

QUALITY ASSURANCE AND

QUALITY CONTROL ANALYSES

for the

MISA Metal Casting Sector

Ontario

ISBN 0-7778-0914-X

QUALITY ASSURANCE AND QUALITY CONTROL DATA ANALYSES FOR THE MISA METAL CASTING SECTOR

SEPTEMBER 1993

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1993 This publication may be reproduced for non-commercial purposes with appropriate attribution.

> LOG 93-06E3006 PIBS 2702

QUALITY ASSURANCE AND QUALITY CONTROL DATA ANALYSES FOR THE MISA METAL CASTING SECTOR

Report prepared by:

Water Resources Branch Ministry of Environment and Energy

.

TABLE OF CONTENTS

ACKN	OWLEDO	GEMEN	11	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		iii
EXEC	UTIVE	SUM	IAR	Y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
INTR	ODUCT	ION	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
THE (QA/QC	PROC	CES	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
	1.	Stra	ate	gi	es	f	or	. 1)ec	cis	sid	on	Ma	aki	ing	ł	•	•	•	•	•	•	•	•	•	•	5
	2.	Eval	lua	ti	on	c	of	ç	QA,	QQ	c t	Dat	ca	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	з.	Para	ame	te	rs	s	Sel	.ec	cte	ed	f¢	٥ŕ	Li	imi	its	5	•	•	•	•	•	•	•	•	•		10
DATA	ASSES	SSMEN	1T	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		11
CONC	LUSION	ıs.	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		12

TABLES

Table 1.	Potential Candidate Parameters 1	3
Table 2.	Candidate Parameters to be Limited 1	5
Table 3.	Candidate Parameters with Data of Equivocal Quality	5
	Candidate Parameters with Data of Unreliable Quality	5

APPENDICES

Appendix I		ST OF MONITORED FARAMETERS LANTS AND EFFLUENT STREAMS	16
	Table 1:	Sector List of Monitored Parameters	17
	Table 2:	List of Plants and Effluent Streams	21

Appendix	II	POTENT	IAL	CANDIDATE	PARAMET	TERS	•••	•	•	•	•	•	22
		Table :	1:	Final Disc Each Plant				•	•	•	•	•	23
		Table 2	2:	Found at Ea Stream of f				•	•	•	•	•	25
Appendix	III	RESULTS	S OF	THE QA/QC	ASSESS	MENT	•	•	.0	•	•	•	27
Appendix	IV	QA/QC A	ASSE	SSMENT SUM	IARY TA	BLES	•	•	•	•	•	•	51
		Table 1	1: F	otential Ca	andidat	e Par	came	ete	rs		•	•	52
		Table 2	2: N	on-Candidat	te Para	meter	s	•	•	•	•	•	61
Appendix	v	EFFLUEN	M T M	ONITORING I	DATA .		•	•	•	•	•	٠	77
GLOSSARY	OF TEF	ms	• •		• • •		•	•	•	•	•	•	107

ø

AKNOWLEDGEMENT

The authors gratefully acknowledge the expertise and guidance of Don King - Laboratory Services Branch, Ontario Ministry of the Environment. The authors gratefully acknowledge the valuable contribution and review comments of Yousry Hamdy - Water Resources Branch, Ontario Ministry of the Environment. The report was written in cooperation with the Data Evaluation Subcommittee for the Metal Casting Sector.

. т. •

EXECUTIVE SUMMARY

This report presents the quality assurance/quality control (QA/QC) assessment of the effluent monitoring data collected by the MISA Metal Casting Sector under the Ontario Effluent Monitoring Regulation 648/89 as amended by O. Reg. 232/90 and O. Reg. 419/90. The sector conducted the effluent monitoring from May 1, 1990 to April 30, 1991.

The QA/QC assessment process described in this report, evaluated the suitability of the effluent monitoring data for use in the effluent limit setting process. This assessment process was based on the approach outlined in the MISA Issues Resolution Process -Final Report Summary, September 1991.

Of the 63 potential candidate parameters, the QA/QC assessment process has identified 28 parameters with data of reliable quality for effluent limit setting, 15 parameters with data of equivocal quality, and 20 parameters with data of unreliable quality. The parameters with data of reliable quality are:

Chemical Oxygen Demand (COD) Total Cyanide Ammonia plus Ammonium Total Kjeldahl Nitrogen (TKN) Nitrate plus Nitrite Dissolved Organic Carbon (DOC) Total Organic Carbon (TOC) Total Phosphorus Total Suspended Solids (TSS) Aluminum Cadmium Total Chromium Copper Lead Molybdenum Nickel Silver Zinc Antimony Arsenic Selenium Mercury Phenolics (4AAP) Octachlorodibenzo-p-dioxin Oil & Grease Iron Magnesium Fluoride

INTRODUCTION

This report presents the quality assurance/quality control (QA/QC) assessment of the effluent monitoring data collected by the Metal Casting Sector under the Ontario Effluent Monitoring Regulation 648/89 as amended by O. Reg. 232/90 and O. Reg. 419/90.

The Metal Casting Sector consists of ten plants which discharge directly to surface waterways. These plants conducted a one year effluent monitoring (May 1990 - April 1991) under the MISA Effluent Monitoring Regulation. At the end of the effluent monitoring period, Canada Pipe became a zero discharger and Franklin Electric closed its operations in Ontario. Consequently, only eight plants were considered for limits setting.

Under the Effluent Monitoring Regulation, four plants which discharge process and combined effluent were required to submit QA/QC data as these effluents were extensively monitored. The plants which submitted QA/QC data are:

- Canada Pipe Company Ltd., Hamilton at control point #0100 (combined effluent)
- Ford Motor Company of Canada, Windsor at control point #0300 (process effluent)
- General Motors of Canada, St. Catharines at control point #0900 (process effluent)
- Haley Industries Ltd., Haley at control point #0200 (process effluent)

Even though, Canada Pipe become a zero discharger, the analyses of its QA/QC data are included in this report.

The QA/QC procedures encompass all analyses undertaken to insure that the effluent monitoring data are generated within known accuracy and precision. Accuracy can be defined as the degree of agreement of a measured value with the expected value. Precision can be defined as the degree of agreement of measurements obtained through repeated sampling.

Quality assurance (QA) is a system of activities whose purpose is to convince the producers and users of data that the defined standards of quality at predetermined levels of confidence are met and that the quality control is being performed effectively. It is carried out immediately following quality control process and it involves audit and evaluation of the quality control data to insure the success of the quality control program.

2

Quality control (QC) is the overall system of guidelines, procedures and practices which are designed to regulate and control the quality of monitoring data with regards to previously established performance criteria and standards.

The QA/QC procedure is one of the most important aspects of the MISA Effluent Monitoring and Limits Regulations. The importance of the collection and assessment of QA/QC data is threefold:

- 1. It serves to identify and assess the significance of:
 - biases i.e. systematic errors inherent in a method or caused by the measurements of laboratory blanks, sampling contamination or calibration errors.
 - chronic contamination
 - data variability
 - false results (either positive or negative)
 - field sampling or laboratory analytical problems.
- It is one of the processes necessary to determine the validity of the data reported in the effluent monitoring database.
- 3. It determines the confidence with which one data set can be compared to another.

The QA/QC samples included travelling blanks, travelling spiked blanks, and duplicate samples for specified frequencies. The laboratory QA/QC data consisted of the results of certain laboratory QA/QC checks (blanks, spiked blanks, spiked samples and replicate analyses as specified in the MISA General Effluent Monitoring Regulation) that were to have been retained for possible inspection/review by the Ministry.

This report contains five appendices and a glossary of terms:

Appendix I The list of all the monitored parameters, their Regulation Method Detection Limits (RMDL), Provincial Water Quality Objectives/Guidelines (PWQO/G), Industrial Discharge Limits (IDL) are presented in Table 1.

> The plants and the effluent streams monitored in the Metal Casting Sector during the MISA effluent monitoring period are presented in Table 2.

Appendix II The potential candidate parameters selected from the final effluent streams of the four plants are presented in Table 1.The potential candidate parameters selected from each effluent stream of the four plants are presented in Table 2. Appendix III The QA/QC assessment and the conclusions made regarding the reliability of the effluent monitoring data for each potential candidate parameter are presented.

Appendix IV Summary of QA/QC data calculation outputs for each potential candidate parameter are presented in Table 1.

Summary of QA/QC data calculation outputs for each non-candidate parameter are presented in Table 2.

The QA/QC calculation outputs outlined in table 1 and table 2 for each parameter are:

- The frequency of occurrence classification;
- The number of valid samples collected;
- The average concentration ratios for the effluent and the travelling blanks;
- The travelling spiked blank percent recovery (minimum,maximum and average);
- The average concentration difference ratio for the field duplicate and the uncorrected sample;

For definitions of these terms, see the glossary of terms.

In the QA/QC assessment process, the travelling blank and spiked travelling blank data are used for the whole plant and apply to all effluent streams. The field duplicate and uncorrected sample data are pipe specific.

Appendix V For each of the four plants, the frequency of occurrence classification, the percent frequency of detection, maximum, minimum, and average concentration ratios of the effluent monitoring data are presented.

Glossary Definitions of terms used in the report are presented.

4

THE QA/QC PROCESS

1. STRATEGIES FOR DECISION MAKING

The QA/QC process consists of three main steps, each of which is described below:

Step 1: Retrieval, Screening and Classification

During retrieval, screening and basic calculations, all analytical results with remark codes "<", "<DL", "<T", "A", "AR", and analytical results without a remark code are included in the QA/QC analysis. All data with remark codes different than the ones mentioned above are excluded because the results are found to be questionable (e.g. insufficient sample volume, interference, old sample, improper preservation). These amount to less than one percent of the database.

Data with analytical results below the RMDL are used as reported unless the value is less than or equal to RMDL/10. In such instances, the value is substituted with RMDL/10. It should be noted that when an analytical result is reported with a remark code less than the detection limit i.e. "<DL", the actual level of the analyte could be within the range of zero and the laboratory method detection limit. Special attention is given during the interpretation of results reported with remark codes "<DL" and "<".

In sorting the effluent monitoring data, the first step is to classify parameters according to their frequency of occurrence classification and their levels observed. Three main categories were used for the frequency of occurrence:

Frequent occurrence: More than 40% of the parameter's observations are above the RMDL. Infrequent occurrence: For parameters monitored on daily, thrice

For parameters monitored on daily, thrice weekly and weekly, less than or equal to 40% but more than 1% of the parameter's observations are above the RMDL.

For parameters monitored on monthly, quarterly and semi-annually frequency, less than or equal to 40% but more than 11% of the parameter's observations are above the RMDL.

Non-occurrence:

For parameters monitored on daily, thrice weekly, and weekly frequency, less than or equal to 1% of the parameter's observations are above the RMDL. For parameters monitored on monthly, quarterly, and semi-annually frequency, less than or equal to 11% of the parameter's observations are above the RMDL.

Within both the Frequent and Infrequent Occurrence categories, parameters were further classified according to the levels at which they were observed. The three sub-categories are:

- High Level Used to describe quantitative data i.e. presence and actual level of analyte is certain.
- Medium Level
 Used to describe semi-quantitative data i.e. presence of analyte is probable but actual level of analyte may be uncertain.
- Low Level Used to describe qualitative data i.e.
 presence and actual level of analyte may be uncertain.

Based on the frequency of occurrence classifications and levels observed, the effluent monitoring data can be grouped into the following categories:

Frequent Occurrence-High Level (FH): More than 50% of the parameter's observations are above 5 times the RMDL.

Frequent Occurrence-Medium Level(FM): More than 50% of the parameter's observations are above 2 times the RMDL.

Frequent Occurrence-low Level (FL): More than 40% of the parameter's observations are

Infrequent Occurrence-High Level (IH):

above the RMDL.

For parameters monitored on daily, thrice weekly, and weekly frequency, between 1% and 40% of the observations are above the RMDL. Of those observations greater than 2 times the RMDL, more than 50% are higher than 5 times the RMDL.

For parameters monitored on monthly, quarterly and semi-annually frequency, between 11% and 40% of the observations are above the RMDL. Of those observations greater than 2 times the RMDL, more than 50% are higher than 5 times the RMDL.

Infrequent Occurrence-Medium Level (IM):

For parameters monitored on daily, thrice weekly, and weekly frequency, between 1% and 40% of the observations are above the RMDL. Of those observations greater than the RMDL, more than 50% are higher than 2 times the RMDL.

For parameters monitored on monthly, quarterly and semi-annually frequency, between 11% and 40% of the observations are above the RMDL. Of those observations greater than the RMDL, more than 50% are higher than 2 times the RMDL.

Infrequent Occurrence-Low Level (IL):

Observations do not fit the criteria for infrequent occurrence at either the high or medium level.

Non-occurrence (NO):

For parameters monitored on daily, thrice weekly, and weekly frequency, less than 1% of the parameter's observations are above the RMDL.

For parameters monitored on monthly, quarterly and semi-annually frequency, less than 11% of the parameter's observations are above the RMDL.

Step 2: Sorting and Summarizing

Using the effluent monitoring data and the accompanying field QA/QC on a plant-by-plant basis, the second step is to sort parameters according to their frequency of occurrence and observed concentration level in each effluent stream. To facilitate the QA/QC assessment process, summary tables outlining the essential calculation outputs for each parameter are tabulated in appendix IV.

Step 3: Strategies for the QA/QC Assessment Process.

Classification of parameters according to frequency of occurrence and level of analyte observed dictates the following three strategies for evaluating effluent monitoring data. Each strategy provides guidance in decision-making through the systematic evaluation of specific QA/QC data.

<u>Strategy 1</u> Evaluation of Frequent Occurrence Parameters

Effluent data values were considered to provide either a satisfactory representation of the actual levels, a possible under-estimate of the actual level, or a possible over-estimate of the actual level of a particular analyte. The likelihood of over-estimation or under-estimation based on the recovery of travelling spiked blanks and the possibility of error in laboratory blank corrections were evaluated. The precision using field duplicate and, if necessary, precision using laboratory replicates were assessed.

<u>Strategy 2</u> Evaluation of Infrequent Occurrence Parameters

Effluent data were considered as being either true positive, false negative, or false positive. The possibility of false negative based on the possible under-recovery of travelling spiked blank samples was assessed. The likelihood of false positive based on contamination of travelling blank samples was also assessed. If necessary, the possibility of under-correction or over-correction for laboratory blank data was evaluated.

Strateqy'3 Evaluation of Non-Occurrence Parameters

Effluent data were considered as being either true negatives or false negative through examination of recoveries for travelling spiked blank data. If necessary, the possibility of over correction for laboratory blanks was evaluated.

In addition to the above strategies, consideration was also given to the following circumstances:

- 1. Unique parameters which are selected as candidate parameters for limits for one plant only were investigated for:
 - anomalies in plant process operation
 - special chemicals used at the plant site
 - the possibility of field contamination
- 2. Parameters which are selected as candidate parameters for limits only for limited number of plants were investigated for:
 - use of the same contract lab
 - a similarity in processes or chemicals used
- 3. Parameters which are selected as candidate parameters for limits and found at infrequent high level of occurrence were investigated for:
 - the possibility of process change or process upset in the plant
- 4. Reports from Ministry inspections of plants and contract laboratories.

2. EVALUATION OF QA/QC DATA

Candidate parameters for limits:

The QA/QC evaluation for the candidate parameters for limits focused on the following actions depending on the classification of each parameter:

Frequent Occurrence - High Level parameters were evaluated for accuracy, recovery, and precision.

Frequent Occurrence - Medium Level parameters were evaluated for recovery, precision, and potential for blank bias.

Frequent Occurrence - Low Level parameters were evaluated for recovery and potential for false positive.

Infrequent Occurrence - High Level parameters were evaluated for process changes and potential for contamination.

Infrequent Occurrence - Medium Level parameters were evaluated for recovery and potential for blank bias.

Infrequent Occurrence - Low Level parameters were evaluated for potential false positive and false negatives.

Non-Candidate parameters for limits:

The QA/QC evaluation for the non-candidate parameters identified the parameters with a possible false negative concerns. Noncandidate parameters with average spiked blank recoveries between 20% and 140% confirmed that the parameter should not be a candidate for limits. Non-candidate parameters with average spiked blank recoveries lower than 20 percent are identified as parameters with false negative concerns and candidates for further investigation.

3. PARAMETERS SELECTED FOR LIMITS

The list of the 161 parameters monitored in the MISA Metal Casting Sector are presented in Table 1 of Appendix I. From this list of parameters, the potential candidate parameters are selected based on 90/10 selection criteria as defined in the "<u>MISA Issue Resolution Process - Final Report Summary, Ontario Ministry of the Environment - September 1991</u> ".

A total of 63 parameters were selected as potential candidates using the 90/10 selection criteria. These 63 parameters were further evaluated using the QA/QC assessment process to identify parameters with data of reliable quality for limit setting. The parameter pH was not included in the potential candidate parameters list since it will be regulated within the range specified in the Effluent Limits Regulation.

Parameters that were not selected by the 90/10 rule as potential candidate parameters were investigated for possible false negative results by examining the recovery levels of the travelling spiked blanks. If a false negative result is confirmed, further investigation is required to confirm the presence of these parameters.

The list of the potential candidate parameters at the final discharge point of each plant are presented in Table 1 of Appendix II. The list of potential candidate parameters at each effluent stream of each plant are presented in Table 2 of Appendix II.

DATA ASSESSMENT PROCEDURES

In assessing the effluent monitoring data, average concentration ratios are examined taking into consideration the total number of samples. Effluent monitoring data with the number of samples less than 12 were further investigated using the minimum and maximum concentration ratios to evaluate the impact of outliers. For effluent monitoring data with the total number of samples less than 4, the minimum average concentration ratio is used to evaluate reliability of the data.

In assessing the field duplicate data, the average difference ratios that were less than 1.0 implied that precision was satisfactory. If the corresponding effluent average concentration ratio was very high compared to the field duplicate difference ratio, then a ratio higher than 1.0 implied that precision was satisfactory. If the data did not meet this criterion, they were examined further to assess the variability of the analysis.

In assessing the uncorrected monitoring data, the average difference ratios which were less than 1.0 implied that laboratory blank corrections were insignificant. If the corresponding effluent average concentration ratio was very high compared to the uncorrected sample difference ratio, then a ratio higher than 1.0 implied that precision was satisfactory. If the data did not meet this criterion, individual results were investigated further for the reliability of blank corrections.

In assessing the travelling blank data, the average travelling blank concentration ratios which were consistently less than 1.0 often indicated that the effluent monitoring data for that parameter were satisfactory. If the corresponding effluent average concentration ratio was very high compared to the travelling blank average concentration ratio, then a ratio higher than 1.0 implied that precision was satisfactory. If the data did not meet this criterion, the individual results were investigated further.

In assessing the spiked travelling blank data, the average recoveries of travelling spiked blank data of greater than 40% are deemed satisfactory, whereas average recoveries lower than 40% are of concern. Recoveries that are lower than 40% increase the risk of a false negative conclusion as to the presence of a parameter.

Spiked travelling blank recoveries greater than 140% can only be attributed to either data entry errors or field/laboratory contamination. If an over-recovery is due to field contamination, the contamination will be identified through the evaluation of travelling blanks.

CONCLUSIONS

The QA/QC data assessment has provided insight into the selection of the parameters for effluent limits.

One of the following conclusions were made about the data for each parameter:

- 1. Data are of reliable quality.
- 2. Data are of equivocal quality.
- 3. Data are of unreliable quality.

A conclusion of reliable quality is designated to parameters for which the QA/QC assessment has indicated no major concerns in regard to the reliability of the data.

A conclusion of equivocal quality is designated to parameters without QA/QC data. It is also designated to parameters with no major QA/QC assessment concerns but with effluent average concentration ratios lower than two.

A conclusion of unreliable quality is designated to parameters for which the QA/QC assessment has indicated major concerns in regard to the reliability of the data.

Of the 63 potential candidate parameters, the QA/QC assessment process has identified 28 parameters with data of reliable quality for effluent limit setting, 15 parameters with data of equivocal quality, and 20 parameters with data of unreliable quality. The 35 parameters with data of equivocal and unreliable quality will be removed from further consideration in the development of effluent limits for the Metal Casting Sector.

The QA/QC data assessment for the non-candidate parameters has identified 9 parameters with possible false negative concerns. Further investigation is required to confirm the presence of these parameters. These parameters are outlined in Appendix III in the section of the QA/QC assessment for non-candidate parameters.

TABLE 1

QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT RESULTS POTENTIAL CANDIDATE PARAMETERS

ATG	PARAMETER	CANADA	FORD	GENERAL	HALEY
		PIPE	MOTOR	MOTORS	IND.
		# 0100	# 0100	# 1000	# 0200
1	Chemical Oxygen Demand	1	3	1	1
2	Cyanide Total	1	1	2	1
^4a	Ammonia plus Ammonium	1	2	1	1
4a	Total Kjeldahl Nitrogen	1	2	2	1
4b	Nitrate+Nitrite	1	1	2	1
5a	DOC	1	1	1	1
5b	TOC	1 . 1	2		1
6	Total Phosphorus	1		2	1
8	Total Suspended Solids	1	1	1	1
8	Volatile Suspended Solids		2		
9	Aluminum	. 1	1	1	1
9	Beryllium				3
9	Cadmium	1	2	3	3
9	Chromium	1		3	1
9	Cobalt				3
9	Copper	1	2		1
9	Lead	1	2	2	1
9	Molybdenum	1	2		3
9	Nickel	1			2
9	Silver				1
9	Vanadium				2
9	Zinc	1	1	1	1
10	Antimony	1			1
10	Arsenic	2			1
[.] 10	Selenium	1			1
12	Mercury	1	3		1
13	Tetra-alkyl lead (Total)	3			
13	Tri-alkyl lead (Total)	3			
14	Phenolics (4AAP)	1	1	1	1
15	Sulphide	2			
16	1,1-Dichloroethane				2
16	Chloroform			3	
16	Methylene Chloride				3
17	Benzene		3		
17	Toluene		3		
17	o-Xylene				3
19	Benzobutylphthalate		3		

FINAL DISCHARGE POINT OF EACH PLANT

NOTE:

- 1 = DATA ARE OF RELIABLE QUALITY
- 2 = DATA ARE OF EQUIVOCAL QUALITY
- 3 = DATA ARE OF UNRELIABLE QUALITY

TABLE 1

QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT RESULTS POTENTIAL CANDIDATE PARAMETERS

ATG	PARAMETER	CANADA	FORD MOTOR	GENERAL MOTORS	HALEY IND.
		# 0100	# 0100	# 1000	# 0200
19	Bis(2-ethylhexyl)phthalate	2	2	<u> </u>	3
20	2,4-Dimethylphenol		2		
20	4-Nitrophenol				3
20	Pentachlorophenol				3
23	1,2,3-Trichlorobenzene				2
24	Octachlorodibenzo-p-dioxiri		2		1
24	Octachlorodibenzofuran		2		
24	Total H6CDD				2
24	Total H6CDF				2
24	Total H7CDD				2
24	Total H7CDF				2
24	Total PCDF		2		2
24	Total TCDF		2		2
25	Oil and Grease	1	2	3	2
26	Abietic Acid			3	3
26	Chlorodehydroabietic Acid				3
26	Dehydroabietic Acid				3
26	Isopimaric Acid				3
26	Levopimaric Acid			3	3
26	Neoabietic Acid			3	3
26	Oleic Acid				3
26	Pimaric Acid				3
27	PCBT		2		
MC1	Iron	1	1	1	1
MC1	Magnesium	1	1	1	1
MC2	Fluoride	1	11	1	1

FINAL DISCHARGE POINT OF EACH PLANT

NOTE:

- 1 = DATA ARE OF RELIABLE QUALITY
- 2 = DATA ARE OF EQUIVOCAL QUALITY
- 3 = DATA ARE OF UNRELIABLE QUALITY

QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT RESULTS

TABLE 2

·	CANDIDATE PARAMETERS TO BE LIMITED
ATG	
1	Chemical Oxygen Demand
2	Cyanide Total
	Ammonia plus Ammonium
	Total Kjeldahl Nitrogen
4b	Nitrate+Nitrite
5a	DOC
	TOC
6	Total Phosphorus
8	Total Suspended Solids
9	Aluminum
9	Cadmium
9	Chromium
9	Copper
9	Lead
9	Molybdenum
9	Nickel
	Silver
9	Zinc
10	Antimony
10	Arsenic
	Selenium
12	Mercury
14	Phenolics (4AAP)
24	Octachlorodibenzo-p-dioxin
25	Oil and Grease
MC1	Iron
MC1	
MC2	Fluoride

TABLE 3

	CANDIDATE PARAMETERS WITH DATA OF EQUIVOCAL QUALITY								
ATG	PARAMETER								
8	Volatile Suspended Solids								
9	Vanadium								
15	Sulphide								
16	1,1-Dichloroethane								
19	Bis(2-ethylhexyl)phthalate								
20	2,4-Dimethylphenol								
23	1,2,3-Trichlorobenzene								
24	Octachlorodibenzofuran								
24	Total H6CDD								
24	Total H6CDF								
24	Total H7CDD								
24	Total H7CDF								
24	Total PCDF								
24	Total TCDF								
27	PCBT								

TABLE 4

	CANDIDATE PARAMETERS TO BE REMOVED FROM LIST										
ATG	PARAMETER										
9	Cobalt										
9	Beryllium										
13	Tetra-alkyl lead (Total)										
13	Tri-alkyl lead (Total)										
16	Chloroform										
16	Methylene Chloride										
17	Benzene										
17	Toluene										
17	o-Xylene										
19	Benzobutylphthalate										
20	4-Nitrophenol										
20	Pentachlorophenol										
26	Abietic Acid										
26	Chlorodehydroabietic Acid										
26	Dehydroabietic Acid										
26	Isopimaric Acid										
26	Levopimaric Acid										
26	Neoabietic Acid										
26	Oleic Acid										
26	Pimaric Acid										

.

s

APPENDIX I

SECTOR LIST OF MONITORED PARAMETERS

LIST OF PLANTS AND EFFLUENT STREAMS

APPENDIX I TABLE 1 SECTOR LIST OF MONITORED PARAMETERS

ATG	PARAMETER	RMDL	PWQO/G	R	IDL	UNIT
16	1,4-Dichlorobenzene	1.700	4.0000	0		ug/L_
16	Bromoform	3.700				ug/L
16	Bromomethane	3.700				ug/L
16	Carbon Tetrachloride	1.300				ug/L
16	Chlorobenzene	0.700	15.0000	0		ug/L
16	Chloroform	0.700				ug/L
16	Chloromethane	3.700				ug/L
16	Cis-1,3-Dichloropropylene	1.400				ug/L
16	Dibromochloromethane	1.100				ug/L
16	Ethylene Dibromide	1.000				ug/L
16	Methylene Chloride	1.300				ug/L
16	Tetrachloroethylene	1.100	50.0000	PG		ug/L
16	Trans-1,2-Dichloroethylene	1.400	200.0000	PG	•	ug/L
16	Trans-1,3-Dichloropropylene	1.400				ug/L
16	Trichloroethylene	1.900	2.0000	PG		ug/L
16	Trichlorofluoromethane	1.000				ug/L
16	Vinyl Chloride	4.000				ug/L
17	Benzene	0.500	100.0000	PG		ug/L
17	Styrene	0.500	20.0000	PG		ug/L
17	Toluene	0.500	0.8000			ug/L
17	m-Xylene and p-Xylene	1.100				ug/L
17	o-Xylene	0.500	0.7000	PG		ug/L
18	Acrolein	4.000				ug/L
18	Acrylonitrile	4.200				ug/L
19	1-Chloronaphthalene	2.500				ug/L
19	1-Methylnaphthalene	3.200	2.0000	PG		ug/L
19	2,4-Dinitrotoluene	0.800	5.0000	PG		ug/L
19	2.6-Dinitrotoluene	0.700	50.0000	PG		ug/L
19	2-Chloronaphthalene	1.800				ug/L
19	2-Methylnaphthalene	2.200	2.0000	PG		ug/L
19	4-Bromophenyl Phenyl Ether	0.300				ug/L
19	4-Chlorophenyl Phenyl Ether	0.900				ug/L
19	5-Nitro, Acenaphthene	4.300				ug/L
19	Acenaphthene	1.300				ug/L
19	Acenaphthylene	1.400				ug/L
19	Anthracene	1.200				ug/L
19	Benzo(a)anthracene	0.500	1			ug/L
19	Benzo(a)pyrene	0.600				ug/L
19	Benzo(b)fluoranthene	0.700				ug/L
19	Benzo(g,h,i)perviene	0.700	· ·		<u> </u>	ug/L
19	Benzo(k)fluoranthene	0.700				uq/L

ATG

Analytical Test GroupRegulation Method Detection Limit RMDL

PWQO/G = Provincial Water Quality Objective/Guideline

= Industrial Discharge Limit IDL

R = REMARK: O - Objective, G - Guideline, P - Proposed

APPENDIX I TABLE 1 SECTOR LIST OF MONITORED PARAMETERS

ATG	PARAMETER	RMDL	PWQO/G	R	IDL	UNIT
19	Benzobutylphthalate	0.600				ug/L
19	Biphenyl	0.600				ug/L
19	Bis(2-chloroethoxyl)methane	3.500				ug/L
19	Bis(2-chloroethyl)ether	4.400				ug/L
19	Bis(2-chloroisopropyl)ether	2.200				ug/L
19	Bis(2-ethylhexyl)phthalate	2.200	0.6000	0		ug/L
19	Camphene	3.500				ug/L
19	Chrysene	0.300				ug/L
19	Di-n-butyl Phthalate	3.800	4.0000	0		ug/L
19	Dibenz(a,h)anthracene	1.300				ug/L
19	Diphenyl Ether	0.400				ug/L
19	Diphenylamine	14.000				ug/L
19	Fluoranthene	0.400				ug/L
19	Fluorene	1.700				ug/L
19	Indeno(1,2,3-cd)pyrene	1.300				ug/L
19	Indole	1.900				ug/L
19	N-Nitrosodi-n-propylamine	3.100				ug/L
19	N-Nitrosodiphenylamine	14.000				ug/L
19	Naphthalene	1.600				ug/L
19	Perylene	1.500				ug/L
19	Phenanthrene	0.400				ug/L
19	Pyrene	0.400				ug/L
20	2,3,4,5-Tetrachlorophenol	0.400	1.0000	0		ug/L
20	2,3,4,6-Tetrachlorophenol	2.800	1.0000	0		ug/L
20	2,3,4-Trichlorophenol	0.600	18.0000	0		ug/L
20	2,3,5,6-Tetrachlorophenol	1.600	1.0000	0		ug/L
20	2,3,5-Trichlorophenol	1.300	18.0000	0		ug/L
20	2,4,5-Trichlorophenol	1.300	18.0000	0		ug/L
20	2,4,6-Trichlorophenol	1.300	18.0000	0		ug/L
20	2,4-Dichlorophenol	1.700	0.2000	0		ug/L
20	2,4-Dimethylphenol	7.300	10.5000	PG		ug/L
20	2,4-Dinitrophenol	42.000				ug/L
20	2,6-Dichlorophenol	2.000	0.2000	0		ug/L
20	2-Chlorophenol	3.700				ug/L
20	4,6-Dinitro-o-cresol	24.000	0.2000	PG		ug/L
20	4-Chloro-3-methylphenol	1.500				ug/L
20	4-Nitrophenol	1.400	48.0000	PG		ug/L
20	Pentachlorophenol	1.300	0.5000	0		ug/L
20	Phenol	2.400	5.0000	0		ug/L
20	m-Cresol	3.400	1.0000	PG		ug/L
20	o-Cresol	3.700	1.0000	PG		ug/L

