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Mathematics. — “On an arithmetical function connected with the 

decomposition of the positive integers into prime factors.” 1. 

By J. G. VAN DER Corput. (Communicated by Prof. J. C. 
KLUYVER). 

(Communicated in the meeting of May 27, 1916). 

Let # be any arbitrary integer > 1 and resolve w into prime factors; 

let ¢, represent the smallest exponent of these factors and let a, 

indicate how many times ¢, occurs in the series of this exponents. 

Moreover we take e, =O and v, represents the greatest divisor of 

u, for which ¢, >> m, m being any arbitrary positive integer. The 

object of this paper is to deduce a formula obtaining two general 

arithmetical functions /’ and f, satisfying four relations, n representing 
any positive integer, viz. 

1. for Bs mand also Toren 1, 1441 7 

F(a) == 05 

29d, if e, Sm, 

7. =U; 

ae. for. éy = Ul, a, =n, . 
; VO el CAT 

4th, F (u) = O (vy), 

u having a constant value < ——_———_. 
m (m + 1) 

The integers 7 and » are called the parameters of the function 

F and f the function corresponding to £. 
This article, now, is intended to demonstrate the formula 

1 1 \ 

SF OIS pa +0 En for == 1% 
a8 log « (log x)? 

“u=l i 2 nt, CS 

Ef ee 
log x log « 

for any arbitrary integral positive value of 7 and this proof will 

be given in $ 2 for n—1, in $ 3 for the other case. The modulus 

of the congruences, for which this modulus has not been mentioned, 

is in this paper the arbitrary positive integer #, x represents a 

number > 1, / an integer, prime to 4, a has a constant value, viz, 

—— oui > AGP 

adn ie 
ui 

ug = | 
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h is the number of positive integers <, prime to k, b is the 
number of incongruent roots z of the congruence 

ea = 
and the sum 

S Fw 
tT 1 

uam=l ym 

is extended over all the positive integers u, for which the congruence 

nam | 

has roots in z. 

$ 2. Lemma. 

Va f 5) Ss Fey log? oy, 
i/ 

0 mi 

ym 

1 

x am 

Se EN ES —— 
alll A ) 3 = 7 

ai ms Sf) +O : ‘ 
t= t v1 1 log v 

and IE 

yin a 

Proof. From the relations satisfied by the functions /’ and /, 
it follows, u being an integer, for which v, has the value », that 

n= f(t ee 0 (v,.") = Our) 

ot 1 
and for — >s >-——— + u the left member of the identity 

m m1 

1 : ipl See 
i Tate 2 plm 2)is—#) EERE p= VS 

dr Mi 

is a convergent product and consequently the right member a con- 

vergent sum, therefore 

Hy "(a5 x Ov” 

Be tie Een 
Jil vs v=2 v 

ey > m 

bed On neer Oli 
y=2 VST 

ey > m 

Hence 
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VS Feyloge _ o( : ) v=l Se v=1 ys 
zm ey > m 

= O(1), 
z x 

= f(v) = & vs flv) —g(v —1)} 
vt S= 

2 
leo SAP 

4 z—1 

== O(a) . (1) = ed O(1) {(v-+-1)s—vs} 

ut 

xl 

= Oes) +. O 2 = KG +1)s—vs} 

1 — 

= Ola) + O {fa]s—1} 

= Os) 

1 

B 
~ \ (log 

and 

Ae ae end 
v=r-+1 vi +1 1 ee 

1 m v m 

g\ a x 1 1 
= AE | & a(0)] —— : | 

cee: vest ge Bf 

[e+1]™ ym (2 +1)” 

== (y : als Ss: ATi 
i 

=O |+ 3 o@). ee 
Ee v=a+1 aie a 

em ym (vt1™ 

consequently 
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ers LOES SEO) 
Del A il ih v=V r+ ee 

am ym pm 

x v 1 8 10, of 
Ol 8 log v 

ym 

Identity. If w, and w, represent two arbitrary arithmetical func- 

tions, the sum 

= w,(d,) w,(d,), 
did, Sa 

extended over all the positive integers d, and d,, of which the 

product is not greater than 2, is equal to 

fie SE Ue iy 

where 

es | 

? ENEN 
Ee nes 

x 

Ws dy 
=» ¥,(d,) RNC 

dit iit 

; Id Al We 

Ws DN YW, (d,) 

qi 
Ee 

and ijn = raf gs (d,). 

Proof. A term w, A pe ), occurring in the sum in question, 

appears in the formula 7, + 7’, — 1,7, | 

ford, SW ER Pe: exactly 1 +1—1=1 times, 

for de SV > Va exactly 1+ 0—O=1 times, 

ford > 1a de exactly 0 +1 —O= 1 times. 

Lemma. If we take 7 =1, the sum 

= Je), 
pro<Sa 
p™v = 

extended over all the positive integers v and all the prime numbers 

p, for which the relations 

p™vSex and pmy=l 

exist, is equal to 
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where 

bm @« (wv 
led Ee Je) - 

h = 1! - 

van==l ym 

Proof. Let /, and /, be two integers, prime to 4 ; if the congruence 

yma] 
1 

has no roots in z, we have 

= (0) 0, 

prva 

pm =I, 
v=l, 

since it is then impossible to find a prime number p, satisfying the 

congruence 

py =. 
Let us now, however, consider the case, that the congrence does 

possess roots and consequently has 5 incongruent roots z,, 2,,..., 25. 

The preceding identity gives 

2 Eten Aen 
pr v < Tt 

pe TZ 1 

KE 

where 
Miz 

Tr Tl) ed 
es pm < = 

put, 

v 

pm 

T=. 28°" So, 
pr” aS Ve v= 

om == l oe 

1 de T,= J f(r) 
= 

and 

Td 
pm <= Ve 

pe = l, 

From the preceding lemma ensues 

1 1 

Mer | = ( a T, = 0;——_——_} = 0 
I Va) (log «)? 

and for p™<Va 
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= 
am 

= 0 ET 

Ten 

3 ( 1 7a 
1 

ym 
ay | (a 

2 (log i) 

hence 
ES 

T,= > Jay 
mee \P (loge) 

. pik 

En 

(log x)’ pms Va P 

pm = t, ; 

1 
; és 

En en 1 

== 0 JD 
ic =) En 

1 
5 1 

== (<5) ° (6, (log rm) 

1 

am 

ae) 
From the inequalities 

Ee 
„2m 1 

0<7T.< EAS 51<am 
pr <a n= 

p=l 
ensues 

m 

Tiss 0 (a!) 

and now only the term 7’, is to be considered. 
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From the well-known proposition ') that the number of prime 
numbers <.« and congruent to / with regard to the modulus #, is 
equal to 

2 ai cea) a 
P =/ 

ensues 

ee e= = 1 
u 

pm 5 en - = 

v Pp <= Ee) 

pr—l a Ke 

OS © 39 Fay ey Sb 

= p> 1 

i 

“# m 

es r<(“) 

P == Zp 

1 
a \i v m 

b | 1 v v 

me Ton BEE ak 78 
a \m x \m )? 

log | — log | — 
(ij 

1 
= bm ef 0 em 

ES 

log — log = 

PEPR log v 

log ~ Bs. log x . log ~ 

log v 

nhs ee FS x ar ITE a)? 
therefore 

1) E. Lanpav, Handbuch der Lehre von der Verteilung der Primzahlen, 1. p. 468, 
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\ 1 1 

$ Va bm wm : 8 am | 

T, = 2 fl) (— +O. le See a 

v= fs v = U 8 

vlg hym log Een ym log == 

v OE fo" 

1 1 

en | bm om am logv | 
= & f(r) dt O.- 

v=1 a ise 

vl hom log « vin (log av)?! 

1 1 ; 

bm am VE fv) am VX | F(v)| log v 
== DD Cpe Sy 48 | a 

log 2. (log x)? vt fee 
vl, ym v—I, pm 

and according to the preceding lemma this is equal to 

bm am | x f(v) HD 1 | aa am | 

h log «x |= jk log « | 7 (log w)*| 
vl, ym 

a an 
bm am wo f(v) | em 

if; 1g v =i psf | og ©) 

vel, ym 

By substituting the values found for 7, 7, 7, and 7), we find 

the relation 

aso ti Ee Pe 
pe v < U 

pm =, 
vl 

1 LS ni 

imam Ole 
Loge ea (log DE ; 

vl yn 

if the condition that the congruence 

gm =, 

has roots, is satisfied. 

Write down a series, composed of / integers prime to / and not 

containing two numbers, which are congruent to each other, with 

regard to the modulus &; give to /, successively each value of this 

series, satisfying the condition, that the congruence 

- has roots and determine for every value of /, a number /, by the 

congruence 
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the relations thus obtained, added give in the left member 

= fe) 
pm v Sr 

pr v=l 

and in the right member 

us ES | 
bmam w f(v) 0 am 

hloge y=, 1 (log a | : 
ym 

v assuming all the positive integral values for which the congruences 

v=l, gm = |, Li=l 

are possible, i.e. for which the congruence 

zm] =y 

has roots and we conclude 

1 1 

Pies oes B f= + Oj, 
prvse loge (log z)° } 
pr v=I 

where 

bm x f(w 
eS en AG), 

h v=l dl 

ym 

zm l ==. 

We have got on far enough now to proceed to proving formula (2) 

for n= 1; we observe that for n=1 

FW) — = /(<) 
gr u pr 

is a finite function of uw, which equals nothing for e,<m and which 

is equal to Ou“) for e, >m, u, representing a constant number 

1 

ee m (m+1) 

In order to prove this, we distinguish four cases: 

UG ae Eig i 

. u . . . . ni 

if — is resolved into prime factors, the smallest exponent of these 
pm 

factors is in this case smaller than m, hence 

F(u)=0 and je — 0, 
i apy 

so that the formula considered is equal to nothing. 

Ds eg = Th, Ci > 
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u bd . . . LJ 

if — =vw is resolved into prime factors, the series of the exponents 
ne 

of these prime factors obtains at least one exponent = 7, consequently 

ew Sm, 

{uN 
> X zj = 0, 

Pin 

and n having the value 1, 
A=, Gy SN 

hence 

hence 

F (u) = 0, 
consequently 

u 

Fu) — © (5) 0 
m Ju pr 

Ooty == ™, fi Py coe Ue 

consequently 

u == pv ey > mM, 

v being not divisible by the prime number p,. In this case we have 

F(u) = f (ev). 

u i Î 2 
As contains at least one prime factor, of whom the exponent 

ge 

is equal to m (viz. the prime factor p,) except for p=p,, we have 

u 
i (5) ==, TOE PR 

p' 

. = fo). for p= pF, 

consequently 

. fu 
F (u) — 2 f (5) = f(v) — fv) =0. 

„Dl } 

-4£. 4 >m; 
1 

Suppose u < u, EN and let 

U = pip... Pos y 

be resolved into prime factors; hence 

u2z2.2....2=2, 



(eg) Oo oP 

The conditions 

F (u) = Oru"), and f(v) = Ov”), 

mentioned in § 1 and at the beginning of § 2 give the relations 

F (u) = O (u?) = O (ui) 

Ke PV E u \ 

pl ee p / p” 

and 

/u 

= Out) 1 

Pe 
= O (u?). O (log u) 

= 0 (u) ; 
hence it follows that the function considered is in this case equal to 

O (uw) — Ou”) = O(w'n). 

According to the first lemma we. have 

1 

: ‚m 
z [roo Le (5) =0 en, 
u=2 1 m P ( og &) 

u 

1 

TEK en if U am 
Fw EE fF {| |) Ol . 
u=2 u=2 m/ p (log #) 
u—l u—l P uM 

f 1 

; : am 
Se gd Clty a 

pr vou (log x)? 

(Le vl 

and according to the last lemma this may be modified to the 

formula sought 
1 1 

x É AX in Ek av mt ; 

Se) = 0 se a TOT =de 
5 2 

u—? log U (log 2) ’ 

§ 3. By starting from formula (1) by which the mean value of 

the function /’(w) has been given in the interval from 1 to « (the 

limits included), it is possible, as is known, to determine in an 

elementary way the mean value in the same interval of a number 

of other functions, connected with the function /’; this we shall 

however only elaborate for some cases. 

Lemma. From (1) ensues 
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BDE) a 8 
AE (log log x)" + O (log log ayr—1 , 

and 

&  F(u) log u ; 
= = 0 (log w . (log log w)r~1) &=2 an 

v=1 wy me 

Proof. Substituting 

— d log log a = « 

log log u = u, 
9) 

and 

1 1 

x a em gy n—l am n—2 
a) = ES F(u) = 5 ka 

a log x log « 
== 

we have 

x ie) 

g, (2) = 1 

Dd ES ; 
u= lym 

2 9%) —g (u—]) 
u=2 fe 

uit 

_ gfe) as (1 
Fate) es feiss 2 

[a] m ym (u ai. Ir 

1 1 

x n—1 x—l au" U n—| yn n-2 } 

— of 3 ) op =f a EST ek ideal aad O 
log v u—=2 | log u log u \ EN zel 

mum 

eh un—lì x—1 y n—2 

My=2U log u u=2Ulog u 

Faery oe ae + O(e, =) 

= 0 (zr!) 
mn 

and 

de 
En 1 = Dig (U) — 1, (u—1)} log u 
Si — u? 
WJ ‚u 

=d. [e] log le] — x zn (x) log (: a =) 
wd 
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ax,” log « 
= + O(«#,"—'! log x) 

mn 

au, n 

EK ara 
u=2 

az,” ine a £—1 yn ally nl 
— PENS en 

mn MN u=2 U == ae 

ax,” log x : 
= ————_ + 0 («7-1 log z) 

mn 

a 
— — fa," log « + O(a," log x)} + O (#,"— log 2) 

mn 

= 0 (a,"~-1log 2). 

Lemma. Suppose that the function #, has m and n, as para- 

meters and f, as corresponding function and that /’, has m and n, 

as parameters and /, as corresponding function. If the formula (1) 

holds good for n =n, and for n =n,, we have 

1 1 

7 n lga—1l (as am 0 lg —2 

Sede ag TO | OP 
dd, < x hn, ‘ny ! log oe vl 1 log x ; 

d,d, =l 
vam=l v m 

1 being prime to /; in this relation /(v) has been substituted for 

the formula 
v 

wf HAS A 
d 3 Ji ( EA (5) 

Proof. Let /, and /, be two integers, prime to 4; it follows from 

the identity deduced in the preceding paragraph that 

Sr B) FIT TE en 
dd, <a 
d,=1, 
d,=l, 

where 
Ee 

jf ea (d,) p> F, (d,) 
d=1 ds=1 
dek ik 

bah 
Va 

T,= = F,(,) = F,@); 
d= d,=1 
do—l. dl 

te 

Ti. Srey 
dit 
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and ea = I’, (d,) 
2 dg=1 

For d,< Va we hav 

a log d, 
log log id = log log x + log (1 — ro 2 

d, log. © 

— #4 OI, 

if w, has been again substituted for og log a gx; consequently 
wv \"2—1 No— 

log log — log log — = = ete + O(a), 
ie d 2 2 

1 

1 1 log d, eee Lo log d, 

; ee log e loge ao 
log — log # . log — x 

d, d 

and 
1 

No—1 
Ng—2 

ES O| log lo (u oa 7 ol ae ( vi) en! 2G ore? 6 &,"3—llogd, 
= ys z dog x log @ AB = log — 

wv d, 

(log a) 

It has been assumed that formula (1) holds good for n=n,, hence 
1 

4 a m Ng-—l w \No—2 
- ; als) (i log =)" + Of log ly = ) ; | 
aq a = 

AES Ge 
TI log ~ 

dà © i d, 

sE 
za ao en + O(e,"2—?) £0 arl log d, 

1 log x (log x)’ a)? 
dm 

where a, has been. substituted for 

Bess ALD 
TE 

v2 =, vm 

If this result is substituted for the value found for T,, we find 
1 1 

Ee aan grad a ey 40 (ames! ule 5 £(d)| En 

log « dei aes dy=1 1 
ql 5 … d=) dm 

1 

(log wv) 7 d, =I] 

dh 

(en Ke |Fud,)| log 
| 1 eN 

d 4 m 
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It has been understood that formula (1) holds good for n= n,, 

consequently for the functions /, and /, and according to the 
first lemma of this paragraph we have 

Ve |F (d;)| > 
2 aaa == O (a ); 

diest as 

a= dm 

Ve |F(d,)\ log d, 
5 5 = 0 (a,"—! log a) 

nil = 

=] dm 

and 
Vz F(d) av 
3 ee eeen ee ee 
di 1 mn, 
dk d m 

where 

Eee 
h(n—l)! wat a 

v,2m==l, vm 

Hence 
1 1 

aa am we Mt-nad (ane mtng—=? 
fh id 3 2 | 0 4 
== 

mn, log « log x 

Ì 1 

2 an jy o—1 os ° 5) . . 227 — ve b*mn, at x titre 5 = VACHIAG a4 LO gm yt 2 

Se ae ee Pa and — lc — |. 

h?n,! n,/ log ir nl es 1 log a 

vs, "Sl, vast =l, (v,0,)" 

The value of 7, is found by interchanging 7, and n, in this 

formula and as according to our supposition relation (1) holds good 

for n=n,:and for n=n,, we have 

1 

x Pens an Wam (log log am! 
T‚= > F(a) =0( OO 

B og Vx 

bt wv? (log log et 

ae log a 

1 

, z2m (log log x)"2—1 
Tai) ( ( ag bog a)” —) : 

log x 

and 

By substituting these values for 7, 7, 7, and 7’, in (4), we find 

the formula 
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1 

ha 1M 9» tg—1 % oo 21 P (9, 

Ee ee Ss Ss, FL) 
did Se : hn, In, {log a ul rol i: 

dh v,2,"=1, 0,7," zl, v‚v‚)” 
da=ls 

1 

ym tno? 
te Oe 

log x 

Write again down a series consisting of / integers prime to /: 

and not containing two numbers, which are congruent to each other 

with regard to the modulus /; give to /, successively each value 

of this series and determine for every value of /, a number /, by 

the congruence 
Ll=1; 

the / relations, thus obtained, added, give in the left member 

x F(d,) F(d.) 
dd, <x 

didl 

and in the right member 
1 1 

b?m(n, =| n‚)e m RL an xm we me —2 

an In B mg: h>n!n,! log x Og © 

where 

Ee EE ACAFACA en SE 
L bt Paik et 

0,2," =l, Cece == (5 (v,v,) m 

x ie 2 a } i 
=r mars = and Ae) Fal). 

Dil eis Lb Ti Vg 

van =} v m ve ml, 

h 
For every value of v, exactly i incongruent values for 

) 

to be found for which the congruence 
vz,” os l, 

has roots, hence 
h Ied 

oath Be, Aas) = 5 PACA ACAM) 
Lies Att UyUg=U 

h ‘ ae 
we = ID Ss 7 

d\v d 

_A 5 
ne zj, 

v 1 2 “ig — l, 

S| 

Dd 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 

/ ‚ are 
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Ea 1 
(= > aes = =. Fi,) Fea) 

tt me L (A NAC ml 

pam) pm 0,2, nl, 

and consequently 

1 jd 

bm(n,+n,)ema,mte1t «2 flv | amaynty? 
spe es: ESO 

rl 
= Fd) F.(d,)= 

d,d,<« hn,In,! log « fe log « : 
as sm 9, m 

d,d,=l om, ERS 

which was to be proved. 

Mathematics. — “On an arithmetical function connected with the 

decomposition of the positive integers into prime factors.” II. 

(Continued and concluded.) By J. G. vaN DER Corput. (Com- 

municated by Prof. J.-C. Krorver). 

(Communicated in the meeting of June 24, 1916). 

Lemma. ®) The number of (positive integral) divisors of the 

positive integer v satisfies the relation 

Pe Ulett OF (0) 8 
div 

for every u > 0. 

Proof. If v > 2 decomposed into prime factors be equal to 

vs dip 
ple 

we have 

1) This proposition occurs for the first time in Rurar: Ueber die auflösbaren 

Gleichungen von der Form w+ ux-+ v= 0 [Acta mathematica, Bd. VII (1885), 

pages 173—186], pages 181—183, with a proof similar to this one. This 

proof has been borrowed of E. Lanpavu. Ueber die Anzahl der Gitterpunkte in 

gewissen Bereichen [Nachrichten von der Königlichen Gesellschaft der Wissen- 

schaften zu Göttingen, mathematisch-physikalische Klasse (1912), pages 687—771], 

page 716. In his “Handbuch der Lehre von der Verteilung der Primzahlen,” 

I. p. 220, he gives the by far sharper relation : 

If 5 be positive, £ = £ (3) fitly chosen and « an integer > &, we have 

(1+d)loga 

Sie log log « 

dix 
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z21=M7 (a+), 
div piv 

= 1 

Me pio pte 

Re 
The quantity — — is limited (u taken fixed!) for an invariable 

Pp 

value of p and variable a—=1,2,..., since it is equal to nothing 
1 

for a—o; for any p22” and. any value a>1 it is even <1, 

existing in that case the inequalities 

a-+1 #5 a-+1 = 
I; 

per = Oa 

1 

Therefore, if v contains one or more prime factors > 2”, we have 

a+l 

1 

and as there exist only a finite number of prime numbers p< 2” 

= 
lass bak : : : 
“is limited, i.e. smaller than a number independent of v. 
vr 

Lemma. Let 7, and », be two arbitrary positive integers, whose 

sum n, +- 2, is equal to 2 and suppose /’ to be an arbitrary function 

with the parameters 7 and m; three functions /,, /’,, and /, may 

be found then in such a way that the parameters of #, are equal 

to m and n,, of HF, equal to m and n, and of F, equal to m and 
n-—1 with the relation f 

/ n/n! 
Pw) = EF (OF, (G) +o. fires Fee) 

(mn, Fn)! din 

Proof. Introduce the functions /’,, /',, and /’, by means of the 
1 2 3 v 

following relations: 

D= (0) OP En == My = Mis 

== 0 in the other cases, 

DE for e‚ = M, Au =N, Vu == 1, 

= in the other cases, 

Liu) =v, for ¢ > m,and also for Ee, =m, a, <n—1, 

ze) in the other cases, i.e. for e, < m and also for 

Eu =™M, Ay > n — 1. 

54* 
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From these definitions it appears that the parameters of F, are 
equal to m and n,, of /, to m and n, and of F, to m and n—1, 
so that now only relation (5) is to be proved and in order to do 
this, we distinguish 5 cases: 

fs Cu > m3 

then we have 

U U 

and the quantity 

SF (d) F, (5) (1) : 
du d d vy 

comet O4 PN | 
divu 

is according to the preceding lemma equal to 0 (v,“) and therefore 
/ 

Fi OE. ($)= O (vu?) — O(vy"). . (6) 
ad (n,-+n,)! diu 

== ((), (F, (%) js 

2. eu = M, auSn—l; 

then we have 

= py pat Eb ee Pa m Vu 

u 

and 

: u 

= Bn (d) re (5) == Ove t 
d'u d d'u 

=—0O = MRE! 

dip." pt. Pa,” div, 

LO (ef) 

so that the relation (6) holds good in this case as well. 

on Ei tt Ou SSR: 

in this case we have 

UP pa. + «Pn! Vy 

and 

Flu) =F (vy), 

where at least one of the following conditions is satistied, d representing 

: Een 5 5 ne u 
any arbitrary divisor of « and d’ being subsiituted for = 

a) el Z m, 

b) el Z m, 

eee op 
d) 6a == M; ar > n,, 

e) oled Ma ad =n, 

In the first four cases we have 
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Ed) Fy (d) = 0 
and the last case appears only if 

d= g"™ va ad! = gq" vy 

where ¢ is a divisor of 

P=PyPy+++Pn 
ee PS 

consisting of n, prime factors, where g’—=W— is therefore composed 
| q 

of n—n, =n, prime factors and where the product of the integers 

va and vw is equal to v,. In ease (e) we have therefore 

F(a!) == 0, except for hee? 

consequently 

F, (d) F, (@) =f (vd F, (d) 
== (Oy) ear Vy sl, 

== Uh tore Opel, 

hence ms 

= F, (d) F, (@) = =F (ew) 
diu q\P 

fieke d. 
q|P 

a (n,+n,)/ … ey 
P containing exactly —————— different divisors composed of 72, prime 

o Ni n In I 1 | 

nsi Je 

factors, we have 

tr)! 
= 1 mel ’ ef 

qIP dr 

and therefore 

n‚{n / 

2 ES Fd), (d) =f (vu (n, -+-n,)! diu 1( ) ( ) ( ) 

u), 

from which relation (5) ensues at once. 

4, BE == Nh ay Nn] 

one of the following conditions at least is in this case satisfied 

a) eam, 
b) erm, 

c) Me Ag Hy 

d) eq’ =m, Ug SR 

so we have 
u 

F(u) = 0 and F’,(d) F, 6 = @ 

De Cu Ee m ) 

in this case one of the numbers e; and eg at least is smaller than 

m, so that again the relations 
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Fu) =0 and F(a) F, (5) =o 

hold good. 

These lemmas having been demonstrated, the proof of formula (1) 

for any arbitrary value of mn will be easy, viz.: we shall demon- 

strate the proposition for 7=7,-+7,, supposing that it has been 

proved for n=n,, for n=n, and for n=n, -+n,—1, where n, 

and n, represent two arbitrary positive integers; as the proposition 

in $ 2 has been proved for n =1, the validity for n = 2, 3, 4... 

etc. respectively, follows from this argument. 

Let Flu) be the function with parameters mm and n, + 1, for which 

relation (1) has to be proved; we introduce (and according to the 

preceding lemma this is possible) the function /’(w) with parameters 

m and n,, the function F',(w) with parameters m and n, and the 

function (u) with parameters m and n, + n,—1, so that we have 

Fo) n,/n,! SF (OF WF e(t 
u) = —— — 2F (dE, — |+ C u 

(rn, +-7,)/ du hd a 

and consequently 

x nin! x 
2 Fe) =A MOED O SF 

u—2 (0, 4-7): dd’ <« u— 

u= dd' =! u— 

As relation (1) holds good for n= n, + n‚—1, consequently for 

the function |F,(w), we have 

en DO 

(oll 

r : frat eae 

BF le ay pee 
co | log © 

u =| 

and as according to our proposition, (1) holds good also for n =n, 

and for n= n,, i.e. for the functions F, and F,, we have, accord- - 

ing to the second lemma of this paragraph 

1 1 

bm(n, +n Jem am For! oo flv) 2m ge mna? 
=) CHA 3 2 a dE) is ; 

dd'<« hn,!n,llog a ee 1 log # 

dd'=l pam) U" 

so that we conclude 

1 4 1 | 

zs bmm a ma+n—1 a0 i v ee amd? 

=, Ku) = = aS I) Wp : 
psy h(n, |, lege = as log x 

= = pit 

u=l vaml 

therefore formula (1) has been proved for all positive integers 7. 
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§ 4. In this last paragraph we have to consider the proof and 

the significance of the formulae (1) and (3), which have been 

demonstrated in $$ 2 and 3. As to the proof, we see that relation 

(1) has been deduced from (2) in an elementary way and as has been 

observed at the beginning of the preceding paragraph, some other 

formulae, e.g. (3) may be proved by means of (1). Relation (8) may 

also be demonstrated directly, viz. without the round-about way 
along formula (1), by not starting from formula (2) but from 

the relation 

1 1 
ae == lagtog dr A OLY. me ere a a RD) 
pa P Wor wae 

pl 

This proof is analogous to the one used in order to demonstrate 

relation (1); on executing it, it will appear that in that case the 

proof is even simpler. Yet, that proof has not been given in this 

paper, because (1) lies deeper that (3), i.e. (3) is to be deduced 

from (1) and the reverse is not possible, so that it would not do 

to prove formula (3) first, as-it is not possible then to conclude to 

formula (1) and as will be seen it is principally tbis formula 

that we want. The question, however, is somewhat different for 

k=1, as (©) in that case is to be deduced’) quite elementarily 

from the identity 

a& v [z) 
= log p (B ie E dee. |= 2 log u ’) 
psx ie Bins aes 

=wlog«+ O(a) 

so that relation (3) may be proved quite elementarily for 4= 1. 

Formula (1) is also to be proved directly, i.e. without using 

(2); it is namely possible to prove (1) with propositions in the 

theory of functions in a way, analogous to the one, used to demon- 

strate formula (2); it is clear, however, that, in that case, an ele- 

mentary proof is not to be thought of and we have succeeded in 

deducing (1) from (2) by means of elementary methods. 

If in (1) and (3) u is taken equal to nothing, we have this 

Proposition. Ii the finite arithmetical function /’(w) is equal to 

nothing for e,<m and also for e, =m, a,>n, and the function /(2) 

equals nothing for e,em, F(w) being equal to f (w‚) for e, = m, au=n, 

the formulae (1) and (3) hold good, if Land / are prime to each other. 

1) E. Lanpavu. Handbuch I. p. 450. 

2) E. LANDAU. Handbuch I. p. 98—102. 

3) E‚ LanpAv, Handbuch I. p. 77, (formula 4), 
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In order to bring out the significance of this proposition four 

applications are given as follows. 

Application I. Any integer > 14, resolved into prime factors, 

has a series of exponents and the question arises how many integers 

below a given limit are to be found with a given series of expo- 

nents and how many of these integers are to be met in a given 

arithmetical series, of which the first term and the difference are 

prime to each other. It is clear that the first question is a special 

case of the second. If the given series of exponents consists of 

one number and this number is equal to one, the second question 

is identical with the question how many prime numbers are to be 

found in that arithmetical series below a certain limit and the answer 

is given by formula (2); if the given series of the exponents is com- 

posed of one number m > 1, it is sought how many numbers equal 

to the mt power of a prime number occur in the arithmetical series, 
below a given limit and this is easy to calculate by means of for- 

mula (2). The question, however, becomes more intricate, as soon 

as the series of exponents consists of more than one number, 

but in that case the answer may be found by means of the propo- 

sition, for any series of exponents. Take e.g. the smallest number, 

occurring in the given series of the exponents, equal to m and 

suppose that this number occurs 7 times in this series, so that the 

given series of the exponents is equal to 

Os Oy © re Oos My My ae or Ms 

where 

dr OR ED pe 
Aj = 

Take /(u)=— 1, if the integer w, resolved into prime factors, has 
a series of exponents, equal to the given series and take /(u) — 0 in 

the other cases; take /(w) = 1, if the series of the exponents of the 

prime factors of the integer w is equal toa,,a@,,...,a@ and /(w) = 0 

in the other cases. The conditions, laid down in the proposition are 

then satisfied, viz. 

1. Fw=0, for eZ mand also for 4, Sn, Au 552; 

Des (00 fore, Sm; 

Bo). Alwijs tore SN 

for if e‚= M, 4d, =N and the given series of the exponents is (not) 

corresponding to that of wu, the series a,,a,,..., 4 is (not) corre- 

sponding to the series of the exponents of v,, so that both the funct- 

ions Flu) and fw) are in that case equal to one (nothing). 

The proposition may therefore be applied and_formula (1) gives 

the sums 

hed el Pane 
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x a 
= F (xu) and ul (ws 
u=2 uz? 

M= 

which exactly represent the numbers sought. So we find e.g. 

The number of positive integers <x, composed of two different 
prime factors, occurring in these numbers respectively in the degree 

a and g, is for a >> B equal to 

vil / 1 

xe = I +0 ee 

log a e a ~ \ (log a)? 

ps 
The number of positive integers < w, composed of one quintuple 

and three double prime factors (these prime factors are thought 

different from each other) is equal to 

awe 1 ry 
Ke (log log x)? SX — + 0 GE . log log °) 

log « log x P p? 

and among these numbers — 

x 1 v 
(logloga)y? = +0 (55 . Log log ° 

log « p==l (mod. 8) p? log © 

integers are to be found, which are congruent to /, with regard to 

the modulus 8 (/=1, 3, 5 or 7) and 

4e (log log x)? = Ee +0 ee . log log «| 
log « p=t1(mod.10) pe log a 

integers, which are congruent with /, with regard to the modulus 

MOAB (or. 9): 

In the following application, viz. with the function zr, (7) defined 

there, the case will be treated that the given series of exponents 

consists of „ numbers, each equal to 1. 

Application II. We introduce the following well-known notation’) : 

zr, (a) represents the number of squareless integers < 2, composed 

of n prime factors, @, (7) the number of integers < wv, of which the 

number of different prime factors is equal ton, and 6, (@) the number 

of integers <a, for which the total number of prime factors equals 7. 

Gauss surmised in 1796 

Uh wx (log log or! 

(nl)! loge 
Hy (©) ~ 

1) See for this notation e.g. E. Lanpau, Handbuch I, pages 205, 208, 211. 
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This relation has been first proved by E. Lanpau; from the proposition 

& 

Se ee 
pa log « 

he deduced viz. in an elementary way these relations ')?) 

wv (log log or! 

(n—1)/ log « 
Tr (a) aw, 

@ (log log x)r- 1 
0, DU) Ne rr Se 

(D) (n—1)! log « 

and 

x (log log «)"—! 

One) = (n =) log x 

By using the deeper lying relation 

Lv Lv 

A OG 

psa loge é oO oe) 
he proves, also elementarily *) 

wx (log log x) | wv (log log x)"—2 
Jr (w) == : () sas ie ; 

(n—1)! log « log « 

wx (log log x)» « (log log x)"—2 satay a= bt (len 9) 
(n— 1): / log Lv log t 

and 

w (log log zr! wx (log log oP? 
On (w) = EP: ON a HÚN 

(n—1)! log wv log av 

What I want to prove now is that these formulae are only 
special cases of the proposition. Take (wv) = 1, if wv be equal to a 
squareless number composed of ” prime factors and take /(w) = 0 

in the other cases; then we have 

x 

DE OS (| Nema, RE B 
U2 

if (uw) be equal to 1 or O according as the total number of prime 

factors of w is equal to ” or not, we have 

Ss Ee Sir 
2 us 

and finally, by giving to Fw) ge value 1 or O, according as -the 

number of ron prime factors of w is equal to » or not, 
have 

1) E. LANDAU. Sur quelques problèmes relatifs a la distribution des nombres 

premiers. [Bulletin de la Société mathématique de France. Vol. 28 ie pg. 25—28}. 

#) KE. Lanpav. Handbuch I. p. 205—213. 
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= F (u) = on (2). 
u—? 

In each of these three cases the function /(w) satisfies the conditions 

stated, if in them 

m=1 and consequently 6=1, 

fay=4 | 
and FAS 0; for dat 

so that a possesses the value — ——, and we conclude, that the 
h.(n—1)! 

relations (1) and (8) are modified to the formulae 

> E (u) = Belo: O | eogioga) 
u=? h(n—1)!log x | log wv 
u=l 

and 

tr E(u log log x)" 
= Ze he oh 4- O (log log x). 
u=2 U hin! 

For £=1 and consequently 4—41 the first of these relations 

passes into the formulae written down for zr (w), 6, (7) and en (7), 
and the second relation produces an asymptotical expression, not of 

the number but of the sum of the reciprocals of the integers 

considered, e.g. the sum of the reciprocals of all squareless numbers 

composed of n prime factors <a, is equal to j 

loql n (log 109 40 (log loge) "1 
n. 

and the same holds good for the numbers that are mentioned in 

the definition of v‚ (7) or on («). These formulae concerning the sum 

of the reciprocals being special cases of formula (3), where / has 

the value 1, may be proved by means of a merely elementary 

reasoning, as has been observed at the beginning of this paragraph. 

By giving an arbitrary value to # in the formula, however, we 

find that the number of squareless numbers Sw, composed of 7 

prime factors and congruent to /, with regard to the modulus &, is 

equal to 
a(log log ayr~* je w{log log x)"—* 

h.(n—l)lloga | 

and that the sum of the reciprocals of these numbers is equal to 

log log x)" 
\ ig tog OF + O(log log x)—!, 

hint! ne 

while again for the integers that are mentioned with the definition 
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of the functions 9, (w) and 6, (x), perfectly analogous formulae hold 

good. 

For the very reason that the function /’(w) is general it will not 

be difficult to deduce other corresponding relations; so we find 

the same results if we consider the squareless numbers composed 

of not more than » prime factors, or the integers for which the 

total number of prime factors is <7, or the integers for which the 

number of different prime factors is not greater than 7, etc. 

Application III. In an arithmetical series, the difference of 

which is / and the first term of which is prime to £, occur 

ze? v mii rd ii a 0 id 

6k log a pik p ‘ (log x)? 

numbers < wz, equal to a square multiplied by a prime number. 

That this is again a special case of our proposition appears by 

taking F'(w) equal to 1 or O, according to wu being equal or not to 

a square multiplied by a prime number. 

We have 
nik vhenee’ Usa, 

nz 

and 

Je =1, if v is a square, 

= 0, if v is not a-square, 

consequently 

EE ACME NE foe ee 
gere en e(t) u=1 & 

wam) U pik p) (u,k)= 

Riess Mer ee ik 
en (1— ;) Eik 
plik p) (vk)=1 

= ; i n(1 — =) SS je 

ie PJ oi? 
pik P 

: 1 

and we have only to substitute these values in (1), in order to find 

the relation sought. 

Application IV. If all the prime factors of the positive integer 

1) (u, k) represents the greatest common divisor of wand k, so that the number 

u in this sum assumes respectively each integral positive value prime to k. 

rn OET 
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q are greater than the prime number p, and 

w= p* qd, 

the number of positive integers < r, congruent to /, with regard to 

the modulus 4, (Jand’ prime to each other) for which the number 

of divisors is exactly equal to w, is given by 
1 1 

—— + 0 | ——— for a=1 

and by 

awP—! (log log v)%—! art U Beul EO, A mel Gee) en 
log « log « 

for any arbitrary positive integral value of a, where 

se h.(a—1)! ai ee 

up! 

extended over all the positive integers u, of which the number of 

divisors is exactly equal to g and for which the congruence 

uzP—1 =] (mod. £) 

has roots z; 6 represents the number of incongruent roots of the 

congruence 

e—-l1= 1 (mod. 4). 

In order to prove this, we take the number of divisors of u 
equal to t,, and 

(Ups be for ty Ur, 

= 0 for Tij, == 10s 

We have to prove first that this function satisfies the conditions 

written in the proposition, if 

m=p—l, 

= a, 

f()=1 for m=q, 
= 0% fort de 

In order to give this demonstration, we distinguish four cases: 

1. Let e, be smaller than p—1; 

for 
up,“ 2.9 wee Pom 

the number of divisors of u 

tT, = (a, + 1) (a, + 1)... (a, + 1) 

is divisible by e, + 1, consequently by a number < p, hence 
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Tu == QU. 

ROE 

2. Takené ps di a, > a; 
t, is then divisible by 

(pF ye, Al) er oh ee In pi; 

therefore by p*t!, so that in this case too, we have 
Tu = Ws 

F (u) = 0. 

oale Gy Pr derij 

we have then 

WP Pere Ae ele iy 

and from 

Tu =P’ To, w= p*q 

it follows that there are only two possibilities, viz. 
a) E (uy) st, Ben T, = 9 Aceh a) 

b) EH) 0; ©) == Ú, To, ag; Oy) — 0s 

hence in this case 
E(u) == TAO) 

4. Take e, 5 p—1; 

as t, is divisible by e, +1, consequently by a number <p, 1, is 

in this case unequal to g, hence 

fav) = 0: 

Now that it has been proved that the conditions stated are 

satisfied, we are allowed to apply the proposition and formula (1) 
gives at once the relation sought. 

Finally we observe: in application II some asy mptotical expressions 

have been written for 2,(«), oe) and o,(7), but Lanpau deduces 

still sharper formulae for these functions. He ‘proves') that for 

each positive integral value of q, constant numbers A7, by, and 

Cu,» are to be found, for which the relations 

gnl (log log x)® a 
Th (2) = av = = Aas = = = a O Sait 

a=! b=0 (log x)@ (log «)7 

q sae log log x)? x 

ne ee, (ac ) A 
eae (log x) (log a) 

and gnl log log a) ah 
On (x) = fe PEN COP Oe 

a=1 b=0 (log a)“ (log x)9 

1) E. Lanpau. Ueber die Verteilung der Zahlen, welche aus » Primfaktoren 

zusammengesetzt sind. [Nachrichten von der Königlichen Gesellschaft der Wissen- 

schaften zu Gétlingen. Math.-physikalische Klasse. (1911). pages 361—381). 
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hold good. It is a matter of course that such a relation does not 

„hold good for any function satisfying the condition stated in $ 1. 

It appears, however, that we have only to modify this condition 

a little to be sure that such a relation does hold good, viz. : 

If the arithmetical function /(w) of the integer u > 1 satisfies 

the conditions : 

1. for. ¢,<.m, and, also for ¢, =m, au > n, we have 

E(u) = 0; 

2 LOE ¢ys— du =n we have 

Pty. == of (tyr dy) 

where /(v,a) represents an arithmetical function of the positive integers 

v and a, and 

1 

m(m-+1) 

then there are constant values Da, for q2a21, n—12b>0 to 

be found for any positive integral value of q, satisfying the relation 

a F (u) = Oos”), where w< b 

] 

= 7 a Gs n—1 (log log x) am 

SUP (alias? Se DB, (oie 

poe a=1b=0 (log a)" (log «)4 
ul 

This proposition is again very general; this appears obviously by 

the observation that the functions which occur in the four appli- 

cations of this paragraph and which have been substituted for /’(w) 

also satisfy this condition, so that the formulae deduced in those 

applications are also to be intensified with this proposition. And the 

formulae obtained in application II are exactly the formulae (8). 

The proposition is elementarily, i.e. without using considerations 

belonging to the theory of functions to be deduced from the well- 

known relation 

x 

Bx pos 1 du v 

. zit h log u 1 (log vy? : ) 

paw Ei ( 

according to a reasoning somewhat similar to the one followed here 
in order to prove formula (1); it goes, however, without saying that 

the proof is not so simple. 

1) E. LANpAv. Handbuch. |. p. 468. 
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Mathematics. — “Some considerations on complete transmutation’. 

(First Communication). By Dr. H. B. A. BockwiNker. (Com- 

municated by Prof. L. E. J. Brouwer). 

(Communicated in the Meeting of June 24, 1916.) 

1. In a paper “Sur les opérations en général et les équations 
différentielles linéares d'ordre infini’, which appeared in the Ann. 
de l'Ecole Norm. of 1897, C. Bovrtnr considered a very general 

category of additive functional operations, called transmutations by 

him. The name ‘additive’, or “distributive”*) they owe to the 

property that the transmuted function of a sum is equal to the sum 
of the transmuted functions. The transmutation is further called: 

Uniform, if it makes a given function pass into only one other; 
Continuous, if the limit of the transmuted function is equal to 

the transmuted limit of that function?) ; 

Regular, if it transforms a regular function into another likewise 

regular function. 

We have in this case always in view a certain circular domain 

with centre «= .w,, in which the functions w, to which the operation 

is to be applied, are regular. The meaning of the last definition is 

more exactly that the transmutation is called regular, if the result of 
it is a function v, which is also regular in such a domain. 

The result of the operation may often be represented by a series 

of the form 

Am (x) 
GN ee ae Tu =O UE = +... 

t 

/ 

1 (2) 
SN 

1. m. 

in which a, (2), a; (@)..-., dm (@),... represent functions of x perfectly 

determined by the given transmutation, and are regular in a domain 
with centre «,, whereas u‚u',.… ud ,.. are the respective deriva- 

tives of the function uw, to which the operation is applied. The 

series (1), which also occurs in PINCHERLE’s paper, is to the theory of 

operations, what the series of Maciaurin is to the theory of functions. 

We shall call a transmutation complete in a certain point 

e=2, of the complex plane, if a circle with centre z, and 
radius @ is to be indicated, such that each function, which is regular 
within that circle and on its circumference, has a transmuted function 

t The latter name is used by S. PINCHERLE in a paper on the same subject, 
Math. Ann. 49 (1897) p. 325—382. 

*) Cf. for a complete explanation of this term N°, 9 (29d Comm.), 
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which in the point «, is determined by a series of the form (1)'), 

In future we shall say of a function which is regular within and on 

the circumference of a certain circle, that it “belongs to that circle” 
(after PiNCHERLE); its radius of convergence is in this case greater 

than the radius v of that circle. We shall further, if we speak of 

the domain (7), mean by it the closed set of points within and on 

the circumference of a circle with centre v, and radius 7; this 

circle we shall briefly indicate as the cirele (7) and if we mean a 

centre other than 2,, we shall indicate this specially. 

With regard to the complete transmutation thus defined Bourrer 

states his theorem XI, which follows here: 

La condition nécessaire et suffisante pour que la transmutation (1) 

fournisse une transmuce pour toute fonction régulière dans un domaine 

de rayon @ autour du point w,, est que la série 
N 

ay (x5) a, (#5) 
| —+t =, Sear ake (A) 

(2—-w,)? 

soit convergente pour toute valeur de z telle que \z—v,| = 9. 

That this condition is necessary is proved by BourLrr by applying 

the transmutation (1) to the function 

Wb 2) =a, (2,) + 
; 
0 

Z a 

] 
TP hase) eas Me By ee aoe CE) 

& v 

in which z is a constant, such that |z—wx,|= 9. This part of his 

proof, so far as [ am aware, is correct. 

‘IT object to the second part of his proof. BourLer says: If the 

condition is fulfilled 7’ may be represented by the identity : 

: iene 42) 
Tu = —, |—— w(z,, 2) dz, 

RJ 2-2, 

in which the integral is taken along the circumference C of the 
circle (©). 

This, however, is incorrect, if the function w has o evactly as 

radius of convergence. Yet, according to the theorem, such a function, 

being regular within (9), ought to have a transmuted in a, ; for by 

the expression “régulière dans un domaine de rayon 9’ Bourrer means, 

as he expressly states in a note before : “développable en une série. . ., 

1) BourLer’s exact words are: “Complete dans un domaine de rayon e”. This 

may give rise to the misunderstanding as if was meant that a transmuted function 

existed in the whole domain (e), which is not true in general. From the reasoning 

by which Bourrer arrives at the theorem XI to be mentioned directly follows 

only that, under the conditions mentioned there, there exists a transmuted in the 

single point vy. | have therefore preferred to say “complete in a point’, reserving 

the name “complete in a domain’ for another case (cf. NO, 4). 

Proceedings Royal Acad. Amsterdam, Vol. XIX. 
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pour toute valeur de « telle que lon ait (wr) << 0,” (with only 

the symbol <, not the symbol = with it). Besides, if Bovrrer, in 

stating his theorem XI, had meant functions that are also regular 

on the circumference of (v), the first part of his proof would have 
been wrong. For in that case the function ‘B) need not have a 
transmuted in the point .7,. 

If we stick to the term ‘regular’ as laid down by Bouruer himself 

and in frequent use, the second part of his proof is incorrect. But 

this ought not to be wondered at, if we observe that the corre- 

sponding part of the theorem is also false. 

Let us consider the transmutation 

Tu === m TEE ee he 5 . . ‘ . . (2) 

The series (A) is here, for a domain of the origin (7, = 0), 

. l 1 1 
WO 1 at | = ie EROP 

BE (m-+-1)?2™ 

and eonverges for a// values of z with modulus 1. For the function 

1 
UZ, 

(1-—a)? 

that is regular within the circle with radius 1, the series (2) produces 

however no transmuted in the origin. . 

2. Although the inaccuracy in the stating of the theorem is slight, 

it seems proper to express it in the following more accurate form : 

If the series (1) is to produce for all functions belonging to a 
certain circle (0) a transmuted in the centre «x, of that circle, it ús 

0 

necessary and sufficient that the series 

j ' «,(%,) a,(@,) | 
Westie hd DE —— air {= dy a> a ee 

converges for each value of t with modulus greater than 9. 

Before proceeding to the demonstration it is convenient to make the 

following observation: From the shape of a power series which (3) has 

with regard to — , it is to be deduced that, if it converges for a certain 
t 

value of f, it converges absolutely for any other value with greater 

modulus and, if it diverges for a certain value of ¢, it diverges for 

any other value with smaller modulus. 

The necessity and sufficiency of the condition is now proved in 

this way : | 
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1. The condition is necessary. Suppose that it were not fulfilled 

for a certain value to, > o, so that the series 

(0) ay A et BEEREN TEGEN 
1 Sil 

ay (“,) 7 
Oo 
‘ 

diverged. Then choose a positive number v,, such that 
NS 22 

0 <0: << 01> 

and a function 

1 
= => 

vy a Ot 

5] 

whieh evidently belongs to (o). The series (1) gives for it in the 

lo, (”,) af aby iG zal) a we | ’ 

0, 0, 

point #,, 

which series, however, according to the previous observation, diverges, 

because (+) does so. In other words, if the condition mentioned ir 

the proposition is not fulfilled, the series (1) does not produce a 

transmuted in the point iv, for a// functions belonging to (v): the 
condition therefore is necessary. 

2. The condition. is sufficient. Consider a function « with a 

radius of convergence 7 >> 9. Choose a number g,, such that 

al … 

or. 

If the condition is fulfilled the series 

az) Glen) (yy 2) = a (4) + 
Zg (2e) 

converges absolutely for any value of z for which z—a, =0,. 

Moreover the last series, considered as a function of z, converges 

uniformly on the circle, determined by 

sei 0, dS 

for the moduli of its terms are anywhere on that circle equal to 

those of the corresponding terms, independent of z, in the absolutely 

converging series 

re a,(a,) 1 nale) ; 

0, 9; 

From this the uniformity in question may be deduced according 

to a well-known reasoning. 

The integral 
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taken along the circumference of (0,), exists therefore, and may be 

found by term by term integration. The series (1) is the result 

then, and this series converges therefore, for the function considered, 

in the point «,. The condition is thus sufficient *). 

3. With regard to the proposition we observe the following. 

There will evidently be a lower boundary a for the numbers y, 

such that sonvergence of (3) takes place for any ¢ with modulus 

greater than a, and divergence for any ¢ with modulus less than a; 

this again follows from the shape of a power series, which (3) has 

1 ane 
with regard to —. At the same time it is to be deduced in the 

t 

usual manner that the numbers a,,(v,) satisfy the following two 

conditions : 

1. Corresponding to any arbitrarily small number « there is an 

integer m-:, such that 

am («,)| < (a + 8)", for m5 me. 

2. Corresponding to any arbitrarily small number « there are 

an infinite number of integers m, for which 

Gm (x,)| > (a --€)". 

On the other hand these two conditions are necessary and sufficient 

to characterize the number @ as the lower boundary mentioned above. 

According to a well-known mode of expression we can also say 
] 

that a is the upper limit, for m= om, of the expression a (7,) m 

i.e. symbolically 

E sone 
a= tinae jj EER ME 

m—P 
s 

JOURLET’s theorem may now be expressed as follows: 

If the series (1) is to produce in a given point x, a transmuted 

for all the functions belonging to a certain domain (9) with centre 

it is necessary and sufficient that 9 is not smaller than the 
hl 

7 Re 

number a determined by (5). 

The circle (a) is therefore the minimum circle with centre x,, 

of which it holds that the series (A) produces a transmuted in «, for 

all functions belonging to it; this statement is again equivalent ta 

the theorem of Bourrer. It ought however not to be supposed, that 

a series of the form (1) never produces a transmuted in 2, for some 

1) See the observation in note 1 of § 4 about this proof. 
*) Ene. d. Math. Wiss. I A. 3, p. 71 
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function with a radius of convergence less than a. Let 

BNN AEN == ss Swe (By =, 0, 

and 

2 ):—1 (a) = ¢2k—-1, 

in which by e a constant is meant greater than 1. Here the number 

a is equal to c, hence, according to the supposition, greater than 1. 

The function 

1 

las 

for which, in the point «=O, the radius of convergence is equal 

to 1, has, though this radius is smaller than the number a, in that 

point a transmuted, which is equal to zero. 

) 

4. Bovrter’s theorem informs us about the question when the 

series (1) is complete i one definite point x,, but, as a matter of 
course, only those cases are interesting, in which a certain circle 

(o) with centre «, is to be indicated, such that the series (1) produces 

for all functions belonging to it a transmuted not only in the point 

x,, but in all points of a certain domain (a) round «,. Bourrer 

however has not drawn attention to this. If the series (1) satisfies 

the new condition, we shall call the transmutation determined by it 

complete in the domain (a). 
Let us suppose that for any point of a domain («) a number a, 

as mentioned above, can be indicated, and that the number 77-, in the 

condition 1 at the beginning of § 3, remains below a fixed number 

in the whole domain («), which number we will also indicate by 

m:. This latter supposition we shall quote in future as “the uni- 

formity supposition of N°. 4”. As the number a will in general 

depend on the place of the point «2, we prefer to represent it by 

a,. According to this supposition the expression 
i 

i a Boe |g (ey fh ee ees eed ee) 
M= 

has in all internal points and points on the circumference of («) a 

finite value. We further suppose that the quantity a, remains in 

the whole domain («) below a fixed number (, in other words, 

that a, in the domain («), is a /imited-function of the points of that 

domain (always the circumference being included). The numbers a, 

have then in the domain («) an upper boundary, which we will 

represent by a(«) or briefly by a, and we now assert that the 

upper boundary of the a,-values for points of the e/reumference of 

‘a is equal to that for the whole domain (a). Suppose that this were 
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not so, but that the upper limit of a, for the circumference of («) 

was a certain number a <a. According to the supposition made, 

the values which an arbitrary function a (), with rank m>m:, 

assumes on the circumference of (a) would all have a modulus 

smaller than 
(ad + er. 

We now suppose ¢ chosen so small that 

até <i a. 

Then an njinite number of functions a (7) satisfy the condition 

that in a certain point of the domain (a) 

an(e) | > (a + er. 

Among this infinite number of functions we select one for which 

m>m:. But this same function on the circumference (a) satisfies the 

condition 
dale) JS (epe) 

Since the maaiunum modulus of a function in a domain (a), lying 

within the domain of regularity, is found on the circumference of 

(a), the preceding two inequalities are contradictory and the propo- 

sition has been proved. 

If now the functions a, (x) satisfy the conditions mentioned above, the 

transmutation determined by the series (1), is complete in the domain 

(u), as the following generalisation of the theorem of BovrLer shows: 

If the series (1) is to produce in any point of a yiven circular 

domain (a) a transmuted for all functions belonging to a domain 

(0) concentric with (@), it is necessary and sufficient that the radius 
(0) is not smaller than the number B determined by the equality 

md B eee eee SA 

or equivalent to this: 

The circle (8) is the mintmumeircle which has the property that 

the series (1) produces for all functions belonging to it, a transmuted 
m any point of the given circle (a). 

Proof 1°. The condition, mentioned in the theorem, is necessary. 

Let us suppose, in order to prove this, that 9 is smaller than 3; 

we have only to indicate a function belonging to (e) and for which 

the series (1) does not produce a transmuted in a certain point of (a). 

Choose a number 7 such that 

Ore Fe 

1 

ty + re 

and consider the function 

u ’ 

Lv 

==; 



vn 

865 

in which remains indefinite for the moment; this function has 

the radius of convergence 7, and therefore belongs to (9). Since a is 

the upper limit of the numbers a,, for the domain («), there is a 

point P, on the circumference of («), for which «a, is greater than 

a — (8—r), or, according to (7), than 7—a; let us suppose 

dy —r—at Jd. 

Then there are an unlimited number of m-values, for which, 

if ¢ has a given value < J, we have in the point ? 

lam (@)| > (r — a + Ee)”. 

If p is the argument of w—z, for P, we choose y=g, and then 

have in the same point 
ey un) ein 

Trott = > 7 
r—a ml! 

For the above m-values, we have therefore, in /, 

lam (#) ul, “al e Nm 
| et >—| 1+ —], 
| mm. | rt r—O 

and these 7-values being unlimited in number, the condition, neces- 

sary for convergence that the limit of the terms is zero, has not 

been satisfied in this case for the series (1); the series therefore 

diverges in P. 
2°. The condition is sufficient. The quantity a@,, being in an 

arbitrary point 2 of the domain (we) not greater than 3— a, there 

is corresponding to any arbitrarily chosen number € an integer 7, 

such that in the point « | 
beam (a) (B — a He", for m5 me 

If further the function « belongs to (9), it belongs also to a 

somewhat greater circle (@); let us suppose 

o=g Hd, (J > 9). 

Let Moe) be the maximum modulus of w on the circumference 

of (o); from the theory of functions it is known that in the whole 

domain (a) the condition 

um) oM(o) 
Ie A B 5 

is satisfied. 

We have thus in w, for m > mt: 

an UD) oM(o) /B—-ate” 

m! | p—at+d\B-atd 

If we now suppose that for ¢ a number smaller than 0 has been 



864 

chosen, we have for the remainder Fj(7) of the series (1), after k 

terms, provided % 5 mz, 

(9) 
a 

Ry (x) eo eS) . 

d—e \B—a+d 

The amount on the righthand side of the inequality having zero 

for its limit, for £—o, the convergence of the series has been 

proved, and at the same time, as the amount in question is inde- 

pendent of x, that this convergence is uniform”). 

>. Neither in the last case should it be held that a series of 

the form (1) never produces for some function not belonging to (9) 

a transmuted in the whole domain («). Let us consider the trans- 

mutation 

wo 
7 (1—c—a)™ u de 

1 WE m —__—— 

m! 
0 

in which c is a positive constant smaller than 1. Here a, = 1—c—2 ; 

the upper limit of az on the circumference of the circle (a) with the 

origin as centre, is therefore 1 —c + u, and this is at the same 

time the npper limit for the domain (a). Hence we have 

B=1—c+ 2a. 

Choose for u the function 

U en eg | elen . {10} 

53 Lif ler 
Tu == In 

lr l—«z 

in which the series apparently converges in the whole domain (a), 

if a< 1— 3c. Further we have 8 >1, if a> tc. Finally for 

fecax<l—te, 

the corresponding 3 is greater than 1, and therefore the function (10), 

of which, in r—0, the radius of convergence is 1, does not belong 

to (3), while nevertheless the series (1) produces in the whole domain 
(a) a transmuted for that function. The reason for it is here to be 

For this we get 

1) The inequality (8) may also be used with more advantage to prove the 

unextended theorem of BourLer the series (l) not needing to be first deduced then 

from an integral. We have retained the reasoning with the integral in our cor- 
rection of the original theorem and proof in § 2, in order to remain in contact 
with the exposition of the writer, by which an easier criticism of the disputed 
points is made possible. 
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found in the fact that the point where, on the circumference of (a), the 

magnitude a, assumes its upper limit value, does not coincide with 

the point where the greatest modulus of the function w and its 

derivatives are found. It will be clear from the considerations in 

N°. 4 that the lack of this coincidence may give rise to cases as 

considered here. 

But it is not the only possible cause; even if the functions «,, (2) 

and the function « with its derivatives have their greatest modulus 

in the same point of a domain («), such a case may sometimes 

arise. Let a transmutation be given for which, « being a real positive 

constant 

Bn Wy == et, if Ten Be A 

ante) == 0, te m == Z2nl 

Here the function «, is equal to the constant c. Consequently the 

upper limit @ of a, in a domain («) is equal to c, and 

gz=a te. 

We take again «—O as centre and consider the function 

DD 

aN es ohms Se he rks ME) 
ro 

0 

which, just as its derivatives, has its greatest modulus in the point 

x—=a of the domain (a), so that, since a, assumes its upper limit 

value c in each point of (a), the coincidence referred to above takes 

place here. The series (1) passes in this case into 

au a en ym 

Tu = Sn ——, m= 227-1, 
4 Is 

1 

Now we have for m == 2?"-1 

| Pd p = Sam 

Um (e) | << | WMO | < De(; Z 
since the series representing the first member of this inequality consists 

of part of the terms of the series in which the last member may 

be developed. 

If in general 

we have for real positive « 
y k al (hi kb)! ) 

kl (Lak ALR 

') By means of the formula of LereNiz we find 
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In our case we find, by ‚putting h>=kS m; 

ul) (a) 7 A | 

ml < be yee eset 

always on the understanding that m == 22-1, By means of the 
formula of STIRLING: 

6 

k! = kke bh y/2ak ek, (0 <0 <1) \ 
we can also write for it here 

yim (wv) <i 48 2 e 

Leh 5/ (1—&\W am 

ri yim) = Avs m 2 i 

m! 18 (lW am 
The last inequality holds for any m, since, for the values of m, not 

equal to an odd power of 2, a (rm) —= 0. The terms of the series 

(1) therefore will be smaller in absolute valne than those of a 

converging geometrical progression, if 

] 
Aes 12. or & : : 

< 2 : oer eT 

and hence that series will converge in the whole domain («) if 

I 
cay 

As §8=a-+-c here, 8 will be greater than the radius of convergence 
| of the function considered, if 

a>l—e 

The preceding two inequalities may be fulfilled for a number of 
values of «, if the number c is chosen greater than 3. In any 
domain (a) satisfying the inequality 

so that 

the series. (1) produces therefore a transmuted for the function (AAE) 
although the corresponding domain (3) has a radius greater than the 
radius of convergence of that function; this being the case, though 

(oP Tk\ EE) (A+B! ah Ie kJ ee \ERt 

eS ae ern reel i! (h+-k—il) l—a 

and since (h + k—i'! > h! (k—i)!, the right hand member is less than 

(h +. k)! wht Ne k av erin (h d- k)! al 

hl (1 —#) oom i eee = h! a —a)k+1 
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the point, where, in the domain («), that function has its maximum 

modulus, coincides with a point where «, attains its upper limit value. 

6. We will now say something about the dependence between 

the quantities « and 2. The number « may vary from zero to an 

amount A, which is the upper limit of the radii of domains, in 

which the quantity a, determined by (6) is a limited function. The 

number A cannot in any case be greater than the radius of con- 

vergence of one of the functions a@,,(v), but it may be less, since, 

even when all those functions are regular in a certain domain (a), it is 

possible that the upper limit (6) has not a finite value in some point 

of (a). It might also occur that the limit (6) did exist in all the points 

of («), but was not bounded in that domain. On the other hand it 

may happen that the number A is infinite (e.g. if a, (a) = eon- 

stant = CE): 

From the fact that the quantity a has been defined as the upper 

limit of the function a, in the domain (a), it follows at once that 

a cannot decrease if « increases, in other words that « is a mono- 

tone function of «. Therefore according to (7), B is a monotonely 

increasing function of @, not smaller than «. (3 may-be equal to a, 

eraa (x) =— 1: m1, for in<that case. dir — Constant — 0). 

Let © be the value of # for «=O, and B the one for a= A; 

in many cases 4 will be infinite, but it need not be so. Every value 

3 may assume lies, as > is a monotonely increasing function of «, 

in the interval (6, B), and corresponds to only one value of a. The 

number 6, which, as a #-value, belongs to a—0O, may be zero, if 

Gro = 9. In that ease any function for which a, is an ordinary 

point, with arbitrarily small domain of regularity, has in. a, 

a transmuted determined by (1). If a, as a function of «, is in 

that case continuous in «=0, the series (1) produces for any 

function, with arbitrarily small domain of convergence, a transmuted 

in a certain domain of «a,. The transmuting series in that case 

is, according to a name introduced by PiINncHERLE, of the first kind. 

Chemistry. — “/n-, mono- and dwariant equilibria’. XU. By Prof. 

F. A. H. SCHREINEMAKERS. 

(Communicated in the meeting of December 21, 1916). 

21. ZLernary systems with two indifferent phases. 

In the previous communication we have deduced the four P,7- 
diagramtypes, which occur in ternary systems with two indifferent 

phases. Now we shall consider a case more in detail. 
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We take a ternary system with the components water and the 

two salts Z and A which are not volatile, in which of the salt Z 

yet also the hydrate Z.n H,O oceurs, which we shall represent 
bY Zradtigl): 

Suppose, the invariant equilibrium 

LA Zi + Lat G 

occurs in the binary system WW + Z at the temperature 77 and 
under the pressure Py. The liquid Lg is represented in fig. 1 by 

the point d between WW and Z,: of course we might as well have 

taken ¢ between Z and Z,. When we add the salt A to this equi- 

librium, then the equilibrium 7+ 74,+ 1+ G arises; the liquid 

L proceeds then a curve dh m (fig. 1). It is evident that 7’ and P 

change along this curve d/m from point to point. 

Now we assume that in the point m the added salt A dissolves 

no more, so that at 75, and under /?,, the invariant equilibrium: 

Z+4,+Ath, + G 

is formed. A similar case is found e.g. in the system: water + 

Na,S0, + NaCl. In the binary system: water + Na,SO, viz. at 
32°.5 the equilibrium 

Na,SO, + Na,SO; .10 HO + LE 4G 

occurs, On addition of NaCl at 17°.9 arises: 

Na, SO, + Na,SO,.10 H,O + Nat L + G. 

As the gas-phase G is represented in fig. 1 by the point I, the 

phases Z, Z, and @ are situated on a straight line. Z, Z, and G 

are, therefore, the singular phases, A and L,, the indifferent phases 

of the equilibrium : 

Lt ZH AH 1, + G. 

Consequently from the invariant point start the singular equilibria: 

(W)=Z7+44+G4 [Curve (J/) in fig. 2| 

(A) =7+2Z4,+ LH G [Curve (A) = md in fig. 2 and md in fig. 1] 

(L)=Z+2Z,+A+G [Curve (L) = mt in fig. 2| 

and further the equilibria: 

(4) = Zn AH LAG [Curve (Z) = rm in fig. 2 and rm in fig. 1] 

(Zn) = 4 + AH LH G [Curve (Z,) = mb in fig. 2 and mb in fig. 1] 
(== Li AH L [Curve (G) in fig. 2] 

Let us first consider the binary system W-+ Z, in which at 

Tj and under Pa the invariant equilibrium 

ZZ, tee 
yecurs. From the invariant point d (fig. 2) start the equilibria: 
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2 + L + G, represented by curve da (fig. 2) 

Ee ode ig, oh 
Tr EE REN) 

Dt ie aant OM. bij: 2) 

The solutions of the first equilibrium are represented in fig. 1 by 

points of da, those of the second equilibrium by points of do. Curve 

ds is drawn vertically in fig. 2; the little curve with the arrows 

indicates that it may proceed as well a little towards the right as 

to the left. [This little are has the same meaning for the curve (@) 

in this and in the following figures]. 

It follows from the reaction: Z, 24+ G which may oecur 

between the phases of the equilibrium 7+ 74, + G, that curve ¢ md 

is a curve ascending with the temperature. With this reaction from 

left to right viz. as well the volume as the entropy increases. 

This curve dmt is at the same time the (J/)-curve of the ternary 

system IV + Z-+ A. Consequently on this curve is situated some- 

where the point m in which oceurs the invariant equilibrium: 

ZA Zn + A + Ln + G4 

of the ternary system. The two other singular equilibria: 

(A)=Z7414,1+04 Gand (=d ZH AH GG 

coincide with this curve 4m d. As the equilibrium (A) exists under 

higher pressures and at higher temperatures than the equilibrium 

(L), (A) is represented by curve md and (ZL) by curve mt in fig. 2. 
| Further we shall show this yet in another way |. 

The equilibrium (GC) == ZH ZJ A+ L goes, starting from m 

towards higher pressures and it may go as well towards higher as 
towards lower temperatures. [We shall refer to this later |. 

Now we have still to draw in fig. 2 the curves (Z) and (Z,). 

For this we consider the concentration-diagram of fig. 1. In this 

are represented the solutions of: 

(A)=Z7+2Z,+L+6 by curve md 

(7)=4,1t1A+L+6 ,, PR MA 

(7A)=Z+t+AtT+L+G , 5, mob 

We make the obvious supposition that the curves md and m 6 

go towards higher pressures, starting from m and that curve m7 

goes towards lower temperatures, starting from m. |We shall refer 

to this later]. 

The dotted curves are the saturation curves of Z,, Zand A under 

their own vapour-pressure; the little arrows indicate the direction, 

jn which the pressure increases. 
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The regions, in which Z, Z and A occur as solid phases, are 

indicated by eircumeireled letters. 

Pre yi. Fig. 2 

It appears from the direction of the little arrow on curve hi 

(fig. 1) that the vapour-pressure is higher in / than in / This 

saturation-curve 47 is represented in fig. 2 by a straight line h7 

parallel to the P-axis, the point / is situated, therefore, higher than 

the point 7, so that curve 7 hd must be situated above curve mid. 

Curve «6 of fig. 1 is represented in fig. 2 by the straight line 

ab parallel to the P-axis; as, in accordance with fig. 1, the pressure 

is higher in a than in 4, in fig. 2 point « must be situated above 

point 4 and consequently curve da above curve in b. 

We have drawn in fig. 2 curve mb starting from m towards 

higher pressures, later on we shall see that this need not be always 

the case. 

Now we have still to determine in fig. 2 the position of curve 

(Z) with respect to the other curves. We are able to do this in 

different ways, we shall show that the metastable prolongation mx 

of curve 77m Is situated below curve i h. 

For this we imagine in fig. 1 the curves gh and 7 to be pro- 

longed till they intersect one another in a point w. This point of 

intersection is a point of the metastable prolongation of curve 7m. 

As T= Ti= lj Ti the 2 points “zah,* g and: ate shut 

fig. 2 on a straight line parallel to the P-axis. It is apparent from 

fig. 1 that the vapour-pressure is smaller in point . than in / and 

in 4; in fig. 2 the point w is situated, therefore, below point 7, so 

that curve me is situated below curve mb. 

ve 
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We could also draw in tig. 2 still the P, 7-curve of the equilibrium 
A-+L-+ G of the binary system W 4 A; it appears from fig. 1 
that this curve must be situated in fig. 2 above the curves 7m 
and m 0. 

In our previous considerations we have followed for the deduction 
of the P,7-diagram the same way as in the deduction of the P,7- 
diagrams for some special cases in binary systems [Communication 
XI}. We have used viz. the concentration-diagrams and some of 
their properties. In the case which is discussed now, we used the 
property that the vapour-pressure increases along the saturation- 
curves in the direction of the little arrows. Further we have made 
the obvious supposition that in the concentration-diagram (fig. 1) 
the enrves mb and md go starting from im towards higher tempe- 
ratures and that curve mr goes, starting from m towards lower 
temperatures. 

We may, however, follow also quite another way, in which we 

may deduce -as well the P,7- as the concentration-diagram and in 
which we more plainly feel the suppositions which are assumed in 

the deductions. 

For this we consider the different reactions which may oceur in 
the invariant equilibriam: | 

Z+4,+A+L04+G 

With this we shall assume that the liquid Z is represented in fig. 1 

by a point m within the triangle 7,4 W. From the position of the 

five phases with respect to one another follow the reactions : 

1. For the singular equilibrium (MD) = 7+ 4, + G 

CP LZ (AV) Oa 
2. For the equilibrium (7) = Zj + A + LG 

LayG+uZ, + d—y—u) A (A Bres Rene 

Herein «, y, u, 1—# and 1—«—y have positive values, which may 

be determined when the compositions of the pbases are known. 

(AV) and (4H) are the changes in volume and entropy when 

reaction (1) proceeds from left to right, so that the indicated quan- 

tities participate in the reaction. The same is true for (A V)z and 

(AH)z. At the following reactions we shall indicate in the same 

way the changes in volume and entropy. 

Now we may deduce, as has been discussed formerly, from 1 and 2 the 

reactions for the other monovariant equilibria and also the isovolu- 

metrical and isentropical reaction. We find: 
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3. For the equilibrium (G)= 7+ Z4,+A+L 

(y+ wu) Z Hed ASeL+y—e)Z Ae; Ae 
Herein is: 

(AF ess V)u—a (AV)z ; (Al)e= y (AH) ue (AH)z 

4. For the equilibrium (Z) = 7+ A+ LH (4 

LS (y+ ue) G+ ud—a) Z+ d—y—u) A (AV), ; (AH), 

Herein is: 

(AV), = wu AN yay ze (AE) Sa Dar (Ae 

5. For the isovolumetrical reaction: 

(AV). Zn + Ayu) (A Va. AH (ANG. G 

(14—a)(AVjz.7+(AV)y. L ben Aly 

Herein “is: AED == AVIS (Au (Arre Ais 

6. For the isentropical reaction : 

(AH), .Z, + d—y—w (AH). AAD. GE 

({—a#) (AA)z. 7+ (AA)y. L (Ate 220) 

Herein is: (AV )y=(AV)y.(OA)z — (AV )z (AAD 

consequently (AV )\g= — (AA); 

In order to express in another way the occurring changes in 

volume and entropy, we represent the volumes and entropies of the 

unity of quantity of the phases 

Ze ky Ars Ts ani AG, 

by Vz V,» Va Vz and Ve 

and He Hey iy and: ie 

With the aid of the reactions 1—6 we find: 

Alm =2V G+ d—2) Va Vr 

(AA)y =aHe-(1-e) Hz— Hi 

AV)z =yVegetul,+ (ly) Va PE 

Az = yHg + ud, + U-—y—w H,— Hr 

AV)gz=aVvz + y(l—a) Vz — yeu) Ve (ly) Va 

ae = «Hy, + y (le) Hz — ye) He (lu) AA 

V), = (y+ ua) Ve due) Vz Ay Valen 

(y+ ur) Hg + u (l—e) Hz + A—y—u) Ha — Hy, 

= (l—a) (AV) 7 Hg (AV fy ANV er 
— (1—y—u) (AV). Ha (OV )g He 

AV )un= (1—a) (AA) Vet). Vr (AED) Vn 
(deur Va eee) 

== 

Re 
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Now we have to examine whether those changes in volume and 

entropy are positive or negative. When we knew the values of 

w,y,u, Vz..., Hz..., then those changes would be easy to cal- 
culate. When this is not the case, then we have to try to find in 

another way they are positive or not. 

(AV)y and (A Hy; are the increase of volume and entropy at 

the reaction 

Zn eau OH (le) ZZ 

eonsequently at the separation of the hydrate Z, into anhydric salt 

Z and watervapour (7. Consequently we are allowed to assume that 

(AV)y and (AH) are positive. 

(AV)z and (AH)z. We write: 

AVig == y(Vqg —_ Vi) Hul, + 1 =o u) Va —Vr 

As =S y (He — Hi) + wH,, + (1 — w) Bren i ae 

Consequently both are positive for values of y which are not too 

small. For small values of 7 (A//)z becomes negative, for 7 = 0 we 

find viz 

(AAM)z = uA, + (A —u) Hy — Hy 

which is negative, when we assume that heat is wanted for the 

melting of solid substances. 

(AVjz can become negative for very small values of y; for this 

is it necessary that u V,,+(1—w) Va— Vr is negative. 

(AV)g and (4A). It appears from the value of (4 J’)g that this 

may be as well positive as negative. (AH), is the change in entropy 

at reaction 8, in which only solid substances and the liquid / 

participate. When we assume that heat is wanted for the formation 

of liquid, then (AfZ/)g is positive. 

(AV), and (AH), (AV), is always positive on account of the 

large value of Vg. For y =O becomes: 

(AV), =ue Ve+tuad—ez) Vz+a—u) Va — Vr. 

When in fig. 1 the point m is not situated in the immediate vicinity 

of point A, so that w and consequently also ww does not become 

extremely small, then (AJ), is still positive, even for y= 0. 
(AH), is positive; for small values of y it may, however, become 

negative, for this it is necessary that 

we Hg Hul — «) Hz + —u) Ay — Ay 

is negative. 

(AV) and (AH), It is apparent from the value mentioned for 

(AV) that this has the same sign as —(4H)q on account of the 

large value of Vg. Hence it appears that (A V)77< Oand (AH)y > 0. 
56 

Proceedings Royal Acad. Amsterdam. Vol. XIN. 
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We have seen above that the sign of (AV )z, (AM)z and (AA), 

depends on the value of 4, consequently of the position of the point 

m in fig. 1. In proportion as viz. the point m is situated more 

closely to the line AZ,, y becomes smaller; when mm is situated on 

AZ, then y — 0. 

L First we consider the case that the point m is situated not 

too closely to the line AZ,. Then we have: 

(AV)u , (AV)z and (AV), >0; (AVjz<0 ;-AVjeZz0 

VEL Nr (AH)z 3 (AH)¢ ; (A, and (AA)y > 0. 

It follows from 5, when we omit the reaction coefficients, for 

the isovolumetrical reaction that: 

MAAHG2Z44L OS A etl 

(Z) (L) (Zo) (A) 
Towards lower 7’ Towards higher 7. ’ 

As (AV); may be as well positive as negative, we give in this 

reaction to the phase G as well the sign + as — 

It follows from this reaction that the curves (7) and (L) go 

towards lower temperatures starting from the invariant point m and 

the curves (Z,) and (A) towards higher temperatures. As the phase 

G may have as well the positive as the negative sign, the direction 

of curve (G@) is undefined; it may go, starting from the invariant 

point as well towards higher as towards lower 7 
When we omit the coefficients in the isentropical reaction, then 

follows from 6: | 

Zed AL AVja<0 ; 0 
(Z) (L) (Zp) (A) (G) 

Towards lower P | Towards higher P. 

Hence it appears that the curves (Z) and (Zj) go towards lower 

pressures, starting from the invariant point and the curves (7%,), 

(cl) and (G) go towards higher pressures. 

It is apparent from both these reactions that the curves must be 

situated as in fig. 2 as regards their direction of pressure and tem- 

perature. The curves (7) and (Z) must go viz. starting from mm 

towards lower P and 7, the curves (Z,) and (A) towards higher 

P and 7. Curve (G) must go towards higher P, starting from m, 
but it may go as well towards lower as towards higher 7. 

Now we have still to determine the position of the curves with 

respect to one another. We have viz. still to show that in fig. 2 

curve (Z,) is situated below curve (A) and above the metastable 

prolongation of curve (7), ete. 
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As in the three singular equilibria (M), (A) ane (L) the same 
reaction (1) occurs: 

(5) =(5) Pix dP — 62a 

RENE MAT Ii Nae TN V) ue 

For the equilibrium (7%,) we have 

dP (AH) 

ee ZAP, 
Hence it follows: ‘ 

(G7), -( _(44)u (AH), 
4 er n ALLE V) M (AV), 

As (AJV’)jr and (AV), are positive, the second side has the same 
sign as 

(AV), QH)y—(AV)y (AH), 
As, in accordance with (4) 

(AV), =uA Vn + (AV)z and (AH), = u AH) + (AH)z 
that form passes into: 

(AV )z AA3Jy—(A Vy (AA)z = (AB)y > 0. 
Consequently it is apparent from this: 

dP dP dP dP EL iy pee ead kes. za 
GF, ee 5 Gale ral 

Or curve (A) must be situated in fig. 2 above curve (Z,). 

Now we take: 

(=) - AEP eest Cele 
dT OP a= {AV 3 (BV) z 

The second part has the same sign as: 

(AV )z(AA)n — (AV) (AA)z. 

When we substitute in this again the values of (AV), and (AH,, 

from 4, then it passes into w(A//)y >0. Hence it follows: 

dP dl dP dP df rar en Heat wei 
(a) (ae), eA ee (re), 

or curve (Z,) must be situated in fig. 2 above the prolongation of 

curve (4). 

H. Now we let the point m in fig. 1 approach more closely to 

line AZ,, so that y gets small values. As long as the changes in 

volume and entropy keep the same signs as in I, we obtain a 

P,T-diagram as in fig. 2. 
For small values of y (AV )z, (AM )z and (AH), may change their 

„6% 
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sien and become, therefore, negative; now we shall consider those 

cases more in detail. 

The first of those three quantities which becomes negative 

when y diminishes, is 

(AHM)z=y (He — Ha) 4u, + 0 — wu Ha — Ar. 

When (AV)z= y (Ve — Va) du Vn + (1 -- 0) an becomes 

negative, then this may however, only take place, on account of 

the large value of VG, for*very small values of y. 

(AH), can only become negative, when (AH)z is negative: this 

follows from: 

(AH), = u(OH)y+(4H)z 

in which w(4f/)y is positive. 

Consequently we distinguish four cases. 

Ge NAAST ahr (EV hg oO se (AALO a0) 

bh. (Ai <20 Sa (PLA ee : (AE Bree |) 

ce Ales (AV a Oi (Ab ee (Aa me 
d= ASZ AAR LOP es (CUE ee Lie oe 

In c and d at the same time (4J’)g is taken > 0; it follows from: 

(AV)g=y(4V)u— 2 (AV)z 
that this must be the case. 

Hence it appears viz. that for extremely small values of / [and 

only for those (AV)z may become negative] (AV )g and (AV)z 
have opposite signs. 

a. Now we have: 

(AW ars (A V47 and (A Vy =O AV EO Deze 

(AH)a, ADs, (AH), and (AH), >0; (AH)z < 0. 

When we omit the coefficients in (5), then the isovolumetrical 

reaction becomes: 

Zn HA AGS Ade Os (SO 

(Z) (LZ) | (4) (A 
Towards lower 7’ Towards higher 7’ 

If follows from (6) for the isentropical reaction : 

Z4+MHt+At+G2L (Lo pr EO EO 

(L) | Z) (Zn) (A) ) (G) 

Towards lower P | Tee higher P 

It follows from both these reactions that the curves must be 
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situated as in fig. 3, with respect to their directions of temperature 

and pressure. 

(M) aar 
(4) 

ie 

Fig. 3. 

b. Now we have: 

In the same way as in I we 

may show that curve Zo must be 

situated below curve (A) and above 

cl the metastable part of curve (5), 

etc, so that we obtain a partition 

of curves as in fig. 3. 

Fig. 2 and 3 differ from one 

another only in this respect that 

curve (£) goes, starting from m 

in fig. 2 towards lower and in 

fig. 3 towards higher pressures. 

ARN en (OP dan (A VAR 0 (AV la 0.5 (A V)gz0 

(AM), (AH) and (AH) 
The isovolumetrical reaction 

pO (AA), andsAH )\z< 0 

becomes: 

AA CST, OAD S 0 

(Z) (L) | 
Towards lower 7’ 

Li) (A) 
Towards higher 7’ 

The isentropical reaction becomes: 

ZtA+G24,4+ L (2 ae Ol os <0 

ZE) (Ey - | (2) (A) (6) 
Towards lower P| Tow 

Fig. 4. 

ards higher P 
From beth these reactions it follows 

that the curves must be situated as 

in fig. 4 with respect to their directions 

of temperature and pressure. In the 

same way as in / we may show now 

again that curve (Z,) must be situated 

below curve (A) and above the meta- 

stable part of curve (Z), etc. so that 

we obtain a partition of the curves 

as in fig. 4. 

Figs. 3 and 4 differ from one another 

only in that respect, that curve (Z,) goes starting from m in fig. 3 

towards higher and in fig. 4 towards lower pressures. 

c. Now we have 
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(AVM, (AV), and (AV)g>0 ; (AV)z and (AV)g< 0 

ADm (AH ,(AM¢ and (AH); >0 ; (AMjz <0 
The isovolumetrical reaction becomes now: 

ZJ ZH A + ee 0 = (DIGS 250 

(L) | (4) (Zn) A 
Towards lower T | | Ted: hee of he 

. 

The isentropical reaction becomes: 

ZAA+A+GSL (Avg =< 0 i) 

L) | (ZZ) (A) (@) 
Towards lower P | Towards higher P 

From both these reactions it 

follows that the curves must be 

situated as in fig. 5 with respect 

to their direction of temperature 

and pressure. 

Now we have still to show 

that curve (7) is situated above 

(G), curve (G) above (A) and curve 

(A) above (Z,); this latter appears 

Fig. 5. again in the same way as in J. 
In order to show that curve (7) is situated above curve (G) we take: 

dP dP\ _ ((AH)z (AB) 

Guha Galan eae 
As (AV)z is negative, the second part has the same sign as: 

AV )z.(4H)g—(4V )G.(44)z. 
When we substitute in this: 

(AV)g=yOV)y—aAV)z and (4H)g= y(OA)y—a 4); 

then we find: 

AV) ADA Vt )Z\=y4h)jvy>0 
Hence it is apparent that in ee 5 curve (Z) must be situated 

above curve ((). 

In order to show that curve (() is situated above curve (A) we take: 

BEN (APN AG SAE 

(58), [ae (AV)g (AV) 
In the same way as above we find that the second part must 

have the same sign as x(AH)y, so that this is positive. In fig. 5 

curve (G) must be situated, therefore, above curve (A). 

d. Now we have: 



(AV )y, (AV), and ( 

(AH )m , (AH)g and aoe vy >0; 

rc 

‘ 

Goes: 
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(AV)z and (AV )y< 0 

sunt and (AH), < 0. 

The isovolumetrical reaction becomes: 

IAA GEL 
(L) 

Towards lower 7’ 

(AH)y <0 

(Z) (Zn) (A) (G) 
Towards higher 7’ 

The isentropical reaction becomes: 

(Za) UL) 
Towards lower P | 

Ley aera 

higher, 

When we compare the 

another, 

fig 4 (XII). This must, of course, be the case, as the phases, 

AL 
| (Z) (A) 
Towards higher 

(Zn) 

pe OZC 

P 

From both these reactions it Gee 

that the curves must be situated « 

(™) i in fig. 6 with respect to their direction 

lei 

as in 

of temperature and 

apparent 

that, 

pressure. 

in the same way 

just as in fig. 5, also in fig. 

curve (7) must be situated 

(G) and curve (G) above (A). 

The only difference between fig. 5 

and 6 is this: curve (Zj) goes, 

starting from 1 in tig. 5 towards 

above 

fig. 

in fig. 6 towards lower pressures. 

P,7T-diagrams deduced above, with one 

then we see that they belong to a same type, viz. that of 

G, Zin 

Z, L,, and A are situated with respect to one another in the same 

way as the five phases in tig o ‘ 3 (XII: 
In a P,7-diagram we imagine a curve \+ )+L-+4G, to be drawn 

in which X and Y repres 

a point of maximum-pressure, 

ent two salts. On this curve is situated 

there may also be situated a point 

of maximum temperature. We call the part at the left of the point 

of maximum pressure (he 

point of maximum pressure 

the descending branch and t 

ascending branch, the part between the 

and the point of maximum temperature 

he other part the returning branch. 

The difference between the figs 2—6 is dependent on the position 

of the invariant point 

ascending branch of each o 

IN, 

te descending branch of 

f (Z,), in fig. 4 on the d 

7 and (Z,) in 

2 In fig. this point is situated on the 

f the curves (7) and (Z,), in fig. 3 on 

curve (7) and on the ascending branch 

escending branch of each ‘of the curves 

fig. 5 on the returning branch of curve (7) and on 
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the ascending branch of (Z,) and in fig. 6 on the returning branch 
of curve (Z) and on the descending branch of curve (Z,). 

As we have found now the /,7-diagrams, we may easily deduce 

the corresponding concentration-diagrams with the aid of those. 

I shall not enter into this subjeet any further and leave this 
deduction to the reader. 

Leiden, Inorg. Chem. Lab. (To be continued.) 

Chemistry. — “A New Method for the Passification of Iron.” 

By Prof. A. Smits and C. A. LoBry pr Bruyn. (Communicated 
by Prof. P. Zeeman). 

(Communicated in the meeting of Dec. 21, 1916). 

I. If iron is immersed in an electrolyte, we have to deal with 
the following complex equilibria: 

Fes = Fes” — 2 As 

from which follows: 
ee a ee Ye 

Poa Bo a 
Fe, 2 Fe," + 61 

Those of these equilibria that are indicated by vertical arrows 

except the equilibrium between the uncharged ironatoms in the 

solid phase and the electrolyte refer to that part of the heterogeneous 
equilibrium that governs the potential difference. 

Now it has been pointed out before that the iron, which is in 

internal equilibrium, can be in electromotive equilibrium only with | 

a solution which contains almost exclusively ferro-ions, so that under 
these circumstances the equilibrium: 

Fer 2 Fe, -- OL 
in solution lies almost entirely to the left. 

If we now add ferri-ions, a consequence of this will be that+ 

ferro-ions and electrons from the iron go into solution, which disturbs 
the equilibrium in the iron surface. 

This disturbance can now cease again, as a result of the reaction 

Fes == Fes + 2 As 
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taking place in the iron surface, and it will therefore entirely depend 

on the velocity with which this ionisation takes place, whether a 

disturbance, i. e. in this case an ennobling of the metal surface 

and attending it a decrease of the negative potential difference, occurs. 

Now we had found already two years ago’) that it is indeed pos- 

sible to disturb the internal equilibrium in the iron surface in the 

way indicated here, and it has further appeared that as was to be 

expected, the degree of the disturbance depends 1. on the: velocity 

with which the liquid is stirred; 2 on the concentration of the 

ferri-ions, and 3 on the temperature. 

When this had been ascertained, we have made attempts to 

earry the disturbance through a solution of a ferri-salt so far that 

the iron became passive. As a ferri-salt we chose ferri-nitrate, 

because it had appeared to us that the nitrate ion exercises a nega- 

tive catalytic influence on the setting in of the internal equilibrium. 

Experiments made at the ordinary temperature with iron elec- 

trodes cemented with sealing wax in a glass tube, at first gave a 
negative result with a single exception. In the meantime we heard 

from Messrs. Ornstein and Morr, who, induced by our research, 

had also occupied themselves for some time with the passivity of 

iron, that they had succeeded in making a thin iron wire fused 

into glass, passive by immersing it in a solution of Fe(NQ,),. 

On continuation of the investigation it now appeared that our 

negative result up to then was probably owing to our cementing 

the iron electrode, and that when the cement does not perfectly 

exclude from all contact the part of the iron covered by this material 

including all capillary rifts and cracks, a passification probably fails 

to take place in a solution of Fe(NO,),, in consequence of seeding 

originating from the non-passive parts which are all the same in 

contact with the solution. By bestowing the greatest care on the 

cementing we succeeded accordingly in obtaining iron-electrodes 

which become almost instantaneously passive on immersion in a 

solution of fe(NO,), at the ordinary temperature. 

This result may also be reached by fusing the iron in, as Messrs. 

Ornstein and Morr did. Then use must be made of enamel, because 

else no perfectly isolating fusing can be brought about on account 

of the great difference in expansion coefficient between glass and iron. 

This method of passifying iron also succeeds with iron electrodes 

of greater dimensions. Then the iron is suspended on a platinum 

1) Versl. Nat. en Geneesk. Congres Amsterdam April 1915. Z. f. phys. chem. 

40, 723 (1915). 
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wire or, to make the experiment more rigorous, on a hook of glass’). 

2. When we now apply our new views to what has been dis- 

cussed here, we immediately see that the disturbance of iron brought 

about by a solvent, will depend on two circumstances. 1 of the 
velocity of attack, and 2 of the velocity of the reaction 

Fes — Fe. +205. 

Hence it is clear that the disturbance will increase with the concen- 

tration of the Fe(NO,),-solution and that when the same Fe(NQ,),- 

solution is used, a slighter disturbance will be found when the 

influence of the temperature on the homogeneous reaction Fes 

Fes + 265 is greater, than on the velocity of attack, which is a 

heterogeneous reaction. À 

The continued investigation has now proved that this is really the case. 

The best way to realize this is by consulting the following tables, which 

show besides that the temperature at which the passivity occurs is 

the higher, the greater the concentration of the ferri-nitrate-solution is. 

Active iron-electrode put in a solution containing 0.14 grammolecules of 
Fe (NO3)3 per litre. 

Temp. of the solution Condition of the iron 

Aue passive 

30° passive 

35° active 
limit 31°—34° 

312 passive 

34° active 

30° passive 

Solution containing 0.11 grammol. Fe (NO3)3 per litre. 
Ee ee a ea EE ee 

Temp. of the solution : Condition of the iron 

10° * passive 

19° passive 

299 active 
limit 20.5°—22 

2059 passive 

Zee active 

20° passive 

1) When we take a platinum wire the experiment is not conclusive because 

then an element is formed, in which the iron forms the negative electrode, and 

this is continually polarized. 
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Solution containing 0.06 grammol. Fe(NO3)3 per litre. 

Temp. of the solution | Condition of the iron 

go ie active 

3° | passive 

Be | passive 

Ao passive 
limit 8°— 9° 

Toe active 

se passive 

3. Though the possibility of the here observed phenomenon had 

been predicted on the ground of our views, more experiments had 

to be made before we could see a firm confirmation of the said 

considerations in the results obtained. E 

It is namely known that Fe(NO,), is partially hydrolytically split 

up; henee it had to be examined if the disturbing influence. could 

possibly have been exerted by the mtrie acid present in the solution used. 

To ascertain this the experiment was repeated at room temperature 

with a solution of nitric acid, which was a slightly stronger acid 

than the ferri-nitrate solution used. The result was that the iron 

remained active. To make the result still more pronounced the nitric 

acid concentration was increased to 32°/, by weight of HNO,, but 

the result did not change, the iron remained active. 

This indubious result showed therefore that the disturbing action 

of the ferri-nitrate solution with regard to iron is really owing to 

the ferri-ion, and that the obtained results may be accepted as con- 

vineing confirmations of the newer views about the electromotive 

processes and equilibria between a metal and an electrolyte. 

SUMMARY. 

Through the above described investigation it has therefore been 

proved with certainty that, in perfect agreement with the supposition 

pronounced already before, the disturbance in the iron surface by 

a solution of ferri-nitrate must be attributed to this that the unary 

iron can be in eleetro-motive equilibrium only with a solution which 

contains only exceedingly few ferri-ions by the side of ferro-ions, 

so that iron put in a ferri-solution will emit ferro-ions and electrons. 
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If the internal equilibrium in the metal sets in less rapidly than 

the metal goes into solution, the internal equilibrium in the iron- 

surface will be disturbed in the noble direction, i.e. the surface will 

become richer in ferri-ions, and poorer in electrons. 

This case actually presents itself here, and the said disturbance 

increases with quicker stirring and also through increase of the ferri-ion 

concentration, and fail of temperature. Owing to the negative catalytic 

influence of the nitrate ion, the iron could easily be passified in 
this way. 

It coutd be established with certainty that not the hydrolytically 

split off nitric acid effects this disturbance, for even a nitric acid 

solution of 32°/, by weight of NHO, was not able to make the 
iron passive. 

Amsterdam, Dec. 16, 1916. Anorg. Chem. Laboratory of 
the University. 

Physics. — Einstein's theory of gravitation and Here.orz’s mecha- 

nics of continua’. By GouNNar NorDsTRÖM. (Communicated by 

Prof. H. A. Lorentz). 

(Communicated in the meeting of November 25, 1916). 

In a way somewhat different from that used by Lorentz and 

Hinpert, Erstein has recently deduced his gravitation theory from 

Hamiuron’s principle '). In doing this he divides Hamrron’s function 

$* into two parts: 

DEE JAE st i EN 

in this way that the first part G* depends on the g”’s only and 

their first derivatives with respect to the coordinates g”” while the 

second part Mr contains the g””s only and besides certain variables 

q(e), Which determine the state, and the derivatives of these q(o)’s. 

By varying the g”’s Einstein obtains the equations for the gra- 

vitation field in the form 

= (ee ne 
z Org Og?” Og? Og?” 

1) A. Ernsrein. Hamitronsches Prinzip und allgemeine Relativitätstheorie, Ber- 
liner Sitzungsberichte 1916. p. 1111. 



885 

and by varying the q(o9)’s he finds a system of equations for the 

field of the matter on which however he does not dwell. 

~The assumptions Einstein makes on the character of the quantities 

with respect to transformations are sufficient to determine the function 
; 

G*. As Je must be a scalar quantity we find that at transform- 

ations both parts of equation (2) behave as “covariant volume- 

tensors’ 

The quantity 
Eat ns al 
poh cen eng eee ay Bak VANCE ag NED) 

which oceurs in Ernsrein’s equation (21) as momentum and energy 

is therefore a mixed volume tensor. 

In this paper will be shown that the same volume tensor 3, is 

obtained as tension-energy tensor if HeRGLoTZ’s mechanics for deform- 

able bodies*) are extended in the way required for EINSTEIN's 

theory 7). | 

For incoherent masses the problem has already been solved by 

Prof. Lorertz *). The problem may however also be solved for 

arbitrary elastic bodies if -Hrreiorz’s formulae for a system of coor- 
dinates, in which the g,,’s have their normal values, are transformed 

to an arbitrary system of coordinates. 

HerGrorz denotes the cartesian coordinates belonging to the point 

of matter, when the body was in its normal state, by é,, &, &,. Here 

the property of the normal state has to be added that the gs have 

their normal values + 1 and 0. Then an arbitrary system of coor- 

dinates may be introduced in which the point of tbe matter (&,, &,, §,) 

may have at the time t— #, the coordinates 2,,.v,, 2, in space. If 

still an arbitrary time &, is introduced 

§, =S, (Si: Sos §3, 4); 

then the four equations 

ZR (Gr, Sey Bas Gales Evert Ket ne meen ee ee) 

describe the motion of the body. Further we put, just as Hrreiorz did 

On; a 
NEET ad ee. Sinton et ren «CNO 

nj 

1) G. Hererorz. Uber. die Mechanik des deformierbaren Körpers vom Stand- 

punkt der Relativitiitstheorie. Ann. d. Phys. 36, 1911, p. 493. 

2) If there exists an electro-magnetic field, then £ contains of course still an 

electro-magnetic term, which must be treated separately. 

8) H. A. Lorentz, Hamitron’s principle in Ersrem’s theory of gravitation. 

These Proc. XIX, p. 751. 
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Then the components of the velocity of the matter are: 

a a, a 
“u—_ —* ; ee : en RE, le (6) 

dys Qa, Ass 

If we consider a definite particle of the matter, then it is always 

possible to introduce a special system of coordinates, in which this 

particle is at rest, while at that point the g,, ’s have their normal 

values. Quantities determined with respect to this system of coordi- 

nates will be indicated by the index 0. Now 

Bg a og Oe 

For a line element we have in general 

ds? ‘= — de,’ —dz,° — dn. da! =de dap day. ae 
[454 

and for its projection ds, on the space perpendicular to the world line 
2 2 2 

ds =d — ds, — de, = 2 Yar dag Tt," . Soe 
eid 

y.. being a covariant tensor. In the system of coordinates S° y°,, = 

Yaa = —1, while all other components are zero. Because 

of these properties we easily find a general expression for y,,, if a 

certain tensor is subtracted from g,,. In-order to find this tensor 

we first form the contravariant tensor a.,¢-, from the velocity 

vector «4, and then divide it by the scalar quantity = Gag Ans Ups. 
Z., [3 

—— 0 
d 22 

Of the tensor 

A74 Arg de. dr- 

DN PEREN ds ds 

a.s 
| 

which we obtain in this way, only the component (,,) differs from 

zero; it is equal to 1 so that it can neutralize ge. In order to 
“44 

render’ the tensor covariant it must still twice be multiplied by 

the covariant fundamental tensor. We then find for y,,: 

=) 540-4 

sis = ian OS ga ge ee ee 
ae = Yuga a 

ANC sl 

For the scalar quantity in the denominator 
2 

Sed Wet eee (10) 
zp 

Now Hererorz’s considerations from $ 5 of his article may easily 

be generalized as much as is necessary for our case. HmreLorz 

supposed a kinetic potential fff | 3,18, dE 56 to exist. Let us do 
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this too. First for the case of rest and no gravitation this potential 

must take the form [J easasasya of the ordinary kinetic 
a t 

potential dependent on quantities that characterize the deformation 
and on the entropy. In the system of coordinates S° the equation 

f Pp — Qs, Bij) a, eN ee ne Ae see ey 

must therefore hold, if ¢ is the entropy per unit of the normal 

volume and if at rest the six deformations e;; are determined by 

the following equations (equations (16) of HerGrorz): 

2 2 2 \ 

bf rey a A eo ss 
9 

Deeg, Ag Oet an EET ee 

ite. / 

The quantities e;; show how the form of an element of the body, 

when at rest, differs from the normal form. 

Secondly ® must be invariant with respect to arbitrary transform- 

ations. Thus the general expression for ® is obtained by trans- 

forming equation (11) from S° to an arbitrary system. 

At this transformation the connexion 

de? 
a 5 dap. 

ke Ox}: 

must be used. We then obtain from (7) and (8). 

= 0x°; 02°; a Ow, dz? : (13) 
Ye — TT == = -y 5 5 4 Z 

i=3 Ox; dx; 
ws vi — 2 - (14) 

Further (5) gives 

(On; 
Goyette Oey Lae ven a Sg peek) 

: k Di 

while for the expressions (12) may be written 

l ER 5 ~ Oz, Ox, dx’, Oz". Oz°, at 

ao, = aes A Olt =—- = ES ee Coie 
me Is, l lov, Oa) Ov: Ox Oxy, Oa] 

so that according to (14) 

1+ 2e, = — = an An Yl, 

2.5 — D Ak2 A13 Ykls 7? + ° . ° . . (16) 

kl 
etc, 

If the expression (9) for y,, is introduced and if we put 
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Agel = — 3 gw Auk Al = — & VI yy (Auk Gt + An Ge), « (17) 
jy? [2,7 

then the expressions: for the deformations at rest are finally obtained 

in the form: 

Ar De 
AA 

an te ees Oe 18) 
eh a nee ( fs 
285 ager rat 

Ane 

etc. 

These expressions look just like the corresponding equations (16) 

of Hererorz. Here however the quantities Aj; have a wider meaning. 

By introducing into (1!) the expressions (18) for the deformations 

at rest and by taking into consideration that: 

ds EA aes Soo hee oi tee Ea 

we obtain for ® a function of ¢ and the A;z’s only. We may 

however also consider @ as a function of the quantities & aj; , Jy». 

DD (& Ay) = DAE, Aij Ip) A ee 

The a;;s and the g,,’s occurring in the expressions Aj, only, 

there exists the expression 

Op 0p O@ 
“Za | a Soe 

— Ain — = Jin 
> = as 

n ain n Od jn 0nj 

OP 
ZE 2 nd Oman . . (21) 

n Od jn 

which is of much interest for the following investigation. This 

equation is easily proved by taking on both sides the differential 

quotients of @ first with respect to the Ajz;’s and only then with 

respect to the a;,’s or g;,’s. At this last differentiation gj, and gnj 

| 0p 
are not identical, if j=f=», and in order that ee be equal to 

Jin Jj 

Pp 
a the last expression (17) for Aj; has to be used. This gives: 
Inj 

ee OAT id Ò A, 
> ain = — A J Gil — 451 ZS Yui duke = 2 = Jin os 

° y yp. n Din 

and by means of this equation (21) is easily proved. 

We must remark that the right-hand side of (21) represents the 

(2) component of a mixed tensor. By dividing the equation by the 

determinant ; 
Det ay hy. Se eee eee 

volume tensors are obtained on both sides, for 

pia’ =p 
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is a scalar. .According to equation (68) of Herarorz the left-hand 

side of (21) divided by D represents the components of the tension- 

energy tensor for matter. If this formula of Hrrenorz holds in the 

general theory of relativity too, the components of the tension-energy 

tensor of matter are’): 

DE “Op one OP 
et, RE rente aS Nn (23) Cree 

in — Ujn 

G2 D n dain me D 
d 

At all events this formula is valid in the system of coordinates 

N° and from the general covariancy of both expressions for © can 
be concluded, that it holds for an arbitrary system of coordinates. 

In the following this will be proved directly by means of Haminron’s 

principle. 

Every function p of the g,,’s may also be regarded asa function 

of the contravariant g’’’s and in general. we have: 

a Jus us =e UP et eps ee A eA tee) 
geeks a Oye 

In analogy with the assumption (69) of HerGrorz we put 

= ? ke 
y= — D is e £ C > in e 5 (25) 

(8 = volume scalar). As ) depends on the a;;’s only and not on 
oJ the g”’’s, the second expression (23) for £; may then be written in 

the following way: 

ae OD OA RJ) = a - 
a re ee i = a eee 23a 

z Bon JI dai, 3 g Ogi ( ) 

Comparing this equation with (3) we see that they are identical if 

ie EP Ae che Be Ga cee og Sites (26) 

Thus we have found the connexion between Etnstetn’s theory of 

gravitation and Herer.orz’s mechanics. Now we have.still to deduet 

the first expression (23) for TL from Hamiton’s principle. This may 

be done in a way analogous to that used by prof. Lorentz for the 

case of incoherent masses. The integral 

[fs dz, de, de, de, 

must then be thus varied that the world-points w,,,,e,, a, of the 

matter are shifted by the increments dw,, de, Jv,, dv, of their coor- 

dinates, these increments being zero at the -boundary. As functions 

‘) The negative sign has to be added, in order that the tensions are taken 

with the same sign as in Einsretn’s calculation. 

Proceedings Royal Acad. Amsterdam, Vol. XIX. 
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; vast, the g,,’s must keep their values"). For the sake of 

simplicity changes of the entropy will not be considered, so that 

we have to do with adiabatic changes of the body only. HAMILTON’s 

function F must be regarded as a function of the @;;’s and of the 

of «x WL 2? 

contravariant g”’’s 

5 =$ (aij, 9°). 
If the variation of § in a fixed point (w‚,w‚, z,, #‚) of the four- 

dimensional world is denoted by d *, and the variation in a point 

(E.E, EE) of the matter by AS, then we have 

it in _ Ow 
dj = AS — = — Gz; „ 

i Ow; 

OS Oda; 05 _ Og” 
Dn rn iy ET 

in Odjn OS, py Og? i Oa; 

Now the variation principle gives 
Ld x,y ,. 

=op fide: de, de, de, dz, = 

2 AP ‘\ x Outi Ò Og?” Ox 

II en Aint 2 5 = => ~— daj— = dw; )da.dx,da,dz,. 
in zo 3 j Oa; poe OG i Ov; i Ow; 

The dw,’s being independent of each other, we obtain by partial 

integration of the first term in brackets 

epe ME 0 ON OR Og”? 
— S— 2 ajax ee te 

5 One. Fi dai, Es an Og?” 02; 

If we put 

V = Da de ie 5 nah «~~ 28 
5 ” cs Oajn t ( ) 

where óf is 1 or O according as # and j are equal or not, it is 

easily proved that this expression (28) for Xl is identical with the 

first expression (23), if 4} and ® are connected by equation (25). 

If we put still 

EE a Yous En < ey ae ea ie eN (29) 

(comp. Este p. 1116) then we have according to (23a) 

$= eee a ee ee 

1) Einstein proceeds in the opposite way. He varies the gy’s, while the coordi- 

nates of the matter are kept constant. 

2) Acceording to (26) and (30) the right hand sid of (2) is therefore equal to — Ty. 
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and equation (27) becomes finally 

02 EE Rae Bas 40 Rip sis: OF ha A, Ae ee BE) 
j Ow 1 Ow; 

This equation is identical with ErNsTEIN’s equation (22), which 

he obtained by variation of the g””’s. The variation performed in 

this paper does therefore not give new equations for the field. It 

shows however clearly that the expressions (23) for © also hold 
for the general theory of relativity. 

Finally the formulae may still be specialized for an adiabatic 

fluid. For such a fluid (comp. Herrerorz § 10) @ is only a function 

of the quantity 

a A eS 9 
ei ee == ———— 32 0 Le EE), . . ( 2) 

da VS 9,,30740 34 
NC) 

which gives the relation between the volume when in rest and the 
normal volume. We thus have according to (11) 

= 736 740 

a, [3 

“7 3 
A13 

W_gD Ee lt ME 
B ly (i eee eae a V Sgosaag. en Ta (33) 

fs : 

The tension-energy tensor may be calculated most simply in, its 

contravariant form. By doing this we obtain. 

a a le he ct ye ee (34) 
D049; ; DE goganass 

where, as in HeRGLOTZ’s article, 

02 

denotes the scalar pressure. By performing once respectively twice 

a mixed multiplication with the covariant fundamental tensor we 

(35) 

obtain the expressions for % and 3, 

mass when in rest. If therefore, we assume Vv —g = 1, the obtained 

expressions agree with those given by HiNsrrIN *). 

Leiden, Nov. 24 1916. 

') A. Erster, Die Grundlage der allgemeinen Relativitätstheorie, § 19, Ann. d. 

Phys. 49, 1916, p. 769. 
Lé 57% 
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Physics. — “The equations of the theory of electrons in a gravita- 

tion field of Einstein deduced from a variation principle. 

The principal function of the motion of the electrons.” By 

J. Trestinc. (Communicated by Prof. H. A. Lorentz). 

(Communicated in the meeting of November 25, 1916) 

Hinpert') derived the fundamental equation of the electro-magnetic 

field in the empty space from a variation principle, in which the 

principal funetion is considered as dependent on a four-dimensional 
vector potential and its differential quotients with respect to the 

four coordinates. :, 

In this paper it will be shown that this method may be extended 

to a space in which electrons are moving. For this purpose a new 

term must be added to the principal function as it was used by 

Hivpert, by which term the influence of those electrons is repre- 

sented. Only then the connexion between vector potential and the 

intensities of the field can be indicated, as the equations give us the 

influence of the potential on the charges, while it is just in this 

influence that the intensities of the field are expressed. 

In another way Prof. Lorentz?) had already deduced the funda- 

mental equations from a variation principle. In my opinion however 

the generalization of HiLBert’s method solves the problem in the 

finest possible form. Nearly the whole following way of calculation 

is taken from the mentioned paper of LoRENTz. 

The components of the vector potential are indicated by qs, a 

four-dimensional element of volume de, de, dx, dt by dS. We shall 

also write de, for dt. Let the density of the electric charge be g. 
da; 

Then the charge of a volume JV is edV =e. We put on =i 

( from 1 to 4). 

These quantities wi are-no vector-components. They become so 

WE 
4 however when they are divided by } 

dxj;dVYq ede; daj — 
Poro nig wien dean 

* Bde dtdVyq dVide hr: AC ; 

represent the volume resp. the density of e when at rest. 

da; , 
= 

s 

Qo 

1) Davip Hisspert. Die Grurdlagen der Physik (Erste Mitteilung) Nachrichten 

von der Königlichen Gesellschaft der Wissenschaften zu Göttingen 1915, S. 395. 

2) H. A. Lorentz. Hamitron’s principle in Ernstern’s theory of gravitation. 

These Proc. XIX p. 751. 
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The other quantities with indices will always be vector components 

and the letters will have the same meaning that is generally ascribed 
to them in the theory of gravitation. 

With an expression as qaw” in which some indices occur twice 

we denote the sum of a number of such terms, which are obtained 

by giving to those indices all values from 1 to 4. , 

In a four-dimensional extension S we consider an electro-magnetic 

field and moving electrons. Let the state be characterized by the values 

of the potential g, and of the intensity of the current w' and let a 
force A; act on the charges per unit of volume. Then the principle 
may be formulated as follows: The equations which exist between 

these quantities are such that a virtual displacement of the charges 

and a virtual change of the potential cause a variation of certain 

two integrals over the volume S, which is equal to the negatiye 

work of the external forces during that change. The gravitation 

potentials are kept constant. 

In a formula this may be expressed as follows 

aft Vg dS + aft, Vg dS | ROAN ASD Oa 

Here HirBeRT’s invariant occurs 

dl Ogm 
Li = E (Gn—Qnm) (quo) OO UE where Jinn = an: 

Un 

and a new one 

men Tl 

Let the potentials be changed by the amounts dg; and suppose 
the intensity of the current to be varied by a displacement of the 

charges over a distance dw. Then Lorentz gives for the changes 

of the current 

Oad 
dwt =" where Yap = w! Owa—wtdan 

vy . 

This is easily found by considering the changes in density and 

velocity which are caused by the displacements de 

We shall write 

. d OL V q 0 Lg 

JL ae EAD ER ne ‘fig; Le ey | 
WJ zl Ogik ) one Ov}: ( Ogik at ) C) 

; 0 
OLY g = w' 09; — fib qib + an: BG) reld) 

At the limits the potentials are not changed and the charges are 
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not displaced; so that in the integration over S the last term of 

both equations vanishes. Therefore it may omitted, and we obtain 

0 /oL . 
LVJ = — = = 2) . dg; 

ik 

dL, Vg = Wi dj’ ni (qbi a gib) wid; 

Sis found v (9 (Ymu—Yam) gk gi 
dik 

If we put 

qatqva = Wat gies Sige a) a 

gen ge Way = wr? 

we have 

Dm a Se ee 

OL, ' 
~ Vg en Va pr: 

Ogi 
And the variation principle gives 

sand 

TEELEN OEE 
Vg 

d a ki 

D= IE ot gue aes cee eee (C) 
OvK 

From Was a new tensor can be derived: 

ee Te when u =|= v ree = 
( 

The uw',r’ represent just the two other indices than u,v, in this 

way, that w,r,u',r' may be brougkt into the order 1, 2, 3, 4 by an 

even number of permutations. 

. According to, (A) we have 

In order to find the tension-energy tensor we shall proceed as 

Prof. Lorentz does. We calculate the left side of I for the case 

that the whole electro-magnetic field and the charges are displaced 

over a constant distance dre in the direction 2. By using (B) and 

(C) we find from (1) and (2) 

0 RAE det 

0 ‚ Ow? 

The term — (w? gc) may be transformed into qe 
Oxy ; x5 

+ Wi da, the 
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first part of which vanishes because of the undestructibleness of 

the charge Ee 

| Ov guy 
NEEN gei from (C) 

dah 

v/a) ge Ode; 
oe Voy” = 

dap day 

Here the last term is equal to 0. 

We thus substitute in (3) 

ie OV guy?! dei 
— (wg,) = ——— 
dws On? 

Then (3) becomes 

es lee and ‘ | 

Oay, (Vg Wei Whi 
) = dz, (u qi) ie 

this must be equal to 

OL Wo OL Wg OL aq OL. g 
VOA LRE ker En PR Eeen EST EA Sive | V9 | Ox, ( Otte A Ox, ( Oa Jl : 

ÒL; Vg ae: 
Here ———- means the increase of the quantity Lig in the 

Ue. 

case of a displacement in the direction w‚. Our variation is however 

such that after it only the gs and ws have a value as before at a point 

at a distance — dz, further in the direction of «.. That is why the 

OLiVg . : 
terms occur, which represent the increase of Lig only 

ve w‚g 5 

caused by the variation of the gp, while a and q are kept constant. 

Taking into consideration (II) and (II), and equalizing the two 

last expressions, we obtain 

aL.Va 0 prs b 
KeV9 + | |) =P bi — Oe W™ Pn) 

wq Ox, Oa'p | 

b ; 
Hered, 1 ror 0: according vas 6 = c wr 6 ==: 

_ Thus we have as energy tensor 

Re = V9 (YW Pa — + Jc EN Pete (EE) 

Neglecting the gravitation we may use a system of coordinates 

where the g,, have their normal values and the intensities of the field 

may be determined by means of the equations : 

K, = — o(dx + vy h, — v, hy) ete. 

By means of the scheme 



0 —h, hy — dx 

we | hs 0 Each, cy dy 

Winn = 
—hy hy 0 En d, 

dy dy d, Q 

(B) is brought into the form A = —g (d + {v hl) 

da od ; 
(C’}) becomes curl h = 9 — + — 

de OF 

div d= eo 

D ld dh 
(1) curl d= — 

div h=0O 

(i) gives as tension components the tensions of MAXWELL, as energy 

current Poyrrinc’s Vector and also the right density of energy. 

If the three-dimensional vector, the components of which are q,, 

q, and q, is denoted by A and if we put 

=P 
then equation (A) may be written in the form 

h == curl A 

1 l De QO == | 2/0 ¢ — — : / OL 

Using the notation of Laur*) and writing Wp” —— M,,, we obtain 

the equations 

Do tg ai ee ee Bei 

Di Mr ote ae ne eee ee EN 

Lesl (MoMA | ce ete neh Seer 

Ks Dig Tie Verne eN 
M = Retq. 1 ee eee 

Physics. — “Hlectric current measuring instruments with parabolic 
law of deflection”. By Prof. J. K. A. WERTHEIM SALOMONSOK. 

(Communicated in the meeting of November 25, 1916). 

In current or voltage measuring instruments the deflection is 

either about proportional to the current strength passing through 

the instrument or it grows with the square of the current strength. 

In this way they constitute two different classes of instruments. 

The ordinary galvanometer with a movable coil or magnet belongs 

1) M. Lauw. Das Relativitätsprinzip. 
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to the first group the deflection in which obeys a linear law. The 

electrodynamometer is a prototype of the second class, in which a 

quadratic law prevails. 

df the movable part of an instrument of the first group be mecha- 

nically coupled to the movable part of an instrument of the second 

type, the rotating axes of the two instruments being made to coincide, 

and we send the same current through both instruments, taking 

care that the constituents of the movable part try to move it in an 

opposite direction, we-have got a new instrument type showing a 

few peculiarities which are not to be found in either of the con- 

stituent parts. 

If / be the current strength, the deflection y, the constant of the 

galvanometrie part a, the dynamometric constant 6, we can put 

agen ame ed bli 

if the constituent parts are separately considered. 

For the two parts used together we find: 

ye Ast ds 
(Ne en hale Vn Fiel (1) 

This is the equation for a parabola. Therefore we may call in- 

struments formed by the combination of an instrument with a linear 

law of deflection with one obeying a quadratic law, instruments with 

a parabolic law of deflection. 

From the equation 1) giving the deflection in terms of the current 

strength we immediately find, that there will be no deflection either 

with a current /==0 or when 

oe WA er ie Ae DEN 

If we eall positive the divection of the movement of the movable 

system when the dynamometric part has been short-circuited we 

find that a maximal positive deflection occurs when 
b? 

i ¥ 

2a 

the deflection being 

| L (3) ¢ = — A 3 
4a° 

ans 57 
Any current between /— 0 and /—-— gives a positive deflection; 

a 

b? . . 

currents larger than /— — cause negative deflections. We also get 
qa 

a negative deflection with currents smaller than /=0 i. e. after 

commutation of the normal direction of the current. 
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For very smail currents we have a sensibility = «, which means 

that a current /—a gives a deflection of one division of the scale. 

Near the second position of equilibrium a current inerement of — a 

or a current decrement of + « augments a positive or decreases a 

negative deflection by 1 part of the scale. The absolute sensibility 

of the instrument is the same either in the first or in the second 
zero position. 

_ The relative sensibility i.e. the ratio of the current increment 

causing an increase of one part of the scale into the current strength 

approaches to 0 in the first zero position ; in the second zero position 
2 

it is 5 which will generally be a very large figure. Instead of in 

this way we preferably calculate the relative sensibility for the cur- 

rent causing the largest deflection at which the linear law still holds 

good. Expressed in this way we can say that the relative sensibility 

will generally be of the order of 200—500. But in the second zero 

position we can easily obtain a relative sensibility of 100000 or 

more. Even with a moderate ratio between a and 4? we obtain 

very high figures for the sensibility near the second zero position. 

As a matter of course we can only use very small parts of the 

parabola in most cases. We need scarcely point to the fact that for- 

mula (1) is only available for deflections for which both the linear 

law for the galvanometer and the square law for the dynamometer 
hold good. 

In instruments of this kind the thing we aim at is a high relative 

sensibility near the second zero position. As an example we might 

take an instrument giving a full scale deflection at 10 milliamperes, 

and which has its second zero position at say 1 ampere; in this 

case a change in the current strength of only one percent would 

cause the spot to leave the scale. 

Many years ago I had an instrument of this kind made for me 

in a rather simple form. I used it as an indicator that the current 

in a potentiometer remained constant during the measurements so 

as not to be obliged to correct the setting of the potentiometer by 

means of the Weston-element. For this purpose the parabolic indi- 

cator proved to be very useful. We can easily give such an instru- 

ment any relative or absolute sensibility. With a shunt to the galvano- 

metric part we diminish the relative sensibility ; with a shunt to the 

dynamometrical part we can increase it. A shunt to the complete 

instrument increases the current strength for the second zero-position. 

One might expect a parabolic instrument to make an excellent 

standard- or normal instrument. But there are a few objections to 
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using it for this purpose. lf the dynamometrical part be constructed 

with two astatic movable coils we may consider this part as elec- 

trically constant and invariable. But we cannot succeed in rendering 

the galvanometer part electrically and mechanically constant and 

invariable. If this part be constructed with a movable coil and a 

permanent field magnet, this last cannot be considered as electrically 

constant for more than a few hours. With a movable magnet this 

forms one inconstant factor, the magnetism of the earth being another. 

The horizontal intensity of the earth-magnetism changes every year 

more than 0.01 to 0.03 percent and restricts the utility as a standard 

instrument to that value. But the variation in the magnetism of a 

permanent field magnet or a permanent movable magnet is probably 

many times greater. Consequently the instrument can only be expected 

to be of practical use during short consecutive periods in which no 

appreciable changes in the earth magnetism occur and when no stray 

fields are present. The influence of stray fields might perhaps be coun- 

teracted by judicially enclosing the whole instrument in a seamless 

cylindrical soft iron covering. 
We have still to consider another possible use of instruments with 

a parabolic law of deflection i.e. tor detecting or even measuring 

small changes in the horizontal intensity of the magnetism of the 

earth. An astatic electrodynamometrical system should be connected 

with a coil without iron core, moving in tbe earth field only, there 

being no field magnet. In that case the constant a depends on the 

horizontal intensity of the earth field. The galvanometric part should 

possess a sensibility many times greater than the dynamometrical 

part. For the exact measurement of the current strength a PEeLLat 

or KurviN standard instrument might be used, or perhaps a reliable 

potentiometer. I do not know whether a practical method might be 

worked out in this way ; I do not even think it offers any advantage 

over the classic methods. 
With the apparatus | had made for myself, I have been able to 

demonstrate ihe facts mentioned in this paper. In my instrument I 

found that, @ and 6 having been measured as carefully as possible, 
° 

Pay 
a current /—=W— generally failed to give an exact zero position. | 

ct 

was able to prove that this was to be expected ; the difference being 

caused by two circumstances: 1. the electrodynamometer not being 

an astatic one; 2. the instruments reacting mutually. Both circum- 

stances might have been partly eliminated by a construction which 

rendered the whole instrument perfectly symmetric about a horizontal 

plane passing through the centre of the movable magnet. 
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Physiology. — “Mibrin-excretion under the influence of an electric 

current.” By E. Hexma. (Communicated by Prof. H. J. 

HAMBURGER). 

(Comraunicated in the meeting of October 28, 1916.) 

Blood-elotting is based as we know upon the formation of a fibrin- 
gel. The gel or clotted substance obtained by adding blood-serum 
to a transsudate or to fluid blood-plasm free from elements formed, 

is likewise generally looked upon as fibrin. These fibrin clottings 
have until lately been considered as irreversible gels. Wrongly so, how- 

ever, as my experiments showed. The fibrin-gel formed in the above 
mentioned way is indeed entirely insoluble in pure water, but by 
means of traces of alkal or acid it may be brought into a sole- 
state again, under the formation of optically empty fibrin-alkali- and 

acidhydrosoles. From these soles the fibrin may be excreted again 
with its properties unmodified. As regards the fibrinalkalihydrosoles 

it may for instance be done by weak acid (neutralisation), as regards 

the fibrinacidbydrosoles by weak alkali (neutralisation), while in both 
soles a number of reagents e.g. bloodserum, saturated neutralsalt 

solutions etc. effected an excretion of fibrin. 

Further I have observed that the electric current also possesses 

this property. Both in artificial and in natural tibrinalkalihydrosoles 

(bloodplasm, transsudate) and likewise in fibrinacidhydrosoles an 

electric current may effect an excretion of fibrin. In the latter case 

the fibrin is formed at the negative, in the first two cases at the 

positive electrode. 

For the experiments in question the fluid-to be investigated was 

put into a U-shaped tube into the legs of which thin platinum elec- 

trodes were inserted (broad 4 ¢.m.). As a rule the current was 

supplied by two accumulators. 

In an artificial fibrinalkalibydrosole this experiment produces 

after some time a slight formation at the positive electrode, whilst 

after some hours a considerable clot has been formed round this 

electrode. x 
The fluid in the leg of the U-tube with the negative electrode 

remains Clear; the only thing observable in it being the formation 

of gas beads. If the experiment is made with a weak fibrinalkali- 
dL 

hydrosole prepared with a very weak alkali (cx ag NaOH) a jelly 
J 

like, filmy substance settles as a rule on the anode, which substance 

contains a great number of gas-beads and from ‘whence thin fibres 
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extend into the fluid. A microscopical investigation shows that this 

is a network of fibrin fibres, so that there is no question about a 

real jelly. 

If, however, the experiment is made with a highly concentrated 

fibrinalkalihydrosole, the fibrin likewise settles round the anode, 

often though as a jelly-like mass in whieh a microscopical investi- 

gation can detect no fibres: in this case we have to deal with a 
real jelly. If the gel is removed by means of a curved spatula from 

the fluid, it breaks up into small lumps. If these are put into 

distilled water, they sometimes take the film- and fibre-shape, whilst 
in Other cases they are further broken up. 

In a fibrinacidhydrosole of moderate concentration, made for 

instance with an HCl, the other conditions of the experiment being 

the same, a clot, which likewise encloses gasbeads, settles in the 

course of a few hours on the negative electrode. Mostly this clot 

can be carefully removed as a whole; in water it presents the 

appearance of a mass of threads, which on being examined micro- 

scopically are found to make up a network of fibrin fibres. In highly 

concentrated fibrinacidhydrosoles the fibrin secretion may assume 

the form of a jelly-like mass or of thin films; mostly, however, a 

connected film is formed also in this case, which, in water, breaks 

up into a mass of fibres. lt should be mentioned that in these ex- 

periments the fluid in the leg of the U-tube with the positive elec- 

trode remains clear; here too a few gas beads may be observed. 

