Z.0010gy
B. S.

1900
\square
University of lllinois.

PROTOZOA OF SALT FORK AIJD ITS TRIBUTARIES
by
MARIE L. WALDO

THESIS PRESENTED FOR THE DEGREE OF
BACHEIOR OF SCIENCE
in
ZOOLOGY,
COLIEGE OF SCIENCE

in the
 UNIVERSITY OF ILIINOIS

JUNE $1,1900$.

THIS IS TO CERTIEY THAT THE THESIS DEELARED UNDEAR MY゙ NUVELEVISION BY
Mani 2 Waldo extrine Protgoa of suet Fouk and its Inibutanis.

s.a. Forb

HEAD OF DEPARTMEN'I OE

TABLE OF CONTENTS.

Introduction $!$ 。
Characteristics of Environment 4.
Synoptic ey 6.
List of Species 28.
General Discussion 90.
Table of Local Distribution.-
Discussion 96.
Table of Seasonal Distribution 97.
Discussion 101.
Comparison with Other Iists 1×1.
Literature Cited 103.
Explanation of Plates 105.
Plates 112.

Digitized by the Internet Archive in 2013

INTRODUCTION.

In writing this paper it was my original purpose to determine the protozoan fauna of an ordinary western prairie stream, and particularly of Salt Fork and its tributaries. Later. owing to the great territory which this presents, and to convenience, the work was largely confined to that pranch of the Salt Fort commonly known as the Boneyard.

I have tried to procure material at $a l l$ seasons and at all conditions of the stream during one year. Samples have been taken from different places alche the s+ream. usualiy dipped from promising localities, where the water was still or covered with scum, or along the edges where leaves had fallen in and laid quietly for some time. Such material has usually been brought into the laboratory and kept a lye in aquaria until examined. Where it was possible to collect ir a boat. north of Jrbana above Crystal Lake- the tow-net was used. The tow-net catch was brought into the laboratory, filtered through hari pressed filter paper which retains even the smallest forms, the precipitate was then washed off into formalin and so oreserved.

I have also studded aquaria about the laboratory a great deat. These have usually been derived from the Bone-yard, but sometimes they contained, in addition, some material kroight from the llifnois River. So the paper contains, not only the Protozoa occurring naturally in a prairie stream but also, to some extent, those
breeding in aquaria about a zoological laboratory.
The killing fluids have teen $2 \%-4 \%$ formalin. Fleming's iluid and 1% osmic acid. The principal stain used was Ortt's Lithium Carmin. It was impossible to make many permanent preparations. Parasitic forms on small Entomostraca have Iean mounted. Paramoéium was found in such quantity that it could be stained and mounted. Also, during the summer of 1 pa 1 found Eursaria in quantity, and large enough to ke seen with the naked eye and so easily picked out with a pipette, and preserved. The material mounted was kiled with Fleming's fluid, and stained in Orth's lithium carmin.e.

The ercess of stain was washed out with acid and the material taken through the alcohol grades to cedar oil, which was used as a clearing agent. The material was then mounted in balsam.

My methods of study have been simple. Of course it has all been done with the microscope. I have made drawings of the di ferent species whenever it was possible in the time available. I have studied the forms alive when I could. If they moved too rapidly, and it was necessary to quiet them, one of the agents mentioned above was used. It is sometimes necessary to exercise care in choosing the killing agent, for certain of the Protozoa will go to pieces with one but not with another reagent. In studying parasitic forms the host was entangled in bits of filter paper under the cover, in order to quiet it. After the drawing was made the animal was classified. Let $1 y$ ('79) was used principally for determining rhizopods and Kent (9081) and Buitschli ('EO-'80) for the others. A list of further literature used is added at the end.

Careful notes have been taken on the characters and lifts of the creatures, and record kept of the times of occurrence.

Before closing this preface, I wish to express my sincere thanks to Dr. C.A.Kofoid, who has so kindly directed the wort: to Professor S.A.Forbes for his encouragement and advice; and to Professor Frank Smith for his valuable assistance with material.

Characteristics of the Environment Investi ated.

The locality studied is a typical western prairie with the stream, in some places little more than a ditch, winding through it. The Boneyard flow s through both Champaian and Urt ana, crossing the University campus between Healy and Green streets, justb ok of Engineering Hall. It empties into Salt Fork, north east of urbana near the brick yard, at which place it is about twelve feet wide. Salt Fork belongs to the Wabash system, being tributary to the Big Vermilion which empties into the Wabash at Puoene, Irdiz?

The banks of the stream are not high, having an average height of about four feet rut in some places reaching eight eet or more. They are generally sloping, although in some places they are rather steep. They consist of black mud and clay. The bottom is partly mud and partly sand and gravel. The banks are grassgrown and the vegetation dztends clear down into the water in most places. In the stream are found many forms of green aloaem Spirogyra, Protococcus and Oscillaria are most abundant-a a great number of species of diatoms are found, and also many racteria. Moss, too, is often found growing on stones in the stream.

The stream has been modified more or less by man, since two cities of considerable size are located on it. For instance, the sewage of the city have had an outlet in the Eoneyard until the last year or so, and many drains still empty into it. The hot water from the University heating plant has also been blown into it for the past two years.
-

The depth varies, I should say, from about six jnohes to fourteen inches. During flood, in the spriv, it often overflows its banks and spreads out for a distance of several peet on either side. I have never seen it entirely dry, but during drouth in the summer months, it gets very low and often dries up save for pools dere and there. The water reaches a high degree of temperature during August and September-- about $z \varepsilon^{\circ} \mathrm{C}$. It is usually during these months that the water is lowest, due to drouth. This winter there was about eight inches of water in the stream, and this was frozen over for the best part of cour months. Twice when l colected, in the month of January, the ice was three inches thick. The course of the stream is exceedingly tortuous. It is a continuous pool through most of its course, riffles keing rare. The current is very sluggish.

The following synoptic key will serve for the identification of the species listed in this paper. The classicioation in the main is based on Bütschli ('8C-'80), supplemented by $\mathrm{I}=$: :'Yo, for the Rhizopoda and Schaudinn ('OC) for the Heliozoa.

CLASS SARKODINA:-
Protoplasmic mass either naked or sheilad, which mo
moves wholly by potoplasmic movement or by the development of protoplasmic processes.

Subclass Rhizopoda:-

Naked or shelled. Moves by simple flowing of
the protoplasm or by the putting forth o pseudopodia. Changeable in Corm, or i somewhat constant, inclined to monaxial form. Order Amoebaea:-

Naked Rhizopoda, very changeable in shape.
Pseudopodia lobose or reticulate. With or without nucleus and contractile vacuoles.

Family Amorbata lobosa:-
Lobose pseudopodia not forming a network.

Genus 1. Ambara:-
Containing one or mare nuclei. Pseudo-
podia lobose, often kranched or pcined and bifid. Sometimes moves simply by a flowing of the protopiasm, without developing distinct pseudopodia. Contractile vacuoles present. Nultiplies by division
in moving condition. Encysting o served with and without reprow duction.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Posterior end not villous } \\
\text { With evident pseudopodia.........A.proteus }
\end{array}\right. \\
& \left\{\begin{array}{l}
\text { Without evident pseudcpodia... } \\
\text { Posterior end villo us }
\end{array}\right. \\
& \text { Genus II. Pelomyra:- }
\end{aligned}
$$

Amoeboid. Pseudopodia very blunt and

not distinot. Posterior end with villous processes. Encloses a large number of nuclei as well as small rod- or bacteria- like bodies.

$$
\text { One species } \quad \text {... . PdVi110sa } 4 .
$$

Genus III. Dinamóeba:-

Oval, when at rest. Pseudopodia few
or many, and everywhere bristling with rigid, ciliaulike processes. Posterior extremity of body with retractile papillae.

Family Amoebaea reticulosa:-
Pseudopodia forming network,
and arising from all sides of the body.
Genus IV. Eiomyxa:= Contractile vacuoles many and small.

Protoplasm colorless, granular and possessing power of expanding and extending itself in any direction. Pseudopodia arise from all parts of body, branch and anastomose in all directions.

E.

Order Testacea:-
Rhizopoda with shell of chitinous materlal, of silicious plates, diatoms, or quartz fragments.

Suborder Imperforata:-
Shell wall solid, not perforated. with fine pores. With a single mouth opening. Family Arcellina:-

Shell monaxial, dome-shaped to elongate.
Sometimes by a one-sided position of the mouth, it is bilateral. Lobose psedopodia. Nucleus and contractil. vacuoles ustially present.
Genus V. Arcella:-

Shell dome \rightarrow shaped with conver upper side
and flat under side, in the center of which is the wide circular mouth. Erown to pale yellow in color. Shell somutimes finely punctulate. Body does not fil: the shell.
A. Aiscoides ε.

Genus VI. Difflugia:-
Shell ecrusted with particles of sand,
©iatom irustules and other doubtful bodies, cemented with chitinous material; not brownish througout. Shape variable, spherical to elongated, and with the posterior end sometimes drawn out into points or horn-like processes. Mouth opening sometimes eccentric and then the form is bilateral. Sometimes mouth opening is cren-
ulate, toothed or lobed. Eody not entirely filling shell. Pseudopodia lobose, sometimes branching. Vacuoles and nuclei in varyang numbers.

Genus VII Centropyxis:-

Shell circular or oval; brownish;
chitinous, scantily incorporated with particles of quart-. Mouth and fundus eccentric in opposite directions. Mouth round and inferior. Fundus with or without conical spines.

$$
\left\{\begin{array}{l}
\text { With conical chitinous projectionsaculeata. } 15 . \\
\text { Without chitinous projections.. C.aculeata var. ecornis. }
\end{array}\right.
$$

Family Euglyphina:-
Shell chitinous or silicious, built up
of hexagonal or round plates. Monaxial to bilateral. Pseudopodia thread-like, pointed, anastomosing but little.

Genus VIII. Gampascus:-
Form somewhat long purse shaped

with straight neck~like mouth or with mouth pushed to the side. Shell chitinous, enorusted with foreign bodies. Postertor end with horn-like processes at each side.

One species $2.2 c r u t u s .18$.
Family Gromiina:-
Chitinous, usually structurelessshell,
monaxial to bilateral. oval form, with rather narrow mouth opening. Pseudopodia reticulose, thin, thread-like and pointed.

Genus IX. Pamphagus:-

> Pear-shaped. Very delicate shell mem- brane, closely applied to body. Pseudopodia long and branching, arising foom the broad end; nucleus large.

$$
\text { One species........ Pimutarilis. } 17 .
$$

Subclass Heliozoa:-

> Naked or enctosed in a silicious skeleton. Al- most regular spherical form. Pseudopodia fine, more or less rigid, and but little inclined to anastomose: radiating from all sides of the arface of the body. One or several nuclei.

Order Aphrothoraca:-

> Without a shell save during encystment. Genus X. Actinophrys:-

Without a stalk. Ectoplasm and ento-
plasm not clearly distinguished. Pseudopodia with granules and with axisthreads whi h reach to the upper surface of the central nucleus. One central nucieus. One pulsating vacuole at the surface.

$$
\text { One species.. } 18 .
$$

Genus XI. Actiossphaerium:-
No stalk. Ectoplasm and entoplasm clearly distinguished. Axis threads of pseudopodia end at !oundary between ectoplasm and entoplasm. Entoplasm with small vacuoles. Ectoplasm with larce vacuoles, several of which are pulsatino Seror al nuclei in entoplasm.

Genus XII. Nuclearia:-

> Body amoeboid. No distinction between ecto
sarc and endosarc. Protoplasm vacuolated. Pseudopodia rising from all sides or only from one part of the surface. Some times with acute-angled branched ends. One or several nuclei. Large contractile vacuole:

Ine species...................... N. Esdyondia... 天n.
Order Chlamydophora:-
Having spherical, soft, gelatinous shell,
often containing foreign bodies.
Genus Xill. Heterophrys:-

> Entoplasm and ectoplasm rather
clearly distinguished. One nucleus in entoplasm. One or several pulsating vacuoles. Pseudopodia on all sides, thin, with streaming of granules. Surrounded by spherical, rather thick, gelatinous shell, which is hyaline within and granular without. Surface provided with fine, fringe-like radiating processes.
One species.

Order Chalarothoraca:-
With spherical shell of isolated silic-
ious particles, which are produced by the animal itself.
Genus XIV. Acanthocmstis:-
Ectoplasm and oplasm clearly
distinguished. Entoplasm eccentric, finely granwiate, with one nucleus. Ectoplasm with several small pulsating vacuoles and irequently with chlorophyll bodies. Psoudopodia fine, with axial threads which unite in a central body. Shell skeleton of radiating spines.

CLASS MASTIGOPHORA:-
One-cel!ed, more or less flexible organisms,
bearing one or several flagella which aid both in movement and in the capture of food. May or may not form colonies.

Order Flagellata:-

Havino one or more flagella at the anterior
end of the body.
Subordar Modina:-
Small; simple structure; naked, often more or
less amoeboid, but sometimes with a shell. Usually colorless. One anterior important flagellum or one or two small side-flagella. Special mouth opening sometimes lacking, sometimes present at base of flagellum. Never a well-developed pharynx.

Family Rhizomastigina:-

Simple, mouthless forms with one or two
flagella. Sometimes presenting Rhizopoda-like pseudopodia and sometimes, heliozoa-like, changing from a flagellate condition, without pseudopodia, into a sarcode condition, without flagella.
-

Genus XV. Mastiramoera:-
Generally oyal in shape. Greater
or less number of from finger-shaped to branching pseudopodia. One prominent flagellum. Ectoplasm and entoplasm sometimes differentiated. One or several contractile vacuoles. One species...implez. 2z.

Family Cercomonadina:-
Small: from oval to elongate in shape.
Somewhat amoeboid. One rominent flagellum, at the anterior end, forwardly directed.

Genus XVI. Cercomonas:-
Small colorless, spherical to oval
in shape. Anterior end with a stron flagellum. Posterior and drawn out into a long, flagella- or pseudopodia-like thread. Pointed pseudopodia sometimes deloloped at posterior end. Nucleus in anterior half of the body. One to several contractile vacuoles. Mouth at the base of the flagellum.

Family Bikoecina:-
Loricate monads of pecu?iar structure.
Shape somewhat oval, with broader posterior ne narrower anterior end, which bears one flagellum and a pertstome process, between which and the base of the flagellum, the mouth lies. Posterior end of body attach to back of lorica y y a delicate, contractile thread-like process. Lorica is vase-shaped and usually attached to a stalk. Often c_{n} lony-building. Nucleus central. Contractile vacuoles $1-3$.

Genus xVII. Stylobryon:-
Colony-forming: shells united to
each other or to common pedicle by slender footstalis. Bodies ovate with projecting lip-like anterior border. One flagellum.

Family Heteromonadina:-
Smally colorless monads, distinguished
by a prominent forba, flagellum, which is usually accompanied by from one to two small wavy ones. Frecuently forming colonies, and then with a stalk separated from the posterior end.

Subfamily Monomonades:-
Characterized by lack of colony-
building, and also by occasional increase in number of side flasella. Genus XVIII. Paramonas:-
Ovate or globular; uniflagellate;
more or less persistent in shape, incepting food substances through a distinct oral aperture, which is situ ted anteriorly at the base of the flagellum.

Subfamily Endromonades:Characterized ry formation of colonies, and also by the fact that there is always one small accessory flagellum.

Genus XIX. Anthophysa:-Cone-shaped with broad truncate anterior end, and produced on one side into a beak-like pointed peristome process. At the base of this arises the main flagellum

$$
1
$$

and beside it the small one. Nucleus and contractilo pacuole in a terior half of tody. United in rose temiks clusters on a dichotomously branching st. k which unita in colonies.

Suborder Euglenoidina:-

Slightly asymmetrical. Contractile. Colnred or colorless. Nouth opening just back of base of flagellum which leads into a more or less prominent pharynx. Contractile va uoles near pharynx, and sometimes with reservoir.

Family Euginina:-
Body monaxial, generally inclined to kilat.
eral symmetry, since the mouth is a little on the ventral side. Elongate, and posterior end mostly sharply pointed. Cutioular surface more or less obliquely striate. Metabolic. Small mouth and strong tubular pharynx, from which the single flagellum arises. One to several contractile vacuoles. Eody usually green. Prominent nucleus in center of body.

Genus XX. Euglena:-
Without distinct shell. Spindle-shaped to elongated needle-shaped and with pointed postericr ond: or cylindrical to ribbon-shaped. Very metabolic. Oblique striations very $\frac{\text { m }}{}$. fine. Chromatophores usually numerous and disc-shaped. Mouth and pharynx usually well-developed, with flarellum arising in the pharynx.
$\left\{\begin{array}{l}\text { Surface spirally beaded......... E. seirozyra. } 28 . \\ \text { Surface not spirally beaded }\end{array}\right.$
 Posterior end abruptly ac minate. Somewhat risit.
$\ldots \ldots$......Eyuris =0.
Posterior end gradually acuminate. Very mobilo.

$$
\text {E.Viridis. } 28 .
$$

Genus XXI. Trachelomonas:-
Structure essentially as in

Euglena. Main characteristio is the sfparation of a firm, flouinie to brittle, colorless to krown shel?, whose shape varies between spherical and long egg-shaped. The shell has a small round anterior opening, from which the flagellum protrudes.
(Surface hispid. Without tail-1ike process.