ATG = Analytical Test Group

RMDL = Regulation Method Detection Limit

PWQO/G = Provincial Water Quality Objective/Guideline

IDL = Industrial Discharge Limit

R = REMARK: O - Objective, G - Guideline, P - Proposed

APPENDIX I TABLE 1 SECTOR LIST OF MONITORED PARAMETERS

ATG	PARAMETER .	RMDL	PWQO/G	R	IDL	UNIT
20	p-Cresol	3.500	1.0000	PG		ug/L
23	1,2,3,4-Tetrachlorobenzene	0.010	0.1000	0		ug/L
23	1,2,3,5-Tetrachlorobenzene	0.010	0.1000	0		ug/L
23	1,2,3-Trichlorobenzene	0.010	0.9000	0		ug/L_
23	1,2,4,5-Tetrachlorobenzene	0.010	0.1500	0		ug/L
23	1,2,4-Trichlorobenzene	0.010	0.5000	0		ug/L
23	2,4,5-Trichlorotoluene	0.010				ug/L
23	Hexachlorobenzene	0.010	0.0065	0		ug/L
23	Hexachlorobutadiene	0.010	0.0200	PG		ug/L
23	Hexachlorocyclopentadiene	0.010				ug/L
23	Hexachloroethane	0.010				ug/L
23	Octachlorostyrene	0.010				ug/L
23	Pentachlorobenzene	0.010	0.0300	0		ug/L
24	2.3.7.8 TCDD	0.020	0.0001	PG	1	ng/L
24	Octachlorodibenzo-p-dioxin	0.030				ng/L
24	Octachlorodibenzofuran	0.030				ng/L
24	Total H6CDD	0.030				ng/L
24	Total H6CDF	0.020				ng/L
24	Total H7CDD	0.030				ng/L
24	Total H7CDF	0.030				ng/L
24	Total PCDD	0.020				ng/L
24	Total PCDF	0.015				ng/L
24	Total TCDD	0.020				ng/L
24	Total TCDF	0.015				ng/L
25	Oil and Grease	1.000			15.000	mg/L
26	Abietic Acid	0.005	-			mg/L
26	Chlorodehydroabietic Acid	0.005				mg/L
26	Dehydroabietic Acid	0.005				mg/L
26	Isopimaric Acid	0.005				mg/L
26	Levopimaric Acid	0.005				mg/L
26	Neoabietic Acid	0.005				mg/L
26	Oleic Acid	0.005			•	mg/L
26	Pimaric Acid	0.005				mg/L
27	PCBT	0.100	0.0010	0		ug/L
MC1	Iron	0.020	0.3000	0		mg/L
MC1	Magnesium	0.020			1	mg/L
MC2	Fluoride	0.100			1	mg/L

ATG = Analytical Test Group

RMDL = Regulation Method Detection Limit

PWQO/G = Provincial Water Quality Objective/Guideline

IDL = Industrial Discharge Limit

R = REMARK: O – Objective, G – Guideline, P – Proposed

APPENDIX 1

TABLE 2 MISA METAL CASTING SECTOR LIST OF PLANTS AND EFFLUENT STREAMS

L

COMPANY NAME AND LOCATION	POINT	STREAM CLASSIFICATION	STREAM NAME
CANADA ALLOY CASTING LTD., KITCHENER	0100	COOLING WATER	COOLING WATER STORM SEWER
CANADA PIPE COMPANY LTD., HAMILTON	0100	COMBINED EFFLUENT (FINAL)	CUPOLA SCRUBBER
CHRYSLER CANADA LTD., ETOBICOKE	0100	COOLING WATER	STORM SEWER
FORD MOTOR COMPANY OF CANADA, WINDSOR	0100	COMBINED EFFLUENT (FINAL)	LAGOON EFFLUENT
	0200	INTAKE WATER	DETROIT RIVER WATER
	0300	PROCESS EFFLUENT	PROCESS
	0500	EMERGENCY OVERFLOW	COMBINED EMERGENCY OVERFLOW
FRANKLIN ELECTRIC OF CANADA, STRATHROY	0100	COOLING WATER	COOLING POND EFFLUENT
	0200	INTAKE WATER	INTAKE WATER
GENERAL MOTORS OF CANADA, ST.CATHARINES	0200	INTAKE WATER	WELLAND CANAL
	0060	PROCESS EFFLUENT	FOUNDARY PROCESS
	1000	1000 COMBINED EFFLUENT (FINAL)	FOUNDARY COMBINED
HALEY INDUSTRIES LTD., HALEY	0100	0100 COMBINED EFFLUENT	SEWAGE TREATMENT PLANT
	0200	PROCESS EFFLUENT (FINAL)	EAST PROCESS SEWER
	0300	STORM WATER EFFLUENT	WEST STORM SEWER
	0400	INTAKE WATER	PUMPHOUSE LAKE
	0090	WASTE WATER EFFLUENT (FLOW)	WASTE WATER TREATMENT PLANT FLOW
KUBOTA METAL, FAHRAMET DIV., ORILLIA	0100	0100 COOLING WATER	COOLING
RICHMOND DIE CASTING LTD., CORNWALL	0100	COOLING WATER	COOLING
	0200	INTAKE WATER	ST. LAWRENCE RIVER
WESTERN FOUNDRY CO. LTD., WINGHAM	0100	COOLING WATER	ARTHUR STREET
	0200	COOLING WATER	CNR BRIDGE
	0300	INTAKE WATER	TOWN SUPPLY

APPENDIX II

POTENTIAL CANDIDATE PARAMETERS

APPENDIX II TABLE 1

POTENTIAL CANDIDATE PARAMETERS

FINAL DISCHARGE POINT OF EACH PLANT

ATG	PARAMETER	CANADA PIPE	FORD MOTOR # 0100	GENERAL MOTORS # 1000	HALEY IND. # 0200
<u> </u>	Otania I O and Damad	#_0100	and the second se		
1	Chemical Oxygen Demand	X	<u> </u>	X	X
2	Cyanide Total	X	<u>x</u>	<u> </u>	X
4a	Ammonia plus Ammonium	X	X	X	X
<u>4a</u>	Total Kjeldahl Nitrogen	X	X	X	X
4b	Nitrate+Nitrite	X	X	. X	X
<u>5a</u>	DOC	X	X	X	X
5b	тос	X	X		X
6	Total Phosphorus	X		X	X
7	Specific Conductance	X	X	Χ.	X
8	Total Suspended Solids	X	X	_X	X
8	Volatile Suspended Solids		Х		
9	Aluminum	X	X	X	X
9	Beryllium				X
9	Cadmium	X	X	Χ	X
9	Chromium	X		X	X
9	Cobalt				X
9	Copper	Х	Х		X
9	Lead	X	X	X	X
9	Molybdenum	X	X		X
9	Nickel	X			X
9	Silver				X
9	Vanadium				X
9	Zinc	Х	X	X	X
10	Antimony	X			X
10	Arsenic	X			X
10	Selenium	X			Х
12	Mercury	X	X		X
13	Tetra-alkyl lead (Total)	X			
13	Tri-alkyl lead (Total)	X			
14	Phenolics (4AAP)	X	X	X	X
15	Sulphide	X			
16	1,1-Dichloroethane	,			Х
16	Chloroform			X	
16	Methylene Chloride				X
17	Benzene		X		•
17	Toluene		X		· · · · · · · · · · · · · · · · · · ·
17	o-Xylene				X
19	Benzobutylphthalate		X		

X = INDICATES THAT A PARAMETER IS A POTENTIAL CANDIDATE AT THE GIVEN STREAM.

APPENDIX II TABLE 1

POTENTIAL CANDIDATE PARAMETERS

FINAL DISCHARGE POINT OF EACH PLANT

ATG	PARAMETER	CANADA	FORD	GENERAL	HALEY
		PIPE	MOTOR	MOTORS	IND.
i		# 0100	# 0100	# 1000	# 0200
19	Bis(2-ethylhexyl)phthalate	X	X		X
20	2,4-Dimethylphenol		X		
20	4-Nitrophenol				X
20	Pentachlorophenol				X
23	1,2,3-Trichlorobenzene				X
24	Octachlorodibenzo-p-dioxin		X		X
24	Octachlorodibenzofuran		X		
24	Total H6CDD				X
24	Total H6CDF				X
24	Total H7CDD				Х
24	Total H7CDF				X
24	Total PCDF		X		X
24	Total TCDF		X		Х
25	Oil and Grease	X	X	X	X
26	Abietic Acid			X	X
26	Chlorodehydroabietic Acid				X
26	Dehydroabietic Acid				X
26	Isopimaric Acid				Х
26	Levopimaric Acid			X	Х
26	Neoabietic Acid			X	Х
26	Oleic Acid				X
26	Pimaric Acid				X
27	PCBT		X		
MC1	Iron	X	Х	X	X
MC1	Magnesium	X	Х	X	X
MC2	Fluoride	X	X	Х	X

X = INDICATES THAT A PARAMETER IS A POTENTIAL CANDIDATE AT THE GIVEN STREAM.

APPENDIX II TABLE 2

POTENTIAL CANDIDATE PARAMETERS

FOUND AT EACH EFFLUENT STREAM OF THE PLANT

		CANADA		FORD		GEN	ERAL		HALEY	
ATG	PARAMETER	PIPE		MOTOR		мот	ORS		INDUSTR	IES
		# 0100	# 0100	# 0300	# 0500	# 0900	# 1000	# 0100	# 0200	# 0300
1	Chemical Oxygen Demand	X	X	X	X	X	X	Х	X	X
2	Cyanide Total	X	X	X		X	X		X	X
4a	Ammonia plus Ammonium	X	X	X		X	X	х	x	X
4a	Total Kjeldahl Nitrogen	X	X	X		X	X		x	
4b	Nitrate+Nitrite	X	X	X		X	X		x	X
5a	DOC	X	X	X		Х	X	Х	X	X
5b	тос	X	х	X					X	
6	Total Phosphorus	X					х	Х	Х	Х
7	Specific Conductance	X	Х	X		X	X		X	
8	Total Suspended Solids	Х	Х	X	X	X	X	X	X	X
8	Volatile Suspended Solids		Х	X						
9	Aluminum	X	X	X		Х	X		х	X
9	Beryllium								Х	X
9	Cadmium	X	X	X		X	X		Х	
9	Chromium	X				X	Х		Х	X
9	Cobalt								X	X
9	Copper	X	х	X					X	X
9	Lead	X	х	X		Х	х		х	X
9	Molybdenum	X	х						Х	
9	Nickel	х							Х	
9	Silver								Х	
9	Vanadium								Х	X
9	Zinc	X	X	X		Х	X		Х	X
10	Antimony	X							X	
10	Arsenic	X						•	Х	
10	Selenium	X							х	
12	Mercury	X	х	X					Х	
13	Tetra-alkyl lead (Total)	X								
13	Tri-alkyl lead (Total)	X								
14	Phenolics (4AAP)	X	X	X	X	X	х		Х	X
15	Sulphide	X								
16	1,1-Dichloroethane							Χ.	х	
16	Chloroform					х	X			
16	Methylene Chloride	· .						X	X	
17	Benzene		x	X		х				
17	Styrene			X						
17	Toluene		х	X		X				
17	m-Xylene and p-Xylene					x				
17	o-Xylene								х	•

X = INDICATES THAT A PARAMETER IS POTENTIAL CANDIDATE AT THE GIVEN CONTROL POINT

APPENDIX II TABLE 2

POTENTIAL CANDIDATE PARAMETERS

FOUND AT EACH EFFLUENT STREAM OF THE PLANT

		CANADA	-	FORD		GEN	ERAL		HALEY	
ATG	PARAMETER	PIPE		MOTOR		мот	ORS		INDUSTR	IES
		# 0100	# 0100	# 0300	# 0500	# 0900	# 1000	# 0100	# 0200	# 0300
	1-Methylnaphthalene			X						
19	2-Methylnaphthalena			X						
19 19	Benzobutylphthalate Biphenyl		X	X			-			
19	Bis(2-ethylhexyl)phthalate	x	x	x		x		x	x	
19	Di-n-butyl Phthalate		<u>^</u>	x		~		~		
19	Fluoranthene			X						
19	Naphthalene			x						
19	Phenanthrene			x	x					
20	2,4-Dimethylphenol		x	x	<u> </u>	х				
20	4-Nitrophenol		<u> </u>	^		^		x	x	
								x	x	
20	Pentachlorophenol			~		~		x	^	
20	Phenol			X X		X		×		
20	m-Cresol					X				
20	o-Cresol			X		<u>x</u>				
20	p-Cresol			X		X				
23	1,2,3-Trichlorobenzene								X	
24	Octachlorodibenzo-p-dioxir		X	X		X			X	
24	Octachlorodibenzofuran		X	X						
24	Total H6CDD								X	
24	Total H6CDF			x					X	
24	Total H7CDD								X	L
24	Total H7CDF								X	
24	Total PCDF		Х						X	
24	Total TCDF		Х	х					х	
25	Oil and Grease	х	х	X	X	X	X	X	X	
26	Abietic Acid					x	x		х	
26	Chlorodehydroabietic Acid								х	
26	Dehydroabietic Acid								X	
26	Isopimaric Acid								х	
26	Levopimaric Acid					X	х		· X	
26	Necabietic Acid					Х	X		x	
26	Oleic Acid								x	
26	Pimaric Acid								X	
27	PCBT		x	x	x					
MC1	Iron	X	X	x	X	x	x		X	x
	Magnesium	x	x	x	x	x	x		x	x
	Fluoride	x	x	X	x	x	x		X	x

X = INDICATES THAT A PARAMETER IS POTENTIAL CANDIDATE AT THE GIVEN CONTROL POINT

APPENDIX III

RESULTS OF THE QA/QC ASSESSMENT

APPENDIX III

RESULTS OF THE QA/QC ASSESSMENT

MISA METAL CASTING SECTOR

This section presents the QA/QC assessment result for each parameter selected as a potential candidate parameter for limits in the Metal Casting Sector. These assessment results are based on Table 1 in Appendix IV.

Results of the QA/QC assessment for each potential candidate parameter at each effluent stream are shown in the last column of Table 1 in Appendix IV designated as 'status'. For the purpose of making a conclusion regarding the reliability of data for a given parameter at the given plant, the assessment is based on the reliability of data from the final effluent stream of each plant. Results of the conclusions reached for a given candidate parameter at each plant are shown in Table 1.

<u>ATG 1</u>

Chemical Oxygen Demand:

RMDL = 10.000 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 1.8 to 40.4. At Canada Pipe, no QA/QC data available but the high average effluent concentration ratio ascertains the presence of the parameter. At Ford Motor, the positive travelling blank poses a field contamination concern and indicates the questionable presence of the parameter. At Haley and General Motors, no QA/QCconcerns are identified with the data.

Conclusion: Data from Canada Pipe, General Motors and Haley are of reliable quality. Data from Ford Motor are of unreliable quality.

RMDL = 0.005 mg/L

Cyanide Total:

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 1.0 to 202.2. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter. No QA/QC concerns are identified with the data at the other three plants. At Haley, the high field duplicate average difference ratio does not pose duplicate precision concern since the average effluent concentration ratio is also very high. At General Motors, the average effluent concentration ratio which is lower than 2.0 indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe, Ford Motor and Haley are of reliable quality. Data from General Motors are of equivocal quality.

ATG 4A

Ammonia plus Ammonium:

RMDL = 0.250 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 1.0 to 128.7. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter. At Ford Motor, General Motors and Haley, no QA/QC concerns are identified with the data. At Haley, the high average travelling blank concentration ratio does not pose field contamination concern since the average effluent concentration ratio is also very high. At Haley, the high field duplicate average difference ratio does not pose duplication concern since the average effluent ratio is also high. At Ford Motor, the average effluent concentration ratio is lower than 2.0 and indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe, General Motors and Haley are of reliable quality. Data from Ford Motor are of equivocal quality.

Total Kjeldahl Nitrogen (TKN):

RMDL = 0.500 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 2.3 to 58.0. At Haley, no QA/QC concerns are identified with the data. At Haley, the field duplicate average difference ratio of 2.7 does not pose duplication concern since the average effluent concentration ratio is high. At Canada Pipe, General Motors and Ford Motor, no QA/QC data are available to ascertain the reliability of the data. At Canada Pipe, however, the high average effluent concentration ratio ascertains the presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from General Motors and Ford Motor are of equivocal quality.

ATG 4B

Nitrate+Nitrite:

RMDL = 0.250 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to frequent medium level. Its average effluent concentration ratio ranges from 1.6 to 114.3. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter. At Haley, General Motors and Ford Motor, no QA/QC concerns are identified with the data. At General Motors, the average effluent concentration ratio is lower than 2.0 and indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe, and Haley are of reliable quality. Data from General Motors are of equivocal quality.

30

ATG 5A

Dissolved Organic Carbon (DOC):

RMDL = 0.500 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification is consistently frequent high level at all the plants. Its average effluent concentration ratio ranges from 6.1 to 140.2. No QA/QC concerns are identified with the data at all four plants. At Canada Pipe, the field duplicate average difference ratio of 6.4 does not pose duplicate precision concern since the average effluent concentration ratio is also high. No QA/QC concerns are identified with the data at all four plants.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

Total Organic Carbon (TOC):

RMDL = 5.000 mg/L

Candidate parameter at Canada Pipe, Ford Motor, and Haley. Its occurrence classification ranges from frequent high level frequent medium level. Its average effluent concentration ratio ranges from 1.2 to 18.9. No QA/QC concerns are identified with the data at Haley. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter. At Ford Motor, no QA/QC data are available and the average effluent concentration ratio which is lower than 2.0 indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from Ford Motor are of equivocal quality.

ATG 6

Total Phosphorus:

RMDL = 0.100 mg/L

Candidate parameter at Canada Pipe, General Motors and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 0.8 to 19.9. At Haley, no QA/QC concerns are identified with the data. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter. At General Motors, no QA/QC data are available and the average effluent concentration ratio concentration ratio which is lower than 2.0 indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from General Motors are of equivocal quality.

<u>ATG 8</u>

Total Suspended Solids (TSS):

RMDL = 5.000 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 2.7 to 295.8. No QA/QC concerns are identified with the data at all four plants. At Canada Pipe, Ford Motor and Haley, the high field duplicate average difference ratios do not pose a duplicate precision concern since the corresponding average effluent concentration ratios are also very high.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

Volatile Suspended Solids (VSS):

RMDL = 10.000 mg/L

Candidate parameter at Ford Motor only. It was monitored on a quarterly frequency. Its occurrence classification is frequent low level with average effluent concentration ratio 1.6. No QA/QC data are available to evaluate the reliability of the data. The average effluent concentration ratio is lower than 2.0 and indicates the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of equivocal quality.

<u>ATG 9</u>

Aluminum:

RMDL = 30.000 $\mu g/L$

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification is consistently frequent high level at all four plants. Its average effluent concentration ratio ranges from 17.9 to 185.0. No QA/QC concerns are identified with the data at all four plants. The high field duplicate average difference ratios observed at all four plants do not pose duplicate precision concern since all the corresponding average effluent concentration ratios are also high.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

Beryllium:

Candidate parameter at Haley only. Its occurrence classification is infrequent low level with average effluent concentration ratio of 0.9. The average travelling blank concentration ratio of 1.2 which is higher than the observed average effluent concentration ratio poses a field contamination concern and indicates the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Cadmium:

RMDL = 2.000 μ g/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to infrequent low level. Its average effluent concentration ratio ranges from 0.9 to 1137.2. At Canada Pipe, no QA/QC concerns are identified with the data. At Canada Pipe, the high field duplicate average difference ratio does not pose duplicate precision concern since the average effluent concentration ratio is also very high. At Haley, the positive travelling blank pose field contamination concern. At Ford Motor, no QA/QC concerns are identified with the data but the average effluent concentration ratio which is lower than 2.0 indicates the questionable presence of the parameter. At General Motors, the average travelling blank concentration ratio which is higher than the average effluent concentration ratio poses contamination concern and indicates the questionable presence of the parameter.

Conclusion:

Data from Canada Pipe are of reliable quality. Data from Ford Motor are of equivocal quality. Data from General Motors and Haley are of unreliable quality.

Chromium:

RMDL = 20.000 $\mu g/L$

Candidate parameter at Canada Pipe, General Motors, and Haley. Its occurrence classification varies from frequent high level to infrequent medium level. Its average effluent concentration ratio ranges from 0.8 to 42.5. At Canada Pipe and Haley, no QA/QC concerns are identified with the data. At General Motors, the average travelling blank concentration ratio which is equal to the average effluent concentration ratio poses a contamination concern and indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from General Motors are of unreliable quality. Cobalt:

 $RMDL = 20.000 \ \mu g/L$

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with an average effluent concentration ratio of 2.2. The positive travelling blank poses a field contamination concern.

Conclusion: Data from Haley are of unreliable quality.

Copper:

RMDL = 10.000 $\mu g/L$

Candidate parameter at Canada Pipe, Ford Motor, and Haley. Its occurrence classification varies from frequent high level to infrequent medium level. Its average effluent concentration ratio ranges from 1.3 to 197.4. No QA/QC concerns identified with the data at Canada Pipe and Haley. The high field duplicate average difference ratio at Canada Pipe and Haley does not pose a duplicate precision concern since the corresponding average effluent concentration ratios are also high. At Ford Motor, the average effluent concentration ratio is lower than two and indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from Ford Motor are of equivocal quality.

Lead:

RMDL = 30.000 μ g/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to infrequent high level. Its average effluent concentration ratio ranges from 1.0 to 1014.1. No QA/QC concerns are identified with the data at all four plants. The high field duplicate average difference ratio at Canada Pipe does not pose duplicate precision concern since the corresponding average effluent concentration ratio is also high. At General Motors and Ford Motor, the average effluent concentration ratio is lower than 2.0 and indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from General Motors and Ford Motor are of equivocal quality.

Molvbdenum:

Candidate parameter at Canada Pipe, Ford Motor, and Haley. Its occurrence classification varies from frequent medium level to infrequent medium level. Its average effluent concentration ratio ranges from 1.2 to 9.3. At Canada Pipe, no QA/QC concerns are identified with the data. At Ford Motor, no QA/QC data are available and the average effluent concentration ratio which is lower than 2.0 indicates the questionable presence of the parameter. At Haley, the positive travelling blank poses field contamination concern and indicates the questionable presence of the parameter.

Data from Canada Pipe are of reliable quality. Conclusion: Data from Ford Motor are of equivocal quality. Data from Haley are of unreliable quality.

Nickel:

$RMDL = 20.000 \ \mu q/L$

Candidate parameter at Canada Pipe and Haley. Its occurrence classification is frequent low level in both plants. Its average effluent concentration ratio ranges from 2.5 to 9.4. At Canada Pipe, no QA/QC concerns are identified with the data. At Haley, the positive travelling blank poses a field contamination concern.

Data from Canada Pipe are of reliable quality. Conclusion: Data from Haley are of equivocal quality.

Silver:

Candidate parameter at Haley only. Its occurrence classification is frequent high level with average effluent concentration ratio of 13.2. No QA/QC concerns are identified with the data. The high field duplicate average difference concentration ratio does not pose duplicate precision concern since the average effluent concentration ratio is also high.

Conclusion: Data from Haley are of reliable quality.

Vanadium:

Candidate parameter at Haley only. Its occurrence classification is frequent low level with average effluent concentration ratio of 2.1. A positive travelling blank poses a field contamination concern.

Data from Haley are of equivocal quality. Conclusion:

$RMDL = 20.000 \ \mu g/L$

RMDL = 30.000 $\mu q/L$

 $RMDL = 30.000 \ \mu g/L$

RMDL = 10.000 $\mu g/L$

Candidate parameter at Canada Pipe, Ford Motor, General Motors. and Halev. Its occurrence classification is consistently frequent high level at all three plants. Its average effluent concentration ratio ranges from 38.7 to 31313.3. No OA/OC concerns are identified with the data at all four plants. At Canada Pipe, the very high average effluent concentration ratio is due to one outlier value. The high field duplicate average difference ratios observed at all four plants do no pose any duplicate precision concern since the corresponding average effluent concentration ratios are also high.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

ATG 10

Antimony:

RMDL = 5.000 μ g/L

Candidate parameter at Canada Pipe and Haley. Its occurrence classification varies from frequent high level to frequent medium level. Its average effluent concentration ratio ranges from 10.2 to 32.8. At Haley, no QA/QC concerns are identified with the data. At Haley, the high field duplicate average difference ratio does not pose duplication concern since the average effluent concentration is also high. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality.

Arsenic:

RMDL = 5.000 $\mu g/L$

Candidate parameter at Canada Pipe and Haley. Its occurrence classification varies from frequent high level to frequent medium level. Its average effluent concentration ratio ranges from 2.7 to 52.7. At Haley, no QA/QC concerns are identified with the data. At Haley, the high field duplicate average difference ratio does not pose duplication concern since the average effluent concentration is also high. At Canada Pipe, it was monitored on quarterly frequency and no QA/QC data are available to evaluate the reliability of the data.

Conclusion: Data from Haley are of reliable quality. Data from Canada Pipe are of equivocal quality.

Zinc:

Selenium:

Candidate parameter at Canada Pipe and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 10.2 to 20.1. At Haley, no QA/QC concerns are identified with the data. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality.

ATG 12

Mercury:

RMDL = 0.100 μ g/L

Candidate parameter at Canada Pipe, Ford Motor and Haley. Its occurrence classification varies from frequent high level to infrequent low level. Its average effluent concentration ratio ranges from 1.1 to 47.9. At Canada Pipe, no QA/QC data are available but the high average effluent concentration ratio ascertains the presence of the parameter. At Haley, no QA/QC concerns are identified with the data. At Haley, the high field duplicate average difference ratio does not pose any duplicate precision concern since the corresponding average effluent concentration ratio is also high. At Ford Motor, the positive travelling blank and low average effluent concentration ratio indicate the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Haley are of reliable quality. Data from Ford Motor are of unreliable quality.

ATG 13

Tetra-alkyl lead (Total):

RMDL = 2.000 μ g/L

Candidate parameter at Canada Pipe only. Its occurrence classification is infrequent low level with average effluent concentration ratio of 0.7. The average travelling blank concentration ratio of 0.7 is equal to the average effluent concentration ratio. It should be noted that all the data for the effluent monitoring and the travelling blank were reported as less than the detection limit i.e. with remark codes "<DL" and "<". This indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe are of unreliable quality.

Tri-alkyl lead (Total):

RMDL = 2.000 $\mu q/L$

Candidate parameter at Canada Pipe only. Its occurrence classification is infrequent low level with average effluent concentration ratio of 0.7. The average travelling blank concentration ratio of 0.7 is equal to the average effluent concentration ratio. It should be noted that all the data for the effluent monitoring and the travelling blank were reported as less than the detection limit i.e. with remark codes "<DL" and "<". This indicates the questionable presence of the parameter.

Conclusion: Data from Canada Pipe are of unreliable quality.

ATG 14

Phenolics (4AAP):

RMDL = 2.000 μ g/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 22.2 to 119.9. No QA/QC concerns are identified with the data at all four plants. At all four plants, the positive travelling blanks and the high field duplicate average difference ratios do not pose any concerns since the corresponding effluent concentration ratios are also high.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

ATG 15

Sulphide:

RMDL = 0.020 mg/L

Candidate parameter at Canada Pipe only. Its occurrence classification is frequent medium level with an average effluent concentration ratio of 4.8. No QA/QC data are available to evaluate the reliability of the data. It was monitored on a quarterly frequency.

Conclusion: Data from Canada Pipe are of equivocal quality.

1,1-Dichloroethane:

RMDL = 0.800 $\mu g/L$

Candidate parameter at Haley only. Its occurrence classification is frequent low level with an average effluent concentration ratio of 1.1 . No QA/QC concerns are identified with the data. The average effluent concentration ratio is lower than 2.0 and indicates the questionable presence of the parameter.

Conclusion: Data from Haley are of equivocal quality.

Chloroform:

RMDL = 0.700 μ g/L

Candidate parameter at General Motors only. Its occurrence classification is frequent low level with average effluent concentration ratio of 1.1. The average travelling blank concentration ratio of 3.5 which is higher than the average effluent concentration ratio poses a field contamination concern. The average spiked travelling blank recovery of 143 percent poses over-estimation concern. These two concerns indicate the questionable presence of the parameter.

Conclusion: Data from General Motors are of unreliable quality.

Methylene Chloride:

RMDL = 1.300 μ g/L

Candidate parameter at Haley only. Its occurrence classification is frequent low level average effluent concentration ratio of 3.7. The average travelling blank concentration ratio of 4.9 which is higher than the average effluent concentration ratio poses a field contamination concern. The field duplicate average difference concentration ratio of 5.0 which is higher than the average effluent concentration ratio poses a duplicate precision concern. These two concerns indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Benzene:

RMDL = 0.500 $\mu g/L$

Candidate parameter at Ford Motor only. Its occurrence classification is infrequent low level with average effluent concentration ratio 0.9. The average travelling blank concentration ratio which is equal to the average effluent concentration ratio indicate the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of unreliable quality.

Toluene:

RMDL = 0.500 $\mu g/L$

Candidate parameter at Ford Motor only. Its occurrence classification is frequent low level with average effluent concentration ratio of 0.8. The average spiked travelling blank recovery of 420 percent poses an over-estimation concern. The average effluent concentration ratio which is lower than 1.0 and the over-estimation concern indicate the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of unreliable quality.

o-Xylene:

RMDL = 0.500 μ g/L

Candidate parameter at Haley only. Its occurrence classification is infrequent low level with average effluent concentration ratio of 0.8. The positive travelling blank and average effluent concentration ratio which is lower than 1.0 indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Benzobutylphthalate:

$RMDL = 0.600 \ \mu g/L$

Candidate parameter Ford Motor only. Its occurrence classification is frequent low level with average effluent concentration ratio of 2.8. The average spiked travelling blank recovery of 164 percent poses an over-estimation concern. The positive travelling blank and the over-estimation concerns indicate the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of unreliable quality.

Bis(2-ethylhexyl)phthalate:

RMDL = 2.200 μ g/L

Candidate parameter at Canada Pipe, Ford Motor, and Haley. Its occurrence classification varies from frequent low level to infrequent low level. Its average effluent concentration ratio ranges from 1.0 to 3.4. At Canada Pipe, no QA/QC data are available to ascertain the reliability of the data. At Ford Motor, no QA/QC concerns are identified with the data but the average effluent concentration ratio which is lower than two indicates the questionable presence of the parameter. At Haley, field contamination, spiked blank recovery, and duplicate precision concerns are observed. These concerns indicate the questionable presence of the parameter.

Conclusion: Data from Canada Pipe and Ford Motor are of equivocal quality. Data from Haley are of unreliable quality.

ATG 20

2,4-Dimethylphenol:

RMDL = 7.300 μ g/L

Candidate parameter at Ford Motor only. Its occurrence classification is infrequent low level with average effluent concentration ratio ranges of 0.9. No QA/QC concerns are identified with the data. The average effluent concentration ratio is lower than 2.0 and indicates the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of equivocal quality.