If in the same manner a current is led through blood-plasm which 

has been kept fluid, the result will be after a few hours a con- 

nected jelly-like filmy clot with numerous gas beads, from whence 

slender fibres extend into the fluid at the positive electrode, whilst 

the fluid has remained clear in the other leg of the U-tube. When 

removed in water this clot mostly breaks up into thin flakes and 

fibres. On being examined microscopically the mass at tirst appears 

to be a dense amorphous granular mass. After one of the flakes or 

fibres has been unravelled a network of fibrin fibres is revealed, 

which had not been observed before on account of the numerous 

amorphous substances. These amorphous grains are undoubtedly 

other albumens, which have been precipitated with the fibrin at 

the anode. / 

As regards these experiments made with artificial fibrinalkali- 

and acidhydrosoles, it is by no means necessary to start from fibrin 

obtained by adding bloodserum to bloodplasm kept fluid or to a 

transsudate. The same results are arrived at with fibrin which has 
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been obtained by adding to the above-mentioned natural coagulation- 
fluids some suitable reagent. For instance, weak acid (neutralisation) 

or a saturated neutralsalt solution (especially a saturated Nak solution). 

If alkali or acid hydrosoles, ‘made from the fibrin gel thus obtained, 

are exposed to an electric current, they will be found to behave in 

a manner entirely analogous to that of the soles mentioned before. 

How are we to account for the fibrin-secretion or coagulation 

under the action of an electric current? In my opinion the most 

obvious supposition is that the eleetrie current renders inactive the 

alkali or acid of the fibrinalkali- and acidhydrosoles ; this may be 

explained as follows : 

If | am not mistaken it is assumed that the molecules of an aqueous 
alkali-solution e.g. a weak NaOH sol. are split up when acted upon 

by an electric current, so that the ions of OH are formed at the 

anode; these are subsequently rendered inactive under the formation 

of water and oxygen. If this is correct, the alkali in a fibrinalkali- 

hydrosole, under the influence of which the fibrin is in a sole-state, 

will be rendered inactive by the anode ; it will so to speak disappear 

from the fluid, at least there. And sinee the fibrin cannot remain in 

a sole-state after alkali has been withdrawn, it will be secreted at 

the anode. It can easily be demonstrated that the part of the fluid 

which comes into contact with the positive electrode becomes much 

less alkaline, unlike that part which is in the leg of the U-tube 

containing the negative electrode. This holds good both for natural 

and for artificial fibrinalkalihydrosoles. 

If on the other hand an electric current is led through a watery 

weak acid-solution, the acid molecules are, if | have not misinter- 

preted the current views on the subject, split up into electrically 

charged atoms (ions), whilst the ions of H with their positive charge 

become electrically neutral on being brought into contact with the 

negative electrode or disappear from the fluid there. If we assume 

this view to be correct, the acid in a fibrinacidhydrosole will suffer 

an electric dissociation and then become inactive. The consequence 

will be that the fibrin can no longer remain in a solestate and will 

be excreted at the cathode. This decreased acidity of the fluid-coluinn 

whieh is in contact with the cathode can be easily demonstrated in 

the experiment. It should be noticed in passing that one gets an 

impression that the electrolytic dissociation of alkali and acid, or at 

least the disappearance of alkali and acid from the respective fluids, 

is restricted to the leg of the U-tube which contains the positive or 

negative electrode. That is to say if weak currents are applied ; if 
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very strong continuous currents are led through the fibrinalkali- and 

acidhydrosoles, everything is changed. 

The observation that under the influence of the electric current 

fibrin in natural coagulation-fluids is secreted at the same (positive) 

electrode as fibrin in artificial fibrinalkalihydrosoles confirms, as it 

seems to me, the accuracy of a conclusion which I arrived at by 

another way before, viz. that fibrin in natural coagulation substances, 

hence also in blood, is present in a preformed state as an alkali- 

hydrosole. That, therefore, the fibrinssecretion in natural coagulation 

fluids, and consequently the clotting of blood, is in principle based 

upon a transition from the alkalihydrosole- into the gel-state. 

Elsewhere grounds have been adduced for the opinion that fibrin 

in its optically empty soles is not present in a simply dissolved state, 

but that the fibrin particles under the influence of electrolytes are 

expanded by water. That in other words the fibrin-particles in the alkali- 

and the acidhydrosoles contain so to say a charge of an electrolyte 

(alkali, acid) and water. Such an amicroscopical system: fibrin- 

substance—electrolyte—water [ have denoted by the name of ‘mi- 

cell”. Taking the word micell in this sense, the optically empty 
fibrin-soles may be looked upon as micellular solutions. This view 

also makes it clear why fibrin may be secreted in one case as a 

real jelly, in another as a system of fibres, which facts we could 

establish again at the gel-formation under the influence of an electric 

current. In the first instance we have to deal with an agglutination 

of the fibrin micells still in a somewhat swollen state (by an im- 

perfect loss of the electrolyte and consequently of the water in 

them),- resulting in a real jelly. The second instance relates to an 

agelutination of fibrin particles which are no longer swollen; the 

micells have more completely lost their electrolyte and consequently 

their water, whilst the unswollen discharged micells (fibrin-particles) 

owing to a property peculiar to fibrin, agglutinate lengthwise into 

needles and then into fibres (micellular-erystallization process). From 

a more general point of view it is a remarkable fact that the fibrin- 

secretion under the influence of an electric current is entirely an- 

alogous to. that which is occasioned by weak acid or alkali, by 

neutral salt solutions, by bloodserum ete. I shall, however, not 

dwell at present on the further significance of this fact. 

Groningen, Oétober 1916. Physiological Laboratory. 
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Zoology. — “The Gastrulation of Rana esculenta and of Rana 

fusca’. By Dr. H. C. DersMAN. ‘Communicated by Prof. 

J. BOEKE). 

(Communicated at the meeting of November 25, 1916). 

In my note of May 27, 1916, I. was able to mention that 

similar pricking experiments to those described at that time for Rana 

fusca, were performed by me on the eggs of Rana esculenta also, 

an object, which in investigations on the earliest development of 

the frog egg we encounter much less frequently than the eggs of 

Rana fusca, which are to be obtained so much more easily. In some 

respects for pricking experiments like the present ones the eggs of 

tana esculenta appeared to me to offer advantages over the eggs 

of the other species, but on the other hand certain disadvantages 

are to be noticed, which in the latter are at least less conspicuous. 

Among the advantages it may be noted that in pricking, which in 

this case too was performed with the point of a hedgehog’s quill, 

one did not need to operate with nearly so much caution, to prevent 

the production of a voluminous extraovate, which has a disturbing 

influence on the further development. The egg content namely is 

in Rana esculenta far less liquid than in Rana fusca; indeed it is 

much more solid and tough, so that every prick not too clumsily 

made produces a little wound which in the last mentioned species 

can only be attained with the greatest caution and after several 

failures. Accordingly it was not difficult to apply to one egg 

several marks, e.g. one at the animal pole (a), and one or more 

at the crossing points of the third, equatorial cleavage furrow 

with the other, meridional ones, which, as in Fig. 1, we can 

indicate here again as 6 (dorsal), c (ventral) and d (the two lateral 

ones). Also the lighter colour of the egg has a great advantage, as 

it renders the surface images more distinct. On the reverse, the 

marks, so much more easily applied, also come off more easily, 

the wounds healing too soon. In not one of the eggs marked by 

me — all from one spawning — did it prove possible to rear them 

until the appearance of the medullary plate, without all the marks 

coming off beforehand. Next year therefore I hope to try and 

renew the marks in time during the development and thus to 
attain what this year was not reached. Yet the results reached 

until now seem to me sufficiently interesting to communicate them, 

and in completeness they are only a little behind those for Rana 

fusca. 
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To my surprise, I found that the external features of the gas- 

trulation process and the behaviour of the dorsal and the ventral 

blastoporie rim in Rana fusca and esculenta differ from one another 

pretty considerably, so that a comparison of the two cases becomes 

especially interesting. Let us first consider the facts and afterwards 

look for an explanation. | 

The eight-celled stage of Rana esculenta agrees in the main with 

that of Rana fusca, as a comparison of Fig. 1 with the figure for 

a 

Fig. 1. Egg of Rana esculenta, 8 cells, from the 

side. The zone of demarcation between the darker 

and lighter area is defined by spots. 

R. fusca of my former communication shows at once. The propor- 

tion of the size of the blastomeres in both cases is nearly the same. 

Nevertheless the distribution of the pigment points to a difference 

in the internal structure: the line of demarcation of darker and 

lighter hemisphere, in both figures indicated by a dotted band, not 

only lies much nearer to the animal pole in Rana esculenta, but 

it has also a much more horizontal situation. Now this boundary- 

line does not coincide in the least with the boundary of the future 

ecto- and. entoderm, but it is apparently of importance in so, faa 

as in both frog species, as we will see, the border of the blas- 

topore shortly after its appearance nearly runs parallel to it. We 

will revert to this in due course. 

Turning to the figures 2—6, all drawn with a drawing-prism 

from the same egg, which was marked at the animal pole and at 

the point 6, we see in fig. 3, how the first indication of the blastopore 

appears as a short, transverse slit, a little beneath the equator of 

58* 
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the egg, at a place therefore which wholly corresponds to what 

we found in Rana fusca. lt may be observed, that the boundary 

between the darker and lighter hemispheres has wandered downward 

Fig. 2. Egg of Rana esculenta, marked on May 

6 in the eight-celled stage at the points a and b. 

First appearance of the blastopore (b/.) From the 

dorsal side, May 7, 2.30 p.m. 

a 

Fig. 3. The same egg, from the side, dotted zone 

asus: ley 

a considerable distance parallel to itself, away from the animal pole, 
as appears from a comparison with fig. 1, which as a matter of 
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fact does not represent the same egg, a circumstance, which having 
regard to the great uniformity of the eggs in this respect, does not 
imply any difficulty. From this however one must in no way 

conclude, that the cells containing the pigment perform such a 

wandering downward themselves. The behaviour of the marks at 

b, c, and d in the different eggs tells us otherwise: their distance 

from the animal pole just as in Rana fusca increases only very 

slightly. Besides, former investigators have already pointed to the 

fact that during development the formation of new pigment goes 

on, especially at places of great cell-activity. 

a 

Fig. 4. The same egg, from the side, May 8,6.30a.m. 

Unfortunately the next figure of the egg, was drawn much later 

(fig. 4), when the blastopore had already been contracting for some 

time. Other eggs however teach us, that, when the border of the 

blastopore has just closed at the rear side to a ring, this ring is 

much wider than in Rana fusca. While in the latter species the 
longitudinal diameter of the blastopore is about 60°, in the former 

it amounts to no less than 120°, about twice as much. So the exact 

situation of tbe anterior and posterior border in this stage in regard 

to the points a and 5 could not be made out and in the fig. 8, 

which is a composition of the other figures, I have accordingly 

indicated the border of the blastopore with a dotted line, as it 

will probably run. I have indicated the anterior border as lying a 

little in front of the place where the first trace of the invagination 

became visible, which accordingly would point to a primary backward 
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movement of the dorsal rim. Such a primary wandering backward 

may be noticed in fact in such eggs, which to this end. have been 

provided with marks at a shorter or longer distance in front of and 

behind the blastopore border. Evidently it is the result of the forming 

of an invagination border at this place, where cells, lying originally 

eN 

Fig. 5. The same egg, from the side, 8 May, 1.50 pm. 

in front of the primary transverse rim of fig. 2 and 3, are carried 

inward. This however does not mean, that epiblast cells wander 

into the interior to participate in the construction of the archenteron 

roof. To me the view of Mac Bripr') seems to be preferable, 

according to which the first transverse slit does not appear at the 

border of the ecto- and entoderm area, but within the entoderm area, 

a little under the demarcation line. Thus the slit does not represent 

so much the first beginning of the blastoporic rim, as that of the 

archenterie invagination beneath it, and the cells in front of it, 

which disappear under the just forming blastoporic rim, are to be 

counted to the entoderm. Hence it is no wonder, that in a 

somewhat further advanced stage we find the blastoporic border a 

litle in front of the rim of fig. 2 and 3, which: is rendered the 

1) E. W. Mac Brive, 1909, The Formation of the Layers in Amphioxus etc. 

Quart. Journ. Vol. 54. 
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more intelligible when we see that during gastrulation the whole 

entoderm area performs a wandering forward. The assumption 

that the situation of the blastoporic rim at this stage as dotted 

in fig. 8, is right, is also favoured by the fact, that the line 1—1 
thus runs parallel to the boundary between the darker and the 

lighter area of the egg, as indicated in fig. 3. This becomes evident, 

if we hold the figures 3 and 8 up to the light one upon the other, 

in such a way that the points a coincide. Just as in Rana fusca 

we also find in Rana esculenta that this line of demarcation in 

the different stages always runs parallel to the blastoporic border, 

approaching it gradually, until at last it reaches it. 

el 

Fig. 6. The same egg, from the side, May 8, 9.15 p.m. 

Now in holding up to the light one upon the other the figs. 4, 5 

and 6, in such a way that the marks « each time coincide, it may 

be stated further that the distance of the points a and 5, just as in 

Rana fusca, increases only very slightly, and moreover the way 

in which the blastopore contracts may be studied in detail. This 

same method was adopted again in composing the summary figure 8. 

While in Rana fusca the ventral blastopore border, which there 

appears approximately diametrically opposite the animal pole, does 

not make any forward movement, in Rana temporaria it not only 

does so, but the ventral border even progresses still more rapidly 

than the dorsal one! 
Although some time after drawing fig. 6, I found the marks 
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detaching themselves, yet it may be stated already that the closing of 

the blastopore here does not occur, as in Rana fusca, diametrically 

opposite the animal pole, but more to the dorsal side. So the appear- 
„ance of the medullary plate in this egg was not observed anymore 

before the detachment of the marks, just as little as in the other 

eggs. Now, however, it does not rarely occur, that in eggs, where 

Fig. 7. Another egg, with foundation of medullary 

plate. + a and 6 as transferred from fig. 6. 

the blastopore has not yet quite closed, the first rudiment of the 

medullary plate becomes visible already. Such an egg is represented 

e.g. in fig. 7, where we see that the foundation of the embryo 

does not, as in Rana fusca, encircle nearly 180° of the egg, but is 
somewhat shorter. If now we hold up to the light this drawing 

together with that of fig. 7 and we transfer to fig. 7 the position 

of the marks « and 5 from tig. 6, it appears that they find them- 

selves at exactly the same place as we stated in Rana fusca, i.e. 

respectively just in front of the transverse head-fold and at the 

transition of ceredral and medullary plate (fig. 7*). The objection 

might be raised that the possibility is not excluded, that during 

or before the appearance of the medullary plate there might 

still occur cell wanderings, which would raise doubts as to the correctness 

of the above conclusion. As we have seen, however, that in 

Rana fusca there is no question of anything of the kind, we may 

safely assume the same in this case. So this result for Rana esculenta 

again confirms the conclusions drawn from the theory which has 

engendered the present investigations. | 
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For the sake of completeness in fig. 8 the position of the marks 

c and d, from another series, has also been indieated. As already 

Fig. 8. Combination of figs. 3—7 and others, from which 

the situation of c and d and the extension of the 

blastopore in phase 1 are borrowed. lebl= first 

indication of the blastopore (fig. 2 and 3). 

observed before, the mutual distance of the marks a, b, c, and d, 

just as in Rana fusca, changes but little during cleavage and gastru- 

lation. Yet it could be stated that the distance a—c increases 

somewhat. 

Very conflicting views have up to the present day been held as to the 

gastrulation of vertebrates. To many an adherent of one of these 

views the result of the recorded pricking experiments will be some- 

what surprising. Who, after studying fig. 8, could maintain any 

longer that the foundation of the dorsal parts of the embryo originally 

lies as a ring round the border of the blastopore and is formed 

from it by conerescence? By far the greater part of the embryo is 

formed in front of the place, where the dorsal blastoporic rim first 

appears, and the contraction of the blastopore proceeds nearly con- 

centrically. An explanation of the facts mentioned seems to me to 

be afforded by the views concerning the gastrulation, which follow 

from my theory on the derivation of vertebrates from annelids. 

To this end let us first consider once more the movement of the 

ventral blastoporic border. Have we to deal here with a similar over- 

growth of the yolk as at the dorsal lip? In that case we ought to 
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find in sections under the ventral lip, just as under the dorsal one, 

an archenterie slit or cavity. Not, that this archenteric cavity under 

the dorsal lip owes its existence solely to the overgrowth of the yolk 

by the dorsal lip. In this case the cavity would not reach further 
forward than the place where this dorsal lip appeared first. As a matter 
of fact, however, it soon reaches considerably further forward, so that 

doubtless also an active enlargement of the archenteric cavity by 

dehiscence of the entoderm cells occurs, though it seems to me less 

suitable to assume a sharp demarcation of the parts of the archenteron 

formed in these two manners, and to distinguish these as archenteron 

and metenteron, as ASsHETON*) did. Only by the overgrowth of the 

ventral blastoporic lip however, should there be formed already an 

archenteric cavity or slit under it, reaching to the place of its first 

pl. 

bl. 

Fig. 9, Sagittal section of a gastrula of Rana escu- 

lenta. h. pl. cerebral plate, arch, archenteron, 

bl. blastopore with yolk plug 

appearance. This now proves not to be the case, as shown in fig. 9; 

only a short slit is present under the ventral lip, not nearly reaching 

up to where this lip. first appeared. So the conclusion must be 

drawn that not only the ventral blastopore lip, but also the whole 

entoderm area in front of it performs a wandering to: the dorsal 
side, and that accordingly the entoderm is not only overgrown by 

the dorsal blastoporie lip in a backward direction, but also actively 

wanders forward to disappear under it. This reminds us of the 

controversy between. Roux and Scrurtze, mentioned in my former 

1) R. AssHETON, 1909, Professor Husrecut’s Paper on the Karly Ontogenetic 

Phenomena in Mammals. Quart. Journ. Vol. 54.- 
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communication, on the wandering of the dorsal blastopore border. 
Rovx’s opinion was, that only the dorsal rim wanders over the 
yolk, which for Rana fusca proves to be right, though not 180°. 
SCHULTZE on the contrary declared all movement of the dorsal 
border to be illusory and to be explained by a rotation of the egg. 

Actively, according to him, the entoderm wanders forward under the 

dorsal border, and it appears by our present results that ScHuurze’s 

view, at least as far as Rana esculenta is concerned, is not quite 

erroneous either. 

Now apparently we have in this wandering of the entoderm area 

during gastrulation in Rana esculenta the same dorsally directed 

movement before us, which in Rana fusca is performed immediately 

after fertilization, and which there causes in the eight-celled stage 

the demarcation line between the darker and lighter area of the egg 

surface to make a so much greater angle to the egg equator than 

in Rana esculenta, while for the blastopore border, just after it has 

closed to a ring, the same holds. All this is shown at once by a 

comparison of fig. 1 and 8 of the present paper with fig. 1 and 2 

of the former. 

Before looking now for the explanation of the phenomenon, a 
short discussion must precede of the views, to which my theory of 

the origin of vertebrates leads concerning the gastrulation of verte- 

brates, in the first place of anamnia. In studying this theory many 
a one will have wondered how from two in Protaxonia (HATSCHEK) 

diametrically opposite areas as the apical plate (round the animal 

pole) and the stomodaeum (round the blastopore) in craniote verte- 

brates an organ could arise, which so much gives the impression 

of a unity, as the cerebral and the medullary plate. A considerable 

displacement at any rate must have occurred, to bring together 

these two parts. 
This approach we now see performed before our eyes in the 

ontogeny of annelids. While the entoderm, which remains after the 

production of the three quartets of ectomeres, originally lies diame- 

trically opposite to the animal pole, we find the mouth, which is 

directly to be traced back to the blastopore, in the trochophora lying 

just under the prototroch, which forms the border of the apical plate. 

As discussed in my article on the development of Scoloplos armiger, 

the displacement is to be ascribed to three factors. 

In the first place we observe a wandering of the whole entoderm 

area to the ventral side (Fig. 104), a result of the active multiplication 

and extension of the ectoderm cells at the rear side, i.e. mainly 

the d-quadrant of the egg, whereas the cells of the anterior side, 



Fig. 10. Diagrammatic representation of the behaviour of the blastopore, see text. 

a, b, c, d in polychaete annelids, e, f, g in chordates. bl. blastopore, d. gut, 
ent. entoderm, A. pl. cerebral plate, m. mouth, m. pl. medullary plate, neur, 

neurotroch, pr. prototroch. ~ 

the 6-quadrant, are backward in development. This causes the entoderm 

area to wander to the ventral side to such an extent, that no longer 

its centre but its hind border is found opposite the animal pole. In 
this region afterwards the anus is formed. 

Secondly the blastopore does not close concentrically, but excen- 

trically in a forward direction (Fig. 105), be it with or without 

concrescence of the lateral borders. This depends on the relative 

speed with which either the lateral borders or the hind border move 

forward over the entoderm, and this again depends on the way in 

which the descendents of 2d, the so-called somatic plate, spread over 

the left and right side and over the posterior end of the embryo. 

Evidently conerescence here seems to be the rule and at the suture, 

where left and right blastopore borders have met, the neurotroch arises. 

In the third place the foundation. of the stomodaeum here does 

not any longer surround the blastopore as a ring of uniform breadth, 

as in Protaxonia, but lies more in the way of a crescent round the 

anterior border. For of the third quartet it is only the cells of the 

anterior two quadrants, 3a and 35, of the second quartet only 2a—2c, 

which participate in the formation of the stomodaeum. After the 

sinking in of this erescentic rudiment to the formation of the 

stomodaeum-tube, which arises outside the final, narrowed blastopore, 

the mouth comes to lie just underneath the prototroch (Fig. 10d). 

We shall see now what we find of these phenomena in the frog 
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egg and to this end begin with the egg of Rana fusca. At once it 
appears that the first of the three above-mentioned processes, the 

wandering of the entoderm area to the ventral, ce. q. to the dorsal 

side, is here performed very precociously, immediately after fertili- 

zation, and consequently is already finished in the unsegmented, 
fertilized egg. At least we find, as is shown by fig. 1 of my former 
communication, that the white area here does not lie at all diame- 

trically opposite the animal pole, but much more to the future 

dorsal side. The boundary between the ecto- and entoderm areas 

probably runs parallel to the demarcation of the darker and lighter 

areas of the egg, as may be also concluded from the place, where 

afterwards the dorsal and ventral borders of the blastopore appear 

(fig. 2, ibid.). Evidently we have to deal here with a case of pre- 
cocious segregation, though it concerns here more a wandering than 
a segregation. 

The second process mentioned above, the rostrad-excentrical closure 

of the blastopore, we do not find in Rana fusca; on the contrary, 

the closure proceeds caudad-excentrically. As mentioned already in 

my former communication and elsewhere, I see in this caudad- 

excentrical closure a result of the interference of the contraction 

of the blastoporic border with a backward movement of the blas- 

topore, following directly from my theory on the homology of 

stomodaeum and epichordal neural tube in annelids and vertebrates. 

As a result of the strong elongation which we must assume that 

the stomodaeum of annelids undergoes to be transformed into 

the medullary tube of vertebrates (ef. the scheme in my article 

in. Anat. Anz. Bd. 44, p. 493), the entrance to the stomach 

(Schlundpforte, HarscneK), into which the blastopore passes, must 

perform a wandering over nearly the whole length of the body 

to become the neurenteric canal (also resulting from the blastopore). 

This backward wandering now in chordates is performed in anti- 

cipation of the formation of a tube, already during the contraction 

of the blastopore border. By this process the final, narrowed blastopore 

is carried back to the place where it was originally found in 

Protaxonia, viz. diametrically opposite the animal pole. Whether this 

caudad-excentrical closure of the blastopore is performed by concres- 

cence or not, is here of no importance; as stated earlier, 1 do not 

believe that concrescence, at least in amphibians, occurs to any 

considerable extent. The medullary plate, of which the foundation 
in stage 10e, just as the foundation of the stomodaeum in fig. 105, 

surrounds as a crescent the anterior border of the blastopore — a 

conclusion reached for Amphioxus also, e.g. by KorscHELT and 
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Heer in the last edition of their “Lehrbuch” — during the con- 

traction undergoes a change in shape as indicated in fig. 10c and 

discussed already in my former paper. We see in this the backward 

growing out of the stomodaeum of annelids into the epichordal 

neural tube of chordates, projected as it were on a plane. In 

fie. 109 it has been indicated, how in craniotes, in addition to the 

epichordal neural plate, the praechordal cerebral plate is now added, 

while in acrania the condition of fig. 10f continues (Anat. Anz. T. 44.) 

How are now our statements for Rana esculenta to be brought 

into accordance with those for Rana fusca, how are they themselves 
to be interpreted and what are the points of difference from the latter 

species? Simply in this way, that 1 in Rana esculenta the egg contains 
more yolk or at least is less isolecithal in structure, and 2 that the 

wandering of the entoderm area, shown in fig. 10a and 6, here 

occurs later. 

Let us revert firstly once more to the annelids. In my article on 

the development of the annelid Scoloplos, published this year (1916), 

I have tried to show that among the eggs of polychaete annelids three 

types are to be distinguished. In the first place we have the small, 

poorly yolked eggs of Polygordius, Hydroides etc, in which the cleavage 
results in a very equal coeloblastula (Fig. 11a). Now in the larger 

eggs of other species two types of polarity may very early be 

recognized, which exert their influence on the here very determinate 

cleavage. In the first place the polar or radially symmetrical polarity, 

expressing itself in accumulation of yolk at the vegetative pole, which 

again causes the entoderm cells to be much larger than the cells of 

the three quartets of ectomeres. In the second place the bilateral 

a b c 

Fig. 11 a, b, c. Diagrammatic representation of the 3 types of polychaete eggs. J, 11, III = 1st, 2nd 

and 3d quartet of ectomeres, ent. = entomeres. 

a, minute, yolkless egg. b. egg with pronounced polar polarity. c. egg with pronounced bilateral polarity. 
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polarity, which expresses itself in that the cells of the rear side 

(d-side) from the beginning are much larger than the corresponding 

cells at the anterior side (b-side), so that the entoderm area from 

the beginning does not lie diametrically opposite the animal pole. 
The scheme of fig. 11 may serve to illustrate this. As a rule we 

see at the same time both kinds of polarity in the larger eggs exerting 

their influence on the cleavage, but in one case the first predomi- 

nates, in the other the second prevails. As an example of 
the prevalence of polar polarity, | mentioned Nereis where the 

macromeres (entoderm) are especially large in regard to the ecto- 

meres, which lie over them as a little cap, while on the other side 

the bilateral polarity is only slightly expressed, the cells of the rear 

side not being much larger than those of the anterior side. In the 

reverse this last condition prevails very strongly in Scoloplos, which 

accordingly can serve as an example of the predominance of the 

bilateral polarity (fig. 10c). Especially 2d is of extraordinary size, 

while the entoderm cells are not at all remarkable for special bulk. So 

the entoderm area is displaced here from the beginning to the 

veutral side. 

Hence the eggs of Rana fusca and esculenta evidently are in the same 

relation to each other as Scoloplos and Nereis. In the first species a pre- 
cocious displacement of the entoderm area and less yolk, as appears 

e.g. from the extension of the blastopore. In Rana esculenta a later 

wandering of the entoderm area and a greater amount of yolk, at 
least a less isolecithal structure of the egg, as appears from ihe 

large blastopore together with the fact, that the foundation of the 

embryo encircles considerably less than 180° of the egg circumfe- 

rence; the belly accordingly is relatively more swollen than in 

Rana fusca. Originally the entoderm area in Rana esculenta, though 
not perfectly, yet lies much more diametrically opposite the animal 

pole than in Rana fusca, as appears from the fact, that the demar- 

cation line of the lighter and darker hemispheres of the egg and 

later the border of the blastopore make a much smaller angle with 

the egg equator than in the last mentioned species. So in Rana 

esculenta the polar or radial symmetry is originally more strongly 

pronounced, in Rana fusca the bilateral symmetry. 
In conclusion, attention may be drawn to the fact of how little this 

difference in the internal constitution of the egg influences the cleavage. 

Were things as in annelids, with their determinate cleavage, we 

might expect, that in the eight-celled stage in Rana esculenta the 
four upper cells would be relatively smaller than the four lower ones 

as compared to Rana fusca, and, reciprocally that in the latter 
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species the four ventral cells would be larger than the four dorsal 

ones. Nothing of the kind proves to be true: the eight-celled stages in 

Rana fusca and esculenta are nearly uniform. Besides, we saw in 

the foregoing communication, how relatively independent the direction 

of the first cleavages is of the internal constitution of the egg. 

Chemistry. — ‘“hintgen-investigation of allotropic forms”. (Preli- 
minary communication). By Dr. J. Our Jr. and Dr. A. J. Bust. 
(Communicated by Dr. Ernst Conen). 

(Communicated in the meeting of January 27, 1917.) 

Drsye and Screrrer have in the “Nachrichten der Königlichen 

Geschellschaft der Wissenschaften zu Göttingen” *) published their 

investigations about “Interferenzen an regellos orientierten Teilchen 

in Röntgenlicht”. Led by theoretic considerations DerByr *) had come 

to the conclusion that secondary Röntgenlight, emitted by a body 

shone upon by Röntgenlight is not equally strong in every direction. 

The arrangement of the electrons in the atoms must necessarily 

give to that light a maximum of intensity in certain definite directions. 

Even if the atoms should not be arranged regularly, the resultant 

of all secondary light-emission will be a definite division of the 
light in space into maxima and minima of intensity. 

DeByr expected and actually obtained in his investigations with 

SCHERRER results, which clearly proved the existence of such a 

division of lightrays (interference). But by the side of the pheno- 
menon he expected he noticed in several cases, whenever crystalline 

material had been used for the investigation, a much more striking 

phenomenon. Besides the diffuse maxima, which were visible in the 

photos as so many spots with vague outlines, there were to be seen 

some rather distinct lines, which made one think of a spectrum. 

Desye and ScHERRER pointed out that this should not be explained 

from the interference of the Röntgen rays in the electron-complex 

of the atom, but in an analogous way from the interference of those 

rays falling upon the crystalline structure that are to be formed in 

the macroscopically unarranged mass.*) This is contrary to the 

generally accepted opinion that Röntgen-interference images can only 

be obtained with large and properly-shaped crystals. From the 

theoretical considerations as well as from experiments it becomes 

1) Mathem-physikal. Klasse 1916 Heft 1. See also Phys. Zeitschr. 17, 277 (1916). 

*) Nachr. der K. Ges. der Wissensch. in Göttingen math.-physikal Klasse 1915. 

5) Fine crystalpowder or quasi amorphous material. 



J. OLIE Jr. and A. J. BIL. “Réntgen-investigation of 

(Preliminary communication). 

Graphite. 

allotropic forms”. 
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clear that the maxima of emission-intensity can produce only cone- 

shaped surfaces, of which the top can be in the secondary source 

of emission only. The angles at the vertex of these cone-surfaces 

may be of different size and the direction of the secondary emission 
may be adverse to that of the primary rays. If a thin bar, composed 

of compressed crystal powder, on which Röntgen light falls vertically 

in the direction of the axis-and which has been placed cylindrically 

in such a way that the axis of the bar') and that of the cylinder 

are in the same place, and only an opening remains in the film to 

admit the primary light-rays, the photographic image will show a 

profile section of the cylinder with the different cone-surfaces of 

maxima-emission-intensity. 

The vertex angles of the cones, and consequently also the distances 

between the lines in the film depend upon the erystal-form of the 
material in which the light falls, and of the nature (wave-length) of 

the ‘homogeneous) primary light-emission. A material when shone 

upon by homogeneous Röntgen-rays of small wave-length will show 

a different interference-figure from that which we obtain when it is 

‘shone upon by Röntgen-light of greater wave-length i. e. when the 

lightwaves are longer the lines will not be so close together. 

DeBye and ScHERRER were now able, whenever the wave-length 

of the primary homogeneous Röntgenlight was known, to infer the 

crystal-form of the material from the interference-figure obtained 

through the light falling in a bar of erystal powder or quasi amorph- 

ous material. 

Besides the many interesting, purely physical questions to which 

this highly important discovery will lead, the question offering itself 

in the first place from a chemical point is: What will be the result 

when. allotropic modifications of the same material are under the 

light of homogeneous X rays of the same wave-length; — and will 

it be possible to bring to light the different modifications that have 

been observed in the same material in a purely physical way. 

Here we think especially of the dynamical allotropies. 

The questions which we asked ourselves as soon as we had read 

Prof. DerByw's article, we have laid before the professor and it appeared 

that Prof. DesBre had” also considered this question, but that, 

owing to the want of suitable material, he had not made any in- 
vestigation in that direction. He, too, expected that in this manner 

it would be found possible to distinguish between allotropic forms. 

With the greatest willingness he left the investigation in this direc- 

') The shape is not of much importance. 

Proceedings Royal Acad. Amsterdam. Vol. XIX 
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tion entirely to us, for which we hereby tender him our best thanks, 

and also for the many valuable hints we received from him as 

regards the technicalities of the investigation. 

The allotropy of carbon, as was most natural so to say, was, 

after some experimenting investigations examined Röntgenographi- 

cally, the accompanying photo is a reproduction of the interference- 

figures obtained by letting Cu-rays *) fall upon a bar of compressed 

graphite?) and upon a bar of diamond-powder *). 

From them we notice, qualitatively too, how different the inter- 

ference-figures of these two allotropic forms are, according to the 

quite different crystal-systems (diamond is regular, graphite is mono- 

clinic) in which they are met with. We therefore expect that this 

method will bring light in many cases in which it is doubtful whether 

there is really. allotropy, or where two materials that cannot be 

chemically separated are present side by side. Also in those cases 

in which it is doubtful whether we have to do with the amorphous 

or with the crystalline state, the Röntgen-investigation will, as 

DreBye himself declares, enable us to make the matter clear. 

At the same time we direct the attention to the possibility of 

making a qualitative Röntgen analysis of, say, a mixture or an alloy 

without any loss of material. 

About the particulars of this investigation and the further results 

of it, we hope to be able to say something at some other time. 

Chemistry. — “Amygdalin as nutriment for Aspergillus niger.” 
By Dr. H. J. Warrrman. (Communicated by Prof. J. BÖESKKEN.) 

(Communicated in the meeting of January 27, 1917). 

Periewersenf) has proved that the extract of the cells of Asper- 
gillus niger splits up amygdalin into glucose, benzaldehyde and hy- 
drogen cyanide, whereas the diving mycelium of this species of mould 

behaves in quite a different manner towards amygdalin. 

In the latter case benzaldehyde and hydrogen cyanide are not 

1) For the zCu-line ~ = 1.549 x 10-8. 

*) As made by Moissan and prepared from pure C in the electrical furnace. 

3) Average diameter of the parts 2 à 3 «. 

 H Purtewitscu, Ueber die Spaltung der Glykoside durch die Schimmelpilze. 
Ber. d. deutsch. Bot. Ges. 16, 368 (1898); Also compare : F. Czarek, Biochemie der 

Pflanzen, Ister Band, 2e Aufl. 1913, p. 363—865; F. Larar, Handb. d. techn. 

Mykologie, Bd. IV, Spezielle Morphologie u. Physiologie der Hefen und Schimmel- 

pilze, 1905—07, p. 250—251. 
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formed and Freurine-reducing substances do not appear in the liquid 
containing amygdalin. It was demonstrated that in this case amy g- 
dalin was absorbed and utilized by the mycelium because as the 
quantity of mycelium increased the quantity of amygdalin in the 
solution at the same time diminished. 

These apparently contradictory results of Puriewrrscn and of other 

investigators in analogous cases have fi€quently been a subject of 

discussion. Hékrissky') for instance says: “If during the metabolism 

amygdalin and corresponding glucosides, in a similar way as in 

vitro by emulsin, are first split up into compounds which are easily 

assimilated such as glucose, on one hand and into noxious compounds 

on the other hand, it may be expected that these poisons will be 

converted at once into other chemical compounds.” But this is a 

matter of uncertainty, Hérissey says and he does not give a definite 

opinion. 

W. Kruse’) is surprised at the said experiments of Purrewirscu 

and points to the fact that other investigators have not obtained the 

same results. The uncertainty about this subject made me take it 

up in order to try to clear it up. 
Solufions containing 2°/, amygdalin and the necessary inorganic 

nutriment were inoculated with spores of Aspergillus niger. The 
temperature during cultivation was 38°. 

Many times in the course of development the quantity of dry 

substance on one hand and the polarisation of the solution on the 

other hand were determined from which the assimilated amygdalin 

could be calculated. The mould layer, after being washed with distilled 

water, was therefore dried at 105° to constant weight. (Tab. I p. 924) 

My experiments confirmed the observation of Purtewitsc# that 

amygdalin is assimilated by the living mycelium, whilst the pro- 
duction of young mycelium occurs at the cost of the assimilated 

amygdalin. (Table 1). This table shows too that amygdalin is a 

better nutriment than glucose at least with regard to the dry weight 

of mould obtained. 

This conclusion agrees with results which I obtained before, viz. 

that the presence of a benzolnucleus in the assimilated organic 

chemical compound increases the quantity of mould formed at the 

cost of this nutriment. *) 

Formerly | demonstrated with great probability that in a special 

1) E. H. Húrissey, Recherches sur |’émulsine. Thése Paris 1899. 

2) W. Kruse, Allgemeine Mikrobiologie, 1910, p. 458. 

3, H. J. Waterman, Zeitschr. f. Gärungsphysiologie, Bd. 3, Heft 1 (1918). 

59* 
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TABLE. 1 

Glucose as exclusive Amygdalin as exclusive 
organic food organic food | 

Composition of the culture liquid: 
50 cm.3 of tapwater, in which dissolved 0,159, NHyNO3, 0,15 %) KH,PO,, 

0,1 °/) magnesiumsulfate (crystallised). Temperature 33°, 

A. 2%, glucose (1000 mgr.) : | B. 20/, amygdalin (1000 mgr.) 

BENE TER -| Number of —— 
Assimilated | Obtained dry days after | Ascii Obtained dry 

| f inoculation | i 
glucose (mgr.) | Weight of _ amygdalin (mgr.) | es 

mould (mgr) | 

| 

1000 15: 0 6 ‚_670 = 315 
| | == 5 Me 

12 670,710 SES 298, 215 
n U 

16 635 2835| 251 
| | B25 

1000 | 242, 264 38 750 EME 271 
| ae 
| 42 680 wes 200 
| | aie 

| 95 | ripe deters = .214, 237, 203 
mine 

case sucrose can be assimilated without preceding dissociation into 

glucose and fructose. *) 

In this case, too, it might be supposed that the assimilation of 

amygdalin will not be preceded by a conversion into glucose, ben- 

zaldehyde and HCN outside the organism. 

Benzaldehyde and to a small degree HCN too, especially in high 

concentrations, diminish or stop the development of Aspergillus niger 
in nutrient liquids containing glucose. (Table I)). 

The solutions p and g were prepared as follows: 

p. 42,5 mgr. KCN dissolved in distilled water and filled up to 

100 em*. Added 10 em*. of 0,98 < '/,, Normal sulfuric acid. 

gq. 100 em°. of distilled water, added 10 em? of 0,981 < ’/,, 

Normal sulfuric acid. 

Both solutions were used gmmediately after their preparation. 
The purpose of the experiments 7,8 and 9 was only to demon- 

strate that the quantity of sulfurie acid added in N°. 4, 5, and 6 

could have no retarding influence. The phenomena of growth which 

were observed in N°. 2 after six days and in N°. 3 after ten days 

could not be attributed to the total evaporation of the benzaldehyde 
becanse the nutrient liquid of N°. 3 distinctly smelled of benzal- 
dehyde even after 10 days. 

1) Zur Physiologie der Essigbakterien, Centralbl. f. Bakteriologie, 2e Abt. Bd. 88, 

451 (L913). 



— 

|
 

saiods 
K
u
e
w
l
s
o
1
o
d
s
 
A
u
e
!
 

| 
‘yyMmo13s 

|
 
‘yyMo13 

SnOJOSIA 
|
 SNOJOSIA 

yyMois 
|
 

SuluuIsaq 
ol 

(6) pinbij 
Sururezuoo 

‘
O
S
H
 

B® JO 
&'WI 

G 

y
y
w
o
i
s
 
|
 —
 

En 
= 

s
a
.
o
d
s
 

s
a
1
o
d
s
 

Au
ew
 

Áu
ew
 

(6
) 

pm
bi
y 

Su
ru
re
zu
oo
 P
O
S
 

H
 

e 
JO
 

¢ Wd
 

7 

s
a
i
o
d
s
 

s
a
1
o
d
s
 

‘yymols 
‘yyMols 

saiods 
A
u
e
w
 

' 

= 
bn 
Vv 
a 

| 

Aueul 
A
u
e
w
 

SNOJOSIA 
SNOIOSIA 

| (5) pinbiy Sururezuoo 

| 

| 

| 
‘
y
y
n
o
l
s
 

‘
y
J
M
o
I
s
 

(
 | 

| 
F
O
S
 H
 
e 

JO 
g
w
d
 
G
O
 

|
 

S
m
 

‘yJMOIS 
SNOIOZIA 

| 
snoJo3I 

snoJo3 
K
e
e
 
e
e
 

| 
yymois 

(d) 
pinby 

3 
SNOIOSIA 

IA 
|
 | 

pinbiy 
Sururezuoo 

|. 
. 

SNOJOSIA 
SUIUUIS0q 

|UIJMOJS- on 
N
O
H
 

® 
jo 

g
w
 

G 
9 

|
 

|__Joygel 
3
 

, 

| 
m
e
e
t
s
 

(4) pmbiy 
Sumurezuoo 

|, 
salods 

SNOIOSIA 
7 

N
O
 

Ee 0
 
U
G
 

Á
u
e
u
 

N
E
 

hi, 
:: 

N 
‘yMols 

sa.iods 
o
O
 

| 
SnOIOSIA 

|\Auew 
J
o
y
z
e
 

> 
(q) 

pinbij 
Sururezuoo 

‘yymois 
| 

© 
NOH 

eJoswoeo 
|? 

R
E
N
 

s
t
 

SNOIOSIA 
| 

apAyapyezuaq 
| 

yyWAo13 
(1 apAyapyezusq 

O 
jjows 

a 
018 

ou 
013 

3 
/ 

i 
; a
 
e
e
d
 
t
e
 

SutuuiSaq 
U
J
M
 

y
y
 

ou 
|
 UJMOIS 

OU 
|
 Y
J
M
O
J
S
 

OU 
[UJMO0J8 

ou 
aind 

yo 
sdoup 

¢ 
c 

Tien, 
w
i
l
 
gee 

Bee 
E
N
D
E
 

rl 
_sazods 

ey 
A
u
e
 
Árprey 

3 
y
y
m
o
u
8
 

ou 
i 

|
 

(
 e
p
A
y
o
p
r
e
z
u
a
g
 

z 
. 

saiods 
K
u
e
w
 

U
J
M
O
J
S
 

|
 

aind 
jo 

d
o
p
 

| 
. 
soiods 

‘
m
o
s
s
 

SNOJOSIA 
i 

5 
| 

< 
r 

K
U
B
 

“
U
W
E
 

SNOJOSIA 
SNOIOSZIA 

satods 
Auvu|satods 

Aueul|satods 
A
u
e
w
 

yymorS 
|
 é 

‘yymols 
‘yyMols 

‘yyMoi3 
3uiuur3ag 

I 
SNOJOSIA 

SNOIOSIA 
SNOJOSIA 

Fes 
|
 

skep 
OI 

ue 
9 

p 
€ 

1
 
U
Y
 

‘ 
P
O
P
P
Y
 

‘oN 
y
u
s
u
M
d
o
s
a
A
a
p
 

JO 
a
s
i
n
o
y
 

|
 

"EE 
ainyesaduiay, 

‘asoonys 
9
 
Z 

pue 
(pasty[e}ysA49) 

ayejnsuinisausew 
%
 
10 

“OdeHy 
°/o St'0 

S
O
N
 

H
N
 
%
o
 SI‘0 

poarossip 
Yorym 

ur 
‘rayemdey 

„wo 
Og 

:pinbij 
ainyjnD 

‘aplunds 
u
a
s
o
i
p
d
y
 
p
u
v
 
apdyapjveuaqg 

f
o
 
aguanjyful 

s
u
i
p
s
0
j
a
y
 

E
S
E
 

T
h
 

kt A, 
| 

| 
, 

re 

1) The substance present in the laboratory collection was purified by washing 

with distilled water and distillation. 
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From other experiments it has become evident that benzaldehyde 
when used in very slight concentrations, may serve as nutriment 

for Aspergillus niger. 
From the above results it may also be expected that in amygdalin 

containing liquids to which emulsin has been added Aspergillus niger 

will not develop. 

This follows too from the experiments which are united in 

Table III. 

FABLE il: 

50 cm.3 tapwater, in which dissolved 0,15 % NHyNOs, 0,15 %/o KH,PO,, 

0,1 % 9 magnesiumsulfate (crystallised). Temp. 33°. 

| | Development 

NO. | Dissolved - on 

| After 3 | 5 days 

1, 2, 3 | 2% glucose rather vigor. growth, 
| beginning formation, 

| a Spor vigorous 

4,5 | 2/9 glucose + 0,04 9%) emulsin | vigorous growth, | growth 

6 209 glucose + 0,1 9 emulsin many spores | many spores 

1, 8, 9 | 2% amygdalin "rather vigor. growth, 
rather many spores | 

of the liquid resem- 
bles benzaldehyde 
or (and) HCN. 

just as after 
3 days !) 

10, 11 | 20/, amygdalin + 0,04, emulsin ’ no growth,the smell) 

12 20/, amygdalin + 0,1 % emulsin | 

The emulsin used (Merckx) had no retarding influence on the 

development of Aspergillus niger with glucose as source of carbon. 

The retarding influence of emulsin stated in solutions containing 

amygdalin could therefore only be ascribed to the products of 

hydrolysis of the amygdalin viz benzaldehyde and HCN. 

The above experiments prove that when important quantities of 

amygdalin, before being assimilated, are already dissociated into 

glucose, benzaldehyde and HCN outside the organism Aspergillus niger 
will not develop. It is proved, too, that this is caused especially by 

the retarding action of benzaldehyde. ; 

The strong retarding action of benzaldehyde can on one side be 

explained by its strong solubility in fats (benzaldehyde in every 

proportion is miscible with olive oil) and on the other side by the 

possibility of a rapid conversion into benzoic acid. Benzaldehyde 

') After 30 days Nos. 10, 11 and 12: no growth, but the smell of benzaldehyde 

or (and) HCN can no more be stated. 
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will immediately overburden cells *). Only if care is taken that this 
does not happen benzaldehyde can be used as nutriment. 

As follows from the above this is the case when we use very 
slight concentrations of benzalhyde. Amygdalin which is among the 
substances that do not cause overburdening phenomena can be 
converted zm cells into glucose, benzaldehyde and HCN without any 
slackening influence on the growth’). 

In the communications mentioned we have demonstrated that 

generally speaking it is not the nature of the substance absorbed 

but in the first instance the quantity, that causes overburdening of 

cells and the accompanying retarding of growth. In this way we 

have at the same time a specific for bringing narcotic substances 

into the organism without any harm to the latter. 

For this purpose the narcotic substance should be combined with 

one or more other chemical compounds, so that a complex chemical 

compound results, which can not overburden cells, but from which 

the desired active substance may be formed within the cell. 

Dordrecht, December 1916. 

Chemistry. —- “Jn-, mono- and diwariant equilibria.” XIV. By 

Prof. F. A. H. SCHREINEMAKERS. 

(Communicated in the meeting of January 27, 1917). 

22. The occurrence of three indifferent phases; the equilibrium J/ 

is constant singular. 

In the previous communications we have discussed the occurrence 

of two indifferent phases; now we shall briefly consider the occur- 

rence of three indifferent phases. 

Again we take the two reaction-equations : 

Tis ie +... arb + Ap+i Peay Set te To ON eee 

and 

Pee ee dE pd Ho Opr Fido Oo tred) 

in which a, and uw, are positive and at the same time: 

EN el pl DE ek RT aL) 

When we put: : 

1) J. BöesEKEN and H. J. Waterman, These Proceedings, January 24, 19'2 

p. 608; H. J. Warrerman, Dissertation Delft, 1913. 
2) When at the same moment any conversion into the just mentioned 

substances occurs too outside the ceil of course retarding of growth will all the 

same be stated. 
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My = U = Mp2 = U 
then (2) passes into: ‘ 

ua, +... + ua), + ua Pom + My 42 aot se ve 0-8 

In order to find the reaction between the phases of the equili- 

brium (f,), we have to eliminate #, from (1) and (4); with this 

net only /, disappears, but also #4; and Ms. Consequently we 

do not get a reaction between n+ 1 phases, but between the 

n—1 phases 

FF Dip 4 Prest TD: 

For the reaction between the phases of the equilibria (/,41) and 

(42) we find the same relation between those n—1 phases. In 

each of the other reaction-equations for the monovariant equilibria, 

however, n + 1 phases occur. 

The phases 4, F4 and Hp are, therefore, the indifferent phases, 

the n—1 other phases are the singular ones. 

We now have four singular equilibria, viz. : 

M= EH... Bia + Pps + + Ens 

Lj) = WD) + Fin + Fe 

(Poi) = (M1) + Fy + Foe 
and 

B) = UM) + F, + Bays: 
The three indifferent phases may have in (1) the same sign or 

not. (In the first case + + + or — — —, in the second case, 

EE 
as in Comm. X we are able to show now: when in a reaction- 

equation two indifferent phases have the same (or opposite) sign, 

then they have also in all other reaction-equations the same (or 

opposite) sign. 

Just as in Comm. X we are able to show: when the three indif- 

ferent phases have the same sign, then the singnlar equilibrium M 

is transformable, when they have not the same sign, then the equi- 

librium (J/) is not transformable. 

In the same way as in Comm. X it now follows: 

1. The three indifferent pbases have the same sign or in other 

words? the singular equilibrium J/ is transformable. Curve (M) is 
monodirectionable; the four singular curves coincide in the same 

direction. 

2. The three indifferent phases have not the same sign or in 

other words the singular equilibrium J/ is not transformable. 

Curve (M) is bidirectionable; of the 3 other singular curves, 2 cur- 
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ves (viz. those, which have the same sign) coincide with the one 
direction of the (M)-curve, the third curve coincides with the other 
direction of the (J/)-curve. 

With the aid of those rules we may deduce again, just as in 

Comm. X, the main-types of the P,7-diagrams; we leave this, 
however, to the reader and we shall consider more in detail one 
single example only. 

We take a ternary system with the components W(W = water), 

A and B. Let occur in the invariant point the equilibrium: 

A+6+le+L,+G 

in which L, represents the liquid q (fig 1) and G represents the 

vapour. When (G consists of water vapour only, then in the equili- 

brium (5) also the reaction /cee = G may occur; A, B and L, are 

then the indifferent phases, /ce and G the singular phases. Then 
we have the singular curves: 

(M) = Ice + G [Curve (M) in fig 3] 
(4) = B+ Lee H+ LAG |qb in fig. 1; go = (A) in fig. 3] 

(B)= AH lee + LH G [qa in fig. 1; qa =(B) in fig. 3] 
(L)= A+ B+ Lee + G [Curve (L) in fig. 3] 

and further the curves 

Vee) = A + BHA LG [ge in tig 1; U) in fig. 3] 

(G)= A+ B+ lee + L [Curve (G) in fig. 3] 

With the aid of the previous considerations we may deduce the 

type of P,7-diagram; first, however, we shall do this in another way. 

Let us consider viz. the case that the vapour G does not consist 

of water only, but that it contains also a little of the components 

A and B. Then we have the equilibrium: 

A+B+tee+ L, + Go. .. - . - (6) 

in which G,, represents the vapour g, (fg. 1). The point gq, is situ- 

ated in the vicinity of the point W. The five phases of equilibrium 

(6) now form a type of concentration-diagram as in fig. 5 (II), conse- 

_ quently the type of P,7-diagram must be as in fig. 6 (II). [We 

have to bear in mind that the figs. 4 (II) and 6 (II) have to be 

changed inter se]. As q, is situated in fig. 1 in the vicinity of W, 

the line qq, intersects either WB and AB or WA and BA. It is 

apparent from fig. 6 (II) that the curves (/), (A) and (B) must form 

now a three-curvical bundle, as in fig. 2. When we assume that 

the line gq, intersects the lines WB and AB, then curve (B) must 

be situated between the curves (A) and (/). We now easily see 

(amongst others yet also from the diagonal succession of the curves) 
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(7) 

(ML) 
Fig. 3. 

(hat- we obtain a P,7-diagram, as is drawn in fig. 2. |The points 
a and 6 are the finishing points of the curves (B) and (A) and they 

are in accordance with the points a and ¢ of fig. 1; the finishing- 

point ¢ of curve (/) has not been drawn in fig. 2). 

It appears from fig. 2 that at the same temperature the vapour- 

tension of (A) — B + ice + L + G is larger than that of (B)= 
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A+ice+L-+G and this is larger again than that of (/ce)— 
A+ BLG; this follows from the assumption that the line qq, 

intersects the line WB. [This also appears in the following way. 
We take in fig. 1 the 3 points r, s and ¢ in such a way, that 

T,= T,;= 7, and further 3 points r,, s, and ¢, (those are not 
drawn. in fig. 3), which represent the vapours belonging to 7, sand 

t. Then vs is the saturation-curve under its own vapour-pressure of 

B, 7, s, is the corresponding vapoursaturationcurve. From the change 

in pressure along this curve it follows P, > P;. When we also 

consider the other curves, then we find P, > P, > Eil. 

When we now consider the case that the vapour (gq, in (6) 

contains watervapour only, then equilibrium (6) passes into (5). Then 

in fig. 1 q, coincides with W, so that the singular equilibrium 

(M)= lee + G occurs. As A, B and L now become indifferent 

phases, (A), (B) and (LZ) become, therefore, singular curves, which 

consequently have to coincide. It appears from fig. 2 that this 

coincidence may take place only in such a way that the stable 

parts of (A) and (B) coincide and that (Z) coincides with the 

metastable parts of (A) and (5). Then we obtain fig. 3, in which 

the (M)-curve is therefore bidirectionable. 

The position of the curves in fig. 3 is in accordance with the 

rules, which we have deduced in the general considerations. As we 

are not able to transform the singular equilibrium (J/) = Lee + G 

into the invariant equilibrium (5), (J/) is, therefore, not transformable, 

so that (M) must be bidirectionable. 
When we take a reaction, in which occur the 3 indifferent phases 

A, B and L, eg. 

LZA+B+G consequenly A+b+G—L=0 

then it appears that the 3 indifferent phases have not the same 

sign. Hence it follows again that curve (M/) must be bidirectionable. 

As A and B have the same sign, the curves (A) and (5) have to 

coincide in the one direction -— and the curve (L) in the other 

direction with the (M)-curve. All this is in accordance with fig. 3, 

which we might have found reversally also from those data. 

We may deduce fig. 3 yet in another way, which we shall 

indicate briefly. We draw firstly in a P,7-diagram the curve 

(M)= Ice + G; this terminates in the triplepoint ¢ (fig. 3) of the 

pure water. The curves (A)=B+J/ee+L+G=(M)+6+L and 

(B)= A + lee + L+G=(M)+A+L gostarting from q towards 

higher 7’ and they have to coincide with the (M)-curve. 
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Curve (L) = A + B+Iee+G=(M)+ A+ Bhas to coincide 
also with the (1/)-curve, but it goes, starting from g towards lower 

temperatures. 

Curve (J) =A+L6+L+4+G goes starting from gq, also 

towards higher temperatures, but it must be situated below the 

curves (A) and (B). In order to show this latter we take again the. 

three points 7, s and ¢ in fig. 1. As the vapour-pressure. increases, 

starting from s, along the isotherms rs and fs, the curves (A) and 

(B) must be situated, therefore, in fig. 3 above curve (1). | 
Those considerations are also valid when we replace the compo- 

nents A and B by their hydrates A, and B,, provided that solution 

q is situated within the triangle W A, B, and not too close to the 

line A„ B, When this is really the case, then we are able to define 

the directions of the curves in the same way as e.g. in Comm. XIII. 

Leiden, Inorg. Chem. Lab. (To be continued). 

Physics. — “On the equation of state of water and of ammonia” 

By G. Horst. Supplement N°. Hf to the Communications. 

from the Physical Laboratory at Leiden. (Communicated by 

Prof. H. KaAMERLINGH ONN#s). 

(Communicated in the meeting of January 27, 1917). 

In an investigation published some time ago ‘on the equation of 

state of methylchloride- and ammonia‘), it was shown that the sign 

of the coefficient C of KaMERLINGH ONNES’s © equation of state 

Be Oes Doe Ha pk 
pesRI(1$ = 454045 elas a 

v v 7) 

was different for the two substances; for ammonia it was negative; 

for methyl chloride, as for other normal substances, C was found 

to be positive. At that time I ventured the hypothesis C would be 

found negative for other associating*) substances. Following this 

idea L have calculated B and C for water vapour, starting from 
the data given by M. Jacop*) in tables 7 and 8 of his paper on 

1) G. Horsr. Comm. Leiden No. 144. 
*) See for instance H. KAMERLINGH ONNES and W. H. Keesom. Enc. d. Math. 

Wiss. Art. V 10 p. 728. also Comm. Leiden Suppl. 23. 

5) Comp. Enc. p. 722, where it is pointed out that besides the associating 

(polymerized) substances, others occur (deviating substances) which show similar 

deviations as the first. 

4) M. JacoB. Zeitschr. Ver. D. Ing. 1912 p. 1980. 
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the specific heat and specific volume of water vapour. Calling the 
pressures given by JacoB in K.G./em? p,;, the specific volumes 
. N are . . , in m*,K.G. v; and the residual term of the equation of state 

4,706 T | 
EE en hj: R; in dm*/KG. we find: 

a 

/ R; 
Bj Tt 1080 

= 
here v= a RD van 

R; de Us : 
‘ 

“When ae DSO je draws. funchon. off eeen a 
UZ 

series of straight lines is obtained. From this diagram B and C ean 

be immediately read as a function of the temperature. In this way 

the values were found given in the following table. (p. 934) 

In the first place it will be seen that for water, as for ammonia, 

C is negative, and increases strongly with decreasing temperature. 

It is further clear that it will not be a simple matter to find a 

formula which represents C’ as a function of the temperature, all 

the more that there is nothing to guide us in the choice of the 

correct form of the function. As W. H. Kersom told me that he 

and Miss van Leeuwen had undertaken the deduction of a function 

of the kind required, I thought it advisable to await the result of 

this calculation before venturing upon the calculation of a purely 

empirical formula for myself. 

For the other coefficient, B, there is something to go by: water, 

like ammonia, has a large dielectric constant, which is a tempera- 

ture function. 

We may therefore assume, with P. DeByr'), that the water mole- 

cule has an electric moment. For spherical molecules with an electric 

bipole at the centre, W. H. Krxsom’) has calculated the coefticient 

B as a function of the temperature. [ will therefore compare the 

experimental values with those which Krxsom calculated. For this 

purpose, as suggested in Comm. Leiden Suppl. 25, we will draw F# 
as a function of log hv and log B as function of loy 7’. 

If the curves are shifted until they coincide over a fairly large 

range, we find for instance that loy b= 7,385 — 10 coincides with 
F=0,065 and log 7’ = 2,828 with log hv = 0,358. 

1) P. DeBye. Phys. Zeitschr. (13), 97, 1912. Comp. also J. Kroo. Ann. d, Phys, 

(42), 1383, 1913. 

2) W. H. Kersom. Comm. Leiden Suppl. 240, 
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TABLE 1. 
i seis a ESD AEN SE 

t | B 5 

110 0.0157 —0.00120 

120 —0.0146 —0.00095 

130 —0.01355 - 0.00070 

140 — 0.01255 —0.000535 

150 —0.01175 —0.00039 

160 —0.0111 —0.00023 

170 —0.01035 —0.000165 

180 —0.00975 —0.000115 

190 —0.00910 —0. 000030 

200 —0.00855 —0. 000065 

220 —0.0075 —0.000036 

240 —0.00655 — 0.000024 

260 —0.0058 —0.000016 

280 — 0.0051 —0.000014 

300 —0.0045 —0.000015 

350 —0.0032 —0.000013 

400 — 0.00225 —0.000012 

450 —0.0015 —0.000010 

500 —0.00105 —0.000008 

550 —0.00068 —0.000006 

. As in ammonia, here also deviations show themselves at the lower 

temperatures (below 250° C.). 

From these data, according to Kerrsom’s calculations, the radius 

and the dielectric moment can be derived for the water molecule, 

when assumed spherical. / 
In this way we find o=3.21.10-8 em. and m,=2.62.10=18 

in e.s. units. 

Calculating these quantities for ammonia also, in the same way, 

I found 9 = 3.54.10 -8 em. m, = 2.36.10—!8 e.s. units. , 
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The dimensions of the molecule, correspond, therefore, as regards 

the order of magnitude, with those determined in other ways. 
For liquid water DerBye has calculated the electric moment, and 

gives m,—=5,7.10-!" es. units. The correspondence is not altogether 

what might be desired. | have therefore recalculated the electric 

moment from the measurements made by BARDEKER ‘), who deter- 

‘mined the electric constant for water vapour and for ammonia. 

For water vapour the range of temperatures examined is very small, 

so that not much reliance was be put on the conclusions to be drawn. 

According to DeBrr, the following formula applies to the dielectric 

constant 

dame? N 
where a aay ate *). MN represents the number of molecules in 

1 em?*., & Prank’s constant 1,346. 10-16 erg. 

The first term «, is due to the quasi-elastic electrons, the second 

to the bipoles. | have calculated the first from the index of refraction 

for which I took n =1,000255 for water, and n = 1,000377 *) for 

ammonia. These values apply, it is true, to the visible spectrum, 

but the uncertainty introduced by this cannot be great, as «, itself 

is small. In the following table the calculated values of (€ — €) Seg 
QO 

will be found. The factor 9 
o NS 0 

the same number of molecules. 
The last column in the above table shows that for that part of 

the dielectric constant which is due to the bipoles, the same law 

holds as given by Curie for the magnetic susceptibility, at least in the 

case of ammonia. The correspondence is not so good for water. 

At the same time, in order to be able to continue the calculation, | 

have assumed that the law applied to water also’), using the mean 

constant in the calculation. In this way we find for the electric 

is introduced so as always to work with 

1) K. BAzDEKER Z. f. phys. Chem. (36), 305, 1901. 

2) See P. LANGEVIN. Ann. Chim. Phys. (5), 70, 1905. 

3) Recueil de Constantes Physiques. 

4) Whether deviations actually occur in water, as in magnetic substances, must 

be settled by further experiments. 

Further, the question arises, why the value of the electric moment calculated 

for water vapour deviates from that calculated by Derye for the liquid. [ thought 

the deviation might be accounted for by the fact that Derye has assumed in his 
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TABLES 

Dielectric constant for ammonia. 

18.4 | 1.00730 0.934 1.00070 ‘0.00707 2.06 

CN 2? ogee 70 | 681 | 1.99 
59.4 547 814 | are, 501 | 1.98 

62.1 538 808 61 | 501 1.98 

83.8 482 St PAT 57 | 562 | 2.005 

95.3 453 138 | 55 | 543 2.00 

108.4 44 | 707 | 53 | Re 

mean: 2.01 SE 

Dielectric constant for water vapour. 

140.0 | 1.00765 | 0.645 1.00033 0.01155 4.1 

142.2 761 | > 641 BE Ui 1145 4.75 

143.2 736 | 640 | 33 | 110.2 4.6 

145.8 694 636 32 104 4.4 

148.6 648 | _ 632 Be" «| 0975 | 4.1 

mean: 4.5 

moment of the water molecule m, = 2,3 10-18 e.s. units, and for 

ammonia mr Lo 10-1Ses units 

The order of magnitude is the same as the electric moment 

calculated from the equation of state. The numerical correspondence, 

however, still leaves something to be desired. This is not surprising, 

calculation that the density of the liquid remained constant. His formula runs 

e—l a _dam,N dar > Ne 

step rn BE 3 to 

in which for the calculation g = go was assumed. If the necessary correction is 

introduced for the density, a becomes negative for water, so that no real value is 

found for the electric moment. So that in fact, like BoausLawsKr (Phys. Zeitschr. 

1914 p. 283) I could not find any agreement between theory and experiment for 

liquid water. : 
el * 

The form : 
e +2 

greater than 1. If, as in water, « varies between 60 and 80, this fraction varies 

very little with changing «. : 

T=a+1T 

also, is not a very suitable one as soon as « becomes much 
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as the measurements of the dielectric constant lie partially in the 
field of temperature, where the values for B calculated on the 
assumption of bipoles deviate from those determined experimentally, 
and moreover the supposition upon which the calculations are 
based will not entirely correspond to the facts. 

Finally, I should like to draw attention to the conclusions, which 
follow from these calculations, for the determinations made by 
Pu. A. Gure!) and his fellow-workers of the molecular weight of 
gases from the weight of a litre under normal circumstances and 

the compressibility. These measurements, which have been made 

with the greatest care, have not always led to a satisfactory 

agreement between the molecular weight determined in this and 

other ways, especially in the case of easily compressible gases. 

From our calculations it follows 15 that for an accurate determination 

of the compressibility the measurements must be so arranged that 

they ‘enable us to determine?) with the necessary accuracy not only 

B but also C; and 2"! that when it is not established in another way 
that a given gas behaves as a normal substance, the compressibility 
for that gas must be specially determined. 

Our calculations demonstrate that the deviations from the law of 

corresponding states, which in various substances may be very 

important as regards the value of 5, may be even greater for C, 
so much so that the sign*) for substances with and without bipoles 

may be different. The fact that for some gases including ammonia 

a correct value for the molecular weight was obtained by making 

use of the law of corresponding states, even where this was not to be 

expected according to the preceding discussion, must therefore be 

regarded as due to accident. And it is not to be expected that at 

other temperatures an equally good agreement would be found. 

1) See for instance Mém. de la Soc. de Phys. de Genéve (35) 1905—1907. and 

further Journ. d. Chem. Phys. various volumes. 

2) This conclusion was also drawn by H. KAMERLINGH ONNEs and W. H. Kersom 

Enc. Math. Wiss. V 10 p. 902. They alsc point out here (p. 909) the influence 

of the deviations from the law of the corresponding states upon the determinations 

of the molecular weight. 

3) Whereas B changes its sign for all substances examined, a possible difference 

of sign at equal reduced temperatures may thus be ascribed to the choice of the 
critical quantities as corresponding, this is not the case with C. For normal 

substances (see H. KAMERLINGH ONNES Comm. Leiden NO, 74, p. 10) C is every- 

where positive and increases with falling temperature. 

60 

Proceedings Royal Acad. Amsterdam. Vol. XIX 
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Anatomy. — “The development of the Fossa Sylvi in embryos of 
Semnopithecus.” By Dr. D. J. Hursnorr Por. (Communicated 

by. Prof. C. WINKLER.) 

(Communicated in the meeting of January 27, 1917). 

During the last years of my stay at Lawang-Java, I had the 

opportunity to shoot a great number of semnopithecus maurus in 

the woods on the slopes of the Tenger mountains. 

The uteri, which were taken out of the monkeys, which. were 

shot, were preserved in the beginning in formaline, but afterwards 

were brought in alcohol for the voyage to Europe. Later on too, 

after the brains were dissected from the skulls, they remained in 
alcohol. 

As a rather complete series of the brain of a monkey embryo 

is not- often found, it is comprehensible that the material which I 

collected, has given rise some new points of view. 

On the ape fissure and plis de passage I communicated already 

previously.*) In this communication the development of the fossa 

Sylvii is going to be described, which totally differs in certain points 

from what is found in human embryos. 

Therefore it is sufficient to describe the monkey embryos with 

the serial numbers 15—14—13a—13d—12—11 and 10, because 

the suleus in N°. 10 has already reached the full development and 

there totally agrees with what is found in adult specimens. 

Before I pass on to this, I will first recall to memory in short, 

how the development takes place in the human being. 

In the description given by EKKER*) was pointed out that in the 
3'¢ month, in which the brain has become 1,9— 2,6 cm, a curvature 

commences, as found in a bean, between the frontal and parietal 

part. This curvation continues at the base towards the lateral surface, 

and Ekker describes it on page 208 as follows: “stellt anfangs eine 

ganz flache etwa dreiseitige Grube dar, deren Spitze nach abwärts 

gegen die Hirnbasis, deren Basis nach Auswärts sieht.” 

In the 4" month the fossa Sylvii zs distinctly marked, as the 

brain matter begins to bulge alongside its rim: “welche nach unten 
und vorn gegen die Schädelbasis flach ausläuft.” 

1) D. J2 HutsHorr Por. The fissura simialis in embryos of semnopitheci. 

Royal Acad. of Science. Amsterdam Febr. 1916. The relation of the plis de 

passage of gratiolet to the ape fissure R. A. of S. April 28, 1916, and the ape 

fissure — Sulcus Lunatus — in man. May 27, 1916. 

2) A. Exxer. Zur Entwicklungsgeschichte der Furchen und Windungen der 

Grosshirn hemisphiren im Foetus des Menschen. Archiv f. Anthropologie 1868. 
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The development of the rims above the fossa Sylvii, which lies 
a little lower, progresses in the 5% month. 

A distinct separation between an anterior and a posterior part of 
this suleus one gets in the following, therefore in the sixth month. 

Now too this fossa is nearly totally open, only the posterior part 

has closed to a fissure. 

During the following months the process of operculisation con- 

tinues, so that in the 9'* month only the most inferior part is still 

opened. 

Rerzius ') gives in his treatise firstly an account of the description, 

made by CUNNINGHAM, who states that the fissura lateralis begins as 

an almost round furrow, which later on becomes a triangle. Rerzius 

himself describes its appearance in the middle of the 3'¢ month 

in the shape of a half-moon or kidney, also as a sharp point. 
(Pl. I fig. 28—29). At first however one does not notice much of 

an insula. In the beginning of the 5** month the marked area 

becomes broader. 
Although from the above-mentioned may follow, that the form in 

which the fossa Sylvii begins is not always the same, yet on one 

point agreement exists, that is to say, this furrow begins at the 

lateral edge and from the very first commencement is opened 

towards the lower end. 
Limiting myself, in reference to the foetal brains of anthropoids, 

to the investigations of the latest periods, therefore those of ANTHONY *), 

I may state he then found in a foetus of a gorilla of 6—8 months: 

“Le circulair superieur de Reil s'étend, au côté gauche, comme chez 
un foetus humain du même age, jusqu'au sillon limite gntérieur de 

insula... A droite le circulaire superieur de Reil est conforme au 

type habituel observé chez les singes, c'est-à-dire, qu'il n’atteint pas 

le sillon limite antérieur de Vinsula’. 
As to the foetal brains of a chimpanzee ®), corresponding with 

human brains of the 7 and 8t* foetal month, these should differ 

with regard to the “complex Sylvin”. For this communication, 

however, it is of importance that this furrow in this period is already 

totally closed. 
In embryos of Semnopitheci the relation is quite different from that 

in human beings. 

1) D. Rerztus. Das Menschenhirn. Stokholm 1896. 

2) ANTHONY, R. Sur un cerveau de foetus de gorille. Comptes rendus des séances 

de l'Académie des Sciences, t. 161, p 153 séance du 9 Aout 1915, Paris. 

3) Id. Sur un cerveau de foetus de chimpansé. Comptes rendus des séances enz 

t. 162, p. 604, séance 17 Avr. 1916, Paris. k 

60% 
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Thus we see in N°. 15 (fig. 1) in which the embryo has a length 

of 9 e.m. and the brain a weight of 2 grams, that on the lateral 

&. 
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dee AN 2 

a 

mig ac 

3. 

surface, therefore not on its lateral edge, a small curvation is visible 

-b. It is,found above the place where, on the edge, the frontal and 

temporal part come together. This curvation is small, but plainly 

visible. If one examines the surroundings of this small line, then 

another thin line is seen, passing from the first mentioned one towards 

tbe lateral edge. It forms as it were a junction between the line 6 

and that edge. 

The curvation: 6 has developed (fig. 2) in N°. 14 (length 11 e.m., 

brain weight 3 granis) into a distinct furrow. In this embryo too, 

the junction between ¢/ and the lateral edge is not more than the 

lengthening of a furrow in the form ofa thin line a. One sees however 

on the posterior part already a beginning of a bulging rim. 

As to the form of this furrow hb, this is totally different from 

what will be found later on in the other sulei, because the rims 

are not placed opposite each other, but the anterior is flattened. 

Fig. 3 shows us this furrow transversally sectioned. In it we see 

that the posterior wall goes straight downward to the bottom of 

the furrow, but that it passes on the anterior part along a sloping 

surface to the frontal part. 

In N°. 18a (length 13.5 em., brainweight 9 grams) which is 

nearly of the same size as 13%, the direction of the suleus has 

totally altered. Where it possessed in fig. 2 a direction somewhat 

from inferior-posterior to superior-anterior, the direction in this 

embryo (fig. 4) has totally changed and runs from inferior-anterior 

to superior-posterior. The posterior wall of the future fissura Sylvii 

is now totally formed and protrudes over the anterior part. This 

border is remarkable, because it has become deeper at the lower 

portion therefore near a. Moreover in this embryo too, there has 

been formed a part of the anterior wall of the fissura Sylvii c, 

whereas the lower part d is formed by the frontal lobe. The total 
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suleus therefore, is not much more than a hook, of which the 

longest side is formed by ab, and the shortest by c. 

It is remarkable however, that whereas the top part 6 of the 

posterior wall of the fissura Sylvii is not deep, this on the other 

hand is the case with the part c. This would give the impres- 

sion as if this latter part corresponds with h in fig. 2. Against 

this would plead that one sees in fig. 1 as well as in fig. 2 the 

existing suleus 5 connected by a superficial curvation with the lateral 

edge, what must be the sulcus a in fig. 4. Yet the first view 

remains possible, if one accepts, that during the following develop- 
ment the fold a (fig. 2) is continued upward from the corner in 5 

and that it uplifts the latter suleus as it were at its posterior end, 
moving it also upward. 

The point of junction between a and 5 (tig. 2) in that case would 

be the same as between b and e (fig. 4), with this difference, that 
it is removed in postero-superior direction. When in the last figure « 

is the oldest part and 5 the youngest, then it is comprehensible that 

a is deeper than 6. This conception would be supported by the 

fact, that the direction of 6 in fig. 1 is a more perpendicular one 

than in fig. 2, so that the position of this fold in these three 

periods of development presents itself as in fig. 1 and 2, and c 

in fig. 4. 

As however the link is missing between fig. 2 and fig. 4, which 

might solve this riddle, we must be contented to conclude, that: 

in fig. 2 the part 6 is deeper than the junction a with the 

lateral edge; 
in fig. 4 the reverse is found, hence a is deeper than 6 and c 

too is deeper than 6. 
In embryo 135, probably of a more advanced growth than 18a 

we find the anterior wall of the fissura Sylvii totally formed (fig. 5), 

although the border in d may not yet be strongly developed. The 

image which is now formed, totally agrees with that which is also 

found in human embryos. (Rurzius plate I fig. 33 and 35, plate III 

fig. 3) i.e. the form of the triangle with the top upward and the 

opened base directed downward. 
In. embryo N°. 12 (length 15 em. and brainweight 12 grams) the 

fossa Sylvii is completely closed and the insula is operculised. It 

one opens the walls of the sulcus (fig. 6) then it appears that the 

image, given in fig. 5, in large features has remained. The oper- 

culum temporale is still most developed, much more than the 

operculum frontale in d. On the other hand it is seen, contrary to 

tig. 5, that the junction dc has sunken into the depth, while the 
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insula rises as a round little ball (e) but is totally covered by the 

opercula. 
During the further development, (embryo N°. 11, length 18 ¢.m., 

brainweight 21 grams) it is seen that the part of the sulcus, corre- 

sponding with a in fig. 6 has been pushed more to the bottom and 

lies deeper than the part dc. 
During a still later period of foetal life (embryo N°. 10, length 

19 c.m., brainweight 21 grams) there is not much difference between 
the opercula, corresponding with ab and cd in fig. 6. The only 
thing remarkable is the large prominence of the insula as a small 

round elevation, above its surroundings. It is more distinctly visible 

than one finds in adult monkeys. 
From the above said is proved the great difference in develop- 

ment of the fossa Sylvii in mankind and in semnopithecus. 

In the former the development commences at the base, where 

this is bordered by the lateral edge and moreover in the form of 

a circle or triangle, which later on extends upward, on the lateral 

surface. 
In Semnopithecus one finds exactly the reverse: one sees first 

a suleus on the lateral surface (fig. L and 2), which develops in 

downward direction. Afterwards a second separating sulcus, though 

also on the lateral surface, is added to it (tig. 4 sub c), which too 

develops in downward direction (fig. 5d), by which then only the 
form of a triangle is formed, with its base downward opened. 

A second important difference is the period of complete opercu- 

lisation. 

The length of embryo n°. 12'), in which the fissura Sylvii was 

quite closed, measured 15 cm.-As a new-born Semnopithecus has 

a length of 27 cm., this is a little more than the half of it. The whole 

length of a full term human foetus is + 53 cm., so that a little 

more than its half comes to 29,5 em., which therefore would make 

out the beginning of the sith month. 
As however it is known, that in man the whole operculisation 

only takes place at the end of the 9 month or shortly after birth, 

this is also therefore an important difference. 

A third point of interest is the period in which this sulcus shows 

itself for the first time on the brain surface. 

I pointed out that the first indication of it was found in embryo 

1) The length of the monkey embryo is measured from the middle of the head 

to the root of the tail. The length of a human foetus is taken from head to heel. 

The difference does not alter in any way the above mentioned calculation, as the 

relations remain limited to monkeys reciprocally and also between human foetus. 
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n°. 15, with a length of 9 em. As a new-born monkey measures 

27 cm., that would be just a third part of the length. Now the 
third part of the length of a full term human foetus is 17 à 18 em., 
which, according to Rerzius, corresponds with the end of the 4t? month. 

When the ratios in length between the monkey embryos are 

thought similar to those which consist inter se between the human 

foetus, then with adequate development one should find the first 

indication of the origin of the fissura Sylvii, also in the embryos 

of man, only at the end of the 4» month. 

Now the records of Ecker and Rerzivs are rather similar and they 

point out the third month as the period in which the first indication 

of this sulcus is found in human embryos. This should be therefore 
a month sooner than the analogous period in Semnopithecus. 

The conclusions to which I think I may come, are therefore the 

following : 

1. The fissura Sylvii in Semnopithecus commences on the lateral 
surface, and develops towards the lateral edge, which is the reverse 

in man. 

2. The first that one sees of this fossa is a sulcus, to which 

later on, at the anterior side a second is added, both of which 

bordering the insular area temporal ‘and frontalward. 

3. The first indication of the commencement of this sulcus is 

found a month later than after the calculation in human foetus. 

4. The total operculisation of the insula is found in Semnopithecus 

at the stage which would be reached for human foetus in the 

beginning of the 6! month. 

Physiologie. — “The Olfactology of the Methylbenzol Series’. By 
Dr. E. L. Backman from Upsala (for the present at Utrecht). 

(Communicated by Prof. Dr. H. ZwWAARDEMAKER.) 

(Communicated in the meeting of January 27, 1917). 

What may be defined as an homologous series, is an arrangement 

of substances in the order of their atomicity which changes progres- 

sively and in a particular way in the same straight line. We know 

that such substances, when odorous, give a scent which also varies 

gradually and almost continuously, and evoke smell-sensations 

representing points upon an intensive scale like the atomic com- 

positions. The question whether intermediate compensations occur 

between the terms of this scale is of general importance for phy- 

siology. Hitherto the stimulus-limina of the terms of only few 
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homologous series have been established (Haycrart'), J. Passy ®, 

ZWAARDEMAKER *), and quite recently the electrical phenomenon 

(ZWAARDEMAKER f)). . 

The present communication deals with the liminal stimuli of a 

series not yet investigated, the possibie combinations within the 

series, the diffusion-vate, the adsorption to electrically charged metal- 

lic plates and the intensity of the vapour-electricity of the terms. 

We generally made use of ZWAARDEMAKER’s experimental method °). 

The just noticeable smell was determined in the smell-chamber 

(Le. p. 56) by evaporating extremely small quantities of odorous 

matter in aqueous solution at a carefully maintained temperature 

in the space of 64 Litres. The determination did not take place 

before 3 or + minutes after complete volatilization. Between two 

determinations the chamber was aired and the adhering scent was 

removed from the, walls by means of chalk and a towel. In the 

same chamber, now provided with a back-wall of tilterpaper, im- 

pregnated with the saturated aqueous solution, we measured the 

diffusion. By repeated determinations we established the time required 

for a distinct sensation of smell in the centre of the opposite wall. 

For a quantitative determination of the vapour-electricity produced 

by spraying the several terms, we employed a glass sprayer and a 

circular aluminium plate 20 cm. in diameter, connected to an 

Exner-electroscope. The sprayer as well as the cap of the electro- 

scope were earthed, the aluminium plate, however, had been carefully 

insulated by mounting it on a block of paraffin. Invariably 10 c.c. 

were sprayed under an overpressure of two atmospheres through 

compressed air. By establishing the capacity of the electroscope with 

receiving plate and the magnitude of the deflections at successive 

voltages the number of coulombs, obtained per c.c. as a charge on 

the plate, could easily be ascertained. Under these experimental 

conditions no charge was obtained by spraying pure water. Before 

performing the measurements we first searched for the optimal 

distance between sprayer and aluminium dise at which we could be 

sure of the maximal charge. The tables show the averages of the 

charges in coulombs per c.c. of sprayed liquid, calculated from the 
deflections of the electroscope. 

The adsorption of the odorous substances was examined for elec- 

1) Haycrarv. Brain Il 1888 p. 166. 
2) J. Passy. Compt. rendus. Mai 1892, Mai 1893. 

3) ZWAARDEMAKER. Die Physiologie des Geruchs. Leipzig, 1894 p. 238. 

4) ZWAARDEMAKER. Proceedings Kon. Ak. v. Wetensch. May 27 1916. V ol. 25, p. 3. 

5) Cf. TigeRsTEDT’s Hdb. d. physiol. Methodik. Bd. 3 p. 46. 
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trically charged metallie plates. To this end the full seent, furnished 

by an olfactometrie cylinder pushed off to its full length (Le. p. 65), 

was sent for five minutes through a nickel-plated tube 10 em. in 

length and 0,8 em. in bore, while the insulated tube was charged 

to 220 volts. The metallic tube consisted of two parts insulated from 

each other, which, therefore, could be charged oppositely. When 

the five minutes had elapsed we tried to find out if any odour 

adhered to the wall and how long it remained there. Such was the 

rapidity at which the air was drawn through the olfactometric 

cylinder and the nickel tube that as much as 6 Litres passed every 
minute. 

The determination of the odorimetric coefficients as well as the 

compensation- and combination-tests were performed with some of 

ZWAARDEMAKER’S precision-olfactometers. The rapidity of the airstream 

was the same (6 Litres per minute); besides the smelling took place 

after the air had been streaming for precisely */, minute. At that 

moment the connection with the suction-pump was broken, the 
communication with the olfactometrical cylinder was arrested, smelling 

took place through a short side-tube at the reservoir, the latter or 
a capacity of about 100 cc. Every experimental sitting comprised 

a number of tests of the same day together with those of previous 

days. Only the averages have been tabulated. The olfactometrical 

cylinders were invariably filled the previous day with a saturated 

aqueous solution of the terms of the homologous series. 

Liminal Stimuli of the methyl-benzol series. 

Benzol 5,0 10- Grams per Litre of air 

Toluol 2,0 10-6 rr a 4 BN 

Xylol iS. 57.1 Oet ARTE Pa ee 
Pseudoenmol 0,2 LO 5 a) yeas ct valet 
Durol OOS = 1057 fs A KS tte 

These values expressed in gram-molecules per Litre of air 

Benzol 6,50 10 gram-molecules per Litre of air 

Toluol 2,17 1059 x a Moe ae 
Xylol 0,76 10-3 ‘3 EON 

Pseudocumol 0,18 LOE op is pp ET 

Durol 0,07 105 Ps En rot a 2 

These determinations fully bear out Harcrart’s rule that in the 

homologous series of organic chemistry the smell-intensity at first 

gradually runs up as we pass from the lowest to the higher terms. 

By further addition of methyl-groups the amount of matter, required 
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to produce a just noticeable smell-sensation, gradually diminishes. 

The increment of smell-intensity is even approximately proportional 

to the number of methyl-groups. The smell-intensity of toluol is 

about three times greater than that of benzol, that of xylol about 

three times greater than that of toluol and that of pseudocumol 

about four times greater than that of xylol. The smell-intensity of 

Durol is only about twice that of Pseudocumol: the increment of 

intensity therefore, is smaller than might be expected from the 
ratios found previously. Most likely this is why on further methylation 

ihere is an absolute decrease of smell-intensity. 

Dijfusion-rate over a distance of 40 cm. at 19° C. 

The time required for a perceptible smell-sensation set up by the 

terms of the series at a distance of 40 em. is: 

Benzol 1 min. 15 see. 

Toluol {Sle gs — ABB es 

Xylol 00s; 

Pseudocumol G0 a5, 

Needless to say that, in order to determine the precise diffusion- 

rate also the tension of saturated vapour and the smell-intensity has 

to be taken into account. 

Electrical charge by spraying. 

First of all the charge of sprayed saturated solutions was 

determined. True, such solutions do not admit of easy comparison, 

the solubility in water of the members of the methyl-benzol series 

being widely different; still, the values serve our purpose technically. 

I found the following: 

| : | Electric charge 
Optimal distance _ in coulombs per c.c. 

Benzol S57em: | 116-45<10—" 

Toluol inks | ve lie PS 

Xylol 40 , | 14.5 X10—1! 

Pseudocumol en” | 8258 10"! 

Durol 35 | 24.1 >< 10—" 
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The charges of sprayed equimolecular solutions can be readily 

compared. The two highest terms, however, are so little soluble, 

that the first term would not yield a charge in that extreme dilution. 

For this reason only groups should be examined in which the first 

three terms can indeed be taken equimolecular 

| . . Electrical charge Conc. Optimal distance _ in coulombs per c.c. 

1 
Benzol vann normal 30 cm. | 18.9 X 10—!1 1200 | x 

1 | 

Toluol 1200 5 | 5 hes 18.9 XxX 10-11 

1 
Xylol 1200 5 43 4, | 28.7 10—!! 

| 

Pseudocumol ds a 35 4 | 18.4 DX 10—!! 

Durol a ” | 35 ” 18.0 XX 10-1! 

| 

It will be seen that on further methylation the electrical charges 

of an equimolecular ‘solution rise slowly at first, later on very 

rapidly. Parallel to this runs a progressive insolubility in water. 

Adsorptivity. 

The capacity of the terms of the methyl-benzol series of being 

adsorbed to charged or uncharged metallic plates is remarkably 

slight. Benzol is the only one fhat adheres to the metal wall in 

some measure, the other substances not at all. 

Olfactometry (at the stimulus-threshold). 

The olfactory values appeared to be the following: 

Benzol 0.3 em. corresponding to the liminal 

Toluol O60. te values in gram-molecules found 

Xylol 0.7 ,,. {in a previous experiment (sti- 

Pseudocumol 0.8 ,,. | mulus-threshold). 

The olfactometrical coefficients may readily be computed from 

them. They are for benzol 3.3; for toluol 2.0; for xylol 1,4 and 

for pseudocumol 1.3. 

These liminal values vary distinctly as the series advances. Each 
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term has its peculiar odour, which enables us to tell the one from 

the other by smelling. The odours of benzol and toluol, however, are 

somewhat alike. Both are empyreumatic, that of toluobis the stronger 

of the two. Xylol, on the other hand, has lost the empyreumatie 

character almost entirely, and exhibits an aromatic quality. This 

quality is more obvious still in pseudocumol, so that in this respect 

it bears some resemblanee to xylol. It seems to me that difference 

between xylol and pseudocumol is greater than that between benzol 

and xylol. Finally durol follows with an exclusively aromatic, phenol- 

like odour. 

The Combination-test. 

I feel convinced that a combination of the terms of the methyl- 

benzol series, without perceptible antagonism though weakening each 

other, may produce mixed smells, forming unmistakably a new 

unitary smell, though we still may trace in it the empyreumatic, 

respectively the aromatic quality of the component parts. It is rather 

Combination Cylinder-length Sensation 

Benzol-toluol . 0.30and0.50 cm.  __ toluol-tike 

ae 0.15 , 0.25 , B 

= 6 0.07 EDER (none) 

Benzo at Fe Bs RN faintly benzol-xylol-like 

blt | 0.07 - WaT (none) 

Benzol-Pseudocumol 0.20 , 0.60 , distinctly pseudocumol-like : 

~ = 0,15: -0,40 78 weak, doubtful odour 

Toluol-xylol 0.40 „ 0.50 , xylol-like 

5 5 AS 0.35 , > 

2 ka 0315 2, Fes = (none) 

Toluol-Pseudocumol 0.35 0E distinctly pseudocumol-like 

5 = 0.25 0,40. 5 Si = 

= » 0:15’ 5 B30", (none) 

Xylol-Pseudocumol 0:50, UBE, distinctly pseudocumol-like 

ie ~ OA, Oda weak mixture of pseudo- 
cumol and xylol 

» " 0.35 50:40 57 SA (none) 
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immaterial whether the new sensation is looked upon as a mixed 

sensation or as a novel, individual one. Psychologically it seems to 
me e.g. that a combination of gaseous benzol and gaseous xylol 

yields one simple, unanalysable scent, though it contains an empyr- 

eumatic as well as an aromatic component. 
From these experiments it follows in the first place, that the 

combination of two odours, belonging to an homologous series, 

yields a smell-sensation even when each separate odour is subliminal. 

Distinct smell-sensations were generally obtained by me with two 
half stimulus-limina consequently by adding two half liminal values. 

Here then we have to do with a summation-smell. Two subliminal 

stimuli, belonging to the same homologous series are added and 

build up together a smell-sensation. This phenomenon may be looked 

upon as an analogue to summation-actions occurring in another field 
in physiology. The present writer e.g. observed some time ago, that 

some rest nitrogen-compounds of various chemical composition 

exert a distinct influence upon the heart and the blood-pressure 

through their analogous physiological action, even when injected in 

such small quantities that of themselves they are inactive '). 

The results of our combination-tests were to the following effect: 

Combination Cylinder-length Sensation 

‘Benzol-toluol-xylol 0.15—0.25—0.35 cm. | distinctly xylol-like 

| 0.07—0.12—0.17 „ | (none) 

Benzol-toluol-pseudocumol 0.15—-0.25—0.40 „ distinctly pseudocumol-like 

0.07—0.12—0.20 , doubtful, indistinct 
” ” ”„ 

Toluol-xylol-pseudocumol | 0.35—0.45—0.60 „ distinctly pseudocumol- _ 
xylol-like 

| 0.25—0.35—0.40 „ faintly pseudocumol-like 

0.20—0.45—0.50 , f a 

These combinations also substantiate our previous statement. In 

my judgment stimuli smaller than */, olfact do not build up a clear 

sensation. 
Lastly we subjoin some combination-tests with four smell-stimuii: 

(See following table p. 950). 
Also with these combinations every sensation is unitary. Still, in 

the first three groups the xylol-pseudocumol-scent supersedes. Sub- 

') E. L. Backman. Thesis. Upsala 1917. 
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Sea ee SS eS EED 

Combination Cylinder-length Sensation 

Benzol-toluol-xylol-pseudocumol 1.80—3.00—4.20—4.80 cm. | Mixed scent of ben- 
zol-toluol and xylol- 
pseudocumol. The 
latter superseding. 

Benzol-toluol-xylol-pseudocumol 1.20—2.00—2.80—3.20 cm. Mixed scent of ben- 
zol-toluol and xylol- 
pseudocumol. The 

| latter superseding. 

Benzol-toluol-xylol-pseudocumol | 0.15—0.25—0.35 -0.40 cm. | Mixed scent of ben- 
| | zol-toluol and pseu- 

| documol. The latter 
superseding. 

| Benzol-toluol-xylol-pseudocumol « 0.07 — 0.12—0.17—0.20 cm. | (none). 
| 

liminal stimuli, when combined, build up an accumulative sensation 

here also. We conclude therefore: The combination of two or more 
subliminal quantities of substances of an homologous series gives rise 
to a distinct accumulative odour. 

It is very difficult to say whether a similar summation occurs 

also with superliminal quantities, though to me it does not seem 

improbable. 

The Compensation tests. 

Initially one of the olfactometrical cylinders of the double olfacto- 

meter was moved out a little to obtain a stimulus of 6 olfacts. 

Subsequently a small amount, followed by a larger one, of another 

substance was added and the smell-sensation was observed. The 

determinations were made at intervals of various lengths and were 

repeated several times on the same and on successive days. In the 

interval between two tests the cylinders were pushed hard up against 

the sereen to obviate excessive volatilization or to balance the 

diffusion-difference within the cylinder where, otherwise, the intensity 

of the upper iayers of the odorous substance would be reduced. We 

still wish to call attention to the fact, that the results obtained one 

day were invariably found back on the following day. 

.Generally speaking we found that by keeping the amount of one 

substance constant, and allowing the other to increase, also the 

smell-sensation passes gradually from one odour into the other, but 

that there will always be a field in which the two odours weaken, 

nay even cancel each other. On the whole, therefore, complete 

compensation of the sensations is obtained by mixing carefully 

apportioned quantities of odorous substances. 4 
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Cylinderlengths Sensation 

1.8 cm. Benzol + 2.3 cm. Toluol | benzol-like 

16, * +2.4 , * | faint, indistinct odour 

eae eo Cie be 2 ie | : , 

TN ORT: REN | toluol-like 

es id _ +0.9 , n benzol-like 

Weener ED rr, | 8 

00, # +1.1 , Ps faint, indistinct odour 

O.9) x5 5 +12 5 » | 8 2 je 

09, 4 +1.3 , , 5 a 

Co RS +1.4 , 5 toluol-like 

Si oe i +4.7 =, o benzol-like 

Seo 5 +48 , 5 faint, indistinct odour 

6, = +49 „. „ Fr of = 

es AMES EN +5.0 ., 2 toluol-like 

Le - > +3.7 , Xylol benzol-like 

KBE ; +3.8 , pe (none) 

boas je 3.9 , = | (none) 

LG, 5 4.0 , . | (none) 

3 ns Fe +4.1 , | xylol-like 

09, 5 +1.5 , 5 | benzol-like 

ACESS ae oe | faint, doubtful odour 

A Be pe ENE oe Ae | (none) 

GED 7 +1.8 , > _ (none) 

A ï 1.9 , _ faint, doubtful odour 

00 5 5 +2.0 , = xylol-like 

36°55 u +7.7 „ Toluol benzol-like 

5.6, +7.8 , « faint, doubtful odour 

5 PL eae 3 +7.9 , < (none) 

co | Tea ea +8.0 „ ; (none) 

en Sl ys (none) 

3.05% - +8.2 , : faint, doubtful odour 

S60 35 HRE (lig _ xylol-like 



952 

Cylinderlengths Sensation 

1.8 cm. Benzol + 1.5 cm. Pseudocumol benzol-like 

1265, t. +1.6 , pn (none) 

Is 2 abe B Redd op 5 (none) 

D5"), Ni ai S en = | faint, doubtful smell 

LS 5 +1.9 , 5 | pseudocumol-like 

(9e = ‘ +06. m benzol-like 

0.9 %, = +0.7 , = (none) 

Pe pages Hye : (none) | 

OE es = 0.9 4 x pseudocumol-like 

3.67 5 A +3.1 , benzol-like 

= ee es a 

9.6 vo ow) ode 

3.6 ne ow aS: 

Dn 5 faint, doubtful smell 

3 

1 

drs . +3.5 5 e pseudocumol-like 

9 

0 

” ” (none) 

» » (none) 

3.0 , Toluol +1.9 , Xylol | toluol-like 

3.0 „ ” +2. 

3.0 „ ” + 2.1 ” ” (none) 

» ” | faint, doubtful smell 

3. Oe - +2.2 , x (none) 

3.0, . +2.3 , a (none) 

3,0n - SZ A, a xylol-like 

high pe +0.8 , ; toluol-like 

(5 ast 0e 2 : | faint, doubtful smell 

Lay. kt +1.0 , ‘ 5 ee 7 

Liss . +1.1 , p (none) 

15), a == 12 . (none) 

IS CE ek EEE ~ faint, doubtful smell 

Se 5 fe his ody : | xylol-like 

60: 5 ne +43 , 5 toluol-like 

6:0. 5; 4 +44 , Fs ; faint, doubtful smell 

6.0, ES +45 , 2 (none) 

6.002. % +46 , = (none) 

fe | ees +4.7 , | faint, doubtful smell 
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Cylinderlengths Sensation 

‘mmm 

6.0 cm. Toluol + 4.8 cm. Xylol xylol-like 

3:05 ke +1.9 „ Pseudocumol | toluol-like 

3.0, 5 BE DEUS 5 8 | faint, doubtful smell 

3.0 ij Al + n (none) 

3.0 » ‘ = ‘. (none) 

SG gta ERD, faint, doubtful smell 

SU) ig e +2.4 , 5 _ pseudocumol-like 

foros 3 +0.9 , ‘ toluol-like 

Bok 3 +1.0 , pe | (none) 

|S en a +1.1 , i (none) 

er PN +1.2 , 5 | (none) 

Erin EN ED Ae ears 4 pseudocumol-like 

at ae 6 +4.1 =, pe toluol-like 

605, & +4.2 , nd faint, indistinct smell 

60} pn +43 , . (none) 

G0), i +4.4 , pe | (none) 

6:07, je +45 , 5 _ pseudocumol-like 

4.2 , Xylol +28 , 5 | xylol-like 

Ae: y 3 +2.9 , 4 | faint, indistinct smell 

re s d +3.0 , * | (none) 

den x +3.1 , 5 | (none) 

EE ¥ +3.2 , en (none) 

42 „ ; +3.3 , E (none) 

RN 3.4 , E faint, doubtful smell 

Ars _ +3.5 , ie pseudocumol-like 

a0 2), je LO! xylol-like 

2 Ten 5 +5.1 , 2 (none) 

yf ee 4 15.2 » 5 (none) 

eats > he 153 5, . (none) 

Ou i. * +5.4 „ 4 (none) 

BR ty 8 +5.5 , ge | faint, doubtful smell 

a eae b- +5.6 » 5 pseudocumol-like 
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The compensation is indistinct only for benzol and toluol. We 
also ascertained in every test that in the neighbourhood of the 
compensation-point smell-sensation grows weaker. 

We invariably found the ratios of the cylinderlengths of two 

antagonistic substances to be the same fora particular compensation- 

pair. They appear again when reducing the cylinderlengths to 
olfaction-values. 

| 
Number of olfacts | 

— TE Bic, | —— = Sensation 

Benzol Toluol | | Xylol Pseudocumol | 

| | | 
3 | B 4 | (0) 

6 ME ETE, | | (0) 

12 | 9.7 | (0) 

3 | | 2.5 0 

6 | | 5.6 0 

12 | ibaa beg: 0 

3 | 1.0 0 

6 | 2.0 0 

12 | | 4.2 0 

3 | Bag | 0 

6 | 3e | 0 

12 | 6.5 0 

3 | 1.4 0 

6 | 29] | 0 

12 | 5.5 | 0 

6 3.9 | 0 

10 | 6.6 0 

This investigation, then, confirms the rule previously found by 

ZWAARDEMAKER') for other compensation-pairs, viz. when a olfacts 

1) H. ZWAARDEMAKER, die Physiologie des Geruchs, Leipzig 1895 S. 194. Cf. 

ZWAARDEMAKER the restriction to the domain of cardinal values in Tig. Hdb d. 

Physiol. meth. Bd. Ill 1 p. 89. Beyond the domain of the cardinal values the 

log. of « and b will have to be multiplied. 
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of one odorous substance are neutralized by 5 olfacts of another, 

na and nx 6 olfacts will similarly neutralize each other. What 

strikes us as novel and remarkable, is that a typical compensation 

was found with odorous substances of one and the same homologous 
series. 

Complete compensation may of course also be obtained among 

four homologues. We subjoin the results of an experiment with the 
quadruple. olfactometer 

Number of olfacts Hon EGE | gn 

ST Sean Sensation 
Benzol Xylol Toluol Pseudocumol 

ne 11.4 | 12 5D (none) 

12 11.4 10 a. pseudocumol-like 

12 8.6 12 5,0 benzol-like 

12 13:07 411 12 55 xylol-like 

12 0 | 12 Oh benzol-toluol-like 

Another similar compensation is e.g. benzol 12, pseudoeumol 4.2, 

toluol 12 and xylol 6.5 olfacts. This combination also gives complete 

compensation. Likewise toluol and pseudocumol can compensate 

xylol alone, e.g. 14 olfacts of toluol and 3.9 olfacts of pseudocumol 

with 13.5 (7.4 + 6.0) olfacts of xylol. 

SUM a ARN: | 

1. The liminal stimulus of the odorous substances of the methyl- 

benzol series exhibits for the first four terms a fairly proportional 

decrease with increasing methylation. Consequently the liminal smells 
intensify as the series advances. Moreover they pass from a marked 

empyreuma (benzol-toluol) to a predominating aroma (xylol-pseudo- 

cumol) until ultimately a phenol-like odour (durol) comes to the front. 

Meanwhile the smell-intensity lessens, so that a prolonged methyl- 

ation may perhaps give rise to inodorous compounds. 

2. The rate at which the odour is spread by diffusion is nearly 

the same for the four homologues examined. 

3. The electric charge produced by spraying an equimolecular 

sohition of the substances augments slowly at first, afterwards more 

rapidly as the series advances. 
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4. The adsorption of the substances examined to electrically. 
charged metallic plates is next to none. 

5. The four terms examined may evoke unitary mixed sensations, 

without a trace of antagonism. 

6. Combinations of two or more subliminal stimuli yield (anyhow 

in the proportions of our tests) a distinct accumulative effect. It 
seems, however, that to obtain this result no less than '/, olfaet 

should be taken. | 

7. The combination of two or more fairly strong stimuli of the 

homologous series examined by us effectnates with careful apportion- 

ment a complete compensation of the mixed odours to the zero- 

point of the sensitive scale. This takes place without antagonism. 

Only when the odorous substances are closely allied, as in the case 

of benzol and toluol, the compensation is less complete. 
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Chemistry. — “Ultramicroscopic investigation of very thin metal 

and saltfilms obtained by evaporation in high vacuum”. By 

Prof. W. Reinpers and L. HAMBURGER. (Communicated by 

Prof. J. BörsFKEN). 

(Communicated in the meeting of October 28, 1916). 

It is a well-known fact, that the blackening of incandescent 

lamps must be attributed to the slow sublimation of the material 

used for filament, which settles on the bulb as a very slight deposit, 

‘and becomes darker proportional to the time of incandescence. 

Thin deposits on the bulb may be obtained in this manner, not 

only of carbon, tantalum and tungsten, but also of other metals 

such as silver and gold * and as one of us has described?) — 

even of metal-compounds (NaCl, Na,O, NaOH, Na,WO, ete), when 

they are brought to a lower or higher rate of incandescence in the 

high vacuum of the incandescent Jamp. 

Whereas the films of carbon, tantalum and tungsten are black, 

those of silver and gold are coloured and the salts form an absolutely 

colourless, clear deposit, which is invisible to the eye, as long as 

it remains in the same condition. 

We have subjected these films to an ultramicroscopic investigation, 

the results of which we shall communicate in the following pages. 

Rock-salt. This deposit was obtained by heating in high vacuum 
(0.0003 to 0.0010 mm.) a tungsten filament, which had been 

fixed in an ineandescent lamp in the usual manner and had been 

partially covered with solid NaCl. Before the connection with the 

air-pump had been broken by melting off, the lamp had been heated 

to 380° C. in order to exhaust the gases from the bulb. 
As long as the vacuum is maintained, the salt-deposit is perfectly 

clear and colourless, so that it is imperceptible to the eye. When 
the lamp is opened, so that the moist air can enter, the deposit 

soon becomes opalescent and especially after the lapse of some time 

this phenomenon becomes more pronounced. When a bit of the 

bulb was brought under the ultramicroscope®), as soon as possible 

1) M. Farapay. Phil. Trans. Roy. Soc. London 147, 145 (1857). 

G. T. Bempy. Proc. Roy. Soc. London 72, 226, (1903). 

L. HouLLeEvIGvVE. Ann. chem. et phys. (8) 20, 138 (1910). 

2) L. HAMBURGER. Chem. Weekbl. 13 (1916), 535. 

3) Cardioid condenser, Special object glass V of Zeiss, Compensation ocular 18, 

glycerine-immersion. 
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after the opening of the lamp, the deposit showed a network of 
small, radiant ultramicrons. In course of time this network became 
distinctly coarser and after some hours separate particles could be 
discerned, while after a still longer period some of them clearly 
revealed the cubic form of rock-salt crystals. Hence a slow cry- 
stallization or re-crystallization of the rock-salt takes place. 

This change caused by the addition of the moist air made it 
impossible to observe the layer of rock-salt in its initial state. In 
order to do this it should be shut off from the gasphase, both in the 
course of and after its formation, and after the opening of the 

balloon it should remain shut off as well. 

Closure with oil, obtained by opening the balloon under oil, so 

that the latter entered instead of the air, proved unsuccessful. A 

better result was obtained by using Canada Balsam, which had been 

freed from dissolved gases by exposure to high vacuum under gentle 

heating, by which process the balsam got thickened. During this 

operation it had been present in a side-tube, which had been fused 

to the balloon. After the formation of the NaCl-film the Canada 

Balsam is made into a thin fluid by cautious heating and is spread 

out over the layer of salt, so that it was partly covered by the 

balsam. When the lamp was then opened, the layer of salt under- 
neath the Canada-Balsam remained perfectly clear and transparent, 

whereas in the uncovered places it turned white. 

In the ultramicroscope the layer covered with Canada Balsam was 
optically empty. 

This became quite obvious when adjusting at the boundary-line 

Canada Balsam-air. Where the air had been allowed to operate the 

field was strongly lighted by the network of small ultramicrons, 

where the Canada Balsam had protected, the field was dark. The 

two fields were separated by a very distinct line of demarcation. 

So the rock-salt is deposited on the bulb as an optically homo- 
geneous phase, crystals are altogether absent, the molecules are 

absolutely disordered, and we are dealing here with the amorphous, 
vitreous condition, that may be compared to the undercooled fluid. 

This condition is metastable and gradually passes into the crystal- 

lised, stable condition. Various circumstances may start or accelerate 

this conversion : 

1. Access of air. Water vapour especially plays an active part 

here, very dry air has hardly any effect, breathing upon it makes 

the conversion take place very rapidly. 

2. A Rise of Temperature. 
61* 
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3. Increase of thickness of the layer by more prolonged sublimation. 

Silver. Instead of the tungsten filament a thin wire of very pure 
silver had been fixed in an incandescent lamp. The lamp had been 

carefully exhausted with the help of liquid air, during which process it 

had been heated to 380° C, and during a short time the wire itself 

was kept at a low dnll-red beat by means of an electric current. 

Thus any impurities that might be found on the bulb and the wire 
were removed as well as possible. Hereupon the lamp was melted 

off. If now the filament was brought to a deep-red heat with the 

aid of the electric current a deposit soon appeared against the bulb. 

With a prolonged sublimation the colour of this deposit changed 

from an original pale yellow into orange-yellow, red, violet and 

finally into blue. 

On opening the lamp we observed as a rule a deepening of the 
colour, de. a change of colour trending to yellow-red-blue. In some 
cases this change was quite pronounced and the colour became 

yellowish-red, almost blue, in other cases it was less marked and 

the yellow became only darker or more reddish-violet. The colours 

and particularly the order in which they occur during their formation 

and conversion are quite similar to those we observe with colloidal 

silver and photohaloids. *) Hence we cannot but think that likewise 

they all must be attributed to one and the same cause, viz. to the 
presence of small dispersed particles of the pure metal. 

The ultramieroscopic investigation bas quite corroborated this view. 

We also find this similarity in the case of gold. As early as 1857 

Farapay®) explicitly pointed this out in his classical experiments 

with extremely thin layers of gold and colloidal solution of gold. 

In both cases he accepted as an explanation that the colours were 

caused by small separate particles of the pure metal. 

Ultramicroscopic examination. We once more observed a splinter 
of the balloon with the aid of the ultramicroscope (Cardioideondenser). 

The red and the blue deposits and in many cases the vellow ones 

as well were optically quite soluble. They proved to consist of a 

closely connected network of ultramicrons, on the whole varying in 

colour, viz. blue, yellowish-brown, or green, the principal colour of 

which being complementary to the colour observed macroscopically; 

hence macroscopic: blue, ultramicroscopic: yellowishbrown; macrose.: 

1) W. Reinpers. Chem. Weekbl. 1910, 971 and 1001; Zeitschr, f. phys. Chem, 

77, -213,2006. 

2) M. Farapay. Bakerian Lecture, Phil. Trans. Roy. Soc. London, 147 (1857), 145, 
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red, ultramicr: green ete. With a very rare exception exhibiting 
Brownian motion, they all were immovable, therefore tied fast to 
the back-ground. 

The apparent size of these ultramicrons, hence their mutual distance 
was almost equal in the several compounds, there was at any rate 
no obvious connection between the variations in this apparent dimen- 
sion and tbe macroscopically investigated colour of the deposit. So 
this proves that the distance between the particles is about equal, 
if, at any rate the thickness of the film is not such, that more 

layers are lying one above the other. But the intensity of the light 

of the particles varies; with the red and the blue films it is fairly 
strong; with the yellow films it is on the whole but slight. 

Associating this with the theory of Rayreian ') we draw the con- 

clusion: that the dimensions of the yellow ultramicrons are smaller 
than those of the red and the blue ones. 

There is this essential difference between the coloured silver-film 

and the clear layer of salt that the latter is optically homogeneous, 

the former distinctly heterogeneous. 

The question arose whether this heterogeneousness was already 

present in the silver deposit in its original form, or whether it 
proceeded from the effect of the air as is the case with rock-salt. 

To obtain a solution to this question we again fused a side-tube 

with Canada Balsam to the silver-lamy as we had previously done 

with the salt-lamp. By gentle heating in high-vacuum the balsam 

was freed from the dissolved gases and when the deposit of silver 

had been formed it was carefully spread over it, so that part of it 

was covered by the Canada Balsam. 
On opening the lamp the colour of the deposit of silver that had 

been covered with Canada Balsam remained the same, whereas in 

the uncovered part a distinct change of colour set in. 

In ultramicroscopic investigation it appeared that the part covered 
with Canada Balsam also consisted of a network of ultramicrons. 

There was no marked difference between the apparent size of these 

ultramicrons and those of that part that had been exposed to the 

air. A sharp demarcation line between the two fields, such as had 

been observed with the rocksalt and which here too, was macros- 

copically quite perceptible on account of the variation in colour, 

was looked for in vain. The two parts imperceptibly passed into each 

other: the network itself showed no difference and only in the total- 

colour of the ultramicroscopic field, which had more of brown in if 

1) Phil. Mag. (4), 41, 107, 274, 447 (1871). 
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with the blue deposit, more of green with the red deposit, could 

any difference be observed. 

The difference was quite obvious however, in a few isolated 

cases, with a lamp where the evaporation of the silver had been 

effected by a very slow process and where the deposit had assumed 
a pale yellow colour. which by the influence of the air passed into 

violet. The field that had not been covered with Canada Balsam 

produced the brilliantly lighted mosaic of connected ultramicrons, 

while the protected field was optically hardly soluble, and but very 

faintly showed a similar network. The line of demarcation between 

the two fields was very marked. 

With the deposit of silver too, access of air results in a coarsening 

of structure, as we noticed before in the case of rocksalt. 

We have not been able to observe it utterly structureless, such 

as the layer of salt. Yet the possibility remains that the heating to 

60°, necessary to equally spread the considerably thickened Canada: 

Balsam, or even the mere contact with Canada Balsam is sufticient 

to prepare the passing into a more stable, granular condition and 

that the primarily formed greenish yellow deposit is structureless 

indeed, hence molecular-dispersed. 

It further appears that with an increasing thickness of the layer, 

even without access of air, the discontinuity, the construction from 

separate particles becomes more obvious. In this respect too, there 

is analogy between the deposit of silver and that of salt. 

The difference between the silver-film and the salt-film is a more 

gradual and a less essential one than seemed at first sight. In either 

case there arises primarily a thin layer of a great homogeneity, 

which, however, is unstable aud sbows a tendency to contract into 

separate particles. This tendency grows proportional to the increase 

of thickness and is also promoted by the presence of catalysers as 
vapour. With silver, however, the instability is much greater than 

with rocksalt; therefore we always find that with a very slight 

thickness deposits of silver are no longer homogeneous, but have 
separated into accumulations of small particles. 

In connection with KnupDsEn’s*) experiments on the influence of 

the temperature of condensation on the nature of the matter con- 

densed, we also modified the temperature of the bulb during the 

entire time of the burning. From his experiments KNUDsEN 

draws the conclusion that when metal-vapour molecules strike against 

a bulb, the chance of their being reflected is extremely slight, if 

1) Ann. d. Physik, (4) 50, 472 (1916). 
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only the temperature of that bulb is kept below a certain critical 

value, varying for each metal. For mercury he fixed this tempera- 

ture at —135°, for silver he estimates it at 575°. Though the room 

temperature at which the glass was kept during our experiments, 

is far below this critical temperature of the silver, so that we may 

assume that the silver-molecules striking against the bulb do not 

reflect, yet it seems unacceptable, that they resume their position 

of rest immediately after the collision. The glass- and silver-molecules 
situated near the point of impact will be disturbed in their state of 

equilibrium and get into a state of motion; small separate particles 

of silver come into each other’s sphere of attraction and find an 

opportunity of uniting into greater conglomerates. This motion will 

be so much the stronger and therefore the chance of the agglomeration 

of silver-molecules so much the greater, in proportion as the temperature 

of the bulb that is struck, is higher. By maintaining a low 

temperature of the bulb during the entire duration of the burning 

of the lamp, the possibility of acquiring an entirely structureless, 

amorphous deposit is heightened. 

Hereupon some experiments were made in which the silver was 

sublimated, while the lamp had been cooled down to a temperature 

of liquid air, this temperature being maintained during the whole 

time of burning The sublimate showed pretty nearly the same 

colours and succession of colours as those which arose in room 

temperature, any appreciable difference could not be observed. Thus 

a lowering of temperature to below 20° has no material effect on 

the nature of the film, when observed with the naked eye. 

If however, the temperature is raised after the deposit has formed 

a change of colour sets in, in high vacuum as well. By heating 

to 260° for 20 minutes it passed back from reddish-violet to vellow- 

ish-brown, and yellowish-brown to a faint yellowish-green. 

Ultramicroscopically this deposit showed larger particles, being 

better discernible by themselves. Several of them had loosened from 

the bulb and freely moved in the immersion-liquid. 

Farapay') and Berr ®) also experimenting on the much thicker 

deposits of gold and silver which they had prepared by lamination 

of compact metal or precipitation by chemical process, both observed 

a retrogression of the tint and an agglomeration into larger particles 

as the effect of heating. When we remember that as a rule an 

enlargement of the particles is accompanied by a deepening of the 

1) 1. c. page 1. 

2) 1. c. page 2. 



964 

tint (e.g. coagulation of gold sol) the connection between these two - 

changes is not very clear, unless we take for granted that 

the totalcolour of the film is in the main that of a connected film, 

which both Farapay and Bemsy have noticed between the larger 

conglomerations. Our own observations are not contrary to this 

statement. The conversion of colour quite makes the impression as 
if the film had become thinner. But we have not been able to 
ascertain a discrete and thinner film *). 

Gold. Similarly as with silver in this ease too, thin deposits could 

be obtained, the colour of which first became pink, with prolonged 
sublimation blue and then green. 

Here again access of the air of the room resulted in a deepening 

of colour. ; 

When observed ultramicroscopically a mosaic of brownish-red, 

greenish or more bluish coloured ultramierons could again be discern- 

ed. The primary colour of this mosaic was complementary to the 

tint that was observed microscopically. So we see that on the whole 

this image bears a perfect resemblance to that of the deposit of silver. 

Tungsten. The deposit of tungsten differs considerably from the 
silver-deposit. 

Firstly it shows no colours, but immediately turns a muddy gray 

even with the thinnest layers. 

Secondly these films, even the quite dark ones are ultramicro- 
scopically utterly insoluble. 

The investigation of the tungsten deposits which had been obtained 

by cathodic atomizing proves that the power of reflection of tung- 

sten is in itself no impediment for the discrete particles being made 

perceptible, if only the latter are large enough (vide infra). So we 

must accept that the tungsten particles are much smaller than those 

of silver and gold. This admission is not a very improbable one. 

For in a normal temperature the vapour tension of tungsten is 

infinitely lower than that of gold or silver. Whereas a silverfilament 

glowing at a dull-red heat (600 ) produces a distinct deposit on the 

bulb, even after half an hour, we require a heat of nearly 3000° *) 

1) J. C. M. Garnetr (Phil. Trans. Roy Soc. London A. Pos. 237 1905)) tries 

to account for this change of colour by accepting that by heating the density of 

the layer decreases while consequently the volume of air, enclosed by the metal- 

particles increases. But such an assumption is not confirmed by any observation. 
®) With our tests we required for the formation of the tungsten deposit about 

6 hours, for the silver deposit from 30 minutes to 2 hours. 
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to obtain a similar effect with tungsten. Therefore the difference 

between the temperature of evaporation and the temperature of 

condensation is for silver only 600°, for tungsten nearly 3000°. 

The “refrigeration“ of the tungsten-vapour is thus exceedingly 

strong and therefore we may expect the state of agglutination 

of the tungsten-condensate on the bulb to differ but immaterially 

from that in the state of vapour. From the behaviour of tungsten 

towards nitrogen we deduce that the tungsten-vapour is mono- 

atomic'). From KNUupseN’s *) measurements of the accommodation- 

coefficient I. Lanemurr*) too draws the conclusion that a reflection 

of the tungsten-atoms against a cold surface is highly improbable 

(c. f. besides p. 963). So we may expect that the tungstenatoms are 

immediately fixed by the bulb they collide against and will not find 

any opportunity for the formation of large conglomerations. 
If the mere conglomeration of molecules is difficult, an arrangement 

as required by the crystallised state. will surely not take place. 

Hence the state of the tungsten-deposit will agree with that of 

the rocksalt-deposit, with the amorphous-vitreous. 
The thickness of this layer is extrememely slight. A bulb of 

120 c.m?. covered with 0.12 m.gr. tungsten was already decidedly 

grey-coloured. If we fix the specific weight of tungsten at 20, then 

the thickness of that layer is calculated 0.5 wu. But layers of a 

fourfold thickness were quite insoluble (optically) as well. *) 

N 

Deposits of metal obtained by means of Cathodic Atomizing. 

By cathodic atomizing as well, very thin deposits of metal may 

1) I. Langmuir. Journ. Amer. Chem. Soc. 35, 931 (1913). 

2) Ann. d. Physik, 34, 593 (1911). 

3) Phys. Review 19132, 332. C. f. also, Ibid 1916? 149. 

4) This difference in dimension of the particles of silver and tungsten is also 

manifested in the conductivity of thin films of metal, on which S. WEBER and 

E. OosTeRHUIS have just now published very careful measurements. (Proc. of the 

the Koninkl. Akad. v. Wetensch. Amsterdam 25 (1916), 606). 

For the appearance of a perceptible conductivity it will be necessary that the 

separate particles coalesce or that their distance has fallen at any rate below a 

certain minimum value. With a forming layer of metal this condition will be 

satisfied so much the sooner (ie. with a lesser average thickness) the smaller the 

dispersed particles are. W. and O. discovered that the conductivity of tungsten 

becomes perceptible with a thickness of 0,5 gg and that it shows a marked 

increase at 2,5 gp; for silver these figures were respectively 65 and 25 uz. 
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be obtained on the bulb'). We have prepared such deposits so that 
we could compare them with the deposits obtained by evaporation. 

As a cathode we used a loop-shaped or spiral-shaped curved wire 

of the metal to be atomized, which was connected inside the glass 

with the platinum feeding-wires. It had been placed in a pear-shaped 

balloon, the latter being united by a narrow tube to the space of 

the anode, in which the platinum-anode was. The latter had been 

entirely fused into a quartz-tube, with the exception of the extreme 

point of some mm?’ surface. The atomizing took place under a 

pressure of */,, mm. mercury, in a dry, oxygenless, current of 

hydrogen, which ran from the space of the cathode to the space of 
the anode to wash away any gases that might come from the anode. 

Silver. The development of heat during the atomizing was such 
that the filament partially melted. As the vapour-tension of silver 

is rather high at the melting-point, part of the silver will evaporate 

in the cathode-vacuum and sublimate against the bulb. The deposit 

thus obtained will therefore be formed partly by atomizing, but 

partly by sublimation as well. 
The colour of the deposit was blue, violet, red or yellow, pro- 

portional to the shorter or longer distance from the bulb to the 

cathode. 
Ultramicroscopically it again showed in the first place a mosaic 

of very small ultramicrons, of equal dimensions, and perfectly similar 

to the deposit obtained by evaporation. By the side of these ultra- 

microns, however, or strictly speaking in the background were much 

larger particles of about 1 gu diameter and separated from each other 

by a distance of 6—12 u. 

As with the experiments on the sublimation deposit, here too part 

of the layer had been covered with Canada Balsam, which being 
softened by careful heating, had been extended over the film, when 

still in the vacuum. By this process the twofold nature of the particles 

of silver clearly came to light. Whereas the Canada Balsam had no 

effect on the mosaic of the underground, the coarser particles above 

were loosened by the balsam and had accumulated on the rim of 

the drop. The line of demarcation of the Canada Balsam which 

otherwise would be imperceptible was now very clearly marked by 

this line of radiant larger particles. 

1) M. FARADAY, l.c. pag. 1. 

L. HouLLEvIGUE, Ann. chim. et phys. (8) 20, 138 (190): 21, 197 (1911). 

H. Frrrze, Ann. der Physik, (4) 47, 763 (1915). 

B. Pogany, Ann. d. Physik. (4) 49, 481 (1916). 

A. Riepe, Ann. d. Physik. (4) 45, 881 (1914). 
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Evidently the silver of the underground is due to evaporation 

and the larger particles proceeded from atomizing. 

Consequently evaporation produced a much finer deposit than 
atomizing. 

The results which H. Frirze*) obtained with cathode-atomizing of 
silver agree with this statement. For he explicitly states that the 

colour of his deposits was never yellow, though he devoted much 

attention to the exhausting and the removing of vapour of water 

and other gases absorbed by the bulb. As a rule the deposit was 
blue, with a decrease of thickness it became red, while finally with 

still thinner layers, no distinct colour can be identified, it results in 

‘jede Andeutung einer ausgeprägten Farbtönung zu verlieren”. 

Such a vague, non-characteristie colour as indicated by Fritze 
may also. be found in the film proceeding from the effect of 

air on our thin greenish-yellow silver-deposits. It is, as we have 

seen, distinctly heterogeneous and much coarser of granule than the 
greenish-yellow layer formed by slow sublimation. 

Tungsten. Again the colour of the film was black, like that 

obtained by evaporation. It appeared ultramicroscopically that by 

rapid atomizing very course particles were formed (2 to 5 u dia- 

meter); by slow atomizing small particles arose, radiant without 

colour and — also with an extremely thin black deposit — so 
numerous that they filled the whole field. So here again it appears 

that coarser particles are obtained by cathode atomizing than by 

evaporation *). 

SUMMARY. 

1. The clear, colourless condensate of rock-salt that settles on 

the bulb during evaporation in high vacuum is, also under ultra- 

microscopic investigation, optically homogeneous and must be con- 

sidered as a salt in the amorphous-vitreous state. 
2. The opalizing, which this deposit undergoes, by the influence 

of moist air, originates in the formation of separate crystals, whose 

growth could be followed ultramicroscopically. 

1) Ann. der Physik (4) 47, 763 (1915). 

2) Of course, the coarseness of the particles in cathode-atomizing depends on 

the temperature the material attains during the process. When the temperature 

is high coarser particles are torn off than when the cathode-atomizing is conducted 

in such a manner (e.g. by repeated rests) that the temperature of the material 

remains lower, 
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3. During evaporation in vacuum silver develops a deposit against 

the bulb. With increasing thickness the colour of this deposit passes 
through greenish-yellow, orange, red, violet and blue. 

4. The red, the violet and the blue films are distinctly hetero- 

geneous. They consist of a network of very small ultramicrons. The 

yellow deposit shows a hardly perceptible heterogeneousness and 

approaches in structure the amorphous-vitreous state. 

5. The deposits are not proof against the influence of moist air. 
The colour changes in the direction yellow — red — blue and the 
structure becomes coarser. Heating likewise causes a coarsening of 
structure. 

6. Gold forms — in a similar way as silver — coloured depo- 
sits, which are ultramicroscopically heterogeneous. 

led 
?. Tungsten forms a black deposit, ultramicroscopically it is 

not soluble. 

8. Deposits obtained by cathode-atomizing consist as a rule of 

coarser particles than the evaporation-deposits. 

„Delft, Anorg. and Physic-chemical Eindhoven, Lab. of Philips’ 
Laboratory of the „Technische “Carbon Filament Lamps” 
Hoogeschool’ (Technical University). Works Ltd. 