Surface smooth. With tail-like process.

$$
\cdots \text { T. acuminata } \quad z z
$$

Family Chloropeltina:-
General structure like Eughenina,
but different in the strength and resistance of the cuticula and by the almost complete lack of flexitility. Always a prominent caudal process. Sometimes from one to several disc-shaped paramylon bodies.

Genus XXII. Phacus:-
More or less asymmetrical, flattened,
elipsoidal to pear-shaped, with a more or less prominent posterior tail, which sometimes increases the asymmetry by its distorted
-
position. Cuticular surface longitudinally or obliovely striate. The whole body sometimes twisted.like a screw. Usually one large paramylon body in the center, back of the nucleus.

Caudal prolongation short and curved. Petriqueter. zL. Caudal prolongation long and twisted.
.........P. lon管icaudus. zs.

Family Petalomonadina:-

Colorless; with constant form:
somewhat oval and flattened. Large flagellum at the anterior end and close behind, on the ventral side is the mouth opening which leads into a poorly developed pharynx.

Genus XXIII. Petalomonas:-

> Cval, very much flattened.

Central longitudinal furrow. Very long anterior flagellum which is vibratile only at the anterior end. Mouth on ventral side, at base of flagellum, with very short, if any, pharynx. One contractile vacuole in anterior half of body, to the left. Nucleus to the right.

Family Astasiina:-
Colorless; flexible or rigid; similar in
st ructure to Euglenoidina. Bütschli reports a side flagellum.
Other authorities do not.
Genus xxIV. Astasia:-
Elongate cylindrical, pointed at both
ends. Very strongly metabolic, even while swimming. Mouth terminal leading into a well developed pharynx.

$$
\begin{aligned}
& \text { One species } \\
& \text { A. tricophora. zy. }
\end{aligned}
$$

Genus XXV. Heteronema:-
Slender, elongate cylindrical,
tapering to both ends. Side flagellum prominent, extendinz posteriorly. Not so metatolic as Astasia.

One species..
Suborder Heteromastigoda:-
Naked and becoming amoeboid at times,
or rigid and then frequently possessing cuticular similar to
Euglenina. Two flagella; one is directed forward and accompishes forward motion; the other and lonser one is directed kackward.

Both are attached at the anterior end. In some forms the posterior one is increased to two. Mouth leading into distinct pharynx.

Family Aniscnomina:-
Oval, persistent in shape. Body flat-
tened. Considerable difference in length of flagella. Distinct mouth opening at base, anteriorly directed ilagellum, on ventral side, in connection with a long tubular pharynz.

Genus XXVI. Anisonema:-
Oval; asymmetrical: very much flat-
tened. Delicate spiral striations. Trailing flagellum arises from mouth opening and extends around the anterior edge of the body in a curve to the right, and runs baciz, down the right edge of the rody. One contractile vacuole in the anterior end, on the let side. Nucleus round, behind the center of the body.
One species..

Suborder Isomastigoda:-
Small forms. Anterior end with $1,5, \leq$,
or 5 equal flagella, arising close beside each other cometimes colorless, sometimes colored. Naked or with shell. Nouth opening and pharynx unusual.

Family Chrysomonadina:-

Solitary or colony forming individuals.
suell and stalk usually lacking. Usually two, rarely one, brown to greenish brown chromatophores. Usually an eye spot at rase of flagellum. Usually two flagella, nearly always equal. Eree swimming colonies, spherically grouped.

Genus XXVII. Mallomonas:-
Not colony forming. Oval. One
flagellum. Eody covered with long, delicate, rigid, spinous processes.
 Family Chlamydomonadinee:-

From spherical to elongate spindle-
shaped. 2 or 4 flagella. Almost always green from chromatophores.
Usually delicate shell around body. l or a contractile vacuoles at base of flagella. Usually one eye spot.

Subfamily Chlamydomonadin
Always a delicate shell;
pores for the entrance of the flagella: no inclination to divide into two flaps.

Genus. XXVIII. Carteria:-
Four flagella.
One species..inisis, 41.
Family Volvocinae:-
Colony building. Zooids with two flagella.
Number of zooids in colony varies with genus.

Genus mir.. Padorina:-

Colonies spherical io oral, of lé, rare-
ly 32 , individuals. Zach individual has an eipecial sutath and
the colony has a common sheath of concentric lajers. Cells compactly grouped in colony.

One species
P. morum.
42.

Genus zan. Oudorina:-
Coloaies spherical or oval, of c 2 , rarely
lo or 04 , cells with sieath. Cells widely serarated. Comon sheath simple.

One species................................... Elegans. 43.
Genus xxxI. Pleodoring:-
Colony consists of a spherical
or elliptical coenobium of greenish biflagellate cells of two types, vegetalive and gonidial, in tae anterior and posterior parts of the colony respectively, which lie in tie periphery of a hyaline gelatinous matrix and are surrounded by a common hyaline entelone. Cells each with one reddish stigma, nich is more prominent in the anterior part of tae colonj. No connecting filaments between the cells. Non-sexual reproduction by gonidia, which are formed ky increase in size of a part of the cells of the colony. Dauphters escane from parent as small coloniss of biflagellate cells wish at tis stace are all similar. Sexual reproduction not known.
(Number of cells in colony êt or 18s. leqetative cells constituting approximately one-half the colony. Conidial cells 2-3 times diameter of veotative cells.

$$
\underline{F}=\text { californica. } 44 .
$$

Number of cells in colony usually 32 , rarely ló or 24. legetarive cells always four in number. Gonidial cells approximately l.l-z times finmeter of vegetative cells.

horse-shoe shaped. Cells not crowded together. Foles differeatiated by arrangement of cells; posterior end wita tails.

One species...
Genus XXXIII. Tolvox:-
Colonies large, srherical, and con-
sisting of preat numbers of cells. Common colony sheath. All the cells of a colchy in direct connection plasma threads.
\qquad

Order Dinoflagellaia:-

Having tuo flagella, one anterior, the other encircling the body like a pirdle. dody usually wita a soulptured cellulose shell. suborder Einifura:-

One or more srose furrows, in waica the
simpleor complex cross furrow flaotlum is laid. Jong flagellum generally directed backwards.

Family Peridinida:-
One crose furrow in or near the middle of the body. Mostly with, kut occasionally without, a siell. Farely the cross furrow is not developed, but then the position wion it would have is indicated by the siructure of tie shell. Share variable.

Gemus woint Peridinium:-

Shape spherical to ecc-shape or
somewhat elongate. Aper frequently draw out intc distinct tubes. Cross and longitudinal furrows well develoned. Ihe former penerally slightly twisted to the left, sometimes to tie right, or they are circular. Ine latter are troad and often row broader, posteriorly.

Both halves of the body equal，or with the rosterior half slishtly shortened．Posterior half with equal thick saell．Anterior zalf with seven equatorial plates，the plates cut in facets．I re two posterior plates sometimes have each a tooth－like rrocess．Edees of the longitudinal furrow，little elevated．Colorless，freen or brown． Crevice of the flagellum somewhat posterior．

subspherical，witi pezuliar horns
developed．Eody halves equal．Cross furron circular．Jongitudinal furrow very broad．Shell thick，sometimes faiatly sfinous；very distinctly porous．Anterior half formed of three prominent ealatorial plates and taree or more apizal plates．Posterior half formed of three equatorial plates and one apical plate．lie apical plate al－ ways prolonged into a posterior horn，which is eitaer straicit or curved．The right posterior equatorial blate is produced into a similar horn．The left posterior equatorial plate maj also form a horn．Inere are $2,3,4$ or $\overline{3}$ ，horns．The flapellum is long a nd is inserted in tie left edre of the lonoitudinal furrow．oreen to yel－ lowisi brown．

One species
．zumaonense．
42.

CLASS INFUSOEIA：－

Those protozoa whose bodies are cloured with a
large number of cilia． Subclass Ciliata：－

Those forms which，when not enorsted，ave a
coat of cilia and which take their nourishment by means of a fizer mouth opening，unless deopenerated by parasitism．Multiplication by simple cross division．

Order Gymmostoriata:-
Wouth rowad to slit-share; alosed. Without undulatiog membrane. Cilia surrounding mouth somewhat modified. Pharynx, if develoned, never ciliate kut denerally provided with little rods.

Eamily Enchelina:-
siort to lono forms inclined to Dilateral
symmetry. muth alwars t minal: wsually round, cometimes alithike. Pharynx, if developed, a straicht mbe directed posteriorly; either short or long.

Subtamily Eolophryina:-
Whole surface evenly ciliate, that
around the mouth being sometimes muil larger. Ine cilia is cocasionally limited to the anterior half of the body.

Genus zazin. Enchelys:-
Bmall, with anterior end decreasing in size to form a nezk-life rrolonation. Postorior end rounded. Anterior end truncate and occupied by the mouth, wich is usually surrounded by a shhincter-like lip. Cilia short and fine witi a row of laroer cilia around the mouth.

Suibfamily Colepina:-

Sudy short, shared like à small varrel.
The anterior end broadly truncate, and wholly occuried by the large mouth opeaing. Ine mouth is surrounded by a wreath of laroer cilia. The rest of the cilia is ratier scattered, or confined to the left side.

Genus axiviI. Soleps:-

Body barrel-shaped to sumewhat flattened, and generally a little curved to one side. Fosterior end rounded. Anterior end troadly irusate, wholly occupied ky the mouth.

Shell but slightly resistant．simrle contractile vacuole suhterminal．
 grown tocetier，wizci are alranced around the vody in four caief circles．

$$
\text { One species... } 51 .
$$

Family Trachelina：－
Eody either rilateral or acymmetrical.

Seldom twisted．Stronsly compresced laterall：and wi：2 left side more arched than right．The mouth is either a lons slit extending from the anterior end josteriorly，on the veatral side of the pro－ jecting process，or only a slit－like or round orening at ins base． Pharynx lacking or short．Cilia recularlj distributed，or limited to the flat right side．

Subfamily Amphileptinat：－

The mouth always lies on the convex
veatral edge of the snout，wich is went dorsalnards．Sometimes it is a long slit：sonetimes a round orening．

Geaus racovir．Amphilertu：－
：ac－shaped witi snout－like rro－
jection anteriorly，and qenerally more or less comrressing tie ante－ rior end．Contractile．The whole snout edre encloser a lons slit－like mouth．No pharynz．Cne terminal sontractile vacuole，or numerous scattered ones．Irichocysts sometimes in the snout end．＂apronucleus bilobed or in four parts．

One species．．． 5 ．

Genus gaxity．Lionotus：－

Contractile；share essentially lize
Amphileptus，thourh ustially loneer and with a much loncer snout．
Fioht side alnays flattened and it alone covered vith silia；left side strongly arched．The shout and the body edpes always comressed． Mouth as in Amphileptus．Trichoorst alone ventral edme of snout．
-

Along the mouth edofe there is generally a row of large cilia，winch forms a sort of adoral zone．Contractile vacuoles，one to many． Movement，oliding and swiming．Macronucleus bilobed．

Tail region short，obtusely mointed deck reaion less wan One－half the body leneth．．．．．．．．．．．．．．．．It fasciola． 3 ． lail rerjon extremely rointed．Veck reaton pherofifras （the length of the body．．．．．．．．．．．．．．．．．．．．．Arzeszionspil． 54 ？

Family Chlamydodonata：－
Cual to Ridney－shared，never ery long．
From rather round to flattemed，dorso－ventrally．ifouth aliajs far toward the anterior ead，sometires in the middle of the ventral side， and sometimes flaced to the right or left of the midule．Pharjax usually witi rods，but sometimes it is a spocth ture．Uscually gorged with food．

Subfamily Vassulina：－
Found or a little flattened．Cilia
on all sides．
Genus JL. Aassula:-

Flexible to somewhat contractile．Eqs
shaped to elongate；sometimes flattened dorso－ventrallj．Ends equally rounded．Mouth ventral，some distance from the anterior end．
Anterior end bent a little to the left．About the mouth is a row of stron adoral cilia．The remainder of the body evenly ciliate．Stria－ tions delicate and weakly spiral．Nouth circular and pharynz
rodded．Pharynz usually trutuds to the left and dorsally．Contractile vacuoles charging；sometimes one in the ceater of lie ventral side， sometimes as many as four，some on the ventral，and some on the dorsal side．Usually a complete coat of trichocysts．Colorless or c．lored red，blue，or brown，by fipmeat．Nacroniclevs srherical and central． One species． N．rukens．

こし。

Subfamily Culodontina：－

Sronoly flatrencd．Cilia confined
to ventral side or else muel larerer on entral，than on dorsal side． No distinct caudal style at the posterior end．

Genus XIJ．Gilodon：－
Persistent eof－share．Flattened dorso－
ventrally．Anterior end bent to tie left in ratier rointed Veas． Ventral side is slightly concave．Posterior end brenlly rounded， surface finely striate longitudinally．Snly tre entral side ciliate． Cilia thick acout mouth，formine an adoral zone．Nouth median，in anterior half of body．Pharynx rods well develoned：strainht or hith inner ends spirally rolled．Contractils tacuoles varyine from one to many，increasing in number with size of body．Nacronucleus oval， ceatral．
One spezies.

$$
\text { . } 2 \text { gucultulus. }
$$

Order Trichostomata：－
Cilia of the vody of very different kinds.

Mout，as a rule，oren．Pharyny usually developed；tubular and oren． Margin of mouth with undulating memoranes bich sink into pharma， or pharyax provided with undulatino membrane，or with cilia which may be derived from tie adoralzone．

Suborder Aspirotricha：－
More or less ellipsoidal to Fidney-
shape；almost always distinctly asymetrical．Wouth primitirely
a longitudinal ventral slit：but ustially an oval，kidney－siape，or crescentic opening，more or less removed from anterior end．Fharyax is either not deteloped or is a resular，rather long，smoct twat． Pharyngeal rods never present．At the edae of the mouth opesing or in the pharyn：is one to two undulatine membanes which rove life lirs and which are not evideat in smaller forms．

[^0]either scarcely developed or short sac-shafed. Thdulatine mombanes either at the edres of the mouth or deer in the fharyby. Leriscome field leading to the mouth, lacking or onls yourlj derelored. Genus ziali. laucoma:-
Pro-shared, rounded rosteriorlj
aud a little pointed or less round, anteriorly. Dorsc-entralls flattened. Finely and ewonly ciliaie. .outh entral, if or to anterior end: at times shoved to the risht. Anterior ent sometires ourved to the rioht. Mouth trianorlar to half-moon-shaped. it each etce of mouth a stronq undulatiof rembrane, the tho bein usecual. Eharyay hardly evident. One dor:al contrastile vacuole, central or subterminal. it rimes, a thick coat of trichoovis. wonment ray id and steady; somerimes gliding on ventral side.inazrmucters ruma, central.

Geaus ariti. Frogtogia:-
Elomate cyliadrical, aith eventy
rounded or somewhat rointed poles, the tro differing comewhat, at times. Sometimes a little flattened dorso-ventrally. Scmenizat contractile. ©vealj ciliate and regularly striate. Ite larce pide open mouth ia anterior half of ventral side is an eloncat doval share. To the left side is fastened one undulatine mertrane, wish may corer the whole mouth anmo. On the right edge of the mouth is a small trichooyst-free field, uron which is a row of cilia, which are a littie differentiated from the body cilia and whose lively motion five: them the appearance of a second undulating memuraie. Faryur litule developed. Usualls a complete coar of trichocysts. Une or pro contrastile vacuoles 0 the rimh side. Vacronvelevs oral and central. Wody colorless, or green from Zocchlorellae, or brom to liach from riquest.

compressad. ¿orsal sive archen; festral side flh riorly. Niterior ead not so broadly rounded as the postarior rand. Wouth in anterior half of body in a transerce derression wion the ventral side: leading into a long, tubular haryny mout trianmilar or sresceatic with two undulatios membranes. Ine pistht nemrane eztends far down into the haryny and aprears to $\begin{gathered}\text { a } \\ \text { fastened } \\ \text { to }\end{gathered}$ its anterior or dorsal wall. shriations in front of mouth twisted to the left, so that those of the right sido pun oblianely from risht to left. One central or terkal contractile vacuole. Vasronusleus spherical.
Coe species. col. uda.

Family Faramatciaz:-

iouta sumetimes in anterior, soretimes
iu posterior half of body, fith a trianctiar, flat oral proove exteuding to it from the left anterior marcin. Fhartay tubular, father lona, with longer undulati io inemirane or corresfonding fow of cilia attached to dorsal dill. Silia trick and reqularly distrinuted.

Geous zto - paranaeciun:-
ventrallu flattened. Ends rounded \& pointed. Kouth larre, oval. near the center of the ventral side, with nerjstome field leadine to it from the left. Eharyng rather lone with one undulating merbrane on its dorsal edoe. Velially a complete trichocyst coat. l, or more of tene, contractile vacuoles. Aacrontioleus osal, central; 1 or a micronuclei.