4-Nitrophenol:

RMDL = 1.400 μ g/L

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with average effluent concentration ratio of 3.4. The average travelling blank concentration ratio of 3.6 which is higher than the average effluent concentration ratio poses a field contamination concern and indicates questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Pentachlorophenol:

RMDL = 1.3000 μ g/L

Candidate parameter at Haley only. Its occurrence classification is frequent low level with average effluent concentration ratio of 1.8. The average travelling blank concentration ratio of 1.5, which poses a field contamination concern. This concern coupled with the low average effluent concentration ratio indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

<u>ATG 23</u>

1,2,3-Trichlorobenzene:

$\hat{R}MDL = 0.010 \ \mu g/L$

Candidate parameter at Haley only. Its occurrence classification is frequent low level with average effluent concentration ratio of 1.7. No travelling blank and spiked travelling blank data are available to assess the reliability of the data. The low average effluent concentration ratio which is lower than two indicates the questionable presence of the parameter.

Conclusion: Data from Haley are of equivocal quality.

Octachlorodibenzo-p-dioxin:

RMDL = 0.030 ng/L

Candidate parameter at Ford Motor and Haley. It is monitored at a semi-annual frequency. Its occurrence classification varies from frequent high level to frequent low level. Its average effluent concentration ratio ranges from 20.3 to 1.3. At both of the plants, no QA/QC data are available to assess the reliability of the data. At Haley, the average effluent concentration ratio of 20.3 ascertains the presence of the parameter. At Ford Motor, the average effluent concentration ratio which is lower than 2.0 indicates the questionable presence of the parameter.

Conclusion: Data from Haley are of reliable quality. Data from Ford Motor are of equivocal quality.

Octachlorodibenzofuran:

RMDL = 0.030 ng/L

Candidate parameter at Ford Motor only. It is monitored at a semi-annual frequency. Its occurrence classification is frequent low level with average effluent concentration ratio of 1.2. No QA/QC data are available to assess the reliability of the data. The average effluent concentration ratio of 1.2 indicates the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of equivocal quality.

Total H6CDD:

RMDL = 0.030 ng/L

Candidate parameter at Haley only. It is monitored at a semiannual frequency. Its occurrence classification is frequent low level with average effluent concentration ratio of 1.0. No QA/QC data are available to assess the reliability of the data. The average effluent concentration ratio of 1.0 indicates the questionable presence of the parameter.

Conclusion: Data from Haley are of equivocal quality.

Total H6CDF:

RMDL = 0.020 ng/L

Candidate parameter at Haley only. It is monitored at a semiannual frequency. Its occurrence classification is frequent low level with average effluent concentration ratio of 2.3. No QA/QC data are available to assess the reliability of the data.

Conclusion: Data from Haley are of equivocal quality.

Total H7CDD:

RMDL = 0.030 ng/L

Candidate parameter at Haley only. It is monitored at a semiannual frequency. Its occurrence classification is frequent low level with average effluent concentration ratio of 2.7. No QA/QC data are available to assess the reliability of the data.

Conclusion: Data from Haley are of equivocal quality.

Total H7CDF:

RMDL = 0.030 ng/L

Candidate parameter at Haley only. It is monitored at a semiannual frequency. Its occurrence classification is frequent low level with average effluent concentration ratio of 1.1. No QA/QC data are available to assess the reliability of the data.

Conclusion: Data from Haley are of equivocal quality.

Total PCDF:

RMDL = 0.015 ng/L

Candidate parameter at Ford Motor and Haley. It is monitored at a semi-annual frequency. Its occurrence classification is frequent low level with average effluent concentration ratio ranging from 1.1 to 3.4. At both of the plants, no QA/QC data are available to assess the reliability of the data.

Conclusion: Data from Ford Motor and Haley are of equivocal quality.

Total TCDF:

Candidate parameter at Ford Motor and Haley. It is monitored at a semi-annual frequency. Its occurrence classification varies from frequent medium level to frequent low level. Its average effluent concentration ratio ranges from 0.9 to 8.5. At both of the plants, no QA/QC data are available to assess the reliability of the data. At Ford Motor, the average effluent concentration ratio of 8.5 indicate the possible presence of the parameter.

Conclusion: Data from Ford Motor and Haley are of equivocal quality.

ATG 25

Oil and Grease:

RMDL = 1.000 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification varies from frequent medium level to infrequent low level. Its average effluent concentration ratio ranges from 1.6 to 7.2. At Canada Pipe, Ford Motor, and Haley, no QA/QC concerns are identified with the data. At Haley, the average effluent concentration ratio is lower than 2.0 and indicate the questionable presence of the parameter. At General Motors, the average travelling blank concentration ratio of 1.4 poses a field contamination concern.

Conclusion: Data from Canada Pipe and Ford Motor are of reliable quality. Data from Haley are of equivocal quality. Data from General Motors are of unreliable quality.

ATG 26

Abietic Acid:

RMDL = 0.005 mg/L

Candidate parameter at General Motors and Haley. Its occurrence classification varies from frequent medium level to frequent low level. Its average effluent concentration ratio ranges from 1.4 to 3.2. At General Motors, the average travelling blank concentration ratio which is equal to the average effluent concentration ratio poses a field contamination concern. At Haley, the average travelling blank concentration ratio of 3.0 poses field contamination concern. At Haley, the average spiked travelling blank recovery of 407 percent poses an over-estimation concern. At both plants, the identified concerns indicate the questionable presence of the parameter.

Conclusion: Data from General Motors and Haley are of unreliable quality.

Chlorodehydroabietic Acid:

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with average effluent concentration ratio 3.4. The average travelling blank concentration ratio of 3.0 poses a field contamination concern. The average spiked travelling blank recovery of 553 percent poses an over-estimation concern. These concerns indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Dehydroabietic Acid:

RMDL = 0.005 mg/L

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with average effluent concentration ratio 4.4. The average travelling blank concentration ratio of 3.0 poses a field contamination concern. The average spiked travelling blank recovery of 1414 percent poses an over-estimation concern. These concerns indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Isopimaric Acid:

RMDL = 0.005 mg/L

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with average effluent concentration ratio 3.4. The average travelling blank concentration ratio of 3.0 poses a field contamination concern. The average spiked travelling blank recovery of 1506 percent poses an over-estimation concern. These concerns indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Levopimaric Acid:

RMDL = 0.005 mg/L

Candidate parameter at General Motors and Haley. Its occurrence classification varies from frequent medium level to frequent low level. Its average effluent concentration ratio ranges from 1.8 to 3.4. At General Motors, the average travelling blank concentration ratio which is higher than the average effluent concentration ratio poses a field contamination concern. At Haley, the average travelling blank concentration ratio of 3.0 poses a field contamination concern. At Haley, the average spiked travelling blank recovery of 1682 percent poses an over-estimation concerns. At both plants, the identified concerns indicate the questionable presence of the parameter.

Conclusion: Data from General Motors and Haley are of unreliable quality.

Neoabietic Acid:

RMDL = 0.005 mg/L

Candidate parameter at General Motors and Haley. Its occurrence classification varies from frequent medium level to frequent low level. Its average effluent concentration ratio ranges from 1.8 to 4.0. At General Motors, the average travelling blank concentration ratio which is equal to the average effluent concentration ratio poses a field contamination concern. At Haley, the average travelling blank concentration ratio of 3.0 poses a field contamination concern. At Haley, the average spiked travelling blank recovery of 756 percent poses an over-estimation concern. At both plants, the identified concerns indicate the questionable presence of the parameter.

Conclusion: Data from General Motors and Haley are of unreliable quality.

Oleic Acid:

RMDL = 0.005 mg/L

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with average effluent concentration ratio 6.4. The average travelling blank concentration ratio of 3.6 poses a field contamination concern. The average spiked travelling blank recovery of 1452 percent poses an over-estimation concern. These concerns indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

Pimaric Acid:

Candidate parameter at Haley only. Its occurrence classification is frequent medium level with average effluent concentration ratio 3.2. The average travelling blank concentration ratio of 3.0 poses a field contamination concern. The average spiked travelling blank recovery of 1205 percent poses an over-estimation concern. These concerns indicate the questionable presence of the parameter.

Conclusion: Data from Haley are of unreliable quality.

ATG 27

PCBT

RMDL = 0.100 μ g/L

Candidate parameter at Ford Motor only. Its occurrence classification is infrequent low level with average effluent concentration ratio of 0.7. No QA/QC concerns are identified with the data. The average effluent concentration ratio which is lower than 1.0 indicates the questionable presence of the parameter.

Conclusion: Data from Ford Motor are of equivocal quality.

ATG MC1

Iron:

RMDL = 0.020 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification is consistently frequent high level at all the plants. Its average effluent concentration ratio varies from 20422.8 to 30.0. No QA/QC concerns are identified with the data from all four plants. The high field duplicate average difference ratios do not pose any duplicate precision concern since the corresponding average effluent concentration ratios are also very high. The high average effluent concentration ratios ascertain the presence of the parameter.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

Magnesium:

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification is consistently frequent high level at all the plants. Its average effluent concentration ratio varies from 162954.9 to 458.1. No QA/QC concerns are identified with the data from all four plants. The high field duplicate average difference ratios do not pose any duplicate precision concern since the corresponding average effluent concentration ratios are also very high. The high average effluent concentration ratios ascertain the presence of the parameter.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

<u>MC2</u>

Fluoride:

RMDL = 0.100 mg/L

Candidate parameter at Canada Pipe, Ford Motor, General Motors, and Haley. Its occurrence classification ranges from frequent high level to frequent medium level. Its average effluent concentration ratio varies from 2.2 to 302.3. No QA/QC concerns are identified with the data from all four plants. The high field duplicate average difference ratios do not pose any duplicate precision concern since the corresponding average effluent concentration ratios are also very high. The high average effluent concentration ratios ascertain the presence of the parameter.

Conclusion: Data from Canada Pipe, Ford Motor, General Motors, and Haley are of reliable quality.

RESULTS OF QA/QC ASSESSMENT FOR NON-CANDIDATE PARAMETERS

The QA/QC assessment for the non-candidate parameters is based on the summary tables given in Table 2 in Appendix IV. The assessment focused on identifying parameters with possible false negative concerns. The parameters with possible false negative concerns are those with an average spiked travelling blank percent recovery lower than 20. These parameters will require further investigation to evaluate the possible causes of the low spiked blank recoveries reported by the laboratories which performed the analysis. Additional effluent monitoring will be required to confirm the presence of these parameters.

The non-candidate parameters with possible false negative concerns are presented in the table below.

ATG	PARAMETER	PLANT	CONTROL POINT
16	1,1,2,2-Tetrachloroethane	Haley Ind.	#0200
18	Acrolein	Ford Motor	#0300
19	Benzobutylphthalate	Haley Ind.	#0200
19	Camphene	Haley Ind.	#0200
19	Di-n-butyl Phthalate	Haley Ind.	#0200
23	Hexachloroethane	General Motors	#0900
26	Abietic Acid	Ford Motor	#0300
26	Levopimaric Acid	Ford Motor	#0300
26	Neoabietic Acid	Ford Motor	#0300

.

APPENDIX IV

QA/QC ASSESSMENT SUMMARY TABLES

APPENDIX IV

TABLE 1 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY POTENTIAL CANDIDATE PARAMETERS

Į																
ATG	G PARAMETER	PLANT	POINT	CLASS	SNI	MONAVR	GAATNS	GAAAVR	DAATNS	POINT CLASSTINS MONAVE GAATINS GAAVEDAATINS DAAMIRC DAAAVEC DAAMARCFAATINS FAAVD AAUTINS AAUAVD STATUS	DAAAVRC	DAAMAR	FAATNS	FAAAVD	AAUTNS	STATUS
-	Chemical Oxygen Demand	CANADA PIPE	0100	Æ	4	28.3										-
		HALEY IND.	0100	FH	155	21.7										-
		HALEY IND. 0200	0200	Ŧ	158	40.4	8	0.5					1	23		-
		FORD MOTOR	0100	Ę	55	1.8										e
		FORD MOTOR	0300	Ŀ	151	2.0	2	1.0					12	0.6		3
		GENERAL MOTORS	0060	FL	153	1.9							12	0.5		-
		GENERAL MOTORS	1000	F	52	1.9										-
		FORD MOTOR	0500	FM	4	2.4										2
		HALEY IND.	0300	FM	12	6.9										-
2	Cyanide Total	FORD MOTOR	0300	Ħ	12	9.4	4	0.6					4	2.0		-
		HALEY IND.	0200	Η	12	202.2	4	1.0					4	19.4		-
-		FORD MOTOR	0100	F	12	4.6										-
_		GENERAL MOTORS	0060	ЪГ	12	1.4	4	0.4					4	0.8		8
		GENERAL MOTORS	1000	FL	12	1.0										8
		HALEY IND.	0300	FL	12	77.4										1
		CANADA PIPE	0100	FM	4	84.8										1
4a	Ammonia plus Ammonium	HALEY IND.	0100	H	155	21.3										1
		HALEY IND.	0200	H	158	128.7	10	11.9					10	5.8		1
		FORD MOTOR 0100	0100	Ę	4	1.0										8
		HALEY IND.	0300	Ч	5	97.5										-
		CANADA PIPE	0100	Ā	4	122										-
		FORD MOTOR	0300	Ā	4	2.1	4	0.1					4	0.1	_	-
		GENERAL MOTORS	0060	FM	5	4.3	4	0.1					4	0.1		-
		GENERAL MOTORS	1000	Ā	4	22										-
4a	Total Kjeldahl Nitrogen	CANADA PIPE	0100	FH	4	30.8								-		1
		HALEY IND.	0200	Ŧ	2	58.0							-	2.7		-
		FORD MOTOR	0100	FL	4	2.3										2
		FORD MOTOR	0300	FM	4	2.4										2
		GENERAL MOTORS 0900	0060	FM	4	4.1										2
		GENERAL MOTORS 1000	1000	FM	4	3.3										2
	NOTE: A DI OSSADY OF TEDMS LISED IN TURS SI JAMA DV IS OWEN AT TUR DEPORT	WW IS SITE IN USSI S		ONEN A	U F F			ļ								

		CONTROL AS
APPENDIX IV	TABLE 1	RANCE AND QUALITY CON
		2

АТО	BARAMETER	PLANT	POINT	CLASS	SNL	MONAVR	GAATNS	GAAVR	DAATNS	DAAMIRC	POINT CLASSTNS MONAVR GAATINS GAAAVRIDAATINS DAAMIRC DAAAVRC DAAMARCFAATINS FAAAVD AAUTINS AAUAVD STATUS	DAAMARC	FAATNS	FAAVD	AAUTNS	AUAVDS	TATUS
4b	4b Nitrate+Nitrite	CANADA PIPE	0100	£	4	162											-
		HALEY IND. 0200	0200	Ŧ	52	114.3	5	0.1					5	2.9			-
		HALEY IND.	0300	£	5	9.4											-
		GENERAL MOTORS	1000	Ŀ	3	1.6											2
		FORD MOTOR	0100	Ā	5	32											-
		FORD MOTOR	0300	Ā	12	33	4	02					4	0.4			-
		GENERAL MOTORS	0060	FM	10	1.8	3	6.0					3	0.1			~
5a	80	CANADA PIPE	0100	F	12	140.2	4	0.7					4	6.4			-
		FORD MOTOR	0100	Ŧ	52	6.8											-
		FORD MOTOR	0300	F	50	7.7	4	12			,		4	1.6			
		GENERAL MOTORS	0060	Ŧ	51	6.4	4	1.9					4	1.1			-
		GENERAL MOTORS	1000	F	52	6.1											-
		HALEY IND.	0100	FH	53	32.1											-
		HALEY IND.	0200	Ŧ	52	722	4	12					4	5.7			-
		HALEY IND.	0300	F	12	15.6											-
5b	100	CANADA PIPE	0100	Ŧ	3	18.9											-
	0	HALEY IND.	0200	Ŧ	2	5.9							-	0.8			-
		FORD MOTOR	0100	FL	4	12											~
		FORD MOTOR	0300	FL	4	1.6											~
9	Total Phosphorus	HALEY IND.	0100	£	52	202											-
1		HALEY IND.	0200	£	51	19,9	5	6.0					5	9.0			-
		HALEY IND.	0300	2	ñ	1.4											2
		CANADA PIPE	0100	Ā	4	52											1
		GENERAL MOTORS	1000	ب	52	0.8											8
80	Total Suspended Solids	CANADA PIPE	0100	£	42	295.8							4	90 Z			-
		HALEY IND.	0100	Ŧ	253	18.7											-
-		HALEY IND.	0200	£	361	61.5	6	6.1					11	11.6			1
		HALEY IND.	0300	Ŧ	9	35.8											1
	•	FORD MOTOR	0500	Ŀ	4	3.9											2
		GENERAL MOTORS	0060	Ŀ	344	1.8							12	60			2
Ē	NOTE: A ALOSSABY OF TERMS LISED IN THIS SUMMARY IS PAYEN AT THE SUM OF THIS REPORT	PLICED IN THIS OF IMAN	A Thirty of	TATAL .			00010 5	,									

ATG	PARAMETER	PLANT	POINT	CLASS	SNL	MONAVR	GAATNS	GAAAVR	DAATNS	DAAMIRC	DAAAVRC	POINT CLASSTNS MONAVR GAATNS GAAAVRIDAATNS DAAMIRC DAAAVRC DAAMARCFAATNS FAAVD AAUTNSAAUAVD STATUS	FAATNS	FAAAVD	AUTNS	AAUAVD	STATUS
8	Total Suspended Solids	GENERAL MOTORS	1000	Ч	153	2.9											-
		D MOTOR	0100	FM	364	2.7											t
		FORD MOTOR	0300	Ρ	354	3.7							12	3.3			1
80	Volatile Suspended Solids	FORD MOTOR	0100	FL	4	1.6											2
		FORD MOTOR	0300	FL	4	1.6											2
6	Atuminum	CANADA PIPE	0100	FH	12	185.0	4	1.5			-		4	44.4			-
		FORD MOTOR	0100	FH	156	27.3											1
		FORD MOTOR	0300	FH	151	53.3	12	0.5					12	5.9			-
		GENERAL MOTORS	0060	FH	153	22.0	12	0.8					11	4.5			1
		GENERAL MOTORS	1000	FH	52	17.9			_								1
		HALEY IND.	0200	FH	155	72.1	12	2.4	-				12	4.3			1
		HALEY IND.	0300	Ħ	12	55.0											1
ი	Beryllum	HALEY IND.	0300	Ŧ	12	1.0											e
		HALEY IND.	0200	ľ	155	6.0	12	12					12	02			e
ი	Cadmium	CANADA PIPE	0100	H	12	1137.2	4	0,5					4	17.5			1
		HALEY IND.	0200	FL	155	3.0	12	1.8					12	0.3			3
		FORD MOTOR	0300	FM	151	3.5	12	0.5					12	0.7			•
		GENERAL MOTORS	0060	Ľ	153	1.3	12	1.0					11	0.3			3
		GENERAL MOTORS 1000	ğ	Ĩ	52	60											3
		FORD MOTOR	910	₹	156	1.6											2
6	Chromlum	HALEY IND.	0200	Ŧ	155	42.5	12	1.3					12	1.8			1
		HALEY IND.	0300	F	12	1.6											2
		CANADA PIPE 0100	0100	FM	12	27.5	4	02					4	0.8			1
		GENERAL MOTORS	0060	Ŧ	154	1.4	12	0.8					12	0.6			2
		GENERAL MOTORS	1000	Ň	52	0.8											3
6	Cobalt	HALEY IND.	0300	Ę	12	1.8											в
		HALEY IND.	0200	Ā	155	22	12	1.1					12	0.7			e
ი	Copper	CANADA PIPE	0100	Ŧ	4	197.4	4	02					4	8.8			1
		HALEY IND.	0200	Ŧ	155	62.5	12	2.9					12	8.4			-
	FORD MOTOR 0300 FL 151 2.0 12	FORD MOTOR	0300	F	151	2.0	12	1.0					12	0.4			2

ATG	PARAMETER	PLANT	POINT	CLASS		MONAVR	GAATNS	GAAAVRD	POINT CLASSTINS MONAVR GAAAVRDAATINS DAAMIRC DAAAVRC DAAMARC FAATINS FAAAVD AAUTINS AAUAVD STATUS	MIRC DA	AVRC D	AAMARC	FATINS	FAAVD	AUTNS	AUAVDS	TATUS
6	Copper	HALEY IND.	0300	FL	12	2.1											в
		FORD MOTOR	0 <u>1</u> 0	₽	156	1.3											2
ი	Leed	CANADA PIPE	0100	£	9	1014.1	4	0.3		_			4	23.4			1
		FORD MOTOR	0100	Ŀ	156	1.8											2
		GENERAL MOTORS	0060	Ę	153	1.9	12	0.5					11	0.5			2
		HALEY IND.	0200	FL	155	2.1	12	0.9			 		12	1.4		_	-
	-	HALEY IND.	0300	Ę	12	1.5											2
		FORD MOTOR 0300	0300	Ā	151	4.3	12	6.0					12	0.5			-
		GENERAL MOTORS	<u>8</u>	I	52	1.0											2
6	Molybdenum	FORD MOTOR	0100	F	156	12											2
		CANADA PIPE	0100	FM	12	9.3	4	02					4	1.0			-
		HALEY IND.	0200	₽	154	1.4	12	1.1					12	0.3			3
σ	Nickel	CANADA PIPE	0100	F	12	9.4	4	0.5		1			4	0.1			1
		HALEY IND.	0200	FL	155	2.5	12	12					12	0.8			2
ი	Silver	HALEY IND.	0200	FH	155	132	12	0.5					12	4.3			1
თ	Vanadium	HALEY IND.	0200	FL	155	2.1	12	1.3					12	0.8			2
		HALEY IND.	0000	님	5	2.1											8
б	Zinc	CANADA PIPE	0100	F	12	31313.3	4	1.38					4	615.0			1
		FORD MOTOR	0 ¹ 0	Ŧ	156	89.3											٢
		FORD MOTOR	0300	Ŧ	151	202.5	12	12		_			12	0.6			+
		GENERAL MOTORS	0 60	Ŧ	153	66.1	12	0.3					=	11.4			-
		GENERAL MOTORS	§	Ŧ	23	38.7											-
		HALEY IND.	0200	Ŧ	155	84.6	12	2.0					12	9.4			-
		HALEY IND.	0300	Ŧ	5	30.7			-	_							٢
₽	Antimony	HALEY IND.	0200	Ŧ	2	32.8					-		1	112			۰
		CANADA PIPE	0100	FM	4	10.2											•
<u>5</u>	Arsenic	HALEY IND.	0200	H	2	572							-	232			-
		CANADA PIPE	0100	μ	4	2.7											8
₽	Selenium	HALEY IND.	0200	FH	2	20.1							1				-
		CANADA PIPE	0100	FL	4	10.2											1

ATG	G PARAMETER	PLANT	POINT	CLASS	INS	POINT CLASSTNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARCFAATNS FAAAVD AAUTNSAAUAVDSTATUS	AATNS	AAAVR	DAATNS	DAAMIRC	DAAAVRC	DAMAR	CFAATNS	FAAVD	AUTNS	MUAVD	STATUS
ş	Mercury	HALEY IND.	0200	E	=	47.9	4	10						315].
_		CANADA PIPE	0100	FM	4	8.5	T										- -
		FORD MOTOR	0100	F	12	1.1										-	- •
		FORD MOTOR	0300	₽	12	1.3	4	1.0					4	0.3			
₽	- 1	CANADA PIPE	0100	۲	80	0.7	9	0.7					6		-		
£		CANADA PIPE	0100	Ľ	80	0.7	e	0.7					0				
4	Phenolics (4AAP)	CANADA PIPE	0100	FH	42	36.6	4	0.5						4			, .
		FORD MOTOR	0100	Æ	360	111.9											
		FORD MOTOR	0300	Æ	349	271.5	12	19					12	27.0			
		FORD MOTOR	0500	Æ	4	104.1											
		GENERAL MOTORS 0900	8000	Ŧ	343	38.8	12	1.1					1	46			-
		GENERAL MOTORS 1000	100 100	Ŧ	152	25.5							! 				-
		HALEY IND.	0300	표	2	21.6											-
		HALEY IND.	0500	Ę	360	222	12	15					12	11.1	T	T	-
ñ	~	CANADA PIPE	0100	Ä	4	4.8											
16	1,1-Dichloroethane	HALEY IND.	0100	Ę	4	2.6											0
		HALEY IND.	0500	Ę	2		5	0.3	4		80	120	2	0.3	2	0.4	~
9	Chloroform	GENERAL MOTORS 0900	0000	Ę	2	12	4	3.5	4	45	143	270	4	0.0	5	0.5	6
		IERAL MOTORS	1000	Ľ	4	Ξ											0
16	Methylene Chloride	HALEY IND.	80	2	2	3.7	2	4.9	4		64	8	5	5.0	12	23	e
!			9 <u>6</u>	Σ	4	6.8											
1	Benzene		0300	æ	=	22	4	0.7	4	94	107	135	4	0.4	Ξ	00	-
		SRO	0060	Ľ	2	1,9	4	60	4	49	93	119	4	02	5	0.4	~
			0100	_	Ξ	6.0											6
₽	Styrene		0300	Σ	Ξ	1.5	4	0.5	4	47	97	136	4	0.3	E	0.1	~
4	Toluene	FORD MOTOR	0100	님	=	0.8											6
		FORD MOTOR	0300	립	Ξ	1.4	4	0.5	4	91	420	1376	4		Ξ	. 02	0
!		GENERAL MOTORS 0900	8000	Ľ	2	1.4	4	22	4	48	101	144	4	02	12	02	
Ξ	17 m - Xylene and p - Xylene	GENERAL MOTORS 0900	800	프	12	1.8	4	6.0	4	102	112	123	4	02	12		~

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

56

АТС	PARAMETER	PLANT	POINT	CLASS	SNI	MONAVR	AATNS	IAVAAR	DAATNS	DAAMIRC	DAAVRC	POINT CLASSTNS MONAVR GAATNS GAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAVD AAUTNS AAUAVD STATUS	FAATNS	FAAAVD	AUTNS	AAUAVD	STATUS
4	o-Xylene	HALEY IND.	0200	-	5	8,0	2	0.4	4		69	100	5	0.1	12	0.7	e
₽	1 – Methylnaphthalene	FORD MOTOR	0300	Ц	2	1.0	4	0.1	4	63	137	250	4	0.5	12	0.1	e
₽	2 – Methylnaphthalene	FORD MOTOR	0300	Ŀ	4		4	02	4	63	145	250	4	0.4	12	0.1	n
ŧ	BenzobutyIphthalate	FORD MOTOR	0100	Ę	5	2.8											e
		FORD MOTOR	0300	Ā	2	7.3	4	1.0	4	60	164	263	4	1.7	12		2
₽	Biphenyl	FORD MOTOR	88	Ц	4	12	4	1.0	4	66	141	238	4	02	12		e
6	Bls(2 - ethylhexyl) phthalate	HALEY IND.	6 8	Ŧ	4	11.9											~
		CANADA PIPE	010	Ч	4	άt									4	6.0	2
		FORD MOTOR	0300	Ч	12	1.7	4	0.7	4	14	59	118	4	0.7	12	2.9	2
		HALEY IND. 0	0200	Ŀ	₽	3.4	ŝ	3.0	4		202	329	4	5.3	12	60	3
		FORD MOTOR	010	-	4												~
		GENERAL MOTORS	8000	Ň	4	22	2	5.9	4	96	164	279	5	0.4	12	12	e
€	DI-n-butyl Phthalate	FORD MOTOR	0300	Ч	12	1.1	4	0.7	4	66	173	313	4	1.0	12	0.1	e
€	Fluoranthene	FORD MOTOR	800	Ę	12	12	4	0.5	4	70	149	250	4	0.1	5		6
€	Nephthalene	FORD MOTOR	0300	F	20	1.3	4	0.3	3	113	152	188	4	0.4	8		0
6	Phenanthrene	FORD MOTOR	0200	Ŀ	4	12											e
		FORD MOTOR	0300	FM	ß	4.1	4	1.0	3	125	179	275	4	60	8		N
8	2,4 - Dimethylphenol	GENERAL MOTORS	0060	ದ	9	29	5	02	5	4	41	57	5	1.3	-		ŀ
		FORD MOTOR	0300	Ϋ́	₽	42	4	0.1	4	49	84	119	4	0.7			-
		FORD MOTOR	9100	Ļ	9	6.0											~
ຊ	4 Nitrophenol	HALEY IND.	0100	ñ	4	3.6											3
		HALEY IND.	0200	FM	12	3.4	5	3.6	4		4	110	4		2	0.4	3
20	Pentachlorophenol	HALEY IND.	90	F	4	1.6		-									e
		HALEY IND.	050	Ч	12	1.8	5	1.5	4		71	150	4	0.5	2	0.1	6
8	Phenol	FORD MOTOR	0300	Ŧ	12	247.6	4	0.3	4		68	125	4	24.0			-
		HALEY IND. 0100	010	FL	4	2.7											~
		GENERAL MOTORS	0060	Ξ	12	2.5	5	0.4	4	10	17	27	5	. 2.5	-		~
ର	m Cresol	GENERAL MOTORS	0060	FL	12	19	5	02	4	26	65	104	5	1.6	-		~
		FORD MOTOR	0300	FM	12	5.3	4	02	4	45	81	123	4	0.6			-

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

57

				-	_						_	_		_									_						
STATUS	-	-	-	~	~	-	~	~	2	2	2	5	2	2	~	2	~	~	~	8	~	-	-	-	3	3	-	8	•
AUAVD																													
AUTNS		-		-	~																								
DVAA	22	4.0	1.3	1.6	1.5																			0.1	0.1		0.4		0
AATNS	4	s	4	5	-																			12	12		4		12
POINT CLASSITINS MONAVR GAATINS GAAAVRIDAATINS DAAMIRC DAAAVRC DAAMARC FAATINS FAAAVD AAUTINS AAUAVD STATUS	125	7	125	104																									
DAAVRC	62	44	88	65							_																		
DAMIRC	40	14	53	26																									
DAATNS	4	4	4	4																									
AAAVR	6.0	02	0.3	02																				1.0	1,4		1.0		60
GAATNS	4	5	4	5																				12	12		4		12
MONAVR	35.5	8.0	10.1	1.8	1.7	20.3	1.3	22	8,0	12	1.8	1.0	0.8	2.3	2.6	1.1	3.4	1.1	60	8.5	4.7	5.0	22	2.0	1.4	1.8	72	1.4	1.6
SNL	5	5	5	5	4	8	2	2	2	2	2	2	2	2	2	2	2	2	2	8	2	4	156	151	151	152	41	154	156
CLASS	Ŧ	Ч	Ŧ	Ч	FL	FH	FL	Ŀ	ц	Ę	FL	ч	F	Ŀ	FL	FL	FL	FL	F	Ā	FM	FH	FL	Ę	FL	Ŀ	FM	_	1
POINT	0300	0 060	0300	0060	0200	0200	0100	0300	0060	0100	0300	0200	0300	0200	0200	0200	0100	0200	0200	0100	0300	0600	0100	0300	0060	<u>1</u> 00	0100	0100	0200
PLANT	FORD MOTOR 0	GENERAL MOTORS	FORD MOTOR	GENERAL MOTORS	HALEY IND.		В	FORD MOTOR	GENERAL MOTORS	FORD MOTOR	FORD MOTOR	HALEY IND. 0	FORD MOTOR	HALEY IND.	HALEY IND.	HALEY IND.	FORD MOTOR			FORD MOTOR	FORD MOTOR	FORD MOTOR	FORD MOTOR	FORD MOTOR	GENERAL MOTORS	GENERAL MOTORS	CANADA PIPE	HALEY IND. 0100	HALEY IND.
PARAMETER	oCresol		p-Cresol	_	12,3-Trichlorobenzene	Octachlorodibenzo-p-dic				Octachlorodibenzofuran		Total H6CDD	Total H6CDF		Total H7CDD	Total H7CDF	Total PCDF		Total TCDF			Oli and Grease			1	1		k	
АТО	ຊ		20		ឌ	24				54		7	24	1	54	54	24		24			52							