Physics. — “The virtual displacements of the electro-magnetic and 

of the gravitational field in applications of Hamiton’s variation 

principle” ,By Dr. A. D. Fokker. (Communicated by Prof.LoreNtTz). 

(Communicated in the meeting of January 27, 1917.) 

In some papers on EINsreEiN's theory of gravitation Prof. Lorentz’) 

recently applied Hami.ton’s principle to the deduction of the principal 

equations of this theory from one single variation law. Starting from 

an invariant equation he was able to reach conclusions which again 

were represented by invariant equations. It was however not 

necessary to keep the equations invariant during the whole deduction. 

On the contrary, an artifice, consisting in the choice of a specially 

defined virtual displacement (without taking into consideration the 

conditions of invariancy), proved very useful. 
Now it is possible to let the invariancy exist continually during 

1) H. A. Lorentz, On Hamitton’s principle in Einsteins theory of gravitation, 

Proceedings, Kon. Ak. v. Wet. Amsterdam, XIX, p. 751. Over Einsteins theorie 

der zwaartekracht, 1, ll, Ill, Verslagen, Kon. Ak. v. Wet. XXIV, p. 1389, 1759, 

XXV, p. 468. 
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the deductions; and that in a way which fully appreciates the fact that 

the tensor of the ten gravitation potentials and the tensor of the four 

electrodynamical potentials, being directed quantities, have a geometrical 

character (§ 12 etc.). Moreover the tensors of stress, momentum 

and energy appear in a new way from the variation calculation. 

In the following paragraphs this will be shown. Thanks to the 

cited papers and to some others, a short indication will often suffice. 

The variation principle. 

1. For a material particle, falling under the influence of a force, 
Hamiuton’s principle takes the form: 

2 2 

0=d] — mds + = (p) ky JrP ds, 

1 1: 

where m is the coefficient of mass of the particle, ds the arc-length 

of the world-line run by the particle in the world referred to a system 

of four space-time parameters ‚zr. Further k,(p=1, 2, 3, 4) 

represents the four-vector of the force acting on the particle, while 

Or? (p =1, 2, 3, 4) denote the components of the virtual displacements. 

In the variation of the motion there corresponds to each point- 

instant 2, (m= 1,2,3,4) of the unvaried path a point-instant 

En + Or" (m = 1, 2,3, 4) of the varied path. The final points of the 

path remain unvaried. As usually we assume 

der == > (ab) gar Gon 0a, 

where ga (a, 6 = 1, 2, 3, 4, gas = Joa) are the gravitation potentials. 

If the particle has an electric charge, so that it is influenced by 

an electro-magnetic field this may be taken into consideration by 

writing 

2 2 

0 =d | (— mds + AL (I) epida) + | Xk, drvds. 

1 1 

Here gy; (/=1, 2, 3,4) represent the electro-dynamic potentials, 

four quantities changing from point to point and determining the 

field. 2 is a constant determined by the choice of the units of mass 

and charge in which m and e are expressed. Now 4, no longer 

contains the electric forces. 

2. Applied to a limited extension of the four-dimensional world 

HamiLton’s principle is represented by the equation: 
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y= sf de, dx, de, dx, + [20 ine dre da, de, de, de, =. (i) 

Here K, denotes the p* component of the force acting on the 

system per unit of volume. V—g de, de, de, de, being a scalar (if 

g is the determinant of the gas), K/W —g and not K must be a 

covariant vector, which further will be denoted by &. For the same 

reason not L, but LA’—g must be a scalar, if the variation law 

shall be expressed invariantly. We suppose the function of LAGRANGE 

L to consist of different separate parts for the gravitational field, 

for the matter, for the electro-magnetie field and for the electric 

convection-current, 

Structure of the function of LAGRANGE. 

3. The contribution of the gravitational field to L will be denoted 

by V—g H. It will be known, that for 7 must be taken (7/2, where 

G is a scalar indicating the curvature of the field figure and x the 

gravitation constant. By means of Riemann’s symbol, G may be 

expressed as follows : 

Ei (im) gin Gis 

Gim = (kl) gk! (ik, ln), 

(ik, lm) = 5 (Gim,kl + GYklim — Yil,em — Jkm,il) + 

Stabler im kl il km | a 

rde | ol Le | IE in 4 

The quantities get (a, b= 1, 2, 3,4) are the algebraic complements 

of the gas Yim,ki is written for the second derivative of gin with 

respect to a, and z/; and Cpristorrel’s symbols mean : 

am 

| Dn | — 4 (Jia,m == Imai — Jima )- 

; b heers : 
Further the notation ie and Jed for the first, respectively second 

derivative of ge? with respect to 2, and aa will be used from time 

to time. 

4. The contribution of the matter to L will be denoted by 

V—q R. In order to find out what has to be put for V-—g hk we 

must investigate how the element — mds, which occurs in the 

variation law for the motion of a single material particle, can 

be extended to V~—g Rdu,dv,du,dx, for the matter we are consi- 

dering. Lorentz has indicated *) what V —g R becomes for a con- 

1) 1. e. XIX p. 754, XXV, p. 478. 
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tinuously varying current of incoherent material points or for a more 

general case in which there are acting certain molecular forces 
between the points. 

For an ideal gas V—g R will be the sum of the elements of the 
world-lines described per unit of time by the molecules present in 

a unit of volume, each element multiplied by — m, if m is the 

mass of the molecule that describes the element. 

Now it is known that for a molecule with the mass m the 
momentum is given by 

di 
ta = — m & (b) gas bass 

ds 

for a=1, 2,3, and that the energy is —z,. For an ideal gas the 

expressions for the stresses, the momentum and the energy per unit 

of volume and the energy-current can be written down directly. 
Without entering into details by introducing a distribution function 

I only give the table of notations 

pet, Vet WI Vogt XX, Xe 

VIT Vaal! Vor! Var Fe PF, 
dn ed WIT Vg Tt (=) Zz Zij Zels 

Cee IV el At Sx Sy Sz E. 

Here the coordinates w, y, z and ¢') are supposed to be used. 77 

is a mixed tensor. It may be called the dynamucal tensor. It is not 
symmetrical. The covariant tensor 

I ee = (m) YImb ep 

on the contrary is symmetrical. 

It may be remarked that the sum of the diagonal components is 

equal to 

(2) 

B) WV —9 Ts = — WIR. 

5. The contribution to L of the electric current and the electro- 

magnetic field may be divided into two parts, 2V—-g SandAV—g M, 
4 being the same constant as in $ 1. 

For V—gS de,de,de,de, we take the extension of the element 

= (eg dx that occurred in the variation law for a single charged 

particle. If the extension is effected in such a way that we pass to 

a continuous electric convection-current, we find 

1) Xr, Yx, Zz are the forces, exerted in the direction of X, Y, or Z by the sur 

roundings of a unit cube, on a face for which the outwardly directed normal has 

the direction of the axis indicated by the index. 
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Y—gS=2Z(m)V—g W" Qn. 

Vg Wm (m = 1, 2, 3,4) denotes what is usually indicated by 

QV: WV, ev: and go. Here, as in other places, the factor V—g 

occurs because we take the different quantities per units of time 
and volume, expressed in the coordinates and not in natural units. 

It is to be noted that at a change of the gas, V —g W™ remains unchanged. 

This corresponds to the fact that for a single charged particle the 

term > (m)ep,dx, is independent of the gravitation potentials. 

For the electro-magnetic field the scalar may be constructed in 

the following way. From the potentials the covariant field-intensities 

are derived : 

From these we form the contravariant intensities of the field: 

Fab — > (mn) tg de gen rae 

Finally we form the scalar: 

M=— + = (abmn) gen gin Fab Fn ’ 

= —12 (ab) FX fas 

Further it may be remarked here, that 

OM aM ef Se: 
ze} fob, and —— == — 4 pe (bn) 905 fas Som 

Ofab 
Ògem 

ScHwARzscHuL.D*) has already used the integrand W—g S in the 

variation law. Recently Tresiinc”) has communicated to the Academy 

of Sciences how this term may be used in Hamitton’s principle. 

Except as to the sign, the term W—gM corresponds to the term 

used by Lorentz, who writes Waz for what has been called here 

V—gF® and yay for fas. 

Variations of the field quantities. 

6. In the first place we shall consider the variation which is 

obtained by varying the electric jield in such a way, that everywhere 

the potentials y,, are changed to an amount dy. 

The Òp„ (m= 1, 2, 3,4) will be infinitesimal continuous functions 

of the coordinates. : 

1) K. ScHWARZSCHILD, Zur Elektrodynamik. I. K. Ges. Wiss. Göttingen, 

Math. phys. 1903. 

2) J. Trestine, The equations of the theory of electrons in a gravitation 

field of Einstein deduced from a variation principle. The principal function 

of the motion of the electrons. These Proceedings. XIX p. 892. 
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The variation becomes): 

0 
af de, de, de, de, =1 du, dv, de, dv, © (mq) E (V—g Fa bpm) + 

it 

0 
=~ Sfn | W—g Wm — aes W—g ra) | 

&y 

If at the boundaries of the four-dimensional extension the dg» 

are chosen equal to 0, while within this extension they have arbitrary 
values, then HAmitton’s principle demands that 

0 
V—g Wn = & (9) Tan W/—g Fg), (nm 1 2, Dy B) ed 

vg 

These are the four equations of the field in an invariant form. 

7. The second variation to be considered is a variation of the 

gravitational field. At each point-instant of the extension it may be 
determined by the changes dg” of the quantities g@. 

If we have to do with an ideal gas, we may deduce directly that 

now the variation of V—g R is: 

Mg A) = E (abm) kW —a gina Ty dg?) « . . (do) 

Taking into consideration that, 

SV —9 = — = (ab) 5 V— 9 gar Fy” , 

dM = — & (abdn) } gt" fad fon gt = — 4 Z(abedmn) gam 9" gt" fea fon Og”, 

dM = — & (abmn) } gam F™ fon Sg™ , 

we easily find for the variation of V—g M 

Ad (Vv —g M) = & (abm) 4 V —9 Ina Es OGEE Nr DE 

where we have put 

Ey = — AZ (n) Fer fin —ids M. 

d is a mixed tensor, the components of which are 1 or 0 

according as m—b6 or m=b. We shall also introduce the notation 

Hi =(m) Jam ES. 

We shall see further on that V—g E; are the stresses ete. in 

the electro-magnetic field in the same way as W—g1'; are those in 
the matter. 

For the above mentioned reason the variation of ¥—gS will 

be zero. 

Òdp, IdPn 
1) It should be kept in mind that dfng = —— and that Fg — Fom 

fn Uy 

Comp. for the deduction TRESLING, l.c. 

2) Comp. Lorentz, le. XXV, p. 476, form. (63). 

62 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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8. When gy changes by dg”, then ie and get change by 

Odgt 0? dg 

02, ag 02,0xg 

and their derivatives, the variation of ’—y H becomes 

0H O /V-gòH 
d(V-gH) & (abed)| dg ae ee West =de do rf oe 
SE ee OE ee 
dada dae? (ta OE: )+ 
Q (Ge 4) = nae oe 0 (GE) - (4) 
Ox dg? Ox, | Oxg òge? 

If H=G/2z, it can be proved’) that 

0H 1 0 (V—q0H 1 0° (VY—g0H 1 
ae) De =—— Gq (4d) 
dg? Y—g dae dg? Y Ògaf 2x 

Summarizing and choosing the variations dg? arbitrarily with 

only this condition that both they and their first derivatives vanish 

at the boundaries of the extension, HamiltTon’s principle requires that 

If we consider ’—-g H as a function of the g” 

ri LV -99aH+Vy-g9 

gedra 

m 

0 = | ae, de, dx, dv, 2 (abm) |} 1 V—9 dam (Tf, +i.) + 

1 
a ge Mo Gane ae “| ag |. … (ah 

Hence we find the well-known equations for the gravitational field 

Gab — 4 9a G-= — x (Tas + Ea). . - - . ~ (6) 

The origin of the second term of the left hand side is apparent; 

it appears by the variation of 1 —g in the principal function. 

Virtual displacement of the matter. 

9. The third variation we shall consider will be caused by giving 

to the molecules of our gas virtual displacements. We do not choose 

these displacements different for each individual moiecule, but to all 

molecules which at a certain moment are present in a definite element 

of volume we give the same virtual displacement, characterized by 

the infinitesimal vector dr? (comp. § 1), which may be an arbitrary 

function of the coordinates. The variation gives directly 

0 mm m 

far de, de, dae, & (almp) an Ws (—d, R — Tz; ) arl + 
Lm 

pin Jam 

& 

0 3 0 yn 

+ arn Voo + 5 (V—9 Tp) —4V—99" Ti | Pen KS 
Lm 5 P 

1) Comp. Lorentz, i.c. XXV, p. 472. 
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If the dre are zero at the boundary, then Hamitton’s principle 
demands that the integral always vanishes, so that 

Ò Ògan V—g hy + = (aml) | (V—9 Tp) —4V—g EET | =0 . (8) 
Oxm , dep 

These are the equations of motion of the matter in an invariant 

form. & is a covariant vector and the form between brackets is 

W—g times the covariant divergency of the mixed tensor 77". 

10. Consider now the virtual variation of the electrie current. 
If each electric particle undergoes a displacement dop, then the 
variation of the intensity of the current at a definite point-instant, is 

0 
d(V—g W™) = = (a) Seg. aa as orn — —g W™ dr) ,") 

so that the integral is varied by: 

0 m few dx, dx, dx, = (map) E 2 | VY —9(W™ pa—de S) aval IE 
&m 

: 04 m dq ) 
V—ght++VY-g We (5) - Ph )| « (9) 

da, O2n 

+ dr 

If dr? vanishes at the boundary of our extension, we must have 
therefore 

Opie uwsl 
V—gky + 2imV—9 We (ee ze) Pe 7E RESO) 

Lp Ön 

This may be called the “equation of motion’ for the electric 
current. The second term may be said to represent the force exerted 

by the electric field on the carrier of the charge. 

Virtual displacements of the fields. 

11. Before calculating the variation which is obtained by a 

virtual displacement of the electro-magnetic field or of the gravitational 

field, we have to state what will be meant by this. 

Doubtlessly we can say: to give a virtual displacement to the 

electro-magnetic field means to assume that the four potentials which 
originally occur at the point-instant x, (p = 1, 2, 3,4) will be found 

after the displacement at the point-instant «, + dr (p= 1, 2, 3, 4). 

From. this follows that there will be at one and the same point- 

instant a variation dp, 

Pm 
Opm = — = (p) —— dr. 

xp 

1) Comp. Lorentz, l.c. XXIII, p. 1077. 

62* 
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It is, however, immediately evident that dy, is no covariant vector 

though g,, is one, so that we should compare with Haminton’s 

invariant integral another, which is no longer invariant. 

The same difficulty arises if a virtual displacement of the. gravi- 

tational field is defined as the shift of a set of values ga, from the 

point-instant 2, to another next to it ze, + C7’. By so doing we do 

not obtain a covariant variation 

Oda b 
Ogar = — ZP) dr | 

vp 

12. A closer examination of the geometrical meaning of the 

tensor components gq, teaches us that in virtue of the equation 

e? = (ab) qq, dea des they form together an infinitesimal quadratic 

three-dimensional extension, the ‘‘indicatrix”’ around each point-instant 

of the field figure. 

The whole gravitational tield may be said to be represented by the 

totality of the indicatrices described around the different point- 

instants, in the same way as in elementary considerations an elec- 

tric field is described by Farapay’s lines of force. A virtual displa- 

cement of the gravitation field must therefore mean a displacement 

of all these indicatrices, in such a way, that it does not disturb the 

configuration and intersections of the indicatrices. 

Let us consider two neighbouring indicatrices h and j, which 

intersect in the figure 7. We may give the displacements to the 

indicatrix 4 and the indicatrix 7 separately and also to the figure 7. 
We then demand that the shifted figure 7 shall again be the inter- 

section of the shifted indicatrices Jh’ and /’. 

This cannot be managed by the variation specified in the preced- 

ing paragraph. There all point-instants of an indicatrix were 

supposed to undergo one and the same virtual displacement, equal 

to that which belongs to the centre. Now on the contrary we require 

that the virtual displacements of the point-instants of an indicatrix 
be defined by the values of dr’ at the different point-instants them- 

selves, . 

If the Sv are not constant, the virtual displacement will generally 

consist not only in a certain translation, but also in a rotation of 

the indicatrices. Analogous considerations may be applied to the 

virtual displacement of the electro-magnetic field. The potentials 

which together form a covariant tensor of the first order, represent 

at each point-instant a trivector multiplied by V—g, 1. e. (in 

infinitesimal dimensions) a certain linear three-dimensional extension. 
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18. In order to find what has to be put for Ogap and dy, 

if they are to represent a virtual displacement of the fields in 

agreement with the geometrical character of the potentials Ja, and 
Pm just discussed, we shall proceed in the following way. First 
we sball describe the world by means of somewhat altered coordi- 
nates. We introduce the transformation 

Cn Em Or" (nm = 1, 2, 3, 4), 

where dr” represent the infinitesimal components of the displace- 

ment, the squares of which will be neglected, so that in differentiating 

a quantity which contains this dr" or is to be multiplied by it, we 

need make no difference between partial differentiations with respect 
to 2, and to 2'n. 

After the transformation of the coordinates we shall deform the 

net of coordinates together with the field in such a way that the 

surfaces @' =a, come at the place where originally were found 

the surfaces «,, =a, . This is evidently reached by a virtual displa- 

cement of the field characterized everywhere by dr”. In order to 
find what we have after the displacement we have only to omit the accents. 

For the indicated transformation we have 

0 dpm 

da' ed OEP) p 
Vp 

The geometrical character of the gas implies that the form 

= (ab) Jas da'g da'y = & (ab) gas dag res = 

a 0 fr” 
== (GD) ger | dra — = oe de) dx', — X(p) at One 

Oc! P p 

is invariant. 

Hence we deduce easily that 

i OdrP 

gab = gar — EP) 96 > — = (P) Jap dn 

Here gs is the same function of den which gas was of 

En. Therefore 

ddr? dr” 
° fr? + phx Yap => 

Or’, Up wa 

J'ab = Jab (em) — & ( » 15 

If, omitting the accents, we now express that the new net of 

Coordinates can be made to coincide with the original one, when 

the field is displaced at the same time, we find for the variation at 

a definite point-instant: 

Òdrp ddr? | 
dgar = — = (p) ee drP + gpb =— 7 + Jap =— an vat Lae 

Lp 
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In the same way we find by a virtual displacement of the electro- 

magnetic field 

OPm OdrP 
dn = — = (p) KET en eS 

These variations dga; and dy, are really covariant tensors. Tensors 

formed in an analogous way are mentioned without commentary 

in a paper by HILBerv.’*) 

14. For the case of a virtual displacement of the electric field 
we have 

ae OdrP ddr?) 

Sfnn = — 2 ( Pp) ide ior oe an ® be (13) 

We can now easily Satine the variation of Hamiiton’s integral. 

We find 

0 
ada, dar dar dr, > (mmp)| = VW op, dr? Vg F fan Br) + 

fi 0 ò, m 

= ria ky ae ase ee Bep) ie + dre 
p 

EW Pin) +4 —9 Fm ie |. 
Em dx, 

Using the equation of continuity of the electric current 

0 

and transforming with 

gh! Jam 
eae ka gin Ee (am) g ir 

0 mn oF te 0 am 

= (mn)4 “ia wee Z — i= (almn) mn Ting al > 

we find, eae the symbol H%, for the variation 

fan de, da,dx dp iY —9(— AW” gg—)dg M—Ez dr} + 

Hor Vg ky + avon) 
den Oy 

Ògam m 2 = —gaal > re Wd 14 EW gE; ) —4V—99 a, Ei | (14) 

For a virtual displacement which is zero at the boundaries of the 

1) Davin Hivpert. Die Grundlagen der Physik, I. K. Ges. Wiss. Göttingen, 

Math. Phys. 1915. 
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extension, Hamitton’s principle requires that 

0 ) m 

0=Y-—gkh +242 (m) Vg Wn it jen Ohm + 
OL» day 

Ògam 

Oz, 

These may be called the equations of motion for the field. We 
see that the acting external force and the force which the carrier 

of the charges exerts on the field’) must be opposite to the co- 
variant divergeney of a tensor multiplied by #/—g. The equations 

correspond exactly to those which we found for the matter. For that 

0 m m 
+ 2 (Ima) 5, V9, )- 3 41 Y— 9 gt! — E; OE 

‚p 

reason we are justified in considering the tensor E; as the dynamical 

tensor of the stresses, momenta and energy in the electro-magnetic 
field. 

15. For the virtual displacement of the gravitational field it is 
easy to find the variation of the part of the integral containing 

V—g H. The integral being a scalar, we have 

[v-9 H dx,dz,dz,dzx, = (vdo, de, de, de, 

for the transformation of $ 13. H being a scalar, we also have 

H' = H (@'p— dre). 

0 seed es OdrP 

Vn Up Prat 
7 (@,'..0,) 

So that after the displacement we find (by omitting ie accents) 

0 
6fv—a Hdx,dz,dzx,dz, = fae, dx, dx, de, = (p) PO ee ad (16) 

Ep 

In what follows we shall use the results of § 8. With 

dg = — = (mn) gg" dgn, + « « - « (17) 

we apply the formulae (4, 46, 11) and find after a short trans- 

formation for the total variation 

yn m 

fan da, dx, dee,  (alnp)| 5° —9 (- da H + Te + Eq) dr} + 

yn m 0, am yn m 

+ On" = ae +Y-gLE, ) 4 W-99! 5 (T) 4. Er 4 (18) 
el el 

As in the preceding cases HamiLton’s principle now teaches us 

that, whenever the displacement vanishes at the boundary of the 

extension, we must have 

1) Per unit of volume. 
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0 m 0 am 

0=Y—gk, + = (alm) aoa WIZ) Egg! — Erie ae (19) 

where 

m m m 1 Zp = = (Ty + By) =~ = Wo" Gps As) - » (20) 
These might be called the “equations of motion” for the gravita- 

tional field. Comparing this with our former result, we are induced 

to consider the tensor Zy as the dynamical tensor of the stresses, 
momenta and energy in the gravitational field. We see that it is just 
equal and opposite to those of the matter and of the electro-magnetic 

field taken together. 

16. By formula (16) we can prove, that the covariant divergency of 

Zj must be identically zero. The variation of ft ‘—q H de, de, de, dx, 

may also be calculated by means of the formulae of $ 8. If we 

choose the 07? and their first and second derivatives equal to zero 

at the boundary, then according to (16) the variation must vanish. 

From 4c and d together with (17) and (41) we find 

1 
a fwo Hdz,dz,dz,dz2,= Sion) = V-9 (Gar—t9anG)datdx,dx,da,dz,— 

1 0 
=ftededejde Sam 5 | V-g ger (Gark gad G) 4) — 

“im 

— Ora 
d P OV ion 

dam (W-g gen (Ga — $9ab G) mk W-gok! an, 9" (Go — 4916 a) 
é Ta 

This can only be equal to zero if the coefficient of Òre, i.e. 

W—g times the covariant divergency of Z/' is zero, so that 

Le 
= (bllm) SIW —g ge (Gar—t gar CN — 

1 Ok be. 
Sto V-9 a et (Gis — 490 G)—O0.. (21) 

va 

17. This identity, which implies four connexions between the 

components of (Gs } gas), is important because it shows that 

the ten differential equations 

Gap = Fane G =O 

which determine the gravitational field at those places of our extension 

where there is neither matter nor an electro-magnetic field, are not 

independent of each other. In such extensions void of matter the 

gravitation potentials may therefore be subjected arbitrarily to four 
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additional connexions. Estrin has shown that this indefiniteness 

in the extensions void of matter can never give rise to an indefiniteness 

in the observations that can be made with material instruments. 

The identity further confirms that in the absence of an external 

force the laws of conservation of energy and momentum hold for 

the matter. Indeed, from the field equation (6), which is given in 

(20) in another form, together with (21) it is evident that 

a 0 ge A Okin, ane an 0 = Elm) WI (Ta HEE — HV ght (17 + i"). (22) 
We may even conclude that no other force can be exerted on the 

matter and the electro-magnetic field by any agency if this does 

not change the gravitation field at the same time. 

18. The second term on the left-hand- ae of (21) can be trans- 

formed. We may write for it 
i dg 
zz Dd = ie (Gi — $ gu G). 

According to (4d) this comes to the same as 

per EEN Ch a eB 07 | 
ee Ss dg de dg ap dare ml dg!’ 

The same may also be expressed as follows 

| gH ke; 0 (4o2*)+ 0 

dg! Ja Oa dg"? 

oe YV—gH 

Ted Tia dl 

If now we put 

Og oY —qgH ddr 
Vg 2e = 2 (lbd) gi E = 4 gli ae as oan i 

a 9. 

a Oa ae 
ad dg’ a wa dg! a J . 

“cd ed 

then we have according to the hes equation and (21), (20): 

Edge EN y+ 205 SW) CD 
So we find in W—gze a Een le ‘“quasi-divergeney”” (no 

invariant) of which is the opposite of the quasi-divergency of the 

dynamical tensor of matter and electro-magnetic field. Lorentz *) 

and Dr Donper ®) have deduced another similar complex 

1) 1. e. XXV, p. 473. 
2) Tu. pe Donner, Les equations différentielles du champ gravifique d’E1nstTEeIN 

créé par un champ electromagnétique de Maxweir-Lorentz. Verslagen, Kon. Ac. . 

Wet. Amsterdam, XXV, p. 150. 
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Le OV -gH 0 OV -gH _ = p= ZY lb 1 NEN rak we eo 
of 

V-9 80 (bd) gi, Ce Pa on Ded Ògied 
da o V-gH, 

which is found as se as 1/—gz, by transformation of the second 
term of the identity (21). 

If we wish we may take the components of one of these complexes 

for the stresses, momenta ete. in the gravitation field. According 
o (21) we have however sa te 

= (m) — Lw —9 Za) = 2 (©) U za) = > (e) Ws rs 

so that we me also 

m 0 m V—g(Ta + Ea) 5 WI Za) = 0. . (24) = (m) 
Vin 

Now it is quite a matter of taste and, as to the calculations one 

of opportunity, which of the three equations (22), (23) or (24) will 

be regarded as the expression of the laws of conservation of energy 

and of momentum and whether zo, s, will be regarded as a dyna- 

mical quasi-tensor, or Z; as the dynamical pure tensor of the 
gravitation field; or finally whether it is better not to introduce a 

dynamical tensor in the gravitational field at all. 

Connexion with Lorentz’s theory of electrons. 

19. Finally we shall shortly show how the deduced formulae 

are connected with the classic formulae of the theory of electrons. 

For this purpose we must treat the case of constant gravitation 

potentials having the values 

—1 0 0 0 

CHS late Or 
0 0 —l Os 

0 0 0 c 

To these corresponds the value g—=-—c? and the values of the 
algebraic complements 

—l 0 0 0 

gy 0 SI Ee 0 
0 0 —l Le 

1 
0° Se eee 

C 

Our formulae are based on HamrrroN’s principle for the motion 

of a point which falls freely. In the case now under consideration 
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it takes the form 
2 2 

1 1 

Comparing this with what we were used to write in the old 
mechanics of relativity 

2 

3 0 =d | — me? Y1—v'/e? dt, 

1 

we see that in our formulae the function of LAGRANGE has been 

taken c times smaller. Correspondingly definite forces, energy, 

stresses etc. will have to be represented by numbers which are c 

times smaller than they were formerly. 
If for instance the unit of electric charge is left as it is defined 

in the theory of electrons (in these units an electron has e.g. a charge 
—Via Xx 4,65 x 10-10), and if at the same time the unit of the 

intensity of the electric field d and that of the magnetic field / are 

left unchanged, we shall have to write for the force per unit of volume 

1 1 
den Kek 

Cc C 

If we wish our equations (3) for the electric field 

0 
ENV We, 

LE 
in which the components of the current W—g Wa are ev, Qvy, QVz, 

0, to agree with the well known relations 
oh oh, 0 

c Ee oles rh be etc., 

the components of the contravariant field tensor must be 
1 

Od oa oe 
Cc 

1 
—h: 0 he —-—dy 

c 

Fab (=) 1 

ee ree 
c 

1 1 1 
deld ie ee 
c CG. C 

Hence it follows for the components of our covariant field tensor 

0 h, —h, ce dy 

= (ab) gap Jog F® = fog (=) —hz 0 hy edy 

Ruse etek Ute vd 
—cd, —ed, —ed: Wy 
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0G, IP, 

dcp dap 
scalar potential p and the vector potential a of the theory of elec- 

trons are connected with our potentials: 

P, Pr Ps Po (=) ar ay az —ep. 
For the components of the force acting on the charge per unit 

of volume we found in our formula (10): 

— Ky =—V—ghy =A (m) Vg Wer fom- 
To make this agree with the above, we must, with a view to the 

choice of units, give the value 4=1/c’ to the coefficient 2. The 

formula thus becomes 
i 

= V9 hy = Em) Vg W fm 
It keeps this form when we pass to a system of coordinates 

in which tbe unit of time is c times smaller and in which the 
velocity of light becomes equal to 1 (¢ remains 3.10*°). It may be 

remarked in passing that in the papers of Lorentz’) and TREs1ING 

the factor 1/c? is failing. It is thus seen that they have silently used 

a unit of charge c times larger than the usual one. 

The scalar for the field becomes 
M= — tE (ab) Feb fy =F (CF — Ah), 

Hence it is evident how the We know that Tra = 

and the principal function 21/—gM = — (d’—A’). In agreement with 
I 

2e 

what has been said at the beginning of this paragraph this expression 

is c times smaller than the one we were accustomed to. 

The stresses, the negative momenta, the energy and the energy- 

currents become 

Vg Ey = AZB) V—g F™ fos — A —gda M, 

1 2 2 1 1 ] 

c 

1 ] 2 2 1 1 

C 3 c 2 

1 1 3! 2 1 
Sne sedd). —(hyhe-+dyd:), ze (he + add), — —(¢ij— ae 
¢ Cote PA c 

1 

(d,hz-—d-hy), (d:hy—dzh:), (d,hy—dyhz), 5e (i? + a’) 5 

| c 

We see that all these components become c times smaller than 

formerly, as has been remarked already in the beginning of this 

paragraph. 

1) For the comparison with the papers of LorENTz it may be remarked that 

V—g Fab = tab and far = vad. Further that V—gWm= wm. 
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Physics. — “On the Energy and the Radius of the Electron’. 

By. J. D. van Der Waats Jr. (Communicated by Prof. J. D. 

VAN DER WAALS). 

(Communicated in the meeting of February 24, 1917). 

It is well known that the contracting electron (the so called 

Lorentz-electron) has its electric energy U and its magnetic energy 

T, but has moreover still a quantity of energy of another kind. 

Poincaré *) has calculated the amount of this energy, which we 
will indicate by £. He has found’): 

e 4 
E— FE = kt 3k. e ° ° . ae ar X aoe ae : (1) 

E, represents an integration constant, a the radius of the electron, 

w 
e its charge, c the velocity of light, £ = \/1—8?, 8 =-—, and w the 

C 

velocity of the electron. The energy therefore can be interpreted as 
a 

the work done by an internal constant negative pressure a 
Ta 

when the volume of the electron changes. If we calculate the mass 

of the electron from its electromagnetic momentum © in the usual 

way followed by Lorentz, then it appears that this mass satisties 
the equation 

1 m= (T+U+H-.......- @ 

provided we put #,—O. At least this equation is satisfied for the 

electron with surface charge, to which case I will confine myself. 

If ZE, =0, the energy £ is the work required to increase the volume 

of the electron from the value O to the actual value. According to 

equation (2) we do not ascribe to the electron any other mass than 

that which follows from its energy according to the wellknown 

principle. 
I will here consider the calculation of £ a little more closely. In 

calculating this quantity Poincaré took as basis the condition that 

the contracted form of the electron will be its equilibrium-form, and 

that E therefore is the work of a force which is in equilibrium 

with the electromagnetic forces. He has not brought it in connection 

with the dynamics of the electron in an accurate way. For he writes: 

0 Ge Oe ee 
dw 

which equation however is uot satisfied. 

1) H. Poincaré, Rend. del cire. mat. di Palermo. Tomo XXI, Ad. d. 23 Luglio 1905. 

2) The here used notation is another than that of PorscarÉ, 
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ABRAHAM had calculated # in another way. He started from the 
supposition that equation (3) would not hold, but that we should 

have to correct it into: 

0 
te wang EN § ala ( E) Ber (3a) 

As HE in this equation is the only unknown quantity it may be 

derived from it. This yields again the value of equation (1) for Z. 

In this calculation as well as in that of Poincaré the energy Z has 
been introduced as an amount of potential energy. Moreover ABRAHAM 

assumes that © is the total momentum of the electron, i.e. that the 

electron has only its electromagnetic momentum, which is determined by 

1 
— >< PoyntiNes’ vector and not any momentum of another kind. 
C 

This, however, seems a priori little plausible. For according to the 

principle of the mass of the energy we should expect, that the 
Ww 

electron would possess an amount of momentum / X —, which was 
C 

not of electromagnetic nature. Moreover we should expect, that in 

the moving electron PoincarÉ's pressure would give rise to a transfer 

of energy, which would be accompanied with still another amount 

of momentum. We will therefore denote the total momentum by 

G,., a quality which we will leave undetermined for the present. If 

we do not put a priori ©,,= ©, Apranam’s way of calculating # 
loses its applicability. We must therefore follow a somewhat different 

way for the calculation of £. For this purpose we will assume 

concerning ©; that it satisfies the equation: 

0 
0 Ei yi — — E . . . . . . Bor = 5 (T —U—E) (35) 

which contains the unknown quantities ©, and ZE, A second 

equation is therefore required in order to determine them both, for 
which purpose the equation 

y 
Gin= PHU HD) ne eee 

can be used. 

So we find for # the differential equation: 

OF Sn (4) 
OID. Sie ow ee Sone 

A es e? yy e” San? 
sa = — 9, band T+ v=5,(1+45) we find as 

solution of (4) 



k nae 
Ek OE AO nat Se ee 

a 

where C is an arbitrary integration constant. For the Lorentz elec- 
m 

tron we have an m = —-. If we postulate that the corresponding 

equation for the energy will also hold good, namely / + U+ E= 
1 

ret + U, + Lo), then we must put C= 0 and we find again 

for ZE the value calculated by Potncaré and ABRAHAM. 

Now it appears a posteriori that 

Oi g T—U--E)=6 i ot —U--E)=6 

From this follows that the two corrections which we mentioned 

above need not be applied to © in order to find ©; The two 

corrections appear to cancel each other. This result is remarkable. It 

proves that the energy inside the electron is stationary in space. At 

the frontside Poynting’s vector is directed towards the electron. 

Hence when the energy reaches the frontside of the electron it 

is suddenly stopped in its motion and it remains at rest inside the 

electron till it is reached by the backside of the electron. Then it 

is- again put into motion as radiating energy, but now the motion 

is directed away from the electron. 

I will remind that the usual way of calculating the radius of the 

electron depends on the supposition that ©,,,—= ©. For the applica- 

bility therefore of this calculation it is decisive whether or no the 

suppositions assumed above are correct. 

dst. that the supplementary energy ZE must be introduced in the 
function of LAGRANGE as potential energy, in agreement with the 

assumptions of Poincaré and of ABRAHAM. 
: 1 

2nd, that the mass of the electron is equal to its energy X-. 
c 

Chemistry. — “Amygdalin as nutriment for Aspergillus niger.” IL. 
By Dr. H. I. Waterman. (Communicated by Prof. Dr. J. 

BOESEKEN. ) 

(Communicated in the meeting of February 24, 1917). 

In an earlier communication *) I have shown that amygdalin is 

a better nutriment for Aspergillus niger than glucose, at least with 

regard to the weight of mycelium obtained. 

1) These Proceedings January 26, 1917 p. 922. 
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The possibility was considered that within the cell benzaldehyde 
might be formed, whilst at the same time it was proved that out- 
side the cell important quantities of amygdalin by no means should 
be converted into glucose, benzaldehyde and hydrogen cyanide. 

This result was confirmed in another way by a new series of 
experiments, from which it is to be concluded with certainty that 
amygdalin without any preceding conversion into glucose benzal- 
dehyde and hydrogen cyanide, is absorbed by the cells. 

The referential experiments are united in the table. 
From these experiments it follows that the addition of amygdalin 

diminishes the noxious influence of benzaldehyde. Compare £,,F, 
and G, on one side with £,,/,,G, and E,,F,,G, on the other side. 

If a conversion into glucose, benzaldehyde and HCN should 

precede the absorption of amygdalin just. the contrary should be 
stated. 

Physiology. — “Hxperimental researches on the permeability of 

the kidneys to glucose’). By Prof. H. J. Hampurcer and 
R. BRINKMAN. 

I. THE PROPORTION BETWEEN K AND CA IN THE CIRCULATING FLUID. 

(Communicated in the meeting of January 27, 1917). 

1. Introduction. 

No solution has been offered to the question of importance to 

physiologists as well as to clinicists, viz. why the urine of a normal 

person is entirely or all but entirely free from sugar as Jong as 

the sugar-percentage of the blood serum does not rise above a certain 

concentration, and why as a rule glucosuria only sets in when 
accompanied by hyperglycaemia. 

Two explanations suggest themselves: 

It may be supposed that the normal glómerulus epithelium is proof 

against + 0.1 °/, of glucose without becoming permeable to it, but 

eannot keep back all the glucose of a higher concentration. Not 

much can be said in favour of this view, for it is not very likely 

that cells which are permanently exposed to a 0.1 °/, solution of 

a physiological non-electrolyte such as glucose should be changed 
by a 0.2 °/, solution *. 

1) A more detailed account will be published elsewhere. 
2) We shall not discuss here the hypothesis of a glomerulus-epithelium absolutely 

permeable to glucose, with back-resorption of it through the kidney-ducts, nor the 

oxidation of the glucose in the kidney. 

63 

Proceedings Royal Acad. Amsterdam. Vol. XIX 
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The second explanation, which has found many advocates, is that 

the blood sugar in the serum is not present in a free state, but is 

in normal circumstances only met with as a colloidal compound 

(LEPINE’s sucre virtuel), which cannot pass the glomerulus mem- 

brane. If the serum does not contain a quantity of this substance 

sufficient to bind the glucose, then part of the glucose remains 

circulating in a free state and can pass the glomerulus-epithelium, in 

other words glucosuria sets in. Several colloidal glucose compounds 

have been suggested already (jecorin, lecithin glucose, globulin-glucose). 

Objections have been raised, however, against this retention of 

sugar by a substance, present in the serum. Serum has been inade 

to dialyze against glucose-solutions (Asner, Rona and MrcHarus) 

and it was found that the percentage of glucose became equal on 

both sides of the membrane. A retention of sugar in a colloid form 

was, therefore, manifestly impossible. This statement has produced a 

considerable impression, and the result seems to be that matters 

have come to a dead stop. 

We have asked ourselves, however, if the results obtained in 

experiments with parchment membranes might be applied to glome- 

rulus epithelium. Obviously there is a possibility of compounds of 

glucose with some serumsubstance diffusing through a parchment 

membrane, but not through a membrane of glomerulus epithelium. 

BECHHOLD’s experiments have amply demonstrated that certain colloidal 

particles diffuse through one membrane, but not through another 

with smaller pores. 

We experimented, therefore, with celloidin membranes of various 

celloidin-percentages and ultrafiltrated under a pressure of 4 or 5 

atmospheres serum through it to which known quantities of glucose 

had been added, but the reduction-power of the ultrafiltrates did 

not warrant us to conclude that a colloidal glucose-compound had 

been kept back by the ultrafilter. 

Pursuing the same line of thought it seemed advisable now to 

investigate systematically whether in spite of the results of these 

diffusion- and ultrafiltration-experiments the second view was not 

the right one after all. 

In the first place it would have to be ascertained, which had 

not been done previously, that free glucose diffuses through the 

kidney. To investigate this, Rinerr-fluid, to which sugar had been 

added, would have to be transmitted through the vascular system 

of the kidney. If it was found then that the fluid flowing from the 

ureters contained the same concentration of sugar as the trans- 

mission-fluid, and if further it became evident that a RiINGER-fluid 
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containing sugar, to which serum had been added, produced an 
artificial urine free from sugar, then it was, as we thought, con- 
clusively shown that the serum contains a substance retaining sugar 
in a form which cannot diffuse through the glomerulus epithelium, 
and then further researches might be made as to the nature of 
this substance. 

Before entering upon the description of the experiments we wish 
te make a few observations of a technical nature. 

Some remarks of a technical kind. 

The experiments were exclusively carried out with frogs, viz. 

with large male specimens of the Rhine frog. The spinal marrow 

was destroyed with a needle, and all organs except kidneys, testicles 

and bladder were removed at once. Then a thin injection-needle 

was inserted into the aorta communis and a canula into each ureter. 

The fluid which circulates through the vascular system must be 

amply provided with oxygen. The pressure amounted to 60—80 

centimetres of water. In this way from 300 to 800 cubic e.m. of 
fluid flows through the kidneys per hour. The amount of fluid 

passing through the ureter is 0.5 e.c. or less. This fluid must be 

looked upon as a glomerulus product, for if at the same pressure 

fluid is transmitted through the vena Jacobsonii, then no fluid is 

secreted in the ureters. At a higher pressure some fluid is formed 
but very slowly. 

The glucose-percentage of the urine is not affected by the vena 

Jacobsonii being tied off. This makes it probable that the kidney 

ducts have little to do with the glucose motion. 

The glucose-determination of transcirculating-fluid and kidney-pro- 

duct was carried out by means of tbe excellent method of I. Bane '). 

It enables one to determine the glucose-percentage in 0.1 c.c. of 

fluid to within 0.006 °/,. 

2. The permeability of the frog's kidney to glucose which 

has been dissolved in Rinerr-fluid. 

re Series, of Hx pera ments. 

As we said before the fundamental problem to be solved in the 

first place was whether at a transmission of RINGER-fluid containing 

1) J. Bana. Methoden zur Mikrobestimmung einiger Blutbestandteile. Wiesbaden, 

J. F. BERGMANN. 1916. 
; 63* 
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elucose, the glucose-percentage of the urine would become equal to 

that of the circulating fluid. Repeated experiments showed that the 

elucose concentrations were exactly the same in both experiments. 

We shall give some of the values obtained. Each experiment was 

repeated at least three times and all gave the same results. 

Jan. 20 to Jan. 26. 1916. - 

1. Rineer-solution containing 0,1 °/, of glucose transmitted from the aorta 

through the kidneys under a pressure of + 50 c.m. Reduction of transmission- 

fluid 0,098 °/5. Reduction (expressed in glucoseconcentration) of the left kidney 

6,095 °/, right kidney 0,095 9/5. 
2. Circulation of Rrinaer-solution containing exactly. 0,05 °/) of glucose, from 

the aorta. Pressure 60 ce. of water. Reduction of urine to the left 0,05 0/,, to 

the right 0,045 9/o. 

3. Circulation from the aorta with pure Rincer-solution. The urine shows no 

reduction. 

These results formed, as it seemed, a reliable foundation for 

further researches. It was now expected that on serum being added 

to the Ruinexr-fluid containing glucose, the free glucose would be 

entirely or partially bound; in other words that the reduction 

capacity of the ureter-fluid would be smaller than that of the circu- 

lation-fluid. 

3. The permeability of the kidneys to glucose when it is dissolved 

in a mixture of serum and Rincer-/lucd. 

2.4. Series of Experiments. 

For these experiments horse’s or neat’s serum was diluted with 

a 2-, 3-, 4- and 5-fold quantity of RiNGeR-fluid to which mixtures 

in every instance a known quantity of glucose was added. The 

secretion of ureter-fluid took place very slowly, but could be pro- 

moted by the addition of urea. 
We subjoin a few of the many experiments. 

1. Frog’s kidney through which flows a fluid consisting of 50 c.c. of horse’s 

serum + 150c.c. of Ringer + glucose + urea. Reduction of this mixture 0,17 °/o, 

reduction urine 0,086 °/,. Consequently 0,09°/) of glucose has been kept back 

(= the quantity of glucose in normal horse’s serum). 

2. The fluid consists of 75 c.c. of neat’s serum + 225 c.c. of Rincer + glucose 

+ urea. Reduction of the transmission fluid 0,21 °/o, reduction of the urine only 

0,12 0/,, to the right, 0,105 °/o. to the left. 

3. The fluid consists of 60¢c. of horse's serum + 240 c.c. of Ringer + glucose 

+ urea. Reduction of the transmission-fluid 0,14 °/,. Reduction of the urine to the 

right 0,03°/9, to the left 0,028 /. Hence at a 5-fold serum dilution 0,11 0/, 

of glucose in still kept back. 

In the same way 0.07 °/p of glucose was kept back at a 6-fold, 0.06°/, at a 

7-fold dilution but at an 8-fold dilution next to nothing. 
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Evidently a considerable quantity of sugar is retained as long as 
the dilution of the serum is not an 8-fold one (0.17—0.086, 0.21— 
0.11, 0.21—0.105, 0.14--0.03, 0.14—0.028). 

In stronger dilutions the retention of sugar grows less, and in 
an 8-fold dilution it is 0. 

It was now attempted to trace the cause of this rather abrupt 

turning point, but in the midst of this somewhat elaborate investi- 

gation, which we shall not discuss here, the stock of Rinerre-fluid. 

gave out, and a fresh quantity bad to be prepared. It soon became 

evident now that the retention power of the kidney for glucose in 
the serum-RINGER-mixtures was entirely different from what it had 

been in the previous experiments. 

The possibility had to be taken into account that the Rinerr-fluid 

was not identical with the one formerly used. Was the Ca-percentage 

different perhaps? We often read of a CaCl,-solution of a given 

concentration without there being added if it has been made of 

anhydrous CaCl, or of CaCl, 6 aq. It was indeed found that an 

addition of some CaCl, strongly affected the glucose-excretion, for 

now the concentration of the ureter fluid was equal to that of the 

transmission-fluid. This observation, confirmed by parallel-experiments, 

induced us to determine whether the circulation of the new serumless 

RiNGER-solution would cause all glucose to be diffused, as had been 

the case with the original Rincer-fluid. 

To our surprise we discovered that when the new RiNGer-fluid 

was transmitted, glucose was retained by the kidneys. 

Under these circumstances it became necessary to institute a systematic 
investigation of the way in which a change in the composition of 
the Rrnerr-fluid affects the permeability of the kidney. The present 
paper confines itself to this investigation. We shall afterwards revert 

to the effect of serum being added. 

4. Change in the proportion of the quantities of K and Ca 

in the Rincer-fluid. 

349 Series of Experiments. 

It appears from the following table that only the amount of 

CaCl, was modified, the KCl remaining the same. 

Each of the four experiments was repeated 3 times with exactly 

the same results. 

Evidently no glucose is retained if a solution of CaCl, 0,005 °/, 

is used; when however, the solution contains 0,0075 °/,, 0.095—0.065= 
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| %o of CaCl, 0/, of Reduction 
| of NaCl | %ofNaHCOs | %yof KCI | an ection | -———__— 

| “ water) Circul. fl. Urine 

Dsl <07 0.02 0.01 0.005 0.09 0.09 

2) 0.7 0.02 0.01 | 0.0075 0.095 | 0.065 

3) 0.7 0.02 0.01 0.010 0.09 0.08 

4) 0.7 0.02 0.01 0.015 0.09 0.09 

0,03°/, of glucose is retained. If the Ca-perc. is raised to 0,010 °/, 

only 0,01 °/, is retained, at 0,015 °/, nothing again. 

Hence the most favourable proportion between the concentrations 

of KCl and CaCl, is 4:3, which, expressed in the number of atoms, 

results in: K:Ca=2:1. The following table demonstrates that the 

proportion between K and Ca and not the absolute amount of Ca 

is the important thing, because a slight increase of the K-perc. 

necessitates a corresponding increase of Ca. 

| | | 9 Reduction 
Oo NaCl | % NaHCO, |! %KCI | % CaCl 

| Circul. fl. Urine 

0.7 0.02 0.01 0.0015 | 0,09 | 0.065 

Dts Ai 002 0.015 0.005 | 0.08 0.08 

07 Woe 0202 0.014 0.011 | 0.10 0.065 

It should be noticed that the glucose perc. in the blood of the 
winter-frog (these were used for the experiments) amounts to 0.03 °/,. 

In the summer-frog it is 0.05 °/). . 

In accordance with this difference it was found that the kidneys 
of the summer-frog, when treated with Rieer-fluid containing glucose, 
retained 0.05 °/, glucose, which is partly due to the temperature. 
We shall have occasion to mention the influence of the 

temperature again. 

5. The proportion of Na. K, Ca. 

4 Series of Experiments. 

In order to continue the experiments a new consignment of frogs 

had to be used. The RrNeer-fluid, used for circulation, consisted 

again of NaCl 0.7 °/,, NaHCO, 0.02 °/,, KCl 0.01 °/,, CaCl, 0.075 °/,, 
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glucose 0.09°/,. To our surprise little or no glucose was retained 
now. Then the possibility was debated whether perhaps the amount 
of Na might tell upon the results. The answer is supplied by the 
following table. 

0, NaCl | %g NaHCO; 9/9 KCI | % CaCl, |- rs bet nin 
| Circul. fl, Urine 

0.7 0.02 0.01 0.0075 0.09 0.09 

Dr 0.02 0.01 0.010 0.102 | 0.085 

O27 0.02 0.01 0.012 0.105 0.085 

0.7 0.02 0.01 0.0075 0.085 0.085 

0.6 0.02 0.01 0.0075 0.085 0.060 

0.6 0.02 0.01 0.0075 0.010 0.070 

0.6 0.02 0.01 0.005 0.09 0.070 

0.6 0.02 0.01 0.0025 0.085 0.075 

0.6 0.02 0.01 0.010 0.12 0.115 

Obviously these results differ from those in the preceding table 

in which KCl : CaCl, = 4: 3 and where 0.03 °/, of glucose was 
retained. Something indeed is retained when we use the new frogs, 

but not 0.03 °/,. 0.02 °/, is retained when we use KCl: CaCl, = 

ORT. 

Why did the new consignment of frogs behave in a way different 

from the first? The temperature at which they were kept might be 

the cause. Jt was + 8° C.; formerly it had been higher. That the 
difference is indeed due to the temperature is made manifest by the 

fact that, in order to obtain the same results some CaCl, must be 

added to the circulating fluid when the kidney is cooled down by 

ice. If we wish to maintain the proportion KCl: CaCl, = 4:3, then 

the NaCl must be reduced from 0.7 to 0.6 °/,. 

It follows that with every condition of the glomerulus epithelium 
must correspond, if it is to keep back a maximum amount of glucose, 
a certain proportion between Na, K and Ca. 

It is not improbable that the anions too play a part in the equi- 

librium, but at any rate one gets an impression that the proportion 

of cations preponderates. 

The fact that a disturbance in the equilibrium of the cations 
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strongly affects the permeability of the kidney to sugar may explain 

two important observations, which have hitherto not been understood. 

One relates to an experiment by UnpbErHILL and CrossEn’), who 

injected into the ear-vena of a rabbit a solution of CaCl, and 

discovered that the hypoglycaemia is attended with glucosuria. The 

most obvious explanation is that we have to deal with a disturbance 

in the equilibrium between Na, K and Ca. 

Secondly it has been known for many years that uranium may 

also cause glucosuria’). Now ZWAARDEMAKER and FEEnstra discovered *) 

that in the RriNGer-fluid which sustains the beating of the frog’s 

heart, the K may be replaced by the likewise radioactive uranium. 

It will appear from the ensuing communication that in the physio- 

logical circulation-fluid of the kidney the K may likewise be replaced 

by an equiradioactive quantity of uranium. Hence it is not assuming 

too much if we consider the uranium-glucosuria as being caused by 

an equilibrium-disturbance occasioned by a disturbance of the normal 
K-percentage. 

It should be noticed that the glucosuria caused by CaCl,- and 
by uranium-injections are the only two of which it may be stated 

with certainty that they are ofarenal kind. Thus with warmblooded 
animals an equilibrium-disturbance in tbe relative cation-percentage 

of the circulating-fluid (here bloodplasm) might also be the cause of 

a modified permeability of the glomerulus epithelium to sugar. 

SUMMARY. 

1. When a RinGer-fluid in which the atoms of K and Ca are 

as 2 to 1 and which contains glucose is transmitted through the 

frog’s kidney at 7°-—10° C, then a comparison of the glucose con- 

centrations of circulating-fluid and ureter-fluid shows us that 0.03 °/, 

of glucose is retained by the kidneys. 

2. If the proportion between K and Ca is somewhat modified, 

the glucose retention will decrease, further modification reducing it 

to 0; in other words the urine contains then as great a concen- 

tration of glucose as the circulating-fluid. 

3. Evidently we have to deal here with a variable permeability 

of the glomerulus epithelium to glucose, not only depending on 

‘1) Unperuitt and Crosson. Americ. Journal of Physiol. 5, p. 321, 1916. Quoted 

from Bane. Der Blutzucker 1913 p. 103. 

2) Porrack, Arch. für exp. Path. u. Pharmakol. 64 p. 415, 1911. See also 
Bana, Der Blutzucker. 

3) ZWAARDEMAKER and FEENSTRA. These reports 1916, 28 April, 27 May, 30 

September. 
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slight variations of the chemical composition of the circulation fluid, 

but also on slight differences of temperature. Thus this simple 

membrane forms a nice object for quantitative studies on permeability 

under various physiological conditions. 

January 1917. Physiological Laboratory, Groningen. 

Physiology. — ‘“Heperimental researches on the permeability of 

the kidneys to glucose’. By Prof. H. J. HAMBURGER and 

R. BRINKMAN. 

II. THE POTASSIUM REQUIRED IN THE CIRCULATING-FLUID IS 

REPLACED BY URANIUM AND RADIUM. 

(Communicated in the meeting of January 27, 1917) 

From our preceding paper it appeared that if a Rinexr-fluid con- 

taining glucose and composed of NaCl 0.7°/,, NaHCO, 0.02°/,, KCl 

0.01.°/,, CaCl, 0.0075 °/, was circulated through a frog’s kidney, 

0.03 °/, of glucose was retained. Now ZWAARDEMAKER and FpENSTRA 

availing themselves of the conclusions arrived at by N. R. CAMPBELL 

that potassium is the only radio-active element found in the body, 

have discovered that in the RiNerr-fluid which maintains the beating 

of the heart, potassium may be replaced by uranium, radium and 

thorium and that in equivadioactive doses*). It seemed of importance 

to us to determine whether in the above-mentioned circulating-fluid 

this substitution may likewise be effected with regard to the kidney. 

Can here too uranium and radium take the place of potassium 

and if so in what proportion, in a molecular or in a radioactive one? 

Hence the KCl in the RiNeer-fluid which contained 100 milli- 

grammes of KCl per litre was replaced by the equiradio-active 

quantity; viz. 15 milligrammes of U(NO,), per litre. And it was indeed 

found that here too the maximum quantity of glucose was retained. 

If, however, instead of 15 milligrammes of nitrate of uranium, 25 

milligrammes are added, only very little glucose is retained. If the 

litre of RiNerr-flnid without K, contains 35 mGr. of U(NO,),, no 

glucose is retained at all. 

Now 100 m.Gr. of KCl are chemically equivalent with 112 m.Gr. 

1) These Proceedings Vol. XIX p. 99, XX 341 and 633. 

Compare also ZWAARDEMAKER, FEENSTRA and BENJAMINs, ibid. Nov. 10 1916. 
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of the uranium salt, consequently considerably more than 15 m.Gr. 

which was found by the experiments. 

The same substitution could be carried out with bromide of radium 

solution. ° 

1 capsule of the Allgem. Radiogen Gesellschaft contains + X 10? 
milligrammes of Rabr,. It was dissolved by heating in 100 ee. of 

distilled water, which had been acidified with some HCl. This 

solution having been neutralized with some NaOH sol. containing 

no K, 24 ec. of the fluid obtained was put into 1 litre of RinGEr- 

solution which contained no K. Some glucose having been added, 

the fluid thus obtained could indeed retain 0.03 °/, of glucose. The 

fluid contained 5 > 10 ® mGr. of RBr, per litre, the same quantity 

as that which was found by ZWAARDEMAKER and Feenstra to keep 
up the contractions of the frog’s heart. 

The use of 710° instead of 510 6 mGr of RaBr, per 

litre, causes the retention of glucose to decrease; this is also the 

case when 34 & 10-® is used. 

If the RaBr, had acted in chemical equivalency the quantity of 

it being necessary to replace the 100 mGr. of KCl would have been 

ae X 100 = 259 mGr. of RaBr, per Litre instead of 5 X 10-6 mGr. 

Hence it follows that potassium, uranium and radium affect the 

retentive power of the glomerulus membrane for glucose, in equiradio- 
active doses, and not in chenically equivalent doses. 

Further experiments will probably show that the limits can be 

determined more closely than it has been done here. 

These investigations throw a light upon the uranium-glucosuria, 

which has hitherto not been explained. It is most likely caused by 

a disturbance in the relative percentages of the metal atoms in the 

bloodserum, the” potassium of which has been increased by the 

addition of a metal which is, in a certain sense, related to it (ura- 

nium or radium). 

The fact that glucosuria is caused by the injection of some nitrate 

of uranium is not contradicted by the salutary therapeutic effect of 

uranium in diabetes (Hvenes and West) *); but then it would have 

to be assumed that the potassium percentage had decreased. As to 

this, however, all data are wanting. 

Groningen, January 1917. Physiological Laboratory. 

1) Quoted from CAMMIDGE. Glucosuria and allied conditions. London, EpwARD 

ARNOLD 1913, p. 339, 
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Chemistry. — ““/n-, mono- and divariant equilibria’. XV. By 

Prof. F. A. H. SCHREINEMAKERS. 

(Communicated in the meeting of February 24, 1917). 

The occurrence of two indifferent phases; the equilibrium M is 
variable singular. 

Now we consider the case that the singular equilibrium (M) is 

no more constant, but variable; one or more phases of J/ have, 

therefore, a variable composition. (Comm. X). 

When (M) is constant singular, then, as we have deduced in 

communication A, the following propositions hold: 
1. When the two indifferent phases have the same sign, then J/ 

is transformable. 
2. When the two indifferent phases have opposite sign, then M/ 

is not transformable. 
It is evident that the same rules are valid also when M is a 

variable singular equilibrium. 

In order to examine what P,7-diagrams can occur now, we 

take an invariant point with the phases /’,... E42, in which 

F, and F,4, are the indifferent — and consequently the other 
ones are the singular phases. Then we have the singular equilibria: 

M= EH... Ep + Popet..- Ene 

(Er ) + Epi and Sa ery tas Oi) Bay ae 

in which (J/) now contains one or more phases of variable composition. 

When (M) is constant singular, then curve (J/) is monodirection- 

able [fig. 1(X)] or bidirectionable [fig. 2 (X)|; in the first case 

the 3 singular curves coincide in the same direction, in the second 

case (Pp) and (/,+1) coincide in opposite direction. 

When (M) is however variable singular then the three singular 

curves can no more coincide. Let viz. P, and 7’, be the pressure 

and temperature of the invariant equilibrium and let us assume that 

in (M) and consequently also in (/) and (/,41) the phases #5, #, 

ete. of variable composition occur. Under P, and at 7, £ and Fy 

have then the same composition in (J/) and (/,). Now we take a 

temperature 7’. When we bring (J/) to the temperature T, and 

under the corresponding pressure, then /’, and /, get another 

composition F,' and F,'. Those compositions are of course such 

compositions that between the phases of (J/) the phases-reaction is 

still always possible. 

When we bring (/,) to the temperature 7’, and under the corres- 
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ponding pressure, then /, and F, do not get the composition £;’ 
and /,’, but another composition Fr’ and F,”. 
When we take away at 7, the phase F4, from (F,) = (//) 

+ F,41, then we do not obtain the equilibrium (M), but, as F’," 

and F," have another composition than /,' and #,/, an equilibrium 
different from (M). Consequently curves (J/) and (4) do not coin- 

cide. The same is true for (M) and (/7,4;) and for (/,) and (F4); 

“the singular curves do not coincide, therefore. They form, as is 

drawn in the figs. 1—5, three separate curves. Now we can show: 

1. the three singular curves touch one another in the point 4. 

2. (fF) and (/,41) are situated on the same side of the (J/)-curve. 

The first follows immediately from the relation 

gn Ss AW 

dr Ar 
In the point ¢ viz. the reaction, which occurs in the three singular 

equilibria, is the same, so that in the point i is the same also 

for the three curves. 

In order to show the second, we consider the bivariant equilibrinm : 

(BoB) = FH... +h HH H-1+ Pipe... Fite (1) 

This region has a turning-line (M), which is defined by the fact 

that in (1) the variable phases #,/,,... have such a composition 

that a phases-reaction is possible between those 7 phases. The 

singular curve (J/) is, therefore, the same as the turning-line of the 

region (/", F4): consequently we have here the special case, which 
we have already mentioned in (VIII) viz. that the point z in fig. 5 

(VIII) is situated on the turning-line zyzu of the region (/, F+). 
As (f,) and (/,41) must be situated within the turning-line of this 

region, they are situated, therefore, on the same side of the (J/)-curve. 

In order to deduce the P,7-diagrams, we are able to apply again 

the rules of the isovolumetrical and isentropical reaction to the 

curves (M), (HF) and (E41). In this application with respect to the 

(M)-curve we have, however, to bear in mind the following. 

When we have a constant singular curve (M), then we are able 

to realise always a whole series of equilibria (for instance: between 

the temperatures 7, and 7) of the (M)-curve with the aid of one 

single complex A’ of definite composition. When (M) is however 
variable singular, then this not always remains possible. Then we 

may have the case, that we can obtain only one single equilibrium 

of the (J/)-curve (e.g. that of a temperature 7’) with each definite 
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complex A; in order to realise the equilibrium of a temperature 

TdT, we have to take then a complex of another composition. 
When the latter is the case and when 7’, is the temperature and 

P, the pressure of the invariant point, then we can not obtain with 

a same complex A an equilibrium of the temperature 7, and 

T,+dT or of the pressures P, and PP, + dP; the rules of the 
isovolumetrical and of the isentropical reaction, therefore, are then 

not applicable. 
Jn the first case we have: 

the two indifferent phases have the same sign; the equilibrium 

(M) is, therefore, transformable. 

(4 4 (6) ae 
it 

Me 
/ pd 

es 1/M) 
1 (/) 

Fig. 1. Fig. 2. 
The stable parts of the curves (/,) and (#41) go in the same 

direction, starting from the point 7; then we obtain P,7-diagrams 

as in figs. 1 and 2. 
(In those and the following figures only the stable part of the 

curves (F,) and (#4) is drawn; the metastable part of the (J/)- 

curve is dotted.| In fig.1 the one part of the (J/)-curve is stable, 
the other part metastable; in fig. 2 the (J/)-curve is only stable in 

the point 4. 

In the second case we have: 

the two indifferent phases have opposite sign, the equilibrium (J/) 

is therefore, not transformable. 

The stable parts of the curves (/,) and (4,41) proceed in opposite 

direction, starting from the point 7; then we obtain P,7-diagrams 

as in the figs. 3, 4 and 5. In fig. 3 the (M)-curve is bidirection- 

able, in fig. 4 monodirectionable, in fig. 5 it is metastable, except in 

the point 2. 
[In a following communication we shall show that the (M)-curve 

can also have a turning-point. When this is casually situated in the 

point 7, then the diagrams under consideration will be changed by 

this in some respect. | 
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M 
(MJ) (5) bay (5) 

Ö es 
/ 

/ 
pd 

(M) (Be) (MA) (avi) 

fig. 3. Fig. 4. 

The stable part of the region (/,/,41) extends itself between the 

curves (/,) and (#41). This region is indicated in the figures by 

some horizontal lines and little ares. 

In fig. 1 it extends from (£) and (#41) up to the (J/)-curve ; 

the stable part of the region (4) /,41) consists, therefore, of two 

leaves, which cover one another partly. 

In fig. 2 the stable part of the region (/, /,4:) cannot extend 

as far as the part of the (J/)-curve, which is situated in the 

vicinity of the point 4 It may be situated, as is drawn in fig. 2 

and then it has one leaf. 

I leave to the reader the deduction of the regions in the figs. 3—5. 

Now we shall consider some cases, which we can easily deduce 

from fig. 1 (VIII) and the corresponding fig. 2 (VIII). We imagine 

in fig. I (VII) the liquid Z on the line GZ,, so that L and d 

coincide. Then we have the variable singular equilibrium : 

(M)=Z,+L+4+G6G 

which is transformable. This equilibrium (J/) is represented in fig. 1 

(VIII) by the line GdZ,=GLZ,, the turning-line of the region 

Z,LG, the stable part of which is situated between the curves La 

and Lb. Now we distinguish two cases: 

I. Curve Za is situated at the left and curve ZO at the right 

side of GZ, (viz. when we go from G towards Z,). The part 

dZ,—= LZ, of the equilibrium (M) is, therefore, stable, the part 

dG = LG is metastable. 

Let us imagine in fig. 2 (VIII) the (M)-curve to be drawn also, 

which starts from 7 in accordance with fig. 1 (VIII) and which must 

be situated above the curves za and ib. The three singular curves 

(M), (Z) and (Z,) must then touch one another in 2. The three 
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curves are then situated with respect to one another as in fig. 1. 

We are able to deduce the position of the three curves also from 

fig. 3 (VIII). Curve (M) == dg, which touches iv in d, represents the 

turning-line of the region (ZZ) == Z, LG. When we let coincide 

d with 7, then ig, ta and ib must touch one another in 7. Hence 

we see also that the position of the three singular curves and that 

of the region (Z, Z,) = Z, LG is in accordance with fig. 1. 

As long as point L is situated in fig. 1 (VIII) at the right side 

of the line GZ,, in figs. 2(VIII) and 3 (VIII) curve ja is situated 

above 76. When, however, in fig. 1 (VIII) Z falls on GZ,, then in 

the figs. 2(VIID) and 3 (VIII) ta and 75 touch one another in 7, but 

za may be situated as well above as below 7b. This appears at once 
from fig. 1 (VIII). 

We may consider the position of Z on the line GZ, as a transition 

case viz. between the case that ZL is situated at the right [fig. 1 
(VIII)} and that Z is situated at the left of the line GZ,. In the 

first case ia is situated above 7b [fig. 2 (VIID), in the second case 
ib must be situated above ia. 

[When we wish to consider this transition more in detail, then 

we have to bear in mind the following. When JZ is situated as in 

fig. 1 (VIII), then in fig. 2 (VIII) curve (Z,) must be situated above 

(Z,). This is only true, however, in so far as we consider points 

of those curves in the vicinity of point 7. It is apparent from fig. 1 

(VIII) that this is certainly true for points on Ld and Lm. At a 

further distance from 7 the curves (Z,) and (Z,) in fig. 2 (VIII) may, 

however, intersect one another. It appears viz. from the direction of 

the little arrows e.g. on curve agb in fig. 1 (VIII) that the pressure 

in a and 6 might be the same. When this is the case, then in 

fig. 2 (VIII) the points a and 6 must coincide and consequently the 

curves (Z,) and (Z,) have a point of intersection. | 

II. Both the curves La and Lb are situated in fig. 1(VIII) at 

the right side of he line GZ, The equilibrium (J/) is, therefore, 

metastable, except in the point ZL. 
Now we imagine in fig. 2 (VIII) to be also drawn the metastable 

(M)-curve. It appears from fig. 1 (VIII) that the (J/)-curve must be 

situated above curve (Z,) and this curve above curve (Z,). Those 

three curves must then touch one another in 2. The position cf the 

three singular curves and of the region (Z,Z,) = Z,LG is then in 

accordance with fig. 2. 
Now we imagine in fig. 1 (VIII) the liquid Z on the line GZ,, so 

that Lande coincide. Then we have the variable singular equilibrium : 

(i) = ZEG 
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which is, however, no more transformable now. This equilibrium 

(M) is represented in fig. 1 (VIII) by the line GeZ,= GLZ, the 

turning-line of the region Z,LG, the stable part of which is situated 

between the curves LO and Lc. According to the position of the 

curves La, Lb and Le with respect to the line GLZ, in the P,7- 

diagram of fig. 2(VIII) different cases foliow which are in accordance 

with the figs. 3-—9. 

At the deduction of the figs. 1—5 we have assumed the following. 

When we bring the equilibria (M), (/,) and (/7,41) from 7; and P, 

to the temperature 7’, and corresponding pressures, then the variable 
phases (e.g. #-) get other compositions in each of the three equili- 

bria [e.g. Fr, Fr and F,'"|. This is however not always the case. 

Let us assume viz. that in the invariant point the phases of the 

singular equilibrium : 

(M=F, + EH... + Fret... + Fite 

contain together only n—1 of the components, in the equilibrium (J/) 

then one of the components is missing; we call this component X. 

The variable phase / contains, therefore, also only n—1 compo- 

nents (or less) and this is not only the case at 7’, and under P,, but 

also at other 7’ and P; this is not only the case in the equilibrium 

(7), but also in the other equilibria. 
This is e.g. the case when #, is a gas and K a substance which 

is not volatile or when #, is a mixed-crystal and A not miscible 

with this. 
In the equilibrium: 

CF, FS) =F, ie ee 

we have now n-—1 components in 7 phases, consequently it is not 

bivariant, but monovariant; in the P,7-diagram it is, therefore, not 

represented by a region, but by a curve. The equilibria (M), (P,) 

and (F,) coincide, therefore, with this curve. As the equilibrium (J/) 

of course is not transformable (viz. the substance A is missing), the 

(M)-curve is bidirectionable and the curves (/,) and (/’,) coincide, 

therefore, in opposite direction. Then we obtain fig. 2X). A similar 

case shall occur e.g. in a ternary system with the components 4, B 

and C, when in the invariant point exists the equilibrium 

AtB+C+4+L1+6 
in which the gas-phase G contains only two substances e.g. Band C. 

Summary of the P,T-diagramtypes. 

When we take an invariant point with the phases /,... Eno, 

then different cases may occur. 
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1. Reactions are possible, in which all phases of the invariant 
point may participate. We write those reactions: 

a, f+ a, Fy +... + anaes Pag mln |). eas 
and 

u, a, 5 zi fe. ds ap a ea = Un+t2An+e2 En +2 —=0.% (2) 

Now we distinguish the following cases. 
A. ty, ",,... are all different. Consequently there are no indifferent 

phases, then we obtain the general P,7-diagramty pes. 

B. vw, =4,=p. Consequently there are two indifferent phases 
viz. FH, and #, and three singular curves viz. (M), (F,) and (F,). 
In the equilibrium (#, #,) may occur the reaction: 

et ie (a a ask, dein 10 ee 18) 

_ This equilibrium (/, /’,) may be mono- or bivariant (not invariant). 

When (f/f, /,) is monovariant, then it is represented in the P,7- 

diagram by a curve, then the singular curves coincide [Figs. 1 (X) 
and 2 (X)]. 

When (/, #,) is bivariant, then it is represented in the P,7- 

diagram by a region, the 3 singular curves touch one another in 
the invariant point [figs. 1--5 (YV)]. 

Cia. == 1, = p, = we Consequently there are three indifferent 

phases viz. f’,, #, and /F, and four singular curves viz. (M), (F), 

(F,) and (#,). In the equilibrium (#, F, PF) may occur the reaction: 

(u—u,) U, lij (u—u,) a, Te ag wen ye (+) 

This equilibrium (Ff, £, F,) is tri-, bi- or monovariant. 

When it is monovariant, then the singular curves coincide. An 

example is discussed in Communication XIV. 

er i whieh <n. Consequently there 

are 7 indifferent phases and r+ 1 singular equilibria. In the equi- 

librium (/, #,...#,) may occur the reaction: 

(u- Ur+1) Ay + VEE ls « ee Oort Ect: er 

This equilibrium may be from r- to monovariant. 

Nr and grid tn ln =D whieh A= 7. 

Consequently there are two groups of indifferent phases. To the 

first group belong A + 1, to the second group m + 1 singular curves. 
For K=J/E passes into D. 

Also three and more groups of indifferent phases may occur. We 

find an example in the system water + a salt A + a salt 5, when 

in the invariant point occur the phases G+ A + B + A, + B, in 

which A, and B, represent hydrates. 
64 

Proceedings Royal Acad. Amsterdam, Vol. XIX. 
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IL. No reaction is possible, in which all phases of the invariant 

point may participate. 

When e.g. the phase /, cannot take part into one single reaction, 

then in (1) and (2) a, becomes =O. Then we have an invariant 

point with m+ 1 phases, for which the considerations sub J are true. 

Leiden, Znorg. Chem. Lab. (To be continued). 

Physics. — “Krperimental Inquiry into the Laws of the Brownian 
Movement in a Gas.” By Miss A. SNernLace. (Communicated 
by Prof. P. Zeeman). 

(Communicated in the meeting of Feb. 24, 1917). 

1. In a former paper’) some objections have been advanced 

to Ernsrein’s formula for the Brownian movement by Prof. Van 
DER Waars Jr. and me. According to this formula: 

AE eds Ae: (1) 

in which A? represents the mean square of the displacement which 

a “Brownian particle“ obtains per second in a definite direction. 

Equation (1) has been derived on the supposition that the particle 

meets in its movement with a resistance of friction. Accordingly B 

is the inverse value of the factor of resistance which is found when 

the particle travels with constant velocity under influence of an 

external force. Statistical mechanics, however, teaches that a particle, 

in equilibrium with the surrounding molecules, does not experience 

a force dependent on its velocity, hence no ordinary friction. We 

have written the equation of motion in the form: 

ia Ri ne Sag eee Py 

and derived a value for A*, which does not lay claim to great 

accuracy, but leads, at least for the Brownian movement in a 
ae Fowl 

gas, to <A? being proportional with =; when a represents the radius 

of the particle. 

According to Stokes’ formula with CUNNINGHAM’s correction : 

if 
Orban. tan es ee See eee pi (3) 

in which § represents the coefficient of friction of the medium and 

À mi 

k= (2 — 45) 
a 

1) These Proc. 18, 1916, p. 1322. 
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2 is the mean length of path of the molecules, A is a constant 

determined at 0,873 in Guyr’s laboratory at Geneva’). Different 

investigators have performed measurements of A?, however almost 

always from the mutual differences of the times in which a particle 

travels a definite distance under the influence of an external force. 

It is, however, the question whether the thus determined values of A? 

are the same as those of equation (1). For with the movement under 

an external force the distribution in space of the molecules of the 

medium is disturbed, and it moves for a part with the particle. The 

chance to a Brownian displacement upward or downward will no 

longer be symmetrical. Only one investigation is known to me, 

that bv FLEercHER?’), in which no external force acted on the particle. 

The data obtained in this way, are, however, not numerous. 

It seemed therefore not superfluous to me, to start another inquiry 

into the validity of equation (1). In my experiments, carried out in 
the Physical Laboratory at Amsterdam (Director Prof. ZrrMan), the 

displacement of a particle was measured while the gravity and the electric 

force were in equilibrium with each other. This can be established 

with pretty great accuracy; in order, however, not to be disturbed 

by a small residual force I observed the movement in horizontal 

instead of vertical direction. 

2. 1 made use of the well-known method of MirikaN*®) and 

EHRENHAFT *). 

When v, represents the velocity of fall of the particle with mass 

M, v,' the velocity under influence of gravity and an electric force 

of equal direction, v, the velocity of rising, when this electric force 

is reversed, the following equations hold: 

1 
Mg = B Te REEN 

re ao, PEN ETT Le 
Ves 

e€ + Mg = ne ENE Ed Meike ae 
SN B 

e& is the absolute value of the electric force, e the charge of the 

particle. 

From (4a) and (45) follows: 

1) A. ScuipLor et Mlle J. MurzyNowska, Arch. de Genève 4,40,1915, p. 386 and 486, 

2) H. Frercuer, Phys. Rev. 33, 1911, p. 81. 

8) R. A. Mirrikan, Phys. Rev. 29, 1909, p. 560. 

4) See for a full description: F. EHRENHAFT. Wien. Sitz. ber IIa, 123, 1914, p. 53, 

64* 
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1 o€ = Erin) Aen setten) 
If B is known, then € can be calculated. 

According to (3) we may write (4a) as: 

4x0" (0 — dg ORE okey ee 

o is the density of the particle, d that of the medium, g the accele- 

ration of gravity. | 

From (6) we can calculate a. 

SCHRÖDINGER *) showed that: 

in which ¢, is the mean of the times required by the particle to 

fall over the distance ZL. The Brownian movement namely causes 

the measured times to differ somewhat inter se. 

The measurement of A? took place in the following way: I ob- 

served a great many times the time in which the particle covers a 

certain distance in horizontal direction, when the gravity is neutral- 

ized by an electric force. To find A? from these times of displace- 
ment we ask: what is the chance that the particle after a time ¢ 

crosses for the first time a dividing line at a distance /, no matter 

on which side? We confine ourselves to the X-movement. I have 

made use of the method which ScHrOpiNGER *) uses for a similar 

problem. ; 

When at a time ‘=O a great number N of particles start from 

the point Oj»), the number with coordinates between r and z + dx 

at the moment ¢ will be: 

We see the meaning of a by calculating the mean value of a’, 

It then appears that: 

1 

2 A? 

Calling the points that lie at a distance / on the right and on 

the left of O, A and B (fig. 1), we shall calculate how many 

particles have passed neither of the points in the time ¢. 

eN 

5 4 Oma A C 

1) E. Scnröpincer. Phys. Zeitschr. 16, 1915, p. 289. 
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It is easy to say how many have passed over A or B. Let us 

confine ourselves first of all to A alone. When a particle reaches 

A, the chances that it will lie on the leftside or on the rightside of 

A some time later, will be equally great. Hence the number of 

particles N, that reaches A, is equal to double the number on the 

righthandside of A. 
; EE oO Degas 

ry a= AN VZ] e * dx 
at 

i 
The number of particles that has passed 5 is of course equally 

great. The required number J/, which has neither reached A nor 

B, is however not equal to M—2 N,, for we have counted the 

particles that have passed over the path OAB among the two 

groups V,, as also the particles OBA. (The meaning of this way 
of writing is clear.) The number J, that has travelled the path 

OAB is equally great as the number that has reached a point C 
at a distance 3/ from QO. This is of course again: 

j a ES ax? 
a mmm 

NN es e Erde. 
mt 

31 

Thus we find: 
M—=N—2N,+2N,. 

Now, however, the particles OABA and OBAB have again been 
counted among each of the groups N, ete. Continuing in this way 
we find: 

M= N—2N, +2N,—2N, +... ad enf. . . . (8) 
in which: 

i Go ar” 
a _—— 

Nun cay fl ee ; if, e t dx. 

met 

2m—1)l 

_In order to find the chance P(tdt that a particle for the first 

time passes one of the points A or B between ¢ and ¢-+ di, we 

must differentiate (8) with respect to ¢: 

1 dM 
P (t) dt = — — —d 

Nd 

ee ed ee mete / | 
M= N— AN zr | e t dx — e tdz + f boe ae inf | (9) 

a 
i 31 ‘ 51 

This series is convergent for all finite values of t. 

If we now introduce a new variable y, so that: 
2 2 ar 

if en y p 
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then (9) is transformed to: 

af eV dy — a e-¥ dy +... ad inf. 

/; V; l re 3l a 

4 
M= N— oD 

Vx 

hence: 

=. 3 al? gal? 

P(t) dt =2l Ed ej t—38e t +... ad inf} dt . (10) 
7 

This series is convergent for all values of ¢. 

If we now put: 
al? ; 9al? : ‘ 25al? 

Chern ==: En ; MS Tet ene A. etc. 

then we get: 

P(td=— pee dz, — e—*" dz, +... ad inf}. » (LI) 

Our purpose is to determine a. 
1 

From (10) we can calculate the mean value of —. 

We tind for this: 

Si (= Pad int) : 
a 

If we represent the sum of the series between brackets by /, 

and put: 

1 1 

DAs 
then : 

BE z th 

and 

pe Be (12) — of th . . . . . . . . . 

The index A annexed to ¢ denotes that we mean the times of 
displacement. f is to be approximated with an arbitrary degree of 

accuracy. For our purpose suffices f = 0.916. 

The observations give ti, hence A? can be calculated. 

3. I shall briefly describe the apparatus which I used for my 

observations.') I assume the method of MirrikaNn and EHRENHAFT 

to be known. 

1) Compare for a full description my thesis for the doctorate, which will 

shortly appear. 
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The condenser consisted of 2 square brass plates placed horizontally. 
I have worked with 2 different condensers C, and C, of the 
following dimensions : 

C, C, 

sides of the plates 20 mm. 14 mm. 
thickness De Sui, 
distance about 5 ee Bit 

C, has been used most. 

I observed through a microscope placed horizontally. A micrometer 

was adjusted between the two lenses of the eye-piece. It consisted 

of two sets of lines drawn normal to each other, 0.1 mm. apart. 

The magnification with respect to this micrometer amounted to from 
4 to 5, the total magnification to from 80 to 100. 

For the lumination I used first an are lamp of 8 amp., later 
a so-called reductor lamp. This lamp burns 14 volt and has a very 

small incandescent body, hence a very great brightness per unit of 
area. I worked with a lamp of 100 candles. 

The electric circuit was arranged in such a way that of one and 

the same particle I could successively measure the movement under 
influence of a constant force and of an alternating force. Fig. 2 sche- 

matically represents the course of the electric current. By reversing 

the double-pole  double-throw 

switch O,, I could successively 
insert the condenser C into the 
continuous-current circuitand into 

the alternate-current circuit. In 

the fig. the two condenser plates 
are in eonnection with the points 

M and N of the adjustable resi- 
stances Wy,_3,. which short- 

circuit the battery G. B,is an 
alternate-current voltmeter. By 

opening S, and throwing over 
O,, C was brought into con- 
nection with the poles of the 

secondary winding of the trans- 

formator 7, which converted the 

110 volt of the municipal elec- 

trie current supply to + 2000 

volt. B, is a voltmeter of Braun, 

Fig. 2. L is a lamp resistance. WV, and 

V, are lequid resistances, S, and S, breakers of the current, 
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For the registration of the movement I had at my disposal a Morse 

registering instrument, the paper ribbon of which was moved by a 

three-phase motor of + H.P. A Morsr-key served as signal instrument. 
This arrangement appeared very accurate when tested by means of 

a chronometer. *) 

The mercury particles were obtained by ExRENHAFT’s method. For 

the other substances | made use of an oil spray which is sold for 
medical purposes. 

4. After the condenser had been carefully adjusted horizontal, 
I proceeded to the measurement of ty, ts, -t'y, and. t, ofa definite 

particle. This was brought above in the field of vision, and at the 

moment that it, falling, crossed one of the 2 horizontal lines, which 

served as marks, the Morse-key was pressed down. Then the field 

was excited, and the time of rising ¢; was measured in the same 

way. This happened several times in succession, the time of falling 

t', also being noted down, when the electric field was reversed. Then 

gravity was cancelled by an electric force, and the indicator was 

pressed down when the particle in a horizontal direction passed a 
following vertical dividing line on the left or on the right of the 

preceding one. The sense of the displacement was indicated by 

different signs. 

When for a particle the observation was over, the distances 

between the dots on the paper were measured. These distances, expres- 

sed in cm., which are proportional to the times of falling and 

rising, are indicated by vt. The factor of reduction of t to ¢ was 

determined repeatedly with an accurate chronometer. 

Equation (6) only holds for spherical particles. 1 used the following 

criterion to test the spherical shape. When the particle has different 

dimensions in different directions, it will be orientated under 

influence of an electric force, and experience another resistance than 

in falling. Now follows from equations (4a, 6, c): 

2vy 
! 

Vy Vs 

Et hao, Ee one mtn 

1 
If, however, the factor of resistance in the falling is a in the 

? 

movement under an electric force = , equation (13) holds no longer, 

but instead : 

1) This had already appeared before in experiments by Prof. Zeeman in an 

optical determination of the current velocity in a cylindrical tube. These Proc. 18, 

1916, p., 1240. 
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2vy 
Pet We, ate OD ese LANEN 

— Vs vy 

Now in measurements with ammonium chloride I actually found 

values of p departing as much as 50°/, from unity. In this p was 

always smaller than 1, which points to a position of the particle 

with its length in the direction of the electric force. 

For the particles with which I performed my experiments, equation 
(13) was always sufficientiy fulfilled. 

They were: a. electrically sprayed mercury (which will be dis- 

cussed later), 

b. ice oil, density 0.87, 

c. potassium mercury iodide, density 2.56. 

I used the lasi substance in order to get a length of radius lying 

between that of the mercury and oil particles. The time of falling, 

namely, depends besides on the radius, also on the density (equation 6). 

In the observations ¢, must not be too small, the measurements 

becoming too inaccurate in this case, and not too large, because 

then the deviations owing to the Brownian movement have too much 

influence and the number of times of falling required to determine 

Vy, then becomes very great. For this reason I could observe 

particles with smaller radius of a heavier substance than of a 

lighter one. 

For the measurement of A? I used only series for which at least 

100 times of displacement were observed. ScHRODINGER ') calculates 

the relative accuracy of the results, obtained in such a way, for an 
9 

analogous problem at LA when n represents the number of 
n 

elements of the series. In our case the accuracy will not differ much 

from this, 
The distribution of the times of displacement that is to be expected 

follows from equation (11). The chance that ¢ lies between ¢, and ¢, is : 

(2,)2 (2s)a , 

frou mec ade, — | ede, +... (14) 

(a) . (23); 

in none 

ti 
Ea is tare etc. 

1 

The distribution of the t’s is the same. 

1) E. SCHRÖDINGER, l.c. 
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In fig. 3a and fig. 36 I show for two particles in how far the 

observed and the calculated distribution agree with each other. 

Fig. 3a refers to the mercury particle N°. 123, fig. 36 to the 
oil particle N°. 158. 

Fig. 3a. Fig. 3b. 

I haye obtained the curved lines by calculating the to be expected 

number of times of displacement between t=O and r= 0.5 by 

means of equation (14), starting from the measured value of 14, 
and by drawing this number as ordinate of the point t= 0.25. In 

the same way the ordinate of r—0.75 gives the number of times 

of displacement between + — 0.5 and 1.0 ete. 

The crosses give the corresponding values found from observation. 

5. I will now proceed to the discussion of the results. I used 

for this 13 series obtained with oil, 18 with potassium mercury 

lodide, and 14 with mercury. ‘Fer some series the time of fall, 

hence also the radius, proved the same, e.g. for N°. 152 and 153. 

Such series | have combined. Everything was recalculated to 17°C. 

For most experiments /= 1.87 10-3, L = 2.24 10-2. 
Table I (p. 1015) gives the results obtained with oil and mercury 

iodide, arranged in descending values of a. 
1 

I will first try to determine whether ——, hence also ¢4 , is pro- ~ nd, 

portional to a’, to ak or to a. 

The circles in tig. 4 (p. 1016) represent observations with oil, the 

crosses observations with potassium mercury iodide. For the present 

we shall leave the series with mercury out of consideration. 
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We inquire which of the three lines determined by the equations: 

te APET Aart 6 

BENDERS of fan Rees 

ee? Oyo Td a ahs a ee 

agrees best with the observations. 

To settle this point it is required that we choose a point through 

which we can lay those curves. 

A curve drawn at sight across the points will run very close 

along point P with coordinates 4.88 and 3.61. We shall choose this 

as starting point and lay through it the curves 1, 2, and 3 

agreeing with equations (15 a, 6, and c). 

It appears that 1 represents the observations very imperfectly, 
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Fig. 4. 

and it is no. better when we choose another point instead of P. 

The curves 2 and 3 however are in good agreement with the 

situation of the. points, taking into consideration that the deviations 

are naturally considerable, quite, apart from errors. 

It cannot be decided with certainty whether 2 or 3 should be 

preferred. It seems to me that 2 is slightly more satisfactory. At 
ai 1 

any rate the supposition that A? should be proportional to ms is 

contradicted by the experiment, whereas HEINSTEINs formula, at iy 

least as far as the connection between A? and a is concerned, is 

confirmed. ’ 
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6. In this we have not yet made use of the electrically sprayed 

mercury particles. These have given rise by their behaviour to the 

question of the subelectrons. EnreNnarr *) thought he had to con- 

clude from his experiments with this substance: electricity is not 
divided into quanta, or if it is, the quantum is much smaller than 

the electron assumed up to now. Among the opponents of this thesis 

especially ‘TArGonskI*) has tried to give an explanation of the phe- 

nomenon by assuming that the particles possess a much slighter 

density than that of mercury. This would result in a charge that 

was calculated much too small. Tarconski determines the spec. grav. 

of the grey layer which covers the wall of the vessel and the sur- 
face of .the mercury after repeated spraying, and finds for it 7.3. 

He derives from this that the mean density of the sprayed particles 

is much smaller still. He does not determine, however, the density 

of the drops themselves. I think I have found a means in my expe- 

riments to determine it directly, though it be not with very great 

accuracy. The particles were sprayed in my experiments in ordinary 
air, in those by EnreNHaFT and TarGonski in dry nitrogen. 

With the aid of the known value of ¢ the corresponding value 

of a can be read from fig. 4 when we assume that the curve 2 is 

TABLE IL 

Nitmibers| 708 the t. Ben fe p calc. | 
charge | | 

146 PS Wo el al oe a 

: 94 | Bor Tee betes 2 

Weken — 43.99" |t. ia | 1.85 |) 12 

Te | 4.06 bte | 1.90. | tt 

141 ES 4.28 | 1.07 | 1.80 | 12 

150 an bods [1407] 1.85] 016 

110 ker |A ET | 11 

138 aah A Te |, Ore Doren oie 

117 SER PA ERM CMe ac) ete 

123 steel 801 [70.99 | 14604 | 10 

doe face hg Ook.) AO) EE Bee al 

149 — | 6.46 | 0.77. | 1.40 | 12 

1) PF, EHRENHAFT |. c. 

2) A. TARGONsKI, Arch. de Genève, 4, 41, 1916, p. 207, 
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the correct one. Then the density follows from equation (6). I have 

carried out the calculations, and collected the results in table Il. The 

density appears to be about 11 on an average, much higher, therefore, 

than according to Targonski. Probably a layer of a lighter substance 

forms at the surface, but the chief component remains mercury. 

In fig. 4 the points indicate the places that the observations occupy 

in the whole of the experiments, when I start from the supposition 

that the density is 11. In fig. 5 I have enlarged the first part of 

Fig. 5. 

the preceding figure in order to show where the points would lie 

when we had to do with pure mercury. This has been indicated 

by points. The crosses give the place for @=7, which is still 

too high according to TARGONSKI. 

7. To examine whether the formula of EINSTEIN-CUNNINGHAM holds 

also numerically, we can calculate the value of N from curve 2 of 

fig. 4 with the formula: 

=i eter eee 

A Fant NS 

i; find tor sab N= 698 102% 

Among the different calculations of N that of SOMMERFELD, from 

the theory of quanta of the spectral lines, may be considered as the 
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most accurate one. SOMMERFELD finds N — 6.08 10° a value that 

differs 5°/, from that calculated by me. 

8. Now also e can be calculated from equation (5). The measure- 

ment of this is, however, not so very accurate, the reading of the 

voltmeter being uncertain to some percentages. In table III I record 

the results for a number of particles. Let us assign to every par- 

ticle, the number of electrons given in the third column, then this, 

with the total charge of the second column, for the electron gives 

TABLE “Ii. 
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the values of the fourth column. These hood lie around Minrikan’s 

value 4.77 1010, 

I shall discuss the meaning of m in the following $§. 

9. I have stated in § 3 that I also observed the particle in an 

alternate field. It then executed a vibrating movement, and made 

the impression of a luminous line, clearest at the extremity where 

the velocity was smallest, so that as a whole it resembled a dumb- 

bell. Accordingly [ shall speak of the dumb-bell movement. I have 

tried to measure the length of this dumb-bell by comparing the 

falling luminous line witb the distance of the dividing lines. This 

was very difficult, particularly because I had only a few seconds 

time. Then the constant field had again to be excited by quick 
throwing over of a number of switches, so that I could make the 

particle rise again before it disappeared out of the field of vision. 

Hence the measurements are only estimations with a considerable 

mean error. I wanted to try and get an answer to the following 

question: does STOKEs-CUNNINGHAM's formula sufficiently express the 

resistance also for this rapid movement? 

Then the movement must satisfy the equation: 

ze t : 

BN SO 5 ae rare Te Ly UN le PR kernen oe CN 

€, is the maximum intensity of field, T the period of the alternate 

current'). It is easy to calculate that we find for the length of the 

dumb-bell from this equation: 

nen eE (TN: 1 
a M In ma K?T? 

1 
ai An? 

sGr 
in which K = -, 

M 

= er: . 
Now Kk — is large with respect to1, so that we may write: 

TT 

2A = e€ = 17 
7 ° 61°Gak LE 

In table III moor. gives the value of 2A calculated from equation 

(17) expressed in multiples of the distance of 2 lines; imeas, gives 

the measured lengths. It appears that mear. is always smaller than 

Meas» This suggests that the resistance for the vibrating movement 

') Only in approximation is the intensity of the alternate field represented by 

a sinus function. 
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would be smaller than for the movement under constant force. The 
observations are too rough for quantitative caleulations, but the 
differences of mear. ANd Meas, are too great and too much in one 
direction to be attributed to errors of observation. 

Amsterdam. Physical Laboratory. 

Chemistry. — “Current Potentials of Electrolyte solutions.” (Second 

Communication). By Prof. H. R. Kruyr. (Communicated by 
Prof. Ernst Coney). ’ 

(Communicated in the meeting of January 27, 1917.) 

1. In a former paper’) I communicated a series of measurements 

with respect to the influence of dissolved salts on the current 
potential, after having made investigations with solutions of the 

chlorides of potassium, barium and aluminium. These salts were 

chosen, because they are electrolytes with resp. a monovalent, a bivalent 

and a trivalent cation. In Tables 2 and 3 similar results are given 

for investigations made with hydrochloric acid and the chloride of 

p-chloro-anilene. A standard solution of HCl was prepared by 

conducting gaseous hydrochloric acid in “conductivity water”; to get 

the solution of p CIC,H,NH,.HCl KarrBaum’s pClC,H,NH, was 

dissolved in water containing the equivalent. quantity of HCl from 

the solution first mentioned. 

The results given in Tables 2 and 3 show the decrease of the 

current potential to be here much larger than in the case of potas- 

siumchloride (cf. Table 1, columns 1 and 2). This result is in perfect 

agreement with the investigations on electric endosmosis (for litera- 
ture, see my first communication), and it can be easily understood 

when we suppose, as FRrEUNDLICH does, that these phenomena are 

in close relation with the adsorption of the ions: the H-ion, and 

also the organic ions (especially aromatic ones) are adsorbed in a 

greater amount than those of the light metals. A comparison of 

Tables 2 and 4 shows, that the monovalent H-ion and the bivalent 

Ba-ion bring about nearly the same lowering of the current 

potential. 

2. A comparison between the electric charges of the capillary 

tube is still of more importance than that of the current potentials 

especially with regard to the problems of colloid-chemistry ’). 

1) These Proceedings 17, 615 (1914). 

2) See H. R. Kruyt, These Proceedings 17, 623 (1914), 

oS qr 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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According to Hetmuo.rz’ theory the electric charge is proportional 

to the product of the current potential and the conductivity of the 

flowing liquid’). This electric charge e is dependent on the electric 

TABLE 1. TABLE 2. 

Potassiumchloride (K) | Hydrochloric acid (H) 

Ge) Eje sie | | ete) Eee 
0 ca. 350 — — 0 bx 350 — == 

50 zor Ate Fh AOD: cel A, DON lanes IT 0.95 | 22.1 

100 5 zap ee. PA (rme Bt 43 1.9 24.8 

250 23 | 3.2 BaO 1100 22 | 3.8 25.4 

TON ON AAL (A 250 1 5E 22d 

1000 4.0 12.1 | 15.4 || 500 ES EB 17.5 

| 1000 1.2 | 37.6 13.6 

50000 0 = af 

chaffse . 
of pole 

TABLE 3. TABLE 4. 

p Chloro-Anilenechloride (An) Banne ote 

Soet awel oe | wet te 
0 ca. 350 — | — 0 ca 350 — — 

31 114 0.4 | 13.9 (Oee so 0.24 | 10 

62 65 1:0- | 1956 25 | 9 | 0.60 | 14.2 

124 26 2.1 | 16.6 50 44 1.20 | 16.0 

310 122143 DE 4405 100 25 re OA 18.1 

500 4.9| 8.0 | 118 BOOR 4 10E 12.7 

1000 1.8 | 14.7 on emo Ard 1.6 

1) [ seize this opportunity to make a slight emendation to p. 625 of the paper 

mentioned above. In the equation (2) I confounded the letters b and k; in the 

conclusion, printed in italics, “inversely” should be omitted (or ‘‘conductivities” 

should be read instead of “resistances’’). The calculations in the paper are 

however correct in respect to this alteration. 
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moment M of the double layer, according to: 

¢— 42M 

and 

uv E 
y pit x 

where 7 is the viscosity and x the specific conductivity of the flowing 

liquid. We ean consider the viscosity of the liquids used to be equal 

to that of water; the conductivity x has been measured in each 

case. The results showed a discrepance with those calculated from 

Kontrauscn’ data of only 1 to 2 10~° Ohm-!; as I measured 
the conductivity of the water I found it to be from 9 107 

to 2 10-* Ohm-t. In the Tables 1, 2, and 4 the conductivities 

are those’ caleulated according to KonrrauscH; only in Table 3, for 

p CIC,H,NH,HCI, I give the results of my own measurements. *) 

To calculate ze, I reduced all the values to c.g.s.-units; therefore 

I had to multiply : 

Conc.( « Mol p.L) 

500 1000 

Hig, a. 

t\, There would be some reasons not to use KOHLRAUSCH’ results and to give 

no correction for the con !uctivity of the water used. For probably, this conduct- 

ivity is not without some influence on the current potential. Still it seems better 

for a correct comparison to reduce all values to the conductivity of the added 

electrolytes only. 

65% 
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E , millivolt Wm Es Rl 
1n 

P. em.Hg ‘ 13.6 x 981 
em’, 

x in Ohm-! by 9 x 1011 

1 was put to 0.0108 dyne. 
In the last column of the Tables 1-—4 the electric charge of the 

capillary tube is given per cm? in c.g.s.-units. Fig. 1 represents the 

relations between this charge and the concentration of the liquid 

flowing through the capillary tube. 

3. From these results we may infer that each of these four 

electrolytes can effect a greater charge to the capillary tube than 
pure water. can; only when an optimum charge is reached, higher 

concentrated solutions lower the charge. . 

In the chemistry of colloids much attention has been paid until 

now to the fact that electrolytes lower the potential of contact; this 

now appears to be true only for solutions of higher concentration. 

It is remarkable that in all four cases, mentioned in the Tables 1— 4, 

the current potentials are lowered by the electrolytes, but that the 

contact potentials are modified in the peculiar way with an opti- 

mum value. *) 

A short time after the publication of my previous paper on this 

subject, Frank Powis’) of Donnan’s laboratory communicated (Nov. 

1914) a most interesting investigation about the influence of elec- 

trolytes on the cataphoresis of oil-emulsions. The similarity of 
our results is striking; therefore we came in many respects to the 

same conclusions®). When calculating the contact-potential for oi] 

and water resp. for glass and water, Powis found an optimum only 

in the case of the monovalent cation of potassium, but it is clear 

from our Fig. 1 that he could not have observed such a value as 

regards Ba as he has made no measurements of solutions with a 

concentration below 2004 Mol BaCl, We may now draw the con- 

clusion that the difference between a monovalent and a bivalent 

cation is only quantitative and not qualitative. 

1) It is impossible to make out if the optimum is present in the case of AlCls. 
+ 

As P has reached the value zero at 0.8 » Mol, the optimum should appear at a 

still smaller concentration. I regard the data to be insufficient to decide whether 

we are dealing here with an optimum or not. 

2) Z. f. physik. Chem. 89, 91 (1915). 

3) We gave a.o. the same criticism on the theory of irregular series of floculation. 

With regard to the way in which the final value is reached in each case, | found 

the same progress, as Powis describes (le p. 179). 
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The less recent researches of Eris *) do not clash with my results 

either, he found an optimum only in the case of NaOH, but if we 

pay attention to the concentrations of his experiments it is clear 

again that it was impossible for him to have observed the other 

maxima. 

The relation between the four curves in our, fig. 1 is most remark- 

able from the point of view of colloid chemistry. It is well known 

that all anorganic ions are adsorbed in nearly the same molecular 

concentration with exception only of the ions H and OH (and those 

of the heavy metals). Considering that the Cl-ions have a tendency 

to give a higher charge to the adsorbing surface, we can easily 

understand that the ion of potassium causes much less resistance 

to the increase’ of the negative charge than the highly absorbative 

ions of H and pCIC,H,NH, and the Ba-ion, which is absorbed in 

a normal way, but bears the double electric charge. Therefore we 

find with KCl a plain optimum, which is noticeable even in rather 

strongly concentrated solutions; with the other three ions the opti- 

mum is reached at a concentration from 50— 100 u Mol and the 

curve is rather pointed, especially with the anilene- and the Ba-ion. 

Powis’ results regarding the influence of the anions and Erus’ 

regarding that of the OH-ion are in agreement with these con- 

clusions. 
It is worth observing that the charges of contact for the different 

electrolytes at a certain concentration show the same sequence as 

the corresponding limit values with colloids, but only at concentra- 

tions somewhat higher than those of the maxima. The descending 

branches e.g. at a concentration of 1000 qu Mol. p. L. show the 

sequence K:, H:, An: and Ba; the limit values’) for the floculation 

of the As,S, sol are (m. Mol p. L.) 

KCI50 HCl 31 pCIC,H‚NH,HCI 1.08 

BaCl, 0.69. 
To test a quantitative relation between electric charge and limit 

value (as I tried to do in a previous paper) it is necessary to make 

use only of the values of the descending branches of fig. 1. For 

that purpose a close investigation of these branches will be necessary 

but cannot be made with the apparatus I have used till now. I 

hope that I shall be able before long to continue these researches 

with an apparatus fit for experiments at higher pressures. 

1) Z. f. physik. Chem. I 78, 321 (1912); Il 80, 597 (1912); IIL 89 145 (1915). 

2) FREUNDLICH, Kapillarchemie p. 351 (Leipzig 1909), 
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4. In the chemistry of colloids one often meets with facts which 

can be explained by the result of these investigations, viz. that the 

contact potential in a very diluted solution is higher than in pure 

water. 

The stability of suspensoids is a function of the rece change 

of the suspended particles *). In literature “stabilising ions” are often 

mentioned; it is well known that a suspensoid sol free from all 

electrolvtes has but little stability, a long dialyzing often causes 

floculation.*) The importance of these traces of electrolytes can now 

easily be understood in connexion with this investigation: though 

greater amounts of electrolyte lower the potential of contact and 

so cause floculation, when the critical potential is reached, extremely 

low concentrations increase the electric charge and at the same time 

the stability. Of course they are absolutely necessary when the 

contact potential in pure water is lower than the critical potential of 

the sol and when the optimum in the potential curve is higher 

than that critical value. As the presence of some electrolyte generally 

seems to be necessary for a stable sol, we may conclude the potential 

in pure water to be ordinarily rather low. The current potential, it 

is true, may be high, this is only a consequence of the enormous 

electrical resistance of this liquid. In the Tables above-mentioned we 

E 
have not calculated ¢ for pure water as the value zet ca 350 m.V., 

is not exact, the enormous resistance in the cell lowering the ex- 

actness of the measurement too much. When we put * to 9107 

(this was indead the case with the water when freshly prepared) 

the electric charge of the tube would be less than 0.01 e.g.s units. 

5. The result of this investigation, that an optimum in the curve 

for the contact potentials may be generally received, draws our 

attention to the change of our knowledge about the iso-electric 

phenomenon. In fig. 2 A, B, and C the concentrations are given as 

abscissae, the contact potentials being ordinates. The axis of ordinates 

is erected in. the iso-electric point, so we have the alcalic 

liquids on the left, acid liquids on the right. Fig. 2 A 

1) 1 think Powrs [Z. f, physik. Chem. 89, 186 (1914)] is quite right when he 

concludes that spontaneous floculation does not occur at the potential zero but 

at a certain “critical” value. In fig. 1 of my communication [these Proceedings 

23, 623 (1914)] the same supposition is represented graphically. 

2) A great many examples may be found in Svepsere’s work: Methoden zur 

Herstellung kolloider Lésungen anorganischer Stoffe (Dresden 1909). — - 
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OH —|— H OH —|—… H 

Fig. 2. 

illustrates Prrrin’s ') results, as he measured the electro endosmosis 

of a naphtalene membrane. Fig. 2B shows the results of Eris’ 
investigations?) and Fig. 2C completes that representation by adding 

the results of this communication, It is still. difficult to give a 

decision whether the minimum lies exactly at the iso-electrie point 

or not. 

6. Finally we must inquire into the cause of the increase 

of the electric charge in diluted solutions and we have to look for 

points of agreement with the theory of selective adsorption of ions. 

Powis *) too discussed this question. 

The adsorption of ions by a surface with an electric charge of 

the same sign as that of the ions does not form an exceptional 

case. Lately Freunpiich and Poser‘) mentioned a similar pheno- 

menon when studying the adsorbents with positive and negative 

electric charge. °) 
They found bolus (negative charge) did not adsorb dye-anions 

but that aluminium oxide did adsorb cations, some of them (chry- 

soidin, malachit green) even to a high degree. 

“Dies erklärt sich unserer Meinung nach einfach damit, dass 

die adsorbierende Oberfläche keineswegs. mit dem aktiven Elektro- 

lyten, der die Ladung bedingt — gesättigt zu sein braucht; sie kann 

also sehr wohl neben diesem Stoff noch weitere adsorbieren, genau 

wie etwa Kohle, die eine nicht zu grosse Menge Benzoesäure ad- 

sorbiert hat, noch Oxalsäure aufzunehmen vermag” (p. 318). 

1) Journ. de chim. phys. 2 601 (1904). 
2) loc. cit. spec. I p. 348 and Il p. 606. 
8) Z. f. physik. Chem.°89, 103—105, (1915). 

4) Koll. Beih. 6, 297 (1914). | 
5) MicHaAËLIs and Lacus, Z. f. Elektrochemie 17, 1 (1911), as well as Kruyt 

and van Duin, Koll. Beih. 5, 269 (1914) found that negatively charged charcoal 
adsorbed more Cl than K out of a KCI solution. 
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The same could be the case with the surface of the glass tube. 

In the iso-electric point only a minimal concentration of anions 

(the OH ions of water) is present; the concentration of anions 

becomes larger by adding alkali, chlorides, even acids to water. 

Evidently the charge given to the tube by the OH ions and the 

silicic acid of glass is not so large that it cannot increase any more. 

The potential increases more as the added anion is better adsor- 
bed; this explains why we meet with such a great increase towards 

the side of the OH-ions in Fig. 2C and why Powis found that the 
optimum on the right side is higher when the anion is more adsorb- 

ed or polyvalent’). Of course a cation always accompanies the 

anion and the former resists a continuous increase of the electric 

charge, as it is adsorbed itself and gets in a more favourable con- 

dition for electro-adsorption because it bears an electrie charge of 

opposite nature. Consequentely a lowering of the charge must occur 
at higher concentration. 

Stull it is curious that the concentration of anions really present 
plays an important part; for potentially there is in water an amount 

of OH-ions, which is nearly unlimited and we are accustomed in 
questions of this sort to consider as decisive the concentration of 
potential ions. The phenomenon of hydrolysis (e.g. with solutions 
of AICI,) is usually of no importance *). These results warn us howe- 
ver to be prudent with all theory on this account, though on the 
other hand the condition of the ions of water is not always. quite 
comparable with that of salts in solutions. 

POSTSCRIPT. 

Just now a paper appeared of Herstap, Koll. Beih. 8, 399 1916); 
His investigations on the influence of dialysis of goldsols and its 
limit values (ef. fig. 15 and 16) are in striking accordance with 
this communication. The paper induces us to measure the potentials 
in the case of HgCl, solutions. Still more amazing is an investigation 

of Beans and Easriack [Journ. of the Americ. chem. Soc. 87, 2667 

(1915)| on the best conditions for the preparation of highly dispersed 
gold sols. It gives the impression that the concentration of electro- 
lytes necessary to get red sols coincide with those of the optimum 
charge of the glass capillary tube. I hope to revert to this subject 
before long. 

Utrecht, vax ’v Horr- Laboratory. December 1916. 

') Powis it is true made investigations on KCI and K,Fe(CN),, but his conclu- 

sions probably hold as well for acids as for salts. 

*) Cf. FRENDLICcH, Z. f. physik. Chem. 44, 136 (1903). 
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Physiology. — “Contribution to the knowledge of the influence of 

digitalis on the frogs heart. Spontaneous and experimental 
variations of the rhythm.’ By Dr. S. pr Boer. ) (Communi- 
cated by Prof. Dr. G. van RIJNBERK. 

(Communicated in the meeting of November 25, 1916.) ° 

I. Lntroduction. 
It has been proved by. a long series of investigations into the 

influence of digitalis on the frog’s heart, that as a first result of 

the poisoning a slackening of the palpitation sets in, which is not 

a consequence of a stimulation of the Vaguscentra, as paralysis of 

the extremities of the Vagus through atropine does not prevent this 

slackening. It was moreover found that an increase of the size of 

the systoles sets in after the poisoning. In the second stage of the 

poisoning an irregular activity of the heart occurs, followed by a 

stagnation of the ventricle in a maximal condition of contraction. 

Afterwards the stagnation of the auricles follows. 

Boum?) discovered that after the poisoning of the frog’s heart 

with digitalis the systolic emptying increases in completeness, so that 

at the highest point of the systole the ventricle is white, a proof 

that the contents have been removed to the last drop. Suddenly the 

number of palpitations can be reduced to half the usual number, 

a halving of the rhythm of the ventricle, which is still repeated once 

or twice, till at last the ventricle stands still in systole. Then the 

auricles still continue to pulsate for a considerable time. Bonm 

ascertained moreover that the irregularities of the heart-rbythm 

caused by poisoning with digitalis, disappear by stimulation of the 

Vagus. 
WrBAuw®) obtained similar phenomena after poisoning with helle- 

boreine: decrease of the frequency of palpitation, increase of the 

volume of palpitation and the activity of the heart in the first stage 

of poisoning; during the second stage of this process irregularities 

took likewise place, till at last the heart stood still in systole. 

After washing the poison out the phenomena of poisoning could 

recoil again, whilst repeated poisoning occasioned a repetition of 

these phenomena. 

By Hepsom‘) and Straus‘) similar disturbances of rhythm of the 

1) This investigation was made in the Physiological Laboratory at Amsterdam. 

2) Priiigers Archiv. Bd. 5. 

3) Archiv f. exper. Pharmakol. Bd. 44. 
4) Archiv f. exper. Path. u. Pharm. Bd. 45, 1901, Seite 317. 

5) Archiv f. exper. Path. u. Pharm. Bd. 45, 1901, Seite 346. 
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frog’s heart were found after poisontng with antiarine. STRAUB ascer-- 

tained moreover that the duration of the refractory stage of the 
ventricle increases after the poisoning with antiarine. Srravs indicates 

this prolongation of. the refractory stage as the cause of the halving 

of the rhythm. 

The prolongation of the refractory stage after poisoning with 

digitalis was ascertained by BRANDENBURG. *) 

The action of the specimens of the digitalisgroup corresponds 

consequently in many regards with that of veratrine. Both with 

digitalis- and veratrine-poisoning we find a decrease of the frequency 

of palpitation, an increase of the size of the systole, a prolongation 

of the refractory stage, which causes the disturbances of rhythm. 

The image of poisoning of the two poisons shows however still — 

important differences. 

Il. My own experiments. y } 

A. Method. 
Specimens of Rana Esculenta served as trial-objects. The heart 

was suspended in the usual manner by attaching the point to a 

lever. Care was taken that during the stripping and the preparation 

of the heart the frog lost as little blood as was possible. The 

oscillations of the heart were registered by the lever on an endless 

smoked paper (circumference 2 m.) and enlarged 15 times. Under 

the curves of the heart a line was drawn through the stimulation- 

signal. This indicated the moment at which one of the partitions 

of the, heart was stimulated. A downward movement of the signal 

was brought about by closing the primary circuit of the induction- 

apparatus. The closing induction strokes were blended off. The 

opening of the primary circuit caused an upward movement of 

the signal. The opening induction-strokes were conducted only to the 

preparation. Under the line of the stimulation-apparatus the time 

was registered in seconds. Three series of experiments were made. 

In the first series the irritability of the auricle before and after the 

injection of-digitalis was ascertained. In the second series the same 

experiments were applied to the point of the ventricle, in the 3rd 

series to the basis of the auricle. About 200 systoles were always 

registered before the injection with digitalis. Then 10—15 drops of 

digitalis dialysatum Golaz were injected under the skin of the thigh. 

After the poisoning the curves were registered during several 

hours on the smoked paper. In this way I obtained a survey of 

1) Archiv. f. Physiol. Jahrg. 1904. Suppl. 
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the process of the poisoning, and at the same time I could study 

the heart in the various stages of poisoning by applying extra- 

stimulations. 

B. The image of poisoning with digitalis. 

If we speak of the image of poisoning that we observe with a 

frog’s heart after injection of digitalis, then we understand by it the 

reaction of the heart on such a dose as occasions disturbances of 

the rhythm and in the end stagnation of the heart. We can arrange 

this image of poisoning into 3 stages. 

1. The beginning of the poisoning in which the undisturbed 

normal rhythm still continues, i.e. every impulse of the sinus venosus 

is answered by all the partitions of the heart with a contraction. 

2. Stage of the disturbances of the rhythm. This stage often begins 

with an alternation of the ventricle which thereupon is converted 

into halving of the rhythm of the ventricle or formation of groups, 

afterwards often alternation of the halved ventricle-systoles, then further 

halving of the ventricle-rhythm. The halving of the auricle-rhythm 

sets in later than the halving of the ventricle-rhythm. 3. Stage of 

the groups of Luciani, usually converting into separate ventricle- 

systoles e.g. to about 16 auricle-systoles 1 systole of the ventricle. 

Then follows a stagnation of the ventricle. These are the 3 stages 

of the image of poisoning, as it shows itself in the ventricle. After 

the stagnation of the ventricle the auricles still continue to pulsate 

either in the normal or in the halved rhythm or in bigeminus- 

groups, whilst frequently variations in these rhythms occur. 

1. First stage. The frequency of the palpitation of the heart slowly 

decreases. The systolic emptying of the ventricle becomes more com- 

plete. We see the ventricle contract during the systoles to a small 

white ball. The duration of the a—v interval increases, towards the 

end of this stage the height of the systoles decreases remarkably. 

We observe at the same time a distinct decrease of the irritability 

of the muscle of the ventricle. Stimulations that before the injection, 

in the beginning of the diastole, caused an extra-systole, must after 

15 minutes be either fortified or be applied later in the heartperiod 

in order to have the same result. Fig. I represents the suspension- 

curves of a frog’s heart in the first stage of the poisoning. At 1 an 

extra-stimulation is applied to the basis of the ventricle towards the 

end of the diastole. No extra-systole of the ventricle takes place, 

but the auricle shows an extra-systole. During the compensatory 

pause the stimulation is repeated at 2, but at a moment at which 
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fa mm. 

Fig. 1. 

the ventricle continuing to pulsate when undisturbed, would not 

have passed into systole. Therefore this extra-systole is followed by 

a compensatory pause. When at 3 and 4 I repeat the same expe- 
riment, but apply now at 4 the 2°¢ extra-systole with a slight scope 
at a moment, when in normal circumstances the ventricle would 

likewise have produced a systole, an extrasystole occurs that is not 

followed by a compensatory pause. As before the injection with 

digitalis a slighter stimulation on the basis of the ventricle in the 

beginning of the diastole promptly caused an extra-systole of the 

ventricle, this fact proves clearly the decrease of the irritability of 

the muscle of the ventricle. At the same time this experiment 

teaches us, that an extra-systole of the ventricle is only followed 

by a compensatory pause, when the extra-systole falls entirely beyond 

the physiological period of stimulation. 

In different ways the first stage can pass into the 2°¢. As a rule 

the rhythm of the normal equally high systoles passes into alterna- 

tion. The large systole of an alternation-pair is then greater, the 

little one smaller than the systoles of the normal rhythm. In Fig. 2 

such a transition is represented. Fig. 3 shows an alternation, in 

which the little systole sets in retardedly, on account of a distinct 

prolongation of the a—v interval. This causes the distance between 

the beginning of a great ventricle-systole and the beginning of the 

next following little ventricle-systole to become considerably greater 

than the distance between a little systole of the ventricle and the 

next following great one. 

Now the alternation lasts very short, now longer, and passes then 

into halving of the rhythm of the ventricle. It occurs likewise that 

the alternation does not set in at all, so that then the normal rhythm 

of the ventricle passes directly into the halved rhythm or into formation 

of groups, as I described circumstantially after poisoning with veratrine. 

2. Second stage. Consequently the 2d stage begins usually with 
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alternation of the ventricle. This alternation was likewise described 

by Muskrns') and BronpGerst’). Gradually the height of the little 

}) These Proc. X p. 78. 

2) Nederl. Tijdschr. v. Geneesk. 2e reeks jaarg. 39. Vol. I, 1903, p. 1294. 
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curves of the alternation decreases, after which the halved rhythm 

of the ventricle sets in. In this halved rhythm of the ventricle 

alternation followed by a further halving can likewise set in again. 

The rhythm of the auricle halves later than that of the ventricle. 

The halved rhythm of the ventricle is often not complete. After the 

systoles of the auricle, succeeding the systoles of the ventricle, the 

tricle is entirely filled with blood, and at the same time repeatedly 
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very small contractions, abortive systoles of the muscle of the ventricle, 
take place (vide Fig. 11 at the figures 2). J observed this pheno- 
menon so often that I should naturally be inclined to suppose 
a connection between the occurrence of the small contractions of the 

ventricle and the considerable filling with blood of the ventricle. 

My supposition in this respect was supported by the fact, that I did 

not observe this phenomenon after the poisoning with veratrine, when 

the filling of the ventricle with blood decreases considerably *). 

Besides the mentioned disturbances of the rhythm of the ventricle 

we observe in this stage still considerable disturbances in the con- 

ductivity of the ventricle. This can cause the systole to increase 

considerably in width (vide Fig. 4th lower row of curves). But it 

can likewise cause a great difference in the shape of the curves 

of the systoles and make them deviate entirely from the normal ones. 

Many types of these can be observed, some of them I shall describe 

here. In’ the first place the ascending line of curves can show a 

distinct inclination (Fig. 5). Then the top can be split (Fig. 6) and 

finally a new ascent of the curves can occur in the dilatation (Fig. 7). 

This 24 ascent can obtain a greater height than the first top (Fig. 8 

and Fig. 13). The postulation could be made that extra-systoles are 

at work with these curves, but several data tell against this conjecture. 

In the first place the fact that the new ascent can occur during 

the stage of contraction, tells against it, and at the same time the 

fact that the 2°¢ ascent during the diastole can by far exceed the 

first in height. We have here consequently no coordinated systoles 

of the ventricle. . 

We often see that these deformed systoles exercise a regulating 

influence on the rhythm of the systoles of the ventricle. A previously 

existing alternation afterwards often passes into systoles of the ventricle 

of equal height. (vide Fig. 4, 5, 6 and 7). We must find the expla- 

nation of this phenomenon in the prolonged pause, following after 

these deformed systoles. This one prolonged pause restores the muscle 

of the ventricle so much, that during some time normal systoles 

ean follow. The prolonged pause after the deformed systoles owes 

its existence to the fact that on account of the increase of duration 

of these systoles the next following impulse coming from the auricle, 

reaches the ventricle during the refractory stage so that one systole 

of the ventricle falls out. 
The following experiment shows distinctly that one prolonged 

1) The increase of the filling of the heart after injection of digitalis is evidently 

caused by the concommitting vasoconstriction. 
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pause can regulate an alternation to the normal rhythm with equally 

high systoles. When a heart pulgates in alternation, I apply an 

extra-stimulation to the auricle or to the basis of the ventricle at 

the end of the diastole (Fig. 9). We can then obtain an extra-pause 

without extra-systole of the ventricle. This extra-pause is then followed 

by systoles of the ventricle, which obtain an equal height. In this 

way in Fig. 9 at 1 an extra-stimulation was applied to the basis 
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of the ventricle at the end of the diastole. Because the muscle of 
the ventricle is still refractory, no extra-systole of the ventricle takes 
place, but by current-loops the auricle is incited to extra-contraction. 
In this way the extra-pause occurs without extra-systole of the 
ventricle, and thereupon we see 9 systoles of equal height. Then 
the alternation sets in again, which is in the same manner transferred 
again into the normal rhythm of the ventricle by an extra-stimulation. 
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Proceedings Royal Acad. Amsterdam. Vol. XIX. 



1038 

The alternation of the ventricle is usually followed by the halved 

rhythm of the ventricle. 

We see this last rhythm repeatedly return spontaneously to the 

normal twice as quick rhythm. Other variations of rhythm occur 

likewise e.g. between the normal rhythm of the ventricle and bige- 
minusgroups (in which every third systole of the ventricle has fallen 

AAS 

Fig. 11 
/ 

Fig. 12 
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out) further between bigeminusgroups and the halved rhythm of the 
ventricle. These variations of rhythms, which can occur spontaneously, 
1 could likewise bring about experimentally. A few examples may 
follow here. 

In Fig. 10 I apply at 1 during the 10,, systole an extra-stimu- 
lation to the basis of the ventricle at a moment at which the ven- 
tricle is still refractory. By current-loops the auricle is incited to 
an extra-contraction, after which an extra-pause follows. The next 

following systole of the ventricle has considerably increased after 
the prolonged pause, by which the ventricle is fastened in the halved 

rhythm. By means of a succeeding extra-stimulation at 2 at the end 
of the pause this halved rhythm of the ventricle is changed again 
into the normal one. At 3 I change this normal rhythm of the 
ventricle again into the halved one. 

In fig. 11 we see the representation of the curves of another 

poisoned heart. During the first 3 curves of the figure the heart 

pulsates in the normal rhythm of the ventricle. At 1 I apply an 

extra-stimulation to the point of the ventricle, which causes a little 

extra-systole. The postcompensatory systole is much enlarged. Then 

3 more of these enlarged systoles follow, but each of these enlarged 

systoles is followed by a very slight contraction of the ventricle 

which varies a little in size (indicated by the figures 2). We have 

here consequently the balved. rhythm of the ventricle with this 

reservation, that every systole of the ventricle is still followed by a 

slight contraction of the muscle of the ventricle. This rhythm of the 

ventricle passes spontaneously into the normal one. At-4 I modify 

this normal rhythm, in the same way as at 1, by an extra-stimula- 

tion into the halved rhythm of the ventricle (at the figures 2 again 

slight contractions of the ventricle occur). At 3 1 apply again at the 

end of the diastole an extra-stimulation to the point of the ventricle. 

A little extra-systole with a refractory stage of short duration is the 
result. The normal rhythm of the ventricle is restored by it. 

Fig. 12 represents curves of a frog’s heart after poisoning with 

digitalis. In the figure we see first 3 bigeminusgroups occasioned by 

the falling out of every 3"4 systole of the ventricle. These bigemi- 

nousgroups pass spontaneously into the normal rbythm of the ven- 

tricle. At 1 an extra-systole of the auricle not followed by a systole 

of the ventricle occurs after an extra-stimulation of the auricle. 
Under the influence of the prolonged pause the next following 

systole of the ventricle is now considerably enlarged, the consequence 

of this is, that now bigeminousgroups set in. By an extra-stimulation 

to the auricle in the pause between 2 groups at 2 this bigeminy is 

66* 
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modified into the normal rbythin of the ventricle. A more explicit 

explanation of these artificial modifications of rhythm can be found 

in the communication dealing with the artificial modification of rhythm 
after the poisoning of a frog’s heart with veratrine’). 

If now we restrict our ‘discussion to the ventricle, we have during 

the 2rd stage of the poisoning the following modifications: 
1. Halvings of rhythm 

2. Formation of groups. 

3.  Alternation. 

4. Deformed systoles (often with more than 1 top). 

5. Abortive systoles. 

The image of the curves in this stage is often a very irregular 

one, and it ean only be analysed by taking into account the devia- 

tions of shape mentioned above. In Fig. 13 such an irregular image 

MUL 
Fig. 13. 

{5 ec 

of curves is represented. Now a systole of the ventricle falls out, 

now an enlarged systole of the ventricle occurs; after such an 

enlarged systole a little abortive one can follow, as I described 
above. Between these deformed systoles occur, on account of distur- 

bances in the conductibility in the ventricle. In this way the play 

of the curves that was at first incomprehensible, becomes clearer. 

When the ventricle functions so irregularly, then the last stage is 

certainly reached which in literature is indicated as the toxical 

Fig. 14. 

1) These Proceedings Vol. XVIII Ne. 10 pag. 1588, 1916. 
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stage. It is remarkable that this toxical stage can promptly be 

reduced again to the normal rhythm in which every systole of 

the auricle is followed by a powerful systole of the ventricle. 

