil the distribution of the verrncat.

Q3. Simpario firmatm. var. robvit. Portion enlarged (x 5) near the base to show the mature of the vermeae.
94. Spicules of Scimparin furenta. var riousa. (Andamans specimen.)

Fig.

95. Scirpearia furcata, var. robusta. Three portions enlarged (\times 5) to show the proportions of the different parts and also the nature and distribution of the verrucae, (a) near base, (b) midway, (c) near tip.
96. Spicules of Scirpearic furcata, var. robusta. (Mergui specimen.)
97. Scirpearia andamanensis, n. sp. Colony (nat. size) to show the mode of branching and the general habit.
98. Scirpearia andamanensis, n. s. Portion near the tip of a branch enlarged $(\times 6)$ to show the nature of the verrucae when slightly retracted.
99. Scirpearia andamanensis, n. sp. Portion of a branch enlarged $(\times 6)$ to show the nature of the verrucae when partially retracted.
100. Scirpearia andamanensis, n. sp. Portion near the base enlarged $(\times 6)$ to show the nature of the fully retracted verrucae.
101. Spicules of Scirpearia andamanensis, n. sp.
102. Scirpearia ramosa, n. sp. Colony (nat. size) to show the mode of branching and the general habit.
103. Scirpearia ramosa, n. sp. Portion enlarged $(\times 6)$ to show the nature of the verrucae.
104. Spicules of Scirpeario ramosa, n. sp.
105. Scirpectric ceylonensis, n. sp. Colony one-half nat. size to show the mode of branching and the general habit.
106. Scirpearic ceylonensis, n. sp. Portion enlarged $(\times 5)$ to show the disposition and nature of the verrucae.
107. Spicules of Scirpearia ceylonensis, n. sp.
108. "Challenger" specimen of Scirpearia maculata from Banda. (From a photograph supplied by Prof. Bell.)
109. Spicules of the "Challenger" specimen of Scirpearia maculata.
110. Fragment of Juncella gemmacea, originally described as Ellisella maculata.
111. Transverse section through Scirpearia quadrilincata, n. sp., to show the structure of the coenenchyma and the position of the four main canals.
112. Two portions of Scirpearia quadritincata, n. sp., slightly enlarged ($\times 1 \frac{1}{\frac{1}{2}}$) to show the distribution and nature of the verrucae at different levels, (a) near the tip, (b) near the base.
113. Spicules of Scirpearia quadrilineata, n, sp.
114. Spicules of Nicella dichotoma.
115. Spicules of Nicella flabellata.
116. Spicules of Nicella reticulata.
117. Three portions of Nicellu moniliforme, enlarged ($\times 5$) to show the difierence in the distribution and nature of the verrucae at the various levels, (") near the base, (b) middle of the colony, (c) near the tip.
118. Spicules of Nicelle moniliforme.

Simpson-Gorgonellidae.

Fig. 9.

Fig. 10.

nig. 13.
Smpson-Gorgonellidae.

Fig. 18.

Fig. 20.

Fig. 19.

Fig. 18.

Fig. 21.
Simpsox-Gorgoncllidae.

Hing. 26.

Smpsox-Gorgonellidae.

Fig. 11
Simpsos-Gorgonellidac.

Fig. 42

Srmpson-Gorgonelidae.

Fig. 58

Fig. 59

Fig. 62

Fig. Gt

Fig. 60

a

6
Sumpsos-Gorgonellidae.

Sinpsox-Gorgonellidae.

Smpson-Gorgonellidac.

Fig. 104

Fig. 106

Fig. 10 ह

Hie 105
Fig. 109

Fig. 108

Fig. 110

Fios. 111

1ig. 111

Fig. 112

Fig. 113
Srmpsos-Gorgonellidae.

for

Fig. IIS

\&
Nis. I1E

[387]

VIII.

ON THE CLAIM OF THE SNOWFLAKE (LEUC'OJUM AESTIVUM) TO BE NATIVE IN IRELAND.

By Miss M. C. KNOWLES and R. A. PHILLIPS.

[COMMUNICATED BY R. LLOYD PRAEGER.]
(Plates XX.-XXII.)
Read June 13. Ordered for Pullication June 15. Published July 28, 1910.
Aт the time the second edition of "Cybele Hibernica" was pullished in 1898, Leucojum uestivum was known to Irish hotanists from the single station at Macmine Junction, Co. Wexford, where the Rev. E. S. Marshall had discovered it the year before. Messrs. Colgan and Scully therefore, considering that their knowledge of its Irish distribution was insufficient to justify its admission to the flora, relegated the plant to the appendix of that book, among the excluded species. In the following year, Mr. R. D. O'Brien recorded it from some unembanked land by the Shamon on the Clare side of the river near the Lax Weir, about two miles from Limerick city. On the strength of this additional locality, Mr. Praeger included it in his "Irish Topographical Botany," published in 1900, with a double dagyer lefore its name, signifying " probably introduced."

Since the publication of these two books, Leucojum uestivum has been found in several other Irish stations. Its distribution on the Shannon, where it proves to be aboudant, has been largely extended, and a good deal of information about the plant in general has accumulated. We promse to lning all this, together with the results of our own investigations, into me paper, so that botanists, having the full data before them, may he alde to form an opinion as to the stauding of the plant in Ireland.

It may be well at the outset to say a few words about the plant itself.
Leucojum aestivum possesses a large bulb, rooting perhaps 10 inches to a foot deep among the stools of willows and marsh reeds in swamps and ditches in the estuaries of rivers, and in marshy meadows along their banks. It also occurs in similar situations at storm-level on the shores of inland lakes and rivers. The leaves are hibernal. The flower scapes are developed, in Ireland, early in May, growing to a height of about 18 inches to 3 feet over the surface,
the time of flowering lasting until the first or second meek in June. Large three-valvell capsules, rarsing in shape from priform to globose, and each containing sereral fertile shiny lhack seeds, follow the flowering. As the capsules ripen, the scape and leaves fall and soon decay, or are perhaps devoured by the smails and slugs that frequent these marshy places; so that it is almost impusihle tu bistinguish the plant out of the flowering season. The capsules split (1, when ripe, ant the seeds, which are quite buyant, are carried off by the flonl- and spring-tides, and distributed here and there among the reeds and hasho: that fringe the creeks and river-margins, there to germinate and grow.

It is the view of some botanists that Leucojum aesficum has possibly been

 evidence seems to exist. We do not intend to try to disprove this ; that would be to try top prove a neqative; but we propose to show that the habitat and
 le: मutive, after with its eremmenes in England and Ireland, and that in its
 -ithation it atterts, and the genetal comitions umber which it grows, are such as to prectude all idea of its being an introduced plant.

Thempanime map (l'hate XX.) has hen pepared to show the dise Hihutinn if . :................... in Europe. In making it, we have comsulted

 the National Musemm of Ireland. A glance at this map will show that the plant oceurs in almost every country in Europe. It is found in the Crimea, in the estuary of the Danule, in marshes and wet places in Ioumania, Servia, linsnia, and Slavonia, countries through which the Danube flows; it occurs
 in C'her and Tawer Anstria. In Turkey it grows in Macedonia and Thrace, Imontering the Areran Sea, the Sea of Marmora, and the Black Sea. It is rare in Cirence, leing mentioned only; so far as we can find, from swamps and wet marshes in Eutroea and on the istand of Scupula. It is abundant in the lowlying regions of Imalmatia, Croatia, and Carniola。 In "Die Vegetationsver-
 a very interesting account of the halitat of the plant in the countries bordering the eastern shmers of the Adriatic. All alnng the coast in the estuary of the Narenta and rither rivers there are extensive marshes, which extend inland fin some distance, gradually passing from salt-water swamps into fresh-water

Knowles and Puilips-On the Claim of the S'nowfluke, 9 - 389

ones. Here and there are large open stretches of water and deep pools. On the surface of these, where the brackish atm fresh waters intermingle, float the Yellow and White Water-lilies, Limmanthemum, Potamogetons, and other plants not found in the salt-water swamps. The edges of these ponls are fringed with impenetrable stretches of reed vegetation formed of seirpus lacustris, S. maritimus, Eleocharis palustris, Cludinm Muriscus, Typha, \&e., the Howering element of this uniform association being formed hy the Snowflake (Leucojum aestivum), the Yellow Iris (Liis Pseuducorus) and the Flowering Rush (Butomus umbellatus).

In Italy the plant is recorded from wet places and marshy meadows in the neighbourhood of the Gulf of Venice, on the banks of the River Po, and it is said to be common in similar situations in the northern part of the peninsula, especially on the shores of Lakes Maggiore, Como, and Garita. It is also found in inundated swamps along the course of the River Arno. In Switzerland it has been formd in wet meadows at I verdon, Lake Nenchîtel, and at Nidau at the north end of Lake Bienne. In southern France it occurs in ditches, marshes, and wet meadows along the Mediterranean from Nice to the Pyrenees, in Provence, in Languedoc, and in Roussillon. In western France it occurs in the estuary of the Gironde, and is abmodant in the province of Tarn-et-Garonne. In northern Frauce it is very common in two provinces drained by the Loire, viz. Loire-et-Cher and Sarthe. It is recorded from Belgium and Holland by Nyman in his "Conspectus." We have seen specimens from Malines; and Messrs. Krelage and Son of Haarlem, to whom we are indebted for specimens of the Dutch cultivated Lcucojum aestivem, write that " L. acstirum is also a wild growing plant in Holland." In Germany it grows in Pflaz and Lothringen, in wet meadows of Westphalia, on the banks of the Lower Rhine above Speyer' ; it is found at Hamburg on the estuary of the Elbe, and is abundant in many places about Liibeck. Some of the German floras are doubtful about the standing of the plant in Germany, as it has been under cultivation for a long time in that country; hut we can find no direct. evidence to show that it is an escape. It also grows in Denmark on the island of Fünen and other places.

The extra-European countries in which Loucojum trostirem has been found are Asia Minor (the entire north) and Persia. In Asia Minor it is found in the tracts of country bordering on the Black hea and the sea of Marmora. It is also recorded from the Transcancasian provinces. In Persia it occurs in the north of the province of Ghilian, which lies alomg the shores of the Caspian Sea.

Thus we see the plant has a continuons distribution from the Caspian Sea to the Bay of Biscay and the Nonth sea; that it erows whelly alons the hank
of the larger rivers, such as the Dnieper. Dauulne. Po. Fhone, Garmne, Loire, Fhine. Elbe. ©c... and on the maryins of large lakes; that it is a plant frequenting a uniform habitat-namely, either fresh-water swamps in estuarine lamls which are occasionalle overtlowed hy the tide, or the tlooded margins of lakes and rivers.

In Ensland Lo........", wisfonn grows under similar conditions. Certainly it was in such a situation that its discoverer, Curtis, found it, as will be seen from the fullwing accoun taken from the "Flora Londinensis," vol. v., published 1788:-"Lencojum aestivem is found undoubtedly wild betwixt Grienurich and Troblerich, about half a mile below the former, close by the Thanesibe, inst alowe highwater mark, growing (where no gaten, in all probability, could ever have existed) with Arundo Phragmitcs, Caltha palustris, Oenanthe crocata, and Anprica syluratris:-Professor JacQuin, who figures it in the Flora Avsiriaca, and Scopoli, in his Flora Camiolica, describe it as growing in similar situations; their words are, 'Crescit in protis udis at suh pulustrimus.' It has also been found in the Islc of Dogs, which is the opprsite shore." He goes on to say: "How so ornamental a

 our island, and have no doubt but it will be found in many other parts of it."

That Irumjum arsirum has been nerlonked for so long in these islands
 and that the situations in which it grows are wet, unpleasant, and often

 clumps.
("urtis"s prelictiun was fulfilled; for in Watson's "New Botanist's Guide,"
 Berks, Oxford, Warwick, Westmorland, Durham, Northumberland (?)." In the linal floras more farticulars are given abrout the habitats of the plant. In Kont it is "river-siles and arljacent marshes"; in Oxfordshire, "moist meadows aml marshes near rivers." "usier holts and shady places by the Thames sile"; in sussex, "wet meatows"; in Dorset, "wet meadows and dit hes"; in Middlusex, "wet marshes and rivers"; in Northumberland, "a mill dam near Heatun"; in Westmorland, "a small island in the river about

Knowides and I'mbitps- On the Clume of the Sunwfulte, dre 891

always the same kind of situation. There is a specinen from the Inevonshire station in the Herbarium of the National Museum, Dutblin, labelled, "Semi-tidal marsh, Totnes, Devon. June, 1876. Ex. Herd. Th. Chaullee." The plant is supposed to be extinct in the Northumberland and Westmorland stations. We have, however, recently seen a specimen from a Westmorland localityviz., the mouth of the Rothay where it llows into Windermere-collected in 1894.

The earlier English botanists were divided in their opinion as to whether Leucojum aestioum should be regarded as mative. Curtis, the discoverer, as se have seen, was satisfied ou this point. Watson, however, called it a denizen -that is, a plant "At present maintaining its habitats as if a native species, without direct aid of man, but lialle to shne shipicion of hating heen miginally introduced by human agency, whether by design or accilent"; and he gives Aconitum, Chelidonium, Saponaria, Myrrhis, and buxus as examples of what he means by denizens.

Most of the botanists of Watson's day were influenced by his views on this question. The trend of opinion nowadays, however, especially among those who have studied the plant in situ, would seem to be in favour of considering Lcucojum acstivum native in Englanul. E.s. Marshall holts that it is native both on the Thames and in Ireland. Druce considers it native in Oxfordshire. Hind records it as native in Sulfolk. Dumn, in his "Alien Flora of Britain," says, "As its undoubtedly native range includes Nurthern Continental Europe, it may be considered as a rare native in Britain also." Sowerby in "English Botany," after mentioning that it is apparently native by the Thames, adds that in its typical form it is less often met with in cultivation than L. Hermendeziz, which has smaller flowers, and frequently does duty for L. asstivum in Botanic Gardens. We also found this to be the case, and have seen L. pulchollum (L. Hermandezii) labelled L. acsticum in more than one Botanic Garclen.

On this point, as the two plants are so similar in general appearance, and so easily confused, it may be well to say a few words about the differences between them. We went very carefully into this matter during the last two seasons, examining and comparing hundreds of fresh specimens from the Continent, from England, and from Treland. (TVe would here gratefully acknowledge the assistance we received from the Kerper wh thew Hedmatum in making out the distinguishing characters of the two species.) Wre fommel that the edges of the scape in L. mulchellom are quite entire, whereas in L. acstivum they are characterized by what appear to be rough translucent teeth. These are easily seen when the plant is held up to the light. We were much puzzled by these teeth, as we could find mo reference to them in
 \therefore.in lifh retimens we were at first inclined to think that perhaps our

 L. - - bimy =ay-- Peluncle . . Very entire at the edges, not

 _- : S.......i I wetivam is the th the epidermis running out beyond the green pronchyma, whilst in L. pulchellum this is not the case."

1: I. ... $1 . .$. - 1 the is hander aml the style is longer and stouter, $\therefore \quad \therefore \quad \therefore$ at the chlat withern is paler (Ereenish-yellow than in l. $f^{\prime \prime \prime}$ h. ll_{1}, \ldots. There are other differences between the two species. For
 : ... : . : liat the imo chief chamaters to be

 I.:n_ - maller in all its parts. it = leaves narrower

 prentrceit three or funt weeks carlier than those of L. acstirum.

We foum? L. puldworm more frequently grown in Irish gardens than I., ". Jiown : yet L. pulthellum has not leen found in wild situations in Ireland. Ihum, in his "Alien Flora of Pritain," says of L. pulchellom-"Grown in

 of It puldhellum, and they are all from gariens."
 and Englami. let us turn to Ireland.

Is already stated. Lueriom acstirnon was first recorded for this country l,y dhe liev. E. \& Marshall, whe early in June. 1897 , found it in a swamp ly the river shany, near Macmine Junction, Co. Wexfort. Mr. Marshall countout bu-sul fino sprimens in flower or froit, and saw nothing in the :monnmlingz to thake him druht its heing indigenous.

Wr the erth May. 1909. we visited this linality, and found the plant

Knowles and Pifillips-On the Claim of the Shomplethe, dre :30:3
in Dr. Fogerty's photographs, Plate XXX., figs. 1 \& ${ }^{3}$)-an extensive harkish marsh covered with Phragmites, Carex riparia, Cladium Alaiscus, and other truly native estuarine plants. The only garden near the place is that connected with the castle on the opposite site of the railway line. This we searched, and found no trace of Leucojum in cultivation there, nor was the plant known to the proprietor or his gardener.

In the "Journal of Botany" for October, 1908, Mr. Marshall reiterates his opinion that Leucojum ocstimm is native in Ireland, and cites Miss Kowles as agreeing with him. In the same note he states that the plant has lieen found over a wide area in Connaught, which remark is rather misleading, as Co. Clare, to which he evidently refers, though west of the Shannon, luelongs to Munster.

The next discovery of the Snowflake in Ireland was made by Mr. R. D. O'Brien, who in 1897 found it growing in the meadows and among willows at Parteen, Co. Clare, from the railway bridge to the Lax Weir, about two miles north of Limerick ; and up the creek at Whitehall as far as the tide goes. The following spring Mr. O'Brien got it on the Limerick shore above the railway bridge, and since then its known range along the Shannon has been greatly extended. It occurs among the willows on the bank of the Abbey River, and on King's Island. These stations are all above Limerick. Below the city it is found here and there among the rushes on the south bank of the river, from below the docks to the mouth of the Ballynaclough River, where it is exceedingly almment ; also sparingly along the marshy banks of that stream for half a mile towards Ballinacurrat. On the north bank of the Shannon we have seeu it far out on the muddy shore at Coonagh Creek. Further down, the Shamon has not yet been explored; but so far we see that it occurs in almost every suitable spot along a stretch of six miles. Further west, on the Maigue, an important tributary of the Shamon, it grows among willows near Adare, and also in quantity on unembanked land by the Greanagh Fiver from Curragh Britge to where it joins the Maigue.

The accompanying photographs (Plate XXII., figs. 1 \& 2), taken by Dr. George Fogerty, give an excellent idea of the plant in its matural hahitat on the flat banks of the Ballynaclough estuary, where it grows most luxuriantly: thousands of individual plants and small clumps, and several large clumps, measuring 4 and 5 feet across, are scattered over an area of several acres, associated with Caltha palustris, Cuchleariue anyliea, Lychnis Flos-cnculi, Oenanthe crocata, Angelice sylvestris, Myosot is pelustris, Aster Tripolium, Tume.. crispus, Orehis incarnate, Elcocharis pahestris, Scirpus lucustris, C'erex ripuria. C. paludose, Phragmites, and other species characteristie of such situations.

During the month of Xar, the Snowflake is a most conspicuous object in this station. hut after that it is completely hiklen ly the dense growth of Phruphites. which reaches 10 to 12 feet in height : and we have found on penetrating this jungle early in July, in order to obtain some fruiting shemens, that alth ch we hal mollected the plant here in flower a month
 clumps could be located.

 somewhat similar to that of Lencojum, finds its only lrish habitat. And here also, as well as in the marshes of the rivers Parrow, Nore, and Suir, the

 the rivers of the Mediterramean region, is exceedingly aloundant.

For many miles the land on each sile of the Shannon is enclosed between high embankments, inside which Lencojum has not been found, probably freause the marshes having been reclaimed for the cultivation of pasture grases anl wher cripls, all the suitalle habitats have disappeared. The margins of the creeks flowing to the Shannon, where it should be found, are chasely grazed by young stock. On this sulject Mr. O'Brien says that it seems to be one of the conditions of the plant's existence that it should come within the wash of the spring tiles; and in the "Limerick Field Club Joumal," 190 ", he apty writes: "Its true habitat is round the bushy creeks amd lagemen at the verges of the thlal marshes-refuges that have been alnost atobliamet hy the embankment of the riverain lands, and by ploughing the con mase fur corn.

In Mety, 1900, Mr. F. Nichmson sent sperimens of Leucajum acstivem to Mr. Irawir from Killatry lione, alnut une mile from Waterford, and reported that it had twen known here for nearly forty years. Mr. Nicholson informs nis it was firsigathered here in 186?. We visited this station on the 30th wif May. 1 sops, lut were unsuccessful in our search for the plant. This season. on the lGth of May, Mr. Mhillips mate another search, and found "me lare" clump. It was growing in a very wet plare, and he had to wade to secure a elmeimen. Mere plants would no douht have been seen by Mr. Ihillips if he had not been pressed fur time; for Mrs. White of Wextmome. Watorimel, writes that she amb hor son went to look for Lenmann "eximm in this marsh on the 15th May, aml found it abundant. Mrs. White ays: "We fomma great gnantity not where we found it before, Int whll intw the marsh, and greatly hithm ly the grass stems-several lance patehes, each almint a suare garil aml hmilreds of hooms, so it is

Kxowles and Phillips-On the Claim of the Shomflete, dee. 395
really very plentiful. The place it grows in is often completely under water, but happened to be moderately dry at the time we found it. It was in full bloom-only a comparatively few unopened buds, and a good many faded flowers." The spring of 1909 wis an early me, and no doult the plant was out of flower when we looked for it here on the 30th of May; at any rate four people, all well acquainted with the appearance and hatitat uf the plant-ourselves, Miss McArdle, and Dr. George Fogerty-spent a whole morning searching the swamp without finling any trace of it. This unsuccessful search shows, we think, how very easily the plant may be overlooked, and also how little reliance can sometimes be placed on negative evidence.

The Kilbarry station is an extensive marsh coverel with Phragnites and other exclusively native plants. It is drained by a tributary of the Suir. During high spring-tides this stream (locally known as John's Pill) werthows its banks, Hooding large tracts of marshy ground. Thus the conditions of habitat here agree with those existing in the Slaney and shannon stations. Paludestrince confusa, which accompanies Levcojum acstivum in the Shannon, is abundant here also.

The Snowflake has also been found by the Clodagh River, another tidal tributary of the Suir. We were unable to visit this station; but the Rer. W. W. Flemyng, the finder, kindly sent us some blooms of the plant from bulbs in his garden, brought in there from the wild station ; anl they are the true Leucojum aestivum. Other cases of the transfer of this species from marsh to garden have come under our notice. Mr. Flemyng says there is not much of the plant in this station; that it was growing besile the river, though its roots were not actually in the water; and that the ordinary plants that grow in such situations were associated with it.

Early in 1909 we were informed of another station, discovered in 189, by Mrs. White, of Clonageera, Queen's County. Under the direction of Mr. White we risited this locality in May last, and found that it is a large swamp, by the river Erkina, near its junction with the Nore, albout half a mile below the village of Durrow. Here again the plant is aboudant in the milst of perfectly natural surroundings ; for, though the river is not tidal, the marsh, at all times very wet, is during Hoods completely inundatel. Its assuciates in this place are all native plants. Among them we noticed Remunculus Lingue, Caltha palustris, Anyelica sylvestris, Menyenthes trifoliata, Acntha hirsuta, Sparganium simplex, S. vamosum, Typha letifolia, Scirpus lacustris; various sedges, including Cereastricta and C. riparia; Phalarisarundinaceo, Phraymites communis, \&c. On inquiry we found that the Leucojum was known here for at least forty years. Being so near the village, there are flower and resetable R.I.A. PROC., VOL. XXYII., SECT. B.
gardens in the ricinity; but on searching those nearest to the swamp we faile i: ind the sumtiake in any of them and Mr. White has since informed us that the plant is unkown in any of the gardens in the district. Among the mollusca of this marsh we have taken the very rare little land snail Fortigo moulinsinna, found elsewhere in Ireland only by the river Barrow; in England confined to a few of the southern counties; and on the Continent, like Lumenjum ussticum, widely distributel through the southern and western countries.

In 1905 a large patch of Liucojum ustizum was discovered by Mr. R. W. Binghan in a boy a few miles from Dungannon, Co. Tyrune. This statement was pullishel in "Additions to Irish Toprographical Dotany for 1905" (Irish Naturalist, 1906 , 1. 60) ; and Mr. Praeger, who has seen the place, informs us that the plant grows in a spot that must have heen on the shore of Lough Neagh before it was contracted by the Iham Drainage Works.

In the Irish Naturalist. 1906 , Mr. WV. J. C. Tomlinsou reports the occurrence of Lruriginn "usirum in a hoggy wod which borders the Lough Neagh shore leetween the water's edge and the Deer I'ark wall, about two miles from Antima town. It was growing about the centre of the wood, which consists of alder, hirch, and willuw, with a lense undergrowth. Associated with the Lemeujum were C'ulthu pulusticis, Rununculus Flommulu, Oichis mascula, and silln nutns. There were only a few plants of the Snowtake, which, from M. Twminsun's account, seems to be, in common with many other rare marsh sperfe- of Lumgh Seagh district, failing on account of drainage.

Le "....j"n "nstirm has als, been reconded from damp meadows at Lisgoole, ("), Fermanash, in Mr. I'raener's "Flora of the West of Ireland," p. 192.

A: halitats fur L o ncojun nosticum, the Tyrone and Antrim stations, being So far rennenl from tidal influence, seem at first sight to be abnormal; but luth are in the neinhturnoud of Lrugh Neagh, and we have already shown that the plant is native on the shores of large lakes in Italy and Switzerland. Monever, we must remember that the thora of Lough Neagh includes several maritiue or submaritime plants not nsually in Ireland found
 \therefore TuT. Mormombunti. de.

Tos sum up the results of our investigations, we have shown that Leucojum fontion is distributed throughout most of the principal river-systems of
 suuthern rivers under exactly similar conditions; and that in Ireland it occurs spontaneously aud abundantly in at least three of the principal riversyotems of the south, with surroundings and associates that in no way differ from those prevailing on the Continent, where its standing as a mative has

Knowles an! Phillips- On the Claim of the S'nomfluter, ar. :3:97
never been questioned. In the garden Lrncojum "ristirnm can only maintain itself in the cultivated border ; in our experience if planted in the grass it dies. Several people have told us that they have lost the plant in this way ; so that we think it is much more likely that the Snowlake, like Sasifiriga umbrose, the Foxglove, the Welsh Poppy, and many other beautiful-flowered plants, has been brought from its native haunts into the grarden than that it has escaped and become established in so many widely separated localities. Its congener, L. pulchellum, seems to have been more widely distributed in cultivation; yet, so far as we can find, it seems never to have escaped or to have naturalized itself. We, therefore, see no reason for looking on Liucnjum aestioum as an alien in England and Ireland, which, though now separated, were at one time a western continuation of the Continent.

In conclusion, we would like to thank all those who so kindly supplied us with fresh specimens, both from gardens and from wild situations; Mr. R.D. O'Brien and Mr. Praeger for many helpful suggestions; and Dr. George Fogerty for the excellent photographs of the plant which illustrate the paper.

Bibliography.

Archangeli, Giovanni: Compendio della flora italiana, vol. iii. 1882.
Arnold, F. H. : Flora of Sussex. 1887.
Baker, J. G. : Handbook of the Amaryllideae. 1888.
Bentham, G., and Sir J. D. Hoorer: Handbook of the British Flora. 1892.
Bertolony, Antonio: Flora italica, vol. iv. 1839.
Bieberstein, Baron F. A. M. von : Flora taurico-cancasica vol. i. 1808,
Boissier, Pierre E. : Flora orientalis, vol. v. 1881.
Botanical Magazine, vol. xxx., t. 1210. 1809.
Bubani, Pietro: Flora pyrenaea, vol. iv. 1901.
Candolle, A. P. de : Botanicon gallicum, vol. i. 1828.
Colgan, N., and R. Scully: Cybele Hibernica. Second edition, 1898.
Coste, L'Abbé H. : Flore de la France, tome iii. 1906.
Curtis, W.: Flora Londinensis, vol. v. 1788.
Druce, G. C. : Flora of Oxfordshire. 1896.
Dunn, S. T. : Alien Flora of Britain. 1906.
Garcke, F. A.: Illustrierte Flora von Deutschland. Twentieth edition, 1908.

Gerard, John: Herbal or General Historie of Plants, enlarged by T. Johnson. 1633.

Gremil, A. : Flore Analytique de la Suisse. 1898.
Grenier, J. C. M., et D. A. Godrox, Flore de France, vol. iii. 1856.
Halacsy, E. de: Conspectus Florae Graecae, vol. iii. $190 \pm$.
Havbery, F. J., and Rev. E. S. Marshall: Flora of Kent. 1899.
Hexslotr, J. S., and Eitmund Skepper: Flora of Suffolk, 1860.
Hisd, W. M. : Flora of Suftolk. 1889.
Hooker, Sir J. D.: The Students' Flora of the British Islands, 1878.
Honemass f. W.: In nes plantarun squnte nancentium Florae Danicae, vol iii. 1806-1s10.
Host, N. T.: Synopsis plantarum in Anstria provinciisque adiacentibus sponte crescentium. 1797.
Irish Naturalist, vols. vi. and xv.
Journal of Botany, 1866, 1878, 1898, 1899, 1908.
Journal of the Limerick Fiell Club, vol. iii. 190.
Kitaibec, Paul: Adiditamenta ad Floram hungaricam. 186t. . . . Augustus Kanit\%.
Knch, IW. I. J. . Sympsis iler Deutschen und Schweitzer Flora. 1907. Synopsis Florae germanicae et helveticae, vol. ii. 1857.
Ledebocr, C. F. yon: Flura rossica, vol. iv. 185%
 1901
Masiel-l'lettele, J. C.: Flora of Dorsetshire. 1874.
Nymas C. F.: Conspectus flurae Europae. 1882.
Parkisson. John: Paradisi in Sole Paradisus terrestris. Second edition, 18.7

1'arlatore, Filippo: Flota italiana, vol. ii. 18,5 .
Philipe, Xavier: Flore lles Pyrénées, vol. ii. 1809.
Phytulatist. 1854, 1850, 1861.
Prafier. R. Ll.: Irish Topographical Botany. 1901. A Tuurist's Flora of the West of Ireland. 1909.
 1899.

Reichenbach, H. (instav: Icones florae germanicae et helveticae, tab. 362, vol, ix. 1 ist 7.
Salebcery, I. A.: Paradisus londinensis, tab. it. 1805-1808.
Schuidt, F. W.: Flora hoënica inchoata, vol. i. 1793.
Scopolt: J. A.: Flora carniolica, vol. i. 17ヶ2.
Sowerbx, J. : English Botany, vol ix. 187.

Knowles and I'meles-On the Claim of the Snowfleke, de. 399
Thiene, H., and W. T. Tmitleton-Dyer: Flora of Middlesex. 1869.
Turner, D., and L. W. Dillwyn : The Botanist's Guitw through England and Wales. 1805.
Walker, R.: The Flora of Oxfordshire. 1833.
Watson, H. C: Cylele Britamica. 1847-1859.
A Compendium of the "Cybele Britamica." 1870.
,, New Botanist's Guide. 18:50-7.
" Topographical Botany, Second edition. 1883.
Wifıкоми, H. M. : Illustrationes Florae Hispraniae Insularumque Balearium, rol. ii. 1886-1892.
et Jounnnes Lavie: Prodromus Florae hispanicae, vol i. 1870.
Proc. R. I. Acad., Vol. XXVIII., Sect. B.

Fig. 1.-Mamine. Co. Wexford-Cieneral Tiew.

Fro. 2.-Macmine, Co. Wexforl.

Fig. 1.-Ballinacurra, Co. Limerick.

Fig. 2.-Ballinacurra, Co. Limerick.

PROCEEDINGS

ROYAL IRISH ACADEMY

VOLUME XXVIII

SECTION C.-AROHÆOLOGY, LINGUIS'IIC, AND LITERATURES.

I)UBLIN: HODGES, FIGCAS, \& CO., ITD.

LONDON: WItLIAMS \& NORGATE
1910

THE ACADEMY desire it to the enderstomel that they are mot
 م., matinf fines mor, appene in any af the follurimy Papers The -futhurs if the worm? Esatys are alone respensible for their contents.

CONTENTS

Araistrong (E. C. R.) :-See under Coffey (George).Berry (Henry F.), Litt. D., I.S.O., M.R.I.A. :-Catalogue of the Mayors, Provosts, and Bailiffs of Dublin City,A.D. 1229 to 1447,47
Proceedings in the matter of the Custom called Tolboll, 1308 and 1385 ;St. Thomas' Abbey v. some early Dublin Brewers, \&c., . . 169
Coffey (George), M.R.I.A.:-
Archæological Evidence for the Intercourse of Gaul with Ireland before the first century, 96
Coffey (George), M.R.I.A., and E. C. R. Armitrong, M.R.I.A.:-
Scandinavian Objects found at Island-bridge and Kilmainham. (Plate IV.), 107
Dre (E. R. McClintock), M.R.I.A. :-The earliest Printing in Dublin, in the Irish, Latin, Greek, Hebrew,French, Italian, Saxon, Welsh, Syriae, Armenian, and Arabiclanguages,149
William Kearney, the second earliest known Printer in Dublin, 157
Esposito (Mario), M.R.I.A. :-
Hiberno-Latin Manuscripts in the Libraries of Switzerland. Part I. 62
Conchubrani Vita Sanctae Monennae. (Plates VIII., IX.), 202
MacNelll (Johi), B.A., M.R.I.A.:-
An Irish Historical Tract dated A.D. 721, 123
Moss (Richard J.), F.I.C., F.C.S., M.R.I.A. :-Chemical Notes on a Stone Lamp from Ballybetagh, and other similarstone vessels in the Royal Irish Academy Collection,162
Westropp (Thomas J.), M.A., M.R.I.A.:-A Study of the Fort of Dun Aengusa in Inishmore, Aran Isles,Galway Bay: its Plan, Growth, and Records. (Plates I.-III.),1
A Study of the early Forts and Stone Huts in Inishmore, Aran Isles, Galway Bay. (Plates V-VII.), 17

ERRA'TA.

SECT1ON C.

Page 113, 11. 14, 24, for Hantulpa read Mabtulyn
Page 113, 1. 29, and foot-note. for a read a
Page 164, l. 4 from bottom, for Ce read Cl
Page 198, 1. 5, for rebuilt grad built

PROCEEDINGS

OF

THE ROYAL IRISH ACADEMY

PAPERS READ BEFORE THE ACADEMY
I.

Abstract

A STUDY OF THE FORT OF DUN AENGUSA IN INISHMORE, ARAN ISLES, GALWAY BAY: ITS PLAN, GROWTH, AND RECORDS.

By THOMAS JOHNSON WESTROPP, M.A.
(Plates I.-III.)
[Read Drcembeu I3. Ordered for publication December 15, 1909. Published Febreary 17, 1910.]

Sections:

1. Legendary Origin.
2. Problems of the Legend.
3. The Plan.
4. Records of its Fentures.
5. The Fort in 1909.

Appendices:

A. Bibliography and Views.
B. Unpublished Descriptions before 1880.
C. Published Accounts to 1880 .

Of all the early forts of Ireland we may say that only one has appealed to the imagination, and even to the affection, of the nation, as a building, amt become, with most antiquaries, the type and symbol of the countiess similar structures, all subordinate to it in interest. At Emania and Tara it is the sentiment and tradition, not the remains, that so appeal ; but at Dun Aengusal the site and the building affect even the coolest mind as no blaze of mythic or historic association could do. It is easy to see how this pre-eminence arose. Many of us still remember the sense of almost inaccessible remoteness that attached to "the Aras of the Sea." All who have visited the spot feel the "repellent attraction" of the gigantic precipice and the swirling abyss over which the fort is so airily poised. Then there is the pathos-no less of the legend that made it the refuge of a doomed and hunted race than of its own inevitable destruction-that invested the broken grey walls on the
R. I. A. proc., vol. xxviil., sect. C.
farthest edge of the old world. The facts that the fort had attracted the notice of the learned for over two hundred rears, while its compeers lay undescribed till the midde of the last century ; and that on the revival of sound archeology it was studied and most impressively described by some of wur greatest schular:-l'etrie, ODonowan, Ferguson, and Dunraven-all told in its favour. None other of the forts-not Tara, Emania, or the Grianan of Aileach-was so honoured.

It needs pustification to hing fowsam a paper on it at present. May I, as une of the few whom moth and sketched it over thirty years ago, ere its resturation. himy hom the liyal Irish Acalemy an attempt to record its architectumb histmy and its present combition: No one, I believe, has as
 embeanomed to decilu what of its pernt features are ancient, what warrant there may have wem for the rostured work, on what the remains have to tell (1) sementifir antinuarin. In all this theme semos, not only an excuse, but a

 I lay these notes before the members of the Academy.

1.-Legendary Origin of the Fort.

We must commence with an oft-tuld tale-that of "the sons of Umór."

 nur knowlelge of the "becginnings" of the Dalcassian realm. These

 the great Queen Macve) must have longed to hear what befell their

 Conall, and Enna, the conquering Dalcassian Princess, on the edge of
 North Musiter, from which it eventually usurped the name Thomond.

The song' tuld huw a Firbolg tribe-the Sons of Umór, or Huathmorafter an exile in the Hebrides, got settlements in the Boyne Valley. Oppressed by the pereunial land question-their rack-rent paid to Tarathey fled to Commacht, were befriended by its heroic queen, "Maeve of the Cattle Foray," and were settled round Clew Bay and Galway bay about the beginning of our era.
> "'They settled westward, along the pleasunt coasts, As far us Dun Aenghusa in Ara : ${ }^{-}$

> They stationed Mil at Muirbech :
> They planted Duelach at Dail :
> Aenach constructed a 'dun' in lis neighbourhoodi.
> They settled Beara at his headland:
> Irgas took possession of Ceann Boirne;
> Concraid obtained his just portion in the sea at Inismedhoin."

The prose of the Dind Senchus ${ }^{3}$ tells a like tale, with a trace of independence in its account of Ennach and Bir, but otherwise closely following the poem.
"Cairpre" (it says) "imposed on the children of Umór a rent which could not be endured, so they decamped from him, with their possessions, westward to Ailill and Medb, and set up beside the sea-Oengus in Dun Aengusa, in Ara . . . Mil at Murbech Mil (perhaps at Port Murvey, ${ }^{4}$ near the last); Daelach on Dail (Lissydeela and Ballydeely in (Oorcomroe, Clare); Bir at Rind Beara Sirraim (Fimnavarra, Burren, Clare); and Ennach, from whom is Tech nennach (perhaps Doon Fort, Corcomroe) . . . Irgus at Rind Boirne (Caherdooneerish, on Black Head, Burren) ; . . . Conchiurn at Inis Medon (Dun Conor, Inismaan, Aran); . . . Taman at Rind Tamain" (Tawin Island, Galway). All these lay round the bay of Galway. The knights who stood securities for the Firbolgs to the King of Tara clained the penalty, so the Huamorian warriors, Cing, Cimbi, Irgus, and Conall (son of Aenghus of Dun Aengusa), met in deadly combat the Red Branch Knights-Ross,

[^64]Conall-Cernach, Cet. and Cuchullin. ${ }^{1}$ The Firbolgs fell, and the settlements were broken up, leaving a legend and their reputed forts-" vacuae sedes et inania arcana "-as their monument to our days. ${ }^{2}$

There is a curious allusion to the founder of Dun Aengusa, more concrete than his misty name, in the tale. The helmet of Briun, son of Smethra, is lescrihed thus in the "Pook of Lismore"-"It was the brasier of Oengus, som of C'mor, who made it, even a helmet of the pure purple of the land of the Indians, with a ball of golll ahove it." It hat strings of beads of carbuncles. red-rbh, and white lanze, in variegated stitching, and was one of the three chief fabrics of the realm of Erin. ${ }^{3}$

Prohably the Firlnly Prince whee stunl with less blurred outline, for (if
 once existed, and its loss is probably a severe one to students of the fort. Besides there. it is harely bussble that Tighernach, about 617, alludes t" the place, in reronding the "chmbstion of Dun-ainega," for the "Firboly names" have lown remast in snme cases int", familiar forms, as Chonchobhair,
 and later attached to the iorts of Inismaan and Burren.

Now as regards the main legend, one of its versions adds, "Thus they lised in furtresses." Which forts were meant by the bards of the tenth

 in the older legends); but the peasantry attributed the fort to Conor na Simbane O Brim,'s l'rince of Thomond, who fell in batle, $1267{ }^{6}$, and whose tomb is with us to this day: ('aherlomeerish in ('lare (as it is still called
 $18: 9$, with the sanction of ()I movan." He seems to have searched for traces nf Fergus, son of liuigh, and so, probably ly lealing questions the deadliest

[^65]source of error in collecting names or folk-lore), found what he so greatly desired. The peasantry, who never heard of Irgus (or "Eerish" phonetically), gave the names "Caherdooneerish" and "Doonirias," without prompting; indeed I was at the time obsessed by the namo on the map, and only driven to better things by the names which Dr. Macnamara and I had collected independently at different places and on different occasions. Another place contemplated by the legends is probably Doon Fort, ${ }^{2}$ on the ridge at the source of the Daelach, near Kilfenora. This tallies well with the "Dun" made by Ennach, and called "Tech nEnnach," "in the neighbourhood" of Daelach. From the latter the river Dail (or Deely) is supposed to be named, whence the existing local names of Lissydeela Fort (which may have been the place intended by the legend-makers) and Ballydeely at the great cairn of Cairnconnaughtagh, near Ennistymon.

(2) Problems of the Legend.

That the legend has more than a shadow of a true history at the most no critical thinker can assert. The Firbolgs dwelt in only nine raths in Meath, yet they covered with colonies the islands of Clew Bay (Innse Mod), the base of Croagh Patrick (Oigle), the country round Lough Hackett (Cimbe), the east end of Galway Bay, two divisions in Burren, two in Corcomroe, one in eastern Clare for over fifty miles to the north, the west, and the south-west of Aran. ${ }^{4}$ That such a tribe collapsed without a struggle after the death of four of its warriors is fiction indeed, but not even artistic romance. Neither the prose legends nor the poem anywhere state that Aengus built the fort now bearing his name, though the poem mentions the construction of the "Dun" of Eunach. Were we even dealing with history, we could not attribute to a short-lived tribal group the 500 forts of Aran and the alleged settlements in Clare, the 100 near Lough Hackett, and the thirty near Tawin ${ }^{5}$; yet such a belief was complacently held by antiquaries from 1840 , till wider views arose at the close of the last century. ${ }^{6}$ To us no type of earthen or stone fort can

[^66]le assenel to any we race or perim. Nealy all these mpes spread across Eare from Term. Evtond and Ans ria. to Aran: and they even occur in

 Ewn © in an welve aiter its dawn. We alon in ? circular defences amons the tribes : Ane wat Iew Zehnul: wh the chler races of the first continent and of I :A. Anowsea hat the the of st we, earth, or palisading. Thus children

 no! - $\cdots \cdots, \quad: \quad$ a

 twoth in them-uften much truth, short of the exclusive assertion.

The existence of so mighty a fortress as Dun Aengusa or Dun Conor in these litule islands has puzzled many. Whence came " the troops of slaves
 the evidences of molification and addition in these and other stone forts, is that their construction spread over long periods of time, perhaps at intervals, rebuilding taking place as required. As for organization and conlection of materials fur the ring-walls elsewhere-take the legend of the lonilding of the (iriazan of Aileach, we find the stones were drawn Ly hurses: or thuse of the origin of the name "Firtrilg," where masses of carth are carried in leather sacks; while the lesend of C'aherconree tells of the collection of pillar-stones (standing or prustrate) for its constructions We need not believe in the Dagla "greyer than the grey mist," or the popular etymulugy, or lezemls, to see that even the wildest rumancer set his story in

[^67]a setting of fact known to all his hearers. In more historic times our oldest law code provides for the "erecting of duns," and for "joint labour upon them"; also "for feeding the labourers who are in the fort to fortify it." St. Enda, the chief saint of the very islant in which Dun Aenghnsa stands, dug the great fosses and mounds round Rossory Church in Fermanagh (circu 460). St. Mochulla and his seven converts levelled the hill-top, made walls, and dug fosses round Tulla Church in Clare, traces remaining at both places; the last works, though extensive, are stated to have been completer within a year (circa A.D. 610). ${ }^{2}$ The royal rath at Clonroad, in the same county, with rings and outworks, was commenced by Donchadh Cairbreach O'Prien, Prince of Thomond, and completed (1241-1260) by his son Conor, ${ }^{\text {s }}$ the traditional builder (? repairer) of Dun Conor, in the middle isle of Aran. ${ }^{4}$ In fact, the collection of the stones was the main trouble; and if horses or oxen were used, this was greatly lessened. ${ }^{5}$ Instead of "troops of slaves," ${ }^{\prime}$ it is possible that a small tribe, working a few years at a time, at intervals over a couple of centuries, could, in a place where stone so abounded, build even a fortress as vast as the Aran "Dun."

Those who have seen horses and cattle floated behind a canvas "curragh " at the Aran Isles cannot deny that large animals may have been brought to Aran in early times by means to all appearance as absurdly inadequate. The "Fairy Chariot" tells how Cuchullin carried off three cows, swimming strongly behind his "curach," through the "vast ocean," which shows that before 1106, as now, such transport was known. Also in Magradin's "Life of St. Enda," 1380, we are told of the horses of Corbanus grazing at Arduagcaorach on this very island, before 489, when King Aenghus, the grantor, died.

The question of the names of the Aran forts may be touched on in this connexion. Do they commemorate their founders, even if Mac Liag's tale be absolutely unreliable? They are anonymous except three: Dun Aenghusa, which

[^68]bure its name at least güu years ago: Dun Conor, possibly Dun "Concraidh" at that time: and Dun Farragh. Tohn Windele on the uncertain evidence of Comyn abint $1-50$ states that "Fearbach" was a demon monster, and the fort a "hachutium" for its Worship. ${ }^{1}$ As to the name Aenghusa, it is a mist embins mincilence, as William C. Borlase first pointed out, that a place calle ${ }^{-2}$ Enchusa." on the coast of Holland, is described in language very suit;ha th the fat bifferent cuast of Aran. "Natura loci munitum, mari finme hectum, quem in extren" terrae margine situm despicit."
 thentins misht i... alvanmen with resart to the name of the Dun. One

 An_:-...

 stune furt of Cirianan Aileach and the earthen Rath Brese with its "cladh." "

 Cashel, ahout A.D. 460. It is true that "the three Aras of the sea" are

 from the theory. The "Life of Sit. Enda" asserts that Aran, in about 480,
 north-west county (lare), who fled in superstitious terror from st. Enda.

 the latter prince.:

[^69]With regard to the name, Aran maintains the primitive title "Dun," which has been elsewhere so generally replaced ly "cathair" (caher). A trausitional example "Doon'ahaar," or "Doon doo'liaar," the Dun of the black cathair, is found ; similarly the fort of "Eerish," in sight of Aran, on the shoulder of Black Head, is Caherdooncerish, and a fort near it, Caherdoonteigusha. The usage of 'caler' for 'fort' seems a rather late methorl, perhaps derived from the monastic forts, which again were suggested by the cognate word 'cathedra.' The Rev. Edmund Hogan, with his usual kindness, let me use his notes from the forthooming "Onomasticon Goèdelicum." He gives "Dún Acnyusu" from the Books of Imaine, Lecan, and Ballymote; "Din Aongusc" from Keating, and Mac Firbis' Genealogies; and "Dun-oinguso," Dun-Ocingus, as Roderic O'Flaherty's "Ogygia." In "Iar Connaught," 168t, it is Dun Engus. "Dun Aengus" prevailed, 1790-1820, as now, among writers; but John O'Flaherty found the name to be locally Dun Aonguis in 1825, while in $18: 39$ only one old man on Aranmore, a descendant of a Cromwellian family, remembered the true phonetic name "Dun Innees," according to O'Donovan; S. Ferguson, in 1853 , gives the names "Ungust" and "Unguish," the latter evidently akin to Innees. It is given by Haverty as Dun Eanees in 1858; but had hardened to Doon Aingus in 1878, and is now usually "Dun Angus," though it might better be anglicized Doon Hennessy.

(3) The Plan of Dun Aevgusa.

It is strange that, so far as we know, the plan of Dun Aengusa has never been studied to see whether it forms a consistent whole or has been modified. This task we now attempt to carry out. Any ancient building of historic times rarely fails to give proof of restoration, and this is true of the stone forts, and even of those of earth. ${ }^{\text {. }}$ For example, earthworks at Rathmore in Kildare, Ballyvoony in Waterford, Lissadooneen in Kerry, and Lisnagree, near Broadford, in Clare, show that layers of earth (several in the first case, two in the third) were added to raise the original structure ; bailess and outer rings were very probably added in many cases. In Clare, so closely bound up with Aran in legend and history, the stone forts give frequent evidence

[^70]R.I.A. PROC., VUL. XXIIII., SECT. C.
of rebillines. It M", Ahan in 'lare.' the two cahers were built across the great lines of the ulfy walls. Langough near the east, has been almost rebuilt on a different plan in early times. Caherfeenagh and Cahergrillaun have been rebuilt in parts ${ }^{2}$: and the wail of Caherdoueerish has been at least twice rebuilt. the juints wade at the three periods being very apparent in the wall: The Kerry fonts tor, show uneruivoral signs of atdition and rebuilding. After a aremi stuly if Dun Aengra, we believe the following views to be justifiahle:-

THE SEA

dún Aenzupa.

$\underbrace{200} 0 \quad 100 \quad 300 \quad 300$ FEET.

Fio. 1.-Pian of Dun Aenerua.

[^71]oval rings into which the sea has cut for almost exactly hali their extent. Such a plan is possible, warranted by the fine triple-walled hill-town of Moghane, but must not be too readily accepted. The fortress was probably at first a simple oval ring-wall, like its neighbour the Dun of Eurhanacht and many others. It was next strengthened by a second ring nearly erpuidistant from the first, like the forts of Dun Oghil on the same islant, Furmina on Inishere, Glenquin and others in Clare. Still later, a third wall, either sumewhat egr-shaped in plan or a crescent, abutting on the cliff, was built. This was regarded as final; and an elaborate abrattis of close-set pillarstones was made round it, extending to its foot, eren where it crowned a steep slope. Lastly (and probably at a far later period, a large irregular space, determined to the east by a low ridge, was enclosed with another wall, defending the approach from the landing-places of Port Murvey. We do not for the moment assert whether, or how far, the sea had cut into the hill when these works were built. O'Flaherty seems to imply that the middle ring was entire, like " the bawn of a castle," in 168t; but it then stood " on the brim of a high cliff.". Probably the old second wall was originally entire; but this is uncertain, for the stone fort of Cahercommam, in Clare, on the edge of the Corcomroes, has a central ring and two crescent walls. ${ }^{2}$ It is strikingly like Dun Aengusa. The central fort is even more massive; but it overhangs a dry valley rising at both euds, so is eridently in its original condition so far as regards the plan. Another alternative is possible, namely, that (as at Dun Conor and the Clare forts of Caherlisauiska and Langough) the central fort was a ring with the outer enclosures looping in to meet its wall. We have, howerer, only found this looping in forts on flat fields and luw ridges-never at high cliffe or slopes, or even on a low shore when there is deep water beyoud it, as at the crescent fort at Cahernacalla on Ballycar Lake. ${ }^{3}$ The crescent wall, ${ }^{4}$ therefore, loes not necessarily prove a fall of the cliff, for it is common inland in Ireland, and indeed all over central Eurupe and in America.

In Clare, besides C'ahercommaun and Cahernacalla, with a central ring

[^72]and one or more crescent walls, we find Caherlismacsheedy, ${ }^{1}$ a single crescent on a cliff in Burren. The type is very common in England and Scotland, the finest and most complex specimen being the two conjoined forts of Coldingham, each with three walls. We note in England the forts of Embury Beacon, Devon, and Blackers Hill, other typical examples being the inland Scottish "Doon" of Nummill and Errickstane." In France we have many fine examples. To select a few : 'There is a double crescent earthwork on a spur at Caudebec, and near it a promontory fort. The camp of Bois de Rouret has two stone walls built each in two sections, as in the Irish forts. The masonry, too, is identical with that in the forts of western Ireland. At farran, in ('antal, a single crescent wall encloses a garth 170 feet long and 10.5 fect deep on the edge of an inland cliff. 'The fort of St. Maurice at Beaulieu E.M.) has two crescent rings enclosing many house-sites, some of the lioman perioul. The ground slopes lack from the inland cliff as at Dun Aengusa. Mont Milan (Cote dUr) has also two walls; but, unlike the Irish fonts, it has thanking towers believel tube of the same period as the fort. It is noteworthy that the Irish, no less in their forts than in many of their later castle comrts, were enticely indilterent to the advantages of Hanking defences." In Hungary lies the great ring of Beny, an earthwork of three crescent monds, extending for 1700 feet along a steep bluff. In Switzerland and Perm we have crescent work fencing mountainspurs; and crescent ringwalls are found in Sweden." 'The type also occurs in America.

Whether the walls of loun Aenghsa were all crescents from the first we can mover know; for they, thoir fondatims, and the rock for over 300 feet beneath are devoured lye the Atantic and " their memorial has perished with them." Wie have monems of calculating the advance of this destruction; and it may have been very slow for centuries.

The fall of clifs is mowhere unifinn ; even at the same locality all depends on the jointing the currents, and the pevailing winds. A fort like Doon, in Irathtionm: Kerry, was evilently a crencmit from the first ; the sea has

[^73]run harmlessly for centuries along the smooth faces of the upturned strata, and the fosse died out in the grassy slope above as its diggers left it, unworn, save by "the slow tooth of the sky." At the Plack Fort, east from Dum Aengusa, we see that the headland originated from two synclinal curves, the inner arches of which were constantly worked into caves, eventually falling in and leaving long bays. ${ }^{1}$ 'The destruction of the sides and even of the outer end of the promontory is slow compared with that at the ends of the bays, and the fort between them may be very ancient, though hardly three thousand years old, as O'Donovan fancied. As we noted, Loop Head, the ancient "Leap of Cuchullin" (probably from long before A.D. 850, ${ }^{2}$ when the name first occurs), must have been, in early times as at present, a high rocky islet divided by a narrow chasm from the main cliff, to judge from the name and legend. The only fall of rock recorded at Dun Aengusa for over seventy years is that of a slab from which a man was fishing when it fell in 1837^{3}; but cliff falls are more usually sudden and at long intervals than persistent and gradual.

So far we have only dealt with the changes made by the great forces of nature ; now we turn to other evidences of mutability in extensive alterations by the hand of man. They give us the much-needed warning as to how many features, what extensive additions and what puzzling eccentricities of plan found in these forts, are not to be attributed to the original design. Probably when, by the building of the greater outer wall, the defensive value of the abattis and middle wall was less felt (whether at the same time or on later occasion or occasions) extensive works were carried out on the inner walls. The abattis, as we noted, clung even to the foot of the old outer wall (as it does also at the Black Fort, at Dumamoe, ${ }^{4}$ and at Ballykinvarga caher in Clare); its divergence leaving a long open tract between it and the present wall, along with the fragment of wall to the north and west, tells the story clearly enough. The builders demolished the old outer wall from the ridge opposite the east face of the central fort to the avenue at the north-east bend, and also the eastern part of the second wall; of the materials of these they made an irregular line from the east end of the curve of the latter bowed out like a bastion, and then rumning in a comparatively straight line, from over 50 feet to about 15 feet from the abattis. It joined the old outer wall rather at right angles, a new gateway being made at the sharp turn. Having been built on the surface of the rock, every trace of the demolished

[^74]walls was easily remoren. The nurth-westem reach of the old outer wall was now useless, ancl, owing to the reach of the second wall being retained, it was not required for material. so it was left standing, a problem (like that of the cpen space th the nowth inside the abattis) hitherto unexplained. It cxtemls from near the present cliff to the ridge nearly opposite the seeming mastion. Petrie supposed it to le an amexe, as at Dun Conor; but the end din not curve inwark, now was there any connecting wall from it to the middle rims. It endel abuptly in U'lonowan's time, as now, near the rock rilge. So far as can bee sem, this is the true explanation of its existence and if the bare face. so bequlaly curving to the south-east turn, between the wall ant the ahattis, mw hanith pillats. The work was probably

Fir. 2.
dinne to upen a larger court hesile the central fort, while the north-cast part of the second wall was retained to keep the mildle rampart, at its most exposed sile, on the level of the hill-top, within range of missiles from the towering inner fort. Arrows seem to have heen little used by the Irish in warfare; spuars were ton scarce to throw, hut the second wall, barely 30 feet from the citadel, could the swept by stones slung or even thrown from the commanding wall of the latter. The fragment itself could be used as an extra line of defence till the enemy had struggled with great loss and ditticulty through the jasteed and close-set pillars round its base.

[^75]Till June, 190t, I had on four previous visits regarded the sharp curve of the middle wall as a bastion, and the waving part from it to the north-east bend a mere wanton irregularity. I then compared it with O'Donovan's and Petrie's plans, and found these so inaccurate as to this and the outer wall that I was led to reconsider the whole question. It is evident that all antiquaries who came to this fort hurried to the "citadel," after noting the chevaux de frise and outer walls to the west and south-east (the two lines of approach), passing by, with at most a casual glance, the defaced and unimposing middle wall. Hence even in plans they did not lay down its remarkably irregular line, but showed it as a curve. Then when I found evidence for the occurrence of the "bastion" in 1878, the need of a solution of the problem became evident. I accordingly re-examined it a lew months later, with Signor Boni and others, and realized the meaning of the strip without pillars along its base. After a third complete and leisurely examination, made last August, I offer this solution of the problem of the middle walls. ${ }^{1}$

The central fort might seem to have required no modification, but such certainly took place. The ope, leading to nothing, inside its wall, to the north-west, which Mr. Babbington noted ${ }^{2}$ as closed by later work, the joiuts beside the gate, noted by Mr. P. J. Lynch, and a line of blocks to the south of the gateway, outside the face of the present wall, all imply considerable alterations in early times.

The selection of the site (apart from the question of where the cliff then existed) shows much forethought and skill in the earliest fort-builders. The inner ring occupies a natural platform, a few feet high, its faces evidently scarped artificially. The outer wards were strengthened against attack by the upper and lower ridges, the middle, on the north-western and northeastern, and it and the outer wall on the eastern sides, towards the most probable point of attack-Portmurvey.

Landing in that bay, or coming from the Kilronan harbours, an enemy had to struggle up a long reach of broken crag, and either up the narrow slippery path to the north-east gate, or throngh the heilge of jagged stone spikes in face of a lofty wall. All these surmounted, the central citadel, once over 18 feet high on its ridge, manned by desperate men, had still to be captured. We canmot endorse Mr . Burke's suggestion ${ }^{3}$ that the middle court was left clear for "military manœenves"; it was prossibly filled with huts of

[^76]clay and mattles which have left no trace. The fort seems to have had no traverses which, were attack much feared, should have been made especially across the great outer garth, a most suitable position occurring at the upper lidge. The weakest point in Dun Aengusa and its congeners was lack of water-supply; and bluckade does not seem to have been very probable, though the monastic ring fort of Tulla was blockaled and nearly reduced for want of water in 1086. ${ }^{2}$

As to the features, the perfect gate in the outer wall was described before 18.0 by Lur Dumaven; the northern gate of the middle wall I noted as a "creepy dur"" in 1878 , and dimly recall its narrow ope under large stones. The perfect gate of the inner ring was noted by O'Donovan anm many writers, from 1 s: $: 9$ to 1 sis, and its outer face sketched roughly by Petrie in 1821, and most ace urately by Purton in 1859. I made a camera sketch of the inside in 1stes Miss stokes on Lorl Dunaven) implies that it hat collapen,' hut the fate now stambing is the one sketched in 1859 and
 innt interesting ant fharateristic features, lout they fortunately survived to the fhuturaphat be uthers. The lowken gates in the middle wall, the double semtins on terraves of the two outer ramparts, and the fragment and the thee semions of the citaled wall, are all attested heseral writers; so is the "hlimh "re" in-ike the noth-west of the latter. The steps near this "Fere and the thaces of the terraces, and the steps to the north of the inner sutw, were wewnd. The mhly featmes not mamel lufore the "restoration"
 the north-west. ODDonovan mentions that the wall to the south of the

 firmly ort parte of the two thights of tigls ant their long fallen hooks were thant in the danis, whim

[^77]base in 1854, as in 1878. Such firm-set hottom steps often survive the wall and the upper steps. Two such flights were recently uncovered by us in Caherminaum. There is one in Ballyshanny caher, and we find two more in Caherfeenagh fort, in Clare. In Dunoghil the remains of two such flights were not restored in 1884-5, one to the north of the gateway, at the groundlevel (its other steps are used in the circular "thing" then built in the garth), the other above the south-east stair. In the Black Fort are sloping joints, evidently remains of two unrestored sidelong flights near the huts. The steps in Dun Aenghus are exactly like the montonched examples. The allegations about the supposed sunken way in the top of the rampart rest on a mistaken reading of O'Donovan's Leiter of 1839, the "internal division" meaning in his letter the banquette inside the rampart.

As to the age of the fort, worked implements of chert and flint have been found in it, and also bronze ornaments, one probably later than the fifth century. The comparatively small sharp masonry gives less impression of age than the large blocks, well-marked batter, and (as a rule) lower walls on the forts on the mainland in Mayo, Clare, and Galway. The blocks of the wall are not as weather-worn as those in the ramparts of Moghane and the - Cahercarbery forts on Kerry Head. It is hard to believe that walls so slightly battered are of vast age as they stand; but the inception of the furt and the collection of the material may date far back in the past. The chevaux de frise, with the evident chanuelling of the tops of its pillars, is probably very early; but we have seen reason to believe that the walls have been extensively reluilt in the past; and perhaps this was done when repairs were required, on sereral occasions, long before the restoration of 1884.

The inroads of the sea give us no measure of its age. We have no reason to assert that its circles were either complete rings or crescents at first. It may have stood (like Dun Oghil) on a hill-side, or have been built (like Cahercommaun), adapted to an already existing clift, though, of course, the cliff stood much farther southwards in the earlier times. Its adranced plan may have grown up gradually from a simple beginning, though we agree with Dr. Guébhard ${ }^{2}$ that its skilful construction, terraces, and steps imply the work of builders with long and experienced traditions to guide them; but these accomplished masons were probably rebuilders; and the original fort may have been as rude and simple as some of the ring-walls of Clare and Kerry.

[^78]
(t) Records of its Features. ${ }^{1}$

Before describing the fort as it stands at present, we must examine, in more detail than above, the record of its features before 1883. The reference letters are as follows:-P', Dr. George Petrie, "Military Architecture" '1821 and 18.88) : O'D, Tuhn O'lonovan, "Ordnance Survey Letters," 1839 ; F, Sir samuel Fergusum, "Duhlin University Magazine," 1852; W, John Wintele, "Supplement," unte 18j̈; C, Most Rev. Dr. George Conroy, Bishop of Ardarh, "Aram of st. Enda," whte 1570; D, Lord Dunraven, "Notes on Irish Architecture," ante 1875; IB, anonymous writer in "Irish Ihuilder," notes, 1877; TW, notes and sketches taken 1878.

Inver Fort.

Gulerry.-All the above writers. Its rising Lintels-O'D; W, "like immbul stop," TW, "stepstures in thr." V"iews (onter face), F.W. Burton, 18.77; (inner face), TW. Stair to north-cust.-F, "On the right are the remains of a tlight." Terraces,"-l" (map); F, "lower banquette"; C, "banquette on the east side"; W, "banquettes"; D, "now no trace"; TW, "nearly gome." North-uerst Ope.-l' (map); O'D ; F; C; D; (? TW, "a hole"). Steirs neat Ope-P, and map; F, "one or two"; C, "traces of
 serfions. - P and map; $\mathrm{O}^{\prime} \mathrm{D} ; \mathrm{F} ;(\mathrm{C} ; \mathrm{D}$ and photographs; TW and sketch. S゙one Plutform.-P (map); TW' (sketch plan).

Minlee Walis, doc.

(iatewiss - Nimeth-rest Gatc, P; D ; TW, "gaps like doors." North Gatc.TW, "creepy door." Niorth-cast Gote-O'D, "much destroyed"; Passage liceling to it.-O'D the thinks it modern); P; F; TW, "road through
 P' (and map); O'D ; D (and photograph); Wilde in "Lough Corrib"; TW

[^79]Westropp-The Fort of Den Aengusa in Inishmor', Arrm. 19
(sketch and plan). Terrace-1', "Terrace half its height" (and map). Abattis.-All writers (save Ledwich, John O'Flaherty, and Windele) since Roderic O Flaherty in 1684.

Outer Wall.
Wall.-P (and map); O'D ; D. (map and photograph) ; TW, "old tumbled wall" (and sketch). Gateway.-D. Two sections.-O'D. This wall is passed over or only shown in maps by most writers.
(5) The Fort in 1909.

The two most conspicuous high grounds of Inishmore are each crowned by a great stone fort, the western hill rising to over 300 feet above the sea, by Dun Aengusa, the eastern by the Dun of Oghil, the ridge rising over 400 feet above the sea. As we pass round the shoulder of the Oghil plateau the great mass of Dun Aengusa presents a most imposing appearance, its three tiers of walls being fully visible at the fall of the steep slopes to the "Plind Sound" and Portmurvey. We ascend the hill past the fuchsias and low trees at Kilmurvey House, passing the low crag cliffs with their wells of sweet, clear water: cross the craggy fields (their crannies full of maidenhair and hartstongue ferns, of small, sweet wild roses, cranesbills, and dewberries) and gain a view of stately and ever widening spaciousness, along the dark southern cliffs, out to Clare, and even to Kerry, and northward across the bay of Galway. We next reach a low ridge of crag which has been strengthened with a thick rampart (unlike the tottering field-walls around), and enter the ambit of the great fortress or "town": " though high the situation of the cathair, not easy is its storming methinks . . if you come to the southern side." ${ }^{1}$

Outer Rampart.--'The wall is for the most part greatly levelled aud spread about from 10 to 15 feet wide; but, where better preserved, it shows two faces of well-laid blocks (many of fair size, 2 to 3 feet long, and 18 to 20 inches thick), being usually 6 or 7 feet thick from face to face; it follows along its eastern reach a low, irregular ridge about ǎ or 6 feet high, rarely higher. This wall has been passed by in silence by most writers, but is, when realized, a most imposing adjunct of the upper fort, being over 2000 feet long in its wavy, irregular course. Its garth is over 1250 feet long by the cliff edge, $117 \pm$ feet across the clear garth east and west, and 650 feet deep past the eastern face of the abattis north and south. It is usually found in heaps 3 to 4 feet high, and is 8 feet thick near the sea, and until we turn
up the slope, where it is better pieserved. The masonry is coarser to the east when compared with the upper reaches and the inner walls. To the north, we find its most interesting feature, the nearly perfect gateway, first described lord Dunraren, before 1875 , as being \pm feet wide and 3 feet high (over the debris), with a lintel 9 feet long. This is virtually correct, as we found it to measure 49 inches wide above, but ouly 45 inches below, owing to a projecting block at the base. The height, as now cleared, is 4 feet 10 inches th the east and 4 feet to the west, being on a steep, ridgy slope. The wall is 6 feet 7 inches to 7 feet thick on top, and nearly 8 feet at the lase, the passage being covered ly a huge inner lintel, 8 feet t inches hong. 6 th 10 inches thick, and 15 inches deep and two similar outer lintels. The spare between then and the inner one is covered by short "cross-hearers." which is als, the case in the north gate of the inner wall, and is a common feature in somterains, lont rare in sateways. From it westwan the wall has heen greatly and unnecessarily rebuilt, raised to a level thp, ahout is feet high, till we reach the upper ritge; there it has been repaired with a terate and is 单 ur $:$ feet higher. The ridge crosses it, and is from 12 to 18 feet high.

Fro. 3.-Dun Aengusa, Outer Gate.
W"Dnnom mote that it hat twonsertins. They are not apparent in the

 whilf fare agrast the enemy when the wall. wree sapper and fell in a siege.

 and I leeliwe the syong was whoted tather tor alluw the more erqual settletwent if the hy-atho wall- which. When of my gat thickness, naturally respecially if the filling lee small, bulge ont amel even burst the faces of the wall. Alwhor frosild, reanh wa- that the wrater and onter sections
were added to the first and lowest wall; but the fact that such sections occur in non-terraced forts bears out the view that it was to prevent bulging; for escalade in assault, or blockade - not battering or mining-was the danger besetting the early fort-dwellers. Walls of double or triple sections are well authenticated in dry-stone forts. Dun Aengusa is triple in the citadel (double in all the other walls); so are the Black Fort, Dun Conor, Ballykinvarga in Clare, and Caher na Spungaun in Mayo; while double walls occur at Dun Onaght and Dun Moher in the dran Isles; Lower Caherbullog, Caherscrebeen, the upper fort of Ballyallaban and C'aheridoula in Clare; Ballylin. Caher in Limerick; and the forts of Dunbeg (Fahan) and both the Cahercarberys in Kerry. ${ }^{2}$ Of these, the two last examples in Clare and the Cahercarberys were so constructed down to the foundation, and evidently the others are similar. The enclosure possibly defended a number of huts of wattles, or osiers, and clay, for it is noticeable that while stone huts are common in the forts of Mayo, north-west Clare, and west Kerry, evidence for their existence in Aran is only afforded by Dun Conor and the Black Fort. There were thickets of scrub (dwarf oak, \&c.) at Oghil, the place (Eochoill, oak grove) and a wood "Leamchoill," near the shore below it, as named in the "Life of St. Enda," showing that twigs and branches could be procured in ancient times even on these storm-swept rocks. ${ }^{4}$ We have a historic mention of a "dun and the houses outside the dun "so late as $1014 ;{ }^{5}$ and indeed so late as 1675 , in a deed where the caher of the O'Davorens, the fine existing ring-wall of Cahermacnaughten in Burren, with the group of houses in and around the caher, is fully described. ${ }^{6}$

The Abattis.-In 1684 Roderic O'Flaherty was struck by "several long stones erected slopewise against any assault," at Dun Aengusa. Ledwich, in his hearsay and warped account, John O'Flaherty, and the usually careful John Windele, alone, since that time, have failed to note this striking

[^80]feature of the fortress. The abattis consists of a closely set mass of little pillars, usually to 4 feet high, girding the whole middle walls in a band from 30 to 0 feet wile. wore "pen hetween the north-west and northern rates but nearly impasalle to the north-west and to the east, at which latter sile they are set with monkerinl pains up a steep rock-slope below the rampart. The the of the pillats as noted lor Ir. Coller March. ${ }^{1}$ are greatly worn and furnme ilis the wather. like those at Ballykinvarga, and give a
 i- has irettel, thonsh frally alrealy weather-worn when raised from the
 ㅇ, fine enterand in the wall. We mut lear in mind. however, that
 ut if the nition the twedth contury: amb the hase of the twelfth-

 atiack. The band measures abmut 700 feet from the west to the north-east sate, and over 200 feet more from it to the cliff eastward.

[^81]approaches to the forts of Pen C'aer Helen in Wales' and C'arlemuir and Dreva in Scotland. ${ }^{\text {a }}$ Rows of pillars of similar intent oerenred in the destroyed fort of Cap Sizun in France, ${ }^{3}$ two Swiss forts near Laufen, Herne, ${ }^{4}$ and the "Bauerberge " of Möhne in Russia. ${ }^{\text {b }}$

Irish scholars could help archacology by searching in our early literature for mention of such a feature. It could, however, hardly be expected that where our older writers seem to pass over our countless dolmens without notice, they would have preserved mention of so rare a feature confined to four of our cathairs. It is, however, very probable that a similar timber defence surrounded many of our forts, and was called a "sonnach"; it may have filled those narrow, Hat spaces inside the outer rings which gird some earthforts, like Doonaghbwee and Lisheencroneen, in Corcavaskin; and it originated the place-names "Lisatumn " and "Sonnagh." To take a few examples from ancient works: there is mention of two mythical forts; one made by the divine builder Aenghus, son of the Daghda (already noted), "with lofty sonna (stockades); another, "with seven walls and an iron sonnact on each mur." ${ }^{\prime}$ When Cuchullin was pressed to fence the fort of Howth, he said: "A heap of spears closes it for me." He evidently compared his warriors to an abattis. ${ }^{9}$ Aedh Guaire, King of Connaught, in the sixth century, built a new house in a dun, and, "outside all, a somnuct of red oak round about his dun."10 The breaking of such a palisade to admit the king's spear, held lengthways, is alleged to have caused the quarrel of the Ardrigh Diarmaid with St. Ruadhan, the cursing of Tara, and its desertion. "I'he Voyage of the Hui Corra," a tenth-century romance, tells us of yet another mythical island dun, "with a brazen sonnech round it, and a brazen net spread on the spikes outside. ${ }^{{ }^{11}}$ It is as curious to find so early a foreshadowing of spiked-wire entanglements as of another modern invention, where the Mabinogion

[^82]describes the wonderful flask that kept hot drinks warm and cold drinks cool. Old fiction, however, usually based its non-magical surroundings on "things seen," and it is evident that spikes, if not of stone, "brass," or "iron," at least of wond, girt many a fort in ancient Ireland.

The alattic of Dun Aengusa has been removed for a short distance at each
 These is, as we mot, an arenme menly so feet long through the pillars to

 When he suplusind it a mulen work th sive access to the sea-face. ${ }^{3}$ No arenues lie to the north and north-western "gaps"; the former (as we whent thane is in the latw wath of wall: the latter was a shapeless gap,
 avenne as male in ancient, but more peaceful, times later than the actual fommation of the fort. The gangways left in the rock-cut fosses at Doon Fort: probalily the reputed seat of the brother of Aenghus the Firbolgg and Lisintut, near Kilkee, show that the old fort-dwellers little regarded this
 in early times; for in the "Book of Ieinster" the danger was noticed. "It is a peril to be "pron the fort unfortified; and the shout of the person in its doms that has conguered it."3 The only fairly defensible gateway of an Irish fort known to me is at Dunbeeg in Korry; perhaps, too, at Dunnamoe, the entrance was capatle of more than mere passive resistance. ${ }^{\text {. }}$

 high and wide. It lies $5 \pm$ feet from the midlle wall at that end, but

 reach is very low.
 and the western, from the "hastion" westward, the older middle one. The

 at the upher ringe. In 1878 long reaches of the terrace were extant, but no
1.0 (). S. Hetters," p. 213.
: Journai R.S.A.I., rol. xxvii., p. $12 G$.
${ }^{3}$ " Bouls of Leinster, " P. 3/̈.
"Mias Stokes noten the advance implied by the gateways uf Irish stone-forts over the gaps in British lorts ("Ciristan Arihicucure of Ireland," p. 26ر. Perhaps the "grps" had woorien gnteways: some Irish onma brte lining thaz.
 77

Fig. f.-Dun dengusa. Sections of the Walls.
R.I.A. PROC., VOL. XXVHM., SLCT. C.
steps. The north gate was nearly buried in fallen stones, so that one could hardly creep under its lintels; and the other gates were shapeless gaps. The walls show little hatter to the east, hut bulge in and out, showing traces of lung perionls of suldement in every reach. Like the inner citatel, the masonry is uf ennl and at times fairly large blocks, largest at the north gate, the joints packel with sambe 'The sections next the sea have been little altered. It runs in an unusually straight line to the cliff, which perhaps implies that eren when lirst huilt it ran to an carlier edge of the precipice farther (t) the sumth. It is immestine tor note a similar curved wall, with two gates to the north, and at the north-east comer as at Dun Aengusa, turning abruptly and ruming in an almost straight line to a sea-cliff, at Seafort in Sussex. ${ }^{1}$ The link - wall starts from the eastern part with an abrupt hend a little to the south of the corner gate. The latter is \pm feet 9 inches wide (t feet 6 inches in O'Donovan's letter), varying a little, the wall being 8 feet 2 inches thick, and the lower. three feet of the jamlis are ancient. From it the gate of the citadel is seen facing and ahout $2: 3$ feet away. The space between the walls at the cliffedfer is practically the same $(234$ feet $)$, and is 240 feet at the middle of the east sertion. The ahattis, which clings to the foot of the old wall, curves out from the "link," and is about 60 feet out from the "bastion." The older
 the steep avenue and slope. ("ht" on plan, p. 10.)

Westward from the gate the wall runs in a wavy line shown as regular in the two whor sketeh-plans (of letrie and O'Donovan), and so reproduced in the maps usel hy hahbingtom, Haverty, and even Dumaven. Modern steps ascomit to the cmils of the termace at cither side of the gate; an inward curve is fouml from alkmt 50 to 70 feet westward; the north gate (g) at 161 feet. This is puffect now as in 1878. It is 4 feet 3 inches wide and high outside, (1, er is feet wide in the passage. Some of the outer jamb-stones are over \& feet long and a foot thick. Insile, the piers being on a slope, are (like the uter gate) of difterent heights (:3 feet 2 inches to 3 feet 11 inches). The pasare is 5 feet 2 inches deep, covered (like the outer gate) with three
 5 feet 5 inches long and 8 to 9 inches thick. 'The width inside is most

[^83]removed by the restorers in 1884 . This cracked the lintels when the wall was rebuilt above them, and two stone props were inserted. The space between the two outer lintels and the inner one is covered by cross-bearers. My notes of 1878 are too vague to verify this feature; but (like the outer gate) it is possibly correct. The terrace at this point is 6 feet high ; and the outer wall makes a little curve at the west pier of the outer ope. The fine inner lintel of this gate probably belonged to a predecessor; wherwise it is, and indeed the other gateways of the citadel are, of very poor construction when compared with several of the Mayo, Clare, and Kerry forts. The irregularity and poor, small blocks of the side-jambs give the gateways of Dun Aengusa a somewhat ragged and late appearance, and quite account for the complete ruin of all those of the other forts of the islands. Westward

Fio. 5.
from this, at the upper ridge, the wall makes a curve like a bastion, and meets the older portion nearly at right angles (f). Inside they, with their terraces, meet in another practically right angle on the crown of the ridge, at 83 feet from the inner west pier of the gateway. This is evidently the junction with the old second wall, which runs thence, in a regular curve, practically equidistant (27 to 30 feet) from the central wall to where it has been clemolished near the cliff. The terrace at the sharp bend is 4 feet high and 20 inches wide on the "link," and 3 feet on the old wall, which is 7 feet thick and high, the outer section being from 3 to 4 feet thick. This bend appears in one of my camera sketches of $1878,{ }^{1}$ and probably in Dumaven's photographs. At $54 \frac{1}{3}$ feet from the bend is the gap of another gate (e). It is shown in Dunraven's third photograph, and seems then to have had the foundations of piers. The probable continuation has been as entirely removed to the east
of the fort as at the ends near the cliff. This enclosure is abont 400 feeteast and west by 200 feet north and south, but was probably at first very much larger.

The Inxer Fort. -This tine early citadel has, as a rule, nearly monopolized the attention of all antiquaries and visitors; so the descriptions before 1880 are fairly satisfactory. We must, however, describe it fully once again. Before duing this let us first examine what O^{\prime} Donovan' wrote about the ramparts, which has been thoronghly misunderstood. He writes that the internal division is 3 feet 4 inches thick, the central 5 feet, and the external t feet $\overline{5}$ inches thick; ntal, 12 feet 9 inches. "The two external divisions are

Fir. 6- llun Angeuag. Alemation in midde wrill.
here raseal to the height of 18 feet; but the intermal division is ... 7 feet high.... I find in all the other forts that the internal division is generally 4 feet lower than the other two." This was miderstond by Lord Inunraven, ${ }^{2}$ W. F. Wakeman.'3 myself, and others ${ }^{4}$ to imply that the central section of the wall

[^84]was 11 feet lower than the others. Wakeman went so far as to draw an ideal restoration of Dun Conor with a sunken way round the top. Some censurerl the restorers for having obliterated this interesting feature, and refused to believe that the wall had had an inner section till confronted with the third Dunraven photograph. This feature (which I sketched and well remember) first led me to reconsider O'Donovan's account in $190 \pm$, when I saw that by the "internal" division he meant the banquette, being indeed the true inner section, which removes the apparent inconsistency of his further statement that the two outer divisious were of equal height, and expleins his allusion to the section 4 feet lower than the summit in all the other forts which have banquettes behind the outer walls exactly as 0^{\prime} Donovan describes.

The rampart has a slight batter (usually 1 to 5 , or 1 to 7), but is usually distorted and bulged out. It is 12 to 13 feet high at present, but rose in parts to 18 feet high in 1839; resting on a low, and evidently scarped, ledge of rock, 3 or \pm feet high, all round which, when covered liy debris, may have brought the old height to 18 feet. The third Dumraven photograph, Mr. Cheyne's view in 1847, and two of my camera sketches in 1878, show that a large patch of the facing opposite the north-west gate had fallen, showing a second face inside; and I recollect this condition in 1878. The outer section had only one face, with filling between it and the next (or middle) section; but the latter had two faces. The inner sections were terraces, the lower 4 to 7 feet high. The upper is, I think, a modern development, 4 feet higher, as the outer sections were certainly of the same height in 1839, and even in 1878. As we noted, a line of large foundation blocks on the ledge outside, and to the south of the gate, implies a later rebuilding. So do the joints, first noted by Mr. Lynch, but shown in Burton's sketch of 1855^{7}; they lie 23 inches to the south, and 30 inches to the north of the entrance outside, ${ }^{1}$ and 14 inches to the north, and 16 inches to the south inside. This suggests a rebuilding of the present door and outer wall in early times, as does the useless ope to the north-west under the terrace. The wall is of unusually good, though somewhat small, coursed masonry, with a facing of headers. A few larger blocks, or perhaps only stretchers, 3 and 4 feet long, are found in the lower courses. The masonry, as usual, gets smaller about 8 or 9 feet up, owing probably to difficulties in lifting the blocks. It is ineonceivable that so many persons should have deseribed such masonry as "cyclopean." That of the neighbouring churches better merits this oft-abused term.

The gateway is perfect, facing slightly to the north of east and is a

[^85]fine trpical structure, with a long onter lintel, and two long relieving stones over it. It is 5 feet 9 inches high, but a step of the natural rock insile it reduces its height to at most 5 feet 3 inches. The passage rises steeply 18 inches in 5 feet; the two outer ledges or steps are 14 inches and 16 inches high, so the garth inside is nearly 4 feet above the foot of the ledge. The gateway tapers very slightly upward from 3 feet 5 inches to 3 feet t inches wile; it is \pm feet deep above, and 9 inches more below, of fairly large stones, some 3 feet 7 inches long, and 1 foot thick. The lintels rise inside like inverted steps, such as we find over stairs in certain late

fru. B- Dun A.ngusa: The innergneway, interior und exterior.
peel towers. There are five covers, their depths being-the outer, 15 inches (by 14 inches thick, and 5 feet 10 inches long, the next three 9 inches to 10 inches deep, the inner beiwe t feet 6 inches long. They rise 9 inches, 6 inches, and s inches, the two inner being level, and keep the passage at a rairly even height above the slope. The inner ope is 5 feet 9 inclies high, and 3 feet 2 inches wide. An unroofed passage, 6 feet 7 inches wide, and
 of the wall. The lower blocks are large; some are 3 feet 7 inches, 4 feet
 upper part is rebuitt, having beeu a rasted, shapeless heap of blocks in

1878, to both sides of the gateway. The rampart is 13 feet 6 inches thick here, ${ }^{2} 12$ feet 6 inches thick farther south, and 14 feet 2 inches to the north-east.

There are two terraces, such as we find at Ballykinvarga and other forts, ${ }^{3}$ running round the interior ; the lower is 4 feet to 5 feet high to the east, 6 feet to 7 feet to the west, the upper 4 feet to 5 feet high ; they vary greatly in width, being usually 4 feet to 5 feet wide, but 7 feet 9 inches wide at one point. The upper was noted by 0 'Donovan in 1839 ; there was some trace of it even in 1878; the lower was noted by Ferguson in 1853. Two "ladder-flights" of steps run up the two terraces at $5 \frac{1}{3}$ feet to the south of the entrance: the type is common in Aran and Clare; the other, or "sidelong flight," being more common in Galway, Mayo, and Kerry, though not unknown in the former districts. The flights are each nearly 4 feet wide, and are of five and six slightly projecting steps. Northward, at 9 feet 3 inches from the gateway, is a flight of five "ladder-steps," 4 feet wide, and 2 feet 4 inches deep in all, up to the lower terrace; it is mentioned by Ferguson ; 27 feet farther northward is an upward flight of six steps, 3 feet 4 inches wide; the lower terrace is broadest at this place. The north-west stair is 61 feet farther round the terrace, cousisting of tro sidelong flights, ${ }^{\text {b }}$ eight steps in the lower, and six in the upper; all are reset, but they are marked on Petrie's plan, and there were "slopes" in 1878, with some trace of a terrace. The whole double fight is $12 \frac{1}{3}$ feet long. At the foot is the oft-mentioned ope in the lower wall ; it is a low, lintelled passage, ending in loose filling, and is 3 feet 10 inches high, 33 inches wide, and over 6 feet deep, with four lintels, the outer being 2 inches thick; it is 80 feet from the pier of the main entrance; there are no other features seaward.

[^86]The garth is from ahout 140 feet to 150 feet across, 150 feet at the cliff; it was very probably oval, but there seems no datum for the dimensions given in the "Letters " of 225 feet north and south. In the middle, on the edge wit the precipice, is a mek-plathmm. evidently scarpel and squared, a few feet high, 42 feet north and south, and 27 feet across. From it we can drop a stone into the waves raging, in their unwearied sapping of the cliff, $: 02$ feet below. There are no hut-sites in the garth; if they ever existed, the materials may have heen thrown over.

The view from the summit of the fort is most impressive and solemn : the desolate-lowking fields, "the soil almost paved with stones," as in $168 \pm$, fall away to the gillen crescent of Kilmurvey strand, and rise up the opposite hill, past the village of "Gortnagappul," to the old lighthouse near Dun Oghil. Eastward runs the long range of sterp, clark headlands, and deep bays, ravely unshected hy high-leaping spray; while beyond the huge cliff, and "the trouble of the sea that camot rest," we see the "great wall of Thumoml"- Muher-with its vinlet-shaded hastions. The limits of the view on clear days veach from the giant peaks of Corcaguiny in Kerry to those of C'onmemara: While th the somth-west is only the horizon of the landless derp, whirling sea-hinls, and the sparkling silver tideways.

A'lENHM A.

Phaidinetum. "hartes 1 ". 1ssis. "Firtmeng Fonts on the Isles of Aran."

linmer oliver J. (1ssi). "The Nuth Iskes of Aran," p. 16.
 st. Boma."
Innmaren, Elwin. Earl of (15\%.う). "Notes on Irish Architecture," vol. i., 1. 1. plattes i.-iii.

Ferseram, Lenly (1sij). "The Irish betore the (ompuest" (ed. 1880), p. 6. Hatshome, (harles H. '18.93). "()n the Firtubyic Fonts in the South Isles of Aman." Archaenlogia Cambensis, wh. iv., N...., p. $2!6$.
Haverty, Martin (185: . "The Arran Isles." Ehhohngal Section. British Asonciation. repuldished. p. 1!

[^87]"Irish Builder" (1877, anonymous writer). Articles on Aran, commencing April 15th, 1886.
Kinahan, G. H. (1875). "Sketches in the West of Ireland"; "Science Gossip" (Hardwicke), 1875, p. 127. ${ }^{1}$
Ledwich, Edward (1797). In Introduction to Grose's "Antiquities of Ireland," vol. ii., p. iv., and his own "Antiquities of Ireland," p. $140 .{ }^{2}$
O'Donovan, John (1839). Ms. notes. "Letters on County Galway." Ordnance Survey (R. I. Acad.).
O'Flaherty, John (1821). "Sketch of Arran Isles." Trans. R.I. Acad., vol. xiv., pp. 72-140.
O'Flaherty, Roderic (1684). "Ogygia," p. 85. "hIar Connaught" (Tr. Archaeol. Soc.), p. 76.
Petrie, George (1820 and 1857). "Military Architecture of Ireland " (ms. R. I. Acad.).

Stokes, Miss Margaret McNair (1876). "Early Christian Architecture of Ireland," p. 14, and plate I.
Wakeman, W. F. (1862). "Aran, Pagan and Christian." Duffy's "Hibernian Magazine," vol i., p. 577.
Westropp, T. J. (notes, 1878). Handbooks, No. ii. (1895), p. 56 ; vi. (1904), p. 73 ; and Journal Roy. Soc. Ant. Ir., 1885, p. 256. "Ancient Forts of Ireland." Sections 46, 49, 81, 94, 123.
Wilde, Sir W. (1872). "Lough Corrib," p. 265, view by C. Cheyne, drawn 1847.

Windele, John (1858). Topographical Mss. Supplement (Library, R. I. Acad.), vol. i., p. 740.

Views.

1795. Imaginary view given by Dr. Ledwich, in Grose's "Antiquities of Ireland," ii., p.iv, and in his own "Antiquities of Ireland," plate xi., p. $140 .{ }^{3}$
1796. Masonry of Dun Aenghus, by W. F. Wakeman, in "Ordnance Survey Letters."

[^88]18.36. Dr. Petrie's beantifnl view, reproduced in Miss Stokes's "Christian Antiquities of Irelaid." It shows the fort and cliff from the east. ${ }^{1}$
1847. C. Cheyne, reproduced by Babbington and Wilde, ut supra, and Dr. Joyce's "Social History of Ancient Ireland," ii., p. 58. Fort from the north-west.
18.7. F. WF. Burton, reproduced by Dumaven and Stokes, ut supra. Door of the central fort.
$15 \cdots$. Lord Dumaven's tine photographs. (1) Fort and clifi from east. (2) Fort from north-west. (3) Portions of middle and inner walls. ${ }^{2}$ 1878. Camera sketches-(1) Fort, distant, from east. (2) From north. (i) From moth-west. ${ }^{3}$ (t) The inner grateway. (5) The inner fort from east. (6) Interior showing terrace.

Plans.

W'Ihnowan and letrie. W'Inowan is followed ly Dumaven, Bahhington, .mid Habery: Alf these are little hother than sketh-maps. Windele gives an mombly endr plan, only shwing two cescent walls concentric and with gates.

APIENDIX B.

U'spublished Inescriptions before 1880.

The records of a fort whose origin is lost in the darkness, and which
 the papers written on its remains. An merestored fort is its own record; but, to one who recalls the weird chaus of ruin-heaps in 1878, and contrasts it
 the old descriptions, no matter how rude, assume a great importance, and thmuld be laill before one's readers. W'e collect those of Petrie, O'Donovan,
 restoration. We camont Indieve that these have exhausted all the early unpublished descriptions ; but we hope to lead anyone who has notes on Dun
 possible, the record of that great fortress.

[^89]George Petrie (1821 and 1857). The notes used by Dr. P'etrie for his "Essay on the Military Architecture of Ireland previous to the English Invasion" (two manuscripts classed 12.0.9 and 10 in the collection of the R. I. Acad.), most probably date from his leisurely visit in 1821, not from the confused pienic meeting of 1857, when detailed observation was almost impossible. We slightly condense his and the other accounts, but keep every essential feature. [p. 131] The "overhanging cliff is 360 (crror of copyist, recte 300) feet above the level of the ocean." His sketch of the gateway, with strongly inclined jambs, and section of the wall, 13 feet wide on top, and 15 feet 5 inches below, with a strong S curve, are both inaccurate. Neither manuscript is in the handwriting of Petrie. [p.135.]
"The keep or caher is 115 feet [150 on the plan] in diameter, the wall 20 feet high, and 14 feet 6 inches thick. It has one small entrance doorway, 5 feet high and 3 feet wide. The wall contains a small chamber or cell within it. The wall is of nearly equal thickness, making allowance for a curve in its outer faces. The steps which led to the parapet are destroyed. In the centre of the area there is an oblong level elevation of rock, apparently formed by art, 42 feet long, 27 feet wide, and 2 feet high. The keep is strengthened by three concentric walls, on ledges of rock, each rising above the other. 'The first [p.136] varies from 10 to 12 feet, and is about 11 feet in thickness. It has a level terrace at the height of 6 feet from the ground, and an entrance doorway, which varies in breadth from 3 to 6 feet. This wall is 30 feet from the inner, and at the doorway, 234 feet. The second concentric wall is situated on a lower ledge of rock, and extends only about half the circumference of the first. It is about 10 feet high and 6 feet wide ; this wall has also a terrace at about half its height, which is reached by two flights of steps d and d [shown, but not lettered, in the plan as in the "fragment," which is in the text confused with the second wall], and has a doorway about 4 feet wide. Its distance from the inner wall varies from 20 feet to 30 feet. The third and outer wall E) occupies an irregular ledge of rock, considerably below the preceding [p. 139], and varies in its distance from the former from 140 feet to 675 feet; it is about 6 feet in height and in thickness.
"I have yet to notice the most remarkable feature in this great work, namely, a sort of chercux de frise formed of high and sharp stones placed irregularly in an upright position, with their points upwards. This extraordinary barrier surrounds the second and third Lsic walls, and extents to a

[^90]distauce varying from 50 to Tu feet. A passage leads by a steep ascent of 80 feet to the gateras in the second wall: and this passage has a wall of 3 feet on either side."

John O'Doxoras (1839). - The most valuable description of the unrepaired fort, and ne which has coloured every published account since it was written, was make for the Omance surver Letters, and is now given prarti"ally in ..ton... Ms. I. I. Acal. $1 \pm$ p. 3 , p. 197). It commences with a long and cuntroversial section which we omit, as it is merely a series of attacks in Lier. Mr. Healy, Ins. Ledwich, ant Juhn O'Flaherty, for their translations, descriptions, and theories.
 exert whe wh man if the natm wi Wisins, dwelling at Killeany" (a

 ancient name; "all the other inhabitants style it Dunmore." "Dun Aengusa a nAraind," Buok of Lecan, f. 27.
 south side of the Great Island, in the south-west of the townland of

 but very much ruined...; the boys of the island are destroying the

 excepting in spots. . . The central fort or keep is ly far the most perfect

 2.5 feet in length from north to south. . . The wall of the keep of Dun

 stunes of consilerable size. . . 'The greatest height of this wall at present is 18 feet. This is at the west sile, where the original characteristics of the masonry arlpear. The internal division of the wall is bere 3 feet

[^91]4 inches thick; the second or contral division is .5 feet thick, and the external division, 4 feet 5 inches thick-total thickness, 12 feet 9 inches. The two external divisions are here raised to the height of 18 feet; but the internal division is at present only 7 feet high; but it is probahle that it was originally many feet higher, though, I think, never su high as the two external parts, as I find in all the other forts that the internal division is generally 4 feet lower than the other two, which are always carried to the same height." [pp. 206, 207; map and some comments are next given. Some pencil-notes give the measurements which he uses later on.] [p. 208.] The doorway which led into this keep is still nearly perfect; it is placed in the north-cast side, facing the Aran lighthouse, which is situated on the highest point of the island. It is nearly stopped up on the inside with stones which fell from the top of the wall; I removed them on the outside down to the solid rock on which the wall is built, and found the doorway to measure in height exactly 5 feet. [He then gives the dimensions and rise of each of the four lintels.] The doorway would be 21 inches higher on the inside than on the outside were it not that the solid rock on which the wall is built rises in proportion. ... [p. 209.] At this doorway the external part of the wall only remains perfect, measuring 4 feet 5 inches in thickness, and the other two divisions are nearly level with the area of the fort, but immediately to the north and south of it they are tolerably perfect.
" In the north-west side of this ring there is a passage, leading from the inside into the thickness of the wall to the extent of 5 feet 6 iuches, measuring 2 feet 9 inches in width at the top, 3 feet 7 inches from the bottom to the roof where it is covered by large stones laid horizontally across. . . .
[p. 210. Middle Wall.] "Outside the internal keep are the remains of a strong cyclopean wall which surrounds it at irregular distances. Immediately to the west, near the cliff, it is within 28 feet of the keep. To the north and by west is 32 feet from it, and to the north-west, 42 feet 6 inches. 'To the north from the keep this wall is in tolerable preservation, for here its original thickness and perhaps height remain. It is 6 feet thick and 12 feet high, and well faced inside and outside with stones of considerable size. It consists of two distinct walls, one built up against the other. . . . A line drawn from this part of the wall to the doorway of the interior fort, or keep, measures 131 feet. In the north-east part of this external wall there is a doorway now much destroyed. It is 4 feet 7 inches in width, and the wall is here 8 feet 2 inches in thickness. A line drawn from this doorway to that of the internal fort or keep measures 235 feet. At the distance of a few feet to the east of this broken doorway this wall forms an angle from which a straight line, drawn to the doorway of
the keep measures 240 feet. From this angle the wall turns southwards turards the cliff; which [sic] is now vers much destroyed. Its length from the angle above mentioned to the brink of the cliff is 176 feet.
"Outside this second wall is placed a host of sharp stones slopewise . . [p. 211.] Many of them are so sharp that if one fell against them they would man haroush. [$1,21 \%$] This army of stones is in some places 30 feet Walpamb extmots all moml immediately ${ }^{3}$ ontside the second wall from cliff 10 cliff: They are nearly perfect on the west side, and also on the east; but (on the north-east many of them have been removed by the islanders to facilitate the passage to the sea.
[Framemt of Old Wall.] "Outside the second wall and between it and the cheruede frise [sic] there is another fragment of a wall which seems never to have been carried arund more than about the one-tenth part of the ring. 'The part of it at present stanting is 7 feet 9 inches in height and if leet in thickness.
["LTER Wafi.] "Outside the checrunc de frise of stones there is another wall which encluses a great extent of ground, and runs from cliff to cliff; a line drawn from the north and by the west side of the second wall to this. passing through the choverox de frise, measures 129 feet, and a line drawn from the nurthern part of the same wall in a north-west direction to an obtuse angle furmed hy this at the norih-west puint, measures 39 feet. This wall is here very much injured; hut from what remains of it I have been able to ascertain that it was built exactly similar to the second wall alrealy doseribed, that is formerd [p. 214] of two distinct divisions which wonld stand inderendently of each other. A line drawn from the broken denrway in the second wall, alrearly mentioned, to the north-east point of this measures $4: 34$ foot. At the portion I have been able to ascertain that the wall was \& feet thirk, and well built: hut the original height could not be inforred from any fragment of it now remaining. A line drawn from this point to the colqe of the cliff measures 586 fert; and a line drawn from the secomd wall at the edgn of the clifl to the extremity of this at the edge of the cliff, alsu measures fito feel."
"'Immovan then richtly points out the falsity of Beaufort's imaginary view whirh impugel on Latwich, "Antiquities of Ireland," p. 139, and gives, in p. 221, sketches of the hromze antiquities found, not many months ago, by hoys ronting fur rablits. A "fish-hook," $3 \frac{1}{2}$ inches longe, portion of a fihula, and pins now in Petrie Museum.]