Cne srecies. E. こaudatum. Family Urocentriua:Wouth in tie midile of the ventral side, with long tuoular pharyaz, similir 10 that of parmacaida. Silin in
two broad wreaths, one in the anterior and oue in the rusterior half of the body.

Genus. iTh VI Urocentrum:-

with broad rounded ends. A circular furrou in tive equatcrial recion which divides the body into an anterior and a rosterior half.

The large oval mouth lies in this furron on tie ventral side, and
from it extends a lons oroove over the ventral sife of tie nosterior half, to the posterior ead. Anore the mouth a cirsle of deljeate cilia surrounds the fody. A hroan vreath of stroner cilizencireles the body in the anterior half and another in the nosterior half. Caudal cirri project from the ventral furrov Pharynz lono, a row of thickly placed cilia at tie ventral and cin lines. Vachole terminal vition four long canals qivinc it a rosetle ariearance. Has a rafid valtzing movement. Sometimes athaczed Dj its tail process. namomucleus rosterior, horse-shoe-shared.

Family Eleuronemina:-
Cval or eloncate. Derso-ventrally or
laterally sompressed. Ciliated on all sides. Mouth at the ead of a long peristome on the ventral side, sore imes near ine rosterior and sometimes near tie anterior end. Peristome uswally fluted. The entire left peristome edere with manlatine merkrane, which frequently curves around the nosterior edre of the noristome to the
rioht side, formino a kind of sac whioh leads into tie mouth.
The right peristome edoe also has a weab membrane or a row of thickly placed cilia. Paryaz but slichtly, if at all, develoyed.

Genus Kisti. Eleuronema:-
Inflexible. Isentiform, laterally
comressed; the two marring eunally arched. "entral edecearly
straisht, dorsal edce convex. ples eoully rounded. Feristone extencs
-
alons tae whole ventral side: it is deener in tae midnle with the mouth at the base. Uadulating membrane alonce tive hole loftedre. The rioht edoe with a thick ron of strong cilia. aropalua loner crine at the posterior end. Contractile vacuole suluter nal ard corsal. inacronucleus round or kidner-shared, in the antenior palf of the body. Swimming and spriacing movement.

Che sreaies
Genus ritvirs. Cǔlidium:-
Emaller tian Eleuronera. The
 mouth onens to the right. The undulating meribrane of the left edpe of the peristome extends around the mouth behind, then rises a little to the right. Generally one posterior srine of considoraile lencth, more evident than in Eleurubeliz.
Gae siecies. S O
sluborder srirotricha:alvays with a distinct adoral zone consistins of membranellae, wish has a iore or less swiral course and wish, wholly or in wart, surpounds the feris tome field.
section Zeter oricha:-
Well develojed adoral zone and almars a
complete coverinç of uniform silia without differentiationon dorsal and ventral surfaces.

Family Plagiotomina:-

Short or lone; fremently compessed lateral
ly yet sometimes round. Feristom alnays lire a small orocre which generally beoins close to anterior end and runs strai ht back, ventrally, to ine mouth, which varies in gouition be ween me midale of the body and the posterior end. Auoral zone exteads irom the mouth on the left side of the perictome moore to the anterior end of tie kody, thus having a straicht course, excent when it is twisted, due to a sorew-ifke twisting of tie body. An undulatinc mem-

Drane may be present at ine riothe eupe of the perisuone fadraz tubular.

Genus ats.
Colorless or orecn. 'er' contrastile
and flexible. Very elongate; aross section circilar. The ends iarerinc:
the posterior one of tea diminished into a lone thread-jife tai] aut sometimes truncate. Feristome extends backurd as a roove fron the anterior end to about the midule. Pharyoz very hort. A undulating membrane. Etriations spiral and very distinct. Dne rostertor contractile vacuole with a lono canal extedino alona qe entire dorsal or rioht side. Wacromiclevs oval an central. Vovements manifold.

Fanily oursarina:-
Sody murse-shaped. Eorso-ventrally flattesed.
Peristome is short or lony und quile broad. It is a hree acratered space, broad in front and diminishing towards the nouth; it is deerly hollowed out. I.he adoral zone includes ouly the left edse of the reristome or exteids foratd along the anterion border so as to incluce the right anterior ausle of the rerictome. Titile or foo rharrna.
Right ede of jeristome with or nithout malatins memra.e. Genus J. bupsaria:-

Colorless to Grown. Flerible. Lory thongate sac-like, or funnel-shane. Ventral site flatiened. Anterior end troadly truncate. Fosterior ent broadly romader or a litile rointed. Tie narrowed posterior nart of the larye neristome bends around to the left and leads into a mouth orenins. $\mathcal{C o d y}$ evenly ciliate. Vio undulating membrane. Contractile vacuoles are somerimes lackinc: and other times thej are fumerous. Jonz, bent, band-like macronucleus.

$$
\begin{aligned}
& \text { Une species................................. Druncatella. } \\
& \text { ¢う. }
\end{aligned}
$$

Family Stentorina:-
Dody murse-shared to elongate funnel-shared.
 Lilar rilu, its loncitudnal axis. The adoral wowe man luchune only The ront edpe or the whole of the peristome. Eeristone surfach, therefore, ciliate trouchout and srirally striate, witl striations rarallel io the left Jorder of the rerintome. wo windati
the tho halves of the rerishowe are : rusiosi int is
Eharydx thiular. Body sometimer atiachen.
"ealis ris. Etentor:SO\}O2les: to ?lue, pi

 Anterior end hroad, trincate and somenhat arshed. Contrazts into a Sac or spherizal share. Surface of the neristore nerrondioular to he longitudinal axis. doral zone completely suraondiner reris tome edre. Richt end of the ane a litrle hicher than the rest. Whe mouth lies in a hollon betweer the tro ende of the zo e. Fhartoz lond and tubular. Lody striatioas vide, more or lese sriral. Tons bristles frequently mineled with the body cilia. Conractile pacuols on the left side with tro cauls leadine to it; one to tie rosterior end and one around the feristome horuar. ibacronvicleus elospate, often moniliform. When attacred they sumetimes form pelatinous rotectire tlibes:。

$$
\begin{aligned}
& \text { aection Ulisomricha:- } \\
& \text { Never very long. iostly spherical to sac-char- }
\end{aligned}
$$

ed. or inverted cone-shared. Peristome field sisilar to iat of
Sentor. Adoral zone nearly or comrletely circular. Cilia of the
po: zerior end :ometimes vell develofed, cometinte alrat or auite reduced.

Family aalterina:-

Erherical to cone-sharch, flowible. Pori-
Scome field without cilix, also the rocterior end, whese ometimes a few scattered cilia are develoner on the ventral sinc.surfimes rifid bristles are scat terod in with cilia. Poristore mordc not developed.

Genus III. Iilteria:=
Colorless. Kersisieut in a srhorical
form. The rigid orjstles are arrabred ivto a rreath. Wo richocyets. One contractile vacuole wotes ly quizk srrinos aill restjnc vauces こetr,een.

Section Eyrrotrichz:-

Eody dorso-ventrally flatiened. Worsal side
arcied. Three cornered neristome field lies arnrozimately in tue same rlane with the rest of the ventral surfoce. The noral zone reaches from the mouth cror the mmato the richt anterior rori-
 the ventral surface. Ine dorsal side without moteable cilja but hith
 tion are contined to tae ventral side. Fharynz noorly, if at all, develozé.
Family ưulotina:-
s hort, risid forn. Eilia meatly redroed
in number. The marriual rows are esrecially reduced, only isclated cirri being found at the side of the rody or at the rosterior end. Jnon the antero-ventral side, a varyins number of scattered cirri; alwaje a considerabie number of anal cirri. Contractile racuole

-
rosterior and on the right side.
Qenus JIII. Eunlotes:-
Colorless or areen than n Zcrehleralla.
Flattened; Arched dorsally. Somewhat oral. Inverion ent Wroarly rounded to somewhat truncate: sosterior end rounczas io somenhat pointed. Nine or ten cilia on the anterior tontral fiflat five reoninent anal cirriin an oblioke row, and which projest orror are rosterior end; two other sinall marpinal cirni at the rosterior and, and two similar ones on the forterion nart of the left side iopsal sids generally loncitudisally furponed. Jourpactile vavole on the rixht side. Macromucleus long, band-like, and wifid; rlacet io the left.
\qquad
Emily Asmidiscina: -
anall. "arrial cirui entirely watinc.
Nimber of anterion cirxi varyinc; one row of anal circi. poristome shall and on tae left edce. Aroral zone hortened, reacinom only to the anterior end of tie left, edee. vacronuclers lone, band-like. Geuus TIT. Aspidisca:-

Shape circular to shortly oval. reft
edce rather straight; right edge sonveq: right ventral edef tioncyenen. Ventral side straioht; dorsal side arched and with from one to several
 stome edge orons out to the leftin a projectiucr flate, nion is small at the anterior end and rons broader towurd tae yosterior end. In the posterior recion, to the intht, are fro: 3-1. cilia ou the anterior half of the vemirat surfor araned in orre rows. Contractile vacliole under riant side. Vaoronucleus horee-hoe shajed, ia the anterior half of the body.
Une snecies............................ . . .
fron eacn other. entral ailia not reanlar bui in an enone cat mas
 so at the posterior end. Contractile vacuole on the laft aite of the central part of the body. Yacromaleus lipewisf on lf t sisc, and more or less segmonted.

```
SubfamiJy Lrostylfnac:-
```

St least to unimer mo fermal rows

Colorless to : elloz, res, ol Wrorn.
iery flezible, but not alwars contractile. Gval; osteriop en romde sometimes broader, soretin s maller, than the ridele pexton: anterior ead al䟿 ©

 also twe raprinal ant fief entral row an an: in and five to twelve anal cirxi eatendinn in the left. Vacronaclens two or many sermented.
\qquad
Sublamily Fleurotrichina:
Frontal cirsi nell develoged and
where they are tie only cilia of the frontal reqion tren are armanen in the order remresented in the firmure to tre lef: loc
two marci.al rows cf cirri well develoned. Vertral strifs sometimes numerons, but enerally reduced to tro. Cine or more of in strie... iaterrunted and alrost almss some of the cilia differentiated
into ventral cirii.
Genus isis. Eylonychia:-

oval in shape. Nitht peristome edae scmenat . . : Hut. in fisf
 cirri very lona; the tho marainal rows of ciren interrmed onterion1J. Quick and nimble in movement, swimaine and crefni…

One rnecios.
Section Peritricha:-
ajlialinjted to the entral sirfiow ant to

The adoral zone, whici describes a corrltte cirale, and ro a araata around the kostexion veniral. hilf. In ottached dornis i, ve velural circlex of cilia disajobars and the anoral cipalet of cilia mojomrab whe anterior end of the ereet bod?. Iribular ciliate warras. contractile raavole in mouth perion.

Family Torticellina:-
Alloral cilia in a circle, zousionthmof

or less desn vestituluo. The outer por of ditia is perlaced ath on urivilatiro membrane come distance in front of the restibmlurn Contractile vacrole lies in the canter of the testibrlum, and cometimes ins a reservoir. ifacronuclems a lonr band.

> Iribe contractilia: -
stem with contractile thrcad... Solon:-
zhiluince or sulitar.
Senus JuVII. Vor ticella:-
Colorless to yellovich, or creen
 ead is penerally very wide. It.is attached at ive rosterior end bry a aimle, short or lon contractile thread. Uoes not ruild colonjes.

 :ac-libe reservoir.

Cone smezer.

Zocjn! 31:-..1
ilt. Yolon building oy comzame dicor
ractile threads runias throurn slaly in not contino a as
Wraturus, so each nart may contract semaratol

> Gne srecier
"rner - ?othamin:-

 Vari sontracts tie wole colomy contracts.

Une sytcit: $2: e 1=1$.
Iribe acontiotatilia:-

tary or colony building. At times a mandinous ssorevion th ine gen.

$$
\text { rone rin. } 1201 \text { miat- }
$$

Zooids ell'rscinat to sgg hat

is crlewten on a ralt, 尼is arero

Y2f cer i. : = 1
 lying transversely in the mouth reajon.

Subclass Suctoria:-

> The possession of cilia is confined to a
short, free swimming stage; when it passes over to a sedentary life, they are lost. No mouth opening. Nourishment is taken through tibular, pseudopodia-like tentacles which vary in number.

Family Podophryina:-
More or less spherical in shape. Stalked or not. Occasionally with gelatinous cover. Ientacles numerous; on the whole surface or confined to the apex; all or a part capitate. Genus Hiz . Sphaerophrya:-

Spherical; not stalked. Capitate tentacles radiating from the whole surface. One or two contractile vacuoles. Endoparasitic forms have no tentacles so long as they live in the body of the host.

One species.................................. E. magna. 79.

LIST OF SPEGIES.

The followino pages contain a list of the soocies with raferences to authoritative fivures and discriotion, a few descrintive notec based on my own observations, and such ecolocical data as I have accumulated durine my own work.

$$
\begin{aligned}
& \text { 1.Amoeba proieus Leidy. Fl. I, IfFig. 1-8; } \\
& \text { Leidy ('7o)..pn. 31-25. P1. I, figs. 1-9; II, 1-13; } \\
& \text { IV, 22-25; VII, 13-12; VIII, 17-2C. }
\end{aligned}
$$

It is somewhat spherical when at rest. It is lisually lareer than A. Villosa, but not always. Tize protorlasm is colorless, homogeneous and vacuolaied. The protoplasm is differentiated into a thin ectosarc and an entosare. Within the entosarc is contained a nucleus, one or more contractile vacuoles, and may water vacuoles.

The pseudopodia are oreater in number, and longer, than in A. villc= sa, and are more pointed. Ihey extend from all parts of the periphery. The animal moves quickly throush the water by means of these pselidopodia.

A large posterior contractile vacuole may always be found, with sometimes one or several smaller ones scattered through the body. The nucleus is round to oval and varies in size. It is usually almost centrally placed.

Their food, like that of the other species, consists principally of diatoms and other algae. It is held by the psevdonodia, a ad eaclosed by the protoplasm of tne body which ingests the part which can be used for focd, and lets the rest $\$ 0$. One imnense A. froteus was obserted with a small A. ifillosa creeping in between ino rreudopodia which closed around it. When the small aroeva tried to get away the pseudopodia held it tishtly for some time, kut it finally escaped.

Division and encystment were not observed.

They have appeared and disarpeared in the aouaria tircuphout the year. A collection nas seldom made in which thej nere not represented. Scheniahoff ('S3) reports this syecies from Asia, Africa, Austraiia, America, and Errore.

$$
\begin{aligned}
& \text { 2. Amoeba verrucosa Ehrbo. Pl.lll, Ivpim.9-17. } \\
& \text { Tرeidy ('ra) pp. } 5 z-58 \text {. Pl. III, fios. I-zs. }
\end{aligned}
$$

This is a somenhat sliprer-shared aninal, with the broad, blunt, thin end directed ahead. According to isejdj ('Te) and olhers it is smaller than A. protelis. The most of those which I obeerved were quite as large as A proteus. The krotorlasm like that of the other specier is homogeneous, colorless, and mucr vacuolatey. Ihere is a very sharp distinetion between ectosarc and entosare.

It moves ver slonly and does not put forth such distinct seeudopodia as tie other spezies. It rather exteads the whole surface of ectosarc and then puches un into it. It varics onsiderably in shape, though owing to this manner of movement, not sc moh as the other species.

The nucleus is round and is penerally nosterior and a little to one side of tie ceister.

The conractile vacuole is usually sinde. Ir is larse amd round and is located posteriorly.

Its focd consists of alcae, rrinerally. Gne larpe Aqyerrioosa was observed eatiar a shelled rhizojod, rrobally a Cedrroryzis

Division and encjstment nere not orserved.
Like the other species it has oceurred and disameared in the laboratory aquaria throuphout the year and has also been found in most coll こtions. Schewiskoff ('OZ) reports tie sreaies from Asia,

Africa, Australia, Oceanica, ad America.
己. Amoeba villos:a Wallicu. Hl.V, V/Fif.18-26.
 VIII, l-10.

This is an elongated ovoid form when at rest, broader at the anterior end and having a villons aprearsnce at the posterior one. It is a homogeneous, colorless rass of rentorlasm, constantly motios and changing in shape. Within the protonlasil, this contained a mialsus, one or nore contraztile vacuoles, and a nurer of water vazuoler. The protoplasm is differentiated into a thiufilm of e己tosara, and a granular and exceedingly vacuolated entosare. 'jhe frotoplasm is very mobile so that the animal constantly changes shape, muza resembling A.proteus in this rarticular.

The animal may have a oreat number of pseudopodia at one time and exteadiag from any part of the reriphery although usually there are but two or three, and these are mostly anterior or antero-
lateral. The pseudorodia are never lug nor pointed but are simply blunt extensions of the ectosare with the entosarc running down into them. They serve for taking food $3 s$ well as for locomotion.

There is one almost sphorical buclous toward the posterior end, although of ten this can not be seen in tize living animal.

The contractiletacuoles vary in cumber. Scmetimes there is but one, and sometimes there are ceveral. There is usually oue large one tonard the posterior end, and the others are scattered through the protoplasm elsewhere. They pulsate rather quickly and attain to guite a size before systole.