In Fig. 14 we see a representation of the same frog’s heart of 

Fig. 13, but now after the sinus venosus has two minutes previously 

been refrigerated during a short time. After this refrigeration the 

rhythm of the ventricle became quite normal again, so that every 

systole of the auricle was followed by a systole of the ventricle. 

After the refrigeration the sinus venosus assumes gradually again 

the temperature of its surroundings, by which the tempo of the 

pulsations of the heart is quickened again. The consequence of this 

is, that the toxical stage shows again irregular curves of the ventricle. 

On the diastolic line the last but one curve of the figure shows a 

second large elevation, which proves that at that moment the conducti- 
bility in the ventricle is considerably disturbed. This deformed 

curve is, as always is tbe case, followed by a prolonged pause and 

a succeeding enlarged systole. From this moment the former irregu- 

larities in the curves of the ventricle appear again. This experiment 

is very instructive. If we ask why through this simple intervention 

we could make the toxical stage return to the therapeutic one, the 

answer to this question can easily be found. The irregularities 

described above were brought about by the circumstance that the 

refractory stage of the ventricle or of part of the ventricle lasted 

longer than 1 sinus-period. Consequently the ventricle or part of it 

was at a given moment not able to react upon the “Erregung” 

that reached it from the auricle. The refrigeration of the sinus 

venosus prolongs the duration of the periods of the heart, so that 

the wrong proportion does not exist any longer and the normal 

rhythm is restored. This affords us a new indication that the irre- 

gularities we have described are caused by a wrong proportion 

between the duration of the refractory stage and the duration of the 

sinus-periods. This experiment teaches us likewise that in the pharmacy 

of the digitalisgroup a dose is then toxical, when the frequency of 

the heart is a definite one. At high frequencies the toxical dose is 

much smaller than at low frequencies. This holds likewise for 

veratrine. 

3. Third stage. During the third stage the periods of Luciani 
occur. The auricles continue to pulsate during the pauses in the 

normal tempo, so that we have here to do with periods of the ventricle 

(consequently of the contracting extreme organ). The ascending-stairs 

in the beginning and the descending-stairs towards the end of a group 
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occur often, but not always (vide Fig. 15). As a transition to the 

stage of the periods of Luciani I found a periodical descent and 

= a 

Fig. 15. Fig. 16. 

TE ) : 

ascent. of the curves of the ventricles as is represented in Fig. 16. 

These two tigures originate from the same frog’s heart; the curves 

of Fig. 16 were registered somewhat less than half an hour before 

these of Fig. 15. In Fig. 15 we see in the course of the 3rd group 

at d the curves of the ventricle descending and ascending again. It 

seems as if this group was dividing itself. This 34 stage was treated 
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by me more elaborately in the Biological Section of the Society for 

promoting Physiology, Physic, and Surgery (Genootschap ter bevor- 

dering van Natuur-, Genees- en Heelkunde). Here I observe only 

that analogous observations were made by me after the poisoning 

of the frog’s heart both with veratrine and antiarine. 

The groups of Luciani were often followed by separate systoles 

of the ventricle (crisis of Luciani). There upon stagnation of the 

ventricle. It can likewise occur that the crisis does not set in at all. 

LANGENDORFF and Ourwa. are of Opinion that the variations of 

rhythm form the transition to the periods of Luciani. I can by no 
means share this view. It is true that in my method variations of 

rhythm proceed the periods of Luciani, but they do not oecur in 

the latter part of the 2rd stage and, consequently, they cannot form 

the transition to the 3'd stage. They occur exactly im the beginning 
of the 2nd stage. 

They are indeed variations between the 2°¢ and the 1s stage of 

poisoning *), 

Amsterdam, 13 Nov. 1916. 

Physiology. — “On the Analogy between Potassium and Uranium 

when acting separately in contradistinction to their antagonism 

when acting simultaneously.” By Prof. H. ZWAARDEMAKER. 

(Communicated in the meeting of February 24, 1917.) 

Physiologically there is some analogy between potassium- and 

uranium-salts. Both arestro ng poisons, ‘the first for the heart, the 

second for the kidneys’). Again, in small doses they very largely 

aid the functions of these organs*). The automatically beating frog’s 

heart, when fed artificially is a very suitable object to watch this 

useful action, as it is not fed along capillaries, but through lacunae 

penetrating everywhere from the cavity into the wall. 

For artificial circulating fluids salt-solutions are used, so diluted 

that they possess the normal osmotic pressure and, moreover, contain 

“next to each other 2 molecules of calcium chloride 1 or 2 molecules of 

1) A more explicit paper follows in the Archives Neerlandaises de Physiology de 
Vhomme et des animaux. Tome I. 3e livraison p. 502 (1917). 

2) Woroscuitsky, Arb. a. d. pharmakol. Inst. in Dorpat. Bd, 5, 1890. 

8) Moreover, in the concentration of !/, on, uranium is conducive to alcoholic 

fermentation as well as to the growth of the tubercle-bacillus and the Bacillus 

pyocyaneus. (Vide BecqvereL and others in G. R. t. 154 ff.), 
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potassium chloride and 100 molecules of sodium chloride; also oxygen 
and a buffer to obviate a change of the reaction through lactic acid 

and similar acids, which has proved to be highly deleterious’). 

A few months ago I demonstrated with Mr. Frrnsrra’) that 

in such cireulating fluids potassium chloride can be replaced by 

uranium-, thorium-, or radium-salts. The same statement was 

formerly made regarding rubidium by Sypney Rincer®). I am now in 

a position to add that radium-emanation initially to the quantity 

of 100 Macnr-units is also one of the elements, which, as far as 

their physiological action is concerned, can be substituted for potas- 

sium. These facts induced us to ascertain whether radiation of 

mesothorium or radium could be applied for the same purpose. 

About 34 experiments made with the assistance of Messrs. BENJA- 

MINS and Frrnstra *) confirmed this supposition to the full. The 

same result has since been obtained in a number of subsequent 

experiments. 

Quite unexpectedly an analogy thus reveals itself between radiation 

and the salts of potassium, rubidium, uranium, radium (and its 

emanation), elements belonging to widely differing groups of the 

periodic system. The radio-activity, common to all, is no doubt the 

true cause of the similarity in action. The question immediately 

arises, what is the amount of energy concerned? This may be 

determined when the artificial circulating fluid contains, instead 

of 100 mgrm. of potassium chloride, 5.10-§ mgrm. of a radium- 

salt per litre. Assuming */,, cc. to flow through the beating heart 

every second, +4.10-7 erg of radio-active energy per second is 

carried into the organ. It may be supposed that part of this 

amount is adsorbed by the muscle cells and acts physiologically. 

Then, however, we approach the energy quanta, which are known 

to stimulate the sense-organs, when they are responded to by an 

end-organ specially intended for it*). Also the quanta of energy 

transmitted by artificial circulating fluids containing uranium- or 

thorium-salts, appeared in our experiments to be of the same order °). 

1) G. R. Mines, J. of the Marine Biol. Assoc. Vol. 9. Oct. 1911, p. 171. 

2) T. P. Feenstra, These Proc. XIX p. 99, XX 341 and 633. 

3) S. Rincer, Journ, of Physiol. Vol. 4, p. 370. 

4) H. ZwAARDEMAKER, L. E. Bensamins and T. P. Feenstra, On Radium-radiation 

and cardiac action. Ned. Tijdschr. v. Gen. 1916 Il, p. 1928. 
5) H. Zwaarpemaker, Erg. d. Physiol. Bd. 4, p. 452. 1905. 

6) By far the greater number of our experiments were performed on the so- 

called Kroneckered heart, but in many cases also the whole heart was experi- 
mented upon. 
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Apparently the amount of energy applied with radiation is much 

larger, but there is no saying how much of it is adsorbed by the 

muscular elements, and this, of course, is the essential thing. 

The amount of energy in the case of the normal element, potassium, 

is still more difficult of determination. The photo-chemic effect of 

potassium salts shows itself only after 56 days on the photographic 

plate and the ionizing influence upon the air is 1000 times smaller 

than that of uranium-oxide. The total radio-activity may be deduced 

from it by a round-about way with some allowance for the absorp- 

tivily. The doses of the two elements to be present in the artificial 

circulating fluids are empirically in the ratio of 53:15 mgrm. 

per litre !). 

The analogy in action, described just now of all known radio- 

active elements, of small (K and A5) as well as large (U, Th, Ra) 

atomic weight, is not restricted to the heart. The vascular endo. 

thelium is also affected by it as far as K, Rb, U, and 7h are 

concerned; likewise the striated muscles according to experiments 

performed in the last few months by Dr. GuNzBure in our laboratory. 

Furthermore the statements made by Prof. HAMBURGER and his pupil 

BRINKMAN in the previous meeting about the phenomenon that the 

epithelium of the kidney becomes permeable, when either the 

potassium- or the uranium-salt is wanting in the artificial circulating 

fluid, lend support to our view. 
Between potassium on the one hand and uranium and thoriuin 

on the other, there is, moreover another correspondence, viz. their 
relation to calcium and strontium. The first and the second group 

of these salts counteract each other, i.e. their dosage may be varied 

within certain limits, on this understanding, however, that if the 

1) The distribution of the radio-active energy supplied with the artificial circu 

lating fluid takes place in widely different ways: with the lighter elements it is 

distributed over a large number of atoms, every atom carrying only a very minule 

quantum of energy. With the heavier elements, however, it is accumulated in a 

few atoms, most of all in the case of radium. There is, therefore, much less 

chance for an atom contained in the circulating fluid to adhere to or to enter a 

muscle cell, with the heavier elements than with the lighter ones. It suffices, 

however, that some few cells are rendered automatic, for, when once begun, the 

excitability of the cardiac muscle spreads automatically; still, those few cells must 

be worked upon. We might in some way make allowance for the chance, alluded 

to here, by dividing the quanta of energy, transmitted per */j) cc, by the atomic 

weight of the carrier. This would bring out the inferiority of the energy borne by 

the heavier atoms. It really will be seen then that the energy-values for the 

various elements approximate each other (see the Table. Proc. K. A. v. Wet. 

Vol. XX p. 636), 
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amount of a salt of the first group be raised the fluid should also 

contain a greater amount of the salt of the second group. 

KCI 
mgrm. per Litre Antagonism KCI—CaCl, 

CaCl, 
mgrm. per Litre 

Bayliss. Gewin. Magnus. ‘ 
Gothlin. Ringer. Mines. Locke. 

Tigerstedt. 

Fig. 1. 

This counteraction is represented in two graphs. The data of the 

first are taken from the literature, in which are recorded a great 

number of widely different and efficient combinations of salts as 

generally accepted circulating fluids. The second illustrates the results 

of experiments purposely performed. In both graphical representations 

‘a well nigh straight curve indicates the ratios in which either the 

potassium-salt or the uranium-salt must be combined wilh the cal- 

cium-salt. Potassium-chloride and uranyl-nitrate also admit of an 

Ur salt Antagonism (U.O9) (NO3),—CaCl.. 
mgrm. p. L. 

YS e Pulsations of the Ventricle 2 
o Standstill » » » 8 

Calc.salt 
mgrm. p. L. 

O $0 300 450 200 29 300 350. Ho ¥50 s00 $50 $00 650. 

Fig. 2. 

equilibrium with stroutium-chloride; for their graphical representation 

I lack the necessary experimental data *). 

1) Vide W. H. Jorres, Thesis. Utrecht 1916, p30: 
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In contradistinction to the remarkable analogy between potassium 

and uranium (present in the fluids respectively as potassium-ion and 
uranyl-ion) there is a no less remarkable antagonism. When a heart, 

that beats well when fed with a potassium-containing fluid, is supplied 

with a circulating fluid containing per litre 25 mgrms of uranyl- 

nitrate instead of 100 mgrms of potassium-chloride, it stops suddenly. 

And conversely when a potassium-containing fluid is given to a heart 

which beats normally with a uranium-containing fluid, it is also 

brought to a standstill. Not before many minutes later do the auto- 

matic contractions recommence. The very same takes place when 

the normal potassium-containing fluid is administered after a fluid 

containing thorium or radium or emanation. Not, however, when 

the heart is supplied with first rubidium and then potassium or vice versa. 

Nor when a_uranium-containing flnid succeeds one containing 

emanation or the reverse. It is evident, therefore, that, when applied 

in succession the lighter elements compensate each other, just as 

the heavier ones do. On the other hand the two groups are mutually 

antagonistic. When applied successively, they arrest the cardiac action; 
when applied singly, each sustains it for an indefinite space of time. 

A mixture of potassium and an equal amount of rubidium causes 

the heart to beat; the same holds for an equal apportionment of 

uranium and thorium; but potassium combined with uranium or 

thorium, or a combination of rubidium and uranium stop the heart’s 

pulsations. Thus the lighter and the heavier elements are reciprocally 

antagonistic not only when acting successively, but also simultane- 

ously. The following graph shows the ratios of the potassium-uranium 

antagonism when acting simultaneously. 

Uranium Potassium-Uranium antagonism 
mgr. p. L. 

200 mgr. CaClo ks 

…__e 900 mgr. CaCl, p. L. 
Oee TT 

4 Potassium 
mgr. p. L. 

0 20 40 60 80 300 380 40 300 180 Wo 20 

Fig. 3. 

The points indicate the combinations with which the heart was 

reduced to astandstill. In the mixtures lying above the continuous line 

the cardiac action was restored by the influence of an excess of 

potassium; in the mixtures below the continuous line pulsation recom- 
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menced under the influence of an excess of uranium. The continuous 
line marks the results of a series of experiments with fluids containing 
besides the antagonistic. salts, the sodium chloride and the buffer 
also 200 mgrms of calcium chloride per litre. Under it is seen a 
dotted line, illustrating the same for circulating fluids containing only 
100 mgrms of calcium chloride. 

Also the antagonism of uranium for radium-radiation (through 
a thin micawall) respectively, mesothorium-radiation (through a thin 
glass wall) is easy of determination. From the balance-point of the 
antagonists potassinm-uranium the heart may, through exposure to 
radiation, resume its normal beats in a wonderfully short time, in a few 
minutes. When adding some uranyl-nitrate a standstill will ensue 
from which the heart will recover again on exposure to radiation ». 
In the condition of equilibrium the radiation is evidently on the 
side of the potassium, opposed to the uranium. 

It is especially the last experiments, which we made repeatedly, 

that show distinctly that nothing but the radioactivity of the uranium 

counterpoises the influence of the radiation (through a mica- or a 
glass-wall). If so the potassium-uranium antagonism must be entirely 
ascribed to these canses. 

Obviously we feel inclined to deduce from the detected antago- 
nism an index for the biological radioactivity of potassium and to 
place it alongside of the photochemic respectively the electric; but 

as yet an impediment is met with in the complicate influence 

(counteracting) of the calcium, which (in Fig. 3) originated two 

curves of a similar character, one for the simultaneous addition 

of 100 and another for that of 200 mgrms of calcium chloride 
per litre. 

1) A prolonged exposure brings about another standstill which will be followed 

by pulsation after the addition of uranium, not after that of potassium. Gradually, 

however, a condition manifests itself whose nature | have not been able to make 

out, and which I will provisionally term the secondary condition of radio-activity. 

Its peculiar feature is that the heart will beat only with a RrnGer-solution con- 

taining neither potassium nor uranium. When criticizing these experiments due 

regard should be paid to the presence of the minuie amounts of uranium X in 
addition to the uranium. 
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Physics. -— “Methods and apparatus used in the cryogenic labo- 

ratory. XVII. Cryostat for temperatures between 27° K. and 

55° K”. By Prof. H. KAMERLINGH ONNes. (Communication 151a 

from the Physical Laboratory at Leiden). 

(Communicated in the meeting of June 24, 1916). 

1. Introduction. In section 1 of Comm. XVI of this series (Comm. 

N°. 147c Proc. XVIII, I, p. 507 I pointed out the importance of 
arrangements by which it would be possible to obtain constant and 

uniform temperatures in the range from about 27° K. to about 
55° K. and I mentioned that a cryostat had been constructed suit- 

able for this region of temperatures, in which for accomplishing 

this purpose a current of hydrogen warmed to the desired tempe- 

rature was made to pass through the experimental chamber '). The 

degree of constancy and uniformity of the temperatures which was 

obtained have exceeded our expectations, at least when it is pos- 
sible to adapt the arrangement of the measurements to the require- 

ments of the apparatus, as happened to be the case in the investi- 

gations which have so far been carried out with it. It is true that 

we have not succeeded in obtaining as easy and certain a regu- 

lation- of the temperature with the hydrogen-vapour cryostat as 

would be available, if substances existed suitable for liquid baths 

between 55° K. and 27° K. *). But the deviations very often remain- 
ed below 0.01 of a degree for a considerable time *) (a fuller 

account is given below in section 3). We may therefore say that the 

gap in the series of constant and uniform temperatures which still 

existed between the two regions which are easily governed by liquid 

oxygen and liquid hydrogen respectively *), has now also been filled 

1) The principle of this arrangement was already used by A. Perrier and 

H. Kamerlingh Onnes in their research on the magnetic properties of solid oxygen 

above 20° K (Comm. No. 139 c. Proc. XVI, 2, p. 894). 

2) The possibility of using neon under pressures above the normal in special 

experiments — as will probably be practically realisable between 27° K and 

34° K — is here left out of account. 
3) Compare the measurements of the vapour-pressure along the heterogeneous 

isothermals for different values of T in the investigation of the critical data of 

hydrogen (Comm. N°. 151 c). 
4) Besides for the range from 27° K—55° K the hydrogen-vapour cryostat is 

also suitable for temperatures lower than 27° K; in many experiments it will 

thus for instance be able to replace the neon-cryostat for the range from 25° K— 

27° K; this may be of some importance considering that the dimensions of the 

experimental space may have to be kept smaller in the neon-cryostat than in the 
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up in a satisfactory manner *). In its present construction the 

hydrogen-vapour cryostat is not yet suitable for experiments in which 

the phenomena in the experimental space have to be followed by 
the eye, as this space is completely surrounded by copper walls. But 

we hope to remove this objection by a modification of the apparatus. 

Since the hydrogen-vapour cryostat has proved to fulfil its 

object, a  helium-vapour cryostat will be built on the same 

principles, in order also to bridge the other gap which still remains 
in the series of low temperatures for which appliances are available 
which guarantee the constancy and uniformity of the temperature 
necessary for experimental work, viz. the very important ®) interval 

from 14° K. to 4°,25 K. (freezing point of hydrogen to boiling point 
-of helium). 

‘ 

§ 2. Description of the apparatus. The cryostat (see fig. 1) *) 

consists of the evaporator V and the eryostat-glass B, which latter 
contains the experimental chamber Z. The air-tight german-silver 
caps Vn and By, by which the two parts are closed immovably, 
are connected together by means of strong tinned iron strips g,, 9,, 9; 

(see fig. 2) and clamping rings g, and 7,.*) 

A continuous current of superheated hydrogen-vapour is needed 
to keep the walls of the experimental chamber as well as the gas 
and measuring apparatus inside at a constant and uniform tempera- 
ture. This current is supplied by the evaporator. 

The unsilvered lower part of the vacuumglass of this evaporator 

V, contains liquid hydrogen. The hydrogen is transferred to the 

hydrogen-vapour cryostat in view of the difficulty of providing large quantities of 
the gas. 

(In Proc. XVIII, 1, p. 508 1. 1 from below, insert after “most experi- 
ments”: “at temperatures between 25° K and 27° K”). Perhaps we shall find 
that it will be possible with the hydrogen-vapour cryostat to descend almost to 
the boiling point of hydrogen and thus to embrace the region where otherwise 
— as mentioned |. c. — it might be possible to use a baih of liquid hydrogen 
boiling under enhanced pressure. 

1) The proper working of the vapour cryostat is much impeded when experi- 
ments are carried out with it, in which heat-actions take place inside the experi- 
mental chamber. 

*) We need only point out the desirability of this interval being filled up for accurate _ 
determinations of the critical data of helium and for deciding whether lead becomes 
supra-conducting continuously or, in the same way as tin and mercury, suddenly. 

8) The section of this figure is taken along the line shown in fig. 2. 
*) This firm connection is necessary because of two glass syphon-tubes con- 

necting the two parts. With a view’to the expansion by change of temperature 
of the tubes and the strips, the latter were made of iron. 

- 
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evaporator in the manner commonly used in the laboratory (Comm. 

N°. 94/, Proc. 1X p. 156 comp. also PL. 1 Comm. N°. 103 Proc. X p. 592) 
from a supply-bulb through the tube a,, which is closed by a small 

rubber tube with glass stopper. In the beginning the evaporator is 

filled up to X,; when the liquid surface has sunk to X, a fresh 

supply is put in. Through the copper tube 5, gaseous hydrogen is 

led in from a high-pressure supply cylinder; this gas undergoes a 

preliminary cooling in 6, and is then carried into the liquid hydrogen 

by the tube 6, (which is made of german silver in order to reduce 

heat-conduction to the liquid hydrogen) and the copper tube b,; this 

causes a continuous evolution of hydrogen vapour, which is carried 

to the eryostat-glass 5, — a silvered vacuum glass — by the glass 
tube C,. On its way it passes the glass spiral C, and the syphon- 
like twice bent silvered vaeuum-tube C,, C, C, which is sealed to C,. 
Its end-piece C, is sealed into the supply-tube Za, of the heating- 

chamber Ea, which is the lower one of two adjoining flat horizontal 

copper boxes, the upper one Ea, serving as regulating and adjusting 

chamber, the two together being attached to the hollow bottom of 

the experimental chamber. The two boxes are isolated from each 

other and similarly the upper one from the bottom of the experi- 

mental chamber by means of paper; inside each of the boxes is 

provided with a vertical partition running round as a spiral Za, 

Ea,, by which they are made into spirally wound tubes of rectan- 

gular section. Inside the spiral of the heating box is a heating wire 

of constantan of 100 £, insulated with silk. and wound round a 

flat spirally wound band (the wire is shown diagrammatically in 

fig.6 as Ea,,). After passing through the heating tube the superheated 

hydrogen-vapour, which is now brought to the desired temperature, 

flows into the regulating and adjusting chamber £a;, where it follows 

again the spiralshaped path shown it by the partition Za,,. In doing 

so it passes along a tin wire insulated with silk and arranged as 
Ea,, the resistance of which is measured to 0.001 on a commercial 

Wueatstone-bridge. According to the indication of the resistance of 

this wire the temperature is approximately adjusted. The same 
adjusting chamber also contains the bulb of the regulating thermo- 

meter @, (see fig. 3), which will be discussed further down. 

After having passed the adjusting and regulating chamber at the 

bottom of the experimental chamber, the gas passes (zie figs. 3, 4, 5) 

a copper exchange tube £b, which consists of eight tubes alternately 

running up (£6,) and down (£6,) coupled by horizontal chambers 

(Eb,), the whole being intimately united *) with the vessel which is 

1) The tubes are soldered to the side-wall of the experimental chamber, the 
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formed by the side-wall £b, and the bottom of the experimental 

chamber and is of high conductivity and comparatively large heat- 
capacity (the vessel with its lid weighs 1.2 k.g.) Finally the gas 

emerges in the experimental space immediately above the bottom at 

Eb,, and finds its way to the protecting space in the eryostat-glass 

above the experimental chamber through small apertures‘) in the 

copper lid Ze (fig. 1), which closes the experimental chamber at 
the top. 

The copper vessel 4b with its lid He which encloses the experi- 

mental space, together with the box attached to the bottom, occupies 

the lower part of the eryostat-vessel (see fig. 1), and hangs, without 

touching the inner wall of this vessel, by means of the vacuum- 

tube C, and the glass rod Hd from the air-tight cap By, which 

closes the vacuum-vessel B, in the manner commonly used in the 

laboratory (see previous Communications of this series). Supply of 

heat by conduction to the walls of the experimental space is therefore 

practically excluded *). 

Besides the measuring-apparatus, the necessary electric wires and 

the supply-tube of the superheated hydrogen-vapour C,, the cap of 

the cryostat-vessel By (see fig. 1) transmits air-tight a second doubly 

bent syphon-like silvered vacuum-tube d,d,d,, through which the 

hydrogen flows back to the evaporator. Here it passes through the 

regenerator Vr, which serves to effect a preliminary cooling of the 

hydrogen of ordinary temperature by which the evaporator is fed *) ; 

ultimately (see fig.6) by way of e and a tap A, it finds its way to 

wall being shaped for the tubes to fit it as nearly as possible. Moreover the con- 

duction between tubes and wall is promoted by a thick filling of solder. 

1) The lid closes the experimental chamber as nearly as possible, but is not 

made air-tight. The side-wall Eb, (see fig. 1) is provided at the top with a 
horizontal ring-shaped rim Ec, which is soldered to it. On to this rim a number 
of small copper covering-plates are screwed, 2 mm. thick and fitting the rim, of 

such profiles, that when the measuring apparatus are in their proper places the 

plates cover up the experimental chamber as completely as possible and complete 

the lid until only a few interstices and small holes remain, through which gas 

may escape while at the same time the measuring apparatus in the experimental 

space are protected from radiation. 

2) In order to prevent a radiation from the cap to the lid of the experimental 
chamber, screens Ef (shown as dotted lines in fig. 1) can be fitted in the pro- 

tecting space, which are cooled down by the gas which emerges from theexperi- 

mental space. : 

8) The dimensions of the apparatus do not admit of more than a moderate 

degree of regeneration, as the tube bz cannot be very narrow in connection with 

a proper regulation of the supply. 
67 

Proceedings Royal Acad. Amsterdam, Vol. XIX. 
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the gasometer from which it is pumped back into high-pressure 

supply-cylinders *). 

The uniformity of the temperature in the experimental space is 

checked by means of two resistance-thermometers 6, and @, (fig.1), 

consisting of platinum wires which are loosely wound on small 

porcelain cylinders with screwshaped grooves and. are provided with 

two pairs of conducting wires’). The axes of the cylinders are 

placed horizontally (see fig. 4) *). 

The regulation of the temperature to a constant value is conducted 

by means of a hydrogen thermometer, the german silver bulb of 

which @, (volume 5,2 ce, see fig. 3) is placed in the regulating and 

adjusting chamber. At the ordinary temperature the larger part of 

the quantity of the gas required is contained in the wide tube of the 

manometer-part Oo (fig. 6) of the thermometer: when the thermo- 

-meter-bulb has been cooled to the low temperature, the gas is 

transferred to it by forcing up the mercury in the manometer. For 

this purpose the open tube @,,, of the manometer is connected with 

the closed part attached to the thermometer by means of an india- 

rubber tube of sufficient length. The mercury is driven up, until it 

lifts a small glass float d (see figs 6 and 7), which is provided with 

a small platinum plate and a platinum contact-wire passing through 

the float and brings it close to a platinum point which is sealed 

into the capillary.®. The fine adjustment can be accomplished by 
means of a micrometer screw u. If. the temperature in the adjusting 

chamber of the cryostat, which we may take to be the same as 
that of the experimental space, falls, the float makes contact with 

the platinum point *), and in this manner switches in a shunt-con- 

1) As the figure shows, two other tubes are connected with e, viz. a leading-off- 

tube from the evaporator with safety tube and a tube connecting the evaporator 

with the gasometer independently of the “spedometer” (see section 3): both these 

tubes are closed by pinching screws lj, /. when the cryostat is in use, they both 

serve in filling the evaporator. ; 

2) So far we have not had an opportunity to exchange the thermometers and 

thus obtain a definite opinion as to the uniformity of the temperature, as in one 

of them a small change of the zero occurred, our statement that a constancy 

down to 0.00° has been reached is also to be taken as a provisional one founded 

on an estimation. 
8) The further apparatus which the experimental chamber will be seen to contain 

in the drawings are a vapour-pressure apparatus, a helium thermometer and a 

resistance thermometer to be examined: these are connected with measurements 
which will form the subject of later communications. 

4) The adjustment at this point corresponds to an initial pressure of about 8 

atmospheres, the thermometer being taken as one of constant volume. 
5) This contact works best, when the small plate is amalgamated and covered 

67* 
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nection parallel to the main circuit (see fig. 6) by which means a 

rise of temperature is started and an automatic regulation of the 

temperature is brought about. 

§ 3. Remarks concerning auxiliary apparatus, details of working 
and the action of the cryostat. 

Both the evaporator and the eryostat-vessel are immersed in 

vacuum-glasses with liquid air; the one surrounding the cryostat 

B, (fig. 6) is completely silvered in order to reduce the radiation 

to the experimental chamber as much as possible; in silvering the 

vacuum-glass in which the evaporator is placed, V,, a strip along 

a generating line of the cylinder is left transparent, through which 

the evaporation of the hydrogen may be followed. 

In starting the cryostat it is first — with a view to saving liquid 

hydrogen — cooled down by blowing hydrogen of ordinary temperature 

from a supply-cylinder *) through a cooling coil immersed in liquid 

air into the evaporator. 

When the tin wire thermometer in the regulating and adjusting 

chamber indicates, that the temperature has gone down to about 

—100° C., liquid. hydrogen is brought into the evaporator and the 

supply of hydrogen of ordinary temperature is then started. 

The velocity of the hydrogen flowing through the experimental 

space is regulated according to the indication of a ’’spedometer” 

which is joined in on the way to the gasometers; it consists of a 

small horizontal plate 7, floating on the vertical gas-stream in a very 

slightly conical tube ,, (length 15 ems, diameter at the top 1.62 ems., 

at the bottom 1.50 ems) the height to which the plate is raised being 
read by means of the small horizontal ring a, which serves as an 

index on a scale which is placed along the lower part of the meas- 

uring tube ar 

The current of hydrogen of ordinary temperature which is supplied 

from high-pressure supply-cylinders H,H, through a reducing valve 

is further reduced in the manner shown in fig. 6 by the stopcocks 

ix, and K, in such a manner, that a regular stream of gas-bubbles 

(escaping to the gasometer) bubbles through a mercury column rv of 

an adjustable height. As an instance (applying to the measurements of 

which the subsequent Communications N°. 1514 and N°. 151c treat) about 

with a thin layer of mercury. When the contact failed to act, the shunt connection 

could also be closed by hand in accordance with the indication of the position of 
the float. 

1) It will thus be seen, that use is made of pure hydrogen throughout (distilled 

or purified, see Comm. N°, 94f 1. e. and 1095. Proc. XI, 2, p. 883. 
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60 ce. of gas measured under normal conditions is made to flow 

through the experimental chamber only '/,"" of which is accounted 

for by the supply of hydrogen at ordinary temperature through 5,, 

the remainder being supplied by the evaporation of the liquid 

hydrogen. 

When the adjusting-thermometer (resistance of the tin wire) indi- 

cates that the temperature has been reduced to a value slightly below 

the desired one, the heating current is put in action '). According to the 

reading of the two checking thermometers in the experimental space, the 

adjustment of the automatic regulating-thermometer is then modified, 

until the desired temperature in the experimental space has been 

attained. A rise of .1 mm of the float corresponds to about .003 degree. 

The micrometer-screw « thus affords a high sensitiveness of adjust- 

ment of the temperature. 

The high degree of uniformity and constancy of the temperature 

of the measuring apparatus in the experimental space which is 

obtained with the apparatus and the method of working above 

described may be considered to be due to the following circum- 

stances: a) the access of heat by radiation and conduction to the 

copper enclosure of the experimental space has been reduced 

to an extremely small amount’); 6) the interchange of heat 

between the gas supplied from the heating space and the walls of 

the experimental chamber is much promoted by tbe long winding 

path followed by the gas in the side-walls, the exchange taking 

place over a large surface of highly conducting material which is 

moreover distributed as uniformly as possible; c) the difference of - 

temperature between the gas in the experimental space and the 

walls has been reduced to a very small value; d) the speed of the 

gas supplied from the heating space is sufficient to prevent quantities 

of heat which are supplied having an influence on the temperature 

of the experimental space; ¢) the constancy of the velocity of the 

1) In the adjustment to 29°.5 K the heating current was 0.06 amp., when the 
float was not making coniact, and 0.14 amp. when it did. At. 55° K. these 

currents were 0.114 amp. and 0.264 respectively. 

2) Comp. section 1 note 4 page 1050. In using the’cryostat for experiments, care 

has to be taken that galvanic generation of heat and supply of heat by conduction 

along experimental wires are reduced to a minimum; in the experiments to which 

the figures refer the conducting wires were taken very long and were wound in 

the cryostat in a manner which excluded heat-conduction to the experimental 

chamber. In experiments on condensation and expansion it is necessary to waita 

long time before it may be assumed that temperature equilibrium has been 

reestablished. 
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gas-current in question is such as not to give rise to capricious 
modifications of the temperature of the experimental space; /) the 

heat-capacity of the walls of the experimental space is sufficient to 

efface the rapidly alternating deviations from the mean value of 
the temperature of the gas-current in question, which are due to the 

changes in the heat-development in the heating-wire, the consequence 

being that the walls only follow the changes of the mean value; 

g) tbe gas in the experimental space owing to its low temperature 

has a very much higher beat-capacity than under normal circum- 
stances and finally 4) the gas-current emerging from the heat- 

exchange tube in the experimental chamber keeps the gas in continual 

motion *) along the walls and the apparatus: 

In the experiments which have been made with the cryostat so 

far, it was noticed that capricious disturbances from time to time 

interrupted the periods of constant temperature’). But when the 

measurements were continued for a long time, generally periods of 

more than half an hour or longer were repeatedly found in which 

the temperature of the experimental apparatus and thermometers 

remained constant to .01 of a degree, whereas these periods are 

preceded by even longer ones during which the temperature did 

not vary by more than .02 of a degree, so that the measuring 

apparatus during this time were able to assume the desired tempera- 

ture with very near approximation. 

Physics. — “/sothermals of mon-atomic substances and their binary 
mixtures. XVIII. A preliminary determination of the critical 
point of neon.” By H. KAMERLINGH Onnes, C. A. CROMMELIN 
and P. G. Carn. (Communication N°. 151 5 from the Physical 
Laboratory at Leiden). 

(Communicated in the meeting of June 24, 1916). 

1. Zntroduction. The chief reason why the critical data of neon 
are not known yet with any degree of accuracy — notwithstanding 
their great importance for the comparison of its thermal properties 

with those of other, especially monatomic substances — is doubtlessly 

the fact, that so far it had been inrpossible to obtain temperatures 

1) In eryostats with baths of liquefied gas strong stirring is necessary on other 
grounds. 

?) Each time after a fresh adjustment of temperature it is necessary to wait 
some time for the experimental space and the measuring apparatus to arrive at 

the new temperature. 
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in the neighbourhood of 45° K. sufticiently constant to make reliable 

measurements of the critical temperature. Since in the hydrogen- 
vapour cryostat’) we have obtained an apparatus by which it is 
possible to govern the temperatures in the range between the melting 
point of oxygen and the boiling point of hydrogen, this difficulty 

has disappeared and we could now attempt the long-desired deter- 

mination of the critical condition of neon with every chance of 

success. The reason why our results must still be looked upon as 

preliminary ones is not due to a want of constancy in the tempe- 

rature of observation or to other defects in the method adopted, 

but to the fact that the neon on which we have experimented was 

not absolutely pure. Small as the admixtures were, their influence 

showed itself very clearly in a gradual increase of pressure during 

condensation.®) The difference between initial and final pressures in 

the vapour-pressure measurements immediately below the critical 

point amounted to .2 of an atmosphere.*) In the determination of the 
vapour-pressure of hydrogen in the immediate vicinity of the critical 

point which was carried out with the same apparatus (comp. the 

next Communication N°. 151c) where, on account of the purification 

of hydrogen by distillation, the purity of the experimental gas was 

completely guaranteed, differences of that kind did not occur. 

If the pressure rises during condensation, the determination of 
the critical data becomes uncertain.*) Our result for the critical 

temperature may therefore differ from the true value by a few. 

tenths of a degree; a similar uncertainty applies to the critical 

pressure. The circumstance, that observations on the critical tempe- 

rature of neon are so far completely lacking and that it will take 

some time before the more accurate measurements’) aimed at will 

be completed, justify sufficiently the publication of our present 

results. 

1) Comp. the preceding Comm. N°. 151a. 

2) Previous investigations, in the first place by Kuenen (Comm. N°. 8 Meeting of 

Oct. 1893 and Comm. N°. 11 Meeting of May and June 1894), have sufficiently shown 
the great influence which even very small admixtures produce on the phenomena 

in the critical region. 

3) In the table the pressure at the beginning of condensation is given as the 

vapour pressure. 

4) Instead of the critical temperature of the pure substance the experiment gives 

the plaitpoint temperature of the mixture. 

5) In these determinations we hope to be able to utilize a visual method by a 
modification of the hydrogen vapour eryostat (comp. Comm, N°. 151a) which will 

allow us to follow the phenomena inside the experimental chamber by eye, 
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2. Apparatus and method. The measurements were carried out 
with a vapour-pressure apparatus which will be described in a 

future paper on the vapour-pressures of neon and hydrogen. The 

small bulb in which the gas is liquefied is shown at A in fig.1 of 

the preceding communication. It is placed in the experimental chamber 

É of the hydrogen-vapour cryostat half way between bottom and 

top side by side with a helium-thermometer 7h, and a resistance- 
thermometer 2. The vapour-pressure apparatus is so arranged, that 

the quantities of gas which were liquefied at a given temperature 

between the beginning and the end of condensation could be measured. 

Using the values obtained in that manner at different temperatures 
in the neighbourhood of the critical temperature it was possible in 

connection with temperature and pressure by means of an extra- 

polation over a small range to derive the critical temperature and 

pressure within the limits of accuracy given above. 

The value to be ascribed to the critical pressure can be checked 

by means of the pressure at the point of inflexion of an isothermal 

immediately above the critical temperature, which was determined 

specially for this purpose. 

The manner in which the extrapolation was carried out will be 

elucidated by means of a diagram in the next communication dealing 

with the critical point of hydrogen. 

We mention in this connection that owing to the impurity of the 

neon referred to, small though it was, the heterogeneous isothermals 

in a pressure-density diagram did not run exactly parallel to the 

density-axis, whereas they did with hydrogen. 

Owing to these pressure-differences along the heterogeneous 

isothermal it was more difficult than in the case of hydrogen to 

arrive at an exact calculation of the critical constants. 

As regards the preparation of neon it may be mentioned that the 

impure gas forming our stock was first freed from hydrogen after the 

addition of oxygen by explosion, it was then frozen a number of 
times at the air pump and ultimately repeatedly distilled over carbon 

cooled in liquid air. Although often repeated and carefully carried 

out these operations have evidently not been sufficient to free the 
neon completely from admixtures. 

The pressure measurements were made by the aid of the closed 

hydrogen-manometer 4/,, which has been often mentioned in previous 

communications of this series (see for instance Comm. N°. 146c). The 

temperatures were measured with the constant-volume helium gas- 

thermometer 7h, referred to above; the bulb had a volume of 

110 ce, the “waste space’ was .7 °/, of the volume of the bulb; 
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the zero-point pressure was 1000 mm. and the temperatures were 

calculated using .0036614 as the pressure-coefficient. For the calcu- 

lation of the temperatures we may refer to a previous communication *). 

3. Results. 

The results of our observations are contained in the following table : 

T 9 Pooax (intern. atm.) erat Me | 

43°,83K | —229°.26C 24.305 670 

449.43 | —228°.66 26.049 | 416 

Above fx the following point was established : 

| £ p (intern. atm.) 

449,94 K 

| Sad 
| —228°.15 C | 27.462 

From these data we have derived: 

| “Critical constants | 

Tj Ao | Pr 
RR 

449,14 K | —228°,35 El 26.86 

| a 

| 
We are glad to record our thanks to Mr. J. M. Bereers phil. 

cand., assistant in the Physical Laboratory, for his assistance in 

checking the automatic temperature-regulation during the experiments 

by means of the resistance-thermometer {2 and the thermometers 

0, and 4, (ef. fig. 1 of the previous communication). 

4, Discussion. 
In a previous communication’) two of us had drawn some 

preliminary conclusions as to the critical temperature of neon from 

1) H. KAMERLINGH Onnes and G. Horst, Proc. XVII, 1, p. 501. Comm. N°. 1414. 

2) H. KAMERLINGH ONNES and C, A. Cromme in, Proc. XVIII, p. 515. Comm, 

N°. 147d. 
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a comparison of the net of isothermals of neon with that of argon. 

The values then found by a comparison with argon viz. — 228°.2 C. 

and — 227°.9 C. were, however, obtained using the result of a 

somewhat rough determination of the critical pressure of neon, viz. 

29 atm. '). Repeating these calculations utilising the value now found 

for the critical pressure, the results come out a little lower, namely 

—228°.9 C and --228.°6 C, which values appear to agree very 

satisfactorily with the experimental value. Our supposition expressed 

at the time, which was rendered probable by the course of the 

vapour-pressures in connection with that of the isothermals, that 

argon and neon, looked upon from the point of view of the law 

of corresponding states, differed but little from each other, is thereby 

contirmed in a very satisfactory manner. 

The estimate of the critical temperature of neon obtained at the 

time by a comparison with hydrogen (—231°.2C) deviated much 

more from the observed value. In this comparison use was made, 

however, of the critical temperature of hydrogen, as determined by 

Burre ®), —241°.14 C and, moreover, of our rough determination of 

the critical pressure of neon above referred to: these values have 

now to be replaced by those found by ourselves (for hydrogen as 

will be shown in Comm. N°. 151c we have found 77, = 33°.18 K, 

Or = — 239°.91 C, pr = 12.80 atm). 
The calenlation when corrected in this way gives — 2380°.2 C 

for the critical temperature of neon, a value which deviates much 

less from the result of direct experiment than before. 

Physics. — “The viscosity of liquefied gases. VI. Observations on 
the torsional oscillatory movement of a sphere in a viscous 
liquid with finite angles of deviation and application of the 
results obtained to the determination of viscosities.” By J. E. 
VERSCHAFFELT. (Communication N°. 151d from the Physical 

Laboratory at Leiden). (Communicated by Prof. H. KAMERLINGH 

ONNEs). 

(Communicated in the meeting of February 24, 1917). 

1. In a previous communication *) the theory of the oscillatory 

rotation of a sphere in a viscous liquid was developed on the sup- 

position of the rotation taking place with such small angular velocities, 

1) H. KAMERLINGH ONNes, Proc. XII, 1, p. 175. Comm. N°. 112. 

2) F. Bunur, Phys. Zeitschr. 14, p. 860. 1913. 

3) Comm. N°. 1485. Proc. XVIII 2. p. 840. 
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that the influence of the centrifugal force may be disregarded. This 

simplification can also be expressed by saying that in the integration 

of the general differential equations all terms are left out which are 

of a higher order of magnitude than the first with respect to the 

velocity which is treated as infinitely small). From a theoretical 

point of view there is no objection to this supposition, but where 

the object is to use the theoretical results in the experimental deter- 

mination of viscosities of liquids or gases, it is necessary to know 

for a given liquid the limit of velocity (or rather of amplitude of 

oscillation, which limit may also change with the time of swing) 

beyond which the theory is no longer applicable in practice: in 

other words what the error is with a given amplitude caused by 

the simplifying supposition. 

The results of the approximate theory were used in the deter- 

mination of the viscosities of mixtures of oxygen and nitrogen’). 

The velocities occurring in these experiments (not higher than .04 

cm. p. sec.) would seem to be sufficiently small and a definite 

indication, that the deviation from the simplified theory could not 

be considerable in these experiments, was given by the fact, that 

over a fairly large range of angles of deviation (between 4° and 1.5°) 

the logarithmic decrement d of the amplitudes appeared to be very 

nearly independent of the amplitude itself, whereas the opposite 

might be expected, if a deviation from the theory existed. Moreover 

the method, when applied to water, appeared to yield satisfactory 

results ®). 

A perfectly trustworthy proof, that the velocities could actually 

be looked upon as small, was, however, not available. From a 

consideration of the order of magnitude of the terms neglected in 

the differential equation one might even be inclined to conclude 

that such was not the case. Indeed a development of the equation 

shows that neglecting the terms of the second order (us ete. 
U 

, Ou 

as compared to the terms of the first order such as 5,” comes to the 

Ow 
same as neglecting w’* with respect to aa (w being the angular velo- 

city of the oscillating body) and this leads to the simple conclusion, 

that the approximate theory is only applicable, if the angle of 

1) Comp. e.g. G. Kircunorr, Vorlesungen über mathematische Physik, n°. 26. 

2) Comm. N°. 1495. Proc. XVIII, 2, p. 1659. 

3) Comp. for instance Comm. N°. 1485, § 16. 
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deflection @ remains a small fraction of a radian. Seeing that in the 
experiments the angles reach a value of .07 the condition was 
obviously not satisfied, at least not to a degree sufficient to guarantee 

a sufficient accuracy of the results; in that case it would have been 

necessary to go down to amplitudes as much as a hundred times 
smaller. However this is only a rough estimate which does not exclude 

the possibility of the accuracy having after all been higher than 
was to be expected on the above ground, seeing that no account is 
taken of the numerical factors the value of which can only be given 
by a further approximation in the theoretical treatment of the 
problem’). For this reason it seemed desirable to make a further 
investigation into the dependence of d on the amplitude: this investi- 

1) Comp. G. ZEMPLÉN, Ann. d. Physik, 38, 84, 1912. 
The condition given in the text only holds moreover in the limiting case, where 

the time of oscillation is very small. In that case we have (see Comm. N’. 1480, § 17) 

dw R? 

wo = wR —etr-R) where 6b = a is a large number, and thus —- ——bw 
r? 7 Or 

0? dw 0 
and =—b = b?w, from which it follows, that is small as compared 

0? 0? ees 
to =a and rien n= 7? so that the term 3E actually gives the order 

of magnitude of the terms of the first order. If on the other hand the oscillatory 

movemement is very slow (b very small; see Comm. 148), § 18), we have 

tay R® R® -7’ oat A TE Sh RE 12. 28 eva 
= R RER" ence Or? 7 — a Or oa Re Es Rh?’ 

de D , : 
practically disappears ; in that case w” must be small 

dt 
whereas the term with 

0° 
with respect to dn ‚ and we thus obtain, except for a numerical factor, the 

u Or 

same condition as given by LAMB and RayreiGH (LAMB. Hydrodynamics, 1906, 

uk 2 
p. 547) for a uniform rotation viz. wr R < BE symbol << standing for: much 

smaller than). Whereas for very rapid oscillations the condition was a << 1, 

12 aT RES 

27 ph? Rh? = RY 

indefinitely with increasing T. In the general case (bh neither specially large, nor 

very slow oscillations require a << and this limit can rise 

00 Ow u dw 

De aR aT OE 
doubtedly a much more complicated condition holds, probably expressing, that 2 

must be very small as compared to a number which depends on the value of 

DR and, as far as | have been able to ascertain, is larger the smaller the value 

of DR, i.e. the larger 4, J and T' and the smaller u and R (comp. Comm. 1488, - 

equation 20). 

are of the same order and un- specially small) the three terms 
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gation was carried out both experimentally and theoretically ; in 

this paper are given the results of the experimental investigation. 

2. In order to settle experimentally, whether in the experiments 

previously described the velocities could be regarded as infinitely 
small, i.e. whether within the limits of the experimental errors the 

oscillation of the sphere, with the amplitudes then used, was a 

damped harmonic vibration with is logarithmic decrement independent 
of the amplitude, the limits of the amplitudes were in the first place 
widened as far as was possible with the arrangement for mirror- 

reading used. The scale had a length of 60 cms. and was at a 

distance of 153.7 cms. from the axis of the oscillating system, so 
that to right and left elongations could be observed to a maximum- 

amplitude of 5.5° (0.1 radian). The absolute accuracy of the readings 
was .00003 of a radian (0.1 mm. on the scale); amplitudes of 

.2° could therefore still be read with a relative accuracy of 1 °/, ; 

this accuracy was, moreover considerably raised by all elongations 
being observed both to right and left. 

The apparatus was the same as described in Comm. N°. 1495 and 
made use of in the determination of viscosities of mixtures of oxygen 
and nitrogen. The oscillating system was usually loaded with the 

aluminium cylinder, occasionally with the copper one. Various liquids 

were used in the vessel, in the first place water, afterwards liquids 

with smaller viscosity: benzene, carbon disulphide, ether*) and liquid 

air, and finally a mixture of water and glycerine, with a view to 

obtaining a set of observations with a liquid of higher viscosity. 

In contrast with what was found between the limits previously 

chosen (comp. Comm. N°. 1495 IV $3 and V $ 1), with the wider limits 

admitted this time the line representing log a as a function of t 

showed a distinct curvature especially between 20 and 30 ems. This 

fact seems to show that the angles of deviation used in the previous 
investigation were accidently near the limit of the range, where 

they may be looked upon as practically infinitely small. 

3. The oscillation of the sphere was thus not a pure harmonic 

damped oscillation and it was surmised’) that the movement would 

be a compound damped harmonic one, to be represented by the 

1) The benzene, carbon disulphide, and ether were commercial liquids; for the 

object of the above experiments it was unnecessary to work with perfectly pure 

liquids. 

2) This was aflerwards confirmed by the mathematical treatment of the problem 

(see next Comm.), 
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real part of a series of the form: 

aaa, et 1 a, eet ta, ek 4 ....%), deter - (1) 

an J 
where k = k' + k"i with 4" = = and k! =— = (see Comm. N°. 1485, 

§ 4), so that the successive terms represent pure harmonic damped 

vibrations of 3, 5 ete. times the frequency of the main vibration 

and 3, 5 etc. times more rapid damping. *) 

This turned out to be actually the case, at least as far as this 

could be inferred from the observations of the extreme amplitudes *). 

It was found, that within the limits of accuracy of the observa- 

tions the extreme amplitudes could be represented as follows: *) 

1) By a suitable choice of the zero of the time the coefficient a, may be made 

real, but owing to the possible phase-differences the remaining coefficients are in 

that case not necessarily real. 

2) For reasons of symmetry the terms with even powers of k must be absent 

form this series: in fact, a difference between deflections to right and to left 

cannot be made, so that a change of phase of # (increase of ki by (2n +1) =) 

must bring about a change of sign in all the terms. 

3) It may be proved that when the oscillatory motion satisfies equation (1), the 

extreme amplitudes may also be represented by a similar formula, this time with - 

a real value of k (the real part of the complex k) and with real z’s (which, 

however, are not the real parts of the complex z’s). Conversely, if the extreme 

amplitudes can be represented by a formula of the form (1), this will very probably 

also be the case for the complete motion. 

4) This result may be looked upon as a proof, that within the limits of ampli- 

tude of the present experiments the limit was actually reached, below which the 

velocities may be regarded as practically infinitely small. It might perhaps be 

objected that it is only natural that a limited portion of the line 2,¢ may be 

represented by a series of that kind, and that the accuracy which is reached only 

depends on the number of terms introduced; in fact the same would he the case 

with an algebraical series. To this may be answered, that we did not assume 

equation (1) with a definite number of terms a priori and then determined the 

value of the coefficients in the usual way: on the contrary the method of calcu- 

lation actually was such as to show itself the necessity for the use of the formula. 

The method was as follows: a graphical treatment showed that the curve log z, t 

was pretty nearly a straight line which only showed a distinct curvature towards 

the large amplitudes; from the part corresponding to the low a's a first term zj 

could thus be determined with considerable accuracy. The differences «— ”j having 

been drawn up and the line Jog (z—z,),¢ being plotted, it appeared that the line 

obtained, at the lowest limit where it was trustworthy, very distinctly showed 

a direction-coefficient three times as high as the line log -,¢. A first approximate 

value was thus obtained for -3, and this was subtracted from a; in consequence 

of this the line log (-—z,), t became straight over a greater distance than the line 

log a, t and thus a more accurate value for zj could be found and then also 

for zg. If then log (2—z,—zs3),¢t was plotted, the resulting line was found to have 

a five time higher direction coefficient than logs, t‚ etc. 

It should be mentioned that in the calculation the time-intervals between the 
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a. Water at 9°.6 C. (u —= 1,000, 4 — 0,01319 *) sf 
a= 0,01 x + 6,73. 10—° #°—3,06 } 10—-° 2, *) 

where «= Soe ‚ with 7’= 20,95 and: 0 = 0,1272. 

b. Benzene, at 9,°8 (u == 0,890, 4 = 0,00773) 

a= 0,01 # + 7,83.. 10—* 2? —3,00 .10-* 2* ,. 

with 7’= 20,86 and d= 0,0898. 

ce. Carbon disulphide, at 10°,8 (u =1,277, n = 0,003839) 

a = 0,01 « + 18,57. 10-64? — 13,65 .10-8 a§ + 4,0. 10-10 27, 

with 7’ = 20,83 and 0 = 0,0705. 

: fi : da 
moments at which two successive extreme elongations were reached =e, 

t 

Pp 
were all taken equal to 93 this is not absolutely correct: a mathematical investi- 

ea | 
gation shows, that the moment at which en =0 does not lie exactly halfway 

between the moments at which »—=O and that the small shift of the extreme 

points depends upon the amplitude. However in the present experiments — the 

damping being comparatively small-— the shift of the extreme points was within 

the limits of the errors of observation. We may also put it in a different way 

by saying, that the elongations were read at the moments (2n-+1) 3? which can 

also be represented by a series of the form (1), and these elongations did not 
differ perceptibly from the extreme values. 

1) The viscosities were calculated from the data 7,8, 7) = 20,65 at the ordinary 

temperature and 20.61 in liquid air, K = 573.5 at the ordinary temperature and 
571.0 in liquid air (see Comm. N°. 1490), and taking into account that the atmospheric 
air itself by its action on the part of the system which is not immersed in the 
liquid (mainly the cylinder) and the internal friction of the wire together accounted 

for a decrement 3, + 33 =0,00606 (see further down). 

2) It is clear that the coefficients in these equations are not exactly the same 
as would hold for a single spherical body; this can only be true in a very rough 

approximation, seeing that they refer to the complete oscillating system, of which 

the sphere only is immersed in the liquid. Moreover the coefficients (indirectly) 

undergo a modification through the influence of the internal friction of the wire, 
owing to k also depending upon it (directly according to Guye c.s. the internal 

friction of the wire does not give any higher terms than the first; comp. for 

instance Arch. de Genève, (4), 26, 136 and 263, 1908). However, it is impossible 

from the formulae to derive those which would hold for a single sphere, because 
there is no addilivity for the three sources of friction to a higher approximation 
than the first (see Comm. NO. 149d, IV, 5); it is obvious that, if the system could 

be subjected to the influence of the three frictions separately, formulae would be 
obtained with different exponents k and that these formulae would not be capable 
of being combined to a single one with one definite value of k. 
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d. Ether, at 11°,2 (u = 0,725, n = 0,002785) 

a= 0,01 ¢ + 19,95 .10—* #°—18,66 , TO! 2 + 8,5. 10—* pl, 

with 7’= 20,76 and Jd = 0,04840. 

e. Liquid air, at 80°,8K = — 192°,3C. (u = 0,956, 7 = 0,001718) 

a= 0,01 2 + 15,82. 10-* 2*—12,88.10—* 2 + 5,8. 10-1" 27, 

with 7’— 20,72 and 0 = 0,04194. 

The angles of deflection are expressed in radians. The formulae 

are drawn up in such a manner that the time is reckoned from the 

moment at which a= 0,01 («a =—1; scale-deflection 3.074; at these 

very small amplitudes the influence of the higher terms practically 

disappears); they are derived from observations between the limits 

a= 1 Vand a=—,008) 

Considering the absolute accuracy of the scale-readings (see above) 

it follows, that the influence of the higher terms does not make itself 

felt with water till «—=1,6 or a=0,016, with benzene a little 

sooner, with carbon disulphide and ether at a=0,011 and with 

liquid air at «0,012. These few data are sufficient to show, as 

was to be expected (see § 1, note), that for one and the same oscil- 

lating system the limit for practical infinite sma!lness of the velocities 

lies in general the lower the smaller the viscosity of the liquid. 
In order to confirm this result by another experiment with a liquid 

of higher viscosity an observation was made with a mixture of 

water and glycerine: 

f. Mixture of water and glycerine, 11° C. (u = 1,087, 1 = 0,02825) 

a = 0,01 # + 3,27. 10° #°—1,01 ,10—*. 2°, 
with 7’= 21,10 and d= 0,2623. The deviation actually begins here 

at a higher limit than with pure water, viz. at a—0,021. 

In the computation of the viscosities account had to be taken as 

formerly (Comm. N°. 1495, V) of the friction of the air for the not- 

immersed parts of the apparatus and of the internal friction of the 

wire. For this purpose an experiment was made in ordinary air, but 

without the sphere *) and with a copper cylinder instead of the 

aluminium one (see Comm. N°. 1494); in this experiment the obser- 

vations were again extended between the same wide limits as in 

the previous experiments. . 

go Air ==, p= 165 mm LL: Ò == 0,00606, 

“== 0,01 # 98,8 10-2" = 1658 10 

1) This experiment cannot therefore be compared with the previous ones, where 

the friction acted chiefly on the sphere. 
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In this case the second term will be seen to exert a very high 
influence, which makes itself felt from « — 0,006 onwards. 

Finally another experiment was made to ascertain the influence 

of a lengthening of the time of oscillation by an increase of the 
moment of inertia. For this purpose the copper cylinder was used 
instead of the aluminium cylinder, by which the oscillating system, 

including the sphere, obtained a moment of inertia of 945 C.G.S. 

(7, = 26.70). With this system we found for 

he Water, at-9°S (== 1,000} = 0,01810) 

a=0,0l& + 8,50. 10 #°—3,24, 10-8 2°, 
with 7’= 26.96 and q=0.0924. The deviation is thus somewhat 

larger than in the former experiment with water, notwithstanding 

the increase of 7’; but d has become smaller, which for an equal 

value of Z’ corresponds to a diminution of 4. 

4. On account of practical difficulties involved no attempt was 
made to extend the observations to angles of deviation much smaller 

than .01 of a radian'). On tbe other hand a few more observations 

were made in which the deviations were very large (up to 62). For 

this purpose on the small copper tube which is soldered to the 

lower end of the small glass tube B, of the oscillating system 

(comp. Comm. N°. 1495, IV, 2) a small aluminium dise was placed 

(radius 3 cms; mass 23,7 grms; moment of inertia 144) with a 

cylindrical copper edge, the external cylindrical surface of which 

was provided with a scale-division in degrees. A small telescope 
was focussed on this scale, by which one tenth of a degree could 

be read by estimation. 

To the wooden board which covers the stone pillar at the level 

of the steel pin S¢ which carries the sphere a small clip was fastened, 

by means of which the pin could be gripped and in this manner 

the oscillating system after a rotation through a definite angle (about 

three complete rotations) could be arrested. By removing the spring 

which held the clip closed, the oscillating system was released and 

the amplitudes of the oscillations performed by the system were 

observed, first on the divided disc down to about 5°, and then as 

1) In order to descend to angles ten times smaller the reading arrangement 

would have had to be placed at a ten times larger distance (i.e. 15 meters). In 

itself this would rot have been an insurmountable difficulty, but much higher 

demands would then have been made on the rigidity of the mounting; even now, 

although apparatus and reading-arrangement were placed on pillars built in the 

ground (comp. Comm. N”. 1490, IV, 2), the vibrations occasioned by the passing 

traffic were often troublesome. 

68 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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formerly on the glass scale of the reading-arrangement. The liquid 

was contained in a vessel placed on a small table which was 

mounted on the stone pillar of the apparatus. 

The results of these observations are graphically represented in 

the adjoining figure. The three curves represented show, how in 

three different experiments the logarithm of the elongation diminished 

with the time. The ordinates represent loge a, and the abscissae the 

time expressed in the time of oscillation as unit; the direction-coef- 

ficient of the asymptote, also shown in the figure, gives the loga- 

rithmic decrement d with the opposite sign. The three curves have 

been shifted in such a manner as to make them intersect in one 

point corresponding to an amplitude of 0,01 radian. 

The three curves refer: 

I. to water at 10°,0 (aluminium cylinder + disc, K = 717, 
DP =223,42, T= 23,42, 9 = 04118); 

IL. to ‘benzene at 11°07 Kk 717 = 3s 2 0), 

Ill. to water at 10°,2 (without the aluminium cylinder, K = 544, 

Te 0d LO ee 095): 
All three bear the same character: with increasing elongation the 

logarithmic decrement first increases, then diminishes and finally 

increases again, in accordance with the sign of the coefficients a,, 

a, and a, (§ 3). *) 

1) On account of the small accuracy of the observations in the range from 
adm to «=0.1 an analysis of the curves similar to the one followed in § 4 

was not really possible. 
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5. It follows from the foregoing discussion that in order to 

observe under such circumstances that the logarithmic decrement 

of the oscillations becomes independent of the amplitude within the 

limits of the errors of observation,') it would be necessary to go down 

to amplitudes about ten times smaller than those used so far, a 
method involving the difficulties just mentioned. 

It is not necessary, however, to look for a solution in that direction, 

as it has been found possible by a reliable extrapolation from a 

range, situated just above the limit of the practically infinitely small 

velocities, to derive the logarithmic decrement of actually infinitely 

small velocities with sufficient accuracy. In this manner the method 

of the observation of the damping of oscillations becomes a practical 

method for the determination of viscosities of liquids. 

By the aid of the data now obtained it becomes possible to correct 

the values for the viscosities of liquid mixtures of oxygen and 

nitrogen which were formerly found in Comm. N°. 1495, V. Although 

the elongations observed between the limits a= .07 and a= .02 

exhibited a practically constant logarithmic decrement, the formula 

(e) now found for liquid air shows that the mean value of the loga- ' 
dlog a 

rithmic decrement between those limits (i.e. the value of 7 

at a=.05 about or «= 5) is equal to 1.046 d,, d, being the value 

for infinitely small vibrations. Similarly it follows from the equation 

(g) found for gaseous air, that for a —= .06 (the mean amplitude at 

which the logarithmic decrement for the gaseous phase was deter- 
j ; ‘ Td loga 

mined in the experiments of Comm. N°. 1495) 7 = = 1d, 

Using these results we find for the mixtures of boiling point t°: 

t= 79.57 Jd = 0.03802 d, + J, = 0.00310 u = 0.909 1 = 0.001658 

82.34 0.04137 ze 1.003 0.001806 

17.91 0.03632 3 1.841 0.001615 

89,62 0.0443 | is 1.148 0.001858 

with a relative accuracy which may be estimated at zo . 

6. In plotting the elongations to right and left as read in the 

experiments of sections 3 and 4, the two lines containing the two 

') Unless very large times of swing are used (comp. § 1), which, however, in 

order to obtain moderate decrements would require a very high moment of inertia 

(comp. Comm. N°. 148c). The latter circumstance and also the extremely long time 

which each experiment would require in that case, render a large time of oscilla- 

tion undesirable. 
68* 
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series of points were found not to be perfectly symmetrical with 

respect to a straight line a = const. : the diameter of the set of two 

lines was slightly curved and approached the zero of the deflections 

asymptotically. This may be interpreted by assuming that this zero 

(a,) changes during the experiment; the shift is very small, however : 

1 mm. about on the scale in the experiments of section 3, 1° at 

the utmost in those of section 4. 

To begin with this shift was looked upon as due to an elastic 

time-effect of the wire, connected with the initial torsion given to it 

at the beginning of each experiment; but when the phenomenon was 

found to be very regular, independent of the original torsion of the 

wire, and the return to the position of equilibrium appeared to 

happen more slowly in liquids of smaller viscosity, some phenomenon 

in the liquid was thought of, the possibility being contemplated, that 

by starting the motion of the oscillating system the liquid acquired 

a one-sided rotational motion which carried the sphere along, and 

which would naturally be a damped motion, so that the sphere 

would gradually return to the position of equilibrium. A calculation 

showed, however, that an influence of that kind could not make 

itself felt during such a long time.') Moreover the change of «, was 

found always to occur in the same direction, independently of the 

direction of the initial rotation of the system. and lastly @, was the 

same function of the amplitude with all the liquids, viz. proportional 

to the square of the amplitude: ¢, = 0.04 a’, that is: the logarith- 

mie decrement of a, was twice that of «. 

The conclusion was drawn, that the shift of the zero was only 

an apparent one, and what was really observed was the effect of a 

1) The damping of this motion of the liquid can easily be calculated. The motion 

is bound to be aperiodic and may thus be represented by equation (56) of 

Comm. N°. 148d; if the sphere is practically at rest, we must have D = 0, in order 

that 4 need not be zero; hence: 

b"(R'—R) 
tg b" (R'—k) = ———— Pg 7 ED ER (2) 

an equation which allows an infinite number of solutions for 6”, and thus for k, 

but of which only the first solution which is not zero has to be considered. In 

our case R'=3, and R=2; the solution thus becomes b’=3,2 and therefore 

—k=10—. 
u 

In the case of a hollow sphere (R’ = 0, comp. Comm. N°. 148b, § 21) equation (2) 

becomes tg b”’R=b”’R, whence b”’R=4,5 and — k= 20 ei (Comp. LAMB 
ul 

Hydrodynamics p. 577). 



1073 

small term «a, =a, e?4* in equation (1) a term which could not, 

however, originate in the motion of the liquid (an asymmetry of the 

oscillating system was out of the question and, moreover, a, was 

independent of the nature of the liquid), but probably had to be 

ascribed to a want of symmetry in the wire‘). 

Physics. — “The viscosity of liquefied gases. VII. The torsional 

oscillatory motion of a body of revolution in a viscous liquid.” 

By J. E. VerscHarreLT. (Communication N°. 151e from the 

Physical Laboratory at Leiden). (Communicated by Prof. H. 

KAMERLINGH ONNES.) 

(Communicated in the meeting of February 24, 1917). 

1. In Comm. N°. 1485 the theory of the torsional oscillatory motion 

of a sphere in a viscous liquid was developed to a first approxim- 

ation; the results of the experimental investigation described in the 

previous part (VL, Comm. N°. 151d) render it advisable to develop the 

theory to a higher degree of approximation. The present paper is 

an attempt to a solution of the problem, not only for a sphere but 

for an arbitrary body of revolution. This attempt was in so far 

successful as a method of solution is given, in which the motion 

of the liquid and of the body is put into the form of a series; the 

terms of these series, however, centain functions of the coordinates 

which in the mean time owing to the difficulties of the integration 

remain determined by differential equations, and coefficients the 

numerical value of which cannot yet be given. In form these series 

agree with those which were found experimentally (Comm. N°. 151d). 

The motion of the liquid. 

2. We start from the well-known hydrodynamical equations ®) 

1) An asymmetry of this kind is not improbable, as the wire owing to the 

method of preparation showed a permanent twist: on the tension being taken off 

it curls up spirally and the zero changed with the weight suspended from it. 
During the oscillation of the system the wire obtains a higher twist in the one 

direction and is untwisted in the other, which might involve a small deviation 

from Hooxe’s law to be expressed by a term Na? in the equation of motion of 
the oscillating body (Comm. N°. 148), equation 23). 

2) u,v, w are the components of the velocity at a point x, y, 2; p is the pres- 

sure in the liquid, its density being « and its viscosity 4; Xo, Yo, Zo are the 

components of the external field of force, in which the liquid is placed, in our 
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Op ¢ Ou Ou Ou Ou 
——+yAu+uX,—pl — +u—+v—+w— }) vete Ow (5 Ox Oy En ' 

Ou Ov afte AY 

the last of which we shall replace by a different one which follows 
from the whole set of four viz.: 

Òudv Ovdu dvdw Owdv Owdu Oudw 
hp in Aa es alae ee eS eee ren, KE 

Oxdy Ody dydz Oydz Ode dx Dede 

If the motion of the liquid is the result of the friction of an 
immersed body of revolution rotating about its axis (the z-axis) and 
if, moreover, the boundary of the liquid, if it exists, is also the 

same in alle meridian planes, we may put 

USED OY SS OS EY FAO a Se ie de 

where ¢ and w are functions of the cylindrical coordinates @=V a*+-y? 
and z and of the time. . 

For small velocities we may write: 

EE Est By tts = ’ Zes ’ P=Pit P+Pt+-.. (3) 

where each successive term of the series is considered as infinitely 
small with respect to the preceding one. We therefore treat the 
motion of the liquid as the result of a composition of a series of 
conditions of motion, the velocities of which diminish very rapidly, _ 
the further we go down the series"). Consequently the equations (1) 
can now be separated into a series of sets each of which determines 
a condition of motion. Putting in the „th set: 

Ou Ou Ou 

ais opie 

Nn Yn,Z, are to be looked upon as the components of a force 
generated by the inertia of the liquid; they are completely determined 
by the preceding approximations. Also by (1') in each successive 
approximation the distribution of pressure is determined by the 
preceding approximation. | 

Kn Ee ae eat 

case the field of gravity (X= 0, Yo =0, Zj =g). A is the symbol for LAPLACE’s 
operator. 

It will be supposed, that neither w nor y are functions of the coordinates or 
of the time. In a piece of apparatus of ordinary dimensions this condition is pract- 
ically fulfilled, even for a gas, when no greater differences of pressure occur than 
are occasioned by gravity. (Comp. on this point Zempién, Ann. d Phys., 38, 81, 1912). 

1) This method of treatment of the problem was given by A. N. Wurteneap 
(Quarterly Journ. of pure and applied Mathem., 23, 78, 1889) for the purpose of 
finding a second approximation: he applied it to the case of a uniform rotation 
of a sphere. Comp. also Zemprén, Ann. d. Phys., 38,74, 1912. 
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3. In the first approximation (velocities infinitely small of the 
first order) we have 

Ou, : 

yy nih eae MS Mee 3 ORE: Soe ru, (9) 

If the motion of the body is an oscillation of the damped harmonic 

kind, the angle of deviation of which can be represented by the 

real part of 

. PRN isd ae ass OTe eB) 
we must put 

Plate) OER 0 rep ein 8S or ese (7) 

where ¢, is now only a function of @, zand 5 LY k determined 
N 

by the differential equation 

Op,  3-p, | 09, 
emia NE Sei eer oor nt nd (= 

and by the boundary conditions, that at the surface of the body 
p‚=l and at the external boundary of the liquid (at infinity, if 

the liquid is infinite) g, — 0)*). 

4. In the second approximation one finds: 

0 
acc +yAu, HX, etc. Oa ot (9) 

where es) 
ASSO 7a. YS Oe ae, — 8. 

This represents the first approximation to a motion in the field 

of the centrifugal force *). Moreover: 

1) In the first approximation the distribution of pressure is the same as in 
condition of rest. 

4) k is a complex imaginary quantity; @ may be taken as real. (Comp. Comm. N°. 
1485). 

3) If the body of revolution is a sphere, ¢; becomes a function of r = Wa? + y? + 22 

orly, and equation (8) reduces to equation (11) of Comm. N°. 148d, 

4) In general this field of force has no potential; that is why it causes a movement 

of circulation in the liquid. (Comp. Comm. N°. 148d, Proc. XVII, 2, p. 1038). For 

0 
that reason it is also impossible to put in general +t = p Az, etc, as in the 

& 

distribution of the pressures under the influence of the external field of force. 

Only in the case of an infinitely long cylinder, where 9, is merely a function of », 

the field of force of the centrifugal force has a potential; a movement of circula- 

tion is absent in that case and the motions of higher order disappear at the same time, 
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Kee (ow)? 

A Be 
These equations are satisfied by putting: 

== Ik by, EN SP eee ae EN 

(9) 

where w,, Y,, 7, are new functions of g,z, and 6. A motion of cir- 

culation is thus obtained in the meridian planes; this motion is a 

damped pulsating one, with twice as high a frequency and degree 

of damping, as the oscillation in first approximation. 

5. In third approvimation we have again Ap, =0, or p, =0, and 
\ 

Es rete: n À u, Fuut 

where this time 

KD ed er Den (11) 

with 

0g, Op, 
Db, 2h a EEN? EN ak tn). 

In a third approximation we thus have a motion caused by a 

periodic damped field of force at right angles to the meridian planes 

and containing the time in the factor e®*‘. It follows, that this motion 

like the one in first approximation consists of an oscillatory rotation 

of the liquid in shells, each with its own amplitude and phase, but 

with the same period and degree of damping; i.e. the equations 

can be satisfied by putting: 

DS 

p‚ being a new function of 0, z, and 5, determined by the differen- 

tial equation : 

re Le Ee ing, = 20+ (2.0, + on tg) (0 dv? Hig do 7 z 

and by the nn that p, =O at the boundaries of the liquid. 

6. As one would be inclined to expect and as, moreover, can be 

easily proved, further approximations yield alternately circulation 
in meridian planes and oscillations, about the axis, with frequencies 

and degrees of damping which increase in an arithmetical series. 

By putting 

— X, = Ge Dy ea a = Se Dr 

one finds, using a well known method *) 

1) If the relations hold for n= 1 to m, it may be proved, that they also hold 

for n=m-+1. 
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Ponti=0, B=), Zon4i=0, €2n41=0 , Wo,=0, wan =O , Ponti 

En Anke Wy , wonin + 1)ka2"+1po,44 , Wn=2nkaryon , | (14) 

pan=2nka "na, 

From the foregoing discussion it appears, that, when a body of 

revolution in a liquid oscillates about its axis in a simple harmonic 

damped motion (how the motion is sustained, is of no account), the 

liquid will assume a motion which consists partly of a compound 

harmonie damped oscillation of liquid shells, where the amplitude 
may be represented by 

aza, ta, Ja, d...=ap get Hap, o3kt 4 a'p ekt...) . (15) 

and for the rest of a motion of circulation in meridian planes. 
The above reasoning still holds, if the motion of the oscillating 

body itself is a compound harmonie one of the form: 

a ae NT ert Lp aS emt ge ae (5) 

the functions g2,41 are, however, not then zero at the surface of 

the body, but equal to 62,41. 

The motion of the body. 

7. The question now arises: of what nature will the motion be 

which tbe body assumes in the liquid, when without friction it 

would perform a simple harmonic oscillation? Certainly not a simple 

damped motion, for, even if by some artifice the body was for some 

time made to swing exactly in the simple damped motion, which it 

must assume according to the first approximation, the higher terms 

of the liquid motion would still by friction’ give rise to forces which 

would try to disturb the simple motion and which would certainly 

create this disturbance, as soon as the body was left to itself. It is 

obvious that they would impart to the body a composite motion, 

corresponding to equation (16) where the even terms would not occur, 

seeing that the liquid motions of even order only give friction along 

the meridians and thus cannot have any influence on the oscillation’). 

1) The quantities © are functions of p, 2 and b which are exclusively determined 

by the boundary conditions. In the case, when the body is an infinitely long 
cylinder, all p's are zero, with the exception of ©). At the ‘solid boundaries of 

the liquid the p's become zero (except 9, = 1). If the liquid is partly bounded by 

a free surface, a special condition will hold there. 

2) The friction along the meridians can only produce an imperceptible deformation 

of the body. It might seem as if the circulational motion in the liquid, although 

it is kept up by the body and damped by friction in the liquid, did not occasion 

a loss of energy of the body. The explanation of this seeming contradiction may 
be found in the circumstance, that the motions of different order are not mutually 

independent and a loss of energy of even order is provided by products of 

velocities of uneven order, 
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In this manner it becomes intelligible that the oscillating body, also 
when it is made to swing freely in the liquid, will assume a motion 

corresponding to equation (16)'), as was first revealed by experiment 

(comp. Part. VI). 
In equation (16) the exponent & which contains the time of oscil- 

lation 7’ and the logarithmic decrement (e=) as also 

the coefficients 6,,6,, etc. (a is arbitrary) are determined by the 

interactions between liquid and body. By the friction to which the 

body is subject, moments act on it which can be calculated, as was 

actually done in the first approximation in Comm. N°. 1485 for the 
case of a sphere, as soon as the functions wn and y„ are known; 

if the moments of the couples caused by the successive sets of motion 

are represented by C,, C,, C, etc. (the moments of even order are 
all zero), the equation of motion of the body is: 

da 

dt? 

(comp. 23, Comm. N°. 1485), where C= CC, + C, + C, +... The 
quantities C are given by 

EEM Oel ven er lan 

~ Zz = \ 
2 2 

dw, op da 
C= —f orn = „fe Se ds °) = ynkay | O° a ds = — IL, oe : 

zi zi zi 

where (18) 

Fn 
ie uf 0° IN dr AS 

A, is a numerical quantity (of the dimensions of a volume) which 

depends on the shape of the body and further on the quantity 5, 

i.e. on £ (time of swing and decrement), on the constants n and u 

of the liquid and finally on the coefficients o up to and including 

6; °). Equation (17) can thus be separated into a series of equations 

t) That is to say after the disturbances, which are due to the starting of the 

motion, have subsided: these disturbances are not gone into here (comp. Comm. 

N°. 1485, § 4, note). 

*) As in Comm. NO. 1485, F represents the tangential force per unit area in the 

direction of the motion; ds is the area of a circular strip round the body of 

a is the gradient of the angular velocity of the nth order in the 

liquid close to the body; 2, and 23 are the z-limits of the body. 

5) If different parts of the oscillating system are surrounded by different fluids 

(e.g. a part by a liquid and the other part by air, as was the case in the 

experiments) Ln itself has to be divided into parts, each of which refers to one 
of the fluids. 

revolution ; 
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Ee 
EUT tr 

(19) or 
VeeK+nklL, + M—0, 

the first of which (n= 1) is the same as equation (26) of Comm. 

N°. 1485, by which & is determined. The other equations determine 
the quantities 5. *). 

Herewith the problem is formally completely solved. Numerical 

application would, however, only be possible, if one succeeded in 

finding the functions w, and y, ?) 

Physics. — “The viscosity of liquefied gases. VU. The similarity 

~ in the oscillatory rotation of a body of revolution in a viscous 

liquid’. By J. B. Verscuarrert. (Communication N°. 151/ 

from the Physical Laboratory at Leiden). (Communicated by 

Prof. H. KAMERLINGH ONNES). 

(Communicated in the meeting of February 24, 1917). 

1. In Comm. N°. 148c -the conditions were derived under 

which similarity would exist between two different modes of motion 

of an oscillating sphere in a viscous liquid. The discussion was at 

that time entirely based on the first approximation of the problem : 

but even then it was anticipated that the conclusions would prove 
to hold in general (Comm. N°. 148c § 5), not only in nearer approxi- 

mations, but also for bodies of different shape to the sphere; this 

will now be shown to be the case. 

Returning once more to the general hydrodynamical equations 

(equation (1) of the previous communication, Comm. N°. 151e), we will 

inquire whether it is possible to introduce units of length, mass and time 

such that everything specific disappears from the equations. The 

external similarity of, the liquid motion of course requires in the 

first place similarity of the body oscillating in the liquid (the latter 

condition is of itself satisfied in the case of a sphere); let R be a 

1) In all this the supposition is retained that the moment of the torsional couple 

is proportional to the angle of torsion and that the ordinary laws of friction 
remain valid. 

2) Not till then would it be possible to settle the exact condition for infinite 
smallness of the velocities (comp. preceding communication § 1 note), i.e. the 

condition for 23 (for the body) to remain below a definite fraction of ej or, as 

would be even more useful for our purpose, thé condition for the decrement 3 

not to deviate by more than a definite amount from the limiting value 3p. 
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characteristic length of the body (in the case of the sphere the 

radius). Let 7’ represent a time characterising the motion: in the 

case of an oscillating moment we naturally select as such the time 

of oscillation which, as we have seen, is also the periodic time of 

the liquid, at least for a body of revolution. *) 

These quantities we shall take, in each special case, as the units 

of length and time and shall put t= Tt, /= Ri, so that t and { 
will now represent the reduced time and the reduced length. As 

unit of mass we shall further take the mass of the (new) unit of 

volume of the liquid. The equations then retain their form’) 

op Santee Akagi ae ou a; il 
mob vee lak oF ie oere os (1) 

The only difference is, that 1 in the new system of units has a 

different numerical value from before, namely in view of its 

dimensions (L—! MT): 

gC? mk 

ult aR 
The viscosity has not one definite value in the new system any 

more than in the old units; the coefficient 1%’ in. equation (1) 

may thus assume various values and a first condition therefore for 

internal similarity of the liquid motion is, that this coefficient has 
the same value (e.g. in the C.G.S. system) in all the cases considered; 

in other words: by ascribing to 7’ all possible values from O to oo 
we characterize an infinite series of different liquid motions. 

as oe 

2. We have thus found that for two similar conditions of motion 

y'/ -must have the same value. If the motion of the body were an 

undamped harmonie one (or a uniform rotating motion) this condition 

would be the only one for internal similarity of two motions; but 

when the motion is a damped harmonic motion, the other condition 

is to be added, that the logarithmic decrement d of the swings (a 

dimensionless number, and therefore independent of the units chosen) 

must obtain the same value in similar cases; and as all possible 

values from 0 to oo ®) may be assigned to the decrement, the quantity 

d characterizes a second infinite series of different liquid motions. 

1) This is probably true in the general case too. With a uniform rotation the 

time of revolution would be taken for 7’. 

2) The action of gravity as having no influence on the motion is here left out 
of account. 

3) Even from —o to +0, if one chose to also consider motions with arti- 

ficially increasing amplitudes. 
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Assuming now that the motion of the body (and of the liquid) is 

a composite harmonic one and damped, corresponding to equation 

(15) and (16) of the previous communication, there are still a great 

number of different conditions of motion possible, which only differ 

by the coefficients o; in this case similarity requires, that those 

coefficients have the same value in all cases, 

3. When the bodies assume such motion not artificially, but by 
friction in the liquids, it will be necessary — in order that the two 

conditions of similarity : equal 7 and equal d may be satisfied — 

that the elements M and A which determine the friction-free motion 

of the bodies also satisfy definite conditions; according to equations 
(17) and (18) of the previous paper these conditions are, that the expres- 

M toe . 

sions = T? and = T have the same values in all cases (k T=-0+4+ 221 

is in all cases the same number). The former condition expresses the 

fact, that the time of swing of the friction-free body Ce =2n: ay 

measured in the time of swing in the liquid as unit, must be the 

same in all cases (conversely —- and this is simpler — the time 

of swing 7’, can in each case be chosen as unit of time). As regards 
7 

Jo tally 
the second condition, according to which each expression ae must 

have the same numerical value in all similar cases, it will be seen, 

having regard to the dimensions of Z,, that this condition requires, 
3 

0 
that the expression 7 has the same numerical value in all cases ; 

in that case all quantities Z, have also equal values in the various 

cases, if each time the specifie units are introduced, because the 

only things left are integrations of functions which possess identical 

‘values in corresponding points, and finally, according to the first 

equations (18), the values o, are also the same in all cases. 

Taken together, the conditions for similarity are therefore, that 

the quantities : 

uk? nRT, 
— and c, = ——— 

nT, K 

or | (2) 
uk nk | 

a and -¢,= 
K ul 

have equal values (in C.G.S. units) in all cases; the same conditions 

as were also found in Comm. N°. 148c. 
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4. By the aid of the above considerations it is possible to represent 

the results of the experiments described in Comm. N°. 151d somewhat 

more systematically. As there are only two infinite series of modes 

of motion, everything may be reduced to the change of two of the 

five elements u, 7, 7,, K and R'). In the first place, seeing that in 

most of the experiments the apparatus remained unchanged (7,, K 
and R thus remaining the same), and only the liquid was changed, 

the most natural procedure is to consider 4 and u as the variables 

and accordingly to reduce equation / of section 3 (Comm. N°. 151d) 

which was found with a modified oscillating system to the same 

values of K and 7, which applied to the equations ato f. Equation 

h itself does not change thereby, considering that @ and z are 

dimensionless numbers; d does not change either and the conditions 

(2) show, that the same equation ought to have been found, if 

the sphere, connected with the aluminium cylinder, had oscillated 

in a liquid for which w= .607 and 74 = .01028. The value of 
PT a 

P= = ~ — (10 would also have remained unaltered. 

It is preferable, however, to reduce everything to one and the 

same liquid, for instance with u =1 and 4 = .01 (water at 20°), 

and allow A and 7, to me *). In that case the adjoining table 

is obtained. 
This table may be utilised for the purpose of deriving the most 

favourable conditions, under which the experiments with a given 

liquid can be conducted; we have only to reduce it to a different 

liquid by multiplying all values of 7’, and A by definite factors. 

As an instance, taking for liquid hydrogen the values: u = .07 

and 74 — .00013, the latter of which was calculated in Comm. N°. 1485 

section 13 by the application of the law of corresponding states, it 

will be seen that for this liquid the values of 7, have to be taken 

about 5 times higher and those of A about 15 times smaller; if we 

wish, therefore, to experiment with liquid hydrogen under condi- 

tions about corresponding to those which existed in the experiments 

with ether, it would be necessary to take K=60 and 7, = 40. 

1) At least, if we use the rough approximation of confining the oscillating body 

to the sphere. Of course it would be possible to extend the theory of similarity 

to the case where the oscillating system is partly in one liquid and partly in 

another; it is easily seen, that in that case the ratios of the densities of the two 

liquids must be equal in all cases. 

2) This was also the method followed in Comm. N°. 148c. The advantage is 

that K and To can be changed over a much wider range than y and g. 
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5. The above application of the theory of similarity also shows, 

that in making experiments with various liquids, as described in 

section 4 of Comm. N°. 151d, by changing K and 7, in all 

possible ways a double set of curves would be obtained forming a 

net-work which would be identically the same for all liquids’). By 

the equations (2) the elements belonging to the curves in one net 

could be calculated from those belonging to the corresponding curves 

in the other; conversely having obtained the nets for two liquids 

the values of u and » might be composed and in this manner these 

quantities (more especially 7) might be determined for one of the 
liquids. 

Possibly this method may find its practical application some time. 

Physics. — “The viscosity of liquefied gases. IX. Preliminary 

determination of the viscosity of liquid hydrogen.” By J. E. 

VerscHarreLT and Cu. Nriearse. (Communication N°. 151g from 

the Physical Laboratory at Leiden). (Communicated by 

Prof. H. KAMERLINGH ONNFs). 

(Communicated in the meeting of February 24, 1917). 

1. The measurements were made with the same apparatus as was 

used for the determination of the viscosity of liquid air (see Comm. 

N°. 1495, IV), into which, however, some improvements were intro- 

duced. In the first place, some nickel plated paper screens were placed 

under the cap to intercept the radiation of the cap; in the second 

place a small tinned hand-pump was introduced *) into the liquid, 

the rod of which passed through a small metal tube in the cap and 

could be worked up and down by means of an india-rubber tube 
which made an air-tight connection with the metal tube, by which 

means the liquid could be stirred previously to each experiment, and 

any slight differences of temperature or density could be equalized. 

The thermometer and the syphon tubes were taken away, as being 

unnecessary in these experiments; the temperature was deduced 

from the atmospheric pressure (the liquid, which in this case possessed 

1) As an instance. with the same restriction aS in the experiments of section 3, 

curve lf would also be found for water with K = 807 and 7 = 15.21. 

*) Of the pattern generally used in the cryostats of the laboratory (see for 

instance Comm. N°. 123). 
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a sufficiently high degree of purity, was boiling ') under a pressure 

which was kept constant to a few mms of mercury by the labora- 

ratory pumps, and was only a little higher than the atmospheric 

pressure *)); the emptying of the apparatus could be very quickly 

accomplished by the evaporation of the liquid, after removing the 

external vacuum glass, which, as in the experiments with liquid air, 

contained liquid air. For the internal vacuum-vessel, which contained 

the liquid hydrogen, a completely silvered glass was taken, in which 

only two opposite windows were left open, so as to enable us to 

observe the height of the liquid when filling the glass; as the 

external vessel was silvered with only a transparent strip left open, 
it was only necessary to turn this outside glass a little way in order 

to protect the liquid hydrogen practically completely from external 

radiation. 

2. Technical difficulties in connection with the use of liquid 

hydrogen and the much lower temperature (+ 20° K.) did not arise ; 
the only thing was, that, as was to be expected, the damping of 

the oscillations was very small (about 6 times less than in liquid 

air) in consequence of which the internal friction of the suspension 

wire acquired a very high and unpleasant degree of importance. 

This friction, in fact, proved to be not only comparatively large, 

but to depend to a high degree upon accidental circumstances, 

difticult to estimate and control; consequently, although for each 

experiment separately an accurate logarithmic decrement could be 

deduced, only a very moderate agreement could be found between 

the various experiments®). In the first place it was found that 

unstretching and re-stretching of the wire (by exchanging the cylinders 

C’) altered the viscosity of the wire very greatly (usually increasing 

it); in the second place the viscosity was a function of the time, 

which only decreased slowly, in an approximately exponential manner, 

and required some days to become constant; in the third place the 

gas in which the wire was placed proved to have a great influence 

upon its viscosity; pumping a vacuum, filling with air, replacing 

1) The boiling. which was entirely superficial, without the formation of bubbles, 

took place very slowly, thanks to the screens. 

2) The small difference of pressure between the vapour pressure in the apparatus 

and the air pressure outside, was read on the small open manometer Ma (see 

figure in Comm. N°. 1495). 

3) This is clearly also the cause of the differences which were observed in the 

experiments with liquid air (see Comm. N°. 149) V). This instability in the internal 
friction in the wire has given similar difficulties to previous investigators: see for 

instance ZEMPLÉN, Ann. d. Phys. 19, 802, 1966. 

69 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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air by hydrogen (this especially) or the reverse, caused a great 

increase in the friction’), which, as we have said, gradually become 

less again’). 

Under these unfavourable circumstances, in order to be able to 

arrive at provisional results with the apparatus as it was constructed, 

we were obliged to change our method of working to some extent 

and to demand a much smaller degree of accuracy from the results. 

The determination of the times of oscillation by registration, in 

particular (see Comm. N°. 1495, IV, § 4), was a complication dis- 

proportional to the accuracy, and could be quite adequately replaced 
by a purely chronometric determination, by means of a stop-watch, 

which showed '/,® of a second*). Further, the sensibility of the wire 

to changes of condition made it necessary that the apparatus should 

remain unchanged during a whole series of experiments, that is, 

that the cylinders should not be exchanged; as this did away with 
the use of the cylinders altogether (see Comm. N°. 1495, IV, § 5) 

they could just as well be left out*). We, therefore, continued the 

work with a constant oscillating system; in consequence of which 

the friction of the gas upon that part of the apparatus not 

immersed in liquid had to be eliminated in a different way. 

We did this in the following manner: besides the experiments in 

which the sphere oscillated in the liquid, we also made experiments 

with the sphere just above the liquid oscillating in vapour at alow 

temperature; from the knowledge of the density and viscosity of 
this vapour, by means of the formulae (24’) and (28) in Comm. 

N°. 1485, the retarding couple could be determined which the sphere 

experienced by the friction in the vapour; this couple could be 

subtracted from the total moment in the experiment in the vapour; 

the difference. we considered might be taken as giving the 

couple which the oscillating system experiences by friction in the 

experiments in the liquid. 

3. After several unsatisfactory attempts, we succeeded in 

carrying out in one day (July 12 1916) a series of reliable, and 

h Presumably a consequence of occlusion of gases by the metal wire, We have 

not used quartz wires yet, which probably would not possess this unpleasant peculiarity. 

2) To avoid further trouble from these changes we left the apparatus always 

filled with hydrogen, 
3) By determining the duration of ten oscillations T could still he determined 

to within about ‘O1 sec. 
4) The moment of inertia of the oscillating system was thus, at ordinary tem- 

perature, K=372:5 + 27-8 = 400°3. Hereby the period of oscillation becomes 

smaller than before (17-22 sec.) it is true, but that was not a decisive objection. 
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as we think, mutually comparable observations. The logarithmic 
decrements 0 as observed are given in. the following table, which 
also contains the mean times at which the observations took place 

(they lasted about 4 minutes; each time 20 full oscillations were 

observed '), as well as the physical state of the substance which 

“surrounded the sphere. 

de 11°25" a.m. vapour 0 = 0:00393 

2. A OEE a 379 

3. 15 50" En, 4 370 

4. AAE ANS: liquid 682 

5. HADI se 672 

6. PAA hie M 663 

fit 215 p.m. vapour 340 

8. DBDs es JA 317 

2 DAO, és 317 

We shall now give a short deseription of the course of the 
observations. After the apparatus had been filled with hydrogen — 
gas for a few days, we began to cool it in the morning of July 
12" at about 10 a.m. and about 11 a.m. liquid was poured in, 

only so far that the sphere did not yet touch the liquid, when 

three observations were taken in the vapour; it appears that the 
decrement decreased rapidly, which seems to indicate a disturbance 
in the wire caused by the filling of the apparatus. About 12 o’cl. 
more liquid was poured in until the sphere was entirely immersed ; 
again three observations were made, which gave a much larger 

decrement, and this in the same way decreased in the course of 

time, and to about the same degree as in the vapour. About 1 p.m. 
the external vacuum glass was removed, so that the liquid 

hydrogen could boil away pretty quickly; at about 2 p.m. the 

liquid had so far boiled away that the sphere projected completely 

out of the liquid; then the vacuum glass with liquid air was again 

put round the internal one, and three more observations were made 

in the vapour. 

From our observations it follows, that the transference of the 

sphere from the vapour into the liquid involves an increase of the 

logarithmic decrement by a mean value of 0:00319, while for the 

1) As we did not expect a greater accuracy than 1 °/, about, we considered it 

useless to raise the degree of accuracy for the separate results by lengthening 

the series. 

69* 
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friction of the sphere in vapour 20° K. with u = 0:0012*) and 

7 — 0:000011*) a decrement d= 000015 was calculated. We 

conclude from this that the decrement caused by the friction of the 

liquid alone was d, = 0:00334. The liquid was under a mean 

pressure of 766 mms. mercury; the temperature was thus 20°-36K. *) 

and the density 0:0708*). From this it follows that = 0-000117. 

This determination was made before the investigation of the 

suitability of the method was completed (see Comm. N°. 151d). 

From that investigation it appears probable, that the value found 

for 7 was a few percent too high, but the data are wanting by 

which the necessary correction might be estimated. We therefore 

give as the approximate value of the viscosity of liquid hydrogen 

n= O:OU0TT. *) 

Physics. — “Critical point, critical phenomena and a few conden- 
___sation-constants of air’. By J. P. Kurnen and A. L. Crark. 

(Communication N°. 1506 from the Physical Laboratory of 

Leiden). 

(Communicated at the meeting of February 24, 1917). 

The critical temperature and pressure of air have been determined 
by OrszewskKr®), Wrosiewski’), and Wirkowski*). Their results do not 

agree amongst each other as well as might be desired: 

OLSZEWSKI W ROBLEWSKI WITKOWSKI 

fe ess about — 140:%5 ales 

Pk 39 atm. von den 39 

The main object of our investigation was to obtain reliable values 

for the critical constants, including the critical density, which involves 

a detailed study of the condensation-phenomena in the critical region. 

Wrosiewsk! noticed that air behaves differently near its critical point 

\ 

1) The vapour still behaves approximately as an ideal gas. 

2) According to H. KAMERLINGH ONNES, C. DorsMAN and SopHUS WEBER. 

Comm. N°. 134a. 

on t dp m.M 
3) Normal boiling point: 20°,33 Kp = 200 gegree (see Comm. N°. 137d). 

4) See Comm. NO. 137a. 

5) This value agrees satisfactorily with that calculated in Comm. N°. 1485 on 

the basis of the law of corresponding states. 

6) K. Orszewski. C. r. 99, p. 184, 1884. 

1) S. v. WROBLEWSKI. Wied. 26, p. 134, 1885. 

8) A. W. Wrirkowskr. Phil. Mag. (5) 41, p. 288, 1896. 
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from other substances: this he correctly ascribed to the circumstance 

that air is a mixture, bat the special phenomena which he describes 
were largely due to insufficient mixing. It was therefore necessary 

to repeat the investigation with al] those precautions which in previous 

investigations on mixtures have proved necessary and amongst others 

to try and realise “retrograde” condensation *), which is characteristic 

of mixtures. So far an investigation of that sort had never been 

earried out but at the ordinary and at higher temperatures. 

As expected the investigation proved to be beset with great exper- 

imental difficulties. Generally speaking these difficulties all originate 

in the circumstance that the mixture cannot as a whole be 

cooled down to a low temperature, at least, if the possibility must 

be left open — and this is an essential condition in the experiments 

here contemplated — of changing the volume of the substance 

gradually. A substance which at the very low temperatures could 

play the part which is otherwise fulfilled by mercury, viz. that of 

enclosing a fixed quantity of the substance in a variable volume, is 

unfortunately not known. It is therefore necessary to compress the 

mixture in a small tube which is closed at the bottom and cooled 

to the low temperature, by means of a piezometer, thus using the 

same method as followed with pure substances, so that every time 

a different fraction of the total quantity of substance is present in 

the observation-tube. With pure substances this does not involve any 

fundamental difficulty; by measuring the quantity of gas present in 

the part of the piezometer which is outside the eryostat, the quantity 

in the observation-tube can at each measurement be derived by 

subtraction from the total quantity, even when the substance is partly 

liquefied. With mixtures this is different: in the condensation of a 

mixture new mixtures are formed each time of different composition ; 

in a series of observations in which the mixture is alternately com- 

pressed and expanded the mean composition of the mixture in the 

observation-tube will thereby very soon become different from that 

of the whole and the observations lose all definite meaning as 

referring to mixtures of varying and unknown composition. Taking 

air, the mixture dealt with in our investigation, as an instance, 

when it has been partly liquefied and is now re-evaporated, in the 

beginning the nitrogen will principally boil away and disappear 

from the tube, whereby the mixture, which remains behind, becomes 

richer and richer in oxygen and no longer has the same mean 

composition as air. 

1) J. P. Kuznen. Comm. Leiden 4. 1892, 



1090 

It is therefore necessary in the experiments to lay down the 

general rule when partial condensation has once set in not again 

to increase the volume’) and, if the observations bave to be repeated 

or a new series has to be started at a different temperature, it is 

necessary — in order to obtain complete homogeneous mixing — 

several times in succession to lower the pressure in the apparatus 

to normal and recompress to the high pressure. Otherwise in conse- 

quence of the very slow diffusion in tbe capillary connecting tubes 

with the supply-tube of the piezometer a mixture of higher boiling 

point remains behind in the small experimental tube, so that the 

succeeding observations are bound to be incorrect and amongst 

others the condensation will set in too soon. The importance of all 

this was not sufficiently realized in our experiments to begin with, 

so that a great number of our earlier observations had to be rejected 

later on. 
The electro-magnetic stirring also involves greater difficulties at 

low temperature than otherwise, in consequence of the great width 

of the cryostat which brings with it a corresponding size of the 

electromagnet surrounding the cryostat. The observation-tube, capillary 

and stirrer were the same as used by CROMMELIN®) in his investiga- 

tion of argon. In this tube the difficulty just referred to is got over 

by the small piece of iron on which the electro-magnet acts being 

placed in an enlargement above the glass capillary of the experi- 

mental tube; to this piece of iron by means of a long glass thread 

running down through the capillary the stirrer inside the observation- 

tube is attached. By this means the stirrer can be moved up and 

down by means of a small hand-electromagnet. 

This arrangement involved the diffieulty for our purpose, that the 

“glasscapillary referred to has to be comparatively wide in order to 
leave room for the glassthread and that this is connected with 

greater danger of mutual diffusion between the different mixtures 

inside and outside the observation-tube and that greater uncertainties 

arise in the determinations of the densities. It also happened more 

than once that the stirrer got stuck in consequence of the flexibility 

of the glassthread and perhaps of microscopic deposits of solid 

substances. It goes without saying that the air had been freed as 

well as possible of water-vapour and carbon-dioxide: possibly the 

sticking of the glassthread indicates that traces of these substances 

had remained after all; in any case the disturbance usually became 

1) In the neighbourhood of the critical point, where the two phases have nearly 

the same composition, small expansions cannot be objected to. 

*) G. A. Crommeuin. Comm. 115 § 2. See also Comm. 83. Plate IV. 
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worse as more air was condensed and therefore had passed through 

the capillary. Usually the disturbance could be reducetl or obviated 

entirely by operating the stirrer while the air was being compressed 

into the observation-tube. 

The uncertainty in the computation of the density arises in the 

following manner: beside the observation-tube a long piece of the 

glass ¢apillary is inside the cryostat, in our experiments about 35 cms 

with a volume of a quarter of the tube. Only a part of this length 

is immersed in the cold liquid; as previous experiments have shown, 

the temperature of the tube above the liquid increases pretty rapidly 

and near the top approaches the normal. A considerable correction 

has to be applied to the measurements for the gas inside this capil- 

lary. Assuming that the experiments are exclusively conducted with 

compression, the air which enters the capillary will retain its com- 

position in the incompletely cooled part and will have to be taken 

into account as air. In the lower part on the other hand the air 

will separate into liquid and vapour and, if the liquid flows down 

properly, this part will finally contain saturated vapour. Still, owing to the 

circumstance, that thorough stirring can only take place in the obser- 

vation-tube at the bottom, there is no guarantee, that the vapour in 

the capillary has the correct composition, while on the other hand 

the stirring in the capillary has the disadvantage of a partial mixing 

of the gases in the cold and the warmer parts of the capillary. As 

the extent to which these factors come into play is unknown, it is 
impossible to take them into account and the upper portion has to 

be taken as air, the lower portion as saturated vapour. In our case 

there was the additional difficulty, that the density of the saturated 

vapour was not yet accurately known, as it can only be found by 

interpolation from measurements of the vapour-density of a number 

of mixtures. In the mean time we had to be satisfied with an 

estimate. It may be added, that in a determination of a vapour- 

density, ie. with only a trace of. liquid in the tube, the entire 
cooled portion (observation-tube + part of capillary) has to be con- 

sidered as containing saturated vapour; similarly in a measurement 

near the critical point, when on stirring the liquid surface flattens 

out and disappears, the same volume has to be assumed in the cal- 

culation as being filled homogeneously. The various uncertainties 

arising -from the sources mentioned show themselves in small ir- 

regularities in the results which were obtained. 

On the above grounds it is our intention in future experiments 

to return to the ordinary method of stirring notwithstanding the 

clumsy dimensions of the electro-magnet which it involves: the glass 
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capillary can then be taken very narrow, so that the influence of 

the diffusion will be imperceptible and the determinations of the 

volume will obtain greater accuracy. But the rule, that in a set of 

readings, after the condensation has once begun, no expansion must 

be applied, will always remain valid. 

Finally it may be remarked that, whereas air is, properly speaking, 

a ternary mixture of nitrogen, oxygen and argon, the amount of 

the latter gas is so small and its properties differ so little from those 

of the other two components, that a perceptible influence on the 

phenomena cannot be assumed and our mixture may thus be 

actually looked upon as being a binary mixture. 

Apparatus. The apparatus which we have used agree in the 

main with former apparatus in use in the cryogenic laboratory : we 

may therefore refer to previous communications (for the piezometer 

compare Comm. 69). Between the observation-tube and the com- 

pression-apparatus a steel three-way stopcock was inserted by means 

of which the apparatus could be connected with a separate reser- 

voir (pipette) filled with pure air: by this means, if required, measured 

quantities of air could be introduced into or removed from our 

piezometer; this arrangement was chiefly made with a view to 

density-determinations of liquid air at temperatures far below the 

critical, where the quantity present in the compression-tube would 

not have been sufficient. But as we were obliged to confine ourselves 

to experiments in liquid ethylene, there was after all no necessity 

for drawing on the pipette. 

The pressures were measured on a closed hydrogen-manometer 

(Comm. 78), a metal gauge being used as a control during the mea- 

surements. Two platinum-thermometers (Comm. 141a) served for 

reading the temperatures. The cryostat was described in Comm. 83. 

Critical point aud critical phenomena. As shown by the theory 
of mixtures a distinction has to be made between two different 

critical points: the “plait-point”, where the two coexisting phases 

become identical and where thus the critical phenomena will be 

most conspicuous and secondly, corresponding to a somewhat higher 

temperature, the “critical point of contact”, ie. the limit for the 

separation into two phases. In the temperature-range between those 

two points the condensation is “retrograde”, in this case of the first 

kind. We have succeeded in confirming these several theoretical con- 

clusions for air and have thus been able to show, that at these 

very low temperatures the phenomena are no other than what theory 

leads to expect. The experiments were far from easy, as the two 

points lie very close together, which is connected with the circum- 
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stance that the condensation-loop in the p—7’ figure turned out to 

be comparatively narrow. The plait-point was found at 

t — — 140°.73 p = 87.25 alm. 

the critical point of contact at 

t= — 140°.638 # p = 37.17 atm. 

The special kind of condensation which is characteristic of mixtures 

is thus confined to a range of .1°, and it is therefore necessary to 

make the compression proceed extremely slowly, if the observation 

is to succeed. High demands as regards constancy during a long 

period are thus made on the temperature and the success of our 

endeavours was no doubt due to the excellent appliances and arran- 

gements which are available for this purpose in the eryogenic laboratory. 

In order not to extend this paper unduly we shall not describe 

our observations in all detail. An exception may be made for a 

phenomenon which was observed at — 140°.64 and a pressure of 

37.26 atmospheres and which shows very clearly the extreme sensi- 

tiveness of the substance in the critical region to changes of tempe- 

rature and pressure. At the above pressure the surface between liquid 

and vapour was just no longer visible; by lifting the stirrer 

in other corresponding states in this temperature-range — a mist 

was produced which, however, in this instance did not simply dis- 

appear, but automatically disappeared and reappeared again a few 

times in succession with a period of about one second. Evidently 

by the upward motion of the stirrer, the air under it becomes slightly 

expanded and thus cooled, while at the same time some gas is driven 

into the higher, warmer part of the capillary. The increase of pressure 

produced thereby assists in driving the gas back into the observation- 

tube, by which motion the mist becomes dissolved. The conditions 

must have been such this time, that the phenomenon repeated itself 

a few times in succession. The slow periodic time makes it probable, 

that a movement up and down of the mereury-surface in the wide 

compression-tube was at the bottom of the phenomenon. *) 

It is worth mentioning, that more than once a blue opalescence 

as 

1) A vibration of the air in the small tube under the influence of its own elas- 

ticity would take place much faster and is, moreover, improbable, because the air 

is cooled during the compression and warmed during the expansion, whereas the 

condition for a vibration being sustained by supply and withdrawal of heat is 

exactly opposite. The closed reservoir at the end of the tube should be the warm 

part of it, as in the case of the well-known singing which sometimes takes place 

in blowing a bulb at the end of a tube. 
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was noticed, when the pressure was somewhat lower than that 

required to produce the cloudy condensation, and sometimes persisted 

during the stirring. By a rapid movement of the stirrer the opal- 

escence could as a rule be changed into a mist. Pure oxygen and 
argon do not seem to show opalescence. ’) 

Condensation-constants. Our results as regards temperature and 
pressure, are given in Table I and in Figure I. 

TABLE 1. 

t Pp | Po 

—140.63 | 37.17 | 31.17P. of C. 

— 140.64 | 37.12 37.24 

—140.69 37.02 37.26 

—140.73 | | 37.25 P. P. 

—140.74 | 36.99" ELK 
—140.75 36.86 

— 140.80 36.65 | 37.20 

— 140.80 36.70 

— 140.835 36.68 

—-140.85 36.75 37.18 

—140.89 36.57 

—140.99 36.35 

—141.35 | 35.24 | 36.49 

—141.99 | 34.58 

—142.35 | 33.91 | 35.31 

143.14 32.06 

— 143.34 | * 31.85 33.79 

—144.12 | 31.06 33.12 

144.35 | 32.52 

— 146.32 | 29.83 

— 150.12 23.68 25.04 

1) See Comm. 1455. 
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TABLE :2 
Densities. 

Temperature „Vapour Liquid 

— 140.63 0.31 043 PSol G: 

—140.69 0.323 

— 140.70 0.328 

—140.73 0:55 BP, 

—140.75 0.277 

—140.80 0.265 0.365 

—140.84 0.269 

—140.85 0.359 

~ —140.89 0.262 

—140.99 0.253 

—141.34 0.439 

—141.99 0.217 

—142.35 0.461 

—143.34 0.188 

—143.35 0.488 

144.35 | 0.503 

-—146.32 0.523 
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The points of beginning and of completed condensation which are 

contained in the Table were all determined with compression, as 

explained before; for the sake of accuracy the change of volume 
was conducted as slowly as possible. All the same the results show ° 

very distinct irregularities, which must find their explanation in the 
various grounds mentioned. ; 

The densities expecially must be accepted with some reserve: 
they are given in Table 2 (p. 1095) and Figure 2. The densities at 

the plaitpoint-and the point of contact were read from the figure. 
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Fig. 2. 

In comparing the plait-point of air with the critical points of its 

constituents (Comm. 1450), viz. —118°.82, 49.73 atm. for oxygen 
5 
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and —147°.13, 33.49 atm. for nitrogen, it appears, that the critical 

curve for the oxygen-nitrogen mixtures differs very little from a 

straight line. On a straight line a temperature of — 140°.73 would 

correspond to a pressure of 37.16 atm. whereas the plait-point pres- 

sure is 37.25 atm. The critical point appears to change approxi- 

mately proportionally to the composition in weight: tj, calculated 

according to the composition would be — 140°.56. PawrewskKr’s rule 

thus holds approximately for mixtures of oxygen and nitrogen. 

In connection with the very small distance between plait-point 

and point of contact, already referred to, a further conclusion may 

be drawn from this result. The latter fact involves that the critical 
temperature which air would have, if it condensed without change 

of composition, deviates very little from the two other critical 

points and that this temperature — the so-called critical temperature 

of the undivided mixtures — thus also changes proportionally to 
the composition, with a certain degree of approximation. If this 

proportionality held for the molar composition, we might, as the 

theory of mixtures shows, infer from this, that at low temperatures 
the vapour-pressure of these mixtures would change about linearly 

with the composition of the liquid’). Evidently with mixtures of 

oxygen and nitrogen this is not the case and in agreement with 

this Bauy’s experiments *) gave a vapour-pressure line which is very 

distinctly curved. 

The critical density of air calculated from those of oxygen and 

nitrogen, 0.43 and 0.31 respectively, according to the simple rule 

of mixtures by weight, is 0.34, a value which as the table shows 

is intermediate between the density at the critical point of contact 

0.31 and that of the plait-point 0.36. Assuming that the rule of 

mixtures would hold approximately for the mixtures of constant 

composition and that therefore the critical density of undivided air 
would be 0.34, a somewhat higher density might actually be expected 

at the plait-point. For the connodal curve lies entirely outside the 

saturation-curve for the mixtures of constant composition and on 

that curve the plaitpoint lies in this case on the side towards the 

smaller volumes or higher densities. The somewhat smaller density 

at the critical point of contact is also as might be expected. 

To Professor H. KAMERLINGH ONNes our sincere thanks are due 

for his continual interest in our research, many helpful suggestions 

1) Comp. e.g. J. P. Kuenen. Handb. ang. Phys. Ch. IV p. 126 1906. 

2) E C. C. Baty, Phil. Mag. (5) 49 p. 517 1900. 
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and for the way in which he enabled us to complete our investigation 
in the short time at our disposal. 

We also wish to thank Mr. J. M. Bureers for looking after the 

temperature readings, Mr. A. T. van Urk for assistance during the 

whole work and finally him and Mr. Cu. Nicaise for help in the 

calculations. 

Chemistry. — “On the distinction between methylated nitro-anilines 

and their nitrosamines by means of refractometric determi- 

nations’. (ID). By Dr. J.-D. Jansen (Communciated by Prof. 

Ernst COHEN). 

(Communicated in the meeting of February 24, 1917). 

In a former communication *) | called attention to the difference 

in optical properties between coloured nitro-compounds, as nitro- 

anilines and nearly colourless ones as dinitro-benzenes. In the first 

mentioned substances, the molecular-refractions of the isomerides 

showed great differences, whereas the molecular-refractions of the 

isomerides of the colourless compounds were nearly the same. 

This phenomenon proved to be closely related to the light absorp- 
tion. The first group of compounds (the coloured) showed absorption- 

bands in the neighbourhood of the kind of light chosen for the 

determination of the refraction. The refractive-indices and in connection 

therewith, the molecular-refractions of those substances were raised. 

This rise is not the same for the different nitro-compounds, because 

it depends on the place and the depth of the absorption-bands 

(anomalous dispersion). The colourless substances, the absorption- 
bands of which are situated far outside the visible part of the 

spectrum, showed no rise at all of the molecular-refractions or only 

a very slight one. 
By stating this fact we directed the attention to the molecular- 

refractions of the 2.5- and 2.3-dinitro-dimethyl-p-toluidines and the 

respective nitrosamines. 

Spec. Refr. M.-R. A 

2.5-dinitro-dimethyl-p-toluidine 0,2730 | 61,4 18 
7s ia ie 4 5 0,2649 [59,6 ” 
2.5-dinitro-tolyl-methyl-nitrosamine 0,2391 | 57,4 05 

2. Da Meee “ ad 0,2370 | 56,9 |’ 

1) Proc. Roy. Akad. Amst. 564 (1916). 
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The difference in molecular-refraction of the two coloured dinitro- 
dimethyl-p-toluidines nearly disappeared after substitution of a NO- 
eroup for a CH,-group in consequence thereof almost colourless 
nitrosamines are formed. 

Moreover the molecular-refractions of the nitro-toluidines prove 

to be considerably raised. That this is really the case, becomes more 

evident, if we pay attention to the fact that the molecular-refraction 
is obtained by multiplication of the specifie refraction with the 

molecular weight, the latter being greater with the nitrosamines than 
with the dimethyl-compounds. 

Though the difference in molecular-refractions of nitro-toluidines 

lies far above the experimental errors, it was not exceedingly high. 

Therefore T thought it of some interest to determine the molecular- 

refractions of nitrosamines, derived from isomeric nitro-compounds 
which showed a great difference in molecular-refraction. 

These nitro-compounds were chosen out of some dinitro-dimethyl- 

(diethyl) anilines mentioned already in a former communication. 

Spec. Refr. M.-R. A 
3.4-dinitro-dimethy l-aniline 0,2975 | 62,8 

Bo NS 6,2693 | 56,8 | ° 
3.4-dinitro-diethy l-aniline 0,3060 | 73,1 

Ene 0,2730 | 65,3 | °° 
The refractometric values of the respective nitrosamines appear to 

be as follows: 

Spec. Refr. M.-R. A 
3.4-dinitro-phenyl-methyl-nitrosamine') 0,2444 | 55,2 

Bogs uc y 7 F 1) 0,2337 | 52,8) 2+ 
3.4-dinitro-pheny l-ethyl-nitrosamine 0,2483 | 59,6 9 

BE 3 il 0,2380 |57,2| 2-4 
The difference in molecular-refractions of the isomeric nitrosamines 

is, just as in the above mentioned case, much smaller than that of 

the dimethyl-compounds. The molecular-refractions of the dinitro- 

dimethyl-anilines are much more raised than those of the dinitro- 

dimethyl-toluidines. Here, too, this rise is prominent with the specific 

refractions. The specifie refractions of the nitrosamines are between 

0,2483 and 0,2337 and those of the dinitro-dialkyl-anilines between 

0.3060 and 0.2693. In relation with these high values of the specific 

refractions of nitrated dialkyl-anilines and the low, little differing 

values of the nitrosamines, the refractometer (according to my opinion) 

1) The description of these compounds, and of some others will soon appear. 
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may be used as a valuable instrument (not yet put into practice) 

to determine if we have to do with alkylated-nitro-anilines (toluidines) 

or with their nitrosamines. Just as in the case of the 3.4-dinitro- 

phenyl-methyl-nitrosamine — a compound of whose characteristic 

behaviour we hope soon to give a description — the refractometric 

determination furnishes valuable data, because this compound has a 

yellow colour — nitrosamines are nearly colourless — and is moreover 

not easily to be identified as a nitrosamine by chemical researches. 

Utrecht. Org. Chem. Univ. Lab. 

Mathematics. — “Some Considerations on Complete Transmutation.” 

(Second Communication.) By Dr. H. B. A. BoCKWINKEL. (Com- 

municated by Prof. L. E. J. Brouwer. 

(Communicated in the meeting of October 28, 1916.) 

7. If we say that a transmutation of the form (1) 

7 a, (z) Tu =a, (#)u + —w+...4+ 
m! 

EL Oa ois SE 
n. 

is complete in a certain circular domain («) with centre w,, it does 

not imply that this domain (@) belongs to the given transmuta- 

tion as an invariable field; indeed, if 7 is complete in (a), it is 

certainiy also complete in a domain (a) << a, and probably in a 
domain (a!) > (a). Only the aggregate of functions which have in such 

a domain a transmuted determined by (1), is different for any 

new domain, such that the aggregate diminishes if the domain 

increases. If we want to make this more prominent, we shall say 

more fully: “the transmutation is complete in the domain (a) 

with corresponding domain (8), or something of the kind. As 6 

further increases and decreases monotonely with a, it is clear that 

functions with evactly the radius of convergence 2 have a trans- 

muted determined by (1) in any domain (a) < (a); the series con- 

verges for this wniformly in the domain (a’) (final paragraph N°. 4), 

Special attention should be paid to the fact that we call a trans- 

mutation only then “complete in a domain (a)” if it 7s im that domain 

determined by a series of the form (1) for all functions belonging toa 
certain circle (9). If this is not the case, the transmutation, which is then 

of course defined in another way than by the series (1), may produce 
a transmuted in the whole domain (a) for all functions belonging 

to (8), but this does not in itself give a reason to call it complete in 
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(«). In order to. make the difference clearer we give a few examples 
which, at the same time, are proper to dissolve another misunder- 
standing that may have arisen after the reading of the consideration 
in N°. 5 on exceptional cases. These exceptional cases consist in the 
fact that the series (1) for some functions not belonging to (8) pro- 
duces a transmuted in the whole domain (a), or, as we may say 
as well, that that series produces for some functions, which have 
exactly (8) as their circle of convergence, a transmuted in a domain 

greater than («). It occurs however frequently that the transmuted 

of a function w with a radius of convergence 8 exists anywhere 
within a certain circle greater than («), without being determined 

there by a series of the form (1). Y 

Consider the transmutation 

2 (lr aut 
Tu = Ym —— UD Ne ee rr Ka a Pes 

A mls ve 
« 

For domains («) with the origin as centre we have evidently 

a == ea, hence, 

Ot or e=4 

Yet the radius of convergence of v= Tu is not half of that of 

u but exactly equal to it, which becomes clear it is known that 

the transmutation (12) represents the operation D-!, the point 

x= 0 being taken as the lower limit of integration. The operation 

D=! is therefore a transmutation of such a kind that it produces a 

transmuted in the whole domain (a) for any function belonging to 
(a), but it is in that domain determined by a series of the form 

(1) only in so far as regards functions belenging to the circle 

(8) = (2a). The fact is that, with regard to the last mentioned 

functions, the circle ($8) for the series (12), which is not a power 

series in the letter v, forms the greatest circular domain of conver- 

gence, but not for the power series into which (12) may be trans- 

formed; this, however, is not at all unusual. From the transmutation 

oe antl 

ENE See Pe Mee nae KO) 

which is obtained from (12) by cancelling the alternation of signs, it is 

at once to be seen that it cannot produce this phenomenon so 

generally; it is clear that, in this case, for those functions u, 

70 
Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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which are identical with their natural majorants*) it holds that 

r= 4,7 and r are the corresponding radii of convergence of v = Tu 

and u. If we further take into account that for the transmutation 

(13) we have 

Tue tua = Due), 

it is to be seen that the same may be said of all functions u. 

The operation 

7 Ee 2m (m) a 

C= m EN Pay te wee aye 
(m +1)! : Gg 

in which a(a)= a’, and therefore 

=a =e, Or a= iV PLT = i, 

gives for majorant functions transmuted for which the corresponding 

radii of convergence 7” and r depend on each other as a and 8, 

but for the function 

=S ? 

14e 

for which » =1, a transmuted 
4 1 a? v 

fig Te 
se! ls o— 

or 

| 

ltete? j 

which also has 7’—1 as its radius of convergence, while, however, 

the series (14) only converges within a circle with radius 

e=1(V4X14+1—)N=}3(y5—1=—06... 
Here again the example becomes clearer by the meaning of the 

transmutation, which in this case appears to be a substitution, viz. 

FS ard) ee ene 

If in general 

LH Sula) ; 

we find in the memoirs of BourLeT and PINCHERLE 

1) J. TANNERY, Introduction à la théorie des fonctions II, N°. 343, under- 

stands by the natural majorant of another function, the one that is deduced from 

the first by replacing the coefficients in the development of its power series, in the 

neighbourhood of the origin, by their modulus. We shall, if there is question of 

the neighbourhood of an arbitrary point zo, understand by the natural majorant 
of u the function obtained from wu by replacing the coefficients for the point xy 
by their modulus. 
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ke} 
(wle) —a)m 

Sa) (U) = yn Soleil's ulm) (x) , 
mi! 

0 

a formula, whose correctness ensues at once from the ordinary 

theorem of Tarror for the theory of functions '). Evidently we have 

here a(@)=the maximum modulus of w (#)— on the circumference 

of a. If for the neighbourhood of «0, w(v)—w is a majorant 

function we have 

a (a) — w(a)—a 

consequently 

Si =o (0) 

All this holds endependently of the function to which S is to be 
applied. But the question, what is going to be the new domain of 

convergence does depend on it. For to that purpose the equation 

w (x) = red 

has to be solved for all values of 6 that are arguments of singular 

points of w on the circumference of (7) and to choose that solution 

for which w#—a, has the smallest modulus &; any circular domain 

round a, smaller than (&) in so far as it does not contain a singular 

point of the substitution function w(e) itself, is of such a nature 

that S ewists in the whole of that domain ; this domain therefore varies 

with the funetion considered. Thus for the transmutation (15), applied 

to the functions 

1 
i and). w= 

le? 14 

we have to solve resp. the equations 

ete, and ’+r=—1 

the former gives as radius of convergence of v= Tu the num- 

ber 4(VU5—1), in agreement with the fact that this w is a majorant 

function, the other the number 1, equal to the radius of convergence 

of the corresponding u itself. 
It may also occur that the transmuted of a function is not deter- 

mined in any neighbourhood of er, however small by a series 

of the form (1), though it ewists in all the points of such a 

neighbourhood. This happens when the circle of convergence of 

the funetion is smaller than the minimum circle (6), which still has 

the property that the series (1) produces a transmuted function in 

the point «, for all functions belonging to it. Take in the neigh- 
0 

bourhood of « =O 

1) Cf. No. 17. 
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Tu = 8,11 (u). 

Here a; = w(«)— «=1, consequently a=1. For the function 
1 1 

u— — ‚we have 7u— 
l+e 2+ 2 

the resulting function exists in every domain round «=O with a 

radius smaller than 2, while it is not determined in any small 

neighbourhood whatever by a series of the form (1), which is here 

oe —]\m+1 

7 lte 

That it is quite common if the transmuted function does ezist 

in some domains, but is not represented in it by a series of the 

form (1), appears moreover quite ciearly as follows: For a definite, 

given function the domain may be constructed once for all, where 

the series (1) produces anywhere a transmuted for that function as well as 

the domain where it produces nowhere a transmuted. Consider for 

this purpose all singular points s of the function and construct to 

each the set of points with the property that the value which the 

magnitude a, has there is smaller than their distance to s, and 

also the set of points where that value is greater than the 

distance in question. The latter set of points shall as a rule consist 

of continua round the singular points; in none of those continua 

the series will converge, but it is clear that in general the trans- 

muted of the function considered may be continued within those 

continua, except in a few points which may but need not 
coincide with the singular points. Thus in the transmatution (12), 

which answers to D-—!, and where a; == |z|, the domain of points 

where a, is greater than the distance to the point z=—1, is the 

continuum on the right of the straight line «= 4, and the series 

(12) does not converge in any point of that half plane for 

functions which only have the singular point z=1. The operation 

D-', however, which is represented by the series in the half-plane 
on the left of that line, exists moreover anywhere in the first mentioned 

continuum, except in a line starting from the singular point. In 
the example of the substitution S,4, which we gave last, we have 

A; —=1; hence a function with the singular point «= —1 has not 

in any point of a circular domain with that point as centre and 1 

as radius, a transmuted determined by (1). Nevertheless it has a 

transmuted function, except in the point #—W—2 of the circle 
mentioned (here the singular point has been displaced by the trans- 

mutation). For the substitution S,.) in general we have for the point 

«= 0,dr= |w(0)|. If therefore the radius of convergence of u is 

. 
’ 



1105 

smaller than |@ (0)|, the substitution is not in any arbitrarily small 

neighbourhood of O determined by a series of the form (1) *). The 
substitution S,4.2, however, treated above, for which w (O0) = 0, is 

expressed by such a series for any function w,with O as ordinary 

point in a certain domain round Q. For functions with the singular 

point a—-++1, the domain of the series (1) belonging to Se 

consists of the continuum within an oval which is symmetrical with 
regard to the real axis, and cuts it in the points 

e—=—t(V¥5 +1) ande«=}4(V5—1)... .« (16) 

This oval is obtained as the locus of the points where az or |." 
is equal to |v—1). The circle with radius 

4(y5—1)=—0,6... 

is therefore the greatest circular domain with O as centre where the 

series in question converges. The singular point «—1 is moved 

here to the two points (16), from which it follows that also for 

Snas self, the greatest circular domain of operation around O is the 

one with the radius 4(“’5—1), in agreement with what has been 

. If, however, the function 
— 

u has the singular point # == — 1, the domain of the series (1) is 

the continuum within an oval into which passes the first mentioned 

when it rotates 180° round the imaginary axis, so that the same 

circle as considered just now, with radius }(“’5—-1) forms the 

circular domain of that series round O as centre. But the singular 

point &=— 1 is moved to the intersections of the oval with 

the circle with radius 1, so that now the circular domain of 

operation of St, round QO, is that: same circle; we observed 

said above with regard to the function 

this above with regard to the function . In general the point or 
wu 

the points towards which a singular sot s of a function w is 

transposed, always lies, for the operation of substitution, on the 

circumference of the domain where the corresponding series con- 

verges. For, that circumference is determined by the equation 

lo (a) — al = |s—al, 
which is among others satisfied by the points for which 

we) = 8 

which exactly form the removed singular points. If a, lies in the 

domain where |w(v) —z | < | s — «!, the circular domain of operation, 

with centre x,, of the series of the form (1) corresponding to Sy, 

has a radius equal to the minimum distance of that point to the 
circumference; hence, if one of the removed singular points lies at 

1) Cf. further treatment of the substitution in N® 17, 
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that minimum distance from «,, the circular domain of S,,,) will be 

exactly the same as that of the corresponding series, at least in so 

far as regards functions with no other singular points than s. 