I need only comment on the above deseription, that O'Donovan does not
appear to have seen (or at least noted) any steps in the imner fort or cither of the northern gateways in the middle and outer walls. The gates, we know from other sources, existed before the restoration; but the lower terrace of the inner fort (as my sketch shows) lies burierl in vast heaps of debris, so any steps were probably hidden.

Johin Windele (ante 1854). In that extraordinary mass of rough notes on antiquities and folk-lore (the life-work of one of the most industrious and least-known of the Munster antiquaries), we find a description of Dun Aengusa. We strive with pleasure to rescue a fragment of the work, so unjustly ignored and yet so valuable, of John Windele. It is found in his Supplement, vol. i. (Mss. R. I. Acad., 12 к. 27). We condense.
[pp. 739-40.] " Dun Aongus. It stands on the verge of the sea, high perched upon the edge of a perpendicular cliff at least 300 feet in height, and forms something more than a half-circle, consisting of two enormous walls. . . . The breadth of the intervallum to the left 14 paces (39 feet), at the east 94 paces (300 feet)."
[pp. 740.] "The appearance of the Dun as we first approach is that of a great chaos of ruins; but as it is reached, its general form soon develops itself. 'lhe upper outline of the walls is jagged and most irregular, by reason of injuries of one kind or another. The exterior surface is tolerably regular ; but on the interior the face has fallen into terrible ruin; and it is only at particular points that its outline [p.745] can be descried. They are built of limestone, of moderately large stones, of irregular surface and outline, and without any cement-the height about 20 feet, and thickness 12 feet; the walls perpendicular on the outside, and diminishing in thickness within by receding stages and banquettes. The outer face of the interior wall has, at the west side, a succession of stairs, just as we find in the inside of Staigue Fort. I am not prepared to assert or deny that these staircases encompass the whole circle of that wall. [p. 747]. The inner area has a horseshoe form, and measures along the cliff 48 paces (133 feet), and to the crown of the circle at the north, 51 paces (141 feet). A table of rock, square in form, crops up near the cliff above the surface at a height of about 4 feet. It is in a rude and perfectly unwrought state. ${ }^{1}$ In the eastern side of the inner encompassing wall is the only entrance, a doorway of narrow proportions. . . Height, 5 feet 2 inches; breadth at top, 4 feet 3 inches [sic]. It is covered over with four great lintel-stones, which rise one over the other inwards like inverted steps. The length of the passage thus formed is ouly 6 feet, which would indicate the thickness of the wall here. The floor is now cuvered with loose

[^92]stones, probally phaced there ly design or fallen." [He then examines and rejects the temple theory, agreeing with Petrie's statement that it is a fortress, and continues on p. Ton'.] "A writer, describing Dun Aengus, says the larger of the three (there are only two) enclosures is encircled by a rampart of lange stunes standing on end. This is a decided error; the stones are polygonal in form. . . sometimes hammer-dressed, but never by the chiscl." It is indeed remankalle that he so entirely overlooken all outside the mildle wall.

Fio. 8.-DUun Aenguan from nampra alketches, 1878.
NuTEs, ine 1st, 18:8.-The rarity of records made hefore the restoration may excuse my giving an alaptation of my own very rough notes: "Ihwn Engus, Aimms or Aingus." There is "an old tumbled wall; very mach is quite down"; then, "pillars set on end; inside is a piece of detached wall " (sketch). The "imuer wall has a sort of terrace, nearly gone near the ditt, with yaps like dooms, and me 'creepy" dorm." There is "a road through the pillars, very steep. . . the second wall runs back round a steep (ridge, with pillars at the fuot towards Clare. The middle fort wall has fallen down in one patch, with another wall insille: there is a hole (? the ope inside). The wall was three times a man's height, of rough stones, naturally very square. An old gate looking towards Clare is perfect with a top stone, the wall rising
 one can reach. Inside the door is perfect'sketch; ; it has step stones on top
(of the passage); all the wall seems very shaken here. There was a sort of terrace round the insile (sketch), and slopes, or steps, up to the top, which is dangerous and loose. There is a square platform of rock. The fort is not a bit like Grose (the view in Grose's 'Antiquities of Ireland'), Dut like 'Dunraven'; you can hardly get through the pillars. There are lots of rabbits in the stones." The following was written probably the month after our visit:-"Dun Engus, which rises with three tiers of walls.... The outer wall is insignificant; then you come to a cheveuse de frise of jagged pillar-stones; behind this is a low middle rampart; next the great imer wall in which, through a square-headed door, we entered the interior-a level rocky piece of ground with an oblong raised platform of rock, 2 or 3 feet high, and so squared as to look artificial. The Firbolgs were certainly no savages : the smooth-faced walls, well-built door, clever chevanox de frise, and flights of steps on the interior " show this. ${ }^{1}$

APPENDIX C.

Published Accounts before 1880.

For completeness it may be well to give a short account of the previous descriptions in print.

Roderick O’Flaherty (168t-6).-" Ogygia," p.175, "Dun Aengus, ingens opus lapideum sine coemento . . . supra altissimam maris crepidinem, e vastae molis rupibus erectum." "hIar Connaught," p. 76, "On the south side stands Dun Engus, a large fortified place on the brim of a high clift, . . . being a great wall of bave stones without any mortar, in compass as big as a large castle bawn, with several long stones erected slopewise against assault. ${ }^{\text {. }}$

Edward Ledwich, ll.d. (1797).-In Grose's "Autiquities of Ireland," Introduction, p. iv, and in his own work of the same name, he follows "Ogygia," and gives a delusive view done not from nature but from the description. He regards the fort as a mandra or monastic enclosure.

John O'Flaherty (1824). - In Transactions Royal Irish Academy, xiv., p. 135, he adds nothing to his predecessors' ${ }^{3}$ accounts of the fort, even omitting any allusion to the abattis.

[^93]R.I.A. PROC., VOL. XXVIII., SECT. C.

Shutel Feratson (1853)-In the "Dublin Tniversity Magazine," rol. sli.. p. $49 \pm$, "S. F." (as he also signs some of his poems ${ }^{1}$ in the same pares fires this excellent description, which, being rather inaccessible to antimaries living motside Duhlin, may he given in a condensed form:"Aiter a walk of half a mile (we) reach the outer rampart of Dun Ancu-, a lly stone wall of alnut n (perhaps s) feet in thickness. The circumallation covers a space of about 11 acres. A similar wall on each side of the avenue flanks it onward from the outer entrance to a
 Wall apparently consisted of a banquette and a parapet. . . . All round the base of this second rampart . . . sharp-pointed fragments of rock are
 the arenue. ... The entrance is still perfect . . . about the middle of the eastern irment. . . The visitor must climb in on his hands and knees, unlet the wide massive lintel-stones. On the right, on entering, are the remains of a tlight of steps conducting to the lower banquette; . . . one or two wher intications of steps may be detected."

Ins. Cnsur (1s.0).-The Most Res. George Conroy, Bishop of Ardagh, in "A Vi-it to Arranmore of St. Enda," puhlished in "The Irish Ecclesiastical Lienord," 工.s., vol. viio, p. 2t, follnws S. F. closely. He describes the lematind clifts and tuek-pools. Notes "the dry-stone mall, an irregular ellipse." hailt " in two divisions," the abattis 60 to 80 feet wide, where a matmw aremue is left : it runs all round the second wall, between which and it is "a fracuent of wall covering about one-tenth of the second line," which in $\because 2$ feet to tel ieet from the central fort to the north-west and in two smetions. The central fort is a half nval, the wall in three sections, " lik. th" coats of an onion," traces of stairs, and the banquette, on the ea-t silfe": the nearly perfect ifom 3 feet t inches wide, with a lintel and two stmen to shift the pressure, and a pasaage leading into the wall, are momtimel. The dimentins are from the "Undnance Survey Letters."
 nore-takem in 187, but (ss far as Itun Aenchns is lescriberl) a compilation frou (blhmaran. Ferguson, and Conroy, were published in this paper, from Au_net 1-ith. 1sind. The motes seem huried and unrevised: for example, they recerife I un ME her aml Iun Farvash as separate forts, p. 237.

Lorit Imstates (mat, 1s,
:Fuceantle, " Ar.hytas and the Mariner." foilowing tha Aran paper, on p. 50 is. His history

 Ri burd le Ches surate the Bustio of Dysert.
require description. The account and views of Dun Aenghnsa (the latter the only photographs known to have been taken before the Restoration) are in volume i., "Notes on Irish Architecture." The sketch of the door of the central fort is also given. The plan is only a sketch-plan from the "Ordnance Survey Letters," which the writer follows largely for dimensions. He saw "no trace of inner platform; there was a chamber or passage" in the central fort. He alone describes the perfect gateway in "the outermost wall," the "interior covered with flags, the wall being 8 feet high, and 5 feet thick." I have to thank the kind courtesy of the publishers, Messrs. George Bell \& Sons, for permission to reproduce two of the photographic views of this work.

The other accounts are rarely of any independent value. That of Martin Haverty (1859) for the British Association Handbook is very brief, hardly filling two pages, ${ }^{1}$ while fourteen are devoted to the pienic and long speeches, but little to the point-much sack to but little bread.

There are two other widely known accounts which have given many (as the earlier gave the writer of these lines) their first interest in the fort. The one, dating 1867, is by Lady Ferguson in "The Irish before the Conquest"; the other, by Miss Margaret Stokes, is a preface to her "Early Christian Architecture," 1876 ; both are excellent and impressive general descriptions, but do not give details of the ruin.

Accounts by English Writers.

There are two papers on this fort in "Archaeologia Cambrensis," which, as being published in Great Britain, are perhaps more studied by antiquaries outside Ireland, and call for some comment to correct the strange mistakes made, especially in the first.

Charles H. Hartshorne (vol.- iv., new series, p. 296) gives a very picturesque description of the site of the fortress in 1853. He then gives details: "The area includes half an acre; this is partly surrounded by a triple wall of most unusual character, and beyond ... by a glacis, tro ditches, two concentric walls, which gradually die out to the south-east on the naked rock, and lastly, on the north side, by a cherense de frise." He gives the height of the walls as from 20 to 50 feet; mentious the portal of the entrance to the south-east; " on the north side is a much larger entrance, with a parallel sallyport running underground. The lower part of the interior wall at about half its height forms an 'alure,' on which people cau walk all round"; it "is reached by steps running to the top of the wall, which

[^94]legularls cross each other. forming a reticulated zigzag." The cheidux de fries is of "slabs of fagged limestone," ? to 6 feet high, and "set so insidiously in the narrow fissures of the rock that it is rather difficult to exincate oneself." From the geat skill of its morbs, he cannot believe that ? 3 e fort is if the first century, hut resards it as monastic. ${ }^{\text { }}$ The rest of the paper, where not concermed with slight notes on the other forts, manders into religious controversy and assertion.

It mast le muted that there are an fitonos: the walls do mat die wut to the
 were I feet high: where lest preserved. not 20 feet (still less 50 feet) high; the main -atoway: the "allyper, \Rightarrow.... ...t inn understound, wr even pass An : ! ! ! wall : an! tar steps an ant ass each other. Thus there are
 absolutely reliable.

 of Ireland.

 -

 The wall has a rubble centre with compact faces of dry stones, and is

 the "siege theory" to account for the mall, and (p. 226) suggests that the stones of the chocave do frise were to shelter the cattle driven into the fort from slincers.' Petrie. Miss Stokes, S.c., date the fortress before the Christian

: A.: thou jums. ca:kairs, and cashels were ere ted as deferices around the sacred buildings,"
F. ©u3. He did co: obacre tba: all the existing charibea in Arran are unforifed.

* . 11 n the Firtosigi. Furts in the South Isies of Aran."
- I: setmes strage Low the low, chosesct siones couli be supfosed io be arile-sbelvers.

Westropp-The Fort of Dun Aenguse in Inishmore, drun. 4j

era; but "so careful an antiquary as Rev. Charles Henry Hartshorne" considered it of monastic origin. The pillars of the chovaud de firise were worn into deep digitations; the bronze acus of a fibula of the "spring pin type" was found by Mr . Wakeman; and in the autumn of 1893 the author found in a rabbit-earth a small hinged ring of a bronze pin, though the acus was missing. It had a cable decoration, and there is a socket opposite the hinge for some kind of setting." The Dublin Museum has one inferior pin-ring. The British Museum has a perfect example. It dates from the fifth to the tenth century. In the enclosure of Dun Aenghus, not far from the spot where the bronze pin was found, the author picked up a leaf-shaped arrow-head of chert, from which minute flakes had been chipperl, and also a small piece of true flint worked up. These favour the pre-Christian origin of the fort. ${ }^{1}$

The Restoration. ${ }^{2}$

The subject of the restoration (rather than "conservation") of Dun Aengusa has excited so much distrust, severe criticism, and strong assertion, that one who studied the fort before the event is to some degree compelled to "find a verdict." The unnecessary rebuilding and levelling up of parts of the walls and the "tidy" and new appearance thereby produced, show how desirable it was that the work should have been constantly under the supervision and direction of an antiquary who had studied our ring-walls carefully. Left to non-antiquaries and the natives, the work was of course done unsympathetically, like repairing a fence, and no steps were taken to differentiate the old work from the new, or (I understand) to secure any full record of the structure in its untouched condition. Anyone, however, who studies the above accounts, especially the tabular statement of the authorities for each feature, must arrive at the conclusion that very little "falsification" took place. In fact (save the two flights to the south of the gate in the inner fort, and the upper flight in the north-east ${ }^{3}$), all the features are attested. Even the unrecorded steps (as we suggested) had probably warrant in existing bottom steps, and long blocks in the debris. In this case, as at Dunbeg, want of accurate reports has led antiquaries to a judgment too severe to be justified by the evidence against the restorers.

The Appendix to the 48th Report of the Commissioners of Public Works

[^95]in Ireland (1879-80), p. Tre in a note on "Dun Aengus," says :-"I carefully examined the fort. and although many stoues may be put into the walls to prevent further ruin. little more can be done towards its preservation." The Superintemlent sugrests stopying bors from rabbit-hunting, insertion of stones in gaps, and buildin! up dry strne buttresses where the walls overhang. It is evilent that the builling of the level tops and of ranges of terraces was never contemplated liy him. No moner was expended at that time [see p. 51].

The sum if £591 2s. 1n. Was lail , wit in works on the Aranmore National Monuments (under 32 \& $3: 3$ Vict. c. 42 in 1884-5 (Appendix
 mentionel in the brief sertion. Pr, 29,30 . In the leport, 1885-6, only mention is male on p, ju of an expenditure of $£ 11 \mathrm{is}$. 9d. for work on Norh Aran: whil. fin these and many sulsergent years, complete silence prevails 1s the cextent and chanacter of the works done on the Ancient Monaments. It is harily womderiul that distrust and hostile (at times unfair) criticism prevailed among antiquaries and others.

Then. ... fal an I have fwen ald th aseertain are the records of one of the mont remaknile dal fascimatime of the ancient fortresses of Ireland. ${ }^{1}$

[^96]

Fig. 1.-Dun Aengusa from the East.
(Photograph by T. J. Westropn.)

Fig. 2.-Dun Aengusa from the North. Flhotoghth by Dr. George Forenty. R.S.

Fig. 1.-Dun Aengusa from the West before the restoration.
(Dunraven Collection.)

Fig. 2.-Dun Aengusa. 'l'he immer Fort before the resturation.
(Dumaren Collotion

Fig. 1.-Dun Aeygusa. The Abattis.

Fig. 2.-Dun Aengusa. The Doorway.
(Photographs by T. J. Westropp.)

47 」

 II.

 II.
 CATALOGUE OF THE MAYORS, PROVOSTS, ANI BAILIFES OF DUBLIN CITY, A.D. 1229 TO 1447.

By HENRY F. BERRY, Litt.D., I.S.O.

[Read January 24. Ordered for Publication January 26. Published February 28, 1910.]
The dates of office of the mayors and bailiffs of Dublin in ancient times are of considerable importance, as old deeds and documents were undated, and these constantly acted as witnesses in their official capacity. In the Preface to his "Chartularies of St. Mary's Abbey, Dublin" (rol. i., p. xxxiii), published in 1884, Sir John Gilbert makes the following statement:-"Many of the Dublin grants are attested by the mayors and bailift's of that city. Materials, however, are not at present accessible for fixing precise years of some of these civic officials at the early period to which the instruments belong."

The publication of a Calendar of the Christ Church Deeds in the 20th, 2.3rd, and 24th Reports of the Deputy Keeper of the Records, Ireland (18881892), made a considerable addition to the materials necessary for the construction of a chronological catalogue of the mayors, provosts, and bailiffs of Dublin; and without it this work could not have been undertaken. As a matter of fact, a list of mayors, bailiffs, \&c., extending from the year 1308 to 1765, is printed as an appendix to Walter Harris's "History and Antiquities of the City of Dublin" (1766), which the author describes as a "Catalogue of the names of the Chief Magistrates of the city of Dublin under their different appellations of Provosts, Bailiffs, Mayors, Lord Mayors, and Sherifis from the second year of King Edward the Second to this time, taken from the Table in the great room of the Tholsel." This catalogue-at least down to the period included in the present list-has been found unreliable as to sequence of mayors, \&c., erroneous in dates, and many of the names of officials enumerated are wrong or corrupt.

On considering that much more information might be obtained from original Deeds not hitherto consulted; that Sir John Gilbert's published Calendars and Registers gave much assistance; and that each year further sources of information were being supplier, the time appeared to have armed at which an attempt might be made to compile a list of the mayurs, bailitls,

[^97]\&

 Gillbert's "C'alendar of Ancient Records of Dublin," commence.

The original documents consulted with this end in view include-

 kinaly permittel by the Rev. W. J. N'Creery, B.D., rector; deeds of
 Si. Auloen's Church, from $1255 ;{ }^{1}$ ancient deeds of the church of St. John
 demels of the church of St. Nichulas within, from A.D. 1282, now in the Public

 Inyal Irish Acalemy): Pipe Iholls series, from 18th Heny III to 15th Henry V". ${ }^{3}$ There are also three rolls in Trinity College Library, which liftemth century - one from $1406-\%$, classed E. 3. 18 ; a second from the sume date, classed E. 3. 2S; and the third from 1418-19, classed E. 2. 19. Amother list datimp from 1406 , is to be found in the British Musemm (Ahlitinal MSS. t.91, f. 141), which I have collated with the lists in Trinity Colleora.

In aldition to these nriginal documents, have been used the Calendar of Chist Chuch Ineeds; Calemdar of Patent and Close Rolls, Ireland; ×wortuan's Cakendar of I)ocuments relating to Ireland; C'alendar of Pustiviary Iowlls, Ireland (lub. Rec. Ofl. series); Register of the Priory of - Ill Hallws, Duhlin (Irish Arch. Soc.) ; Otits of Christ Church, Dublin, "Trish Arch. Soc., Calendar of the Clartulary called "Dignitas Decani," of \therefore Catrik's Cathelral erl. Dean Pernard, Proc. R.I.A., vol. גxp., sec. C, I. 4 '1: and the following works edited by Sir John Gilbert:-Historical and Mumicipl decmments; Calendar of Ancient Records of Dublin, vol I; Chartularies of it. Mary's Ahbey, vols. I and \mathbb{I}; Register of the Abbey of St. Thomas the Martyr, Dublin.

A Thater of King Henry the Third in 1229 authorized the citizens of Indin the chert annmally frum among themselves a loyal, discreet, and proper

[^98]> Berny-Muyors, Provosts, and Builiffs of Mublin, 1929-1447. f!
mayor for the government of the city of Dulbin, who should bear fealty in him, and be presented to his Justiciar if the King were not in Ireland. He was to hold office for one year, at the end of which the citizens might retain him or elect another. Elections took place yearly on Michachnas Day. To the mayor and his colleagues were addressed all writs and mandates as to matters arising within the city limits, or that concerned the revenues of the Crown in the same. The term "provosts" was applied to the mayor's coadjutors during the period 1229 to 1292 , from which date they were called "bailiffs."

The early mayors of Dublin were occasionally called on to perform military duties, and in 1316, it is recorded that discovery having been made that Richard, Earl of Ulster, was instrumental in bringing bruce and his Scots into Ireland, Robert de Nottingham, then mayor, with a number of the commons, marched to St. Mary's Abbey, where the Earl was, and they arrested and imprisoned him in the castle of Dublin, where he was kept in close confinement until 1317. In 1402 John Drake, mayor, with a borly of citizens, marched out of Dublin against the O'Birnes and other Irish rebels, of whom they are reported to have slain a large number. In 1419 , the then mayor, Thomas Cusake, marched with the lord lieutenant to the county of Wicklow, when Castle Kevin was razed.

Sir John Gilbert specially instances Geolfrey de Morton, who served as mayor in 1303-4, as exemplifying the energy, activity, and independent. movement of traders among the Anglo-Norman settlers here in the carly part of the fourteenth century. He was ship-owner, purveyor to Edward I and II, and a collector of murage ; he also traded to England, Acotland, Ireland, and France. In consideration of their important services rendered to the Crown, King Henry the Fourth, in 1407, granted to the mayor of Dublin and his successors that they might have a gilded sworl bome before them as the mayors of London had. Some particulars gleaned from the ancient deeds already mentioned, with regard to certain of the mayors and bailiffs named in the list, will be found in Notes at the end.

It is remarkable that so many of the mayors were re-elected, some of them frequently. To Thomas Cusake belongs the honour of healing the list, as he held the mayoralty on nineteen occasions. His term extended from 1390 to 1430 , so that he must have reached an adsanced age during his later tenures of the post. John le Seriaunt comes next with ten years of oftice (between 1341-1356), and he was elected six consccutive years. Tohn le Warre follows with eight years, while another John le Seriant who served between $129 \pm$ and 1312), and Robert de Nottingham, were mayors seven times. John le Decer held office six times, and some of the others are found
acting five, four, and three times during the couple of centuries through which the catalogue extends.

As to the native places of some of the early mayors and provosts-those of the thintenth century-the following English cities and towns, \&e., were represented:-hererley. Indisul, Chester; Chichester; Cornwall, Coventry, Duham. Fxeter: (ilnueester. Herefod. Leicester, Nottingham, and Winchester. She wa from loitnu, amt thee are named as of Irish places-namely, Bray, C'astleknock, and Callan.

During the first fifty years comprised in the present eatalogue, only seventeen dates have been precisely ascertained, while the remaining dates, taken chiefly from the Christ Church Deeds, are approximate. The true sequence of mayors and provosts is believed, however, to have been obtained, as that of the pronsts is identical with the order in which their names are foumd in sir Juhn (ribhert's lists (1225-1200) in "Hist. and Mun. I) ocuments." The years during which they held office are, no doubt, substantially corrent. From alwut the year 1280 onwards, nearly all have heen strictly proved, as for a considerable period it was usual not only to suplly in hemets names of mayors and bailitls, but to add a saint's day or eve, athl the rempal year.

With regat th the mamseripl lists in Trinity ('ollerge, some explanation is newsany. They are not contmpurary, hot each is a copy made at a much later date, with more or less correctness, from a common original. From the term of uttice of Thomas Cusake, Richard Doone, ant John White (1412-1:3 in the present (atalongue), the lists in E. 8. 18, and E. 3. 28, and in the ms. in the Pritish Musemu, as for os the nomes and their sequence: 27, are practically ithntieal ; they also agree with the Ms. E. 2. 19, from the perion of its commencement ($1418-19$). A difference, however, occurs in dates, muntimes to the extent of two years; at wher periorls, of one year. As the thates of smme of the officials can be proved with certainty from other souress, it has heen found mecessary to work from these fixed data, so as to arive at correctness with regard to afficials lectween 1406-1412, when they "phear relundant. In the list $1406-1414$ in E. 3. 28, the names of Thomas ('nsake, licharl lbowe and Thomas shortall are given as acting for six successive promis, and in E. : 18 for only four, which appears correct. deain, Tohnert (rallane. John Walsh ant William Heyfforde appear three times in cach list: but as there are only six temus of office to be accounted for lectween $1+10 t$ and 1412 , it seems evident that these names have been repeated ance two fiten. This is horne out hy Harris's catalogne, in which 'usake, sce ate whmeratord font times, and (tallane, \&ce, twice.

- ince the compilation of the present list, it has been found pussible to

Berrx-Mayor's, Provosts, and Builifts of Dublin, 1229-1447. is

date numerous undated documents in Sir John Gillert's works, as well as those in other calendars and publications.

CATALOGUE.

MAYORS,
1229-30 Richard Muton, ${ }^{1}$. Guy the Cornishman, William Tayleburgh.
circ. 1230-1 Henry de Exeter, . Ralph le Hore, Adam de Gloucester, [Dispensar].
" 1231-2 Thomas de la Corner. . William de Flamstede, Ralph le Hore.
1232-32 Robert Pollard, . Same, Richard de Hereford.
1233-4 Gilbert de Lyvet . Robert Pollard, Ralph le Porter. ${ }^{3}$
(or del Ivet).
1234-5 Roger Owain, . Henry de Cicestre, William de Flamstede.

1235-6 Gilbert de Lyvet, 1236-7 Same,

1237-8 Elias Burell,
1238-9 Robert Pollard,
circ. 12:39-40 Same,
, 1240-1 Henry de Exeter,
, 1241-2 William Flamstede,
, 1242=3 John le Warre, 1243-4 Same, 1246-7 Same, civc. 1247-8 Same, 1248-9 Philip de Dureham, 1249-50 Roger Oeyn, 1250 Elias Burel,
" 1252 Same,
. Robert de Bristol, William de Lenne.
. Ralph de Stanton (or Stanes), Thomas le Poitevin.

- Roger Hoky, Adam de Gloncester.
. Ailam le Despenser, William Colet.
. Philip fitz Stephen, Adlam Rudipack.
. Ralph le Hore, Richard Pel.
William de Lemne, William Sweteman (or de Wetenia).
- Philip le Bel, ${ }^{4}$ John Pollard.
. Richard Pel, Philip le Bel.
. Philip le Bel, Roger Okey.
. Elias Burel, Philip fitz Stephen.
. Philip fitz Stephen, Elias Burel.
- Elias Burel, Philip fitz Stephen.
- Adam de Gloucester, Elias Ruffus [the Red].
- William Sweteman, Alexander de Hereford.

[^99]| 56 | John le Warre， | Adam de Gloucester，Elias the Red． Thomas de Winchester，Peter Abraham． appear also in this year． |
| :---: | :---: | :---: |
| circe 12at | Same， | sir Elias Burel，Richard Pel． |
| 12－ザい | Richard Olof， | Thomas de Winchester，Roger de Assheboume． |
| | Sir John la Ware， | Elias the Red，Humphry the Tailo |
| | | mon U＇n |
| 125 | l＇eter Alnaham， | Same，Thomas Wrench．
 （Vincent Taverner appears as provost in room of Thomas Wrench．） |
| 12－9－60 | Elias Jurel， | Gilbert Wale，Raymond the Poitevin． |
| | Thomas de Winches | Reymund the Poitevin，Simon |
| 12： | Linger de Asshelnan | illiam de Chester，Peter Abral |
| 106こ－3 | same | ne，Walter U |
| 125：3 | Thematsile | ter． |
| 120． | Vincent Taverner， | same，Hugh（or Huchun） the Tailor． |
| $\begin{aligned} & 126 i-6 \\ & 126 i 2 \end{aligned}$ | Thumarde Winch same， | William de Bristol，Thomas Wrench． Reymund the Poitevin，Laurence the Tailor． |
| | V | Simon C＇nred，Reymund the Poitevin． |
| 12654， | Renger Assluthume | alter Unred，Vincent＇lavern |
| 1269 | Vincent Taserner， | same，Geoffrey de Lyvet． |
| 1070－1 | Thumarile Wincheste | William de Bristol，Humphrey le faunter． |
| | Willian de Jristor， | In Garget，Robert de Asshebo |
| サー－－ | ．${ }^{\text {chan }}$（iarget， | liobert de Asshebourne，Laurence Linred． |
| $1 \because-$. | Same． | Master Nicholas de leverley（Medicus），
 Henry White．（Walter Unred appears as provost in a deed of St． Werburgh＇s．） |
| | Same， | Master Nicholas，Thomas de Lexinton． |
| 127.96 | The city in the Kin accounting，Andre furel，simon de Tailon．） | s hands；in the lipe Roll，appear as spersholt，Clement de Sunors，Thomas kes，Laurence Unired，and Laurence the |
| | Walter Čnresl． | lohert le Decer，Laurence I＇nred． |

Berry-Mayors, Provasts, ant Builiffs of Dublin, 1229-1447. 53

1277-8	David de Callan.	Laurence the Tailor,' Robert Turnot.
1278-9	David de Callan,	. Hugh de Kersey, Roberi le Decer.*
1279-80	Henry le Mareschall,	Laurence Unred, Hugh de Kersey.
1280-81	David de Callan,	Adam Unred, William de Beverley.
1281-2	Same,	Same, Same.
1282-3	Same,	Laurence the Tailor, John le Graunt.
1283-4	Walter Unred,	- Thomas de Coventry, William de Nottingham.
1284-5 ${ }^{3}$	Same,	- Thomas de Coventry, Robert de Wyleby.
1285-6	Same,	. William de Nottingham, Robert le De
		William de Beverley, William de Nottingham, appear later.

1286-7 Thomas de Coventry, . Roger de Asshebourne, Roger de Castleknock.
1287-8 Same, . John Gyffard, William le Graunt,

1288-9 William de Bristol, . Roger de Castleknock, John le Seriaunt.
1289-90 Same, Adam de Hereford, Robert de Bray. Robert de Wyleby appears June, 1290.
1290-1 William de Bristol, . Robert ${ }^{4}$ le Decer, John le Seriaunt. 1291-2 Same, Same, William de Nottingham.

Balliffs.

1292-3 Robert de Bray, . Richard Laghles, Bartholomew Creks. 129:-4 Same. . Roger de Castleknock, William le Graunt.
1294-5 John le Seriaunt, . John Gyffarl, Hugh de Carletone [Silvester.]
circ. 1295 Same, [] Woder, Richard de St. Olave. 1295-6 Robert de Wyleby, . Nicholas the Clerk, Thomas Colys. 1296-7 Thomas Colys, . Same, Philip Carryk. 1298-9 Same, Same, Richard de St. Olave.
circ. 1299-1300 John le Seriaunt, 1300-1

Same,

Same, John Heyward.
Same, Richard de St. Olave.

[^100]

Berry-Muyors, Provosts, and Builifts of Dublin, 1229-1447.

1319-20	Robert de Moenes.	Luke Bran, Willian le Mareschal.
1320-1	Robert de Nottingham,	Robert Worler, Stephen de Mora.
1321-2	Same,	Same, Robert de Eyton.
1322-3	William Donce,	William le Mareschal, Stephen de Mora.
1323-4	William Douce,	Stephen de Mora, John de Moenes.
132 ± -5	John le Decer, (In a T.C.D. deed Elias de Assheborne appears as mayor).	William le Mareschal, Tiobert le Tanner
1325-6	Same,	Stephen de Mora, Giles de Baldeswell.
1326-7	Robert le Tanner,	hnn de Moenes, Robert Wodefoule.
1327-8	William le Mareschal,	Richard de Swerdes (Swords), John de Creek.
1328-9	Robert Tanner,	ohn de Moenes, Philip Cradok
1329-30	Philip Cradok,	Richard de Swords, Pobert [de Walton] the clerk.
1330-1	William Douce,	John Creks, John le Seriaunt.
1331-2	John de Moenes,	William le Waleys (called Twyford in a deed of St. Anne's), John de Callan.
1332-3	William Beydyn, ${ }^{1}$	ohn de Callan, Williann le Waleys.
1333-4	Geoffirey Cromp,	John Creks, Giles de Baldeswell (sometimes called Gilbert, which appears to be a mistake).
1334-5	William Beydyn,	William de Wyyerton, (or Wytherton), Roger Grauntcourt.
1335-6	John de Moenes,	John Callan, Kenewreck Scherman.
1336-7	Philip Cradok,	Roger Gramncourt, Robert Hony.
1337-8	John de Moenes,	Giles de Baldeswell, John Callan. (On 30 Mar. 1338, and subsequently, John Creks appears in place of John C'allan.)
1338-9	Robert le Tanner,	John Creek, Rover't de Houghton.
1339-40	Kenewrek Scherman,	John Callan, Adam de Louestoc.
1340-1	Same,	William Walsh, John Crek.
1341-2	John le Seriaunt,	ohn C'rek, Walter de Castleknock.
1342-3	Same,	Same, Sam
1343-4	Same,	William Walsh, John Taylor.

[^101]| $134-5$ | Tohn le Seriaunt, | - William Walsh, John Callan. |
| :---: | :---: | :---: |
| 1346-7 | Same, | Wralter Luske, Roger Grauntcourt. |
| 1347-8 | Geofirey Crompe, | - William Walshe, Walter de Lusk. |
| 1348-9 | Kenewrek Sherman, | . John Callan, John Dert (or de Dertt). |
| 1349-50 | Geofficy Crompe,
 Tohn Seriannt, | - Roger Grauntcourt, ${ }^{\text { }}$ Walter de Lusk.
 - Toln Dert, John Bek, appear in deeds of St. Werburgh as in office this year. |
| 1:300 1 | Juhn Pathe, | - liobert Thurnell, Richard Heygrewe. |
| 13:31-2 | Rubert de Moenes, | John Dert, Peter Morvile. |
| 1:\%-2-: | Itlam Louestor, | Juhn Callan, Peter Woder. |
| 1:30-4 | Juhn Seriaunt, | David Tymell. Maurice Duncrewe (or Duncroyve). (On 10 May, 1354, Thomas Wodelok appears in place of David Tyrrell.) |
| 1:54-5 | Tohn seriaunt. | Maurice Duncrewe, Thomas Wodelok. |
| 1:35:-6 | Juhn seriaunt. | - Peter Barfut, William Wellis (or de Welles). |
| 1256-7 | Linbert liumell, | Thomas Wodelok, Thomas Brown. |
| 1:15\%-8 | Peter l barfot, | John Wydon, Robert Walshe. |
| 10-ぶ? | John Taylar, | - Thomas Wiulelok, Roger del Wych (or Wyth). |
| 1:3.9-60 | l'eter Iharfot, | I'eter Morvill, John I'assavaunt. |
| 1:60-1 | Same, | Rogger del Wych, Thomas Brown. |
| 1:31-2 | Richard Heymrowe, | . David Tyrrell, Thomes Wodelok. (On 2nd June, 1:32, and subsequently, William Herdman appears in place of Thomas Wodelok.) |
| ! $\because \sim \cdots$ | John Tieke, | - Jwhn 'rassavaunt, Thomas Brown. |
| 1030: 1 | rame. | Same, Same. |
| | Lavid Tyrrell, | . Juhn Grauncet (or de Grauntset), William Herdman. |
| 1365-4 | lichard Heygrewe. | Walter Crompe, Maurice Young. |
| 1.66-7 | Davill Tyrrell, | . John de Grauntset, Richard Chamberlain. |
| 136T-8 | l'eter Woder, | Thomas Brown, Same. |
| 1365-9 | Juhn Wydon, | Pinger Bekeford, John Beke. |
| 1309-70 | Juhn Passavannt, | - Roger Bekeford, Juhn Foyll. |

Beriv-Muygrs, Provosts, und Builiff of Dublin, 1229-1447. it

1:370-1 Jo	John Passavaunt,	William Herdman, Erhnund Berle.
71-2 J	hn Wydon,	chard Chamberlain, William Tyrrell.
1372-3	Same,	. John Foyll, Roger Faliagh.
1.373-4	Same,	John Elys, Robert Piers.
$1374-5$	icholas Seriaunt	obert Piers, Robert Stackpolle.
1375-6	Same,	er Faliagh, Robert Piers.
1376-7	S	geger Kilmore, John Hull.
1377-8	Sam	obert Piers, Roger Faliagh.
1:378-9	obert Stakeloold,	alter Passavaunt, Willia
1379-80	,	ger Kilmore, William Blakeney
*1380-1 J	ohn Hul	lliam Tyrrell, Roger Faliagh
1381-2	Same,	Walter Passavaunt, sen., John Holme, jun.
*1382-3	ond	Robert Burnel, Richard Bertram.
*1383-4	obert Burnel,	hn Bermingham, John Drake.
1384-5	Roger Bekeford, Same,	Thomas Mareward, William Seriaunt. . Edmond (Edward) Berle, Peter Woder, appear 28 July, 1385, in Gilbert's "Cal. Ancient Records."
*138	mond	Thomas Cusake, Jeffry Callan.
*1386-7	obert Stackbol	Nicholas Finglas, Richard Bert
1387-8	John Bermingham	. Richard Cruys, Robert Piers.
*1388-9 J	John Passavaunt,	Walfian Bran, Simon Long
*1389-90	Thomas Mareward,	omas Cusake, William Wad
1390-1	Thomas Cusake,	eoffrey Gallane, Richard Bertram.
1391-2	Richard Chamberlain,	Same, Thomas Donewyth.
*1392-3	Thomas Mareward,	omas Donewith, Ralph Ebb.
*1393-4	Thomas Cusake,	alph Ebb, Thomas Duncreef.
1394-5		William Wade, Hugh Whit
1395-6	Same,	chard Giffard, Geoffrey Parker.
1396-7	Geoffrey Gallane,	homas Duncref, John I'hilpot.
1397-8	Thomas Cusal	Geoffrey Parker, Richard Clerc.
1398-9	Nicholas Fyuglas,	- Richard Bacon, Richard Bone Boone).
1399-1400	Ralp	Richard Bonde, Richard Taillour.
$1400-1$	Thomas Cusake,	Robert Piers, Same. (In Apl., 1401, Walter Tyrrell appears in place of Robert Piers).
- - -	- - -	-

1401-2	John Drake
* 1402 -3	Same,
1403-t	Thomas Cusake.
1401-5	Tohn Drake,
1405-6	Same,
1406-7	Thomas Cuzake. same?
140,-8	'William Wade,
140x-?	Thumas C'usake.
$1409-10$	same,
1410-11	Iobert (iallane,
1411-12	Same.
	Juhn Drake,
1+12-1:	Thomas Cusake.
141: 2 -14	Luke Duwdall.
1414-15	Thomas Cusake.
1+15-16	Same,
1416-17	Walter Tyrrell,
1417-1s	Thomas C'usake.
1418-19	Same.
1419-20	Walter 'I'yrell,
1420-1	John lurnell,
14-1-2	Same,
142-8	Thomas Cousake.
$142:-4$	Tohn White,
1424-5	Thimas C'usake,
142-6	Sir Walter Tyrrell,
1426-7	Juhn Walshe.
14*--8	Thoma* shwitall.
142 - 0	Same.
$1429-30$	Thumas Cusake
14:0-1	John White,
1431-2	Same,
14:2-:	John Haluer.
14:3-4	Nicholas Winler.
14:3-	Haiph Tomhroke.

- John I'hilpot, Walter Tyrrell.
. Walter Trirell, Simon Long.
. John Philpot, Richard Clerk.
John Philpot, Walter Tyrrell.
- Walter Tyrrell, Robert Gallane.
- Thomas Shortall, Richarl Boone.
same, Same.
limhert Gallane, Nicholas Woder, alpear also this year.
Thomas Shortall. Richard Doone. same,

Same.

- Juhn Walshe, William Heyfforde.
same, Same.
Thomas Wralleys, Luke Dowdall, appear also this year.
Richard Boone, Tohn White.
. Stephen Taylor, Nicholas Fitz Eustace.
John White, Thomas Shortall.

$$
\text { Same, } \quad \text { same. }
$$

- John barelt, same.
. Nirholas FitzEustace, Ralph P'embroke.
John Barrett, Rolert de Ireland.
. John Kyluery, Thomas Shortall.

$$
\begin{array}{ll}
\text { same, } & \text { same. } \\
\text { same, } & \text { same. }
\end{array}
$$

stephen Taylur, Thomas shortall. Ialdh l'embroke, Fubert de Ireland.
'lhomas shemtall, John Kylbery. same. same.
Thlan lianett, liolert de Ireland.
Thomas Ashe, Thomas Bennet.
Thomss Bennet, John Fitz Iobert.
Same, lwhert Chambers.

- Whan brayn, Tohn Halsor.

Whn Honlsor, Nichulas Woder.
Nicholas Woder, Robert Iteland.
1'hilip IBrayn, 'Thomas Newherry.
Jamper Ihwolall, Richard Willet.

Berry-Mayors, Prorosts, und Builifis' o! Dublin, 1P29-1447. i9

5-6	John Kylbery,	Richard Willet, Rohert Clifford.
1436-7	Robert Chambre,	John Brayn, Nicholas Clerke.
37-8	Thomas Newberry,	Nicholas Clerke, John Bennet. ${ }^{1}$
33-9	Nicholas Woder,	Robert Ireland, John Brayne.
1439-40	John Fitz Robert,	Richard Fitz Enstace, David Rowe
1440-1	Nicholas Woder.	John Brayne, John de Veer (or W
1441-2	Ralph Pembroke,	Thomas Walshe, Robert Clifforn
1442-3	Nicholas Woder,	John Walsh, William Curraght.
443-4	Nicholas Woder, jun.,	Same, Same.
1444-5	Same,	Same, Same
1445-6	Same,	Philip Bedlowe, John Tanke
14	Same,	Robert Wode, Thomas Savage.
1447-8	mbl	

NOTES.

Page.
51 Gilbert de Lyvet, circ. 1234, granted to Holy Trinity Church the land on which his stone hall, without the King's gate, was built. He had also land in the Lormery, Castle Street. He died before 1244, and he and his wife Sibella were to be buried in Holy Trinity, if they died in Ireland.
Ralph le Porter had a stone house in St. Audoen's Lane, between the gate and the river.
Roger 0 wain, circ. 1260, granted land in St. Audoen's parish, aud in the street of Oxmantown bridge.
Elias Burell had land in Castle Street, 1263. His danghter, Juliana, married Willian de Bristoll, and in 1273 they made a grant of land in St. Werburgh's parish, near the Church, to William Boniur.
Richard Pel had a tenement on the Key, circ. 1300.
William Sweteman had a grant of the tower beyond st. Auloen's Gate.
Richard 0lof, circ. 1249, made a grant of land in Gilleholmock's Strect. He also owned a "conigere by Baggotrath."
Roger de Asshebourne, circ. 1307, had a grant of at shop on the bridge outside the New gate, between the shop of Henry le Mareschall and that of John le Decer, extending from said bridge to the foss of Dublin. William de Chester owned land with buildings, in the Great street, within the walls of Dublin, in the parish of St. Audoen, cire. 1266-7.

[^102]\therefore Geoffrey de Lyvet, cire. 124\%, granted to Elias Burell land in Castle Street, which had belonged to Guy of Cornwall. The deed is endorsed, "Folley's Gruve in the Castle Street," and again in $14 \overline{5} \pm$, "Folleys grove."
John Garget held the tower on Gormunl's Gate.
Andrew Spersholt was Keeper of the Mint and Exchange of Dublin, in the reign of Eilward 1.
\therefore David de Callan. The name of the family known as "de C'allan" was sampson. In $13: 36-7$ appears John fitz William Sampson de Callan. In $1282-3$, there was a suit between the Abbot of St. Mary's and David de Callan, mayor, as to a felon, who, by the Abhot's authority, was incarcerated in the Abbey. The Abbol averred that by royal charters, as well as under an instrument under the municipal seal of Dublin, the Abbey was exempt from civic jurisdiction. In 1288, Archloishop John Saundford let to Javid de Callan land in Colloyn (C'ullenswood). Cal. Lib. Nig. Alani (stukes).
\therefore Sohs le Decer held a tomenemt on the Key in the parish of st. Michacl. in 1:2\%. In 1:338, is mentioned a messuage, with shops, wherein Whan le Uecer used to live, within the New gate, parish of sto Antuen.
John Stakepol, in $1: 2 \pm$, helel a cellar in Taverns Street, from Thomas le Mareschall ; and in 1357, he had a quarry and orchard, \&e., in the parishes of st. Peter de hull and St. Michael del Poll. "Inemulall."
Robert de Nottingham hati, in 1:227, a lommont on the Key, parish of Si. Michael. He marriel Loretta, daughter of liobert de Bray.
William Douce ludt anm! in Franrin street. The Inventory and Testament of his danghter, Juan Inonce, will be found in "Religions (:ibll of St. Ame, Imhlin." (I'roe. R.I.A., Vul. xxv., Sec. C , p. 20.)
i5 Stephen de Mora held a tenement in Thomas strect.
 and shop in High street.
 (rihmohulmok's Lame, parish of St. Michael; in Winetavern Street, near the great stone house formerly Robert de Wyleby's; also of water mills in the loll, and of a tenement called the liamme, in High street.

Berry-Mayors, Prozosts, and Builiffs of Dublin, 1229-14fr. 61 Pago.
56 John de Grauncet. In 1334, he held a messuage in Taverns street, at the gate anciently called the King's Gate, formerly Vincent Taverner's.
John Foyll. His will, made in 1379, is No. 251 Christ Church Deeds.
57 John Drake died 1433.
58 Thomas Shortall died 1445 .
Robert de Ireland, and Anna Montgomery, his wife, granted a messuage in Skinner Row, alias Bothe Street, in 1435. He also held Punchestown, Co. Kildare, which he received from Peter Wotton; and he had also land in Oxmantown, Dublin.
„Ralph Pembroke held land in Skinner Row in 1436.
Robert Chambers. His will, made in 1441, is No. 291 of Christ Church Deeds.

[$6: 3$

III.
 HIBERNO-LATIN MANCSCRIPTS IN THE LIBPAPIES OF \therefore STIZERLAND.

By Mario Esposito.

Part I.

Read Jancars 24. Oriered for Publication Jantaky 26. Published March 14, 1910.

 works composed by Irishmen in the Latin language. In the present

 those Mss. which have been already studied by other workers.

The histury of the civilizing work carried out in Switzerland by wandering Irishmen "scutt ": from the seventh to the tenth centuries, has hitherto not been much studied. ${ }^{3}$ There is no doult that they achieved much. The founding of the colehrated monastery on the spot now known as St. Gallen is alne sutticient to entite them to the everlasting gratitude of the learned world.

[^103]Pasel, Universitätsbibliothek.

The University Lihrary at Basel is rich in mediaeval Latin mss. Unfortunately, with the exception of Haenel's very summary inclex, published in $1830,{ }^{1}$ no printed account of these Mss. has yet appeared.

$$
\text { 1. MS. F. V. } 33 .
$$

A folio parchment Ms., consisting of forty-four unnumberel folios, measuring 28 a cms. by $25 \frac{3}{4}$. It is beautifully written in a tenth-century hand, in double columns, with thirty lines to the column. Initial letters and senteuces are frequently in red, and there are a few marginal notes and interlinear corrections. The cover is in parchment.

This important ms. contains the group of scriptural commentaries by Sedulius Scottus, printed by Angelo Mai, ${ }^{2}$ from a Ms. in the Vatican (Palatinus 242, saec. $\mathrm{x} / \mathrm{xi})^{3}$ The same commentaries are also found in the Einsiedeln us., No. 132, which will be mentioned further on, and in a Ms. at Berlin (Phillipps MS., No. 56). ${ }^{4}$

The following is a complete description of the Basel us., from which it will be seen that Mai's edition is very defective, many arbitrary alterations and omissions having been made in the original text. In an Appendix I have given a full edition of tro of these tracts of Sedulius Scottus, one of which, as far as I am aware, has never yet been printed.

The origin of the Ms. is not known. It formerly belonged to Remigius Faesch (ob. 1666), whose books and Mss. passed into the possession of the Basel Library in 1823.5

Fol. $11^{\circ}-14 r^{\circ}$: Incipit epistolae Hieronimi ad Damasum papam explanatio. Beatissimo Papae Damaso Hieronimus. Hic Damasus sedis apostolicae magnificus praesul Valentiniani et Theodosii principum temporibus floruit, etc.

Ed. Mai (ap. Migne, Patrol. Lat., 103, cols. 331-348).
The text of the Ms. differs greatly from that of Mai's edition, and is very much fuller. In the edition the tract ends with the words confortatus existit, but in the MS. there is another sentence: Unde conexe ait; Et memineris ${ }^{6}$ mei beatissime papa. Illud nimirum latenter intimare volens,

[^104]quod is vere in C'hristo valet, qui virtutum nitore vitaeque supernae spe atque contemplatione licet per speculam et enigma beatus. Ob hoc autem spiritum et mentem in Christum valere diximus, non quod quorumlibet sanctorum corpora in Christo non valerent, sed propter melioris naturae excellentiam spiritum et mentem in Christo valere pro toto homine synechdochicos posuimus. Finit.

Fol. $14 \mathfrak{r}^{n}-10 \mathrm{r}^{n}$: A commentary on the system of Canons for a harmony of the Guspels addressed by Euselius to Carpianus. ${ }^{\text {B }}$ It has not, as far as I am aware, yet heen printed. A full edition will be found in the Appendix.
 qui evangelium seripsermut et Lucas evangelista testatur dicens. In hoe phan de numern atque wrine evangeliormm expositurus prius pseudoevangelia ennmulue temerarins anctmes eleganter refutat. ac nescio quasi yumbun pariudirio illn respere videretur. Beatum Lucam evangelistam haius rei testem esse wistemtit. Gunian quidem multi conati sunt ordinarem namationem remm, quae in mohis completae sunt, sicut tradiderunt mhis qui ah initio ipsi vidobut et ministri fuerunt sermonis et perseverantia norque at paesens tempus momumenta declarant, etc., et plenitudo donorum.

Ed. Mai (Migne, 103, cols. 348-352).

The Mr. Wext is asain very diflerent from the edition and much fuller.

 lotins mationis. Argumentation vern est argumenti ancutio verhisque competentibus explicatio, etc.

Ed. Mai (Migne, 103, cols. 274-279).
The: text is here sfan bery lifirent frnm the edition and much fuller.
Fal. 2! 1': Finit in atrumentum secumlum Matheum Serlulii Scotti expositio.
 capitulurum canonumque differentia et connexione, etc.

[^105]Ed. Mai (Miyne, 10: , cols. 271-272).
As this tract is very short, and as Mai's edition of it is practically worthless, I have given it in full in the Appendix.

Fol. $31 \mathrm{v}^{0}-38 \mathrm{r}^{0}$: Incipit in argumentum sceundum Marcum eiusdem Sedulii expositiuncula. Hoc argumentum genus et officium electionem quoque Marci evangelistae prima sui parte declarat, secunda intentionem eiusdem evangelistae in scribendo Christi evangelio subtili argumentatione ostendit, etc.

Ed. Mai (Migne, 103, cols. 279-286).
Here again Mai has made many arbitrary alterations and omissions in the text.

Fol. $38 r^{\circ}$: Finit expositiuncula Scotti Sedulii in argumentum secundum Marcum.

Fol. $38 \mathrm{r}^{0}-43 \mathrm{v}^{0}$: Incipit eiusdem explanatiuncula in argumentum secundum Lucam. In argumentis evangelicis haec praecipue nobis sunt attendenda, quod et sermonis brevitas sensuumque clandestina subtilitas in eisdem scintilla recernitur. Unde nostrum torpens ingenium ex inertiae somnio ${ }^{1}$ suscitant. Et ante introiturn doctrinae evangelicae nos exercitatiores evigilantioresque reddunt, ne lippidulis fortasse oculis pedibusque sensuum titubantibus prata dominica segniter incedamus, sed illustrata mentis acie Horida Christi rura coruscis praecedentibus lucernis percurramus. Quid etenim sunt argumenta evangelica nisi quaedam caelestium thesaurorum praevenientes lampades, simul et aureae claves gazas reserantes dominicas. In huius itaque argumenti exordio, etc., simul et inquisitoribus aliquam conferre utilitatem videremur.

Ed. Mai (Migne, 103, cols. 286-290).
As in all the other tracts, the text of the ms. is very different from Mai's edition and much fuller. Folio 43 is slightly defective at the top.

Fol. $44 r^{0}$: An index to the contents of the ms., now partly illegible.
Fol. $44 \mathrm{v}^{0}$: A prayer: Pater noster, etc., now partly illegible.

$$
\text { 2. Ms. O. Iv. } 34 .
$$

A small quarto parchment ms. consisting of 90 numbered folios measuring $21 \frac{1}{4} \mathrm{cms}$. by $14 \frac{1}{8}$. It is written in a twelfth-century hand in single columms with 30 lines to the page. Initial letters are sometimes coloured in red and blue. There are a few marginal notes in a fifteenth-century hand.

This Ms. contains the commentary by Joannes Scottus Eringena ${ }^{3}$ on the

[^106]Celestial Hierarchy of the I'semlu-L)imysius. It was published by Floss in 1853 (ap. Migne. Patrol. Lat., 122, cols. 125-266), to whom the existence of this ms, was apparently quite unknown. The text of the as. agrees on the whole well with the edition of Floss.

Fol. $1 \mathrm{r}^{\circ}-90 \mathrm{y}^{\circ}$: Incipiunt expositiones Johannis Scoti super Ierachias sancti Dymisii. sancti Dyonsii Arinpagitae primus liber, qui inscripbitur le celesti cranha, NTa capitulnum serie contexitur, quorum primi titulus est, etc.,... غن̇тa日とiun sunt, id est constantiae tres secundum Stoicos, voluntas, gaudium, cautio, et non nisi in animo. In this MS., as indeed in all the others at meant known a lare purtion of the text -from the beginning of chapter iii to the midlle of chapter vii-is wanting (cf. the ed. of Floss, col. 176). The break occurs on fol. $33 \mathrm{v}^{0}$, without any indication, the text running on contimuonsly. No doubt all our existing MSS. of this work are ultimately derived from the same mutilated archetype.

3. Ms. O. iii. 5.

An octave parchment ws. consisting of 124 unnumbered folios measuring $21 \frac{1}{2}$ cms. ly $\left.1: 3\right\}$. It is written in a twelfth-century hand in single columns
 notes. The eover is wantins.

Among wher things this Ms. contains the translation of the Celestial
 (Migne, 122, cols. 1029-1070).

Trambe has re-edited the poems prefixed to this work (Mon. Germ. Hist., I'merae Iatini Aevi Merlii, iii, 1896 , pp. 518 sq.). Neither Floss nor Traube mentions this as. In his edition Trauhe (loc. cit., p. 5205) has divided the conlices of this translation into three groups, the "Franco-Gallic," the Italic, and the (iermanic. The Basel ms. (like the Bern ms., No. 19, to be mentioned later on) ledomes clearly to the first or "Franco-(iallic " group, as it preserves the letter of Anastasius, and has the correct form Eriugena for the corrupt Ierugena of the Italic and Germanic groups.

Fol. 1 re: Dionisins Johanni evangelistae. Saluto te sacram animam, dilectissime, et est mirhi hoc apurl te supra apostolos inseparabilius. Ave vere dilectissime, etc., traditum et memmaia custodi thorum.

This is Juannes' translation of the tenth letter of the I'seudo-Dionysius.
Fil. Floss (Migne, 122, cols. 1123-1124).
At the bottom of the page is written in a later hand: Liber sanctac Mariae in valle sancti letri.

Fol. 1 vo : blank.

Fol. $2 \mathrm{r}^{0}-3 \mathrm{r}^{\mathrm{o}}$: Praefatio Anastasii apostolicae sedis bibliothecarii ad excellentissimum et christianissimum regum Karolum. Inter cetera studia, quae tam laudabilis actio, etc., Explicit. Data decimo Kal. April. Indictione viii.

Ed. Floss (Migne, 122, cols. 1025-1030).
Fol. $3 \mathrm{r}^{\circ}-18 \mathrm{v}^{\circ}$: The translation of the Celestial Hierarchy of the PseudoDionysius by Joannes Scottus, edited by Floss (loc. cit., cols. 1029-1070). There are a number of minor varialions from the printed text. Fol. $3 r^{\circ}$ contains the first set of dedicatory verses. The following is a collation with the edition of Floss (cols. 1029-1030): 1. 2 spondo ms. $\sigma \pi \varepsilon \boldsymbol{\varepsilon} \boldsymbol{\nu} \delta \omega$ Floss; l. 3 stemata Ms., stemmata Floss; 1. 5 tempnere Ms., temnere Floss; l. 6 ginnasia Ms., gymnasia Floss; l. 16 Ieronimo Ms., Hieronymo Floss; 1. 21 temptabunt MS., tentabunt Floss. Then follows the dedicatory epistle to Charles the Bald: Gloriosissimo Catholicorum regum Karolo Johannes extremus sophiae studentium salutem, etc. Fol. $4 \mathrm{v}^{\circ}$: In hoc libro sancti Dionssii Ariopagitae continentur libri iiiior quos Johannes Eriugena transtulit de Graeco in Latinum, iubente ac postulante domino gloriosissimo rege Karolo, Ludowici imperatoris filio. Then follow on fol. $5 \mathrm{r}^{\circ}$ another set of verses and an index to the fifteen chapters of the work. I give here a collation of these verses with the edition of Floss (cols. 1037-1038): l. 1 sidereo dionisius MS., siderio Dionysius Floss; 1. 2, Ariopagites MS., Areopagites Floss; 1. 4 quos tauro MS., quo $\sigma \tau a v \rho \not ̂ \hat{y}$ Floss ; 1.5 ut . . . elympsi Ms., et . . . eclipsi Floss ; 1. 7 quo MS., Qui Floss; l. 10 Attidas . . . adest Ms. ; 'A $\boldsymbol{\theta} / \delta \boldsymbol{\alpha}$. . . et est Floss; 1. 13 simmachus instar MS., symmachus instans Floss; 1. 16 empirii ms., Empyrei Floss ; 1. 22 ouraniis MS., uraniis Floss ; 1. 24 mistica MS., mystica Floss.

The translation begins on fol. 5 vo with the words: Dionisii Ariopagitae, episcopi Athenarum ad Timotheum episcopum de celesti ierarchia. It ends on fol. $18 \mathrm{v}^{\circ}$: Explicit Ierargia Dionisii Ariopagitae. Amen.

Fol. $19 \mathrm{r}^{\circ}-116 \mathrm{r}^{\circ}$: The commentary on the Celestial Hierarchy of the Pseudo-Dionysius by Hugo of St. Victor (c. 1120).

Ed. Migne, (Patrol. Lat., 175, cols. 923-1154).
In this work Hugo employed the translation of Joannes Scottus. It commences on fol. $19 \mathrm{r}^{\circ}$: Iudei signa quaerunt, et Greci sapienciam. Fuit enim quaedam sapiencia, quae sapiencia videbatur his qui veram sapienciam non noverant, etc. Fol. $19 \mathrm{v}^{\circ}$: De differentia mundanae theologiae atque divinae cum demonstrationibus earum, etc. A later hand has added in the
margin Ierarch. Magistri Hugonis de sancto Victore. It ends on fol. $116 \mathrm{r}^{\circ}$ with the words silentio honorificantes.

Fol. $116 \mathrm{r}^{\circ}-120 \mathrm{r}^{\circ}$: Incipit liber Baruch.
Fol. $120 r^{\circ}-121 r^{\circ}$: Incipiunt capitula Ysaiae prophetae.
Fol. $121 \mathrm{r}^{\circ}-122 \mathrm{v}^{\circ}$: Incipiunt capitula Ezechielis prophetae.
Fol. $122 \mathrm{v}^{\circ}-124 \mathrm{r}^{\circ}$: Incipiunt capitula Ieremiae prophetae.
4. MS. B. iv. 9 .

A follin parchment as., consisting of 212 numbered folios, beautifully written in duhle columns, with 3 s lines to the column. The initial letters are in renl, and there are a few maryinal amotations. It contains the Manipulus Flnum of Thmas de Hibernia'-a work which achieved great PMularity during the fomreenth and fifteenth conturies. This ms. was copied by a certain Wilhelmus Zuremont in 1324.

Ful. 1 r : Incipit Manipulus Florum. Abiit in agrum et collegit spicas lnst tergh menntimm liuth, wh. At the luttom of the page is written in a later ham?: Iste liber est Cartusiensium Basileae. ${ }^{2}$
 manipulus thrum. Huc ophe compilatum est a masistro Thoma de Yoernia,

Then follnw-a note in a later hamd: Iste liber est vallis sanctae Margarithae in Minori Basilea ordinis Carthus.

5. Ms. B. iii. 16.

 thintemith inutwoth matury. The initial letters are illuminated in blue and red, and there are a few maryinal notes. On the inside of the front Wine a later ham has alidel an imbex th the contents of the Ms, and the worls Iste liber est . . . conventus Pasiliensis.

 fully stadind hysemars iZeitechift fur Kirchengeschichte, 8, 1886, p. 459; 17, 1897, p. 215; 18, 1898, p. 58).

Fol. 11-4: : Imipit tactatu: lwat Cassiani le institutis coenobiorum

[^107]modo moralitatis speculum et religionis exemplar, quod in libros xii est distinctum. Hic est igitur de habitu monachi liber Ius.

Ed. Migne (Patrol. Lat., 49, cols. 53 sq.).
Fol. $8 v^{0}-21 v^{0}$: Incipit prologus eiusdem Cassiani super collationes patrum. Fol. $18 v^{0}$: Expliciunt collationes patrum maiores. Incipit prologus Cassiani praedicti super collationes minores.

Ed. Migne (Patrol. Lat., 49, cols. 477 sq.).
Fol. $21 \mathrm{v}^{\circ}-28 \mathrm{r}^{\circ}$: Incipit liber magistri Hugonis de institutione novitiorum.
Ed. Migne (Patrol. Lat., 176, cols. 925-952).
Fol. $28 \mathrm{r}^{\circ}-33 \mathrm{r}^{\circ}$: Incipit de pastorali Gregorius quae est quidem regula praelatorum.

$$
\text { Ed. Migne (Patrol, Lat., 77, cols. } 13 \text { sq.). }
$$

Fol. $33 \mathrm{r}^{\circ}-38 \mathrm{v}^{\circ}$: Explicit pastorale domini Gregorii papae. Incipit exceptum regulae beati Benedicti.

Ed. Migne (Patrol. Lat., 66, cols. 215 sq.).
Fol. $38 v^{0}-48 v^{\circ}$: Tractatus magistralis de praeceptis legis et evangelii.
Fol. $48 v^{0}-54 r^{\circ}$: Incipit regula beati Basilii.
Ed. Migne (Patrol. Graeca, 31, cols. 889 sq.).
Fol. $54 \mathrm{r}^{\circ}-55 \mathrm{r}^{\mathrm{o}}$: Incipit regula sancti Columbani. Ut primum diligendus sit deus, etc.

Ed. Migne (Patrol. Lat., 80, cols. 210-224).
Only extracts from the work of St. Columbanus.
Fol. $55 \mathrm{r}^{\circ}-59 \mathrm{r}^{\circ}$: Incipit Hugonis de Sancto Victore tractatus de claustro animae.

Ed Migne (Patrol. Lat., 176, cols. 1017 sq.).
Fol. $59 \mathrm{r}^{\mathrm{o}}-\mathbf{1 5 2} \mathrm{v}^{\circ}$: Incipit liber exceptionum collectarum de diversis opusculis beatí Bernardi abbatis Clarevallensis.

Bernardi Opera ed. Migne (Patrol. Lat., 182-184).
Fol. 153 : blank.

6. MS. A. vii. 3.

A beautiful interlinear Greek and Latin Psalter, written in an Irish hand of the ninth or tenth century. On fol. $2 r^{\circ}$ occurs the Hymn of St. Cuchuimne, which has been edited from this and other mss. by Bernard and Atkinson (Irish Liber Hymnorum, 1898, i, pp. xix, xxvii, 33, and ii. p. 124; cf. also b.i.a. proc., vol. xxymi, sect. c.

Keller. Mittheilungen der Antiquarischen Gesellschaft in Zürich, vii, 18.71, p. 86, Taf. xii. 5; Todd, Book of Hymns, etc., i, 1855, p. 55 ; Baumeister, Denkmäler des Klassischen Altertums, ii, 1887, pp. 1132, 1133.

Another Basel Ms.. F. iii. 15. of the ninth century, is said, by Halm Sitzunysberichte der K. Akarlemie in Wien. Phil.-Hist. Classe, 30 , 1865, p. 13t) to cuntain on ind io a puen of Columbanus entitled, "Praecepta Vismali": hut Dümmer, wh, has edited the prom from this and other ys:. has shwn that its reat anther is Alcuin (Myn. Germ. Hist. Poetae Latini Aevi Medii, i, 1881, pp. 16t, 275).

Einsiedeln, Stiftslibliothek.
An excellent catalongue of the mss. ${ }^{1}$ preserved in the Library of the

 . 500 most ancient and injportant yss., appeared in 1899.:

1. Ms. No. 1% ㄹ.

 prow otw 112. Fiom a hief examination of this Ms. I was enabled to ascertain that the text agrees well with that of the Basel us.

$$
\because \text { ms. No. } 10 ; \%
$$

 Fol. $184 v^{\circ}-188$ vo: S. ('olumbani Instructio V.

> Ed. Migne (I'atrul. Lat., 80, cols. 240-241).

Fol. $214 \mathrm{r}^{\circ}-223 \mathrm{r}^{\circ}$: S. Columbani Regula Coenobialis.
Ed. Migne (Patrol. Lat., 80, cols. 216-222).

$$
\text { B. ys. No. } 257 .
$$

 1. 229.

[^108]Hymnen des Mittelalters, iii, 1855 , p. 25.5 , of. also Imanicl, Thesaurus Hymnologicus, v, 1856, p. 371) from this ms. It is also found in a Ms. of the thirteenth century in the Royal Library at Prussels, No. 3176 (Ancien 7460), fol. $99 \mathrm{v}^{\text {o }}$, in which it is attributed to St. Gallus (cf. Chevalier, Repertorium Hymnologicum, i, 1892, p. 199, and Van Den Gheyn, Catalogue des Manuscrits de la Bibliothèque Royale de Belgique, V, 1905, p. 13i). It has been printed from this ms. by the Bollandists (Catalogus Codicum Hagiographicorum Bibliothecae Regiae Bruxellensis, pars i, tom. 2, 1889, p. 12), who do not meution the other MSS. and edition.

4. Ms. No. 235.

A tenth- or eleventh - century parchment MS., described by Meier (Catalogus, etc., p. 192).
P. 96-164: The commentary on the Opuscula Sacra of Boethius by Joannes Scottus Eriugena, studied and edited by Rand (Johannes Scottus, München, 1906, p. \pm, ap. Traube, Quellen und Untersuchungen, etc., Heft 2). The same commentary occurs in Mss. at St. Gallen and Bern, to be mentioued further on.
'Two other Einsiedeln uss., Nos. 27 and 234, are said by Père Gallus Morel (Sitzungsberichte der K. Akademie in Wien, Phil.-Hist. Classe, Bd. 55, 1867, pp. 250-251) to contain writings of St. Columhanus, but this is doubtful (cf. Meier, Catalogus, etc., pp. 18, 191). According to Seebass (Zeitschrift für Kirchengeschichte, 15,1895, p. 368 n), ms. No. 27 would contain not the Instructio Quinta of St. Columbanus, but St. Augustine's Sermo de corpore et anima.

Schaffhausen, Stadtbibliothek.

The 'lown Library at Schaffhausen contains few mss, earlier than the sixteenth century. Of these one alone is of interest to Hiberno-Latin literature.

A summary index of the Schaffhausen Mss. (numbering 561) by Drs. Boos and Henking was published at Schaffhausen in 1903. ${ }^{\circ}$
ms. No. 1.
'The celebrated codex of the original and longer recension of Adamnan's Life of St. Columba, which was taken hy Recves as the basis of his edition (Irish Archreol. Soc., 1857). It is a folio parchment MS., consisting of $1: 37$ numbered pages, written in an Irish hand, in double columms with 28 lines to the column. There are many illuminated titles and ornamental letters,

[^109]some of very considerable beauty (cf. the facsimiles in Reeves's edition, Plates 1 and 2). It was copied by Dorbbéne, who died in 713, and is said to be the oldest Ms. in Switzerland. It is possible that it is not so ancient as is generally supposer. The ms. was obtained from the ancient monastery at Reichenalu; as is shown by the somewhat faded note at the top of page 1 , col. a, "Liber Augie Divitis," and at the foot of same page now partially erasen, "Lib' Augie Maioris." The exact date at which it passed into the possession of the Schathansen libary is not now lnown. It was, however, there hefore the year 1795. Formerly it hore the number 22 (cf. Hannel, Nene Tahrliacher für Philelegie und l'aedagngik, Supplementband vi, 1840, p. 458). Pares 1 to $1: 06$ contain the work of Alamnan. On page 137 is written the Lomt's Prayer in Cireek. A collation of this Ms, with the old editions was med hy lieeves in 1s.T., but an examination of the ms. has shown me that it was ly mu means a complete mo. Morenter, leeves did not follow the nethuraphy of the ms., wh the rrount that it is "harbarous, or at least frowimial": nor has ho iuserted all the peculiar spellings in his Variae Lectiones, "as they would have swelled then to an inconvenient length"
 this ms: Keller, Mittheilungen der antiquarischen Gesellschaft in Zürich,

 1tif: stukes and sthachan, Thesaurus l'alaehhbernicus, ii, 1903, p. xxxi ; Ihoos, Verzeichnis, etc., 1903, p. 67.

St. Gallen, Stiftsbibliothek.

The Mona-tie: litnary at cit (abllen comtaim one of the most valuable rallowims of mas in Envore: Hasing twen fommod and much frequented In Ininh monks, it is naturally rioh in wonks relating to Hiberno-Latin limpathe. An waellent catahnere of the Ms: hy (i. Scherver was published at Halle in $1875 .{ }^{3}$

[^110]
J. Ms. No. 433.

A large folio ms., consisting of 708 parchment pages, splendidly written in a ninth-century hand in double columns with 27 or 28 lines to the column. There are many illuminations. A full list of the contents is given by Scherrer (Verzeichniss, etc., p. 142).

Pages 685 to 706 contain the scriphural work of Aileranus Scottus, ${ }^{\text { }}$ published from this Ms. by Fleming in 1667, whose edition was reprinted ly Migne (Patrol. Lat., 80, cols. 327-342). The end is wanting in this ms., but can be supplied from a ms. in the Imperial Library at Vienna. ${ }^{2}$
P. 685: Ailerani Scotti Interpretatio Mystica Progenitorum Domini Jesu Christi. In Nativitate Sanctae Genitricis Ipsius Legenda. Oportunum videtur de nominibus genealogiae, etc., exemplis sacrae scripturae asseruimus.
P. 694: Item Moralis Explanatio eorundem nominum ab eodem compilata.. Oportunum quoque nunc videtur ut eiusdem genealogiae nomina, etc., . . . [P. 706] in Azor ut adiuvante Domino

The rest is lost. A number of words are omitted in the printed edition, and the orthography of the ms. has been frequently altered.

2. ms. No. 776.

A quarto paper ms. copied by Gallus Kemli (d. c. 1477), described by Scherrer (Verzeichniss, etc., p. 257).
P. 163-168: The same work of Aileranus Scottus copied from Ms. No. 433.

3. Ms. No. 254.

A folio parchment MS. consisting of 256 pages, measuring 29 cms. by 23 cms , written in double columns with 25 lines to the column in a ninthcentury hand. Titles and initial letters are in red. I'his ms. is mentioned in the ninth-century catalogne of the books at St Gallen, published by Weidmann (Geschichte der Bibliothek von St. Gallen, 1846, p. 373), and also in the catalogue of the year 1461 (Weidmann, loc. cit., pp. 409 and 236).
P. 2-252: Isaiae brevibus lector mysteria verbis, etc., Octavo decimo sit terminus iste libello.

This is the commentary on Isaiah compiled from the well-known work

[^111]of St. Jerome ly an Irish monk Josephus Scottus, a disciple of Alcuin, like whom he emigrated to France ahont 790 , and died there before 804 (Esposito, Hermathena, xiv, 1907, p. 523, and xv, 1909, p. 360). This commentary, which in schemer's catalugue (Verzeichniss, ete., p. 95) is wrongly attributed to Bede, has not yet been printed. It is also found in a ninth-century ms. at Paris, No. 12154, fol. 1-192. 'To each of the eighteen books into which the work is divided is prefixed a hexameter, and in addition there are sets of verses at the begiming and end. These verses have been edited by
 from both the Mss. Dummler has also given (loc. cit., p. 151) from the Paris Ms., fol $192 \mathrm{r}^{\circ}$, the closing prose epistle, which, together with some of the final hexameters, is wanting in the St. Gallen Ms., p. 252.

Several acrostic puems which are found in a Ms. at Bern, and which have for their author the same Josephus Scotlus, will be dealt with later on.
P. 252-255: In another hand: Incipit ve valetudine et obitu venerabilis Bedne preshyteri. Munusculum quod misisti, etc. On p. 253, col. 1, lines (i-11, is written an Anglos-Saxon peem in the Northmmbrian dialect said to have bern repeated by Bede on his death-lied. It has been printed by Hattemer (Jnembmahle les Mittelalters, St. Gallen, 1844, tom. i, p. 4), and by Sweet (The Ohlest English Texts, 188号, p. 149); ef. also Whitley Stokes (The A callemy, xxx., 1886, p.2UR).

1'. 25\%: Epitaphium beati Bedani presbyteri. In 21 hexameters. l'rintell by Mahillon (Vetera Amalecta, iv, 1685, p. 521).

1. 2.n-2.jf: limnus. Ardens amoris mentio........caeli in arce conrlita. In ten lines. It will be found in Malillon (loc. cit., p. 522).

Then follows another prom in ten limes: Hic legentes, neto pes sunt metm, clare cermere. Uni ac trino deo sit summa semper gloria. Printenl hy Huemer (Wiener Studien, ii, 18x0, p. 7.3).

It the end in large letters: vi. Illus Mai. Nat. Sancti Berlae Preshyteri.

$$
\text { 4. Ms. No. } 274 .
$$

A small follin parchment ms, consisting of sixty-six pages, written in single columns, in a ninth-century hand. Titles and initial letters are in red. The Ms. is mentioned in the ancient catalngue of the year $\mathbf{1 4 6 1}$ (Scherrer, Verzeichniss, etc., p. 104; W゙eidmann, (ieschichte der Bibliothek von St. (rallen, $18 \not 86, \mathrm{p} .406)$. This ws. contains a few sentences by Joannes Scottus Friugena on thre Categories of Aristotle, which have not yet been printed (Expusito, Hermathena, xv, $1909, \mathrm{p} \cdot 362$. I give these sentences in full below.

1'. 1-3: Blank.
P. 4 ; Verha lohannis Scotti. Aristotiles, acutissimus apud Creeos, ut aiunt, naturalium rerum diseretionis repertor, omnium rerum quae apud deum sunt et ab eo creata imumerabiles varietates in decem miversalibus generibus conclusit. Quae decem cathegorias id est predicamenta vocavit. Nihil enim, ut ei visum, in multitudine creaturarum rerum varisque animorum moribus ${ }^{1}$ inveniri potest quod in aliquo praedictorum generum induci non possit.

 Quantitas, Qualitas, Ad Aliquid, Situs, Habitus, Locus, Tempus, Agere, Pati.
P. 4-5: Versus Alcuini Diaconi ad Kavolum Regem Franchorum, "Continet iste decem naturae verba libellus," etc., with a short preface and interlinear and marginal notes. 'This poem, in ten lines, was printed by Dümmler (Mon. Germ. Hist., Poetae Latini Aevi Medii, i., 1881, p. 295), from Mss. at Vienna and Munich. Dümmler does not mention this MS,
P. 5-66: Incipiunt Cathegoriae Aristotelis ab Augustino translatae ad filium. Cum omnis scientia disciplinaque, etc., with interlinear notes, and a copious marginal commentary.

This work, incorrectly attributed to St. Augustine, will be found in Migne (Patrol. Lat., 32, cols. 1419-1440).

5. ms. No. 555.

A small quarto parchment ws., consisting of eighty-three folios, written in the early part of the ninth century (Scherrer, Verzeichniss, etc., p. 175). It contains only the shorter recension of Adamnan's Life of St. Columba, and was collated for Reeves's edition (Irish Archaeol. Soc., 1857, p. xxvii) by Karl Greith. On page 166 is a picture of St. Columba, which is reproduced in facsimile in Reeves's edition (Plate V). This ms. is mentioned in the ninth-century catalogue of the monastic library of St. Gallen (Weidmann, Geschichte, etc., p. 386).

$$
\text { 6. MS. No. } 320 .
$$

A small octavo parchment ms., written in the twelfth century, in single columns with 34 lines to the column. It is fully described by Scherrer (Verzeichniss, etc., p. 113). It contains, on pages 25 ± -284, Adamnan's work De Locis Sanctis, without the plans, and was collated by Tobler and Molinier for their edition (Itinera Hierosolymitana et Descriptiones T'errae Sanctae, Geneva, 1879, i, p. xxxiii). Other mss. of this tract occur at Zürich and Bern. They will be mentioned further on.

[^112]
7. Ms. No. 150.

A quarto parchment ms., lating from the beginning of the ninth century (scherrer, Verzeichmiss, etc., p. 5. 5). It contains, on pages 365-377, the Ponenitentiale of sit Finnian of Moville (Esposito, Hermathena, xv, 1909, 1. $2.3:$, and seelass, Zeitschrift für Kirchengeschichte, xiv, 1894, p. 437). The tract was printed from this and other Mss. by Wasserschleben (Die Bussudnumren ter ahemtlandischen Kirche, Halle, 1851, pp. 10 and 108 sq.). Pates -2s5-2. ${ }^{-}$contain only the preface of the Poenitentiale of Cummean. The penitential pince which follwws on pages $287-: 18$ is not the work of this author (Wasserschleben, loc. cit., pp. 69, 70, 460 n ., 505 sq. .)
8. ys. No. 550.

An wata par hment Ms. writen in the ninth century. It contains, on
 P. 169, ant Eipmitn, Hmmathena, xr, 1909, p, :38). This Ms., and also the

 :ds. No. 1:309.

$$
\text { 9. Ms. No. } 675 .
$$

 printed by Weidmann (Geschichte, etc., p. 388) from MS. No. 728.
10. Ms. No. 915.
 deserilued by seherrer (Verzeichniss, etc., p. 336). Pages 154-167 contain
 aml wher Mss. by Seehass (Zeitschrift für Kirchengeschichte, xv, 1895, p. 368). On pages $167-169$ we have the Instructio Quinta, " O tu vita,"

 schichte, xvii, 1897, p. 216).

11. Ms. No. 1191.

 R-inla Unembintis', of it. Columbans Stherer, Verzeichniss, etc., p. 422).
12. Ms. No. 1347.

An octavo paper ws. written in 1696 . It contains the Regulae of St . Columbanus (Scherrer, Verzeichniss, etc., p. 451).

13. MS. No. 1348.

A duodecimo paper ms. written in the seventeenth century (Scherver, Verzeichuiss, etc., p. 451). It contains the Regula (Coenobialis?) of St. Columbanus, and his Instructio Quinta (cf. above, Ms. No. 915).

14. ms. No. 13 ± 6.

A quarto paper ms. copied by J. Metzler in the beginning of the seventeenth century (Scherrer, Verzeichuiss, etc., p. 450). It contains six of the Epistolae of St. Columbanus, which have been printed from this as. by Gundlach (Mon. Germ. Hist., Epistolae, iii, 1892, p. 154). It further contains the Instructiones sive Sermones, attributed to St. Columbanus, only four of which are regarded as genuine by Seebass. 'I'hese latter he has edited from this and other MSS. (Zeitschrift fïr Kirchengeschichte, xiv, 1894, p. 77 ; cf. also Seebass, Nenes Archiv der (Xesellschaft fuir altere Deutsche Geschichtskunde, xvii, 1891, p. 253).

15. ms. No. 273.

A quarto parchment Ms. written in the ninth century (Scherrer, Verzeichniss, etc., p. 103). Pages 38-49 contain three of the poems of St. Columbanus, which have been edited from this and other yss. by Gundlach (Mon. Germ. Hist., Epistolae, iii, 1892, p. 154; cf. also Neues Archiv, etc., xv, 1889, p. 514). Schenkl, Sitzungsberichte der K. Akademie in Wien, 43, Phil.-Hist. Classe, 1863, p. 17 sq.; Riese, Anthologia Latina, i, pt. 1, ed. 2, 1894, p. 221, pt. 2, 1906, p. 59).

16. MS. No. 899.

A quarto parchment MS , of the ninth or tenth century (Scherrer, Verzeichniss, etc., p. 315). It contains on pages 109-111 the three poems of St. Columbanus found in Ms. No. 273, and was used by Gundbach for his edition (cf. preceding article). A full account of this ms. was given by Dümmler (Mittheilungen der Autiquarischen Gesellschaft in Zürich, Bd. 12, Heft 6. 1859, p.v; also Neues Archiv, etc., 4,1879 , p. 276 , and Mon. Germ. Hist., Poetae Latini Aevi Medii, i, 1881, pp. 31, 142 ; ii, 1s \pm, pp. 159, 26t; Schenkl (Sitzungsberichte der K. Akademie in Wien lhil.-Hist. Classe, 43 , 1863, p. 67 sq.; Baehrens, Poetae Latini Minores, iv, 1882, p. 10; Riese, Anthologia Latina, i, pt. 1, ed. 2, 1894, pp. 100, 102, 148, 213, 306; pt. 2, 1906, pp. 105, 134, 158, 159, 371).
R.I.A. PROO., YOL. XXVH., SECT. C.

In two other Mss.-No. 197, quarto, saec. x, pp. 281-289, and 198, quarto, saec. x, pp. 141-149-a long poem, "Haec praecepta legat," etc., is atributel to st. (ohlumbams wherser, Verzeichniss, etc., 1p. 72, 7t), but Dimmer, who has enlitel it from these and other mss., has proved that it is the work of Alcuin (Mon. Germ. Hist., Puetae Latini Aevi Medii, i, 1881, pp. 164, 275).

Three other St. Gallen Mss.-No. 141, quarto, saec. x, pp. 45-52, No. 921, a quarto paper Ms. of saec. Xv, and No. 927, a quarto paper MS. written in $1435, \mathrm{pp} .4 \times 15-492$, are said to contain the Instructio () uintab of St. Colmmbanus, "0) vita quae tantos hecepisti," ete. (Ncherrer, Verzeichniss, ete., pp. 53, 3 ± 6, :35), but this is probably a confusion with st. Augustine's Sermo de corpore

17. ys. No. 2.0.

A folio parchment ms., copied in the ninth ceutury, fully described by
 te St. C'olumhanus, "De Saltu Lunae," which was published from this ss: ly P're Crabriel Meier (Jahresbericht über die Lehr- und ErziehungsAnstalt des Penediktiner-Stiftes Maria-Einsiedeln, 1856-87, p. 30; cf. also (1) 9). St. 'nlumbanus' authurship has, however, been called in question ly Brunu Krusch (Mon. (ierm. Hist., Script. Rer. Meroving, t. iv, 1902, 1. 20n.) I'his ws. has also been used by Dümmler (Mon. Germ. Hist, l'metae Latini devi Medii, ii, $1 \times 8 t$, p. 568 ; cf. also Schenkl, Wiener Studien, i, 1×79, p. 63n.. Riese, Anthologia Latina, i, pt. 2, ed. 2, 1906, pp. 105, 154, 155, 101). This same work is also found attributed to St. Columbanus in two wher Mss., which were aprarently quite unknown to Pere Meier-Zürich
 ('mi. Lat. 14 iti9. fol 26 -2s, saec. xi. ("'atalugus Codicum Latinorum Bibliothecae lioniae Monacensis. t. ii. pars 2ै, 1×i6, p. 194.)

$$
\text { 1R. Ms. No. } 914 .
$$

This is the famous MS. of I'riscian (scherrer, Verzeichniss, ete., p. 319), s" impmant for its ©hl-Irish ghases. It has been frequently studied (ef. stokes and Strachan, Thesaurus Palaeohibernicus, ii, 190.3, p. xix). Traube (Abhl. der K゙. B. Akal. zu München, 1s91, Bel. 19, Philos.-Philnl. (lasse, Abith. 2, p. 373) has shown that it was written iu the lirst half of the ninth century by some of the friends of Sedulius scottus. (On fol. $f\left(1^{\circ}\right.$ and vo are two poems which are said by Dümmler to be the work of Sedulius

[^113]Scottus (Neues Archiv, etc., $4,18: 9$, p. 319 sq.). They have heen publishel by Traube (Mon. Germ. Hist., Poetae Latini Aevi Medii, iii, 1896, p. 238).
19. MS. No. 134.

A quarto parchment volume of 266 pages. It is made up of three distinct portions written respectively in hands of the tenth, thirteenth, and eleventh centuries (Scherrer, Verzeichniss, etc., p. 49). On page $13 t \mathrm{~s} \boldsymbol{s}$. occurs, in an eleventh-century hand, the commentary of Joannes Scottus Eriugena on the Opuscula Sacra of Boethius. It was edited for the first time by Rand (Johannes Scottus, 1906, p. 4, ap. Traube, Quellen und Untersuchungen, etc., Heft. 2), who made use of this and the two following MSS.

$$
20 . \mathrm{ms.} \text { No. } 268 .
$$

A quarto parchment MS., consisting of 168 pages, written in a ninthcentury hand. According to Scherrer (Verzeichniss, etc., p. 101), it contains only the well-known grammatical work of Alcuin (ed. Froben, Alcuini Opera, tom. ii, Ratisbon, 1777, pp. 265-300) ; but Rand (Johannes Scottus, p. 98) has detected in it, written in a twelfth-century hand, the commentary of Joannes Scottus on Boethius mentioned in the preceding paragraph.

21. MS. No. 768.

A quarto parchment MS., consisting of 112 pages, written in a twelfthcentury hand (Scherrer, Verzeichuiss, etc., p. 254). On pages 9-58 occurs the same commentary of Joannes Scottus (Rand, loc. cit., p. 28) found in the two preceding Mss.

$$
\text { 22. Ms. No. } 10 .
$$

A quarto parchment MS., consisting of 478 pages, written in a tenthcentury hand (Scherrer, Verzeichniss, etc., p. 3).
P. 1-2: Blank.
P. 3: Hic sunt insignes sancti, etc. Sixteen hexameters by an Inishman named Dubuluin. 'They were printed by vou Arx (Geschichten des Kantons St. Gallen: Zusitze i, 1830, p. 20), by Keller (Mittheilungen der Antiquarischen Gesellschaft in Zürich, vii, 1851, p. 59 sq.) and by Dümmler (Nenes Archiv, etc., 10, 1885, p. 341), cf. also Esposito (Hermathena, xiv, 190', p. 526, and $\mathrm{xv}, 1909$, p. 363).
P. 4-476: Liber Job. Proverbia. Ecclesiastes. Canticum Canticorum. Sapientia. Jesus Sirach; with the prologues of St. Jerome on dol, Iruverbia, and Sirach.
P. 477-478: Blank.

Zürich.

There are two libraries in Zürich which contain yss. of interest to students of Hilerno-Latin literature - the Cantonal Library and the Town Library. Unfortunately no printel catalogues of the Mss. in either of these libraries have as yet been published.
(a) Kantonsbibliothek.

The more important of the linio mss in this library hare been carefully studied hy Herr rakob Werner, Profesor of Mediaeval Latin Thilology in the L'niversity of Zürich.' tw whan an indelted for much kind assistance.

1. Ms. C. 176 .

An eleventh-centary ma, a iull description of which has lieen made by Herr Werner.

Fol. $17 \pm v^{-6}-175 v^{-\infty}$: Sanctus Columbanus haec de saltu lunae ait: De lunari moatine dituro non alimnte mihi sumendum videtur exordium, etc. amittere videtur.

Tha- is the -hrt trat attributel t. st. Columhanus also found in the St. Gallen Ms., No. 250, described above.

2. us. Hist. 28.

A ninthonthry w. ubainel irn the ancient monastery of Reichenau. A ithl hes aitan of it has been aiwn low Keller Mitheilungen der

 1895, p. 367).

3. Ms. No. 72.

 lelonged to the ancient monastery of Rheinau. ${ }^{2}$

[^114]P. 1- 111 : Incipit Collectancum Sululii Hiberuiensis in Apostolum. Antequam ad apostolica verba exponenda veniamus, etc., Finit Collectaneum Sedulii Scotti in Epistolas Pauli. Ed. Migue (Patrol. Lat., 103, cols. 9-270).
P. 411-416: A few extracts from Saints Augustinus and Eucherius. The end of the MS. is lost. This ms. was studied by Lellmann (Serlulius Scottus, München, 1906, pp. 191, 196, ap. Traube, Quellen mul C'ntersuchungen zur Lateinischen Philologie des Mittelalters, Heft 1), who has determined its relation to the other Mss of this commentary of Sedulius Scottus. Hellmann, however, wrongly states this ass. to be preserved in the Zurich Stadtbibliothek.
$$
\text { 4. ws. No. } 73 .
$$

A quarto parchment as., consisting of fifty-one numbered folios, measuring 31 cms . by 23.5 cms., written in single columms, with thirty lines to the page. It dates from the ninth and tenth centuries, being made up of several parts in different hands, and came from the monastery of Rheinau. There are some illuminated titles and coloured diagrams. Among other things it contains the work of Adamnan, De Locis Sanctis, and was collated by Geyer for his edition (Itinera Hierosolymitana, saec. iii-viii, 1898, pp. xxvii and xxxiv, ap. Corp. Script. Eccles. Lat. Vindob., tom. 39) ; consult also Geyer, Adamnanus, Abt von Iona, Theil ii., Program, Erlangen, 1897, p. 16).

Fol. $1 r^{\circ}$: In nomine dei patris et filii et spiritus sancti. Hunc codicem ego Reginbertus scriptor servorum dei servus, etc. Then follow twelve hexameters by the same Reginbertus:

Magno in honore dei domini genitricis et almae
Sanctorum quoque multorum quibus Auua fovetur, etc.
These verses have beeu printed by Dümmler (Mon. Germ. Hist., Poetae Latini Aevi Medii, ii, 1884, p. 424), who does not mention this Ms., and also by M. Omont from a Ms. copied by Reginbertus, formerly preserved in the Phillipps collection, and now probably at Berlin (Bulletin de la rociété Nationale des Antiquaires de France, 1889, p. 1:3). Reginbertus, who died in 846, was the Librarian at Reichenau, under the Abbots Wraldo, Heito, Erlbaldus, and Ruodhelmus (Cahier, Les Bibliothèques, p. 129, ap. Ammales de Philosophic Chrétienne, 17-18, 1838; Dümmler, Mitheilungen der Antiquarischen Gesellschaft in Zürich, Bd. 12, Heft 6, 18.59, p. 249 ; Dümmler, Ioetae Latini Aevi Medii, i, 1881, p. 126, ii, 1884, pp. 303n., 417, 425). No less than fortytwo MSs. Were copied by him, or at his request, and presented to the monastery. Very few of these are now in existence. We still possess a catalogue of them drawn up by lieginbertus himself before the year $8+2$. which has been printed several times (Ziegelbatuer, Historia Dier Literariae

Ordinis S. Benelicti, tom. i, 1/it, p. iti9; Neugart, Episcopatus Constantievsis Alemanicus, t. i, pars i. 1862, 'p. $5 t^{7}$; Becker, C'atalogi Bibliothecarum Antiqui, Bonn, 1885 , pp. $19-24$). The Zürich ws. is, no doubt, identical with the une thus described: "In tristesimo libello habentur libri tres, quos Arculphu: Episenpus Alamamm excipiente de locis sanctis ultramarinis designavit anseribendus, et quartus liber the eadem notatione est adiunctus. (?uis antern furit, irnmarnus: quem mihi Walafrid Frater me supplicante donavit." The personage here referred to is the well-known Walahfridus strabus, Ahbot of Reichenau from 842 to 849 , and the "quartus liber de calem notatione" is the so-called Itinerarium Antonini llacentini still found in the 3s., as mentinned below.

Fol. 1 vo: Blank.
Fol. 2ro-2S r° : Primns de locis Sanctis liber. Exorditur praefatio. Arculfus sanctus episcopus gente Gallus, ete.,......... Explicit liber tertius.

This is the work of Adamman found in a considerable number of Mss.
Ed. Geyer (Itinera Hierosulymitana, 1898, pp. 219-297).
Ful. $28 \mathrm{r}^{\circ}-29 \mathrm{v}^{\circ}$; Incipit de virginitate sanctae Mariae:
Virginitas felix quae partu est digna Tonantis,
Quae meruit dominum progenerare suum, etc.,
Intrant sidereo rernentes lumine portas Excipit hos proceres urbs patefacta poli.

Hace de versibus coce Fortunati librorum xi ad Gregorium positis ad sancterum mentionem sumpsimus.

These 86 elegiac verses are taken from a puem of Venantius Fortunatus (Liber viii, 3, 93-158, ed. Leo, Mon. Germ. Hist., Auctores Antiquissimi tom, iv, pars. i, 1881, p, 183). There is mo mention of this Ms. in Leo's erlition.

Fol. : $00 v^{-6}-43$ y : In another haml, also of the ninth century: Incipit lifellus de lewis sanctis extra marinis quae infra vel circa Hierusalem sunt, praecenlente beatu Antominu matyre. Ex en quod a civitate Placentina egresus sum, etc., Explicit den adiuvante.

This is the original recension of the Itinerary falsely ascribed to Antoninus Placentinus. It has been printed from this and other Mss. by (reyer (Itinera Hierosolymitana, 1898, pp. 159-191).

Fill. $4 r^{2}-51{ }^{-0}$: In a hand of the end of the ninth or earlier portion of the tenth century: Militum cius unum solumambla lapidem, etc., Vol ulsessioncm et ruinam wis alferunt.

The rest is lost. This is a fragment of Bede's work, " Quaestiones in

Esposimo-Hiberno-Latin MSS. in the Librarips af Smizerlund. $8: ;$

This MS. gains additional interest from the fact that it contains an OldIrish gloss, the word mollis being glossed as slemon or sclemon. The same gloss is found in another ms. of Adamman's tract, Parisimus 13048, also of the ninth century (cf. Geyer, Itinera Hicrosolymitana, 1898, pp. xxxiiii and $225 n$.). I mention this here as neither of these mss. is referred to in the work of Stokes and Strachan (Thesaurus Palaeohibernicus, 2 vols., 1901-1903).

In the second part of this paper I propose to deal with the MSs. in the Town Libraries at Zürich and Bern. The Bern Msss, are especially interesting. From one of them, now unfortunately mutilated, I hope to publish for the first time a large portion of the grammatical work of an Irishman, named Clemens Scottus, who filled a prominent post at the Court-School under Charlemagne's successor, Louis the Pious.

In conclusion, it only remains for me to record my thanks to those from whom I have received assistance in the course of the above work. In the first place, to Professor Kuno Meyer and Mr. R. I. Best, who have given me constant encouragement and sympathy, and secondly, to Professors Schneider of Basel, and Werner of Zürich, to Pere Gabriel Meier of Einsiedeln, and to the Librarians of the Town Library at Schaffhausen, of the Monastic Library at St. Gallen, and of the Cantonal Library at Aarau, for the kindness with which they did everything to facilitate my researches among the MSS. under their care.

APPENDIX.

A.

Basel, ms. F.v. 33. Fol. 14 vo 19 ro.
[Sedulii Scotti Expositio Eusebii In Decem Canones]. ${ }^{1}$

1. Eusebius Carpiano fratri in Domino salutem. ${ }^{2}$ In superioribus beati Hieronimi in X canones evangeliorum argumentationes, ut potuimus, breviter. explanavimus. Nunc vero Eusebii Caesareae Palestinae episcopi, qui primus ipsos canones in decem titulos ordinavit, de eisdem canonibus assertionem videamus.
2. Nam sequitur: Ammonius quidam Alcarandrinus, mayno studio atque industria unum nobis pro quattuor evangeliis dereliquit. In quo prorsus exordio ipsum Ammonium quem assecutus fnerat non parva lande prosequitur. Cum eo magno studio atque industria opus evangelicum non tam ad

[^115]sui nominis gloriam quam ad subsequentis saeculi utilitatem dereliquisse testatur. Cumque eum Alexantrinum fuisse commemorat hoe ad cumulum cins laulis pertinere yui dubite Constat namque urbem Alexandriam fhilnophom mutricem at saprentium magistram in divinis atque humanis litteris fuise caeleberimam. In qua praefactum virum et studio tiontisse ac intustria pervaluisse asserit. Inter studiosum vero et industrium hoc

 inveniendo percepit. Čnde industria quasi inlostria vocatur quod intro struat atque omnia quae ayit intus conspiciat.
3. Sed quo pacto unum pro iiior evangeliis praedictus Ammonius relinquere putuit mox explanat cum dicit: Dimque trium crangeliorum sensus
 adnervit; ite ul combultm, quantum ad tenorem pertinet lectionis, sequens iam stilus interrupeus cue cidentur. Sensus autem huius loci talis est. Quod in quocumque secumium Mathaenm capitulo vel unus vel duo vel alii tres evangelistae in emben vel consimili sensu concordant. Ipsorum vel unius vel duorum aut certe trium evangelistarum capitula cuilibet secundum Mathaeum capituko sulmexuit. Sed hoe non plus quam vii canonibus, qui sunt. primus, secundus, iii, iiii, v, vi, septimus, fecit. In quibus Mathaeus cum tribus aut dunhus ant cum quolibet uno evangelista consonat. Quod
 Mathaeum capitulum sic exorditur: Liber generationis Iesu Christi filii
 decimum in quo penealngia salvatoris enntexitur sicut xiiii: Et ipse Iesus crat incipiens quasi annorum xxx et reliqua. Secundum Iohaunem vero primum et tertium quinturnue suhiunxit. At vero secundo iuxta Mathaeum capituln rumi est: Ommes eryo generatinnes Abraham usque ad David
 Quia nimirum solus Mathaeus ipsum capitulum narraverit.