Their focd consists priacinally of diatoms and ctier alrae.
The food is caught by the preudopodia, the cody is folded over it, and the protoplasm ingests the part needed for food, then lets the rest $\because 0$.

Division and enaystment were bot obsered.

Ihis species has ocaurred and disapreared in aquaria in the laboratory througout the year. In nearlj every collezticn were has been at least a few. iseidy ('72) reporte it from the Woited átases.

$$
\text { 4. Pelomyra villosa Greeff. Pl. VIl. ie. } 27,28 \text {. }
$$

 Pl. II. fi i . 6 .

A very characteristic form in the spezies I orserved, was an elonn gate one with two posterior horns. It is brown in color. The shecimens olserved by me were very small. It is amoeloid in locomoticn. The ectosarc is a vers thin film, and is throm out at tires for reat distances. The entosare is very ranular aud very flezible, and is not muca vacuolated.

The pseudopodia extended from all marts of the perirhery, but the most prominent one were from the corners. Ihese were sometimes lery long, being almest eaual in leagth to the leapth of the body. Ther were of tes branched at the ends, and were eztended and witharana quickly.

No contractile vacuole was observed. Tseidy :"To) says that the contractile vacuoles are numerous, iut that they are small and inconspicuous.

The thin estosarc was thrown out around the animal and enoulfed algae and everythino with which it same in sontact, so that the bodies were gorged with foreirn rat ter. The animal noved rapiditu and evenly, with a characteristic sidewise motion.

I observed but ino. Hhis was on wovember 8 , 1832, in material from, an aquarium started a fen neeks before from crystal take. Schewiakoff ('gZ) reporte it from Australia and America.
כ. Einamoeva mirabilis Jeidy. Pl.vinfig.29-32.
istidj ('fa) pp. S1-94. El. VI: VII, I-11.
The animal is ovate in form when at rest, but is very changeakle. It is almost colorless except for contained foon rartioles. The rroto-
plasm is sharply distinguished into ectosarc and endosarc. It is granular and very movile. The surface is corered with sricules vinich do not occur on the pseudopodia.

Tae pseudopodia are us:ally of clear ectosarc and do not attain to any great length. They are extended and withdrawn rery quickly.

Both the nucleus and sontractile vacuole were hidden because of the corged condition of the endoplasm.

Within the body were diatoms and many smaller food particles. One was observed taking a diatom. It was first caught in the ectosarc and then in the endosarc, and so passed in uistil it was all contained within tae inner body. While swallowing tae diatom the lody of the Dinamoeba underwent a series of changes in shape, shor tening and thickening posteriorly, and then lengthening out again, until at last it regained its normal state. One gorged specimen was seen exuding food particles from one side.

This species did not occur in oreat numbers at any time. One was observed November 27 , from an aduarium which had keen about the laboratory for over a year and contained material from several sources. Another was observed on Tanuary $5,10 n c$, and fire more on danuary 29,1300 , from collections made under the ice in the Eoneyard. Of these latter three were large ones and two were very small. One was observed asain on April 2, leCC, from a Lonejard collection. Schewiakoft ('s, reports this species from America only.

$$
6 \text { Biomyxa Vagans Leidy. Pl. X.Fig. 33-35. }
$$ Leidy ('79) pp. 281-287. P1. zLVII, figs. 5-12: ZLVII.

This is a large, colorless, irregularly shaped creature.
It resembled a groun of Amoebae connected by strands of protoplasm. It was constantly changing, however, some parts growing together and others separating. At times the protoplasm would thin out so as
to form holes.
The pseudonodia were usially short and ratner slender. They were sometimes branched at the ends and formed a networl.

The nucleus I did not observe. laere were lisually tro oood-si.ed contractile vacuoles but sometimes three. Iney varied in position with the change of shape of the animal.

Many Naviculae and Eacteria were eaten. Associated with it were Navicula, Spirillum, Spirocheata, Actinopirys sol and fmoeda.

I found, but one. Tnis was on April 4, 192e, in raterial taken from an aquarium started early in January, 190z, from the \quad oneyard near tne neating plant. It is reforted and described by. Leidy ('Te) from New Jersey and Pennsylvania, while Schewiakoff ('e3) reports it also from Australia.

7 Arcella vulgaris Ehrbg. P1. XI. Fig. 36-37.
Leidy ('72) pp. 170-173. Pl. wavil; MXVIII, 1-7. Bütschli ('s0-'90) pr. 193. Pl. II, fig. ?

This is a circular disc in shape, when seen from above, and like a concaro-convex lens from the side, and is from a light to a rery dark brown in color. There is a central spot which is lighter in color and which marks the place of the mouth opening. The shell is really dome-shaped.

This species of Arcella_was not observed with sarcode extended. Leidy ('79) tells us that the pseudopodia are digitate and that the sarcode mass is oblately spneroid.

The specimens which I observed were of such a dark brown that koth nuclei and contractile vacuoles were obscured.

The animal did not creep alout while observed. One edpe of the shell is sometimes reflected back over the dome making the outline of the shell appear more as a semicircle. The food consists of small diatoms and desmids.

R: .ilx

It occurred in material collected frof nader the ice ianvary 25，1900，in the Ioneyard，and whica had veen standins in an auma－ rium in the laboratory．Schewiakoff（＇93）reports it trom Asia， Africa，Australia，Oceanica，Europe，and America．

$$
\begin{aligned}
& \text { G Arcella_discoides Ehrbo. Fl. xll. Fir. } 38 . \\
& \text { Teidy ('7o) pp. } 173-175 . \text { Pl. XXIII, fics. } 14-39 \text {. }
\end{aligned}
$$

This species，too，is circular when spread out，but it is not so thick as A．vilgaris．It is also a very dark brown in color． Ine sarcode of this species was extended and wis colorless，thousn more or less granular．

Ihe pseudopodia are long，digitate，and sometimes urancning． One granular nucleus was observed to the right．
It occurred associated with A．Iulgaris＿in material collected from under the ice in the Eoneyard，January 25，lace．Scheniakoff （＇93）reports it only from Australia and America．

$$
\therefore \text { Difflugia globulosa Dujardin. Pl.x॥.Fig. } 39 \text {. }
$$

This is spheroidal in shape．Usually the vorder of the shell is smooth but occasionally there is a conical projection．They are light in color，some keing almost colorless．Many of the shells are made from quartz sand particles lut I found them in great numbers， building shells from diatoms．The mouth is circular and sukterminal．
but one was observed with pseudopodia extended．Ihese were very delicate，pointed，and finally branching．

It occurred during the latter part of December，18？ January，1900，in an aquarium of several months standing．Schewiakoff （＇93）reports it from Asia，Australia，and America．Eütschli（＇80＿＇89） reports it from Europe．

$$
10 \text { Lifflugiangriformis Eerty. E1.xII, Xiv. }
$$

Leidy ('79) pp. 99-105. Pl. X ; XI; XII, 1-19; 苟, 22-32; XVI, 3 B ; ZIX, 24-26.

The shell is flask-shaped, with a neck-like prolongation at the narrower end. The shell is usually brownish in color and is made up of angular bits of quartz sand and some diatoms. It present a kilateral symmetry, i.e., a line drawn, bisecting the mouth an perpendicular to the plane of the mouth, bisects also the fundus anc divide: the shell into two symmetrical halves. The moutn is terminal.

Ine animal puts out very long pseudopodia which move slowly. They are round at the end and branched. The protorlasm is usually granular. The pseudopodia extend far out and procure the food, which consists largely of diatoms and algae. It also moves by means of the pseudopodia.

Several contractile vacuoles were observed but the nucleus was not seen.

One was observed dividing. The sarcode divides by cross division and the naked animal formed provides ? new shell for itself. The old shell was quite dart, while the new one was colorless. The two were the same size, which seems to prove that the shell does not grow after its formation at the time of dirision, a conclusion which Penard () has recently reaffirmed. I first found this species in June, l892, since when it has occulred in nearly every collection made and in aquaria about the laboratory. It was the largest Difflugia which I observed, althouga Leidy ('78) states that D. urceolata is the largest species known. Screwiakoff ('诸) rerorts it from Asia, Africa, dustralia, Oceanica and America, and Bütschli ('80-'89) from Europe.

$$
\text { 11.Difflugia urceolata Carter. P1.xv.Fio. } 43 .
$$

This species is flask-shaped resembling the amyora of the ancients, i.e., tapering to a posterior roint. It has a flarine collar at the anterior end. The mouth is terminal. The shell is made ur of angular particles of auartz sand, with occasionaly a diatom, and it is rather dar? colored. Its food is of a veric nature. Accordily to Leidy ('79) this is the largest of the Difflugia species.

This species did not occur until in january, 1900. It tnen apneared in a mid-winter collection from the Loneyard. scaeniakoff ('03) reports it from Australia and America. Litscnli ('É-'ge) has found it also in Europe.
12. Difflugia lobostoma Leiay. Pl.

Leidy ('79) pp. 112-11ह. Pl. zv, figs. 1-24; ZVI, 25-23.
The snell is nearly spherical, with the fundus obtusely rounded. Ine mouth is terminal and loked, and when viewed from the side it louks like a small concave opening. The siell is bilaterally symmetrical.

The sarcode is colorless. The finger-live nseudonodia are extended and withdrawn rapidly and are six or more in number.

Its food consists of diatoms and algae.
It occur red very abundantly in a tow-net collection from Crystal Lake, August \circ, 1998, but I did not find it on any otner occasion. Schewiakoff ('93) reports it from Asia, Australia, and America. It is also reported from Europe.

$$
\text { 13. Difflugia corona Nallich. Pl.XV Fig. } 44 \text {. }
$$

Leidy ('79) pp. 117-120. PI. XvII.
This form is spheroidal in shape. The fundus of the shell is usually provided with several conical projections, which vary in

number. linere are generally from three to seven and they are arout equidistant from each otzer, usually forming an eccentric circle on the upper third of the siell. Occasionally there is fut one lons ventral spine, and sometimes it is present with tie others around it. The shell is made up of particles of cuartz sand, and varies in color from whitish to dark brown. The mouth is laroe, circular and crenulate.

The animals extends pseudopodia quite freely. They move rather quickly, are rounded at the ends, and branch.

It occurred in a mid-winter collection from the loneyard in January, 190C, associated wita D. urceolata. Lütscnli ('90-'80) reports it from Europe and Leidy ('T?) from the Lnited S tates, and ne also states that Wallicn reported and described it from England.

$$
\begin{aligned}
& \text { l4. Difflugia constricta enrkg. Pl.xvl.Fig. } 45 . \\
& \text { Leidy ('70-7e) pp.120-1E4. Pl. RVIII. }
\end{aligned}
$$

The shape of the shell is a compressed pear-form, with the lono axis oblique to the plane of the mouth. The posterior end usually has about three or four conical projections. The shell is made up of angular particles of quartz sand. The round mouth is antero-inferior.

Only once did I observe pseudopodia and then only for a morent. Iney were clear, simple, and with rounded ends.
lheir food consists of algae and diatoms. Tais species is very similar to Centropyzis.

I first found L. constricta earlj in June, 189 , and since then it has occurred at all times botn in aquaria and in field collections. Schewiakoff ('93) reports it from America only.

Difflugi a was more apt to occur in collections from the strean where leaves r d fallen in and laid for a long time. In one aquarium, in particular, they became very numerous. There were a number of leaves in it, and on and under these all of the snecies became
abuadant. Ine animals cre about rather slowly means of their pseudopodia, usually lying on one side.

$$
13 \text { Centropyxis aculeata Enrbg. Fl.xvo.Fig. } 46
$$

 KXXII, 29-37.

The shell of Centropyxis is oroid in share and is composed of chitinous matter mixed with particles of auartz, sand. It is from jellowish to brownish in color. The mouth is eccentric and round. 'The posterior end of the shell is rounded and is rrovided with a number of spines, sometimes straignt and sonetines curved. It resenbles Difflugia constricta very much.

Ihave never seen the animal with reudorodia extended. Neitner have I observed nucleus and contractile vacuoles.

These nave occurred in great numbers throuqhout the year in one aquarium which was started early in ianuary, 180?. It has occurred at intervals in other aquaria usually associated with Arcella and Difflugia. Schewiakoff ('93) reports the species from Asia, Africa, Australia, and America, and Eutschli ('SC-'9?), from Eurone.

Centropyris aculeata var. ecornis Jeidy. Fl.XV/. Fig. 47.
This is simply a variety of C.aculeata, maing no spines. Its structure and habits are the same, kut it is not sc atundant. I first found it on January 18,1800 , associated witn $\underset{\sim}{0}$. aculeata.
16. Camascus cornutus feidy. Pl.Xvil,Fig. 48 . Leidy ('72) pp. 204-202. El. XXXIV, figs. 17-24.

This is one of the shelled rhizopods, with a chitinous shell shaped liko a retort, and naving a process developed on either side of the furdus. Wimen the animal is seen from the side, the processes on the sid give it a trianoular shape. There is a short cur red neck.

The mouth is circular, and is directed downwards.
Pseudopodia are delicate and are very finely branched.
I could detect neither nucleus nor contractile vacuole.
I found two or three of these on 'anuary 18,1000 , in material collected from under the ice on Tanuary 2,1200 . Lütschli ($180-18$. reports it as occurring in Europe. Schewiakoff (l?) re;orts it from America only.

$$
\text { 17. Pampnagus mutabilis Lailey. F1.xvuFig. } 49
$$

Iteidy ('78) pp. 190-134. Pl. KaxilI, figs. 1-9.

This is a shelled rhizopod but the shell is very thin and elastic so that the animal is constantly changing shape. Wnen at rest it has an oval shape, with the fundus sometimes rounded and sometimes pointed. The sarcode can easily be seen: it entirel fills the snell, is very granular, and is usually ooroed with food. Ine mouth is small and terminal, and is directed downwards.

The pseudopodia are delicate and branching. They are sometimes very long, being extended and withdrawn slowly, and are the means of locomotion for the animal.
lnere is one large contractile vacuole situated to the left of the center.

The animal was observed eating diatoms and other algae. Ine body was sometimes pressed entirely out of shape by the food. One was seen to take a diatom which was longer than its own rody, so the body became stretched out at each end to the left of the diatom, causing it to appear pointed at each extremity.

These were rather numerous on tanuary 17,1900 , in material collected under the ice on Tanuary 5, 190C. Lejdy ('79) has found them in pools in Pennsylvania, New lersey, and Wyoming. Schewiakoff ('9Z) reports it from America only. Lütschli, howere reports it from Europe.

$$
\text { 19. Actinophrys sol Ehrbg. Fl.xvilyig. } 50 \text {. }
$$

Tseidy ('79)pp. 235-241. Pl. XT. Schaudinn ('8e) p.10.
The body is spherical. It is very much vacuolated and the frotoplasm which holds the vacuoles together is granular. It is usually colorless, althoiga on one occasion I observed seteral winch were not so vacuolated but consisted of brown granular protoylasm, vith red bodies enclosed in the krown, thus resembling Vamprella laterita.

The pseudopodia are long straight rays, which are very numeroun and which vary in length, being usually from two to three tires the diameter of the body. Inese all draw to ward the contractile racuole when it collapses.

The nucleus is central but it can not always be seen.
The contractile vacuole is sincle, and located at the periphery. It is not easily distinguished from the other vacuoles of the body until it contracts. It appears and disanears slowly, usually reappearing in about the same position after each contraction.

I observed one in process of division. Whea first seen, there were two individuals connected by an isthmus and haring a third sphere between them. The two had rays and each had a contractile vacuole but the one in the center had nei ther rays nor vacuole. Upon looking at them a little later, the middle sphere was smaller and a second intervening sphere had formed. These spheres grew smaller all the time, while the istamus connecing the two outer individuals became longer and narrower. The surstance of the spheres flowed over into the connectino isthmus. I was oblioed to leave them at this point, and so did not see them actually divide.

I first observed them April 3, 1892, in an aquarium started fron below the heating plant.early in January. I did not okserve them again until November and t.ey were plentiful after that. Leidy ('78) reports the species from most parts of the United S tates, from Nora
.

Scotia, and from Canada. schaudim (or) rerorts it as occurriny in Europe, Asia, Anerica, and Australia.
19. Astinosphaerium eichnornii Enrbog. Pl. Fis.

Leidy ('72)pp. 25e-2c 士. Pl. KII. Schalidinn ('20) p. 10-11.
Lhis is a colorless, spherical animal having a clear lajer of vacuoles at the periphery, while the interior of the lody is ranular. The pseudopodia are rays mici project from the kody in every direction, and are very numerous. Iney are lisually not much loager than the diameter of the body.

The nucleus was not okser ved k me al thourn some aurhorities report as many as one hundred, scattered throush the inner sanular mass.

Fhere are two contractile vacuoles, located ia the layer ciferipaeral vacuoles, at opposite sides. Inej can not ve distinguished from the other vacuoles until they contract, when they give the entire body a shock. They reappear at the same place.