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

APPENDIX IV

TABLE 1 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY POTENTIAL CANDIDATE PARAMETERS

ns						1															Ĺ								Ē.
STAT	۳ 	9	0	0	0	e	9	۳ 	8	e	e	6	e	e	2	2	~		Ĺ										Ľ
MUAVE			0.4	0.4	02	0.4			0.4			9,0	1.4																
AUTNS			9	7	2	~			7			7	7	2															
N D N		_		_	0,1				-			0.4	8.0		0.3		-	358.0		4,9		12.6		306.4		120.0		31.7	
UNS FA	4		4	4	4	4	4		4	4		4	4	4	4		-	4		12		Ξ	_	12		4		12	┢
CFAN			0		0		10			_			_																
DAMAR	113		1500	2080	5500	20065	65		6600	131		3000	5700	4700															
POINT CLASSITINS MONAVE GAATINS GAAAVEDAATINS DAAMIEC DAAAVEC DAAMAEC FAATINS FAAAVD AAUTINS AAUAVD STATUS	81		407	553	1414	1506	36		1682	60		756	1452	1205															
DAMIRC [47						13			5																			
	4		4	4	4	4	4		4	4	-	4	4	4	-														
AAVRD	1.4		3.0	3.0	3.0	3.0	1.8		3.0	1.8		3.0	3.6	3.0	0.4	_		2.5		1.1		4.1		3.4		1.3		2.1	_
O SNTAR	4		4	4	4	4	4		4	4		4	4	4	4			4		12		12		12		4		12	
MONAVR	1.4	1.4	32	3.4	4.4	3.4	1.6	1.8	3.4	1.8	1.8	4.0	6.4	32	12	60	0.7	16721.7	30.0	58.5	108.9	36.4	33.3	20422.8	75172	3013.4	458.1	468.7	433.1
INS	12	4	Ξ	12	12	12	12	4	12	4	4	12	12	12	12	4	12	12	156	151	4	153	52	155	12	12	156	151	4
CLASS	Ľ	Ľ	F	FM	Ā	FM	님	료	Ā	Ľ	군	Ā	Ĩ	Ā	Ч	Ч	=	F	Æ	Ŧ	Ħ	Ŧ	FH	Ŧ	Ŧ	£	Ŧ	Æ	문
POINT	0060	<u>8</u>	0200	0200	0200	0200	0000	1000	0200	0060	1000	0200	0200	0200	0300	0500	0100	0100	0100	0300	0500	0900	1000	0200	0300	0100	0100	0300	0500
PLANT	GENERAL MOTORS 0900	GENERAL MOTORS	HALEY IND.	HALEY IND.	HALEY IND.	HALEY IND. 0200	GENERAL MOTORS	GENERAL MOTORS	HALEY IND.	GENERAL MOTORS	GENERAL MOTORS	HALEY IND.	HALEY IND.	HALEY IND.	FORD MOTOR	FORD MOTOR 0500	FORD MOTOR	CANADA PIPE	FORD MOTOR	FORD MOTOR	FORD MOTOR	GENERAL MOTORS	GENERAL MOTORS	HALEY IND.	HALEY IND.	CANADA PIPE	FORD MOTOR	FORD MOTOR	FORD MOTOR
PARAMETER	Abletic Acid			Chlorodehydroabietic Acic	Dehychoabletic Acid	Isopimaric Acid	Levopimaric Acid			Neoabletic Acid			Oleic Acid	Pimaric Acld	PCBT			MC1 Iron]			MC1 Magneslum			
ATG	8			26	କ୍ଷ	%	26			%			56	%	27			MCI								Ň		_	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

АТВ	PARAMETER	PLANT		SIASS	LNS I	MONAVR	GAATNS	GAAAVRI	SNTARU	DAAMIRC	POINT CLASSTNS MONAVR GAATNS GAAAVRDAATNS DAAMIRC DAAAVRC DAAMARCFAATNS FAAAVD AAUTNS AAUAVD STATUS	DAMARC	FAATNS	FAAAVD	AUTNS	AUAVD	STATUS
ğ	MC1 Magnesium	GENERAL MOTORS 0900	0060	FH	153	456.2	12	1.0					Ħ	15.8			-
-		GENERAL MOTORS 1000	1000	FH	52	476.2											-
		HALEY IND.	0200	FH	155	162954.9							12	139.2			-
		EY IND.	0300	Æ	12	2498.4											-
ğ	MC2 Fluoride		0100	Æ	12	254.3	4	1.0					4	5.3			-
			0100	FH	156	45.1											-
		FORD MOTOR	0300	ΗH	151	82.7	12	23					12	10.5			٠
			0500	f	4	44.3											-
			0200	Ŧ	155	302.3	12	1.0					12	16.9			-
		HALEY IND.	0300	Ŧ	5	89.7											-
		GENERAL MOTORS 0900	0060	FM	12	2.8	4	0.5					4	0.1			-
		GENERAL MOTORS 1000	1000	ΜĨ	4	22								_			-

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

PIA	РАНАМЕТЕН	HLANI	NIO	CLASS	≥ SN N		SNINS	GAAAVH	DAAINS	PUINI CLASSINS MONAVH GAAINS GAAAVH DAAINSDAAMIHC DAAAVHC DAAMARCFAATNS FAAAVD AAUTNSAAUAVD	DAAAVRC	DAMMARC	FATINS	AAAVDA		AUAVD
56	Toc	GENERAL MOTORS	86	Q	4	9.0										
9	Total Phosphorus	GENERAL MOTORS 0900	0060	₹	ନ୍ଥ	1.8	4	0.1					4			
		FORD MOTOR	0300	Q	ß	0.3	4	02					4	02		
80	Volettle Suspended Solids	CANADA PIPE	0100	Σ	4	12										
		GENERAL MOTORS	0060	Q	4	02										
6	Beryllum	FORD MOTOR	0300	١L	151	1.0	12	1.0					5			
		GENERAL MOTORS	860	Σ	1 53	0.1	12	0.1					=	0.0		ľ
		CANADA PIPE	0100	NO	12	02	4	0.1					4	0.0		
თ	Chromlum	FORD MOTOR	0300	Σ	151	-	5	1.0					12	0.1		
6	Cobalt	CANADA PIPE	0100	Ň	12	1,9	4	0.1					4	0.4		
		FORD MOTOR	0300	Q	151	1.0	12	1.0					12			
		GENERAL MOTORS	0060	Q	154	0.1	12	0.1					4	ο̈́ο		
ი	Copper	GENERAL MOTORS 0900	0060	IL.	153	0.5	12	0.5					Ξ	02		
6	Molybdenum	FORD MOTOR	0300	II.	151	1.0	12	1.0					12			
		GENERAL MOTORS	0060	Q	154	0.1	12	0.1					12	0.0		
6	Nickel	FORD MOTOR	0300	-	151	1.0	12	1.0					12			
		GENERAL MOTORS	8060	Σ	154	0,8	12	0.5					12	0.3		
6	Silver	CANADA PIPE	0100	-	12	0.6	4	0.1					4	02		
_		FORD MOTOR	0300	g	151	0.5	12	0.5					12	0.0		
		GENERAL MOTORS	0060	Q	154	0.1	12	0.1					12	0.0		
ი	Thallum	HALEY IND.	0200	Ŧ	155	0.7	12	0.1					12	1.4		
		CANADA PIPE	0100	Ļ	5	0.6	4	0.3					4	0.5		
		GENERAL MOTORS	0060	-	154	0.8	12	0.8					12			
		FORD MOTOR	0300	No	151	02	12	02					12			
თ	Vanadium	FORD MOTOR	0300	-	151	0.4	12	0.4					12	0.1		
		CANADA PIPE	0100	Q	5	0.5	4	0.1		_	1		4	0.1		
		GENERAL MOTORS	0060	Q	153	0.1	12	0.1		_			11	0.0		
9	Antimony	FORD MOTOR	0300	-	4	0.6	_									
		GENERAL MOTORS 0900	0060	L	4	0.7									·	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

TABLE 2 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY NON-CANDIDATE PARAMETERS APPENDIX IV

	_	_			-		-	_	_	_	_	-	-		_	_		_			-	· · · · ·		-					
ΑΛΙΑΥΡ															0.0				0.1							0.0			
MUTNS												4	11	12	12	4	11	12	12	4	11	12	4	11	12	12	4	11	12
DVAAD										0.1																			
ATINS						12		4	5	4	4		4	4	5		4	4	5		4	4		4	4	S		4	4
POINT CLASS THS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD MUTNS AAUAVD						_							158	116	23		119	140	110		140	270		126	134	110		121	118
AAVRC													95	100	13		83	106	72		105	128		91	95	68		93	104
AAMIRC D													43	75			37	62			88	35		56	65			74	8
DAATNS													4	4	3		4	4	4		4	4		4	4	3	_	4	4
GAAVR					9.0	1.0		0.8	1.0	1.0	0.6		02	0.7	0.1		02	0.8	0.3		0.1	1.0		0.1	0.4	0.1		0.5	0.6
GAATNS					1	12		4	5	4	4		4	4	5		4	4	5		4	4		4	4	5		4	4
MONAVR	0.6	0.4	0.3	0.8	6.0	1.0	6.0	6.0	3.7	12	0.5	0.1	02	0.7	0.1	1.0	02	0.8	0.5	0.6	0.1	1.0	0.1	0.1	0.4	0.1	0.3	0.5	0.6
SNL	4	4	4	4	1	151	36	12	13	4	12	4	11	12	12	4	÷	4	12	4	Ξ	12	4	11	12	12	4	11	4
IASS	ð	NO	NO	NO	NO	NO	NO	0 N	Ħ	ي	NO	Q	g	0N N	9 N	Q	g	g	Q	Q	g	9 N	NO	Ŋ	No	ð	g	NO	Q
DINT	0300	0060	0300	0060	0100	0300	0200	0060	0200	0300	0060	0100	0300	0060	0200	0100	0300	0060	0200	0100	0300	0060	0100	0300	0060	0200	0100	0300	
PLANT	FORD MOTOR 0	GENERAL MOTORS 0	FORD MOTOR 0	GENERAL MOTORS C	CANADA PIPE	FORD MOTOR 0	HALEY IND.	GENERAL MOTORS C	HALEY IND.	FORD MOTOR 0	GENERAL MOTORS 0	CANADA PIPE C	FORD MOTOR 0	GENERAL MOTORS 0	HALEY IND.	CANADA PIPE	FORD MOTOR 0	GENERAL MOTORS 0	HALEY IND.	CANADA PIPE 0	FORD MOTOR	GENERAL MOTORS (CANADA PIPE	FORD MOTOR 0	GENERAL MOTORS (HALEY IND.	CANADA PIPE	FORD MOTOR (GENERAL MOTORS 0900
PARAMETER	Arsenic	G	Selenium	0	Chromium (hexevalent) C	Ľ	н	Mercury	Sulphide	Ű	G	1,1,2,2-Tetrachloroethane C	Ű	0	I	1,1,2-Trichloroethane C	Ľ.	0	I	1,1-Dichloroethane	ιĹ	0	1,1-Dichloroethylene		0	Ĩ	1,2-Dichlorobenzene	ŭ	[C
АТО	₽		₽		Ŧ			12	15			16				16				16			16				16		

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	G PARAMETER	PLANT	LNIO	CLASS	INS	MONAVR	GAATNS	GAAAVR	DAATN	POINT CLASS TNS MONAVR GAATNS GAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAVD AAUTNS AAUAVD	DAAAVRC	DAAMARC	FAATNS	FAAVD	NUTNS	AUAVD
9	1,2-Dichtorobenzene	HALEY IND.	0200	Q	12	02	ß	0.1	4		78	110	5		12	0.0
16	1,2 - Dichloroethane	CANADA PIPE	0100	Ŷ	4	0.5									4	
_		FORD MOTOR	0300	Q	Ξ	02	4	02	4	93	118	148	4		11	
		GENERAL MOTORS	0060	Q	12	1.0	4	1.0	4	45	78	86	4		12	
		HALEY IND.	0200	Q	12	0.5	5	0.5	4		73	110	5		12	αo
9	1,2 Dichloropropane	CANADA PIPE	0100	Q	4	9.0									4	
		FORD MOTOR	0300	Q	Ξ	02	4	02	4	86	113	146	4		11	
		GENERAL MOTORS	0060	Q	12	60	4	60	4	41	87	123	4		12	
		HALEY IND.	0200	Q	12	02	S	02	4		59	86	5		12	
16	1,3 - Dichlorobenzene	CANADA PIPE	0100	Q	4	0.3									4	
_		FORD MOTOR	0300	NO	11	02	4	02	4	78	97	131	4		11	
_		GENERAL MOTORS	0060	Q	12	1.0	4	1.0	4	88	101	117	4		12	
		HALEY IND.	0200	Q	12	0.3	5	6.0	4		76	110	5		12	αo
9	1,4 - Dichlorobenzene	HALEY IND.	0200	I	12	0.7	5	0.1	4		73	110	5	6.0	12	0.1
_		CANADA PIPE	0100	Q	4	0.1									4	
_		FORD MOTOR	0300	Q	Ξ	0.1	4	0.1	4	81	103	148	4		=	
		GENERAL MOTORS	0060	Q	12	0.7	4	0.7	4	1 78	100	113	4		12	
16	Bromoform	CANADA PIPE	0100	-1	4	0.5									4	
_		FORD MOTOR	0300	Q	=	0.1	4	0.1	4	93	109	145	4		11	
		GENERAL MOTORS 0900	0060	Ŷ	12	0.7	4	0.7	4	55	95	116	4		12	
		HALEY IND.	0200	ð	5	0.1	5	0.1	e		60	8	5		12	0,0
16	Bromomethane	CANADA PIPE	0100	Q	4	0.7									. 4	
-		FORD MOTOR	0300	Q	Ξ	0.1	4	0.1	4	3	49	115	4		11	
		GENERAL MOTORS	0060	Q	5	0.5	4	0.5	4	6	88	150	4		.12	
		HALEY IND.	0200	Q	12	0.1	5	0.1	e		62	100	5		12	
9	Cerbon Tetrachloride	HALEY IND.	0200	ž	4	60	5	02	3		61	100	5	0.3	12	12
		CANADA PIPE	0100	Q	4	02									4	
_		FORD MOTOR	0300	ş	Ξ	0.3	4	0.3	4	50	8	138	4		ŧ	
		GENERAL MOTORS 0900	0000	02	12	9.0	4	9.0	4	41	82	113	4		12	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

APPENDIX IV

TABLE 2 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY NON-CANDIDATE PARAMETERS

АТС	G PARAMETER	PLANT	POINT	CLASS	SNL	MONAVR	GAATNS	GAAAVR	DAATNS	POINT CLASSTNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARC AATNS FAAAVD AAUTNS AAUAVD	DAAAVRC	DAAMARC	FAATNS	FAAVD	AAUTNS	AAUAVD
9	Chlorobenzene	CANADA PIPE	0100	Q	4	6.0									4	
_		FORD MOTOR	0300	Q	Ŧ	0.1	4	0.1	4	74	66	141	4		11	
_		GENERAL MOTORS	0060	Q	12	6.0	4	60	4	31	91	118	4		5	
		HALEY IND.	0200	oN	12	02	5	0.1	4		74	110	5		12	0.1
16	Chloroform	CANADA PIPE	0100	W	4	1.1									4	¢.
		FORD MOTOR	0300	No	11	0.1	4	0.1	4	2	108	140	4		=	αo
-		HALEY IND.	0200	oN	12	0.4	5	2.3	4		75	110	5	α'0 1	12	0.0
16	Chloromethane	CANADA PIPE	0100	N	4	9.0									4	
_		FORD MOTOR	0300	Q	Ħ	0.1	4	0.1	4	14	69	118	4		=	
_		GENERAL MOTORS	0060	No	12	0.3	4	0.3	4	9	92	188	. 4		5	
		HALEY IND.	0200	Q	12	0.1	5	0.1	9		68	110	2	00	5	00
16	Cla-1,3-Dichioropropylene	CANADA PIPE	0100	N	4	0.5			+						4	
_		FORD MOTOR	0300	N	11	0.1	4	0.1	4	7	49	1 09	4		=	
		GENERAL MOTORS	0060	No	12	0.7	4	0.7	4	31	80	116	4		5	
		HALEY IND.	0200	QN	12	02	5	02	3		54	100	5		12	0.0
16	Dibromochloromethane	CANADA PIPE	0100	Q	4	0.4									4	
_		FORD MOTOR	0300	N	11	0.1	4	0.1	4	8	111	142	4		=	
_		GENERAL MOTORS	0060	No	12	0.7	4	0.7	4	33	105	134	4		4	
		HALEY IND.	0200	Q	12	0.3	5	0.3	4		48	96	5		12	αo
16	Ethylene Dibromide	CANADA PIPE	0100	Q	4	9.0									4	
_		FORD MOTOR	0300	Q	=	02	4	02	4	84	104	151	4		11	
		GENERAL MOTORS	0060	Q	42	0.8	4	0.8	4	21	80	181	4	0.0	12	
9	Ethylene Dibromide	HALEY IND.	0200	N	12	0.1	5	0.1	4		72	100	5		12	0.0
16	Methylene Chloride	FORD MOTOR	0300	Ξ	Ŧ	6.0	4	2.3	4	72	143	· 211	4	0.3	11	02
		GENERAL MOTORS	0060	M	ŭ	12	4	3.5	4	63	159	273	4		12	0.0
		CANADA PIPE	0100	Q	4	02									4	1.3
16	Tetrechloroethylene	CANADA PIPE	0100	Q	4	02									4	0.0
_		FORD MOTOR	0300	Q	÷	0.3	4	0.3	4	81	102	137	4		11	
		GENERAL MOTORS 0900	0060	No	2	9.0	4	0.6	4	13	11	120	4		12	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

TABLE 2 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY NON-CANDIDATE PARAMETERS

ATG	PARAMETER	PLANT	POINT	CLASS	SNT ST	AONAVR	GAATNS	GAAAVR	DAATNS	DAAMIRC	DAAAVRC	POINT CLASS THIS MONAVE GAATINS GAAAVE DAATINS DAAMIEC DAAAVEC DAAMAEC FAATINS FAAAVD AAUTINS AAUAVD	FATNSF	AAAVDA	AUTUSA	AUAVD
16	Tetrachloroethylene	HALEY IND.	0200	No	12	02	5	02	4		70	100	5		12	0.0
16	Trans-12-Dichloroethylene	CANADA PIPE	0100	Q	4	0.3									4	
		FORD MOTOR	0300	Q	=	0.1	4	0.1	4	67	95	137	4		Ħ	
		GENERAL MOTORS	0060	Q	ġ	0,1	4	1.0	4	27	166	322	4		12	
		HALEY IND.	0200	NO	12	02	5	02	4		76	130	5		12	0.0
16	Trans-1,3-Dichloropropylene	CANADA PIPE	0100	N	4	0.8									4	
		FORD MOTOR	0300	NO	÷	0.1	4	0.1	4	6	49	108	4		11	
		GENERAL MOTORS	0060	NO	12	0.6	4	0.6	4	23	54	93	4		12	
		HALEY IND.	0200	NO	12	0.1	5	0.1	3		44	72	5		12	0.0
16	Trichloroethylene	CANADA PIPE	0100	No	4	02									4	
		FORD MOTOR	0300	Q	=	0.1	4	0.1	4	111	128	145	4		11	
		GENERAL MOTORS	0060	Q	12	0.7	4	0.7	4	40	88	124	4		12	
		HALEY IND.	0200	Q	12	6.0	5	02	4		8	140	5		12	
16	Trichlorofluoromethane	CANADA PIPE	0100	N	4	0.3									4	
		FORD MOTOR	0300	No	11	1.0	4	0.8	4	83	160	323	4		11	
_		GENERAL MOTORS	0060	0N N	12	1.0	4	1.0	4	39	72	101	4		12	
		HALEY IND.	0200	NO	12	0.4	5	0.3	3		58	100	5	0.1	12	0.5
16	Vinyl Chloride	CANADA PIPE	0100	No	4	0.7									4	
		FORD MOTOR	0300	ç	÷	0.1	4	0.1	4	75	109	139	4		=	
		GENERAL MOTORS	0060	Q	2	0.5	4	0.5	4	б	8	163	4		12	
		HALEY IND.	0200	ò	2	0.1	5	0.1	9		67	1 0	ß		12	
11	Benzene	CANADA PIPE	0100	NO	4	0.4									4	2.5
		HALEY IND.	0200	NO	12	1.4	5	0.8	4		88	120	ND.		12	
4	Styrene	CANADA PIPE	0100	Ŀ	4	0.9									4	
		GENERAL MOTORS	0060	No	2	1.0	4	1.0	4	8	105	168	4		12	
		HALEY IND.	0200	Q	12	0.5	5	0.4	4		99	95	S		5	0.1
4	Toluene	HALEY IND.	0200	=	₽	1.1	2	12	4		7	110	5	02	12	0.1
		CANADA PIPE	0100	NO	4	0.8									4	3.3
17	17 m – Xylene and p – Xylene	HALEY IND.	0200	н	12	1.0	5	0.4	4		114	190	5	0.1	12	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

APPENDIX IV

	·····							_
		02	00			0	3	
	NTUN	4	÷	\$			4	·
	AAVD		6					
	FATNS		4	4		4		
	POINT CLASSTNS MONAVR GAATNS GAAVR DAATNS DAAMIRC DAAMARC FAATNS FAAVD MUTNS AAUAVD		130	139		139		
ſRY	DAAVRC		102	114		8		
T SUMM	DAAMIRC		87	86		ន		
ssmen RS	DAATNS		4	4		4		
ROL ASSE	GAAAVR		0.1	1.0		02		
2 CONTF	GAATNS		4	4		4		
TABLE 2 QUALITY COI	MONAVR	0.5	0.3	12	0.8	0.3	8.0	
	INS	4	=	12	4	Ξ	4	;
ANCE	CLASS	Q	Q	F	ON	0 N	oN	-
ASSUF N(POINT	0100 NO	0300	0060	0100	0300	0100 NO	014
TABLE 2 QUALITY ASSURANCE AND QUALITY CONTROL AS SSMENT SUMMARY NON-CANDIDATE PARAMETERS	PLANT	CANADA PIPE	FORD MOTOR	GENERAL MOTORS 0900	CANADA PIPE	FORD MOTOR	CANADA PIPE	COTON COOL
		•						

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ATG	PARAMETER	PLANT	POINT	CLASS	SNI	POINT CLASSTNS MONAVR GAATNS GAAAVR	VATNS		DAATNS	DAAMIRC	DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD AAUTNS AAUAVD	DAMARC	FATINS	FAAVD	MUTNS	ANUAVD
$ \begin{array}{ $	17	m-Xylene and p-Xylene	CANADA PIPE	910	Q	4	0.5									4	02
0-Yohee GENERALMOTORS 000 1 12 12 12 12 13			FORD MOTOR	0000	Q	Ξ	0.3	4	0.1	4	87	102	130	4	0.1	=	00
	1	o – Xylene	GENERAL MOTORS		-	5	12	4	1.0	4	86		139	4		12	
			CANADA PIPE	<u>9</u>	g	4	0.8									4	
Actolatin CaNADA FIE DIO NO 1 00 1 <th1< th=""> 1<td>12</td><td>o – Xylene</td><td>FORD MOTOR</td><td>88</td><td>oz</td><td>Ξ</td><td>0.3</td><td>4</td><td>02</td><td>4</td><td>23</td><td>8</td><td>139</td><td>4</td><td></td><td>=</td><td>00</td></th1<>	12	o – Xylene	FORD MOTOR	88	oz	Ξ	0.3	4	02	4	23	8	139	4		=	00
FORD DSM D1 D1 D2 D3 D4 D1 D2 D4 D1 D1 <thd< td=""><td>18</td><td>Acrolein</td><td>CANADA PIPE</td><td>9100</td><td>oz</td><td>4</td><td>8,0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td></thd<>	18	Acrolein	CANADA PIPE	9100	oz	4	8,0									4	
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $			FORD MOTOR	88	Q	Ξ	0.3	4	0.3	4	-	12	25	4		=	
Acylonitelie HALEVINO. GGO NO 2 0 4 1 1 1 1 Acylonitelie EOHD MOTOR 600 NO 1 0.3 4 0.5 4 0.6 130 4 1 Including EOHD MOTOR 600 NO 12 0.7 4 0.7 4 14 66 130 4 1 1 Including EOHD MOTOR 600 NO 2 0.1 4 0.7 4 14 66 130 4 1 1 Including NO 12 0.2 5 0.1 4 1 <t< td=""><td></td><td></td><td></td><td>868</td><td>g</td><td>2</td><td>60</td><td>4</td><td>6,0</td><td>4</td><td>39</td><td></td><td>150</td><td>4</td><td></td><td>ų</td><td></td></t<>				868	g	2	60	4	6,0	4	39		150	4		ų	
Acylonitule CaNuDA FIFE O100 NO 4 05 4 05 4 05 4 4 4 4 4 4 4 4 4 4 4 4 11 1 1 0300 NO 12 0.1 1 4 1 1 1 1 1 1 FORD MOTOR 0800 NO 12 0.1 1 4 1 6 1 1 1 1 HAEF ND. 0200 NO 12 0.1 4 0 1 6 1			HALEY IND.	0200	õ	2	02									-	0.1
	18	Acrylonitrile	CANADA PIPE	0100	g	4	0.5									4	
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $			FORD MOTOR	g	Q	Ξ	0.3	4	02	4	40	68	130	4		Ξ	
				8000	ò	2	0.7	4	0.7	4	14	69	138	4		12	
			HALEY IND.	0200	No	2	0.1									-	0.1
	<u>6</u>	1	CANADA PIPE	9 <u>1</u> 8	No	4	0.3									4	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			FORD MOTOR	8000	Q	5	02	4	02	4	67	137	225	4		5	
			GENERAL MOTORS		Q	9	02	5	02	5	99	83	102	5		12	
			HALEY IND.	800	Q	9	02	S	0.1	4		58	89	4		5	0.1
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	19	1 – Methylnaphthalene	CANADA PIPE	910	Q	4	0.7									4	
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $			GENERAL MOTORS	8000	Q	2	02	5	0.1	4	60	85	114	5	00	5	
P,4-Dinitrotoluene CANADA PIPE 0100 NO 12 0.6 4 0.6 4 0.6 4 79 157 300 4 4 FORD MOTOR 0300 NO 12 0.5 4 0.5 4 79 157 300 4 12 Reneration 0300 NO 12 10 5 10 5 60 91 109 5 12 R.5-Dinitrotoluene FORD MOTOR 0300 NO 12 0.6 4 79 139 550 4 12 R.5-Dinitrotoluene FORD MOTOR 0300 NO 12 10 5 0.6 91 12 12 R.5-Dinitrotoluene FORD MOTOR 0300 NO 12 10 5 0.6 90 12 12 CANADA PIPE 0100 NO 12 10 5 0.7 4 12 12 HALEY IND. 0200 <td></td> <td></td> <td>HALEY IND.</td> <td>88</td> <td>Q</td> <td>2</td> <td>02</td> <td>S</td> <td>0.1</td> <td>4</td> <td></td> <td>47</td> <td>110</td> <td>4</td> <td>0.0</td> <td>12</td> <td>0.1</td>			HALEY IND.	88	Q	2	02	S	0.1	4		47	110	4	0.0	12	0.1
FORD MOTOR 0300 NO 12 0.5 4 73 157 300 4 12 12 GENERAL MOTORS 0300 NO 12 10 5 10 5 60 91 109 5 12 12 GENERAL MOTORS 0300 NO 12 0.6 5 0.6 91 109 5 12 12 GENERAL MOTORS 0300 IL 12 0.6 5 0.6 91 139 250 4 12 12 CADADOTOR 0300 IL 12 10 5 10 7 4 12	ţ	2,4 Dinitrotoluene	CANADA PIPE	0100	Q	4	9.0									4	
All General Motors 9800 NO 12 10 5 60 91 109 5 12 All HALEY ND. 0200 NO 12 0.6 5 0.6 4 79 160 4 12 R5 Dimitroluene FOHD MOTOR 0300 IL 12 0.6 5 0.6 4 79 139 250 4 12 CANADA PIPE 0100 IM 4 15 0 6 90 139 250 4 12 12 GENERAL MOTORS 0300 NO 12 10 5 66 90 12 14 12 HALEY IND. 0200 NO 12 10 5 06 90 12 14 All VIDUORDARIAND. 0200 NO 12 10 5 14 12 14			FORD MOTOR	0300	Q	4	0.5	4	0.5	4	79		300	4		12	
Reference HALEY IND. 0200 NO 12 0.6 5 0.6 4 95 160 4 12 12 Z6-DIhfrotoluene FOFD MOTOR 0300 IL 12 0.9 4 79 139 250 4 12 12 CANADA PIPE 0100 IM 4 15 1 0 5 66 90 12 4 4 AleEY IND. 0200 NO 12 10 5 66 90 121 5 12 4 AleEY IND. 0200 NO 12 10 5 66 90 121 5 12 4 12 12 12 12 12 12 14 14 14 12 14 </td <td></td> <td></td> <td></td> <td>8</td> <td>õ</td> <td>9</td> <td>1.0</td> <td>S</td> <td>1.0</td> <td>5</td> <td>60</td> <td>91</td> <td>109</td> <td>S</td> <td></td> <td>5</td> <td></td>				8	õ	9	1.0	S	1.0	5	60	91	1 09	S		5	
R.6-Dintrolouene FOHD MOTOR 0300 IL 12 0.9 4 79 139 250 4 12 12 CANADA PIPE 0100 IM 4 15 0 4 79 139 250 4 12 14 CANADA PIPE 0100 IM 4 15 1 5 66 90 121 5 12 HALEY IND. 0200 NO 12 0 7 4 88 150 4 12 12 2-Chbronephthalene CANADA PIPE 0100 NO 4 0.5 66 90 12			HALEY IND.	0200	Q	12	9.0	5	9.0	4		95	160	4		12	0.0
CANADA PIPE 0100 IM 4 1.5 0 1 4 4 GENERAL MOTORS 0900 NO 12 10 5 66 90 121 5 12 HALEY IND. 0200 NO 12 0.7 5 0.7 4 98 150 4 12	6	2,6 – Dinitrotoluene	FORD MOTOR	8000	Ŀ	9	6.0	4	0.4	4	62	139	250	4		5	
GENERAL MOTORS 0900 NO 12 1.0 5 66 90 121 5 12 HALEY IND. 0200 NO 12 0.7 5 0.7 4 98 150 4 12 12 2-Chbionephthalene CANADA PIPE 0100 NO 4 0.5 4 98 150 4 12 12	_		CANADA PIPE	99	Σ	4	1.5	-								4	
HALEY IND. 0200 NO 12 0.7 5 0.7 4 88 150 4 12 2-Chbiconephthalene CANADA PIPE 0100 NO 4 0.5 4 88 150 4 12 12			GENERAL MOTORS	86	ð	5	1.0	5	1.0	5	66	6	121	5		12	
E-Chbionephthalene CANADA PIPE 0100 NO 4 0.5			HALEY IND.	0200	Q	9	0.7	5	0.7	4		88	150	4		12	0.0
	6	<u>2 – Chloronephthalene</u>		0100	NO	4	0.5									4	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	PARAMETER	PLANT	NIO	CLASS	LNS	NONAVR	GAATNS	GAAAVR	DAATNS	DAMIRC	OINT CLASS TNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD AAUTNSAAUAVD	DAAMARC	FAATNS	FAAVDA	AUTNSA	AUAVD
19	2-Chloronephthalene	FORD MOTOR	0300	Q	12	02	4	02	4	67	129	213	4		12	
		GENERAL MOTORS	0060	Q	9	0.4	5	0.4	4	59	84	103	5		12	
		HALEY IND.	0200	Q	4	02	5	0.1	4		57	88	4		12	0.1
19	2-Methylnaphthalene	CANADA PIPE	0100	Q	4	0.7					_				4	
_		GENERAL MOTORS	0060	Q	12	0.4	5	0.4	4	64	85	106	5	0.0	12	
		HALEY IND.	0200	Q	5	02	5	0.1	4		55	82	4	0.0	12	0.1
6	4-Bromophenyl Phenyl Ether	CANADA PIPE	0100	NO	4	1.0									4	
		FORD MOTOR	0300	Q	12	0.7	4	0.7	4	71	155	325	4		12	
		GENERAL MOTORS	0060	Q	12	1.0	5	1.0	5	48	88	102	5		12	
		HALEY IND.	0200	NO	12	0.5	5	0.5	4		64	100	4		12	0.1
19	4-Chbrophenyl Phenyl Ether	CANADA PIPE	0100	NO	4	1.0									4	
_		FORD MOTOR	0300	Q	12	0.4	4	0.4	4	73	138	250	4		12	
		GENERAL MOTORS	0060	Q	12	0.6	5	9.0	5	54	81	104	5		12	
		HALEY IND.	0200	Q	12	02	3	02	4		70	100	4		12	0.1
6	5-Nitro, Acenaphthene	CANADA PIPE	0100	Q	4	0.4									4	
		FORD MOTOR	0300	No	12	0.1	4	0.1	4	75	171	325	4		12	
_		GENERAL MOTORS	0060	Q	12	02	S	02	5	33	75	123	5		12	
		HALEY IND.	0200	Q	12	02	ŝ	0.1	4		4	86	4		12	0.1
19	Acenaphthene	CANADA PIPE	0100	Q	4	0.5									4	
		FORD MOTOR	0300	Q	12	0.3	4	0.3	4	67	148	263	4	0.0	12	
		GENERAL MOTORS	0060	Q	12	60	6	60	5	57	79	108	5		12	
		HALEY IND.	0200	Q	12	02	5	02	4		89	86	4	0.0	12	0.1
6	Acenaphthylene	CANADA PIPE	0100	NO	4	0.3									4	
		FORD MOTOR	0300	Q	5	0.3	4	0.3	4	63	142	238	4		12	
		GENERAL MOTORS	0060	Q	12	0.6	5	0.6	5	61	11	67	5		12	
		HALEY IND.	0200	Q	12	02	5	0.1	4		65	94	4		12	0.1
19	Anthracane	CANADA PIPE	0100	Q	4	02									4	
_		FORD MOTOR	0300	No	12	0.4	4	0.4	4	76	146	236	4	0.0	12	
		GENERAL MOTORS 0900	0060	No	12	6.0	5	6.0	5	45	84	124	5		12	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	DARAMETER	PLANT	POINT	CLASS	SNL	NONAVR	GAATNS	GAAAVR	DAATNS	DAAMIRC	POINT CLASSTNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD AAUTNS AAUAVD	DAMARC	FATNS	FAAAVD	ANTUR	AUAVD
19	Anthracene	HALEY IND.	0200	o Z	5	02	5	0.1	4		70	8	4	αo	12	0.1
19	Benzo(a)anthracene	CANADA PIPE	0100	Q	4	0.4									4	
		FORD MOTOR	0300	Q	5	9.0	4	9.0	4	65	108	155	4		12	
		GENERAL MOTORS	0060	Q	5	0.4	5	0.4	5	27	101	235	5		12	
		HALEY IND.	0200	Q	12	0.3	5	02	4		80	120	4		12	0.1
19	Benzo(a)pyrene	CANADA PIPE	0100	No	4	0.8									4	
		FORD MOTOR	0300	Q	5	1,0	4	1.0	4	8	95	145	4		12	
		GENERAL MOTORS	0060	Q	4	1.0	5	0.1	2	9 0	118	248	5		12	
		HALEY IND.	0200	NO	12	0.3	5	0.3	4		80	120	4		12	0.1
6	Benzo(b)fluoranthene	CANADA PIPE	0100	Q	4	0.6									4	
		FORD MOTOR	0300	NO	12	6.0	4	6,0	4	59	106	155	4		12	
		GENERAL MOTORS	0000	NO	12	1.0	5	1.0	5	34	100	197	5		12	
		HALEY IND.	0200	NO	12	0.3	5	0.3	4		80	120	4		12	0.1
6	Benzo(g,h,i) perylene	CANADA PIPE	0100	NO	4	0.6									4	
		FORD MOTOR	0300	NO	12	0,9	4	60	4	16	95	143	4		12	
		GENERAL MOTORS	0060	NO	12	1.0	5	1.0	4	43	119	239	5		12	
		HALEY IND.	0200	NO	12	0.3	5	02	4		84	- 140	4		12	0.1
€	Benzo(k)fluoranthene	CANADA PIPE	0100	NO	4	0.6									4	
		FORD MOTOR	0300	NO	12	0.7	4	0.7	4	59	105	140	4		12	
		GENERAL MOTORS 0900	0060	ò	2	1.0	5	1.0	5	8	116	269	5		12	
		HALEY IND.	0200	ò	5	0.3	S	02	4		8	140	4	0.0	5	0.1
€	Benzobuty/phthalate	CANADA PIPE	0100	Ē	4	1.0									4	
		GENERAL MOTORS	0060	0 V	4	0.7	5	0.7	5	23	123	337	5		4	
		HALEY IND.	0200	ò	12	0.4	S	0.4	4		6	8	4		5	0.1
6	Blphenyl	CANADA PIPE	0100	ş	4	0.7									4	
		GENERAL MOTORS	0060	ò	5	0.7	5	0.7	4	82	84	106	5		12	
		HALEY IND.	0200	Q	5	0.8	5	0.3	4		43	87	4	0.4	12	0.4
19	Bis 2 - chloroethoxy) methane	CANADA PIPE	0100	ò	4	0.4									4	
		FORD MOTOR	0300	Q	12	0.1	4	0.1	4	64	148	213	4		12	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