Iurro autem in tertio capitulo Christi autem generatio sic erat et reliqua, quia Lucas consimilia dicit secundum iuxta ipsum Lucam capitulum : Et
 ler totum Mathaei evanyelium secundum alios evangelistas eadem atque vicina capitula tali urdine interpmsuit, ut omnia Mathaeum capitula sine ulla ordinis perturthatione. hnc est secundum post primum tertiumque post
: Momperpu Vequa IApina Tproio aput Fabricium Billinthar Giracca, ed. Harlen, 1. rij, 1801, [. 40
secundum ot cetera post praccedentia licet propter alia interposita capitula non continuatim tamen ordinatim ponerentur. Sumpta vero ex aliis evangeliis capitula interruptim quantum ad ordinem pertinet stilum haberent. Cum verbi gratia primo secundum Mathaeum capitulo non primum sed xiiiimum secundum Lucam capitulum subnexum est. Signanter autem dicit quod ipse Ammonius quasi ad unum congestos scilicet sensus adnexuit. Nam quamvis cata Mathacum ipsum evangelium fuerat praetitulatum, non tamen re vera simpliciter unum sed quasi unum erat evangelium. Cum in eodem non solum secundum Mathaeum sed etiam secundum alios evangelistas et sensus et capitula ipse intertexuit. Quod tamen et aliter intellegi potest. Quod quasi ad unum id est sensum quemlibet in evangelio Mathaei congestos sensus ex aliis evangelistis adnexuit. Unde perspicuum est quia nec praefatus Ammonius X canonum titulos in evangelio notaverit neque ipsos canones ordinaverit. Sed postquam suum opus compositum videlicet evangelium sub certis capitulorum distributionibus dereliquerit, Eusebius Caesariensis episcopus in eodem opere septem concordantias quibus Mathaeus cum aliis evangelistis consonat atque octavum canonem quem munc rectius decimum nominamus subtili consideratione repperit. Insuper etiam alios duos canones, id est octarum in quo Lucas et Marcus et nonum in quo Lucas et Iohames consonant, in aliis perspicaciter evangeliis attendit.
4. Nam vide quod consequenter adiungitur: Vcrum, ut salvo corpore, sive textu ceterorum hoc ${ }^{1}$ est ${ }^{2}$ evangelionum propria et fomiliaria loca, in quibus cadem similiterque diwerint, scire possis, ae vere disserere, accepta occasione ex praedicti viri studio, alia ratione X numero tibi titulos designavi. Causam reddit cur decem canonum titulos descripsit quatinus eadem et similia in quibusque evangelii locis absque ulla capitulorum ordinis interruptione sciri possint. Et nota quod per X canones eadem et similia non autem sola quae etiam propria dicuntur discenda esse testatur. Quia propter causam brevitatis proprietatem decimi canonis reticuit quam mox tamen in subsequentibus ostendit. Ob hoc autem titulos ipsos canones nominat quod eorum distincta congeries per titulorum praenotatos ordines denoscitur.
5. Quos quidem titulos sive canones propriis diffinitionibus describit cum subdit: Quorum primus, quattuor in so continet mumeros, in quibus similia ab universis, dicta sunt, Mathaeo, Mareo, Luce, Iohanne. S'émelus, in quibus tres, Mathacus Mercus, Lueas. Terties, in quibus tres, Mathuens, Lancus, Iohannes. Quartus in quibus tres, Mathaeus, Murcies, Iohannes. Quintus, in quibus duo,

[^116]Mathacus, Lucas. ${ }^{1}$ [Sextus, in quibus duo, Mathacus, Marcus.]. Septimus, in quibus duo, Mathaens, Iohannes. Octavus, in quibus duo, Lucas, Marcus. Nonus, in quibus duo, Lutcas, Iohannes. Decimus, in quibus singuli de quibusdum ${ }^{3}$ proprie seripserunt. Quoniam vero in supradictis de decem (amonum mumero deque ipsorum ordine pront potui breviter diserni nune eadem replicare superthum duxi. Ihud interea perquirendum est quare -hn ipsos canmes dittinit vitimm solnecismi videtnr incurrere cum dicit: Srecundus, in quibus tres, Mathaeus, Marcus, Lneas. Tertius, in quibus tres, Mathacus, Lucas, Lnhames, et reliqua, ('um usitatius et secundum artem Lupuenti rectins dicere poterat: Secumlus, in quo iii, Mathaens, Marens, Lucas. Item tertius, in quo iii, Mathaeus, Lucas, Iohannes, et cetera similiter. Itaque sciemdum est qual hic lows dupliciter explanari potest. Dut enim illurl quat ait, in quilus, non relative sed infinite intelligere Ahhermas. I't sit sensus. secumbus titulus est sive camon, in quibus hoe est, in quifuslibet sen in quihuscumque capitulis tres evangelistae, Mathaeus, Macus, Lacas concordant. (ound et do ceteris canomibus infinite intellimonlum. Xan si in his prolnquis relativa loutio esset praecedenti singulari mumew monnisi singularem mumerum continuo subiungeret ac diceret: -romlus, in quo iii, Mathems, Marens, Lucas, et reliqua. Sed quia singulari phatem numerum subiunxit dicens: Secundus, in quo iii, Mathaeus.
 ipsam phralitatem protulit. Aut certe congruentius ex praecedentis

 continet mumerns in quihus similia ab universis dicta sunt Mathaeo,
 subinfertur: secumlus, in quibus iii, Mathaeus, Marcus, Lucas. In quibus per zeugna sive atonogrou id est a commmi a superioribus continet numeros, repetemlum est ut nobis plena sententia constare sic possit. Secundus continet numeros in quihus iii Mathacus, Marcus, Lucas similia dixerunt. Famque per syllemsin ex eo quol dictat sunt dixerunt assumendum est. Eodemque tenore subsequentinm cammun descriptiones per sotwon atque
 ? Woul autem dicit primum canonem iiior in se numeros continere non nibil quaestionis habet. Nam perspicaciter investigandum est cur quattuor
 proptr quathor "analistas eluceret sed ut huius modum quaestinnis friliu* ainolvanus nos all distinetan canomum congeriem et oculormu et

[^117]
lisposim- Hiberno-Latin MSS. in the Libraries of Switzerland.

mentis aciem flectamus. Itaque exordiis tramitum primi canonis conspectis quattuor numeri oppositorum sibi invicem capitulorum elucescunt. Octavum videlicet secundum Mathaeum et ii iuxta Mareum ac septimum secundun Lucam Xmumque secundum Iohannem. Sic et per omnia loca in primi canonis congerie quattuor oppositos capitulorum numeros incunctanter videbis. Similiter in secundi et tertii quartique canonis serie tres numeros capitulormu a laeva in dexteram sibi invicem oppositos esse perspicies. Licet in quibusdam locis non nisi duo numeri tibi oppositi repperiuntur, sicut in fronte tramitum secundi canonis apparet. In qua secundum Mathaem, Xmum' secundum Marcum VItum secundum Lucan eundem quomorlo apud Mathaeum Xmum ${ }^{2}$ capituli numerum pernotatum esse invenies, cum tres tamen evangelistae in ipsis duobus numeris qui sunt xy et vi tribus capitulis similia dixerint. Possumus autem et hos numeros aliter computare, it quattuor numeros qui in primo canone continenter iiiior numerosos tramites in quibus multiplex capitulorum numeros describitur dictos esse intellegamus. Nam in primo tramite multiplex capitulorum uumerns secundum Mathaeun pernotatur. Dehinc in secundo tramite alter capitulorum numerus secundum Marcum perscribitur. In tertio quoque tramite capitulorum numerus apul Lucam designatur. ${ }^{3}$ Item postremo ordine iuxta Iohannem quartus capitulorum numerus exprimitur. Sicque ceterorum numeros canonum rel ternos vel binos sive quaternos pro diverso tramitis numero, in quibus multiplex capitulorum numerus conscribitur computare debemus. Sive igitur a laeva in dexteram, sive a summo ad imum in distinctum canonum seriem aciem oculorum direxeris, vel binos vel ternos vel quaternos capitulorum numeros designatos esse repperies. In quibusdam sane codicibus octarus canon ita diffinitur: Octavus, in quibus duo, Marcus, Lucas, cum aptius sit in ${ }^{\text {i }}$ ipso octavo canone Lucas Marco praeponatur quomodo in nono id est Iohanni anteponitur.
6. Et quidem subicetorum titulorum id est argumentum. Subiectos titulos distinctas praetitulationibus canonum congeries usibusque subpositas dicit, quorum argumentum hoc est demonstrationem atque notitiam compendiose sed tamen obscure supra descripsit. Nam quamvis ipsorum numerum atque ordinem canonum ostendit nullam tamen rationem de ipso numero atque ordine reddidit.
7. Unde apte subditur: Clara vero corum narratio haec est. Ut enin superius ipsos canones propriis diffinitionibus licet obscure descripsit, sic in subsequentibus eorundem utilitatem clara narratione demonstrat. (quit

[^118]enim clarins est atque intelligendum facilius quam in erangelico volumine quemlibet canonem per minii colorem denoscere atque adpositum quodlibet capitulum ipsi canoni asscribere et reliqua.
8. Nam vide quor seupitur: Etenim per singula loce evangeliorem quidam numorus ridetur alpositus, paulatim incipiens a prime, deinde secundo,
 loca nominat quase sunt in evangelica voluminis corpore quorumlibet capitulurum capacia. Quibus locis capitulorum superscribendo adpositus est. Quique gradatim rationalili atque continuo numerorum ordine usque ad finem simgulorun evangeliorum pertendit. Et notandum fuod com ipsum capitulntum numerum paulatim a primo incipere dicat, leinde secundo, non ait pustremo a tribus licet if consequentia constructionis exigat. Sed maluit dicere postremo tres quon nom sime subtilitate arithmeticae disciplinae pusuit. Unum namutue et duo principia et velutí quaedam semina sunt numernum. Conum a yun munes numeri altermm vero principium per quod universi numeri proseantur et incipiunt. Signanter ergo ait capitulorum numerum a primo incipere, deimbe secundo, et non dicit postremo tribus. Non enin tia prineipiun numerorum sunt, quomodo unun et duo. ? !uipe vern temarius nummers tuths sit atgue perfectus habens principium et medium atyu finem. Lage heati Aurnstini primum de musica linum. ${ }^{3}$ Itapue prist primman et aremblum postrem, iii esse in ordine dicit. In ytue ex en fuex superius dixit. viletur adpusitus. per syllemsin videntur alpusiti, asumpminn est ut plena smatentia sic constet: postremo tres vilentur alymsiti. Hin antem vorlis lipuidn ontmblitur yuod unumquodque Nancelium quatum ant capitula patinet non nisi shorun numerum

 namernan nsture atmem lihrorm pertendere, hoc non nisi de propriis rain-pue vancelii capitulie intellizi potest. Son enim si numerus aliorum apml cetornamedistan capitulorum in un" qualibet evangelio adponatur,

${ }^{1}$ kerliu \mathfrak{F} abruius. ${ }^{2}$ ad finem Fatricius.

* Auguatinus, De Musica, i, 12 , Migne, Patrologia Latina, 32, col. 109.5. M. Dic itaque nunc, principium, medium, et linia, quo numero tihif contineri vileantur. D. Arbitror ternarium numerum te velle ut ruspondean: tria enim quaedam sunt, de quibus quaeris. M. Recte arbitraris. Quare in ternario numero quamdam esse perfectionem rides, quia totus eat: habet enim principium, modium et finem.
- cotr. bupra ertipta dial.
iuxta Lucam quartum decimum secundum vero Iohannem et primum et tertium quintumque iuxta se capitulum sine continuata ordinis olservantia habere pernotatum. At vero quod unum adpositum numerum cuilibet capitulo observata continuatione ordinis usque in finem cuiusque evangelii superscriptum esse pronuntiat. In hoc evidenter declarat quod unumquodque evangelium non nisi proprios suorum numeros capitulorum debet habere adnotatos.

9. Ittuque per singulos numeros suppotutio, per minii ${ }^{1}$ ad ${ }^{2}$ distinctionem invenitur incerte, ${ }^{3}$ significans, cui decem, ${ }^{3}$ titulis appositus numerus denoscitur. ${ }^{3}$ Is ${ }^{6}$ veluti siquidem primum, cevtum est in primo. Si vero sesundum ${ }^{7}$ in secumdo, et codem modo usque ad decem. Dubiun est utrum incerta praecedentibus au subsequentibus connectitur. Sed si praecedentibus copuletro talis sensus erit quod in evangelii volumine post capitulorum numeros incerta canonum supputatio rubicundo colore describitur. Ideo vero canouum supputatio incerta esse recte dicitur. Quia neque paulation in fronte cuiuslibet evangelii a primo canone incipiens dehinc secundo ac per ordinem subsequentium canonum sine ulla interruptione usque ad decem progreditur. Sed molo tertius ante decimum modo decimus post quintum modo septimus ante decimum et ceteri ante vel post alios cannones sine certa ordinis observantia sparsim positi repperiuntur. Quae multiplex ordinis varietas usque ad ducentas formulas pervenit. Nam clum primus canon et sibi et aliis novem in evangelico volumine camouibus praeponitur decem varietas formulas efticit. Item dum idem et sibi et aliis praeponitur alias x varietates generat. Bis autem x in summam reductae xx fiunt. Nec dubitandum est quod ceteri novem canones dum singuli primo sibi dehine aliis omnibus vel praeponuntur vel postponuntur $x x$ novies variatas formulas efficere videntur. Licet non has ommes sed quasdam ex his varietates in ipso evangelio repperimus. Si vero incerta subsequentibus coningatur facilis intellegentia patet. Quod canonum supputatio quae rubicundo colore describitur incerta capitula cuius canonis sint significet. Num si primun canonem ipsa per minium supputatio designet certum est ipsum capitulum in primo esse canone. Sin antem secundum canonem demonstret certum erit adnexum capitulum in secundo canone esse computandum atque ut ipse ait, eodem modo usque al x canones singula quaeque in evangelio capitula cuius canonis fuerint. Yer hanc supputationem certa ratione clarescent.
10. Sequitur: Si igitur cvoluto uno qualicumque de ${ }^{8}$ quattuor evanycliis, cuilibet capitulo velis insistere et rescire, qui similia dixerint, et loca propria

[^119]agnoscere singulorum, in quibus cudem sunt prolocuti eiusdem sensus, quem tenes, religens ${ }^{2}$ proepositum nemorum quacsitumque cum in titulo, quem demonstrat fituri subnotutio, rontinuo seire potueris ${ }^{3}$ ex superseriptionibus, ${ }^{4}$ quas in fronte notatas invenies, qui aut quot de his, quete inquivis, similia dixerint. Veniens
 tos per singulos numeros, atque cos in suis propriisque locis similia dixisse reppries. Illud primo notandum est quod haee narratio sive argumentatio ad noven tantum canones in quibus concordantia inter iiiior aut iii aut duo evangelistas sernitur nom antem ad decimum canonem pertinere cognoscitur. Et quia haec namatio sha polixitate simul et obscuritate implicita esse videtur prius mobis can phacet minutatim propter rudes quoslibet enucliare ac dehinc velut in pugilln hevi explanatione concludere. Si igitur, inguit,

 titulos in fronte atque exordio distincte canonun serie notos invenies. Et
 .ut
 iterum recitans, ?luid est $^{\text {quod }}$ recitas? Eiustem scilicet capituli atque eiusilem sensus quem in mente tenes propositum numerum id est ante in

 titulns qui aut quot evangelistae similia dicunt cognoscitur. Porro per sub-
 veniens etiam ad religua evangelia per eundem numerum. Id est ab ipsa canonum distincta congerie al singulorum volumina evangelistarum per eundem numerum recurens quia multiplicem capitulorum numerum quem

[^120]eosdem capitulorum numeros quos ante in canonum subnotatis tramitibus conspexeras per singulos evangelistas hoc est per singula evangelia adpositos ac superscriptos esse videbis atque eosulem in suis propriisque locis evangelistas similia dixisse repperies. Wed ut in brevi quasi pugillo ceu promisimus totum huins argumentationis sensum concludamus tale est quod proloquitur. Nam postquam in evangelio ordinalem cuitis libet capituli numerum cuiusque canonis sit ipsum capitulum ediscimus nos ad distinctam canonum seriem recurrere admonet. Quatinus ibi per praescriptos canonum titulos qui et quot evangelistae similia dixerunt primo cognoscamus. Dehinc ut ordinales capitulorum numeros et loca propria in quibus ipsa similia ab evangelistis sunt edita et subscriptis atque oppositis tramitibus intelligamus. Hisque cognitis postremo ad singulorum volumina per eosdem numeros capitulorum recurrentes ipsa propria loca in quibus similia ab istis evangelistis conscripta sunt repperiamus. Finit.

B.

Basel, MS. F. V. 33. Fol. $29 \mathrm{r}^{\circ}-31 \mathrm{v}^{\mathrm{o}}$.
Sedulii Scotti Explanatiuncula De Breviariorm Et Capitulorum Canonumque Differentia Et Connexione Deque Eorum Aequalitate Atque Inaequalitate Speculatio. ${ }^{1}$

1. Incipit breviarium cata Mathaeum. Nativitas Christi. Magi cum muneribus veniunt, et reliqua. Perquirendum nobis est quid inter breviarium quod a quibusdam brevis causa nominatur et capitulum atque canonem distet. His etenim tribus, quasi quibusdam clavibus, cuncta evangelici voluminis arcana reserantur. Nam sublatis breviariis capitulis et canonibus, omnia confusa erunt et ambigua, et quae sunt eadem, vel vicina, vel sola, et qui vel quot evangelistae in quibuslibet sententiis consonent, aut de quibus rebus edisserunt, hoc totum sine praedictis clavibus amphibolum erit. Itaque propriis differentiis haec tria ab invicem discernamus. Ergo breviarum est rexum in contextu evangelii narratarum subnixa et compendiosa diverso ad evangelium verborum stilo expositio. Capitulum vero est quaelibet in evangelio sententia seu narratio aliquem sensum vel ex parte vel ex toto exprimens in quolibet comprehensa canone. Porro canonem certa observatio seu titulus, quo cognoscitur quis vel qui et quot evangelistae unumquodque capitulum ediderunt. Ob quas vero cansas haee tria reperta sunt diligentins intimemus. Nam breviarium ob hoe est repertum, quatinus ipsae res, quae in evangelico volumine narrantur, hoe praemisso atque considerato lucidius patescant, ut quod in evangelio quisque invenire desiderat, breviariorum

[^121]consideratione, cum summa facilitate repperiat. Canones autem ob hanc causiln notati sunt, (quatinus ut supradiximus, eorum distinctione qui et quot erangelistae eadem vel vicina vel sola in evangeliis capitula dixerunt, agnoscatur. Sed capitulurum causa multiplex esse animadvertitur, de qua suo loco in sequentibus competenter disseretur.
2. Illud praeterea sciendum quol capitulum sine canone, et canon sine (apitulo, per totmu evangelii contextum esse non possunt. Nam haec duo silii invicem insepratiliter comexa sunt. Licet enim qualibet scriptorum neglegentia tieri lutest, ut quolvis capitulum numerum sui canonis non habeat supmecriptum, re tamen et veritate aliquo canone carere non potest. C'un meresser sit ut unts ant dun ant tres sen quattuor evangelistae ipsum
 arriptis, licet mon almque capitulurum sensu, consistit. Non enim in breviario qui wh quin wancilist... quemlitet sensime edisserunt, neque capitulorum numerus ferquiritur: alimpuin yui quomolo contextui evangelico sic et

 discitu. at eqne in exanselii antuxth diversis capitulis atque canonibus multipliai manatione expmuntur, ma in heviarin, quasi quodan pugillo, brevi assertione demonstrentur.
 sine hrevinvi, forsta mpnrimutur. Nan in exarlio evangelii secundum

 erat, et reliqua, initium lreviarii exorditur. Nato ibi nativitas salvatoris

 est. Lonterat enim tale breviarimn, pulla olssistente ratione, sic constare,

 insequalitate)' quaedam disseramus.

[^122]
Espostro- Hiberno-Latin MSSS. in the Libraries of Switarrland. 93

4. Itaque sciendum est quod in evangelico contextu tria supradicta sibi invicem aequalia repperiuntur. Nam ${ }^{1}$ octavum cata Mathaeum breviarium quod est: In navi eum dormientem excitant discipuli ut tempestatem sedaret. Et in terra Gerasenorum daemonia eicit. Unum capitulum hoc est Lxvini ${ }^{2}$ atque unum canonem scilicet duo in sese continere videtur. Unde manifestum est breviarium capitulum, capitulum canonem aequales terminos aliquando possidere. Sed horum trium aequalitas uniformis est. Inaequalitatis vero differentiae tres principaliter inveniuntur. Aut enim singula singulis aut singula binis aut bina singulis quantitate praeferuntur. Sed singula singulis tribus modis praelecta fiunt. Nam breviarium quamvis neque solum canonem neque solum capitulum sua magnitudine excellit. Item capitulum licet neque canonem tamen breviarium intranscendere invenitur. Canon quoque aliquando capitulum sed raro breviarium transgreditur. Quae omnia quisquis scire voluerit evangelicum volumen inspiciens facile repperiet.
5. Singula vero binis duobus modis praeferuntur. Nam licet capitulum canonem simul ac breviarium non transcendit, tamen aut quattuor breviarium capitulum atque canonem, aut quinque canon breviarium atque capitulum superat. Quod ut facilius ${ }^{3}$ intellegatur quibusdam exemplis approbetur. Siquidem breviarium capitulo et canone lectius invenitur. Nam verbi gratia primum evangelii secundum Mathaeum hoc est: Nativitas Christi. Magi cum muneribus veniunt, et Ioseph ab angelo per visum ammonitus cum puero et matre eius in Aegyptum fugit. Infantes interficiuntur. Tres canones hoc est quintum septimum decimumque canonem. Quattuor etiam capitula tertium scilicet et quartum quintum quoque aut sextum capitulum conplectitur. Item canon breviarii et capituli metas transcendit. Quoniam secundus canon septimum iuxta Lucam breviarium quod est Lairi filiam dum iret resuscitare mulierem a profluvio liberat puellam vivificat, et aliquam octavi breviarii partem quattuorque capitula id est Lxxxy et Lxxxyi et Lxxxyil et Lxxxvin ordine continuo conprehendit. Porro capitulum licet breviarii terminos transcendere invenitur. Non tamen cuius libet canonis formam transgreditur. Quia nimirum omne in evangelio capitulum necesse est ut in aliquo canone sit conclusum. Sed quod dicimus aliquo exemplo nos approbemus. Itaque Lxxxviif secundum Iohannem capitulum in decimo cauone computatur. Nec eius terminos excedit. Quod prorsus capitulum et tota cum breviarium hoc est Iesus interrogatus principium se esse respondit quod omnis peccator servus sit et quod Iesus ante Abraham sit. C'aecum ex nativitate curat. A noni breviarii primam particulam id est de ianma et ovili

[^123]R. I. A. PROC., VOL. XXVIH., SECT. C.
in se concludit. Tertia inaequalitatis differentia qua bina singulis quantitate praeferuntur ultimo in loco and discutiendum restat. Haec autem sit duobus montis. Nam quia breviarium simul et capitulum canonis terminos transcendere nequent ant TI beviarium et canm aliquol capitulum aut TII capitulum et conin aliqual breviarium sua quantitate transcendunt. Nam breviarium simme et canon capituli meta-smarerdiuntur. Si quidem decimum secundum

 sua quantitate transcendunt.
6. Hupun itapue trium ill est breviarii et canonis atque capituli modi

 et capitulum canonis terminos transcendere possunt. In breviario et

 inspexerit ex superexscriptione breviariorum canonum quoque atque

 nomnisi in primonlialibus sensumm locis exordiuntur. Unde evenit ut ipsa
 finem capitulorum, sed tamen in principio sensuum, exordia sumant.
-. Postremo animadsertemlum est quod haec tria breviarium scilicet capitulum canom alia in se tria bocest eaden et vicina atque sola sensa
 testimnuia exempla. T'mle quilam earegius doctor has quattuor species

 vous ut dilizatis invicem, hoc est facere bonum et caritatem implere.

Esposiro-IIberno-Latin MSS. in the Libraries of Svitacrlant. Sit
Testimonia sunt quae in ore duorum vel trium testium stant, ut est illud: Iohannes testimonium perhibet de me, sed habeo testimonium maius Iohanne. Pater ipse qui in me manet testimonim perhibet de me, et ipsa opera quae ego facio testimonium perhibent de me, et testimonium perhibeo veritati. Exempla vero sunt quae Iesum imitantur dicentem: Discite a me quia nitis sum et humilis corde et reliqua. Estote perfecti sicut pater vester caelestis perfectus est. Et alibi exemplum enim dedi vobis ut et vos faciatis aliis. Has quattuor qualitates psalmigraphi versus concinant dicentes: Praeceptum Domini luci dum illuminans oculos. Et alibi laetum mandatum tuum nimis quia qui diligit proximum totam legem implevit. Item testimonia tua intellexi et testimonium Domini fidele. Item iudicia Dei vera iustificata in semet ipsa quae nobis exempla recte iudicaudi praemonstrant. In his iiiior hoc est praeceptis testimoniis exemplis mandatis timor fides spes caritas includuntur. Timore namque incipimus, fide servamus, quod incipimus sue erigimur, caritate consumamur.

IV.

ARCHAEOLOGICAL EYIDENCE FOR THE INTERCOURSE OF GAUL With hieland before the first century.

By GEORGE COFFET.

Read Frbreary 14. Ordered for publication Ferruary 16. Published April 8, 1910.
A Paper on some monuments of the La Tene Period, which I had lately discovered in Ireland, and which were the first of that class known in Europe, was real before the Academy in 1903. ${ }^{1}$ These interesting stones (three) were there described and fully illustrated in cletail. I may recall a few general observations made.

It has been a hahit of mind with English archaeologists to regard the perions in Irelam as later than those in Pritain and the styles as derived therefrom.

This theny is hased on the assumption that Ireland, lying more remote from the Comtinent than Pritain, was less within the reach of Continental inthemens in early times. I hat, as I remarked, combated this view elseWhore. Many Tirmze Are types in Treland contradict it. The geographical asenment must be usel with caution. Trale does not always follow the lin. of nearest aphical approach. Even in carly times it is chiefly Woterninuld lye the wets somght, and by the prsitions of meeting centres or markets. The frequent intercourse hetween Ireland and Gaul in early Chrintian times-tifth to seventh centuries-was mentioned. Intercourse by Way ,if the Laire was reergnized. We hear of the first Irish Christians at Auxure, at Autun, at Luxeuil ; and Irish trate was known at Nantes in the -ixth century. This was probably an uld way long in use. In Roman times Indand was lelievel to be between Iritain and spain, and is mentioned by Tacitus as "favourably situated as regards the Giallic Sea."

The stomes, which are from different parts of the country, were of the sume general periol : but one I thought might be late, approaching 400 a.d.; the ether two were certainly earlier, and one of them I definitely ascribed to La 'leme II, buth from the borler of fret-pattern on the base, and the free -rnll-finns of the general umament: the trumpet-ends not yet being a

[^124]a separate motive. This may perhaps be somewhat early; it may be coming to a transition to La Tène III. It may le compared with the pattern on the shiclds from the Thames and the River Witham ${ }^{1}$ attributed to La Tène II.

That the La 'I'ène style was distributed in Ireland before the Christian period I had held to be probable, chiefly on the ground that the derived La Tène ornament of early Christian times presumed an extensive use of that style in the preceding period. These stones went far to confirm that opinion, and may be claimed as showing that the La Tène style had taken a deep root in Ireland before the Christian period, and was not to be accounted for by trade or raid from Britain.

Last year Professor Zimmer, who does not appear to be acquainted with my papers, wrote an important article upon the ancient trade connexion of West Gaul with Ireland. ${ }^{2}$ He sums up in a passage the prevailing error to which I have referred:-"This erroneous view is widespread, even in learned circles that ought really to know better; and during the past decades it has proved baneful for many problems of Irish and British archaeology. Now, this erroneous view is quite naïvely and openly expressed, and brought forward as the ultimce ratio for unproved statements; now, as a self-evident truth, it forms the basis of scientific theories of present-day investigators of repute; nay, examined closely, it turns out the sole mainstay for such theories."

He gives numerous instances of early trade-relations between West Gaul and Ireland. Leaving upon one side the well-known intercourse between Treland and France and Spain in the sixteenth to the eighteenth centuries, he proceeds to examine various evidence of Ireland's connexion with West Gaul from the time of Giraldus Cambrensis (born 1147) back to Tacitus. He mentions at length the expulsion of St. Columbanus from Luxeuil in the sixth century, and quotes, from the high authority of the Life, an almost contemporary MS., the passage "Reperta ergo navis quae Scottorum commercia vexerat, omnem suppellectilem comitesque recepit"-an indication this of the direct trade with Ireland. ${ }^{3}$ He gives instances from the same time of the Gaulish wine-traders carrying their wares up the Shanuon as far as the centre of Ireland. He then gives the passage in Tacitus quoted by me in my paper, "The Origin of Prehistoric Ornament in Ireland," as to the position, size, climate, and population of Ireland as compared with Britain,

[^125]and argues from this passage that a lively trade must have existed between Gaul and Ireland at that period.

Professor Zimmer conclutes that a brisk direct export and import trade comucxion existed in the first century between Ireland and the West Gaulish ports at the Loire and Garonne mouths.

We may quote the following from among Professor Zimmer's concluding remarks on this portion of his argument:-"The present investigation has, imleed, its own oljgect : but it pursues besides that of partly supplementing nuw, hy facts, a later investigation which will expose the credulousness and shmet wichtumess which lie at the root of the degna of the immigration of the Gand th Ireland ly way of Britain: and I suppose I may at least claim, from what has been proved up th the present, that the view referred to -hrould the liw hought into the field against me as a proof of an intermediary role played by Britain." (p. 380.)

Is thi- pnint is important. I may he permitted to mention that, as far back

 int is hated in tho mative l"sitions of the two islands with respect to the ('mtinent. . . akiner intornaidoration the belief then existimy that Ireland lay limwon latum and chain, whith serens to imply a southern branch of trade

 c.......hanmil thate betwem (iaul and Irritain was in the hands of the Veneti, in it in prombine that aseming trale from the more southern parts of (iat mal phably Ap, win, whll lin directen to the south-west of Britain mit thenm.". It Hn- annats that l'rofessor Zimmer has reached a

 impurtance.

The tales incluted in the ancient literature of Ireland are too often

 [."nle in Ind.m! who have pait athminn these ancient tales; and now 1.at a ath al spirit has at loneth heen hrought to bear upon them by

reliable details on the "History of Ireland," though mixed with fabulous matter. One of the most interesting tales is the story of the return to Ireland of Labraid Loingsech with an army of Gauls, about 300 B.C., from which time I am inclined to date the general use of iron woapons in Ireland, though some iron weapons may have reached the island before. This tale has been critically examiner with regard to the Gauls by Professor D'Arbois de Jubainville in an admirable paper, in the "Revue Celtique," vol. xxviii., where the chief incidents are told. ${ }^{1}$

Two somewhat different versions have come down to us from before the twelfth century. One, of which we have several more or less full copies, is translated by Whitley Stokes from the fullest copy in the "Book of Leinster," a Ms. of the twelfth century. (Zeitschrift für Celtische Philologie, Band III., s. 1.) The other from the Scholia of the Amra Choluimb Chille, also translated by Whitley Stokes from a twelfth-century MS., "Revue Celtique," vol. xx., p. 30. There are also several other texts of this version mentioned by him. Though there are differences in the stories as told in the two versions, the main facts with which we are concerued substantially agree.

Cobthach Coel Breg, having murdered his brother and nephew, secured the supreme kingship. Ultimately Moen, his grandnephew, subsequently called Labraid Loingsech (the exile), took refuge in Brittany amongst tho men of Menia, identified by M. D'Arbois de Jubainville with Menapia.

The King of Menapia gave his friendship to Labraid, who was made known to him as the son of the King of Ireland; and in time sent him back w recover his kingship. He returned with a number of Gauls in 300 ships, and landed on the east coast of Ireland.

This is very interesting, as M. D'Arbois identifies the men of Menia with the Gauls of Menapia established on the Continent; for the Irish did not pronounce the letter p : so Mena(p)ia becomes Menia. The word 'Menia' occurs in an important fifteenth-century vellum Ms. in the British Museum (Egerton, 1782). In others the passage was not understood and probably corrupted. Thus Menia became Morca; and we are told how Labraid went eastward till he reached the Island of the Britons and the land of Armenia. The expression tir fer Menia-' land of the men of Menia'becomes easily tir Armonio; and Menia was sometimes corrupted into Morca (see D'Arbois de Jubainville).

[^126]The Menapii are shown by Ptolemy (second century), as M. D'Arbois points out, located on the south-eastern side of Ireland, about Wexford in Leinster. They were no doubt portion of the Menapia, a people of Belgic Craul. In the time of Ptolemy the Brigantes, a similar people, are placed slightly to the south of them in Ireland.

The date of the destruction of Dind-rig and death of Cobthach is fixed ly the Four Masters at it2 b.c. There appears to be some error about this date, thoug a dindsenchas of Leinster supports it, stating it was . 00 years before the lirth of Christ that it took place. But in the copy of the stmy of Lalmath, thandated hy Whitley stokes, already referred to, from the bork of Lemster, and from wher texts of this version, the date is given as $300 \mathrm{B.C} .^{1}$ Another passage puts it at 307 B.c.

In ath estimate of thirty years for a gemeration, from the date of Ptoleny som of Latas, whon apmears lo lo contemporary with Ugaine grandfather of ('olthath, M. I'Ammis tixed 210 bire for the massacre of I)ind-rig. The romutins of thity yars for a generation is too hish, considering the fact of Ho manders, su we can say sume time in the thim century as a sufficient date.

The mmine of the (ramls with irm lances som became a fixed belief: the exphation of Lagin Leinster), where the (rauls were settled, was in this manner nanally oxplainel; the references to it are very definite.

 lamif. to wit, twn thnis.mit and two hundred foreigners, with broad lances in thoin hamk, from whith the Laigin [Lemstormen] are so called." ${ }^{2}$

Inthe brainn of the story in the solobla of the Amra Cholumb Chille it in and with +umal definitemess:-"Then the exile reized the sorranty of Itwhel: and he whe the first th makn haval hate lances [laigne], whence the Laigin [Leinstermen] are named."3

We fimitale in the dindernern of heinster this constantly referred to in similar words. The prose accounts give some pocms as anthorities,
 - whe iont : int thon one many allu-inns Lu Lathaid and the lances scattered through the literature and tales.

[^127]Thus in Lagin I. :-
From the day he was slain (this is sooth) even Cobthach Cael, with his thirty kings, till the birth of the Son of Mary is five hundred years ever pure.

There came on the march to that slaying Labraid and thirty hundred of the Dub-Gaill in their battle-harness, warlike and staunch, with their deep-blue lances.

From those lances thenceforth were the men of Leinster called the Spearmen; at the hand of the Dumb Exile, with heavy disaster, by these lances Cobthach Cael was slain.

In Lagin II. :-

Labraid the Exile (full his number), by whom Cobthach was slain at Dindrig. came with a lance-armed host over the sea-water; from them Lagin was named.

Two and twenty hundreds of the Gall came oversea having with them broad lances; from the lances that were carried therethence the men of Lagin get their name. ${ }^{1}$

Among the iron spear-heads found from time to time throughout the country, there are some which are regarded by most collectors as the immediate successors of the bronze spear-head. Their often unsightly or fragmentary state causes them to be neglected and thrown aside by the amateur. They may, however, be generally distinguished from the Norse or Danish spear-heads also found in the country ; and the La Tène character of some of them is clearly marked. I think we are justified in regarling fig. 1 as an example of the broad blue lances from which Leinster touk its name. It is 13 inches long, and must have been $4 \frac{1}{2}$ inches broad; the exact place of finding is not recorded, but it was found in Ireland, probably during the Shannon excavations. Fig. 2 is a good La Tène spear. It was found at Corofin, county Clare, and is the property of Mr. Mark Pattison; the

[^128]borders of the small openings or double eyes in the blade are inlaid with bronze; and it has a sort of fret-form round the base. Some narrow spears are also knomn which cannot be assigned to a definite period; their La Tène aspect is apparent; and they are probably not later than the first few centuries A.D. Fig. 3, found in the River Boyne, is an example of these. It has some eye-centres at the base of the blade, set some with red and some with yellow enamel ; also the fine long spear, fig. 4 , found in the bed of a stream at Mulloughmore, county Roscommon.

The Lemakikh, La Tene crannog of Lismacroghera, county Antrim, has yinhol quite a suriug of ubjects consistently La Tène in character. These inchun finr -winl-hmoths: three are at Telfast; and one from the Green-
well collection is in the British Museum: iron spear-hearls and "doorhandle" butts; also several small objects. One of these when found was attached to the shaft of a spear 8 feet long, which was furnisherl at the top with a ferrule of brouze upon which was displayed a kind of Greek fret-pattern prepared for enamel; the spear-head was missing; but Mr. Wakeman, who, with Canon Grainger, obtained it on the spot from the person by whom it had been exhumed, considers that the large iron spear-head figured in his paper was it (Journal R.S.A.J., vol. xvi., p. 392). It measures about 16 inches in length, and the breadth of the blade 2 inches. 'l'his discovery would seem to contradict the guess in the British Museum Guide to the Iron Age (p. 147), which is disposed to consider these doorhandle butt-ends of spears as having been the linch-pins of chariots rather than the butt-ends of spears.

Mr. Knowles has in his collection from Lisnacroghera several bronze butt-ends of spears, also a fragment of a slender twist gold torc. There are also several smaller spear-heads found there like fig. 5 , which was found at Carrick-on-Shannon.

The date of the finds can hardly be later than La Tène II. It is to be regretted that the crannog was not properly excavated, and that the discoveries were left to the chance finds of the turf-cutters, and so much scattered. They may indicate the landing of a body of Gauls direct from the Continent. The Brigantes settled in the north of England, about Yorkshire and Lancashire, were probably a branch of the Brigantes whom Ptolemy locates at Bregans on the east of Lake Constance. The Brigantes of the south of Ireland were

Fio. 5.-Carrick. on-Shamnon (1). probably another branch coming, as I think, directly from the Continent. We must disabuse our minds of the old notion that the movements of the Celtic peoples always took place as a hydrostatic wave filling up the neighbouring parts. This idea is derived from the error, on which Professor Zimmer comments so forcibly, which regards all Continental influences in Ireland as given through Britain. When Caesar defeated the Helvetii, and turned back the survivors to their old lands near. Lake Geneva, from which they had advanced on their march as far as Autun, the whole nation was setting out on a long journey to new lands in the west, and had burnt their homes and the corn which they could not take with them, and had made errangements for messing through the intermediute lands.

Three bronze horns (fig. 6) were found at Cork last year, below the old river bottom, in making some works in the park. They are about 9 inches long, aud consist of three funnel-shaped straight tubes of bronze; their points are smonth and neatly rounded. Their mouths have a flange and rivet-holes in it two are slopel across at an angle; the third is straight. They have fine riveting down the lack, and one is turned in the figure to show this When frum, the centre nne was said to have been joinell to one of the ,thers ly the sinall piece seen attached to it. Round the mouths of each is at band uf La 'Teme wnament, the characteristic form of which camot be mistaken. The abmence of any dividing mark or trumpet-end in the space where the "urves expmond inclines me to place then not later than the first entury fo. if su late. Their exact use is a litte uncertain. I have written to anne if the mon mament archamburists in Europe who are well acquainted with the chief willuminiof Laterne ohjects; and they sugrest that they were the heme if a lulluet like thene on the helmet found in the Thames (fig. 67 , p. ©n, in the lifiti-h Mmeeun (inide to the Iron Are). I agree with this;

The pair of bronze hits and bronze head-stalls-as the latter are

 mostly lelong to the end of the Bronze Age. There are, however, three

Corrax-Intercourse of Gum with Irelund befine First C'entury. 103

certain and fairly early. It was found in a log on the borders of Lough-nashade, near Armagh. The other trumpets have spiked ornament round their ends, and in several cases have been found in numbers of two and three together. There were several discovered in the Dowris find, in the same find as bronze spears and other objects but none of iron; so the date is approximately certain, and they seem to have preceded and led into the La Tène period. Some of these trumpets have a long, straight tube, which fits to the narrow end of the curved portion; the upper end of this tube has also four rivet-holes, to which another tube or mouthpiece may have been fixed. This form, with a straight tube and curved end, is the lituus of the Romans.

Fig. 7.-Cornu and Lituus, from a bas-relief at Aquila. First century b.c.
The Romans are believed to have adopted this form of trumpet from the Etruscans, who were in contact with the Celtic tribes of Gaul from an early period. Polybius, describing the defeat of the Celts by the Romans at the battle of Telamon, B.C. 225, speaks of the "innumerable horns and trumpets" of the Celts (Gaesatae, Insubres, Taurisci and Boii).

Fri 8.- Trumpet in two parts found with six others near Tralee, Co, Kerry.
A bronze lituus, found in an Etruscan tomb at Cerveti, is preserved in the Vatican Museum; and representations of similar trumpets occur on other Etruscan tombs. Several of the Irish horns are open at both ends, and have rivet-holes at the narrow end; they are probably the curved portions of trumpets of this form, of which the straight tubes are lost, though possibly some other form of attachment may have been in use.

If these trumpets are supposed to be in any way connected with those mentioned by Polybius, though the Irish horns are no doubt much earlier, the
great number of them, their form, and their well-nigh complete absence from Britain, may indicate a morement of Celtic people from Northern Italy by the Rhone Valley across Gaul to the south and east of Ireland before the time of Tacitus by the way suggested by Professor Zimmer.

This was an old route, and probably known back into the Bronze Age.

Fig. 9.
Marne. Greenbills, Co. Dublin.

I may wh that the shape of certain sepulchral urns found near Dublin 1."call: the early La 'Tene fortery from the Marne district, though the manment is ditferent, and no correspondence of dates is assumed. The -thatht and angular lines of the wide funnel-shaped mouths and sides barinwing towals the lootom, which is recessed with an annular foot - "heremtint a metal modelo, may be moticent: hut it would take me too far to go into this question more fully in the present Paper.

We see therefore, that the result of the archaeological conclusions in ais Ioper harily supperts the statement commonly made in all school-

 1895-96.

V.

SCANDINAVIAN OBJECTS FOUND AT ISLAND-IRIDGE AND KLLMAINHAM.

By GEORGE COFFEY and E.C. R. ARMSTRONG.

Plate IV.
Read Femmary 14. Ordered for Publication Pembuay 16. Published May 24, 1910.
In vol. x. of the Proceedings of the Royal Irish Academy, 1866-69, there is a report of a paper read December 10 th, 1866 , by Sir William Wilde, Vice-President, "On the Scandinavian Antiquities lately discovered at Islandbridge, near Dublin."

The report states that "Sir William Wilde, Vice-P'resident, brought under the notice of the Academy an account of the Antiquities of Scandinavian origin, lately found in the fields sloping down from the ridge of Inchicore to the Liffey, and to the south-west of the village of Islandbridge, outside the municipal boundary of the city of Dublin, where, there was reason to believe, some of the so-called Danish engagements with the native Irish took place. These antiquities consisted of swords of great length, spearheads, and bosses of shields, all of iron ; also iron knives, smiths' and metal smelters' tongs, hammer heads, and pin brooches, \&c. Of bronze there were four (pair) very beautiful tortoise-shaped or mammillary brooches found, likewise some decorative mantle pins and helmet crests of findruin, or white metal ; beams and scales of the same material, and leaden weights, decorated and enamelled on top, and in some cases ornamented with minerals."

A further description of some of the objects follows and some remarks upon the pattern of the swords.

The question as to the conditions of the find was next considered, and the report goes on :-
"The circumstances under which the osseous remains and the accompanying relics were found were well worthy of consideration. The surface of the great pit from which the macadamizing material of Dublin was being procured, which was about twenty feet in section, consistel of a layer of dark, alluvial soil, varying from eighteen inches to two feet in depth. Upon the gravel bed on which it rested were found several skeletons; and among their bones, both above and below them, were discovered the different articles referred to. It would appear that they were worn by or were in the
B.I.A. PROC., VOL. XXVIII., SECT. C.
[17]
possession of the persons to whom these skeletons belonged; but there was no evidence of 'interment' having taken place; and, from all the attendant circumstances, the investigator was left to believe one or other of two suppositions: the first was, that the bodies were buried in all the panoply of war, with their weapons, offensive and defensive, and their armour, decorations, finls. and implements unom them-either hastily after a battle, or aceorling to the usage of the people to whom they belonged - which latter was not mily mulikely. Iont, from the shallow surface of the soil covering them, most impolahbe. The ohne and most likely conjecture was, that these seandinavian invalera were killed in battle or some sudden skirmish, and lay there on the lighty enveren wavel tithl, on the south side of the Liffey, matil the himbs of pey licked their bones, ant the weeds, grass, and soil accumulated nver them during the last cight or nine humdred years."

Therenert gives a li-t of the aticles fonme which included five complete

 lones, but no perfect skull.

Illa-hathon-in the wat an siven oit the decorated swordhilt, the white
 of a tortoise-browh, and a portion of the bronze strap.

 Museum.

 corroled, but with handles; also a decorated swordhandle. They are
numbered 2356, --7, -8 , and - 9, and also 2360 and -61 , in the New Registry."

The identification of the swords has been rendered somewhat diflicnlt, as in the New Register, 1866, the numbering of the sworls and sworl-hilt are somewhat different from that mentioned in the paper. The mumbers run 2356,

Mr. Wakeman, while working in the Museum, labelled seven swords as having been found at Island-bridge. Of these seven only one (No. R. 2356 and Wk. 20) has a registered number attacherl to it; but three others have been identified by measurement with the numbers $2: 357$, $2: 559$, and $2: 91$, in the Register. No. 2358 is stated in the liegister as being 33 inches long. Wk. No. 15, which is 313 inches long, agrees in all the other measurements and description with No. 2358, and seems to be the sword which has lost a little of its length.

These seven swords are numbered :-

1. R. 2356. Wk. 20. Siugle-edged. 'Lotal length, $35 \frac{7}{8}$ inches. Length of blade, 30 inches.
2. R. 2357. Wk. 16. Double-edged. Total length, 36 inches. Length of blade, $29 \frac{1}{2}$ inches.
3. R. 2:358. Wk. 15. Double-edged. Total length, $31 \frac{1}{2}$ inches. Length of blade, $24 \frac{7}{8}$ inches.
4. R. 2359 . Wk. 23. single-edged. Total length, $333!$ inches. Leugth of blade, $27 \frac{1}{8}$ inches.
5. R. 2391. Wk. 21. Double-edged (broken into three parts). Total length, $38 \frac{1}{8}$ inches. Length of blade, $31 \frac{1}{x}$ inches.

Wk. 17. Double-edged (bent and broken in two parts, pommel and point missing). Total length, 30 inches. Length of blade, $25 \frac{1}{2}$ inches.

Wk. 22. Double-edged. Total length, 35 . inches. Length of blade, $30 \frac{1}{8}$ inches.
It would therefore appear that seven swords were found in the neighbourhood of Island-bridge; but that only five hat come in at the time of the publication of the paper. In addition to these there is the clecorated swordhilt No. 2361 described and figured by sir W. Wilde, and an iron swordhandle mentioned in the Register No. 2390, which has not yet been identified.

Previous to the swords found at Island-bridge there is a sword entered in the Register in 1860, and described as having heen found with other oljects at Kilmainham, and presented by Mr. William Young.

There is a reference to the Mimutes of the Academy, vol. iv., p. 10?. The
reference is in the Academy Proceedings, vol. iv., p. 219. It runs-" Nov.13th, 1848. The Secretary read . . . a letter from Mr. Richard Young of IslandIridge, acermpanying specimens of ancient Danish weapons, discovered by Workmen in excarating near the terminus of the Great Southern and Western Railway. They consisted of a sword, much larger than has been yet found, and a smaller weapmo of the same kind, together with an iron spear or pikehead, and a number of iron arrow-heals."

As no mumbers refering to the new register were atlached to the swords Gateded hy Mr. Wakeman as havine heren fomed at Kilmambam, it has not been pussible to itentify this sword.

The wext reference in the Register, 1861, is to two sworts, a spear-head,
 Terminns ly Mr. (ieorge Miller: and presented to the Academy by the Directors of the (ireat southern and Western Railway. In vol. vii. of the Acalemy's l'roceedings, p. 376 , the donation is mentioned thus: "Read a
 remains and antiguities, found in the works of the Great Southern and Western liailmad, near the King's-bridge Terminus."
 as forml at Kilmainham and presented by the I Directors of the Railway.

The spear-head has heen identilied as Wk., No. 25.

 and they are mumbered as folluws :-

Wk. \%. W. s!. Ane I). Doulle-edged (broken into three parts).

Wk. … WU. :n 1 D. Domhle-edged (hroken into three parts). Toutal length, $82 \frac{3}{n}$ inchers. Length of bade, 261 inches.
Wh. 8. single-edged. Total length, 35 多inches. Lengh of blate, 28 is inches
Wk. :31. Nimple-erfged, $32 \frac{3}{n}$ inches. Length of blarle, $26 \frac{3}{6}$ inches.
Wk. 10. W: 92.3 . Double-edged (bent over). Total length, 37 b inches Iadmath of thatle, $31 \frac{1}{3}$ inches.
Wh. 9. W. 9:3, :3i5 D. Donhle-algerd (lsent over). Total length, :35s inches. Lemeth of hate, ab inders.

One more sword is labelled as having leen found at Kilmainham and purchased from Mr. Thomson; it is numbered Wk. 14 ; and the total length is 29 inches, and length of blade 233 inches.

The next lot consists of six swords, one of which is labelled by Mr. Wakeman as having been found in Kilmainham Cemetery, and the others as found at or near Kilmainham. They are numbered as follows :-

Wk. 13. W. 78. Double-edged (broken into two parts). Total length, $30 \frac{1}{8}$ inches. Length of blade, 20 inches.
Wk. 11. Double-edged. Total length, $33 \frac{7}{8}$ inches. Length of blade, $28 \frac{3}{4}$ inches.
Wk. 3. Double-edged. Total length, $38 \frac{7}{8}$ inches.
Wk. 33. Double-edged. 'Iotal length, $35 \frac{7}{8}$ inches.
Wk. 1. Single-edged. Total length, $35 \frac{1}{3}$ inches. Length of blade, 295 inches.
Wk. 12. Single-edged. Total length, $28 \frac{7}{8}$ inches. Length of blade, 23 inches.

There are also the upper portion of a sword-pommel (Wk. 41. P. 943), the quillon of a sword (Wk. 44), and part of the handle of a sword (Wk. 42), all labelled as found in the neighbourhood of Kilmainham.

Finally, we come to six swords labelled by Mr. Wakeman as having been found probably at Kilmainham : they are numbered:-

Wk. 34. Double-edged (broken into two parts). Total length, $39 \frac{1}{3}$ inches. Length of blade, $33 \frac{1}{4}$ inches.
Wk. 35. Double-edged. Total length, $35 \frac{1}{2}$ inches. Length of blade, 29 inches.
Wk. 36. Single-edged. Total length, $33 \frac{1}{2}$ inches. Length of blade, 27 inches.
Wk. 37. Double-edged. Total length, $35 \frac{1}{4}$ inches. Length of blade, $28 \frac{3}{4}$ inches.
Wk. 38. Doubled-edged. Total length, $32 \frac{1}{4}$ inches. Length of blade, $26 \frac{1}{2}$ inches.
Wk. 39. Double-edged. Total length, $21 \frac{1}{3}$ inches. Length of blade, 16 inches.

There is also a portion of sword-pommel (Wk. 40) which is labelled by Mr. Wakeman as having been found with a human skeleton (feet towards the east) in a grave near the Liffey, probably at or near Kilmainham.

We have then twenty-eight complete swords and several portions of swords fomm in the Istand-bridge and Kihnanham district. Of these six are single-elged; and of the remaining twenty-two double-elged swords, several are broken, and three are bent. This must have been done at
the time of the interment. The form of the sworls can be seen in fig. 1 , which shows an unusually long "sax" or single-edged sword (Wk. 20), and a double-elged sword (Wk. 7).

Description of Swords.

The hilt uf bronze describen hy Sir Willian Wilde, No. 2361, is very finc: and sword-hilts analogons to this are rare. The hande portion of howne, which is inlail with cherrons of white metal or silver, terminating in small circles is hemtifulty wrought. Fig. 2 will show the pattern.
 ontinary Nimstypu: it was found at Island-bringe. It is broken into three parts. and mosures :s, inches in length. The ornamentation is of the fom of many silver strip heaten inth groves in the iron, with a piece of twistul silver wirn hetween the upper and lower purtion of the head:

fitu. 1. Whk. i. Wi. 20 .

Fig. 2.-Decorated Brunze Sword-IIlt (12).

 the upper part of the heal ; the silver is ornamented by a sort of chequer pattern, amd lound hy several silver wires which go over the heal in two places. The quillon is bound above and below by a single strand of twisted

ERRATCM.
lage 113, lines 14, 24, for" Hartolfa," read "Haricolfl:"
" line 29 and foot-note, for "a," roct " R."
wire. It seems almost identical with the hilt figured by Du Chailh, The Viking Age," vol. ii., p. 67, fig. 788. It measures 388_{5}^{7} inches in length.

Plate IV. No. 3 (Wk. 33), from the cemetery of Kilmainham, is the finest sword of the period in the collection, and one of the finest swords in any museum. The hilt is hearier and larger than usual, in order to balance the loms bade. It is richly gilt and decorated with small silver circles. Silver wires go over the head; and the lower part of the head and the quillon are ornamented at the centre and edges with decorated bands. The decoration will be best understood by examining the illustration. It measures $35 \frac{7}{8}$ inches in length.

Plate IV. No. 5 (Wk. 5), from Kilmainham, is a remarkable hilt. The upper portion of the head, which is smaller than in the hilts just described, is divided into five lobes, with silver wire between each; the lower portion is decorated with a kind of meander pattern, which is repeated on the quillon. The upper surface of the guard bears the name Hartolfa. ${ }^{1}$ It is broken into three parts, and measures $36 \frac{1}{2}$ inches in length. A sword-hilt of very similar shape and decoration, with the name Hlither engraved in the same place, the upper surface of the guard, is figured by Rygh, "Norske Oldsager," No. 511. It was found in 1864 in a tumulus at Gravraak, Melhus, Norway. No indications of damascening or the names of armourers were apparent upon the blades, such as are known upon swords of the period; but examination for these was not attempted, as the blades had been covered with a thick coating of paraffin wax to preserve them, and as little as possible was done to disturb this. Many of the ornamented parts were quite hidden by rust. Thus the sword with the name Hartolfa on the quillon was so covered with rust that when Mr. Wakeman was working at these objects, he says this sword " is said when found to have been inscribed with the letters Hartolf. Of this lettering, if it ever existed, no trace at present remains." The careful cleaning of the sword has made this lettering, with the exception of the final A, now quite plain. The damascening of the blades of the Viking swords, which has been thought to imply an Eastern origin for them, is not the true damascening, and is called "false damascening" by Lorange; and the swords are considered to be mostly derived through the North-West of France, and the districts of the Rhime and north of the Danube. (See "Den Yngre Jernalders Svaerd," by A. L. Lorange, of the Bergens Museum, where the subject of the origin and damascening of the swords is fully gone into.)

The superiority of the Scandinavian arms was recognized by the Irish. The ancient author of the "War of the Gaedhil with the Gaill" (p. 50 ; speaking of the indescribable oppression and suffering inflicted on the Irish,

[^129]attributes it to the excellence of the Dane's corselets, and " their hard, strong, valiant swords; ' and their well-rivetted long spears ": besides their bravery and their valour:

We next come to the spear-heads found at Island-bridge. In Sir William Wilde's paper six are mentioned as having been found. These are enterel in the new Registry, and have been identified. Mr. Wakeman lakelled four more spear-heads as having been found at Island-hridge; and one more is mentioned in the old Registry, making eleven spear-heads in all, which appear to have come in at different, times. They are numbered as follows:-

> WK. 1. Measures $14 \frac{1}{2}$ inches in length.
> Wh. 2. R. 2365. Measures 12 inches in length.
> Wh. 3. Measures $11 \frac{1}{2}$ inches in length.
> Wk. 4. R. 2366. Measures $10 \frac{1}{4}$ inches in length.
> Wk. 5. R. 2:3T. Measures 16 inches in length.
> Wh. 6. R. 2:it1. Measures $19 \frac{1}{1}$ inches in length. (Fig. 4.)
> Wk. 7. R. 237%. Measures 11 inches in length. (Fig. 4.)
> Wk. 8. R. 2360. Measures 14 inches in length.
> Wk. 10. D. 305. Measures 15_{1}^{3} inches in length.
> Wk. 24. D. 303. Measures 8 inches in length.
> D. 368. Measures $16 \frac{1}{3}$ inches in length.

Three spear-heads and a purtion of the socket of a spear-head are

[^130]at Kilmainham. Of these only one spear head, and the socket, have so far been identified. These are numbered:-

Wk. 25. R 427: 1861. It measures $14{ }_{4}^{3}$ inches in length. (This is the spear-head mentioned on p. 110.)
Wk. 28. Socket measures 3 inches in length.
Next come six spear-heads, labelled as found at Kilmainham, and purchased from Mr. Thomson. They are numbered:-

Wk. 11. Measures $11 \frac{1}{4}$ inches in length.
Wk. 12 and 16. Measure $14 \frac{1}{4}$ inches in length.
Wk. 17. Measures $13 \geq$ inches in length.
Wk. 18. Measures $7 \frac{3}{8}$ inches in length.
Wk. 20. Measures 13 inches in length.
Finally, we have four spear-heads, labelled by Mr. Wakeman as found at or near Kilmainham; and one found at Kilmainham, from the Petrie collection. These are numbered :-

Wk. 14. This spear is much bent ; it measures 191 inches in length.
Wk. 15. This spear is also bent; it measures 12 inches in length, and is illustrated, fig. 4.
Wk. 19. It measures $9 \frac{1}{2}$ inches in length.
Wk. 21. It measures $12 \frac{1}{4}$ inches in length.

Wk. 7. Wk. 6. Fıg. 4.-Spear-heads.
P. 941. It measures $12 \frac{1}{4}$ inches in length.

We have therefore 22 complete spear-heads found at Island-bridge and Kilmainham.

The illustrations of these spear-heads will show the general fype; they have a somewhat flat midrib, and vary considerably in length.

We now come to shield-bosses. "Four umbos, or shield bosses," are mentioned in Sir William Wilde's paper as having been found at Islandbridge. Four bosses are mentioned in the new Tiegister; and Mr. Wakeman labelled three bosses, apparently included in these. The numbers are :-

Wk. 2. R. 2961 (fig. 5). Measures 33^{3} inches in diameter, and 21 inches in height. The rim is 3 inch deep.
Wk. 3. W. 1. Fragment; the rim measures $\frac{3}{4}$ inch.
Wk. 4. W. 42 (fig. 5). Measures 3 inches in diameter, and 2 inches in height. The rim is $\frac{3}{8}$ inch deep.
R. 2:362. Measures $3 \frac{7}{8}$ inches in diameter, and 3 inches in height. The rim is ${ }^{3}$ inch deep.

Three of these brsses are in a fair state of preservation; the other, Wh. A, is a mere fragment. They consist of three parts a flat rim which served to fasten the boss to the shield, a crlindrical portion rising from the rim. and the rond or pointel top. The Hattish round type, with projecting rim. is shown in the illustrations fis. $\overline{-}$ Wk. 2- and 4), and, as can be seen ly ompaing then with tis \therefore. Wh. 17 . which is drawn from one of the b..... finnd at Kilmainlan it liffers from the latter. which are much more printed in thate. It has bem surgested that these latter were the ends of quivers, but this is very doublful.

 These are numbered:-
 rim is incomplete.
 rim is incomplete.
Wh. 6. Mrasumes :1/ in hes in diameter. Throken away at the top.
Wh. s. Mmares $: \frac{1}{6}$ inches in diameter, and $: \frac{1}{3}$ inches in height. The rim is incomplete.
 rim is incomplote.
 rim is incomplete.
Wh. 11. Incornulete at base. Height, $3!$ inches. The rim is incomplete.
 rim is incomplete.
 rim is incuruplete.

Wk. 15. Measures $3 \frac{1}{8}$ inches in diameter, and 2_{1}^{3} inches in height. The rim is incomplete.
Wk. 16. Measures $2 \frac{7}{8}$ inches in diameter, and 8 inches in height. The rim is incomplete.
Wk. 17. (fig. 5). Measures $3 \frac{1}{8}$ inches in diameter, and 38 inches in height. 'the rim is incomplete.
Wk. 18. Measures $3 \frac{3}{8}$ inches in diameter, and 23 inches in height. The rim is incomplete.

In addition to these five bosses, six were labelled as found in the neighbourhood of Kilmainham. They are numbered :-

Wk .20 and 20A. Incomplete fragments.
Wk. 21. Measures $4 \frac{3}{4}$ inches in diameter, and 23 inches in height. Rim incomplete.
Wk. 24 and 25 . Incomplete.
Wk. 26. Measures $3 \frac{1}{2}$ inches in diameter, and 21 inches in height. Rim incomplete.

We have therefore four of the romd and eighteen of the pointed bosses, making twenty-two in all, found at Island-bridge and Kilmainham.

Figure 6 shows one of two iron axe-heads found in the cutting of the Great Southern and Western Railway, and presented as the swords and spears. These axe-heads are the ordinary Norse type of fighting-axe. No special edge-piece is apparent on these axes, as on those later axes of the same type, which are seen on the Bayeux Tapestry. The axe appears to have been the principal fighting-weapon of the Vikings; and it was borrowed from them by the Saxons,

Fig. 6.-Axe-head. Wk. 13 (1) $\frac{1}{1}$. who are represented on the Bayeux
Tapestry fighting with axes. 'Ihese axes are probably of native Norse make. As Lorange says, in the finds of the stock of travelling smiths that have been made in different countries no swords have been found, but only objects of domestic use, for which the native iron according to the Scandinavian authors was used. ${ }^{1}$ 'The fighting-axe appears to be a development of the old working-axe.

Twenty-six iron tools of various kinds have been identified as found at Island-bridge. Some of them are mentioned in sir William Wilde's paper.

[^131]Ther inclucle a smith's pincers (fig. 7, R. 2393), smith's tongs (fig. 7, R. 2392), sickle (fig. 7. R. 2367), the upper portion of pair of shears, the blates of which are wanting: otherwise they are similar to those figures by Rygh, No. H2"": hammer-heals: one is illustrated (fig. 7), portion of a bridlelit, knife-hades spear-hutt, spindle-whorls, and an iron stud, with other small lifeces of iron which appear to have formed portions of other tools. It is interestims th notice lum little the type of many of these tools has altered down to the present time.

At the malway cuttine at Kilmainham, forty iron tools and pieces of iron

R. $23: 12$.

Wo now come to a lescription of the oljects connected with the trading site of the Vikings' life.

Two seales were found at Island-bridge and two at Kilmainham. The cross-beams of three of these scales are
 jointed, enabling the scales to be closed and conveniently carried about (fig. 8). The scales found at Island-bridge were fully described by Sir William Wilde, and our figure will show the form ; the inside of the scale-pans (six) are brightly tinaed. The weights found at Island-bridge are ten in numper. Six are circular; and the rim of cach is capred with a decorated disc let into it, and weighted below with lead, probably according to the number of grains or ounces it represented. Five are illustrated by Sir William Wilde, which are reproduced here
(figs. 9-13), and all are fully descriled by him. The trps of some of them are richly decorated with enamel and glass; but one is only an iron stud, evilently the base or central portion of a weight. For a discussion of the values of the weights, which appear to be divisions and multiples based on the old Norse ore, see Ridgeway, "Origin of Metallic Currency and Weight Standards," Appendix C, p. 401.

Fig. 9 (1).

Fig. $10\binom{1}{1}$.

Fig. 11 ($\frac{1}{1}$).

Fig. 12 (1)

Fig. 13 (1).

The four pairs of bronze tortoise-shaped brooches found at Island-bridge are all of the same type and almost similar in pattern, and are very like Rygh's fig. 647. That figured by Sir William Wilde, and reproduced here (fig. 14), will be sufficient to show their general character; but each pair shows minute differences. One may have been originally tinned or coated with white metal, traces of which can still be seen. The brooches belong to a regular and welldated series, being an early type of the Carlovingian period. They give a probable date to the principal objects of tho find of about 825 A.D. All the objects of the find, though more or less Norse in appearance, and of the same period as dated by the brooches, must not be assumed to be of the same date or from the same interment; the dates for some

Fig. IH.-Brooch (3). of them may extend over half a century and more.

The supposed helmet-crest figured by Sir William Wilde (No. 2372) is compriserl of livonze, coaterl with white metal, supposed to be findruine;

F: 1×1.121.

Fig. 10 f).
the spirals on the limbs shown in the cut are not repeated on the other side. It was evidently intended to stand upright, as its base is pierced alternately on each side with a vertical hole (fig. 16). The small axe is coated in a similar manner (fig. 15); it measures in indlues in length: its lower end, of which it has lost a portion, is square.

Fleven glass heads were found at Kilmainham, with iron weapons; two (A) then on. hak hane with spirals and lattice-patterns if lighter blue,

 liguren liy Rygh (No. 446). It was found in a tumulus in Norway.

I number of small wooden 1earls, covered with thin glass, joined together in thaight lengt hs of four and tive, were found at Island-bridge (fig. 18). The manufacture of these learls is very peculiar; the hase is wood and very

Roman, using the word "Roman" in a general sense, though similar heats do not seem to be known. Fig. 19, probahly a needle-case, found at Island-bridge, is a plain tube of white metal. Needles have been found inside such tuloes in Norway. Fig. 20 is the stylus which was discovered, with other objects, near Kingsbridge terminus, and presenter by Mr. (6. M. Miller. (See p. 110.) It measures δ_{2}^{1} inches in length, and is of bronze coated with white metal.

The brooch (fig. 21) was found at Island-bridge subsequently to the publication of Sir William Wilde's paper. It is richly gilt, and has a setting of amber. It has evidently been cut round one side, probably from a larger ornament, when the pin and catch at the back appear to have been fitted to it.

Fig. 23 ($\frac{1}{3}$).

Among the other objects found at Island-bridge are the buckle figured by Sir William Wilde (fig. 22), some fragments of buckles and mountings possibly from a sword scabbard, and three bronze pins (fig. 23 shows two); nearly all these have been timned or coated with white metal, which seems to have been a favourite practice at that perioul. Sir William Wihle mentions some arrow-heads as having been found; some suall knives and seraps of iron may have been thought to have been such, but no certain arrow-heads are to lee seen among the objects now existing.

It will be observed from the foregoing descriptions that these Danish objects were distributed over the Kilmainham area, as a glance at the map will show that Island-bridge, the Railway terminus cutting, and the Royal Hospital are practically one district, being ahout half a mile in extent.

Sir William Wilde's conclusion, which has been quoted above, would seem to require more evidence to support it. It must be remembered that at the period to which the Island-bridge find is probably dated by the brooches the Norse had been settled in Dublin for a few years, and probably had a burial-place on the banks of the Lifley to the west sile of
their settement : the locality from this rumning north was known as Fingal, from the Norse occupation. We must also recollect that at the time Sir William Wilde described this find, it was a common notion that weapons
 greatly since that time.

Aitur a hatte hirls wi prey are not the only scavengers; the bodies of the -han whath ham heen almost certainly despoiled by the enemy, suplusing their irienls were unable to hing them ofl. On the other hand, there atm many $l^{\prime \prime}$ ints which seen twinticate that we have to deal with a burialHace, and that the oljects fomm were placed with the dead. The graves were those of luth men aml women: the brooches and the beads, which are rare in men's maves, potahly helnged to the latter, also the needle-case and the spindle-whorls.

The tha... hent sworls (fig. 24. Wh. 9) could not have been bent by the fimlers, th the irun would have snapped across, as it would at present if any attump was mate to straighten them; the one of how which is so howen acress was probably snapped since the fin! was made, in an attempt to straighten it. The benting may have been due to a survival in certain exceptional cases of an an inh and wil.ly distributed rite of hrakins or injuring oljects placed with the dead.
M. Flnum lininach. whe has hamed this subject at length in a memoir on the sword of Brennus in "L'Anthropologie," ${ }^{1}$ has shown how the widespread error, accepted almost without peserve by moxlern historians, that the Gaulish iron was worthloss, rested on the text of I'olylius, and arose from that author, who wrote at a time later than the events to which he referred, atul dill not unilerstand the rite, having condemned the bad iron of the (iaulish sworets as the cause of the number of these bent and twisted swords which had been found. M. Reinach mentions that lent and damaged swords have been discovered in Normandy,

 tigured in Du Chaillu's " Viking Age," and nther works.

 the first coming of the Nurse to Ireland.

(HAR — TIF

VI.

AN IRISH HISTORICAL TRACT DATED A.D. 721.

By JOHN MAC NEILL, B.A.

Read April 11. Ordered for Publication April 13. Published July 15, 1910.

CONTENTS.

ABBREVIATIONS.
$A=$ the Irish synchronistic tract headed "A" in Todd Lecture Series (Royal Irish Academy), vol. iii., p. 278.
$\mathrm{B}=$ the Irish synchronistic tract headed "B," ib. p. 286.
$\mathrm{Z}=$ the Irish synchronistic tract quoted in this paper from
$\mathrm{BB}=$ the Book of Ballymote (R.I.A. facsimile), and
Lecan $=$ the Book of Lecan, ms. in Royal Irish Academy.

1. Introductory.

The Irish Synchronisms represent the earliest essays to construct the history of Ireland before St. Patrick. The origin of the Synchronisms has heen well explained by the late Dr. Bartholomew MacCarthy in one of his Todd Lectures. ${ }^{1}$ They were written in imitation of St. Jerome's Latin version of the Chronicon of Eusebius. Dr. MacCarthy brings forward evidence to show that one of the synchronistic tracts printed by him, the tract which he designates by. "A," "may date from the end of the sixth century." In a later work, he writes of this tract that it "was composed towards the end of the sixth century." ${ }^{2}$ The text dealt with in the present paper represents an original composed early in the eighth century. Two sections of it are quoted by Dr. MacCarthy. The remainder may have escaped his notice by reason of the peculiar form in which the document has been preserved.

I have called this document Z. It does not appear to exist anywhere as a whole. Separated portions of it are embodied in the versions of the Lebor

[^132]R.i.A. PROC., VOL. XXVIII., SECT. C.

Con, hith and Fleithiusa Hérenn contained in the Book of Ballymote and the Book of Lecan. These portions when brought together are seen to form a continuous and homogeneous text. So complete is the continuity that in one place in the Book of Ballymote the opening sentence of the excerpt has for its subiect a pronoun haring reference to a personal name of which the last previous mention is found four pages back.

Uwing to the loss of several leaves in each ms., the text of Z is not complete either in PF or in Lecan; but fortunately all that is missing in one alpuars to he sulpplied in the other. Two of the sections, V. and VI., are contained in both Mss.

The present paper deals chiefly with the earlier portion of the text. In the anctions quented and translated, I have omitten long lists of oriental kings in which nu reference to Ireland occurs. I have indicated such omissions in the customary way.

Thu later sections of the text embody an account of Irish matters which are within the lurind of cuntemporary records or border closely thereon. (1) theron -umtions. I have guoted only those parts which estahlish the date .i. if the....nne of thi 1 mper. To edit the text in its entirety will he a necessary fut if the wouk ui profucing a complete edition of the early versions of the - Wank if Inawinn"一 a work of such impmrtance to the study of Irish no! limath misins that on womlers why it has been hithertw neglected.

The original of Z was written in the year 721. So far as I am aware,

 haw haten fan in the lewn of the Sons of Mil, i.e, in the origin-legend of the (i,whe forple. Acerrding th Gilla (inemain, writing in the eleventh
 conquest took place no earlier than 331 B.C. ${ }^{1}$
7. In in: - Fppliwe is sulvent ly means of which we are enalded to

 tralition.

ISce Zimmer, Aemnius Tindrafus, p. 186. The relations of A and Z to the Irish sources of Nemius may deserve investigation.
the Bronze Age, that is to say, perhaps a thousand years before any Celts are known to have reached the coasts of Gaul and Spain. This theory has long seemed to me to be chiefly sustained by the scaffolding that surrounds it. I do not know how far it may have been suggested by the claims to remote antiquity put forward on behalf of the Gaelic people in Ireland by their medieval historians. At all events, it is not irrelevant to point out that the writer of Z, the oldest known document which assigns a period to the Gaelic conquest of Ireland, is content to claim for that event a date no more remote than the time of Alexander the Great. To my mind, it has neither been proved nor shown probable that any Celtic people had settled in Britain or Ireland before the Celts were already far advanced in the use of iron. While I attach no precise importance to Z's date for the Gaelic immigrationthe method by which that date was determined will be shown in further analysis-I consider it reasonable to think that the migrations to Ireland came in natural sequence from the occupation of the Atlantic seaboard by the Celts, and may not have begun earlier than the fifth century B.C.

2. Textual Extracts with Translation.

I. $(\mathrm{BB} 21 \beta 28)$.

I cind .cce. bl. iar ndilind ro gab Parrtholon Erinn, no dno amar aderam bos treabhsad a sil .l. bl. ar .u.c. condasealgadar Concheind go na terno neach di[a] claind ana beathaigh tricha bl . iarsin gan duine beo a nErinn.

At the end of 300 years after the Flood, Partholon took possession of Ireland, or else, as we shall further relate, his race dwelt [here] 550 years until the Dogheads slew them, so that not one of their posterity escaped alive. For thirty years thereafter, there was no one alive in Ireland.
[Then follows an account of certain prediluvian immigrants to IrelaudCapa, Laighne, and Sluasad, and again Cessair and her company.]

II. (BB $23 a 29){ }^{1}$

Ocus nir gabh neach do chloind Adham re ndili Erinn acht sain. $B a$ fas tra Eriu fria re .cce. bla. conas-torracht Parrtholon. no da bl. ar mile 7 is fir eissein. doig is .lx. bl. ba slan do

And no one of the race of Adam before the Flood took possession of Ireland but these. Now Ireland was vacant for the space of 300 years until Partholon reached it; or rather 1002 years, and

[^133]Abraham in tan ro gabh Parrtholon Eriu 7_{7} da bl. xl. ${ }^{2}$ - ix. c. 0 Abraham co vilind suas .i. 1x. aissi Auraham frisin Ix. sin conalb .c. $\overline{\text { in }}$ c. sin frisna .ix.c. conadh mile - da bl. fairsin conad follus assin conadh da blia. ar mile o dilind co tiach:aits Part:holon a nErinn. Ocht mbla .l. - se .c. 7 da mili o tossch Comain co taiuig Parrtholon a nErinn. ui. c. bl. 7 da mili acht di bliadain da castaizh o Adum co hatraham.
that is true. For Abraham had completed 60 Jears when Partholon occupied Ireland, and there are 942 years from Abraham backwards to the Flood, i.e. the sirts of Abraham's age in addition to the former sixty, which malses [102?] besides the 900 , making 1002 sears, so that it is erident therefrom that from the Flood to the arriral of Partholon in Ireland is 1002 years. 26.58 years from the beginning of the world till Partholon came to Ireland. 2600 years all but two from Adam to Abraham.

III. (BB 26 a 7).

In a-ans thanaishi dmo o dilind co habraham is da bl. xl. - ix. c. bliadan a fad sidhein 7 i cind .lx. bl iarsin to path Parstholon Erinn .l. ar a.c. o itivehtins Pratthevion a nErinn co tamlescht a muindire. -Here follows a -5L bronic list of eastem rulers without refereme to Ireland, diomb to 26 a 25 . j ic 1x. sano ethicis Abraham ro ghaib Pirreholon Exrmm. Esyachrunic list coninnuel to 26 a 34^{-}j l. ar u.c. bl. do bhi sil Parrthotom a nErina...... [26 a 37$]^{2}$ Keinivas xui. righ do righait in dornain du Chath sil Yarticion a mErman.
[26 a 44] Pelocus adho ${ }^{\text {r }}$ fo .u. mi. iri bl. triced 7 xii. bl. dib a comhfrisutiams re sul Partinolon i. co tamhWuhe muindeiri l'artholon 7 a tri deg dilth F Eire fas ingean Pbelocis .uiij. mbl. conaith da bl xx sin theos 7 Eiri i:C. Athoes 7 Saimiraimone a dha hanm on hingude sin. Poilipoiris xux. 11.7 is. mbl. Who a righe in doma $\mathrm{i}^{\mathrm{I}} \mathrm{A}$ in in tanig Neimecuih a aErimn na ix. -bl. 7 in bl ar .xy isiat sin in tricha

The second age of the world then from the Flooul to Alraham, 942 years is the length thereof, and 60 rears thereafter Partholon took possession of Ireland. 550 from I'artholon's arrival in Ireland to the death of his people by plague ${ }^{2}$. . . In sexagesimo anno actatis Abraham Parthulon occupied Ireland. For 350 years the race of Partholon was in Irejabd. It was the time of 16 kings of the lings of the world that l'artholor`s race spent in Ircland. Belocus [reigned] fire times fire years, or thirty-three jears and twelve sears thereof in co-sorereignty with Partholon's race, i.e. till the destruction of l'artholon's people by plagues; and during thirteen years thereof Ireland was empty. The daughter of Belocus Treigned, eight jears, bo that that is 22 21) fears so far iu which Ireland was empty. Atossa and semiramis are the two names of that daughter. Balepares 'reigoed', 30 jears, and was 9 sears in the kingship of the world when Nemed

[^134]bl. ro bai Eiri ig fas. ${ }^{1}$ O ro indsimar tra do Cheassair 7 do Parrtholon gu leir 7 dia comaimsearaibh o Adham co dilinn 70 dilinn co hAbraham 70 Abraham co Neimheadh go fhis comaimsearreachta gach righ do ghabh in domun frisin re sin. 7 is fearr duind indisin do Neimhead 7 dona righaibh rena re.
came to Ireland. The 9 years and the 21 make the 30 years for which Ircland was empty. Since we have told now of Cessair and of Partholon thoroughly, and of their synchronizings from Adam to the Flood and from the Flood to Abraham, and from Abraham to Nemed, explaining the synchronism of every king who ruled the world during that time, it is better for us to tell of Nemed and of the kings in his time.
IV. (BB $27 \beta 20$).

Da fhicheat bl. 7 se .c. o gein Abraham cotiachtain Neimidh in nErim .i. in lx. ro chaith Abraham co tiachtain Parrtholon in nErinn 7 in .l. ar. u.c. aibh ro bai sil Parrtholon in Exinn 7 in . xxx. ro bai Eriu ig fas conad iadsin na da .xx. 7 na .ui. c. bl. o Abraham co Neimeadh. Da bl. immorro 7 .lx. 7 u.c. 7 mile o dilind co tiacht Neimeadh a nErinn. Tricha bl. 7 ii.c. tra o thainig Neimeadh a nErim gu toghail tuir Conaing. Poilipoiris ro bai in airdrige in doma[i]n in tan tainig Neimidh asin Sceithia a nErim xxx. bl. aireimheas 7 ix. bl. do ir-righe reimh Neimeadh ${ }^{2}$ ($\beta 40$) Sccht mubliadna tra o thamleachta muindtiri Parrtholon gu toghail Trae ${ }^{2} \ldots\left(\beta_{4} 45\right)$ Et Tonus Concoler nó Conaeler .xx. bl. Ise sin tiuglaith Asardha. Sarrdanapallas a ainm gregdha do shnimh chuigile do chuaidh condhearmaidh cailleach de conroloise fein i teinidh. ccec. 7 lxx. bl. o thainig Neimidh in nErinn co forbba Haithiess Assardha 7 iiii. rig dheg fria sil Neimidh. Mili 7 ce. 7 íd. xx.

640 years from Abraham's birth to Nemed's arrival in Ireland, i.e. the 60 that Abraham lived until Partholon's coming to Ireland, and the 550 that Partholon's race lived in Ireland, and the 30 in which Ireland was emptythese make the 640 years from Abraham to Nemed. 1562 from the Flood to Nemed's arrival in Ireland. ${ }^{3} 230$ years from when Nemed came to Ireland till the destruction of Conaing's tower. Bulepares was in the sovereignty of the world when Nemed came from Scythia to Ireland. 30 years was his reign, and he was 9 years king before Nemed. . . . Seren fears from the destruction of Partholon's people by plague to the destruction of Troy. . . . And Thonos Concolerus, 20 years. He is the last Assyrian sovereign. Sardanapalus was his Greek name. He took to spinning with a distaff, so that he became an old wife and burned himself in a fire. 470 years from when Nemed came to Ireland till the end of the Assyrian sovereignty, and 14 kings during [the time of

[^135]fot flaithiusa na nAssarda $7 \mathrm{se}^{1}$ righ tricad ro bhadar frisin re sin ut dixit poeta.

Da xx. ${ }^{\text {it }}$ da .c. gan chair* mili ni breg do bliadnaib fad a flaithis bha brigh bhalc• re re na n-ocht righ trichad Madh o. c. bliada[i]n Nin nair* ro ghabhsat riagail sograid: mili gidh mo meadh ${ }^{3}$ namma. da .c. 7 xl .

Iar flaithins Assarrdlua ig Cichloiscibh ro bai .i. c. bl. doibh 7 ui. righanda dibh risin re sin Marsebia 7 Lapita Ensiopa Iiorithia Antiobla Pentisilia dno. Innistear cheana isin stair Duriat Pentisilia do bheith illecth ma Troianda ig catughwh fria Gregaibh go ndorcair la Pirr me. Aichir Masse Tutaineis ro bhi in n-aimsir toghla Troi is a comaimsir frisna hassardaibh ro hhai. Pentisilia ag na Cichloisethibh ria no ro thoghladh in Trai. Flaithius Mealh ba he in t-ardflaithius a ndiaidh na nAsralha .i. ocht righa ro bhadar dibh nae mobliadhna .l. 7 cc. fad a flaithiusa ut dicitur.

> Nae mbinatra .l. da cet. re riaglarth" ni himirbreg
> fod flatha Meadh brigh co mblaidh. re re ocht righ do righaibh.

Nemed's race. 1240 [years was] the duration of the empire of the Assyrians, and 36 [or 38] kings there were during that time, ut dixit poeta:
Two score, two hundred, without fault, a thousand, it is no lie, of years
the length of their sovereignty that was a solid strength
in the time of the thirtj-eight kings. If it be [reckoned] from the first year of noble Ninus
that they held the rule of high degree, a. thousand only, though it be the greatest number(?),
two bundred and forty.
After the empire of the Assyrians, the Amazons had it i.c. 100 years for them and six queens of them during that time, Marsebia and Lapitha, Ensiopa, Iiorithia, Antiobla, Penthesilea. It is told, however, in the history of Dares that Penthesilea was on the side of the Trojans warring against the Greeks, till she was slain by Pyrrhus son of Achilles. If it was Tautamus that lived in the time of the Sack of Troy, he was contemporary with the Assyrians. Penthesilea [reigned] among the Amazons before Troy was sacked. The sovereignty of the Medes was the supreme sovereignty after the Assyrians, ${ }^{7}$ i.e. cight kings there were of them. 259 [?] jears was the duration of their realm, ut dicitur:

Two hundred and fifty-nine years, according to rules, it is no falsehood, the length of the reign of the Medes, a power with fame, during the time of eight kings.

```
&" no abt" wruten over "se." " Read rográid. "Rcad méd, mét.
"Roul resiu: " "No .u." written over " nae." "Read re (= fri) riagla?
"Meaning that the Amazon kingdom is not reckoned as a "world-kingdom." 
```

Arbait in .c. righ dibh ocht. mbl. xx. do. Suffonus xxx. b, do. Is ina re ro bhai tiughfllaith Asarrdha i. Sardanapallus 7 Madidus. xxx. bl. is na re rug Salmnasar cetbroid .x. treibi. Cardicias .xiii. bl. 7 Deachus .iiii, b. l. do. Isindals bl. xxx. a righe cath Leithead Lachtmaidhe i nDail Riada indorchair Starnd mac Neimidh re Conaind mac Faebair i cind .uiii. mbl, iarsin toghail tuir Conaind 7 dicur cloindi Neimidh a hErinn .c. bl. 7 xl. do fhlaithius Meadh tarthadar sil Neimidh ceithri .c. bl. 7 lxx. ro chaithsead do flaithius Asardha 7 se dee $n o ́$ xiii. righ ar Asardhaibh 7 se rigna na Cichloisce 7 u . righ do righaibh na Meadh ro chaitheasdair cona shil in Erimn isiad sin tra in exx. 7 na dha .c. ro badar sil Neimhidh in Erinn. Deochus uero u. bl. no a .iiii. l. i righi 7 Eiriu fas. Fraortes .xx. iiii. bliđdna Cir atreas uiii ised a re ro bai Nabhgodon im m Bhabiloin 7 Astiagheis uiii. mbl. xx go-ro-n-aithrigh Cir mac Dair mac a ingene fein. Is na re ro loisc Nabhgodon fa dho Ierusalem. Ise sin thra fhlaithius Meadh .xu. b. 7 xxx . d. 7 Eri fas in fhlaithius dar eis Meadh ag na Gallagdaibh ro bai 7 ni hairimhtear amal ardfhlaithius itir sen .i. Nabgodon. a xiii. 7 a mac i. Ebelimordach. xuii. mb. 7 a ua Negusar . xl. 7 a iarmua Labasairdech .ix. missa 7 a indua Ballasdair xuiii. bl. Cuig righ sin do Ghalladagaibh 7 c. bl. 7 na.u. bl. deg 7 na ceithri xx. ro bhadar Meadha i righi 7 Eiri fas 7 na .u. bl. 7 in c. ro bhadar na Galladagdha isiad sin na .c. bl. ro bai Eri fas o thoghail tuir Connaind co loingis Fear mBholg. ${ }^{1}$

Arbaces, the first king of them, 28 years for him. Sosarmus, 30 years for him. In his time lived the last ruler of the Assyrians, i.e. Sardanapalus. Mamycus, 30 years. In his time Salmanassar carried off the first captivity of the Ten Tribes. Cardaces, 13 years, and Deioces, 54 years for him. In the 32nd year of his reign, the battle of Lethet Lachtmaige in Dal Riada, in which Starnn son of Nemed was slain by Conann (or Conaing) son of Faebar. Eight years later, the destruction of Conann's tower and the expulsion of Nemed's race from Ireland. 140 years of the empire of the Medes, the race of Nemed lasted. 470 years they spent of the Assyrian empire; and [the time of] sixteen or thirteen kings over the Assyrians, six queens of the Amazons, and fire kings of the kings of the Medes, he [Nemed] and his race passed in Ireland. Those are the 230 years that Nemed's race was in Treland. Deioces was 55 or 54 years reigning, Ireland being empty; Phraortis 24 years; Cyaxares 8 - it was [for] his time that Nabuchodonosor was in Babylon; and Astyages 28 years until his own daughter's son, Cyrus son of Darins, deposed him. It was in his time that Nabuchodonosor twice burnedJerusalem. That then is the empire of the Medes, 45 (?) years, Ireland being empty. After the Medes, the sovereignty was held by the Chaldeans, and that is not accounted at all as a supreme empire ; i.e. Nabuchodonosor 13, and his son Evilmeroduch 17 gears, and his grandson Neriglissor 40 and his greatgrandson Laborosoarchod 9 months, and his great-great-grandson Balthassar 18 years. That makes fire
kings of the Chaldeans and 100 rears; and the 95 years that the Medes reigned, Ireland being empty, and the 105 years that the Chaldeans reigned, make up the [two] hundred rears that Ireland was empty from the destruction of Conann's tower to the rosage of the Fir Bolg.

V. ($\mathrm{BB} 31 \beta$ 38.)

Ef la c. bl. dio bhi Eri fas o thoghail thuir Conaind cu tangadar Fir Bholg. Comaimsearthacht righ in domain andso Pria righaith FearmBholg ii. a ndeireath fllaithiusa na nGallagetha tra tangadar Fir luolg a a Erima i. a tiughlaithsidhe 7 is do tarfus dorna gan righidh ig sgribeand 7 issed ro scribh mane techel 7 faires i. umir 7 tomhus 7 foghail 7 is fair ro thoghail Cir mac Dair im mBaibiluin 7 ro marb Bullastair 7 ise Cir ro leg in mbruid do Erusalem iar mheith doi lxx. h. a ontare Flaithius Pers tra a ndiailh na nGallagdha i da rizh dec ro gabastair dhibh. trica 7 da .c. Hiadan duith .i. sil Elainh meic Sheimh meic Naw Inimirla ba slowdidh dinth gu Persus mace Inib ; Pers immurro owin ammh. ('ir mac Dair a ceidrigh siden trisha hiadan do gunorchair la * itheaghaith. gu tri ce mile nime 7 isacesin rug m.l. mile ${ }^{1}$ do hroinl Ierusalem a 13athiloin ; u. castair oir 7 mile ${ }^{1}$ castar n-airgib a lin. Cambascis mac ('ir iarsin uii. mbl. co ros marbsat a thruithe fein - Enchaid nace Eire irighe nErenn in tan sin 7 igiad sin na uii. mbliadna xxx. ro hadar Fir Bolg a nErim .i. ocht mliniadna ${ }^{2}$ flaithima. Cir meic Dair gosin seachtmadh bl.

And 200 years was Ireland empty from the destruction of Conann's tower till the Fir Rolg came. The following is the synchronizing of the kings of the world with the kings of the Fir Bolg. At the end of the sorereignty of the Chaldeans the Fir Bolg arrived in Ireland. He [Balthassar] ${ }^{3}$ was their last prince, and to him wus shown a hand without an arm writing, and what it mrote was mane thekel phares, i.e. number and measure and division; nul over him Crrus son of Darius captured Babylon, and he slew Balthassar. And it was Cyrus who let go the captives (lit. captivity) to Jerusalem when they had been 70 rears in bondage. The Persian empire then after the Chaldeans, i.e. twelve kings of them reigned. Their time was 230 yeara, i.c. the race of Elam son of Shem son of Noah. Elamites was their description until Persus son of Jove, and P ersi thenceforward. Cyrus son of Darius, their first king, reigned 30 years till he was slain by Scythians, with 300,000 of his followers. And it was he that brought the 50,000 of the captives of Jerusslem out of Babylon, and 5,000 rescels of gold, and many thousand ressels of silver, such was

[^136]flatiusa Campesis mere Cir 7 ina ochtmadh bl. tangadar t.d.d. a nErinn 7 daradsat cath Moige Turearlh dFheraibh Bolg 7 ro marbad and Eochaid mac Eirc.
their number. Cumbyses son of Cyrus thereafter, 7 years, until his own druids slew him, Eochaid son of Ere being king of Ireland at that time. And those are the 37 years that the Fir Bolg were in Ireland, i.e. from the first year of the reign of Cyrus son of Darius till the seventh year of the reign of Cambyses son of Cyrus. And in his eighth year the Tuatha Dé Danann arrived in Ireland and fought the battle of Mag Tured with the Fir Bolg, and in it Eochaid son of Erc was slain.

Lec. 23 a, β. Comaimsirad rig in domuin inso fri rigaib Fer mBolcg. a nileridh flatha na Call. u(?) tancatar Fir Boleg a nErinn. Ballastar a tiugflaith side is do doarfas in dorn cen rigidh icon sg[ri]bind 7 ised ro scrib mane tethel 7 phares .i. numir 7 tomus 7 fod a lin is fair ro toglastar Cyir me. Dair Babiloin 7 ro marbastar Ball. Ise Cyr ro leicestair in mbrait do Iarusalem iar mbeith doib lxx. b. i ndoiri Flaithius Pers tra a ndiaidh na Medh xii ri dib hi flaithius xxx. bl. 7 cc. doib. Sil dano Elaim me. Sem me. Noi iat 7 Elamite dogairdis dib co Persius me nIoib. Pers ohsoin amach. Ba se in cetri dib Cyr me. Dair .xxx. bl. do. co torchair la Scithecdaib co tri cetaib mile uimi. Ise thuce in 1 . mile do brait Ierusalem o Baibiloin .i. u. m lestar n-oir 7 ilmile lestar n-argait. Campases me. Cyr iar sin .uiii. bl. co ro marbsat a druidi fein 7 Eochaid me. Eirce hirrigi .H. intan sin. Is iat sin na uii. mbl. $x^{\text {xata }}$. ro batar Fir Bolcg inH. O.c. bl. fl. Cir mc. Dair cusin uii ${ }^{\text {ad }}$. bl. tancatar Tuath. D.D. inherinn 7 doratsat cath Muighi Tured do Feraib Boleg 7 ro marbsat Eochaid mace Eirce.

$$
\text { VI. (BB } 36 \text { a 12.) }
$$

Comaimseardacht righ in domain re .t.d.d. and seo sis. Persa ro bhadar i righe in tan tangadar t.d.d. a nErinn isin bliadain deidenaigh flaithiusa Campaseis me. Cir me. Dair tangadar no na ochtmadh bliadain tangadar. [Here follows a list of the Persian kings, with the length of their reigns, without reference to Ireland.] (36 a 29) Et Dairius mor me. Arsabi .ui. bl. ISe tiughlaith na P ers 7 ise thug tri catha do Alaxandir me. Pilip 7 ro thuit sium la halaxandair isin chath fo dheoidh. ISe Alaxandair ro thaffaind Forand R.I.A. proc., Vol. xxvili, seot. c.

The following is the synchronizing of the kings of the world with the Tuatha Da Daann. The Persians were ruling when the T. D. D. came into Ireland; in the last year of the reign of Cambrses son of Cyrus son of Darius they came, or in his eighth year they came. . . . And Darius the Great, son of Arsames, 6 years. He is the last ruler of the Persians, and it was he who fought three battles with Alexander son of Prilip, and he fell by Alexander in the final battle. It was Alexander that drove Pharaoh Nectancbis from the [20]

Nechtinebhus a righi Eigipte is do sidhen ro bo cliamain Milidh .i. Goladh a ainm. Tainig sein a hEigipt o ro haithrighadh Forand .i. Milidh 7 a bhean .i. Scota ingean Foraind 7 tainig co Heaspain 7 ro chosain Easpain ar eigin. ISe Forand Neachteinibus in. $u^{\text {nd }}$. righ .x $\mathrm{l}^{\text {st }}$. no .xxy. iar Forand Cingciris ro baidheadh im Muir Ruaidh. iiii. b. deg 7 ix. c. fat a flaithiusa na Forand o Fhorand Cingeeris co Forann Neach. tenibus. Ro raindeadh tra flaithius Alaxanmair a tri randaibl .xxe. dia eis 7 ro dhearrsenaigh ceathrar dib uile. Potolameus me. Lairghi i nEighibht 7 im Maigikndaibh Pilip no a me. a nAssia Bhig Antigon im maabiloin Brutus Siliu-us nicroin Potolameus a ndiaidh Alaxanair .xl. b. A ndeireadh fhlaithiusa Alaxnndair tangadnr me. Mileadh a nErind .i. Bl. iar marbad Dair do 7 i t"anch a innsaighe 7 arighi tainig Milidh dorhum nEaspaine u. bl. dAlaxanduir i righi in tan tangalar me. Miled a nErim 7 loradath cath Tailltean andoreradar 1.1.cl. cona rimnaibh. Cuig bliadna AErimhon i righi in tan adbath Alaxandair im mBatiloin 7 isiat sin na dha .c. bl. ro ba lar .t. d. d. a nErinn. On bl. ileighenaigh 甘nithiusa Campeses mc. Cir ro fortha fhlaithiusa Dair aenthiadain Camprese Tairpeis .u. bla. $\mathbf{x I X} \mathbf{x}^{\text {dd }}$. Serseis xx. hiliadon. Artarsermes xl. bliadan. Ẍerxes. da mis, Sodogenos uii. misa. Ey Dairing xix. b. Asferus. xl. Artarerees ()chi. tri ha. Arius Ochi .iiii. bl. Dairiua mor hi. bl. Isiad sin na da .c. b. ache tri il. nan-easbaig ro badar t. d. d. a nErinn. Guidhil a DErinn 7 Greci in-airdrigi in doman.
kingship of Egypt-it was to him [Pharaoh] that Míl was son-in-law, whose [proper] name was Goladh. The latter came away from Egypt when Pharaoh was dethroned, i.e. Mil, and his wife, i.e. Scota daughter of Pharaoh, and came to Spain and conquered Spain by force. Pharaoh Nectanebis was the 45th or 35th king after Pharaoh Cingciris, who was drowned in the Red Sea; 914 jears was the duration of the empire of the Pharaohs from Pharaoh Cingciris to Pharaoh Nectanebis. Alexander's empire was divided into 33 portions after him, and four men of [the rulers of these excelled them all: Ptolemy son of Lagus in Egypt and in Macedonia, Philip or his son in Asia Minor, Antigonus in Babylon, Brutus Seleucus Nicanor (?). Ptolemy, in succession to Alexander, 40 yeurs. At the close of Alexander's reign the sons of Mil came to Ircland; i.c. a year after he slew Darius, and in the beginning of his insasion and of his kingship, Mil came to Spain. Alexander had reigned 5 jears when the sons of Mil came to Ireland, and the battle of Tailtiu was fought, in which fell the T.D.D. with their quecns. Erimon had reigned 5 jears when Alexander died in Babylon. And these are the 200 years the T.D.D. were in Irelund, from the last year of the reign of Cambyses son of Cyrus to the end of the reign of Darius:' Cambyses, 1 year: [Darius son of Hys]taspes, 35 yeors; Xerses, 20 years; Artaxerxes, 40 years; Xerxes, 2 months; Sogdianus, 7 months; and Darius, 19 Seurs; Assucrus, 40 ; Artaxerxes Ochus, 30 ; Darius Ochus, 4 sears; Darius the Great, 6 years. Those are the 200
> years all but three that the T.D.D. were in Ireland. The Goidil in Ireland and the Greeks in the high-kingship of the world.