These occurred plentifuily during the last of Febriary and the first of March in kranches of salt Fort, east of Urbana. Schaudinn ('Эß) reports the species as occu ning in Eurore, Asia, America, and Australia.
20. Nuclearia polmudia schewiakoff. Pl.x|x.Fig. 51. Schewiakoff ('03) p. శ. Pl. I, figs l-2.
This is a colorless spherical animal, consisting of rotonlasm, whicn contains a nucleus and a contractile vacuole, and which has pseudopodia. lae protoplasm is not differentiated into ectoplasm and endoplasm. It is homogeneous, somewiat rranular and vacuolated. The animal was very quiet while observed, not changing from its spherical form.

The pseudopodia are nointed and ratner broad at the kase. They vary in length and number, usually being five or six. Lhey are sometimes as much as six times as long as the diameter of the body. Inese more,
af ter we mander of rays of Actinoparys，witi tae contraction uf mes vacuole．Tie pseudopodia are free from oranuies．

The nucleus is single；it is sfnerical and central．
There is but one contractile vacuole which is located laterally． It grows very large，in fact almost as large as the body and jul－ sates rather slowly．

This was found in Decenber，1832，in material from nools near the brick yard，Urkana．They were not numerous．The species was deseri－ bed by Schewiatoff in 1893 from nonds on the island of［ali in the Malayan Archipelago，on rice plants in staqnant water．

$$
\begin{aligned}
& \text { E1.Eeteroprys mrianods Arcner. Fl. XX., Fig. } 56 . \\
& \text { Ireidy ('79) pp.243-218. El. 矿V, figs.1-ć; 江江, 4-13. } \\
& \text { Schaudinn ('90́) pp. } 13 .
\end{aligned}
$$

Ine body is a soft spmerion mass of rotoplasm，usually col－ ored a bright green．Iney are somenat similar to Actinongry in appearance，but are larger．

The perdorodal raye are lour，rointed，and numerous，all drawn toward the contractile vacuole wen it contracts．Cn the rays are particles which move in and out on the ray and which oive it a bead－like appearance．They rary in lenoth the lonoest being three times the length of the rody diameter．The animal seers to fust float along very easily and steadily and very slowlj，without the rays seeming to be any aid to locomotion．

Ine nucleus was not observed．Ine contractile tacuole is simsle， being located near the periphery．It is very large and during the thir tyminutes that I observed it pulsated reqularlj in ezactly the same plac ，once every forty seconds．

I did not observe the animal take food but Ieidy（＇$\%$ ）says that the food consists of diatoms and al gae which become krown ky
digestion. Ae also tells of steinc a eterophrys carture a rotifer but it was not akle to retain it arainst the strus les wich it nade.

This was found first Octover 25 , 1892, in a collection made from a branch of Salt fork in the woods norta of Crystal take. I iase found it since, rather abundanlly in aquaria akout the lakoratory biut not in fresh collections. It is reported from Ireland and from Germany by Leidy (? ? , wile Schädinn ('0e) reports it only from continental Europe.
22. Acanthocystis turfacea Carter. Pl.xxl. Fiq. 57.
Tueidy ('72) pp. 2e,
('98) p. 18.

This is a spherical animal and is usually kright oreen, with a granular and vacuolated frotopiasm.

The pseudopodia rajs are numerous and extend in every direction from the periphery. hey are of two kinds, some very lons, delicate, pointed rays, which are three times as lone as the fody diameter, then there are shorter rays of the same kind akout the length of the body diameter: and for each of these and alternating with them is a forked ray about half as long as the others.

There is a clearer space in the center of the zody, which probably represents the location of the nucleus.

The contractile vacuole is single, although it did not always reapnear at the same place. It pulsates very slowly.

The animal moves slowly. At first one would think it was fixed, because of its easy floating movement.
lnese were found rataer abundantly in a collection made danuary 5,1200 , from under the ice. It is reported ky schaudinn ('? from different parts of Europe, North America, and the East Indies. 23. Wastigamoera simplex Saville-kent. Pl. $\mathrm{X} / \mathrm{x}, \mathrm{Fi}$ is. 52-55. Kent ('9Ci82) pp. 221-222. P1. I, fig. 30.

Inis is a smail mass of protoplasm, which is anoeboid, i.e., constantly changing in snape. It is lery small ald almust serical when contracted, aud is differentiated into ectosare and endosirc. It has both pseudopodia and a flagellum.

The pseudopodia are usually but two or taree in number, and are generally directed backuards. They are extent and intatrann quickly and somewhat regularly, i.e., tirst on one side and then or the other. There is one flagellum, a little longer than the kody. It is directed forwards and is in constant motion.

There is one contractile vacuole situated anteriorl, but the nucleus was not observed.

I found this species trice, once in Arril, 1595, and again in Karch, 1300. Eoth times, it occurred in aquaria of long standing al thoug not foul. It is reported only by Kent ($90-182$) who norked in England.

$$
\text { 24. Cercomonas typica Saville-rent. Pl.xx11,fic. } 58,59 \text {. }
$$

Kent ('80-182) p. 259. Fl. KIV; figs. 22-30. Eütschli ('80'99)

$$
\text { PI. MasIz, fig. } 12 .
$$

This is a small colorless form, spherical when at rest, but soft and chongeable in shape wen moving. The rosterior end is drawn out into a thread-like process.

Thereis one flagellum, four five times as long as the body diameter. It is very active, lashing food rarticles and assistins in swimming.
lhere is one contractile vacuole near the center of thebody.
I observed one in ne process of division, which is a simple act of cross-division. After the two nave nearly separated, they are connected for some time by the protoplasmic thread which is to become the posterior process, but this finally divides in the midile wim apart.

Lhis was found throughout the summer and fall of 183., in laboratory aquaria. It is also remorted from infusions,
25. Stylobryon abootti stokes. Fl.xxll.Fis.60.

Stokes ('88B pk. 78-81. Pl. I, fig. li.
The lorica is conical in shape and is about tuice as long as broad. Ine enclosed body is small and orate and is attached to the posterior part of the lorica, but does not lalf fill the lorica. They form colonies, two orowino out from each mrecedinr one. I dit not find a colony containing over seten individuala. 'hey arnear to be sessile on the antero-lateral margin of the supporting forica vul are really attached to the inner lateral wall ky a short stalk.
The primary stalk is about six times as long as a lorica.
The enclosed, body has two flagella, one short one and one lono one. The body darts forward and projects from the lorica and then, if disturbed, retreats into the lorica.

There is one contractile vacuole rosteriorly located.
These were found in April, loCC, in aquaria, attached to threads of algae or free swimaino in the prerarations. They were not akundant. S. abbotti is described ry stores ('gQ) for the first time. He found it near Piiladelphia.
26. Paramonas globosa Fromentel. Pl. Fig. Hent (180-182) p.3i0. Pl. ax, fig. 1.
Ihis has a small spmerical body, is very granular, and cuite persistent in sadpe althougn sliqhtly distorted when eating. The mouth is large and circular, situated at the kase of the flacellum.

There is one long, actively, vibrating flacellum, which lasies in food bodies and transfers them to the mouth openine at its kase.

Tne contractile vacuole is simple and is situated near the reriphery.

They occurred abundantly durincs Septrmer, Octoler and Notember,
in aquaria which bad been standing in the latoratory for sume time. It is reported from Eurone.

$$
\begin{aligned}
& \text { 27. Anthophysa veretans Müller. P1. xxill, Fiv.61-63. } \\
& \text { Kent ('80-'82) pp. 287-271. kl. ävIl, figs. 18-26; }
\end{aligned}
$$

The body is irregularly pyriform and is truncate anteriorly. The zooids are grouned in rosette-like clusters at de inds of ranular, brown, branching pedicles, wicn are arrancel in mancin! colonies.

There are two flagella attached at the anterior end and both are directed forward. One is shorter than the other

The nuclers is situated a little relow the cen er.
There are two contractile vacuoles in he posterior part.
Sometimes the clusters or heads break loose from the podicle and then they go swiming arout ranidy and ith a whirlinc motion. Sometimes, too, the clusters Freak un into single zooids.

I found these akundantly in June, 1893, in material from Crystal Iake. In March, 19CC, they kecame very abundant in an aouarium, forming a thick brown scum over the top. They are reported from Europe, Asia, Africa, Australia, Cceanica, and America by Scheniakoff ('93).

$$
\begin{aligned}
& \text { 28. Euglena viridis Ehrbg. Pl. xxvig. 64-66. } \\
& \text { Kent (190-182) pp. 381-392. P1. X2, fios. 2:-51. Eutschli } \\
& \text { (} 180-189 \text {) Pl. } \mathrm{K}
\end{aligned}
$$

This is a highly metabolic animal, which is sur-cylindrical when at rest, with a short, pointed, tail-like prolongation. It is full of ovate cnlorophyll bodies which ive it a green color. Inere is a red pigment smot at the anterior ead. Ine surface shows a faint oulique striation. The caudal prolongation is colorless.

The flagellum is single and is long and slender.

The nucleus is spherical and is centrally located.
The contractile vacuole is located at the anterior eatrumity close to the red pioment spot.

Ihese were found at all seasons, throughout the jear, in acuaria and in field collections, even under the ice. It is remorted by Schewiakoff ('93) from Asia, Africa, iustralia, Oceanic ${ }^{\circ}$, imerica, and Europe.

$$
\begin{aligned}
& \text { 29. Euglena spirgara Ehrbo. El.xxvig. } 67 . \\
& \text { Kent ('s0-'82) pp. 382. Pl. K2, figs. 27-E9. Eutschli } \\
& \text { ('80-'89) Pl. KTIII, fig. ? }
\end{aligned}
$$

This is an elongate animal, six times as lon as broad when ertended. It is slishtly truncate anteriorly, and at the rosterior end is prolonged into a decided tail, which is colorless, while the body is green. 'he surface has.obliaue rows of read-like , ilaces. Inere are two oval amylaceous bodies located akout one-mird of the way from the head and from the posterior end of the colored body. There is an anterior red pigment snot.

The single long flavellum is directed forward and is very active.
The nucleus is spneroidal and is located about the center, between the two amylaceous bodies.

The contractile vacuole is anterior and is in close relation to the pigment spot.

These have occurred throuohout the year in comection with E. viridis and E. acus, but not so akundantly as anecies. Schewiakoff('93) reports it from Asia, Australia, Oceanica, America, and Europe.

$$
\begin{aligned}
& 30 \text { Euglena oxyuris schmarda. Pl. } x \times v, v_{\text {I }} i g .68 .
\end{aligned}
$$

This is an elongate form which never straightens itself out
but is twisted spiraly. The anterior end is rounden, aill he rosterior end is prolonred into a curved, abrut tly and shofir ointed tail. It is ereen in color and contains tro elonsale reataminar amylaceous corpuscles. Ine usual red yoment soot is de elofed in the anterior extremity. The surface is obliouely striate.

The slender flarellum is arout ecual to the body in lenoth. The nucleus is oval and is located centrally, betreen the tro rectangular amylaceous corruscles.

The contractile vacuole is larre and is located just at the side of the rigment spot.

I found this form but once. It, was in association with the other species of Eurlena and was taken from a oreen scum on the criface of Crysual Lake the latter nart of Sertemer, lso. Soncwiaroff ('sz) reports it only from America, but Fent ($180-182$), who norked in England has also revorted i.t.

$$
31 \text { Euglena acus Ehrbs. Pl. xxvorig. } 69 .
$$

Kent ('50-'82) pr. 383-384. Fl. Mr, figs. E4-25. Éutschli ('90-'98) Pl. KHVI, fig. ©.
Eody is elongate and very slender. It iten times as lono as broad and lapers toward coth extremities, te anterior end leing abruptly truncate, wile the nosterior one arers to a point.

The body is creeu in color and contains many elonpate rectanailar amylaceous bodies. A red nioment spot is develoned at the anterior end.

The flaqellum is slender and is not lonoer than the body.
The contractile vacuole is larpe and is situated in tine anterior end just back of the pigment spot.

Inis occurred quite comonly througout the year, assuciated win E. Viridis. Scnewiakoff ('93) nis reported it from Asia, Africa, Liceanica, and America, while Eütschil ('80-'80) reports it from Burope.

22．Hrachelomouas hispida Eerty．H1．XXVkiti．70．
 ＇89）Pl．敞》III，fig． 2.

These animals are provided with an evenly ovate，dart bronn shell， which is hispid upion the surfact in hich 2150 as a corlet or arimsou tint．At the anterior end is a very short cylindrical neck．Jie inner body is graular and vacuolated，and fills the sat？sare for a narrow border．There is a red pigment snot in the anterior end．

From the neck extends one long slender fla ellum．
There is one contractile vacuole sitiated ear to the pioment spot．

This species was obtained during the latter part of September， 1899，in a tow net collection from Crystal fake．It is very cosmo－ politan，being reported by schenakoff（＇93）from Eurone，Asia，Aus－ tralia，日ceanica，and North America．

$$
32 \text { Iracelomonas acuminataschmarda. Pl. Fig. }
$$ Kent（＇30－182）pp．321．P1．Kizl，fig． 22.

lhesiell is flask－snaped bein inflated nosteriorly and with the posterior extremity produced into acuminate tail－like rrocess． The anterior end is produced into short，obliouely truncate， crindrical neck．The inner body follows the shame of the siell，and nearly fills it．A red pigment spot is located in the anterior part of the granular inner body．

The long slender flagellum protrudes from the short neck．
The contractile vacuole is located in the anterior ed close to the pigment spot．

I found but one specimen of this species．It was associated with two aispida iu tow net collections from Crystal Jake，serterver $\overline{0} 0$ ， 1898．It is reported from ：urone．
\qquad
\because

$$
\text { 34. Phacus tridueter Ehrbo. Pl. XXvII,Fio. } / / .
$$

Kent（190－182）pp．387．Pl．axi，lig． 1.
This is a flattened leaf－like form，with a ridge down the center of the right hand side，wiln a nointed tail－like frolonstion． 1he mouth is terminal．Ine surface is longitudinally striate． It is green in color with a red pioment spot at the anterior end．

Inere is a siugle long flagellum，arising from the mouth．
Ine contractile vacuole is small，and located near to the rigrent spot in the anterior end．

These occurred abundantly in acuaria and in fiela collections， throughout the year，associated with zuglena and with reen al wae． Schemiakoff（＇？Z）renorts it from Australia，Oceanica．America，and Europe．
35. Phacus longicaudus Ěhrbg. P1. Fio.

Kent（180－182）pp．387．Pl．ǨI，figs．©－7．Eütschli（＇s0－ ＇89）Pl．攻vil，士ig．Ie．

The body is flationed and leaf like in share．It is reen and contains a red pigment spot in the anterior end．The surface is lons－ itudinally striate．ine body is usually twisted more or less on its axis，and has a caudal proloacatio：which is long and pointed， and which is equal to the body in lenoth．P．longicaudus does not have the ridge down the rignt hand side，is more flatiened，and has a much longer caudal prolongation than P ．tricueter．

The flagellum islong and slender．The contractile vacuole is located in close relation to the fioment spot．

I observed this species but once，Sentember 30 ，190．It was in association with P．tricueter，Euglena，Hallomoias，nd oreen algae．Tae collection was made fron water blocm on the surface of Crystal Jake on a sunny day，ieptember 28，182．Scheriakoff（＇气己） reports it from Asia，America，and Eurone．

The body of this animal is ovate, rounde nosteriorly and rointed anteriorly. The mouth is terminal and extendine. back. from it in a median line and almost to the posterior end of the wody, is a groove or channel. It is colorless.

Inere is one vibratile flagellum about equal to the lody in length and which is very active, drawing in focd bodjes win wich it comes in contact.

The contractile vacuole is situated in the anterior end, to the left of the median oroove.

The nucleus is more posterior than the contractile vacuole and is on the right hand side of the channel.

They multinly by lonoitudinal division. This process was observed by me, and while dividing, the flare?lum was very active in each.

I found it in Cctober, 1899, in acuaria in the lavoratory.
Schewiakoff (':3) reports it from America, and it nas also been found in Euroze.

37 Astasia trichonhora uncbg. H1 Xxv/ll. io. 72.

When stretcned out, the body, which is a colorless mass of rrotoplasm, is about six times as long as kroad, hroad at the rosterior end and tapering oradually at the anterior e. 1. Ine protorlasm is nomogeneous, containing many pranules and vacuoles,a distinct pharynceal cavity, and a nucleus. It is extremely morile and contorts itself into unrecognizable shapes.

The flarellum is fixed and is about one and one-half times as long as the lody. It wrans about food and urawis it into the moutin, which is termanal, and waich is succeeded nosteriorly by a marmanal
tract avout one-fourth the lun of the kod.
Ine convactile vacuole is anturior.

A recent mamer by iunstein (la) comming ata in in in an lena,
concludes that they aretwo conditiors of the wame that Euglena in the dark is colorless and lat ina in bove chluronillarean ir whe iitht. ist
in lioht aquaria and no evidence of transformatio, to knona-like forms were noted. It may be that certain sobcies of tstasia ape salid.

It was found abondantiy 'arnomont the wean in anmin as aell
 England.

$$
\text { zs. Feteronema acus mivo } \mathrm{XXIx} \text { in. } 74 \text {. }
$$

 1gき) Pl. NTM, ig. i人.

The body is about seven times as lone as kroad. It is sleisor, being widest about the cenver and tapering to a roint a"ench end. It is quite retakolic. Ine endoplasm is pranular.