АТО	G PARAMETER	PLANT	POINT	CLASS	SNL	NONAVR	GAATNS	GAAAVR	DAATNS	POINT CLASS TINS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD AAUTNS AAUAVD	DAAAVRC	DAMARC	FAATNS	FAAND	NUTUS	AUAVD
₽ ₽	Bis(2 - chloroethoxy() msthane	GENERAL MOTORS 0900	0060	ò	12	0.4	S	0.4	5	68	91	138	5		12	
		HALEY IND.	0200	g	9	02	5	0.1	4		48	10	. 4		12	0.1
19	Bis(2 - chloroethy!) ether	CANADA PIPE	0100	ò	4	0.4									4	
		FORD MOTOR	0300	g	2	0.1	4	0.1	4		80	164	4		12	
		GENERAL MOTORS	0060	g	12	0.4	S	0.4	4	8	82	113	5		12	
		HALEY IND.	0200	g	9	02	5	0.1	4		58	140	4		12	0.1
6	Bis(2 – chioroisopropyi)ether	CANADA PIPE	0100	g	4	0.7									4	
		FORD MOTOR	0300	g	4	02	4	02	4		83	155	4		12	
		GENERAL MOTORS	0060	Q	4	0.5	5	0.5	4	58	80	109	5		12	
		HALEY IND.	0200	Q	Ξ	02	5	0.1	4		30	71	4		11	0.1
€	Camphene	CANADA PIPE	0100	NO	4	0.3									4	
		FORD MOTOR	0300	No	12	0.1	4	0.1	4		20	51	4		12	
		GENERAL MOTORS	0060	NO	12	0.6	5	0.6	4	12	48	84	5		12	
		HALEY IND.	0200	Q	12	02	5	0.1	4		5	16	4		12	0.1
19	Chrysene	CANADA PIPE	0100	NO	4	1.0									4	
		FORD MOTOR	0300	0 N	4	1.1	4	1.0	4	24	92	130	4		12	
		GENERAL MOTORS	0060	NO	12	0.7	5	0.7	5	28	91	187	5		12	
		HALEY IND.	0200	ş	9	0.4	5	0.3	4		80	120	4		12	0.1
6	Di-n-butyi Phthalate	GENERAL MOTORS	0060	-	9	0.6	5	6.0	5	35	107	190	5	4.1	12	0.0
		CANADA PIPE	0100	Q	4	0.3									4	
		HALEY IND.	0200	0 V	9	02	5	0.1	4		12	31	4	0.0	12	0.1
6	Dibenz (a,h) anthracene	CANADA PIPE	0100	NO	4	0.3									4	
		FORD MOTOR	0300	NO	12	0.6	4	0.6	4	13	89	158	4		12	
		GENERAL MOTORS	0060	No	12	0.6	5	0.6	4	55	125	278	2		12	
		HALEY IND.	0200	NO	12	02	5	02	4		100	180	4		12	0.1
ţ	Diphenyl Ether	CANADA PIPE	0100	N	4	1.0									4	
		FORD MOTOR	0300	NO	12	1.0	4	1.0	4	67	141	238	4		12	
		GENERAL MOTORS	0060	NO	12	1.0	5	1.0	4	62	98	105	2		12	
		HALEY IND.	0200	No	12	0.4	5	0.4	4		41	88	4		12	0.0

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	PARAMETER	PLANT	POINT	CLASS	SNL	MONAVR	BAATNS	GAAAVR	DAATNS	DAAMIRC	DAANRC	POINT CLASSTINS MONAVR GAATNS GAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD AAUTNS AAUAVD	FATNS	FAAND	AUTNS	AUAVD
19	Diphenylamine	CANADA PIPE	0100	Q	4	0.1									4	
		FORD MOTOR	0300	Q	4	0.1	4	0.1	4	65	104	127	4		12	
		GENERAL MOTORS	0060	No	12	0.1	S	0.1	4	30	53	94	5		12	
		HALEY IND.	0200	NO	11	02	5	0.1	4		117	260	4	00	11	0.1
19	Fluoranthene	CANADA PIPE	0100	Q	4	0.6									4	
		GENERAL MOTORS	0060	Q	12	1.0	5	1.0	5	29	95	188	5		12	
		HALEY IND.	0200	NO	12	0.3	5	£.0 .	4		76	120	4	[12	0.1
19	Fluorene	CANADA PIPE	0100	NO	4	02									4	
		FORD MOTOR	0300	Q	12	0.4	4	02	4	69	133	200	4	0.1	12	
		GENERAL MOTORS	0060	Q	12	0.7	S	0.7	5	57	85	104	5		12	
		HALEY IND.	0200	NO	12	02	5	0.1	4		69	96	4	0.0	12	0.1
19	Indeno(1,2,3-cd)pyrene	CANADA PIPE	0100	NO	4	0.5				1.01				_	4	
		FORD MOTOR	0300	NO	12	0.5	4	0.5	4	30	32	158	4	_	12	
		GENERAL MOTORS	0060	NO	12	0.8	5	0.8	4	39	74	111	5		12	
		HALEY IND.	0200	NO	12	02	5	02	4		103	180	4		12	0.1
19	Indole	CANADA PIPE	0100	No	4	9.0									4	
_		FORD MOTOR	0300	NO	12	0.8	4	8.0	4	67	106	125	4		12	
		GENERAL MOTORS	0060	NO	12	0.3	5	6.0	4	33	76	129	5		12	
		HALEY IND.	0200	No	12	0.4	5	0.1	4		39	100	4	02	12	02
19	N-Nitrosodi-n-propylamine	CANADA PIPE	0100	Q	4	0.7									4	
		FORD MOTOR	0300	Q	12	0.1	4	0.1	4		8	173	4		12	
		GENERAL MOTORS	0060	Q	4	0.7	5	0.7	5	53	7	88	5		12	
		HALEY IND.	0200	NO	10	02	5	0.1	4		43	88	4		10	0.1
6	N-Ntrosodiphenylamine	CANADA PIPE	0100	Q	4	0.1									4	
		FORD MOTOR	0300	Q	5	0.1	4	0.1	4	65	104	136	4		ų	
_		GENERAL MOTORS	0060	Q	5	0.1	5	0.1	4	30	53	2	5		4	
		HALEY IND.	0200	ò	Ξ	02	5	0.1	4		5	260	4	0.0	=	0.1
19	Nephthelene	CANADA PIPE	010 010	Q	4	02									4	
		GENERAL MOTORS 0900	0060	No	ß	1.0	5	6.0	5	15	69	115	9	0.0	49	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	ARAMETER	PLANT	POINT	CLASS	NNS N	AONAVR	GAATNS	GAAAVR	DAATNS	DAAMIRC	POINT CLASS TINS MOMAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARC FAATNS FAAAVD AAUTNS AAUAVD	DAMARC	FATNS	FAAAVD	NUTUR	AUAVD
5	Nephthalene	HALEY IND.	0200	Q	9	02	5	0.1	4		53	85	4	0.0	12	0.1
ę	Perylene	CANADA PIPE	0100	g	4	02									4	
		FORD MOTOR	0300	ò	9	0.7	4	0.7	4	14	89	145	4		12	
		GENERAL MOTORS	0060	ò	12	0.7	5	0.7	4	41	8	217	5		12	
		HALEY IND.	0200	ò	4	02	5	0.1	4		51	100	4		12	0.1
19	Phenanthrene	CANADA PIPE	0100	-	4	1.0									4	
		GENERAL MOTORS 0900	0060	-	ß	1.1	5	0.1	5	4	63	103	9	02	49	
		HALEY IND.	0200	ò	12	0.3	5	03	4		70	8	4		12	0.1
6	Pyrene	CANADA PIPE	0100	-	4	60									4	
		FORD MOTOR	800	_	4	1.1	4	0.8	4	4	152	263	4	0.1	12	
		GENERAL MOTORS	0000	Q	12	0.8	5	0.8	5	53	101	202	5		12	
		HALEY IND.	0200	Q	12	0.3	5	0.3	4		73	110	4	02	12	0.1
ຊ	2,3,4,5 - Tetrachlorophenol	CANADA PIPE	0100	Q	4	1.0										
		FORD MOTOR	0300	No	12	1.0	4	1.0	4	60	76	67	4			
		GENERAL MOTORS	0900	No	12	1.0	5	1.0	4	54	86	117	5		1	
		HALEY IND.	0200	No	12	0.6	5	0.4	4		82	120	4	6.0	7	0.1
20	2,3,4,6 – Tetrachlorophenol	CANADA PIPE	0100	NO	4	0.3										
		FORD MOTOR	0300	Q	12	0.4	4	0.4	4	39	32	168	4			
		GENERAL MOTORS	0060	Q	12	0.3	5	0.3	4	65	85	116	5		1	
		HALEY IND.	0200	Q	4	02	5	0.1	4		38	100	4	0.0	7	0.1
8	2,3,4 – Trichlorophenol	CANADA PIPE	0100	ī	4	4.3										
		FORD MOTOR	0300	No	12	0.7	4	0.7	4	25	47	65	4			
		GENERAL MOTORS	0060	Q	5	0.8	5	8,0	4	69	93	112	5		1	
		HALEY IND.	0200	No	12	0.4	5	0.3	4		58	120	4	0.1	7	0.1
8	2,3,5,6-Tetrachlorophenol	CANADA PIPE	0100	Q	4	0.4										
		FORD MOTOR	0300	Q	12	0.9	4	6.0	4	33	113	239	4			
		GENERAL MOTORS 0900	0060	Q	12	0.6	5	0.6	4	55	80	111	5		1	
		HALEY IND.	0200	No	12	02	5	0.1	4		53	110	4	0.0	7	0.1
8	20 23,5-Trichlorophenol	CANADA PIPE	0100	QN	4	0.3										

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

APPENDIX IV

TABLE 2 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY NON-CANDIDATE PARAMETERS

PLANT POINT CLASSTINS MONAVE GAAAVE DAATINS DAAMIRC DAAAVEC DAAMARC FAATINS FAAAVD AAUTINS AAUAVD	POINT CLASSTNS MONAVR G	CLASSTNS MONAVR 0	TNS MONAVR 0	MONAVR G	6	ATNS	GAAVR	DAATNS	DAAMIRC	DAAAVRC	DAMARC	FATINS	FMAVD	ANTURS	
	FORD MOTOR	0300	Q	5	0.3	4	0.3	4	55	80	114	4			
	GENERAL MOTORS	0060	Q	12	0.4	5	0.4	4	69	94	113	5		1	
	HALEY IND.	0200	Q	12	02	2	0.1	4		09	140	4	00	7	0.1
2,4,5 – Trichlorophenol	CANADA PIPE	0100	NO	4	0.5										
	FORD MOTOR	0300	No	12	0.4	4	0.4	4	54	62	110	4			
	GENERAL MOTORS	0060	Q	12	0.5	5	0.5	4	74	88	117	5		-	
2,4,5 — Trichlorophenol	HALEY IND.	0200	N	12	0.3	2	02	4		ន	110	4	0.1	7	0.1
	CANADA PIPE	0100	NO	4	0.9										
	FORD MOTOR	0300	Ŋ	12	0.4	4	0.4	4	75	8	120	4			
	GENERAL MOTORS	0060	oN	12	0.4	5	0.4	5	46	7	8	2		-	
	HALEY IND.	0200	NO	12	02	S	0.1	4		ន	6	4	0.0	2	0.1
	CANADA PIPE	0100	NO	4	0.7										
	FORD MOTOR	0300	No	12	0.3	4	£.0	4	49	88	150	4			
	GENERAL MOTORS	0060	No	12	0.6	5	9.0	2	60	76	102	5		1	
1	HALEY IND.	0200	NO	12	02	5	0.1	4		44	10 10	4		2	0.1
	CANADA PIPE	0100	No	4	0.4										
	HALEY IND.	0200	Q	12	02	5	0.1	4		28	73	4		7	0.1
	CANADA PIPE	0100	No	4	0.1										
	FORD MOTOR	0300	NO	12	0.7	4	2.0	4	36	292	725	4			
	GENERAL MOTORS	0060	No	12	0.1	5	0.1	5	17	58	94	5		1	
	HALEY IND.	0200	No	12	02	5	0.1	4		25	69	4		2	0.1
	CANADA PIPE	0100	Q	4	0.6										
	FORD MOTOR	0300	Q	12	0.3	4	0.3	4	65	94	138	4			
	GENERAL MOTORS	0060	NO	12	0.3	5	0.3	4	59	86	128	5		•	
	HALEY IND.	0200	<u>o</u>	12	02	2	0.1	4		48	110	4		7	0.1
	CANADA PIPE	0100	NO	4	0.7										
	FORD MOTOR	0300	NO	12	02	4	02	4	45	84	138	4			
	GENERAL MOTORS 0900	0060	Q	ų	0.3	5	0.3	5	14	52	96	5		1	
	HALEY IND.	0200	NO	12	02	5	0.1	4		ង	75	4		7	0.1

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

APPENDIX IV

TABLE 2 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT SUMMARY NON-CANDIDATE PARAMETERS

ATG	PARAMETER	PLANT	POINT	CLASST	NSN N	ONAVR	GAATNS	GAAAVR	DAATNS	POINT CLASS TNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAMARCFAATNS FAAAVD AAUTNS AAUAVD	DAAAVRC	DAAMARC	FAATNS	FAAVD	ANTUR	AAUAVD
ຊ	4.6 - Dinitro - o - cresol	CANADA PIPE	0100	Q	4	0										
		FORD MOTOR	0300	No	12	02	4	02	4	83	115	150	4			
		GENERAL MOTORS	0060	Q	12	0.1	5	0.1	5	44	82	119	5		-	
		HALEY IND.	0500	Q	4	02	5	02	4		60	120	4		7	0.1
ຊ	4 – Chloro – 3 – methylphenol	CANADA PIPE	0 <u>1</u> 0	Q	4	6.0										
		FORD MOTOR	0300	Q	12	0.4	4	0.4	4	43	85	138	4	0.0		
		GENERAL MOTORS	868	g	2	0.5	5	0.5	5	8	65	95	5		1	
		HALEY IND.	0200	Q	12	02	5	0.1	4		95	140	4		2	0.1
8	4 – Nitrophenol	CANADA PIPE	0100	ON	4	1.0										
		FORD MOTOR	0300	ON	12	0.5	4	0.4	4	56	26	138	4	0.1		
		GENERAL MOTORS	0060	Q	12	0.3	5	£.0	5	5	58	57	5		-	
ຊ	Pentachlorophenol	CANADA PIPE	0100	F	4	1.0										
		FORD MOTOR	0300	0N	12	12	4	6.0	4	44	226	417	4			
		GENERAL MOTORS	0060	Q	12	0.5	S.	0.5	S	40	8	101	5		-	
8	Phenot	CANADA PIPE	0100	H	4	29.5	•									
		HALEY IND.	0200	NO	12	0.3	5	0.1	4		34	89	4	0.1	2	0.1
8	m Cresol	CANADA PIPE	010 0	≖	4	2.5										
		HALEY IND.	0200	Q	12	02	5	0.1	4		41	8	4		7	0.1
8	o Cresol	CANADA PIPE	0100	Ŧ	4	1.8										
		HALEY IND.	8000	ov	5	02	5	0.1	4		36	87	4		7	0.1
30	p-Cresol	CANADA PIPE	0100	Ŧ	4	2.5										
		HALEY IND.	0200	Q	12	02	5	0.1	4		41	82	4		7	0.1
33	1,2,3,4 - Tetrachlorobenzene	FORD MOTOR	00E0	No	4	0.5										
		GENERAL MOTORS	0060	oN	4	60	-	6	-	41	41	41				
		HALEY IND.	0200	NO	4	1.0							-		2	
53	1,2,3,5-Tetrachlorobenzene	FORD MOTOR	0300	Q	4	0.5										
		AOTORS	0 60	Q	4	60	1	1.0	1	38	38	38				
		HALEY IND.	0200	N	4	1.0							1		2	
23	12.3 – Trichlorobenzene	GENERAL MOTORS 0900	0060	M	4	1.1	ł	1.0	-	35	35	35				

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

АТО	0 PARAMETER	PLANT	POINT	CLASS	SN	NONAVR	GAATNS	GAAAVR	DAATNS	POINT CLASS TINS MONAVE GAATINS GAAAVE DAATINS DAAMIRC DAAAVEC DAAMARC FAATINS FAAAVD AAUTINS AAUAVD	DAAAVRC	DAMARC	FATINS	FAAVD	AUTINS	AUAVD
ន	1,2,3Trichlorobenzene	FORD MOTOR	0300	on	4	1.0										
53	1,2,4,5-Tetrachlorobenzene	FORD MOTOR	0300	Q	4	0.5										
		GENERAL MOTORS	80	Q	4	6,0	-	1.0	-	47	47	47				
		HALEY IND.	0200	o V	4	1.0							1		2	
23	12,4-Trichlorobenzene	GENERAL MOTORS	0 60	₹	4	1.1	-	1.0	-	35	35	35				
		FORD MOTOR	0300	0N N	4	1.0										
		HALEY IND.	0200	NO	4	1.0						•	-		2	
ŝ	2,4,5-Trichlorotoluene	GENERAL MOTORS	0060	١٢	4	6.0	-	1.0	-	38	88	8				
		FORD MOTOR	0300	NO	4	1.0										
		HALEY IND.	0200	0N N	4	1.0							-		8	
33	Hexachlorobenzene	FORD MOTOR	0300	No	4	0.1										
_		GENERAL MOTORS	0060	No	4	6.0	-	1.0	-	46	46	46				
		HALEY IND.	0200	NO	4	1.0							-		8	
S	Hexachlorobutadiene	FORD MOTOR,	0300	NO	4	0.5										
		GENERAL MOTORS	0 60	Q	4	6.0	-	1.0	-	35	35	35				
		HALEY IND.	0500	Q	4	1.0							-		2	
33	Hexachlorocyclopentadiene	HALEY IND.	0200	M	4	1.6							-	2.5	2	
		FORD MOTOR	0300	Q	4	0.5										
		GENERAL MOTORS	0060	No	4	1.0	1	1.0	1	28	28	28				
23	Hexachloroethane	FORD MOTOR	0300	Q	4	0.5										
		GENERAL MOTORS	0060	No	4	6,0	-	1.0	1	9	3	e				
		HALEY IND.	0200	NO	4	1.0							•		2	
23	Octachlorostyrene	FORD MOTOR	0300	Q	4	0.1										
		GENERAL MOTORS	0060	NO	4	6.0	1	1.0	-	63	83	63				
		HALEY IND.	0200	g	4	1.0							-		2	
33	Pentachlorobenzene	HALEY IND.	0200	M	4	1.3							-	1.4	2	
		FORD MOTOR	0300	ð	4	0.5										
		GENERAL MOTORS 0900	0060	Q	4	6.0	-	1.0	-	46	46	46				
24	2.3.7.8 TCDD	FORD MOTOR	0300	Q	~	0.5										

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	PARAMETER	PLANT	LNIO	CLASS	INS	MONAVR	GAATNS	GAAAVR	DAATN	SDAMIRC	DAAAVRC	DAAMARC	FATNS	POINT CLASSTNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAVRC DAAMARCFAATNS FAAAVD AAUTNS AAUAVD	NSAUAVD
24	2,3,7,8 TCDD	GENERAL MOTORS 0900	0060	Q	2	0.5									
		HALEY IND.	0200	NO	2	1.0									
24	Octachlorodlbenzofuran	GENERAL MOTORS 0900	0060	Q	~	0.5									
		HALEY IND.	0200	Q	N	. 1.0									
24	Total H6CDD	FORD MOTOR	0300	Q	2	0.5									
-		GENERAL MOTORS 0900	0060	Q	2	0.4									
24	Total H5CDF	GENERAL MOTORS 0900	0060	Q	2	0.5			1						
24	Total H7CDD	FORD MOTOR	0300	g	2	0.5									
1		GENERAL MOTORS 0900	0060	Q	2	0.4									
24	Total H7CDF	FORD MOTOR	0300	Q	~	0.3									
		GENERAL MOTORS	0060	Q	~	0.5									
24	Total PCDD	FORD MOTOR	0300	Q	~	0.5									
		GENERAL MOTORS 0900	0060	Ň	~	0.5									
		HALEY IND.	0200	oN	2	1.0								-	
24	Total PCDF	FORD MOTOR	0300	Q	2	0.7									
		GENERAL MOTORS	0060	Q	~	0.5									
24	Total TCDD	FORD MOTOR	0300	Q	2	0.5									
		GENERAL MOTORS 0900	0060	Q	2	0.5									
		HALEY IND.	0200	Q	2	1.0									
24	Total TCDF	GENERAL MOTORS 0900	0060	N	2	0.5									
56	Abletic Acid	CANADA PIPE	010	Q	4	0.8									
		FORD MOTOR	0300	Q	11	1.0	4	1.0		4	9	13	4	_	
56	Chlorodehydroabletic Acld	CANADA PIPE	0100	ON	4	0.6									
		FORD MOTOR	0300	Q	11	1.0	4	1.0	,	4	29	75	4		
		GENERAL MOTORS	0060	oN	12	1.0	4	1.0		4 75		110	4		
26	Dehydroabietic Acld	GENERAL MOTORS 0900	0060	Ŀ	12	1.0	4	1.0		4 85	100	110	4		
		CANADA PIPE	0100	Q	4	0.8									
56	Dehydroabletic Acid	FORD MOTOR	0300	Q	11	1.0	4	1.0		3 7	34	11	4		
26	Isopimeric Acid	CANADA PIPE	0100	Q	4	9.0									

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

ATG	PARAMETER	PLANT	POINT	CLASS	SNT	MONAVR	GAATNS	GAAAVR	DAATNS	DAAMIRC	POINT CLASS TNS MONAVR GAATNS GAAAVR DAATNS DAAMIRC DAAAVRC DAAMARCFAATNS FAAAVD AAUTNS AAUAVD	DAMARC	FAATNS	FAAND	AUTNS	AAUAVD
56	Isopimaric Acid	FORD MOTOR	0300	Q	=	1.0	4	10	4	-	21	49	4			
		GENERAL MOTORS 0900	0060	NO	12	0.8	4	1.0	4	79	91	102	4			
8	Levopim aric Acid	CANADA PIPE	0100	NO	4	0.8										
		FORD MOTOR	0300	Q	11	1.0	4	1.0	4	1	11	38	4			
<u>8</u>	Neoabletic Acid	CANADA PIPE	0100	NO	4	0.4										
		FORD MOTOR	0300	Q	Ŧ	1.0	4	10	4		-	8	4			
8	Otelc Acid	CANADA PIPE	0100	Q	4	0.8										
		FORD MOTOR	0300	No	11	12	4	1.4	4	5	35	81	4	0.4		
		GENERAL MOTORS 0900	0060	Q	12	0.8	4	1.0	4	55	85	96	4			
26	Pimaric Acid	CANADA PIPE	0100	NO	4	9,0										
		FORD MOTOR	0300	NO	11	1.0	4	1.0	4	9	34	84	4			
		GENERAL MOTORS 0900	0060	9 V	12	8.0	4	8,0	4	55	81	102	4			
27	PCBT	CANADA PIPE	0100	0N N	4	0.5										
		GENERAL MOTORS 0900	0060	0N N	12	0.4	4	0.3					4	0.1		
		HALEY IND.	0200	ò	5	0.5	5	0.5	e				4		4	

NOTE: A GLOSSARY OF TERMS USED IN THIS SUMMARY IS GIVEN AT THE END OF THIS REPORT.

.