Lec. $26 \alpha, \beta$. Comaimsiradh righ in domain fri Tuaith. D.D. annso sis. Perssa robatar in airdrighi in domain intan tancatar Tuatha D.D. inH. isin bl. dedenaigh flatha Campases me. Cir me. Dair tancatar. [List here as in BB.] Dairius Magnus me. Arsabei .ui. bli. ise tiugft na Pers ise thuce na tri catha do Alax-. me. Philip 7 ro marb Alax-. esseomh isin cath deigdenach. Ise Alax'. ro thafaind Forann arrighi Eigipte is do ro bo cliamain Galom .i. Milid a ainm 7 tanic side a hEigipt 7 a ben Scotta ingen Nectanibus co Hespain 7 ro chossain ar hī̄. Et ise Forann Nectenibus in xlu. ri iar Forunn Cincris ro baidhedh imMuir Ruaidh .xiiii. bl. 7 ix. .c. fott a fatha o Forunn Cincris co Forunn Nechtanibus. Rorannad fls. Alax-. i trib rannaib $\mathrm{xxx}^{a t}$. dia eis ro derscaidh iiii ur dib uili .i. Potolomeus me. Lairce in Eigipt. Ardiachius Pilippus im Maicidhondaib. Antighonus i mBabiloin. Bruttus Siliuccus isin Aissia Bhic. Potolomezes indiaidh Alax. xl. bl. Indeiredh flatha Alax tancatar me. Miled inh-. .i. da bl. iar marbad Dair do 7 hitossach a indsaighthi 7 a rige tanic Milid dochum nEspane. Cuic bl. do Alax-. arrigi in tan tancatar mc. Miled inh-. 7 doradad cath Tailltin hi torcratar Tuath D. D. immo trib rigaib 7 immoa teora rignaib. Coic bl. do Herimon irrigi in tan adbath Alax ${ }^{-}$. imbabiloin conid iat sin in .cc. b. robatar t. d. d. inh ${ }^{-}$. On bli. deidhenaigh fl. Campases mc. Cir co forba fatha Assar 7 Dair Aenbl-. Campases. Tarpess xxxui .bl. Serses. xx. b. Artarserses .xl. b. Xerxes .u. mis. Soghodianus .iiii. mis. Dairius .xix. b. Asferus .lx. b. Artarserses Occus .xxx. Airius .iiii. b. Dairius Magnus .ui. b. Isiat sin in .cc. bl. acht na .iii. bl. robatar. t. d. d. inh-. Gaidil in $\mathrm{h}^{-} .7$ Greic in airdrigi in domain 7 ar na huilib gabalaib rogab Eirin o thossach co deridh. Finit.

VII. (BB 44 a 49.)

A cind x. mbliadan iar mbas Alaxandair me. Pilip atbath Erimon. Ag toiseachaib Alazandair ro bai in t-ardflaithius andsein. ${ }^{1}$
"At the end of 10 years after the death of Alexander son of Philip, Erimon died. Alexander's generals held the supreme rule at that time."

VIII. (Lecan 27β.)

Cs. cade tairthud ${ }^{2}$ fir me. Mil-. nī. Cenel fil i sleib Armenia .i. Hiberi a sloindiud Boi ri amra occo .i. Milidh mc. Bile mc. Nema. Bui side hicosnum flathiusa fria brathair athar fri Refelair mo. Nema 7 doluidh lucht iiii. mbare for longas 7 .ii. lanomna dee ceeh baircee

Question, what is the true origin of the Sons of Mil? It is not difficult. A race there is in the mountain of Armenia, Hiberi they are named. They had a famous king, Mil son of Bile son of Nem. He was contesting the sovereiguty with his father's brother, Refel-

[^137]7 amus forcraidech cen mnai. Da thuisech amra occo.i. Uce 7 Occe Lotar for muir Chaisp amach for in oician imechtrach 7 dolotar timchull na hAissin sairdes co hinis Deprephane. iii. mis doib innti iii. mis aile for fairrce co riachtatar co Eigipt fo deoig Hi cind uii. mbl. 1.0t ar cce. ar mile iar c. gabail Er. do Pharthalon. Hi cind immorro xiiii. mbl. ar decee iar mbadhudh Foraind a Muir. R. rosiacht[at]ar Eigipt. Pharo Nectanabus ba ri Eigipte in tan sin 7 ise sin in u. cullh ri. xl. iar Formud Cincriss ro baidhedh im Muir Ruaid. [Here follows a list of the Pharaohs.]
air son of Nem, and he went into exile with the manning of four barks, and twelve married couples to each bark, and a soldier over and above without wife. Two famous chiefs they had, Uce and Occe. They went upon the Caspian Sea, out on the outer ocean, and came round Asia southeastward to the island of Taprobana. They were three months there and three months more on the sea, till at length they reached Egspt, at the end of 1357 years after the first taking of Ireland by Yurtholon, at the end too of 914 years after Pharaoh's drowning in the Red Sea they reached Egypt. Pharaoh Nectanebis was then king of Egypt, and he is the 45th king after Pharoah Cincris, who was drowned in the Red Sea. . . .

IX. (Lecan $27 \beta, 28$ a.)

Nechtan bis Pharaw xuiii. b. ise ba fi Eigipte ar eind Miled me. Bile cona lungais 7 fuair failte occa fri re .uiii. mbl. 7 dobeir a ingin .i. $\mathrm{S}[\mathrm{c}]$ ota do. Et ba ei sin aimsir laidh Alaxandair Mor me. Pil. isind Aissia 7 ro thairbir in Eigipt fo reir 7 ro indarb Phuro Nectanebus a hEigipt inn Ethiop 7 ro di huir Artararses ar tus. fecht aile in Eigipt C'umdaithir iarum cai[t]hir rig in Eigipt la halaxandair Alexandria a hainm. Et discailter flaithius dilis ind Eigipt annsin. 7 gabait Greig fortamlus innte 7 is hic Grec[aib] Alaxandria ro bui Baithims o sin amach. Conid annsin Eninic Milid a hEigipt dochum a cheneoil fein. Finit.

Nectanebis Pharaoh, 18 years. It is he that was king of Egypt on the arrival there of [lit. in front of] Mil son of Bile, with his fleet [or party of exiles]; and [Mil] was hospitably kept by him for eight jears, and [Pharaoh] gives his daughter Scota to him. And that was the time when Alexander the Great, son of Philip, went isto Asia, and brought Egypt to submission and banished Pharaoh Nectanebis from Eggpt into Ethiopia, and he first dethroned Artaxerses at another time in Egypt. Afterwards, a city of kings in Egypt is built by Alexander, Alexandria its name. And the pative sorereignty of Egypt is then broken up, and the Greeks take headshin there, and the Greeks of Alexandria held the sovereignty thenceforward. So it was then that Mil came from Egrpt to his own kindred.' Finit.

[^138]
X. (Lecan 34 a 1.)

Comaimsirad rig Herind fri rigaib in domain moir annso. Herimon tra in oenbl. ro gab rigi 7 Alaxanndair airdrigi in domain 7 ro marb Dairius Mor me. Arsabi. i cinn .u. mbl. iar \sin bas Alax. $7 \mathrm{r}[0]$ gabsat a thoisig in domun da eis xl. b. Deich mbl. iar mbas Alax. atbath Herimon. uiii. b. iar sin Muimne 7 Luigne 7 Laigne .x. b. iar \sin do Hiriel mc. Herimoin. Isindara bli, dec flatha Eithireoil mc. Hireoil .f. mc. Herimoin atbath in toisech dedenach di muintir Alax. i. Potolomeus mc. Large. Xuiii. b. tra ro bui Eithirel hi comfl. 7 Philodelphus. xxxuiii. b. 7 is chuice tucadh in septuaginta ro chettindtae in chanoin a hebra i ngreice lx̃x̃x hebraide lin a scriptore. ${ }^{1}$ Fichi b. ro bui Philodelphus hi comrige 7 Conmael me. [sic] xxx. b. do Chonmael post hirrighi 7 euergites .xuii. b. i comflathius friss Conmael post xiii. b. Philopator .xuii. ${ }^{2}$ b. in coicedh ri do Greccaib hi comflaithius fri Conmael 7 a .u. hi comfl. fri Tigernmus Ise Philopator tra ro marbastar .lxx. mile do Iudaigib ind aimsir Tigernmais. Finit.

This is the synchronism of the kings of Ireland with the kings of the great world. In the same year Herimon ${ }^{3}$ took the kingship and Alexander the highkingship of the world, having slain Darius the Great, son of Arsames. At the end of five years thereafter, Alexander's death ; and his generals took [the sovereignty of] the world after him for 40 years. Ten years after Alexander's death, Herimon died. Eight years after that, Muimne and Luigne and Laigne. Tlen years after that [were spent in kingship] by Hiriel son of Herimon. In the twelfth year of the reign of Eithirel son of Hirel Fáith son of Herimon, died the last general of Alexander's people, Ptolemy son of Lagos. Eithirel was 18 years in co-sovereignty with Philadelphus [who reigned] 38 years, and to him were brought the seventy who first translated the Canonical Scriptures from Hebrew to Greek. Seventy(?) Hebrews(?) was the number of its writers. Twenty years was Philadelphus in co-kingship with Conmael son of; 30 years for Conmael afterwards in kingship, and Euergetes 17 years in co-sovereignty with him. Conmael afterwards, 13 years, Philopator, 13 years, the fifth king of the Grueks, in co-sovereignty with Tigernmas. It was Philopator who slew 70,000 of the Jews in the time of Tigernmas. Finit.

XI. (Lecan 41 a 17.)

Comaimseradh rig in domain 7 gabal nErener ro scribus a tosach in libair ota flaith Nin me. Peil ro gab rigi in domain
"The syuchrouism of the kings of the world and of the conquests of Ireland I have written in the beginning of the

[^139]ar tus cusin coicedh ri do Greccaib 70 Parrtholon me. Sera dno ro gab Erind ar tus iar ndilind cusin coiced blia. flatha Tigernmuis me. Follaig ro gab rigi „Erenn co cenn .e. blia, ut alii aiunt. Is ferr dunn dno co sgribam comamserad nacin for leith anuso.
book, from the reign of Ninus son of Belus who first took the kingship of the world to the fifth king of the Greeks, and from Partholon son of Seir also who first took Ireland after the Flood to the fifth year of the reign of Tigernmas son of Follach who took the kingship of Ireland till the end of [i.e. throughout] 100 years ut alii aiunt. It is better for us now that we write the synchronism on a separate sheet bere."

The succession of the "Creck" rulers is then resumed at Philopator" (see and of VIll) and continned to the time of Julius Caesar. From him the

 king of Ireland.

Ihen the witer winm- the shathmization of the Foman empers with th." kins- if hedan: him wh ditherent pan irom the preceding section.

 are reckoned from the accession of Julius Caesar (i.e. from the battle of Pharablia), 48 r.c., until the mission of st. Patrick is reached. From this event the reckning ly centuries legins anew. The periods are':-

1. To the 12 th year of Claudius A.D. 52
2. " 14th " Autoninus Pius, 151
3. " 1st , Claudius II, 268
4. n 18th " Constantius II, 354
5. " last " Theodosius I, 450

Thentosius I is confused with Theodusius II, who died in 450. Here a fresh start is male in the reckoning, leading-
$\begin{array}{lllll}\text { 6. To the } 1 \text { st year of I'atrick in Ireland, A.D. } 432 \\ 7 . & \text { "th } & \text { " Justinian, } & 531 \\ \text { 8. " } 20 \text { th } & \text { " } & \text { Heraclius, } & 629\end{array}$
Iast comes a periorl of $8 t$ years, calculated to the date of writing of the original tract.

[^140]The closing passage is as follows (43 a) : -

Coithri bl. lxex. on xx b. fl. Heracli co forba fl. Leomain $7 \mathrm{ix} .{ }^{1} \mathrm{r}$. frisin re sin .i. Hercolonas Constantin fls. Heracli Constantius fls. Constantini Iustinianus Minor Leofus Tiberius Iustinianus Minor iterum Pillipiccus Anastasius filius Teoth. Tercii ${ }^{2}$ Leo Tertius. Ceithri bl. lxxx. on. x. bl. fl. Domnaill cosin tres bl. Fergail me. Maili Duin 7 x. r. for Erinn frisin re sin .i. Domnall Conall Cellach Blathmac Diarmait Sechnusach Cenn Failad Loingsech Congal Fergal fodesin. Oenbl. ar $\mathrm{xxx}^{\mathrm{it}}$. ar cececc ${ }^{3}$. insin .o. c. bl. fl. Iuil co forbo fl. Leonis Tercii. Ceithri ri. lxxx for Romanchaib frisin re sin. Noi lx. immorro for Herind frisin re sin co fl. Fergail me. Maili Duin ri Er. 7 Murchada me. Find ${ }^{4}$.r. Laigen ${ }_{7}$ Cathail mc. Finnguine .r. Mumun.

84 years from the 20 th year of the reign of Heraclius to the end of the reign of Leo, and 9 (11) kings during that time, viz. [Heraclius,] ${ }^{5}$ Heracleonas, Constantinus filius Heraclii, Constans filius Constantini, [Constantinus filius Constantis,] Justinianus Minor, Leontius, Tiberius, Justinianus Minor iterum, Philippicus, Anastasius, Theodosius Tertius, Leo Tertius. 84 years from the 10 th year of the reign of Domaall to the $3 \mathrm{rd}^{6}$ year of Fergal son of Mael Dúin, and 10 kings over Ireland in that time, viz. Domnall, Conall, Cellach, Blathmac, Diarmait, Sechnusach, Cenn Faclad, Loingsech, Congal, Fergal himself. That is $631(771$?) years from the first year of the reign of Julius to the end of the reign of Leo III. 84 kings over the Romans during that time. 69 over Ireland during that time till the reign of Fergal, son of Mael Dúin, king of Ireland, and of Murchad Maen (?) king of Leinster, and of Cathal, son of Finnguine, king of Munster.

3. The Middle-Irish Redactor of Z .

Here follows immediately a very lengthy poem of Flann Mainistrech, headed "Do flathaib in domain moir annso," "This is of the Rulers of the Great World." 'I'he opening quatrain is -

> Reidig damh a De do nimh - co hemigh a n-innissin uair nach co felgnim iar fuin . scancus degrig in domhain. ${ }^{7}$.

The poem is a metrical list of "the kings of the world," commencing like

[^141]Redig dam 』 Dedo nim - co hemid ni indeithbir érniud mo chesta is gnim glan - corop espa ollaman.

Z with the foundatioi of the Assyrian dynasty, and ending like Z with Leo III. In fact, Flann's list is taken direct from the synchronism, even to the extent of naming the Irish rulers contemporary with Leo.

The concluding quatrains are as follows (Lecan 48β):-
On chetbliadain Iuil ros gab. co cetriagail tres bliadan
fiad gach sluagh co ndaithe a ndal- at cuadh flaithe na Roman.
Co tlaith fir ro gab Temraigar do ruacht annalad amlaid
is Murchadha maen ${ }^{2}$ co mudh - is Cathail caim a Caissiul.
Cach flaith failte os gairbri glain. fris raite airdri in domain
o Xin co Leomain na clann ${ }^{3}$ ros rim int eolas' aenflann.
Flaun feidbind rom ben brig breath ${ }^{\circ}$ fer leigind min Mainistrech. ro gle triana gnim a guth" re cach rig do reidiugud. R.
Concubur clannmin na caeadh. Acd Gairbith Diarmait Durgen
Donuchad da Niall cen snimh sneidh righ na re sin co ro reidh. R.
-. From the first 5aar that Julius took it [i.e. the worlkingship], with [his] first rule, a stress of years (?), in the presence of every multitude with the keenness (?) of their assemblies, I have recounted the rulers of the Romans.
"To the reign of the man who took Tarn, the chronicling has thus amived, and of Mur hand Maen '? with dignity, and of Cathal the comely in Cashel.
" Each ruler of gludness over clear Who was called high-king of the worlh, from Ninus to Leo of the weapons, Flann alone, the wise man, hath numbered them.
-. Flann, weet if worl, the utrength of judgments hath sounderd him, the gentle
 of each king's times.
-. Com howne of gentle kin, of the wounds [in battle], Acd, Gairbith, Diarmait Ihurgen, lman hat, two Nialls, without petty sudncss, [are] clearly the kinge of that time.".

Wi the fise com luting stanzes in Flann's pom, the semmed and third
 of \% i. Minilollah withut any trares of transeription from an old-hish

 names in his poem exhilit often the same errors as in Z. All these facts taken together point to Flann as the redactor of $\mathbf{Z .}^{7}$

[^142]
4. The Date and Original of Z.

Flann did not modernize Z from an Old-Ir ishoriginal. Hal he done so, ho would have made no greater changes than would have been necessary to make the document intelligible to other Irishmen of learning in his time; and consequently many of the Old-Trish forms of the original would have been preserved. The tract therefore was originally written in Latin. Some of its Latin phrases are still preserved.

The date at which the original was compiled is very precisely indicated. The compiler believed himself to be writing in the ninety-fourth year from the accession of Domnall son of Aed, i.e. 721.

This date is confirmed by further criteria which the tract supplies. Its concluding portion names three kings reigning in Ireland. The king of Ireland was Fergal son of Mael Dúin, the king of Leinster was Murchad, and the king of Munster was Cathal son of Finnguine. ${ }^{1}$

Fergal reigned from 710 to 722 . In the latter year he was defeated and slain in the battle of Almain by Murchad king of Leinster.

Murchad reigned from 712 to 727.
Cathal reigned from 712 to 742 .
The contemporary Byzantine emperor is named. He is Leo the Isaurian, who reigned from 718 to 741 .

The only years common to the four reigns are 718-722.
There remain two textual difficulties:-(1) The final year, the date of writing, or a date previous to writing, is twice indicated as the end (forba) of the reign of Leo. (2) It is once indicated as the third of Fergal. With regard to the first difficulty, it is to be pointed out that the last year of Leo, 741, was (c) 112 years-not 84 years-later than the twentieth of Heraclius; (b) nineteen years later than the death of Fergal ; (c) fourteen years later than the death of Murchad; (d) that, if the end of Leo's reign were really in the writer's mind, he would probably have named the succeeding emperor, and would almost certainly have named contemporary kings of Ireland and of Leinster. Hence there can be no doubt that the Middle-Irish translator misread his Latin original. The year 721, the ninety-fourth from Domnall's accession, was the fourth of Leo, and may have been written $i u^{m}$, and taken to indicate mortem or ultimum. It was the twelfth year of Fergal, and xii may have been read as iii. The Roman numerals are a continual source of misreadings in Irish mss., and often

[^143]present Great difficulties to the modern transcriber. The textual discrepme ies then. cannot be hell to invalidate the common period of the fon nens. $115-72$ as the utmost range of date for the composition of the srnchronism.

Sy hr nism Z is thus shown to be an eleventh-century version of one : : 1 n hene known documents of early Irish history and historical legend.

T!n pathunn of the chronology and also of the reigns appear to have 1.... : unperal with in several places, doubless with a view to lninging the "..a.: into l...n a and with later teachinss. But the achievement of $\because: \quad$ an wn whe invel the reconstruction of almost the entire
 :.ans it and drew up B as a substitute for Z. (See concluding note.)

5. Tre Caronological Basis of Z .

The framing of Z is as follows :-
mhsi event. contemporary world-period.
Coming of Partholon, . . . 300 years after Deluge.
Ent of l'artholnn's race, . . 850 " n "
Cuming of Semed. . . . 880 ". "
End of Sement's colony, . . 1110 " .
Coming of Fir Imlg, . . Beginning of Persian Empire.
Coming of Tuatha Dé Danann, . Usurpation of the Magi.
Commen of the ciaellitl,

Beginning of Alexander's Empire.

The last three pairs of contemporary events supply the clue to the He hal hetne him the Euselian word-history H. S. in l.is min! the trational w legendary epochs of mehistorie Ireland. These latter had no chronolngy. No trace of a

 the wath-periods.
 Sumpias in a fors months to the throne of Cambyses, is a rather minor event against which to date the invasion of Ireland by the Tuatha Dé $11 . \operatorname{l}$ Th.at the Thatha Ite Ibanam in genuine Itioh tradition, asile from the theorizings of the schools, were no race of

aborigines is but a duplication of their traditional victory over the hostile god-race of the Fomori ; all this has been long established quite conclusively by the great antiquary and historian who, within these last few weeks, has ceased to live among us, except in his achievements and in his inspiration, D'Arbois de Jubainville. ${ }^{1}$

Notwithstanding that the Tuatha Dé Danann were not a race of men, their story was intimately blended with the story of the Irish Celts. I place had to be found for them. They could not come later than the Gaedhil, their worshippers. They could not come earlier than the aborigines, for then they would be separated from the Gaedhil, and would appear to have been worsted by an alien people. They could only come between. The synchronist had already planned that the Fir Bolg period should coincide with the Persian world-kingdom. He looked down through the Persian dynasty for an appropriate break at which the Tuatha Dé Danann could be introduced. The only such break was the temporary usurpation of Smerdis, and it sufficed.

The artificial character of this arrangement is emphasized by its effect on the scheme. It assigns 37 years to the Fir Bolg, and 197 to the Tuatha Dé Danann-figures worth noting, as we shall afterwards see. Eight reigns of the Fir Bolg are compressed into the 37 years. The 197 of the Tuatha Dé Danann contain only seven reigns.

This disposition points to a yet older version of Z than Flann's original. Of the five invasions, there are two which still do not coincide with definite world-periods. We should have expected to find that coincidence in the oldest version; and we shall see whether any traces of it have been preserved elsewhere. Omitting the Tuatha Dé Danann, there are four great legendary invasions or settlements of Ireland. In the world-history of the synchronists, there are also four great world-kingdoms in continuous succession down to the Roman Empire-the Assyrian, the Median, the Persian, and the Greek. The last two are accounted for in Z as we have it. There should have been a document, older than Z, in which the coming of Partholon coincided with the foundation of the Assyrian Empire, and the coming of Nemed with the foundation of the Empire of the Medes.

6. Z Compared with other Synchionistic Accounts.

According to Synchronism B, Ninus, the founder, as was believed, of the Assyrian monarchy, began to reign 21 years before the birth of Abraham. Keating, relying on some Irish computation, not now in evilence, teaches that Partholon came to Ireland 22 years before the birth of Abraham. The

[^144]ditterence is that which frequently arises from a confusion of n years with the $1,{ }^{2}$ rear. Dr. MacCarthy, indeed, in his translation, has corrected the 21 of L $t, 2$ in acomauce with the Eusebian chronicle. Keating connects his Tate for Pathom-arival with the doctrine that the event took place 300 Sens atm the Flomi, and this is precisely the unamended teaching of Z. There bult, then, have twen an early synchronism, akin to Z. which laid down that Parthon came to Irelam in the first year of the Assylan world-kingdom.

It mily remains tos how that Nemed's culung was regarled as contemporane w- with the Merim lymastr. According t" Z (IV), Nemed came to In land $1.5 j^{2}$ yeats after the Flowi. According to B , the Assyrian monarchy

 Sho. l'- antival within 2 years of the leginning of the Median period.
 A-rninh …erninty wa taken to have latel lytu years, nut from its
 in :th 1!n Hermant of "the Thand Age oi the Worh"; for Ninus foumbed the Assyrian kingdum 21 or 22 years before this epoch.

We have thus sufficient indications of the existence of an ancient syachronism arranged on this basis.

1. Coming of Iartholon $=$ beginuing of Assyrian world-kingdom.

 alone.

7. The Doctrine of A.

 original Latin.

[^145]In A's computation, Partholon came to Ireland 1002 years after the Flood, or in 1957 B.c. (this date, we have seen, was introduced as an cmendation into Z). His people remained in Ireland 1000 years, until 957 b.C. Nemed came to Ireland in 925 b.c. We are not told how long his colony lasted, and there is no mention of the Fir Bolg or the Tuatha Dé Danann. In the Book of Invasions, Nemed is the ancestor of the Fir Bolg, the Irish aborigines. Possibly, then, the author of A identified the coming of Nemed with the coming of the Fir Bolg. Possibly, too, he saw no necessity for fixing the immortal race of the Tuatha Dé Danann in his chronological framework. At all events, he says nothing about an end of Nemed's colony or about any other iuvasion from their time until the time of the Gaedhil.

A next tells how the sons of Mil came to Ireland, 440 years after Exodus, i.e. in 1071 b.c., according to A's reckoning. 'Ihis statement is an obvious interpolation, for it makes the Gaelic invasion not only earlier than the arrival of Nemed, 925 B.C., but even earlier than the end of Partholon's colony, 957 b.c.; and the text says that when Partholon's colony died out, Ireland was empty of inhabitants for 32 years.

Having mentioned "the taking of Ireland by the sons of Mil," the synchronism adds, "from the taking of Ireland to the sack of Troy, 328 years"; and, later on, " from the taking of Ireland to the time of Cimbaeth, 1202 years." When these dates are worked out, they show that, in each instance, "the taking of Ireland" has been substituted for "the passage of the Red Sea by the Israelites." Hence it follows that the sons of Mil have no proper place in A and should be eliminated.

Next among Irish events is the foundation of the Ulidian kingdom of Emain Macha. This event took place in 307 b.c. Then comes the ancient original of the well-known statement in 'Ligernach: "The tales and histories of the men of Ireland are not known and are not authentic till the time of Cimbaeth son of Fintan." The men of Ireland are the Gaedhil. According to A, then, the history of the Gaedhil begins with the foundation of the Ulidian kinglom. That being so, we can understand how the legend of Míl could find no place in A except by an inept interpolation.

Then follows a detailed account of the Ulidian dyuasty from its foundation to the death of Conchobor mac Nessa, A.D. 24. No other dynasty is mentioned during this time. Perhaps the author held that Emain was the capital of Ireland in those days, and that the Ulidian kings ruled the island. At all events, he was certainly a partisan and adherent of the Ulidian tradition, which consistently ignores the legend of Mil and of the Irish monarchy vested in his earlier descendants.

The duration of the Ulidian dynasty is from 307 b.c.to a.D. $21-331$ years. This at once suggests the date of Alexander's world-kingdom, 331 B.c. We conjecture that a shifting of 24 years has been made, perhaps by a redactor who had the doctrine of Z before him and desired to give the priority to the sons of Mil: There was some shifting of dates, certainly, for the foundation of Emain is first placed in the 18 th year of Ptolemy, 24 years after Alexander became king of the world, and again " 33 years from the begiming of the soveregnty of the Greeks." When we turn to B , we find our (rnjecture amply contirmed; l' says: "Alexamler, first king of the Greeks, 5 years, and Cimbaeth, son of Fintan, in his time."

A says that Conchobar reigned 60 years: hut the terminal dates assigned, from the 1.5 th year of (otavins th the 10 th of Tiberius, allow only 50 or 51 years. Here is the same dithernce as in the forening paragraph, 9 years, indicating an embendation internatated and not strictly carried out. A poem on the l"hilian dymast (LL 21β) gives 50 B.C. as the date of Conchobor's accession:

> Cethri chēt bliadna brassa ad fét cach súi senchassa; fot a flatha na for ingacth ó Choncobur co Cimbáeth.
> Cethri chēt coica blindna ad fét cach súi saerchialla cia nós fégaid fri gaina gacth cor gēnair Crist iar Cimbaeth.
> "Four hundred lively years each master of antiquity tells, the length of the wise mea's rule from Conchobor [up] to Cimbacth. Four hundred and fifty years every master of liberal mind telle, if ge look to a wise work, till Christ was born after Cimbacth."
 dynasty, from Cimbacth to (imblohor, exactly fill up the : $: 31$ years from Alexamders conquest if the I'ersians th the commencement of the Christian era. Since A prements a much less develnged legrem than \angle, I think it must be earliee in origin, and that in its miginal form it must have suggested the phan of equatins world-primis with Irish perionts, which Z preserves in a montifief fom. The mizinal of A may therefne well have been drawn up in the sixth or early seventh century.

8. Z the Foundation of Later C'hrovological Schemes.

Irish histurian dil mut lome remain comtent with the view that the tractic necupation of Irfland was no more ancient than 331 b.c. The dates
 number of them (p. 246): 544, 1066 (?), 1071, 1229, 1569. The Four Masters will have it that the Gaedthil teachenl Ineland as early as 1700 b, C. As a rute, the later the historian, the earlier his rlate for this event.

Notwithstanding these discrepancies, the later accounts of prehistoric Treland find the source of their chronology in Z .

The redactor of the Leabhar Gabhála in the Book of Leinster assigns a much earlier period to the Gaelic conquest than Z, but preserves the Fir Bolg period of 37 years and the Tuatha Dé Danamn period of 197 years, as in Z .

Synchronism B puts the Gaelic conquest at 1229 B.c.-nine centuries earlier than in Z-but has a Fir Bolg period of 35 years and a Tuatha Dé Danann period of 197 years.

Gilla Coemáin's chronological poem (MacCarthy, "Todd Lectures," pages 151-157) requires as early a date as 1545 B.c.-twelve centuries before Alexander-for the Gaelic conquest, but has a Fir Bolg period of 37 years and a Tuatha Dé Danann period of 197 years.

Keating (Irish Texts Society, vol. iv., pp. 196, 225) assigns 36 jears to the Fir Bolg and 197 to the Tuatha Dé Danann.

Evidently, then, the Cyrus-Cambyses-Alexander chronology of Z lies at the root of the school-made histories of prehistoric Treland. The Z version of the legend of Múl and his sons is thus the oldest rersion now known. One broal conclusion follows with certainty, Gilla Coemáin's long list of 136 monarchs of Ireland before St. Patrick's time is for the most part the product of medieval invention. The earlier section of the Irish genealogies, constructed in harmony with that list, must also be in the same degree artificial. Probably the materials in each case were collected largely from traditional sources; but the structure bears the same relation to genuine Irish tradition as a modern edifice built out of the stones of Clonmacnois might bear to the ancient monastery.

NOTES.

I. Partholon.-This is not a Gaelic name. It appears again in Flaithiusa Herem (BB 43 a 13), where the perligree of Cruithne, eponymous ancestor of the Cruithni or Picts, is "Cruithne mc. Uige me. Luchta me. Parrtholon"; in the Irish Nemmius (BB 203 a 13) "Cruithne mc. Cinge me. Luchtai m. Parrthalan." In the same tract (206 a 34) the name is also Parthai, genitive of Partha. Even if we suppose the scribe to have substitnted the more familiar name Partholon for Partha as ancestor of the Picts, we could not well discomnect the two names. The ending -lon may represent -lamos or -vellamos; but if so the long vowel would indicate that the Irish borrowed the name from Cympic with a Cymric pronunciation. Such a borrowing would also account for the initial P. Can Parth- be a Pictish equivalent of the Cymric Pret-, Irish Cruth- = *Qret-, Qrit- (Ogham Qriti, Lugu-qrit), whence Cruithni? It seems to recur as eponym of the

Part-rige people who, though ther inhabited an extreme western region in Ireland to the west of Loch Mask, retained the letter p in their speech and were, therefore, probahly not of Gaelic origin. The neighbourhood of Tuam was inhabited by a Pictish race, the Sogain, until the minth century : ant some of the same race were subject to the rulers of Ci Maine long afterwards. I am, therefore, inclined to lelieve that the Partrige were Picts, that Partha, ancestor to the Picts, supplied their eponym, and that the story of Partholon is a legemi of the Picts. symblizing perhaps the antiquity of their race and its overthrow in Irelaml. It will be observed that in Z (I.) the race of parthurb is destryed, not by prestilence. lut by a hostile race, the Conchinn or Houml-hearts (perhaps High-heads, is the tall folk, for , $n=$ - cunn may give either meaning. The writer promises to tell more about this event. But in the tract as it now exists, the story of the $p^{\text {mestilence }}$ is briedy substitutel 'II.). Here we have alditional prouf of late tampering.
IV. Somen.-I have failed to discover any consistent reckoning among the varion- periods assignel to the lneginning ant ent of Nemel's colony. At leant two listinct accounts, basel on ditferent chronologies, are here combinel in ote: fur it is twice statel that Nemed:s arrival was 40 years before the enl of the Assrrian Kinglum; it is twice staten that his colony lasten for 2:0 years: and it is twice implien that it orerlapmen the period of the Meles, wh. fullow the Assyrians. The Irish quatrains quoted in this section show inturpolation, since they cannot have beloned to the original of 2 .
VIII. Mir-W Wave here the oldest known version of the legend of Mil, ami the last difference between this and the later forms of the legend, which are typified in Keating's narrative, shows how the story of prehistoric Ireland develnped in the early Christian period. There is little in the lecrend i M M, carly or late, that lears the semblance of Celtic trantition. In almost every detail it shows the work of the peuman and the Latinist. The ancient Irioh writers searched their Latin authors for names that would sugrest an aricin for the Irish.' The writer of this story hit uprin the name Ileri, not the Ileri of western Europe, but the Iteri whu dwelt sumth of the Caucasus, and with whm the Romans came in contact unler Pompery and asain under Traian. The resemblance of this name th Hiberio and Hibernia was all that coull be desirel. Later writers sulstituted the sorthi for the Iberi hecause

[^146]a new grandfather for Mil, and seizing on a passage in Orosius they connected lbreogin with Brigantia, and gave "ostiun Scenae " an undefined location in Irish toporraphy. Mag hreugain was a plain in cast Munster, inhabited by the Muscraige Breogain. Except the Iberi, nearly all the features of the legend in Z are retamed but differently placed in the later versions. The present version may have been already invented before the seventh century, for S. Columbanus of Bobbio, in two of his letters, uses Hiberi as a name for the Irish.

Comparison of the spellings of names in the Hieronymo-Eusebian chronicle (H) with the spellings in Z, B, and Flamn's poem, Lecan $43 \beta(F)$:-

H	Z	F	
Armamithres	Armiteres	Armimentes	Armamentcres
Mamylus	Maiminitus	Maimintus	Mamitidus
Manchaleus	Macholius	Masailins	Machalius
Ascatades	Ascaidias	Ascaitias	Ascathias
Atossa	Athosa	Ahosa	Athoss
Semiramis	Saimiraimmis	Asaimiraimis	Samiramis
Balepares	Poilipoiris	Poilipoiris	Poliparis ${ }^{1}$
Sosares	Sosaires	Sossairses	Susperes ${ }^{1}$
Lampares	Lampades	Lampaires	Lampades
Panyas	Proeminias	Piamineas	Panuanias
Sosarmus	Soparrlis	Suffardus	Sophardus
Mithreus	Metralis	Metaralnius	Metralins
Tautamus	Tutanes	Tutanes	Tutanes
Teutaens	Flethius	Flaithius	Fletius
Eupales	Calafares ${ }^{2}$	Lapales	Lampaleis
Laosthenes	Lanteis	Lauistentes	Lustines
Peritiades	Perifianis	Peridioidis	Parathathis
Ophrataeus	Offrailus	Ofratolus	Affratulus
Tuonus	Tonus	Tomus	Tonus
Arbaces	Arbait	Aarbatus	Arpait
Sosarmus	Suffonus	Sogafaues	Susfonius
Mamycus	Madidus	Maidius	Madius
Cardaces	Cardicias	Cairdisis	Ardeichias
Deioces	Deuchus	Diones	Teochus
Cyaxares	Ciratreas	Cirasserses	Ciraxerses

[^147]These lists prove that the raterial of \mathbf{H} passed throngh one and the same baud lepiore it issuel in Z. D. aul F. Since Z is a Middle-Trish redaction of an whth-mentury decument and since the conclusion of F is taken Hhert from Z. thete ean he nu reasonable doubt that Flann of Monasterboin. reputed anthor of sychromisms and inscribed author of F , was also th. MEhile-Irish retactul and part-corruptor) of Z. It is also highly puable that haing iaibet her internations, omisions. and alterations, t." hate Z endomalle th the views of his schonl, Flann set to work
 an !.-Wat. Wor wewine into it the Irish names and chronology accepted

 transcription after the time of Flann.
 suggestions.

VII.

Abstract

THE EARLIEST PRINTING IN DUBLIN, IN THE IRISH, LATIN, GREEK, HEBREW, FRENCH, ITALIAN, SAXON, WELSH, SYRIAC, ARMENIAN, AND ARABIC LANGUAGES.

By E. R. McC. DIX.

Read 11th April. Ordered for Publication 15th April. Published July 16, 1910.

Introduction.

It may be of some interest to place on record the earliest printing of classical, European, and Oriental languages in Dublin; and this paper is an attempt to do this in a preliminary way.

When citing Talbot Baines Reed as my authority, I quote from his "History of the Old English Letter Foundries," with Notes, London, 1887 (E. Stock), a standard work on the subject.

Irise.
The first type (other than the ordiuary Roman type) used in Dublin was that for the purpose of printing in Trish, and is known as the Elizabethan fount of Trish type. It was used in 1571 to print the well-known Catechism and a poem; and there is evidence that it was also used to print a proclamation; and subsequently it was used to print an edition of the New Testament, 1602-3, and the Prayer Book, in 1608-9 ; Bedell's "A B C," in 1630 , etc. But this fount, it is well known, was very defective in representing the Gaelic characters. The letter "a" in it was simply indicated by an italic " \boldsymbol{c} " and not by a Gaelic " \mathbf{A} ". There are, in fact, nine Roman and two italic letters in the fount. I beg to offer as a matter of conjecture that this was not a fount cast for Irish type at all, but was simply a fount of Anglo-Saxon type which, being in some letters identical with the Gaelic letters, was used to print the Irish alphabet and other works in Irish. Archbishop Parker was much interested in Anglo-Saxon literature, and for him John Day, the well-known London printer, about 1567 cut the first Saxon types which were usel for printing elitions of the Saxon r.i.A. Proo., VoL. xxvili, sect. o.

Gospels and other books edited by the Archbishop in 15Tt, etc. (Fide Johnson's Typographia, vol. ii., p. Ł555.)

Latin.

The earliest "rook" printed in the Latin language in Dublin mas a medical whk. lyy Ir. Demod Meara, or U'Meara, entitled "Pathologia Haerentania Generalis," \&e. (a treatise on hereditary disease). It was printed in I ullin in the rear 1619, amb is a duodecimo of 146 pp . A copy is in the Libny of Thinty Collecte, Luldin : and there are three copies in Englinh linaris. It is wery rare. The finter were Felix Kingston and Thomak Ih,wnes, the Lomlon stationers who acquired John Franckton's Patent and position as "State Printer " in Ireland in 1618.

 -till ebshot Ibation frimtins. Latin was then the language of the learned of .ll , suntio...and wa letter known than English ly some of the Irish

 in Eolton's edition of the Irish Statutes, printed in 1621, several Latin

 in I)ulinin in the seventeenth century.

ripef.

 the rese of special type cast for the purpose. All type, so far as I know at Iresent. used in Duthin in the seventeenth century, was procured from England or the Continent. I mean it was not cast or made in Ireland.

The earliest use of Greck type hy a Imblin press that I have found so far occurs in Sir C. Siluthrip's "Frimblly Advertisement," Sce, and in Atchlishop T:sher's "Epristle concerning the Religion of the Ancient Irish," Se.; both printed in Ilublin in 1622 , and again issued in 1623 , attached

 in text and margin: but there alao occurs a larger fount in the text only, i.e. on the versoes of signatures $\quad 2_{2}$ and $c 2$ Preface, and on signature $c 5$-in all
eighteen words. In the smaller fount the largest number of words occurring on a single page is sixteen on page 380 . The Greek type is to be found in the latter volume almost entirely in somo marginal notes on $\mathrm{pp} .3,17,19,21$, 46 , and 83 , and is here of a small fount. At page 54 , however, occur two lines in the text of a larger and peculiar fount.

Greek type of two founts is also to be found in Usher's "Answer to a Challenge made by a Jesuite in Irelaud," \&ce., printed at Dublin, in 1624 , by the Company of Stationers. One is a small type, brevier Greek, and occurs in the margin of very many pages, far too numerous to give in cletail, and thrice in the text (see pp. 357 to 359), but consists of sentences or quotations of some length from certain authors. The larger fount, pica Greek, occurs to a lesser extent in the text itself on fifty-one different pages, sometimes in sentences or in several lines, or else in odd words. (Vide fig. 1.)

made by a Iefuite in Ireland.

 out of thy tombe, thous diditraje up the deat, and break uinkar. 7 , wiv the pover of death, andrayfesp Adam. iHaving glept nownaizato

 Relurrection with

ヒ",

S. Avobo ofe pointeth to the ground of the tradition, narminintas suo when he intimateth that Christ fufferedin a Galgoing, 262.6 .

Which he receaved (as he did many other thone he a enamufe.
Fig. 1.-Two Founts of Greek Type.
In a very rare work, entitled shortly, "Musarum Lachrymae; sive Elegia Collegii Sanctae \& Indiviluae Trinitatis, \&e., in obitum . . Comittessue Corcagiae," \&e., printel, in 16:00, in Dublin, and consisting of numerous poems, in several languages, there are three in Greek, and printed in that character.

In Usher's "Gotteschalche et Praedestinatione Controversiae," \&c., printed in 1631, occur, at page 207, four lines and two words in Greek type, also of pica Greek, with a different face, and mixed with a type of a different fount.

I have not met, so far, any work entirely printed in Greek in the seventeenth century in Dublin.

Greek type was first used at Oxford in 1586.

Hebrew.

As resards printine in Hehrew, involving also a totally different alphabe amt surial tyre, the tarliest wise of Hebrew letter in printing at Dublin cecurs in the volume alrealy referred to, i.e., Usher"s "Answer to a
53. whigoedorne intoshiol unsomy formen

1 coro-ren writcth mus. I Ficre the Tharifle:or of the cerv. E.... רiv (he meanceth the Vulgar Latn tratillation uf
 for bel cla', whe fisvification of bie rioudes or or for proole whereot he alledgeth divers place ture. Where by the way youmay note, that edition of the Maforticall and Rabsinicall B ted by Bonisergium, both this and diveríe ortc clicwhere have beene cut out by the Rems Etors: which I with our Bux: nefies had une when he followed that mangled and courus in his late renewed edition of that grat werk lomo Iaiche, writiog upon the famewords, Gi

- Ten erex fanth, that n" aciording to the licerallfone, the in

cuan suien. ried, and i will noi bc cer forted all my dajas:)

In like maner, R. Deredkimelicxpounding d
Pal.0.17. T hericked follourrie miololicl', aid.
Fig. 2.-Hebrew Type in margin.

[^148]Advertisement" (1622-1623), i.e., two words on the verso of signature A 5 and one word on p. 349.

The next occurrence of Hebrew type is to be found in another volume already mentioned, viz., "Musarum Lachrymae," etc. (16.30), in which are to be found three poems in Hebrew and printed in that character.

In Provost Winter's "Two Sermons on Bantism," printer here in 1650, occurred occasionally Hebrew words in a fount of small type.

I do not know of any work entirely or largely of Hebrew characters printed in Dublin prior to 1700 at all events.

Hebrew type was first used in England in 1592, and at Oxford in 1596, four years later.

Welsh.

In the "Epistle concerning the Religion of the Ancient Irish" (1622), already referred to, at p. 80, occurs a stanza in the Welsh language of nine lines, with a translation. Printing in Welsh involved no special type, and in that respect presented no difficulty to the compositor or printer.

Sayon.
In the same work, just mentioned, at p. 35 (margin), occur four words said to be Saxon; but the letters are, I think, taken from the Elizabethan fount of Irish type, or one of very similar character.

French.

The earliest work entirely printed in literary French is "La Liturgie," etc., printed in Dublin in 1666, no doubt for some of the French refugees. It is a version of the Book of Common Prayer.

Sir John Davies' "Les Cases en Ley" (Dublin, 1615) is in Norman or law-French.

Italian.

The earliest work printed in Dublin in Italian is entitled "L'Oratione," etc. It is a translation by the learnel Dudley Loftus of a speceh of the Duke of Ormond, and was printed in 1664 in Duhlin. Why this Italian version was printed I do not know.

Syriac (Old).
In C'sher's "Answer to a Challenge," etc. (1624), occurs, at p. 289, one word in Syriac character, that for" "Sheol." (Vide fig. 3.)

made by a Iefuite in Ireland.	289
cred and the fordine writers, are accordingly found to rake the werd in thefe thece leverall figntications. Touchung the firt we are to note, that both the Sep.	
trasom in the Old Teftament, and tine sposiles in the	
i.vere, doe ule the Gleeke word "Adies Hades (and i arg.o.y. anf.rerably thereunto the Lation Interpereers the word ${ }^{1 . C o r, 15: 5 s}$	
Luferme: ont /ifori, and the Euglifa the word Hcll) for	
outhe other fide, wisere an the New Teflament the	
vord Find Es is ufedithere the ancieat Syriack erama-	
tor doth our wine siew infted thereof. Now the	
Hebew s'es' (and ro the Chaldj', Syyark and AEthio-	
fras suords which drav therr orginall from thence)	
doth propety denore the interior parts of the earth, that lie hiduen from our fizhe ; mandy whatoever	

Fio. 3.
 Inally Lotus. ther are some womls in syriac type on p. 3 of the "Epi-min Thentinamia." This lwok was printed in Dublin in 1657 by Willian lilaten.

 This work was printed in Dublin in 1695. (Virle fig. 4.)

In 11.3 Coher mentions in a letter a project to purchase Syriac type altabl: anl mentidinns, luth in Paris and Geneva, appear to have been comhthed with the wignt of uhaining such. (F'idr T. B. Feed, pp. 67, 68, quating from Pars s " Life and Letters of C'shar," London, 1681, fol., p. 486.)

The earliest printing in Syriac at Oxford (ride Marlan's "Chart of Oxford Printing," 1904) was in 1661, and at London in 165』. (Vid, T. B. Reed, p. 68).

Moreaver, The Gofpel, according to Cuftom, and with regard to the accomplifhment of things, produceth an Allegation; for Ifaiah faith, There fhall come forth a Rod from the Root of Jefs, and a Bough Sall fprout forth: And in the Hebrew a Branch or Bough is expounded a Braxch, and Nazaren one who Spronts out ; and when Mathew faw that Chrift came and dwelt in Nazareth, he expounded this of Efaiah, A Brauch Shall Sproatout, He fhall be called a Nazares; and he was cailed a Nazaren from Nazareth, that is, ך- of one Spronting oxt, from $] \Delta \sim$ al a sprout; fo they are expounded in the Hebrew Tongue: Others fay that if which is $2, j 0$. is expounded New, and that Nazaretb fignifieth New, and fignifies Typically that the Son would newly be made Man for Men: Others fay, That Nazareth fignifies $7 u / f i c e$, and Nazaren fignifies Juft; and if they flall fay, that becaufe he was born in Bethlehem, and not in Nazareth, Efaiah calls him Z,cep iet them know that the Apofles called him as did the Prophets, and that this of Bethlehem was not hid as to the Prophecy, but chiefly intended, according to that of Nathzniel,
Fig. 4.

> Abmenian (Old).

In the "Logica," etc., occurs, in the margin on p. 49 of the text, one word in Armenian type. There are also some Armenian words in the margin of p. 91. The earliest acquisition of this type in Oxford was in 1667.

Arabic.

In Usher's "Answer to a Challenge," etc. (1624), occur, on p. 297, two words in Arabic type, in the text; and at p. 313 occur three words in the same type in the marginal note, and one in the text, and at p. $\because: 2 t$ one word in the text-seven words in all. Each word seems one type or block. (Vide fig. 5.) Where this type was obtained from I do not know. Perhaps the words were specially cut in wood blocks. This was done in similar cases in England. The earliest use of Aratuic type in Oxford was not till
16 ± 8, that is trentr-four years later. [Tide Madan's Chart of Oxford Printing (1904)]. There mere Arabic founts on the Continent, i.e., at the Tatican Press in 1591.

The Arabic character or type has been used by the Persians since the conquest of their country by the Moslems, with less exactitude, however, as regards distinguishing dia-critical dots.
[Authority, Mr. E. G. M. Swifte, B. L..]
In the "Lugica sen Introductio," etc. (Dublin, 165"), occur on p. 10 in the text (Epis. leelica, some words in pure Persian, and on p. 16 some worls in Ahath ansen ly a l'ersian, as I an informed after inquiry at the British Museum.
made by a Iejaite in Irelaid.

 fore do:l the Arabock mespreser, * tamathaied by If- corruption.

 fimewurd in buih the parts of the eentence, atece this kione,ary 10 .

 danj to the duman ut the Hobrewes; the Arabick rea- betarlis:

VIII.

WILLIAM KEARNEY, THE SECOND EARLIES' KNOWN PRINTER IN DUBLIN.

By E. R. McC. DIX.

Read April 11. Ordered for Publication April 13. Published July 16, 1910.
In a paper read by me in July, 1908, upon Humfrey Powell, Duhlin's first printer, there was mention made that the last document printed by Humfrey Powell was in 1566. From that year down to 1571 no specimen whatever of any printing in Dublin is known to exist, or has been recorded so far. In that year, 1571, appeared the two first specimens of printing in the Trish type sent over by Queen Elizabeth to Dublin. One of these consists of a poem; and the only copy of it which is knowu to exist is the broadside, on each side of which it is printed, and which broadside is to be found in the library of Corpus Christi College, Cambridge, in the "Archbishop Parker" Collection. It would seem to have been set up and printed as the first specimen of the type, It consists of twenty-two and a half stanzas of eight lines each, printed in three parallel columns. The whole broadside measures $15 \frac{5}{16}$ by 11 inches. The "Queen Elizabeth" fount of type is an imperfect one ; but Mr. Robert Steel, the eminent bibliographer, told me that the various type-characters are identical with the Old-Saxon characters; and it may be stated as confirmatory of this view that there is written at the top of the broadside in contemporary handwriting these words :--" This Irish ballad printed in Ireland who belike use the old Saxon caracte." I venture to submit that this type was simply Anglo-Saxon type cast by John Day in 1567 for Archbishop Parker, and used as if Irish type. ${ }^{1}$ The imprint on the title-page of the "Alphabet and Catechism" (shortly to be mentioned) clearly stated that it was printed with Gaelic type at the cost of Mr. John Usher, Alderman. There is no reference in it to the actual printer. John Usher was not a printer by trade or business, as far as I am able to learn. In the imprint to the hroadside a different Irish phrase is used. It runs thus:-"This is put into print hy Mr. John Usher," \&c.; but Dr. O. Bergin, whom I have consulted, does not consiler that the Irish phrase means that Usher actually printer the hroadside

[^149]himself, hut rather "causel it to he printed," or proviled for its printing, as an editur whllisher might w in these days. Hence the question of the actual pinter is still left "pen ; amt the conjecture I will put forwarl now is mot wholly menterle wensistent with the imprint on the broalside.

At the same time. in immendiately afterwards, appeared the "Alphabet and ('aterhism" in Irish, a $1 \ddot{2}$ m" measuring $5 \frac{11}{10}$ inches by $3_{4}{ }^{3}$ inches. It consists of fifty-fom: pages, mumberen, and two pages of Errata, \&e. In both the homiside prem ant the Catechism are fonnd initial letters that werr used hov Homafrey Puwell at an earlier date, which seems to
 in f"sexam of the (smemment fin whon he worked, and may have been then in the intorval. The Caterthism was perpated amt puldished by John
 prinur: int he anl Noblhas Walsh wer the persms to whem were entrusted The printine of the ('utm-him, ant the translation of the New Testament into Itan: An far in dime pationlars of wh, was or were the actual pinters Wh, - . lif …: hat we will horty find mention of a Willian Kearney, a relative of
 nention.

 month of August, 15s7, wrote a letter to the Lombl Deputy and Council of

 recommembed him to the Irish Council as a proper person to he entrusted
 strange to say, no reference to it is to be foum in the Public Calendar of the

years from 1587 takes us to the year 1573 , very near to the year in which the Catechism appeared; and the fact that Willian Kearney was a relative of John O'Kearney, and knew Irish well, and how Irish type should le made and made use of, suggests that he may have learnt it in Dublin when that type was sent over here, or previously in London. Of course this is only conjecture; but so far as I know there was no other Irish type in existence at the time, not even alroad, nor for many years later, from which he conld have learned. 'I'he fount of type was probably cast in London, and perhaps Kearney assisted at its making. He was, it would seem, always descrihed as a printer; that was his trade or occupation.

Apparently nothing was done in 1587 nor for some years afterwards; but in October, 1591, being then apparently lack again in England, he was permitted to pass with his presses over to Ireland for the purpose of printing Irish Bibles. I should add that he was in fact engaged as a printer or hookseller, or both, in London during 1590-91, and even into 1592. Probally, though the warrant was dated October, 1591, he may not have crossed over, or at least left London permanently, until the following year.

In a form of a state letter (existing amongst the mumiments of Trinity College), evidently intended to be sent to each Bishop in Ireland by the Irish Privy Council, there is mention of William Kerney (or Kearney) again. He is described as a native of Ireland, and for twenty years brought up in the art of printing; and the Bishops are called upon to assist in collecting money to defray the cost of printing the New Testament. This letter is undated, but would appear to belong to the year 1593 . It was certainly after 1587.

Kearney also appears to have been employed by the newly startecl College (Trinity), as there is extant amongst their mauuscripts in their muniment-room, proposed terms, bearing date 18th March, "1596-7," from the College to Kearney, from which it would appear that after having set up his press in the College he had left it, taking away with him his press, type, \&c., and also certain shelves, \&c., which helonged to the College, as well as the printed sheets which he had bound himself to deliver to them. Kcarney must have been already at work printing the Irish Testament, as in the Calendar of Stato Papers of Ireland for the year 1595 it is stated that the New Testament was then actually being set up and printed in Irish. It was probably at the end of 1596 or beginning of 1597, as I judge, that Kearney left the College.

Further, in the edition of the New Testament in Irish (Dublin, 1602), in the Preface or Address to the Reader (in (Gaelic) which follows the title-page the reverend editor refers to the project contemplated for so many years before, and states that five years previously there had actually been set up of
the New Testament in type as far as the sixth chapter of St. Luke's Gospel. I think it may farly he taken that this preface was written in 1602 , though the Allress to King James (in English) camnot have been written till after his accession in March, 160 :; but the date " 1602 " on the title-page seems (") me to imdicate that the text, with the title-leaf and Preface, was printed oft realy to lue issued in that year, hat was delayed for some reason, or it is $1^{\prime \prime}$ ssille that some coples were issued in 1602 , ant the rest held back.

Calculating hack fise years from 1602 hrings us to 1597 , or, excluding 1602, even to 1596.

Again, in the same Preface there is a statement that it was "in the new

 of su Lithnt Hingham) up to the sixth chapter of St. Luke's Gospel," as just mentioned. but that the remamber of that (ioneland St. John's Gospel were fret then pritud. bor for fise years afterwarts. Now, Nir Richard Bingham
 the limet pution of th. New Tertament must have leen completed at the Wey leat hether, menty in, that yar; and as it was done in the College, it

Th, enly evtomt pige wi finting ly Karney learing his name is a foulduath whinh hermint fin the Irinh (iovermment against the Earl of Inmon. Thn l'molomation is datel 12th Jon (1595), and in the imprint Komme is hemben as "(bumi: Primter," and the place of printing was the "athental "homb of the likesed Trinity" (Christ Church). It is a
 in loneth ing 11 im lum in wilth. It is pinted in lyack letter, except the

 this Irnclamation is quite different from Powell's.

Whimm Kornmy was mat member of the Company of stationers of
 in the year 1597, as already shown.

 necus in its imprint. Possilly Franchan, who printed here in 1600, was an
apprentice of Kcarney's, or learnt the husiness from him; but ahout him I hope to treat on a future occasion.

It is clear that Kearney must have printel a gool deal, and there were various Proclamations printel for the Government here, lut unfortunately so far extant copies have not been found. It is clear also that Kearney must have set up a good portion, if not all, of the New Testament in Trish several years before it appearerl. While, therefore, it is possible that either Usher or John O'Kearney or someone else may have been the actual printer of the Catcehism and broadside poem in 1571, yet it scems to me possille, even probahle, that William Kearney was the actual printer; and, therefore, in the absence of clearer and more positive evidence to the contrary, I take him to be the second earliest known printer in Dublin.

IN.

(HEMI:AL N゙UTE ON A s'lUNE LAMP FROM BALLYPETAGH, ASL WHHER SIMLAR STONE VEssELS IN THE ROYAL IHINH ACANEMY COLLECTION.

By RICHARD J. MOss, F.I.C., F.C.S.

Read Apull 25. Ordered for Publication April 2\%. Published Jult 16, 1910.

 where ther sued wan fand: all he knew ainnt it was that it had heen a
 rememher, and that it had been in the same house in his father's time.

 for experimets.

 high legree of pornsity.

 is only 0.04 per cent. of the weight of the ressel.

[^150]This greasy substance burned with a smoky flame like tallow. Its specific gravity at the temperature of holing-water was 970.5 compared with water at $15^{\circ} \mathrm{C}$. This is much higher than the specific gravity of tallow. The specific gravity of an old specimen of tallow under the same conditions was found to be $904 \cdot 6$; but on heating it for some hours its specific gravity rose to $9 \cdot 3 \cdot 7$, and prolongel heating leaves a residue heavier than water.

Fia. 1.
The substance dissolvel almost completely in alcohol, leaving a small, flocculent, dark-hrown residue. The alcoholic solution had an acid reaction and it took 17.8 c.c. of an alcoholic solution of canstic potash, containing 0.101 grm. of potassium hydroxile, to neutralize the acid in 0.727 gramme of the original substance, using phenolphthalein as an indicator. On heating with an excess of alkali no saponification took place; it is evident, therefore, that no unaltered fat is present. When the excess of alkali was neutralized, the solution evaporated to dryness, and, extracted with petroleum-ether, the latter left a slightly yellow wax-like resilue, weighing 0.117 gramme. 'Ihis is probably a hydrocarbon. The portion insoluble in petroleum-ether dissolved in water, and, on alding a slight excess of dilute sulphuric acid, fatly acids
werging $0 \%-5$ gramme separated. The melting-point of these acids-for it was unvimsly a mixture-was $46^{\circ}=4040$. The diffeulty of isolating fatty , will in whll kmon; it was homeless to thimk of separating the constituents "if s." small a quantity. The aqueros liquil from which these acids had been whathen yohlem, when shaken with ether, a further quantity, so that the fatty acils present are not wholly insoluble in water.

These ohservations warrant the conclusion that the substance extracted
 of the nature of fatt wils. The prespuce of this combustible greasy mater - "fynd - the sulpwition that the ressel was used as a lamp, and is wholly inconsistent with the theory that it was a drinking-cup or chalice.

I thomat it inambe tor asertain wherther the ressel contained anything
 Accombingly Iflacel it in a glas vessel with alsout two litres of water, and
 weighing 30 O grammes. This resilue was of a brown colour, had an acid
 thers a sullit, whith I fommel to the ammonimm chloride, sublimed; it then
 with alowhel, $0.2+$ gramme dissolved. This portion had a strongly acid

 suy, boes than a milligramme.

Ther was a sufficient quantity of the aqueous extract of the vessel insoluhle in alowhl to admit of a quantitative analysis; and I found its s"mpmation was ase follows:-

$$
\text { Na, } 25.81
$$

NH_{4}. 356
(a , 24 ?
Mg. 67
Fl 118
Ce, 38.29
SO. 19.42
Wiater aml organic matter liy difterence, . 8.64

Moss-Chemical Notes on a Stone Lamp from Ballybetagh.

I suggest the following as the probable composition of this saline matter:-
Sodium chloride, 51.55

Sodium sulphate, 11.66
Ammonium chloride, . . . 10.57
Calcium sulphate, 8.26
Magnesium sulphate, . . . 3×35
Iron sulphate, 4.21
Sodium not accounted for in the above salts, 1.77
Water and organic matter, . . . 8.63
100.00

The presence of this easily soluble saline matter, consisting mainly of common salt, proves conclusively that the vessel could not have been exposed to the weather. It is highly probable that the vessel had in fact remained, as my informant supposed, in possession of his family for a long time; and I suggest that it had been used as a lamp by some of his predecessors.

Professor Henry J. Seymour has been good enough to make a petrological examination of some fragments of the rock of which the cup is made. He identified a white and a green chloritic mica, plagioclase, gxanules of quartz, and flakes of kaolin, and from these results and the general appearance of the rock, he concludes that it is a decomposed schistose epidiorite or diabase. It is probable that the vessel was made from a boulder; the nearest locality from which the boulder might have been derived is Bohernabreena, which is about eight miles north-west of Ballybetagh.

An analysis of a small portion detached from a cavity in the base of the vessel gave the following results:-
Silica, 51.86

Alumina, 18.92
Ferrous oxide, 1.31
Ferric oxide, $9 \cdot 22$
Lime, trace
Magnesia, 9.83
Potash, 31
Soda, 2.51
Water, 6.19
$100 \cdot 15$

The alumina includes a trace of phosphate and some titanium dioxide.
This result fully contirms Mr. Sermour's opinion, if we assume that most of the iron originally present as ferrous oxide has been oxidized, and that the lime has heen almost completely removel, and in part replaced by magnesia -changes which wouk naturally result in the process of weathering. The weathering mot have taken place when the rock was exposel to atmospheric influences, and mainly through the action of water. It cannot be supposed that the rock from which the vessel was fashioned contained the readily soluble sales which I detectenl in it ; the presence of these salts also preclukes the inde that any almeciable weathering has taken place since the vessel was used as a lamp. It is highly probahle that the weathered rock was selected on asconnt of the ease with which it could lee cut into the required form. How is the salime natter to tex accounted for? There cannot, I think, le any wensmable dombthat the sulimen chlorite has its origin in the use of chtmary hnmentir greane: , whaned in the process of cooking, as a material for inuming. such greane, mules it were carefully purifed, would
 the ammonium comprunds also present.

The sahm matter wan ahmot completely tre fom potash. The quantity of petenh was an stmall that it was unly detertent with ditticulty hy means of

 usually foum in animal tissue, such as would have given rise to the

 in the saline matter.

that some other explanation of this relatively large quantity of sulphur must be sought: I suggest it is to be found in the use of sulphur matches. It may be assumed that when the lamp, was in use the mode of procuring a light was by means of flint and steel. This methorl was in common use among the peasantry as late as fifty years ago. The spark of incandescent iron kindled tinder, or in later times paper prepared with nitre; and the smouldering tinder or paper was used to ignite slips of wood tipped with sulphur, or "spunks," as they were called. The frequent use of sulphur matches of this type to light the lamp would inevitably introduce sulphur into the grease used in the lamp, and lead to the production of sulphides and sulphites, which would eventually oxidize to sulphates.

The foregoing observations do not throw any light upon the probable age of the lamp, except that the very distinct tallowy odour of the grease suggests that it cannot be very ancient. Colonel W. G. Wood-Martin ("The Lake Dwellings of Ireland," page 142) refers to the use of a very primitive kind of lamp near Carrickfergus, and in the islands off the Ulster coast, so late as the year 1840. The lamp, of which he gives a figure, is a saucepan-shaped iron vessel, with a long pointed lip for the wick. The stone lamp is scarcely more primitive; and it may have been in use in this country in out-of-the-way places within the past century; though it seems strange that so little should have been recorded about this, or indeed any kind of lamp in Ireland.

Through the kindness of Mr. George Coffey I have been able to examine some similar stone ressels in the Royal Irish Acalemy collection in the National Museum.

The vessel from the Blasket Islauls, formerly supposed to be a chalice, figs. 4 and 4 A in the paper I have alrealy quoted by Mr. Armstrong, weighs 2130 grammes, and its specific gravity is 2.42 . When treated with ether, it yields a greasy substance of a brown colour, weighing $1 \cdot 34$ gramme. This corresponds to 0.06 per cent. of the weight of the ressel. The greasy substance burns with a smoky flame; it has a strong smell like the smoke of peat, but more aromatic, suggesting incense. I could not, however, detect anything that would point to the use of incense-resins such as benzoin or olibanam. About 70 per cent. of the greasy substance dissolves easily in alcohol; the solution is acid, and with caustic alkali it yields a soap-like body which is decomposed by a mineral acid with the sequaration of a substance which behaves as a mixture of fatty acids. It was hopeless to identify the constituents of so small a quantity. The portion not reatily soluble in alcohol behaved like a grom-resin. It afforded some evidence of the presence of succinic acid; lout I could not positively identify that acid in the few milligrammes available.

The saucer-shaped vessel, also from the Blasket Islands, formerly described as a paten, fig. 4 B, in Mr. Armstrong's paper. weighs 205 grammes, and its specific gravity is 2.73 . Extracted with ether it yielded 0.39 gramme of a brown grease. This corresponds to 0.19 per cent. of the weight of the vessela much larger proportion than the other vessels yielded. The grease has no clefinite melting-point; it more nearly approaches an oily consistence at ordinary temperatures than the grease from the other vessel from the same place. The grease is completely soluble in alcohol ; it is easily saponified; and it yields a mixture of fatty acils semifluid at ordinary temperatures. This grease is sufficiently different from that obtained from the so-called chalice to suggest that the two vessels were not associated in use.

The Duwth ressel (fig. Nu, 9, Hate xxr., of Mr. Armstrong's paper) weighs 14,0 grammes, and its specitic gravity is 203 . Ether extracted from it a brown, greasy sulstance, wemghing 0.07 gramme, or rather less than 0.005 per rent. of the weight of the bessel. The grease is of about the same colour and consistence as that ubtained from the bally betagh lamp. It has no definite meltingopint, hurns withasmoky thame, dissulves in alcohol; and the solution behaves like a mixture of fatty acils.

There is ann feature comman lo all these ntome ressels-they all contain a hrown, greasy sulatane which I hedieve th be a mixture chiotly of fatty acids. It is manitially mit a matiturnt of any rock vecurring in Ireland. The presplue of thin predse in at whe acomated for it we suppose the vessels to hase been used for buning sone kind if fatty matter, as we know similar beseld 1.1 he nsed at the present the in varims parts of the world. One can satcely herstate to adupt the virw that the worates are lamps of a primitive type, though not necessarily of any great antiquity.

[169]

X.

PROCEEDINGS IN THE MATTER OF THE CUSTOM CALLED TOLBOLL, 1308 and 1385.

ST. 'THOMAS' ABBEY v. SOME EARLY DUBLIN BREWERS, \&c

By HENRY F. BERRY, I.S.O., Litt.D.

Read April 25. Ordered for Publication April 27. Published July 16, 1910.
So little is known of the medieval religious foundations of this city, as fur as their early history is concerued, and so few and scant are the notices regarding the buildings contained within their precincts, that any additional record which throws light on them is of interest. The great abbey of St. 'Thomas the Martyr, ${ }^{1}$ which to-day is only recalled in Thomas Street and the adjoining Thomas Court, was founded in the western suburbs in 1177, under royal auspices, by William FitzAudeline, "dapifer" of King Hemry the Second. It was dedicated to Thomas à Becket, the murdered Archbishop of C'anterbury, and was set apart for the use of Canons of the Congregation of St. Yictor, a Parisian institution, the members of which were canons regular of St. Augustine. King Heury and his son King John specially favoured the abley, and made it an object of their bounty.

Students of the civic history of Dublin are familiar with two awards relative to the custom known as tolboll, which was a certain proportion of the ale and mead manufactured and sold by brewers and taverners in Dublin, claimed under royal grants by this abbey. These awards, dated respectively 1524 and 1527, are enrolled in the Liber Albus of the Corporation, and will be found in Sir John Gilbert's "Calendar of Ancient Records of Dublin," vol. i., pp. 178-189. They are also printed in the "Miscellany" of the Irish Archrological Society, 1846, vol. i., page 33. They arranged differences between the Abbot and Convent on the one part, and the Mayor and Bailift's of Dublin on the other. The former had filed a bill of complaint, claiming that King John had granted them, for their own use, such measure of ale and mead as he himself was wont to have of the taverns of Dublin, i.e., the tolboll of a gallon and half of the best, and as much of the second brew, which they duly received, until they were hindered in their right by the city

See Paper on the Abbey, by Canon A. L. Elliott, in Jownal, R.S.A.I., 1892, vol. 廷i., p. 25.
authorities. The arbitrators awarded that none of the brewers in the city at the particular time brerred sufficient to justify the proportion claimed being exacted. Henceforrard the abber was to have the tolboll of every brem of not less than sixteen bushels (each bushel being sixteen gallons), and of none under twelve bushels.

King Henry the Secinl granted this custom to the abbey for a particular charitable purnose, which purpose is not disclosed in the proceedings already mentioned, and whin'h had, must probably, passed completely ont of memory. Certain ducmuents in a register of St. Thmmas's Abley, now in the Bodleian Lihary, Oxfon (Fawlinsm Mrs.. F. 499), to which my attention was recently (alled, make the King's purn we clear, and attord such on interesting narrative If the ©iremntanese (hithert, maknown) attending his grant of the tolboll,

 historians, they seem worthy of heing brought under the notice of the

 in which the docunents under consideration are to be found.

 A:ment Tlamas. Ahme of the Houn of st. Thm mas the Martyr, Dublin, in
 following details:-
 mony low ine shlu in 1mblin, ... that the institution might find and keep

 names of two more witnesses than the printed copies. They are Roger

[^151]de Maundeville and Adam Herforde. Githard I'ypard of the Register appears as William, and Roger de Playes as Ilanes, in the printed copies. The Charter was executed at Orbec, in Normandy.

The abbot, taking his stand on this grant, demured to the plea that King John had made it for support of poor people aud scholars in the King's Alms House, or that he and his predecessors had smpplied such support. Thereupon, Richard Glynnan, the King's serjeant, averred that King Henry's grant had done this, and that the abbey had supplied support until Easter, 1365.

I'he following jury was then empanelled:-

They found that King John, son of King Henry, gave to St. Thomas's Abbey (as before) in support of the canons, and not for maintenance of scholars or poor people in the King's Alms House; but that King Henry the Second had made a grant to the abbey, for the purpose of certain scholars and poor people being supplied with food, \&c., in said House. The jury further found that the then King's Alms House was erected by the abbot, \&c., forty years since, but they have no knowlelge at what time same was first constructed, because this was done before their memory.

- They also found that the abbot and convent, sixty years before, of their mere will, supplied in said House, of their own alms, forty, sixty, sometimes thirty, scholars, \&c., more or less; without this that they, by reason of any gift of lands, de., made to them, found or ought to find such scholars and poor people in food, \&e. Being asked for what time before the said sixty years the abbey first supplied scholars and poor people in the King's Alms House, they say they have no knowledge, inasmuch as the albey, before their memory, supplied such in the Alms House of their own will, without being compelled

[^152]of anyone, "as from relation of their parents and other old faithworthy persons of said city of Dublin they oiten hearl." For want of repair the Alms House fell down about twenty years before.

The furors alsn inum that King John, lefore his said gift, was seised to take ef every hrew oi ale ant mead fur sale in Dullin, 3 gallons, and that the takine of sune was that custmm which he was wont to have in the taverns, \&e. In ahition, they finm that the ahrey tonk this continuonsly from the time of the siit: and they niten hearl hld men way that the abbey had right and title to what they claimed, by pretext of said gift.

An ther iowument, whin appears at inl 2^{7} of the ancient Register, contiss a rewnit if leyal Preedings hrought hy the abbey against certain frower in Ihulin, with the result in each case. These proceedings, as a mather if tw at andier in pint ui time than these already considered, but
 Tlo. vaimio phows nutel at length in them are of interest as atfording an
 early periox.

 If at Mite: Whann Conwalwa, Rown in Trapent Blissina Lotrix,

 nore iaf s.. the fort ithe Natisity if st. Tohn the lapti-t. 30 Edwarl I, to

 Jha: … hat the para then :mant within the walls. The albot

[^153]committed against him. The brewers were ordered to answer' ; and on this they said that the tenements they now hold were waste and uninhalitel plaees in King John's time, so that neither the King and his progenitors nor the ablot and his predecessors could have taken the custom where the present defemlants tenements are now comstructed, and they sought judgment. Robert de 'Irapston and Blissina Lotrix answer that they hold their tenements of a church; Walter de Nangle and Juliana Honicorle, of an inn, ${ }^{1}$ which are exempt from such custom. The court held that as their tenements did not join with the said church and inn, they were liable.

John Sampson, William Botiller, William Callane, and John de Castleknock answered that the abbot was in seisin of the custom of ale without hindrance on their part; but as they never made mead for sale, he could not have been in seisin of it. In this instance, the abbot was adjudged to have marle a false claim, and so he took nothing by his writ. 'I'he defendant John Sillehy had died.

Finally, the court ordered that the abbot should recover against John le Hore, William Donne (representing Elena de Donne), Joan J'yrell, 'I'homas Coliz (Corlice), Robert Milton, William Ccrnewalleis, Roger Barboure, Walter Shermane, William de Topishane, Robert de Trapston, Blissina Lotrix, Walter de Nangle, and Juliana Honicode, the said custom to be taken in their taverns, made after the making of the said charter, with damages against them.

Later on, the jurors came before the Justiciar, and assessed the abbot's damages against John le Hore at half a mark; William de Vylers, two marks ; John Haywarl, two marks and four pence; Hugh Silvestre, two marks and a half ; Mabilla Araalde, two marks; Elena de Donne, twelve pence; Joan Tyrell, twenty shillings; 'Thomas Coliz, half a mark; Robert Milton, half a mark; William Cornewalleis, half a mark; lioger Barbour, two marks and a half; Walter Shermane, half a mark; William de Topishane, a mark; and Richard Ethnarde, two marks and a half.

It will have been observed that several of the defendants were females; and in this comexion it is remarkable that an enactment slecially dealing with female hrewers is found among the "Laws and Usages of the City of Dublin," enrolled in the Chain Book of the Corporation."

[^154]
[174]

XI.
 A STUIN OF THE EAlLY FORTS AND STONE HUTS IN INISHMOLE, AlAN ISLEN, GALWAY BAY.

ly 'THOMAS JOHNSON WESTROPI', M.A.

l'lates V.-VII.

Real Juse 27. Ordered for l'ublication June 29. Published August 31, 1910.
"Trae Aras of the Nea," as the "Bumk of Hights " records, were in carly times
 so far cut ofll from that province (and even farther from the province of Comangrht, Wo which they have been reassigned since the later sixteenth century) that they rather form a little wond of their own. I'his isolation,
 tonches of primitive times and remains of early buildings that they are a
 carly Ireland and its primitive condition. At one time its stone huts were newond in interest only th those of Corcaguiny and Iveragh in County Kerry; its forts hold the first rank, and, indeed, have usurped more than their just share of attention as representative structures of their class to the outer worte.

 the same island and sume typical huts. Here, as hefore, we will study criti-
 endeavouring to disconer what features are carly, what justifiably restored, and to climinate as far as pussith the distrust maturally engendered by the Wholesale restumtions of the year lasis. Thfortunately the many sources Whish yied so full an acenont of the unvestored Dun Aengnsa fail us for the thast part. It is as if writers exhaustan ly the conplexity of that fort passed by the rest with a feeling akin to contempt. liy ill chance ny own notes of $1 s^{-}$s on these other forts were huried and mere general statements, withnut even sketch-plans or detailed camera-sketches, so are almost valueless compared with those on Dun Aengusa and the churches. Even of these, my

Westropp-Eurly Forts and Stone Muts in Inishmore, Aran.

poor for use. No views even of portions of the masonry or steps are in the Ordnance Survey Letters; there are the noble views of the two lesser duns and a defaced one of Dulh Cathair in Lord Dunraven's Notes ${ }^{1}$ and a sketch of a trilithic door of a fort, near Baile na séan, by Mr. Kinahan. More material for the huts is extant; views of the Cloghaumacarriga by Petrie, some plans of others lyy Mr. Kinahan and Mr. Kilbrive, and a canera-sketch of the first taken in 1878. The plans of the forts are poor, and in some cases incorrect when compared with the old descriptions and present remains. The caher of Killeany we describe, giving a view of its wall for the first time, as also that remakable clogham in the same townland near Pouldick cove. ${ }^{?}$

The forts, like Dun Aengusa, give signs of early rebuilling in some instances. One promontory fort, noted by O'Donovan, we failed to reach on any of our visits. It is, however, probable that O'Domovan missed no feature of interest, and that little now remains to be seen.

As to the huts, the question of their age is complicated; some seem very early, and were so regarded in 1685; others are hardly distinguishable from work little over a century old. As in Kerry, so in Aran, such huts long continued to be male; lout as a rule massive work may be assigned to an early period. That any are of pre-Christian times we are monilling to assert. The cells on Skellig Rock and at Temple Gobnet in Inishere are ahnost certainly Christian, and those at the former probably late from the seventh and eighth centuries; none on Aramore seem more primitive than the last, and many have the rectangular interiors which occur also at Nellig. Some of the slahhuts are as primitive as dolmens; but, on a small scale, slab-houses were made down to recent times as pig-sties, log-kennels, and lamb-shelters. The larger dry-stone house near Temple Benen seems late imleen, ant the chorhams near it, and those that stood in the Dubh Cathair and remain in Dun Onaght, are late and rectangular, one with late-louking ambries. (of cells in the walls of forts (other than at Dun Aengusa) we only found a swall one in I)ulh Cathair; but it was too much filled with loose stones to examine fully. O'Donovan notes a second in the unamed promontory fort near the latter place. ${ }^{3}$ Dun

[^155]Oghil, like Dum Aengusa, has no old huts. 'There are no warlers' huts or cells or any passages in the wall of any fort in the islands.

As to the features there are two kinds of steps: the ladder kind, occurring also in several forts in the kindred district of the Corcomroes in Clare, and the sidelong flight, bare in that county. Nothing like a plinth, or like the mamow set-hack lentre fomed in Clare and Coreaguiny, is known in Aran. In some cases the sidelong lights are in comples rising from a landing in a recess, as at Staigue and many other forts.

Of Furt Gateways, save the trilithon and those at Dun Aengusa, all are defacel; lout it is notalile that the ancient faces of the gateway of the inner ring of I) un "ghil mmistakahly show a wide passage, too wide to be eovered ly lintels, unless there were detached piers huilt of small masomy supporting the latter, as is the case at I un Aengusa. ${ }^{1}$ Killeany caher had its jambs huilt in layers continuous with the facing of the wall, as is most usual in the forts of Mayo, inlant Calway, (lare, and in some degree in Kerry. The amtrance at I man Onaght seems like that of Ihun Oghil; hut the masomy at the onter ape may have leen restored.
 batcer, muliku Inun Aemgisa and Dubh ('athair, the last heing the worst-huilt in Inishmme, as Ihun Ounght is the hest. Upright joints oceur in the three; so far as I know I han ('omor is the muly other Aran fort with this feature. The walls of all, save Killeany and prothaps the duns at Bailenashane, are nsually of twor or more sertions, each with an outer face, and in some cases an imuer one, lat, as a rule, of sumaller stomes than the outer ones. Duth Cathair ham (as restomi) three tarmaces and a sort of turrace arross a hollow; Ihmes
 shatio of slats, unlike the sharp pillars of Dum Aemonsa amb Ballykinvarga alon a winding way, bout prohally mather mondem, as it leands to a llank wall. Sone of the fonts have springs within their anhit; hut growl wator is foume man the great ring at Teampull na namh at Kilmurvey and noar Duns ${ }^{\text {Whal and (Onaght. }}$

Histormal. Notes - At a risk of repetition, hat as hriofly as we are able, Int no considur the iremeral history of the islands. Early legend asserted, What is prohatly a gembugiral fact, that "Longh Lurgan, ${ }^{2}$ or (ialway Bay, larat out " at a very early if shomitul date in Irish history, the remants of the whe lame being the isles of Aran. Alwut the hegimang of our era,

[^156]
Westropp-Early Forts and Stone Ihuts in Inishmore, Aran.

legend (in the tenth century, if not earlier) athibutel a settlement in Aran to a fugitive tribe of Firholgs, "the sons of Umoir," Aenghus at Dun Aengusa in Aran, Conchium (or Coneraidh) in Inismelhon (Inismaan, the Middle Island). Some fancy that Murbech Mil, a third chief, settled at Kilmurvey, a fow hundred yards from Dun Aengusa; but the place intembed was probably some other seashore on the coast of Galway or Clare. Conchiurn had become Conchobhair by the seventeenth century; but local legend identified him with (and attributed his great fort to) Conor na siudaine O'Brien, King of Thomond, who was slain in 1267.

The descendants of the mythic hero Fergus mac Roigh and the great Queen Maeve, the Corca Molruadh, replaced the Clan Umoir in murthem Clare, of which Aran was a part. There was an Eoghanacht tribe in Corcomroe, the Eoghanacht Nimuis, and it held the islanls at the dawn of history. If the late "Life of St. Endeus" rest on solid recorls, Corbanus, their chief, deserted the islands on the arrival of St. Enda about 480. ${ }^{1}$ Enda's monastic settlement lay in the east of Inishmore; but there was another ecclesiastic who established himself in the west-Brecan, son of Eochu Bailldearg, a Dalcassian prince of Thomond (then mainly Limerick and northern Tipperary, with a precarious suzerainty over Clare) : he settled where Temple Brecan and his grave preserve his name. The Dalcassians, after :350, under Lughad Meamn aud Conall Eachluath, Kings of Thomond, seizel Clare from Connaught, probably settling the plain from Inchiquin to Quin, and getting nominal supremacy over the free tribes, the Trallaighe, Corcavaskin, and Corcomroe. One might expect that this attached Aran to Munster, for Enda asked his brother-in-law, Aenghus, King of Cashel, for the Isles, but the King had never heard of them till then. As an appanage of Cashel they remainel, though they were released from certain tributes in A.D. 546. The late "Life of Endens" does not mention the forts, and is quite devoil of local colour. Aran became a centre of learning and religion; it was a resort of stutents from all parts of Ireland, and from the Continent, as the grave inscribel "septem Romani" (no less than our written records) testifies. ${ }^{2}$ Of its Irish "hmmi, to select only a few, Kieran of Clommacnois, Fursey, Brendan the Voyager, Colman macl)uach, perhaps Benen, diseiple of Patrick, C'aimin, brother of Kevin of (ilendalough, and Columba, the apostle of the Hebrides, studied in its cells.

Successors of Enda are recorded at intervals from 654 to 1400 ; but the

[^157]spries is very imperfect. The monasteries mere burned in 1020, plundered hy the Danes in 10s1, and by the English, unter Sir John Darcy, with a fleet of fifty-six ressels, in 1334. The Clan Teige O'Brien, of Tromra in County Clare, became the ruling lay chiefs in probally the thirteenth (entury, when thoir relative (inmo na simbane, King of Thomond, is alleged to have "huilt" (i.e., as usual, "rehuilt" or "repaired") Dun Conor. The Ulan hailt orbienos (watle in the chiot rine fort of Inishere, and a Francisean Honse at Killeany in liso. They kept dalway bay free from pirates, and were in cluse alliance with "the City of the Tribes" at its head; their power culninated in 1560, when they were strong enongh to invade Desmond; for, twenty-five years later, the O'Flahertys had driven out the chief and annexed the island. In vain the (Galway merchants prayed the Government tur reinstate Clan Teige; the Ammala was expecterl, and the English left the
 even after the great civil war of 16 ± 1, hut never established it. The Elizalnethan authorities garrismed a castle of Arkin at Killeany; it was repaired, and a new garrison placed there in 1618, and again, after its suremler to the Cromwellians, in 1651 . It was rehuilt in the following year. As to the Firlmig descent of the inhalitants, the inquisitions only exhibit names from Comnenara aml Clare, evident immigrants with the O'Briens and W'Flahertys. There is also a strong strain of Cromwellian blowl, as the ampison, luft wh itsilf, mergenl intu the native purulation. In 1641 the W'Flaheress maided ('lare from Aran, and captured Tromra Castle from the Wand fanily, to the destruetion of their leaker twelve years later. Roderick "'laberty wrote his well-known acenont of Aran in 1685 , and the ruins
 It is very remarkable how ahsulutely silent all history anl reands are on the shlijut of the rimp-walls. A legrend of almat the year 1000 , an allusion in lfs.j, aml a will therry aml imarinary sketch in 1790 , sum up the amals of I mu A Anquas before the nimeteenth century. The nther forts of Inishmore are nover even mentionme. They were of no interest to monk or politician, and even the intelligence and wite mind of O'Flaherty only thought of them for a monomt, and dial not preserve us even the name of a single fort with which this paper is concerned.

As to the divisions, Arammore in the sixteenth century sems to have Been divided intu Trian Muimhneach, 'rian Connachtach, and Trian Enchanachtach." Thesp donhthese represented the divisions assigned, the first to the representatives of lireven and the wen of Themond, the second to the

Westropp-Early Forts and Stone Mrets in Inishmore, dran. 179
see of 'Tuam, and the thirel to the representatives of the Bonganacht Ninuis in Corcomroe, which was a virtually independent state doing nominal homage to the Princes of 'Ihomond and the over-kings of Cashel.'

Dubil C'athatr.

(Ordnance Survey Map, 6 inches to 1 mile, No. 110.)
The most remarkable stone fort on Aranmore after Dun Acngusa, and one of the most remarkahle in Ireland, had its restoration been more prutent and better recorded, is the Black Fort, Dulh Cathair, or locally Dun doo 'haar, the fort of the black caher, wrongly called Doonaghard on the map. It is very

P'lan of Dubh Cathair, Aranmore.
inaccessille, being lenced off by a long series of totering, hry-stone walls, and almust impassable laneways, filled with loose stones, the best approach, though circuitous, being along the coast from opposite Killeany. It lies on a high

[^158]hearlaml. alnut 110 tw 120 feet high. ${ }^{2}$ to the south of the valley extending from Kilman on the sumth-east, and is a conspichous object from Thun Oghil and the wentral ulam of the islam. Its site is remarkahle, the strata having finmed twor arched curves to either side: the sead drilled caves through these till the arches collapsed, miginating two lomg hass, with a slightly holluw heallant between; the hollow can be traced inland for a considerable distance between the two curvel rilges. The view of the fort from the headlands or Lay-heals to either sile is very impressive, for (though scarcely a third of the height, ":00 feet," stated ly O'Donovan in the Ordnance Survey Letters) the cliff on which it stands is perpendicular or overhanging. ${ }^{3}$ The rowks, lark grey, lilack in the shadow, are formed of huge strata of limestone, practically level, their seams often marked and their darkness relieved by chuse-packed rows of sea-gulls. The boom of the waves into the great caverns can he heard through the rock inland with startling eflect.

We first meet with an abattis, formed of low stone slabs, set upright, in cramnies of the rock, and far more passable and less raged and worn than these at Ballykinarga or Ihun Aemgusa. There is harlly any earth, save in the luntom of the hollow, ant that, uswally, 6 or 8 inches deep, and a mass of seas-pink. The haml in the hollow varies from $11 \pm$ to 126 feet, the last being through the midlle, beside the winding path." The latter, a zigzag hand of green sea-pink, is prohalily of late migin, as it leads up to the intact wall, and the entrances were far to either side. No tall pillars necur, thongh several such, as regular as if cut the square, lie just outside it; one 7 feet long and exactly a font square, with straight ents, is a surprising piece of nature's work, sipuare and fair as a timber bean. The wall is of rute and alturether poor amd small slah masmry, hulging in and out, like the middle rampart of lun Acnersa, overhanging its hase in many places, and sorely needing the modern huttresses of the resturers. It is wer 18 feet high at the head of the path, and werhangs is inches. There are set slahs and prohals hut sites among the bhechs, hut the age of the huts is probahy very late. The alattis extends 70 to 80 feet castward past the end of the liny, as if the fort had once beem wider : or at least the wall may have stroot on the actual lamiward end of the headland, and the ground of the approach have leen protected along the clifls.

[^159]When Petrie visited it in 1821, there was a perfect gateway at the end of the rampart to the west. This, with a great square "slice" of the cliff, collapsed before 18:3), when O'Donovan visited the spot. This latter writer' assigns the date of the Dun to 1000 years before Dun Aengusa, ${ }^{2}$ and had little doubt as to its having been built by the T'natha de Danaun, or the remnant of the Firbolgs, immerliately after the lattle of Muytura. The wall formed a segment of a circle 220 fect long, 20 feet high, ind 18 feet thick; it was of rough large stones, far from heing perpendicular, and without "any attempt at masonic art." Compared with Dun Conor it must have been raised in the very infancy of society. 'I'he "Rinn" was 35 4 feet long, 220 feet broad at the wall, and 110 feet at the south end, where it forms a terrific cliff 300 feet high. Inside were rows of stone houses " of an ohlong conical form," but nearly destroyed; one row extended along the wall and was built againstit. The other ram north aud south for 170 feet, where it brancherl into two rows, one to the edge of the cliff at the south-west, the other to that on the south-east, but these rows were nearly washed away by storms. The great storm (the famous "great wind" of January, 1839) had recently done them great damage, hurling the waves "in mountains" over the high clifts, and casting up rocks of amazing size on to the summits to the east. The shower of spray fell quite across the islanl. He gives a map which shows no steps, but Dumraven marks two tights. The cloghans, or huts, near the wall included one 12 feet across inside, and perfect (it was probably hut " E " of our plan). The largest, No. 2, was near the wall, and 18 feet long by 13 feet wide. ${ }^{3}$ (I cannot suggest its identity, though the sketch plan coincides fairly well with the remains.) The gateway was on the east side, near the margin of the cliff. As may be seen, O'Donovan notes no features in the fort; but, from its condition hefore the restoration, this is evidently a mere oversight. Ferguson ${ }^{4}$ and several writers who describe Dun Aengusa omit all account of the Black Fort.

[^160]About 18:0 Lord Dunraven ${ }^{1}$ gives us the only other description of value. Tepeating O'Donovan's figures for its length, and the length and height of the heallam, he notes that the wall had two faces or sections, each 8 feet thick and 16 th is feet hish, the iop being nowhere perfect. The stones were laid as healers, the matury lome, the eastern gateway utterly ruined. He noted (what "lomovan werlowed) that there was a chamber in the wall, and adks :-"Scarcely any of the inside face of the walls now remains."

The anthor in the "Irish builder "s seems to confuse notes on the walls of the link Fort with thase in Ihun Onacht, fullowing (even in the error of the .litts heirht) the "Lelters." He imlepentently, in June, 187\%, noted the abdtic, intidt which were the remains of several buildings, one a beehive
 rumpat was a small chamber, is feet 8 inches ly : feet t inches hy :? feet \therefore influs. Ghe hat imside the font hanl a midten of lumes and periwinkle Andl- Mr. Kimuna's motes in 1×-5 larely name the fort ; my own notes and vinw in 1sis atre of little if imy valne - "a bigs, hroken wall across the hearl, with a lot of low stones set in front over a hollow. It has no doors, ami fll the insid. is ussert ; hut it ham huts just inside the wall, and, I think,
 wall.

The total result, as bearing on the existing features, is that the wall

 defaced remaing of a gateway at the east end, close to the cliff:

Is resturen, it exhilits an imposing interior, with two lines of terraces,

 arm two silelong flights to the west of the buts, and one to the cast, from the :rmondeled to the middle terrace, and a short flight to the lower one. The wall at the east end forms two sections, 8 fent 6 inches inside, and 6 feet outside; lnetwern them is a stone set with its ellge just outside the wall face, a late feature fomen in Scottish brochs, the forts at Fahan and near Dingle, and a fow wthers (like Monerarowan, amp the sfuare calee of ('raghallyconcal) in 'late; 9 feet from the emo of the wall are two large set slabs, evidently the faring of the sonth pier of the gateway; they stand hardly 9 fect from the cliff orlere. Measuring first from the north gate-pier, we finl that the wall ruming nowhwart makes an abrupt turn westward, almet 54 feet away, and that the

[^161]${ }^{3}$ IIardwirke"s "Science Gossip," wol. for 1875, p. 129.

Westropp-Early Forts and Stone IIuts in Inishmor', 1'ran. 18:3

whole of this latter reach is 214 feet long, part near the west cliff having henn destroyed and more fallen with the rock. At 31 fect the low terrace begins near the bend. A ladder tlight of 8 steps is formed, from 12 to 15 feet from the bend (from which we shall now measure) : the lowest terrace ents in steps at 30 feet; the highest rampart disappears at 39 feet; the sidelong steps from the lowest to the middle terxace, and from the latter to the upler, are at 92 feet and 95 feet on the middle terrace; the ladder steps on the uprer with 7 steps, from 143 to 146 feet; the sidelong flight below, from 154 feet; the rampart remaining here. Near the foot of the middle lower steps is the chamber in the wall. The thickness at various points is:-Middle terrace, 4 feet to west, 5 feet 6 inches at middle, 3 feet to east; upper terrace, 3 to 4 feet, generally 4 feet 8 inches in middle; rampart, 7 to 8 feet in middle; general thickness, exclusive of lower terrace, 14 feet 6 inches to east; 18 feet 2 inches in middle; height, 15 to 18 feet 6 inches, where measured.

The hut sites along the headland have completely disappeared ; of those near the wall there was a dolmen-like house of slabs, 5 feet and 6 feet long and 5 feet high, 15 feet from the wall, near the modern fence. At about 154 feet from the bend and 12 feet from the wall, in the hollow, is a circular hut 18 feet across, then an irregular one 30 feet by $1 \pm$ feet, with a sitle cell to the north-east 6 feet by 8 feet 8 inches, and D-shaped in plan. Close to this is the long shapeless hut, a sort of passage, 9 feet wide, ending in a rounded cell. In this are two small low opes, the northeru so nearly filled that we could only look into the cell. The lintel is only 7 feet long, the ope 20 inches high and 28 inches wide, at 15 feet from the steps of the lowest terrace. The southern door leads into another rounded hut, 12 feet by 1.5 feet, with an irregular passage $2: 3$ feet long. South of this again is a somewhat circular hut, with (as usual) walls 3 to 4 feet thick and 18 feet by 21 feet outside. I saw no traces of middens in the fort, but the whole interior is strewn with shells, usually (as I have often seen happen) droppert by sea birds. So far as I can judge, most of the ladder stens are ohl ; the sidelong tlights are mostly, if not entirely, rebuilt, but probably on the site of similar thights. Much of the small inner facing, especially to the curved eastern end, is new. The lower parts of the huts are ancient, with the two small "creep" doors already named. In the more eastern part of the main wall I think there is a sloping mark, as if a sidelong Hight had once rum un to the terrace and heen closed up and its steps removed, either by early restorers or in the extensive works of 1884 . I was somy to see here, and in other forts on Arammore, that the curses of Irish archrology, the idler and rabhit-hunter, have again legun to tear into the terraces and to lever stones out of the wall faces.

Fortified Headland.- O'Donovan (followed by later writers) records
another fortificel headland to the north-west of the last. ${ }^{1}$ The cliff had fallen in, and storms had redtced the remaining part of the wall to a shapeless ruin. A small chamber, not mulike that at Dun Aengusa, remained in the thickness of the wall. It was 3 feet 8 inches long and high by 3 feet 4 inches wide. The use of such cells is very problematic, save for storing some very precious small pussessims. To the east of the furt are the remains of a cloghaun, 18 feet 6 inches in diancter, the wall 6 feet 7 inches thick. No such fort is marked on the mazs to the north-west of Ihulh (athair; but a short headland at Poullmiskenagh has a clogham to the east of it, and is prolathy the place inteniled. There may he some confusion in O'lonovan's notes. ${ }^{2}$ I can only regret that the ditheulty of expluting the fine sonth coast (from useless tottering walls, extented on the cliff edge) did not permit me to verify the "Letters" in this case. I satw no whece resembling a fort along the cliffs from bonsheefrontee to Whirpeas; lut among the emtless walls and rocklerlges this proves nothing.

Hensheefrontee, the homllamd next to the west of Dubh Cathair, is "pparently walled in an umsuatly massive style. A vast and regular pile of large slabs rums across the neck, the space to cither side being clear. There is no winhonce of hman work, and (though only crentille to those who have seon the hocks in Clave and Galway which have been thrown up by the sea, ant espercially thense hy the gale of January, 1839 , along the coast to the other sitle of I)uloh ('athair) the hand is pussibly natural.

Still further westwan the long, Drid bealland of Nalhea, Aedh's clifit, suremon so likely a site that I, at some trouble, examined it. However, the Wall shown on the maps provel a slight momern one, and there was no trace of ohler work or anything to reward one for traversing the complicated and ruged hohereens, save the heautiful outhok along many miles of foam-girt precipices extomding to the Dramocks past Dun Aengusa, which presides wer all at the highest puint of the view.

> 1):※-Killeay: (O.S.119.)

This ring-wall, thmgh it has sufferen to a very great extent, was once of latter masomry and in some resperts mome typical than the great "Duns" of

[^162]
Westiopr-Early Forts and Stone Muts in Inishmore, Aran. 185

the island. It stands on a low, rocky knoll, on the edge of the ridge, in the townland of Killeany, and seems to have been very little altered since 1839, when O'Donovan first recorded it. ${ }^{1}$ The caher is much overthrown, but portions of the facing of large blocks, laid very irregularly, but exhibiting one characteristic upright joint, are standing. Many of the slalss are 6 feet thick. There are a large hase course, two faces, and large filling; the outer facing remains in reaches to the west, north-west, and south-east. The wall is greatly overthrown by rabbit-humters inside. The garth measures 81 fect north and south and 51 feet east and west, the wall being in parts 7 feet high and 8 feet thick, but only 4 feet high at the gateway, where the blocks as a rule are 2 feet by 1 foot 6 inches by 9 inches, but some 4 feet to 6 feet long. The gateway faced the south-east; the jambs were built in courses, and the lintel was 4 feet 6 inches by 21 inches by 10 inches, showing that the ope was very narrow; it seems to be but little over 3 feet wide and 4 feet high. No foundations remain in the garth.

O'Donovan calls it a "cyclopean Bolgic fort of small climensions," 72 feet in diameter, the wall 7 feet high, but too crumbled to allow its thickness to be ascertained.

Duns near Oghil. (O.S. 110.)

Mr. Kimahan records another "Dun" near Oghil, which had a wellpreserved trilithic gateway which he sketehed;" it is 70 feet in diameter, with a wall 8 feet thick; the doorway is 3 feet high, and 3 feet 5 inches wide, facing the south-east. In the same townland, not far away, is a cashel 60 feet in diameter to the south-west of Cloghamaphuca. The larger dun seems to measure 110 feet by 220 feet approximately; it is a very dilapidated oval fort, half a mile from Dun Oghil, called "M'Doon," the strongest fort on the islands, with two or three other small cahers. All of these are now extremely dilapidated. The chief "Dun" was described ly O'Donovan in 1839 ; it lay

[^163]south-west from Dun Oghil fort, and was even then much destroyed for building houses. It was built of very large stones, the wall 7 feet high, but neither its thickness nor the width of the fort could be ascertained ; it stood on a rockledge 20 feet high.

Dun Eochla. (O.S. 110.)

Dun Enchla, or, as is msnal with English spaters, Dun Oghil, is the most peminent fort in the islambitur Dun Aengusa, indeed more so than the latter, sod far as thene lamling at Kilwman are eoncerned. It stands on the brow of the eentral hill, not on the aretual smmat, but whe the enge, perhaps for some shelter from the fierce westerly gales. The name is lost, for O'Donovan's Dun Kinhti or Dun Tamain is a play of imagimation, and those chiefs were ranmenterl with Arammer hut with Lomeh Harkett and Tawin Island. It forms one of a line of four stone ring-walls, which, with many stone huts, formed an extensive early settement at Baile na Séan.

Plan of Iban Earmila, Arammorr.
 orak serul, grow in the cracs not far away. It has heen incentified with the Lenchoill where st. binda lamblol, but this last was evidently on the shome.