The animal has tro flagell:" both atrached at the anterior end, the more rigid of the wo is a at ecual in lensth to hite lemotit of the kody and is directed formard. The other oue is arout halif as lons and trails beina, beine vicirle only when the awiml turns.

Contractile vacuole is situated near the anterior and.
The nucleus is oral, and is situated near the cturer of the body
I found this spocies only in the mouth of December, I Qa, an an

$$
\text { 3. Inisonema grande arbor. Fl. } x \times x \text {, i?.76. }
$$

The body of the animal is ovate, beius alout iwice dis lom as broad and broader aud roundur postcriorly than aumeriorl. colorless and finely granulate. Ine mouth i: terminaj is is fuet beside the oriorin of the trailing flagelluw. As sort draular parangeal tract follows the mouth.

There are two flagella. Ine anterion vilurathe is are slen-
der and is about equal to the body inlenoth. Ry rosterion deailine one is three or four times as lons as the other, and is wicper.

The contractile vacrole is siarle and is located sumt bast of of the mouth onening.

The nucleus is spherical and is simated on the riont side. towards the posterior extreteitr.

I found them but once, and then only for a shont time during
 from Europe by Lütscali ($190-180$) and from Arerica ans Uceanica by Schewiakoff(193).

$$
\begin{aligned}
& \text { iütschli (} 10-140 \text {) }
\end{aligned}
$$

The body is ovate, being some narrower at the anterior en than at the posterior one. Tho surface is covered uith lon dexime, raylike spines. It is yellowish-rown in color, due to the two ciromatonhores. In addition to the cilia, the animal has one lony sponder
 Were inaliy colorlesk empty skins wresent. Che emmotied anile I vas
 less lorica with spines and flacellum attacned.

This was obtained from water Kloore on the suriace of Crystal LJake on a sunuly day in the latter part of Septemuer, lase. Zhtschli
-

$$
\text { 41. Carteria mutiliilıs. FقSempu: } x \times 1.0: 97,78 \text {. }
$$

Raoul srance ('98). po. 105-112, Pl. II. figs l-5,
7, 9, 11-1?, 14-15, D0. Goroschankir ('91) no. 4尺. P1. II,
figs. 14-2z.

The body of this prutozoan is sratl？
in color with red pigment shot in the a！eraion end．
The little animal nosse ses fome flasellat of loumth anomi colial to that of the body，and all hevine a comor oriwn a the materer end．

Just back of the oririn of the flamellz，one sontractils was－ uole and soretires two，may be sem．

The mucleus is smerical and ctntal．
Iney wert sonelimes observed orowed，whatlo in funts，focmine a sort of colo：1y．I found then atumamily in material collected from

生。 Eandorilia moruti Iory：Fl．Fis．

Ihis is an ellirsoidal or snowrical colon consistino o！lé．
 contains a red nicment，spot and a nurcnoir，ant is ajso enolosed in a distinct cell membrane．The melatinous sheath of the colonty is comosed of concentric layers，and rarely ias flunt neautomodian like procesces at the nosteriorend．I le colony moves by rotation on IIs wrinciral axis，either to the leiu or to the risnt．

Inis occured in association with the other species of rolvos－ inae in tow net collections froin Orystal fake，Ausustis，1900． Schewiakofi（＇氖）reports it from Asia，ifrica，and America，and Eütschli（180－＇8．），from Burope．

semarated "roncąl asmare
colony is enclosed in a simple sommon sheath.
wioment snot near the anterior and of cacl af 17
sear to the rioment shot of each cell unise
side by side.
Tha 1 nope...ati
iy rotation on its lonctiturinal gaic, uith a reanoira
riont to left.

 cells are smapler and fill post of the anterior malf of at a alony. ine stirnョ, "uicu
colon onlares.
Each cell has two Euval flaoflla.
Ine mucleus is contral. The contractil vacuole I dis wot obsere.

 Ly Shai ('ot) from California and it has Since occurrel in onds,
 anterior end, being always directed ainozd.
 ëzch cell has a djstinct cell wemirand.

Each cell has two faual flacelph, wion untte you af of 71
at the anterior end, adjacent $+\infty$ no ifoma.
 of a mass of protorlasm nclosed z゙, the anpuato:ñe.
so contractile vacuole mas observed.
The colonies roved by, comation on in cmemal axis, from right to left and sonetines ifon left 10 rinht.

alons the Illinos: A ET. ion 2 a

$$
\text { Ac. Platrorina caudata rofoic. } \quad \text { x } \times 1 . \text {, } 79 .
$$

$$
\text { Zofojd }(100) \mathrm{m} \cdot 110-1 \div 0 . \mathrm{Fl} \text {. Warti. }
$$

This is a flattened, horse-shos-shancd colony or le or 32 round cells. There are three or five tails formed ab the poserior end, by the extension of the common outer sheatn. lie wolon* is sometines twished about one-cigata of a tura trom aith yo left. Were is a pioment srot in eacn zooid in the rrotorlasm at ne anterion wder, wear the orimin af the flamelta.
Aech deli as tio Equat ina ise.

There is a prominent central nucleus，round jn shape，and con－ taining a central round nucleolus．

There is one small contractile vacuole situated a litile roste－ rior to the pigment spot．

I found this species abundantly in August，lec．，and less akind－ antly in september，les．It was rejorted and aescriled ly rofoid（＇se） for the first time．It has never been reported outside of the kissisc－ ippi basin．

$$
\begin{aligned}
& \text { 47. Volvox aureus Enrbg. Fl. Fig. } \\
& \text { Kofoid '('£̧) pp. Str-4iを. }
\end{aligned}
$$

This is a colony of preat numbers of cells，arranged in a srhere or an ellipsoid．The cells are all connected ky rotorlasmic rro－ cesses into which the chromatophre does not enter．The anirial motes by rotation on its principal axis from left to ripht，which rotation may be reversed occasionally．＇Lackward motion is rarely seen and lasts but a short time．

This species was abundant in tow net collections froni Crystal Lake，August $£$ ，lesc．It is repurted from Eurone and America．
48. Feridinium takulatum Ehrbg. Fl. Fig.
 Eütschli，（＂E（ユユ⿰习习 ）Fl．LII，fig．66．
The shell is a somewhat elongate eqg－share．The lody is divided transversely into two almost ecual parts，by a ciliated croove， and the upper half is divided longitudinally by another groove which is not ciliated，while the whole shell is jrecularly prooted， marking it off into polygona］spaces．The mouth is on the tentral side at the junction of the transverse and longitudinal crooves． The shell is of a brownish hue and has a redpigment spot developed．

Chere is a single long flagellur，which arises from the oral aper ture．

I found them abundantly in September, 1899, associated with Ce'ratium kumanense. They are very cosmodolitan, heino repor ted by Schewiakoff('gz) from Asia, Australia, Oceanica, Arerica, and Europe.
49. Ceratium kumaonense Carter. Pl. xxxll,Fig. 80.

Kent ('80-'82) pp. 458. Pl. yXV, fig. 25.
The shell is triangular, having two anterior and one posterior, large horn-like processes. These processes are produced from the angles of the triangle. The shorter anterior horn and the posterior one together are a little more than equal to the body in length. The other anterior horn is about half as long as the other two. They are all finely cerrate. The shell is divided trans-n versely into two equal parts, by ciliated grooves. The shell is brown in color. The mouth is located about the center of the body.

From the mouth arises a single, long, slender flagellum, which is very active.

They were very abundant in a tow net collection made from Crystal Lake in September, 1899. They were reported in 1871 from Hindostan by Carter ('71), and this seems to be the first report of their occurrence elsewhere.
50. Enchelys so. Pl. Fig.

This is a colorless, elongate, cvlindrical form, with the anterior end somewhat pointed. It closely resembles Enchelys. pupa, but differs in that it is longer and more slender. It is very contractile, and its movements are manifold. The body is delicately striate longitudinally. The mouth occupies the anterior end and the re is no pharynx.

The entire surface is evenly ciliate, but about the mouth the
cilia are longer and are very thickly placed.
The nucleus and contractile vacuole were not observed.
They occurred but once and then very abundantly for a few days during the latter part of March, 1900 , in aquarium started from the Boneyard.
51. Colepshirtus Ehrbg. Pl. Xxxll,Fig. 81, 82.

Kent ('80-'82) pp. 506-507. Pl. Y又VII, figs. 3-4. Butschli ('80-89) Pl.LVili, fie. 1.

The body is barrel-shaped, rounding posteriorly and about twice as long as broad. The cuticular surface is divided into many square spaces by longitudinal and transverse ridges. The most of the specimens observed were brownish in color. The cilia are found not on the souares, but in the grooves between, and are very active. The animal swims rapidly, revolving on its longi tudinal axis. The mouth is terminal, and is surrounded witi cilia of a larger size than those of the general surface.

There is but one contractile vacuole, which is placed posteriorly and can not always be seen.

When this species was found it was usually in large numbers. It occurred in the aquaria at all seasons of the year and was especially plentiful in very stagnant water. It is reported by Schewiakoff ('93) from Asia, Africa, Australia, Oceanica, America, and Europe.

$$
\text { 52. Amphileptus Xanser Ehrbg. Pl. } \times x \times 11, \text { Fig. } 83 .
$$

Kent ('80-'82) p. 525. Pl. XXVIl, figs. 39-40.
The body is elonoate-lanceolate, pointed posteriorly, and with a neck-like prolongation in front, equal to the body in length. The protoplasm is very granular and very vacunlated. The animal is

very flexible. The mouth is situated at the base of the neck. The whole surface is evenly and finely ciliate sut the ci'ia around the mouth are some larger.

The macronucleus is bi-lobed and lies near the center of the body.

The contractile vacuole is $1 a r e$ and situated nosteriorly.
These were found in abundance in collections made fror under the ice in January, 1000; also in early March collections, and they have continued abundant in aquaria founded from these collections. It is reported from Europe.
53. Lionotus fasciola Ehrbo. Pl. Fig.

Kent ('80-'82) np. 743-744. Pl. XLII, figs. 5-11. Butschli ('80-'89) Pl. LIX, fig. 6.

This is a colorless elongate form. The neck, body, and tail are not so sharply distinguished from each other as in L. Wriesniowskii. The neck is less than half as long as the body, and is not so slender as in the other species found. It is set with trichocysts along the left border and the cilad are laroer than those of the body. The tail is short, and pointed. The mouth is situated at the left and about the center of the middle portion. The animil swims rapidly. It is very flexible but not contractile.

The single large contractile vacuole is situated posteriorly. This was observed in February and in March, l900, from material collected from the Boneyard on two cold days. This material was collected in February and remained standiny in the laboratory. Schewiakoff ('93) reports it from Asia, Africa, Oceanica, America, and Europe.
54. Lionotus wrzesniowskiliSaville Kent. PXXIV, Fio. 84

Kent ('80~'82) po. 742-743. Pl. XLII, figs. 1? 12.
Butschli ('80-'89) Pl. LIX, fig. 5.
This is a colorless, elongate form. It shows three distinct regions. The anterior portion is prolonged into a slender neor which is very flexible and is about half the length of the body. The cilia in this region are longer than those of the rest of the body and there is a row of trichocysts on the left margin. The mouth is at the base of this neci, to the left. The central thickened portion contains a oranular endoplasm. The cilia are finn and evenly distributed in this region. The Dosterior nortion is a short, clear, pointed, tail-like region.

There is a bi-lobed spherical macronucleus about the center, and alarge spherical contractile vacuole at the posterior end of the thickened portion.

The animal swims very rapidly, bending and turning particularly in the neck region. It is very flexible and contractile.

This was first observed in December, 1899, in an aouarium started in the fall from the Boneyard. They occurred here in numbers. Again in January, 1900, I broke ice near the bank of the Boneyard and found many of them. I have not observed them since. It is reported from Europe by Butschli ('80-'89).
55. Nassula rubens Claparede \& Ia.hmann.

P1. ${ }^{\times \times \times V .1}$. 85
Kent ('80-'82) op. 495-'496.
The body is ovate and is equally rounded at both ends. It is finely and evenly ciliate throughout and contains a ran.. ular endoplasm. The mouth is situated one-fourth of the way back on the left hand side, and leads into a pharynx armed with a cyl-
indrical fascicle of rod-like tee th. The tube of the rharyn is dilated anteriorly. The most strikin characteristic of this scecies is its striking and brilliant rose color.

There is but one macronucleus, which is laroe, granular, spherical, and is located a little back and to the right of the center.

The contractile vacuole is single. It is large and spherical, and is situated to the lef.t of the nucleus. It sometimes leaves two smaller ones after systole.
f observed two of these on March 20, 1900, in an aquarium which had been started about two months before from the Eoneyard and had become foul. \& scum was formed on the top which was laraely made up of Stentors. It is reported from Europe.

$$
56 \text { Chilodon cucullulus O.F.Muller. Plo }{ }^{x \times v / i g} \text { Fig. } 86 .
$$

Kent ('80-'82) pp. 746-747. Pl. XLII, figs. 16-22. Butschli ('80-'89) Bl. LX, fig. ㅇ.

The body is flattened, sub-ovate in outline, and is very flexible. It is rounded at the posterior end anteriorly, on the right side, the body is projected forward in a sort of lip, and is curved over to the left. The cilia about this projection and down the left border are lareer than elsewhere. The surface is longitudinally striate. A vibrating line leads from the tip of the lip into the mouth opening. This line protects a little beyond the edge of the body.

The macronucleus is single, ovate, and centrally placed.
There are many contractile vacuoles scattered irregularly through the endoplasm.

This is one of the first forms which I observed. It has oc-
curred plentifully throuohout the year, and especially in very stagnant water with Paramoecium. Schewlakoff $9 z$ rerorts it frou Asia, Oceanica, America, Eurooe.
57. Glaucoma scintillans Ehrbg. Pl. Fig.

Kent ('80-'82) po. 795-796. Pl. XLV, fios. 20-40.
Butschli ('80-'89) Pl. LYII, fig. 5.
The animal is egg-shaped, being rounded posteriorly and a little pointed anteriorly. It is somewhat flattened. The animal is colorless. It has a steady and raoid movement. The hody is longitudinally striate, and is finely and evenly ciliate. The mouth is on the ventral side, toward the anterior end, a little to the right of the center. It is curved and is bounded by a strong undulating membrane.

The large spherical macronucleus is contractile.
The contractile vacuole is single and located posteriorly.
This was found in a mid-winter collection from the Eogeyard, in the latter part of January, 1900. I saw but a single soecimen. Schewiakoff('93) reports it from Africa, Oceanica, America and Europe.
59. Frontonia acuminata Ehrbg. Pl. Fio. Butschli ('80-'89) Pl. LXII, fig. 4.

This has an ovate body with one end rounded, and the other prolonged into a point. It is somewhat flattenedr The surface is longitudinally striate, and is finely and evenly ciliate. The elongated mouth lies along the left side on the ventral surface, and has an undulating membrane. The endoplasm is considerably vacolated.

The nucleus is oval and contrally situated.
there is but one contractile vacuole and it is nosteriorly situated.

1 found this form but once. It was associated with glaucoma
 59. Coloidium colpoda Schrank. P1. XXXVU,Fio. 87. Butschli ('80-'89) Pl. LXII, fig. 6.

The body is kidney-shaped with the anterior end less rounded than the posterior. The endoplasm is considerably vacuolated ant granular. The surface is finely and evenly ciliate and is longi. tudinally striate. The mouth is on the fentral side to the lef, and is similar to that of Glaucoma. It is curved and bounded on the sides by an undulating membrane.

The nucleus is oval and is centrally'located.
The single contractile vacuole is posterior.
I first identified it March 5, 1900. They were very numerous at that time. It occurs abundantly in a ouraria which are stanant and contain numbers of Ramoecium and Bacteria. Schewiakoff ('az) reports it from Africa, Oceanica, America, and Europe.
 Butschli ('80-'89) Pl. LXIII, fiơ 1. Blochmann ('95) p. 105. Pl. VI, fig. 194.

This is an elongate spindle-shaped animal three or four times as long as broad. The posterior end is somewhat pointed, and there the cilia, which are evenly distributed over the rest of the surface are longer. The mouth is at the termination of the cral groove, which extends from the anterior left hand extremity posteriorly over the ventral surface, to the center of the body. The animal has a complete coat of trichocysts.
-

The macronucleus is large and ellipsoidal, with one micronucleus. They are situated about the center of the body.

There are two contractile vacuoles, one near the anterior, and one near the posterior, ends. They freouently have a star. lile appearance, due to the canals leading to them.

I have frequently seen them in conjuations, with the oral groove closely applied. They occurred abundantly throurlont the year, especially in stagnant aquaria. Schewialoff ('gz) renorts them from Africa, Oceanica, and Europe.
61. Vrocentrum turbo 0.F.Muller. Pl. Fio.

Kent ('80-82) pp. 641-643. Pl. XXXIIl, fig. 7-10. Butschli ('80-89) Pl. LXIX, fio. 15.

The body is somewhat pear-shaped, being lareest at the oosterior end. There is a stylate caudal appendage which is about half the length of the body. The cilia are distributed in two wreaths which encircle the body. The anterior wreath is inst a littleback of the anterior border of the rody: the posterior wreath is a little back of the center of the body. The mouth lies on the ventral side in this oosterior wreath of cilia. The animal swims rapidly with a whirling motion.