If we consider a group of functions belonging to the circle (1) 

with «, as centre, each point of this circle must in turn be 

considered as a singular point, and, if 2, always lies in the domain in 

which a, <|}s—a|, the minimum distance 7’ from z, to the aggregate 

of all the circumferences as mentioned above has to be determined ; 

(r’) is then the circular domain of operation of the series corresponding 

to 7’ for the functions in question, while the circular domain of opera- 

tion round z, for 7’ itself is in general greater, having a radius equal 
to the minimum distance of z, to the (possibly moved) singular points. 

8. In the considerations of the preceding number it was supposed 

that the transmutation 7’ had been defined in another way than by 

the series (1). It may, however, occur that we start from a series 

(1) as the definition of a transmutation. The latter then gives for the 

moment, for functions with a circle of convergence (9), a transmuted 

function only in the interior of the corresponding domain («). But 

the analytical continuation of the function v= Tu, now furnishes so 

to say at the same time the analytical continuation of the 
transmutation, so that the latter is also determined outside the 

domain («). The continuation thus considered however has to be 

repeated for each new function, while it would be desirable to 

have an analytical expression, which represents the results of the 
operation, at least for a complete sub-group of the functions 

considered, in a domain outside (@). 

In order to carry this out, a point wv, inside the circle with 

centre z, may be taken as a new centre and to that purpose a 

correspondence between quantities «@ and @' as was explained in 

N°. 6, may be established; the functions a, («), from the given 

series supply the means for it. Not for all the functions, however, 

belonging to (2) the series will converge in the new ‚domain («), 

so that this proceeding, in anticipation of an expression that we 

shall introduce in the next number, will always furnish an extension 

of the numerical field at the cost of the functional one. We observed 
the same in considering concentric fields: if a increases 3 does, i.e. 

the functional group shrinks. 

The consideration in the preceding number teaches, however, 

that in this way, even if only functions with one and the same 
singular point are taken in view, a whole field of points cannot 

be reached where the transmuted of those functions really exist. 
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This domain is, generally speaking, the same for all functions with 

the same singular points; exceptions apply to cases for which 

Bourrer’s theorem, does not hold as was indicated at the end of 

N°. 3. If, however, the result v= Zw has been continued analytically 

for one function w of the group, and if the same has been done 

with the results of certain operations that may be called the derived 

operations of 7, it is possible to indicate for all the functions 
having the same kind of singularity as u, a series containing the 

results mentioned as coefficients, and converging in parts of the 

excluded domain. If conceived in an opposite direction, this process 

produces an eatension of the functional field with conservation of 

the numerical one; it forms the proper analogon for the functional 

calculus of the “prolongement analytique” in the ordinary theory 
of funetions. (See further N°. 20). 

We observe, that a regular transmutation may only be continued 

in one way, as this is the case with a regular function. 

9. We will now discuss the question in how far the complete 

transmutation is continuous. 
Bourtet has called a transmutation 7’ continuous “si la limite 

de la transmuée d'une fonction est la transmuée de la limite de 
cette fonction” He explains this further by adding: “En d’autres termes 

si une fonction w(x, h), dépendant d'un parametre A, tend vers une 

certaine limite, lorsque A tend vers une certaine valeur, Tu (7, h) a 

aussi une limite, et lon a 

lim {Tu(#,h)) = T [lm a (@,h)\-. 

In this it is implied that all the functions to be considered may 

be obtained by attributing a definite value to the parameter / in a 

certain expression u (w, h), this value belonging to a certain compiex 

domain, in which 4 varies. It is however useful in connection with 

the character of the complete transmutation to make a somewhat 

more general supposition about the group of functions to which the 

operation is to be applied, more in accordance with (though not 

exactly equal to) the one to be found in the paper by M. Frécner 

“Sur quelques points du calcul fonetionnel” (Rendic. d. Cire. Mat d. 

Palermo, 22 (1906) p. 45 (N°. 70). 

Before, however, proceeding to a more precise statement of the 

nature of the group of functions in question we will make a few 

general observations, in which we have not specially in view the 

complete transmutation, but an arbitrary additive operation. 

That it is necessary to indicate very exactly the group of functions 

over which the operation is to be extended, is not mentioned by 
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Bourtet, but Prvcaerte continually draws attention to it, though 

the notion of continuity is not expressly treated by him. The latter 

speaks of a “champ fonctionnel”; we will also use this term and 

indicate the group of functions to which the operation is to be 

applied — the domain of the independent variable (function), as we 

might call it — by the name of functional field, abbreviated to F.F. 
By way of contrast-we will sometimes call a domain of the inde- 
pendent variable number 2 a numerical field, abbreviated N.F. Two 
such fields, an N.F. and an F.F. in which the transmutation has 

been defined, we call associated. Now the F.F. will naturally always 
be of such a kind that for the functions belonging to it a common 

domain of the independent variable number a is to be indicated in 

which they are holomorphic; it will even often occur that their 

being determined in a common domain serves as defining predicate 

of the group of functions considered. But the transmutation need 

not be defined in this whole domain, as appeared already in the 

preceding pages for the complete transmutation. We have therefore 

to distinguish between the domain of z-values in which the func- 

tions are determined, and that in which the operation is defined. The 

latter we shall call: the numerical field of the operation (transmuta- 
tion); abbreviated N.F.O.; the former we call the numerical field 
of the function, abbreviated N.F.F. In most cases first the numerical 
field of operation will be fixed, in which the results of the trans- 

mutation are to be considered, and then an associated functional 

field of functions having a transmuted function in tbe first men 
tioned field. 

As appears from the paper by Frécuer it is sufficient in order to 

arrive at the notion of continuity of an operation, that in the class 

of the elements to which it is to be applied, the notion “écart” 
of two elements may have been defined; we will use the 
word distance for it. We agree that we shall take into conside- 

ration only such domains as a N.F.F. as lie entirely in finite space. 

By this agreement the cases in which all the functions of the F.F. 
have an infinite circle of convergence are not excluded from 

the considerations; the agreement only means that in such a case an 

N.F.F. must be jived that lies entirely in finite space, and to which our 

statements will refer. We further suppose that each function sepa- 

rately is /imited in the N.F.F. This contrasts with what is found in the 

memoir of Frécuet, who considers as F.F. an aggregate of functions 
which are holomorphic within the same surface, but not limited 

(Le. N°. 70); it is, however, in agreement with our preceding conside- 

rations, in which we did not in general give statements about func- 
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tions that have the same circle of convergence, but about such as 

belong to the same circle. Moreover we need not use now the arti- 

ficial definition of Frécuer for the distance of two functions; we 

shall simply understand by it the maaz/muwm modulus of their differ- 

ence in the N.F.F. In the same way we mean by the distance of 
the results which the operation produces for two functions the 

maximum modulus of the difference of those results in the N.F.O. 

If we understand by a point of the F.F., a function wu, (#) with 

which the independent variable function u (ez) may be identified 

we can say that the notion of continuity only appears in limiting 
points, ie. in “points” w, («), which have the property that at 

an arbitrarily small distance of them — or in an arbitrarily 

small vicinity as we might say still “points” wu («) of the F.F. 

are found. As a rule all “points” of the F.F. have that property, 

in other words, there are no isolated “points” in the F.F. or: the 
F.F. is dense in itself. 

According to the classic definition of continuity an operation will 

be continuous, if, generally speaking, the distance between the results 

which it produces for two functions of the F.F., becomes smal/ 

with the distance of these functions themselves. More amply and 
exactly our definitions of continuity read as follows: 

1. A transmutation 7’ determined in a pair of associated fields 

is called continuous in a “point” w, («e) of the F.F. if there is cor- 

responding to each arbitrarily given number rt, however small, a 

number J, such that for all the values of 2 in the N.F.O. 

Tule) Tue) |<t 
under the single condition that 

| u (2) —u, (a) | <I 
for all the values of « in the N.F.F. 

2. A transmutation 7, defined as before, is called continwous 

in the F.F., if, according to the preceding definition, it is continuous 

in any point of the FF. 
3. A transmutation 7’, defined as before, is called wniformly con- 

tinuous in the F.F., if corresponding to any arbitrarily given amount 

t, however small, there is an amount d such that for any “pair of 

points” u, (w) and wu, (#) of the F.F. and for all z-values of the N.F.O. 

| Tu, («) — Tu, (a) | rt 

under the single condition that 

at, (a) — u, (2) | <d 
for all the values of zin the N.F.F. 

If in statements about the continuity of a transmutation we 
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want to draw at the same time our attention to its numerical field, 

we shall say for the sake of completeness: “continuous for, or with 

regard to or even in the N.F.O.” In using the preposition “in” it 

should be borne in mind that there is no question about a comparison 

of the results of a transmutation, for one and the same function, in 

a point of the N.F.O. and a numerical neighbourhood of that point; 
the notion of continuity of a transmutation merely refers to a 

comparison between the results for one and the same point of the 
N.F.O. in a “point” of the F.F. and a functional neighbourhood of 

that “point”. 
The form given here for the definition of the continuity of a 

transmutation corresponds to that of Caucny for the continuity of 

functions. Equivalent to it is the following form corresponding to 
that of Heine for the continuity of functions: 

A transmutation is continuous if the result v(#) = Tu («) in the 

N.F.O. approaches to v, (*) = Tu, (x), if the function w, («) in the 

N.F.F. approaches to u, (#). lt is meant by it that if u («) as the variable 

function is identified successively with the functions of a convergent 

sequence 
OLED IAN Cc) GP rt irl EA Ngee 

which all belong to the F.F. and in the N.F.F. uniformly approach 

to uw, (), the transmuted v (#) = Tu (x) is identified successively with 

the functions of a sequence . 
Sea Gc) EN esl (al ec 

which converges in the N.F.O. uniformly towards »v, (#), and that 

this happens for any suchlike fundamental series of functions uw, (2). 

10. It is of importance to observe now that the difference 

between the three cases of continuity mentioned in the preceding 

section is superfluous for additive operations, since the following 
proposition’ holds, which shows analogy with the well-known theorem 

of Heine from the theory of functions: 

An additive operation, which is continuous in only one point u, (x) 
of the functional field, is uniformly continuous in that field. 

Let J/, be the upper limit of the modulus of the function w in 

the N.F.F. It is to be derived then from the hypothesis that, 

corresponding to an arbitrarily given amount t, there is an amount 

J, such, that in an arbitrary point « of the N.F.O. 

Tu (x) — Tu, (#) | <x tif only M, —w eel J. 

Suppose 
aa) =a) i) 

then we have, from the additive property of 7’ 
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FP d(#)| <r, if Mory d, 

and this last result in which the initial function u, (w) occurs no 

more, says: Corresponding to any arbitrarily little amount t there is 

an amount gd, such that the absolute value of the transmuted of a 

function, in the arbitrary point z of the N.F.O. is smaller than r 

if the absolute value of that function itself is any where in the N.F.F. 
smaller than d, provided that function belongs to the F.F. consi- 

dered. Hence: if the distance between two functions u, and u, of 

the F.F. is smaller than d, we have in the whole N.F.O. 

Tu, (a), (a))| <r 
or, according to the additive property 

| Tu, («)—T u, (©)| <r. 

The proposition has thus been established. 

The expressions “continuous in a point of the F.F.” ; “continuous 

in the F.F.”; „uniformly continuous in the F.F.” can consequently 

be substituted for each other; as a rule we shall make use of the 

middle one. Or, if we want to direct our attention at the same 

time ot the numerical field, we shall use an expression like the 

following: The transmutation is continuous in the pair of fields 
considered. 

11. The mode of reasoning followed in the preceding proof suggests 

the observation that the discussions about the.continnity of an addi- 

tive operation may be simplified by using the following proposition : 

If an additive operation is to be continuous, it is necessary and 
sufficient that there is corresponding to any arbitrarily chosen number 
t a number d, such that in the whole N.F.O. 

Tul) 

under the single condition that 

MZ, 

Here M, denotes again the maximum modulus of « in the 

N.F.F. 
The condition contained in the proposition is sufficient. For, 

if it is fulfilled, and if the distance between two functions u, and 

u, of the F.F. is at most equal to d, the transmuted of their difference 

will, in absolute value, in the whole N.F.O. be at most equal to r and 

the same will therefore, according to the additive property of 7, 

be the case for the absolute difference of the two transmuted. 

The condition is necessary. If it is not fulfilled, this means 

that there exists a positive number r such that there is corresponding 
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to any arbitrarily given number Ò, a function d(z) in the F.F. for 

which af the same time 
M;<d and | TO(x,) | =r, 

the latter for some point rz, of the N.F.O. 

The operation 7’ can never be continuous now; from whatever 

initial function w,(“) we may start, corresponding to any arbitrarily 

given number 0 there is a function u(s) such that at the same time 

Mi Sa 20 and | Tu (a,) — Tu, (#,) | >t. 

In order to see this we need only choose for u the function 

u, (a) + Ò (we) and apply the additive. property of 7. 

We may also express the proposition of this number in connection 

with the second definition of continuity as follows: Jf an additive 

transmutation is to be continuous, it is necessary and sufficient 

that the function v(«)—= Tu(«) converges in the N.F.O. to zero, 

if this is the case with u(#) in the N.E.F. 
After these general considerations we return to the complete trans- 

mutation. 

12. We called a transmutation complete in a circular domain 

(@) of centre w,, if there exists a circle (y), concentric with («) 

and therefore also a minimum circle (8) determined by the for- 

mula (7), such that the series (1) by which the transmutation 

is determined, produces for all functions belonging to that 
circle a transmuted function in the whole domain (a). Thus, a 

transmutation, of which we say that it is complete in a domain (a) 
is in consequence of this without more determined in a numerical 

field of operation, viz. (a), while we may take as associated functi- 
onal field: any group of functions belonging to a domain (g) as 

meant just now, not smaller than (3). The numerical field of the 

functions is in this case the circle (g); the upper limit in this 

field of the modulus of a function wu of the F.F., which we have 

represented by J/, in the general considerations, is now equal to 

the maximum modulus M (9) of « on the circumference of (@). 

For the complete transmutation the following proposition of con- 

tinuity holds: 
A transmutation T, which is complete in a numerical field of 

operation («), ts continuous in any FF. formed by the functions 
belonging to a circle (©) greater than the domain (8) corresponding 
to (a). 

We suppose v —=g8 + d,(e <0). In the second part of the proof 

of the proposition in N°. 4 it was found that in an arbitrary 
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point « of the domain (a) the remainder fF, (7) of the series (1), 

after m: terms, satisfies the condition 

oMoe) (B—a+e\": 
Bm, (@)| < | tee 

€ J-—& B—a+d 

For the meaning of the letters we refer to No. 4. We can also 

write for this 

Rel <D X MO) 

nes eral 
d—e \P—a+d 

is an amount not depending on the chosen function w nor on 

the special point 2 of the numerical field of operation; as to the 

latter we remind of the uniformity supposition of No. 4, according 

to which corresponding to the arbitrarily given number e, an integer 

m: may be chosen, which is the same for all points a of the N.F.O. 

Let further G be an integer below which all quantities a, (z) with 

index m smaller than m-: remain in absolute value, then we have 

for each of those m-values: 

in which 

Am UI) oM(o) 

m! (9 — arti” 

and consequently 
| lj 

—~ Anu(m) 
| m ——|< EX M(), 

= m! 

in which “7 is again asnumber that does not depend on the function 

ebosen nor on a. We finally have in all points 2 of the N.F.O. 

| Tu @)| <W + EB) MQ). 
From this it follows that anumber d, corresponding independently of « 

to a given arbitrarily small number t — of which mention is made 
in the proposition of continuity of No. 11 — ean really be indi- 

cated; apparently we may write for it, 
. + T 

D+E 
The proposition has thus been proved. 

13. We observe that in the foregoing we have not proved the 

continuity of the operation in the F.F. formed by all the functions 

belonging to (8), but only this continuity with regard to the FF. of 

funetions belonging to a somewhat durger circle. But then for the 

first mentioned F.F. the proposition does not generally hold. Let us 

consider the operation for which 



and further 
dyn (a) = ad (mot 2) ors wee, 

if a is a certain positive constant. The value of a, is here equal 

to a, consequently constant, and we have 

Baa a. 

Let us consider, in the neighbourhood of «=O, a function wu of 

the form 

== +(1- Jot — )|- een u c E= By 7g B 41) ( ) 

in which c and y are positive constant values which are at our 

disposal. However we may dispose of them, the function « always 

belongs to 8) and its maximum modulus J/ (8), on the circumference 

of (3), satisfies the condition 

MAGA) 2605 “Sih ace Se 

For from the development of w in a power series 

ln A 53 eB 

=(intast | Gaal) 
which has merely positive coefficients, follows that w attains its maxi- 

mum modulus on the circumference of (8) for & =p, and in that 

point the form between brackets in the righthand member of (17) 

is smaller than 1. For the transmuted function of wu, in the point 

2a we now find after some calculation 

Tula Me oct 

n (841) 
or, if we take n <1 

c 
Jh —__-— 19 u («) = n@ai) (19) 

There now exists a certain positive number t such that there is 

corresponding to any arbitrarily given small number d a function u, 

belonging to (3), and for which the conditions 
M (8)<.d and | Lu(e)| it 

are at the same time satisfied. 

For, according to (18, and (19) we need only take in (17) 

J 

(6+1)r 

if the latter amount is smaller than 1, and else for some 

proper fraction. The condition of continuity, occurring in the propo- 

sition of N°. 11, is therefore not satisfied in the whole domain (a), 

and we observe moreover that for t even an arbitrarily great 

number may be taken. 

Gi, I= 
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Mathematics. — “On the nodal-curve of an algebraic surface’. 
By Dr. J. Worrr. (Communicated by Prof. Hx. pr Vries). 

(Communicated in the meeting of September 30, 1916). 

1. We consider a surface F of order n with a nodal curve A, 

and without any other singularity. Suppose that we represent # by 
means of a birational transformation on another surface /’*, in such 

a way that A passes into a non-singular curve A* of /’*, A* may 

then be one single curve or consist of two parts. The former occurs 

if the developable surface 2 of the pairs of tangent planes along 

A forms one whole, the latter if 2 consists of different parts. We 

shall occupy ourselves with the first case. The deficiency a* of A* is 

then equal to that of @, for the points of A* correspond one for 

one with the planes of 2. In whatever way F is birationally trans- 

formed into a surface in which A gets a non-singular curve as 

image, that image will always have the the same deficiency 2*. The 

value of 2* has been calculated by CreBscH in case of / being a 
rational surface, in other words, may be birationally represented 

in a plane. He finds a* = d(n—4) +1, in which d is the order 

of A*. This is deduced analytically. By means of a geometrical 

wording the proof is to be simplified. We shall start with this and 

then prove the proposition for an arbitrary surface, consequently 

also if it is not rational. 

2. Let F"(2,2,2,¢,)—=O0 be a rational surface of order n,, which, 

by means of the formulae 

or, 05. 5, 5) 

vr, Sane 5. 5) 

Ox, =——W (EE) 

Ov, Fahey 5. Ei 
‘ 

is represented in a plane /’*, in which §,, §,,§, stand for the homo- 

geneous coordinates of a point, while the /, are homogeneous functions 

of a certain degree ». Let / have no other singularities but a nodal 

curve A of order d, and let its image on /’* be one single curve 

A*, The plane sections C of F are represented as curves C* of 

order v, forming a linear system on /’*. The sections of / with 
the o? planes. passing through a point P represent themselves as 

the ew? curves C* of a net. The Jacobian J* of that net, locus of 

the’ nodus of the ov! curves provided with them contained in the 

net, is the image of the curve of contact / of the cone of contact 

1) Math. Ann. Bd. 1, bl. 270. 
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laid out of P at F. J is the section of / with the first polar surface 
of P, apart from A. From this it ensues that the sections + of F 
with arbitrary surfaces of order n—1 represent themselves as a 

system of curves =*, individuated by the compound curve A*+./*, 

As the fare of order », the order of A*-+J* is equal to (n— 1). 

J* (as jacobian of a net of curves of order v) is of order 3(~—1). 

Hence A* is of order 

(n—1) v—3 (rd) = vo(n—4) 3. 

The curves C* may have base points. If B, is an h-fold base 

point, in such a way that all C* pass A-times through Bj, the 
Jacobian J*, as is known, passes 34—1 times through 4,. The 

section of # with an arbitrary surface of order n—1 is represented 

on F'* as a curve 2, which is represented by a homogeneous 
equation of order n—1 in the /;, so that such a curve passes (n—1)h 

times through By. Hence A* passes (2—1)h—(8h—1) = h(n—4) +1 

times through Bj. The deficiency a* is easy to calculate now. We 

have viz. 

«== 4 fv (n—4) + 23 f (n—4) + 1} — J $1 (n—4) th (n—4) +1), 

in pa the summation extends over the various base points Bj. 

If we consider that the deficiency of a plane section C of F is 

equal to that of its image C* on #'*, in other words that we have 

L (pl) (vw —2) — $ Bh (h—1) = $ (n—1) (n—2) —d, 

we find 

a* — d(n—4) + 1. 

3. The above reasoning can be of no service if /’ is not rational, 

so that #’* is not a plane. Let /’” be a surface of order n, rational 
or not, with a double curve A of order d and without oi other 

singularity. Let u be the class of the developable surface 2 formed 

by the pairs of tangent planes along A and let & be the number of 

points of A, where the two tangentplanes coincide (pinch-points). 

Suppose that F has been transformed into another surface /’ by 

a birational transformation into another surface /’*, in such a way 

that A passes into one single curve A*. The plane sections C' of # 

are represented by curves C*, which form a linear system on f*. 

These C* may have base points B, so that they all pass / times 

through Zj. The sections of / with the oo? planes passing through 

a point P are represented by the curves of a net (C*). The curve 

of contact J of the cone of contact laid at / out of P is trans- 

formed into the Jacobian J* of (C*), from which it follows again 
that A*-+.J* is a curve belonging to the linear system |2*| formed 
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by the images of the sections of / with arbitrary surfaces of 
order n—1. Let us now for a moment suppose that A* belongs to 

a linear system on /* of which all curves pass as often though 

the different points Bj, as A*, and let A,* be a curve of that linear 

system. In that case A,* -+ J* is also a curve of |Z*|. Let us for 

convenience’ sake represent the number of intersections of two curves 

outside the points B, by placing the letters we have chosen for those 

curves, between brackets, we have 

[=*, A*] =[A,, A*] + [J*, A+). 
[A,, 4*] is called the “degree” g of the linear system to which 

A* belongs.') J rests in kJ u points on A, consequently 

Us, A*] =k +a 
= has d(n—1) nodes on A, therefore [>*, A*| = 2d (n—41). 

Hence, 
ACM CEES En NA TENEN 

We obtain a second relation if for a moment we make a parti- 

cular supposition: let there exist surfaces g”—* passing through the 

nodal curve A, consequently adjuncts of order n—4 of £. They 
intersect /#’ apart from A in so-called canonical curves K, which 

have the property of being represented on /’* as canonical curves 

K*, consequently, as sections of #* with adjuncts of order n*—4. 

Two properties of the canonical curves A we have to apply here. 
An adjunct g"—* forms with 3 planes an adjunct g"—! of order 

n—1. To gp” belong also the 1st polar surfaces of arbitrary points 

of space. So a K forms together with 3 plane sections C a curve 

of |J|. Consequently a A* forms together with 3 curves C* a J*, 
so that 

[K*, A*] + 3 [C* A*] = [J *, A]. 
The second property we want, we find by observing that an 

‘adjunct grt forms with 1 plane an adjunct ¢”—%. A gr intersects 

the plane of a C in a curve g”~—*, which passes through the d nodes 

of C so that outside it, it has moreover 2p—2 points in common 

with C, where p is the deficiency of C. Hence the canonical curves A 

intersect Cin 2»—2—n points, where n is the degree of the linear 

system of the C. But this holds good for any linear system of 

curves. *). Let us apply this to the system to which A* on F* 
belongs, we have then | K*, A*] = 2a*—2—g. 

Further is [C*, A*]— 2d, because C has d nodes on A, and 

1!) Cf. eg. F. Enriques, Introduzione alle Geometria sopra le superficie alge- 

briche. (Memorie di mat. e di fis. d. Soc. It. d. Se., Serie 3, volume 10, p. 14) 

2) F, Enriques, Introduzione, p. 64. 

71 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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[J*, A*] =k + 4, because J has with A & gu points in common, 
We find therefore 

Za*#—2—g94+ 6d=k4-pw. woe ew 2. (2) 

From (1) and (2) it ensues at once 

at —d(n— 4)+4+ 1. 

§ 4. The two particular suppositions we have made are super- 

fluous. Let A* not belong to a linear system of which all the curves 

in the points B, have the multiplicity A. For such an isolated curve 

A* a positive or negative integer g is always to be defined, which 

is called the virtual degree) of A*. An infinite number of linear 

systems may be construed, in such a way that A* is a part of 

curves belonging to it. Let |/*| be such a system and let A be a 
curve that completes A* into an £*. It may be seen to that there - 

are an indefinite number of such curves R*. They form then a linear 

system |/*|, the restsystem of A* with regard to |L*|. Let g, be 
the degree of |Z*| in other words the number of variable inter- 

sections of two Z*, and g, the degree of Rt. If now the A* also 
formed a linear system |A*|, then we should of course have, g being 

the degree of it: g, =g +9, + 2, where 7 represents | A*, R*]. 
For. gy sis [A* BART in whiche 4,* ‘and: \*\-are 

arbitrary curves of |A*| and |&*|. 
If A* is isolated then its virtual degree, by definition, is the 

number g determined by the equation g, = g + 9, + 22. 

This virtual degree g is independent of the choice of | L*|. We 

may further prove that we may calculate with it as if g were “the 

number of intersections of A* with itself”, independent of its posi- 

tive or negative sign. The formula (1) holds good if A* is isolated: 

in that case g represents its virtual degree. 

The same holds true of the formula (2), not only if A* is isolated, 

but also if no canonical curves exist. In all cases 22*—2—g is 

called the immersion constant of A* and is |.J*, A*] — 3|C*, A*]?). 

§ 5. If 2 consists of two different developable surfaces 2, and 

&2,, A* consists of two different curves A,* and 4,*, which both 

have the same deficiency 7 as A. A,* and A,* intersect each other in 

the & images, of the pinch-points on A. Without nearer determina- 
tions it cannot be said that the formula 2* = d(n—4)+ 1 holds 

good, because A* is degenerated. But it may be supposed that the 

1) F. Enriquss, Introduzione, p. 28. 
2) F. Sever, Il genere aritmetico ed il genere lineare, (Atti della R. Acc. d. 

Se. di Torino, vol. 37, 1901—2). 
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curve A,*-+ A,* belongs to a continuous system and in that case 

the curves of that system are of the deficiency 

amt—anatastk—lae2na2stk—l, 

And also if 4,* + A,* does not belong to such a system 2 a + 

i:—1 is called the virtual deficiency of this degenerate curve '). Let u, 
be the class of 2, and uw, the one of 2,. A = intersects A in 

its d(m—1) nodes. They are represented in d(n—1) pairs on /’* and 

of each pair one point lies on A,*, the other on A,*. Hence 

LE*, AT =[E* A,*] = d(n—1). 

And as | =*| = |A,* + A,* + J*|, we have 

d(n—1) = [A,* + At HIS AE =[A,* + A,* HJA AM 
Consequently 

d(nm—1) =a, tk+k + u,=9,+h +h 4+5p,. . . (1) 

where g, and g, are the virtual degrees of A,* and 4,*. 

The immersion constant 2%—2—y of A,* is equal to 

[J*, 4,*] ae [Cr A Ped 

hence 

ktwu,—3d=2a—2—4, (2) 

and glt SR EE gi) Nie PDS NE 

From (2!) it ensues 

ag ek SES lg tds ht tH 3a I. 
Consequently with regard to (1) 

2%+k—l=—d(n—4)4 1," 

The formnla «* =d(n—4)+1 holds consequently good if 2 

degenerates, provided the virtual deficiency is taken for a*. 

So we have this general proposition : 

The order of an algebraic surface that has no other singularity 
but a nodal curve A of order d, along which the pairs of tangent 
planes form a developable surface 2 of deficiency a*‚ is 

n*—|] 
n—=d + ET, 

? 

1) Cf. eg. E. Prcarp “Théorie des fonct alg. de 2 var.” vol. 2, page 106. 
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Zoology. — “On an eel, having its left eye in the lower jaw’. By 

Mrs. C. E. DROOGLERVER Fortuyn—van LEYDEN. (Communi- 

cated by Prof. J. BOEKE). 

(Communicated in the meeting of Februry 24, 1917). 

Through the kindness of Dr. H. C. Repere I obtained an eel in 

which the left eye was lacking in the ordinary place, while on the 

lower side of the head, somewhat to the left of the medial line, an 

eye was visible which externally was quite normally shaped. 

In order to find out whether this submaxillary eye was the left 

one and if so, how it had come to occupy such a curious position, 

and further whether it was also internally of normal structure, two 

series of transverse sections were made, one of the lower jaw and 

one of the remainder of the head. 

It appeared that the left eye had indeed been shifted downward, 

that the structure was quite normal and that a well developed 

optie nerve and strong muscles, attached to the sclerotic in the 

usual way, rendered it possible and even very likely that the eye 

had functionated. These nerve and muscles originated from the upper 

part of the head; the nerve came forth from the brain in the usual 

manner, perfectly symmetrically with the nerve of the right eye; 

the muscles proceeded caudally quite symmetrically with the muscles 

of the right side. Nerve and muscles however followed the normal 

way over a short distance only, they soon bent downward and 

descended through the head to the lower jaw, right through the 

buccal cavity along a stalk connecting the upper and lower jaws 

and situated just before the tongue. The nerve’ was surrounded by 

the four straight eye-muscles; the two oblique ones were situated 

orally of the first-mentioned complex of muscles and nerve. 

From this stalk the whole complex proceeded downward right 

through the lower jaw to the place where the eye was found. 

Besides nerve and muscles also a blood-vessel descended, which 

entered the eye together with the nerve. 

Of the bony roof of the mouth, which this complex of muscles 

and nerve had passed, the entopterygoid, lying between the paras- 

phenoid and the palatine, was laterally and posteriorally shifted, so 

that it no longer bordered on the parasphenoid. A muscle, the 

arco-palatine adductor muscle, was much lengthened .and behind the 
muscle-nerve complex bent from the entopterygoid to the parasphenoid. 

For the rest little change had occurred in the upper part of the 

head. The place where the eye should have been, was filled up with 
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connective tissue, except a small pit. The tongue was shortened 

and the copula of the hyoid arch strongly compressed, probably on 

account of the stalk which proceeded exactly in front of the tongue. 
In the lower jaw the genio-hyoid muscle was also strongly compres- 

sed on the left side; otherwise here also little change was noticed. 

What may have been the cause of the abnormal growth and how 

ean this condition have developed? On the former point we must 

remain entirely in the dark. As to the second we may start from 
two suppositions: 1. the eye has descended in a full-grown condition ; 

2. the eye-vesicle already deviated from the ordinary ‘course when 

evagination from the brain took place and has developed to an eve 

in an abnormal place. In my opinion the first supposition is impossible. 

For the changes brought’ about in the head point out that it is 

the eye which chose its course and that the shifted bones and muscles 

adapted themselves to the abnormal condition which they found 
when being formed. If it were the eye that had deviated after the 

bones had developed, not the entopterygoid would have been 

displaced, but the muscle-nerve complex would have grown along 

the bone. Moreover it is not likely that the tongue would have 

been compressed after developing, but that it developed after the 

eye-stalk had formed and so was impeded in its growth. Finally it 

is difficult to understand how with a full-grown eye the cornea 

would have participated in the descent. 

Assuming the second supposition, namely that the eye-vesicle 

already deviated from its normal course when it evaginated from 

the brain, we must, in order clearly to understand the process, 

consider how the condition of the head was when the eye first 

originated. For Muraena Prof. Borkn gives us important data on 

this point. (Die Entwicklung der Muraenoiden, Petrus CAMPER, 

Vol. II, 1903). At the time of the evagination of the eye-vesicles 

also the infundibulum is evaginated ventrally. Before it lies the 

so-called anterior mesodermic mass, a coalescence of mesoderm and 

entoderm, according to Boeke. It consists of a thickened cell-mass, 

proceeding in two wings on both sides of the brain, and of a 

one-layered tongue bordering on the periblast. At a later stage the 

thickened mesodermic mass coalesces with the ectoderm, while the 

lower tongue curves round and coalesces with the intestinal 

epithelium. 

The ectoderm invaginates and grows towards the entoderm of the 

intestine; afterwards the buccal cavity is formed in it. 

The two lateral mesoderm streaks of the head originally form a 

solid mass ventrally of the evaginating eye-vesicles. Later in these 
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streaks cavities arise and according to Borkr they are transformed 

into true somites. After the stalks of the eye-vesicles have been formed, 

cells grow from the wall of these somites against the capsule of 

the eye-vesicles in order to form the eye-muscles. Borke observed 

that the musculus obliquus superior and the musculus rectus externus 

originate from the wall of these somites. The same has been observed 

by Miss Prarr in Selachians for all eye-muscles. 

How shall we imagine now that all this took place in our abnor- 

mal eel, related to the Muraena? When the eye-vesicle evaginated 

it probably did not grow laterally, but forward and downward. It 

reached the anterior mesodermic mass, which it pierced in growing 
in a forward and downward direction. It passed the place where 

entoderm and ectoderm grow towards each otber and finally came 

to lie against the ectoderm, more particularly the ectoderm from 
which later the skin of the lower jaw is formed. This latter reacted 

on it by forming a lens and a cornea, which is in itself very 

remarkable but not impossible, since the experiments of SPEMANN, 

Lewis and others have shown that at any rate in Amphibians 

lenses may be formed from the ectoderm in very unusual places. 

It still remains to be explained how the eye-muscles found their 

way towards the eye in the lower jaw. This will also have happened 

at a very early stage in the development of the eye, immediately 

after the formation of the stalk of the eye-vesicle. This latter had 

then been little shifted aside yet. The cells derived from the wall 

of the somites of the head then laid themselves, as in ordinary 

cases, against the capsule of the eye-vesicle and were carried along 

its unusual course through the anterior and inferior part of the head, 

while as in a normal case they developed to muscles. 

Leyden, February 1917. Histological Department of the 
Anatomical Cabinet. 
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Mathematics. — “Two null systems determined by a net of 

cubics”. By Prof. JAN pe Vries. 

(Communicated in the meeting of January 27, 1917). 

§ 1. A net [c°l of ecubics determines on an arbitrary straight 
line f an involution /,? of the third order and the second rank. 

This involution possesses three groups, in which the three points 

have coincided; f is therefore stationary tangent for three cutves 

c*. If the three points of inflection are associated tof as null points 

F, a null system N33 arises. For in the pencil (c’), which has a 

point /’ as base point, three curves occur, on which /’ is point of 
inflection; each point has therefore three null rays. In this null 

system we shall indicate the null rays by 7, their null points by J. 

The above mentioned /,? has further a neutral pair of points, 

consequently two points forming with any point of / a group of 

the /,°. This pair is of course formed by two base points of a 
pencil included in |[c*]|. If these two points are considered as null 

points B of fb, a null system Ngo arises; for to any point B 
are associated in that case the remaining eight base points 5* of 

the pencil (c°) determined by B, so that B is null point of eight 

null rays ’). 

§ 2. If ¢ is made to revolve round a point P, the three null 

points / describe a curve (P)°, which passes three times through P. 

Through P pass 18 tangents ¢, which touch the curve elsewhere. 
The /,? on ¢ has moreover a neutral double point in the point of 

contact D; for the coincidence of two triple points always goes 

together with the coincidence of the points of the neutral pair *). 

1) If c3 has 7 base points this null system is replaced by an N1,2. Cf. my paper 

“Plane linear null systems”. (These Proceedings XV, 1165). 

2) If the involution is represented by 

a @,0, Haler, desta) Febre, da) =0, 
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As D represents two coinciding base points, there is a c*, which 

has D as node; the locus of the points D is the curve of Jacobi 
of the net, A‘. 

The 18 tangents ¢ are at the same time tangenis out of P to the 

curve (/)'", determined by the null system sg» and possessing an 
octuple point in P. 

The curves (P)' and A* have besides the 18 points of contact 

of the straight lines 7, moreover 18 points D* in common. Evidently 

PD* is one of the tangents d,d' in D* at the c?, which bas D* as 

node. The nodal tangents of the rational curves of the net envelop 

therefore a curve of the 18" class *) (curve of ZrUTHEN). 

The pairs of tangents d,/’ determine on a straight line / a 
symmetrical correspondence [18], which has double coincidences in 

the 6 points D lying on /. The remaining coincidences arise from 

tangents in cusps; the net, therefore, possesses 24 curves with a 

cusp. . 
Let us moreover consider the correspondence (36, 18), which is 

determined on / by the straight lines ¢ and d. Here too the 6 points 

D lying on / are double coincidences; the remaining 42 arise from 

straight lines ¢, which have coincided with one of the nodal tangents d. 

In the corresponding point D=— 4° the curves of a pencil (c°) have. 

evidently three coincided points in common. 

The net consequently contains 42 pencils, the curves of which 
osculate each other. 

$ 3. If a point / is made to describe the straight line p, its null 

rays envelop a curve (p)' of- class six, which has p as triple 

tangent. The two remaining null points of 7 will then describe a 

curve a, the order of which we can determine by investigating 

how many points it has in common with p. To them belong in the 

first place the 6 points D lying on p, for on the base tangent ¢ 

belonging to D, the point D represents two points /. a has further 

evidently nodes in each of the three null points of p; it is 

consequently of order 12. 

the triple points are found from 

wi 3d 1+ Jhr = 0; 

the neutral points from 

©, + a(e,+2,)+ 6=0 and aa,e, + ble, +) = 0. 

They coincide if 5 =0; but in that case two triple points have coincided in « = 0. 

1) If to each point D the two tangents d,d’ are associated a correspondence 

(1,2) arises between the points of Af and the tangents of (d)!5. From the formula 

of correspondence of ZeurHeNn we find then that (d)!* is of genus 31. 

72% 
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From this it ensues that the curves (p)' and (q)*, indicated by 

the straight lines p and q, have 12 tangents 7 in common, on which 

every time one null point lies on p, the other null point on q. 

Moreover the three null rays of the point pg are common tangents. 

The remaining 21 common tangents can only arise from figures 

c? composed of a conic c° and a straight line s. The number of 
those figures amounts therefore to 21. The 21 straight lines s are 
singular rays of N33; for each point of s is to be considered as 

point of inflection /, consequently as null point of s. 

The curve (p)° is of order 24, is therefore intersected in 18 points 

by its triple tangent.. For each of those points two null rays 7 

coincide; the points that have this property form therefore a curve 

y'*. On this curve lie of course the 24 cusps and the 42 triple 

base points B®) (§ 2). . 

§ 4. The straight lines s are at the same time singular null rays 

for the null system Ng». For on s the net curves determine a cubic 

involution, of which each group confains three base points belonging 

to one and the same pencil. For each of the four coincidences D 

of this /, s is a base tangent ¢; these points, therefore, lie on A’. 

The remaining intersections of s and A* are found in the nodes of 

the figure (c’,s). 

If the base point B describes the straight line p its eight null 

rays envelop a curve (p)"*, of class 10, with bitangent p. At the 

same time the base points B* associated to B describe a curve of 

order 8, 2°, which has the two null points of p and 6 points D 

in common with p. From this it ensues that the curves (p)'° and 

(q)* have eight tangents in common, which each possess one null 

point on p and the second null point on g. Those curves have 
moreover the eight null rays of the point pq in common. The 

remaining common tangents are procured by the 21 singular null 
rays s; they are consequently bitangents of the curve (p)’®. 

From this it ensues that (p)'° is of order 90—22 2 or 46, so 
that p contains 42 points B, for which two of the associated base 
points B* have coincided in a point D. The groups of seven base 
points, which are associated to the double base points J, lie therefore, 

on a curve of order 42; it is the branch curve B** of the involution, 

the groups of which consist of 9 base points of a pencil (c®). This 

result may also be arrived at by the following consideration. The 

curve „° has with A*. six points of the line p in common; the 
remaining 42 intersections of those curves are double base points 

D, for which one of the associated base points lies on p. 
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The curve p** touches A° in each of the 42 triple base points 

B®); for such a point may be considered in two ways as coincidence 
of a double base point 5°) with one of the base points associated 

to it. The temaining intersections of 3** and A° form 84 pairs of 

double: base points. The net contains therefore 84 pencils, each 

possessing two base tangents t, of which the curves c’, therefore, 

touch each other in two base points. : 

§ 5. The curve (4), enveloped by the base tangents tf, is, as well 

as A°, of genus 10; its singular tangents must therefore be equiva- 

lent to 126 bitangents. They are evidently represented by the 21 

singular rays s, which are quadruple tangents of (/)'8. The order of 

('* is consequently 54. 

If a point / is made to describe the singular straight line s, its 

null rays # envelop a curve (s); for the intersections of s with a 

eurve (P)*° send each a null ray through P. But through each point 

of s pass. but two other null rays, as s is null ray to each of its 

points. Consequently s is quadruple tangent of (s)°, and s contains 

four points S, for which two null rays coincide with s. 

Analogously is s quadruple tangent of the curve (s)'°, which is 

enveloped by the groups of six null rays 6 belonging to the points 

B of s (two of them always coincide with s). The four points of 

contact of s are easily indicated: they form the two pairs of base 

points, which are associated in the /, to the nodes of the figure 

(c’, s). For through each of those nodes D passes a base tangent 4, 

for each of the base points lying on s and belonging to D three 

null rays 5 have consequently coincided with s. 

The two base tangents ¢ just mentioned are at the same time 

common tangents of (s)° and (s)'*; the remaining ones are repre- 

sented by s (which replaces 16) and by the remaining 20 singular 

null rays which are bitangents of (s)*°. 

§ 6. We shall now suppose that all the curves of [c*] pass through 

a point S. The net then contains a curve 6*, which has a node in 

S and determines with every other c° of the net a pencil, the curves 

of which touch each other in |S. Any straight line passing through 

S is therefore a base tangent of a pencil, and d® is the locus of the 

groups of seven base points belonging to S. A° too has a node in S. 

The variable base points B now form a null system N72, which 

has a singular point in S. For, any straight line 5 passing through 

S contains two null points: the point S and the third intersection 

of 4 with d°, 
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At the same time S is singular point for the null system N33, 

for any straight line passing through S is a stationary tangent for 

a c*, which has S as point of inflection. 
If a straight line h is made to rotate round 7, its null points B 

describe now a curve (/)’, with septuple point P, which evidently 

passes through S. Through P pass now only 16 base tangents ¢; 
they are also tangents at the curve (P)’, which is determined by 

N33. But P must lie on 18 tangents of (P)' (§ 2); bence PS replaces 

two of those tangents, and is consequently stationary tangent, with 

S as point of inflection of (P)°. This is confirmed by the observa- 

tion that (P)* and (P)’ have in P 21, in the points of contact of 

the 16 straight lines ¢ 32 points in common, so that they must 

intersect in S. In consequence of this the possibility that (P)° should 

have a node in S is excluded. 
The null rays 4 of the points of a straight line p now envelopa 

curve of class 9, which has p as bitangent. Let us consider the 
tangents it sends through S. Three of them are indicated by the 

points that p has in common with d*. The remaining six must be 

component parts s* of eompound figures c°. Of the 21 straight lines 

s, sie pass consequently through S. On each of those six straight 

lines the net determines an involution /, of associated base points 

B, B*; such a singular straight line is consequently simple tangent 

of (p)*, while the remaining singular straight lines are now also 

bitangents. ; 
The curves (p)’ and (q)’ have consequently in common the 7 null 

rays of the point pg, the 8 null rays, which each have one null 

point on p, the other on .g, the 6 singular null rays s* and the 15 

singular null rays which are bitangents for the two curves. 

§ 7. If the net has two base points S, and S,, their connector 
is really component part of a figure (c’,s), consequently singular 

for N33, but not a singular null ray of Nez. Each of the two 

singular null points S,,.S, bears 5 singular null rays s, and the null 

systems Ve. and N33 have moreover 10 singular null rays s. 

Let us now suppose that the net has / base points S. The variable 

base points B of the pencils (c°) determine a null system Ns 7,2. 
Each singular point S bears (7—A) singular null rays s*; for of the 

(10—%) tangents which the curve (p)!®-* sends through S, three 
are again indicated by the intersections of p with the curve c’, 

which has a node in S. The straight lines that connect the points 

two by two, are not singular for Nsg—z2 (they are for N3,s). The 

number of singular null rays s, therefore, amounts to 
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21 —k (7—k)—4k(EK—1) or 4 (T—A (6—/DM. 

These straight lines are bitangents of the curve (pl, 

The following table contains for the null system Ns 2 the number 
of singular null points, the number of singular null rays s Ear 

an /, of null points) and the number of singular null rays s* (con- 
taining an J, of null points). 

k Ss Cs 

DER re 0 

1 15 6 

2 10 10 

3 6 12 

4 3 Iz 

5 | 10 

6 0 6 

i 0 

The curve (P)!-& has an (8—A)-fold point in P, consequently 

lies on 2(9—4%) of its tangents ¢ The base tangents, therefore, 

envelop a curve of class 2 (9—A). 

The curve (P)®, belonging to N33, has in each of the / singular 

points S a point of inflection, with stationary tangents PS ($ 6). 

§ 8. The net [c°] distinguishes itself from a general net [ec] in 
this, that in the latter no figures appear composed of a straight line 

and a ct, In connection with this the null system NM3 3,2), which 

is determined by the points of inflection, has in general no singular 

rays. 

If the point / is made to describe the straight line p, its null 

rays 2 envelop a curve of class 3 (n—l1). The curves belonging 

to p and q have besides the three null rays of the point pg, more- 

over (97? —18-+- 6) tangents in common; they are here the null 

rays 7, which have one null point in p and another in g. Their 

number is therefore at the same time the order of the curve a 

described by the null points of the straight lines 7, of which a null 

point lies in p. 

The intersections of aw with p form three groups. In the first 

place each of the 3(m—2) null points of p is a (3 —-7)-fold point 

of a, A second group consists of the intersections of p with the 
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curve A of Jacopi, which is of order 3(n—1). The third group 

consists of (18 n—-33) points, where a c” has four consecutive points 

in common with its tangent. From this it ensues that the paints of 

undulation of a net form a curve of order (18 n—33). *) 
The curve (P) is of order 3 (n—1) and has a triple point in P; 

through P pass consequently (9n*—21 7) of its tangents. They now 

form two groups: the first consists of base tangents f, the second 

of tangents wu in points of undulation. 

(P) now intersects the curve A in 3 (n—1)(2n—8) points D, 
of which one of the two tangents passes through P (class of the 

curve of ZEUTHEN)*), consequently in 9 (m—1)’? — 3 (n—1) (2 n—3) 

or 38n(n—1) points D, for which the base tangent ¢ passes through P. 
From this it then ensues, that P lies on (6n?—18n) tangents 

u. The four-point tangents, therefore, envelop a curve of class 

6 n (n—3). *) 

Mathematics. “On a Representation of the Plane Field of Circles 
on Point-Space’. By Dr. K. W. Warsrra. (Communicated by 
Prof. JAN DE VRIES). 

(Communicated in the meeting of January 27, 1917). 

$ 1. The circles in the plane YOY are represented by 

CX 4 Y* — 2aX — 2bY¥Y He=0. 

If we consider a, b, and c as the co-ordinates wv, y,z of a point, 

a correspondence (1, 1) is obtained between the circles of a plane 

and the points of space. The image of a circle is obtained by 

placing a perpendicular in the centre on the plane and by taking 

on it as co-ordinate the power of the point O with regard to the 
circle. 

For the radius we have 7? = a? + 6? —c. 

Cireles with equal radii are therefore represented by the points 

of a paraboloid of revolution, with equation #? + y? —z=7". 

The images of the point-circles lie on the limiting surface G, 

a + y* = 2, 
a paraboloid of revolution, touching the plane NOY in O. 

§ 2. A pencil of circles is indicated by C, + 4C,;=0. For the 
circle à we have 

1) Another deduction of this number is to be found in my paper: “Character- 

istic numbers for nets of algebraic curves”. (These Proceedings XVII, 937). 

2) Cf. my paper ‘On nets of algebraic plane curves”. (These Proc. VII, 633). 
5) These Proc. XVII, 936, ; ; 
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(DA) asa, Fha, (1 + A) b=}, + Ab, (1 + Wee, 4-ae, 

From this we find for the images 

vd, Vs 2 

tn Vy Yan eg tee 
A pencil of circles is therefore represented by a straight line. 
Its intersections with G are the images of the point-circles of the 

pencil. The point at infinity of the line represents the axis of the 
pencil. 

A tangent at G is the image of a pencil of circles of which the 

limiting points have coincided; any two points of a tangent are 

therefore the images of two touching circles. 
This may be confirmed as follows. Let d be the distance of the 

centres of two circles with radii rand 7'; we have then d= r + r' or 

V(a—a’)? + (bb =V ae Hb — ce 4 Va? — bd. 

After some reduction we find for the images 

z+ 2'\? 
: )=e Hayter + y? — 2), 

which relation expresses that the images lie on a tangent of (@. 

Wid 2! wv 

~§ 3. A net of circles is represented by C, + 4C,-+ uC, = 
From this it ensues for the images 

(l4+ 2+ u)e=—2a, + de, + ua, etc. consequently 

| 2 
A a A 

Re ees OSE Ss geen e 
A net of circles ús therefore represented by a plane. 
Plane sections of G have circles as horizontal projections. For 

the section of a+ y? =z with e= ar + By 4 y has as projection 
the figure represented by «# + 4° — aa — By — y= 0. 

The point-circles of a net of circles lie therefore on a circle; this 

proposition is reversible. 

The net that corresponds to z == ar + 8y + y, has as equation 
X*? + Y? — 2aX — 2bY + (aa + Bb + y)=0, 

where a and h are variable parameters. If we write for this 
X?+ Y?+a(a—2X)+b0(@—2Y)4+y=—0, 

it appears that all circles have in the point Gea, 4) equal power 
4 (a? +3) Hy; this point is the centre of fhe circle that 

contains the point-circles of the net. 

To a tangent plane of G corresponds a net of circles that’ pass 

through a fixed point. For, to 27,7 + 2y,y=z-+ 2, corresponds a 
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net of which all the circles have in (w,,y,) the power z,° + y,? — z,=0. 

Two pencils of circles are in general represented by two skew 

straight lines. If, however, they have a circle in common their 

images lie in a plane and their four point-circles lie on a circle; 
the pencils belong to a net. 

§ 4. For two orthogonal circles we have d? =r,° + r,°, so 

(a, —a;)" al (b,—6,)’ = (a;*--6,°—+,) > Cae a, 

2a,a, + 26,6, =c, + ¢,. 

For the images we have consequently 22,7, + 2y,y, = 2, + 2,, 

i.e. the images of two orthogonal circles are harmonically separated 
by the limiting surface. 

To the connection between pole and polar plarfe corresponds the 

fact that all circles intersecting a given circle orthogonally form 

a net. 

To the relation between two associated polar lines corresponds 

the fact that pencils of circles may be arranged in pairs, so that 

any circle of a pencil is intersected orthogonally by any circle of 

the other. 5 
To a polar tetrahedron corresponds a group of four circles that 

are orthogonal in pairs. (Of them only three are real). 

or 

§ 5. If the circle C intersects the circle C, diametrically we 

have @ —7r*? — r,? or 
(a,—a)? + (6,— 6) = (a#+-6?—c) — (a,?+6,?—¢,). 

We consequently have for the images 

2x x = 2y iY TI 2,” = 2y,° ae i" 

The circles that intersect a given circle diametrically form a net. 
According to §3 this net has as radical centre }¢—=.2,,;8=%, 

i. e. the centre of C, (which was to be expected), and in that point 
2 

2 

the power 2, — 27, y= TE 

§ 6. The circles touching at a given C,, have their images on 

the enveloping cone of G, which has the image of C, as vertex 

$2). Three enveloping cones have, eight points in common; they 

are the images of eight circles which touch at three given circles. 

The circles touching at two circles C, and C, are represented by 

a twisted curve of of the fourth degree, a net of circles conse- 

quently contains four circles that touch at C, and C,. The enveloping 

cones that have the images of C, and C, as vertices touch at G 
along conics that have two points in common, viz. the images of 

the intersections of C, and C,,. 

me he ee 
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The intersections of 9* with a tangent plane of G are the images 
of four circles passing through a given point and touching at C,, 

C, (§ 3). 
The circles touching at a given straight line are represented by 

a cylindrical surface that envelops G and of which the straight 
lines are perpendicular to the given straight line consequently 
parallel to the plane XOY. 

Mathematics. — “A Quadruply Infinite’ System of Point Groups 

in Space’. By Dr. Cus. H. van Os. (Communicated by Prof. 

JAN DE VRrES). 

(Communicated in the meeting of January 27, 1917). 

Let a pencil (a°) be given, consisting of cubic surfaces a®. An 

arbitrary straight line / is touched by four surfaces a° of the pencil. 

As the space contains oo* lines /, there are oo“ groups of four points 

of contact. We shall indicate this system of groups of four points by S*. 

§ 1. If we take for the line / a line g lying on one of the sur- 

faces a°, the four surfaces mentioned coincide with this surface a’, 

while the points of contact become indefinite. These straight lines 

g are therefore singular lines of S*. They form a ruled surface 2, 
of which we shall determine the order. 

A line g intersects a second surface a* in three points lying on 

the base-curve 9° of the pencil (a*); the lines g are therefore trise- 

cants of the curve @°. If on the other hand we consider a trisecant 

of 9’, the surface a’, which passes through an arbitrary point of 
this trisecant will have four, consequently an infinitely great number 

of points in common with it, so that the trisecant is a straight line y. 

Through an arbitrary point pass 18 bisecants of 9° *), the genus 

of o° amounts consequently to 4 X 8 x 7—18 = 10. If we therefore 

project the curve o’ out of one of its points, we get as projection 

a curve of order eight with 5 X 7 X 6-10 = 11 nodes. Through 

the said point pass therefore 11 trisecants of 0’, so that the surface 
R has the curve o° as 11-fold curve. 

A surface «@ intersects the surface R along the curve ¢" and 

according to the 27 straight lines g lying on a’, the order of R 

amounts to 42. 

§ 2. Any line / passing through a given point P contains one 

1) Cf. e.g. ZeuTHEN, Lehrbuch der abzählenden Geometrie, page 46. 
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group of S*; these groups of four points form a surface 1. If we 

take for the line / a line that touches the surface a’ passing through 

P in P, one of the points of the associated group will lie in P. 

The surface 77 passes therefore through P and touches there at the 

surface a’ passing through P, because the tangents of WZ in P are 

also the tangents of @ in P. The surface 11 has therefore a single 

point in P. Any line / passing through P has therefore with 7 _ 

five points in common. This surface is therefore of order five. It 

is easy to see that it is the polar surface of P with regard to the 
pencil (a’). ¢ 

If the line 7 passes through a point Q of @°, two of the surfaces 
a’, which touch at /, will coincide into the surface that touches at 

lin the point Q; the associated intersections of / and JI conse- 
quently coincide also. The surface 11 therefore passes through 9° 

and touches along this curve at the cone which projects 9’ out of P. 
The lines /, for which one of the points of the group of four 

points lying on it lies in P, are the tangents in P of the surface a’ 

passing through P. The locus of the remaining points of these groups 

is obviously the intersection of the surface // with the tangent plane 

in P, so a curve of order jive, which has a node in P. 

§ 3. If a line / intersects the curve @° in a point P, the two 

surfaces a*, which touch at /, will coincide into the surface that 

touches at / in P. If we therefore cause the line / to rotate round 

P, 2 points of the group lying on / will lie in P, so that the line 

/ intersects the surface ZI’ belonging to P only in two points outside 

P. This surface I’ has consequently in P a triple point. 
The points of 9° 

them belongs to oo* groups, while an arbitrary point belongs to 

oo* groups. 

Let us now take for the point P the-conical point of one of the 

32 nodal surfaces a*. For any of the lines / passing through P, 

this surface belongs to the surfaces a’, which touch at /, so that 

one of the points of the group lying on / lies in P. This point P 
therefore is also a singular point of S*. Any straight line passing 

through P intersects the surface 11° belonging to P in three points 

lying outside P; this surface therefore has a conical point in P. 

§ 4. We shall now consider the coincidences of S*. If two of the 

surfaces a> which touch at a line /, coincide, two of the coincidences 

of the involution that is determined by the pencil (a*) on the line / 

will coincide, This may 1 take place on account of three associated 

“ry \ 

are therefore singular points of S*; for each of | 
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points coinciding in one of the coincidences of this involution. The 
straight line / is then principal tangent of one of the surfaces a’. 

The lines bearing the coincidences formed in this way, being the 
principal tangents of the surfaces a’, form a line complex of order 
9; for the rays of this complex, which lie ina plane, are inflectional 

tangents of a pencil of eubies along which this plane intersects 

the pencil (a); and these inflectional tangents envelop a curve of 

class 9. 

It appeared in $ 2 that an arbitrary point P belongs to o' groups 

of S*. The remaining points of these groups lie on a plane curve 

of order five, which has a node in P. These groups are formed 

by the intersections of the c* with the lines passing through P. If 

we now consider the tangents at the branches of c* passing through 

P, each of these two tangents has in P three coinciding points in 

common with c*. Therefore P is a coincidence of the two groups of 
S* lying on these lines. An arbitrary point P belongs therefore to 
2 coincidences of |S‘. 

At the c? mentioned 5 Xx 4-— 2—4= 14 tangents may be drawn 

out of P. To them belong the lines connecting P with the 9 inter- 

sections of the plane of c° with the base-curve 9° '). 

If Q is the point of contact of one of the remaining 5 tangents, 

two of the intersections of the line PQ with the curve c° coincide 

in Q, so that Q is a coincidence. An arbitrary point P belongs 
therefore to jive groups, which have a coincidence Q lying out- 

side P. 

Between the points P and Q exists evidently a correspondence 
(5, 4); for to each coincidence Q belong two points P, and each 

point Q belongs to 2 coincidences. 

§ 5. If the point P describes a plane JV, the points Q will 
describe a surface w, if the points Q describes a plane V, P de- 

scribes a surface ®. 

In order to find the orders of these surfaces we inquire their 

intersections with the plane WV. If the point P describes the plane 

V and Q also lies in it, the line PQ lies in this plane. As this 

line bears the coincidence lying in Q, it is an inflectional tangent 

of one of the curves of the pencil, along which the plane J” inter- 

sects the pencil (a*), while Q is the associated point of inflection. 

The locus of these points of inflection @ is a curve e* of order 

twelve. 

1) As will afterwards appear these lines also bear coincidences which, however 

arise in a different way from those considered in this §. 
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In order to find the locus of the associated points P we observe 

that, if a line / describes a plane pencil, the points of the group 

of S' lying on / will describe a curve of order five. The inflectional 

tangents PQ envelop a curve of class 9; the points of the group 

lying on PQ consequently deseribe a curve of order 9 X 5 = 45. 

To them belongs the curve «°°, twice counted, as in Q two points 

of a group coincide. The rest curve, ie. the locus of the points 

P, is therefore of order 21. 

This curve is the intersection of the plane | with the surface ®. 
This surface is consequently of order 21. 

The curve «* is the intersection of the plane V with the surface 

y. Now, however, an arbitrary point Q of the surface w belongs to 

one point P of the plane V, while the point Q of the curve v? 

belongs to two points P. The curve «°° is therefore a nodal curve 

of the surface yw. This surface is therefore of order 24. 

The order 21 of the surface gm gives the number of times that 

the point Q lies in a plane V and the point P on an arbitrary 

line /. It consequently also gives the order of the curve described 

by the point Q if the point P describes a straight line /. 

In the same way, if the point Q describes a line /, the point ? 

will describe a curve of order 24. : 

§ 6. If a line / passes through a point Q of the base-curve 0°, 

two of the surfaces a*, which touch at /, will coincide into the 

surface a*, which touches / in Q. Any secant of 9’ therefore also 

bears a coincidence of S*. 

Such a secant is touched outside g* by two surfaces a’; the points 

of contact are associated to Q by S*. If one of these points of contact 
coincides with Q, three associated points of the S* will coincide in 

(J. The surface a* belonging to this point of contact has in Q 3 

coinciding points in common with / in that case. The principal 

tangents passing through a point Q of the curve 9’, form a cone 

of order three; for, a plane JV passing through the point Q, inter- 
sects the pencil (a*) along a pencil that has a base-point in @, and 

the curve «'*, which is the locus of the points of inflection of the 

curves of this pencil has a triple point in Q. 

On each generatrix of this cone lies another point S, which is 

associated to Q by S*; these points form a curve 6, passing once 

through Q. For let us consider the tangent ¢ in Q at the curve 9’. 

An arbitrary surface a* intersects the tangent t apart from Q only 

in one point, so™there is not a single surface a’ that touches at ¢ 

outside Q. The four associated points of S* lying on ¢ coincide 
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therefore with Q and we see that the curve o passes through @ 
and here touches at the line ¢. 

A plane JV passing through the point Q, intersects the above 
mentioned cubic cone along three generairices, which each contain 
one point S. The point QQ and these three points S are the inter- 
sections of the plane V with the curve o; this curve is consequently 
of order four. 

§ 7. It appeared in § 3 that, if 7’ is a node of a surface a’, this 
point must be a singular point of S*. for if / is an arbitrary straight 
line passing through 7’, the said surface a* will have two points in 
common with the straight line 7 in 7. If we take for the line / 

one of the tangents of the surface a° in the point 7, two of the 
surfaces touching at / will coincide with the said surface a? and 7 

is consequently a coincidence. The two other points of the associated 

group are the intersections of the-line / with the surface 77°, which 

belongs to the point 7. These tangents / form a quadratic cone, 
which intersects the surface MF? along a curve of order ten. To this 

curve, however, belong as may be easily seen the 6 straight lines 

passing through 7 and lying on the surface a*. The rest-section, i.e. 

the locus of the points of the above mentioned groups, is therefore 
a curve of order four. 

§ 8. The points that belong with an arbitrary point P to the 

same group S*, form a curve c° of order five. If now the point P 

describes a line /; these curves will describe a surface / of which 

we shall determine the order. 

For this purpose we investigate the intersections of 4 with the 

surface 11°, belonging to as point P of the line /. 

These surfaces HZ’ form a pencil. For, through an arbitrary point 

X passes one surface a’, and the tangent plane in X at this surface 
intersects the line 7 in one point P, which with X belongs to a 
same group of S*. Through this point only one surface JT passes. 

The last reasoning does not hold good if X is chosen on the base- 
curve 9°; it then lies viz. on oo’ tangent planes of surfaces a°. The 

curve 9° is therefore a part of the base-curve of the pencil (17). 

Neither does that reasoning hold good if the said tangent plane 

passes through the line /. The rest of the base-curve of the pencil 

(HI) is therefore the locus of the points of contact of the tangent 

planes at surfaces a’ passing through the line /. This curve must 

be of order 16, as it forms, together with 0°, the base-curve of the 
s 

pencil (41°. This is really so, for a plane V passing through / inter- 
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sects the curve mentioned in the four points, in which / is touched 

by surfaces a°, and-in the 12 points, in which the plane V is 

touched by surfaces a’. 

The planes zr, in which the curves c° lie which belong to 

the points of the line /, envelop a developable surface of class five, 

These planes are the tangent planes in the points P of the straight 

line / at the surfaces a° passing through these points. Four of these 

tangent planes pass through /, because / touches at four surfaces a“; 

through an arbitrary point of / pass therefore altogether five of 

these planes. 

Through an arbitrary point of one of the above mentioned curves 

o° and 9° pass therefore five planes 2, consequently five curves c’. - 

These curves are therefore 5-fold curves of the surface 4. A surface 

I now intersects the surface A along these fivefold curves and 

along the curve c° lying on 11°, consequently, together, along a 

curve of order 5 X 9 45 X16H5==130; the order of A is 

therefore 26. . 

Any point of A belongs evidently to a group of S*, of which 
one of the points lies on the line /. A second line m, intersects the 

surface A in 26 points. There are consequently 26 groups of S*, of 
which two points lie on two given straight lines. 

§ 9. A plane V intersects the surface 4°° along a curve c°° of 
order 26. Any point of this curve belongs to a group, of which 

cne of the points lies on the line /; the other points of these groups 

form a curve 2, the order of which we shall determine. 

To this end we try to find the intersections of this curve 4 with 

the plane |. They are the following: 

1. The straight line / intersects the plane V in a point P. 
The curve c’, belonging to this point P, has a node in P, and 

further intersects the plane VV in three points that lie on the curve 

c*°. The line connecting one of these points with the point P con- 

tains two points of the curve 7, which points lie in the plane V; 

so 6 intersections of 2 with the plane V are found. 
2. If a point Q describes the plane WV, two coincidences of S* 

will’ lie in Q; the remaining points belonging to these coincidences, 

describe, as appeared in § 5, a surface of order 21; it is intersected 
in 21 points by the line / The coincidences belonging to one of 

these intersections, are evidently points of the curve c*", which have 

coincided with one of the associated points of the curve 4. In this 

way 21 intersections of the curve 4 with the plane V are found. 
3. The plane J” intersects the base-curve og’ in 9 points Q. 
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Through each of these points pass five curves c°‚ so that this point 

belongs to five points P of the line /. The lines connecting these 
points with P bear each a coincidence lying in Q, so that every 
time a point of c*® coincides in Q with an associated point of 2. 

Each of these 9 points of Q being a fivefold point of the curve A, 

45 intersections of 24 and V are found. 

The total number of intersections of 4 and V amounts therefore 

to 6+ 21 + 45 — 72; this therefore is the order of 2. 

A second plane V" intersects the curve 4 in 72 points; there are 

consequently 72 groups of S*, of which two points lie in two given 

planes, whilst a third lies on a given straight line. 

§ 10. As appears from the preceding there are oo? groups of S‘, 

of which two points lie in two given planes Wand V'. The remain- 
ing points of these groups form a surface of order 72, for a line / 

contains 72 of these points. 

Among these groups there are o' that have a coincidence lying 

outside the planes V and V'. The locus of these coincidences is a 

curve o, the order of which we shall determine. 

With a view to this we try to find the number of intersections 

of the curve @ with the plane V. 

The plane V' intersects the plane V along a line /. The latter 
contains 21 points P, to which belong a coincidence Q lying in the 

plane V and a second point of the plane I’, the 21 points are the 
intersections of the straight line / with the surface ®, which belongs 

to the plane WV. The 21 associated points Q are evidently intersec- 

tions of the plane | with the curve g. 
The plane JV intersects the curve #° in 9 points Q, There are 

w' groups of S*, of which three points coincide in Q; as appeared 

in $ 6, the locus of the remaining points of these groups is a 

biquadratie twisted curve. It intersects the plane V' in four points. 
There are consequently four groups of which a point lies in WV, 
while the three other points have coincided in the intersection of 

the support with the plane WV. This may evidently be considered 
in such a way that a point of the plane V has coincided with a 

coincidence associated to it; each of these groups produces therefore 

an intersection of the plane V with the curve d. The number of 

these groups amounts evidently to 9 > 4—= 36. 

The order of d therefore amounts to 21 + 36 — 57. 

A third plane VV” intersects the curve 6 in 57 points. There are 
consequently 57 groups of S', which have in a given plane V" a 

comcidence, while the two other points lie in two given planes V and V". 

73 
Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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§ 11. The surface of order 72 formed by the remaining points 
of the groups of which two points lie in two given planes V and 

V', is intersected by a third plane V" along a curve c?*. There 

are consequently o' groups of S* of which three points lie in 

three given planes. The fourth points of these groups form a curve 

u, of which we shall determine the order. To this purpose we try 

to find the intersections of the curve u with the plane V. 
The plane JV intersects the planes V' and WV" along two lines 

/' and /". The surface 4°’, which belongs to the line /’, is intersected 

by the line 7" in 26 points. Two of these points lie on the line /', 
which is a nodal line of A**; the 24 remaining ones determined 24 

groups of JS‘, of which two points are respectively lying on the 

two lines /' and 7". - 
The supports of these groups lie in the plane V,and the remaining 

two points of each of these groups are intersections of the plane 

V with the curve u. In this manner 48 intersections are found. 

There are 57 groups of S* that have a coincidence in |, while 
the two other points of those groups lie in the planes V' and WV. 
In each of these coincidences a point of V has coincided with the 

associated point of w; in this way 57 coincidences of V and u are 
found. 

The plane JV intersects the curve o° in 9 points. Each of these 
points Q bears oo? coincidences of S*‘; the remaining points of these 

groups lie on the polar surface 7° of the point Q. This surface 

intersects the plane V' along acurve 7’; among the groups mentioned 

there are consequently o', of which one point lies in the plane V; 
the remaining points of these groups form a curve 7. This curve 

y, intersects the plane J”' in the 9 points, in which WV’ intersects 
the curve gp’ for, in each of these intersections the corresponding 

group has a coincidence, so that there a point of J” coincides with 

the corresponding point of 1. The curve 7 is therefore of order 9. 

The plane VV" intersects the curve 7’ in 9 points. With each of 

the 9 intersections of V and v° 9 groups are consequently found, 

which have a coincidence in the intersection mentioned, while the 

two other points lie in the planes V' and VV". It is easy to see 
that these coincidences are in their turn intersections of the plane 

V with the curve u; in this way 81 intersections are found. 
The total number of intersections of V and u, amounts therefore 

to 48 + 57 + 81 =186. This, therefore is the order of wu. 

A plane VV" intersects the curve u in 186 points. There are 

consequently 186 groups of S‘, of which four points lie in four 

gwen planes. 



1141 

Zoology. — “The colourpattern on Diptera wings.” By Prof. J. F. 

VAN BEMMELEN. 

(Communicated in the meeting of March 31, 1917). 

\ 

The investigation of the colour patterns on the wings of Lepidoptera 

brought me to the convietion, that in their markings original and 
modified motives of design could be distinguished, the first being 
arranged in strict dependency on the nervural system and in regular 

repetition over the whole of the wing-surface. This result fore- 

shadowed the probability, that on the wings of other orders of 

insects similar arrangements of pattern might be met with, which 

would allow of a similar distinction between a primordial pattern 

and its later or secondary modifications: the primitive pattern in 

the same way being directed by the course of the veins in its 

distribution over the wing-surface. And as the comparative investi- 

gation of the nervural systems in different orders of inseets had led 

to the final conclusion that all of them represent modifications of 

one common groundplan, the supposition that a similar fundamental 

connection might exist between the primitive colour-markings, occur- 

ring between those nervures, became extremely probable’). 

Starting from this supposition, J. Borkr’) argued, that the similarity 

between the colour-pattern on the wings of Cossids, Micropterygids, 

Hepialids and other Lepidopterous families, and those of Trichoptera 
and Panorpata, should not be considered as a merely accidental 

resemblance, but depended on a real homology. Evidently it is 

worth while to extend this investigation to the remaining Insect-orders. 

That I take the Diptera as a starting point, is in no way due to 

the opinion, that a near relationship exists between this order and 

Lepidoptera, nor is it because I should consider the Diptera as 

especially primitive insects; it is in consequence of a recent (1916) 

publication by J. H. pr Meters: Zur Zeichnung des Insekten-, im 

besonderen des Dipteren- und Lepidopteren-fliigels, in which he has 

treated these two orders in succession, and noted equivalent features in 

them, though he has carefully abstained from drawing comparisons 

between them in details. 

Now pe MeijerE does not acknowledge my distinction between 

primary and secondary wing-markings, nor does he accept the 

1) Vide NeepHam and Comstock, The wings of Insects, American Naturalist, 1898. 

2) J. Borre, Les motifs primitifs des ailes des Papillons et leur signification 

phylogénétique. Onderzoekingen verricht in het Zoöl, Lab, der Rijks-Universiteit 
Groningen V, 19.6, Tijdschr. d. Ned. Dierk. Ver. 2de Ser. Dl. XV. 

13% 
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assumption of a similarity rooted in community of origin. On the 

contrary, as he considers absence of colour to be the primitive 

condition in Diptera, he believes in “the probability of an independent 

origin of colour in many different points of the group, because we 

meet coloured wings in so many and such different families.” 

But though he thinks that these different colour-patterns have 

arisen independently of each other, he accepts a connection between 

them in so far that he believes special regions of predilection for 

colour-formation to be indicative. These regions being either the 

nervures themselves, or the spaces between these nervures, his 

observation may be regarded as confirmation of my opinion, that 
the colour pattern is originally bound to the nervural system. The 

same may be said of the evident predilection for pigment-accumulation 

along the wing-margins and at its root. 

I likewise fully agree with pe Meyere, where he ascribes the 

formation of coloured transversal bars in many cases to the 

broadening of colour-seams along transverse veins, as well as when 

he attributes the cloudy “fumigation” of wing-areas to an extension 

of spots or blotches (which therefore originally must have been 

smaller). , 

All these pbenomena may be considered as manifestations of the 

different manner, in which an original pattern can become modified 

and differentiated. The same is the case with the transformation of 

spots into transverse stripes, or the coalescence of two spots on 
either side of a nervure into one single blotch, which consequently 

will become divided by the vein. 

The final proof that the more complicated patterns on coloured 

Dipterous wings may justly be considered as differentiations of one 

common primitive design bearing a simpler and more regular 

character, can only be obtained by showing that the formation of 

the definite pattern is preceded by the temporary presence of a 

preliminary pattern, possessing the above mentioned more primitive 

character; that is the same proof as I was able to obtain for 

Lepidoptera. But in expectation of this ontogenetic proof, it is 

allowable to heighten the probability of the supposition by adducing 

arguments founded on the comparison of fullgrown forms, which 

in the mean time may furnish us with a reliable image of this 

primitive pattern. For this purpose we have to start from the 

comparison of species belonging to the same genus, or to nearly 

related genera, and, having come to a conclusion about their 

ancestral form, to compare this with a similar one of various genera 
belonging to another family. 
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It might reasonably be supposed, that the chance of encountering 

a more primitive design would be greater in forms provided with 

a more original nervural system, which in Diptera-is equivalent to 

a more complete one. However Il hope to be able to argue that 

this is not necessarily the case. 
Notwithstanding this I think it is preferable to start from forms 

with a less modified nervural system, e.g. the genus Haematopota, 

containing a number of species, whose wings show a rich but at 

the same time regular ornamentation. 

Comparing the four species: italica, tubereulata, pluvialis and 

maculata, it is beyond doubt, that in alt of these the colour-markings 

are arranged according to the same groundplan, which in italica, 

pluvialis and tubereulata is more fully and regularly developed than 

Fig. 1. Haematopota pluvialis. 

Fig. 2. Haematopota maculata (De Meijere). 

in maculata, the latter showing the proximal half of its wings 

almost destitute of markings, except a few irregular patches, while 

the distal part contains two transverse rows of dark markings, those 

of the outer row being smaller and more isolated, those of the 

inner (submarginal) broader and connected to a continuous band. 

In both parts however the extension of the markings is limited by 
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the nervures and whenever they seem to pass these limits, the 

real cause lies in the meeting of two independent markings of 

similar extent along the course of a vein. 

Fundamentally therefore the features on Haematopota-wings are 

identical with those we could remark on the wings of Hepialids 

amongst Lepidoptera: viz. an almost perfectly regular alternation of 

dark and light patches, filling out the areas (cells) between the 

nervures, but not passing over their borders, and occurring in 

like numbers in successive internervural cells, which necessarily 

brings about their arrangement in transverse rows parallel to the 

external wing-margin. 

In those wingparts, where the regularity of the pattern is 

interrupted, we clearly see the modification by which this is brought 

about, e.g. where two neighbouring transverse markings are coupled 

together by a longitudinal bar, or where they curve over into 

each other. 
Though | hesitate in ascribing importance to the configuration of 

the single markings, I will not abstain from pointing out the remark- 

able similarity between the dumbbell-shaped light markings of Hae- 

matopota italiea (corresponding to paired triangular markings in H. 

tuberculata), and the heurglasses of Hepialids. 

The comparison of these four species of the genus Haematopota 

therefore leads to the conelusion, that the original condition of their 

wings is not the uncoloured state, but on the contrary that of a com- 

plete pattern extending over the whole wing surface, and consisting 

of light and dark patches in regular alternation, arranged between 

the nervures, alike in size and placed at equal distances, so as to 

compose zigzag-ranges of markings, transversely running in a direc- 

tion parallel to the external wing-margin. In all these features there- 

fore the pattern corresponds to that of Hepialids, Zeuzerids, Tricho- 

ptera and Panorpata. 

Judging by v. p. Wourp’s figure (Tijdschrift voor Entomologie 

Vol. 17, Pl. 8), the wing of Poecilostola angustipennis satisfies the 

above mentioned criteria for a primitive colour-pattern, in still 

higher degree than that of the Haematopotas ; viz. in strict depend- 

ency on the course of the nervures and regular repetition of the 

same motive of wing-design. For here all internervural cells contain 

longitudinal series of numerous small spots, arranged all along both 

sides of the nervures. It is only in the third cell from behind, viz. 

that situated between first cubital and first anal nervure, that a 

third range of spots is seen along the, middle-line of the cell, where 

the 2¢ cubital vein would be found, had not that nervure obliterated, 

' db a" 

—_- cick nel 
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In Poecilostola punctata (fig. by Grinperc, Diptera, in Braver’s 

Siisswasserfauna Deutschlands, p. 57) a similar median row of small 

spots is seen between first and second anal nervure, thus giving 

ground for the supposition that here also a vein may have been 

Fig. 3. Poecilostola angustipennis, (VANSDER Wurp). 

Fig. 4. Poecilostola punctata, (Met). 

obliterated, viz. An,. But at the same time amongst the small spots, 

which are arranged in rows, we find a number of larger ones dis- 

tributed, some of them showing an irregular configuration, as if they 

had arisen by the coalescence of a certain number of smaller ones. 

These bigger spots lie in the first place at the end of the longitudinal 

veins, in the second place on forkings and junctions. 

Extending our comparison to Acyphona maculata (GRÜNBERG p. 29) 

we find here all the above mentioned bigger spots, arranged in the 

same way, while the smaller ones with a very few exceptions, are 

absent. This suggests the conclusion, that the absence of the small 

spots is caused by their obliteration. 

Further extending our investigations to forms with a reduced 

nervural system, e.g. members of the genera Tephritis, Sciomyza 

and Traginops, we see the same feature as in the Haematopotas, 

viz. regular alternation of light and dark patches, arranged in rows 

along the veins, but modified and complicated in so far as either 
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a dark or a light streak extends over the middle of several inter- 

nervural cells, with which in the first case the dark nervural spots, 

in the second the light ones may be connected. This distribution of 

the colour therefore brings about two different effects: when the 

median is dark the uncoloured areas present themselves as light 

Fig. 5. Sciomyza javana (de Meyere). 

Fig 6. Traginops orientalis. 

spots on a coloured background, when it is light the pigmented 

areas form dark spots on a light field. Yet both patterns are varieties 

of the same groundplan, as may be seen by comparison of different 

species belonging to the same genus; e.g. Tetanocera vittigera, 

showing dark spots on a clear wing-surface and T. umbrarum, with 

light spots on a dark ground. But the same conclusion can be drawn 

from the consideration of different areas of the same wing: one 

internervural cell containing a dark median bar with light spots 

at either side, a neighbouring one the opposite arrangement, or 

even the proximal half of one such cell differing in this respect 

from the distal one. 

Though number as well as size of the spots is found to be incon- 

stant, I am inclined to assume, that also in these respects a funda- 
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mental condition exists, while the deviations must be explained 

either by coalescence of dark spots to larger coloured areas, or on 

the contrary by reduction of the pigmented parts, bringing the light 

areas into predominance. Also in these animals the proximal half 

of the wing generally is the less -coloured, showing fewer and 

smaller spots, resulting in their total absence in the departments 

of lobus and alula. 
Turning to those cells, which contain either a dark or a light 

median streak, these are seen to be precisely those which may be 

supposed to have been formed by coalescence of two neighbouring 

internervural areas, by the obliteration of the nervure originally 

separating them. In Sciomyza javana, which shows these dark 

median bars to perfection, they stretch along the spaces, which in 

Diptera with a more complete nervural system are occupied by the 

fourth radial and the first median vein. We therefore are justified 

in assuming, that we have here the same phenomenon which is seen 

in Lepidoptera-wings (esp. Papilionids and Danaids), where the 

course of obliterated veins in the discoidal and cubito-anal cells is 

marked either by black or by light streaks of pigment. 

De Meyer also has given his attention to the pigmentation of 

the median streaks in internervural cells, for he says on p. 58: !) 

In the cells of Diptera-wings median rows of spots occur relatively 

seldom in typical array. As examples may be given: Sciomyza 

Schönherri, Hydrophorus nebulosus (between the 1st and 2»¢ and the 

2d and 3rd longitudinal vein respectively, while pigmentation of the 

end of the nervures, seams of colour along transverse veins, and 

traces of a double row of spots in the upper part of the middle of 

the hindmarginal cell also occur), Ilythea spilota, Scatella quadrata, 

furthermore some Pteroeallines. In several species related to the 

first mentioned ones especially among Tetanocerinae, the median 

spots are well marked in the hindmarginal cell, a double row of 

spots occurring in the remaining longitudinal cells. As in Schönherr! 

the spots often already appear as transverse streaks, and as in other 

cases there is an evident connection between two spots lying one 

above the other in the same cell, as indicated by their position, 

it is my opinion, that such a double row of spots must be considered 

as resulting from the division of a median row. I may cite a 

typical example in Tetanocera (Pherbina) punctata, which at the 

same time shows a further feature, viz. a median longitudinal streak 

in the cells’. 

1) Translated from the German original by me. 
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And on p. 69: “Interesting features are shown by the Sciomyzidae. 

Many of their species show colourseams of the transverse veins; 

pigmentation of the longitudinal veins is found in Tetanocera elata, 

Elgiva lineata, of the anterior margin in T. elata. Marked punctuation 

occurs in numerous forms, e.g. T. punctata; the points usually 

being arranged in one row in the hindmarginal cell, in two rows 

in the remaining cells. These rows lie along the side of the nervures, 

or in other words, each nervure lies between two rows of spots: 

the spots to either side often corresponding to each other, though 

not always; also the spots placed along the two borders of the 

same cell frequently form pairs. On page 58 [argued that I consider 

these two lateral rows of spots as derived from the division of one 

median row. In T. punctata an accessory median bar is only 

slightly developed, but in other species this bar and the lateral 

spots are intimately connected; coryleti and unguicornis already 

show this connection more clearly than punctata and marginata, 
fumigata ete.; it leads to preponderance of the dark colour, only 

two rows of hyaline spots being left free. In punctulata and 

umbrarum the scheme of the colour pattern is still further differen- 

tiated by the more specialised character of the spots in certain 

transverse bands.” 

“Among Sciomyzines Se. albocostata, cinerella, fumipennis show 

a marked striation of the longitudinal veins, leading in the last 

named species to almost complete vanishing of the ground colour. 

Spots on the transverse veins.are found in griseola amongst others, 

transverse bars are developed in bifasciella, a median row of spots 

in the hind marginal cell is characteristic of Schönherri. By bipar- 

tition of these spots I should be inclined to explain amongst others 

the condition of Tetanocera punctata, possessing double rows of spots. 

The same degree of differentiation has been reached by Sciomyza 

javana, which in Se. albocostata is accompanied by a white disco- 

loration of the margins. In this family also therefore, we see several 

different motives of markings among nearly related forms.” 

De Mrijerr therefore, though acknowledging the fundamental equi- 

valency of dark spots on a light ground and light spots on a dark 

one, does not arrive at the conclusion which I have drawn from the 

presence of a median bar; on the contrary he considers the two 

paramedian rows of spots in a cell as derivatives of one median 

row. A case like Poecilostola, where in one single cell a median 

row occurs between two lateral ones, and it is exactly this cell 

which belongs to those internervural spaces that may be supposed 

to have originated by the coalescence of two neighbouring cells 
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by obliteration of the separating vein, remains unexplained on 

DE Mruere’s hypothesis. 
Yet it must be conceded, that it would not be reasonable to assume 

a coalescence of cells in every case where nervures are accompanied 

at both sides by rows of light or dark spots, however far the infe- 

rence, founded on the comparison of Sciomyza to Traginops, seems 

justified to me, that a dark median bar can be replaced by a light 

one, and in this way all traces of the original duplicity of the cell 

can “be obliterated. In the case of e.g. Poecilostola such an assump- 

tion is out of the question, except for the cells Cu,—An, and An,— 

An,. The same feature is seen in Hepialids among Lepidoptera, 

which also often show the hourglass- or dumbbell-shaped spots 

separated into two halves, adjoining opposite nervures, and so forming 

paramedian rows of independent. spots. Black median bars may there- 
fore also be simple remnants of the general dark ground colour. 

Fig. 7. Cleitamia astrolabei 2 (Boisd). 

Fig. 8. Trypeta cribrata 2 (v. d. Wulp). 
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Should this supposition, as explained in the foregoing, of a regular 

and simple but complete, original colour-design, common to all 

Diptera, be true, then it must be possible to bring even the most 

complicated and variegated patterns occurring in this order, into 

connection with this fundamental design. 

The first test I was able to make in this direction, immediately 

gave the surprising result, that this comparison proved remarkably 

easy for a pattern so capricious as that of Cleitamia astrolabei, 

Fig. 9. Tephritis pantherina. 

en Tr = 

Fig. 10, Tetanocera (Dictya) umbrarum. 

consisting of an irregular central dark area, from which ten bars 

radiate to the circumference in different directions, some of them 

being straight and short, others long and curved, but all apparently 

without any regard to the course of the nervures. For comparing 

this spider-like colour-pattern with that of Tephritis pantherina [which 
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down to minute details agrees with that of Tetanocera (Dictya) um- 

brarum and consists in both of a considerable number of light 

spots on a dark ground, strictly keeping within the limits of 

the nervures, but often corresponding and fusing in adjoining cells | 

we become convinced that the lighter areas of Cleitamia exactly 

correspond in arrangement and size to marginal light spots of 

Tephritis. The single assumption we have to make is, that along the 

distal part of the front margin six of these spots have coalesced, 

and morover have become separated from that margin by a narrow 

rim of dark pigment, at the same time that a number of spots, 

especially at the proximal part of the front margin, form connec- 

tions with more centrally placed ones and so constitute transverse 

light bars, which extend over the radial nervure. The number of 

these spots is not absolutely constant, though showing a certain 

regularity, as becomes evident by the comparison of the wings of 

Trypeta cribrata with those of Tetanocera umbrarum, showing that 

spots, which in the latter have coalesced, still remain independent 

in the former, T. cribrata therefore probably representing a still 

more primitive State. 
As in the case of the species of the genus Haematopota, here 

also it is possible to arrange a number of nearly related forms in 

a series, showing a regular transition from the primitive condition; 

numerous similar light spots in rows on both sides of the nervures, 

and in certain cells also along the median axis of the internervural 

space, larger light patches occurring along the wing-margins leg. 

Trypeta cribrata] — then continuing through forms like Tetanocera 

umbrarum and Tephritis pantherina, in which the number of the 

spots is diminished, in consequence both of coalescence and of 

obliteration by pigment-ingression (obscuration) — until we cul- 

minate in a form like Cleitamia astrolabei, with its large but less 

numerous light areas, which differ considerably amongst each other, 

and do not seem to respect the limits of the nervures. 

In the opposite direction Tetanocera umbrarum may be compared 

in detail (e. g. the number of the spots) with Tetanocera vittigera, 

on the simple assumption, that the light areas of the former have 

enlarged to such an extent, that they have coalesced in the middle 

of the cells and in so doing have eut up the dark background into 

fragments which in their turn now give the impression of spots. 

Traces of the original extension of that dark background may still 

be seen in cell R,—M, and M,—Cu, in the form of faint dark 

middle-bars. 

But besides Cleitamia astrolabei a number of other species of the 
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same genus occur,') showing a wing-pattern of apparently less com- 

plication and capriciousness, which makes them appear simpler and 

consequently more original. On more exact comparison however, with 

each other as well as with the patterns in nearly related genera, 

we become convinced that we should read the series from the 

other end, starting with astrolabei (or better still with osten sackeni, 

in which the number of light spots along the front margin is .one 

more than in astrolabei, and so reaches to five) passing along C. 

biarcuata (Fig. 136), similis (Fig. 134), amabilis (Fig. 128), liturata 

(Fig. 129), to arrive at kertészi (Fig. 135), whose distal wing-half is 

almost filled up by a single, broad, dark bar, extending from fore- 

to hind margin, and only leaving a narrow hyaline halfmoon of 

white at the wingtip, the proximal wing-half in the mean time not 

showing an elaborate pattern, but only one dark longitudinal patch 

in the middle, accompanied along its fore- and hindside by a light 

streak, and separated from the distal colour-field by a light trans- 

verse bar. 

As in so many other cases, here also the simplest colour-design 

is in reality the most modified; it comes nearest to general unico- 

lourism  selfcolour). 

Starting again from Cl. ostensackeni, we may also go by rivel- 

loides (Fig. 131) and similis (Fig. 132) — while in passing we remark 

the similarity with the colour-pattern in the genus Bothrometopsa, 

belonging to tle fam. Pterocallinae —, and so come to the species 

gestroï (Fig. 130), which, though vastly differing in design from 

kertészi, still exceeds this in extent and uniformity of the dark area. 

Besides the observation, that it is possible to find a connection 

between patterns of widely different appearance, and that one pat- 

tern may be derived from the other, a second remark may be made 

viz. that in different genera, and even in subfamilies and families, 

the same series of pattern is seen constantly to return, showing the 

identical interrelation between the different links of the chain. To 

represent this phenomenon in a marked way, it is desirable to 

designate the different types of pattern with special names. 

For these names the chief motives of the pattern might be used, 

e.g. that of the paranervural rows of spots (as in Sciomyzas), that 

of the median series of spots (Seatellas), that of the straight transverse 
bars (Pterocerines), of the curved bars (Cleitamia astrolabei), of the 

numerous small spots (Coremacera) etc. 

Yet on second thoughts this principle of nomenclature does not 

1) Compare: Genera Iinsectorum, Henper, Platystominae Taf. 7. 
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seem advisable, as the majority of patterns are composed not only 
of a chief motive, but at the same time of one or more accessory 
motives, the latter often representing the remnants of the original 
design. For instance in the pattern of Cleitamia the light areas 
between the dark bars may, as argued above, be considered as 

coalesced light spots, and precisely these spots constitute the original 
pattern. 

Therefore it seems preferable simply to adopt the names of species, 
genera and families for the patterns which are shown in special 

clearness and completeness by them, e.g. the astrolabei-pattern, the 

scatella-design, the Pterocerine-system of bars. It should however 

never be forgotten, that these patterns (modified in sundry details), 

may equally well occur in other genera and even families of Diptera, 

and are also found in other orders of insects, it thus becoming a 

matter of chance, in what group of insects a characteristic type of 

pattern is first remarked and named. 

As it becomes evident, that between these different types of design 

a genetic connection really exists, so that they can be arranged ina 

series, leading from the most primitive and regular to the farthest 

modified and most capricious, and that this series is the same for 

different interrelated genera and families, the conclusion, that this 

correspondence roots in relationship, is a natural one. I accept it in 

this sense, that the common ancestors of genera and wider groups 

of interrelated forms already possessed these different patterns, which 
passed into the hereditary predisposition of their descendants. 

In this way.the study of Diptera-wings has led me to the same 

general conclusion, as I was brought to by the intercomparison of 

Hepialid-wings, “that the motives and patterns of the colour-design 

are older than the genera and families which display them.” 

Dr Mryrre has also noticed the phenomenon of the corresponding 

series of patterns, as is shown by his remark in the opening sentence 
of his paper: “It is only necessary to look over any tolerably extensive 

collection of Diptera, to become convinced, that in those families, 

where coloration occurs, the design may be widely different in the 

several forms belonging to them, a family-character therefore not 

being presented, while on the contrary different families often show 
the identical patterns” (the italies are mine). 

And again on page 75: “therefore the various motives often return 

in the different families”. 
In this feature pe Mrtsere however does not see anything more 

than a proof, that wing design in different families has developed 

in similar ways and so should be considered as a case of parallelism. 
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Of any interrelationship between patterns there could be no question, 
even within the limits of the same family: “Even where the nerv- 

ural system is the same, we find either a striation of the transverse 

nervures or of the longitudinal ones, either a colouration of the 

wing-root or of the tip. Therefore it would be a mistake to try to 

arrange the patterns even of one family into one single evolutionary 

series.” 
On p. 70 pe Meyerm remarks: “In the group of Trypetines we 

meet with a number of patterns, which cannot be brought into 

connection with each other.” 

It follows from my remarks in the foregoing paper, that I have 

come to the opposite conclusion. 

On p. 63 pre Meyere calls attention to the fact that: “the broad- 

winged Trypetine fly Platensina ampla carries some spots which differ 

from the common hyaline ones in their hue, which seen under a 

certain angle is dead-brown.” The difference, according to his view, 

is only due to a lighter staining of the chitinous layer and of the 

hairs arising from it. 

By the kindness of my colleague pr Meyere [ was able to in- 
vestigate a specimen of this fly, and was in the first place impressed 

by the fact, that these apparently dead spots did not occur over 

the whole wing-surface, but left the margins free, where, in the 

usual places also occupied in other fly-species, hyaline spots occurred 

at regular distances from each other. It furthermore awakened my 

curiosity, that these central spots, though evidently dead, i.e. not- 

diaphanous, did not show a brown, but on the contrary a light blue 

shade, and were slightly lustrous. Noting their position in relation 

to the hyaline, it became evident, that a bluish spot was situated 

in the prolongation of each hyaline marginal spot, with the excep- 

tion of the fifth (adjoining the extremity of the subcostal vein), 

which was distinguished from the more distal marginal spots by 

greater length (in a transverse direction) and by a constriction in 

the middle. This difference might be also expressed by saying that 

the fifth spot bears a bead-like appendix, by which it extends farther 

“towards the centre of the wing than its companions. It is this 

appendix which occupies the same position in relation to the peri- 

pheral part of the spot, as the blue spots do to the remaining 

hyaline spots. And furthermore these blue spots occur in exactly the 

same positions, where in other Trypetines hyaline ones are seen. 

1 therefore came to the conclusion, that the blue spots are nothing 

but vanishing hyaline ones, which become obliterated by penetration 

of the ground colour. Their occurrence is in my -opinion a proof for 



the assumption, that unicolourism (self colour) is a Secondary feature, 
originating from the effacing of a pattern of spots. Of the way in 
which this is effected Platensina ampla gives us a good idea. 

As remarked abovt, pk Meijer calls the shade of the abnormal spots 
light brown, when seen in a certain direction, but he leaves un- 

determined, what direction this is. Now [ found, that the colour is 
very different according to its being observed in reflected or trans- 
mitted light. Seen in the latter, the spots are actually brown, but 
with the first mentioned illumination they are light blue with a 
hazy lustre. Besides this there is a difference, if the transmitted 
light is made to pass straight at full strength, or obliquely and in 
moderate quantity. Only in the latter case the spots stand out clearly 
against, their dark surroundings, showing a light-brown shade, and 
are clearly seen to transmit more light than the rest of the wing- 
surface. In strong and directly transmitted light on the contrary 
they hardly contrast with the surrounding dark wing-membrane, 
and can only be distinguished from it by a somewhat lighter ring 
round a darker core. By means of all three methods of observation, 
however, we may establish the hairs in the area of the blue spots 
to be colourless, just as above the hyaline spots. | 

L therefore agree with pr Meijers, that the absence of colouring 
matter in the hairs within the precincts of the dead spots, contributes 
to their lighter shade, and that this shade furthermore proceeds 
from a scantier quantity of brown pigment in the wing-membrane. 
Sull I wish to make a distinction between these two causes in so 
far that I ascribe the whitish-blue lustre of the spots more especially 
to the first, their hazel-brown shade in weak and obliquely trans- 
mitted light on the contrary to the second. 

The occurrence of these dead spots therefore provides us with 
anew argument for asserting that in the order of Diptera the 
different colour-patterns stand in genetical interrelation, and for 
opposing DE Mmurrr'’s inference, that they are absolutely independent 
of each other. 

On p. 70 (at the bottom) pr Meijer again mentions a case of 
two different kinds of spots in a Trypetine fly, viz.: “Tüpfelflecke” 
in the dark transverse bars, which in several species (especially those 
related to the genus Tephritis) should be distinguished by shade as 
well as by localisation from the common hyaline spots situated 
between these bars, which are considered by pr Mriuere as remnants 
of the original unbroken hyaline wing-surface. 

The author does not mention the species he means, so that I 
cannot tell precisely which cases he has in view. But if, as I presume, 

74 
Proceedings Royal Acad. Amsterdam. Vol. XIX 
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he means the brownish tint of part of the light spots, as seen for 

example in Oxyna parietina, — where a certain number of spots, 

localised in the broad dark transverse bands, differ from the rest 

of the spots between these bars in a yellow brown shade as well 

as in smaller size, — 1 cannot agree with his distinction of two kinds 

of spots. For in other species of the genus Oxyna, I see in the same 

localities similar spots, differing only in so far as they possess the 

usual hyaline aspect and are not smaller than, or in any other way 

distinct from their companions in the interspaces between the bars 

Therefore I cannot consider the “Tüpfelflecke” themselves as an 

addition to the pattern, but only their hue and diminutive size as_ 

secondarily acquired properties, which, far from leading to the 

evolution of new spots, on the contrary contribute to the disappearance 

of existing spots. 

Groningen, March 30 1917. 

Zoology. — “On the Setal Pattern of Caterpillars.’ II. By 

Dr. A. SCHIERBEEK. (Communicated by Prof. J. F. van BEMMELEN). 

(Communicated in the meeting of March 31, 1917). 

In a former communication’) | called attention to the constant 

arrangement of setae on the body of caterpillars, and I gave the 

reasons which induced me to propose a new nomenclature for these 

setae, representing them in a set of schematical figures. 

My investigations led me to the following conclusions: 

1. setae (bristles), tubercula (eminences bearing setae), verrucae 

(warts), scoli (spines) and maculae (pigment-spots) are all of them 

homological structures. 

2. the abdominal segments possess a setal pattern of more primi- 

tive arrangement than the thoracic. 

3. the system of bristles which | have designated as type I is 

the most primitive, the remaining types (Ia, I, II) may be derived. 

from it. 

4. changes occurring in type I possess a definite systematic value. 

5. stripes have developed at a later date than pigment-spots. 

6. the design of the pupa shows the nearest resemblance to that 

of the first larval instar, but often deviates considerably from that 

of the last one. 

1) A. ScrierBeeK, On the Setal Pattern of Caterpillars. Proc. Roy. Acad. Sc. - 

Amsterdam. Sect. 2, Vol. XXIV. p. 1710—1723; March 25, 1916. 



Since then I have continued my investigations and published a 

paper containing the complete descriptions, the necessary illustrations 

and the list of literature as announced in my preliminary commu- 

nication. *) 

The remaining conclusions to which my further investigations have 

led me, may be summed up here: 

In the first place I have reconsidered the question as to the exact 

position of the “rudimentary stigma on the thoracic segments and 

have come to agree with Boas, who asserts the metathoracic stigma 

to have moved forward unto the intersegmental membrane between 

meta- and mesothorax, while the so called prothoracic stigma is in 

reality that of the mesothorax. 

A spot or some other mark of similar character, occurring in the 

place where the stigma might be expected, in reality corresponds to 
the rudiment of the wing. *) 

In the second place 1 devoted my attention to the number of the 

abdominal segments. 

In accordance with PourronN (1890) and Spunrr (1910) I think I 

am able to trace an eleventh abdominal segment in certain 

caterpillars, during their first instar; viz. in Flepialus hecta L., 

H. c.f. lupulinus L., Phalera bucephala L., Sphinx ligustri L., Pieris 
brassicae L. and P. napi L. 

The impossibility of demonstrating the presence of this eleventh 

segment in the majority of Lepidopterous larvae can be explained 

by taking into consideration the fact, that the moment of piercing 

of the egg-shell by different insects is not a fixed point in the course 

of development, but is dependent on the quantity of food-yolk ete. 

(Hennecuy 1904).. This explanation of the difference in the stage of 

development at the moment of emergence from the egg is the more 

probable, as CHaPMAN (1896) was able to show that a great deal of 

variety exists between the eggs of different Lepidoptera. *) 
Furthermore [ made a closer comparison between the markings 

of caterpillars with those of other insect-larvae. 

Dh A. Scurerseex, On the Setal Pattern of Caterpillars and Pupae, Inaug. 

Dissertation. Groningen. 20 Jan. 1917. This study is also published in: Onder- 

zoekingen verricht in het Zoölogisch Laboratorium der Rijks Universiteit te Gro- 
ningen. Part VI, and in Tijdschr. Ned. Dierk. Ver. 2e Ser. Vol XV. 

; 2) See also Paut Mayer, Jenaische Zeitschr. f. Naturw. 1876. 

3) This most accurate investigator writes me kindly that he has solved the 

problem of the difference between Packarp and myself in 1887. He was able to 

show that there are two races of Orgyia antiqua with a different number of 

moultings. The sexes of these races also were unequal in this respect. (03, © 
and 34, 25; Ent. Month. Mag.) 

74* 
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In my former paper I called attention to the fact that within the 
limits of a single family different modifications of the setal pattern 

have taken place, the final impression therefore being that the families 
have differentiated themselves independently and parallel to each 

other. 

According to HANprirscH (1903, ’06, ’10) the splitting up of the 
Lepidoptera into their different families took place in the Cretacean 

period and after it; while the differentiation of the orders of Hexa- 
poda belongs to the Inferior-Carbonic time. A close similarity is 

therefore not to be expected a priori. Moreover a monophyletic 

origin of the Holometabola certainly cannot be considered as an. 

indisputable fact. 

When therefore we meet with any similarity in pattern, we may 

explain it as a remnant of the markings on the primitive insects, 

or of the first Holometabola, but we could equally well imagine 

the pattern to be of such high biological value, that it has developed 

in a corresponding manner in several ordines independently of each 

other. 

Notwithstanding this I am of opinion that, however important 

the possession of setae may be, their special arrangement cannot 

possibly be of any biological account, the correspondence in pattern 

therefore probably is a consequence of community of descent. For 

want of material of other insect-larvae than Lepidoptera 1 had to 
rely exclusively on illustrations in the entomological literature, which 

for the greater part do not excell in accuracy and clearness. The 

youngest instars especially, which are by far the most important, 

are generally wanting. 

According to HaNprirscH the Panorpids closely approach the 

ancestors of the “Lepidoptera. Their larvae have received an accurate 
investigation from Braver (1851-—’63). In the beginning they wear 

setae, afterwarts verrucae of highly interesting form. Judging from 

Bravrr’s figures three setae occur on either side above the stigma 

on each segment. . 

The Tenthredinidae are frequently considered as very primitive 
Hymenoptera. Dyar (1894) thought that he could deduce the markings 

of caterpillars from those of the Penthredinid larvae. On every 
segment three vertical rows occur on either side, each row counting 

three setae. ') 

Even if we accept a monophyletic origin of the Holometabola, 

Coleoptera cannot be taken as near relatives of the Lepidoptera. 

1) This agrees very well with the three subsegments of Janet (1901). 
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It is therefore the more remarkable that Tower (1906) met with 

two vertical ranges of spots on the abdominal segments of Leptino- 

tarsa-larvae, each consisting of three spots. 

Comparing to this the setal pattern Type I [which I described 

in my former communication as consisting of a row of setae above 

the stigma, composed of s.s. dorsalis, dorsolateralis and. suprastig- 

malis|, a great similarity in design between these larvae, otherwise 

so different, may be remarked. 

But only an extensive investigation of the greatest possible numbers 

of larvae of different orders, especially the youngest instars, will 

lead to conclusive evidence on the question whether the pattern, 

distinguished by me, really possesses a generai meaning for all holo- 

metabolic insects. It will be important to compare it to fossil remains 

of insects, supposing this to be possible. As far as [ can see, Hanp- 

LirscH’s doubts about a monophyletic origin of Holometabola are 

well founded. | ; 

On one point, which in my previous publication I only touched 

slightly, I wish to dwell a little longer. 

In 1912 J. F. van BrEMMELEN called attention to the correspondence 

in design between pupae of different Rhopalocera and a fullgrown 

caterpillar of Pieris brassicae L. Though this similarity between 

the markings of larva and pupa had already been remarked in a 

single case by Pourron (1890), he had explained it by assuming 

the larval pigment to remain for a certain period unaltered in the 

pupal skin, and thus giving origin to a temporary or a lasting 

design. VAN BreMMELEN objects.to this that such an explanation will 

not do in cases where the larvae are very different from each other, 

while the pupae show an almost identical pattern, e. g. Pieris 

brassicae and P.napi and Huchloe cardamines, especially as he. was 

able to show that this same pattern also occurred in other Rhopa- 

locerous pupae. He therefore took this phenomenon to be an affir- 

mation of the opinion, which sees in the pupae a subimaginal 

stage reduced to immobility. 

Moreover I wish to call attention to LAMERRE’s assertion (1900), 

that the hypodermis is totally renewed during the pupal period. 

For me vAN BEMMELEN’s opinion possesses greater probability than 

that of Pounron, the pupal design being of real morphological im- 

portance. As stated in my former note, the pupal pattern is almost 

completely similar to that of the first instar of the larva. 

Starting from the observation that in Rhopalocerous pupae provided 

with a colour pattern this pattern is almost identical in a great 

many genera and taking into consideration, that the first deposition 
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of pigment takes place around the base of the setae, the arrangement 

of pigmental spots may be identified with the setal pattern. If this 

view be correct, the opinion of Ermer and his followers, who 

attribute a high value to longitudinal stripes as a primitive element 

in design, becomes untenable and that of J. F. van BemMMe en (1912) 

and Tower (1905), to which pre Merere has recently concurred, 

gains greatly in probability. 

Supposing the homology between colour-design and setal pattern 

to exist in fact, it follows that not only those chrysalids which ex- 

hibit coloured markings should be examined, but likewise those 

without colours, though provided with setae. In this respect it is 

highly remarkable that as early as 1670 SwamMerDAM perceived the 

significance of “hairs” (bristles) on the pupa for the explanation 

of the chrysalid stage. 
Numerous uncoloured pupae possess a setal pattern, nearly always 

corresponding to my type I. Therefore [ am convinced that the 

original chrysalid-pattern consists of setae arranged according to this 

type and most probably provided with pigmental accumulations at 

the base of the hairs. 

Now Cnapman (1893—’96) showed that Lepidopterous pupae 
generally are not so immobile as is commonly supposed and that 

the more active pupae belong to the most primitive groups of 

Lepidoptera. ; 

Combining these two facts, we are led to conceive the primitive 

chrysalis as being provided with a tolerable power of motion and 

decorated with a setal pattern in the same way as the larva. This 

conception completely harmonizes with the view that the pupa 
represents an immobilized subimaginal stage. It is generally acknow- 

ledged that many other facts point in the same direction, e.g. the 

preliminary colour-pattern on the wings (J. F. van BemMe en 1889), 

the external sexual differences, already described in 1843 by Rarze- 

BURG and rediscovered independently by Jackson and PovuLton in 

1890, the smaller degree of difference in size of antennae and 

wings between male and female during pupal than during the 

imaginal stage, as pointed out by Povutton in 1890. ‘With J. F. van 

BEMMELEN I feel justified in adding to these arguments the existence 

of a pupal colour-pattern. | 

As the pupal pattern generally agrees with that of the first larval 

instar, but only with that of the full-grown larva in those cases in 
which the latter has retained the primitive design, I feel justified in 

drawing the conclusion that the pupal stages as well as the first 

larval instar bear a primitive character in distinction to the later 
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larval instars, which represent secondarily introduced phases of 
development. 

On quite different grounds the same assertion has been defended 

by DrrGcenrer (1909). 

Considering the regular occurrence of a macula dorsolateralis on 

the pupa situated between m. dorsalis and m. suprastigmalis (even 

when a seta dorsolateralis is wanting on the abdominal segments 

of the larva), the pupa may be said to have best preserved the 

original hexapodal colour-design of the insect, at least in this in- 

stance and in the ornamentation also the thoracic segments which 

in other respects have been so profoundly modified. 

The Hague, March 1917. 

Physiology. — “ Distance-relations in the Effects of Radium-radiation 

on the tsoluted Heart’. By Prof. H. ZwAaRDEMAKER. 

(Communicated in the meeting of March 31, 1917). 

The results of 34 initial experiments '), justified the present writer 

in establishing that an isolated frog’s hart, fed after KRONECKER’s 

method with Rincer’s mixture deprived of potassium chloride, resumes 

its beats again after, a standstill wben exposed to the radiation of 

mesothorium or radium. *) We used 6 mgrms of mesothorium 

enclosed in a glass bulb and 3 mgrms of radiumbromide under 

mica. On an average an exposure of half an hour was required for 

the restoration of the pulsations. *) 

Then however a good and regular contraction recommenced, 

the rhythm being about the same as when the heart was not yet 

freed from the circulating potassium. The mesothorium-tests were 

also successful when the rays had to pass through an aluminium 

screen 0.2 mm. thick. 

In the meeting of February I could also demonstrate that potas- 

sium and rubidium, when either of them is contained in the 

il) H. ZWAARDEMAKER, C. E. BENJAMINS and T. P. Feenstra, Radium-radiation 

and cardiac action. Ned. Tydsch. v. Geneesk. 1916 Il p. 1923. 

*).The previous removal of potassium from the circulating fluid is very essential, 

for exposure of the heart in situ or perfused with normal Runcer’s mixture, does 

not alter the actual beats materially. 

5) The intervals between the commencement of the exposure to radiation and 

the recurrence of pulsation differ very much. They depend on the velocity of 

perfusion, the natural frequency of pulsations, the time the inactive circulating 

fluid needs to cause a standstill, etc. 
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circulating fluid, are neutralised by uranium, thorium, radium, or 

emanation. To this series the radiation may be added, on the side 

of potassium and rubidium. Its effect may be neutralised when 

uranium or thorium are contained in the circulating fluid. 

This led me to investigate the quantitative relations coming to 

the front when placing a mesothorium preparation of 5 mgrms in 

a glass bulb at various distances and when to a neutral mixture 

of 40 merms of potassium chloride and 10 mgrms of uranylnitrate 

the quantum of uranyl-salt, required for each distance, was added. *) 

Let us consider a frog’s heart through which after the method of 

Kronecker has been sent first Rincer’s mixture and subsequently, 

for some time, a potassium-free circulating fluid composed of 7 grms 

sodium chloride, 200 mgrms of calcium chloride and 200 mgrms of 

sodium bicarbonate per litre. At a certain moment this inactive 

circulating fluid is replaced by one similarly composed to which 

has been added 40 mgrms of potassium-chloride and 10 mgrms of 

uranylnitrate. The heart thus supplied will soon lose its contractility. 

Next the preparation of 5 mgrms of mesothorium (in a glass bulb) 

is placed at a distance of precisely 8. 7, 6, 5, 4, 3, 2, 1 mm and we wait 

for the recommencement of the heart's beats, which on the average 

will take place after 13 minutes (minimum J, maximum 60 minutes). 

Now some uranyl nitrate in excess is added to the circulating 

fluid in a solution containing 1 mgrm of uranium salt per c.c. 

This procedure is continued for some time along with the radiation 

until the heart stops again. In this ease a slight touch will 

engender one systole. Should there be a short series at first then 

the wanted equilibrium is not yet obtained and a little more 

uranium has to be added. At length a standstill will ensue and 

may be maintained for 5—10 minutes (we took 5 minutes with a 

comparatively quick flow and 10 minutes with a tardy one). 

The looked for equilibrium between radiation on the one hand 

and uranium in excess in the circulating fluid on the other was 

found at the following distance (See table p. 1163) 

The equilibruim once established the relations may be altered 

again. The mesothorium may be moved nearer to the heart, or a 

larger quantum of uranium salt may be added. Hither process is 

responded to by the heart’s contraction and a second equilibrium 

may be looked for. In this way we often succeeded in finding even 

three successive equilibria. 

8 

1) 1 have to thank Mr. T, P. Feenstra assistant in the Phys. Lab. for his 

painstaking assistance in these experiments. 
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Distance between mesothorium and the Uranyl nitrate added to the primary 
heart (mm). | mixture (mgrms). 

8 2 (2) 

6 5,5 

5 | 7 

4 

3 

2 

8 

12 

20 

1,5 | 30 

1 | 40 

When representing the data of the table graphically we get a 

curved line reminding one of an exponential curve. I, therefore, 

plotted the distances along the axis of the abscissae and along the 

axis of the ordinates the logarithms of the mgrms of uranium salt 

present in the successive equilibria over and above the 10 mgrms 

that from the outset were present along with 40 mgrms of potassium 

chloride per litre of circulating fluid. The curve thus originating is 

represented in the graph by a firm line. 
As the figure points out the curve of the logarithms of the 

uranium dosage, counterbalancing the radiation, is approximately 

straight. A slight deviation is noticeable only for the greater distances. 

This result is not what could be expected: alpha-rays do not 

come into play here, as the restoring influence is exerted through 

an aluminium sereen of 0,2 mm and even a leaden screen of 0.1 

or 0.2 mm. Of the remaining beta-rays much is absorbed in the 
heart, as was shown when the heart was contained in the leaden 

roof of a small ionising-chamber. The gamma-rays passed almost 

unchecked. 
There are additional reasons for stating that the beta-rays in casu 

are biologically active. From the experiments just described it follows 

that the essential part is to a great extent absorbed by tbe air. 

Already at the distance of 9.5 mm the quantum liable to be com- 

pensated by uranium is spent. At 6 mm only an equivalent of an 

extra addition of 5 mgrms of uranyl nitrate per litre, is present: 

the very quantum transmitted through a 0,2 mm aluminium 

sereen placed at close distance *). 

1) A radium preparation of 3 mgrm. has a uranium equivalent through an alu- 

minium screen of 0,1 mm. In considering such values we should of course also 
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The excitation of fresh contractions of a heart, fed with a totally 

inactive circulating fluid (potassium-free RINGER's mixture) or with 

a fluid containing correctly proportioned antagonistic quanta of pot- 

assium and uranium is, therefore, to be ascribed to a broad bundle 

of beta-rays of very low penetrating power. That this non-homo- 

geneous mass of weak rays should be absorbed in the air according 

to an almost exponential law is not in the least surprising. Nor is it 

to be wondered at that subsequently what comes through the air 

from various distances is completely absorbed in the organ. The 

foregoing experiments also show that the quanta of uranium, 

which at the several distances counteract the restoring influence of 

the radiation so that the heart’s contractions excited by the meso- 

thorium cease again, are subject to the same quantitative law the 

absorption of the radiation has to obey. As the distance increases 
these uranium quanta should be diminished in such a sense that their 

logarithm remains inversely proportional to the distance. 
The qualitative relation induces me to assume that the biologically 

active quantum of energy shot out from the mesothorium in its weak 

beta-radiation, and the uranium dosage, required for the equilibrium, 

and arresting the contractility of the heart, are antagonistic. The 

radiation as well as the radio-active substance sent into the heart 

are to derive their activity from the mutually compensating energies 

carried along with them. 

The character of the weak beta-rays, in which lies the whole gist 

of the matter, seems to be rather well defined by the above, at 

least when, as is the case in our experiments, the restoring influence 

is considered. An obliterating influence is effected also by the more 

penetrating rays and perhaps it may be for the very reason that we 

cannot get rid of them, that the recovery, obtained through artificial 

radiation, was always transitory, never persistent. 

The following equilibria are obtained when working with a radium- 

preparation of 3 mgrms in the same way as has been described 

above for the mesothorium-radiation. This preparation yields the 

advantage of a more even area of radiation. (See table p. 1165). 

We will also graphically represent these data by plotting the 

distance along the axis of the abscissae to the logarithms of the 

uranium doses as ordinates. 
This gives a curve represented by the dotted line which again 

may be considered as approximately straight. 

It is obvious that by extrapolating mentally towards the ordinate 

take into account the secondary rays of very low penetrating power that are 

generated in passing through the screen. 
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nn IT TS I PS LE EE 

Distance between radium and heart Uranyl-nitrate added to the primary 
(mm.) mixture (mgrms.) 

4 | 5 

3,5 | 6,5 

3 9 

vd) ii A 

2 15 

1,5 18 

I 22 

Chala Ce he SS lee Sh wee BET 

Mesothorium-equilibria — — — — Radium-equilibria. 

O-a method may be found to determine the biological value of a 

radio-active preparation (in a recovering sense). But it is out of 

place here to deal with this practical application. 

Botany. — “The influence of light- and gravitational stimuli on the 

seedlings of Avena sativa, when free oxygen is wholly or 

partially removed”. By Dr. U. P. v. AmwIJDEN. (Communicated by 

Prof. F. A. F.C. Went). 

(Communicated at the meeting of February 24, 1917). 

§ 1. Introduction. 

Our conception of the influence of oxygen removal on geotropism 

and phototropism is mainly due to Correns‘). His method of working 

!) C. Correns. Ueber die Abhängigkeit der Reizerscheinungen höherer Pflanzen 

von der Gegenwart freien Sauerstoffes. Flora 75. 1892. 



1166 

consisted in placing the experimental plants in complete or partial 

vacuum, and was that employed by most investigators before him. 

The dependence of the geotropic stimulation process on oxygen was 

examined by partially exhausting the vessel containing the seedlings 

and then placing them in a horizontal position. The seedlings were 

then observed for 6—12 hours, to see whether curvature took place. 

Thus he found for instance that seedlings of Helianthus were still 
capable of reaction, when the oxygen was reduced to traces ; Sirapis 

seedlings on the other hand required at least 4—5°/, of oxygen to 

develop ‘a curvature. When no curvature took place, there was 

also no after effect in ordinary air. CoRRENs concludes from these 

experiments that oxygen is necessary for the execution of a geotropic 

process. 
His heliotropie experiments were so arranged that the seedlings 

were continuously exposed in the receiver to unilateral day light, 

and he concludes that oxygen is necessary also for heliotropic stimu- 

lation. The quantities of oxygen which just permit of heliotropic 

curvature differ, however from the minimum guantities allowing a 

geotropie reaction. Thus for a phototropie reaction of Simapis seedlings 

the oxygen could not be reduced below 6 percent. 

Geotropic curvatures are therefore, according to CORRENs, executed 

by the same objects at a lower pressure than phototropic ones. In 

my opinion CoRRENs is not justified in drawing this conclusion from 

his experiments since he compares stimulation intensities, the result 

of which perhaps are curvatures of very different degree. Geotropic 

and phototropic stimuli can only be compared, if we employ stimuli 

of such intensity that they produce maximal curvatures of the same 

strength. 

ARPAD Paár *) published a paper dealing exelusively with the 

influence of rarefaction of the air on the geotropie stimulation 

process and therein considered separately the perception and the 

reaction, the former by determining the presentation-times under 

normal pressure and after evacuation to various extents, the latter 

by causing perception to take place at normal pressure and allowing 

the reaction to occur under reduced pressure. His experiments led 

him to the view that with diminution of pressure the presentation- 

times and the reaction-times are lengthened. . 

It should be noted in this connection that he of course still 

adhered to the old conception of presentation- and reaction-times and 

!) ArPÁp PaAt. Analyse des geotropischen Reizvorgangs mittels Luftverdiinnung 
Jahrb. f. wiss. Bot. L. pag. 1. 1912, 
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that he did not yet attach to them the meaning which was after- 

wards given them by Arisz). [ have always used both terms in the 

sense in- which Arisz uses them, hence the apparent contradiction 

between the results of ArPáp Paár and my own. 

§ 2 Methods. 

The experiments were all carried out at the same temperature 

by placing the boxes with seedlings in an electrically heated thermo- 

stat, in’ which the temperature was kept constant by means of a 

thermoregulator. In the middle of the back wall of the thermostat 

there was an opening through which the axle of the clinostat passed, 

enclosed in an oil packing, so that no air could enter from outside ; 

this also secured the easy rotation of the axle. The end of the axle 

in the thermostat could be screwed into the clamp intended for 

holding the boxes with seedlings. The latter remained in the thermostat 

throughout the duration of the experiment and could in this way 

be stimulated geotropically as well as phototropically since the front 

and side walls were of glass, so that the plants could be rotated 

on the horizontal clinostat axis immediately after stimulation. All 

experiments were carried out with a single box of seedlings. The 

clamp was arranged for and held two boxes, but the second 

merely acted as a counterpoise in order to obtain as far as possible 

a uniform rotation of the clinostat. 

All experiments were carried out under a total pressure of one 

atmosphere and therefore the air in the thermostat was gradually 

replaced by nitrogen diffusing in from the commercial metal cylin- 

ders. Since the latter contain 4-—5 percent of oxygen, the gas was 

first passed through washing bottles containing alkaline pyrogallol, in 

order to remove the oxygen. Since, however, not all the oxygen 

was absorbed and CO was moreover formed, the gas was passed 

through a red-hot tube containing copper, in order to absorb the 

rest of the oxygen, and a little CuO, in order to oxidize the CO 

formed to CO, The gas treated in this manner was allowed to 

enter the thermostat and the air contained in the latter was thus 

gradually driven out through an exit. It took 14 to 2 hours to 

wash out all traces of oxygen, as was shown by estimations with 

a phosphorus pipette. 

In order to trace the influence of oxygen deprivation on the 

geotropie and phototropie stimulation processes I first carried out a 

1) W. H. Arisz. Untersuchungen über den Phototropismus. Recueil des Travaux 

Botaniques Néerlandais. Vol. All, 1915. 
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large number of experiments in air in order to obtain a standard, 

from which possible deviations might be measured. In these experi- 

ments I used stimuli of arbitrary intensity. Thus the geotropie 

stimulation consisted in placing the seedlings during a quarter of an 

hour in a horizontal’ position, which therefore means an intensity 

of stimulus of 900 mgs. Phototropie stimulation took place by ex- 

posure during eight seconds to a lamp, placed at a metre’s distance 

from tlie middle of the box, with the seedlings arranged so 

that intensity of the light falling on them was 5 metre candles. 

This therefore corresponds to a stimulus of 40 metre-candle-seconds. 

I now determined the maximal curvatures corresponding to the two 

stimuli and the intervals of time between’ the beginning of stimu- 

lation and the attainment of maximum curvature, i.e. the reaction 

times. The result is, that for both stimuli the maximal curvature is 

2 mm. and that the geotropic reaction time is 65 minutes, the 

phototropic 75 minutes. 

§ 3. Znfluence of oxygen deprivation on perception. 

In order to see whether Avena seedlings are able to perceive a 

stimulus in an oxygen-free atmosphere, I first left them for some 

time in the thermostat, while a current of nitrogen was passing. 

When the objects had in this way been deprived of oxygen for 

some time the stimulus was administered, when they were still in 

a nitrogen atmosphere; immediately afterwards the nitrogen current 

was stopped and ordinary air was sucked through the thermostat 
by means of an aspirator. In considering the length of the preli- 

minary sojourn (fore-period) in nitrogen, given below, it must be 

remembered that this includes the 14—2 hours, necessary to free 

the thermostat completely from oxygen. During the reaction time 

the seedlings were therefore in air; when this time was up the 

seedlings were removed from the thermostat and their curvatures 

were measured. 

I. Geotropic experiments. 

Two or three hours of preliminary sojourn in nitrogen had not 

the slightest effect. A subsequent stimulus of 900 mgs. expressed 

itself by a maximal reaction of 2 mm. in the air. A fore-period in 

nitrogen of 5 hours was clearly evident by a diminished response, 

and after 6 hours there was no reaction at all. 
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TABLE 1. 

Strength of stimulus 900 mgs. Temperature 20° C. Reaction time 65 minutes. 

Fore-period Number of | Amount of curvatures 
in nitrogen | seedlings | in mm. 

5 hours a | scree C0 

1 EE AOT OG 

| 5 [1 Ye Ue Wp O 

| * \Ye Y% 0 0 

6 hours 8 | all without curvature 

BE 
5 id. 

2. Phototropic experiments. 

In these experiments also a preliminary stay of three hours was 

without the slightest effect on the curvatures, even six hours in 

nitrogen were not quite sufficient to prevent the reaction entirely, 

but an eight hotrs stay in nitrogen before stimulation was enough. 

TABLE 2. 

Strength of stimulus 40 M.C.S. Temperature 20° C. Reaction time 75 minutes. 

Fore-period Number of | Amount of curvature 
in nitrogen | seedlings in mm. 

6 hours 5 1, 1 Wy 1e 1 

8 I, We Ha U O 00 0 

7 EE A SD TT 

4 la Va Va Up 

6 kton ay yee ler ae f 

8 hours 6 all without curvature 

6 id. 