The Dun is a fine double enclusure, and is seen at its best from the

[^164]eastern slope below, where its full size can be appreciated. The builders took advantage of a natural platform for the centre fort and, in part, of a low rock-ridge for the outer wall to the east, hut to the south-west the latter wall disregards defensive lines and drops into a grassy depression in a very irregular manner. O'Donovan ${ }^{1}$ describes the site in 1839, giving the dimensions of the imner fort as 91 feet north and south, 75 feet 6 inches east and west, the wall being of three sections, $1: 3$ feet to 16 feet high, and 11 feet 6 inches thick, the two outer divisions being of equal height, 8 feet 8 inches thick, the inner much broken, and 2 feet 7 inches thick. To the south the outer section rose 7 feet 9 inches higher than the terrace, which was 7 feet above the garth. A flight ran from the terrace to the south; another ladder 4 feet 1 inch wide, of which some seven steps remained, led up to the terrace. To the west of this spot above the ladder some steps ran to the left: they were 4 feet 1 inch broad, and 2 feet 9 inches deep; he gives their heights, which amount to 4 feet 5 inches. Another flight (now built up) ran from the ground to the terrace at the north-east side: it had three steps, the topmost broken by the falling stones, while some 20 feet from the last was the broken gateway. The north-east section was internally much ruined. In the area to the north was a round heap of stones, evidently a hut, as it had oblong and oval cells, while to the south-east was another building nearly destroyed. The outer ring had two sections, 5 feet 7 inches thick, 7 feet 9 inches to 12 feet high : it lay distant from the imner fort, 50 feet to the east, 90 feet to the north-east, 50 to the south-west, and .89 feet to the sonth; the outer gateway was defaced. This seems the only good description before the restoration. Lord Dumraven only adds a few details: the triple wall of the inner fort is 15 feet 5 inches high to the west, and 14 feet to the east. He notes the south-west flight as rumning up to the platform of the terrace, the south flight from the terrace to the top of the wall ; its first step was of two stones, the second of one, the third of three. The north-east flight led up to the terrace and was nearly destroyed. The wall was 10 feet high inside at the south-west steps, their height if feet, and width 2 feet 4 inches, each being 6 inches hign and wide. He shows ladder-steps near the gateway, combined tlights of steps to the sonth-west, and laddersteps to the south. He gives 1. Burchell's view and plan of the south-west steps ; he also names three sections. The author of the notes (1877) in the "Irish Builder" says the masomry is of stones lying on their sides, not with their ends showing, as at Dun Aenghus. This is not ahsolutely correct, though there is "stretcher" masonry at the gateway, and in the lower part of both
walls. ${ }^{\text {a }}$ The languette was usually : feet high, but 6 or 7 feet lower than the unper wall. The wall was 20 feet thick; the inner division being 2 feet if inches, the milklle 10 teent. and the suter i feet. Three flights of steps south-west, south, ant morth-cast gave access to the hanquette: the southern leal from it to the top, and the north flight had been nearly destroyed. My own motes on the fort (1878) are valueless.

As it now stanls, we may nute that the outer ring ${ }^{2}$ had two sections visille at least to the north-west, where there is trace of a terrace. It was of large blocks to the south and south-west, some 6 feet long and 18 inches thick, set lengthways at the base, but usually as "heallers" above; the suluare ends being visille, the interstices (as at Dun Acngusa) being packed with spawls of stone. It is 8 or 9 feet high, resting on a low rilge, and much iny grows unt of it, as at I un Comor. There are gateway gaps with no traces of chl work, one to the morth-east and two to the sonth. The interspace Intween the walls is 59 feet to the east, 89 feet to the north-east, and usually to to io feet elsewhere, the phan mot being an oval, as in the Ordnance Survey Letters and Lord Immaven's notes, hut very irregular. There are only a mumbon hums ruin, and late traverses or rather field walls in the interspace.

The imer walls hat two divisimes, now indistinguishalle, and a terrace; it was frum 11 feet to 1 i. feet high. It hais a regular latter, like the Clare, Mayo, and Kemy forts, hut this (save to the north and east) is distorted in parts. The jauls of the gateway are ancient loflow, of great long stones, 9 feet 7 inches hy 2 feen : inches, where langest. No lintels lie alomet, hut several seem to have lain down the ahmper ridge wefore the gateway in former years, rembering it probldo that there had leen an inserted gateway like that at 1 min Amyusa.

The pasture was 7 freet 9 inches wife in 18.0 ; as restured it is 8 feet Tinches wille insille. In the interior we mote the following features:-A termace $\overline{5}$ fowe to 6 feet 4 indwe high, and from 2 freet to 3 feet 6 inches wide mowhere 7 fert wile, as stated in sorn bunks) ; the wall rises 5 feet or 6 feet alwwe it. (ining northwarl from the gateway, we finul traces of two flights of staps one alwow the other, the morth-rast; the upher only retains three steps now as in 18:9: one is of two stums; they arw less than 2 feet wide. Of the
 lmilt up hy the mosturers. The mpere is 12 feet 9 inches, the lower 13 feet 8 inches from the gateway. The next is to the north-west, about 55 feet (round the wall, from the gateway. Five lallier-steps, 3 feet 2 inches long,

[^165]run up the terrace, with several new steps at right angles, as if the "reach " of the ladler-steps had been miscalculated, or the terrace raised after they wero built. These steps are not shown on the plan of $18: 9$, in its description, or in that of 1877 . Further to the south, 4 feet 9 inches from the last, a flight 2 feet wide, of which the three lowest steps alone remain, rises from the terrace upward. At twenty feet to the south of the gateway is a flight of eight steps 4 feet 3 inches wide: it leads to the terrace, and is recorded in 1839; so does another flight at 45 feet 10 inches from the gate. 'This has five steps, and another embedded in the upper wall, where perhaps it once continued to the summit. It has also a flight of five steps at right angles to the north. This arrangement and that in the other flight has a counternert in the noteworthy ladder-steps in Caherahoagh, in Inchiquin, Co. Clare; but the transverse flight leads from the terrace up the wall in that fort. For comparison we may note that the usual ladler-flights in Clare, like those in Aran, have no spaces muder the steps, as in the C'aherahoagh stone ladder. The flight in Dun Oghil had three (not five) steps in 1839; two were probably then hidden in the debris, which encumbered the foot of the fort walls at every point at that periol. A curious late arrangement of steps leetween two walls (dating probably from 1884) leads to another ladder-flight of eight steps in the upper section ; this latter was also recorded in 1839. It is 36 feet from the southeast flight. About 23 feet west from it to the west-sonth-west is a ladderflight of five steps up the terrace; it is 3 feet 5 inches wide, and seems unrecorded, though probably, like other unecorded steps, the firmly set base stones and traces of the recess with loose step hlocks were found in the debris by the restorers.

The garth measures 91 feet north and south, and 75 feet 6 inches east and west; there are no hut sites save to the north, where a round pile of stone, with chambers, once remained; we find an anomalous "round thing" with a flight of steps, possibly made with the blocks of the "closed Hlight," just opposite. From its situation on the central hill, and the large number of huts, with three forts, beside it, Dun Oghil, though less imposing than Dun Aengusa or Dubh Cathair, must have been at one time the chief residence on the island; and it is regrettable that its ancient name and legend are umrecorded and lost.

Dun Eoghanachta. (O.S. 110.)

One more perfect ring-wall stands on the edge of a bold rock-ridge, not far from the so-called "seven churches." Among the oller settlers of the Corca-modruadh tribe in Clare we find, apparently, a branch of the East

[^166]R.I.A. PROO., VOL. XXVIIL., SECT. C.

Munster Eoghanachts ${ }^{1}$ called "Ninuis." Its chief, Corbanus, was in Aran (if we may trust the 1380 "Life") when St. Enda landed about 480 ; he then retired tu his pussessions on the mainland. The story is not unlikely, for the feeling that promped the matives of a l'acific Island to crect "ghost-searers" against an expected missionary was strong in early Ireland ; it priest of a strange faith claining to work miracles was a suspert of the larkest dye; ant others, beside Mochalla, were described as "nigmmancers" ly native chiefs in western Ivelamb." However, the "Eughamacht" of Aran mantains its name to the present lay, as Ounacht, or (Hatrht. The "I mon" has suffered little by the 1sst resthation: hut, in arentanen with our phan, we must mote the earlier descriptions, and then the remains as they stand at present.

'Denovan, the first to note its existence, deseribes it as nearly circular
90 foet to 91 feet across ; the wall was of then divisions with a regular facing

[^167]of large stones-namely, the imer and central parts 4 feet cach, the onter 8 feet and 12 feet to 16 feet high. The doorway was 3 feet 4 inches wide, but was broken down. Four flights of steps lay to the cardinal prints, all tor deficed for description. The plan shows them as ladder-steps. He then notes Kilchomla, a reputed grave of a saint, helow the fort, and an ohlong building " near the fort," 20 feet by 13 feet, with three more of similar form and equal dimensions to the north-east. It may be seen that there are also three such houses at that point inside the fort.

Petrie, in 1821, does not name the fort; Ferguson, in 1852, barely mentions its better preservation and more massive masomry. Lord Dunaven gives a fine view (Plate vir of his work) he gives the dimensions as 97 feet north and south, 93 feet east and west; stones 3 feet and 4 feet long, and 1 foot 6 inches deep, well laid. The wall, ruined to the east, 16 feet high, and apparently single, thongh (as he notes) O'Donovan describes three divisions: the platform is 3 feet deep and 6 feet or 7 feet high, with threefeet "recesses" in it, one opposite the door, the others at right angles, and four flights of steps from the area to the top, "now" quite destroyed.
"The Irish Builder" adds nothing, following Dunraven closely; my notes in 1878 are scanty, "a much smaller fort than Moher (?), or Doon Conor, but high walls and broken door on a crag."

As we find it at present, Dun Eoghanachta ${ }^{1}$ is in good repair, the walls heing of regular large blocks, many laid as stretchers," one 5 feet 3 inches long, others over 4 feet; there is a batter, of 2 inches to $2 \frac{1}{2}$ inches in 36 inches, in places to the west and east. The gateway is rebuilt at the outer ope, being 5 feet 6 inches to 6 feet 3 inches wide, the wall 14 feet 2 inches thick. Going from the doorway south-westward (to the left) the following features occur:at 11 feet a ladder-flight of six feet steps, 4 feet 2 inches wide, up the terrace, which is 5 feet high; at 50 feet is another ladder 4 feet 2 inches wide, with nine steps in the terrace, and flights to left and right, with late steps up the wall, in a recess ; the terrace is 6 feet 10 inches high ; at 92 feet 6 inches wo reach the huts, hercafter described; at 106 feet 9 inches, the latder-tlight, opposite the gateway, with eight steps up the terrace; a dight of eight steps rising to the left in upper wall, and another rising to the right; at $1.5: 3$ feet another ladder up the terrace, 3 feet 10 inches wide, the terrace being if feet 3 inches high and 3 feet 3 inches wide; the steps again are in a recess, five steps to each side; at 273 feet is a peculiar ladder-stair ; the whole circuit

[^168]back to the right pier of the gate is 285 feet, or over 290 feet in all. The last flight is (at least in my experience) mique: it is only \pm feet 9 inches high; the steps project at 21 inches wer the garth, and three steps remain. 'Ihere are mu unight joints visible inside, where (as always) the masomry is sumaller than cotside: hat there are some well-marked ones outside. The wall is 16 feet + ine hes high at the east steps, heing 9 feet 8 inches thick on top, the terrace $: 3$ feet 6 inches wide, and the whole over 14 feet thick below; the grath is slighty misen wer the outer fold. The garth is 92 feet north and south, and from the gateway westward is 89 feet 3 inches. Opposite the satewne an then stamsht-walled hat fire from rectangular huts, ${ }^{2}$, 10 feet

Lu 11 fere home and fifere 6 indros wide insidu (12 feet to 15 feet outside, and 11 fort 8 in hes wifer); the mext heyomd the ladfer is from 4 feet to 5 feet \therefore inches wide: these two alnt against the rampart; the thirl is 20 feet s inehes ly 12 feet 6 inchers, the wall from 1 font 6 inches to 8 feet 6 inches, and + feet ? inches luetwern it and the next hut ; it has a back wall with two phatn amhties. A small well spriners from umber the crage to the south-east.
 is triansulat: this form of rist is avidmatly of maty Chistian times, two being fomm liyg lamel fonmatn at Tomon ('roman (hatary, in lburen, County ('lare: another by Gir Willian Wihle at Slane (the end stomes remain); and

[^169]Westrupp-Early Forts and Stonc IIuts in Inishmore, Aran. 193
a third hy Mr. P. J. Lynch near St. Finan's Bay, Kerry. The last hat a hole through it, and it is not impossible that the holed stone at Kilcannanagh, in the Middle Isle of Aran, was of this character. They are usually distinguished as "cumdachs" (i.e., shrines) or bone boxes. ${ }^{\text {. }}$

Dun near Kilmurvey. (O.S. 110.)

There was a large and strong fort, a ring wall, round Temple na naeve oratory, behind Mr. P. Johmson's stables; only the curved line of small filling and large blocks, much overgrown, is found to the north and east of the cell : the mame is forgotten. A wall embolying many large uptumed llocks runs along the crag behind (i.e. south and west) of Mr. Johnson's gardens. O'Donovan could not learn in 1839 from the owner, Mr. l'atrick O'Flaherty, that it had ever been a circle. It is said that stones with arrow-like markings were found in making the garden, but none are known to exist. Petrie ${ }^{2}$ says it (Cill múr Mhaighe) was a circular wall, 13 feet wide on top and 20 feet high, in 1821, "the stones being of vast magnitude." At an angle on the west side are the remains of a square tower 41 feet long and 20 feet wide, but the wall was only 3 feet thick. It contained several chambers in the rock, roofed by slabs, and circular or oval houses, of which the largest was 50 feet by 37 feet. It also surrounded two churches and two copious springs. The existing remains do little tos suport his description, for the remarkable fortress, along with the circular hut, was levelled ere eighteen years had passed. Near the church Lord Dumraven only found four courses of masonry remaining " for 50 to 100 yards."

Clochauns or Huts.

I do not intend to describe seriatim all the existing cloghauns in Aranmore; but a few notes on these residences are too closely akin to the subject of the forts to be out of place. They are of very primitive form, but there is every reason, here, as at Corcaguiny, in Kerry (where we have seen "early bee-hive huts" built some five years since), to believe that they were made in Aran down to the last century. Many remember the story of the man who, when the British Association in 189 w were examining some huts, ${ }^{3}$ declared he had built them for his donkey the year before; but few remember

[^170] Inaps, sume twenty Vears earlier. Such statements, for, or against, the antipuity of primitive structures, shonld le received with cantion. We have returted crushing facts on facetious dealers in mendacity on more than "ne similar ixcasion, throngh wur would-lue misleaders being unaware of reconals of the structures, long lnfore their lifetime, accessible to all sturlents.

 ciato are nut neveciastily a remtury uld.

[^171]The round, or oral, domed, roofed hut. The lest spremen is Cloghaunnacarriga, ${ }^{1}$ between Kilmurvey and the Seven Churches. It has heen figured by
 and in forts in Clare and Kerry, are very common; some may date from the seventh or eighth century. All the late ones we have noticed are of small stones, so the massive character and skilful masonry suggest age. They vary from 12 feet to 18 feet across insile; they are mmerons at Baile na séan. Mr. Kinahan records several ; the lest-known now is Chaghanaphuea behind (i.e. south) from the Roman Catholic church at Oghil.

A variant of this is square below, and then corbelled at the corners, the roof coming into a dome, and made of slabs projecting one leyond the other, till the space can be closed by a single slah. Others consist of a group of round, oval, or irregular cells; one near Temple Benen, to the south of Killeany and not far from the cliffs, is so massive and so unusual in plan that we are puzzled as to its probable age. ${ }^{2}$

The third type is rectangular like a modern cottage. An early example, probably a monastic cell partly cut in the rock, is form close to the door of 'lemple Benen oratory. Later still is the curious dry-stome house which we also describe; it lies to the north-west of the same church, and appears to have had four cells. We give a plan so far as the dehris allowed us to follow its lines. They seem to be first recorded definitely in the account of Aran in "Ogygia" by Roderick O'Flaherty in 168\%. "They have cloghans, a kind of building of stones, laid one upon another, which are brought to a roof without any mamer of mortar. . . so ancient that no one knows how long any of them were made," which farous the antiquity of at least the bee-hive form.

The middens near these luts yield shells, the periwinkle fredminating. but with mussels and scallops, bonnet-shells, \&c.; and hones of cows, sheep. and geese. Some have yielded pins, one a token of 1672 ; a celt, supposed to be for skiming seals, was found near Dun Conor on the Mithle Istaml. Such implements are not uncommon, and are kept as charms. One milden in the last-named islaud is 36 feet by 27 feet and 3 feet high. Pillars (other than those bearing Christian emblems, as at Manister Kieran, Templemaraluarh, and Templebrecan) are few and small. Let us examine a few of the huts in detail.

Cloghaunacarriga, Clochán na Carraige. ${ }^{3}$ ($\mathrm{O} . \mathrm{S} .110$. $)$-It is an oval, bee-hive-shaped hut, quite perfect, 19 feet by 7 feet 6 inches wide and about 8 feet

[^172]high; the walls 4 feet thick, lout evilently thimer alnowe, as they core in for the ruff. The domway is of a rery usual size, \because feet high by 2 feet 6 inches; like the 102 feet wide of the garths of forts, I have found the dimensions very frequently on the mainland. There is a door to each side; one was blocked in 1878, and an end window, which, like the eighth-century huts at Skellig, "contrived a doulde delit to pay" as a window and a chimney.

Clobihaviaphtoca, Cluchán ma púca. (O.S. 110.)-Named after the mischievous demon-horse or grat so faniliar in our place-names and folk-lore. It resembles a cairn, and is 30 feet long, 18 feet wide, and 12 feet to 14 feet high, with two roms inside. There are two low doors, the northern closed by fallen stones; the chamber is chlong, cut in two loy a low cross-wall, with a hare in the midule and upes to cither side. The apartments measure 22 feet ly 10 feet and 10 feert by 7 feet. The roff rises in corbelled courses; the hut hat once litele enclosures to each sille.
1)sisiat. (0.s. 110.)—Two clughams stand on the hillside, due west from lom Onarht. They are of the later type, the nowthem being rectangular, 18 feet ly 14 freet wide, amd 10 feet high. It (as is so common) has doors to the nowth and sonth; the first is the larger, leing :3 feet square; the other is 2 free 6 inches by 2 feet. There is a window to the south, 1 foot square and ? foret up. The rafo was destroyed just lefore 1866 by rabhit-hunters, the structure being then perfect. The somthern hat is 15 f feet long ly 12 feet, amb! ! tu 10 fert high, with moth ame sonth ilenes, anm a wimlow at the southwest conner, the west wall resting on a low sholf of rock. They were first moted ly (0'lhmosan in 1s:9.9.

Bhif: SA sens.-Fir illustration, we uray solect some typical examples from this large setthonent on the central hill of the island, fros, since Mr. (inome Kinahan ${ }^{2}$ wrote, the remains have son suftered lyy rablit-hunters, and loen su hariod in heaps of stomes conlereted will the fieds, that there is little to repary the dangerons and painful climhing of lonse walls, endless from the network of little fields, in cme's searh for huts at any distance from the narow romgh Inhereens that give pasiager acruss the islaml. (No. 7.) There is a slah hant of six lager stomes; it is 8 feret long, $3 \frac{1}{2}$ feet wide, and 4 feet high, but may Ine a holmen, from its long anl narrow propertions. (No. 9.) Two cirmbar huts 24 fert in rlianeter: their walls are of a single thirkness of stones,

[^173]
Westropp-Early Forts and Stone Inte in Inishmore, Aran. 197

with slabs set on end round the base, and backed with clay. (No. 10.) Another is smaller, of 15 feet diameter, backed also with a circle of slats 27 feet in diameter externally. (No. 14.) Part of a circular chamber in a mound; a passage leads eastward, and is 18 feet long, 4 feet wide, and ; fert high, covered with large slabs. To the south-east is a circle of stones, 21 feet across, with another chambered mound and midden. (No.16.) A chamhered mound; one cell is oval, 15 feet by 8 feet; it has an entrance passage at the south-west side, 3 feet square, leading to a circular cell, 12 feet across; another passage, 15 feet by \pm feet by 31 feet, runs to a third round cell, also 12 feet across. The surrounding earth mound is fenced by slalis to each side of the entrance. (No.19.) A large slab hut, 30 feet long, 6 feet wide, and 4 feet high, with a small annexe attached to the north-west side. (No. 20.) A cell (like "creg a blughaun" cloghaun farther south) ; $;^{1}$ the chatuler" is 16 feet long and 8 feet wide"; the height cannot be fixed. Part of the roof remains; there are two doors to the north and south 3 feet by 2 feet 6 inches to 1 foot 9 inches wide. At the north-east is a window, 1 foot square and 3 feet up the wall. The chamber of Cloghauncalticaunnien is small, circular, and ruined; it lies south from Cloghaunaphuca to the west of the bohereen from Cowrugh near the field called "the Lag." The only reputed dolmen of the group lies in the fields called "Doonbeg" from the large ${ }^{2}$ western fort. A pillar stone on the ridge, south from Farranacurka village, and another near the "Church of the four comely ones," seems to bound the "city." Thirtyone huts were recorded by Mr. Kinahan, and many others must hare been cleared when the subdivision took place and the walls were made, probahy long before 1839 .

Kilchorna.-Between Kilronan and the prominent headland of Pollnabriskenagh to the west of the Black Fort are two Cloghams at a hurialground with a holy well and church name, so they are possibly monastic. One is called Templemore, and measures 48 feet by $\underline{2}$ feet. The driphing well Toberchorna is now usually dry. ${ }^{3}$ Two other rectangular huts lie nearer to the sea.

Killeany. (O.S. 119.) - This was a place of much importance in the history of Aran as St. Enda's settlement, about 480; a mumber of churches, a round tower, and a sculptured high cross of some beanty and richness, attested its sanctity. The O'Briens in the fifteenth century added a Franciscan house and (some say) the Castle of Arkin. The last, an Elizabethan manor and garrison, was probahly reluilt in 1618, and was

[^174]prohally entirely reconstructed in 1652. We, howerer, are only at present concerned with the cloghauns near the remarkable church of Temple Benen, lncally, anl corruptly, Temple Minnaun, the Kid's Church. Close beside the morth inw of the latter (for it is rebuilt north and south, not east and west) is a cell, built in a holluw, or cutting, in the rock; it is 9 feet 8 inches by 4 feet 2 incher insile. with walls 3 feet 6 inches thick, and quite featureless.' It was must probably roofed with stone. Farther to the north-west is a whymand if late-lowing, structure of dry-stone work, called in 1878 the l'rimi - Honte and the Monk's Honse: and quite difterent in character from ary , then chathun kin wh to me on the island. It measures 25 feet 6 inches th the west. 26 feet 1 inch to the south, and 23 feet 9 inches to the north,

the sumth wing. 10 feet 8 inches wide, projecting for 5 feet from the eastern face. In the "ret-lack," so formed, is a curious semi-circular headed recess hesile the dom. The latter is 2% inches wide, and over 6 feet high, with lintels; it has a suall recess in the north jamb; inside the northern part, about 7 feet to 7 feet $\&$ inches wide, seems to have had two rooms, while the western had
 the ronf was coverel. 'I here was a revetment forming a terrace to the north and east on the edge of the crag.

[^175]Farther to the north-west, in the same fied, was another straight-wallen clogham, ummarked on the maps; it has been almost completely overthrown by rabbit-hunters, ouly a fragment of the facing to the east heing visible in the heap of stones. In the next field, about 400 feet from the edge of the cliff at Pouldick, is another cell, one of the most curious of the Aran huts. It may be roughly described as oval, 11 feet 9 inches to 11 feet 1 inch north and south, and 9 feet east and west; but low recesses, where there is a corner, roofel diagonally by an upper slab, render its real shape explicable only by a plan; blocks 4 feet to over $\overline{5}$ feet long are to the north-west aml south-west; there is a projecting pillar inside to the north-east. The low lintelled door 2 feet wide, and nearly filled, is to the (compass) east. There is another doorway, 1 foot 8 inches wide, and better preserved, to the south, which leads into an enclosure, 14 feet wide and 17 feet 6 inches long. The hut walls are 5 feet 6 iuches to 6 feet thick, with two faces of blocks and an occasional bond-stone through the wall.

About a mile and a half to the east near the bay of Portdeha (Port daibche), ${ }^{1}$ celebrated by Magraidin in the "Life of St. Enda" in $1: 380$. the Rev. W. Kilbride ${ }^{2}$ found another cloghaun buried in the sand. It is now reburied, and we must follow his description. The cloghauns were near Cala na luinge ship-harbour, and a place called Templenamrawher, Friar's church, where no early building is extant. ${ }^{3}$ They resembled piles of stoues externally, the second having a rude slab or tombstone on the top. About 1810, said the natives, a French or Spanish ship was wrecked, and all its crew lost in Cala na luinge. The natives buried the recorered bodies in the sand, and so dug down on the hut, its roof falling in. In September, 1867, Mr. Thompson, of Leeson Street, Dublin, and Captain Rowan, of Tralee, excavated the eastern hut, which rests on the ruck. The lower part for t feet high is rectangular, 8 feet 2 inches by 8 feet 9 inches, and then rises in a dome 8 feet high; the entrance was 1 foot 7 inches wide, and the masonry very regular. From the door is a passage 3 feet 6 inches to \pm feet 7 inches wide and 3 feet 6 inches high. At the east end are six steps, the topmost level with the side walls of the passage. A large ring of stones 72 feet across enclosed the huts.

[^176]There is a ddmen (like the last, ummarked on the map), over 150 feet sunth-eant from the church of Teglath Enda, in the sandhills; it seems now to be burierl. It was about 9 feet long; three stones remained; the ends facel the moth and minth : the west comsisted of a single thin slat 9 feet long the north of two: the interior was : feet 6 inches wide. The natives called
 Hight of llemut aml crania.

Arammore is indeal a treasury of early remains. To sum up, there exist eight stome-ring furts, one with two and one with four rings; one promontory fort, and lerhaps a secome. Ahout fifty stome huts exist coutside of the forts. It is strange that there are nome in the greatest fort, Dun Aengusa. Of the mortar-huilt structures are a round tower, ten existing churches, sites and graveyarls ("aharlats " incluted), ${ }^{1}$ some seven "monastic residences," and two
 Ofucaly, of Tuams abme $16: \%$. There is also a dry-stone tower called Turmartin, on the shore of Gregory's sound, which batmen reverentially sulute, and foshing vessels lower their thpail before as the reputed tomb of the saint. At least thirteen stmes lome Irish inscriptions, ${ }^{3}$ six incised crosses, and there were three high crosses elaburately decorated with interlacings and fret-woth of hater cioltic art.

If we have had to utilize the work of others to an excessive degree, we have at ilast. in gumy carefully over most of the remains, used it, not to sulpreale research. but tu show the combition of the buildings before the Mihaphatar amb the restorer worked their will on the early forts of Aran. With this intention, and to record the state of the remains at the begimning* uf a bew remenry, we lay these notes lefore the Academy.

[^177]

Fig. I.-Dubh Cathair, Aramore, from the S.E.

Fig. 2.-Dubh Cathair. Interior from the rampart.

Fig. 1.-Dun Eurhla, Aranwore. The central fint from S.E.

Fig. 2.-Dum Eoman Arammore, The nuter wail at S.F.

Pibliograpity of Forts and Huts in tifis Sestion.

Babbington, C. C. : Archæologia Cambensis (1858), vol. iv., ser. iii., p 96.
Barry, J. Grene: "Aran of the Saints," Jommal Roy. IIist. and Archeol. Assoc., vol. xvii., p. 488.
Dunraven, Lord: Notes on Irish Architecture, vol. i. (1875), p. 1. Plates iv, to vii.

Ferguson, (Sir) S.: Dublin University Magazine (185:), vol. xli., part i., p. 494 , et seqq.

Haverty, Martin: "The Aran Isles" (1859, notes, 1857), excursion of Ethnological Section of the British Association, p. 14.
"Irish Builder": April, 1886, and consec., pp. 249, 255; vol. 1887, pp. 22, 103.

Kilbride, Rev. W.: Iarama (1868), Roy. Hist. and Archeol. Assoc., ser. iii., vol. i., p. 109 (vol. x., consec. Roy. Soc. Ant., Ireland).
Kinahan, George: Villages near Dun Oghil, \&c. Proc. R. I. Acad. (18661870), vol. x., p. 25 ; also Hardwicke's "Science Gossip," vol. for 1875, p. 83, et seqq.
O'Donovan, John: Orlnance Survey Letters, Comenty Galway, vol. iii. (mss. R. I. Acad. 14 D. 3), p. 243, et seqq.
Petrie, George: Military Architecture of Ireland (notes 1821, mss. R.I. Acad.), and "Ecclesiastical Architecture of Ireland," p. 130.
Wareman, W. F.: (1862) "Aran, Pagan and Christian," Duffy's Hibernian Magazine (N.S.), vol. i., p. 460.
Westropp, T. J. : (Notes 1878). Handbooks ii., p. 50, and vi., p. 63. Roy. Soc. Ant. Ireland, and Journal, xxv., p. 250, and Trans. R.I. Acad., xxxi., p. 579, ct seqq. "A Study of Dun Aengusa" (Dublin, 1910), and Proc. R. I. Acad., vol. xxviii. (c.), p. 1.

[202]

XII.

rONTHITRRANI MTA SANCTAE MONENNAE

ELITETV WITH AS INTRODCCTION.

liy MARTO Esposito.

(Platrs Vill., IN.)
Read Jese 27. Ondered for Publication Juse 29. Published Ocroagr 14, 1910.

 have dimparded.

I: : -

 anrosiors, and the other is a lagend relating to her bed in one of the
 mather lummt in at the legrinning of the volume, I have thus reproduced erurything contanewl in the m :

In preparing thisedition I have hal the use tirst of photographs of the Mo. whin the authurities of the British Museum kindly permitterl me to [Tm ine: ant seromily of an accurate collation of the MS. with the erlition of

I. n uf these thonoktapba are reprojucet in the plates acompanying the preacnt paper.
 What ic now in uc in the principal litraries of Eumpe. but which is. I beliere, practically unknown

the Bollandists, which was made by the late Bishop Reeves. This later piece of work, bound up in a small quarto volune, is now preserved in the Manuseripe Rom in the Libnary of Trinity College, Dublin, whene it hears the number 1099. ${ }^{1}$ This MS., along with many other of Bishop Reeves' papers, ${ }^{2}$ was acquired by the Library in 1893. It has proved of very great assistance to me. Indeed I may say that without it the present work would not have been undertaken. At the same time, it must be clearly understood that Bishop Reeves is in no way responsible for any errors into which I may have fallen.

I.

Of Conchubranus, the author of the Vita, we know absolutely nothing. He gives us his name in the last chapter of his work, ${ }^{3}$ and it is clear that he was an Irishman. He cannot have lived earlier than the cleventh century, as he uses the names Scotia, Scotus or Scottus, Scoticus or Scotticus, indifferently of Ireland and Scotland. ${ }^{4}$ It is well known that previous to about the middle of the eleventh century, Scottia, sootticus, \&ce, applied exclusively to Ireland. ${ }^{5}$ On the other hand, he cannot have lived later than the first half of the twelfth century, as the MS. containing his work dates from this period. We may, then, assume that he Hourished between the years 1050 and 1150 . The name Conchubran or Conchubranus does not occur in the Irish Annals, though of course Conchobhar is very common. A certain learned Irishman named Caunchobrach is mentioned in a tenth-century ms. at Bamberg, but he must have lived in the ninth century, and so could not be identified with our author.

The subject of Conchubran's biography, St. Monenua, is said to have

[^178]died in 517 or 518 , lut of her authentic history we know very little. Besides the work of Conchubran, several other lives of her are extant. A list of these is given in the next paragraph. Through all these lives runs an extramdinary confusion of names, dates, and places, and there seems to be no doubt that conchulsam and the other biographers have mixed up two, and perhaps three, different saints of the same name. At present, when only a few of these lives, such as they are, have been even accurately printed, and mone has heen exhanstively studied from the historical point of view, it would be an unprofitalide labour to attempt to unravel this problem.'

II.

liesides the V'ita by Conchubranus and the hymas and prose tracts printed in the present paper, the following lives of this su-called st. Monema have been preserved:
(1). Vitas Sanctar barercae, fonn in the well-known Codex Salmanticensis, a fourteenth-ecntury Ms, in the linjal Lilorary at Brussels, No. 3179 (ancien No. $66 こ こ-74$), fols. $79 \mathrm{r}^{\circ}-8^{2} 2 \mathrm{v}^{\circ} \mathrm{s}^{3}$ It has been printed by De Smedt and 1) Backer. ${ }^{3}$ Kimmer would phace the compilation of this life later than the tenth century: Conchubran's Vita may be based on it, or both may be derived from the sume more ancient sumes.
(:2). Sunctan Mowemae Vita et Tractatas de Miraculis eims, compiled by Gonlley, abhnt of Burtom-uqnu-Trent from $111 \pm$ to 1151. . 5 Two Mss. of this work, which has not yet been printed," are known to me, ms. lieg. 15, B. IV. fols. $76 \mathrm{r}^{2}$-sise in the Imitish Muscum, a vellum guarto of the thisteenth century, and Ms. Nis. 2tio, a vellun yuath in the Library of Lord Mostyn. ${ }^{\text {a }}$

[^179]This work appears to be based on the Vita of Conchulran, from which, however, it is said to differ in many prints.'
(3). Vita Sanctac Modwemae, an ahtidgment of Geoffrey's work made ly John of Tynemouth (fl. c. 1:320). It is preserved in the Codex Cotton Tiberius, E, i fols. $199 v^{\circ}-204 v^{\circ}$, saec. xiv, in the British Museum, from which it has been printed by Karl Horstmann. ${ }^{2}$
(4). Vita S. Modwennae, also an abridgment of Geoffrey's work. It is found in a MS. in the British Mrseum, MS. Lansdowne $4: 36$, fols. $126 \mathrm{v}^{\circ}-131 \mathrm{v}^{\circ}$, saec. xiv. This abridgment is quite independent of John of Tynemouth, to whom it was unknown. ${ }^{3}$ It has not yet been printed. At the end occur the six elegiacs printed as Appendix E in the present paper.
(5). Vita Sanctae Modwemae, found in a MS. in the Library of Lembeth l'alace, 99.5. fol. 187. ${ }^{*}$
(6). La Vie de Sainte Modwenne, a remarkable Anglo-Norman poem in about 10,000 lines, composed in the twelfth century. It is preserved in a Ms. in the Bodleian Library, Digby No. 34 , fols. 1-80, of the begimning of the thirteenth century. ${ }^{5}$ It has not, I believe, been hitherto printed. ${ }^{6}$

III.

As already remarked, Conchubran's Life of St. Monenua is preserved in one ancient MS. only, the Codex Cotton Cleopatra, A. ii, in the British Museum. I give here a full description of this Ms.

It is a small quarto parchment volume, consisting of sixty numbered folios measuring 17.5 cms , by 12.5 cms , the actual size of the text being 13.7 cms . by 8.7 cms. It is written in single columns with twenty lines to the page. Capital letters and the titles of chapters are illuminated. The writing is large and beautiful, the words being well separated, and there is some attempt at punctuation. The letter "e" is always written for "ae" and the letter "i," especially when donbled, is generally marked by an inclined stroke above the line. Abbreviations and contractions are not uncommon. ${ }^{\text {. }}$

[^180]Hardy ${ }^{1}$ has assigned this us. to the eleventh century; but in my opinion it is not earlier than the first half of the twelfth. Formerly the Ms. belonged to Robert Cotton, whose name is inscribed at the foot of fol. $1 r^{\circ}$. At the begiming of the volume are hound in two inverted leaves, apparently part of an wht hinding. They are written in a late and very small hand, and contan legal matter. At the font of the secoml is the following note:-Ex combuminne dumpmi Wryllelmy Edys. Monasterii heati Marie sancteque Monluenme Virgimm de lurtom super Trent monachi, dum esset studens Wxunie dmum Immini 1 ili. This entry is cmacetured to refer to the binding of the us. (On the hank tly-leat preceding fol. 1 is the false attribution in a
 Monachum. Folins 11° to $59 r^{\prime}$ are written in the same hand of the first half of the twelfth century. Folios $59 \mathrm{v}^{\circ}$ and $60 \mathrm{r}^{\circ}$ are in hands of the thirtemth and fourteenth centuries.

The contents of the ms, are:
Fol. 」 r-3 v^{*} : An alphathetical hymon in 192 lines in honour of St. Monenna, which has not yet lnem printed. I give it as Appendix A to the present paper. At the top of fol. $1 r$ a molern hand has written the inenrect attribution: Vita scae Molwennae virginis Hiberniae per (ialfidum lurtonensem Monachum An. 1210 (?).

Foll. $3 v^{2}-56 v^{\circ}$: Conchuhran's Life of St. Monenna as printed below. I liave endeavoured in reproluce the arrangement and orthography of the ms. as closely as possible, and have not recorded the many variations from the text as given hy the foblamlists, since their edition represents no separate manuseripe anthority.

Finl. $56 v^{\circ}-5 s^{*}$: Another alphalnetical hymn in honour of st. Monenna, in !! lines, not hitherto printerl. It forms $\lambda_{\text {phandix }}$ ds to the present paper.

Foll. is $v-5 y r^{*}$: A very hrief accome of St. Monema, followed by a list of her successors. I give it ass $A_{\text {phendix }}($ C.

Foul. Gor : six elngiae verses in the same thintenthecentury hand.
 Alpmintix for

[^181]Fol. $60 \mathrm{r}^{\circ}$: A hymn in honour of the Virgin Mary in six lines, written in a hand of the fourtenth century. It forms Appendix F to the present paper.

Fol. $60 \mathrm{v}^{\circ}$: Blank.
There is a soventeenth-century paper transeript of this Ms. in the British Museum, ms. Sloane, No. 4788 , folios 1-32. Formerly it was No. 39 of the Clarendon collection. ${ }^{2}$

MS. Cotton Cleopatra, A. ii. Fol. $3 \nabla^{\circ}-56 \mathbf{v}^{\text {c }}$:-

Incipit Vita Sancte Monenne.

De uita eius atque uirtutibus.
De uirginali pallio dato a Patricio.
De uaccis furatis et iterum aqua redditis.
De profectione eius ad episcopum Ibar.
Habitans in monte Focharde, auditis sceleumatibus, inde recessit.
De Servila quomodo corpore mutata.
De testatione rustica porcarii, et de ieiunio septem dierum.
De porcello necato et cocto, et iterum uite reldito.
De conuersatione Glunelath et Afin ad fidem.
De Chevin a diabolo uexato, et per sanctam uirginem redlito Deo.
De balneo eiusdem Chevin.
De uitulo deuorato, et de lupo uacce amato.
Qua de causa sancta Monenna prius intrauit in Anglicam terram.
Quomodo transiuit mare cum uirginibus suis.

Incipit Vita Sancte Monenne Virginis.

1. Fuit inter Hibernenses gentes virgo vite vencrabilis et morum sancta inclustria decorata, nomine Monenna, gratia meritorum in omnihus Hibernie, Scotie, et finibus Anglie famosa partibus. Cuius omnem illuminans Aquilonis partem, velud lucerna maxima super candelabrum posita, cunctas ibi tetras ignorantie tenebras illustravit. Habitantibus in regione umbre nortis, lux orta est eis. ${ }^{3}$ Habitavit ergo multo tempore boreali sub axe iuxta Colmi Montem, qui est in continio provinciarum, cognomine (Orientalimu, yuas siloi ab occidente et septentrionali vendicat, et Conalleorum provincie, quam in meridiem et austrum prospicit. Ad cuins radices, a parte aquilonis constructo

[^182]glorios, loco competenter, sicut propheticum intonat onaculum, dicens: " Mons Sion, latera aquilonis, civitas Regis magni." ${ }^{1}$

Ergo magno regi edificato cordium sanctorum templo, de quo apostolus ait: "The estis templum Inei viviet Spiritus Dei halitat in volis."' non ex lignis et lupidins sel de sanctis hominilus ferventissino caritatis glutimine, ut sit
 Monemab, zanctam peregit militiam. ut postea cum ad hoc, secundum on linem perventum fuerit. Ineo concrante. dicemus. Sed nunc de huius vita bel virtutilus, etiam ab infantia sua vel ceteris etatis temporibus, quid nobis
 meritis, in quantum possumus, sermonibus proferre conamur.

De Vita eius et Virtutibus.

 sinere, largitus est.

Ie virginali pallin dato a I'atricio.

 halmmantiam in ea gratiarum et virtutum cmu benedictione episcopi promedere, le quas et ounes haurirent contidie sanitatum gratian et fluenta

[^183]enim prima est virtutis imbicio, Deo proximint, similis angelis, parens vite, amica sanitatis, donina gadii, dux virtutis, fundamenta ef coman fidei, spei amminiculum et caritatis subsidium. His diligenter preceptis instructa, etiam hoc Patricius addidit, ut alias virgines sibi etiam copularet, quas iu timore Domini ab adolescentia secum nutriret, quatenus earum solatio suffulta, facilius posset implere et perficere bonm quod inceperat.

Et tradidit in manu sua uirginem pulcherrimam, nomine Atheam. Commendata est ergo ab episcopo alii religioso presbitero, ut eam in primis salmos doceret et in divinis studiis semper nutriret. Cum benedictione episcopi Patricii revertitur parentum domum cum quibus seorsum aliquanto tempore permanens, presbitero docente, que domus mergit homines in interitum; nam et ille bene lectitahat salmos. Multum in ea memoria et ardens ingenium prevaluerat, cito legens et firmiter lecta mente retinens. Lectio augebatur de die in diem. Refert quidam quod esset nata bonis ac piis parentibus, lene nutrita, virgo pulcherrima, corpore et anima casta, in domo parentum crevit adulta, roveratque se Domino ab infantia sua virginitatis coronam sanam et integram, quamdiu viveret, servaturam. Iuncteque sunt in loco, qui dicitur Fochard, imprimis octo virgines, inter quas erant et Brigida, Athea, et Orbile, et una vidua cum infantulo, quam episcopum esse factum postea sue gentis constat preclarum, id est Conalle dominum nomine Luger. Qui primus ecclesiam Ruscane in Colgi C'ampiolo fundaverat sine dubio. Hic privilegio dignitatis sanctitatem recipere promernit per benedictionem sancte Monenne, quem illa sili imprimis in locum filii ab infantia adoptavit. Ibique in nativitate sancte Brigide illam ecclesiam Monema edificavit.

De vaccis furatis et iterum aqua redditis.
4. Contigit autem in una nocte, quod fures furarentur duas vaccas, quas habebant. Cumque venissent ad tumen, quod vocatur Fertas, hoe miraculum evenit, ut tam calidum fieret Htmen, ut comburerentur pedes illorum, et per totam noctem ambulantes nullo modo transire potuerunt. In sumpmo autem mane inventi sunt iuxta ecclesiam, et penitentiam agentes cum lacrimis receperunt fidem, dicentes se semper amplins non furari.

> De profectione eius ad episcopum Ihar:
5. Post hee aliquanto tempore cum parentibus transacto, monasterisque puellarum adhue inter illas gentes, utpote nuper iactatis fidei seminibus, subvenit in sancte virgius mente pia cogitatio, ut a seculi hominibus, licet parentibus et cognatis, recederet, que seculo propter Christum renuntiaverat ne eius animi propositum, quod Domino direxerat, vel secularium rerum imepta et vana confabulatio, vel antiqui adversarii semper suriphens nepuam

[^184]R.1.A. PROC., VOL. XXXIII., SECT. 0.
persuasio ab incepto removeret. In Dei nomine cum suis puellis et una surnalictal vilua, infantulo dimisso, et cum aliis comitibus pro Christo iter agentibus, proficiscitur, ut tradunt, ad sanctum episcopum Ibar, in illis tanlminns commorantem in insulis ultra Hiberniam in occidentali oceano positis tribus, in uno vocabulo coartatis, id est Triaima. Ubi multum temunnis in Fei servition et disciplinatum sanctarun stricta regula, et dura vile sed recta ahntinemtia, in vigiliarmu et lectionis assiduitate nimia, sub illin- phiseni foterate transwit. Congregatis ad illam ibi multis Christi virginilus, fit etiaun noves et apostolicus virginum Christi chorus. Marie ad p^{2} des Donini sedentis et honan partem eligentis exemplum imitatur.

Halitans in monte Focarde, anditis scelematibus, inde recessit.
6. Initur sancta Muncma veniens ad monticulum Focharde, primum ibi hahitare cuppit. Congregatis simul multis Christi virginibus, habuit, ut refertur, in illo tempure secum contum quinquaginta. Interim thuerat tempris spatinm. Alia nocte andivit de proximis vilhlis, que supradicto subnachant monticulu, seculares aliquus cantus, qui lascivientium esse, et vana letitia prochanantiun congosci poterant. Interregrabat sancta Monenna sorures, quilnan esset hoce, quod sic homines vana garrulitate clamarent. Indicatur ci in dono alicuins de vicinis pronubentimm esse cantus, ubi hurnana copula spunsa carmali spenso despunsata erat. Dixitque Sancta Muncmar suis surmilnes: "Nus que spiritali sponso sumns coniuncte, et (Christo Inei filin dispmonate, spiritales cantus die ac nocte convenit audire. Al remotiora ab umibus luca debemns recedere, ubi orationi tantum et lectimi pmsimus vacare, et amgelis Dei pro motis et cognatis visitari sit pussitile." Mane autem facto, misit fratren sumu, Ionan nomine, in deserta proxima, exphoramomum locorman gratia, et invento ibi iuxta Colmi montem aptissime et a I Omino revelato loco.

De servila quomodo corpore mutata.
7. Tunc dixit sancta Monenna suis sororibus: "Necesse est ut una puella custonliat locum istum." Et responderunt ei: "Que potest hic manere nisi
 ad illam virginem: "Cun Dei gratia nportet te hunc locum custodire." Cui respmotit Orbile: "Non possum sine te esse propter nobilitatem corporis mei, et capillus capitis, et pulchritudinem, quia valde timeo presentiam iuvenum. Hac de causa non licitum est mihi hunc locum custodire." Tunc
 capritis, et statim facti sunt candidi sicut nix, quasi in senectute. Cui mespmilit Ortile, gratias agens Then: "Timeo domina ruod species corporis athme me decipuet." Amdiens hee Sancta Monema corpus illins timentis
precinxit sua zona benedicens. l'erfectis talibus, puella hransigurata est in speciem anus, et inde mutato nomino vocata est Servile. Videns hoe servile, quod factum est de corpore, sua bona voluntate gratias agens ablatisse, respondit: "Intento corde volo locum custodire." Tunc Sancta Monenna tradidit ei locum ad custodiendum, et perrexit ad predictum locum, qui vocatur Chellecleue, id est Cellula Montis, cum virginibus suis. Quo cum pervenirent, et illic habitare incipientes, invenit illas silvestris homo, porearius alicuius regis de Orientalibus, nomine Macluithe, poreds pasens 1^{n-r} silvas.

De contestatione rustica porcarii et de ieimnio septem dierum.
8. Primo admirari coepit, vel tales personas in deserto consistere, vel multitudinem ancillarum Dei, nichil secum de alimoniis habentes, unde viverent, preter herbas. Sed forte ibi erant hominibus pascuales arbores et arborum cortices, unde possent vivere. Primo, ut rusticus homo, coepit illas contestari per Deum, ne de silva quicquam sumereut, donec suo domino illarum adventum enuntiaret, putans ille miser, vel iram domini sui sustinere, si tacuisset, vel silvas quibus porci saciabantur deficere, si tantam multitudinem vesci de lignorum radicibus vel corticibus sineret. Post hec ille malefactor pergit ad dominum suum, procul positum, narrans de ancillarum Dei adventu in fines suos. Cui respondit rex se esse letum debere in illarum adventu, et donare eis licentiam de omnibus quecumque voluissent, et illis opus essent. Inter hec, ut tradunt, transierant septem dies, quibus sorores Christi, rustici contestatione constringebantur, ne de silvis, ut dixi, quicquan gustarent donee reversus esset ille homo frigitus, et inedia deficientibus, vel etiam extremum spiritum exhalantibus, donatur eis licentia vescendi de arboribus secundum regis mandatum. Coepit subulcus, postquam pervenit, querere perditos, et diu quesitos invenire non potuit. Venit ad sanctam Mononnam homunculus, complangensque se dixit: "Vestri cansa porcos perdidi et diligenter quesitos non inveni. Mala hora venistis in istam terram, pro quibus perdidi neam pecuniam." Cui Sancta Monenna, tristem consulans leni alloquio, per muntiun dixit: "Mente bencticte, securus esto, porei servati sunt a Domino, et a nobis exiens, nunc invenies poreos integro numero incolumes et salvos. Crede in Deum ubique posse quodcunque sanum et integrum voluerit servare." At ille digressus alb eis in verbo hoe, porcos in illa hora ommes invenit, ut Sancta Monenna certo eventurum predixit.

De porcello necato et cocto et iterum vite reddito.
9. Et assumens unum ex iis porcellum, post non moram temporis, ad sorores detulit dicens: "Oblatiunculam meam vohis detuli, quia recta Christi
conmernisti. Tectunian enim mihi creditam, tota integra septimana, nullo alio (")nservante, mationilus vestris servastis in lesertis, non solum ab hominibus, sen etiam a hestiis minime intactum. Bona hora vos vidi, quia nune cognovi qunal estis perfecte ancille Christi." Dixcrumtque al cum ex verbo sancte Mnneme sornes: "Tuan oblationem non refutamns, sel his nolis vesci non est consuetudo carnihus. Nos in deserto propter Christum venimus. De feris deserti, quibus servis Dei consuetudo vivere est, si Dominus tili in promptu dederat, aliquid sumemus." Postyuam vidit rusticus oblationem sham, पulum din vivan tilexerat, et interfectan chxerat, a sororitus non esse receptam, corde suspirans, tristitias magnas agebat. Nam inopia cibi non erat ei, nee cui venderet, aut inde quid faceret, ominino insciens erat.

Audiens virgo Munema, Spiritu Sancto repleta, dolores rustici non taliter consulari, iussit ad pelles suos coctum porcellum aferri, frusta cuius composuit, gratia Dei secata membrab collocavit, at!pue sua benedixione videnti
 captum cervun alpmortatit sororibus, dicens: "Ecce sine labore et aliqua iniuria invenire mihi citius contigit quel vestro propnsito in Deo magis phacuit." Deinde assumentes cervum cum gratiarum actione, quasi a Domino transmissum, accipimat, credentes semper in cius nomine, cuius est omnis terra cun suap plenitudine. Et in hoc semper habelnant totum desiderium, ut ctiam si supra vires propter Christum sustinerent laborem durum. Non putabant autem etiam carnes reliquas ad vescendum esse illicitas, quia
 gratiarum actione percipitur. ${ }^{\text { }}$ sed solent nommulli saneti, el maxime monaswriales inter illas gentes homines, cum quibus magna peesrum habundantia viget, omnium amimalimu non vesci carnibus, ne secularilus videantur ansimilati, quilhts semper in hoc pendet ommis cura, ne aliquid desit in mensa. Cervis vero et apris sive capreis vescuntur, eo yuod rarescentius adprehembuntur, et ne putentur licita dammare, illorum carnes, quando Dominus transmittit, cum gratianm actione percipiunt. Sell et illorum consimiles prtamas, si mmibus carnibus, quibus utuntur Christiani, uiuant, non refutare, wecte intelligentes, quod seriptum est: "Qui manducat et gratias agit Deo, et
 locum et tempus et persouam esse servanda.
be conversatione Glunelath et Afin all fillem.
10. In tempure illo erat quidam tirannus nomine Glunelaht, in illa terra ilsinlata ac deserta, cum perversis sociis suis nulli parcens, quorum numerus erat quinuuarinta, iuxta ceclesiam Monenne. Quadam die contigit, quod octo

deserto positas, et maxime Monemam abbatissam. Cumque invenisset eos Glunelath iuxta viam, ubi ipse manebat, interfecit illos. Cumque audisset Monemna malum, qrod factum fuerat, surexit et dixit virginibus suis: "Eamus et queramus pacem in terram istam." Respombermt virgines dicentes: "Non dobemus ire ad latrones, quia volunt nos damnare." Et dixit sancta Monema : "Dominus defendet nos. Eamus et postulemus corpora sanctorum ad sepeliendum." Et exiens comitata quinquaginta virginibus, pervenit ad locun, ubi erat Glunclaht, in campum, qui vocatur Macdathevene. Videns has tiramus adpropinquantes, gavisus est valde, et demonio impletus, dixit suis comitihus: "Ecce quinquaginta virgines veniunt ad nos, ut unusquisque nostrum habeat uxorem." Tunc tirnnus obviam venit abbatisse, ut apprehenderet eam et uxorem haheret, et dixit: "Ecce quod desideravi multis diebus." Et respondit sancta Monema: "Propter nobilitatem tuam da nobis pacem interim, ut loynar tecum parum, et die sociis tuis, ne noceant sororibus meis." Et dixit tiramus militibus suis: "Expectate parumper, ut loquar cum Monema." Et fecerunt sic. Et dixit abbatissa ad Glunelaht: "Domine mi inclina caput tum in sinum meum." Et cum inclinasset capud in sinum illius, dormivit statim, et omnes socii eius similiter. Et tunc oravit sancta Monemna ad Deum et dixit: "Domine Iesu Christe, fili Dei vivi, fiat voluntas tua in celo et in terra ${ }^{\text {a }}$ et adiuva nos." Post hee descendit angelus Domini de celo et dixit: "Ne timeas filia, quia tecum sum, et modo accipiam spiritum istins tiranni, et tu veni mecum." Et assumpsit eos spiritualiter, et ostensus est eis infernus et regnum celorum, et viderunt locum pulcherrimum cuiusdam pontificis, qui socabatur Chevin, et interrogavit Glumelaht, cuius erit hic locus. Et dictum est ei : "Paratus est in honore Chevin." Et post hee ostensa sunt eis et alia multa, reversi suut ad corpora. Tunc surrexit sancta Monenna et dixit eis : "Surgite, surgite, surgite, quia tribus diebus et noctibus non vigilastis." Et sic factum fuit, ut a prima hora diei Iovis, usque ad horam nonam diei Saturni non surexerant. Tunc incepit sancta Monenna ymnum cum virginibus suis: "Hibernia ostensus est hominibus maximum mirabilibus," et cetera. Cumque surrexisset Glunelaht a somno, dixit ad sanctam Monennam: "Vis dare mihi locum Chevin, et non nocebo te neque virginibus, qui tecum sunt." Et respondit abbatissa: "Quomodo possum tibi dare locum alterius militis Christi, et nescio ego, utrum exit mihi proprius locus in celo." Et ait tiramus: "Vere et si non dederis mihi locum illum, statim eris uxor mea sine mora." Et respondit abbatissa: "Si credideris in Dominum Iesum C"hristum ot baptizatus fueris, et mecum consilium feceris, non peiorem locum hahebis."

[^185]Et dixit ille: "Faciam quodeumque precepreris, si illum locum mihi dederis, sed non accipiam alium locum." Et ait illi sancta Monenua: "Habebis, sed surge et reni mecum, et esto fidelis ad mortem, ${ }^{1}$ et halehis locum illum." Tunc surrexit Clmelach cum Atin, filius sororis sue, et separati sunt ab aliis suciis suis, et renerunt com sancta Monemua et sororihus ad ecelesiam, que vocatur Chillesleve, et illic baptizati fuerunt, et illa doctissima abbatissa docuit eos psalterium, et postea sanctissimi episcopi effecti sunt.

De Chevin a diabolo vexato et per sanctam virginem reddito Deo.
11. P'ost hee antem venit diabolus in similitudine clerici ad Chevin, et dixit
 locnm tum a te." Et respondit Chevin et dixit: "Vere non potest illud fieri, sient viletur, ullommen." Et dixit inimicus: "Si non credis, mitte duos clericos mecum al cenohium Moneme, ut prolent quol predixi." Respondit Chevin: "Fiat sic." Et exierunt simul ad momasterimn et invenerunt Glunelath et Afin cum sonoribus legrentes salmos. Et vilenters reversi sunt, et muntiaverunt domines suo quia verum esset. Et tunc dixit diabolus ad Chevin: "Que sunt premia tui maximi lalwotis et dimmarum orationum? Et 'pue septem amorum, quilus usque monlo pastus es radicilus urticarum? Eece Monema abstulit lexem tumm a te et dedit pessimo latroni Glumelath." Tune valde iratus fuit ('hevin, et dixit clericis suis: "l'reparate mili arma el camus in locum Glumelaht, el destruanus cemolium Monenne." Eit exiernent nt facerent mala, ut annuntiaverat angelus Dei sancte Monemne, et dixit illi: "Vale cito in oceursum Chevin, quia riabolus temptat illum." Et ait ahbatissa sororihns: "()rate promolis et pro his fratribus." Eet exivit sunctissima in cectusum illins, et invenit eum in loco, qui dicitur suale, et alins multos cum eon. Fil vidit sancta Monema quasi parvom nigrum puerum stantem iunta fetem sinistrum Chevin. Lit dixit sancta Monenna ad 'hevin: "Nome viles diaholum all sinistrum peden tum, monitu raius hue venisti le lreo sancto tuo? Signa cor tum, frater, et oculos tuos (iiligenter." Et fecit sic. C'ui respmodit Chevin: "Vere soror mea, modo video." Fit cxpellit sancta Monenna diaholum ab eo, et signavit cum manu sua el adtuxit secum an monasteriun, et peraravit ei balneum bonum in petra duriswima suura parvi montis cacumina.

De balneo eiusdem C'hevin.

12. Fet accessit sancta Monenna ad frigidum fontem suum, quo solitis 1. パ:

 phenaserat indman, post oe trahens summ baculun. Et aqua secuta est

[^186]balneo recepta, gratia Dei fit semper calila. Deinde usque ad hunc diem multi habentes infirmitatem, in nomine sancte virginis, per balneum recipiment sanitatem. Et dixit sancta virgo all Chevin: "Ecce balnemm tibi offero in honore tuo, et non defieiet aqua in eo." Et vieatum est balnemn Chevin, quia sancta Monenna, dedit illud tiranno, ut reciperet eum a diabolo.

De vitulo devorato et de lupo vacce amato.

13. Contigit quadam die, ut umus lupus venerit iuxta ecclesiam, ubi manebat sancta Monema, et interfecit unum vitulun, quan custodiebat supradictus puer, nomine Luger. Yenit auten puer ante pedes alljatisse flens et ululans atque dicens: "Quare perdidi vitulum meum, O donina?" At illa sanctissima respondit : "Nescio, fili mi, ubi est vitulus tuus." Et respondit puer: "Canis devoravit vitulum meum, et adhue iacet super illum." Et dixit sancta Monemna ad eum : "Accipe baculum meum in manu tua, et dic ei ut veniad ad me." Exivit autem puer, et invenit lupum adhuc rodentem ossa, et dedit ei ictum super dorsum et dixit ei: "Precepit tibi Monema, ut cito venias ad eam." Et surrexit lupus et precessit puerum ad modum domestici canis. Cumque stetisset coram abbatissa dixit ei:"Quare, 0 miser, interfecisti vitulum nostrum? Ecce precipio tibi nomine Domini nostri Iesu Christi et Sancte Marie virginis, ut sis in loco vituli cotidie, et fiat vacea lactifera, quasi habuisset vitulum." Et sic factum est, ut vaccia diligelat lupum et lingebat eum, quasi esset vitulus proprius, et lupus custodiebat illam vaccam quasi pastor. Sed et usque hodiernum diem de genere istius sunt lupi iuxta ecclesiam, et per tria millia custodientes pecora ecclesie, et omnes diligunt et aguoscunt genus illorum, quia minores sunt quan alii lupi, et albi sunt in frontibus illorum, et vivunt semper de venatione tantum.

Qua de causa sancta Monenna prius intravit in Anglicam terram.
14. In tempore illo Alfredus, filius regis Anglicorm, hahens infirmitatem maximam, perrexit ad serviendum Conaldo regi in Hiliemiam. C'ui Hibernienses dixerunt: "Yale ad ablatissam Monenmam, ot pete, ut pro infirmitate tua Dominum Deum suum deprecetur. Cuius intercessione statim tibi sanitas reddetur." Credidit, et morbo expulso, virginis interventu sauus efficitur. Recepta sanitate, redid ad regem, querens licentian redemndi in patriam. Cum autem rex audisset et sciret, quol filins revis Anglicorum vellet redire in patriam, adquisita licentia, coepit cogitare, unde haberet peecunian, quam sibi dare deberet, quia noluit, ut exspers munerum ab co recederet. Tunc iussit ministris suis, ut provocarent consiliarios ad se, a quibus consilium quesivit, quam regionem predari deberet, ex qua tanta pecunia recedenti daretur, pro retributione servitii sui, ut accepta pecunia honorabiliter redire in patriam suam posset. Quorum unis repondens, cui nomen
erat Chanoncun, dicens: "O rex honorabilis, erige aures meis consilis, nam in ecclesia Monenne multe sunt divitie, quas si vi raperes, milites tuos bene restamares." Audiens hec princeps, sciens gratiam Dei esse cum ea, timens illne ire dixit: "Notum est nobis pluribus, quod cunctis malefactoribus \boldsymbol{p}^{n} anore illius gravem vindictan reddit Deus." Et dictis illius deprecans, respmlit consiliarius: " Si nolis videtur licitum, mitte mecum exercitum tum, ut destruan cenobium, et tibi reddam totam virginis Monemne pecuniam." Et dixit rex: "Si ansus es, vade." Et huic aunuit, et affectum itineris implevit, et cum exercitu magno exivit. Et hoc miraculum media nucte contigit, ut hustes renientes ex improviso totam terram illius Chammon batarnt, et mmia bnat sam aminemt, nesciente illo, cuius terra inxta cenolimm sancte Moneme fuit, et ipse cognatus illius.

Et inxtu Dei indicin (wntigit, ut malum, quad sanctis monialibus inferre
 eius, et in verticem ipsius iniquitas eius descentet." Tamen omnia bona monasterii illins violenter rapuerunt, nullo timore Dei et sanctorum eius
 reversus est in patriam suam cum plurimis donis. Cum nutem andisset sacra sancta virgu Monenma, quod locus Den consecratus vastaretur a tiramo, cognatn eins, irata est ei valle et dixit: "Hoc det Ineus, ut sit semper in vastituline terra illius, et ecelesia, leo adiuvante, iterum renovabitur:" Et fartume eat sic.

U'u0 molo transivit mare cum virginihus suis in lifitannia.
15. Et tunc sancta Monema, commota de eo, qual factum fuerat, exivit ad litus, yuod eat iuxa Fiwhart cum Brigita et Athea et Luge. Et clamaverunt ad Dominum fortiter et rogaverunt cum, ut daret eis anxilium trans mare eumil. C'um vero orassent, ecce angelus Domini descendit de relo coram cis et circumeinxit param partem te terra in circuitu illarmu sanctarum viryinm, et mare circuivit illam signatan terram, et abstulit eam de loco suo, et erat eis pro navi usque in lóritanniam, et ilji posita est iuxta
 virginum, sic permanet usque hodiprnum diem; non crescit neque minuitur sed semper arqua marina circuit illam. Ilixit antem sancta Monenna ad Dirigilam et anl Iuge: "Expectate hic et edilicate ecelesiam in loco sancto isto" domer revertamur ad vos. Ft nus ihimus ad curian regis, ut res nostras inguiramus, que ablata sunt violenter a nolus." P'ost hec vero invenerunt regem in villa, que vecatur Streneshalen, iuxta silvam que dicitur Arderne.
('undue vilisset rex virgines ad se venientes, valde letus effectus est in adventu illarmu. Fit cum andisset, quod de ecelesia illins essent homines et

[^187]peceora, reddidit omnia, et dixit al ean rex: "Dabo tihi istan villam cum sorore mea virgine, ut doceas eam disciplinam divinam." Et respondit sancta Monema: "Libenter fiat." Et mansit illic tribus mensibus, et iussit sancta virgo Atheam, ut doceret virginem, regis sororem, spalterium. Sancta Monenna vero reversa est ad Prigidam cun donis pluribns, et servi regis cum illa, donec essent naves parate. Et tune exivit abbatissa et Brigida cum familia sua in Hiberniam, et restituit ecclesiam suam.

Incipit Libellus Secundus.

De aqua in vinum conversa.

1. Nunc ad narrationem ordinem, iam secundo incipiente libello, revertamur.

Igitur sancta Monemna pervenit tandem itinere finito in Hibernia, in campum Murthemene, in quo Conalleorum gens maxime viget, de qua et ipsa sanctissima Monema, ut dixi, procreata est, antiquitus pre ceteris gentibus, que in confinio sunt, magicarum artium libris imbuta, sed nunc, subacta gentilitate, Christi fide tota effecta est Christiana per sanctan Monennam. Divertens itaque ad alias Christi famulas, quas Campani filias nuncupant, fecisse narratur grande miraculum. Quarum unam semper in comitatu habuerat, et nunc earum monasterium, postea ab alio, ibi principatum tenente, vocabulum sortitum, cuius nomen erat Luge. A quibus cum omni gaudio suscepta, que caritatis erant, in quantum potuerant in eam fecerunt et quol ille non habuerunt, id est potum, ruo letificarentur tauti hospites Christi, Deus operatus est per adventum hospitum, de aqua iocundissimum vinum. Nam benedicens sancta Monenna aque vasculum in dommm alportatum, Deus mutavit laticis undam, virtute summa conversam in vini naturam, ut caritati ancillarum Dei, quod deerat, supleretur, et nomen I omini semper uhique magnificum et enarrabile ab omnibus crederetur. Multis his servis Dei certissimum est, inter illas termas hoe contigisse miraculum, yue vineas non generant, ut vinum de his sumerent, ut haberent sufficienter, ut puto, serve Dei haustum vini ad peragenda mysteria corporis Christi.

Ab episcopo veniens ad sanctam Brigidam.
2. Sanctus vero Ibar, episcopus supradictus de predictis insulis, Domino itineris duce, in meridianam Hibernie partem pergit, andiens ibi parvan insulam, quam Modicam Hiberniam vocant, in qua et pestea pust ghrinsam vitam reconditus est. Oves Christi pastorem sequuntur. Sancta Monema cum virginibus episcopum et salatans ductrine magistrum consequuntur.
R.I.A. PROC., VOL. XXVIIT., SECT, C,

Devenientesque in Lagenorum terram, cui et supradicta iacet insula, parte meriiliane, audita sancte Brigide sancta Monemna cum puellis ad se pertinentilus, eprisemm permittente, all illam livertit visitandam. Apud quam halitavit mun parro tempore, humiliter se deiciens, in quantum semetipsam pre ceteris hunilialat, tantum illann Duminns super omnes rirtutum meritis exaltabat. Erat enin allalilis, lenis, hospitalis, omnibus ornata bonis moribus, cunctis in Christh phacuit, onnesique inimici versutias non ignorans, erat enim a lextris et simitris ammis spiritalihus valle munita. Donavit autem illi I) minus etian sanitatum gratim, ut diversormm malormm langure depulso, intimiture varids sanare, "t reviln ot "ratione de obsessis despellere colpurihs. Crenlidit illi whnis f"pulns in tantum, ut magnis etian donis et mumerinu- metidie ditaretur. Sint ex his nihil sili reservans, que in Christum -nam iantantat curan, cunta paunerihns miseris et peregrinis, yui ad se ontifie senimant proter Chitum, pangerwn pro amitus et peregrinum factum erograbat.

Ine duolecim vestibus sancta Monenna a Domino donatis.

 ...
 necgavit, et est deterior infideli.' Ne sorores, que tecum venerant, pene

 illa continuo, corde confilens in Christum omnia posse, quando vult

 halmere."

A sancta Brigida vadens habitavit in Airdsconis apud episcopun
Ibor, et de cisterna aqua repleta.
4. Reversa ergo a sancta Brigida ad episcopum Ibor, hahitavit in Airtchonis. Congregatis ibi simul multis Christi virginibus, sul) potestate eqisenpi viverant, quarum cotidie augebatur numerus, et non solun virginum et viduarwn multitude, sel et regine et quamplurime matrone and illas cutidie: condllachant. Cunctis saluberrime vite preceptis tocius bonitatis magistra tam verbis cuam exemplis sancta Monema omnes hortabatur. Contigit deinde alio amo, inter illas terras, nimio estatis calore cogente, humidas deesse populis aquarmu copias, ita ut non solum laculi vel cisterne siccarentur, sed et fontanei et rivuli minus fluerent. Sorores ergo cum sancta Monenna, quibus discurrendi non erat licentia, aquarum penuria sentiebaut dampuum, non tantum pro domesticis necessitatibus, sed et sitientibus imo spiritum refocillare cupientilus aquarum satiamenta defuerant. Videns hoc sancta Monema, aliorum iniuria commata et sancti Helie exemplum secuta, fontem aquarum vite pro transitoriis deprecatur aquis, et in illa nocte, qua orationem pro adipiscendis aquis ad Dominum fudit, cisterna nocte aquis impleta, aquarum copia mane. Devulgatum est autem tale miraculum sancte MIoneme in multus populos, ita ut cotidie incessabiliter venirent ad illam, non solum feminii sexus homines, sed et maxime principes, quibus honor et dignitas maxima erat, si sancte virginis benedictionem accipere mererentur.

De prophetia sancte Moneme et de puella sibi ab episcopo commendata.
5. Porro propheticus in ea spiritus inter ceteras eius virtutes primatum tenebat, ut eventura frequenter predicaret et prounntiata semper eventa probaret, sicut et in hoe intelligi potest, quod sequitur. In alio die de vicinis filia alicuins ab episcopo commendata ad sanctam Monemam adducitur, ut illam cum ceteris virginibus in Dei timore et monasterialibus nutriret disciplinis. Qua recepta et cum sororibus dimissa, sancta Monema dixit virgimibus: "Istam parram filiolam hac hora ad nos ductam debemus etiam pre ceteris diligentins nutrire, huius enim cansa tempore conget nos necessitas de isto migrave loco." Quod ita certissime evenit, ut sancta Monema per spiritum predixit. Nam predieta puella paulatim crescens et ad inuentutis etian etatem perveniens, coepit antiquus bonorum atversarius ciabolus eam spiritu agitare invilie. Cuius invidia, ut legitur, mors intravit in orbem terrarum, malun discordie, quod anima Domini pre odibilibus sex detestatur, incessanter semper seminabat. Dicebat enim ad episcopum: "Nullus te in populo nune requirit, omnium dona et munera qui in tuis commorantur finibus, ad istas deferuntur peregrimas, nullius momenti nune reputati, quil
istas. utpute inprimis peregrinas propter Dominum benefaciens adduxisti; se enim ${ }^{1}$ magnificari et elevari desiderant, quanto magis nos nullius esse bonitatis arbitrantur." Hac et his similia cum suis parentibus et vicinis, hiatuln suakente, susurans, scolam episcopi etiam et eos quos sibi seiehat in populo privatos, his venenosis commovebat rerbis. Sed episcopus, ut erat humo mitissimus, his non accommodabat auditum sermonibus.

He corressione sancte Moneme de Airlsconis et de fluvio se elevato.
6. Hec audiens sancta Monema dixit sororibis: "Ecee quod Dominus de filiola volis ustentit, imprimis nune apparet. Si nobis simul hee incipiunt facere, scio quot prost mortem meam non poteritis hic habitare. Melius est ergo alionum invitie locum dare et ire, quam in talli animarum rancore com ceteris simul perine。Omnia quecumgue nobis Dominus hic dedit emm illis jelinquenda sunt ; pheter vestes nostras commmes nihil portabimus de omni
 motram iactavimus curam, precentit nos, et subsequemur, ut nobis commolum ©t silhi flacitum perrlucat al loctum." l'roficiscuutur inde, Dumino comitante, et itineris duce, sancta Monema cun sororibus non minus, ut refertur, quinghaginta; perpentesine vians veniunt ad quendam thavimm, per quem sibi thansitus esse dehncrat, mon tam magnum, ut etiam parvolos vel muleres transitu impertiret. Sulsistentes pratulum, vilent duvii verticem contra se satim intumescere, et epertonlice ripas exundans transthere. Intuens hoc suncta Moneman sulnsistit dicens: "()uin est quod moljis fecit Dominus? Sine duhin mostra culpa hoe prelmit nolis facere, quod videmus rivulum insolito sihi more, Den volente, contra nos elevare. Serutemur diligentissime nostras conscientias, si forte in alipuo nostrum trangressionis culpa ut illam pia comfesisione emmatans immonis cese possit a poena." liespondens una de anmorihns, semetipam accusmes, dixit: "Confitenr culpan meam, quan stulte (nnmmisi, pro qua istul impedimentum, ut putu, viemur pati. De monasterio motro ceredediens vidi diversas in solito siccare cepas, et umun de alleo, quod matrum esse phtaham, capituhum alportatur, quo sciehatu pro dolore, in monlun colerii thus oculos perungi. Ago inde penitentiam, qualencumque inlners, tantum ut mear culpa, quan sula conmmisi, multis non faciam iniuriam." ('ninlixit sanctas Mnmemas: " Lefer ergen ad domum de qua venimus, que attulisti. Ai maina, que nustra crant, ibi Dominum propter dinisimus, minora sine owhun licentia, cum quihus dimissa sunt, et protare non delneramus." Sicque fietum cet, ut repurtatab ad terram, siloi a Domino destinatam, in parte nquilenis Mitnernie sitam, ilii sancta Monema cognationem propriam quasi ad wean imme Iarate que perierant. ${ }^{*}$

De vasculo argenter in thmen transmisso a lirigida an sanctan Monemam.
7. Coepto itaque itinere, Christo comite, recte vie proficiscuutur aquilonis sub axem, pervenientesque, ut referunt, in Limphi Campaniam, in cuius optima et planissima septentrionali parte monasterium sancte brigide numb constructum est, veniunt ad sanctam Brigidam, manentesque apud illam aliquantis diehos, semper desiderahat, sancta Monema audire, que sibi et suis in Domino potuissent proficere, ut exirent in peregrinationem Rome. "Oves mee vocem meam audiunt, et ego vitam cteman do eis." ${ }^{1}$ Quando tempus postea eundi ad optata loca advenerat, quasi apis prudentisima mellilluis honusta sancta Moneme colloquis, dixit aul sanctan Brigidam: "Da benedictionem tuan super nos, et pro nobis Dominum diligenter roga ht viam nostram in se recte dirigat, et ad loca destinata sua misericordia incolumes perducat." Cui sancta respondit Brigida: "Deus ommipotens custodiat vos ini via yua pergitis, ut ad desiderata halitacula prospere perveniatis"; protulityue vasculun argenteum, quod potum Hibernenses principibus haurire solent, quol vocant escre dicens: "Accipe munusculum de mauu mea quod tibi do, ut fiat de illo aliquis profectus tibi et que tecum sunt Christi sororibus." Accepit ergo vasculum sancta Monema, in ullo contradicere non audens, nee volebat. Accepta benedictione a sancta Brigida, quidquan de relus purtare presentibus noluit, sed salutatis cunctis sororibus, iterum quasi aliquid obliviscens, intro domum ingreditur, reponitque vasculum supradictum illic in tutiori loco, ubi servari possit, et non videri continuo. Deinde resalutatis omnibus, desideratam pergunt viam, tandemque perveniunt. A Domino descripti sunt, credo, ab eterno remuneratore, ipsa sorore mea sancta Monema, flaterna caritate intercedente, premium qualecumque accipere. Inter hec, transactis aliquantis diebus, vasculum argenteum supradictum invenitur, 政 quomolo contingit sancte Brigide enuntiatur. Que nuntiantibus respondisse fertar: "Vas, quod tribuimus in Dei donarium, non licet nobis habere ad usum nostrum, et ne de hoc imbecillioribus aliqua suplicatio vel dubietas in mentem veniat, Duminus ad quem vult locum vasculum perducat. In flumen, quod nolis est contiguum, mittendum est, et Dominus, ut voluerit, et sancte Moneme meritum, faciat, quod sibi placet." Itaque ut certissime adfirmarent, qui sie antiquitus habent sibi traditum, ita factum est. Vasculun in thumen missmb est, nomine Life, quod in mare Hibernicum fluit orientale, et Domino conservante et portante, quocumque modo inventum est a lionan episcopo, fratre Monemne, ut habet opinio, in Capite Litoris, sicut Scoti locum nominant Stanninibae, quod de mari erumpens orientali Scotico et in cirem tendens inter Bairce et Coilgi Campiolum primo porrigitur, leinde usque ad fines populormm, cognomine Orientalium, multum silvis et montihus coaretatum in lomgun

[^188]extenditur. In quorum confinio, ut supra dixi, iuxta Colmi Montem, sancte Monenne collocatum est monasterium. Episcophs hoe inventum secum admirans, detulit sancte Moneme vasculum. (uo agnito, omnes glorificaverunt Deum, in tali factu agnoscentes domum sibi transmissum a Domino. Inter monasterium sancte Monembe sancte Brigide est iter quinque vel sex dierum, wian his qui pre terram recto itinere prgunt sine mari, sicut nos fredurnter polamus. Talt athem, ut mihi videtur, miraculum utnisque

 voluit, I heus claro miraculo postera manifestavit.

De peregrinatione ciusdem Fome.

 in supradiotal silva in priorem locum trilus amnis. Tunc dixit eis sancta Moneman: "In istan silvam ibn inxta vos et edificabo alium locum." Et fecit sic, et hahitaverunt simul sancta Monenna et Athea tribus annis. Ite vero et Usid in primo loen mansernnt.

> It purbla tribus dichns aqua suhmersa et pistea per sanctam Momemann vite redtita.
9. Unaham veron lie dixit Ite nd puellan suam Osid: "Due volumen istud

 vere." let ait Ite: "Nultus tertius misi cam cum volunine, et miror valde guare non est revera." Et respnntit: "N゙on vidi illann. Eanus et inquiramus eam." I'astores autem erant iuxta illas, qui dixerunt: "Vidimus ean mudius tertius cuntem ad pontem, of ultra non vilimus ean." Tunc dixit sancta Monenna: "Vere mersa est in aqua. Eanus et queramus cam in flumine." Compue pervenirent ad thnen, clamaverunt ad Deum, fusis lacrymis et dixerunt: "Doruine lesu Christe, filii Dei vivi, per intercessionem sancte matris tue et bancti l'etri et P'auli atque Andree et omniun sanchorun,
redde nolis puellam nostram." Et completa oratione, dixit sancta Monemna: "In nomine Domini nostri Iesu Christi, precipio tibi puella, ut respondeas nobis, si es in ista aqua." Et exclamans voce magna, mixtis lacrymis, ter vocavit Osid. Yix finita oratione, respomit puella in profunda aqua, et dixit: "Ecce ego, ecce ego, domina." Et dixit ei sancta Monemna: "Surge in nomine Domini, et veni foras." Et surrexit statim, et venit ad illam, et signavit eam sancta virgo, et tradidit in manu Ite, et dixit: "Fece puella, manete in pace, quia non est mihi licitum manendi vobiscum, nam ibo ad Hiberuiam visitare ecclesiam." Responderunt virgines dicentes: "Vere et nos tecum ibimus et te nullo modo dimittemus." Et post hec exierunt ommes simul trans mare in Hiberniam et manserunt illic pene septem annis.

Vitulum a lupis rapto et iterum reddito.

10. Alio die sororum vitulis in aliquo agello pascentibus inxta montem, Iuporum de silvis inruit impetus, vitulisque in fugan dispersis, umum ex his lupi rapacissimi rapiunt, et diu persecutus, utpute per silvas raphs, temebris supervenientibus nou comparuit. Narrant hec sorores in auribus sancte Moneme, que coutigerant, conquerentes. Quibus illa dixit: "Fidem in Christum habete et mentem estote secure. Sub cuius etiam potestate vivunt et bestie, potest inter luporum dentes sanum custodire vitulum, qui quondan Danielem prophetam eripuit de ore leonum. Propter hoc enim lupi vitulum rapuerunt, ut mirabilius intactum reddant, et crastino ad vos, Deo volente sauum reducant." Ita facto mane, videntibus ommibus lupi reduxerunt eumdem vitulum, a se pridie raptum, sanum et invulneratum, quasi de pascuis alili non exivisset. Quis nesciat, quod per orationes sancte Monemne, inter rapaces bestias incolumis servatus est vitulus, non quia cura Donnino maxime est de pecoribns, sed quia sanctos suos vult in magnis ita et in minimis magnificare, ut numquam cessant illum diligere, quem credunt omia, quecunque vult, posse facere.

De petra in sale conversa.
11. Quodam casu temporis, pessimi homines latrocinaudo nomunquam penetrantes, invenerunt non longe a monasterio venientem quamdam. Quihus interrogantibus unde venisset, vel quo exire vellet, tremelrunda respondit: "Non de longe venio, et ad sanctam Monemam properave deleo." C'ui iterun irridentes dicunt: "Nos non sumns locupletes in ista terra, dic ad Monemann nolis ne sit irata, cui undique transmittitur adeo multa pecmia, nostram tamen oblatiunculam, quam nunc habemus, ad illam porta, quan credimus multo tempore posse perseverare, si secum potuerit fructum facere." Apprehensoque uno lapillo de his, qui coram erant lapidihus, et qui ab illa posset portari, miseram abire permittunt, positoque in eius scapulis onere, contes
tantur illam, alihi non de collo honus deponere, nisi presente sancte Monenne. Quo perveniens, et honere depositu coram sancta virgine, inveniunt inpositam anto durisimam petram, in maturam salis statim transmutatam. Quod enim increnhli, subsamantu virtutem Dei fererant, virtus superna mirabiliter commutavit. Petra enim scandali erat et lapis offensionis, ${ }^{1}$ virtutem Dei non cembntilns, sed womm hluritia in naturan salis transmutatur, fidelibus quando virtus patufatimmstratur, que enrun aninas in interitum of alas in vitam eternam ducit.

De pauperis cibario rapto et iterum reddito.
1:. Fnit alia (hristi famlat, monime Suil, nom tam longe hahitans a monasterio sancte Monenne. Cuins monasteriolum semper ihi consistit, ad quam

 in via latmoulns incurisse pessimos, raptisur abo per vim cibariis, dimiserunt illam exire vacuam. lievertens aul sanctam Mnenenam, narrant que acciderant. ('ui respmotiss fertur sancta Monema: "'lui laboris et devotionis preminn intognm tihi manet in celo, et a latronihus intactum. Sed et hoe, quol illi mapmont pessimi, potest Dominus servare, et ab eis intactum, quando vult, redidere." lost hee illi mpenes per desertum cum prediola, avia petentes, vian igmmare coperment, in illam terram, in qua peritissimi erant, mullanque vian invenire vel ongnosece poterant. Excecavit antem illos virtus divina, inlen mon promant agroscere tomena. Trihus ergen, ut referunt, contimuis , fionns in silvis crrantes, hustium, yuns in illo confinio esse scielant, sed pulabant intra se fines intelligunt. lirgo licet sero, miseri divino nutu, pro culpa, ruam commiserant se esse constrictos, confitentur invicem suum delic-
 form oculos aperuisset rectan congnsece vian. Et in illa hora apertis fumbn nenlis, intelligunt se esse in loco proximo sororum Christi monasterio. Jobinde venientes ad monasterimu, primo reddunt, que portaverunt ab eis
 vie corum mentes ferculsit, et adversariorum in unapaque hora semper suspiratio, illos non permisit, Iomino volente, etian vel cupila manducare. Ergu agnoseentes culpam suam, eormm confitentur errorem, prostratisque in torram vulthos, promitunt se implere indieatam sili penitentiam, acceptopue vemedio vulnerum, in vian suan resersi sunt, pronittentes latrocinia post ber mumquan farturns, etiamsi Inominus pisilem concederet longo tempere vivere.

Je filia resuseitata.
1:3, Multa mirabilia preter hec, que per sanctam Monemoam Dominus
operatus est, certissime etiam alfirmant, quot muprervenicntem al ('hristi fidem filiam, et subita infirmitate morte oppressim, facta longissima oratione sancte Monemne, Dominus vite roldidit. Et que erat mortua ad sepulturam ducta, per orationes sancte Molueme suscitata, multis temporibus, ut referunt, postea permansit in vita. Kx ore Domini cotidic audivimus etiam que videntur hominibus ineredibilia per sanctos suos esse facienda miracula. Quibus imprimis, euntibus ad predicationem iubet leprosos mundare, mortuos suscitare, demones eicerc, ${ }^{1}$ et cetera, que consequens lectio divini demonstrat verbi. Et iterum: "Qui credit in me, opera que ego facio faciet, et maiora horum faciet." ${ }^{2}$ Licet in hoe testimonio intelligere quidlam volunt, hoc spiritualiter per sanctos magis impleri posse, in his qui semel mudati vel resuscitati sic permanent, ut iterum numquam moriantur, sed sic vivant in vitam eternam.

De puero alio resuscitato.

14. Narrant etiam similiter hic mirabile per sancte Monenne Domini factum. Alium puerum, non credentem, sel denegantem, quod superius diximus, domum esse divinum, subita morte statim percussum, et per sancte Moneme preces vite iterum redditum restitutum.

De vitulo in domo Donech occiso et iterum vivo.
15. Narrant item et alius sancte Monenne miraculum factum in domo alicuius viri de vicinis, nomine Doneeh, contigisse miraculum, qui in eius adventu et aliorum bonorum secum comitantium, occidisse narrantur suum quem habebat vitulum. Non enim magnam habebat facultatem, sed in corde suo collocaverat abundantem caritatem. Et hoe comperto, quod fecit ille homo, sancta Monenna pollicita est illi, bene facienti Dominum in futuro retributurum, preparanti refectionem in adventu Christi hospitum. Hoc ergo confirmant ibi etiam presens factum inauditum signum, quia crastino die, eiusdem etatis et coloris cum sua matre inventus est vitulus, pualis et ille qui hospitibus fuerat pridie occisus, ut usque hodic aftirmant et unum et eumdem esse vitulum, quem et pridie occisum et crastino cum matre vivum inventum. Talis etiam virtus devulgatur per sanctan Monennam. Quod antem incredibile est, Deo volente, vel consumpta redintegrante, volens in omnibus suam virtutem ostendere, aut animal similium qualicumque materia facere, aut aliunde, qui omnia ex nichilo fecit esse, el cunctorum hominum sompora, qualicumque morte consumpta, reparabit in resurexione.

De vasculo parvo bencticto cum cerevisia in dumo ciusilem Donehe.
16. Alia vice supradietus homo, apud quem factum est, qued de vituln enarravimus, invenit in alio agello suo sanctam Monemam cum phellis suis

[^189]Athea et Ede et Osid, in die requies. Narrant ergo certissime de sancta Monema, fustruan de leregrinatione Roma revertens, in teram venerat sue cognationis sancte, sexum virilem numquam intueri. Sed quando necessitas
 solvere, vel captivos relimere, illam aftimant in nocte procedere, si autem necessitas cogeret, facie operata pallio, homines contra ire vel appellare, semper volens iunioribus exemplun relinguere, ne per fenestras ullatenus sinerent morten and animan intrare. ${ }^{1}$ Sulebat enim, ut predixi, plus in nocte in illa terra ambulare, ne humanis se in die comisceret aspectibus, et super veniente sule, si non esset domms apta in propinquo ad manendum, etiam sub yuotam umbracule in alio secteto low, vel in pupilione, ab estu vel pluvia defemente, mamehat. Ihagat ergo illam bemedictus homo, diligentissime per I Murn contestans, ut ad domunculam suam, quam habelat remotam, secum venirent, aflimams in pnssessione sua nihil esse, quod servos Christi impediret ad se venire. l'ost monnulla, impetrata petitione, illo precedente, requantur cum al dumun suan, lavatisque pedilus Christi vinginum pio ubsequin, et mensa apposita conmula ministratur. Pous antem de cervisia miscitur. Finitis ${ }^{2}$ is in dommm et munem supellectilem hospitis benedixit, bexe etian, ut fertur, hicens: "Monstrate mihi, inquit, etiam, vasculum cervisariun, le yun attulistis molois putum, ut et ipsum viligentius benedicamus." (yno coman afysito, molicum, quol intus remansit, diligenter benelixit. Et in huins virtute henentictionis, parmm, quod, in vasculo erat, usque ad summun vasculi lalom ereverat. Dixit iterum ad hospitem: "Si aliquos bonns homines, quoscumpue volneris, invitaveris, potum eis sulficienter de istn vasculn, si eredileris, halnohis. Molican sulnstantiam alhue habuisti, sed mune moltiphicare Dominus valt tihi bma, et tuis post te heredibus, co quml semper etiam supra facultatem fuisti letus in recipientis Chisti hospi-
 honpitio." Post suncte Moneme imbe dogressus, ille suparictus homo Bar respro, cui pertinehat, serus se preterematem accersivit dicens: "Veni domane mi ad domuncolan servi tui, ian enim prandiun, ut haloui, qualecumpue paravi." C'ui rex resumbisse fertur: "Multi summs, ut vides, et halmmus aliculif paratan cenam." Dixit iterum homo: "Nolo vos innerlire ad promata exire, sed prius meemn exihitis mian paululum gustare." (guid

 hifnemat. Eit guantun sle cervisia, ut referment, pincerna hauriebat, tantum interius benedictionembulabat. Hocommes congnito, valde mirati sunt, magnificantes sancte Monemne virtutem in tali facto, scientes quod multa mirahilia
preter hee perfecit, largiente Domino. Cotidic videtur impleri quod seriphura ait: "Benedictione instorum exaltahitur civitas." Et iterum: "Benelictio Domini divites facit." Ille supradictus homo post sancte Moneme benedictionem, semper melins et melins habuit, et sua generatio in populo postea multo tempore primatum olbtinuit, eo quod sancte Monenne benedictionem recipere promeruit.

Incirit Libellus Secundus. ${ }^{3}$

De aqua in vinum conversa.
Ab episcopo veniens ad sanctam Brigidam.
De duodecim vestibus sancta Monenna a Domino donatis.
A sancta Brigida vadens habitavit in Airhsconis apud episcopum Ibor, et de cisterna aqua repleta.

De prophetia sancte Monenne, et de puella sibi ab episcopo commendata.
De egressione sancte Moneme de Airdsconis, et de fluvio se elevato.
De vasculo argenteo in fluvium transmisso a Brigida ad sanctam Moneunam.

De peregrinacione eiusdem Rome.
De puella tribus diebus aqua submersa et postea per sanctam Munemanan vite redita.

Vitulum a lupis rapto et iterum reddito.
De petra in sale conversa.
De panperis cibario rapto et iterum redito.
De filia resuscitata.
De puero alio resuscitato.
De vitulo in domo Donehe occiso et iterum vivo.
De vasculo parvo benedicto cum cerevisia in domo eiusdem Donehc.

Incipit in Cheisto Libellus Tercius de Sancte Monenne Vibtutibus.
De rigore vite eius et dura abstinentia.
De vasis preparatis inedia cogeretur et a Deo repletis.
De peregrinatione sancte Monenne Rome iterum.
De ampula vitrea reperta.
Quod sancta Monema angelos non venisse conquirens oraciones suas impetiri sensit fichonum causa neophite.

[^190]Quod vidit Brig supradicta duos, ut sibi videbatur, cienos, id est angelos, de domuncula sancte Monemne egredi.

De frofectione Lazar in Anglia.
I) novissima peregrinacione sancte Monenne Rome euntis per Scottiam.

Quod Conagal rex, filius Conail, et fui convenerant barones misit ad illam se die montis dehito in futurmn differendo.

De astensione sancte Monenne pust obitus sui diem tercium ad Taunatim.
De translatione sancte Momeme.
De columpna al, angelis elevata in tempore Derlaisre.
De ayna in rerevisian motata.
De muti lingua per sancta Monemna suluta.'
Ischit in Chbisto Labllus Terchts ine sancte Munenne Vortuthbes.
De rigure vite cius et dura alstinentia.

1. Multis itayue amis sancta Monenma iuxta predictum montem cum suis virginilns, constructo momasterin, sanctam peregit militian. Quantum vero so in vigilis et orationihns incessabiliter cum multis etiam laboribus corpus(ondmu atllixerat, gnantun ieinniis erelnermis ef lectionis in terrea adsidui-
 domones desulaterat, vel qual et quales creberrimas ab, inmion pertulerit ibsilias, quantis miraculonom coruseationihus eflulserat, bullus hominum ad intrgran numerare putnit. Omnia enim ablominum notitia, in quantum puthit, colaverat, proterynam manifostari hominibus necessitas certa cogelat. Ita man'm primm heremitarman ef anachoritarum vestigia secuta est, ut otiam propriis pelihns in surouln terram hamat, et seminata postea semetifsa, in guantum sustinere puberat, exemrelat. Viriliter enim animum of sumetum Hagrans desiderimon of in desortis erat consuctudo habitare lucis, maxime inxta montes, et supara mulam petram nudis membris in vigiliis et ormimilus prometare, vel salturium in aqua usque ad scapmlas ilecantare, et virilem animum gestabat in feminern sexu, et pro laneis vel lineis vestibus, quasi quedam lilia Iledie et Inamis Paptiste discipula, utelatur. Sarculus it adne cins et fosurius, in quilus ofrathatur in suo monasterio, pro hiburneis
 ("nsemvata, et ohsiriois merito multo protinsima, illic similiter reposita vidimus, fertinampur cins ligneam, 'qua capmal pectimabat semel, ut refertur, in anno, id
 (")nsimamess serum halnent, suerito magis pretiosem quan si de auro fuisse facta. (2nambum:ntern semetipsum Immilians propter C'hristum defnruaverat, tantum illam lominus gratia virtutum exaltavit. I'rogressu namque temprer

[^191] bives of Sp. Mownma.
coeperunt ab omnibus in circuitu visitari nationibus, et homoribus etiam multis virgines Christi nobilissime. Etiam regine audita sancte Moneme, deposito regali fastigio, ad illam cotidie veniehant, suppliciter in terram prostrate, et deprecabantur ut eius iussu, si esset possibile, vel etiam colloquio ditarentur. Cotidie crescehat mumerus virginum Christi, et nom solum do propinguis, sed et de longimuis regimibos, chemosine multe rotidis mittebantur, sive in iumentis et pecorilus, sive in cihorum et vestimentorum habundantia, iuxta illarum terrarm consuetudinem, que onmia expentehat sancta virgo in pauperum et peregrinorum, viduarum et pupillorum necessitates, vix relinquens que infirmis prime et extreme etatis solatio forent.

De vasis preparatis inedia cogente et a Domino repletis.
2. Alio tempore, inedia perstante, sorores sancte prope ad mortem ducte sunt. Sed de sua commoditate quiçuam dicere non audebant nee volebant. Sancta autem Monenna in tali etiam virtute pre ommi primatum tennit. Nisi enim, quod natura humana non sustinet, pene desiderio carehat, ciboque semper fruebatur, dulci colloquio Christi. Audet ergo, ut refertur, homo Dei perveniens ad sanctam Monennam dicere: "Cur sorores Christi, moriuntur te presente, inedia confecte? Quia si volueris, potes, Deo adiuvante illas citius sublevare. Multum enim melins est, ut per te possint vivere, que Christo ommi vite tempore deserviunt cotidie." Quid plura? Quasi rubore superfulsa, iussit a sororibus vascula parari plurima et ommia in apto reponi loco, benedicens singulas, Christum oravit. Sequentique post hec nocte, oratorium ingressa, vigiliis preces Domino fudit, confidens in eum, qui dixit: "Petite et dabitur volis," ${ }^{1}$ et reliqua. Ut qui toto mundo sua dona sine cessatione preparat, etiam suis privatis ancillis, que inde tantam iactaverant curam, alimenta tribueret. Mirum dictu, crastino subsequenti omnia vascula ut refertur, inventa sunt plena, que in vespere precelente dimissa sunt vacua. Videmus nunc Spiritus Sancti dona sine personarum acceptione tribui, sed non sine meritorum gratia commerui. Qui enim in Heliseo, quondam propheta maximo, operatus est, per lienedictum quemdam monachum similia feeit, cuius vita et virtutes a sancto Gregorio prapa iescribuntur:* Nunce etiam per suam fanulam Moneunam, licet in extremis terrarum finibus sitam, facere non dedignatur, ut a solis ortu usyue ad occasum sum landabile nomen magnificetur. ${ }^{3}$ In Christo enim neque masculus neque femina, sel omnia in omnibus Christus. ${ }^{4}$

De peregrinatione sancte Monenne Rome iterum.
3. Post hee vero coepto itinere, Christo comite, sancte virgines trans mare in Scotiam, ad sanctum Andream, et iterum transfretaverunt in Britamiam

[^192]et edificaverunt ecclesiam in honore sancti Michaelis Archangeli in cacumine montis, qui modo vocatur Eleneburd. Enim erant quinque virgines, quarum istil sunt nomina, sanctissima abbatissa Monenna, Athea et Ede, Osid et Lazar: et halitaverunt ilii quinque amnis. Et inde profecte sunt petentes limina sanctorum Apostulorum I'etri scilicet et Pauli atque Andree, ut hormm preribus alinte, remunn celorum valerent ascendere. Cum antem venissent ad fluvimuqui divitur Trente. qui decumit iuxta Montem Calvom, qui Anglico sermone dicitur C'alvechif, et editicaverunt ibi ecelesiam, qui locus Deo consecratus et sancte Andree, vocatur Andreseie, quia est parva insula et lunc crat deserta. Et halitaverunt in ea sancta Monenna, Lazar, et Athea septem ammis; Ede vero et Osid in priore loco in Arderne supradicta silva. Et postguam Rome reversa sunt, ex altera parte aque edificaverunt erelesian in homore sancti l'etri ct P'anli ad radicem Montis Calvi。 Et fecit Ihens per illas multa miracula iuxta predictum fluvium. Sed quia tantum favorm populi sancta Monemma adepta est, noluit tunc ibi manere, et dixit sompribus suis: "Visitare volo, Den permittente, sorores meas in Hihernia." lisipmolerunt virgines cum fletudicentes: "Ibimus et nos tecmm." Que ait: "Nom tiat sic, sed cum gratia Dei manete hic et ossa mea cum ossilous vestris Den volente, cun gandio expectate." Et dixerunt: "Si ita erit, magnum dommon dedisti mobis." Et ait saucta Monemna: "Wuadraginta diehos et noctibns mancte mecmm hic, ut facianns orationem, et Dominns Iesus ©hristus perficiat. quod prediximus, et liat cius voluntas." Cumque completa esset oratio virginum, apparuit cis angelns Domini et dixit: "Fint volhis sicut putistis." Et posturam henedixit cis ahlatissa perrexit al Hibernian. Athea vero mansit in Andreseia, sicut preceperat ei sancta Mu[noma]. Erat enim engnata ahbatissa. Propterea postulaverunt ut remaneret cmin illis. Athue autem gentilitas et maximus tenebatur error per totam Anslicam terram. Sanctissima ommipotentis Dei virgo Monema multas in led nemine edificavit ecelesias, quasilas in Hibernia, quaram ista sunt nomma ; id est Focharde, deinle Cehllescleve, et post Cheneglas, et olifieavit ecelesiam unam in Surle, et alteram in Alomacha, nee non et Mitha, et multas alias, yuarmu momina hic non sunt seripta. Hec autem sancta virgo viguit ase thonit vitutihns divinis ac miracolis, et fuit in tempere Gelostini pape, qui sanctum Patriciun ad Hibernenses gentes, suls caligine peceatorum of ignorantic positas, misit. Sed hec interim. In Anglica vero Lerra quasilam constituit ecelesins, quia in tempore illo, sicut dixi, maximis gentilitatis tenelris tenelontur. In Arlerne vero, maxima et longissima silva, tres construxit ereflesias. (buama autem in dualam insula, pasita in thuion supadicta Thomi, qui inxta Montem decurrid (Galvi.