APPENDIX V

EFFLUENT MONITORING DATA

APPENDIX V TABLE 1

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

CANADA PIPE COMPANY LTD., HANILTON

CONTROL POINT #: 0100 STREAM: CUPOLA SCRUBBER (FINAL) FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	4	FH	100	100	75	3.10	80.00	28.28
2	Cyanide Total	4	FM	100	100	50	3.40	320.00	84.80
4a	Ammonia plus Ammonium	4	FM	75	75	50	.96	30.80	12.24
	Total Kjeldahl Nitrogen	4	FH	100	100	75	2.80	62.00	30.80
4b	Nitrate+Nitrite	4	FH	100	100	75	2.08	29.60	16.22
5a	DOC	12	FH	100	100	100	10.40	700.00	140.20
5b	TOC	3	FH	100	100	67	4.80	40.00	18.93
6	Total Phosphorus	4	FM	100	75	25	1.50	15.00	5.20
7	Specific Conductance	4	FH	100	100	100	94.00	5800.00	2633.50
8	Total Suspended Solids	42	FN	93	90	86	.84	8200.00	295.83
	Volatile Suspended Solids	4	IM	25	25	0	.40	3.00	1.23
9	Aluminum	12	FH	100	100	92	3.17	1100.00	185.01
	Beryllium		ND	0	0	0	.10	.50	. 18
	Cadimium	12	FH	100	100	100	5.00	6500.00	1137.17
	Chromium	12	FM	67	58	17	. 15	260.00	27.46
	Cobalt	12	IM	17	17	8	.10	16.50	1.94
	Copper	12	FH	100	92	83	1.50	1900.00	197.36
	Lead	12	FH	100	100	92	2.73	8000.00	1014.06
	Molybdenum	12	FM	83	67	42	. 15	60.00	9.29
	Nickel	12	FL	50	25	17	.45	85.00	9.43
	Silver	12	IL	25	0	0	.10	1.50	.61
	Thallium	12	IL	17	8	0	.33	2.00	.61
	Vanadium	12	NO	8	8	0	.10	4.33	.53
	Zinc	12	FH	100	100	100	180.00	220000.00	31313.33
10	Antimony	4	FM	100	75	50	1.00	20.00	10.20
	Arsenic	4	FM	75	75	0	.80	4.60	2.65
	Selenium	4	FL	50	50	50	.60	30.00	10.20
11	Chromium (hexavalent)	1	NO	0	0	0	.90	.90	.90
12	Mercury	4	FM	75	75	50	.60	17.00	8.47
13	Tetra-alkyl lead (Twotal)	8	IL	38	0	0	.50	1.00	.69
	Tri-alkyl lead (Total)	8	IL	38	0	0	.50	1.00	.69
14	Phenolics (4AAP)	42	FH	100	100	88	2.00	320.00	36.61
15	Sulphide	4	FM	100	100	50	·2.00	9.00	4.75
16	1,1,2,2-Tetrachloroethane	4	NO	0	0	0	. 10	. 10	.10
	1,1,2-Trichloroethane	4	NO	0	0	0	1.00	1.00	1.00
	1,1-Dichloroethane	4	NO	0	0	0	.63	.63	.63
	1,1-Dichloroethylene	4	NO	0	0	0	. 14	. 14	.14
	1,2-Dichlorobenzene	4	NO	0	0	0	.29	. 29	.29
	1,2-Dichloroethane	4	NO	0	0	0	.50	.50	.50
	1,2-Dichloropropane	4	NO	0	0	Ó	.56	.56	.56
	1,3-Dichlorobenzene	4	NO	0	Ó	Ó	.27	.27	.27
	1,4-Dichlorobenzene	4	NO	0	Ó	Ď	.12	. 12	. 12
	Bromoform	4	IL	25	0	0	. 10	1.38	.47

 TNS
 = NUMBER OF VALID SAMPLES

 %FREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 1 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

CANADA PIPE COMPANY LTD., HAMILTON

CONTROL POINT #: 0100 STREAM: CUPOLA SCRUBBER (FINAL) FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

			<u>x</u>	FREQU	ENCY OF I	DETECTION	CONC	ENTRATION F	CITATIO
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
16	Bromomethane	4	NO	0	0	0	.65	.65	.65
	Carbon Tetrachloride		NO	Ō	Ō	ō	.23	.23	.23
	Chlorobenzene	4	NO	0	0	0	.86	.86	.86
	Chloroform	4	IM	25	25	0	.57	2.57	1.07
	Chloromethane	4	NO	0	0	0	.62	.62	.62
	Cis-1,3-Dichloropropylene	4	NO	0	0	0	.50	.50	.50
	Dibromochloromethane	4	NO	0	0	0	.36	.45	.39
	Ethylene Dibromide	- 4	NO	0	0	0	.60	.60	.60
	Methylene Chloride	- 4	NO	0	0	0	.23	.23	.23
	Tetrachloroethylene	- 4	NO	0	0	0	. 18	.18	. 18
	Trans-1,2-Dichloroethylene	- 4	NO	0	0	0	.29	. 29	. 29
	Trans-1,3-Dichloropropylene	4	NO	0	0	0	.79	.79	. 79
	Trichloroethylene		NO	0	0	0	. 16	. 16	. 16
	Trichlorofluoromethane		NO	0	0	0	.30	.30	.30
	Vinyl Chloride	-	NO	0	0	0	.72	.72	.72
17	Benzene	4	NO	0	0	0	.40	.40	.40
	Styrene		IL	25	0	0	.80	1.20	.90
	Toluene		NO	0	0	0	.80	.80	.80
	m-Xylene and p-Xylene		NO	0	0	0	-45	.45	.45
	o-Xylene		NO	0	0	0	-80	.80	.80
18	Acrolein			0	0	0	.75	.75	.75
	Acrylonitrile		NO	0	0	0	.45	.45	.45
19	1-Chloronaphthalene		NO	0	0	0	.32	.32	.32
	1-Methylnaphthalene		NO	0	0	0	.69	.69	.69
	2,4-Dinitrotoluene		NO	0	0	0	.63	.63	.63
	2,6-Dinitrotoluene		IM	25	25	0	.86	3.43	1.50
	2-Chloronaphthalene		NO	0	0	0	.50	.50	.50
	2-Methylnaphthalene		NO	0	0	0	.68	.68	.68
	4-Bromophenyl Phenyl Ether		NO	0	•	-	1.00	1.00	1.00 1.00
	4-Chlorophenyl Phenyl Ether		NO	0	0	0	1.00,	1.00	
	5-Nitro, Acenaphthene		NO	0	0	0	-42	.42	.42
	Acenaphthene		NO	0	0	0	.54	.54	.54 .29
	Acenaphthylene		NO	0	0	0	.29	.29	.29
	Anthracene		NO	0	-	0	•••	.17	.17
	Benzo(a)anthracene		NO	0	0 0	0	.40 .83	.40	.40
	Benzo(a)pyrene		NO	0	0	0	.57	.63	.63
	Benzo(b)fluoranthene		NO NO	0	0	0	.57	.57	.57
	Benzo(g,h,i)perylene Benzo(k)fluoranthene		NO	0	0	0	.57	.57	.57
			NU IL	25	0	0	1.00	1.00	1.00
	Benzobutylphthalate Biphenyl		NO	25	0	0	.67	.67	.67
	Bis(2-chloroethoxyl)methane		ND	0	0	0	.37	.87	.87
	Bistz-chiol bethoxyt Jilethane	4	NU	U	0	Ū			

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 1 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

CANADA PIPE COMPANY LTD., HAMILTON

CONTROL POINT #: 0100 STREAM: CUPOLA SCRUBBER (FINAL) FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
19	Bis(2-chloroethyl)ether	4	NO	0	0	0	.41	.41	.41
	Bis(2-chloroisopropyl)ether	4	NO	0	0	0	.68	.68	.68
	Bis(2-ethylhexyl)phthalate	4	FL	50	0	0	.64	1.32	.97
	Camphene	4	NO	0	0	0	.29	.29	.29
	Chrysene	4	NO	0	0	0	1.00	1.00	1.00
	Di-n-butyl Phthalate	4	NO	0	0	0	.29	.37	.31
	Dibenz(a,h)anthracene	4	NO	0	0	0	.31	.31	.31
	Diphenyl Ether	4	NO	0	0	0	1.00	1.00	1.00
	Diphenylamine	4	NO	0	0	0	.14	. 14	.14
	Fluoranthene	4	NO	0	0	0	.50	.75	.56
	Fluorene	4	NO	Ó	Ó	Ó	.18	.18	. 18
	Indeno(1,2,3-cd)pyrene	4	NO	Ō	D	Ō	.46	.46	.46
	Indole	4	NO	Ó	Ō	Ō	.63	.63	.63
	N-Nitrosodi-n-propylamine	4	NO	Ó	Ó	Ō	.68	.68	.68
	N-Nitrosodiphenylamine	4	NO	Ō	Ō	Ō	.14	.14	. 14
	Naphthaiene	4	NO	0	Ó	0	. 19	. 19	. 19
	Perviene	4	NO	0	Ō	0	.20	.20	.20
	Phenanthrene	4	TL.	25	Ó	ō	.75	1.75	1.00
	Pyrene	4	IL	25	0	0	.75	1.25	.87
20	2,3,4,5-Tetrachlorophenol	4	NO	0	Ō	Ō	1.00	1.00	1.00
	2,3,4,6-Tetrachlorophenol	4	NO	ō	Ō	ō	.25	.25	.25
	2,3,4-Trichlorophenol	4	IH	25	25	25	.83	14.67	4.29
	2,3,5,6-Tetrachlorophenol	4	NO	0	0	0	.44	.44	.44
	2,3,5-Trichlorophenol	4	NO	Ó	Ō	ō	.31	.31	.31
	2,4,5-Trichlorophenol	4	NO	Ō	Ō	ō	.46	.46	.46
	2,4,6-Trichlorophenol	4	NO	Ō	ō	õ	.92	.92	.92
	2,4-Dichlorophenol	4	NO	Ō	Ō	ō	.71	.71	.71
	2,4-Dimethylphenol		NO	Ō	Ő	ŏ	.23	.75	.36
	2,4-Dinitrophenol		NO	ō	ā	Ő	.11	.11	.11
	2,6-Dichlorophenol		NO	ŏ	ŏ	Ő	.55	.55	.55
	2-Chlorophenol		NO	ō	ŏ	ŏ	.73	.73	.73
	4,6-Dinitro-o-cresol		NO	õ	ŏ	Ő	.10	.10	.10
	4-Chloro-3-methylphenol		NO	Ő	ŏ	õ	.93	.93	.93
	4-Nitrophenol		NO	ŏ	ŏ	ŏ	1.00	1.00	1.00
	Pentachlorophenol		IL	25	ő	ŏ	.85	1.54	1.02
	Phenol		18	25	25	25	.46	116.67	29.51
	m-Cresol		11	25	25	25	.40	7.35	2.50
	o-Cresol		IH I	25	25	25	.46	5.68	1.76
	p-Cresol		IH I	25	25	25	1.00	7.14	2.54
25	Oil and Grease	41		85	78	46	.96	36.00	7.18
26	Abietic Acid		NO	0	,0	40 0	.80	.80	.80
	Chlorodehydroabietic Acid		NO	ŏ	Ő	0	.60	.60	.60

= NUMBER OF VALID SAMPLES TNS

 RFREQ
 = DERCENT FREQUENCY OF DETECTION ABOVE RHOL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 1 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

CANADA PIPE COMPANY LTD., HAMILTON

CONTROL POINT #: 0100 STREAM: CUPOLA SCRUBBER (FINAL) FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

			<u>x</u>	FREQU	ENCY OF I	DETECTION	CON	CENTRATION	RATIO
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MININUM	MAXINUM	AVERAGE
26	Dehydroabietic Acid	4	NO	0	0	0	.80	.80	.80
	Isopimaric Acid	4	NO	0	0	0	.60	.60	.60
	Levopimaric Acid	4	NO	0	0	0	.80	.80	.80
	Neoabietic Acid	4	ND	0	0	0	.40	.40	.40
	Oleic Acid	4	NO	0	0	0	.80	.80	.80
	Pimaric Acid	4	NO	0	0	0	.60	.60	.60
27	PCBT	4	NO	0	0	0	.50	.50	.50
MC1	Iron	12	FH	100	100	100	40.00	175000.00	16721.65
	Magnesium	12	FH	100	100	100	420.00	17000.00	3013.35
MC2	Fluoride	12	FH	100	100	100	14.00	1700.00	254.33

.

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

.

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 2

_

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD HOTOR COMPANY OF CAMADA, WINDSOR

CONTROL POINT #: 0100 STREAM: FINAL FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	156	FL	69	35	3	1.00	7.70	1.84
2	Cvanide Total	12	FL	50	50	42	.60	13.80	4.60
4a	Ammonia plus Ammonium	12	FL	67	0	0	.12	1.56	1.02
	Total Kieldahl Nitrogen	4	FL	100	50	0	1.32	3.58	2.27
4b	Nitrate+Nitrite	12	FM	100	83	17	1.36	6.16	3.18
5a	DOC	52	FH	100	98	67	1.80	16.20	6.80
5b	TOC	4	FL	75	0	0	.86	1.42	1.15
6	Total Phosphorus	52	NO	4	0	0	.10	1.40	.31
7	Specific Conductance	364	FH	100	100	100	45.60	109.60	64.91
8	Total Suspended Solids	364	FM	85	60	9	.20	31.20	2.70
	Volatile Suspended Solids	4	FL	50	25	0	.60	3.59	1.64
9	Aluminum	156	FH	99	99	94	.33	111.00	27.26
-	Beryllium	156	IL	3	1	0	1.00	2.00	1.01
	Cadmium	156	IM	31	31	6	.50	12.50	1.63
	Chromium	156	IL	3	1	0	1.00	2.50	1.02
	Cobalt	156	IL	1	0	0	1.00	1.00	1.00
	Copper	156	IM	19	19	1	1.00	5.00	1.28
	Lead	156	FL	60	48	3	.33	7.00	1.79
	Molybdenum	156		50	11	Ō	1.00	4.00	1.21
	Nickel	156	IL	4	2	0	1.00	2.50	1.03
	Silver	156		1	Ō	Ó	.50	1.00	.51
	Thallium	156		Ó	Ó	Ó	.17	.20	. 17
	Vanadium	156	IL	3	1	0	.33	2.00	.38
	Zinc	156	FH	99	99	83	1.00	339.00	89.34
10	Antimony	4	NO	0	0	0	.20	.80	.35
	Arsenic	4	NO	0	0	0	.40	.60	.50
	Selenium	4	NO	0	0	0	.20	.60	.30
11	Chromium (hexavalent)	156	NO	ō	Ó	Ó	1.00	1.00	1.00
12	Mercury		IL	33	8	Ō	1.00	2.00	1.08
14	Phenolics (4AAP)	360		93	90	81	1.00	545.00	111.92
15	Sulphide		1L	17	0	0	1.00	1.00	1.00
16	1,1,2,2-Tetrachloroethane		NO	0	ŏ	ŏ	. 19	. 19	. 19
	1,1,2-Trichloroethane		NO	ŏ	ŏ	ŏ	.17	.17	.17
	1,1-Dichloroethane		NO	ŏ	ŏ	ŏ	.13	.13	. 13
	1,1-Dichloroethylene		NO	ŏ	ŏ	ō	.10	. 10	.10
	1,2-Dichlorobenzene		NO	ŏ	ŏ	ŏ	.50	.50	.50
	1,2-Dichloroethane		NO	ŏ	ő	ŏ	.19	.19	. 19
	1,2-Dichloropropane		NO	ő	ő	ŏ	.18	.18	. 18
	1,3-Dichlorobenzene		NO	ŏ	ő	ő	. 18	. 18	. 18
	1.4-Dichlorobenzene		NO	ŏ	ő	ő	.12	.12	.12
	-Bromoform		NO	ő	0	0	.12	.10	.10
	Bromomethane		NO	Ď	0	0	.10	.10	.10

= NUMBER OF VALID SAMPLES TNS

 AFREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RNOL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 2 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CAMADA, WINDSOR

CONTROL POINT #: 0100 STREAM: FINAL FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG PARAMETER TNS CLASS >RMDL >2*RMDL >5*RMDL MINIMUM MAXIMUM AVERAGE --------... ---------..... 16 Carbon Tetrachloride 11 NO 0 0 0 .31 .31 .31 . .14 Chlorobenzene 11 NO 0 0 0 .14 .14 Chloroform 11 NO ٥ 0 .14 .57 .19 D Chloromethane 11 NO 0 .10 .10 .10 0 0 Cis-1,3-Dichloropropylene 11 NO 0 0 0 .14 .14 Dibromochloromethane 11 NO 0 0 0 .10 .10 .10 .20 .20 Ethylene Dibromide 11 NO 0 D Ð .20 Methylene Chloride 11 NO 9 9 .15 .76 9 6.15 Tetrachloroethylene 11 NO 0 0 0 .27 .27 .27 Trans-1,2-Dichloroethylene 11 NO 0 .10 ۵ 0 .10 .10 .11 .11 Trans-1,3-Dichloropropylene 11 NO 0 0 0 .11 Trichloroethylene 11 NO ٥ 0 0 .10 .10 .10 Trichlorofluoromethane 11 NO ۵ 0 0 1.00 1.00 1.00 Vinyl Chloride 11 NO 0 0 0 .10 .10 .10 17 Benzene 11 IL 36 18 0 .20 2.00 .93 Styrene 11 IL 27 0 0 .52 1.80 .77 11 FL Toluene 45 18 ٥ .12 2.00 .82 m-Xylene and p-Xylene 11 NO .10 0 0 0 -82 .27 o-Xylene 11 NO 0 0 0 .20 .80 .27 . 25 18 11 NO .25 Acrolein Ω Δ n .25 .12 .19 .16 Acrylonitrile 11 NO 0 0 0 19 1-Chloronaphthalene 12 NO 0 0 0 .20 .20 .20 1-Methylnaphthalene 12 NO 0 .47 ٥ 0 .13 .20 .50 .50 2.4-Dinitrotoluene 12 NO 0 ٥ 0 .50 2,6-Dinitrotoluene 12 NO 0 0 0 .43 .43 .43 0 .22 2-Chloronaphthalene 12 NO 0 Ω .22 .22 .18 2-Methylnaphthalene 12 NO 0 0 0 .50 .26 4-Bromophenyl Phenyl Ether 12 NO 0 0 n .67 .67 .67 4-Chlorophenyl Phenyl Ether 12 NO 0 0 0 .44 .44 .44 .10 5-Nitro, Acenaphthene 12 NO 0 ٥ 0 .10 .10 .31 Acenaphthene 12 NO 0 0 0 .31 .31 Acenaphthylene 12 NO 0 0 .29 0 .29 .29 12 NO 0 Anthracene 0 0 .42 .42 .42 .60 Benzo(a)anthracene 12 NO 0 0 0 .60 .60 Benzo(a)pyrene 12 NO 0 0 0 1.00 1.00 1.00 Benzo(b)fluoranthene 12 NO 0 0 0 .86 .86 .86 Benzo(g,h,i)perylene 12 NO D 0 0 -86 .86 .86 Benzo(k)fluoranthene 12 NO 0 0 0 .71 .71 .71 Benzobutylphthalate 12 FL 67 42 17 1.00 7.33 2.81 Biphenyl 1.00 12 NO 0 0 0 1.00 1.00 Bis(2-chloroethoxyl)methane 12 NO 0 O 0 .11 .11 .11 Bis(2-chloroethyl)ether 12 NO 0 0 0 .10 .10 .10

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 2 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CAMADA, WINDSOR

CONTROL POINT #: 0100 STREAM: FINAL FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
19	Bis(2-chloroisopropyl)ether	12	NO	0	0	0	. 18	. 18	.18
	Bis(2-ethylhexyl)phthalate	12	IL	33	17	0	.68	2.59	1.13
	Camphene	12	NO	0	0	0	.10	.10	.10
	Chrysene	12	NO	0	0	0	1.00	1.00	1.00
	Di-n-butyl Phthalate	12	NO	8	0	0	.76	1.45	.84
	Dibenz(a,h)anthracene	12	NO	0	0	0	.62	.62	.62
	Diphenyl Ether	12	ŇO	0	0	0	1.00	1.00	1.00
	Diphenylamine	12	NO	0	0	0	.10	.10	.10
	Fluoranthene	12	NO	0	0	0	.50	.75	.54
	Fluorene	12	NO	0	0	0	.24	.41	.25
	Indeno(1,2,3-cd)pyrene	12	NO	0	0	0	.54	.54	.54
	Indole	12	NO	0	0	0	.79	.79	.79
	N-Nitrosodi-n-propylamine	12	NO	0	0	0	.13	.13	. 13
	N-Nitrosodiphenylamine	12	NO	0	0	0	.10	.10	.10
	Naphthalene	12	NO	٥	0	0	.31	.87	.36
	Perylene	12	NO	0	0	0	.73	.73	.73
	Phenanthrene	12	IL	17	0	0	1.00	1.75	1.08
	Pyrene	12	NO	8	8	0	.75	3.00	.94
20	2,3,4,5-Tetrachlorophenol	12	NO	0	0	0	1.00	1.00	1.00
	2,3,4,6-Tetrachlorophenol	12	NO	0	0	0	.36	.36	.36
	2,3,4-Trichlorophenol	12	NO	0	0	0	.67	.67	.67
	2,3,5,6-Tetrachlorophenol	12	NO	0	0	0	.94	.94	.94
	2,3,5-Trichlorophenol	12	NO	0	0	0	.31	.31	.31
	2,4,5-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2.4.6-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2,4-Dichlorophenol	12	NO	0	0	0	.29	.29	.29
	2,4-Dimethylphenol	12	IL	33	8	0	.10	3.97	.94
	2,4-Dinitrophenol	12	NO	0	0	0	.69	.69	. 69
	2,6-Dichlorophenol	12	NO	0	0	0	.25	.25	.25
	2-Chlorophenol	12	NO	0	0	0	. 16	.16	.16
	4,6-Dinitro-o-cresol	12	NO	0	0	0	.24	.24	.24
	4-Chloro-3-methylphenol	12	NO	0	0	0	.40	.40	.40
	4-Nitrophenol	12	NO	0	0	0	.36	.57	.38
	Pentachlorophenol	12	NO	D	0	0	.92	.92	.92
	Phenol	12	IH	17	17	17	.25	250.00	35.97
	m-Cresol	12	IL	17	8	0	.24	3.53	.61
	o-Cresol	12	IH	17	17	17	.32	19.73	3.42
	p-Cresol	12	IH	17	17	17	.31	8.57	1.48
23	1,2,3,4-Tetrachlorobenzene	4	NO	0	0	0	.50	.50	.50
	1,2,3,5-Tetrachlorobenzene	4	NO	Ó	Ó	0	.50	.50	.50
	1,2,3-Trichlorobenzene	4	NO	0	0	0	1.00	1.00	1.00
	1,2,4,5-Tetrachlorobenzene	4	NO	Ó	0	0	.50	.50	.50

= NUMBER OF VALID SAMPLES TNS

 ZFREQ
 PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 2 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CAMADA, WINDSOR

CONTROL POINT #: 0100 STREAM: FINAL FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

		% FREQUENCY OF DETECTION		CONCENTRATION RATIO					
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
23	1,2,4-Trichlorobenzene	4	NO	0	0	0	1.00	1.00	1.00
	2,4,5-Trichlorotoluene		NO	ō	ō	ō	1.00	1.00	1.00
	Hexachlorobenzene	4	NO	0	0	Ó	.10	.10	.10
	Hexachlorobutadiene	4	NO	Ó	Ó	Ó	.50	.50	.50
	Hexachlorocyclopentadiene	4	NO	0	0	0	.50	.50	.50
	Hexachloroethane	4	NO	0	0	Ó	.50	.50	.50
	Octachlorostyrene	4	NO	0	0	0	.10	.10	.10
	Pentachlorobenzene	4	NO	0	0	0	.50	.50	.50
24	2,3,7,8 TCDD	2	NO	0	0	0	.50	.50	.50
	Octachlorodibenzo-p-dioxin	2	FL	50	50	0	.67	2.00	1.33
	Octachlorodibenzofuran	2	FL	50	0	0	.67	1.67	1.17
	Total H6CDD	2	NO	0	0	0	.33	.33	.33
	Total H6CDF	2	NO	0	0	0	.50	.90	.70
	Total H7CDD	2	NO	0	0	0	.33	.67	.50
	Total H7CDF	2	NO	0	0	0	.33	.33	
	Total PCDD	2	NO	0	0	0	- 50	.50	.50
	Total PCDF		FL	50	50	50	.67	6.20	3.40
	Total TCDD	2	NO	0	0	0	.50	.50	.50
	Total TCDF		FM	100	100	50	2.40	14.67	8.53
25	Oil and Grease	156		47	38	6	1.00	25.00	2.20
26	Abietic Acid		NO	0	0	0	1.00	1.00	1.00
	Chlorodehydroabietic Acid	12	NO	0	0	0	1.00	1.00	1.00
	Dehydroabietic Acid		NO	0	0	0	1.00	1.00	1.00
	Isopimaric Acid		NO	0	0	0	1.00	1.00	1.00
	Levopimaric Acid		NO	0	0	0	1.00	1.00	1.00
	Neoabietic Acid		NO	0	0	0	1.00	1.00	1.00
	Oleic Acid		IM	17	17	8	1.00	7.20	1.60
	Pimaric Acid		NO	0	0	0	1.00	1.00	1.00
27	PCBT	12		33	0	0	.20	1.20	.74
MC1	Iron	156		99	98	97	1.00	101.00	29.95
	Magnesium	156		100	100	99	4.50	685.00	458.05
MC2	Fluoride	156	FH	9 9	96	79	1.00	170.00	45.06

 TNS
 = NUMBER OF VALID SAMPLES

 %FREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 3

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CAMADA, WINDSOR

CONTROL POINT #: 0300 STREAM: PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	151	FL	70	38	4	1.00	7.20	1.96
2	Cyanide Total	.12	FH	58	58	58	.60	20.60	9.40
4a	Ammonia plus Ammonium	12	FM	92	67	0	. 10	3.28	2.14
	Total Kjeldahl Nitrogen	4	FM	100	75	0	1.78	3.16	2.44
4Ь	Nitrate+Nitrite	12	FM	100	83	17	1.36	6.04	3.33
5a	DOC	50	FH	100	98	80	1.80	16.20	7.67
5b	TOC	4	FL	100	25	0	1.16	2.14	1.62
6	Total Phosphorus	50	NO	4	0	0	. 10	1.30	.27
7	Specific Conductance	354	FH	100	100	100	24.00	85.80	60.44
8	Total Suspended Solids	354	FM	94	72	19	.20	37.60	3.73
	Volatile Suspended Solids	4	FL	50	25	Ö	.60	3.66	1.62
9	Aluminum	151	FH	99	99	99	.33	301.67	53.32
	Beryllium	151	IL	2	0	0	1.00	1.00	1.00
	Cadmium	151	FM	54	54	31	.50	15.50	3.51
	Chromium	151	IM	3	2	0	1.00	4.00	1.05
	Cobalt	151	NO	0	0	Ó	1.00	1.00	1.00
	Copper	151	FL	48	48	3	1.00	14.00	1.97
	Lead	151	FM	70	66	46	.33	15.33	4.33
	Molybdenum	151	IL	7	1	0	1.00	2.50	1.02
	Nickel	151	IL	3	1	Ó	1.00	2.50	1.02
	Silver	151	NO	1	Ó	Ó	.50	1.33	.51
	Thallium	151	NO	0	Ō	Ō	.17	.27	.17
	Vanadium	151	IL	4	1	0	.33	2.67	.38
	Zinc	151	FH	100	100	88	2.00	885.00	202.52
10	Antimony	4	IL .	25	0	0	.20	1.40	.55
	Arsenic	4	NO	0	0	0	.40	.60	.55
	Selenium	4	NO	0	0	0	.20	.40	.30
11	Chromium (hexavalent)	151	NO	0	0	0	1.00	1.00	1.00
12	Mercury	12	IM	33	25	0	1.00	2.00	1.25
14	Phenolics (4AAP)	349	FN	94	90	82	1.00	845.00	271.54
15	Sulphide	12	IL	25	8	0	1.00	3.00	1.15
16	1,1,2,2-Tetrachloroethane	11	NO	0	0	0	. 19	. 19	. 19
	1,1,2-Trichloroethane	11	NO	0	0	0	.17	.17	17
	1,1-Dichloroethane	11	NO	0	0	0	.13	.13	. 13
	1,1-Dichloroethylene	11	NO	0	0	0	. 10	. 10	. 10
	1.2-Dichlorobenzene	11	NO	Ō	Ó	Ó			
	1.2-Dichloroethane	11	NO	Ó	Ď	0	. 19	. 19	. 19
		11	NO	ŏ	Ō	. 0			
		11		0	Ō	Ō			
	1,4-Dichlorobenzene	11		Ō	ō	ŏ			
	Bromoform	11	ND	Ō	Ō	Ď	. 10	. 10	
	Bromomethane	11		ŏ	ŏ	Ō	.10	.10	.10
15	Sulphide 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroephane 1,3-Dichloroephane 1,4-Dichloroebnzene Bromoform	12 11 11 11 11 11 11 11 11 11	IL NO NO NO NO NO NO NO NO NO NO	25 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00 .19 .17 .13 .10 .50 .19 .18 .18 .12 .10	3.00 .19 .17 .13 .10 .50 .19 .18 .18 .18 .12 .10	1.15 .19 .17 .13 .10 .50 .19 .18 .18 .12 .10

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V

TABLE 3 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CANADA, WINDSOR

CONTROL POINT #: 0300 STREAM: PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
16	Carbon Tetrachloride	11	NO	0	0	0	.31	.31	.31
	Chlorobenzene	11	NO	Ō	õ	ŏ	.14	. 14	.14
	Chloroform		NO	Ó	Ō	Ď	- 14	. 14	. 14
	Chloromethane	11	NO	Ó	Ó	Ó	. 10	.10	. 10
	Cis-1,3-Dichloropropylene	11	NO	0	0	Ó	. 14	. 14	- 14
	Dibromochloromethane	11	NO	Ó	Ó	Ó	.10	.10	. 10
	Ethylene Dibromide	11	NO	0	0	0	.20	.20	.20
	Methylene Chloride	11	IH	18	9	9	. 15	6.92	.94
	Tetrachloroethylene	11	NO	0	0	Ó	.27	.27	.27
	Trans-1,2-Dichloroethylene	11	NO	0	0	0	.10	.10	.10
	Trans-1,3-Dichloropropylene	11	NO	0	0	0	.11	.11	.11
	Trichloroethylene	11	NO	0	0	0	.10	.10	. 10
	Trichlorofluoromethane	11	NO	0	0	0	1.00	1.00	1.00
	Vinyl Chloride	11	NO	0	0	0	.10	.10	.10
17	Benzene	11	FL	73	36	0	.20	4.00	2.15
	Styrene	11	IM	36	27	0	.52	4.00	1.48
	Toluene	11	FL	64	27	0	.12	4.00	1.36
	m-Xylene and p-Xylene	11	NO	0	0	0	.10	.45	.26
	o-Xylene	11	NO	0	0	0	.20	.60	.33
18	Acrolein	11	NO	0	0	0	.25	.25	.25
	Acrylonitrile	11	NO	9	0	0	.17	1.19	.34
19	1-Chloronaphthalene	12	NO	0	0	0	.20	.20	.20
	1-Methylnaphthalene	12	FL	42	8	0	. 13	2.09	.96
	2,4-Dinitrotoluene	12	NO	0	0	0	.50	.63	.51
	2,6-Dinitrotoluene	12	IL	17	8	0	.43	4.71	.85
	2-Chloronaphthalene	12	NO	0	0	Ð	.22	.22	. 22
	2-Methylnaphthalene	12	FL	50	17	0	. 18	2.32	1.08
	4-Bromophenyl Phenyl Ether	12	NO	0	0	0	.67	.67	.67
	4-Chlorophenyl Phenyl Ether	12	NO	0	0	0	- 44	-44	.44
	5-Nitro, Acenaphthene	12	NO	0	0	0	.10	. 19	.11
	Acenaphthene	12	NO	0	0	0	.31	.38	.31
	Acenaphthylene	12	NO	0	0	0	.29	. 29	.29
	Anthracene	12	NO	0	0	0	.42	.58	.43
	Benzo(a)anthracene	12	NO	0	0	0	.60	.60	.60
	Benzo(a)pyrene	12	NO	0	0	0	1.00	1.00	1.00
	Benzo(b)fluoranthene	12	NO	0	0	0	.86	.86	.86
	Benzo(g,h,i)perylene	12	NO	0	0	0	.86	.86	.86
	Benzo(k)fluoranthene		NO	0	0	0	.71	.71	.71
	Benzobutylphthalate	12	FM	75	67	50	1.00	21.67	7.26
	Biphenyl	12	IL	33	0	0	1.00	1.83	1.22
	Bis(2-chloroethoxyl)methane	12	NO	0	0	0	.11	.11	.11
	Bis(2-chloroethyl)ether	12	NO	0	0	0	.10	.10	.10