Eoth the nucleus and the contractile vac ole are located ooste riorly. The vacuole presents some peculiarities, by taking on a series of forms. When it is full it is round, but on contracting it has somewhat the appearance of a rosette. The mucleus is bandlike.

It occurred in November, 1899, in a lare aquarium started more than a year before and to which had been addef, besides Boneyard material a little water from the Illinois River at Havana. Schewiakoff('93) reports it from Asia, Australia, Oceanica, America,
and Europe.

$$
\text { 62. Pleuronema chrysalis Ehrbg. Pl: Fixy. } 40 .
$$

$$
\begin{aligned}
& \text { Kent ('80-'82) p. 543. Pl. XXVII, fig. 55. Butschli } \\
& (' 80-\quad 89 \text {) Pl. LXIV, fig. 6. }
\end{aligned}
$$

The body is ovoid, eoually rounded at both ends, concave below and convex above. The cilia are somewhat rioid and are devel oped all over the cuticular surface. It is rather quick, but when irritated, it moves out of the way with a duick leap or spripe. A large extensile undulating membrans is found beneath ventrally attached to the left edge, which may be either ektended or withdrawn. The mouth is located centrally, on the ventral side, in a little deoression, and leads into a tubular pharynx.

The nucleus is situated a little below the center.
The contractile vacuole is single and is located toward the posterior end.

Food is caught by the extensile membrane. I have of ten found the animal paired, as thourh in conjuration.

They occur very commonly and in great numbers. I have found then throuohout the year in various aouaria about the laboratory, of ten with Paramoecium, but more generally presont than this oenus. Schewiakoff ('93) reoorts it from Asia, Africa, Australia, Oceanica, America, and Europe.

$$
\text { 63. Cyclidium glaucoma Ehrbg. Pl: Fixy/l. } 91
$$

Kent ('80-'82) 口p. 544-545. Pl. XXVII, fios. 57-58. Butschli ('80-89) Pl. XIV, ifig. 8.

The body is ovate, convex above and a little concave beneath.
Fine setae are developed over the suriace, and at the nosterior end are several very much longer setae. The mouth opening occurs
-
about the center of the ventral side, and bolow it is anertensilf membrane. As in Pleuronema this is sometimes withdrann and sometimes extended.

The nucleus is spheroidal and is situated below the center.
The single contractile vacuole is located in the rosterior end of the body.

These, too, are very common irn all collections throuphout the year. Pleuronema and Cyclidium are intimately associated. They are reported from Asia, Airica, Australia, Oceanica, America, and Europe, by Schewiakoff ('9z)。
64. Spirostomum ambiouum Ehrbo. Pl. Fio.

Kent ('80-'82) po. 586-587. Pl. XXIX, figs. 13-14. Butschli ('80-'89) Pl. LYVII, fio. 2.

The body is an elongate cylinder, about fourteen times as long as broad. The animal is colorless, flexible and contractile. The mouth is an elongate opening beginnino in the middle of the ventral side, and extendino down into the middle of the body. The whole cuticular surface is finely ciliate, but the cilia about the mouth are of a much laroer size.

Tie nucleus is a moniliform chain and extends through the central two-thirds of the body.

The contractile vacuole extends almost through the body like a canal. It is much dilated at the posterior end.

These were observed through the month of February, beino plentiful in one collection and in the a ouarium started from it as long as it was kept. I have not found them since. Schewiakoff ('gz) reports them from Asia, Africa, Australia, Oceanica, America, and Europe.
-
65. Bursaria truncatella Muller. Pl. $x \times x / 1$. io. 92. Kent ('80-'82) p. 572. Pl XXIX, fios 1-2. Butschli ('80 '89) Pl. LXVII, fif. 6.

These animals are broadly ovate, very much. flattened, and truncate at the anterior end. The mouth cavity is sac-shaped. It has a broad opening in front and a lateral fissure which oytents from the left side of it back into the middle of the body. The mouth leads int.o along, bent, funnel-shaped pharynx.

The nucleus is band-like and curved, lying in the certral part of the body.

There are many small contractile vacuoles scattered through the body.

The first that I observed of these animals were very laroeso large that they could be seen with the naved ey?. Large indiviruals measured 1.5 mm . in length. The material was from Crystal Lake, and was very foul, having been collected when it was very hot and the scum was forming on the water. This was in September, 1899. They occurred a ain in February, 1000, ir Eoneyard material. They are reported by Schewiakoff ('93) from America and Europe. During February, 1900, another species was found which must have been Bursaria, although it was considerably different from the above described form. It was ovate, not so flattend as f.trunca. tella, and finely and evenly ciliate. The oral aperture was anteroterminal and the anal aperture was postero-terminal. The body was so gorged with food that the structure could hardly be made out. When some of these food particles were expelled, a contractile vacuole was seen tot the nosterior end. The animal moves with a rolling motion.
-
66. Stentor polymorntus 0. F. Müller. Pl. \times L, pig. 93.

This is a grayish white, trumpet-shaped animal。 It is laraer than the other species of Stentor . When the anterior end is f $\quad 11 y$ expanded it equals one-third the length of the body. It swins free or attaches itself to bits of algae. The body is hiohly flezible and contractile, and so varies in shave.

There is a single monaliform nucleus.
The contractile vacuole is large and situated near the anterior border.

Food is swept in by the current of water which the large adoral cilia keep up about the mouth.

1 first found S. polymorphus in July, 1899, in a Boneyard collection made below the heating olant, at thich time they were nume rous. I did not find it again until March 20, 1900. This time it was in a very stagnant acuarium started two months previous. A scum had formed over the top, which was larcely composed of Stentors. Schewiakoff ('93) reports it from Australia, Oceanica, America, and Europe.

$$
\text { 67. Stentor roeselli whrbg. PloxLl.Fio. } 94 .
$$

Kent ('80-'82) pp. 591-593. Pl. Xy , figs. 22-23. Bütschli ('80-'89) Pl.LXVIII, fig. 5.
The body is lon. The diameter of the peristome region, when fully extended, is eaual to about one-fourth of the leno th of the body. The surface is finely ciliated throughout, and in addition to the cilia a few setae are develoned. The adoral cilia are larger and stronger than the surface cilia. This species dwells in a mucilaginous tube, and when iritated darts back within the
ube. It sometimes leaves its tube, however and swims fron. Onn day I noticed one which was beino teased by a Coleps. fror whish it could not escape, even by retreating into the tubo, and so it left and swam away.

The nucleus is moniliform, as is characteristic with this family.

The contractile vacuole is large and anterior.
This species was found associated with S. polymorohus and S. coeruleus an a stagnant aquariom in March, lono. It is reoorted by Schewiakoff ('93) from America and Europe.
68. Stentor coeruleus Fhrbg. Pl. Fig.

Kent ('80-'82) pp. 593-594. Butschli ('80-'89) Pl. LXIX, fig. . 1 .

This is what is commonly known as the blue Stentor because of its bluish green color. It is trumpet-shaped. It attaches itself to bits of algae or even sometimes to the surface of the slide or to the surface film of the water. The width of the peristome is equal to about one-third of the length of the body. The cilia are fine and are evenly distributed over the cuticular surface, but those around the peristome are loneer and stronger. The body is highly metabolic, of en extending to its full length, then when irritated in any way at the anterior extremity, suddenly contracting into little more than a ball.

The nucleus is compound and extends through the body like a chain of small nuclei.

The contractile vacuole is situated in the oeristomal
region.
The adoral cilia keep ub a constant current of water about
the mouth, and sweep everything that comes into the cirrent into the pharynx. I have seen it take all vinds of small alrao anc many small Proto oa. Once I saw it sweep a small Plouronema into its mouth.

One of these animals was one day crushed by the cover olass. Upon watching it a few minutes, it was seen to form three new Stentors. Each piece which had contained a frarment ri nioleus had developed into a new stentor, and in a remarably short lenoth of time.
S. coeruleus was found first in lanuary, 1900 , and from that on was abundant in several aquaria. They seemed to ke most plenti ul in stagnant water. Schewiakoff ('93) reoorts this species from Africa, Oceanica, America, and Europe.

$$
\text { 69. Halıteria orandinella üll er. Pl. XLll,Fig. } 95
$$

Kent ('80-'82) p. 632. Pl. XXXII, fig. 25-38. Bütschli ('80-'89) Pl. LXIX, fig. 6.

The body has a truncate oval shape, being cut off at the
anterior end, where there is a wreath of rather laroe ciliz. Long setae called sprinoing setae are found on the body formino a central girdle, by means of which the animal moves so rapidly, darting here and there with a leaping or springing motion, that it is dif. ficult to make out detail.

There is one lare spherical contractile vacuole near the center of the body, and*near to it a spherical nucleus.

This was first found in November, 1899, in an aduarium started a year before, which contained, besides Poneyard material, some from the Illinois River at Havana. They were very numerous. It was also found olentifully in the collections during fanuary and

February 1900, some of which were made under the ice. Schoialof 1 ('93) reports it from Asia, Africa, Australia, Oceanica, America, and Europe.

$$
\begin{aligned}
& \text { 70. Eunlotes oatella O.F.Muller. Pl. Fig. } \\
& \text { Kent ('80-'82) p. 798. Pl. XLIV, fios. 23-25. Eutschli } \\
& \text { ('80-'89) Pl. LYXI, fig. 2. }
\end{aligned}
$$

The animal has a shell or carapace which is elliotical,
with its anterior margin truncate. It has eleven styles: six of these are at the front border, and tio at the posterior maroin. The two posterior ones are lareer and branched. There are also three scattered styles on the ventral suriace. This little animal often uses the styles as les, and walls over any veoetation which may be present. They both swim and walk raoidly.

The nucleus is band-like.
There is but one contractile vacuole and it is situated posteriorly.

They were found in July, 1899, in ouantity, in a collection from Crystal Lake. Schewiakoff ('gz) reports them from Africa, Oceanica, America, and Purope.
71. Aspicisca costata Duiardin. Pl. Fio.

Kent ('80-'82) pp. 794-795. Pl. XLV, figs. 25-29.
The carapace of this animal is ovate in shape, and is longitudinally furrowed on the dorsal surface. On the left side the shell is extended oui into a sort of trianoular flap. In a dorsal view one can see four pointed curved styles, proiecting from the upper right hand side and five Dointed ones from the posterior margin; on the ventral side are three others in a line parallel with the anterior ones. Bounding tlie mouth which runs in under
the triangular flap is a row of heavy cilia called cirri.
The nucleus I did not observe.
The contractile vacuole is placed oosteriorly and to the rioht. The animal often turns over in a lateral position and "walks" by means of its styles on any veoetation which may be cresent.

I observed them in collections from a branch of salt Fork north of Crystal Lake, made in October, 1899. They are renorted from America and Europe by Schewiakoff ('93).

$$
\text { 72. Urostyla grandis Thrbo. Pl.xLII,Fig. } 96,47
$$

Kent ('80-'82)'p. 765. Pl. XLIII, figs. 6-8. Butschli
('80-'89) Pl. LXX, fig. 8.
The body is oblong, and is rounded at both ends. It varies considerable in shape. In addition to the cilia styles are develocer, five beino found on the ventral surface, near the anterior border, also many occurring along the rioht side of the mouth. Setae are developed all over the ventral surface, and sear the rosterior border are ten more short styles. The mouth is triangular and around it is a trick develonment of cilia.

The nucleus is soherical and is situated a little anterior to the center.

The contractile vacuole is sinole and small. It is situated a little ahead and to the left of the nucleus.

These were found for the first in October, l890\& and have occur red several times since. In March, lano they were found in ofat numbers, and wure associated with Sohaeronhrya ousilla. (See Sphaerophrya pusilla) Large numbers of the Urostyla were oarasit ized by the embryos of S. Fusilla, which in some instances uere seen escaping from their hosts. Schewiakoff ('9z) reports it fror America and Butschli ('80-'89) from Europe.
73. Stylonthia mitilus O.P.Muller. Pl. Dio. Kent ('80-82) pp. 790-791. Pl. XLV, fio. $1 \& 19-29$. Butscrii ('80-'89) Pl. LXXI, fic. 10 .

The shape of the body s elongate elliptical beine a little larger and rounder at the anterior end. Setae are ceveloned instead of cilia. There are eioht styles on the anteriox part of the ventral surface, airanoed with three in front, three behind, and two in the middle. Near the center of the vental surface are five more styles, and at the posterior end there are also five. The animals move about very rapidly. The mouth is laree, becinnine at the anterior left hand edge and extending back more than onethird the lenoth of the body, and in to the nedian line.

The nucleus is eloncate and occupies a central position.
The contractile vacuole is sinole and small, and is located to the left a little anterior to the center.

These are very common forms and have occurred throughout the year in collections and esocciallin in stacnat aquaria asscociates With Paratodecium. They are renorted from Africa, Australiay Oceanica, America, and Europe, by Schewiakoff ('93).

$$
\text { 74. Vorticella nebulifera Whrb. Pl. XLV, Fig. } 98 .
$$

Kent ('80-'82) pp. 673-675. Pl. XXYIV, fig. 20: XXXV, fios 32-47: 奴X, fig. 1.

The body is conical-campanulate, and is not quite symmetrical. It contracts into a somewht pyriform or almost soherical ball. The protoplasm is colorless and the cuticular surface is smootr. From the posterior end extends a slender podicle which is five times the lencth of the body, and by which it may be attached to algae or small Entomostraca. The cilia are limited to the ad-
oral region, where they keep up a constant current of water.
\square

The right limb of the wreath of cilia descends into the ruaryng. The nucleus is elonoate and band-lilse.

The contractile vacuole is sincle and spherical anc? is sjtuated in the anterior end.

These occurred abundantly at all seasons throwhout the year in aquaria and in field collections. It is cosmopolitan.
 Kent ('80-'82) pp. 690-681. Pl. XXVY, fios. Zn- 21 \& 51; XXXVI, fios. 1-8.

This somewhat resembles Vorticella, but is united in social clusters. The bodies are conical, with a dilated peristome. There is a compound pedicle, consistino of one main stalk which branches freely, and these branches may aoain divide. A muscular fiber runs through the center of this stalk but it is not continuous at the places of branchine, so the stalk mam contract either all together, or in part. There are laree numbers in a colony, sometimes as high as one hundred and fiftm or two hundred. The cuticular surface of the body is smooth, the cilia being distributed as in Vorticeliag in a wreath around the mouth.

The nucleus is rinbon-like, long and curved.
The contractile vacuole is sinole and olaced near the anterior

border.

These were found in quantity in crllections from under the ice made from the Boneyard in January, 1900, and they occurred aoain in February. It was reported by Schewiakoff ('az) froil Africa. Oceanica, America, and Europe.
76. Toothamium aselli Claparede \& Lachmann. Pl. Fig. Kent ('80-'82) pp. 698-609.

The zooids are elongate, beino about three times as lono as
-
;
broad, and occurring in laree colonies, attached to a dicrotomonsly branchino stalk. The muscular fibns is contjmonn tr row: mitan stalk, so that when one part of the colony cortracts, jt all contracts. The cilia are distributed about the oeristome, and reon up a constant current of water.

The nucleus is small and oval, situated near the corter of the body.

The contractile vacuole is small and near the anterior nargin.
This was founr in May, 1800. or the aonerdares of ts. 113
aquatz"cus, to which it attaches itself merely for ourooses of
locomotion. The colonies were found in larae numbers. It has been reported only from Eurooe.
77. Orercularia nutans ohrbo. Pl. Fja.
Kent ('80-i82) pp. 710-711. Pl. VXYIX, fios. 22-23.

These occur in laree colonies havine an exceedingly dichotomously branched pedicle. The bodies are ovate and are three and a half times as lon. as broad. They taper toward both extremities, but more toward the posterior one. The cilia are arraned in two rows on a ciliary disc which is attached by one side to the peristome margin. A membranous collar can readily be seen protrudine over the edge of the peristome. The zooids may be either erect or drooping, and the pedicle is transversely seomented. The wharynz extends to about the center of the body.

The nucleus is band-like and curved. It is somewhat centrally placed.

The contractile vacuole is single and is located towards the anterior end.

Colonies of these were numerous in collections made in the

Bonevard durino the last of Fehruary, lano. Then wore attrotor to Tuhifix rivilom? Tr a are

Schewiakoff (' (M').
78. Opercularia stenostoma stein。rl. Tio.

Kent (180-189) pn. 712-713. T1. YYYX, ifo. 17.
The body is elonoate pear-shabed. with a narrof periotome.
The cilia are arranged on a narrow ciliary diso which is attached by one side to the peristome marein anc whid fits into the calistomo. There is a membranous collar which extends fron the peristonal opening, and. which can only bo made out with deficulty. The mouth extends down into a haryn: which reaches to about the center of the body. There were but four zooids in the colony examined. The pedicle was very short and stout, and the zoids sremed to srom right out irom it because the secondary branches were so shorit.

The nucleus is lono and curved like a horse-shoe.
The contractile vacuole is sin le and is olaced to one side, near the peristome maroin.