8 id, 

It is evident therefore, that the seedlings must be deprived of 

oxygen for a long time in order to lose their irritability altogether. 
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Since the possibility existed, that especially in the space between the 

cotyl and the first leaf, sufficient oxygen remained for a long time 

to account for the prolonged irritability, I repeated the experiments 

with seedlings of Simapis alba and obtained with them mutatis 
mutandis the same results; we must therefore assume that the 

seedlings, as a result of intramolecular respiration, have sufficient 

energy at their disposal to perceive stimuli for a considerable time, 
albeit in lessening degree. We may not, however, conclude at once 
that no perception of stimulus can occur in the absence of oxygen, 

for it might quite well be that the stimulus is indeed perceived, but 

that the processes in the plant, which cause the reaction, have already 

been so influenced by the want of oxygen, that no curvature was 

possible. For these reasons I carried out geotropic experiments, in 

which the objects had a six hours’ fore-period in nitrogen and 
phototropie ones, in which this period was 8 hours; in both cases 
perception took place in the air, this being therefore the sole pvint 

of difference from the previous set of experiments. 

1. Geotropic experiments. 

TABLE 3. 

Strength of stimulus 900 mgs. Temperature 20° C. Reaction time 65 minutes. 

Paes bia ea | Amount of curvatures in mm. 

Bl | | 

6 hours 8 2 IY, 1 deed dn ere EDS 

7 ETA Eh ies UG ee BP 

7 PMS aad uke, (a TRL Ha 

8 ee Age A11" Ze 
| 

2. Phototropic experiments. 

TABLE 4. 

Strength of stimulus 40 M.C.S. Temperature 20° C. Reaction time 75 minutes. 

| 
| | 

Fore-period Number of | . 
in oxygen | seedlings Amount of curvatures in mm. 

8 hours g 4 14 1 1 We Ue Wo Up O 

8 Me Ye 1 1k Vo U 0 

6 th he U 

8 Welter of! Ae Ah 8 
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On comparison of the above experiments with those in tables 1 

aud 2, it at once follows that since in those of tables 3 and 4 there 

were curvatures, and not in those of tables 1 and 2, seedlings are 

unable to perceive a geotropic or phototropie stimulus in the absence 

of oxygen. 

The fact that the curvatures obtained in the later experiments are 

smaller than those obtainable under normal conditions proves, that 

the seedlings have undergone a harmful influence from the prolonged 

want of, oxygen, which still makes itself felt after the normal con- 

ditions have been reestablished. 

§ 4. The influence of oxygen deprivation on the reaction. 
In order to study the influence of an oxygen-free atmosphere on 

the reaction, | gave the seedlings a preliminary stay of 3 hours in 

nitrogen, administered the stimulus in this gas, and left them without 

oxygen also during the reaction time. The earlier experiments had 

shown that after a fore-period of 3 hours in nitrogen, the stimulus 

is still perceived normally in this gas. In a few experiments I watched 

the seedlings for a considerable further time in nitrogen in order to 

see whether a curvature occurred later. In that case we should have 

to postulate a lengthening of the reaction time owing to absence of 

oxygen. In the other experiments | admitted oxygen at once after 

the normal reaction time had elapsed, in order to see whether there 

was any after effect in this gas. 

1. Geotropic experiments. 

The plants remain the whole time in nitrogen. 
TABLE 5: 

Strength of stimulus 900 mgs. Temperature 20° C. 

| Time elapsed | ; | 
5 ‘ BLAS Number 

ee | Sagcunialadon: ee | Amount of curvatures ín mm. 

| in minutes | | 

| 

3 hours | 65 | i all without curvature 

| 100 | | id. 
125 | id. 
150 id. 

65 8 id 

100 id 

130 | id 
| 65 8 ‚7 without curvature, 1 with asymm. apex 

| 100 | id. 
| 130 | id. 

65 | i all without curvature 

19 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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2. Phototropic experiments. 
The seedlings remain the whole time in nitrogen. 

TABLE: 

Strength of stimulus 40 M. C. S. Temperature 20° C. 

| Time elapsed 

Haars bs | singe Dearne | ee Amount of curvature in mm. 

| in minutes (ae 

3 hours 15 1 ‚all without curvature 

| "100 | id. 

| 140 | id. 

| 170 | id. 

| 75 8 id. 

| 105 | id. 

| 130 | id. 

| 15 hee id. 
| 100 id. 

| 13D =o | id. 

| 75 Ë 9 id. 

If I replaced the nitrogen by air after 65 minutes, or respectively 

after 75 minutes there was always a slight after effect, which was 

plainly visible abont one hour after air bad begun to be sucked 

through. This is further evidence, that the stimulus had indeed been 

perceived, but that without oxygen no reaction could show itself. 

That these curvatures were so slight, is a proof that the stimulus 

was already passing off, and therefore we cannot speak of a length- 

ening of the reaction time as a result of the absence of oxygen. 

These experiments show, that a perceived geotropic or phototropic 

stimulus is unable to give a reaction in the absence of oxygen; 

further that there are no indications in favour of a lengthening 

of the reaction time. 

§ 5. Influence of an atmosphere with low oxygen content. 

By passing the gas from the nitrogen cylinder straight into the 

thermostat, without passing it first through the washing bottles with 

pyrogallol and the tube with red-hot copper, the plants were in an 

atmosphere containng 4—5 °/, of oxygen. I only investigated the 

influence on the perception, by giving the seedlings a fore-period in 



this mixture and allowing perception also to take place in it, and 

then letting any possible reaction occur in ordinary air. 

1. Geotropic experiments. 

PAB LEA 

Strength of stimulus 900 mgr. Temperature 20° C. Reaction time 65 minutes 

Fore-period in Number of | 7 
43 rH oxygen. seedlings. | Amount of curvature in mm. 

6 hours 9 OEE Be Re OTE ET 
| 

ans 9 3 IE ke (DES 2A PI 97 

ve eee 8 EE (ct ne i (en ales Meee A ae 8 

2. Phototropic experiments. 

TABLES: 

Strength of stimulus 40 M. C.S. Temperature 20° C. Reaction time 75 minutes. 

Fore-period in Number of 
4.3 %) oxygen. | seedlings. Amount of curvature in mm. 

10 hours 9 Di, Dern EE De AM Lille, AML rae 

24 > 9 Ne STI Le TAN OD At Pe 

After a stay of 24 hours in the mixture of nitrogen and oxygen 

an. influence on the perception is noticeable in both cases. The 
seedlings therefore remain able for a long time to perceive a 

geotropie or phototropic stimulus in an atmosphere containing a 

relatively low amount of oxygen. Here also there is no indication 

of a difference in the reaction to these two kinds of stimuli, contrary 

therefore to the opinion of Correns, according to which a geotropic 

curvature can be executed in a lower percentage of oxygen than 

a phototropic one. 

Utrecht, February 1917. 
JI 



Physics. — “On the. difiraction of the lijht in the formation of 

halos’. By Dr. S. W. Visser. (Communicated by Prof. J. P. 

KUENEN). 

(Communicated in the meeting of March 31, 1917.) 

I. Introduction. 
The halos which originate by refraction are often seen distinctly 

coloured. This fact is best known as regards the circumzenithic arc, 

the parbelia and the tangential ares, but the large circle is also 

often coloured and in the ordinary circle of 22° too, distinct 

colours occur. 

In this paper the last circle will be principally dealt with. 

According to the common refraction-theory of halos, as developed 
by PeRrNTER*) amongst others in his well-known work, the red on 

the inside of the circle should be distinctly visible, whereas the 

green and blue would already be very pale. The observations on 

the other hand show, that the colours are often practically invisible, 

but that sometimes they appear with great brightness, and the same 

holds for the other halo-phenomena mentioned above. These bright 

colours are explained by Perrrer as regards the parhelia and the 

tangential ares by the presence of a large number’ of ice-crystals, 

whereby the intensity of the light would be inereased and the colour , 

become visible’). But if there is nothing but white light or nearly 

white light, an increase of intensity cannot produce anything but 

more white: the distribution of colour cannot undergo any change 

by a greater intensity of light. 

A remark by Perrnter himself shows, how little the colours fit 

into the usual theory ®): 

“Tt should be mentioned, that in a description of the phenomenon, 

as observed on September 4'' 1900 at Aix la Chapelle by SIEBERG 

I find the following statement as to the colours of the smaller circle: 

“In addition it was distinctly coloured red, yellow, green and blue 

from inside to outside”. As this observation would contradict all 

others, if it referred to the complete ring, I assume, that the colours 

were observed, where the parhelia were situated on the ring, in 

which these colours have also been observed by others”. 
But the colours of the parhelia are not in accordance with the 

theory either and moreover SIEBERG’s observation is „ot at all in 

'!) J. M. Pernrer and F. M. Exner, Meteorologische Optik, Wien 1910 pag. 319. 

2) Pernter. l.c. p. 318, 320, 321. 

3) PeRNTER, lc. p. 228. 



contradiction with those of others. This will all be shown further on. 

In this paper an attempt will be made by a modification of the 

theory in which diffraction will be taken into account to explain 

the colour-phenomena as observed. 

We shall begin by tabulating a number of the various colours 

that have been recorded, chiefly taken from the publication of the 

“Koninklijk Nederlandsch Meteorologisch Instituut”: “Thunder storms, 

Optical Phenomena ete. in Holland according to voluntary observ- 

ations 19011914"). This will be followed by a discussion of 

the simple refraction-theory for ice-erystals with a refracting angle 

of 60° in order to arrive at the colours which might occur in the 

ordinary circle. A  diffraction-theory will then be developed and 

finally the colours will be deduced for a specially well developed 

halo of 22°, which will appear to agree very well with the observations. 

I. Survey of some of the colours observed in halos. 

I shall confine myself to those records, in which colours are 

mentioned by name. Lyrical rhapsodies like: ‘brilliantly, very 

intensely, strongly, magniticéntly coloured”, especially” numerous 

for the parhelia, cannot be utilized. In the fourteen volumes of 

“Thunderstorms ete.” which L consulted the colours of the parhelia 

are named in only five cases! 
With regard to the cireumzenithie are Bresson expresses himself 

as follows ’): 

Les couleurs sont souvent remarquablement pures: on distingue 

en bas le rouge, puis le jaune en passant par lorangé, puis le vert, 

puis mais pas toujours le bleu et le violet. Cette derniere couleur 

est fréquemment absente, mais il n'est pas rare, quelle soit visible 

tres nettement. Fait important a noter: le violet, quand il existe, 

est trés pur, il n’est pas surmonté ou mele de blanc, comme dans 

les ares tangents au halo de 22°. La coloration offre une intensité 

des plus variables: faible parfois an point d'être a peine perceptible, 

elle est d'autres fois aussi éclatante que celle du plus bel arc-en-ciel. 

These references, incomplete though they are, are sufficient 

to show the great variety of colouring in the halo-phenomena. 

Especially important from this point of view are those cases in which 

different observers mention the same colours. 

1) Onweders, optische verschijnselen, enz. in Nederland naar vrijwillige waar- 
nemingen 1901—1914. (Cited in the following table as: “Onw,”). 

2) L, Besson, Sur la Theorie des Halo’s, Paris 1909, p. 53, 
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CZA = circumzenithic arc; UTA = upper tangential arc; CH — circumscribed halo; 

C 22° =circle of 22’; C 46° = circle of 46°; P = parhelion (paraselene). 

_ Accompanying Place of 
| Date Colours | Paine observation | Reference 

| | td Ee en 

a. Circle of 22°. 

1 | 1903, Apr. 17 | strongly coloured | CZA brown, blue; | Vrijenban | Onw. 
| | UTA; 

2 Sep. 23 | brown-red, violet | | Zoutkamp F: 

3 | 1904, Apr. 2 | golden brown, yel-- UTA uncoloured; | Nymegen * 
low, green, violet bB coloured | ~ 

4 Aug. 14 | faintly orange lateral tangential | Valkenburg 5 
| arcs uncoloured | | 

5 | 1905, March 28) red predominant | UTA red predom- | Zutfen jp 
leinant >) „4690 
| green predominant’ 

6a Oct. 7 | yellow, violet | C 46° red, green | Zutfen 4 

b “ red, yellow, green, P; faint UTA | Nymegen i 
violet | 

7 | 1906, Feb. 12 red predominant | UTA very bright- | Zutfen é 
ly coloured; C | 

| 46° all colours | 
| | 

8 | 1914, Apr. 11 orange, dark-green,| P faint, white Renesse é 
| white (moon) 

Qa! 1886, May3 | very brilliant, | TA same colours, | Boulogne La Nature 
‚rainbow hues, | fainter ‚s. Seine 14, p. 379, 
| except green ‚1886 

b pe ‚strongly coloured CH; C 46° red, ‚ Angers rd 
| blue, faint 3 

c f red, yellow,green, CH in the same Argentan 5 
blue, violet, inside colours | 

‚ violet | 

10a) 1887, Jan. 28 red, orange, yellow, C46°;CZA;UTA « Pithiviers _ La Nature 
green, blue, indigo, | | 15, -p. 165 
violet 1887 

b 5 ‚ magnificent rain- | P; double inferior Souppes ‘i 
‚bow tangential arc 

c = prismatic colours | C 46° prismatic Fontaine- 4 
‚ colours; P bright | bleau 
pink ; CZA 

di a | spectrum-colours | UTA} oP. | Orleans x 

| 6. Parhelia on the circle of 22°. 

11 | 1901, Jan. 29 | red, orange, yel-| two above one Onw. Zutfen | 
lowish white another 



Colours 
Accompanying 

halos 

| 
| 
| 

| 

Place of 
observation 

| 

| Reference 

‘mmm 

12 

17a 

20 

21 

22 

23 

24 

25 

26 

1904, Sep. 28 

1905, Sep. 19 

1910, Sep. 7 

1911, Nov. 3 

white 

uncoloured 

red specially 
bright, remaining 
colours very live- 
ly, blue and vio- 
let, also distin- 

| guishable 

red orange, light- | 
’ | UTA and CZA in green 

Compare also 10c. 

c. Upper tangential arc 

1903, May 5 

1904, Apr. 26 

Octo 

1905, Nov. 2 

1907, Oct. 3 

1910, Jan. 30 

Feb. 8 

May 18 

red to violet 

goldish brown, 
green, blue 

| 

| 
brown-red, yellow, 
green, violet 

red, green, some | 
blue 

goldish brown, 
clear white, blue 

red, violet 

red-orange, light | 
green 

red to violet 

brown-red, violet 
(moon) 

| 

| 

| 

C 229 brown- 
red; C 46° red, 
blue 

UTA red, yellow, | 
blue (broad), vio- 
let (narrow) 

GAAR 
Lowirz’s arc 

C229; i 46? 5 

the same colours 

C 22°; CH 

P; C 229; C 46° 

C 22°; C 46°; P 

CZA; | 

Zoutkamp 

Nymegen 

Zutfen 

Renesse 
2 

Zutfen 

Vrijenban 

‚Delft 

C 46° red, green; | 
G22 
CZA 

C222 46° 

P faint; 

C 46° pale red 

C 22°, corona 

Comp. also Nrs. 3, 5, 7, 9, 13, 15, 25. 

d. Inferior tangential arc. 

red-orange, yellow, | ie 22°; parhel. 
green, blue, vio- | circle 

1904, May 21 

1909, Apr. 22 

let 

yellow predomi- 
nant 

e. Circle of 46°. 

1901, March 22, red, yellow, green — 

| 

| 
| 
| 

| 
UTA very bright- 
ly coloured; C 
ae” 

Zutfen 

Vrijenban, 
Delft 

Several 

Renesse 

Groningen 

Zutfen 

Zoutkamp 

| Zutfen 

Munnike- 
buren 

| Onw. 

” 
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| Accompanying | Place of | 
Date | Colours | halos “observation | Reference 

| Be i | 
21 | 1906, Oct. 8 | conspicuously li- | C 22° ‚ Zutfen Onw. 

vely colours | 

28 | 1911, March 8, faint red ee Renesse x 

29 Oct. 1 | red | de Bilt 5 

30 | 1914, Dec. 29 | red | CZA red, blue; de Bilt N 
. | P; pillar 

31 | 1890, March 3 all the colours of | C 22°; P; CZA Parc Saint La Nature, 
the rainbow rainbow colours Maur | 18, Sp. 238; 

| 1890 

Compare also: Nrs. 5, 6a, 7, 9b, 12, 20, 22. 

f. Circumzenithic arc. 

82. AOM, Od. ds valk colours to’ UTA Zutfen ‚ Onw. 
‚ violet | | | 

33 Nov. 15 | red, yellow, green | C 22° Munnike- 2. 
| | buren 

Compare also: 1, 15, 30, 31. 7 

IW. The refraction of hght in ice-crystals of a refracting angle 
of 60°. | 

We may confine ourselves to the phenomenon as it presents 

itself in one plane brought through the eye and the sun. By a 

rotation of this plane about the line eye-sun the circular phenomenon 

will be generated. It will also be allowable to consider exclusively 

those crystals whose refracting edge is at right angles to the plane 
chosen, seeing that the colours can only take rise on the inner edge 

of the halo, where the light which moves perpendicularly to the 

axis of the crystals chiefly contributes to the formation of the circle. 

In order to deduce the colour which will be seen in a given 

direction it is necessary to determine the intensities of the various 

spectral colours in that direction: from these the resulting colour 

can be calculated. 
For an angle of incidence 2, 

in the hexagonal prism PCQH 
(fig. 1; only the faces required 

for the construction are shown) 

the passing beam is confined 

within the rays I and II. In 

the direction of a given angle 

of deviation D there are two 

different beams of widths 45 
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and HK respectively. The sum of the intensities of these emerging 
beams determines the intensity in the given direction. These two 

intensities may be replaced by those of the incident beams HA 

and AS. It is true that some light is lost by reflection, but no great 

error will be introduced by assuming that — on the inner side at 

any rate — all colours are weakened approximately in the same 

ratio by the reflections. The colour to be observed is not influenced 

by these losses: only the total intensity will be lessened. The 

intensities of the incident beams may be taken proportional to their 

widths and, as in the end we are only concerned with the ratios, 

the intensity may be put equal to the sum of the widths Ab + HK 
itself. 

Calling the width of the side of the prism a, the angles of 
incidence and refraction 2,,7, and 7,7, (see fig.), we find: 

cos 1, igs OE 
AB + HK= sinr, a 8: 

COS 7, ae - 

: CS rie COS 1, cos 2 
OK = EH cos 7, a OE ANR dS en 

COST, COST, ‚COST, 

Tae, COS 1, fe 
sin, a AB == AC t0st, = CH tg? cost, => sir} ved: ae 

Los Los, / 

For a ae value of « the intensity Z, leaving out a constant 

factor, may be put equal to: 

cos d COSÌ 
i= aie SEL BLU He pS Salo an re EA): 

COST,“ cos Pf, 

This function can be calculated for all values of 7 and 7. Computing 

the deviation YD corresponding to a given value of # the intensity 

for the direction determined by D is found by substituting in (1) 

that value of 7, and the corresponding values of 7,, 7, and 

The various refractive indices n of ice which are required were 

derived from measurements by PuLrricu’?) by graphical interpolation 

(with a small extrapolation, utilizing a remark of Purrricm’s, that 

the dispersion of ice is equal to that of water) taking for nm the 

mean of the values for the ordinary and extraordinary rays (for 

the whole spectrum the difference in the minimum deviation between 

the two amounts to only 6’). 

The values required for the purpose are as follows (/ refers to 
~ 

') For angles of incidence greater than that of the symmetrical case the indices 

1 and 2 interchange. 

2) C. Purrricu, Wied. Ann. 34, p. 336, 1888, 
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a measurement by PurrricH; D, = angle of minimum deviation): 

} n D, À n D, 

B 0.687 1.3071(P) 21°37 «x OA9L 1.3136 22°7' 

C 0.656 1.3079(P) 21%41'’ F 0486 1.3140P) 22°8' 
D 0.589 1.3098(P) 21°50 y 0.449 1.3157 22°16! 
E 0.527 1.3121(P) 22°0' G 0.431 1.3168 22°21’ 

w and y are two special wave-lengths which are of importance for 

the deduction of the colour-effect following further on. 

For these eight colours and for angles of incidence between about 

41° (corresponding to the angle of minimum deviation, which differs 

for the various colours) and 62° the expression (1) was computed. 

In this set angles of deviation up to 25° are included. Larger angles 

of incidence were found to be unnecessary; and, moreover, the loss 

of light by reflection probably begins to exercise its influence in 

this region. | 

The results are contained in the accompanying table. A special 

calculation for the line / which differs very little from we was not 

carried out. Fig. 2 gives the dependence of the intensity on the 

deviation. 

Fig. 2. 

By means of these curves the intensity was determined in direc- 

tions from 21°30' upwards ascending by 15’. It is necessary in this 

computation to bring into account the finite extension of the sun. 

The same approximation was applied as used by PerNrer in the 

case of the rainbow; in fact Prernrer’s method of computing the 

colours was followed throughout’): the curves are shifted in three 

steps of 5’ both to the left and to the right and read each time. 

The figures thus obtained, corresponding to seven points of the sun 

at intervals of 5, are added up. The practical execution of the 

method comes to reading the curves from 5’ to 5’ and each time 

') Pernter, l.c. pag. 529 sqq. 
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combining seven readings: the sum represents the intensity of the 

light at the middle point. 

The sums thus arrived at are then reduced to the intensities with 

which the eight colours concerned occur in the light of the sun by 

multiplying each by a special coefficient. 

The final caleulation of the resulting colour by PERNTER’s method, 

which is based on Maxwerr’s colour-equations, consists in dividing 

the intensity found for each of the eight colours over the three 

primary colours red, green and violet (.630 u, .528 u, and .475 u) 

and thenee to deduce the colour-equations which yield the final 

colours, each with the percentage of white with which it is mixed. 

S R G V 

| | 
B | 23 1.000 0.000 0.000 

C 94 0.904 0.011 | 0.085 

D 262 0.557 | 0.446 —0.003 

E 153 —0.006 0.993 | 0.013 

x 118 — 0.068 | 0.602 0.466 

F 130 —0.061 0.346 0.715 

y 152 0.020 0.007 0.973 

68 0.000 —0.059 | 1.059 

Ww | 240 | 383 | 371 

Column S gives the proportional numbers for sunlight, 2, G and 

V those for the primary colours. The bottom row gives the pro- 

portion of the primary colours in white (W). 

The following table contains the intensity as obtained for a few 

directions : 

21°30" | 37.4 78 0 0 0 0 0 | 0 

220 | 12h. {505 1244 496 192 IES OD 

22030’ | 110 | 454 1296 182 | 618 | 684 | 707 | 264 

2390’ | oi TLs nos Ss 623 748 339 

2400’ | 89 | 367 | 1046 620 | 489 540 | 642 290 

2500 Toet eae 928 B51 «| 433 419. | 567 | 257 

_— 
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The numbers for / were obtained from those for « by a shift 

of 1' (the difference in the minimum deviation for the two wave- 

lengths). 

The final results are contained in the following table: 

D L Wp ah ee ee re Colour 

21030’ hom an Bag a A 29.5 red (weak) 

21045’ HOR ed rare 
2200’ 279 DEE | aos [ee yell 

15/ 424 | 69 31 te | green-yellow 

30’ OTN NE Pee 8.4 green | | 

rs ae NEE | 96 | 4 17.0 |. blue 

2300’ 41 | 9 4 en a of 
| | | ‚ white 

30 | 437 dn | 16.9 

2400’ =| _ 408 re ne ati CH en 

250’ | 362 98 2 | ayy eee 
i | 

In this table the letters have the following meaning: 

D angle of deviation; Z intensity of the light; W°/, and C°/, 

percentages of white and of colour; G the colour-number in Perntrr’s 

(Maxwk.1’s) colour-triangle, the last column gives the corresponding 

colour. 

Fig. 3 shows the dependence of Z on D; from which it appears 

that the refraction-theory gives a maximum at a distance of more 

than 22°30’. The observations on the other hand show, that the 

eee 

tos 

quo ne 

3 
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maximum is nearer to the sun. Prerntger’), taking the mean of a 

large number of trustworthy measurements, finds 21°50’. This dif- 

ference of more than '/,° is much too large. Moreover, the refraction 

theory leads to the conclusion, that the inside of the circle would 

be red-orange, yellow, green-yellow and that blue can hardly appear 

and violet not at all. No increase of the intensity of the light can 

improve this disagreement with observation; the white always 

remains 24 times as intense as the blue; specially directed crystals 

are not capable of producing colours which are not there before. 

The colouring of the parhelia and tangential curves are not explained. 

It may also be noticed that on the underlying refraction-theory the 

size of the erystals which is determined by a cannot have an influence 

on the colour-phenomenon either, seeing that the width of the beam 

changes in the same ratio as a for all colours and that the light 

is parallel. 

The conclusion to be drawn is simply this: the refraction theory 

is not able to give a complete explanation of the halo-phenomena. 

I have not carried out a similar calculation for crystals with a 

refracting angle of 90°, but the circumstance, that the minima of 

deviation lie further apart in this case’), cannot be sufficient to 

explain the presence of differently coloured rings of 46°. 

IV. The diffraction theory. 
We may again confine ourselves to the phenomenon as occurring 

in one plane sun-crystal-eye, with the refracting edge at right angles 

to this plane. We shall also assume the special case of all crystals 

having the same size, which must be looked upon as a limiting 

case which is specially favourable to a development of colour. 

As we have seen a beam of definite width emerges from the 

erystal after refraction, but this beam will be subject to diffraction. 

A large number of erystals of the same size, irregularly distributed, 

with parallel edges, all give similar beams, which will give rise to 

interference phenomena: the light source is seen as it were through 

1) PERNTER, Le. 230. PreRNTER’s proof that a ring must be formed at 21950 

is by no means conclusive. He only shows that the yellow light has a minimum 

deviation of that magnitude (p. 313). The maximum intensity lies further out: 

about at 22°21’ (min. dev. of violet) + 16’ (sun’s radius) = 22°37’, the place 

where all the colours of the complete spectrum are fully developed, in accordance 
with what the above more elaborate calculation gives. The light circle seen against 

the dark background will appear narrower to the eyes. Thereby the difference 

between observation and calculation becomes smaller, but it is more than doubtful, 

whether this effect could cause the difference to disappear altogether. 

2) PERNTER, l.c, p. 354, 357. 
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a very large number of rectangular apertures, slits, spread at 

random. Diffraction fringes will be formed parallel to the refracting 

edges of the crystals and a rotation of the plane about the line 

eye-sun produces diffraction circles round. the sun. 

The places of the diffraction minima are given by the equation 

À 
sn Ö == M=, 

a 

where @ is the angle of diffraction for the minimum, m the order, 

À the wave-length and « the width of the slit. 

The first maximum for each colour is formed in its minimum 

deviation. Towards the outside of the ring each direction represents 

a maximum for each colour accompanied on both sides by 

diffraction fringes. The resulting colour cannot be anything there 

but white and the only colours which can be seen will have to be 

looked for on either side of the first maximum. 

In each direction two beams AB and HK (fig. 1) of different 
width cooperate. Considering that these beams approach each other 

in width the nearer they are to the minimum-deviation and that in- 

its neighbourhood the deviation of the rays changes very slowly 

with the angle of incidence, it follows that the diffraction lines very 

nearly cover each other in the neighbourhood of the minimum- 

deviation and hence that the colours must be more prominent there 

than elsewhere. In order to elucidate this effect | have computed 

the relative widths of the slits A5 and HK (equation 1) on -both 

sides of the minimum for angles of incidence between 37° and 50° 

| max.— min. 
A Io a as D 

ay Ay 

40°55) 40°55/ 0.4363 | 0.4363 | 100° | 100’ 21°50/ 

42 0 39 51 4228 | 4306 | 103 101 51 

430 | 3853 4104 4250 | 106 103 53 

440 | 3755 3980 | 4190 | 110 | 104 55 

450 | 36 50 3856 4130 | 113 | 106 59 

460 | 36 3 3734 | eer 22 3 

drol ag 6 3612 121 8 

48 0 34 14 3490 | 125 14 

49 0 33 22 3370 | Hsiao ee: 

50 0 32 30 3250 ok ames | 30 
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for n==1,310 (yellow); further for the same angles the deviation 

which gives the place of the central maximum and finally the place 

of the first diffraction-minimum on both sides of the central 

maximum, assuming at the minimum-deviation a distance between 

central maximum and first minimum of 100’ (a value about equal 

to the one found in the special case to be dealt with further on 

corresponding to an absolnte width of the slit a of 20.24 u.) 

The positions of the maxima and minima for the D-line derived 

from this are as follows 

— += | 

ist min. Ist max. | 

Te i 

i | Ist min. | Ist max. Ist min. 1st min. 

PN Nee? 23°43’ 20°13’ 36°59’ 21°55! 23°44’ 

31 55 re Ee: cle ENE eee a a 5 59 
38 53 950”) 53 35 | 460 RN 
TE en Ee 8 
40 55 022) 80 4“? 30.) 480 0 14 
ae ies ffi) aan to 12 22 
ae? | 53 | 39 | 500 16> 4.) 30 

The peculiar movement of the inside minimum is due to the 

cooperation of the change of the minimum deviation and of the 

angle of diffraction of the first minimum. 

The results show that for angles of incidence between 39° and 

48° the inside minima do not deviate by more than 5’ from the 

smallest value, that the same is true for the outside minima between 

39° and 42°, and finally for the central maximum from 38° to 44°. 

What was found for yellow, also holds mutatis mutandis for the 

other colours. 

By the superposition of these maxima and minima the development 

of colour will be much promoted in a manner, which is impossible 

on the ordinary refraction-theory, and by the presence of the dif- 

fraction minima the resulting colour is completely modified. This is 

particularly true for the first minimum on both sides of the central 

maximum. The theory taken generally shows the possibility of the 

formation of diffraction rings on both sides of the central maximum ; 

but it goes without saying that these circles have a better chance 

of becoming visible on the light-free inside of the halo than on the 

outside which is covered with non-minimal light. 

The resulting colours and the intensity of the light in each direction 
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will again have to be found by a calculation similar to the one 

applied above in the refraction theory. 

The fundamental formula shows that the phenomenon depends on 

the width of the slit @, that is on the size of the crystals. A possible 

procedure would thus be to calculate the colour for a number of 

different values of a chosen at random and in this manner try to 
reproduce the various observations. We shall, however, confine 

ourselves to a special case in which the observations themselves give 

an indication as to the size of the crystals which were operative. 

V. The halos of May 19 1899 and of September 19 1905. 

On two occasions Hissink at Zutfen observed very interesting halos 

which are described in “Onweders etc.” as follows. 

May 19 1899. “At 10.10 a.m. the small are and the complete 

circumscribed halo became visible. For some time clouds prevented 

the observation, but when it cleared the circle became visible once 

more. At 11.52 a.m. an additional ring 0, also circular, appeared, 

principally inside the upper half of the main ring and at 12.15 p.m. 

another circle c inside the former, whereas at 12.2 p.m. a further 

one d showed itself again nearer the sun. The two rings 6 and c 

were red on the side of the sun and showed round the red a 

greenish-yellowish tint, surrounded by violet. The small circle d had 

its outer edge coloured like the former, and its red on the side of 

sun was also similar, but the space on the inside of the circle was 

dark blue with a dull-brown hue.” 

By estimation Hissink determined the radii at: d= 7°.5;¢=17°.5; 

b =19°.5 (putting the ordinary circle at 22°). 

Sept. 19. 1905. “The halo observed on this day at Zutfen was 
a very rare one. It included a the large circle, 6 the upper tangential 

are, c the small eircle, d a circle with a radius of about 19°30’, e 

a circle with a radius of about 18° and / the left parhelion. 

As regards the colour of the various parts it should be principally 

mentioned, that the large circle was comparatively brightly coloured 

and that the violet of the tangential are near the point of contact 

was particularly striking. 

The circles d and e are the most interesting, the radii being 

determined by Hissink by measuring the radius of the small circle 

with an octant, which gave 22°, and subsequently the distances 

between it and the ares d and e. The latter were found to be 2°32’ 

and 4°2', which would give 19°28’ and 17°58’ for the radii of these 
circles. Direct measurement of the radii gave 19°32’ and 18°2’ 

76 
Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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respectively. The means 19°30' and 18°O' must therefore have a 

comparatively high degree of certainty”. 

Similar circles have been observed on other occasions. BurNry on 

June 9 1831 saw a ring of a radius of 20°). Hissink himself saw 

one on Sept. 5 1899 of a radius estimated at 19°. On the ordinary 
theory all such circles are explained by means of specially shaped 

crystals with refracting angles which produce a circle at the distance 
required, The following crystal-faces come into consideration’) for 

the above cases: 

Refracting 
angle D, (yellow) 

50°28' two pyramidal faces at the same end of theerystal 17°26’ 
53°50' two pyramidal faces at opposite ends of the crystal 18°56’ 

54°44’ a base face with a pyramidal face at the other end 

or a prism face with a pyramidal face exactly 

opposite. 19°20’ 

The distances of the rings for yellow are then 2°30’, 2°54’ and 

4°24' respectively. 
The first one agrees exactly with Htssink’s measurements, whereas 

the last is too large. The colours give difficulties which are not 

solved in this manner. 

Starting from the supposition, that the rings of 18° and 19°30’ 

are nothing but secondary diffraction rings, I have made a calculation 

of the colours in the following manner. 

PerNTER *) gives the positions of the maxima and minima for the 

diffraction through slit-shaped apertures in connection with the 

theory of coronae, as follows: 

position intensity 

1st maximum 0.0000 1.000000 

1st minimum 1 0 

2°¢ maximum 1.4303 0.047191 

2nd minimum 2 0 

3rd maximum 2.4590 0.016480. 

Applying these results to Hissink’s measurements in 1905, where 

nk AEN) b= 1974 eis 4) 

A=3=b = 2 20 Oa 

the angle of diffraction 9 of the first minimum is found to be 

1) PERNTER, l.c. page 266. 

2) Onweders etc. 26 p. 83. 1905. 

3) PERNTER, |. c. pag. 452. 
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— 

1 

43 

1 

2.46 

2.33 = 1.630° — 1°38’ 

1.557° = 4°34 

the mean 1°36’ having an uncertainty of 2’. This agreement seems 

to support the underlying 

subsidiary circles. 
supposition as to the nature of the 

| B | GAD BoA | PND G 

2300 | 17.84 | 77.5 | 224.2 | 169.7 (1714 | 191.3 | 302.1 160,4 

2245 | 41.10 |170.0 | 5611 | 408.2 | 377.7 | 422.8 | 605.9 | 308.2 

30 | 71.90 315.5 | 990.8 6910 606.9 \680.6 |881.4 422.7 

5 | 105.3 | 457.0 | 1416 | 925.5 | 761.8 | 846.4 1003 435.4 

0 | 135.3 \ 573.0 eee (992.3 | 765.5 | 841.1 | 870.9 | 331.7 

21 45 | 152.8 | 633.0 | 1743 | 926.7 617.3 665 5 515.9 | 212.6 

30 | 154.2 614.0 | 1531 | 690.4 | 301.1 | 402.4 | 272.6 | 72.8 

15 | 136.9 533.5 | 1140 | 407.9 | 181.8 174.7 | 74.60) 15.31 

0 | 109.6 | 349.0 | 700.5 167.9 | 52.4 | 46.5 | 16.62 10.43 

20 45 | 72.95 | 248.5 | 329.7 | 41.18| 10.53| 13.10 | 30.13 | 17.64 

30 | 42.65 124.0 | 103.9 | 9.92| 20.57) 25.78} 41.67) 16.23 

15 | 19.40 44.50 20.88 26.97, 33.30 | 37.13| 29.87) 7.19 

0 | 5.56) 9.15) 30.88) 44.16| 29.25 20.33) 10.92| 2.27 

1945 | 0.91) 6.35) 67.90) 38.71 | 14.14) 12.32] 4.94] 3.95 

30.° |. - 2.33 | 17.60 | 79.71| 19.27] 4.21} 3.70] 11.11] 6.39 

15 | 5.19| 27.10] 61.30] 5.68 | 5.05/ 6.62| 14.79] 5.16 

0 | 7.09) 27.40 | 28.85 | .4.56| 10.17) 12.26] 10.34 2.01 

1845 | 6.64) 19.30) 8.20/ 11.37 | 10.83 11.97] 3.82 | 0.3 

30 | 4.28] 9.10) 6.60] 15.51] 7.60| 6.37) 2.46| 2.36 
5 | 1.97) 2.45] 17.95| 12.36) 2.01 | 2.00} 5.67] 3.4 

o | 0.56] 1.95] 26.32] 5.71 | 1.85] 2.51] 6.40] 2.50 

1145 | 0.42] 4.90| 25.50] 1.72| 4.13] 5.48| 4.83) 0.99 

30 |. 1.23} 8.80| 15.98] 1.76| 6.03] 6.42] 1.71| 0.44 

15 | 2.14] 9.75] 6.01| 3.03] 5.28 | 4.34| 1.75 | 1.06 

0 | 2.25] 6.95]. 1.35} 8.40] 2.60 | 3.65 | 1.87 1.54 
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Assuming, that the maxima arise under the influence of the strong 

yellow light, the width of the slit a is found to be 

a i. 0.539 ED 

ae sin@ sin1°36' Sara 

The side of the base-face thus becomes 0.279 mm. which appears 

to be quite a possible size *). 

Using this value of « the colour-effect can now be derived in 

: . asin |. 
the following manner. The expression Se first calculated 

ascending by 15’ for the same eight colours ‘as used before. 

2 | a sin @ 
Scuwerp °) has computed the intensity as a function of aw from 
asin 0 asin @ s ; : 
Far oar O up to — are 6. By means of a graphical representation 

of these results the intensities for all the above values of the 

expression can be arrived at and the results are then reduced 

to the relative intensities in sunlight. They are then drawn 

graphically for the eight colours taking as abscissae the distance 

from the sun, at which the fringes are formed, the central maximum 

being taken at the minimum deviation. The curves are further used 

as explained before with a view to the dimension of the sun. 

The results are contained in the foregoing table. (See p. 1189). 

The figures in the horizontal rows give the relative intensities for 

the directions contained in the first column. 

These data are then reduced to colour-equations and finally the 

colour-numbers in the colour-triangles as well as the percentage 

of white are computed. Fig. 4 gives the change of the intensity. 

000 
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100 {a ! : 
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Fig. 4. 

1) PERNTER |. c. pag. 287. 2) PERNTER |. c. pag. 453. 
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The results of the caleulation will be found in the following table, 

where the symbols have the s 

table on the refraction-theory. 
same meaning as in the corresponding 

D 1s W og | C 0/9 G | Colour : Observations 

| 
230 131 62 38 la 6 violet 

violet N 
22 45 290 68 32 17.3 blue— violet 

30 467 15 25 of Br blue 
blue N 

15 595 86 14 16.0 blue 

0 621 62 38 4.3 yellow | 

21 45 Boe ne het Sa ee vd yellow | 
| | ‚ yellow N 

30 414 56 44 4.7 yellow | 

15 266 22 78 4.7 yellow | | 

0 150 17 83 2.8 red | 

20 45 16 30 BZ) Deil red | red N 

eet. 38 Sap A ce ON red 

15 22 83 BY Males RG purple violet Z 

On 16.1 72 28 11.0 green-blue 

19 45 14.9 45 55 6.7 green-yellow | green- ped 
Z 

30 14.5 44 56 4.2 yellow 

15 13.1 59 Atel Ne 16 red 
| red z 

0 10.3 13 27 2996s red 
| a violet z 

18 45 Tes 14 26 Del red 

30 5.4 68 SZ 6.3 green-yellow 

15 4.6 67 33 | 6.3 green-yellow bre a 

0 4.8 62 38 52 yellow 

17 45 4.8 68 SP 2.8 red ; 

30 4.2 64 36 2.8 red red Z 

15 350 74 26 29.6 red | 

G4 2.9 73 27 | 6.8 | green-yellow 

In the column under “Observations” Z refers to the circles 

observed at Zutfen by Hissink in 1899, N to the colours of an 

upper tangential arc seen at Nymegen (N°. 13 of the Table) on 



1192 

September 19 1905, the same afternoon as Hissink’s second obser- 

vation. The application of the calculation to the upper tangential 

curve is allowable, at least in the neighbourhood of the point of 

contact, as the refraction takes place at that point in exactly the 

same manner as in the ordinary circle; the colours may thus be 
looked upon as belonging to the latter. 

The agreement with the colours as observed at Nymegen and Zutfen 

is nearly complete: only the second violet is absent in the caleulated 

set. The observer at Nymegen reports: red, yellow, blue (wide), 

violet (narrow). The calculation for 22°10' and 22°5' gives green- 

blue (colour-numbers 13.1 and 13.2) very near blue. Green is absent 

and blue has a width of 40’. The violet is nearly exhausted at 

23°0' and does not exceed a width of 15’. This agreement in the 

colours gives a strong support to the diffraction-theory as above 

developed. 
A circle and a tangential curve without green are also reported 

from Boulogne sur Seine (N°. 9a). 

As regards the agreement with Hissink’s circles: the colours given 

in the table are those observed on May-19 1899 and these need 

not be identical with those of 1905. Indeed, the characteristic 

feature of diffraction-rings is that their distance is variable, depending 

as it does on the dimensions of the refracting crystal. Perbaps the 

small. remaining differences with the results of calculation may. 
herein find their explanation. Intermediate calculations gave: 

20°10' G 13,2 green-blue 

20°5’ 12,7 green-blue 

18°40! 4,2 yellow 

18°35 5,7 vellow 

The intensities of the maxima are small and the maxima are but 

little prominent. They can only become visible by the differences 

in colour and only with a very high intensity of the main circle. 

Professor VAN EVERDINGEN when asked for further information 

replied: 

“that in the observations at Zutfen, both in 1899 and 1905, the 

colours of the small circle were deseribed as very bright, as also those 
of the surrounding (circumscribed) halo or upper tangential curve”. 

It seems to me, that the above results render it extremely probable, 

that Hirssink’s circles have to be taken as diffraction-rings ; but in 

that case other similar rings must also arise by diffraction (compare 

the two cases mentioned on page 1188). 

lt is not impossible, that similar diffraction-rings may also occur 
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outside the main circle. PerNTER mentions two observations of that 
kind *), but the data are too incomplete for a calculation to be based 

on them. In this connection the observation at Souppes (Nr 10 of 
the table) is important: in this case two concentric ares are reported, 

the wider one of which is the inferior tangential are. The other one 

may, as it seems to me, be looked upon as an external diffraction- 
ring of this-are. 

As regards the main maximum, the theory gives it as lying at 

22°0’ in complete agreement with the observations which give 21°50’ 

as the mean. | 

It is very probable, that by a calculation of the system of colours 

for other values of the width a the other observations may also be 

reproduced. In this connection the facet should be noted that in the 

various reports some combinations of colours occur repeatedly and 

will probably have to be ascribed to crystals of the same size. Some 

instances may be given here: 

“Spectral colours”: Circle of 22°: 9 and 10 

Circle of 46°: 7 and 31 

Parhelion | 14 

Red, yellow, green, violet: Circle of 22°: 3 and 6 

Upper tangential are: 175 

Red, violet: Cirele of 22°: 2 

Upper tangential are: 20 and 23 

Red, blue: Circle of 46°: 95 

Circumzenithie are: 1 and 30 

Red, green: Circle of 46°: 6a and 23 

Upper tangential arc: 21 
IN 

The case of red, yellow, blue, violet (circle of 22°, 9a and upper 

tangential are, 13) is dealt with above. 

The very lengthy calculations which would be required for the 

further testing of the theory, have not been carried out so far and 

we shall confine ourselves to some general remarks. 

1. As in the rainbow we have in the colours a means of determin- 

ing the size of the refracting particles. In order to obtain say a 

well developed violet it is necessary that the maximum intensity of 

violet coincides about with the extinction of red and green. A very 

rough approximation to the dimensions in this case is arrived at as 

follows. 

Supposing the colours B, C, D and £ to have their first minimum 

1) PERNTER, l.c. p. 260. GRESHOW’s halo, Oct. 20 1747, radius 26°; and an 

observation by WuisTon, radius 29°, 
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in the direction of the central maximum of G, the corresponding 

angles of diffraction are (see table on page 1182) 

BAA C40 DEE DT 

respectively and the widths of the slit 

B 53.7 u,- 0-56 4u, sE 2m SO. 

The mean width 65.4 u may be looked upon as giving a close 

approximation to the correct value. This gives 075 mm for the 

width of the side-face of the prism and .15 mm for the diagonal 

of the base. 

Very small crystals will produce very broad maxima, in com- 

\ 

parison to which 44’ — the difference between the maxima of red 

and violet — may be looked upon as small, in consequence of 

which the various colours will cover each other and nothing will 

be seen but white with a red inner edge. 

2. It may be useful to point out the analogy with the rain-bow. 

In that case large drops give narrow diffraction-maxima and distinet 

colours, small drops broad maxima, diluted colours and the rare white 

rainbow. Similarly with the halo: the larger the ice-crystals, the 

more distinct the spectral colours will be. The ‘‘white halos” are 

by far the most common. 

Still there are some very fundamental differences between rain- 

bow and halo. Whereas in the former case the wave-front becomes 

curved, it remains flat in the latter case. Whereas in the rain-bow 

the maxima are strongly developed, though only on one side by 

which the extremely common secondary bows on the side of the 

violet are formed, these maxima are comparatively weak in the 

halo and possible on both sides. They will have the best chance of 

being seen in the dark region inside the red, but in the white on 

the outside they will but seldom sueceed in making themselves 
visible. 

3. In connection with the colours of halos the shape of the 

crystal is of some importance. Let us consider a crystal plate with 

a broad side-face but of small height. The width of the side-face 

determines the width of the slit which plays a part in the formation 

of the ordinary ring, the height determines the width of the slit for 

the circle of 46°, as this halo is formed by a refracting angle of 
90°. A plate of the above shape is specially suited to the production 

of colours in the ordinary circle, but unsuitable as regards the large 

circle. With an elongated prism the colour-production in the circle 

of 22° is again dependent on the width of the side face, but for 

the circle of 46° the determining dimension is now the short diagonal 
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of the base which is }“3 times or 1.7 times longer than the width 

of the side-face. A crystal of that kind is therefore more suited to 

the production of colour in the circle of 46° than in that of 22°. 

And as a matter of fact a number of halos enumerated on pages 

1176 to 1178 show striking differences in the degree of colouring in the 

two circles: 95 belongs to the former kind, 7, 12, 27 and 31 to the 

latter. 

4. A further important conclusion seems to me justified, although 

I have not tested it in detail. As we have found (p. 1185), in the 

neighbourhood of the minimum deviation we can turn the incident 

beam or, what comes to the-same, the crystal over a comparatively 

large angle before its having any influence on the diffraction-fringes. 

But if that is true, the difficulty disappears which lies in the necessity 

of having to assume a constant, vertical axis in the usual explanation 

say of the circum-zenithic are. *) 

The “strikingly pure colours”, the “pure violet” of which Brsson 

speaks, are a consequence of diffraction, but not of a constant 
direction of the refracting edge. 

5. We also found (page 1185) that in the external minimum a 

much smaller variation was admissible. The same will hold with 

regard to the next maximum: another ground, therefore, to expect, 

that diffraction-rings outside the main circle will be very great 

exceptions. 4 

6. In the large circle of 46° the difference in the minimum for 

red and violet is 2°6’*): the spectrum is thus spread out over an 

angle three times as wide as in the circle of 22°. But the slit 
COS 2 : cos 67°51! 

becomes smaller in the ratio ——~— —= SE 
COS 2 cos 40°55 

is thus enhanced in the ratio ij. With a favourable shape of the 

crystal, the effect may be increased another 1.7 times and the con- 

ditions so become 2'/, times more favourable as regards production 

of colour in the circle of 46°. This agrees with the fact, that in 

this circle striking colours have been seen comparatively frequently. 

7. In the formation of halos where the light no longer passes the 

erystal at right angles to the refracting edge, which corresponds to 

a broadening of the beam, tbe diffraction pattern agrees with that 

of a larger crystal with the light moving in a plane at right angles 

to the refracting edge. The chance of colour is increased. In agree- 

ment with this the tangential curves to the circles of 22° and of 46° 

(cireum-zenithic curve) are pretty frequently distinctly coloured. 

460 
= =. The colour-effect 

1) See a.o. L. Besson, lc. 

*) PernTER, |. c. p. 354. ‘ 
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8. The diffraction tells us something of the size of the erystals 

and by this means possibly of the temperature at which they have 

been formed: “with falling temperature the size of the erystals dimi- 

nishes” 5. In that way the halo-colours, which have been too much 

neglected, may possibly contribute to a better knowledge of the 

higher atmosphere. 

VI. Conclusions. 
The above investigation seems to me to justify the following 

conclusions : 
1. The simple refraction-theory cannot explain the halo-phenomena 

completely, in particular as regards the great variety of the colours. 

2. The diffraction-theory gives a simple explanation of the colours 

which appear and allows special conclusions to be drawn regarding 

the influence of the size and the shape of the crystals. It alone 

gives the ordinary circle its correct place of 22°. 
3. The rings which have been observed in the neighbourhood of 

22° are secondary diffraction-rings: their radii are not constant. 

4. The diffraction-theory will probably be able to afford a better 

insight into the formation of the circumzenithie arc. 

5. It is necessary that the colours be accurately recorded by 

each observer in order to permit a further testing of the theory and 

a complete deduction of the origin of the observed phenomenon. 

Chemistry. — <“Jn-, mono- and divariant equilibria’. XVI. By 

Prof. F. A. H. ScHREINEMAKERS. . 

(Communicated in the meeting of March 31, 1917). 

The regions in the P,T-diagram. 

In communication VIII we have already briefly discussed those 

regions; now we shall consider them more in detail. When the 

equilibrium 

| genet ee ge ET ee a a EN 

consists of components, then it is generally divariant; consequently 

it is generally represented in the P,7-diagram by a region. We 

shall consider this region # in its whole extensity, viz. without 

taking into consideration that some parts may become metastable 

by the occurrence of other phases. 

With a definite equilibrium /# we may distinguish: 

1) Penner, |. c. p. 289, 
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1. the total composition of 2. 
2. the composition of each of the phases, of which the equilibrium 

E consists. | 
We shall say that two equilibria have the same phases-compo- 

sition when the phases of both equilibria have the same composition. 

We now take a definite point x of the region / (consequently 

the equilibrium Z under P, and at 7%). Then the equilibrium / 
has either only one definite phase-composition Zr, or two phase- 

compositions EL, and £’; or three viz. E‚, H’, and HE’: etc. We 

may express this by saying that either one, or two or more equilibria 

E belong to the point # of the region Z. 
When only one single equilibrium Z: belongs to each point 2 of 

the region Z, then we call the region one-leafed; when in a part 

of the region two equilibria (ZX, and £’,) belong to each point w, 

then we call that part two-leafed ete. 
As the equilibrium Z, which belongs to a definite point of the 

region EH, may be as well stable as unstable, the region / may 

consist, besides of stable, yet also of unstable leaves. 
When the point x traces the region / of the P,7-diagram or in 

other words, when we give to the equilibrium / all possible phase- 

compositions, then equilibria may occur, which show something 

particular. 
1. The equilibrium £ of m components in » phases passes into 

an equilibrium Z, of n—1 components in 7 phases. [The index 

O indicates that the quantity of one of the components has 

become zero]. 
2. Between the » phases of the equilibrium ME a phase-reaction 

ST PE 0 0 il AN ae) 

may occur. We call this equilibrium . [The index A indicates 

that a reaction may occur}. 
3. Critical phenomena occur between two phases; we call this 

equilibrium x. 

The first case occurs when the quantity of one of the components 

e.g. K, may become zero in all phases. It is evident that the phases 

with constant composition are not allowed to contain this component 

K,, therefore. 

The equilibrium ZE, contains n—1 components in n phases and 

is, therefore, monovariant; consequently it is represented in the 

P,T-diagram by a curve, which we shall call curve £,. This curve 

E, is, therefore, nothing else but a monovariant curve of a system 

with n— 1 components. Consequently it is defined by: 
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dE AN! | 
eh ke, NO RE eg SON 
AT WAV 

Herein 4H represents the increase of entropy and A V the increase 

of volume with the reaction, which may occur in the equilibrium £,. 

As on curve Z, the quantity of one of the components becomes 

zero, the region / must terminate (or begin) in curve £,; for this 

reason we call Z, the limit-line of the region £. We shall refer to 

this later. In fig. 1 ab and cd are the limit-lines of a region 

abed; on eurve ab one of the components is missing e.g. A,, on 
curve cd an other component e.g. A, is missing in the equilibrium 
E. When we go, starting from a point / of a limit-line towards a 

point 2 or m within the region, then the equilibrium £, passes 

into the equilibrium Z. 

Let us take now the second case, viz. that an equilibrium Zr 

occurs. The equilibrium Ep consists of 7 components in 7 phases, 

between which the phase-reaction (2) may occur. Er is, therefore, 

a monovariant equilibrium and it may be represented by a curve 

in the P,7-diagram. It is defined by (3) in which AH and AV relate 
now to reaction (2). In order to examine the position of the region 

in the vicinity of this curve, we use the property: when in a system 

of n components in » phases a phases-reaction may occur, then at 

constant 7’ the pressure and under constant P? the temperature is 

maximum or minwnum’). 

Let ef be in fig. 2 a curve ER. When we trace the region along 

a horizontal line (P constant) then in the point of intersection of 

this line with ef the temperature must be maximum or minimum. 

Let g be this point of intersection and let us assume that 7), is a 

maximum, then consequently the region must be situated at the left 

of curve ef. At 7, + dT (dT > 0) then viz. no equilibrium # exists, 

at TdT two different equilibria H exist, however; consequently 
the region is two-leafed in the vicinity of curve ER. In fig. 2 the 

one leaf of the region is dotted, the other leaf is striped. When we 

trace the region along a vertical tine, then the pressure on ef is a 

minimum. 

Consequently curve ER is also a limit-line of the region £, but 

in connection with the property of the region in the vicinity of this 

curve, we call it “turning line” of the region Z. 

Also on the turning-line ER the concentration of one of the 

components may become zero at a definite 7’ (and corresponding P); 

') F. A. H. Scuretvemaxers, Die heterogenen Gleichgewichte von BakHurs 
Roozesoom. III}. 285, 
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then we obtain an equilibrium Zro, which belongs as well to the 

turning-line HR as to the limit-line /,. Turning-line and limit line 

touch one another in the point Zpr.o. 

In the ease mentioned under 8 critical phenomena appear between 

2 phases. This is the case when in the equilibrium Z two liquids 

L, and LZ, get the same composition or when a liquid and a gas 
become identical. Then we obtain an equilibrium Zx of n components 

in n phases, of which 2 phases are in critical condition. This 

equilibrium Hx is represented in the P,7-diagram by a curve Ex 
which we call the critical curve of the region. In the vicinity of 

this curve Hx the region is one-leafed. 

Consequently it is apparent from the previous that a bivariant 

region is one-leafed in the vicinity of a limit-line or critical-line, in 

the vicinity of a turning-line it is two-leafed. We shall refer to 
this later. | 

~ 

One- and two-leafed regions. 

A one-leafed region may be limited by limit-lines and critical 

lines, but it may also be unlimited. When the equilibrium / contains 

e.g. only phases of invariable composition, then neither limit-line, nor 

critical line, nor turning-line exists. Consequently the region LF is 

unlimited. [Of course a part of this region becomes metastable at 

higher 7, because another phase is formed e.g. a liquid by melting 

or transformation of solids. When we leave out of consideration 

however the occurrence of other phases, then the region extends 

itself unlimited]. The region may also be unlimited when in the 

equilibrium, besides invariable phases also variable phases occur, 

which do not contain all components | e.g. mixed crystals or a gas]. 

We take an equilibrium H=L+G of a binary system with 

the components A and B, which occur both in the vapour G. Then 

the region ME has two limit-lines Z,. When in Z and G the com- 

ponent A is missing, then we have the limii-line #4— 0, when Bis 

missing, then we have the limit-line HLg— . Consequently curve 

E,4—» is the boiling-point-line of the substance 5, curve Egp—o that 

of the substance A. 
When Z and G have always different composition, then the region 

E=L+G@ has no turning-line; then it may be represented by 

fig. 1 in which ab and ed are the limit-lines. When Z and G 
may get the same composition, so that a reaction 1 = G may occur, 

then also a turning-line ER exists. Then the region may be repre- 
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sented by fig. 2, in which ah and cd are the limit-lines and ef 
the turning-line. 

The same is true for an equilibrium ZE = M+ L or M+ G of 

a binary system A-+ 4 | M represents mixed crystals]. 
The region £ exists in fig. 2 of two leaves, viz. ae fb and ce fd. 

On the one leaf the liquid contains more A, on the other leaf more 

B than the vapour. 
Let us assume that in the binary system A + B a compound # 

occurs. The region Z—= F+ L has then no limit-line Z,, but a 

turning-line ZR; this is the melting-line of the compound £. The 
region = /'+ L is, therefore two-leafed, in the one leaf are situ- 

ated the liquids, which contain a surplus of A with respect to F, 

in the other leaf are situated the liquids, which contain a surplus of B. 

The region K=/?+G of the binary equilibrium A + B has 
also no limit-line, but a turning-line ZR; this is the sublimation- 

curve of the compound F. 

We take a ternary system with the three volatile components 

A, B, and C, in which occurs a binary compound # of B and C. 
We now take the equilibrium H=— #'+ L + G, in which conse- 

quently G contains also the 8 components. [Compare also “Equili- 
bria in ternary systems XI”; in fig. 6 of this communication the 

arrow in the vicinity of point # on the curve going through the 

point / has to point in the other direction]. 
This region Z has a limit-line H4—9; consequently this represents 

the equilibrium F+ LG of the binary system B + C and it 
is indicated in fig. 3 by curve acd; it has in 5 a maximum of 

pressure and in c a maximum-teinperature. 
When no equilibrium ZR occurs, then the region £ is one-leafed 

and consequently it must be situated in fig. 3 within curve abed. 
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(Therefore, it does not extend itself, as is drawn in fig. 3 overa/|. 

When an equilibrium ZR exists [this is the case when the 3 

phases in the concentration-diagram are situated on a straight line | 

then also a turning-line ZR exists, this is represented in fig. 3 by 
ef. This point of contact f represents the equilibrium ER4—). 

The region EZ is now two-leafed, a fe is the one, de fe is the 
other leaf. 

When we consider the equilibrium “= /+ 71 + Gata constant 

T, lower than 7, then the pressure on the turning-line ef is a 

maximum; when the turning-line was represented by gh, then the 

pressure would be a minimum. 

Fig. 3. 

On curve acd is situated in the vicinity of c a solution s, which 
has the same composition as the compound /. When /’ melts with 

increase of volume, then s is situated on branch dc, as in fig. 3. 

It is apparent from formula 17 of the communication on ‘Equi- 

libria in ternary systems XI”: when we enter at constant 7'starting 
from the point s the region H=#+ L +4 G, then the pressure 

must increase. 

Hence it follows, that the point of contact h of curve gh must 

always be situated on branch ds and that of curve ef always on 

branch as. In the latter case the point of contact may, therefore, 

also be- situated between s and c e.g. in f,; then we get a limit- 

curve like ef. The equilibrium “= + L + G then still exists 

at temperatures above 7, the highest temperature at which the 

equilibrium HL4—o may occur. 

Let us now consider the equilibrium ZB L+G of the 
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ternary system A + 6-+ C. [Compare also “Equilibria in ternary 

systems XIII” February 1914]. The region EZ has then two limit- 

lines Ey) and Fee. The first represents the monovariant 

equilibrium B+ £-+G of the binary system B + C; the second 
the same monovariant equilibrium of the binary system A + J. 

dach of those curves may either have a point of maximum-pressure 

or not, so that we may distinguish three cases. When in the 

equilibrium £ does not occur an equilibrium Zp, then the region 

FE is situated completely within the limit-lines and it is, therefore, 

one-leafed; when an equilibrium Er occurs, then also a turning- 

line exists and the region is, therefore, two-leafed. 

Two limit-lines ah and cd may intersect one another in a point 

s (fig. 4); this means that the two equilibria Z, have the same 

pressure P, at the temperature 7’. In this case there is always a 

limit-curve ef (fig. 4), which may be situated as well above as 

below the point s. The turning-line ef may touch the curves cs 

and sb in fig. 4. 

Fig. 4. Fig. 5. 
Let us now consider the equilibrium = Z, + L, + G, in which 

L, and L, represent two liquid-phases. [In a similar way we may 

also discuss the equilibria Z, + L, + F, M, + M, + L and 

M,+ M,+ G, ete, in which M, and M, represent mixed crystals}. 

When in the equilibrium = L, + Li, + G@ the two liquids become 

identical, then a critical equilibrium exists: Ex = Lik + G. Curve 

Ex may have a form, like curve acd’) in fig. 3. When in the 

equilibrium Zp the quantity of one of the components e.g. of A, 

approaches to zero, then curve Ex has a terminating-point Lx. 4—0. 

When acd represents in fig. 38 the critical curve Ep, then the 

region E= L, + L,+ G is situated either completely within curve 

1) Compare also F. A. H. ScHREINEMAKERS, Archives Néerl. Serie IL. VI. 170 
(1901). 
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acd or it is partly two-leafed with the turning-line ef or gh. Also 
in fig. 5 a critical curve Ex is represented by acd; the region E 

is situated here, however, completely outside the critical curve and 
it may have a turning-line also in this case. 

We take in figs. 3 and 5 two points / and m on a vertical line; 

consequently we have 7; = 7. At the temperature 7; = 7%, two 

equilibria Ex exist, therefore, the one | £'x = L'x + G’'} under the 

pressure /, the other |Z", = L"x-+ G"| under the pressure P,,. 

The critical liquids Z'x and Lx may now belong either or not 

to the same region of un-mixing under its own vapour-pressure of 

the temperature 7) = 7;,. When they belong to the same region 

of un-mixing, then the region # is situated as in fig. 3; when 

they belong to different regions of un-mixing, then the region £ is 

situated as in fig. 5; in both cases either a turning-line may 

occur or not. 

We might think that in point c of figs. 3 or 5 two critical liquids 

get the same composition, so that 4, should be a critical liquid of 

the 2°¢ order. This is, however, not the case in the point c, but in 

another point A’ of the curve; this is drawn in fig. 5 on branch 

de. Curve acd touches in this point a curve KK, (not drawn in 

the figure); the points of this curve KK, represent critical liquids 
of the 2rd order. Of all those liquids only the liquid A can be in 
equilibrium with vapour. 

More-leafed regions. 
Besides one- and two-leafed regions, of which we have considered 

above some examples, also more-leafed regions may occur. This 

may take place e.g. when in the region Z occur two turning-lines. 

We shall. consider a definite case for fixing the ideas. For this we 

take the equilibrium == A+ L4G of a ternary system with 

the three volatile components A, B, and C. This equilibrium Z has 

two limit-lines H4—o and Ec=y; these are represented in the con- 

centration-diagram (fig. 6) by the sides BC and BA of the triangle 

ABC, in the P,T-diagram (fig. 7) by the curves ae! and dhkn. 
When we imagine in fig. 7 those two curves to be prolonged towards 

‚higher 7, then both curves terminate in a point B, which represents 
the P and 7 of the melting-point under its own vapour-pressure of 

the substance B. Above we have already said: that these curves 

may have a maximum of pressure or not. 

The equilibrium E= B + L + G consists at a temperature T, of 

a series of solutions, which are saturated with solid B and a series 

of corresponding vapours. This series of solutions forms the saturation 
77 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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curve under its own vapour-pressure of B, the corresponding vapours 

form the vapoursaturationcurve. [Compare also: Equilibria in ternary 

systems XIII, February 1914}. In fig. 6 curve a bcd represents a 

saturation-curve of B under its own vapour-pressure, the corresponding 

vapoursaturationcurve has not been drawn. Now we assume that 

on curve ad occurs a point of minimum-pressure 6 and a point of 

maximum-pressure c; then the pressure increases along ad in the 

direction of the little arrows. 

Now we imagine in the P,7-diagram (fig. 7)a vertical line, which 

corresponds with the temperature 7. It appears from fig. 6 that 

the points a,b,c and d must be situated in the P,7-diagram with 

respect to one another as in fig. 7; of course those four points 

must be situated on the same vertical line; for the sake of clearness 

a small deviation from the true position has been allowed in fig 7. 

In accordance with fig. 6, therefore also in fig. 7 at the tempe- 

rature 7, the pressure first decreases starting from a as far asin b, 

ing from 6 up to e and 

further it decreases again 

starting from c as far as in d. 

The points hand c are drawn 

in fig. 7 within both the 

limit-lines; it is apparent, 

however, that 4 might be 

situated also below curve 

dn and that ec might be 

situated also above curve a /. 

Now we take a tempera- 

4\ ture 7; the saturation-curve 

Fig. 6. under its own vapour-pres- 

sure is represented in fig. 6 by curve eh; it has a point of minimum- 

pressure in f, or point of maximum-pressure in g. We find the 

corresponding points in fig. 7. 

Now we assume that on increase of 7’ the point of minimum- 

and the point of maximum pressure of the saturation-curve under 

its own vapour-pressure come nearer to each other and that they 

coincide at 7; in the point S. Then the pressure increases along 

curve iSK (figs. 6 and 7) starting from K towards 7. In the P,7- 

diagram the points 7, S and AK must then be situated with respect 

to one another, as in fig. 7; it is evident that the point S must be 

situated between the points 7 and K. 
At temperatures above 77, e.g. at 7), the saturation-curves under 

afterwards it increases start- 
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ze 

Kgs. 

its own vapour-pressure have no more a point of minimum- or maxi- 
mum-pressure, the pressure increases from n towards / (figs. 6 and 7). 

The point of minimum pressure follows therefore, in figs. 6 and 7 
a curve mS, the point of maximum-pressure follows a curve MS. 
The equilibrium ER consists, therefore, of two branches, which meet 
in S; we may, however, also say that only one single turning-line 
exists ER = mSM, which has a singular point in S, 

Later we shall show in general that the two branches mS and 
MS of a turning-line ZR touch one another in the singular point S 
and that the tangent in JS is situated between the two branches. 

The region E in fig. 7 is now one-leafed, except in the part, 
situated within the turning-line, which is three-leafed. ‘f course this 
is only true in so far as this part is situated between the limit-lines. 

Leiden, /norg. Chem. Lab. (To be continued). 

Chemistry. -— “J/n-, mono- and divariant equilibria’ XVII. By 
Prof. F. A. H. SCHREINEMAKERS. 

(Communicated in the meeting of April 28, 1917). 

Equilibria of n components in n phases. 

Now we shall consider more in detail the equilibrium: 

BH Ree PTA ed 
which we have already discussed in the previous communication. 

We represent the composition of: 

(eid 
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Pe by Lr re 

Brot Hr etten 

The &, the entropy and the volume of #, we call Z, H, and V,; 

those of F, we call Z, H, and V,; ete. 

Then we may write the conditions for equilibrium: 
OZ, OZ, : 

By tS ata Aen Tine 

5 7, MZ, EN 

3 de Sadi Ps 

viz. m equations (2) of which we only have written two. Further 

we have: 

LE 
Ox, ae Ox, 7 Che Ov, ae 5 | (3) 

A AE 
De AD pe 

The corresponding equations for the variables z, z,...u, u,... ete. 

have still to be added to (3). 

We find in (2) n, in (3) n (n—1), consequently in total n’ 

equations. Besides the n (n—1) variables 2, y,...v, y,... ete. we 

have, still the 2+ 2 variables 7 P K Kz K,... consequently in 

total n? + 2 variables. The equilibrium Z has, therefore, two degrees 

of freedom and consequently it is bivariant. 

We have assumed in (2) and (3) the general case that all phases 

have a variable composition and that each phase contains all 

components. When this is not the case, then we are able to make 

at once the necessary alterations in (2) and (3). When e.g. #, has 

a constant composition z,— a, y, = B, etc, then the first equation 

(2) passes into: 

nes. Eu a oa Ee a AND 

in which the index 7 relates then to a phase F; of variable 

composition. Then Z, is only still a function of P and 7’; in (3) 

then a Be EEn disappear. 

When we give to P JT x y... the differentials APAT Aa Ay..: 

then we have: 

WA WA 
AZ= VaP—HaT + 5 Aw +s Ay +...+ GZ 4 $aZ + te: 

Z 07 OZ 
A ree Bede Neha errs d—+id@—4... 

Ow Ow Ow Ow 
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0Z 0Z 0Z 07 
A vo) = ze = by + + An dn + Ld? +o] 

Jy Oy ee dy i 

Herein the sign d indicates that we have to differentiate according 

to all variables, which the function contains. Further is: 

04 WA 0Z 
Den AP+d~ acs are endde P= ahaa tom 

oP Oy : 

WA Pp Dn OZ 
&Z = d* — Pp „AP + a — NEE — ie Ay +... 

oF a7 

When we neglect in @?7 and d°Z ha terms ae are infinitely 
small with respect to AP and A7, then we may write: 

read ioe Ay + 

ING ea „22 RE yt. 
EE Oy 

From a form: 

OZ OZ : 
Zw ane ERN == 

it follows, therefore: 

0Z OZ 
—VAP+ HAT + («+Az) (a +. Juan) Ge + .)-| ‘ 

(_ (9) 
BE iy ese. AE 

Now is 

VA 7 0Z 0Z 
Relea’ sya? ER Aap de EO IE ae 

Ox Ow Oy Oy 

so that we may write for (5) 

WA A 
SE teat wo de a ded. RAE 

+4@027Z1+4¢@74+...=—AK 

Now we apply this to the m equations (2) and we differentiate 

further also the mn (n—1) equations (8). First, however, we shall 

introduce the following notation; we put viz: 

ee OZ. 0°Z, ; 0°Z, : 
TE ed 7), ; aia ; OE ay )s ; me erie 

Oy Ow, & Va 

The geen aa the parentheses indicates, therefore, which of 

the functions Z,...Z, has to be differentiated; the letters within 

the parentheses indicate according to which variables we have to 
differentiate. 

Then it follows from the » equations (2): 
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ed ete HARE ®, [d (), sh a ] ste Yi, Ld (y), = oe] ar 7 

APS eT eS RAR 
—V,AP + HAT He, [d(e), +--.]+4,[d(y), +--+... Ae 

gee REE Spee SAE | 

and still »—2 other equations. It follows from (3) 

Ale), + Ad (©), + =de), + Hd (2), +. = AK a 

d(y), +4@(y), +... =d(y), + Ed (Ys +... =AK, 

ete. In accordance with our notation is e.g. 

d (a), = (Px), AP + (Te), AT + (2), Az, + (wy), Ay, Ho 
ov OH 0°Z d°Z 

4 *AP— = AT + — Az —— A ts ca Se age ng ae ed 
d(y), = (Py), AP + (Ty), AT + (ay), Oe, + (y’), Oy, + ++: 

OV. 0H eZ PZ 
' LAP — - wt AT + —~ aN Ly 

2 Oy, Oy, he: Òz,Òr, Ok Oy? nt 

When a phase eg. /, has a sense composition, then for this 

(4) is true; instead of the first equation (7) we find then: 

-~_VAPLHAT baldo |e le@iss- JAE 

Consequently in the first equation (7) are missing then the terms 

tf nO, ete. 

Equilibria of n components in n phases under constant pressure. 

When we keep the pressure constant, then we have to omit in 

(7) and (8) all the terms with AP; the sign d indicates then that we 

have to differentiate according to all variables, except P. 

Now we have in (7) and (8) n° equations and n’+-1 differentials 

AT, Ax,..., so that their relations are defined. Consequently to 

each definite differential of one of the variables e.g. Ar, belongs a 

detinite differential of each of the other variables, therefore, e.g. also 

of AT. On change of x, (or one of the other variables) the equi- 

librium £ follows, therefore, in the P,7-diagram a straight line, 

parallel to the 7’axis. 
Now we shall put the question: when wilt the temperature 

be maximum or minimum? 

For this it is necessary that A7' is of the second order; then it 

follows from (7) and (8) that it must be possible to satisfy: 

w,d(«), +y¥,d(y),+..-= AK 

. 

and 
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dad (2), == = ale) = Ak 

d(y), =d(y), =--.=d(yn= AK, | we oot (LON 

in whieh d indicates now that we have to differentiate according to 

all variables except P and 7. 
It must be possible to solve the ratios between then’ differentials 

Pa tt. © Ayre tye, «LC, ASKy. 0e from, then” equations (9) 

and (10); this is only then possible, when a relation exists between 

the coefficients. With the aid of (10) we write for (9): 

“e, AK, + y, BK, -- ..== AK | 

OPA K, grijpen = AK SP rs | 

so that we must be able to satisfy (10° and (11). Here this is the 

case when we are able to satisfy (11). 

When we add the n equations (11) after having multiplied the 

first one by À,, the second one by 2,, etc, then we obtain: 

SAE SPAR OPA ele 2 CE) 

Hence it is apparent that we are able to solve the ratios between 

Ax, Ar... from (9) and (10), when 

Ed aR eee. 

Arp et Aes Ae a = 0 

= (2) =A, EE AY. ag TAR aE AnYn = 0 

(15) 

can be satisfied. 

We might also satisfy (12) by putting equal to zero AK, AK, …; 

now, however, we leave this case out of consideration and we shall 

refer. to this later; then we shall see that the equilibrium is situated 

on the limit of its stability. 

(Mr. W. van per Woupr has drawn my attention to the fact that 

we can easily express the condition that (9) and (10) can be satis- 

fied in a determinant. It appears that this can be written like the 

product of different other determinants, so that we know at once 

all the conditions looked for. 

We have in (13) » equations between the n—1 ratios of 2, a, … An; 

consequently (13) can only be satisfied when a ratio exists between 

the variables. We may find it by eliminating from the equations 

(13) 2,...2,; we may also write this equation in the form of the 

following determinant ; 



oe oh, ape 

| a, vs vs Uys 

[9 Ys Ys Yarr: | =O 

When we bear in mind, however, the compositions of the phases 

F.E, then it appears that (13) expresses, that it must be possible 

that between the phases a reaction of the form: 

NE A APS oe ee dan U 

consequently a phase-reaction occurs. Then the equilibrium is an 

equilibrium Eg and consequently it is situated in the P, 7-diagram 
on a curve Ep, viz. on a turning-line of the region 4. 

Therefore we find: 

‘in an equilibrinm of m components in » phases under constant 

P the temperature is maximum or minimum, when between the 

phases a phase-reaction can occur’. 
Consequently in a binary system 7’ is maximum or minimum 

when the two phases have the same composition; in a ternary 

system when the 3 points which represent the phases, are “situated 

on a straight line; in a quaternary system when the 4 phases may 

be represented by 4 points of a plane; ete. 

Now we have still to examine when 7’ is a maximum and when 

it is a minimum. For this we have to determine A7. We take the 

equations (7) in which all the terms with AP must be omitted now. 

When we add the equations after having multiplied the first by 

À,, the second by 4,, etc, then we find with the aid of (8) and 

(13): 

3 (aH). AT 4 QZ) LZ) 4+ oee OD 
or at first approximation: 

Dany ALTE {ese Vee ae 
Herein is: 

20H) = J, eee Ee 

consequently the increase of entropy which occurs at the reaction: 

AB Ea Wey Sy a ey eek 
Further is: 

Bis? 2) == Ze ees 
or, as it follows from the values of d?Z, etc.: 
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ZZ) = A, [d(w), Az, + dy), Au, + dy 
+ 4, |d(«), Az, + dy), Ay, +-..] | B 

= An | d(x)n Ae, ai A(y)n Ayn == one | 

or also: 

3 (4d*?Z) = A, [(w*), Aa,’ H- (y?), Ay? +... + 2 (ry), sera | ars Pe ONE GA ce + (18) 
+ An [(@7)n Aan? + (YP) Ayn? +... + 2 (ey) AanAynl ' 

When one of the phases e.g. #,, has a constant composition, then 

in (16) d?Z, disappears when there are more phases with constant 

composition, then in (16) and consequently also in (17) and (18) 

the corresponding terms disappear. 
When the equilibrium F is stable (or, which comes to the same, 

for our considerations ‘“metastable’’) then d°Z, d?Z, — — are positive; 

when however the equilibrium is unstable, then one or more of the 

forms d’Z, — — may be negative. 
Now it follows from (15) when the temperature is a maximum 

and when it is a minimum. 
When (2H) and (/d?Z) have the same sign, then A7< O and 

| consequently 7 is a maximum 
When (4H) and 2(ad?Z) have opposite sign, then 47°>>0 and 

consequently 7’ is a minimum. | 
When 2(Ad?Z) = 0, then 7 is neither maximum nor minimum. 

In some cases it is easy to define this. Let us take e.g. an 

equilibrium 

EN EN 2 

in which Z, is a liquid and #,... F„ phases of invariable composition 

e.g. solids. 

We cause the phase-reaction 

‘. ray die ay Seeger ae ae 
to proceed in such a way that 4, quantities of Z, must be formed 
and we take 2, positive. In the equilibrium Z therefore, a reaction 
occurs [melting or conversion of solid substances] at which liquid 
is formed. As, in general, heat is to be added at this reaction, 

=(4H)>0. 
ORCL Site ir a 
id 

Consequently we have: 

BQH VERE dt AS SAL 9) 
in which 2(24H)>0 and 2,>0. d°Z, is positive when the equilibrium 

Ff, are phases with invariable composition 2(Ad?Z) = 



1212 

is stable, but it may be negative when the equilibrium is unstable. 
Consequently 7' is a maximum when the equilibrium is stable, but 
it may be a minimum when the equilibrium is unstable. 

When we summarize the previous considerations, then we find 
the following: 

In an equilibrium of components in n phases under constant 
P the temperature is maximum or minimum when a phase-reaction 
can occur between the phases. 

When one of the phases is a liquid and when the n—1 other 
phases are solids with invariable composition, then 7’ is a maxi- 
mum when the equilibrium is stable (or metastable); Z’ can be a 
minimum when the equilibrium is unstable. 

We may apply those general considerations to special cases; with 
this we assume that the equilibrium is stable (or metastable). 

In the binary equilibrium # = L, + F,... L, represents the 
liquid, saturated with solid F,. In a Z-concentration-diagram L, 
follows, therefore, the saturation-curve under its own vapour pres- 
sure. Consequently this curve must have its maximum-temperature 
in the point, in which Z, has the same composition as F,; this is, 
therefore, in the melting-point of /,. 

In the ternary equilibrium H= L,+ F,+ F,...LZ, is a liquid, 
saturated with /#’, + F,. In the concentration-diagram 1, follows, 
therefore, the saturationcurve of /’, + /, under its own vapour-pres- 
sure. 7’ changes along this curve from point to point. It will be 
necessary that 7’ is a maximum in the point of intersection of this 
curve with the line F, F,. 

Similar considerations are true for systems with 4 and more 

components. 
In a following communication we shall refer to unstable conditions. 

Equilibria of n components in n phases under constant pressure 
and at a temperature which differs little from the maximum- or 
minimum temperature. 

As between the mn phases of an equilibrium Zr a phase-reaction 

may occur, (13) may be satisfied. The ratios between Az, Ay,... 

Av, Ay,... are then defined by (9) and (10). When we imagine 

Aw,... Ay, Ay,... to be expressed in Az, and this to be substi- 

tuted in (18) then it appears that we may write for >(2d?Z) a form 

like A Aw,’. Herein A has a definite positive or negative value, 
Then follows from (15): 
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22 (AH ‘ 
Ao = = Bie Ar. nae EL 

—A 

Hence it appears that to each definite value of 4 7’ two values 

of Ar, (and consequently also of Arv,... Ay, Ay,...) belong, which 
differ from one another in sign only. When the form under the 

root in (20) is positive, then Aw, Az,... Ay, Ay, ... have, therefore, 

each two real values; when this form is negative, then Az, . 

are imaginary. ; 
Consequently we distinguish two cases. 

When ZH) and A have the same sign, then we must take 

AT negative in order to obtain real values for Aw,...; the tem- 

perature Tr is, therefore, a maximum. At Tr there exists therefore 

one single equilibrium Zr; at 7r+AT' (we take A70) no equi- 
librium Z exists; at 7r—A 7, however, two different equilibria exist, 
which we shall call #' and Z". 
When %(A#) and A have the same sign, then we have to take 

A T positive, in order to obtain real values for Aw, ... Consequently 

Tr is a minimum. Then at Pr A7 two different equilibria 

E' and £" exist, at Zr—A 7 no equilibrium £ exists. 
We may also express the previous in the following way. 

When under constant P the temperature is a maximum on the 

turning-line Hp, then two leaves of the region go, starting from 

this turning-line, towards lower 7 and not a single leaf towards 
higher 7. 

When under constant ‘P the temperature is a minimum on the 

turning-line Hp, then two leaves of the region go towards higher 

7 starting from this turning-line, and no single leaf towards lower 7’. 
With our considerations on the region # in the previous com- 

munication XVI, we have already applied these results. The figs. 2 

(XVI) and 4 (XVI) in which ef represents a turning-line, are in 

accordance with this. In fig. 7 (XVI) g/ and dm are the limit-lines, 

MSm a turning-line. In order to show that also this diagram is in 

accordance with those results, we consider the horizontal line qrst; 

in order to show more distinctly the situation of those leaves, it is 

partly dotted and curved in r and s. In r 7 is a maximum, this 

corresponds to the fact that two, leaves go, starting from curve mS 

towards lower and no leaf towards higher 7. In s 7 isa minimum, 
two leaves go towards higher- and no leaf towards lower temperatures. 

We have seen that at the temperature 7’, only one single equi- 

librium Hr= F,+ F, +... exists and that a phase-reaction may 

occur between the phases of this equilibrium. At Pr + AMAT <0 
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when Zr is a maximum; A7 >>0 when Tr is a minimum] two 

equilibria exist, viz. 

ESF, Rae and Se se ie 

No phase-reaction can occur between the phases of 4’; no more 
between those of /#’’. The invariable phases have of course the 

same composition in the three equilibria; the compositions of the 

variable phases differ only little from one another in the three 

equilibria. Now we shall show: 

a. The concentration-regions of Hp, K’ and F’’ are situated in 

the concentration-diagram outside one another. 

The three equilibria have, therefore, such compositions that none 

of them can be converted into one of the two other equilibria. 

b. The concentration-region of Ep is situated between those of 

E' and E£”’. 
c. The corresponding phases of the three equilibria (e.g. #, FP,’ 

and F,’; F, F,’ and F,’’; etc.) are situated on a straight line; 

this is divided into equal parts by the phase of the equilibrium Zr. 

Before showing this, we shall first elucidate the meaning by 

some examples. 

Fig: 1. Fig. 2. 

For this we choose the ternary equilibrium 

DER F. 
When we represent those phases in the concentration-diagram by 

the points 1, 2 and 3, then at 7'r those three points are situated 
on a straight line (line 123 in figs. 1 and 2). The concentration- 

region of Hp is, therefore, the line 123. 

At the temperature Tr AT’ exist the equilibria: 

E'=F)+F/+F! ond EN=F."+F,' + FS 
First we shall assume that each of the phases of the equilibrium 

E has a variable composition; the phases of £’ are then represented 
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in figs. 1 and 2 by the points 1’, 2’ and 3’; those of #" by 1", 

2" and 3". The points 1’, 2’ and 3’ are situated in the immediate 

vicinity of the points 1, 2 and 3; they form the anglepoints of a 

triangle 1’ 2’ 3’, which represents the concentration-region of the 

equilibrium ZE’. Triangle 1" 2" 3" represents the concentration- 

region of E". 
In accordance with a the line 123 and the triangles 1'2'3' and 

1’2"3" must not have one single point in common, in accordance 
with 5 the line 123 must be situated between the two triangles ; 

in accordance with c 1'11", 2'22" and 333" are straight lines and 

is 11'=11", 22'— 22" and 33' —= 33". Consequently we obtain a 

diagram as in figs. 1 and 2. 

Consequently at Tr + AT’ two triangles arise from the straight 

line which occurs at the temperature 7’p; reversally the two triangles, 

which occur at Tr AT coincide at Tr into a straight line. 

The transitions, discussed for figs 1 and 2 will occur when the 

ternary equilibrium / consists of 3 liquids or of 2 liquids and vapour, 

or of 3 kinds of mixed crystals, or of a mixed crystal + liquid + 

vapour etc. 

When one of the phases e.g. #’, has an invariable composition, 

then we obtain figs 3 or 4; when two phases e.g. /, and /, have 

an invariable composition, then we obtain fig 5. 

Fig. 3. Fig. 4. Fig. 5. 

In order to show the rules, mentioned above, we represent of the 

equilibrium Zp the composition 
a I GAS ae oy a 

Fade NRE IRE PEPE EN. 
etc. 

Then the composition of the equilibrium £’ is: 
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of Pe © + Az, 1. + Ag, 2) a Az, 

EE) B U, Eik As, Yet Ay, Za i Az, 

and the composition of the equilibrium £" is: 

of Be ome Le, Ha = Ay, aia Lz, 
khen jj 4 n 

+) vi 2 Co Az, Ya = Ay, it Az, 

Herein Aw, Ae,... are ‘defined by (9) and (10); it is apparent 

that they may be as well positive as negative, 

In order to be able to convert the equilibrium Zr into LZ’, it 

must be possible to satisfy 
ah, bal A Sh ae eo) See 

in which all coefficients must be positive. 
It follows from (21): 

a, 4a, by b+. 

at, ae, >... = 5, (a, + Ar) + be, + Aa) ..: 

ay, + Ay +--- =), (y, + Ay,) Hb, (U, + Ay.) +. 

ete. When we put a, — 4b, =c,; a, — 6, = c,; ete. then the previous 

equations pass into: 

Eet Oja Tr On 0 

EEH te, + mar bar nn | (22) 

CY, + ey, +-..=—=b Ay, + b,Äy, +.. 

ete. We ean eliminate c‚...c from the n equations (22). We add 

them viz. after having multiplied the 1st by u,, the 2" by u,, ete. 

As w, y,... viz. satisfy (9), they also satisfy: 

u, Hut, + HY +. = 9 | (23) 
u, + ut, + uy +-.- == 0 

etc. (22) passes then into: 

0=b, [ujAc, + u, Ay, +... Hb, [u,Ae, Huy, +] | (24) 

++. dy [p Aan + Weyn +] aay 

Also-it appears from (9) that we may satisfy (23) by taking 

pb, = ads) =a de), =.5 ie = Cd, dk =... ete ner 

fore (24) passes into: 

0 = Bb, [d(z), Az, + diy), Ay, +...]+ 5, [d(z), Az, + dy) Ay, +...] + oe 

for which we may also write: 

O= 6,02, AZ Foc tn Bae Oe EN 
Is must be possible to satisfy (25) by giving positive values to 

b, b,... When we consider only equilibria in stable (or metastable) 

condition, then d?Z,, d?Z,,... are positive; it is, therefore, not 
possible to satisfy (25) and consequently also not (21). 
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Hence it follows, therefore, that Zp and £' cannot be converted 

into one another; as we are able to deduce this in the same way 
for Hr and MZ" and also for /' and #", the property mentioned 
sub- a is proved. At the same time it appears from the deduction 

that it need not be true for equilibria in unstable condition. 

For the equilibria Z' and £" this property follows also at once 

without calculation viz. from the condition that under constant P 

and at constant 7’ & must be a minimum. 

The properties, mentioned sub 6 and c follow now at once from 

property a and formula (20). 

Leiden, Inorg. Chem. Lab. (To be continued), 

Mechanics. — “On the relativity of mertia. Remarks concerning 
Einstein's latest hypothesis’ *) By Prof. W. DE SITTER. 

(Communicated in the meeting of March 31, 1917). 

If we neglect the gravitational action of all ordinary matter (sun, 

stars, etc.), and if we use as a system of reference three rectangular 

cartesian space-coordinates and the time multiplied by ec, then in 

that - part of the four-dimensional time-space which is accessible to 

our observations, the g,, are very approximately those of the old 

theory of relativity, viz.: 

—l 0 0 0 

0 —l 0 0 

0 0 -1 0 

0 0 0 +1 

The part of the time-space where this is so, I shall call “our 

neighbourhood”. In space this extends at least to the farthest star, 

nebula or cluster in whose spectrum we can identify definite lines ®). 

How the g,, are outside our neighbourhood we do not know, 

and any assumption regarding their values is an extrapolation, whose 

uncertainty increases with the distance (in space, or in time, or in 

both) from the origin. How the g,, are at infinity of space or of 

time, we will never know. Nevertheless the need has been felt to 

eae Be an EE) 

1) A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, 

Sitzungsber. Berlin, 8 Febr. 1917, page 142. 

2) W. pe Sitter, On Ernstern’s theory of gravitation and its astronomical con- 

sequences (second paper), Monthly Notices R.A.S. Dec. 1916, Vol. LX XVII, p. 182. 

This limit refers to g44 only. 
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make hypotheses on this subject. The extrapolation, which offers itself 

most naturally, and which is also tacitly made in classical mechanics, 

is that the values (1) remain unaltered for all space and time 

up to infinity. On the other hand the desire has arisen to have 

constants of integration, or rather boundary-values at infinity, which 

shall be the same in all systems of reference. The values (1) do not 

satisfy this condition. The most desirable and the simplest value 

for the g,, at infinity is evidently zero. EisrteiN has not succeeded 

in finding such a set of boundary values *) and therefore makes the 

hypothesis that the universe is not infinite, but spherical: then no 

boundary conditions are needed, and the difficulty disappears. From 

the point of view of the theory of relativity it appears at first sight 

to be incorrect to say: the world 7s spherical, for it can by a trans- 

formation analogous to a stereographic projection be represented in 

a euclidean space. This is a perfectly legitimate transformation, 

which leaves the different invariants ds?, G ete. unaltered. But even 

this invariability shows that also in the euclidean system of coordi- 

nates the world, in natural measure, remains finite and spherical. 

If this transformation is applied to the g,, which Einstein finds 

for his spherical world, they are transformed to a set of values 

which at infinity degenerate to Lj 

Q--0'0 0 

Ore 1000 
| (24) 

be Rele 

arabe RS U 

It appears, however, that the g,, of ErsreiN’'s spherical world 

[and therefore also their transformed values in the euclidean system 

of reference} do not satisfy the differential equations originally 

adopted by EINSTEIN, viz: 

GET “feet. ee 

Einstein thus finds it necessary to add another term to his equa- 

tions, which then become 

Cif > ih eS Ee dee NN 

Moreover it is found necessary to suppose the whole three-dimen- 

1) le. page 148. It will appear below that Enysrem’s hypothesis is equivalent 

to a determined set of values at infinity, viz: the set (2A). It is, in fact, evident 

that, if the universe measured in natural measure be finite, then, if euclidean coor- 

dinates are introduced the gz» must necessarily be zero at infinity, and inversily 

if the gw, at infinity are zero of a sufficiently high order, then the universe is 

finite in natural measure. = 

ed nd Mk zl 
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sional space to be filled with matter, of which the total mass is so 
enormously great, that compared with it all matter known to us is 

utterly negligible. This hypothetical matter I will call the “world- 
matter’. - 

EINsTEIN only assumes ¢hree-dimensional space to be finite. It is 

in consequence of this assumption that in (2A) g,, remains 1, instead 

of becoming zero with the other g,,. This has suggested the idea ') 

to extend Hinsrern’s hypothesis to the four-dimensional time-space. 

We then find a set of g,, which at infinity degenerate to the values 

0-505 :0 0 

Or 00: 20 

ren 0 ED bee 

070 0 0 

Moreover we find the remarkable result, that now no “world- 

matter’ is required. 

__In order to point out the analogy of the two cases I give the two 

sets of formulae togetner. The formulae A refer to EiNsTrIN’s (three- 

dimensional) hypothesis, the formulae B refer to the assumption here 
introduced (four-dimensional). I shall use the indices 7 and j, when 

they take the values 1, 2, 3 only; w and v take the values from 

1 to 4. Further = is a sum from 1 to 4 and >' from 1 to 3; 

oat A Oy IE Rp: 

I first take the system of reference used by Erste. In case A 

we take 2,= ct, in B I take, for the sake of symmetry ®), «, = ict. 

In both cases A is the radius of the hypersphere. The y,, for the 
two cases are 

A | B 

Li tj Uy, 

EN eR ! NE RRA Mag OFS <5 ct eee 
1 1 Ji d Jij Y R?— S'z?; Rek 

ia. 

In order better to show the spherical character I introduce hyper- 

spherical coordinates by the transformations: 

1) The idea to make the four-dimensional world spherical in order to avoid the 

necessity of assigning boundary-conditions, was suggested several months ago by 

Prof. EHRENFEST, in a conversation with the writer. It was, however, at that time 
not further developed. 

2) We can also take x, = ct. Then the four-dimensional world is hyperbolical 

instead of spherical, but the results remain the same. 

78 

Proceedings Royal Acad. Amsterdam, Vol. XIX. 
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w, = Rsinysiny sind | 2, = Rsinw sin y sin Wp sind 

v, = Rsinzsin weos & | «, = R sin w sin x sin W cos O 

2, = Rn K cos w | v, = Rsinw sin y cos p 

x, = Rsin w cos x 

The expression of the line-element then becomes 

A: ds? = — R*[dyz? + sin? (dy? + sin? Wp d9*)] + ctdt*, 

Be les — R[dw* + sin?widy? + sin? y(dy? 4- sin Wd). 

Finally I perform the “stereographic projection”, and at the same 

time I introduce again rectangular coordinates, by the transformations: 

A | 5 

r.— 2R tan iy h = 22 tan tw 

~ =rsinw sin d Lh sin y sin W sin d 

= r sin W cos O 
> 

| 

| y == h sin x sin W cos & 

z==r cos WP | =h sin y cos pp 

a ict — h cos y 

hen oel kalk Ek es derek ad hed hy 

It need hardly be pointed out that in Aw, y,z andin Ba, y, z, ict 

can be arbitrarily interchanged. I put further 

1 

AR? 

The g., for the variables z, y, z, ct then become ') 

i — 

1) In the system B all gu» are infinite on the “hyperboloid” 

1 Joh = 0 oF AR + a? yrs 0) eden 

This discontinuity is however only apparent. The four dimensional world, which 

we have for the sake of symmetry represented as spherical, is in reality hyper- 

bolical, and consists of two sheets, which are only connected with each other at 

infinity. The formulae embrace both sheets, but only one of them represents the 

actual universe. The hyperboloid (a) is the limit between the two parts of the 
euclidean space «x, ¥,2,ct corresponding to these two sheets. It is intersected by 

the axis of ¢ at the points cf — + 2 R, the distance of which from the origin is, 
2K 

edt 
in natural measure, f SS „©. The length in natural measure of the 

—oc'l 
0 

a 

: Ne: dx 
half-axis of 2 is, in both systems, | ———— = ark. 

14+ G2’ 
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A B 

dij ee dij 
pony (9 pens 
I = 1 Dre. 

= roi 
All g,, outside the diagonal are zero. If 5 is very small the ga 

for moderate values of rand / have very approximately the values (1). 
At infinity they degenerate to the values (2 4) and (2 B), which 
have already been given above. 

In order to find the relation between o and ò we must substitute *) 

the values (5) in the equations (4). We must, in doing this, allow 

for the possibility that it may be found necessary to introduce a 
‘““world-matter”. We neglect all ordinary matter, and we will suppose 
the world-matter to be unitormly distributed *) over the whole of space, 

and at rest, so that 7’,,=4,,9, and all other 7,,=0. The field- 
equations then become 

Jij= 

ty — (à + bx) gy = 0, 
Gi Ar (A =e 3%0) Vg =) Gag ee 

For the quantities G,, we find in the two systems 

A B 

Gij =86 gij | Gius = E20 g 

Cia; Ju 1 | 

From which 

tA | Se 

85 DE DE IE ie en (6) 

OE | 
The result for A is the same as found by Einstein. For B we 

have 9 =O: the hypothetical world-matter does not exist. 

Which of the three systems is to be preferred: A with world- 

matter, 4 without it, both with the field-equations (4) and at infinity 

the g,, (2A) or (24); or the original system without world-matter, 

with the field-equations (3) and the g,, (1), which retain the same 

values at infinity ? 

From the purely physical point of view, for the description of 

1) We can, of course, as well take the values in any other system of reference. 

2) The meaning is a distribution in which @ is constant, @ being the density 

in natural measure. The density in coordinate-measure then, of course, is not 

constant, but (in the system «x, y, 2, ct) becomes zero at infinity. 

78* 
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phenomena in our neighbourhood, this question has no importance. 

In our neighbourhood the gz, have in all cases within the limits of 

accuracy of our observations the values (1), and the field-equations 

(4) are not different from (8). The question thus really is: how are 

we to extrapolate outside our neighbourhood? The choice can thus 

not be decided by physical arguments, but must depend on meta- 

physical or philosophical considerations, in which of course also 

personal judgment or predilections will have some influence. 

To the question: If all matter is supposed not to exist, with the 

exception of one material point which is to be used as a test-body, 

has then this test-body inertia or not? the school of Macr requires 

the answer No. Our experience however very decidedly gives the 

answer Ves, if by ‘all matter” is meant all ordinary physical matter : 

stars, nebulae, clusters, etc. The followers of Macu are thus com- 

pelled to assume the existence of still more matter : the world-matter. 

If we place ourselves on this point of view, we must .necessarily 

adopt the system A, which is the only one that admits a world- 

matter. *) 

This world-matter, however, serves no other purpose than to 

enable us to suppose it not to exist. Now the formula (6) shows, 

that if it does not exist (9 = 0), the field-equations are not satisfied : 

supposing it not to exist thus appears to be a logical impossi- 

bility; in the system A, the world-matter ís the three-dimensional 

space, or at least is inseparable from it. 2 

We can also abandon the postulate of Macu, and replace it by 

the postulate that at infinity the g,,, or only the gj; of three- 

dimensional space, shall be zero, or at least invariant for all trans- 

formations. This postulate can also be enounced by saying that it 

must be possible for the whole universe to perform arbitrary motions, 

which can never be detected by any observation. The three-dimen- 

sional world must, in order to be able to perform ‘‘motions”’, i.e. in 

order that its position can be a variable function of the time, be 

thought movable in an “absolute” space of three or more dimensions 
(not the time-space a, y, 2, ct). The four-dimensional world requires 

for its “motion” a four- (or more-) dimensional absolute space, and 

-moreover an extra-mundane “time” which serves as independent 

variable for this motion. All this shows that the postulate of the 

1) The hypothesis formerly held by Einstein, and denied by me, that it would 
be possible, with the equations (3) and by means of very large masses at very 

large distances, to get values of gu which would degenerate to an invariant set 

at infinity, has now been shown to be untenable by Ernsrein himself (lc. page 

146). 
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invariance of the g,, at infinity has no real physical meaning. It is 

purely mathematical. 

The system A, with at infinity the values (2 A) of the y,, satisfies 
this postulate, if it is applied only to the three-dimensional world, 

and if we do not require invariance for all transformations, but 

only for those which at infinity have ¢’—¢"'). If the postulate is 
applied to the four-dimensional world, and to all transformations, 
then the system B is the only one that satisfies. We thus find that 

in the system A the time has a separate position. That this must 

be so, is evident a priori. For speaking of the three-dimensional 

world, if not equivalent to introducing an absolute time, at least 

implies the hypothesis that at each point of the four-dimensional 

space there is one definite coordinate x, which is preferable to 
all others to be used as “time”, and that at all points and always 

this one coordinate is actually chosen as time. Such a fundamental 

difference between the time and the space-coordinates seems to be 

somewhat contradictory to the complete symmetry of the field- 

equations and the equations of motion (equations of the geodetic 

line) with respect to the four variables. 

Some features of the systems A and £ may still be pointed out. 
In A the velocity of light is variable *), at infinity it becomes in- 

finite. In B it is always and everywhere the same. From the facts 

that we can identify lines in the spectra of the most distant objects 

known to us such as the Nubeculae, and that the parallaxes of 

these objects are not negative, we can conclude that at these distances 

we have still approximately gij= — dij, g,,—=1 and consequently 

that for Aor’, and for Boh’ must be very small. In the case A 
we can derive in this way an upper limit for o. In B on the 

other hand we have, in consequence of the constancy of the velocity 

of light, 4? —=0 for all purely optical observations (if we neglect 

the influence of matter). 

As to the effect of o on planetary motions: in both cases the 

1) Thus e.g. an ordinary Lorentz-transformation : 

vu—qet ; ct — qu 

ET 9 Lg) 
is not allowed in the system A, but must be replaced by 

hee ta 
eget 1 +or* 

— ‚ Ol 

¢ q q 

i ( net a i“ ¢ i Tee, 
?) In the system x, y, 2, ct; in the system 7, Uv, 9, ct it is constant, 

a 
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orbital plane is not disturbed. In case A there are no secular terms 

depending on 6. 

In B the terms produced by oare of a lower order, in consequence 

of the fact that all g,, depend explicitly on the time. The motion 

of the perihelion is 
30a* 

2 
“0 

and also the other elements have terms with c?/ 

parameter of the elliptic orbit is 

Jo = nt—206 c7t’, 

*; thus e.g. the 

P= pees 

where A,? = xm/82, m being the sun’s mass, and e= 2.718 ... 

These “perturbations” *) being insensible according to our experience, 

we can here also assign an upper limit to o. 

I shall not attempt to determine this upper limit with any 

accuracy. For both cases we will be safe in taking e.g. o < 10-24 

in astronomical units, or 26 << 10~-°° in centimeters *). We can. 

however, do no more than assign an upper limit to o. To make 

possible a determination of the value of this constant, it would be 
necessary that it had a measurable effect on some physical or astro- 

nomical phenomenon. Now it cannot, of course, be excluded a priori 

that at some future time observations will be made, or phenomena 

will be discovered which can be explained with the aid of the 

constant 6, but so far no such phenomena are known, and there 

are no indications of anything in that direction. The constant 6 only 

serves to satisfy a philosophical need felt by many, but it has no 

real physical meaning, though it can be mathematically inter- 

preted as a curvature of space. 

Finally we can also reject both systems A and B, and stick to 

the original tield-equations (8) and the values (1) of the g,,, which 

1) The terms of the lowest order in the ‘perturbing forces” are for the two 

cases: 
2655 ; ae tee Sten ee 

In A: S= —30 + — 2(r?—7*3’) , T= —rrd, W=—), 
Ys Aen 

20 20 = eee 5 
nB: S=—r— —cdr , T=— —ard, W—0. 

a,” Aen U : 

(For the notation see e.g. DE SITTER, On Ernstetn’s theory of gravitation, M.N. 

Vol. LXXI, pages 724 sqq.). 

The terms with c/? in the case B arise through the fact that the units both 

of time and space (in coordinate-measure) depend on the time. 

2) The density of the world matter in the system A then becomes g <3.10—!7 
(astronomical units), or » < 2.10—-% (C. G. S. units). This corresponds to one star 

(of the same mass as the sun) in a sphere of one parsec radius, 
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are not invariant at infinity. Then, of course, inertia is not explained: 

we must then prefer to leave it unexplained rather than explain it 

by the undetermined and undeterminable constant A. It cannot be 

denied that the introduction of this constant detracts from the 

symmetry and elegance of Einstein's original theory, one of whose 

chief attractions was that it explained so much without introducing 

any new hypothesis or empirical constant. 

Postscript. 

Prof. Einstein, to whom I had communicated the principal contents 

of this paper, writes (March 24, 1917): “Es wäre nach meiner 

Meinung unbefriedigend, wenn es eine denkbare Welt ohne Materie 

gabe. Das g,,.-Feld soll vielmehr durch die Materie bedingt sein, 
ohne dieselbe nicht bestehen können. Das ist der Kern dessen, was 

ich unter der Forderung von der Relativität der Trägheit verstehe”. 

He therefore postulates what I called above the logical impossibility 

of supposing matter not to exist. We can call this the “material 

postulate” of the relativity of inertia. This can only be satisfied by 

choosing the system A, with its world-maiter, i.e. by introducing 

the constant 2, and assigning to the time a separate position amongst 

the four coordinates. 

On the other hand we have the ‘‘mathematical postulate’ of the 

relativity of inertia, i.e. the postulate that the y,, shall be invariant 

at infinity. This postulate, which, as has already been pointed out 

above, has no real physical meaning, makes no mention of matter. 

It can be satisfied by choosing the system 4, without-a world- 

matter, and with complete relativity of the time. But here also we 

need the constant 2. The introduction of this constant can only be 

avoided by abandoning the postulate of the relativity of inertia 

altogether. 

Astronomy. — “On the Theory of Hyperion, one of Saturn’s Satel- 
lites.”. By J. Woutser Jr. Communicated by Prof. W. pe Sirrrr). 

(Communicated in the meeting of April 27, 1917). 

1. Among the-peculiar disturbances, which the satellites of Saturn 

undergo by their mutual attraction, those, produced by Titan in the 

motion of Hyperion, are of much importance. In this paper I intend 

to give a short development of the theory of the latter satellite; 

my dissertation will contain more extensive calculations on this 

subject. 
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The ratio of the masses of Hyperion and Titan is only a very 

small quantity. The inclinations of the orbital planes of Hyperion 

and Titan to the aequator of Saturn are also small. To simplify the 

problem I shall neglect these inclinations as well as the influence 
of the mass of Hyperion, the sun, the other satellites, the ellipticity 

of Saturn and the rings. I shall, therefore, suppose Hyperion to be 

a particle with the mass zero, moving in the orbital plane of Titan, 

while the latter describes an undisturbed elliptical motion around 

the centre of a sphere with the mass of Saturn. 

Notation : 

a = semi-major axis, e = excentricity ; 

[== mean anomaly, g = longitude of pericentre; 
M = mass of Saturn, m'= mass of Titan; 

The accented letters refer to Titan, those without accents to 

Hyperion. The units are chosen so, that the constant of attraction 

=1; wand y are coordinates in a system of axes in the orbital 

plane of Titan, the origin coinciding with the centre of Saturn. 

From the fundamental equations, which DELAuNay has used in his 

lunar theory’), the following differential equations for the motion 

of Hyperion result: 

dL OR dG OR 

eat ae are 
db OR dg DR 

Eee en: 
eo a ems lla ee m’ 

2L 5 V (a'—2)* + (y'—y)? 
_ The function R is, with regard to the angular elements, a function 

of /-+4—l—q’, 1, l only. The following new quantities are 
introduced: 

l+qg—l—jJ=#4, 

41 — 3l' + 89 — 39 — 180°=8, 

g—g =, 
gt 

One sees at once that R, with regard to the angular elements, 

is a function of ®, 6, 2 only. The reason why these three quan- 

tities are introduced is this: from the observations the mean motion 

of the argument @ appears to be zero and @ to perform a libration 

on each side of the value @ = 0° with an amplitude of about 36°; 

1) Théorie du Mouvement de Ja Lune I, 13. 
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this argument, therefore, is of much importance; {2 is a secular 
argument, its introduction is therefore obvious; the argument @® has 

a short period and thus leads to the terms in the development of 
the perturbative function, which are of little importance. From R 

therefore all terms with arguments containing ® or a multiple of d> 
2x 

For convenience sake in the rest of this paper the line above the 

letter R is omitted. 

Putting 

L—G= A, 

NG FF 

and n’ for the mean motion of Titan, the equations for 6, ?, A, T 

become: 

| dd OR OR d6 OR 
eh BOY a aan 
dr OR db OR 
en Se A ee 
dt 02 dt or 

2. The excentricity of Titan being a small quantity, I shall try to 

develop the solution of these equations in powers of this excentricity. 

Thus, first I put e/=0; then R appears to be independent of 

{2 and to be a function of 6 only. The equations then are: 

dS OR C=0) dO. x ORE =) — ioe Osh eet Bn’, 
dt 00 dt Of 7 
dT db _ÒR(/==0) 
—=0 , =- ran 
dt dt or 

: M? ‘ 
Putting R, = RE (KR—R,)e=o, R=R, +R, +-R,, 2 (4A= 7)? 

the development of R, is: 

fe ©} 

Rm, y> A) cos p, 

0 

where A,,... A,...-are functions of 4 and T. 

R (e'=0) being independent of ® and 2, the equations for A, 

r and @ form a system apart; after the integration of this system 

® is determined by a quadrature. This system admits the solu- 

tion: @=0, 4=const., F==const… However, between the constant 

values of 4 and I, which are called 4, and I,, a relation must 
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: ss dé ; 
exist, which is a consequence of the condition that DE for 

6 —0. This relation is: 

4M? Eerd BA ME 
GA. 7S 0A JAoFo 

Let a, and e, be the values of a and e belonging to 4 = pie > FP: . 

VM 4m! 
The relation becomes, with regard to the equation » = 

— | — I= (5) [4 147 
DP 

m > ae A(t eA) Sig Ten 0A, 

ae M de js Mie da eVa, de | €o 

13 
a2 

0 

! 

; ; ‚a 
From this equation the following value of — results: 

a 

a ! a’ y) m'\P 
——— nt = IE 

a, *\M 
0 

where «, is a function of e,; the value of @, is (¢)§ and thus: 

0 

/ 
a, = 0.825. 

To investigate the nature of this solution of the differential equations, 

the adjacent solutions are to be examined. Putting {== A, + dd, 

0 = dV and taking account of the first power of these quantities only, 

the differential equations become : 

ddA Oaks 0? R, 
JA, Ene Bae 

ds6 sO (R, +R) ‘Ro. 
Pi. eis Sle ns Pee aS \A, 
dt PEPE 

whence, by elimination of 04: 

PIO OR, +R.) 0’?R 

ee: Ue eon 
I have developed certain portions of the perturbative function 

— 06. 

numerically for the values e = 0.1048 and <= 0.8250634. The first 
a 

value is that which H. Srrvve *) has derived from observations, the 

1) Beobachtungen der Saturnstrabanten. Publications de l'Observatoire Central 

Nicolas. Série Il, Vol. XI, pg. 290 and 267, 
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second is the same he has used in the computation of a few coeffi- 

cients from the perturbative function. From my developments | 

deduce : 

0°R, m’ 
—+ — x .0.0728. 

00? es a’ 5 

0? OR : 
Neglecting ze by the side of er (this is allowed, the first term 

having mm’ as factor, the second not), the differential equation for 

aegis VR 48 
O07, taking account of the relation —--= + — , becomes : 

0A? de 

L200 oe 
2.89 —— Od = 0, 

dt? as 

or, taking account of the relation n?a’* = M + mm’ and neglecting 

the higher powers of mv: 

206 
ae en El og = 0, 
dt? M 

hence: 

06 = q sin (rt + ¥), 

q and y being the constants of integration and 

[= ! m! p= -+ 1.54 n Mm 

Thus, the stability of the solution 6 =O, d == const., F' == const. 

is evident and oscillations about these values are possible. In reality 

these oscillations are very considerable. Srruve derives the value 

36°.64 for the amplitude of the libration in @ (le. pg. 287). How- 

ever, the value of py is already a close approximation, as appears 

. . . . m' ~ 

from a comparison with observation: taking for u SAMTER’S *) value 

Te the above-mentioned formula for rv gives: r = 0°.542, while 

STRUVE gets (l.c. pg. 287): 0°.562. 

3. Starting from the solution tor e’ = 0, viz. 6 = 0, A= const, 

F==const…, I will construct the development of the solution in 

powers of e’. Putting 07, 0A, OT for the first-order terms in 6, -/, T, 

the differential equations for these quantities are: 

1) Die Masse des Saturnstrabanten Titan. Sitz. Ber. der K. Preussischen Akad. 

der Wissenschaften 1912, pg. 1058. 
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1A OR, DR, aR, a oR, 
J a 

ie RUA Papers cee nn 

ken Vi 
dt QQ 

190 ARR), FARR), ARR) op. aR, 
dt OA te DOT 0.400 OAS 
In R, the terms of an order higher than the first with respect to 

e’ are to be omitted. Taking account of the solution for e = 0, these 

equations become : 

d0A _ OTR a gg OR, ORs 
Tine wegen) es Be SSS 

dor OR, 

ste 02’ 
dd) OR, +R) 0? (R, +R.) OR, 

We a ee 
Eliminating 0// and dT, one gets: 

dd0 OUR, +R.) OR, An _Ò(R,+R)OR, 
dt? DA NDR zen DA TD 

__dòR, ZEE | ghee] ORS 
dt 0A 0A? 0A0T 022 

The development of R, (taking account of the terms of the first 

order with respect to e’ only) is this: 

eo) rr 2e mie 
R, == ah E Q ) p B, cos p 0 + sin $ 2); p Cy sin p | 

0 1 

B, and C, being functions of 4 and 1. 
From my development of certain portions of the perturbative 

function I deduce: 

S| = — 0, 574 sin Q. 
4=0 00 

From the solution of the differential equations for € == 0 we have: 

d2 a OR OR, 
= ; thus A&, the mean motion of @, is of the 

order of m’. A consequence of this and of the equation 

0°R, pase R, OR, 
== —() is, that only the term in — in the right member ie” Cai er y 00 
of the differential equation gives a contribution of the order of 7’; 

the remaining terms only give contributions of the order of mm’? 

The coefficient of Ò9 in the left member is the square of the mean 
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motion of the argument of libration and of the order of mm! ; thus 
the divisor, which appears at the integration, is of the order of 1’. In 

this divisor neglecting A2*, which is only of the order of m'?, the 
solution of the differential equation, taking account only of the term 

OR 
in aal from the right member, becomes : 

1 OR, 

OR, 06" 
00? 

Substituting the numerical values of the various quantities, we get : 

00 = + 7.89 e' sin 2 

and, for e' taking the value 0.0272 (Struve, le. pg. 172) and 

expressing the result in degrees: 

06 = + 12°3 sin &., 

The value from observation is (Struve, |. e. pg. 290): dé = + 14.°0 

sin ©; thus the agreement is very satisfactory, considering the sim- 

plifications admitted for the deduction of the theoretical value. 

The value of OI is to be determined by a quadrature from the 

equation : 

06= 

dor OR, 
eS a ees 
dt 02 

| ddO 
while 4 results from the equation for roa without any integration. 

Considering the fact that R, as well as the mean motion of @ are 

of the order of m', the values of dr’ and OA are seen at once to 

be of the order zero with respect to m'. 

The value of d® results from the equation: 

dd® 0°(R 07(R ORR), +R,) J OR, 
dt =—sSs OWA : or 

r+ 
or 

ddO 
Subtracting the equation for ae from four times this equation, 

we get: 
dób dd6 0?R 0?R òR 0?R Pica a Ap ER 0 ah 4 0 han Pee 

dt dt emt ae 24+] or: | end dp 
0°R 0’R ò°R o*R OR OR 

1 ï 1 i 1 1 )T : As 2 > 

+|4 arOA | =| OA E orm? sa NITRA PE 
Taking into account the relations: 

n vi ay 3 _42R | 

drdA | da om dAor ’ 
O® is seen to be of the order zero with respect to im’. 
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4. From the preceding developments there is seen to be every 

reason for the expectation, that the development of the solution in 
powers of the excentricity of Titan, supposing the free libration of 

6 to be zero, will meet with no difficulties. This conelusion is at 

variance with Nrwcoms’s opinion in his paper: “On the motion of 

Hyperion. A new case in Celestial Mechanics’. There he reaches the 

conclusion, that the development in powers of e' is not possible. The 

incorrect performance of this development by Nerwcoms is the reason 

of this difference of opinion; he omits the terms in the differential 

eqnation, which arise from the part of the perturbative function 

that does not contain €; thus he gets a divisor of the order of m’ 

instead of one of the order of mm’. In this respect the theory of 

Hyperion appears to present no difficulty. 

In my dissertation I hope to extend the preceding developments 
by taking into account the amplitude of the free libration, as well 

as by giving more accurate results as regards the number of decimals. 

Chemistry. — “Vapour pressures in the system: carbon disulphide- 

methylaleohol”. By Dr. E. H. Bicuner and Dr. Aba Prins. 

(Communicated by Prof. A. F. HOLLEMAN). 

(Communicated in the meeting of March 31, 1917). 

With regard to the vapour of partially miscible liquids, we find 

in many textbooks the following consideration for the case that the 

composition of the vapour lies between that of the liquid phases. 

When, on altering the temperature, the concentrations of the two 

liquids tend to the same value and, finally, become identical in a 

critical solution point, the vapour also, it is argued, must have the 

same composition at that temperature. It is then, however, tacitly 

assumed that tie vapour, which lies at any low temperature between 

the liquids Z, and Z,, remains between them at all other tempera- 

tures. This is, however, not at all the case, as KUENEN *) already 

showed some years ago with the help of van DER Waats’ theory. In 

an analytical way he proved, on the contrary, that at the critical 

point the vapour must have a different composition. 

Also from general considerations it is easily seen that a vapour 

lying within the region of the two liquids must pass without, before 

the critical point is reached. If it did not, there would exist a point 

where three phases had the same composition. Now, it is already 

1) These Proc. 6, Oct. 1903. 
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a particularity, when two phases of a binary system have the same 

concentration; this only occurs, when the components satisfy definite 

conditions. To allow of a third phase having also the same compo- 
sition, still more special conditions, hardly ever to be expected, must be 

fulfilled. Although this does not prove the absolute impossibility of 
such a point, we see at once that it is highly improbable, and in 

any case that it cannot occur in general. 

Until now, no single example has been experimentally investigated ; 

it seemed, therefore, important to prove with some system the exactness 

of the above considerations. We chose the system carbon disulphide- 

methylaleohol. 

The principal thing is to show that-in the ¢, a-diagram the curve 

indicating the concentration of the vapour, runs as is drawn in 
figure 1. This gives the change of composition, which the three 

| phases — permanently remaining in equili- 

T brium — undergo by rise of temperature, 

or, as we may also express it, the ¢,a- 

projection of the triple curve. At low 

temperatures, the order of the phases is 

L,GL,; G and ZL, become equal at a 

certain temperature after which the order 

is GL,L,; at this peculiar temperature, 
the G-curve cuts the Z,-¢urve. 

This is the cause of another particu- 

x larity, which may also be considered as 
Fig: 1. a characteristic of these systems. The 

p‚v-diagram must have the form of fig. 2 at low temperatures.— 

when the order is L,GL,—, and that of fig. 3 at higher ones, as 

is easily seen graphically. The transition between these is formed 

p P 

Fie 2 Pig. 3, 
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by a peculiar figure, in which G and L, coincide exactly at the 
triple pressure, where also the maximum-point (at which the liquid 

and vapour curves touch each other) is situated. We tried to study 
both figures in the system, chosen. 

In the first place, we investigated the p‚r-diagrams at several 

temperatures. With a tensimeter the vapour pressures of different 

FABLE 2 

CS, | CH30H | Triple curve 

t P | t | Pp | I | P 

21.40 307 mm 33.49 {188 mm 0? 154 mm 

24.3 344 36.2 | 210 BiG 227 

25.0 3571 42.3 280 Depa? ores 

26.5 316 45,3 | 319 10.1 | 245 

28.9 414 48.0 | 370 et Rn Ze 

29.5 420 50.8 410 13,0» [2480 

32.4 | 467 53.5 463 (478, | ao 

33.3 480 56.1 | 529 13.8 | 313 

36.0 530 58.6 © | 590 18.3 | 345 

31.2 550 60.0 | 627 19.6 372 

38.3 573 64.6 760 20.8 | 389 

40.4 616 21.4 403 

43.2 676 22.0 410 

43.6 685 26.0 484 

44.8 115 26.3 | 491 

46.5 761 28.2 523 

| 29.0 550 

29.4 556 

31.0 588 

33.6 654 

34.1 668 

34.5 679 

36.4 725 

36.6 734 
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mixtures were determined at a set of temperatures. So long as there 

are three phases together, we find of course always the triple pres- 

sure; as soon, however, as one of the liquids has disappeared, we 

leave. the triple curve, and every mixture will exhibit its own pres- 

4) 5 40 75 26 25 30 35 ao 45 30 55 ao 65 

Fig. 4. 

Proceedings Royal Acad. Amsterdam, Vol. XIX. 
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sure. On the p,f-curves thus found, we interpolated the pressures at 

definite temperatures and construed from these the p,a-curves. The 

tensimetrical method has the great advantage, that the mixtures 

come into contact with no other substance than mercury, the appa- 

; 
T
A
B
L
E
 

2. 
Concentration 

in 
mol.proc. 

methylalcohol. 
Y
T
 

4.66 0/, 
11.72 

9/0 
19.43 0/, 

26.4 
0/, 

30.66 
Jo 

52.9 9/9 
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|
 

90.3 
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|
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|
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46.8 
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|
 944 
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|
 915 
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|
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27.4 
|
 507 
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|
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45.4 
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 798 

52.4 
(1259 

51.3 
|
 976 

54.6 
|
 1097 

| 
58.3 

|
 1238 
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ratus being sealed as soon as it is filled. Much preliminary work 

showed us the importance hereof; rubber stoppers are attacked by 

carbon disulphide, corks cannot be used, because the methylalcohol 

absorbs water from them; when using ground stoppers or taps, 

one experiences difficulties with the lubricants. 

The substances used were carefully purified. The purest commercial 

carbon disulphide was shaken with mercury, left for some time on 

quick-lime and distilled off. Finally it was distilled once more, all 

these operations being performed at red light. It was kept continually 

in the dark. The boiling point was 46.4° at 760 mm.; it did not 

stick to the condensor and had hardly any, in any case only a not 

disagreeable ethereal odour. 

The methylaleohol, also the purest commercial product, was treated 

with iodine and natron, boiled afterwards with quick-lime, left for 

some time on sodium and distilled off. At last it was fractionated, 

and the fraction, which distilled between 64.5° and 64.6° (760 mm.) 

was separately received. It was absolutely free from water, as was 

proved by the well-known reaction with anhydrie coppersulphate. 

The salt itself remained- perfectly white, while part of it dissolved 

slowly with a light-green colour. 

In table 1 (p. 1234) and fig. 4 (p. 1235) the results as to the 

components themselves and the triple curve are given. The points 

of the latter are determined with different mixtures; they all fit 

very well into the curve. 

The measurements, relating to different mixtures above their 

solution point are joined in table 2. It appears that the pressures of 

most mixtures are nearly equal, and that the pressure curves run 

so closely to each other that we had to refrain from joining them 

in one figure. Instead thereof, we have construed for a number 

of temperatures the p‚rv-diagrams, by interpolating on the different 

curves the pressure values corresponding to those temperatures. 

The result showed it to be impossible to realize in this system 

the transition sought for. Until just below the critical point, which 

we found at 37.4°, the p,c-curve retains the shape of fig. 2, in which 

the triple pressure is the highest (fig. 5, (p. 1238) that is given as 

an example for 35°). The form is very remarkable: the liquid 

branches change almost imperceptibly into the horizontal line, as 

is already known indeed for other systems with partial miscibility ; 

a maximum however is not to be observed. 

The curves for temperatures above the critical point might happen 

to give some decisive answer to the question. 

If there had been a distinct transition from the curve of fig. 2 

19e 
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into that of fig. 3, we should have found above the critical point 

a curve with a maximum and an inflexion point. The curves 

however appeared to run very flat (fig. 6); it was therefore impos- 

sible to ascertain, where the maximum lies, while the inflexion 

point has already disappeared immediately above the critical point. *) 

It still remained to investigate, if a satisfactory result might be 
obtained by determinations of the vapour concentrations. We heated 

therefore a two layer system to boiling, distilled off a part of the 
vapour and determined the solution point of the distillate in order 

to find the concentration thereof. 

First of all, we wanted the determination of the whole solubility 

curve, which we carried out by the well-known synthetic method in 

sealed tubes. Our results (table 3 and fig. 7) differ from those 
obtained formerly by Rorumunp; our critical point lies 2.5° lower. 

Doubtless this difference is to be explained by difference in purity 

of the substances; in the first place we think’ of traces of water. *) 

620 

600 

580 

0 10 20 30 40 TRT OEL 90 100 

Fig. 5. 

1) Cf. the system phenol-water investigated by ScHREINEMAKERS, Z. f. phys. Ch 

35, 459, 1900. 

2) We found experimentally, that the solution point is increascd 0.7° by addition 

of 1 %/o9 water. 
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1200 

1190 

120 

174 

1160 

Pressure scale for the curve of 50°. 

950 

340 

930 

0 10 20 30 40 50 60 70 80 30 104 

Fig. 6. 

We too found in our first experiments critical points of 40° or 

even higher. It is sufficiently known that small impurities have 

an enormous influence, especially on the critical point; they may 

cause it to rise, for instance, 100 times as fast as the boiling point. 

This is the reason why the triple curve is not nearly so sensitive to 

impurities and why our former determinations with substances, which 

showed the critical point 39.5°, as well as the more recent ones fit 

perfectly into one line, 
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TA BLEs. 

Conc. in mol.proc. t solution point 

8.1 21.8 

14.1 30.8 

21.2 35.9 

24.4 31.4 

29.4 31.1 

34.6 | 31.2 ) The critical point is 
situated between these 

42.4 37.4 two concentrations. 

50.8 35.3 ; 

52.9 34.7 

61.0 28.7 

72.8 bie? 

81.0 —15 

é 10 20 39 40 50 60 70 go go 100 

Fig. 7. 