I) ampula vitrea reperta.

t. Unus de pretis Scotorum preclarissimus, nomine Brenden, vir ab infantia oculis ortus, sed in arthe poetica inter ommes crat precipuns, venit ad quemdam fluvium nomine Berbam. Et ille in mavicula transiens, cecirlit de suo sinu ampulla vitrea, que crat de vino plena, in profundum aque. Quam diu querentes numquan invenire potnerunt, ef ommi spe inveniendi ablata, dixit postea in suo, quod per verlmom canelnat, carminiculo: "Si ista ampulla nune fuerit inventa, sancte Monemne sine dubio erit donanda, ut habeat illa seeum in altaris ministerio, quod summ meritum monstrabit de profundo." Hee canens in sua lingua, unus prospiciens videt vasculun sanum et integrum iuxta se in aqua positum, quod asumens, foris produxit de aqua et ad sanctam Monennam postea iransmisit, quod invocatum nomen eius Deus monstravit.

> Quod sancta Monenna angelos non veuisse conquirens orationes suas impediri sensit fichonum causa neophite.
5. Angelos Domini cum sancta Monema collocutiones habere frequenter adsiduas non dubium est, et die nocteque ab illa numquam defuisse, ex quo monasterio collocaverat usque ad mortis sue diem, exceptis tribus, ut alii affirmant, noctibus, alii una nocte, qui ab initio semper sibi traditum adfirmant, et quid traditum cansae prestitit sequens contextus verbi monstrabit. Alia nocte sorores oratorium ingresse ad matutinas ibi peragendas vigilias, finitisque aliquando orationibus, signo pulsato, silentio dixit sancta Monenna sororibus: "Puelle benedicte Domini, non debemus festinando negligere, quod in ista nocte video vobis evenire. Debemus enim nostras, in quantum possumus, orationes ad Christum sursum erigere. Et nume ultra oratorii culmen non possunt ascendendo transire. Dehemus hae hora, in quantum possmmus, ommes nostras conscientias mundando investigare. Sanctus enim hospites, qui nos visitare soliti erant, multo miramur sulitn tempore non venire. Si namque nostra delicta qualiacumque non fuissent, sine dubio more solito semper advenirent." His aulitis, ommes ancelle Domini ceciderunt in facies suas, timore in eius verbo perterrite, plus credebant verbo abbatisse, पuamvis sciebant in suis conscientiis nichil pecare, sient et Apostolis quoudam IOmino C'hristo dicente: "(Quia unus Vestrum me tralet," respondisse leguntur singuli dicentes: "Numquid egn sum, Domine?", Guod enim in corde suo unusiuisque non habuit, supnat se seire Dominum vere putavit. Responditque una de penitentibus, yue muer de seculo venerat, dicens: "Mea culpa sine dubio hec volis feci. Nunc enim recordor, quod penitentiam meam promittens, nhlita sum duns sotnlares

[^193]confiteri, quos ab alio seculari viro, mihi illicite ante copulato, adportavi, et illos in ista nocte sub, pertibus propter frigus haboi." Dixit sancta Monenna: "Mrlin* ut illi subtulares imponamtur in profundissimum branmm, pro quibus nunc absentiam sentimus angelorum." Vocata itaque una ex sororibus brignam et aliis cum ca ex sororibus, dixit eis: "Ite et illos subtulares in aliqun profundo aliscondite, ubi nemo illos possit invenire." Illis exeuntibus insal complere, ymol restahat vigilimum rite peragnt. Dixikue sancta Monenna: "Deo ommipotenti gratias debemus ex toto corle agere, quod urationes nostre ut ante ad superna nune aliquid possint ascendere, et nostri "btati hospites non timeant ad mos venire, reiecta materia Dei offense." Nume :uperte pretest intelligi quamum se mundaverat ab omni macula principalis peccati, phe orationem sham senserat his minimis imperiri. Non sineret matma delinta sncerescere, que sic voluit sine ulla wora in tantum etiam minima prurgare.

Tlunt vidit lirig duos cervos, id est angelos, de dommenta sancte Momeme egredi.
6. Reverse surmes, impleto precequ, pulsato oratorii hostio, vident ommia esse in silentio. Ilixityue Brignan ad sorores, que secum ierant: "Ite dormitorium ingredientes aliquantulum pausate antequam lucescat mane." Illis intrantilns, revertitur ad tegorium sancte Monenne, in quo, cabiculo diligenter (lansu, suldat dintius in oratione persistere super nudam petram cmm

 cinms, he dommenta, in qua sancta Monenna requiescelat, in celum volare. !uns dilispmtins primu intuens, mirari compt, ol atius esse sciens quam forma monsthalat, mon ambehat, limtins aspicere, sel cito in terram contuens ampit Ihminmm instamtins orare, thmens ne periret perculsa stupore visionis ampelice. Tamlen erga tremebumla levat se de terra et appropinquans lustion conpit leniter pulsare. Aulito in domuncula pulsantis motn dixit: "Wens sum ancilla tha, quam misisti, el fecimus que nobis, ut putanus, iussa
 cohilan moun." ('ui sameta Monenma clementer respomelit: "Signa Niligenter

 [mivabit, quamtes secheta sha, que abh aliis relathtur tihi revelavit, nom privahit. chim lamis qui ambulant in innocentia cortis sui.' Et mune tempus est, it in
tua torra propria habites aliis proficias. Ad hoe mim te Dominus servavit, ut per to edificentur deserta et inveniantur perdita massa, qua inventa, Christo et angelis fiat magna letitia. Nune athem scias, quod visu oroulomm, quibus mune vides, post talem visionem carehis, modiores oculos habens, (quibs paradisum videas, ot similis angelis, quos vidisti in splendme fulgebis firmamenti. Sed ante mortem meam de tali visione nulli dicas. Nunc autem festinabis, ut potueris, ad terram tuan, sciens quod pergentibus semper de nostris, inter me et te, sive in vita sive post mortem nostram numquam accedet malum vel aliquid contrarium." Quod verissimum esse usque hodie probatur, periculosa semper et ardua ambulantibus inter illa duo monasteria, numquam audivimus accidisse quicquid mali. Post hee illa festinans ad terram nativitatis sue, que a monasterio sancte Monenne unius diei itinere disiungitur, invento ibi apto loco, usque ad diem mortis sue orbata oculis corporis, sic permansit, ut futurum sancta Monenna predixit.

De profectione Lazar in Anglia.

7. Habuit sancta Monenna secum unam de puellis nomine Lassar, quam supra memoravimus virginem Christi perfectam, sicut postea probavit eventus, quam sancta abbatissa pre maiora volens videns in ea sanctissime vite industriam, dixit ad illam : "Vade propter Christum in perecrinationem in alienam terram, quam diligo, trans mare in Britanniam, et ego veniam illuc, Deo volente, propter Dominum. Perge ad locum qui vocatur Andresie, in quo cupimus suscipere maxime precepta discipline." Surrexit illa complere, nihil contra dicens indubitata fide. In illo itaque itinere hoe mirabile contigit, quod obedientie sancte Moneune meritum promeruit, quia sic omnia, que sibi erant necessaria, in itinere semper preparata invenit, ut de sui itineris commoditate, quam propter Christum et obedientian suscepit, nihil defuit, quod raro contingit his, qui non solum per peruersa terrarum pericula, sed etiam per fluctivaga maria transeunt. Ad mare autem pervenientes, ubi transitus de Scotia in Fritania est, navem paratan invenerunt in portu, que illas trans mare perduxit ad monasterium destinatum. Iuxta quod in hospitio permanens multo tempore illa predicta puella pustea iterum exivit Romam.

De novissima peregrinacione sancte Monenne Rome euntis per Soctiam.
8. Cum vero esset sancta Monenna centorum et decem amorum coepit ire Romam novissima vice. Duabus enim vicibus ante ad predictan perrexit urbem. Pervenerat etiam in Albania, id est in Scotiam, in rqua edificaverat ecelesias in Christi nomine, quarum hee sunt nomina. Una est Chilnecase in

Galuueie, altera vero in cacumine montis, qui appellatur Dundeuenel, quia sic semper solebat, sicut prediximus, ut supra nudam petram nudis membris in noctibus oraret Deum, qui semper orandus est, sicut Scriptura ait: "Orate sine intermissione," et relipua. Tertia autem in alio montis Dunbreten. Quarta in castello quod dicitur Strivelin. Quinta vero Dumedene, qui Anglica lingua licta Elenehurg. Sexta enim mons Dunpeleder, et illic transfretavit mare in Albaniam ad sanctum Andream. Post hec vero exiit ad. Aleethe, uhi modn ent imtima eeclesia, yuam Lonfortin edificavit cum quonlan fonte sanctissimo, et mansit illue alipuanto tempore, et multum aliaxit illmu luma, in fun in finem vite sue, ut aftimant, Domino rolente, emisit spiritum.

Quod Conagal rex, filius Conail, et qui convenerant barones misit ad illam de die mortis slelito in futurum differendo.
9. Cum antem ngmovisset sancta Momemna, Spiritu Sancto revelante, quod
 Osil et Esla, ut venirent all cam in Lormm, qui vocatur Lonfortin in Scotia. Et venerunt et manserunt cum illa aliguantis dielons. Et appropinquante
 lurtum. Veneruntque ad illan visitandam Conagal, qui erat rex Scotie in illo tempore, et Rowheri et Cinho et Ledlim et Choilli et omnes maines natu pmpuli cam cetera multitudine nsisue ad propinquantes monasterii loca. Miserumt ilaque eqiscopmu liman, fratrom Moneme, ad illam ponentes werla hee in are eius: "Ohsecramus te propter consanguinitatem nostram," mam ot ipse rex matrem halnit ('malneam, "ct germanitatem, quam habemus, et in carne et in 1)w, ut etiam uno amo nolisemm maneas, et quasi orphanos mos in isto anno non derelinquas. 'redinns enim et scimus quia quecumque Inminum rogaveris sine dulin ab illo impetrabis. Nos autem omnes, quanticumque hic sumus, et omnis propulus similiter nobiscum demandat F.: pmincipatum tenentes, donabimus singuli ancillan Domino pro tua vita, et comis vir de tonto promlo, qui putest armatus incelere, voluntario animo
 facies qumlemuque tibi placeat." (̧uilus illa per episcopum remandat hec

 sua pietate concelisset ut vestra petitio prevaleret. Hodie non possum
 qui mostros semones audiunt, qui missi sunt a Domino animam meam vecifure secmun, Petrum et Paulum tiro, quos viden, habere secum lintheamen
album de auro, ut mihi videtur, mirabiliter ornatum, et cum illis me oportet exire ad Dominum meum, qui misit illos, Iesum Christum. Donet antens Dominns vestro atrentui merceden, et quml mhaistis whate voluntarie fro mea vita, unusquisque donet hoe ad Dominum pro sua anima propria, Tenedictionem meam, quam postulastis, sine dubio recipietis. Bencdicti cnim vos a Domino, qui fecit celum et terram, cum uxoribus et liberis, filiabus et filiis, et omnibus que ad vos pertinent, sitis in omnibus benedixione Dei ditati. Pelliceam meam et melotem et cetera mea utensilia pro thessauris vobiscum tantum dimitio. Reliquie mee cum baculo meo in aliam terram apportentur. Que si vobiscum habueritis, contra inimicos pergentes, qui veniunt vestros depopulare fines, victoriam per hee habere Dominus vobis promittit. Extra vero terminos terre vestre alias gentes adire bellando non debetis, sed si ille gentes voluerint vestros devastare terminos et ibi puguare contra illos necessitas coget, semper volis victoria prospere subveniet. Alias autem gentes adire extra fines terre vestre, nisi maiore potestate cogente, vos non oportet, ne forte ira Domini super vos veniat. De mea autem absentia nolite esse tristes. Credo enim sine dubio non minus posse impetrare a Domino de his que vobis proficiant, si ad illum exiero, quam quando fui vobiscum in seculo." Hec et his similia diligenter eis demandans per episcopum, vale dixit singulis, nominibus suis, qui hec andientes per renuntiantem episcopum, proiectis armis, omnes Hetu maximo planxerunt pro eius absentia, quam sciebant orationibus suis adiuvari posse per omnia. Post hec, consolatione suscepta, et ab episcopo confortati, accepta benedictione sancte Moneune, reverse sunt al edes suas. Ligo eadem die, ante dispositis omnibus, in futurum suo monasterio pertinentibus, et predictis per spiritum que temporibus futuris per ordinem postea evenerunt, cum his vero hospitilus, qui ei in obviam processerant, die tertio Nonas Iulii perrexit ad Christum, septimo die a natali Petri et Pauli Apustolorum, cum quibis exiit ad regnum celortum, regnatura cum Christo in secula seculurum. Amen.

De ostensione sancte Monenne post obitus sui diem tertium ad Thanatim.
10. Post tertium obitus sui diem sancta Monenna ostendit se corporali visu alii de sororibus nomine Tanat, renienti de sororum dommitorion phet completorim, nescio yta causa cogente, vilitque sanctam Monemnan iuxta crucem foris in proximo sitam in oratione stare. Qua agnita, ad pedes eius corruens, dixit: "Domina, quid me iubes facere?" Cui illa respontit: "Introiens clomum, ad cunctas dices sorores, ut magis in tali tempore haheant sanctum silentium et ne earum sermones sonare andiantur foras extrat domm.

Quid tam cito obliviscuntur statute regule, cuins terminos non licet ullatenus transerveli? Non debetis, filie mee, negligere etiam morlica, ne similiter nerglegantur et maiora. Tu ergo vadens, iter tum prepara, quia mecum exilhis transacta septimana." At illa gaudens in tali sponsione deduxit eam
 pate 1"xitum. lioversal ex.g Tannat dnamm nuntiavit hee sororibus, que sancta demandarerat Monenna. His auditis, timore perterrite, cuncte in Loman phethate sumt, watentes simul et trementes de manifestatione tante
 valedixit sororibus, lacrymantibusque singulis de eius absentia, simul gaudentes de itineris duce, intravit, ut adfirmant, suum cubiculum. Et ibi

De translatione sancte Monenne in Anglicam terram.

11. Tost dormitionem vero sancte Monenne, turba multa que convenerat de Hihemia, Scotia, et de Anglia ad locum ubi fuit defuncta, et propter
 Cohmnucille pacem facere inter illos. Dixerunt Hibernenses: "Cognata
 patriam." scottici dixerunt: "Et ile genere nostro est et ad nos venit, et finem vite sue mohiscum fecit, et debet nobisemn manere." Dixit vero Athea ct qui cunn ea erant: "Pro caritate Dei, Columehille audi nos. l'reterierunt iam' annis, quod dixit nobis sanctissima virgo, "Ossa mea cum ossibns vestris ${ }^{2}$. . . . erunt, Deo vulente. ${ }^{3 "}$ Et nos credimus et
 venimus." Et respomlit sanctus Columchille et dixit omnibus: "Dabo vobis rectum consilium. Ieimamus horlie et faciamus orationem ad Deum, ut mohtis det consilium bonum et faciat pacem inter vos." Et fecerunt sic. Mane arrem facto, dixit sanctus Columeille episcopus: "Eligite ex vobis octo homines, yuatune de seotia, et de Hibernia duos, et alios duos de Anglia. Et illi de scontia accipiant feretrum in occidentali parte, et alii quatuor in wrientali parte, et Dominus dividat inter vos, quorum sit." Et sic factum est ut Sotigene exirent cum integro feretro, et corpus illius super illud, sicut eis videhatur, ad ecolesiam, yue vocatur Aleecht, cum festinatione. Hibernenses vero et Anglici, exierunt cum Athea et vencrunt illa die cum integro feretro ot corpus super illud interrum iuxta castellum quid dicitur Strivelin, ad cectesian que vocatur Ecléés. Et postea aulduxerunt corpus eius de loco ad lorum, usque dum venientes ad predictun locum, quam sibi elegit in vita.

Nam et baculus suus cum ea illic posita est. Pellicia vero cins of melotes of cetera utensilia pro thesauris in Hiberniam ducte sunt ad ecclesiam que dicitur Chellescleve.

De columpua ab angelis elevata in tempore Derlaisre.
12. Post sancte Moncune dormitionem, sicut illa constitucrat, Bia, filia Ailella fuit secuuda abbatissa. Tertia Dognidui, filia Mothai, filii Lilac. Quarta Derlaisre, tilia Daisremi, filii Buissidi, que monasterio puellarum prefuit quinquaginta amis. In cuius tempore contigit in omni Scotia famosum et tam grande miraculum. Ecclesie in monasterio sancte Monenne cum supradicta abbatissa construitur tabulis dedolatis iuxta morem Scotticarum gentium, eo quod macerias Scotti non solent facere, nec factas habere. Tota exgo ecclesia pene ad integram constructa, iterum artifices et lignorum cesores vadunt ad silvas propinquas arbores secare, ad ea que deerant domui perficienda. Inventisque sufficienter apparatui aptaverunt longiorem arlorem et grossiorem querunt, qui in summo culmine ambarum sub se et in se summitatem contineret parietum, quam latine spinatam vocamus. Itaque diu quesita illa spinata columna et non inventa, tandem in arduo et satis maximis petris circumvallato loco inveniunt arborem ad opus aptam, securibusque secata dimissis omnibus ramis et radicibus talliatam. Putabant enim in primis aliquo modo petrocleas ${ }^{1}$ inde attrahere posse. Sed morere rel modicum spatium nulla machina hominum vel fortitudo boum propter loci difticillimun situm. Domum artifices cum operariis redeunt, et hee que contigerant saucte Derlaisre dicunt. Quibus illa dixit: "Sancta Monenna vivit in celo, in cuius honore domus edificatur in terra, illa potest vos adinvare." Itaque sic factum est, deficiente inde machina humana subsequenti nocte aderat virtus divina. Nam supradictam spinatam angeli sinc dubio a Domino missi hansportaverunt ad locum planum, ubi adiri potuit sine ulla iniuria hominum et iumentorum. Venientes die crastino artifices super via non longe a monasterio posita invenerunt columnam, quam crediderunt numıuam adiri posse per magnam et difficillimam silvam. Et hoe miraculo diffamato, omnes qui audicrant glorificaverunt Deum, dicentes se alibi non audisse phes factum mirabile, quam quod fecit Dominus per meritum satucte Monenne. Explorantes autem otiose artifices si deprehenderent maxime columne alipuor vestigium, videbantur ab eis in summitate arborum fracti ramusculi, ut sibi videbantur, quasi a columna tacti. Inde suspicabantur per aerem columpnam esse ab angelis subvectam. Et nunc illa domo renovata, illa supra dicta spinata in reliquiis reputatur.

De aqua in cerevisiam motata.
1:3. Alia vice in tempore sancte Derlaisre, sanctus episcopus nomine Finbar, cognomento Vinnianus, ad monasterium sancte Monenne direxit iter, et nullu nuntio ante se misso, descendere videtur de aliquo non tam longe monticulo. (un viso et agnito, dixit sancta Derlaisre puelle que sibi ministralnat: "Haurite nunc festinanter aquam de sancte Monenne fontano, ot implete cupas, que in domos sunt aqua, in quibus videtur aliquid fermenti omansisse." C'maphetisque vasis uspue ad summun, et aliis egredientibus dommon, singula henelixit vasa. yuibus in virtute benedictionis ferventibus, lixit al pmellan sibi pre ceteris fitam: "loola y paliter est quod in vasis fervet." (Que iussa complens dixit: "Perfectissima cervisia est in vasis et smilem illi mumquan qustavi." Gui dixit sancta Derlaise: "Ante mortem thedm mulli lion de how: gmol (ontigit, ghia meritum sancte Moneme et episcopi hee fecerment sancti. Sel ne ulla humana adulatio hoe mihi infutat, nolo ante montem meam, ut alius preter te sciat." Veniente ergo episcopo et suis, initorne conuiuio, biberunt onnes talem cervisiam tam

14. Harum uirtutum lectoren simul et auditorem per Deum testor, ut

 meritis pro me intercelentibus, ante mortem meam perficere possim, ut mortis ninculis absolntus per carum sullagia, (hristo prestante, transire merear in sanctorum consortiun celicolarum, in mansionibus simul perfectorum cum Christo, qui regnat in secula seculorum. Amen.

API'ENDIX.

A.
ms. Cotton Cleopatra, A. ii. fol. $1 \mathrm{r}^{\circ}-3 \mathrm{v}^{\circ}$.
Yanus Sancte Monenne Virginis.
I.

Deum deorum dominum,
Autoren vite omnium,
Regem et sponsum uirginum
Sempiternum infinitum,
5 Invocemus perualidum Sancte Monenne meritum, Ut nos ducat post obitum In regni refrigerium.

II.

Audite sancta studia
10 Virginum Christi milia, Sancte Monenne plurima Sana summa salubria, Quam perrescit industria, Donante Christi gratia,
15 Quam tu Christe perpetua Collocasti in gloria.

III.

Benedicta Patricio, Sub uirginali pallio Consecra[ue]rat ${ }^{2}$ Domino
20 Templum cordis hospitio, Christo digna possessio Salva viro perpetuo, Quam [tu Christe perpetua Collocasti in gloria].
IV.

25 Corde perfecta sobria, Sponsa Deo dignissima, Vestimenta pulcherrima Habuit nuptialia, Quibus induta regina 30 Regis stetit in dextera, Quam [tu Christe perpetua Collocasti in gloria].

V.

Donavit illi maximam Deus virtutum gratiam, 35 Certam veram prophetiam, Futurorum scientiam, In omui cetu gloriam, De adversis victoriam, Quam tu Christe perpetua
40 [Collocasti in gloria].
VI.

Erat illi mirabile De aqua vinum facere, Petram in salem efficere, Temptata filiis Sathane,
45 Semper ditata munere Visionis angelice, Quam tu Christe [perpetua Collocasti in gloria].

[^194]
viI.

Fertur Moneune vitulus
50 Raptus a lupis protinus Egit nocte miserriums, Inter lupos fit pavilus, Illa orante scicius Sanus a bestiis redlitur,
-5 Cuan [un Christe perpetua Collocasti in gloria].

VIII.

Gloriosum miraculum Devilgatum per populum, L'num oecidit vitulum 60 servis Dei convivium, Quem fecit Monenne meritum Vivum haberi iterum, Quam [tu Christe perpetua Collucasti in gloria].
ix.
(9.). Humilis erat animo,

Execlsa tamen merito,
Terram havalat sarculn. II remenitarman studin Virum gerens proposito
ii) In corpore femines, Quam [tu Christe perpetua rollocasti in glaria].

x.

Itiunii in rigore,
In caritatis ardore,
is In omni homo lahore,
Irmpter Dominum proprie
Sic vixit omni tempore
Crucifixo jam corpore,
Quam tu Christe perpetua
80 [Conlocasti in gloria].

XI.

Kasta electa columba, Perfecta matri unita, Turtur et castissima, Voce sonante cognita,
85 Vitis vera florigera, Christo Domino condigna, Quam tu [Christe perpetua Collocasti in gloria].

xiI.

Lucerna erat lucida
90 In templo Dei posita, Virgo Iesse florida Pulcra fortis et unica, Margarita pulcherrima Ormata regis placita,
9.5 Quam [tu Christe perpetua Collocasti in gloria].
XIII.

Magnam construxit ecclesiam
In desertis egregiam,
In qua virtutem maximam
100 Fecit lande dignissimam, Defunctam unam filian sinscitavit emortuam, Quam [tu Christe perpetua Collocasti in gloria].
XIV.
10.: Narrant idem de vasculo Mirum dictu argenteo Magno immisso fluvio Longo terrarum spatio, Quod Monenne nutu superno
110 Transmissum est a Domino, Cuam [tu Christe perpetua Collocasti in gloria].
XV.

O Christi sanctam virginem, Sancte Marie [i]mitatricem, ${ }^{1}$
1150 uere vitis palmitem
De omne fructu laborem, O regis sponso sublimem Deo semper amabilem, Quam tu Christe [perpetua
120 Collocasti in gloria].

XVI.

Patriarchas sinibus (?)
Cum electis virginibus,
Apostolorum cetibus,
Solis luce fulgentibus,
125 Sublimatis honoribus
Sanctorum his similibus, Quam tu Christe perpetua [Collocasti in gloria].

XVII.

Quantum crucem sustinuit,
130 Tantum corde congaudebit, Quantum Domino placuit, Tantum signa promeruit, Quantum Deo obedivit, Tantum premium accepit,
$1: 35$ Quam [tu Christe perpetua Collocasti in gloria].
xviII.

Regno celorum fruitur, Viro Dei reficitur, Celesti manna alitur,
140 In paradiso pascitur, In quo a sanctis canitur Carmen quod nunquam finitur, Quam [tu Christe perpetua Collocasti in gloria].
XIX.

145 Stola induta glorie, Spe secura victorie, Sponsum serquitur ubique In celi latitudine, Electorum in ordine
150 Refulget solis splendide, Quam tu Christe [perpetua Collocasti in gloria].
xx .
Transacta nocte media
Voce clamantes superna
155 Cum lampade perlucida
Sponsa occurrit obvia. Prudens edocta filia Sponsi transit ad gaudia, Quam tu Christe [perpetua 160 Collocasti in gloria].
xxi.

Urbem intrauit supernam, Celestem Ierosolimam, Sortita vestem candidam In modum solis splendidam,
165 Post perfectan uictoriam Habet laudem et gloriam, Quam [tu Christe perpetua Collocasti in gloria].

NXII.
X $\overline{\mathrm{\rho}} \mathrm{i}$ sedit in dextera
170 Una cum sancta Maria, Summa habentes gaudia, Trinitatis in gloria, Milium inter milia Angelorum sublimia,
175 Quam tu Christe [perpetua Collocasti in gloria].

[^195]
Abstract

xxill Ymnum Deo infinitum Canentes regi omnium, Laudantes in perpetuum 1 s0 Summum eius imperium Consona voce carminum Electorum sublimium, Quam tu [Christe perpetua Collocasti in gluria].

XXT.

\section*{185 Zona Christi durissima}

Percinxit sancta viscera, Qua perfecta deposita Testita stola bissina Inter sanctorum agmina 190 Seculis in secula, Quam tu Christe perpetua Collocasti in gloria.

Amen. mra fumbis. Mata Monnma ut immenus cum Chisto per sancta tua merita. peccata aty gue ilelicta nostra per penitentiam cleleamus.

D.
vs. Cotton C'leopatra, A. ii. fol. $56 v^{\circ}-58 r^{2}$. ${ }^{1}$
limus sancte Mosense Virginis.
1.

Aulite fratres facta
sine ullo crimine
Sancte Menenne
Sizlutaris femine.
II.
\therefore Buata mansit
"ine ulla marula,
Turris apparuit
fost vite mimacula
III.

Celestis uireor
10 Intrana cum melonlia
Ohsiamespunso
('um elerets, iler).
Iv.

Digna precamur Per eius auxilia,
15 I't mereamur
Masna mirabilia.
v.
Electa fuit
I men et hominihus, Christo adhesit
20 Annis iubilibus.
ri.
Formina fida
Miro fulget favore,
Celum concendit
Sed cum magno labore.

[^196]viI.

25 Gratia Christi
Requievit gratissima
Mixta casta
Facta fidelissima.
viII.

Hunilitatis
30 Exemplar exsteterat,
Hinc exaltata
Celi prata peterat.
Ix.

Iuvenculorum
Erat norma numeris,
35 A Deo docta
Casta atque humilis.

X.

Kastam custodiuit
Carnem coram angelis,
Fulget in albis
40 Stolis claris candidis.
xi.

Lucerna clara
Nec sita sub modio,
Erat ostensa
Cum accenso oleo.
xII.
to Marie matris
Imago mirabilis,
Hec virgo facta
Alta ineffabilis.
xiII.

Neminem lesit,
50 Pressit cuncta caduca,
Fulsit virtute,
Iuventute adulta.
xiv.

O sancta sponsa
Summi legis latoris
5.5 Complens perfecta

Precepta Saluatoris.
xv.

Patria de sua
Peregrina pergens
Habens in cruce
60 Lux de luce ardens.
X7I.
Quasi advena
Mundi cura caruit,
Domini digna
Fide firma floruit.
xviI.

65 Regina sancta
Sine labe manens,
Pura puella
Tanquam stella cadens.
xviif.
Sancte Monnene
70 Laudibus resonantibus
Tanquam organa
Choris exaltantibus.
xix.

Templum perfectum
Construxit in pectore,
75 Casta in sede
Cum rege rectore.
XX.

Vere permanet
Sine ulla macula
Inter sancta sanctorum
80 Angelorum miracula.

24

 Proceedings of the Royal Irish Academy.xII.

Xpum secuta
Tuta ab infantia, Mundum reliquid
Cum sua substantia.

85 Ywnus exoriens

 Christi cunctis auribus, Cuius memoria Permanet cum laudibus.XXIII.

Z wa precincta

90 Castitatis candida
Fulget in gaudia
Tапчиаш aurea lampada.
(iloria Patri
Atpue Chigenito
C'uncti tonantis
Exaltantis merita
Sancte Minembe
I'ostulemus egregia
L゙ィ per eius anxilia
l'ussileanns premia. per.
 sicut sol in meridie. Qui regnas in secula seculorum. Amen.
(..

Ms. Cotum Cleopatra, A. ii. foll. $5.5 v^{\circ}-59 \mathrm{r}^{\circ}$.
Vixerst autem sancta Monemaza centis et triginta tres aunis, et fuit alhatica' yualrasinta annis. P'ater vero eius nomine Mothait rex

?umtar ablationa pat suctan Mnneman fuit Cron filia Dachoram a umi \quad anms
-emta aldathasa Cimchen tilia Colnami filia Aeda regis cognomento Fumerthon axa ammis.
-ertima Cron tilid Erners tilii Feetheni cuius non (?) inperfecto primatu in mernatern numetus peragitur annus unus.

[^197]Octava Damorir filia Scandlani • avi Dachoram "annis xii • in mortalitate magna moritur.

Nona Gnathat • Chritan filia • annis xxx.
Decima Finan ingen Critan filii Scanlani avi Dachoram • una mense fuit.

Undecima Luccan • filia Aedgne • filii Abeil • xi annis prefuit.
Duodecima Femen filia Fallaich 'annis xxxiii.
Tercia decima Allabuir • filia Foidmin 'xxxiiii annis.
Quarta decima Flaithgrath • annis xxx.
Quinta decima Medboc • filia Midgasa • abbatissa annis quindecim.

D.

ms. Cotton Cleopatra, A. ii. fol $59 \mathrm{v}^{\circ}-60 \mathrm{r}^{\circ}{ }^{\text {? }}$
Audivimus a quodam viro religioso et cuius dictis est adhibenda fides, quod in quodam cenobio, quod gloriosa virgo Moduenua in Hibernia construxerat, usque in hodiernum diem lectus ipsius cernitur trans ${ }^{2}$ introitum monasterii positus de lapide ad modum sepuleri excisus. In quo post inmensos labores, post multos sudores, post longas vigilias, non cullatis plumeis, non linteis vel lodicibus, sed duro lapidi raro dat membra queu ut non tantum vigilando, ser etiam dormiendo carnem spiritui cogeret ancilliri. De hoe lecto tale contingit fieri miraculum. Virgines ibidem Deo firmulantes hoc decretum illesum observant, scilicet nullam in earum admitti societate, nisi prius eis de illius constiterit virginitate, quod hoe modo divino iudicio committunt examinandum. Iuvencula monasterium intratura et sacrum velamen susceptura, primo in illo lecto collocabitur pausatura. Mirum dictu, si virgo fuerit, non tantum nullis affecta molestiis evigilat, verum si antea alicuius morbi molestia se dolebat aftligi, mox pristine gandebit sanitati restitui. Si vero aliqua ausu temerario se virginem mentita fuerit, quod nonnulle faciunt, quia turpe est nou esse fateri, et in eodem lecto iacere presumpserit, lectum illum necnon omnia vestimenta sua cruore fedatat evigilans inveniet, ac si aliquis ex intustria lectum illum cruore animatimm in codem loco occisorum impudenter fedasset.

[^198]
E.

ms. Cotton Cleopatra, A. ii. fol $60 \mathrm{r}^{\circ}$.
ms. Lansdowne, 436, fol. $131 \mathrm{v}^{\circ}$.
Ortumi Moduenne dat Hibernia, Scocia finem, Anglia dat tumulum, dat Deus alta poli. l'rima dedit ${ }^{2}$ vitam, sed mortem terra secunda, Et terram terre tertia terra dedit.
5 Auffert Lanfortin, ${ }^{3}$ quam terra Conallea profert. Felia Burtouia virgiuis ossa teuet.

F。

Ms. Cotton Cleopatra, A. ii. fol. $60 \mathrm{r}^{\circ}$.
diande virgo mater C'hristi qui per.
(aate yuia Deo plena peperisti.
(iaude guia tui nati yuem dol.s.
(iatule Christum ascendentem.
5 (iaude ynuod pust ipsun scandis L'bi fructus ventris tui.

```
1 In matme court hatel of the thirterneh , entury. F dat lansed. }\mp@subsup{}{}{3}\mathrm{ Longfortin Lansd.
"In a larger and coaraer hand of the formenth century. \({ }^{3}\) dol, cod.
```


I.

INDEX NOMINUM PROPTRIOIUM. ${ }^{1}$

Abeil 240
Aeda 244.
Aedgue 245.
din 207, 212, 214.
Ahrmacha, Hardmacha, 208, 230, Armagh.
Ailella 237.
Airdsconis, Airhsconis, Airtchonis, 219, 220, 227, in Co. Wexford ($\%$).
Albania 233, 234, Scotland.
Aleecht, Aleethe, 234, 236, near Dundee.
Alfredus 215.
Allabuir 245.
Andreas, apostolus, 222, 230.
Andreas, Sanctus, 229, 234, St. Andrews.
Andreseie, Andresie, 230, 233, an island of the R. Trent.

Angli 216.
Anglia 207, 228, 236, 246.
Anglica terra 230.
Anglici 215, 236.
Aquilonis pars 207, Ulster.
Arderne, Ardert, silva, 216, 222, 230, 234, in Warwickshire.
Athen 209, 216, 217, 222, 226, 230, 234, 236.

Bairce 221, in Leinster.
Bar 226.
Benedictus, sanctus, 229 .
Berba 231, the R. Barrow.
Bia 237.
Bollan 234.
Brenden 231.
Brig, Brignam, 228, 232.
Brigida, sancta, 209, 216, 217, 218, 219, 221, 222, 227.
Britannia 216, 222, 229, 233.
Briugis, piscinula, 208, in Mag Coba, Co. Down.

Buissidi 237.
Burtonia 246, Burton-on-Trent.

Calvechif, Mons Calvus, 230, near the R. Trent.
Campanus 217.
Caput Litoris 221, Cenn Tríga (?), a lake from or through which the R. Liffey flows. Probably towarils the source of the latter.
Cehllescleve, Chellecleue, Chellescleve, Cellula Montis, Chillesleve, 211, 214, 230, 237, Killeary, Co. Armagh.
Celestinus, papa, 208, 230.
Chanoncun 216.
Cheneglas 230.
Chevin 207, 213, 214, 215.
Chilnecase 233, Candida Casa, now Whithern, in Galloway.
Choilli 234.
Chritan, Critan, 245.
Cobo 234.
Coilgi, Colgi, Campiolus, 209, 221, Mag Cualgerne, in diocese of Derry.
Colmanus 244.
Colmi Mons 207, 210, 222, Slieve Gullion, Co. Armagh.
Columchille, Columcille, Columpuille, sanctus, 236.

Coman 208 ($=$ Cumman).
Conagal 228, 234.
Conail 228, 234.
Conaldus 215 .
Conalde 244.
Conalle, Conallen terra, 209,246, Conaille, a level plain in Co. Louth.
Conallei 207, 208, 217, the men of Conaille.
Conalnea 234.
Conchen 244.
Conchubranus 23s.

[^199]Cron 244.
Cumman 244 (= Coman).

Dachoram 244, 245.
Dagannus, castellum, 216.
Daisremi 23°.
Dalbranaig, Dalhranaith. 208, 244.
Dumorir 245.
Daniel, propheta, 223.
Derlaime 224, 237, 239.
Dogridui 237.
Donech, Donehe, 225, 227.
Dunbreten 234.
Dundeuenel, mons, 234.
Dunedene 234, Edinburgh.
Dunpeleder, mons, 234.
Duuelin 208, Dublin.
F. lǐ̌ 236.

Eda, Eile, 226, 2311, 234.
Edenaburl, Falpneburg, 230, 234 .
Frmen 244.
Frneri 24t

Fallaich 245.
Fertheni 244.
Fi-dlemto 24.5.
Femen 1245.
Fertas, flumen, 209.
Finan 24i.
Finbar, Vinnianus, 238.
Fiaithgrith 245.
Foward, Forliars, Forharr, 207. 209, 210, 21\%, 230, Faughart, two milea weat of [bundalk.
Foilmin, 245.

Paluucic 234, fallowny.
Ghumherh, Filumelaht, filumelath, 20\%. 212. 213, 214.
Finvtrat 215.
Gregorius, papa, 229.

II ridtuw ha 208, ride Abrmacha.
Mrlisa, propheth, 219, 228.
Heliwus, prophein, 22 re.
Hibern nee 20\%, 221, 230, 235.
Libernis 207, 2n9, 210, 213, 215, 215, 21%. $220,222,223,230,234,23 \mathrm{i}, 245,245$,
Hiternicum mare orientale 221, the Irish rbannol.

Hibernienses 208, 215.
Hilech 208.

Ibar, Ibor, sanctus, 207, 209, 210, 217, 219, 227.

Ierosolima 241.
Iesse 240 .
Irachado 24.
Iohannes Baptista 228.
Israel 220.
Ite, 222, 223, (= Eda, Ede).

Lageni 218, the Leinstermen.
Lanfortin 246, ride Lonfortin.
Lassar, Lazar, 228, 230, 233.
Life 221, the R. Liffer.
Lilac, Lilach, 237, 244.
Limphi Campania 221, Mag Liphi, the plain of the Liffer, Cos. Dublin and Kildare.
Ionfortin, Lanfortin, 234, 246, near Dundee.
Luccan 245.
Lugdach, 244.
Luge, Luger, 209, 215, 216, 217.
Luve 208, Louth?

Macdathevene, campus, 213.
Marloithe 211.
Maice 24t.
Maris, rancta, 210, 215, 241, 243.
Maugtheus, Mothait, 208, 244.
Marduce 245.
Mi, hael Archangelus 230.
Midgass 24.5.
Mitha 230, Meath.
Modira Hibemia 21\%, Beg Ere in Wexford II arbour.
Monerns, sancta, passim. In form Moluenna, 22., 245, 246.

Mothai 23%.
Mothait 244 (= Mautheus).
Murthemene, campus, 217, a district in Co. Inuth.

Ortile 209, 210 (=Servile).
(riontales 207, 211, 221, the inhabitants of (rricl, a dintrict in Clater.
Ouid, 222, 223, 226, 230, 234.
Tmpathulud, Muentulud. 208, 244. Perthaps THadh, a part of Clster, compriving the fresent countios of Down and Antrim.

Patricius, sanctus, 207, 208, 212, 230, 239.
Paulus, sanctus, 222, 230, 234, 235.
Petrus, sanctus, 222, 230, 234, 235.
Regumlech 208.
Rome 221, 222, 226, 227, 228, 229, 230, 233.
Ronam, Ronan, 210, 221, 234.
Rotheri 234.
Ruscane 209, in the plain of Cuailgne. Rooskey in Co. Louth.

Sathanas 239.
Scandlanus, Scanlanus, 245.
Scotia 233, 237, Ireland. Scotia, Scocia, Scottia, Soctia, 207, 228, 229, 233, 234, 236, 246, Scotland.
Scoti, Scotti, 221, 231, 237, the Irish.
Scottica gens 237, the Irish.
Scoticum mare orientale 221, the Irish Channel.

Scottici 236, the Suotel
Scotigene 236, the Scrotch.
Servila, Servile, 207, 210, 211 (= Orbile).
Sion, Mons, 208.
Soiro 244.
Stanniribae 221 (= Caput litoris :').
Streneshalen 216, near the forest of Arderne in Warwickshire.
Strivelin 234, 236, Sterling.
Suil 224.
Surde 214, 230.

Tannat, Trunat, Thanat, 228, 23n, 230.
Trente 230, the R. Trent.
'Triairna 210, the Aran islands in Galway Bay.

Uluester 208, Ulster.
Vinnianus 238 (= Finbar).

II.

INDEX VERBORUM. ${ }^{1}$

alius 225, 232, for aliud.
alleum 220 , for allium (?).
amminiculum 209, for adminiculum.
ampula 227,231 , for ampulla.
anachorita 228 , for anachoreta.
ancelle 231, for ancille.
ancillari 245.
arthe 231, for arte.
asumens 231, for assumens.
ruffert 246, for aufert.
ausus, lis, 245. Cf. Thesaurus Linguae
Latinae (s.v.).
barones 228, $23 \pm$.
benedixio 212, 235, for benedictio. issinus 242 , for byssinus.
ramum 232, or branum ; this word, not found elsewhere, appears to mean a tell or ditch. Perhaps connected with the Spanish brena.
*campiolus 209, 221, a litte plain. candilabro 244, for candelabro. capitulum 220, a little head, cf. cepae capitula, Columella, 11, 3, 15 .
capud 213, 216, 228, for caput.
*carminiculum 231, a lietle song.
centis 244, for centum.
centorum 233 , for centum.
cerevisia, cervisia, 225, 226, 227, 228, 238, beer.
-cervisarium vasculum, 226, a small ressel for holding beer.
(icnus 22s, 232, for cycnus.
cogeretur 227 , for cogente.
colerii 220 , for collyrii.
columpna, 228, 237, for columma.
comisceret 290 , for commiseeret.
commata 919 , for commota.
${ }^{1}$ The leading orthographical peculiarities of the ss. have heen ineluded in this Index. No notice has, however, been taken of such common forms as adfirmant for affirnant, adsimilati for assimilati, conlocutio for collocutio, inplere for inplere, inmensos for immensos, nichil for nibil. tocius for totius, vendicat for vindicat, ymuns for hymmus, \&e., \&o. Words marked with masterisk do not occur in the glossary of Du Cange (ed. Heasche), 6 wuls., Paris, $1840-16$).
complangens 211
completorium 235，a nercice containing prayers nt the close of the diry．
concendit 242 ，for consendi．
coniabulatio 209.
congaudeo 241．Cf．Thesaurus Linguae Latiase＇s．v．）．
consulans 211 ，for consolans．
conuersuio 207，212，contersion．
coruscrio 2：3．Cf．Thesaurus Linguse Latinae（s． F.$)$ ．
erippı 2.20 ，mo：found elsewhere，a hind of so＇h or garment，French crepe，Italian ciepor．
－culiatus 245．Protably connected with oulla， gone kind of garment worn by monka．
1：73239，a crak，cat．Cf．Theasurus Linguae Larinae＇s．t．：．
dimprim 215，219，for dannum．
dezressus 2．26，for ligresu＊．
1－csarpinm 213.
deap－liere 214．for dispellure．
dis－onatie 210，for domponsate．
15rmiurium 232．－3．
dubie：an 221，dushi。

```
Cipmoaine 2.23, for eleemnayne.
e:*rbu%ire 22n, d.ub:lean for hyFert=|lire. The
    B liandi":* who wronzly priss eperbolire,
    argmos:ent ebuliim, on the strengly of wbich
    *urbolire is giren as a verb equiralent to
    -brilire is II-nombel'a लlitron of I)u Cange
        C.%.,
&~.re:2?}, an Irish word meaning a reanel.
&.xaf-ra:235, for expera.
ismuil:er 232. for iammimariter.
ferminil 21%.& fominei.
```



```
ROnger 2f0.
AM:15nE゙*3 23?
inn:anei, 219, "prrmjo.
f Rimus 23%%, 235, a founiarm.
```



```
        F. 5!s.
```



```
    -
```

habundantia $208,212,229$ ，for abundantis．
harahat，hararet，for arabst，araret，228， 240 ．
nebrii 23S，for ebrí．
heremits $205,225,240$ ，for eremita．
hiburneis 22s．for ebumeis．
homunculus， 211.
honus，honusia， 291,294 ，for onus，onusta．
boscio 232，for ostio．
hostiolum 232，for ostioiuan．
immonis 2．20，for immunis．
incesabiliter 219，225．
incessunter， 219.
indumeatum， 215.
ineffrilis，2 $\$ 3$ ．
infantulus， 209.
ingen 245 ，an Irish word meaning a daughter．
intactum 212，for intactam．
iocundissimus， 217 ．
－iubilis 242 ．
iuren 216 ，for iusso．

1as fifer 215.
laculus 219 ，a little pand or resercoir．
lamprada 24t．
linibeamen 234，for lintesmer．
iodix 24．j，a soreviet，blambet．
ma，eria 237，a uailed enclonure．
пue．．．it：
meloin，meloies，228，23．5，23\％，a sheepshin．
mon uौt rialis，212． 219.

monialis 216．antи．
morniculus 210，22ら．
mortalitas $\mathbf{2 4 5}$ ，a plague．
motata 229，239，for mutata．
nerphia ：＝2\％．231，for neopbyta．
－＂jilatuacula 211，223，a lithe gift，offering．
cif：ati 232，for opisti．
cbeimus 208，23s，for optimus．
olosincie 225 ，for bol sericis，all of sill．

Farilijs 22方，bent，cf．Beeres，Adamnan，p． 11：3．

Firs $20^{\circ}, \pi$ puatance．
Parcora 217．for preora．
peciina 2．25，a comit．
Fe．itinare 225，to cumb．
pellicea, pellicia, 228, 235, 237, a coat of skins. percingere, 242 .
perrescit 239, for perrexit.
perualidus 239.
petrocleas 237, for per trocleas.
pincerna 226, a crepbearer, betley.
*piscinula 208, a small fishpond. The word occurs in the ass. of the Vita S. Hilarionis of St. Jerome, sect. 21 ; but the editors read piscine (Acta Sanctorum, Octobris tomus ix, 1858, p. 53A).
pontifex 213, a bishop.
porcarius, 207, 211, a swine-herd.
*prediola 224, diminutive from praeda, little spoil, plunder.
presbiter 209, 212, for presbyter.
"pronubere 210 .
quam 215 for quem.
quasdas 230 , for quasdam.
ramusculus 237 .
rancor 220.
*rarescentius 212 , rather rarely.
rediid 215 , for rediit.
redito 227 , for reddito.
refectio 225.
reliquid 244 , for reliquit.
remandare 234.
resurrexio 22 , for resurrectio.
saciabantur 211, for satiabantur.
sulmos 209, 214, for psalmos.
salterium 228, for psalterium.
*satiamentum 219, aburdance, sufficiency.
*sceleumata 207, 210. This word, evidently meaning obscene songs, appears to bo of Greek origin. I cannot, however, trace its derivation.
seicius 240 , for scitius.
scolam 220 , for scholam.
septimana 212, 236, a week, French semaine.
sotulares 231 , ($=$ subtalares, subtulares) shoes
French souliers.
spalterium 217, for psaherium.
*spinata, ae, 237, a column. Cf. spinatum or spaldum, an outer or projecting coll, Italian spaldo.
subtulares 232 , vide sotulares
sumpmo 209 , for summo.
superfulgeo 229.
suplicatio 221 , for supplicatio.
suplimentum 218 , for supplementum.
*suspicatio 224, suspicion.
talliare 237, to cot, hew, French tailler, Italian tagliare. Cf. the Reichenau Glossary priuted by M. Pail Meyer, Recueil d'Anciens Textes Bas-Latins Provencaux et Français, 1874-77, pp. 20, 21.
tegorium 232, a hut, cf. tegurium, tugurium.
thessauris 23 , for thesauris.
tirannus, 212, 213, 215, 216, for tyrannus.
tremulare 232, to tremble.
ullatenus 226, 236 .
umbraculum 226 .
utpute 220,223 , for utpote.
vastitudo 216
velud $20^{\circ}, 210$, for velut.
venenosus 220 .
veniad 215, for veniat.
versutia 218.
villula 210 .
voluntarie 235.
ay efupta arcto raci: conall conif (a) popto ía monema paatic hubu re nuit inaugcteri. regence ouch
 tiacha- allut ufqi ad whefter: yiapue cogractomir bulech. opanŭ uirit. fic inhoc phar poact ofd
 nie. qizale filuă habere phuerure. guia fibl anatutare fra durf clogis. มier ucto ci coman nöe nobilof fivza filua regu dalbranards give
 ad regrulech. Nam yulla ifine oba

 cй parmeth indorabat- लeॅ holprao

 Monfili icapzukace duboliea poof
tiea ntill dicaf. deloc gul coura Jु-quit nctiaú fé movemme. A epreopl lice facto fre Si 110 uld
 cat. n2olo anre nione nuea neali prev a felat. Yenmence of dyifops \& fusf- mitag; connútio bibeté on nef calé cevurůa can piectál. Re ontic conaftaicue millain aliot
 cficch te mifi cpsfcopo plotience

 os aindwicill palil eetrol ite - dinte malde mintere din feptio conchubiallo. peceat farturd opyifo plif owwanily incrivodith

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section A, No. I

ARTHUR W. CONWAY

ON THE MOTION OF AN ELECTRIFIED SPHERE

DUBLIN

HODGES, FIGGIS \& CO., LTD.
london: williams \& NORGATE
1910
Price Sixpence

PROCEEDINGS

OF TER

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:-

CONSECUTIVE SBRIES. ORIGINAL NUMERATION.

Voluer I. (1896-1840) is Voluige I. 1st Ser. Sci., Pol. Lit. \&Antigq.

\because	I.. (1840-1844) ..	*	U.	17	3
D	III. (1845-1847) ,	*	III.	\because	-
\%	IV. (1847-1850)	"	IV.	"	*
"	V. $(1850-1858)$	20	V.	**	"
9	VI. (1858-1857)	08	VI.	8	1
8	VI. (1857-1861)	0	VII.	8	3
9	VIII. (1861-1864)	31	VIII.	-	,
"	IX. $(1864-1866)_{\text {\% }}$	1	IX.	"	"
"	X. (1866-1869)	"	X.	\%	9

XVIII. (1891-1898) » ॥ U. »
XIX. $(1898-1896)$, ", III. ッ
XX. $(1896-1898)_{n}$ пV. ."
XXI. $(1898-1900)$ ッ
XXII. $(1900-1902)$ » VI. "
XXIII. (1901) " "VII. " "
XXIV.(1902-1904):-

Section A. Mathematical, Astronomical, and Physical Science.
-. B. Biological, Geological, and Ohemical Science.
י. C. Archwology, Linguistic, and Literature.
" XXV. (1904-5)
" XXVI. (1906-7)
" XXVII. (1908-9)
„XXVIII. (Carrent Volume)

ROYAL IRISH A(ADEMY
 SOME RECENT PUBLICATIONS MATEENATMC.

Alexander (T.) and A. W. Thomson: Two-nosed Catenaries, and their application to Segmental Arches. 1888. pp. 56. 1 plate. 4to. 3 s .
Alexander (T.) and A. W. Thomson: Elliptographs, and a Mechanical Rocker for Detecting Oscillations. 1897. pp. 40. 4 to. 2s. 6d.
BALL (Sir R. S.) : Dynamics of a Rigid System moving in Elliptic Space. 1881. Fp. 26. 4to. 1 s.
Ball (Sir R. S.): Prension of the Theory of Screws to the Dynamics of any Material System. 1881. pp. 38. 4to. Is. 6d.
BaLl (Sir R. S.) : Plane Sections of the Cylindroid. 1887. pp. 3 I. 2 plates. 4to. 3 s.
Ball (Sir R. S.): Dynamics and Modern Geometry-A New Chapter in the Theory of Screws. 1887. pp. 44. 4to. 2 S.
Ball (Sir R. S.) : Eighth Memoir on the Theory of Screws, showing how Plane Geometry illustrates General Problems in the Dynamics of a Rigid Body with Three Degrees of Freedom. 1889. pp. 58. i plate. 4to. Is. 6d.
Ball (Sir R. S.): Theory of the Content. 1889. pp. 60. 4to. 2s. 6d.
Ball (Sir R. S.) : Theory of Permanent Screws. i8gi. pp. 40. 4to. Is. 6d.
Ball (Sir R. S.): Theory of Pitch [nvariants and Theory of Chiastic Homography. 1894. pp. 28. 4to. 1s. 6d.
BaLl (Sir R. S.) : Further Developments of the Relations between Impulsive Screws and Instantaneous Screws. 1897. pp. 46. 4 to. 2s.
Ball (SIR R. S.): Twelfth and Concluding Memoir on the Theory of Screws. 1898. pp. 52. 4to. 2 s.
BaLt (SIR R. S.): Further Developments of the Geometrical Theory of Six Screws. igoi. pp. 68. 4to. 2 s.
Balt (SIR R. S.) : Reflection of Screw Systems and allied questions 1903. pp. 54. 4to. 1s. 9d.

Ball (Sir R. S.): Some Extensions of the Theory of Screws. 1904. pp. 67. 4to. 2 s.
CASEY (J.) : Cubic Transformations. 1880. pp. Ifo. 4to. 2s. 6d.
Conran (M. J.) : Some Theorems on the Twisted Cubic. 1909. pp. 13. 8vo. 6d.
Conway (A. W.) : A Theorem on Moving Distributions of Electricity. 190\%. pp. 8. 8vo. 6d.
Conway (A. W.) : The Dynamics of a Rigid Electron. 1908. pp. I3. 8vo. 6d.
Conway, (A. W.): On the Motion of an Electrified Sphere. Igı. pp. 15. 8vo. 6d.
Culverwell (E. P.) : Maximum and Minimum Solutions in the Calculus of Variations when certain Fluxions of the Variables have finite and arbitrary Variations. 1899. pp. 15. 8vo. 3s. 6d.
Cotrer (J. R.) : A New Method of Solving Legendre's and Bessel's Equations, and others of a similar type. 1907. pp. 5. 8vo. is.
Dawson (H. G.) : On the Properties of a System of Ternary Quadrics which yield Operators which annihilate a Ternary Cubic. 1907. pp. 12. 8vo. is
Fraser (J.) : Reduction of a Quartic Surface possessing a Nodal Conic to a Canonical Form. 1904. pp. 14. 8vo. 6d.

Fry (M. W. J.): The Centre of Gravity and the Principal Axes of any Surface of equal pressure in a Heterogeneous Liquid covering a Heterogeneous Solid composed of nearly Spherical Shells of equal density, when the whole Mass is rotating with a small Angular Velocity in Relative Equilibrium under its own Attraction. 1907. pp. 6. 8 vo . is.
Graves (Rt. Rev. Dr.): Focal Circles of Spherical Conics. 1889 pp. 19. 4to. 1 s.
Joly (C. J.) : Theory of Linear Vector Functions. 1895. pp. 51. 4to. 15. 6 d .

Joly (C. J.) : Vector Expressions for Curves. 1896. pp. 25. 8vo. 25.
Joly (C. J.) : Scalar Invariants of two Linear Vector Functions. 1896. pp. 20. 4to. 1 s.
Joly (C. J.): Associative Algebra applicable to Hyperspace. 1898. pp. 51. 8vo. 3s. 6d.
Joly (C. J.): Quaternion Arrays. 1902. pp. 14. 4to. 1s.
Joly (C. J.) : Interpretation of a Quaternion as a Point Symbol. 1902. pp. 16. 4to. \&s.
Joly (C. J.): Representation of Screws by Weighted Points. 1902. pp. 32. 4to. Is. 6d.
Jowy (C. J.) : Geometry of a Three-System of Screws. 1903. pp. 32. 4to. 18.
Joly (C. J.): The Quadratic Screw-System. 1903. pp. 84. 4to. 2s. 9d.
Macfarlane (A.): Differentiation in the Quaternion Analysis. 1901. pp 17. 8vo. 2s. 6d.
Orr (IV. M•F.) : The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I. : A Perfect Liquid. 190\%. pp. 60. 8vo. Is, 6 d .
Orr (IV. M'F.) : The Stability or Instability of the Steady Motionof a Perfect Liquid and of a Viscous Liquid. Part II.: A Viscous Liquid. 1907. pp. 70. 8vo. 28.
Orr (IV. M•F.): Extensions of Fourier's and the Bessel-Fourier Theorems. sgog. pp. 44. 8vo. 1s.6d.
Preston (T.): Motion of a Particle, and the Equilibrium of Flexible Strings on a Spherical Surface. 1889. pp. 24. 4to. 18.
Purser (F.): Application of Bessel's Functions to the Elastic Equilibrium of a Homogeneous Isotropic Cylinder. 1902. pp. 31. 4to. 15. 6d.

PURSER (F.): On Ether Stress, Gravitational and Electrostatical. 1909. pp. 11. 8vo. 6u.

Roberts (R. A.): Properties of certain Plane Curves. 1886. pp. 15. 4to. 18.
Roberts (W. R. W.) : Periods of the First Class of Hyper-elliptic Integrals. 1881. pp. 16. 4to. 18.
Rogers (R. A. P.): The Logical Basis of Mathematics. 1908. pp. 12. 8vo. 6d.
Tarlftos (F. A.): Deductions from M 'Cullagh's.Lectures on Rotation. 1882. Pp. 12. 4to. Is.

Tarleton (F. A.): Mathematical Investigation of the Free Period of the Rocker. (In Alexander and Thomson on Elliptographs.) 1892 pp. 40. 4to. 2 s .6 d .
Tarleton (F. A.) : The Relation of Mathematics to Physical Science. 1907. pp. 7. 8vo. 6d.
iVilliamson (B.): Curvilinear Coordinates. 1898. pp. 38. 4to. 18. 6 d.

Sold by

Hodges, Figgis, \& Co., LTD., 104, Grafton-street, Dublin ; and Williams \& Norgatr, 14, Henrietta-street, Covent Garden, London, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY
 Volume XXVIII, Section A, No. 2

SIR ROBERT BALL

CONTRIBUTIONS TO THE THEORY OF SCREWS

DUBLIN

HODGES, FIGGIS, \& CO., L.TD.
LONDON: WILLIAMS \& NORGATE
1910

Price Two Shillings

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy，and consequently attention is requested to the following Table：－

CONSECUTIYE SERIES．Original numeration．
－Volemr I．（1886－1840）is Volume I．1st Ser．Sci．，Pol．Lit．\＆Antiqq．
＂II．（1840－1844）．，．．II．
＂III．（1845－1847）＂．．III．＂＂
＂IV．（1847－1850）．．．，IV．＂，＂
，．V．（1850－1858），．．，V．，．
＂VI．（1858－1857）．．＂VI．＂，
．．VII．（1世57－1n61，．．．．VII．．＂＂，

＿＂IX．（186t－1866），，＂IX．＂，
＂X．（1866－1869；，，．，X．＂，＂
\rightarrow
＂XII．（1875－1877）n II．$"$－mermplete o
．，XIII．（1888），，HIT．，

二．，XVI．（1879－1888）．，．，II
．，XV11．（1ncy－1～91），．．．I．Brd Ser．Sci．，Pol．Lit．\＆Antiqq．
on，XVIII．（1891－1898），，of II．
On XIX．（1899－1890）．，，III．．，＂
．XX．（1ヵ9ti－18：！．，．．IV．．．，，
O XXI．（1898－1900）．．．，V．
，．XXII．（1900－1902），．．，VI．，＂
＂XXXIII．（1901）＂．VII．＂＂
，，XXIV．（1902－1901）：－
Siction A．Mathematical，Astronomical，and Physical Science．
B．Biological，Geological，and Chemical Science．
C．Archæology，Linguistic，and Literature．
＂，XXV．（1904－5）
．．XXVT．$(100 \cap-7)$
．．XXVII．（190～－9）
，，XXVIII．（Current Volume）

ROYAL IRISH AOAIEMY SOME RECENT PUBLICATIONS'
 MATHENATECS.

Alexander (T.) and A. W. Thomson: Two-nosed Catenaries, and their application to Segmental Arches. 1888. pp. 56. I plate. 4to. 3s.
Alexander (T.) and A. W. Thomson: Elliptographs, and a Mechanical Rocker for Detecting Oscillations. 1897. pp. 40. 4to, 2s. 6d.
Ball (Srr R. S.): Dynamics of a Rigid System moving in Elliptic Space. 1881. Fp. 26. 4to. is.
Bali (Sir R. S.): Extension of the Theory of Screws to the Dynamics of any Material System. 1881. pp. 38. 4to. 1s. 6d.
Ball (SIR R. S.) : Plane Sections of the Cylindroid. 1887. pp. 31. 2 plates. 4to, 3 s .
Ball (Sir R. S.): Dynamics and Modern Geometry-A. New Chapter in the Theory of Screws. 1887. pp. 44. 4to. 25.
Ball (Sir R. S.): Eighth Memoir on the Theory of Screws, showing how Plane Geometry illustrates General Problems in the Dynamics of a Rigid Body with Three Degrees of Freedom. 1889. pp. 58. I plate. 4to. Is. 6 d .
Ball (Sir R. S.): Theory of the Content. 1889. pp. 60. 4to. 2s. 6d.
Ball (Sir R. S.) : Theory of Permanent Screws. 1891. pp. 40.4 to. Is. 6d.
Ball (Sir R. S.): Theory of Pitch [nvariants and Theory of Chiastic Homography. 1894. pp. 28. 4to. is.6d.
Ball (Sir R. S.): Further Developments of the Relations between Impulsive Screws and Instantaneous Screws. 1897. pp. 46. 4to. 2 s .
BALL (Sir R. S.): Twelfth and Concluding Memoir on the Theory of Screws. 1898. pp. 52. 4to. 2 s.
Ball (Sir R. S.) : Further Developments of the Geometrical Theory of Six Screws. 1901. pp. 68. 4to. 2s.
Ball (Sir R. S.): Reflection of Screw Systems and allied questions 1903. pp. 54. 4to. Is. 9d.

BaLL (SIR R. S.): Some Extensions of the Theory of Screws. 1904. pp. 67. 4to. 2 s .
BaLl (SiR R. S.): Contributions to the Theory of Screws. 1910. Pp. 54. 8vo. 2s.
Casey (J.) : Cubic Transformations. 1880. pp. Ifo. 4to. 2s. 6d.
Conran (M. J.) : Some Theorems on the Twisted Cubic. 1909. pp. 13. 8vo. 6d.
Conway (A. W.) : A Theorem on Moving Distributions of Electricity. 1907. pp. 8. 8vo. 6d.

Conway (A. W.): The Dynamics of a Rigid Electron. 1908. pp. 13. 8vo. 6d.
Conway, (A. W.): On the Motion of an Electrified Sphere. 1980. pp. 15. 8vo. 6d.
Culverwell (E. P.): Maximum and Minimum Solutions in the Calculus of Variations when certain Fluxions of the Variables have finite and arbitrary Variations. 1899. pp. 15. 8vo. 3s. 6d.
Cotter (J. R.) : A New Method of Solving Legendre's and Bessel's Fquations, and others of a similat type. $1907 . \mathrm{pp} .5 .810$. is.
Dawson (H. G.) : On the Properties of a System of Ternary Quadrics which yicld Operators which annihilate a Ternary Cubic. 190-. pp. 12. 8vo. Is
Fraser (J.) : Reduction of a Quartic Surface possessing a Nodal Conic to a Canonical Form. 1004. pp. 14. 8vo. 6d.

Fry (M. W. J.): The Centre of Gravity and the Principal Axes of any Surface of equal pressure in a Heterogeneous Liquid covering a Heterogeneous Solid composed of nearly Spherical Shells of equal density, when the whole Mass is rotating with a small Angular Velocity in Relative Equilibrium under its own Attraction. 190%. pp. 6. 8vo. 1 s .
Graves (Rt. Rev. Dr.): Focal Circles of Spherical Conics. 1889. pp. 19. $4^{\text {to. }}$ Is.
Joly (C. J.): Theory of Lineai Vector Functions. 1895. pp. 51. 4to. 1s. 6 d.
Joly (C. J.): Vector Expressions for Curves. 1896. pp. 25. 8vo. 2s.
Joly (C. J.) : Scalar Invariants of two Linear Vector Functions. 1896. pp. 20. 4to. Is
Joly (C. J.): Associative Algebra applicable to Hyperspace. 1898. pp. 51. 8vo. 3s. 6 d .
Joly (C. J.) : Quaternion Arrays. 1902. pp. 14. 4to. 1s.
Joly (C. J.): Interpretation of a Quatemion as a Point Symbol. זgoz. pp. 10. 4to. 1s.
Joly (C. J.): Representation of Screws by Weighted Points. 1902. pp. 32. 4to. is. 6d.
Joly (C. J.) : Geometry of a Three-System of Screws. 1903. pp. 32. 4to. Is.
Joly (C. J.): The Quadratic Screw-System. 1903. pp. 84. 4to. 2s. 9d.
Macfaki. INF (A.): Differentiation in the Quaternion Analysis. 1901. pp 17. 8vo. 2s.6d.
Okr (IV. M•F.: The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Dart I. : A Perfect Liquid. 1907. pp. 60. 8vo. ts, 6 d.
OKK /II". M・ト.): Thr siability or In-rability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II.: A Viscous Liquid. 1907. pp. 70. 8vo. 2 s.
Orr (W. M•F.): Extensions of Fourier's and the Bessel-Fourier Theorems. 1909. pp. 44. 8vo. 1s. 6 d .
Prfalos T.): Mation of a Particle, and the Equilibrium of Flexible Strings on a Spherical Surface. 1889. pp. 24. 4to. is.
Pt K-fr F \because : Apphetom if Branion Functions to the Elastic Equilibrium of a Homogeneous Isotropic Cylinder. 1902. pp. 31. 4to. 15. 6 d.

PURSER (F.): On Ether Stress, Gravitational and Electrostatical. 1909. Pp. 18. 8vo. C.1.

Roberts (R. A.): Properties of certain Plane Curves. 1886. pp. 15. 4to. is.
Roberts (W. R. W.): Periods of the First Class of Hyper-elliptic Integrals. 188\%. pp. 16. sto. 1 s .
Rogers (R. A. P.): The Logical Basis of Mathematics. 1908. pp. 12. 8vo. 6d.
Takirfins F. A.: I wiuten from M. Cullagh's Iectures on Rotation. 1882. pp. 12. 4to. Is.

Takillas F. A.: Mathematial Inventization of the Free Period of the Rocker. (In Alexander and Thomson on Elliptographs.) 1892 pp. 40. 4to. 2s.6d.
Takt.ftos F. A.: The Rehdion ,f Mathematics to Physical Science. 1907. pp. 7. 8 vo. ., i.

WilatimSold by
Hovges, Figgis, \& Co., Lid., 104, Grafton-street, Dublin ; and U'illiams \& Norgate, 14. Henrietta-street, Covent Garden, Lonfon, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section A, No. 3
W. R. WESTROPP ROBERTS

THE SYMBOLICAL EXPRESSION OF ELIMINANTS

DUBLIN

HODGES, FIGGIS, \& CO., LTD.
LONDON: WILLIAMS \& NORGATE
1910
Price Sixpence

PROCEEDINGS

OP THE

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy，and consequently attention is requested to the following Table：－
consecutive series．original numeration．

＂II．（1840－1844）＂，＂II．，＂
＂
＂II．（1840－1844）＂，＂II．s＂
＂III．（1845－1847）„＂．III．＂．＂
．．I $6 .(1417-1-50) \ldots$ IV．．．．．
＂V．（1850－1853）n n V．＂
．，VI．（1853－1857）„ ．＂VI．．＂
＂VII．（1857－1861）＂＂VII．＂．＂
＂VII．（1861－1864）＂VIII．＂，＂
＂IX．（1861－1866）${ }^{\prime \prime}$＂IX．
＂X．（1866－1869）＂\quad＂．＂＂
＂XI．$\left(1870-187 \frac{1}{2}\right) \ldots$ I．2nd Ser．Science．
＂XII．（2875－1877）॥ ॥ II．＂
－SIII．（1883），＂III．＂，

．．SVI．（1879－1888）．o＂II．＂，
．．XVII．（1888－1891）„ I．SrdSer．Sci．，Pol．Lit．\＆Antiqg．
．JVVIII．（1891－1893）„ ॥I．＂，
＂ぶI．（1893－1896）．．．．III．．．
，XX．（1896－1898）„ थ IV．．．
エ゚I．$(1898-1900) \ldots \quad$ V．．．
XXII．（1900－1902）＂＂VI．＂
＂IXIIII．（1901）ッ » VII．„
＂XIIT：．（1902－190t）：－
Sicti a．A．Mathematical，A strnomical，and Physical Science．
＂B．Biological，Geological，and Chemical Science．
．，C．Archæology，Linguistic，and Literature．
SエV．（1904－5）
．，XXVI．（1906－7）
．．XXVII．（1：0）～－9，
，，XXVIII．（Current Volume）

ROYAL IRISH ACADEMY. SOME RECENT PUBLICA'TIONS.

 MATHEMATMCS.

 MATHEMATMCS.}

[Lists of Papers on other subjects-scientific, literary, and archaological-may be obtalned on application.]

Alexander (T.) and A. IV. Thomson: Two-nosed Catenaries, and their application to Segmental Arches. 1888. pp. 56. I plate. 4to. 3 s .
Alexander ($T_{.}$) and A. W. Thomson: Elliptographs, and a Mechanical Rocker for Detecting Oscillations. 1897. pp. 40. 4to. 2s. 6 d.
Ball (Sir R. S.) : Dynamics of a Rigid System moving in Elliptic Space. 188i. Fp, 26. 4to. Is.
Ball (Sir R. S.): Extension of the Theory of Screws to the Dynamics of any Material System. 188I. pp. 38. 4to. Is. 6 d.
Ball (Sir R. S.): Plane Sections of the Cylindroid. 1887. pp. 3 I. 2 plates. 4 to. 3 s.
BALL (SIR R. S.): Dynamics and Modern Geometry-A New Chapter in the Theory of Screws. 1887. pp. 44. 4to. 25.
BaLL (SIr R. S.) : Eighth Memoir on the Theory of Screws, showing how Plane Geometry illustrates General Problems in the Dynamics of a Rigid Body with Three Degrees of Freedom. 1889. pp. 58. I plate. 4to. Is. 6d.
Ball (SIR R.S.): Theory of the Content. 1889. pp. 60. 4to. 2s. 6d.
Ball (Sir R. S.) : Theory of Permanent Screws. 18gi. pp. 40. 4to. 1s. 6 d.
BALL (SIR R. S.) : Theory of Pitch Invariants and Theory of Chiastic Homography. 1894. pp. 28. 4to. 1s. 6d.
Ball (Sir R. S.): Further Developments of the Relations between Impulsive Screws and Instantaneous Screws. 1897. pp. 46. 4to. 2 s .
Ball (Sir R. S.) : Twelfth and Concluding Memoir on the Theory of Screws. 1898. pp. 52. 4to. 2 s.
Ball (SIR R.S.): Further Developments of the Geometrical Theory of Six Screws. 1gor. pp. 68. 4to. 25.
Ball (Sir R. S.): Reflection of Screw Systems and allied questions. 1903. pp. 54. 4to. is. gd.

Ball (Sik R. S.): Some Extensions of the Theory of Screws. 190. - pp. 67. 4to. 25.

BALL (SiR R. S.) : Contributions to the Theory of Screws. igio. pp. 54. 8vo. 2 s .
Casey (J.): Cubic Transformations. 1880. pp. Ifo. 4to. 2s. 6d.
CONRAN (M. J.): Some Theorems on the Twisted Cubic. 1gog. pp. 13. 8vo. 6d.
Conway (A. W.) : A Theorem on Moving Distributions of Electricity. 190\%. pp. 8. 8vo. 6d.
Conway (A. W.): The Dynamics of a Rigid Electron. 1908. pp. 13. 8vo. 6d.
Convay, (A. W.): On the Motion of an Electrified Sphere. Ig10. pp. 15. 8vo. 6d.
Culverwell (E. P.) : Maximum and Minimum Solutions in the Calculus of Variations when certain Fluxions of the Variables have finite and arbitrary Variations. 1899. pp. 15. 8vo. 3 s .6 d.
Cotter (J. R.): A New Method of Solving Legendre's and Bessel's Equations, and others of a similar type. 1007. pp. 5. 8vo. is.
Dawson (H. G.): On the Properties of a System of Ternary Quadrics which yield Operators which annihilate a Ternary Cubic. 190\%. pp. 12. 8vo. is
Fraser (J.): Reduction of a Quartic Surface possessing a Nodal Conic to a Canonical Form. 1q04. pp. It. Svo. 61.

Fri (M. TV. J.): The Centre of Gravity and the Principal Axes of any Surface of equal pressure in a Heterogeneous Liquid covering a Heterogeneous Solid composed of nearly Spherical Shells of equal density, when the whole Mass is rotating with a small Angular Velocity in Relative Equilibrium under its own Attraction. 190\%. pp. 6. 8vo. 1 s .
Graves (Rt. Rev. Dr.) : Focal Circles of Spherical Conics. 1889. pp. 19. 4to. 1 s.
Joly (C. J.): Theory of Lineat Vector Functions. 1895. pp. 51. 4 to.
Joly (C. J.) : Vector Expressions for Curves. 1896. pp. 25. Svo. 25.
Joly (C. J.) : Scalar Invariants of two Linear Vector Functions. 1896. pp. 20. 4to. 15.
Joly (C. J.): Associative Algebra applicable to Hyperspace. 1898. pp. 51. 8vo. 35. 6d.
Joly (C. J.) : Quaternion Arrays. 1902. .pp. 14. 4to. 1s.
Joly (C. J.): Interpretation of a Quaternion as a Point Symbol. 1902. pp. 16. 4to. 1 s.
JoLr (C. J.): Representation of Screws by Weighted Points. 1902. pp. 32. 4to. 1s. 6 d .
Joly (C. J.): Geometry of a Three-System of Screws. 1903. pp. $\mathbf{3 2}^{2}$. 4to. Is.
Joly (C. J.): The Quadratic Screw-System. 1903. pp. 84. 4to. 2s. 9d.
Macfarlane (A.): Differentiation in the Quatemion Analysis. goor. pp 17. 8vo. 2s. 6d.
OKr (W. M•F.) : The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Yart I.: A Perfect Liquid. 1907. pp. 60. 8va. 1s. 6 d.
OKR (II. M•F.) : The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II. : A Viscous Liquid. 1007. pp. 70. 8vo. 25.
Okr (V. M•F.): Extensions of Fourier's and the Bessel-Fourier Theorems. 19:9. Pp. 44. 8vo. is. 6d.
Prentos (T.): Motion of a Particle, and the Equilibrium of Flexible Strings on a Spherical Surface. 1889. pp. 24. 4to. 15.
P(R-ER (F.): Application of Bessel's Functions to the Elastic Equilibrium of a Homogencous I sotropic Cylinder. 1902. pp. 31. 4to. 15. 6d.

Purser (F.): On Ether Stress, Gravitational and Electrostatical. 1909. Pp. 15. 8vo. 63.

Robert- (R. A.): Properties of certain Plane Curves. 1886. pp. 15. 4to. 1s.
ROAFKI- (IV. R. WV.): Periods of the First Class of Hyper-elliptic Integrals. 188r. Pp. 16. 4to. 1 s.
Ruermis (W, R. W.): The Symbolical Expression of Eliminants. 1910. pp. 7. 8ro. 6 d .

Rogeks (R. A. P.): The Logical Basis of Mathematics. 1908. pp. 12. 8vo. Gd .
Tarlftos (F. A.): Deductions from M 'Cullagh's Lectures on Rotation. 1882. Pp. 12. 410. Is.

Tarleton (f. A.): Mathematical Investigation of the Free Period of the Rocker. (In Alexander and Thomson on Elliptographs.) 1892 pp. 40. 4to. 23. 6d.
Tarletos (F.A.): The Relation of Mathematics to Physical Science. 1907. PP. 7. 8ro. 6d.

Williassisos . B.) : Curvilinear Coordinates. 1891. pp. 38. 4to. 1s. 6 d .

Sold by

Hodges, Figgis, \& Co., Ltd., 10\&, Grafton-street, Dublin ; and Wililays \& Norgate, if. Henrietra-street, Covent Garden, London, W.C.

PROCEEDINGS

O THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section B, No. 1

ROBERT FRANCIS SCHARFF

ON THE EVIDENCES OF A FORMER
LAND-BRIDGE BETWEEN NORTHERN EUROPE AND NORTH AMERICA

DUBLIN

HODGES, FIGGIS, \& CO., LTD. LONDON: WILLIAMS \& NORGATE

$$
1909
$$

Price One Shilling

PROCEEDINGS

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in oonscoutive. order the Volumes of the PROCEEDINGS of the Aoademy, and consequently attention is requested to the following Table:consecutive series. oriamal golicrition.
Vewne I. (1836-1840) is Volune I. 1st Sat. Scin, Pol. Lit. \& Antigg.

") XV. (1870-1870) i" " I. ". Pol. Lit \&ntigq.
" XVI. (1879-1888) " \quad II.
". 1. ora Ber. Bain Bal. Iil.\&Antigg.
" XVIU. (1801-1890) „" ॥.
" XIX (1898-1896), " III
XX. (1890-1898)., ., IV.
XXI. (1890-1800) . " ${ }^{\circ}$
XXII. (1900-1008) ,. ${ }^{(120)}$ VL.
"XXIII. (1001) " " VII.
n XLIV. (1902-1804):-
. Beotion A. Mathomatioal, Astronomical, and Physical Botemop.

- B. Biological, Geologieal, and Ohemial Bciance.
O. Archeology, Linguistic, and Literntace.

1) XXV. (1004-6)
" XXVI. (1006-7)
, IXVII. (1800-9)
," IXVIII. (Cusrant Volumi)

ROYAL IRISH ACADEMY. SOME RECENT PUBLICATIONS.

GROLDCY:
 [Lists of Papers on other subjects-scientific, Iterary, and archrological-may be obtained on appllcatlon.]

Brodrick (H.) : The Marble Arch Caves, County Fermanagh : Main Stream Series. 1909: pp. 10. 8va $6 d$.
Carlingford and Slieve Gallion Volcanic District. By W. J. Sollas. 1894. pp. 36. 2 plates. 4ta 2s. 6d.

Coffey (G.) and R. Ll. Prabger: The Larne Raised Beach. 1904. pp. 58. 5 plates. 8vo, 28.
Cole(GiA. J.) : Metamorphic Rocks in Eastern Tyrone and Southern Donegal 1900 ppo.420. 3 plates. 4to. 23.
Cole (G. A. J.) : Composite Gneisses in Boylagh, West Donegal, rooz. Pp. 28. 5 platese 8vo. 3 s .
Cole (G. A. J.), A. C. Haddon, and W. J. Sollas: Geology of Torres
Stralts. 1894. pp. 58, 4 plates 4 to. 45.
Cole (G. A. J.): Intrusive Gneiss of Tirerrill and Drumahair, Ireland. 1903. pp. 10. 8vo. 13. 6d.
Cole (G. A. J.): On Coftact-Phenomena at the Junction of Lias and

Cusack (R.): Melting Points of Minerals. 1896. pp. 15. 8vo. 2s..
Denudation: Solvent Denudation in Fresh and Salt Water. By J. Jozy. 1902. pp. 14. : 8vo. 1s.

Denudation: The Waste of the Coast of Ireland. By J. P. O'Reilly. 1902. pp: 108. 8vo. 3 s .

Earthquakes : Catalogue of Earthquakes in Great Britain and Ireland. By J. P. O'Reilly. 1884. pp. 32. platen 4to. .s.
Earthquakes: Catalogue of the Earthquakes recorded as having occurred in Europe and adjacent Countries. By J. P. O'Rbiliy. 1885. pp. 220. 4to. 48.6d.
Elles (G. L.), W. G. Fearinsides, and B. Smith: The Lower Palæozoic Rocks of Pomeroy. 190\%. pp. 30. 8vo. 1s.
Fbarnsides (W. G.), G. L. Elles, and B. Smita: The Lower Palæozoic Rocks of Pomeroy. 190\%. pp. $300^{\circ} 8 \mathrm{va} .^{\prime \prime} 18$.
Geological Climates: Sun-heat, Terrestrial Radiation, and Geological Climates. By S. Haughtone 1881. pp. 52. 4to, 29.
Geology of Torres Straits. By A. C. Haudon, W. J. Sollase and G. A. J.Cole. 1894. pp. 58. 4 plates. 4 to. 4 s .

Gneiss: Intrusive Gneiss of Tirerrill and Drumahair, Ireland. By G. A. J. Cole. igo3. pp. 10. 8 vo ., Is. 6 d.

Gneisses : Composite Gneisses in Boylagh, West Donegal. By G. A, If Cole 1902. pp. 38, 5 plates. 8 voi- 3 so
Granites of Leinster. By W. J. SolLAs. 1891. pp. 88. 4to. 3s. 6 d ,
Haddon (A. C.), W. J. Solzas, and G. A. J. Cole: Geology of Torres Straita, 1894." pp. 58. 4 plates. 4 to. $4^{8 .}$
Hill (C. A.), H. Brodrick, and A. Rule: The Mitchelstown Caves, Co. Tipperary. 1909. pp. 34. 4 plates. 8vo. 1s. 6 d.
Joly (J.): Solvent Denudation in Fresh and Salt Water. 1goz. pp. 14 8 vo . 18.
Kilkor (J. R.) : The River Shannon: its present Course and Geological History. 190\%. pp. 23. 4 plates. 8vo.' 18.
Kilros (J. R.): The Silurian and Metamorphic Rocks of Mayo and North Galway 190\%. Pp. 32. a plate日. $8 \mathrm{vo} \ldots$. 18.

M/Hrnky (A.) and W. J. SoliLas: Volcanic Neck of Tertiacy Age in the C,ounty of Galway, Ireland. 1896. Pp. 14. Iplate. 4 tiv. 18. 6a.
M'Henry (A.): The Ox Moustain Rocks, Ireland. Igo3. Pp. \& 8vpi 18. 6d.

Metamorphic Rocks in Eastern Tyrone and Southern Donegal. By G. A. J. CoLs. 1900. pp. 42. 3 plates. 4to; 25.

Metamorphic Rocks: The Ox Mountain Rocks, Ireland. By A. M•HENRY. 1903. Pp. 8, 8vo. 18. 6d.
Melaing Points of Minerals. By R. Cusacx. 1896. pp. 15.: 8vo, 28.

O'Reiliy (J. P.): Catalogue of Earthquakes in Créat Btitain and Treland. 1884. ppo 34. x plate. 410.38.
O'Rizur (I. P.) I Catalogue of Earthquakes reconded as having occurred in Burope and adjacent countries. 1985, EP. 220, 4t0. 45. 6 d.

O'Reillif (J. P.): Dates of Volcanic Bruptions and their conicordancer with the Sun espot Period. 1899. Pp. 41. 8 voj 33, 6 d.
O'Remiy (J. P.): Waate of the Conat of Ireland. 1902. pp. zet: 8vo. 3b. ?
Prazegr (R. LL.): Rained Beaches of the Northatast of Irelana 1896. pp. 35. 1 plate. 8 vo . 33.

Prazger (R. Lr.) and G. Comer: The Larne Raiced Bewch. rgo4. pp. 58.' 5 plates. : 8ve. 38.
Raised Beaches: The Larne Raiod Beach. Gy Const and R. IL. Prators, 1go4. pp. 58. 5 plates. Svo. is.

Raised Beaches of the North- Eat of Irelaad. By R. Lir Penwoza, 1896. ppe 35. I plate. Ivo. 34

Scharte (R, P.): On the Evidences of a fomer Land-bridge betweea Northern Eumope apd North America. 1909. Pp. 28. Evo. If.
Suatr (B.), G. L. ElLiss, and W. G. Fragansides/ The Laver Paleosoic Rocke of Pomeroy. 1go\%. ppi 30. 8vo, 1 ch
Sollas (W. J.): Granites of Leiaster. 8891. pp. 88. 4to. 30. 64.
Solras (W. J.): Volcanic Bistrict of Cartingtord and Slieve Gallion 2894 PP .36 . ${ }^{2}$ plates. 4to, 53.6 d.
Solmas (W. J.) and A. Myberar : Volcanic Neck of Tertary Age in the Connty Galway, Ireland. 18g6. pp. 14. I plate. sto. 13. 6. .
Sollas (W. J.) A. C. HADdon, and G. A. J. Cons: Geology of Torres Straits. 1094. Dp. ys, 4 plates ptoi 4t.
San-spor Periods: their concordance with Volcanic Encuptions. By J. P. OREILET. 1899. pp. 48. 8vo. 30. 6d.

Torres Straits: Geology of Torres Straits. By A. C. Enddor, W. I. SoLras, and G. A. J. CoLs. 1894. Pp. 58. 4to. 45.
Volcanic District of Carlingford and Slieve Gullion., By W, J. Socuras. 1894. pp. 36. a plates. 410 . $23,6 \mathrm{~d}$.

- Volcanic Errptions and concordance with Sun-tpot Periode By J. P.

Volcanic Neck of Tertiary Age in the County of Galway, Ireland, Dy W. I. Solus and A. M'Heney. 1896. pp. i4. I plate tho 15. 6 .

Sold is

Hodges, Frocis, \& CO., LTD., 104, Graltonatreet, Dublin; and Whliaus \& Norgate, 14, Eeariettastreet, Coveat Gerden, Loadon, W.C.

PROCEEDINGS

OE TEE

ROYAL IRISH ACADEMY

Volume XXVIII, Section B, No. 2

James J. F. X. King and J. N. Halbert

A LIST OF THE NEUROPTERA OF IRELAND

DUBLIN

HODGES, FIGGIS, \& CO., LTD. LONDON : WILLIAMS \& NORGATE

19 о
Price One Shilling and Sixpence

PROCEEDINGS

7. $\mathbf{2 7}$

ROYAL, IRISH ACADEMY.

In the year 1902 it was resolved to number in oonseoutive order the Volumes of the PROCEEDING8 of the Aoademy, and oonsequently attention is requested to the following Table:-

COHSECUTIE SERILS. ORIGINAL RUMERATION.

Volume 1. (1886-1840) is Vocume I. 1st Sor. Soi., Pol. Lit. \& Antigq.

Beotion A. Mathematical, Aetronomicul, and Phyeical Soienco.
" B. Biological, Geological, and Ohemical Science.
O. Archeology, Linguistic, and Literstare.
, XXV. (1904-6)
, XXVI. (1908-7)
,, XXVII. (1908-9)
,, SXVIII. (Oarrent Volume)
In three Sections like Vol. XXIV.

ROYAL 1RISH ACADEMY. SOME RECENT PUBLICATIONS.
 ZODLDGY.

[Lists of Papers on other subjects-scientilic, Ilterary, and archeological-may be obtained on application.]

Arachnida: List of the Spiders of Ireland. By G. H. Carpentrr. 1898. pp. 83. 8vo 38: 6d.

Arthropoda: Relations between the Classes of the Arthropoda. By G. H. Carpenter 190j. pp. 4 I . 1 plate. 8 vo . 18. $6 \mathrm{~d} .$,

Atlantis: Some Remarks on the Atlantis Problem. By R. F. Scharff. 1903 pp. 35 8vo 1 .
Balkwill (F, P.) and J. Wright : Foraminifera from the Coast of Dublin and in the Irish Sea, 1884. . pp. 56. 3 plates. $4^{\text {to. }} \mathbf{2 5}^{\circ}$
Ball (V.): Lion-breeding in the Gardens of the Royal Zoological Society of Ireland. 1886. pp. 36. 1 plate. 4to 2 s.
Barrett-Hamilcon (G. E. H.): Winter Whitening of Mammals and Birds. 1903. pp. 12. 8vo 1s. 6d.
Barrett-Hamylton (G. E. H.): An Addition to the List of British Boreal Mammals (Evotomys skomerensis). 1903. pp. 5. 8 vo . 18. 6d.

Beaumont (W. 1.) : part author of Fauna and Flora of Valencia Harbour, Ireland. 1900. pp. 188. 8vo. 4s.
Beetles: List of Irish Beetles. By W. F. Johnson and J. N. Halbert. 1902. pp. 293. 8vo. 58.

Browne (E. T.): part author of Fauna and Flora of Valencia Harbour, Ireland. 1900. ppe 188. 8vo. 45.
CALMAN(W.T.): Deep-sea Crustacea from the Sbuth-West of Ireland. 1896. pp. 22. 2 plates 4to. 2s.

Calman (W. T.): Phoxocephalus and Apherusa. 1896. pp. i3. 2 plates. 4 to 8 c .6 d .
Carpenter (G. H.): List of the Spiders of Ireland. 1898. pp. 83. 8vou 3s. 6d.
Carpenter (G. H.) : Relations between the Classes of the Arthropoda. 1903. pp. 41. I plate. 8vo. 1s. 6d.

CARPENTER (G. H.) and IsAAc SWain: A new Devonian Isopod from Kiltorcan, County Kilkenny, 1908. pp. 7. I plate. 8vo. 1 s.
Cave Faunas : Exploration of the Caves of Kesh. By R. F. Scharfy, \&c. 1903. pp. 44. 3 platea. 4 to. \%s.
Cave Faunas: Discovery of Hyæna, Mammoth, \&c., in a Cavern in Co. Cork. 1go4. pp. 5. 8vo. 6d.
Chaster (G. W.): Report on the Mollusca obtained off the Southwest Coast of Ireland, 1885-88. 1898. pp. 33. 8 vo .3 s .6 d.
Cælenterata: A List of Irish Ccelenterata, including the Ctenophora. By Jank Stephens. 1905. pp. 68. 8vo. 15.
Coleoptera: List of Irish Beetles. By W. F. Johnson and J. N. Halbert. 1gois pp. 395: 8vo. ${ }^{2} 5$.
Crustacea: Deep-sea Crustacea from the South-west of Ireland. By W. T. Calman. 1896. pp. 22. 2 plates. 4to. 28.

Echinoderms: List of the Echinoderms of Ireland. By A. R Nichols. 1899. pp. 89. 8vo. 3 s.

Exploration of the Caves of Kesh, Co. Sligo, Ireland. By R. F. Scearpp, \&c. 1903: pp. 44.3 plates. 40. 25.
European Fauna: Origin of the European Fauna. By R, F. Scharff. 1896. pp. 88. 8vo rs. 6d.

Evotomys skomerensis, an Addition to the List of British Boreal Mammals. By G. E. H. Barrett-Hamilton. .1903. pp. 5. 8vo.' Is. 6d.

Foraminifera found off the Coast of Dublin and in the Irish Sea. By F.P.BALKWILL and J. WRIGET. 1884, pp. 56. 3 plates. 4 to. 2s.

Hoon (J.): Rotifera of the County Mago. 1895. . Pp. 43. a plates, $8 v 0_{0}$. 35. Jognson (W. F.) and J. N. Haibrat A List of Irish Beeties. zgot. pp. 395:-8vo. 5s.
King (James J. F. X.) and J. N. Halbert A List of the Neuraptera of Ireland. 1910. pp. 84. 8 vo . 18. 6d,
Lion-breeding in the Gardens of the Royal Zoological Society of Ireland. By V. Bác. 1886. pp. 36. I plate. 4to. 38°
Masgas (J.): On the Mouth-parts of somé Blattidze, Igos. pp: Ib 3 plates. 8vo. 18.
MeItair (A. E.) : Maligniant Tumonss in Birds, with Observations on the Changes in the Blood. 2go8. pp. 8. I plate. 8po.. Is.
Mettan (A. B.): The Preseace of Spirochetes in cartain infective Sarcomata of Doge 1908. pp. 5. i plate. 8vo. is.
Mollusca: List of the Marine Mollusca of Ireland. By.A. Ri Nrcerocs. pp. 886. 8vo. 38.
Niczors (A. R.): A Liet of the Echinodernis of Iraland. 1899. 99.89. 8t0. 33.
Nictois (A. R.) : A Liat of the Marine Mollusosi of Ireland. "rgoa. pp. 886. 8vo. 33.
Pace-Beresford (D. R,) : A Supplementary List of the Spiders of, Ireland. 1gog. Pp. 33. 8vo. 6d.
Phosocephalus and Apherusa By W. T. Curiias. 1896. pp. 13. 2 plates. 4 to. 35. 6d.
Rockall Island and Bank: Bistory, Zoclogy, Geology, 8cc. 3897. pp. 60. 6.plater, flo. 5.
Rotifera of the County Mago. By J. Foop. 1895.; ppe 43 -' 1 plates, 8vo. 3y.
Scaaret (R. F.): On the Origin of the Eurcpean Rauna. 1896 . pp. 88. 800. 18. 6d.
Schargi (R. F.): Some Remarks on tho Atiantio Problom. 1gog. Pp. 35. 8vo.: 8 .
Scturut (R. F.): On the Irish Forve and ito Early fistory: 1909. pp. 6. 8yo. 6d.
SCRARTV (R, Fu) and others: Rxpioration of the Caves of Keah, Co: Sligo, Ireland 1903. Pp. 44. 3 plates. 4to. 85.
SoUTHERR (R.) Contributions towards Monograph of the British ! and Iriah Oligochzela. 1g0g. pp. 64. 8vo. 26.
Spiders: Litt of the Spidere of Ireland. Ey G. E. Canpertur. iEgg. pp. 83. 8vo. 38. 6 .
Stappais (Jane): A List of Irish Colentarate, Including theCtenophora. $805 . \mathrm{Pp} .68 .8 \mathrm{Vo}$. 85.
Swayn (1.) and G. A. Carphater: A New Devonian Isopod from Kiltorcan, County Kikenny. 1908. Pp. 2. 1 plate. 8ro. 18.
USstigR (R. J.): Dicoovery of Hyana; Mammoth, \&cog in a Cavern in 'Co. Cork. 1gay. pp. S. 8vo. 6d.
Valencia Harbour, Ireland: Pauna and Mora. By W. 1. Braumowt, E. T. Browne, and others. 1g00. Pp. 188. 8vo. 48.

Honges, Figgis, \& Co., LTDe 104, Grafton-street, Dublin; ank Wrlizans di Norgate, 1, Henriettajereet, Covent Gardens

Londop, W.C.

PROCEEDINGS

OF THB

ROYAL IRISH ACADEMY

Volume XXVIII, Section B, No. 3

GRENVILLE A. J. COLE

THE PICTURE-ROCK OR SCRIBED ROCK NEAR RATHMULLAN, IN THE COUNTY OF DONEGAL

DUBLIN

HODGES, FIGGIS, \& CO., LTD. LONDON: williams \& NORGATE

1910
Price Sixpence

PROCEEDINGS
 01 조포

ROYAL IRISH ACADEMY

In the year 1802 it was resolved to number in oonseoutive onder the Volumes of the PROCEEDINGS of the Aoademy, and oonsequently attention is requested to the following Table:-

COHSECUTIVE SERIES. - ORIGIRLL ROMERLTIOH.

Volver I. (1886-1840) is Voloje 1. 1tt Ser. Soio, Pol. Lit.\&Antigq.

Section A. Mathematical, Astronomical, and Physical Science.
" B. Biologioal, Geological, and Chemical Boience.

1) O. Archwology, Ligguistic, and Literature.
" XXV. (1904-6)
" XXVI. (1906-7)
" XXVL. (1008-9)
, XXVII. (Oarrent Volume)

ROYAL IRISH ACADEMY. SOME RECENT PUBLICATIONS.

GEOLOGT.
 [Lists, of Papors on other subjects-sclentific, itherary, and archeological-may be obtained on application.]

Brodrick (H.): The Marble Arch Caves, County Fermanagh : Main Stream Series. 1909. pp. 10. 8vo 6d.
Carlingfore and Slieve Gallion Volcanic District. By W. J. Sollas. 1894° pp. 36. 2 plates. 4to. 2s. 6d.
Coffey (G.) and R. Ll. Praeger: The Lame Raised Beach. 1904. pp. 58.. 5 plates.. 8 ko .
Cole(G. A. J.) : Metamorphic Rocks in Eastern Tyrone and Southern Donegal. 1900. pp. 42 a plates. 400 25.
Coie (G. A. J.): Composite Gneisses in Boylagh, West Donegal. 1902\% pp. 28. 5 plates, 8 vo .38.
Cole (G. A. J.), A. C. Haddon, and W. J. Sollas : Geology of Torres Straits, 1894. pp. $58 . \quad 4$ plates: 4 to 4 s.
Cole (G. A. J.): Intrusive Gneiss of Tirerrill and Drumahair, Ireland. 1903. pp. 10. 8vo. 1s. 6d.

Cole (G. A. J.): On Contact-Phenomena at the Junction of Lias and Dolerite at Portrush. igo6e pp. ir. 1 plate. 8vo. 6d.
Cols (G. A. J.): The Picture-Rock or Scribed Rock near Rathmullan, in the County of Donegal. 1910. \quad pp. 7. $8 \mathrm{vo}$..6 d .
CUSACK (R.) : Melting Points of Minerals. 1896. pp. 15. 8vo. 2s.
Denudation : Solvent Denudation in Fresh and Salt Watere By J. Joly. 1902: pp. 14, 8vo. 1 s.
Denudation: The Waste of the Coast of Iteland. By J. P. O'Remir. 1902. pp. . 08.8 Vo . 3 s.

Earthquakes: Catalogue of Earthquakes in Great Britain and Ireland.
E. By J. P. O'Reilly. 1884 pp. 32. 1 plate. 4 to. 2s.