I observed colonies of these but once-- in Abril, 1800 .
They each contained four zoojds and we at tacher to the body of
 althouch stein has fourd it in Furone.
79. Sthaeronhrvra pusilla Claparede \& Iachmann.

PI XLV//,ET:101,102.
Kent ('80-'82)p. 108. Pl. XIVI, fig. 6. Eutschic '80-189) PI. JJXVI, fig. 10. Elochmann-(195) p. 127 .

This is a very small, colorless scherical animal in the adult stage which is free swimmino. The "larvae" are elliotcal. The nrotoplasm is very vacuolate. The adult is provided with numerous slender
 while others are only abont the lonoth of the ! o y anmand

There are two nerinteral cortractile raciolan.
1 oobserved but two iree swimmina adults. In March, lgio, Urostyid, parasiti"ed ky Shaeroormen (vocriroed aquarium and embryos of 'S. rusilla ascaned tron iro borfa in lari numbers when the Urostyla were tracted with sono man an wat caused it to ro to pieces. In Ortorex lrane orswared an ar S. pusilla. The cysts are queer herned forms with a sermerted outer cover, and are stalked and attached by the stalk. A contractile vacuole can be olajnly see about the center of the cyst.

The species occurred in octoher and rowember, 1800 , and in March, 1900. It is endoparasitic in Urostyla, Paramoecium, Násula, and Stentor. Schewiakoff ('gz) reports it from America and Blochmann ('95) from Eurode.
Mecmesiou.

The list includes 79 soecies, 17 boinv Thion nolz. 5. Whafon
 Suctoria. I thints the list would be consimerarluturat in a loner time, and especiallt in certain rours. ajoce emory fresh aquarium examined and every ollection marke wrar fefforent onditions contained snecies not before sean.

It has been very evident that climat o conditions, oshecially temperature, have much effect on the occurrence of many of the

the sprine, Sulonuctia. "ros.
dant than at any othar sim.
became socl tifut hat i

 was low. This scum also cortaitis phanus in ahundarce. When, too, at this time a delicate roon film, mown as water bloom. was often found on the surface of crystal Lake whare the water was reener. This film was cans on the littlo aminals arde blerts collectino at the surface on warm days. ard was rioh in uncenar. Plone. Mallomonas Coler, Petalomans, ne Gridintur Il\} of the surcins
 er of fumat anc sentember, fron. Thon, in misurtor. wo and
 and Phacus whoh had "oen o riohiv fown in the nt wnew...

Zoothamniut becams comion in all rintar colact on

and a few others nersisted thmonhout the year.
Tr: Protozoa in the laboyatory ampria varion:] ? .
in stamant acuaria diffored from those in froot oros. pun woncinc
 would sudkenly disapneare sometimes to r-torn and sominon nov.
 abundant in a samole from ore of the manait and the arot day not one could be found Whether this was dre to he hiuthronon of the aquarium causnci by taleino the samble the fire day to marintion in
 else which ate or billedn the actirifers, "o west on not easily answered. Neither is it known whore thon on who. p snocins sundenly disarnears from an zquarin in thet wat.
Following, are to tables: ore worribinw tra wirn ef looa-
tion in which the smecies ocu rech the other. a table renresentime the seasonal distribution.

92

$$
\stackrel{\bullet}{0}
$$

Discussion of focal Occurrence.

 i: Soul water. The Rhizonoda ocurras シbout ar ?lly fresh 00]lections and in aquaris and trey were not obacan in water.

 The Flasellata ere ant *o ocove jut

 belonged to this oroup. The Dinollasiluta cocurred only in field collections, and one of thon has never best reported from amerioa before. The Ciliata occurred abuncontly Er field collectices and in a quaria, and most of the forl mater forms ware ciliates. The Rhizopoda and the ciliata. as ruups, syem to show less preference for any particular environment than the others.

-

$$
\cdot
$$

$$
\begin{aligned}
& \text { 出へかか } \\
& \bar{\gamma} \infty{ }^{\wedge} \alpha \\
& \text { in } \rightarrow \infty \text { o } \\
& \alpha_{\gamma} \cdots \cdots \infty \\
& \underset{\sim}{\wedge} \wedge \approx: \wedge \\
& \text { इ○ o o } \\
& \begin{array}{lll|l}
5 & 0 & 0 & 0 \\
j & \sigma & 0 & 7 \\
j & \sigma
\end{array} \\
& \}_{i}=\infty \infty \alpha 0 \approx \\
& \text { jை momo } \\
& \text { ぶ~n mnn n }
\end{aligned}
$$

-

5

$$
101 .
$$

Discussion of Seasonal Distribe

The laroset number of species reported in any mont. is:
the least, 19. The small number found in any single month in nr
ably due to the accidents and limitations of conservation.
small number observed during the summer months is "orbtlat due
the same cause. Individual routs, however, show some indicati of a seasonal preference: thus the Rhizonoda ?re most January; the Heliozoan are apparently absent during fe say
months: the Plagellata are more abundant = il the il
of fall: and the Ciliata, during the colder part of tue -ir.
The data at my disposal are insufficient for any extended zenalalizations on the subject of seasonal distribution.

The limits of this paper do not permit of an extensive com-
parison of the list of species ocem...n\% =re
other parts of the world. I make but a few to illustrate the
similarities and differences of spociss ocourino ir different lc calities.

The four lists with which my list is fere compared have hear made from field collections. without attention having been n: : to aquarian collections. I have found

$$
102 .
$$

Hucke ('93), who worked in the same stream, rencrts. This jndicates that further work here would lareely increase the list. of f-mole's list, 32 were found in the Boneyard; of Kofoid's 25: zen of the
long list of Awerinzeff, only 37.
The conclusion is that the Protozo are larely comenolitan.
The larger the lists found, the oreater is the similasity in different localities. The cosmooolitan distribution is cue to the sase with which the oerms are carrtic io by the

MITRRATRTCIT O

Blochmann, F.

'95. Die Mikroskooische Thierwelt des Susswassers. Th. IT, Abth. 1: Protozoa. pD. I-XV: 1-134, Pl. I-VIII.

Butschii, 0
'80-98. Broun's Klassen und Orcinunen dos Theirraiohs rotoroa. Vols. I, II, and III, DOD日 Do. DI. I-LXYIX.

Carter, H.J.
171. Note on a resh water species of ceratium from the Lake of Nynee (Naini) Tal in Yumaon. Ann.Mag. Nat. "ist., Ser. A, Vol. VII., po. 229, 230.

France, Raoul

'96. Beitrage zur Kentniss der Alenoatteing Carteria. Termeszetraj>i Fuzetek, XIX Kolet, on. 105-112. Pl. III.

Goroschankin, J.
'91. Beitrage zur Keuntniss der Mornolowie und Systematik der chlamydomonaden. II. Chlamydomonas Reinhardi (Dangeard) une seine Verwandten. Eull. de Moscow. No.l.1891. co. 1-50, Pl. I, II.

Kofoid, 'C.A.

'98. Plankton Studies II. Oer Pleordina illinoisensis, a new species from the Plankton of the Illinois River. Bull. Ill. State Lab. Nat. Hist. Tol. V., Dp. 27B-293, Pl. XXXVI, XYXVII。 Kofoid, C.A. '99. Flankton Studies III. On Platydorina, a new oenus of the family Volvocidae, from the Plankton of the Illinois River. Bull. Ill. State Lab. Nat. Hist., Vol. V., np. 419-440, Pl. XXXVIII.

Leidy, Iosept.
17. Fresh-water Rhizooods of North America, po. T-81: 1-P19. PI. I MT: I.

Penard.E.

'99. Sur la croissance suprosee de la coouillo chen]es Thocamoebiens. Arch. Sci. Phys. et vat., IV. Per.. tome ITI., 2? nn.

Shaw, H.R.
94. Pleodorina, a new cerlus of the Volvocinae. Bot. Gar.. Vol. XIX., pn. 279-282, Pl. "XVII.

Saville-Kent.
'80-'82. Manual of the Infusoria. Vols. I, II, III, cD. I-X:
1-913, P1. I-L* London.
Schaudinn, Fritz.
'96. Das Tier reich, 相百iozoa. 2Anp.
Schewiakoff, $7 . \mathrm{I}^{\text {. }}$.
'9z. Uber die Geographische Verbreitung der 'Susswasser- Protozoen, Mem. l'Acad. Imp. des Sci. de St. Petersbourg, VII. Ser. T. XLI., no. 3. 201pp., Pl. I-IV.
'Stokes,Alfred C'
'88. A Preliminary Contribution toward a History of the Freshwater Infusoria of the United States, Jour. Trenton Mat. Hist. Soc. Vol. I, no. z, Do. 71-319, Pl. I-XIII.

Stein, F.R.
'59-178. Der Oranispus der Infusionsthiere nanh Fimenen Porschuno.. en in Systematischer Reihonfolre Pearbeitet. Abth. I.?. Z.
 1-154, Taf. I-XV. Lèioziơ.

Zumstein, Hans.

Inaiogural-Dissertation, Basel. 180日. 50Do.. Thf. "T. (rar.rbo f. wiss. Pot. Pd. YYXIV.).

Awerinceff, S.
'99. Zur Zenntniss eer Protoloヨn-fauna in HEr Ui aobun von
 vol. $\mathrm{AXX} ., \mathrm{Livr}$, 1, 218-251; 232-264.

Hempel, A.
'98. A List of the Protozoa and Rotifers founc in ur a illi:ojs River and adjacent lakes at Eavana, Illinoic. Bull. IJ]. State Lab. Nat. Hist. Vol. V., pp. 201- K88.

Hucke, P. M.
'93. A Contribution to the Knowlsdre of the Ciliazed Infusoria of Champaign County, Iliinois. Thesis for R.S. Decree in Col. of Scio U. of I., 22pp., VY, PI.

Kofoid, C.A.

'94. A Report on the Protozoa Observed on Ialse Michion and the Inland Iakes in the Neiohbornocs of Charlevoix, curing the Summer of 1894. Rull. Mich. Fish Come, No. 5, DD. 76-84.
a. amylaceous body. ad.c. adoral cilia.
b. body.
c. cilia.
c.d. ciliary disc.
cl. cluster.
c.p. conical projection.
col. collar.
c.s. caudal spine.
c.st. caudal style.
c.th. contractile thread.
c.v. contractile vacuole.
d.f. diatom frustule.
ecs. ectosarc.
ens. entosarc.
e.gr. equatorial aroove.
f. food.
fac. facet.
fl. fiaqellum.
gi. groove.

1. lorica.
m. mouth.
man. macronucleus.
min. micronuclens.
m.t. mucilasinous tube.
n. nucleus.
nk. neck.
o. re oral rroove.
par. parasitas.
pg. aisment.
pos. niement srot.
ph. blarynx.
oher. pharymrozl rocs.
D.r. Dspucondal lats.
ps. DEQuzonociz.
p.st. orimary stal'。
pste. veristome.
D.t. Dseudonodal thread.
r. riclee.
s. sarcode.
set. setae.
sh. shall.
sht. sheath.
so. snicules.
spi. spine.
s.st. secondary stal.
st. stal!。
sti. striations.
t. tail.
tr. trichocysts.
u.m. undulatiro mentrane.
v. vacuoles.
w.v. water vacuole.
z z zooid.

Fig. 1. Amoeba proteus
Fig. 2. Amoeba proteus, same individual a few romorts latsr. Plate II.

Figs. 3-8. Successive changes in form in Ansa Duteus an seen in 10 minutes.
Plate II!.

Fig. 9. Amoeba verrucosa.
Fig. 10. Same showin pse:dopodta.
Plate IV.

Figs. 11-17. Successive chanoes in form in Amosion trucose as seen in 10 minutes.
Plate V.

Fig. 18. Amoeba villosa.
Fig. 19. Amoeba villosa a few moments later.
Plate VI.

Figs. 20-26. Successive chanoes in form of froeja villose as seen in 10 minutes.
Plate VII.

Fig. 27. Pelomyxa villosa.
Fig. 28. Pelomyra villosa a fev moments later.
Dlate VIII.
Fig. 29. Dinamoeba mirabilis.
Plate IX.
Figs. 30-32. Dinamoeba mirabilis, successive staees in the capture of a diatom.

$$
\text { Plate } \mathrm{B} \text {. }
$$

Figs. 3z-35. Biomyxa vagans, successive phaser.
Plate XI.

Fig. 36. Arcella vulgaris, lateral view.
Fig. 37. Arcella vulgaris, with shell folcied.
Plate XII.

Fio．38．Arcella discoides． Fio．39．Diffluoia globulosa．
Plate XIII.

Fig．40．Difflugia cyriformis，lateral viov。
Plate XIV.

Pig．4l．Diffluria pyriformis，too vie＂．
Fig．42．Diffluria priformis，divi大ing．
Plate 則.

Fig．43．Difflugia urceclata．
Fin．44．Difflueia corona．
Plate 隹l.

Fig．46．Centropyxis aculeata．
Fio．47．Centropysis aculeata var．ecornis．
Plate XVII.

Fig．48．Campascus comutus．
Fig．49．Pamphaqus mutabilis．
Plate VVIII.

Fig．50．Actinoply rys sol．
Dlate XIX.

Fig．51．Nuolearia polypodia．
Fios．52－55．Mastigamoeba simplex，showing alternation of pseudopodia．
Plate XY.

Fig．56．Heterophrys myrianoda．
Plate XXI.

Fig．57．Acanthocystis turfacea．
Plate VXII.

Eig．58．Cercomonas typica．

Fio. 59. Same cividino.
Fip. 60. Stylobryon abbotti.
Plate YXIII.

Fig. 61. Anthophysa veqetans, branching colons.
Fig. 62. Same, detached zooid.
Plate yyIV.

Fig. 63. Anthophysa veretans, detached cluster.
Plate YXV.

Firs. 64- 56 . Euglena viridis, showino metasolic shnaes.
Fig. 67. Euolena soirooyra.
Fio. 68. Eurlena oxyuris.
Plate YYI。

Fig. 69. Fuglena acus.
Plate YXVII.

Fig. 70. Trachelomonas hispica.
Fio. 71. Phacus triaueter.
Plate XXVITI.

Fig. 72. Astasia trichophora.
Plate VIX.

Fig. 73. Petalononas medicanellata.
Fio. 74. Heteronema acus.
Fig. 75. Mallomonas Dlosslii.
Plate XXY.

Fio. 75. Anisonema orande.
Plate XXXI.

Pig. 77. "Carteria mulitifilis.
Fio. 78. Same, four young individials in a quadrate platé.
Fio. 79. Platydorina caudata.
Plate XXXII.

Fiq. 80. Ceratium kumaonense.

Fio. 81. Coleps hirtus.
Fig. 82. Same, end view.
Plate ruxill.

Fig. 83. Amphileptus anser.
Dlate XXXIT.

Fio. 84. Lionotus wrzesniowskii.
Plate XYYY.
Fig. 85. Nassula rubens.
Plate VXXUI.

Fig. 86. Chilodon cucullulus.
Fig. 87. Colpidium colpoda.
Dlate V XII.

Fig. 88. Paramoecium caudatum.
Fig. 89. Same, in conjuration.
Plate XXYVIT.

Fi. 90. Pleuronema chrysalis.
Fig. 91. Cyclidium glaucoma.
Dlate YVYY.

Fig. 92. Bursaria truncat $\mathrm{F}_{\mathrm{l}} \mathrm{l}$ a.
Plate XL.

Fiz. 93. Stentor polymorphus.
Plate XLI.

Fig. 94. Stentor roeselii.
Plate KII.

Fis. 95. Halteria grandinella.
Plate XIIII.

Fir. 96. Urostyla grandis.
Fio. 97. Same, parasitized by Spheroohrya pusilla.
Plate XIIV.
Fio. 98. Vorticella nebulifera.
Plate KLT.

Fio. 99. Carchesium polypinum, bxanchino colony.
Plate XIVI.

Fiơ. 100. Carchesium polyninum, clister of zooids.
Plate XLVII.

Fig. 101. Sphaerophrya pusilla.
Fig. 102. Same. encysting.
112.

Plate I

$$
0=0
$$

Plate II

Plate III

Rlate IV

Plate :

20.
$2 i$
2告。

$$
23 \quad 2=
$$

25

26

Plate VII
\because

\qquad

Plate VIII

Plate IX.

Plate X.

Plate II

Plate XII.

Plate IIII

Plate XIV

Plate, XV.

Plate XVI.

Plate IVIII

Plate IIX.

Plate IX.

Plate XXI.

Plate XXII

Plate XXII

Plate XXIV

Plate XXV

Plate XXV

138.

Plate EXVII.
1.39

Plate Exvir

Plate

Plate XXX

Plate $\times X$

143.

Plate

Plate $x \times x m$.
145.

Plate xxxiv.

$$
\because \ddot{*}
$$

146.

Plate

Plate IXXI

0148
Plate XXXVII:

Plate
XXXVIII.

$$
\because \theta^{\prime}
$$

Plate $\frac{150}{x \times 1 X}$

151
Plate XI.

Plate XLI.

153
Plate III

Plate ILIIT.
155.

Plate ILIX:

\qquad
-
156.

Plate ILV.

157
Plate XLVI

Plate ${ }^{158 .}$

[^0]: Family Chilifera：－