We used for the boiling experiments an apparatus, constructed 

some time ago by Prof. Smits, At first, we had boiled the liquids 
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by electric heating by means of a platinum wire in the liquid. It 

appeared, however, that in this case decomposition occurred, as was 

immediately proved by an abnormally high solution point of the 

distillate. Prof. Smits then directed our attention to the apparatus 
represented in fig. 8. To the flat bottom of a glass tube 20 em long 
and having a diameter of 2 cm a little, narrow tube A, 2 em long, 

is sealed, which is wrapped with a sheet of asbestos paper, round 

which nickelin wire is wound. By an electric current the liquid in 

this short tube is then so strongly heated, that it brings the whole 

mass very quickly to boiling. Nevertheless, when making experiments 

under lower pressures, it was desirable to throw in some little 

capillary tubes, as the substances are very highly lable to super- 

heating. The whole apparatus was packed with cottonwool in an 

asbestos mantle. It is provided with a ground stopper, from which a ther- 

mometer (Anschiitz) is hanging, and with two 

side tubes: 5, leading to a reflux condenser, 

and C, which — enveloped by nickelin wire 
and sufficiently heated during the experi- 

ment — leads the vapour to the receiver. 

This consisted of a wide glass tube cooled 

by earbondioxide and alcohol, in which one 

or two small tubes, provided with a con- 

striction, were placed, which might contain 

about 1 e.e. of liquid. When the moment of 

receiving the distillate has arrived, the wide 

tube is turned in such a way that one of 

the narrow tubes comes to stand under the 

end of C. When it is sufficiently filled, the 
Fig. 8. experiment is finished, and the tube is sealed. 

By adetermination of the solution point, we knew at the observed boiling 

temperature the concentration of the vapour, while the composition 

of the liquids was found froin the solubility curve. We made this 

experiment at three different pressures with the results given in 

table 4 and drawn in fig. 7. 

ASB! EE 34. 

Pp t XG 

444 mm 24,49 190/, 

600 915 24 

688 40.2 30 
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Whereas the two first determinations were easily made, we met 

in the third with a serions difficulty, which made us refrain from 

further experiments above 35°.2. The solution point of the last 
distillate lies namely at 37°.2, so on the almost horizontal part 

of the solubility curve. Thereby, the determination of the concen- 

tration in this manner becomes inexact, which would become still 

worse at the higher temperatures. We have checked it for this 

distillate by adding a weighed quantity of carbon disulphide, altering 

thereby the composition and the solution point so as to bring them 

on to a part of the solubility curve, which is more easily deter- 

mined. No important difference was found. ; 

The experiments carried out show, however, clearly, that this 

system does not afford a plain proof of the theory. Although we 

see that the vapour line after extrapolation cuts the solubility curve 

at 32 molproc., whilst the critical point lies at 36°/,, the tempera- 

tures of the intersection point and the critical point cannot be 

distinguished. The course of the curves being so unfavourable for 

our purpose, we decided to take no more experiments with this 

system. Our result is remarkable in this point: although the thegry 

proves, that the vapour branch does not leave the region of limited 

miscibility in the critical point, the opinion previously expressed 

that this had to be the case, is not very far from the truth. 

Inorg. Chem. Laboratory 
University of Amsterdam. 

Experimental Psychology. “— Jntercomparison of some results 

obtained in the Investigation of Memory by the Natural and 
the Experimental Learning- Method’. By Dr. F. Rorts. (Com- 
municated by Prof. C. WINKLER). 

(Communicated in the meeting of March 31, 1917.) 

In the investigation of memory psychologists have always had 

recourse to learning-experiments, with the purpose to ascertain, under 

definite experimental conditions, the retentive capacity of the memory 

witb regard to the material impressed upon it. Whatever method 

was employed (the learning-, or the saving- or the hitting-, or the 

helping-method) the imprinting occurred invariably in the same 

way. The material to be learned, by preference meaningless, was 

presented to the observer at a certain rate of succession, and more 

or less frequently, according to the object in view. Psychologists did 

not always take into account the learning-method peculiar to every 
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individual so that now and again the rate of succession of the terms 

corresponded little with the time required by the observer to spon- 

taneously take in the material presented. The difficulties arising 

from this, which are felt in individual psychological experiments 

much more strongly than in general investigations, do perhaps not 

render the results, achieved in this way, totally invalid. Neverthe- 

less, viewed more closely, they appear to me weighty enough to 

justify an intercomparison of the results obtained by the natural 

and the experimental method. 

The results reported in this paper have been obtained in a series 

of experiments performed in the Psychological Laboratory of the 

Utrecht Clinic for Psychiatry and Neurology. The course of the ex- 

periments was regulated as follows: 

Three observers (M, R and D) committed to memory 40 series of 

12 nonsense-syllables. For the first twenty (Group I) the observer 

was at liberty to choose his own rate of succession, to group the 

syllables, to determine the interval between two successive repeti- 

tions ete. all in his own way. The only restrictions he had to sub- 

mit to were that in the successive repetitions he was allowed to 

pronounce a syllable only once, and that when once his attention 

had averted from a syllable, it should on no account return to it 

again. The other 20 series (Group II) were exhibited by means 

of a mnemometer of our own construction. It consisted of a drum, 

rotating evenly and at a carefully tested speed about an horizontal 

axis by the help of a Heumuorz electromotor. On this drum was wound 

a strip of paper printed with the syllables at equal distances. Before 

the drum there was a screen with a slit in the centre past which 

the syllables flitted in succession when the drum was turned round. 

Thus the time of exposure was the same for each. syllable, so were 

the intervals between two successive syllables, so also were those 

between two successive repetitions. 

In the experiments of Group I as well as those of Group II the 

observer spoke through a voice-key, consisting of the diaphragm of 

a gramophone, to which a platinum disc had been attached. On this 

disc rested the platinum-covered point of a V-shaped arm, which 

was turning about an horizontal axis, and easily adjustable by the help 

of a sliding weight. The deflections of this arm broke the electric 

current flowing through the instrument even with the slightest 

intensity of the spoken sound on the diaphraghm. These breaks were 

registered by a marking magnet upon the drum of a kymographion. 

A second magnet drew a time-line (!/,‚ sec.) with the aid of 

KAGENAAR’S chronoscope. We were thus enabled to determine by the 
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natural and the experimental method the duration of every repetition, 
the time relation between the successive terms of one series, and its 

modification with the progress of the process of learning ete. 

The determination of the time required for every repetition and 

for the whole learning-process involved some difficulty as our voice- 

key, though it indicated distinctly the moment when the observer 

started the first syllable of a series, did not precisely report the 

moment when the reading of the last syllable was completed. 

However, we have ignored this source of experimental error in our 

calculations, seeing that the moment at which the last syllable is 

begun is easy of determination and only a minimal time (at the 

most 0,2 sec.) is required to pronounce a syllable consisting of two 

consonants with a vowel or a dipbthong between them. This may 

the more readily be done since it equally affects the time-values in 

both groups (I and II). 

In the experiments of Group II we had to look out for the 
moment the first syllable appeared in the slit as it need not coincide 

with the moment when the observer reads it. We, therefore, fitted 

to one side of the drum of the mnemometer a button, which, 

whenever the drum had come round again to its starting point, came 

in contact with a spring. With this contact we made the appearance 
of the first syllable coincide. The breaking of the circuit brought 

about by the contact was registered by means of a marking magnet 

on the drum of a kymographion. 

If the observer supposed he knew the series, he said it by heart. 

In case he broke down the experimenter presented the rest of the 
series once more. Close upon the recitation the observer told how 

he had proceeded in learning the syllables, how he had grouped 

his material, what associative connections he had made between 

the syllables. 

Every day four series were committed to memory. Precisely 24 

hours later we ascertained by the saving-method how much of the 

impressed material of the previous day had stuck. Group I was 

gone through unintermittently; not before this was got through did 

we start the second group. 

The subjoined table shows the mean number of repetitions which 

the several observers required to learn a series by the natural- (I), 

and by the experimental (II) method. For each observer the first 

and the third horizontal row shows the results of the learning- 

experiments (/) of the first day; the second and the fourth those of 
the repetition-experiments (7) 24 hours later. Alongside of the arith- 

metical mean we also tabulated the mean deviation and the median, 
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The last column illustrates the gain (expressed in percentages) realised 

after 24 hours by the natural- and by the experimental meihod. 

We also add a column for the number of series learned by heart. 

TASB iE at, 

Number Arithm. Mean Gain after 
Observer "| of series mean deviation Median 24 hours 

| 
| | 

| 8.45 1.50 8 
20 I 52,71 

if 4 0.46 4 | 
M. | 

1 9.25 1.41 9 | 
20 II | | 47.03 

r 4.90 0.95 a} 

\ | 4.50 1.04 4 | 
20 I 45.56 

ieee 2.45 0.78 RER 
R. | 

| 7.60 1.50 [0 | 
20 II | 35021 

Fr 3.10 0.74 3 

| 9.66 2.08 9 
20 I | 49.28 

| r 4.90 0.80 5.50 
D. 

| | 10.50 3.25 9.50 
8 II 46.43 

| fr 5.60 1.92 4.50 

The order of the observers relative to the number of repetitions 

in group I is maintained in group IJ. For each of them the number 

of the repetitions increases; for M. and D. in about the same degree 

(respectively 9,47 and 8,69 percent); for R the increase is much 

greater (68.89 perc.). A similar process is observed in the 7-rows. 

Here also the increase is greatest for R (26.53 perc.), much less for 

D than for M (respectively 14.28 and 22.5 perc.). 

The percentage of repetitions saved after 24 hours is for M and 

D higher in I than in II (respectively 52.77; 47.03 and 49.28 ; 

46.43 perc). The reverse is observed in the case of R, for whom 

Il yields a considerably larger gain (59.21 and 45.56 perc.). 

The second Table gives the average time required for getting a 

series by heart in group I and II. After what we said about the 

preceding table we need not enter into further details about its 

construction. The time-values are expressed in seconds. 
With II the time of the learning-experiments decreases, for M 

and D respectively 5.28 and 14.74 pere. R, however, requires more 
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TxA BLUE fe 
| ‘ | | | 
| Number Arithm. Mean _ Gain after 

Observers of series | mean deviation Median _ 24 hours 
| | | 

| | | | 
(| 19 . | 1 | 92.40 15.67 87.45 

53. 
: | | 2428 r 43.38 | 6.91 44.55 | | 53.05 

ae ee 1 87.52 11.83 88.12 | 
| I | | | 47.44 
| 20 r | 46 8.48 43. 40 

‚|___20 fe Ne 16.15 57. DE 
| I | | 52.89 

5 20 r | 28.94 9.55 26.97 | 

an OET: 1 10.23 11.38 11.85 | 
| Il | | 60.17 

| 19 KNP, 6.54 26. ak 

Ee 47 114.40 32.36 | 86. sd 
| I | | 51.70 

8 20 r 55.26 | 13.54 | 55.41! 

8 1 97.54 21.19 | 89.23 
II | | 48.64 

8 r | 50.10 | 14.21 |. 43.20 
| ; | 

time with II (increase 14.32 perc). The learning-times of the 7-rows 
do not differ very much. For R and D they decrease with II 

(respectively 3.35 and 9.34 perc.) for M the increase is 6.04 perc. 

For M and D the time saved after 24 hours is greater with I 

(respectively 53.05; 47.44 and 51.70; 48.64 perc.); for R, however, 

considerably greater with II (52.89 and 60.17 perc.). i 

When summarising these data we see that the number of 

repetitions needed to learn the series by heart is larger with II 

than with I, in the learning- as well as in the repetition-experiments. 

The increase of the number of repetitions in the learning-experiments 

does not keep pace with that of the repetition-experiments, so that 

for two of our observers the gain after 24 hours is largest with 1, 

for the third with II. Again, with II the learning does not only 

require less time, the gain effected after 24 hours is also greater. 

The few exceptions may be accounted for by the unequal increment 

in the number of repetitions in the learning- as well as in the 

repetition-ex periments. 

The third Table gives the mean duration of the recitation-times 

(seconds) in the learning- and the repetition-experiments with I and 

II along with the gain effected after 24 hours in percentages. 

For all observers the recitation-time of the learning-ex periments 

is longer than that of the repetition-experiments, with I as well as 



KARL Bei 

‚Number Arithm. ~ Mean . Gain after 
Observers of series mean deviation Median 24 hours 

| 
1 | 20 | 13.61 3.01 12237 

| I | | 13.74 
En 20 r 11.74 2.24 10.95 

| 20 | 11.49 2.19 10.47 
II | 4.96 

20 r 10.92 2.25 10.07 

20 | 11.95 3.13 11.25 
I | 2.43 

5 20 r 11.66 2,21 11.65 

19 I 13.92 4.57 12.63 | 
II | 19.04 

20 r Tie 2562 10.65 

| 17 1 11.54 1.98 HELO 
I | 14.30 

Z 20 r 9.89 1.79 9.30 

8 I 11.15 2.98 10.78 
u | | 3.14 

8 r 10.75 1.95 10.45 

| 

with Il. M. and D recite quicker with II. R, on the contrary 

quicker with I. This at least is the case in the learning-experiments. 

The recitation of the repetition-experiments lasts longer with II than 

with I only in the case of D. The column of percentages of repeti- 

tions saved after 24 hours with I and II clearly shows that the 

gain is greater with I for M and D; for R however, with II. 

— Consequently the recitation-time with I as well as with IL is 

longer in the learning-experiments than in the repetition-experiments. 

Again, as 1o furthering a quick recitation the experimental method 

seems to have the advantage over the natural, whereas the latter 

yields a greater gain. 

The mean rate of succession of the presentations of the series 
of the second group, measured from the moment when the first 

syllable appeared in the slit of the mnemometer to the appearance 

of the last was 9,5 seconds. The next table shows how the observers 

themselves determined spontaneously the rate of succession in the 

learning- and the repetition-experiments. We determined accordingly 

the mean duration of a repetition in the learning- and in the 

repetition-experiments. The first column gives the number of repetitions, 

from which the time-values have been calculated. 

For R. and D. the mean duration of a repetition is markedly 
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TABLE IV. 

7, = rT 

Observers | Repent gen | Arithm. mean | Mean deviation Median 

| | 

| 6g 11.26 | 1.03 10.87 
M. | | | 

| 80 r 11.31 | 1.21 11.47 
| 

| | 86 1 13.44 | 1.40 12.95 
R. | | 

49 r 11.79 | 1.08 11.66 

| | 173 | 11.16 | 1.40 10.44 
D. 

| 110 7 9.86 | 1.39 | 9.71 
| | 

greater for the learning- than for the repetition-experiments; for M. 

they are almost equal. For learning as weil as for repeating a 

repetition requires on the average more time with I than with II. 

Only in the case of repeating does the average duration of a repetition 
for M. approximate to that of I. 

The following tables illustrate how the observers modified the 

rate of succession spontaneously according as they were getting more 

familiar with the material. For every series we divided the repetitions 

necessary to» learn the material by heart (learning and repetition) 

into three groups of successive repetitions. For each group we 

calculated the mean duration of its repetitions. A comparison of the 

time-values of each group shows the changes in the rate of succession 

in learning and repetition concurring with the greater familiarity 

on the part of the observer with the material to be impressed. It 

should be observed that, when the number of repetitions was not 

divisible by three, the first and the last group always contained the 

same number of repetitions which made the middle group longer or 

shorter by one repetition. Though the time of exposure of the 

syllables, as established by the mnemometer was always the same 

with II the observer had ample opportunity to lengthen or to shorten 

the duration of the repetitions to a certain extent, as he was at 

liberty to read the first and the last syllable of the series at any 

moment of the period during which they remained visible in the slit. 

So with II there may also be a tendency to shorten or to lengthen 
the duration of the repetitions as the learning-process advances. 

Apart from a few exceptions for D, the duration of the repeti- 

tions increases according as the observer is getting more familiar 

with the material to be impressed, in the learning- as well as in 



1249 

TABLE V. Observer M. 

9.35 

Groups Arithm. mean Mean deviation Median 

9.79 0.63 9.72 
st | 

| | 9.34 0.68 9.70 

I | 10.92 0.86 10.93 
i 2d 

(20) | 10.78 0.92 10.72 

1285 1.66 11.82 
3d | 

12.13 2.03 12.21 

9.62 0.51 9.37 
ist 

9.52 0.60 9.31 

Il Oil 0.52 9.47 
2d | 

(20) 9.52 0.51 9.30 

9.50 0.49 9.47 
3d | 

9.49 0555 9.40 

TABLE VI. Observer R. 

Groups | Arithm. mean Mean deviation Median 

12.42 0.71 12.57 
Ist | | 

10.91 15393 11.20 

I Hass 1.33 18309 
( 2d | 

(20) | 11.10 | 1.78 10.50 

| 14.13 | 2.41 13.56 
(ad 
| | 13.28 1.78 12.90 

| | 9.22 0.78 9.22 
Ist | 

| 9.11 0.44 9.10 

II 9.09 0.99 9.08 
2d | | | 

(19) | 9.52 | 0.84 8.80 

| 9.56 1.02 9.83 
3d | | | 

| | 9 | 1.02 
| 
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TABLE VII. Observer D. 

Groups Arithm. mean Mean deviation Median 

pike: 11.09 1.33 | 10.62 
st] 

| r 9.82 1.49 9.70 

I aes 10.70 1.33 10.35 
C2 [cet Did 

(20) | Le ise 10.12 1.74 9.55 

| | (| 1 11.49 1.89. 11.13 
3d || 
Elve 10.11 1.58 10.25 

ri 9.76 0.53 9.76 
Ist | 

| Bi 9.53 0.22 9.51 

Il 1 9.69 0.59 9.58 
cee | | | 

(8) | EE: 9.22 0.37 9.22 

rea | 9.67 0.67 9.50 
‘| ad | | 

| or 9.33 0.42 9.31 
| 

the repetition-experiments. Again with one exception for D the 

increase is greater in the repetition- than in the learning-experiments 
(for M. 3.89 and 2.78; for R. 2.77 and 1.71 sec); this proves again 

that with at least two of our observers there is a tendency to 
lengthen the learning-time, when the knowledge of the material has 

increased in consequence of the repetition-experiments of the 

previous day. It is also proved by the- fact that with a few excep- 

tions, the lengthening of the learning-time, in the learning- as well 

as in the repetition-experiments is greater when passing from the 

IId to the [Id than from the Ist to the IId group. (for M. 1.13 and 165 ;1.44 
and 1.95 ‘sec.; for KR. 0.91 and 0.80:- 0.19 -and 2.81; sec; tor 

D.: —0.39 and 0.79; 0.30 and — 0.01 sec.) It seems advisible to 

conclude, therefore, that with I for two of our three observers the 

time required for succession-repetitions increases as well in the 

learning- as in the repetition-experiments, when the observer gets 

more familiar with the material. With Il there is no gradual increase 

at all with a fuller knowledge of the material. As with I, the time- 

values are indeed, generally smaller in the repetition- than in the 

learning-experiments, but where, as e. g. with I the mean duration 

of the repetition of the last group is always the longest, it is always 

the shortest with group II, with a few exceptions only. For the 



1251 

rest a comparison of the time-values of the several groups does not 

reveal any similarity. 

| TABLE VII 

Observers Groups | Arithm. mean Mean deviation Median 

1 8.90 1.70 8.50 
Ist | 

| r 3.90 0.36 4 
I 
| | 8 1.30 8.50 

2d | | 
r 4.10 | 0.56 4 

M. ( | 
1 10.40 1.32 11 

Ist | 
| r 5.80 1.30 5 

Il 
| | 8.10 1.50 8.50 

2d | 
r 4 0.60 4 

1 5.40 1.40 5.50 
Ist | 

| r 2.60 0.80 2.50 

| | I 3.60 0.68 4 
| og | 
| r 2.30 0.76 2.50 

R. ( 
1 8.20 1.40 7.50 

Ist | 
; | r 3.10 0.74 3 
I 
| 1 7 1.60 1.50 

2d | 
r 3.10 0.74 3 

1 10.62 2.37 10 
Ist | 

| r 5.80 1.16 6 
D EU 

| 1 8.70 1.80 8 
2d | 

r | 4 0.44 4 

The tables VIII and IX illustrate the influence that practice exerts 

upon the number of repetitions and upon the learning-time with I 

and II in the learning- as well as in the repetition-experiments. In 

tabulating the data obtained in the learning- and repetition-experi- 

ments as regards the number of repetitions and the learning-time, 

they have been arranged in the order in which they were acquired 

and have then been split into two equal groups. For every group 

we calculated the arithmetical mean, the mean deviation and the 

median. The figures of table VIII refer to number of repetitions, 
80 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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those of table IX to the time-values, expressed in seconds. The 
data for D with II,-being too small numerically could not be tabulated. 

Table VIII clearly shows that the influence of practice reveals 

itself in a decrease of the number of repetitions. With I the number 

of repetitions required to learn the series by heart is smaller in 

the second group than in the first, (for M 10 °/,; R 33 °/, and 

D 17.93 °/,.) With II a similar gain is effected (for M 22 perc. 

for D 15 pet.). For the former, therefore, the influence is greater, 

for the latter, smaller with II than with I. 

The values obtained in the repetition-experiments are not suitable 

for comparison as their significance depends for the greater part on 

their relation to those of the learning-experiments. We, therefore, 

TABLE Ix. 

Observers | Groups | Arithm. mean Mean deviation Median 
| | | 

bed 90.25 | 16.54 86.95 
| ist | | 

| ¢ 36.02 5.89 41.15 

| RA | 4 94.55 14.80 94,37 

iar 50.75 RH 49.92 
M. { | 

| 97.11 10.48 100.37 
st 

doen r 53.31 11.23 . 49.62 

1 71.99 13.18 80.47 
2d | | 

r 38.69 5.74 _ 30.92 

etl 15.43 21.16 66.65 
/ Ist 

Ni r 28.56 8.80 26.80 

| rene 47.44 11.15 51.82 
| 2d | | | 

E a) 20.32 10.31 21.33 

4 ft 8-08 12.13 74.25 
1 | st | | | 

dj | | ni | 31.21 8.84 28.90 

| 1 61.64 10.64 62.85 
2d {| 

r 24.74 4.25 23.60 

ft decd 138.19 42.22 133.60 
Ist 

i ; ior 68.70 12.74 65.02 

| Ee | 1 90.61 22.50 79.70 

| WE oe eee Ter 14.35 33.02 
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calculate the gain effected with I and Il in the repetition-experiments 
of the first and the second group. This gain is expressed in percentages 

in the following table. | 

TA BEE 

Observers Groups I II 

Ist 56.15 44,33 
M. 

2d 48.75 51.62 

El | | Ist 51.85 62.20 

2d 36.11 55.72 

EEA DA 45.29 ans 
D. 

2d 54.05 — 

For M and D the gain lessens with I. The learning of the series 

of the second group requires, it is true, fewer repetitions but the 

decrease of the number of repetitions in the repetition-experiments 

does not run parallel to it, so that after all the gain turns out to 

be smaller. D, who sat down for the first time to an experimental 
investigation of the memory, learns the series of the second group 

not only with fewer repetitions, but also furnishes a greater gain in 

the repetition-experiments, a phenomenon due to his inexperience, 

which made him more susceptible than the others to the favourable 

influence of practice and of the repetition of the experiments. 

With “II the influence of practice is noticeable for R in a fall of 

the percentage of repetitions saved; for M however, this percentage 

rises. Most likely the difference between those two observers is due 

to the fact that with II R tried to translate the rate of succession, 

which did not suit him, into his own, in which, of course, he 

sueceeded only after some training. M, on the other hand, scrupu- 

lously stuck to the experimental rate all through the experiments 

with II. 

The influence of practice on the learning-time (Table IX) appears 

for R and D generally in a decrease of the latter. This applies 

to | as well as to II, to the learning- as well as to the repetition- 

experiments. Whereas for R with I the number of repetitions in the 

learning-experiment decreases (33 perc), the decrease in time is 

37,11 pere., for D the decrease is respectively 17,03 perc. and 34 perc. 

For D the number of repetitions with I decreases in the repetition- 

experiments 31,04 perc., the learning-time 39,14 perc., so that here 

also the influence of practice is shown in a shorter learning-time; 

80* 
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for R however, the number of repetitions lessens 2,66 perc., so 

that under the influence of practice the learning-time increases. 

With I the learning-time for R in the second group increases in the 

learning-experiments as well as in the repetition-experiments; the 

number of repetitions and the time increase respectively 15 and 

21,81 and O and 21,05 pere. The influence of practice reveals itself 

for M invariably in a longer learning time. The decrease of the number 

of repetitions and in the learning-time is in the learning- and in the 

repeating-experiments with I and II respectively 10 and + 4.76 perc., 

+ 5.13 and + 40.89 perc., 22 and 19,69 perc, 31.04 and 27.43 perc. 

The striking difference between M and the other two observers in 

relation to the influence of practice upon the learning-time is due 

to the fact that M proceeds in the learning-experiment in a different 

way from R and D. Whereas the latter on getting more familiar 

with the material, go on reading, M directly starts his recitation 

when he is able to do so. It is not that R and D do not recite the 

familiar syllables, they even like to begin, however not with the 

same energy as is,the case with M. Under the influence of practice 

the observer familiarizes himself sooner with the syllables, which, 

given the tendency to recite as quickly as possible, soon induces 

him to alternate reading with reciting. The consequence, however, 

is that the learning-time is lengthened. 

It is worthy of notice that, as shown by M's percentages, the 

natural method is more adapted to M’s way of learning than the 

experimental. This is easy to understand, if we consider that the 

observer, if he will not run the risk of disturbing the learning- 

process, is compelled by the experimental rate to give up looking 

for a syllable, when, at the appearance of the following in the 

mnemometer, it has not yet been brought to consciousness. 

Summarizing then, the data of the last three tables yield the fol- 
lowing results: The influence of practice reveals itself in the learning- 

experiments in a decrease of the number of repetitions required for 

the process of learning. For M it is greater with II; for R, on the 

other hand, with I. In the repetition-experiments the gain lessens 

for M. and for R. D, however, saves repetitions, which is due to 

this observer being a novice in psychological experimentation. The 

lower percentage of repetitions saved with II for R under the 

influence of practice is probably due to the fact that with | this 

observer tried to translate the experimental rate which did not suit | 
him, into the rate peculiar to his own method of learning, in 

which he succeeded only after sufficient practice. The influence of 

practice upon the learning-time is generally shown for R and D in 
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a shorter time required for learning. For M however, the learning- 

time is lengthened, which is to be ascribed to the strong tendency 

to recite the familiar syllables. With I this tendency is more persistent 
than with II. 

- CONCLUSIONS. 

1. The number of repetitions required for learning the material by 

heart in the learning- as well as in the repetition-experiments is larger 

with the experimental method than with the natural. The increase 

in the number of repetitions in the learning-experiments does not, 

however, run parallel to that of the repetition experiments, so that for 

two of our observers the gain effected after 24 hours is greatest with: 

the natural method; for the third, however, with the experimental. 

2. With the experimental method the learning of the material 

does not only require less time, also more time is saved after 24 

hours. Some exceptions are accounted for by the differing increases 

of the number of repetitions required for the learning in the learning- 

and the repetition-experiments. 

3. The recitation time, whether the natural or the experimental 
method be employed, is longer in the learning than in the repetition- 

experiments. The experimental method seems to be more adapted to 
a quick recitation than the natural. The latter, on the other hand 
is more economising. 

4. As a rule the mean duration of a repetition is longer in the 

learning- than in the repetition-experiments. The natural rate of 

succession of our observers appeared to be considerably slower than 

the experimental. 

5.- With the natural method the rate of succession with two of 

our three observers, in the learning- as well as in the repetition- 

experiments is slowing gradually when they get more familiar with 

the material. With the experimental method this slowing process is 

entirely out of the question. True, here also the rate of succession 

is generally quicker in the repetition- than in the learning-experiments. 

6. The effect of practice is shown in a decrease of the number 

of repetitions required for learning the material by heart. For one 

observer it is greatest with the experimental method, for the other 
with the natural. 

7. The effect of practice upon the learning-time with the natural 

as well as with the experimental method, generally manifests itself 

in a shorter learning-time. A lengthening in the case of one of our 

observers must be ascribed to a strong tendency to recite the familiar 
syllables, which persists more readily with the natural than with 

the experimental method, | 
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Zoology. — “On the relation of the anus to the blastopore and on 

the origin of the tail in vertebrates’. By Dr. H. C. Densman.. 

(Communicated by Prof. J. Boeke). 

(Communicated in the meeting of Feb. 24, 1917). 

Both the foregoing communications (May 27 and November 25, 

1916) being mainly dedicated to the mode of contraction of the 

blastopore border of amphibians, in this third one I should like to 

give some facts and considerations concerning the ultimate fate of 

the blastopore and its relation to the anus. 

The statements made by the numerous investigators on this subject 

are so divergent that it must be very difficult for any one who cannot 

judge from personal experience to form a sound opinion. I will try 

to show that the application of the principles of my theory on the 

origin of vertebrates will once more serve to furnish us with the 

solution of an old problem which — especially by GROBBEN’s (1900) 

classification of the animal kingdom — has been resuscitated. 

In the first place the different views and results of former investi- 

gators may be very briefly reviewed. We will confine ourselves 

mainly to the amphibian egg, in which a relation between anus and 

blastopore was for the first time noticed. Anurans and Urodelans will 

be treated separately, because, as I can confirm from my own investi- 

gations on Rana esculenta and Ainblystoma tiyrinum, these two 

groups in the relation of the anus to the blastopore exhibit a notable 

difference. We will begin with that group, on which the first obser- 

vations were made, the Anurans. 

Barrour (1881) in his Text-book gives a description of the origin 

of the anus, based mainly on the figures of Gorrrr (1875) for 

Bombinator igneus and his own investigations on Hana temporaria, 
where the anus breaks through somewhat earlier than appears to 

be the case in toads generally. The blastopore passes into the 

neurenterie canal and the anus eventually arises at the bottom of 

a diverticulum of the alimentary tract, which meets an invagination 

of the skin. Perforation according to Gorrrr’s well-known represen- 

tation of a longitudinal section in Bombinator only occurs when the 
growth of the tail is well advanced, in Rana temporaria according 

to BALFOUR somewhat earlier. 
Spencer (1885), on the contrary, comes to the conclusion that the 

blastopore in Rana temporaria remains open and passes directly into 
the anus. The blastopore is not enclosed by the medullary folds, 

and thus there is no neurenteric canal. The first conclusion is shared 
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by Durnam (1886), but secondarily, according: to the latter, a neuren- 

teric canal is formed, independent of the blastopore. Kuprrrr (1887), 

dealing with the same subject, comes to the conclusion that the 

blastopore remains open as the anus; so, too, PrrEenyr (1888). 

ScHaNz (1887) also operated on Rana temporaria, together with 
Triton. In Rana he concludes that the medullary folds rather close 

over the blastopore, that there is indeed a neurenteric canal, though 

the lumen is not evident, and that the anus arises by perforation 

at the bottom of a little groove behind it. As regards, the facts 

SIDEBOTHAM (1888) quite agrees with him. According to him BaLrour’s 

description is the right one, he too sees in sections the ‘diverticulum 

from the hind end of the mesenteron, dipping down towards a 

distinct pit in the epiblast below the blastopore and quite separate 

from it”. Eventually perforation ensues. Similarly by Morean (1890) 

in Rana halecina and Bufo lentiginosus the anus is seen to arise 
at the bottom of a little groove in the ectoderm behind the blastopore. 

Gorrrr (1890) after a renewed investigation on Bombinator igneus 
and some other Anurans reaches the conclusion that the anterior 

half of the shit-like blastopore is transformed into the neurenteric 

canal, the posterior half into the anus. Yet in Pelobates he claims 
that this posterior half first closes and that the anus is formed 

only later. | 

As is apparent from the foregoing, during this period nearly every 

year brought forth a new investigation on this subject. In 1890 

that of ERLANGER on Rana esculenta appeared; in 1891 that of 

RoBINsoN and AssHeToN on Lana temporaria; in the same year 

a small treatise by ERLANGER in reply to some observations made 

by the two English critics on his work. All agree however that in 

both cases the anus arises by perforation. 

In later years the fate of the blastopore is alluded to only ina 

few investigations, e.g. by Brrs (1905), who for Xenopus laevis, 

and by Sremann (1907), who for Alytes obstetricans shows that the 
blastopore is not enclosed by the medullary folds and passes directly 

into the anus, there being accordingly no neurenteric canal. 

Most of the investigators who have paid special attention to the 
question thus come to the conclusion ( which after my own exami- 

nation of Rana esculenta I can support without reservation) that 

the anus arises by perforation a little distance behind the blastopore, 

which is transformed into the neurenteric canal. A short description 

may be given here in addition to the figures for Rana esculenta. 
After the yolk-plug has disappeared from the surface the blastopore 

presents itself as a short longitudinal split (texttig. 1a). A median 
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Fig. 1. Three eggs of Rana esculenta during the closure of the medullary folds 

(a) anal pit. Jl. blastopore. 

similar longitudinal series one succeeds better than might be expected 

in getting the blastopore as an opening (bl), though of course this 

is only the case in one or two sections. The ventral blastopore lip 

is well developed and includes between itself and the yolkmass in 

the archenteron the anal diverticulum (Afterdarm, a.d.), which 

however is nothing but the intersection of a circular incision 

surrounding the mass of yolk-cells. 

In a somewhat further advanced stage appears on the surface of 

the egg (textfig. 16) behind the slit-like blastopore a shallow 
impression in the ectoderm (a), also clearly visible in a longitudinal 

section, as in fig. 2 of the plate. Underneath this impression a 
thickening of the ectoderm occurs, of which the beginning is already 

visible in fig. 1 (%). Opposite the invagination of the ectoderm a 

similar one is found in the entoderm at the bottom of the anal 

diverticulum. 

In an egg as represented in textfig. Ic we see at the bottom of 

the shallow invagination of the ectoderm mentioned above a little 

pit, as yet not very deep, from which a still more shallow groove, 

the anal groove, runs forward to the blastopore-slit. The longitudinal 

section of this egg is given in fig. 3 of the plate. It bears a close 

relation to fig. 2, the anal membrane however has become thinner. 

In a slightly further advanced stage, not represented here, the 

greatest part of the slit-like blastopore has been overgrown by the 

medullary folds, only at the hindmost extremity is there still a litlle 

opening, from which the anal groove runs to the anal pit. This 

anal groove, with a deeper depression at its anterior (rest blastopore) 

and at its posterior end (anal pit) appears to have been confused 

by several authors with the slit-like blastopore of fig. 1a and 4, 
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which they accordingly imagine to have closed in the middle by 

coalescence of the opposite borders, leaving only a passage at the 

anterior and at the rear end, the future neurenteric canal and the 

anus, while the rudiment of the tail arises as a double knob at 

the right and the left side of the place of coalescence, these knobs 

fusing afterwards over the middle of the blastopore. Thus ZIeGLER 

(1892) in his little article on the surface-views of Rana-embryos 

writes: “Etwas später sieht man an Stelle des Spaltes eine Rinne, 

welche vorn in den Canalis neurentericus, hinten in die Aftergrube 

übergeht; es sind nämlich jetzt die seitlichen Blastoporuslippen median 

zur Vereinigung gekommen”. In the same way things are represented 

by Hertwic in his Lehrbuch. Already a close examination of surface 

views however teaches us that the anal groove is not at all identical 

with the slit-like blastopore, but that its anterior end coincides with 

the rear end of the latter. The study of median sections excludes 

every possibility of doubt. In the present article I could not insert 

any more some figures of a surface-view and of median sections 

of this stage, in a more detailed account elsewhere I will do so. 

The step to fig. + (plate) seems fairly large, yet this is only apparent. 

Already in fig. 3 we see the cerebral plate curving in. Especially 

notable is the opposition between the praechordal cerebral plate and 

the epichordal medullary plate, which as a matter of fact in this 

stage is no longer a flat plate, but curved into a groove between 

the medullary folds. Fig. 3 however is realized only in one or 

two sections, which are exactly median, to the right or the left 

side immediately one of the medullary folds is intersected, as 

indicated in fig. 3 with a dotted line. A ‘paramedian section in this 

series thus offers a much greater resemblance to fig. 4 where the 

medullary folds have coalesced than the median one of fig. 3. 

Fig. 4 is also of interest in that here apparently for the first time 

the neuropore in Anurans is represented. In his treatise on “Die 

Morphogenie des Centralnervensystems” in Herrwic’s Handbuch, 

Kurrrer (1906) says in regard to Anurans: “Der Neuroporus ist im 

letzten Momente vor seinem Schlusse noch nicht zur Beoachtung 

gekommen”; neither in investigations published since is there anything 

to be found on this subject. Kuprrer accordingly only. represents a 

longitudinal section of a somewhat further advanced stage than in 

my fig. 2 and further stages later than my fig. 4, where the place 

of the neuropore is still recognisable by the presence of a conical 

thickening of the ectoderm or of a recessus neuroporicus in the 

anterior wall of the brain vesicle. It is evident that the curving 

backward of the transverse cerebral fold plays as great a role in 
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the closing of the cerebral plate as the overgrowth of the lateral 

ridges. 

There is yet another circumstance I should like to emphasize. 

Not only the ectoderm of the cerebral plate but also that which is 

situated in front of the transverse cerebral fold and which according 

to my theory is equivalent to that part of the apical plate of the 

Annelid trochophore which in Craniotes is not incorporated into the 

cerebral plate, is considerably thickened, and as for example in 

fig. 1 (pr. cer.) it exhibits an equally clear separation between the 

upper and lower layers of the ectoderm as the cerebral plate. Also 

in fig. 2 this agreement between cerebral plate’ and the part of the 

apical plate in front of it, which we might call the praecerebral 

part is evident. In the course of further development, however, a 
difference between the two parts of the apical plate evidences itself. 

In the cerebral, just as in the medullary plate, an intimate union 

of the upper and lower layers occurs, the demarcation between them 

disappears, and the upper layer, as Assauron (1909) has already 

observed, is incorporated in the wall of the brain and the medullary 

canal. In the praecerebral part of the apical plate however the 

coherence between the upper and lower layers becomes less and 

less, which no doubt is connected with the circumstance that this 

part of the ectoderm has to overgrow the cerebral plate. The lower 

layer finally lies as a compact cell-mass under the upper layer, 

which acts as ectoderm, and quite dissociated from it (fig. 4 

pr. cer.). Judging from Kuprrer’s (1906) figures of the later stages, 

it is this cell-mass which moving under the brain vesicle, ultimately 

gives rise to the hypophysis. A possible relation between the origin 

of the hypophysis and the animal pole in vertebrates would no 

doubt be worth closer examination. | 

If now we revert to the bottom of the body we see that here 

too the median sections of figs. 3 and 4 differ more from each other 

than paramedian ones do. The anus has broken through, the ventral 

blastopore lip accordingly seems to have vanished at once. The 

blastopore itself has been overgrown by the medullary folds. In the 

posterior part of the medullary tube the latter have applied them- 

selves so closely one to the other, that the lumen of the tube is not 

continued between them and only a virtual neurenteric canal can 

be spoken of. Later, judging from the diagrams of other investigators, a 

lumen seems to reappear and thus a real neurenteric canal. SIDEBOTHAM 

and ERrLANGER give diagrams of median sections of eggs in which 

the anus is just on the point of breaking through. From the study 

of whole eggs it appears quite evident that the medullary folds unite 
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over the blastopore and that somewhat behind it at the bottom of 
the little depression indicated in fig. 1c (text) the anus breaks through. 

I should like to emphasize a peculiarity which has only been 

pointed out by ERLANGER (1890), especially in relation to what we shall 

find in Urodelans. In the short time that passes between the stages 

of fig. 1 and fig. 3, the distance between blastopore and future anus 

diminishes a little; in other words, if we take the place of the 

future anus as a fixed point, the slit-like blastopore moves a little 

backwards towards it. So the ventral blastopore lip in median sections 
is not only getting thinner owing to the appearance of the groove 

between blastopore and anus, but also somewhat shorter. To this 

point we will revert later. 
Let us pass now to the Urodelans. Characteristic in the early 

stages of development is here the little extension of the ventral ecto- 

derm and the strong development of the dorsal parts, the foundation 

of the embryo accordingly encircling the egg over considerably more 

than 180°. This peculiarity the Urodelans have in common with the 

Dipnoans and Petromyzontes, of which the earliest stages of devel- 

opment, externally as well as in sections, exhibit a striking similarity 

to those of Urodelans. 
According to Scorr and OsBorNr (1879) the blastopore of Triton 

is overgrown by the meduilary folds and becomes the neurenteric 

canal. Sepa@wick (1884) in his well-known article on the origin of 

metamerism writes concerning Zriton cristatus: “in this animal the 
blastopore appears not to close, but to persist as the anus” and his 

pupil Arice Jonnson (1884) verified this by sections. A neurenteric 

canal, as described by Scorr and OsBoRNE, was never observed by 

her. Scuanz (1887) in Triton punctatus comes to the conclusion that 

the blastopore is constricted in the middle, the anterior opening 

becoming the neurenteric canal, the posterior opening the anus. 

Hovussay and BararLLoN (1880) on the contrary find in the axolotl: 

“qu il n’y pas de canal neurentérique, que le blastopore demeure 

toujours ouvert et qu'il devient Vanus définitif.” Next comes the 

accurate investigation of Morean (1889, 1890) for the axolotl. He 

too finds that the hindmost part of the blastopore passes into the 

anus, the anterior part being overgrown by the medullary folds. 

Since my conclusions are closely akin to those of Morcan, 1 will 

revert to them in detail presently. 

Gorrre (1890) similarly sees in some Anurans (F'riton, Stredon) 

the rear end of the blastopore pass into the anus. 
A few further observations of recent times as to the fate of the 

blastopore may be touched on, thus those of pr Lance (1907, 1912) 
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and Isurkawa (1908) concerning Meyalobatrachus maximus, of Kuxrromo 
(1911) concerning Hynobius, and of Smrrm (1912) concerning Crypto- 

branchus alleghaniensis. All agree in this that the hind part of the slit- 
like blastopore remains open as the anus, the anterior part being 

overgrown by the medullary folds, except IsHikawa, who thinks this 
course of events to occur only exceptionally, the anus as a rule 

Springing up as an independent formation, which is denied by 
DE LANGE (1912). 

For Petromyzon and Dipnoans most investigators hold that either 
the whole blastopore or its hind end passes into the anus. 

My own investigations concerning the axolotl all go to confirm 

the conclusions already reached by most of my predecessors, viz. 

that the rear part of the blastopore passes into the anus. If then I 

give a brief survey of my observations, it is with the express object 

of emphasizing some few circumstances which were not noticed by 

former investigators and seem to me of importance in giving a 
right interpretation. | 

2a 2b 2c 2d 

Fig. 2. Three eggs of Amblystoma tigrinum during the closure of the 

medullary folds. 

a. seen from behind, b. dorsally, c. (the same as b) and d. ventrally. 

a. anus, bl. blastopore, h.p. cerebral plate, k. head. 

The stage represented in fig. 2a (text) and fig. 5 (plate) corresponds 

absolutely with that of fig. 1a and fig. 1 (plate) for Rana esculenta. 

Here too the medullary folds begin to appear and the blastopore has 

contracted to a short longitudinal slit. Already in fig. 5 it is evident, 

how much more the dorsal side is developed than the ventral side, 
the distance from the animal pole (which according to EycLESHYMER, 

1895, here too is to be found back just in front of the transverse 
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cerebral fold) to the slit-like blastopore measured ventrally being 

much less than 180°. In accordance with this the dorsal blastopore 
lip, as fig. 5 (plate) compared to fig. 1 (plate) shows, and the 

archenteron are developed very strongly, the ventral blastopore lip 

and the so-called anal diverticulum very little. Yet both the latter 

are still easily recognisable and on the outside of the ventral lip, 
a little distance behind the blastopore, a small depression of the 

ectoderm (a) may even be noted, where the future anus might be 

expected, if things happened in the same- way as in Anurans. 

Immediately behind that shallow depression we find here again the 

same thickening of the ectoderm (#) as noted in Rana (ef. figs. 1, 

2, 3, plate). So there is no fundamental difference, on the contrary 

agreement in every respect with what we found in Rana. 

Now in Rana we stated that the blastopore, after becoming slit- 

like, continues to move backward a small distance, approaching the 

future anus, which manifests itself in longitudinal sections in that 

the little lip which represents the ventral blastopore border becomes 

a little shorter. This now we see happening also in somewhat further 

advanced stages of the axolotl-egg: on sections the ventral lip gets 

shorter and soon, being here already small, it disappears altogether. 

In the egg shown in fig. 25 and c (text) the medullary folds are on the 

point of coalescing, except at the fore and the rear end. The blasto- 

pore still appears as a slit. The longitudinal section (fig. 6) shows 

that the ventral blastopore lip has nearly disappeared: as a result 

of the backward movement the rear end of the slit-like blastopore 
has arrived at the spot where the anus must break through! 

Especially interesting is next the egg shown in fig. 2d, where the 

medullary tube has just closed, except at the hindmost extremity, 

where the anterior part of the slit-like blastopore has just been 

overgrown by the medullary folds. Whilst in Rana the whole 

blastopore is in this way enclosed, in the axolotl the medullary folds 
leave an opening over the rear end of the blastopore, which is the 

anus (q). 

Only one egg in this stage was found by me among my material. 

This was cut into longitudinal sections. Morean studied a similar 

egg in transverse sections. I reproduce here the outline of his 

excellent figures which wholly confirm my way of presenting things. 

Fig. 3a represents a section through the medullary tube just in front 

of the blastopore. Under it the anal diverticulum has been intersected. 

The medullary folds just meet. Figs. 36 and ec show the blastopore 

in its anterior half, as is of course the case in many succeeding 

sections. The medullary folds meet over the blastopore, the latter 
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itself constituting the neurenteric canal. Figs. 3d and e are still 

further back, the medullary folds are less developed, and leave an 

Ss 

ZA 
Fig. 3. Transverse sections through the blastopore of: an egg of 

Amblystoma punctatum, where the medullary folds just close over it, 

after Morgan (1890). 

a in front of the blastopore, 0 and c through anterior half, 

d and e through rear end (anus). 

opening, the anus. Comparing my description with that of former 

investigators it will be noted that, keeping strictly to the facts, I 

yet present them in a somewhat different way: I do not let the 

medullary folds finish halfway the length of the blastopore slit, but 

only in closing leave an opening over the rear end of the blastopore, 

the anus. Accordingly one can, retracing the medullary canal, not 

only pass through the neurenteric canal into the archenteron, but 

also through the anus to the outside, this being nowhere prevented 

by a coalescence of the two medullary folds across the middle of 

the blastopore, as many investigators are inclined to assume. 

Now in a longitudinal section (fig. 7, plate) the blastopore (bl. = p. 
neur.) and the anus (a) are easily distinguishable from one another. The 

blastopore becomes the neurenteric canal or, perhaps better, the 

neurenteric pore (porus neurentericus), as I prefer to call it hence- 

forward. Entering the anus, one can pass through the neurenteric 

pore into the archenteron. The anterior part of the neurenteric pore 
however becomes — and is already in fig. 7 — virtual, the medul- 

lary folds applying themselves behind so closely to one another, that 
the lumen of the medullary canal is not continued any further 

between them, as Morean has already remarked. Hence the opinion 

of many investigators that the medullary folds do not reach to the 
blastopore and that there is no neurenteric canal. The hindmost 
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‘part remains open as the internal opening of the anus. The result 

is really that the hindwall of the hindmost part of the medullary 

tube is perforated by the anus, which in Anurans arises directly 

behind it, and this is caused by the circumstance that the neurenterie 

pore, the former blastopore, in Urodelans has travelled back so far, 
that its rear end has reached the place where in Anurans the anus 

breaks through. This is at the same time the solution of the apparent 

contradiction between Anurans and Urodelans in this respect. 

The interpretation which until now has been pretty generally 

adopted is that of ScHanz (1887), Morean (1890), ErraNGER (1890) and 

ROBINSON and AssHeTON (1891), who contend that the place where the 

anus in Anurans breaks through really represents the rear end of the 

original wide blastopore, which has narrowed down by concrescence 

of the lateral borders not only at the anterior end, as postulated by 

His’s conerescence theory, but also at the posterior end. The longi- 

tudinal groove between the blastopore and the anal depression in 

fig. 1 seemed to be an indication of a raphe. Thus the anus in 

Amphibia would be closed only temporarily and would not arise as 

an independent formation. In this way ERLANGER assumed concrescence 
at the dorsal as well as at the ventral blastopore border, ROBINSON 

and AssHETON only at the ventral border. The line of concrescence 
in both cases is compared to a primitive streak, which, as ROBINSON 

and AssHETON in accordance with BALFOUR’s views on this point 

remark, can be expected only behind the blastopore: wrongly enough 

the adherents of the doctrine of concrescence call primitive streak 

the concrescence-seam assumed by them in front of the blastopore. 

To me it seems that one ought to add that a primitive streak is to 

be expected only in yolk-laden eggs with a germinal dise or in eggs 

that are to be derived from yolk-laden ones. 

I will not absolutely deny that concrescence ever plays a part in 

vertebrate gastrulation, especially in yolk-laden eggs. But that its 

rôle is a much more subordinate one than the well-known doctrine 

of His assumes, seems to me beyond doubt. Even by students of the 

development of teleosteans, which seemed to afford the most acceptable 

confirmation of it, His’ doctrine is rejected, as for example by SumMEr 

(1904). For amphibians the pricking experiments described in both 

my former communications have shown that there cannot be any 

question about the whole dorsal side of the embryonic rudiment 

arising by concrescence of the blastoporic lips. 

It is quite true that in the amphibian egg a fine median line is 

often seen running from the blastopore forward, which strongly 

suggests a concrescence-raphe. Only, as Ropinson and AssHETON 
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remark, this line continues to the fore-end of the cerebral-plate, the 
animal pole, where the blastopore has never been. For concrescence 

at the hind border of the blastopore still less evidence can be 
adduced. The groove between the slit-like blastopore and the anal 

pit does not become gradually longer, as might be expected in this 

case, the anal pit removing from the ventral border of the blastopore, 

but on the contrary it only gradually becomes more distinct and at 

the same time shorter, the blastopore approaching the anal pit. 

Evidently it is not to be considered as a concrescence-seam, perhaps 

it may be compared to the groove joining the two impressions made 

by two fingers pressed near one another into a soft cushion. 

Concerning the relation between blastopore and anus in vertebrates 

three suppositions may be made: 

1. there is a primary relation 

2. there is no relation 

3. there is a secondary relation. 

The first supposition mentioned above is now the most widely 

accepted, even where in Anurans 2. seems to prevail yet it is 

assumed that this is to be traced back to 1. since what is found 

in Urodelans must be valid for Anurans. Thus Mavrer (1906) in 

Hertwie’s Handbuch tries to trace back all the results for chordates 

to 1, though the evidence adduced is not always equally convincing. 

Already in Amphioxus no relation between the anus and the blasto- 

pore has as yet been discovered. 

The possibility of 1. is in no way excluded by my theory, which 

derives chordates in opposition to GROBBEN from Protostomia, as long 

as the possibility of a relation between the anus and the blastopore 

in the latter group exists, as might be expected from SEDGWICK’s 
well-known theory (1884), which derives the mouth and the anus of 

Bilateria from the anterior and the posterior extremity of a slit-like 

actinian mouth of which the borders coalesce in the middle. The 

concrescence-seam joining mouth and anus, which according to this 

theory should run over the ventral side of annelids, ought to be 

able to be traced in vertebrates too then in the groove between 

anus and blastopore, that is in the so-called ““Afterrinne”, the “pri- 

mitive streak” of Ropinson and AssHEToN (see above) — not in the 

hypothetical concrescence-raphe in front of the blastopore, the ‘‘pri- 

mitive streak” of the theory of concrescence, as LAMEERE (1891) and 

HuBreenrt (1905) assume in their application of Sepewick’s theory 

on Vertebrates. Thus the presence of a primary relation between 

the anus and the blastopore in Vertebrates would in no way oblige 

us to derive them with GROBBEN (1908) from the Deuterostomia, as 
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long as the possibility of a similar relation in Protostomia exists. 
However the theory of Srpewick finds in the development of 

Protostomia just as little support as I hope to show is the ease in 
Tritostomia (Vertebrates). A process of so fundamental phylogenetical 
significance as assumed by Sepe@wick’s theory might be expected to 
have: left more distinet traces in the ontogenetic development than 
are demonstrated by the most careful research of recent investigators. 
Again and again we see the anus arise as a new formation, by 
perforation. In Annelids, where primarily we might expect to find 
evidence of a common origin of mouth and anus, a direct transformation 
of the rear end of the blastopore into the anus has never been demon- 
strated. Even in the primitive Polygordius, where as a matter of 
fact the blastopore is divided into two halves by a median con- 
striction, the posterior opening nevertheless closes and the anus 
arises by perforation behind the two teloblasts, which lay 

at the rear end of the blastopore. To me the most probable con- 
ception of the origin of the anus seems to be this, that in a larva 
of, the protrochula-type (Müruuer’s larva of Polyelad, pilidium of 

Nemerteans) the entodermal pouch, which is already turned in 

a backward direction, has applied itself to the ventral body-wall 

and is broken through by perforation, in the same way as occurs in 

Deuterostomia, and that thus the trochophore-larve. has originated. 

So I think the idea of a primary relation between the anus and 

the blastopore for Proto- as well as for Tritostomia should be aban- 

doned. The anus in Proto- as well as in Tritostomia arises by per- 
foration, independent of the blastopore. 

Of the three above mentioned possibilities regarding the relation 

of the anus and the blastopore the second then seems to me, 

both for Proto- and Tritostomia, the right one. The third possibility 
however we find exemplified in Urodelans and apparently also in 
Dipnoans and Petromyzontes, which in their early development so 
closely agree with the former. Let us now invoke the aid of my 
theory for further interpretation. 

According to this theory (Dersman, 1913) the vertebrate is to be 

derived from the Annelid by the stomodaeum growing out back- 

wards so strongly that it extends, as the medullary tube, over the 

whole length of the soma, and, as we shall see, even further still 

(formation of the tail!). For the entrance of the stomodaeum into 

the entodermal part of the gut 1 propose the name porus cardiacus, 

this being the former blastopore. Already during the development 

of Annelids we see this cardiac pore by the lengthening of the stomo- 

daeum travelling backwards into segments situated ever further to 

81 
Proceedings Royal Acad. Amsterdam. Vol. XIX 



1268 

the rear. In Vertebrates this backward movement goes so far 
that finally the cardiac pore, as neurenterie pore, comes to lie ab- 

solutely at the rear extremity of the soma, just in front of the 

anus. This backward movement is evidently produced by a growing 

zone which has entered into activity at the inner end of the stomo- 
daeum, round the porus cardiacus and which causes the stomodaeum 

to extend more and more to the rear. This growing zone I should 

like to call the periporal growing zone. The longitudinal growth of the 

soma of Annelids on the contrary is produced by a perianal growing 

zone. Both these growing zones now exert their influence as I hope 

to show, in the earliest development of Vertebrates, and things are 

still further complicated by the fact that the activity of both, onto- 

genetically anticipated, interferes with the gastrulation. Further 

researches (pricking experiments, counting of the mitoses) will have 

to test the correctness of the conclusions reached by the application 

of the above principles. They are as follows. 

The ectoderm, which afterwards has to invest the whole soma, 

— dorsally too — in a stage as in figs. la and 2a (text) lies prin- 

cipally at the ventral and lateral sides, and only afterwards, by the 

closing of the medullary tube, extends over the dorsal side as well. 

The production of this somatic ectoderm now must evidently issue 

from the perianal growing zone: in the neighbourhood of the future 

anus, a short distance behind the ventral blastopore lip mitoses may 

to be expected to be most frequent. When however the blastopore 

is closed (figs. 1a, 2a), the rearward extension of this ventral ecto- 

derm comes to an end. If now the perianal growing zone continues 

to be active, a ring-shaped thickening of the ectoderm round the 
anal pit will result. This being observed, it appears to me that it 

is here we have to look for the explanation of the ectodermal thick- — 

ening, which in the figs. 1,°2 and 3 (plate) we see developing in 

an increasing degree just under the anal pit (*), and which, as 

paramedian sections teach us, reach forward, also at the left and 

the right of it. In the axolotl, where the extension of the ventral 

ectoderm is so slight, this ectodermal thickening too, though present, 

is yet of very little importance (5%). The activity of the perianal 

erowing-zone soon afterwards seems to die down and the ectodermal 

thickening in the ensuing stages gradually disappears again. Soma- 

togenesis has closed simultaneously with gastrulation. If it continued 

also after the end of the gastrulation, the anus would eventually lie 

somewhere between the yolk-cell-mass and the extremity of the tail. 

In fishes this case is pretty generally found. As an example may 

be mentioned the sturgeon (fig. 5, text), but many teleosteans might 
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also be mentioned here, in whose larvae the place of the anus varies 

much and is of importance in determining the species. 

Let us now turn to the periporal growing zone, which causes the 

growing out of the stomodaeum, resp. the medullary tube, resp. the 

medullary plate, together with the backward movement of the cardiac 

pore (Annelids), resp. the blastopore, resp. the mneurenteric pore 

(Chordates). Organs or processes that are of much importance for 

the structure of the adult animal, in ontogeny often appear preco- 

ciously. In Lamellibranchia e.g. the shell-gland invaginates already 

during gastrulation, though the latter process phylogenetically is no 

doubt much older. Thus also the activity of the periporal growing 

zone, and the backward movement of the cardiac pore associated 

with it begins very precociously, viz. already during gastrulation, 

when the future cardiac pore is still the blastopore. The interference 

of the contraction of the blastoporic rim with the backward move- 

ment of the blastopore causes the caudadly excentric closure of the 

blastopore, which is typical for chordates. The activity of the 

periporal growing zone, as long as the tubeformation has not 

set in, results not in the production of a stomodaeal viz. me- 

dullary tube, as is the case afterwards during the urogenesis, 

but provisorily in the formation of the medullary plate. The 

growing out of the stomodaeum to the medullary tube is thus in 

its first, somatogenetic part to be imagined projected on a 

plane, the dorsal plane of the embryo. When the blastopore has 

narrowed to a slit and the tube-formation sets in in the form of the 

medullary folds, the caudad wandering of this slit-like blastopore, 
as stated above, continues nevertheless, truly only over a little 

distance — indeed in view of the short duration of this stage 
nothing else could be expected — and so probably with undiminished 

speed. Further than the anus however this backward movement can- 
not go, phylogenetically: the stomodaeum of the Annelid, growing 

out backwards, at last reaches the anus. If now the movement stops 

a little in front of the anus, there will be no relation whatever 

between neurenteric pore (blastopore) and anus (fig. 4a, text), as we 

stated in the frog. [f the movement continues yet a little further 
(fig. 4b), a secondary relation between neurenteric pore (blastopore) 

and amus results.') The anus now opens to the exterior through the 

hindmost extremity of the medullary tube, from the medullary canal 

one can pass through the anus to the exterior as well as through 

1) In a longitudinal section as in fig. 4 the constellation at first sight might 

appear in fig. 4b radically different from that in 4a. If however one imagines 
things in space, the agreement between them will be evident. 

81* 
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the neurenteric pore into the archenteron, and from the archenteron 
through “the neurenterie pore and the anus to the exterior. In 

ontogeny this will result in the medullary folds not closing over 

Fig. 4. Diagram of the relation between anus blastopore, and of the tail-forming 

a. at the moment of the closure of the neural folds in Anurans, 

b. Ee 5 4 = a „ Urodelans. 

c. formation of the tail. 

d. anus, p.m”. neurenteric pore; the entoderm is dotted. 

the rear end of the slit-like blastopore, but leaving an opening, the 

anus. Perhaps they will develop slightly at both sides of the rear 

part of the blastopore under the influence of the formation of the 

anus at this point, or they may not. If we imagine things very 

much enlarged and we look through the anus into the interior, 

we shall see the slit-like blastopore (neurenteric pore) in the distance, 

though its rear end, under the influence of the formation of the 

anus, will probably be widened a little. With this conception the 

facts stated by us in Urodelans so perfectly agree, that it seems 

hardly possible to doubt the correctness of this interpretation. We 

see in the axolotl the blastopore move backwards to the place 

where in Anurans the anus breaks through. We see over that place, 

that is over the rear end of the’ blastopore, the medullary folds not, 

as in Anurans, unite, but leave an opening. We have seen that we 

can pass from the medullary tube as well through the anus to the 

exterior as through the neurenteric pore into the archenteron. What 

makes things later less clear is that the medullary folds caudally 

so closely apply themselves one to another, that there is no lumen, ~ 
no medullary canal (fig. 7, plate) — just as in the frog (fig. 4) — and 

that accordingly as in the frog the neurenteric pore would become 

virtual, if the rear part did not remain open as the anus. So only 
the anterior part of the slit becomes virtual, and hence the state- 

ment of several authors concerning Urodelans, Dipnoans and Petro- 

myzontes, that the blastopore passes into the anus and a neurenteric 

canal is wanting, is to be explained. The apparent contrast between 

Anurans and Urodelans c.s. has thus found a solution. It would 
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cause us no surprise if in an Annran a state of things were observed 

such as in Urodelans seems to be the rule, or the reverse, the 

difference between them not being fundamental, but only gradual. It 

would not be impossible that in one species at one time the first, 

prostomium 

Fig. 5. Larva of the sturgeon after Kuprrer from Herrwia’s Handbuch. 

1. limit of the gastrulation, 2. limit of the somatogenesis, 3. limit of the urogenosis. 

Beneath: Diagram of the interference of the gastrulation (a) with the action 

of the perianal (0) and the periporal (c) growing zones. 

at another the second case might be realized (comp. Dr Laner and 
IsHikawa on Megalobatrachus !). 
_I have spoken above of the candad movement of the neurenterie 

pore — blastopore stopping in front of the anus. In reality however 

there is no question of stopping. Although the anus seems to afford 

an insurmountable obstacle for the further backward growth of the 

stomodaeum = medullary tube, the activity of the periporal growing 

zone has not yet come to an end when the perianal growing zone has 

stopped working. There being no room however. within the soma 

for further extension, a protuberance of the body wall in front of 

the anus results, into which the stomodaeum = medullary tube 

grows out: the tail-knob (fig. 4c, text). Thus we see the tail of verte- 

brates originating by the periporal growing zone continuing its activity 

after the perianal has stopped. In this way the position of the anus 

in vertebrates is not terminal, as in Annelids, but at the root of 

the tail, which overgrows it and which owes its origin simply to 

the presence of the anus. Phylogenetically we have to imagine that 

the longitudinal growth of the stomodaeum (medullary tube) surpasses 

that of the soma, so that the cardiac (neurenteric) pore overtakes 

the anus and passes it. Just as in Annelids the position of the anus 

in Vertebrates is terminal in regard to the soma proper, the tail is 

an outgrowth of the dorsal side of the latter in a backward 

direction. According to this conception the ventral side of the tail 

- belongs to the dorsal side of the soma. In accordance with this the 

dorsal unpaired skinfold of the fish- and amphibia-larvae is continued 
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over the tip and the underside of the tail as far as the anus. The 

mesoderm originating at the blastopore-border, and evidently being 

a product of the periporal growing zone, this too takes a conside- 

rable part in the tail-formation. 

De Lance (1912) rightly emphasizes the difference between soma- 

togenesis and urogenesis, though I cannot concur with him in his 

conceptions on gastrulation and mesoderm formation, as expressed 

by the words cephalo- and somatogenesis. From the foregoing results 

it appears that somatogenesis, just as the somatogenesis in Annelids, 

is produced by the: perianal growing zone, which gives rise to the 

future somatic (not the neural, that is that of the medullary plate) 

ectoderm of the trunk, which, as long as the medullary plate is 

open, lies mainly ventrally and at the sides of the egg. Simul- 

taneously, however, with the gastrulation the periporal growing zone 

is at work, which produces the backward movement of the blastopore 

and the backward extension of the originally crescentic rudiment of 

the medullary plate — the rudiment of the medullary tube. And 

both growing processes are combined with a third one, going on’ 

simultaneously: the gastrulation, manifesting itself at the surface in 

the contraction of the blastopore border. 

The urogenesis however sets in after two of these three processes 

have finished, viz. the gastrulation and the activity of the perianal 

or somatic growing zone’), and accordingly is exclusively the result 

of the periporal growing zone, which causes an elongation of the 

medullary tube, disproportional to the length of the soma. The 
difference between somatogenesis and urogenesis herein finds an 

explanation. The activity of the periporal growing zone, manifesting 

itself in the backward movement of the blastopore resp, neurenteric 

pore, at first interferes with the gastrulation, which causes the 

backward directed, excentrical closure of the blastopore, then manifests 

itself in the backward movement of the slit-like blastopore, stated 

by us above, which stage lasts only a short time), and later in the 

urogenesis as longitudinal growth of the medullary tube. 

There is then no question of stopping the backward movement of 

the blastopore viz. neurenteric pore in front of the anus (comp. 

fig. 4), and the difference between Anuran and Urodelan consequently 

does not lie in the fact that in the former the neurenteric pore 

stops a little before the anus is reached, in the latter only after 

1) While in Anurans both processes stop nearly at the same time, in fishes, as 

stated above, we fairly frequently find that somatogenesis continues after gastrulation 

has been completed, so that the anus eventually lies somewhere about halfway 

between the yolk-cell-mass and the tip of the tail. 
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this has occurred, but in that in Anurans the tube-formation, i.e. 

the closure of the medullary folds, occurs a little before the anus 

is reached, in Urodelans, Dipnoans and Cyclostomes only after this 

has occurred. And this, only graduated difference evidently again 
depends on the circumstance that in Urodelans the activity of the 
periporal growing zone is stronger than in Anurans, the activity of 
the perianal on the contrary weaker than in the latter. This manifests 
itself, as stated above, in the medullary plate in Urodelans being 
developed very strongly, the ventral side very little in comparison 

with the Anurans. The same holds for Dipnoans and Cyclostomes. 
Now, as we have seen, the perianal growing zone acts mainly 

ventrally and on both sides of the (future) anus, for the simple 

reason, that, as long as the medullary plate is open, the future 

trunk ectoderm also lies only ventrally and on both sides of the 

ege. But in front of the (future) anus too, there seems to be some 

feeble activity, directed against the ventral blastopore lip, which 

accordingly is developed more strongly where the perianal growing 

zone is most active (Anurans, fig. 1, plate), less so, where the 

perianal growing zone is less active (Urodelans ete., fig. 5). 

Now the action of this dorsal part of the perianal growing zone 

is opposed by the periporal growing zone, which pushes the blasto- 

pore backwards. And it is no doubt due to the relative strength 

of the two growing zones that in Urodelans the blastopore is pushed 

back to the anus before the tube-formation'), in Anurans on the 

contrary it does not reach it till after the tube-formation. I hope 

that the brevity with which I am obliged to express myself will not 

militate too strongly against the clarity of this exposition. A more 

explicit review will doubtless be published later. 

While I feel that the application of my theory has thus thrown 

light on a number of obscure problems, the facts and results 

recorded above afford yet further support to my theory of no 
inconsiderable value. 
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Microbiology. — “The Enzyme Theory of Heredity.’ By Prof. 

M. W. Betertnck. 

(Communicated in the meeting of March 31, 1917). 

“Nothing is perfect at birth.” 

Combining the results of the enzymological researches of recent 

years with those obtained by the experiments on heredity, an insight 

is obtained into the nature of the horeny concerned substances which 

deserves attention. 

The most acceptable theory of heredity’ is the couception that the 

living part of the protoplasm of the cell is built up from a great 

number of factors or bearers, different from one another, which 

determine the hereditary characters of the organism; at the cell 

division these bearers double or multiply, in consequence of 

which the characters, latent or unfolded, are transferred to the 

daughter-cells. They are called: difjerirende Zellelemente (MENDEL), 

gemmules (Darwin), biophores, pangens, gens, character units, 

heredity units, MeNDELIAN factors, or factors.') 

1) G. J. MenvEL, Versuche über Pflanzen-Hybriden. Verhandl. d. naturforschenden 
Vereines in Brünn, Bd. 4, Abh. Pag 42, 8 Februar u. 8 März 1865. — C. DARWIN, 

Provisional hypothesis of Pangenesis. Domestication, Ist Ed. T. 2, Pag. 357, 1868. 

2nd Kd. T. 2, 349, 1875. — Huao pe Vries, Intracellulare Pangenesis, Jena 1889, 

and the American edition, Intracellular Pangenesis, Chicago 1910. — V. HAECKER, 
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How they appear in the cell, how they behave to nucleus, chro- 

midia, ‘chromosomes, and other cell-organs, and many questions 

more, form the subject of the heredity researches of to-day, which 

however start from the supposition that the said theory is in the 

main right. Nor does the observation that heredity units or factors 
may occur in latent condition and must then be activated by special 

kinds of food, by alcalies or acids, or other stimuli, touch the fact 
of their existence. 

By the side of this view stands another, only apparently quite 

different, namely that the living’ part of the protoplasm is built up 

of a large number of various enzymes. A nearer consideration of 

these two views shows that “heredity units’ and ‘‘enzymes” means 
the same. *) 

Hence the fundamental conception here to be proposed, that every 

hereditary character of an organism corresponds to one or more 

enzymes, which exert a reaction on specific substrates. 

Long ago already I came to the conviction that the ontogenetic 

evolution of the higher plants and animals can be best explained 

by admitting that it is caused hy a series of enzymes, for the 

greater part endoenzymes, which, becoming active in a fixed succession, 

determine the morphological and physiological properties gradually 

manifest in the development. These enzymes in the formation 

of plant-galls are likewise concerned, and in a study on the 

galls of the saw-fly Nematus capreae on the leaves of Salix amyg- 
dalina, | gave them the name of “growth enzymes”) It is still my 

Allgemeine Vererbungslehre. Pag. 265, 1911. — M. W. Brwerincx, Mutation 

bei Mikroben. Folia microbiologica. Bd. 1, Pag 24, 1912. — W. JOHANNSEN, 

Elemente der exakten Erblichkeitslehre. 2nd Ed. Pag. 148, 1918. etc. 

1) Younger physiologists (as E. ABDERHALDEN, Physiologische Chemie, Ste Aufl. 

Theil 2 Pag 997, 1915) wrongly use anew the old and equivocal word “ferment”, 

instead of the practical and clear word “enzyme”. The history of the introduction 

of the word enzyme is as follows. In “Verhandlungen des Naturhistor. und Medicin. 

Vereins zu Heidelberg”, Sitzung am 4 Februar 1876, Bd. 1, N. F., the account 

of a lecture of Kiitune begins thus: “Herr W. Kürre berichtet über das Verhalten 

verschiedener organisirter und sogenannter ungeformter Fermente. Um Missverstind- 
nissen vorzubeugen und lästige Umschreibungen zu vermeiden, schlägt Vortragen- 

der vor die ungeformten oder nichtorganisirten Fermente, deren Wirkung ohne 

Anwesenheit von Organismen und ausserhalb derselben erfolgen kann als Enzyme 

zu bezeichnen”. This proposal is still acceptable. That KüranNe only thought of 

exoenzymes was in accordance with the times. The term ‘‘endoenzyme”’ was 

introduced in 1900 by M. Haun (Zeitschr. f. Biologie Bd. 40 Pag. 172, 1900). 

But the conception existed already long before. Enzyme comes from the Greek 

“en” in, and “zymè” leaven, and is related to “zeo”’ I boil. 

*) Das Cecidium von Nematus capreae auf Salix amygdalina. Botan. Zeitung, 
1888, Pag 1. 
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opinion that this view is in the main correct, but while I formerly 

thought that the growth enzymes partly derived from the gall-insect, 

I now recognize that they belong to the plant only and that the 

animal does not introduce enzymes into if. 

Research material. 

In the free living unicellular organisms morphological differentia- 

tion, joined with cell division, is quite or almost quite absent, which 

much simplifies the ontogenetic development. That in this case the 

properties must be represented just in the same way by specific factors, 

that is by heredity units or MENDELIAN factors, as in the cell protoplasm 

of the higher organisms, is beyond question. Although it would be 

erroneous to admit that the number of characters, and so of the 

heredity units or factors of the unicellular organisms must be small, we 

certainly have to deal here with a simpler case than in the multi- 

cellular. Hence it seemed probable that heredity experiments with the 

former would give some chance better to understand the nature of 

the heredity units in general. 

But not all properties are equally well adapted to such a research. 

To show that some character of a cell corresponds to one or more 

units or MENDELIAN factors, that character must be able to change 

by mutability in such a way that the mutants prove to be here- 

ditary constant races, distinctly different from the original form, for 

the conception of heredity units must also for the unicellulars start 

from the possibility of race formation. 

The character to be studied must further be observable with ease 

and accuracy and it must be possible to cultivate the concerned 

organism in a simple way, so that in few days thousands of in- 

dividuals can be examined and that no doubt is left as to their 

distinction from foreign infections. These requirements are very 

well answered by some pigment- and by the luminous bacteria 

as I repeatedly stated before. *) Especially the phosphorescence of 

the latter I have minutely examined, no character being better 

qualified to show the process of mutability and to enable us more 

quickly and precisely to judge of the vital energy of the culture 

material. Errors in the nutrition are in this way prevented, which 

so easily occur in microbiological experiments, in particular by too 

strong concentration and too alcaline reaction. Besides, the function 

of phosphorescence is not only found in certain luminous bacteria, 

but it is widely spread throughout the natural system and a remarkable 

1) These Proceedings, 21 November 1900 and 9 February 1910, 



1278 

similarity exists everywhere, *) notwithstanding the enormous diffe- 

rences in the respective phosphorescent organs. 

Another consideration which induced me to study with particular 

care the production of light by living microbes was the following. 

I saw the great difficulty of explaining by the enzyme theory a 

function so obviously the attribute of the living protoplasm. Yet I 

had the conviction that if it were possible to account for this excep- 

tional character by that theory, the same would be the case for 

any other character, physiological or morphological. Presently we 

shall see that the facts are in accordance with the expectation. 

Not all luminous bacteria are equally well qualified for this in- 

vestigation. Photobacter splendidum, common in the North Sea at 

the end of summer,*) and Ph. phosphoreum Coun, always present 

on sea-fish, whose properties are very different and in many respects 

complementary, are recommendable. Ph. splendidum produces trypsin, 
urease, diastase and invertase, and assimilates mannite with light 

production. Ph. phosphoreum has none of these enzymes and does 
not attack mannite. *) 

The chief result of this study is that the function of phosphore- 

scence may be ‘ascribed as well to living protoplasm as to one or 

more enzymes. 

I chose this function to elucidate the theory with regard to a 

physiological character; the production of the cell-wall shall be 

treated to test it from a morphological point of view, and also in 

the latter case it can be shown that the protoplasm as well as one 

or more enzymes may be regarded with the same right as the 

cause of its formation. 

The subsequent considerations must be given in a short and 

somewhat aphoristie but | think not unclear form. 

Enzymes considered as the bearers of phosphorescence. Irritability. 

Already in 1898 Rarait. Dusois endeavoured to demonstrate that 

phosphorescence should be considered as caused by an enzyme-action. *) 

') Perhaps with exception of the higher Fungi, where the luminosity seems to 
be in correlation with a state of collabescence. 

*) Die Leuchtbakterien der Nordsee im August und September. Folia microbio- 

logica, Bd. 4, Pag. 1, 1915. 

5) Aliment photogène et aliment plastique des bactéries lumineuses. Archives 

Néerlandaises T. 24, P. 369, 1891 (Feeding of Ph. phosphoreum Coun.) 

4) R. Dusots, Lecons de Physiologie générale, Pag 450 and 524. Paris 1898, 

Drawings of the phosphorescing organ of Pholas by Uric DAHLGREN : The pro- 

duction of light by animals. Franklin Institute, February 1916, Pag 38, 

: 
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He experimented particularly with the luminous sipho-slime of Pholas 
dactylus and calls the enzyme, he thinks he has found “luciferase” 
and the unknown matter it acts upon “luciferine”. The latter 

substance corresponds to what is called an ‘“enzyme-substrate’’, but 
which might better be denominated ‘enzymoteel”’,*) the word 

“enzyme-substrate” being evidently equivocal. To prepare a luciferase 

solution, free from luciferine, he leaves the luminous mucus till it 

becomes dark. He makes a solution of luciferine, free from luciferase, 

by slightly heating the mucus whereby the luciferase is destroyed. 

By mixing the two dark solutions light is evolved, from which he 

concludes that the luciferase acts as a catalysator similarly as other 

enzymes. The luminous slime consists of the cell-content of peculiar 

glands of the epiderm and flows from the cell through a fine canal; 

it seems not impossible that it contains protoplasm. 

Various other sea animals as some Annelides, Cephalopodes and 

Coelenterates likewise secrete a luminous slime, which spreading in 

the sea-water illumines the surroundings of the animal. 

E. Newron Harvey has examined the phosphorescence of insects 

and comes to the same results as Dusors, but he calls the related 

substances ‘“‘photogenine” and ‘‘photopheleine’’.*) It is also easy to 

show that the phosphorescent cells of our glow-worms, after mecha- 

nical destruction do not loose their luminosity. But these facts cannot 

be considered as proving incontestably the accuracy of the enzyme 

theory, it not being impossible that in all these cases not yet 

destroyed protoplasm is still active. 

A better evidence for the view that the bearer of the phosphor- 

escence consists of one or more endoenzymes is to be derived from 

the luminous bacteria. Here the production of light is inseparably 

bound to the bacterial body and secretion of a luminous slime never 

occurs.*) If thus there is question here of an enzyme as cause of 

the phosphorescence it can only be an endoenzyme, and that this 

supposition is in accordance with the facts may be shown by ex- 

posing the luminous bacteria to the influence of ultra-violet light. 

It is namely possible by means of the light of a quartzlamp, to bring 

them into the necrobiotic state, wherein they have lost their power 
of reproduction, but preserved their phosphorescence. *) If the time of 

the radiation is well chosen, the necrobiotic condition may last for 

') Of “telos”; aim. 

2) Science N. S. T. 44, Pag. 208, 440, 652, 1916. 

5) The slimy matter produced by some kinds of luminous bacteria is non-phos- 
phorescent cell-wall substance. 

*) For the particulars of this experiment see Folia microbiologica, Bd. 4, Pag. 10, 
15. 
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hours and it may be shown that the luminosity of Ph. phosphoreum 

during this period is greatly intensified by glucose. Hence the very 

same argument which leads us to consider the alcohol function of the 

necrobiotic yeast-cell as an enzyme action, caused by one or more 

enzymes, called zymase, holds likewise with regard to the connection 

between phosphorescence and its factor or factors the luciferase. 

The still unknown “luciferine” which, as said, can result in the 

ease of Ph. phosphoreum from glucose, is the natural analogon of 

the “glucose-phosphoric-acid ester”, i. e. the substrate or enzymo- 

teel of the zymase. 

The necrobiotic yeast-cells have lost their semi-permeability, as 

shown by the ease wherewith they are dyed by methylene-blue, 

their power of reproduction and certainly the motility of their proto- 

plasm, whence they are considered as dead by several investigators. The 

same is probably the case with the necrobiotic luminous bacteria ; 

but change of permeability could not be stated, since also in the 

condition of normal life they have a great affinity for pigments. 

I venture to think that the loss of the above properties when based, 

as is supposed, on the becoming inactive or on the destruction of 

the more sensitive heredity units or enzymes, can quite well go side 

by side with the continued activity of another part of the protoplasm, 

so that then it cannot be said that the cell is “dead” in the same 

sense as when all its functions are destroyed. The importance of 

this view is obvious if we bear in mind that the theory of the units 

of heredity consists in the very supposition that from their com- 

bination energies and activities may arise strange to the units 

separately. The demonstration of the properties to be ascribed to 

special factors and of those due to the co-operation of two or more 

factors is the chief subject of the heredity researches of to-day 

and the difficulties met with are well known. That the enzyme theory 

will here be useful is obvious. 

About irritability I need not be long here, as for the lower 

immotile microbes this conception is only then based on observable 

facts if we think it coinciding with the power of metabolism and 

of reproduction. 

In this connection 1 call to mind that the peculiarity of actions 

caused by stimuli, consists in their showing an optimum for certain 

intensities of these stimuli, which is also the chief character of enzyme 

action. So the influence of temperature and of different concen- 

trations of poisons on the process of cell division and on that of 

amylolysis by diastase is analogous, and this is of course one of 

the best evidences for the correctness of the enzyme theory. 

Se eee ee 
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Phosphorescence considered as bound to protoplasm. 

Combination of the two views. 

That the function of phosphorescence of the luminous bacteria is 

bound to the living protoplasm is supported by the following facts. 

Anaesthetics, such as chloroform and aether, stop the light 

production almost completely, while after vaporisation. of these sub- 

stances it sets in anew, only slightly diminished. A short heating of 

temperatures near 40° to 45° C. of Ph. splendidum and of 30° to 
35° C. of Ph. phosphoreum, with subsequent cooling, has the same 

effect. By the action of acids and alcalies the phosphorescence 
disappears and returns after neutralisation. A strong salt concentra- 

tion darkens, after dilution the light is completely restored. 

Diminution of luminosity in these cases is caused by the dying of 

part of the germs. The phosphorescence of very active broth 

cultures, kept at rest for some time, undergoes a sudden and 

remarkable enhancement in its intensity by mechanical stimuli, such 

as shaking. The thus produced light reminds of the behaviour of 

higher luminous animals, possessing a nervous system, which by 

contact, or other mechanical stimuli, suddenly react with light 

production. 

All these facts induced me already long ago *) to call the bearer 

of the phosphorescence ‘‘photoplasm’” and its elementary units 
“nhotophores’. Also for the Flagellate Noctiluca miliaris px 
Quarreraces has demonstrated that the light issues from the proto- 

plasmic threads that run from the nucleus to the cell-wall which, 

when seen under the microscope, presents a large number of 

minute light centres, corresponding to the ends of the threads, 

closely grouped near the flagellum, but farther on the surface at 

greater relative distances. *) The sudden radiance of Noctiluca by 
shaking the sea-water wherein it is suspended is well-known. When 

“fatigued” the cells become entirely luminous and pr QUATREFAGES 

called the so produced light “pathological light’, but he does not 

say whether it originates from the cell-wall or the cavity. 

A principal argument for the view that the photoplasm of the 

luminous bacteria possesses the properties of the protoplasm lies in 

the relation between food and luminosity. For if peptones are 
present in sufficient quantity the phosphorescence is considerably 

1) De Ingenieur, 15e Jaarg. Pag. 53, 27 Januari 1900. 

2) Mémoire sur la phosphorescence de quelques invertebrés marins. Ann. d. sc. 

nat. Zoologie, 3me Sér. T. 14. Pag. 326, 1850. Vide also R. Dusors. Lecons de 

Physiologie générale, Pag. 498, Paris 1898. 
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increased by several carbon compounds either free from or containing 
nitrogen, as glucose, levulose, glycerin, malates, asparagin, and 

many others that do not act as stimuli, but as in the normal 
respiratory process are oxidised to carbonic acid and water. Peptones 
alone can also be broken off by the photoplasm, likewise under 

production of ammonium carbonate, carbonic acid, and water. 

Phosphorescence thus proves to be bound to the photoplasm in the 

same way as the respiratory process in general is bound to the 

protoplasm, so that it may be said that the photoplasm of the 
luminous bacteria forms part of their respiration protoplasm. 

As now the chief criterion of enzyme action consists in the fact 

that enzymes act only on a specifie substrate, in the case of 

phosphorescence this criterion at first sight seems to fail, and the 

process more reminds of a catabolism bound to the protoplasm as 

a whole and which is rather unanalysable. 

But considering what should be understood by a catabolism we © 

find in many cases that it is based on the co-operation of various 

factors of the nature of enzymes. The respiratory process itself 

supports this view, for recent enzymological investigations have 

shown that the respiration protoplasm is composed of different factors, 

in general called oxidases, with the specific distinction of peroxidases, 

oxigenases aud oxidones. 

These units possessing the character of enzymes, and only 

oxidising special substances, or but few nearly related ones, we must 

accept that in this case, too, a preformation of enzyme-substrates or 

enzymoteels takes place on which they exert their function. The 

composition of the photoplasm of several of such factors or oxidases 

is thereby rendered probable, and the ease wherewith by means of 

mutation experiments with the luminous microbes hereditary constant 

races arise of very unequal phosphorescence (but as it seems always 

of the same colour), is evidently connected with these facts. 

That the factors of the photoplasm of the various species of 

luminous bacteria are not always the same follows from the before 

described experiments about the relation between nutrition and 

phosphorescence. *) 

So, in the photoplasm of Bacterium phosphoreum an oxidase must 

exist associated with a substrate resulting from peptones only, and 

another oxidase whose substrate is an unknown matter, produced 

by peptone and sugars and perhaps by peptone and glycerin too. 

In the photoplasm of Bacterium splendidum another factor occurs 

bj For Ph. phosphoreum, Aliment photogène, Archives Néerl. 1851. For Ph 

splendidum, Folia microb. 1915. 
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adapted to a still unknown substrate deriving from peptone and 
mannite. Really these still hypothetical substrates are but different 

‘Juciferines” in the sense of Dusors. It should be borne in mind 

here that Dusois knows nothing at all of his luciferine of the 

pholades, whereas regarding the photobacteria at least the substances 

are known from which they result. 

By multiplying the nutrition experiments it will be possible to 

come to a complete “factor analysis” of the photoplasm. For other 

bacteria the difficulties will be greater, but for B. prodiyiosum, 
where race formation easily occurs, a corresponding factor analysis 

of the “chromoplasm” will be possible, since, according to former 

demonstrations, it must quite like the photoplasm be regarded as a 

complex of heredity units possessing the character of oxidases. 

So we arrive also here at a result analogous to that already obtained 

for the alcohol function, which may be ascribed as well to ‘alcohol 

protoplasm” as to some enzymes, the zymase of BÜücHNer. 

In consequence of the foregoing it is clear that conceptions such 

as “chromoplasm’’, “photoplasm”’, ‘‘aleoholprotoplasm”’ ete., are not 

in contradiction with the wider view that considers the protoplasm 

in general as composed of enzymes, as they themselves are built 

up of these. 

There being nothing to object to the further generalisation of the 

view here forwarded, it is allowed to consider the heredity units as 
enzymes and these as heredity units, clearly two different names 

for the molecules or micells of the living part of the protoplasm. ’) 

Cell-wallfactors are enzymes. 

For the higher plants and animals factor analysis is based on 

crossing experiments between forms of which we wish to state by 

what and by how many heredity units they differ. For the bacteria 

and the other microbes, where for want of sexuality crossing is 

impossible, factor analysis is then possible when the factors of 

special properties can be recognised by race formation through 

mutation, which I already put forward before. The recognition of 

the heredity units as enzymes may likewise lead to factor analysis 

by applying the property of enzymes only to act on special 

substances. 
We saw how this principle may be applied to a physiological 

1) This theory I first advanced, though with some doubt, in: Mutation bei 

Mikroben, Folia microbiologica, Bd. 1, Pag. 2, 1912, but now the difficulties are 

overcome. 
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function ; that it can likewise lead to the factor analysis of a mor- 

phological character I will now endeavour to show with regard 

to the cell-wall. 

The formation of the cell-wall is commonly considered as a function 

of the. parietal protoplasm and must necessarily repose on the action 

of factors or heredity units. For some microbes this process is clearly 

caused by one or more enzymes and this is distinetly the case when 

the wall substance consists of levulan. This matter results from cane- 

sugar (and slower and less profusely from raffinose), but from no 

other substances. It forms the cell-wall of many species of sporulating 

bacteria, such as B. megathertum and also the common hay bacte- 
rium 5. mesentericus, but only if fed with cane-sugar. The levulan 

arises in two ways: it either remains in contact and entirely united 

with the bacterial body as a slimy cell-wall, in which case on cane- 

_ sugar-agar plates strongly swelling colonies develop, or the levulan 

is deposited outside the bacterial body at some distance from the colony. 

If the latter takes place the remarkable reaction occurs which I 

have called the “emulsion reaction’) Its explanation was given by 

the discovery of a specific exoenzyme, viscosaccharase, which acts 

‘on cane-sugar and converts it into levulan slime, which is in- 

capable of diffusion but attracts water, so that droplets are formed 

causing a strong swelling of the agar. This enzyme, acting synthetic- 

ally and evidently polymerising the cane-sugar, might as well be 

called saccharo-levulanase and is obviously one factor of the factor- 

complex that governs the cell-wall formation. That it is not the only 

one follows from the fact that some levulan bacteria, for instance 

the hay bacterium itself, when fed with other sugars, produce another 

not slimy wall-substance, probably cellulose, which likewise derives 

from cane-sugar beside levulan, but only in slight quantity. If the 

production of cellulose is brought about by one or more factors 

is not yet known. As to the viscosaccharase, however, there is not 

the least doubt but that it consists of one single enzyme or factor. 

Hence it may be concluded that it is quite well possible to become 

acquainted with the separate factors of a process at first sight so 

complicated as the formation of the cell-wall, and it may safely be 

predicted that further experiments will show whether the cellulose 

production also depends on one single or on more than one enzyme. 

On the other hand, at the factor analysis by crossing experiments 

with higher plants and animals, without the guidance of the enzyme 

conception, we are continually in doubt whether a factor, thought to 

') These proceedings 9 February and 2 Mei 1910. Folia microbiologica Bd. 1 
Pag. 382, 1912. 
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be elementary, will not, on continued examination, prove to be 

composed of other still unknown factors. 

As to dextran I have stated elsewhere ') that it isa wall substance 

comparable to levulan, likewise only resulting from cane-sugar, but 

produced by some lactic acid ferments, belonging to the physiological 

genus Lactococcus. Dextran, however, never originates independently 
from the cell, as may occur with levulan, but exclusively at the 

surface of the outer layer of the protoplasm and in direct contact 

with it. But the knowledge of the relation between levulan and its 

producing enzyme, viscosaccharase, indicates clearly that dextran, 

whose properties are so analogous to those of levulan, must have a 

similar origin. It is therefore most probable that dextran also arises 

under the influence of one single factor or specific enzyme, which 

might be called saccharo-dextranase, but which, being an endoenzyme, 

cannot leave the cell. 

The formation of the slime wall by B. prodigiosum viscosum *) 
must be brought about by at least two factors, differing from 

levulanase and dextranase since the slime produced by this bacterium, 

belongs to the celluloses or cellulan-slimes. That beside the slime 

factor, which might be called cellulanase and which produces cellulan 

from carbohydrates, still quite another factor operates here is proved by 

the following observations. By feeding this bacterium with glucose, cane- 

sugar, maltose or lactose, wall slime is readily yielded. In several 

other species, for instance Aerobacter viscosus and Bacillus polymyaa 
we find the same. But B. prodigiosum can besides produce slime 
from albuminous substances such as gelatin and peptone, which B. 

polymyxa and A. viscosus cannot. As now it is quite unacceptable that 

one and the same factor could be able to produce cellulose slime as 

well from proteids as from carbohydrates, B. prodigiosum must 
possess a specifie factor able to split off from the albuminous matter 

an enzyme-substrate, converted into cellulose slime by the wall- 

forming factor. But this proteid-splitting factor does not exist in 

B. polymyxa and A. viscosum. B. prodigiosum viscosum is thus a 
mutant, distinct by at least two factors from B. prodigivsuin itself, 

which produces no slime at all, neither from carbohydrates nor from 

proteids. It must thus be possible to detect another still unknown 

mutant lacking the factor to produce from proteids a substrate that 

1) Die durch Bakterien aus Rohrzucker erzeugten Wandstoffe. Folia microbiolo- 

gica. Bd. 1. Page 392, 1912. 

*) B. prodigiosum viscosum is no natural form but a mutant or race, easily 

obtained from B. prodigiosum. Folia microbiologica, Bd. 1, Pag. 35, 1912. 

82* 
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can be converted into slime, that is a mutant capable to produce 
slime from carbohydrates only and not from proteids. 

A great number of other examples might be added demonstrating 

that the speculations about the heredity units or factors have relation 

to enzymes. 
7 

Limitation of the enzyme conception. 

In my opinion the preceding may lead to a better enzyme con- 

ception than the existing. I will try to elucidate this by a few in- 

stances taken from the cecidia or galls and the substances called 

ferments in immunology. 

Elsewhere I pointed out that the change of the plant at gall-for- 

mation is not hereditary. From the galls of Nematus viminalis, kept 

on moist sand, quite normal roots of the gall-bearer Salix purpurea, 

and from those of the gall-fly Neuroterus lenticularis on oak-leaves, 
quite normal oak roots may arise. ’*)- 

From the axil-buds of the willow-rose, caused by Cecidomya 

rosaria on Salix alba, 1 have cultivated quite normal willow trees; 
likewise I grew normal plants of Poa nemoralis from the bud in the 
remarkable gall of Cecidomya poae, whose strange metamorphic roots 

readily develop into normal roots, when the whole gall is planted 

in earth.*) By strongly pruning the twigs of Rosa canina whereon 
Bedeguars developed, caused by the gall-fly Rhodites rosae, the wonder- 

ful appendices of this gall changed into long-petiolated, simple, - 

green leaflets, whose anatomic structure and external appearance were 

quite identic with those of the leaf on which the gall originates. 

These instances, to which I could easily add others, show that in 

the formation of galls two groups of substances are concerned: the 

protoplasm of the plant, consisting of the unchanged heredity units, 

and substances deriving from the egg of the gall-animal, or from 

the larva of Cecidomyia, which evidently have the character of 
enzymesubstrates. It is however clear that the heredity units con- 

cerned in the morphologically higher galls, multiply more intensely, 

in any case become more numerous under the influence of the gall- 

animal than under normal circumstances. Hence we come to the — 

conclusion that either the enzyme-substrates may serve as food for 

the heredity units or enzymes to which they belong and may give 

rise to their multiplication, or that the gall-animal, beside the enzyme 

‘) Only very few Lenticularisgalls possess this disposition, which is probably 

connected with the spot where the gall grows on the leaf. 

*) Botanische Zeitung 1886. 



1287 

substrate, also supplies ‘‘enzymosites’,') that is to say a special 

“enzyme food”. The latter supposition will probably be the right 

one, for the real enzymes are in their origin in no way dependent 

‘on their substrates, as we learn from almost every experiment with 
microbes. ”) 

The enzymosites apparently correspond to ABDERHALDEN’s “Bau- 

steine” of the specifie living proteids, that is of the protoplasm. That, 
in case these enzymosites differ, different heredity units or protoplasm 

micells will develop from the mixture of units from which the latter is 

built up, is to be expected. For if we remember in how remarkable 

a way in elective culture experiments with microbes, the thereby 
obtained floras depend on nutrition, we may safely conclude that 

the same will be the case in the subtle world of protoplasm molecules. 

That from the gall-animal no enzymes pass into the plant, is in 

accordance with the fact that foreign exoenzymes commonly do not 
enter living cells. The diastase, which in the distilleries occurs in 

great quantity in the food of yeast, which consists for a great part 

of malt, does not penetrate into the yeast-cell. Experiments purposely 

carried out with other exoenzymes and various kinds of other 

microbes have invariably given the same result. The possibility of 

endoenzymes passing by diffusion from one living cell into another 

is of course wholly excluded”) 

On the other hand, in the range of immunology, facts are known 

which prove that living cells sometimes take up enzymes from their 
surroundings. 

In those cases namely when acquired immunity is hereditary the 

thereby concerned substances must needs belong to the heredity 
units, hence to the enzymes. 

They give evidence that Darwin’s view, according to which the 

“gemmules”” of his pangenesis hypothesis freely move within the 

1) Sitos, food. 

?) Many diastatic bacteria for example produce diastase without the presence of 

amylum in their food. This must be ascertained by a special experiment, amylum 

being the only known reactive on diastase; the literature proves that this has 

sometimes been forgotten by the investigators. 

3) It is not impossible that endoenzymes such as zymase are to some degree 

capable of ordinary diffusion (which is quite another thing than penetrating into 
living protoplasm). Gelatin can slightly penetrate into agar, likewise starch and 

even the carbon of Indian ink. Gold seems able to penetrate into lead. In the 
protoplasm of luminous bacteria no disposition for diffusion is to be observed. 
However the pathological light of Noctiluca miliaris, described by pe QuaTREFAGEs, 
seems to repose on the entering of the photoplasm or luciferase into the cell-sap 
in which the luciferine must then be dissolved, 
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organism, is true in certain cases, at least for the higher animals. 

Non-hereditary immunity might be caused by freely moving enzymes, 

unable to enter the cells. 

Van CALCAR’s opinion that the anti-bodies of the serologists are 

ferments, that is enzymes, is thus undoubtedly right. He says: *) 

Whichever immunity reaction is examined, it is constantly found that 

the whole course of these reactions depends on the action of two 

substances, one of which having in all respects the character of a 

ferment, the other that of an enzyme-substrate to be decomposed 

by that ferment. The ferment-like substances are called ‘“‘anti-bodies”’, 
the various substrates they act upon, “antigens”. | 

In my opinion there is however no sufficient ground also to call 

the antigens and the complement “enzymes”, as is done by several 

investigators. 

If these substances are considered as enzymes only because of 

their action after injection into the blood of higher animals, it will 

be necessary, in order to be consistent, likewise to bring to the 

enzymes toxins and even some common coagulable proteids, which 

would make this word lose its real significance. Whereas in the 

descriptive sciences the necessity is felt to designate by special 

names even but slightly differing objects, it would be an error to 

attribute to the words enzyme and ferment a continually varying 

and wider meaning no more in accordance with the original con- 

ception. On the other hand it is clear that further knowledge about 

the enzymes or factors may necessitate the creation of néw names 

to mark the vast differences between them, as now we are already 

compelled to use the words exo- and endoenzymes. 

There is still another group of bodies worth being considered from 

the new point of view, namely the viri in general and in particular 

those of plant diseases, such as the mosaic disease of the tobacco. 

They clearly belong to the enzymes or factors, although commonly 

not hereditarily transported. But the further discussion of this point 

must be deferred to later. 

The only place in literature, hitherto come to my knowledge, 

where an hypothesis is indicated somewhat corresponding to my 

view, is to be found in Barsson. He says ?): ‘‘Ueber die physika- 

lische Natur der Erbeinheiten können wir noch nichts aussagen; die 

Folgeerscheinungen ihrer Gegenwart sind aber in so vielen Fallen 

1) R. P. van Catcar, Voordrachten over algemeene biologie, Pag 182 and 188, 

Leiden 1915. 
2) W. BaresoN, MENDEL’s Vererbungstheorien, Pag. 269, 1914 (Translation 

of the English edition of 1909). 
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mit den durch Fermente hervorgerufenen Wirkungen vergleichbar, 

dass wir mit einiger Bestimmtheit annehmen, dass die Fähigkeiten 
einiger Erbeinheiten im wesentlichen in der Bildung bestimmter 

Substanzen bestehen, welche in der Art von Fermenten wirken’’. 

Although the observations on which this statement is based are 

in accordance with the enzyme theory, it is clear that Barrson’s 

view is quite different from mine. 

Physics. — “Contributions to the kinetic theory of solids. 1. The 

thermal pressure of isotropic solids. By Prof. L. S. Ornstein 

and Dr. F. Zernike. (Communicated by Prof. H. A. Lorentz). 

(Communicated in the meeting of February 26, 1916). 

P. Desise*) has in his Wolfskehl-lecture developed a theory of 
the equation of state of solid matter which has been elaborated by 

Dr. M. I. M. yan EvERDINGEN °). Depise assumes as a physical principle 

that the forces between the molecules in solid matter are not quasi- 

elastic, but depend also on higher powers of the deformations. He 

points out that only this principle enables us to understand the 
expansion of solid matter which gains energy under constant pressure. 
This assumption enables him to give a deduction of the GRÜNRISEN- 

theorem about the connection between the coefficient of expansion 
and the specific heat. 

Degije calculates the free energy of a solid body with the help 

of a canonical ensemble, using the method of normal vibrations, 

and introducing from the beginning the hypothesis of energy-quanta. 

We shall indicate in this paper another way to find the equation 

of state with the aid of the physical principles of Degijr. The 

quantum-theory will be applied to our final result if we wish to 

use it for low temperatures. DepiJe has taught us to replace in the 

calculations the space-lattice of molecules by a continuum, Born *) 

has shown this artifice to be right. Therefore, in considering the 

isotropic body, we shall use a continuum as a limiting case. For 

explanation we shall treat the case of a row of points and for this 

case we shall perform the transition to a continuous bar. Our method 

consists ‘in determining the thermal pressure, i.e. the pressure that 

1) Vorträge über die kinetische Theorie der Materie, Leipzig 1914. “Zustandsgleichung 

und Quantenhypothese u. s. w.”. 

2) De toestandsvergelijkingen van het isotrope vaste lichaam. Diss. Utrecht 1914, 

5) M, Born. Dynamik der Krystallgitter. Teubner. 1915, 
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is required to keep constant the volume of a solid body when 

gaining heat. 

1. Let us consider a row of n equidistant points. Be the elongation 

in the direction x (the direction of the row being taken as an axis) 

for the vt point §. Then the force exerted by the vth molecule on 

the (y---1)* will be represented by 

( 

S= f (§&.—&-1) + EE JE 5 3 - 2 5 (1) 

The total potential energy, then, can be represented by 

eas phe a Aen . 
ay (Es, Za + 6 ay (EE) . . . ( ) Eq == 5 

where the sum has to be extended over all molecules. 

Now for a stationary state, S, the time-average of S, will be 
equal for all points. Therefore, adding (1) for all points, we get n 

times the time-average of S. Thus 

<9 a me ee = ene 
NIS == A) =S (Gy Gy) os ee 

2 2 

the mean of the first term in (1) being zero, as the mean length is 

invariable, and as the taking of the mean and of the sum may be 
interchanged. 

For the mean value of & we have 

re eo ee j= $2685) 
the mean value of the second term being zero. We thus find 

nS eS 
5) 2/ 

for 2a 4 &, where é, represents the kinetie and « the total 

energy. Putting g =n?c,, f=ne,, we find 

= a ee ee 
2¢, 

For the dilatation taken from the absolute zero, we find 

0, — 
pee os le 

being the relation of GRUNEISEN. 

2. We shall now consider the same problem, approximating this 
time the problem for a row of points by that of a continuum. 

Therefore we have to do with a bar in which the elastic qualities 
depart from Hooker’s law, 
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The force exercised in this bar by the part to the right of a 

section on the part to the left, will be represented by 

0s c, (DEN? 
a DE RENE NT ee 

Ade ie 2 (=) 2) 

The total potential energy then amounts to 

air os i e, 0g Vy : 
Eq — af =) U + = { (5) Kea ° e : . ( ) 

where the integration has to be extended over the length of the 
bar, which has been put equal to unity. 

For this case the mean value S of the force is again equal for 

0 
all points of the bar, and . being zero, we have 

xv 

=z 0&\? 

Integrating this result over the bar, we get 

ake Shey Cay AET COENE 
OE =((=) da == sf (3) da. e e e . (10) 

as also in this case the integrating and the taking of the mean 

value may be interchanged. 

Now, just as in the discrete problem, we determine «,, and 

=) bei find 5, ) being zero we fin 

„if (EE) OP UE caer ces A 
2 dx 

ik VE 
S= Le == AEP ihe rt SDR 12 Oe gue (12) 

and from it 

from which the relation of GRÜNeIsEN again follows. 

In calculating ¢ we can use the quantum-theory, but the formula 

(12) is evidently independent of it. 

3. We will show that the same result is obtained by applying 

the method of normal vibrations. The differential equation for the 

motion of the bar is expressed by 

0°§ 0° 0§ 075 
Bi Og On Oa ST att ty hse: hy ere Ree 

where 9 represents the density. Properly speaking the equation (14), 
N 

being non-linear, possesses no normal vibrations as a solution for 
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a given bar with given conditions to be satisfied at the ends. But 

if c, is small enough, the normal vibrations of the equation without 

quadratic term will still have a physical meaning. These vibrations 

may be called quasi-normal vibrations, and the physical meaning of 

the constant c, is to effect a slow exchange of energy between the 
quasi-normal vibrations. 

Now take the solution 

S= Zr (Fe sin ka + Qr cos ke) cos kv (t — ge) . - « (15) 

for a bar with the ends 0 and 22; v being the velocity of propa- 

gation. The force in a point is represented by (7). Using (15) and 

calculating the time-average of S in the point 0, we find 

ues c? 

S= Ek P;? 
4 

The potential energy is expressed by 

2m Cc, 7 : : 
ui = k? (Pi? + Q°) cos? kv (t — or) 

its time-average by 

2% C, 
= ht (Pe? + Qr°) Ey == 

Now the mean value of P« is the same as that of Q;; therefore 

we gel 

2% c, ne 
&g = —— 2 k* Px 

4 

re Os arke 0E 
2 2 

är C 2c, av 

& 
As ae is equal to the energy per unit of length, the result 

47 

agrees with (5) and (12). 

4. We can determine the thermal pressure of an isotropic 

solid body in the same way as in 2. For this case, we have for 

the potential energy per unit of volume the expression *) 

EADS BIG WOT EDM IEN a EE 
where the invariants / have the following forms 

er et ee 

1) For the first time indicated by J. Finger, Wiener Sitzungsberichte 103, 163 

(1894), although in a less simple form (l.c. form (55)). Our notation is the one 

of v. Everpincen, l.c p. 11, where no literature is mentioned. Cf. also P. Dunem, 

Recherches sur |’Elasticité, Paris 1906. 
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T= eyey + 0,6, + ee, — 4" 4 es” + €,°) 

1, =eest + 4 (E40 04 — 020 — 02%) 

e,...e, being the “components” of the strain (changes in length 

and angle). 
The energy of a volume is found by multiplying the expression 

(17) with the element dr, and integrating. 

From (17) the normal stress in the direction of « can be deduced, 

using the formula 

ae 
é, 

We can only observe the time-average of this force and, taking 

the mean value, the linear parts issuing from the terms with A and 

B will fall out. We obtain therefore for the average value of the 

tension in the direction of z 

S=38Cl,? + DI, (e, He) + Di, + Etec, — Hes’). 

This force is again equal for all points, we can therefore integrate 

over the volume 1, and interchange the integration and the taking 

of the average. Taking into account the isotropy, it is easily seen 

that ¢,e, — de,” is equal to +/,, so that we get for S 
2 4 q 3 8 

S= UIC HED DAEB Ald... (08) 
Now determining the mean value of the potential energy, the 

terms with C, D, and E will be found to fall out, and we get two 

parts, relating respectively to the longitudinal and transverse waves, 

as appears from the meaning of the invariants Z, and /,. These 

parts are 

EADE ir ED Pe ve) 
and 

By gee EY Tees nk steet eo ND 

In the stationary state the potential energy is distributed in a 

given way over these waves. 

For the thermal pressure we now find 
3C+4D— NEUES 

El — 5 Er Pee eer mere KE 
eae B 

1) This is the usual formula, which is, however, not correct if the second powers 

of the deformations are. taken into account, as has been done in the above by 

introducing C, D, and Z. In the third contribution we shall show that even in 

case of Hooxe’s-law being true, a coefficient of expansion will be found, if the 

correct formula for S is used. As far as numerical values are known, they seem 

to indicate that the influence of the terms neglected here could sometimes be 

sensible. 

CS 
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In the notation of Voigt we have A=3}c,, , B=— 2e. 

If the temperature is high enough for the theorem of equipartition 

to be true, then 

&égi— He and eg = he 

where # is the total energy. 

For the thermal pressure we then find 

a! 9C+2D 3D+E 
— S=>— {|——— + ——}éeé .,.. . (20 Ty nee Coe 

We shall also use (20) for very low temperatures. According to 

Born *) the proportion of the energy of the longitudinal and trans- 

versal waves can be put in the form 

er 
wags os 
Vl Utr 

Eg 1 > Egan — 

where v, and wv, are the velocity of propagation of these waves. 

Introducing the constants c,, and c,,, we thus have 

y | PR ek TE 

Putting the total energy e, we find 
8/. 3/ 

St of} Ye Oor 
eras RRL SOE ga EE 

2 c4a + deur 2 ca4 + 4e 

and finally 

9 Sa 5] 
3 (Be + $D) cag — (ED + FE) c11 : 
a} 9). 3) C44C,, (Cad + Zer 

This special result agrees with the expression found by VAN 

EVERDINGEN ?). The theorem of GRÜNEISEN can be immediately deduced 

from it. 

The influence of temperature on the elastic constants can be 

examined in the same way, as we shall show in the third contribution. 

(205) 

Utrecht, Febr. 1916. Institute for mathematical physics. 

1) Born l.c. p. 75. 

2) VAN EVERDINGEN, l.c. p. 24 form (20) p. 53 form (87). 
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Physics. “Contributions to the kinetic theory of solids. 
II. The unimpeded spreading of heat even in case of deviations 
from Hooke's law’. By Prof. L. S. Ornstein and Dr. 

F. ZeRNIKE. (Communicated by Prof. H. A. Lorentz). 

(Communicated in the meeting of March 25, 1916.) 

1. In a supplement to his lecture on the equation of state of 

the solid body, Depie*) has endeavoured to “make a qualitative 

theoretical calculation of the coefficient of conduction of heat.” There 

the author points out repeatedly that his estimations are only to be 

taken very approximately and should serve as a first orientation 

only. So, as we tried to obtain an accurate calculation of the 

conduction of heat, it did not seem desirable to us to deal with the 

problem in exactly the same way and to carry out only bere and 

there some corrections and completions. 

Now DeBije's principle, which we therefore intended to work 

out otherwise, runs as follows. In an ideal solid body, i.e. a solid 

for which the elastic equations would be linear, various progressive 

waves may exist independently of each other, like the electromag- 

netic waves in a field of radiation. This implies that a heat-motion 

occurring on one side of the solid spreads unimpededly through the 

solid, so that the density of energy becomes equal in all parts of 

the solid. If the solid is in a stationary state, the temperature will 

thus be everywhere the same, even if continually a current of energy 

moves through the solid in a definite direction. Hence DeBije empha- 

sizes this dictum: the coefficient of heat conduction of the ideal solid 
body is infinitely great (le. § 7, ef. the statement given there). Now in 
several regards it is preferable to formulate the rule in this way: 

the ideal solid body does not show any resistance of heat. 

That a real solid body does show resistance of heat DegiJe ascribes 

to the fact that the elastic equations are not perfectly linear. Therefore 

various normal vibrations strietly cannot be superposed and it 

is conceivable that waves running in different directions so to say 

oppose each other. Derije has indeed succeeded in deducing indirectly 

a scattering and consequently a suppression of the running waves. 

Our endeavours to state more directly the connection between 

resistance of heat and non-linear terms of the elastic equations of 

motion have failed. Therefore we will not report our considerations 

1) Mathematische Vorlesungen an der Universität Göttingen VI (WoOLFSKEHL- 

Vorträge) pg. 19. 
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on that matter, except a small example in (2), but we will only 

mention how we have formulated the problem because that is 

important for another reason. First the problem was limited to 

one dimension for the sake of simplicity. Where DeBije already 

introduced the great simplification of considering longitudinal waves 

only, it is easy to understand that for a more strict calculation 

it is necessary to go as far as to consider provisionally only such 

waves as run in a special direction. Let us e.g. consider the 

longitudinal waves of a thin bar. The equation of motion for this 

case is strictly linear if the law of Hooke is accepted. Generally 

this has been accepted, also in the case of the for the rest quite 

analogous discrete problem of a series of molecules with elastic forces 

between them. Therefore we may always represent the movement 

of the bar by a superposition of normal-vibrations. This is done in 

the case of the well-known calculations of the specific heat. It is 

necessary to suppose hereby a special statistical distribution of the 

energy over the different vibrations. At a high temperature e.g. one 

is inclined to take equipartition for it without troubling about how 

it occurs. But it is remarkable that in this case there can be no 

question of equipartition establishing itself as it occurs in 

a gas by the collisions. For during thé movement the energy of each 

normal-vibration remains constant so that any method of division 

continues to exist permanently. We may put it statistically like this: 

time-ensemble and microcanonical ensemble are very different from 

each other and consequently are not practically equivalent. 

This difficulty, which is essentially connected with the existence of 

normal-vibrations of the system, disappears as soon as non-linear 

terms of higher order are introduced into the equation of motion. 

When these terms are very small, and this is sufficient, then we can 

speak of the guasi-normal vibrations of the system. During a short time 

the quasi-normal-vibrations behave at first approximation like normal- 

vibrations. The non-linear terms however bring about a slow exchange 

of energy between the quasi-normal-vibrations. We intend to revert 

later on to the calculations regarding this subject which we have 

performed. As we mentioned already they did not produce a valuable 

result for the theory of heat conduction. It remains still to be examined 

which other phenomenon corresponds with the molecular action 

mentioned. Probably it will also be possible to prove later that by 

the terms mentioned the system will slowly approach the condition 

of equi-partition. 

2. In contrast to the calculations mentioned above, we shall record 
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in this communication some positive results showing the non-existence 
of a heat-resistance, even if deviations from Hooke’s law appear. 
We shall confine ourselves to the linear problem, so that it still 
remains uncertain whether our conclusion holds really for three 
dimensions. This forces us to enter still into some principal errors 
in DrBijk’s calculation, which cause his results to be not only merely 
qualitative, but quite illusory in our opinion, so that they are no 
argument against the mentioned extension of our conclusion. 

In consequence of his calculations on the linear problem, 
SCHRÖDINGER!) has doubted of the conduction of heat being infinitely 
great in the ideal case. Let us therefore in the first place mention 
a simple proof for this case. 

Let w denote the place of a point on the bar in condition of rest, 
vhs the same after deformation. According to Hooxnr’s law 

s ò 
the stress would become proportional to a As a next approxima- 

v 

0§ 0 
tion we shall now put this proportional to see (=) The 

av 

equation of motion now becomes: 

Oe ORE DE SORE 
ee eas a ee = Chaise e a . . 1 
of?" On? a Ox 02? (1) 

if for the moment we take unimportant coefficients — 1. 
If we represent for the sake of brevity the differential coefficients 

of § by § and §&, the energy per unit of length is: 

- a 

&=& + & = 45? +4" migen 

In unit of time the tension of the bar performs in the point a 
a work 

or, ee 12 sl: + 5 s ). 

Now if a current of energy goes through the bar (conduction of heat) 
the time-average of this expression must differ from zero. Now we 
will examine whether a fall of temperature appears along the bar. 
For this purpose we calculate: 

de — 
—_ fe BEE BIE Ve sheen 

Oe are T 9 ahi 

Applying the equation of motion we oa 

de eef ser sent a grec foun 
onse eh eer: LE Se 

We shall take the time average of the last form for a stationary 

1) Ann. de Physik. 42. 1914 p. 916. 
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state of motion that is to say: integrate that expression with 

respect to a long time 7’ and divide the result by PT?) The 

contribution of the first term can be made as small as one wants 

by taking 7’ larger and larger. So there remains: 

de 08 (fo 
ene tn de bee aeg (2) 
Ox Òz 2 

The average energy is thus the same for all points of the bar if 

au—( i.e, if Hooke’s law is satisfied, and this quite independent 

of the heat-current: 

ren dn 
kB ENEN ae 

Now, there appears to be a connection between the average (3) and 

the same in (2), causing for a— 0 a difference in temperature 

proportional to the magnitude of the heat-current. However, that 

this connection does not exist appears in another way from the 

following considerations. 

3. In direct connection with the treatment published by Degre 

(l.c. § 9) we can examine the influence of deviations of density 

and elastieity on the vibrating movements of our bar. With density 

o and elastic modulus # the equation of motion becomes: 

PEs. Bien ; 
ar = asl al he loge ee nd 

as in this method the terms of higher order are not directly 

taken into account. Further we suppose that g and £ have every- 

where on the bar the constant values 9, and Z, except on a small 

part, from 0 to /, where they are g, + 9, and E,+ £,. Then we 

can calculate in the usual way the secondary waves, appearing when 

primarily a wave Aeir@-%@ runs along the bar, for which 

E 
0 

y= = 
Qo 

is the velocity of propagation. We shall only mention the result. 

From the disturbed little element O there goes in negative direc- 

tion to l a wave 
E E 

iAlp E00, Aiko OPER: vre dn been Gen 
24.0, 

and in positive direction a wave 

o, L,—£,0 
ee BE 
Et SRE gl at (°) 

ovo 

This latter one has to be added to the primary wave. This gives 
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a change of phase of (hat wave and it is easy to see that it cor- 
responds with the change which one would deduce from the changed 
velocity of propagation between 0 and /. For our purpose only 
the “dispersed” wave (5) is of importance, so (5) is the only a 
persed wave which is left. It will disappear if 9,2, + He, = 

Now we must imagine the deviations in part ‘0 to l as a: 

by elastic deformation of the bar which is homogeneous in the con- 
dition of rest. One can imagine that for this purpose constant forces 
are used. Afterwards we will come back to the question whether 
the action of the accidental deviations of density can be described 
correctly in this way. In any case the problem is now sharply 

determined. It quite corresponds with the analogous treatment of 
Desir. 

Let a piece of the length of /, be stretched to /. The tension 

required therefore we will represent by the formula 

LS a =l1.\2.. 
S—E 5 Ee 5 = . ° a e ° 7 tae (sz) ke 

in which again « denotes the deviation from Hooke’s law. In the 

new condition a small increase of length will bring about a change 

of tension, which can be cee from a modulus #, if we take 

dS l ae je 
Ezi =Er E, = 

dl sce oa Fi 
For the change /, of the eth on the small portion between 

O and / we find approximately 

En 
EEn 

as the density o changes inversely proportional to 7. From this 

result follows that really the wave (5) disappears if the law of 

Hooke is fulfilled. For the fraction in (5) one finds: 

EEL + a) 

Qo 

pe I TONER a Oy (8) 

La gears” EA aR i Sasa TS 
We shall oppose to the given treatment the more direct method 

because it proves that the advantage of neglecting the terms with 

a in the equation of motion (4) is but apparent. 

For the originally homogeneous bar the equation of motion, taking 

into account (7) and the applied-forces P is: 

+ a 5 35 c 2 

eee ee EE er (9) 

There we split the deviation § into three parts § —§, + &, + 8, 

where <, is the statical deviation in consequence of the forces 

83 
Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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P, &, the given primary wave, £, the secondary wavé as a 

consequence of the deviations €, caused by P. Then &, can be 

found from: 

dE 0g, 0 

Ey ya + ak, =. a 
Taking this into account, &, which should be independent of P 

and é, has to satisfy 

EP 

den Pope ne + ak, a. aoe 

Here the last’ term may be neglected, since it becomes propor- 

tional to the square of the amplitude of &, and this may be - 

supposed to be very small. For & we further find 
dE 07g OE OE «AE, DAE 

Okan a + aE, & to) et AAN 

It appears at once from this equation that the amplitude of the 

secondary wave &, which has to be proportional to the disturbances 

§, and to the amplitude of §,, is also proportional to « and that 

this wave therefore does not occur if HookE'’s law holds. 

In this case the former method still yielded the unimportant solution 

(6). This solution now does not appear at all, because here 

a different rv-coördinate is used. The 2 used in the former treatment 

is evidently equal to what is represented here by «-+-&,. For the 

rest the equation (10) as regards the form is equal to the equation 

from which, using the other method, the secondary wave is found, 

For the case which we considered the integration furnishes exactly 

the result likewise expressed in (5) and (8). 

4. The problem of the scattering of elastic waves by accidental 

deviations of density ‘is compared by DeBije to the scattering of 

light by those deviations. A great difference of course is that 

light has such a velocity that the molecular velocities, consequently 

also the velocity with which the deviations change, may be neglec- 

ted. Therefore in the optical problem the deviations of density are 

rightly admitted to be at rest. If this is likewise done in the 

case of the analogous elastic problem, nothing but a qualitative 

conformity with reality will be expected. 

In order to demonstrate this unnatural “keeping constant” of the 

deviations, we have spoken in point 3 about statical deviations 
caused by constant forces. Now let us imagine those forces to be 

removed suddenly. 

Then the deviation between o and / gives origin to two disturb- 

ances of equilibrium moving with a velocity g, one to the left, the 
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other to the right. The dynamical deviations occurring in reality 
move with the same velocity as the wave §,, which they must 
disturb! Considered in this light we cannot expect at all that the 
replacing of the dynamical deviations by statical deviations will bring 
about anything useful. 

Consequently the deviation &, we introduced before has also to 
be a progessive wave, and we should examine the interaction of 

two progressive waves §, and §,, in either case they run along 

the bar in a different or in the same direction. 

For this examination the equation of motion (9), where P= 0, 

can be used. For the sake of brevity we shall take formuia (1). 

Once more we put S=8, +8 +8, The waves 5, and § now 

satisfy each separately (1), so that for §, we have: 

DE, OS, (EE ae, OS, = 
Of dz,  \ dr Ow? | Ox de? oe 

Just as with the statical deviations we may neglect the terms 

with « in the equations §, and &. When we introduce the new 

variables 

ue dt mn 7 

then we can represent two waves moving in the same direction by 

En ait, (v) 5. Us (v). 

After transformation (11) becomes: 

0°5, 

Ou Ov et: 

Integrating this first over v and afterwards over w we find 

2 PN elen 
4 (7 oJ 1 “irk ws 0): 

=F ONO+FAMFhO 
whereby the functions f, and f, can be used to satisfy the initial 

conditions. When these conditions are that & and — will be 
& 

zero for {= 0, then we find 

PAS ie 4 
5 5 oC), ©). 

From this follows that the two waves §, and 5, really react 

on each other and produce a secondary wave increasing with ¢ — 

that is to say if f, and # cover each other, not if they are 

two finite waves following each other. If one takes the 

special case of sine-waves, then §, becomes a “combination-wave”, 
consisting of two terms, with the sum and the difference of the 

frequencies of =, and &,. However, what is in the first place impor- 

83* 



1302 

tant for our purpose: §, always runs in the same direction as §° and &,. 

Where the waves run in opposite directions one has: 

5, hf (u) 5; == (v) 

and ton 6an 

DE a ” at a7] 1 

=—F(P MPL © + A OF, @)) 
du dv 4 

which gives integrated 

RE haces 4 ; : 
Ee nn Bi ij (w) sf 1 (v) EF J. 0 («) f, (v)) + Js (wu) => Js (v) 

Now we imagine &, and §, given for a limited part of the 

bar and therefore restricted to it. Let for t=O the wave &, only 

differ from zero between definite positive limits for w, and §,, also 

between negative limits. Then the waves will meet. If this is 

the only wave motion on the bar for =O, then in &,, f, 

and f, must be zero. Therefore §, will remain zero until the 

waves f, and /, will cover each other. Only for such values of 

«,, for which #, as well is f, — and consequently also their 

derivatives — differ from zero, there is a certain value for §,, and 

when after some time the waves have entirely passed one another, 

§, will be again zero everywhere. So waves in different directions 
run over each other without any exchange of energy. 

From what we have found it follows immediately that the linear 

body will show no fall of temperature even if a heat-current passes 
through it. If namely the heat-motion is dissolved into a great 

number of progressive waves, the presence of a heat-current will 

signify that the waves in one direction have on an average a little 

more energy than those in the opposite direction. The mean energy 

of either of tbe two wave motions however will be the same for 

all points of the bar. The co-operation of the waves running in the 

same direction does not in the least change this, for the arising 

combination-waves run in the same direction. Here we may also 

speak of the co-operation of a wave with itself. That also 

gives a combination-wave in the same direction. Such is the effect 

of the terms we repeatedly neglected. Consequently on our bar there 
is no fall of energy at all, in other words no heat-resistance. 

5. For the present, as for the extension of what we discussed 
in points 3 and + to the three-dimensional problem and the further 

application to a real solid body, we are obliged to limit ourselves to a 

few remarks. Let us first consider the effect of statical deviations such 

as in 3. The first method given there has already been applied by 

Degre in exactly the same manner to a solid, however for longitudinal 
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waves only. A drawback of this method is that one cannot 
immediately see from the result how it depends on the fact 

whether the law of Hookr prevails or not; further that terms such 

as (6) occur which would disappear in another choice of co-ordinates. 

The relation between the changement of o and the compressibility 

Dersisk expresses by a coefficient «. By a consideration anaiogous to 

the one given above (after equation (7)) one can make out what 

will be the value of that number « when the law of Hooke 

holds. The scattered energy is found by DeBije to be proportional 

to 3a?-+-1, and therefore does not vanish for any value of a. 

Whether this result is exact or not would be best settled by appli- 

cation to this problem of the second method of point 3. The 

equations of motion however become already very complicated. 

In this connection one should compare the results obtained by 

Fincer’). Anyhow, one obtains already non-linear terms if 

Hooxkr’s law holds and therefore probably also scattering. 

The contradiction that in Desise’s final result the heat-conduction 

does not become o, if one takes « = 1, is for that reason but an 

apparent one. Even in that case namely the solid is not “ideal”. 

On the contrary one should say that such an ideal solid is a contra- 
diction in terms, as the elastic equations of motion can become in no way 

strictly linear. Nevertheless one may yet say that a real solid at a 
very low temperature approaches to an ideal solid. For one can 

always take the different heat-motions so small that in the equations 

of motion the terms of higher order are negligible. 

A remark, for the rest not in connection with the considerations 

we gave above, may yet follow. It is principally wrong to deduce the 

deviations of density in the elements of volume of a solid from the 

principle of BortzManN, in the same way as this has been done by 

Einstem for a gas. The correct way of course is with the aid 

of the normal vibrations. Now it is well-known how in the entirely 

comparable case of the radiation both ways give strongly different 

results. It has been tried at the time to explain the result of the 

first incorrect method with the aid of the light-quanta. The wrong 

point there, and this holds just as much for the solid, does not 

lie in the very principle of Borrzmann itself, but in the application. 