Earthquakes: Catalogue of the Earthquakes recorded as having occurted

+ in Europe and adjacent Countries. By J. P. O'Rbilly. 1885. pp. 220. 4to 48.6 d.
Elles (G. L.), W. G. Fearnsides, and B. Smith: The Lower Palæozoic. Rocks of Pomeroy. 1907. pp. 30. 8vo. 1s.
Fearnsides (W. G.), G. L. Elles, and B. Smite: The Lower Palæozoic Rooks of Pomeroy. 190\%. pp. 30. : 8vó. 18.
Geological Climates: Sun-heat, Terrestrial Radiation, and Geological Climates. By S. HAUGHTON. 1881. pp. 52. 4to. 26.
Geology of Torres Straits. By A. C. Haddon, W. J. Sollas, and G. A. J. Cole. ${ }^{1894}$ pp. 58.4 plates. 4to. 4 s.

Gneiss: Intrusive Gneiss of Tirerrill and Drumahair, Ireland. By G. A. J. CoLe. 1903. pp. 10. 8vo. 1s. 6 d.

Gneisses: Composite Gneisses in Boylagh, West Donegal. By G. A. J. Cole. 1902. pp. 28. 5 plates. $8 \mathrm{vo} .{ }^{3}{ }^{3 \mathrm{~s} .}$

Granites of Leinster, By W. J. Sollas. 1891. pp. 88. 4to, 3s. 6 d.
Haddon (A.C.), W. J. Sollas, and G. A. J. Cole: Geology of Torres Straits. 1894, pp. 58. 4 plates. 4 to. 4 s.
Hill (C. A.), H. Brodrick, and A. Rule - The Mitchelstown Caves, Co. Tipperary. 1gog. pp. 34. 4 plates. 8vo. 1s. 6 d.
JOLY (J.): Solvent Denudation in Fresh and Salt Water. 1g02. pp. 14. 8vo. 1s.
Kilroe (J. R.) : The River Shannon : its present Course and Geological History, 1907. pp. 23. 4 plates. 8vo 18.

Kilroe (J. R.): The Silurian and Metamorphic Rocks of Mayo ana North Galway. 1907. pp. 32. 2 plates. 8vo. 15.
M•Herry (A.) and W. J. Sollas: Volcanic Nect of Tertiary Age in the County of Galway, Ireland. 1896. pp. x4. I plate. 4to. 2 s .6 d.
M/Henry (A.): The Ox Mountain Rocks, Ireland. 1go3. pp. 8. 8 ro. is. 60.
Metamorphic Rocks in Eastern Tyrone and Southem Donegal. By G. A. J. COLs. 1900. Pp. $4^{2 .} 2$ plates. to. 29.

Metamorphic Rocks: The Ox Mountain Rocks, Ireland. By A. M'日ENRT. 1903. pp. 8. 8vo. 2s.6d.
Melting Points of Minerals. By R. Cosack. 1896. pp. 15. 8vo. 25.

O'Rerlis (J. P.): Catalogue of Earthquakes in Great Britain and Ireland. 1884. pp. 33. I plate qto. 28.
O'Reilly (J. P.): Catalogue of Earthquakes recorded as having occurred in Europe and adjacent countries. 1885. Pp. 220. 410. 45. 6d.

O'Rerly (J. P.): Dates of Volcanic Eruptions and their comcondance with the Sun-spot Period. 1899. Pp. 48. 8vo. 35. 6 d.
O'Reilli (J.' P.): Waste of the Coast of Ireland . 1902, pp. 108 , 8vo. 3 .
Prarger (R. LL.): Raised Beaches of the North-East of Lreland 8896. pp. 25. 1 plate. 8vo. 3s.

Prazger (R. Li) and G. Coffey: The Lame Raised Beach. 1904. pp. 58. 5 plates. 8vo. 28.
Raised Beaches: The Larne Raised Beach. By G. COPFEY and R. Ll. Praegier. 1ga4, pp 58.5 plates. 8vo. 25.

Raised Beaches of the North-East of Irehnd. By R. Lr. Prazgier, s896. pp. 25. T plate 8wa - 30
Scmariz (R. F.) : On the Evidences of a former Land-bridge betweed Northem Europe and North America. 1909. pp. 28. 800. 18.
Sutth (B.), G. L. Elles, and W. G. Fenrusides: The Lower Palazoroic Rocks of Pomeroy. 190\%. pp. 30. 880. is.
Solilas (N. J.): Granites of Leinster. 1898. pp. 88. sto. 38. 6d.
Sollas (W. J.): Volcanic District of Carlingford and Slieve Gallion. 1894. Pp. 36. 2 plates. 4 to. 25. 6 d.

Solzas (W. J.) and A. N•Gesky : Volcanic Neck of Tertiary Age in the Coungs of Galsay, Ireland. 18g6. pp. 14. I plate. 4to. 23.6d.
Sollas (W. Jo), A. C. Hadidos, and G. A. J. Colx: Geology of Totres Strais. 1894. Pp. 58. 4 plates. 410.45.
Sud-spot Periods: their concordance with Volcanic Eruptions. By J. P. O'REILEY. 1899. pp-41. 8vo. 38. 6d.

Torres Straits: Geology of Torses Straits. By A. C. Haddom, IV. J. SOLLAS, and G. A. J. COLE. 3894. pp. 58. 4to. 4s
Voicanic District of Carlingford and Slieve Gullion. By W. J. Sollas. 3894. Pp. 36. 2 plates. 4 to. 83.6 d .

Volcanic Eraptions and concordance with Sur-spot Periodic. By J. P. O'REILLY. 88g9. Pp.48. 8vo. 3s. 6d.
Volcanic Neck of Tertiary Age in the County of Gahway, Ireland. By

sold by

Honges, Figgis, \& Co., Ltd., io4, Graton-street, Dublin; and Willuaks \& Nomatis, 14, Hemrietra-street, Covent Garden, Looden, W.C.

PROCEEDINGS

OR THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section B, No. 4

J. Adaks and G. H. Pethybridge

A CENSUS CATALOGUE OF ÍRIṢH FUNGI

DUBLIN

HODGES, FIGGIS, \& CO., LTD.
LONDON: WILLIAMS \& NORGATE
1910
Price: One Shilling.

PROCEEDINGS

Or 5

ROYAL IRISH ACADEMY

In the year 1802 it was resolved to number in conseoutive order the Volumes of the PROCEEDINGS of the Aoademy, and oonsequently attention is requested to the following Table: consecutir sebies. , omgiki nombranon.

Section A. Mathemationl, Aetronomical, and Rhyrieal Bolence.
in B. Biologion, Geologioal, and Ohamion Boianco.
O. Arohsoology, Lingaistie, and Lilarature.
, XXY. (1804-5)
". XXVI. (1800-7)
, IXVII. (1808-9)
, XXVIII. (Current Volams)
In three Sections tike Vol, XXIV.

ROYAL IRISH ACADEMY SOME RECENT PUBLICATIONS

HOTPANT.

AdAMS (J.): A Synopsis of Irish Algæ, Freshwater and Marine.

ADAMS (J.): The Distribution of Lichens in Ireland. 1gog. pp. $4^{2 .}$ 1 plate $8 \mathrm{vo}, \mathrm{Is}$.
Adams.(J.) and G. H. Peterbridge: A Census Catalogue of Irish Fungi 1910. pp. 47. 8vo. if.
Algæ, Freshwater, of the North of Ireland. 1902. pp. 100. 3 plates. 4to. $4 \mathrm{~s}^{\mathrm{n}}$
Algæ Phæophyceæ, Irish. By T. Jounson and H. Hanna. 1899. pp. 2Y.' '8vo. 3s. 6d.
Blorgettia confervoides (Harvey): A New Genus and Species of Fungus. By.E. P. Wriget. 1880. pp. 6. $\{$ plate. 4to. is.
Cytology of the Saprolegnieæ. By M. Hartog. 1895. pp. 60. a plates. 4to. 3 s .
Dixon (H. H.): Osmotic Pressure in the Cells of Leaves. 1896. pp. 13. 8vo. 3 s .
Drion (H. H.): The role of Osmosis in Transpiration. 1896. pp. 9.
૬\% 8vo. 2s. 6d.
Dixon (H. H.): Temperature of the Subterranean Organs of Plants. 1903. : Pp. 26. 4 plates 4 to. rs. 6 d.

HanNa (H.) and T. Johnson : Irish Phæophyceæ. 1899. pp. 21. 8 vo. 3s: 6d.
Hakt (H. C.). Botany of Sinai and South Palestine. 1885. pp. 80. 3 plates 4to
Hartog (M.): Cytology of the Saprolegniez. 1885. pp. 60. a plates. 4to. 3 s.
Hepaticæ: List of Irish Hepatica. By D. McARDLe. 1903. pp. 116. 8vo. 2s.
Hepaticæ of Dingle. Peninsula, Ireland. By D. MCARDLE. 1901. ${ }^{2}$ plates. pp. 42^{2} : $8 \mathrm{vo} \quad 5 \mathrm{~s}$.
Irish Topographical Botany. By R. LL. PraEGER. 1901. pp. $188+410$. 6 plates.s 8 yo : 10s: $6 \mathrm{~d}:$
Irish Topographical Botany: Gleanings in. By R. Ll. Prasger. 1903. pp. 34- 8vo. 1si'6d.

Jennings (A.V.) : Two New Species of Phycopeltis from New Zealand. 1895 pp. ry. plates 8 vo as, 6 d .
Johnson (T.) and H. Hanna: Irish Phæophycer. 8899. pp. 21. 8vo. 38. 6d.
Mcardle (D.) : Hepaticæ of the Dingle Peninsula, Ireland. 1901. pp. 42. 2 plates. 8 vo .55.
McArdee (D.): List of Irish Hepaticæ. 1903. pp. 116. 8vo. 2s.

Ostnosis in Transpiration By F. H. Drxok 0° 18g6. ppig. 8 va . 2s. 6 c . Osmotic Pressare in the Cells of Leaves. By H. E. Daxor. 1896. Pp. 13 Bro. 3 3us.
Palestine: Botary of Sinal and South Palestine. By H. C. HART. IBEs. Ipo 80. 3 plateo plos. 2sen
Petizybéidge (G. H.) and R. Lí. Praigerar : The Vegetation of the District lying south of Dublio. 1905. pp. 57. Coloured map.
it plates, 8 wo. 6
Phycopeltis: New Species of Phyocpeltis from New Zealand. By, A. V. Jemmings. 2895. Ppo 140 plates. 8vo. 28.6 d ,

PMager (R. Li.): Irish Topogreqhical Botamy. 2gol. ppi r88 +410 . 6 plates 8vo. ros. 60.
Praxesr (R. CIn): Gleaniage in Inish Topogreaphical Botaryor sgas. pp. 34 Rpp. 36.64
Pratger (R. LLL): Types of Distributios is the Isish Flosai igos. spp ba 8vo. sce ul.
Prarger (R. LL.) and G. H. Putminhamea: The Vegetation of the District lying south of Dublip. 1gas. pp. 57. Coloured map 5 piates 8xa' $6 x$
Saprolegriea: Cytology of the Stprolegniers By M. Ehbroc. 8895. pp. $6 a 2$ places. 410. 35.
Sykidion dyeri: A New Unicellular Alga living on the Frlamentes of Rhizoclonium cagparyio By B. P. Wriger. 1880. pp. 4. spirese. tia iso
Temperature of the Sebtermaean Organs of Plants." By H. Z. Dixoy. 1903. ph 26. 4 pheren plo. 10. 60.

Types of Diatribution in the Irim Forth. By R. In, Pramorn, $2 g 0 a$. Ppp. 60. 8va is. 60.
Valencia Hiarbmes, Ireland: Flow and Payna 1goo. Pp. 188. ©vo.' 43
WIET (W.) aid G. S. West: Prestrater Algte of the North of Ircland. sgon. Pp, ice 3 plates, then 4h
WeIGKt (E. P.): Bhodgettio confervoides (Harvey): A New Cenns and Species of Funguss 1880. Pp. 6. 1 plate. tho. 18.
WhiomT (E.E. P.): New Unicellular Aiga (Sykidioa dycis) living on the Frlaments of Rhizocloninm cappaxyi. s880. pp. to iplate too. n.

Hoders, Figars, a Co., LTD., 194. Gration-rveet, Deblin ; asd Wrlluirs d Norcats, 14. Henrietta tirect, Coveat Garden,

PROCEEDINGS

OR THE

ROYAL IRISH ACADEMY
Volume XXVIII, Section B, No. 5

JOHN ADAMS

A LIST OF SYNONYMS OF IRISH ALGAE,

 WITH SOME ADDITIONAL RECORDS AND OBSERVATIONS

DUBLIN

HODGES, FIGGIS, \& C'O., LTD. LONDON: WILLIAMS \& NORGATE 1910

Price One Shilling.

PROCEEDINGS

or Tr

ROYAL IRISH ACADEMY

In the year 1802 it was resolved to number in oonscoutive order the Volumes of the PROOEEDING8 of the A oademy, and consequently attention is requested to the following Table:-

Section A. Mathematical, Aetronomicul, and Physical Eofencer
© B. Biologionl, Geologioal, and Ohamioal Erionce,
C. Archeology, Linguigtic, and Litarntres.
" XXV: (1904-8)
n XXVI. (1900-7)
, XXVI. (1008-9)
" XXVII. (Corrent Volume)
In three Bection libe Vol. XXIV.

ROYAL IRISH ACADEMY SOME RECENT PUBLICATIONS

ROTANY.

Adane (J.): A Symopsis of Yrish Algæ, Freshwater and Marine. 1908. pp. 50, 8vo 1s.

ADams (J.): The Distribution of Lichens in Ireland. 1909: pp. 42. plate 8 vo Is.
AdAMS (J.) : A List of Itrish Algae, with someadditional Records and Observations: 19ra pp. 48. 1s.
Adans (J.) and G. H. Pethybridge : A Census Catalogue of Irish Fungi, 19tó pp. 4\% 8vo. IS
Blodgettia confervoïdes (Harvey): A New Genus and Species of

Cytology of the Saprolegnieæ. By M. Hartog. 1895. pp. 60. 2 plates. 4to 35.
DIXON (H. H.): Osmotic Pressure in the Cells of Leaves. 1896. pp. 13. 8vo. 3s.
DIXON (H. H.): The role of Osmosis in Transpiration. 1896. pp. 9. 8vo. 25. 6d.
Dixon (H. H.): Temperature of the Subterranean Organs of Plants. 1903. pp. 26: 4 plates. 4to. is. 6 d.

Hanna (H.) and T. Johnson : Irish Phæophyceæ. 1899. pp. 25. 8 vo. 3s. 6d.
HART (H. C.): Botany of Sinai and South Palestine. 1885. pp. 80. 3 plates 4to iss.
Hartoc (M.): Cytology of the Saprolegniez. 1885. pp. 60. a plates. 4to 3 3.:
Hepaticæ: List of Yrish Hepaticæ. .By D. MCARDLE. . 1903. pp. 116. 8vo. 2s *
Hepaticæ of Dingle Peninsula, Ireland. By D. McArdle. 1901. 2 plateso, pp. $42.8 \mathrm{vo}, 5 \mathrm{~s}$.
Irish Topographical Botany. By R. Ll. Prabger. 1901. pp. 188 +410. 6 plates. 8vo. sos. 6 d.
Irish, Topographical Botany: Gleanings in. By R. Ll. Praeger. 1902. pp. 34: . Svo, ris. 6d.

Jennings (A. V.) : Two New Species of Phycopeltis from New Zealand. 1895. pp. 14. 2 plates, 8vp. 2s. 6d.

Johnson (T.) and H. Hanna: Irish Phæophycex. 18g9. pp. 21. 8vo ${ }^{\text {' } 3 \mathrm{~s} .}$ 6d.
McArdee (D.) : Hepaticæ of the Dingle Peninsula, Ircland. sgos. pp. $4^{2 .}$ 2 plates, 8 8vo. 5 s.
McArdle (D.): List of Irish Hepaticæ. 1903. pp. 116. 8vo. 2s.
Osmosis in Transpiration. By H. H. Dixon. 1896. pp. 9. 8vo. 2s.6d.
Osmotic Pressure in the Cells of Leaves. By H. H. Dixon. 1896. pp. $13,8 \mathrm{ko}, 39$

Palestine: Botany of Sinai and South Palestine. By H. C. Harr, 1885. pp. 80. 3 plates. 4to. 2.5p

Pethybridge (G. H.) and R. LL. Prabger: The Vegetation of the District lying south of Dublin. 1905. . pp. 57. Coloured map. 5 plates. $8 \mathrm{vo}_{\mathrm{a}}, 6 \mathrm{~d}$.
Phycopeltis: New Species of Phycopeltis from New Zealand. By A. V. Jennings. 1895° pp 14.2 plates. 8 vo .2 s .6 d.

Prabgek (R. Ll.): Irish Topographical Botany. rgor. pp. $188+410$. 6 plates. 8vo. ros. 6 d .
Prabger (R. Lin); Gleapings in Irish Topographical Botany. $1 g a z$. pp. 34. 8vo. 15. 6d.
Praeger (R. Li-) : Types of Distribution in the Irish Flora. 1902. pp. 60. 8vo. 1s. Gd. i
Praeger (R. Lin) and G. H. Pithybrmgm: The Vegetation of the Districk lying south of Dublin, 1905. Pp. 57. Coloured map 5 plateb. 8 va .
Saprolegnicae: Cytology of the Saprolegniez. By M. Hartog. 1895. pp. 60. 2 plates. tto. 38.
Sykidion dyeri : A New Unicellular Alga living on the Filaments of Rhizoclonium casparyi. By E. P. Wrigur. 1880. pp. 4. 2 plate." to. "te.
Temperature of the Subtertanean Organs of Plants. By H. F. Dexon. 1903. pp. 26. 4 plates. 4 to 18.6 d .

Typer of Distribution in the Iriah Flora. By R. Lx. Prargrr. 1902. pp. 60. 8vor. TE. 6 d
Valencia Harbous, Ireland: Flota and Fauna. 1900. pp. 188. .8va. 43.

Whst (W.) and G. S. West : Freshwater Algat of the North of Ireland. 1902. Pp. 100. 3 plates. 4 to. 48.
Wkight (E. P.): Blodgettia confervoides (Barvey): A New Genus and Species of Fuagus. 1880. Pp. 6. $\$$ plate. 4to. 86.
Wricirt (E. P.): New Unicellular Alga (Sykidion dyeri) living on the Filamedes of Rhizoclonium casparyi. 1880. pp. 4. I plate 4 to, 18.

Sold by
Hodges, Figats, a Co., LTD., 109, Grahodestreet, Dublin ; and Whlunss \& Norgath, 14, Eearietta-mpet, Covent Garden, Loodon, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section B, No. 6

ROWLAND SOUTHERN

THE MARINE WORMS (ANNELIDA) OF DUBLIN BAY AND THE ADJOINING DISTRICT

DUBLIN

HODGES, FIGGIS, \& C'O, LTD LONDON: WILLIAMS \& NORGATE 1910

Price Sixpence

PROCEEDINGS

Of 2rise

ROYAL IRISH ACADEMY

In the year 1802 it was rasolved to number in conssoutive' order the Volumes of the PROCEEDINGS of the Aoademy, and oonsequently aftention is requested to the following Table:-

Voctur I (1898-18t0) is Vownes 1. 1et Sere. Soi, Pol. Cât. de Antigq.

XVII. (1888-1891) is n I. 8nd Bex. Eoi., Polo Iot. Antigge:
XVIII. (1891-1898) \& * II. is
XIX. (1898-1800) III.
XX. (1886-1898) n . IV. . . .
XXI. (1890-1800)
EXII. (1900-1802) n.... VI.
EXIII. (1901) :. . VII.
XXIV. (1009-1004) :-

Section A. Mathematteal, Astronomical, and Phyoical Eciance

- B. Biologieal, Geologieql, ana Ohrmionl Soianoc.
- O. Archmology, Lingrietio, and Litankere.
- $\mathrm{XXV}_{\mathrm{i}}(1004-6)$
" XXVI. (1800-7)
, XXVII. (1908-9)
" XXVIII. (Ourrent Volume)

ROYAL IRISH ACADEMY. SOME RECENT PUBLICATIONS.
 ZDOEDGY:

Arachnida: Eist of the Spiders of Ireland. By G. H. Carpenter. 1898. Pp. 83. 8vo. 3s. 6d.

Arthropoda: Relations between the Classes of the Arthropoda. By G. H. CARPENTEK. 1903. pp. 4 P plate. 8 yo . 18.6 d.

Atlantis: Some Remarks on the Atlantis Problem. By R. F. Scharfr. 1903. pp. 35. 8vo. 1s.

Balkwill (F. P.) and J. Wright : Foraminifera from the Coast of Dublin and in the Irish Sea. $1884 . \quad$ pp. 56. 3 plates. 4 to. 23.
Ball (V.) : Lion-breeding in the Gardens of the Royal Zoological Society of Ireland. 1886. pp. 36 I plate. 4to 2 s .
Barrett-Hamilton (G. E. H.): Winter Whitening of Mammals and Birds 1903. pp. 12. 8vo. is $6 \mathrm{~d}^{2}$
Barrett-Hamilton (G. E. H.): An Addition to the List of British Boreal Mammals (Evotomys skomerensis). 1903. pp. 5. 8vo. 1s. 6 d .
Beabmont (W. I.) : part author of Fauna and Flora of Valenoia Harbour, Ireland. 1900. pp. 188. 8vo. 45.
Beetles: List of Irish Beetles. By W. F. Jounson and J. N. Halbert 1902. pp: 293." 8vo 5 s .

Browne (E. T.) : part author of Fauna and Flora of Valencia Harbour, Ireland. 1900. pp. 188, 8 vo .4 s.
Calman (W. T.): Deep-sea Crustacea from the South-West of Ireland. 1896. pp. 22. 2 plates. 4to. 25.

Calman (W: T.): Phoxocephalus and Apherusa. 1896. pp. 13. 2 plates. 4to 2 s .6 d .
Carpenter (G. HA): List of the Spiders of Ireland. 1898. pp. 83. 8vo.. 3s. 6d.
CARPENTER (G. H.): Relations between the Classes of the Arthropoda. 1903 年 pp. 41 . 1 plate. 8 vo . is, 6 d.
Carpenter (G.H.) and Isaac Swain : A new Devonian Isopod from Kiltorcan, County Kilkenny.: 1908. pp. \%. I plate. 8 8vo. "Is.
Cave Faunas: Exploration of the Caves of Kesh. By R. F. SCHARPF, \&c. 1903. pp. 44. 3 plates 4to. 2s.
Cave Faunas: Discovery of Hyæna, Mammoth, \&c., in a Cavern in Co. Cork. 1904. pp. 5: 8vo. 6d.
CHASTER (G. W.) : Report on the Mollusca obtained off the Southwest Coast of Ireland, 1885-88. 1898. pp. 33. 8 vo . 3s. 6d.
Colenterata: A List of Irish Coelenterata, including the Ctenophora. By JANE STEPHENS. 1905: pp. 68. 8vo. 1s.
Coleoptera: List of Irish Beetles. By W. F. Jornson and J. N. Halkerti $191 . \quad$ pp. 395. 8vo: 5s.
Crustacea: Deep-sea Crustacea from the South-west of Ireland. By W. T. CaLMCAN ${ }^{3}$ 1896. pp. 22.' 2 plates. 4to. 35.

Echinoderms: List of the Echinoderms of Ireland. By A. R' Nichols. 1899: pp. 89. 8vo. 3s.
Exploration of the Caves of Kesh, Co. Sligo, Ireland. By R. F. Scharif, \&c. $1903 . \quad$ pp. 44. 3 plates." 4 to: 2 s.
European Fauna: Origin of the European Fauna. By R. F. Scharpf. 1896. pp. 88. 8vo. 18. 6d.

Evotomys skomerensis, an Addition to the List of British Boreal Mammals. By G. E. H. Barrett-Hamilton: 1903. pp. 5. 8vo. 1s. 6d.

Foraminifera found off the Coast of Dublin and in the Irish Sea. By F. P. BALKWILL and J. WRIGET,' '1884' 'Pp. 56. 3 plates. 4 to. . 2 s.

HOOD (J.): Rotifera of the County Mayo. 1895. pp. 43. 2 plates, 8vo. 3 s.
Johnson (IV. F.) and J. N. HALBERT: A List of Irish Beetles. rgor. pp. 395. 8vo. 5s.
King (James J. F. X_{0}) and J. N. Halbert: A^{*} List of the Neuroptera of Ireland. 1910. pp. 84. 8vo. is. 6d.
Lion-breeding in the Gardens of the Royal Zoological Society of Treland. By V. BAJc. 1886. pp. 36.' t'plate. 4to. 25.
Mangan (J.) : On the Mouth-parts of some Blattide. rg98. pp. 10. 3 plates. 8vo. Is.
MbTtam (A. E.): Malignant Tumours in Birds, with Observations on the Changes in the Blood. 1908. pp. 8. I plate. 8vo. Is.
Mettam (A. E.): The Presence of Spirochates in certain infective Sarcomata of Dogs. 1908. pp. 5. I plate. 8vo. 15.
Mollusca: List of the Marine Mollusca of Ireland: By A. R. Nicrois. pp. 186. 8vo. 38.
Nichols (A.R.): A List of the Echinoderms of Ireland. 8899. pp.8g. 8vo. 38.
Nichois (A. R.): A List of the Marine Mollusca of Ireland. "jgo0. pp. 186. 8vo. 3s.
Pack-Briksiford (D. R.) : A Supplementary List of the Spiders of - Ireland. 1909. pp. $32.8 \mathrm{vo} 6 d.$.

Phosocephalus and Apherusa. By W. T. Cammas. 1896. pp. 13. 2 plates. to. 2a.6d.
Rockall Island and Bank: Ristory, Zoology, Geology, \&x. 1897. pp. 60. 6 plates, 4to. 5 s.
Rotifera of the County Mayo. By J. Hood. 1895. pp. 43. plates. 850. 38 .

Schakfy (R: F.): On the Origin of the European Fauna. 1896. PP. 88. 8vo. 18. 6d.
SC\&AREF (R. F.): Some Remarks on the Atlantis Problem. 190,3. PP. 35, 8vo. 85.
Schasef (R. F.): On the Irish Horse and its Early History. 1909. pp. 6:8vo 68.
SCHARYF (R. F.) and others: Exploration of the Caves of Kesh, Co. Sligo, Ireland. 1903. pp. 44. 3 plates. 4to. 25.
SOUTHERX (R.) : Contributions towards a Monograph of the British and Irish Oligochaets igog. Pp. 64. 8vo, is.
SOUTHEKN (R.): The Marine Worms (Annelida) of Dublin Bay and the Adjoining District 19to. pp. 32. 8vo. 6d.
Spiders: List of the Spiders of Ireland. By G. A. Carppater. 8898. pp. 83. 8vo. 36. 6 d .
Stephens (Jane): A List of Irish Colenterata, including the Ctenophori., 1gos. Pp. 68. 8va. 1s.
SWAN (I.) and G. H. CARPENTER: A New Dtvonian Isopod from Kilorcan, County Kilkenny. 1go8. pp. \%. I plate. 8vo. 18.
Ussher (R. J.) : Discovery of Hyana, Mammoth, \&c., in a Cavern in Co. Cork sgo4. Pp. 5. 8vo. 6d.
Valencia Harbour, Ireland: Faona and Fora. By W. I. Beaumont, E. T. Browne, and others. 8900. pp. 188. 8vo. 4s.

PROCEEDINGS

OR THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section B, No. 7

JAMES J. SIMPSON

A REVISION OF THE GORGONELLIDAE:
I. THE JUNCELLID GROUP.

DUBLIN

HODGES FIGGIS \& CO., LITD LONDON: WILLIAMS \& NORGATE 1910 Price Seven Shillings and Sixpence.

PROCEEDINGS

of TaIE

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in oonseovtive order the Volumes of the PROCEEDINGS of the Aoademy, and oonsequently attention is requested to the following Table:-

Consecutite seriss originl monibitiol.

Volowe I. (1886-1810) is Vocues I. 1st Sar. Bai, Pol. Lit, Antigg,

n XVII. (1888-1891) " "I. 8nd Bec. Boi, Poi. Lit. Antigg. " IVIII. (1891-1898) n " II. "
" XIX (1898-1896) w ini " " "
" XX. (1896-1890) n н. IV.: in
" XXI. (1898-1900) in :
" XXII. (1900-1902) " n VI. n
"XXIII. (1901) " " VII. "
" XXIV. (1902-1901):-
Bection A. Mathomatical, Astronomical, and Physical Boiopce.
" B. Biological, Geological, and Ohemical Science.

- C. Aroheology, Linguistic, and Litertare.
" XXV. (1904-6)
" XXVI. (1006-7)
, XXVII. (1908-9)
,, XXVIII. (Oarrent Volume)

ROYAL IRISH ACADEMY SOME RECENT PUBLICATIONS

ZOOLOEX.

Arachnida: List of the Spiders of Ireland. By G. H. Carpentrb. 1898. pp. 83. 8vo. 3s. 6d.

Arthropoda: Relations between the Classes of the Arthropoda. By G. H. Carpenter. 1903: pp. 41. I plate. 8va. 1s. 6d.

Atlantis: Some Remarks on the Atlantis Problem. By R. F. Scearpr. 1903. pp: 35. 8vo is.

BaikwILL (F. P.) and J. WRIGHT: Foraminifera from the Coast of Dublin and in the Irish Sea. 1884. pp. 56. 3 plates. 4to. 23.
Ball (V.): Lion-breeding in the Gardens of the Royal Zoological Society of Ireland. 1886. pp. 36, I plate. 4to. 2s.
Barrett-Hamilton (G. E. H.): Winter Whitening of Mammals and Birds. 1903. pp. 18. 8vo. 1s. 6d.
Barrett-Hamilton (G. E. H.): An Addition to the List of British Boreal Mammals (Evotamys skomerensis). 1903. pp. 5. 8vo. 1s. 6d.
Bbaymont (W. I.) : part author of Fauna and Flora of Valencia Harbour, Ireland. 1900. pp. 188. 8vo. 4s.
Beetles: List of Irish Beetles. By W. F. Jornson and J. N: Halbert 1902. .pp. 293: 8vo. 5 .

Browne (E.T.) : part author of Fauna and Flora of Valencia Harbour, Ireland. 1900 pp. 188. 8vo. 4 s.
Calman (W.T.): Deep-sea Crustacea from the South-West of Ireland. 1896: pp. 22.2 plates. 4 to. 29.
Calman (W. T.): Phoxocephalus and Apherusa. . 1896. pp. 13. 2 plates. 4 to 25.6 d.
CARPENTER (G. H.): List of the Spiders of Ireland. 1898. pp. 83. 8vo. 3s. 6d.
Carpenter (G. H.): Relations between the Classes of the Arthropoda. 1903. : pp. 41. 1 plate. 8vo . is. 6 d.

Carpenter (G. H.) and Isaac Swain: A new Devonian Isopod from Kiltorcan, County Kilkenny. 1908. pp. 7. I plate. 8vo. Is.
Cave Faunas: Exploration of the Caves of Kesh. By R. F. Scharpr, \&c.' 1903. pp. 44 . 3 plates. 4 to. ' 3 s .
Cave Faunas: Discovery of Hyæna, Mammoth, \&c., in a Cavern in Co. Cork. 1904. pp. 5. 8vo. 6 d .
Chastre (G. W.) : Report on the Mollusca obiained off the Southwest Coast of Ireland, 1885-88. 1898. ppr 33. 8vo. 3s. 6d.
Coelenterata: A List of Irish Coelenterata, including the Ctenophora. By Jane Stepiens, 1905. pp. 68. 8vo. is.
Coleoptera: List of Irish Beetles. By W. F. Jounson and J. N. HALRERT: 191 Pp: 395. 8vo. 55.
Crustacea: Deep-sea Crustacea from the South-west of Ireland. By W. T. Calmane 1896. pp. 22. 2 plates: 4 to. 25.

Echinoderms: List of the Echinoderms of Ireland. By A. R Nicerols. 1899. pp. 89. 8vo 3 s.

Exploration of the Caves of Kesh, Co. Sligo, Ireland. By R. F. Scharrf, \& C. 1903. pp. 44. 3 plates. 4 to. 2 s .
European Fauna: Origin of the European Fauna. By R. F. Scharpy. 1896. pp. 88, 8vo. rs. 6d.

Evotomys skomerersis, an Addition to the List of British Boreal Mammals. By G. E. H. Barrett-Hayit ton. 1903. pp. 5 $8 \mathrm{vo}-18.6 \mathrm{~d}$
Foraminifera found off the Coast of Dublin and in the Irish Sea. By F. P. Balkwill and J. Wright. 1884, pp. 56. 3 plates. 4to, 3s*

HOOD (J.): Rotifera of the County Majo. 1895. Pp. 43. 2 plates. 8vo. 35.
JOEMSON (W, F.) and J. N. Hawbrzt: A List of frish Beeties. Igot. pp. 395. 8vo. \$8.
King (James J. F. X.) and J. N. Halmari: A List of the Neuroptera of Ireland. 2910. pp. 84. 8vo. 1s. 6d.
Lion-breeding in the Gardens of the Royal Zoological Society of lueland, By V. BaLE 1886. Pp. 36: I plate 4t0. 25.
Mavgax (I.) : On the Mouth-parts of spme Blatrides. Igob. py. ro: 3 plates. 8vo. 18.
MzTTAM (A. E.): Malignant Tumours in Biruib, with Observations on the Changes in the Blood. 1go8. Pp. 8. I plate. 8vo. Is.
Mertan (A. B.): The Presence of Spiruchate is certain infective Surcomata of Doge 1go8. pp.5. I plate. 8vo. is
Mollusca: List of the Marine Mollusce of Ireland ByA. R. Arcross. pp. 186. 8vo. 31.
Nichols (A. R.): ALit of the Behinoderms of ledand Rago pg.8g. 8vo. 34.
Nichors (A, Ro): A Lint of the Mriee Molluca of Ireland, rgoo. pp. 186. 8vo. 30.
Pack-Berestoxd (D. Ro): A Suppleanangary List of the Spirtert of Irelaod. igog pp 3. 8vo 6d.
 2 pilter fon 236 .
Rockall Island and Bank: Klitecy, Zoology, Geology, \$c. 1807 . pp. 60. 6 prates 4 to 53
Rotifen of the Connty Mapo. By J. Foob. 1895. Pp. 43. 3 phate. 8vo. 36
 pp. 88. 8vo. 15.64.
Scanzer (R. F.): Some Remaris an the Alfontis Problem: sgos. Pp-35-80. 18.
ScanRer (R. F.): On the Irix Hore and its Early Brotory. sgog. Pp. 6. Fra 6i.
SCBARE (R, B) and othes: Epploratica, of the Caves of Reab, Cas Slige, Ireland, 1903. PP. 44. 3 plates. fio. 23.
Soursox (J. J.): A Revision of the Gorgonellidae: 1. The Juncellid Groap. 19ro. pp. s40. ig plates. 8vo 70. 6d
Soursern (R): Contribution towards a Monosraph of the British and trish Oligocheth 1gog pp. 6y. 8 vo as
Soutruen (R.): The Marive Worms (Anmelida) of Dublin Bay ara' the Adjoiniag District igsa pp- 32. 8vo. Gd.
Spiders: List of the Spiders of Inclund. By G. B. Capprnmth IBnBos Pp. 83. 8va. 34 6d.
STLFares (Jane): A Lixt of Irish. Coleaterata, including the Clenophorm. sgos. PD. 6\% 8vo is.
Swank (J.) and G. H. Carpewtue: A New Devomion Ioopod fine Kiltorcan, County Eiflkenoy. 1906 pp. 7. I plate. 800. is.
USBERR (R. J.) : Discovery of Hyrena, Maramoch, ixcos is a Ceverm in Co. Cork. 1goy pe. gro. 6.
Yalencia Harbour, Irehad: Fares and Plors, By W. I. Buavaot, E. T. Brownis, and others 1900 pp. 188.8 vo th

$$
\text { sale } 6
$$

Hodors, FigGis, a CO., LTDes 104, Graliogemeder, Dublion ane Wisimms \& Nongars, is, Benrietha-treet, Covent Gurderg London, W.C.

PROCEEDINGS

OR THE

 ROYAL IRISH ACADEMY

 ROYAL IRISH ACADEMY}

Volume XXVIII, Section B, No. 8

Matilda C. Knowles and R. A. Phillips

ON THE CLAIM OF THE SNOWFLAKE (LEUCOJUM AESTIVUM) TO BE NATIVE IN IRELAND

DUBLIN

HODGES, FIGGIS, \& C'O., LITD. LONDON : WILLIAMS \& NORGATE

$$
1910
$$

PROCEEDINGS

ROYAL IRISH ACADEMY

In the year 1802 it was resolved to number in conseontive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:Consecutis sexiss orglac movibeitiol.

Sootion A. Mathematieal, Astronomion, and Physionl Bolenea:
I. B. Biological, Geologioch, and Ohamionl Sciemec.
C. Archeology, Linguiatic, and Lítentuve.
i. XXV. (1004-5)
, XXVI. (1800-7)
" EXVII. (1900-9)
" XXVLI. (Ourxemt Volames)
In thee Sections bike VoL $X X T$.

ROYAL. IRISH ACADEMY SOME RECENT PUBLICATIONS

ROTANY:

Adams (J.): A Synopsis of Irish Algze, Freshwater and Marine. 1908. pp. 50.' 8 vo.

Apams (J.): The Distribution of Lichens in Ireland. 1gog. pp. 42. 1 plate 8 vo iss.
AdAMs (J.) : A List of Irish Algae, with someadditional Records and Observations. igro. : pp. 48. 15.
Adams (J.) and G. H. Pethybridge: A Census Catalogue of Irish Fungi 1910, pp. 47. 8vo. 15.
Blorgettia confervoides (Harvey): A New Genus and Species of Fungus. By E. P. Wriget. 1880. pp. 6. I plate. 4to. xs.
Cytology of the Saprolegnier. By M. Hartog. 1895. pp. 60. 2 platés. 4to. 3 s.
Dixon (H. H.): Osmotic Pressure in the Cells of Leaves. . 1896. pp. 13. 8vo 3 s.
Drxon (H. H.) : The role of Osmosis in Transpiration, 18g6. pp. 9. 8vq. ${ }^{2}$ s. 6 d .
DIXon (H. H:): Temperature of the Subterranean Organs of Plants. 1903. pp, 26. 4 plates.; 4to. 1s. 6 d.

Hanna (H.) and T. Johnson : Irish Phæophyceæ. 1899. pp. 21.8 vo. 3s. 6 d.
Hart (H. C.): Botany of Sinai and South Palestine. 1885. pp. 80. 3 plates. 4to 2 s.
HARTOG (M.) : Cytology of the Saprolegnieæ. 1885. pp. 60. a plates. 4to : 3s.
Hepaticæ: List of Irish Hepaticæ. By D. MCARDLE. 1903; pp. 116. 8vo. 2 s .
Hepatica of Dingle Peninsula, Ireland. By D. McArder. rgor. ${ }^{2}$ plates. pp. $42,8 \mathrm{vo}, 5 \mathrm{~s}$.
Irish Topographical Botany. By R. Ll. Praeger. 1goi. pp. $888+410$. 6 plates. 8vo ros. 6 d.
Irish Topographical Botany: Gleanings in. By R. L工. Prarger. 1902; ppi 34. 8 ro . 1s. 6 d
Jennings (A. V.) : Two New Species of Phycopeltis from New Zealand. 1895. pp. 14. ${ }^{3}$ plates 8vo 2s. 6 d.

Johnson (T.) and H. Hanna: Irish Phæophyceæ. 1899. pp. 21. 8vo. 3s. 6d.
Knowles (M.C.) and R. A. Phillips: On the Claim of the Snowflake (Leucojum cestizum) to be Native in Ireland. 1910. pp. 13. 3 platesi: 8vo. 1s.
McArdle (D.): Hepatice of the Dingle Peninsula, Ireland. sgor. pp. 43, 2 plates: 8 vo . $\mathbf{5}^{50}$:
McArdle (D.): List of Irish Hepatica. 1903. pp. 116. 8vo. as.
Osmosis in Transpiration. By H. H. Dixon. 18g6. pp. 9. 8vo. 2s. 6d.
Osmotic Pressure in the Cells of Leaves. By H. H. Dixon. 8896. pp. 13. 8vor' 3s,

Palestine: Botany of Sinai and South Palestine, By H. C. HART. 1885. pp; 80! 3 plates. 4 to. $88 i$

Pethybridge (G. H.) and R. Ll. Praeger : The Vegetation of the District lying sonth of Dublin. 5905. pp. 57. Coloured map. 5 plates, : 8vo. $6 d$
Phycopeltis: New Species of Phycopeltis from New Zealand. By A. V. Jenifinges. 1895. pp 14.2 plates. 8 vo .2 is .6 d.

Pribgibr (R. Lid): Irish Topographical Botany, 1gor. pp. $188+41^{10}$. 6 plates Svo ras. 6d.
Prusger ($\mathrm{R}: \mathrm{I}_{\mathrm{L}}$): Gleanings in Irish Topographical Botany, igoz. pp. 34. 8va 18.6d.
Prakgrr (R. Llu): Types of Distribution in the 1rish Flore. 1902.

Prarger (R. In.) and G. E. Petaybridge: The Vegetation of the District lying south of Dublia. 1905, pp. 57. Coloured map 5 plates. 8vo. $6 d$
Seprolegniez: Cytology of the Saprolegnieza. By M. Fiartoc. 1895. pp. 60. 2 plates. 4to, 35.
Syldidion dyeri: A. New Uniceliular Alga living on the Filaments of Rhirocloniom casparyi. By E. P. WRIC日I. . $880 . \mathrm{pp}$. 4. 1 plation 4 to. 12.
Temperature of the Subterranean Organs of Plants, By H. H. DixON: s903. Pp. 26. 4 plates to. 85.6 d .
Typen of Distribution in the Irisb Floran By R. Lr. Pratogr, 2902. kpe 6o 800, is. 60.
Valencis Burbour, Irehad: Fhora and Pauma rgoo., Pp. 188. 8vo.
WYsT (W.) and G. S. Wesr: Preshwater Alge of the North of Ireland. sgos. ppo sca, 3 plates. $4 t 00$, th
Wrigrt (E, P.): Blodgettia confervoldes (Hahrey): A New Genus and

- Species of Funges. 1880. Pp. 6. 1 plate. 4t0. 18.

Whart (R. P.): New Unicellalar Alga (Sylddion dyeri) living on the Filaments of Rhisoclomitron cosparyi. i880. pp. 4 \& plate $4 t 0$. 18.

Hodoes, Ficous, \& CO., ETD.j ra, Graftomytrect, Dubtin ; and Whllans at Norbark, i4, Eleariett taret, Coveot Cardea, Loedone W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. i

THOMAS JOHNSON WESTROP'P

A STUDY OF THE FORT OF DUN AENGUSA IN INISHMORE, ARAN ISLES, GALWAY BAY: ITS PLAN, GROWTH, AND RECORDS

DUBLIN

HODGES, FIGGIS \& CO. LTd. LONDON: WILLIAMS \& NORGATE

1910
Price One Shilling and Sixpence

PROCEEDINGS

```
OF THE
```


ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in oonsecutive order the Volumes of the PROCEEDINGS of the Aoademy, and consequently attention is requested to the following Table:-

CONSBCUTIVE SERIES. ORIGINAL NUMERATION.

ROYAL IRISH ACADEMY
 SOME RECENT PUBLICATIONS

 ARCHEOHOCY.

 ARCHEOHOCY.}

Armstrong (E. C. R.) : Stone Chalices, so called. 1907. pp. 10. ${ }^{1}$ plate. 8 vo .6 d .
Armstrong (E. C. R.) : Prehistoric Leather Shield found at Clonbrin, County Longford. 1909. pp. 4. 2 plates. 8 vo .6 d.
Corfey (G.) : Prehistoric Cemetery of Loughcrew. 1897. pp. 16. 6 plates. 4to. 2 s .6 d .
Coffey (G.) : Monuments of La Tène Period in Ireland. 1904. pp. 10. 5 plates. 8 vo . Is. 6d.
Coffey (G.): Excavation of a Tumulus near Loughrea, Ireland. 1904. pp. 7. 8vo. 6d.
Coffey (G.): Craigywarren Crannog. 1906. pp. 10. 6 plates. 8 vo. 15.

Coffey (G.): Two Finds of Late Bronze Age Objects. 1906. pp. 6. 2 plates. 8vo. 6d.
$\operatorname{Coffey}(G):$. Irish Copper Halberds. 1908. pp. 19. 3 plates. 8 vo. Is.
Coffey (G.) : The Distribution of Gold Lunulæ in Ireland and NorthWestern Europe. 1909. pp. 8. 4 plates. 8vo. 1s.
Coffey (G.) and R. Ll. Pragger: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8 vo . 2 s .
Cooke (John): Antiquarian Remains in the Beaufort District, County Kerry. 1906. pp. J4. 4 plates. 8 vo . Is.
Crosses: The High Crosses of Castledermot and Durrow. By M. Stokes. 1898. pp. 26. 12 plates. Folio. £I is. net.

Crosses: The High Crosses of Moone, Drumcliff, Termonfechin, and Killamery. By M. STOKes. 1902. pp. 38. 34 plates. 4 to. 105.6 d
Ferguson (Sir S.): Fasciculus of Prints from photographs of casts of Ogham Inscriptions. 1880. pp. 10. 5 plates. 4to. 2 s.
Gold and Silver Ornaments, Aucient Irish, Composition of. By E. A. Smith. 1895. pp. 14. 8vo. 2s. 6d.
Graves (C.): Ogham Inscription in the Killeen of Aglish, Co. Kerry, Ireland. 1878. pp. 10. \& plate. 4to. is.
Graves (C.): Croix Gammée or Swastika. 1879. pp. 6. 4to. 1s.
Graves (C.): Ogham Monument at Kilcolman, Co. Kerry, Ireland. 188\%. pp. 8. 4to. Is.
Graves (C.): Ogham Inscription supposed to bear an Anglo-Saxon Name. 1892. pp. 12. 4to. Is.
Haddon(A.C.): Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. 1897. pp. 79. 8vo. $2 \mathrm{s}$.

Kane (W. F. De Vismes) : The Black Pig's Dyke: the Ancient Boundary Fortification of Uladh. 1909. pp. 28. 8vo. Is.
Knowles (W. J.): Prehistoric Remains from the Sandhills of Ireland. (3rd Report.) 1895. pp. 14.3 plates. 8 vo .3 s
Kvowles (IV. J.): Prehistoric Remains from the Sandhilis of Ireland. (4th Report.) 1901. pp. 59. I plate. 8vo. 5s.
Macalister (R. A. S.): Ancient Settlement in Corkaguney, Co. Kerry, Ireland. 1899. pp, 137. 9 plates. 4to. 6s.
MacNeile (J.) : Notes on the Distribution, History, Grammar, and Import of the Irish Ogham Inscriptions. 1909. 8vo. pp. 42. 1s.
Milesian Colonization of Ireland in relation to Gold-mining. 1900. pp. 43. 8vo. $4^{5 .}$

Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. By A. C. Haddon. 1897. pp. 79. 8vo. 2s.
O'Reilly (J. P.): The Milesian Colonization of Ireland in relation to Gold-mining. 1900. pp. 43. 8vo. 4s.
O'Reiliy (J. P.) : Old Churches of Kill-o'-the-Grange, Killiney, and St. Nessan, Howth. 1904. pp. 10. I plate. 8vo. 6d.
Praeger (R, Ll.) and G. Coffey: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. I904. pp. 58. 6 plates. 8vo. 2s.
Prehistoric Cemetery of Loughcrew. By G. Coffey. 1897. pp. i6. 6 plates. 4to. 2 s .6 d.
Prehistoric Remains from the Sandhills of the Coast of Ireland. By W. J. Knowles. (3rd Report.) 1895. pp. 14. 3 plates. 8vo. 3s.

Prehistoric Remains from the Sandhills of Ireland. (4th Report.) By W. J. Knowles. 19or. pp. 59. 1 plate. 8 vo . 5 s.

Reeves (WV.) : Bell of St. Patrick, called the Clog an Edachta. $186{ }_{3}$. pp. 30. 4to. Is.
Smith (E. A.): Composition of Ancient Irish Gold and Silver Ornaments. 1895. pp. 14. 8vo. 2s.6d.
Smyly (J. G.): An Examination of the Dates of the Assouan Aramaic Papyri. 1909. pp. 16. 8vo. 6d.
Stokes (M.): High Crosses of Castledermot and Durrow. 1808. pp. 26. 12 plates. Folio. 611 ss net.
Stokes (M.): High Crosses of Moone, Drumcliff, Termonfechin, and Killamery. 1002. pp. 38. 34 plates. 4to. 10 s .6 d.
Westropp (T. J.): Lesser Castles or "Peel Towers" of the County of Clare. 1899. pp. 18. 8vo. 3s. 6d.
Westmopp (T. J.): Churches of County Clare, and Origin of the Ecclesiastical Divisions in that County. 1900. pp. 8r. 8vo. 4s.
Webtropp (T. J.) : Dolmens and Pillar-stones in Bunratty and Tulla, Co. Clare, Ireland. 1902. pp. 48. 4 plates. 8vo. 35.
Westropp (T. J.): Ancient Forts of Ireland. 1902. pp. 851.8 plates. 4to. is. 6 d .
VVestropp (T. J.): The Ancient Forts of Ireland. 1904. pp. 10. 8vo. 6d.
Vestropp (T. J.): A Survey of the Ancient Churches in the County of Limerick. 1905. pp. 154. 9 plates. 8vo. 4s.
Westropp(T. J.): The Ancient Castles of the County of Limerick: North-Eastern Baronies. 1906. pp. 54. 8vo. 1s. Central and South-Eastern Baronies. 1906. pp. 58. 3 plates. 8vo. 15. 6 d . Western Baronies. 1907. pp. 64. 3 plates. 8vo. 1s. 6 d.
 Half of the County of Clare. 1907. pp. 26. 3 plates. 3 8vo. 1s.
Westropp (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (The Newmarket" Group). 1908. pp. 18. 2 plates. 8vo. is.
Westropp (T. J.): The Forests of the Counties of the Lower Shannon Valley. 1909. pp. 31. 8vo. 6d.
Westropp (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (Quin, Tulla, and Bodyke). 1909. pp. jo. I plate. 8vo. 1 s .
Westropp (T. J.): A Study of the Fort of Dun Aengusa in Inishmore, Aran Isles, Galway Bay: Its Plan, Growth, and Records. 1910. pp. 46. 3 plates. 8 vo. 8 s .6 d .
Sold by

Hodges, Figgis, \& Co., Lid., 104, Grafton-street, Dublin; anaं Williams \& Norgate, 14, Henrietta-street, Covent Garder. Landon, WV.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 2

HENRY F. BERRY

CATALOGUE OF THE MAYORS, PROVOSTS, AND BAILIFFS OF DUBLIN CITY, A.D. 1229 TO 1447

DUBLIN

HODGES, FIGGIS, \& CO., LTD. LONDON: WILLIAMS \& NORGATE

[^200]Price Sixpence

PROCEEDINGS

OF THK

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:-

consecutive series. original numeration.

Vorermk I. (1s96-1840) is Voluane I. 1st Ser. Sci., Pol. Lit.\&Antiqq.
., II. (1810-1814) ,, .. II.
,. III. (1815-1817),. .. III.
" IV.(1847-1850) ., ., IV. .. "
" \quad. $(1850-1859)_{n} \quad$ V. ..
"VI. (1858-1857) ,. "VI. ."
., VII. (1857-1~61),. .. VII. .. ."
n VIII. (1861-1864) , . VIII. .. "
" IX. (1864-1866) " ", IX. .. "
" X.(1866-1869) ., X. ., ",
" XI.(1870-1874) ., ". I. 2ndSer. Science.
" XII. (1875-1877) ", ॥ II. . .
" XILI. (1883) " . III. " "
" XIV.(1884-1888) ." ". IV. " "
" XV.(1870-1879) ", I. . I Pol.Lit. \& Antiqq.
.. XVY. (1879-1888),
" XVII. (1888-1891) " "I. 8rd Ser. Sci., Pol.Lit.\&Antiqq.
., XVIII. (1491 1493),. .. II.
" X1X.(1898-1896) ., " III. ".
" Xi. ${ }^{(1896-1898)}$., " IV. ." "
" XXI. (1898-1900) ., " V. ., "
" XXII. (1900-1902) " " VI. " "
" XXIII. (1901) ,, " VII. ", "
, XXIV. (1902-1904):-
\therefore.cinh A. Mathematical, Aitronomical, and Physical Science.

- B. Biological, Geological, and Chemical Science.
., C. Archæology, Linguistic, and Literature.
" XXV. (1204-5)
, XXVI. (1906-7)
.. スXVVII. (1908-9)
, XXVIII. (Current Volume)

ROYAL IRISH AOADEMY SOME RECENT PUBLICATIONS
 HISTORY.

[Lists of Papers on other subjects-scientific, Iiterary, and archsological-may be obtained on application.]

Atkinson (R.) : On the Function of an Academy, in especial of the Royal Irish Academy. 1906. pp. 11. 8vo. 6d.
Bernard (J. H.) : Uncial MS. of S. Cyril of Alexandria, written on Papyrus. 1892. pp. 20. 4 plates. 4to. 6s.
Bernard (J. H.) : Calendar of Documents in the Dignitas Decani in St. Patrick's Cathedral, Dublin. 1905. pp. 27. 8vo. 6d.
Berry (H. F.): An unpublished MS. Inquisition (A.D. 1258), relating to the Dublin City TVatercourse. 1902. pp. 8. 8vo. Is.
Berry (H. F.): Gild of S. Anne, S. Audoen's Church, Dublin. 1904. pp. 86. I plate. 8vo. is. 6d.
Berry (H. F.): Ancient Charters in the Liber Albus Ossoriensis. 1908. pp. If. 8vo. 6d.

Berry (H. F.) : Catalogue of the Mayors, Provosts, and Bailiffs of Dublin City, A.D. 1229 to 1447.1910. pp. 15. 8vo. 6d.
Bibliography, Irish. By Sir J. T. Gilbert. Edited by E. R. M'C. Dix. 1904. pp. 26. Plate and illustrations. 8vo. is.

Bury (J. B.) : A Life of S. Patrick (Colgan's Tertia Vita). 1903° pp. 64. 4to. 2 s .
Bury (J. B.): Itinerary of Patrick in Connaught according to Tírechán. 1903. pp. 16. 8vo. 6d.

Dix (E. R. M'C.), editor of Gilbert: Irish Bibliography. 190f. pp. 26. I plate. Illustrations. 8 vo . Is.
Dix (E. R. M'C.) : A very rare Kilkenny-Printed Proclamation, and William Smith, its Printer. 1908. pp. 4. I plate. 8vo. is.
Drx (E. R. M ${ }^{\text {'C. }}$): Humfrey Powell, the first Dublin Printer. 1908. pp. 4. 4 plates. 8vo. is.
DIx (E. R. M‘C.) : An Early Eighteenth-Century Broadside on Printing. 1909. pp. 3. I plate. 8vo. 6d.
$\operatorname{Drx}\left(E . R . M^{4} \mathrm{C}.\right):$ Note upon the Leaves of the First Book printed in Dublin discovered in the Academy. 1909. pp. 3. 8vo. 6d.
Dublin: Commercial History of Dublin in the Eighteenth Century. By C. L. Falkiner. 1903. pp. 30. 4 plates. 8vo. 6d.

Dublin: Gild of S. Anne, S. Audoen's Church, Dublin. By H. F. Berry. 1904. pp. 86. I plate. 8vo. is. 6d.

Dublin City Watercourse : An unpublished MS. Inquisition (A.D. 1258). By H. F. Berry. 1902. pp. 8. 8vo. 1 s.
Falkiner (C. L.): Phoenix Park, Dublin: its Origin and History. 1901. pp. 24. 8vo. 5s.

Falkiner (C. L.): The Irish Guards, $1661-1798$. 1902. pp. 23. Svo. is.
Falkiner (C. L.) : Commercial History of Dublin in the Eighteenth Century. 1903. pp. 30. 4 plates. 8vo. 6d.
Falkiner (C. L.): The Counties of Ireland: their Origin, Constitution, and Delimitation. 1903. pp. 26. 8vo. 2s. 1od.
Falkiner (C. L.): The Parliament of Ireland under the Iudor Sovereigns. 1905. pp. 34. Svo. 6d.
Falkiner (C. L.) : Barnaby Rich's "Remembrances of the state of Ireland, 1612," with notices of other Reports by the same writer. 1906. pp. 18. Sva. 6d.

Falkiver (C. L.) : The Hospital of St. John of Jerusalem in Ireland. 1907. pp. 43. 8vo. Is.

Fergeson (Sir S.): The Patrician Documeñts. 1885. pp. 68. 4 tu. 35.

Gilbert (Sir J. T.) : Irish Bibliography. Edited by E. R. M'C. Dix. I904. pp. 26. Plate and illustrations. 8vo. Is.
Green (TV. S.): Armada Ships on the Kerry Coast. 1909. pp. .-. I plate. 8vo. 6d.
Fxox H. I \therefore : Gis-miiis and Drying Kilns near Ballyhaunis, Co. Mayo. 1907. pp. 10. 8vo. 6 d.
 pp. 30. 8vo. 1s.6d.
Lamlifi if. J. : Primate L'ssher's Library before $16+1$. 1901. pp. 49. 8vo. 25.6 d.
Lawne. iI. I \therefore A Caicndar of the Liber Niger and Liber Albus of Christ Church, Dublin. 1908. pp. 93. 8vo. 2s.
 1908. pp. 50. 8vo. Is.
 1905. pp. 34. 8vo. 6d.
 By J. B. Bt'RY. 1903. pp. 1\%. 8vo. 6d.
 J. B. BLKY. 1903. pp. 64. 4to. 25.
 Pp. 68. 4to. 3 s.
 Evo. 25.
 pp. 18. 8vo. 6d.
 1901. pp. 24. 8vo. 5 s.
 from Cardinal Wolsey. 189\%. pp. 23. 8vo. 2s.
 PP. 49. 8vo. 2s. 6 d .
 MacGrath. 1903. pp. 60. 5 plates. 4to. 25. Iod.

 llritings. 1905. pp.11. 8vo. 6d.
 Librarian in Ireland. 1908. pp. 33. 8vo. 15.
WOOD (Herperi): The Templars in Ireland. 190\%. pp. 50. 8vo. 9d.

Sold by

Honges, Figcts, \& Co., Ltd., 104. Grafton-street, Dublin ; and Williass \& Norgate, 14. Henrietta-street, Covent Garded, Lundon, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 3

MARIO ESPOSITO

HIBERNO-LATIN MANUSCRIPTS IN THE
LIBRARIES OF SWITZERLAND

DUBLIN

HODGES, FIGGIS, \& CO., LTD. LONDON: WILLIAMS \& NORGATE
1910
Price One Shilling

PROCEEDINGS

OF THE

ROYAT, IRISH ACADEMY

In the year 1902 it was resolved to number in conseoutive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:-

CONSECUTIVE SERIFS. ORIGINAL NUMERATION.

\therefore coin 1. Mathematical, Astronmmical, and Plysical Science.
B. Biological, Geological, and Chemical Science.
". C. Archroolngy, Linguistic, and Literature.
XXV. (1904-5)

1) d.ざI. (1906-7)
,, XXVII. (1008-9)
, XXVIIL. (Current Volume)

In three Sections like Vol. XXIV.

ROYAL IRISH ACADEMY SOME RECENT PUBLICATIONs

HIstroity.

[Lists of Papers on other subjects-scientific, Ilterary, and archaological-may be obtained on appllcation.]

Atkinson (R.): On the Function of an Academy, in especial of the Royal Irish Academy. 19o6. pp. 11. 8vo. 6d.
Bernard (J. H.) : Uncial MS. of S. Cyril of Alexandria, written on Papyrus. 1892. pp. 20. 4 plates. 4 to. 6s.
Bernard (J. H.) : Calendar of Documents in the Dignitas Decani in St. Patrick's Cathedral, Dublin. 1905. pp. 27. 8vo. 6d.
Berry (H. F.): An unpublished MS. Inquisition (A.D. 1258), relating to the Dublin City Watercourse. 1902. pp. 8. 8vo. is.
Berry (H. F.): Gild of S. Anne, S. Audoen's Church, Dublin. 1904. pp .86 . I plate. 8 vo . is. 6 d .
Berry (H. F.): Ancient Charters in the Liber Albus Ossoriensis. 1908. pp. 11. 8vo. 6d.

Berry (H. F.): Catalogue of the Mayors, Provosts, and Bailiffs of Dublin City, A.D. 1229 to 1447. 1910. pp. 15. 8vo. 6d.
Bibliography, Irish. By Sir J. T. Gilbert. Edited by E. R. M'C. Dix. 1904. pp. 26. Plate and illustrations. 8vo. is.

Bury (J. B.) : A Life of S. Patrick (Colgan's Tertia Vita). 1903. pp. 64. 4to. 2 s .
BURy (J. B.): Itinerary of Patrick in Connaught according to tírechán. 1903. pp. 16. 8 vo. 6 d .

Dix (E. R. M ${ }^{\prime}$ C.), editor of Gilbert: Irish Bibliogtaphy. 1904. pp. 26. I plate. Illustrations. 8vo. is.
Dix (E. R. M ${ }^{\prime}$ C.) : A very rare Kilkenny-Printed Proclamation, and William Smith, its Printer. 1908. pp. 4. I plate. 8vo. Is.
Dix (E. R. M ${ }^{\prime}$ C.) : Humfrey Powell, the first Dublin Printer. 1908. pp. 4. 4 plates. 8vo. 1s.
Dix (E. R. M 'C.) : An Early Eighteenth-Century Broadside on Printing. 1909. pp. 3. I plate. 8ro. 6d.
$\operatorname{Dix}\left(E . R . M^{\prime} C.\right):$ Note upon the Leaves of the First Book printed in Dublin discovered in the Academy. 1909. pp. 3. 8vo. 6d.
Dublin: Commercial History of Dublin in the Eighteenth Century. By C. L. Falkiner. $1903 . \quad$ pp. 30. 4 plates. 8vo. 6d.

Dublin: Gild of S. Anne, S. Audoen's Church, Dublin. By H. F. Berry. 1904. pp. 86. I plate. 8vo. is. 6 d .

Dublin City Watercourse: An unpublished MS. Inquisition (A.D. 1258). By H. F. Berry. 1902. pp. 8. 8vo. is.
Esposito (M.): Hiberno-Latin Manuscripts in the Libraries of Switzerland. 1910. pp. 34. 8vo. Is.
Falkiner (C. L.): Phœenix Park, Dublin: its Origin and History. 1901. pp. 24. 8vo. 5s.

Falkiner (C. L.) : The Irish Guards, 166i-1798. 1902. pp. 23. 8 vo . is.
Falkiner (C. L.) : Commercial History of Dublin in the Eighteenth Century. 1903. pp. 30. 4 plates. 8vo. 6d.
Falkiner (C. L.): The Counties of Ireland: their Origin, Constitution, and Delimitation. 1903. pp. 26. 8 vo . 2s. 1od.
Falkiner (C. L.): The Parliament of Ireland under the Tudor Sovereigns. 1905. pp. 34. 8vo. 6d.

Falkiner (C. L.) : Barnaby Rich's " Remembrances of the state of Ireland, 1612 ," with notices of other Reports by the same writer. 1906. pp. 18. 8vo. od.

Falkiner (C. L.) : The Hospital of St. John of Jerusalem in Ireland. 1907. pp. 43. 8 vo . 1 s.

Ferglison (Sir S.): The Patrician Documents. 1885. pp. 68. 4 to. 3^{5}.
Gilbert (Sir J. T.) : Irish Bibliography. Edited by E. R. M‘C. Dix. 1904. pp. 26. Plate and illustrations. 8vo. 1s.

Green (IV. S.): Armada Ships on the Kerry Coast. 1909. pp. 7. s plate. 8vo. od.
Kwox (H. T.): Gig-mills and Drying Kilns near Ballyhaunis, Co. Mayo. 1907. pp. 10. 8vo. 6d.

Lane-Poole (S.): First M.hammedan Treaties with Christians. 1904. pp. 30. 8vo. 15.6d.
Lawlor(H. J.): Primate Ussher's Library before 1641. 1901. pp. 49. 8vo. 2s. 6d.
Lawlor (H. J.): A Calendar of the Liber Niger and Liber Albus of Christ Church, Dublin. 1908. pp. 93. 8vo. 2s.
Lawlor (H. J.) : Calendar of the I.iber Ruber of the Diocese of Ossory. 1908. pp. 50. 8vo. 1 s.

Parliament of Ircland under the 'Iudor Sovereigns. By C. L. Falkiner. 1905. pp. 34. 8vo. 6d.

Patrick: Itinerary of Patrick in Connaught according to Tírechán. By J. B. BC'kY. 1903. pp. 1\%. 8vo. 6d.
Patrick: A Life of St. Patrick (Colgan's Tertia L'ita). Edited by J. B. BCRY. 1903. pp. 64. 4to. 2 s.

Patrick: The Patrician Documents. By Sik S. Ferguson. 1885. pp. 68. 4to. 3^{s}.
Patrick: Libri Sancti Patricii. By N. J. D. White. 1905. pp. 126. 8vo. 2 s .
Patrick: 'The Paris Manuscrupt of St. Patrick's Latin Writings. 1995. pp. 11. 8vo. 6d.
Phoenix Park, Dublin: Its Origin and History, By C. L. Falkiner. 1901. Pp. 24. 8vo. 5 s.

Srokes ;G. T.): Marsh's Library, Dublin, and an Original Indulgence from Cardinal Wolsey. 189\%. pp. 13. 8vo. 2s.
Ussher's Bouks in Trinity Coliege, Dublin. By H. J. Lawlok. 1901. pp. 49. 8vo. 2s. 6d.
Westropp (T. J.): External Evidences bearing on the historic character of the "WFars of Turlough" by John, son of Rory MacGrath. 1903. pp. 60. 5 plates. 4to. 2s. 10d.
Whrre (N. J. D.): Libri Sancti Patricii. 1905. pp. 126. 8vo. 2 s.
White (N. J. D.): The Paris Manuscript of St. Patrick's Latin Writings. 1905. pp.11. 8vo. 6d.
White (N. J. D.): Elias Bouhéreau of La Rochelle, First Public Librarian in Ireland. 1908. pp. 33. 8vo. is.
Wood (Herberi): The Templars in Ireland. 1907. pp. 50. 8vo. gd.

Sold by

Holges, Figgis, \& Co., L.id., 104, Grafton-street, Nublin ; and Willlaas \& Norgaie, 14. Henrietta-street, Covent Garded, London, W.C.

PROCEEDINGS

OF THE:

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 4

GEORGE COFFEY

INTERCOURSE OF GAUL WITH IRELAND BEFORE THE FIRST CENTURY

DUBLIN

HODGES, FIGGIS, \& CO., LTD. LONDON: WILLIAMS \& NORGATE
1910
Price Sixpence

PROCEEDINGS

OF TBE

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:-

consecutive serifs. original numeration.

$$
\begin{aligned}
& \text { N:i.in 1. Matbomatical, A=tronomical, and Physical Science. } \\
& \text { B. Biological, Geslogical, and Cbemical Science. } \\
& \text { C. Archalogy, Linguistic, and Literature. }
\end{aligned}
$$

., $\operatorname{IXF} .(1904-5)$
, XXVI. (1906-7)
.. X.JTII. 1:ロー-.
,. XXVIII. (Current Volume)

In three Sections like Vol. XXIV.

ROYAL IRISII AOADEMY SOME RECFN'T PUBLICATIONA
 ARCRICOHAGV.

[Lists of Papers on other subjects-sclentific, IIterary, and archasological-may be obtained on application.]

Armstrong (E. C. R.): Stone Chalices, so called. 1907. pp. 10. ${ }^{1}$ plate. 8vo. 6d.
Armstrong (E. C. R.) : Prehistoric Leather Shield found at Clonbrin, County Longford. 1909. pp. 4. 2 plates. $8 v o .6 \mathrm{~d}$.
Coffey (G.) : Prehistoric Cemetery of Loughcrew. 1897. pp. 16. 6 plates. 4to. 2 s. 6 d .
Coffey (G.) : Monuments of La Tène Period in Ireland. 1904. pp. 10. 5 plates. 8vo. Is. 6 d.
Coffey (G.) : Excavation of a Tumulus near Loughrea, Ireland. 1 no4. pp. 7. 8vo. 6d.
Coffey (G.) : Craigywarren Crannog. 1906. pp. 10. 6 plates. 8vo. IS.
Coffey (G.) : Two Finds of Late Bronze Age Objects. 1906. pp. 6. 2 plates. 8vo. 6d.
$\operatorname{Coffey}(G):$. Irish Copper Halberds. 1908. pp. 19. 3 plates. 8vo. Is.
Coffey (G.) : The Distribution of Gold Tunulæ in Ireland and NorthWestern Europe. 1909. pp. 8. 4 plates. 8vo. is.
Coffey (G.) : Archaeological Evidence for the Intercourse of Gaul with Ireland before the First Century. 1910. pp. 11. 8vo. 6d.
Coffey (G.) and R. Isl. Praeger: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8vo. 2 s .
COOKE (JOHN): Antiquarian Remains in the Beaufort District, County Kerry. 1906. pp. 34. 4 plates. 8vo. Is.
Crosses: The High Crosses of Castledermot and Durrow. ByM. Siokes. 1898. pp. 26. 12 plates. Folio. $£ 1$ is. net.

Crosses: The High Crosses of Moone, Drumcliff, Termonfechin, and Killamery. By M. Stokes. 1902. pp. 38. 34 plates. 4 to. 105.6 d
Ferguson (Sir S.): Fasciculus of Prints from photographs of casts of Ogham Inscriptions. 1880 . pp. 10. 5 plates. 4to. 2 s.
Gold and Silver Ornaments, Ancient Irish, Composition of. By E. A. Smith. 1895. pp. 14. 8vo. 2s. 6d.
Graves (C.): Ogham Inscription in the Killeen of Aglish, Co. Kerry, Ireland. $1878 . \mathrm{pp}$. io. i plate. 4 to. is.
Graves (C.) : Croix Gammé or Siwastika. 1879. pp. 6. 4to. 1s.
Graves (C.) : Ogham Monument at Kilcolman, Co. Kerty, Ireland. 1887. pp. 8. 4to. Is.

Graves (C.): Ogham Inscription supposed to bear an Anglo-Saxon Name. 1892. pp. 12. 4to. Is.
Hadnon (A.C.) : Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. 1897. pp. 79. 8vo. 2s.

Kane (W. F. de Vismes): The Black Pig's Dyke: the Ancient Boundary Fortification of Uladh. 1909. pp. 28. 8vo. Is.
Knowles (W. J.): Prehistoric Remains from the Sandhills of Ireland. (3rd Report.) 1895. pp. 14. 3 plates. 8vo. 3 s
KNowles (W. J.): Prehistoric Remains from the Sandhills of Ireland. (4th Report.) 1901. pp. 59. I plate. 8vo. 5s.
Macalister (R. A. S.): Ancient Settlement in Corkaguney, Co. Kerry, Ireland. 1899. Pp. 137. 9 plates. 4to. 6s.
MacNeill (J.) : Notes ou the Distribution, History, Grammar, and Import of the Irish Ogham Inscriptions. 1909. 8vo. Pp. 42. 1s.
Milesian Colonization of Ireland in relation to Gold-mining. 1900. pp. 43. 8vo. 4s.

Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. By A. C. Haddon. 1897. pp. 79. 8vo. 2s.
O'Reilly (J. P.) : The Milesian Colonization of Ireland in relation to Gold-mining. 1900. pp. 43 . 8 vo .4 s .
O'Reilly (J. P.) : Old Churches of Kill-o'-the-Grange, Killiney, and St. Nessan, Howth. 1904. pp. 10. 1 plate. 8vo. 6d.
Praeger (R. Ll.) and G. Coffey: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8vo. 2 s.
Prehistoric Cemetery of Loughcrew. By G. Coffey. 1897. pp. 16. 6 plates. 4to. 2 s. 6 d.
Prehistoric Remains from the Sandhills of the Coast of Ireland. By IV. J. Knowles. (3rd Report.) 1895. pp. 14. 3 plates. 8vo. 35.

Prehistoric Remains from the Sandhills of Ireland. (4th Report.) By W. J. Knowles. 1901. pp. 59. I plate. 8vo. 5 s.

Reeves (IV.): Bell of St. Patrick, called the Clog an Edachta. 1863. pp. 30. 4to. 1 s.
Smury (E. A.): Composition of Ancient Irish Gold and Silver Ornaments. 1895. pp. 14. 8vo. 2s. 6d.
Smyly (J. G.) : An Examination of the Dates of the Assouan Aramaic Papyri. 1909. pp. 16. 8vo. 1,i.
shat \therefore : : High Crowes of Castledermot and Durrow. 1898. pp. 26. 12 plates. Folio. $f 1$ s. net.
Stokes (M.): High Crosses of Moone, Drumcliff, Termonfechin, and killamery. 1902. pp. 38 . 34 plates. 4to. 10s. 6 d.
Westropp (T. J.) : Lesser Castles or "Peel Towers" of the County of Clare. 1899. pp. 18. 8vo. 3s. 6d.
Westmopp (T. J.): Churches of County Clare, and Origin of the Ecctesiastical Divisions in that County. 1900. pp. 8r. 8vo. 4 s.
Westropp (T. J.): Dolmens and Pillar-stones in Bunratty and Tulla, Co. Clare, Ireland. 1902. pp. 48. 4 plates. 8vo. 3 s.
Westropp (T. J.): Ancient Forts of Ircland. 1902. pp. 151. 8 plates. 4to. js. 6d.
Westropp (T. J.): The Ancient Forts of Ireland. 1904. pp. 10. 8vo. 6d.
Wespropp (T. J.): A Survey of the Ancient Churches in the County of Limerick. 1905. Pp. 154. 9 plates. 8vo. 45.
Westropp (T. J.): The Ancient Castles of the County of Limerick: North-Eastern Baronies. 1906. pp. 54. 8vo. 8s. Central and South-Eastern Baronies. 1906. pp. 58. 3 plates. 8vo. 8s. 6d. W'estern Baronies. 1907. pp. 69.3 plates. 8 vo . 1s. 6 d.
 Haif of the County of Clare. 1907. pp. 26. 3 plates. 8vo. 15.
Wesikopp (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (The Newmarket Group). 1908. pp. 18. 2 plates. 8vo. is.
Weargopp (T. J.): The Furests of the Counties of the Lower Shannon Valley: 1909. pp. 38. 8vo. 6d.
Wrsikopp (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (Quin, Tulla, and Bodyke). 1909. Tp. 30. 1 plate. 8 vo. 1 s.
Westropp (T. J.) : A Study of the Fort of Dun Aengusa in Inishmore, Aran Isles, Galway Bay: Its Plan, Growth, and Records. 1910. pr. 46. 3 plates. 8 vo .1 s .6 d .

> Suld by

Honges, Figgis, \& CU., LiD., 104, Grafton-street, Dublin ; and Williasis \& Nurgaie, 84. Hentietta-strect, Covent Garden, T.ondon, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 5

George Coffey and E. C. R. Armstrong

SCANDINAVIAN OBJECTS FOUND AT ISLAND-BRIDGE AND KILMAINHAM

DUBLIN

HODGES, FIGGIS, \& CO., LTD.
LONDON : WILLIAMS \& NORGATE

$$
1910
$$

PROCEEDINGS

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in conseoutive order the Volumes of the PROCEEDINGS of the Academy，and consequently attention is requested to the following Table：－

CONSECUTIVE SERIES．ORIGINLL NUMERATION．

Voltare 1．（1m36－1410）is Vorimas I．1st Sor．Sci．，Pol．Lit．\＆Antiqg．

．，	II．（1810－1N＋1）．，	－	II．	，	＂
＂	III．（1816－1847），	＂	III．	＂	＂
．	IV．（1ヶ17 14．50）．	＇	IV．	．	＂
＂	V．（1850－1858）－8	＂	∇ ．	＇	
＂	VI．（1858－1857）	＂	VI．	＂	，
＂	VII．$(1857-1861)_{11}$	＂	VII．	11	＂
＂	VIII．1861－186t1．1	＂	VIII．	＂	＂
．．		，	IX．	\cdots	＂
＂	X．（1866－1869）	＂	X．	＂	＂
\because	XI．$(1870-1874)_{2}$	＂		2nd Ser．	Science．
，	SII．（1875－1877）	＂	II．	＂	＂
，	SIII．（1888）	＂	III．	＂	＂
＂	XIV．$(1884-1888)$	＂	IV．	＂	＂
＇	XV．（1870－1879）	＂	I．	11	Pol．Lit．\＆Autigg．
＂	XVI．（1879－1888）	＂	11.	＂	＂
＇	XVII．$(1688-1891)$ \％	＂		8rd Sor．	Sci．，Pol．Lit．\＆Antigq．
，	ジUUI．（1891－1898）	11	II．	＂	＂
＂	XIX．（1898－1896），	＂	III．	＇	＂
，	XX．${ }^{(1896-1898)}$ \％	＂	IV．	＂	＂
${ }^{\prime \prime}$	XII．$(1898-1900)$	＂	V ．	＂	＂
＂	XXIL．（1900－1902）	＂	VI．	＂	＂
11	SXIM．（1901）＂	，	VII．	＂	＂
	XXIV．（1902－1904）：－				

Section A．Matbematical，Astronomical，and Physical Science．
＂．B．Biological，Geological，and Chemical Science．
C．Archaology，Linguistic，and Literature．
＂XXV．（1904－5）
，XXVI．（1006－7）
，XXVII．（1908－3）
，，XXVIII．（Current Volume）

In three Sections like Fol．XXIV．

ROYAL IRISH ACADEMY SOME RECEN'I PUBLICATIONS
 IRCHEOLAOGY.

[Lists of Papers on other subjects-scient/fic, Hiterary, and archæological-may be obtained on application.]

Arastrong (E. C. R.): Stone Clialices, so called. 190\%. pp. 10. I plate. 8vo. 6d.
ARMSTRONG (E. C. R.) : Prehistoric Leather Shield found at Clonbrin, County Longford. 1909. pp. 4. 2 plates. 8vo. 6 i.
Coffey (G.) : Prehistoric Cemetery of Loughcrew. 1897. pp. 16. 6 plates. 4to. 2 s .6 d .
Coffey (G.): Monuments of La Tène Period in Ireland. 190.f. pp. Io. 5 plates. 8 vo .15 .6 d.
Coffey (G.) : Excavation of a Tumulus near Loughrea, Ireland. 1904. pp. 7. 8vo. 6d.
Coffey (G.) : Craigywarren Crannog. 1906. pp. Io. 6 plates. 8vo. IS.
Coffey (G.): Two Finds of Late Bronze Age Objects. 1906. pp. 6. 2 plates. 8vo. 6d.
Coffey (G.): Irish Copper Halberds. 1908. pp. Ig. 3 plates. 8vo. 15.

Coffey (G.) : The Distribution of Gold Iunulæ in Ireland and NorthWestern Europe. 1909. pp. 8. 4 plates. 8vo. 1 s.
Coffey (G.) : Archaeological Evidence for the Intercourse of Gaul with Ireland before the First Century. 19ro. pp. It. 8vo. 6d.
Coffey (G.) and R. Ll. Praeger: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8vo. 2 s.
Coffey (G.) and E. C. R. Arustrong: Scandinavian Objects found at Island-Bridge and Kilmainham. 1910. pp. 16. I plate. 8ro. is.
Cooke (JOHN) : Antiquarian Remains in the Beaufort District, County Kerry. rgo6. pp. 14. 4 plates. 8vo. is.
Crosses: The High Crosses of Castledermot and Durrow. By M. Stokes. 1898. pp. 26. 12 plates. Folio. fir is. net.

Crosses: The High Crosses of Moone, Drumcliff, Termonfechin, and Killamery. By M. Srokfs. 1902. pp. 34. itplates. !t.. in. od.
Ferguson (SIR S.): Fasciculus of Prints from photographs of casts of Ogham Inscriptions. 1880. pp. 10. 5 plates. 4to. 2 s.
Gold and Silver Ornaments, Aucient Irish, Composition of. By E. A. SMITH. 1895. pp. 14. 8vo. 2s. 6d.
Graves (C.): Ogham Inscription in the Killeen of Aglish, Co. Kerry, Ireland. 1878. pp. 10, 1 plate. 4 to. 15.
Graves (C.): Croix Gammée or Swastika. 1879. pp.6. 4to. Is.
Graves (C.) : Ogham Nonument at Kilcolman, Co. Kerry, Ireland. 1887. pp. 8. 4to. is.

Graves (C.): Ogham Inscription supposed to bear an Anglo-Saxon Name. I892, pp. 12. 4to. Is.
Haddon(A.C.): Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. 1897. pp. 79. 8vo. 2s.

Kane (IV. F. De Visses): The Black Pig's Dyke: the Ancient Boundary Fortification of Uladh. 190g. pp. 28. 8vo. Is.
Kyowles (IV. J.): Prehistoric Remains from the Sandhills of Ireland. (3rd Report.) 1895. pp. 14. 3 plates. 8vo. 3 s
Knowles (IV. J.): Prehistoric Remains from the Sandhills of Ireland. (4th Report.) 1gor. pp. 59. I plate. 8vo. 5 s.
MaCalister (R. A. S.): Ancient Settement in Corkagumey, Co. Kerry, Ireland. 1899. pp. 137.9 plates. 4 to. 6 s.
MacNeill (J.) : Notes on the Distribution, History, Grammar, and Import of the Irish Ogham Inscriptions. 1gog. 8vo. pp. 42. Is.
Milesian Colonization of Ireland in relation to Gold-mining. 1900. pp. 43. 8vo. 4s.

Neolithic-Cist Burial at Oldbridge, Co. Meath, Ireland. By A. C. HADDON. 189\%. pp. 79. 8vo. 25.
O'ReIlly (J. P.) : The Milesian Colonization of Ireland in relation to Gold-mining. 1900. pp. 43. 8vo. 4s.
O'Reilly (J. P.) : Old Churches of Kill-o'-the-Grange, Killiney, and St. Nessan, Howth. 1904. pp. 10. I plate. 8vo. 6d.
Praeger (R. Ll.) and G. Coffey: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8vo. 2 s.
Prehistoric Cemetery of Loughcrew. By G. COFFEY. 1897. pp. I6. 6 plates. 4to. 2s. 6 d .
Prehistoric Remains from the Sandhills of the Coast of Ireland. By W. J. KNowles. (3rd Report.) 1895. pp. 14.3 plates. 8vo. 3s.

Prehistoric Remains from the Sandhills of Ireland. (4th Report.) By W. J. KNowles. 1901. pp. 59. 1 plate. 8vo. 5 s.

Reeves (11.): Bell of St. Patrick, called the Clog an Edachta. 1863. PP. 30. 4to. Is.
Sm1/H (E.A.): Composition of Ancient Irish Gold and Silver Ornaments. 1895. PP. 14. 8vo. 2s.6d.
SMris (J. G.) : An Examination of the Dates of the Assouan Aramaic Papyri. 1909. pp. 16. 8vo. il.
Stokes (M.): High Crosses of Castledermot and Durrow. 1898. pp. 20. 12 plates. Folio. fi 1 s. net.
Siokes (M.): High Crosses of Moone, Drumcliff, Termonfechin, and Killatnery. 1002. pp. 38. 34 plates. 4to. 10 s .6 d.
W"estropp (T. I.) : Lesser Castles or "Peel Towers" of the County of Clare. 1899. pp. 18. 8vo. 3s.6d.
NEESTKUPP ('l. . .): Churches of County Clare, and Origin of the Ecclesiastical Divisions in that County. 1900. pp. 81. 8vo. 4 s .
Westropp (T.]): Dolmens and Pillar-stones in Bunratty and Tulla, Co. Clare, lreland. 190z. pp. 48. 4 plates. 8vo. 3s.
Westropp (T. J.): Ancient Forts of Ireland. 1902. pp. 151. 8 plates. \$10. 7 s .6 d.
Westropp (I. J.): The Ancient Forts of Ireland. 1904. pp.10. 8vo. 6d.
Westropp (T. J.): A Survey of the Ancient Churches in the County of Limerick. 1905. [p. 154. 9 plates. 8vo. 4 s.
Westropp (T. J.): The Ancient Castles of the County of Limerick: North-Eiastern Baronies. 1906. pp. 54. 8vo. is. Central and South-Eastern Baronies. 1906. PP. 58. 3 plates. 8vo. 15. 6d. ilestern Barunies. 190\%. pp. 64. 3 plates. 8vo. 1s. 6d.
Whestropp (T. J.): The Cists, Dolmens, and Pillars of the Western Half of the County of Clare. 190% pp. 26. 3 plates. 8vo. is.
Westropl (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (The Newmarket Group). 1908. pp. 18. a plates. 8vo. is.
WESt ROPP (T.J.): The Forests of the Counties of the Lower Shannon Valley. 1909. pp. 31. 8vo. , ?
Wiesthoir (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (Quin, Iulla, and Bodyke). 1909. Pp. 30. I plate. 8ro. 15.
 Aran Isles, Galway Bay: Its Plan, Growth, and Records. 1910. pp. 46. 3 plates. 8vo. 1 s .6 d.

Sold by
HODGES, Eiggis, \& Co., Litd., 104, Grafton-street, Dublin; and W"inliams \& Nokgate, 14, Henrietta-street, Covent Garden, I.onton, W゙.C.

PROCEEDINGS

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 6

JOHN MACNEILL

AN IRISH HISTORICAL TRACT DATED

DUBLIN

HODGES, FIGGIS, \& CO., LTD. london: williams \& NORGATE

1910
Price One Shilling

PROCEEDINGS

or ter

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:-

CONSECUTIVE SERIES. ORIGINAL NUMERATION.

Voltage I. (1896-1840) is Voluare I. 1st Ser. Sci., Pol.Lit.\&Antiqq.
,
H. (1810-1814) ! \quad H. \quad,
.. III. (1845-1847) ,. ., III. .. "
" IV. (1847-1850) ., " IV. . "
.. V. (1850-1858) .. ., V. ,"
" VI. (1858-1857) ., ", VI. "
,. VII. (1857-1861) ,. ., VII. ",
" VIII. (1861-1864) , ", VIII. ".
" I.. (186t-1Ntiki), .. IX. .. "
" X.(1866-1869) .. . X. ., ",
" XI. (1870-1874) ., \quad I. 2nd Ser. Science.
,. XII. (2875-1877) ". II. ",
" XIII. (1888) " ." III. " "
" XIV. (1884-1888) ,. " IV. " "
" XV.(1870-1879) ., \quad. \quad Pol. Lit. \& Antiqq.
" XVI. (1879-1888) II. ." "
" XTII. (1888-1891) $n \quad . \quad$ I. 8rd Ser. Sci., Pol. Lit.\&Antiqq.
" SVIII. (1891-1898) ,n .o II. "
" XIX. (1898-1896) .. " III. " "
, XX.(1896-1898) ,, . IV. .,
" XXI. (1898-1900) ". V V. "
" XXII. (1900-1902) ", VI. " "
". XXIII. (1001) " . VII. "
1, XXIV.(1902-1901):-
Section A. Mathematical, Astronomical, and Pbysical Science.
. B. Biological, Geological, and Chemical Science.
,1. O. Arohæology, Linguistic, and Literature.
" IXV. (1904-5)
, XXV゙I. (1906-7)
, XXVII. (1908-9)
,, XXVIII. (Current Volume)

ROYAL 1 RISH ACADEMY. SOME RECENT PUBLICATIONS.
 MISTOTE.

[Lists of Papers on other subjects-scientiflc, Itterary, and archæological-may be obtained on application.]

Atkinson (R.) : On the Function of an Academy, in especial of the Royal Irish Academy. 1906. pp. 11. 8vo. 6d.
Bernard (J. H.) : Uncial MS. of S. Cycil of Alexandria, written on Papyrus. 1892. pp. 20. 4 plates. 4to. 6s.
Bernard (J. H.) : Calendar of Documents in the Dignitas Decani in St. Patrick's Cathedral, Dublin. 1905، pp. 27. 8vo. 6d.
Berry (H. F.): An unpublished MS. Inquisition (A.D. 1258), relating to the Dublin City Watercourse. 1go2. pp. 8. 8vo. 1s.
Berry (H. F.): Gild of S. Anne, S. Audoen's Church, Dublị̣. 1904. pp. 86. I plate. 8vo. Is. 6d.
Berry (H. F.): Ancient Charters in the Liber Albus Ossoriensis. 1908. pp. II. 8vo. 6d.

Berry (H. F.): Catalogue of the Mayors, Provosts, and Bailiffs of Dublin City, A.D. 1229 to 1447. 1910. pp. 15. 8vo. 6 d.
Bibliography, Irish. By Sir J. T. Gilbert. Edited by E. R. M'C. Dix. 1904. pp. 26. Plate and illustrations. 8vo. 1s.

Bury (J. B.): A Life of S. Patrick (Colgan's Tertia Vita). 1903 pp. 64. 4to. 25.
BURy (J. B.) : Itinerary of Patrick in Connaught according to Tírechán. 1903. pp. 16. 8vo. 6d.

Dix (E. R. M'C.), editor of Gilbert: Irish Bibliography. 1904. pp. 26. I plate. Illustrations. 8vo. Is.
Drx (E. R. M'C.) : A very rare Kilkenny-Printed Proclamation, and William Smith, its Printer. 1908. pp. 4. I plate. 8vo. Is.
Dix (E. R. M ${ }^{\wedge}$ C.) : Humfrey Powell, the first Dublin Printer. 1908. pp. 4. 4 plates. 8vo. is.
DIX (E. R. M ${ }^{\text {'C. }}$) : An Early Eighteenth-Century Broadside on Printing. 1909. pp. 3. 1 plate. 8vo. 6d.

Dix ($\left.E, R . M^{\prime} \mathrm{C}.\right)$: Note upon the Leaves of the First Book printed in Dublin discovered in the Academy. 1909. pp. 3. 8vo. 6 d.
Dublin: Commercial History of Dublin in the Eighteenth Century. By C. L. Falkiner. 1903. pp. 30. 4 plates. 8vo. 6d.

Dublin: Gild of S. Anne, S. Audoen's Church, Dublin. By H. F. Berry. 1904. pp. 86. I plate. 8vo. 1s. 6d.

Dublin City Watercourse: An unpublished MS. Inquisition (A.D. 1258). By H. F. Berry. 1902. pp. 8. 8vo. is.
Esposito (M.): Hiberno-Latin Manuscripts in the Libraries of Switzerland. 1910. pp. 34. 8vo. is.
Falkiner (C. L.): Phœenix Park, Dublin: its Origin and History. 1901. pp. 24. 8vo. 5 s.

Falkiner (C. L.): The Irish Guards, 1661-1798. 1902. pp. 23. 8vo. Is.
Falkiner (C. L.) : Commercial History of Dublin in the Eighteenth Century. 1903. pp. 30. 4 plates. 8vo. 6d.
Falkiner (C. L.): The Counties of Ireland: their Origin, Constitution, and Delimitation. 1903. pp. 26. 8vo. 2s. 10 d .
Falkiner (C. L.): The Parliament of Ireland under the Tudor Sovereigns. 1905. pp. 34. 8vo. 6d.

Falkiser (C. L.) : Bamaby Rich's "Remembrances of the state of Ireland, 16 I 2 ," with notices of other Reports by the same writer. 1906. pp. I8. 8vo. 6d.

Falkiner (C. L.): The Hospital of St. John of Jerusalem in Ireland. 190\%. pp. 43. 8vo. 1s.
Fergcison (Sir S.): The Patrician Documents. 1885. pp. 68. 4to 3s.
Gilbert (Sir J. T.) : Irish Bibliography. Edited by E. R. M'C. DrX. 1go4. pp. 26. Plate and illustrations. 8vo. Is.
Green (IV. S.): Armada Ships on the Kery Coast. 1909. pp. \%. 1 plate. 8vo. 6d.
Kwox , H. T. : Gig-mills anc Drying Kilns near Ballyhaunis, Co. Mayo. 1907. pp. 10. 8vo. 6d.

Lave-POOLE (S.): First Mohammedan Ireaties with Christians. 1904. pp. 30. 8vo. 1s. 6d.
LAWIOR(H. J.): Primate Ussher's Library before 1641. 1901. pp. 49. 8vo. 2s. 6d.
Lamzor (E. J.): A Calendar of the Liber Niger and Liber Albus of Christ Church, Dublin. 1908. pp. 93. 8vo. 2s.
Latrior (H. J.): Calendar of the Liber Ruber of the Diocese of Ossory. 1908. pp. 50. 8vo. Is.

Mac Neill (JohN): An Irish Historical Iract dated A.D. 721. 1970. pp. 26. Svo. 3 s .
Parliament of Ireland under the Tudor Sovereigns. By C. L. Falkiner. 1905. pp. 34. 8vo. 6d.

Patrick : Itinerary of Patrick in Connaught according to Tirechan. By. J. B. Béky. 1903. pp. 17. 8vo. 6d.
Patrick: A Life of St. Patrick (Colgan's Tertia Vita). Edited by J. B. BURy. 1903. Pp. 64. 4to. 2 s.

Patrick: The Patrician Documents. By Sir S. EERGUSON. 188.. Pp. 68. 4to. 35.
Patrick: Libri Sancti Patricii. By N. J. D. WNH1TE. 1905. pp. 126. Evo. 2 s .
Patrick: The Paris Manuscript of St. Patrick's Latin Writings. 1905. pp. 11. 8ro. 6d.
Phanix Park, Dublin: Its Origin and History. By C. L. Falkinek. 1901. pp. 24. 8vo. 5s.

Stokes (G. T.): Marsh's Library', Dublin, and an Original Indulgence from Cardinal Wolsey. 189%. pp. 13. 8vo. 25.
U'ssher's Books in Trinity College, Dublin. By H. J. Lawlor. 1901. pp. 49. 8vo. 2s. 6d.
Westropp (T. J.): Extemal Evidences bearing on the historic character of the "W"ars of Turlough" by Jobn, son of Rory NacGrath. 1903. pp. 60. 5 plates. 4to. 25. 10d.
WRate (N.J. D.): Libri Sancti Patricii. 1905. pp. 126. 8vo. 2s.
WHile (N. J. D.): The Paris Manuscript of St. Patrick's Latin Writings. 1905. pp. 11. 8vo. 6d.
Vihrte (N. J. D.): Elias Bouhereau of La Rochelle, First Public Librarian in Ireland. 1908. pp. 33. 8vo. 1 s.
WOOD (HERBERT): The Templars in Ireland. 190\%. pp. 50. 8vo. gd.

Sold by

Hodges, Figgis, \& CO., LTD., 104, Grafion-street, Dublin ; and Willians \& Nookgate, 14, Henrietta-street, Covent Garden, London, Wi.C.

PROCEEDINGS

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, Nos. 7, 8, 9, 10

E. R. McC. DIX
VII.-Earliest Printing in Dubiin in Foreign Types.
VIII.-William Kearney, the second earliest known Printer in Dublin.

R. J. MOSS

IX,-Chemical Notes on a Stone Lanp from Ballybetagh.
H. F. BERRY
X.-The Custom called Tolboll, 1308 and 1385.

DUBLIN

HODGES, FIGGIS, \& C'O., Litd.
LONDON: WILLIAMS \& NORGATE
1910
Price Sixpence

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and oonsequently attention is requested to the following Table:-

CONSECUTIVE SERIES. ORIGINAL NUMERATION.

```
Voloars I. (1836-1840) is Volume I. 1st Ser. Sci., Pol.Lit.\&Antiqq.
"II. (1840-1844) " " II. "
" III. (1845-1847) n " III. " "
" IV. (1847-1850) ., " IV. ., "
" V. (1850-1858) " " V. "
.. VI. (1858-1857) ,. ., VI
" VII. (1857-1861) " "VII. " "
" VIII. (1861-1864)," "VIII. " "
" IX. (186t-1866) ." " IX. .. "
```



```
" XII (1875-1877)
        XII. (2875-1877) , , II
    XIII. (1888) " " III
        XIV.(1884-1888),, ", IV
        XV. (1870-1879) ",\(\quad\) I. ., Pol. Lit. \& Antiqq.
        XVI. (1879-1888)
    XVII. (1888-1891) " " I. 8rd Ser. Bci., Pol.Lit. \& Antiqq.
    XVIII. (1891-1898) ," \(\quad\) II
        XIX. (1893-1896) " ", III. ",
        XX. (1806-1898)
        XXI. (1898-1900) , , V. .,
    XXII. (1900-1902) , " VI. ,
    XXIII. (1901) " "VII. ,"
    " XXIV.(1002-1904):-
        Section A. Mathematical, Astronomical, and Physical Science.
            ". B. Biological, Geological, and Ohemical Science.
            " C. Arohæology, Linguistic, and Literature.
., XXV. (1904-5)
, XXVI. (1906-7)
," XXVII. (1908-9)
, , XXVIII. (Current Volume)
In three Sections like Vol. XXIV.
```


ROYAL IRISII ACAIEMY.
 SOME RECENT PUBLICATIONS.
 HISTOIRY.

[Lists of Papers on other subjects-scientific, literary, and archzological-may be obtalned on application.]

Atrinson (R.): On the Function of an Academy, in especial of the Royal Irish Academy. 1906. pp. II. 8vo. 6d.
Bernard (J. H.) : Uncial MS. of S. Cyril of Alexandria, written on Papyrus. 1892. pp. 20. 4 plates. 4 to. 6s.
Bernard (J. H.) : Calendar of Documents in the Dignitas Decani in St. Patrick's Cathedral, Dublin. 1905. pp. 27. 8vo. 6d.
Berry (H. F.): An unpublished MS. Inquisition (A.D. 1258), relating to the Dublin City Watercourse. 1902. pp. 8. 8vo. Is.
Berry (H. F.): Gild of S. Anne, S. Audoen's Church, Dublin. 1904. pp. 86. I plate, 8 vo . is. 6d.
Berry (H. F.): Ancient Charters in the Liber Albus Ossoriensis. 1908. pp. 11. 8vo. 6d.