TNS = NUMBER OF VALID SAMPLES

 AFREQ
 PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 3 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CAMADA, WINDSOR

CONTROL POINT #: 0300 STREAM: PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

Ŀ			<u>x</u>	FREQU	ENCY OF I	DETECTION	CONCENTRATION RATIO		
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
19	Bis(2-chloroisopropyl)ether		NO	0	0	0	. 18	. 18	. 18
	Bis(2-ethylhexyl)phthalate		FL	50	25	8	.68	5.73	1.65
	Camphene		NO	0	0	0	.10	.10	.10
	Chrysene		NO FL	8 42	0 8	0	1.00	1.67 2.05	1.06
	Di-n-butyl Phthalate Dibenz(a,h)anthracene		NO	42	õ	0	.62	.62	.62
	Diphenyl Ether		NO	0	0	0	1.00	1.00	1.00
	Diphenylamine		NO	0	0	0	.10	.25	.11
	Fluoranthene		FL	42	25	0	.50	3.25	1.17
	Fluorene		NO	42	23	0	.24	1.00	.42
	Indeno(1,2,3-cd)pyrene		NO	0	ő	ŏ	.54	.54	.54
	Indole		NO	ő	ő	Ő	.79	.79	.79
	N-Nitrosodi-n-propylamine		NO	ŏ	ő	ŏ	.13	.13	.13
	N-Nitrosodiphenylamine		NO	ŏ	ŏ	ŏ	.10	.10	.10
	Naphthalene	50		58	24	ŏ	.31	3.62	1.25
	Perylene		NO	0	0	ŏ	.73	.73	.73
	Phenanthrene		FM	74	66	42	1.00	10.75	4.05
	Pyrene		IL.	25	8	0	.75	2.75	1.08
20	2,3,4,5-Tetrachlorophenol		NO	0	ō	Ō	1.00	1.00	1.00
	2,3,4,6-Tetrachlorophenol		NO	Ō	ō	Ō	.36	.36	.36
	2.3.4-Trichlorophenol	12	NO	Ó	Ó	0	.67	.67	.67
	2,3,5,6-Tetrachlorophenol	12	NO	0	0	Ō	.94	.94	.94
	2,3,5-Trichlorophenol	12	NO	0	0	0	.31	.31	.31
	2,4,5-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2,4,6-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2,4-Dichlorophenol	12	NO	0	0	0	.29	.29	.29
	2,4-Dimethylphenol	12	FM	92	92	33	.10	7.81	4.24
	2,4-Dinitrophenol	12	NO	0	0	0	.69	.69	.69
	2,6-Dichlorophenol		NO	0	0	0	.25	. 25	.25
	2-Chlorophenol		NO	0	0	0	.16	.16	.16
	4,6-Dinitro-o-cresol		NO	0	0	0	.24	.24	.24
	4-Chloro-3-methylphenol		NO	0	0	0	.40	.40	.40
	4-Nitrophenol		NO	0	0	0	.36	.93	.45
	Pentachlorophenol	12		8	8	0	.92	3.69	1.15
	Phenol		FH	92	92	92	.25	625.00	247.59
	m-Cresol		FM .	92	92	50	.24	9.12	5.30
	o-Cresol		FH	92	92	92	.32	75.68	35.48
	p-Cresol		FH	92	92	92	.31	18.57	10.10
23	1,2,3,4-Tetrachlorobenzene		NO	0	0	0	.50	.50	.50
	1,2,3,5-Tetrachlorobenzene		NO	0	0	0	.50	.50	.50
	1,2,3-Trichlorobenzene		NO	0	0	0	1.00	1.00	1.00
	1,2,4,5-Tetrachlorobenzene	4	NO	0	0	0	.50	.50	.50

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 3 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CANADA, WINDSOR

CONTROL POINT #: 0300 STREAM: PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

		A PRESERVED OF DETECTION		CONCENTRATION RATIO					
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
23	1,2,4-Trichlorobenzene		NO	0	0	0	1.00	1.00	1.00
25	2,4,5-Trichlorotoluene		NO	ŏ	ŏ	ŏ	1.00	1.00	1.00
	Hexachlorobenzene		NO	ŏ	ő	ŏ	.10	.10	.10
	Nexachlorobutadiene		NO	ŏ	ő	ŏ	.50	.50	.50
	Nexachlorocyclopentadiene		NO	ŏ	ŏ	ŏ	.50	.50	.50
	Hexachloroethane		NO	ŏ	ŏ	ŏ	.50	.50	.50
	Octachlorostyrene		NO	ŏ	ŏ	ō	.10	.10	. 10
	Pentachlorobenzene		NO	ŏ	ŏ	ŏ	.50	.50	.50
24	2,3,7,8 TCDD		NO	ŏ	ŏ	ŏ	.50	.50	.50
24	Octachlorodibenzo-p-dioxin		FL	100	50	ŏ	1.33	3.00	2.17
	Octachlorodibenzofuran		FL	50	50	ō	.67	3.00	1.83
	Total H6CDD		NO	Ő	0	ŏ	.33	.67	.50
	Total H6CDF		FL	50	ō	ŏ	.50	1.00	.75
	Total H7CDD		NO	Ő	ō	ō	.33	.67	.50
	Total H7CDF	_	NO	ō	ō	ō	.33	.33	.33
	Total PCDD		NO	Ō	Ō	0	.50	.50	.50
	Total PCDF		NO	ō	Ó	Ó	.67	.67	.67
	Total TCDD		NO	ō	Ó	0	.50	.50	.50
	Total TCDF		FM	100	100	50	3.00	6.27	4.67
25	Oil and Grease	151	FL	46	36	5	1.00	24.00	2.00
26	Abietic Acid	11	NO	0	0	0	1.00	1.00	1.00
	Chlorodehydroabietic Acid	11	NO	0	0	0	1.00	1.00	1.00
	Dehydroabietic Acid	11	NO	0	0	0	1.00	1.00	1.00
	Isopimaric Acid	11	NO	0	0	0	1.00	1.00	1.00
	Levopimaric Acid	11	NO	0	0	0	1.00	1.00	1.00
	Neoabietic Acid	11	NO	9	0	0	1.00	1.80	1.00
	Oleic Acid	11	NO	9	9	0	1.00	3.00	1.20
	Pimaric Acid	11	NO	0	0	0	1.00	1.00	1.00
27	PCBT	12	FL	58	17	0	.20	2.70	1.23
MC1	Iron	151	FH	99	99	99	1.00	154.00	58.45
	Magnesium	151	FH	100	100	100	270.00	715.00	468.65
MC2	Fluoride	151	FH	99	97	89	1.00	350.00	82.68

TNS = NUMBER OF VALID SAMPLES

TWS = NUMBER OF VALUE SAMPLES %FRE0 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 4

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

FORD NOTOR COMPANY OF CANADA, WINDSOR

CONTROL POINT #: 0500 STREAM: COMBINED EMERGENCY OVERFLOW FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	4	FM	100	75	0	1.40	3.00	2.35
5b	TOC	4	IL	25	0	. 0	.48	1.34	.91
8	Total Suspended Solids	4	FL	100	25	25	1.20	11.20	3.85
14	Phenolics (4AAP)	4	FH	100	75	75	1.00	172.00	104.13
19	Naphthalene	4	NO	0	0	0	.31	- 44	.34
	Phenanthrene	4	FL	50	0	0	1.00	1.75	1.19
25	Oil and Grease	4	FH	100	100	75	2.00	6.00	5.00
27	PCBT	<u>`4</u>	FL	50	0	0	.20	1.70	.87
MC1	Iron	4	FH	100	100	100	33.50	210.50	108.90
	Magnesium	4	FH	100	100	100	313.50	535.00	433.10
MC2	Fluoride	4	FH	100	100	75	2.00	92.00	44.25

= NUMBER OF VALID SAMPLES TNS

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 5

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL NOTORS OF CANADA, ST.CATHARINES

CONTROL POINT #: 0900 STREAM: FOUNDARY PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

			<u>×</u>	FREQU	ENCY OF L	DETECTION	CONC	CENTRATION	DITAS
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	153	FL	73	42	1	.30	9.70	1.86
2	Cyanide Total	12	FL	50	25	0	.60	4.80	1.40
4a	Ammonia plus Ammonium		FM	92	83	33	- 86	8.08	4.28
	Total Kjeldahl Nitrogen		FM	100	100	25	3.02	6.88	4.07
4Ь	Nitrate+Nitrite		FM	90	60	0	.80	2.72	1.84
5a	DOC		FH	100	98	55	1.60	30.00	6.42
5ь	TOC	•	NO	0	0	0	.40	.78	.61
6	Total Phosphorus		IM	14	8	4	.10	41.00	1.75
7	Specific Conductance	339		100	100	100	52.00	639.00	71.76
8	Total Suspended Solids	344		40	22	8	.20	19.60	1.77
	Volatile Suspended Solids		NO	0	0	0	.20	.20	.20
9	Aluminum	153		99	99	93	.10	139.33	22.01
	Beryllium	153		1	1	0	.10	3.13	- 14
	Cadmium	153		25	8	1	.55	39.50	1.34
	Chromium	154		16	10	7	.10	23.70	1.39
	Cobalt	154		0	0	0	.10	.25	.11
	Copper	153		7	2	1	.10	5.50	.48
	Lead	153		61	33	5	.10	16.50	1.86
	Molybdenum	154		0	0	0	. 10	.55	.14
	Nickel	154		10	8	4	.25	12.75	.80
	Silver	154		, 0	0	0	.10	.27	.10
	Thallium	154		4	0	0	.53	1.33	.80
	Vanadium Zinc	153 153		0 99	0 99	•	.10	.35	.11
10	Antimony			25		99	.10	299.00	66.12
10	Antimony		IL NO	25	0	0	.18	1.80	.65
	Selenium		NO	0	0	0	.40 .80	.42	.40
12		12		8	0	0	.80	.80	.80 .88
14	Mercury Phenolics (4AAP)	343		92	85	73	.80	1.80 400.00	.00 38.84
15	Sulphide	12		92	0	0	. 10	400.00	.50
16	1,1,2,2-Tetrachloroethane	12		0	0	0	.50	.05	.50
10	1,1,2-Trichloroethane	12		0	0	0	.72	.72	.72
	1,1-Dichloroethane	12		0	0	0	1.00	1.00	1.00
	1,1-Dichloroethylene	12		ő	0	Ő	.43	.43	.43
	1,2-Dichlorobenzene	12		Ő	0	ŏ	.43	.43	.43
	1.2-Dichloroethane	12		Ő	0	0	1.00		1.00
	1,2-Dichloropropane	12		0	0	ő	.89	.89	.89
	1,3-Dichlorobenzene	12		Ő	0	ŏ	1.00	1.00	1.00
	1,4-Dichlorobenzene	12		ŏ	0	ŏ	.65	.65	.65
	Bromoform	12		ŏ	0	ő	.70	.83	. 70
	Bromomethane	12		ő	0	0 0	.49	.70	.49
	Carbon Tetrachloride	12		ŏ	ő	ŏ	.62	.49	.62

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 5 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL MOTORS OF CANADA, ST.CATHARINES

CONTROL POINT #: 0900 STREAM: FOUNDARY PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
16	Chlorobenzene	12	NO	0	0	0	.86	.86	.86
	Chloroform	12	FL	42	8	0	.57	2.71	1.23
	Chloromethane	12	NO	0	0	0	.32	.32	.32
	Cis-1,3-Dichloropropylene	12	NO	0	0	0	.71	.71	.71
	Dibromochloromethane	12	NO	0	0	0	.73	.73	.73
	Ethylene Dibromide	12	NO	0	0	0	.80	.80	.80
	Methylene Chloride	12	IM	17	17	0	.92	2.92	1.24
	Tetrachloroethylene	12	NO	0	0	0	.64	.64	.64
	Trans-1,2-Dichloroethylene	12	NO	0	0	0	1.00	1.00	1.00
	Trans-1,3-Dichloropropylene	12	NO	0	0	0	.64	.64	.64
	Trichloroethylene	12	NO	0	0	0	.68	.68	.68
	Trichlorofluoromethane	12	NO	0	0	0	1.00	1.00	1.00
	Vinyl Chloride	12	NO	0	0	0	.45	.45	.45
17	Benzene	12	FL	75	50	0	.80	3.40	1.90
	Styrene	12	NO	0	0	0	1.00	1.00	1.00
	Toluene	12	FL	50	17	0	1.00	2.60	1.35
	m-Xylene and p-Xylene	12	IH	33	8	8	.91	9.55	1.75
	o-Xylene	12	ΙĿ	17	8	0	1.00	3.00	1.17
18	Acrolein		NO	0	0	0	.85	.85	.85
	Acrylonitrile		NO	0	0	0	.69	.69	.69
19	1-Chloronaphthalene	12	NO	0	0	0	.24	.24	.24
	1-Methylnaphthalene		NO	0	0	0	. 13	.31	. 16
	2,4-Dinitrotoluene	12	NO	0	0	0	1.00	1.00	1.00
	2,6-Dinitrotoluene		NO	0	0	0	1.00	1.00	1.00
	2-Chloronaphthalene		NO	0	0	0	.44	.44	.44
	2-Methylnaphthalene		NO	0	0	0	.32	.77	.42
	4-Bromophenyl Phenyl Ether		NO	0	0	0	1.00	1.00	1.00
	4-Chlorophenyl Phenyl Ether		NO	0	0	0	.56	.56	.56
	5-Nitro, Acenaphthene		NO	0	0	0	.23	.23	.23
	Acenaphthene		NO	0	0	0	. 85	.85	.85
	Acenaphthylene	_	NO	0	0	0	.57	.57	.57
	Anthracene		NO	0	0	0	.33	1.00	.89
	Benzo(a)anthracene		NO	0	0	0	.40	.40	.40
	Benzo(a)pyrene	12		0	0	0	1.00	1.00	1.00
	Benzo(b)fluoranthene		NO	0	0	0	1.00	1.00	1.00
	Benzo(g,h,i)perylene	12		0	0	0	1.00	1.00	1.00
	Benzo(k)fluoranthene	12		0	0	0	1.00	1.00	1.00
	Benzobutylphthalate		NO	0	0	0	.67	.67	.67
	Biphenyl	12		0	0	0	.67	.83	.68
	Bis(2-chloroethoxyl)methane	12		0	0	0	.40	.40	.40
	Bis(2-chloroethyl)ether	12		0	0	0	.36	.36	.36
	Bis(2-chloroisopropyl)ether	12	NO	0	0	0	.50	.50	.50

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

APPENDIX V TABLE 5 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL MOTORS OF CANADA, ST.CATHARINES

CONTROL POINT #: 0900 STREAM: FOUNDARY PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREOL	IFNCY	OF	DET	ECT	ION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	HINIMUM	MAXIMUM	AVERAGE
19	Bis(2-ethylhexyl)phthalate	12	18	33	33	17	.68	9.95	2.22
	Camphene	12	NO	0	0	0	.60	.60	.60
	Chrysene	12	NO	0	0	0	.67	.67	.67
	Di-n-butyl Phthalate	12	11	17	0	0	.32	1.58	.58
	Dibenz(a,h)anthracene	12	NO	0	0	0	.62	.62	.62
	Diphenyl Ether	12	NO	0	0	0	1.00	1.00	1.00
	Diphenylamine	12	NO	0	0	0	.10	.10	.10
	Fluoranthene	12	NO	0	0	0	1.00	1.00	1.00
	Fluorene	12	NO	0	0	0	.71	.71	.71
	Indeno(1,2,3-cd)pyrene	12	NO	0	0	0	.77	.77	.77
	Indole	12	NO	0	0	0	.32	.32	.32
	N-Nitrosodi-n-propylamine	12	NO	0	0	0	.65	.65	.65
	N-Nitrosodiphenylamine	12	NO	0	0	0	.10	.10	.10
	Naphthalene	50	NO	6	0	0	.94	1.19	.95
	Perylene	12	NO	0	0	0	.67	.67	.67
	Phenanthrene	50	1L	14	6	0	1.00	2.50	1.10
	Pyrene	12	NO	0	0	0	.75	.75	.75
20	2,3,4,5-Tetrachlorophenol	12	NO	0	0	0	1.00	1.00	1.00
	2,3,4,6-Tetrachlorophenol	12	NO	0	0	0	.29	.29	.29
	2,3,4-Trichlorophenol	12	NO	0	0	0	.83	.83	.83
	2,3,5,6-Tetrachlorophenol	12	NO	0	0	0	.63	.63	.63
	2,3,5-Trichlorophenol	12	NO	. 0	0	0	.38	.38	.38
	2,4,5-Trichlorophenol	12	NO	0	0	· 0	.46	-46	.46
	2,4,6-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2.4-Dichlorophenol	12	NO	0	0	0	.59	. 59	.59
	2,4-Dimethylphenol	12	FL	50	42	17	. 15	13.58	2.88
	2,4-Dinitrophenol	12	NO	0	0	0	.10	.10	.10
	2,6-Dichlorophenol	12	NO	0	0	0	.25	.25	. 25
	2-Chlorophenol	12	NO	0	0	0	.27	.27	.27
	4,6-Dinitro-o-cresol	12	NO	Ó	0	0	.10	.10	.10
	4-Chloro-3-methylphenol	12	NO	0	0	0	.47	.47	.47
	4-Nitrophenol	12	NO	0	0	0	.29	. 29	.29
	Pentachlorophenol	12	NO	0	0	0	.54	.54	.54
	Phenol		IH	33	33	25	.38	11.33	2.50
	m-Cresol		FL	42	33	8	.24	10.24	1.86
	o-Cresol		FL	58	50	50	. 19	37.84	7.97
	p-Cresol		FL	42	25	8	.23	9.97	1.81
23	1,2,3,4-Tetrachlorobenzene		NO	0	0		.50	1.00	.90
	1,2,3,5-Tetrachlorobenzene		NO	Ő	Ō	Ó	.50	1.00	.90
	1.2.3-Trichlorobenzene		IM	25	25	ŏ	.50	2.00	1.10
	1,2,4,5-Tetrachlorobenzene		NO	0		•	.50	1.00	.90
	1,2,4-Trichlorobenzene		IM	25	25	ŏ	.50	2.00	1.10
	., _,	-			25	•			

TNS = NUMBER OF VALID SAMPLES

 AFRED
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 5 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL MOTORS OF CAMADA, ST.CATHARINES

CONTROL POINT #: 0900 STREAM: FOUNDARY PROCESS FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
23	2,4,5-Trichlorotoluene	4	IL	25	0	0	.50	1.00	.90
	Hexachlorobenzene	4	NO	0	0	0	.50	1.00	.90
	Hexachlorobutadiene	4	NO	0	0	0	.50	1.00	.90
	Hexachlorocyclopentadiene	4	NO	0	0	0	1.00	1.00	1.00
	Hexachloroethane	4	NO	0	0	0	.50	1.00	.90
	Octachlorostyrene	4	NO	0	0	0	.50	1.00	.90
	Pentachlorobenzene	4	NO	0	0	0	.50	1.00	.90
24	2,3,7,8 TCDD	2	NO	0	0	0	. 10	.75	.45
	Octachlorodibenzo-p-dioxin	2	FL	50	0	0	.33	1.33	.83
	Octachlorodibenzofuran	2	NO	0	0	0	. 10	.87	.47
	Total H6CDD	2	NO	0	0	0	. 10	.70	.40
	Total H6CDF	2	NO	0	0	0	.10	.90	.50
	Total H7CDD	2	NO	0	0	0	.10	.70	.40
	Total H7CDF	_	NO	0	0	0	.10	.83	.47
	Total PCDD		NO	0	0	0	.10	.90	.50
	Total PCDF		NO	0	0	0	.07	.87	.47
	Total TCDD		NO	0	0	0	.10	.75	.45
	Total TCDF		NO	0	0	0	.07	.80	.47
25	Oil and Grease	151		55	23	2	1.00	6.00	1.43
26	Abietic Acid		FL	50	0	0	.60	2.00	1.40
	Chlorodehydroabietic Acid		NO	0	0	0	.60	1.00	1.00
	Dehydroabietic Acid		IL.	17	0	0	.60	1.80	1.00
	Isopimaric Acid		NO	0	0	0	.60	1.00	.80
	Levopimaric Acid		FL	67	0	-	1.00	2.00	1.60
	Neoabietic Acid		FL	83	0	0	1.00	2.00	1.80
	Oleic Acid		NO	0	0		.60	1.00	.80
	Pimaric Acid		NO	0	0		.60	1.00	-80
27	PCBT		NO	8	0	-	.20	1.40	-41
MC1	Iron	153		100	99	86	1,50	249.00	36.40
	Magnesium	153		100	100		18.50	790.00	456.20
MC2	Fluoride	12	FM	100	75	0	1.40	4.90	2.79

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

APPENDIX V

TABLE 6

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL MOTORS OF CANADA, ST.CATHARINES

CONTROL POINT #: 1000 STREAM: FOUNDARY COMBINED FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	52	FL	79	42	2	.70	5.10	1.92
2	Cyanide Total	12	FL	50	0	0	.20	1.60	1.00
4a	Ammonia plus Ammonium	12	FM	92	58	0	.43	3.60	2.24
	Total Kjeldahl Nitrogen	4	FM	100	100	25	2.54	5.06	3.25
4b	Nitrate+Nitrite	3	FL	67	33	0	.80	2.44	1.61
5a	DOC	52	FH	98	96	58	.80	17.60	6.07
5b	TOC	4	NO	0	0	0	.34	.86	.59
6	Total Phosphorus	52	IL	21	10	4	.10	9.00	.82
7	Specific Conductance	151	FH	100	100	100	47.20	88.60	70.04
8	Total Suspended Solids	153	FL	50	22	10	.40	112.20	2.92
	Volatile Suspended Solids	4	IL .	25	0	0	.20	1.00	.45
9	Aluminum	52	FN	100	100	98	4.33	177.67	17.92
	Beryllium	52	NO	0	0	0	.10	.50	.11
	Cadmium	52	IL	19	4	0	.55	3.00	.93
	Chromium	52	IM	19	12	• 4	.10	6.90	.81
	Cobalt	52	NO	2	0	0	.10	1.45	.13
	Copper	52	NO	6	2	0	.20	4.20	.57
	Lead	52	IH	29	2	2	.33	12.00	.97
	Molybdenum	52	NO	2	0	0	.10	1.51	.17
	Nickel	52	IM	13	10	2	.25	7.75	.65
	Silver	52	NO	0	0	0	.10	.10	.10
	Thallium	52	NO	2	0	0	.60	1.67	.81
	Vanadium	52	NO	0	0	0	.10	.96	.12
	Zinc	52	FH	100	100	98	3.46	341.00	38.67
10	Antimony	4	NO	0	· 0	0	. 14	.80	.39
	Arsenic	4	NO	0	0	0	.40	.42	.40
	Selenium	4	IM	25	25	0	.80	2.00	1.10
12	Mercury	4	NO	0	0	0	.80	.80	.80
14	Phenolics (4AAP)	152	FH	95	84	63	.50	200.00	25.47
15	Sulphide	4	NO	0	0	0	.50	.65	.55
16	1,1,2,2-Tetrachloroethane	4	NO	0	0	0	.72	.72	.72
	1,1,2-Trichloroethane	4	NO	0	0	0	.83	.83	.83
	1,1-Dichloroethane	4	NO	0	0	0	1.00	1.00	1.00
	1,1-Dichloroethylene	4	NO	0	0	0	.43	.43	.43
	1,2-Dichlorobenzene	4	NO	0	0	0	.64	.64	.64
	1,2-Dichloroethane	4	NO	0	0	0	1.00	1.00	1.00
	1,2-Dichloropropane	4	NO	0	0	0	.89	.89	.89
	1,3-Dichlorobenzene	4	NO	0	0	0	1.00	1.00	1.00
	1,4-Dichlorobenzene	4	NO	0	0	0	- 65	.65	.65
	Bromoform	4	ND	0	0	0	.70	.70	.70
	Bromomethane	4	NO	0	0	0	.49	.49	.49
	Carbon Tetrachloride	4	NO	0	0	0	.62	.62	.62

 TNS
 = NUMBER OF VALID SAMPLES

 %FREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 6 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL MOTORS OF CANADA, ST.CATHARINES

CONTROL POINT #: 1000 STREAM: FOUNDARY COMBINED FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
 16	Chlorobenzene		NO	0	0	0	.86	.86	.86
	Chloroform	4	FL	50	0	0	. 1.00	1.43	1.14
	Chloromethane	4	NO	0	0	0	.32	.32	.32
	Cis-1,3-Dichloropropylene	4	NO	0	0	0	.71	.71	.71
	Dibromochloromethane	4	NO	Ó	0	0	.73	.73	.73
	Ethylene Dibromide	4	NO	0	0	0	.80	.80	.80
	Methylene Chloride	4	IH	25	25	25	.92	5.15	1.98
	Tetrachloroethylene	4	NO	0	0	0	.64	.64	.64
	Trans-1,2-Dichloroethylene	4	NO	0	0	0	1.00	1.00	1.00
	Trans-1,3-Dichloropropylene	4	NO	0	0	0	.64	.64	.64
	Trichloroethylene	4	NO	0	0	0	.68	.68	.68
	Trichlorofluoromethane	4	NO	0	0	0	1.00	1.00	1.00
	Vinyl Chloride	4	NO	0	0	0	.45	.45	.45
17	Benzene	2	NO	0	0	0	.80	.80	.80
	Styrene	4	NO	0	0	0	1.00	1.00	1.00
	Toluene	4	NO	0	0	0	1.00	1.00	1.00
	m-Xylene and p-Xylene	4	NO	0	0	0	.91	.91	.91
	o-Xylene	4	NO	0	0	0	1.00	1.00	1.00
18	Acrolein	4	NO	0	0	0	.85	.85	.85
	Acrylonitrile	4	NO	0	0	0	.69	.69	.69
19	1-Chloronaphthalene	12	NO	0	0	0	.24	.24	. 24
	1-Methylnaphthalene	12	NO	0	0	0	.13	. 19	.13
	2.4-Dinitrotoluene	12	NO	0	0	0	1.00	1.00	1.00
	2,6-Dinitrotoluene	12	NO	0	0	0	1.00	1.00	1.00
	2-Chloronaphthalene		NO	0	0	0	.44	.44	.44
	2-Methylnaphthalene	12	NO	0	0	0	.32	.77	.44
	4-Bromophenyl Phenyl Ether	12	NO	0	0	0	1.00	1.00	1.00
	4-Chlorophenyl Phenyl Ether	12	NO	0	0	0	.56	.56	.56
	5-Nitro, Acenaphthene		NO	Ó	0	D	.23	.23	.23
	Acenaphthene	12	NO	Ó	Ó	0	.85	.85	.85
	Acenaphthylene	12	NO	0	0	0	.57	.57	.57
	Anthracene	12	NO	0	0	0	.33	1.00	.83
	Benzo(a)anthracene	12	NO	Ó	0	0	.40	-40	.40
	Benzo(a)pyrene	12	NO	Ó	0	D	1.00	1.00	1.00
	Benzo(b)fluoranthene	12	NO	Ó	0	0	1.00	1.00	1.00
	Benzo(g,h,i)perylene		NO	Ő	0	Ď	1.00	1.00	1.00
	Benzo(k)fluoranthene		NO	ō	ō	Ď	1.00	1.00	1.00
	Benzobutylphthalate		NO	ŏ	ō	ŏ	.67	.67	.67
	Biphenyl		NO	ŏ	Ő	• 0	.67	.67	.67
	Bis(2-chloroethoxyl)methane		NO	Ď	ŏ	Ō	.40	.40	.40
	Bis(2-chloroethyl)ether		NO	ŏ	ŏ	õ	.36	.36	.36
	Bis(2-chloroisopropyl)ether		NO	ŏ	ő	õ	.50	.50	.50

TNS = NUMBER OF VALID SAMPLES

 XFREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

96

APPENDIX V

TABLE 6 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL NOTORS OF CANADA, ST.CATHARINES

CONTROL POINT #: 1000 STREAM: FOUNDARY COMBINED FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

		A FREQUENCE OF DETECTION				CONCENTRATION RATIO			
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
19	Bis(2-ethylhexyl)phthalate	12	IL	25	8	0	.68	2.86	.96
	Camphene		NO	0	ō	Ō	.60	.60	.60
	Chrysene	12	NO	Ō	Ō	Ō	.67	.67	.67
	Di-n-butyl Phthalate	12	NO	Ō	Ō	Ō	.32	.84	-41
	Dibenz(a,h)anthracene		NO	Ō	Ō	Ō	.62	.62	.62
	Diphenyl Ether		NO	ŏ	ō	ŏ	1.00	1.00	1.00
	Diphenylamine	12	NO	Ó	Ó	Ō	.10	.10	.10
	Fluoranthene		NO	Ó	Ó	Ó	1.00	1.00	1.00
	Fluorene	12	NO	Ó	Ó	Ó	.71	.71	.71
	Indeno(1,2,3-cd)pyrene	12	NO	0	Ó	Ó	.77	.77	.77
	Indole	12	NO	0	Ó	Ó	.32	.32	.32
	N-Nitrosodi-n-propylamine	12	NO	0	0	Ó	.65	.65	.65
	N-Nitrosodiphenylamine	12	NO	D	0	0	. 10	.10	. 10
	Naphthalene	12	NO	0	Ó	0	.94	-94	.94
	Perylene	12	NO	0	0	0	.67	.67	.67
	Phenanthrene	12	IL.	17	0	0	1.00	1.25	1.02
	Pyrene	12	NO	0	0	0	.75	.75	.75
20	2,3,4,5-Tetrachlorophenol	12	NO	0	0	0	1.00	1.00	1.00
	2,3,4,6-Tetrachlorophenol	12	NO	0	0	0	.29	.29	.29
	2,3,4-Trichlorophenol	12	NO	0	0	0	.83	.83	.83
	2,3,5,6-Tetrachlorophenol	12	NO	0	0	0	.63	.63	.63
	2,3,5-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2,4,5-Trichlorophenol	12	NO	0	0	0	.46	.46	-46
	2,4,6-Trichlorophenol	12	NO	0	0	0	.38	.38	.38
	2,4-Dichlorophenol	12	NO	0	0	0	.59	.59	.59
	2,4-Dimethylphenol	12	NO	8	0	0	. 15	1.67	.34
	2,4-Dinitrophenol	12	NO	0	0	0	. 10	.10	.10
	2,6-Dichlorophenol	12	NO	0	0	0	.25	.25	.25
	2-Chlorophenol	12	NO	0	0	0	.27	.27	.27
	4,6-Dinitro-o-cresol	12	NO	0	0	0	. 10	.10	.10
	4-Chloro-3-methylphenol	12	NO	0	0	0	.47	.47	.47
	4-Nitrophenol	12	NO	0	0	0	.29	. 29	.29
	Pentachlorophenol	12	NO	0	0	0	.54	.54	-54
	Phenol	12	NO	8	8	0	.38	2.75	.61
	m-Cresol	12	NO	8	0	0	.24	1.06	.30
	o-Cresol	12	IL	17	8	0	.19	4.49	.65
	p-Cresol	12	NO	8	0	0	.23	1.03	.30
23	1,2,3,4-Tetrachlorobenzene	4	NO	D	0	0	.50	1.00	.90
	1,2,3,5-Tetrachlorobenzene	4	NO	0	0	0	.50	1.00	.90
	1,2,3-Trichlorobenzene	4	NO	0	0	0	.50	1.00	.90
	1,2,4,5-Tetrachlorobenzene	4	NO	0	0	0	.50	1.00	.90
	1,2,4-Trichlorobenzene	4	NO	0	0	0	.50	1.00	.90

TNS	= NUMBER OF VALID SAMPLES	
%FREQ	= PERCENT FREQUENCY OF DETECTION ABOVE RMDL	
CLASS	= CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYT	íΕ

APPENDIX V TABLE 6 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

GENERAL MOTORS OF CAMADA, ST.CATHARINES

CONTROL POINT #: 1000 STREAM: FOUNDARY COMBINED FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991 .

x	FI	RE	Q	Æ	NC	۲	OF	D	ΕT	'EC	П	C

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
23	2,4,5-Trichlorotoluene		NO	0	0	0	.50	1.00	.90
	Hexachlorobenzene		NO	0	0	0	.50	1.00	.90
	Hexachlorobutadiene		NO	0	0	0	.50	1.00	.90
	Hexachlorocyclopentadiene		NO	0	0	0	1.00	1.00	1.00
	Hexachloroethane		NO	0	0	. 0	.50	1.00	.90
	Octachlorostyrene		NO	0	0	0	.50	1.00	.90
	Pentachlorobenzene		NO	0	0	0	.50	1.00	.90
24	2,3,7,8 TCDD		NO	0	0	0	.75	.75	.75
	Octachlorodibenzo-p-dioxin		NO	0	0	0	.33	.33	.33
	Octachlorodibenzofuran		NO	0	0	0	.87	.87	.87
	Total H6CDD		NO	0	0	0	.70	.70	.70
	Total H6CDF	1	NO	0	0	0	.90	.90	.90
	Total H7CDD		NO	0	0	0	.70	.70	.70
	Total H7CDF	1		0	0	0	.83	.83	.83
	Total PCDD		NO	0	0	0	.90	.90	.90
	Total PCDF	1	NO	0	0	0	.87	. 87	.87
	Total TCDD	1		0	0	0	.75	.75	.75
	Total TCDF		NO	0	0	0	.80	.80	.80
25	Oil and Grease	152		66	28	3	1.00	12.00	1.75
26	Abietic Acid		FL	50	0	0	1.00	2.00	1.40
	Chlorodehydroabietic Acid		NO	0	0	0	1.00	1.00	1.00
	Dehydroabietic Acid	4	IL	25	0	0	.60	1.80	1.00
	Isopimaric Acid	4	NO	0	0	0	.80	1.00	1.00
	Levopimaric Acid		FL	75	0	0	1.00	2.00	1.80
	Neoabietic Acid		FL	75	0	0	1.00	2.00	1.80
	Oleic Acid		IL I	25	0	0	.80	1.00	1.00
	Pimaric Acid		NO	0	0	0	.60	1.00	.80
27	PCBT		NO	0	0	0	.20	.60	.33
MC1	Iron		FH	100	100	100	5.00	382.00	33.25
	Magnesium	52	FH	100	100	100	192.00	950.00	476.20
MC2	Fluoride	4	FM	100	75	0	1.80	2.60	2.17

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

.