If namely the entropy of the whole is taken equal to the sum of 

the entropies of the parts, then this implies the independence of 
the probabilities of the conditions in those parts, which is in this 

GJ. Fuyeer, Wiener Sitzungsberichte, 103, 163 (1894). Also Conf. P, Durem, 

Recherches sur |’Elasticité. Paris 1916, 
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case certainly not so.*) The correct deviations of density in the 

solid are much smaller and have another dependence of temperature 

than that which DeBijE used. 

In connection with what we found above in point 4, at last it 

remains to be said that especially the use of statical deviations of 
density instead of the dynamic ones is a great mistake. In some simple 

cases we have been able to demonstrate that also in three dimensions 

the latter do not produce any scattering. Our conclusion therefore 

is that the molecular theory of the heat-resistance still remains 

entirely open. 

Physics. — “Contributions to the kinetic theory of solids. IN. The 

equation of state of the isotropic sold.’ By Prof. L. S. 

ORNsTEIN and Dr. F. ZeRNIKE. (Communicated by Prof. H. A. 

LORENTZ.) 

(Communicated in the meeting of June 24, 1916.) 

In this contribution we shall use the method we developed in 

our first contribution for the determination of the expansion in 

order to deduce the equation of state, i.e. the connection between 

the strain and the stress in its dependence on the temperature. In 

contribution I we have treated only the simple case that the 

strains are zero, and have determined the stress resulting from 

heating (thermal pressure). A quite analogous deduction can be 

used in order to find the stresses of a solid, which has been 

deformed at the absolute zero (equation of state). The only difference 

with the former case lies in the fact, that by this strain the solid 

generally departs from exact isotropy. Hence a more ample calcu- 

lation is necessary in the case of shearing. 

Further we shall mention the terms which present themselves if 

we take into account the remark of the note on p. 1293. 

Finally we shall show how the equation of state is also to be 

found with the aid of thermodynamic relations from the specific 

heat of solid bodies, which may be calculated from the formulae 

given by Born. This method, for the present only mentioned in 

principle, is more analogous to that of Drsyx-Everpincen than to 

our first deduction, which is purely dynamical. 

1. Now we will calculate the force necessary to give the solid 

1) See Epstein, Physik. Zeitschr. XV, 
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body a homogeneous expansion at a given temperature, so that 
é, == ==, 6, = 6, = ¢, — 0. This force consists of two parts. 

In the first place one may give the required expansion to the solid 

body at the absolute zero and thereupon supply at constant volume 

the energy necessary to give the solid body the required tempe- 

rature. Therefore the thermal pressure as calculated in our first 

contribution has to be added to the elastic tension at the absolute 

zero. 

Now in order to calculate the first part we use the expression 

for the energy 

EY pO) a OR EE 8 8 
It is immediately clear that the invariants have the following 

values 
Be valken, SE 

so that the energy takes the form: 

e= (OA + 3Be? + (27C + 9D + He? 

For the tension at the absolute zero we find consequently 

S= = = (64 VID ATC UL Gp = Bye. 

For the thermal pressure (Sp) we found in Contribution I the 

expression ; 

Uae te AE Ea 
6A 6B i 

Now A, B, C, and D are constants which ‘are relative to the 

non-deformed substance. In our case however we must replace these 

constants by their values in the strained condition when calculating 

the thermal pressure. But as the solid in that condition remains 

isotropic, the given formula still holds. We will neglect the variation 

of C and D with e as this variation is determined by terms of 

higher order in the energy, which were neglected by us. The average 

energy of the longitudinal and the transversal vibrations may change 

also. When we have to do with so high a temperature that the 

theorem of equipartition is true, that change is zero as the 

number of degrees of freedom does not change by the expansion. 

For lower temperatures where the quantum-theory must be taken 

into consideration, the change of ¢&, and ¢,. has to be taken into 

account. 

The variation of A and B with e can be found in the following 

manner. The strain can be represented by 

== 

1) Conf, for the rotations Contribution 1, 

. 
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emee, esmee en er 4 Se LE 

We introduce this into the expression for the energy and determine 

the part of the second degree with respect to the quantities e. As 

e, etc. represent the deformations from the strained condition (e), 

the coefficients of the invariants /',? and /', will give the new 
values of A and 5. We find 

A=A+(9C + 2D)e 
B=B+(3D+E)e. 

Now when we introduce these values for A’ and #4’ into the 

expression for the thermal pressure and when we add to it the 

elastic tension at the absolute zero, we find for the total tension 

in the case of equipartition 

9C42D 3D+E 
S—(6A+2B) e+(27C-+9D LE) et | 3 (6A4+2B)e+(27C4+9D +B) -( tee )e 8 

(9C+2D)? (3D4 EB)? | ( 
Ti AR 9 B? at ; | 

In this « is the total energy which is proportional to 7. Thus the 

equation of state for changes in which the solid body remains 

isotropic has been found. 
dS 

To find the modulus of compression we determine 7a: for this 
; aoe 

we find 

„_64+2B si Bie ee (a 2 wees ‘i 
3 3 54 A? 27 B? 

The factor e¢ now still depends on the temperature; to find this 

factor we can apply (3), where the last term may be neglected 

as we will confine ourselves to a linear expression in ¢. The e can 
then be found by considering the expansion at zero pressure. When 

we put in (3) S=O we find : 

ee SD+E ) 
€ 

184 9B 
GEE 6A--2B 

6A+2B (27C4+9D+E/9C+2D  3D+E 
in ice. Nr lea ames il L8A ae 2 

(9C-L2D)? (83D +E)? | (°) 
BAE es ore 

Easily the form of the equation of state can be indicated in the 

case that the quantum-theory is introduced. We will confine our- 

selves to the case of the temperatures being so low that the upper 
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limit of the integral in the expression (196), which is given by 

Born for the energy does not come into account. Then we have to 

take into consideration for the thermal pressure in formula (2) not 

only the variation of A and B with e, but also that of the longi- 

tudinal and the transversal energy. 

By application of the formulae which Born has given in $ 21, 

we find after a simple calculation as equation of state 

S= (6A + 2B)e+ (2704+ 9D + He zel 

„{BOCH2D) — HIDE — (6) 
a TL aan | \ 

into which may be introduced the values for the energy of the 

longitudinal and the transversal vibration. From this the modulus 

of compression can afterwards be calculated. We find thus 

_§A+2B  5(9C+2D)*— 5(8D + LE) — | 
UZ EL — Er — 

3 re EB 

(27C4+9DHE) \9C ee zn 5 | ) 

944+3B BA a | 
2. Now we can try to deduce the shearing stresses and their 

dependence on temperature in a way analogous to the one that 

has been used for the thermal pressure. For this purpose we can 

. de 
determine the space-time average of the force oe 

4 

We have 

= i. 3 B 4 = 5 E (ese, —,€,) Ts. z D (ee, + e¢ 16504): 

Now we have to determine the mean force when the solid body 

has a given strain e, =e in the initial condition. Thus, if we call 

again e’,...e’, the deformations from the strained condition, 

we get 

X, SSS ra, 3 B (e-+e,)+ 7 Elese, wi ey! (e +é,’) ) re 2 D (e,'+ é, +6) (e+ e‚). 

Now we have to find the space-time-average of this force. It should 

be taken into consideration that ¢,’—=e,’ =e,’ =e,’ =0, whence 

Xx, =—3 Bet} E (e, ele, ee,) = 3 D (e,'e, aD ee, Hent (8) 

The mean values e’, e’, ete. which vanish in the case the body 

remains isotropic will now, by the existence of the initial shearing 

e,—=e, have values deviating from zero in consequence of the 

fact that the body presently bebaves like a rhombic erystal. Thus 

far the calculation corresponds with that of the thermal pressure. 

The force calculated is indeed the force required to keep a certain 

deformation given at the absolute zero unchanged when the tempe- 
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rature is increased But, whereas mean forces occurring at the 

thermical pressure could be deducted at once from the energy, this 

time this is not the case, and thus here it will be necessary to 

calculate the mean values e’, e’, separately. 

This calculation of which here only the general course will be 

indicated, is performed a little more easily for another case, i.e. for 

the case that the given deformation at the absolute zero is 

t= ¢; Gn Car 6, ber eee 

Then only tensions X;, Y, and Z: occur and the mean values 

will have to be determined. 

These mean values can be found by considering the progressive 

waves in the rhombic crystal into which the body has changed by 

the deformation. 
The total change can be characterized as follows. First the energy 

in the isotropic body is divided equally in all directions over the 

waves of the same frequency; for the crystal this is not the case. 

In the second place in the isotropic substance there are longi- 

tudinal and transversal waves; with the crystal the direction of the 
displacement is no longer so simple. Now e,, e, and e, are small 

quantities, the change is therefore for both cases small; e.g. from 

the longitudinal wave arises a wave the elongation of which has a 

small inclination with respect to the wave-normal. As the effects 

are so small we are able to determine the influence on the averages 

separately. Indeed we may in calculating the influence of the new 

division of energy overlook the ‘‘declivity” of the waves, hence we 
may substitute the direction in the isotropic case for that of the 

vector of displacement. When we examine however the influence 

of the ‘declivity’, we can take into account the division of the 

energy for an isotropic body, i.e. the homogeneous distribution over 

the directions. 
As has been said above, we do not intend to reproduce here the 

calculation, but are going to show only how the elastie constants 

of the rhombic erystal are expressed in the magnitudes ev, e, e,. 

We introduce the notation of Vorer sorthat C,, €, C,3 Ca3Ca8 Coa Cas 

CysCg, are the constants of the rhombic crystal, i.e. the coefficients 

of e,?,e,e, etc. in the energy. When the strain at the absolute 

zero is represented’ by @,,¢@,,@,,0,0,0, and the arbitrary strain 

which is superposed on it by e', é, ee, e;e',, then the terms with 

C, D and E give quadratic parts in €, etc. viz. 
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3 C (es Hoe, Hed LiH De, Hes Fe) LE + | 

+ DIe, (e, He) Hes (1 + es) 4 ADE F6) | 
E [e,'e,'¢, + €, 0,6, En, — Ee, 2e, — €, Ca] 

4 1 

(9) 

These parts should be added to A/,'* + ap therefore the co- 

efficient of e',? increases by 

3C (e, + ey + es) En D (e, +f A 

that of e,e€', by 

(6C + 2D)(e, He, + ¢) + (D+ Be 

that of e',? by 

—1Dé€, He, + ¢,)— Ee, 

from which the other follow by cyclic change. In order to introduce 

the notation of Vorer also for the isotropic body one should remember 

that c¢,,=¢,,—C,,, whereas A=1c,,, B= — 2c,,. From this 

therefore the constants for the rhombic erystal are at once to be 

written down. From the elastic differential equation afterwards the 

determinant equation for the velocity of transmission in its depen- 

dence upon the direction is deduced, and also the frequency of the 

normal vibrations can be determined. The further, more detailed 

calculation will finally for the mean values in question, except the 

terms which appear also in the isotropic case, yield values which 

linearly depend on ¢,, e, and @;. 

3. In a note to our contribution (1) already we have pointed 

to the fact that the ordinary formula which was used there for the 

tension was not exact. In the following manner the accurate form 

for finite deformations is found. 

The elastic energy e can also in that case be represented by the 

already often used formula (I), provided only that the correct 

signification is assigned to the quantities e,...e,. Liet us now represent 

the differential quotients oe ae ete. by a,,, dj, ete., then we must 
Oz Oy 

take ') 

e=, + $(a1’ + 4, fart a a (11) 

e, = Ass + Asa + Aran Hr Analog T Agalaa: 

From the energy « it will be possible to find the tension A, by 

means of a virtual elongation d in the z-direction. This now has to 

be composed with the known deformation, which is determined by 

the magnitudes a,, ete. Hence a,,, a,, and a,, change and further 

also all magnitudes e. For the new values we find 

1) Vide e.g. LOVE. 
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En + (1 Ha)’ d 

ey. es ae me (| at 2a,,) d 

From: these values the variation of the energy may be found. 

Apparently now also the terms A/,* and B/, give parts which are 

quadratic in the quantities e (or a) and which therefore on the 

average do not drop off. After using the symmetry of the expression 
it is possible to put down the result as follows 

DAI" PERES 
However, another correction of the same nature will still 

be required. Above it was taken as a matter of course that 

the averages of first powers of e,...e, will be zero. Properly 

rb: : : Ou 
taken this is the case with the quantities LS aa On the other 

Mij 

hand one finds from the relations (11) 

Ehle + £4). 
This value should be taken into account if we take the mean 

value of the principal term of the tension Ax 

DAE A Bib se) 
therefore a correction is found to an amount of 

(4 +45)(,' — 27). 
Consequently on the whole,- to the thermical pressure we found 

before, 

we a 
3 1 

has to be added. 

It will be permitted to neglect.this term when the coéfficients 

C and D are large with respect to A and B. 
Of course it would be likewise possible to indicate the corre- 

sponding terms at the farther calculations of the equation of state 

which we have mentioned in this contribution. To indicate the 

principle it seemed to us to be sufficient to treat only the thermal 

pressure in this way. Further we must point out that if once these 

terms are neglected it will have no sense to make any difference 

between the density before and after the strain, when we 

calculate the energy for a unit of volume, or to take into account 

other differences of the same kind. Van Evurpincen has not always 

considered this (lc. pg. 22—23); in consequence of this there occur 

terms in his results that are of the same order as the other neglected 
‘terms, 
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4. Besides the dynamic way we developed above, there is another 

method in which the results of Born’s general theory about the 

specific heat as well as known thermodynamic relations are used. 
This method shows a certain conformity with the one used by 

DeBYr-v. EVERDINGEN, but enables us to put the problem more 

strictly, whereas it has in common with the method given above 

the advantage that it can introduce or not the theory of the quanta 

of energy and may be easily extended to the temperatures where 

the approximations of v. EVERDINGEN prevail no more. Moreover it can 

easily be extended to a theory of the equation of state of a crystal of 

any class of symmetry. Instead of using a characteristic temperature 

as v. Everpincen does — who also introduces the incorrect approxi- 

mation that there is only one characteristic temperature — the 

specific heat itself is used. Hence the approximation which 

v. EverDINGEN introduces on p. 35 of his dissertation, the conse- 

quences of which it is impossible fully to survey, viz. the application 

of formulae which prevail for the isotropic body to a aeolotropic 

body, can be avoided. 

Now the principle of our method is as follows. When the defor- 

mations e, e, e‚ are given to the body A, may be represented (as 
is demonstrated in (2)) e.g. by 

X, = X, + ae, + be, + 4) 
in which X; is the thermical pressure for the isotropic body for 

e, =e, —¢,=—0, and a and 6 are functions.of temperature. On 
account of the isotropy in X, the coefficient of e, has to be equal 

to that of e,; Y, and Z, hence follow by cyclic interchange. 

X, ete., on account of the isotropy, are at the given deformation zero. 

Now the specific heat can be calculated by application of the 

formulae of Born to the rhombiedric crystal with the e’s given 

above. As we start from an isotropic body the development of the 

specifie heat in terms of e, e, e, will only depend on tke invariants. 

So we may put 

Ce Cp iat, “ipa En. 

in which C, means the specific heat at constant e, e, e,, C‚o that 

fori rb). 

Now we can apply the thermodynamic relation 

OC, a? Xe 

de, dT? 
This gives 

d’ Xt d'a db a+ We +4 He) +7 He) =De + e+ on 
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from which follows: 

The functions of temperature @Py can be calculated from the 

formulae of Born so that A a and 4 can be determined. In a 

more detailed communication we will communicate this calculation 

itself also. 

Delft, June 1916. Phys. Lab. of the T. H. S. 

Physics. — “The influence of accidental deviations of density on 
the equation of state.’ By Prof. L. S. Ornstein and Dr. F. 

ZERNIKE. (Communicated by Prof. H. A. Lorentz). 

(Communicated in the meeting of June 24, 1916). 

In their article in the Encyelopädie der mathematischen Wissen- 

schaften the following statement by Prof. KAMERLINGH ONNEs and 

Dr, Kersom is found : 

“Da bei der Annäherung an den kritischen Punkt Liquid—Gas 

die von den BorrzMaNN-G1BBs’schen Prinzipien beherrschten Dichte- 

unterschiede (Schwarmbildung Nr 48/), der bis oo ansteigenden Zusam- 

mendrückbarkeit der Substanz wegen, besonders hervortreten, ist zu 

erwarten, dasz bei der Entwicklung der Zustandsgleichung für die 
Umgebung des kritischen Punktes nach jenen Prinzipien Glieder 

auftreten werden, die mit der grossen Zusammendrückbarkeit in der 

Nähe des kritischen Punktes zusammenhängen. Diese Glieder werden 

wahrscheinlich durch die Art der Abweichung der Zusammendrück- 

barkeit in dem kritischen Gebiet (oo im kritischen Punkt und von 

diesem aus, soweit sie das realisirbare homogene Gebiet betrifft, 

allseitig schnell abfallend) für dasselbe ein besondere Bedeutung erlangen, 

während sie für benachbarte Gebiete nicht mehr in Betracht kommen. 

Während eine allmählige Verschiebung oder Verzerrung, die sich 

durch das ganze Diagramm durchzieht, wie z. B. eine kontinuirliche 

Aenderung von a, 6, oder Ry», sich experimentell nicht besonders 

zeigen würde, werden die betreffende Glieder in der Zustandsglei- 

chung in der Nähe des kritischen Punktes demgemäss zum Schluss 

führen können, dass die Eigenschaften in diesem Gebiet in beobacht- 
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barer Weise abweichen von den Kigenschaften, die man durch Inter- 

polation zwischen Zuständen, die um den kritischen herumliegen, 

aber weiter von ihm entfernt bleiben, erwarten sollte.” 

KAMERLINGH ONNEs and Kerrsom assert to have found deviations 

pointing to suchlike causes and they have tried to account for the 
special phenomena at the critical point by adding a function of 

disturbance to the equation of state which takes specially large 
values in the critical point. 

In this contribution we will try to point out that there can be 

no question about a function of disturbance caused by the accidental 
deviations of density. 

In deducing the equation of state we will use the method of the 

virial. The virial theorem takes the form 

oF +2 (7, Xn + yk Vn + ende) d- DZ raz (rap) = 0 

if L is the kinetic energy, the coordinates of the molecules are 

Cho Yh, Zh, the distance between the centres of a pair of molecules 

h and k is rj, the external forces are X, VY; Zj, and the force 

between the pair of molecules h.k is F'(zjz). If the pressure is the 

only external force, the second average may be represented by 

— 3p V, whereas the average kinetic energy orde on the abso- 
lute temperature in the known way. *) 

We will now take into consideration the second sum. Suppose 

the volume V containing » molecules to be divided into a large number 

of elements dv;,; let the mean density in these elements be 9. Now 

consider a system in which the density in the different elements can 

be represented by o-+ ry. Then the contribution by the elements 

dv, and dv, to the sum mentioned above amounts to 

(0 + rx) (9 + va) Tae F (rat) dor dor. | 
By integrating this expression with respect to dv, and dr, over 

the volume V we get, passing to the mean values, twice the 
required sum. Taking the averages the terms ev, and or, will not 

contribute, the average of vj, = vz being zero. 

The contribution 

ffe F (rik) run dor dor, 

is the one taken into account by the usual theory, which neglects 
accidental deviations of density, and which therefore takes for @ 

the mean value, or what comes to the same, the most common 

value. Hence the correction for deviations of density appears to be 

1) Compare e.g. L. Botrzmann, Gastheorie II, p- 141. 
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ffe re rak F (rap) dor don. 

Now this integral can be transformed by means of the function g, 

which we have introduced into our considerations on the opalescence 

in the critical point. *) 

According to the definition of the function g, the mean value of 

pz if vj is kept constant may be represented by 

Ve Vp ATH) dor. 

Further we have shown that: 

VE VE = 9 (Tak) VA? dp, = 09 (TAK) 

(le; Pe (96), (8), 

Introducing this we get 

ffe rik FE (vn) 9 ak) dor don. a 

For this we may write 

n fru F (7k) g (rh k) dv 

as fo an represents the whole number of molecules. 

If we proceed to the usual first approximation regarding the terms 

of the first integral, then we find as equation of state : 

MLE & b 1 : 
Pa Eni, 1+ 7 + = mg (rk) +The» F (rag) dor 

v 

V 
where v= —, and m is the mass of the molecule. 

nm 

This formula shows that if we take into account the deviations 

of density, we find a new term in the equation of state. This term 

however is not equivalent to the function of disturbance of KAMERLINGH 

Onnes and KeesoM. The special character of the function g in the neigh- 

bourhood of the critical point causing the clustering tendency there 

to become very strong, consists in the fact that this function gets 

perceptible values for points far outside the sphere of action, so that 

= 

for the critical state lg dv does not converge any more. Pheno- 
0 

mena connected with this last integral become therefore specially 

strong at the critical point. For small values of 7, inside che sphere 

of action, g hardly changes when we approach the critical point ; 

and only these values have influence on the found term of correction. 

1) L S. Ornstein and F Zernike. The accidental deviations of density and the 

opalescence in the critical point. These proc. XVII, p. 793. 
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In this integral the function #'(rj7) is zero without the sphere of 

action, therefore this integral has only to be extended to this region. *) 

Thus the abnormal character, stated by KAMERLINGH ONNES and 

Krrsom, cannot be explained by a function of disturbance as a con- 
sequence of the accidental deviations. 

Physics. — “Contributions tosthe research of liquid crystals.” By 

Dr. W. J. H. Morr. and Prof. L. S. ORNSTEIN. (Communicated 

by Prof. W. H. Juttus). 

(Communicated in the meeting of October 28, 1916). 

1. The extinction of para-azoxyanisol in the magnetic field. 

Vorer has devoted a circumstantial report to the liquid crystals 

in the Physikalische Zeitschrift XVII 1916. In this report he points 

specially to the fact that a great uncertainty still exists on the 

influence exercised by a magnetic field on the extinction. For this 

reason we further examined the extinction. 

We will provisionally explain our method in this communication, 

and mention some of the results attained, and add a few remarks 

on a possible explanation of these results. 

§ 1. Method of observation. 
The extinetion was measured with the aid of the galvanometer 

and the thermopile described by one of us formerly.’) These sensitive 

instruments have the great advantage of indicating quickly within 

two seconds, and so they enable us to follow the changes in the 

‚ liquid erystals proceeding slowly, but nevertheless so quickly that 

they must necessarily escape the observer’s attention. 

These very changes however are of great interest in order to under- 

stand the phenomena under consideration. 

The substance is heated in a small electric oven, consisting of a 

strip of copper AA coiled at the two ends with resistance wire. 

By regulating the current sent through these coils each desired 

1) According to the explicit calculation of g, executed by one of us, the solid 

character is denoted by 7—1 e—kr, where k = 0 for the critical point. Comp. ZERNIKE, 

The clustering tendency of the molecules in the critical state and the extinc- 

tion of light caused thereby. These Proc. XVIII p. 1520. 

2) W. J. H. Mott. Proc. Kon. Acad. v. Wetensch. May and Nov. 1913. Mrs. Kipp 
and Sons were so kind as to put the apparatus at our disposal. 

84 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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temperature, up to above the second point of transition may be attained. 
In the middle of the strip between the coils a circular pole appears, 

the edge of which carries a round piece of glass, a second piece 

of glass lying on top of it with a ring of paper between them. The 

substance is put in the space between the two glasses and the ring. 

_ TO THERMOPILE 

~ FROM NERNST- BURNER 

Fig. 1. 

By the aid of two small mirrors a beam of light is sent through 

the substance from aside. During our measurements the small oven 

was placed horizontally between the poles M, and M, of a Dvsots 

magnet. This magnet is fixed on a stand that allows a rotation 

round an axis lying in the direction of AA. Therefore, when the 

poles are placed as shown in fig. 1, the field of forces will be 
in a perpendicular position, parallel to the rays of light which 

penetrate the substance. 

When the magnet is rotated 90° the lines of force are horizontal 

and will cross the rays of light perpendicularly. 

A Nernst-burner connected to a battery of accumulators produces 

the required light. On the thermopile an image of the Nernst- 

burner is formed by a hollow mirror. The rays of light on this way 

from the hollow mirror to the thermopile penetrate the substance. 

The slit in the thermopile has the same RE as the image 

of the Nernst-burner. 
In the liquid-erystalline condition the diit of the matter 

confuses the image proportionally to the opacity. So the intensity of 

the thermocurrent gives us a measure for the extinction. 

The galvanometer records were registered. 

$ 2. The measurements. 

It had appeared to us that the changes in the extinction caused, 

by the magnetic field often persisted. So it became advisable to 
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reduce the matter to its original (“virginal’’) state before the beginning 

of every series of measurings, which was effected by heating it up to 

a little above the second point of transition. The current was kept 
constant during the measurements. 

Every series of measurements progressed as follows. 

A, The radiation of the Nernsr-burner is intercepted and con- 
sequently the galvanometer records the zero-condition. 

B. The radiation is admitted, the substance being in the virginal 
condition. 

- The magnetic field is excited. 

The magnetic field is removed. 

The radiation is intercepted. 

The radiation is admitted. 

The magnetic field is excited. 

The magnetic field is removed. 

The radiation is intercepted. mm oO 

Fig. 2. Perpendicular magnetic field of 1100 Gauss. 

_ The figures 2 and 3 show the phenomenon for a field of 1100 

Gauss. 

“A ‘ E \ 
Fig. 3. Horizontal magnetic field of 1100 Gauss. 

In order to understand their meaning it may be stated that to 

magnify the ordinates implies the diminishing of the extinction. 

The difference between the two phenomena is very characteristic. 
Whereas the perpendicular field excited for the first time a 
‘temporary increase of the extinction, nothing of the sort is observed 

84* 
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when the horizontal field is excited. Whereas after the breaking up of 
the perpendicular field the extinction is much larger than in the 
virginal state, the extinction is much smaller than before after the 

removal of the horizontal field. This condition of diminished extinction 

seems to be stable, it holds during some hours; the condition of 

increased extinction, as is left after removal of the perpendicular 

field, is of a transitory nature, gradually the virginal state being 

restored. . 

We expected from theoretical considerations which will be treated 

more fully hereafter that the effect of the temporary increase of 

the extinction when a vertical field is excited would appear more 

clearly in the case of weaker fields (compare the temporary drop of 

the curve between B and C in-fig. 2). At the same time we expected 

that in the case of a sufficiently weak perpendicular field it might 

occur that the extinction of the field is on, would remain larger than 

before. 

The experiments confirmed our expectation completely as is shown 

by the following figures 

Fig. 4. Perpendicular field of 300 Gauss. 

B | 

a 

Fig. 5. Perpendicular field of 100 Gauss. 

We have also examined whether commutation of the magnetic field 

has any influence on the extinction, but we could not state such an 

influence. *) 

1) Considering the very different character which the influence of a magnetic 

field on the same preparation may have, it is easily understood that various 

observers, by visual examination of the extinction have come to quite contradictory 

results. Moreover, small impurities of the preparation and especially the state of 

the surface of the glass are of decisive influence. A further research on the 

influence of the surrounding surfaces is being prepared; we only want to remark 

that we performed these measurings with plates of glass which were not chemic- 

ally cleared. 

/ 
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§ 3. Attempt at a theory of the phenomena. 

Finely we want to make a few remarks containing aprovisional 

elementary explanation of the observed phenomena, reserving to give 

afterwards a more mathematical theory. 

We suppose that the molecules of para-azoxyanisol, as may be 

expected from the chemical constitution are of an oblong form, and 
that therefore a magnetic field will try to place their longitudinal 

axes parallel to the field. 

Further we suppose the particles to undergo a directing couple 

from the glass-wall, so that the wall tries to direct them parallel to 

itself. The forces proceeding from the wall extend like all mole- 

cular influences only to a very small distance from the wall. 

Let us admit further, that the particles influence each other, *) 

in such a way that particles try to turn their axes reciprocally 

parallel. | 

The result of the influences is that with given temperature and 

pressure two phases in equilibrium are possible, one of them being 

very sensible to a cause of outward direction, and the other not 

being so. 
In the first (the liquid crystalline) phase, there will appear in con- 

sequence of the orientating influence of the molecules on each other 

regions, wherein the axes of the molecules are grouped around a 

direction of preference. In several parts of this phase the directions of 

preference will be divided accidentically, and as a consequence of 

irregular refraction such an unarranged condition will be opalescent. 

In the other phase the effects of the molecules cannot cause 

suchlike directed regions and therefore there is no extinction. We 

hope to come back to the thermodynamics of these phases as well 

theoretically as experimentally. 

Besides the forces mentioned above the influence of the molecular 

motion, which is always opposed to the directing effect has to be 

taken into consideration. In the following we will not go into the details 

of the optical problem of extinction, but we will use in our consi- 

deration the plausible supposition that the extinction will be the 

smaller according as the arrangement is more regular. 

Let us begin our explication at the virginal state. By the influ- 

1) These latter influences cause a clustering tendency. For, if a molecule is at 

a certain point with a given direction of axis, this fact will influence the proba- 

bility of the direction of the axis of a neighbouring molecule. Consequently the 
problem with which we are occupied at present shows an analogy with the problem 

of the clustering tendency in the neigbourhood of the critical point, treated by 

Zernike and one of us, 
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ence of the wall, added to the reciprocal effect of the molecules 

(correlation) the axes will show a preference for lying in horizontal 

planes. In the horizontal plane itself, however, each direction is 

equivalent. 

Now. when we excite a perpendicular magnetic field, it tries to 

turn the molecules in a direction perpendicular to the plane of 

preference in virginal state; and the first result will be a disturb- 

ance of the order existing in the virginal state and therefore an 

increase of the extinction. Soon however a magnetic field of suffi- 

cient intensity will bring about a higher order i.e. a smaller 

extinction as is shown at C in fig. 2. A weak magnetic field 

however will only diminish the originally existing order i. e. increase 

of the extinction (see fig. 5). But a strong magnetic field has also to 

overcome the resistance of the reciprocal influence between the 

originally horizontally directed particles; therefore the slow rising 

towards C (fig. 2) is quite intelligible; whereas after F (fig. 2) 

a quicker rising can be explained, as the state of the matter there 

is such that no preference for directions parallel to the wall of glass 

is shown even at a very small distance from it. 

Let us now proceed to consider the case represented in fig. 3. 

In the virginal state (B) the molecules were lying by preference in 

the horizontal planes, the exciting of the horizontal magnetic field 

(C) not only increases this preference, but moreover calls into exist- 

ence in that horizontal lane a direction of preference. From this 

it follows that there can be no question of a temporary rising of 

the extinction at the exciting of a horizontal field. 

The different conduct at the removal of the field can be ex- 

plained too. 

After the removal of the vertical field (D and H in fig. 2) the 

heat motion has free play as no direction of preference exists at 

some distance of the walls. The directing influence of the wall 

restores but. slowly the original order by means of the mutual 

influences of the molecules. In the mean time (compare FG in fig. 4) 

if the field which has disturbed the order, is weak, the wall will 

sooner be able to recover the original state. Totally different is the 

case after the removal of the horizontal field (D and H in fig. 8). 

Here the influences proceeding from the wall, united with the mutual 

action of the molecules, practically maintain the higher order 

originated by the field. 

The fact that the commutation of the magnetic field has no influence 

on the extinction shows that the particles themselves possess no 

polar peculiarities. A research which Mr. Rocneru is working out 
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in the Physical Laboratory, had proved already that the substance 

we had under consideration is paramagnetic. 

For the moment these principal points may suffice. Perhaps we 

will discuss these questions when publishing further experimen- 

tal results. 
We gladly use the occasion to thank Prof. van Rompuren for his 

kindness in putting his preparation at our disposal. 

Summary. 
1. A new method is described to measure with the aid of ther- 

mopile and galvanometer the extinction of liquid-erystalline sub- 

stances. 
2. The very different influence on the extinction of a vertical 

(longitudinal) and a horizontal (transversal) magnetic field is traced. 

3. An explanation of the observed phenomena is drawn in outline 

whereby the principal supposition is that the wall of glass directs 
the particles in planes parallel, directs then according the lines of 

force. 
Physical Laboratory, Institute for Theoretical Physics. 

Ttrecht, October 1916. 

Physics. — “The clustering tendency of the molecules at the critical 

point’. By Prof. L. S. Ornstein. (Communicated by Prof. 

H. A. Lorentz). 

(Communicated in the meeting of May 27, 1916). 

In a former communication by Dr. F. ZERNIKE and the author *) the 

arrangement of the molecules in space using a new method of pro- 

bability is deseribed, more accurately than this was possible in the 

considerations of von SMoLvcHowsKr and Einstein; by this method 

it was also possible to calculate the opalescence at the critical point 

itself, which was impossible with the formulas of Kwersom-EINSTEIN. 

We introduced a function /, defined in the following way. Suppose that 

space is divided into a great number of elements of volumedV,dV,...dV, 

etc. The numbers »,,»,,r, etc. may represent the deviations of the 

average number of molecules in these elements. Then, if the devia- 

tions in all the surrounding elements of the working sphere are 

gwen (r‚r‚ etc), the average deviation in the element dV, may be 

represented by: 

1) Accidental deviations of density and the opalescence at the critical point of a 

single substance. These Proc, XVII, p. 793, 1914, 
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Toy dV, A ford Ve Ie: he ab (TP 

The coëfficients pk etc. indicate the asitishas of the elements. 

In a homogeneous phase they will only depend on the distance 

between the elements, whereas in a capillary transitory layer the 

function will be different. 

As we published our paper we met with difficulties in the kinetic 

deduction of formula (1), owing to the fact that we tried to work 

with mathematically infinitely small elements of volume. As Dr. 

ZERNIKE') has now solved another difficulty adhering to our con- 

siderations it is worth demonstrating that a deduction from statis- 

tical mechanics of (1) is possible. [n this way it will be possible to 

indicate the physical meaning of function f and to prove that [fd V 

taken with respect to the working sphere is at the critical point equal 

to unity, which formerly was demonstrated by an artifice. 

Starting from (12) of the cited paper the proof of formula (1) 
is very simple. 

The number ‘of the systems (3), for which in the elements dV- 

and dV, the deviations of the mean number of particles amount to 
vy, and», was found to be: | 

1 be Ad alos 
NO Os Aen al (- i C 0? og W Poo ) pe 

S= Cwrg” 2e 5 yv v do do OdV if 

VP 
. PP ot = 2 

te Pai (2) 
In this formula 9 represents the number of molecules per unit 

. n . . . ; 

of volume 6} Pe is the mutual potential energy for a couple of 

molecules the one of which is lying in the element eg, the other in 

the element t, w is the function defined in my Thesis. 

Now considering that the quantity tie) or By dik as appears from 

the equation of state) is of the order of the unity, every term of 

the form 77 
Ody 

will be small with respect to unity. Hence we may 

develop in the exponential function the part containing in v- and 
v, and write (summarising unimportant terms in the constant D): 

Wee ae , dlog 

¢—D 2, (— Pe ante do ) #7 1 Poor Pas = ANG S ee : ; 
( +o zer = ap) 6) 

!) The clustering tendency of the molecules in the critical state and the extinction 
of light caused thereby. These Proc. XVIII, p. 1520. 1916. 

\ 
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The number of systems for which v, has every possible value and 

the other »’s of the sphere of action have given values is found to be: 

rey } = ( 1 i te „log 2) 4 

DV 2x ct AE ve ij 
U 

Y rv do~ do 
hf N (4) 

The mean value of v, with given value of vp, (ro) in the sphere 

of action now becomes 
gs it Der 

ms =D = OdV 

VER i =| + Est ee 

iol OES an v vdo dy / (5) 

VAES 
€ vdo“ de ) 

From this follows 

vs == ota 34 ces DEA: abet = ahh rz (6) 
zi Ue of. ze = | 

dg" dg do’ dlogw 

Thus we have now proved (1) whereas for /,, we find 

UPor 
donee d _dlogw (7) 

0|1——o@ -- 
( do” dg 

In my Thesis I have demonstrated that the pressure in an element 

may be represented by 
2 Piss „dlogw do 

CT OE EREN 
Thus we have 

; OPsr aaa es ee et 
se 
do — al 

According to the meaning of ¢,-, | pod V taken with respect to 

the sphere of action equals « (in a homogeneous medium); we get 

therefore for / 

Fede ee GaN 

d, 
For the critical point = 0 and therefore # = 1. It is worth 

@ 
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noticing that in the deduction of (8) the fact that we have a homo- 

geneous system has not been used. The given relation holds also in 

a capillary layer. However f,- will depend on a parameter in the 

d, 
direction of the layer (for Ee depends on i) The consideration may 

9 
easily be extended to the case of a mixture and the capillary layers 

in a mixture. It will be possible then to develop MANDELSTAMM's *) 

considerations on the diffuse reflection at the layer of contact between 

two liquid phases in the critical point of mixture more exactly 

than he himself has done. 

Utrecht, Mei 1916. 

Physics. — “The dilatation of solid bodies by heat” By Prof. 
H. A. Lorenz. 

(Communicated in the meeting of October 30, 1915.) 

When in the theory of specific heat the idea had been worked 

out that the heat motion of solid bodies consists in vibrations of 

the particles under the influence of the same forces that give rise 

to the phenomena of elasticity, Desyn*) successfully attacked the 

problem of thermal dilatation. In his theory, which has been further 

developed by M. J. M. van EvERDINGEN®), it is shown that this phe- 

nomenon may be accounted for in a satisfactory way by adding in 

the expression for the potential energy of the body terms which 

are of the third order with respect to the displacements of the 

particles. 

In the present paper considerations similar to those of DrBre and 

VAN EVERDINGEN are presented in a form that is perhaps somewhat 

simpler. 

§ 1. We shall suppose the body to be isotropic or erystallized in 

the regular system. Let S be its surface and v its volume at the 

temperature 7’ and under a uniform pressure p. We can imagine 

that the particles lying on the surface are kept fixed in the positions 

about which they vibrate and that, when this has been done, the 

1) Ann. der Phys. 42. 

2) P. Depye, Zustandsgleichung und Quantenhypothese, Wolfskehl-Vorträge, 

Göttingen, 1913, p. 17; Leipzig, Teubner. 

3) M. I. M. van Everpincen, De toestandsvergelijking van het isotrope, vaste 

lichaam. Proefschrift, Utrecht, 1914. 
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inner particles are likewise deprived of their heat motion. Then they 

will take definite positions of equilibrium P, P’, P’’ ete. This con- 

figuration of the system may be considered as the result of a dilata- 

tion equal in all directions, starting from the configuration that would 

exist at the absolute zero and in the absence of external pressure. 

Now, always keeping fixed the outer particles, we may investigate 
the vibrations of the inner ones about their just mentioned positions 

of equilibrium -P, P’, P’’... This is a perfectly definite problem. It 

can be simplified in the well known way by the introduction of a 

certain number of normal coordinates q¢,,9,..-@s, Which we shall 

choose in such a manner that they are O in the position of equi- 

librium, so that they determine the deviation from that position. 

The corresponding velocities are q,,q,,---qs and if the values of 
the coordinates are not too great we have for the potential energy 

U and the kinetic energy 7’ expressions of the form 

fe ag, Te ee + as qs’) ’ : NE Ae (1) 

> C5952 H.+ Css") hem aak yey ye MA) 

with positive, constant coefficients. Further there are s fundamental 

modes of vibration. In the first of these all the normal coordinates 

except q, are 0, in the second all except q, and so on. The frequen- 

cies of these fundamental vibrations are determined by 

ds 
RE == 

Cs 

As to the deviation of a partiele from the position of equilibrium, 

its components for the first particle may be represented by 

U = 3 (4,¢,’ 

Ien 5 (e‚9,° 

S= Gt ende +. -4t- Os Js; \ 

n=8 A + B, 9, +. + Bs gs, 
by, ADL + Ys Js» 

for the second by (3) 

Bd de 94+ MRE | 

ted Gs ot Br Mak Wants B's qs 5 

S ik VN Teh aes le an Ys Qs 5 

and so on. 

Here the coefficients a, 3, 7 have definite constant values. As the 

number s of the normal coordinates is equal to that of the degrees 

of freedom of the system, viz. to three times the number of the 

particles that are assumed to be movable, all possible displacements 

af ue ö, B 1, aj 

Ju VED od Reade Ys 

may be represented by suitably chosen values of 
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§ 2. We shall now ascribe a greater mobility to the system by 

imagining that the outer particles too can be displaced, with the 

restriction, however, that for any instant their coordinates can be 

found by multiplying by ‘the same factor 1-+ q the coordinates 

which they had in the case considered in the preceding paragraph. 

Then, the quantity g, which we shall suppose to be very small 

compared with 1, will determine the position of the outer particles 

and by suitably extending the meaning of q,,....4qs, these para- 

meters may be made, together with g, to determine the position of 

the entire system. | 
Indeed; Jet’ P,P’: P's «bef the points which are found if 

the coordinates of P, P', P",... (§ 1) are altered in ratio of 1 to 

1-+q simultaneously with the coordinates of the outer points, let 
, 7,5, §',7',$’... be the components of the deviations of the particles 

from these positions P, P’, P",... and let g,, q,---qs be quantities 

connected with §&, 7,6, &',7',¢' in the way shown by equations (3), 

if we continue to-assign- toa, 8, y the values we had to give them in 

the preceding paragraph. Then it is clear that the configuration of 

the whole system is really determined by q,q,-..¢s. The quantity q 

being now considered as variable, so that, though the places of the 

outer particles 7 the surface S be prescribed, this surface, keeping the 

same form, may dilate or contract as a whole, a constant value of 

q, Le. a constant volume, can in general be maintained only by the 

application of an external force Qcorresponding to that coordinate. 

It is precisely this foree which we want to know, especially for the 

case q=0, i.e. for the configuration of the body with which we 

began in § 1. 

The value of Q is connected with that of the external pressure, 

for Q is defined by the condition that, for an infinitesimal variation 

dq of the coordinate g, the other coordinates remaining unchanged, 

the work of the external forces is Qdg. If now this change takes 
place starting from the value g — 0, all dimensions of the surface 

increase in ratio of 1 to 1 + dg. The volume increases by 3v. Òg 

and the work of the external pressure is — 3pv. dq. Hence 

QE BD peta SN 

$ 3. The force Q may be determined by means of the equations 
of LAGRANGE, as soon as the potential energy U and the kinetic 
energy J’ are known as functions of all the coordinates q and the 

corresponding velocities, 

Then we have . 
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EN CEN 
=ala) TK 

where we must remark that the first term may be omitted. Indeed, 

whatever be the value of 

OT 
a 

it certainly will be determined by the state of the body and its 

variations will therefore be limited to small changes on both sides 

of a certain mean value when the state is stationary. Then, however, 
7 

brt 
the mean value of the differential coefficient =(5-) taken over a 

q 

time of sufficient length, will be equal to zero. We hardly need 

remark that it is such a mean value of the pressure p and there- 

fore of the force Q, which we want to find. 

So we may write 

OD Ou. 
on aE Gar 

and, as we are seeking the value for the case g = 0, =) we 

may directly introduce this latter value into 7 and confine ourselves 
to terms with the first power of q when we represent U by a series. 

By putting q —0, the points P, P',... of which we spoke in § 2 

become immovable, so that we shall find the velocities of the par- 

ticles by differentiating with respect to the time their deviations 

E, 4,6, &',7',¢'... from the positions P, P’,... As now the coefficients uv, 8, 7 
in equations (3) are constants, the coordinate q does not appear 

in the expressions for the velocities and neither in 7. This leads to 

a further simplification, viz. 

ae 

0,U 
Oena vande ea 

$ 4. If, in the series for the potential energy, we confine our- 

selves, as we did in $ 1, to the terms that are of the second order 

with respect to 9,,9,---Qs, we may put 

U = $(a,9," + 429.7 +++ + asgs) H(A, + A, HA) - (6) 
It is evident that the first term, which is to represent the poten- 

tial energy for qg—=0,- must be the expression (1). Further A, is 

a constant, A, a homogeneous linear function of the coordinates 

Gy Ja -+++ Gs and A, a homogeneous quadratic function of these 

same variables. 

We have therefore, by (5) 
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Q = Ay Ap ae ee 

In this equation we must take for q¢,,9,..-.qs the values as they 

are in the heat motion such as it really is. As now in the case of 

oscillations the mean value of each coordinate g over a long interval 

of time is O, the term A, may be omitted. 

As to A,, this term represents the value of the force Q that would 
be required for maintaining the assumed value v of the volume, in 

case all the coordinates g,,...qs were 0, so that there would be no 

heat motion. For this foree we may find an expression if we 

introduce the volume v, that the body would have at the absolute zero 

if it were free from external forces. In order to maintain at this 

same temperature the volume v, which we shall suppose to be 

greater than v,, a negative pressure would have to be exerted on 

the body. It may be represented by 

v—v, 
pe ag Cee EN 

xv 

where x is a certain mean coefficient of cubical compressibility. 

Substituting this in (4) we find 

3 (vv) 
QS 

} x 

and this is the value of A,. Thus, if there is a heat motion, we 

have according to (7) 

3 3 (ev) ) 
Q= + A,. 

x 

If finally we want to know what volume the body will occupy 

in the case of a heat motion, and in the absence of an external 

pressure, we have only to put Q=0O. We then find 

v0, EE NA Sle eee 

for the connection between the heat motion and the volume, which 

it was our object to deduce. 

§ 5. As to the meaning of A, we must remember that the part 

of the potential energy which contains terms of the second order 

with respect to 9,,9,---@s, will be 

2 (2,9," ae 492 EN ars as qs”) =i qA, 

when the volume has increased to the extent determined by q. 
After this expansion to the volume (l + 3q)v the coordinates 

Gi» Jo --- Qs need no longer be normal coordinates as they were for 

the volume v; so that A, may also contain products g q;. As 
however the fundamental vibrations which constitute the heat motion, 
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must be regarded as incoherent in phase, products of this kind 

will vanish from the mean value of A,. So we obtain the right 

result, if we put | 

A, = 3 (a, gy 36 a, Us. ln Sif pn d's q's) 

Therefore, according to (9), each harmonic mode of vibration 

contributes its part to the dilatation v—v,, independently of the 

other modes. 

The first of these parts is 

GI é # a, qi) 

for which we may write 

1 0, 1 2 1 I 2 
mak dad PAG a, + $94,9,’) 

g 

or on account of the connection between q and the volume 

0 
aU eG Ardy hk Os Oa) EN dn de (10) 

Now ia, 4,’ is the value of the potential energy u, that belongs 

to the first coordinate during the heat motion in the state considered 

and ta, q,* + $ga/,g,° the value which this potential energy would 

have, if after the increase in volume determined by gq the particles 

had the same deviations determined by g,, from the positions P, P’, P",... 

specified in $ 2. 

Thus we may write for (10) 

du, 

Òv 

To calculate the differential coefficient we must attend only to 

the first coordinate g,, putting O for all the others. 

Further, in performing the differentiation we must imagine that 

in the original volume v the particles have the deviations from their 

positions of equilibrium which, in the real heat motion, correspond 

to the first mode of vibration and that, after an infinitesimal increase 

of the volume they have the same deviations from the new positions 

of equilibrium P, P’, P’,... 

Proceeding in the same way with respect to the other coordinates, 

we obtain 

Me Ow, Ou, Ous 11 
enmet +5) e e . ( ) 

oe CY) 

§ 6. The calculation of the thermal dilatation by means of this 

formula will necessarily be a rather rough one. In the first place 

it is very questionable whether for somewhat high temperatures we 
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may confine ourselves to terms of the second order with respect 

to the inner coordinates, and even if this were allowed, the difficulty 

would remain that we do not know enough about the forces acting 

between the particles to calculate the differential coefficients ef 
Vv 

For the modes of vibration in which the wave-length is many 

times greater than the distances between neighbouring particles, 

these forces, so far as they have to be considered here, are determined 

by the ordinary elastic constants. If, however, the wave-length 

becomes of the same order of magnitude as those distances, this of 

course will no longer be so and unfortunately these very short 

waves are most prominent in the heat motion. 

In his theory of specific heat however Desyk, not withheld by 

this consideration, has applied the ordinary formulae of the theory 

of elasticity to all the modes of motion with which he was 

concerned, down to the shortest waves. Encouraged by his success 

we may avail ourselves of the same simplification in the theory of 

dilatation as has been done already by him and vaN EvErRDINGEN. 

This enables us to continue the calculation of the right hand side of (11). 

$ 7. We shall introduce the two constants of elasticity 4 and 

u, which are also used by Degre and which have been chosen 

in such a way that the potential energy per unit of volume is 

represented by the expression 

uw (ar? + yy? + 22") +44 (ex + Vy + zz)? + $m (a? + y2 + 22’) (12) 

where 

el OS bi, PEs ey 
fe aen ON ay HRD Ae 

We remark that, if y is any one of these six components of 

strain, or a homogeneous linear function of some of them, we may 

write 

PVK AE pa Nn 

This is evident, if we keep in mind that, in the infinitesimal 

expansion determined by g, the quantities §,7,$ are kept constant, 

so that their differential coefficients with respect to the coordinates 

are changed in ratio of 1 to (1+ 4q)7?. 

The modes of vibration of which the heat motion consists, may 

be divided into two‘ groups, that of the longitudinal and that of 

the transverse vibrations. 

Now, if w is an element of volume, the potential energy v, contained 
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in it and proper to a mode of motion of the first group, is proportional 
to an expression of the form 

A+ 2wyte, | 
while the potential energy v‚ belonging to a mode of the second 
group is proportional to 

uy oo, 

As w changes proportionally to v, we have in virtue of (13) 

dlogv,  ‘dlog (A+-2u) 

0 log v dlogv— 
35 

Òlogv,  d d log u 
1 
3) 

dlog v T dlog v 

and this leads to similar relations for the potential energy 2, u con- 

tained in the whole body. We may write them in the form 

Ou; dlog(A+2u) 
RE TES , . . . . 14 

0 log v | d log v ye 3 oe Cz 

0 dl poe = ae | tees cdr Takee,/ ZEEE 
0 log v d log v 

These formulae, of which the first i be used for all the terms 

in (11) that correspond to longitudinal motions and the second for all 

those that refer to transverse motions, also hold for the mean values 

which we have to take on the right hand side of (11). The mean 

values both of w; and of uw, however are each half the total energy, 

and to this latter we must assign, both for the longitudinal and the 

transverse vibrations, the value ¢, which depends on the frequency 

vp in the way specitied in PLanck’s formula. 

§ 8. Let us now first consider the terms on the right hand side 

of (11) that belong to modes of motion with frequencies between 

p and r+». Let N be the total number of these modes, gN 

the number of those in which the vibrations are longitudinal and h/ 

the number of those which consist in transverse vibrations, so that 

g+h=1. To obtain 

du 

dlogv * 
for this group of terms we must multiply (14) and (15) by gN and 

hN respectively and then take the sum, replacing at the same time 

u, and w by their common value 4¢,. We shall also substitute for 

g and A the values that follow from Derpyr’s calculations. He has 

found that the number of the longitudinal and that of the transverse 

modes of motion for which the frequency lies below an arbitrarily 

85 

(16) 

Proceedings Royal Acad. Amsterdam. Vol. XIX. 
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chosen limit are to each other in ratio of (4+ 2u)~‘* to 2u". As 

this is independent of » it is also the ratio between the fractions g 

and 4. Performing the calculations indicated we find for the sum (16) 

| d log (AH 2) let 20e =| 4 og (A42) "He +a |e. 
a d log v Òlogv 

To derive from this the sum 

Ou, Ou, 4 _Òus 

Òlogv _ Òlogv "05 Òlog v 

which oceurs in (11) we have still to extend the summation to all 

the modes of motion of different frequencies. As now = Ne, is the 

total energy E of the heat motion, (11) becomes 

d log (A+ 2u)—2+ 2u—*/s paola et g AH 2) + 2u ij ln 
d log v 

(17) 

In this formula we must give as well to x as to the elastic con- 

stants 2 and u the values they would have if there were no heat 

motion, the volume being v, and strictly speaking it ought to be 

taken into account that these quantities and therefore the coefficient 

by which Z is’ multiplied are more or less dependent on that volume; 

by this the equation becomes rather complicated. The simplest results 

will be obtained for very low temperatures. For these £ is propor- 

tional to 7. Hence, if we assume that the coefficient of may be 

represented by a series 

CAL No aha oe 

we may conclude that quite near the absolute zero v—v, is propor- 

1 dv 

tional to 7'* and the coefficient of dilatation AP io “a 2 
0 

§ 9. The equation obtained for the dilatation can be still further 

simplified if one makes the assumption, rather arbitrary of course, 

that by an isotropic dilatation the coefficients A and u are made to 

change proportionally to each other. The coefficient of compressibility 

(for an infinitesimal change of volume) which has the value 

3 

32 + 2e 
and with which, in a rough approximation, we may identify the 

coefficient x occurring in our formula, will then change in the 

inverse ratio to u. We may also say that the quantity of which 

the logarithm appears in the numerator of the first fraction in (17) 

changes proportionally to x‘. Hence, denoting the pressure by p 

and using the relation 
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dlogv= — xdp 

dlogx 
v— v, =| trl, 

and if the coefficient is treated as independent of the temperature, 

dv d log x dk 
—=—| — }—*_ — 1x ‘ 
dT dp So NE 

If now @ is the density of the body, c the specific heat (the dif- 

ference between c and c‚ being considered as immaterial) expressed 
7 

in calories and A the mechanical equivalent of heat, we have = 

we have 

— Aecvv, and for the coefficient of cubical expansion 

1 dv d log x 
ee ee) eo, Se (16) 

a value that can well be positive, as the compressibility decreases 

with increasing pressure. 

§ 10. An example may teach us, whether this result agrees with 

observation, at least as to the order of magnitude. 

According to the measurements of LussaNa ') the compressibility 

of lead decreases by about 35 of its value when the pressure is 

raised to 1000 atmospheres. Therefore we have, taking the atmosphere 

as unit of pressure 

de RT 
dp 

and if p is expressed in dynes per cm? 

d log x ‘ 
BBD IL 
dp 

For the compressibility itself Lussana’s value is x = 3,9.10—?2, 

so that the coefficient of Ace in (18) becomes equal to 1,6.10-H. 

With A=4,18.10'; c=0,03 and o=11 we find a = 0,00022, while 

in reality the coefficient of expansion is 0,00008. 
For tin Lussana’s observations lead to the numbers 

d log x 
Se ae x= 4,110-P, 

dp 

Here c= 0,05 and o==7,3: This gives «a = 0,00027. The coeffi- 

cient of expansion is 0,00006. 

It is seen that the agreement is scarcely satisfactory. 

1) Taken from W. Scuut, Piëzochemie der gecondenseerde systemen, p. 72. 

Proefschrift, Utrecht, 1912. . 

É 85* 



1334 

du 
§ 11. For a few metals the value of 7 can be derived from 

«tog v 

measurements made by Poyntinc.*) This physicist has investigated 

the changes in length and diameter caused by the torsion of a wire. 

We shall shortly discuss this phenomenon, not only with a view to 

the numerical value that follows from it, but also because the 

theory shows a certain analogy with that of the dilatation by heat. 

Let us consider a cylindrical wire, the axis of which we take for 

the z-axis, and let us suppose that, starting from the unstrained 

state, it is subjected- to the following three deformations: 1. a 

homogeneous stretch in the direction of the length, 2. a dispiace- 

ment of the particles in radial direction, so that the distance 7 of 

a particle from the axis changes by sr, s being a function of7, and 

3. a torsion, by which each cross-section normal to the axis is turned 

over an angle 9z about its point of intersection with that line; then 

9 is the angle of torsion per unit of length. 

Supposing the temperature to be kept constant we shall seek the 

free energy of the body in the final state reached by these three 

steps. Assuming it to be 0 in the original state we can caleulate 

its changes by means of (12) or of similar expressions. 
d(s 7) in 

As the second of the three changes produces a stretch 
a 

radial and a stretch s in tangential direction, we obtain the free 

energy that exists per unit of volume after the first two steps if 

ds 
we replace «yy 2: in the first two terms of (12) by s,s + os 

; r 

and g. 

The result is 

ds ds\? ds £ 
ui2s + 2rs— + 15 + q' | +42 (2 +r— + ‚) (LON 

dr dr dr 

A point that originally was at a distance 7 from the axis, has now 
shifted to the distance #/—=(1 4 5)r, while an element of the length 

dl has become dl’ = (1 + q) dl. 

By the first two changes an annular element between two cylindric 

surfaces described about the axis with the radii 7 and r+ dr, and 

further limited by two cross sections at a distance d/ from each 
other, will have taken a volume for which with the approximation 

required for our calculation we may write 

1) PoynriNG, On the changes in the dimensions of a steel wire when twisted, and 
on the pressure of distortional waves in steel, Proc. Royal Soc. (A) 86 (1912), 

p. 524. 
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1. 
27 (: + 2s+ r _ | i) OP Ob rg od a 

Now to obtain the free energy in the state S that is reached by 
the first two deformations we should have to multiply (19) by this 

expression (20), and then to integrate it with respect to r and /. 

For this calculation however we may replace (20) by 2ardr d/, 

because in the expression for the free energy we shall omit terms 

that are of an order higher than the second with respect to gand s. 

§ 12. To caleulate now the change of the free energy accom- 

panying the third deformation specified in § 11, we shall consider 

the state S as the original one and introduce elastie constants refer- 

ring to it. On account of the preceding deformations determined by 

q and s, these constants are a little different from the values 2 and 

uw introduced into (12). To find an expression for them we regard 

the quantities q and s as infinitely small and neglect their second 

and higher powers. The change we are investigating being propor- 

tional to #*, we obtain in this way terms with 9° and 59? 

A point which in the state S has the coordinates x, y, z and 

lies at a distance r’ from the axis, is displaced by tie torsion 9 over 
the distances 

§ = — Dyz, n= + Bez, Cae 

to which correspond the components of strain 

Ge apa Oy Pea Ue rly ay ‘= Use Deken. 

Let us now consider an element of volume which in the state S 

lies at a distance 7 from the axis and for which «=0, y=r". The 
preceding changes have given to this element the stretches x == s, 

Yos+ ro and 2=g in the direction of the axes, without other 

changes of form. By the torsion it is now further subjected to a 

shear x= — 9r'. . 

It is evident that the change in free energy per unit of volume 

caused by this shear will be obtained by multiplying 4e.” by a co- 

efficient mw’, which is the coefficient of rigidity u as it has been 

modified by the dilatations x, y, z. In calculating this modification 

we may treat X, y, Z as infinitely small. it can be shown that 

w=u(l +2) dax) by, .... . (21) 

where @ and 5 are two constants depending on the nature of the 

material '}. In this way we find for the change of the free energy 

1) In my original paper I had used a wrong formula, in which the term 2 u z 

was wanting, an error that has been pointed out by Mr. Trestine in his paper: 

On the use of third degree terms in the energy of a deformed elastic body, (These 
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per unit of volume caused by the torsion 
1 

uw (1+ 29+ 2s) + a (9+3s) + (sts ral 9, 
7 

La 

Proceedings, 19 (1916), p. 281). I shall avail myself of the occasion of this trans- 

lation for introducing the corrections necessitated by his remark. 

In deducing the new equation (21) we need not occupy ourselves with the term 

by; we have only to show that 

u'=u(l + 22) + a(X + 3B), 

if y =O. By this latter assumption the problem is reduced to one in two dimen- 

sions, which may be treated as follows. 

Let x, 2 be the coordinates of a point in the original state and «+ £, 2 

its coordinates in the strained state, the displacements £, & being functions of «x, 

z. We shall consider the free energy per unit of volume at the point x- &, 

zt as compared with the free energy which we had originally in unit of 

volume. 
The difference ~ must be a function of the quantities 

fe) we AE OEE 
DH op ea ee oe 

and can be developed in ascending powers of these, the series beginning with 

quantities of the second order and terms of the third order being necessary for 

our purpose. 

As we may assume that the free energy is the same in the body considered 

and in a second body that is the image of the first with respect to a plane 

perpendicular to one of the axes of coordinates, the expansion can contain no 

terms that are of an odd order with respect to bj and bj. Moreover the value 

of W must remain the same when the axes are’ rotated in their plane. These 

considerations lead to the formula 

w =f (a, sd) (6, —6,)* ++ bh @, a, — 6, De) (A A) He 

Bais SN, bi Dt tt Garry AN (ety 074s) 

with six constants /,g,h,k,/,m, which can be easily verified. Indeed it can be 

shown that the values of aj + d3, bj — bg and a 43 — bj bz are not altered by 

a rotation of the axes. 

Let us next suppose the body, strained already in the way determined by 

di, da, Dj, Dz, lo be rotated about O Y through an infinitely small angle w. This 

rotation, which must leave the value of J unchanged, leads to the variations 

dE owlet), doet §), 

O(a, + a,) =o (6, — 6,), 0(6, — b,.) = — 2 0— w (a, + a,) 
Ora —— — es) 

Substituting these values in dy and putting equal to O the coefficients of the 

terms that are of the first and the second order with respect to dh, ay Di, 5, one 

is led to the relations 

heet We yg ad, 

> 

so that 
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where r’ has been replaced by (ls) 7 and where, as to g and s 
we have neglected terms of orders higher than the first. 

Multiplying this by (20), integrating over the cylinder and adding 
the result to the free energy in the state S, of which the value 
has been found already, we obtain for the free energy in the final 
state 

R 

Sap if 9 TU ke : ds \? | EEn ds 2 
wan u 8 En +7 ae Hg +} A Ue eee + ‚) [rw 

8 a 

R 

10° ds ds 
fe (1 + 4s+-r— + 1)-+a+9)+ b (s+ =) | dr . (22) 

l dr dr 
0 

where the original length and radius are denoted by / and R, 
iJ 

(+g) 

-4- 

and the total angle of torsion by 9, so that 9 = 

§ 13. Now @,q and the value s, which s assumes for r— R, 

may be regarded as the parameters upon which external forces can 

act directly. If these parameters are kept fixed, we can determine 

the values of s within the wire by means of the condition that, for 

an arbitrary infinitesimal variation ds given to them, dw must be 0. 

For constant values of @ and q we have by (22) 

R R 

dds 
dp | Gdsdr + eae Ty eenen aA) 

i ls 
0 0 

where 

w =f @, daje oe J Bij Ot 4g Als 0;,0,) zis k (a, SiGe): te 

+1(a, da) (6, —6,)? Hf 2g — Al) (a, + 4,) (a, a, — 4, 6). 
In the case considered in the text the final values of £ and Z (after the 

application of the torsion) are 

§é=—=xe—d8(1i+2_)r2=—=xe+r1+2)2, $'=2z, 

if x, 2 are the coordinates in the original state (before the application of the 
dilatations x, z). Hence 5 

ia dr eve (1 Ae), 8; =O 

If these values are substituted in the expression for &, the coefficient of x-? will 
give us the value of 3 «’. Hence 

wig 422) HKH), 

or, if we replace 2/ by a and observe that, for x=0, z=0, u’ must be 

equal to g, 

u=u(l +22) +a(x Jz). 



1338 

5 ds ao . 
G = dl E (A--p) rs 4-2 (4 +p) 7? = +22 ae rk 4 +a-+6)7r*.(24) 

jd . 

1 xO’ 
F — Bl E (A+ u)r?s+ (44 2u) 7? =. + a | “+ 5, (u+b)r* . (25) 

fie 

By partial integration of the second term (23) becomes 

Re 
ae momma | 

y= Pes + | (¢ — — | dsdr. 
| | dr 

Oe 

N ; ds | 
As for r=0 the dilatations s and r = must have finite values, 

ar 

the function # vanishes for r =O, so that we obtain 

R 
3 dF 

dy = Ff. _ pds +f («- =) O8 OF KZ a hee (26) 

0 

If now we put ds —0, only the last term remains, so that we are 

led to the condition 

ree 27) Se aS lee cease 

or after some transformation 

d ds Ob 
—_ {rz — 7, 
dr dr 20 24+ Zy 

, ds 
But for r= 0 we may put 7° 3, — 0. We find therefore 

ar 

CO a—dsb 

TT 16 A+ 2u 

If this value is substituted in (22) we obtain w as a function of 

the external parameters @,s and g. By differentiation with respect 

to these variables we may calculate the external forces corresponding 

to them. We need only the two last ones, S and Q, of which Sis 

immediately determined by (26). For according to this formula we 

have 

GEER) TBS SS ee 

dp— Ff _ p58, 

so that 

ow 
SSS hee 

ds t 

which can be calculated by means of (25) and (28). As to 

Ow Q=— 
0g 
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this quantity is found if, after differentiating in (22) under the signs 

of integration we substitute the value (28) and then perform the 

integrations. 

The result is 
9 rr né 

S—=2all[AR’q + 2(À + u) A's] + zr Ge + a + b) R' 

Q= al [(à + 2) Bq 4 ARB] 4 p(w + a) Re. 

If no stretching forces act on the ae of the wire, nor any forces 

on the surface, we have Q=0, S=0O, so that 
YR R? 

ES an — (pp a B) ee SM) 

Ter 
(4 + 2u)q-+ 228 = ris: es nd Vilalta bo) te! op NU) 

When the coefficients of elasticity 2, u and the coefficients a and 5 

are given, we can derive from these equations the changes | in 

length and diameter (q and s) caused by a torsion. 

§ 14. We shall use formulae (29) and (30) to calculate the 

coefficients a and 6 from Poyntina’s measurements. 

PoyntinGc has worked with two steel wires and one copper wire, for 

and which he has determined in the first place Youne’s moduius — ats 
2u 

À 
Poisson’s ratio BĲ) From these quantities we can calculate 2 and yu. 

Further he has measured g and s, so that a and 5 can be found. 

The results are given in the following table, in which everything 

has been expressed in C.G.S. units. The length of the wire was in 

all cases 

/=160,5 em 

and the numbers given for g-and s refer to the value @ = 2,7; so 

they indicate by what part of the original value the length and the 

diameter change, if one end of the wire is once twisted round. 

Steel 1 

Steel 2) 

Copper 

NE eg 
0,0493  2,12.10!2 0,270 9,77. 10'18,35. 10!1|1,71.10—6|—3,19. 10-7 —5,03. 1012, 0,58. 1012 

0,0605 | 2,12. 1012 0,287 11,09. 1011.8,24. 1011/2,90, 10-6 —5,24. 10-7 —5,70. 1012, 0,10. 1012 

0,06095 | 1,31. 1012 0;331 | 904. 1011492. 10114,25.10-6 ,75.10-6 —3,94. 1012 3,37. 1012 
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dlogu 
— by means of the values 

Og v 

found for a and 6. Let us suppose the metal to be stretched equally in 
all directions, so that there is an infinitely small eubical dilatation 
dlogv. Then we have according to (21) in which expression we 
must put x=y=2z=—4 dlogv, 

du = $(2u + 2a4b) d log v, 

dlogu 2u + 2a+b 

dlogv Ju 

$ 15. We can further calculate 

To calculate from this the coefficient of dilatation, we shall 
suppose that, when the volume is increased, 2 and « change propor- 
tionally to each other. 

The differential coefficient in (17) then becomes 

„ dlog u 
2 : 
d log v 

and the formula itself 

___,dlogu IE 
VU, = 24 -—1]|E. 

: 3 dlog v i 

Treating the coefficient of / as a constant (comp. § 9) we find 
from this for the coefficient of cubical expansion 

1 lox 
== DA eme ie 1 | Aco. 

* dlog v " ; 

If the coefficient of compressibility x is derived from 2 and wu, 

this equation gives the following results: 

Pr | ro 5 | vii a 
dlog tl x Cc o == 

| dlogv calc.” |” Obs: 

| | 
Steel 1 234, die | 0,11 | 18 | 32.105 | 33.105 

y 2 Ss ODI OL fees: 3,6.10—5 | 3,3. 10 

Copper | | 7,7.10—13 | 0,093 89 | 28.105 | 5,1.10—5 

The only inaccuracy in the above calculation of the terms in (41) 

corresponding to transverse vibrations is the application of the 

ordinary formulae of the theory of elasticity to very short waves. 

For the determination of the terms referring to the longitudinal 

vibrations, however, we had to make the assumption that 4 changes 
proportionally to uw. As however the transverse vibrations have a 

greater part in the heat motion than the longitudinal ones we may 
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perhaps hope that the error introduced by this assumption will not 

be considerable *). 

We mentioned already the analogy between the problem treated 

in $$ 11—18 and that of the thermal expansion. In the one case 

the torsion plays the same part as the heat motion in the other 

and the quantities that have been indicated by q in the two 

problems are comparable with each other; the similarity of the mathe- 

matical treatment in the two cases is likewise evident. PoyNriNG 

remarks that a dilatation of the wire will also take place when it 

executes torsional vibrations or when vibrations of this kind are 

propagated in it. With similar phenomena we are generally concerned, 

when an elastic body is traversed by waves, and when we consider 

the very short waves especially, this leads us directly to an insight 

into the nature of thermal dilatation. 

Finally it deserves our attention that, though the phenomena 

discussed in this paper are chiefly determined by the change of the 

elastic constants caused by a previous deformation, yet there are 

as well in equation (17) as in (29) and (30) terms that are independent 

of this change. . 

Physics. — “On Einsteins Theory of gravitation.” I. By Prot. 

H. A. Lorenz. 

(Communicated in the meeting of February 26, 1916). 

§ 1. In pursuance of his important researches on gravitation 

Einstein has recently attained the aim which he had constantly kept 

in view; he has succeeded in establishing equations whose form is not 

changed by an arbitrarily chosen change of the system of coordinates *). 

Shortly afterwards, working out an idea that had been expressed 

already in one of Erystern’s papers, HiBert*) has shown the use 

that may be made of a variation law that may be regarded as 

Hamitton’s principle in a suitably generalized form. By these results 

the “general theory of relativity” may be said to have taken a 
definitive form, though much remains still to be done in further 

1) This paper had already gone to press, when an article of FöRSTERLING 

came under my notice (Ann. d. Phys. 47 (1915) p 1127) in which considerations 

similar to those here developed are put forward. 
2) A. Einstein, Zur allgemeinen Relativitätstheorie, Berliner Sitzungsberichte 

1915, pp. 778 799; Die Feldgleichungen der Gravitation, ibid. 1915, p. 844. 

3) D. Hizpert, Die Grundlagen der Physik |, Göttinger Nachrichten, Math.-phys. 

Klasse, Nov. 1915, 
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developing it and in applying it to special problems. It will also be 

desirable to present. the fundamental ideas in a form as simple as 
possible. ‘ 

In this communication it will be shown that a four-dimensional 

geometric representation may be of much use for this latter purpose ; 

by means of it we shall be able to indicate for a system containing 

a number of material points and an electromagnetic field (or even- 

tually only one of these) the quantity H, which oeeurs in the variation 

theorem, and which we may call the principal function. This quantity 
consists of three parts, of which the first relates to the material 

points, the second to the electromagnetic field and the third to the 

gravitation field itself. 

As to the material points, it will be assumed that the only con- 

nexion between them is that which results from their mutual gravi- 

tational attraction. 

§ 2. We shall be concerned with a four-dimensional extension R,, 

in which “space” and “time’’ are combined, so that each point P 

in it indicates a definite place A and at the same time a definite 

moment of time ¢. If we say that P refers to a material point we 

mean that at the time ¢ this point is found at the place A. In the course 

of time the material point is represented every moment by a new 

point P; all these points lie on the “world-line’, which represents 

the state of motion (or eventually the state of rest) of the material 

point’). In the same sense we may speak of the world-line of a 

propagated light-vibration. An intersection of two world-lines means 

that the two objects to which they belong meet at a certain moment, 

that a “coineidence” takes place’). Now Einstein has made the 

striking remark*) that the only thing we can learn from our 

observations and with which our theories are essentially concerned, 

is the existence of these coincidences. Let us suppose e.g. that we 

have observed an occultation of a star by the moon or rather the 

reappearance of a star at the moon’s border. Then the world-line of 

a certain light-vibration starting from a point on the world-line of 

the star has in its further course intersected the world-line of a 

‘) It will be known that in the theory of relativity Minkowskr was the first who 

used this geometric representation in an extension of four dimensions. The name 

‘“‘world-line’” has been borrowed from him. 

*) For the sake of simplicity we shall imagine the two motions not to be 

disturbed by this coincidence, so that e.g. two material points penetrate each other 

or pass each other at an extremely small distance without any mutual influence. 

5) In a correspondence I had with him. 
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point of the border of the moon and finally that of the observer’s 
eye. A similar remark may be made when the moment of reappear- 
ance is read on a clock. Let us suppose that the light-vibration 
itself lights the dial-plate, reaching it when the hand is at the 
point a; then we may say that three world-lines, viz. that of the 
light-vibration, that of the hand and that of the point a intersect. 

§ 3. We may imagine that, in order to investigate a gravitation 
tield as e.g. that of the sun, a great number of material points, 

moving in all directions and with different velocities, are thrown 
into it, that light-beams are also made to traverse the field and that 

all coincidences are noted *). It would be possible to represent the 

results of these observations by world-lines in a four-dimensional 

figure — let us say in a “field-figure” — the lines being drawn in 

such a way that each observed coincidence is represented by an 
intersection of two lines and that the points of intersection of one 
line with a number of the others succeed each other in the right order. 

Now, as we have to attend only to the intersections, we have a 

great degree of liberty in the construction of the “field-figure”. If, 
independently of each other, two persons were to describe the same 
observations, their figures would probably look quite different and if 
these figures were deformed in an arbitrary way, without break of 
continuity, they would not cease to serve the purpose. 

After having constructed a field-figure # we may introduce “coor- 

dinates”, by which we mean that to each point P we ascribe four 

numbers #,, @, #, v,, in such a way that along any line in the 

field-figure these numbers change ‘continuously and that never 

two different points get the same four numbers. Having done this 
we may for each point P seek a point P’ in a four-dimensional 

extension A’, in which the numbers v,,...a, ascribed to P are 
the Cartesian coordinates of the point ’. In this way we obtain in 
h’, a figure #”, which just as well as Fean serve as field-figure and 
which of course may be quite different according to the choice of 

the numbers 2,...a, that have been ascribed to the points of F. 

If now it is true that the coincidences only are of importance it 
must be possible to express the fundamental laws of the phenomena 
by geometric considerations referring to the field-figure, in such a 

way that this mode of expression is the same for all possible field- 
figures; from our point of view all these figures can be eonsidered 
as being the same. In such a geometric treatment the introduction of 

') In other terms, that the data procured by astronomical observations can be 

extended arbitrarily and unboundedly. 
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coordinates will be of secondary importance; with a single exception 

($ 13) it only serves for short calculations which we have to inter- 

calate (for the proof of certain geometrie propositions) and for 

establishing the final equations, which have to be used for the 

solution of special problems. In the discussion of the general prin- 

ciples coordinates play no part; and it is thus seen that the formu- 

lation of these principles can take place in the same way whatever 

be our choice of coordinates. So we are sure beforehand of the 

general covariancy of the equations that was postulated by EiNsrrrn. 

§ 4. Einstein ascribes to a line-element PQ in the field-figure a 
length ds defined by the equation 

== 5 (ab) Jap dba day oe (1) 

(Jab = ba) 

Here dv,...du, are the changes of the coordinates when we pass 
from P to (}, while the coefficients gq, depend in one way or another 

on the coordinates. The gravitation field is known when these 10 

quantities are given as functions of .c, ...2,. Here it must be remarked 

that in all real cases the coordinates can be chosen in such a way 

that for one point arbitrarily chosen (1) becomes 

ds* = — dz,* — dx,? — da,’ + de. 

This requires that the determinant g of the coefficients of (1) be 

always negative. The minor of this determinant corresponding to 
the coefficient g,, will be denoted by Gs. 

Around each point P of the field-figure as a centre we may now 

construct an infinitesimal surface’), which, when P is chosen as 

origin of coordinates, is determined by the equation 

oD heb) Gas that SES cd len (2) 

where « is an infinitely small positive constant which we shall fix once 

for all. This surface, which we shall call the @dicatríz, is a hyper- 

boloid with one real axis and three imaginary ones. We shall also 

introduce the surface determined by the equation 

| te te NEN 

which differs from (2) only by the sign of «?. We shall call this 

the conjugate indicatrix. It is to be understood that the indicatrices 
and conjugate indicatrices. take part in the changes to which the 

field-figure may be subjected. As these surfaces are infinitely small, 

= (ab) gu, vaa, = -— EE 

1) A “surface” determined by one equation between the coordinates is a three- 

dimensional extension. It will cause no confusion if sometimes we apply the name 

of “plane” to certain two-dimensional extensions, if we speak e.g. of the “plane” 

determined by two line-elements. 
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they always remain hyperboloids of the said kind. The gravitation 
field will now be determined by these indicatrices, which we can 

imagine to have been constructed in the field-figure without the in- 

troduction of coordinates. When we have occasion to use these 

latter, we shall so choose them that the “axes” «,, v,,., intersect 

the conjugate indicatrix constructed around their starting point, 

while the indicatrix itself is intersected by the axis z,. This involves 

that the coefficients g,,,9,,, Jo, ave negative and that g,, is positive. 

§ 5. The indicatrices will give us the units in which we shall 

express the length of lines in the field-figure and the magnitude of 

two-, three or four-dimensional extensions. When we use these 

units we shall say that the quantities in question are expressed in 

natural measure. 
In the case of a line-element PQ the unit might simply be the 

radius-vector in the direction PQ of the indicatrix or the conjugate 
indicatrix described about P. It is however desirable to distinguish 

the two cases that PQ intersects the indicatrix itself or the conjugate 

indicatrix. In the latter case we shall ascribe an imaginary length 

to the line-element’). Besides, by taking as unit not the radius- 

vector itself but a length proportional to it, the numerical value of 

a line-element may be made to be independent of the choice of 

the quantity «. 

These considerations lead us to define the length that will be 

ascribed to line-elements by the assumption that each radius-vector 

of the indicatrix has in natural measure the length ¢, while each 

radius-vector of the conjugate indicatrix has the length ve. *) 

It will now be clear that the length of an arbitrary line in the 

field-figure can be found by integration, each of its elements being 

measured by means of the indicatrix or the conjugate indicatrix 

belonging to the position of the element. In virtue of our definitions 

a deformation of the field-figure will not change the length of lines 
expressed in natural measure and a geodetie line will remain a 

geodetic line. 

§ 6. We are now in a position to indicate the first part /7, of 

the principal function (§ 1). Let o be a closed surface in the 

field-figure and let us confine ourselves to the principal func- 

1) This corresponds to the negative value which (1) gives for ds?. 

2) For a radius-vector on the asymptotic cone we may take either of these 

values; this makes no difference, as the numerical value of a line-element in the 

direction of such a radius-vector becomes O in both cases. 
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tion so far as it belongs to the space 2 enclosed by that surface. Then 

the quantity H, is the sum, taken with the negative ‘sign, of the 

lengths of all world-lines of material points so far as they lie 
within 2, each length multiplied by a constant m, characteristic of 

the point in question and to be called its mass. *) 

lt must be remarked that the elements of the world-lines of 

material points intersect the corresponding indicatrices themselves. 

The lengths of these lines are therefore real positive quantities. 

A deformation of the field-figure leaves H, unchanged. 

$ 7. We shall now pass on to the part of the principal function 

belonging to the gravitation field. The mathematical expression for 

this part was communicated to me by Einstein in our correspondence. 

It is also to be found in HrrBerT’s paper in which it is remarked 

that the quantity in question may be regarded as the measure of 

the curvature of the four-dimensional extension to which (1) relates. 

Here we have to speak only of the interpretation of this quantity. 

To find this the following geometrical considerations may be used. 

Let PQ and PR be two line-elements starting from a point P 

of the field-figure, QR the line-element joining the extremities Q and 
R. If then the lengths of these elements in natural measure are 

PQ=ds', PR=ds", QR=ds, : 

we define the angle (s',s") between PQ and PF by the well known 

trigonometric formula 

ds? = ds? + ds"* — 2ds'‘ds" cos (s', s") , 

ds'? +- ds''* — ds? 
> . ‚f " —_——=—— nn COS (s 78 ) Das'ds" (4) 

from which one can derive 

i é dà dz" 
cos (eye p= 2 (allante (5) 

ds’ ds" 

By means of this formula we are able to determine the angle 

between any two intersecting lines. Of course the two other angles 

of the triangle PQR can be calculated in the same way. 

Now two cases must be distinguished. 

a. The plane of the triangle PQR cuts the conjugate indicatrix, 

but not the indicatrix itself. Then the three sides have positive 

imaginary values. Moreover each of them proves to be smaller than 

1) This agrees with the value of the LaAGRANGIAN function, which is to be found 

e.g. in my paper on “Hamitron’s principle in Einstein's theory of gravitation.” 

These Proceedings 19 (1916), p. 751. 

Ke eT 
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the sum of the others, from which one finds that the angles have 
real values and that their sum is a. 

b. The plane PQR cuts both the-indicatrix and the conjugate 
indicatrix. In this case different positions of the triangle are still 

possible. We can however confine ourselves to triangles the three 

sides of which are real. These are really possible, for in the plane 

of a hyperbola we can draw triangles the sides of which are parallel 

to radius-veetors drawn from the centre to points of the curve (and 

not of the conjugate hyperbola). 

By a closer consideration of the triangles now in question it is 

found however that by the choice of our “natural” units one side 

is necessarily longer than the sum of the other two. Formula (4) 

then shows that the cosines of the angles are real quantities, greater 

than 1 in absolute value, two of them being positive, and the third 

negative. We must therefore ascribe to the angles imaginary or 

complex values. If for p >> +1 we put 

arc cos p = ilog (p + Vp? — 1) 

and 
are cos (— p) = 1 — are cos p , 

we find for the three angles expressions of the form 

. ta, ti? and w—-7(a + B), 

so that the sum is again a. — 

From the cosine calculated by (4) or (5) the sine can be derived 

by means of the formula 

sin p == V 1 — cos? , 

where for the case cos? p >1 we can confine ourselves to the value 

sin gp =iV cos? p —1 

with the positive sign. 

It deserves special notice that two conjugate radius-vectors of 

the indicatrix and the conjugate indicatrix are perpendicular to each 

other and that a deformation of the field-figure does not change the 

angle between two intersecting lines determined according to our 

definitions. 

$ 8. Before proceeding further we must now indicate the natural 

units ($ 5) for two-, three-, or four-dimensional extensions in the 

field-figure. Like the unit of length, these are defined for each 
point separately, so that the numerical value of a finite extension is 

found by dividing it into infinitely small parts. 

A two-dimensional extension cuts the conjugate indicatrix in an 

ellipse, or the indicatrix itself and the conjugate indicatrix in two 

86 
Proceedings Royal Acad. Amsterdam. Vol. XIX 

- 
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conjugate hyperbolae. In both cases we derive our unit from the 

area of a parallelogram described on conjugate radius-vectors. 

A three-dimensional extension cuts the conjugate indicatrix in an 

ellipsoid, or the indicatrix and its conjugate in two conjugate hyper- 

boloids. Now our unit will be derived from the volume of a 

parallelepiped described on three conjugate radius-vectors. 

In a similar way the magnitude of four-dimensional extensions 

will be determined by comparison with a parallelepiped the edges 

of which are four conjugate radius-vectors of the indicatrix and the 

conjugate indicatrix. 

* It must here be kept in mind that, according to well known 

theorems, the area of the parallelogram and the volume of the 

parallelepipeds in question are independent of the special choice of 

the conjugate radius-vectors. 

We shall further specify the units insuch a way (comp. § 5) that the 

numerical magnitude of a parallelogram or a parallelepiped described 

on conjugate radius-vectors is found by multiplying the numbers by 

which the edges are expressed in natural measure. 

From what has been said it follows that the area of the paral- 

lelogram described on two line-elements is given by the product of 

the lengths of these elements and the sine of the enclosed angle. 

Similarly the area of an infinitely small triangle is determined by 

half the product of two sides and the sine of the angle between them. 

We need hardly add that the numerical value of any two-, three- 

or four-dimensional domain expressed in natural measure is not 

changed by a deformation of the field-figure. 

§ 9. Let, at any point P of the field-figure, 1, 2, 3, 4 be four 

arbitrarily chosen conjugate radius-vectors of the indicatrix. Two 

of these determine an infinitely small part V of a two-dimensional 
extension. We may prolong this part to finite distances from P 

by drawing from this point geodetic lines whose initial directions 

lie in the plane V. In this way we obtain six two-dimensional 

extensions (1,2), (2,3), (3,1), (1,4), (2,4) and (3,4). Let us now con- 

sider in one of these e. g. (a, 6) an infinitesimal triangle near the point P, 

the sides of which are geodetie lines (viz. geodetic lines zn (a, 6)). If in 

calculating the angles of this triangle we go to quantities of the second 

order with respect to the sides and to the distances from P, the sum | 

s of the angles proves to have no longer the value a (comp. $ 7). 

The ‘‘excess” ¢—=s — is proportional to the area A of the triangle, 

independently of the length of the sides, of their ratios and of the 
position of the triangle in the extension (a,b). For the three exten- 
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sions (1,2) (2,3), (3,1), which do not intersect the indicatrix itself 

but the conjugate indicatrix, this proposition follows from a well- 

known theorem of Gauss in the theory of curvature of surfaces ; 

for the other three (1,4), (2,4), (8,4), which cut the indicatrix itself, 

the proof can be given by direct calculation. The considerations 

necessary for this, and some other calculations with which we shall 

be concerned further on will be communicated in a later paper. 
In considering the three last-mentioned extensions I have confined 

myself to triangles with real sides ($ 7, 0). 

The quotient 

é 

A — Lab 

is now for each extension a definite number, which we may consider 

as a measure of the curvature of the two-dimensional extension 

(a,b); the sum K of the six numbers A,, may be called the cur- 

vature of the field-figure at the point P in question. This quantity 

is the same that has been introduced by HirBerr ; this results from 

the calculation of its value, which at the same time shows K to 

be independent of the special choice of the directions 1, 2, 3, 4 
introduced in the beginning of this §. 

The numbers A, are all real and have a meaning that can be 

indicated without the introduction of coordinates; moreover their 

sum C is not changed by a deformation of the field-figure. 

If now d®2 is an element of the four-dimensional extension 

of the field-figure, expressed in natural measure, the part of the 

principal function belonging to the gravitation field is 

a, == | Kae, . Se Rear cue? delen 

where the integration is extended to the domain considered (§ 6) 

while x is the gravitation constant. HH, too is not changed by a 

deformation of the field-figure. 

The factor 7 has been introduced in order to obtain a real value 

for H,, the element d being represented in natural measure by a 

negative imaginary number ($ 8). 

§ 10. What we have to say of the electromagnetic field must be 

preceded by some considerations belonging to what may be called 

the “vector theory” of the field-figure. 

A line-element PQ, taken in a definite, direction, (indicated by the 

order of the letters), may be called a vector. Such vectors can be 

compounded or decomposed by means of parallelograms or paral- 

lelepipeds. Especially, when coordinates #,,...«, have been chosen, 
86* 
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a vector may be resolved into four components which have the 

directions of the coordinates, viz. such directions that a shift along 

the first e.g. changes only v,, while v,, 7,, «, remain constant. The 

four components in question -are determined by the differentials 

dv,,..dv, corresponding to PQ. We shall say that by these they 

are expressed in ‘\v-measure’. Their values in natural measure are 
found by multiplying de,,. .de, by certain factors. If we keep in 

mind that the radius-vectors of the conjugate indicatrix and the 

indicatrix in the directions of the axes are expressed in “wv measure” by 

é . é € € 

Vo, 
’ = 9 

V—g,, Vv —4g,, Vg 

and in natural units by 

’ 

16. VE, 26,52 © 

we find for the reducing factors 

et) aa ee =| Ef Sik a ae L—=V4q,, : (7) 

In the language of vector-analysis the vector obtained by the 

composition of two or more vectors is also called the sum of these 

vectors. . 
We shall also speak of jizte vectors, i.e. of directed quantities 

which can be represented on an infinitely reduced scale by line- 

elements in the field-figure. If w is the constant “reduction factor” 

chosen for this purpose, a vector A will be represented by a line- 

element wA, the direction of which is also ascribed to A. ‘It will 

now be evident that two finite vectors, as well as two infinitely small 

ones, determine an infinitesimal two-dimensional extension and that 

finite vectors can be compounded and resolved by means of parallelo- 

grams and parallelepipeds. Also that we may speak of the “magnitude” 

of such figures, that e.g. the rule given in § 8 applies to the parallelo- 

gram described on two vectors. 

The components of a vector in the directions of the coordinates 

expressed in v-measure will be called X,, X,, X,, ,. This means 

that wX,,...wX, are equal to the differentials dz, ,...de, cor- 

responding to the infinitely small vector wA. 

If we want to know the components of A in natural units we 

must multiply X,,...X, by the factors (7). 

§ 11. Two vectors A and B starting from a point P of the field- 
figure and lying in a plane VV, determine what we shall call a 
rotation R in that plane. We ascribe to it the direction indicated by 
the order AB and a value given by the parallelogram described on 
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A and B and expressed in natural measure'). This involves that the 

same rotation may be represented in many different ways by two 

vectors in the plane JV. 
For the rotation R we shall also use the symbol [A.B]. 

By the vector product [A.B.C] of three vectors A,B,C at a 

point of the field-figure and not lying in one plane we shall under- 

stand a vector D the direction of which is conjugate with each of 

the three vectors (and therefore with the three-dimensional extension 

A,B,C), the direction of D corresponding to those of A,B and C 

in a way presently to be indicated, while the magnitude of D, 

expressed in natural measure, is equal to that of the parallelepiped 

described on A, B and C and expressed in the same measure. This 

definition involves that the value O is ascribed to the vector product 

of three vectors lying in one and the same plane. 

A further statement about the direction of D is necessary because 

two opposite directions are conjugate with A,B,C. For one set of 

three directions A,,B,,C, we shall choose arbitrarily which of its 

two conjugate directions will be said to correspond to it. If this is 

the direction D,, then the direction D corresponding to A, B,C will 

be determined by the rule that D, passes into D by a gradual passage 

of the first three vectors from A,, B,,C, into A, B,C, this latter 

passage being effected in such a way that during the change the 

vectors never come to lie in one plane. 

The vector product [A.B.C] takes the opposite direction when 

one of the vectors is reversed as well as when two of them are 

interchanged. We must therefore always attend to the order of the 

symbols in [A.B.C]. 

The veetor product possesses the distributive property with respect 

to each of the three vectors, so that e.g. if A and A, are vectors, 

(Ag AASBECHS TAL BA 6] + [Ass BC]. 

From this we can infer that [A.B.C] depends only on C and 
the rotation R determined by A and B. For this reason we write 

for the vector product also [R.C]; in calculating it we are free to 

replace the rotation R by any two vectors by means of which it 

can be represented. 

If R, R, and R, are rotations in the same plane, such that the 

value and direction of R are found by adding R, and R, algebrai- 

cally, we have, in virtue of the distributive property 

[R, .C]+[R,.C]=[R.C] 
1) If, according to circumstances, different signs are given to R, the angle 

whose sine occurs in the formula for the area of a parallelogram must be 

understood to be positive in one case and negative in the other 
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§ 12. In what precedes we were concerned with the volumes of 

parallelepipeds expressed in natural units. When we have intro- 

duced coordinates z,,.. 7, we may also express these volumes in 

the “r-units” corresponding to the coordinates chosen. 

Let us consider e.g. the three-dimensional extension «, = const, 

which cuts the conjugate indicatrix in the ellipsoid 

Inti + Joa®s” + Jaaa + 291,010, + 29g9%2%, + 29,,%,%, = TE. 

If we agree that in z-measure spaces in this extension will be 

represented by positive numbers and that a parallelepiped with the 

positive edges dx,, dr,, de, will have the volume dz, de, dr,, we 

find for that of the parallelepiped on three conjugate radius-vectors 

ra 

Vg 

ia 

where it has been taken into consideration that G,, is negative. 

The volume of the same parallelepiped being expressed in natural 

measure by — Ze’ ($ 8), we have to multiply by 

ea Ge ce OR eet ee 
128. 

if we want to pass from the expression in «-measure to that in 

natural measure. : 

For the extension (z,, 2, 2,), i.e. 2, =O the corresponding factor is 

i ee VS Zeine oe 

§ 13. In the theory of electromagnetic phenomena we are con- 

cerned in the first place with the electric charge and the convection 

current. So far as these quantities belong to a definite element d2 

of the field-figure they may be combined into 

qd 

where q is a vector which we may call the current vector. When 

it is resolved into four components having the directions of the axes, 

the first three components determine the convection current, while 

the fourth component gives the density of the electric charge. 

As to the electric and the magnetic force, these two taken together 

can be represented at each point of the field-figure by two rotations 

R. and ‘R; fe 

in definite, mutually conjugate two-dimensional extensions. These 

quantities are closely connected with the current vector, for after 

having introduced coordinates 2,,...2, we have for each closed 

surface o the vector equation 

. 

ri. 
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EUR NI + [Ri NI doi fia} ae, npt iA) 

where the second integral has to be taken over the domain 2 

enclosed by o. On the left hand side do represents a three-dimensi- 

onal surface-element expressed in natural units and N a vector 

of the magnitude 1 in natural measure conjugate with or per- 

pendicular to that element ($ 7) and directed towards the outside of 

the domain 2. The index 2 shows that the vector [R..N]+[R,.N] 

must be expressed in w-measure. At each point of the surface we 

must resolve the vector along the four directions of the coordinates, 

express each component in z-measure ($ 10) and finally, after multi- 

plication by do, we must add algebraically all 2,-components; 
similarly all 2,-components and so on. ë 

It must be expressly remarked that if an equation like (10) in 

which we are concerned with the composition of vectors at different 

points of the field-figure, shall have a definite meaning we must 

know which components are to be considered as having the same 

direction, so that they can be added. This has been determined by 
the introduction of coordinates. 

On the right hand side of the equation the index « means that 

the vector q must be expressed in wz-measure and the facfor £ had 
to be introduced because d&2 is imaginary. 

One can prove that equation (10) is equivalent to the differential 

equations which in EINSTEIN'S theory serve for the same purpose 
and further that when the equation holds for one choice of coordi- 

nates it will also be true for any other choice. 

§ 14. The prvof for these assertions must be deferred to the 

second part of this communication. For the present we shall only 

add that the part of the principal function referring to the electro- 

magnetic field is given by 

H, = fs (R.2 + Ri?) dQ, s 

where R, and Ry are, expressed in natural units, the two rotations 

that are characteristic of the field. Like the two other parts of the 
principal function, H, is not changed by a deformation of the field- 

figure. In this statement it is to be understood that the parallelo- 

grams by which Re and R, are represented take part in the deforma- 

tion. 

Some remarks on the way in which, starting from the principal 

function, we may obtain the fundamental equations of the theory 
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must also be deferred. I shall conclude now by remarking that, as 

an immediate consequence of Hamiiton’s principle, the world-line of 

a material point which is acted on only by agiven gravitation field, 

will be a geodetic line, and that the equations which determine the 

gravitation field caused by material and electromagnetic systems will 

be found by the consideration of infinitely small variations of the 

indicatrices, by which the numerical values of all quantities that 

are measured by means of these surfaces will be changed. 

Physics. — “On Einstein's Theory of gravitation.” Il. By 
Prof. H. A. Lorenz. 

(Communicated in the meeting of March 25, 1916). 

§ 15. In the first part of this communication the connexion 

between the electric and the magnetic force on one hand and the 

charge and the convection current on the other was expressed by 

the equation 

JAR NT FIRE NTO =i feted, aS Le 

which has been discussed in § 138. It will now be shown that this 

formula is equivalent to the differential equations by which the con- 

nexion in question is expressed in the theory of Einstein. For this 

purpose some further geometrical considerations must first be deve- 

loped. They refer to the special case that the quantities gq, have 

the same values at every point of the field-figure. 

If this condition is fulfilled, considerations which generally may 

be applied to infinitesimal extensions only are valid for finite 

extensions too. 

§ 16. The factor required, in the measurement of four-dimen- 

sional domains, for the passage from a-units to natural units has 

now the same value at every point of the field-figure. Similarly, 

when any one-, two- or three-dimensional extension in the field- 

figure that is determined by linear equations (“linear extensions”) 

is considered, the factor by means of which the said passage may 

be effected for parts of that extension, will be the same for all 

those parts. Moreover the factor in question will be the same 

for two “parallel” extensions of this kind, ie. for two extensions 

the determining equations of which can be written in such a way 

that the coefficients of z,,...e, are the same in them, 
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It is obvious that linear one-dimensional extensions can be called 

“straight lines’, also it will be clear what is to be understood by 

a “prism” (or “cylinder’). This latter is bounded by two mutually 

parallel linear three-dimensional extensions 6, and o, and by a lateral 

surface which may be extended indefinitely to both sides and in which 

mutually parallel straight lines (“generating lines”) can be drawn. 

We need not dwell upon the elementary properties of the prism. 

§ 17. A vector may now be represented by a straight line of 

finite length; the quantities X,,...Y,, which have been introduced 

in § 10, are the changes of the coordinates caused by a displace- 

ment along that line. The magnitude of the vector, expressed in 

natural units, will be denoted by JS. It is given by a formula similar 

to (1), viz. by 

SE GITE a ABW ee ok chr ie EE) 

A vector may be regarded as being the same everywhere in the 

field-figure, if \,,...X, have constant values. In the same way a 

rotation R (§ 11) may be said to be the same everywhere, if it can 

be represented by two vectors of this kind. 
If from a point P two vectors PQ and PF issue, denoted by 

Nitin Arre and XG eX | OS” resp, “the „angle “between 

them (comp. (5)) is defined by 

Gene Eb dn Mie RS dks 0A) 
We remark here that X, X;" are real, positive or negative quan- 

tities and that S’ and S" are expressed in the way indicated in (5 
“absolute” values). It is to, be understood that S does not change 

when the signs of X,,...X, are reversed at the same time. 

If S' is the value of the vector RQ and if the angle between 

this vector and RP is denoted by (S", S'"), it follows further from 
(11) and (12) that 

SPSS! cos (S', 8") + 8" cos (S", 8"). 
In the special case of a right angle R we have 

. S" = S' cos (S', 8"), 

an equation expressing the connexion between a vector PQ and its 

“projection” on a line PR. The angle (S', S") is the angle between 

the vector and its projection, both reckoned from the same point 7. 

18. Let us now return to the prism P mentioned in § 16. p 
From a point A, of the boundary of the “upper face” 6, we can 
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draw a line perpendicular to 6, and o,. Let 5, be the point, where 

it cuts this last. plane, the “base”, and A, the point where this plane 

is encountered by the generating line through A,. If then “ A,A,b,=9%, 

we have 

A,B, = A,A, cos 9 KAD Ey ns Se a a ee 

The strokes over the letters indicate the absolute values of the 

distances A,5, and A,A,. 

It can be shown (§ 8) that, all quantities being expressed in natural 

units, the “volume” of the prism P is found by taking the product 

of the numerical values of the base 5, and the “height” 4,5, 

Let now linear three-dimensional extensions perpendicular to A,A, 

be made to pass through A, and A,. From these extensions the 

lateral boundary of the prism cuts the parts o,' and o,' and these 

parts, together with the lateral surface, enclose a new prism P’, the 

volume of which is equal to that of P. As now the volume of P’ 

is given by the product of A,A, and o,', we have with regard to (13) 

dd cas. 

If now we remember that, if a vector perpendicular to o, is 

projected on the generating line, the ratio between the projection 

and the vector itself (viz. between their absolute values) is given 

by cos ® and that a connexion similar to that which was found 

above between a normal section 9’, of the prism and 6, also exists 

between o’, and any other oblique section, we easily find the 

following theorem: 

Let o and o be two arbitrarily chosen linear three-dimensional 

sections of the prism, N and N_ two vectors, perpendicular to 5 

and o resp. and of the same length, S and S the absolute values 

of the projections of N and N on a generating line. Then we have 

So 66200" See eee 

§ 19. After these preliminaries we can show that the left hand side 

of (10) is equal to 0, if the numbers g,, are constants and if moreover 

both the rotation R, and the rotation R, are everywhere the same. 

For the two parts of the integral the proof may be given in the 

same way, so that it suffices to consider the expression 

fire Nido DR ale 

Let X,,...X, be the components of the vector N, expressed in 

v-units. From the distributive property of the vector product it then 

follows that each of the four components of 
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[Re . Nix 

is a homogeneous linear function of X,,...X,. Under the special 

assumptions specified at the beginning of this § these are every where - 

the same functions. Let us thus consider a definite component of 

(15) e.g. that which corresponds to the direction of the coordinate 

vq. We can represent it by an expression of the form 

fee X,+...+ a, X) do, 

where «,,.... @, are constants. It will therefore be sufficient to 

prove that the four integrals 

[Xie Xoo CREE ERE ds Wad €00) 

In order to calculate fx do we consider an infinitely small 

vanish. 

prism, the edges of which have the direction v,. This prism -cuts 

from the boundary surface o two elements do and do. Proceeding 

along a generating line in, the direction of the positive w, we shall 

enter the extension 2 bounded by o through one of these elements 

and leave it through the other. Now the vectors perpendicular to 

6, which oceur in (15) and which we shall denote by N and N for 

the two elements, have the same value. *) If, therefore, Sand S are 

the absolute values of the projections of N and N on a line in the 

direction z,, we have according to (14) 

Gis SO ee ee ye wk Be ED 

Let first the four directions of coordinates be perpendicular to one 

another. Then the components of the vector obtained by projecting 

N on the above mentioned line are Xj, 0, 0,0 and similarly 

those of the projection of N: X,,0,0,0. But as, „proceeding in the 

direction of z,, we enter 2 through one element and leave it through 

the other, while N and N are both directed outward, X, and ix 

must have opposite signs. So we have 

S18 =X, 3 Sa 

and because of (17) we may now conclude that the elements X,d6 

1) From § 10 it follows that if the length of a vector A that is represented by , 

a line (§ 17) coincides with a radius-vector of the conjugate indicatrix, it is 

always represented by an imaginary number. We may however obtain a vector 

which in natural units is represented by a real number e.g. by 1 ($ 15) if we multiply 

the vector A by an imaginary factor, which means that its components and also 

those of a vector product in which it occurs are multiplied by that factor. 
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and X, do in the first of the integrals (16) annul each other. lt 

will be clear now that the whole integral vanishes and that similar 

considerations may be applied to the other three. 

So we have proved that under the special assumptions made the 

left hand side of (10) will vanish in the special case that the directions 

of the coordinates are perpendicular to each other. This conclusion 

likewise holds for an other set of coordinates if only the assumption 

made at the beginning of this § is fulfilled. This is obvious, as we 

can pass from mutually perpendicular coordinates v,,...a, to arbi- 

trarily chosen other ones 2’,,...2’, which fulfil this latter condition 

by linear transformation formulae with constant coefficients. The 

w- and the w2’-components of the vector 

[Re . N] Le [Ra 3 N | 

are then connected by homogeneous linear formulae with coefficients 

which have the same value at all points of the surface 6. Hence if, 

as has been shown above, the four w-components of the vector 
» e 

fi [Re . NJ + [Ra . N]}do 

vanish, the four 2’-components are now seen to do so likewise. *) 

§ 20. The above considerations were intended to prepare a 

corollary which will be of use in the treatment of the integral on 

the left hand side of (10), if we now leave the special assumptions made 

above and suppose the quantities gq, to be functions of the coordi- 

nates while also the rotations R, and R; may change from point 

to point. 

This corollary may be formulated as follows: If all dimensions 

of the limiting surface » are infinitely small of the first order, the 

integral | 

fou NT + IRA. NI fed 
will be of the fourth order. 

In order to make this clear let us suppose that in the calculation 

of the integral we confine ourselves to quantities of the third order. 

The surface ó being already of that order we may then omit all 

infinitesimal values in the quantities by which Wo is multiplied; 

1) In the above considerations difficulties might arise if the vector N lay on the 

asymptotic cone of the indicatrix, our definition of a vector of the value 1 would 

then fail (comp. note 2, p. 1345). With a view to this we can choose the for mof 

the extension © (§ 13) in such a way that this case does not occur, a restriction 

leading to a boundary with sharp edges. 

a 

Pave 

EN + 

ORS 

a ee 

Bn. ee ee Onee he aha is 
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we may therefore neglect the infinitesimal changes of the quantities 
Jab Over the extension considered, and also those of R, and Ry. By this 

we just come to the case considered in § 19. Thus it is evident, 
that as regards quantities of the third order the first part of (10) is 0. 
From this it follows that in reality it is at least of the fourth order. 

§ 21. Let us now return to the general case that the extension 
2 to which equation (10) refers, has finite dimensions. If by a 

surface 6 this extension is divided into two extensions 2, and &,, 

the quantities on the two sides in (10) each consist of two parts 

referring to these extensions. For the right hand side this is im- 

mediately clear and as to the quantity on the left hand side, it 
follows from the consideration that the contributions of o to the 
integrals over the boundaries of 2, and 2, are. equal with opposite 
signs. In the two cases namely we must take for N equal but 

opposite vectors. 

Also, if the extension @ is divided into an arbitrary number of 

parts, each term in (10) will be the sum of a number of integrals, 
each relating to one of these parts. 

By surfaces with the equations «,—= const.,...#,—= const. we can 

divide the extension 2 into elements which we shall denote by 
(de, . . . dr). As a rule there will be left near the surface o 
certain infinitely small extensions of a different form. From the 

preceding § it is evident that, in the calculation of the integrals, 

these latter extensions may be neglected and that only the extensions 

(de... de) have to be considered. From this we can conclude 

that equation (10) is valid for any finite extension, as soon at it holds 

for each of the elements (dr,,... de). 

$ 22. We shall now “show what equation (10) becomes for one 

element (de... de). Besides the infinitesimal quantities z,,..* x 

occurring in the equation 

FI ADN Goh La Vi == 

of the indicatrix we introduce four other quantities £,,...&,, which 

we define by 

4 

Ens Amie eS) har ow ee 3 . (18) 

or 

ES Int 3 Ti 73 le HS a ANS | 

EN ee EERDER 4°) 

S, gy as ar Jaa Va a <a ia G44 

with the equalities grq = gan. 
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To each of these quantities corresponds a definite direction, viz. 

that in which we have to proceed in order to make the considered 

quantity change in positive sense while the other three remain con- 

stant. If we denote these directions by 1*, 2*, 3*, 4* and in the 

same way the directions of the coordinates #,, ,, 7,2, by 1, 2,3, 4, 

it is evident that 1* is conjugate with 2, 3 and 4, 2* with 3, 1 and 4, 

and so on; inversely 1 with 2%, 3%, 4*; 2 with 3%, 1*, 4*, and so on. 

From what has been said above about the algebraic signs of g,,, 

Jans Yow Jax it follows further that, if directions opposite to 1, 1* 

ete. are denoted by — 1, —1* etc, the directions — 1 and 1* will 

point to the same side of an extension x, = const. The same may 

be said of the directions — 2 and 2* or — 3 and 3* with respect 

to extensions 2, = const. or 2, == const, while with respect to an 

extension «,— const. the directions 4 and 4* point to the same 

side. 

Finally, we shall fix ($11) as far as is necessary, which direction 

corresponds to three others. For that purpose we shall imagine 

the directions of coordinates 1,...4 to pass into mutually conjugate 

directions, which will also be called 1,...4, by gradual changes, 

in such a way that never three of them come to lie in one plane. 

We shall agree that after this change —4 corresponds to 1, 2, 3. 

Let a,6,c,d be the numbers 1, 2, 3, 4 in an order obtained 

from the natural one by an even number of permutations. Then 

the rule of § 11 teaches us that the direction — d corresponds 
to a, b,c. It is clear that this would be the case with d, if a, b,c,d 

were obtained from 1, 2, 3, 4 by an odd number of permutations. 

If further it is kept in mind that, always in the new case, the 

directions 1%, 2*, 3*, 4* coincide with —1, —2, —3, 4, we 

come to the conclusion that the directions 1, 2, 3 and 4 correspond 

to the .sets-2*, 3% dt 3%) 14 dE 14025 A and 14) 2% JEL esses 

tively. The rule of gradual change ($ 11) involves that this holds 

also for the original case, in which 1, 2, 3, 4 were not yet mutu- 

ally conjugate. 

This is all that has to be said about tbe relations between the 

different directions. It must only be kept in mind, that whenever 

two of the first three directions are interchanged, the fourth must 

be reversed. 

§ 23. In the neighbourhood of a point P of the field-figure we 

may introduce as coordinates instead of «,,...a, the quantities 

&,...8, defined by (19). Line-elements or finite vectors can be 

resolved in the directions of these coordinates, i.e. in the directions 
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1%, 2%, 35, 4* Their components and the magnitudes of different 

extensions can now be expressed in §-units in the same way as 

formerly in v-units. So the voiume of a three-dimensional parallele- 

piped with the positive edges dE, d&,, dE, is represented by the 

product d&, dé, dé,. 

Solving a,,...«, from (19) we obtain expressions of the form 

De Nay EMEP Ta Sars oe Yaa Se | 

MIP ea URINE en, ies EED (20) 
i PS Nite or tk tte Heat ey 

Vla = Yab 

If we use the coordinates £ the coefficients y‚: play the same 

part as the coefficients gu, when the coordinates w are used. According 

to (18) and (20) we have namely 

Bi (a) Er (0b), vig Sa Shs 

so that the equation of the indicatrix may be written 

(GO) Faq Sa Sh = 87: 

§ 24. Let the rotations R, and R; of which we spoke in § 13 

be defined by the vectors Al, All and All, AlV respectively, the 
resultants of the vectors Arl,... Aal, ete. in the directions 1%... 4%. 

Then, according to the properties of the veetor product that were 

discussed in $ 11, 

[RoN] = [(Asel +... 7 -b- Aas!) (Ari H.+ Auel). NJ 

= XE (ab) { [Aasl . Ase TE. NJ — [Agel , Apel. NJ}, 

where the stroke over ab indicates that each combination of two 

different numbers a, contributes one term to the sum. For the 

vector product [R‚.N] we have a similar equation. Now two or 
more rotations in one and the same plane, e.g. in the plane a*d*, 
may be replaced by one rotation, which can be represented by 

means of two vectors with arbitrarily chosen directions in that plane, 

e.g. the directions a* and 5% We may therefore introduce two 
vectors Ba» and Bj+ directed along a* and 5* resp., so that 

[Bax . Bor] == [Ast Ave] — [Agel . Agel] + 
Ae LE Apel VSS [AnelY (Apel) 421) 

Then we must substitute in (10) 

[RNTC PN] S= (ob) [Babe N] ©. 7. (23) 

Here it must be remarked that the magnitude and the sense of 

one of the vectors B may be chosen arbitrarily ; when this has been 

done, the other vector is perfectly determined. 
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In the following calculations the vector N has one of the directions 

1*,...4*, As this is also the case with the vectors Bax and Bis, 

the vector product occurring in (22) can easily be expressed in &- 

units. After that we may pass to natural units and finally, as is 

necessary for the substitution in (10), to z-units. 

In order to pass from S-units to natural units we have to multiply 

a vector in the direction a* by a certain coefficient 2a, and a part 

of the extension a*, 6*, c* by a coefficient As. These coefficients 

correspond to Z, (§ 10) and (ys. ($12). The factors 2,7 e.g. can he 

expressed by means of the minors I, of the determinant y of the 

quantities ys. If this is worked out and if the equations 

Gis Fab 
Yab = ’ Jab = 

g 
gy=1 

are taken into consideration, we obtain the following corollary, 

which we shall soon use: 

Let a, 6,¢,d and also a',d'c',d' be the numbers 1, 2, 3,4 in any 

order, a being not the same as a, then we have, if none of the 

two numbers « and wu’ is 4, 

bed Aveta’ 

bat da 

and if one of the two is 4 

ENE nt ia eee en 

lye Aved 

la! da 

EN or ov ee 

§ 25. We shall now suppose (comp. § 24) that in &-units the 

vector B,« has the value + 1, and we shall write 4,5 for the value that 

must then be given to Bs. If the S-eromponents of the vectors Al | 

ete. are denoted by 4&,!,... See etc., we find from (21) 
fad = (ELEN ENE) (EZ RIV Zl) | (25) 

This formula involves ae ; 

Vig YE ee et hn ee 

It may be remarked that y,, is the value that must be given to 

the vector 4,+ if Bj* is taken to be 1. 

The quantities ys may be said to represent the rotations | Bas . Bys|. 

At the end of our calculations we shall introduce instead of y,, the 

quantities w,, defined by 

War = La'b' (a —_ b) ¢) Waa — 0 eri cy ae la ee (27) 

In the first of these equations a, 6, a', b' are supposed to be the 

numbers 1, 2,3,4, in an order obtained from 1, 2,3,4 by an even 

number of permutations. 
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§ 26. We have now to calculate the left hand side of equation 
(10) for the case that o is the surface of an element (de, dr). 
For this purpose we shall each time take together two opposite 

sides, calculating for each pair the contributions due to the different 

terms on the right hand side of (22), or as we may say to the dif- 
ferent rotations yo, It is convenient now to denote by a, b,c the num- 

bers 1, 2,3 either in this order or in any other derived from it by 

a cyclic permutation, while the #-components of the vector we are 

calculating and which stands on the left hand side of (10) will be 
represented by X,,... X,. . 

a. Let us first consider that one of the sides (de, dez, dx.) which 

faces towards the side of the positive w,. The vector N drawn 

outward has the direction 4* and in §-units the magnitude = As the 
. 4 

direction ec corresponds to a”, D*, 4*, the rotation y,, gives with N 

a vector product represented by a vector in the direction c. The 
magnitude of this vector is in §-units 

and in natural units 

This must be multiplied by (qs, dva day de, the magnitude of the side 

; 1 ; 
under consideration in natural units, and finally by 7, to express the 

C 

vector product in v-units. Because of (24) we may write for the result 

Yab dra day dee, = Wes dea day de. 

The opposite side gives a similar result with the opposite sign (N 

having for that side the direction — 4*), so that together the sides 

contribute the term 

dw c4 
WwW 

0x, f 

to the component X,. For shortness’ sake we have put here 

da, dz, dx, dx, — dW. 

Finally we may take. c = 1, 2, 3. 

6. Secondly we consider a side (dq, des, da) facing towards the 

positive x. The vector N has now the direction — c*. We consider 
the vector products of this vector with the rotations y,, y,a and Y6q, 
which vector products have the directions a, 6 and 4. A calculation 

exactly similar to the one we performed just now gives the contributions 

to Xa, Xs, X,. For these we thus find the products of dea de, dx, by 

Proceedings Royal Acad. Amsterdam. Vol. XIX. Es 
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labs À bcd 
Xa = F4b = Waes 

laba daca 
YAa — Yaa — W bes 

ly As 

labs Aabe 

bike. 
Taking also into consideration the opposite side (dia, day, de) we 

find for X,, Xs, XN, the contributions 

Mar ayy, Othe yy ae ay, 
Ou, Oa, Ove 

This may be applied to each of the three pairs of sides not yet 

mentioned under a; we have only to take for c successively 1, 2, 3. 

Summing up what has been said in this § we may say: the 

components of the vector on the left hand side of (10) are 

IWad 

Oxy 

Via = Xba = Wace. 

dW, X,= 2 (6) 

§ 27. For the components of the vector occurring on the right 

hand side of (10) we may write 

1qa dQ, 

if qa is the component of the vector q in the direction x, expressed 

in w-units, while d2 represents the magnitude of the element 

(dx,,...dv,) in natural units. This magnitude is 

—iV—gdW, 

so that by putting 

Eid ity ie a a 

we find for equation (10) 

IWa 
Si)! uae es OS ee 

dx, 

The four relations contained in this equation have the same form 

as those expressed by formula (25) in my paper of last year’). We 

shall now show that the two sets of equations correspond in all 

respects. For this purpose it will be shown that the transformation 

formulae formerly deduced for wa and Woe follow from the way in 

which these quantities have been now defined. The notations from 

the former paper will again be used and we shall suppose the 

transformation determinant p to be positive. 

1) Zittingsverslag Akad. Amsterdam, 23 (1915), p. 1073; translated in Proceedings 

Amsterdam, 19 (1916), p. 751. Further on this last paper will be cited by 1.c. 
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§ 28. Between the differentials of the original coordinates x, and 

the new coordinates 2a which we are going to introduce we have 

the relations 

Azn (BIRB DD tet ANGELO) 

and formulae of the same form (comp. $ 10) may be written down 

for the components of a vector expressed in v-measure. As the 

quantities q, constitute a vector and as 
vd — Pp Vn 

we have according to (28) *) 

ua ee WG = (b) Xba ws, 

or 

Wa =p = (b) Rha wb. 

Further we have for the infinitely small quantities &,*) defined 

by (19) 

ie 5 (6) Pha Sui. 

and in agreement with this for the components of a vector expressed 

in &-units 

c 
c 

hy Ba id (b) Pba bs 
\ 

so that we find from (25) *) 

Kab = = (ed) Pea Pab fed « 
Interchanging here c and d, we obtain 

Yar = Z(cd) pda Peb Ade = — B (cd) Pda Peb Led 
and 

Xiab = 4 Bcd) (Pea Pab — Pda Pct) Xed » + « « (31) 
The quantity between brackets on the right hand side is a second 

order minor of the determinant p and as is well known this minor 

ly Comp. 99) 6-15 

2) For the infinitesimal quantities a occurring in (19) we have namely (comp. 

(30) ) 

4 D= 2 (6) Tha Uh 

and taking into consideration (19) and (29), i e. 

Ga =S (OPI fb re Pa == (6) Von Eb 

and formula (7) l.c., we may write (comp. note 2, p. 758, I. c.) 

Be = Db) fab #5 = (bede) pia Pab Neb Jed Pe = 

= Lcd) pea Yea CA — =U (cdf) Pea Jed 1fd Sf = ZO) Pea Se - 
3) Put Zl Zp = Dan. Then we have 

Op = Bo! ZE = = (ed) pen par He! Ba! = & (cd) Pea pas Hed 
and similar formulae for the other three parts of (25). 
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is related to a similar minor of the determinant of the coefficients 

nas. If a'b' corresponds to ab in the way mentioned in § 25, and 

c'd in the same way to cd, we have 

Pea Pdb — Pda Pcs =P (Hea Hdb — da’ Ne'b')s 

so that (31) becomes 

Yab =p =. (cd) (%e'a’ HL 

According to (27) this becomes 
TT da! Te'b’) X ed: 

Way =p = (ed) (roa Tay — Ada HL) Wan 

for which we may write 

Was = tp = (ed) (Tea ds — Haa Heb) Wed: 

Interchanging c and d in the second of the two parts into which 

the sum on the right hand side can be decomposed, and taking into 

consideration that | 

Wade = — Weds 

as is evident from (26) and (27), we find *) 

Was =p = (cd) A a Mad Wed- 

$ 29. Finally it can be proved that if equation (10) holds for 

one system of coordinates #,,.... + v,, it will also be true for 

every other system z',,...-: v',, so that 

f [Re NJ + [Ra «_N] wao =iftaas. et eee 

To show this we shall first assume that the extension 2, which 

is understood to be the same in the two cases, is the element 

(Es tine aig) 

For the four equations taken together in (10) we may then write 

fm dor, a. fr, do =r, an ele ter zn (33) _ 

and in the same way for the four equations (32) 

fe do = v', d&,. Je i= 0 052"... Raet GE 

We have now to deduce these last equations from (33). In doing so we 

must keep in mind that w,,.... wu, are the #-components and 

uw, .... Ww, the z-components of one definite vector and that the 

same may. be said of pst tee Ve and De aks Oe 

Hence, at a definite point (comp. (30)) 

Da (0) Oh ae ee 

We shall particularly denote by 2,5, the values of these quantities 

belonging to the angle P from which the edges dz,,. . . . de, issue 

4 

1) Comp. (28) 1. ¢. 
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in positive directions. To the right hand sides of the equations (34) 

we may apply transformation (35) with these values of aa, d2 

being infinitely small of the fourth order and it being allowed to 

confine ourselves to quantities of this order. 

On the left hand sides of (34), however, we must take into 

consideration, the surface being of the third order, that the values 

of ars, change from point to point. Let X,, . . . . X, be the changes 

WOR a z, undergo when we pass from to any other 

point of the surface. Then we must write for the value of the 

coefficient at this last point 

da 
Nba + & (c) de En: 

dee 

We thus have 

Oba 
ug da = > (b) aha] us ds + & (b) | us = (c) 5 x, do. 

It will be shown presently that the last term vanishes. This being 
proved, it is clear that the relations (34) follow from (83); indeed, 

multiplying equations (33) by aria, .. « « %4u respectively and adding 

them we find 

fe. dou. 

0 
LE cae ELO 
Òz, 5 

$ 30. The proof for 

zo fm = (c) 

rests on the relations 

> 

OX5a O%ea 

Owe Owe’ See 

_ which follow from 

de, U2'a 

pian Ox, oe Oae 

The integral which occurs in (36) differs from 

ie toes akerin! 

by the infinitely small factor under the sign of integration 

OX ha 

Ox, 

Now we have calculated in § 26 integrals like (88) by taking 

together each time two opposite sides, one of which >=, passes through 

P while the second =, is obtained from the first by a shift in the 

= (c) > Hi 
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direction of one of the coordinates e.g. of z, over the distance de, 

We had then to keep in mind that for the two sides the values of 

wp, Which have opposite signs, are a little different ; and it was 

precisely this difference that was of importance. In the calculation 
of the integral 

02a 
fu zo ee NEA ee ee 

Ow le 

however it may be neglected. Hence, when we express the compo- 

nents ws in terms of the quantities wos, we may give to these latter 

the values which they have at the point P. 

Let us consider two sides situated at the ends of the edges dv,, and 
whose magnitude we may therefore express in w-units by da; der da; 

if j, #, l are the numbers which are left of 1, 2, 3, 4 when the number 

e is omitted. For the part contributed to (38) by the side =, we 

found in $ 26 

Whe da; daz, da, . 

We now find for the part of (39) due to the two sides 

Whe & (c) = fs do —{x. zo| 
we 

1 2 

where the first integral relates to 2, and the second to &,. It is 

clear that but one value of c, viz. e has to be considered. As every- 

where in >,:xX,—==0 and everywhere in >,:x,— dz, it is further 

evident that the above expression becomes 

Oba 
dW. 

Ove 
Web 

This is one part contributed to the expression (36). A second part, 

the origin of which will be immediately understood, is found by 

interchanging 6 and e. With a view to (37) and because of 

Web = — Whe 

we have for each term of (36) another by which it is cancelled. 

This is what had to be proved. 

§ 31. Now that we have shown that equation (32) holds for each 
element (dz,,...dz,) we may conclude by the considerations of $ 21 

that this is equally true for any arbitrarily chosen magnitude and 

shape of the extension 2. In particular the equation may be applied 

to an element (da’,...d2',) and by considerations exactly similar to 
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those presented in § 26 we see that in the new coordinates as well 
as in the original.ones we have equations of the form (29). 

Whatever be our choice of the coordinates the part of the principal 
function indicated in § 14 can therefore be derived for a given 
current vector q. 

In a sequel to this paper some conclusions that may be drawn 
from HAMILTON’s principle will be considered. 
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— presents a paper of Prof. A. Smirs: “On the system mercury iodide”. 703. 

— presents a paper of Dr. F. E. C. Scnerrer: “On the allotropy of the ammo- 

nium halides”. ILI. 798. 

— presents a paper of Prof. A. Smits and Dr. C. A. Lory pe BRUIJN: “A new 

method for the passification of iron”, 880. 

— presents a paper of Miss A SNETHLAGE: “Experimental inquiry into the laws 

of the BROWNIAN movement in a gas”. 1006, 

ZERNIKE (r.) and L. S. Ornster. Contributions to the kinetic theory of solids. 

I; 1289. If. 1295. III. 1304. 

— The influence of accidental deviations of density on the equation of state. 1312. 

Zoology. A. SCHIERBEEK: “On the setal pattern of caterpillars”. 24. Il. 1156. 

— H. C. DELSMAN: “The gastrulation of Rana esculenta und of Rana fusca”. 906. 

— Mrs. C. E. DROOGLEEVER FORTUYN—VAN LEYDEN: “On an eel, having its left eye 

in the lower jaw’. 1120. 

— J. F. VAN BEMMELEN: “The colourpattern on Diptera wings” 1141. 

— H. C. DELSMAN: “On the relation of the anus to the blastopore and on the 

origin of the tail in vertebrates”. 1256. 

ZWAARDEMAKER (H.). Distance-relations in the effects of radium-radiation on 

the isolated heart. 1161. 

— The electrical phenomenon in cloudlike condensed odorous water vapours, in 

collaboration with H. R. Knoops and M. W. van per BĲL. 44. 

— presents a paper of Dr. H. M. ve Buruer and J. J. J. Koster: “On the 

determination of the position of the macula-planes and the planes of the 

semicircular canals in the cranium”. 49, : 
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ZWAARDEMAKER (H.) presents a paper of Mr. T. P. Feenstra: “A new group 

of antagonizing atoms”. I. 99. II. 341. 

— Specific smell intensity and the electrical phenomenon of cloudlike condensed 

water vapours in chemical series. 334. 

— The electrical phenomenon in smell-mixtures. 551. 

— Radium as a substitute, to an equiradio-active amount, for potassium in the 

so-called physiological fluids. In collaboration with T. P. Feenstra. 633. 

— presents a paper of Dr. E. L. Backman: “The olfactology of the methylbenzol 

series’. 943. 

— On the analogy between potassium aud uranium when acting separately in 

contradistinction to their antagonism when acting simultaneously. 1043. 
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