Berry (H. F.): Catalogue of the Mayors, Provosts, and Bailiffs of Dublin City, A.D. 1229 to 1447. 1910. pp. 15. 8vo. 6d.
Berry (H. F.): Proceedings in the matter of the Custom called Tolboll, I308 and 1385. St. Thomas' Abbey v. some early Dublin Brewers, \&c. igio. pp. 5. 8vo. 6d.
Bury (J. B.) : A Life of S. Patrick (Colgan's Tertia Vita). 1903 pp. 64. 4to. 25.
Bury (J. B.): Itinerary of Patrick in Connaught according to TÍrechán. 1903. pp. 16. 8vo. 6d.

Dix (E. R. M'C.), editor of Gilbert: Irish Bibliography. 1904. pp. 26. I plate. Illustrations. 8 vo . is.
Dix (E. R. M'C.) : A very rare Kilkenny-Printed Proclamation, and William Smith, its Printer. 1908. pp. 4. I plate. 8vo. Is.
Dix (E. R. M'C.): Humfrey Powell, the first Dublin Printer. 1908. pp. 4. 4 plates. 8vo. Is.
DIx (E. R. M‘C.) : An Early Eighteenth-Century Broadside on Printing. 1909. pp. 3. I plate. 8vo. 6d.

Dix (E. R. M'C.) : Note upon the Leaves of the First Book printed in Dublin discovered in the Academy. 1909. pp. 3. 8vo. 6d.
Dix (E.R. M'C.) : The Earliest Printing in Dublin, in the Irish, Latin, Greek, Hebrew, French, Italian, Saxon, Welsh, Syriac, Armenian, and Arabic Languages. 1910. pp. 8. 8vo. 6d.
$\operatorname{DIX}\left(E . R . M^{\prime} \mathrm{C}\right.$.) : William Kearney, the second earliest known Printer in Dublin. 1910. pp. 5. 8vo. 6d.
Dublin : Commercial History of Dublin in the Eighteenth Century. By C. L. Falkiner. 1903. pp. 30. 4 plates. 8vo. 6d.

Dublin City Watercourse: An unpublished MS. Inquisition (A.D. 1258). By H. F. Berry. 1902. pp. 8. 8vo. 1s.
Esposito (M.): Hiberno-Latin Manuscripts in the Libraries of Switzerland. 1910. pp. 34. 8vo. 1s.
Falkiner (C. L.): Phœenix Park, Dublin: its Origin and History. 1901. pp. 24. 8vo. 5s.

Falkiner (C. L.): The Irish Guards, 1661-1798. 1902. pp. 23. 8vo. Is.
Falkiner (C. L.) : Commercial History of Dublin in the Eighteenth Century. 1903. pp. 30. 4 plates. 8vo. 6d.
Falkiner (C. L.): The Counties of Ireland: their Origin, Constitution, and Delimitation. 1903. pp. 26. 8vo. 25. 1od.

Falkiner (C. L.): The Parliament of Ireland under the Tudor Sovereigns. 1905. pp. 34. 8vo. 6d.
FALKiNER (C. L.) : Barnaby Rich's "Remembrances of the state of Ireland, I612," with notices of other Reports by the same writer. 1906. pp. 18. 8vo. od.

Falkiner (C. L.): The Hospital of St. John of Jerusalem in Ireland. 1907. pp. 43. 8vo. 1 s.

Fergtison (Sir S.) : The Patrician Documents. 1885. pp. 68. 4to 35.

GILbert (Sir J. T.) : Irish Bibliography. Edited by E. R. M'C. DIX. 1904. pp. 26. Plate and illustrations. 8vo. Is.

Grees (IV. S.): Armada Ships on the Kerry Coast. 1909. pp. 7. I plate. 8vo. od.
Ksox (H. T.): Gig-mills and Drying Kilns near Ballyhaunis, Co. Mayo. 1907. Pp. 10. 8vo. 6d.

LASE-POOLE (S.): First Mohammedan Treaties with Christians. 1904. pp. 30. 8vo. Is. 6d.
Lawlon (H. J.) : Primate Ussher's Library before 1641. 1901. pp. 49. svo. 25. id.
Lawlok (1. J.): A Calendar of the Liber Niger and Liber Albus of Christ Church, Dublin. 1908. pp. 93. 8vo. 2s.
Lawlog (H. J.): Calendar of the Liber Ruber of the Diocese of Ossory. 1908. PP. 50. 8vo. is.

Mac Neill (JOHN) : An Irish Historical Tract dated A.D. 721. Igio. pp. 26. 8vo. 15.
Patrick: Itinerary of Patrick in Connaught according to Tfrechán. By J. B. BL゙ky. 1903. pp. 17. 8vo. 6d.
Patrick: A Iife of St. Patrick (Colgan's Terfia Fita). Edited by J. B. Bl'Ry. 1903. pp. 64. 4to. 25.

Patrick: Libri Sancti Patricii. By N. J. D. Wihite. 1905. pp. 126. Evo. 2 s
Patrick: The Paris Manuscript of St. Patrick's Latin Writings. 1905. fp. 18. 8vo. 6d.
Stokes (G.T.): Marsh's Library, Dublin, and an Original Indulgence from Cardinal IVolsey. 1897. Pp. 13. 8vo. 2s.
Ussher's Bouks in Trinity Coliege, Dublin. By H. J. Lawlor. 190r. RP. 49. 8vo. 2s. 6d.
Westhorp (T. J.): External Evidences bearing on the historic character of the "Wars of Turlough" by John, son of Rory MacGrath. 8903. pp. 60. Splates. 4to. 25. Iod.
White (N゙. J. D.): Libri Sancti Patricii. 1905. pp. 126. 8vo. 2s.
White (N.. J. 1).): The Paris Manuscript of St. Patrick's Latin Writings. 1905. pp. 81. 8vo. 6d.
White (N. J. D.): Elias Bouhéreau of La Rochelle, First Public Librarian in Ireland. 1908. Pp. 33. 8vo. Is.
WOOD (HERRERT): The Templars in Ireland. 890\%. pp. 50. 8vo. gd.

Sold by

Honges, Eiggis, \& Co., Ltd,, 104 , Grafton-street, Dublin; and Wiilliars \& Norgate, 14, Henrietta-street, Covent Garden, London, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 11

THOMAS JOHNSON WESTROPP

EARLY FORTS AND STONE HUTS IN INISHMORE, ARAN ISLES, GALWAY BAY

DUBLIN

HODGES FIGGIS \& CO., LTr. LONIDON: WILIIAMS \& NORGATE

1910
Price One Shilling

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and consequently attention is requested to the following Table:-

CONSECUTIVE SERIES. ORIGINAL NUMERATION.
Voluyr I. (1896-1840) is Voluys I. 1st Ser. Soi., Pol.Lit.\& Antiqq.
II. (1840-1844) ., "II.
III. (1845-1847) , . III. ."
IV. (1847-1850) ., ,. IV. .,
V. (1850-1853) ॥ ॥. ..
VI. (1858-1857) , ॥ VI.
VII. (1857-1861)," , VII. ",
VIII. (1861-1864), "VIII. .
IX. (1864-1866) , " IX. .. "
X. (1866-1869) , , X. ",
XI. (1870-1874) ., \quad I. 2nd Ser. Soience.
XII. (1875-1877) " \quad II.
XIII. 1488, .. ., III. ., "
" XIV. (1884-1888) ." " IV. ." "
" XV.(1870-1879) " \quad I. . Pol. Lit. \& Autiqq.
., XVI.(1879-1888) ., ., II. ..
" XVII. (1888-1891), ,. I. Brd Ser. Sci., Pol. Lit. \& Antiqq.
,, XVIII. (18.31-1893), ., II.
" XIX.(1898-1896) ., " III. ." "
, XX.(1896-1898,.. .. IV. .. ."
" XXI. (1898-1900) .. . V. ., "
" XXII. (1900-1902) ,. " VI. ", "
, XXIII. (1901) ,. , VII. ., ..
n XXIV. (1902-1904):-
Section A. Mathematical, Astronomical, and Physical Scienoe.
B. Biological, Geological, and Chemical Science.
," C. Arcbmology, Linguistic, and Literature.
.. IIV. (1904-5)
, XXVI. (1906-7)
,, XXVII. (1908-9)
,, XXVIII. (Carrent Volume)

ROYAL IRISH ACADEMY SOME RECENT PUBLICATIONS
 ARCITEOLDET.

[Lists of Papers on other subjects-scientific, Ilterary, and archsological-may be obtained on app/ication.]

Armstrong (E. C. R.): Stone Chalices, so called. 1907. pp. 10. r plate. 8vo. 6d.
Armstrong (E. C. R.) : Prehistoric Leather Shield found at Clonbrin, County Longford. 1909. pp. 4. 2 plates. 8vo. 6d.
Coffey (G.) : Prehistoric Cemetery of Loughcrew. 8897. pp. 16. 6 plates. 4to. 2 s .6 d .
Coffey (G.) : Monuments of La Tène Period in Ireland. 1904. pp. 10. 5 plates. 8vo. is. 6d.
Coffey (G.) : Excavation of a Tumulus near Loughrea, Ireland. 1904. pp. 7. 8vo. 6d.
$\operatorname{Coffey}\left(\mathrm{G}_{.}\right):$Craigywarren Crannog. 1906. pp. Io. 6 plates. 8vo. IS.
Coffey (G.) : Two Finds of Late Bronze Age Objects. 1906. pp. 6. 2 plates. 8vo. 6d.
Coffey (G.): Irish Copper Halberds. 1908. pp. 19. 3 plates. 8vo. IS.
Coffey (G.) : The Distribution of Gold Lunulæ in Ireland and NorthWestern Europe. 1909. pp. 8. 4 plates. 8vo. Is.
Coffey (G.) : Archaeological Evidence for the Intercourse of Gaul with Ireland before the First Century. 1910. pp. 11. 8vo. 6d.
Coffey (G.) and R. Ll. Praeger: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8vo. 2s.
Coffey (G.) and E. C. R. Armstrong: Scandinavian Objects found at Island-Bridge and Kilmainham. rgo. pp. 16. I plate. 8 vo . Is.
COORE (JOHN): Antiquarian Remains in the Beaufort District, County Kerry. 1906. pp. 34. 4 plates. 8vo. 1s.
Ferguson (Sir S.): Fasciculus of Prints from photographs of casts of Ogham Inscriptions. 1880. pp. 10. 5 plates. 4to. 2 s.
Graves (C.): Ogham Inscription in the Killeen of Aglish, Co. Kerry, Ireland. 1878. pp. 10.1 plate. 4to. is.
Graves (C.): Croix Gammée or Swastika. 1879. pp. 6. 4to. is.
Graves (C.) : Ogham Monument at Kilcolman, Co. Kerry, Ireland. 1887. pp. 8. 4to. Is.

Graves (C.): Ogham Inscription supposed to bear an Anglo-Saxon Name. 1892. pp. 12. 4to. Is.
Haddon(A.C.): Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. 1897. pp. 79. 8vo. 2s.

Kane (W. F. De Vismes): The Black Pig's Dyke: the Ancient Boundary Fortification of Uladh. 1909. pp. 28. 8vo. Is.
Knowles (W. J.): Prehistoric Remains from the Sandhills of Ireland. (3rd Report.) 1895. pp. 14. 3 plates. 8vo. 3 s.
Knowles (W. J.): Prehistoric Remains from the Sandhills of Ireland. (4th Report.) 1901. pp. 59. I plate. 8vo. 5 s.
Macalister (R. A. S.): Ancient Settlement in Corkaguiney, Co. Kerry, Ireland. 1899. pp. 137. 9 plates. 4to. 6 s.
MacNeill (J.) : Notes on the Distribution, History, Grammar, and Import of the Irish Ogham Inscriptions. 1909. 8vo. pp. 42. 1s.
Moss (R. J.) : Chemical Notes on a Stone Lamp from Ballybetagh, and other similar Stone Vessels in the Royal Irish Academy Collection. 1910. pp.7. 8vo. 6d.
Neolithic Cist Burial at Oldbridge, Co. Meath, Ireland. By A. C. HADDON. 1897. pp. 79. 8vo. 2 s.

O'Reilly (J. P.) : The Milesian Colonization of Ireland in relation to. Gold-mining. 1900. pp. 43 . ${ }^{1}$: 8 vo .4 s .
O'Reilly (J. P.): Old Churches of Kill-o'-the-Grange, Killiney, and St. Nessan, Howth. 1904. pp. 10. I plate. 8vo. 6d.
Praeger (R. Ll.) and G. Coffey: The Antrim Raised Beach, a contribution to the Neolithic history of the North of Ireland. 1904. pp. 58. 6 plates. 8 vo . 2 s .
Prehistoric Remains from the Sandhills of the Coast of Ireland. By W. J. Knowles. (3rd Report.) 1895. pp. 14. 3 plates. 8vo. 3s.

Prehistoric Remains from the Sandhills of Ireland. (4th Report.) By W. J. Knowles. 1901. pp. 59. I plate. 8vo. 5s.

Reeves (W.) : Bell of St. Patrick, called the Clog an Edachta. 1863. pp. 30. 4to. is.
Smith (E. A.) : Composition of Ancient Irish Gold and Silver Ornaments. 1895. pp. 14. 8vo. 2s. 6d.
Smyly (J. G.): An Examination of the Dates of the Assouan Aramaic Papyri. 1909. pp. 16. 8vo. 6d.
Srokes (M.): High Crosses of Castledermot and Durrow. 1898. pp. 26. 12 plates. Folio fil 1 s , net.
Stokes (M.): High Crosses of Moone, Drumcliff, Termonfechin, and Killamery. 1902. pp. 38. 34 plates. 410.105 .6 d.
Westropp (T. I.) : Lesser Castles or "Peel Towers" of the County of Clare. 1899. pp. 18. 8vo. 3s. 6d.
IVestropp (T. J.): Churches of County Clare, and Origin of the Ecclesiastical Divisions in that County. 1goo. pp. 81. 8vo. 4 s.
Westropp (T. J.): Dolmens and Pillar-stones in Bunratty and Tulla, Co. Clare, Ireland. 1902. pp. 48. 4 plates. 8vo. 3 s.
Westropp (T. J.): Ancient Forts of Ireland. 1g02. pp. 151.8 plates. 4to. 7s. 6 d .
Westropp (T. J.): The Ancient Forts of Ireland. 1904. pp. 10. 8vo. 6d.
Westropp (T. J.): A Survey of the Ancient Churches in the County of Jimerick. 1905. pp. 154. 9 plates. 8vo. 4s.
Westropp (T. J.): The Ancient Castles of the County of Limerick: North-Eastern Baronies. 1906. pp. 54. 8vo. 1s. Central and South-Eastern Baronies. 1006. pp. 58. 3 plates. 8vo. is. 6d. Western Baronies. 1907. pp. 64. 3 plates. 8 vo .1 s .6 d.
Westropp (T. J.): The Cists, Dulmens, and Pillars of the Western Half of the County of Clare. 1907. pp. 26. 3 plates. 8vo. is.
Westropp (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (The Newmarket Group). 1908. pp. 18. 2 plates. $8 v o .1 s$.
Westrope (T. J.): The Forests of the Counties of the Lower Shannon Valley. 1909. pp. 31. 8vo. 6d.
V'estropp (T. J.): Types of the Ring-Forts and similar Structures remaining in Eastern Clare (Quin, Tulla, and Bodyke). 1909. pp. 30. 1 plate. 8 vo is.
Westropp (T. J.): A Study of the Fort of Dun Acngusa in Inishmore, Aran Isles, Galway Bay: Its Plan, Growth, and Records. 1910. pp. 46. 3 plates. 8vo. 1s. 6 d .
Westropy (T. J.): A Study of the Early Forts and Stone Huts in Inishmore, Aran Isles, Galway Bay. 1910. pp. 28. 3 plates. Svo. 1 s .

Sald by,

Hodges, Figgis, \& Co., Ltd., 104, Grafton-street, Dublin ; and Williasis \& Norgate, i4, Henrietta-street, Covent Gardea, London, W.C.

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

Volume XXVIII, Section C, No. 12

MARIO ESPOSITO

CONCHUBRANI VITA SANCTAE
MONENNAE

DUBLIN

HODGES, FIGGIS, \& CO., :LTD. LONDON: WILIIIAMS \& NORGATE

1910

Price One Shilling and Sixpence

PROCEIEDINGS

OF TER

ROYAL IRISH ACADEMY

In the year 1902 it was resolved to number in consecutive order the Volumes of the PROCEEDINGS of the Academy, and consequently aftention is requested to the following Table:-

CONSECUTIVE SERIES. ORIGINLL NUMERATION.

```
Vorime I. (1896-1840) is Voluank I. 1st Ser. Sci., Pol.Lit.\&Antiqg.
" II. (1840-1844) ,. ., II.
.. III. (1845-1847) .. .. III. ..
" IV. (1847-1850) .. . IV. .. "
" V. (1850-1853) " . V. ."
. VI. (1858-1857) .. ., VI.
.. VII. (1857-1×61।.. .. VII. .. ."
. V11I.(1861-1864)., ., VIII. .. ..
., IK. (1~64-1N(6) .. .. IX.
. X. (1866-1869 i. .. X. . .
" XI. \((1870-1874), .\), I. 2nd Ser. Science.
. XII.(2875-1877) .. ., II. ., "
.. 久lll. 1843, . .. III. ., "
. XIV. (1884-1888) ., " IV. ,"
., XV.(1870-1879),. ., I. ., Pol.Lit. \& Antiqq.
. XVI.(1879-1888) .. ., II. ." "
. XVII. (1888-1891) n ., I. Yrd Ser. Sci., Pol. Lit.\&Antiqq.
„, XVIII. (1891-1899) „ .. II.
" XIX.(1898-1896)., " III. ., "
, XX. (1896-1898; ., . IV. ." ."
.. XXI.(1898-1900,.. .. V. .. ,.
" XXII. (1900-1902) " VI. " "
,, XX111. 1901) ., ., ViI. ,. .,
,, XXIV.(1902-1904):-
Section A. Mathematical, Astronomical, and Physical Science.
- B. Biological, Geological, and Chemical Science.
                        - C. Archæology. Linguistic, and Literature.
```

XXV. (1904-5)
" X.XTL. (1906-7)
, SXVII. (1908-9)
,, SXVIII. (Current Volame)

In three Sections like Vol. XXIV.

ROYAL IRISH ACADEMY. SOME RECENT PUBLICATIONS.
 HHSTURY.

[Lists of Papers on other subjects-sclentific, Itterary, and archaological-may be obtained on application.]

Atkinson (R.): On the Function of an Academy, in especial of the Royal Irish Academy. 1906. pp. 11. 8vo. 6d.
Bernard (J. H.) : Uncial MS. of S. Cyril of Alexandria, written on Papyrus. 1892. pp. 20. 4 plates. 4 to. 6 s .
Bernard (J. H.): Calendar of Documents in the Dignitas Decani in St. Patrick's Cathedral, Dublin. 1905. pp. 27. 8vo. 6d.
Berry (H. F.) : An unpublished MS. Inquisition (A.De. 1258), relating to the Dublin City Watercourse. 1902. pp. 8. 8vo. Is.
Berry (H. F.): Gild of S. Anne, S. Audoen's Church, Dublin. 1904. pp. 86. I plate. 8vo. is. 6d.
Berry (H. F.): Ancient Charters in the Liber Albus Ossoriensis. 1908. pp. 11. 8vo. 6d.

Berry (H. F.): Catalogue of the Mayors, Provosts, and Bailiffs of Dublin City, A.D. 1229 to 1447. 1910. pp. 15. 8vo. 6 d.
Berry (H. F.): Proceedings in the matter of the Custom called Tolboll, 1308 and 1385. St. Thomas' Abbey ข. some early Dublin Brewers, \&c. 19io. pp. 5. 8vo. 6d.
Bury (J. B.): A Life of S. Patrick (Colgan's Zertia Vita). 1903. pp. 64. 4to. 25.
Bury (J. B.): Itinerary of Patrick in Connaught according to Tírechán. 1903. pp. 16. 8vo. 6d.

Dix (E. R. M'C.), editor of Gilbert: Irish Bibliography. Ig04. pp. 26. I plate. Illustrations. 8vo. Is.
Dix (E. R. M ${ }^{*}$ C.) : A very rare Kilkenny-Printed Proclamation, and William Smith, its Printer. 1908. pp. 4. I plate. 8 vo . Is.
Dix (E. R. M'C.) : Humfrey Powell, the first Dublin Printer. 1908. pp. 4. 4 plates. 8vo. Is.
Dix (E. R. M'C.) : An Early Eighteenth-Century Broadside on Printing. 1909. pp. 3. I plate. 8vo. 6d.
$\operatorname{DIX}\left(E . R . M^{\prime} \mathrm{C}.\right)$: Note upon the Leaves of the First Book printed in Dublin discovered in the Academy. 1909. pp. 3. 8vo. 6 d.
DIx (E. R. M'C.) : The Earliest Printing in Dublin, in the Irish, Latin, Greek, Hebrew, French, Italian, Saxon, Welsh, Syriac, Armenian, and Arabic Languages. 1910. pp. 8. 8vo. 6 d.
Dix (E. R. M ${ }^{\text {' }}$.) : William Kearney, the second earliest known Printer in Dublin. 1910. pp.5. 8vo. 6d.
Esposito (M.): Hiberno-Latin Manuscripts in the Libraries of Switzerland. 1910. pp. 34. 8vo. Is.
Esposito (M.): Conchubrani Vita Sanctae Monennae. 19ro. pp. 50. 2 plates. 8vo. Is. 6 d.
Falkiner (C. L.): Phœenix Park, Dublin: its Origin and History. 1901. pp. 24. 8vo. 5 s.

Falkiner (C. L.): The Irish Guards, 1661-1798. 1902. pp. 23. 8 vo . 1 s.
Falkiner (C. L.) : Commercial History of Dublin in the Eighteenth Century. 1903. pp. 30. 4 plates. 8vo. 6d.

(4)

Falkiner (C. L.): The Counties of Ireland: their Origin, Constitution, and Delimitation. 1903. pp. 26. 8vo. 2s. Iod.
Falkiner (C. L.): The Parliament of Ireland under the Tudor Sovereigns. 1905. pp. 34. 8vo. 6d.
Falkinfir (C. L.) : Barnaby Rich's "Remembrances of the state of Ireland, 1612," with notices of other Reports by the same writer. 1906. . pp: 18. 8vo. 6d.

Falkiner (C. L.): The Hospital of St. John of Jerusalem in Ireland. 190\%. pp. 43. 8vo. 1s.
Ferotison (Sir S.): The Patrician Documents. 1885. pp. 68. 4to 3 s.
GILRERT (Sir J. T.) : Irish Bibliography. Edited by E. R. M 'C. Dix. s904. pp. 26. Plate and illustrations. 8vo. Is.
Green (IV.S.): Armada Ships on the Kerry Coast. 1909. pp. 7. 1 plate. 8vo. bd.
Knox (H. T.): Gigr-mills and Drying Kilns near Ballyhaunis, Co. Mayo. 1gro. pp. 10. 8vo. 6d.
Janfe-Ponsf: (S.): First Mohammedan Treaties with Christians. Igo4 pp. 30. 8vo. 1s. 6d.
I_Awlok (11. J. : Primate L'ssher's I.ibrary before 1641. 1901. pp. 49. 8vo. 25, 6d.
Lawlok (H. J.): A Calendar of the Liber Niger and Liber Albus of Christ Church, Dublin. 1908. Pp. 93. 8vo. 2 s.
LA wion (H. J.): Calendar of the Liber Ruber of the Diocese of Ossory. 1908. pp. 50. 8vo. is.
 Pp. 26. 8vo. 15.
Patrick: Itinerary of Patrick in Connaught according to Tirechan. By J. B. Bi:kY. 1903. pp. 1\%. 8vo. 6d.
Patrick: A Life of St. Patrick (Colgan's 2erbia Vila). Edited by J. B. BIRR. 1903. Pp. 64. 4to. 2s.

Patrick: Libri Sancti Patricii. By N. J. D. WiH1TE. 1905. pp. 126. syo. 25.
Patrick: The Paris Manuscnpt of St. Patrick's Latin Writings. 1905. pp. 11. 8vo. 6त.
Stokf. (G. T.): Marsh's Iibrary, Dublin, and an Original Indulgence from Cardinal Wiolsey. 189\%. pp. 13. 8vo. 25.
Ussher's Rooks in 'Trinity College, Dublin. By H. J. Lawlor. 1gor. pp. 49. 8vo. 2s. 6 d .
Weatropp (T.].): Extemal Evidences bearing on the historic character of the "W"ars of Turlough" by John, son of Rory Mackrath. 1903. pp. 60. 5 plates. 4t0. 25. $10 d$.
WHITE (N. J. D.) : Libri Sancti Patricii. 1905. pp. 126. 8vo. 25.
U'Hite (N. J. D.): The Paris Manuscript of St. Patrick's Latin Writings. 1005. pp. I1. 8vo. 6d.
Write (N. J. D.): Elias Boohéreau of La Rochelle, First Public Librarian in Ireland. 1908. Pp. 33. 8vo. Is.
Wiond (HfRberi): The Templars in Ireland. 190\%. pp. 50. 8vo. 9d.

Sold by

Honges, Figgis, \& Co., Itd., 104, Grafton-street, 1)ublin; and Williasps \& Nokgate, 14, Henrietta-street, Covent Garden, London, W.C.

[^0]: * G. W. Wulker, Proceedings of the Royal Society, vol. Ixxyii, p. 260.
 R. I. A. PROC., VOL. XXVIII., SEOT. A.

[^1]: * Royal Dublin Society Transactions, vol. viii, ser. 11, 7. Macdonald, "Electric Waves," pp. 14, 15.

[^2]: * Proceedings of the Londou Mathematical Societr, series 2, vol. i.
 \dagger Proceedings of the Royal Irish Academy, vol. xxvii, Section A, No. vini, G. A. Schott, Amman der Physik, 25, p. 79.
 \ddagger Mr. W. R. W. Roberts, F.T.c.D., suggests a compact form for P_{0} and similar series: thus

[^3]: * Hotson: Proceedings of London Mathematical Society, vol. xxiv.

[^4]: *Cf. Abraham, Theorie der Electricitüt, H., p. 191.
 †Cf. Lorentz: Theory of Electrons, p. 19.

[^5]: * Trans. Roy. Ir. Acad., vol. 2xv"。 pp. 259-327 (1874). + "I'reatise," p. 17.
 ₹ 'I'rans. Roy. Ir. Acad., vol. xxxii., pp. 109-115 (1902).

[^6]: - "Treatise, " p. 7.
 + It will be seen a litale later that when a screw is represented by the vector coordinates μ, λ the sometrical form indicated is really a rectoroscrew and not merely a screw. Thus the quaternion mothod of representigg Dynames is free from the present ambiguity.
 ; See Hamiloa, "Lectures on Quaternions." art. 68 ; also Hamilton, "Elements of Quater. ninns," 2ad ed., edised by Charles Jasper July (1899), rol. i., p. 245, foot-note. It is this edition of the great work which will be referred to throughout this papw whenever Hamilton's "Elements of Quaternions " is quoted. On the subject of the convention respecting the direction of a righthanded rotation about a vector, reference may be made to "A Manual of Quaternions" by Charles Tasper Joly, $1945, \mathrm{~F} .7$. This work wili be quoter briefly as July's "Manual " in the frequent referencos made to at on the prewent praper.

[^7]: * Truns. K, ỵ. Ir. A And., vol. xexii., pp. 109-115 (1902).
 + Trans. Roy. Ir. Acad., vol. xxp., p. 167 (1871).
 \& "Treatise," p. 17 (1900).

[^8]: - "Treatise," P. 26.

[^9]: - Klein, Math. Ann., vol. iv., p. 413 (1871)
 + Df course these laws are already well known ("Treatise," p. 18), but their derivation from formula (1) and (6, will be uneful in what follow

[^10]: - "Truatise," p. 19.
 \dagger The relation of this surface to the Theory of Screws was first given in Trans. R.I.A., vol. mxy. p. 161 (1871). The discovery of the burfare is, however, due to Hamilton (1830): see "Treatice." pp. 510-11.
 * "Treatisw," p. 19.

[^11]: - "Treatise." p. 4.5 and p. $12{ }^{\circ}$.

[^12]: - ." Harmilon's Elemente," vol. ii., p. 28%.
 + (1) "The Theory of linear V"etenr Functions": Trans. R. 1. A., vol. xxx., pp. 597-647 (1894).
 (2) "Scalar Invariants uf twon Lincar Vector Functions": Trans. R. 1.A.; vol. rxx. pp. 709--25 (14055).
 (3) "The Interpretation of a Quaternion as a Point-symbol": Trans. R. I. A., vol. $x \times x i i$., pip. 1-16 (1901).
 (4) "Quaternion Arrays" : Truna, R. I. A., vol. xxxii., Pp. 17-30 (1901).
 (5) "Repreaentation of Screws by Werghted Toints": Trans. R.I.A., vol. xxxii., pp. 61-92 1902).
 (6) "The Quadratic Screw System: a Study of a Family of Quadratic Complexes" : 'Irans. R. I. A., vol. xxuii., Pp. 155-238 (1903).
 (7) "The Geometry of a Three-system of Screws": Trans. R. I. A., vol. xxxii., pp. 239-270 (1903).
 (8) "Quaternions and Projective Geometry," communicated by Jols to the Royal Society, and published in the Philosephical Transations, Series A, vol. 201, pp. 223-32" (1903).

[^13]: * See Joly, in Hamilton's "Elements," vol. ii., p. 390.
 † Hamilton's "Elements," vol. ii., p. 284.

[^14]: * Joly, in Hamilton's "Elements," vol. ii., p. 390; also "Manual," p. 204.

[^15]: - Trass. Boy. Ir. Acad., vol. xxxii., pp. 119-127.

[^16]: * This result, and certain other developments (not here repriduced), were communicated by me to the Australasian Association for the Advancement of Scince, un published in tieir Repont (1909), p. 52.

[^17]: " "Elements," vol. i., p. 485.

[^18]: * See Report of the British Association for the Advancement of Science. Dublin, 1908, p. 611.
 \dagger Hamilton's "Elements," vol. ii., Appendix, p. 391.
 \ddagger Ibid., p. 392.

[^19]:

[^20]: ${ }^{1}$ Review of Scharff's "European Fauna," Natural Science, vol. xv., p. 308.
 2 Stejneger, L., Scharff's "History of the European Fauna," p. 107.

[^21]: (irmen, W. S., "Numes on Ruk kall Islantl."
 Geikie, A. "' Terthary Bawalt Plateaux of Niorth-w eatern Eimope," p. 394.
 Austen, B. A. C'.." Valley of Einglish Channel," p. 94.

[^22]: ${ }^{1}$ Hull, E., "Submerged Terraces and River Vallers."
 ${ }^{2}$ Spencer, J. W., "Submarine Valleys," p. 224.
 ${ }^{3}$ Huddeston, W. H., "Eantern Margin of North Athantic Basin," p. 148.
 "Nansen, F., "North Polar Expedition," p. 192.
 : Dr. Stejneger very kindly directed my attention to this paper.

[^23]: 1 Dana, J. D., "Manual of Geology," 3rd edition, p. 540.
 ${ }^{2}$ Wright, F., and W. Upham, "Greenland Ieefields," p. 331.
 ${ }^{3}$ Wallace, A. R., "Island Life," pp. 150-151.
 "Ball, R., "The Cause of an Ice Age."

[^24]:

 * Zacharizs, "., "T Ther und Pllanzenwelt d. Susswresers," pp. 30c-30s.

[^25]: ${ }^{1}$ Kew, H. W., "Dispersal of Shells," p. 138.
 "Scharft, R. F., "European Animals," pa 2.
 ${ }^{3}$ Darwin, C., "Origin of Species," p. 353.

[^26]: ${ }^{1}$ Ernst, "New Flow of Krakatau," p. 4.
 ${ }^{2}$ Sarasin, P. and F., "Geol. Geschichte d. Insel Celebes."

[^27]: " Hooket, J. D., "Distribution of Arctic Plants," pp. 252-55.
 ${ }^{2}$ Geikie. James, "Prehistoric Europe," p. 520.
 3 Nuthorst, A. G., "Geschichte d. Vegetation Grünlands," p. 214.
 "W’arming, E., "LEeber Grünlands Vegetation," p. 403.
 " Howorth, M., "Geolugical History of Arctic Lands," p. 50n.

[^28]: ${ }^{1}$ Ostenfeld, C. H., "Phyto-geographical Studies," pp. 115-118.
 " Drude, O., "Planzengeographische Anhaltspunkte," p. 329.
 ${ }^{3}$ Schulz, A., "Pflanzenwelt Mitteleuropas," p. 1.

[^29]: ${ }^{1}$ Drggaleki, E. von, "Gronland Expedition," vol. i., p. 335.
 ${ }^{2}$ Vanhuffen, E., "Grualand Expedition," vol. ii., p. 174.
 Hark, H. C., "Botany of Y'olar Expedition," p. 10.
 "Gras, Ass, " Piants of C'nited States and Eurnpe, p. 173.

[^30]: ${ }^{1}$ Engler, A., "Entwicklungsgeschichte d. F'lwengebiete," i., p. 1oे.
 ${ }^{2}$ Colgan, N., and R. W. Scully", "Cybele Hibernica," 2nd ed., p. 71.

[^31]:

 - Prargor, B. Ll., " Irish T.pographicai Botang," p. 22.
 "Irummoni, A. T., "Plants roramon to Europe and America," p. ins.

[^32]: ${ }^{1}$ Hanitsch, R., "Freshwater Sponges of Ireland," p. 126. Annandale, "Freshwater Spouges in Scotland."
 ${ }^{2}$ Stejneger, L., "Scharff's History of the European Fauna," pp. 107-108.
 ${ }^{3}$ Scharfi, R. F., "European Animals," pp. 37-39.

[^33]: ${ }^{1}$ Grant, Madison, "Origin of Mammals of North America," 1 . 12.
 ${ }^{2}$ Lobluy, J. La, "American Fama and its Urigin," p. 27.
 ${ }^{3}$ Jacobi, A., "Lage und Form biugeographischer Gebiete," p. 207.
 "Arldt, Th., "Eutwicklung d. Kontinente," p. 406.

[^34]: [1ukiwh. J. J., "Surth American liirds in Europe."
 : Lissher, lk. J., "List of Iri-h Birds."
 Froke, Perry, "Birds found in Europe and North America."

[^35]: ${ }^{1}$ Dawkins, W. Boyd, "Early Man in Britain," p. 43.
 ${ }^{2}$ Geikie, A., "Basalt Plateaux of North-Western Europe," p. 405.

[^36]: Keniall, I'. F., and A. Rell. "The Plixene Beds of Si. Erib," IPp. 200, 207.
 = Reid, C. "Piawene Deprosits of Irituin," p. 61.
 ${ }^{2}$ Harmer. J. W... " Plio ene Deparits of Kulland," p. 7 ht
 "M1stl, Abel, "Theone d. wechselnden Klimate," p. 49.
 : Gelkie, James, " Prelisioric Europe," p. 520.

[^37]: ${ }^{1}$ A full bibliography of papers and notes referring to Irish neuropterous insects will be tuund on pages 39-42.
 R.I.A. PROC., VOL. XXVHI., SE:T. B_{o}

[^38]: Note adjed in Press.
 ${ }^{1}$ Leptophlebia vespertina (L.) (J. Meyeri Eaton, 1884).
 Connacaht.
 C.-Mayo (Castlebar Lough, coll. Halbert). Specimens of a May-fly taken in this locality on the 18th June, 1909, were identified as the present species by the Rev. A. E. Eaton.

 Distribution.-Hitherto known from Scandinavia (arctic and southern) ; Switzerland: Denmark (Horsens and Syejboek, Petersen) ; and the Scotch highlands (Strathglass, Briggs).

[^39]: ${ }^{1}$ Mem. to sheets 3 , f. .fr, (191), p. 6.5.

[^40]: 1 "letrography of the Newark Igneous Rorks," Geol. Survey of New Jersey, Ann. Report, 1908, p. 107 .
 ${ }^{2}$ See references in G. Cole, "The Red Zone in the Basaltic Series of the county of Anthim." Geol. Mag., 1908, p. 341.

[^41]: :"Sutuce on the (joology of the Punza Isies." Trans. Geol. S.e., Londun, ger. 2, wol. ii. ッシ". I 2n5.

[^42]: ${ }^{1}$ Rosenbusch has unfortunately appropriated the term 'diabase' for unaltered pyroxene-plagioclase ruk kn.
 " On thie growth of crystals in the contact-zone of Granite and Amphibolite," Proc. Roy. Irish Acad., vol. axv., seet. B (1905), p. 117.

[^43]: ${ }^{1}$ Licol. Surv, Ireamd. M.m. to sheeto 3, t, dic. (1591), p. 153.

[^44]: ${ }^{1}$ We are indebted to Miss M. C. Knowles for calling our attention to the existence of this list.

[^45]: ${ }^{1}$ Irish Naturalist, 1908, vol. xvii., p. 105 ; vol. xviii., p. 166.
 ${ }^{2}$ Proc. Roy. Irish Academy (1888), vol. iv., p. 529.
 R.t.A. PROU., VOL. XXVIII, SECT. B

[^46]: ${ }^{1}$ Journal Mar. Biol. Assoc., N.S., vol. vii., 1904, p. 219.

[^47]: Irish Naturalist, $1 \operatorname{ch} 9$. vol. x riii. p. 45.

[^48]: b ot Irsh Naturailit," 190 m , vol. vii, P. 262.

[^49]: ${ }^{1}$ 19n8. Ehler-. Die Ionlenwiagen Anneliden der dentarhen Tiefsee-Expedition, p. 68.

[^50]:

[^51]: ${ }^{1}$ Ann. Mag. Nat. Hist. (8), vol. iii, p. 163.

[^52]: ${ }^{1}$ Irioh Naturalist, 1908 , pol, xrii, p. fi3.

[^53]: ${ }^{1}$ Ann. Mag. Nat. Hist., $1908(\mathrm{~S})$, vol. i., p. 382.
 R.I.A. PROC., VOL. XXVIII., SECT. B.

[^54]: ${ }^{1}$ Irish Naturalist, 1908, vol. xvii, p. 40.

[^55]: ${ }^{1}$ The original spelling of this genus was "Junceella," but it is now generally written "Juncella," so that, except in references, the more common spelling has been adopted in this report,

[^56]: ${ }^{1}$ The generic and specific names given in this part of the memoir are those which are adopted in the final classification (q.v.).

[^57]: ${ }^{1}$ It is extremely doubtful whether the specimen identified by Wright and Studer as J. barbadensis is the same as the original specimen of that name, so that it has been considered adrisable to keep them separate. The "Challenger" J. סarbadensis is a Juncella; the original may not be.

[^58]: ${ }^{3}$ It is not improbis'ie that this was a roung colngy of Jemmaces.

[^59]: 'The introdution of the study of apicules has, however, removed it from the genus Juncella, from the fact that it coneains no club-sbaped spicules.

[^60]: ${ }^{1}$ It is, of course, doubtful whether these are really J. clongata, as it would be impossible to decide their specific or even generic position by Ω superficial examination.

[^61]: ${ }^{1}$ The large spindles described from the type specimen of the species are undoubtedly extrinsic.

[^62]: and twigs are very slender, so that the colony is extremely reticulate and

[^63]: ${ }^{1}$ The Roman numerals correspond to the numbers given in the teat.

[^64]: 1 "Ossianic Society," vol. v., !. 287.
 ${ }^{2}$ If Keating be right, there was an earlier colony of Firbolgs in Arun, a remmant that escaped the carnage of the Battle of Moytura (ed. D. Comyn), p. 199-The Cruitanigh or Picts banished them out of these islands.

 3 "Revue Celtique," 1894, pp. 478-4S0.
 "Petrie regavds this as really Cill Murmhainhe-"Mlitary Architecture," p. 68 ; but there was a great fortification which may have originated the chief's name. It is strunge that Dun Oghil mukes no mark in legend.

[^65]: ${ }^{1}$ The $1_{\text {agend }}$ of Anghina of Dun Aonghusa in Ara is alsogiven in Keating's Hiatory of Ireland Itigh Teves, wol. ir., लded ly I). (..myn), p. 201

 * Neither the Late Dr. W. II. Stapponle Westropp in 1887 and 1878, nor my latc brother Ralph Hugh W"meroppand Io in 140 B , could find any local legend as to who was the buider or what was the histury of the Doon. The same seems true of the Rev. W. Kilbride. It is a great pity thut this last most favoured atulent of Aran seems to have only left his valuable paper on larama and some crude gonerad notes in manuscript, the latter now in the collection of the Royal Irish Academy. Whem Join () Flaherty wrote, about 1820 , Tales of Cuchullin and the Red Branch h.roes as well as of Finin, Oscar, and ()ssian, were recited. 0° Donoran in 1839 does not seem to have fuund any traduions of early date.

 3" Lives uf the Sainta, from the Bonks of Lismore " (wd. Whitl.y Stokes), 1890. p. xxx.
 a "Tugail Duine Uenguss " - M. U"Arbois de Jubainville's " Catalogue of the Epic Literature of Ireland," " p. 244.
 " "Sublin Crivereity Magazine," vol. xli.. p. 501.
 *So in Anmals of Insfallen and the Your Moptera, but 1269 in those of Clonmannois.
 "Ordnance surrey Letiers, Co. Clare va. i4, B. 23, 13. 1. Acall.i, vol. i., p. 205.

[^66]: - Joumal Royal Society of Antiquaries, Ireland, (referred to as R.S.A.I.), vol. xxxi., p. 4.
 ${ }^{2}$ Ibid., vol. xxvii., p. 126.
 ${ }^{3}$ The river flowing into the sea between Lehinch and Liscannor. It should be noted, howerer, that there was also a river Dahilyegh near Emis. The "Deely" is called "Tarsel Flu" (? Farset) in the map of 1610, but "Talegh " is marked beside it.
 * Other legends made Asal son of Umor establish a settlement round Drumassall or Tory Hill, near Croom, in County Limerick.
 ${ }^{5}$ In Aran 12, over 265 in Burren, 200 in Corcomroe, and over 100 round Lough Hackett (Lough Cimbi), and 30 near J'awin Island.
 ${ }^{8}$ The Firbolgs were better known as makers of earthen forts, like Ratheroghan. 'llhis of course does not tell against their building stone forts on hare crags. Yet the very curious earthen, oval platform, on the bare summit of Aghaglinny Hill, near Caherdooneerish, 1044 leet above the san,

[^67]:
 fouts thas hase lemen very great.

 Thas has iupresed areral antiquaries of late, and is elabarated by Dr. Gueblaril in bis
 1.fiffi ...m? arativ-stujy of ring-forts and moies ali over Eurnpe gives the following iliustrations of D in Aenzius:-From the chiz to the east $1 \mathrm{~g} \cdot 3$; f.rt from the norib fig. 49); and steps atd apo ag. 5°
 for jaramer-worik its the Ciste furts of Baitigitorat:a and Rougian on the edge of Burren and Latgough in easte:口 Ciate is well usabished.

[^68]: ${ }^{1}$ Seanchus Mór, vol. i., pp. 131-137.
 ""Vitu S. Fanchene," in Colgan's Acta; "Vita S. Mochullei," in Analerta Bollandiana (vol. xvii., p. 145). There are several other fort-building saints, from St. Patrick, who directed earthworks (evidently circular) to be dug at his monastery in Armagh, and St. Mochuda (or Carthage), who dug the small "liss" at Lismore, county Waterford, which, when his monastery sprang up at it, became "Lismore," the great liss.
 " Cathreim Thoirdhealbhaith."
 4" Dublin University Magazine," vol. xii., p. 50.
 ${ }^{5}$ The "Second Battle of Moytura" (Revue Celtique, xii., p. 79), fom score yoke of oxen employed to move a flat stone. For horses at the building of Grianan Aileach, see Dind Senchus, O.S. L., p. 41.
 ${ }^{6}$ Such, sometimes, were employed to build forts: a gang of apparently some thirty slaves appear in the legend of "Tho lattle of Mugh Leana," as raising a math at Magin Feimlin, in southern Tipperary.
 ${ }^{7}$ Journal R. S. A. I., vol, xi., consec., p. 389.

[^69]:
 "." Drimpto of Irelund," sol. isi., p 1129.
 =silma Gidmat sol. i., p. 103 : rol. ii.. p. 111.
 c.. R.tue retique." rol. xii., p. G5: also the long lines of the " slicht Luirge an Dagdae," with his , ithb, and porhapw the mound of Nemgrange.
 "B - ik of Eic'ts" (ed. D'Donoran;, p. 91.
 "Poom on early mawne by Donnell son of Flandacan (e. 1000), 0 'Curry, "Manuscript Mhteriale of Ancien: Irish Hiatory," p. 222: Bowk of Ieinoter, p. 276 . As to Goll being of Cluchar, it must be remembered that the wife of Kiog Aengtus (the sister uf St. Enda) had come froma that piace.

[^70]: but probably is founded on older sources, though unusually devoid of local colour. It does not eren allude to the forts.
 ${ }^{1}$ Dublin University Magazine, vol. xli., p. 95. He notices the Pictish character of these names, but then (according to Keating) the Picts cleared out the Firbolgs of Aran and the islands.
 ${ }^{2}$ History coincides with the "records of the ruins." The Grianan of Aileach, in Donegal, was rebuilt in 674 and 937 , and dismantled 1107 ; the stone fort of Kincora, in Clare, rebuilt in 1062, and was levelled in 1098. It was again rebuilt, to be finally demolished in 1112 (Chronicon Scotorum) or 1118 (Annals of the Four Masters) ; other cases will be recalled by antiquaries.

[^71]:
 ${ }^{1}$ Pror R. I. Acad., xxrii. 'C, p- 221.
 ${ }^{1}$ Joumal R. S. A. $\mathbb{1}$., vol. xx riii., p. 354. for Cahergrillaun: vol. zezi., p. 275, for Caherfe: agh. ${ }^{2} 16$ d., rol. ouci., P. 6. Letlers refer to pp. 25, 2\%.

[^72]: ${ }^{1}$ Chorographical description of "Iar Connaught" (ed. Hardiman', p. To.
 "A poum of Seanchan, dating about $6 \$ 0$ (Book of Lecan, p.17), mentions "the three mounds of walled fortresses" in Burren, Co. Clare-perhaps this the only triple-wailed) fort-as on the Burren hills, though now included in Inchiquin. It is probably the fort of Caechan Boirne, near Inchiquin Lake, named, pehaps, about 800 (certainly ante 1014), in the "Book of Rights." See Journal R.S.A.I., vol. xxyi., p. 153, and Proc. R.I. Acad., ser. iii., vol. vi., p. 430 , for plans comparable with that of Dun Aengusa.
 ${ }^{3}$ Proc. R.I. Acad., vol. xxvii. (C), p. 227.
 "The crescent type is so closely akin to the promontory fort that in some cases distinction cannot be drawn save by regarding the existence of a headland behind the defences. Mr. Allcroft classes thens tugether in "Eathwork of England," chapter iii.

[^73]: ${ }^{1}$ Journal R.S.A.I., vol. xxxi., pr. 275, 276.
 "Sue Dr. Christison"s "Early Fortitications in Scotland," pp. 130, 131, Coldingham; p. 134, Arbory; ["pper Cademur; p. 204, Raceleuchead; p. 206, Firrckstane; and Mr. A. R. Allcroft's "Earthwork of Lingland," Pp. 53, 54, 59,63 , and 113.
 3." Suciété Préhistorique de France," Bulletin. Tome iv., p. 311; vi., pp. 231, 415. Rapport, Tome v., p. 76 . Comples Rendus (1505), pp. 27, 30, 36, 52; and Dr. Adien Gućlhard's " Enceintes Préhistoriques " (1907/, pp. 11, 12 .
 ${ }^{4}$ The notes on many of these continental forts are brought together in "Ancient Forts of Ireiand," sections 8, 11, 20, with plans, \&cc., figs. 2, 3. For a Scandinavian "ring mur," crescentshaped in plan, sce Borlase, "Dolmens of Ireland," vol. iii., p. 1133. For Russian forts in Perm, see "C'amps Retranchés," Dr. A. Guébhard in "L'Association F゙rançaise pour l'avancement des Sciences " (3Gth Congresa, 1902), p. 3. From plana by M. Viladimir Tolmatcheff.

[^74]: ${ }^{1}$ Journal R.S.A.I., vol. xxxvi., p. 24 i.
 ${ }^{2}$ Ibid., vol. xxxviii., p. 345.
 ${ }^{3}$ "O. S. Letters," Co. Galway (ms., R. I. Acad., 14 D. 3.), 249.
 ${ }^{4}$ If we so consider the former curious wall-loops and ontwork at the gangway and nlong the landward edges of the fosse, shown by the Rev. Caesni" Otway in his plan, 1841, "Erris and Tyrawley," p. 68.

[^75]:

[^76]: ${ }^{1}$ I hope the "personal element" in this puragraph may be conduned, as making the origin of and responsibility for the theories clear to all.
 ${ }^{2}$ "Archeologia Cambrensis," vol. iv., ser. iii., p. 96.
 s "South Isles of Aran," p. 16.

[^77]: 1 Iedwich, in his "Introduction " to Grose's "Antiquities of Ireland" (1807), was probably righe where he eass of Dun Aengus, p. ir, "The houses having been of wood have long since disappeared." We find in 1162 that eighty bouses had to be remored when the fort of Coshel an L'rlair was rebuilt at the church of Derry by Murcheartach Ifua Lochliunn and Flatbbertus OBrolchan, the aarb of St. Co umba.
 ${ }^{2}$ "Analerta Bullandiniana." vol. xvii. p. 149, chapters xp.-xviii. Tulla nan espoc is translated in this accouns, "Collis Episcoporum" in "the district of Lumbrecin," Luimneach Limerick or "Limbricensis," under which forms the editor could not identify the places.
 ${ }^{3}$ See p. 30, infra. The stonework in this is easily recognizable in a recent photograph.
 " "Nores on Irish Architecture," vol i., p. 4, implies that the gateway bad "shared the melanchols fate of the rest of the structure." The drawing of the outer face by Burton, and my camera sketch of the inner face, show that as it stood in 1878 sa it still remains. Some who had not seen the fort before its restoration, alleged the rehuilding of the gate on no better authority than "Duntaren's" words.

[^78]: 1"Age of Dun Aenghus" Dr. Colley March. Proc. Soc. Ant., London, vol. xr., ser. ii., p. 226.
 ${ }^{2}$ Préhist. Congrés iii., Autun, 1907 , "La structure relativement compliquée, certainement attribuable à une humanité déjà passablement éloignée de ses origines," p. 998.

[^79]: " The Irish terms applind to the featuren of forts are-". Murcludh " a Btone wall (Togail Troi); "Mur," a wall of earth or stone (Mesca ["Jad and many other early works), "Cladh," fosse; "Tukhin," flat summit of a fort of the mote type ; "Iarom," the garth or enclosure; "Pordorus," the gate in the outer enclosure; "Furdurus," used for a lintel ; "Aurlunn," the slope before that gate; "Durus," a gate: "Tairsech," its threshold; "Aursa," a jumb; "Aurdune," the "porch' of a gate, "Erdam," a porter"s lodge (as in the Kerry and Mayo forts); "Bodun," the 'bawn' or eastle-5ard; "Ithla," the "hagrard" enclosure; "F゙aitche," the green, or game-field, before the fort: "sonnach," the palisade or abattis. (Sce Silva Gadelica ii., p. 408 , for un "Aurla.") The "Sonnacts " references are giren infra. See also Dr. Jorce, "Social History of Ancient Ireland," vol. ii., pp. 31, 60. E 0° C'urry, "Manners and Customs of the Anvient Irish," in the introduction by Professor Sulivan, p. 107.
 ${ }^{2}$ (3) Dunoran, in his notes on Dun Ogbil, contrasts the groal preservation of its steps and terraces with the dilapidation of those of the other forts on Aranmore (0. S. L., p. 239).

[^80]: ${ }^{1}$ Mr. Hubert T. Knox kindly gave me notes and a section of this fort: it is at Bushmount, near IIollywood.
 ${ }^{2}$ Walls of three sections oceur in French forts in the Alpes Maritimes-e.g. Casteouvasson and the Castelars in Var. See "Soc. Préhist de France," tome iii., p. 146, by Dr. Adrien Guebhard; and the volume of the "Conglès Préhistorique" for $1905, p .48$; also "Comptes Rendus de l'Association pour l'avancement des Sciences," xxxiii. (Session of 1904).
 ${ }^{3}$ This is alleged to be a mistake for "Eochoill"; but there is no evidence that it is not a name which becamo extinct on the destruction of the trees or bushes.

 * The Grant of the Aran Isles of 1586 in the Patent Rolls resexves "great trees," minerals, and great hawks to the Queen. We cannot, however, regad this as more than a conventional "saving" by people ignorant of the islands. Traces of "druidical" oak groves are even named by John O'Flaherty', 1825, as existing in Aran. He found fir, pine, and oak in the peat (? submerged), and wild ash and hazel on the crags. O'Donovan heard of dwarf cak serub and hazels near Dun Oghil (O. S. Les. p. 230).
 " "Annals of the Four Musters."
 ${ }^{0}$ Copy in the O.S. Letters, County Clare, Rathborney Patish, vol. i.

[^81]: 2. is is. al., vol. xv., ser. ii., p. 2.25.
 : Ser Mlan 1., Ge. 2: and Pase Jll.. fig. 1.
 Mr. Burke houdes the less dignifent and rather mislmating simile of "almunde in a pudding," for the atones are not set out apart as jrawn by Cheync. These inaccurate viewe led to the theury Duted br Mr. Waleman, that they were combstones of those buried round the fort; or by Dr. Marcb, tha: ther were wo protect cattle from slingurs
 "Joumal K.S.A.I., rol. xix. (nonsec.'p. 162: Troter's " Walks in Ireland," pp. 503, 504 . He calls them "stone shises of great size and beight." Rev. Ceesar Otway says that O"Donovan remembered shem "more numerous and much larger " tban in 1541 ; but they had been "removed por silis and lineels." See" Erio and Tyrawley," p. 68.
[^82]: 1 "Archueologia Cambrensis," ser. iv., vol. xii., p. 345; and "Ancient Forts of Irelund," fig. 6.

 2"Early Fortifications in Scotland," pp. 225, 226. Dreva has a side-annexe like Dun Conor; both are in Peebles.
 ${ }^{3}$ For Cap Sizun, see "Arcbaeologin Cambrensis," series iv., vol. ii., p. 287; and "Ancient Forts of Iveland," fig. 4.

 4"Dictionarire Archéologique de la Gaule, Epoque Celtique", tome i., p. 122.
 ${ }^{5}$ Borlase, "Dolmens of Ireland," vol. iii., p. 1130.
 ${ }^{6}$ There are a dozen townlands called "Sounach," chiefly in Connaught, and four named Lissatunny; but in field-mames and compounds it is far from uncommon.
 ${ }^{7}$ "Agallamb." Translated by S. H. O'Grady, "Silva Gadelica," iik., p. 3.
 ${ }^{8}$ Lebor na h Tidre, "The Fairy Chariot of Cuchullin" (Siabar charpat Conculaind), Journal R.S.A.I., vol. xi. (consec.), ser. iv., vol. i., p. 387, copy circa 1106.

 9 "Revue Celtique," vol. viii. (1887), p. 55.
 10 "Silva Gadelica," vol. ii., p. 70, "The Story of Aedh Baclamh."
 14 "Revue Celtique," vol. xiv. (1893), p. 47, "Yoyage of the Hui Corra," ante 1100.

[^83]: lane Foz.
 "The outer wall of Tre Ceisi in $\mathrm{W}_{\text {ales }}$ is ns irtegular and, like the "tink-wall," is terraced, but the irregularity in the W'els: fort, as at Cashlaun Gar, Langough, and other row-forts, originates in the c) ${ }^{\text {stour }}$ of the graund, while that of Dun Aengusa runs on an unimpeded foor of crag, the more regular reaches of the inner wall bering alone on the rock ridgus.

[^84]:

 * Danawen, " Notes on Iriah Apchiterture," vol. i., p. A.
 "oTranes of the Elder Fraths of Jreland" "Colonel Word- Martin, 10n2, : W"ukeman"s view,
 ares, and the sunken way round the wall, ali inemereen
 "As conizenia to my own ertora, ane Journal Iroy. Sor. Ant., 1r., vol. xxv.. p. 258, and its Ilandbonks, in., p. 66, and vi., p. 73. "Ancient Forta of Ir.land," seretion 81, and the bame egray in Trand. I'.I. Acul., voi xxxi., p. 6.2. Ilr. ('hristigon, in "Early Fortifications of Scotland," p. 15l, is ala misled by "Donovan's equivecal languge. The non-occurrence of a sunken way in any
 mataken interpernton.

[^85]: ' See Pl, MII., tig. ".

[^86]: ${ }^{1}$ The south side of the inner passage appears to have been standing when Burton sketched the doorway, and at least the lower part on the north remained in 1878 ; the sketch at that date tallies with nearly all the existing stonework above the dour up to the present summit, but part has been anded to the ends at the terraces.
 ${ }^{2}$ Not 15 feet 5 inches, and 13 feet on top, as in Petrie's "Military Architecture."
 ${ }^{3}$ Though rare outside of Ireland, terraces are found at Tre eceiri in Wales; Worlebury (Somerset. in England-where there were six sections rising as terrates, each about 4 feet higher than the next lower. Dr. Christison implies that some are extant in Scotland. Dr. Guébhard illustrates (from "Monuments primitives des Baleares," E. Cartiilhace terraced stone forts in Majorea and Minorea. There are probable examples in France, at Baou de la Grande (Alpes Maritimes), and an apparent terrace at Ciladia Velha de Santa Luzin in Portugal, all in primitive structures closely comparable to Irish cathairs.
 ${ }^{4}$ This tgpe is, perhaps, the later, as occurring in the very advanced and elaborate forts of Staigue and Caherga, in Kerry. It is also found in Monergashel, Sligo; Cahergel, Gulway : Caberahoagh and Cahergrillaun, in Clare. The examples in Aran, save at Dun Aengusa, are unrecorded before the works of 188. ; but some may be true restorations, as we noted the sloping marks of unrestored Gights in the Black Fort. There is also a record of a very eally flight of "sidelong steps" in the fort of Erimokastro, in Rholes. (" Revne Archéologique," N. S., vol. xviii. (1886), p. 1.55).

[^87]: : Gurlang trame on ! hw nat"
 : Unls those ealber than Inau, or wowedly founded on notes dating before that year, are given.

[^88]: ${ }^{1}$ He only mentions one rampart of Haggy limestone and the cheverux de frise.
 ${ }^{2}$ Ledwich regards the fort as a monastery; he neither visited it nor took any pains to get any accurate view or description of the ruin. "There are many of these mandrae dispersed over this kingdom hitherto unoticed; one remarkable is Dun Aengus . . . situated on a high cliff over the sea, and is a great circle of monstrous stones without cement." The inaccuracy and dogmatism are very characteristic of the work cited. Windele also grievously uttacks "this pretentious antiquary," while giving a theory of his friend, Mr. Thomas L. Cooke, who supposed the fort to be a pagan temple, and the little recess in the wall a room for "a priest or two, with attendunts"! it being (as we noted) less than 3 feet wide, 4 feet high, or 8 feet long.
 ${ }^{3}$ The view is stated to be by M. Hooper, July 5 th, 1795, engraved by Sparrow, in Grose, but we read "W. Beaufort del. J. Ford sculp. I'ub. by John Jones, 90 Bride S^{2} Dublin" on the plate in Ledwich's own work.
 f. I, A. PROC., VOL. XXVIH., SECT. O,

[^89]: 'The artist orerpowered the antiquary: by increasing the size of the waves and the human tigures ho makes the cliff a mere fruction of its height, and overhanging ton far. The fort, however, is aceurateiy drawn.
 ${ }^{2}$ I have been kindly permitted to reproduce these last two by Mesars. George Bell and Sons, York House, London. The lutter also appears in Journul R. S. A. I., vol. בxxiv., 257.
 ${ }^{3}$ This wes published in Juuraal R. S. A. I., vol. Ixv.. P. $25 \overline{7}$, in 1895. I trace from it, as the original seetns lost.

[^90]: The smaller copy is paginated, so that p. 60 corresponds to p. 135 in the larger vae. The amount on each successive page is the same.

[^91]: :W. F゙. Wateman in Wuty"s." Hibeman Masizane," vol. i., N.S., p. tö records a quarter of a century later his recollection of "Denovan"s "wiki joy" on firet secing "the wh palace fortess of the days of Quren Maeve."

[^92]: ${ }^{1}$ If "perfectly unwrought" means without chisel marks, Windele is right; but I believe Petrie to be right as to its having been "formed by art."

[^93]: ${ }^{1}$ The sketch-plan showe the north-west steps, east terrace, and gateway in the inner ring; the middle wall with north-east and north gates, the fragment, the abattis all round the wall, and the outer wall.

 2 Its only " mensure," "which might contain 200 cows," of course refers to the inner fort.
 ${ }^{3}$ Though devoting much space to futile theories on the non-existent "relics of druids, open temples, altars, stone pillars, sacred mounts of fire-worship, miraculous founts, and evident vestiges of oak groves." O'Donovan writes of this author with much bitterness in " 0 . S. Letters."

[^94]: ${ }^{1}$ Haverty gives the size of the inner fort as 144 feet on the cliff, and 160 feet north and south; he calls it "the Acropolis of Aran-the palace fortress of the days of Queen Maere."

[^95]: ${ }^{1}$ Stone implements were also found at Caherblonick near Corofin, and Cabermackmole (Cahermackirilla), in Carran, Co. Clare, both in reputed Firbolg neighbourhoods. Seo R.S.A.I. Journal, vol. xxviii., p. 264, and xxy., p. 208.
 ${ }^{2}$ The fort was vested as a "National Monument" by order of the Irish Church Temporalities Commissioners, October 30th, 1880.
 ${ }^{3}$ Even the latter may be implied in Most Rev. Dr. Comroy's account. Sec above.

[^96]: ${ }^{2}$ If nust acknowlindee my indebsednese to those who halped me on the subject in rarious waysmamely. my late bouther, Halphi Hugh Weatrupp, the late Dr. W. Stacpoule Weestropp, Misa G. C. stapmole, Mins Neville, and K.v. E. M.gan. sos.; and in photography, the late Mre. Shackleton of Lutan, was Itr. Geurge Fogerty, B.N. Also, as already noted, to Messre. George Bell \& Suns for purasission to repruduce iwo pbotogiaphs.

[^97]: R. I. A. proc., VOL. XXVIIR., SECT. O,

[^98]:
 A Catn.... .f th \therefore, to loth Edward II, has since becn made, and has appeared in the 35-39 1: +.fte. I.K.1:

[^99]: ${ }^{1}$ Also called Multon and Motoun.
 "In Gilbert's "Hist. and Mun. Documents," among the Provosts (1.220 "-1250), at isbont this period (1233) appear William de Wetenia, Willian Russell; and Rogev Ownin, William lo I3as ; those uames are not found together in this capacity in any ather doument.
 ${ }^{3}$ Calledl also de Stames.
 "Called Mhilip de Uitonia in Register of St. Mary's; he is identical with Philip fit\% Stephen.

[^100]: ${ }^{1}$ In a deed in All Hullows' Reg. Hugh le Seriant appears in place of Laurence the Tailor.
 ${ }^{2}$ In September, 1279, appear Robert le Decer, Thomas de Coventry.
 ${ }^{3}$ In a C. 0. Deed, John Serjant and Nicholas the Clerk appear as bailiffs circa 1280.
 "Called "John" in Rey. All Hallows.

[^101]: ${ }^{1}$ In some documents callen? (rivydy.

[^102]: ${ }^{\text {b }}$ In ms., T.C.D., Robert Clifford uppeurs here.

[^103]: ${ }^{1}$ CC. Dublin Review, Uc:ober, 1205. pp. 327-337 : I'roc. R.I. Acad., 1907, xxyj, section C, 1p. 378-446: Hermathena, 1907, xiv, pp. 519-529: Irish Theological Quarterly, April, 1909, pp. 181-185: Kermatbenh. 1909. xT. pp. 353-364 : Zeit, hrift fur Celtische Philologie, vii, Heft 2, 1910, Pp. $4.5-4 \geq 3$.
 ${ }^{2}$ Till the elerenth or tw. Ifth century the terme Scottus. Scottia, Scorticns, etc., applied alunort ex fusively to Ireiand. Cf. Hefler, Als-Caltien her Sprat her hatz, Bd. ii, 1902, cols. 1406 - 1418 .
 ${ }^{3}$ The most important wurk on this aubject is that if \mathcal{F}. Keller, Bulder und Schrittruige in den arischen Manueripten der Schweuzerivben Bibliotheken Mitibeilungen det Antiquarischen Gesells. haff in Zurub, Bd. vil, 1551, pp. 59-97).
 ${ }^{3}$ Cf. Zimnier, Pi-uscise be Jahriuther, 59, 184i. pry. 26-59: Schulize, Centralblat für Biblio-th-keweren. vi. 1939. Pp. 193. 223, and 291: and Goug ud, Rerue d'Histoise Eccléeiastique, Lourain. ir. 19 19, pp. 21 and 255.

[^104]: ${ }^{1}$ Catalogi Librorum Manuscriptorum, etc., 1830, cols. 513-659; the total number of uss, in the library is variously estimated at from 1500 to 4000 volumes.
 zscriptorum Veterum Nova Collectio, tom. ix, 1837, pp. 159 sq .; Spicilegium Romanum, t. ix. 1843 , pp. 29 sq. Mai's edition was reprinted by Migne (Patrologia Latina, t. 103, col. 271 \&q. On Sedulius Scottus consult Esposito (Hermathena, xip, 1907, p. 534 ; xp, 1909, p. 360).
 ${ }^{3}$ Cf. De Rossi, Codices Palatini Latini Bibliothecae Vaticanae, t. i, 1886, p. 59.
 © Cf. Ruse, Die Handschriften-Verzeichnisse der K. Bibliothek zu Berlin. Bd. 12, 1893, p. 104.
 ${ }^{5}$ Haenel, Catalogi, etc., col. 514.
 ${ }^{6}$ me minelis cod.

[^105]: ${ }^{1}$ The lirmek tust of Eusebiun will be found in Migne (Patrol. Graeca, 22, cole. 1275-1292). 'Whe old Latin version, commented upon by Sedulius Scottus, has been printed by Vallarsi (Hieronymi Opera, Veronac, l. x, 1740, cols. 66\%-670), by Fabriciun (Bibliotheca Graeca, ed. Harles, \mathfrak{t}. vii, 1801, Pp. 400-401), and by Migne (Patrol. Iat., 29, cols. 529-531), all of whom have also given the Greek text. The Latin version was attributed by Fabricius (loc. cit., t. iv, 1795, p. 881; 10 St. Jerome; but the latter's authurabip, though probable, cannot be proved (cf. Vallarsi, loc. cit., col. G68). In the text of the Latin veraion incorporated in the commentary of Sedulius Scotus there are soro siight variations from the text as given by Fabricius. Theme will be noticed in the fout-notes :o the Appendix.

[^106]: ${ }^{1}$ sommo cod.
 ${ }^{2}$ On this writer and his works consult Esposito, Hermathena, xiv., 1907, pp. 525, 529; xvo, 1909, p. 361.

[^107]: ${ }^{1}$ On this work and ita author consult Eaposito, Hermathena, xv., 1909, p. 356.
 z The library of the Carthusians at Basel was acquirei by the Univeraity Library in 1592 (Haenel, Catalogi, efc., 1830, coll. 513).

[^108]: ${ }^{2}$ The library contains in all about $1.500 \mathrm{xs}$. .
 2 Catagus Conluum Manu Suriptorum qui in Ribliotheca Monaterii Einsidlensis servantur. Tomus I, Lipaise, lse9. A woy of this ralua'le wors was kindly presenked to me at Einaiedeln by the author.
 ${ }^{3}$ Cl. alss) Mrel. Sitzung-berir hite der ki. Akadenie in Wien. Philos.-Histor. Clasee, Band 5 5, 1457. p. 259.

 - Cf. whata, p. 63.

[^109]: ${ }^{1}$ Verzeichnis der Inkunabeln und Handschiften der Schafhauser Stadtbibliothek, Suhathausen, 1903.

[^110]: 'Since the the above was written Mr. R. 1. Buat has kindls called my attention to an article in The A aldemy (vol. xxx., $18 \mathrm{~s}_{6}$, p. 22i), by the late Dr. Whitley Stokes, in which the latter rucords the r"sulte of his examination of the Schaffhausen codex in the summer of 1886. His obscrvalions are in complete agreement with my own. "Reeres hus in his lext disregariled the peculiaritien of Adamman's orthography, which are often both curins and instructive. In fome instances, where the spe:ling of the wa, is perfectly correct according to Brambineh and the best Latin codices, it has heen aproited in the edition."

 Am ruting in all in 1793 volumes.

[^111]: ${ }^{1}$ Of. Esposito, Hermathena, xiv, 1207, p. 522 , and xv, 1909, p. 359.
 ${ }^{2}$ Cod Membr. Theol. cix, or, as it is now numbered, No. 740, of the tenth contury (cf. Denis, Codices Manuscripti Theologici Bibliothecae Palatinae Vindobonensis, i, pt. 1, 1795, col. 294 ; Trabulae Codicum Vindobonensium, i, 1864, p. 124).

[^112]: ${ }^{1}$ Correctio supra scripta: motibus.
 ${ }^{2}$ Several of the Greek words in brackets have been added by muself. In the Ms. they are witten in red ink, which has become so faded that I could only decipher a few letters in each word, and Dr. A. Fäh, who has since very kindly reexumined the Ms. at my request, has not been more successful.

[^113]: A why of thia raluable paper was wary kinlly given wo me by Pere Gabriel Meier at

[^114]: : The Cniternities of S witzeriand, lite those of mos? Continental countries, are well prorided with Chsirs of Melinetal Latinity and rif Palseography. Enfortunately the rame cannot at present be axid of our Irish Uriversines.
 ${ }^{2}$ Rheinau must be carefally distungashed from the more celebrated Roichenau. Rheinau or Augia Rrent is situated on a pictureaque island of the Rhirie, not far from the falls near Schatf. hausen. Reichenau is a fertile ialasd is the inferiop part of the Lake of Constance. It was known as Avgia Dives or Augia Maior The minatenes a: both piares were much Irequented by Irish manka in the midsle ages. The Reichenauses. are now moty at Karlorube. The majority of the

[^115]: ${ }^{1}$ The title in square brackets has been added by myself. Cf. supron, p. 64 .
 ${ }^{2}$ The words printed in italics are those of the old Latin translation of Eusebius, commented upon by Sedulius Scottus. In the ms. they are usually written in red ink.

[^116]: ${ }^{1}$ hic Fabricius. ${ }^{2}$ est om. Fitbricjus.
 ? dixerunt Fabricins.

 * numerorum Fabricius.

[^117]:
 ${ }^{3}$ quidan cod. Feiba seu in quibus n codicis margine addita surit.

[^118]: 1 Xínun cod. ${ }^{2}$ Ximum cod.
 ${ }^{3}$ In tertio-designatur: Haec verba in margine codicis inferiore scriptas sunt. ${ }^{1}$ in in could. [13*]

[^119]: ${ }^{1}$ lineae Fabricius. ${ }^{2}$ ad om. Fabricius ${ }^{3}$ inserta Fabricius. de decem Fabricius.
 ${ }^{\circ}$ adsignetur Fabricius.
 ${ }^{6}$ Is om. Fabricius, ${ }^{\text {º }}$ secundum om. Fabricius. ${ }^{\circ}$ com Fabricius.

[^120]: ' relegens Fabricius.
 potes Fabricius.
 ${ }^{2}$ propositum Fabricius.

 - вирramaprionihua Fabri»ius.

[^121]: ${ }^{1}$ Cf. supus, p. 64.

[^122]: - Verla in uncinis inclusa an codicis margine scripta sunt.

[^123]: ${ }^{1}$ Sic corr. superser. ; Non cod. ${ }^{2}$ Sic com. superser. ; lxynur cod.
 ${ }^{3}$ facius con.

[^124]: : Prow. R. I. A., rol. xxir., Sect. C, p. 257.
 ${ }^{2}$ Journal R. S. A. I. vols. xxir.-xxrii. "Origins of l'ruhistoric Ommment in Ireland." See nlso "Irish Conper Celta," Joumal of Anthropelogival Institute, vol. xxai., p. 265, and "Copper II abmers," I'ro", R. I. A., vol. xxvii., sect. C, p. 91. See esperially p. 111.

[^125]: ${ }^{1}$ Horae Ferales, Plates xiv. and xvi.: B.M. Guide. Iron Age, p. 93.
 ${ }^{2}$ Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1909, pp. 363 and 364.
 ${ }^{3}$ As Prof. Kuno Meyer points out, it is a long-established fact that "Scotia, down to the tenth century at least, was never used of Scotland, but always meant Ireland." See Transactions, Cymmrodorion Society, 1895-6, p. 60.

[^126]: 'Reprinted in the Introduction to M. D'Arbois' translation of the Trin:-"Enlèvement du Taureau Divin et des Vaches de Cooley. La plus ancienue épopée de l'Europe occidentale."-Livr. i., Paris, 1907. As these pages were passing through the press, M. D'Arbois de Jubainville passed away in the fulness of years, an irreparable loss to Celtic studies which he did so much to foster hoth in France and in these countries. The translation of the Tain, of which only a portion has appeared, occupied the last fow yoars of his life.

[^127]: 'In erturs of dates in the Four Manters Bee the Rev. Dr. Mar Carthy's Tudd Lectures, Lect. 1 ., p. 155, also Leet. 118., pp. 281 and 301, in whith he goes fully into the subject.
 : Zeitschrift fur C. P., vol. iii., p. 14.
 "Rerue Celtigne, ral. xx., p. 433.

[^128]: ${ }^{1}$ Edwatd Gwynn, the Metrical Dindshenchas, part ii., R.I.A. Todd Lecture series, vol. iv., pages 51 and 53.

[^129]: ${ }^{1}$ We are indehted to Professor Carl Marstrander, of the School of Grish Learning, for drawing our attention to the final A.

[^130]: : The native aword found in emmoga nud thoughont the country are small and light (tig. 3),
 nrms were in time more equalized. The origin of the type of sume of the swords whirh broaden to a triangular puint has not ret been diacovered. Threre are many of these light burords in Ireland which

 No. 1 found near Toome Bridge.
 No. 2 found in Ireland, exact locality unrecorded.
 So. 3 found in Iunshaughlin Cmanng.
 nppear to be contempomry with the other cmnnog swurds. As ghowing how litte things were underatood in the time the Island-bridge find was described, it may be mentionced that Dr. Todd, in a note in bis introduction to the "War of the Gaedhil with the Gaill," says that "The Irish swords of the period were short, and of bronze The Daniah swords were long, and of steel." lion had long been known, and the bronze swords belong to the prebistoric period.

[^131]: 1 Iorange, Den Yigre Jemalders Svard, p. 3t.

[^132]: ${ }^{1}$ R. I. A., Todd Lecture Series, vol. iii., pp. 244, 245.
 ${ }^{2}$ Annals of Ulster, MacCarthy's Introduction, vol. iv., p. cix.

[^133]: ${ }^{1}$ I give this section in its order, but regard it as forming no part of the original tract. Its object is to amend the earlier reckoning. For Mac Carthy's translation and emendations, see Todd Leet. iii., p. 262.

[^134]: : Fie:i ia. u. maviaien for A. ii:-
 ".. ILe se-ond age . . . piagre" is eridentir inierpolared. See sec. is
 ". Tiil. . . fingue" witerpulate

[^135]: ${ }^{1}$ The incorrect insertion of ig before fas is interesting as an indication that the modern a'fás =ag fhas dates back as for as the fourteenth century. The mistake is repeated in IV, 6, so comnot be fortuitorns.
 ${ }^{2}$ Lists of Assyrian kings are bere given.
 ${ }^{3}$ This section so far is given by Mac Corthy, p. 263.

[^136]: : Read as in Lecan. $=$ Read bo che Lliadain.
 2 The nmision of the name shoms that the cornpiler of the Leabbar Gabhaia had a continuous text of \% whith he trrike up into see tions. Baithasear is tho last king nomed in the preceding section. Enut facos of Eifi intervetu. The Lecan kcribe noted the omisciod and re-inserted the name.

[^137]: ${ }^{1}$ The remainder of the synchronism falls within a lacuna of several missing puges of $B B$, and the continuation is taken from the Book of Lecan. It will be noted that there is no break in the sequence.
 ${ }^{2}$ Prof. K. Meyer supplies tuinthed di, adbar.

[^138]: ${ }^{1}$ Perbaps the Iberi of Spain are taken here to be akin to the Iberi of the Caucasus.

[^139]: ${ }^{1}$ Read lxx. hebra lin a scriptore.
 ${ }^{2}$ Read xiii.
 ${ }^{3}$ Here the passage containing the statement about the battle of Taltiu is contradicted.

[^140]: The end of the thind rentury is miscalrulacel. Porhaps the writer unwittingly substituted the fire feur of Claudins, 264 , for the first of Valerian, 253. The nther and smaller errors may be due to rariations in chmongraphy or to a miareading of the Roman numerals. I'be A.D. reckoning does not appear in the tract. A.b. dating appears not to have drsplaced the older methods in Ireland until the ninth rentury Mac Carthy. Intrnduction to Amnla of Clefer, rol, iv., p. Eciv).

[^141]: ${ }^{1}$ Read xi. $\quad{ }^{2}$ Some corruption or omission occurs here. $\quad{ }^{3}$ Probably "declxxi" misreal as "dexxxi." "Probably "main," the epithet in Flam's poem, misread as "meini." The father of Murchad was Bran. ${ }^{5}$ Omitted, owing to similarity of the adjacent names. ${ }^{6}$ Probably "12th," xii, not iii. "Flann here borrows the opening words of a poem by Dublitir Ua Huathgaile LL 141 B (BB 7β):

[^142]: ${ }^{1}$ Read Co 日aith Fergsile i Temraig (') "to the reign of Fergal in Tara." ${ }^{-}$Read Main (?) and 30 probsbly for mc. Find abore, since hw faeher wan Bran. ${ }^{3}$ Read lann (兴). "Read colad. "I nuppose benaim to be used as if the object were cloc "a bell." "Conchobor Ua Macl-Sechnaill, king of Meath, 1033-1073: Aed C"a Conchobuir, k. of Connacht, 1033-1067; Gairbith Ua Cathusaig, E. of Brega, 1045;-1061: Diarmait (son of Maelnambi), k. of Leinster, 1042-1072; Donnchad (son "f Brisn, k. of Munster, 101f-1065; Niall (son of Eochaid), k. of Claid, 1012-1062; Niall Ca Néll, k. of Ailech, 1036-1061. Flann died in 1050. I'be poem may be dated about 1050.
 *See note at the end of this paper.

[^143]: ${ }^{1}$ Nowhere else in the tract are provincial kings named. This indicates that the kings of Munster and Leinster are named as contemporary with the writing of the tract. Flann imitates this method of dating in his poem, naming seven kings.
 R.I.A. PROC., VOL. XXVIII., SEOT. 0 .

[^144]: ${ }^{1}$ For the silence of Nennius about the Tuatha D. D., see Nonnirs V'indicatus, pp. 221. 222.

[^145]: - Ma Car:brie profer inference ehould be that A is founded in part on a very ancient document :
 [Irish] chronicles we poseess." Todd Lect. iii., p. 369.

[^146]: "The map of "Orbis terrarum secundum Eratoetbenem et Strabonem" in Spruner's Atlas Antiquus (Gothae, unccct.) shows clearls the materisl on which the story of the migrations of the Gacdhil was founded.
 ${ }^{2}$ This substitution alreads appeare at the end of the eighth century in Nennius.

[^147]: In each of these words the syllable par is represented by a p with the stem crossed ($=$ per) aud with a overwritten ($=a r^{\prime \prime}$ or $p^{\prime} a$), so that it is possible to read perar.
 ${ }^{2}$ Here $2 x x^{2}=t$ riginta precedes, and probably the final $-t a$ read as -ca has been added to the misread Lapales $=$ Eupales. For the misread l see also Mithrous, Tentaens, Ophratheus in H.

[^148]:

[^149]: I Some contractions may have been specially cast for Irish use.

[^150]: : I'rueediogs of the Rogal Irisb Acaderiy, vui. axvi., Sert. C. So. 13.

[^151]: ${ }^{1}$ Printed in Charfae, Privilegin, \&e., p. 4, and in Miqcellany, I.A.S., 1886. Vol. i., p. 42.

[^152]: ${ }^{1}$ No Robert Serjeant was bailitf. William Serjeant held the otice in 1384-5.

[^153]: Skereman acquired trom ber. (Deeds of St. Werburgh's.)

[^154]: ${ }^{1}$ Possibly a frank house (liber hospest).
 "Gilbert's Calerder, vol. i., p. 224. Soe also" Notes on an unpublished Inquisition, 1258 " (Alewyth, \&e.), II. F. Berry, I'roc. R.I.A., xxiv., Sect. C, pp. 44, 45.

[^155]: ${ }^{1}$ Vol. I., Plate VI. $\quad{ }^{2}$ Page 198.
 ${ }^{3}$ Cells in walls are rare in Aran and unknown in County Clare, but occur on the coasts of Mayo and Kerry in many stone forts. As we have occasion to use Mr. G. H. Kinahan's interesting articles on Burren and Aran in Hardwicke's "Science Gossip," wol. for 1875, we may here note some necessary comigenda:-Page 83, the forts in Burren are rarely (not "often ") on "conspicuous heights"; "the number of remains and sites of antiquity" do not "seem small," but are surprisingly numerous; "most of the large ones (forts) seem to have chambers in the wall," page 84; no such feature is known to have existed in any of the forts of Burren ; same page, the puth to a fort there named is straight, not "serpentine," and the abattis from 50 to 100 feet, not "two to three hundred yards." But the articles have many field-notes and sketches of value apart from the preface. The series begins on the geological features of Burren and round Gort in 187\%.

[^156]:

 "hurating" it was a linge, chin-hanc-like ecorik lurgal, rumme up to the river fonm I whe Wirlem Cumiln.

[^157]: ${ }^{1}$ Augustin MacGraidin's "Vita Sancti Endei." witten ahont 1380, a work umasually devoid of topographical and archaological interest.
 ${ }^{2}$ The Calendar of Oengus, "Thrice fifty currachs of Roman pilgrims." "150 pilgrims from over the sea." "Seven monks of Egypt." There was also an inseription of "Bran the pilgrima" found at Temple Brecan.

[^158]: whose abbut belonged Canonaght or Ferreu na prioraght and Balteboght, also the ruined religious house of Monastroconnaught (Manister Kieran), and Iands of Ardelone. Turtagh, Farrenconnaght Slevin, Ballecounell, Cloghaneprior, Onaght, Farrane Camonaght, Ochill, Creaghcarragh, Reynbor, Carrilmore, Killeyne, and its parish church, Ballogiblle, Arkin and Sawuskerton (? Carrowkerton). Turtagh is probably Turlaghmore in Onaght.
 'See the "Book of Rights" (ed. O'Donovan).

[^159]:

 Su Jorl Lunraven: " Notes on Irith Arthtecture" (1 sis., piate vi. The only detailed view, and of unfurtumateiy [artly defaced, of the fort before the resturation. In later times, so fur A. 1 know, the only views publiobed are those (hy preant writer) by Dr. A. Guelhard, "Campo et Enventus" (rongres I'réhisturique, iii.), pip gop and 11017 .
 ${ }^{6}$ This was notml hy l'etrie as "o a serpentine way diflicult to trace " (or Military Arcbitecture

[^160]: ${ }^{1}$ Ordnance Survey Letters, County Galway, p. 243.
 ${ }^{2}$ He repeated this view to the British Association in 1867. "Aran Isles" (Martin Haverty), p. 14. The abattis, no doubt, favours an early date, but the fort in present form is too complex to be dated to very early times, apart from all question of the endurance of the sea-tom headland.
 ${ }^{3}$ W. F. Wakeman, in "Aran, Pagan and Christian," 1862 (Duffy"s Hibernian Magazine, N.S., vol. ii., p. 567), sajs that O 'Donovan counted twenty huts here. "Poulgorrum under the cliff could swallow a ship to the top masts." Rev. W. Kilbride, in "Iararna," 1868 (Royal Hist. and Archrol. Soc., vol. i, ser. 3, p. 112), says all the huts in Dubh Chathair were oblong ; but O'Donovan's plan contradicts this. Sir William Wilde mentioned that he had sketched the most remarkable hut on his visit, before 1857, but they had been nuch dilapidated since then ("'The Aran Isles," 1859, p. 14).
 ${ }^{4}$ University Magazine, 1853, vol. xii, pat i., p. 497, he had "come from Dhu Cahir and the Atlantio side," but barely alludes to "the lonely, crumbling pagan fortress, and the utter solitude of the dark, marblc-ribbed desert."

[^161]: ${ }^{1}$ Sen his Ilate ri.
 : Folume xxviii for 1886, p. 2is

[^162]:
 = They were taken in Itptil, 14 Sit: th louter wat writen on Augubt 26 th.
 incouthie fait, larit Dunraven nothes a large mast wolled into the face of the chaf near Dun
 the swowpirg away of all their debriv, rendor the flinging of these great stones up on the eliffs at this most exprosed spat the lese incredible. Also waves gain strength when the wind chases them sideways down a long range of coast, and rush over a projecting heudland, even if of considerable height.

[^163]: ${ }^{1}$ Ordnance Survey Letters, p. 251.
 "Hardwicke's "Scionce Gossip" (187n), p. S4. We copy his skutch as little known.

[^164]: Juhn O'Fluarty, Trans. R. I. Acad. xiv. (Antiq.) p. 133, and O. S. Letlers, Oghil. Thuse 18 probibly an allusion in Cueileces song wo russet oaks in Aran (Sulva Gadclica, ii., p. 105,

[^165]: ${ }^{1}$ As bis fine photngtaph shows, it alsi prores that a long rearlb of the outer wall to (1 think) the weas, was either entirely levelletl to the hare cmag. or only three fo four coursen remained (Plate Plll.). This is now reluilt.
 ${ }^{2}$ Plate VI., fig. 2.
 ${ }^{3}$ Plate VI., fig. 1.

[^166]: ${ }^{1}$ Roy. Soc. Ant. Ir., vol, xxvi., p. 366.

[^167]: "Dearendants of Eaghan Mür (" Mogh Nuadat"), who divided Ireland with King Conn, and pare his 1,5 -name to INeth Mogha, "the southern half" of Ireland in the second century, and with his son, Oillill Olom, King of Munater, is ancestor of the rhief Munster tribes according to the mythis al pedigrees.
 ${ }^{2}$ So also St. Patrick and his companions were supposed to be fairies (" viros sidhe"), and
 misai.n.
 30.S. Lettera, Galway, p. 222. He fold the British Aegoriation that the fort was " 2000 years old," natl repeated the thenry of the wall being built in sections as a precaution against sapping

[^168]: or battering. Petric gives a plan in "Military Architecture," showing door to north-east, steps to north, west, and east, from the aroa up; from the south side of the second a stair ascends to the top. The wall is of three sections.
 ${ }^{1}$ See Plate VII., fig. 1.
 ${ }^{2}$ The sides remained in 1839 ; it was 5 feet 9 inches wide.

[^169]: 1 Its nearest equirabont 15 at reces with a singice shelf or step half-way up the ternace in Cahernagrec, Dangun, in the Buren, County (\%)are. Journal R. S. A. I., vol. xxxi, pp. 280-1.
 ${ }^{2}$ Sum Plate TTT., fig. 2.

[^170]: ${ }^{1}$ This fort is evidently the "Lort Canidk" of Mr. (\%. H. Harthorne's somewhat inaceuate paper (Archeolugia (dambensis (N.S.), iv. p. 298). I have found the name in no other phace. "Fort Carrick at much smaller work, a single circuuvalation, but the masonry, sallyport entrance, and alcove were analogous to the others."
 ${ }^{2}$ Military Architecture, p. 69.
 3 "The Aran Isles" (the excursiun of the British Association, 185i), Martin Haverly, 1859, p. 14.

[^171]:

[^172]: ${ }^{1}$ Plate VII., fig. 2. I owe this view to Dr. George Fogerty, R.N. ${ }^{2}$ Sec imima, p. 198.
 ${ }^{3}$ First noted by Petric, "Ecelesiastical Architecture of Ireland," p. 130, with an excellent illustration, often since reproduced. The photograph reproduced, Mate VII., fig. 2, is by Dr. George Fogerty, R.N.

[^173]:

 the nurth and south. The semond hut is of the north-east. Ifalf its roof ia poule; it is 18 feep byy
 prives the dmensiona a in the text.

[^174]: ${ }^{1}$ It lies beside the bohereen, south of the cbapel.
 ${ }^{2}$ Perhaps it was " small" compared to Dun Oghil at the other end of the settlement.
 ${ }^{3}$ See "Aran of the Saints" (J. Grene Barry), R.S.A.I. xvii. (consec.), p. 499. R.I.A. PROC., VOL. XXYYI., SECT. C.

[^175]: t "The Iriah Bublier," x xix. '18s", p. 103, duerribe it as 10 feet by 5 feet 4 inches, the door 2 feer wide othe waila simet thik.
 : I did not hwat another name, "The Watco Tower, " in my earlier visita.

[^176]: ${ }^{1}$ Port doibehe, see 0 'Flaherty, 1685 , "hIar Connaught," p. 83 , "portus dulii," in the " Lile," where the barrel of corn came ashore by a miracle.
 ${ }^{2}$ See "Iararna," Roy. Hist. and Archaed. Assoc., Ir., vol. x., consec. (Ser. 3, vol. i.), 1865-9, p. 109.
 ${ }^{3}$ The list given by Quelaeus, about 163 万, names a Temple Maclonaa, near the parish church of Killenda. Unless "near" is used in a nurow sense, one suspects that it is 'Templenumrawher, for the component "long" ship appears in Cali na luinge. "Mac" is a common mistake for other components, "an," "'na," \&c.

[^177]: : Aharise are father unrwien uratories, enmetimea near weils. There is a characteristic one in the wiinge of Kiomman.
 : Trere ia alon a fla e criledrisatieminna, beaido Bungowla, on the north-east of that rillage.
 "Son "Christion Inarriptione," wnl. ii. Miss Marguret M•Sair Stokes, Ilates xi.-xpi., [8. $15-33$.

[^178]: invaluable for purposes of collation. For full details I may refer the reader to the following:P. Gabriel Mcier, Die Photographic im Dienste der Palagraphie (Compte Rendu du quatriùme congrès scientifique international des catholiques tenu à Fribourg (Suisse), Section V, pp. 436-445, Fribuurg on Suisse, 1898); Die Forlschritte der Palaographie mit Hilfe der l'hotographie (Centralblatt für Bibliothekswesen, Leipzig, xpii, 1900, pp. 1-32, 113-130, 191-198, 255-278); Actes du congrès international pour la réproduction des mss. tenu a Licyge les 21,22 , ct 23 abut 1905, Bruxelles, 1905; and, above all, the masterly summary by the late lamented Byzantine scholar, Kanl Krumbacher, Die Photographie im Dienste der Geisteswissenschatem (Nente Jahthücher für das Klassisehe Altertum, Geschichte und deutsehe Literatur, xwii, 1900, pp. 601-659, 727),
 ${ }^{1}$ Abbott, Catalogue of mss. in the Library of Trinity College, Dublin, 1900, p. 193.
 "Some of these Reeves' mss. have been uthlized by Plummer in his admirable Vitae Sanctorum Hilberniae (ef. tomms i, 1910, pp. xliii n., lxi).
 ${ }^{3}$ Liber iii, cap. 14 huius editionis, "pro me ualde misoro Domini scruo Conchubrano." In ii, 7, pp. 221, 222, infra, he shows minute knowledge of local topography.
 © Cf. Index Nominum Propriorum s.v. Scotia.
 ${ }^{5}$ Cf. Zimmer, Nenuius Vindicatus, Berlin, 1893, p. 29 ; Kuno Meyor, Trans, of the Society of Cymmrodorion, 1895-96, p. 60; Holder, Alt-Celtischer Sprachschatz, Bd. ii, 1904, cols. 1406-1118.
 ${ }^{6}$ MS. H. J. iv, 11, ef. Heiberg, Oversigt over det Kongelige Dmske Videnskabernes Selskats Forhandlinger, Copenhagen, 1889, pp. 199, 202, and Trube, Abhandungen dor K. B. Akademie zu München, Philos.-1Philol. Classe, 1891, Bd. 19, Abth. 2, p. 352.

[^179]: 'Surh, an attempt has been made by the late Canon ()'Ianlon (Lives of the Irish Saints, vii,
 However, in his uwn unıritial way he gives the fullest general account of St. Monenna that can at present be obtained short of reading the actunl Iatin lives. He has also collected all the information avalable from Irishs source. On the importance of giving accurate texts of the Latin lives of Inah samte, see the interestang review of Ilummer's book by Dr. Mac'Cafley (Irish Theological (24atherly, July, 1:11), po 334)
 1. If
 Geleharte Anzeigen, i, 1891 , Ip. $1.53-2(0)$ has criticizell this publivation very geverely ; but, though by mo meuns perfor, it has renderet great services tos students of Irish hagiography (cf. Phummer, Vitse San torum lliln minee, tomus i, 1910, p. ix it). To all those who wish to unterstand the nuture of Irish hagiography the two volumes of I'lummer's berks just quoted are absolutely ceseminl (if. eaphially (whe i, pp. (axis sq.).
 manme death of l'pufenor Zinmer. His loss will be equally great to students of Celtic philology at. (te) there of Hitherm- Laten litorature.

 "It is to be printed, along with the Angloe N", rman poem mentioned below, from hoth these M*s. by l'rofessurd. T. Baker, of sheftield, in one of the fortherming volumes of the Literary Society - stuctant.

[^180]: ${ }^{1}$ Cf. Morstmann, Nova Legenda Anglic, ii, 1901, p. 198 n.
 "Luc. cit., pp. 198-213. Two other mss. of this abridgment are in existente, Uxford, Budleian, Timner No. 15, fol. 423, written in 1499, and York, Cathedial Library, xvi, c. 1, ©f. Hurstmann, loc. cit., p. xy.
 ${ }^{3}$ Cf. Horstmann, loc. cit., p. ix n.
 ${ }^{4}$ Hawdy, Descriptive Catalogue, ete., i, pt. 1, p. 100. A new ame complete catalogue of the valuable collection of M8s. at Lambeth Palace (about 1300 volumes) is much to be desiret.
 ${ }^{5}$ Hardy, loc. cit., p. 99 ; Macray, Catalogi Codicum Manuscriptorum Bibliuthecte Bodleianae, Pars Nona, 1883, col. 30.
 ${ }^{6}$ Cf. H. Suchier, Ueber die Vie de Seint Alban, Halle, 1877, p. 149, and Gaston Paris, $I_{\text {aib }}$ Littérature Française au Moyen Age, 1888, p. 215. An edition from the Oxford Ms., and also from one in a private library, is in preparation by Professor A. T. Baker for the Literary Society of Stuttgart.
 ${ }^{7}$ The principal orthographic peculianties of the ms. will be found noted in the Index Verborum at the emi of this paper.

[^181]: 11.m. rit., p. s1.

 ${ }^{2}$ Thene lines hase been already potined, of Acta Sanctorum, Julii, omus ii, p. 312; Hardy, bor. ait - thata, pp. 95, 140: "Manlan, Lives of the Iriwh Sainth, vii, p. 63.

[^182]: ${ }^{1}$ It has nlready been printed by IIardy, loe. cit. supra, p. 95, who momarks, [these lines] "appear to be an abbreviated and corrupted form of the Rhythmical Hymm of the Seven Joys of the Virgin Mary, in the recitation of which Thomas Becket is said to have experienced great pleasure."
 ${ }^{2}$ Mardy, loc cit., p. $97 .{ }^{3}$ Isa. 9, 2. Math, 4, 16.

[^183]: ${ }^{1}$ Thal. 4i, 3. : ii Cor. 6, 16, i Cor. 3, 16. irs. Act. 4,32. [Obrimum] conr. optimum cod.

[^184]: ${ }^{1}$ Cr, i Tim. © 9.

[^185]: ${ }^{1}$ Cf. Matth. 6, 10.
 ${ }^{2}$ This is a reference to the Hymn of St. Ultan in praise of St. Brigid:
 "Xp̆s in nostra insola quae uocatur Hibernia ostensus est hominibus maximis mirabilibus," etc.
 (Bernard and Atkinson, Irish Liber Hymorum, 1898, i, p. 14.)

[^186]: ${ }^{1}$ Ci. Apoc. 2, 10.

[^187]: ${ }^{1}$ I'sal. 7, 17.

[^188]: ${ }^{1}$ Evang. Joannis, 10, 27, 28.
 ${ }^{3}$ Gen. 33, 10.

[^189]: ${ }^{1}$ Matth. 10, 8.
 Lvang. Joannis, 14, 12.

[^190]: ${ }^{1}$ Prov. 11, $11 . \quad{ }^{2}$ Prov. 10, 22.
 ${ }^{3}$ This heading, with the list of chapters which follow's here, ought to have been inserted by the seribe at fol. 20ro, before the begiming of lbook ii (p. 217, surra). I have, howerer, thought it well to follow the order of the ms.

[^191]: ${ }^{2}$ This chaprer dues not ow ur in the wa. The incident is not related in any uf the hithertoprinted

[^192]: ${ }^{1}$ Math. 7, 7.
 = The life of St. Benedict oceupies the cmite second hook of the Dinlogues of Nt. Grogmy the Great (ap. Migne, Patrologia Iatina, 66, eols. 125-204). ${ }^{3}$ Psal. 112, 3. (Galat. 3, 28

[^193]: ${ }^{1}$ Matth. 26, 21.
 $=$ Mathl, 2b, 22.

[^194]: ${ }^{1}$ In the same hand as the Vita. The hymn is not written according to the netre, but in full lines as the page admits. The metre is marked by dots.
 ${ }^{2}$ Letters or words printed in square brackets are omitted in the ms.

[^195]: ${ }^{1}$ There is a little blank space before the first "m."

[^196]:

[^197]: 'In :he arnue hand as the Vita and preteding hymons. ${ }^{2}$ spare of thren or four letrets.
 "Spareaterablatas. "May be Eninen.

[^198]: ${ }^{1}$ In a court hand of the thirteenth century.
 2 Or perhaps post.

[^199]: ${ }^{1}$ Some of the place-mames are so corruptly written in the ms, that I have not been able to identify them.

[^200]: 1910