APPENDIX V TABLE 7

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0100 STREAM: SEWAGE TREATMENT PLANT FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

		X FREQUENCY OF DETECTION				DETECTION	CONCENTRATION RATIO		
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	155	FN	100	99	86	1.20	146.00	21.67
4a	Ammonia plus Ammonium	155	FH	58	55	50	. 88	130.44	21.32
5a	DOC	53	FH	100	100	100	14.24	152.00	32.06
6	Total Phosphorus	52	FH	98	98	94	1.00	100.00	20.19
8	Total Suspended Solids	253	FH	98	89	61	.20	405.20	18.66
16	1,1,2,2-Tetrachloroethane	4	NO	0	0	0	.10	.10	.10
	1,1,2-Trichloroethane	4	NO	0	0	0	.33	.33	.33
	1,1-Dichloroethane	4	FL	50	50	25	.25	7.38	2.56
	1,1-Dichloroethylene	4	NO	0	0	0	.10	.10	.10
	1,2-Dichlorobenzene	- 4	NO	0	0	0	.14	. 14	.14
	1,2-Dichloroethane	4	NO	0	0	0	.50	.50	.50
	1,2-Dichloropropane		NO	0	0	0	.22	.22	.22
	1,3-Dichlorobenzene		NO	0	0	0	.27	.27	.27
	1,4-Dichlorobenzene		IL	25	0	0	.12	1.65	.71
	Bromoform		NO	0	0	0	.10	.10	. 10
	Bromomethane		NO	0	0	0	.10	. 10	.10
	Carbon Tetrachloride		IL	25	0	0	.23	1.15	.50
	Chlorobenzene		NO	0	0	0	.14	. 14	.14
	Chloroform		IH	25	25	25	.29	5.29	1.57
	Chloromethane		NO	0	0	0	.10	.10	- 10
	Cis-1,3-Dichloropropylene		NO	0	0	0	.21	.21	.21
	Dibromochloromethane		NO	0	0	0	.27	.27	.27
	Ethylene Dibromide		NO	_0	0	0	.10	.10	.10
	Methylene Chloride		FM	75	75	50	.15	12.31	6.75
	Tetrachloroethylene		NO	0	0	0	.18	.18	.18
	Trans-1,2-Dichloroethylene		NO	0	0	0	.21	.21	.21
	Trans-1,3-Dichloropropylene	-	NO	0	0	0	.10	.10	.10
	Trichloroethylene Trichlorofluoromethane		NO	0	0	0	.21	.21	.21
	Vinyl Chloride		NO	0	0	0	.20 .10	.30 .10	-28
17	Benzene		NO	ő	0	0			.10
17	Styrene		NO NO	0	0	0	.80	.80 .40	.80 .40
	Toluene		NO	0	0	0	.40 1.00	1.00	1.00
	m-Xylene and p-Xylene		NO	0	0	0	.36	.36	.36
	o-Xylene		NO	0 0	0	0	.30	.30	.30
18	Acrolein		NO	0	0	· 0	.13	.40	.18
10	Acrylonitrile		NO	ő	0	ŏ	.10	.17	. 15
19	1-Chloronaphthalene		NO	ő	0	0	.10	.10	.10
17	1-Methylnaphthalene		NO	ő	0	ů	.10	.10	.10
	2,4-Dinitrotoluene		NO	ő	0	0	. 10	. 10	. 10
	2,6-Dinitrotoluene		NO	Ő	0	0	.03	.03	.03
	2-Chloronaphthalene		NO	0	0	0	.11	.11	.11
	a untor onepricitatene	-	10	0	U	3		• • •	• • •

TNS = NUMBER OF VALID SAMPLES

-

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

APPENDIX V TABLE 7 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0100 STREAM: SEWAGE TREATMENT PLANT FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

*	FREQUENCY	OF	DETECI	10
_		_		

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
19	2-Methylnaphthalene	4	NO	0	0	0	.10	.10	.10
	4-Bromophenyl Phenyl Ether	4	NO	0	0	0	.40	.40	.40
	4-Chlorophenyl Phenyl Ether	4	NO	0	0	0	. 16	. 16	. 16
	5-Nitro, Acenaphthene	4	NO	0	0	0	.10	.10	.10
	Acenaphthene	4	NO	0	0	0	. 15	. 15	.15
	Acenaphthylene	4	NO	0	0	0	.11	.11	.11
	Anthracene	4	NO	0	0	0	.10	.10	.10
	Benzo(a)anthracene	4	NO	0	0	0	.24	.24	.24
	Benzo(a)pyrene	4	NO	0	0	0	.28	.28	.28
	Benzo(b)fluoranthene	4	NO	0	0	0	.26	.26	.26
	Benzo(g,h,i)perylene	4	NO	0	0	0	.24	.24	.24
	Benzo(k)fluoranthene	4	NO	0	0	0	.21	.21	.21
	Benzobutylphthalate	4	NO	0	0	0	.37	.37	.37
	Biphenyl	4	NO	0	0	0	.30	.30	.30
	Bis(2-chloroethoxyl)methane	4	NO	0	0	0	.10	.10	.10
	Bis(2-chloroethyl)ether	4	NO	0	0	0	.10	.10	.10
	Bis(2-chloroisopropyl)ether	4	NO	0	0	0	.10	.10	.10
	Bis(2-ethylhexyl)phthalate	4	FH	100	100	75	4.82	19.55	11.85
	Camphene	4	NO	0	0	0	.10	.10	.10
	Chrysene	4	NO	0	0	0	.33	.33	.33
	Di-n-butyl Phthalate	4	NO	0	0	0	. 10	.10	.10
	Dibenz(a,h)anthracene	4	NO	0	0	0	. 16	.16	.16
	Diphenyl Ether	4	NO	0	0	0	.37	.37	.37
	Diphenylamine	4	NO	0	0	0	. 10	.10	.10
	Fluoranthene	- 4	NO	0	0	0	.20	.20	.20
	Fluorene	4	NO	0	0	0	.10	.10	.10
	Indeno(1,2,3-cd)pyrene	4	NO	0	0	0	.15	. 15	.15
	Indole	4	NO	0	0	0	.12	.12	.12
	N-Nitrosodi-n-propylamine	4	NO	0	0	0	.10	.10	.10
	N-Nitrosodiphenylamine	- 4	NO	0	0	0	.10	.10	.10
	Naphthalene	4	NO	0	0	0	.13	. 13	.13
	Perylene	4	NO	0	0	0	.11	.11	.11
	Phenanthrene	4	NO	0	0	0	.20	.20	.20
	Pyrene	4	NO	0	0	0	.20	.50	.27
20	2,3,4,5-Tetrachlorophenol	4	NO	0	0	0	.37	.87	.50
	2,3,4,6-Tetrachlorophenol	4	NO	0	0	0	.10	.13	.11
	2,3,4-Trichlorophenol	4	NO	0	0	0	.27	.27	.27
	2,3,5,6-Tetrachlorophenol	4	NO	0	0	0	.10	.23	.13
	2,3,5-Trichlorophenol	4	NO	0	0	0	.11	.11	.11
	2,4,5-Trichlorophenol	4	NO	0	0	0	. 15	.15	. 15
	2,4,6-Trichlorophenol	4	NO	0	0	0	. 12	.69	.27
	2,4-Dichlorophenol	4	NO	0	0	0	.11	.71	.31

TNS = NUMBER OF VALID SAMPLES

 %7FReq
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

APPENDIX V TABLE 7 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0100 STREAM: SEWAGE TREATMENT PLANT FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

			<u>x</u>	FREQU	ENCY OF	DETECTION	CONCENTRATION RATIO		
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
20	2,4-Dimethylphenol	4	NO	0	0	0	.10	.10	. 10
	2,4-Dinitrophenol	4	NO	0	0	0	.10	.10	.10
	2,6-Dichlorophenol	4	NO	0	0	0	.11	.11	.11
	2-Chlorophenol	4	NO	0	0	0	.10	.10	. 10
	4,6-Dinitro-o-cresol	4	NO	0	0	0	.17	.17	. 17
	4-Chloro-3-methylphenol	4	NO	0	0	0	.10	.10	. 10
	4-Nitrophenol	4	FM	100	100	0	3.57	3.57	3.57
	Pentachlorophenol	4	FL	100	0	0	1.54	1.62	1.56
	Phenol	4	FL	50	50	25	.14	7.08	2.68
	m-Cresol	4	IM	25	25	0	.10	2.47	.69
	o-Cresol	4	NO	. 0	0	0	.10	.11	. 10
	p-Cresol	4	IM	25	25	0	.10	2.40	.67
25	Oil and Grease	154	IL	21	8	3	.30	29.50	1.38

TNS = NUMBER OF VALID SAMPLES

 TRS
 = NOBBER OF VALUE SAMPLES

 %FREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RHOL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 8

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0200 STREAM: EAST PROCESS SEWER FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

			X	FREQU	ENCY OF L	DETECTION	CON	CENTRATION	RATIO
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand	158	FH	100	100	94	2.80	131.20	40.42
2	Cyanide Total		FH	100	100		57.80	400.00	202.20
4a	Ammonia plus Ammonium	158		97	97		.88	386.00	128.67
	Total Kjeldahl Nitrogen	2	FH	100	100	100	17.34	98.70	58.02
4b	Nitrate+Nitrite	52	FN	90	87	81	.10	584.00	114.30
5a	DOC	52	FN	100	100	100	17.80	248.00	72.24
5Ь	TOC	2	FN	100	100	100	5.30	6.40	5.85
6	Total Phosphorus	51	FH	100	98	69	1.00	520.00	19.91
7	Specific Conductance	356	FH	100	100	100	34.40	4132.80	713.95
8	Total Suspended Solids	361		100	98	95	.60	499.20	61.48
9	Aluminum	155		100	100	97	3.33	845.33	72.12
	Beryllium	155		35	8	4	.10	5.00	.92
	Cadmium	155		64	48	19	.90	19.00	2.95
	Chromium	155		98	97	95	1.00	332.00	42.53
	Cobalt	155		68	50	6	.10	6.50	2.17
	Copper	155		99	99	98	.90	460.00	62.48
	Lead	155		67	48	8	.50	13.33	2.13
	Molybdenum	154		34	22	1	.90	7.00	1.39
	Nickel	155		48	29	11	1.00	43.50	2.48
	Silver	155		88	83	67	.33	64.33	13.18
	Thallium	155		3	3	2	.10	66.67	.72
	Vanadium	155		44	34	6	.67	22.00	2.14
	Zinc	155		100	100	99	3.00	1271.00	84.59
10	Antimony		FH	100	100	100	10.00	55.60	32.80
	Arsenic		FH	100	100	100	10.00	104.40	57.20
	Selenium		FH	100	100	100	10.00	30.20	20.10
11	Chromium (hexavalent)	36		3	0	0	.10	1.10	.92
12	Mercury	11		82	82	82	1.00	212.00	47.91
14 15	Phenolics (4AAP)	360		55	50	47	1.00	285.00	22.17
	Sulphide		IH	15 0	15 0	15	.95	29.50	3.65
16	1,1,2,2-Tetrachloroethane	12		-	-	0	.10	.12	.10
	1,1,2-Trichloroethane		NO	0	0	0	.33	.83	.46
	1,1-Dichloroethane	12		42	25	0	.25	3.62	1.13
	1,1-Dichloroethylene		NO	0	0	-	. 10	.18	
	1,2-Dichlorobenzene	12		0	0	0	. 14	.36	. 16
	1,2-Dichloroethane		NO	0	0	0	.46	.63	.53
	1,2-Dichloropropane 1,3-Dichlorobenzene		NO NO	0	0	0	.19 .26	.22	.22
		12		17	8	8	.20	.45 5.47	.29
	1,4-Dichlorobenzene Bromoform	12		17	0	0	.12		
		12		0	0	0	.10	. 14	.10
	Bromomethane Carbon Tetrachloride	12		25	17	U Q	.10	3.92	.10 .88
	carbon retrachtoride	12	TW	25	17	U	.25	3.92	.05

TNS = NUMBER OF VALID SAMPLES %FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

APPENDIX V TABLE 8 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0200 STREAM: EAST PROCESS SEWER FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION CONCENTRATION RATIO

		Z FREQUENCY OF DETECTION		LONG	CONCENTRATION RATIO				
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
16	Chlorobenzene	12	NO	0	0	0	.14	.71	. 19
	Chloroform	12	NO	Ō	Ō	Ó	.29	.71	.35
	Chloromethane	12	NO	Ó	Ó	0	.10	. 14	.10
	Cis-1,3-Dichloropropylene	12	NO	0	0	0	.18	.36	.22
	Dibromochloromethane	12	NO	0	0	0	.23	.45	.28
	Ethylene Dibromide	12	NO	0	0	0	.10	.50	. 14
	Methylene Chloride	12	FL	67	25	17	.15	20.77	3.69
	Tetrachloroethylene	12	NO	0	0	0	.18	.45	.21
	Trans-1,2-Dichloroethylene	12	NO	0	0	0	.18	.36	.22
	Trans-1,3-Dichloropropylene	12	NO	0	0		.10	.36	.12
	Trichloroethylene	12	NO	8	0		.21	1.16	.33
	Trichlorofluoromethane	12	NO	8	0	0	.10	1.10	.37
	Vinyl Chloride	12	NO	0	0		.10	. 13	.10
17	Benzene	12	NO	8	8		.80	8.40	1.44
	Styrene	12	NO	0	0	0	.38	1.00	.45
	Toluene	12	IL.	25	0	0	1.00	1.40	1.07
	m-Xylene and p-Xylene	12	IΗ	17	8	8	.36	5.73	.96
	o-Xylene	12	IL	33	8	0	.40	2.40	.78
18	Acrolein	2	NO	0	0	0	. 13	.20	.16
	Acrylonitrile	2	NO	0	0	0	.10	.17	.13
19	1-Chloronaphthalene	12	NO	0	0		.10	1.00	. 18
	1-Methylnaphthalene	12	NO	0	0	0	.10	1.00	.18
	2,4-Dinitrotoluene	12	NO	0	0	0	.10	1.00	.61
	2,6-Dinitrotoluene	12	NO	0	0	0	.10	1.00	.69
	2-Chloronaphthalene	12	NO	0	0		.11	.89	.17
	2-Methylnaphthalene	12	NO	0	0	-	.10	1.00	.19
	4-Bromophenyl Phenyl Ether	12	NO	0	0	0	.40	1.00	.45
	4-Chlorophenyl Phenyl Ether	12	NO	0	0	0	.16	1.00	.23
	5-Nitro, Acenaphthene	12	NO	0	0	0	.10	1.00	.17
	Acenaphthene		NO	0	0		.15	1.00	.22
	Acenaphthylene		NO	0	0	0	.11	1.00	.18
	Anthracene		NO	0	0	0	.10	1.00	.17
	Benzo(a)anthracene		NO	0	0		.24	1.00	.30
	Benzo(a)pyrene	12	NO	0	0	-	.28	1.00	.34
	Benzo(b)fluoranthene		NO	0	0		.26	1.00	.32
	Benzo(g,h,i)perylene		NO	0	0		.24	1.00	.31
	Benzo(k)fluoranthene		NO	0	0	0	.21	1.00	.29
	Benzobutylphthalate		NO	0	0	-	.37	1.00	.42
	Biphenyl		NO	8	8		.30	5.50	.82
	Bis(2-chloroethoxyl)methane		NO	0	0	-	.10	1.00	. 17
	Bis(2-chloroethyl)ether		NO	0	0		. 10	1.00	. 17
	Bis(2-chloroisopropyl)ether	11	NO .	0	0	0	. 10	1.00	.18

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

APPENDIX V TABLE 8 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0200 STREAM: EAST PROCESS SEWER FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

		% FREQUENCY OF DETECTION CONCENTRATION RA								
ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE	
19	Bis(2-ethylhexyl)phthalate	12	FL	75	50	33	.18	8.18	3.41	
	Camphene	12	NO	0	0	0	.10	1.00	.17	
	Chrysene	12	NO	0	0	0	.33	1.00	.39	
	Di-n-butyl Phthalate	12	NO	0	0	0	.10	1.00	.18	
	Oibenz(a,h)anthracene	12	NO	0	0	0	. 16	1.00	.23	
	Diphenyl Ether	12	NO	0	0	0	. 10	.37	.35	
	Diphenylamine	11	NO	0	0	0	.10	1.00	.21	
	Fluoranthene	12	NO	0	0	0	.20	1.00	.27	
	fluorene	12	NO	0	0	0	.10	1.00	.17	
	Indeno(1,2,3-cd)pyrene		NO	0	0	0	. 15	1.00	.22	
	Indole	12	NO	8	0	0	.12	1.79	.39	
	N-Nitrosodi-n-propylamine	10	NO	0	0	0	.10	1.00	. 19	
	N-Nitrosodiphenylamine	11	NO	0	0	0	.10	1.00	.21	
	Naphthalene	12	NO	0	0	0	.13	1.00	.22	
	Perylene	12	NO	0	0	0	.11	1.00	. 19	
	Phenanthrene	12	NO	0	0	0	.20	1.00	.27	
	Pyrene	12	NO	0	0	0	.20	1.00	-29	
20	2,3,4,5-Tetrachlorophenol	12	NO	8	0	0	.37	1.00	.55	
	2,3,4,6-Tetrachlorophenol	12	NO	0	0	0	.10	.93	.17	
	2,3,4-Trichlorophenol	12	NO	0	0	0	.27	1.00	.38	
	2,3,5,6-Tetrachlorophenol	12	NO	0	0	0	. 10	1.00	.18	
	2,3,5-Trichlorophenol	12	NO	0	0	0	.11	1.00	.21	
	2,4,5-Trichlorophenol	12	NO	0	0	0	. 15	1.00	.26	
	2,4,6-Trichlorophenol	12	NO	0	0	0	.12	1.00	.23	
	2,4-Dichlorophenol	12	NO	0	0	0	. 11	1.00	. 19	
	2,4-Dimethylphenol	12	NO	0	0	0	.10	1.00	.17	
	2,4-Dinitrophenol	12	NO	0	0	0	.10	1.00	.17	
	2,6-Dichlorophenol	12	NO	0	0	0	.11	1.00	.18	
	2-Chlorophenol	12	NO	0	0	0	.10	1.00	.17	
	4,6-Dinitro-o-cresol	12	NO	0	0	0	. 17	1.00	.24	
	4-Chloro-3-methylphenol	12	NO	0	0	0	.10	1.00	.17	
	4-Nitrophenol	12	FM	92	92	0	1.00	3.57	3.36	
	Pentachlorophenol	12	FL	92	17	0	1.00	3.69	1.76	
	Phenol	12	NO	0	0	0	. 14	1.00	.31	
	m-Cresol	12	NO	0	0	0	.10	1.00	.17	
	o-Cresol	12	NO	- 0	0	0	.10	1.00	.17	
	p-Cresol	12	NO	0	0	0	.10	1.00	.17	
23	1,2,3,4-Tetrachlorobenzene	4	NO	0	0	0	1.00	1.00	1.00	
	1,2,3,5-Tetrachlorobenzene	4	NO	0	0	0	1.00	1.00	1.00	
	1,2,3-Trichlorobenzene	4	FL	50	50	0	1.00	2.50	1.70	
	1,2,4,5-Tetrachlorobenzene	4	NO	0	0	0	1.00	1.00	1.00	
	1,2,4-Trichlorobenzene	4	NO	0	0	0	1.00	1.00	1.00	

 TNS
 = NUMBER OF VALID SAMPLES

 %FREQ
 = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

 CLASS
 = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

 RATIO
 = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

.

APPENDIX V TABLE 8 (continued)

EFFLUENT MONITORING DATA DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0200 STREAM: EAST PROCESS SEWER FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

% FREQUENCY OF DETECTION

CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
23	2,4,5-Trichlorotoluene		NO	0	0	0	1.00	1.00	1.00
25	Hexachlorobenzene		NO	0	0	0	1.00		1.00
				-	0	-			
	Hexachlorobutadiene		NO	0	-	0	1.00		1.00
	Hexachlorocyclopentadiene	-	IM	25	25	0	1.00		1.60
	Hexachloroethane		NO	0	0	0	1.00		1.00
	Octachlorostyrene		NO	0	0	0	1.00		1.00
	Pentachlorobenzene		IM	25	25	0	1.00	2.40	1.30
24	2,3,7,8 TCDD	2		0	0	0	1.00	1.00	1.00
	Octachlorodibenzo-p-dioxin		FH	100	100	100	7.33		20.33
	Octachlorodibenzofuran	_	NO	0	0	0	1.00	1.00	1.00
	Total H6CDD	2	FL	50	0	0	.67	1.37	1.00
	Total H6CDF	2	FL	50	50	0	1.00	3.60	2.30
	Total H7CDD	2	FL	50	50	0	.83	4.43	2.63
	Total H7CDF	2	FL	50	0	0	.83	1.37	1.10
	Total PCDD	2	NO .	. 0	0	0	1.00	1.00	1.00
	Total PCDF	2	FL	50	0	0	1.00	1.27	1.13
	Total TCDD	2	NO	0	0	0	1.00	1.00	1.00
	Total TCDF	2	FL	50	0	0	.67	1.00	.87
25	Oil and Grease	156	IL	39	18	3	.10	11.10	1.58
26	Abietic Acid	11	FM	100	100	0	3.00	4.00	3.20
	Chlorodehydroabietic Acid	12	FM	100	100	0	3.00	4.60	3.40
	Dehydroabietic Acid	12	FM	100	100	25	3.00	7.60	4.40
	Isopimaric Acid	12	FM	100	100	0	3.00	4.40	3.40
	Levopimaric Acid	12	FM	100	100	Ó	3.00	4.40	3.40
	Neoabietic Acid		FM	100	100	33	3.00	7.60	4.00
	Oleic Acid		FM	100	100	33	3.00		6.40
	Pimaric Acid		FM	100	100	0	3.00	4.40	3.20
27	PCBT		NO	0	0	ŏ	.50	.50	.50
MC1	Iron	155		100	100	100	8.00		20422.75
ne i	Magnesium	155		100	100	100		4005500.00	162954.90
MC2	Fluoride	155		100	100	100	5.80	1160.00	302.34
nu <u>z</u>	i tuoi ide			100	100	100	5.00	1100.00	502.54

TNS = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

APPENDIX V TABLE 9

EFFLUENT MONITORING DATA

DETECTION FREQUENCY AND CONCENTRATION RATIOS

HALEY INDUSTRIES LTD., HALEY

CONTROL POINT #: 0300 STREAM: WEST STORM SEWER FOR THE PERIOD FROM MAY 1, 1990 TO APRIL 30, 1991

χ.	F	RE	QU	Æ	NC	Y	OF	DE	ΤE	ст	P	o

N CONCENTRATION RATIO

ATG	PARAMETER	TNS	CLASS	>RMDL	>2*RMDL	>5*RMDL	MINIMUM	MAXIMUM	AVERAGE
1	Chemical Oxygen Demand		FM	100	100	50	2.80	45.30	9.28
ż	Cyanide Total		FL	50	33	25	.80	906.00	77.40
4a	Ammonia plus Ammonium		FL	50	42	25	.80	1012.00	97.46
4a 4b	Nitrate+Nitrite		FH	100	100	58	2.60	47.20	9.35
	DOC			100	100	92	4.20	69.30	15.57
5a			FH		100	92		3.80	1.37
6	Total Phosphorus		FL	50			.90		
8	Total Suspended Solids		FH	100		67	1.60	161.20	35.78
9	Aluminum		FH	92	83	58	1.00	340.33	55.00
	Beryllium		1H	33	8	8	.30	5.30	.98
	Cadmium		IL .	25	8	0	.90	3.50	1.18
	Chromium		FL	67	17	8	1.00	5.00	1.58
	Cobait		FL	58	33	0	1.00	4.50	1.75
	Copper		FL	75	33	17	.90	7.00	2.14
	Lead	12	FL	50	25	8	.50	5.00	1.49
	Molybdenum	12	1M	25	17	8	.90	7.50	1.73
	Nickel	12	IH	25	8	8	1.00	8.50	1.71
	Silver	12	NO	8	8	8	.33	10.33	1.24
	Thallium	12	NO	0	0	0	.10	1.00	.22
	Vanadium	12	FL	50	25	8	1.00	10.33	2.06
	Zinc	12	FH	92	92	92	.90	86.00	30.70
14	Phenolics (4AAP)	12	FH	67	67	58	.10	141.50	21.55
15	Sulphide	12	IH	25	25	17	.95	717.00	61.30
25	Oil and Grease	12	NO	0	0	0	.50	1.00	.92
MC1	Iron		FH	100	100	100	14.50	88500.00	7517.20
	Magnesium		FH	100	100	100	339.00	20095.00	2498.35
MC2	Fluoride		FH	92	92	92	.30	370.00	89.72

TNS ... = NUMBER OF VALID SAMPLES

%FREQ = PERCENT FREQUENCY OF DETECTION ABOVE RMDL

CLASS = CLASSIFICATION CODE FOR FREQUENCY OF OCCURRENCE OF ANALYTE

RATIO = CONCENTRATION DIVIDED BY REGULATION METHOD DETECTION LIMIT

. .

• `

GLOSSARY OF TERMS

EXPLNOTE WK3

GLOSSARY OF TERMS

TERM USED	EXPLANATION
ATG	Analytical Test Group
RMDL	Regulation Method Detection Limit
PLANT	Plant or Company Name
POINT	Control Point Number (Stream Identification Number)
CLASS	Classification Code for Frequency of Occurrence
-	FH = Frequent High Level
	FM = Frequent Medium Level
	FL = Frequent Low Level
	IH = Infrquent High Level
	IM = Infrquent Medium Level
	IL = Infrequent Low Level
	NO = Non-occurrence
AVERAGE	Long term average concentration divided by the Regulation
CONCENTRATION	Method Detection Limit (RMDL).
RATIO	
AVERAGE	The average of the absolute values of the difference between the
CONCENTRATION	concentration of the effluent sample and its duplicate sample
DIFFERENCE	divided by the Regulation Method Detection Limit (RMDL).
RATIO	
TNS	Total Number of Valid Samples – Effluent
MONAVR	Average Effluent Monitoring Concentration Ratio
GAATNS	Total Number of Valid Samples – Travelling Blank
GAAAVR	Average Travelling Blank Concentration Ratio
DAATNS	Total Number of Valid Samples – Spiked Travelling Blank
DAAMIRC	Minimum Spiked Travelling Blank Percent Recovery
DAAAVRC	Average Spiked Travelling Blank Percent Recovery
DAAMARC	Maximum Spiked Travelling Blank Percent Recovery
FAATNS	Total Number of Valid Samples – Field Duplicate
FAAAVD	Field Duplicate Average Concentration Difference Ratio
AAUTNS	Total Number of Valid Samples – Uncorrected Sample
AAUAVD	Uncorrected Sample Average Concentration Difference Ratio
STATUS	QA/QC Data Assessment Status
	1 = Data are of reliable quality
r	2 = Data are of equivocal quality
	3 = Data are of unreliable quality

. .

*

.